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The fate of a substance in the environment is determined by physical, chemical and 
biological processes. These processes take place simultaneously and are closely interlocked. 
Environmental systems do not conform with manmade distinctions between different 
branches of sciences. 

Therefore environmental fate modelling demands an interdisciplinary approach. This concerns 
not only interdisciplinarity between different disciplines such as soil physics, mathematics, 
soil chemistry and biology, but also interdisciplinarity within a discipline. Mathematics may 
serve as an example. Kinetic processes, if they are mediated by biological processes, are 
nonlinear. They are modelled by sets of nonlinear ordinary differential equations, which, in 
general, are not amenable to analytical solutions. The understanding of the dynamics of such 
equations is based on knowledge of dynamical systems theory and on numerical methods for 
obtaining approximate solutions. Coupling kinetics with transport leads to systems of partial 
differential equations. Furthermore, these processes are imbedded into a random environment. 
Soils are by no means homogeneous media. As a consequence variability itself has to be 
modeled by stochastic approaches based on modern geostatistical theory. All the methods 
mentioned above stem from different fields within the realm of mathematics. 

Models cannot be derived from first principles alone. Models summarize experimental 
knowledge at the abstract level of mathematics. Therefore, many experimental data are 
necessary at various stages of model development. In the beginning experimental knowledge 
guides us in the conception of models and in later stages, thoroughly designed experiments 
serve to identify model parameters and to validate models. Parameter estimation techniques 
both in ordinary and in partial differential equations are therefore necessary tools to provide 
the link between models and experiments. These techniques combine aspects of numerical 
mathematics and statistics. 

Model parameters such as sorption constants, degradation rates and diffusion coefficients are 
all closely related to soil properties. The translation of models across scales, from the 
laboratory scale to field and catchment scales, therefore demands first the mapping of geo- 
referenced soil information to model parameters. This is mediated by so-called pedotransfer 
functions. The link between spatial information and pesticide environmental fate models can 
best be achieved in the frame of a geographical information system. 

If processes are only vaguely known, fuzzy-theory provides a promising new concept to deal 
with uncertainty. At the end of the book, a simple fuzzy-expert system is presented apt to 
predict decay modes and half-lives of a herbicide. 

It is the objective of this book, to bring together many different aspects of environmental fate 
modelling of pesticides comprising such diverse subjects as 

- linear compartment theory 
- nonlinear biological degradation models 
- biological temperature and humidity response of degradation 
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- herbicide dynamics, i.e. modelling toxicity 
- parameter identification in ordinary and partial differential equations 
- parameter estimation in sparse data situations 
- coupled reaction and diffusion processes in form of coupled 

- coupling of physical and biological processes 
- transport processes in random environments 
- pedotransfer functions 
- coupling of random soil parameter fields and reactive transport models 
- the translation of models across scales 
- coupling of geographical information systems with models 
- fuzzy approaches 

partial differential equations 

This book has several origins. Part of the material is based on a course on environmental 
modelling for environmental science students of the new course "Geoecology" at 
Braunschweig University. More advanced parts and many experimental data are due to the 
activities of the Collaborative Research Program 179 "Water and Matter Dynamics in Agro- 
Ecosystems", which was established in 1986 at the Technical University of Braunschweig, 
Germany, sponsored by the Deutsche Forschungsgemeinschaft. Part of the research program 
was the development and validation of physically, chemically and biologically based transport 
and reaction models for pesticides in soils. The subprojects "Integrated Site and Catchment 
Models", "The Dynamics of Herbicides", "Investigations on Pesticide Residues and 
corresponding Metabolites" deserve special mention. Furthermore, the research was sponsored 
by BASF, where several kinetic studies were carried out by PhD students. 
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1 Introduction 

Environmental Fate of Pesticides 

If one regards the environmental fate of a substance such as a pesticide one is intrigued by 
the number of interacting processes. Let us follow a pesticide in the plant soil system after 
spraying. Fig. 1.1 depicts the main processes. Before it reaches the soil, the substance may 
undergo decay by photodecomposition, it may be transported in the air and it may adsorb to 
plant leaves. Once it enters the soil, it is subject to various transformation processes. It may 
decay by a simple chemical process, e.g. by hydrolysis. Most important, it may be 
transformed by biochemical reactions mediated by microorganisms. These reactions are called 
metabolic if microorganisms are able to use the substance as C-source, otherwise they are 
called cometabolic. The latter notation expresses the fact that degradation is connected to 
microbial activity for instance by the release of hydrolytic enzymes. Degradation processes 
mostly take place in the liquid phase. In the soil the substance partitions between the liquid 
phase, the solid phase and the gaseous phase. Furthermore it is sorbed to binding sites with 
different strength of binding. 

Volatillsatbn 
Photodecomposiuon 

I v S L  I Runoff 

Root 
zone 

, Zoneof high 
Mologlcal acltvity 

Plough pan 

&horizon 

Fig. 1.1: Main processes in the plant soil system. 
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2 1 Introduction 

Solute transport through soil is mediated by water flow and is strongly influenced by solute 
sorption. To complicate matters, soil structures are heterogeneous. There are wormholes, 
cracks and complex soil structures caused by e.g. glacial processes (cf. Fig. 1.2) giving rise 
to preferential flow facilitating the transport of pollutants into the subsoil. All these processes 
are embedded in a spatio-temporal hierarchy (cf. Tabs. 1.1 and 1.2). If one considers all these 
processes in detail it does not seem feasible to devise mathematical models able to cope with 
this sort of complexity. However, the experience of systems at the laboratory scale - 
continuously stirred reactors, soil columns and lysimeters - show that in spite of this apparent 
complexity decay curves and breakthrough curves can well be described by mathematical 
models with different degree of sophistication. 

Fig. 1.2: Preferential flow paths in a highly variable soil of a push moraine. The flow region is colored 
by Rhodamine applied during a tracer experiment. 
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TEMPERATURE 
1:. \ .. ... 10% XZO'C X 30% 

~ ~~ 

Simple Mathematical Models 

Notations 

Y : concentration [m31 
yo : initial concentration [ m 3 1  
t : time [TI 
T 
k : rate constant [1/T] 
R 
AE : activation energy [J/mol] 

: temperature ["C, resp. K] 

: gas constant = 8.314 JK-' mol" 

The simplest kinetics encountered is the mono-exponential decay with an Arrhenius law for 
the dependence of the rate constant on temperature. Figure 1.3 shows decay curves for 
several temperature values obtained in the laboratory. 

0.6 - 

g 
K 
5 0.4- 
W 
0 z 

0.2 - 
8 

' . .  . '.. , 

.*. . . . , 

0 20 40 60 80 

TIME [day.] 

Fig 1.3: Decay curves for several temperature values obtained in the laboratory. 

Assuming that the rate of decay is proportional to the amount of pesticide present the 
adequate model in differential form is 

= - k y  with y ( t - 0 )  = yo dY - 
dt 

which is easily integrated to yield (cf. section 2.1) 

- k t  
Y ( t )  = Yoe 

The Arrhenius law establishes the following dependence of the rate constant k on 
temperature T 

- A E  
R T  
- 

k ( T )  = koe 



4 1 Introduction 

This is one of the simplest models. There are no nonlinear effects such as lag times or other 
forms of non-mono-exponential kinetics. If one wants to apply this model to time varying 
temperatures T(t), one has to start from the underlying differential equation Eq. (1.1) 
introducing a time dependent rate constant: 

- dY = - k(T( t ) ) y  with y ( t=O)  = yo ( 1.4) 
dt 

Integration of this differential equation yields (cf. section 2.1) 

j - k ( T ( l ) d r  

Y ( 0  = YoeO 

This example demonstrates, that it is possible to apply a model, which has been derived from 
simple experimental conditions, to a more complex situation. However, care has to be taken, 
if one is leaving the range of those experimental conditions which served to establish the 
temperature law. If degradation is mediated by microorganisms, the validity of the Arrhenius 
law is confined to only a small temperature range (cf. section 3.4.1). 

However, simple mono-exponential models do not always apply. Frequently, one is faced 
with significant deviations from this simple kinetic behavior due to nonlinear effects at the 
microbial level. Figure 1.4 shows decay curves of 2,4-D (2,4-dichlorophenoxyacetic acid), 
which obviously cannot be described by a mono-exponential model, because it is not capable 
of simulating lag-phases. Effects like this pose a challenge to model builders and render 
environmental fate models interesting from the mathematical point of view. 
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f 

Ly 
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0 

60 
SOIL 
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Fig. 1.4: Decay curves of 2,4-D. This example will be discussed in section 4.4. 

Spatial and Temporal Scales 

Once released pesticides become part of agricultural ecosystems. Therefore it is important to 
study the scales involved in agricultural ecosystems first and then to see how pesticides fit 
into this scheme. Table 1.1 summarizes some basic processes in an agricultural ecosystem 
and their characteristic times. 
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Process 

enzymatic reactions, e.g. 
the hexo-kinase reaction 

growth of a microbial 
population 

nitrification and 
denitrification 

short-term population 
dynamics of pests and 
diseases 

long-term population 
dynamics of pests and 
diseases 

crop growth 

long-term population- 
dynamics of weeds 

water transport in the soil 

matter transport and 
degradation in the 
unsaturated zone 

evolutionary processes 
induced by agriculture: 
enhanced biodegradation of 
pesticides, emergence of 
resistance 

change in biodiversity, 
dying back of species, 
immigration of species 
(e .g. weeds) 

Tab. 1.1: Processes in (agricultural) ecosystems and their characteristic times. 

State variables Characteristic time 

glucose (substrate) and minutes 
glucose-6-phosphate 
(product) 

biomass in C units, 
N-content, activity 

NHq', NOg-, N20, N2, 
microbial activity 

density of eggs, larvae and 
adults 2 - 7 weeks 

30 minutes 

1 day - several weeks 

1 week (eggs) 

(adults) 

period of crop rotations, density of eggs, larvae and 
adults several years 

biomass of shoot and root, 
N-content, leaf area index, 
yield 

seedbank, density 

several weeks 

vegetation period to years 

1 h to several days 

weeks to several years 

water content, water 
potential 

concentration in liquid, 
solid and gaseous phase 

biodegradation rates, 
response to pesticides 

-1 to 10 years 

number and abundance of 
species 

-1 to several 100  years 

In dealing with pesticides one has to consider in addition various levels of experimentation. 
Following Blackburn (1989) one can distinguish the continuously stirred tank reactor level, 
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the column reactor level, the field-scale and last the catchment or aquifer-scale. It is 
important to note that there are long-term processes associated with periodic applications of 
pesticides at the evolutionary level of microbial populations and the target populations. 
Enhanced biodegradation has been frequently observed, although the molecular and genetic 
mechanisms for this effect are still being investigated. Figure 1.5 shows enhanced 
degradation of EPTC as measured by Obrigawitch et al. (1983). 

