


Lecture Notes in Mathematics 1793
Editors:
J.–M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris



3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo



Jorge Cortés Monforte

Geometric, Control and
Numerical Aspects of
Nonholonomic Systems

1 3



Author

Jorge Cortés Monforte

Systems, Signals and Control Department
Faculty of Mathematical Sciences
University of Twente
P.O. Box 217
7500 AE Enschede
Netherlands
e-mail: j.cortesmonforte@math.utwente.nl
http://www.math.utwente.nl/ssb/cortesmonforte.htm

Cataloging-in-Publication Data applied for.

Cover illustration by Maŕıa Cortés Monforte
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Preface

Nonholonomic systems are a widespread topic in several scientific and com-
mercial domains, including robotics, locomotion and space exploration. This
book sheds new light on this interdisciplinary character through the investi-
gation of a variety of aspects coming from different disciplines.

Nonholonomic systems are a special family of the broader class of me-
chanical systems. Traditionally, the study of mechanical systems has been
carried out from two points of view. On the one hand, the area of Classi-
cal Mechanics focuses on more theoretically oriented problems such as the
role of dynamics, the analysis of symmetry and related subjects (reduction,
phases, relative equilibria), integrability, etc. On the other hand, the disci-
pline of Nonlinear Control Theory tries to answer more practically oriented
questions such as which points can be reached by the system (accessibility
and controllability), how to reach them (motion and trajectory planning),
how to find motions that spend the least amount of time or energy (opti-
mal control), how to pursue a desired trajectory (trajectory tracking), how
to enforce stable behaviors (point and set stabilization),... Of course, both
viewpoints are complementary and mutually interact. For instance, a deeper
knowledge of the role of the dynamics can lead to an improvement of the mo-
tion capabilities of a given mechanism; or the study of forces and actuators
can very well help in the design of less costly devices.

It is the main aim of this book to illustrate the idea that a better un-
derstanding of the geometric structures of mechanical systems (specifically
to our interests, nonholonomic systems) unveils new and unknown aspects
of them, and helps both analysis and design to solve standing problems and
identify new challenges. In this way, separate areas of research such as Me-
chanics, Differential Geometry, Numerical Analysis or Control Theory are
brought together in this (intended to be) interdisciplinary study of nonholo-
nomic systems.

Chapter 1 presents an introduction to the book. In Chapter 2 we re-
view the necessary background material from Differential Geometry, with a
special emphasis on Lie groups, principal connections, Riemannian geome-
try and symplectic geometry. Chapter 3 gives a brief account of variational
principles in Mechanics, paying special attention to the derivation of the non-



VIII Preface

holonomic equations of motion through the Lagrange-d’Alembert principle.
It also presents various geometric intrinsic formulations of the equations as
well as several examples of nonholonomic systems.

The following three chapters focus on the geometric aspects of nonholo-
nomic systems. Chapter 4 presents the geometric theory of the reduction
and reconstruction of nonholonomic systems with symmetry. At this point,
we pay special attention to the so-called nonholonomic bracket, which plays
a parallel role to that of the Poisson bracket for Hamiltonian systems. The
results stated in this chapter are the building block for the discussion in
Chapter 5, where the integrability issue is examined for the class of nonholo-
nomic Chaplygin systems. Chapter 6 deals with nonholonomic systems whose
constraints may vary from point to point. This turns out in the coexistence
of two types of dynamics, the (already known) continuous one, plus a (new)
discrete dynamics. The domain of actuation and the behavior of the latter
one are carefully analyzed.

Based on recent developments on the geometric integration of Lagrangian
and Hamiltonian systems, Chapter 7 deals with the numerical study of non-
holonomic systems. We introduce a whole new family of numerical integra-
tors called nonholonomic integrators. Their geometric properties are thor-
oughly explored and their performance is shown on several examples. Finally,
Chapter 8 is devoted to the control of nonholonomic systems. After exposing
concepts such as configuration accessibility, configuration controllability and
kinematic controllability, we present known and new results on these and
other topics such as series expansion and dissipation.

I am most grateful to many people from whom I have learnt not only
Geometric Mechanics, but also perseverance and commitment with quality
research. I am honored by having had them as my fellow travelers in the
development of the research contained in this book. Among all of them, I
particularly would like to thank Manuel de León, Frans Cantrijn, Jim Os-
trowski, Francesco Bullo, Alberto Ibort, Andrew Lewis and David Mart́ın for
many fruitful and amusing conversations. I am also indebted to my family
for their encouragement and continued faith in me. Finally, and most of all, I
would like to thank Sonia Mart́ınez for the combination of enriching discus-
sions, support and care which have been the ground on which to build this
work.

Enschede, July 2002 Jorge Cortés Monforte
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1 Introduction

N ONHOLONOMIC systems are present in a great variety of environ-
ments: ranging from Engineering to Robotics, wheeled vehicle and satel-

lite dynamics, manipulation devices and locomotion systems. But, what is a
nonholonomic system? First of all, it is a mechanical system. But among
these, some are nonholonomic and others are not. Which is the distinction?
What makes a mechanical system nonholonomic is the presence of nonholo-
nomic constraints. A constraint is a condition imposed on the possible mo-
tions of a system. For instance, when a penny is rolling without slipping over
the floor, it is satisfying the condition that the linear velocity of the point
of contact with the surface is zero, otherwise the penny would slip. Another
example is given by a robotic manipulator with various links: we can think of
each link as a rigid body that can move arbitrarily as long as it maintains the
contact with the other links imposed by the joints. Holonomic constraints are
those which can be expressed in terms of configuration variables only. This
is the case of the robotic manipulator mentioned above. Nonholonomic con-
straints are those which necessarily involve the velocities of the system, i.e. it
is not possible to express them in terms of configuration variables only. This
is the case of the rolling penny.

Numerous typical problems from Mechanics and Control Theory appear
in a natural way while investigating the behavior of this class of systems.
One of the important questions concerns the role played by the dynamics
of the system: in some nonholonomic problems, as we shall see, dynamics
is crucial – these are the so-called dynamic systems, as, for instance, the
Snakeboard [29, 148] or the rattleback [36, 77, 250]; in others, however, it is
the kinematics of the system which plays the key role – the kinematic sys-
tems [117]. Another interesting issue concerns the presence of symmetry, in
connection with the reduction of the number of degrees of freedom of the
problem, the reconstruction problem of the dynamics and the role of geomet-
ric and dynamic phases, which are long studied subjects in the Mechanics lit-
erature (see [159]). Other topics include the study of (relative) equilibria and
stability, the notion of complete integrability of nonholonomic systems, etc.
On the control side, relevant problems arising when studying nonholonomic
systems are, among others, the development of motion and trajectory plan-
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2 1 Introduction

ning strategies, the design of point and trajectory stabilization algorithms,
the accessibility and controllability analysis,...

This wealth of questions associated with nonholonomic systems explains
the fact that, along history, nonholonomic mechanics has been the meeting
point for many scientists coming from different disciplines. The origin of the
study of nonholonomic systems is nicely explained in the introduction of the
book by Neimark and Fufaev [188],

“The birth of the theory of dynamics of nonholonomic systems oc-
curred at the time when the universal and brilliant analytical for-
malism created by Euler and Lagrange was found, to general amaze-
ment, to be inapplicable to the very simple mechanical problems of
rigid bodies rolling without slipping on a plane. Lindelöf’s error, de-
tected by Chaplygin, became famous and rolling systems attracted
the attention of many eminent scientists of the time...”

The stage of what we might call “classical” development of the subject can
be placed between the end of the 19th century and the beginning of the 20th
century. At this point, the development of the analytical mechanics of non-
holonomic systems was intimately linked with the problems encountered in
the study of mechanical systems with holonomic constraints and the develop-
ments in the theory of differential equations and tensor calculus. It was the
time of the contributions by Appell, Chaplygin, Chetaev, Delassus, Hamel,
Hertz, Hölder, Levi-Civita, Maggi, Routh, Vierkandt, Voronec, etc.

The work by Vershik and Faddeev [244] marked the introduction of Differ-
ential Geometry in the study of nonholonomic mechanics. Since then, many
authors have studied these systems from a geometric perspective. The em-
phasis on geometry is motivated by the aim of understanding the structure of
the equations of motion of the system in a way that helps both analysis and
design. This is not restricted to nonholonomic mechanics, but forms part of
a wider body of research called Geometric Mechanics, which deals with the
geometrical treatment of Classical Mechanics and has ramifications into Field
Theory, Continuum and Structural Mechanics, Partial Differential Equations,
etc. Geometric Mechanics is a fertile area of research with fruitful interactions
with other disciplines such as Nonlinear Control Theory (starting with the
introduction of differential-geometric and topological methods in control in
the 1970s by Agračhev, Brockett, Gamkrelidze, Hermann, Hermes, Jurdjevic,
Krener, Lobry, Sussmann and others; see the books [105, 189, 211, 224]) or
Numerical Analysis (with the development of the so-called geometric inte-
gration; see the recent books [160, 210]). Many ideas and developments from
Geometric Mechanics have been employed in connection with other disci-
plines to tackle practical problems in several application areas. Examples are
ubiquitous and we only mention a few here: for instance, the use of the affine
connection formalism and the symmetric product in the design of motion
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planning algorithms for point to point reconfiguration and point stabiliza-
tion [42], and in the development of decoupled trajectory planning algorithms
for robotic manipulators [45]; the use of the theory of reduction (principal
connections, geometric phases, relative equilibria) and series expansions on
Lie groups to study motion control and stability issues in underwater vehi-
cle exploration (see [139, 140] and references therein), and optimal gaits in
dynamic robotic locomotion [75]; the use of the technique of the augmented
potential in the analysis and design of oscillatory controls for micromechanical
systems [13, 14]; the interaction with dynamical systems theory in computing
homoclinic and heteroclinic orbits for the NASA’s Genesis Mission to collect
solar wind samples [121]; the use of Dirac structures, Casimir functions and
passivity techniques in robotic and industrial applications [228]; and more.

The present book aims to be part of the effort to better understand non-
holonomic systems from the point of view of Geometric Mechanics. Our in-
terest is in the identification and analysis of the geometric objects that gov-
ern the motion of the problem. Exciting modern developments include the
nonholonomic momentum equation, that plays a key role in explaining the
generation of momentum, even though the external forces of constraint do
no work on the system and the energy remains constant; geometric phases
that account for displacements in position and orientation through periodic
motions or gaits; the use of the nonholonomic affine connection in the mod-
eling of several control problems with applications to controllability analysis,
series expansions, motion planning and optimal control; the stabilization of
unstable relative equilibria evolving on semidirect products; and much more.

1.1 Literature review

I N the following, we provide the reader with a brief review of the literature
on nonholonomic systems. There are many works on the subject, so the ex-

position here should not be taken as exhaustive. Complementary discussions
can be found in [25, 59, 103, 188].

There are many classical examples of nonholonomic systems that have
been studied (see the books [188, 207]). Routh [208] showed that a uniform
sphere rolling on a surface of revolution is an integrable system in the classical
sense; Vierkandt [249] treated the rolling disk and showed that the solutions of
the reduced equations are all periodic; Chaplygin [62, 63] studied the case of a
rolling sphere on a horizontal plane, allowing for the possibility of an nonuni-
form mass distribution. Another classical example which has attracted much
interest (due to its preferred direction of rotation and the multiple reversals
it can execute) is the wobblestone or rattleback [36, 77, 250]. Other examples
include the plate on an inclined plane and the two-wheeled carriage [188], the
nonholonomic free particle [207], etc.
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In the modern literature, there are several approaches to the dynamics of
nonholonomic systems. Many of them originated in the course of the study of
symmetries and the theory of reduction. Koiller [120] describes the reduction
of the dynamics of Chaplygin systems on a general manifold. He also consid-
ers the case when the configuration manifold is itself a Lie group, studying the
so-called Euler-Poincaré-Suslov equations [125]. The Hamiltonian formalism
is exploited by Bates, Śniatycki and co-workers [17, 18, 80, 220] to develop
a reduction procedure in which one obtains a reduced system with the same
structure as the original one. Lagrangian reduction methods following the
exposition in [164, 165] are employed in [29]. In this latter work, the nonholo-
nomic momentum map is introduced and its evolution is described in terms
of the nonholonomic momentum equation. Both approaches, the Hamiltonian
and the one via Lagrangian reduction, are compared in [122] (see also [222]).
The geometry of the tangent bundle is employed in [50, 57, 137] to obtain
the dynamics of the systems through the use of projection mappings. Several
authors have investigated what has been called almost-Poisson brackets (“al-
most” because they fail to satisfy the Jacobi identity) in connection with sta-
bility issues [53, 123, 156, 241]. Interestingly, it has been shown in [241] that
the almost Poisson bracket is integrable if and only if the constraints are holo-
nomic. Nonholonomic mechanical systems with symmetry are also treated in
[24, 239] within the framework of Dirac structures and implicit Hamiltonian
systems. Stability aspects adapting the energy-momentum method for un-
constrained systems [155] are studied in [261] (see also [214]).

The language of affine connections has also been explored within the con-
text of nonholonomic mechanical systems. Synge [235] originally obtained
the nonholonomic affine connection, whose geodesics are precisely the solu-
tions of the Lagrange-d’Alembert equations. His work was further developed
in [243, 244] and, recently, it has been successfully applied to the modeling of
nonholonomic control systems [27, 47, 143, 144]. This has enabled the incor-
poration of nonholonomic dynamics into several lines of research within the
framework of affine connection control systems, such as controllability anal-
ysis, series expansions, motion planning, kinematic reductions and optimal
control.

Other relevant contributions to nonholonomic mechanics include [52, 88,
126, 135, 175, 180, 213] on various approaches to the geometric formulation
of time-dependent nonholonomic systems; [174] on the geometrical meaning
of Chetaev’s conditions; [157, 202] on the validity of these conditions and
various alternative constructions; [81, 254] on the Hamiltonian formulation
of nonholonomic systems; [127] on systems subject to higher-order nonholo-
nomic constraints; [97] on the existence of general connections associated with
nonholonomic problems and [22, 33, 118, 173, 214, 262] on the stabilization
of equilibrium points and relative equilibria of nonholonomic systems.
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Another line of research has been the comparison between nonholonomic
mechanics and vakonomic mechanics. The latter was proposed by Kozlov [10,
124] and consists of imposing the constraints on the admissible variations be-
fore extremizing the action functional. This variational nature has been inten-
sively explored from the mathematical point of view [55, 96, 129, 171, 245].
It is known that both dynamics coincide when the constraints are holonomic,
a result slightly extended by Lewis and Murray [145] to integrable affine con-
straints. Cortés, de León, Mart́ın de Diego and Mart́ınez [70, 168] developed
an algorithm to compare the solutions of both dynamics, recovering the result
of Lewis and Murray, and others of Bloch and Crouch [26], and Favretti [84].
Lewis and Murray [145] also performed an experiment with a ball moving on
a rotating table and concluded that it is nonholonomic mechanics that leads
to the correct equations of motion. Other authors have reached the same con-
clusion through different routes [260]. Nevertheless, it should be mentioned
that the vakonomic model has interesting applications to constrained opti-
mization problems in Economic Growth Theory and Engineering problems,
see for example [71, 154, 172, 212].

In the control and robotics community, the study of driftless systems
is a major subject of interest. These control systems are of the form ẋ =∑
i uigi(x), i.e no drift is present. The control vector fields gi generate a

distribution D and then the velocity state ẋ necessarily verifies ẋ ∈ D.
These problems are often called nonholonomic systems, though second-
order dynamics do not appear into the picture. As shown for instance
in [117], when studying the control problem of motion generation by in-
ternal shape changes, kinematic nonholonomic systems can be interpreted as
driftless systems. Some intensively studied issues regarding driftless systems
include the design of stabilizing laws [37], either discontinuous [11, 28, 54]
or time-varying [67, 177, 182, 203], the search for conditions to transform
the equations into various normal forms [200, 236], and the development
of oscillatory controls for trajectory planning and constructive controllabil-
ity [38, 152, 187, 234].

1.2 Contents

T O assist the reader, this section presents a detailed description of the
mathematical context in which the various aspects of nonholonomic sys-

tems dealt with in this book have been developed. We put a special emphasis
on the interrelation of nonholonomic mechanics with applications such as
undulatory locomotion, mobile robots, hybrid control systems or numerical
methods.

Nonholonomic reduction and reconstruction of the dynamics Non-
holonomic systems with symmetry have been a field of intensive research in
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the last years [18, 29, 50, 51, 68, 120, 156, 241]. In Geometric Mechanics,
this study is part of a well-established (and still growing) body of research
known as the theory of reduction of systems with symmetry, which started
in the 1970s with the seminal works by Smale [218, 219], Marsden and Wein-
stein [166] and Meyer [178], and since then has been devoted to the study of
the role of symmetries in the dynamics of mechanical systems (see [163, 190]).
An important objective driving the progress in this area has been the identi-
fication of relevant geometric structures in the description of the behavior of
the systems. This has led to nice geometric formulations of the reduction and
reconstruction of the dynamics, which unveil crucial notions such as geomet-
ric and dynamic phases, relative equilibria, the energy-momentum technique
in the stability analysis, etc.

These developments have had a considerable impact on applications
to robotic locomotion [75, 117, 195, 197] and control of mechanical sys-
tems [47, 76, 196], especially to undulatory locomotion. Undulatory robotic
locomotion is the process of generating net displacements of a robotic mech-
anism via periodic internal mechanism deformations that are coupled to con-
tinuous constraints between the mechanism and its environment. Actuable
wheels, tracks, or legs are not necessary. In general, undulatory locomotion
is “snake-like” or “worm-like,” and includes the study of hyper-redundant
robotic systems [66]. However, there are examples, such as the Snakeboard,
which do not have biological counterparts. The modeling of the locomotion
process by means of principal connections has led to a more complete un-
derstanding of the behavior of these systems in a variety of contexts. Issues
such as controllability, choice of gait or motion planning strategies are con-
siderably simplified when addressed using the language of phases, holonomy
groups and relative equilibria directions.

In Chapter 4, we develop a geometric formulation of the reduction and re-
construction of the dynamics for nonholonomic systems with symmetry. We
start by introducing a classification of systems with symmetry, depending
on the relative position of the symmetry directions with respect to the con-
straints. We treat first the purely kinematic or principal case, in which none
of the symmetries are compatible with the constraints. We obtain that the
reduction gives rise to an unconstrained system, with an external nonconser-
vative force that is in fact of gyroscopic type. These results are instrumental
in the following chapter, where we specialize our discussion to Chaplygin sys-
tems. We also discuss the reconstruction procedure and prove that the total
phase in this case is uniquely geometric, i.e. there is no dynamic phase. Then,
we deal with the horizontal case, which is the only case in which the reduction
procedure respects the category of systems under consideration. The recon-
struction of the dynamics is also explored, showing the parallelisms with the
unconstrained case [159].
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Finally, we discuss the reduction in the general case. The momentum
equation is derived within our geometric setting, and this is the starting
point to develop a full discussion of the almost-Poisson reduction. Special
attention is paid to the almost-Poisson bracket. As a particular case of these
results, we establish the appropriate relation in the horizontal case between
the original almost Poisson bracket and the reduced one. The chapter ends
with a detailed study of a special case where the reduction can be decomposed
in a two-step procedure, a horizontal and a kinematic one.

Integrability of Chaplygin systems An important topic which is receiv-
ing growing attention in the literature concerns the identification and char-
acterization of a suitable notion of complete integrability of nonholonomic
systems (see e.g. [10, 16, 27, 83, 107, 125, 248]). As is well known, an (un-
constrained) Hamiltonian system on a 2n-dimensional phase space is called
completely integrable if it admits n independent integrals of motion in involu-
tion. It then follows from the Arnold-Liouville theorem that, when assuming
compactness of the common level sets of these first integrals, the motion in
the 2n-dimensional phase space is quasi-periodic and consists of a winding on
n-dimensional invariant tori (see e.g. [10], Chapter 4). For the integrability
of a nonholonomic system with k constraints one needs, in general, 2n−k−1
independent first integrals. It turns out, however, that for a nonholonomic
system which admits an invariant measure, “only” 2n−k−2 first integrals are
needed in order to reduce its integration to quadratures, and in such a case
– again assuming compactness of the common level sets of the first integrals
– the phase space trajectories of the system live on 2-dimensional invariant
tori [10]. Several authors have studied the problem of the existence of invari-
ant measures for some special classes of nonholonomic systems. For instance,
Veselov and Veselova [248] have studied nonholonomic geodesic flows on Lie
groups with a left-invariant metric and a right-invariant nonholonomic dis-
tribution (the so-called LR systems). Kozlov [125] has treated the analogous
problem for left-invariant constraints. Their results have been very useful
for finding new examples of completely integrable nonholonomic dynamical
systems [83, 107, 248].

In Chapter 5, we focus our attention on generalized Chaplygin systems.
Systems of this type are present in Mechanics [188], robotic locomotion [117]
and motions of micro-organisms at low Reynolds number [216]. The special
feature about Chaplygin systems is that, after reduction, they give rise to
an unconstrained system subject to an external force of gyroscopic type. We
present a coordinate-free proof of this fact, together with a characterization
of the case where the external force vanishes. In his pioneering paper on
the reduction of nonholonomic systems with symmetry, Koiller has made a
conjecture concerning the existence of an invariant measure for the reduced
dynamics of generalized Chaplygin systems (see [120], Section 9). Based on
several known examples of such systems which do admit an invariant mea-
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sure, Koiller suggests that this property may perhaps hold in general. One of
the main results of Chapter 5 is the derivation of a necessary and sufficient
condition for the existence of an invariant measure for the reduced dynamics
of a generalized Chaplygin system whose Lagrangian is of pure kinetic en-
ergy type. This condition then enables us to disprove Koiller’s conjecture by
means of a simple counter example.

Dynamics of nonholonomic systems with generalized constraints
Chapter 6 deals with nonholonomic systems subject to generalized con-
straints, that is, linear constraints that may vary from point to point. One
could think of simple examples that exhibit this kind of behavior. For in-
stance, imagine a rolling ball on a surface which is rough on some parts
but smooth on the rest. On the rough parts, the ball will roll without slip-
ping and, hence, nonholonomic linear constraints will be present. However,
when the sphere reaches a smooth part, these constraints will disappear.
Geometrically, we model this situation through the notion of a generalized
differentiable codistribution, in which the dimension of the subspaces may
vary depending on the point under consideration. This type of systems is
receiving increasing attention in Engineering and Robotics within the con-
text of the so-called hybrid mechanical control systems [46, 91, 92], and more
generally, hybrid systems [39, 242]. Within this context, the engineering ob-
jective is to analyze and design systems that accomplish various tasks thanks
to their hybrid nature. This motivation leads to problems in which discon-
tinuities, locomotion and stability interact. Examples include hopping and
(biped and multi-legged) walking robots, robots that progress by swinging
arms, and devices that switch between clamped, sliding and rolling regimes.
A nice work in this direction, which also contains many useful references, is
provided by [150].

This study fits in with the traditional interest in systems subject to im-
pulsive forces from Theoretical Physics and Applied Mathematics (see [39]
for an excellent overview on the subject and the December 2001 special is-
sue of Philosophical Transactions: Mathematical, Physical and Engineering
Sciences on “Non-smooth mechanics”). Starting with the classical treatment,
the Newtonian and Poisson approaches [6, 108, 188, 198, 207], the subject
has continued to attract attention in the literature and has been approached
by a rich variety of (analytical, numerical and experimental) methods, see for
instance [116, 227, 229, 230]. Recently, the study of such systems has been
put into the context of Geometric Mechanics [100, 101, 102, 130].

In Chapter 6 we establish a classification of the points in the configuration
space in regular and singular points. At the regular points, the dynamics is
described by the geometric formalism discussed in Chapter 3. The singular
points precisely correspond to the points where the discrete dynamics drives
the system. For these points, we define two subspaces related to the con-
straint codistribution, whose relative position determines the possibility of a
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jump in the system’s momentum. We derive an explicit formula to compute
the “post-impact” momentum in terms of the “pre-impact” momentum and
the constraints. Applications to switched and hybrid dynamical systems are
treated in several examples to illustrate the theory.

Nonholonomic integrators In the last years there has been a huge inter-
est in the development of numerical methods that preserve relevant geometric
structures of Lagrangian and Hamiltonian systems (see [160, 210] and refer-
ences therein). Several reasons explain this effervescence. Among them, we
should mention the fact that standard methods often introduce spurious ef-
fects such as nonexistent chaos or incorrect dissipation. This is especially
dramatic in long time integrations, which are common in several areas of
application such as molecular dynamics, particle accelerators, multibody sys-
tems and solar system simulations. In addition, in the presence of symmetry,
the system may exhibit, via Noether’s theorem, additional conserved quanti-
ties we would like to preserve. Again, standard methods do not take this into
account1.

Mechanical integrators are algorithms that preserve some of the invariants
of the mechanical system, such as energy, momentum or the symplectic form.
It is known (see [86]) that if the energy and the momentum map include all
integrals belonging to a certain class, then one cannot create constant time
step integrators that are simultaneously symplectic, energy preserving and
momentum preserving, unless they integrate the equations exactly up to a
time reparameterization. (Recently, it has been shown that the construction
of energy-symplectic-momentum integrators is indeed possible if one allows
varying time steps [109], see also [167]). This justifies the focus on mechan-
ical integrators that are either symplectic-momentum or energy-momentum
preserving (although other types may also be considered, such as volume
preserving integrators, methods respecting Lie symmetries, integrators pre-
serving contact structures, methods preserving reversing symmetries, etc2).
1 A quote from R.W. Hamming [98] taken from [60] gives an additional explanation

of a more philosophical nature:

“...an algorithm which transforms properly with respect to a class of trans-
formations is more basic than one that does not. In a sense the invariant al-
gorithm attacks the problem and not the particular representation used...”

In fact, many people have employed this kind of integrators, such as the implicit
Euler rule, the mid-point rule or leap-frog method, some Newmark algorithms in
nonlinear structural mechanics, etc., although they were often unaware of their
geometric properties.

2 A list with different types of integrators may be found in the web page of the Geo-
metric Integration Interest Group (http://www.focm.net/gi/). We thank Miguel
Angel López for this remark.
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Based on certain applications, such as molecular dynamics simulation
or multibody systems, the necessity of treating holonomic constraints in
discrete mechanics has also been discussed in the literature. Examples in-
clude the Shake algorithm [209] and the Rattle algorithm [5] (see [134] for
a discussion of the symplectic character of these methods), general Hamil-
tonian systems (i.e. not necessarily mechanical) subject to holonomic con-
straints [106, 205, 206], the use of Dirac’s theory of constraints to find un-
constrained formulations in which the constraints appear as invariants [133],
energy-momentum integrators [89, 90], etc.

Variational integrators are symplectic-momentum mechanical integrators
derived from a discretization of Hamilton’s principle [12, 183, 246, 247]. Differ-
ent discrete Lagrangians result in different variational integrators, including
the Verlet algorithm and the family of Newmark algorithms (with γ = 1/2)
used in structural mechanics [110, 217]. Variational integrators handle con-
straints in a simple and efficient manner by using Lagrange multipliers [256].
It is worth mentioning that, when treated variationally, holonomic constraints
do not affect the symplectic or conservative nature of the algorithms, while
other techniques can run into trouble in this regard [133].

In Chapter 7, we address the problem of constructing integrators for non-
holonomic systems. This problem has been stated in a number of recent
papers [59, 256], including the presentation of open problems in symplec-
tic integration given in [176]. Our starting point to develop integrators in
the presence of nonholonomic constraints is the introduction of a discrete
version of the Lagrange-d’Alembert principle. This follows the idea that, by
respecting the geometric structure of nonholonomic systems, one can create
integrators capturing the essential features of this kind of systems. Indeed,
we prove that the nonholonomic integrators derived from this discrete prin-
ciple enjoy the same geometric properties as its continuous counterpart: on
the one hand, they preserve the structure of the evolution of the symplectic
form along the trajectories of the system; on the other hand, they give rise
to a discrete version of the nonholonomic momentum equation. Moreover, in
the presence of horizontal symmetries, the discrete flow exactly preserves the
associated momenta. We also treat the purely kinematic case, where no non-
holonomic momentum map exists: we show that the nonholonomic integrator
passes to the discrete reduced space yielding a generalized variational integra-
tor in the sense of [110, 194]. In case the continuous gyroscopic force vanishes,
we prove that the reduced nonholonomic integrator is indeed a variational
integrator.

Control of nonholonomic systems Mechanical control systems provide
a challenging research area that falls between Classical Mechanics and Non-
linear Control, pervading modern applications in science and industry. This
has motivated many researchers to address the development of a rigorous
control theory applicable to this large class of systems: much work has been
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devoted to the study of their rich geometrical structure, both in the Hamil-
tonian framework (see [23, 189, 193, 240] and references therein) and on the
Lagrangian side, which is receiving increasing attention during the last years
(see [31, 40, 117, 141, 142, 168, 196] and the plenary presentations [139, 185]).
In particular, the affine connection formalism has turned out to be very use-
ful for modeling different types of mechanical systems, such as natural ones
(with Lagrangian equal to kinetic energy minus potential energy) [146, 147],
with symmetries [43, 47, 76], with nonholonomic constraints [143], etc. and,
on the other hand, it has led to the development of some new techniques
and control algorithms for approximate trajectory generation in controller
design [42, 45, 169].

Chapter 8 provides the reader with an introduction to affine connection
control systems. We expound basic notions and review known results con-
cerning the controllability properties of underactuated mechanical systems
such as (configuration) accessibility and controllability, kinematic controlla-
bility, etc. Underactuated mechanical control systems are interesting to study
both from a theoretical and a practical point of view. From a theoretical per-
spective, they offer a control challenge as they have non-zero drift, their
linearization at zero velocity is not controllable in the absence of potential
forces, they are not static feedback linearizable and it is not known if they are
dynamic feedback linearizable. That is, they are not amenable to standard
techniques in control theory [105, 189]. From the practical point of view, they
appear in numerous applications as a result of design choices motivated by the
search for less costly devices. Even more, fully actuated mechanical systems
may temporarily suffer actuator failures, turning them into underactuated
systems.

One of the most basic and interesting aspects of underactuated mechani-
cal systems is the characterization of its controllability properties. The work
by Lewis and Murray [146, 147] has rendered strong conditions for configu-
ration accessibility and sufficient conditions for configuration controllability.
The conditions for the latter are based on the sufficient conditions that Suss-
mann obtained for general affine control systems [232]. It is worth noting
the fact that these conditions are not invariant under input transformations.
As controllability is the more interesting property in practice, more research
is needed in order to sharpen the configuration controllability conditions.
Whatever these conditions might be, they will turn out to be harder to check
than the ones for accessibility, since controllability is inherently a more diffi-
cult property to establish [111, 223]. Lewis [142] investigated and fully solved
the single-input case, building on previous results by Sussmann for general
scalar-input systems [231]. The recent work by Bullo [41] on series expansions
for the evolution of a mechanical control system starting from rest has given
the necessary tools to tackle this problem in the much more involved multi-
input case. In Chapter 8, we characterize local configuration controllability
for systems whose number of inputs and degrees of freedom differs by one.
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Examples include autonomous vehicles, robotic manipulators and locomotion
devices. Interestingly, the differential flatness properties of this type of under-
actuated mechanical control systems have also been characterized precisely
in intrinsic geometric terms [204]. It is remarkable to note that local control-
lability has not been characterized yet for general control systems, even for
the single input case (in this respect see [99, 231, 232]).

The other important topic treated in Chapter 8 is the extension of pre-
vious controllability analyses and series expansion results [41, 45, 146] to
systems with isotropic dissipation. The motivation for this work is a stand-
ing limitation in the known results on controllability and series expansions.
The analysis in [41, 45, 76, 146] applies only to systems subject to no external
dissipation, i.e., the system’s dynamics is fully determined by the Lagrangian
function. With the aim of developing more accurate mathematical models for
controlled mechanical systems, we address the setting of dissipative or damp-
ing forces. It is worth adding that dissipation is a classic topic in Geometric
Mechanics (see for example the work on dissipation induced instabilities [30],
the extensive literature on dissipation-based control [7, 191, 240], and recent
works including [31, 32, 184, 192]).

Remarkably, the same conditions guaranteeing a variety of local acces-
sibility and controllability properties for systems without damping remain
valid for the class of systems under consideration. This applies to small-time
local controllability, local configuration controllability, and kinematic control-
lability. Furthermore, we develop a series expansion describing the evolution
of the controlled trajectories starting from rest, thus generalizing the work
in [41]. The technical approach exploits the homogeneity property of the
affine connection model for mechanical control systems.

As the reader will have already observed, geometry plays a key role in the
various problems raised along this introduction. Indeed, our primary concern
throughout the present book will be the understanding of the geometric struc-
ture of nonholonomic systems, and the use of this knowledge in the approach
to the above mentioned topics.
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T HIS chapter gives a brief review of several differential geometric tools
used throughout the book. For a more thorough introduction we refer

to [1, 2, 138, 149, 163].

The basic concept on which the notions presented in this chapter are built
is that of differentiable manifold. It was Poincaré who, at the end of the 19th
century, found that the prevailing mathematical model of his time was in-
adequate, for its underlying space was Euclidean, whereas for a mechanical
system with angular variables or constraints the phase space might be non-
linear. In this way, he was led by his global geometric point of view to the
notion of differentiable manifold as the phase space in Mechanics. This was
the starting point of the developments that culminated in what we nowadays
know as Modern Differential Geometry.

The chapter is organized as follows. Section 2.1 presents some basic no-
tions on tensor analysis and exterior calculus on manifolds. In Section 2.2
we define the important concepts of generalized distributions and codistribu-
tions. Section 2.3 contains a basic account of Lie group theory and Section 2.4
reviews the notion of principal connection. The following two sections are de-
voted to Riemannian and symplectic manifolds, respectively. Section 2.7 deals
with symplectic and Hamiltonian actions. Section 2.8 presents the concept of
Poisson manifold and in Section 2.9 we have collected several facts concerning
the geometry of the tangent bundle and of a Lagrangian system. References
for further study are provided at each section.

2.1 Manifolds and tensor calculus

A BASIC understanding of Differential Geometry is assumed. In this
chapter, we quickly review some notation and notions we will need later.

The manifolds we deal with will be assumed to belong to the C∞-category.
We shall further suppose that all manifolds are finite-dimensional, paracom-
pact and Hausdorff, unless otherwise stated. The notation we use is common
to many standard reference books such as [1, 2, 119, 253].
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The tangent bundle of a manifold Q is the collection of all the tangent
vectors to Q at each point. We will denote it by TQ. The tangent bundle
projection, which assigns to each tangent vector its base point, is denoted by
τQ : TQ −→ Q. Given a tangent space TqQ, we denote the dual space, i.e.
the space of linear functions from TqQ to R, by T ∗

qQ. The cotangent bundle
T ∗Q of a manifold Q is the vector bundle over Q formed by the collection
of all the dual spaces T ∗

qQ. Elements ω ∈ T ∗
qQ are called dual vectors or

covectors. The cotangent bundle projection, which assigns to each covector
its base point, is denoted by πQ : T ∗Q −→ Q.

Let f : Q −→ N be a smooth mapping between manifolds Q and N . We
write Tf : TQ −→ TN to denote the tangent map or differential of f . There
are other notations such as f∗ and Df . The set of all smooth mappings from
Q to N will be denoted by C∞(Q,N). When N = R, we shall denote the set
of smooth real-valued functions on Q by C∞(Q).

A vector field X on Q is a smooth mapping X : Q −→ TQ which assigns
to each point q ∈ Q a tangent vector X(q) ∈ TqQ or, stated otherwise,
τQ ◦ X = IdQ. The set of all vector fields over Q is denoted by X(Q). An
integral curve of a vector field X is a curve satisfying ċ(t) = X(c(t)). Given
q ∈ Q, let φt(q) denote the maximal integral curve of X, c(t) = φt(q) starting
at q, i.e. c(0) = q. Here “maximal” means that the interval of definition of
c(t) is maximal. It is easy to verify that φ0 = Id and φt◦φt′ = φt+t′ , whenever
the composition is defined. The flow of a vector field X is then determined
by the collection of mappings φt : Q −→ Q. From the definition, they satisfy

d

dt
(φt(q)) = X(φt(q)) , t ∈ (−ε1(q), ε2(q)) , ∀q ∈ Q .

Similarly, a one-form α on Q is a smooth mapping α : Q −→ T ∗Q which
associates to each point q ∈ Q a covector α(q) ∈ T ∗

qQ, i.e. πQ ◦α = IdQ. The
set of all one-forms over Q is denoted by Ω1(Q).

Both notions, vector fields and one-forms, are special cases of a more
general geometric object, called tensor field . A tensor field t of contravariant
order r and covariant order s is a C∞-section of T rsQ, that is, it associates
to each q ∈ Q a multilinear map

t(q) : T ∗
qQ × · · · × T ∗

qQ︸ ︷︷ ︸
r times

×TqQ × · · · × TqQ︸ ︷︷ ︸
s times

−→ R .

It is common to say that t is a (r, s)-tensor field. The tensor product of a
(r, s)-tensor field, t, and a (r′, s′)-tensor field, t′, is the (r + r′, s + s′)-tensor
field t ⊗ t′ defined by

t ⊗ t′(q)(ω1, . . . , ωr, µ1, . . . , µr′ , v1, . . . , vs, w1, . . . , ws′)
= t(q)(ω1, . . . , ωr, v1, . . . , vs) · t′(q)(µ1, . . . , µr′ , w1, . . . , ws′) ,
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where q ∈ Q, vi, wi ∈ TqQ and ωj , µj ∈ T ∗
qQ.

A special subset of tensor fields is Ωk(Q) ⊂ T 0
kQ, the set of all (0, k)

skew-symmetric tensor fields. The elements of Ωk(Q) are called k-forms.

The alternation map A : T 0
kQ −→ Ωk(Q) is defined by

A(t)(v1, . . . , vk) =
1
k!

∑
σ∈Σk

sign(σ)t(vσ(1), . . . , vσ(k)) ,

where Σk is the set of k-permutations. It is easy to see that A is linear,
A|Ωk(Q) = Id and A ◦ A = A.

The wedge or exterior product between α ∈ Ωk(Q) and β ∈ Ωl(Q) is the
form α ∧ β ∈ Ωk+l(Q) defined by

α ∧ β =
(k + l)!
k! l!

A(α ⊗ β) .

There are several possible conventions for defining the constant appearing in
the wedge product. The one here conforms to [1, 2, 225], but not to [119].
Some important properties of the wedge product are the following:

1. ∧ is bilinear and associative.

2. α ∧ β = (−1)klβ ∧ α, where α ∈ Ωk(Q) and β ∈ Ωl(Q).

The algebra of exterior differential forms, Ω(Q), is the direct sum of Ωk(Q),
k = 0, 1, . . . , together with its structure as an infinite-dimensional real vector
space and with the multiplication ∧.

When dealing with exterior differential forms, another important geomet-
ric object is the exterior derivative, d. It is defined as the unique family of
mappings dk(U) : Ωk(U) −→ Ωk+1(U) (k = 0, 1, . . . and U ⊂ Q open) such
that [1, 253],

1. d is a ∧ antiderivation, i.e. d is R-linear and d(α∧β) = dα∧β+(−1)kα∧dβ,
where α ∈ Ωk(U) and β ∈ Ωl(U).

2. df = p2 ◦ Tf , for f ∈ C∞(U), with p2 the canonical projection of TR ∼=
R × R onto the second factor.

3. d ◦ d = 0.

4. d is natural with respect to inclusions, i.e. if U ⊂ V ⊂ Q are open, then
d(α|U ) = (dα)|U , where α ∈ Ωk(V ).

Let f : Q −→ N be a smooth mapping and ω ∈ Ωk(N). Define the pull-
back f∗ω of ω by f as f∗ω(q)(v1, . . . , vk) = ω(f(q))(Tqf(v1), . . . , Tqf(vk)),
where vi ∈ TqQ. Note that the pullback defines a mapping f∗ : Ωk(N) −→
Ωk(Q). The main properties related with the pullback are the following,
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1. (g ◦ f)∗ = f∗ ◦ g∗, where f ∈ C∞(Q,N) and g ∈ C∞(N,W ).

2. (Id∗
Q)|Ωk(Q) = IdΩk(Q).

3. If f ∈ C∞(Q,N) is a diffeomorphism, then f∗ is a vector bundle isomor-
phism and (f∗)−1 = (f−1)∗.

4. f∗(α∧β) = f∗α∧f∗β, where f ∈ C∞(Q,N), α ∈ Ωk(N) and β ∈ Ωl(N).

5. d is natural with respect to mappings, that is, for f ∈ C∞(Q,N), f∗dω =
df∗ω.

Given a vector field X ∈ X(Q) and a function f ∈ C∞(Q), the Lie
derivative of f with respect to X, LXf ∈ C∞(Q), is defined as LXf(q) =
df(q)[X(q)]. The operation LX : C∞(Q) −→ C∞(Q) is a derivation, i.e. it is
R-linear and LX(fg) = LX(f)g + fLX(g), for any f , g ∈ C∞(Q).

The collection of all (R-linear) derivations θ on C∞(Q) forms a C∞-
module, with the external law (fθ)(g) = f(θg). This module is indeed isomor-
phic to X(Q). In particular, for each derivation θ, there is a unique X ∈ X(Q)
such that θ = LX . This is often taken as an alternative definition of vector
field (see, for instance, [3]).

Given two vector fields, X, Y ∈ X(Q), we may define the R-linear deriva-
tion [LX ,LY ] = LX ◦ LY − LY ◦ LX . This enables us to define the Lie
derivative of Y with respect to X, LXY = [X,Y ] as the unique vector field
such that L[X,Y ] = [LX ,LY ]. Some important properties are,

1. If φ ∈ C∞(Q,N) is a diffeomorphism, [φ∗X,φ∗Y ] = φ∗[X,Y ].

2. LX is natural with respect to restrictions, i.e. for U ⊂ Q open, [X|U , Y|U ] =
[X,Y ]|U and (Lf)|U = LX|U (f|U ), for f ∈ C∞(Q).

3. LX(f · Y ) = LXf · Y + f · LXY , for f ∈ C∞(Q).

Indeed, the operator LX can be defined on the full tensor algebra of the
manifold Q (see [1, 2, 253]).

There is also another natural operator associated with a vector field X.
Let ω ∈ Ωk(Q). The inner product or contraction of X and ω, iXω ∈
Ωk−1(Q), is defined by iXω(q)(v1, . . . , vk−1) = ω(q)(X(q), v1, . . . , vk−1),
where vi ∈ TqQ. The operator iX is a ∧ antiderivation, namely, it is R-
linear and iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ), where α ∈ Ωk(Q). Also,
for f ∈ C∞(Q), we have that ifXα = fiXα.

Finally, we conclude this section by stating some relevant properties
involving d, iX and LX . For arbitrary X, Y ∈ X(Q), f ∈ C∞(Q) and
α ∈ Ωk(Q), we have

1. dLXα = LXdα.



2.2 Generalized distributions and codistributions 17

2. iXdf = LXf .

3. LXα = iXdα + diXα.

4. LfXα = fLXα + df ∧ iXα.

5. i[X,Y ]α = LX iY α − iY LXα.

2.2 Generalized distributions and codistributions

W E introduce here the notion of generalized distributions and codis-
tributions. These notions will be key in the geometrical modeling of

nonholonomic dynamical systems. The exposition here is taken from [237].

Definition 2.2.1. A generalized distribution (respectively codistribution) D
on a manifold Q is a family of linear subspaces {Dq} of the tangent spaces
TqQ (resp. T ∗

qQ). A generalized distribution (resp. codistribution) is called
differentiable if ∀q ∈ DomD, there is a finite number of differentiable lo-
cal vector fields X1, . . . , Xl (resp. 1-forms ω1, . . . , ωl) defined on some open
neighborhood U of q in such a way that Dq′ = span{X1(q′), . . . , Xl(q′)} (resp.
Dq′ = span{ω1(q′), . . . , ωl(q′)}) for all q′ ∈ U .

We define the rank of D at q as the dimension of the linear space Dq, i.e. ρ :
Q −→ R, ρ(q) = dimDq. For any q0 ∈ Q, if D is differentiable, it is clear that
ρ(q) ≥ ρ(q0) in a neighborhood of q0. Therefore, ρ is a lower semicontinuous
function. If ρ is a constant function, then D is called a regular distribution
(resp. codistribution). For most part of the book, we shall consider regular
(co)distributions. However, in Chapter 6 we shall treat the special case of
nonholonomic systems with constraints given by a generalized codistribution.

For a generalized differentiable (co)distribution D, a point q ∈ Q will be
called regular if q is a local maximum of ρ, that is, ρ is constant on an open
neighborhood of q. Otherwise, q will be called a singular point of D. The set
R of regular points of D is obviously open. But, in addition, it is dense, since
if q0 ∈ S = Q \ R, and U is a neighborhood of q0, U necessarily contains
regular points of D (ρ|U must have a maximum because it is integer valued
and bounded). Consequently, q0 ∈ R̄.

Note that in general R will not be connected, as the following example
shows:

Example 2.2.2. Let us consider Q = R2 and the generalized differentiable
codistribution D(x,y) = span{φ(x)(dx − dy)}, where φ(x) is defined by

φ(x) =
{

0 x ≤ 0
e− 1

x2 x > 0
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The singular points are those of the y-axis, and the connected components
of R are the half-planes x > 0 (where the rank is 1) and x < 0 (where the
rank is 0).

In the following we specialize our discussion to codistributions. The defi-
nition of the same concepts for distributions is straightforward.

Given a generalized codistribution D, we define its annihilator Do as the
generalized distribution given by

Do : Dom D ⊂ Q −→ TQ
q �−→ Do

q = (Dq)o = {v ∈ TqQ |α(v) = 0,∀α ∈ Dq} .

Notice that if D is differentiable, Do is not differentiable, or even contin-
uous, in general (the corresponding rank function of Do will not be lower
semicontinuous). In fact, Do is differentiable if and only if D is a regular
codistribution.

An immersed submanifold N of Q will be called an integral submanifold
of D if TnN is annihilated by Dn at each point n ∈ N . N will be an integral
submanifold of maximal dimension if

TnN
o = Dn , for all n ∈ N .

In particular, this implies that the rank of D is constant along N . A leaf L of
D is a connected integral submanifold of maximal dimension such that every
connected integral manifold of maximal dimension of D which intersects L
is an open submanifold of L. D will be a partially integrable codistribution
if for every regular point q ∈ R, there exists one leaf passing through q. D
will be a completely integrable codistribution if there exists a leaf passing
through q, for every q ∈ Q. In the latter case, the set of leaves defines a
general foliation of Q. Obviously, any completely integrable codistribution is
partially integrable.

N being an integral submanifold of D is exactly the same as being an
integral submanifold of its annihilator Do, and so on.

In Example 2.2.2, the leaves of D are the half-plane {x < 0} and the half-
lines of slope 1 in the half-plane {x > 0}. Given any singular point, there
is no leaf passing through it. Consequently, D is not a completely integrable
codistribution, but it is partially integrable.

2.3 Lie groups and group actions

A N important and ubiquitous structure appearing in Mechanics is that
of a Lie group. We refer the reader to [163, 253] for details and examples

related to the discussion of this section.
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Let G be a group, that is, a set with an additional internal operation
· : G×G −→ G, usually called multiplication, satisfying the following defining
properties

1. Associativity: g · (h · k) = (g · h) · k, for all g, h and k ∈ G.

2. Identity element: there is a distinguished element e of G, called the iden-
tity, such that e · g = g = g · e, for all g ∈ G.

3. Inverses: for each g ∈ G, there exists an element g−1 with the property
g−1g = e = gg−1.

The special feature about Lie groups is that, in addition to the multiplication,
they also carry a structure of smooth manifold, in such a way that both
structures are compatible. More precisely,

Definition 2.3.1. A group G equipped with a manifold structure is said to
be a Lie group if the product mapping · and the inverse mapping g −→ g−1

are both C∞-mappings.

A Lie group H is said to be a Lie subgroup of a Lie group G if it is a
submanifold of G and the inclusion mapping i : H ↪→ G is a group homo-
morphism.

For g ∈ G, we denote by Lg : G −→ G and Rg : G −→ G the left and
right multiplications by g, respectively, i.e., Lg(h) = gh and Rg(h) = hg.
This allows us to consider the adjoint action of G on G defined by

Ad : G × G −→ G
(g, h) �−→ Adg(h) = LgRg−1h = ghg−1 .

Roughly speaking, the adjoint action measures the non-commutativity of
the multiplication of the Lie group: if G is Abelian, then the adjoint action
Adg is simply the identity mapping on G. In addition, when considering
motion along non-Abelian Lie groups, a choice must be made as to whether
to represent translation by left or right multiplication. The adjoint action
provides the transition between these two possibilities.

Example 2.3.2. Basic examples of Lie groups which will appear in this book
include the non-zero complex numbers C∗, the unit circle S1, the group of
n×n invertible matrices GL(n,R) with the matrix multiplication, and several
of its Lie subgroups: the group of rigid motions in 3-dimensional Euclidean
space, SE(3); the group of rigid motions in the plane, SE(2); and the group
of rotations in R3, SO(3). More examples can be found, for instance, in [186,
253].
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Definition 2.3.3. A real Lie algebra is a vector space L over R with an
operation [·, ·] : L × L −→ L, called Lie bracket, satisfying

1. Bilinearity over R: [
∑

αiXi,
∑

βjYj ] =
∑

αiβj [Xi, Yj ], for αi, βj ∈ R

and Xi, Yj ∈ L,

2. Skew-symmetry: [X,Y ] = −[Y,X], for X, Y ∈ L,

3. The Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, for X, Y ,
Z ∈ L.

If e1, . . . , em is a basis of L (as vector space), then the structure constants
cdab of L relative to this basis are uniquely determined by

[ea, eb] = cdabed .

Example 2.3.4. The set of vector fields on a general manifold Q carries a
natural Lie algebra structure. For any X, Y ∈ X(Q), define [X,Y ] = LXY .
It is easy to verify that this operation is a Lie bracket.

For a Lie group G, we consider the set of left-invariant vector fields on G,
Xl(G). This means that X ∈ Xl(G) if and only if TLg(X) = X for all g ∈ G.
The set Xl(G) is a Lie subalgebra of X(G), meaning that the Lie bracket
of two left-invariant vector fields is also a left-invariant vector field. The Lie
algebra Xl(G) is called the Lie algebra associated with G and is commonly
denoted by g. Note that g can be identified with TeG, since for each ξ ∈ TeG,
Xξ(g) = TeLgξ is a left-invariant vector field.

Let ξ be an element of the Lie algebra g. Consider the associated left
invariant vector field, Xξ. Let φξ : R −→ G be the integral curve of Xξ

passing through e at t = 0. By definition, we have that d
dt

∣∣
t=0(φξ(t)) = ξ.

The exponential mapping of the Lie group, exp : g −→ G, is defined by
exp(ξ) = φξ(1).

For non-Abelian Lie groups, the non-commutativity of the Lie group mul-
tiplication implies that we can also consider the above notions replacing “left”
by “right”. In Geometric Mechanics, this exactly corresponds to the body and
spatial representations. To be more explicit, let vg ∈ TgG and consider

ξb = TgLg−1vg and ξs = TgRg−1vg .

The relationship between spatial and body velocities can be written in terms
of the infinitesimal version of the adjoint action of G on itself, which is called
the adjoint action of the Lie group on its Lie algebra.

Definition 2.3.5. The adjoint action of G on g is defined as the map Ad :
G × g −→ g given by Ad(g, ξ) = Adgξ = Tg−1Lg(TeRg−1ξ).
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A simple computation shows that ξb = Adg−1ξs. Similarly, given αg ∈
T ∗G, we may define

pb = TeL
∗
gαg and ps = TeR

∗
gαg .

The relation between the spatial and body momenta is given by means of the
coadjoint action.

Definition 2.3.6. The coadjoint action of G on g∗ is defined as the map
CoAd : G×g∗ −→ g∗ given by CoAd(g, p) = (Adg−1)∗p = T ∗

e Lg−1(T ∗
g−1Rgp).

The body momentum is related to the spatial momentum via ps =
CoAdgpb.

Lie groups are mathematical objects that have been, and still are, inten-
sively studied in their own right. For us, they will also be interesting be-
cause they are the natural geometrical setting for describing the symmetries
(translational, rotational,...) that many mechanical systems exhibit. Their
presence will generally allow us to develop reduction methods to simplify the
description of (and, in some cases, help integrate) the dynamics of the given
mechanical system.

This notion of symmetry or invariance of the system is formally expressed
through the concept of action.

Definition 2.3.7. A (left) action of a Lie group G on a manifold Q is a
smooth mapping Φ : G × Q −→ Q such that,

1. Φ(e, q) = q, for all q ∈ Q.

2. Φ(g, Φ(h, q)) = Φ(gh, q) for all g, h ∈ G, q ∈ Q.

The same definition can be stated for right actions, but we consider here
left actions, which is the usual convention in Mechanics.

We will normally only be interested in the action as a mapping from Q
to Q, and so will write the action as Φg : Q −→ Q, where Φg(q) = Φ(g, q),
for g ∈ G. In some cases, we shall make a slight abuse of notation and
write gq instead of Φg(q). The orbit of the G-action through a point q is
OrbG(q) = {gq | g ∈ G}.

An action is said to be free if all its isotropy groups are trivial, that is,
the relation Φg(q) = q implies g = e, for any q ∈ Q (note that, in particular,
this implies that there are no fixed points). An action is said to be proper if
Φ̃ : G × Q −→ Q × Q defined by Φ̃(g, q) = (q, Φ(g, q)) is a proper mapping,
i.e., if K ⊂ Q × Q is compact, then Φ̃−1(K) is compact. Finally, an action
is said to be simple or regular if the set Q/G of orbits has a differentiable
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manifold structure such that the canonical projection of Q onto Q/G is a
submersion.

If Φ is a free and proper action, then Φ is simple, and therefore Q/G is a
smooth manifold and π : Q −→ Q/G is a submersion [1, 253]. We will deal
with simple Lie group actions.

Let ξ be an element of the Lie algebra g. Consider the R-action on Q
defined by

Φξ : R × Q −→ Q
(t, q) �−→ Φ(exp(tξ), q) .

It is easy to verify that this indeed satisfies the defining properties of an
action. Alternatively, we can interpret Φξ as a flow on the manifold Q. Con-
sequently, it determines a vector field on Q, given by

ξQ(q) =
d

dt

∣∣∣
t=0

(Φ(exp(tξ), q)) ,

which is called the fundamental vector field or infinitesimal generator of the
action corresponding to ξ. These vector fields generate the tangent space of
the orbits of the G-action, that is

Tq(OrbG(q)) = {ξQ(q) | ξ ∈ g} .

The basic properties of infinitesimal generators are,

– (Adgξ)Q(q) = TΦgξQ(Φg−1(q)), for any g ∈ G, q ∈ Q and ξ ∈ g,

– [ξQ, ηQ] = −[ξ, η]Q, for ξ, η ∈ g.

Given a Lie group G, we can consider the natural action of G on itself by
left multiplication

Φ : G × G −→ G
(g, h) �−→ gh .

For any ξ ∈ g, the corresponding fundamental vector field of the action is
given by

ξG(h) =
d

dt

∣∣∣
t=0

(exp(tξ) · h) = TeRhξ ,

that is, the right-invariant vector field defined by ξ.

