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Preface

This special volume on the enzyme-catalyzed synthesis of polymers focuses on
various methods of polymer synthesis using enzymes as catalysts. There are
three cases for such synthetic processes: (1) In living cells (in vivo) enzymes
catalyze the synthesis of all biopolymers besides other biological substances via
biosynthetic (metabolic) pathways. In test tubes (in vitro) enzymatic catalysis
is achieved for the synthesis of polymers via (2) biosynthetic pathways or (3)
non-biosynthetic pathways. The present volume is concerned with case (3).
Therefore, studies such as the synthesis of polyesters via fermentation using
micro-organisms and synthesis of proteins using E. coli are not included.

All enzymes are categorized into six groups: (1) oxidoreductases, (2) trans-
ferases, (3) hydrolases, (4) lyases, (5) isomerases, and (6) ligases. They show
respective catalytic functions specific to the substrate group in vivo. In this
volume, however, each chapter is organized on the basis not of the enzyme
category but on the class of polymers synthesized. Enzymatic synthesis of
polymers (often referred to as enzymatic polymerization) is operated by in
vitro enzymatic catalysis, which is close to or very similar to in vivo enzymatic
catalysis depending on the reaction.

In vivo enzymatic catalysis has advantageous characteristics: high catalytic
activity (high turnover), reactions under mild conditions with respect to tem-
perature, pressure, solvent, neutral pH, etc., and excellent reaction control of
stereo-, regio-, chemo-, enantio- and choro-selectivities. These characteristics
can also be realized in vitro depending upon the catalyst. Therefore, the re-
actions contribute to the alleviation of environmental problems due to their
low loading processes (energy saving), clean processes (without forming by-
products), and the biodegradable nature of product polymers in many cases.
These are often difficult to realize by conventional methods.

The first chapter by Reihmann and Ritter reviews the recent developments of
peroxidase-catalyzed oxidative polymerization of phenol and derivatives with
a phenolic OH group. The importance of enzymatic polymerization in general
is emphasized. Properties of product polyphenols, characteristics of the en-
zyme catalysis, and significance of the process and the product are discussed.
The second chapter by Uyama and Kobayashi is concerned with the oxidative
polymerization of polyphenols, which are compounds containing more than
two phenolic OH groups. These compounds include catechols and flavonoids
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such as urushiol and catechin. The anti-oxidant properties of flavonoids were
greatly enhanced by the polymerization. In the next chapter, Xu, Singh and
Kaplan described the synthesis of polyaniline and their derivatives by using ox-
idoreductase enzymes and biomimetic catalysts. In the presence of templates,
the polymer structure was controlled to produce processable materials, which
can be used for electrical contact applications, such as synthetic–biological in-
terfaces. The dip-pen nanolithography technique was used for the processing.

The fourth chapter by Matsumura overviews the lipase-catalyzed polyester
synthesis via ring-opening polymerization of lactones. A hydrolysis enzyme
of lipase, catalyzing the hydrolysis of esters to break the ester-bond in vivo,
catalyzed the ester-bond formation to produce polyesters. In comparison with
conventional methods, characteristics of the ring-opening polymerizability by
lipase catalysis was pointed out, and the reaction mechanism was extensively
discussed. A chemical recycling process using a polymer-oligomer equilibrium
is proposed. The following chapter by Uyama and Kobayashi describes various
polycondensations for the polyester synthesis catalyzed by lipase. Divinyl esters
were found to be very effective monomers for the reactions. Dehydration was
accomplished in water with lipase catalyst.

In the sixth chapter, Kobayashi and Ohmae reviewed polysaccharide syn-
thesis by hydrolase-catalyzed polymerizations. The general characteristics of
enzymatic polymerization and the importance of a new concept for monomer
design called transition-state analogue substrates are mentioned. New enzyme-
recognizable substrates were designed as two families, sugar fluoride monomers
and sugar oxazoline monomers. The polycondensation of the former and the
ring-opening polyaddition of the latter enabled the first successful chemical
synthesis of natural polysaccharides like cellulose, xylan, chitin, hyaluronan,
chondroitin and their derivatives as well as unnatural polysaccharides. Re-
action mechanisms and high-order molecular structure formation from the
product polymers are also discussed.

In the last chapter by Singh and Kaplan, vinyl polymerizations induced by
oxidoreductase enzymes are described, where a mediator is normally used.
The reaction is of radical-type to form a C – C bond main chain. Vitamin
C-functionalized vinyl monomers and others were polymerized. Such in vitro
reactions are unique because nature does not utilize the vinyl-type C – C bond
formation reaction except for natural rubber synthesis via polycondensation.

The interdisciplinary topics presented are expected to bridge the fields of
materials science (including polymer science) and life science.

Kyoto, Düsseldorf, Medford Shiro Kobayashi, Helmut Ritter, David Kaplan
October 2005
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Abstract This chapter deals with the peroxidase-catalyzed polymerization of phenol and
its derivatives. Such a polymerization needs an oxidation reagent, normally hydrogen
peroxide. Since this type of polymerization is believed to be a potential environmen-
tally friendly alternative process for the production of phenol–formaldehyde resins, it has
been investigated thoroughly by many research groups. Typical research challenges in this
field are investigations regarding the polymerization mechanism, the mechanism of en-
zyme catalysis, the structure of the resulting phenol polymers, and, needless to say, the
synthesis of new materials. A comprehensive overview is given that covers the progress
made during recent years, starting from the synthesis of simple resins obtained from un-
substituted phenol and leading up to the production of polyaromatic materials having
multiple reactive groups in the side chain. One key for successful work in this field is to
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understand the characteristics of the enzyme. However, it is also important to be famil-
iar with the influences of different solvents and various concentrations of the reactants
(monomer, enzyme, hydrogen peroxide) on the yield, molecular weight, and structure of
the resulting polymers. In other words, peroxidase-catalyzed polymerization is an inter-
disciplinary area covering different fields, mainly biochemistry, organic chemistry, and
polymer chemistry for the synthesis of phenol polymers, as well as physical chemistry to
understand their properties. This chapter tries to emphasize this aspect.

Keywords Enzyme catalysis · Horseradish peroxidase · Green chemistry ·
Phenol polymer · Polyphenol

Abbreviations
AOT Bis(2-ethylhexyl)sodium sulfosuccinate
BOD Bilirubin oxidase
BPA Poly(isopropylidenediphenol) resin
CP/MASS Cross polarization/magic angle sample spinning
DIMEB Heptakis(2,6-di-O-methyl)-β-cyclodextrin
FT-IR Fourier-transform infrared
HEPES N-(2-Hydroxyethyl)piperazine-N ′-(2-ethanesulfonic acid)
HOMO Highest occupied molecular orbital
HPLC High-performance liquid chromatography
HRP Horseradish peroxidase
LUMO Lowest unoccupied molecular orbital
MALDI-TOF Matrix-assisted laser desorption/ionization time-of-flight
MMA Methyl methacrylate
MPL Laccase from Myceliophthore
PCL Laccase from Pycnoporus coccineus
PEG Polyethylene glycol
PPO Poly(phenylene oxide)
RAMEB Randomly 2,6-dimethylated β-cyclodextrin
SBP Soybean peroxidase
TEED N,N,N ′,N ′-tetraethylethylenediamine
TVL Laccase from Trametes versicolor

1
Introduction

1.1
The Potential of Enzymes as Catalysts in Organic Reactions

Without doubt, enzyme-catalyzed syntheses are becoming more and more
important in contemporary chemical synthesis [1–11]. Several years ago, the
use of enzymes for synthetic purposes was still restricted to several special-
ized groups of biochemistry. The number of commercially available enzymes
is increasing every year and new methods in biochemistry, including genetic
engineering, are expected to provide extremely pure enzymes at acceptable
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prices [12–14]. Thus, the use of enzyme catalysis is of growing interest for
synthetic chemists and eventually for large-scale industrial production [15–
23]. The main reasons for the increasing acceptance of isolated or even
whole-cell enzymes in organic and polymer chemistry are the environmen-
tally friendly and resource-saving conditions enabled by the enzyme catal-
ysis: mild reaction conditions (in general room temperature, atmospheric
pressure, neutral pH [6, 17, 19, 20, 24–30]) and high selectivity (often high
enantio-, regio-, and chemoselectivity [30–34]). Furthermore, enzymes are
nontoxic, they are accessible from natural renewable resources, and they offer
catalyst recyclability [12, 16, 20, 22, 32]. In addition, the use of enzymes offers
the possibility of synthesizing new materials which are not, or at least not
effectively, available by conventional methods.

1.2
The Potential of Enzymes in Polymer Chemistry

According to the advantages mentioned above, enzyme-catalyzed polymer
syntheses are also of increasing interest. Typical examples of enzymatically
produced macromolecules are the synthesis of polysaccharides and polyesters
using hydrolases, the production of biopolymers like cellulose, xylan, chitin,
or lignin by hydrolases or peroxidases, and the synthesis of polyaromatic

Table 1 Typical enzymes used in polymer chemistry

Enzyme class Enzyme type Typical substrates to build polymers

Oxidoreductases Peroxidases Phenols, anilines, vinyl compounds
Laccases Phenol, 1-naphthol, acrylamide
Tyrosinase Chitosan, poly(4-hydroxystyrene), lignin
Glycose oxidase Vinyl compounds
Xanthine oxidase Acrylamide

Transferases Phosphorylase d-Glucosyl phosphate
Hydrolases Glycosidase Saccharide fluorides

Chitinase Chitobiose oxazoline
Hyaluronidase Hyaluronic acid, hyaluronic acid saccharides
Lipase Lactones, esters, carbonates, anhydrides,

halogenated alcohols, hydroxy acids
Protease Amino acid esters
PHB depolymerase ε-Caprolactone
Epoxide hydrolase Glycidol

Ligases Cellulase Uridine diphosphate glucose
Chitinsynthase Uridine N-acetylglycosamine
Glycosyl transferase Nucleoside mono- and diphosphates

Lyases
Isomerases
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resins from phenols and anilines via peroxidase catalysis [7, 8, 11, 14, 16–
20, 22, 35]. Some polymerization reactions catalyzed by these enzymes are
listed in Table 1.

We will focus in the following paragraphs on the oxidation of phenols
catalyzed by peroxidases [18–20, 35, 36] and the potential of this reaction
in polymer chemistry. One advantage of this type of polymerization is the
possibility of producing phenolic resins without using toxic formaldehyde,
which is a necessary reagent for the production of conventional phenol–
formaldehyde resins like Resol or Novolac [19, 35–38]. Another applica-
tion, which was studied intensively, is the treatment of wastewaters. Per-
oxidases are able to catalyze the polymerization of toxic aromatic contam-
inants of wastewater. The resulting polymers can be separated from the
aqueous solution by simple filtration [39, 40]. Furthermore, the peroxidase-
catalyzed polymerization of substituted phenols and anilines can lead to
functional polymers which are otherwise difficult to synthesize, such as
conducting polymers [41–43], redox polymers [44–46], or polymers with
polymerizable [47, 48] or photocross-linkable [49, 50] groups in the side
chain.

2
Polymerization of Phenols Using Peroxidases

2.1
Definitions

Two important terms have to be defined clearly, since both are frequently
found in the literature: “enzymatic polymerization” and “polyphenol”. En-
zymatic polymerization means the chemical synthesis of polymers in vitro
via nonbiosynthetic pathways, catalyzed by an isolated enzyme [16, 35]. In
contrast, common macromolecules in nature are synthesized via enzyme
catalysis in vivo. All synthetic procedures using living cells or organisms (e.g.,
Escherichia coli) and which require fermentation are not enzymatic polymer-
izations in this sense.

The expression polyphenol is assigned in organic chemistry to an aro-
matic compound with two or more hydroxyl functions, such as a flavonoid
compound. In contrast, in publications dealing with the enzyme-catalyzed
polymerization of phenol derivatives, this term is often used to name the
polymeric products. Although this expression is not incorrect for these ma-
terials, its use can lead to confusion, especially if polymers made from
flavonoid compounds are discussed. In order to avoid misunderstand-
ing, in this article the expression “phenol polymer” is used instead of
polyphenol to name all polymers produced from phenols by peroxidase
catalysis.
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2.2
The Principle of the Peroxide-Catalyzed Polymerization

The principle of the polymerization of phenols catalyzed by a peroxidase
is explained in the following text for the enzyme horseradish peroxidase
(HRP). The mechanism of the HRP catalysis is fairly well understood and
has been the subject of many investigations [24, 51–54]. HRP catalyzes the
one-electron oxidation of phenols by a peroxide to form the corresponding
phenoxy radicals. Usually, hydrogen peroxide is used as oxidizing reagent.
During this process, two water molecules are formed [55] (Eq. 1):

2PhOH + H2O2 → 2PhO· + 2H2O (1)

The resulting phenoxy radicals react to form polymers via subsequent re-
combination and radical transfer steps, as will be discussed later. The overall
polymerization can therefore be written as follows (Scheme 1):

Scheme 1 Polymerization of phenols catalyzed by horseradish peroxidase (HRP)

2.3
Mechanism of the Peroxidase Catalysis

2.3.1
Peroxidases in Nature

Peroxidases are found in nature in plants, microorganisms, and higher organ-
isms. Common peroxidases and their various biological functions are shown
in Table 2 [24]. Peroxidases are able to catalyze the oxidation of aromatic com-
pounds, the oxidation of heteroatoms, epoxidation, and the enantioselective
reduction of racemic hydroperoxides [12, 16–20, 22, 24, 35]. Typical reactions
catalyzed by peroxidases are listed in Table 3 [24].

For the synthesis of phenol polymers by peroxidase catalysis, the oxidation
of aromatic electron donors in the presence of peroxides is of importance.
Typical peroxides used in combination with peroxidases are hydrogen perox-
ide, alkyl peroxides, and benzyl peroxide. Typical substrates are electron-rich
aromatic compounds like phenols and anilines. This function of peroxidases
was first discovered in 1855 with the oxidation of guaiacol by peroxidases in
the presence of hydrogen peroxide [56]. More systematic investigations and
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Table 2 Common peroxidases and their biological functions

Peroxidase Catalyzed reaction Biological function

Horseradish 2 ArH + H2O2 → Ar• + 2 H2O Biosynthesis of
peroxidase plant hormones
Catalase 2 H2O2 → H2O + O2 Detoxification of hydrogen

peroxide
Cytochrome C 2 Cc(II) + H2O2 → Cc(III)• Cytochrome C metabolism
Peroxidase + 2 H2O
Lignin peroxidase 2ArH + H2O2→Ar•+ 2H2O Degradation of lignin
Chloroperoxidase 2ArH + 2Cl + H2O2→ArCl + 2H2O Biosynthesis of

caldariomycin
Myeloperoxidase H2O2 + Cl + H3O• →ClO + 2H2O Antimicrobial
Lactoperoxidase 2ArH + H2O2→Ar• + 2H2O Antimicrobial

Table 3 Peroxidase-catalyzed reactions

Reaction Reaction scheme Typical substrates

Electron transfer Phenols, anilines

Disproportionation H2O2

Sulfoxidation Thioanisole

Epoxidation Alkenes

Demethylation N-N-Dimethylaniline

Dehydrogenation Dihydroxyfumaric acid

Hydroxylation l-Tyrosine, adrenaline

α-Oxidation Aldehydes

probably the first definition of the reactivity of a nonhydrolytic acting enzyme
by its purpurogallin number were presented in 1917 [57].

Most peroxidases are heme enzymes and contain the ferric protopor-
phyrin IX (protoheme) group with an iron atom in their active center (Fig. 1).
Only a few other peroxidases known so far have other metal centers and/or
different prosthetic groups. Glutathione peroxidase, for example, has a selen-
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Fig. 1 The ferric protoporphyrin IX group

ium, bromoperoxidase a vanadium, and manganese peroxidase and flavoper-
oxidase have manganese atoms in their active centers [24, 53, 54]. Also, HRP
contains the protoheme group with an Fe(III) atom in the active center. The
group is held in position by electrostatic interaction of one propionic acid
group of the heme and a lysine residue (Lys174) of the apoprotein. The mo-
lecular mass of HRP is about 40 000 Da [53].

2.3.2
The Catalytic Cycle of Horseradish Peroxidase

The first step in the oxidation of phenols catalyzed by HRP is the formation
of a precursor complex of hydrogen peroxide (or an organic hydroperox-
ide) with the enzyme (Scheme 2, 4). Next, the elimination of water leads
to the so-called compound I (Scheme 2, 5), with an oxyferryl group in the
active center surrounded by porphyrin in the form of a Π radical cation.
The Fe(III) of the active center of HRP is oxidized to Fe(IV) while the por-
phyrin structure loses one electron [24, 55, 58–60]. Compound I can be seen
as well as Fe(V) in the active center surrounded by a neutral porphyrin [18].
Compound I oxidizes the first equivalent of phenol by oxidoreduction [61].
The phenol coordinates in the active center and is oxidized via one-electron
transfer to the corresponding phenoxy radical cation, while the porphyrin
radical cation is reduced to the neutral porphyrin. After deprotonation of
the phenoxy radical cation, the resulting phenoxy radical leaves the active
center. Hence, this mechanism is called in biochemistry an irreversible ping-
pong mechanism [39, 62]. The proton of the phenoxy radical is abstracted by
a base, probably distal histidine (His – 42) to form the so-called compound II
(Scheme 2, 6) [24, 55, 63]. This species oxidizes the second equivalent phenol.
The phenol is oxidized to the phenoxy radical by one-electron transfer to the
Fe(IV), so that the native enzyme is regenerated (Scheme 2, 3). The proton
of the phenol forms water as a leaving group with the oxygen of the oxy-
ferryl group and the proton which was bound to the His – 42. Thus, in one
catalytic cycle, two equivalents of a phenol are oxidized by one equivalent of
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Scheme 2 The catalytic cycle of horseradish peroxidase

hydrogen peroxide producing two phenoxy radicals and one water molecule
(Scheme 2) [55, 60].

2.3.2.1
Mechanism of Compound I Formation

The detailed mechanism of the formation of compound I by HRP and hydro-
gen peroxide was the subject of many investigations for more than 30 years.
In an initial step, the enzyme turns the hydrogen peroxide into a better nucle-
ophile by abstraction of one proton to the His – 42 and the peroxide coordinates
side-on to the fivefold-coordinated Fe(III) atom (Scheme 3, 8) [59, 60]. Next,
a heterolytic cleavage of the O – O bond is introduced by a push–pull mechan-
ism of the two histidine residues in the active center, the distal His – 42, and
the proximal His – 170. First, the protonated His – 170 facilitates the formation
of the iron peroxide bond through the effect of its positive charge (Scheme 3,
9) [24, 53, 55, 63]. The proton transfer to an adjacent basic amino acid residue
(Scheme 3, 10) leads to a charge inversion and hence to the cleavage of the
O – O bond of the oxywater complex formed by the proton donation of Arg – 38
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Scheme 3 Mechanism of compound I formation

(Scheme 3, 11). The cleavage of the O – O bond liberates water as leaving group
and compound I is formed (Scheme 3, 12) [24, 55, 64, 65].

In some cases, the formation of compound I was accompanied by the ox-
idation of an amino acid residue instead of the porphyrin structure [53].
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Furthermore, recent molecular dynamics simulations have shown that this
mechanism probably takes place only under neutral or basic conditions [63].
In this case His – 42 can function as a proton acceptor and Arg – 38 as a pro-
ton donor to build the oxywater complex (Scheme 3). In acidic conditions,
however, the distal His – 42 is present in the protonated form and therefore
the peroxide ligand is bound more flexibly. A dynamic exchange of the oxy-
gen atoms bound to the iron atom can be formulated [63]. Thus, in acidic
conditions the Arg – 38 reacts as the proton donor to the oxygen, which is
bound to the iron atom. Exchange of the oxygen atoms then leads to the
oxywater complex. The proton of the other oxygen is accepted by a water
molecule [63].

2.3.2.2
Mechanism of Compound II Formation and Phenol Oxidation

Following the previously described formation of compound I, the first equiva-
lent of phenol coordinates in the active center (Scheme 3, 13) [24, 55, 66] and
is oxidized accompanied by simultaneous reduction of the porphyrin radi-
cal cation (Scheme 4, 14) [24, 54, 64, 65]. The proton is accepted by His – 42
and the resulting phenoxy radical leaves the active center. The resulting
neutral compound II coordinates a second equivalent of phenol in the ac-
tive center (Scheme 4, 14) [24, 54, 64, 65]. Redox reaction leads to a second
phenoxy radical and the Fe(IV) is reduced back to the native Fe(III) state
(Scheme 4, 15) [24, 54, 64, 65]. With the His – 42 donating the proton back
(Scheme 4, 16), water is formed (Scheme 4, 17), which leaves the active
center [24, 55, 67].

The investigation of the reaction of compound II with o-diphenols also
revealed a two-step mechanism, in which the first step corresponds to the
formation of an enzyme–substrate complex, and the second to electron trans-
fer from the substrate to the iron atom. The size and the hydrophobicity of
the substrate control their access to the hydrophobic binding site of HRP, but
the electron density in the hydroxyl group of C-4 was found to be the most
important feature for the electron-transfer step [68].

2.3.3
Side Reactions in the Catalytic Cycle

Successful work with peroxidases requires knowledge about the possible
side reactions in the catalytic cycle. The most important are shown in
Scheme 5 [39]. The pathway from 18 to 21 covers the normal catalytic
cycle. If the local phenol concentration is too low and/or the local con-
centration of hydrogen peroxide is too high, compound I is converted
into an intermediate (Scheme 5, 23) [39, 69]. This intermediate can follow
three different paths of decomposition. First it can react back to the na-
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Scheme 4 Mechanism of compound II formation and phenol oxidation

tive enzyme by decomposing the hydrogen peroxide to water and oxygen
(Scheme 5, 25) [39, 69]. This pathway corresponds to a weak catalase ef-
fect. It decelerates the reaction and the process consumes hydrogen perox-
ide, which is hence lost for the further polymerization process. This reac-
tion can be avoided by dosing the hydrogen peroxide to the reaction over
a large time interval, since phenols are much better reductants than hydro-
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Scheme 5 Side reactions in the peroxidase catalytic cycle

gen peroxide. Alternative pathways for the intermediate 23 are the formation
of compound II by generation of an oxygen radical anion or the forma-
tion of the verdohemoprotein P-670 (sometimes referred as compound IV)
(Scheme 5, 22) [39, 69]. The latter leads to an irreversible inhibition of the
enzyme.

Imbalance between the concentrations of phenol and hydrogen peroxide
can cause a second side reaction if the rapid conversion of compound II is
hindered. In this case, compound II reacts with excess hydrogen peroxide to
form compound III, which is not catalytically active (Scheme 5, 24) [39, 69].
This reaction consumes hydrogen peroxide, but it is not an irreversible inhi-
bition of the enzyme, because this species regenerates the native enzyme in
a very slow reaction by forming a hydrogen peroxide radical anion (Scheme 5,
26) [39, 69]. However, this process is relatively slow [39].

Another risk of permanent inhibition of the enzyme is the attack of
radicals on amino acid residues near the active center. This danger of
deactivation of the enzyme increases with increasing enzyme-to-substrate
ratio and increasing phenol concentration. Another problem, which is not
connected to the enzyme cycle, appears due to the nature of the phe-
nol polymerization process. The phenol polymers usually precipitate out of
the solution when they reach higher molecular weights. During the pre-
cipitation, the polymer chains may adsorb or trap enzyme molecules [39,
40, 70]. Thus, many studies have been made to protect the enzyme from
deactivation, and several additives have been found to reduce the loss
of enzyme activity via mechanisms that have not been fully investigated.
One of the most frequently used protection additives is polyethylene glycol
(PEG) [70].



Synthesis of Phenol Polymers Using Peroxidases 13

2.4
Mechanism of Phenol Polymer Formation

As previously described, the function of the enzyme is to produce the phe-
noxy radicals under mild reaction conditions. The resulting phenoxy radicals
are able to form polymers via recombination processes if a suitable reac-
tion medium (solvent mixture composition), pH value (buffer systems), and
kind of substrate are chosen. Some phenols, for example, are known to react
preferentially via oxidation to form ortho-diketones [68] or Pummerer ke-
tones [52], and are therefore not suitable for polymerization. Other phenols
are known to prefer dimerization reactions, for instance caffeic acid [71].

The oxidative polymerization of phenols is basically a polycondensation
reaction. A model for the polymerization was developed, which divides the

Scheme 6 Mechanism of phenol polymer formation
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polymerization into four steps (Scheme 6) [36, 37, 72, 73]. The first step is
the formation of phenoxy radicals by the HRP-catalyzed oxidation of phe-
nols (Scheme 6a). It is the only step that is controlled by the enzyme kinetics.
The phenoxy radicals form dimers by recombination (Scheme 6b). Appar-
ently, at the beginning of the reaction, practically all phenols are converted
to dimers [74–76]. When the concentration of free phenoxy radicals is de-
creasing, an electron-transfer reaction is more likely than further recombi-
nation [74]. This leads to the formation of oligomer radicals (Scheme 6c),
which then form oligomers of even higher molecular weight by recombina-
tion (Scheme 6d). The radical transfer reaction of a phenoxy radical and an
oligomer regenerates a phenol monomer, which can be oxidized again by
HRP to initiate new radical transfer reactions. When the phenoxy radical is
not reacting fast enough in a recombination or a radical transfer step, oxida-
tion may take place leading to ketone structures [74, 76, 77].

2.5
Influence of the Solvent Composition

Most peroxidase-catalyzed polymerizations of phenols studied so far have
been carried out in a mixture of organic solvent and aqueous buffer so-
lution. Under these conditions, the phenol polymers precipitate out of the
solution. The effect of the solvent composition on the yield and the molecular
weight of the resulting polymers was the subject of many studies [37, 78, 79].
A polymerization in pure buffer solution is usually not possible, because
most phenol derivates are insoluble in aqueous buffer solution [37, 78]. Thus,
during the polymerization process, the dimers and trimers formed at the
early stage of the reaction precipitate immediately out of the reaction, pre-
venting the formation of high molecular weight materials. In pure organic
solvent, however, the enzyme activity is significantly reduced and the yield
of polymer is negligible [78, 80]. Various mixtures of organic solvents with
aqueous buffer solutions have been tested for the polymerization of phe-
nols; for example, 1,4-dioxane, acetone, and N,N-dimethylformamide for the
polymerization of p-phenylphenol in the presence of phosphate buffer [37],
methanol with phosphate buffer for the polymerization of phenol [81, 82],
and ethanol with N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)
(HEPES) for the polymerization of m-cresol [79]. An early comprehensive
study of the polymerization behavior of various aromatic compounds can be
found in the literature, where the effect of the ratio of 1,4-dioxane to buffer
(phosphate and HEPES) on the yield of the resulting polymers was shown
(Table 4) [78].

These studies have demonstrated that a solvent consisting of about
80 vol % 1,4-dioxane and 20 vol % phosphate buffer at neutral pH is a good
compromise between yield and molecular weight of the resulting phenol
polymers [37, 78]. In a recent work, the enzyme activity was evaluated in var-
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Table 4 Effect of solvent/buffer ratios on yield of poly(p-phenylphenol)

Solvent/buffer Yield [%] Reaction time [h]

75% Dioxane/25% PO4 73 2
80% Dioxane/20% PO4 49 2
90% Dioxane/10% PO4 24 18
95% Dioxane/5% PO4 2.2 18
75% Dioxane/25% HEPES 71 2
80% Dioxane/20% HEPES 93 2
90% Dioxane/10% HEPES 29 2
95% Dioxane/5% HEPES negligible 2

ious solvent compositions. According to this study, besides 1,4-dioxane the
use of methanol (60 or 80 vol %) as solvent for polymerization is also ad-
vantageous [80]. It is possible to control the molecular weight by varying the
solvent composition: with more organic solvent in the mixture, the molecular
weight of the resulting polymers increases, but the yield normally decreases
simultaneously.

The reason that a mixture of 80 vol % 1,4-dioxane and 20 vol % phosphate
buffer is such a good compromise for the polymerization of phenols is prob-
ably up to the formation of aggregates consisting of phenols and 1,4-dioxane.
With this solvent composition, the mole fraction of 1,4-dioxane is equal to
that of water [83]. Experimental data have been published which clearly in-
dicate the formation of phenol aggregates in a 1,4-dioxane/phosphate buffer
mixture [83, 84]. The stabilization of these aggregates is best with a compo-
sition of 80 vol % 1,4-dioxane and 20 vol % phosphate buffer [83]. It seems
logical that the formation of aggregates could support the recombination of
radicals and the electron-transfer step.

An alternative way of performing the peroxidase-catalyzed polymerization
of phenols is the use of a reverse micellar system. A frequently used system
is the ternary mixture water/isooctane/bis(2-ethylhexyl)sodium sulfosucci-
nate (AOT) or a biphasic system using water/isooctane [85–89]. In general,
the shape and the molecular weight of polymers gained by polymerization
in reversed micelles can be regulated by adjusting the surfactant concentra-
tion. Such behavior was also found for the HRP-catalyzed polymerization of
p-ethylphenol. Increasing the AOT content by about a factor of 10 resulted, ac-
cording to this study, in the formation of phenol polymers with 20-fold higher
molecular weight [85].

The HRP-catalyzed polymerization of phenols can also be carried out as
a dispersion polymerization in 1,4-dioxane/buffer mixtures with poly(ethyl-
ene glycol), poly(vinyl alcohol), and poly(methyl vinyl ether) as stabilizers.
The dispersion polymerization of phenol and its derivatives leads to the for-
mation of relatively monodisperse polymer particles with a typical diameter
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Fig. 2 SEM photographs of polymer particles from A phenol, B m-cresol, C p-cresol,
D p-phenylphenol

around 250 nm. SEM photographs of such particles from phenol and some
derivatives are shown in Fig. 2 [20].

A new method for polymerizing hydrophobic phenol derivatives in 100%
aqueous buffer without organic solvent is the use of cyclodextrins as car-
rier molecules [48, 90–92]. Cyclodextrins are ring-shaped molecules, which
have a hydrophilic surface and a hydrophobic cavity [93–95]. This cavity
can be adjusted to the reaction conditions: while α-cyclodextrin, consist-
ing of six α-glucose molecules, fits with unsubstituted phenol [92, 96], most
p-substituted and m-substituted phenols can be included in β-cyclodextrin,
which consists of seven α-glucose molecules [48, 90]. The even bigger
γ-cyclodextrin, consisting of eight α-glucose molecules, works well with
biphenyl systems. The selective or random methylation of the OH groups
in the 2 and 6 positions of the cyclodextrin (DIMEB, RAMEB) improves the
solubility of especially β-cyclodextrins in water even further [93–95]. Thus,
a hydrophobic phenol forms water-soluble host–guest complexes in water.
These complexes can be polymerized via peroxidase catalysis (Fig. 3).

The main advantage of this system is that an organic solvent is not needed
to polymerize the phenols and therefore the whole process is of more envi-
ronmental benefit. Another important point is that the phenol polymers can
be synthesized in 100% buffer solution, enabling the enzyme to work at max-
imum activity in its natural medium. Therefore, the polymerization yield and
conversion can be increased [48]. Finally, the use of cyclodextrin often in-
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Fig. 3 HRP-catalyzed oxidative polymerization of a water-soluble phenol–cyclodextrin
complex

creases the utility of enzymes in organic synthesis, because the cyclodextrins
release the monomers in a controlled manner and inhibition of the enzyme
due to high concentrations of substrate can be avoided [97].

An interesting way to realize the polymerization in ordered two-dimen-
sional films is to react phenols substituted with a longer tail in the para
position on a Langmuir trough. For instance, thin films from p-tetradecyl-
oxyphenol and phenol have been produced using the Langmuir–Blodgett
technique. The monomeric monolayer at the air/water surface was polymer-
izable by HRP in the subphase [98, 99].

Very recently, it was demonstrated that the polymerization of phenols
can be performed within polyelectrolyte microcapsules [100]. This proced-
ure is briefly presented in Fig. 4 [100]. First, polyelectrolyte microcapsules
are prepared with layer-by-layer assemblies on small cores. The cores are re-
moved by a suitable solvent and the pH is adjusted in a way that increases
the permeability of the shell, allowing penetration of the enzyme inside the
capsules. The capsules are closed by increasing the pH, leaving the enzyme
trapped inside the capsule. Under these conditions, the shell is penetrable
for the phenol molecules, but not for the enzyme or the resulting poly-
mers, due their high molecular weight. Thus, biocatalyst-rich microvolumes
can be realized in a continuous aqueous bulk phase. The capsule diameter
may be adjusted from 100 nm to tens of microns depending on the tem-
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Fig. 4 Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcap-
sules. MF = melamine formaldehyde; PSS = poly(sodium 4-styrenesulfonate); PAH =
poly(allylamine) hydrochloride

plate core. So far, 4-(2-aminoethyl)phenol (tyramine) has been polymerized
by this system to yield fluorescent polymeric products. In another work,
the HRP-catalyzed polymerization of 4-hydroxyphenylacetic acid was suc-
cessfully applied for the shell modification of such microcapsules. Due to
the fluorescent nature of the phenolic polymer coating of the capsules, the
wall structure and the attached layers could be studied by confocal image
analysis [101].

3
Polymerization of Phenols Using Horseradish Peroxidase

3.1
Unsubstituted Phenol

Phenol (27) is the simplest and most important phenolic compound for in-
dustrial applications. The oxidative polymerization of phenol with a conven-
tional catalyst normally affords insoluble products with uncontrolled struc-
ture [102]. In contrast, the polymerization of phenol via peroxidase catalysis
enables the formation of soluble powdery materials, which consist of pheny-
lene (28) and oxyphenylene (29) units (Scheme 7) [37, 38, 103]. The ratio of
phenylene to oxyphenylene units was reported to be partially controllable
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Scheme 7 Polymerization of phenol by peroxidase catalysis

(with a phenylene rate ranging from 32 to 66%) by changing the solvent
composition and the pH value [82]. These results suggest that the single elec-
tron of the phenoxy radical is stabilized in altered positions of the phenol
when different solvent compositions are used. The produced phenol polymers
showed high thermal stability (5% weight loss at 350 ◦C followed by the onset
of rapid degradation at 378 ◦C under argon).

An interesting system for polymerizing phenol under similar conditions,
but via controlled enzymatic in situ production of hydrogen peroxide from
glucose, can be realized using the bienzymatic system horseradish perox-
idase and glucose oxidase [104]. The polymerization of phenol was also
recently performed in mixtures of 1,4-dioxane, methanol, or DMF with dis-
tilled deionized water, without using buffer salts, which usually tend to
contaminate the precipitating polymers [80]. The polymerization of phe-
nol was also realized in aqueous buffer solution in the absence of any
organic solvent. A catalytic amount of α-cyclodextrin was used as carrier
to bring the phenols into solution, thus leading to soluble phenol poly-
mers in high yields [92]. A new and interesting approach to influencing
the coupling regioselectivity of the polymerization of phenol by use of
PEG as template was recently presented [105]. The addition of PEGs with
molecular weight between 400 and 20 000 g/mol enabled the polymeriza-
tion of phenol in aqueous buffer solution. PEGs with larger or smaller
molecular weight were found to work inadequately. The precipitated prod-
uct was found to be a complex of the phenol polymer and PEG, with
the phenol polymer having a content of phenylene units around 90%.
The polymerization of phenol in methanol/buffer mixture without PEG
afforded only a content of phenylene units between 40 and 70% [82]. UV-
VIS analysis supported the scenario shown in Fig. 5, where the phenols
are arranged around the PEG due to hydrogen bonding, which should
enhance the regioselectivity during the recombination of the phenoxy
radicals.

The technique of using templates during the polymerization of phenols,
thiols, and anilines was also used successfully to produce imprinted poly-
mers. Besides phenol, various other monomers (p-substituted phenols, ani-
line, 4-aminophenyl ethanol, and thiol) were polymerized in buffer solution
in the presence of Cu(II), Ni(II), or Fe(III). The corresponding polymers
displayed selectivity in binding to the metal, which was used in the imprint-
ing step against the other three metals used for the screening [106]. It has
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Fig. 5 Polymerization of phenol in water using PEG as template

to be mentioned in this connection that even without using such template
techniques, phenol polymers demonstrated an enormous potential for the
realization of metal ion sensors [107].

3.2
p-Substituted Phenols

Most research in the field of peroxidase-catalyzed polymerization of phenols
has been carried out with p-substituted phenols. In this case, the reactive para
position of the phenol is blocked, so that the recombination of the phenol
should take place mainly at the ortho positions of the phenols [88]. Thus, the
structure of the resulting phenol polymers should not be as complicated as
that for unsubstituted phenol. Scheme 8 shows the recombination process of
a p-substituted radical (30). The radical form 31, having the radical stabilized
at one of the two ortho positions, has the corresponding tautomeric form
36 and is the most stable (Scheme 8). Thus, the recombination should occur
preferentially at the ortho positions. The mesomeric structure 32, having the
radical in the meta positions, is less stabilized. The tautomeric structure 34,
having the radical in the para position, should be more stable than 32 but
less stable than structure 31. The mesomeric form is 33, having the radical
stabilized at the oxygen atom (Scheme 8).

While the linkage structure of the phenol polymers made from p-sub-
stituted phenols was not investigated in detail in most cases, recent studies
have shown clear evidence that the polymerization of p-substituted phenols
leads preferentially to ortho–ortho coupling during the initial stage of the
polymerization [46, 76]. In contrast, it was also reported that the polymeriza-
tion of p-substituted phenols may lead to polymers that consist (according to
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Scheme 8 Recombination process of a p-substituted radical

NMR integrations and IR analysis) of phenylene and oxyphenylene units [47].
This NMR analysis can be performed by comparing the area of aromatic pro-
tons to a standardized signal of a side-chain group [47]. It is important to
also take into account the presence of aromatic protons at the chain ends,
otherwise the calculation can lead to false conclusions [46]. According to
recent studies, polymers of 4-chlorophenol consist mainly of ortho–ortho-
linked phenols, forming a helical structure. However, these polymers tend
to oxidatively cross-link, forming ether linkages via a not fully investigated
mechanism. Thus, in the IR spectrum of phenol polymers, IR absorptions
corresponding to aromatic ether structures may arise when the polymers are
stored at room temperature [108]. On the other hand, mechanistic studies
of the polymerization of 4-hydroxybenzenesulfonic acid have shown clear
evidence that C – O – C coupling can indeed be the dominant linkage struc-
ture of the resulting polymers—at least during the polymerization of phenols
with electron-withdrawing groups. This result was found by monitoring the
polymerization process by 1H and 13C NMR spectroscopy during incremen-
tal addition of H2O2 [75]. Even for the polymerization of p-t-butylphenol,
the analysis of separated dimers and trimers from the resulting products
revealed that two sorts of dimers were formed during the polymerization pro-
cess, which were assigned to phenylene and oxyphenylene linkages in these
dimers [109].

The influence of the para substituent on the polymerization behavior
was systematically investigated. Phenols with electron-withdrawing groups
were found to be poor substrates for HRP-catalyzed polymerization, while
electron-rich phenols having electron-donating residues were readily poly-
merized under the same conditions. The p-substituted phenols showed in the
same study higher reaction rates than m-substituted phenols [110]. When
polymerizing p-n-alkylphenols, the yield increased on increasing the chain
length from a methyl to a pentyl substituent. The maximum molecular weight
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was already reached with the propyl substituent. A further increase up to
heptyl did not lead to a further increase of the yield, while the molecular
weight decreased only slightly [89]. In contrast, using a reverse micellar sys-
tem (isooctane, AOT, water) for the polymerization of p-n-alkylphenols, the
maximum yield was already reached with p-ethylphenol and decreased with
increasing chain length [89]. On the other hand, the molecular weight of the
resulting phenol polymers was found to increase on increasing the length of
the alkyl group. The same behavior was found when the polymerization was
carried out in a biphasic system of isooctane and water [111].

The simplest p-alkylphenol is p-cresol (35), which has a methyl sub-
stituent. One of the first detailed studies of the HRP-catalyzed oxidation
of p-cresol was reported in 1976 [51]. Recently, a detailed in situ NMR
analysis revealed details of the coupling mechanism of the p-cresol poly-
merization. 1H NMR and 1H-1H gCOSY 2D NMR analysis suggested that
ortho–ortho coupling (43) is the dominant coupling mechanism at the ini-
tial stage of the polymerization. The consumption of dimer accelerated
only after the complete conversion of the monomer in the reaction mix-
ture. After a reaction time of about 75 min, the formation of Pummerer’s
ketone (44) was observed. These ketonic species are formed from ortho–
para-coupled dimers by intramolecular Michael addition. They are probably
not able to participate in the further polymerization process and remain as
side products (Scheme 9) [76]. Experiments with 4-propylphenol have re-
vealed that the formation of Pummerer’s ketone may be suppressed at lower
temperatures [112].

One of the most investigated p-substituted phenols is p-phenylphenol (45).
Working with this compound offers the following advantages: it is electron
rich with a high-level HOMO and its molecular weight is relatively high. Thus,
it is a very suitable substrate for HRP, and high molecular weight polymers
are easy to synthesize. The molecular weight of poly(p-phenylphenol) synthe-
sized with the HRP/H2O2 system in 1,4-dioxane/buffer mixtures can reach
26 000 g/mol [113]. However, it was reported that the resulting polymers are
not completely soluble in organic solvents like DMF, due to either the pres-
ence of fractions of high molecular weight or cross-linking processes. Dif-
ferential scanning calorimetry (DSC) thermograms of poly(p-phenylphenol)
often indicated thermal cross-linking or branching reactions [78]. Since
p-phenylphenol has a conjugated ring system, the phenoxy radicals, gener-
ated at the beginning of the polymerization, are very stable. This is a fur-
ther reason why high molecular weight polymers can be realized in good
yields with this monomer. However, the polymerization of p-phenylphenol
lacks precise structure control. The reason is that the single electron of the
p-phenylphenol radical can be stabilized preferentially at the ortho positions,
but also at the para position of the phenyl substituent (Scheme 10, 46). There-
fore, different kinds of linkage structures are possible, leading to a complex
polymer structure (Scheme 10, 47–49) [78].
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Scheme 9 Coupling mechanism of p-cresol polymerization

Scheme 10 Polymerization of p-phenylphenol
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The structure of a poly(p-phenylphenol) made by polymerization in
1,4-dioxane/buffer mixture was investigated by 13C solid-state CP/MASS
NMR. The results showed that an o-substituted product is the major con-
stituent of the polymer. No signals corresponding to phenoxy ether linkages
were observed in the FT-IR spectrum [78]. The evolution of the molecular
weight during the polymerization of p-phenylphenol was recently monitored
as a function of the amount of H2O2 added by MALDI-TOF mass spec-
troscopy [114]. Even the normalized distributions of each repeat unit as
a function of H2O2 added could be displayed by this technique. According
to this study, at the beginning mainly dimers and trimers are formed. At
an H2O2 to monomer ratio of 0.3, the amount of trimers was maximal and
decreased as the trimers reacted to higher molecular weights. The overall mo-
lecular weight increased quickly during the initial stage and continued up to
60% of the total amount of H2O2 until a plateau was reached. This plateau was
due to the fact that the phenol polymers precipitate out of the solution when
their molecular weight is high enough. The polymerization was carried out
in acetone/buffer mixture. A ratio of 50 vol % acetone and 50 vol % 0.01 M
sodium phosphate buffer was found to give the best compromise between
molecular weight and polydispersity of the resulting polymers [114].