-MODEL 

DATA 

I I 
I I 

I I 

0 25 50 75 100 

TIME [days] 

Fig. 1.5: Degradation of EPTC as measured by Obrigawitch et al. (1983). This example will be 
duscussed in section 3.3.3. 

Target populations may eventually become resistant against the pesticide. These biological 
long-term effects pose a major problem for the conception of deterministic fate models. In 
chapter 3 some possible modeling approaches are presented. 

Dealing with Spatial Heterogeneity 

If one proceeds from the laboratory level to higher spatial scales one has to include the 
dependence of rate constants on soil properties. The spatial distribution of soil properties has 
both, a deterministic (soil type) and a random component. The random component has to be 
modeled explicitly. This implies that in addition to deterministic process models for 
laboratory conditions one has to devise stochastic models for the spatial distribution of 
parameters. In the simplest case these are probability density functions. If three-dimensional 
transport in a soil is considered, the models are spatial stochastic processes yielding 
realizations of parameter fields (cf. section 7.3). By combination of stochastic models for soil 
parameters and deterministic models for the kinetics one is able to tackle the problem of 
spatial heterogeneity. A key concept is the notion of ecotope. An ecotope is defined as the 
intersection of a pedological unit and the landuse pattern. At the catchment scale the 
landscape is composed of a large number of ecotopes each with characteristic soil properties 
(cf. section 7.5). Table 1.2 summarizes spatial scales and possible model approaches taking 
into account spatial heterogeneity. 
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Tab. 1.2: Model approaches on different scales. 

Soil Heterogeneity 

homogeneous 

Scale Model 

kinetic models in form of 
ordinary differential 
equations 

continuously stirred tank 
reactor 

large deterministic 
structures (several 
pedological units) with 
random soil properties 

column reactor 

pedotransfer functions plus 
stochastic model plus 
deterministic model 

field scale (intersection of 
pedological unit and 
landuse) 

continuously stirred tank 
reactor 

column reactor level 

experimental plot 

experimental field 

experimental farm 

catchment scale 

high temporal resolution 

high temporal resolution 

high temporal and spatial 
resolution interval scale level, low 

interval scale level 

interval scale level 

detailed measurements at 

spatial variability 

detailed measurements at 
interval and ordinal scale 
level, spatial variability 

detailed measurements at 
interval scale and ordinal 
scale level, increasing 
spatial variability 

reduced temporal and 
spatial resolution 

reduced temporal and 
spatial resolution 

only few measurements 

almost homogeneous 
microscale variation 

qualitative information 
(linguistic level, fuzzy 
information) 

kinetic models coupled 
with one-dimensional 
transport models in form 
of partial differential 
equations 

~~ ~ 

random soil properties stochastic models for soil 
properties plus 
deterministic model 

Tab. 1.3: Information hierarchy associated with spatial scales. 

Scale I Information Density I Information Quality 

ordinary farm, catchments 
and landscapes 
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Information Hierarchy 

The various approaches mentioned above to cope with spatial heterogeneity all demand large 
data bases. In order to identify the parameters of a spatial random process one has to collect 
data with a high spatial resolution by nesting grids of different mesh sizes. This method is 
referred to as "nested sampling design". Such extensive experimental efforts are only possible 
in the frame of a large collaborative research program. One can state that an information 
hierarchy is associated with the hierarchy of spatial scales. Table 1.3 illustrates the relation 
between spatial scales and information density and information quality. This is one of the 
major issues in environmental fate modelling: the translation of models across spatial and 
temporal scales in view of this information hierarchy. We will address this problem in 
chapter 7, but we admit that here many questions still remain open. 



2 Mathematical Preliminaries 

2.1 Ordinary Differential Equations 

In this book, ordinary differential equations are applied to the dynamics of chemical reaction 
systems. They are modeled by systems of simultaneous first-order differential equations of 
the general form 

The yi  are the state variables, which are unknown functions of time t. In our applications the 
y i  will denote concentrations of chemicals in various phases, e.g. liquid phase and solid phase 
pesticide concentrations. The system is of first order, because only the first derivative of the 
yi  with respect to time t appears in the equations. The system behavior is specified by the 
initial conditions of the state variables: 

y1( t=O)  = y10,  y2( t=O) = y20 , . . . I  y,( t=O) = YnO (2.2) 

The mathematical problem to solve the equation system (Eq. (2.1)) together with the initial 
conditions (Eq. (2.2)) is referred to as an initial value problem. In physical applications, one 
is frequently lead to second order differential equations, because the basic physical laws 
involve second derivatives with respect to time. E.g., the differential equation for the motion 
of a damped mass-spring system is 

(2.3) d 2 x  dx 

d t 2  dt 
rn- + r -  + k x  = O  

Here, x means the displacement of the mass, m the mass, r the coefficient of friction and k 
the spring constant. However, it is always possible to write a higher order equation as a 
system of coupled first-order equations. Consider the above example. By the introduction of 
the auxiliary variable v = dx/dt, which has the meaning of a velocity, the first order equation 
is replaced by the system 

En vironznen Fate Modefling of Pesticides 
From the La hora tory to the Field Scale 
0. Richter,B. Diekkriiger & P. Nortersheuser 
copyright 0 VCH Verlagsgesellschaft mbH, 1996 
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A system is defined to be linear if the functions on the right hand side (r.h.s.) of Eq. (2.1) 
are all linear functions of the state variables y i .  The number of equations is referred to as the 
dimension of the system. The constants appearing in the equations, e.g. m, r and k in 
Eq. (2.3) are referred to as parameters. They reflect the material properties of the system to 
be modeled. We consider now simple first order systems, which are amenable to analytical 
solutions, i.e. solutions in closed form, by elementary methods. The simplest model of a 
chemical reaction is based on the assumption, that the reaction rate is proportional to the 
actual mass or concentration. 

- dy = - k y  
dt 

with y ( t = O )  = yo 

The negative sign of the r.h.s. means that a loss occurs because the rate of change is 
negative. This equation is linear. A famous example of a nonlinear equation is the differential 
equation of logistic growth. 

Population growth is limited by the parameter K, which is - in the context of population 
dynamics - referred to as environmental capacity. Both equations are of the general form 

where the parameter a is a constant. 

Method of Separation of Variables 

Equations of this type are solved by the method of separation of variables. This procedure 
implies the following steps. 

1. Step: separation of variables 

dY - = adt 
d Y )  

2. Step: integration 

Y t 

Y o  t0 
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3. Step: deriving the explicit form of the solution 

Y(t) = G-I[G(Yo) + a ( t  - ro>l (2.10) 

where G -' is the inverse function of G. In the following examples, ro is set equal to zero. 
For the initial value problem Eq. (2.5) these steps are: 
1. step: separation of variables 

dY - = - kdt 
Y 

(2.11) 

2. Step: integration 

(2.12) 

3. Step: deriving the explicit form of the solution 

ln(y) - In(y,) = - k r  

In the same way the solution of the initial value problem Eq. (2.6) is obtained as 

Kyo 
Y ( Q  = 

Yo - (Yo - +-" 

(2.13) 

(2.14) 

Even if an analytic expression of the integral of l/g(y) is known, it is not always possible to 
get an explicit solution as the following example shows. Consider the enzymatic degradation 
of a substance according to the Michaelis-Menten kinetic law (cf. section 3.2). 

- dY = - VY with y(r=O) = yo 
dr Y + K  

After separation of variables and integration one obtains 

- yo + -(lny K - inyo) = - t 
V 

This equation cannot be explicitly solved for y. 

Non-Autonomous Equations 

(2.15) 

(2.16) 

In the foregoing examples the r.h.s. does not explicitly depend on time t. Equations of this 
type are referred to as autonomous. If one considers for example the degradation of a 



12 2 Mathematical Preliminaries 

pesticide in the field, changing temperature conditions render the degradation "constant" time 
dependent. 

- dy = - k( t )y  
dt 

with y ( ? = O )  = Y O  

This equation is a special case of the general form 

dY - = f ( t ) g ( y )  with y( t=O) = yo 
dr 

(2.17) 

(2.18) 

Equations with explicit time dependency of the r.h.s. are called non-autonomous. Again, the 
solution of this initial value problem can be obtained by application of the method of 
separation of variables. 

1. Step: separation of variables 

dy = f ( t )d t  
g ( Y )  

2. Step: integration 

3. Step: deriving the explicit form of the solution 

Y ( O  = G [ G ( Y o )  + F ( 0  - F(t0)l 

(2.19) 

(2.20) 

(2.21) 

where G -' is the inverse function of G .  In the following example, to is set equal to zero. 

Consider the initial value problem Eq. (2.17) with a periodical time dependence of the 
degradation rate according to 

k = ko + asin(ot) (2.22) 

1. Step: separation of variables 

dY - = f (?)dt  
Y 

(2.23) 
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2. Step: integration 

V t 

3. Step: deriving the explicit form of the solution 

1 [- k o f  - $(' - cos(6It)) 
Y ( t )  = Yoe 

Inhomogeneous equations and the trick of the integrating factor 

We consider differential equations of the general form 

(2.24) 

(2.25) 

(2.26) 

Equations of this type model for example the situation that a substance, which decays with 
time dependent rate constant a(?), is entering the system with time dependent rate At). An 
equation of this type is called inhomogeneous. The first step of the solution procedure is the 
solution of the homogeneous equation 

dY - + a(t)y = 0 
dt 

Applying the method of separation of variables one obtains 

- A(?)  Y O )  = Yoe 
r 

A ( t )  - A ( t , )  = Ja(7)dT 
t0 

(2.27) 

(2.28) 

This solution can also be obtained by the following trick: the differential equation is 
multiplied by the "integrating factor" e A(t). One easily verifies that the 1.h.s. of the 
differential equation can be written as the derivative 

(2.29) 
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so that the homogeneous equation takes the form 

Integration yields the solution of the initial value problem Eq. (2.26). In the inhomogeneous 
case multiplication by the integrating factor leads to 

Integration and multiplication both sides by e -A(t) yields 

(2.3 I )  

(2.32) 

Consider the simple case that a(t) = const = k and thatflt) = const = v. The integrating factor 
is then given by e " and application of the general formula Eq. (2.32) yields the solution 
(to is set equal to zero) 

(2.33) 

Further examples will be given in the next chapter. 