An action Φ of G on a manifold Q induces an action of the Lie group
on the tangent bundle of Q, Φ̂ : G × TQ −→ TQ defined by Φ̂(g, vq) =
TΦg(vq)(= Φg∗(vq)) for any g ∈ G and vq ∈ TqQ. Φ̂ is called the lifted action
of Φ.
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2.4 Principal connections

I N this section, we briefly review the notion of a principal connection on a
principal fiber bundle. For details we refer to [119] (note that the actions

considered there are right actions).

Let Ψ be a Lie group action on the configuration manifold Q. Assuming
that Ψ is free and proper, we can endow the quotient space Q/G = N with
a manifold structure such that the canonical projection π : Q −→ N is
a surjective submersion. Note that the kernel of π∗(= Tπ) consists of the
vertical tangent vectors, i.e. the vectors tangent to the orbits of G in Q. We
shall denote the bundle of vertical vectors by Vπ, with (Vπ)q = Tq(OrbG(q)),
q ∈ Q.

In the framework of the mechanics of (coupled) rigid bodies, robotic loco-
motion, etc., the quotient manifold N is commonly called the shape space of
the system under consideration and the Lie group G is called the pose or fiber
space. We then have that Q(N,G, π) is a principal fiber bundle with bundle
space Q, base space N , structure group G and projection π.

Note that the bundle space Q is locally trivial, that is, for every point
q ∈ Q there is a neighborhood U of π(q) in N such that there exists a
diffeomorphism ψ : π−1(U) −→ G × U , ψ(q) = (ϕ(q), π(q)), for which ϕ :
π−1(U) −→ G satisfies ϕ(Ψgq) = Lgϕ(q), for all g ∈ G and q ∈ π−1(U).
Under the identification provided by this diffeomorphism, the action of the
Lie group on Q can be simply read as left multiplication in the fiber, that is,
Ψg(h, n) = (gh, n) ∈ G × N .

In problems of locomotion it is most often the case that the splitting of
the bundle space can be written globally, Q = G×N . This corresponds to the
notion of trivial principal fiber bundle. The pose coordinates g ∈ G describe
the position and orientation of the system, whereas the shape coordinates
n ∈ N describe the internal shape.

A principal connection on Q(N,G, π) can be defined as a distribution H
on Q satisfying the following properties

1. TqQ = Hq ⊕ (Vπ)q, ∀q ∈ Q,

2. Hgq = TqΨg(Hq), i.e. the distribution H is G-invariant,

3. Hq depends smoothly on q.

The subspace Hq of TqQ is called the horizontal subspace at q determined by
the connection. Alternatively, a principal connection can be characterized by
a g-valued 1-form γ on Q satisfying the following conditions

1. γ(ξQ(q)) = ξ, for all ξ ∈ g,
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2. γ(TΨgX) = Adg(γ(X)), for all X ∈ TQ.

The horizontal subspace at q is then given by Hq = {vq ∈ TqQ | γ(vq) = 0}.
A vector field X on Q is called horizontal if X(q) ∈ Hq at each point q.

Given a principal connection, property (i) above implies that every vector
v ∈ TqQ can be uniquely written as

v = v1 + v2 ,

with v1 ∈ Hq and v2 ∈ (Vπ)q. We denote by h : TQ −→ H and v : TQ −→
Vπ the corresponding horizontal and vertical projectors, respectively. The
horizontal lift of a vector field Y on N is the unique vector field Y h on Q
which is horizontal and projects onto Y , π∗(Y h) = Y ◦ π.

The curvature Ω of the principal connection is the g-valued 2-form on Q
defined as follows: for each q ∈ Q and u, v ∈ TqQ

Ω(u, v) = dγ(hu,hv) = −γ([Uh, V h]q) ,

where Uh and V h are the horizontal lifts of any two (local) vector fields U and
V on N for which Uh(q) = hu and V h(q) = hv, respectively. The curvature
measures the lack of integrability of the horizontal distribution and plays a
fundamental role in the theory of holonomy (see [119] for a comprehensive
treatment).

2.5 Riemannian geometry

T HE subject of Riemannian geometry is a very vast one and here we
shall present only that part of it that will be used later on. A detailed

discussion of Riemannian geometry can be found in [58, 119].

A Riemannian metric G is a (0, 2)-tensor on a manifold Q which is sym-
metric and positive-definite. This means that

1. G(vq, wq) = G(wq, vq), for all vq, wq ∈ TQ,

2. G(vq, vq) ≥ 0, and G(vq, vq) = 0 if and only if vq = 0.

A Riemannian manifold is a pair (Q,G), where Q is a differentiable manifold
and G is a Riemannian metric.

Given a Riemannian manifold, we may consider the “musical” isomor-
phisms

�G : TQ −→ T ∗Q , �G : T ∗Q −→ TQ ,
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defined as �G(v) = G(v, ·) and �G = �−1
G . If f ∈ C∞(Q), we define its gradient

as the vector field given by grad f = �G(df).

A vector field X ∈ X(Q) is said to be Killing if its flow leaves invariant
the metric, that is, LXG = 0.

Every Riemannian manifold is endowed with a canonical affine connection,
called the Levi-Civita connection. In general, an affine connection [1, 119] is
defined as an assignment

∇ : X(Q) × X(Q) −→ X(Q)
(X,Y ) �−→ ∇XY

which satisfies the following properties for any X, Y , Z ∈ X(Q), f ∈ C∞(Q),

1. it is R-bilinear,

2. ∇fX+gY Z = f∇XZ + g∇Y Z,

3. ∇X(fY ) = f∇XY + LX(f)Y .

We shall call ∇XY the covariant derivative of Y with respect to X. In local
coordinates (qA) on Q, we have that

∇XY =
(

∂Y A

∂qB
XB + ΓABCXBY C

)
∂

∂qA
,

where ΓABC(q) are the Christoffel symbols of the affine connection defined by

∇ ∂

∂qB

∂

∂qC
= ΓABC

∂

∂qA
. (2.1)

A curve c : [a, b] −→ Q is a geodesic for ∇ if ∇ċ(t)ċ(t) = 0. Locally, the
condition for a curve t �→ (q1(t), . . . , qn(t)) to be a geodesic can be expressed
as

q̈A + ΓABC q̇B q̇C = 0 , 1 ≤ A ≤ n . (2.2)

The geodesic equation (2.2) is a second-order differential equation on Q,
which can obviously be written as a first-order differential equation on TQ.
The vector field corresponding to this first-order equation is given in coordi-
nates by

Z∇ = vA
∂

∂qA
− ΓABCvBvC

∂

∂vA
,

and is called the geodesic spray associated with the affine connection ∇.
Hence, the integral curves of the geodesic spray Z∇, (qA(t), q̇A(t)) are the
solutions of the geodesic equation. Other important objects related to an
affine connection are the torsion tensor, which is defined by
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T : X(Q) × X(Q) −→ X(Q)
(X,Y ) �−→ ∇XY − ∇YX − [X,Y ] ,

and the curvature tensor , given by

R : X(Q) × X(Q) × X(Q) −→ X(Q)
(X,Y, Z) �−→ ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z .

Locally, if we write

T (
∂

∂qA
,

∂

∂qB
) = TCAB

∂

∂qC
, R(

∂

∂qA
,

∂

∂qB
,

∂

∂qC
) = RD

ABC

∂

∂qD
,

we obtain

TCAB = ΓCAB − ΓCBA , RD
ABC =

∂ΓDBC
∂qA

− ∂ΓDAC
∂qB

+ ΓEBCΓDAE − ΓEACΓDBE .

The Levi-Civita connection ∇G associated with the metric G is determined
by the formula

2 G(Z,∇XY ) = X(G(Z, Y )) + Y (G(Z,X)) − Z(G(Y,X))
+ G(X, [Z, Y ]) + G(Y, [Z,X]) − G(Z, [Y,X]) , (2.3)

where X, Y , Z ∈ X(Q). One can compute the Christoffel symbols of ∇G to
be

ΓABC =
1
2
GAD

(
∂GDB
∂qC

+
∂GDC
∂qB

− ∂GBC
∂qD

)
,

where (GAD) denotes the inverse matrix of (GDA = G( ∂
∂qD , ∂

∂qA )).

The Levi-Civita connection is torsion-free, i.e. T (X,Y ) = 0 for all X,
Y ∈ X(Q).

2.5.1 Metric connections

In this section, we want to collect some simple facts about metric connec-
tions that will be useful for the study of generalized Chaplygin systems in
Chapter 5.

Definition 2.5.1. An affine connection ∇ is called metric with respect to G
if ∇G = 0, that is,

Z(G(X,Y )) = G(∇ZX,Y ) + G(X,∇ZY ) ,

for all X,Y, Z ∈ X(Q).
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The Levi-Civita connection ∇G can alternatively be defined as the unique
torsion-free affine connection which is metric with respect to G.

Let ∇ be a metric connection with respect to G. The following proposition
asserts that ∇ is fully determined by its torsion T .

Proposition 2.5.2. Let T be a skew-symmetric (1,2)-tensor on Q. Then
there exists a unique metric connection ∇ whose torsion is precisely T .

Proof. Let us suppose that there exists such metric connection ∇. Then we
have that

Z(G(X,Y )) = G(∇ZX,Y ) + G(X,∇ZY ) ,
X(G(Z, Y )) = G(∇XZ, Y ) + G(Z,∇XY ) ,
Y (G(X,Z)) = G(∇YX,Z) + G(X,∇Y Z) ,

for all X,Y, Z ∈ X(Q). Now

Z(G(X,Y )) + X(G(Z, Y )) − Y (G(X,Z))
= G(∇XZ + ∇ZX,Y ) + G(∇ZY − ∇Y Z,X) + G(∇XY − ∇YX,Z)

= G(2∇XZ + T (Z,X) + [Z,X], Y )
+ G(T (Z, Y ) + [Z, Y ], X) + G(T (X,Y ) + [X,Y ], Z)

= 2G(∇XZ, Y ) + G(T (Z,X) + [Z,X], Y )
+ G(T (Z, Y ) + [Z, Y ], X) + G(T (X,Y ) + [X,Y ], Z) .

Consequently, the connection ∇ is uniquely determined by the formula

G(∇XZ, Y ) = G(∇G
XZ, Y ) − 1

2
(G(Y, T (X,Z))

+ G(X,T (Z, Y )) + G(Z, T (X,Y ))) .

��

This proposition implies that the Christoffel symbols Γ̄ABC of the metric
connection ∇ in a local chart (qA) are given by

Γ̄ABC = ΓABC − 1
2
GAK (GKMTMBC + GBMTMCK + GCMTMBK

)
,

where ΓABC are the Christoffel symbols of the connection ∇G and T =
TCABdqA ⊗ dqB ⊗ ∂

∂qC .

Another way to characterize metric connections is the following. In gen-
eral, the (1,2)-tensor field S which encodes the difference between an affine
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connection ∇ on a Riemannian manifold and the Levi-Civita connection cor-
responding to the Riemannian metric, is called the contorsion of ∇ (cf. [215]),
that is,

∇XY = ∇G
XY + S(X,Y ) .

If ∇ is a metric connection, then

Z(G(X,Y )) = G(∇ZX,Y ) + G(X,∇ZY )

= G(∇G
ZX + S(Z,X), Y ) + G(X,∇G

ZY + S(Z, Y ))
= Z(G(X,Y )) + G(S(Z,X), Y ) + G(X,S(Z, Y )) ,

which implies that G(S(Z,X), Y ) + G(X,S(Z, Y )) = 0. Herewith we have
proved the following

Proposition 2.5.3. ∇ is a metric connection if and only if

G(S(Z,X), X) = 0 , ∀X,Z ∈ X(Q) . (2.4)

As a consequence of the two characterizations we have obtained for metric
connections, we can establish the next result.

Corollary 2.5.4. There is a one-to-one correspondence between (1,2)-tensors
S verifying (2.4) and skew-symmetric (1,2)-tensors T . This correspondence
is given by

S −→ T ,

where T (X,Y ) = S(X,Y ) − S(Y,X) and

T −→ S ,

where G(S(X,Z), Y ) = −1
2

((G(Y, T (X,Z)) + G(X,T (Y,Z)) + G(Z, T (X,Y ))).

The equations for the geodesics of a metric connection can be written

∇ċ(t)ċ(t) = 0 ⇐⇒ ∇G
ċ(t)ċ(t) = −S(ċ(t), ċ(t)) ,

or, in local coordinates,

q̈A + ΓABC q̇B q̇C =
∑
B<C

GAK (GBMTMCK + GCMTMBK
)
q̇B q̇C ,

for each A = 1, . . . , n.

Finally, it is important to note that metric connections obviously preserve
the kinetic energy associated with the metric G, that is, if c(t) is a geodesic
of ∇, we have that

d

dt

(
1
2
G(ċ(t), ċ(t))

)
= G(∇ċ(t)ċ(t), ċ(t)) = 0 .
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2.6 Symplectic manifolds

W HEN studying mechanics, a basic mathematical tool is the notion of
symplectic manifold. The exposition here follows [149].

Definition 2.6.1. An almost-symplectic manifold is a pair, (P, ω), where P
is a differentiable manifold and ω is a nondegenerate 2-form on P . An almost-
symplectic manifold is symplectic if the ω is closed, dω = 0.

Associated with a symplectic manifold, there are two canonical “musical”
isomorphisms

�ω : X(P ) −→ Ω1(P ) , �ω : Ω1(P ) −→ X(P ) ,

defined as �ω(X) = iXω and �ω = �−1
ω . Given a function f ∈ C∞(P ), we

define the corresponding Hamiltonian vector field by

Xf = �ω(df) .

The flow of a Hamiltonian vector field leaves the symplectic form invariant,
that is LXf

ω = 0. Any vector field with this property is called a locally
Hamiltonian vector field. This terminology has the following explanation: if
X is a locally Hamiltonian vector field, then the 1-form iXω is closed and
hence, by Poincaré’s Lemma, it is locally exact, i.e. there locally exists a
function fX such that iXω = dfX .

Every symplectic manifold is naturally equipped with a bracket of func-
tions defined by

C∞(P ) × C∞(P ) −→ C∞(P )
(f, g) �−→ {f, g} = ω(Xf , Xg) .

This bracket is a Poisson bracket (see Section 2.8) and, hence, every sym-
plectic manifold is a Poisson manifold.

Now we turn to identifying some important distributions on symplectic
manifolds. Given a distribution D on P , we define its orthogonal complement
with respect to ω by

D⊥
p = {v ∈ TpP | ω(p)(v, u) = 0 , ∀u ∈ Dp} , p ∈ P .

We say that D is isotropic if D⊥ ⊂ D, coisotropic if D ⊂ D⊥, Lagrangian if
D = D⊥ and symplectic if D ∩ D⊥ = {0}. The same definitions are valid for
submanifolds of P , imposing the corresponding requirements on the tangent
spaces of the submanifold. For instance, a symplectic submanifold W will
be a submanifold of P such that the pullback i∗ω of the 2-form ω by the
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inclusion map i : W ↪→ P is a symplectic form on W . Hence, (W, i∗ω) is a
symplectic manifold.

The cotangent bundle of any manifold is equipped with a canonical sym-
plectic form, as we will now describe. Let Q be a manifold. Consider the
1-form on T ∗Q defined by

ΘQ : T ∗Q −→ T ∗(T ∗Q)
αq �−→ ΘQ(αq) : T (T ∗Q) −→ R

vαq �−→ 〈αq, TπQ(vαq )〉.

ΘQ is called the Liouville 1-form. In local coordinates (qA, pA) on T ∗Q,
it reads ΘQ = pAdqA. It has some nice properties, such as, for instance,
β∗ΘQ = β, for any 1-form β on Q. It also allows us to define the 2-form

ωQ = −dΘQ .

Obviously, ωQ is closed. In addition, it is also nondegenerate, and therefore
(T ∗Q,ωQ) is a symplectic manifold. It is called the canonical symplectic form
on T ∗Q. In local coordinates, one can see that

ωQ = dqA ∧ dpA .

In fact, every symplectic manifold is locally isomorphic to a cotangent bundle.
This is a consequence of the following result.

Theorem 2.6.2 (Darboux’s theorem). Let (P, ω) be a symplectic mani-
fold of dimension 2r. Every point p ∈ P has an open neighborhood U , which
is the domain of a chart (U,ϕ) with local coordinates x1, . . . , x2r such that
the 2-form ω has the local expression

ω =
r∑
i=1

dxi ∧ dxr+i .

2.7 Symplectic and Hamiltonian actions

L ET Φ : G × P −→ P be an action of a Lie group G on a symplectic
manifold (P, ω). The action Φ is called symplectic if Φ∗

gω = ω for all
g ∈ G, that is, for every X,Y ∈ TpP , we have that

ω(p)(X,Y ) = ω(Φ(g, p))(Φg∗X,Φg∗Y ) ,

for all g ∈ G and p ∈ P . The invariance of the symplectic form under the
action readily implies that all the infinitesimal generators are locally Hamil-
tonian vector fields, namely,



2.7 Symplectic and Hamiltonian actions 31

LξP
ω = 0 , for each ξ ∈ g .

Assume that the infinitesimal generators are indeed globally Hamiltonian.
This means that for each ξ ∈ g, there exists a function Jξ ∈ C∞(P ) such
that

iξP
ω = dJξ .

Note that Jξ is determined up to a constant on each connected component
of the manifold P . The set {Jξ}ξ∈g allows us to construct the momentum
mapping

J : P −→ g∗

x �−→ J(x) : g −→ R

ξ �−→ Jξ(x)

The actions Φ which admit a momentum mapping J are called Hamilto-
nian actions. A momentum mapping J is called CoAd-equivariant provided

J(Φg(p)) = CoAdg(J(p)) , ∀g ∈ G , p ∈ P .

Assume P is connected. Given a momentum mapping, fix g ∈ G and
ξ ∈ g. Then we can verify that the function Ψg,ξ : P −→ R, p �−→
〈J(Φg(x)), ξ〉 − 〈J(x), Adg(ξ)〉 is constant on P . This allows us to define the
map σ : G −→ g∗ as 〈σ(g), ξ〉 = Ψg,ξ(p). This map σ is called the coadjoint
cocycle associated with J . This cocycle defines a cohomology class [σ] which
can be proved to be uniquely determined by the action Φ admitting the mo-
mentum mapping [1, 149]. Note that CoAd-equivariant momentum mappings
have σ ≡ 0. In general, for a given momentum mapping J , we can define the
action on g∗,

Φ : G × g∗ −→ g∗

(g, µ) �−→ CoAdgµ + σ(g) ,

such that the following diagram is commutative

P P

g∗ g∗�

�

� �

Φg

JJ

Φg

for all g ∈ G, i.e., J is Φ-equivariant.
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2.8 Almost-Poisson manifolds

T HE concept of a Poisson manifold is a generalization of the concept of
symplectic manifold, as we will see below. We refer the reader to [149,

237] for a thorough discussion of this topic.

Definition 2.8.1. An almost-Poisson bracket is a mapping {·, ·} : C∞(P ) ×
C∞(P ) −→ C∞(P ) satisfying the following properties,

1. bilinearity over R: {αifi, βjgj} = αiβj{fi, gj}, for all αi, βj ∈ R, fi,
gj ∈ C∞(P ),

2. skew-symmetry: {f, g} = −{g, f}, for all f , g ∈ C∞(P ),

3. the Leibniz rule: {h, fg} = {h, f}g+f{h, g}, for all f , g and h ∈ C∞(P ).

A Poisson bracket is an almost-Poisson bracket that additionally verifies

(iv) the Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, for all f ,
g and h ∈ C∞(P ).

An (almost-)Poisson manifold is a pair (P, {·, ·}), where P is a differen-
tiable manifold and {·, ·} is a (almost-)Poisson bracket.

As a consequence of the Leibniz rule, for any function f on P we have
that {·, f} is a derivation of C∞(P ). Hence, there exists a well defined vector
field Xf given by

Xf (g) = {g, f} ,

which will be called the Hamiltonian vector field of f .

On a (almost-)Poisson manifold we have a unique (2, 0)-tensor or bivector
field Λ such that

{f, g} = Λ(df, dg) .

We call Λ the (almost-)Poisson bivector of (P, {·, ·}).

Almost-Poisson manifolds can also be defined as those manifolds ad-
mitting a bivector field Λ. It can be seen [237] that the Jacobi identity is
equivalent to [Λ,Λ] = 0, where [·, ·] denotes the Schouten-Nijenhuis bracket .
Therefore, Poisson manifolds can alternatively be defined as almost-Poisson
manifolds whose bivector field Λ satisfies [Λ,Λ] = 0.

In the usual way, Λ determines a bundle homomorphism over the identity,

�Λ : T ∗P −→ TP ,
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defined by β(�Λ(α)) = Λ(α, β), α, β ∈ T ∗P . Notice, in particular, that one
has �Λ(df) = Xf . If the manifold is Poisson and �Λ is bijective, then we can
define a symplectic 2-form whose associated Poisson bracket is {·, ·}.

Let (P, {·, ·}) be a Poisson manifold. The image of T ∗P under the homo-
morphism �Λ defines a generalized distribution DΛ by

DΛ
p = �Λ(T ∗

pP ) , p ∈ P .

The rank of the Poisson structure at p is the dimension of the space DΛ
p .

DΛ is called the characteristic distribution of the Poisson structure. Note
that DΛ is generated by the Hamiltonian vector fields and consequently is a
differentiable distribution as defined in Section 2.2.

The following result can be deduced from the theory of integrability of
generalized distributions [237].

Theorem 2.8.2. The characteristic distribution DΛ is completely integrable,
and the Poisson structure induces symplectic structures on the leaves of DΛ.

The leaves of DΛ are called the symplectic leaves of the Poisson manifold
and DΛ is also said to be the symplectic foliation of P . Note that, since DΛ is a
generalized distribution, the symplectic leaves can have different dimensions.

The local structure of Poisson manifolds is given by the following result.

Theorem 2.8.3 (Weinstein [255]). Let (P,Λ) be a n-dimensional Poisson
manifold, and p ∈ P a point where the rank of the Poisson structure is 2r,
0 ≤ 2r ≤ n. Then there exists a chart (U,ϕ) of P , whose domain contains p,
with local coordinates (x1, . . . , xr, y1, . . . , yr, z1, . . . , zn−2r) such that, on U ,

Λ =
r∑
i=1

∂

∂yi
∧ ∂

∂xi
+

∑
1≤k<l≤n−2r

bkl(z1, . . . , zn−2r)
∂

∂zk
∧ ∂

∂zl
,

and bkl(p) = 0.

2.8.1 Almost-Poisson reduction

Almost-Poisson brackets will be very useful in Chapter 4, when we discuss
the reduction and reconstruction of the dynamics of nonholonomic systems
with symmetry. Here, we briefly recall the main results of Poisson reduction
as developed in [162], but rephrased for almost-Poisson manifolds.

Definition 2.8.4. Let (P,ΛP ) be an almost-Poisson manifold. Then a pair
(N,E) consisting of a submanifold j : N ↪→ P , and a vector subbundle E of
TP|N will be called a reductive structure of (P,ΛP ) if the following conditions
are satisfied,
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1. E ∩ TN is tangent to a foliation F whose leaves are the fibers of a sub-
mersion π : N −→ S;

2. for all ϕ, ψ ∈ C∞(P ) such that dϕ and dψ vanish on E, d{ϕ,ψ}P also
vanishes on E.

Furthermore, if S, defined by (i), has an almost-Poisson structure ΛS such
that for any local C∞ functions f , g on S, and any local extensions ϕ, ψ of
π∗f , π∗g, with dϕ|E = dψ|E = 0, the relation

{ϕ,ψ}P ◦ j = {f, g}S ◦ π

holds, we say that (P,N,E) is a reducible triple, and (S,ΛS) is the reduced
almost-Poisson manifold of (P,ΛP ) via (N,E).

The bundle E is sometimes called the control bundle. The following the-
orem characterizes reducible triples.

Theorem 2.8.5. Let (N,E) be a reductive structure of the almost-Poisson
manifold (P,ΛP ). Then (P,N,E) is a reducible triple iff

�P (Eo) ⊆ TN + E .

2.9 The geometry of the tangent bundle

IN this section we want to collect some facts about the geometry of the tan-
gent bundle that will be useful in the symplectic formulation of Lagrangian

systems. The interested reader may consult [78, 138].

First of all, we define what we shall understand by a Lagrangian system.

Definition 2.9.1. A Lagrangian system consists of a n-dimensional manifold
Q, representing the space of all possible configurations of the system, and a
function on the tangent bundle of Q, L : TQ −→ R, called the Lagrangian of
the system.

This can be taken as a purely mathematical definition, although its mo-
tivation is clearly physical: it is generally assumed that the dynamical model
associated with the Lagrangian function describes the real behavior of the
problem under consideration. For a mechanical system, the Lagrangian is
given by

L(q, q̇) = T (q, q̇) − V (q) ,

where T : TQ −→ R denotes the kinetic energy of the system and V :
Q −→ R the potential energy. This type of Lagrangian is called natural
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or mechanical . In any case, the geometric treatment of Lagrangian systems
exposed here is valid for a wide class of Lagrangians.

In the previous definition of Lagrangian system we are implicitly assuming
that there are no external forces acting on it. Mathematically, an external
force field F is usually modeled by a bundle map F : TQ −→ T ∗Q over the
identity (although there may be more general types of forces which depend
also on accelerations: see [141] for a complete exposition). Using the dual
mapping of Tτq : TTQ −→ TQ, we will often identify F with the one-form
on TQ given by T ∗τQ ◦ F . In Chapter 8, we shall also consider systems with
forces that depend only on configurations, rather than on configurations and
velocities. In that case, the force field is just given by a one-form on Q,
F ′ : Q −→ T ∗Q, so that F = F ′ ◦ τQ.

There are two canonical geometric objects associated with the tangent
bundle of a manifold, which we describe next. On the one hand, one has the
dilation or Liouville vector field1. Consider the 1-parameter group of dilations

φt : TQ −→ TQ
vq �−→ etvq .

The Liouville vector field is the infinitesimal generator of this 1-parameter
group, i.e.

∆ : TQ −→ T (TQ)
vq �−→ d

dt

∣∣
t=0 (φt(vq)) .

In local coordinates, one can check that ∆ = q̇A ∂
∂q̇A . On the other hand,

there exists a (1, 1)-tensor field on TQ

S : T (TQ) −→ T (TQ)
wvq �−→ d

dt

∣∣
t=0

(
vq + tT τQ(wvq )

)
,

which is known as the vertical endomorphism or the almost tangent structure
of TQ. The local expression of S is given by S = ∂

∂q̇A ⊗ dqA.

Both objects play a fundamental role in the geometrical description of the
dynamics of Lagrangian systems. The role of the Liouville vector field will
be shown in Chapter 3 when defining the energy function, and in Chapter 8
when dealing with dissipative mechanical control systems. The vertical endo-
morphism will enable us to construct the bundle of reaction forces associated
with a constrained system in Chapter 3.

By means of the vertical endomorphism we can also define the following
relevant additional structures on the tangent bundle on which a Lagrangian

1 In fact, the Liouville vector field can be defined on any vector bundle: see [149].
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function is given. The Poincaré-Cartan 1-form is the pull-back by S of the
differential of the Lagrangian function, i.e.

ΘL = S∗(dL) .

In local coordinates, one can see that ΘL = ∂L
∂q̇A dqA. From ΘL, one can

construct the Poincaré-Cartan 2-form

ωL = −dΘL .

Obviously ωL is closed, but in general need not be nondegenerate. If the
Lagrangian is regular, i.e. if for any coordinates (qA, q̇A) on TQ we have that
the Hessian matrix (

∂2L

∂q̇A∂q̇B

)
is invertible, then ωL is nondegenerate, and hence symplectic. For a me-
chanical system, L is always regular (indeed, the Hessian matrix is positive-
definite). If L is non-regular (or singular), then ωL is just presymplectic,
meaning that the musical mapping �ωL

: TTQ −→ T ∗TQ is not an isomor-
phism. In local coordinates, we have

ωL = dqA ∧ d

(
∂L

∂q̇A

)
=

∂2L

∂q̇A∂qB
dqA ∧ dqB +

∂2L

∂q̇A∂q̇B
dqA ∧ dq̇B .

Another way of constructing the Poincaré-Cartan forms is through the use
of the Legendre transformation. Let us define the latter. Let vq ∈ TqQ. Since
TqQ is a vector space, we can identify TqQ ≡ Tvq (TqQ) and regard TqQ as
contained in Tvq (TQ). Then, for each vq, we can consider the linear mapping
(dL)vq ◦ i : TqQ ↪→ Tvq (TQ) −→ R, or, stated otherwise, (dL)vq ◦ i ∈ T ∗

qQ.
Thus we get the Legendre transformation

FL : TQ −→ T ∗Q
vq �−→ (dL)vq ◦ i .

Now, it is easy to verify that in local coordinates this map reads

FL(qA, q̇A) =
(
qA,

∂L

∂q̇A
(q, q̇)

)
.

Some simple additional computations then yield that

ΘL = FL∗ΘQ and ωL = FL∗ωQ .

If L is regular, the Legendre transformation is a local diffeomorphism.
The Lagrangian is called hyperregular if FL is a global diffeomorphism. In
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that case, FL indeed defines a symplectomorphism between the symplectic
manifolds (TQ, ωL) and (T ∗Q,ωQ).

If the Lagrangian is singular, then the Legendre transformation is not a
local diffeomorphism. Often, it is assumed that L is almost regular, which
means that ωL has constant rank 2r (that is, �ωL

has constant rank 2r), the
image FL(TQ) is a submanifold of T ∗Q and the fibers of FL are connected.
Under these assumptions, one can develop a Hamiltonian description of the
dynamics of the system, making use of Dirac’s theory of constraints [82]
and its geometrization due to Gotay and Nester [93, 94, 95] (see [56] for a
comprehensive overview).

Let Φ : G × Q −→ Q be an action of a Lie group G on Q. Consider the
lifted action Φ̂ : G×TQ −→ TQ. We say that the Lagrangian L is G-invariant
if L ◦ Φ̂g = L, for all g ∈ G. The invariance of the Lagrangian implies that
the lifted action is symplectic, namely

Φ̂∗
gωL = ωL , ∀g ∈ G .

Moreover, we can define the map,

JL : TQ −→ g∗

vq �−→ JL(vq) : g −→ R

ξ �−→ 〈FL(vq), ξQ〉 = 〈ΘL(vq), ξTQ〉.

A straightforward computation yields

iξT Q
ωL = dJLξ ,

where JLξ : TQ −→ R is defined by JLξ (v) = 〈JL(v), ξ〉, and hence we have
that the lifted action Φ̂ is indeed Hamiltonian.

Finally, other notions that will be used later are that of vertical lift and
complete lift of a vector field [138]. Let X ∈ X(Q), the vertical lift of X is
the vector field X lift on TQ defined by

X lift(vq) =
d

dt

∣∣∣
t=0

(vq + tX(q)) .

To define the complete lift of a vector field, we first have to define the complete
lift of a function. The complete lift to TQ of a function f ∈ C∞(Q) is the
function fc ∈ C∞(TQ) given by f c = df . The complete lift to TQ of X ∈
X(Q) is the unique vector field Xc ∈ X(TQ) such that Xc(fc) = (Xf)c,
∀f ∈ C∞(Q).
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I N this chapter, we present the class of systems which are the subject of
study of the monograph: nonholonomic systems. Classical books such as

Appell [6], Painlevé [198], Pars [201], Rosenberg [207] and Whittaker [257]
account for much of the developments of the analytical mechanics of nonholo-
nomic problems. The book by Neimark and Fufaev [188] remains as a basic
reference in the area. The beginning of the study of nonholonomic mechanics
from a differential geometric perspective is marked by the work by Vershik
and Faddeev [243, 244]. Since then, many authors have contributed to this
growing body of research, which has experimented a huge thrust in the 90’s
(see [25, 59] and references therein).

The chapter is organized as follows. In Section 3.1 we present Hamilton’s
principle for unconstrained systems and a geometric formalization using sym-
plectic geometry. Section 3.2 contains several classical and modern examples
of nonholonomic systems. In Section 3.3 we state the Lagrange-d’Alembert
principle and derive the equations of motion. Finally in Section 3.4 we intro-
duce two alternative intrinsic formulations of the dynamics of nonholonomic
systems which will be key in our exposition along the rest of the book.

3.1 Variational principles in Mechanics

S OME authors prefer to first derive the Lagrange or Hamilton equations
starting from a Newtonian formulation and then obtain variational princi-

ples as theorems. Others assume variational principles and derive the Hamil-
tonian and Lagrange equations as theorems. We prefer the second approach,
since this seems to be in better accordance with the fundamental role that
variational principles have played in the evolution of mathematical models in
Mechanics.

3.1.1 Hamilton’s principle

In this section we give a brief account of the variational principles involved
in the derivation of the equations of motion in Classical Mechanics.

J. Cortés Monforte: LNM 1793, pp. 39–61, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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q0

cs(t)
q1

c(t)
X

Fig. 3.1. Illustration of a variation cs and an infinitesimal variation X of a curve
c with endpoints q0 and q1.

We will typically consider curves c : [a, b] −→ Q, which connect two given
points q0, q1 in the configuration manifold Q. These curves may be subject
to some constraints, but in this section we shall focus our attention on the
unconstrained case. The set of all such curves which are twice differentiable
will be denoted by

C2(q0, q1, [a, b]) = {c : [a, b] −→ Q | c is C2, c(a) = q0 and c(b) = q1} .

It can be proved that this set is a smooth infinite-dimensional manifold [21].
Let c be a curve in C2(q0, q1, [a, b]). As is well known, the tangent space of
C2(q0, q1, [a, b]) at c is given by

Tc C2(q0, q1, [a, b]) = {X : [a, b] −→ TQ|X is C1, X(t) ∈ Tc(t)Q,

X(a) = 0 and X(b) = 0} .

A tangent vector X at c is then a vector field along the curve c which vanishes
at the end points, c(a) and c(b).

Since X is a tangent vector to the manifold C2(q0, q1, [a, b]), we may write
it as the tangent vector at s = 0 of a curve in C2(q0, q1, [a, b]), s ∈ (−ε, ε) ⊂
R �−→ cs which passes through c at s = 0, c0 = c, that is,

X =
dcs
ds

∣∣∣
s=0

.

The curve cs is called a variation of c and the vector X is called an infinites-
imal variation of c.

Next, we consider the classical action functional [1, 10] associated with a
Lagrangian L : TQ −→ R, defined by

J : C2(q0, q1, [a, b]) −→ R

c �−→ ∫ b
a
L(ċ(t)) dt .



3.1 Variational principles in Mechanics 41

We then have

dJ (c)(X) =
d

ds

∣∣∣
s=0

(J (cs)) =
∫ b

a

d

ds

∣∣∣
s=0

L(cs, ċs)dt .

A direct computation using integration by parts [1] shows that in local coor-
dinates we can write

dJ (c)(X) =
∫ b

a

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA dt , (3.1)

for c ∈ C2(q0, q1, [a, b]) and X ∈ Tc C2(q0, q1, [a, b]).

Definition 3.1.1 (Hamilton’s principle). A curve c ∈ C2(q0, q1, [a, b]) is
a motion of the Lagrangian system defined by L if and only if c is a critical
point of J , that is, dJ (c) = 0.

Therefore, a motion of the Lagrangian system extremizes the functional
J among all its possible variations.

Being a critical point of the functional J means that dJ (c)(X) = 0 for
all X ∈ Tc C2(q0, q1, [a, b]). In view of (3.1) this is the same as∫ b

a

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA dt = 0 , ∀XA .

Then, using the fundamental lemma of the Calculus of Variations, it is easy
to prove that for a curve c the condition of being critical is equivalent to
being a solution of the Euler-Lagrange equations for the Lagrangian L,

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0 , 1 ≤ A ≤ n . (3.2)

In the presence of external forces, say F 1, . . . , Fm, we must consider the
total work done by these forces along the motion, which is given by

W (c) =
m∑
j=1

∫ b

a

F j(ċ(t))dt .

Definition 3.1.2 (Integral Lagrange-d’Alembert principle). Let c be
a curve in C2(q0, q1, [a, b]). Then c is a motion of the Lagrangian system
defined by L, and with external forces F 1, . . . , Fm if and only if c is such that
dJ (c) = W (c).
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In coordinates, the integral Lagrange-d’Alembert principle can be ex-
pressed in the following way: we have that dJ (c) = W (c) if and only if
dJ (c)(X) = W (c)(X) for all X ∈ Tc C2(q0, q1), that is,∫ b

a

(
∂L

∂qA
− d

dt

(
∂L

∂q̇A

))
XA dt =

m∑
j=1

∫ b

a

F j
A(ċ(t))XAdt , ∀XA .

Using again the fundamental lemma of the Calculus of Variations, we obtain
the classical forced Euler-Lagrange equations,

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
=

m∑
j=1

F j
A , 1 ≤ A ≤ n . (3.3)

3.1.2 Symplectic formulation

In this section we present an intrinsic formulation of the equations of mo-
tion (3.2) for a Lagrangian system that may subjected to external forces. For
more details see [1, 138].

First of all, we must define the energy of a system with Lagrangian func-
tion L. If we interpret the Liouville vector field ∆ on TQ as a derivation on
functions, the energy of the system is given by

EL = ∆(L) − L .

In the mechanical case, this exactly corresponds to EL = T + V , that is,
kinetic plus potential energy.

Now, consider the equation

iXωL = dEL , (3.4)

in which X is interpreted as the unknown. If the Lagrangian L is regular, then
ωL is symplectic and X = XEL

= ΓL, the Hamiltonian vector field associated
with the energy function, is the unique solution of (3.4). In such a case, ΓL
is a second order differential equation (SODE for short), meaning that its
integral curves c(t) ∈ TQ are of the form c(t) = d

dtτQ(c(t)). Intrinsically, this
is encoded in the equality

S(ΓL) = ∆ ,

where S is the almost-tangent structure on TQ (see Section 2.9). In local
coordinates, this reads as c(t) = (qA(t), q̇A(t)). The curves q(t) = τQ(c(t))
are called the solution curves of ΓL and are just the solutions of the Euler-
Lagrange equations (3.2).
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If L is not regular, then it does not exist in general a vector field X
verifying (3.4). Even if it does, it will not be unique nor a SODE. The Gotay-
Nester’s algorithm [93, 94, 95], which is a geometrization of Dirac’s algorithm
of constraints [82], treats this interesting situation. In any case, assuming that
we restrict our attention to SODE vector fields, what one can easily compute
is that the solution curves of an hypothetical X, if it exists, are precisely those
solutions of the Euler-Lagrange equations. So, equation (3.4) is the intrinsic
geometric writing of the equations (3.2).

The presence of external forces is easily considered in this formalism.
Define the sum of all external forces as the one-form on TQ, F =

∑m
j=1 F j .

Then, equations (3.3) are written as

iXωL = dEL + F . (3.5)

3.2 Introducing constraints

S O far, we have been dealing with mechanical systems for which any of
their parts were allowed to move in any direction. However, in many cases,

the very construction of the physical system under consideration precludes
an arbitrary motion of its various parts; their motions and positions are
somehow interrelated and must satisfy a number of conditions. In mechanics,
this exactly corresponds to the presence of constraints imposed on the system.

The actual form of these constraints may be varied. If they impose restric-
tions on the possible configurations of the individual parts of the system, we
shall call them geometric constraints. If they restrict the kinematically pos-
sible motions of the system, i.e. the possible values of the velocities of the
individual parts, we call them kinematic. Every geometric constraint gives
rise to a certain kinematic constraint by differentiation. But the converse
does not hold in general.

The existence of kinematic constraints that impose no restrictions on
the possible configurations of a mechanical system was recognized in com-
paratively recent times. Lagrange himself overlooked them in his celebrated
Mécanique Analytique. It was only in 1894 that Hertz introduce the distinc-
tion between holonomic and nonholonomic constraints, that we describe in
the following.

Let (qA), A = 1, . . . , n, be coordinates on the configuration manifold Q.
The conditions on the motions and positions of the system may be expressed
by a system of inequalities of the form

fi(qA, q̇A, t) ≥ 0 , 1 ≤ i ≤ m.

These constraints are termed one-sided and nonlimiting. Alternatively, we
may have equations of the form
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fi(qA, q̇A, t) = 0 , 1 ≤ i ≤ m. (3.6)

These are called two-sided and limiting. In addition, limiting constraints
are classified as time-dependent (classically, rheonomic) or time-independent
(scleronomic), depending on whether or not they contain time explicitely, and
geometric or kinematic. The constraints are geometric if they are expressed
by equations of the form

fi(qA, t) = 0 , 1 ≤ i ≤ m.

Otherwise, they are kinematic. The kinematic constraints are integrable if the
corresponding system of differential equations (3.6) is integrable. Integrable
or holonomic kinematic constraints are essentially geometric constraints, and
in this sense impose restrictions on the possible configurations. In contrast,
nonintegrable or nonholonomic constraints cannot be reduced to geometric
constraints. We give below a precise mathematical formulation of these con-
cepts, since the classification of Hertz in necessarily local in nature due to
the choice of coordinates.

The nonholonomic constraints usually encountered in Mechanics are of
rolling or non-sliding type, and are linear or affine in the velocities. Exam-
ples can be found in wheeled robots, locomotion devices, etc. There are also
situations in which the constraints are nonlinear, although in this case there
does not exist an unanimous consensus about the physical principle which
gives the correct equations of motion. We shall return to this point in the
following section.

We remark that one can find in the literature another kind of nonholo-
nomic constraints which are called dynamic nonholonomic constraints, that
is, constraints preserved by the basic Euler-Lagrange or Hamiltonian equa-
tions, such as angular or linear momentum. These “constraints” are not ex-
ternally imposed on the system, but are obtained as consequences of the
equations of motion, i.e. a posteriori. Hence, they must be treated as conser-
vation laws, rather than constraints.

Throughout the book, we will assume that the constraints imposed on
the mechanical system can be globally described by a submanifold M of the
phase space TQ.

Definition 3.2.1. A nonholonomic Lagrangian system on a manifold Q con-
sists of a pair (L,M), where L : TQ −→ R is the Lagrangian of the system
and M is a submanifold of TQ.

We will tacitly assume that τQ(M) = Q.

The motions of the system are forced to take place on M , that is, the al-
lowed velocities for the nonholonomic Lagrangian system are those belonging
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to M . This requires the introduction of some, in principle unknown, “reac-
tion forces” (the constraint forces). This kind of problems include systems
in robotics, wheeled vehicular dynamics and motion generation, and are the
subject of research of what is commonly known as Nonholonomic Mechanics.

In case M is a vector subbundle of TQ, we are dealing with the case
of linear constraints. We shall refer then to M as D. If, in addition, this
subbundle corresponds to an integrable distribution, we are precisely reduced
to the case of holonomic constraints. If F denotes the foliation on Q defined
by D, for any initial condition vq ∈ Dq, the problem is then reduced to an
unconstrained system living in the leaf of F containing q (and thus, with
less degrees of freedom than the original problem). In case M is an affine
subbundle modeled on a vector bundle D, we are treating affine constraints.
We will assume then that there exists a globally defined vector field γ ∈ X(Q)
such that vq ∈ Mq if and only if vq − γ(q) ∈ Dq.

In Chapter 6 we shall deal with a more general situation in which M is
contained in TQ, but it is not equipped with a manifold structure.

An important class of nonholonomic systems are those for which the di-
lation vector field ∆ is tangent to the constraint submanifold M . In local
coordinates, this condition implies that the constraint functions φi = 0 de-
scribing M should satisfy (

q̇A
∂φi
∂q̇A

)
|M

= 0 .

This type of nonholonomic constraints are called homogeneous. This condi-
tion will be verified in particular if the constraints are homogeneous in the
velocities, as is the case of linear constraints.

Classically, there have been many examples of nonholonomic systems
studied. The book of Neimark and Fufaev [188] accounts for quite a number
of them. Some are the example of a uniform sphere rolling on a surface of
revolution, the rolling disk (inclined, vertical), the bicycle, the plate with a
knife edge on an inclined plane, the rolling of a solid of revolution on an hor-
izontal plane, the wobblestone or rattleback, etc. In the following, we present
some of these examples together with related modern ones which have been
in the development of the geometric study of nonholonomic mechanics.

3.2.1 The rolling disk

Consider a disk that rolls without sliding on an horizontal plane. Fix a co-
ordinate system Oxy on the plane. The position of the disk is given by the
coordinates (x, y) of the point of contact P with the floor, the angle ψ mea-
sured from a chosen point of the rim S to the point of contact P or rota-
tion angle, the angle ϕ between the tangent to the disk at the point P and
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the Ox axis or heading angle, and the angle of inclination ϑ between the
plane of disk and the floor (see Figure 3.2). The configuration space is hence
Q = R2 × S1 × S1 × S1.

Sψ

P

ϕ

ϑ
x

y

z

O

Fig. 3.2. The rolling disk

The Lagrangian of this mechanical system is of natural type, L = T − V .
The kinetic energy is given by

T =
1
2
m
(
ẋ2 + ẏ2 + R2ϑ̇2 + R2ϕ̇2 sin2 ϑ

)
− mR

(
ϑ̇ cosϑ(ẋ sinϕ − ẏ cosϕ) + ϕ̇ sinϑ(ẋ cosϕ + ẏ sinϕ)

)
+

1
2
I1

(
ϑ̇2 + ϕ̇2 cos2 ϑ

)
+

1
2
I2

(
ψ̇ + ϕ̇ sinϑ

)2
,

where m is the mass, and I1, I2 are the principal moments of inertia of the
disk. The potential energy of the disk is

V = mgR cosϑ .

The condition that the disk rolls without sliding on the horizontal plane
means that the instantaneous velocity of the point of contact of the disk is
equal to zero at all times, otherwise the disk would necessarily slip. This gives
rise to the following constraints

φ1 = ẋ − (R cosϕ)ψ̇ = 0 , φ2 = ẏ − (R sinϕ)ψ̇ = 0 , (3.7)

where R is the radius of the disk. Note that both φ1 and φ2 are nonholonomic
in the sense that they cannot be “integrated” and expressed in terms of



3.2 Introducing constraints 47

(x, y, ψ, ϕ, ϑ) only. Both constraints are also linear in the velocities. They
determine the following distribution of allowed velocities,

D = span
{
R cosψ

∂

∂x
+ R sinψ

∂

∂y
+

∂

∂ψ
,

∂

∂ϕ
,

∂

∂ϑ

}
.

3.2.2 A homogeneous ball on a rotating table

A homogeneous sphere of radius r and unit mass (m = 1) rolls without
sliding on a horizontal table which rotates with non constant angular velocity
Ω(t) about a vertical axis through one of its points. Apart from the constant
gravitational force, no other external forces are assumed to act on the sphere.

Choose a Cartesian reference frame with origin at the center of rotation of
the table and z-axis along the rotation axis. Let (x, y) denote the position of
the point of contact of the sphere with the table. The configuration space is
Q = R2 × SO(3), where SO(3) may be parameterized by the Eulerian angles
(ϕ, θ, ψ) (see Figure 3.3).

Fig. 3.3. A ball on a rotating table

The potential energy is constant, so we may put V = 0. In addition, since
we do not consider external forces, the Lagrangian is given by the kinetic
energy of the sphere, i.e.

L(= T ) =
1
2

(
ẋ2 + ẏ2 + k2(θ̇2 + ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cos θ)

)
.

The constraint equations, expressing the condition of rolling without slipping,
are

ẋ − rθ̇ sinψ + rϕ̇ sin θ cosψ = −Ω(t)y
ẏ + rθ̇ cosψ + rϕ̇ sin θ sinψ = Ω(t)x .
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Note that in this case the constraints are nonholonomic, time-dependent and
affine in the velocities. They determine the following space of allowed veloc-
ities,

M = span
{
r sinψ

∂

∂x
− r cosψ

∂

∂y
+

∂

∂θ
,

r sin θ cosψ
∂

∂x
+ r sin θ sinψ

∂

∂y
+

∂

∂ϕ
,

∂

∂ψ

}
+ γ ,

where γ is the time-dependent vector field defined by

γ = −Ω(t)y
∂

∂x
+ Ω(t)x

∂

∂y
.

It is well known that the problem of the rolling ball on a rotating table
can be most elegantly treated exploiting the symmetry of the problem by
means of the formalism of “quasi-coordinates”, with the angular velocity
playing the role of “quasi-velocity”. For a classical treatment of the theory of
quasi-coordinates, we refer to [188, 201]. A more recent discussion of the use
of quasi-coordinates in the study of nonholonomic systems with symmetry,
within a differential geometrical setting, can be found in [120].

In the following we briefly discuss the approach of “quasi-coordinates”.
In terms of the Euler’s angles we have that the components of the angular
velocity of the sphere read

ωx = θ̇ cosψ + ϕ̇ sin θ sinψ,

ωy = θ̇ sinψ − ϕ̇ sin θ cosψ,

ωz = ψ̇ + ϕ̇ cos θ.

Let us take (x, y, θ, ϕ, ψ, ẋ, ẏ, ωx, ωy, ωz) as coordinates on the tangent bundle,
with the components of the angular velocity now being regarded as the “ve-
locities” associated with some quasi-coordinates. Following the classical treat-
ments, such as [188, 201], we put ωx = q̇1, ωy = q̇2, ωz = q̇3, with q1, q2, q3

denoting quasi-coordinates. The latter merely have a symbolic meaning in the
sense that in the present example, for instance, the partial derivative opera-
tors ∂/∂qi should be interpreted as linear combinations of the partial deriva-
tives with respect to Euler’s angles. Also to the differential forms dqi one
should attach the appropriate meaning, i.e. they do not represent exact dif-
ferentials but, instead, we should read them as dq1 = cosψ dθ+sin θ sinψ dϕ,
etc. The Lagrangian is now given by

L =
1
2
(
ẋ2 + ẏ2 + k2(ω2

x + ω2
y + ω2

z)
)

and the nonholonomic constraints read simply
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ẋ − rωy = −Ω(t)y, ẏ + rωx = Ω(t)x .

Finally, the space M is described as

M = span
{
r

∂

∂x
+

∂

∂q2 ,−r
∂

∂y
+

∂

∂q1 ,
∂

∂q3

}
+ γ .

3.2.3 The Snakeboard

The Snakeboard [29, 148, 195] is a variant of the skateboard in which the
passive wheel assemblies can pivot freely about a vertical axis. By coupling
the twisting of the human torso with the appropriate turning of the wheels
(where the turning is controlled by the rider’s foot movement), the rider
can generate a snake-like locomotion pattern without having to kick off the
ground.

(x,y)
front wheels

l

ψ

φ
θ

back wheels
−φ

Fig. 3.4. The Snakeboard model. Figure courtesy of Jim Ostrowski.

A simplified model is shown in Figure 3.4. We assume that the front and
rear wheel axles move through equal and opposite rotations. This is based
on the observations of human Snakeboard riders who use roughly the same
phase relationship. A momentum wheel rotates about a vertical axis through
the center of mass, simulating the motion of a human torso. Figure 3.5 shows
a robotic prototype of the Snakeboard built in Caltech [195].

The position and orientation of the Snakeboard is determined by the
coordinates of the center of mass (x, y) and its orientation θ. The shape
variables are (ψ, φ), so the configuration space is Q = SE(2) × S1 × S1. The
physical parameters for the system are the mass of the board, m; the inertia
of the rotor, Jr; the inertia of the wheels about the vertical axes, Jw; and the
half-length of the board, l. A key component of the Snakeboard is the use of
the rotor inertia to drive the body. To keep the rotor and body inertias on
similar scales, we make the additional simplifying assumption [29, 196] that
the inertias of the system satisfy J + Jr + 2Jw = ml2.
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Fig. 3.5. A prototype robotic Snakeboard. Figure courtesy of Jim Ostrowski.

The Lagrangian of the system is given by its kinetic energy

L =
1
2
m(ẋ2 + ẏ2) +

1
2
(J + Jr + 2Jw)θ̇2 + Jr θ̇ψ̇ +

1
2
Jrψ̇

2 + Jwφ̇
2 .

The assumption that the wheels do not slip in the direction of their axles
yields the following two nonholonomic constraints

− sin(θ + φ)ẋ + cos(θ + φ)ẏ − l cosφ θ̇ = 0 ,

− sin(θ − φ)ẋ + cos(θ − φ)ẏ + l cosφ θ̇ = 0 .

They both are linear and determine the following constraint distribution

D = span
{
−r cosφ cos(θ − φ)

∂

∂x
− r cosφ sin(θ − φ)

∂

∂y
+ sinφ

∂

∂θ
,

∂

∂ψ
,

∂

∂φ

}
.

3.2.4 A variation of Benenti’s example

To end with this series of simple examples, we will treat some variants con-
sidered in [103] of an example proposed by Benenti [19].

Consider the problem of two point masses forced to move on a plane with
parallel velocities. The configuration space is Q = R2 × R2. We denote by
(x1, y1) the position of the particle of mass m1 and by (x2, y2) the position of
the particle of mass m2. The Lagrangian of the system is the kinetic energy,

L =
1
2
m1(ẋ2

1 + ẏ2
1) +

1
2
m2(ẋ2

2 + ẏ2
2) .

The constraint on the velocities is given by the function on the tangent bundle
TQ,
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Fig. 3.6. A variation of Benenti’s system.

Ψ = ẋ1ẏ2 − ẋ2ẏ1 = 0 .

The constraint Ψ is a genuine nonlinear nonholonomic constraint.

A variation of this problem is the following: let us substitute the point
masses by disks rolling without sliding on the plane (see Figure 3.6) . Then
the system consists of two copies of the system discussed in Section 3.2.1,
now rolling vertically and with the additional nonlinear constraint on the
velocities,

Ψ = v1 ∧ v2 = 0 , (3.8)

where vi denotes the velocity of the center of mass of the ith disk. Here,
we are identifying the vector v1 ∧ v2 orthogonal to the (x, y)-plane with its
projection onto the z-axes, so that the constraint Ψ takes real values.

Replacing in (3.8) the constraints given by the rolling conditions, eq. (3.7),
this can be rewritten as,

Ψ = R1R2 sin(ϕ2 − ϕ1)ψ̇1ψ̇2 = 0 .

The constraint means that either one of the disks is not rolling (ψ̇i = 0)
and the angles ϕi are arbitrary or, if the disks are rolling (ψ̇i �= 0), then
ϕ1 = ϕ2 = ϕ and the nonlinear constraint Ψ is redundant: the two disks roll
independently and freely keeping parallel directions.

3.3 The Lagrange-d’Alembert principle

IN this section, we derive the equations of motion for nonholonomic systems
subject to affine constraints. We start by explaining important physical
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notions such as ideal constraint and virtual displacement. After stating the
Lagrange-d’Alembert principle, we turn to the mathematical derivation of
the equations.

As we mentioned in the preceding section, the fulfilling of the constraints
requires the introduction of some unknown reaction forces. In connection
with the problem of eliminating this unknown character, it is customary to
introduce the concept of virtual displacements. Let us consider a number of
nonholonomic constraints∑

aiAq̇A + ai0 = 0 , 1 ≤ i ≤ k .

Virtual variations are infinitesimally small variations of the generalized coor-
dinates (qA) that are compatible with the constraints imposed on the system,
that is, satisfy the equations ∑

aiAδqA = 0 .

Displacements of a system corresponding to virtual variations of its gener-
alized coordinates are called virtual displacements. We must emphasize that
we are speaking of virtual displacements of the system at a given instant of
time and for a given configuration of the system.

Definition 3.3.1 (Principle of Virtual Work). Nonholonomic constraints
on a nonholonomic Lagrangian system are said to be ideal if the reaction
forces associated with them perform no work in any virtual displacement of
the system.