Many efforts have been made to study the polymerization of halogenated
phenols. The focus of attention is not only the production of phenol poly-
mers in this case. It is believed that the HRP-catalyzed polymerization of
toxic aromatic compounds, for example 4-chlorophenol, can be developed
into a sophisticated method to clean aromatic pollutants from wastewater,
as the resulting polymers can be removed from the wastewater easily by
filtration. Several models for the kinetics of the HRP-catalyzed polymeriza-
tion and precipitation of 4-chlorophenol have been developed [39]. However,
while peroxidase catalysis was found to effectively reduce the concentration
of phenols in the aqueous mixture, an accumulation of toxic, soluble products
occurred during the polymerization process [40]. Several fluorinated phenols
have been investigated as well. HRP is able to catalyze the polymerization of
4-fluorophenol in methanol/buffer mixtures. However, due to the electron-
withdrawing fluoro substituent, this compound is a poor substrate to HRP.
The resulting polymers had a molecular weight of not more than 700 g/mol
and the yield could not be increased over 37%. Based on IR analysis the ma-
terials were said to consist of phenylene and oxyphenylene linkages. Contact
angle measurements have been tried with these materials, but a sufficient film
formation was not achieved [115].

Many publications have shown the outstanding potential of the HRP-
catalyzed phenol polymerization for the synthesis of functional phenol poly-
mers. An exceptional feature of the peroxidase catalysis is the possibility
of polymerizing chemoselectively phenols having double or triple bonds in
the side chain. One of the first examples of this feature was the polymer-
ization of 2-(4-hydroxyphenyl)ethyl methacrylate (Scheme 11, 50). The HRP-
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Scheme 11 Polymerization of 2-(4-hydroxyphenyl)ethyl methacrylate

catalyzed oxidative polymerization of this monomer using hydrogen peroxide
in a solution of acetone/acetate buffer (pH 7, 50 : 50 vol %) resulted in the
formation of a phenol polymer having the methacrylic groups unaffected
in the side chain [47]. The polymer was said to consist of phenylene and
oxyphenylene linkages, based on simplified 1H NMR integrations related to
the phenyl moiety without taking the end groups into account. Interestingly,
the HRP/H2O2 system is able to catalyze the polymerization of the vinyl bond
under the same conditions, if no phenol structure is present. The practi-
cally similar 2-phenylethyl methacrylate (53), just missing the OH group, was
radically polymerized with the HRP/H2O2 system to give the polymethacry-
late. With conventional AIBN initiation, even the (4-hydroxyphenyl)ethyl
methacrylate (50) was polymerized to the polymethacrylate via radical poly-
merization [47]. Thus, the HRP-catalyzed polymerization of a phenol oc-
curs chemoselectively even in the presence of a polymerizable vinyl bond,
providing an easy way to synthesize directly a functional phenol polymer
(macromonomer) having polymerizable vinyl bonds in the side chain.

This observation can be explained by the appearance of different kinds
of electrophilic or more nucleophilic radicals. The electron-rich phenol is
attacked by highly electrophilic radicals, while the methacrylic group is se-
lectively attacked by less electrophilic radicals (e.g., R – O·, C·), which are
generated for instance during an AIBN initiation. The recombination of two
phenoxy radicals is for that reason more likely than the attack of a phenoxy
radical on the electron-poor methacrylic double bond [48].

The two other vinyl monomers presented in Scheme 12, 4′-hydroxy-
N-methacryloyl anilide (55) and N-methacryloyl-11-aminoundecanoyl-4-
hydroxy anilide (56), were polymerized chemoselectively with the HRP/H2O2
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system, and polymers were also prepared from 4-hydroxyphenyl-N-maleimide
(57) [48]. All three monomers were polymerized in the form of their cy-
clodextrin complexes in aqueous buffer solution only. The resulting phenol
polymers having the unaffected double bonds in the side chain acted as
macromonomers, which could be copolymerized subsequently with MMA or
styrene (Scheme 12) [48]. Even polymers containing the reactive vinylcyclo-
propane group have been successfully polymerized in aqueous medium using
the cyclodextrin technique. The vinylcyclopropane groups were not attacked
during the polymerization and hence the phenol polymers were subsequently
cross-linked by radical initiation with AIBN [116]. The idea of chemoselec-

Scheme 12 Polymerization of vinyl monomers and macromonomers
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tive polymerization has also been extended to triple bonds. An example is
the polymerization of m-ethynylphenol, which will be discussed in the next
section.

All phenol polymers having free vinyl groups in the side chain (50,
56, and 57) could be furthermore subjected to thermal curing due to
cross-linking through the methacrylic groups [47, 48]. A multi-methacrylate
oligomer was also prepared by polymer-analogous functionalization of
a poly(isopropylidenediphenol) (BPA) resin. Such materials could be of po-
tential interest for the formulation of dental composites as direct esthetic
restorative materials [15].

Thermal cross-linking of phenol polymers was also achieved by copolymer-
ization of two different functional phenols. A copolymer of 4-hydroxyphenyl-
N-maleimide (57, Scheme 12) and a furanosyl derivative (N-(4-hydroxy-
phenyl)-2-furamide (64), Scheme 13) was subjected to irreversible cross-
linking by thermally induced [4 + 2] cycloaddition (Diels–Alder cycloaddi-
tion). The copolymerization behavior of these two phenols was studied by
following the monomer concentrations by HPLC, the increasing molecular
weight by GPC, and the polymer composition by MALDI-TOF mass spec-
troscopy. It was found that the more electron rich and sterically less demand-

Scheme 13 Thermal cross-linking of phenol polymers
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ing furanosyl derivative (64) was polymerized preferentially at the beginning
of the reaction, while the maleimide compound (57) was built into the copoly-
mers more at the end of the reaction [74]. The analysis also revealed details of
the polymerization mechanism. The furanosyl derivative reacted first practi-
cally completely to the dimer. Next, the radical transfer led to homopolymers
of 64 and copolymers with a dominating amount of 64 incorporated. Since
the radical transfer step regenerates the monomeric phenol molecule, the
concentration of 64 was found to be roughly constant for a long time after
the formation of the dimers. Later, the polymerization of the maleimide com-
pound 57 exhibited an increasing reaction rate.

Another way to realize thermally cross-linkable phenol copolymers was
reached via the 1,3-dipolaric cycloaddition reaction between phenols hav-
ing a vinyl group (55, 56) and phenols bearing a nitrone group (65), which
act as a 1,3-dipole [74]. These materials were readily cross-linked at room
temperature.

Altogether, there have been only a few studies published dealing with the
copolymerization behavior of distinct phenols, and usually the characteri-
zation of the copolymers was not fully examined. An early study of copoly-
merizations between different phenols and anilines can be found, wherein
the copolymer compositions were characterized by elemental analysis [78].
In addition, monomeric phenols have been copolymerized with phenol poly-
mers. This procedure offers, for example, an interesting way to turn lignin,
a polymeric by-product from the pulp and paper industry, into a technical
material. Lignin was reacted with phenol in an HRP-catalyzed copolymeriza-
tion to produce lignin phenolic resins [117].

Despite the polyaromatic structure of phenol polymers, which goes along
with their strong UV absorption, many photo reactions have been performed
with phenol polymers. Using the HRP/H2O2 system it was possible to real-
ize directly photoreactive phenol homopolymers containing nitrone groups
(65) in the side chain [118]. Irradiation of films of this material induced the
formation of three-membered ring structures, leading to oxaziridines in the
side chain. In other words, the refractive index of these polymer films could
be changed by irradiation. Such polymers are not available by polymeriza-
tion of vinyl compounds having nitrone groups in the side chain, because
cyclopolymerization is the preferred reaction under these conditions [119].
The HRP-catalyzed polymerization of 4-hydroxybenzaldehyde methylnitrone
is therefore the only polymerization method involving radical species, which
enables direct homopolymerization. New phenol polymers might also have
potential for the production of new photoresists. Photocross-linkable phenol
polymer films have been realized by polymerization of phenols having cin-
namoyl groups attached in the para position via ester or amide groups [49].
The amides were found to undergo photochemically induced cross-linking
via [2 + 2] cycloaddition faster than the corresponding esters. This might
be due to preordering of the molecules in the polymer film by hydrogen
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bonding. Another innovative application is the synthesis of phenol poly-
mers with azobenzene groups, which have been used for optical surface
relief gratings (SRGs). Polymers from 4-phenylazophenol were prepared with
the HRP/H2O2 system. A molecular weight (Mw) of about 3000 g/mol was
achieved, and the yield was about 80% [50]. Despite the low degree of poly-
merization of about 15, it was reported that these materials were sufficient to
produce thin films of good optical quality. Irradiation of these films revealed
interesting photoanisotropic properties enabling the fabrication of high effi-
ciency SRGs [120].

Enzymatically produced phenol copolymers have been successfully ap-
plied in the synthesis of polymer–CdS nanocomposites. Such nanocomposites
are a convenient way to overcome the tendency of nanometer-sized particles
to agglomerate due to their large surface-to-volume ratio. Copolymers con-
sisting of 4-ethylphenol and 4-hydroxythiophenol, two mutually incompatible
monomers in terms of solubility, were prepared by HRP-catalyzed oxida-
tive copolymerization in a reverse micellar environment [43]. The molecu-
lar weight of the copolymers increased with increasing 4-hydroxythiophenol
content (Table 5). In a subsequent step, CdS was attached via the thiol bonds
to the copolymer. The resulting microspherical copolymers containing the
CdS nanoparticles displayed fluorescence characteristics without low-energy
emissions, which are usually associated with surface recombinations. The
materials were stable in their solution behavior and luminescent properties.

The HRP-catalyzed polymerization of phenols was found to be a conve-
nient way to produce redox polymers and conducting (electronically con-
ducting and ionically conducting) polymers. Besides the interest in electronic
conductive polyanilines [121], many efforts have been made to produce ioni-
cally conductive phenol polymers for battery applications. A classic effort is
the synthesis of poly(hydroquinone) for use as a redox polymer. Typically,
poly(quinone)s are prepared via chemical or electrochemical methodolo-
gies [122, 123]. Both processes produce a large amount of by-products and
lead to complex polymer structures. The first alternative pathway to produce
poly(hydroquinone) by peroxidase catalysis was based on a multienzymic

Table 5 Copolymer molecular weight and CdS content as a function of monomer compo-
sition

Monomer composition Mn Mw Polydispersity CdS content
(% 4-hydroxythiophenol) (Mn/Mw) in polymer (wt%)

0 1650 2300 1.4 0
10 1750 2550 1.5 3.2
30 2500 3490 1.4 5.4
50 4390 10 775 2.2 7.2
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strategy (Scheme 14) [44]. The enzyme β-glucuronidase was used to cat-
alyze the transfer of β-d-glucose to hydroquinone under aqueous conditions.
The resulting arbutin (69) was polymerized using horseradish peroxidase
(HRP) or soybean peroxidase (SBP) in various buffer mixtures and yielded
water-soluble phenol polymers with molecular weights ranging from 1600 to
3200 g/mol. The quantitative deglycosylation of the poly(arbutin) was subse-
quently performed in aqueous HCl. The structure of the poly(arbutin) was
considered to consist of ortho–ortho couplings, and therefore the structure
of the corresponding poly(hydroquinone) should be more regular. This may
explain why the enzymatically prepared poly(hydroquinone) was soluble in
THF, DMSO, DMF, acetone, and methanol, in contrast to the electrochemi-
cally prepared poly(hydroquinone), which was found to be insoluble in these
solvents.

A chemoenzymatic way to produce poly(hydroquinone) was achieved by
enzymatic oxidative polymerization of 4-hydroxyphenyl benzoate, followed
by alkaline hydrolysis of the resulting polymer [45]. HRP and SBP were used
as enzymes. The molecular weight of the resulting poly(4-hydroxyphenyl
benzoate) varied between 1100 and 2400 g/mol. The structure was said to
consist of phenylene and oxyphenylene moieties, which was found by IR an-
alysis and titration of the residual amount of phenolic groups in the polymer.
Other phenol polymers have shown their potential for electronic applica-
tions as well. Besides hydroquinone, catechol has also been used as substrate
for peroxidase-catalyzed polymerization. The molecular weights of the reac-

Scheme 14 Polymerization of hydroquinone
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tion products were not determined. Based on IR and elemental analysis, the
structure of the poly(catechol) was found to be a mixture of phenylene and
oxyphenylene units. The polymer possessed low conductivity but had a sta-
ble reversible redox behavior during cyclic voltammetry measurements. The
iodine-labeled poly(catechol) was reported to have a low electrical conduc-
tivity from 10–6 to 10–9 S/cm [124]. In contrast, an iodine-doped thin film of
a copolymer consisting of phenol and tetradecyloxyphenol displayed a con-
ductivity of 10–2 S/cm [99]. Polymers of hydroquinone mono-oligo(ethylene
glycol) ether have been prepared by HRP catalysis. They were lithiated and
mixed with PEG. Thin films of this material had a high ionic conductiv-
ity of 4×10–5 S/cm [125]. Furthermore, the surface resistivity of a simple
p-phenylphenol polymer doped with nitrosylhexafluorophosphate, for ex-
ample, can reach 105 Ω [113].

Recently, the synthesis of phenol polymers starting from natural phenol
monomers have attracted more and more interest. The use of natural phe-
nols offers an easy way to polymerize chiral materials. A good example is
the polymerization of tyrosine and its derivatives. Tyrosine ethyl ester and
methyl esters in the form of their hydrochlorides (72) were polymerized using
the HRP/H2O2 system in high concentrations of buffer in aqueous solution
(Scheme 15) [126]. The precipitation of tyrosine polymers made from both
entantiomeric forms and a racemic mixture was observed. The molecular
weight varied between 1500 and 4000 g/mol, depending on the monomer and
buffer concentrations. The stereoconfiguration of the amino acid did not in-
fluence the molecular weight or yield remarkably according to this study. The
polymer structure was estimated to be a mixture of phenylene and oxypheny-
lene units. The poly(tyrosine ester)s were furthermore converted into a new
class of poly(tyrosine) by alkaline hydrolysis of the ester groups. The result-
ing poly(amino acid) was soluble only in water. Additionally, the enzyme HRP
also initiated the oxidative homopolymerization of N-acetyltyrosine and the

Scheme 15 Polymerization of tyrosine derivatives
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copolymerization of N-acetyltyrosine and arbutin (69). In this case it was
necessary to collect the homopolymer by dialysis and the copolymer by repre-
cipitation due to the solubility of the polymers in the buffer polymerization
medium [126].

Tyrosine derivatives have also been polymerized readily under micel-
lar conditions [127]. These studies were performed with both enantiomeric
forms of the amphiphilic decyl esters of tyrosine (DEDT, DELT), which self-
assemble above their critical micelle concentration in aqueous buffer solu-
tion into rod- or platelike-shaped fibers. The critical micelle concentrations
were found to vary in dependence on pH due to the changing protonation
level of the α-amino groups. The self-assembled structures were polymer-
ized by addition of HRP and H2O2. The polymerized fibers were more robust
than the unpolymerized fibers. While the diameter of the fiber structures re-
mained nearly unchanged, their length increased in the order of hundreds
of microns and the surface appearance changed from a rough fibrillar struc-
ture to a smooth surface without evident substructure [127]. However, the
polymerization process led to a different organization of the molecules. In-
terestingly, it was reported that the stereoconfiguration of the tyrosine decyl
ester had a significant influence on the reaction rate. The monomer in the
d configuration displayed, according to the second-order kinetic fit, nearly
twice the reaction rate of the l-tyrosine derivative [128]. Copolymers of DELT
and l-tyrosineamide produced different self-assembled structures. The un-
polymerized comonomer mixtures formed mostly smooth, featureless, and
amorphous aggregates on a gold-coated mica surface. The copolymerization
induced the formation of regular hemispherically shaped interacting aggre-
gates, perhaps due to more structure organization.

3.3
m-Substituted Phenols

Compared to p-substituted phenols, only a few studies have been carried
out with m-substituted phenols. When an m-substituted phenol is used as
monomer for peroxidase-catalyzed polymerization, the enzyme-generated
radicals are stabilized preferentially in the ortho and para positions. This im-
plies that the structures of phenol polymers resulting from m-substituted
phenols are less controllable. For example, the thermal properties of poly(m-
cresol) were compared to those of poly(p-ethylphenol). The latter, made
from a p-substituted phenol, displayed a large exotherm at 116 ◦C in the
DSC thermogram, an indication of thermal cross-linking. In contrast, the
poly(m-cresol) was stable with about 10% weight loss at 300 ◦C in a nitro-
gen atmosphere [79]. This difference can be explained by the fact that the
polymerization of m-cresol, having three positions for bond formation on the
phenylene ring, results in a cross-linked polymer. The monomer units in the
poly(p-ethylphenol) are, on the other hand, mainly linked at the ortho pos-
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itions, as the para position is blocked by the ethyl group. As a result, this
polymer is not expected to be cross-linked [79].

The HRP-catalyzed polymerization of m-alkylphenols, especially m-cresol,
has been performed in aqueous organic solvents and under reversed micellar
conditions [78, 79, 129–131]. The polymerization of m-cresol using standard
conditions (HRP/H2O2 in 1,4-dioxane/buffer 80 : 20 vol %) led to polymers
that were almost insoluble in common organic solvents [129, 130]. How-
ever, several equivolume mixtures of phosphate buffer and organic solvents
have been applied successfully to produce THF-soluble polymers from m-
cresol with molecular weights between 1000 and 3000 g/mol [131]. While
m-ethylphenol was also readily polymerized under the same conditions,
HRP did not catalyze the polymerization of m-isopropylphenol and m-t-
butylphenol. These two monomers can, however, be polymerized with SBP as
will be discussed later. During the polymerization of m-cresol, the monomer
conversion and the development of the molecular weight were estimated
as a function of addition of H2O2. It was found that the monomer con-
version increased gradually as a function of added H2O2, whereas the mo-
lecular weight was almost constant during the polymerization. This was ex-
plained by the hypothesis that the resulting soluble dimers and oligomers
reacted much faster than the monomer, and that the precipitated poly-
mer did not react any more during the polymerization. This idea was sup-
ported by the fact that the calculated HOMO levels of all possible occurring
dimers (Scheme 16, 75a–e) were larger than that of m-cresol itself, thus re-
sulting in a higher reactivity of the dimers in the oxidative polymerization
reaction [131].

Intensive studies with UV-VIS and MALDI-TOF analysis opened new in-
sights into the effect of the solvent composition on the polymerization of

Scheme 16 Calculated HOMO levels of m-cresol dimers
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m-cresol [84]. By these techniques, strong hints were found that the mo-
lecular weight of the resulting polymers and the yield are related to the
self-association of m-cresol in mixtures of organic solvents and water. While,
for example, clusters of m-cresol were not formed in 1,4-dioxane, addition
of water remarkably promoted the self-association of m-cresol. On the other
hand, clusters of m-cresol formed favorably in methanol, but were readily hy-
drated with an increasing water content in the mixture. These effects were in

Fig. 6 Clustering of m-cresol as a possible key factor during HRP-catalyzed polymerization
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agreement with the polymerization behavior. Thus, the polymer is obtained
in high yields when m-cresol clusters are formed in solution, while hydra-
tion of these clusters will restrain the polymerization. An explanation for this
behavior is shown in Fig. 6 [84]. The formation of clusters of m-cresol near
an enzyme molecule enables the continuous generation of phenoxy radicals
through the radical transfer process in the cluster, and also the recombination
process of the radicals is promoted by the self-aggregation.

The polymerization of m-cresol was also carried out successfully in
ethanol/buffer mixtures [79]. The molecular weight was controllable by
changing the solvent composition. Enzyme kinetics revealed the effect of the
solvent on the enzyme activity and substrate portioning between bulk sol-
vent and the enzyme. While the polymer solubility increased with increasing
ethanol content in the solvent mixture, the enzyme activity went through
a maximum (around 20 v/v % ethanol content) with increasing amount of
ethanol. This was similar to the results found previously for aqueous 1,4-
dioxane/buffer mixtures. The enzyme showed no activity at 100% ethanol
content, but it was found to be not irreversibly deactivated. Hence, grad-
ual addition of buffer led to nearly complete restoration of the enzyme
activity.

Furthermore, m-cresol and m-halogenated phenols have been polymer-
ized in aqueous buffer solution only in the presence of 2,6-di-O-methyl-β-
cyclodextrin [90]. In the absence of cyclodextrin, only insoluble materials
in very low yields were obtained under aqueous conditions from these phe-
nols [81]. The structure of the host–guest complexes between cyclodextrin
and the phenols was characterized by 2D NMR [48, 90] and the association
constants of the cyclodextrin complexes were determined by the Benesi–
Hildebrand method. Furthermore, 3-fluorophenol, 3-chlorophenol, and 3-
bromophenol were successfully polymerized in various aqueous organic sol-
vents such as methanol, acetone, or isopropanol [115].

Functionalized polymers can be prepared from m-substituted phenols:
the HRP-catalyzed oxidative polymerization of m-ethynylphenol (76) using
hydrogen peroxide in a solution of methanol/phosphate buffer (pH 7, 50 :
50 vol %) under air resulted in a phenol polymer having the ethynyl groups
unaffected in the side chain [132]. In contrast, a reaction with a conventional
oxidation catalyst (Cu(I)Cl/TEED) led to coupling of the acetylene moiety to
produce bis(3-hydroxyphenyl)butadiyne (78, Scheme 17) [132].

Scheme 17 Polymerization of m-ethynylphenol
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3.4
o-Substituted Phenols, Bisphenols, and other Phenols

At first sight, o-substituted phenols do not seem to be suitable substrates
for producing polymeric materials by peroxidase catalysis. However, o-
methoxyphenols (guaiacols), for instance, have been converted to oligomeric
materials (dimers to pentamers) by peroxidase catalysis (Scheme 18) [133].
SBP, an enzyme which will be discussed in the next section, was used for this
reaction instead of HRP.

A different type of polymer can be realized by polymerization of 2,6-
dimethylphenol. The polymerization leads to poly(phenylene oxide) (PPO),
a material of technical importance. This type of synthesis was performed
earlier using a copper/amine catalyst system [102, 134]. PPO consisting exclu-
sively of oxy-1,4-phenylene units was realized using HRP/H2O2 as the catalyst
system [135]. It is also possible to produce PPO via an alternative pathway
from syringic acid (79). This type of HRP-catalyzed oxidative polymerization
involves elimination of carbon dioxide and hydrogen to give PPO with mo-
lecular weights up to 13 000 g/mol (Scheme 19) [136, 137]. In addition, the
isomer 4-hydroxy-3,5-dimethylbenzoic acid can be used to produce PPO. It
was found by mass spectroscopy that the polymers possessed exclusively the
structure presented in Scheme 18 with the carboxylic acid and the hydroxyl
group as end groups. The polymerization of unsubstituted 4-hydroxybenzoic
acid was not observed under similar reaction conditions. An example of
the polymer-analogous modification of such enzymatically prepared PPO
plastics is their demethylation with boron tribromide to yield poly(oxy-2,6-
dihydroxy-1,4-phenylene) [138].

Scheme 18 Conversion of o-methoxyphenols to oligomers

Scheme 19 Polymerization of syringic acid to form PPO
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Several bisphenol derivatives were reported to polymerize through per-
oxidase catalysis to give soluble polymers, even though these monomers
are bifunctional. For example, the HRP-catalyzed oxidative polymerization

Scheme 20 Radical transfer reactions between enzymatically polymerizable and nonpoly-
merizable monomers
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of 4,4′-oxybisphenol yielded α-hydroxy-ω-hydroxyoligo(oxy-1,4-phenylene).
During the reaction, the redistribution and/or rearrangement of a quinone–
ketal intermediate took place, involving the elimination of hydroquinone
to give oligo(oxy-1,4-phenylenes) [139]. Thermally curable polymers have
been synthesized from bisphenol A and 4,4′-biphenol [140, 141]. The treat-
ment of bisphenol F, an industrial product consisting of 2,2′-, 2,4′-, and
4,4′-dihydroxydiphenylmethanes, with the HRP/H2O2 system led to the
quantitative formation of a highly reactive prepolymer for curing via copoly-
merization of all three isomers. While the pure isomers 2,4′- and 4,4′-
dihydroxyphenylmethane were converted into the homopolymer in high
yield with a peroxidase/H2O2 system, no homopolymerization of 2,2′-
dihydroxyphenylmethane occurred. However, the industrial mixture bisphe-
nol F was polymerized nearly quantitatively. Thus, these findings suggest
that radical transfer reactions between both enzymatically polymerizable
monomers and nonpolymerizable monomers took place (Scheme 20) [142].

Fluorescent polymers have been realized by the oxidative polymerization
of 2-naphthol (94) [143]. The polymerization was carried out in a reverse
micellar system using AOT/isooctane to give the polymer in single and in-
terconnected microspheres. The frequency of the AOT carbonyl IR vibrations
was shifted as a function of the monomer concentration, thus proving the
penetration of the monomers into the interfacial region of the reversed mi-

Scheme 21 Polymerization of 2-naphthol
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Scheme 22 Polymerization of 8-hydroxyquinoline-5-sulfonate

celles. Besides the fluorescence characteristic of the 2-naphthol chromophore,
the polymer showed an additional well-resolved fluorescence attributed to
extended quinonoid structures (97) at the end of or within the aromatic poly-
mer chain (Scheme 21).

Higher-substituted two-ring structures have also been investigated. The
polymerization of 8-hydroxyquinoline-5-sulfonate (98) was studied by in situ
NMR spectroscopy [144]. The change of the resonances of the five observable
protons allowed the use of NMR to follow directly which sites of the monomer
participated in the oxidative coupling during the polymerization. Positions 2,
4, and 7 were the preferred sites for the polymerization. The lower preference
for position 4 can be ascribed to the steric hindrance posed by the sulfonate
group. Furthermore, 13C NMR data suggested the existence of C – O – C link-
ages as well as C – C linkages in the polymer (Scheme 22) [144].

4
Polymerization of Phenols Using Other Peroxidases

So far, most peroxidase-catalyzed oxidative polymerizations have been car-
ried out using the enzyme horseradish peroxidase (HRP). Another useful
peroxidase that catalyzes the oxidative polymerization of phenols is soybean
peroxidase (SBP). While the use of either HRP or SBP may often lead to
similar products and results [77], the enzyme activity, yield, and molecu-
lar weight of the resulting polymers can also sometimes depend strongly
on the type of enzyme used for the polymerization process. For example,
SBP was found to be superior to HRP for the efficient polymerization of
bisphenol A [140], but the polymerization of phenol with SBP afforded
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a lower polymer yield than that using HRP under the same reaction condi-
tions [145]. Various m-substituted phenols have been polymerized with HRP
and SBP under the same reaction conditions, for example m-alkylphenols,
m-halogenated phenols, and m-phenylphenol [131]. The HRP-catalyzed poly-
merization of m-cresol afforded the polymer almost quantitatively, while
the yield decreased enormously using m-ethylphenol. The polymerization of
m-isopropyl- and m-t-butylphenol was not initiated by HRP. In the case of the
analogous SBP-catalyzed polymerizations, the yield increased with increasing
substituent volume. These data suggest that for m-substituted phenols, HRP
has a higher activity toward monomers with smaller substituents, while SBP
is preferable for larger-volume substituents.

A new way to realize polymers from m-substituted phenols having a bulky
substituent via HRP catalysis is polymerization in the presence of a redox
mediator [146]. Cardanol is a phenol derivative from a renewable resource,
which has a very bulky substituent in the meta position: a C15 unsaturated
hydrocarbon chain with one to three double bonds. Thus, cardanol was poly-
merized by SBP, while HRP did not initiate this polymerization [147]. How-
ever, the HRP-catalyzed polymerization took place in the presence of N-ethyl
phenothiazine and phenothiazine-10-propionic acid. The structure and prop-
erties of the resulting polymers have been reported to be similar to those
made by SBP catalysis. Thus, the two presented phenothiazine derivatives
most likely act as a mediator for electron transfer between HRP and cardanol,
as demonstrated in Fig. 7 [146].

Furthermore, SBP was often successfully applied in the synthesis of func-
tional polymers. A good example is the synthesis of a phenol polymer con-
taining thymidine, which may be of interest in terms of biorecognition. In
a first step, a lipase was used to realize the regioselective acylation of thymi-
dine at the 5′-hydroxyl group. The following polymerization of the phenolic
nucleoside was catalyzed by SBP to give the thymidine-containing polymer
104 with a yield of 70% and a Mn of 21 700 g/mol (Scheme 23) [148].

Also laccases, oxidoreductases with a Cu atom in the active center, have
been successfully applied to the synthesis of phenol polymers. For example,
phenol and several derivatives were polymerized by laccase from Pycnoporus
coccineus (PCL) in aqueous organic solvents to yield the corresponding poly-
mers [149]. The same enzyme was used to produce PPO from syringic acid
(79) and from 2,6-dimethylphenol. Laccase from Myceliophthore (MPL) was
found to catalyze the polymerization of syringic acid to PPO [135–137]. Lac-

Fig. 7 The proposed role of mediators in the peroxidase-catalyzed oxidation of cardanol
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Scheme 23 Synthesis of a phenol polymer containing thymidine

case from Trametes versicolor (TVL) catalyzed the oxidative polymerization
of 1-naphthol [150], and 1,5-dihydroxynaphthalene was polymerized by the
Cu-containing bilirubin oxidase (BOD). Finally, tyrosinase was used for sev-
eral cross-linking reactions, for example for the cross-linking of soluble lignin
fragments to give insoluble materials [151].

5
Polymerization of Phenols Using Model Complexes

The peroxidase-catalyzed polymerization of phenol and aniline derivatives
has shown a lot of potential for the synthesis of new functional polymers
under mild conditions, and for the environmentally friendly synthesis of phe-
nol polymers without using toxic formaldehyde, as was shown in the previous
paragraphs. The main drawback of this type of synthesis are therefore the
cost and the handling of the enzyme, although peroxidases are widely dis-
tributed in nature and HRP is extensively used commercially.

Many efforts have been made to replace the enzyme by synthetic metal
complexes. A simple way to do so is the use of hematin, which is the oxidized
form of the heme group. The free heme group is unstable and rapidly oxidized
to hematin, and is therefore not of interest for model complexes. Ethylphenol
was successfully polymerized by hematin in a DMF/buffer mixture [152]. The
pH was varied between 4.0 and 11.0 and the yield increased with increasing
pH value. The results in terms of molecular weight and yield were at pH 11
comparable to those of the polymers obtained by HRP catalysis at pH 7. Based
on UV-VIS and Mössbauer spectroscopy, a mechanism was proposed for the
hematin-catalyzed polymerization which is comparable to that proposed for
HRP (Scheme 24) [152].
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Scheme 24 Hematin-catalyzed polymerization of ethylphenol (EP)

Another compound which has been found to somewhat imitate the active
site of peroxidases is the commercially available Fe(II)-salen catalyst. This
catalyst was used successfully to produce phenol polymers, which could be
of interest for industrial production [153, 154]. For example, cardanol can
be polymerized by the Fe(II)-salen catalyst [155]. Due to the unsaturated
bonds in the side chain of the cardanol components, the resulting polymers
could be thermally cured, or cured by use of cobalt naphthenate to give
brilliant films with a high-gloss surface. This reaction proves that reactive
prepolymers can be synthesized from renewable resources (cardanol is the
main component obtained by thermal treatment of cashew nutshell liquid).
This process could be a true alternative to conventional phenol–formaldehyde
resins (Scheme 25) [155]. Other non-heme iron complexes have been found to

Scheme 25 Polymerization of cardanol using Fe(II)-salen catalyst
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act in H2O2-dependent oxidations as well, acting as a typical Fenton reagent
or through metal-based mechanisms [156].

Another polymer from partially renewable resources was synthesized
by first reacting 6-hydroxy-1-naphthoic acid via acylation with alcohols
from linseed oil or fish oil. Polymerization using the Fe-salen catalyst gave
the corresponding polynaphthols in high yields. The resulting polymers
were again cured by cobalt naphthenate or thermal treatment to give bril-
liant films with high hardness and glossy surface [157]. The use of the
Fe(II)-salen catalyst can be combined with peroxidase catalysis. Polymers
from m-cresol or bisphenol A, which have been prepared by peroxidase
catalysis, can be cross-linked by the Fe-salen catalyst. Under suitable re-
action conditions (appropriate concentrations of substrate and catalyst),
it was reported that the phenol polymers can even be coupled without
cross-linking to produce ultrahigh molecular weight phenol polymers [158].
This approach has been extended to other phenol polymers as well. Poly-
mers from phenol, o- and m-substituted phenols, bisphenol, and triphenol
were subjected to oxidative coupling by the Fe-salen/H2O2 system. On the
other hand, this reaction scarcely proceeded with polymers made from p-
substituted phenols [159]. Additionally, poly(amino acids) were reacted with
p-(2-aminoethyl)phenol (tyramine). The resulting functionalized poly(amino
acids) were converted to soluble high molecular weight poly(amino acids)
and further to cross-linked gels by Fe-salen- or HRP-induced oxidative
coupling [160].

Regioselective oxidative polymerization of 4-phenoxyphenol (113) was re-
alized by a tyrogenase model complex to yield poly(1,4-phenylene oxide)
(Scheme 26) [161, 162]. The polymerization was performed in toluene under
oxygen. The molecular weight (Mn) ranged from 700 to 3800 g/mol, which
was significantly less than that with a conventional CuCl/TEED catalyst.

Scheme 26 Oxidative polymerization of 4-phenoxyphenol
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Fig. 8 Working hypothesis for the control of the phenoxy radical coupling by the oxidation
catalyst

The results were compared to those for an oxidative polymerization using
HRP/H2O2 in a 1,4-dioxane/buffer mixture, but the resulting materials were
insoluble in DMF.

Although a conventional CuCl/TEED catalyst is known to catalyze the
oxidative polymerization of 4-phenoxyphenol under dioxygen, this catalyst
could not control the regioselectivity during the recombination step of the
phenoxyradicals. The improvement of the presented tyrogenase complexes
(115, 116a–d) lies in their ability to form controlled radicals. Since the tyro-
genase complexes are more nucleophilic than the CuCl/TEED catalyst, they
abstract only protons and not hydrogen atoms from the 4-phenoxyphenol
molecule, to form stable intermediates. As a result, the regioselectivity is reg-
ulated in the subsequent coupling step (Fig. 8) [162].

6
Outlook

During the last ten years, many research results have shown that oxidative
polymerization catalyzed by peroxidases is a convenient, resource-saving,
and environmentally friendly method for synthesizing phenol polymers. In
contrast to the conventional synthesis of phenol–formaldehyde resins, the
peroxidase-catalyzed polymerization of phenol proceeds under mild reac-
tion conditions (room temperature, neutral pH). The polymerization of toxic
phenols has promising potential for the cleaning of wastewaters. Moreover,
the polymerization of phenols from renewable resources is expected to at-
tract much attention in times of worldwide demand for the replacement
of petroleum-derived raw materials. Besides the environment-protecting as-
pects of this innovative type of polymerization, the enzyme-catalyzed poly-
merization represents a convenient method to realize new types of func-
tional polyaromatic polymers. Phenol polymers made by peroxidase cataly-
sis should have much potential for electronic and optical applications. The
synthesis of functional phenol polymers is facilitated by the fact that poly-
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merizable groups and reactive groups are usually not affected by the enzyme-
catalyzed polymerization of phenols.

It is expected that new types of functional phenol polymers with interest-
ing properties in terms of thermal stability or optical and electronic proper-
ties will be presented in the next few years. New examples of phenol polymers
from natural resources will hopefully broaden the interest for this type of
polymerization from a commercial point of view. In this connection, the find-
ing of suitable highly active model complexes could be of increasing interest
in reducing the cost of the oxidative polymerization of phenol derivatives.
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Abstract Enzymatic synthesis and properties of polymers from polyphenols are re-
viewed. Catechol derivatives were subjected to oxidative polymerization and curing.
High-performance coatings were prepared from urushiol and its analogues using laccase
as a catalyst. Flavonoids were oxidatively polymerized by polyphenol oxidase, laccase,
and peroxidase to produce the flavonoid polymers. The conjugation of polyphenols on
amine-containing polymers took place via the enzyme catalysis. The flavonoid-containing
polymers showed good antioxidant properties and enzyme inhibitory effects.

Keywords Enzymatic oxidative polymerization · Flavonoid · Urushi · Curing · Conjugate

Abbreviations
AAPH 2,2′-azobis(2-amidinopropane)dihydrochloride
AP acetone powder
ChC Clostridium histolyticum collagenase
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CNSL cashew nut shell liquid
DP degree of polymerization
EGCG epigallocatechin gallate
HRP horseradish peroxidase
LDL low-density lipoprotein
ML Myceliophthora laccase
MMP matrix metalloproteinases
PCL Pycnoporus coccineus laccase
PL poly(ε-lysine)
POSS polyhedral oligomeric silsesquioxane
PPO polyphenol oxidases
ROS reactive oxygen species
SP starch-urea phosphate
XO xanthine oxidase

1
Introduction

For the last decades, enzymatic synthesis of phenolic polymers has been ex-
tensively investigated [1–10]. In living cells, various oxidoreductases play an
important role in maintaining the metabolism of living systems. So far, sev-
eral oxidoreductases—peroxidase, laccase, bilirubin oxidase etc.—have been
reported to catalyze an oxidative polymerization of phenol derivatives, and
among them, peroxidase is most often used. The enzymatically synthesized
phenolic polymers are expected to become an alternative to conventional
phenolic resins, which have limitations of their preparation and use due to
concerns over the toxicity of formaldehyde.

In the previous chapter “Synthesis of Phenol Polymers Using Peroxidases”,
the enzymatic oxidative polymerization of monophenolic derivatives is de-
scribed. This chapter deals with the enzymatic synthesis and properties of
polymers from polyphenols, compounds having more than two hydroxyl
groups on the aromatic ring(s). In particular, cured phenolic polymers (artifi-
cial urushi) and flavonoid polymers are examined from the standpoint of the
enzymatic synthesis of functional materials.

2
Enzymatic Oxidative Coupling of Catechol Derivatives

2.1
Polymerization of Catechols

The oxidative coupling of catechol proceeded in the presence of a peroxi-
dase catalyst [11], during which an unstable o-quinone intermediate may be
formed, followed by complicated reaction pathways to give poly(catechol).
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Fig. 1 Synthesis of poly(catechol) by multienzymatic processes

The iodine-labeled polymer showed low electrical conductivity in the range
of 10–6 to 10–9 S cm–1.

Laccase was also a good catalyst for the oxidative polymerization of cate-
chol [12]. The polymerization using the laccase enzyme produced by a culture
of Trametes versicolor was conducted batch-wise in an aqueous acetone to
give a polymer with molecular weight of less than 1000.

Synthesis of poly(catechol) was demonstrated by multienzymatic pro-
cesses (Fig. 1) [13]. Aromatic compounds were converted to catechol deriva-
tives by the catalytic action of toluene dioxygenase and toluene cis-dihydrodiol
dehydrogenase, followed by the peroxidase-catalyzed polymerization to give
the polymer with molecular weight of several thousands.

2.2
Curing of Urushiol and Its Analogues

Urushi is a typical Japanese traditional coating that displays excellent tough-
ness and brilliance over a long period. In the early days of the 20th century,
pioneering works by Majima revealed that the important components of
urushi are “urushiols,” whose structure is a catechol derivative directly linked
to unsaturated hydrocarbon chains consisting of a mixture of monoenes, di-
enes, and trienes at the 3- or 4-position of catechol [14, 15]. Film-forming
of urushiols proceeds in air at room temperature without organic solvents;
hence, urushi seems very desirable as a coating material from an environ-
mental standpoint. In vitro enzymatic hardening reaction of catechol deriva-
tives bearing an unsaturated alkenyl group at the 4-position of the catechol
ring was carried out using Pycnoporus coccineus laccase (PCL) as a catalyst to
yield a crosslinked film with excellent dynamic viscoelasticity [16].

Fast-drying hybrid urushi has been developed [17]. Kurome urushi is re-
acted with silane-coupling agents possessing an amino, epoxy, or isocynate
group, resulting in a shorter curing time for urushi.

So far, few modeling studies of urushi have been attempted, mainly due to
difficulties in the chemical synthesis of the urushiol. New urushiol analogues
have been developed by a convenient synthetic process for the preparation of
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Fig. 2 Enzymatic synthesis of artificial urushi

“artificial urushi” (Fig. 2) [18–21]. The urushiol analogues were synthesized
using lipase as a catalyst in a single step. These compounds were cured using
PCL as a catalyst in the presence of acetone powder (AP, an acetone-insoluble
part of the urushi sap containing mainly polysaccharides and glycoproteins)
under mild reaction conditions without the use of organic solvents, yield-
ing a brilliant film (“artificial urushi”) with a high-gloss surface. Starch-urea
phosphate (SP), a synthetic material, was also available as a substitute for AP
for in vitro enzymatic curing of the urushiol analogues, although the film
hardness was smaller than that obtained in the presence of AP. The use of SP
as the third component provided the artificial urushi from exclusively syn-
thetic compounds.

The curing monitoring by FT-IR showed that the curing of the urushiol
analogue proceeds via oxidative coupling of the phenol moiety and the sub-
sequent autoxidation of the unsaturated group in the side chain. The storage
modulus (E′) and dissipation factor (tan δ) of the cured film showed that the
film had homogeneous structure and good viscoelasticity, and that its charac-
teristics were similar to those of natural urushi (Fig. 3).