Remarks on Existence and Uniqueness of the Solutions 

The fundamental theorem of Picard-Lindelof ensures that the solution of the initial value 
problem 

- dY = m y )  with y ( t = O )  = y o  (2.34) 
dt 

exists and is unique, if the r.h.s. of the differential equation is Lipschitz-continuous. 

Def.: flr,y) is called Lipschitz-continuous with respect to y ,  if there exists a positive constant 
L such that 

(2.35) 
If(t,Y) - f ( C Y  * ) I  5 L IY - Y * I  

This condition is always fulfilled for the class of kinetic equations encountered in this book. 
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2.2 Partial Differential Equations 

Modelling Processes by Partial Differential Equations 

Ordinary differential equations (ODEs) have only one independent variable, which is in the 
context of our applications, the time. They are thus lacking any spatial component. The 
application of ODEs to dynamic systems makes only sense, if the compartments of the 
system under study are spatially homogeneous. This is for instance realized for reaction 
systems in a "well stirred'' medium in a laboratory. However, if the fate of a substance in the 
environment is considered, transport processes in inhomogeneous soils prevail. Therefore 
models are needed, which contain explicitly spatial coordinates and which yield the evolution 
in time of the concentration field, i.e. the concentration as function of time and space. The 
resulting differential equation therefore contains also derivatives of the state variables with 
respect to the space coordinates. Such an equation is called a partial differential equation 
(PDE) . 

Derivation of the Continuity Equation 

The basic equation for the derivation of transport models is the mass balance equation for a 
volume element. Although the shape of the elements is arbitrary, we consider, for ease of 
presentation, a rectangular box centered at P(x,y,z) with dimensions Ax, Ay and Az 
(cf. Fig. 2.1). Imagine that this box is placed into a flow field .?. This is also referred to as 
control volume or control box. Let c denote the mass of a substance (or any other extensive 
property) in a volume element AV. Then the rate of change of c in AV is the excess of inflow 
over outflow during a time interval At. Summing up the flows in x ,  y and z direction through 
the surfaces of the control box yields the conservation equation 

Fig. 2.1: Flux balance for a control volume. 
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Under the assumption that the flow field is continuous, the value of J a t  the surfaces can be 
derived from the flow at the center by a Taylor expansion 

so that the excess of inflow over outflow in x-direction is given by 

Summing up the excess in all three directions gives the expression 
/ \ 

aJx aJy ay aZ 
-hAyL\z Ac = - + - + - k A Y k  
At 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

In the limit AV + 0 and At + 0 one finally obtains the fundamental conservation equation 
/ \ 

By use of the gradient operator 

this equation is written in condensed form as 

ac 
at 
- + v.3 = 0 

The second term is the scalar product of the vectors V and J': 

(2.41) 

(2.42) 

(2.43) 

'"A differential operator is something hungry to differentiate something" (The Feynman 
Lectures on Physics) 
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If there are any sources or sinks in the control volume, i.e. any processes creating or 
consuming the substance, the mass balance is completed by a sink or source term Q: 

ac + 
- + V - J  = Q 
at 

This equation can also be derived from a famous theorem of vector analysis. Let V denote 
any volume and <the unit vector normal to the surface. For this volume the mass balance 
equation is 

(2.45) 

stating that the rate of change of c in V equals the integral over the flow over the surfaces of 
V (cf. Fig. 2.2). By application of Gauss' divergence theorem 

the mass balance equation is written as 

This is the fundamental mass balance equation in integral 
obtained by letting V + 0. 

(2.46) 

(2.47) 

form, from which Eq. (2.44) is 

Fig. 2.2: The total rate of change of the quantity c within the volume V equals the integral over the 
fluxes across the surface. n' is the outward normal vector to the surface element du. and J is the flux 
vector across du. 
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v c =  

Derivation of the Diffusion Equation 

- ax 
ac 
aY 
ac 

- 

- 

To obtain a transport equation, it is necessary to express the flow J’in terms of the state 
variable c. At this point, experimentally based assumptions on the transport mechanism have 
to be made. In the case of diffusion in an isotropic medium, Fick’s law of diffusion applies, 
stating that a flow is generated by the gradient of a concentration. 

J ’ =  -DVc  

where Vc is the column vector 

(2.48) 

(2.49) 

The negative sign determines the direction of the flow, which proceeds from regions of high 
to regions of low concentration. In an anisotropic medium, the direction of the flow is not 
necessarily parallel to the gradient. The transformation of the gradient vector is achieved by 
the multiplication of the gradient by a matrix - the so called diffusion tensor. So in isotropic 
media D is a scalar, the diffusion constant, and in anisotropic media a tensor. Combination 
of Eq. (2.43) and Eq. (2.48) yields an equation, which solely depends on c: 

ac 
at  
- = V - D V c  (2.50) 

The right hand side of this equation is the scalar product of the gradient operator with the 
gradient of c yielding 

ac - a ac a ac a ac 
at  ax ax ay ay aZ az 
- - -D- + -D- + - D -  (2.51) 

This is a partial differential equation (PDE), which defines relationships between partial 
derivatives of the state variable c. The mathematical problem to find a solution of the above 
PDE has to be specified by initial and boundary conditions. The latter occur, because the 

3 state variable depends on time t and spatial coordinates x, y, z. Let G denote a region in p1 
with boundary aG. Possible boundary conditions, which are motivated by the nature of the 
physical problem under study, are 

i) prescribed concentration on the boundary (Dirichlet boundary condition) 

C(X,Y,Z,~) = @(xlylz9t) I(x,y,z) ac (2.52) 
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ii) prescribed flow on the boundary (Neumann boundary condition) 

where 

ac - = i ivc  
an 

(2.53) 

(2.54) 

is the partial derivative of c in direction of the outward normal vector fi (cf Fig. 2.2). 

iii) prescribed loss on the boundary (Cauchy boundary condition) 

ac 
- + ac = p I (x,y,z) E ac an 

(2.55) 

Let cs and c, denote the concentration at the surface of a medium and in the surrounding air 
respectively. Then the rate of volatilization at the surface is given by 

ac D- + K ( C ~  - c e )  = 0 
an 

(2.56) 

where K denotes the resistance of the boundary layer. Note that all three boundary conditions 
may occur in one problem at different regions of the boundary. Specification of the problem 
is completed by prescribing the initial concentration field: 

(2.57) 

The mathematical problem to solve a partial differential equation subject to given initial and 
boundary conditions is denoted as an initial boundary value problem. 

Analytical Solutions 

In the following some analytical solutions for the one-dimensional version of the diffusion 
equation with constant diffusion coefficient will be derived for simple boundary conditions. 
A solution of the one-dimensional version of the diffusion equation 

- ac - - D- a2c (2.58) 
at ax2 

is given by 
1 2  

(2.59) 
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This solution corresponds to the experimental situation that a substance concentrated at time 
f = 0 at the origin diffuses in a cylinder of infinite length. Let M denote the total mass 
initially present at x = 0. Mass conservation demands that at any time t 

m 

1 -  

M = J c ( x , t ) d r  
- m  

. .  . .  TIME STEPS . .  . .  . .  . .  . .  "' I 5 10 

From this integral the constant is determined as 

M const = - 
2 f i  

so that the final solution is given by 

2 
X - - 

M 4Dt  c ( x , t )  = -e 
2 m  

(2.60) 

(2.61) 

(2.62) 

Because of the singularity encountered at t = 0 this function is called "singularity function". 
Figure 2.3 shows concentration curves obtained at different times. 

The singularity function can be used to construct solutions for arbitrary initial distributions. 
The underlying principle is the superposition of line elements, each of which is described by 
the singularity function. As example we treat the case of a finite rectangular initial 
distribution. 

(2.63) 
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At time t the concentration at point x* is given as the superposition of the contributions of 
all line elements. The contribution of the line element at distance 5 from point x and width 
dk (cf. Fig. 2.4) is 

C 

(2.64) 

-h 0 +h X' 

Fig. 2.4: Illustration of the principle of superposition. The concentration at point x* is obtained by 
integration over all line elements. 

Hence, the concentration at any point x is obtained by the integral over all line elements: 

(2.65) 

By the substitution 

5 
2 6  

11 = -  

one obtains 

X - h  x + h  (2.66) with a = - and b = - b 2  
x + h  

CO ... = -Je - q  dq 
x - h  6 a  2JD-;- 2 4 5 7  

It is convenient to express this integral in terms of the error function, which is defined as 

2 z 
(2.67) 2 

elrf(z> = -Je -q dq 
6 0  

Because the error function is widely used, efficient numerical routines are available for its 
evaluation. Analytical solutions of boundary value problems involving the convection 
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dispersion equation are obtained as superposition of error functions as shall be dealt with in 
some detail in chapter 5.  In terms of the error function the solution of the above boundary 
value problem is given by 

Figure 2.5 shows a series of concentration profiles obtained from Eq. (2.68). 

w 
0 0.5 -  z 

(2.68) 

-1 0 -5 0 5 10 

DEPTH 

Fig. 2.5: Evolution in time of a rectangular initial distribution. 

A powerful tool for obtaining analytical solutions of partial differential equations is the 
method of Laplace transformation. This method will be introduced in section 3.1.4. 

The Model Character of the Diffusion Equation 

At first sight the derivation of the diffusion equation appears straightforward and sound. So 
one would expect a reasonable physical behavior of the solution. However, if one closely 
examines Eq. (2.62) or Eq. (2.65), one notices, that they imply an infinite velocity of 
propagation. At any time t > 0 the concentration curve extends to infinity. From a physical 
point of view this behavior is unreasonable. However, in practical application this effect is 
not important, because the concentration becomes negligibly small for large x. This 
underlines the model character of the diffusion equation. 