Throughout the book, we always assume that we are dealing with ideal
constraints. This is the case, for example, for constraints of non-sliding type.

Classically, an admissible path is a trajectory of the system consistent
with the constraints. This corresponds to curves c : [a, b] −→ Q connecting
two points in Q which satisfy the constraints determined by M , meaning that
the tangent vectors of the curve belong to M , ċ(t) ∈ Mc(t). The set of all such
curves which are twice differentiable will be denoted by

C̃2(q0, q1, [a, b]) = {c : [a, b] −→ Q | c ∈ C2(q0, q1, [a, b]) and ċ(t) ∈ Mc(t)} .

Note that C̃2(q0, q1, [a, b]) is a subset of C2(q0, q1, [a, b]) introduced in Sec-
tion 3.1.1. Given a curve c ∈ C̃2(q0, q1, [a, b]), the set of all possible virtual
variations along c is the following subset of TcC2(q0, q1, [a, b]),

Vc = {X ∈ Tc C2(q0, q1, [a, b]) | X(t) ∈ Dc(t), ∀t ∈ [a, b]} ,

where M = (D, γ). The relevant equations describing the dynamic behav-
ior of systems subject to general ideal constraints are obtained through the
Lagrange-d’Alembert principle, which we state next.
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Definition 3.3.2 (Lagrange-d’Alembert principle). Let c be an admis-
sible path in C̃2(q0, q1, [a, b]). Then c is a motion of the nonholonomic La-
grangian system (L,M) if

dJ (c)(X) = 0 , for all X ∈ Vc .

Remark 3.3.3. This formulation of the Lagrange-d’Alembert principle is known
as Hölder principle. There is another equivalent formulation due to Gauss,
the Gauss’ principle of least constraint (see [10]).

Remark 3.3.4. Note that the Lagrange-d’Alembert principle is not truly vari-
ational, since the motion of the nonholonomic system is not a critical point
of any functional in the sense of the Calculus of Variations. If we followed a
variational approach to the dynamics of the constrained Lagrangian system,
we could consider the restriction of the action functional J to the subman-
ifold C̃2(q0, q1, [a, b]) of C2(q0, q1, [a, b]), J̃ : C̃2(q0, q1, [a, b]) −→ R and try to
find extremals of this restricted functional.

This point of view, that is, extremizing the action functional among all the
curves satisfying the constraints, gives rise to the so-called Vakonomic Me-
chanics, which will not be treated here (see [10]). This mechanics is thus ob-
tained through a purely variational principle by imposing the fulfilling of the
constraints on the variations themselves, not on the infinitesimal variations,
as it does the Lagrange-d’Alembert principle. The resulting equations are not
equivalent in general to the nonholonomic equations of motion, although there
exist cases in which the nonholonomic solutions can be regarded as vakonomic
solutions: for instance, the holonomic case or the rolling disk [26, 70, 145].
It is generally assumed that the relevant equations describing the dynamical
behavior of systems subject to constraints of non-sliding type are obtained
through the Lagrange-d’Alembert principle [145, 260], though vakonomic dy-
namics or the constrained variational problem is the natural setting of many
optimization problems encountered in Economic Growth theories, Engineer-
ing, Control Theory, motion of micro-organisms, etc.

The derivation of the constrained variational equations can present some
anomalies: in some cases, it could happen that a given admissible path does
not admit enough variations in C̃2(q0, q1, [a, b]) and at the same time extrem-
izes the restricted action functional J̃ . Such solutions are called singular or
abnormal, in contrast with the regular or normal case. A classical example
of the abnormal situation is due to Carathéodory (see [10]). In recent years,
there has been several works devoted to the existence of such type of solu-
tions, in connection with sub-Riemannian geometry (see [132, 153, 179]).

Now, we derive the equations of motion for a nonholonomic system. In
a local description, a constraint submanifold M of codimension k can be
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defined by the vanishing of k independent functions φi (the constraint func-
tions). If the constraints are affine, the functions φi can be taken to be of
the form φi(q, q̇) = µiA(q)q̇A + µi0(q), i = 1, . . . , k. Therefore, for the virtual
displacements, we have by definition that

X ∈ Vc ⇐⇒ µiAXA = 0 , 1 ≤ i ≤ k .

The Lagrange-d’Alembert principle asserts that c ∈ C̃2(q0, q1, [a, b]) is a mo-
tion of the nonholonomic system if dJ (c)(X) = 0, for all X ∈ Vc. From (3.1)
and using the Lagrange multipliers technique, this is equivalent to

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= λiµiA , (3.9)

which, together with the constraint equations µiAq̇A + µi0(q) = 0 (i =
1, . . . , k), determine the dynamics of the nonholonomic system. Here, the
λi are the Lagrange multipliers to be determined. The right-hand side of
eq. (3.9) precisely represents the “reaction force” induced by the constraints.

External forces can be incorporated into the discussion in the same way
we exposed for the unconstrained case. If F 1, . . . , Fm are external forces
acting on the nonholonomic system, define F =

∑m
j=1 F j = FAdqA. Then

the equations of motion are given by
d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= λiµiA + FA

µiAq̇A + µi0(q) = 0 .

(3.10)

Before ending this section, we make a remark concerning nonlinear non-
holonomic constraints. They do not occur frequently in real physical problems
and there is little agreement in the literature about the right mathematical
model to incorporate them. The most widely employed model makes use of
the so-called “Chetaev’s rule”. In classical terms, this rule can be interpreted
as extending the definition of the concept of virtual displacements to the
case where nonlinear constraints are present. The assumption then is that
the analogous version of the Lagrange-d’Alembert principle remains valid.
Most authors accept this model, but criticism about its physical correctness
has been formulated for instance in [157, 202]. Its geometrical implementa-
tion is practically the same as in the linear case, so this can be seen as a
good reason for examining the Chetaev model from a purely mathematical
perspective.

If φi(qA, q̇A) = 0 determine locally the nonlinear submanifold M of TQ,
then the Chetaev’s rule implies that the equations of motion for the con-
strained Lagrangian system are

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= λi

∂φi
∂q̇A

. (3.11)

together with the constraint equations.
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3.4 Geometric formalizations

AS mentioned in the Introduction, considerable efforts have been made to
adapt and extend several ideas and techniques from the geometric treat-

ment of unconstrained problems to the study of systems with nonholonomic
constraints. The list of contributions is extensive and it would be nearly im-
possible to make a complete account of them all here. Roughly speaking, we
can say that the subject has been approached from quite some different points
of view, including a Lagrangian approach (using reduction theory [29, 195],
tangent bundle geometry [57, 137] and jet theory [126, 213]), a Hamiltonian
approach [18, 35, 80, 122, 156] and a formulation in terms of (almost-)Poisson
structures [53, 123, 241]. In this section, we review two interesting approaches
to nonholonomic dynamics: the symplectic approach, which in particular is
well suited for the treatment of nonholonomic systems with symmetry, and
the affine connection approach.

3.4.1 Symplectic approach

In the presence of nonholonomic constraints, the formalization of the equa-
tions of motion must be modified in order to incorporate the constraints into
the picture. We shall always assume that the constraints verify the so-called
admissibility condition (see e.g. [137]), i.e. for all x ∈ M

dim (TxM)o = dimS∗((TxM)o) ,

where the annihilator of TxM is taken in T ∗
xTQ. In coordinates, if M is locally

defined by the annihilation of φ1, . . . , φk, this condition has the interpretation
that the rank of the matrix

∂(φ1, . . . , φk)
∂(q̇1, . . . , q̇n)

is k for any choice of coordinates (qA, q̇A) in TQ.

Next, we define the bundle of reaction forces or Chetaev bundle, the geo-
metric representation for the constraint forces. This is given by S∗(TMo) ⊂
T ∗TQ|M . Consider then the distribution F on TQ along M whose annihilator
is precisely this bundle, F o = S∗((TM)o).

The equations of motion for the nonholonomic system are then given by{
(iXωL − dEL)|M ∈ F o ,
X|M ∈ TM .

(3.12)

The nonholonomic system will have a unique solution X if it satisfies the
compatibility condition F⊥ ∩TM = 0. If the Hessian of L with respect to the
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velocities is definite, then this condition is automatically satisfied, and this is
the usual case in Mechanics since L = T−V , where T is the kinetic energy of a
Riemannian metric on Q, and V is the potential energy. If the compatibility
condition is not satisfied, then the Gotay-Nester algorithm [93, 94] can be
adapted to deal with the nonholonomic case and obtain a submanifold where
the dynamics is consistent (see [137]).

If M = (D, γ) is locally described by equations of the form

φi = µiA(q)q̇A + µi0(q) = 0, i = 1, . . . k,

with k = codim (M), putting

Cij = −µiAWABµjB , i, j = 1, . . . k,

where (WAB) is the inverse of the Hessian matrix(
∂2L

∂q̇A∂q̇B

)
compatibility locally translates into regularity of the matrix (Cij) (cf. [137],
where the compatibility condition for a nonholonomic system was called the
regularity condition).

If we define Zi = �L(S∗(dφi)), 1 ≤ i ≤ k, it is easy to see that F⊥ is
locally generated by Z1, . . . , Zk. We have the expression in local coordinates

Zi = µiAWAB ∂

∂q̇B
.

Under the compatibility condition, a simple counting of dimensions yields
that TxTQ = F⊥

x ⊕ TxM , ∀x ∈ M , which gives rise to two complementary
projectors

Px : TxTQ −→ TxM , Qx : TxTQ −→ F⊥
x .

A direct calculation shows that the constrained dynamics X is obtained by
projecting the unconstrained Euler-Lagrange vector field ΓL (restricted to
M) to TM with respect to this decomposition, i.e. X = P(ΓL|M ). Therefore,
we have that X = ΓL|M − Q(ΓL|M ) = ΓL|M − DjZj (the summation in j is
understood). Since X is tangent to M , then

X(φi) = ΓL|M (φi) − DjZj(φi) = 0 , 1 ≤ i ≤ k .

As Zj(φi) = −Cij , we conclude that Dj = −Cji ΓL|M (φi), where (Cij) is the
inverse of the matrix (Cij).

It should be pointed out that the solution X of (3.12) satisfies auto-
matically the SODE condition along M , i.e. S(X)|M = ∆|M . This im-
plies that, in local coordinates, the integral curves of X on M are of the
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form (qA(t), q̇A(t) ≡ dqA

dt (t)), whereby the qA(t) are solutions of the sys-
tem of differential equations (3.9), together with the constraint equations
µiA(q)q̇A + µi0(q) = 0, i = 1, . . . , k. The local coordinate expression for X
reads

X = q̇A
∂

∂qA
+ WAB

(
∂L

∂qB
− ∂p̂B

∂qC
q̇C

+ Cij ∂µiD
∂qC

µjB q̇C q̇D + WCD

(
∂L

∂qD
− q̇E

∂p̂D
∂qE

)
CijµjBµiC

)
∂

∂q̇A
,

where, for ease of writing, we have put p̂A =
∂L

∂q̇A
, A = 1, . . . , n.

In [18, 80, 136], the following alternative approach has been proposed. The
compatibility condition is equivalent to the condition that the distribution
F ∩ TM on M determines a symplectic vector bundle on M . Then, TxTQ =
(Fx ∩ TxM) ⊕ (Fx ∩ TxM)⊥, ∀x ∈ M , with induced projectors

P̄x : TxTQ −→ (Fx ∩ TxM) , Q̄x : TxTQ −→ (Fx ∩ TxM)⊥ .

It should be noted that, in general, the projection of the unconstrained dy-
namics ΓL by P̄ will not produce the constrained dynamics X. However, in
the case of homogeneous constraints, we have

P̄(ΓL) = P(ΓL) = X

along M . The dynamics X is called the distributional Hamiltonian vector
field of EL with respect to (ωL,M, F ∩ TM).

By means of the projector P̄, we can define the so-called nonholonomic
bracket on M , {·, ·}M , in the following manner (see [53, 50, 123, 157, 241]).
Consider λ, σ : M −→ R and take λ̃, σ̃ arbitrary extensions to TQ, λ̃◦jM = λ,
σ̃ ◦ jM = σ, with jM : M ↪→ TQ. Then

{λ, σ}M = ωL(P̄(Xλ̃), P̄(Xσ̃)) ◦ jM .

It is a routine to verify that this bracket is well-defined and is indeed an
almost-Poisson bracket. In general, {·, ·}M does not verify the Jacobi iden-
tity, except if the constraints are holonomic [123, 241]. This almost-Poisson
bracket is very important because, in the case of homogeneous constraints,
it gives the evolution of the constrained dynamics in the following sense: for
any function f ∈ C∞(M), its evolution along integral curves of X on M is
given by

ḟ = X(f) = {f,EL}M .

Note that the homogeneity of the constraints and the SODE character
of X, implies automatically that X ∈ F , since for α ∈ F o, we have that



58 3 Nonholonomic systems

α = S∗α̃, with α̃ ∈ TMo, and therefore α(X) = α̃(SX) = α̃(∆) = 0. Making
use of this fact, we can prove the nonholonomic Noether theorem [80, 136,
220], which ensures us when a function ϕ is a constant of the motion of the
dynamics.

Theorem 3.4.1. Consider a nonholonomic Lagrangian system with homo-
geneous constraints. A function ϕ : TQ −→ R is a constant of the motion of
the dynamics X if and only if the energy is constant along the integral curves
of the vector field P̄(Xϕ), that is, P̄(Xϕ)(EL) = 0.

Proof. Note that along M

X(ϕ) = dϕ(X) = ωL(Xϕ, X) = ωL(P̄(Xϕ), X) ,

where in the last equality we have used the fact that X ∈ F ∩TM . By skew-
symmetry, ωL(P̄(Xϕ), X) = −(iXωL)P̄(Xϕ). Now, from equation (3.12), we
have that iXωL = dEL + β, with β ∈ F o. Since P̄(Xϕ) ∈ F , we conclude

X(ϕ) = −(dEL)P̄(Xϕ) = −P̄(Xϕ)(EL) .

��

Before ending this section, we recall that for nonholonomic Lagrangian
systems with constraints which are linear (or, more general, homogeneous)
in the velocities, the energy EL is a conserved quantity. This can be deduced
as follows. From eq. (3.12), we can write

iXωL = dEL + β , (3.13)

with β ∈ F o. Contracting the latter equation with the dynamics vector field
and using the fact that X ∈ F due to the homogeneity of the constraints, we
get X(EL) = 0.

Another interesting property to which we will refer in Chapter 7 is the
following: from (3.13), the evolution of the symplectic form along the trajec-
tories of the system is given by

LXωL = iXdωL + diXωL = dβ . (3.14)

In the absence of constraints, the symplectic form is preserved by the flow of
the equations, a fact already discovered by Lagrange himself.

3.4.2 Affine connection approach

In this section we will describe from a different point of view the dynamics
of nonholonomic systems of mechanical type, namely, in terms of the theory
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of affine connections. This formalism will be useful later in the study of
Chaplygin systems in Chapter 5 and the control aspects of simple mechanical
systems in Chapter 8. Here we restrict our attention to the case of linear
constraints.

Let Q be the configuration space of a mechanical system with Lagrangian

L(v) =
1
2
g(v, v) − V ◦ τQ(v), v ∈ TqQ ,

where g is a Riemannian metric on Q and V : Q → R is the potential energy
function. We denote by ∇g the (covariant derivative operator of the) Levi-
Civita connection associated with the metric g. Let F = {F 1, . . . , Fm} be
a set of m linearly independent 1-forms on Q, which physically correspond
to forces or torques depending on configurations only (recall the convention
adopted in Section 2.9). We shall denote by Y1, . . . , Ym the vector fields de-
fined as Yi = �−1

g (F i).

It is well known that a curve c : I → Q is a solution of the forced Euler-
Lagrange equations (3.3) for the Lagrangian L and the forces F iff

∇g
ċ(t)ċ(t) = −gradV (c(t)) +

m∑
i=1

Yi(c(t)) , (3.15)

where the gradient is also considered with respect to the metric g. For non-
holonomic systems there is a similar description. The second-order differential
equations (3.10) for the mechanical system with Lagrangian L, forces F and
constraints D, can be written intrinsically as

∇g
ċ(t)ċ(t) + gradV (c(t)) −

m∑
i=1

Yi(c(t)) ∈ D⊥
ċ(t) , ċ(t) ∈ Dc(t) , (3.16)

where D⊥ here denotes the g-orthogonal complement to D (see e.g. [27, 143,
144, 235, 244]). Alternatively, if we denote by P : TQ −→ D, Q : TQ −→ D⊥

the complementary g-orthogonal projectors, we can define

∇XY = ∇g
XY + (∇g

XQ)(Y ) ,

and verify that it is indeed an affine connection [143]. Now, writing (3.16) as

∇g
ċ(t)ċ(t) + gradV (c(t)) −

m∑
i=1

Yi(c(t)) = λ(t) ∈ D⊥
ċ(t) ,

and applying Q, we get

λ(t) = Q(∇g
ċ(t)ċ(t)) + Q(gradV (c(t))) − Q(

m∑
i=1

Yi(c(t))) .
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In addition, we have that

(∇g
ċ(t)Q)(ċ(t)) = ∇g

ċ(t)Q(ċ(t)) − Q(∇g
ċ(t)ċ(t)) = −Q(∇g

ċ(t)ċ(t)) ,

since ċ(t) ∈ Dc(t). Therefore, the nonholonomic equations of motion (3.16)
can be rewritten as

∇ċ(t)ċ(t) = −P(gradV (c(t))) +
m∑
i=1

P(Yi(c(t))) , (3.17)

and where we select the initial velocity in D (cf. [144]).

It can be easily deduced from its definition that the connection ∇ restricts
to D, that is,

∇XY = P(∇g
XY ) ∈ D ,

for all Y ∈ D and X ∈ X(Q). The class of affine connections that restrict to
a given distribution has been studied in [143]. In particular, such a behavior
implies that the distribution D is geodesically invariant , that is, for every
geodesic c(t) of ∇ starting from a point in D, ċ(0) ∈ Dc(0), we have that ċ(t) ∈
Dc(t). In [143], a nice property is derived which characterizes geodesically
invariant distributions in terms of the so-called symmetric product of vector
fields. The symmetric product of two vector fields X,Y ∈ X(Q) is defined by

〈X : Y 〉 = ∇XY + ∇YX .

This property asserts that D is geodesically invariant if and only if we have
that 〈X : Y 〉 ∈ D, for all X, Y ∈ D. Note in passing that the symmetric
product of vector fields is a differential geometric concept, first appeared in
the study of gradient dynamical systems [79, 238], with important applica-
tions to control theory. For instance, as we shall see in Chapter 8, it plays a
fundamental role in the controllability analysis and series expansions results
of mechanical control systems.

We conclude this section by presenting some properties of the nonholo-
nomic affine connection ∇.

Proposition 3.4.2. For all Z ∈ X(Q) and X, Y ∈ D, we have that

Z (g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ) .

That is, ∇ is a metric connection with respect to g.

Proof. In view of the definition of ∇, we have that

g(∇ZX,Y ) + g(X,∇ZY ) = g(∇g
ZX,Y ) + g(X,∇g

ZY )
+ g((∇g

ZQ)(X), Y ) + g(X, (∇g
ZQ)(Y )) = Z (g(X,Y )) ,

since (∇g
ZQ)(X), (∇g

ZQ)(Y ) ∈ D⊥ (see Proposition 6.1 in [143]). ��
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We derive from this proposition that the connection ∇ also has the fol-
lowing property: parallel transport is an isometry along the distribution D.

A direct computation shows that the torsion of ∇ is the skew-symmetric
(1, 2)-tensor field

T (X,Y ) = (∇g
XQ)(Y ) − (∇g

Y Q)(X) .

Observe that if X,Y ∈ D, we have that

T (X,Y ) = ∇X(Q(Y )) − Q(∇XY ) − ∇Y (Q(X)) + Q(∇YX)
= −Q(∇XY − ∇YX) = −Q([X,Y ])

and T (X,Y ) ∈ D⊥. It is easy now to conclude that if ∇ is a torsion-free
connection, then D is an integrable distribution.



4 Symmetries of nonholonomic systems

I N this chapter, we develop a theory of reduction and reconstruction of
the dynamics for nonholonomic systems with symmetry, making use of the

symplectic formalism described in Chapter 3.

Nonholonomic systems with symmetry have been studied in the classical
books of Mechanics such as [6, 198, 201, 257]. The first modern treatment
is due to Koiller [120] (see also [244]), who considered the case of Chap-
lygin systems. His work produced a renewed interest in the subject, with
contributions that are based on different viewpoints, such as the Hamilto-
nian formalism [18], Lagrangian reduction [29], the geometry of the tangent
bundle [50, 68] or Poisson methods [156, 241], among others. Several relevant
results contained in these works will be reviewed along the chapter.

The exposition is organized as follows. In Section 4.1 we introduce the
basic notation used along the chapter. A classification of systems with sym-
metry is presented, depending on the relative position of the constraints and
the symmetry directions. In Section 4.2 we study the purely kinematic or
principal case, in which none of the symmetries is compatible with the con-
straints. In Section 4.3 we treat the other extreme situation: the horizontal
case. Here, all the symmetries fulfill the constraints. Section 4.4 deals with
the general case. We present an almost-Poisson formulation of the reduction
in this situation. Finally, Section 4.5 presents a special subcase of the general
one, in which two subsequent reductions can be performed, first a horizon-
tal one, and then a kinematic one. Examples are included throughout the
exposition to illustrate the various reduction schemes.

4.1 Nonholonomic systems with symmetry

LET us consider a nonholonomic Lagrangian system with symmetry. More
precisely, the given data are a regular Lagrangian function L : TQ −→ R,

a homogeneous constraint submanifold M ⊂ TQ and a Lie group action Ψ of
G on Q, such that both L and M are G-invariant with respect to the lifted
action on TQ, Ψ̂ : G × TQ −→ TQ. In addition, we will assume that Ψ̂ is
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free and proper and that the system verifies the compatibility condition (cf.
Section 3.4.1). As a consequence, the solution X of (3.12) is unique. Notice
also that this implies that X is G-invariant, since it is easy to verify that
T Ψ̂g(X) is again a solution of (3.12) for all g ∈ G.

Taking into account the available symmetries, we can reduce the number
of degrees of freedom and isolate important geometric objects driving the
dynamics of the system.

Note that from the assumptions on the lifted action Ψ̂ , we have that
Ψ is also free and proper and therefore π : Q −→ Q/G has a principal
G-bundle structure. Moreover, Ψ̂ is symplectic with respect to ωL, due to
the G-invariance of the Lagrangian (see Section 2.9). For any ξ ∈ g, the
infinitesimal generators ξTQ and ξQ of Ψ̂ and Ψ , respectively, are τQ-related,

τQ∗ ◦ ξTQ = ξQ ◦ τQ . (4.1)

Let us denote by ρ : TQ −→ TQ = TQ/G the natural projection. From the
given assumptions it follows that the energy EL and the vector subbundle
F defined in Section 3.4.1 are G-invariant. The induced action of G on M ,
i.e. the restriction of Ψ̂ to G × M , is still free and proper and we can regard
the orbit space M = M/G as a submanifold of TQ. We shall denote the
fundamental vector fields associated with this action by a subscript M , so
that ξM = ξTQ|M for ξ ∈ g. Moreover, the energy EL will induce a function
EL on TQ.

In the sequel, we will denote by V the subbundle of TTQ whose fibers
are the tangent spaces to the G-orbits, i.e. Vx = Tx(Gx), ∀x ∈ TQ or,
equivalently, V = kerTρ. Note that Vx ⊂ TxM for all x ∈ M , i.e. V|M ⊂ TM .
For simplicity, we will also usually write V, instead of V|M , when referring to
its restriction to M (the precise meaning should be clear from the context).

For all unconstrained systems that admit group symmetries, Noether’s
theorem [1, 138] states that the invariance of the Lagrangian implies a mo-
mentum conservation law. In other words, the system has a first integral, for
example, conservation of linear and angular momentum. Many systems in
Mechanics (the falling cat, the satellite with rotors,...) obey these conserva-
tion laws.

This can be easily seen in the symplectic formalism explained in the pre-
ceeding chapter. Let J : TQ −→ g∗ be the canonical momentum mapping
associated with the G-action, i.e. J = JL (cf. Section 2.9). For each ξ ∈ g,
denote by Jξ the function on TQ defined by means of the pairing 〈J(·), ξ〉.
Then we have that

ΓL(Jξ) = dJξ(ΓL) = (iξT Q
ωL)(ΓL) = −(iΓL

ωL)(ξTQ) = −ξTQ(EL) .

But the invariance of the Lagrangian function precisely implies that ξTQ(EL) =
0 and hence the momentum gives us conserved quantities.
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In the presence of nonholonomic constraints, however, these conservation
laws must be modified to account for the effect of constraint forces. These
effects are exactly the reason why the Snakeboard, for instance, can build up
momentum, even though the external forces of constraint do no work on the
system. Indeed, taking the solution X of equation (3.12), we have

X(Jξ) = −iXωL(ξM ) = −ξM (EL) + β(ξM ) ,

with β ∈ F o. Therefore, the invariance of the system implies only that

X(Jξ) = β(ξM ) . (4.2)

This motivates the introduction of the notion of horizontal symmetry of the
nonholonomic system [18, 29], which is just an element of the Lie algebra,
ξ ∈ g, such that ξM is a section of V ∩ F . This kind of symmetries provides
us with conserved quantities, since they automatically verify β(ξM ) = 0, for
β ∈ F o and hence X(Jξ) = 0. Some authors refer to this result as a version
of Noether’s theorem for nonholonomic systems [29, 80, 220].

In general, the situation can be quite involved. It is possible that some
Lie algebra elements are horizontal symmetries (but not the whole Lie alge-
bra) or even none. In order to deal with general nonholonomic systems with
symmetry, we will identify three types of situations following [29, 51]. This
classification arises from considering carefully the intersection V ∩ F , which
points out how well the symmetries fit in the constrained system.

1. The purely kinematic case: Vx ∩Fx = {0} and TxM = Vx + (Fx ∩ TxM),
for all x ∈ M . That is, there are no horizontal symmetries.

2. The case of horizontal symmetries: Vx ∩Fx = Vx, for all x ∈ M , which is
equivalent to Vx ⊂ Fx, for all x ∈ M .

3. The general case: {0} � Vx ∩ Fx � Vx, for all x ∈ M .

Remark 4.1.1. In the above classification, we are assuming a regularity con-
dition, namely, that the rank of the intersection Vx∩Fx remains constant for
all x ∈ M . The study of the singular case, that is, when this does not hold
true, is still an open issue. A different singular situation, which is receiving
increasing attention [15, 221], is when the action Ψ̂ is not free and hence we
do not have a manifold structure on the quotient space.

Remark 4.1.2. In the third case of the classification, although the intersection
V∩F is non-trivial, it is possible to have no horizontal symmetry. For instance,
the fact that an element ξ ∈ g verifies ξM (x) ∈ Fx for a given x ∈ M does
not imply in general that ξM (y) ∈ Fy for all y ∈ M . This observation will be
more clear when we reach Section 4.4, where we shall treat it carefully.
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Remark 4.1.3. This classification can be extended to a more general class of
systems, namely, constrained systems with symmetry [51, 68], which may in-
clude, among others, singular Lagrangian systems. The subsequent discussion
is also valid for this type of systems, but here we will restrict our attention
to nonholonomic Lagrangian systems.

In the following sections, we are going to treat specifically each of these
cases. Before proceeding, we would like to point out that, unlike in the un-
constrained case where, within the Hamiltonian [166] and Poisson formula-
tions [162], one can prove that the system obtained after reduction is of the
same type as the original one, here the situation changes: the reduction pro-
cess leads us in general to a different category of systems. For instance, in
some cases of purely kinematic systems, we shall see that one ends up with
an unconstrained reduced system.

An alternative viewpoint is the one proposed by Bates and S̀niatycki [18].
Their treatment has the advantage of fully respecting the category of sys-
tems under consideration. For the sake of completeness, we shall recall here
the symplectic reduction established by them for nonholonomic systems
(see also [122]). We point out that this reduction has been generalized to
general constrained systems with symmetry by Cantrijn et al. in [51] (see
also [48, 68]).

Recall from Section 3.4.1 that the homogeneity of the constraints and
the SODE character of X implies automatically that X ∈ F . We define a
(generalized) vector subbundle U of TMTQ by

U = (F ∩ TM) ∩ (V ∩ F )⊥ , (4.3)

where (V ∩ F )⊥ is the ωL-complement of V ∩ F in TMTQ.

There are two main reasons to consider this, in principle rather “strange”,
bundle. On the one hand, from equation (3.12) it is straightforward to ver-
ify that indeed the solution of the dynamics belongs to U , namely X ∈ U .
Denoting by ωU the restriction of ωL to U , the nonholonomic equations of
motion (3.12) can by rewritten as

iXωU = dUEL , (4.4)

where dUEL denotes the restriction of dEL to U .

To explain clearly the other reason, we need some more derivations. In-
deed, it is not hard to see that U is G-invariant and, hence, projects under
Tρ onto a subbundle U of TMTQ. In general, this bundle need not be of con-
stant rank, i.e. it determines a generalized distribution on TQ along M . In
the sequel, however, we will always tacitly assume that U is a genuine vector
bundle over M .
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We can see that ωU is also G-invariant and since, moreover, iξ̃ωU = 0 for
all ξ̃ ∈ V∩U , it pushes down to a 2-form ωU on U (i.e. ωU only acts on vectors
belonging to U). This is precisely the other reason to consider the bundle U :
it allows us to project the symplectic form to the reduced bundle U .

Similarly, dUEL pushes down to a 1-form dUEL on U , which is simply
the restriction of dEL to U . Note that neither ωU nor dUEL are differential
forms on M ; they are exterior forms on a vector bundle over M , with smooth
dependence on the base point.

Proposition 4.1.4 ([18, 51]). Let X be the G-invariant solution of (4.4).
Then, the projection X of X onto M is a section of U satisfying the equation

iXωU = dUEL .

Proof. It readily follows from the symmetry assumptions and the previous
considerations. ��

It is important to observe that, in general, the 2-form ωU may be de-
generate. However, under the compatibility condition, F⊥ ∩ TM = 0, one
can prove that ωU is nondegenerate, such that (U , ωU ) becomes a symplec-
tic vector bundle over M (see [18]). The reduced dynamics is then uniquely
determined by the equation mentioned in Proposition 4.1.4.

Indeed, let us suppose that Y ∈ U is such that ωU (Y,Z) = 0, for all Z ∈ U .
Then, there exists a Y ′ ∈ U such that Tρ(Y ′) = Y and ωL(Y ′, Z ′) = 0, for all
Z ′ ∈ U . Otherwise said, Y ′ ∈ U∩U⊥. Then Y ′ can be written as Y ′ = Y1+Y2,
where Y1 ∈ (F ∩TM)⊥ and Y2 ∈ V ∩F . Since V ∩F ⊂ F ∩TM and Y ′ ∈ U ,
we have that Y1 ∈ F ∩ TM ∩ (F ∩ TM)⊥. Now, the compatibility condition
implies that this latter intersection yields the zero section, so Y1 = 0. Finally,
we have that Y = Tρ(Y ′) = Tρ(Y2) = 0, since Y2 ∈ V. Consequently, ωU is
nondegenerate.

Now, we turn to the discussion of each of the cases established above. We
start by the purely kinematic or vertical case.

4.2 The purely kinematic case

S UPPOSE that Vx ∩ Fx = {0} and TxM = Vx + (Fx ∩ TxM), for all
x ∈ M . In principle, this leads us to think that the symmetries do not

play an important role in the reduction, because none of them is compatible
with the bundle of reaction forces. However, we will show in the following
that the symplectic scheme explained above takes a nice form here due to
the particular geometry involved in the system.
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4.2.1 Reduction

In the vertical case, we have that TxM = Vx ⊕ (Fx ∩ TxM), for all x ∈ M .
Moreover, U = F ∩ TM , so TM = V|M ⊕ U . Since U is G-invariant, this
decomposition defines a principal connection Υ on the principal G-bundle
ρ|M : M → M , with horizontal subspace Ux at x ∈ M . Note, in passing,
that U here represents a vector bundle of constant rank. In addition, X is
horizontal, i.e. X ∈ U .

Denote by hΥ : TM −→ U and vΥ : TM −→ V the horizontal and vertical
projectors associated with the decomposition TM = V|M ⊕ U , respectively.
The curvature of Υ is the tensor field of type (1,2) on M given by

R =
1
2
[hΥ ,hΥ ] ,

where [·, ·] denotes the Nijenhuis bracket of (1,1)-tensor fields [20]. Taking
into account that U = TM , we obtain on M a 2-form ωL (which is now
a genuine differential form on M) and a function EL such that, following
Proposition 4.1.4, the projection X of X verifies

iXωL = dEL . (4.5)

It should be pointed out that the reduced 2-form ωL in general need not be
closed, i.e. it is an almost symplectic form. We will show, however, that one
can construct a reduced equation, equivalent to (4.5), but now in terms of a
closed 2-form on M .

Denote by θ′ the 1-form on M defined by θ′ = j∗
MθL, where jM : M ↪→ TQ

is the canonical inclusion. By means of the given solution X of (3.12) we can
construct a 1-form αX on M as follows:

αX = iX(h∗
Υ dθ

′ − dh∗
Υ θ

′) , (4.6)

with the usual convention that, for an arbitrary p-form β, h∗
Υβ is the p-form

defined by the prescription h∗
Υβ(X1, . . . , Xp) = β(hΥ (X1), . . . ,hΥ (Xp)).

Proposition 4.2.1. [51] The 1-forms h∗
Υ θ

′ and αX are projectable. More-
over, the projection X of the dynamics X, which is a solution of (4.5), also
satisfies

iXdθ′
h = dEL + αX , (4.7)

where θ′
h and αX are the projections of the 1-forms h∗

Υ θ
′ and αX , resp.

Remark 4.2.2. The sign of αX in (4.7) differs from the one in the correspond-
ing expression stated in [51, 68], where the discussion took place in a more
general symplectic framework with an exact symplectic structure ω = dθ
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(whereas here we have ωL = −dθL). The signs would agree if we would have
defined θ′ as −j∗

MθL. The formulation of Proposition 4.2.1 for general con-
strained systems is straightforward (see [51, 68]) and we shall make use of it
in Section 4.5.

Remark 4.2.3. Proposition 4.2.1 describes a situation where a nonholonomic
system (3.12) with symmetry, admits a reduction to an unconstrained sys-
tem (4.7), but with an additional nonconservative force represented by αX .
Indeed, by construction, the 1-form αX satisfies iXαX = 0, which implies

iXαX = 0 .

As a consequence, we have that the unconstrained system (4.7) has the energy
EL conserved.

Chaplygin systems In the following, we specialize our discussion to a class
of nonholonomic systems with symmetry that fall into the purely kinematic
case, the so-called Chaplygin systems.

The given data are a principal G-bundle π : Q −→ Q/G, associated with
a free and proper action Ψ of G on Q, a Lagrangian L : TQ −→ R which is
G-invariant with respect to the lifted action on TQ, and linear nonholonomic
constraints determined by the horizontal distribution (here denoted as D) of
a principal connection γ on π.

Remark 4.2.4. Classically, a mechanical system with Lagrangian L(qA, q̇A),
A = 1, . . . , n, subject to k linear nonholonomic constraints, is said to be
of Chaplygin type if coordinates (qa, qα) can be found, with a = 1, . . . , k
and α = k + 1, . . . , n, such that the constraints can be written in the form
q̇a = Ba

α(qk+1, . . . , qn)q̇α and such that L does not depend on the coordinates
qa (see e.g. [188]). Such a system can be (locally) interpreted as a special case
of the generalized Chaplygin systems introduced above, with Q = Rn and
with an action defined by the Abelian group G = Rk. Koiller [120] refers to
the more general case, considered here, as “non-Abelian Chaplygin systems”.

Note that there exists a natural identification D ∼= Q ×Q/G T (Q/G) as
principal G-bundles over T (Q/G). The isomorphism is obtained by mapping
vq ∈ D onto (q, π∗(vq)). It then follows that D/G can be naturally identified
with T (Q/G) and we have, in particular,

ρ|D = π∗|D. (4.8)

Henceforth, the restriction of ρ to D will also be simply denoted by ρ. We
can summarize the situation for Chaplygin systems in the following diagram,
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TD = U ⊕ Vρ TD ∼= U

D T (Q/G) ∼= D�

�

� �

ρ∗

ρ

Apart from the symplectic action Ψ̂ and the 1-form αX , we have some
additional geometric objects involved in the symplectic approach to the re-
duction process for this type of systems.

The connections. The principal connection Υ that we obtained above is
obviously related to the original connection γ of the Chaplygin system. In-
deed, take w ∈ Tvq

D and consider τQ∗w ∈ TqQ. Then, we can write

τQ∗w =
(
τQ∗w − (γ(τQ∗w))Q(q)

)
+ (γ(τQ∗w))Q(q) ,

where τQ∗w − (γ(τQ∗w))Q(q) ∈ Dq and (γ(τQ∗w))Q(q) ∈ (Vπ)q. Putting
γ(τQ∗w) = ξ ∈ g, a direct computation shows that w − ξTQ(vq) ∈ U and,
consequently, w = (w − ξTQ(vq)) + ξTQ(vq) is the (U ,Vρ) decomposition of
w. Herewith we have proved the following property.

Proposition 4.2.5. The connection 1-forms Υ and γ are related by Υ = τ∗
Qγ,

i.e. Υvq (w) = γq(τQ∗w) for any vq ∈ D and w ∈ TvqD.

Let us denote the horizontal projectors, associated with γ, resp. Υ , by
hγ : TQ −→ D(⊂ TQ), resp. hΥ : TD −→ U(⊂ TD). Likewise, the vertical
projectors onto Vπ, resp. Vρ, will be denoted by vγ , resp. vΥ. In order not
to further overload the notations, we will use the same superscript h for
the horizontal lifts of vectors (vector fields) with respect to either γ or Υ ;
in principle it should always be clear from the context which horizontal lift
operation is being used.

We now have that

τQ∗|TD ◦ hΥ = hγ ◦ τQ∗|TD , (4.9)

i.e. the following diagram is commutative,

(TTQ ⊃) TD TD (⊂ TTQ)

TQ TQ�

�

� �

hΥ

hγ

τQ∗ τQ∗
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Indeed, taking into account Proposition 4.2.5, we see that for any w ∈
Tvq

D, γq(τQ∗hΥ(w)) = Υvq
(hΥ(w)) = 0 and, hence, τQ∗hΥ(w) is horizontal

with respect to γ, i.e. τQ∗hΥ(w) ∈ Dq. By definition we also have hγ(τQ∗w) ∈
Dq. Using the fact that π ◦ τQ = τQ/G ◦ π∗ we obtain

π∗(hγ(τQ∗w)) = π∗τQ∗w = τQ/G∗(π∗)∗w = τQ/G∗ρ∗w,

where the last equation follows from (4.8). Similarly, we have:

π∗(τQ∗(hΥw)) = τQ/G∗(π∗)∗(hΥw) = τQ/G∗ρ∗(hΥw) = τQ/G∗ρ∗w.

We thus see that the γ-horizontal tangent vectors at q, τQ∗(hΥw) and
hγ(τQ∗w), have the same projection under π∗ and, therefore, they are equal.
This completes the proof of (4.9). Denoting the curvature tensors of the prin-
cipal connections γ and Υ by Ωγ and ΩΥ , respectively, one can easily deduce
from Proposition 4.2.5 and (4.9) the relation

ΩΥ = τ∗
QΩγ . (4.10)

The Lagrangians. The Lagrangian L of the given mechanical system in-
duces a Lagrangian L∗ : T (Q/G) −→ R on the quotient space D ∼= T (Q/G),
given by L∗(q, vq) = L(q, vhq ) for any q ∈ π−1(q), and where vhq denotes the
γ-horizontal lift of vq at q. This is well-defined because of the G-invariance
of L. Moreover, under the compatibility condition, one can show that L∗ is a
regular Lagrangian on T (Q/G) (cf. [137]). A quick set of calculations shows
that

EL = EL∗

under the identification D ≡ T (Q/G).

Now, we are in a position to state that Proposition 4.2.1 above takes the
following form for nonholonomic Chaplygin systems (see [51, 120]).

Proposition 4.2.6. The dynamics X of the generalized Chaplygin system
projects onto D, and its projection X is determined by the equation

iXωL∗ = dEL∗ + αX , (4.11)

where αX is the projection of the 1-form αX , defined by (4.6).

It can be easily verified that the form αX is a semi-basic 1-form on D
(see also Section 5.3), from which it then follows that the vector field X, de-
fined by (4.11), is a SODE vector field. Moreover, one can show that not only
the contraction of αX with X vanishes, but that, more generally, iY αX = 0
for any SODE Y on D. Thus, a generalized Chaplygin system reduces to an
unconstrained mechanical system, with an external nonconservative force of
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“gyroscopic” type, which is geometrically represented by the 1-form αX (see
also [120, 188]). The “gyroscopic” character of this force is also in agreement
with the fact that the projected energy function EL∗ is a conserved quantity
of the reduced dynamics. But there is more to be said about it.

Proposition 4.2.7. The 2-form Σ = hΥ
∗dθ′ − dhΥ

∗θ′ on D projects onto a
2-form Σ on D and the 1-form αX satisfies

αX = iXΣ .

Proof. Let ξD be the fundamental vector field of the G-action on D, induced
by an arbitrary element ξ ∈ g. We must prove that ξD belongs to the char-
acteristic distribution of the 2-form Σ. First, we have that

iξDΣ = −iξDdhΥ
∗θ′ .

For any vector field Y on D, iξDdhΥ
∗θ′(Y ) = ξD(θ′(hΥY )) − θ′(hΥ[ξD, Y ]).

Now, if Y is vertical, we readily see that iξDdhΥ
∗θ′(Y ) = 0. If Y is horizontal,

we have
iξDdhΥ

∗θ′(Y ) = LξDθ′(Y ) = 0 ,

because of the G-invariance of θ′. It therefore remains to prove that iξDdΣ =
0. For any two vector fields Y,Z we have that

iξDdΣ(Y,Z) = (iξDdhΥ
∗dθ′) (Y,Z)

= ξD (hΥ
∗dθ′) (Y,Z) − hΥ

∗dθ′([ξD, Y ], Z) + hΥ
∗dθ′([ξD, Z], Y ) .

If at least one of the vector fields Y and Z is vertical, then iξDdΣ(Y,Z) =
0. Taking Y and Z both horizontal, we find, taking into account the G-
invariance of dθ′ and ξD ∈ X(D),

iξDdΣ(Y,Z) = ξD (dθ′(Y,Z)) − dθ′([ξD, Y ], Z) − dθ′(Y, [ξD, Z])
= (LξDdθ′)(Y,Z) = 0 .

The last part of the proposition now immediately follows from (4.6) and the
projectability of X. ��

We will make use of this result in the following chapter. To end this
section, we write some local expressions for some of the geometrical objects
just introduced which will be useful later.

Consider a local trivialization U×G of π, with adapted bundle coordinates
(rα, ga), where a = 1, . . . , k = dimG and α = 1, . . . , n − k. Choosing a
basis ea (a = 1, . . . , k) of the Lie algebra g, and using the left trivialization
TG ∼= G×g, a tangent vector v ∈ T(x,g)(U ×G) ∼= TxU ×g can be represented
by a pair (w, ξ), whereby w ∈ TxU and ξ = ξaea ∈ g. In terms of the
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coordinates (rα, ga, ṙα, ξa) on T (U ×G) the G-invariant Lagrangian can then
be written as

L =  (rα, ṙα, ξa) .

Strictly speaking,  represents the reduction of L to TQ/G. With respect to
the given local trivialization, we further denote the connection coefficients of
the given principal connection γ by Aa

α = Aa
α(r1, . . . , rn−k), and then the

constraints take the form ξa = −Aa
αṙ
α or, equivalently,

ω = g−1dg + Ab
β(r)dr

βeb . (4.12)

In particular, it follows that the reduced Lagrangian L∗ is given by L∗(rα, ṙα) =
 (rα, ṙα,−Aa

β ṙ
βea).

With all the above, one can now derive the following coordinate expression
for the reduced dynamics (see also [29, 120]),

X = ṙα
∂

∂rα
+ Ŵαβ

(
∂L∗

∂rβ
− ṙς

∂p̂β
∂rς

− αβ

)
∂

∂ṙα
, (4.13)

where (Ŵαβ) is the inverse of the Hessian matrix(
∂2L∗

∂ṙα∂ṙβ

)
,

p̂α =
∂L∗

∂ṙα
, and αβdr

β is the local expression for the gyroscopic 1-form αX .
The αβ are explicitly given by

αβ = −
(

∂ 

∂ξa

)∗(∂Aa
ς

∂rβ
− ∂Aa

β

∂rς
− cabcAb

βAc
ς

)
ṙς , (4.14)

where the * on the right-hand side indicates that, after computing the deriva-
tive of  with respect to ξa, one replaces the ξb everywhere by −Ab

αṙ
α. The

constants cabc appearing in the last term on the right-hand side are the struc-
ture constants of g with respect to the chosen basis, i.e. [eb, ec] = cabcea. Note
in passing that the expressions

∂Aa
ς

∂rβ
− ∂Aa

β

∂rς
− cabcAb

βAc
ς

are the coefficients of the curvature of γ in local form.

The interested reader may now consult the original coordinate treatment
of Chaplygin in Chapter III, Section 3 of [188], which is also reviewed in [120].
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Vertical rolling disk Consider the example of the disk introduced in Sec-
tion 3.2.1, but now rolling vertically on a horizontal plane. This system is
called the vertical rolling disk [29, 51].

The configuration space is Q = R × S1 × S1. The dynamics of this me-
chanical system is described by the regular Lagrangian,

L =
1
2

(
mẋ2 + mẏ2 + I1θ̇

2
1 + I2θ̇

2
2

)
,

where m is the mass, and I1, I2 are moments of inertia; and the nonholonomic
constraints,

φ1 = ẋ − (R cos θ1)θ̇2 = 0 , φ2 = ẏ − (R sin θ1)θ̇2 = 0 ,

where R is the radius of the disk.

Consider the group G = R2 and its trivial action by translations on Q,

Φ : G × Q −→ Q
(r, s) × (x, y, θ1, θ2) �−→ (x + r, y + s, θ1, θ2) .

Note that ρ : Q → S1 × S1 is a principal G-bundle and M , the constraint
manifold, is the horizontal subbundle of a principal connection, so that the
given system is a Chaplygin system. Following the above analysis we then
obtain,

L∗ =
1
2

(
I1θ̇

2
1 + (mR2 + I2)θ̇2

2

)
,

ωL∗ = I1dθ1 ∧ dθ̇1 + (mR2 + I2) dθ2 ∧ dθ̇2 .

In this particular case the gyroscopic 1-form αX = 0. So the reduced
equation (4.11) becomes

iXωL∗ = dEL∗

That is, an unconstrained Lagrangian system!

After the above reduction procedure, the system can still have some sym-
metries we have not taken into account. This is precisely the case here, where
there is still some symmetry of the system to be considered. Denote the Lie
group S1 × S1 by K and let us define:

Φ : K × Q/G −→ Q/G
((λ1, λ2), (θ1, θ2)) �−→ (θ1 + λ1, θ2 + λ2) .

If we consider the lifted action Φ̂ of Φ to T (Q/G), it is clear that the La-
grangian L∗ is K-invariant. Then, we can make a further reduction.
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Thus, in general, the reduced system (4.7) can still possess more sym-
metries which have to be considered. Let Ψ : K × M −→ M be an action
on M that leaves invariant the reduced energy function EL and the 1-form
θ′
h. Denote by k the Lie algebra of K and define a momentum mapping,

J : M −→ k∗, in the usual manner: 〈J(m), η〉 = −〈θ′
h(m), ηM (m)〉 for

m ∈ M and η ∈ k. It is easy to see that iηM
dθ′

h = dJη for all η ∈ k.
Using equation (4.7) and the K-invariance of EL, we obtain a momentum
equation,

X(Jη) = αX(ηM ) . (4.15)

In Section 4.5 we will develop this idea for a special subcase of the general
case mentioned above: for a number of problems, we will be able to “split
up” the reduction process into two known steps. First, a horizontal reduction
and secondly a kinematic reduction.

Chapter 5 will be devoted to study the integrability aspects of mechanical
Chaplygin systems.

The nonholonomic free particle We will discuss here an instructive
example due to Rosenberg [207] which has been extensively treated also
in [17, 18, 29]. Consider a particle moving in space, so the configuration
space is given by Q = R3, subject to the nonholonomic constraint

φ = ż − yẋ = 0 .

The Lagrangian function is the kinetic energy of the particle

L =
1
2
(
ẋ2 + ẏ2 + ż2) ,

and the Poincaré-Cartan two-form is

ωL = dx ∧ dẋ + dy ∧ dẏ + dz ∧ dż .

The constraint manifold is the distribution determined by the annihilation
of the linear constraint φ

M = span
{

∂

∂x
+ y

∂

∂z
,
∂

∂y

}
.

Choose local coordinates (x, y, z, ẋ, ẏ) on M . We find that the distribution
F|M is generated by the vectors fields,

F|M = span
{

∂

∂x
+ y

∂

∂z
,
∂

∂y
,

∂

∂ẋ
,
∂

∂ẏ
,
∂

∂ż

}
.
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The symplectic vector bundle F ∩ TM is given by

F ∩ TM = span
{

∂

∂x
+ y

∂

∂z
,
∂

∂y
+ ẋ

∂

∂ż
,

∂

∂ẋ
+ y

∂

∂ż
,
∂

∂ẏ

}
,

with symplectic orthogonal complement

(F ∩ TM)⊥ = span
{

∂

∂ż
− y

∂

∂ẋ
,
∂

∂z
+ ẋ

∂

∂ẏ
− y

∂

∂x

}
.

Consider the Lie group G = R2 and its action on Q,

Ψ : G × Q −→ Q
((r, s), (x, y, z)) �−→ (x + r, y, z + s) .

It is a simple verification to see that L and M are G-invariant.

If we consider the lifted action Ψ̂ of Ψ to TQ, the infinitesimal generators
of this action are

{
∂
∂x ,

∂
∂z

}
. For each m = (x, y, z, ẋ, ẏ) ∈ M , we have

Vm ∩ Fm = span
{(

∂

∂x
+ y

∂

∂z

) ∣∣∣
m

}
.

Therefore the nonholonomic free particle falls into the general case. We
shall come again to this example in Section 4.4, but here we will show now
how it can also be seen as a Chaplygin system.

Consider the Lie group G = R and its trivial action by translation on Q,

Φ : G × Q −→ Q
(s, (x, y, z)) �−→ (x, y, z + s) .

Note that M is the horizontal subspace of a connection γ on the principal
fiber bundle Q −→ Q/G, where γ = (dz − ydx)e, with {e} the infinitesimal
generator of the translation. Therefore this is a Chaplygin system.

Following the above analysis, we obtain that

L∗ =
1
2
(
(1 + y2)ẋ2 + ẏ2) ,

and the reduced system

iXωL∗ = dEL∗ + αX ,

where αX = −ẋẏydx + yẋ2dy.
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4.2.2 Reconstruction

A natural problem related to the reduction of mechanical systems with sym-
metry concerns the reverse procedure: once the solutions of the reduced dy-
namics have been obtained, how can one recover from it the solutions of the
original system. This is called the “reconstruction problem” of the dynamics.
This problem is intimately related to the concepts of geometric and dynamic
phases, which play an important role in various aspects of mechanics [159]
and in the study of locomotion systems (for example, in the generation of
net motion by cyclic changes in shape space [117, 216]). Alternatively, some
authors have pursued the following idea: given a system whose equations of
motion are complex, they try to find another one with equations of motion
that are easier to integrate, even tough the dimension may be greater, and
such that its reduction by a certain group of symmetries yields the origi-
nal system. This method has been used, for instance, in [115] to prove the
complete integrability of certain Hamiltonian systems.

We now discuss the reconstruction of the dynamics on the constraint
submanifold M from the reduced dynamics on M . Suppose that the flow of
the reduced system X is known. Take c(t) an integral curve of X starting from
a point x ∈ M , and fix x ∈ ρ−1(x). We want to find the corresponding integral
curve c(t) of X starting from x which projects on c(t), i.e. ρ(c(t)) = c(t). But
we must realize that the curve c(t) is just the horizontal lift of c(t) starting
from x with respect to the principal connection Υ . We prove this simple fact
in the following

Proposition 4.2.8. The integral curve c(t) of X, starting at x ∈ M , is the
horizontal lift with respect to the principal connection Υ of the integral curve
c(t) of X starting at x = ρ(x).

Proof. Let d(t) denote the horizontal lift of c(t) starting from x. Then
ρ(d(t)) = c(t) and d(0) = x. Since X and X are ρ-related, we have
that Tρ(X(d(t))) = Xρ(d(t)) = X(c(t)) = ċ(t) = Tρ(ḋ(t)). Therefore
ḋ(t) − X(d(t)) is vertical. But it is also horizontal, because X ∈ U . Then
we deduce that ḋ(t) = X(d(t)) and therefore d(t) = c(t). ��

Thus, in the vertical case, the reconstruction problem is just a horizontal
lift operation with respect to the induced connection Υ living on M .

We recall now briefly the concepts of geometric, dynamic and total phases
for the reconstruction process [159]. The geometric phase is just the holonomy
of a closed path c(t) with respect to the connection Υ , that is, the Lie group
element g so that d(1) = g ·d(0). In general, we will have that c(t), the integral
curve projecting on c(t), is not exactly d(t), the horizontal lift of c(t), but a
shift of this curve, c(t) = g(t) · d(t). We call the Lie group element g(1) the
dynamic phase. And the total phase will stand for h = g(1) · g.



78 4 Symmetries of nonholonomic systems

Corollary 4.2.9. In the purely kinematic case, the geometric phase coincides
with the total phase.

Concerning Chaplygin systems, the above description remains valid, of
course, but we can say a little more about the holonomy of the two connec-
tions, γ and Υ .

Let c(t) be the integral curve of X starting from x. Fix x ∈ ρ−1(x) and
consider its horizontal lift, c(t), with respect to Υ starting from x. We have
proved that c(t) is precisely the integral curve of X starting from x which
projects on c(t). Let q(t) be the projection of c(t) to Q/G, q(t) = πQ/G(c(t)).
We will denote by qM (t) its horizontal lift with respect to γ. Finally, we write
q(t) = πQ(c(t)). Then we have π(q(t)) = π ◦ πQ(c(t)) = πQ/G ◦ ρ(c(t)) =
πQ/G(c(t)) = q(t). Since c(t) is an integral curve of a SODE, we have c(t) =
q̇(t) ∈ M . So we have proved that q(t) is just the horizontal lift of q(t), i.e.
q(t) = qM (t).

Now, we study the holonomy of c(t). Let us suppose that c(t) is a closed
loop. We have c(0) = c(1) = x and c(0) = x. Consequently, c(1) = gx and
g is the geometric phase, which is, in the vertical case, the total phase. As
c(t) = q̇M (t), we have that q̇M (1) = gq̇M (0) which in particular implies that
qM (1) = gqM (0). Then we have proved the following result.

Proposition 4.2.10. The geometric phase (with respect to Υ ) of a closed
integral curve of X is the same as the geometric phase (with respect to γ) of
its projection to Q/G.