Fig. 3 Dynamic viscoelasticity of (A) artificial urushi from an urushiol analogue having
linolenic acid moiety in the presence of AP and (B) natural urushi
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Fig. 4 Synthesis and curing of polyCNSL

Furthermore, new crosslinkable polyphenols based on model “urushi”
were designed and synthesized by the oxidative polymerization of other
urushiol analogues using Fe-salen, a model catalyst of peroxidase [22–24].
Such polyphenols were readily cured to give crosslinked polymeric films with
high-gloss surface.

Cardanol, a main component obtained by the thermal treatment of cashew
nut shell liquid (CNSL), is a phenol derivative having a meta substituent
of a C15 unsaturated hydrocarbon chain with one to three double bonds
as the major. Another new crosslinkable polyphenol was synthesized by the
Fe-salen-catalyzed oxidative polymerization of CNSL (Fig. 4) [25, 26]. The
polymerization of CNSL in 1,4-dioxane or without solvent resulted in a sol-
uble polymer with a molecular weight of several thousand in good yields.
The curing of polyCNSL proceeded by oxidation catalyzed by cobalt naph-
thenate in air or in a thermal treatment (150 ◦C for 2 h) to yield a yellowish
transparent film, which is also an “artificial urushi” in a broad sense. The
resulting crosslinked film exhibits good elastic properties comparable with
cardanol-formaldehyde coating materials. FT-IR monitoring of the curing of
polyCNSL showed that the crosslinking mechanism is similar to that of the oil
autoxidation.

3
Enzymatic Oxidative Polymerization of Flavonoids

Bioactive polyphenols are present in a variety of plants and are used as
important components of human and animal diets [27]. Flavonoids are
a broad class of low-molecular-weight secondary plant polyphenolics, which
are benzo-γ -pyrone derivatives consisting of phenolic and pyrane rings.
Flavonoids are usually subdivided according to their substituents into fla-
vanols, flavones, flavanones, chalcones, and anthocyanidines.

Recently, there has been increasing interest in flavonoids due to their bio-
logical and pharmacological activity including antioxidant, anti-carcinogenic,
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probiotic, anti-microbial, and anti-inflammatory properties [28–31]. These
properties are potentially beneficial in preventing diseases and protecting the
stability of the genome. Many of these activities have been related to their
antioxidant actions.

3.1
Catechins

Green tea is derived from Camellia sinensis, an evergreen shrub of the
Theaceae family. Most of the polyphenols in green tea are flavanols,
commonly known as catechins; the major catechins in green tea are
(+)-catechin, (–)-epicatechin, (–)-epigallocatechin, (–)-epicatechin gallate,
and (–)-epigallocatechin gallate (EGCG) (Fig. 5). Numerous biological activ-
ities have been reported for green tea and its contents—among them, the
preventive effects against cancer are most notable [32–34].

Catechin was aerobically subjected to an oxidative coupling by plant
polyphenol oxidase (PPO) to give polymers [35], whose analytical properties
were similar to those obtained by autoxidation with hydrogen peroxide [36]
and to tannins extracted from Acacia catechu. The main reaction sequence
involves formation of o-quinone, followed by the coupling of this unstable
intermediate.

The oxidative coupling of catechin by PPO extracted from grapes was re-
ported [37]. In case of coupling at a pH below 4, the result contained mostly
colorless products, whereas yellow compounds were formed at the higher
pH. From the product mixtures, eight dimer fractions corresponding to the
major products formed at pH 3 and pH 6 were isolated and analyzed by

Fig. 5 Structure of the main components of green tea catechins
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NMR, UV-vis, and mass spectroscopies [38]. A detailed NMR analysis pro-
vided a structural hypothesis for five resulting products. The colorless dimers
are dehydrodicatechins of type B with C – O and C – C interflavin linkages.
Two yellow dimers correspond to dehydrodicatechin A and to a structure of
quinone-methide-type.

Mushroom PPO was used for the coupling of catechin with an excess of
phloroglucinol, in which the o-quinone intermediate of catechin was trapped
by phloroglucinol to form the biphenyl group at the 6′ position of cate-
chin [39]. The PPO-catalyzed reaction of catechin and mesquitol resulted
in the construction of the atropisomers (R)- and (S)-mesquitol-[5 → 8]-
catechins as the only identified products.

The oxidative coupling of catechin can be carried out in a peroxidase/
hydrogen peroxide system. The coupling by horseradish peroxidase (HRP)
produced oligomers with a degree of polymerization (DP) of less than 5 [40].
Dehydrodicatechin A was isolated and identified from the reaction mixture.
A kinetic study of the oxidation of catechin by peroxidase from strawber-
ries (Fragaria × ananassa) showed highly efficient catalytic activity of the
enzyme at a low concentration of hydrogen peroxide [41].

The reaction products obtained by the HRP-catalyzed oxidative coupling
of catechin were analyzed by reversed-phase and size-exclusion chromatogra-
phies [42]. The products were dehydrodicatechin A and oligomers with DP
equal or greater than 5. The joint use of both chromatographies permits the
qualitative and quantitative identification of the product mixtures.

Comparative study on the products obtained by the peroxidase-catalyzed
and PPO-catalyzed oxidative coupling of catechin was reported [43]. Both
enzymes produced the similar products. In the PPO-catalyzed oxidation, cat-
echin was almost consumed, and the oligomers were mainly formed. On the
other hand, a significant amount of catechin remained, and the amount of
oligomer fractions was small when peroxidase was used as a catalyst. The low
catalytic activity of peroxidase may be due to the inhibition of the enzyme by
the resulting products.

Two unusual dimers formed by the oxidation of catechin using an HRP
catalyst were isolated and identified. One is the dicarboxylic acid compound
with a C – C linkage between the C-6′ of the B-ring and the C-8′′ of the D-ring.
The diacid was formed by ortho cleavage of the E-ring. Another is dimer of
C – C linkage between the C-2 of the C-ring and the C-8′′ of the D-ring [44]. In
the laccase-catalyzed oxidative coupling, new catechin-hydroquinone adducts
were formed.

In the enzymatic polymerization of phenol derivatives, a mixture of hy-
drophilic organic solvent and buffer is often used as a medium for the efficient
production of polymers [45–47]. The HRP-catalyzed polymerization of cate-
chin was carried out in an equivolume mixture of 1,4-dioxane and buffer (pH 7)
to give a polymer with a molecular weight of 3.0×103 in 30% yield [48]. Using
methanol as cosolvent improved the polymer yield and molecular weight [49].
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In the polymerization of catechin using laccase derived from Mycelioph-
thora (ML) as catalyst, the reaction conditions were examined in detail [50].
A mixture of acetone and acetate buffer (pH 5) was suitable for the efficient
synthesis of soluble poly(catechin) with higher molecular weight. The mixed
ratio of acetone greatly affected the yield, molecular weight, and solubility
of the polymer. The polymer synthesized in 20% acetone showed low solu-
bility in N,N-dimethylformamide (DMF), whereas the polymer obtained in
acetone content of less than 5% was completely soluble in DMF. In the UV-
vis spectrum of poly(catechin) in methanol, a broad peak centered at 370 nm
was observed. In alkaline solution, this peak was red-shifted, and the peak
intensity became larger than that in methanol. In the ESR spectrum of the
enzymatically synthesized poly(catechin), a singlet peak at g = 1.982 was de-
tected, whereas the catechin monomer possessed no ESR peak.

3.2
Other Flavonoids

Many flavonoids are subjected to enzymatic oxidation. Quercetin, one of the
most famous flavonoids, has received much attention due to its interesting
biological effects. The oxidation of quercetin by PPO was examined [51]. In
reaction monitoring by UV-vis spectroscopy, the peak at 291 nm increased,
and the peak at 372 nm decreased. The oxidation was inhibited by the specific
inhibitor for PPO (4-hexylresorcinol).

Rutin (Fig. 6) is one of the most commonly found flavonol glycosides iden-
tified as vitamin P with quercetin and hesperidin. The oxidation of rutin
by an HRP/hydrogen peroxide system was reported [52]. The oxidation at

Fig. 6 Structure of rutin and its water-soluble derivatives
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pH 7.8 produced an ascorbate-reducible compound, which is supposed to be
an o-quinone derivative.

An oxidative polymerization of rutin using ML as a catalyst was examined
in a mixture of methanol and buffer to produce a flavonoid polymer [53].
Under selected conditions, the polymer with molecular weight of several
thousand was obtained in good yields. The resulting polymer was read-
ily soluble in water, DMF, and dimethyl sulfoxide (DMSO), although rutin
monomer showed very low water solubility. UV measurement showed that
the polymer had broad transition peaks around 255 and 350 nm in water,
which were red-shifted in an alkaline solution. ESR measurement showed the
presence of a radical in the polymer.

A water-soluble rutin derivative consisting of A and B (20 : 80 mol %,
Fig. 6) is a commercially available product. This derivative was also poly-
merized by the laccase catalyst; the laccase-catalyzed polymerization in an
equivolume mixture of methanol and acetate buffer produced a polymer with
molecular weight of 1×104 in a high yield.

Peroxidase-catalyzed polymerization of various flavonoids was investi-
gated in 1,4-dioxane/pH 8 buffer (50 : 50 vol %) [48]. Flavonols (quercetin
and rutin) as well as isoflavones (diadzein and 5,6,4′-trihydroxyisoflavone)
were subjected to enzymatic oxidative coupling to produce flavonoid poly-
mers. The polymerization of diadzein resulted in a polymer soluble in DMF
and DMSO in a high yield. Soybean peroxidase also catalyzed the polymer-
ization of diadzein.

3.3
Properties of Polymeric Flavonoids

Oxidative stress triggered by reactive oxygen species (ROS) in the human
body is a contributing factor to the pathogenesis of neurodegenerative dis-
orders such as cerebral ischemia/reperfusion injury and trauma, as well as
chronic conditions such as Parkinson’s disease and Alzheimer’s disease. ROS
attacks biological molecules such as lipids, proteins, enzymes, DNA, and
RNA, leading to cell or tissue injury associated with degenerative diseases.
Superoxide anions are one of the most typical ROS formed during normal
aerobic metabolism and by activated phagocytes. The reduction of molecular
oxygen to superoxide anion by xanthine oxidase (XO), generating hydroxyl
radicals and uric acid, is an important physiological pathway. However, an ex-
cess of superoxide anions are capable of damaging biomacromolecules such
as those mentioned above, which are attacked by ROS.

Superoxide anion scavenging activity of enzymatically synthesized poly-
(catechin) was evaluated. Poly(catechin), synthesized using an HRP cata-
lyst, greatly scavenged superoxide anion in a concentration-dependent man-
ner, and at 200 µM almost completely scavenged a catechin unit concen-
tration (Fig. 7) [49]. The laccase-catalyzed synthesized poly(catechin) also
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Fig. 7 Superoxide anion scavenging activity of catechin and poly(catechin)

showed excellent antioxidant properties [50]. Conversely, catechin showed
pro-oxidant property in concentrations lower than 300 µM. These results
demonstrate that the poly(catechin) possesses much higher potential for su-
peroxide anion scavenging compared with intact catechin.

EGCG is a major ingredient of green tea possessing powerful antioxidant
properties and cancer-chemopreventive properties due to the actions of radi-
cal scavenging, enzyme inhibition, and metal chelation. The polymer obtained
by laccase-catalyzed oxidative coupling of EGCG showed much higher super-
oxide anion scavenging activity than the EGCG monomer and enzymatically
synthesized poly(catechin) [54]. The antioxidant activity of rutin was greatly
amplified by the laccase-catalyzed oxidative coupling; poly(rutin) also showed
a much higher scavenging capacity toward superoxide anion than rutin [53].

Oxidation of low-density lipoprotein (LDL) leads to its enhanced uptake by
macrophages, which is believed subsequently to result in foam cell formation,
one of the first stages of atherogenesis. Therefore, antioxidants that pro-
tect LDL against oxidation are potentially anti-atherogenic compounds. Al-
though the mechanism for in vivo oxidation of LDL has not been established,
free radical autoxidation may be a consideration. The LDL protection was
evaluated by the addition of 2,2′-azobis(2-amidinopropane)dihydrochloride
(AAPH) in the presence of LDL and polymerized flavonoids. Poly(catechin),
obtained using an HRP catalyst, showed much greater inhibition activity
against LDL oxidation in a concentration-dependent manner, compared to
the catechin monomer [49]. These data imply that a structure of the enzymat-
ically synthesized poly(catechin) is much more capable of inhibiting oxida-
tion of LDL than that of the monomer. In the case of poly(rutin) synthesized
using a laccase catalyst, the inhibition effect against the AAPH-induced oxi-
dation lasted longer compared to the inhibition effect of the monomer [53].

Protection effects of rutin and poly(rutin) against endothelial cell damage
caused by AAPH were reported [53]. AAPH induces peroxidation only in lipid
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membrane of cells during the first step. The addition of AAPH caused sig-
nificant cell death due to oxidative injury. However, poly(rutin) enhanced cell
viability with higher protection effects against the oxidative damage than was
offered by the rutin monomer at low concentration. In particular, in high con-
centration, the polymer exhibited a further increase in protection relating to
a concentration increase. In contrast, the monomer induced fatal cytotoxic-
ity by itself at the same concentration. These results imply that poly(rutin) is
a more potent chain-breaking antioxidant when scavenging free radicals in an
aqueous system than the monomer.

XO is not only an important biological source of reactive oxygen species
but also the enzyme responsible for the formation of uric acid associated with
gout leading to painful inflammation in the joints. The XO-inhibition effect
due to enzymatically synthesized poly(catechin) increased with an increas-
ing concentration of catechin units, while the monomeric catechin showed
an almost negligible inhibition effect [49, 50]. This markedly amplified XO-
inhibition activity of poly(catechin) was considered to be due to effective
multi-valent interaction between XO and the condensed catechin units in the
poly(catechin).

PolyEGCG also showed excellent inhibition of XO. The XO-inhibition effect
of EGCG monomer was quite low, with an inhibition of less than about 5% over
a range of tested concentrations (Fig. 8) [54]. In contrast, polyEGCG showed
greatly amplified XO inhibition effects in a concentration-dependent manner.
Moreover, the inhibition of polyEGCG was higher than that of allopurinol,
a frequently used commercial inhibitor for gout treatment. Thus, polyEGCG
is expected as one of leading candidates of therapeutic molecules against var-
ious diseases induced by free radicals and/or enzymes including gout. Kinetic
analysis showed that polyEGCG is an uncompetitive inhibitor of XO.

Mutans streptococci are the major pathogenic organisms of dental caries
in humans. The pathogenicity is closely related to production of extracellular
water-insoluble glucans from sucrose by glucosyltransferase and acid release
from various fermentable sugars. Poly(catechin) obtained by HRP catalyst

Fig. 8 XO inhibition of EGCG, polyEGCG, and allopurinol
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in a phosphate buffer (pH 6) markedly inhibited glucosyltransferase from
Streptococcus sorbrinus 6715, whereas the inhibitory effect of catechin for this
enzyme was very low [40].

4
Enzymatic Synthesis of Biopolymer-Polyphenol Conjugates

4.1
Chitosan Conjugates

PPO was used as catalyst for modification of natural polymers. The enzymatic
treatment of a chitosan film in the presence of PPO and phenol derivatives pro-
duced a new material of chitosan derivatives [55]. During the reaction, unstable
o-quinones were formed, which then reacted with chitosan to yield modified
chitosans. In the enzymatic treatment of p-cresol with a low concentration of
chitosan (< 1%), the reaction solution was converted into a gel [56].

A similar treatment in the presence of chlorogenic acid produced modi-
fied chitosan soluble under both acidic and basic conditions [57]. The PPO-
catalyzed reaction of 3,4-dihydroxyphenylethylamine (dopamine) provided
water-resistant adhesive properties to chitosan [58]. A chitosan derivative
modified with hydroxy or dihydroxybenzaldehyde was crosslinked by PPO to
give stable and self-sustaining gels [59].

This enzymatic modification of chitosan was applied for the synthesis
of a chitosan–catechin conjugate. The formation of a Michael-type adduct
and/or Schiff base was proposed during the PPO-catalyzed conjugation of
catechin with chitosan [60]. Rheological measurement demonstrates that the
resulting conjugate behaves as an associative thickener.

PPO catalyzed the conjugation of chitosan and proteins. A peptide-
modified chitosan derivative was synthesized by the PPO-catalyzed reaction
of chitosan with acid-hydrolyzed casein [61]. Even in the low concentra-
tion of this peptide-modified chitosan, high viscosities and shear-thinning
properties were observed. The 1% solution of the peptide-modified chitosan
behaved as weak gel. PPO was used to conjugate chitosan with green fluor-
escent protein (GFP) [62]. The resulting GFP–chitosan conjugate showed
pH-responsive properties. Furthermore, this conjugate was selectively de-
posited onto a micropatterned surface in response to an applied voltage.

4.2
Poly(amino acid) Conjugates

Poly(ε-lysine) (PL) is a biopolymer produced from culture filtrates of Strep-
tomyces albulus and shows good antimicrobial activity against Gram-positive
and -negative bacteria; thus, it is widely used as an additive in food industry.
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A new inhibitor against disease-related enzymes, collagenase, hyaluronidase,
and xanthine oxidase was developed by the conjugation of catechin on poly(ε-
lysine) using ML as a catalyst (Fig. 9) [63].

Matrix metalloproteinases (MMPs)—typically collagenase and gelatinase—
degrade and remodel structural proteins in the extracellular matrix. Since
MMPs play an essential role in the homeostasis of the extracellular matrix, an
imbalance in their expression or activity may have important consequences in
various pathologies. Thus, MMPs have recently become interesting targets for
drug design in the search of novel anticancer, antiarthritis, and other phar-
macological agents useful in the management of inflammatory processes. The
PL-catechin conjugate showed greatly amplified concentration-dependent in-
hibition activity against bacterial collagenase from Clostridium histolyticum
(ChC) on the basis of the catechin unit (Fig. 10), which is considered to be
due to effective multi-valent interaction between ChC and the catechin unit in
the conjugate. The kinetic study suggests that this conjugate is a mixed-type
inhibitor for ChC.

Hyaluronidase is an enzyme that catalyzes hydrolysis of hyaluronic acid
and is often involved in a number of physiological and pathological processes.
Potent hyaluronidase inhibitors have antiallergic effects, which may lead to
the development of new antiallergic agents. Efficient inhibition activity of the
PL-catechin conjugate was found, while the monomeric catechin showed an
almost negligible inhibition effect. The PL–catechin conjugate also showed
good inhibition effects for XO.

Gelatin is the most widespread water-soluble protein in the body, result-
ing from partial degradation of water-insoluble collagen. Gelatin has widely

Fig. 9 Enzymatic synthesis of poly(ε-lysine)–catechin conjugate
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Fig. 10 Inhibition activity of catechin and poly(ε-lysine)–catechin conjugate (catechin
content = 3.4%) against collagenase

been used in the food, pharmaceutical, and photographic industries. Gelatin–
catechin conjugate was synthesized by the laccase-catalyzed oxidation of cate-
chin in the presence of gelatin, in which the lysine residue of gelatin was used
for the grafting of catechin [64].

Antioxidant properties of the gelatin–catechin conjugate were evaluated.
The conjugate possessed scavenging properties against superoxide anion,
whereas gelatin was not active for the scavenging. Furthermore, the conju-
gate showed greater inhibitory activity against AAPH-induced LDL oxidation
in a catechin moiety-concentration-dependent manner compared to uncon-
jugated catechin. The inhibition effect of the conjugate lasted longer than the
inhibition effect of unconjugated catechin. Gelatin itself exhibited no inhibi-
tion effect on the LDL oxidation in this system. These data are indicative of
the good antioxidant properties of the gelatin–catechin conjugate.

4.3
Conjugates of Synthetic Polymers

The conjugation of catechin on poly(allylamine) using ML as a catalyst was
examined in air [65]. During the conjugation, the reaction mixture turned
brown, and a new peak at 430 nm was observed in the UV-vis spectrum. At
pH 7, the reaction rate was the highest. The conjugation hardly occurred in
the absence of laccase, indicating that the reaction proceeded via enzyme
catalysis. The resulting poly(allylamine)–catechin conjugate showed more
lasting antioxidant activity against LDL peroxidation induced by AAPH com-
pared with unconjugated catechin.

Polyhedral oligomeric silsesquioxane (POSS) has been extensively studied
as starting substrate to construct nanocomposites with precise control of
nanoarchitecture and properties. Octahedral derivatives are the most repre-
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sentative ones of this family. It was reported that the HRP-catalyzed conjuga-
tion of catechin on amine-substituted octahedral silsesquioxane amplified the
beneficial physiological property of flavonoids [66]. The POSS-catechin con-
jugate exhibited great improvement in scavenging activity against superoxide
anions compared with intact catechin. In addition, the conjugate showed high
inhibitory effect on XO activity, while the inhibition effect of catechin was
very low. These unique properties of the conjugate may be derived from the
POSS structure.

Catechin-immobilizing polymer particles were prepared by laccase-
catalyzed oxidation of catechin in the presence of amine-containing porous
polymer particles [67]. The resulting particles showed good scaveng-
ing activity toward stable free 1,1-diphenyl-2-picryl-hydrazyl radical and
2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cations. These par-
ticles may be applied to packed column systems to remove radical species
such as reactive oxygen closely related to various diseases. Poly(4-hydroxy-
styrene) was modified with aniline by using PPO catalyst [68]. The incorpo-
rated ratio of aniline into the polymer was very low (1.3%).

5
Concluding Remarks

This review gives an overview of enzymatic synthesis and the properties of
polymers derived from polyphenols. Catechol derivatives were enzymatically
oxidized to form polymers. Urushiol analogues were designed and cured by
laccase catalyst to produce artificial urushi of good elasticity.

New flavonoid polymers were synthesized through enzyme catalysis.
PPO, laccase, and peroxidase efficiently induced the oxidative coupling of
flavonoids. Furthermore, the catechin-grafting polymers were successfully
synthesized using an enzyme catalyst. In some cases, the biological and phar-
macological activity of flavonoids was greatly amplified by the enzymatic
treatments. These molecular designs will expand applications of natural
flavonoids in the food, cosmetic, and medical fields.
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Abstract Enzyme catalysis in the synthesis of polyaniline is reviewed. Oxidoreductase
enzymes and biomimetic catalysts have been used for the polymerization in aqueous,
aqueous organic, and interfacial or templating environments to optimize polymer fea-
tures. The results showed significant structural control in the presence of templates to
produce water soluble and processable polymeric materials. Dip-pen nanolithography
technology has also been used to process these materials into conducting nano-wires and
thus provides new opportunities for the formation of electrical contacts among biological
components for various applications such as synthetic biological interfaces.
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AFM Atomic force microscopy
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DPN Dip-pen nanolithography
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1
Introduction

There has been a significant increment in the use of conducting polymers in
electronic and optical applications in recent years. Polyaniline (PANI), one
of the most important members in the conducting polymer family, has been
widely used in light-weight organic batteries [1], rechargeable batteries [2],
optical displays [3], electromagnetic shielding [4], chemical sensors [5], or-
ganic LEDs [6], antistatic coatings [7], and potential molecular electronic
devices because of its electric, electrochemical, and optical properties, as well
as good environmental and thermal stability [8, 9]. Some other conducting
polymers such as polythiophene and polypyrrole are also being extensively
investigated for similar applications.

The most common methods for the synthesis of polyaniline are either
chemical or electrochemical oxidation of aniline monomer resulting in poly-
merization through a head-to-tail coupling mechanism [10–12]. The reaction
conditions are harsh with extreme pH, high temperature, strong oxidants
and highly toxic solvents required. In order to improve the solubility and the
processability of the polymeric products, the synthesized polyaniline is usu-
ally post-polymerization-treated with fuming sulfuric acid [13, 14]. Enzyme
catalyzed polymerization of aniline, its derivatives and other aromatic com-
pounds in the presence of hydrogen peroxide provided an alternative method
toward the formation of soluble and processable conducting polymers. These
enzyme-catalyzed reactions are usually carried out at room temperature, in
aqueous organic environments at neutral pH. The reaction conditions were
greatly improved and the purification process of the final products was sim-
plified when compared to the traditional chemical or electrochemical oxida-
tion methods.

2
Polyaniline Synthesis in Aqueous Organic and Aqueous Solvents

2.1
Enzymatic Synthesis of Polyanilines in Organic Solvents

Enzymatic polymerization of a series of aniline derivatives was studied in aque-
ous and aqueous organic solvents. Phenylenediamines and aminophenols were
polymerized in ambient conditions by the catalysis of horseradish peroxidase
(HRP) in dioxane without the presence of templates [15, 16]. The products
were soluble in DMF and DMSO. The structures were analyzed by FT-IR and
NMR. The larger molar excess of hydrogen peroxide was necessary in reaching
a higher polymer yield. Poly(2-aminophenol) and poly(4-aminophenol) result-
ing from these reactions have been shown to have electroactive properties.
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Poly(azobenzene) and its derivatives have applications in optical de-
vices [17]. A novel polyaniline containing azo groups was synthesized by
the HRP-catalyzed oxidative coupling of 4,4′-diaminoazobenzene (Scheme 1).
The polymerization was carried out at pH 6.0 in tris buffer with 70% yield.
The polymer analyzed by GPC (80 000, PD = 4.8) was soluble in DMSO and
DMF. Azo groups were detected in the main chains as well as in the side
chains. Photoexcitation studies indicated that cis–trans isomerization of the
chromophore may be the result of structural constraints in the polymer [18].
Photodynamic properties of the azo functionalized polyaniline in their re-
laxed or constrained conformations were quite different.

Scheme 1 Polymerization of diaminoazobenzene by HRP in the presence of hydrogen
peroxide

A similar method was used for the synthesis of 4-phenylazoaniline
(Scheme 2). Raman spectroscopy of the polymer showed N= N stretching,
indicating the presence of the azo pendent group in the product. The pho-
todynamic studies have single-beam or two-beam interference patterns and
surface relief gratings. Further characterization detected azobenzene groups
both in the main chain as well as in the side chain of the polymer. There was
an equilibrium population of trans and cis states in the constrained confor-
mations before photoexcitation, which led to the build-up of cis and depletion
of trans states. Upon relaxation after the photoexcitation, a net increase in the
trans state occurred, implying that some of the constrained predominantly cis
segments in the original polymer relaxed to a trans state [17, 18].



Enzymatic Catalysis in the Synthesis of Polyanilines 73

Scheme 2 Synthesis of azo functionalized polyaniline

2.2
Synthesis of Polyanilines in Aqueous Solutions

Water-soluble polyanilines were synthesized from sulfonated anilines. Previ-
ously water-soluble polyanilines were synthesized by enzymatic templating,
chemical or electrochemical methods, or copolymerization of aniline with
sulfonated aniline [19–22]. The presence of pendent sulfonic acid groups
throughout the polyaniline made it water-soluble in all pH conditions. The
product was electroactive with an average molecular weight of 18 000 Da.
Conductivity was determined to be in the semiconducting region (10–5 S/cm)
at pH 6. The conductivity of poly(2,5-diaminobenzenesulfonate) was about 3
to 4 orders of magnitude lower because of its branched structure (Scheme 3).
The product was versatile for fabricating thin films by a layer-by-layer tech-
nique due to its diamine feature.

Scheme 3 Enzyme catalyzed polymerization of 2,5 diaminobenzene sulfonic acid

2.3
Application of the Enzymatic Approach

A catalytic coupling reaction between 4-amino antipyrine and an N,N-
disubstituted aniline derivative had been exploited as a less hazardous chro-
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mogen system in the detection of HRP and the iron(III) sulfonated tetraphenyl
porphyrin, which was a biomimetic catalyst [23]. A dye P+, which was in-
trinsically electroactive due to the presence of a quinone-iminium feature,
was generated through an oxidative coupling reaction (Scheme 4), where
3-methyl-N-ethyl-N-(β-hydroxyethyl)aniline was used as the disubstituted
aniline derivative. The detection of HRP was carried out by linear scan voltam-
metry equipped with a Nafion-film-modified screen-printed electrode (SPE).
The cation exchange properties of the Nafion film coating were beneficially
exploited to retain and concentrate the P+ cation formed during the enzy-
matic oxidation for quantitative electrochemical or colorimetric analysis. This
method allowed the determination of HRP with a detection limit of 10–12 M.

Scheme 4 Quinone-iminium dye generated through an oxidative coupling reaction

A device called an “enzyme switch” based on polyaniline and HRP was
developed. The enzyme HRP was either adsorbed onto the PANI film or im-
mobilized on an insulating poly(1,2-diaminobenzene) polymer grown elec-
trochemically on top of the PANI film [24]. The conductivity of the PANI film
changed from a conducting state to an insulating state with the addition of
hydrogen peroxide. The changes in the conductivity were confirmed by meas-
uring the potential of the PANI film as the conductivity was switched. The
experimental results showed that the hydrogen peroxide on its own had no ef-
fect on the conductivity of the PANI film at pH 5.0 without the adsorbed or
immobilized HRP. The electrochemical reduction of the oxidized PANI film
allowed for the recovery of the enzyme switch responsive to the hydrogen per-
oxide, which operated in the “on” to “off” direction. It was also functionalized
as a sensitive hydrogen peroxide detector.

2.4
HRP Immobilization

Controlled-thickness polyaniline layers on various substrate surfaces were
synthesized using immobilized HRP as a catalyst in an aqueous solution [25].
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The polyethylene (PE) surfaces were treated with argon/dichlorosilane
(Ar/DS) plasma to assist the implantation of Si – (Cl)x functionalities. Fur-
ther, the PE surfaces were functionalized in situ in the gas phase with
1,2-diamino propane (DP) and oxalyl chloride (OC). The HRP was covalently
immobilized on the modified PE surfaces using sodium cyanoborohydride.
XPS studies verified the surface chemistry of each of these three steps for
the HRP immobilization. Aniline was polymerized in an aqueous solution by
catalysis with immobilized HRP. The molecular weight was evaluated by GPC.
Similar distributions were observed regardless of whether the enzyme was in
free form or immobilized on PE.

2.5
Substrate Behavior and Substituent Sites

The substrate behavior and the influence of the substituent groups on the
properties of the polymerized aniline derivatives were investigated by com-
paring the effects of the Hammett constants of the substituents. The Hammett
equation (Hammett relation) is given as:

lg(K/K0) = ρσ (1)

lg(k/k0) = ρσ (2)

where K or k is the equilibrium or rate constant, respectively, for the given re-
action of m- or p-XC6H4Y. K0 or k0 refers to the reaction of C6H5Y, i.e., X = H.
σ is the substituent constant characteristic of m- or p-X. ρ is the reaction con-
stant characteristic of the given reaction of Y. This equation was applied to the
influence of meta- or para-substituents X on the reactivity of the functional
group Y in the benzene derivative m- or p-XC6H4Y.

In the luminol-H2O2-HRP chemiluminescence system, some of the aniline
derivatives were functionalized as enhancers, while some were inhibitors of
the fluorescence [26, 27]. A variety of meta-, para-, and ortho-substituted ani-
line were studied. The structures of some of these aniline derivatives are listed
in Scheme 5. The reaction constants with HRP-I and HRP-II were measured,
and the Hammett constants (σ) of their substituents were determined. The re-
sults indicated that the aniline substituents with σ less than – 0.27 exhibited
inhibition behavior. The aniline derivatives acted as enhancers when σ was
between – 0.27 and + 0.18. A slight enhancement or inhibition was observed
if σ is greater than + 0.18. The factors of enhancement were determined by
the potential of reduction of its aniline radicals, the reaction rates of the ani-
line with HRP-I and HRP-II, and the maximum concentration of the aniline
radicals allowed during the oxidation [28].
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Scheme 5 Structure of some aromatic amines studied for the influence of the substituent
groups

2.6
Other Enzymes in the Synthesis of Polyanilines

Polythiophenes and polypyrroles have been reported to have high electrical
conductivity and are of significant technological importance [29]. These poly-
mers cannot be directly synthesized by HRP. According to the mechanism of
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HRP catalysis, an oxidized iron–heme complex is formed in the presence of
hydrogen peroxide. It reacts with the substrate in a one-electron transfer pro-
cess, which leads to the formation of substrate radicals and the recovery of
the iron–heme complex [30]. Monomers such as 3,4-ethylenedioxythiophene
(EDOT) and pyrrole (PYR) coupled to the active site of the enzyme result in
the deactivation of the catalyst.

Apart from HRP, other peroxidases and biomimetic catalysts are used in
polyaniline synthesis. The oxidation of a series of phenols, anilines, and ben-
zenethiols were performed with several fungal laccases [31]. Soybean peroxi-
dase (SBP) is an attractive biocatalyst because of its thermal and pH stability.
The use of soybean peroxidase for the synthesis of conducting polyaniline
with controlled molecular weight was reported [32]. This method allowed
the synthesis low-molecular-weight PANI oligomers. The pH was maintained
above 3.5, but reactions can be run at a pH as low as 1.0. The soybean per-
oxidase was preferable in these types of reactions due to its low pH stability,
compared to such enzymes as HRP, tobacco peroxidase, tomato peroxidase,
legume peroxidase, bacterial peroxidase, and chloroperoxidase. PANI mo-
lecular weight as high as 200 000 Da was obtained. The conductivity of the
polymer was measured as 10–3 to 10–1 S/cm, which allowed blending with the
thermoplastic or thermosetting polymers for antistatic purposes.

Electroactive polyaniline films were synthesized by the catalysis of biliru-
bin oxidase (BOD, a copper-containing oxidoreductase). The polymerization
of aniline was carried out on the surface of a solid matrix such as glass slide,
plastic plate, or platinum electrode to form homogeneous films [33]. The
BOD was immobilized on the surface by physical absorption. The optimum
pH was around 5.5. Some aniline derivatives such as p-aminophenol and
p-phenylenediamine were good substrates for BOD. Structural analysis sug-
gested the BOD synthesized polyaniline possessed partially 1,2-substititued
structures. Cyclic voltammetric studies demonstrated that the PANI films
were electrochemically reversible in redox properties, but differed from that
of chemically or electrochemically synthesized PANI. The difference was at-
tributed to the partial 1,2-substitution. Laccases are known to oxidize phe-
nolic compounds in nature in the presence of oxygen and are capable in
polyaniline synthesis in vitro [34–36].

2.7
The Use of Hematin

Synthetic porphyrin complexes were extensively studied for their potential
catalytic applications. The hydroxy ferriprotoporphyrin compound hematin
(Scheme 6) was used as a catalyst in the polymerization of phenols [37].

The catalytic application of hematin in the synthesis of polyaniline was
further studied. The electrostatic layer-by-layer (ELBL) self-assembly of
a polyelectrolyte poly(dimethyl diallylammonium chloride) (PDAC) and
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Scheme 6 Structure of hematin

hematin was utilized to construct a nanocomposite film catalyst [38]. The
conductive form of PANI was formed not only on the surface of ELBL as
a coating, but in the bulk solution. In contrast to the immobilization method,
where enzyme was covalently coupled onto the substrate, hematin desorp-
tion was required. The polymerization rate was strongly dependent on the
degree of hematin desorption, which was controllable. The reaction rate was
also affected by the pH value, the ionic strength of the medium, the amount
of hematin, and the type of PANI. Hematin had been demonstrated as the
best-suited biomimetic compound for these types of reactions in compari-
son to catalase, horseradish peroxidase isoenzyme C (HRPC), and FeB-2,6-
bis[1-2,6-diisopropylphenylimino-ethyl]pyridine iron(II) chloride (FeB) in
the UV/Visible study of their catalytic activities [39].

Some aromatic organometallics, such as p-ferrocenylaniline and p-ferro-
cenylphenol, are reported as good substrates for HRP- or laccase-catalyzed
polymerization [40]. These compounds are advantageous because of their
high reactivity, easy control of redox transformation, water-soluble prod-
ucts and avoidance of deactivation of the enzyme. The unique properties of
ferrocene were introduced into the polymer. The reaction process is shown
in Scheme 7. The p-ferrocenylaniline was electrochemically active when ad-
sorbed to a carbon electrode.

Scheme 7 The HRP catalyzed reaction of p-ferrocenylaniline
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3
Template-Assisted Polymerization

3.1
SPS Template

Template-assisted synthesis of water-soluble conducting polyaniline was
achieved in an aqueous medium. The aniline complex was formed in the
system in the presence of sulfonated polystyrene (SPS), which functioned
as a polyanionic template. HRP-catalyzed polymerization was carried out at
pH 4.3 in a buffered aqueous solution with a stoichiometric amount of hy-
drogen peroxide. The resulting polymer was complexed to SPS and exhibited
electroactivity. The pH of the reactant solution is critical in controlling the
aniline-SPS complex formation and hence the electrical activity of the re-
sulting backbone. The effect of the pH was studied. The optimized ratio of
the SPS to aniline was obtained at optimum pH. The reduction/oxidation re-
versibility of the PANI/SPS complex was demonstrated [41]. Spectroscopic
studies indicated that the conductivity of the PANI/SPS complex was pH-
dependent due to the self-doping mechanism during synthesis. The molecular
weight of the complex was measured by GPC during the course of the reaction
and compared with pure SPS as a control to demonstrate the polymeriza-
tion [42]. The low pKa (benzenesulfonic group has a pKa of 0.7) provided
the necessary cationic and anionic charges for preferential monomer align-
ment and salt formation along the SPS backbone [43]. The desired structure
of the conducting polyaniline was synthesized by enzymatic oxidation of the
macromolecular complex as shown in Scheme 8.

Scheme 8 Representation of enzymatic polymerization of aniline (at pH 4.3) in the pres-
ence of SPS
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Cyclic voltammetric studies showed only one set of redox peaks over
the potential range of – 0.2 V to 1.2 V, which suggested that the complexes
are more oxidatively stable. The conductivity of the PANI/SPS complex was
measured and was found to be 0.005 S/cm. The values increased to 0.15 S/cm
after HCl doping and could be increased further with an increase in the
aniline-to-SPS molar ratio [43].

Laccase from Coriolus hirsutus was used in the synthesis of water-soluble
conducting polyaniline in the presence of an SPS template [44]. This enzyme
showed remarkable advantages during the polymerization compared to com-
monly used HRP due to its high activity and stability under acidic conditions.
HRP exhibited low activity and poor stability at a pH below 4.5 [45, 46]. The
HRP catalyzed reactions resulted in the consumption of a large amount of
enzyme in the polymerization at low pH. Usually, the HRP-catalyzed poly-
merization of aniline is carried out at pH 4.3 [43]. The laccase is active at
pH 3.5 for about 4 to 5 days. The polyaniline synthesized by HRP and lac-
case showed similar structures. The conductivity of the PANI/SPS complex
was measured as 2×10–4 S/cm. Cyclic voltammetry studies showed that the
C–V curve generated with laccase was not identical to the HRP-catalyzed
polyaniline. A possible reason was that different structures resulted due to the
different catalytic mechanisms of HRP and laccase. The catalysis of HRP took
place in a hydrogen-peroxide-oxidized ferric center through two sequential
one-electron reduction steps. In the case of laccase, the one-electron oxida-
tion was catalyzed via the four copper centers in the presence of oxygen.

Since HRP exhibited low activity and stability at a pH less than 4.5 [43, 45]
palm tree peroxidase was reported as a useful biocatalyst in the synthesis
of polyaniline in the presence of an SPS template [47]. This peroxidase was
isolated from leaves of the African oil palm tree and royal palm tree and ex-
hibited an unusual stability at high temperatures and over a broad range of
pH [48]. The polyelectrolyte complex of PANI/SPS was studied by computer
modeling. The SPS presented in a syndiotactic configuration may interact
with two PANI polymers forming a regular pattern of intermolecular contact,
rather than forming a less stable complex with one SPS to one PANI molecule.
The polymerization at low pH resulted in the aggregation state of the com-
plex. Optical microscopy showed that complex was not in soluble form, but
in dispersion form with a maximum particle size of 1.5 to 2 µm.

In order to recycle the enzyme, since it is quite expensive, a new method
of immobilizing the enzyme was introduced. The HRP was immobilized on
chitosan powder by a simple glutaraldehyde bridge method [49]. The im-
mobilized HRP had the same catalytic function as the enzyme solution. The
spectroscopic characterization indicated that the polyaniline obtained by this
method was similar to that formed using HRP in solution as a catalyst [50].

The synthesis of water-soluble polyaniline greatly improved processabil-
ity. Conducting fibers were fabricated from polyaniline–SPS complex by
a dry-spinning technique, which took advantage of water-soluble products
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attributed to the enzymatic synthesis method [51]. The conductivity of the
dry-spun fibers were measured to be approximately 10–3 S/cm, one order
of magnitude higher than that of films fabricated by the same PANI/SPS
complex process as for the fibers. The higher conductivity of the fibers was
attributed to the orientation of the polymer chains. Compared with the chem-
ically synthesized PANI (1–10 S/cm), the lower conductivity was due to the
interchain diffusion of the charge carriers caused by the separation of the
PANI chains from the SPS backbones. The conductivity of the fibers increased
to 10–2 S/cm by exposure to HCl vapor for two hours. The PANI conducting
fibers exhibited improved tensile strength and stability in thermal analysis.

3.2
Other Polyelectrolyte Templates

Some other templates were studied and proved to have similar functionality
as SPS. These templates are all polyelectrolytes. Poly(vinylphosphonic acid)
(PVP) was reported to be a good template to form complexes with aniline.
The conducting macromolecular complex was synthesized in aqueous buffer
at pH 4.0 by the catalysis of HRP in the presence of hydrogen peroxide [52].
The thermal stability of the resultant PANI/PVP complex was improved when
compared to the chemically synthesized complex. A constant ratio of 1.5 to
1 between the phosphonic acid repeat unit and the aniline unit prior to pre-
cipitation was found when PVP was in excess. Appropriate control of the
polymerization could be used to tune the water solubility and conductivity
of the complex. It was possible to separate the template from the polymer
by dedoping the PANI/PVP complex with an aqueous NH4OH solution. The
13C and 15N cross-polarization with magic angle spinning (CP/MAS) NMR
distinguished the charged and uncharged domains presented in the vari-
ous forms of PANI [53]. The conductivity of PANI/PVP was measured as
1.2×10–2 S/cm to 5.5×10–2 S/cm and was found to be about one magnitude
lower than that of PANI purchased from commercial sources or generated by
nonenzymatic methods.