2.3 Geostatistics 

Measures of Spatial Continuity 

The basic idea of geostatistics is the assumption, that geo-referenced variables such as soil 
properties are spatially correlated. This assumption is also referred to as spatial continuity. It 
is intuitively clear that in a field soil properties of neighboring locations tend to be more 
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similar than those of more distant locations. To analyze the spatial continuity by explorative 
methods one can construct scatterplots for pairs of data which are separated by a certain 
distance. Let Z ( 2 )  denote a variable measured atJocation 4. The distance vector between 
two points is h.. - The plot of Z(T+lhl) versus Z ( 3  characterizes the spatial 
correlation between all those locations with distance vector $. If the spatial correlation does 
only depend on I;/, the soil is isottypic with respect to this variable and one can simply 
construct the scatterplot of Z(T+Ihl) versus Z ( 3 .  Figures 2.6 a,b show as example 
scatterplots of the Kd-value of Simazine for two different separation distances. The Kd-value 
is the equilibrium constant for adsorption and desorption of a substance on the soil matrix 
(cf. chapter 3). 

+ - +  

r~ - xi - 3. 
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Fig. 2.6: Scatterplots of the Kd-value of Simazine for two different separation distances (data obtained 
by Bunte, 1991): a) at a separation distance of about 30 m the spatial correlation is obvious, b) at a 
separation distance of about 245 m the spatial correlation has failed. 
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There are several ways to characterize mathem_atically the spatial dependence. If one regards 
Z(3 as a predictor for Z at location (;+lhl) it is most natural to take the prediction 
variance as criterion for spatial continuity 

(2.69) 

where n(h) is the sum of all pairs that are separated by h. The function y (L) is traditionally 
called the semivariogram. Another measure of spatial continuity is the covariance. which is 
defined by 

(2.70) 

m - i  and m + i  are the means of all those measurements whose locations are -h' or +h' 
respectively away from other locations. For a finite sample size, both means are in general 
not identical. 

The covariance function is related to the correlation function by 

= c(@ (2.71) 
S-g * s + g  

s - i  and s+g are the standard deviations of all those measurements whose locations are -h' 
or +$respectively away from other locations. The most important tool for the analysis of 
spatial continuity is the semivariogram. This is due to theoretical reasons. The existence of 
a variogram is the weakest assumption of the underlying spatial stochastic process. 

The Spatial Law 

The three statistics to characterize spatial continuity make only sense if they are related to a 
stochastic model. A set of measurements taken at n locations is regarded as set of realizations 
of the vectorial random variable 

In theory, one can assign a multivariate distribution function F(zl, z2, ... , zn) to each random 
vector 

F ( z p z 2  ,..., z,) := P{Z(X',) < Zl,  Z(22) < 22 ,..., z ( q  < 4 (2.72) 

The collection of all distribution functions is referred to as the spatial law of the spatial 
random variable Z (for a brief description of some frequently used distribution functions 
cf. appendix A.2). 
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First and Second Order Moments 

In geostatistics it is sufficient to know only the first and second order moments, which are 
related to the measure of continuity given above. The first order moment is the mathematical 
expectation 

(2.73) 

here flz) is the probability density function of the random variable Z(3. Second order 
moments are the variance, the covariance and the semivariogram. They are defined by 

(2.74) 

(2.75) 

(2.76) 

Hypotheses of Stationarity 

Since there is no possibility to obtain replications at one and the same position, assumptions 
have to be made on the degree of spatial homogeneity. Simply speaking one has to assume 
that the process repeats itself in space. There are three degrees of stationarity. 

I .  Strict stationarity 

This implies that the spatial law is known. A spatial random variable is defined to be strict 
stationary if the underlying distribution functions are invariant under translation. 

2. Stationarity of order 2 

As mentioned above, in (linear) geostatistics only the first and second moments are used. So 
it is sufficient to restrict stationarity assumptions on these moments. The assumptions are 
only valid for a limited region G. A spatial random variable is called second order stationary 
if 

i) the expectation exists and does not depend on the space coordinate, i.e.: 

E[Z(x')] = p = const for all T E  G 

ii) for each pair of random variables the covariance function exists and depends only on the 
distance between the space coordinates, i.e.: 
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It can be shown that the stationarity of the covariance function implies the stationarity of the 
other second order moments (cf. Journel and Huijbregts, 1989). The covariance function, the 
variance and the semivariogram are related by 

By means of the covariance function, the correlogram is defined as 

Figure 2.7 shows the relation between the variogram and the covariogram function. 

I QAUSSIANMODEL I 1.2 1 
1 .  J 

‘5 0.8 = - I  0 

- VARIOGRAM - COVARIOGRAM 

(2.77) 

(2.78) 

0 I’ 
0 0.6 1 1 .s 2 

la 
Fig. 2.7: Relation between the variogram and the covariogram function. 

3. Intrinsic hypothesis 

In practice, one frequently meets situations where the variogram is not bounded, i.e. the 
variance and the covariance do not exist. In this case one only assumes that 

i) the expectation exists and does not depend on the space coordinate 

E [ Z ( 2 ) ]  = p = const for all .?E G 

ii) that the variogram exists, i.e. that [Z(i’+I$[) - Z(3] has a finite variance which does not 
depend on the space coordinate, but only on 
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Variogram Models 

The variogram can be estimated by the formula for the empirical variogram (Eq. (2.69)), 
which is the so called method of moments estimator of the variogram. For further use of 
the variogram function for spatial prediction it is desirable to fit the points of the empirical 
variogram to a model. In order to ensure positiveness of the variance, the class of admissible 
variogram models is subjected to the condition 

n m  
(2.79) 

for any real numbers ai and a. satisfying 
J 

n rn 

c a j = c a j = o  
i = l  j = l  

This property is called conditionally negative definite. In the following, some often used 
isotropic variogram models are described which possess this property. It is frequently found 
that the spatial correlation between variables is fading with distance and finally disappears. 
From Eq. (2.77) it follows that the semivariogram reaches the asymptotic value C(0) for 
16) + 00. This value is called the sill. The following models are normalized to a sill value 
of 1. 

Spherical model: 

(2.80) 

I 
Exponential model: 

1 

Gaussian model: 

(2.81) 

(2.82) 

The parameter a is called the range. Figure 7.10 (cf. section 7.3) shows plots of these 
variogram functions. A theoretical variogram model must take the value of zero in the origin. 
In practice, one frequently finds a value at or near the origin greater than zero. This may be 
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due to the size of the spatial grid. Obviously, it is not possible to resolve spatial processes 
with a range smaller than the grid size. This is referred to as nugget effect and the value at 
the origin is called the nugget constant. Figure 2.8 shows the variogram of the Kd-value of 
the herbicide Simazine (obtained from Bunte, 1991). 

0.075. 

0.05. 
9 a 
2 a 
0 

' 0.025- 

0 -  

3f DATA -MODEL: GAUSSIAN NUGGET 0.01 Q 
SILL : 0.033 
RANGE : 211.2 

0 100 200 300 400 

DISTANCE [m] 

Fig. 2.8: Variogram of the Kd-value of the herbicide Simazine (Bunte, 1991). The data are fitted to a 
Gaussian variogram model with a nugget value. 

Spatial Prediction 

In the following it is assumed that the underlying spatial process is at least intrinsic 
stationary. It is the most important task of geostatistics to provide methods of spatial 
prediction. The problem may be stated as follows: 

Given are measurements of a spatial random variable Z at locations T l ,  ... , Zn in a region 
G, where the stationary hypothesis is valid. The problem is then to predict the value of Z at 
a location To in G. Let p(Z(To)) denote a predictor. What statistical properties should a 
predictor have? The first property we could ask for is its unbiasedness: 

(2.83) 

It is obvious to demand that a predictor should have a great precision. Since the predictor is 
a random variable itself we should ask for a predictor with minimum variance. The 
arithmetic mean is certainly an unbiased estimator, since 

r 1 
(2.84) 

However, in the arithmetic mean, each measurement is equally weighted regardless of its 
position with respect to 2'& The information contained in the variogram or covariogram 
function on spatial structure is not used in this simple predictor. It is obvious that the spatial 
configuration of the sample points and the position of To with respect to the sample points 
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influence the information on Z(,Q. This information is contained in the variogram or the 
covariogram function. Variogram models are therefore essential to improve the precision of 
spatial prediction. 

The simplest way to construct a predictor is to take the weighted sum of the Z ( 4 ) :  

(2.85) 

Predictors of this class are called linear predictors. The mathematical problem posed is to 
determine the weights hi such that the variance of the predictor is minimized. A linear 
unbiased predictor with these properties is called best linear unbiased predictor. Unbiasedness 
is guaranteed by imposing the constraint 

n 

i = l  
C h i = l  

on the weights. The variance of the predictor is given by 

r 1 
If \2 I 

(2.86) 

(2.87) 

The mathematical problem posed is to minimize Eq. (2.87) subject to the constraint 
Eq. (2.86). It is at this stage, that the spatial information contained in the variogram or 
covariogram function is used to determine the weights hi. 

(2.88) 
' n  n n 

2 i = 1  j = 1  i = l  

= - - 1 c c (Z(Ti, - q) + c hi(2(2J - z ( 2 i ) ) 2  

From the definition of the variogram Eq. (2.76) it follows that the expectation of the above 
equation can be expressed in terms of the variogram as 

n n  n 

i = l  j =1  i = l  
E [  ...I = - c c hih& - 9) + 2 c  hi*l(Z0 - Yi)  (2.89) 

We shall not pursue the mathematical development further. The constrained minimization 
problem is solved in a straightforward manner by employing Lagrange multiplier techniques. 
The weights hi are then obtained as solution of a linear equation system. This geostatistical 
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procedure is referred to as "kriging" since it goes back to the work of the South African 
mining engineer D. G. Krige. Figure 2.9 shows as an example the contour map of Kd-values 
of Simazine obtained by kriging using the variogram model as shown in Fig. 2.8. 