Plate with a knife edge on an inclined plane The configuration space
of the plate with a knife edge on an inclined plane is Q = R2×S1 with coordi-
nates (x, y, θ) (see Figure 4.1). The center of mass of the plate is assumed to
coincide with the point (x, y) of contact of the knife edge and the plane [188].

Fig. 4.1. Plate with a knife edge on an inclined plane
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This system is determined by the following data: the regular Lagrangian
function,

L : TQ −→ R

(x, y, θ, ẋ, ẏ, θ̇) �−→ 1
2
(ẋ2 + ẏ2) +

1
2
k2θ̇2 + gx sinα ,

where the mass of the plate is assumed equal to unity; and the nonholonomic
constraint function

φ = ẏ − ẋ tan θ = 0 .

Consider the Lie group G = R and its trivial action by translation on Q,

Φ : R × Q −→ Q
(r, (x, y, θ)) �−→ (x, y + r, θ) ,

with associated fibration

ρ : Q −→ R × S1

(x, y, θ) �−→ (x, θ) .

Note that ρ : Q −→ R×S1 is a principal bundle, with structure group G, and
M , the constraint submanifold, is the horizontal distribution of a principal
connection, γ. The connection 1-form is γ = dy − tan θ dx. Therefore, this is
a Chaplygin system.

The corresponding reduced system (4.11) is described by the reduced
Lagrangian,

L∗ : T (R × S1) −→ R

(x, θ, ẋ, θ̇) �−→ 1
2

(
sec2 θẋ2 + k2θ̇2

)
+ gx sinα ,

and the gyroscopic 1-form

αX = tan θ sec2 θ
[
(ẋ)2 dθ − ẋθ̇ dx

]
.

After some calculations, one finds the following equations of motion,

ẍ = −ẋθ̇ tan θ + g sinα cos2 θ , θ̈ = 0 .

We obtain that θ = ωt+ θ0, where ω and θ0 are constants. Consequently,
a solution for the initial conditions θ0 = x0 = ẋ0 = 0 and θ̇0 = ω is

x =
g

2ω2 sinα sin2 ωt , θ = ωt .

This curve q(t) = (x(t), θ(t)) is closed since
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q(0) = q(2π/ω) .

The horizontal lift q(t) = qM (t) of the curve q(t) with initial conditions
θ0 = x0 = ẋ0 = y0 = ẏ0 = 0 and θ̇0 = ω is

x =
g

2ω2 sinα sin2 ωt , y =
g

2ω2 sinα

[
ωt − 1

2
sinωt

]
, θ = ωt .

Observe that q(0) = (0, 0, 0) and q(2π/ω) = (0, (gπ/ω2) sinα, 0). There-
fore, the geometric phase of the curve q(t) is (gπ/ω2) sinα.

4.3 The case of horizontal symmetries

I N this section we focus our attention on the extreme case complementary
to the purely kinematic one. The assumption now is that Vx ∩ Fx = Vx,

for all x ∈ M or, equivalently, V|M ⊂ F . In particular, every infinitesimal
generator of the given group action then yields a horizontal symmetry. Thus,
in this case, all the symmetries are compatible with the bundle F . This
leads us to suspect that we can perform a reduction procedure similar to the
unconstrained case. Note also that an unconstrained system with symmetry
can be regarded as a special subcase of this situation, since we then have
M = TQ, F = T (TQ) and, obviously, V ⊂ T (TQ).

4.3.1 Reduction

Taking into account that, by assumption, V|M ⊂ F , we find that for the
solution X of (3.12), we have along the constraint submanifold M

X(Jξ) = 0 ,

i.e. the components of the momentum mapping are conserved quantities for
the constrained dynamics.

Let µ ∈ g∗ be a weakly regular value of J = JL (cf. Section 2.9). Since the
action, Ψ̂ , of G on TQ is free and proper, we have that the isotropy group Gµ

acts freely and properly on the level set J−1(µ). It is known (see [1, 149, 166,
178]) that under these conditions ((TQ)µ = J−1(µ)/Gµ, ωµ) is a symplectic
manifold, where ωµ is the 2-form defined by

π∗
µωµ = j∗

µωL ,

with πµ : J−1(µ) −→ (TQ)µ the canonical projection and jµ : J−1(µ) ↪→ TQ
the natural inclusion.
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Imposing a condition of clean intersection of M and J−1(µ), we have that
M ′ = M ∩J−1(µ) is a submanifold of J−1(µ) which is Gµ-invariant. Passing
to the quotient, we then obtain a submanifold Mµ = M ′/Gµ of (TQ)µ. This
submanifold can be identified, via the adequate embedding, with M ∩(TQ)µ.

Next, we can define a distribution F ′ on TQ along M ′ by putting

F ′
x′ = Tx′(J−1(µ)) ∩ Fx′ , ∀x′ ∈ M ′ ,

and we make the further simplifying assumption that F ′ has constant rank.
It is obvious that F ′ is a Gµ-invariant subbundle of TM ′TQ and, hence,
it projects onto a subbundle Fµ of T (TQ)µ along Mµ. Finally, since the
restriction of the energy EL to J−1(µ) is also Gµ-invariant, it induces a
function ELµ on (TQ)µ.

Theorem 4.3.1. [51] Suppose that X is the (G-invariant) solution of (3.12).
Then, X induces a vector field Xµ on Mµ, such that{

(iXµωµ − dELµ)|Mµ
∈ F o

µ ,
Xµ ∈ TMµ .

(4.16)

In the case of horizontal symmetries we have therefore that, under the
appropriate assumptions, the given nonholonomic constrained problem on
(TQ, ωL) reduces to a constrained problem on ((TQ)µ, ωµ).

4.3.2 Reconstruction

The parallelism of the horizontal case with unconstrained systems can also
be tracked in the process of reconstruction of the dynamics, as we see next.

We start with cµ(t) an integral curve of Xµ with initial condition cµ(0) =
mµ ∈ Mµ. Choose m ∈ (πµ)−1(mµ). We would like to find the unique integral
curve c(t) of X which satisfies c(0) = m. As X and Xµ are πµ-related, c(t)
projects on cµ(t).

Let d(t) be a curve in TQ such that πµ(d(t)) = cµ(t) (later, we will discuss
how to obtain such curves). Put c(t) = g(t)d(t), for some curve g(t) in Gµ,
with g(0) = e. As c(t) is an integral curve of X, we have that X(c(t)) = ċ(t),
i.e.

X(g(t)d(t)) =
d

dt
(g(t)d(t)) = g(t)ḋ(t) + g(t)((g−1(t)ġ(t))Md(t)) .

As X(g(t)d(t)) = g(t)X(d(t)), we conclude

X(d(t)) = ḋ(t) + (g−1(t)ġ(t))Md(t) . (4.17)

So, similarly to the unconstrained case [159], we can split the reconstruc-
tion process in two steps,
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1. find a curve ξ(t) in gµ such that ξ(t)M (d(t)) = X(d(t)) − ḋ(t),

2. find a curve g(t) in Gµ such that ġ(t) = g(t)ξ(t), g(0) = e.

A standard procedure in the reconstruction of the dynamics [159] is the
selection of a connection on an appropriate principal fiber bundle: for in-
stance, if we choose an arbitrary connection Υ on the principal Gµ-bundle
M ′ −→ Mµ, Υ enables us to horizontally lift the integral curves of the re-
duced system from Mµ to M ′. Therefore, we can take d(t) as the horizontal
lift of cµ(t) with d(0) = m, that is, πµ(d(t)) = cµ(t) and Υ (ḋ(t)) = 0.

Making use of the connection Υ , we can replace (i) above by

(i’) ξ(t) = Υ (ξ(t)M (d(t))) = Υ (X(d(t)) − ḋ(t)) = Υ (X(d(t))) .

In the remainder of this section, we show that for mechanical Lagrangian
systems, the selection of the connection can be done in a natural way. Indeed,
we first show that if the bundle ςµ : Q −→ Q/Gµ has a connection, this
induces a connection on ρ : M ′ −→ Mµ. Then, we see how for mechanical
systems there is always a natural connection on ςµ : Q −→ Q/Gµ.

Denote by µ′ = µ|gµ
∈ g∗

µ, the restriction of µ to gµ, and consider the
mapping Jµ : TQ −→ g∗

µ defined by Jµ(vq) = J(vq)|gµ
. We have that ςµ :

Q −→ Q/Gµ is a principal Gµ-bundle. Let γ ∈ Λ1(Q, gµ) be a connection
form on it. We recall now the tangent bundle version of the cotangent bundle
reduction theorem of Satzer, Marsden and Kummer (see [1, 128, 159]).

Theorem 4.3.2. Assume that there is a vector field Yµ ∈ X(Q) such that
Yµ(Q) ⊂ (Jµ)−1(µ′) and Yµ is Gµ-invariant, that is Yµ(gq) = gYµ(q), for
g ∈ Gµ. Then, there is an embedding ϕµ : (TQ)µ −→ T (Q/Gµ) whose range
is a vector subbundle with base Q/Gµ. This embedding is onto if and only if
g = gµ.

Proof. The proof simply consists in making the necessary translations with
respect to the proof in the cotangent bundle picture. The vector field Yµ
induces, by equivariance, the vector field Ỹµ on Q/Gµ: Ỹµ◦ςµ = ςµ∗Yµ. Define
the projection τµ : (TQ)µ −→ Q/Gµ by τµ([vq]) = [q], so that ςµ◦τ = τµ◦πµ,
where we recall that πµ : J−1(µ) −→ (TQ)µ is the canonical projection.
Let tµ : J−1

µ (µ′) −→ J−1
µ (0) be given by tµ(vq) = vq − Yµ(q) and let ϕµ :

(TQ)µ −→ T (Q/Gµ) be the map induced by the relation ϕµ ◦ πµ = ςµ∗ ◦ tµ,
defined on the set J−1(µ). Then ϕµ is an embedding and it is easy to see
that it is onto iff g = gµ by comparing J−1

µ (0) and J−1(0). ��

The commutative diagram in Figure 4.2 will help us handle the theorem.
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M ′ J−1(µ) J−1
µ (µ′) J−1

µ (0) TQ Q

Mµ (TQ)µ T (Q/Gµ) Q/Gµ

tµ τQ

ϕµ τQ/Gµ

ςµπµ

� � � � �

� � �
� � � �

Fig. 4.2. Illustration of the result in Theorem 4.3.2

The vector field Yµ postulated in the hypothesis of Theorem 4.3.2 can
be chosen to be consistent with the principal connection γ ∈ Λ1(Q, gµ), by
means of

Yµ(q) = FL−1(µ′ ◦ γ(q)) , q ∈ Q , (4.18)

i.e. Yµ is the Legendre transform of the µ′-component of the connection γ.

The connection γ ∈ Λ1(Q, gµ) induces a connection Υ ∈ Λ1(M ′, gµ) by
pullback, Υ = (τQ ·tµ)∗γ so that Υvq

(Uvq
) = γq(TτQ ·Uvq

) for all Uvq
∈ Tvq

M ′.
Taking this into account, we can rewrite (i’) above as

(i’) ξ(t) = Υ (X(d(t))) = γ(TτQ · X(d(t))) = γ(d(t)) .

In the following, we specialize our discussion to the case of Lagrangian
systems of natural type.

Natural Lagrangian systems In case we have a Lagrangian of mechanical
type, L = T − V , where T is the kinetic energy of a Riemannian metric g on
Q and V is a potential energy, we know that the nonholonomic Lagrangian
system fulfills the compatibility condition (cf. Section 3.4.1). Making use
of the special geometry of mechanical systems, we can naturally define a
connection on the principal fiber bundle ςµ : Q −→ Q/Gµ. We discuss this
next.

Let Vςµ = kerTςµ and consider H = V⊥
ςµ , the orthogonal complement of

Vςµ with respect to the metric g. We define the mechanical connection, γmech,
as the connection on Q −→ Q/Gµ whose horizontal subspace is H.

As a consequence of this choice, we can rewrite (i’) as,

(i’) ξ(t) = γmech(q(t))(d(t)) ,

with q(t) = τQ(d(t)). If we define for each q ∈ Q the µ-locked inertia tensor
(see [158]), Iµ(q) : gµ −→ g∗

µ, by 〈Iµ(q)ζ, η〉 = 〈ζQ(q), ηQ(q)〉, we can verify
that γmech(vq) = I−1

µ (q)J(vq). We then rewrite (i’) as,

(i’) ξ(t) = γmech(q(t))(d(t)) = I−1
µ (q(t))(µ) .

Results somehow related to this one can be found in [29].
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4.4 The general case

I N this section, we consider the intermediate case between the extreme
cases of purely kinematic and horizontal symmetries. Assume that at each

x ∈ M , {0} � Vx ∩ Fx � Vx. Following our discussion in Section 4.1 (see the
computations we made in deriving equation (4.2)), we see that the momentum
mapping J is no longer a conserved quantity for the constrained dynamics.
However, a careful investigation of the structure of nonholonomic systems
with symmetry leads us to obtain an equation describing the evolution along
the integral curves of the components of the momentum mapping compatible
with the constraints. The first result is this sense was given in [29] for non-
holonomic mechanical systems and extended in [51] to general constrained
systems (see [222] for a recent approach).

Let us consider for each x ∈ M the following space

gx = {ξ ∈ g | ξM (x) ∈ Fx} .

Recall that ξM is just the restriction of ξTQ to the G-invariant submanifold
M . Since F is a vector bundle, we have that gx is a vector subspace of g.
Putting

gF =
∐
x∈M

gx ,

where we use the symbol “
∐

” to denote the disjoint union of the vector
spaces, we obtain a (“generalized”) vector bundle over M , with canonical
projection gF −→ M : ξ ∈ gx �−→ x. In general, this bundle need not have
constant rank. However, for the subsequent discussion we make the simplify-
ing assumption that gF is a genuine vector bundle over M , the fibers of which
have constant dimension (independent of the base point). This assumption
is valid for a large variety of examples.

Now, consider the “restriction” of the natural momentum mapping J =
JL : TQ −→ g∗ (cf. Section 2.9) to the symmetry directions that are compat-
ible with the constraints, which are precisely given by the bundle gF . Define
a smooth section J (c) : M −→ (gF )∗ of the dual bundle (gF )∗ as follows,

J (c)(x) : gx −→ R , J (c)(x)(ξ) = 〈J(x), ξ〉 .

The mapping J (c) will be called the constrained momentum mapping [29, 51].

Remark 4.4.1. In the works [29, 50], the reduction theory is developed in
terms of the vector bundle gM −→ Q, defined by,

gq = {ξ ∈ g | ξTQ(vq) ∈ Fvq for all vq ∈ M ∩ TqQ} .
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The nonholonomic momentum mapping Jnh : TQ −→ (gM )∗ is then defined
by

〈Jnh(vq), ξ〉 = 〈J(vq), ξ〉 ,
for all vq ∈ TQ and ξ ∈ gq. In fact, Jnh restricts naturally to M , Jnh|M : M −→
(gM )∗. For simplicity, we will usually denote this mapping by Jnh, instead
of Jnh|M . We will only restore the notational distinction when the confusion is
possible.

The vector bundle we are considering here was introduced in [51] in a more
general constrained setting. The relation between both bundles gM −→ Q and
gF −→ M is given by the following result. By definition, we have that

gq =
⋂

vq∈M∩TqQ

gvq

for all q ∈ Q. The fibers gq and gvq of gM and gF , resp., do not coincide
in general. Indeed, let us take ξ ∈ gvq and wq ∈ M ∩ TqQ. We want to
see if ξ ∈ gwq , i.e. ξTQ(wq) ∈ Fwq . Applying the musical mapping �L, this is
equivalent to �L(ξTQ(wq)) = (dJξ)wq ∈ �L(Fwq ) = (F⊥

wq
)o. Now, F⊥ is locally

generated by the Hamiltonian vector fields Z1, . . . , Zm (cf. Section 3.4.1).
Consequently, we would have (dJξ)wqZi(wq) = 0, 1 ≤ i ≤ m. But

(dJξ)wqZi(wq) = ωL(ξTQ, Zi)(wq)
= −S∗(dφi)wq (ξTQ(wq)) = −(dφi)wq (ξ

v
Q(wq)) .

In coordinates, if we write ξQ(q) = fA(q) ∂
∂qA , the right-hand side becomes

(dφi)wq
(ξvQ(wq)) =

∂φi
∂q̇A

(q, q̇)fA(q) ,

which in general will not be zero (even though it is zero at vq). However, if
the constraints are linear or affine, the term

∂φi
∂q̇A

(q, q̇)

only depends on the base point q ∈ Q, and ξ ∈ gvq implies ξ ∈ gwq for all
wq ∈ M ∩ TqQ. Therefore gq = gwq for all wq ∈ M ∩ TqQ. In such a case, we
will identify the momentum mappings J (c) and Jnh.

Given a smooth section ξ of the vector bundle gF , ξ : M −→ gF , we can
then define a smooth function J

(c)
ξ

on M according to

J
(c)
ξ

= 〈J (c), ξ〉 .

The section ξ induces a vector field Ξ on M by putting

Ξ(x) = (ξ(x))M (x) , ∀x ∈ M .
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Theorem 4.4.2. [51] Let X be the solution of (3.12). For any smooth sec-
tion ξ of gF we then have

X(J (c)
ξ

) = (LΞθL)(X) . (4.19)

Proof. We have that

X(J (c)
ξ

) = dJ
(c)
ξ

(X) = iXdiΞj∗θL = iX iΞj∗ωL + iXLΞj∗θL .

Since j∗ωL(Ξ,X) = −(iXωL)(Ξ) and Ξ ∈ F this further becomes

X(J (c)
ξ

) = iXLΞj∗θL = −i[Ξ,X]j
∗θL + LΞiXj∗θL = (LΞθL)(X) .

��

Note that for the above result we do not have to require X to be G-
invariant. Equation (4.19) is called the momentum equation for the given
constrained system.

Remark 4.4.3. An important observation is the following: for nonholonomic
Lagrangian systems, recall that the solution X of (3.12) is a SODE vec-
tor field. As a consequence, (LΞθL)(X) can be obtained without having to
compute explicitly the dynamics X, since LΞθL is a semi-basic one-form.

Remark 4.4.4. In the case of linear constraints (recall Remark 4.4.1) we pre-
cisely recover the result established by Bloch et al [29]. Indeed, a global section
ξ of the vector bundle gM −→ Q induces a vector field Ξ̃ on Q as follows

Ξ̃(q) = (ξ(q))Q(q) ∈ TqQ ,

for all q ∈ Q. Then, it can be seen after some computations [50] that the
nonholonomic momentum equation (4.19) can be rewritten as

X(Jnh
ξ

) = Ξ̃c(L) . (4.20)

Remark 4.4.5. Let ξ be a constant section of gF , i.e. ξ(x) = ξ0 ∈ g for
all x ∈ M . We may then identify the corresponding vector field Ξ with
the infinitesimal generator ξ0

M and, clearly, J
(c)
ξ

= (Jξ0)|M . Moreover, by
construction, ξ0

M is a horizontal symmetry. The momentum equation (4.19)
then leads to

X(J (c)
ξ

) = X(Jξ0)|M = 0 ,

i.e. we have obtained a conserved quantity of X associated with the hori-
zontal symmetry ξ0

M . This is again a manifestation of Noether’s theorem for
constrained systems.
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4.4.1 Reduction

In this section, we are going to develop a reduction procedure in the general
case via the constrained momentum mapping. We will assume throughout
the discussion that the constraints are affine, so that we will make use of the
nonholonomic momentum mapping Jnh : TQ −→ (gM )∗.

As we have remarked above, the main difficulty (and precisely the im-
portant point) for nonholonomic systems is that the momentum is not a
conserved quantity. So, instead of fixing a value µ ∈ g∗ for the momentum
as in the traditional approach of symplectic reduction [1, 166, 178], we will
take a C∞-section µ : Q −→ (gM )∗ of the dual vector bundle (gM )∗, with
canonical projection π∗ : (gM )∗ −→ Q. Now, consider the level set

(Jnh)−1(µ) = {vq ∈ M |Jnh(vq) = µ(q)}
In general, (Jnh)−1(µ) will not be a submanifold of M . We will denote the
inclusion by j : (Jnh)−1(µ) ↪→ M .

Assume that the vector bundle gM −→ Q has constant rank r, and choose
ξ1, . . . , ξr, r linearly independent sections. Consider r functions on M , fi :
M −→ R, defined by fi = 〈µ, ξi〉 ◦ τQ − Jnh

ξi

. For each i, we denote TQξi
=

f−1
i (0). Then, it is not hard to see that

(Jnh)−1(µ) =
r⋂
i=1

TQξi
.

In the following proposition, we characterize the desired sections µ and
give certain conditions to assure the existence of a differentiable structure on
(Jnh)−1(µ).

Proposition 4.4.6. If 0 is a weakly regular value of fi for 1 ≤ i ≤ r, then
TQξi

is a submanifold of M . If, in addition, the intersection
⋂r
i=1 TQξi

is
clean, then (Jnh)−1(µ) is a submanifold of M , and X is tangent to it if and
only if

X(〈µ, ξi〉 ◦ τQ) = Ξc
i (L) , (4.21)

for all 1 ≤ i ≤ r.

Proof. Given the above discussion, it only remains to prove the equivalence.
Assume that the section µ fulfills equation (4.21), i.e. X(〈µ, ξi〉◦τQ) = Ξc

i (L),
for all 1 ≤ i ≤ r. Then, using the nonholonomic momentum equation, we have
that X(fi) = 0. So X is tangent to the level submanifold TQξi

for each i.
As T ((Jnh)−1(µ)) =

⋂r
i=1 T (TQξi

), it follows that X ∈ T ((Jnh)−1(µ)). The
converse is obvious. ��
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In the sequel, we will assume the hypothesis of Proposition 4.4.6.

Lemma 4.4.7. We have

T⊥((Jnh|M )−1(µ)) = T⊥M + span
{
Xf̃1

, . . . , Xf̃r

}
.

Proof. We will distinguish now between Jnh : TQ → (gM )∗ and Jnh|M : M →
(gM )∗. We have that (Jnh|M )−1(µ) = (Jnh)−1(µ)∩M . Consider f̃i, the natural

extension of fi to TQ, f̃i = 〈µ, ξi〉 ◦ τQ − Jnh
ξi

. For each i, denote T̃Qξi
=

f̃−1
i (0). It is clear that TQξi

= T̃Qξi
∩ M . We also have that (Jnh)−1(µ) =⋂r

i=1 T̃Qξi
. A simple counting of dimensions shows that dimT ((Jnh)−1(µ)) ≥

dimTQ − r. Consequently, we have that dimT⊥((Jnh)−1(µ)) ≤ r. On the
other hand, it easy to check that Xf̃i

∈ T⊥((Jnh)−1(µ)), 1 ≤ i ≤ r. Then,
we have proved that

T⊥((Jnh)−1(µ)) = span
{
Xf̃1

, . . . , Xf̃r

}
.

Finally,

T⊥((Jnh|M )−1(µ)) = T⊥M+T⊥((Jnh)−1(µ)) = T⊥M+span
{
Xf̃1

, . . . , Xf̃r

}
.

��

In order to perform the reduction, we need a G-action on the vector bundle
(gM )∗, playing the role of the coadjoint action of G on g∗. The following
lemma enables us to go further in that direction

Lemma 4.4.8. For g ∈ G and ξ ∈ gM , put AdM (g, ξ) = Adg(ξ). Then, for
ξ ∈ gq, we have that AdM (g, ξ) ∈ ggq, and AdM : G × gM −→ gM is a
well-defined “action” on the vector bundle gM .

Proof. The unique thing that remains to be proved is that AdM is well-
defined, because the properties AdMe = Id and AdMgh = AdMg ◦ AdMh follow
directly from the fact that Ad is a G-action. Thus let us take g ∈ G and
ξ ∈ gq, which is to say that ξTQ(vq) ∈ Fvq

for all vq ∈ TqQ∩M . As the vector
bundle F is G-invariant, we have that (Adg(ξ))TQ(g · vq) = (Φg)∗(ξTQ(vq))
belongs to Fg·vq , for all vq ∈ TqQ ∩ M , namely, (Adg(ξ))TQ(wq) ∈ Fwq

, for
all wq ∈ TqQ ∩ M . Consequently, Adg(ξ) ∈ ggq and AdM is well-defined. ��

In a similar way, we can consider the G-“action” on (gM )∗ defined by

CoAdM : G × (gM )∗ −→ (gM )∗

(g, η) �−→ CoAdM (g, η) = CoAdg(η)
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M (gM )∗

M (gM )∗

Jnh

Jnh

CoAdM
gΦg

�

�
� �

Fig. 4.3. G-equivariance of the nonholonomic momentum mapping.

Note that the nonholonomic momentum mapping Jnh : M −→ (gM )∗ is
G-equivariant with respect to this action, that is to say, CoAdg(Jnh(vq)) =
Jnh(g · vq), for all g ∈ G, and the diagram in Figure 4.3 is commutative.

The last ingredient we need to define is the “isotropy group” of the action
CoAdM corresponding to a section µ : Q −→ (gM )∗. This is defined as

Gµ = {g ∈ G |CoAdMg ◦ µ = µ ◦ Φg} ,

where we mean by CoAdMg ◦ µ = µ ◦ Φg that CoAdMg (µ(q)) = µ(gq) for all
q ∈ Q. Note that Gµ is a Lie subgroup of G.

Now, we can define a Gµ-action on the manifold (Jnh)−1(µ) in the fol-
lowing way

Θ : Gµ × (Jnh)−1(µ) −→ (Jnh)−1(µ)
(g, vq) �−→ Θ(g, vq) = g · vq

The definition of the group Gµ and the equivariance of Jnh : M −→ (gM )∗

imply that this action is well defined, as we check in the following

Lemma 4.4.9. The mapping Θ is well defined.

Proof. Take g ∈ Gµ and vq ∈ (Jnh)−1(µ). By equivariance, we have
Jnh(Θ(g, vq)) = CoAdMg (Jnh(vq)) = CoAdMg (µ(q)). Finally, by definition
of Gµ, it follows that Θ(g, vq) ∈ (Jnh)−1(µ). ��

We can consider the action Θ as the restriction to (Jnh)−1(µ) of a Gµ-
action on M , ΘM : Gµ × M −→ M . Both Θ and ΘM will be free and
proper actions, because they inherit these properties from the original action
Ψ̂ : G × TQ −→ TQ. Then, the orbit spaces M/Gµ and (Jnh)−1(µ) =
(Jnh)−1(µ)/Gµ are differentiable manifolds, and we have two principal Gµ-
bundles π : M −→ M/Gµ and π|(Jnh)−1(µ) : (Jnh)−1(µ) −→ (Jnh)−1(µ),
respectively.
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An approach based on symplectic reduction In this section, we make
use of ideas from the symplectic reduction scheme developed by Bates and
Śniatycki [18] (cf. Section 4.1) for the reduction of nonholonomic systems via
the nonholonomic momentum mapping.

Now, we define a (generalized) vector subbundle Uµ of TM|(Jnh)−1(µ),
whose fiber at x ∈ (Jnh)−1(µ) is given by

(Uµ)x = {v ∈ Fx ∩ Tx(Jnh)−1(µ) / ωL(v, ξ̃) = 0 , for all ξ̃ ∈ (Vµ)x ∩ Fx} .
(4.22)

In general, Uµ need not be of constant rank. For the further discussion,
however, we will assume that Uµ is a genuine vector bundle over (Jnh)−1(µ).
Note that Uµ = F ∩ T ((Jnh)−1(µ)) ∩ (Vµ ∩ F )⊥, where (Vµ ∩ F )⊥ is the
ωL-complement of Vµ ∩ F in TTQ|(Jnh)−1(µ). The bundle Uµ is Gµ-invariant
and, hence, it projects onto a subbundle Uµ of T (Mµ)|(Jnh)−1(µ).

Let us now denote by ωµ the restriction of ωL to Uµ. Clearly, ωµ is also
Gµ-invariant and by the very definition of the vector bundle Uµ, the 2-form
ωµ pushes down to a 2-form ωµ on Uµ. Similarly, the restriction of dEL to Uµ,
denoted by dµEL, pushes down to a 1-form dµEL on Uµ, which is simply the
restriction of dEL to Uµ. Note that neither ωµ nor dµEL are differential forms
on (Jnh)−1(µ); they are exterior forms on a vector bundle over (Jnh)−1(µ),
with smooth dependence on the base point.

Proposition 4.4.10. Let X be the solution of (3.12). Then, its projection
Xµ onto (Jnh)−1(µ) is a section of Uµ satisfying the equation

iXµ
ωµ = dµEL . (4.23)

Proof. Similar as for Proposition 4.1.4. ��

Remark 4.4.11. It should be noticed that, in general, the 2-form ωµ may be
degenerate. So, the reduced dynamics is not uniquely determined by equa-
tion (4.23).

Almost-Poisson reduction The idea of this approach is to project the
nonholonomic bracket (cf. Section 3.4.1) to the reduced space (Jnh)−1(µ) via
the Gµ-action Θ : Gµ× (Jnh)−1(µ) −→ (Jnh)−1(µ). For that purpose we will
make use of the almost-Poisson reduction scheme discussed in Section 2.8.1.

With the notation of that section, we have that N = (Jnh)−1(µ). It seems
to be quite reasonable to take as the control bundle E at each point vq of
(Jnh)−1(µ) just the tangent at vq to the Gµ-orbit of vq, i.e. Evq = Tvq (Gµ ·vq).
It is easy to see that (N,E) is a reductive structure, with S = (Jnh)−1(µ).
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We now investigate whether (M,N,E) is a reducible triple. We have that

Eo = span
{
dχ | χ ∈ C∞

Gµ
(M)

}
,

where C∞
Gµ

(M) denotes the Gµ-invariant functions on M . Then,

�M (Eo) = span
{
XM
χ | χ ∈ C∞

Gµ
(M)

}
.

Note that XM
χ denotes the Hamiltonian vector field associated with the func-

tion χ : M −→ R by the musical mapping �M induced by the almost-Poisson
bivector field ΛM . But,

XM
χ (υ) = {υ, χ}M = ωL(P̄(Xυ̃), P̄(Xχ̃)) ◦ jM

= ωL(Xυ̃, P̄(Xχ̃)) ◦ jM = P̄(Xχ̃)(υ) ,

for all υ ∈ C∞(M), where χ̃ denotes an arbitrary extension of χ to TQ. So
XM
χ = P̄(Xχ̃) and

�M (Eo) = span
{

P̄(Xχ̃) | χ ∈ C∞
Gµ

(M)
}

.

In addition, since E + N = T (Gµ·) + T ((Jnh)−1(µ)) = T ((Jnh)−1(µ)) = N ,
we have, according to Theorem 2.8.5, that (M,N,E) is a reducible triple if
and only if

�M (Eo) ⊆ T ((Jnh)−1(µ)) ⇐⇒ P̄(Xχ̃)(fi) ◦ j = 0 , 1 ≤ i ≤ r , ∀χ ∈ C∞
Gµ

(M)

⇐⇒ {fi, χ}M ◦ j = 0 , 1 ≤ i ≤ r , ∀χ ∈ C∞
Gµ

(M) (4.24)

In the purely kinematic case, as we have discussed in Section 4.2, the non-
holonomic momentum mapping is trivial, and therefore the conditions (4.24)
hold trivially (in fact, (Jnh)−1(µ) = M). In the horizontal case, we would
have gM = g × Q, so r = dimG. Taking a constant section µ(q) = (µ, q)
and a basis of the Lie algebra g, ξ1, . . . , ξr, we could write fi = 〈µ, ξi〉 − Jξi ,
1 ≤ i ≤ r. Then {fi, χ}M ◦ j = −P̄(Xfi

)(χ) ◦ j = (ξi)M (χ) ◦ j. However, the
conditions (4.24) will not be fulfilled in general, because C∞

Gµ
(M) �= C∞

G (M).

Almost-Poisson mappings The obstruction we have found above in the
horizontal case to reduce the nonholonomic bracket {·, ·}M to (Jnh)−1(µ) via
((Jnh)−1(µ)), T (Gµ·)) leads us to develop another scheme of reduction which
takes into account the whole Lie group G. For that purpose, let us define the
following mapping

k : (Jnh)−1(µ)
kµ−→ M/Gµ

p−→ M/G = M .

On M , we have the natural almost-Poisson structure induced by (M,ΛM ).
The idea of this section is to study under which conditions there exists an
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almost-Poisson structure on (Jnh)−1(µ) in such a way that k is an almost-
Poisson mapping. In this case, then for each pair of functions λ̄, σ̄ : M −→ R

we would have that
{λµ, σµ}µ = {λ̄, σ̄}M ◦ k ,

with λ̄ ◦ k = λµ and σ̄ ◦ k = σµ.

In fact, taking λ̄1, λ̄2 : M −→ R with λ̄1 ◦k = λ̄2 ◦k = λµ, we would have

{λ̄1, σ̄}M ◦ k = {λ̄2, σ̄}M ◦ k , ∀σ̄ ∈ C∞(M) . (4.25)

In case of k being injective, this equality would be a necessary and sufficient
condition to obtain an almost-Poisson bracket {·, ·}µ on (Jnh)−1(µ), making
k an almost-Poisson morphism. Moreover, in this case, {·, ·}µ will be unique
satisfying that property.

We will discuss if equality (4.25) is fulfilled. Equivalently, given λ̄ : M −→
R with λ̄ ◦ k = 0, we want to verify if

{λ̄, σ̄}M ◦ k = 0 , ∀σ̄ ∈ C∞(M) .

Consider the following commutative diagram

(Jnh)−1(µ) M M

(Jnh)−1(µ) M/Gµ M

j

kµ

idM

p

ρ|Mππ(Jnh)−1(µ)

�

�

�

�
� � �

Then, we have that {ρ∗
|M λ̄, ρ∗

|M σ̄}M ◦ j = {λ̄, σ̄}M ◦ ρ|M ◦ j = {λ̄, σ̄}M ◦
k ◦ π(Jnh)−1(µ). In addition, ρ∗

|M λ̄ ◦ j = λ̄ ◦ k ◦ π(Jnh)−1(µ) = 0.

It is clear that

{ρ∗
|M λ̄, ρ∗

|M σ̄}M ◦ j = 0 ⇐⇒ {λ̄, σ̄}M ◦ k = 0 .

Therefore, now our question is rephrased as follows: given λ ∈ C∞
G (M) with

λ ◦ j = 0, we would like to verify if

{λ, σ}M ◦ j = 0 , ∀σ ∈ C∞
G (M) .

By definition, we have that {λ, σ}M = ωL(P̄(Xλ̃), P̄(Xσ̃)) ◦ jM , where λ̃, σ̃

are arbitrary extensions of λ, σ to TQ, λ̃ ◦ jM = λ, σ̃ ◦ jM = σ. Without loss
of generality, we can suppose them to be G-invariant.

Now, (jM ◦ j)∗λ̃ = j∗λ = 0. Therefore we deduce
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0 = (jM ◦ j)∗dλ̃ = (jM ◦ j)∗iXλ̃
ωL .

If we could assure that P̄(Xσ̃) ∈ T ((Jnh)−1(µ)), then we would have

{λ, σ}M ◦ j = ωL(Xλ̃, P̄(Xσ̃)) ◦ (jM ◦ j)
= ωL(Xλ̃, (jM ◦ j)∗P̄(Xσ̃)) ◦ (jM ◦ j)
= (jM ◦ j)∗iXλ̃

ωL(P̄(Xσ̃) = 0 .

Therefore, if we guarantee that P̄(Xσ̃) ∈ T ((Jnh)−1(µ)), ∀σ̃ ∈ C∞
G (TQ),

then (4.25) holds. We characterize when this occurs in the following

Proposition 4.4.12. Let σ be a G-invariant function on M , and σ̃ one G-
invariant extension of σ to TQ. Then,

P̄(Xσ̃) ∈ T ((Jnh)−1(µ)) ⇐⇒ {σ, fi}M ◦ j = 0 , 1 ≤ i ≤ r . (4.26)

Proof. Take σ ∈ C∞
G (M). We have that

P̄(Xσ̃) ∈ T ((Jnh)−1(µ)) ⇐⇒ ωL(P̄(Xσ̃), Z) ◦ jM ◦ j = 0 ,

for all Z ∈ T⊥((Jnh)−1(µ)). By Lemma 4.4.7, we know T⊥((Jnh)−1(µ)) =
T⊥M +span

{
Xf̃1

, . . . , Xf̃r

}
. As F ∩TM ⊂ TM , then T⊥M ⊂ (F ∩TM)⊥.

Thus we have that ωL(P̄(Xσ̃), Z) = 0 for every Z ∈ T⊥M . Then, for all
1 ≤ i ≤ r,

P̄(Xσ̃) ∈ T ((Jnh)−1(µ)) ⇐⇒ ωL(P̄(Xσ̃), Xfi) ◦ jM ◦ j = {σ, fi}M ◦ j = 0 .

��

Consequently, in case we have

{σ, fi}M ◦ j = 0 , 1 ≤ i ≤ r , ∀σ ∈ C∞
G (M) , (4.27)

we have proved that equality (4.25) holds good. Conditions (4.27) will not
be fulfilled in general. In the following section, we will see that in the case
of horizontal symmetries, k is injective and conditions (4.27) are satisfied,
and therefore, there is a well-defined (unique) almost-Poisson structure on
(Jnh)−1(µ), so that k : (Jnh)−1(µ) −→ M is an almost-Poisson morphism.

Concerning the dynamics, if k is injective, then k∗(Xµ) = X. The re-
striction of the energy EL to (Jnh)−1(µ) is Gµ-invariant, so it induces a
function on (Jnh)−1(µ), (EL)µ : (Jnh)−1(µ) −→ R. One can easily check
that (EL)|M ◦ k = (EL)µ. If, in addition, (4.25) holds, we have that k is an
almost-Poisson mapping, or equivalently,

k∗(X
µ

λ̄◦k) = XM
λ̄ ◦ k , ∀λ̄ ∈ C∞(M) .
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In particular, taking (EL)|M , we have that

Xµ
(EL)µ

(λµ) = Xµ
(EL)µ

(λ̄ ◦ k) = k∗(X
µ
(EL)µ

)(λ̄)

= XM
(EL)|M

(λ̄) ◦ k = X(λ̄) ◦ k = k∗(Xµ)(λ̄) = Xµ(λµ) ,

for all λµ ∈ C∞((Jnh)−1(µ)). Therefore, Xµ
(EL)µ

= Xµ. Then, we can con-

clude that the evolution of any function λµ ∈ C∞((Jnh)−1(µ)) along the
integral curves of Xµ on (Jnh)−1(µ)) is given by

λ̇µ = Xµ(λµ) = {λµ, (EL)µ}µ . (4.28)

Almost-Poisson mappings: the horizontal case Assume that the non-
holonomic Lagrangian system with symmetry under consideration falls into
the horizontal case (cf. Section 4.3). Next, we show that k : (Jnh)−1(µ) −→
M is injective and that the conditions (4.27) are satisfied.

Proposition 4.4.13. Let k : (Jnh)−1(µ) = Mµ −→ M be the composition
of kµ : Mµ −→ M/Gµ and p : M/Gµ −→ M . Then we can define on Mµ a
unique almost-Poisson structure so that k is an almost-Poisson mapping.

Proof. It is an easy exercise to prove that k is injective in the case of horizon-
tal symmetries. From the analysis of the previous section, we know that it is
sufficient to verify the conditions (4.27). Now, taking ξ1, . . . , ξr a base of the
Lie algebra g, we have that fi = 〈µ, ξi〉 − Jξi , 1 ≤ i ≤ r. Given σ ∈ C∞

G (M),
we deduce that

{σ, fi}M ◦ j = (ξi)TQ(σ̃) ◦ jM ◦ j = (ξi)M (σ) ◦ j = 0 ,

due to the G-invariance of σ. ��

On the other hand, we have that the symplectic distribution F ∩ TM
induces a symplectic distribution Fµ ∩ TMµ in T (TQ)µ = T (TQ)µ, that is
to say

T (TQ)µ|Mµ
= (Fµ ∩ TMµ) ⊕ (Fµ ∩ TMµ)⊥µ ,

with induced projectors for each vq ∈ Mµ

P̄µ : Tvq
(TQ)µ −→ (Fµ)vq

∩ Tvq
Mµ ,

Q̄µ : Tvq (TQ)µ −→ ((Fµ)vq ∩ TvqMµ)⊥µ.

The above decomposition induces an almost-Poisson bracket {·, ·}Mµ on Mµ.
Given λµ, σµ : Mµ −→ R, take λ̃µ, σ̃µ arbitrary extensions to (TQ)µ, λ̃µ◦
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jMµ = λµ, σ̃µ ◦ jMµ = σµ, with jMµ : Mµ ↪→ (TQ)µ the canonical inclusion,
and define

{λµ, σµ}Mµ = (ωL)µ(P̄µ(Xµ

λ̃µ
), P̄µ(Xµ

σ̃µ
)) ◦ jMµ .

Indeed, we have that both brackets coincide, {·, ·}Mµ = {·, ·}µ, as we prove
in the following

Theorem 4.4.14. Consider the almost-Poisson manifolds (Mµ, {·, ·}Mµ
) and

(M, {·, ·}M ). Then k : Mµ −→ M is an almost-Poisson mapping.

Proof. The proof consists of a careful exercise of equalities. The following two
commutative diagrams will be helpful,

(Jnh)−1(µ) = M ′ M

J−1(µ) TQ

j

jµ

jMi

�

�
� �

M ′ J−1(µ)

Mµ (TQ)µ

i

jMµ

πµπM′

�

�
� �

Then, given λµ, σµ : Mµ −→ R, we have

{λµ, σµ}µ ◦ πM ′ = {λ̄, σ̄}M ◦ k ◦ πM ′ = {λ, σ}M ◦ j

= ωL(P̄(Xλ̃), P̄(Xσ̃)) ◦ jM ◦ j = (jM ◦ j)∗ωL(P̄(Xλ̃), P̄(Xσ̃))
= (πµ ◦ i)∗(ωL)µ(P̄(Xλ̃), P̄(Xσ̃))
= (ωL)µ(P̄µ(Xµ

λ̃µ
), P̄µ(Xµ

σ̃µ
)) ◦ jMµ ◦ πM ′

= {λµ, σµ}Mµ ◦ πM ′ .

��

Remark 4.4.15. It should be noticed that from the general discussion above,
it is concluded that for nonholonomic Lagrangian systems which fit in the
horizontal case, Theorem 4.4.14 is the utmost one can say. That is, meanwhile
conditions (4.27) are always fulfilled, conditions (4.24) are no longer satisfied
in general. This means, in particular, that the almost-Poisson bracket {·, ·}Mµ

is not the reduced bracket of {·, ·}M , as it was stated in [50] (Theorem 8.2).
However, following (4.28), we know that for all λµ ∈ C∞(Mµ), its evolution
along the integral curves of the dynamics is given by

λ̇µ = Xµ(λµ) = {λµ, (EL)µ}Mµ .
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The nonholonomic free particle revisited We return now to the example
of the nonholonomic free particle discussed in Section 4.2.1.

Recall that considering the action Ψ of G = R2 on the configuration space,
the example falls into the general case. Let {e1, e2} be the standard basis of
R2 and {e1, e2} its dual basis. We define a section of the vector bundle (R2)M ,
ξ : M −→ (R2)M by

ξ : (x, y, z, ẋ, ẏ) �−→ e1 + ye2 .

Its corresponding nonholonomic momentum function is Jnh
ξ

= ẋ + yż. From

the section ξ, we can construct the vector field Ξ,

Ξ =
∂

∂x
+ y

∂

∂z
.

Therefore the momentum equation would be,

d

dt
(ẋ + yż) = żẏ .

Using the constraint φ = 0, we may rewrite this equation as

ẍ +
y

1 + y2 ẋẏ = 0 . (4.29)

In [17], Bates et al. have obtained a constant of the motion for this problem, in
addition to the energy, related with the symmetry group and the constraint.
We are going to see now how the finding of this constant fits nice in the
geometrical setting we have exposed here.

Following Theorem 3.4.1, it is interesting to realize that,

1. P̄(Ξ)(EL) = Ξ(EL) = 0, because Ξ ∈ F ∩ TM and EL is G-invariant,

2. P̄(Xφ)(EL) = ωL(XEL
, P̄(Xφ)) = −X(φ) = 0, because X ∈ F ∩ TM .

Therefore, if we find functions f , g on TQ such that the vector field
Z = fΞ + gXφ is Hamiltonian, say Z = Xϕ, from Theorem 3.4.1 we could
conclude that ϕ is a constant of the motion due to the symmetry and the
constraint. In general, the condition “Z is Hamiltonian” will lead us to a
quite complex first-order system of partial derivative equations. However, in
this case, it is not difficult to prove (just a few computations) that f = 1√

1+y2

and g = − y√
1+y2

will do. Consequently, we obtain the conservation law,

ϕ = ẋ
√

1 + y2.

Then we choose the following section of (R2)M ∗ −→ Q
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µ : Q −→ (R2)M ∗

q �−→ µ(q) : ((R2)q)∗ → R

e1 + ye2 �→ c
√

1 + y2 ,

where q = (x, y, z). We have that f : M −→ R, f = 〈µ, ξ〉 ◦ τQ − Jnh
ξ

is given
by

f = c
√

1 + y2 − ẋ(1 + y2) .

The hypothesis of Proposition 4.4.6 are fulfilled. A direct computation shows
that the section µ satisfies equation (4.21). Then (Jnh)−1(µ) is a submanifold
of M . In fact,

(Jnh)−1(µ) = {(x, y, z, ẋ, ẏ) | ẋ = c
√

1 + y2} = {(x, y, z, ẏ)} .

As the Lie group G = R2 is Abelian, the coadjoint action is trivial. Then it
is easily seen that the isotropy group Gµ of the action CoAdM is Gµ = G.
So we have the action

Θ : Gµ × (Jnh)−1(µ) −→ R

((r, s), (x, y, z, ẏ)) �−→ (x + r, y, z + s, ẏ) .

Consequently, (Jnh)−1(µ) = {y, ẏ}. We obtain that

Xf = − ∂

∂x
− y

∂

∂z
− (

cy√
1 + y2

− ż)
∂

∂ẏ
∈ F ∩ TM .

Therefore, for all σ ∈ C∞
G (M), we have

{σ, f}M ◦ j = XM
f (σ) ◦ j = P(Xf )(σ) ◦ j

= Xf (σ) ◦ j =
∂σ

∂ẏ
(

cy√
1 + y2

− yẋ) = 0 .

Moreover, the mapping k is injective,

k : (Jnh)−1(µ) −→ M

(y, ẏ) �−→ (y, c
√

1 + y2, ẏ) .

Then, we know from the above discussion that there is a well-defined almost-
Poisson structure on (Jnh)−1(µ) which is given by

{y, ẏ}µ = 1 .

As conditions (4.24) and conditions (4.27) are exactly the same (due to Gµ =
G), we have that {·, ·}µ is the reduced bracket of {·, ·}M . Indeed, {·, ·}µ is
integrable, that is, it is a Poisson structure.
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4.5 A special subcase: kinematic plus horizontal

I N this section we treat a special subcase of the general one, in which the
reduction procedure can be decomposed in a two-step procedure.

Consider a nonholonomic system with symmetry such that the bundle gF

is trivial, i.e. gx = g0 , ∀x ∈ M . Then, we have the following result.

Lemma 4.5.1. g0 is an ideal of g which is invariant with respect to the ad-
joint representation.

Proof. The invariance follows from Lemma 4.4.8, which implies that Adgg0 =
g0, for all g ∈ G. This implies that g0 is an ideal of g. ��

Next we consider G0, the normal connected subgroup of G with Lie al-
gebra g0 and Ψ0 : G0 × Q −→ Q, the restricted action to G0. For the corre-
sponding lifted action, it is clear that V0|M ⊂ F ∩ TM , so we are in the case
of horizontal symmetries treated in Section 4.3. Now we are going to proceed
in the way described there to reduce the dynamics.

Let µ ∈ g∗
0 be a weakly regular value of J = JL. From the given assump-

tions on the action Ψ̂ , we have that G0
µ, its isotropy group in G0, acts freely

and properly on the level set J−1(µ). Under these conditions, ((TQ)µ =
J−1(µ)/G0

µ, ωµ) is a symplectic manifold. We also suppose that M and
J−1(µ) have a clean intersection, M ′ = M ∩ J−1(µ), which is a G0

µ-invariant
submanifold of J−1(µ). We then consider Mµ = M ′/G0

µ. We can define a dis-
tribution F ′ on TQ along M ′ by putting F ′

x′ = Tx′(J−1(µ)) ∩ Fx′ ,∀x′ ∈ M ′

and in addition assume that F ′ has constant rank. Again, F ′ is G0
µ-invariant

and it projects onto a subbundle Fµ of T (TQ)µ along Mµ. Finally, with the
function ELµ induced by the restriction of the energy function EL to J−1(µ),
we have all the ingredients to apply Theorem 4.3.1 and obtain the following
reduced constrained problem on ((TQ)µ, ωµ),{

(iXµ
ωµ − dELµ)|Mµ

∈ F o
µ ,

Xµ ∈ TMµ .
(4.30)

So far, we have reduced the constrained problem by the horizontal sym-
metries and have obtained again a constrained problem. In the following, we
will investigate what happens with the symmetries we have not taken into
account.

For this purpose, we consider the action Φ : Gµ·G0/G0×(TQ)µ −→ (TQ)µ
defined by Φ(g, p) = Φ(g, p). Note that this action is well defined because we
are not treating with all the remaining symmetries G/G0, but only with the
adequate ones to (TQ)µ. Indeed, we prove the next result.
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Lemma 4.5.2. The mapping Φ is well defined.

Proof. We must verify that given g, h ∈ Gµ ·G0/G0 and p, q ∈ (TQ)µ so that
g = h and p = q, we have Φ(g, p) = Φ(h, q). Since Gµ·G0/G0 ∼= Gµ/Gµ∩G0 =
Gµ/G

0
µ, we can consider g, h as elements of this latter group, so we have that

h−1g ∈ Gµ∩G0. We also have that there exists i ∈ G0
µ such that p = iq. Then

gp = giq = gih−1hq. Moreover, gih−1 = (ih−1g)g
−1 ∈ G0, because i and h−1g

are in G0, and this group is normal in G. Clearly gih−1 ∈ Gµ, so finally we
have that gih−1 ∈ G0

µ. We have obtained gp = hq, i.e. Φ(g, p) = Φ(h, q). ��

In a similar way, we can check easily that Φ is a symplectic action on
(TQ)µ and that Mµ, Fµ and Hµ are all Gµ/G

0
µ-invariant. We denote by ρµ :

(TQ)µ −→ (TQ)µ the canonical projection for Φ and Vµ = kerTρµ.

Our aim is to prove that, under the assumption TMµ = (Fµ ∩ TMµ) +
Vµ|Mµ

, the constrained problem with symmetries on ((TQ)µ, ωµ) fits in the
purely kinematic case (recall Remark 4.2.2). For this purpose, we identify
now the fundamental vector fields of the action Φ.

Lemma 4.5.3. Let ζ + gµ ∩ g0 be an element of gµ/gµ ∩ g0, the Lie algebra
of Gµ/G

0
µ. Then

(ζ + gµ ∩ g0)(TQ)µ
(p) = TπµζJ−1(µ)(p) , ∀p ∈ J−1(µ) ,

where πµ : J−1(µ) −→ (TQ)µ is the projection mapping associated with the
action of G0

µ on J−1(µ) and ζJ−1(µ) is the fundamental vector field corre-
sponding to the action of Gµ on J−1(µ).

Proof. We have

(ζ + gµ ∩ g0)(TQ)µ
(p) =

(
d

dt

)
|t=0

Φ(exp(tζ + gµ ∩ g0), p)

=
(

d

dt

)
|t=0

Φ(expµ tζ, p) =
(

d

dt

)
|t=0

(expµ tζ · p) = TπµζJ−1(µ)(p).

��

Now, we are at disposal of proving the former statement.

Proposition 4.5.4. If TMµ = (Fµ∩TMµ)+Vµ|Mµ
, the reduced constrained

system (4.30), considered with the action Φ on (TQ)µ, fits in the vertical
case.
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Proof. We must prove that (Vµ)x∩(Fµ)x = {0} , ∀x ∈ Mµ. Suppose that (ζ+
gµ ∩ g0)(TQ)µ

(x) ∈ (Fµ)x for some x ∈ Mµ. Recall that Fµx = TπµF
′
x. Then,

we have that there exists Y ∈ F ′
x such that Tπµ(Y ) = (ζ+gµ∩g0)(TQ)µ

(x) =
Tπµ(ζJ−1(µ)(x)) which, in turn, implies there exists ξ ∈ g0

µ = gµ ∩ g0 such
that ζJ−1(µ)(x) = Y + ξJ−1(µ)(x). Therefore, (ζ − ξ)J−1(µ)(x) = Y , which
gives ζ −ξ ∈ gx = g0. Obviously, ζ −ξ ∈ gµ. Then, ζ +gµ∩g0 = ξ+gµ∩g0 =
0 + gµ ∩ g0. ��

Next, we proceed as in Section 4.2.1. We obtain a principal connection
Υ on the principal (Gµ/G

0
µ)-bundle ρµ|Mµ

: Mµ −→ Mµ, with horizontal
subspace Ux = (Fµ)x ∩ TxMµ at each point x ∈ Mµ.

Let θµ be the 1-form defined by π∗
µθµ = j∗

µθL. Obviously, θµ is Gµ/G
0
µ-

invariant. Let θ′
µ = j∗

Mµ
θµ, where jMµ

: Mµ ↪→ (TQ)µ is the canonical
inclusion. Then Proposition 4.2.1 can be applied to the reduced constrained
problem (4.30) to give,

iXµ
ω = dHµ + αXµ , (4.31)

where αXµ
is the projection of αXµ

, with αXµ
= iXµ

(h∗dθ′
µ − dh∗θ′

µ), and
ω = d(θ′

µ)h, with (θ′
µ)h the projection of h∗θµ.

Remark 4.5.5. In general, the condition “gx does not depend on x ∈ M”
seems to be quite restrictive. In [220], Śniatycki defined g′ ⊂ g by

g′ = {ξ′ ∈ g | ∃ a constant section ξ of gF with ξ(x) = ξ′ , ∀x ∈ M} .

In other words, g′ consists of those elements of g such that its corresponding
infinitesimal generator of the induced action on M is a horizontal symmetry.
If gx does not depend on x ∈ M , it is clear that g0 = g′.

Śniatycki argues that g′ is an ideal of g and then he considers the normal
connected subgroup G′ of G with Lie algebra g′. The reduction process is
parallel to the one done here until we reach Proposition 4.5.4, which will not
be true in general.

As we have seen for the reduction, the reconstruction of the dynamics
would be a two-step process. First, to implement a purely kinematic-type
reconstruction and secondly, an horizontal-type one.

4.5.1 The nonholonomic free particle modified

We are going to treat next the example of the nonholonomic free particle,
but with a different constraint. As before, we have a particle moving in space,
subject to the constraint
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φ = ż − xẋ = 0 .

The Lagrangian function and the constraint submanifold are

L =
1
2
(
ẋ2 + ẏ2 + ż2) , M = span

{
∂

∂x
+ x

∂

∂z
,
∂

∂y

}
.

Consider the Lie group G = R2 and its action on Q,

Ψ : G × Q −→ Q
((r, s), (x, y, z)) �−→ (x, y + r, z + s) .

It is a simple verification to see that L and M are G-invariant. The infinites-
imal generators of the lifted action of ϕ to TQ are { ∂

∂y ,
∂
∂z}.