3.3
Biocompatible Templates

Biomacromolecules were exploited as templates in the enzymatic synthesis of
electronic and photonic materials for the development of biofunctional com-
plexes and selective biosensors. The aniline was polymerized by the catalysis
of HRP on a calf thymus DNA matrix consisting of a synthetic oligonucleotide
(poly[dA-dC].poly[dG-dT]) [54]. The complexation of PANI with DNA and
the oligonucleotide was found to induce reversible changes in the secondary
structure of the nucleic acid template, leading to the formation of an over-
wound polymorph. The melting behavior of the PANI/DNA complex demon-
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strated stabilization of the DNA by the complexation with the PANI. Cyclic
voltammetry studies confirmed the presence of an electrochemically redox
reversible form of the complex. The conductivity of the PANI/DNA complex
was measured as 40.9×10–7 S/cm after doping, which was almost an 800%
increase compared to prior to doping. The conductivity of the DNA template,
which increased only 56.8% after doping, was measured as the control. Scan-
ning probe microscopy (SPM) studies indicated that the agglomerate of the
PANI/DNA strands was caused by the formation of PANI. But the secondary
structure of the individual DNA was retained. This study also resulted in the
development of a new route to the fabrication of electro-responsive biomate-
rials. The secondary structure of the DNA may be reversibly controlled from
the native form to an overwound polymorph by simply changing the redox
state of the polyaniline [55].

Lignosulfonate (LGS), an inexpensive byproduct from pulp processing in-
dustries, functioned similarly as SPS during the polymerization. The prod-
uct presented thermal stability and electrical conductivity. The conductivity
of PNAN/LGS complex synthesized at pH 1.0 was determined to be about
10–3 S/cm without further external doping.

3.4
Modified Hematin

Pegylated hematin was developed as an effective biomimetic catalyst for poly-
merization of various anilines [56]. PEG modified hematin, a biomimetic
catalyst, was used in the synthesis of PEDOT and PPYR at the presence of SPS
template [57]. The polymerization was carried out in an aqueous solution at
pH 1.0. The polymers were electrochemically active. Conductivity was meas-
ured as 10–5 S/cm for PEDOT and 10–4 S/cm for PPYR. The conductivity was
substantially improved by the copolymerization of PEDOT and PPYR and was
found to be in the range of 0.1–1.0 S/cm.

4
Mechanistic Aspects of Template-Assisted Polyaniline Synthesis

4.1
The Role of the Template

HRP is a single-chain β-type hemoprotein that catalyzes the decomposition
of hydrogen peroxide at the expense of aromatic proton donors [58]. HRP
is an iron-containing porphyrin- type structure and is well-known to cat-
alyze the oxidative coupling of aniline and its derivatives in the presence of
hydrogen peroxide. Usually, the HRP catalyzed polymerization of aniline is
carried out in aqueous organic solvents, and the resultant polymers are gen-
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erated in low yields and have complex structures [59]. Typically, a mixture
of at least two structurally different types of PANIs is obtained as shown
in Scheme 9 [43]. The first one is that of mixed carbon–carbon or carbon–
nitrogen coupling at the ortho- or para-positions and the second is that of the
desired benzenoid-quinoid (head-to-tail) structure, which is formed in the
traditional chemical or electrochemical synthesis of polyaniline.

In order to understand the mechanistic role of the template in the enzy-
matic synthesis of water- soluble conducting polyaniline, a variety of macro-
molecular and surfactant templates were systematically investigated [60].
Polyelectrolytes were specifically selected to investigate the effects of ion-
izability (pKa), ionic charge type (anionic, cationic, or neutral), and sur-
face charge density of the templates in the reaction. The structures of these
templates are given in Scheme 10. It is generally accepted that a highly
acidic medium is necessary for linear chain growth of conducting polyani-
line [61–63]. The enzymatic template polymerization of aniline was also pH-
dependent. The template provided a necessary “local” environment where the
pH and charge density differed from that of the bulk solution and served
as a nanoreactor that was critical in anchoring, aligning, and reacting with
the aniline monomers to control the form of polyaniline generated in the re-
action. Strong acidic polyelectrolytes such as SPS were the most favorable
because of the lower local pH provided. The formation and control of lower
local pH allowed the reaction to be carried out at a higher bulk pH which

Scheme 9 Two structurally different types of PANIs obtained in typical enzymatic
polymerization without template: A ortho-, para-substituted branched structure and
B benzenoid-quinoid linear structure
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Scheme 10 Molecular structures of the macromolecular templates used in the enzymatic
polymerization

was favorable to the enzyme and prolonged the catalytic activity. The tem-
plate also provided hydrophobic domains that served to solubilize and orient
the monomer prior to reaction. There is a direct dependence on the template
structure and the type of polyaniline that is formed.

4.2
The Substituent Position

The kinetics of these reactions was studied for a two-step mechanism using
the cationic HRP isoenzyme C (HRPC) as a catalyst. Similar conclusions
were drawn based on the Hammett constants (σ), which were obtained ac-
cording to kinetic studies of the meta- or para-mono-substituted aniline
that included: 4-methoxyaniline, p-toluidine, m-toluidine, and 4-amino-N,N-
dimethylaniline. The kinetics indicated that a two-step mechanism operated,
in which the first step corresponded to the formation of an enzyme–substrate
complex, and the second step corresponded to the electron transfer from the
substrate to the iron atom. The size and hydrophobicity of the substrates
controlled their access to the hydrophobic binding site of HRPC [64–66].
In general, the electron donating substituents on the para-site resulted in
higher values of reaction rate constants. Some enhancers of the chemilumi-
nescent luminol-HRP-H2O2 system were studied for their effects with respect
to pH and concentration. The results demonstrated a previous conclusion that
the active substituents in the para-position produced a greater increase in
chemiluminescent properties at low concentration than those with deactivat-
ing substitutions [67].
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4.3
The Application of the Fast Kinetics

The HRP, aniline (or PANI), and hydrogen peroxide made up a specific oxida-
tive system based on fast reaction kinetics. Devices were developed according
to this system in which any two of the three components can be used as a sen-
sor to detect the third component. The electronic signals were collected and
analyzed for changes in the electrochemical properties of the polyaniline or
its derivatives when the oxidative coupling reactions occurred. Polyaniline-
coated polypropylene membranes exhibited strong tendency to adsorb and
immobilize HRP [68].

5
Micellar Assisted and Interfacial Polymerization

5.1
Micellar Systems

Aqueous micellar systems were similar to enzymatic templating polymeriza-
tion in the reactions. The local environment in the vicinity of the template
moieties had a charge density and pH that were different from those of the
bulk solution [60]. Micelles served as nanoreactors, which complexed to the
previously charged aniline monomers prior to the reaction and provided the
necessary low-pH local environment for the growth of conducting polyani-
line. This local environment was critical in anchoring and aligning the aniline
monomers for reaction and ultimately controlled the forms of polyaniline
(conducting or insulating) obtained during the reaction. Different types of
surfactants—sodium dodecyl benzenesulfonate (SDBS), hexadecyltrimethy-
lammonium bromide (HTAB), and polyoxyethylene(10) isooctylphenyl ether
(Triton X-100)—were selected to form the micelle templates for the enzy-
matic polymerization of aniline [69]. The polyanilines obtained were solu-
ble in organic solvents such as DMF and DMSO in emeraldine base form
and were electrochemically active and thermally stable. The properties were
strongly dependent on the structure of the surfactants selected. The SDBS
was considered as a suitable micellar template in this system. The micellar
system was also considered as nanoreactors for the synthesis of conduct-
ing PANI. A jump in pH from 4.3 to 5.1 was observed with the addition
of aniline to the SDBS micelle solution [70]. No chemical reaction was in-
volved in this mixing process. The bulk pH change was ascribed to the in-
homogeneous distribution of protons in the media, which were trapped in
the local molecular environments formed by the aqueous micelles. Besides
SDBS, it was found that DNA could also provide this type of nanoreactor
environment.
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5.2
Interfacial Polymerization

A new approach for the in situ synthesis of conducting polyaniline and its
derivatives in two dimensions was achieved at a Langmuir trough (LT) air-
water interface. The LT was used to orient and order monomers prior to
enzyme-based polymerization [71]. The 4-(tetradecyloxy)phenol was synthe-
sized by o-alkylation of hydroquinone with 1-bromotetradecane and func-
tionalized as amphiphilic surfactant at the interface. The monomer aniline
or 4-hexadecylaniline was assembled on the surfactant monolayer and com-
pressed. The polymerization was carried out by injecting hydrogen peroxide
into the aqueous subphase, which contained HRP. The polymer monolayer
was transferred onto an appropriate slide using the Langmuir-Blodgett (LB)
technique. The use of LT to organize and orient the reactants resulted in
improved control of monomer reactivity and orientation in the resulting
polymer, compared to bulk synthesis. By using this method, the properties of
the resulting polyaniline were improved in terms of heat stability, nonlinear
optical response, and electrical conductivity. Upon doping with iodine, the
conductivity for the bulk polymer was measured as 10–5 S/cm. However the
polymer monolayer exhibited a conductivity of 1.07×10–2 S/cm. The con-
ductivity was stable for more than four weeks at ambient conditions [72].
The improvement of conductivity was attributed to the 2D surface orientation
of monomers to achieve an ordered lattice, which reduced the possibility of
branching during the synthesis.

Polyaniline particles were synthesized by the HRP-catalyzed template-
guided polymerization. Poly(sodium 4-styrenesulfonate) (SPS), poly(vinyl
pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and poly(ethylene oxide) (PEO)
were studied and used as the steric stabilizers [73]. The SPS and PVP were found
to have strong interaction with PANI and remained in the particles formed
in the reactions. Large PANI particles were obtained when using PVP and
PEO as matrix polymers due to the ketone or ether groups, which had strong
proton-accepting ability to aggregate monomers. Uniform microspheres of
PANI particles were observed when low-molecular-weight (MW 100 000) PEO
was applied. The molecular weight of the particles was not influenced by the
molecular weight of the matrix polymers. The microsphere sizes were also
controlled by the chemical structures and properties of the matrix polymers.

6
Dip-pen Nanolithography

Dip-pen nanolithography (DPN) technology is a new tool for surface pat-
terning at the nanometer scale. 4-Aminothiophenol was processed into
nanowires via DPN-assisted enzymatic polymerization on gold surfaces
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Scheme 11 Schematic representation of enzymatic polymerized 4-aminothiophenol on
gold surface

(Scheme 11) [74, 75]. Reactions were performed in methanol/water (1 : 1 v/v)
with aminothiophenol at 0.01 M. The monomer was patterned onto gold via
DPN by scratching the surface at the rate of 0.1 Hz with a force varying from
0.35 nN with a step point of 0.05 nN. A series of parallel lines was patterned
via the AFM tip and imaged in tapping mode at a scan rate of 1 Hz (Figs. 1
and 2). The lines are approximately 4 µm long with an average line width of
170 nm and average height of 35 nm. The measured topography of the poly-
mer of aminothiophenol indicated lines 4 mm long with an average width of
210 nm and average height of 25 nm. The line width increased and the line
height decreased when compared to the monomer patterns.

Fig. 1 AFM topography image of monomer (4-aminothiophenol) nanopatterns via DPN
on gold surfaces
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Fig. 2 AFM topography image of polymer (4-aminothiophenol after peroxidase-catalyzed
polymerization) nanopatterns via DPN on gold surfaces

7
Analytical Studies on Polyanilines

In general, enzymatically synthesized polyaniline is in a protonated form,
which can be converted to an unprotonated base form via treatment with an
aqueous ammonia solution or other suitable bases. The unprotonated base
form of polyaniline consists of reduced base units “A” and oxidized base units

Scheme 12 Various oxidation states of the base form of polyaniline
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“B” as repeat units, where the oxidation state of the polymer increases with
decreasing values of y (0 ≤ y ≤ 1) (Scheme 12). The three extreme possibili-
ties for value of y are 0, 0.5, and 1, corresponding to fully oxidized polyaniline
(pernigraniline), half oxidized polyaniline (emeraldine), and fully reduced
polyaniline (leucoemeraldine), respectively [53, 76].

7.1
Solid-State NMR Studies

Solid-state NMR spectroscopy was exploited in the structural analysis of
enzymatically synthesized polyaniline. The variation of the molecular and
electronic structure of doped (as synthesized) conducting, dedoped base and
redoped conducting forms of polyaniline prepared by enzymatic polymeriza-
tion of aniline with and without the presence of the polyelectrolyte templates
was studied by solid-state 13C and 15N NMR. The different templates—SPS,
PVP, and dodecylbenzenesulfonic acid (DBSA)—were used for the synthe-
sis of conducting polyaniline complexes [53, 77]. The highest conductivity,
on the order of approximately 10 S/cm, was observed in the case of the
PANI/DBSA complex. The conductivity-related structural differences were
analyzed at different doping states. The doping forms of conducting polyani-
line are shown in Scheme 13. The CP/MAS NMR spectra indicated that the
redoped PANI showed entirely different features than the doped (as synthe-
sized) form, although the redoping process can restore the conductivity. The
charge distribution along the PANI backbone was more inhomogeneous com-
pared to that of the doped (as synthesized) form. The sequential redoping of
the dedoped PANI showed a transformation of amine to imine and a charge
delocalization effect on the spectral features [78]. The charge carriers during
conduction are believed to be bipolarons with dicationic lattices and polarons
having semiquinone radical structures.

The enzymatically synthesized polyanilines were studied in self-doped
conducting, dedoped base and redoped conducting forms by solid-state 13C
and 15N CP/MAS NMR to understand the structural differences in cases
where the synthesis was conducted with and without the presence of tem-
plate and oxidative coupling positions [79]. This approach revealed a varia-
tion in the structural features and verified that a 1,4-coupling (head-to-tail)
mechanism occurred in the presence of a template. The resulting polyani-
line contained alternate benzenoid–quinoid repeating units in the backbone,
which was favorable in the conducting form. A highly branched structure was
proposed in the absence of a template. The dominant coupling mechanism
of either C – C or C – N – C at the 1,2- and 1,4-positions was confirmed by
NMR spectra. The branched structure model was shown in Scheme 14. The
required benzenoid-quinoid repeating units were minor constituents of such
polyaniline. The 15N NMR indicated that the imine nitrogen species exhibited
intramolecular hydrogen bonding with the neighboring benzenoid amine.
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Scheme 13 Possible structures of polyaniline in base and conducting form

Scheme 14 Model for branched polyaniline structure showing C – C and C – N – C coup-
ling at 1,2- and 1,4-positions as well as possible hydrogen bondings
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7.2
Circular Dichroism Study

Chiral conducting polyaniline nanocomposites were synthesized by enzy-
matic polymerization of aniline/poly(acrylic acid) (PAA)/camphorsulphonic
acid (CSA) complexes. Solid-state 13C NMR studies found that the enzyme
HRP, apart from being a biocatalyst, played an important role during the
polymerization, which allowed PANI to prefer a specific helical conformation
whether the induced chirality in the monomer–CSA complex was formed
with (+) CSA or (–) CSA [80]. Poly(ethylene glycol)-modified hematin was
used for a comparative study to examine the unique enzymatic structural
specificity of HRP. Circular dichroism (CD) results without the helical con-
formation specificity found in the resulting PANI suggested that biomimetic
catalyst hematin had no capacity to direct enantiospecificity for the PANI
chains, which was a unique property for the enzyme HRP in these reac-
tions [81]. The PAA and CSA templates were removed upon NH4OH dedop-
ing. Low conductivity of the nanocomposite was observed due to the presence
of non-conducting domains which was supported by 13C NMR analysis.

Fig. 3 XPS spectra for the 4-aminothiophenol monomer and its series of reactions on gold
surfaces: A Au 4f , B C 1s, C N 1s, D S 2p
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7.3
Other Analytical Methods

MALDI-TOF analysis of the HRP catalyzed in situ polymerization of
4-aminothiophenol measured a molecular weight of 1000 Da. XPS data re-
flected prominent shifts in the binding energy of N, C, and S with the polymer
and supported the polymerization on the gold surface (Fig. 3).

8
Conclusions

During the past two decades, biocatalysis in polymer synthesis has sparked
new insights into the synthesis and functional features of materials formed
in aqueous ambient environments with better structural control. Template-
assisted polyaniline synthesis results in water-soluble materials that are rela-
tively easy to process, unlike similar materials produced by traditional syn-
thetic means. More studies are needed to further elucidate the potential
interactions between enzyme, template, substrate, and environmental sur-
roundings. Dip-pen nanolithography in combination with biocatalysis has
opened new opportunities to integrate polymers at the nanoscale, a step
forward in making connections with biological components. Continuing im-
provements in biocatalysts and a better understanding of the reactions will
continue to lead to new scientific approaches in the field with eventual tech-
nological impacts. Considering the current advantages of biocatalysis in poly-
mer synthesis, it is likely that future efforts will focus on enzyme-assisted
nanotechnologies to produce polymeric materials for a variety of applica-
tions, including medical and energy-related needs.
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Abstract An enzyme can act as a powerful catalyst for the production and chemical recy-
cling of green and sustainable polymers via a ring-opening polymerization. Also, enzymes
will provide versatile synthetic tools for regio- and enantioselective polymerizations. In
this article, lipase-catalyzed ring-opening polymerization and copolymerization of small-
sized four-membered lactones to macrolides and cyclic oligomers having a molecular weight
of a few hundred into high-molecular-weight polyesters, ring-opening polymerization of
substituted/unsubstituted cyclic carbonates and cyclic phosphates into polycarbonates and
polyphosphates, and the mechanism of lipase-catalyzed ring-opening polymerization of lac-
tones and cyclic carbonates are reviewed. Also degradative transformation of polyesters and
polycarbonates into the corresponding cyclic oligomers as repetitive chemical recycling and
trends for enzymatic ring-opening polymerization and degradation are described.

Keywords Chemical recycling · Lactone · Lipase · Polyesters ·
Ring-opening polymerization

Abbreviations
β-BL β-butyrolactone
BTMC 5-benzyloxy-1,3-dioxan-2-one
CCL lipase from Candida cylindracea
CL 6-hydroxyhexanoate
ε-CL ε-caprolactone
scCO2 supercritical carbon dioxide
DCL dicaprolactone
DDL 12-dodecanolide
DP degree of polymerization
DTC 5,5-dimethyl-trimethylene carbonate
EM enzyme-activated monomer
EEP ethyl ethylene phosphate
(R, S)-4-EtCL 4-ethyl-caprolactone
3HB 3-hydroxybutanoate
Km Michaelis constant
lipase CA immobilized lipase from Candida antarctica
MBC 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one
(R, S)-4-MeCL racemic 4-methyl-caprolactone
Mn number-average molecular weight
MOHEL 3-methyl-4-oxa-6-hexanolides
3MP 3-mercaptopropionic acid
MPL α-methyl-β-propiolactone
Mw weight-average molecular weight
11MU 11-mercaptoundecanoic acid
PBA poly(butylene adipate)
PCL poly(ε-caprolactone)
PDL 15-pentadecanolide
PDLLA poly(DL-lactic acid)
PEG poly(ethylene glycol)
PHB poly(3-hydroxybutanoate)
PHA poly(R-3-hydroxyalkanoate)
PhaZAfa PHB depolymerase from Alcaligenes faecalis T1
PLA poly(lactic acid)
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PLLA poly(L-lactic acid)
β-PL β-propiolactone
PPL porcine pancrease lipase
SBD substrate binding domain
SL sophorolipid
Tm glass transition temperature
TMC trimethylene carbonate (1,3-dioxan-2-one)
UDL 11-undecanolide
Vmax maximal velocity

1
Introduction

An enzyme can act as a powerful catalyst for the production and chemical
recycling of green and sustainable polymers via a ring-opening polymer-
ization. Also, enzymes will provide versatile synthetic tools for regio- and
enantioselective polymerizations. Lipase-catalyzed polymerization emerged
about 20 years ago using the hydrolase enzyme. The early studies were gen-
erally carried out at ambient temperature. One of the events that has led
to developing this new field of enzyme-catalyzed polymerization may be as-
cribed to the invention of an enzyme acting in organic medium at a high
temperature. The pioneering work of Klibanov and coworkers implied that
the enzyme-catalyzed reactions become novel and valuable tools in the field
of both synthetic organic chemistry and polymer chemistry [1, 2]. Not only
can the dry lipase withstand heating at 90–120◦ for many hours, but it exhibits
a high catalytic activity at that temperature [1–6].

Enzyme-catalyzed polymerization has quickly developed as a novel
methodology of polymer synthesis since the invention of the lipase-catalyzed
ring-opening polymerization of lactones presented by two independent
groups, Uyama and Kobayashi et al. [7, 8] and Knani et al. in 1993 [9]. Small-
to large-sized (4- to 16-membered) lactones were found to be polymerized in
a lipase-catalyzed ring-opening fashion, though their polymerizability varied
according to ring size as well as enzyme origin (Scheme 1) [10]. These lac-
tones could be polymerized by conventional chemical catalysts; however, there
are some characteristic features in the lipase-catalyzed polymerization pro-
files. The large-sized lactones were efficiently polymerized by lipase. On the
other hand, when using conventional anionic catalysts, the polymerizability
of these large-sized lactones was much lower than that of the medium-sized
ε-caprolactone (ε-CL) due to the lower ring strain. In general, similar to chem-
ical catalysts, the lipase-catalyzed ring-opening polymerization of lactones
gave both higher molecular weights and higher monomer conversions than the
condensation polymerization of hydroxyacid/esters [11]. In organic solvents,
cyclic oligomers were mainly produced [12]. When such a polymer was cleaved
by lipase under water-restricted and diluted conditions, oligomer forms a cyclic
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Scheme 1

structure were produced. The cyclic oligomer may have promising properties
as monomers for the ring-opening polymerization and as versatile intermedi-
ates for the production of green polymers. Therefore, the enzymatic method
may have significant possibilities for establishing a sustainable polymer re-
cycling system. A rapidly increasing number of publications now exist that
showcase the potential of in vitro enzyme catalysis to provide a wide range of
polymer structures [13–21].

This article reviews the enzyme-catalyzed polymerization and chemical re-
cycling of biodegradable aliphatic polyesters, polycarbonates, polythioesters,
polyphosphates, and polysiloxane, particularly highlighted for the nascent
green polymer chemistry.

2
Ring-Opening Polymerization of Lactones into Polyesters

Small- and medium-sized (4-, 6-, and 7-membered) and large-sized (12- to
16-membered) lactones as well as macrolides and cyclic oligomers were found
to be efficiently polymerized in a lipase-catalyzed ring-opening fashion. In
this section, enzyme-catalyzed ring-opening polymerization and copolymer-
ization of lactones and cyclic oligomers are reviewed and mechanisms of
lipase-catalyzed ring-opening polymerization and the responsibility of cata-
lytic amino acid residues of the enzyme are also described.

2.1
Ring-Opening Polymerization
of Small-Sized Lactones to Macrolides and Cyclic Oligomers

(1) Four-membered lactone (Scheme 2)
The unsubstituted four-membered β-propiolactone (β-PL), the smallest-
sized lactone, was readily polymerized by lipase producing a polyester with
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Scheme 2

a molecular weight of greater than 20 000 [22–25]. The four-membered
β-lactones with various substituents, such as α-methyl-β-propiolactone [24],
β-butyrolactone (β-BL) [25–29], benzyl β-malolactonate [30–34], and propyl
β-malolactonate, [35] were polymerized by lipases to yield the correspond-
ing polyesters. Poly(3-hydroxybutanoate) (PHB) obtained from the lipase-
catalyzed ring-opening polymerization of (R, S) – β-BL presented three kinds
of structural isomers, i.e., cyclic PHB, linear PHB with a hydroxyl group at
one end and a carboxyl group at the other end, and a linear PHB with a croto-
nate group at one end and a carboxyl group at the other end, were identified.
A small amount of the crotonate terminal was spontaneously produced by
the partial elimination reaction at the labile acyl-enzyme intermediate as
a side reaction of the ring-opening polymerization as shown in Scheme 3.
Cyclic and hydroxy terminated linear PHBs were produced by the enzymatic
intra- and intermolecular transesterification reactions of the produced poly-
mer species [28, 29].
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Scheme 3

Polymalate is attractive as a water-soluble biodegradable polycarboxy-
late in the biomedical and industrial fields. Polymalate could be produced
by the ring-opening polymerization of benzyl β-malolactonate with subse-
quent dehydrogenation. The benzyl β-malolactonate was readily polymerized
by the lipase to yield poly(benzyl β-malolactonate) with an Mw of greater
than 7000. The benzyl group was removed to quantitatively produce poly(β-
malic acid) and then neutralized to obtain the water-soluble and biodegrad-
able poly(sodium β-malate) [33, 34]. The lipase-catalyzed polymerization of
propyl β-malolactonate occurred in a characteristic fashion, such that the
polymer chain length was controlled by the formation of double bonds due
to the elimination of an α-hydrogen from the propyl β-malolactonate with the
formation of a new initiator (Scheme 2e) [35].

(2) Five-Membered Lactone
The five-membered unsubstituted lactone γ -butyrolactone (γ -BL) may not
polymerize when using a conventional chemical catalyst. However, it was
reported that only an oligomer was produced by the ring-opening polymer-
ization of γ -BL using PPL or lipase from Pseudomonas sp. [11, 36].

(3) Six-Membered Lactone (Schemes 4, 5)
The six-membered unsubstituted lactone δ-valerolactone was polymerized
by lipase to produce polyesters with the relatively low molecular weight
of less than 2000 [7, 37]. Also, α-methyl-δ-valerolactone was polymer-
ized by lipase to produce the corresponding polyesters (Scheme 4b) [38].
Similarly, the six-membered 1,4-dioxan-2-one (Scheme 4c) [39] and six-
membered cyclic depsipeptides, such as 3(S)-isopropylmorpholine-2,5-dione,
3-isopropyl-6-methyl-morpholine-2,5-dione, and 3(S)-sec-butylmorpholine-
2,5-dione, were polymerized by lipase to produce the corresponding poly-
mers (Scheme 5) [40–43]. Of these, poly(1,4-dioxan-2-one) is a biocompatible
polymer with good flexibility and tensile strength (Scheme 4a). For med-
ical applications, the metal-free polymerization of 1,4-dioxan-2-one by li-
pase may become the preferred method. Poly(1,4-dioxan-2-one) with an
Mw of 41 400 was produced by an immobilized lipase from the Candida
antarctica (lipase CA)-catalyzed ring-opening polymerization [39]. By the
copolymerization of 3(S)-isopropylmorpholine-2,5-dione and lactide, the
3(S)-isopropylmorpholine-2,5-dione unit was introduced into the polylactide
polymer chain in order to improve the physicochemical properties of the
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Scheme 4

Scheme 5
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polylactides. The glass transition temperature (Tm) of the copolymers de-
creased with the increasing mole fraction of the DL-lactide residue in the
copolymers from 74 to 40 ◦C [44].

The six-membered lactide, a cyclic dimer of lactic acid, was polymer-
ized by lipase as a catalyst in bulk to yield the corresponding polylactide
with an Mw of up to 126 000 with a relatively low yield. The D,L-lactide gave
a higher molecular weight compared to the D,D- and L,L-lactides [45, 46]. The
L,L-, D,D-, and D,L-lactides were copolymerized with trimethylene carbon-
ate by porcine pancreatic lipase (PPL) to produce random copolymers having
molecular weights of up to 21 000 [47].

(4) Seven-Membered Lactone
The seven-membered unsubstituted lactone ε-CL was the most extensively
studied with respect to lipase-catalyzed ring-opening polymerization [7, 9, 37,
48–60]. ε-CL was quickly polymerized by various lipases of different origin. Of
these, lipase CA was the most effective for the polymerization of ε-CL [61, 62],
and under appropriate conditions PCL with a molecular weight (Mn) of greater
than 89 000 was produced [50, 63]. During the polymerization of ε-CL, exten-
sive degradation and polymerization occurred simultaneously [62]. Also, no
termination and chain transfer occurred, and the molecular weight of PCL was
a function of the monomer to initiator stoichiometry. Based on kinetic studies,
the monomer consumption followed a first order rate law [48, 49, 64].

The α- and γ -methyl substituted seven-membered lactones α-methyl-ε-
caprolactone and γ -methyl-ε-caprolactone were polymerized by lipase simi-
lar to the unsubstituted ε-CL. On the other hand, the polymerizability of
ω-methyl substituted ε-caprolactone significantly decreased compared to the
unsubstituted ε-caprolactone [65] (Scheme 6).

Scheme 6

(5) Macrolides
As the characteristic features of lipase-catalyzed ring-opening polymeriza-
tion, macrolides were readily polymerized to produce high-molecular-weight
polyesters that were not easily obtained by the conventional chemical cat-
alysts. Uyama et al. first reported the lipase-catalyzed polymerization of
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macrolides, such as 11-undecanolide (UDL) and 12-dodecanolide (DDL) [66,
67]. The lipase-catalyzed ring-opening polymerization of macrolides was
then extensively studied using 9- to 17-membered macrolides [63, 66, 68–
73]. The polymerization behaviors of the macrolides were dependent on the
position of the substituent as well as the ring size. The polymerizability of
the α-methyl-substituted macrolides (13- and 16-membered) decreased by
the introduction of the methyl substituent [65]. The bulk polymerization
of the macrolide produced relatively high-molecular-weight polyesters, i.e.,
the polymerization of 15-pentadecanolide (PDL) using lipase CA produced
the corresponding polyester with a molecular weight (Mn) of 34 400. At low
reaction water levels, the immobilized lipase PS-30 on Celite catalyzed the
polymerization of PDL to give poly(PDL) with an Mn of 62 000 [70]. The pro-
duced polyesters by the bulk polymerization had a carboxylic acid at one end
and a hydroxy group at the other. Though a high-molecular-weight poly(PDL)
was produced by the lipase-catalyzed ring-opening polymerization of PDL, its
mechanical properties were evaluated. Poly(PDL) is a crystalline polymer that
melts close to 100 ◦C and has a glass transition below room temperature. The
physical properties of the polyester are somehow intermediate between those
of PCL and polyethylene [74].

It is interesting that macrolides, such as UDL and DDL, are polymerized by
lipase in an aqueous medium. That is, Kobayashi and Uyama et al. presented
the polyester synthesis by dehydration polymerization in aqueous medium
using lipase. This is due to the hydrophobic nature of the catalytic domain of
the lipase as well as hydrophobic nature of the macrolide [10].

High-molecular-weight biodegradable polyester nanoparticles were pre-
pared by the direct enzymatic polymerization of miniemulsions consisting of
lactone nanoparticles. Stable miniemulsions consisting of PDL in water were
obtained using a nonionic surfactant and ultrasonication. Polyester molecu-
lar weights of more than 200 000 were obtained using 0.125% lipase PS at
45 ◦C [75].

(6) Cyclic Oligomers
One of the characteristic features of lipase-catalyzed ring-opening poly-
merization is the formation of a cyclic oligomer. The formation of cyclic
oligomers by the lipase-catalyzed polymerization of β-PL was first reported
by Namekawa et al. [23]. The cyclic oligomers may be more readily poly-
merized by lipase to produce higher-molecular-weight polyesters. The ring-
opening polymerization of cyclic diesters, ethylene dodecanedioate, and ethy-
lene tridecanedioate was carried out using lipases under mild reaction con-
ditions to give the corresponding polyesters with an Mn of several thousand
(Scheme 7a) [76]. A cyclic ε-CL dimer with 14-membered ring was poly-
merized by lipase CA to quantitatively produce PCL with an Mn of 89 000
(Scheme 7b) [63]. Also, cyclic butylene adipate oligomers mainly consisting
of a dimer showed excellent polymerizability by lipase CA to produce a high-
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Scheme 7

molecular-weight polyester with an Mw of 52 000. Under the same conditions,
the polycondensation of diethyl adipate and 1,4-butanediol produced a lower-
molecular-weight polyester [77]. A larger-membered cyclic ester-urethane
oligomer was also readily polymerized by lipase CA to produce a higher-
molecular-weight poly(ester-urethane) with the highest molecular weight of
103 000 [78]. Based on these results, ring strain may not be primarily respon-
sible for the ring-opening polymerization of cyclic macrolides.

2.2
Copolymerization of Lactones

Copolymerization is a convenient method of synthesizing copolymers with
various properties for versatile applications. The enzymatic ring-opening
copolymerization was carried out to produce some biodegradable polymers,
such as poly(ester-co-carbonate)s [47], copolycarbonates [79] and polyethy-
lene glycol-polyester block copolymer [80]. A series of PCL-PEG and PCL-
PEG-PCL block copolymers were successfully synthesized for the first time
using lipase CA. The block copolymers were all semicrystalline polymers
with the PCL type crystalline structure. There was almost no composition
and molecular-weight changes in the copolymers produced during the degra-
dation [80].

Diblock copolymers, polybutadiene-block-polypentadecalactone, and poly-
butadiene-block-polycaprolactone were prepared by the monohydroxyl-
terminated polybutadiene-initiated PDL and ε-CL, respectively, using immo-
bilized Candida antarctica lipase B (Scheme 8) [81].

Microstructure analyses of the copolymers revealed that a statistically
binary copolymer had four different diads, and the formation of random
copolymers by lipase-catalyzed copolymerization was ascribed to the inter-
molecular transesterification of the polyesters during the copolymerization
reaction [8, 69].
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Scheme 8

The ring-opening polymerization of lactones in the presence of aliphatic
polyesters using lipase PF produced copolyesters with molecular weights of
several thousands. The resulting polymer was a random copolymer consist-
ing of both units [82]. Lactones were also copolymerized with divinyl esters
and glycols using lipase to produce the copolyester, not a mixture of ho-
mopolymers. Two different modes of polymerization, ring-opening polymer-
ization and polycondensation, simultaneously took place through enzymatic
polymerization in one-pot to produce the copolyesters [83].

2.3
Immobilization of Enzyme for Polymerization

In order to improve the catalytic efficiency of the lipase for ring-opening
polymerization, immobilized lipase on Celite [61, 84], and the surfactant-
coated lipase were prepared and produced some characteristic results [85, 86].
The catalytic activity was further enhanced by the presence of a sugar or PEG
during the immobilization. The surfactant-coated lipase efficiently catalyzed
the ring-opening polymerization of lactones in organic solvents in which the
modified enzyme was soluble [85, 86]. The Candida antarctica lipase immo-
bilized on porous polypropylene more efficiently catalyzed the ring-opening
polymerization of PDL as well as the polycondensation than lipase CA (Can-
dida antarctica lipase immobilized on acrylic resin) [87].

2.4
Mechanism of Lipase-Catalyzed Ring-Opening Polymerization of Lactones

The mechanism for the lipase-catalyzed polymerization of lactones was first
presented by Uyama et al. [67]. The proposed mechanisms for the lipase-
catalyzed polymerization of lactones proceeded via an acyl-enzyme interme-
diate (enzyme-activated monomer, EM) at a serine residue of the catalytic
site of lipase as the principal reaction course (Scheme 9) [67, 88–90]. The key
step is the reaction of the lactone with lipase involving the ring opening of
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Scheme 9

the lactone to produce the acyl-enzyme intermediate (EM). The initiation is
the nucleophilic attack by water, which is probably contained in the enzyme,
on the acyl carbon of the intermediate, yielding ω-hydroxycarboxylic acid,
which is regarded as the basic propagation species. The EM is nucleophilically
attacked by the terminal hydroxyl group of the growing polymer species dur-
ing the propagation stage, leading to the formation of the additional one-unit
elongated polymer chain. That is, the lipase-catalyzed polymerization pro-
ceeds via a monomer-activated mechanism. The rate-determining step of the
overall polymerization is the formation of the EM. Similar mechanisms were
also examined and verified [48, 91, 92].

Further studies on the mechanistic limitations in the lipase-catalyzed ring-
opening polymerization of ε-CL in toluene with monomethoxy-poly(ethylene
glycol) and water as initiators were carried out [93]. The apparent acti-
vation energy for the lipase-B-catalyzed ε-CL polymerization in toluene
is estimated to be 2.88 kcal/mol. On the other hand, the activation en-
ergy for the aluminum-alkoxide-catalyzed ε-CL polymerization in toluene is
10.3 kcal/mol [89].

Polymerization of the macrolides proceeded much faster than ε-CL when
compared under the same conditions using the same lipase. Michaelis-
Menten kinetics of the 7-, 12-, 13-, 16-, and 17-membered lactones showed
that the 17-membered 16-hexadecanolide had the highest enzymatic poly-
merizability [72]. The Vmax and Vmax/Km for the macrolides increased with
increasing ring size from the 7- to 17-membered ring. On the other hand,
a significant change in the Km value was not observed among these ring sizes,
indicating that the affinity of the enzyme with macrolides was not dependent
on the ring size. Thus, the high polymerizability is mainly ascribed to the
Vmax, i.e., the reaction process of the lipase-lactone complex to the EM is the
key step of the polymerization [73]. Michaelis-Menten kinetics of the poly-
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Table 1 Michaelis-Mentene kinetics of the polymerization of lactones with lipase PF [73, 90]

Monomer Km (lactone) Vmax (lactone) Vmax (lactone)/Km (lactone)
mol L–1 mol L–1 h–1, ×102 h–1, ×102

ε-CL 0.61 0.66 1.1
UDL 0.58 0.78 1.4
DDL 1.1 2.3 2.1
PDL 0.80 6.5 8.1
HDL 0.63 7.2 11

merization of lactones performed by Kobayashi and Uyama were summarized
in Table 1 [73, 90].

The kinetics of the bulk polymerization of the 6-, 7-, 12-, 13-, 16-, and
17-membered lactones initiated by the zinc 2-ethylhexanoate/butyl alcohol
system was studied and compared to that of the lipase-catalyzed polymer-
ization. The ring strain, which decreases with increasing lactone size, is
partially released in the transition state of the elementary reaction of the
polyester chain growth, which eventually leads to a faster propagation for
more strained monomers during the chemical polymerizations. During the
enzymatic polymerizations, the rate-determining step involves the formation
of the lactone-lipase complex. The latter reaction is promoted by the hy-
drophobicity of the lactone monomer, which is higher for the larger lactone
rings [94].

2.5
Responsibility of Catalytic Amino Acid Residues of the Enzyme

Lipase-catalyzed ring-opening polymerization of lactones was carried out
over a wide temperature range of between 40 and 120 ◦C. The reaction tem-
perature of higher than 80 ◦C was greater than that used in the conventional
enzymatic reactions. It has been reported that under relatively dry condi-
tions, enzymes, such as lipases, proteases, and esterases, were catalytically ac-
tive at temperatures around 90–120 ◦C [3–5]. Turner et al. demonstrated that
lipase actually catalyzed the transesterification of octadecanol with palmityl
stearate at 130 ◦C using lipase CA [6].

In order to further verify the involvement of catalytic amino acid residues
in enzyme-catalyzed ring-opening polymerization, catalytic amino acids of
the catalytic domain of the PHB depolymerase were replaced and evalu-
ated for their polymerization activities. PHB depolymerases have structures
that consist of a catalytic domain, a putative linker region, and a substrate
binding domain (SBD). Three strictly conserved amino acids, serine, aspar-
tate, and histidine, constitute the catalytic triad at the active center of the
catalytic domain. The conserved serine is part of the so-called lipase-box
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pentapeptide (Gly – X1 – Ser – X2 – Gly) that has been found in all known
serine hydrolases. Three kinds of site-specific mutants (S139A, 139Ser was
substituted to Ala; D214G, 214Asp to Gly; H273D, 273His to Asp) and the wild-
type PHB depolymerase from Alcaligenes faecalis T1 have been compared
with respect to the ring-opening polymerization of β-BL. As a result, BL was
polymerized at 80◦ in bulk by the wild-type enzymes to yield polymers con-
sisting of cyclic and linear structures with a high monomer conversion. In
contrast, none of the mutant enzymes showed an obvious polymerization ac-
tivity. These results demonstrated the involvement of the catalytic amino acid
residues of PHB depolymerase in the enzyme-catalyzed polymerization even
at 80 ◦C [95].

2.6
Polymerization of Lactones by PHB Depolymerase

Characteristic polymerizabilities of the lactones were observed by PHB de-
polymerase from Alcaligenes faecalis T1 with respect to the ring size of the
lactones. That is, the 4-membered β-PL and 6-membered δ-valerolactone
(δ-VL) showed the highest polymerization activity, and δ-VL seemed to be
the upper limit for the molecular recognition of the narrow active site cleft
of PhaZAfa. On the other hand, ε-CL, UDL, and DDL, which showed ex-
cellent polymerization activities by the lipases, were scarcely polymerized
by PhaZAfa. These results are summarized in Table 2. The characteristic
reactivities of the lactones were explained based on the tertiary structure
model of the active site of PhaZAfa [96]. The substrate-binding domain lack-
ing PhaZAfa showed higher polymerizabilities than PhaZAfa for the poly-
merization of the lactones [97]. The PHB depolymerase from Pseudomonas

Table 2 Polymerization of lactones with PhaZAfa and lipase from Candida cylindracea
(CC)

Entry Monomer Enzyme wt% temp (◦C) time(h) conv (%) Mw Refs

1 β-PL PhaZAfa 3 60 48 98 16 400 [96]
2 β-PL CC 3 60 48 87 40 000 [22]
3 β-BL PhaZAfa 5 80 72 96 2000 [96]
4 β-BL CC 5 80 120 73 3300 [27]
5 δ-VL PhaZAfa 5 80 48 90 3700 [96]
6 δ-VL CC 50 60 120 77 2400 [37]
7 ε-CL PhaZAfa 10 80 48 19 3 mer [96]
8 ε-CL CC 10 75 6 92 18 500 [7]
9 UDL PhaZAfa 5 80 48 0 – [96]

10 UDL CC 5 60 120 84 19 700 [67]

PhaZAfa: PHBDP from Alcaligene faecalis, CCL: lipase from Candida cylindracea
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lemoignei also catalyzed the polymerization of ε-CL, which resulted in an
18% conversion of the monomer in 48 h at 70 ◦C to oligomers with an average
degree of polymerization (DP) of 4. Under identical conditions, a 30% conver-
sion of the trimethylene carbonate to oligomers with an average DP of 12 was
found. Based on these studies, the PHB depolymerase appeared promising for
use in ring-opening polymerizations [98].

3
Regioselective Ring-Opening Polymerization of Lactones

Regioselectivity is one of the characteristic properties of enzymatic reac-
tions, and this property can be used for lipase-catalyzed polymerization in
the production of environmentally benign and functionally superior poly-
meric materials. ε-CL showed excellent polymerizability by lipase and is also
industrially available as a raw material for the production of biodegrad-
able polymers; therefore, extensive studies have been carried out using ε-CL
and lipase. Such examples are the regioselective ring-opening polymerization
of ε-CL with various nucleophiles, such as sugars, terminal functionalized
polyester synthesis, and branched and block copolymer syntheses.