Contour plot for Kd-values 

5 ~ ) .  390. 430. 470. 610. w. 
X 

Fig. 2.9: Contour map of Kd-values of Simazine [mVg] obtained by kriging using the variogram model 
as shown in Fig. 2.8. The following notation holds: 
L: Kd-value lower than 0.5 mug; 
H: Kd-value higher than 0.8 mug. 

Spatial Simulation 

The spatial variability of the Kd-value of Simazine exerts a great influence on the persistence 
of Simazine. The Kd-value is an important parameter of transport and kinetic models. 
However, the contour maps obtained by kriging are only one possible realization of the 
underlying spatial random process. If one wants to study the statistical properties of kinetic 
or transport models, which are treated in detail in later chapters (cf. chapters 5 to 7), one has 
to generate many replications of the spatial process. There are methods to simulate the spatial 
stochastic process for a given covariance function. A frequently used method is the so-called 
turning bands method, which is described in detail in the textbook of Journel and Huijbregts 
(1989). Chapter 7 of our book contains some examples of the application of this methods to 
generate three-dimensional random parameter fields for water and matter transport in soils. 
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3.1 Linear Models 

3.1.1 The Compartment Concept 

This section is concerned with procedures involved in constructing mathematical models of 
dynamic processes. It is an old philosophical question why it is possible to describe natural 
processes in the language of mathematics. We shall not dwell on this important philosophical 
background but rather try to give some practical guidelines how to proceed when translating 
processes into the language of mathematics. The viewpoint taken is a personal one, although 
shared by other scientists. In the first place, mathematical modelling is based on a detailed 
knowledge of the underlying processes and on the mastery of the mathematical tools. It 
should be kept in mind that a mathematical model is not a one to one mapping of reality into 
a system of equations. A mathematical model is always an abstraction of reality. 

Compartment Schemes 

The starting point of mathematical modelling is the design of a conceptual model. The 
conceptual model comprises our knowledge of the system and a careful (subjective) selection 
of components and processes judged essential for the processes under study. At this stage, it 
is helpful, to represent the conceptual model graphically in form of a compartment system. 

application 
I 

I man 1 
T I 

photolysis 

surface runoff 
-volatilization pesticide on food chain 

phase 

transformation groundwater formation 

Fig. 3.1: Conceptual model for the fate of a substance in the soil in form of a compartment scheme. 
The arrows denote fluxes. 

En vironznen Fate Modefling of Pesticides 
From the La hora tory to the Field Scale 
0. Richter,B. Diekkriiger & P. Nortersheuser 
copyright 0 VCH Verlagsgesellschaft mbH, 1996 
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Compartments are defined with respect to morphology and to physical and chemical states. 
Consider the environmental fate of a chemical. Morphologically, one may roughly distinguish 
the compartments atmosphere, soil and water, which may be further subdivided into 
atmospheric and soil layers. The substance may be adsorbed to the soil matrix and be 
transformed chemically. Bound states and metabolites are also presented as compartments 
(cf. Fig. 3.1). Fluxes between compartments due to transport or chemical transformations are 
presented by arrows. 

The design of a conceptual model already implies a choice of spatial and temporal scales. 
Consider for instance the metabolic transformation of a pesticide mediated by enzymatic 
action within microorganisms. The characteristic times involved at the macroscopic level are 
in  the order of magnitudes of weeks or months. At the microscopic level, reactions proceed 
much faster e.g. the characteristic times of the formation of the enzyme-substrate complex are 
in the order of magnitude of s. By omitting the compartment "enzyme-substrate 
complex" in the conceptual model, the macroscopic level of temporal resolution is implicitly 
chosen. One also speaks of aggregation with respect to time. Similar conventions hold for the 
spatial resolution. Unless otherwise stated, a compartment is regarded as spatially 
homogeneous. It is considered as a "well stirred" reaction tube, where no spatial 
inhomogeneities can persist. This is equivalent to the notion of a system with "concentrated" 
parameters in contrast to systems with "distributed" parameters. 

Physical Principles 

Although most models of biological processes cannot be derived from "first principles", the 
law of conservation of mass applies to all systems. Therefore, the first step in modelling is 
the setup of the basic mass balance equations. This is easily done as shown in the following 
example. 

Fig. 3.2: Mass flows in a compartment system describing the fate of a substance and its metabolite (m) 
in soil. The substance is degraded in the solute phase (c), it is reversibly bound to the soil matrix (S) 
and it may leave the system by leaching (further explanations see text). 

Consider the compartment system as given in Fig. 3.2 which describes the fate of a pesticide 
and its metabolite. The pesticide is degraded in the solute phase, it is reversibly bound to the 
soil matrix and it may leave the system by leaching. Let us first invent a convenient notation. 
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Frequently, c is used for pesticide concentration in the solute phase, S in the sorbed phase 
and m for metabolites. If the compartments are numbered, it is suitable to define the fluxes 
between two adjacent compartments numbered i and j by Fij. The index 0 denotes the 
environment of the system. Thus, the flux F 1 0  denotes the flux from compartment 1 to the 
environment. The set of mass balance equations is set up according to the following sign 
convention: losses are endowed with a negative and gains with a positive sign. The rate of 
change of the substance in a compartment is then given by the sum of all fluxes. 

dm 
dt = F l 2  - F20 - 

F1O + F31 (3. I a) 

(3.1 b) 

(3. Ic) 

This set of ordinary differential equations has to be specified by the mathematical form of the 
fluxes and by the initial values. 

Whereas the mass balance equations are easily set up following the principle of mass 
conservation, the appropriate form of the fluxes can only be derived by experiments. Let us 
consider the rate of degradation F12: The pesticide may decay abiotically, for instance by 
hydrolysis. In this case, the degradation rate will be found to be proportional to c: 

F12 = kc (3.2a) 

This is the most simple approach possible. A reaction of this type is referred to as first order 
reaction or linear reaction. If the substance is degraded by microorganisms it is most 
probably transformed in an enzymatic reaction. For the simplest mechanism of enzyme 
catalytic action, the rate law is given by the Michaelis-Menten form 

(3.2b) 

The flux or reaction rate depends in a nonlinear manner on concentration c. As we shall see 
in subsequent chapters, the system behavior is drastically changed, when nonlinear rate laws 
hold. For concentrations much lower than the Michaelis constant K M ,  the Michaelis-Menten 
law becomes approximately linear: 

For concentrations far above the Michaelis constant, the reaction rate approaches the 
maximum velocity VmU. In this range, the reaction is of apparent zero order. Nonlinearities 
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of this type are difficult to detect from single experiments. Only if initial concentrations are 
far above the KM-value, deviations from first order kinetics become apparent. Due to 
measurement errors the parameter estimation problem is not "well posed" and V and KM 
are highly correlated. They can be estimated only from a series of experiments with varying 
initial concentrations. Problems of this kind are dealt with in detail in chapter 4. 

mpx 

3.1.2 Simple Linear Systems 

Introduction 

If all fluxes can be assumed to be linear functions of the state variables, e.g. concentrations, 
the differential equations are linear. This facilitates the mathematical treatment considerably: 

i )  

ii) 

iii) 
iv) 

Linear systems possess analytical solutions, i.e. solutions in form of known functions 
like exponential functions or sine functions. 
The system behavior can be easily studied for arbitrary input functions by means of 
the mathematically well founded linear systems analysis. 
Parameter estimation is easily carried out for small systems. 
Linear systems may serve as approximations to nonlinear systems. 

However, some remarks on the range of applications of linear models are in order. In nature, 
especially in biology, most processes exhibit nonlinear rate laws, which are approximately 
linear at low concentrations as pointed out above. Nonlinearities may lead to a complex 
dynamic behavior comprising multiple steady states, bifurcations and extreme sensitivity with 
respect to initial conditions. Therefore, in most applications, the design of linear models 
should be regarded as a first approximation only. 

Some simple examples 

In this section we shall deal with simple systems, which are amenable to analytical solutions 
by elementary techniques. As first example, a one compartment system is considered. Such 
a simple model may apply to substances, which are degraded by first order kinetics and do 
not show any interaction with the soil matrix. The corresponding initial value problem is 

with c(t=O) = co dc 

dt 
- = - k c  

which is solved by the method of separation of variables (cf. section 2.1) to yield 

- k t  c(t) = co e 

(3.4) 

(3.5) 

Consider next the case of a constant influx vo. The differential equation balances the influx 
(positive sign) and the efflux by degradation (negative sign). Both processes occur 
simultaneously. 
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- dc = vo - kc 
dt 

with c(t=O) = c0 

Again, this initial value problem may be solved by elementary methods (cf. chapter 2) to 
yield 

It is interesting to study the asymptotic behavior of the solution. For r + OQ the equilibrium 
value cs = vdk is attained. This is an important result: in a system with linear degradation 
rates, no accumulation ad infinitum can occur! For comparison, consider the case of 
capacity limited degradation as modeled by the Michaelis-Menten rate law. The differential 
equation 

VmaxC 
= vo - dc - 

dt c + KM 
(3.8) 

has no analytical solution. However, it is easy to compute steady state concentrations by 
simply setting the left hand side of the differential equation equal to zero. This means, that 
the net rate of change is zero by a detailed balancing of influx and efflux. In the case of the 
linear degradation law this leads to the asymptotic value derived above. In the case of the 
nonlinear law, one is lead to 

vO KM 

Vmax - vo 
cs = (3.9) 

A stationary concentration exists only for vo c V-. Therefore accumulation ad infiniturn 
will occur, once this threshold is surpassed. 

As next example the two compartment system consisting of a parent compound and one 
metabolite (m) is considered (cf. Fig. 3.3). 

Fig. 3.3: Compartment scheme for a parent compound and its metabolite. The kj denote first order 
reaction constants. 