Choose local coordinates m = (x, y, z, ẋ, ẏ) on M . We find that,

F|M = span
{

∂

∂x
+ x

∂

∂z
,
∂

∂y
,

∂

∂ẋ
,
∂

∂ẏ
,
∂

∂ż

}
, Vm ∩ Fm = span

{
∂

∂y

}
.

Note that the fiber (R2)m does not depend on the base point m ∈ M . Then,
the bundle (R2)F is trivial and we are just in the special subcase of the
general case treated in this section. With the notations we have been using,
g0 = R × {0} and G0 = R × {0}. Let {e1, e2} be the standard basis of R2

and {e1, e2} its dual basis. We know that Ψ0 is Hamiltonian, with momentum
mapping,

J : TR3 −→ R∗

(x, y, z, ẋ, ẏ, ż) �−→ ẏe1

Let µ = ae1 ∈ R∗. We have that G0
µ = R and J−1(µ) = {(x, y, x, ẋ, ż)}.

Therefore,

(TR3)µ = {(x, z, ẋ, ż)} , (ωL)µ = dx ∧ dẋ + dz ∧ dż .

We note that M and J−1(µ) have a clean intersection M ′ = {(x, y, z, ẋ)} so
that

Mµ = {(x, z, ẋ)} .

After some computations, we find that

Fµ = span
{

∂

∂x
+ x

∂

∂z
,

∂

∂ẋ
,
∂

∂ż

}
,

Fµ ∩ TMµ = span
{

∂

∂ẋ
+ x

∂

∂ż
,

∂

∂x
+ x

∂

∂z
+ ẋ

∂

∂ż

}
.

Finally, we obtain (EL)µ = 1
2 (ẋ2 + ż2 + a2). With all these ingredients,

we pose the following constrained problem (4.30) on ((TR3, (ωL)µ)),
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(i(X)µ

(ωL)µ − d(EL)µ)|Mµ
∈ F o

µ ,
(X)µ ∈ TMµ .

(4.32)

Now, we are going to investigate what happens with the symmetries we
have not used yet. We have that Gµ = R2 and consequently (Gµ+G0)/G0 ∼=
R. Consider the action

Φ : (Gµ + G0)/G0 × (TR3)µ −→ (TR3)µ
(s, (x, z, ẋ, ż)) �−→ (x, z + s, ẋ, ż) .

The canonical projection ρµ is given by

ρµ : (TR3)µ −→ (TR3)µ
(x, z, ẋ, ż) �−→ (x, ẋ, ż) ,

and its restriction to Mµ is

ρµ|Mµ
: Mµ −→ Mµ

(x, z, ẋ) �−→ (x, ẋ) .

The vertical bundle of Φ is Vµ = span
{
∂
∂z

}
. For each mµ ∈ Mµ we have that

(Vµ)mµ ∩(Fµ)mµ = {0}. Moreover, TMµ = Fµ|Mµ
∩TMµ+Vµ|Mµ

. Therefore,
the constrained system (4.32) on ((TR3)µ, (ωL)µ) fits in the purely kinematic
case, that is, we obtain a principal connection Υ on the principal R-bundle
ρµ|Mµ

: Mµ −→ Mµ, with horizontal subspace Umµ = (Fµ)mµ ∩ TmµMµ at
each point mµ ∈ Mµ. The connection one-form is given by

Υ = (dz)e ,

where {e} is the canonical basis of the Lie algebra (gµ + g0)/g0 ∼= R. Define

θµ = −ẋdx − żdz .

We check that θ′
µ = j∗

Mµ
θµ = −ẋ(dx+xdz). Next, we calculate the one-form

αXµ on Mµ defined by the prescription αXµ = iXµ(h∗dθ′
µ − dh∗θ′

µ). First,
we have that

h∗dθ′
µ = dh∗θ′

µ = (1 + x2)dẋ ∧ dx ,

and consequently αXµ
= 0. Projecting onto Mµ, we obtain that

ω = (1 + x2)dx ∧ dẋ , (EL)µ =
1
2
(ẋ2(1 + x2) + a2) .

Now, following (4.31), we can write from the constrained problem (4.32), the
reduced unconstrained system

iXµ
ω = d(EL)µ . (4.33)

From a straightforward computation we have that the solution Xµ of equa-
tion (4.33) is the vector field

Xµ = ẋ
∂

∂x
− xẋ2

1 + x2

∂

∂ẋ
.



5 Chaplygin systems

IN this chapter, we focus our attention on Chaplygin systems. Typical prob-
lems in Mechanics, such as the vertical and the inclined rolling disk, the

nonholonomic free particle and the two wheeled carriage, can be interpreted
as generalized Chaplygin systems in the sense defined in Chapter 4. Systems
of this type also occur in many problems of robotic locomotion [117] and
motions of micro-organisms at low Reynolds number [216]. In the previous
chapter we have taken a symplectic approach to the dynamics of Chaplygin
systems. Here, instead, we expose a nice geometric description in terms of
affine connections for generalized Chaplygin systems of mechanical type. We
also explore the relation between both approaches. This investigation will
lead us to answer negatively a question by Koiller [120] concerning the exis-
tence of a canonical invariant measure for the reduced dynamics of generalized
Chaplygin systems.

The chapter is organized as follows. In Section 5.1 we present the de-
scription of the reduction and reconstruction of the dynamics of generalized
Chaplygin systems under the affine connection formalism. In Section 5.2, we
motivate the study of the relation with the symplectic approach with two ex-
amples. This relation is analyzed in Section 5.3. These developments enable
us to study several integrability aspects in Section 5.4 and present a simple
counter example to Koiller’s question.

5.1 Generalized Chaplygin systems

R ECALL from Chapter 4 the structure of a so-called generalized Chap-
lygin system [29, 120, 137]. The configuration manifold Q of a Chap-

lygin system is a principal G-bundle π : Q −→ Q/G, and the constraint
submanifold D is given by the horizontal distribution H of a principal con-
nection γ on π. Furthermore, the system is described by a regular Lagrangian
L : TQ −→ R, which is G-invariant for the lifted action of G on TQ. In this
chapter, we shall restrict our attention to systems of mechanical type for
which L = T − V , where T : TQ −→ R is the kinetic energy, corresponding
to a Riemannian metric g on Q, and V : Q −→ R is the potential energy.

J. Cortés Monforte: LNM 1793, pp. 103–120, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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In addition, we suppose that both the potential energy and the metric g are
G-invariant so that

LξQ
V = 0 , LξQ

g = 0 ,

for all ξ ∈ g. In particular, all fundamental vector fields ξQ are Killing vector
fields.

5.1.1 Reduction in the affine connection formalism

In this section, we restrict our attention to Lagrangians of “pure kinetic
energy type”, i.e. we assume V = 0. The reason for doing this is twofold.
First, it makes the geometric picture more clear and tractable, in that the
equations of motion for the nonholonomic mechanical system can then be seen
as the geodesic equations of an affine connection. Secondly, the extention to
systems with a nontrivial potential energy function is rather straightforward
but, at least for those aspects of nonholonomic dynamics that are of interest
here, it does not really tell us anything new.

From the discussion in Section 3.4.2 we know that the equations of motion
of the system can be written as

∇ċ(t)ċ(t) = 0, ċ(0) ∈ D,

where ∇ is the nonholonomic affine connection. The following is a complemen-
tary view to the reduction process of generalized (or non-Abelian) Chaplygin
systems as described in [120].

Let us define a metric g̃ on the base manifold Q/G as follows

g̃x(ux, vx) = gq(Uq, Vq), x ∈ Q/G, ux, vx ∈ Tx(Q/G) ,

where q ∈ π−1(x) and Uq, Vq are horizontal vectors which project under π
onto ux and vx, respectively. From the G-invariance of g we deduce that the
right-hand side is independent of the chosen point q in the fiber π−1(x) and,
hence, g̃ is well defined.

Proposition 5.1.1. We have that for all X,Y ∈ X(Q/G) and ξ ∈ g

LξQ
(∇XhY h) = 0 .

Proof. Since ξQ is a Killing vector field, it follows from Proposition VI. 2.2
in [119] that

LξQ
∇g
XhY

h = ∇g
[ξQ,Xh]Y

h + ∇g
Xh [ξQ, Y h] = 0 , (5.1)



5.1 Generalized Chaplygin systems 105

because Y h and Xh are projectable. Therefore, we only need to prove that

LξQ

[(∇g
XhQ)Y h

]
= 0 .

This condition is equivalent to

LξQ

[Q(∇g
XhY

h)
]

= 0 . (5.2)

But, as D and D⊥ are G-invariant, we have that LξQ
Q = 0. This, together

with (5.1), imply (5.2). ��

Now, we define an affine connection on Q/G as follows: for X,Y ∈
X(Q/G), put

∇̃XY = π∗(∇XhY h) .

This is well-defined since, by Proposition 5.1.1, the vector field ∇XhY h is
projectable, and one easily verifies that ∇̃ satisfies the properties of an affine
connection. Then, we obtain the following important result.

Proposition 5.1.2 ([120]). The geodesics of ∇, with initial condition in D,
project onto the geodesics of ∇̃.

Proof. Key fact for the proof is that D is geodesically invariant with respect
to the nonholonomic affine connection ∇. ��

Consequently, we have found that the equations of motion of the given
generalized Chaplygin system reduce to the geodesic equations of the induced
affine connection ∇̃ on Q/G.

Consider the following (0,3)-tensor field on Q,

Kq(Uq, Vq,Wq) = gq(hγUq, (Ωγ(Vq,Wq))Q(q)) ,

where hγ is the horizontal projector and Ωγ is the curvature of the connection
γ. Observe that K is horizontal, i.e. it vanishes if one of its arguments is a
vertical vector, and it is skew-symmetric in its last two arguments. Moreover,
one can see that

Kgq(TΨg(Uq), TΨg(Vq), TΨg(Wq)) = Kq(Uq, Vq,Wq) ,

for all g ∈ G and q ∈ Q. Consequently, K induces a (0,3)-tensor on the base
manifold Q/G

K̃x(ux, vx, wx) = Kq(Uq, Vq,Wq) ,



106 5 Chaplygin systems

where π(q) = x and Uq, Vq,Wq are tangent vectors in q projecting onto
ux, vx, wx, respectively. K (resp. K̃) is called the metric connection tensor
on Q (resp. Q/G).

In [120], it was shown that the application of the so-called Hamel’s ap-
proach to Mechanics, leads to two additional affine connections on Q/G,
whose geodesics are also solutions of the reduced nonholonomic problem.
These connections are given by

(∇H
1 )XY = ∇g̃

XY + B(X,Y ) , (∇H
2 )XY = ∇g̃

XY + B(Y,X) , (5.3)

where B is the (1,2)-tensor field defined by β(B(X,Y )) = K̃(X,Y, �g̃β), for
any β ∈ Λ1(Q/G), X, Y ∈ X(Q/G). So, B represents the contorsion of ∇H

1 .

The following explicit formula for the connection ∇̃ was then derived
in [120] (up to a minor misprint),

∇̃XY = ∇g̃
XY +

1
2

(B(X,Y ) + B(Y,X) − C(X,Y )) ,

where C is the (1,2)-tensor field implicitly defined by

β(C(X,Y )) = K(�g̃β,X, Y ) ,

for arbitrary β ∈ Λ1(Q/G), X, Y ∈ X(Q/G). As noted in [120], the average
of Hamel’s connections, i.e. ∇H/2 = 1

2 (∇H
1 + ∇H

2 ), in general differs from ∇̃,
because of the skew-symmetric term C(X,Y ).

It is interesting to observe that from Proposition 3.4.2 one can deduce

∇̃g̃ = 0 ,

that is, ∇̃ is a metric connection. From Proposition 2.5.3 and the definition of
B, it is readily seen that ∇H

1 is also a metric connection. In general, however,
the connections ∇H

2 and ∇H/2 will not be metric. In fact, it is straightforward
to prove the following result.

Proposition 5.1.3. The following properties are equivalent,

1. ∇H
2 is metric;

2. ∇H/2 is metric;

3. the tensor field B is skew-symmetric;

4. ∇H/2 is the Levi-Civita connection of g̃.

Later we will see that these properties are also equivalent to the vanishing
of the 1-form αX and, hence, to the Hamiltonian nature of the reduced system
(cf. Corollary 5.3.2).
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The torsion of ∇̃ is given by T̃ (X,Y ) = π∗ T (Xh, Y h), with T the torsion
of ∇. Then, we see from the above that the metric connection ∇̃ is the Levi-
Civita connection associated with g̃ iff the torsion of ∇ takes values in the
vertical tangent bundle to π for each pair of vectors in D.

Finally, the following result shows that equality of ∇̃ and ∇H/2 is a rather
strong condition.

Proposition 5.1.4.

∇̃ = ∇H/2 ⇐⇒ ∇̃ = ∇H/2 = ∇g̃ .

Proof. If ∇̃ = ∇H/2, then ∇H/2 is metric. By Proposition 5.1.3, this implies
that ∇H/2 coincides with ∇g̃. The reverse implication is trivial. ��

5.1.2 Reconstruction

In view of Proposition 5.1.2 above, we see that, in the present setting, the re-
construction of the solution curves in Q of the given constrained system, from
those of the reduced system on Q/G, consists of a horizontal lift operation
with respect to the connection γ. We state next this simple fact,

Proposition 5.1.5. Let c̃(t) be a geodesic of ∇̃ and choose c(0) ∈ Q such
that π(c(0)) = c̃(0). Then, the geodesic starting at c(0), with initial velocity
˙̃c(0) ∈ Dc(0), is precisely the horizontal lift of c̃(t) with respect to the principal
connection γ.

5.2 Two motivating examples

I N this section we present two examples of Chaplygin systems. We for-
mulate each of them under the symplectic and the affine connection ap-

proaches. That will serve us as a motivation for the study in Section 5.3 of
the relation between both of them.

5.2.1 Mobile robot with fixed orientation

Consider the motion of a mobile robot whose body maintains a fixed orien-
tation with respect to its environment [117] (see Figure 5.1). One such robot
is the B12 Mobile Robot Base, manufactured by Real World Interface, Inc.
The robot has three wheels, with radius R, which turn simultaneously about
independent axes, and perform a rolling without sliding over a horizontal
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Fig. 5.1. A mobile robot with fixed orientation

floor. Let (x, y) ∈ R2 denote the position of the center of mass of the robot
(in a Cartesian reference frame), θ ∈ S1 the steering angle of the wheels and
ψ ∈ S1 the rotation angle of the wheels in their rolling motion over the floor.
The configuration space can then be modeled by Q = S1 × S1 × R2.

The Lagrangian function L is the kinetic energy function corresponding
to the metric g = mdx ⊗ dx + mdy ⊗ dy + Jdθ ⊗ dθ + 3Jwdψ ⊗ dψ, where m
is the mass of the robot, J its moment of inertia and Jw the axial moment
of inertia of each wheel. The constraints are induced by the conditions that
the wheels roll without sliding, in the direction in which they “point”, and
that the instantaneous contact points of the wheels with the floor have no
velocity component orthogonal to that direction (cf. [117])

ẋ sin θ − ẏ cos θ = 0 , ẋ cos θ + ẏ sin θ − Rψ̇ = 0 . (5.4)

The constraint distribution D is then spanned by{
∂

∂θ
,

∂

∂ψ
+ R

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)}
.

If we consider the Abelian action of G = R2 on Q by translations

Ψ : G × Q −→ Q
((a, b), (θ, ψ, x, y)) �−→ (θ, ψ, a + x, b + y) ,

we see that the constraint distribution D can be interpreted as the hori-
zontal subspace of the principal connection γ = (dx − R cos θdψ)e1 + (dy −
R sin θdψ)e2, where {e1, e2} is the canonical basis of R2 (identified with the
Lie algebra of G).

The metric induced on Q/G here becomes
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g̃ = Jdθ ⊗ dθ + (3Jω + mR2)dψ ⊗ dψ .

The reduced Lagrangian L∗ is the kinetic energy function corresponding to
the metric g̃. Moreover, one easily verifies that the gyroscopic 1-form αX
identically vanishes and, hence, the symplectic reduction (4.11) yields

iXωL∗ = dEL∗ ,

i.e. the reduced system is an unconstrained, purely Lagrangian system.

On the other hand, one can easily check that, in this example, the metric
connection tensor K̃ also vanishes. Consequently, with the notations of the
previous section, ∇̃ = ∇H/2 and by Proposition 5.1.4 we then have that
∇̃ = ∇H/2 = ∇g̃.

5.2.2 Two-wheeled planar mobile robot

Consider the motion of a two-wheeled planar mobile robot (or “two-wheeled
carriage”) which is able to move in the direction in which it points and,
in addition, can spin about a vertical axis [117, 120, 137, 188]. Let P be
the intersection point of the horizontal symmetry axis of the robot and the
horizontal line connecting the centers of the two wheels. The position and
orientation of the robot is determined, with respect to a fixed Cartesian
reference frame by (x, y, θ) ∈ SE(2), where θ ∈ S1 is the heading angle
and the coordinates (x, y) ∈ R2 locate the point P (see Figure 5.2). Let
ψ1, ψ2 ∈ S1 denote the rotation angles of the wheels which are assumed
to be controlled independently and roll without slipping on the floor. The
configuration space of this system is Q = S1 × S1 × SE(2).

Fig. 5.2. A two-wheeled planar mobile robot

The Lagrangian function is the kinetic energy corresponding to the metric
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g = mdx ⊗ dx + mdy ⊗ dy + m0l cos θ(dy ⊗ dθ + dθ ⊗ dy)
− m0l sin θ(dx ⊗ dθ + dθ ⊗ dx) + Jdθ ⊗ dθ + J2dψ1 ⊗ dψ1 + J2dψ2 ⊗ dψ2 ,

where m = m0 + 2m1, m0 is the mass of the robot without the wheels, J
its moment of inertia with respect to the vertical axis, m1 the mass of each
wheel, Jw the axial moments of inertia of the wheels, and l the distance
between the center of mass C of the robot and the point P .

The constraints, induced by the conditions that there is no lateral sliding
of the robot and that the motion of the wheels also consists of a rolling
without sliding, are

ẋ sin θ − ẏ cos θ = 0 ,

ẋ cos θ + ẏ sin θ + cθ̇ + Rψ̇1 = 0 ,

ẋ cos θ + ẏ sin θ − cθ̇ + Rψ̇2 = 0 ,

where R is the radius of the wheels and 2c the lateral length of the robot.
The constraint distribution D is then spanned by{

∂

∂ψ1
− R

2

(
cos θ

∂

∂x
+ sin θ

∂

∂y
+

1
c

∂

∂θ

)
,

∂

∂ψ2
− R

2

(
cos θ

∂

∂x
+ sin θ

∂

∂y
− 1

c

∂

∂θ

)}
.

If we consider the action of G = SE(2) on Q, Ψ : G×Q −→ Q defined by

(a, b, α), (ψ1, ψ2, x, y, θ)) �→
(ψ1, ψ2, a + x cosα − y sinα, b + x sinα + y cosα, α + θ) ,

we see that the constraint distribution D can be interpreted as the horizontal
subspace of the principal connection

γ =
(
dx +

R

2
cos θdψ1 +

R

2
cos θdψ2 + y(dθ +

R

2c
dψ1 − R

2c
dψ2)

)
e1

+
(
dy +

R

2
sin θdψ1 +

R

2
sin θdψ2 − x(dθ +

R

2c
dψ1 − R

2c
dψ2)

)
e2

+ (dθ +
R

2c
dψ1 − R

2c
dψ2)e3 ,

where {e1, e2, e3} is the canonical basis of the Lie algebra of G, with associated
fundamental vector fields

(e1)Q =
∂

∂x
, (e2)Q =

∂

∂y
, (e3)Q =

∂

∂θ
− y

∂

∂x
+ x

∂

∂y
.
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The curvature of γ is

Ω =
R2

2c
(sin θ e1 − cos θ e2)dψ1 ∧ dψ2 .

The induced metric on Q/G is given by

g̃ = (J2 + m
R2

4
+ J

R2

4c2
)dψ1 ⊗ dψ1 + (J2 + m

R2

4
+ J

R2

4c2
)dψ2 ⊗ dψ2

+ (m
R2

4
− J

R2

4c2
)(dψ1 ⊗ dψ2 + dψ2 ⊗ dψ1) .

The Lagrangian L∗ is the kinetic energy function induced by g̃. The gyro-
scopic 1-form αX here becomes

αX =
m0lR

3

4c2
(ψ̇2 − ψ̇1)(ψ̇1dψ2 − ψ̇2dψ1) .

Then, the symplectic reduction (4.11) yields

iXωL∗ = dEL∗ + αX .

On the other hand, the metric connection tensor K̃ is given by

K̃ =
m0lR

3

4c2
(dψ1 ⊗ dψ1 ∧ dψ2 − dψ2 ⊗ dψ1 ∧ dψ2) .

It is easily seen that, in this case, the tensor field B is not skew-symmetric
and so, by Proposition 5.1.3, ∇H/2 �= ∇g̃. In addition, the Christoffel symbols
of the metric connection ∇̃ are

Γψ1
ψ1ψ1

= K1 ,

Γψ1
ψ1ψ2

= −K2 ,

Γψ1
ψ2ψ1

= −K1 ,

Γψ1
ψ2ψ2

= K2 ,

Γψ2
ψ1ψ1

= K2 ,

Γψ2
ψ1ψ2

= −K1 ,

Γψ2
ψ2ψ1

= −K2 ,

Γψ2
ψ2ψ2

= K1 ,

where

K1 = m0R
5l

J2 − mc2

4c2(2Jc2 + j2R2)(2J + mc2)
,

K2 = R3l
4Jc2 + (J2 + mc2)R2m0

4c2(2Jc2 + j2R2)(2J + mc2)
.

Clearly, the torsion T̃ does not vanish, and so ∇̃ �= ∇g̃.
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5.3 Relation between both approaches

T HE above examples show us the following intriguing fact. In the case
of the mobile robot with fixed orientation, the 1-form αX identically

vanishes, and thus the reduced problem has no external gyroscopic force
in its unconstrained symplectic formulation. Consequently, since there is no
potential, the solutions of the reduced system are geodesics of the Levi-Civita
connection ∇g̃. Indeed, we verified that ∇̃ = ∇H/2 = ∇g̃. However, in the case
of the two-wheeled mobile robot we obtained αX �= 0 and ∇̃ �= ∇g̃ �= ∇H/2.
Apparently, there exists a relation between the properties of the contorsions
of the connections considered in Section 5.1.1 and the vanishing (or not) of
the gyroscopic 1-form.

Using the definition of αX in (4.6), one can check that the following
relation holds [49, 51]: for any Y ∈ X(D),

αX(Y ) = vΥ(Y )(θL(X)) + θL(R(X,Y )) + θL(hΥ[X,vΥ(Y )]) ,

where R is the tensor field of type (1,2) on D given by

R =
1
2
[hΥ,hΥ] ,

with [·, ·] denoting the Nijenhuis bracket of type (1,1)-tensor fields. The rela-
tion between R and ΩΥ , the curvature tensor of the principal connection Υ ,
is given by R(U, V )(v) = (ΩΥ (Uv, Vv))TQ(v) for any U, V ∈ X(D) and v ∈ D.

In particular, if we take a horizontal vector field Y ∈ U , we deduce from
the above that αX(Y ) = θL(R(X,Y )). Herewith, the action of the gyroscopic
1-form αX on a vector field Z ∈ X(T (Q/G)), evaluated at a point wq ∈
T (Q/G)(∼= D), becomes

αX(Z)(wq) = αX(Zh)(vq) = (θL)vq
(R(X,Zh)(vq))

= (θL)vq

(
(ΩΥ (Xvq , Z

h
vq

))TQ(vq)
)

= (θL)vq

(
(Ωγ(τQ∗Xvq , τQ∗Z

h
vq

))TQ(vq)
)

,

for an arbitrary vq ∈ D such that ρ(vq) = wq, and where the last equality
has been derived using (4.10). In these expressions, Zh is the horizontal lift
of Z with respect to Υ . Recalling that the Poincaré-Cartan 1-form θL and
the Legendre mapping (induced by the given Lagrangian) FL : TQ −→ T ∗Q
are related by (θL)vq

(u) = 〈FL(vq), τQ∗(u)〉, for any u ∈ Tvq
TQ, and taking

into account that X is a SODE, we further obtain

αX(Z)(wq) = 〈FL(vq), (Ωγ(τQ∗Xvq , τQ∗Z
h
vq

))Q(q)〉
= gq

(
vq, (Ωγ(vq, τQ∗Z

h
vq

))Q(q)
)

= gq
(
vq, (Ωγ(vq, (τQ/G∗Zwq )

h
q ))Q(q)

)
. (5.5)
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Note that in the last expression, the horizontal lift of τQ/G∗Zwq is the one
with respect to γ.

An important observation is that the expression (5.5) immediately shows
that the gyroscopic 1-form αX is semi-basic with respect to the canonical
fibration τQ/G : T (Q/G) −→ Q/G. Indeed, assume (τQ/G)∗ ◦ Z = 0, then it
readily follows that αX(Z) = 0.

Elaborating (5.5) a bit further, using the metric connection tensor K̃ and
the contorsion B introduced in Section 5.1.1, we find

αX(Z)(wq) = gq
(
vq, Ω(vq, (τQ/G∗Zwq )

h
q ))Q(q)

)
= K̃q(wq, wq, τQ/G∗Zwq

) = g̃q(B(wq, wq), τQ/G∗Zwq
) .

This proves the next result, which was already implicit in the work of
Koiller [120].

Proposition 5.3.1. An explicit relation between the gyroscopic 1-form and
the contorsion tensor field B, defined in Section 5.1.1, is given by

(αX)wq
(u) = g̃q(B(wq, wq), τQ/G∗u) ,

for all u ∈ TwqT (Q/G)), wq ∈ T (Q/G).

From this we can deduce, taking into account Proposition 5.1.3,

Corollary 5.3.2. The following statements are equivalent,

1. αX vanishes identically;

2. B is skew-symmetric;

3. ∇H/2 = ∇g̃.

Remark 5.3.3. One can think of simple examples in which B is skew-symmetric
but nonzero. Consequently, if αX vanishes, this does not imply ∇̃ = ∇g̃, al-
though in such a case both connections do have the same geodesics (recall
the discussion in Section 2.5.1).

By means of Proposition 5.3.1, one can also recover the gyroscopic char-
acter of αX , established already in Proposition 4.2.7. For that purpose, let
us define the following 2-form on T (Q/G),

Ξ(Y,Z)(wq) = g̃q(B(wq, τQ/G∗Ywq
), τQ/G∗Zwq

) . (5.6)

One readily verifies that Ξ is indeed bilinear and by Proposition 2.5.3,
Ξ(Y, Y ) = 0. It is then easy to check that
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αX = iXΞ .

In local coordinates qa (a = 1, . . . , n − k) on Q/G, we have that

Ξ =
∑
a<b

q̇eBc
eag̃bcdq

a ∧ dqb , αX =
∑
a,e,c

q̇aq̇eBc
eag̃bcdq

b . (5.7)

A careful calculation, very similar to the one performed to prove Proposi-
tion 5.3.1, reveals that for generalized Chaplygin systems of mechanical type,
the 2-form Σ of Proposition 4.2.7 and the above 2-form Ξ coincide.

5.4 Integrability aspects and the existence of an
invariant measure

5.4.1 Koiller’s question

In [120], the author wonders whether there might exist an invariant measure
for the reduced equations of a generalized Chaplygin system. In the following,
we shall deal with this problem.

The existence of a measure which is invariant under the flow of a given
dynamical system is a strong property. Indeed, using an integrating factor it
is possible to derive from it (locally) an integral of the motion. This fact plays
an important role in discussions concerning the integrability of the system
under consideration, as illustrated by the following theorem.

Theorem 5.4.1 ([9]). Suppose that the system ẋ = X(x), x ∈ N , with N an
n-dimensional smooth manifold, admits an invariant measure and has n − 2
first integrals F1, . . . , Fn−2. Suppose also that F1, . . . , Fn−2 are independent
on the invariant set Nc = {x ∈ N : Fs(x) = cs, 1 ≤ s ≤ n − 2}. Then

– the solutions of the differential equation lying on Nc can be found by quadra-
tures.

Moreover, if Lc is a compact connected component of the level set Nc and if
X does not vanish on Lc, then

– Lc is a smooth manifold diffeomorphic to a two-torus;

– one can find angular coordinates ϕ1, ϕ2 mod (2π) on Lc in terms of which
the differential equations take the simple form

ϕ̇1 =
ω1

Φ(ϕ1, ϕ2)
, ϕ̇2 =

ω2

Φ(ϕ1, ϕ2)
,

where ω1, ω2 are constant and Φ is a smooth positive function which is
2π-periodic in ϕ1, ϕ2.
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By the Riesz representation theorem, we know that each volume form on
an orientable manifold induces a unique measure on the Borel σ-algebra [1].
Therefore, with a view on tackling the integrability problem of generalized
Chaplygin systems, it is worth looking for invariant volume forms under the
flow of the reduced dynamics X. This is what we intend to do in the sequel.

In this section, we deal with natural Chaplygin systems which may have
non-trivial potential energy V . The reduced equations of motion are (cf.
equation (4.11))

iXωL∗ = dEL∗ + αX , (5.8)

where L∗ = 1
2 g̃ − Ṽ , with g̃ and Ṽ the metric and the potential function on

Q/G induced by, respectively, g and V . Remember that the energy EL∗ is a
constant of the motion. The local expression for the reduced dynamics takes
the form (cf. (4.13))

X = q̇a
∂

∂qa
−
(
g̃ab(αb +

∂Ṽ

∂qb
) + q̇bq̇cΓ̃ abc

)
∂

∂q̇a
,

where Γ̃ abc are the Christoffel symbols of the Levi-Civita connection ∇g̃.

The gyroscopic systems usually encountered in the Mechanics and Control
literature [252, 258] differ in a crucial way from the ones we obtain through the
reduction of a generalized Chaplygin system. In fact, the common situation
in Mechanics is that of a system, with configuration space P , described by
an equation of the form

iΓωL = dEL + α ,

where L : TP −→ R is a (regular) Lagrangian and where the gyroscopic
force is represented by a 1-form α = iΓ (τ∗

PΠ), with Π a closed 2-form on P .
These systems are then Hamiltonian with respect to the symplectic 2-form
ω = ωL − τ∗

PΠ, and thus they admit an invariant measure, determined by
the volume form ωn = ωn

L
.

In some sense, our reduced system (5.8) exhibits the opposite behavior.
Indeed, the 2-form Ξ, defined by (5.6), is semi-basic but in general it is not
basic, i.e. it is not the pull-back of a 2-form on the base Q/G. This can
be readily deduced from its local expression (5.7). Moreover, the following
property is easily proved.

Proposition 5.4.2. The 2-form Ξ is closed if and only if it is identically
zero.

Note, in passing, that a similar property also applies to the gyroscopic
1-form αX . The semi-basic character of Ξ ensures, however, that the 2-form
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ωL∗ − Ξ is still nondegenerate and, consequently, we have that the equa-
tion (5.8) can be rewritten in the form

iXω = dEL∗ , (5.9)

with ω = ωL∗ − Ξ an almost symplectic form (i.e. a nondegenerate, but not
necessarily closed 2-form).

In [226], S.V. Stanchenko has studied Chaplygin systems of mechanical
type with an Abelian Lie group in terms of differential forms, in a way which
shows many links to the symplectic approach described in Section 4.2.1. In
our setting, his results can be generalized to the non-Abelian case for any
kind of generalized Chaplygin system.

Assume, following [226], that there exists a function F ∈ C∞(T (Q/G))
such that

dF ∧ θL∗ = Ξ . (5.10)

Putting N = expF , we have that

d(Nω) = d(NωL∗ − NΞ) = d(NωL∗ − dN ∧ θL∗) = 0 .

Since (5.9) can still be written as

iX/N (Nω) = dEL∗ ,

we deduce that LX/N (Nω) = 0. Consequently,

0 = LX/N (Nω)n = LXNn−1ωn ,

and we see that Nn−1ωn is an invariant volume form. This proves the follow-
ing result.

Theorem 5.4.3 ([226]). Condition (5.10) is sufficient for the existence of
an invariant measure for the reduced Chaplygin equations (5.9).

Remark 5.4.4. Stanchenko observes that if F satisfies (5.10), the semi-basic
character of both θL∗ and Ξ imply that F is necessarily the pullback of a
function on Q/G.

It turns out that condition (5.10) can be relaxed to some extent: it suffices
to require the almost symplectic 2-form ω to be globally conformal symplectic,
that is, that there exists a function F ∈ C∞(T (Q/G)) such that

dF ∧ ω = −dω . (5.11)



5.4 Invariant measure 117

Theorem 5.4.3 still holds in this case, with (5.11) replacing (5.10). The pre-
vious remark also remains valid: the function F is necessarily the pullback of
a function on Q/G. Note that (5.10) obviously implies (5.11).

However, even the weaker condition (5.11) is not necessary in general for
the existence of an invariant volume form on T (Q/G). To derive a necessary
condition, let us suppose that µ is an invariant volume form for the dynamics
X on T (Q/G). We then necessarily have that µ = k ωn, for some nowhere
vanishing function k ∈ C∞(T (Q/G)). Restricting ourselves to a connected
component of Q/G if need be, we may always assume k is strictly positive.
It follows that

0 = LXµ = X(k)ωn + k LXωn

= X(k)ωn + nk LXω ∧ ωn−1 = X(k)ωn − nk iXdΞ ∧ ωn−1 .

The 2n-form iXdΞ ∧ ωn−1 determines a function h ∈ C∞(T (Q/G)) by

iXdΞ ∧ ωn−1 =
h

n
ωn . (5.12)

Therefore, we have

X(k) = kh or, equivalently, X(ln k) = h . (5.13)

This essentially yields the same characterization as the one derived in [226].
Now, conversely, assume there exists a function k satisfying (5.13), with h
defined by (5.12). Going through the above computations in reverse order
then shows that the 2n-form k ωn is an invariant volume form of X. We
may therefore conclude that the existence of a globally defined function k
for which (5.13) holds is not only a necessary but also a sufficient condition
for the existence of an invariant volume form. It is interesting to note that
in [226], Stanchenko has proved that in case the reduced Lagrangian is of
kinetic energy type, L∗ = 1

2 g̃, and if there exists a solution k of (5.13) which
is basic, i.e. which is the pullback of a function on the base space Q/G, then
the volume form µ = k ωn remains an invariant of the reduced dynamics if
a potential energy function Ṽ ∈ C∞(Q/G) is included in the Lagrangian L∗

(coming from a G-invariant potential added to the given Chaplygin system).

Obviously, however, equation (5.13) is not a very handy criterium to deal
with in practice. We will now see that, at least for a subclass of general-
ized Chaplygin systems, it may be replaced by a more easily manageable
condition.

From (5.12), we can deduce a local expression for h. After some compu-
tations, we get

h =
∑
a,b

g̃ab
∂αb
∂q̇a

,
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and, using (5.7), this further becomes

h =
∑
f,b

g̃fbq̇eg̃bc(Bc
ef + Bc

fe) =
∑
c,e

q̇e(Bc
ec + Bc

ce) .

Note that S∗dh is the pullback of a basic 1-form, i.e. S∗dh = τ∗
Q/Gβ, where

the local expression for β reads

β = he(q)dqe =
∑
c

(Bc
ec + Bc

ce)dq
e ,

with he = ∂h/∂q̇e. Let us assume now that there exists a basic function k
for which (5.13) holds. We then have that S∗(dX(ln k)) = d(ln k). Therefore,
taking the differential of both hand-sides of (5.13) and applying S∗ to the
resulting equality, we obtain

d(ln k) = β ,

or, in local coordinates,

∂(ln k)
∂qe

= he(q) =
∑
c

(Bc
ec + Bc

ce) , e = 1, . . . , n .

We thus see that, if (5.13) admits a solution k which is basic, then the 1-form
β is exact.

It turns out that, for systems for which Ṽ = 0 (i.e. L∗ is a pure kinetic
energy Lagrangian), the previous result even has a more definitive character.
Indeed, let Ṽ = 0 and suppose there exists a function k ∈ C∞(T (Q/G)) (not
necessarily basic) satisfying (5.13). Then, we have that

S∗dX(ln k) = S∗dh .

In local coordinates, this becomes

∂X(ln k)
∂q̇e

= he(q) , e = 1, . . . , n .

But X(ln k) = q̇a
∂(ln k)
∂qa

+ X
a ∂(ln k)

∂q̇a
, where X

a
= −(g̃abαb + q̇bq̇cΓ̃ abc), and

so we have

∂X(ln k)
∂q̇e

=
∂(ln k)
∂qe

+ q̇a
∂2(ln k)
∂qa∂q̇e

+
∂X

a

∂q̇e
∂(ln k)
∂q̇a

+ X
a ∂2(ln k)
∂q̇a∂q̇e

.

In points 0q of the zero section of T (Q/G) this reduces to

∂X(ln k)
∂q̇e

∣∣∣
0q

=
∂(ln k)
∂qe

∣∣∣
0q

.



5.4 Invariant measure 119

If we now define the basic function k̃ = k ◦ s, where s : Q/G → T (Q/G), q �→
(q, 0) determines the zero section, we derive from the above that

∂(ln k̃)
∂qe

(q) =
∂(ln k)
∂qe

(q, 0) = he(q) , e = 1, . . . , n ,

and, hence, it follows again that the 1-form β is exact.

Conversely, if the 1-form β is exact, say β = df for some f ∈ C∞(Q/G),
and putting k = exp(τQ/G∗f), one easily verifies that k satisfies (5.13). This
obviously also holds in the presence of a potential (i.e. if Ṽ �= 0).

Summarizing the above, we have proved the following interesting result.

Theorem 5.4.5. For a generalized Chaplygin system with a Lagrangian of
kinetic energy type, i.e. L = 1

2g, there exists an invariant volume form for
the reduced dynamics X on T (Q/G) iff the basic 1-form β, defined by S∗dh =
τ∗
Q/Gβ (with h given by (5.12)), is exact. The ‘if ’ part also holds if L is of

the form L = 1
2g − V , with V a G-invariant potential.

Therefore, if we find a particular example of a system with a kinetic
energy type Lagrangian for which β is not exact, we shall have proved that
the answer to Koiller’s question about the existence of an invariant volume
form for all generalized Chaplygin systems, is negative. In particular, for such
a counter example it suffices to show that the corresponding β is not closed.

5.4.2 A counter example

Let us consider the following modified version of the classical example of
the nonholonomic free particle. Let a particle be moving in space, Q = R3,
subject to the nonholonomic constraint

φ = ż − yxẋ = 0 .

The Lagrangian function is the kinetic energy corresponding to the stan-
dard metric g = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz. Therefore,

L =
1
2
(
ẋ2 + ẏ2 + ż2) .

The constraint submanifold is defined by the distribution

D = span
{

∂

∂x
+ yx

∂

∂z
,
∂

∂y

}
.
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Consider the Lie group G = R with its trivial action by translations on Q,

Φ : G × Q −→ Q
(s, (x, y, z)) �−→ (x, y, z + s) .

Note that D is the horizontal subspace of a connection γ on the principal fiber
bundle Q −→ Q/G, where γ = dz − yxdx. Therefore, this system belongs to
the class of generalized Chaplygin systems.

The curvature of γ is given by

Ωγ = xdx ∧ dy .

The induced metric g̃ on Q/G ∼= R2 is

g̃ = (1 + x2y2)dx ⊗ dx + dy ⊗ dy .

The metric connection tensor K̃ is determined by

K̃(
∂

∂x
,

∂

∂x
,
∂

∂y
) = x2y , K̃(

∂

∂y
,

∂

∂x
,
∂

∂y
) = 0 .

Then, the contorsion of the affine connection ∇H
1 here reads

B = x2ydx ⊗ dx ⊗ ∂

∂y
− x2y

1 + x2y2 dx ⊗ dy ⊗ ∂

∂x
.

Finally, the 1-form β associated with the reduced Chaplygin system is

β = − x2y

1 + x2y2 dy ,

which is clearly not closed. Hence, according to Theorem 5.4.5, there is no
invariant volume form for the reduced dynamics.

Note that in this example the distribution D has ‘length’ 1 at all points of
R3 not belonging to the plane x = 0, since D + [D,D] spans the full tangent
space at all points for which x �= 0.

Remark 5.4.6. In the example of the nonholonomic free particle (cf. Sec-
tion 4.2.1), the constraint distribution does have length 1 everywhere. After
performing the appropriate computations, we obtain

β = − y

1 + y2 dy ,

which is clearly exact: β = df , with f =
1
2
ln
(

1
1 + y2

)
. Then, k =

1√
1 + y2

and the invariant measure defined by k ωn leads, using Euler’s integrating
factor technique, to the constant of the motion

ϕ = ẋ
√

1 + y2

which was also obtained by a different method in Section 4.4.1.
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I N this chapter, we deal with systems subject to nonholonomic linear con-
straints that can be “redundant” at some points. Otherwise said, we treat

systems for which, depending on the specific configuration, the set of con-
straints to be satisfied are different, but in such a way that they all are
“glued” in a smooth manner. This precisely corresponds to the situation in
which the constraints are given by a generalized differentiable codistribution
D on Q, as defined in Chapter 2. There has been other works, among which
we mention [65], which have addressed similar situations, but they have been
focused mainly on solving the trajectory planning problem. Here, instead, we
pay attention to the problem of determining what occurs to the system when
it changes from one set of constraints to another. To be exact, we identify
the points in the configuration space where a discrete dynamics, instead of
the continuous one, acts on the system and we describe its behavior. Recent
developments in this line include [87, 199, 251].

The chapter is organized as follows. In Section 6.1 we introduce the class
of systems under consideration. Section 6.2 briefly reviews the classical treat-
ment on impulsive forces, together with some modern results. This will be
helpful in the subsequent discussion. Section 6.3 contains the main results of
the chapter. We show that the points in which the discrete dynamics governs
the motion of the system precisely correspond to the singular points, that is,
those where the constraints change. We discuss the behavior of the discrete
dynamics and obtain a jump rule to compute the changes in momentum.
Finally, in Section 6.4 we present two examples to illustrate the theory.

6.1 Mechanical systems subject to constraints of
variable rank

LET us consider a mechanical system with Lagrangian function L : TQ →
R, L(v) = 1

2g(v, v) − (V ◦ τQ)(v), where g is a Riemannian metric on Q
and V is a function on the configuration space Q (the potential). Suppose, in
addition, that the system is subject to a set of constraints given by a gener-
alized differentiable codistribution D on Q, i.e. we assume that πQ(D) = Q.

J. Cortés Monforte: LNM 1793, pp. 121–140, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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The motions of the system are forced to take place satisfying the constraints
imposed by D.

We know from Section 2.2 that the codistribution D induces a decompo-
sition of Q into regular and singular points. We write

Q = R ∪ S .

Let us fix Rc, a connected component of R. We can consider the restriction
of the codistribution to Rc, Dc = D|Rc

: Rc ⊂ Q −→ T ∗Q. Obviously,
we have that Dc is a regular codistribution, that is, it has constant rank.
Then, let us denote by Do

c : Rc −→ TQ the annihilator of Dc. Now, we can
consider the dynamical problem with regular Lagrangian L, subject to the
regular codistribution Do

c and apply the theory for nonholonomic Lagrangian
systems exposed in the preceding chapters.

Consequently, our problem is solved on each connected component of R.
The situation changes radically if the motion reaches a singular point. The
rank of the constraint codistribution can vary suddenly and the classical
derivation of the equations of motion for nonholonomic Lagrangian systems
is no longer valid. Our objective is to explore the response of the system when
such a situation arises.

Remark 6.1.1. We note that the notion of singular point considered here is
different from the one considered in [65]. In that paper, the authors treat
the case of generalized constraints given by a globally defined set of 1-forms,
ω1, . . . , ωl. Then, they consider the l-form

Ω = ω1 ∧ · · · ∧ ωl .

The singular set consists of the points for which Ω(q) = 0, that is, the points,
q, such that {ω1(q), . . . , ωl(q)} are linearly dependent. Applying this notion
to the example of a generalized codistribution we gave in Section 2.2 (Exam-
ple 2.2.2), Q = R2, D(x,y) = span{φ(x)(dx − dy)}, with

φ(x) =
{

0 x ≤ 0 ,

e− 1
x2 x > 0 ,

the set of singular points would be the half-plane {x ≤ 0}.

It will turn out to be that the behavior of the constraint forces acting on
mechanical systems subject to generalized constraints has many resemblances
with the impulsive case. In order to make the discussion more clear, we review
in the following section the classical treatment of impulsive forces and then
turn our attention to the case of generalized constraints.
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6.2 Impulsive forces

IN this section, we present a review of the classical treatment of mechanical
systems with impulsive forces [6, 108, 188, 198, 207, 243]. This field has

traditionally been studied by a rich variety of methods (analytical, numeri-
cal and experimental), being a meeting point among physicists, mechanical
engineers and mathematicians (see [39] for an overview on the subject). Re-
cently, such systems have been brought into the context of Geometric Me-
chanics [100, 101, 102, 130]. We will give here a brief review of the classical
approach. These ideas will be useful in understanding the behavior of the
constraint forces acting on mechanical systems subject to generalized con-
straints. Both situations are not the same, but have many points in common,
as we will see in the following.

Consider a system of n particles in R3 such that the particle r has mass
mr. Introducing coordinates (q3r−2, q3r−1, q3r) for the particle r, we denote
by Q the configuration manifold R3n and by Fr = (F 3r−2, F 3r−1, F 3r) the
resultant of all forces acting on the rth particle.

The motion of the particle r in an interval [t, t′] is determined by the
system of integral equations

mr(q̇k(t′) − q̇k(t)) =
∫ t′

t

F k(τ)dτ , (6.1)

where 3r−2 ≤ k ≤ 3r and k is an integer. The integrals of the right-hand side
are the components of the impulse of the force Fr. Equation (6.1) establishes
the relation between the impulse and the momentum change, i.e. ‘impulse
is equal to momentum change’. Equation (6.1) is a generalized writing of
Newton’s second law, stated in integral form in order to allow us to consider
the case of velocities with finite jump discontinuities. This is precisely the
case of impulsive forces, which generate a finite non-zero impulse at some
time instants.

If F is impulsive there exists an instant t0 such that

lim
t→t0

∫ t

t0

F (τ)dτ = P �= 0 . (6.2)

Equation (6.2) implies that the impulsive force has an infinite magnitude
at the point t0, but we are assuming that its impulse P is well defined and
bounded. The expression

P · δ(t0) = lim
t→t0

F (t)

can be mathematically seen as a Dirac delta function concentrated at t0.
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Now, we will derive the equations for impulsive motion following the
discussion in [207]. In the sequel, the velocity vector of the rth particle,
(q̇3r−2, q̇3r−1, q̇3r), will be denoted by q̇r. Then, the system of integral equa-
tions (6.1) can be written as

mr(q̇r(t0 + ε) − q̇r(t0 − ε)) =
∫ t0+ε

t0−ε
Fr(τ)dτ .

Multiplying by the virtual displacements at the point q(t0), we obtain

(pr(t0 + ε) − pr(t0 − ε)) · δqr =
∫ t0+ε

t0−ε
Fr(τ)dτ · δqr .

For the entire system, one has

n∑
r=1

{
pr(t0 + ε) − pr(t0 − ε) −

∫ t0+ε

t0−ε
F ′
r(τ)dτ

}
· δqr

=
n∑
r=1

∫ t0+ε

t0−ε
F ′′
r (τ)dτ · δqr , (6.3)

where F ′
r and F ′′

r are, respectively, the resultant of the given forces and of
the constraint reaction forces acting on the rth particle at time τ .

Now, take a local chart (qA), 1 ≤ A ≤ 3n on a neighborhood U of q(t0)
and consider the identification TqQ ≡ R3n, which maps each vq ∈ TqQ to
(vA), such that

vq = vA
(

∂

∂qA

)
q

,

for each q ∈ U . Let us suppose that the constraints are given on U by
the 1-forms ωi = µiAdqA, 1 ≤ i ≤ m. Then, we have that µiA(q(t)) =
µiA(q(t0)) +O(t− t0) along the trajectory q(t). As the virtual displacements
at the point q(t) satisfy by definition∑

µiA(q(t))(δq(t))A = 0 , 1 ≤ i ≤ m,

we conclude that
∑(

µiA(q(t0))(δq(t))A + O(t − t0)
)

= 0. Therefore, we have
that

δqr(t) = δqr(t0) + O(ε) , t ∈ [t0 − ε, t0 + ε] ,

that is, the virtual displacements at q(t) can be approximated by the virtual
displacements at q(t0). As a consequence, in the right-hand side of (6.3) we
can write
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t0−ε
F ′′
r (τ)dτ · δqr =

∫ t0+ε

t0−ε
F ′′
r (τ) · δqrdτ =

∫ t0+ε

t0−ε
F ′′
r (τ) · δqr(τ)dτ +O(ε) .

The first term after the last equality is the virtual work done by the constraint
forces along the trajectory, and this work is zero since we are considering ideal
constraints. The second one goes to zero as ε tends to zero.

In the presence of given impulsive forces acting on m particles, say, at
time t0, we have

lim
t→t0

∫ t

t0

Fr′(τ)dτ = Pr′ �= 0 , 1 ≤ r′ ≤ m .

Then, taking the limit ε → 0 in (6.3), we obtain the equation for impulsive
motion [188, 207]

n∑
r=1

{pr(t0)+ − pr(t0)− − Pr} · δqr = 0 . (6.4)

An example in which equation (6.4) may be applied is when we strike with
a cue a billiard ball which is initially at rest. In that case we are exerting an
impulsive force that puts the ball into motion. But what happens when the
ball collides with the edge of the billiard? What we see is that it bounces, i.e.
it suffers again a discontinuous jump in its velocity. The constraint imposed
by the wall of the billiard exerts an impulsive force on the ball. When the
impulsive force is caused by constraints, such constraints are called impul-
sive constraints. There is a number of different situations in which they can
appear. In the following, we examine them.

In the presence of linear constraints of type Ψ = 0, where Ψ = bk(q)q̇k

(a situation which covers the case of unilateral holonomic constraints, such
as the impact against a wall, and more general types of constraints, such as
instantaneous nonholonomic constraints), the constraint force, F = Fk dqk,
is given by Fk = µ · bk, where µ is a Lagrange multiplier. Then the constraint
is impulsive if and only if

lim
t→t0

∫ t

t0

µ·bkdτ = Pk �= 0 ,

for some k. The impulsive force may be caused by different circumstances: the
function bk is discontinuous at t0, the Lagrange multiplier µ is discontinuous
at t0 or both.

The presence of such constraints does not invalidate equation (6.4). It
merely means that the virtual displacements δqr must satisfy certain addi-
tional conditions, which are just those imposed by the constraints. So, in
the absence of impulsive external forces and in the presence of impulsive
constraints, we would have
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n∑
r=1

∆pr(t0) · δqr = 0 , (6.5)

where ∆pr(t0) = pr(t0)+ − pr(t0)−.

Remark 6.2.1. In general, equation (6.5) is not enough to determine the jump
of the momentum. One usually needs additional physical hypothesis, related
with elasticity, plasticity, etc. to obtain the post-impact momentum. In this
respect, there are two classical approaches, the Newtonian approach and the
Poisson approach [39, 229]. The Newtonian approach relates the normal com-
ponent of the rebound velocity to the normal component of the incident ve-
locity by means of an experimentally determined coefficient of restitution e,
where 0 ≤ e ≤ 1. The Poisson approach divides the impact into compression
and decompression phases, and relates the impulse in the restitution phase
to the impulse in the compression phase.

Remark 6.2.2. It could happen that impulsive constraints and impulsive
forces were present at the same time. For example, in the collision between
a rigid lamina and an immobile plane surface, we must take into account
not only the normal component of the contact force, but also the friction
force associated with the contact. It is not innocuous the way the friction
is entered into the picture. In fact, the Newton and Poisson approaches
have been revealed to be physically inconsistent in certain situations. On
the one hand, Newton approach can show energy gains [116, 229]. On the
other hand, Poisson’s rule is not satisfactory since non-frictional dissipation
does not vanish for perfectly elastic impacts [39, 229]. This surprising conse-
quence of the impact laws is only present when the velocity along the impact
surface (slip) stops or reverses during collision, due precisely to the friction.
Stronge [229, 230] proposed a new energetically consistent hypothesis for
rigid body collisions with slip and friction. It should be noticed that the
three approaches are equivalent if slip does not stop during collision and in
the perfectly inelastic case (e = 0).

Recently, a new Newton-style model of partly elastic impacts has been
proposed [227] which, interestingly, always dissipates energy, unlike the clas-
sical formulation of the Newtonian approach discussed in [229].

In the frictionless case, one can prove the following

Theorem 6.2.3 (Carnot’s theorem [102, 207]). The energy change due
to impulsive constraints is always a loss of energy.

6.3 Generalized constraints

RECALL the situation in Section 6.1. We have a mechanical system sub-
ject to a set of constraints given by a generalized codistribution D on
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Q. We want to explore the behavior of the system when its motion reaches a
singular point of the codistribution, where indeed the number of constraint
functions changes suddenly.

Consider a trajectory of the system, q(t), which reaches a singular point at
time t0, i.e. q(t0) ∈ S, such that q((t0 − ε, t0)) ⊂ R and q((t0, t0 + ε)) ⊂ R for
sufficiently small ε > 0. The motion along the trajectory q(t) is governed by
the following equation, which is, as in the impulsive case, an integral writing
of Newton’s second law, to consider possible finite jump discontinuities in the
velocities (or the momenta). That is, on any interval t ≤ t′ < ∞

pA(t′) − pA(t) =
∫ t′

t

FA(τ)dτ , (6.6)

at each component, where F is the resultant of all the forces action on the tra-
jectory q(t). In our case, the unique forces acting are the constraint reaction
forces.

The nature of the force can become impulsive because of the change of
rank of the codistribution D. We summarize the situations that can be found
in Table 6.1. On entering the singular set, the rank of the codistribution D at
the singular point q(t0) can be the same as at the preceding points (Case 1)
or can be lower (Cases 2 and 3). In these two latter situations, the constraints
have collapsed at q(t0) and this induces a finite jump in the constraint force.
As the magnitude of the force is not infinite, there is no abrupt change in
the momentum. Consequently, in all cases, we find no momentum jumps on
entering the singular set.

q(t0 − ε): pre-points q(t0): singular point q(t0 + ε): post-points
Case 1 ρ = r ρ0 = r0 = r ρ > r

Case 2 ρ = r ρ0 = r0 < r ρ = r0

Case 3 ρ = r ρ0 = r0 < r ρ > r0

Table 6.1. Possible cases. The rank of D is denoted by ρ.

On leaving the singular set, the rank of D at the posterior points can be the
same as at q(t0) (Case 2) or can be higher (Cases 1 and 3). In Case 2 nothing
special occurs. In Cases 1 and 3, the trajectory must satisfy, immediately after
the point q(t0), additional constraints which were not present before. It is in
this sense that we affirm that the constraint force can become impulsive:
if the motion which passes through the singular set and tries to enter the
regular one again does not satisfy the new constraints, then it experiences a
jump of its momentum, due to the presence of the constraint force. In this
way, the new values of the momentum satisfy the constraints. But one has to
be careful: the impulsive force will act just on leaving S, on the regular set.
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Consequently, we must take into account the virtual displacements associated
with the posterior regular points. The underlying idea of the mathematical
derivation of the momentum jumps in Section 6.3.1 is the following: take an
infinitesimal posterior point q(t) to q(t0), forget for a moment the presence
of the constraints on the path q((t0, t)) and derive the momentum jump at
q(t) due to the appearance of the additional constraints. Afterwards, make a
limit process t → t0, canceling out the interval (t0, t) where we ‘forgot’ the
constraints. In any case, we will make the convention that the jump happens
at q(t0).