3.1
End-Functionalized Polyesters

End-functionalized polyesters were synthesized by the ring-opening poly-
merization of lactones in the presence of functional hydroxy, carboxy, and
methylene groups. An alcohol could initiate the ring-opening polymerization
of lactones by lipase [90, 99]. The lipase catalysis chemoselectively induced
the ring-opening polymerization of 2-methylene-4-oxa-12-dodecanolide
yielding a polyester having the reactive exo-methylene group in the main
chain. The present polymer could not be obtained using a conventional
chemical initiator [100]. The chemospecific ring-opening polymerization of
α-methylenemacrolides having various groups, i.e., aromatics, ether, and

Scheme 10
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amine, was enzymatically, anionically, and radically carried out. That is,
polymerization with the lipase catalyst successfully yielded polymers only
through the ring-opening process, whereas vinyl groups were further poly-
merized by anionic and radical initiators to produce a cross-linked polymer
gel (Scheme 10) [100, 101].

3.2
Polymerization of Naturally Derived Lactones

Polymeric amphiphiles are attractive as pharmaceutical and hygienic prod-
ucts, particularly bearing sugar residues. The conventional selective prep-
aration of sugar-containing polymers requires protection and deprotection
of the sugar moieties. However, these methods lack selectivity and often
compromise the concept of green chemistry. More straightforward and re-
gioselective modification methods, such as esterification, are now needed. For
such purposes, the enzymatic method will be effective.

Amphiphilic PCL macromonomers were prepared by first using the sugar-
derived di- to hexahydroxyl group initiators for the regioselective ring-
opening polymerization of ε-CL, followed by the selective functionaliza-
tion of the hydroxyl end group of PCL by lipase (Scheme 11a) [102–104].
The hydrophilic hydroxyethyl cellulose was grafted by the hydrophobic ε-CL

Scheme 11
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polyester chain by the ring-opening graft copolymerization of ε-CL in bulk
using PPL. The ε-CL could be directly introduced to the cellulose surfaces ei-
ther by simple addition of a liquid monomer or through the gas phase using
Candida antarctica lipase B as a new approach to introduce the ε-CL polymer
chains into cellulosic materials [105]. The enzymatic polymerization of ε-CL
with hydroxyethyl cellulose film produced hydroxyethyl cellulose-graft-PCL
having a substitution degree of from 0.1 to 0.32 (Scheme 11b) [106].

Well-defined sophorolipid biosurfactant analogs were also prepared via
enzymatic synthesis for the evaluation of the bioactivity and as building
blocks for the preparation of glycolipid-based polymers [107]. The direct
enzymatic ring-opening polymerization of lactone sophorolipids (SLs) was
carried out with lipases. The reaction proceeded with the formation of mono-
acylated lactone SLs and the subsequent conversion of the intermediates to
oligomers and polymers (Scheme 12) [108].

Scheme 12

3.3
Structurally Characteristic Polyesters

A star-shaped polymer was prepared by the lipase-catalyzed ring-opening
polymerization of ε-CL and ethyl glucopyranoside as a mutifunctional ini-
tiator [109]. Polymers with a treelike structure are known as dendritic.
A PCL monosubstituted first-generation dendrimer was prepared by the
lipase-catalyzed polymerization of ε-CL and the selective acylation of the
hydroxy end group of the PCL chain by lipase were carried out [110]. Hyper-
branched aliphatic copolymers were prepared by the selective polymerization
of ε-CL to the hydroxy group of 2,2-bis(hydroxymethyl)butyric acid using
immobilized lipase B (Scheme 13) [111]. New brush copolymers comprising
poly(PDL) with unusual thermal and crystalline properties were synthesized
by chemoenzymatic methods. The 2-hydroxyethyl methacrylate-terminated
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Scheme 13

Scheme 14

poly(PDL) was synthesized by ring-opening polymerization of PDL to the hy-
droxy group of 2-hydroxyethyl methacrylate using lipase CA. The methacry-
late moiety was polymerized by the radical initiator AIBN to produce novel
brush-type copolymers (Scheme 14) [112].

4
Enantioselective Ring-Opening Polymerization of Lactones

Enantioselection for racemic lactones was exhibited by the lipase-catalyzed
ring-opening polymerization of lactones to produce optically active polymers
and optically active lactones that remained as unreacted material. Usually,
lipase can react with racemic lactones by producing the acyl-enzyme inter-
mediates; however, their rate constants differed between the two enantiomers.
The enantioselectivity for racemic lactones are varied according to the en-
zyme origin as well as the reaction conditions, such as monomer conversion,
monomer concentrations, solvent, and temperatures. The enantioselectivity
toward racemic lactones was not always high but occurred in diluted solution
and at a low monomer conversion, because the concentration of the opposite
enantiomer increased with the polymerization. There are some strategies to
increase the optical purity of the resulting polymer by lipase-catalyzed ring-
opening polymerization. A more diluted monomer solution, lower monomer
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conversion, and enzyme selection will be effective. Also, the copolymeriza-
tion of racemic lactones with achiral lactones are effective.

The four-membered racemic α-methyl-β-propiolactone (MPL) was enan-
tioselectively polymerized by lipase from Pseudomonas fluorescens to pro-
duce (S)-enriched poly(MPL) with an Mn of 2900 [24]. Also, the four-
membered racemic β-BL was enantioselectively polymerized by thermophilic
lipase to produce the (R)-enriched polyesters having a maximum e.e. of 40%
and having a relatively low molecular weight of Mw = 900 [26]. A highly
(S)-enriched substituted PCL was prepared using the seven-membered sub-
stituted ε-CL. That is, racemic 4-methyl-caprolactone [(R, S)-4-MeCL] and
4-ethyl-caprolactone [(R, S)-4-EtCL] were enantioselectively polymerized by
lipase to produce the corresponding polyesters having > 95% e.e. and having
molecular weights of about 5000 (Scheme 15) [113]. Both the (R)- and (S)-3-
methyl-4-oxa-6-hexanolides (MOHELs) were polymerized by lipase; however,
the apparent initial rate of the S-isomer was seven times faster than that of the
R-isomer [88].

Copolymerization of racemic lactones with an achiral lactone is an effect-
ive way to prepare a chiral polyester. The enantioselective copolymerization
of racemic lactones with achiral lactones, such as ε-CL and DDL, has been es-
tablished by lipase. As a typical example, β-BL and ε-CL were copolymerized
by lipase in isooctane to produce the S-enriched optically active copolyester
with 69% e.e. of the β-BL unit, and R – β-BL with 100% e.e. remained unre-
acted. This indicated that the S-isomer of β-BL preferentially reacted during
the copolymerization (Scheme 16a) [114]. Also, during the copolymerization
of the racemic β-BL with DDL, the (S)-isomer of β-BL preferentially reacted
to give the (S)-enriched optically active copolymer with an enantiomeric
excess of the β-BL unit of 69%, which is much higher than that for the ho-
mopolymerization of β-BL. δ-CL was also enantioselectively copolymerized

Scheme 15
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Scheme 16

with DDL by lipase to give the optically active polyester with the highest e.e.
value of 76% (Scheme 16b) [114].

The enantioselective polymerization of (R, S) – β-BL was observed dur-
ing the early stage of the reaction. The R-enantiomer of β-BL produces the
natural-type poly(R-3HB), which is depolymerized by the PHB depolymerase
of the environmental degrading microbes, and the S-enantiomer produces
the unnatural-type poly(S-3HB), which cannot be depolymerized by the PHB
depolymerase. When racemic β-BL was used for the ring-opening polymer-
ization, the R-enantiomer of β-BL was preferentially incorporated into the en-
zyme to produce the R-3HB-rich polymer. However, the R-enantiomeric pu-
rity decreased with increasing S-enantiomer concentration of the monomer
mixture [96]. On the other hand, when lipase was used instead of the PHB de-
polymerase for the ring-opening polymerization of the racemic β-BL, optical
purity of the producing PHB was significantly lower because the stereospeci-
ficity of lipase for β-BL may be significantly lower than that of the PHB
depolymerase.

Scheme 17
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Fluorinated lactones, 10-fluorodecan-9-olide, 11-fluoroundecan-10-olide,
12-fluorododecan-11-olide, and 14-fluorotetradecan-13-olide, were polymer-
ized by lipase to produce the optically active polyesters with an Mw of
3000 to 8000, while 10-fluorodecan-11-olide gave an optically inactive poly-
mer with an Mw of 11 000 by lipase-catalyzed ring-opening polymerization
(Scheme 17) [115].

5
Polymerization of Cyclic Diacid Anhydrides with Diols or Oxiranes

A new type of enzymatic polymerization of the ring-opening addition-
condensation polymerization of a cyclic diacid anhydride and a glycol was
presented. By using diacid anhydride instead of free diacid, the liberating wa-
ter is reduced by polycondensation leading to a favorable equilibrium shift
for polymerization. Succinic anhydride and glutaric anhydride with diols
were polymerized by lipase in an organic solvent to produce the correspond-
ing polyesters (Scheme 18a) [116]. Novel biodegradable polyesters bearing
functional groups were obtained by lipase-catalyzed ring-opening copoly-
merization of oxiranes and succinic anhydride (Scheme 18b,c). Oxiranes,
such as glycidyl phenyl ether, benzyl glycidate, glycidyl methyl ether, and
styrene oxide, were copolymerized with dicarboxylic anhydrides, such as suc-

Scheme 18
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cinic anhydride, phthalic anhydride, and maleic anhydride, by the action of
an enzyme in a stepwise reaction to produce the corresponding polyesters
containing ether linkages having a maximum Mw of 13 500 [117–120]. Ben-
zyl glycidate and dicarboxylic anhydrides were polymerized by lipase fol-
lowed by debenzylation to yield water-soluble ester-type polycarboxylates
(Scheme 18c). They showed an excellent biodegradablility and calcium se-
questration capacity [120].

6
Polycarbonate

The carbonate linkage in the aliphatic polymer chain may be expected to
be enzymatically hydrolyzable and more hydrolytically stable than an ester
linkage. The first synthesis of polycarbonate was carried out by the ther-
mal polymerization of trimethylene carbonate (TMC: 1,3-dioxan-2-one) by
Carothers et al. in 1932. Recently, it was revealed that aliphatic polycarbon-
ates showed a good biodegradability, biocompatibility, and low toxicity, and
extensive studies have been started. The biodegradation of poly(TMC) has
been studied in reference to biomedical applications, such as sutures with im-
proved flexibility and drug delivery systems [121–125]. They are prepared by
the ring-opening polymerization of cyclic carbonate monomers by anionic,
cationic, and coordination catalysts. However, the polymerization of cyclic
carbonates often accompanies the decarboxylation reaction by the chem-
ical catalysts resulting in ether linkages. More recently, the enzyme-catalyzed
synthesis of polycarbonates has been reported in which no undesirable decar-
boxylation occurred. There are two routes to the synthesis of polycarbonates,
i.e., by ring-opening polymerization of a cyclic carbonate diester and poly-
condensation of a carbonate and diol [126–131].

During condensation polymerizations, removal of the leaving group is
necessary to shift the equilibrium in favor of the polymerization. On the
other hand, no leaving group is produced during ring-opening polymeriza-
tion, which favors a high-molecular-weight polycarbonate. In this section, the
syntheses of polycarbonates via the lipase-catalyzed ring-opening polymer-
ization of a cyclic carbonate monomer are reviewed.

6.1
Ring-Opening Polymerization of Trimethylene Carbonate

The lipase-catalyzed ring-opening polymerization of a six-membered cyclic
carbonate was first reported by three independent groups in 1997 [132–134].
Six-membered cyclic TMCs with/without a methyl substituent using lipase
were polymerized in the presence of lipase at a temperature between 60
and 100◦ to yield the corresponding polycarbonates (Scheme 19) [64]. No
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Scheme 19

elimination of carbon dioxide by the enzymatic polymerization of TMC was
detected [132].

The mechanism for the proposed lipase-catalyzed ring-opening poly-
merization of cyclic carbonates is basically the same as that for lactones
(Scheme 20) [48, 67, 134]. The initiation step is the formation of an enzyme-
activated monomer (EM) by the ring-opening reaction of a cyclic carbonate
and a serine residue of the lipase. EM was then nucleophilically attacked
by water containing the enzyme to produce diols liberating carbon diox-
ide due to the decarboxylation of the transiently produced monocarbon-
ate ester. In the propagation step, EAM successively reacts with the diols,
forming the high-molecular-weight polycarbonate and regenerating the free
lipase.

Scheme 20
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Copolymerization is the one way to synthesize polymeric materials with
desired properties and functions. The cyclic carbonate monomers are suc-
cessfully copolymerized with various cyclic monomers, such as cyclic carbon-
ates, lactones with/without substituents, lactide, and cyclic phosphates. TMC
was copolymerized with lactide by PPL to produce poly(lactide-co-TMC)s
having carbonate contents from 0 to 100% and having molecular weights of
up to 21 000. The glass transition temperature (Tg) of the copolymer was de-
pendent on the carbonate content, and the Tg values linearly decreased from
35◦ (polylactide) to – 8◦ [poly(TMC)] [47]. TMC was also copolymerized with
medium to large ring-sized lactones. As an example, TMC was copolymerized
with PDL in toluene by lipase CA at 70 ◦C to yield random copolymers [135].
All the poly(PDL-TMC)s were highly crystalline, even those with an equimo-
lar comonomer content and close-to-random distribution. Thermal stability
improves with randomization of the comonomer distribution [136].

The cyclic TMC monomer with/without a methyl substituent was syn-
thesized using dimethyl or diethyl carbonate and aliphatic 1,3-diols, such
as 1,3-propanediol and 2-methyl-1,3-propanediol, using immobilized lipase
CA in an organic solvent (Scheme 19) [137]. TMC is also produced by the
enzymatic degradation of poly(TMC) using lipase as the chemical recycling
product [138]. That is, the enzymatic degradation of poly(TMC)s having an
Mn of 3000 ∼ 48 000 using lipase CA in acetonitrile at 70 ◦C afforded the cor-
responding cyclic monomer, TMC, in a yield of up to 80% [137]. Thus the
obtained TMC was readily polymerized again by lipase. These results are
summarized in Scheme 21 [137, 138].

Scheme 21

6.2
Ring-Opening Polymerization of Substituted Trimethylene Carbonate

The new route to aliphatic polycarbonates decorated with pendant carboxyl
groups was revealed by the copolymerization of 5-methyl-5-benzyloxycar-
bonyl-1,3-dioxan-2-one (MBC) with TMC using lipase AK by Al-Azemi et al.
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This is the first example of polycarbonates with a carboxyl group as a pen-
dant. The microstructures and thermal properties of poly(MBC-co-TMC)
copolymers with different monomer ratios were presented [139–142]. Lipase-
catalyzed ring-opening homopolymerization of MBC was also reviewed [143].
The regioselective oligomerization of TMC to glucoside was carried out using
lipase. TMC was oligomerized with ethyl glucopyranoside by lipase CA to
produce glucopyranoside and oligo(TMC) conjugates [144].

In order to enhance the catalytic efficiency of lipase for the polymer-
ization of cyclic carbonates, lipase was immobilized on porous silica beads
and microparticles. Six-membered 5-benzyloxy-1,3-dioxan-2-one (BTMC)
was successfully copolymerized with TMC and 5,5-dimethyl-trimethylene
carbonate (DTC) by porcine pancrease lipase (PPL) immobilized on silica
particles. DTC was also successfully polymerized by the narrow distribu-
tion of micron-sized glass beads [79, 145]. The highest molecular weight
(Mn = 26 400) of poly(BTMC-co-DTC) was obtained at around a 0.1% con-
centration of immobilized PPL on silica particles with a size of 75–150 µm.
The produced poly(BTMC-co-DTC) was debenzylated to yield a water-soluble
polycarbonate having pendant hydroxy groups on the main chain, which
have potential biomedical applications [79, 145–147]. DTC was also suc-
cessfully polymerized by the PPL immobilized on a narrow distribution of
micron-sized glass beads. The immobilized PPL showed outstanding recyc-
lability [145].

Scheme 22
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6.3
Cyclic Carbonate Oligomers for Ring-Opening Polymerization

Cyclic carbonate oligomers act as a novel starting material for the produc-
tion of polycarbonates using lipase-catalyzed polymerization and also as
a low-molecular-weight material for chemical recycling. The cyclic carbonate
oligomer often shows better polymerizability than that of conventional cyclic
monomers. Novel cyclic dicarbonates were polymerized by lipase to produce
the corresponding polycarbonates. The ring-opening polymerization of cyclic
dicarbonates cyclobis(hexamethylene carbonate) and cyclobis(diethylene gly-
col carbonate) and the enzymatic copolymerization with lactones, such as
12-dodecanolide, were carried out using lipase CA (Scheme 23) [148].

Scheme 23

7
Polythioester and Polyphosphate via Ring-Opening Polymerization

Enzyme-catalyzed ring-opening polymerization should open a new frontier
for more types of polyesters, such as structural and elemental variations. Such
examples may be the enzyme-catalyzed preparation of thio- and phospho-
polyesters.

7.1
Polythioester

The synthetic polythioester was reported 50 years ago, but no commercial
production of the polythioester has yet been partially established due to the
complex preparation methods [149, 150]. Enzyme-catalyzed polymerization
may become one of the environmentally benign methods for industrial appli-
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cations. Microbial polyesters containing thioester linkages in their backbone
were recently reported for the first time by Lütke-Eversloh and Steinbüchel
et al. and revealed a novel class of biopolymers [151–153]. The first ex-
ample was the copolymer of 3-hydroxybutyrate and 3-mercaptopropionate.
Aliphatic polyesters containing thioester linkages were enzymatically pre-
pared by the copolymerization of a lactone with mercaptoalkanoic acid as
shown in Scheme 24a [154]. ε-CL and mercaptoalkanoic acid were reacted
under atmospheric pressure to produce an oligomer, and further polymeriza-
tion occurred by reducing the pressure by transesterification reaction for the
equilibrium shift toward polymerization. The enzymatic copolymerization
of ε-CL with 11-mercaptoundecanoic acid (11MU) and 3-mercaptopropionic
acid (3MP) using immobilized lipase from Candida antarctica at a reduced
pressure afforded the corresponding poly(ε-CL)-containing thioester moi-
eties having Mws of 22 000 and 20 000, respectively. It was also reported that
11MU was homopolymerized by lipase CA (Scheme 24b) [155].

Scheme 24

7.2
Polyphosphate

Polyphosphates are of great interest in a variety of applications including
flame retardation, adhesion promotion, plasticizing, and processability ei-
ther by their solubility in common solvents or by the lowering of the Tg.
The enzyme-catalyzed ring-opening polymerization of a cyclic phosphate
(ethylene isopropyl phosphate) was achieved in bulk using PPL as shown in
Scheme 25 [156]. The ring-opening polymerization of ethylene isobutyl phos-
phate was also performed using immobilized lipase on porous silica beads
at 70 ◦C to yield the corresponding polyphosphate with Mn values ranging
from 1642 to 5783 [157]. The novel enzymatic ring-opening copolymeriza-
tion of ethyl ethylene phosphate (EEP) and TMC was performed in bulk at
100 ◦C using PPL or Candida rugosa lipase to yield random copolymers hav-
ing molecular weights ranging from 3200 to 10 200. The degradability of the
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Scheme 25

copolymers was improved by the introduction of an EEP unit to the copoly-
mer chain [158].

8
Degradative Transformation
into Cyclic Oligomers as Repetitive Chemical Recycling

The establishment of a sustainable polymer production and recycling sys-
tem using an enzyme may contribute to the recent environmental and en-
ergy problems including carbon dioxide emission. From the standpoint of
saving the limited carbon resources and energy consumption for polymer
production and polymer processing, even naturally derived and biodegrad-
able plastics should be recycled as much as possible. Among the methods for
polymer recycling, the enzymatic method may have the greatest potential for
establishing a sustainable polymer recycling system. Polymers containing en-
zymatically hydrolyzable moieties, such as esters and carbonate esters, are
degraded into oligomers by an enzyme, and under water-limited and diluted
conditions cyclic oligomers may be produced that are repolymerizable by the
enzyme. In this section, three kinds of commercially available biodegradable
polymers, bio-based polymers, microbial polyesters, and chemically synthe-
sized polyesters, are reviewed with respect to chemical recycling.

8.1
Lipase-Catalyzed Transformation of Biodegradable Polymers into Cyclic Oligomers

The lipase CA-catalyzed degradation of PCL with a molecular weight of
around 40 000 readily took place in toluene at 60 ◦C to give oligomers with
a molecular weight of less than 500. The produced oligomer was polymer-
ized in bulk by the same lipase. The degradation-polymerization could be
controlled by the presence or absence of the solvent [50, 89]. There are two
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routes for the chemical recycling of PCL. One is the enzymatic conversion of
PCL into 6-hydroxyhexanoate (CL) oligomers. The other is the selective ring-
closing depolymerization of PCL into dicaprolactone (DCL) (Scheme 26) [63].
The DCL was readily polymerized by lipase CA to produce PCL. The DCL also
copolymerized with conventional cyclic monomers, such as PDL and TMC, to
produce the corresponding copolyester and poly(ester-carbonate).

Poly(butylene adipate) (PBA) is a typical biodegradable synthetic plastic
prepared by the polycondensation of 1,4-butanediol and adipic acid. PBA is
readily transformed into the repolymerizable cyclic oligomers mainly consist-
ing of BA dimer by lipase CA (Scheme 27). Commercially available PBA with
an Mw of 22 000 was degraded into a cyclic BA oligomer with an Mw of 600 by
lipase CA within 1 h. This cyclic BA oligomer was readily repolymerized by
lipase that produced the corresponding polyesters with an Mw of 52 000. The
molecular weight of the regenerated polymer was higher than that of the par-
ent polymer. This is ascribed to the polymerizability difference between the
ring-opening polymerization of the cyclic BA oligomer and polycondensa-
tion of the diol with a diacid. Similar results were obtained for poly(butylene
succinate) and their copolymers [77].

Poly(lactic acid) may be one of the most promising green plastics. Poly(lactic
acid) can be repeatedly chemically recycled with lipase via repolymerizable
cyclic oligomers having a molecular weight of a few hundred. Poly(L-lactic
acid) (PLLA) having an Mw of 120 000 was transformed into cyclic oligomers
by lipase CA at 100 ◦C. Similar results were obtained by the lipase-catalyzed

Scheme 26
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Scheme 27

degradation of poly(DL-lactic acid) (PDLLA). That is, PDLLA having an Mw
of 84 000 was quantitatively transformed into cyclic oligomers with the peak-
top oligomerzation degree of the octamer (8-mer) by lipase RM at 60 ◦C. No
linear-type fraction was detected in the MALDI-TOF mass spectrum [159].

A variety of microbial polyesters is known. As the current interest in
poly(R-3-hydroxyalkanoate) (PHA) is largely based on its biodegradability,
to consider the large-scale recycling of this polymer is to ignore one of its
most important properties. The thermal treatments will almost certainly pro-
duce free crotonic acid from the hydroxybutyrate and double bonds at the end
of the PHA chain. Also, hydrolytic degradation using acid or base catalysts
produces oligomers mainly having crotonate end groups by the elimination
of water molecules at the terminal hydroxy groups of the polymer chain.
On the other hand, PHA can be readily transformed into the correspond-
ing cyclic oligomers by lipase without the elimination of water. The produced
cyclic oligomers are readily repolymerized by lipase or conventional chem-
ical catalysts to produce the parent PHA. Similar results were obtained for the
unnatural-type poly(R, S-3-hydroxybutanoate) [160].

8.2
Continuous Degradation of Polyesters Using the Enzyme-Packed Column

The above-mentioned batch process required a large quantity of enzymes
relative to the polymer for rapid reaction, and a more efficient procedure will
be needed. In order to save enzymes, a continuous flow system was developed
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Fig. 1 Schematic diagramm of the continuous degradation system

for the degradation of the polyester (Fig. 1). The polymer solution was con-
tinuously passed through the immobilized lipase-packed column using an
HPLC pump. The combined eluents contained cyclic oligomers exclusively. As
a typical example, PCL in toluene solution was degraded into the correspond-
ing cyclic oligomers by continuous passage through the immobilized lipase
packed column at 40 ◦C. The obtained cyclic oligomer mainly consisting of
a cyclic dimer, dicaprolactone, could be repolymerized using lipase for 6 h at
70 ◦C under a slightly reduced pressure to yield a high-molecular-weight PCL
having an Mn of greater than 90 000 [160, 161].

The continuous flow method required a large amount of organic solvent,
such as toluene, to dissolve the polymers. Therefore, supercritical carbon
dioxide was partially used in place of the organic solvent. RS-PHB, PCL, and
PBA are all quantitatively degraded into the corresponding cyclic oligomers
at 40 ◦C. The composition of the supercritical carbon dioxide and organic
solvent, such as toluene, was responsible for the degradation of the polymer.

8.3
Poly(ester/Carbonate Urethane)

The novel enzymatically degradable polyurethane that consisted of a di-
urethane moiety as the hard segment and a carbonate linkage as the
biodegradable unit was prepared by the polycondensation of biodegrad-
able urethanediol and dimethyl carbonate using lipase CA (Scheme 28). The
produced poly(carbonate urethane) with an Mw of 20 000 was readily trans-
formed by lipase CA into the corresponding repolymerizable cyclic oligomers
mainly consisting of a monomer and dimer. The cyclic oligomers were
more readily repolymerized by lipase to produce a higher-molecular-weight
poly(carbonate urethane) with an Mw of greater than 40 000 when compared
with that of the parent poly(carbonate urethane) [162]. In a similar way, a se-
ries of enzymatically recyclable poly(ester-urethane)s was chemoenzymati-
cally prepared by the two routes (Scheme 29). That is, poly(ester-urethane)
was prepared by the ring-opening polymerization of a cyclic ester-urethane
monomer prepared by the reaction of diurethanediol and the dicarboxy-
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Scheme 28

Scheme 29

late ester using lipase, and by the direct polycondensation of diurethanediol
and dicarboxylate ester. A significantly higher-molecular-weight poly(ester-
urethane) with an Mw of 103 000 was produced by the ring-opening poly-
merization of the cyclic ester-urethane monomer when compared with the
polycondensation of the dicarboxylate ester with diurethanediol [78]. The
poly(ester-urethane) was readily transformed by lipase into the correspond-
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ing cyclic oligomers, which were readily repolymerized by ring-opening
polymerization using lipase, as the chemical recycling [78].

9
Green Solvent for Lipase-Catalyzed Polymerization and Degradation

As a green solvent, water, supercritical carbon dioxide (scCO2), and an ionic
liquid were tested and evaluated with respect to the polymer synthesis and
degradation by lipase. Though water is the most abundant solvent in nature,
its application to polymer synthesis is relatively limited because of monomer
and polymer solubilities and an unfavorable equilibrium shift for polymeriza-
tion. The lipase-catalyzed polymerization of lactones has been realized even
in aqueous media [163]. This is due to the hydrophobic nature of the catalytic
domain of lipase. For example, macrolides such as UDL and DDL were poly-
merized by lipase in water to produce the corresponding polyesters [10]. On
the other hand, scCO2 may have potential as a solvent for polymer synthesis
and recycling. Moreover, the availability of CO2 as a byproduct of many indus-
trial processes, its possible recycling, and easily accessible critical parameters
account for its steadily increasing use [164, 165]. Similar results were obtained,
such that in scCO2, ε-CL was polymerized by lipase CA to produce the PCL with
the highest molecular weight (Mw) of 74 000. The enzyme and scCO2 were re-
peatedly used for the polymerization [166]. Takamoto et al. reported that the
lipase-catalyzed degradation of PCL in the presence of acetone produced an
oligomer with a molecular weight of less than 500 in scCO2, which can be poly-
merized by the same catalyst [167]. Similar results by Matsumura et al. were
obtained such that PCL was transformed in scCO2 in the presence of a small
amount of water and lipase to produce repolymerizable oligomers having an
Mn of about 500 [168]. The produced CL oligomer was again polymerized with
lipase CA to yield a PCL having an Mn of greater than 80 000 [168].

An ionic liquid also has vast possibilities because the liquid properties
as a solvent can be altered by designing the molecular structure. There are
a few reports of enzymatic ring-opening polymerization in ionic liquids. The
lipase-catalyzed polymerization of ε-CL was carried out in ionic solvents,
such as the 1-butyl-3-methyl-imidazolium salts [169]. In order to establish the
compatibility of enzymes with ionic liquids, the lipase-catalyzed transesteri-
fication of 2-hydroxymethyl-1,4-benzodioxane was studied [170].

10
Concluding Remarks

It has been revealed that lipase can act as a powerful catalyst for the ring-
opening polymerization of cyclic monomers and oligomers containing oxo-,
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thio-, and phosphoesters in addition to carbonate esters. Regioselective and
enantioselective polymerization is realized by lipase-catalyzed ring-opening
polymerization. Lipase-catalyzed ring-opening polymerization may not only
contribute to establishing a green and sustainable polymer industry but also
enable the direct production of green polymers that cannot be produced by
industrially feasible methods. Although enzymatic synthesis via ring-opening
polymerization has been shown to have many prominent characteristics,
some problems must be resolved with respect to large-scale industrial ap-
plications. Such problems may include the versatile application of enzyme-
catalyzed polymerization, increasing the molecular weight of polymers, de-
velopment of the biodegradable cross-linkage that allows chemical recycling,
and establishment of a sustainable biochemical complex. Extensive studies
are now needed with respect to development of the production systems con-
taining bioreactors and polymerization strategies, more active and selective
biocatalysts, and feasibility studies for industrial production.
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Abstract In vitro synthesis of polyesters by polycondensation using isolated enzymes as
catalyst via nonbiosynthetic pathways is reviewed. In most cases, lipase was used as cat-
alyst and the polyesters were obtained from oxyacids, their esters, and dicarboxylic acid
derivatives/glycols. Enzymatic polymerization proceeded under mild reaction conditions
in comparison with chemical processes. By utilizing characteristic properties of lipases,
regio- and enantioselective polymerizations proceeded to give functional polymers, most
of which are difficult to synthesize by conventional methodologies.

Keywords Enzyme · Lipase · Polyester · Polycondensation · Biodegradable polymer
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Abbreviations
BOD biochemical oxygen demand
DP degree of polymerization
ee enantiomeric excess
Lipase A Aspergillus niger lipase
Lipase CA Candida antarctica lipase
Lipase CR Candida rugosa lipase
Lipase MM Mucor miehei lipase
Lipase PC Pseudomonas cepacia lipase
Lipase PF Pseudomonas fluorescens lipase
PEG poly(ethylene glycol)
PHA poly(hydroxyalkanoate)
PHB poly(3-hydroxybutyrate)
PPL porcine pancreas lipase

1
Introduction

Lipase is an enzyme that catalyzes the hydrolysis of fatty acid esters normally
in an aqueous environment in living systems. However, some isolated lipases
are stable in organic solvents and can act as catalyst for reverse reactions, es-
terifications, and transesterifications (Scheme 1) in organic media [1–5]. So
far, chiral drugs, liquid crystals, acylated sugar-based surfactants, and func-
tional triglycerides have been synthesized through lipase catalysis [6–10].

Aliphatic polyesters are among the most used biodegradable polymers
in environmental and medical fields. Many studies concerning syntheses of
aliphatic polyesters by fermentation and chemical processes have been per-
formed for developing new boidegradable materials [11–13]. Recently, an-
other approach to synthesizing biodegradable polyesters has been developed

Scheme 1
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Scheme 2

by lipase-catalyzed polymerization [14–28]. By using lipase catalysis, func-
tional aliphatic polyesters have been synthesized by various polymeriza-
tion modes (Scheme 2). This review deals with lipase-catalyzed synthesis of
polyesters by polycondensation.

2
Lipase-Catalyzed Polycondensation of Dicarboxylic Acids
or Their Derivatives with Glycols

It is generally accepted that an enzymatic reaction is virtually reversible, and
hence the equilibrium can be controlled by selecting the appropriate reaction
conditions. Based on this concept, many hydrolases, which are enzymes that
catalyze a bond-cleavage reaction by hydrolysis, have been employed as cata-
lyst for the reverse reaction of hydrolysis, leading to polymer production by
a bond-forming reaction. Lipase catalysis of esterification and transesterifi-
cation has produced useful polyesters mainly under anhydrous conditions.
First, enzymatic polymerization of dicarboxylic acids or their esters with gly-
cols is described. So far, various dicarboxylic acid derivatives, dicarboxylic
acids, their activated and nonactivated esters, and cyclic and polymeric an-
hydrides have been polymerized with glycols through lipase catalysis to give
polyesters [17, 18, 22]

2.1
Dicarboxylic Acids

Many dicarboxylic acids are commercially available; however, their enzymatic
reactivity is relatively low. Mucor miehei lipase (lipase MM) in immobilized
form induced the polycondensation of adipic acid and 1,4-butanediol in di-
isopropyl ether [29]. A horizontal two-chamber reactor was employed to
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facilitate the use of the molecular sieves. A low dispersity polyester with a de-
gree of polymerization (DP) of 20 was obtained by two-stage polymerization.

High-molecular-weight polyesters were enzymatically obtained by the
polymerization of sebacic acid and 1,4-butanediol under vacuum [30, 31]. In
lipase MM-catalyzed polymerization in hydrophobic solvents of high boiling
points such as diphenyl ether and veratrole using a programmed vacuum
profile, the molecular weight reached higher than 4×104. The increase in
the molecular weight of aromatic polyesters was also observed by polymer-
ization under vacuum [32]. In the polymerization of isophthalic acid and
1,6-hexanediol using an immobilized lipase derived from Candida antarctica
(lipase CA) at 70 ◦C, a polyester with a molecular weight of 5.5×104 was
formed, whereas lipase MM produced only the corresponding oligomer.

The effects of substrates and solvents on the formation, molecular weight,
and end-group structure of a polymer in polycondensation using lipase CA
as catalyst were systematically investigated [33]. Diphenyl ether was found
to be the preferred solvent that gave the polyester of the highest molecular
weight. Concerning the effect of the monomer structure, the longer-chain-
length diacids (sebacic and adipic acid) and diols (1,8-octanediol and 1,6-
hexanediol) gave a higher enzymatic reactivity than the shorter-chain-length
diacids (succinic and glutaric acid) and 1,4-butanediol.

In 1998 it was reported that aliphatic polyesters were synthesized by en-
zymatic polymerization of dicarboxylic acids and glycols in a solvent-free
system by the present authors and by Roberts’ group [34, 35]. Lipase CA ef-
ficiently catalyzed polymerization under mild reaction conditions, despite
the heterogeneous mixture of monomers and catalyst. The methylene chain
length of the monomers greatly affected the polymer yield and molecular
weight. A polymer with a molecular weight greater than 1×104 was obtained
by reaction under reduced pressure. A small amount of adjuvant was effect-
ive for polymer production when both monomers were solid at the reaction
temperature [36].

In the polymerization of adipic acid and 1,6-hexanediol, loss of enzymatic
activity was small during polymerization, whereas less than half of the activ-
ity remained when glycols were used with a methylene chain length of less
than 4 [37]. A scale-up experiment produced a polyester from adipic acid
and 1,6-hexanediol in a yield of more than 200 kg. This solvent-free system
claimed a large potential as an environmentally friendly synthetic process of
polymeric materials owing to mild reaction conditions and to the fact that no
organic solvents or toxic catalysts were used.

The enzymatic synthesis of a telechelic polyester having a hydroxy group,
a prepolymer of polyurethane, at both ends was reported [38]. The lipase CA-
catalyzed polymerization of adipic acid with an excess of 1,4-butanediol was
performed under reduced pressure. The content of water formed by dehydra-
tion polymerization greatly affected the enzyme activity and polymerization
rates.
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The polymerization of adipic acid and 1,8-octanediol in bulk was inves-
tigated using lipase CA immobilized on different resins as well as lipase CA
free of immobilized resin [39]. The immobilized lipase induced polymeriza-
tion more efficiently to produce a polyester of higher molecular weight. Under
a wide range of reaction conditions, the molecular weight index of the result-
ing polymer without fractionation was less than 1.5, suggesting that lipase CA
catalyzes chain growth with chain-length selectivity.

The effects of the feed ratio on the lipase CA-catalyzed polymerization of
adipic acid and 1,6-hexanediol were examined using NMR and MALDI-TOF
mass spectroscopies [40]. In case of the stoichiometric substrates, 1H NMR
analysis showed that the hydroxyl-terminated product was preferentially
formed at the early stage of polymerization. As the reaction proceeded, the
carboxyl-terminated product was mainly formed. Even in the use of an excess
of dicarboxylic acid monomer, the hydroxy-terminated polymer was formed
largely at the early reaction stage, which is a specific polymerization behavior
due to the unique enzyme catalysis.

A dehydration reaction is generally realized in nonaqueous media. Since
water as a product of dehydration is in equilibrium with the starting materi-
als, water as solvent disfavors dehydration to proceed in an aqueous medium
due to “the law of mass action”. Nevertheless, the present authors have found
that lipase catalysis provides a dehydration polymerization of a dicarboxylic
acid and glycol in water [41, 42]. Dehydration in an aqueous medium is a new
aspect in organic chemistry. Lipases CA and MM as well as lipases from Can-
dida rugosa, Pseudomonas cepacia, and Pseudomonas fluorescens (lipases CR,
PC, and PF, respectively) were active for the polymerization of sebacic acid
and 1,8-octanediol. In the polymerization of α,ω-dicarboxylic acid and glycol,
the polymerization behavior greatly depended on the methylene chain length
of monomers. A polymer was obtained in good yields from 1,10-decanediol,
whereas no polymer formation was observed in using 1,6-hexanediol, sug-
gesting that the combination of monomers with appropriate hydrophobicity
is favored for polymer formation.

2.2
Dicarboxylic Acid Alkyl Esters

Alkyl esters often show low reactivity for lipase-catalyzed transesterifica-
tions with alcohols. Therefore, it is difficult to obtain high-molecular-weight
polyesters by lipase-catalyzed polycondensation of dialkyl esters with glycols.
Lipase CA- or MM-catalyzed polycondensation of dimethyl succinate and
1,6-hexanediol in toluene quickly reached equilibrium between the starting
materials and the polymer [43]. Adsorption of methanol by molecular sieves
or elimination of methanol by nitrogen bubbling shifted the thermodynamic
equilibrium. Polyesters in the molecular weight range of several thousand
were prepared from α,ω-alkylene dicarboxylic acid dialkyl esters, and, what-
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ever the monomer structure, cyclic oligomers were formed [44]. The yield
of the cyclics depended on the monomer structure, initial monomer concen-
tration, and reaction temperature. Ring-chain equilibrium was observed, and
the molar distribution of the cyclic species obeyed the Jacobson–Stockmayer
equation. Oligomer formation was observed by the reaction of dimethyl adi-
pate and neopentyl glycol by lipase CA catalyst [45].

In the polymerization of dimethyl terephthalate and diethylene gly-
col catalyzed by lipase CA in toluene, unique macrocyclic oligomers were
formed [46]. Their formation was ascribed to the presence of a driving
force leading to a π-stacking phenomenon. Under the selected conditions,
the exclusive formation of the cyclic dimer was observed. In the lipase-
catalyzed polymerization of dimethyl isophthalate and 1,6-hexanediol in
toluene with nitrogen bubbling, a mixture of linear and cyclic polymers was
formed [47]. Protease was also effective as catalyst for aromatic polyester syn-
thesis; Bacillus licheniformis protease catalyzed the oligomerization of esters
of terephthalic acid with 1,4-butanediol [48].

The molecular weight greatly improved by polymerization under vacuum
to remove the formed alcohols, leading to a shift in equilibrium toward the
product polymer [49]; a polyester with a molecular weight of 2×104 was
obtained by the lipase MM-catalyzed polymerization of sebacic acid and
1,4-butanediol in diphenyl ether or veratrole under reduced pressure.

Recently, room-temperature ionic liquids have received much attention
as green designer solvents. The present authors first demonstrated that
ionic liquids acted as a good medium for lipase-catalyzed production of
polyesters [50]. The polycondensation of diethyl adipate and 1,4-butanediol
using lipase CA as catalyst efficiently proceeded in 1-butyl-3-methylimida-
zolinium tetrafluoroborate or hexafluorophosphate under reduced pressure.
The polymerization of diethyl sebacate and 1,4-butanediol in 1-butyl-3-
methylimidazolinium hexafluorophosphate took place even at room tempera-
ture in the presence of lipase PC [51].

2.3
Dicarboxylic-Acid-Activated Esters

Activated esters of halogenated alcohols such as 2-chloroethanol, 2,2,2-tri-
fluoroethanol, and 2,2,2-trichloroethanol have often been used as substrate for
enzymatic synthesis of esters, owing to the increase in the electrophilicity (re-
activity) of the acyl carbonyl and to the need to avoid significant alcoholysis of
the products by decreasing the nucleophilicity of the leaving alcohols [1].

The enzymatic synthesis of biodegradable polyesters from activated di-
esters was achieved under mild reaction conditions. The polymerization of
bis(2,2,2-trichloroethyl) glutarate and 1,4-butanediol proceeded in the pres-
ence of porcine pancreas lipase (PPL) at room temperature in diethyl ether
to produce polyesters with a molecular weight of 8.2×103 [52]. The polycon-
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densation of various bis(2,2,2-trichloroethyl) alkanediaoates and glycols took
place by PPL catalyst in anhydrous solvents of low polarity [53]. In the re-
action of bis(2-chloroethyl) succinate and 1,4-butanediol catalyzed by lipase
PF, only oligomeric products were formed [54]. This may be due to the low
enzymatic reactivity of the succinate substrate.

The lipase-catalyzed synthesis of polyesters was achieved in a super-
critical fluid. The polymerization of bis(2,2,2-trichloroethyl) adipate and
1,4-butanediol using PPL catalyst proceeded in a supercritical fluoroform sol-
vent to give a polymer with a molecular weight of several thousand [55]. By
changing the pressure, the low-dispersity polymer fractions were separated.

A vacuum was applied to shift the equilibrium forward by removal of
the activated alcohol formed, leading to the production of high-molecular-
weight polyesters [49]. The polycondensation of bis(2,2,2-trifluoroethyl) se-
bacate and aliphatic diols took place using lipases CR, MM, PC, and PPL
as catalysts in diphenyl ether. Under the appropriate reaction conditions,
a polymer with a molecular weight higher than 4×104 was obtained and li-
pase MM showed the highest catalytic activity [31, 56]. In the PPL-catalyzed
polymerization of bis(2,2,2-trifluoroethyl) glutarate with 1,4-butanediol in
1,2-dimethoxybenzene, the periodical vacuum method increased the molecu-
lar weight to nearly 4×104 [57].