The parent compound is either transformed to the metabolite or leaves the compartment by 
transport. Both processes are assumed to be linear. The dynamics is modeled by the two 
coupled differential equations 
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4 
SUBSTANCE 

' METHAZOLE x DCPM P 
B 3 -  

z I( ' " .  . . ._..  . . ._ I a ,""'.....,, 

.... ' . .  ... x s 
...._ .... .... .... . ._ .  0 

rn 

- dc - - - (kl + k,)c 
dt 

with c(t=O) = co (3.10a) 

SUBSTANCE 

' METHAZOLE x DCPM P 
B 3 -  

z I( ' " .  . . ._..  . . ._ I a ,""'.....,, 

.... ' . .  ... x s 
...._ .... .... .... . ._ .  0 

rn 

(3.10b) dm - = k,c - kdm with m(t=O) = 0 
dt 

The solution is obtained in a straightforward manner. The first equation is independent from 
the second and is integrated to 

c(t)  = cge - ( k /  + k m ) t  (3.1 1) 

Equation'(3.11) is inserted into Eq. (3.10b) yielding 

(3.12) dm -(kl + km)' - = k,coe - kdm 
dt 

This equation is solved by the "trick" of the integrating factor. Multiplying Eq. (3.12) by the 
factor enp (kdt) and rearranging leads to the form 

- ( k /  + km - k d ) t  
d [ e k d ' ]  = k,coe 
dt 

(3.13) 

This equation can be directly integrated. For the initial condition rn(r=O) = 0, the solution is 
obtained as 

(3.14) 

Figure 3.4 shows an application of this model to the kinetics of Methazole and its metabolite 
DCPM as measured by Walker (1978). The model parameters were estimated by the 
nonlinear regression techniques described in chapter 4. 

0 20 40 00 80 100 120 

TIME [day.] 

Fig. 3.4: Kinetics of Methazole and its main metabolite DCPM. The fit is based on Eqs. (3.1 1) and 
(3.14) (experimental data from Walker, 1978). 
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3.1.3 Solution by Matrix Methods 

Notations 

D 

C 

g 
S 
0 
P 
& 

Kd 
a 

: total amount of a substance [MI 
: total concentration [ m 3 3  
: liquid phase concentration [Mn3] 
: gaseous phase concentration [W3] 
: solid phase concentration [M/M 
: volumetric water content [L~/L 1 
: bulk density [ W 3 ]  
: volumetric air content L ~ / L ~ I  

: velocity constant for sorption and desorption [ 1/T] 

4 

: sorption coefficient [L 4 /MI 

The .,st example could be solved by elementary methods, "ecause the reaction is assumed 
to be irreversible. This is why the first equation is independent of the second one. Let us 
consider now the case of a reversible reaction. When setting up the mass balance equation, 
one has to take into account the partition of the volume of distribution into solute, solid and 
gaseous phases (cf. Fig. 3.5). Let c denote solute, S solid and g gaseous phase concentrations. 

Fig. 3.5: Compartment scheme model for the partition of a substance into liquid (c), solid (S) and 
gaseous (g) phases of soil. 

These concentrations refer to the volumes and weights of the respective phases within one 
unit of soil. However, mass balance equations refer to unit volumes of soil comprising all 
three phases. Therefore, the concentration of a substance with respect to a unit volume of soil 
is given by 

Ct = e c  .+ p s  + &g 

In the following model, the gaseous phase is neglected. If degradation, sorption and 
desorption to the soil matrix obey linear kinetics the adequate mass balance equations are 

(3.15a) 
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The equations describe one site kinetic adsorption. That means, that adsorption-desorption are 
so slow that they can be kinetically distinguished. If these processes are fast with respect to 
degradation, concentrations in liquid and solute phase are in a quasi equilibrium. In the 
equilibrium state, the time derivative of Eq. (3.15b) is equal to zero and one obtains the 
relationship S = Kd c. Thus, Kd has the meaning of an equilibrium constant. The parameter 
a determines the velocity of the adsorption-desorption process. It is assumed that degradation 
occurs only in the liquid phase with rate constant kt 

The above equations cannot be solved by the elementary methods used previously. Equation 
(3.15a) is linked to Eq. (3.15b) via the adsorption-desorption term and cannot be integrated 
independently. The problem is amenable to a solution in a straightforward manner, if it is 
presented in matrix form: 

(3.16a) 

For ease of presentation the notations yl, ..., y ,  will be used for the state variables and a. .  for 
the elements of the system matrix, which is denoted by A. Equation (3.16a) thus takes the 
simple form 

rJ 

- 
dt 

- 

with 

In the general case, a linear differential equation system is written as 

(3.16b) 

(3.17) 
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The one-dimensional equation, where a is a scalar, 

dY - = a y  
dt 

is solved by the ansatz y(t) = e ? 

d(e " )  hi - = h e h t  = a e  
dt 

It is reasonable to try an analogous appro%.. for the mu 

Inserting 

y" 

V1 

v2 

"n 

into Eq. (3.17) yields 

d ht - ( c e  
dt 

= <he  hr = A g e  

idimensional system. 

(3.18) 

(3.19) 

By division by the factor e kt and rearranging one obtains the following homogeneous linear 
equation system. 

( A  - hZ)? = 0 (3.20) 

where I denotes the unit matrix. This equation system possesses nontrivial solutions, i.e. 
solutions f 0, only, if the matrix B = (A - h I) is singular. This is the case, if the determinant 
of the matrix is zero. The condition 

det(A - hZ) = 0 (3.21) 

leads to a polynomial of degree n for h. This polynomial is denoted as the characteristic 
polynomial. A polynomial of degree n possesses n roots. The roots of the characteristic 
polynomial are denoted as the eigenvalues (latent roots) of B. For each eigenvalue hi there 
exists an eigenvector C ' ( i j  (components of a vector are denoted by subscripts, vectors are 
indexed by a superscript). Let us consider the case, that all eigenvalues are distinct. Then the 
general solution of the differential equation system Eq. (3.17) is the superposition of all 
special solutions: 
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y" 
n 

i = l  
= c ci 

V 1  

"2 

v n  

(3.22) 

The constants cl, c2, ... , c, are determined by the choice of the n initial conditions. Let us 
return now to the sorption-desorption model as presented in Eq. (3.16a.b). To avoid the use 
of too many indices the matrix elements are denoted by a, b, c and d. The characteristic 
polynomial is derived as 

Its two roots are 

+ d) f l L ( a  + d)2 - ad + bc = 
4 

h1/2 = - (a  
2 

(3.23) 

(3.24) 

Note that both roots have a negative sign, because all parameters are positive constants. It is 
also obvious, that the absolute values of the two roots differ. The differences are determined 
by the value of a. Remember that the general solution of the linear differential equation 
system is a sum of exponential functions with the roots of the characteristic polynomial as 
parameters. Without proceeding further, we can already conclude, that the system exhibits a 
biphasic kinetic, i.e. a kinetic with two different characteristic times. 

The next task is the computation of the eigenvectors. To this end, the homogeneous linear 
equations system (Eq. (3.20)) is solved for each eigenvalue. For the first eigenvalue, the 
equation system is 

a - h, 

[c d - h:] 

These two linear equations are linearly dependent. This is ensured by inserting for h the 
eigenvalue h,, which renders the matrix of the system singular. From the first equation, one 
obtains the following relationship between v 1  and v2: 
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bV2 v1 = - 
a - hl 

The second equation yields: 

d - hi 
"2 "1 = - 

c 

(3.26a) 

(3.26b) 

Both relationships are identical because A, is an eigenvalue of the system matrix. Thus, 
either v1  or v2 may be arbitrarily chosen. v2 is set equal to 1. Note, that this degree of 
freedom is removed once the initial values are specified as will be shown soon. Employing 
Eq. (3.26b) the first eigenvector is then given by 

(3.27) 

For the second eigenvector, the same procedure is performed just changing hl into h2. 
Inserting these results into Eq. (3.22) leads to the general solution 

i:: e h2' (3.28) 

In the next step, the constants c1 and c2 are determined by the initial conditions. For the 
situation of a first application of the chemical, initial conditions are yl(t=O) = y l0  and 
y2(r=0) = 0. Inserting these values into Eq. (3.28) yields the relations 

hi - d  h2 - d 
y10 = c1- + c2- 

c C (3.29) 

c1 = - c2 

from which c1 is determined as 

c 
hl - % 2  

c1 = y10 

One finally arrives at the solution 

yl(t) = y l O ( ~ e  + Be ") 

(3.30) 

(3.31a) 
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(3.3 1 b) 

Due to sorption and desorption, the time course of the concentration in the solute phase, 
yl(t), is described by the sum of two exponentials. This is denoted as bi-exponential decay. 
Figure 3.6 shows a plot of a bi-exponential decay curve derived from 2,4-D data published 
by McCall et al. (198 1). 

............. 
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Fig. 3.6: Sorption-desorption processes lead to a bi-exponential decay curve of 2,4-D (experimental 
data from McCall et al., 1981). The fit is based on Eq. (3.31a,b), assuming the acetic acid ethylether 
extractable fraction of 2,4-D is available for degradation processes. The semilogarithmic plot reveals the 
biphasic decay. 

One clearly distinguishes a fast and a slow phase. The fast phase is mainly determined by 
sorption, whereas the slow phase is mainly determined by degradation. If sorption and 
desorption are fast compared to degradation, the duration of the first phase is very short and 
quasi equilibrium prevails. Frequently, in practice, the fast phase is not observed, because its 
characteristic time is shorter than the time until the first measurement. In this case, only the 
slow phase is observable. In a semilogarithmic plot yl(t) approaches a straight line both for 
short and for large times. 

Equilibrium Approach 

Often the characteristic times of absorption and desorption processes are orders of magnitude 
faster than the degradation times. Therefore, a quasi equilibrium prevails. Mathematically, the 
equilibrium solution is obtained in the limit a + 00. For h, the limit is obtained in the 
following way. In the first step, hl is written as 
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By employing the inequality 

(1 + elrn I ( I  + me) m < l  

with 

+ k L  + a 

one obtains the limit 

For % the limit is obtained by simply neglecting kl in those terms, which contain the sum of 
all rate constants. One finally arrives at 

(3.33) 

where the effective degradation rate, k e .  is defined by 

This equation shows that in the limit of very fast sorption-desorption processes the 
degradation curve becomes quasi mono-exponential, since the second term of Eq. (3.33) goes 
to zero for a + OQ. This is illustrated in Figs. 3.7 a,b. However, and this is an important 
result, the effective degradation rate is now dependent on the Kd-value and on the 
partitioning of the solid and liquid phase. Degradation is retarded by sorption. This is due 
to the assumption, that degradation only occurs in the liquid phase. The Kd-value in turn 
depends on soil properties like silt or Corg-content and on the physico-chemical properties of 
the substance. 
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Fig. 3.7: In the limit of very fast sorption-desorption processes the degradation curve becomes quasi 
mono-exponential. This transition is demonstrated in the figure by a series of decay curves for 
increasing velocity constant a [ I/day]: a) liquid phase concentrations and b) solid phase concentrations. 