We illustrate the above discussion in the following example.

Example 6.3.1. Consider a particle in the plane subject to the constraints
imposed by the generalized codistribution in Example 2.2.2. The Lagrangian
function is

L =
1
2
m(ẋ2 + ẏ2) .

On the half-plane R1 = {x < 0} the codistribution is zero and the motion is
free. Consequently the trajectories are

x = ẋ0t + x0 , y = ẏ0t + y0 .

If the particle starts its motion with initial conditions x0 = −1, y0 = 1,
ẋ0 = 1, ẏ0 = 0, after a time 1, it reaches the singular set S = {x = 0}. If
the motion crosses the y-axis, something abrupt occurs on entering the half-
plane R2 = {x > 0}, where the codistribution is no longer zero and, indeed,
imposes the additional constraint ẋ = ẏ (Case 1). We know that the integral
manifolds of D on R2 are half-lines of slope 1, so the particle suffers a finite
jump in the velocity on going through the singular part in order to adapt its
motion to the prescribed direction (Figure 6.1).

Fig. 6.1. Possible trajectories in Example 6.3.1

If, on the contrary, the particle starts on R2, say with initial conditions
x0 = 1, y0 = 1, ẋ0 = −1, ẏ0 = −1, after a certain time, it reaches the set
S. On crossing it, nothing special happens, because the particle finds less
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constraints to fulfill, indeed, there are no constraints (Case 2). Its motion on
R1 is free, on a straight line of slope 1 and with constant velocity equal to
the one at the singular point of crossing (Figure 6.1).

6.3.1 Momentum jumps

Now, we derive a formula, strongly inspired by the theory of impulsive motion,
for the momentum jumps which can occur due to the changes of rank of the
codistribution D in Cases 1 and 3.

At q(t0) we define the following vector subspaces of T ∗
q(t0)Q

D−
q(t0)

= {α ∈ T ∗
q(t0)Q | ∃α̃ : (t0 − ε, t0) → T ∗Q, α̃(t) ∈ Dq(t) , lim

t→t−0
α̃(t) = α} ,

D+
q(t0)

= {α ∈ T ∗
q(t0)Q | ∃α̃ : (t0, t0 + ε) → T ∗Q, α̃(t) ∈ Dq(t) , lim

t→t+0

α̃(t) = α} .

From the definition of D−
q(t0)

and D+
q(t0)

we have that

(D−
q(t0)

)⊥ = lim
t→t−0

(Dq(t))⊥ and (D+
q(t0)

)⊥ = lim
t→t+0

(Dq(t))⊥

where ⊥ denotes the orthogonal complement with respect to the cometric
induced by g, and the limits (D⊥)− and (D⊥)+ are defined as in the case of
D− and D+.

Since D is a differentiable codistribution, then Dq(t0) ⊆ D−
q(t0)

and
Dq(t0) ⊆ D+

q(t0)
. Along the interval [t0, t], we have

pA(t) − pA(t0) =
∫ t

t0

FA(τ) dτ .

Multiplying by the virtual displacements at the point q(t) and summing in
A, we obtain

n∑
A=1

(pA(t) − pA(t0)) · δqA|q(t) =
n∑

A=1

∫ t

t0

FA(τ)dτ · δqA|q(t) . (6.7)

Since we are dealing with ideal constraints, the virtual work vanishes, i.e.

n∑
A=1

∫ t

t0

FA(τ)δqA|q(τ) dτ = 0 .

If t is near t0, then τ is close to t, and q(τ) is near q(t), so δq remains both
nearly constant and nearly equal to its value at time t throughout the time
interval (t0, t], in the same way we exposed in Section 6.2. Therefore,
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n∑
A=1

(∫ t

t0

FA(τ) dτ
)

· δqA|q(t) =
n∑

A=1

∫ t

t0

FA(τ)δqA|q(τ) dτ + O(t − t0) = O(t − t0) .

Consequently, equation (6.7) becomes

n∑
A=1

(pA(t) − pA(t0)) · δqA|q(t) = O(t − t0) . (6.8)

Taking limits we obtain limt→t+0

(∑n
A=1(pA(t) − pA(t0)) · δqA|q(t)

)
= 0,

which implies
n∑

A=1

(pA(t0)+ − pA(t0)) lim
t→t+0

δqA|q(t) = 0 , (6.9)

or, in other words,

(pA(t0)+ − pA(t0)) dqA ∈ lim
t→t+0

Dq(t) = D+
q(t0)

. (6.10)

Conclusion: Following the above discussion, we will deduce the existence
of jump of momenta depending on the relation between D−

q(t0)
and D+

q(t0)
.

The possible cases are shown in Table 6.2.

D+
q(t0) ⊆ D−

q(t0) there is no jump of momenta
D+

q(t0) �⊆ D−
q(t0) possibility of jump of momenta

Table 6.2. The two cases that may arise in studying the jump of momenta.

In the second case in Table 6.2, we have a jump of momenta if the ‘pre-
impact’ momentum p(t0)− = p(t0) does not satisfy the constraints imposed
by D+

q(t0)
, i.e.

pA(t0)−dqA /∈ (D+
q(t0)

)⊥ .

Our proposal for the equations which determine the jump is then{
(pA(t0)+ − pA(t0)−) dqA ∈ D+

q(t0)
pA(t0)+ dqA ∈ (D+

q(t0)
)⊥ .

The first equation has been derived above (cf. (6.10)) from the generalized
writing of Newton’s second law (6.1). The second equation simply encodes
the fact that the ‘post-impact’ momentum must satisfy the new constraints
imposed by D+

q(t0)
.
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Remark 6.3.2. In Cases 1 and 3, the virtual displacements at q(t0) are rad-
ically different from the ones at the regular posterior points, because of the
change of rank. From a dynamics point of view, these are the ‘main’ ones,
since it is on the regular set where an additional constraint reaction force
acts. As we have seen, the momentum jump happens on just leaving S, due
to the presence of this additional constraint force on the regular set. Note
that with the procedure we have just derived, we are taking into account
precisely the virtual displacements at the regular posterior points, and not
those of q(t0). If we took the virtual displacements at q(t0) and multiply by
them in (6.7), we would obtain non-consistent jump conditions. This is easy
to see, for instance, in Example 6.3.1.

An explicit derivation of the momentum jumps for Cases 1 and 3 would
be as follows. Let m be the maximum between ρ = r, the rank at the regular
preceding points, and ρ = s, the rank at the regular posterior points. Then
there exists a neighborhood U of q(t0) and 1-forms ω1, . . . , ωm such that

Dq = span {ω1(q), . . . , ωm(q)} , ∀q ∈ U .

Let us suppose that ω1, . . . , ωs are linearly independent at the regular poste-
rior points (if not, we reorder them). Obviously, at q(t0), these s 1-forms are
linearly dependent. In the following, we will denote by ωi the 1-form evalu-
ated at q(t), (t time immediately posterior to t0) i.e. ωi ≡ ωi(q(t)), in order
to simplify notation.

Since the Lagrangian is of the form L = T − V , where T is the kinetic
energy of the Riemannian metric g, we have that

ωjA(q(t))q̇A(t) =
∑
A,B

ωjAgABpB(t) = 0 , j = 1, . . . , s . (6.11)

Using the metric g we have the decomposition T ∗
qQ = Dq ⊕ D⊥

q , for each
q ∈ Q. The two complementary projectors associated with this decomposition
are

Pq : T ∗
qQ −→ D⊥

q , Qq : T ∗
qQ −→ Dq .

Let C be the symmetric matrix with entries Cij = ωiAgABωjB , or C = ωg−1ωT

with the obvious notations. The projector Pq is given by Pq(αq) = αq −
Cijαq(Zi)ωj , for αq ∈ T ∗Q, where

Zi = gABωiB

(
∂

∂qA

)
q

,

and Cij are the entries of the inverse matrix of C.

By definition
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pA(t0)+dqA|q(t0) = lim
t→t+0

(pA(t)dqA|q(t)) .

From (6.11), Pq(t)(pA(t)dqA|q(t))) = pA(t)dqA|q(t) and then

pA(t0)+dqA|q(t0) =

(
lim
t→t+0

Pq(t)
)

(pA(t0)+dqA|q(t0)) ∈ (D+
q(t0)

)⊥ . (6.12)

Combining (6.10) and (6.12), we obtain

pA(t0)+dqA|q(t0) =

(
lim
t→t+0

Pq(t)
)[

pA(t0)−dqA|q(t0)
]

.

In coordinates, this can be expressed as

pA(t0)+ = pA(t0)− − lim
t→t+0

 ∑
i,j,A,B

CijωjBgBCωiA

∣∣∣
q(t)

pC(t0)− , (6.13)

for A = 1, . . . , n. Equation (6.13) can be written in matrix form as follows

p(t0)+ =

(
Id − lim

t→t+0

(ωTC−1ωg−1)|q(t)

)
p(t0)− . (6.14)

With the derived jump rule, we are able to prove the following version of
Carnot’s theorem for generalized constraints.

Theorem 6.3.3 (Carnot’s theorem for generalized constraints). The
kinetic energy will only decrease by the use of the jump rule (6.14).

Proof. We have that

g (p(t0)+, p(t0)+) = g

((
lim
t→t+0

Pq(t)
)

p(t0)−, p(t0)− −
(

lim
t→t+0

Qq(t)

)
p(t0)−

)

= g

((
lim
t→t+0

Pq(t)
)

p(t0)−, p(t0)−

)

= g (p(t0)−, p(t0)−) − g

((
lim
t→t+0

Qq(t)

)
p(t0)−, p(t0)−

)
.

Since

g

((
lim
t→t+0

Qq(t)

)
p(t0)−, p(t0)−

)
=

= g

((
lim
t→t+0

Qq(t)

)
p(t0)−,

(
lim
t→t+0

Qq(t)

)
p(t0)−

)
≥ 0 ,

we can conclude that 1
2g(p(t0)+, p(t0)+) ≤ 1

2g(p(t0)−, p(t0)−). ��
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In fact, the jump rule (6.14) has the following alternative interpretation.
Let p ∈ D+

q(t0)
and observe that

g(p − p(t0)−, p − p(t0)−) = g(p(t0)−, p(t0)−) + g(p, p − 2p(t0)−)

= g(p(t0)−, p(t0)−) + g

(
p, p − 2

(
lim
t→t+0

Pq(t)
)

p(t0)−

)
.

Now, note that the covector

p =

(
lim
t→t+0

Pq(t)
)

p(t0)− ∈ D+
q(t0)

is such that the expression g(p − p(t0)−, p − p(t0)−) is minimized among all
the covectors belonging to D+

q(t0)
. Therefore, the derived jump rule (6.14) can

be stated as follows:

the ‘post-impact’ momenta p(t0)+ is such that the kinetic energy cor-
responding to the difference of the ‘pre-impact’ and ‘post-impact’ mo-
mentum is minimized among all the covectors satisfying the constraints.

This is an appropriate version for generalized constraints of the well known
jump rule for perfectly inelastic collisions [181]. This is even more clear in
the holonomic case, as is shown in Section 6.3.2.

Remark 6.3.4. So far, we have been dealing with impulsive constraints. More
generally, we can consider the presence of external impulsive forces associated
with external inputs or controls. Then, equation (6.10) must be modified as
follows

(pA(t0)+ − pA(t0)− − P ′
A(t0)) dqA|q(t0) ∈ lim

t→t+0

Dq(t) = D+
q(t0)

, (6.15)

where P ′
A(t0), 1 ≤ A ≤ n, are the external impulses at time t0. Observe that

if q(t0) is a regular point then

pA(t0)+ = pA(t0)− + P ′
A(t0) −

∑
i,j,A,B

CijωjBgBCωiAP ′
C(t0) (6.16)

and, if q(t0) is a singular point, we have

pA(t0)+ = pA(t0)− + P ′
A(t0)

− lim
t→t+0

 ∑
i,j,A,B

CijωjBgBCωiA

∣∣∣
q(t)

(pC(t0)− + P ′
C(t0)) . (6.17)
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6.3.2 The holonomic case

We show in this section a meaningful interpretation of the proposed jump
rule (6.14) in case the codistribution D is partially integrable (cf. Section 2.2).

Let us consider a trajectory q(t) ∈ Q which reaches a singular point
q(t0) ∈ S and falls in either Case 1 or Case 3. Since Q = R̄, we have that
q(t0) ∈ L̄, where L is the leaf of D which contains the regular posterior points
of the trajectory q(t). On leaving q(t0), we have seen that the trajectory
suffers a finite jump in its momentum in order to satisfy the constraints
imposed by D, which in this case implies that the trajectory after time t0
belongs to the leaf L. Consequently, the jump can be interpreted as a perfectly
inelastic collision against the ‘wall’ represented by the leaf L!

Let us see it revisiting Example 6.3.1.

Example 6.3.5. Consider again the situation in Example 6.3.1. If the motion
of the particle starts on the left half-plane going towards the right one, then
it is easy to see that D−

(0,y) = {0} and D+
(0,y) = span{dx − dy}. As D+

(0,y) �⊆
D−

(0,y), a jump of momenta is possible. In fact, if the ‘pre-impact’ velocity
(ẋ0, ẏ0) does not satisfy ẋ0 = ẏ0, the jump occurs and is determined by
∆v(t0) ∈ D+

(0,y) and ẋ(t+0 ) = ẏ(t+0 ). Consequently, we obtain

ẋ(t+0 ) =
ẋ0 + ẏ0

2
, ẏ(t+0 ) =

ẋ0 + ẏ0

2
.

We would have obtained the same result if we had considered that our
particle hits, in a perfectly inelastic collision, against the ‘wall’ represented
by the half-line of slope 1 contained in {x > 0} passing through the point
(0, y).

If the particle starts on the right half-plane towards the left one, the
roles are reversed and D−

(0,y) = span{dx − dy}, D+
(0,y) = {0}. We have that

D+
(0,y) ⊆ D−

(0,y) and therefore, according to Table 6.2, there is no jump.

6.4 Examples

N EXT , we are going to develop two examples illustrating the above
discussion. First, we treat a variation of the classical example of the

rolling sphere [188, 207]. Secondly, we take one example from [65].
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6.4.1 The rolling sphere

Consider the example of a homogeneous sphere rolling on a table which re-
mains still (that is, the example treated in Section 3.2.2 with Ω(t) ≡ 0). The
configuration space is Q = R2 × SO(3): (x, y) denotes the position of the
center of the sphere and (ϕ, θ, ψ) denote the Eulerian angles.

Fig. 6.2. The rolling sphere on a ‘special’ surface

Let us suppose that the plane is smooth if x < 0 and absolutely rough if
x > 0 (see Figure 6.2). On the smooth part, we assume that the motion of
the ball is free, that is, the sphere can slip. But if it reaches the rough half-
plane, the sphere begins rolling without slipping, because of the presence
of the constraints imposed by the roughness. We are interested in knowing
the trajectories of the sphere and, in particular, the possible changes in its
dynamics because of the crossing from one half-plane to the other.

The kinetic energy of the sphere is

T =
1
2
(
ẋ2 + ẏ2 + k2(ω2

x + ω2
y + ω2

z)
)
,

where ωx, ωy and ωz are the angular velocities with respect to the inertial
frame, given by

ωx = θ̇ cosψ + ϕ̇ sin θ sinψ ,

ωy = θ̇ sinψ − ϕ̇ sin θ cosψ ,

ωz = ϕ̇ cos θ + ψ̇ .

The potential energy is not considered here since it is constant.
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The condition of rolling without sliding of the sphere when x > 0 implies
that the point of contact of the sphere and the plane has zero velocity

φ1 = ẋ − rωy = 0 , φ2 = ẏ + rωx = 0 ,

where r is the radius of the sphere.

Following the classical procedure, we introduce quasi-coordinates ‘q1’, ‘q2’
and ‘q3’ such that ‘q̇1’= ωx, ‘q̇2’= ωy and ‘q̇3’= ωz (see Section 3.2.2).

The nonholonomic generalized differentiable codistribution D is given by

D(x,y,φ,θ,ψ) =
{ {0} , if x ≤ 0 ,

span {dx − rdq2, dy + rdq1} , if x > 0 .

The intersection of the regular set of the generalized codistribution and the
(x, y)-plane has two connected components, the half-planes R1 = {x < 0}
and R2 = {x > 0}. The line {x = 0} belongs to the singular set of D.

On R1 the codistribution is zero, so the motion equations are

mẍ = 0 ,
mÿ = 0 ,

mk2ω̇x = 0 ,
mk2ω̇y = 0 ,
mk2ω̇z = 0 .

(6.18)

On R2 we have to take into account the constraints to obtain the following
equations of motion

mẍ = λ1 ,
mÿ = λ2 ,

mk2ω̇x = rλ2 ,
mk2ω̇y = −rλ1 ,
mk2ω̇z = 0 ,

(6.19)

with the constraint equations ẋ − rωy = 0 and ẏ + rωx = 0. One can com-
pute the Lagrange multipliers by the algebraic procedure described in Sec-
tion 3.4.1.

Suppose that the sphere starts its motion at a point of R1 with the follow-
ing initial conditions at time t = 0: x0 < 0, y0, ẋ0 > 0, ẏ0, (ωx)0, (ωy)0 > 0
and (ωz)0. Integrating equations (6.18) we have that if x(t) < 0

x(t) = ẋ0t + x0 ,
y(t) = ẏ0t + y0 ,

ωx(t) = (ωx)0 ,
ωy(t) = (ωy)0 ,
ωz(t) = (ωz)0 .

(6.20)

At time t̄ = −x0/ẋ0 the sphere finds the rough surface of the plane, where
the codistribution is no longer zero and it is suddenly forced to roll without
sliding (Case 1). Following the discussion in Section 6.3.1, we calculate the
instantaneous change of velocity (momentum) at x = 0.



6.4 Examples 137

First of all we compute the matrix C,

C =
(

1 0 0 −r 0
0 1 r 0 0

)
1 0 0 0 0
0 1 0 0 0
0 0 k−2 0 0
0 0 0 k−2 0
0 0 0 0 k−2




1 0
0 1
0 r

−r 0
0 0


= (1 + r2k−2)

(
1 0
0 1

)
.

Next, a direct computation shows that the projector P does not depend on
the base point

P =


r2

r2+k2 0 0 r
r2+k2 0

0 r2

r2+k2 − r
r2+k2 0 0

0 −rk2

r2+k2
k2

r2+k2 0 0
rk2

r2+k2 0 0 k2

r2+k2 0
0 0 0 0 1

 .

Therefore, we have

(px)+ =
r2(px)0 + r(p2)0

r2 + k2 ,

(py)+ =
r2(py)0 − r(p1)0

r2 + k2 ,

(p1)+ =
−rk2(py)0 + k2(p1)0

r2 + k2 ,

(p2)+ =
rk2(px)0 + k2(p2)0

r2 + k2 ,

(p3)+ = (p3)0 .

Now, using the relation between the momenta and the quasi-velocities

px = ẋ , py = ẏ , p1 = k2ωx , p2 = k2ωy , p3 = k2ωz ,

we deduce that

ẋ+ =
r2ẋ0 + rk2(ωy)0

r2 + k2 ,

ẏ+ =
r2ẏ0 − rk2(ωx)0

r2 + k2 ,

(ωx)+ =
−rẏ0 + k2(ωx)0

r2 + k2 ,

(ωy)+ =
rẋ0 + k2(ωy)0

r2 + k2 ,

(ωz)+ = (ωz)0 .

(6.21)

Finally, integrating equations (6.19) at time t̄ = −x0/ẋ0 with initial con-
ditions given by (6.21) we obtain that if t > t̄,
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x(t) =
r2ẋ0 + rk2(ωy)0

r2 + k2 (t − t̄) ,

y(t) =
r2ẏ0 − rk2(ωx)0

r2 + k2 (t − t̄) + ẏ0t̄ + y0 ,

ωx(t) =
−rẏ0 + k2(ωx)0

r2 + k2 , (6.22)

ωy(t) =
rẋ0 + k2(ωy)0

r2 + k2 ,

ωz(t) = (ωz)0 .

6.4.2 Particle with constraint

This example is taken from [65]. Let us consider the motion of a particle of
unit mass in R3 subject to the following constraint

φ = (y2 − x2 − z)ẋ + (z − y2 − xy)ẏ + xż = 0 .

In addition, let us assume that there is a central force system centered at the
point (0, 0, 1) with force field given by

F = −xdx − ydy + (1 − z)dz .

Then, the Lagrangian function of the particle is

L = T − V =
1
2
(ẋ2 + ẏ2 + ż2 + x2 + y2 + z2 − 2z) ,

and the constraint defines a generalized differentiable codistribution D, whose
singular set is S = {(x, y, z) : x = 0, z = y2}.

On R, the regular set of D, the dynamics can be computed following
the standard symplectic procedure described in Section 3.4.1 to obtain X =
ΓL + λZ, where

ΓL = ẋ
∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
− x

∂

∂ẋ
− y

∂

∂ẏ
− (z − 1)

∂

∂ż
,

Z = −
(

(y2 − x2 − z)
∂

∂ẋ
+ (z − y2 − xy)

∂

∂ẏ
+ x

∂

∂ż

)
,

and λ is given by

λ = −ΓL(φ)
Z(φ)

=
−2xẋ2 + yẏẋ − 2yẏ2 − xẏ2 + ẏż + x3 + y3 − yz + x

(y2 − x2 − z)2 + (z − y2 − xy)2 + x2 .

(6.23)
Consequently, the motion equations on R are
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mẍ + x = λ(y2 − x2 − z) ,

mÿ + y = λ(z − y2 − xy) , (6.24)
mz̈ + z − 1 = λx ,

together with the constraint equation φ = 0.

From the discussions of [65], we know that in this case there is an integral
surface, C, of the constraint φ, that is, a surface on which all motions satisfy
the constraint. This surface is

C = {(x, y, x) : z − x2 − y2 + xy = 0} .

Note that S ⊂ C. Therefore, if a motion takes place on the cone-like surface
C, it is confined to stay on this critical surface, unless it reaches a singular
point. In this case, the space of allowable motions is suddenly increased (in
fact, TR3), and the motion can ‘escape’ from C. In addition, this proves that
the unique way to pass from one point of the exterior of the C to the interior,
or vice versa, is through the singular set S.

In particular, we are interested in knowing

1. Is there any trajectory satisfying equations (6.24) which passes through
the singular set?

2. if so, which are the possible momentum jumps due to the changes in the
rank of the codistribution D?

So far, we do not know an answer for the question of the existence of a
motion of (6.24) crossing S. It seems that on approaching a singular point,
the constraint force can become increasingly higher (cf. equation (6.23)).
Consequently, this force possibly ‘disarranges’ the approaching of the motion
to S. Numerical simulations are quite useless in this task, because of the
special nature of the problem: the hard restriction given by the fact that a
motion crossing the cone-like surface C must do it through the singular part
S. Indeed, the numerical simulation performed in [65] crosses the surface C
through points which are not in S, which is not consistent.

Concerning the second question, let us suppose that there is a trajectory
of the dynamical system (6.24), q(t) = (x(t), y(t), z(t)), that passes through
a singular point at time t0, i.e. x(t0) = 0 and z(t0) = y(t0)2. The rank of
the codistribution D at the immediately preceding and posterior points is 1,
meanwhile at q(t0) it is 0 (Case 3). So, the change in the rank of D could
induce a possible jump of the momentum.

A direct computation shows that the projector P depends explicitly on the
base point q ∈ Q. Equivalently, we have that D+

q(t0)
depends strongly on the

trajectory q(t). In fact, taking two curves q1(t), q2(t) passing through q(t0) at
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time t0, and satisfying x1(t) � z1(t) − y2
1(t) and z2(t) − y2

2(t) � x2(t) when
t → t+0 respectively, one can easily see that D+

q1(t0)
�= D+

q2(t0)
(the expression

f(t) � g(t) when t → t+0 means that limt→t+0
f(t)/g(t) = 0).

Consequently, we are not able to give an answer to question (ii) (in case
the first one was true) unless we assume some additional information: for
example, that the balance between x(t) and z(t) − y2(t) is the same for
t → t−0 and t → t+0 . In such a case, D−

q(t0)
= D+

q(t0)
and we would conclude

that there is no jump. In mechanical phenomena of the type sliding-rolling,
as the ones studied in Section 6.4.1 this kind of ‘indeterminacy’ will not occur
in general. Recently, it has been brought to our attention ongoing research
efforts on singular vector fields [87] which might be of help in the further
analysis of this case.



7 Nonholonomic integrators

I N this chapter, we address the problem of constructing integrators for me-
chanical systems with nonholonomic constraints. This problem has been

stated in a number of recent works [59, 256], including the presentation of
open problems in symplectic integration given in [176]. The study of systems
subject to holonomic constraints is a well established topic of research in
the literature. For instance, the popular Verlet algorithm for unconstrained
mechanical systems was adapted to handle holonomic constraints, result-
ing in the Shake algorithm [209] and the Rattle algorithm [5]. The case
of general Hamiltonian systems subject to holonomic constraints has also
been studied [106, 205, 206]. A different approach, based on the Dirac the-
ory of constraints, may be found in [133]. Energy-momentum integrators
derived from discrete directional derivatives and discrete versions of Hamil-
tonian mechanics have also been recently adapted to deal with holonomic
constraints [89, 90].

Our approach to this topic follows the developments on variational inte-
grators started by Veselov [183, 246, 247]. The underlying idea to variational
integrators comes from the observation that much of the geometric proper-
ties of the continuous flow of the Euler-Lagrange equations can be explained
by the fact that they are derived from a variational principle. Hence, in-
stead of discretizing directly the equations of motion, one discretizes the
Lagrangian itself, and derives the discrete equations from this discrete La-
grangian through a discrete principle. In this way, one expects to obtain
discrete equations that also enjoy interesting geometric properties.

The chapter is organized as follows. In Section 7.1 we briefly introduce
some basic notions and results related with mechanical integrators. Sec-
tion 7.2 presents a brief review of variational integrators. In Section 7.3 we
propose a discrete version of the Lagrange-d’Alembert principle. We show
that, when the constraints are holonomic, this discrete principle leads us to
recover variational integrators, so that nonholonomic integrators can be un-
derstood as its generalization. We discuss several ways to construct them in
Section 7.4 and we study the geometric invariance properties of the proposed
algorithm in Section 7.5. Section 7.6 contains two examples illustrating the
performance of the nonholonomic integrator.

J. Cortés Monforte: LNM 1793, pp. 141–170, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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7.1 Symplectic integration

IN this section, we briefly introduce some common notions and results from
the literature on geometric integration. The interested reader is referred

to [158, 160, 210] for more thorough expositions.

An algorithm is a collection of maps Fh : P −→ P depending smoothly
on h ∈ [0, h0) and z ∈ P . Given a symplectic manifold (P, ω), an algorithm
is said to be

– a symplectic integrator if each Fh : P −→ P is a symplectic map.

– an energy integrator if E ◦ Fh = E, with the algorithm being consistent
with X = XE .

– a momentum integrator if J ◦Fh = J , where J : P −→ g∗ is the momentum
map for the action of a Lie group G.

Any algorithm having one or more of these properties is called a mechan-
ical integrator .

The choice of a specific integrator depends on the specific problem under
consideration. For instance, in molecular dynamics simulation and planetary
motions, the preservation of the symplectic form (and the associated volume)
is important for long time runs, otherwise one may obtain totally inconsis-
tent solutions. On the other hand, the exact conservation of a momentum
first integral is essential to problems in attitude control in satellite dynamics
simulation, since this is the basic physical principle driving the reorientation
of the system.

Unfortunately, in general one cannot preserve all three at the same time,

Theorem 7.1.1 ([86]). Assume that an algorithm for a given Hamiltonian
system XH with a symmetry group G

– is energy preserving, symplectic, momentum preserving and G-equivariant,
and

– the dynamics of XH is nonintegrable on the reduced space (in the sense
that any other conserved quantity is functionally dependent on H).

Then, the algorithm already gives the exact solution of the given problem up
to a time reparameterization.

Colloquially speaking, this result means that, if the time step is fixed,
obtaining an energy-symplectic-momentum integrator is the same as exactly
obtaining the continuous flow. Recently, it has been shown that the con-
struction of energy-symplectic-momentum integrators is indeed possible if
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one allows varying time steps [109], instead of fixed ones. As a result of
Theorem 7.1.1, mechanical integrators are divided into subclasses, such as
symplectic-momentum and energy-momentum.

The ways employed so far in the discovery and development of mechanical
integrators include: the search among existing algorithms to find ones with
special algebraic properties that make them symplectic or energy-preserving
(examples are the symplectic Runge-Kutta schemes [210], the Rattle and
Shake algorithms [5, 134, 209], etc.); the composition of known mechanical
integrators, preserving their geometric properties, to increase the order of
accuracy [259]; methods like symplectic correctors or product formulas [8,
160], etc.

Here we shall focus our attention on the variational approach to construct
mechanical integrators: variational integrators and extensions.

7.2 Variational integrators

M ECHANICAL integrators based on the Veselov discretization tech-
nique [183, 246, 247] have been studied intensively in the last years

and are by now well known [34, 109, 110, 161, 256]. We briefly review here
the main ideas of this approach.

Let Q be a n-dimensional configuration manifold and Ld : Q × Q −→ R

a smooth map playing the role of a discrete Lagrangian. The action sum is
the map S : QN+1 −→ R defined by

S =
N−1∑
k=0

Ld(qk, qk+1) , (7.1)

where qk ∈ Q for k ∈ {0, 1, . . . , N} and k is the discrete time. The discrete
variational principle states that the evolution equations extremize the action
sum, given fixed end points q0, qN . That is, we have

dS =
N−1∑
k=1

(D1Ld(qk, qk+1) + D2Ld(qk−1, qk)) dqk ≡ 0 , (7.2)

which leads to the discrete Euler-Lagrange (DEL) equations,

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0 . (7.3)

Under appropriate regularity assumptions on the discrete Lagrangian Ld
(namely, that the mapping D1Ld(q, ·) : Q −→ T ∗

qQ is invertible ∀q ∈ Q), the
DEL equations define a map Φ : Q × Q −→ Q × Q, Φ(qk−1, qk) = (qk, qk+1)
which describes the discrete time evolution of the system.
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Now, define the fiber derivative or discrete Legendre transform corre-
sponding to Ld by

FLd : Q × Q −→ T ∗Q
(q, q′) �−→ (q′, D2Ld(q, q′)) ,

and the 2-form ωLd
on Q × Q by pulling back the canonical 2-form ωQ =

−dΘQ from T ∗Q,
ωLd

= FL∗
d(ωQ) .

The alternative discrete fiber derivative F̃Ld(q, q′) = (q,−D1Ld(q, q′)) may
also be used and the results obtained will be essentially unchanged. A fun-
damental fact is that the algorithm Φ exactly preserves the symplectic form
ωLd

, that is, Φ∗ωLd
= ωLd

(see [256]). Indeed, one has that

Φ∗ΩLd
= −Φ∗FL∗

ddΘQ = −d(FLd ◦ Φ)∗ΘQ

= −d(F̃Ld ◦ Φ)∗ΘQ
DEL= −dFL∗

dΘQ = ΩLd
. (7.4)

If we further assume that the discrete Lagrangian is invariant under the
action of a Lie group G on Q, one can define the associated discrete momen-
tum map, Jd : Q × Q −→ g∗ (where g∗ denotes the dual of the Lie algebra g
of G), by

〈Jd(q, q′), ξ〉 = 〈D2Ld(q, q′), ξQ(q′)〉 .
Here, ξQ denotes the fundamental vector field corresponding to the element
ξ ∈ g.

A second fundamental fact is that the discrete momentum is exactly pre-
served by the algorithm Φ [256]. This is seen in the following sequence of
steps: by the invariance of the discrete Lagrangian Ld,

L(exp(sξ)qk, exp(sξ)qk+1) = L(qk, qk+1) .

Differentiating with respect to s and setting s = 0 yields

D1Ld(qk, qk+1)ξQ(qk) + D2Ld(qk, qk+1)ξQ(qk+1) = 0 . (7.5)

The DEL algorithm implies

D1Ld(qk, qk+1)ξQ(qk) + D2Ld(qk−1, qk)ξQ(qk) = 0 . (7.6)

Subtracting equation (7.5) from equation (7.6), we find that

D2Ld(qk, qk+1)ξQ(qk+1) = D2Ld(qk−1, qk)ξQ(qk) . (7.7)

Finally, the result follows from (7.7) since
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(Jd)ξ(qk, qk+1) − (Jd)ξ(qk−1, qk) =
= D2Ld(qk, qk+1)ξQ(qk+1) − D2Ld(qk−1, qk)ξQ(qk)

= D2Ld(qk, qk+1)ξQ(qk+1) − D2Ld(qk, qk+1)ξQ(qk+1) = 0 .

Moreover, when regarding the discrete mechanical model as an approxi-
mation to a continuous system, one can verify that the constant value of the
discrete momentum map approaches the value of its continuous counterpart,
as the time step decreases.

Consequently, variational integrators are symplectic-momentum integra-
tors.

7.3 Discrete Lagrange-d’Alembert principle

I N this section, we introduce a discrete version of the Lagrange-d’Alembert
principle and derive from it the nonholonomic integrators. We follow the

idea that, by respecting the geometric structure of nonholonomic systems,
one can create integrators capturing their essential features.

In Nonholonomic Mechanics, the symplectic form constructed from the
Lagrangian is no longer preserved as in the unconstrained case. Moreover,
in the case of a nonholonomic system with symmetry, the momentum map
is not conserved in general, due to the presence of the constraint forces.
On the other hand, at least in the case of homogeneous constraints, the
energy is still a conservation law for the system. Consequently, two of the
three cornerstones on which the construction of mechanical integrators for
unconstrained systems relies (i.e. preservation of symplectic structure and
momentum) are lacking in the nonholonomic case. In Section 7.5, we will
show that in spite of this, the integrators that we propose in the following
enjoy several interesting geometric properties that account for their good long
time behavior in examples.

Consider as before a discrete Lagrangian Ld : Q × Q −→ R and the
associated action sum

S =
N−1∑
k=0

Ld(qk, qk+1) , (7.8)

where qk ∈ Q and k ∈ {0, 1, . . . , N} is the discrete time. In the unconstrained
discrete mechanics case (cf. Section 7.2), we have seen that one extremizes the
action sum with respect to all possible sequences of N − 1 points, given fixed
end points q0, qN . This means that at each point q ∈ Q, the allowed variations
are given by the whole tangent space TqQ. However, in the nonholonomic
case, we must restrict the allowed variations. These are exactly given by
the distribution D. In addition, we will consider a discrete constraint space
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Dd ⊂ Q × Q with the same dimension as D and such that (q, q) ∈ Dd for
all q ∈ Q. This discrete constraint space imposes constraints on the solution
sequence {qk}, namely, (qk, qk+1) ∈ Dd. Later, when regarding the discrete
principle as an approximation of the continuous one, we shall impose more
conditions on the selection of Dd in order to obtain a consistent discretization
of the continuous equations of motion.

Consequently, to develop the discrete nonholonomic mechanics, one needs
three ingredients: a discrete Lagrangian Ld, a constraint distribution D on Q
and a discrete constraint space Dd. Notice that the discrete mechanics can
also be seen within this framework, where D = TQ and Dd = Q × Q.

Then, we define the discrete Lagrange-d’Alembert principle to be the
extremization of (7.8) among the sequence of points (qk) with given fixed
end points q0 and qN , where the variations must satisfy δqk ∈ Dqk

and
(qk, qk+1) ∈ Dd, for all k ∈ {0, . . . , N − 1}. This leads to the set of equations

(D1Ld(qk, qk+1) + D2Ld(qk−1, qk))i δq
i
k = 0 , 1 ≤ k ≤ N − 1 ,

where δqk ∈ Dqk
, along with (qk, qk+1) ∈ Dd. If ωad : Q × Q → R, a ∈

{1, . . . ,m}, are functions whose annihilation defines Dd, what we have got is
the following discrete Lagrange-d’Alembert (DLA) algorithm{

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = λaω
a(qk)

ωad(qk, qk+1) = 0 .
(7.9)

Notice that the discrete Lagrange-d’Alembert principle is not truly varia-
tional, as it also happens with the continuous principle. Alternatively, we
will refer to the DLA algorithm (7.9) as a nonholonomic integrator , by anal-
ogy with the unconstrained case. Note also that, under appropriate regularity
assumptions, the implicit function theorem ensures us that we have obtained
a well-defined algorithm Φ : Q × Q −→ Q × Q, Φ(qk−1, qk) = (qk, qk+1). In
fact, this is guaranteed if the matrix(

D1D2Ld(qk, qk+1) ωa(qk)
D2ω

a
d(qk, qk+1) 0

)
(7.10)

is invertible for each (qk, qk+1) in a neighborhood of the diagonal of Q × Q.

Remark 7.3.1. Assume we are given a continuous nonholonomic problem with
data L : TQ −→ R and D ⊂ TQ. In the following section, we shall discuss
some types of discretizations of this problem. To guarantee that the DLA
algorithm approximates the continuous flow within a desired order of accu-
racy, one should select the discrete Lagrangian Ld : Q × Q −→ R and the
discrete constraint space Dd in a consistent way. This essentially means that,
if ω1, . . . , ωm are 1-forms on Q whose annihilation locally define the con-
straint distribution D, one performs the same type of discretization of both
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the Lagrangian L : TQ −→ R and the 1-forms (interpreted as functions linear
in the velocities, ωa : TQ −→ R). For instance, if Ld is constructed by means
of a discretization mapping Ψ : Q × Q −→ TQ defined on a neighborhood of
the diagonal of Q × Q, that is, Ld = L ◦ Ψ , then Dd must locally be defined
by the annihilation of the functions ωad = ωa ◦ Ψ .

Remark 7.3.2. Consider the continuous nonholonomic problem given by L
and D, and let Ld and Dd be appropriate discrete versions of them. Then, if
the matrix (

D1D2Ld(qk, qk) ωa(qk)
D2ω

a
d(qk, qk) 0

)
is invertible for each qk ∈ Q, a sufficiently small stepsize h guarantees that
the matrix (7.10) is also nonsingular and hence the DLA algorithm is solvable
for qk+1.

Remark 7.3.3 (The holonomic case).

Let us examine the nonholonomic integrator when the constraints are
holonomic, that is, the case when the distribution D is integrable. Assume
that there exists a function

g : Q −→ Rl ,

whose level surfaces are precisely the integral manifolds of D, i.e. for each
r ∈ Rl, Nr = g−1(r) is a submanifold of Q such that TqNr = Dq for all
q ∈ Nr. Then, we can consider as discrete constraint space the following
subspace of Q × Q,

Dd = ∪r∈RlNr × Nr .

Observe that if we take q0 ∈ N0, then (q0, q1) ∈ Dd is equivalent to q1 ∈ N0.
We then find that the nonholonomic integrator for an initial pair q0, q1 ∈ N0
becomes {

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = λaDga(qk)
g(qk+1) = 0 ,

(7.11)

where ga : Q −→ R denotes the a component of g. Notice that (7.11) is just a
variational integrator [256]. It is in this sense that we say that nonholonomic
integrators are an extention of variational integrators, since for integrable
constraints we do recover the latter ones. It is known, for instance, that an
appropriate choice of the discrete Lagrangian in (7.11) gives rise to the Shake
algorithm used in molecular dynamics simulation [134, 209], written in terms
of position variables.
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7.4 Construction of integrators

A SSUME that we have a continuous nonholonomic problem given by
L : TQ −→ R and D ⊂ TQ. In the unconstrained case [256], there

are mainly two ways of constructing mechanical integrators, depending on
whether Q is seen as a manifold in its own right (the “intrinsic” point of
view) or as being embedded in a larger space (the “extrinsic” point of view).

When adopting the intrinsic point of view, one makes use of coordinate
charts on Q to construct the discrete Lagrangian. Let ϕ : U ⊂ Q −→ Rn

be a local chart whose coordinate domain U contains qk and assume that
qk+1 ∈ U (a condition guaranteed by a sufficiently small time step h). A
choice of discrete Lagrangian is the following

Lαd (qk, qk+1) = (7.12)

L

(
ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ−1)∗

(
ϕ(qk+1) − ϕ(qk)

h

))
,

where 0 ≤ α ≤ 1 is an interpolation parameter and the differential (ϕ−1)∗ is
taken at the point x = (1 − α)ϕ(qk) + αϕ(qk+1). Of course there are other
possible choices of discretizations, as for instance,

Lsym,αd (qk, qk+1) =

1
2
L

(
ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ−1)∗

(
ϕ(qk+1) − ϕ(qk)

h

))
+

1
2
L

(
ϕ−1(αϕ(qk) + (1 − α)ϕ(qk+1)), (ϕ−1)∗

(
ϕ(qk+1) − ϕ(qk)

h

))
.

(7.13)

In the unconstrained case, the choice (7.13) always yields second order accu-
rate numerical methods, whereas in general this is only guaranteed for the
discretization (7.12) if α = 1

2 (although for natural Lagrangians of the form
L = 1

2 q̇Mq̇ − V (q), the discrete Lagrangian (7.12) also gives second order
numerical methods [110]).

This approach is called the Generalized Coordinate Formulation.

Remark 7.4.1. In general, this viewpoint is necessarily local, since the dis-
cretizations are only valid in the coordinate domain U of ϕ. If we choose an
atlas of charts covering the whole manifold Q, we cannot guarantee that the
construction of the discrete Lagrangian Ld will coincide on the chart over-
laps. There are certain cases, however, in which this is indeed possible. For
example, if we can find an atlas {(Us, ϕs)} such that for any two overlap-
ping charts, ϕs1 and ϕs2 , the local diffeomorphism ϕs1s2 = ϕs1 ◦ ϕ−1

s2 verifies
ϕs1s2((1 − α)x + αy) = (1 − α)ϕs1s2(x) + αϕs1s2(y), for any x, y ∈ ϕs2(Us2)
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and (ϕs1s2)∗ = id, then it is easy to see that one can “paste” the local
constructions (7.12) (respectively (7.13)) to have a well-defined discrete La-
grangian on a neighborhood of the diagonal of Q × Q. [A simple example of
this situation is given by the manifold S1, with the local charts ϕ1(z1, z2) =
arcsin(z2/z1) ∈ (0, 2π) and ϕ2(z1, z2) = arcsin(z2/z1) ∈ (−π, π)].

Remark 7.4.2. Another way of constructing a well-defined discrete Lagrangian
on a neighborhood of the diagonal of Q × Q is the following. Assume that
there exist a q0 ∈ Q and a differentiable mapping Υ : Q −→ Diff(Q) such
that Υ (q)(q) = q0, for all q ∈ Q. In this case, we can define Ld for each (q, q′)
according to either (7.12) or (7.13) by means of ϕ = ϕ0 ◦ Υ (q), where ϕ0 is a
local chart whose coordinate domain contains q0. It is important to note that
in this construction the mapping ϕ0 ◦Υ (q) varies with the pair (q, q′). This is
the case for instance of finite dimensional Lie groups Q = G, where one can
take q0 = e, the identity element, Υ (g) = Lg−1 for each g ∈ G and ϕ0 = exp−1

e

(see [161]). We shall make use of this construction in Section 7.5.3.

The extrinsic point of view assumes that Q is embedded in some linear
space V and that we have a Lagrangian L : TV −→ R such that L|TQ =
L. In addition, it is assumed that there exists a vector valued constraint
function g : V −→ Rl, such that g−1(0) = Q ⊂ V , with 0 a regular value
of g. According to (7.12) and (7.13), we can consider the following discrete
Lagrangians on V × V

Lαd (vk, vk+1) = L

(
(1 − α)vk + αvk+1,

vk+1 − vk
h

)
, (7.14)

and

L
sym,α
d (vk, vk+1) =

1
2

L

(
(1 − α)vk + αvk+1,

vk+1 − vk
h

)
+

1
2

L

(
αvk + (1 − α)vk+1,

vk+1 − vk
h

)
. (7.15)

In this way, we can sum and subtract points in Q because we are regarding
them as vectors in V by means of the natural inclusion j : Q ↪→ V . Of
course, we must ensure that the points obtained by the algorithm all belong
to Q. Then, the solution sequence (vk) will extremize the action sum S =∑N−1
k=0 Ld(vk, vk+1) subject to the holonomic constraints imposed by g. This

leads to the discrete equations{
D1Ld(vk, vk+1) + D2Ld(vk−1, vk) = λlDgl(vk)

g(vk+1) = 0 .

This approach is called the Constrained Coordinate Formulation.
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Both formulations are shown to be equivalent in the domain of defini-
tion of the local chart ϕ selected in the Generalized Coordinate Formula-
tion [256], whereby the following identification is understood: Ld(qk, qk+1) =
Ld(j(qk), j(qk+1)), which is valid for choices of the chart (U,ϕ) in the defini-
tion of Ld such that the map J = j ◦ϕ−1 : ϕ(U) ⊂ Rn −→ V is linear. Notice
that this assumption is not at all restrictive, since j is an injective immersion
and such a chart (U,ϕ) can always be chosen.

In the nonholonomic case, we can construct an appropriate adaptation of
both formulations. In the Generalized Coordinate Formulation, we introduce
Dd as follows. Take a local basis of 1-forms of the annihilator of the constraint
distribution D, {ω1, . . . , ωm} ∈ Do. These 1-forms can be interpreted as
functions linear in the velocities, locally defined on TQ. Then, we discretize
them according to the previous discretizations of the Lagrangian, that is, we
take either

ωad(qk, qk+1) = (7.16)

ωa
(
ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ−1)∗

(
ϕ(qk+1) − ϕ(qk)

h

))
,

or

ωad(qk, qk+1) =

1
2
ωa
(
ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ−1)∗

(
ϕ(qk+1) − ϕ(qk)

h

))
+

1
2
ωa
(
ϕ−1(αϕ(qk) + (1 − α)ϕ(qk+1)), (ϕ−1)∗

(
ϕ(qk+1) − ϕ(qk)

h

))
.

(7.17)

In this way we obtain the functions ωad : Q × Q −→ R whose annihilation
defines Dd ⊂ Q × Q. As in the unconstrained case, it is not hard to prove
that the discretization (7.13) together with (7.17) yields second order accurate
approximations to the continuous flow, whereas this is only guaranteed for
the discretization (7.12), (7.16) if α = 1

2 .

In the Constrained Coordinate Formulation, we assume that there exist
local 1-forms on V defining Do, {ω̃1, . . . , ω̃m} such that ω̃a(q)|TqQ = ωa(q)
for q ∈ Q. Then, we discretize them according to

ω̃ad(vk, vk+1) = ω̃a
(

(1 − α)vk + αvk+1,
vk+1 − vk

h

)
, (7.18)

and

ω̃ad(vk, vk+1) =
1
2
ω̃a
(

(1 − α)vk + αvk+1,
vk+1 − vk

h

)
+

1
2
ω̃a
(
αvk + (1 − α)vk+1,

vk+1 − vk
h

)
. (7.19)
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Observe that we can identify ωad(qk, qk+1) = ω̃ad(j(qk), j(qk+1)) in the same
way as we have done for the discrete Lagrangians. Then, the discrete
Lagrange-d’Alembert principle with the holonomic constraints g and the non-
holonomic constraints ω̃1, . . . , ω̃m leads us to the equations

D1Ld(vk, vk+1) + D2Ld(vk−1, vk) = λlDgl(vk) + µaω̃
a(vk)

g(vk+1) = 0
ω̃ad(vk, vk+1) = 0 .

(7.20)

The following theorem, analogous to the one presented in [256], ensures that
both formulations (7.9) and (7.20) are indeed equivalent in the same sense as
before, as one might expect. We prove it for the discretizations (7.12), (7.16).
The proof for the symmetric discretizations (7.13), (7.17) is analogous.

Theorem 7.4.3. Let ϕ : U ⊂ Q −→ Rn be a local chart of Q such that J =
j ◦ϕ−1 is linear. Identify U with ϕ(U) and j|U with J|U through ϕ. Let qk−1,
qk be two initial points in the coordinate chart and let vk−1 = J(qk−1), vk =
J(qk). Then, the Generalized Coordinate Formulation (7.9) has a solution
(qk+1, µ

(k)
a ) if and only if the Constrained Coordinate Formulation (7.20) has

a solution (vk+1, λ
(k)
l , µ̄

(k)
a ). Indeed, vk+1 = J(qk+1) and µ̄

(k)
a = µ

(k)
a .

Proof. To establish the equivalence, we first expand equations (7.9) and (7.20)
in terms of L and the 1-forms {ω̃a}ma=1. Let (v, v̇) denote the canonical coor-
dinates of TV . Equations (7.9) become, when written in matrix form,

DTJ(qk)
{

1
h

[
∂L

∂v̇
(ak, bk) − ∂L

∂v̇
(ak+1, bk+1)

]
+ (1 − α)

∂L

∂v
(ak+1, bk+1)

+ α
∂L

∂v
(ak, bk) + µ(k)

a ω̃a(J(qk))
}

= 0 ,

(7.21)

ω̃ad(J(qk), J(qk+1)) = ω̃a(ak+1, bk+1) = 0 ,

where ak = αJ(qk) + (1 − α)J(qk−1) and bk = (J(qk) − J(qk−1))/h. Note
that we are using the identifications ωad = (ω̃ad)|Q×Q, (Lαd )|Q×Q = Lαd and
ω̃a|TQ = ωa. If ω̃a = ω̃al dv

l and ωa = ωai dq
i, we have that

ωai (qk)dq
i = J∗(ω̃al dv

l)(qk) =
∂J l

∂qi
(qk)ω̃al (J(qk))dqi ,

which can be written in a more compact way as ωa(qk) = DTJ(qk)ω̃a(J(qk)).
Here and in the following the superscript T refers to the transpose of a matrix.

On the other hand, equation (7.20) can be written as
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1
h

[
∂L

∂v̇

(
vk−1+α,

vk − vk−1

h

)
− ∂L

∂v̇

(
vk+α,

vk+1 − vk
h

)]
+ (1 − α)

∂L

∂v

(
vk+α,

vk+1 − vk
h

)
+ α

∂L

∂v

(
vk−1+α,

vk − vk−1

h

)
+ µ̄(k)

a ω̃a(vk) = λ
(k)
l Dgl(vk) ,

(7.22)

g(vk+1) = 0 ,

ω̃ad(vk, vk+1) = ω̃al (vk+α)
(

vk+1 − vk
h

)l
= 0 ,

where the shorthand notation vk+α = (1 − α)vk + αvk+1 is used. Now,
assume that (vk+1, λ

(k)
l , µ̄

(k)
a ) is a solution of (7.22) with vk = J(qk) and

vk−1 = J(qk−1). The fact that g(vk+1) = 0 implies that vk+1 belongs to the
image of J . Let qk+1 = J−1(vk+1). Multiplying the first equation of (7.22) by
DTJ(qk) and making the corresponding substitutions, one obtains for the pair
(qk+1, µ̄

(k)
a ) just the first equation of (7.21), since the term DTJ(qk)DT g(vk)

cancels due to g ◦ J = 0.

Conversely, if (qk+1, µ
(k)
a ) is a solution of (7.21), then one can find La-

grange multipliers λ
(k)
l , such that (vk+1 = J(qk+1), λ

(k)
l , µ

(k)
a ) is a solution

of (7.22) as follows. The second and the third equation of (7.22) are auto-
matically satisfied because of vk+1 ∈ Q and the second equation of (7.21).
Moreover, as DJ(qk) and Dg(qk) are assumed to have full rank, we have that
Tvk

V = R(DJ(qk))⊕N (DTJ(qk)), where R(DJ(qk)) and N (DTJ(qk)) refer
to the range and the kernel, respectively, of the operator under consideration.
Since R(DT g(qk)) ⊂ N (DTJ(qk)) and dimR(DT g(qk)) = dimN (DTJ(qk)),
we have Tvk

V = R(DJ(qk))⊕R(DT g(qk)). Now, the left-hand side of the first
equation of (7.22) can be decomposed into a part belonging to R(DJ(qk))
and a part belonging to R(DT g(qk)). But the part in R(DJ(qk)) is zero,
because of the first equation of (7.21). Consequently, the entire expression
belongs to R(DT g(qk)), and thus there exist some λ

(k)
l such that

1
h

[
∂L

∂v̇

(
vk−1+α,

vk − vk−1

h

)
− ∂L

∂v̇

(
vk+α,

vk+1 − vk
h

)]
+ (1 − α)

∂L

∂v

(
vk+α,

vk+1 − vk
h

)
+ α

∂L

∂v

(
vk−1+α,

vk − vk−1

h

)
+ µ̄(k)

a ω̃a(vk) = λ
(k)
l Dgl(vk) ,

which is precisely the first equation of (7.22). ��

The relevance of Theorem 7.4.3 becomes apparent when handling con-
crete examples. Generally, it is easier to treat the nonholonomic integrator
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following the Constrained Coordinate Formulation, since points in Q can be
treated as points in some Rs, and this is a definite advantage for the numeri-
cal implementation. On the other hand, the geometric study of the properties
of discrete nonholonomic mechanics is carried out from the “intrinsic” point
of view.

7.5 Geometric invariance properties

IN the unconstrained case, one can study discrete mechanics by itself, start-
ing from a given discrete Lagrangian Ld and investigating the geometric

properties that the discrete flow enjoys, such as the preservation of the sym-
plectic form or of the momentum in the presence of symmetry. Furthermore,
when one regards a discrete mechanical system as an approximation of a
continuous one, it turns out that the symplectic-momentum nature of the
variational integrators makes the difference in capturing the essential fea-
tures of Lagrangian systems.

In the following, we provide some geometric explanations for the good per-
formance of the DLA algorithm when compared with other standard higher
order numerical methods, such as the 4th order Runge-Kutta, as will be shown
in Section 7.6. Of course, a more thorough error analysis would be of inter-
est, but here we focus our attention on the invariance properties that the
discrete nonholonomic mechanics possesses, as a sign of its appropriateness
for approximating the continuous counterpart.

As we have shown in Section 3.4.1, in Nonholonomic Mechanics the sym-
plectic form is not preserved by the flow of the system, so one can not expect
the discrete version to preserve it. However, we will show in Section 7.5.1 that
the discrete flow preserves the structure of the evolution of the symplectic
form along the trajectories of the system. This property generalizes the sym-
plectic character of variational integrators and, in fact, one precisely recovers
the preservation of the symplectic form in the absence of constraints.

Moreover, under the action of a Lie group G on the configuration mani-
fold Q, leaving invariant the Lagrangian L : TQ −→ R and the constraints
D ⊂ TQ, the associated momentum J : TQ −→ g∗ in general will not be
conserved either, as we discussed in Chapter 4. However, we can “measure”
the evolution of the nonholonomic momentum mapping along the integral
curves of the Lagrange-d’Alembert equations by means of the nonholonomic
momentum equation (cf. equations (4.19) and (4.20) in Section 4.4). We shall
show in Section 7.5.2 that the DLA algorithm satisfies a discrete version of
the nonholonomic momentum equation. In addition, in the presence of hori-
zontal symmetries, we shall prove that the associated momenta are actually
conservation laws.
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In the vertical or purely kinematic case, there are no symmetry directions
lying in the constraint distribution and one does not have any nonholonomic
momentum (see Section 4.2). Nonholonomic systems of Chaplygin type form
the most representative class of systems falling into this category. In Sec-
tion 7.5.3, we will discuss how, for Chaplygin systems, the DLA algorithm
passes to the reduced space Q/G and yields a variational integrator in the
sense of [110]. In some cases (in agreement with the continuous counterpart),
this reduced formulation exactly yields a standard variational integrator.