An irreversible procedure for lipase-catalyzed acylation using vinyl esters
as acylating agent has been developed, where a leaving group of vinyl alco-
hol tautomerizes to acetaldehyde (Scheme 1) [1]. In these cases, reaction with
the vinyl esters proceeds much faster to produce the desired compounds in
higher yields in comparison with alkyl esters.

Divinyl esters, as was reported first by the present authors, are efficient
monomers for polyester production under mild reaction conditions [58]. In
the lipase PF-catalyzed polymerization of divinyl adipate and 1,4-butanediol
in diisopropyl ether at 45 ◦C, a polyester with a molecular weight of 6.7×103

was formed, whereas adipic acid and diethyl adipate did not yield polymeric
materials under similar reaction conditions (Scheme 3). The polymerization
also proceeded in bulk using lipase CA as catalyst [59].

Lipase-catalyzed polymerization of divinyl ester and glycol is proposed
to proceed as follows (Scheme 4). First, the hydroxy group of the serine
residue nucleophilically attacks the acyl-carbon of the divinyl ester monomer
to produce an acyl-enzyme intermediate (“enzyme-activated monomer”, EM)
involving elimination of acetaldehyde. The reaction of EM with the glycol
produces a 1 : 1 adduct of both monomers. In the propagation stage, the
nucleophilic attack of the terminal hydroxy group takes place on the acyl-
enzyme intermediate formed from the vinyl ester group of the monomer and
1 : 1 adduct, and then the propagation steps proceed similarly.

Lipases CA, MM, PC, and PF showed high catalytic activity toward the
polymerization of divinyl adipate or divinyl sebacate with α,ω-glycols with
different chain lengths [60]. A combination of divinyl adipate, 1,4-butanediol,
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Scheme 3

Scheme 4

and lipase PC yielded a polymer with a molecular weight of 2.1×104. The
yield of the polymer from divinyl sebacate was higher than that from divinyl
adipate, whereas the opposite tendency was observed in the polymer molecu-
lar weight. Polyester formation was observed in various organic solvents, and
of these, diisopropyl ether gave the best results.

During the lipase-catalyzed polymerization of divinyl esters and gly-
cols, there was a competition between the enzymatic transesterification and
hydrolysis of the vinyl end group, resulting in the limitation of polymer
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growth [61]. A mathematical model showing the kinetics of the polymeriza-
tion predicts the product composition (terminal structure) [62]. A compari-
son of the experimental data and model predictions suggests that the molecu-
lar weight and terminal group functionality of polyesters can be controlled
by selection of biocatalysts. Reaction calorimetry was used to monitor the ki-
netics of the polymerization [63]. The reaction rate increased as a function of
monomer concentration. As the polymerization proceeded, the rate constant
for the polyester synthesis was significantly reduced. A batch-stirred reactor
was developed to minimize temperature and mass-transfer effects [64]. Using
this reactor, poly(1,4-butylene adipate) with a molecular weight of 2.3×104

was synthesized in only 1 h at 60 ◦C.
Aromatic polyesters were efficiently synthesized from aromatic diacid di-

vinyl esters. Lipase CA induced the polymerization of divinyl esters of isoph-
thalic acid, terephthalic acid, and p-phenylene diacetic acid with glycols to
give polyesters containing aromatic moiety in the main chain [65]. The high-
est molecular weight (7.2×103 ) was attained from a combination of divinyl
isophthalate and 1,10-decanediol. Enzymatic polymerization of divinyl esters
and aromatic diols also yielded the aromatic polyesters [66].

A combinatorial approach to the biocatalytic production of polyesters was
demonstrated [67]. A library of polyesters was synthesized in 96 deep-well
plates from a combination of divinyl esters and glycols with lipases of differ-
ent origin. In this screening, lipase CA was confirmed to be the most active
biocatalyst for polyester production. As acyl acceptor, 2,2,2-trifluoroethyl es-
ters and vinyl esters were examined, and the former produced a polymer of
higher molecular weight. Various monomers such as carbohydrates, nucleic
acids, and a natural steroid diol were used as acyl acceptor.

Supercritical carbon dioxide (scCO2) was employed as solvent for the
polycondensation of divinyl adipate and 1,4-butanediol [68]. Quantitative
consumption of both monomers was achieved to yield a polyester with a mo-
lecular weight of 3.9×103, indicating that scCO2 was a good medium for
enzymatic polycondensation.

Fluorinated polyesters were synthesized by the enzymatic polymerization
of divinyl adipate with fluorinated diols [69]. Lipase CA was effective in pro-
ducing the fluorinated polyesters. The highest molecular weight (5.2×103)
was achieved by polymerization using 3,3,4,4,5,5,6,6-octafluorooctan-1,8-diol
in bulk.

Bis(2,3-butanedione monoxime) alkanedioates were employed as mono-
mers for polyester production [70]. Lipase MM-catalyzed polymerization of
a glutarate derivative with 1,6-hexanediol in diisopropyl ether produced
a polymer with a molecular weight of 7.0×103 in 80% yield.

Lipase-catalyzed copolymerization of divinyl esters, glycols, and lactones
produced ester copolymers with a molecular weight greater than 1×104

(Scheme 5) [71]. Lipases CA and PC showed high catalytic activity for
this copolymerization. 13C NMR analysis showed that the resulting prod-
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Scheme 5

uct was not a mixture of homopolymers, but a copolymer derived from
the monomers, indicating that two different modes of polymerization, poly-
condensation and ring-opening polymerization, simultaneously take place
through enzyme catalysis in one-pot to produce ester copolymers. Further-
more, this result strongly suggests the frequent occurrence of transesterifica-
tion between the resulting polyesters during polymerization [72, 73].

2.4
Cyclic and Polymeric Anhydrides

Acid anhydride derivatives are also good acylating reagents through lipase
catalysis. A new type of enzymatic polymerization involving lipase-catalyzed
ring-opening poly(addition-condensation) of cyclic anhydride with glycols
was demonstrated (Scheme 6) [74]. The polymerization of succinic anhydride
with 1,8-octanediol using lipase PF as catalyst proceeded at room tempera-
ture to produce a polyester. Glutaric and diglycolic anhydrides were polymer-
ized with α,ω-alkylene glycols in the presence of lipase CA in toluene to give
polyesters [75]. Under appropriate reaction conditions, the molecular weight
reached 1×104.

Polyester synthesis was carried out by insertion-dehydration of glycols
into polyanhydrides using lipase CA as catalyst (Scheme 6) [76]. The inser-
tion of 1,8-octanediol into poly(azelaic anhydride) took place at 30 ∼ 60 ◦C
to give the corresponding polyester with a molecular weight of several thou-

Scheme 6
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sand. Effects of the reaction parameters on the polymer yield and molecular
weight were systematically investigated [75]. The dehydration reaction also
proceeded in water and supercritical carbon dioxide. The reaction behaviors
depended on the monomer structure and reaction media.

Lipase-catalyzed synthesis of polyesters from cyclic anhydrides and oxi-
ranes was reported [77, 78]. The polymerization took place by PPL catalyts,
and the molecular weight reached 1×104 under the selected reaction condi-
tions. During polymerization, the enzymatically formed acid group from the
anhydride may open the oxirane ring to give a glycol, which is then reacted
with the anhydride or acid by lipase catalysis, yielding the polyesters.

3
Lipase-Catalyzed Polycondensation of Oxyacid Derivatives

In 1985, a lipase-catalyzed polymerization of an oxyacid monomer was
first reported. 10-hydroxydecanoic acid was polymerized in benzene using
poly(ethylene glycol) (PEG)-modified lipase soluble in the medium [79]. The
DP value of the product was more than 5. PEG-modified esterase from hog
liver and lipase from Aspergillus niger (lipase A) induced the oligomerization
of glycolic acid [80].

The polymerization of ricinoleic acid proceeded using lipase CR or lipase
from Chromobacterium viscosum as catalyst at 35 ◦C in water, hydrocarbons,
or benzene to give a polymer with a molecular weight of around 1×103 [81].
These lipases also induced the polymerization of 12-hydroxyoctadecanoic
acid, 16-hydroxyhexadecanoic acid, and 12-hydroxydodecanoic acid. Oli-
goester from ricinoleic acid (estolide) possessing industrial applications in
various fields was synthesized using lipase CR immobilized on ceramics [82].
The coloring of estolide improved by selecting mild reaction conditions
(40 ◦C). In the lipase CA-catalyzed oligomerization of cholic acid, a hydroxy
group at 3-position was regioselectively acylated to give an oligoester with
a molecular weight of 920 (Scheme 7) [83]. The polymerization of lactic acid
was performed by using lipase MM as catalyst. Only a low-molecular-weight
polymer was formed even under a variety of reaction conditions. The add-

Scheme 7
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ition of a small amount of dicarboxylic acid or cyclic anhydrides enhanced
the molecular weight [84].

Polyesters of relatively high molecular weight were enzymatically produced
from 10-hydroxydecanoic acid [85] and 11-hydroxyundecanoic acid [86]
using a large amount of lipase CR as catalyst (10-weight fold for the
monomer). In the case of 11-hydroxyundecanoic acid, the corresponding
polymer with a molecular weight of 2.2×104 was obtained in the pres-
ence of activated molecular sieves. PPL-catalyzed polymerization of 12-
hydroxydodecanoic acid at 75 ◦C for 56 h produced a polyester with a molecu-
lar weight of 2.9×103 having hydroxyl and carboxyl end groups [87].

Lipase CA also polymerized hydrophobic oxyacids efficiently [88]. The DP
value was beyond 100 in the polymerization of l6-hydroxyhexadecanoic acid,
12-hydroxydodecanoic acid, or 10-hydroxydecanoic acid under vacuum at
high temperature (90 ◦C) for 24 h, whereas a polyester with a lower molecular
weight was formed from 6-hydroxyhexanoic acid under similar reaction con-
ditions. This difference may be due to the lipase-substrate interaction. Similar
behaviors were reported in the lipase-catalyzed ring-opening polymerization
of lactones in different ring sizes [24, 25].

Lipase-catalyzed polymerization of oxyacid esters was reported. PPL cat-
alyzed the polymerization of methyl 6-hydroxyhexanoate [89]. A polymer
with a DP of up to 100 was synthesized by polymerization in hexane at
69 ◦C for more than 50 d. The PPL-catalyzed polymerization of methyl 5-
hydroxypentanoate for 60 d produced a polymer with a DP of 29. Sol-
vent effects were systematically investigated; hydrophobic solvents such as
hydrocarbons and diisopropyl ether were suitable for the enzymatic pro-
duction of high-molecular-weight polymer. Various hydroxyesters, ethyl es-
ters of 3- and 4-hydroxybutyric acids, 5- and 6-hydroxyhexanoic acids, 5-
hydroxydodecanoic acid, and 15-hydroxypentadecanoic acid were polymer-
ized by Pseudomonas sp. lipase at 45 ◦C to give the corresponding polyesters
with molecular weights of several thousand [90].

Ester-thioester copolymers were enzymatically synthesized (Scheme 8)
[91]. The lipase CA-catalyzed copolymerization of ε-caprolactone with 11-

Scheme 8
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mercaptoundecanoic acid or 3-mercaptopropionic acid under reduced pres-
sure produced a polymer with a molecular weight greater than 2×104. The
thioester unit of the resulting polymer was lower than the feed ratio. The
transesterification between poly(ε-caprolactone) and 11-mercaptoundeca-
noic acid or 3-mercaptopropionic acid also took place by lipase CA catalyst.

4
Enzymatic Synthesis of Functional Polyesters by Polycondensation

Functional polyesters were synthesized through the specific catalysis of lipase,
and their properties and functions were evaluated. Enantio- and regioselec-
tive polycondensations produced chiral and sugar-containing polyesters, re-
spectively [20, 23]. Using lipase catalyst reactive polyesters were conveniently
obtained, some of which were crosslinked to biodegradable coatings. Re-
cently, polyester-based biomaterials have been developed by lipase-catalyzed
polymerizations.

4.1
Chiral Polyesters

PPL catalyzed an enantioselective polymerization of bis(2,2,2-trichloroethyl)
trans-3,4-epoxyadipate with 1,4-butanediol in diethyl ether to give a highly
optically active polyester (Scheme 9) [92]. The molar ratio of the diester
to the diol was adjusted to 2 : 1 to produce the (-) polymer with an enan-
tiomeric purity of > 96%. The polymerization of racemic bis(2-chloroethyl)
2,5-dibromoadipate with an excess of 1,6-hexanediol using lipase A as cat-
alyst produced optically active trimer and pentamer [93]. The polycon-
densation of 1,4-cyclohexanedimethanol with fumarate esters using PPL as
catalyst afforded moderate diastereoselectivity for the cis/trans monocon-
densate and markedly increased diastereoselectivity for the dicondensate
product [94].

Scheme 9
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An optically active oligoester was enantioselectively prepared from
racemic 10-hydroxyundecanoic acid using lipase CR as catalyst. The resulting
oligomer was enriched in the (S) enantiomer to a level of 60% enantiomeric
excess (ee), and the residual monomer was recovered with a 33% ee fa-
voring the antipode [95]. Lactic acid was converted to the corresponding
oligomer with a DP of up to 9 by lipase CA catalyst [96]. HPLC analy-
sis showed that the (R)-enantiomer possessed higher enzymatic reactivity.
Optically active oligomers (DP < 6) were also synthesized from racemic
ε-substituted-ε-hydroxy esters using PPL as catalyst [97]. The enantioselec-
tivity increased as a function of bulkiness of the monomer substituent. The
enzymatic copolymerization of the racemic hydroxyacid esters with methyl
6-hydroxyhexanoate produced optically active polyesters with molecular
weights greater than 1×103. Enzymatic enantioselective oligomerization of
a symmetrical hydroxy diester, dimethyl β-hydroxyglutarate, produced a chi-
ral oligomer (dimer or trimer) with 30 ∼ 37% ee [98].

4.2
Sugar-Containing Polyesters

For regioselective acylation of sugars, proteases were often used as cat-
alyst [1]. Polyesters having a sugar moiety in the main chain were syn-
thesized via protease catalysis. In the polycondensation of sucrose with
bis(2,2,2-trifluoroethyl) adipate catalyzed by an alkaline protease from Bacil-
lus sp. showing an esterase activity, the regioselective acylation of sucrose at
the 6 and 1′-positions was claimed to yield a sucrose-containing polyester
(Scheme 10) [99]. The reaction proceeded slowly; the molecular weight was
greater than 1×104 after 7 d [100].

Two-step synthesis of sugar-containing polyesters by lipase CA catalyst was
reported (Scheme 11) [101]. Lipase CA catalyzed the condensation of sucrose

Scheme 10
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with an excess of divinyl adipate to produce sucrose 6,6′-O-divinyl adipate,
which was reacted with α,ω-alkylene diols by the same catalyst, yielding
polyesters containing a sucrose unit in the main chain. This method con-
veniently yields sugar-containing polyesters with relatively high molecular
weights. Similarly, a trehalose-containing polyester was obtained from tre-
halose 6,6′-O-divinyl adipate through the catalysis of lipase CA.

The present authors first demonstrated that lipase CA produced reduced
sugar-containing polyesters regioselectively from divinyl sebacate and sor-
bitol, in which sorbitol was exclusively acylated at the 1 and 6-positions
(Scheme 12) [102]. Mannitol and meso-erythritol were also regioselectively
polymerized with divinyl sebacate. The enzymatic formation of a high-
molecular-weight sorbitol-containing polyester was confirmed by the combi-
natorial approach [67].

Scheme 11

Scheme 12
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The lipase CA-catalyzed polycondensation of adipic acid and sorbitol
also took place in bulk [103]. In polymerization at 90 ◦C, the molecular
weight reached 1×104; however, the regioselectivity decreased (85%), prob-
ably due to the high temperature and/or the bulk condition. These data
suggest that the divinyl ester is a suitable monomer for regioselective syn-
thesis of sugar-containing polymers. The copolymerization of adipic acid,
sorbitol, and 1,8-octanediol enhanced the molecular weight of the sugar-
containing polyesters. The melting and crystallization temperatures as well as
the melting enthalpy decreased with increasing sorbitol content [104]. This
is attributed to the polyol units along the polyester chain that disrupt crys-
tallinity. The biocompatibility of the sugar-containing polyester from adipic
acid, sorbitol, and 1,8-octanediol was examined using a mouse fibroblast 3T3
cell line in vitro [105].

4.3
Reactive Polyesters

Polyols such as glycerol were also regioselectively polymerized with divinyl
esters by lipase catalyst to produce polyesters having a secondary hydroxy
group in the main chain [106]. NMR analysis of a polymer obtained from di-
vinyl sebacate and glycerol using lipase CA as catalyst at 60 ◦C in bulk showed
that 1,3-diglyceride was a main unit and that a small amount of the branching
unit (triglyceride) was contained [107]. The regioselectivity of the acylation
between primary and secondary hydroxy groups was 74 : 26. In polymeriza-
tion at 45 ◦C, the regioselectivity was perfectly controlled to give a linear
polymer consisting exclusively of 1,3-glyceride units (Scheme 13).

The polymerization of divinyl sebacate with 1,2,4-butanetriol or 1,2,6-hexa-
netriol at 60 ◦C produced a polymer containing a branched unit. In polymer-
ization at lower temperatures, the regioselectivity was perfectly controlled to
give a linear polymer consisting of exclusively α,ω-disubstituted unit [108].
The lipase origin and feed ratio of monomers greatly affected the microstruc-
ture of the polymer. The lipase MM-catalyzed polymerization of divinyl

Scheme 13
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sebacate and glycerol produced a linear polymer consisting of 1,2- and 1,3-
disubstituted units, whereas the 1,3-disubstituted and trisubstituted units
were observed in a polymer obtained using lipase PC as catalyst. Interest-
ingly, the highly branched polyester with branching factor > 0.7 was formed
by the lipase CA-catalyzed reaction of poly(azelaic anhydride) and triols such
as glycerol [18].

New crosslinkable polyesters were synthesized by lipase CA-catalyzed
polymerization of divinyl sebacate and glycerol in the presence of unsaturated
higher fatty acids derived from renewable plant oils (Scheme 14) [109, 110].
The polymerization under reduced pressure improved the polymer yield
and molecular weight. The curing of the polymer obtained using linoleic
or linolenic acid proceeded by cobalt naphthenate catalyst or thermal treat-
ment to give a crosslinked transparent film. Biodegradability of the obtained
film was evaluated by biochemical oxygen demand (BOD) measurement in an
activated sludge. The degradation took place gradually, and the biodegrad-
ability reached 45% after 42 d, indicating the good biodegradability of this
crosslinked film.

Epoxide-containing polyesters were enzymatically synthesized via two
routes using unsaturated fatty acids as starting substrate (Scheme 15) [111].
Lipase catalysis was used for both polycondensation and epoxidation of un-
saturated fatty acid groups. One route was synthesis of aliphatic polyesters
containing an unsaturated group in the side chain from divinyl sebacate,
glycerol, and unsaturated fatty acids, followed by an epoxidation of unsat-
urated fatty acid moieties in the side chain of the resulting polymer. In
another route, epoxidized fatty acids were prepared from unsaturated fatty
acids and hydrogen peroxide in the presence of lipase catalyst, and subse-
quently the epoxidized fatty acids were polymerized with divinyl sebacate

Scheme 14



150 H. Uyama · S. Kobayashi

Scheme 15

and glycerol. The polymer structure was confirmed by NMR and IR, and
for both routes, a high epoxidized ratio was achieved. Curing of the re-
sulting polymers proceeded thermally, yielding transparent polymeric films
with a high gloss surface. Pencil-scratch hardness of the present film im-
proved, compared with that of the cured film obtained from a polyester
having an unsaturated fatty acid in the side chain. The obtained film showed
good biodegradability, evaluated by BOD measurement in an activated
sludge.

Long-chain unsaturated α,ω-dicarboxylic acid methyl esters and their
epoxidized derivatives were polymerized with 1,3-propanediol or 1,4-butane-
diol in the presence of lipase CA catalyst to produce reactive polyesters [112].
The molecular weight of the polymer from 1,4-butanediol was higher than
that from 1,3-propanediol. All the resulting polymers had a melting point
ranging from 23 to 75 ◦C.

Unsaturated ester oligomers were synthesized by lipase-catalyzed poly-
merization of diesters of fumaric acid and 1,4-butanediol [113]. Isomeriza-
tion of the double bond did not occur to give all-trans oligomers showing
crystallinity, whereas industrial unsaturated polyesters having a mixture of cis
and trans double bonds are amorphous [114]. The enzymatic polymerization
of bis(2-chloroethyl) fumarate with xylylene glycol produced an unsaturated
oligoester containing aromaticity in its backbone [115].
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A configurationally pure poly(1,6-hexanediyl maleate) was enzymatically
synthesized by the lipase CA-catalyzed polymerization of dimethyl maleate
and 1,6-hexanediol in toluene. No melting point was observed in the lin-
ear polymer of the cis structure, whereas the cyclic oligomer (byproduct)
was semicrystalline [116]. In the enzymatic copolymerization of dimethyl
maleate, dimethyl fumarate, and 1,6-hexanediol in toluene, the content of the
cyclization was found to mainly depend on the configuration and concentra-
tion of the monomers [117].

Chemoenzymatic synthesis of alkyds (oil-based polyester resins) was
demonstrated [118]. PPL-catalyzed transesterification of triglycerides with
an excess of 1,4-cyclohexanedimethanol mainly produced 2-monoglycerides,
followed by thermal polymerization with phthalic anhydride to give alkyd
resins with a molecular weight of several thousand. The reaction of the en-
zymatically obtained alcoholysis product with toluene diisocyanate produced
alkyd-urethane.

Structural control of polymer terminals has been extensively studied
since terminal-functionalized polymers, typically macromonomers and
telechelics, are often used as prepolymers for the synthesis of functional poly-
mers. The enzymatic polymerization of 12-hydroxydodecanoic acid in the
presence of 11-methacryloylaminoundecanoic acid conveniently produced
a methacrylamide-type polyester macromonomer [119, 120]. Lipases CA and
CC were active for the macromonomer synthesis.

4.4
Other Functional Polymers

Poly(ethylene glycol) (PEG)-containing polyesters were synthesized via lipase
catalysis. The lipase CA-catalyzed polymerization of dimethyl 5-hydroxy-
isophthalate, α,ω-alkylene glycol, and PEG having a hydroxy group at both
ends gave PEG-containing polyesters [121]. The chemoenzymatic synthesis of
amphiphilic polyesters was examined by the lipase CA-catalyzed polymeriza-
tion of dimethyl 5-hydroxyisophthalate and PEG, followed by coupling with
alkyl bromide (Scheme 16) [122]. The supramolecular organization of the re-
sulting polymeric nanomicelles in an aqueous medium was confirmed by
NMR and light scattering. In vivo studies by encapsulating anti-inflammatory
agents in the polymeric nanomicelles and by applying topically resulted in
a significant reduction in inflammation. The reduction ratio in inflammation
using the polymeric nanomicelles was about 60%.

A novel chemoenzymatic route to polyester polyurethanes was developed
without employing highly toxic isocyanate intermediates [123]. First, di-
urethane diols were prepared from cyclic carbonates and primary diamines,
which were subsequently polymerized with dicarboxylic acids and glycols
using lipase CA as catalyst, yielding polyurethanes under mild reaction con-
ditions (Scheme 17).
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Scheme 16

Scheme 17

A silicon oligomer was synthesized by the polycondensation of diethoxy-
dimethylsilane using lipid-coated lipase from Rhizopus delemar as catalyst in
isooctane containing a small amount of water [124]. Polymerization is pro-
posed to be initiated at the OH head group of the coating lipid.

5
In Vitro PHA Polymerase-Catalyzed Polymerization to PHA

Poly[(R)-3-hydroxybutylate] (PHB) is accumulated within the cells of a wide
variety of bacteria as an intracellular energy and carbon storage mate-
rial [125, 126]. Poly(hydroxyalkanoate) (PHA)s are commercially produced as
biodegradable plastics. In the biosynthetic pathways of PHA, the last step is
the chain growth polymerization of hydroxyalkanoate CoA esters catalyzed
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by PHA polymerase (synthase), yielding PHA with a well-defined structure
(Scheme 18). The active site of PHA polymerase is cysteine residue; however,
the mechanism of this enzymatic polymerization has not been elucidated
clearly.

PHA polymerase from Alcaligenes eutrophus polymerized the CoA mono-
mers of (R)-hydroxyalkanoate in vitro to give high-molecular-weight ho-
mopolymers and copolymers [127, 128]. The molecular weight of the poly-
mers was found to be proportional to the molar ratio of monomer to enzyme,
and the obtained polymer had a narrow molecular weight distribution, sug-
gesting that polymerization proceeds in a living fashion.

Random copolymers were obtained from a mixture of the two CoA esters
in the presence of polymerase, whereas block copolymers were synthesized
when the two monomers were reacted sequentially with the enzyme. In the
polymerization of racemic 3-hydroxybutyryl CoA, only the (R)-monomer was
polymerized. Furthermore, the presence of the (S)-monomer did not reduce
the polymerization rate of the (R)-isomer. These data indicate that the (S)-
monomer does not act as competitive inhibitor for the polymerase.

In the PHA production catalyzed by purified Ralstonia eutropha PHA syn-
thase from recombinant cells, the substrate selectivity was examined [129].
A kinetic study showed that 3-hydroxybutyryl CoA is the optimal substrate
for the enzyme. 3-hydroxyvaleryl CoA exhibits a slower catalytic rate and
lower binding ability due to its lower reactivity of 3-hydroxyvaleryl CoA, as
compared to that of 3-hydroxybutyryl CoA. The change of hydroxyl group
from the β to the γ position causes dramatic decreases in the binding ability
of 4-hydroxybutyryl CoA.

The polymerization behavior of 3-hydroxybutyryl CoA by purified recom-
binant PHA synthase from Chromatium vinosum was different from that of
Alcaligenes eutrophus [130]. This enzyme lost its activity during polymeriza-
tion, and the yield and molecular weight were lower than those of Alcaligenes
eutrophus. The molecular weight did not depend on the feed ratio of the
monomer and enzyme.

A novel system for surface-initiated enzymatic polymerization to a PHA
film on solid surfaces was demonstrated [131]. PHA synthase from Ralstonia
eutropha H16 was expressed as a poly-histidine fusion in Escherichia coli and
immobilized onto several solid substrates through Ni2+-nitrilotriacetic acid.
The surface-initiated polymerization of 3-(R)-hydroxybutyryl CoA by immo-
bilized PHA synthase on silicon produced a polymer film with a uniform
thickness on the surface.

Scheme 18
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In combination of this polymerase with purified propionyl CoA transferase
of Clostridium propionicum, a two-enzyme in vitro PHB biosynthesis system
was established that allowed PHB synthesis from (R)-hydroxybutyric acid as
substrate [132]. In this way, the PHB synthesis was independent of the con-
sumption of the expensive CoA, and hence PHA could be readily produced in
a semipreparative scale.

6
Enzymatic Synthesis of Polycarbonates

The enzymatic synthesis of polycarbonate was first reported in 1989 [133]. Li-
pase CR catalyzed the polycondensation of carbonic acid diphenyl ester with
bisphenol-A in an aqueous acetone to give an oligocarbonate with a molecu-
lar weight of 900.

Diethyl carbonate was polymerized with 1,3-propanediol or 1,4-butane-
diol by lipase CA catalyst in a successive two-step polymerization (Scheme 19)
[134, 135]. The bulk reaction of an excess of diethyl carbonate and glycols
under ambient pressure gave oligomeric products, followed by polymeriza-
tion under vacuum to give aliphatic polycarbonates with molecular weights
greater than 4×104.

Scheme 19

Activated dicarbonate, 1,3-propanediol divinyl dicarbonate, was used as
a new monomer for the enzymatic synthesis of polycarbonates [136]. Lipase
CA-catalyzed polymerization with α,ω-alkylene glycols produced polycar-
bonates with molecular weights of up to 8.5×103. Aromatic polycarbonates
with a DP greater than 20 were enzymatically obtained from activated dicar-
bonate and xylylene glycols in bulk [66].

7
Concluding Remarks

This article provides an overview of in vitro syntheses of polyesters using an
isolated enzyme as catalyst by polycondensations. In nonbiosynthetic path-
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ways to polyesters, the following advantages should be claimed in compar-
ison with fermentation and chemical processes: (i) structural variation of
monomers and polymers, (ii) nontoxic catalyst and mild reaction conditions,
and (iii) enantio- and regioselective polymerizations to produce functional
polymers, which are very difficult to obtain by conventional methods. These
features will expand the synthesis of biodegradable useful polymers with pre-
cisely controlled structures.
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Abstract Polysaccharides are formed by repeated glycosylations between a sugar donor
and a sugar acceptor. This chapter reviews the in vitro synthesis of polysaccharides by
“enzymatic polymerization.” As catalyst, a hydrolase enzyme is used where the monomer
was designed based on the concept of a “transition-state analog substrate” (TSAS), sugar
fluoride monomers for the polycondensation, and sugar oxazoline monomers for the
ring-opening polyaddition. Enzymatic polymerization enabled the first in vitro synthesis
of natural polysaccharides such as cellulose, xylan, chitin, hyaluronan, and chondroitin,
and also of unnatural polysaccharides such as a cellulose-xylan hybrid, a regularly
methylated cellulose, and derivatives of hyaluronan and chondroitin. The polymerization
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mechanism is discussed here. Mutant enzymes were effective for polysaccharide synthe-
sis, where only polycondensation of monomers was induced by suppressing the hydrolysis
activity. The polymerization principle was extended to a stepwise synthesis of oligosac-
charides. By using characteristics of the polymerization to produce a polysaccharide by
a single step, in situ observations of the polymerization reaction by TEM, POM, SEM,
and SANS revealed the formation of various high-order molecular structures from the
polysaccharide molecules.

Keywords Cellulose · Chitin · Enzymatic polymerization · Glycosaminoglycan ·
Polysaccharide

Abbreviations
Ala alanine
BTH bovine testicular hyaluronidase
CBD cellulose binding domain
Ch chondroitin
Chi-oxa chitobiose oxazoline monomer
DMF dimethylformamide
DMSO dimethyl sulfoxide
DP degree of polymerization
ECM extracellular matrix
EG endoglucanase
GAG glycosaminoglycan
GalNAc N-acetyl-d-galactosamine
GlcA d-glucuronic acid
GlcNAc N-acetyl-d-glucosamine
Glu glutamic acid
HA hyaluronic acid (hyaluronan)
MALDI-TOF matrix-assisted laser desorption ionization time-of-flight
OTH ovine testicular hyaluronidase
POM polarization optical microscopy
SANS small-angle neutron scattering
SEM scanning electron microscopy
TEM transmission electron microscopy
TSAS transition-state analogue substrate
UDP uridine 5′-diphospho-
α-CF α-cellobiosyl fluoride
β-CF β-cellobiosyl fluoride
α-LF α-lactosyl fluoride
β-LF β-lactosyl fluoride
α-MF α-maltosyl fluoride
β-XF β-xylobiosyl fluoride

1
Introduction

The advance of polymer science has been due to the development of new
polymers produced by the polymerization of new monomers. All polymer-
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Fig. 1 A rough sketch in historical development of polymerization catalysts along with
monomers and product polymers by respective catalysts

izations need a catalyst or an initiator. There have been two major streams
for polymerization catalysts. The first utilizes classical catalysts such as acids
(Brønsted acids, Lewis acids, and various cations), bases (Lewis bases and var-
ious anions), and radical generating species. The second involves the use of
transition metals and rare-earth metal compounds as catalysts (Fig. 1). The
former stream started with the beginning of polymer chemistry in the 1920s,
and the latter was initiated by the discovery of Ziegler–Natta catalysts in the
early 1950s followed by metathesis catalysts and rare-earth metal catalysts.
These two major streams are still developing for “precision polymerization”
(in a wider sense, “precision polymer synthesis”), whose ultimate goal is to al-
low the formation of defect-free polymers with a precisely controlled, desired
structure at the molecular level [1].

A more specific catalysis was developed using enzymes as catalysts for
polymerizations (“enzymatic polymerization”) starting in the mid-1980s,
which can now be regarded as a third stream of polymerization catalyst.
Normally, monomers of enzymatic polymerization are to be recognized and
activated by the enzyme for the polymerization to occur, and thus polymers
with precisely controlled structures are expected. This articles concentrates
on in vitro polysaccharide synthesis via enzymatic polymerization.

2
Characteristics of Enzymatic Polymerization

All the substances including biomacromolecules in vivo are produced by en-
zymatic catalysis via biosynthetic pathways. Enzymatic catalysis has the fol-
lowing advantageous characteristics in general: (i) a high catalytic activity
(high turnover number); (ii) reactions under mild conditions with respect
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to temperature, pressure, solvent, neutral pH, etc., bringing about energetic
efficiency; and (iii) high reaction selectivities of regio-, enantio-, chemo-,
and stereoregulation, giving rise to perfectly structure-controlled products. If
these in vivo characteristics can be realized for in vitro polymer synthesis, we
may expect the following outcomes: (i) precise control of polymer structures,
(ii) creation of polymers with a new structure, (iii) a clean process (with-
out byproducts), (iv) a low loading process (energy saving), and (v) product
polymers would be biodegradable in many cases. These are often difficult to
realize by conventional methods.

In fact, it has been proven over the last two decades that enzymatic poly-
merization is a powerful method for polymer synthesis [2–14]. Thus, the
definition of enzymatic polymerization is a “chemical polymer synthesis
in vitro (in test tubes) via nonbiosynthetic (nonmetabolic) pathways cat-
alyzed by an isolated enzyme” [2, 4, 8–10, 12–14].

All enzymes are classified into six categories (Table 1) [2, 8–10, 13]. Of
these, hydrolase enzymes are most often used for enzymatic polymerization,
because they are readily isolable due to their stability and widely available as
commercial products.

Very fundamental and important characteristics in enzymatic reactions
are described here as to the following two aspects. First, a “key and lock” the-
ory proposed by Fischer in 1894 [15] pointed out the relationship between
substrate and enzyme. This theory implies that via biosynthetic pathways
in vivo a substrate and an enzyme correspond very strictly in a 1 : 1 fash-
ion like a key and a lock. This phenomenon is nowadays understood in
the following way; they recognize each other and form an enzyme-substrate
complex, shown as (A) in Fig. 2. The formation of the complex activates

Table 1 Classification of enzymes, their examples, and typical polymers produced in vitro
by enzymatic catalysis

Enzymes Example enzymes Typical polymers

Oxidoreductases Peroxidase, laccase, tyrosinase, Polyphenols, polyanilines,
glucose oxidase vinyl polymers

Transferases Glycosyltransferase, Polysaccharides, cyclic
acyltransferase oligosaccharides, polyesters

Hydrolases Glycosidase (cellulase, amylase, Polysaccharides, polyesters,
chitinase, hyaluronidase), lipase, polyamides, polycarbonates,
peptidase, protease poly(amino acid)s

Lyases Decarboxylase, aldolase,
dehydratase

Isomerases Racemase, epimerase
Ligases Acyl CoA synthetase
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Fig. 2 An enzyme-substrate relationship for enzymatic reactions. A “Key and Lock” theory
valid for all in vivo reactions. B An enzyme forming a complex with an artificial substrate
to induce an in vitro enzymatic reaction

Fig. 3 All the enzymatic reactions proceed under mild reaction conditions due to the
formation of the enzyme-substrate complex, which stabilizes the transition state of the
reaction by lowering the activation energy in comparion with the no-enzyme case

the substrate to lead to a product with perfect structure control. The com-
plex formation is due to the supramolecular interactions mainly of hydrogen
bonding.

Second, Pauling described why enzymatic reactions proceed under such
mild reaction conditions [16, 17]. The formation of the enzyme-substrate
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complex stabilizes the transition state and significantly lowers the activation
energy compared with the no-enzyme case (Fig. 3). This suggests that once
such a complex is formed, an enzymatic reaction is reversible; a hydrolysis
enzyme catalyzing a bond cleavage in vivo is able to catalyze a bond forma-
tion of monomers (formally the reverse reaction of hydrolysis) to eventually
produce a polymer.

3
Synthesis of Polysaccharides Via Enzymatic Polymerization

3.1
Polysaccharides and Glycosylation

In carbohydrate chemistry, a polysaccharide is a molecule having more than
ten monosaccharide units [18]. Polysaccharides belong to one of three im-
portant classes of naturally occurring biopolymers, the other two being nu-
cleic acids (DNA and RNA) and proteins. Cellulose, amylose, xylan, chitin,
hyaluronic acid (hyaluronan), chondroitin, and chondroitin sulfate can be
cited as typical natural polysaccharides (Scheme 1).

The former four are called homopolysaccharides since the fundamen-
tal sugar repeating unit is of the same structure; d-glucose is linked via
a β(1 → 4) glycosidic bond in cellulose and α(1 → 4) in amylose, xylose and
N-acetyl-d-glucosamine being via β(1 → 4) in xylan and chitin, respectively.
Polysaccharides having a β(1 → 4) structure are called “structural polysac-
charides,” which provide plants and animals with physical strength. Amy-
lose with an α(1 → 4) structure is an “energy-storage polysaccharide.” The
latter three are denoted as heteropolysaccharides since the repeating sugar
unit is constituted from different sugar molecules—hyaluronan from a d-
glucuronic acid β(1 → 3) N-acetyl-d-glucosamine disaccharide unit linked
via a β(1 → 4) glycosidic bond and chondroitin from a d-glucuronic acid
β(1 → 3) N-acetyl-d-galactosamine disaccharide unit linked via a β(1 → 4)
glycosidic bond.

Of the three above-mentioned major classes of natural biopolymers, chem-
ical synthesis of nucleic acids (in particular DNA) and proteins had already
been achieved by the Merrifield solid-phase synthesis method; a computer-
controlled automated synthesizer became commercially available more than
20 years ago. However, the chemical synthesis of polysaccharides like cellu-
lose was far more difficult than that of the former two classes. Polysaccharide
synthesis is the repetition of glycosylation, the most fundamental reaction in
carbohydrate chemistry (Scheme 2).

The main reasons for the difficulty during glycosylation are (i) control-
ling the stereochemistry of the anomeric C1 carbon and (ii) regioselectivity
control of many hydroxyl groups with similar reactivity.
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Scheme 1

To overcome difficulty (i), a leaving group X of the glycosyl donor has been
extensively studied for more than 100 years, which is a continued central is-
sue in the area of carbohydrate chemistry. The activation of the C1 carbon is
achieved by combination of X with a catalyst. The following glycosylations are
well known; they are, chronologically, (1) the Koenigs–Knorr method (1901)
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using bromine or chlorine at the C1 carbon of glycosyl donors with AgClO4
or Hg(CN)2 as promoter [19]; (2) the Helferich method (1993) and the modi-
fied method (1981); (3) the imidate method (1978); (4) the modified imidate
method (1980) using trichloroacetyl imidate with (CH3)3SiOSO2CF3 as pro-
moter [20]; and (5) the glycosyl fluoride method (1981) with AgClO4 – SnCl2.
In terms of effectiveness in controlling the stereochemistry, the modified im-
idate method appears to be most often used one in recent times.

To solve difficulty (ii), the hydroxyl group on which the reaction should not
take place is normally to be protected by appropriate groups (R) as shown
in Scheme 2. After the reaction, the protected groups are removed (depro-
tected). Therefore, the protection-deprotection procedure is always involved
in the glycosylation reaction.

For reference, a number of isomers can be conceivable; cello-trimer is
composed of three D-glucose units connecting through β(1 → 4) glyco-
sidic linkage, whereas 120 kinds of trisaccharide isomers can be theor-

Scheme 2

Scheme 3
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etically formed from three D-glucose molecules, 1424 isomers from four
D-glucose molecules including cello-tetramer, and 17 872 isomers from
five D-glucose molecules including cello-pentamer [21]. In contrast, four
L-alanine molecules can afford only one tetrapeptide, L-alanyl-L-alanyl-L-
alanyl-L-alanine (Scheme 3). This simple example shows the complexity of
carbohydrate chemistry.

3.2
Cellulose

3.2.1
Brief Historical Background

Cellulose is the most abundant organic substance on the earth; some hundred
billion tons of cellulose are annually photosynthesized with carbon dioxide
fixation on land and in the sea. It is one of the major components in higher
plant cell walls (60–80%), along with hemicellulose (10–20%) and lignin
(10–30%). Cellulose is one of the oldest raw materials in such industries as
paper, fibers, and lumber, and it continues to attract broad and new interest,
even in advanced materials, due to its biocompatibility, chirality, structure-
forming capability, and environmentally benign property [22–25].

Cellulose is a linear polysaccharide with a β(1 → 4) glycosidic bond struc-
ture of a dehydrated d-glucose repeating unit. It is a representative of polysac-
charides that had been an important target molecule from the 1920s for
Standinger, Mark, and other prominent polymer scientists due to its struc-
ture, molecular weight, and derivatization reactions [14, 22]. Its chemical
synthesis had been a challenging problem in polymer chemistry since the first
attempt in 1941 [26]. Despite considerable efforts at synthesis, all attempts
came to naught for half a century. Following are typical examples.

The polycondensation of 2,3,6-tri-O-phenylcarbamoyl-d-glucose in CHCl3/
DMSO in the presence of P2O5 as a dehydrating agent was carried out to yield
a polysaccharide with DP claimed as ca. 60; however, regio- and stereoreg-
ulations of the reaction were not accomplished (Scheme 4) [27]. Synthesis
of polysaccharides with a well-defined structure from the derivatives of
monosaccharides or disaccharides containing a glycosidic OH group, halogen
or acetate group, typical orthoesters, and thio-analogs by polycondensation
failed to form the desired products [28].

Scheme 4
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Scheme 5

Cationic ring-opening polymerization of a bicyclic acetal monomer was
a possible method to synthesize cellulose [29]. A polysaccharide of DP ∼ 20
was obtained; however, a regioselective ring-opening did not take place. The
major component was a tetrahydrofuran-ring unit and not a six-membered
glucopyranose unit.

