The observation of electromagnetic signals by ocean bottom electromagnetometers in association with the Tohoku tsunami of 2011 March 11 has raised the opportunity to re-examine the physics of motional induction due to oceanic long waves in the framework of 1-D
magnetotellurics (MT). Although a propagating tsunami has a complex structure, the induced electromagnetic field can be simply approximated as a plane wave (though a simple thin-sheet approximation is not valid at higher frequencies). We found that the MT impedance due to a surface gravity wave (or the ‘motional impedance’) is influenced largely by the dispersion of the wave if the period is sufficiently short or the electrical conductivity of the seabed is low. The tipper due to the motional induction (or the ‘motional tipper’) and motional impedance are essentially identical if the underneath structure is 1-D. It would be possible to estimate the
motional impedance and tipper from the observed ocean bottom electromagnetic field at the time of passing of a tsunami. The wave amplitude must be much greater than several tens of centimetres for the motional impedance and tipper estimation to be free from the effects of external sources. However, the obtained motional impedance and tipper will mostly represent the property of the wave and use of them may not be suitable to discuss the subseafloor conductivity structure.
|