7.5.1 The symplectic form

In this section, we investigate the behavior of the DLA algorithm with respect
to the discrete symplectic form ΩLd

defined in Section 7.2. The reader is
referred to Section 3.4.1 for the geometric picture in the continuous case. We
just recall here that the evolution of the symplectic form along the trajectories
of the system is given by equation (3.14)

LXωL = dβ , (7.23)

with β ∈ F o = S∗((TD)o).

The DLA algorithm preserves this structure for the evolution of the dis-
crete symplectic form ΩLd

. Indeed we have that

Φ∗ΩLd
= −Φ∗FL∗

ddΘQ = −d(FLd ◦ Φ)∗ΘQ

= −d(F̃Ld ◦ Φ)∗ΘQ
DLA= −d(FLdΘQ − βd) ,

where βd ∈ Do and in the last equality we have used the definition of the
discrete principle (7.9). Finally, we get

Φ∗ΩLd
= ΩLd

+ dβd , (7.24)

which is the discrete version of (7.23). Note that in the absence of constraints,
we precisely recover the conservation of the discrete symplectic form (cf.
equation (7.4)).

7.5.2 The momentum

What we develop in the following is a discrete version of the nonholonomic
momentum map and show that the nonholonomic integrator (7.9) fulfills a
discrete version of the momentum equation.

Firstly, given the discrete Lagrangian Ld : Q×Q −→ R, define the discrete
nonholonomic momentum map by
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Jnhd : Q × Q −→ gD∗

(qk−1, qk) �−→ Jnhd (qk−1, qk) : gq → R

ξ �→ 〈D2Ld(qk−1, qk), ξQ(qk)〉 .
Take, as in the continuous case (cf. Section 4.4), a smooth section ξ̃ of the
bundle gD −→ Q and consider the function on Q×Q, (Jnhd )ξ̃ : Q×Q −→ R,
given by (Jnhd )ξ̃ = 〈Jnhd , ξ̃〉. Then, one finds that the nonholonomic inte-
grator fullfils the following discrete version of the nonholonomic momentum
equation (4.20).

Theorem 7.5.1. The flow of the discrete Lagrange-d’Alembert equations,
(qk−1, qk) �−→ (qk, qk+1), verifies

(Jnhd )ξ̃(qk, qk+1) − (Jnhd )ξ̃(qk−1, qk)

= D2Ld(qk, qk+1)
(
ξ̃(qk+1) − ξ̃(qk)

)
Q

(qk+1) . (7.25)

Proof. The invariance of the discrete Lagrangian Ld implies that

L(exp(sξ̃(qk))qk, exp(sξ̃(qk))qk+1) = L(qk, qk+1) .

Differentiating with respect to s and setting s = 0 yields

D1Ld(qk, qk+1)
(
ξ̃(qk)

)
Q

(qk) +D2Ld(qk, qk+1)
(
ξ̃(qk)

)
Q

(qk+1) = 0 . (7.26)

On the other hand, the discretization of the Lagrange-d’Alembert princi-
ple (7.9) implies that

D1Ld(qk, qk+1)
(
ξ̃(qk)

)
Q

(qk) + D2Ld(qk−1, qk)
(
ξ̃(qk)

)
Q

(qk) = 0 . (7.27)

Subtracting equation (7.26) from equation (7.27), we find that

D2Ld(qk, qk+1)
(
ξ̃(qk)

)
Q

(qk+1) = D2Ld(qk−1, qk)
(
ξ̃(qk)

)
Q

(qk) . (7.28)

Finally, the result follows from (7.28) since

(Jnhd )ξ̃(qk, qk+1) − (Jnhd )ξ̃(qk−1, qk)

= D2Ld(qk, qk+1)
(
ξ̃(qk+1)

)
Q

(qk+1) − D2Ld(qk−1, qk)
(
ξ̃(qk)

)
Q

(qk)

= D2Ld(qk, qk+1)
(
ξ̃(qk+1)

)
Q

(qk+1) − D2Ld(qk, qk+1)
(
ξ̃(qk)

)
Q

(qk+1) .

��
In the presence of horizontal symmetries we find that the algorithm (7.9)

exactly preserves the associated components of the momentum.

Corollary 7.5.2. If ξ is a horizontal symmetry, then (Jnhd )ξ is conserved by
the nonholonomic integrator.
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7.5.3 Chaplygin systems

The study of the previous section on the discrete nonholonomic momentum
mapping does not cover all the possible cases that can occur when dealing
with nonholonomic systems with symmetry, as we already know from the
discussion in Chapter 4. Consider the situation in which the action of the Lie
group G has no symmetry direction lying in D, i.e. V∩D = 0, where V denotes
the vertical bundle of the projection π : Q −→ Q/G. In this case there is
no nonholonomic momentum mapping. Under the common assumption that
Dq + Vq = TqQ for all q ∈ Q (dimension assumption), one has indeed a
splitting of the tangent bundle at each point q ∈ Q, TqQ = Dq ⊕ Vq. The
distribution D being G-invariant, this situation corresponds precisely to the
notion of a principal connection γ on the principal fiber bundle π : Q −→
Q/G. Hence, we are dealing with a generalized Chaplygin system [49, 120].

From the discussion in Section 4.2, we know that one of the peculiarities of
nonholonomic Chaplygin systems is that, after reduction by the Lie group G,
they take on the form of an unconstrained system, subject to an “external”
force of a special type. In this section, we investigate what happens with the
nonholonomic integrator in this situation.

Reduction of the discrete principle Next, we examine the possibility
of passing the discrete nonholonomic principle to the reduced space Q/G.
Consider a discrete Lagrangian Ld : Q × Q −→ R and a discrete space Dd,
described by the annihilation of some constraint functions ωad : Q×Q −→ R,
a ∈ {1, . . . ,m}. Assume that both the Lagrangian and the constraints are G-
invariant under the diagonal action of the Lie group on the manifold Q × Q.
The DLA algorithm then becomes{

D1Ld(rk, gk, rk+1, gk+1) + D2Ld(rk−1, gk−1, rk, gk) = λaω
a(rk, gk)

ωad(rk, gk, rk+1, gk+1) = 0 ,
(7.29)

where it should be recalled that D1 denotes the derivative with respect to
qk = (rk, gk). These equations can be rewritten, using the expression (4.12)
for the constraint 1-forms, in the following way

∂Ld

∂rβk
(rk, gk, rk+1, gk+1) +

∂Ld

∂rβk
(rk−1, gk−1, rk, gk) =

=
(

∂Ld
∂gk

(rk, gk, rk+1, gk+1) +
∂Ld
∂gk

(rk−1, gk−1, rk, gk)
)

Ab
β(rk)Lgk ∗eb

ωad(rk, gk, rk+1, gk+1) = 0 ,
(7.30)

where β ∈ {1, . . . , n − m}, b ∈ {1, . . . ,m} and Lg denotes the left multipli-
cation by g in G. It must be noted that in the right-hand side of the first
equation a shorthand notation is used to denote the natural pairing between
tangent vectors and covectors on G.
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Observe that Dd can be locally identified with Q/G × Q/G × G via the
assignment

(rk, gk, rk+1, gk+1) ∈ Dd �−→ (rk, gk, rk+1) ,

since gk+1 is uniquely determined by the equations ωad(rk, gk, rk+1, gk+1) =
0, a ∈ {1, . . . ,m}, that is, gk+1 = gk+1(rk, gk, rk+1). In addition, the G-
invariance of the constraint functions implies that gk+1(rk, gk, rk+1) = gk ·
gk+1(rk, e, rk+1).

Let us consider the restriction of Ld : Q×Q −→ R to Dd, Lcd : Dd −→ R.
The G-invariance of Ld and Dd implies the G-invariance of Lcd. Define a
discrete Lagrangian L∗

d on the reduced manifold as

L∗
d : Q/G × Q/G −→ R

(rk, rk+1) �−→ Lcd(rk, e, rk+1) .

Now, we shall write the DLA algorithm (7.30) in terms of the constrained
discrete Lagrangian Lcd and then examine the possibility of passing the equa-
tions to Q/G, in terms of the reduced discrete Lagrangian L∗

d. First, we have
that

∂Lcd
∂rβk

=
∂Ld

∂rβk
+

∂Ld
∂gk+1

∂gk+1

∂rβk
,

∂Lcd
∂rβk+1

=
∂Ld

∂rβk+1

+
∂Ld

∂gk+1

∂gk+1

∂rβk+1

.

Secondly, we also have

0 =
∂Lcd
∂gk

=
∂Ld
∂gk

+
∂Ld

∂gk+1

∂gk+1

∂gk
=

∂Ld
∂gk

+ R∗
gk+1

∂Ld
∂gk+1

,

where Rg denotes the right multiplication in the Lie group by the element
g ∈ G.

In view of this, we see that the nonholonomic integrator can be expressed
in the following way

D1L
c
d(rk, gk, rk+1) + D2L

c
d(rk−1, gk−1, rk) = F−(qk, qk+1) + F+(qk−1, qk) ,

where

F−(qk, qk+1) =
∂Ld

∂gk+1

∂gk+1

∂rβk
(rk, gk, rk+1)

+
∂Ld
∂gk

(rk, gk, rk+1, gk+1)Ab
β(rk)Lgk ∗eb

=

(
∂Ld

∂gk+1

∂gk+1

∂rβk
(rk, rk+1) +

∂Ld
∂gk

Ab
β(rk)

)
Lgk ∗eb ,
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F+(qk−1, qk) =
∂Ld
∂gk

∂gk

∂rβk
(rk−1, gk−1, rk)

+
∂Ld
∂gk

(rk−1, gk−1, rk, gk)Ab
β(rk)Lgk ∗eb

=
∂Ld
∂gk

∂gk

∂rβk
(rk−1, rk)Lgk−1∗eb

− ∂Ld
∂gk−1

Ab
β(rk)Lgk−1∗Adgk(rk−1,rk)eb .

Note that both discrete forces, F− and F+, are G-invariant. This can be seen
as follows. As Ld is G-invariant, we have that

Ld(rk, gk, rk+1, gk+1) = Ld(rk, e, rk+1, g
−1
k gk+1) =  d(rk, rk+1, fk,k+1) ,

where we use the shorthand notation fk,k+1 = g−1
k gk+1. From here, one can

derive

∂Ld
∂gk

(rk, gk, rk+1, gk+1) = −L∗
g−1

k

R∗
fk,k+1

∂ d
∂fk,k+1

,

∂Ld
∂gk+1

(rk, gk, rk+1, gk+1) = L∗
g−1

k

∂ d
∂fk,k+1

.

Moreover, if (rk, gk, rk+1, gk+1) ∈ Dd, then fk,k+1 = g−1
k gk+1 = gk+1(rk, rk+1).

Therefore, substituting in the expressions for the discrete forces, one verifies
that

F−(qk, qk+1) =
∂ d

∂fk,k+1
(rk, rk+1, fk,k+1)

∂gk+1

∂rβk
(rk, rk+1)eb

− R∗
fk,k+1

∂ d
∂fk,k+1

(rk, rk+1, fk,k+1)Ab
β(rk)eb ,

F+(qk−1, qk) =
∂ d

∂fk−1,k
(rk−1, rk, fk−1,k)

∂gk

∂rβk
(rk−1, rk)eb

+ L∗
gk(rk−1,rk)

∂ d
∂fk−1,k

(rk−1, rk, fk−1,k)Ab
β(rk)eb .

Therefore, we can write a well-defined algorithm on Q/G of the form

D1L
∗
d(rk, rk+1) + D2L

∗
d(rk−1, rk) = F−(rk, rk+1) + F+(rk−1, rk) . (7.31)

Equation (7.31) belongs to the type of discretization generalizing vari-
ational integrators for systems with external forces developed in [110] (see
also [194]),

δ
∑

Ld(qk, qk+1) +
∑

(F−
d (qk, qk+1)δqk + F+

d (qk, qk+1)δqk+1) = 0 , (7.32)
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where F−
d , F+

d are the left and right discrete friction forces. Equation (7.32)
defines an integrator (qk−1, qk) �−→ (qk, qk+1) given implicitly by the forced
discrete Euler-Lagrange equations

D1Ld(qk, qk+1)+D2Ld(qk−1, qk)+F−
d (qk, qk+1)+F+

d (qk−1, qk) = 0 . (7.33)

Theorem 7.5.3. Consider a discrete nonholonomic problem with data Ld :
Q × Q −→ R, a distribution D on Q and a discrete constraint space Dd.
Let G be a Lie group acting freely and properly on Q, leaving D invariant
and such that TqQ = Dq ⊕ Vq, for all q ∈ Q, where V denotes the vertical
bundle of the G-action. Assume further that both Ld and Dd are invariant
under the diagonal action of the Lie group G on the manifold Q×Q. Then, the
DLA algorithm (7.30) passes to the reduced space Q/G, yielding a generalized
variational integrator in the sense of [110]. We call the algorithm on Q/G
the reduced discrete Lagrange-d’Alembert algorithm (RDLA).

So far, we have obtained that the DLA algorithm respects the structure of
the evolution of the symplectic form along the flow of the system (cf. equa-
tion (7.24)) and that, in the presence of symmetries, it satisfies a discrete
version of the nonholonomic momentum equation. In addition, we have been
able to establish in the two extreme cases (horizontal and vertical) Corol-
lary 7.5.2 and Theorem 7.5.3, respectively. These results are important, both
from a geometrical and from a numerical perspective. On the one hand, they
show interesting interactions between the discrete unconstrained and non-
holonomic mechanics, similar to those occuring in the continuous case. On the
other hand, when regarding the discrete version of mechanics as an approxi-
mation of the continuous one, they provide good arguments to consider the
proposed DLA algorithm (7.9) as an appropriate (in a symplectic-momentum
sense) discretization of the continuous flow.

It is worth noting, though, that when regarding the discrete nonholonomic
mechanics as an approximation of the continuous one, we cannot expect the
diagram (R here stands for ‘reduced’)

LA RLA

DLA RDLA�

�

�

to be commutative in general, because the two horizontal arrows symbolize
processes that are of a different mathematical nature (discrete and continu-
ous, respectively). For instance, as we know (cf. Sections 4.2 and 5.3), there
exist some special situations in which the reduced Chaplygin system admits
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a Hamiltonian description, that is, the gyroscopic force F vanishes [49]. But
in general, the RDLA will not be a standard variational integrator. In the
following section we show that, under strong assumptions on the linearity
of the geometric operations involved, the midpoint RDLA algorithm [which
corresponds to taking α = 1/2 in equation (7.12) (or in equation (7.13), since
in this case both discretizations coincide)] yields indeed a variational inte-
grator, i.e. the diagram is commutative. The hypothesis on the linearity are
justified by the fact that the diagram involves both discrete and continuous
systems. This result provides an additional reason (since we already know
that this type of discretization always guarantees a second order accurate
numerical approximation to the continuous flow) to consider the midpoint
rule as a reliable integrator.

The midpoint RDLA algorithm Consider a nonholonomic Chaplygin sys-
tem, with the following data: a principal G-bundle π : Q −→ Q/G, associated
with a free and proper action Ψ of G on Q, a Lagrangian L : TQ −→ R which
is G-invariant with respect to the lifted action on TQ, and linear nonholo-
nomic constraints determined by the horizontal distribution D of a principal
connection γ on π. In this section, we will focus our attention on the midpoint
RDLA algorithm.

For each q = (rk, gk) ∈ Q, take a product chart ϕ = ϕ1 × ϕ2, given by a
chart ϕ1 in Q/G and a chart ϕ2 in G. For the latter, we take (see [161]): ϕ2 =
exp−1 ◦Lg−1

k
, which is defined in a neighborhood of gk, where exp : g −→ G

is the exponential mapping. Denote by

η =
1
2
ϕ2(gk) +

1
2
ϕ2(gk+1) =

1
2

log(g−1
k gk+1) ,

ζ =
ϕ2(gk+1) − ϕ2(gk)

h
=

log(g−1
k gk+1)
h

.

We assume that Q/G is itself a linear space, so that we can always take
the identity chart ϕ1 = IdQ/G. With this type of charts, we can construct
the discrete Lagrangian and the discrete constraint distribution as explained
in Remark 7.4.2.

The discrete Lagrangian then reads

L
1
2
d (rk, gk, rk+1, gk+1) = L

(
rk+ 1

2
, ϕ−1

2 (η),
rk+1 − rk

h
, (ϕ−1

2 )∗(ζ)
)

,

and the discrete nonholonomic constraints

ζ + Ab
β(rk+ 1

2
)
(

rk+1 − rk
h

)β
eb = 0 .
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As before, the shorthand notation rk+ 1
2

=
1
2
rk +

1
2
rk+1 is understood. The

above discretizations of the Lagrangian and of the constraints are G-invariant
under the diagonal action of the Lie group on the manifold Q × Q.

Here, we will make a different identification between Dd and Q/G×Q/G×
G, taking into account the specific structure of the constraint functions. More
precisely, we identify Dd with Q/G × Q/G × G via the assignment

(rk, gk, rk+1, gk+1) ∈ Dd �−→ (rk, rk+1, ĝ) ,

where

ĝ = ϕ−1
2 (η) = Lgk

exp(
1
2
hζ) = gk exp(−1

2
A(rk+ 1

2
)(rk+1 − rk)) .

The inverse mapping (rk, rk+1, ĝ) �−→ (rk, gk, rk+1, gk+1) ∈ Dd is given by

gk+1 = ĝ exp(
1
2
hζ) , gk = ĝ exp(−1

2
hζ) . (7.34)

Consider the restriction of L
1
2
d : Q × Q −→ R to Dd, Lcd : Dd −→ R.

Define, as before, the discrete Lagrangian L∗
d on the reduced manifold as

L∗
d : Q/G × Q/G −→ R

(rk, rk+1) �−→ Lcd(rk, rk+1, e) .

Then, we have that

∂Lcd
∂rβk

=
∂L

1
2
d

∂rβk
+

∂L
1
2
d

∂gk

∂gk

∂rβk
+

∂L
1
2
d

∂gk+1

∂gk+1

∂rβk
,

where, from (7.34),

∂gk

∂rβk
= −1

2

(
Ab
β(rk+ 1

2
) − 1

2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk ∗eb ,

∂gk+1

∂rβk
=

1
2

(
Ab
β(rk+ 1

2
) − 1

2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk+1∗eb .

Analogously, we see that

∂Lcd

∂rβk+1

=
∂L

1
2
d

∂rβk+1

+
∂L

1
2
d

∂gk

∂gk

∂rβk+1

+
∂L

1
2
d

∂gk+1

∂gk+1

∂rβk+1

,

where
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∂gk

∂rβk+1

= −1
2

(
−Ab

β(rk+ 1
2
) − 1

2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk ∗eb ,

∂gk+1

∂rβk+1

=
1
2

(
−Ab

β(rk+ 1
2
) − 1

2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk+1∗eb .

Secondly, we also have

0 =
∂Lcd
∂ĝ

=
∂L

1
2
d

∂gk

∂gk
∂ĝ

+
∂L

1
2
d

∂gk+1

∂gk+1

∂ĝ
= R∗

exp(− 1
2hζ)

∂L
1
2
d

∂gk
+ R∗

exp( 1
2hζ)

∂L
1
2
d

∂gk+1
.

(7.35)

Now, we expand the term
∂L

1
2
d

∂gk
(rk, gk, rk+1, gk+1) on the right-hand side of

the first equation in the DLA algorithm (7.30) as

∂L
1
2
d

∂gk
(rk, gk, rk+1, gk+1) =

1
2
∂L

1
2
d

∂gk
(rk, gk, rk+1, gk+1)

+
1
2
∂L

1
2
d

∂gk
(rk, gk, rk+1, gk+1) ,

and then make use of (7.35) to get the expression

∂L
1
2
d

∂gk
(rk, gk, rk+1, gk+1) =

1
2
∂L

1
2
d

∂gk
(rk, gk, rk+1, gk+1)

− 1
2
R∗

exp(hζ)
∂L

1
2
d

∂gk+1
(rk, gk, rk+1, gk+1) .

Analogously, we find for the other term

∂L
1
2
d

∂gk
(rk−1, gk−1, rk, gk) =

1
2
∂L

1
2
d

∂gk
(rk−1, gk−1, rk, gk)

− 1
2
R∗

exp(−hζ)
∂L

1
2
d

∂gk−1
(rk−1, gk−1, rk, gk) .

Then, the discrete forces in the RDLA algorithm take the form
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F−(qk, qk+1) =

=
∂L

1
2
d

∂gk

∂gk

∂rβk
+

∂L
1
2
d

∂gk+1

∂gk+1

∂rβk
+

∂L
1
2
d

∂gk
(rk, gk, rk+1, gk+1)Ab

β(rk)Lgk ∗eb

=
1
2
∂L

1
2
d

∂gk

(
−Ab

β(rk+ 1
2
) +

1
2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk) + Ab

β(rk)

)
Lgk ∗eb

+
1
2

∂L
1
2
d

∂gk+1

((
Ab
β(rk+ 1

2
) − 1

2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk+1∗eb

− Ab
β(rk)Lgk+1Adexp(−hζ)eb

)
,

F+(qk−1, qk) =

=
∂L

1
2
d

∂gk−1

∂gk−1

∂rβk
+

∂L
1
2
d

∂gk

∂gk

∂rβk
+

∂L
1
2
d

∂gk
(rk−1, gk−1, rk, gk)Ab

β(rk)Lgk ∗eb

=
1
2

∂L
1
2
d

∂gk−1

((
Ab
β(rk− 1

2
) +

1
2
∂Ab

γ

∂rβ
(rk− 1

2
)(rγk − rγk−1)

)
Lgk−1∗eb

− Ab
β(rk)Lgk−1Adexp(hζ)eb

)
+

1
2
∂L

1
2
d

∂gk

(
−
(

Ab
β(rk− 1

2
) +

1
2
∂Ab

γ

∂rβ
(rk− 1

2
)(rγk − rγk−1)

)
+ Ab

β(rk)

)
Lgk ∗eb .

By the linear dependence of A(r) on r, we have that

Ab
β(rk) = Ab

β(rk+ 1
2
) − 1

2
∂Ab

β

∂rγ
(rk+ 1

2
)(rγk+1 − rγk) ,

Ab
β(rk) = Ab

β(rk− 1
2
) +

1
2
∂Ab

β

∂rγ
(rk− 1

2
)(rγk − rγk−1) .

Substituting into the expressions for the discrete forces, we get
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F−(qk, qk+1) =

=
1
2
∂Ld
∂gk

(
1
2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk) − 1

2
∂Ab

β

∂rγ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk ∗eb

+
1
2

∂Ld
∂gk+1

((
Ab
β(rk+ 1

2
) − 1

2
∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk+1∗eb

− Ab
β(rk)Lgk+1∗(eb − [hζ, eb])

)
=

1
4
∂Ld
∂gk

(
−∂Ab

β

∂rγ
(rk+ 1

2
)(rγk+1 − rγk) +

∂Ab
γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

)
Lgk ∗eb

+
1
4

∂Ld
∂gk+1

(
∂Ab

β

∂rγ
(rk+ 1

2
)(rγk+1 − rγk) − ∂Ab

γ

∂rβ
(rk+ 1

2
)(rγk+1 − rγk)

− 2Aa
β(rk)Ac

γ(rk+ 1
2
)cbca(r

γ
k+1 − rγk)

)
Lgk+1∗eb ,

F+(qk−1, qk) =

=
1
2

∂Ld
∂gk−1

((
Ab
β(rk− 1

2
) +

1
2
∂Ab

γ

∂rβ
(rk− 1

2
)(rγk − rγk−1)

)
Lgk−1∗eb

− Ab
β(rk)Lgk−1∗(eb + [hζ, eb])

)
+

1
2
∂Ld
∂gk

(
1
2
∂Ab

β

∂rγ
(rk− 1

2
)(rγk − rγk−1) − 1

2
∂Ab

γ

∂rβ
(rk− 1

2
)(rγk − rγk−1)

)
Lgk ∗eb

=
1
4

∂Ld
∂gk−1

(
−∂Ab

β

∂rγ
(rk− 1

2
)(rγk − rγk−1) +

∂Ab
γ

∂rβ
(rk− 1

2
)(rγk − rγk−1)

+ 2Aa
β(rk)Ac

γ(rk− 1
2
)cbca(r

γ
k − rγk−1)

)
Lgk−1∗eb

+
1
4
∂Ld
∂gk

(
−∂Ab

γ

∂rβ
(rk− 1

2
)(rγk − rγk−1) +

∂Ab
β

∂rγ
(rk− 1

2
)(rγk − rγk−1)

)
Lgk ∗eb,

where the cbca denote the structure constants of the Lie algebra g, defined by
[ec, ea] = cbcaeb. From the G-invariance of the continuous Lagrangian, one can
derive that

∂Ld
∂gk

= − 1
h
L∗
g−1

k

∂ 

∂ξ
,

∂Ld
∂gk+1

=
1
h
L∗
g−1

k+1

∂ 

∂ξ
.

Therefore, we find that the discrete forces can be rewritten as
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F−(qk, qk+1) =

= −1
4
∂ 

∂ξ

(
rγk+1 − rγk

h

)(
−∂Ab

β

∂rγ
(rk+ 1

2
) +

∂Ab
γ

∂rβ
(rk+ 1

2
)

)
eb

+
1
4
∂ 

∂ξ

(
rγk+1 − rγk

h

)(
∂Ab

β

∂rγ
(rk+ 1

2
) − ∂Ab

γ

∂rβ
(rk+ 1

2
) − 2Aa

β(rk)Ac
γ(rk+ 1

2
)cbca

)
eb

=
1
2
∂ 

∂ξ

(
rγk+1 − rγk

h

)(
∂Ab

β

∂rγ
(rk+ 1

2
) − ∂Ab

γ

∂rβ
(rk+ 1

2
) − Aa

β(rk)Ac
γ(rk+ 1

2
)cbca

)
eb,

F+(qk−1, qk) =

=
1
4
∂ 

∂ξ

(
rγk − rγk−1

h

)(
−∂Ab

γ

∂rβ
(rk− 1

2
) +

∂Ab
β

∂rγ
(rk− 1

2
)

)
eb

− 1
4
∂ 

∂ξ

(
rγk − rγk−1

h

)(
∂Ab

γ

∂rβ
(rk− 1

2
) − ∂Ab

β

∂rγ
(rk− 1

2
) + 2Aa

β(rk)Ac
γ(rk− 1

2
)cbca

)
eb

=
1
2
∂ 

∂ξ

(
rγk − rγk−1

h

)(
∂Ab

β

∂rγ
(rk− 1

2
) − ∂Ab

γ

∂rβ
(rk− 1

2
) − Aa

β(rk)Ac
γ(rk− 1

2
)cbca

)
eb,

Note that the sum of both forces F−(qk, qk+1)+F+(qk−1, qk) is a discretiza-
tion around the point qk of the continuous force

F = − ∂ 

∂ξa
ṙγBa

βγ = − ∂ 

∂ξa
ṙγ
(

∂Aa
γ

∂rβ
− ∂Aa

β

∂rγ
− cabcAb

βAc
γ

)
,

which is precisely the gyroscopic force αX obtained in Section 4.2.1 (see the
local expression in equation (4.14)). Now, we are in a position to prove the
following

Theorem 7.5.4. Consider a nonholonomic Chaplygin system with data: a
free and proper action Ψ : G×Q −→ Q, a G-invariant Lagrangian L : TQ −→
R and a G-invariant distribution D on Q. Assume that Q/G is a linear space,
the Lie group G is Abelian and the constraints have a linear dependence on the
base point. Then, if the reduced continuous Chaplygin system is Hamiltonian,
the midpoint RDLA algorithm is a variational integrator.

Proof. If the Lie group is Abelian, then the structural constants vanish, cabc =
0. Therefore, we can see the discrete forces as

F−(qk−1, qk) = F (
rk−1 + rk

2
,
rk − rk−1

h
)

F+(qk, qk+1) = F (
rk + rk+1

2
,
rk+1 − rk

h
) .
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As a consequence, the vanishing of F implies the vanishing of the discrete
forces and hence the RDLA algorithm takes the form

D1L
∗
d(rk, rk+1) + D2L

∗
d(rk−1, rk) = 0 ,

which is the variational integrator derived from the discrete Lagrangian L∗
d :

Q/G × Q/G −→ R. ��

7.6 Numerical examples

T O illustrate the performance of the algorithms obtained from the non-
holonomic integrator, we simulate in this section two examples using

Matlab: a nonholonomic particle with a quadratic potential and a mobile
robot with fixed orientation.

When dealing with symplectic integrators, energy is commonly used as a
fairly reliable indicator [61, 210]. This is further justified for variational inte-
grators by Theorem 7.1.1: since variational integrators are already symplectic-
momentum integrators, the “lack” of preservation of energy is measuring, in
a sense, how far they are from the exact flow they approximate. Since the en-
ergy EL is conserved for nonholonomic systems with homogeneous constraints
and nonholonomic integrators are an extention of variational integrators, we
will also take EL as an indicator of their performance.

7.6.1 Nonholonomic particle

This example is a variation of the nonholonomic free particle treated in pre-
vious chapters (cf. Sections 4.2.1 and 4.4.1). Let a particle of unit mass be
moving in space, Q = R3, with Lagrangian L : TQ −→ R,

L = K − V =
1
2
(
ẋ2 + ẏ2 + ż2)− (x2 + y2) ,

and subject to the constraint

Φ = ż − yẋ = 0 .

As shown in Section 4.2.1, this system is a Chaplygin system (the presence
of the potential in this case does not affect this fact): indeed, considering the
Lie group G = R and its trivial action by translation on Q,

Ψ : G × Q −→ Q
(a, (x, y, z)) �−→ (x, y, z + a) ,
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Fig. 7.1. Energy behavior of integrators for the nonholonomic particle with a
quadratic potential. Note the long-time stable behavior of the nonholonomic inte-
grator, as opposed to classical methods such as Runge Kutta.

we see that the constraint distribution D is the horizontal subspace of the
principal connection γ = (dz − ydx)e, where e denotes the generator of the
Lie algebra.

As we already know, since the constraint is linear, the energy is a con-
served quantity. We are interested here in the extent to which the different
integration schemes actually preserve this quantity, as well as the constraint.

The tested algorithms are the following:

– Nonholonomic integrator: Lαd and ωd,α with α = 1/2;

– Runge-Kutta: 4th order, time step fixed;

– Benchmark: Matlab 5.1 ODE 113 (Predictor-Corrector).

The 4th order Runge-Kutta method is a classical integrator which does not
make use of the mechanical nature of the system. To implement it, we have
first eliminated the Lagrange multiplier from the nonholonomic equations,
so that one gets second order equations in (x, y, z), amenable to integration
by RK4. On the other hand, the nonholonomic integrator has been designed
taking into account the special structure of the problem.

The two algorithms are run with the same stepsize, h = 0.2 to provide
a reasonable comparison between them. The Benchmark algorithm is a high
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order, multi-step, predictor-corrector method which has been carried out with
a very small stepsize. It can be regarded as the true solution for this example.

Fig. 7.2. Illustration of the extent to which the tested algorithms respect the
constraint. The Runge Kutta technique does not take into account the special
nature of nonholonomic systems which explains its bad behavior in this regard.

The results are shown in the figures. In Figure 7.1, we have plotted the
energy behavior of the integrators for a relatively short time, but the same
pattern is observed if we carry out the simulation for arbitrarily long pe-
riods of time. It is immediately apparent that the nonholonomic integrator
and the Runge-Kutta method have qualitatively different behaviors. We take
as a good indication the fluctuating energy behavior of the nonholonomic
integrator, since this property is also observed in symplectic methods.

The extent to which the three algorithms respect the constraints is plotted
in Figure 7.2. Notice that the results from the Benchmark algorithm and the
nonholonomic integrator are indistinguishable, whereas the behavior of the
Runge-Kutta technique is much less satisfactory.

7.6.2 Mobile robot with fixed orientation with a potential

Consider the planar mobile robot presented in Section 5.2.1. Recall that the
configuration space for this system is Q = R2 × S1 × S1, where (x, y) ∈ R2
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denote the position of the center of the body, θ ∈ S1 the orientation angle of
the wheels and ψ ∈ S1 the rotation angle of the wheels. The kinetic energy
of the robot is given by

K =
1
2
m(ẋ2 + ẏ2) +

1
2
Iθ̇2 +

3
2
Iωψ̇

2 ,

where m is the mass of the robot, I its moment of inertia and Iω the ax-
ial moment of inertia of each wheel, respectively. In addition, we introduce
an artificial potential V = 10 sinψ in order to “force” the behavior of the
numerical methods. The Lagrangian of the system is then

L = K − V .

The constraints, induced by the conditions of no lateral sliding and rolling
without sliding of the wheels, are

ẋ − R cos θψ̇ = 0 , ẏ − R sin θψ̇ = 0 ,

where R is the radius of the wheels.

Again, this example is a Chaplygin system with Lie group G = (R2,+),

Ψ : G × Q −→ Q
((a, b), (x, y, θ, ψ)) �−→ (x + a, y + b, θ, ψ) ,

and principal connection γ = (dx−R cos θdψ)e1+(dy−R sin θdψ)e2. Since the
constraints are linear, the energy is a conserved quantity for the continuous
system. It can be immediately checked (cf. Section 5.2.1) that the reduced
system on Q/G = S1 × S1 is the free system determined by the reduced
Lagrangian

L∗ =
1
2
Iθ̇2 +

1
2
(3Iω + mR2)ψ̇2 − 10 sinψ .

From the discussion in Section 7.5.3, we know that the midpoint DLA
scheme can be passed to Q/G and that the RDLA algorithm is indeed varia-
tional in the sense defined in [110]. However, the hypotheses of Theorem 7.5.4
are not fulfilled, and hence we cannot assure that the RDLA is a varia-
tional integrator. Nevertheless, the comparison of the DLA algorithm with
the 4th order Runge-Kutta method in the approximation of the energy and
the constraints turns out to be very satisfactory (see Figures 7.3 and 7.4).
Again, the 4th order Runge-Kutta method is implemented by elimination of
the Lagrange multipliers, while the DLA scheme is implemented using the
Newton-Raphson technique. The stepsize employed is h = 0.2.
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Fig. 7.3. Energy behavior of integrators for a mobile robot with fixed orientation.

Fig. 7.4. Illustration of the extent to which the tested algorithms respect the
constraints ω1 = 0 and ω2 = 0. The behavior of the nonholonomic integrator and
the Benchmark algorithm are indistinguishable.



8 Control of mechanical systems

I N this chapter, we introduce an important novelty with respect to the
previous ones. So far, the emphasis has been on the analysis of the dy-

namics of the systems under consideration. Here, however, the focus is on
design. Accordingly, we explicitely handle external forces acting on the sys-
tem, which we call controls or inputs. Typically, there are less controls than
degrees of freedom, i.e. the system is underactuated. Throughout the chapter,
the Lagrangian is assumed to be of natural type.

Along the exposition, we exploit the affine connection control formalism,
which in the last years has revealed to be very appropriate for the modeling
and control of mechanical systems. On the one hand, it perfectly captures
the dynamic character of the equations of motion both for unconstrained and
constrained systems. On the other hand, new interesting geometric structures
emerge in a natural way within this framework. Among them, we have to
make special mention to the symmetric product defined in Chapter 3, which
plays a key role in a variety of problems ranging from the controllability
analysis and series expansions to motion planning and trajectory tracking
algorithms.

The chapter is organized as follows. In Section 8.1, we review some ba-
sic facts about simple mechanical control systems, paying special attention
to homogeneity and the controllability notions we shall consider. Section 8.2
reviews the existing results concerning configuration accessibility and control-
lability [146, 147] and series expansion [41]. In Section 8.3 we briefly recall the
characterization of controllability in the single-input case found in [142]. Sec-
tion 8.4 contains the characterization for mechanical systems underactuated
by one control. In Section 8.5 we treat two examples to illustrate the results.
Finally, in Section 8.6 we extend the previous results to systems subject to
isotropic dissipation.

8.1 Simple mechanical control systems

THROUGHOUT this chapter, the manifold Q and the mathematical ob-
jects defined on it will be assumed analytic.

J. Cortés Monforte: LNM 1793, pp. 171–202, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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A simple mechanical control system is defined by a quadruple (Q, g, V,F),
where Q is a n-dimensional manifold defining the configuration space of the
system, g is a Riemannian metric on Q, V is a smooth function on Q (the
potential energy) and F = {F 1, . . . , Fm} is a set of m linearly independent
1-forms on Q, which physically correspond to forces or torques. We shall sim-
plify the treatment by assuming that the system has no potential energy, that
is, V ≡ 0, although we remark that the controllability analysis of Section 8.2.1
can be adapted to account for the presence of potential [145].

Instead of the input forces F 1, . . . , Fm, we shall make use of the vector
fields Y1, . . . , Ym, defined as Yi = �−1

g (F i). Roughly speaking, this corresponds
to consider “accelerations” rather than forces.

Resorting to the discussion in Chapter 3.1, we have that, if Yi =
Y A
i (q) ∂

∂qA , then the control equations for the simple mechanical control sys-
tem read in coordinates

q̇A = vA

v̇A = −ΓABC q̇B q̇C +
∑m
i=1 ui(t)Y A

i (q) , 1 ≤ A ≤ n .

These equations can be written in a coordinate-free way as (cf. equa-
tion (3.15))

∇g
ċ(t)ċ(t) =

m∑
i=1

ui(t)Yi(c(t)) . (8.1)

The inputs we will consider come from the set U = {u : [0, T ] → Rm|T >
0, u is measurable and ‖u‖ ≤ 1}, where

‖u‖ = sup
t∈[0,T ]

‖u(t)‖∞ = sup
t∈[0,T ]

max
l=1,...,m

|ul(t)| .

It is clear that we can use a general affine connection in (8.1) instead of the
Levi-Civita connection without changing the structure of the equation. This
is particularly interesting, since nonholonomic mechanical control systems
give also rise to equations of the form (8.1) by means of the nonholonomic
affine connection (cf. Section 3.4.2). Indeed, inspecting equation (3.17), we
see that if we substitute the affine connection ∇g by ∇ and the vector fields Yi
by P(Yi) in (8.1), we exactly get the equations for the nonholonomic control
problem. Therefore, the discussion throughout the chapter is carried out for
a general affine connection ∇.

We can turn (8.1) into a general affine control system with drift

ẋ(t) = f(x(t)) +
∑

ui(t)gi(x(t)) , (8.2)

which is the typical class of systems considered by the Nonlinear Control
community [105, 189, 224]. Recall the definition of vertical lift of a vector field
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given in Section 2.9. The second-order equation (8.1) on Q can be written as
the first-order system on TQ

v̇ = Z(v) +
m∑
i=1

ui(t)Y lift
i (v) , (8.3)

where Z is the geodesic spray associated with the affine connection ∇.

8.1.1 Homogeneity and Lie algebraic structure

One fundamental feature of the control systems in equation (8.1) (or equiva-
lently, in equation (8.3)) is the polynomial dependence of the geodesic spray
Z and the vertical lifts Y lift on the velocity variables vA. As shown in [43],
this structure leads to remarkable simplifications in the iterated Lie brackets
between the vector fields {Z, Y lift

1 , . . . , Y lift
m }. This fact is indeed the enabling

property for the proof of the controllability and the series expansion results
that we will review in Section 8.2.

Fig. 8.1. Table of Lie brackets between the drift vector field Z and the input vector
field Y lift. The (i, j)th position contains Lie brackets with i copies of Y lift and j
copies of Z. The corresponding homogeneous degree is j − i. All Lie brackets to
the right of P−1 exactly vanish. All Lie brackets to the left of P−1 vanish when
evaluated at vq = 0q. Figure courtesy of Francesco Bullo.

Here, we start by introducing the notion of geometric homogeneity as
described in [113]: given two vector fields X and XE , the vector field X is
homogeneous with degree m ∈ Z with respect to XE if

[XE , X] = mX .

Lemma 8.1.1. Let ∇ be an affine connection on Q with geodesic spray Z,
and let Y be a vector field on Q. Denote by ∆ the Liouville vector field on
TQ. Then
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1. [∆,Z] = (+1)Z,

2. [∆,Y lift] = (−1)Y lift.

Hence, the vector field Z is homogeneous of degree +1, and the vector field
Y lift is homogeneous of degree −1 with respect to the Liouville vector field.
In the following, a vector field X on TQ is simply homogeneous of degree
m ∈ Z if it is homogeneous of degree m with respect to ∆.

Let Pj be the set of vector fields on TQ of homogeneous degree j, so that
Z ∈ P1 and Y lift ∈ P−1 (see Figure 8.1). One can see that [∆,X] = 0, for all
X ∈ P0, and that [Pi,Pj ] ⊂ Pi+j . By convention, Pj = {0}, for j ≤ −2.

8.1.2 Controllability notions

The control equations for the mechanical system (8.3) are nonlinear. The
standard techniques in control theory [189], as for example the linearization
around an equilibrium point or linearization by feedback, do not yield sat-
isfactory results in the analysis of its controllability properties, in the sense
that they do not provide necessary and sufficient conditions characterizing
them.

The point in the approach of Lewis and Murray [146, 147] to simple me-
chanical control systems is precisely to focus on what is happening to config-
urations, rather than to states, since in many of these systems configurations
may be controlled, but not configurations and velocities at the same time.
The basic question they pose is “what is the set of configurations which are
attainable from a given configuration starting from rest?” Moreover, since we
are dealing with objects defined on the configuration manifold Q, we expect
to find answers on Q, although the control system (8.3) lives in TQ.

Definition 8.1.2. A solution of (8.1) is a pair (c, u), where c : [0, T ] −→ Q
is a piecewise smooth curve and u ∈ U such that (ċ, u) satisfies the first order
control system (8.3).

Consider q0 ∈ Q, (q0, 0q0) ∈ Tq0Q and let U ⊂ Q, Ū ⊂ TQ be neighbor-
hoods of q0 and (q0, 0q0), respectively. Define

RU
Q(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (8.1) such that

ċ(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ] and ċ(T ) ∈ TqQ}
RŪ
TQ(q0, T ) = {(q, v) ∈ TQ | there exists a solution (c, u) of (8.1) such that

ċ(0) = 0q0 , (c(t), ċ(t)) ∈ Ū for t ∈ [0, T ] and ċ(T ) = v ∈ TqQ
}

and denote
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RU
Q(q0,≤ T ) = ∪0≤t≤TRU

Q(q0, t) , RŪ
TQ(q0,≤ T ) = ∪0≤t≤TRŪ

TQ(q0, t) .

Now, we recall the notions of accessibility considered in [146].

Definition 8.1.3. The system (8.1) is locally configuration accessible (LCA)
at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t) contains a non-empty
open set of Q, for all neighborhoods U of q0 and all 0 ≤ t ≤ T . If this holds
for any q0 ∈ Q, then the system is called locally configuration accessible.

Definition 8.1.4. The system (8.1) is locally accessible (LA) at q0 ∈ Q and
zero velocity if there exists T > 0 such that RŪ

TQ(q0,≤ t) contains a non-
empty open set of TQ, for all neighborhoods Ū of (q0, 0q0) and all 0 ≤ t ≤ T .
If this holds for any q0 ∈ Q, then the system is called locally accessible at zero
velocity.

We shall focus our attention on the following concepts of controllabil-
ity [146].

Definition 8.1.5. The system (8.1) is small-time locally configuration con-
trollable (STLCC) at q0 ∈ Q if there exists T > 0 such that RU

Q(q0,≤ t)
contains a non-empty open set of Q to which q0 belongs, for all neighbor-
hoods U of q0 and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q, then the system
is called small-time locally configuration controllable.

Definition 8.1.6. The system (8.1) is small-time locally controllable (STLC)
at q0 ∈ Q and zero velocity if there exists T > 0 such that RŪ

TQ(q0,≤ t)
contains a non-empty open set of TQ to which (q0, 0q0) belongs, for all neigh-
borhoods Ū of (q0, 0q0) and all 0 ≤ t ≤ T . If this holds for any q0 ∈ Q, then
the system is called small-time locally controllable at zero velocity.

Therefore, the notions of configuration accessibility and controllability
concern the reachable set restricted to the configuration space Q, and are
weaker than full-state accessibility and controllability, respectively.

8.2 Existing results

HERE we briefly review some accessibility and controllability results ob-
tained in [146, 147] and expose the work by Bullo [41] in describing the

evolution of mechanical control systems via a series expansion.
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8.2.1 On controllability

Given an affine connection ∇ on Q, recall the definition of symmetric product
of two vector fields (cf. Section 3.4.2).

Given the input vector fields Y = {Y1, . . . , Ym}, let us denote by Sym(Y)
the distribution obtained by closing the set Y under the symmetric product
or symmetric closure and by Lie(Y) the involutive closure of Y. With these
ingredients, one can prove

Theorem 8.2.1 ([146]). The control system (8.1) is LCA at q (resp. LA at
q and zero velocity) if Lie(Sym(Y))q = TqQ (resp. Sym(Y)q = TqQ).

If P is a symmetric product of vector fields in Y, we let γi(P ) denote the
number of occurrences of Yi in P . The degree of P will be γ1(P )+· · ·+γm(P ).
We shall say that P is bad if γi(P ) is even for each 1 ≤ i ≤ m. We say that
P is good if it is not bad. Of course, to make precise sense of these notions
(degree, bad, good) one must use the notion of free symmetric algebra, but
it should be clear what we mean here. See [146] for details.

The following theorem gives sufficient conditions for STLCC.

Theorem 8.2.2. Suppose that the system is LCA at q (respectively, LA at q
and zero velocity) and that Y is such that every bad symmetric product P at
q in Y can be written as a linear combination of good symmetric products at
q of lower degree than P . Then (8.1) is STLCC at q (resp. STLC at q and
zero velocity).

This result was proved in [146], adapting previous work by Sussmann [232]
on general control systems of the form (8.2). Throughout the chapter, we will
often refer to the conditions of every bad symmetric product at q being a
linear combination of good symmetric products at q of lower degree as the
sufficient conditions for STLCC at q.

8.2.2 Series expansions

Within the realm of geometric control theory, series expansions play a key
role in the study of nonlinear controllability [4, 112, 231, 232], trajectory gen-
eration and motion planning problems [42, 131, 140, 169, 170], etc. In [155],
Magnus describes the evolution of systems on a Lie group. In [64, 85, 114, 233]
a general framework is developed to describe the evolution of a nonlinear sys-
tem via the so-called Chen-Fliess series and its factorization.

In the context of mechanical control systems, the work by Bullo [41] de-
scribes the evolution of the trajectories with zero initial velocity via a series
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expansion on the configuration manifold Q. In this section we describe this se-
ries expansions, which will be key in the subsequent discussion. Before doing
so, however, we need to introduce some notation on analyticity over complex
neighborhoods.

Let q0 ∈ Q. By selecting a coordinate chart around q0, we locally identify
Q ≡ Rn. In this way, we write q0 ∈ Rn. Let σ be a positive scalar, and define
the complex σ-neighborhood of q0 in Cn as Bσ(q0) = {z ∈ Cn | ‖z−q0‖ < σ}.
Let f be a real analytic function on Rn that admits a bounded analytic
continuation over Bσ(q0). The norm of f is defined as

‖f‖σ � max
z∈Bσ(q0)

|f(z)|,

where f denotes both the function over Rn and its analytic continuation.
Given a time-varying vector field (q, t) �→ Z(q, t) = Zt(q), let ZA

t be its
Ath component with respect to the usual basis on Rn. Assuming t ∈ [0, T ],
and assuming that every component function ZA

t is analytic over Bσ(q0), we
define the norm of Z as

‖Z‖σ,T � max
t∈[0,T ]

max
A∈{1,...,n}

‖ZA
t ‖σ .

In what follows, we will often simplify notation by neglecting the subscript
T in the norm of a time-varying vector field. Finally, given an affine connec-
tion ∇ with Christoffel symbols {ΓABC |A,B,C ∈ {1, . . . , n}}, introduce the
notation,

‖Γ‖σ � max
ABC

∥∥ΓABC∥∥σ .

In the sequel, we let

Z(q, t) =
m∑
i=1

ui(t)Yi(q) .

Theorem 8.2.3 ([41]). Let c(t) be the solution of equation (8.1) with input
given by Z(q, t) and with initial conditions c(0) = q0, ċ(0) = 0. Let the
Christoffel symbols ΓABC(q) and the vector field Z(q, t) be uniformly integrable
and analytic in Q. Define recursively the time varying vector fields

V1(q, t) =
∫ t

0
Z(q, s)ds ,

Vk(q, t) = −1
2

k−1∑
j=1

∫ t

0
〈Vj(q, s) : Vk−j(q, s)〉 ds , k ≥ 2 ,

where q is maintained fixed at each integral. Select a coordinate chart around
the point q0 ∈ Q, let σ > σ′ be two positive constants, and assume that
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‖Z‖σT 2 < L � min
{

σ − σ′

24n2(n + 1)
,

1
24n(n + 1)‖Γ‖σ ,

η2(σ′n2‖Γ‖σ′)
n2‖Γ‖σ′

}
.

(8.4)
Then the series (q, t) �−→ ∑∞

k=1 Vk(q, t) converges absolutely and uniformly
in t and q, for all t ∈ [0, T ] and for all q ∈ Bσ′(q0), with the Vk satisfying the
bound

‖Vk‖σ′ ≤ L1−k ‖Z‖kσ t2k−1, (8.5)

Over the same interval, the solution c(t) satisfies

ċ(t) =
∞∑
k=1

Vk(c(t), t) . (8.6)

This theorem generalizes various previous results obtained in [42] under
the assumption of small amplitude forcing. The first few terms of the se-
ries (8.6) can be computed to obtain

ċ(t) = Z(c(t), t) − 1
2
〈Z : Z〉(c(t), t)

+
1
2

〈〈Z : Z〉 : Z
〉
(c(t), t) − 1

2

〈〈〈Z : Z〉 : Z
〉

: Z
〉

(c(t), t) (8.7)

− 1
8

〈〈Z : Z〉 :
〈Z : Z〉〉(c(t), t) + O(‖Z‖5

σt
9) ,

where Z(q, t) ≡ ∫ t
0 Z(q, s)ds and so on.

8.3 The one-input case

T HEOREM 8.2.2 gives us sufficient conditions for small-time local con-
figuration controllability. A natural concern both from the theoretical

and the practical point of view is to try to sharpen this controllability test.
Lewis [142] investigated the single-input case and proved the next result.

Theorem 8.3.1. Let (Q, g) be an analytic manifold with an affine connection
∇. Let Y be an analytic vector field on Q and q0 ∈ Q. Then the system

∇ċ(t)ċ(t) = u(t)Y (c(t))

is STLCC at q0 ∈ Q if and only if dimQ = 1.
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The fact of being able to completely characterize STLCC in the single-
input case (something which has not been accomplished yet for general con-
trol systems of the form (8.2)) suggests that understanding local configura-
tion controllability for mechanical systems may be possible. More precisely,
examining the single-input case, one can deduce that if (8.1) is STLCC at
q0 then dimQ = 1, which implies 〈Y : Y 〉 (q0) ∈ span{Y (q0)}, i.e. sufficient
conditions for STLCC are also necessary. Can this be extrapolated to the
multi-input case? The following conjecture was posed by Lewis,

Let a mechanical control system of the form (8.1) be LCA at q0 ∈ Q.
Then it is STLCC at q0 if and only if there exists a basis of input vector
fields which satisfies the sufficient conditions for STLCC at q0.

Theorem 8.3.1 implies that this claim is true for m = 1. In the following
section we prove that it is also valid for m = n − 1.

8.4 Mechanical systems underactuated by one control

H ERE we focus our attention on mechanical control systems of the
form (8.1) which has n degrees of freedom and m = n − 1 control input

vector fields. The following lemma, taken from [231], will be helpful in the
proof of Theorem 8.4.2.

Lemma 8.4.1. Let Q be a n-dimensional analytic manifold. Given q0 ∈ Q
and X1, . . . , Xp ∈ X(Q), p ≤ n, linearly independent vector fields, there exists
a function φ : Q −→ R satisfying the properties

1. φ is analytic,

2. φ(q0) = 0,

3. X1(φ) = · · · = Xp−1(φ) = 0 on a neighborhood V of q0,

4. Xp(φ)(q0) = −1,

5. Within any neighborhood of q0 there exists points q where φ(q) < 0 and
φ(q) > 0.

Proof. Let Z1, . . . , Zn be vector fields defined in a neighborhood of q0 such
that {Z1(q0), . . . , Zn(q0)} form a basis for Tq0Q and Zi = Xi, 1 ≤ i ≤ p − 1,
Zp = −Xp. Let ti �−→ Ψi(t) be the flow of Zi, 1 ≤ i ≤ n. In a sufficiently
small neighborhood V of q0, any point q may be expressed as q = Ψ1(t1) ◦
· · · ◦ Ψn(tn)(q0) for some unique n-tuple (t1, . . . , tn) ∈ Rn. Define φ(q) = tp.
It is a simple exercise to verify that φ satisfies the required properties. ��
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Next, we state and prove the following important result.

Theorem 8.4.2. Let Q be a n-dimensional analytic manifold and let Y1, . . . ,
Yn−1 be analytic vector fields on Q. Consider the control system

∇ċ(t)ċ(t) =
n−1∑
i=1

ui(t)Yi(c(t)) , (8.8)

and assume that it is LCA at q0 ∈ Q. Then the system is STLCC at q0 if
and only if there exists a basis of input vector fields satisfying the sufficient
conditions for STLCC at q0.

Proof. We only need to prove one implication (the other one is Theo-
rem 8.2.2). Let us suppose that the system is locally configuration control-
lable at q0. Let I denote the distribution generated by the input vector fields.
Either one of the following is true,

1. For all Y1, Y2 ∈ I, 〈Y1 : Y2〉 (q0) ∈ Iq0 .
2. There exist Y1, Y2 ∈ I such that 〈Y1 : Y2〉 (q0) �∈ Iq0 .

In the first case, there is nothing to prove since any basis of input vector
fields will satisfy the sufficient conditions for STLCC at q0. In the second
one, it is clear that one can always choose Y1, Y2 ∈ I, linearly independent at
q0 and such that 〈Y1 : Y2〉 (q0) �∈ Iq0 (if Y1, Y2 in (ii) are linearly dependent,
then 〈Y1 : Y1〉(q0) �∈ Iq0 . Take any Y2 linearly independent with Y1. If 〈Y1 :
Y2〉(q0) ∈ Iq0 , define a new Y ′

2 by Y1 + Y2 and we are done).

Then, we can complete the set {Y1(q0), Y2(q0)} to a basis of Iq0 ,
{Y1(q0), Y2(q0), . . . , Ym(q0)}

and we have that

span{Y1(q0), Y2(q0), . . . , Ym(q0), 〈Y1 : Y2〉 (q0)} = Tq0Q .

In this basis, the symmetric products of degree two of the vector fields
{Y1, . . . , Ym} at q0 are expressed as

〈Y1 : Y1〉 (q0) = lc(Y1(q0), . . . , Ym(q0)) + a11 〈Y1 : Y2〉 (q0)
...