This result can also be derived by a direct equilibrium approach using the mass balance 
equation in integral form. At each time point t the mass balance is expressed by 

t 
I 

(3.34) 

At equilibrium, y 2  = Kd y l .  Inserting this relation into Eq. (3.34) one obtains after 
differentiation and rearrangement the differential equation 

(3.35) 
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Since equilibrium is attained instantaneously, the initial value of the differential equation has 
to be modified according to 

2.5 

2 -  - 
s" 

a) 3 

u" 

1.5- 
W 

9 1 - 1  

0.5 - 

0 

Thus the solution of Eq. (3.35) is identical to the limit of Eq. (3.33). 

. 

K,-VALUE [mllg] 

- MODEL DATA 
1 1 

Two Binding Sites 

0.5 - 

It is frequently observed that Kd-values change with time. Sorption apparently becomes 
stronger with time. This behavior is shown in Fig. 3.8, where the time courses of the 
Kd-values of Simazine (cf. Fig. 3.8 a) and Quinmerac (cf. Fig. 3.8 b) are plotted vs. time. 
Obviously, the "equilibrium constant" increases with time. This effect is denoted as "aging 
of the binding" 

K,-VALUE [mllg] 

~ MODEL DATA 

r r 
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A possible explanation is that two binding sites are involved, one with a weak binding and 
one with a strong binding. Whereas weak binding is a very fast reversible reaction, strong 
binding is postulated to be slow and nearly irreversible. This is modeled by coupling an 
equilibrium model with a kinetic model. First the case of an irreversible strong binding is 
treated. The compartment scheme is presented in Fig. 3.9. It is assumed that the substance 
may undergo degradation in the liquid phase and in the strong binding state. 

The following notations hold: 

c 

S, 
S2 
kl 
k, 
kh 

: liquid phase concentration [M/L3] 
: solid phase concentration (weak binding site) [MA, 
: solid phase concentration (strong binding site) [ M L  ] 
: degradation rate in liquid phase [In] 
: degradation rate in solid phase (only slow binding site) [In] 
: rate constant for the transition weak to strong binding site [In] 

'3 

k 1  e 

Fig. 3.9: Compartment scheme for two binding sites. Note that the binding to site 2 is irreversible. 

At any time I ,  the mass balance in integral form is given by 

t t 

The first binding site is assumed to be in quasi equilibrium with the liquid phase: 

Si = K ~ c  (3.36b) 

The transition between the weak and strong binding state is assumed to proceed slow with 
respect to sorption: 

(3 .36~)  

Note that in this scheme the substance may also decay from the strong binding state with 
rate k,. By differentiating Eqs. (3.36a,b) with respect to time one obtains after rearrangement 
the differential equations 
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(3.37a) 

Note that these equations are equivalent to Eq. (3. IOa,b). With the initial conditions 

:= toe. CO c(t=O) = 
1 + - K d  P 

e 
S*(t=O) = 0 

the above equations have the solution 

(3.37b3 

with 

The apparent Kd-value as obtained by measurements is 

(3.3 8a) 

(3.38b) 

(3.39) 

Inserting Eqs. (3.36b), (3.38a) and (3.38b) into Eq. (3.39) a time dependent expression for 
the apparent Kd-value is derived 

r -l 

(3.40) 
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If k, > keff the apparent Kd-value reaches the limit 

(3.41) 

If k, < k 

A further interesting case is the situation of two reversible binding sites with degradation in 
both bound states. The reaction scheme is depicted in Fig. 3.10. The following model goes 
back to van Genuchten (1981) and Parker and van Genuchten (1984). 

the apparent Kd-value increases ad infinitum. eff  

Additional notations 

f : fraction of type 1 binding sites [ I ]  

ks,  
ks2 

: degradation rate in binding state 1 [l/T] 
: degradation rate in binding state 2 [1/T] 

L 

kl kS1 kS2 

Fig. 3.10: Compartment scheme for two reversible binding sites and degradation occurring in both 
bound sites. 

The K value data are shown in Figs. 3.8 a,b and 3.1 1 a,b. The starting point for the 
derivation of the model is again the mass balance equation in integral representation. At any 
time t the law of mass conservation requires that 

9- 

t t t 

holds. It is assumed that quasi equilibrium prevails with respect to binding site I .  The 
fraction of this binding site is denoted by$ Thus, at any time, the concentration of occupied 
sites of type 1 is related to the liquid phase concentration via 

S, = fK,c (3.43) 

For type 2 binding sites, kinetic adsorption-desorption is assumed. 
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(3.44) 

A differential equation for the liquid phase concentration c is derived by differentiating 
Eq. (3.42) with respect to time and replacing the time derivatives of SI and S2 by the time 
derivative of Eq. (3.43) and by Eq. (3.44) respectively. 

(3.45) 

Equations (3.44) and (3.45) are equivalent to Eq. (3.16b). The apparent Kd-value constructed 
from the solution of the above system is 

r 7 

with 

XI kS2 A = - + I + -  and 

In the limit a + m equilibrium is attained also with respect to site 2 and Kd a approaches 
the constant value K d  Figures 3.1 I a,b show the application of this mog l  to data of 
Simazine and Quinmerac. 
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Fig. 3.11 a: Simulated and measured time courses of Simazine in water- and methanole-extractable 
phase. The underlying model is given by Eqs. (3.44) - (3.46). 
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2 -  QUINMERAC -3 

- 2.5 
C X S1 - S2 - Kd-VALUE 
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TIME [days] 

Fig. 3.11 b: Simulated and measured time courses of Quinmerac in water- and methanole-extractable 
phase. The underlying model is  given by Eqs. (3.44) - (3.46). 

3.1.4 Solution by Laplace Transformation 

The solution of linear differential equations is considerably facilitated by use of the Laplace 
transformation. Let At) denote a function with domain [0, -) and s a complex variable with 
Re(s) > 0. Then the Laplace transform offit) is defined by 

m 

~ ~ f ( t ) l  := Je -*“f(t)dt := ~ ( $ 1  (3.47) 

0 

Examples: 

The Laplace transform of At) = I is 

The Laplace transform of At) = e is 

(3.48) 

(3.49) 

The Laplace transform of the derivative of At) with respect to t is 
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(3.50) 
A A  

= lim Lf(t)e - s t ]  - J-sf( t )e  -srdt = -f(O) + sF(s) 
A+- 0 0  

Differential equations are solved in three steps. In the first step, the differential equation 
system is Laplace transformed. Linear differential equations transform into linear 
algebraic equations in Laplace space. In the second step the linear equation system is 
solved, and in the third step, the solution in the time domain is obtained by the inverse 
transformation. More technical details on Laplace transformations are given in Appendix A. 1. 

This method shall be employed to derive solutions for linear compartment models in a 
general form. The following example shows how the three steps are performed. Consider 
again the two compartment model given by Eq. (3.16). For ease of presentation the model is 
now written in the form 

(3.51) 

where a, b, c and d are defined in terms of reaction constants as before (cf. Eqs. (3.16b) and 
(3.23)). 

In the first step, the differential equation system is Laplace transformed. 

L[%] = sYl(s) - yl(0)  = aY1(s) + bY2(s) 

L[%] = sY2(s) - y2(0) = cYl(s) + dY2(s) 

Note that the initial values enter already in the first step. 

In the second step, the linear equation system 

(3.52) 

(3.53) 

is solved in the Laplace domain yielding 
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(3.54) 

In the following, the initial value y2(0) is set equal to zero. 

In the last step, the solutions are transformed again into the time domain. This is achieved 
by employing the inverse transforms of known functions, for example 

L-~[L] = e - k t  (3 .55)  
s + k  

The inverse transform of the following expression plays an important role in many 
applications. Let 

(3.56) 

where G(s) and H(s) are polynomials with the degree of G(s) less or equal the degree of 
H(s). The Pi are the negative roots of the polynomial H(s).  Then, by decomposition into 
partial fractions, one obtains terms, which are easily transformed back by use of Eq. (3.55). 
The inverse transform of F(s) is thus derived as 

n 

i = l  

-Pit  L - l  [ F(s ) ]  = A i e  

Let us return now to the problem to find the inverse transform of 

- (d - S)Yl(O) - -  (d - dYl(0) 

(a - s)(d - s) - bc 
Y&s) = - 

(PI + s)(P2 + s) 

(3.57) 

(3.58) 

with 
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By application of Eq. (3.57) with G(s) = (d - s) one finally obtains the solution 

(3.59) 

which is identical to the solution previously obtained by the eigenvector method 
(Eqs. (3.3 la,b)). 

The general case 

Let us consider now a linear compartment model in general form with n compartments. 

- dY + Dy’ = j(t) 
d t  

with y’(0) = yo (3.60) 

The matrix D is completely determined by the structure of the compartment system. If the 
equation system represents the mass balance equations, then D has the general form 

(3.61) 
. . . . . . . . 

-kin -kzn -k3n ... k, 

The diagonal elements of D 

n 

j = l , j t i  
Dii  = k i j  := ki 

summarize the rate constants of the fluxes leaving Compartment i. The rate constants ki .  
govern the flux from compartment i to compartment j. The Laplace transform of Eq. (3.60j 
yields the linear equation system 

(D + sZ)f(s) = y’(0) + F(s) (3.62) 

in the Laplace domain, where I denotes the unit matrix. Under the assumption that the matrix 
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( D  + sl  ) is regular the inverse exists and the solution is given by 

(3.63) f(s) = [D + sz1-1 (y’(0) + &)) 

Employing Cramer’s rule the solution for compartment k is obtained as 

I Dij (s) I denotes the determinant of the matrix (D + sl ). I Diid (s) I denotes the sub- 
determinant of ( D  + sl ) obtained by canceling the mth row and kth column. First, the 
homogeneous casef, = 0 is treated. To this end, the determinant I Dii (s) I is written in the 
form 

(3.65) 

It is assumed that all roots of the characteristic polynomial of the matrix D are distinct. In 
this case, the inverse transform of Eq. (3.64) is easily obtained by use of Eq. (3.57): 

(3.66) 

where p denotes the number of roots of the polynomial Eq. (3.65). In the inhomogeneous 
case the inverse transformation is obtained by use of the convolution theorem: 

r t 

The solution of the initial value problem Eq. (3.60) is then 

(3.67) 

(3.68) 

This derivation is taken from Bozler et al. (1977). 
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The Environmental Soil Pathway of 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T) 

The degradation pathway of 2,4,5-trichlorophenoxyacetic acid was investigated by Mc Call 
et al. (1981) in several soil types. The proposed pathway is shown in Fig. 3.12. The parent 
substance is subsequently transformed to the two major metabolites 2,4,5-trichlorophenole 
and 2,4,5-trichloroanisole. The reaction between the two metabolites is reversible. Residues 
of both metabolites are incorporated into the humus fraction of the soil. C 0 2  is released in 
all transformations. The second metabolite is also volatilized. 

