The normal fault-system responsible of the 2009 Mw 6.1 L’Aquila earthquake (PaganicaSan Demetrio fault-system) comprises several narrow, fault-parallel valleys of controversial origin. We investigated a key section of the southeastern portion of this fault network along the small Verupola Valley. In order to characterize its nature and possible tectonic activity, we applied multiple-geosciences techniques able to image at depth the structure associated to this peculiar landform. We integrated magnetometry, 2-D P wave and resistivity tomography, surface waves and seismic noise analysis coupled with field mapping, shallow boreholes and trenching. According to our results, the Verupola Valley is a ∼30–40-m-deep graben controlled by a SW-dipping master fault and synthetic splays paired with an antithetic NEdipping fault. The SW-dipping splays are active and cut very shallow (<2m deep) Late Pleistocene sediments. The small amount of cumulated vertical offset (∼15 m) across the conjugated system may indicate a young fault inception or very low Quaternary slip-rates. Due to its structural continuity with the adjacent mapped strands of the Paganica–San Demetrio fault network, we relate the Verupola Valley to the recent activity of the southeastern segment of this fault system. We also suggest that other fault-parallel valleys can have the same tectonic origin and setting of the Verupola Valley. This latter represents a scale-independent analogue from metric scale (exposed in the palaeoseismological trenches) to the Middle Aterno Basin scale (seen from seismic profiles and fault mapping). Overall, the imaged structural style is coherent with the regional tectonic setting due to Quaternary crustal extension.
|