In the carbohydrate chemistry approach, repeated glycosylation is able to
produce oligo- or polysaccharides. From tribenzylated glucoside four kinds
of protecting groups with different reactivities were to be used, and gly-
cosylation was achieved by the imidate method to form a β(1 → 4) bond
(Scheme 5) [30]. Seven times glycosylations gave cello-octamer derivatives,
and further deprotection yielded the cello-octamer.

3.2.2
Synthesis Via Enzymatic Polymerization

None of these conventional methods was effective enough for cellulose syn-
thesis. In addition to the present-day knowledge of chemistry at the time, en-
zymes were introduced as catalysts for cellulose synthesis [14]. Then, taking
the hypothesis of an artificial substrate as shown in Fig. 2B into considera-
tion, β-cellobiosyl fluoride (β-CF) was designed as substrate monomer for
catalysis by cellulase, an extracellular hydrolysis enzyme. It was found that
the reaction proceeded smoothly to produce synthetic cellulose via a one-step
polycondensation that liberated the HF molecule (Scheme 6). In the reaction
β-CF acted as both donor and acceptor [31].

A typical polymerization example is shown. The monomer β-CF and cel-
lulase (Trichoderma viride, 5 wt % for β-CF) in a 5 : 1 mixture of acetonitrile
and 0.05 M acetate buffer (pH 5) solution were stirred at 30 ◦C. The initially
homogeneous solution became heterogeneous with a white precipitation of
the product. After 12 h, the resulting suspension was heated at 100 ◦C to in-
activate the enzyme and poured into an excess amount of methanol/water
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Scheme 6

to separate the insoluble part by filtration. This part was further purified
by suspending it in water and isolating it by filtration, giving rise to the
water-insoluble product of the white powdery materials in 54% yields. The
water-insoluble part was established by various spectroscopic measurements
as the first clear-cut example of “synthetic cellulase” having a β(1 → 4) struc-
ture. It decomposed at ca. 260 ◦C without showing a melting point, which
is similar to natural cellulose. Its DP value was around 22, and hence it was
a polysaccharide of cellulose.

Some polymerization results are given in Table 2. Polymerization of β-CF
catalyzed by Trichoderma viride in CH3CN/buffer (5 : 1) gave the best results
in terms of synthetic cellulose yield. Of the organic solvents screened, ace-
tonitrile was most effective for promotion of the reaction. DMF and DMSO
were probably too polar to maintain the enzyme activity. Buffer was necessary
to neutralize the HF molecule in the reaction mixture. An organic cosolvent
was needed to prevent the hydrolysis of β-CF.

The design of the β-CF monomer involves four important features. (1) The
cellobiose (disaccharide) structure of β-CF was chosen so that the monomer
could be recognized and activated by the enzyme because the smallest unit
was speculated to be a cellobiose repeating unit from the cellulose struc-
ture and not a glucose unit. (2) Fluorine has an atomic size (covalent radius,
0.64 Å) close to that of oxygen (0.66 Å) constituting the glycosidic bond of
cellulose. (3) The fluoride anion is one of the best leaving groups. (4) Of the
glycosyl halides only glycosyl fluorides are stable as the unprotected form,
which is required for most enzymatic reactions carried out in the presence of
water. After all, combination of cellulase and β-CF readily leads to a transition
state that is close in structure to that involved in the hydrolysis of cellulose by
cellulase (“transition-state analog substrate”, TSAS). This cellulose synthesis
reaction opened a new door to enzymatic polymerization for the synthesis of
not only polysaccharides but also other various types of polymers.
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Table 2 Enzymatic polymerization of β-CF catalyzed by cellulase from different origin in
various solvents a

Entry Solventb Cellulase Product yield/%c

1 CH3CN / buffer (5 : 1) T. viride 64 (54)
2 C2H5CN / buffer (5 : 1) T. viride 10 (3)
3 (CH3)2CO / buffer (5 : 1) T. viride 13 (7)
4 CH3OH / buffer (5 : 1) T. viride 17 (6)
5 C2H5OH / buffer (5 : 1) T. viride 20 (7)
6 CH3NO2 / buffer (5 : 1) T. viride 15 (1)
7 DMF / buffer (5 : 1) T. viride ∼ 0 (0)
8 DMSO / buffer (5 : 1) T. viride ∼ 0 (0)
9 buffer T. viride 0 (0)

10 CH3CN / buffer (2 : 1) T. viride 16 (3)
11 CH3CN / buffer (7.5 : 1) T. viride 77 (31)
12 CH3CN / buffer (10 : 1) T. viride 67 (14)
13 CH3CN / buffer (5 : 1) A. niger 30 (8)
14 CH3CN / buffer (5 : 1) P. tulipiferae 43 (25)
15 CH3CN / buffer (5 : 1) β-glucosidase 0 (0)

a Polymerization of β-CF at 30 ◦C for 12 h : [β-CF] = 2.5×10–2 mol/L, cellulase 5 wt %
for β-CF
b Acetate buffer (0.05 M, pH 5)
c 5 : 1 methanol/water insoluble part. Synthetic cellulose yield is given in parentheses

Scheme 7

In contrast to the reaction in Scheme 6, nature uses UDP-α-glucose as
monomer for the catalysis of cellulose synthase (Scheme 7). The stereochem-
istry of the C1 carbon inverts from α to β during a reaction.
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3.2.3
Reaction Mechanism

Enzymatic reactions are the most vividly studied phenomena in organic
chemistry and biochemistry. Such studies concern the mechanistic and
enzyme-structural aspects. Since the 1990s many results of 3D structure an-
alysis of enzymes have become available. For example, Fig. 4 illustrates the
structure of the catalytic core domain of the family 5 endoglucanase, which
suggests that the catalytic acid/base and enzymatic nucleophile are due to
carboxylic acid residues Glu 139 and Glu 228, respectively [32]. In the cata-
lytic site, cellotriose is included for reference.

In the hydrolase-catalyzed hydrolysis of polysaccharides, two carboxylic
acid residues in the active site are generally involved. In the cellulase catalyzed
hydrolysis of cellulose (Fig. 5A) one residue pulls (protonation on) the glyco-
sidic oxygen atom and the other pushes the C1 carbon atom in the general
acid-base mode to facilitate the cleavage of the glycosidic bond (stage a). After
the cleavage, a highly reactive intermediate (or transition state) of glycosyl
carboxylate is formed. This intermediate may have another structure of an
oxocarbenium ion (stage b). Then, a water molecule attacks the C1 carbon to
end up with the formation of the hydrolysis product (stage c).

On the other hand, polymerization mechanism is speculated as follows
(Fig. 5B). The β-CF monomer is readily recognized at the donor site and ac-
tivated via a general acid-base mode (a push-pull mechanism) to cleave the
C – F bond by kicking the fluoride anion off (stage a) and to form a highly
reactive glycosyl carboxylate intermediate (or transition state). This inter-
mediate may have an oxocarbenium ion structure (stage b). The 4-hydroxyl
group of the β-CF monomer or of the growing chain end attacks the C1 car-

Fig. 4 A crystalline structure of cellulase (core domain of Bacillus agaradherans) deter-
mined by X-ray analysis. Cellotriose is placed in the active site
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Fig. 5 Possible reaction mechanisms of cellulase catalysis. A Hydrolysis of cellulose.
B Polymaerization of β-CF to synthetic cellulose
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bon of this intermediate from the exo-direction because the endo-direction
is blocked by the carboxylate group. Thus, β(1 → 4)-glycosidic bond forma-
tion is achieved to give a one-monomer (cellobiose) unit-elongated product
(stage c), which shifts to the right for the next monomer β-CF coming in at
the donor site. Repetition of stages a–c produces synthetic cellulose. There-
fore, the polymerization mechanism belongs to a “monomer-activated mech-
anism”.

During glycosylation, the configuration of C1 carbon inverts from β to α

from stage a to stage b and inverts again from α to β from stage b to stage c.
This double-inversion mechanism brings about the retention of stereochem-
istry of C1 from the monomer to the product cellulose. This similarity in
catalysis function is obvious, which involves an intermediate (stage b) com-
mon to both reactions; the only difference is the substrate, which reacts
nucleophilically on the C1 carbon at stage b: water in hydrolysis and the 4-
hydroxyl group of a glucose unit in polymerization.

The monomer structure of β-CF is essential so that β-CF can be rec-
ognized and activated by forming an enzyme-substrate complex, and then
a fluoride anion is cleaved off to lead to intermediate b. That is, for the recog-
nition of the monomer by cellulase, its structure must be close to that of
cellulose or of stage a, which β-CF satisfies. It is highly probable that the tran-
sition state comes very early, which lies rather close to stage a going to stage b.
Thus, β-CF can be taken as a TSAS monomer, which is a new concept for
monomer design in enzymatic polymerization [8–10, 12–14]. The reason for
using the term TSAS and not “intermediate analog substrate” has been de-
scribed elsewhere [14].

The monomer design of using β-CF of two glucose unit structures was im-
portant. When β-glucosyl fluoride of a monosaccharide structure was used,
its polymerization by cellulase catalysis produced only cello-oligomers. This
indicates that the monosaccharide fluoride is not appropriate enough as
a starting monomer compared with β-CF. The effectiveness of the disaccha-
ride monomer structure β-CF was considered as a possibile explanation of
the cellulose biosynthesis mechanism [33–35].

In relation to the substrate specificity of cellulase catalysis, α-cellobiosyl
fluoride (α-CF, the anomer of β-CF) was not reacted under reaction con-
ditions similar to those of β-CF polymerization, α-CF being recovered un-
changed (Scheme 8). This suggests that α-CF cannot be recognized by cel-

Scheme 8
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Scheme 9

Fig. 6 Schematic illustrations of endoglucanase II fusion protein (EG II) expressed by
Saccaromyces sereviside and the mutant endoglucanase (EG II core)

lulase. The cellulase-catalyzed reaction of β-lactosyl fluoride (β-LF) quanti-
tatively yielded the corresponding hydrolysis product of lactose (Scheme 9).
This result indicates that β-LF is recognized at the donor site of cellulase and
activated to react with water, but not at the acceptor site [31].

Very recent results gave important information on the role of the cellulase
function [36]. Cellulase (endoglucanase, EG) is constituted from three do-
mains: cellulose binding domain (CBD), linker domain, and catalytic domain.
In hydrolysis, CBD first binds cellulose molecules and then the catalytic do-
main catalyzes their hydrolysis, the linker domain linking these two domains.
Using biotechnology, two types of protein enzymes were prepared from yeast,
the one having all domains (EG II, molecular weight 5.0×104) and the other
having only the catalytic domain lacking CBD and the linker domain (EG II
core, molecular weight 3.8×104) (Fig. 6). Both enzymes showed high poly-
merization activity for monomer β-CF, giving synthetic cellulose. With time,
the cellulose produced gradually disappeared with EG II due to hydrolysis,
but the product cellulose hardly changed with the EG II core. These results
suggest that the CBD plays an important role in the hydrolysis of the product,
but not for the polymerization of β-CF.

3.2.4
High-Order Molecular Structures

In living systems, cellulose forms high-ordered crystalline structures of dif-
ferent allomorphs. Primarily two allomorphs are typical: cellulose I showing



Enzymatic Polymerization to Polysaccharides 175

a parallel structure of glucan chains and cellulose II showing an antiparal-
lel structure (Fig. 7) [37, 38]. Cellulose I is a thermodynamically metastable
form, which had long been believed to be produced only in living systems.
Cellulose II, in contrast, is thermodynamically more stable; therefore, once
cellulose I is converted, for example, via Mercelization, to cellulose II, it never
returns to cellulose I.

Utilizing the characteristics of the polymerization that produces synthetic
cellulose via a one-step reaction, the in situ polymerization system by TEM
was directly observed. Polymerization of β-CF by a crude cellulase catalyst
in acetonitrile/buffer (5 : 1) solution yielded the product of irregular rodlets
characteristic of a cellulose II allomorph [39]. Using a partially purified cel-
lulase as catalyst, the assembly of synthetic cellulose I was accomplished in
an optimized acetonitrile/buffer ratio (2 : 1) via “choroselective” polymer-
ization as illustrated in Fig. 7. The cellulose I allomorph was characterized
by TEM (Fig. 8), electron diffraction, and cellobiohydrolase I-colloidal gold
binding [40]. Formation of a crystalline synthetic cellulose I allomorph was

Fig. 7 Two allomorphs of cellulose I (parallel) and cellulose II (anti-parallel) structures.
Choroselective polymerization of β-CF produced cellulose I or cellulose II
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Fig. 8 Microfibrils of synthetic cellulose I observed by TEM

achieved due to (i) purification and enrichment of the enzyme protein re-
sponsible for the polymerization and (ii) micelle formation owing to the
optimized acetonitrile/buffer ratio. There was an indication of microscopic
micellar aggregates to organize catalytic subunits for assembling synthetic
cellulose I [40–42]. This is the first successful instance of cellulose I allo-
morph formation in a nonbiosynthetic way. These findings may provide clues
for further understanding of in vivo biosynthetic mechanisms leading to na-
tive cellulose I formation.

For this type of control in high-order molecular assembly during poly-
merization, a new concept called “choroselectivity” was introduced [41, 42],
which represents the intermolecular relationship generated when macro-
molecules are formed in spatially oriented alignment due to supramolecu-
lar interactions. In other words, when polymer chains have direction, e.g.,
cellulose molecules having reducing and nonreducing ends, a parallel or an-
tiparallel spatial directional relationship due to noncovalent, intermolecular
interactions between the polymer chains comes into existence. If the polymer
chain showing the one preferential spatial direction of the allomorph over
the other is formed during polymerization, the reaction is to be defined as
“choroselective.” This selectivity is interestingly compared with the hitherto-
known selectivities, i.e., chemo-, stereo-, and regioselectivities, all of which
are concerned with the intramolecular relationship generated when the cova-
lent bond is formed between two reaction centers.

In situ observation of the polymerization process of β-CF by polarization
optical microscopy (POM), scanning electron microscopy (SEM), and TEM
provided information on the molecular orientation within the spherulites
of synthetic cellulose [43]. POM observations revealed that two types of
spherulites were formed: one displaying a well-defined Maltese cross identified
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Fig. 9 SEM observations of synthetic cellulose spherulites

as positive type under the microscope with a sensitive color plate and another
of negative type. The negative-type spherulites were dominant, and the shape
was three-dimensionally round with platelike single crystals of the synthetic
cellulose originating radially from the center as observed by SEM (Fig. 9).

This structure is completely different from the 2D structure of the
spherulite composed of fibrous bacterial cellulose. TEM observations demon-
strated that the negative-type spherulites are composed of thin crystal plates
approximately 8 nm thick, in which the cellulose chains are aligned vertically
to the plate, having a cellulose I allomorph. These high-order structures of
cellulose are formed only via the polymerization of β-CF.

Formation of the high-order molecular structure was also examined by
time-resolved small-angle neutron scattering (SANS) measurement [44].
In situ SANS observations of the polymerization gave information on the
self-assembling process of the synthesized cellulose with a space scale of
approximately 20–200 nm. The results revealed that the newly synthesized
cellulose self-assembled into aggregates whose surfaces are characterized by
a fractal surface with the fractal surface dimension (Ds) increasing from 2
to 2.4 and the scattering intensity at a low scattering vector (q) region also
increasing by about 100 times with time.

3.2.5
Extension to Cellulose-Related Saccharides

Using a substrate-specific function of an enzyme, glycosylation with a sugar
fluoride was extended for stepwise elongation for a cell-oligomer synthesis
via two enzymatic reactions (Scheme 10) [45, 46]. First, β-LF was glycosidated
as a donor with cellulase catalysis by methyl β-cellobioside as an acceptor to
form the β(1 → 4) linkage regioselectively. β-LF did not act as an acceptor.
Second, the galactosyl group was selectively removed with β-galactosidase
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Scheme 10

catalysis from the first product to give methyl β-cellotrioside. Thus, repeating
the lactosylation and degalactosylation produces a one-glucose-unit elon-
gated cello-oligomer. This is a convenient general method of elongation to
produce an oligomer with the desired degree of polymerization, without pro-
tection and deprotection procedures.

Starting from naturally occurring xyloglucans, a trisaccharide of xyopyra-
nosylcellobiose was obtained. Fluorine atom was introduced to the anomeric
carbon of the trisaccharide according to the known procedures. The trisac-
charide fluoride acted as a monomer for endo-1,4-glucanase (from Tricho-
derma reesei) in a similar reaction condition as cellulose synthesis to produce
synthetic xyloglucan oligomers (Scheme 11) [47].

A mutant enzyme was prepared from the Agrobacterium sp. β-glucosida-
se/galactosidase that catalyzes hydrolysis and transglycosylation of β(1 → 4)
saccharide compounds. A glutamic acid unit at 358 of the enzyme was
replaced by alanine to give the Glu358Ala mutant, where a catalytic nu-

Scheme 11
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cleophile residue (CO2H group) was replaced by a nonnucleophile residue
(CH3 group) (“glycosynthase”) [48]. α-glycosyl fluorides (α-galactosyl and α-
glucosyl fluorides) acted as good donors for the mutant-catalyzed synthesis of
oligosaccharides. For example, α-galactosyl fluoride and an acceptor of Glc-
β(1 → 4)-Glc-p-nitrophenyl yielded the product trisaccharide Gal-β(1 → 4)-
Glc-β(1 → 4)-Glc-p-nitrophenyl in 92% yields. With α-glucosyl fluoride as
donor, Glc-p-nitrophenyl as acceptor reacted to give the product disaccharide
Glc-β(1 → 4)-Glc-p-nitrophenyl in 48% yields and also the corresponding
trisaccharide in 34% yields. In the case of α-glucosyl fluoride, glycosyla-
tion took place twice for trisaccharide formation. All reactions proceeded in
a β(1 → 4) mode involving the inversion of the C1 configuration as shown
in Fig. 10. The hydrolysis mechanism by the wild-type enzyme having two
carboxyl groups is considered similar to that shown in Fig. 5A.

Sugar fluorides were extensively used for enzymatic synthesis of oligo- and
polysaccharides. The enzyme used was a “glycosynthase” mutant of Cel7B
from Humicola insolens, where glutamic acid 197 was replaced by alanine
(Glu197Ala) [49]. Glycosidation of α-lactosyl fluoride (α-LF) as a donor with
mono- and disaccharide acceptors by Glu197Ala catalyst gave the products
in high yields. For example, the reaction of α-LF with benzyl β-glucoside
produced the corresponding trisaccharide in 83% yields (Scheme 12). As ac-
ceptors, disaccharides were better than monosaccharides. It is to be stressed
that several β(1 → 4) and β(1 → 3)-disaccharides acted as acceptors and pro-

Fig. 10 Proposed mechanism of glycosynthase Glu358Ala catalysis

Scheme 12
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duced tetrasaccharides after reacting with α-LF. In all reactions only β(1 → 4)
linkages were formed.

As to the structure of Glu197Ala, there were no interactions with the pro-
tein involving the 6-OH at both the –2 and +1 glucosyl residues. The –2
subsite 6-OH is extremely solvent exposed and often disordered. It was thus
speculated that the mutant Glu197Ala could not only be used as a “glycosyn-
thase” for the synthesis of natural oligo- and polysaccharides, but that the
lack of steric restriction on the C6-OH interactions could be exploited for the
synthesis of substituted β(1 → 4) glucans.

The expectation was realized in the enzymatic polymerization of α-
cellobiosyl fluoride (α-CF) and various derivatives (α-CFa – α-CFd) cat-
alyzed by the mutant Glu197Ala giving rise to cellulose and its derivatives
(Scheme 13). The reaction was carried out in phosphate buffer (0.1 M, pH 7.0)
at 40 ◦C for 24 h. As the reaction proceeded, the product of a white crystalline
precipitate was formed, which was characterized as shown in Scheme 13. The
product from α-CF was a cello-oligomer showing a cellulose II type. It is in-
teresting that the glycosylation was repeated involving the inversion of the C1
carbon configuration.

Arabinoxylans and β(1 → 3, 1 → 4)-d-glucans are the major noncellulosic
cell wall components of the higher plants belonging to the Poaceae fam-
ily. These β-glucans are linear polymers, and their DP reaches 1200. The
proportion of (1 → 3) and (1 → 4) linkages differ from one another. The
amount of (1 → 3) linkages does not exceed 25–30%, which means that the
molecules consist essentially of (1 → 4)-linked cello-oligosaccharides of DP 2–
4 [50, 51]. The β(1 → 3, 1 → 4)-d-glucans in the cell walls are hydrolytically

Scheme 13
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degraded by the β(1 → 3, 1 → 4)-glucanases found in a number of bacte-
ria and fungi due to an energy source of the microorganisms. For in vitro
synthesis of a β(1 → 3, 1 → 4)-d-glucan, the β(1 → 3, 1 → 4)-d-glucanase
from Bacillus sp. was mutated by replacing Glu 134 with Ala to give a gly-
cosynthase (Glu134Ala) [52]. It was shown that the self-condensation of the
monomer α-laminaribiosyl fluoride was catalyzed by the Glu134Ala glycosyn-
thase (Scheme 14). The polymerization of the monomer was carried out at
35 ◦C at pH 7.2 (phosphate buffer) for 3 d using Glu134Ala catalyst. A gel prod-
uct was obtained in 80% yields, showing that the product has a β(1 → 3) and
β(1 → 4) alternating structure with DP of 12 by electron-impact mass spec-
troscopic analysis and DP values ranging from 6 to 12 by MALDI-TOF mass
spectroscopy. The reaction involved the exclusive β(1 → 4) linkage formations.

Light microscopy observations revealed that the product consists of
spherulites from 5 to 50 µm in diameter composed of lamellar elements,
or platelet crystals. SEM studies showed a porous surface structure of the
spherulites. An X-ray diffraction diagram contained two strong diffraction
rings whose d-spacings were calculated as 0.587 nm and 0.417 nm, leading
to a monoclinic unit cell with a = 0.834 nm, b = 0.825 nm, c = 2.04 nm, and
γ = 90.5◦. The dimensions of the ab plane are similar to those of cellulose Iβ ,
but the length of the c-axis is nearly twice that of cellulose I.

Enzymatic polymerizations mentioned thus far belong in principle to a ki-
netic approach, where an activated glycosyl donor such as a glycosyl fluoride,

Scheme 14

Scheme 15
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designed as a TSAS, forms rapidly the glycosyl-enzyme complex to lead to the
product poly- or oligo-saccharide (kinetic-controlled synthesis) [12]. On the
other hand, the following phosphorylase method belongs to the equilibrium-
controlled synthesis (Scheme 15) [53]. The phosphorylase enzyme was iso-
lated from Clostridium thermocellum and used as catalyst for the reaction of
α-glucosyl phosphate (Glc-1-P) as glycosyl donor in a large excess amount for
an acceptor like cellobiose ((Glc)n, n ≥ 2) to shift the equilibrium to the right
side. The chain elongation took place to produce cello-oligomers with DP
of about 8, showing a cellulose II allomorph. As acceptors, 4-thiocellobiose,
methyl β-cellobioside, and methyl 4-thio-α-cellobioside were used with the
same efficiency as cellobiose to allow the introduction of these groups at the
end of the cello-oligomers.

3.3
Amylose

Following the same principle for cellulose synthesis, α-maltosyl fluoride
(α-MF) was employed for the synthesis of amylose by α-amylase cataly-
sis (Scheme 16) [54]. Again, the monomer α-MF acted both as donor and
acceptor; it is a polycondensation type to produce malto-oligosaccharides
via α(1 → 4) bond formation. The reaction was examined in various
organic/water mixed solvents. The best solvent mixture to afford the highest
oligomers was a methanol/phosphate buffer (2/1 v/v).

Phosphorylases are key enzymes of carbohydrate metabolism and catalyze
the phosphorolysis of glycosidic bonds in oligo- and polysaccharide substrates.
This type of reaction afforded amylose via in vitro polymerization of d-glucosyl

Scheme 16

Scheme 17
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phosphate (Glc-1-P) catalyzed by potato phosphorylase (Scheme 17) [55]. The
reaction belongs to a biosynthetic pathway, and hence it is not within the con-
text of the defined enzymatic polymerization in this article. However, it is
cited here for reference. This approach is an equilibrium-controlled synthe-
sis, and therefore the reaction required a large excess amount of Glc-1-P as
also observed in Scheme 15. In addition, the reaction required a primer of
malto-oligomer with minimum length of tetramer and proceeded in living-like
polymerization to form amylose with uniform chain length.

3.4
Xylan

Xylan, a xylose polymer with β(1 → 4) glycosidic linkage in the main chain,
is the important component of hemicellulose in plant cell walls. It interacts
supramolecularly with cellulose to form a composite. Naturally occurring
xylan normally contains 4-O-methylglucronic acid, l-arabinose, etc., as a mi-
nor unit in the side chain. Synthetic xylan consisting exclusively of xylose
units was prepared by the crude cellulase (containing xylanase) polymer-
ization of β-xylobiosyl fluoride (β-XF) as monomer in a mixed solvent of
acetonitrile/acetate buffer (Scheme 18) [56]. The reaction proceeded by giv-
ing a perfect β(1 → 4) glycosidic bond of synthetic xylan having a DP of 23.

Scheme 18

3.5
Chitin

3.5.1
Synthesis Via Enzymatic Polymerization

Chitin is the most abundant organic substance in the animal world. Its
quantity is estimated as approximately 1% of that of cellulose. It attracts
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much interest in a number of scientific and application areas as a multifunc-
tional substance [57]. Taking the chitin structure into account, a repeating
unit was hypothesized to be a chitobiose (disaccharide unit) rather than N-
acetylglucosamine (monosaccharide). Then, a chitobiose oxazoline derivative
(Chi-oxa) was designed as “TSAS monomer” and prepared for the catal-
ysis of chitinase, a hydrolysis enzyme of chitin. Synthetic chitin was thus
prepared for the first time via a ring-opening polyaddition [58–61], where
the methyloxazoline acted as a latent N-acetyl group with a cationic ring
opening (Scheme 19) [62]. The chitinase used was a retaining glycanase. The
monomer oxazoline derivative has a distorted conformation of an α-anomer
configuration, which mimics the transition-state structure of the chitinase hy-
drolysis. During polymerization, the β(1 → 4) glycosidic linkage was repeat-
edly achieved involving the inversion of the configuration of the C1 carbon to
form synthetic chitin with a perfectly controlled structure.

Chi-oxa monomer in phosphate buffer (0.01 M, pH 10.6) was incubated
in the presence of chitinase (Bacillus sp., 1 wt % for the monomer) for 50 h
at 25 ◦C. As the reaction progressed, precipitation of the product synthetic
chitin started, which was isolated in a quantitative yield. The β(1 → 4) struc-
ture was definitely determined by CP/MAS solid 13C NMR spectroscopy. The
viscosity-average molecular weight (Mv) of synthetic chitin was determined
as a value higher than 104 according to the Mark–Houwink–Sakurada equa-
tion, [η] = KMα. However, later the molecular weight value was evaluated as
less than that value. For the synthesis of chitin, a monomer oxazoline de-

Scheme 19
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Scheme 20

rived from N-acetylglucosamine (monosaccharide) gave only a mixture of
chito-oligomers up to a pentamer. For reference, in vivo chitin synthesis via
a biosynthetic pathway is given in Scheme 20, which is quite different from
the in vitro synthesis.

In nature, a bacterial cell-wall peptidoglycan is well known as an alternat-
ingly 3-O-modified derivative of chitin and as a natural substrate of lysozyme
enzymes. Synthesis of such chitin derivatives was attempted by extending the
reaction to form synthetic chitin (Scheme 19) [63]. The ring-opening polyad-
dition reactivity of the monomers having a methyl group at 3, 3′ and 3,3′
positions was very low due to the steric hindrance of the substituent; the
product was 3-O-methylated chitin oligomers up to an octamer.

3.5.2
Mechanistic Aspects

The monomer design of in vitro chitin synthesis with chitinase catalysis
was performed on the basis of the new concept of TSAS, which stemmed
from a speculated transition-state structure involved in chitin hydrolysis. The
concept led to Chi-oxa having an oxazoline structure, which was actually pre-
pared and orally presented in 1995 [58–60].

On the other hand, much information on the hydrolysis mechanism of
chitin in vivo by a chitinase enzyme has accumulated, particularly since 1995.
There are mainly two mechanistic aspects in terms of the nature of the re-
action intermediate: (1) an oxazolinium intermediate [64–67] and (2) an
oxocarbenium ion intermediate or a covalent glycosyl carboxylate interme-
diate (Scheme 21) [68]. An X-ray crystallographic analysis of chitinase A was
performed that suggested an oxazolinium intermediate (Fig. 11) [65].
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Scheme 21

Fig. 11 Crystal structure of chitinase A

Chitinases from families 18 and 20 are understood to involve a protonation
on glycosidic oxygen by one of the carboxyl groups via a general acid-base
mode and to form an oxazolinium intermediate. A positive charge at C1 in
a transition state is stabilized intramolecularly by a carbonyl oxygen of the
N-acetyl group at C2 by cleaving the C1 – O glycosidic bond as indicated from
stage a to b in the hydrolysis of chitin in vivo (Fig. 12A) [64]. The anchimeric
stabilization was estimated as 38 kcal/mol [66]. Then, a water molecule nu-
cleophilically attacks the oxazolinium ion to open the ring, giving rise to
a hydrolysis product from stage b to c. The whole reaction involves the inver-
sion of the C1 configuration two times.

On the other hand, in the in vitro polymerization (B), the Chi-oxa monomer
has a distorted α-C1 structure, which was established by 1H NMR analysis, and
is readily recognized by family 18 chitinase due to the TSAS. The polymeriza-
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Fig. 12 Possible reaction mechanisms of chitinase catalysis. A Hydrolysis of chitin. B Poly-
merization of Chi-oxa monomer to synthetic chitin
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tion lacks a protonation step on the glycosidic oxygen of the hydrolysis but only
needs the protonation on the oxazoline nitrogen to form the oxazolinium ion,
which takes place under less acidic conditions as shown at stage b. Then, a nu-
cleophilic attack of the 4′-hydroxyl group on the C1 carbon of the oxazolinium
opens the ring by inverting the C1 carbon configuration from α to β, forming
a new glycosidic bond from stage b to c. The product shifts to the right side,
and another monomer comes in at the donor site. Repetition of this glycosidic
bond formation eventually gives synthetic chitin. It should be noted that the
oxazolinium ion species is involved as a common intermediate in both hydrol-
ysis of chitin in vivo and polymerization to chitin in vitro. The transition state
of both reactions must lie in the ring opening of the oxazolinium species from
stage b to stage c, which comes later in comparison with the case of cellulose
synthesis. In other words, the polymerization of fluoride monomers involves
a relatively early transition state whereas that of oxazoline monomers a rela-
tively late transition state. This view accords with the fact that normally the
former requires a medium with a lower pH value for the reaction to proceed.

The concept of TSAS was further proven to be valid by the following ex-
periments. Chi-oxa monomer was subjected to polymerization by enzymatic
catalysis. The hydrolysis enzymes used were chitinase (family 18) involving
an oxazolinium intermediate and lysozyme involving an oxocarbenium ion
intermediate (Fig. 13). With the former enzyme, synthetic chitin was quan-
titatively obtained after 50 h at pH 10.6, whereas with the latter no chitin
was produced after 165 h of reaction [69]. This implies that the oxazoline
monomer could not be a substrate for the lysozyme enzyme.

It is known that the optimal pH for hydrolysis by chitinase is 7.8 [70]. The
effects of pH on the ring-opening polyaddition of the monomer showed that
the optimal value was around pH 10.6 in terms of the chitin yield (Table 3);
at pH 8.0 the reaction time for the complete monomer conversion took 2.5 h;
however, the yield of synthetic chitin was 38%. At pH 10.6 it took 50 h and the

Fig. 13 An oxocarbenium ion intermediate involved in the hydrolysis of chitin by
lysozyme or chitinase (Family 19)
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Table 3 Effect of pH on the ring-opening polyaddition of Chi-oxa monomer a

pH Reaction time / h b Yields of synthetic chitin / %

8.0 2.5 38
9.0 20 62

10.6 50 ∼100
11.4 150 87
12.9 300 0

a Reaction conditions; chitinase 1 wt % for monomer at r.t.
b Reaction time for complete monomer consumption

chitin was obtained quantitatively [69]. This means that the polymerization
was very rapid at around pH 8, but the product chitin was also hydrolyzed
rapidly; at pH 10.6 polymerization was exclusively promoted, suppressing
the hydrolytic activity significantly. These pH effects are shown roughly in
Fig. 14. Polymerization is less sensitive to pH, probably because it does not
require protonation at glycosidic oxygen. Therefore, polymerization is to be
carried out at a pH where the difference in the rate of polymerization and
hydrolysis is maximal.

Based on the above discussion (Fig. 12) it was speculated that polymer-
ization may need only one of the carboxyl groups at the active site for the
protonation of the monomer. To prove this, wild-type chitinase A1 was mu-
tated, where aspartic acid 202 (D202) was left and glutamic acid 204 was
replaced by glutamine (E204Q) [71, 72]. As anticipated, the mutant chitinase
showed only polymerization (oligomerization) activity and no hydrolysis abil-

Fig. 14 A rough sketch of pH effects on the rate of chitinase-catalyzed reactions: A Hydro-
lysis activity. B Polymerization
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Scheme 22

ity, although the overall activity was much reduced from that of the wild
chitinase [73]. The transition state of the glycosylation (propagation) by the
mutant is shown in Scheme 22.

3.5.3
High-Order Molecular Structures

X-ray diffraction measurements of synthetic chitin showed a high-order
structure of α-chitin having an antiparallel chain alignment and a thermo-

Fig. 15 X-ray diffractograms of a artificial chitin, b natural α-chitin from queen crab, and
c natural β-chitin from squid pens
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Fig. 16 Hierarchy structures in vitro formed by synthetic chitin via enzymatic polymer-
ization

dynamically more stable form [74] and β-chitin having a parallel metastable
chain structure (Fig. 15) [75].

Self-organization of polymers into high-order structures such as lamellas,
spherulites, and liquid crystals is known [76, 77]. Those structures were re-
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produced by acid hydrosates of cellulose and chitin [78, 79]. The ring-opening
polyaddition of Chi-oxa produced platelike single crystals of synthetic α-
chitin and induced organization of the ribbons assembled from the crystals
into the spherulites for the first time [80]. These high-order hierarchy struc-
tures are illustrated in Fig. 16.

3.5.4
Chitin Oligomer Derivatives

Chitinase-catalyzed polymerization using an oxazoline monomer was ex-
tended to a stepwise elongation to prepare chitin oligomer derivatives
(Scheme 23) [81]. The reaction involves a chitinase-catalyzed transglyco-
sylation of the oxazoline derivative of N-acetyllactosamine as donor to an
oligosaccharide as acceptor (step 1) and a β-galactosidase-catalyzed cleavage
of the galactose unit from the nonreducing end of the product (step 2). Thus,
the N-acetylglucosamine unit can be added stepwise to the nonreducing end
of the starting oligosaccharide, as observed in the stepwise cello-oligomer
synthesis of Scheme 10.

Scheme 23
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3.6
Glycosaminoglycans

Extracellular matrices (ECMs) are substances found between living cells
(Fig. 17) [82, 83]. ECMs are constituted from fibronectins, collagens, proteo-
glycans, etc. Proteoglycans are formed from core proteins to which many
polysaccharide chains are linked. These are all linear heteropolysaccharides
called glycosaminoglycans (GAGs), formerly designated as “mucopolysaccha-
rides”. GAGs include seven biomacromolecules: hyaluronan (hyaluronic acid,
HA), chondroitin (Ch), chondroitin sulfate (ChS) (Scheme 1), heparin, hep-
eran sulfate, dermatan sulfate, and keratan sulfate (Scheme 24) [84].

HA, Ch, and ChS are the main components of GAGs, particularly in dermis
and cartilage, in which large molecular complexes are formed by association
of these molecules [84]. GAGs play crucial roles in differentiation and prolif-
eration of cells, tissue morphogenesis, and wound healing via signaling by in-
teractions with growth factors and morphogens [82, 85–92]. They have a sin-
gle repeating structural motif of a disaccharide unit containing a hexosamine
and show a great deal of structural diversity causing discrete structural forms
generated by complex patterns of deacetylation, sulfation, and epimerization,

Fig. 17 Illustrations of glycosaminoglycans found in extracellular matrices
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Scheme 24

which are found in particular tissues and influenced by disease and aging [93,
94]. GAGs containing glucosamines as a hexosamine constituent are desig-
nated as glucosaminoglycans, and those containing galactosamines as galac-
tosaminoglycans [84]. HA and Ch are the best known glucosaminoglycan and
galactosaminoglycan, composed of β(1 → 4) linked β-d-glucuronyl-(1 → 3)-
N-acetyl-d-glucosamine (GlcAβ(1 → 3)GlcNAc; N-acetylhyalobiuronate) and
β-d-glucuronyl-(1 → 3)-N-acetyl-d-galactosamine (GlcAβ(1 → 3)GalNAc;
N-acetylchondrosine) repeating units, respectively. This section focuses on
the precision synthesis of HA and Ch including their derivatives [95–98] via
enzymatic polymerization.

3.6.1
Hyaluronan and Its Derivatives

HA was first found in 1934, which is a high-molecular-weight biopolysac-
charide contained in the vitreous humor of cattle eyes [99]. In vivo synthesis
of HA is performed in the plasma membrane by the catalysis of HA syn-
thases through the alternate addition of GlcNAc and GlcA in a β(1 → 4)
and β(1 → 3) fashion, respectively, employing the corresponding uridine-5′-
diphospho (UDP)-sugar substrates (Fig. 18) [100].

Some bacteria produce HA as a capsular polysaccharide by the HA syn-
thase, which facilitates evasion of the immune response by host organ-
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Fig. 18 Biosynthesis of HA by HA synthase with using UDP-sugar substrates

isms [101]. The molecular weight value of naturally occurring HA often
reaches several million daltons. This large molecule of HA interacts with
a number of other ECM molecules, resulting in the formation of a strong net-
work of viscoelastic ECMs [102, 103]. HA exhibits critical bioactivities such
as matrix formation around cumulus cells during ovulation and fertiliza-
tion [104–106], mediation of immune cell adhesion [107], and activation of
intracellular signaling [108]. Furthermore, intracellular HA was proved to
exist in many kinds of proliferating cells [109, 110], which is believed to ex-
ert some influences on cell mitosis. Such multifunctions of HA have been
utilized in the medical and pharmaceutical fields [111]. Therefore, HA has
been frequently modified for the development of biocompatible materials.
Precise control of the modification of HA is normally difficult due to lower
reactivity of functional groups on a high-molecular weight HA molecule. Fur-
ther, unexpected side reactions, like bond cleavage of the HA chain causing
reduction of the molecular weight, often occur during modification under se-
vere reaction conditions [112, 113]. HA derivatives with a perfectly controlled
structure bear potentials to regulate their biological activities as well as their
chemical and physical properties. A number of chemists have attempted to
synthesize such an indispensable molecule of HA [114]; however, an octasac-
charide derivative is the largest molecule prepared by organic chemistry to
date [115].
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3.6.1.1
Synthesis of Hyaluronan Via Enzymatic Polymerization

As illustrated in Fig. 19, HA has two kinds of glycosidic linkages, i.e., (1 →
4)-β-GlcNAc and (1 → 3)-β-GlcA linkages. Hyaluronoglucosaminidase (EC
3.2.1.35), generally called hyaluronidase (HAase) belonging to glycoside hy-
drolase family 56, participates in the hydrolysis of the β(1 → 4) glycosidic
linkage, and hyaluronoglucuronidase (EC 3.2.1.36) hydrolyzes the β(1 → 3)
glycoside [116]. These views allow for the design of two types of sub-
strate monomers: the oxazoline-type monomer for HAase catalysis and the
β-fluoride-type monomer for hyaluronoglucuronidase.

The anomeric carbon atoms at the reducing end of both monomers are
activated by the structure of [2,1-d]-oxazoline and by the electronegativ-
ity of fluorine atoms. HAase is involved in the catabolism of (1 → 4)-β-N-
acetylglucosaminide linkage through a “substrate-assisted” mechanism [117],
which contains an oxazolinium ion species as a transition state of enzymatic
hydrolysis. The structure of the oxazoline monomer is close to oxazolinium,

Fig. 19 Cleaving points on HA by HAase (black arrows) and hyaluronoglucronidase (white
arrows) and possible monomer structures for the enzymes: A Oxazoline-type monomer
for HAase catalysis. B Fluoride-type monomer for the catalysis of hyaluronoglucronidase
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which is a TSAS monomer for HAase. HAase is a commercially available en-
zyme, whereas hyaluronoglucuronidase is difficult to obtain; the latter has
been found in leeches and small sea crustaceans [116]. Thus, the combination
of the oxazoline monomer and HAase is feasible and selected for the synthesis
of HA [95, 96] (Scheme 25).

The substrate monomer was synthesized via conventional chemical
methods [96]. During enzymatic reaction, three kinds of reactions are pos-
sible: polymerization of the monomer to synthetic HA, enzymatic and nonen-
zymatic hydrolysis of the monomer via the oxazoline ring opening, leading to
the GlcAβ(1 → 3)GlcNAc disaccharide (Scheme 26).

The monomer was effectively recognized and consumed by HAase from
ovine testes (OTH) at pH 7.5, giving rise to synthetic HA in good yields with
high molecular weight values (Mn) via ring-opening polyaddition under total

Scheme 25

Scheme 26
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control of regioselectivity and stereochemistry. Table 4 indicates the results of
polymerization under various reaction conditions. The pH strongly affected
both the yield and the molecular weight of synthetic HA. Neutral conditions
at around pH 7.5 allow for effective polymer production prior to hydrolysis
of the monomer. OTH has the optimum activity for the hydrolysis of HA at
pH 4.5–6.5 [116]. Therefore, acidic pH conditions accompanied a preceding
hydrolysis of the monomer with rapid consumption rate. Weak alkaline con-
ditions resulted in a slower rate of monomer consumption, lower yields, and
molecular weight values of the product HA due to a reduction in enzyme ac-
tivity. Bovine testicular HAase (BTH) also produced synthetic HA effectively,
and the molecular weight was up to 17 700 (88–90 saccharide units). However,
bee venom containing HAase exhibited no activity for the polymerization, al-
though the reaction mechanism of HA hydrolysis is very similar to that of
OTH and BTH [117].