〈Ym : Ym〉 (q0) = lc(Y1(q0), . . . , Ym(q0)) + amm 〈Y1 : Y2〉 (q0)
〈Y1 : Y2〉 (q0) = a12 〈Y1 : Y2〉 (q0)
〈Y1 : Y3〉 (q0) = lc(Y1(q0), . . . , Ym(q0)) + a13 〈Y1 : Y2〉 (q0)

...
〈Ym−1 : Ym〉 (q0) = lc(Y1(q0), . . . , Ym(q0)) + am−1m 〈Y1 : Y2〉 (q0) ,
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where lc(Y1(q0), . . . , Ym(q0)) means a linear combination of Y1(q0), . . . , Ym(q0).
The coefficients aij define a symmetric matrix A = (aij) ∈ Rm×m. Observe
that if a11 = · · · = amm = 0, then the bad symmetric products 〈Yi : Yi〉(q0)
are in Iq0 and we have finished. Suppose then that the opposite situation is
true, that is, there exists s = s1 such that as1s1 �= 0.

What we are going to prove now is that, under the hypothesis of STLCC
at q0, there exists a change of basis B = (bjk), detB �= 0, providing new
vector fields in I,

Y ′
j =

m∑
k=1

bjkYk , 1 ≤ j ≤ m,

which satisfy the sufficient conditions for STLCC at q0. Since

〈
Y ′
j : Y ′

j

〉
(q0) =

m∑
k,l=1

bjkbjl 〈Yk : Yl〉 (q0)

=
m∑
k=1

b2jk 〈Yk : Yk〉 (q0) + 2
∑

1≤k<l≤m
bjkbjl 〈Yk : Yl〉 (q0) (8.9)

= lc(Y ′
1(q0), . . . , Y ′

m(q0))

+

 m∑
k=1

b2jkakk + 2
∑

1≤k<l≤m
bjkbjlakl

 〈Y1 : Y2〉 (q0) ,

the matrix B we are looking for must fulfill

m∑
k=1

b2jkakk + 2
∑

1≤k<l≤m
bjkbjlakl = 0 , 1 ≤ j ≤ m, (8.10)

or, equivalently,
(BABT )jj = 0 , 1 ≤ j ≤ m.

Note that, since as1s1 �= 0, this is equivalent to

bjs1 =
−∑

k �=s1 bjkaks1

as1s1

±
√

(
∑
k �=s1 bjkaks1)2 − as1s1(

∑
k �=s1 b2jkakk + 2

∑
k<l,k,l �=s1 bjkbjlakl)

as1s1
,

for each 1 ≤ j ≤ m. After some computations, the radicand of this expression
becomes∑

k �=s1
b2jk(a

2
ks1 − as1s1akk) + 2

∑
k<l,k,l �=s1

bjkbjl(aks1als1 − as1s1akl) .
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If this radicand is zero, it would imply that the matrix B should be singular
in order to satisfy (8.10). We must ensure then that it is possible to select
B such that the radicand is different from zero. We do this in the following,
studying several cases that can occur. Denoting by

a
(2)
kl = aks1als1 − as1s1akl , k, l ∈ {1, . . . ,m}/{s1} ,

we have that the radicand would vanish if∑
k �=s1

b2jka
(2)
kk + 2

∑
k<l,k,l �=s1

bjkbjla
(2)
kl = 0 . (8.11)

Note the similarity between (8.10) and (8.11). Define recursively

a
(1)
kl = akl , (8.12)

a
(i)
kl = a

(i−1)
ksi−1

a
(i−1)
lsi−1

− a(i−1)
si−1si−1

a
(i−1)
kl , i ≥ 2 , k, l ∈ {1, . . . ,m}/{s1, . . . , si−1} .

Case A: Here we treat the case when for each i there exists si such that
a
(i)
sisi �= 0. Several subcases are discussed.

Reasoning as before, (8.11) would imply that for 1 ≤ j ≤ m

bjs2 = lc(bj1, . . . , b̂js1 , . . . , b̂js2 , . . . , bjm)

± 1

a
(2)
s2s2

√ ∑
k �=s1,s2

b2jka
(3)
kk + 2

∑
k<l,k,l �=s1,s2

bjkbjla
(3)
kl ,

where the symbol b̂ means that the term b has been removed. Iterating this
procedure, we finally obtain the following equations for the bjsm−1 ,

bjsm−1 = bjsm

−a
(m−1)
sm−1sm ±

√
(a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm

a
(m−1)
sm−1sm−1

, 1 ≤ j ≤ m.

Let (bjsm)1≤j≤m be a non-zero vector in Rm. Now, we distinguish three pos-
sibilities.

Case A1: We show that if the radicand (a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm is

positive, then it is possible to obtain the desired change of basis.

If (a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm > 0, then the quadratic polynomial in

bjsm−1

a(m−1)
sm−1sm−1

b2jsm−1
+ 2a(m−1)

sm−1sm
bjsm−1bjsm + a(m−1)

smsm
b2jsm

, (8.13)

has two real roots and we can choose (bjsm−1)1≤j≤m ∈ Rm linearly indepen-
dent with (bjsm)1≤j≤m and such that (8.13) be positive for all 1 ≤ j ≤ m.
As this polynomial is the radicand of the preceding one,
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k �=s1,...,sm−3

b2jka
(m−2)
kk + 2

∑
k<l,k,l �=s1,...,sm−3

bjkbjla
(m−2)
kl , (8.14)

our choice of (bjsm−1)1≤j≤m ensures that we can again take (bjsm−2)1≤j≤m ∈
Rm, linearly independent with (bjsm−1)1≤j≤m and (bjsm)1≤j≤m such that the
expression in (8.14) is positive for all 1 ≤ j ≤ m. This is inherited step by
step through the iteration process and we are able to choose a non-singular
matrix (bjk) satisfying (8.10).

Case A2: We show that when the radicand (a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm is

negative, then either it is possible to find the change of basis or the system is
not STLCC at q0.

If (a(m−1)
sm−1sm)2 −a

(m−1)
sm−1sm−1a

(m−1)
smsm < 0, then (8.13) does not change its sign

for all bjsm−1 , bjsm . If this sign is positive, the same argument as in case A1
ensures us the choice of the desired matrix. If negative, it implies that (8.14)
does not change its sign for all bjsm−2 , bjsm−1 , bjsm

. Then, the unique prob-
lem we must face is when, through the iteration process, all the radicands
are negative. In the following, we discard this latter case by contradiction
with the hypothesis of controllability. Apply Lemma 8.4.1 to the vector fields
{Y1, . . . , Ym, 〈Y1 : Y2〉} to find a function φ satisfying the properties (i)-(v).
By (8.7), we have that

ċ(t) =
m∑
i=1

ūiYi − 1
2
〈
m∑
j=1

ūjYj :
m∑
k=1

ūkYk〉 + O(‖Z‖3
σt

5)

=
m∑
i=1

ūiYi − 1
2

m∑
j=1

ū2
j 〈Yj : Yj〉 + 2

∑
j<k

ūj ūk〈Yj : Yk〉 + O(‖Z‖3
σt

5) ,

where Z =
∑m
i=1 uiYi. Now, observe that

d

dt
(φ(c(t))) = ċ(t)(φ). Then, using

properties (iii) and (iv) of φ, we get

d

dt
(φ(c(t))) =

1
2

m∑
j=1

ajj ū2
j + 2

∑
j<k

ajkūj ūk + O(‖Z‖3
σt

5) .

The expression
∑m
j=1 ajj ū

2
j +2

∑
j<k ajkūj ūk does not change its sign, what-

ever the functions u1(t), . . . , um(t) might be, because as a quadratic polyno-
mial in ūs1 its radicand is always negative. Therefore,

d

dt
(φ(c(t)))

has constant sign for sufficiently small t, since
∑m
j=1 ajj ū2

j + 2
∑
j<k ajkūj ūk =

O(‖u‖2t3) and dominates O(‖Z‖3
σt

5) = O(‖u‖3t5) when t → 0. Finally,
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φ(c(t)) = φ(q0) +
∫ t

0

d

ds
(φ(c(s))) =

∫ t

0

d

ds
(φ(c(s)))

will have constant sign for t small enough. As a consequence, all the points
in a neighborhood of q0 where φ has the opposite sign (property (v)) are
unreachable in small time, which contradicts the hypothesis of controllability.

Case A3: We show that if the radicand (a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm van-

ishes, then an intermediate change of basis reduces the problem to considering
m − 1 input vector fields. The preceding discussion can be then reproduced.

The situation now is similar to that of case A2. However, the argument
employed above to discard the possibility of all the radicands being neg-
ative does not apply, since in this case there do exist controls such that∑m
j=1 ajj ū

2
j + 2

∑
j<k ajkūj ūk is zero and hence we should really investigate

the sign of O(‖Z‖3
σt

5) to reach a contradiction. Instead, what we are going
to do is to get a new basis {Y ′

j } such that 〈Y ′
1 : Y ′

j 〉(q0) ∈ Iq0 , 1 ≤ j ≤ m,
and thus remove one vector field (Y ′

1) from the discussion. By repeating this
procedure, we finally come to consider a limit case, which we will discard by
contradiction with the controllability hypothesis.

For j = 1, we choose b1sm �= 0 and

b1sm−1 = −b1sm

a
(m−1)
sm−1sm

a
(m−1)
sm−1sm−1

= Csm−1b1sm

b1sm−2 = −a
(m−2)
sm−2sm−1b1sm−1 + a

(m−2)
sm−2smb1sm

a
(m−2)
sm−2sm−2

= Csm−2b1sm

... (8.15)

b1s1 = −
∑
k �=s1 b1kaks1

as1s1
= Cs1b1sm

.

We denote Csm = 1. For j > 1, we select the (bjk)1≤k≤m such that the matrix
B be non-singular. Consequently, we change our original basis {Y1, . . . , Ym}
to a new one {Y ′

1 , . . . , Y
′
m}. In this basis, following (8.9), one has

〈Y ′
1 : Y ′

1〉(q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0))
〈Y ′
j : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) + a′
jj 〈Y1 : Y2〉 (q0) , 2 ≤ j ≤ m.

In addition, one can check that for each 2 ≤ j ≤ m,

〈Y ′
1 : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) +

∑
k,l

aklb1kbjl

 〈Y1 : Y2〉(q0)

= lc(Y ′
1(q0), . . . , Y ′

m(q0)) + b1sm

(∑
l

bjl

(∑
k

aklCk

))
〈Y1 : Y2〉(q0) .
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Now, when the Ck are given by (8.15), we have∑
k

aklCk = 0 , 1 ≤ l ≤ m,

(see Lemma 8.4.4 below) and this guarantees that

〈Y ′
1 : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) , 2 ≤ j ≤ m.

If the a′
jj = 0, 2 ≤ j ≤ m, we are done. Assume then that a′

33 �= 0, reordering
the input vector fields if necessary. Assume further that 〈Y ′

2 : Y ′
3〉(q0) is not a

linear combination of {Y ′
1 , . . . , Y

′
m} (otherwise, redefine a new Y ′′

2 as Y ′
2 +Y ′

3).
Then we have,

〈Y ′
2 : Y ′

2〉 (q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) + a′
22 〈Y ′

2 : Y ′
3〉 (q0)

...
〈Y ′
m : Y ′

m〉 (q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) + a′
mm 〈Y ′

2 : Y ′
3〉 (q0)

〈Y ′
2 : Y ′

3〉 (q0) = a′
23 〈Y ′

2 : Y ′
3〉 (q0)

〈Y ′
2 : Y ′

4〉 (q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) + a′
24 〈Y ′

2 : Y ′
3〉 (q0)

...〈
Y ′
m−1 : Y ′

m

〉
(q0) = lc(Y ′

1(q0), . . . , Y ′
m(q0)) + a′

m−1m 〈Y ′
2 : Y ′

3〉 (q0) ,

where we have denoted with a slight abuse of notation by a′
jk the new co-

efficients corresponding to 〈Y ′
2 : Y ′

3〉. Consequently, we can now reproduce
the preceding discussion, but with the m−1 vector fields {Y ′

2 , . . . , Y
′
m}. That

is, we look for one change of basis B′ in the vector fields {Y ′
2 , . . . , Y

′
m} such

that the new ones {Y ′′
2 , . . . , Y ′′

m} together with Y ′
1 verify the sufficient con-

ditions for STLCC. Accordingly, we must consider the vanishing of the new
polynomials

m∑
k=2

b2jk
′
a′
kk + 2

∑
2≤k<l≤m

b′
jkb

′
jla

′
kl = 0 , 2 ≤ j ≤ m.

The cases in which the last radicand (a(m−1)
sm−1sm

′
)2 − a

(m−1)
sm−1sm−1

′
a
(m−1)
smsm

′
does

not vanish are treated as before (cases A1 and A2 ). When it vanishes, we
obtain a new basis {Y ′′

1 = Y ′
1 , Y

′′
2 , . . . , Y ′′

m} such that

〈Y ′′
1 : Y ′′

1 〉(q0), 〈Y ′′
2 : Y ′′

2 〉(q0) ∈ Iq0
〈Y ′′
j : Y ′′

j 〉(q0) = lc(Y ′′
1 (q0), . . . , Y ′′

m(q0)) + c′
jj 〈Y ′

2 : Y ′
3〉 (q0) , 3 ≤ j ≤ m

〈Y ′′
1 : Y ′′

j 〉, 〈Y ′′
2 : Y ′′

j+1〉 ∈ Iq0 , 2 ≤ j ≤ m,

where there could exit some 3 ≤ j ≤ m such that c′
jj �= 0. By an

induction procedure, we come to consider discarding the case of a cer-
tain basis {Z1 = Y ′

1 , Z2 = Y ′′
2 , . . . , Zm} of I satisfying 〈Zi : Zj〉(q0) ∈
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span{Z1(q0), . . . , Zm(q0)}, 1 ≤ i < j ≤ m, and the sufficient condi-
tions for STLCC at q0 for Z1, . . . , Zm−1, but such that 〈Zm : Zm〉(q0) �∈
span{Z1(q0), . . . , Zm(q0)}. Similarly as we have done above, the application
of Lemma 8.4.1 with the vector fields {Z1, . . . , Zm, 〈Zm : Zm〉} implies that
the system is not controllable at q0, yielding a contradiction.

Case B: Finally, we prove that if there exists an i ≥ 2 such that a
(i)
kk = 0,

for all k ∈ {1, . . . ,m}/{s1, . . . , si−1}, then either the desired change of basis is
straightforward or an intermediate step can be done that reduces the problem
to considering i − 1 input vector fields.

In this case, the polynomial∑
k �=s1,...,si−1

b2jka
(i)
kk + 2

∑
k<l,k,l �=s1,...,si−1

bjkbjla
(i)
kl

takes the form
2
∑

k<l,k,l �=s1,...,si−1

bjkbjla
(i)
kl . (8.16)

If any of the a
(i)
kl is different from zero, then it is clear that we can choose

the bjk, k �∈ {s1, . . . , si−1}, such that (8.16) be positive. Then, reasoning as
before, we find a regular matrix B yielding the desired change of basis. If this
is not the case, i.e. a

(i)
kl = 0, for all k < l, k, l �∈ {s1, . . . , si−1}, we can do the

following. Choose {(bjk)1≤j≤m}, with k �∈ {s1, . . . , si−1}, m − i + 1 linearly
independent vectors in Rm such that the minor {bjk}k �=s1,...,si−1

1≤j≤m−i+1 is regular.
Now, let j in equation (8.15) vary between 1 and m − i + 1; that is, take

bjsi−1 = −
∑m
k �=s1,...,si−1

bjka
(i−1)
si−1k

a
(i−1)
si−1si−1

bjsi−2 = −
∑m
k �=s1,...,si−2

bjka
(i−2)
si−2k

a
(i−2)
si−2si−2

... (8.17)

bjs1 = −
∑
k �=s1 bjkaks1

as1s1
,

for 1 ≤ j ≤ m−i+1. Finally, for j > m−i+1, we select the bjk such that the
matrix B is non-singular. In this manner, in a unique step, we would change
to a new basis {Y ′

1 , . . . , Y
′
m} verifying

〈Y ′
1 : Y ′

1〉(q0), . . . , 〈Y ′
m−i+1 : Y ′

m−i+1〉(q0) ∈ Iq0
〈Y ′
j : Y ′

j 〉(q0) = lc(Y ′
1(q0), . . . , Y ′

m(q0)) + a′
jj 〈Y1 : Y2〉 (q0) , m − i + 1 ≤ j ≤ m

〈Y ′
k : Y ′

l 〉(q0) ∈ Iq0 , k < l, 1 ≤ k ≤ m − i + 1 ,
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with possibly some of the (a′
jj)m−i+1≤j≤m being different from zero. Now,

the above discussion can be redone in this context to assert the validity of
the theorem. ��

Fig. 8.2. Illustration of the proof of Theorem 8.4.2. R(p−1) denotes (a(p−1)
sp−1sp)2 −

a
(p−1)
sp−1sp−1a

(p−1)
spsp . The dashed lines mean that one cannot fall repeatedly in cases A3

or B without contradicting STLCC.

To recap, the steps of the proof can be summarized as follows (see Fig-
ure 8.2): first, we have considered the case when there exists for all i a si such
that a

(i)
sisi �= 0. We have seen that this case can be subdivided into three: one

(case A1 ) ensuring the desired change of basis, another one (case A2 ) in
which either one obtains the basis or one contradicts the hypothesis of small-
time local configuration controllability, and a third one (case A3 ) where an
intermediate change of basis is performed that allows us to focus on the
search of a change of basis for m − 1 of the new vector fields. Then, under
the same assumption on the new coefficients, a′

jk (i.e. for all i, there exists

a si such that a
(i)′
sisi �= 0), we can reproduce the former discussion. We can-

not repeatedly fall into case A3, since we would contradict the controllability
assumption. Finally, we have treated the case when this type of “circular”
process is broken (case B): that is, when there exists an i such that a

(i)
kk = 0,

for all k �= s1, . . . , si−1. What we have shown then is that this leads to ei-
ther a new basis of input vector fields satisfying the sufficient conditions for
STLCC or a reduced situation where we can “get rid” at the same time of
the problems associated with m − i + 1 vector fields.
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Remark 8.4.3. Notice that the proof of this result can be reproduced for the
corresponding notions of accessibility and controllability at zero velocity. In-
deed, a mechanical control system of the form (8.1) with m = n − 1, which
is STLC at q0 and zero velocity is in particular STLCC at q0. Then, Theo-
rem 8.4.2 implies that there exists a basis of input vector fields Y satisfying
the sufficient conditions of Theorem 8.2.2, so the same result is valid for local
controllability at zero velocity.

Lemma 8.4.4. With the notation of Theorem 8.4.2, assume that we have
(a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm = 0. Then the coefficients Ck given by (8.15)

verify
m∑
k=1

aklCk = 0 , 1 ≤ l ≤ m.

Proof. From (8.15), one can obtain the following recurrence formula for the
coefficients Ck,

Csm = 1 , Csj = − 1

a
(j)
sjsj

 m∑
i=j+1

a(j)
sisj

Csi

 , 1 ≤ j ≤ m − 1 . (8.18)

Let us denote

Σ(l) =
m∑
k=1

aklCk .

It is easy to see that Σ(s1) = 0. Indeed, using (8.18), we have that

Σ(s1) = as1s1Cs1 +
m∑
i=2

asis1Csi = −
m∑
i=2

asis1Csi +
m∑
i=2

asis1Csi = 0 .

To prove the result for the remaining indices we can do the following. First,
note that

as1sj
Cs1 = −as1sj

as1s1

(
m∑
i=2

asisj
Csi

)
= −

m∑
i=2

(
as1sjasisj

as1s1

)
Csi

Then, substituting in Σ(sj), we get

Σ(sj) = −
m∑
i=2

(
as1sjasisj

as1s1

)
Csi +

m∑
i=2

asisjCsi

=
m∑
i=2

(
asisjas1s1 − as1sjasisj

as1s1

)
Csi = − 1

as1s1

(
m∑
i=2

a(2)
sisj

Csi

)
,

where we have used the definition (8.12) for the coefficients a
(j)
kl . This proce-

dure can be iterated to obtain the general expression
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Σ(sj) =
(−1)k

as1s1a
(2)
s2s2 . . . a

(k)
sksk

(
m∑

i=k+1

a(k+1)
sisj

Csi

)
, (8.19)

which is valid for any 1 ≤ k ≤ m − 2.

Now, consider the cases 2 ≤ j ≤ m−1. Take k = j−1. Then, using (8.19),

Σ(sj) =
(−1)j−1

as1s1a
(2)
s2s2 . . . a

(j−1)
sj−1sj−1

 m∑
i=j

a(j)
sisj

Csi


=

(−1)j−1

as1s1a
(2)
s2s2 . . . a

(j−1)
sj−1sj−1

a(j)
sjsj

Csj +
m∑

i=j+1

a(j)
sisj

Csi

 = 0 ,

where in the last equality we have used (8.18). Finally, if j = m, we have
that

Σ(sm) =
(−1)m−2

as1s1a
(2)
s2s2 . . . a

(m−2)
sm−2sm−2

(
a(m−1)
sm−1sm

Csm−1 + a(m−1)
smsm

Csm

)
=

(−1)m−2

as1s1a
(2)
s2s2 . . . a

(m−2)
sm−2sm−2

(
− (a(m−1)

sm−1sm)2

a
(m−1)
sm−1sm−1

+ a(m−1)
smsm

)
.

From the hypothesis (a(m−1)
sm−1sm)2 − a

(m−1)
sm−1sm−1a

(m−1)
smsm = 0, we conclude that

Σ(sm) = 0, and this completes the proof. ��

Corollary 8.4.5. Let Q be a 3-dimensional analytic manifold and let Y1, Y2
be analytic vector fields on Q. Consider the control system (8.8) and assume
that it is locally configuration accessible at q0 ∈ Q. Let A be the 2 × 2 sym-
metric matrix whose elements are given by

〈Y1 : Y1〉 (q0) = lc(Y1(q0), Y2(q0)) + a11 〈Y1 : Y2〉 (q0)
〈Y2 : Y2〉 (q0) = lc(Y1(q0), Y2(q0)) + a22 〈Y1 : Y2〉 (q0)
〈Y1 : Y2〉 (q0) = a12 〈Y1 : Y2〉 (q0) .

Then the system is STLCC at q0 if and only if detA < 0.

Proof. The results follows from the proof of Theorem 8.4.2 by noting that
detA < 0 corresponds to case A1, detA > 0 to case A2 and detA = 0 to
case A3. ��

Remark 8.4.6. Note that Corollary 8.4.5 together with Theorem 8.3.1 com-
pletely characterize the configuration controllability properties of mechanical
control systems with 3 degrees of freedom, since fully actuated systems are
obviously STLCC.
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8.5 Examples

8.5.1 The planar rigid body

Consider a planar rigid body [146]. Fix a point P ∈ R2 and let {e1, e2} be the
standard orthonormal frame at that point. Let {d1, d2} be an orthonormal
frame attached to the body at its center of mass. The configuration manifold
is then SE(2), with coordinates (x, y, θ), where (x, y) describe the position
of the center of mass and θ the orientation of the frame {d1, d2} with respect
to {e1, e2}.

Fig. 8.3. The planar rigid body.

The inputs of the system consist of a force F 1 applied at a distance h
from the center of mass CM and a torque, F 2, about CM (see Figure 8.3).
In coordinates, the input forces are given by

F 1 = − sin θdx + cos θdy − hdθ , F 2 = dθ .

The Riemannian metric is

g = mdx ⊗ dx + mdy ⊗ dy + Jdθ ⊗ dθ ,

where m is the mass of the body and J its moment of inertia.

The input vector fields can be computed via �−1
g as

Y1 = − sin θ

m

∂

∂x
+

cos θ
m

∂

∂y
− h

J

∂

∂θ
dθ , Y2 =

1
J

∂

∂θ
.

One can easily show that the planar body is locally configuration accessi-
ble [146]. However, the inputs Y1, Y2 fail to satisfy the sufficient conditions
for STLCC. In fact,
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〈Y1 : Y1〉 =
2h cos θ

mJ

∂

∂x
+

2h sin θ

mJ

∂

∂y
,

〈Y1 : Y2〉 = −cos θ
mJ

∂

∂x
− sin θ

mJ

∂

∂y
,

〈Y2 : Y2〉 = 0 .

Therefore, {Y1, Y2, 〈Y1 : Y2〉} are linearly independent and we have that
〈Y1 : Y1〉 = −2h 〈Y1 : Y2〉. Theorem 8.4.2 ensures us STLCC if and only if
there exist a basis of input vector fields satisfying the sufficient conditions.
We have that

detA = det
(−2h 1

1 0

)
= −1 < 0 ,

and consequently, by Corollary 8.4.5, the system is locally configuration
controllable. Indeed, this example falls into case A1 of the proof of Theo-
rem 8.4.2. Accordingly, we obtain the change of basis: Y ′

1 = Y1+hY2, Y ′
2 = Y2.

This yields

〈Y ′
1 : Y ′

1〉 = 〈Y ′
2 : Y ′

2〉 = 0 , 〈Y ′
1 : Y ′

2〉 = 〈Y1 : Y2〉 ,

which satisfies the sufficient conditions for STLCC. The new input vector
field precisely corresponds to the force F 1′ in Figure 8.3.

8.5.2 A simple example

The following example does not necessarily correspond to a physical example,
but illustrates the proof of Theorem 8.4.2. Consider a mechanical control
system on R3, with coordinates (x, y, z). The Riemannian metric is given by

g = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz ,

and the input vector fields

Y1 = z
∂

∂x
+

∂

∂y
+

1
4

∂

∂z
, Y2 = y

∂

∂x
+

1
4

∂

∂y
− 1

2
∂

∂z
.

In coordinates, we have the following control equations

ẍ = u1z + u2y , ÿ = u1 +
u2

4
, z̈ =

u1

4
− u2

2
. (8.20)

Since

〈Y1 : Y1〉 = 〈Y1 : Y2〉 = 〈Y2 : Y2〉 =
1
2

∂

∂x
,

we deduce that span{Y1(q), Y2(q), 〈Y1 : Y2〉(q)} = TqQ for all q ∈ Q and
the system (8.20) is locally configuration accessible. However, Corollary 8.4.5



192 8 Control of mechanical systems

implies that it is not STLCC, since detA = 0. Going through the proof of
Theorem 8.4.2, we see that this example falls into case A3. Choosing the
change of basis

B =
(−1 1

1 1

)
,

we get the new input vector fields Y ′
1 = −Y1 +Y2 and Y ′

2 = Y1 +Y2. Now, we
have

〈Y ′
1 : Y ′

1〉 = 0 , 〈Y ′
1 : Y ′

2〉 = 0 , 〈Y ′
2 : Y ′

2〉 = 2
∂

∂x
.

Fig. 8.4. The level surface φ(x, y, z) = 0.

We can compute explicitely the function φ of Lemma 8.4.1 for this exam-
ple. The flows of Z1 = Y ′

1 , Z2 = Y ′
2 , Z3 = −〈Y ′

2 : Y ′
2〉 are given by

Ψ1(t)(x, y, z) = (x + (y − z)t, y − 3t/4, z − 3t/4)

Ψ2(t)(x, y, z) = (x + (y + z)t + t2/2, y + 5t/4, z − t/4)
Ψ3(t)(x, y, z) = (x − 2t, y, z)

Letting (x0, y0, z0) be an arbitrary point, one verifies

Ψ1(t1) ◦ Ψ2(t2) ◦ Ψ3(t3)(x0, y0, z0) =(
x0 − 2t3 + (y0 + z0 +

1
2
t2)t2 + t1(y0 − z0 − 3

2
t2),

y0 − 3
4
t1 +

5
4
t2, z0 − 3

4
t1 − 1

4
t2

)
.
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We may solve for φ(x, y, z) = t3 as

φ(x, y, z) =
1
18
(−9(x − x0) + 4(y2 − yy0 + yz − 5y0z − 2z2 + yz0 + 3y0z0 + 5zz0 − 3z2

0)
)
.

In Figure 8.4, we show the level set φ(x, y, z) = 0 for (x0, y0, z0) = (0, 0, 0).
The locally accessible configurations from (0, 0, 0) are contained below the
surface, where φ(x, y, z) ≥ 0.

8.6 Mechanical systems with isotropic damping

I N this section, we show that all of the previous results can be extended
to the case of mechanical control systems subject to dissipative forces of

linear isotropic nature.

The systems described by equations (8.1) are subject to no damping force.
However, in a number of situations, friction and dissipation play a relevant
role. Consider, for instance, a blimp experiencing the resistance of the air or
an underwater vehicle moving in the sea. Introduce a linear isotropic term of
dissipation into equations (8.1),

∇ċ(t)ċ(t) = kdċ(t) + ui(t)Yi(c(t)) , (8.21)

where kd ∈ R. In local coordinates,

q̈A + ΓABC(q)q̇B q̇C = kdq̇
A + ui(t)Y A

i (q) . (8.22)

This second-order system can be written as a first-order differential equa-
tion on the tangent bundle TQ, in the same way as we did in (8.2). Using
the Liouville vector field ∆, the control system becomes

v̇(t) = Z(v(t)) + kd∆(v(t)) + ui(t)Y lift
i (v(t)) , (8.23)

where t �→ v(t) is now a curve in TQ describing the evolution of a first-order
control affine system.

In the following we extend the controllability analysis and the series ex-
pansion results to systems of the form (8.23). As before, the enabling prop-
erty is the homogeneity property of the vector fields Z, ∆ and Y lift

i , which
leads to several simplifications when computing the Lie brackets of the set
{Z + kd∆,Y lift

1 , . . . , Y lift
m }.
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8.6.1 Local accessibility and controllability

Here we study conditions for accessibility and controllability of mechanical
systems with dissipation. The next proposition show that the involutive clo-
sure of the system (8.1) at zero velocity is the same as the one of (8.21).

Proposition 8.6.1. Consider the distributions

D(1) = span {Z,Y
lift} , D∆

(1) = span {Z + kd∆,Y
lift} .

Define recursively

D(k) = D(k−1) + [D(k−1),D(k−1)] , D∆
(k) = D∆

(k−1) + [D∆
(k−1),D∆

(k−1)] , k ≥ 2 .

Then, it holds that D(k)(0q) = D∆
(k)(0q), for all k. Consequently, the accessi-

bility distributions

D(∞)(0q) = Lie(Z,Y
lift

)q and D∆
(∞)(0q) = Lie(Z + kd∆,Y

lift
)q

coincide.

Proof. Obviously D(1)(0q) = D∆
(1)(0q). Moreover, we have [D(1),D(1)] ⊂ D∆

(2)

and [D∆
(1),D∆

(1)] ⊂ D(2), since

[Z + kd∆,Y
lift

] = [Z, Y
lift

] − kdY
lift
.

Let us assume that

D(k)(0q) = D∆
(k)(0q) , (8.24)

[D(k),D(k)] ⊂ D∆
(k+1) , (8.25)

[D∆
(k),D∆

(k)] ⊂ D(k+1) . (8.26)

hold for k and let us show that (8.24-8.26) are valid for k + 1. We have

Dk+1 = D(k) + [D(k),D(k)] ⊂ D(k) + D∆
(k+1) =⇒

Dk+1(0q) ⊂ D(k)(0q) + D∆
(k+1)(0q) = D∆

(k)(0q) + D∆
(k+1)(0q) = D∆

(k+1)(0q) .

Similarly, we can prove D∆
k+1(0q) ⊂ D(k+1)(0q), and thus D(k+1)(0q) =

D∆
(k+1)(0q). On the other hand,

[D∆
(k+1),D∆

(k+1)] = [D∆
(k) + [D∆

(k),D∆
(k)],D∆

(k) + [D∆
(k),D∆

(k)]]

⊂ [D∆
(k) + D(k+1),D∆

(k) + D(k+1)]

⊂ D(k+1) + [D∆
(k),D(k+1)] + D(k+2) = [D∆

(k),D(k+1)] + D(k+2).
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Thus, it remains to be checked that [D∆
(k),D(k+1)] ⊂ D(k+2). Observe that

[D∆
(k),D(k+1)] = [D∆

(k−1) + [D∆
(k−1),D∆

(k−1)],D(k+1)]

⊂ [D∆
(k−1),D(k+1)] + D(k+2),

where we have used the induction hypothesis on (8.26), i.e. [D∆
(k−1),D∆

(k−1)] ⊂
D(k). By a recursive argument, we find that what we must show is that
[D∆

(1),D(k+1)] ⊂ D(k+2). Clearly, [Y
lift

i ,D(k+1)] ⊂ D(k+2), i ∈ {1, . . . ,m}. In
addition,

[Z + kd∆,D(k+1)] = [Z,D(k+1)] + [kd∆,D(k+1)] ⊂ D(k+2) ,

since [∆,X] ∈ D(k+1), for all X ∈ D(k+1), by homogeneity. Finally, it can
be similarly shown using (8.25) that [D(k+1),D(k+1)] ⊂ D∆

(k+2). Thus, (8.24-
8.26) are satisfied for all k. ��

Corollary 8.6.2. Consider a mechanical control system of the form (8.21).
Then

1. the system is LA at q starting with zero velocity if Sym(Y)q = TqQ,

2. the system is LCA at q ∈ Q if Lie(Sym(Y))q = TqQ.

Proof. The manifold Q can be identified with the set of zero vectors Z(TQ)
of TQ by the diffeomorphism q �→ 0q. Consequently, the tangent space to
Z(TQ) at 0q is isomorphic to TqQ. On the other hand, the natural projection
τQ(vq) = q defines the set V, which are those ones falling in the kernel of
TτQ : TTQ → TQ. One has that V0q is isomorphic to TqQ for all q ∈ Q.
Both parts give us the natural decomposition

T0qTQ = T0q (Z(TQ)) ⊕ V0q � TqQ ⊕ TqQ .

The first copy of TqQ corresponds to configurations, the second one to ve-
locities. The result follows from the former proposition and Proposition 5.9
in [146] which asserts that

D(∞)(0q) ∩ V0q = Sym(Y)
lift

q , D(∞)(0q) ∩ T0q (Z(TQ)) = Lie(Sym(Y))q.

��

Next, we examine the small-time local controllability properties of the
system in equation (8.21). We shall use the following conventions. Every Lie
bracket B in {X0, X1, . . . , Xm} has a unique decomposition as B = [B1, B2].
In turn, each of B1 and B2 may be uniquely expressed as B1 = [B11, B12]
and B2 = [B21, B22]. This process may be continued until we obtain elements
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which are not decomposable. All such elements Bi1...il , ib ∈ {1, 2}, shall be
called components of B. The length of a component Bi1...il is l. Recall that
a Lie bracket B in {X0, X1, . . . , Xm} is bad if δ0(B) is odd and δi(B) is
even, i ∈ {1, . . . ,m}, where δa(B) denotes the number of times that Xa

occurs in B. Otherwise, B is good . The degree of B is given by δ(B) =
δ0(B) + δ1(B) + · · · + δm(B). As before for the symmetric product, to make
precise sense of all these notions (component, good, bad, degree) one must
use the notion of free Lie algebra, but we note again that it should be clear
what we mean here. See [146] for details.

Let the system be LA at q ∈ Q starting with zero velocity (resp. LCA
at q ∈ Q). The system in equation (8.21) is STLC at q starting with zero
velocity (resp. STLCC) if:

(Sussmann’s criterium on the set {Z + kd∆,Y
lift}): Every bad bracket B in

{Z + kd∆,Y
lift} is a R-linear combination of good brackets evaluated at

0q of lower degree than B.

This fact is a consequence of the results in [146, 232] (see also Section 8.2.1).

We shall show that if the conditions for STLC and STLCC are satisfied
for the set {Z,Y

lift}, then they are also verified for the set {Z+kd∆,Y
lift}. We

illustrate this fact by considering two low order settings. First, every bracket
B of order 1 or 2, i.e., δ(B) ≤ 2, is good. In addition, [Z + kd∆,Y

lift
] =

[Z, Y
lift

] − kdY
lift

, and therefore, every good bracket in {Z + kd∆,Y
lift} of

degree 2 is the sum of the corresponding good bracket in {Z,Y
lift} plus some

good brackets of lower degree in {Z + kd∆,Y
lift}.

For δ(B) = 3, the unique bad brackets are [Y
lift

i , [Z+kd∆,Y
lift

i ]] such that

[Y
lift

i , [Z + kd∆,Y
lift

i ]] = [Y
lift

i , [Z, Y
lift

i ]] .

Consequently,

[Y
lift

i , [Z + kd∆,Y
lift

i ]](0q) = [Y
lift

i , [Z, Y
lift

i ]](0q) =
∑

ξlCl(0q) ,

where Cl are some good brackets in {Z,Y
lift} of degree ≤ 2. At the same time,

these brackets are linear combinations of good brackets in {Z + kd∆,Y
lift}

of degree ≤ 3. In addition, observe that all the good brackets of degree 3 are
either of the form

[Y
lift

i , [Z + kd∆,Y
lift

j ]] = [Y
lift

i , [Z, Y
lift

j ]] , i �= j ,

or
[Z + kd∆, [Z + kd∆,Y

lift

j ]] = [Z, [Z, Y
lift

j ]] − [Z + kd∆,Y
lift

j ] .
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Thus, again, every good bracket in {Z + kd∆,Y
lift} can be put as the sum

of the corresponding good bracket in {Z,Y
lift} plus some good brackets in

{Z + kd∆,Y
lift} of lower degree.

Proposition 8.6.3. Assume Sussmann’s criterium on {Z,Y
lift}. Then

1. every bad bracket B in {Z + kd∆,Y
lift} of degree k, evaluated at 0q, is a

R-linear combination of good brackets of lower degree,

2. every good bracket C in {Z + kd∆,Y
lift} of degree k, evaluated at 0q, is a

R-linear combination of the corresponding good bracket in {Z,Y
lift} and

of some brackets in {Z + kd∆,Y
lift} of lower degree, and

3. every good bracket in {Z,Y
lift} of degree k, evaluated at 0q, is a R-linear

combination of good brackets in {Z + kd∆,Y
lift} of degree ≤ k.

Proof. First, note that (iii) is an immediate consequence of (i) and (ii).
Next, we show (i) by induction. The result holds for k ≤ 3. Suppose that
it is valid for k and let us prove it for k + 1. Let B be a bad bracket in
{Z + kd∆,Y

lift} of degree k + 1. This means that δ0(B) is odd and δi(B) is
even, i ∈ {1, . . . ,m}. We first select a term of the form Z + kd∆ which is in
one of the longest components of B. We then write B as the sum of two Lie
brackets, B = B1 + B2, by expanding the chosen term. By the homogeneity
properties, we have that δ0(B2) = δ0(B) − 1, δi(B2) = δi(B). Consequently,
B2 is a good bracket in {Z + kd∆,Y

lift} of degree k. Expanding now all the
possible terms Z +kd∆ in B1 as the sum of two Lie brackets, one with Z and
the other with kd∆ (going from the ones in the longest components of B1 to
those in the shortest ones), we finally obtain that B can be written as the
sum of the corresponding bad bracket in {Z,Y

lift}, plus good/bad brackets in
{Z,Y

lift} of degree ≤ k, plus B2, which is a good bracket in {Z + kd∆,Y
lift}

of degree k. The induction hypothesis now implies (i).

Let us prove (ii). Let C be a good bracket in {Z + kd∆,Y
lift} of degree

k+1. Expanding the terms Z +kd∆ as before, we find that C can be written
as the sum of the corresponding good bracket in {Z,Y

lift}, plus brackets in
{Z,Y

lift} of degree ≤ k, plus brackets in {Z + kd∆,Y
lift} of degree k. The

induction hypothesis implies then (ii). ��

Corollary 8.6.4. Consider a mechanical control system as in (8.21). Then,
we have

1. the system is STLC at q ∈ Q starting with zero velocity if Sym(Y)q = TqQ
and every bad symmetric product B in Sym(Y)q is a linear combination
of good symmetric products of lower degree, and
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2. the system is STLCC at q ∈ Q if Lie(Sym(Y))q = TqQ and every bad
symmetric product B in Sym(Y)q is a linear combination of good sym-
metric products of lower degree.

Proof. It follows from the fact that there is a 1-1 correspondence between
bad (resp. good) Lie brackets in {Z,Y

lift} and bad (resp. good) symmetric
products in Y; see [146]. ��

8.6.2 Kinematic controllability

Kinematic controllability [45] has direct relevance to the trajectory planning
problem for mechanical systems of the form (8.1). Here, we present a gener-
alized notion of kinematic controllability for affine connection systems with
isotropic dissipation. Consider a mechanical system as in (8.21), and let I
be the distribution generated by the input vector fields {Y1, . . . , Ym}. A con-
trolled solution to equations (8.21) is a curve t �→ q(t) ∈ Q satisfying

∇q̇ q̇ − kdq̇ ∈ Iq(t) . (8.27)

Let s : [0, T ] → [0, 1] be a twice-differentiable function such that s(0) =
0, s(T ) = 1, ṡ(0) = ṡ(T ) = 0, and ṡ(t) > 0 for all t ∈ (0, T ). We call such
a curve s a time scaling . A vector field V is a decoupling vector field for
the mechanical system (8.21) if, for any time scaling s and for any initial
condition q0, the curve t �→ q(t) on Q solving

q̇(t) = ṡ(t)V (q(t)), q(0) = q0, (8.28)

satisfies the conditions in (8.27). Additionally, the integral curves of V defined
on the time interval [0, 1] are called kinematic motions.

Lemma 8.6.5. The vector field V is decoupling for the mechanical sys-
tem (8.21) if and only if V ∈ I and 〈V : V 〉 ∈ I.

Proof. Given a curve γ : [0, T ] → Q satisfying equation (8.28), we compute

∇γ̇ γ̇ = s̈V + ṡ∇γ̇V = s̈V + ṡ2∇V V.

Next, the curve γ is a kinematic motion if, for all time scalings s, the con-
straints (8.27) are satisfied. Thus

∇γ̇ γ̇ − kdγ̇ = (s̈ − kdṡ)V +
ṡ2

2
〈V : V 〉 ∈ I .

Since s is an arbitrary time scaling and q0 is an arbitrary point, V and 〈V : V 〉
must separately belong to the input distribution I. The other implication is
trivial. ��
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We shall say that the system (8.21) is locally kinematically controllable
if for any q ∈ Q and any neighborhood Uq of q, the set of reachable con-
figurations from q by kinematic motions remaining in Uq contains q in its
interior.

The following sufficient test for local kinematic controllability was given
in [45] for Levi-Civita affine connection systems without dissipation and re-
mains valid for the class of systems under consideration.

Lemma 8.6.6. The system (8.21) is locally kinematically controllable if there
exist p ∈ {1, . . . ,m} vector fields {V1, . . . , Vp} ⊂ I such that

1. 〈Vc : Vc〉 ∈ I, for all c ∈ {1, . . . , p}, and

2. Lie(V1, . . . , Vp) has rank n at all q ∈ Q.

There are many interesting examples which are kinematically control-
lable. Among them, we mention the Snakeboard [44], three link planar robot
manipulators with a passive joint [45] (see also [151]), and underwater vehi-
cles [45].

8.6.3 Series expansion for the forced evolution starting from rest

The result in this section extends the treatment in [41]. Consider the system
as in equation (8.21), with initial condition q̇(0) = 0.

Proposition 8.6.7. Given any integrable input vector field (q, t) �→ Y (q, t),
consider

V1(q, t) =
∫ t

0
ekd(t−τ)Y (q, τ)dτ ,

Vk(q, t) = −1
2

k−1∑
j=1

∫ t

0
ekd(t−τ)〈Vj(q, τ) : Vk−j(q, τ)〉dτ , k ≥ 2 .

There exists a T > 0 such that the series (q, t) �→ ∑+∞
k=1 Vk(q, t) converges ab-

solutely and uniformly for t ∈ [0, T ] and for q in an appropriate neighborhood
of q0. Over the same interval, the solution γ : [0, T ] → Q to the system (8.21)
with γ̇(0) = 0 satisfies

γ̇ =
+∞∑
k=1

V (γ, t) . (8.29)



200 8 Control of mechanical systems

The proof consists of four steps. First, we present the variation of con-
stants formula. Then, we use it to manipulate the differential equation (8.23).
Third, we write the flow of the resulting equation as the composition of more
elementary flows. This procedure can be iterated to obtain the formal expan-
sion (8.29). Finally, we discuss the convergence issue.

Proof. Step I. A time-varying vector field (q, t) �→ X(q, t) gives rise to the
initial value problem on Q

q̇(t) = X(q, t), q(0) = q0.

We denote its solution at time T via q(T ) = ΦX0,T (q0), and we refer to it as
the flow of X. Consider the initial value problem

q̇(t) = X(q, t) + Y (q, t), q(0) = q0,

where X and Y are analytic (in q) time-varying vector fields. If we regard X
as a perturbation to the vector field Y , we can describe the flow of X + Y in
terms of a nominal and perturbed flow. The following relationship is referred
to as the variation of constants formula [3] and describes the perturbed flow,

ΦX+Y
0,t = ΦY0,t ◦ Φ

(ΦY
0,t)

∗X
0,t , (8.30)

where, given any vector field X and any diffeomorphism φ, the φ∗X is the
pull-back of X along φ. In particular, the pull-back along the flow of a vector
field admits the following series expansion representation [3]

(ΦY0,t)
∗X(q, t) = X(q, t)

+
+∞∑
k=1

∫ t

0
. . .

∫ sk−1

0

(
adY (q,sk) . . . adY (q,s1) X(q, t)

)
dsk . . . ds1. (8.31)

Step II. In equation (8.23), let the Liouville vector field play the role of
the perturbation to the vector field Z +Y lift. Then the application of (8.30)
yields ΦZ+kd∆+Y lift

= Φkd∆ ◦ ΦΠ , where we compute

Φkd∆(q0, v0) = (q0, ekdtv0),

and where the homogeneity leads to

Π =
+∞∑
k=0

tk

k!
adkkd∆

(Z + Y lift) =
+∞∑
k=0

(kdt)k

k!
adk∆(Z + Y lift)

=
+∞∑
k=0

(kdt)k

k!
(Z + (−1)kY lift) =

+∞∑
k=0

(
(kdt)k

k!
Z +

(−kdt)k

k!
Y lift

)
= ekdtZ + e−kdtY lift.
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Let Z ′ = ekdtZ, and accordingly 〈X1 : X2〉′ = ekdt〈X1 : X2〉. The initial
value problem associated with Π is therefore

ẏ = Z ′(y) + e−kdtY (y, t)lift, (8.32)

where we let y = (r, ṙ).

Step III. Let k ∈ N and consider the differential equation

ẏk =
(
Z ′ + [X lift

k , Z ′] + Y lift
k

)
(yk, t) . (8.33)

We recover (8.32) by setting k = 1, X1 = 0, Y1 = e−kdtY (q, t), and accord-
ingly y(t) = y1(t). We can now see the vector field Z ′ + [X lift

k , Z ′] as the
perturbation to Y lift

k . Using equations (8.30) and (8.31), we set

yk(t) = Φ
Y lift

k
0,t (yk+1(t)) .

Some straightforward manipulations using the homogeneity properties of the
vector fields lead to

ẏk+1(t) =
((

Φ
Y lift

k
0,t

)∗ (
Z ′ + [X lift

k , Z ′]
))

(yk+1(t))

= Z ′ + [X lift
k + Y

lift
k , Z ′] − e−kdt〈Y k : Xk〉lift − ekdt

2
〈Y k : Y k〉lift.

Therefore, the differential equation for yk+1(t) is of the same form as (8.33),
where

Xk+1 = Xk + Y k , Yk+1 = −ekdt〈Y k : Xk +
1
2
Y k〉.

We easily compute Xk =
∑k−1
m=1 Y m and set

Yk+1 = −ekdt〈Y k :
k−1∑
m=1

Y m +
1
2
Y k〉 .

One can iterate this procedure for an infinite number of times as in the case
of no dissipation [41] to obtain the formal expansion

ṙ =
+∞∑
k=1

V ′(r, t) , V ′
1(r, t) =

∫ t

0
e−kdτY (r, τ)dτ ,

V ′
k(r, t) = −1

2

k−1∑
j=1

∫ t

0
ekdτ 〈V ′

j (r, τ) : V ′
k−j(r, τ)〉dτ.

To obtain the flow of Z + kd∆ + Y lift, we compose the flow of Π with that
of kd∆ to compute
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q̇ = ekdtṙ =
+∞∑
k=1

V (q, t) , V1(q, t) =
∫ t

0
ekd(t−τ)Y (q, τ)dτ ,

Vk(q, t) = −1
2

k−1∑
j=1

∫ t

0
ekd(τ−2τ+t)〈Vj(q, τ) : Vk−j(q, τ)〉dτ.

Step IV. Select a coordinate chart around q0. In this way, we can locally
identify Q with Rn. Resorting step by step to the analysis in [41], it can be
proven that there exists a L > 0 such that ‖Vk‖σ′ ≤ L1−k ‖Y ‖σ,t

(
tekdt

)2k−1,
where σ′ < σ. And immediate consequence is that for ‖Y ‖σ,T T 2e2kdT < L,
the previous expansion converges absolutely and uniformly in t ∈ [0, T ] and
q ∈ Bσ′(q0). ��

8.6.4 Systems underactuated by one control

Given the discussion in Sections 8.6.1 and 8.6.3, we can conclude that The-
orem 8.4.2 and Corollary 8.4.5 remain valid for mechanical control systems
with isotropic dissipation underactuated by one control. We state them here
for the sake of completeness.

Theorem 8.6.8. Let Q be a n-dimensional analytic manifold and let Y1, . . . ,
Yn−1 be analytic vector fields on Q. Consider the control system

∇ċ(t)ċ(t) = kdċ(t) +
n−1∑
i=1

ui(t)Yi(c(t)) , (8.34)

and assume that it is LCA at q0 ∈ Q. Then the system is STLCC at q0 if
and only if there exists a basis of input vector fields satisfying the sufficient
conditions for STLCC at q0.

Corollary 8.6.9. Let Q be a 3-dimensional analytic manifold and let Y1, Y2
be analytic vector fields on Q. Consider the control system (8.34) and assume
that it is LCA at q0 ∈ Q. Let A be the 2×2 symmetric matrix whose elements
are given by

〈Y1 : Y1〉 (q0) = lc(Y1(q0), Y2(q0)) + a11 〈Y1 : Y2〉 (q0)
〈Y2 : Y2〉 (q0) = lc(Y1(q0), Y2(q0)) + a22 〈Y1 : Y2〉 (q0)
〈Y1 : Y2〉 (q0) = a12 〈Y1 : Y2〉 (q0) .

Then the system is STLCC at q0 if and only if detA < 0.
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(almost-)Poisson
– bivector, 32
– bracket, 32
– manifold, 32
(almost-)symplectic manifold, 29

action, 21
– adjoint, 20
– coadjoint, 21
– free, 21
– Hamiltonian, 31
– lifted, 22
– proper, 21
– simple, 21
action sum, 143
affine connection, 25
– curvature, 26
– Levi-Civita, 26
– torsion, 25
algebra of exterior forms, 15
algorithm
– DEL, 143
– DLA, 146
– RDLA, 159
almost tangent structure, 35
alternation map, 15

Carnot’s theorem, 126
– for generalized constraints, 132
case
– general, 84
– horizontal, 80
– purely kinematic or vertical, 67
Chaplygin system, 69, 103
Chetaev
– bundle, 55
– rule, 54
Christoffel symbols, 25, 115, 177

closure
– involutive, 176
– symmetric, 176
codistribution
– generalized, 17
– integrable
– – completely, 18
– – partially, 18
– rank, 17
– regular, 17
condition
– admissibility, 55
– compatibility, 55
– Sussmann’s, 176
constraint, 43
– geometric, 43
– holonomic, 44
– homogeneous, 45
– ideal, 52
– impulsive, 125
– kinematic, 43
– nonholonomic, 44
contorsion, 28
contraction by a vector field, 16
coordinate system
– adapted bundle, 72
cotangent bundle, 14
covariant derivative, 25

dimension assumption, 156
discrete Legendre transformation, 144
distribution
– characteristic, 33
– generalized, 17
– – leaf, 18
– geodesically invariant, 60
– rank, 17
– regular, 17
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Euler-Lagrange equations, 41
– forced, 42
examples
– ball
– – on a rotating table, 47
– – on a special surface, 135
– Benenti’s example, 50
– counter example to Koiller’s question,

119
– mobile robot with fixed orientation,

107
– – with a potential, 168
– nonholonomic free particle, 75, 96
– – modified, 100
– nonholonomic particle with a

potential, 166
– particle with generalized constraint,

138
– planar rigid body, 190
– plate on an inclined plane, 78
– rolling disk, 45
– – vertical, 74
– Snakeboard, 49
– wheeled planar mobile robot, 109
exponential mapping, 20
exterior derivative, 15
exterior product, 15

force
– impulsive, 123
Formulation
– Constrained Coordinate, 149
– Generalized Coordinate, 148

geodesic
– curve, 25
– spray, 25
geometric homogeneity, 173
gradient, 25

Hamilton’s principle, 41
holonomy, see phase, geometric
horizontal subspace, 23
horizontal symmetry, 65

impulse, 123
infinitesimal generator, 22
integrator
– energy, 142

– mechanical, 142
– momentum, 142
– nonholonomic, 146
– symplectic, 142
– variational, 143
– – generalized, 158

kinematic motion, 198
Koiller’s question, 114

Lagrange-d’Alembert principle, 53
– discrete, 146
Lagrangian
– hyperregular, 36
– mechanical, 35
– natural, 34
– regular, 36
– singular, 36
Legendre transformation, 36
Lie algebra, 20
Lie bracket, 20
– bad, 196
– component, 196
– – length, 196
– degree, 196
– good, 196
Lie derivative, 16
Lie group, 19
lift
– complete, 37
– horizontal, 24
– vertical, 37
locally accessible at zero velocity (LA),

175
locally configuration accessible (LCA),

175
locally kinematically controllable, 199
locked inertia tensor, 83

manifold, 13
mechanical control system
– simple, 172
metric connection, 26
metric connection tensor, 106
momentum equation, 86
momentum mapping, 31
– CoAd-equivariant, 31
– constrained, 84
– discrete, 144
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– nonholonomic, 85
– – discrete, 154

Nijenhuis bracket, 32, 68, 112
Noether’s theorem, 64
– nonholonomic, 58
nonholonomic bracket, 57

one-form, 14
– Liouville, 30
– Poincaré-Cartan, 36

phase
– dynamic, 77
– geometric, 77
– total, 77
point
– regular, 17
– singular, 17
Poisson structure
– rank, 33
principal bundle, 23
principal connection, 23
– curvature, 24
– mechanical, 83
Principle of Virtual Work, 52
pullback, 15

Riemannian manifold, 24
Riemannian metric, 24

small-time locally configuration
controllable (STLCC), 175

small-time locally controllable at zero
velocity (STLC), 175

solution
– abnormal, 53
– controlled, 198

– singular, see solution, abnormal
space
– fiber, 23
– pose, 23
– shape, 23
structure constants, 20
symmetric product, 60
– bad, 176
– degree, 176
– good, 176
symplectic foliation, see distribution,

characteristic

tangent bundle, 14
tensor field, 14
tensor product, 14
time scaling, 198
two-form
– Poincaré-Cartan, 36
– symplectic, 29
– – canonical on the cotangent bundle,

30
– – globally conformal, 116

variation of constants formula, 200
vector field, 14
– decoupling, 198
– flow, 14
– fundamental, 22
– Hamiltonian, 29, 32
– – distributional, 57
– Killing, 25
– Liouville, 35, 173
vertical endomorphism, 35
virtual displacements, 52
virtual variations, 52

wedge product, see exterior product
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