The catalysis mechanism of HAase is similar to that of chitinase, which be-
longs to glycoside hydrolase family 18 described in Sect. 3.5.2 (Fig. 12). HAase
belonging to glycoside hydrolase family 56 has a carboxyl group as a catalytic
proton donor during the hydrolysis reaction but no catalytic nucleophiles;
carbonyl oxygen of the C2 acetamido group in GlcNAc attacks the neighbor-

Table 4 HAase-catalyzed polymerization to synthetic HA and its derivatives

Polymerizationa Synthetic HA or HA derivative
Entry Monomer Enzyme b pH Time/h Yield/% Mn

c Mw
c

1 2-methyl OTH 6.0 8 19 1300 1400
3 2-methyl OTH 7.0 48 72 4400 9800
4 2-methyl OTH 7.5 52 78 5500 13 800

2-methyl 53 d 13 300 22 000
5 2-methyl OTH 8.0 60 73 5700 14 900
6 2-methyl OTH 9.0 72 65 4600 11 300
7 2-methyl OTH 9.5 168 0 – –
9 2-methyl BTH 7.5 60 53 7800 17 600

34 d 17 700 25 000
10 2-methyl bee venom 7.5 72 trace – –
11 2-methyl H – OTH 7.5 6 69 6800 19 500
12 2-ethyl OTH 7.5 48 65 d 6900 17 500
13 2-n-propyl OTH 7.5 60 47 d 4500 13 500
14 2-vinyl OTH 7.5 48 50 d 5900 16 800

a In a carbonate buffer (50 mM) at 30 ◦C; monomer conc., 0.1 M; amount of enzyme,
10 wt % for monomer
b OTH,ovinetesticularHAase(560 units/mg);BTH,bovinetesticularHAase(500 units/mg)
c Determined by SEC calibrated with hyaluronan standards. dIsolated yields after purifi-
cation



Enzymatic Polymerization to Polysaccharides 199

ing C1 atom to cleave the glycosidic bond, resulting in the formation of an
oxazolinium ion. Thus, the oxazoline monomer is a TSAS monomer, which
is readily recognized and polymerized by HAase, leading to synthetic HA in
a regio- and stereoselective manner.

3.6.1.2
Enzymatic Polymerization to Hyaluronan Derivatives

Synthesis of HA derivatives was performed via HAase-catalyzed polymeriza-
tion of 2-ethyl, 2-n-propyl, 2-isopropyl, 2-phenyl, 2-vinyl, and 2-isopropenyl
oxazoline monomers (Scheme 25). Polymerization of these monomers en-
ables the single-step production of HA derivatives with a well-defined struc-
ture bearing a corresponding N-acyl group via the oxazoline ring opening,
leading to the development of biomaterials having novel physiological activi-
ties. Among the monomers, 2-ethyl, 2-n-propyl, and 2-vinyl monomers gave
the corresponding HA derivatives bearing N-propionyl, N-butyryl, and N-
acryloyl groups in all glucosamine units (Table 4). The 2-isopropyl oxazoline
derivative was little consumed by the enzyme, providing a trace amount of the
N-isobutyrylated HA oligomers. The 2-phenyl and 2-isopropenyl oxazoline
derivatives were not catalyzed by OTH. Similar results were obtained using
BTH as catalyst.

The monomers of 2-methyl, 2-ethyl, 2-n-propyl, and 2-vinyl oxazoline
derivatives were copolymerized by HAase, providing HA derivatives hav-
ing N-acyl groups in various proportions (Scheme 27) [118]. Composition
of the N-acyl groups in a polymer chain was controllable by varying the

Scheme 27
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comonomer feed ratio. This is the first successful example of enzymatic
copolymerization for the synthesis of polysaccharides.

Thus the catalysis allowed the production of not only natural-type HA but
also HA derivatives having N-propionyl, N-butyryl, and N-acryloyl groups in
various proportions in a polymer chain. This implies that natural HAase pos-
sesses enough space at the active site for these sterically larger substituents
compared with N-acetyl group, or that HAase is dynamic during polymeriza-
tion as a host with the larger group guests. Isopropyl, phenyl, and isopropenyl
groups on the monomer were sterically too large for HAase catalysis.

3.6.2
Chondroitin and Its Derivatives

Chondroitin (Ch) exists predominantly as a carbohydrate part of proteogly-
cans in Caenorhabditis elegans [119] or in the higher organisms as a pre-
cursor of ChS, mainly found in cartilage, cornea, and brain matrices [120].
Molecular weight values (Mn) of naturally occurring ChS range widely from
0.5×104 to 35×104. A number of reports describe the biological functions of
Ch and ChS, for example, maintenance of cartilage elasticity [121], regulation
of tissue morphogenesis, and promotion of neurite outgrowth [122] and neu-
ronal migration [123]. Biosynthesis of Ch is performed in the Golgi apparatus
by the catalysis of chondroitin synthase [124, 125] and other glycosyltrans-
ferases [126, 127] employing UDP-GlcA and UDP-GalNAc as substrates. Ch is
further sulfated by several kinds of sulfotransferases, giving rise to ChS [128].
Like the bacterial HA, Ch is also synthesized by some bacteria as a capsular
polysaccharide [129, 130]. Detailed mechanisms for the production of Ch in
C. elegans have been fully elucidated [131]; however, those of Ch and ChS in
the higher organisms have been unclear.

3.6.2.1
Synthesis of Chondroitin Via Enzymatic Polymerization

From the chemical structure of Ch, two possible monomers for Ch syn-
thesis were designed based on the function of hydrolysis enzymes: the
oxazoline-type monomer (N-acetylchondrosine oxazoline) for HAase cataly-
sis responsible for the hydrolysis of (1 → 4)-β-N-acetylgalactosaminide link-
ages in Ch, and the fluoride-type monomer of GalNAcβ(1 → 4)GlcAβ-F for
endo-β-glucuronidase involved in Ch degradation through bond cleavage of
(1 → 3)-β-glucuronide linkages. However, the glucuronidase found in rabbit
liver [132] is not a commercially available enzyme. Therefore, the combi-
nation of the oxazoline-type monomer and HAase was selected for the Ch
synthesis (Scheme 28).

The oxazoline monomer was synthesized from d-galactose and glucurono-
6,3-lactone as starting materials via conventional chemical methods [97]. The
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Scheme 28

monomer was recognized and catalyzed by OTH, giving rise to synthetic
Ch under total control of regioselectivity and stereochemistry. Table 5 sum-
marizes polymerization results with varying reaction conditions. Like HA
synthesis, polymerization behaviors greatly depend on the reaction condi-
tions of pH and the enzyme origin; Ch was effectively produced by OTH at
a pH of around 7.5. The Mn value of synthetic Ch reached 4600, which cor-
responds to that of naturally occurring Ch.

3.6.2.2
Enzymatic Polymerization to Chondroitin Derivatives

In contrast to HA derivatives, synthesis of Ch derivatives has been less
widely reported. Therefore, precise production of Ch derivatives is very im-
portant for the investigation of Ch functions and for the development of
Ch-related biomaterials. Monomers with 2-ethyl, 2-n-propyl, 2-isopropyl,
2-phenyl, and 2-vinyl groups were designed and synthesized [97]. Poly-
merization of the 2-ethyl and the 2-vinyl oxazoline monomers effectively
proceeded by OTH, providing the corresponding N-propionyl and N-
acryloyl derivatives of Ch in good yields (Table 5). The polymerization
reactivity of these monomers depends mainly on the steric bulkiness of
the 2-substituent in the oxazoline, i.e., 2-ethyl > 2-vinyl � 2-n-propyl > 2-
isopropyl � 2-phenyl.

Synthesis of ChS with a well-defined structure was achieved by HAase using
sulfated N-acetylchondrosine oxazoline monomers [133]. Monomers bearing
a sulfate group at C4 in GalNAc were effectively polymerized by HAase, giving
rise to ChS having a sulfate group at C4 of all GalNAc units with an Mn value of
over 10 000.
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Table 5 HAase-catalyzed polymerization to synthetic Ch and its derivatives

Polymerizationa Synthetic Ch or Ch derivative
Entry Monomer Enzymeb pH Time/h Yield/% Mn

c Mw
c

1 2-methyl H-OTH 6.0 1 28 1600 1700
2 2-methyl H-OTH 7.0 9 47 1900 2200
3 2-methyl H-OTH 7.5 23 50 2100 2500
4 2-methyl H-OTH 8.0 33 49 2200 2700
5 2-methyl H-OTH 8.5 6 9 4600 6500
6 2-methyl H-OTH 9.0 72 0 – –
7 2-methyl OTH 7.5 23 35 2500 3200
8 2-methyl H-BTH 7.5 40 29 2600 3400
9 2-methyl BTH 7.5 40 10 2800 3600

10 2-ethyl H-OTH 7.5 35 46 2700 3600
11 2-vinyl H-OTH 7.5 24 19 3400 4600

a In a phosphate buffer (50 mM) at 30 ◦C; concentration of monomer, 0.1 M; amount of
enzyme, 10 wt % for monomer
b OTH, ovine testicular hyaluronidase (560 units/mg); BTH, bovine testicular hyaluron-
idase (330 units/mg); H-OTH, ovine testicular hyaluronidase (2160 units/mg); H-BTH,
bovine testicular hyaluronidase (1010 units/mg)
c Determined by SEC calibrated with hyaluronan standards.

3.6.3
Synthesis of Glycosaminoglycans by Other Methods

Another method of GAGs synthesis utilizing HAase has been reported. HA
oligomers up to 22 sugar units were synthesized by enzymatic reconstruction
of HA chains by HAase (Scheme 29) [134].

The reaction harnessed the transglycosylation activity of HAase, which
transfers an N-acetylhyalobiuronate unit from the donor HA molecule suc-
cessively to the acceptor 2-pyridylamino (PA)-HA hexasaccharide, yielding
PA-HA oligomers. Like the synthesis of PA-HA, various kinds of PA-ChS
oligosaccharide libraries were prepared [134, 135].

On the other hand, there are some reports describing the synthesis of
GAGs using glycosyltransferases via biosynthetic pathways [136], which ex-
clusively catalyze glycosidic bond formation. The following are examples of
GAGs synthesis using glycosyltransferases: HA synthase from Streptococcus
equisimilis was employed for milligram-scale synthesis of HA [137]. In this
reaction system, UDP-sugars (UDP-GlcA and UDP-GlcNAc) were effectively
regenerated by the catalyses of several kinds of enzymes, giving rise to syn-
thetic HA in a 90% yield with Mn 5.5×105. In addition, mutated HA synthase
was recently utilized for the stepwise synthesis of HA, which has a monodis-
persed molecular mass of up to 20 sugar units [138].
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Scheme 29

3.7
Unnatural Polysaccharides

An enzyme is often dynamic and allows for the kind of catalysis required for
the formation of unnatural products, if an artificial substrate is appropriately
designed. Then, the reaction follows the circle of Fig. 2B. For instance, a 6-O-
methyl-β-CF monomer was successfully polymerized by the catalysis of cel-
lulase from Trichoderma viride in a regio- and stereoselective manner, giving
rise to alternatingly 6-O-methylated cellulose derivatives over tetradecasac-
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Scheme 30

charide (Scheme 30a). In contrast, 6′-O-methyl-β-CF was less catalyzed by the
enzyme, affording mainly the tetrasaccharide with an alternating methylated
structure (Scheme 30b) [139]. These results provided important suggestions
about the kind of enzyme catalysis that requires the recognition of 6-OH at
the nonreducing end but not at the reducing end of the monomer.

These findings were extended to the chitinase-catalyzed glycosidation of
sugar oxazoline derivatives with a carboxylate group as glycosyl donors [140].
The glycosyl donors having a carboxylate group at the nonreducing end
effectively coupled with acceptor chito-oligosaccharides through β(1 → 4)
glycosidic linkage. It is intriguing that alternatingly 6-O-carboxymethylated
chitotetraose was selectively produced by the catalysis of chitinase from
Streptomyces griseus using a 6′-O-carboxymethyl-Chi-oxa derivative as sub-
strate [141].

Scheme 31
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A hybrid-type polysaccharide was produced using a monomer con-
sisting of different sugar moieties; β-d-xylosyl-(1 → 4)-β-d-glucosyl fluo-
ride was successfully polymerized by the catalysis of xylanase from Tri-
choderma viride, giving rise to a cellulose–xylan hybrid polysaccharide
(Scheme 31) [142]. This hybrid polymer has the alternating structure of
(1 → 4)-β-d-xyloside and (1 → 4)-β-d-glucoside; therefore, both natures of
cellulose and xylan are expected to be present in a molecule.

A sugar fluoride monomer was further used for the synthesis of thio-
oligosaccharides, which can be an inhibitor of cellulase and are useful for the
mechanistic study of cellulase function [143]. Hemithiocello-oligomers from
tetraose to tetradecaose were obtained via enzymatic polymerization using
4-thio-β-cellobiosyl fluoride as monomer by cellulase catalyst [144].

4
Concluding Remarks

This review was focused on polysaccharide synthesis via enzymatic poly-
merization. The reaction using a hydrolase enzyme as catalyst and an ap-
propriately designed monomer brought about the first chemical synthesis
of several natural and unnatural polysaccharides, all of which had been
difficult to synthesize by conventional methods. Stereochemistry and re-
gioselectivity were perfectly controlled during polymerization to give syn-
thetic polysaccharides with a precise structure. As a contribution to basic
science, the enzymatic polymerizations to synthetic cellulose and synthetic
chitin provided fundamental information on biosynthetic mechanisms and
supramolecular high-order molecular structure formation. Some synthetic
polysaccharides were functionalized by introducing a reactive group, for
example, acryloylated hyaluronan and chondroitin were readily obtained.
These techniques can be further applied to developing new telechelics,
macromonomers, end-functionalized polymers, gel materials, bioactive ma-
terials [145], and polymeric drugs derived from these poly- and oligosac-
charides. In addition, preparation of a mutant enzyme is a new technique
to modify the catalyst function, which is an important future research
direction.

We would like to note again enzymatic catalysis and antibody enzyme
(abzyme) catalysis, both for in vitro reactions [8]. In the enzymatic poly-
merization of the present article, the key point is the appropriate design of
monomers so that they can form an enzyme-substrate complex for the reac-
tion to proceed, using an isolated enzyme as catalyst (substrate design). In the
abzyme catalysis, the catalyst enzyme is designed in living cells using the im-
mune system of an antigen-antibody relationship (catalyst design) [146, 147].
Figure 20 shows a typical example of abzyme design for an ester hydroly-
sis catalyst, where a tetracoordinate phosphorus compound (hapten) is used
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Fig. 20 Illustration of the abzyme design and catalysis in the hydrolysis of ester

as the model of a transition state involved in the base-catalyzed hydrolysis
of the ester. The living cells recognize the hapten as an antigen to produce
an antibody. The antibody thus formed is isolated and utilized as catalyst
for the ester hydrolysis. This idea spurred many chemists to study abzyme
catalysis extensively. The results looked interesting; the rate enhancement
by abzyme catalysis was 103- to 106-fold depending on the reaction [148],
which is to be compared by enzyme catalysis with ∼ 1012-fold and even
a value reaching 1020-fold as recently described [149]. The key, therefore, in
catalyst design when living cells produce an antibody by complexing with
a hapten at the ground state is the extent to which the antibody reflects the
3D dynamic structure of the transition state of the reaction. In addition to
the rate acceleration, the catalysis involves other factors of controlling reac-
tion selectivities such as stereochemistry and regioselectivity. Furthermore,
it was found recently that a natural antibody shows catalytic activity in rare
cases; such an antibody is called an “antigenase” [150–152]. These results in-
terrelate the catalytic functions of enzyme and antibody, which seems very
significant.
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Abstract The in vitro enzyme-mediated polymerization of vinyl monomers is reviewed
with a scope covering enzymatic polymerization of vitamin C functionalized vinyl
monomers, styrene, derivatives of styrene, acrylates, and acrylamide in water and water-
miscible cosolvents. Vitamin C functionalized polymers were synthesized via a two-
step biocatalytic approach where vitamin C was first regioselectively coupled to vinyl
monomers and then subsequently polymerized. The analysis of this enzymatic cascade
approach to functionalized vinyl polymers showed that the vitamin C in polymeric
form retained its antioxidant property. Kinetic and mechanistic studies revealed that
a ternary system (horseradish peroxidase, H2O2, initiator β-diketone) was required for ef-
ficient polymerization and that the initiator controls the characteristics of the polymer.
The main attributes of enzymatic approaches to vinyl polymerization when compared
with more traditional synthetic approaches include facile ambient reaction environ-
ments of temperature and pressure, aqueous conditions, and direct control of selec-
tivity to generate functionalized materials as described for the ascorbic acid modified
polymers.

Keywords Enzymatic polymerization · Vinyl monomer · Vitamin C · Biocatalysis

1
Introduction

Nature is responsible for the synthesis of a diverse set of polymers in biosys-
tems with sophisticated structural control. In vivo these polymers are synthe-
sized by enzymes. When these enzymes are isolated from biological systems
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and used in vitro, they retain catalytic properties to carry out biotransfor-
mations in a selective fashion in unnatural environments. These selective
transformations provide advantages over traditional synthetic methods with
respect to stereo-, regio-, and enantioselective control to produce functional-
ized polymers, biomaterials, agrochemicals, and pharmaceuticals. Studies on
enzyme-based polymerization reactions have expanded for the past 15 years.
Part of this expansion is due to the variety of families of enzymes that can be
utilized for transformations of their natural substrates as well as a wide range
of synthetic compounds. Enzymatic, chemoenzymatic, and multienzymatic
approaches have been used to exploit enzymatic technology for polymer syn-
thesis [1–5]. The main target macromolecules for enzymatic polymerization
are polysaccharides, polyesters, poly(amino acids), and polyaromatics. Li-
pases and peroxidases have shown remarkable utility toward these targets.
Lipase-catalyzed selective modification of monomers, ring-opening polymer-
ization, polycondensation of alcohols with acids, and polycarbonate synthe-
sis have been reported. Peroxidases catalyze the oxidation of a variety of
substrates such as phenols, aromatic amines, and vinyl monomers in the
presence of hydrogen peroxide, leading to polymerization in aqueous, non-
aqueous, and interfacial systems [6–14].

In this chapter, the focus is on in vitro enzyme catalysis for vinyl poly-
merization. To the best of our knowledge, prior to the work of Derango
et al. (1992) there is a single short report showing the formation of low mo-
lecular weight vinyl polymers when studied in a suspension of Escherichia
coli in the presence of methyl methacrylate [15, 16]. Unlike polyaromat-
ics, vinyl polymerization offers better control of polymer characteristics,
as has been demonstrated with ternary systems (enzyme, oxidant, and
initiator such as β-diketone). The number of different vinyl monomer
chemistries investigated for susceptibility toward enzymatic polymerization
(1–12) is fewer than reported aromatics, as is the extent of literature cover-
ing these types of syntheses. In addition, the discovery of multienzymatic
approaches for the synthesis of antioxidant-functionalized vinyl polymers
provides new impetus for the use of enzymatic methods related to vinyl
polymers.

2
Polymerization of Acrylic Acid Based Monomers

Resins of poly(sodium acrylate) are used as water absorbent materials for
cleaning surfaces, and in water and oil conditioning, personal care prod-
ucts, and disposable materials for medical applications [17–20]. The large
amount of lignin produced as a by-product of the pulp and paper indus-
try has little commercial utility. Fungal laccase-catalyzed grafting of lignin
with acrylamide and other vinyl monomers is an approach being used to
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convert this “waste” lignin into a new class of marketable engineering plas-
tics [21–23]. In 1951 Parravano reported for the first time that enzymatic
systems such as E. coli in formic acid and xanthine oxidase in formaldehyde
can initiate polymerization of methyl methacrylate in aqueous medium free
of oxygen [15]. There was no significant activity in the study of enzymatic
vinyl polymerization until 1992 when Derango et al. reported the polymer-
ization of vinyl monomers such as acrylamide, methyl acrylate, hydroxyethyl
methacrylate, acrylic acid, and methyl methacrylate in the presence of various
enzymes such as xanthine oxidase, horseradish peroxidase, alcohol oxidase,
and chloroperoxidase [16].

The authors reported the generation of polymers in the presence of a large
excess of oxidant (monomer : oxidant 1.6 : 1.0 vol/vol) without any informa-
tion on the mechanism of polymerization, polymer molecular weight, or role
and influence of oxidant on the enzyme or reaction kinetics. Subsequently,
the laccase-catalyzed polymerization of acrylamide in water without any ini-
tiator (β-diketone) at temperatures ranging from 50 to 80 ◦C was reported;
however, the reactions were efficiently carried out at room temperature with
the use of laccase/β-diketone (2,4-pentanedione) initiator to produce poly-
acrylamide in 97% yield (Mn = 2.3×105) [24, 25]. The molecular weight of
the polymer in these studies was determined by size exclusion chromatogra-
phy. At 50, 65, and 80 ◦C when the polymerization was carried out for 4 h,
polyacrylamides with Mn = 9.4, 9.2, and 10×105, respectively, were produced
with the highest yield of 70% at 65 ◦C.

In later studies on enzymatic vinyl polymerization, the same authors used
a ternary system (horseradish peroxidase, H2O2, β-diketone) to generate
free radicals in the oxidoreductive pathway. Teixeira et al. [26] studied the
role of eight β-diketones (2,4-pentanedione, 2-acetylcyclohexanone, 2-acetyl-
cyclopentanone, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione,
2-methyl-1,3-cyclohexanedione, 1,3-cyclopentanedione, 2-methyl-1,3-cyclo-
pentanedione) in the polymerization of acrylamide. The results demonstrated
that β-diketones are key compounds in the reactions, and by changing
the initiator the molecular weight (Mn = 5100 to 124 000), polydispersity
(PD = 2.5 to 4.4), and yield (38 to 93%) of vinyl polymers were greatly in-
fluenced. Kalra et al. [27] performed the horseradish peroxidase-mediated
polymerization of acrylamide in aqueous medium with and without the
addition of surfactant. The surfactants bis(2-ethylhexyl)sodium sulfosucci-
nate and cetyltrimethylammonium bromide influenced the reaction yield
with time. Reactions were completed in 60 and 75 min, respectively, com-
pared to 180 min without surfactant, to produce polymer with the same yield
(94 to 99%). Concentrated emulsions prepared from sodium monooleate
were also used as a medium for acrylamide free radical polymerization.
Polyacrylamide in 99% yield was produced in 75 min; the polydispersity
was > 4, higher than that for the aqueous system without surfactant. The
horseradish peroxidase/H2O2 system was extended to the chemoselective
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polymerization of 2-(4-hydroxyphenyl)ethyl methacrylate and polymeriza-
tion of 2-phenylethyl methacrylate (Fig. 1) [28].

Kobayashi et al. reported the laccase-catalyzed polymerization of acryl-
amide without the addition of hydrogen peroxide. Polymerization occurs at
50 ◦C and higher temperatures, but no polymerization was observed at room
temperature. In the presence of initiator such as 2,4-pentanedione, laccase
catalyzed the vinyl polymerization at room temperature. The highest mo-
lecular weight (Mn = 6×105, PD = 1.99) was achieved when the reaction was
carried at 65 ◦C. In the polymerization at this temperature the polymer yield
gradually increased with time, e.g., 37, 70, and 81% in 1, 4, and 24 h, respec-
tively. No polymerization was observed when the reaction was carried out
under air. In terms of yield of the reaction, water was a better solvent than
N,N-dimethylformamide. The horseradish peroxidase-catalyzed polymeriza-
tion of the phenolic moiety in the presence of the methacrylic group was
carried out using hydrogen peroxide as oxidizing agent in acetone/acetate
buffer (pH 7; 50 : 50 vol %) at room temperature under air for 24 h. Polymer
with a pendant acrylic group was produced in 77% yield.

Kalra et al. [29] reported that horseradish peroxidase type II gave the best
yield, polydispersity, and tacticity in the enzyme-mediated free radical poly-
merization of methyl methacrylate in mixtures of water and water-miscible
cosolvents, when compared with horseradish peroxidase type I, soybean per-
oxidase, and Arythomyces ramosus peroxidase. The polymerization of methyl
methacrylate has predominantly shown the formation of syndiotactic poly-
mers. Changing the enzyme concentration from 70 to 80 mg/mL in a given

Fig. 1 Chemoselective polymerization of phenol derivative by horseradish peroxidase
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reaction resulted in an increase in the syn-dyad fraction from 0.84 to 0.85
and an increase in polymer yield from 46 to 56%. On increasing the hydro-
gen peroxide concentration from 0.056 to 0.110 mmol, the yield decreased
from 65 to 13% and Mn decreased from 91 000 to 13 000. The concentration of
2,4-pentanedione greatly influenced the polymer yield, which increased from
18 to 88% when the concentration was increased from 0.097 to 0.116 mmol,
whereas further increases in concentration to 0.136 and 0.115 mmol resulted
in a decrease in product yield (45 and 14%, respectively).

3
Polymerization of Styrene Based Monomers

Polystyrene is used in a wide range of commercial applications as packag-
ing material, injection molded parts, and UV screening agents [30, 31]. An
enzymatic strategy was used for the synthesis of polymers from styrene,
4-methylstyrene, 2-vinylnaphthalene, and sodium styrenesulfonate [32, 33].
Molecular weight and yield of polystyrene were influenced by solvent, con-
centration of hydrogen peroxide, and initiator. Five solvents, on the basis of
different polarity, were investigated in these reactions to explore monomer and
polymer compatibility. The highest polymer yield was in aqueous tetrahydro-
furan. With high water content (H2O/THF (v/v)> 5) the polymer yield was
low. This may be due to insufficient tetrahydrofuran to dissolve the styrene
monomer and polymer, leading to phase separation. As the tetrahydrofuran
content was increased, polystyrene yield increased to 21% (H2O/THF = 3,
v/v). Polystyrene yield was low in aqueous DMF because this solvent was not
miscible in water and thus decreased the initiation of the reaction. The poly-
styrene yield in methanol was also low, perhaps because styrene was soluble
in methanol but polystyrene had poor solubility, thus oligomers precipitated
and terminated polymerization. Polymer yield in dioxane was also low, despite
a solvent polarity comparable to that of tetrahydrofuran. This low yield may be
due to the effect of dioxane on enzyme activity. Polydispersity was similar in
tetrahydrofuran and dioxane. As a result of these studies, tetrahydrofuran was
selected as a suitable solvent for subsequent polymerization reactions due to
the combination of high yield and high molecular weight of polymer formed.
Polystyrene molecular weight increased with reaction time while polydisper-
sity also increased, presumably due to the free radical process. The influence of
six different initiators (2,4-pentanedione, dibenzoylmethane, benzoylacetone,
tetronic acid, 4-hydroxycoumarin, and 1,3-cyclopentanedione) was examined
for the horseradish peroxidase-catalyzed polymerization of styrene. The re-
sults showed that molecular weights (Mn = 26 923 to 96 504) and yields (14 to
60%) were effected by the initiator.

Polymers of p-styrenesulfonic acid are used in many applications includ-
ing ion-exchange membranes and resins [34–38], in biomaterials to influ-
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ence cell adhesion [39–43], and as inhibitors of virus infections [44–51].
Horseradish peroxidase, hematin, and pegylated hematin (PEG-hematin)
were used for the polymerization of sodium styrenesulfonate in aqueous
systems (Fig. 2). PEG-hematin was synthesized to maintain solubility and
function at neutral pH, which was not possible with unmodified hematin
due to the limitations in solubility at neutral pH. The molecular weight of
poly(sodium styrenesulfonate) increased (from Mn 65 882 to 163 280) with re-
action time while the polydispersity also increased (2.5 to 3.4), presumably
due to the free radical process. More than 80% of the sodium styrenesulfonate
was converted to poly(sodium styrenesulfonate) in 4 h. Experiments were run
for 15, 30, 60, 120, and 240 min with three different ratios of hydrogen per-
oxide and 2,4-pentanedione (H2O2 : dione): (a) 0.056 : 0.082, (b) 0.056 : 0.224,
and (c) 0.224 : 0.082 mmol. When the ratio of 2,4-pentanedione was 1.46
times the molarity of hydrogen peroxide (condition “a”), a steady increase
in molecular weight (from Mn 37 795 to 90 389) and yield (7.0 to 82.2%)
was observed. When the concentration of 2,4-pentanedione was increased
four times (condition “b”), a decrease in molecular weight (from Mn 88 106
to 49 407) and increase in polydispersity (2.3 to 3.8) was observed. Reac-
tion “b” was slow initially but yielded the same amount of polymer as
in case “a” over time. In comparison, with an increased ratio of hydro-
gen peroxide (condition “c”) no product was detected for the reaction run
of 15 or 30 min, while after 240 min with same amount of hydrogen per-
oxide a 56% yield of polymer (Mn = 137 098, PD = 2.8) was obtained. The
higher molecular weight achieved when the initiator was 1.46 times the
hydrogen peroxide used, on a molar basis, can be explained on the basis
of the mechanistic cycle for horseradish peroxidase-catalyzed polymeriza-
tion of vinyl monomers (Fig. 3). One molecule of hydrogen peroxide pro-
duces two catalytically active forms of horseradish peroxidase, each of which
oxidizes the initiator to produce a radical. The initiator radical generates

Fig. 2 Schematic of sodium styrenesulfonate polymerization by the different catalysts.
HRP: horseradish peroxidase; 2,4-PD: 2,4-pentanedione; H2O2: hydrogen peroxide
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monomer styrene radicals, which react with other radicals. The initiator rad-
ical also generates monomer styrene radicals that react with other monomers
to produce polymer. Therefore, based on the mechanism and optimal sto-
ichiometry, one molecule of hydrogen peroxide requires two molecules of
2,4-pentanedione.

When 2,4-pentanedione was present at four times the level of hydrogen
peroxide, many initiator radicals were formed early in the reaction leading
to the formation of many polymer chains and thus lower molecular weight
polymer. The higher concentration of hydrogen peroxide likely inhibited the
horseradish peroxidase activity in the short time frame (up to 30 min) leading
to low overall yield after 240 min.

To evaluate the influence of hydrogen peroxide and 2,4-pentanedione on
the molecular weight and polydispersity of poly(sodium styrenesulfonate),
stepwise changes in the ratio of these two components were studied, with
each reaction run for 4 h at room temperature. The increase in hydrogen
peroxide resulted in increased molecular weight of polymer (Mn = 80 925 to
137 098), while the increase in 2,4-pentanedione resulted in decreased mo-
lecular weight and increased polydispersity (Mn = 152 251 to 44 245; PD = 3.2
to 4.0). The yield was influenced by the amount of water, with the low wa-
ter content yielding the most polymer (94%) and the highest water content
the lowest yield (58%). PEG-hematin yielded poly(sodium styrenesulfonate)
with the highest molecular weight (Mn = 223 520, PD = 3.48) versus hematin
and horseradish peroxidase. More than 98% of the sodium acrylate was poly-
merized with hematin at pH 11.0 to form poly(sodium acrylate) at room
temperature in water.

Fig. 3 Catalytic cycle of horseradish peroxidase showing the possible mechanism for
free radical polymerization of vinyl monomer (styrene) with β-diketone initiator (2,4-
pentanedione). HRP: horseradish peroxidase; Ei, Eii, and Eiii: oxidized states of horse-
radish peroxidase; R: 2,4-pentanedione]
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4
Vitamin C Functionalized Vinyl Polymers

Antioxidant compounds are added to protect the polymers during and after
processing due to thermal and oxidative degradation [52]. The performance
of an antioxidant compound depends on its ability to scavenge and retard
the radical chain oxidation process. The properties of a good antioxidant
candidate include volatility, compatibility, and solubility with the matrix to
avoid aggregation and heterogeneous distribution. Chemical methods were
used to produce macromolecules of antioxidant compounds in order to re-
duce volatility. The antioxidant compounds were bound to polymers for more
homogeneous distribution. Commonly used antioxidant compounds include
synthetic phenolic compounds. These phenolic compounds are added in large
quantities to protect polymers from degradation but can also leach into foods
and consumer-related products. Since the antioxidants must be added in large
quantities, this can also result in discoloration and off-flavors during pro-
cessing. Furthermore, this loading with antioxidants results in the exposure
of consumers to excess levels of such compounds. There has been grow-
ing interest in the substitution of synthetic food antioxidants like butylated
hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) by natural an-
tioxidants because they are suspected carcinogens and the U.S. Food and
Drug Administration (FDA) has therefore restricted their use [53]. There are
numerous natural antioxidants and many are polyphenolic compounds in-
cluding flavonoids such as quercetin, various tannins, caffeic acid, extracts
of spices and tea, tocopherols (vitamin E), β-carotene, and vitamin C. Most
of these natural antioxidants are not good candidates for foods and other
consumer-related applications due to their poor lipid solubility, high pro-
duction cost when compared to BHA and BHT, and instability with time
leading to discoloration of foods. When ascorbic acid is used in these types
of consumer-related applications, it is prone to moisture-induced degrada-
tion which leads to the formation of brown coloration [54–56]. In addition,
the hydrophilic behavior of ascorbic acid prevents its application in cosmet-
ics or use in the presence of fats and oils. At present, 6-0-palmitoyl ascorbic
acid is produced by chemical means to resolve these issues. The chemical
synthesis to generate this derivative of ascorbic acid results in the formation
of a mixture of products with a preponderance of 0-6 substitution. This re-
quires further purification, leading to lower yields [57, 58]. To overcome these
problems enzymatic modifications of ascorbic acid to ascorbyl palmitate have
been pursued [59, 60].

Recently a new strategy was developed whereby a mild and highly selec-
tive enzymatic method was used to covalently couple the primary hydroxyl
group of ascorbic acid with styrene and methyl acrylate monomers, followed
by a second enzymatic reaction catalyzed by horseradish peroxidase to poly-
merize the styrene and acrylate monomers yielding vitamin C functionalized
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polystyrene and poly(methyl methacrylate), respectively (Fig. 4) [61, 62]. The
coupling approach was conducted with a Candida antarctica lipase-mediated
transesterification reaction where the primary hydroxyl group of ascorbic
acid was regioselectively acylated with trifluoroethyl 4-vinylbenzoate and
2,2,2-trifluoroethyl methacrylate. In a general procedure for polymerization
of l-ascorbyl methyl methacrylate, 5 mL water and 10 mL tetrahydrofuran
were flushed with nitrogen for 15 min. l-Ascorbyl methyl methacrylate (2.0 g,
8.2 mM) was added to the reaction mixture. Horseradish peroxidase (16 mg)
was dissolved in 200 µL water. Hydrogen peroxide (0.82 mM, 93 µL) and 2,4-
pentanedione (1.64 mM, 177 µL) were added simultaneously after the add-
ition of the enzyme, and polymerization was conducted for 24 h with contin-
uous stirring. The polymerization of l-ascorbyl 4-vinylbenzoate was carried
out in a mixture of water and methanol. The antioxidant activity of ascorbic
acid, ascorbic acid functionalized polystyrene, and poly(methyl methacry-
late) were compared by using the DPPH (2,2-diphenyl-1-picrylhydrazyl rad-
ical) method [63–65]. The test compound (ascorbic acid, l-ascorbyl methyl
methacrylate, or polymer of l-ascorbyl methyl methacrylate) and DPPH
(final conc. 0.2 mM) predissolved in methanol were assessed spectrophoto-
metrically. Methanol without DPPH was used as reference. Vitamin C func-
tionalized polystyrene, when used at a concentration of 238 µM, fully scav-
enged DPPH free radicals (0.2 mM). In another case, ascorbic acid, l-ascorbyl

Fig. 4 Enzymatic synthesis of vitamin C functionalized polymers
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methyl methacrylate, and polymerized l-ascorbyl methyl methacrylate, when
used at a concentration up to 133 µM, fully scavenged DPPH free radicals
(0.2 mM). This analysis showed that the formation of polymers with active
pendant antioxidant compounds was feasible, since the vitamin C retained its
ability to scavenge radicals while in polymeric form.

5
Kinetics and Mechanism

A molar equivalent of hydrogen peroxide to monomer and horseradish per-
oxidase is a well-known redox system that catalyzes the free radical poly-
merization of phenol, anilines, and their derivatives [6–14]. Horseradish
peroxidase-mediated polymerization of styrene and methyl methacrylate,
with a monomer (styrene or methyl methacrylate) to hydrogen peroxide ratio
of 40 : 1, did not occur in the absence of 2,4-pentanedione. Therefore, it is
likely that this compound is involved in the initiation of free radical for-
mation. A reasonable hypothesis for the horseradish peroxidase-catalyzed
polymerization of vinyl monomers is that the enzyme is oxidized by hy-
drogen peroxide and passes from its native state through two catalytically
active forms (Ei and Eii). Each of these active forms oxidizes the initiator
(β-diketone, 2,4-pentanedione) while the enzyme returns to the native form.
The Eii state of enzyme is oxidized by hydrogen peroxide to produce inac-
tive enzyme, Eiii, which spontaneously reverts to the native form of enzyme.
The free radicals produced from the initiator generate radicals in the vinyl
monomer to form polymer (Fig. 2).

Durand et al. [66, 67] performed a detailed study on optimization con-
ditions for acrylamide polymerization and the role of the concentration of
hydrogen peroxide, 2,4-pentanedione, and horseradish peroxidase in the ini-
tial stages of the reaction. Hydrogen peroxide is involved in three processes:
(a) the catalytic oxidation of 2,4-pentanedione, (b) degradation reactions of
horseradish peroxidase through the formation of an inactive form of en-
zyme (Eiii), and (c) chemical oxidation of 2,4-pentanedione (cycloperoxi-
dation). For a successful polymerization reaction hydrogen peroxide con-
centrations ranging from 10–4 to 10–2 mol L–1 with respect to horseradish
peroxidase 1.9 g L–1 were required. The hydrogen peroxide concentration did
not have a great influence on the molecular weight except when it exceeded
upper and lower limits. The minimum concentration of 2,4-pentanedione
required in a reaction was 4 mmol L–1, as no acrylamide polymer was re-
covered below this limit. Unlike hydrogen peroxide, there is no upper limit
for 2,4-pentanedione as it is involved in the production of radicals and not
in the degradation of horseradish peroxidase; molecular weight was influ-
enced by its concentration. Experiments on acrylamide polymerization with
a fixed concentration of hydrogen peroxide (7×10–4) and various concen-
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trations of horseradish peroxidase (0.06 to 12 g L–1) showed that the higher
horseradish peroxidase concentration resulted in reduced polymer molecular
weight. A concentration higher than 0.49 g L–1 did have a significant effect on
molecular weight. Lalot et al. studied the free radical polymerization of acry-
lamide in water at room temperature with catalysis by horseradish peroxidase
to produce radical species from hydrogen peroxide and 2,4-pentanedione
through an oxidative pathway [68]. The initial period of polymerization inhi-
bition was observed and residual oxygen was assumed to be the inhibitor. The
polymerization process was a first-order reaction with respect to monomer in
the 70–75% conversion range. The deviation of the reaction from first order
could be due to a decrease of the propagating radical concentrations arising
from the increase of the polyacrylamide solution viscosity.

Initiators greatly influenced styrene polymerization in terms of molecular
weight and yield. The role of the initiator in vinyl polymerization is complex.
According to the mechanistic hypothesis, it is the enol form of the initiator
(β-diketone) that is used for production of radicals and not the keto form.
Based on this mechanism, the initial concentration of the initiator will de-
pend on the equilibrium in the β-diketone (keto ↔ enol forms) and it could
differ from one initiator to another in the same polymerization medium. In
addition, the actual concentration of initiator would be reduced by the chem-
ical oxidation of β-diketone to cyclic peroxide, which will depend on the
nature of the β-diketone (cyclic or acyclic) and amount of hydrogen peroxide
in the reaction. Two additional issues that could be considered responsible for
the control of molecular weight along with the change of the β-diketone are
(a) chain transfer reactions and (b) reactivity of enzyme with the β-diketone.
The production of radicals first occurs on the enol form and chain transfer to
the β-diketone could affect the molecular weight of polymer. The use of cyclic
β-diketones resulted in dramatic changes in the molecular weight of styrene
and acrylamide. In order to check if these variations came from chain trans-
fer, acrylamide polymerization was carried out using the chemical catalyst
4,4′-azodicyanovaleric acid as initiator in the presence of β-diketones (2,4-
pentanedione, 2-acetylcyclopentanone, 2-methylcyclohexane-1,3-dione, and
2-methylcyclopentane-1,3-dione) and the results were compared with those
without β-diketones. The presence of β-diketones decreased the molecular
weight, which could be due to chain transfer taking place to the β-diketones.
In the chemical polymerization initiated by 4,4′-azodicyanovaleric acid the
yield remained near 100%, while it varied between 38 and 93% for the
horseradish peroxidase-mediated ternary system. The results demonstrated
that chain transfer is not the only parameter to influence the output of
the polymerization reaction, but in addition reactivity of the enzyme with
β-diketone could be partly responsible. This may also help explain the results
of styrene polymerization where changing the β-diketone resulted in changes
in yield and molecular weight; however, when 4-hydroxycoumarin with a sta-
ble enol form was used as initiator the yield was low (14%). Coumarins
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may have lower reactivity with horseradish peroxidase, and compounds like
cyclic β-diketones are good substrates for horseradish peroxidase. This re-
sult has been further supported by the fact that cyclic β-diketones, such
as 5,5-dimethyl-1,3-cyclohexanedione, are substrates for chloroperoxidases,
which belong to the same subclass of enzymes as horseradish peroxidase [69].

6
Conclusions

There are tremendous opportunities for enzymatic polymerization reactions,
including: (1) most of the enzymes used in polymer synthesis are commer-
cially available and genetic engineering can be used to enhance selective
reactivities; (2) a pool of heterocyclic compounds like coumarins, flavones,
and chalcones are well known to chemists and provide fertile ground for
further exploration; (3) a more diverse set of monomers can be synthesized
using chemoenzymatic methods; (4) most of the target polymers (synthetic)
are formed in living organisms with better structural control by using en-
zymes to further validate the concept of enzymatic polymerization, and much
can be done in parallel to natural polymers in terms of control of stereoregu-
larity; and (5) in living organisms these polymers are synthesized for specific
purposes like energy storage, architectural control, and information trans-
fer. In vitro polymers are synthesized for academic purposes. If more specific
controls can be achieved, enzymatic polymerization can meet challenges
in a variety of technological applications, including controlled release of
pharmaceuticals, tissue engineering, the food industry, and other consumer-
related needs. Vitamin C functionalized vinyl polymers have shown an ability
to scavenge free radicals which can be used to improve the shelf life of la-
bile components in foods and pharmaceuticals, while also reducing human
exposure to commonly used antioxidants such as BHA and BHT.
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