OCH 

LI ZATl 0 N 

CI CI CI 

\ 
SUBSTANCES 

Fig. 3.12: Proposed pathway of 2,4,5-T according to McCall et al. (1981). 

The following notations hold: 

y1 
y 2  
y3 
y4 
y5 
kii 

: concentration of parent compound [ML 3 ] 
: concentration of first metabolite [W3] 
: concentration of second metabolite [ML3] 
: concentration of carbon dioxide [W3] 
: residues bound to the humus fraction of the soil [W3] 
: reaction constants, e.g. k I 2  is the constant for the transformation of the parent 

compound to the first metabolite [l/T] 

Assuming that all reaction rates are linear functions of the concentrations, the system is 
modeled by 
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d 
dt 
- 

4 1 2  0 0 0 0  

kl 2 -(k23+k24+k25 k32 0 0  

0 k23 -(k34+k35 +k32+k30) 0 0 

0 k24 k34 -k40 k54 

0 k25 k35 0 4 5 4  

(3.69) 

To conform with the notations of the general scheme, the system is written in the following 
form 

with 

D =  

a 0 0 0 0  
b c d O O  
O e f O O  

O g h r k  

o z m o n  

- 
- 

(3.70) 

and 

u = k,2 b = -k12 c = k23 + k25 + k24 

d = -k32 e = -k23 f = k32 + k34 + k35 + k30 

To avoid confusing with indices the matrix elements i, k ,  1, m and n are written with a bar. 
Because of the simple structure of D, the determinant of (D + sl ) is easily represented as the 
product: 

ID + sll = (a + s)(T + s)(n + s)[(f + s)(c + s) - d e ]  
(3.71) 

= (s + PlMS + P 2 N s  + P3Hs + P4Ns + P5) 

with 
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IDij, 12(s) I = 

Employing now the general formula (Eq. (3.66)) the solutions of the above initial value 
problem are now obtained in a straightforward manner. 

b d  0 0 
0 f + s  0 0 

0 h i + s  k 
O m  0 i i + s  

- - = b(f + s ) ( i  + s)(n + s) 

The solution is given by 

(3.72) 

Y2: 

The subdeterminant IDij,r2 (s) I is obtained from D(s) by omitting the first row and the 
second column: 

Inserting this subdeterminant into Eq. (3.66) yields the expression 

-pi t - b ~  - Pi)(; - Pi)(; - Pi> 5 

Y2(f) = Y&O)  c e c 
i = l  (3.73) 

- 
For i = 4 and i = 5 the corresponding terms in the sum are zero because P4 = i and Ps = 
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b c + s  0 0 

O e  0 0 
- - 

0 g i + s  k 

0 1  0 n + s  

IDij, 1 3  (s) I = 

- 

- 
= b e (i + s) (n + s) 

Inserting this subdeterminant into Eq. (3.66) yields the expression 

5 

i = l  

- p i t  be(: - Pi)(; - P i )  

5 

j = l j # i  

Y 3 0 )  = Y p )  c e 

n (Pj - Pi) 
(3.74) 

Again, the terms for i = 4 and i = 5 disappear. 

Y 4: 

The subdeterminant I Dc,14 (s)  I is obtained from D(s) by omitting the first row and the 
fourth column: 

b c + s  d 0 

0 e f + s  0 

h k 
- IDij,l4(s)I = 

o g  

0 1 m n + s  
- - 

= b [ e ( h ( i  + s) - i G )  - (f + s ) ( g ( i  + s) - T i ) ]  

Inserting this subdeterminant into Eq. (3.66) yields the expression 

Y40) = 

(3.75) 
i = l  
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Yg: 

The subdeterminant I DO,I5 (s) I is obtained from D(s) by omitting the first row and the 

b c + s  d 0 
0 e f + s  0 

o g  h i +s 

0 1 m 

- 

0 
- - 

Inserting this subdeterminant into Eq. (3.66) yields the expression 

5 

i =  1 

-p, ,b(T - P i ) [ T ( f  - pi>  - em] 

5 

j =  I,j#i 

Y5(0 = Y ] ( O )  c e 

n (Pj - P i )  

(3.76) 

Figure 3.13 shows a plot of these functions together with the data published by Mc Call et 
al. (1981). Model parameters were estimated by nonlinear regression techniques, which are 
treated in detail in chapter 4. 
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Fig. 3.13 : Experimental data of elimination kinetics of 2.4.5-T, observed by McCall et al. (1981) and 
resulting fit of Eq. (3.69). Note that not all components fit equally well to the model. This may be due 
to nonlinear effects. 
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3.2 Nonlinear Models 

3.2.1 The Limits of Linear Models 

Nonlinear degradation kinetics in pesticides are frequently observed. The term refers to the 
mathematical form of dependence of the degradation rate upon the concentration in a linear 
or nonlinear way. The resulting differential equations are thus either linear or nonlinear. The 
manifestation of nonlinearity involves effects such as time lags and concentration dependent 
half-lives. However, in many cases it is impossible to detect nonlinearities from single 
experiments at low concentrations. In most practical cases experimental errors prevent a 
distinction from simple exponential decay unless the experiment is performed at high initial 
concentrations. 

This is drastically demonstrated in Figs. 3.14 a,b for the case of 1.3-dichloropropene (1,3-D) 
(Vink et al., 1994). A series of degradation curves was obtained for initial concentrations 
ranging from 15 mg/kg to 0.03 mgkg thus covering several orders of magnitude 
(cf. Fig. 5.17 in section 5.3.2). 
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0.3 
F 
0 

B 0.2 
8 s 
p 0.1 

8 

E 

$ 

Y 

l- 

0 

-, 
1.3-D INITIAL CONCENTRATION 
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Fig. 3.14: Time courses of 1,3-dichloropropene degradation with different initial concentrations 
(experimental data from Vink et al., 1994; cf. Fig. 5.17 in section 5.3.2): a) initial concentrations of 
0.03 and 0.3 mg I,3-D/kg dw and b) initial concentrations of 5 and 15 mg I,3-D/kg dw. The fit is 
based on Eqs. (3.107 - 3.108). 
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At low concentrations, it seems that the data do not contradict linear first order decay 
kinetics. However, at high concentrations, the nonlinear character of the decay curves 
becomes obviously. 

Effect 

degradation rate 
depends on applied 
concentration 

It is therefore dangerous, to extend the linearity assumption beyond those concentration 
ranges for which the validity of this assumption was originally assessed. This is extremely 
important if one wishes to predict the behavior under a long-term application scheme. In the 
course of the applications concentrations may eventually surpass the range where the linearity 
assumption is approximately valid, and the model predicts far too low concentration levels. 
As pointed out earlier, linear models should be regarded only as first approximations 
with a limited application range. 

Examples Reference 

Di-allate; 
Tri-allate 

Anderson and Domsch ( 1980) 

The nonlinearities occurring in pesticide kinetics are either due to physico-chemical processes 
like binding to the soil matrix or to biological processes connected with the mode of 
degradation. In the case of metabolic or cometabolic degradation, the momentary degradation 
rate reflects both microbial activity and microbial population density. The main types of 
nonlinearities are listed in Tab. 3.1 below. 

degradation rate 
depends on applied 
concentration 

Tab. 3.1: Typical nonlinearities in pesticide degradation kinetics. 

Bentazone; 
Di-allate; 
Tri-allate 

I 

nonlinear 
adsorption 

time-lag, enhanced 
degradation by 
multiple application 

prolonged time-lag 

1 capacity limited 
biotransformation 

2,4-D; 
EPTC; 
Iprodione 

2,4-D; 
DNOC; 
IPC 

microbial 
adaption 

inhibited 
degradation, 

degradation 
enhanced 

inhibition at high 
concentrations 

Simazine- 
Captan; 

Dinoseb; 
Sirnazine- 
Paraquat; 
Butylate - 
EPTC 

2,4-D - 

interaction 
between 
pesticides 

I I 

BASF (unpublished); 
Anderson and Domsch (1980) 

Hurle ( 1982); 
Obrigawitch et al. (1983); 
Walker and Welch (1990) 

~~ ~ 

Fournier et al. (1981); 
Hurle ( 1982); 
Moe 1970) 

Kibler ( 1979); 

Repiquet and Fournier 
( 1977); 
Kibler ( I  979); 

Obrigawitch et al. (1983) 
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In general, the nonlinear differential equations resulting from nonlinear degradation laws 
cannot be solved analytically, that means the solutions cannot be written in form of known 
functions like exponential functions. However, approximate numerical solutions of high 
accuracy can be easily obtained by standard methods. 

The distinction between kinetic models, which are amenable to analytical solutions and those, 
which can only be solved by numerical techniques, has had a large impact on parameter 
estimation and model application. Because the parameter identification problem is easily 
solved by standard methods in the case of explicit solutions, implicit models in form of 
nonlinear differential equations have in most cases only been used for simulation. Evident 
nonlinearities are often dealt with by empirical kinetic laws with fractal order of reaction 
(Timme et al., 1986). It is therefore necessary to establish a link between models in form of 
nonlinear differential equations and parameter identification techniques. This link is provided 
in chapter 4. 

3.2.2 Nonlinear Kinetics due to Adsorption 

3.2.2.1 Equilibrium Approach 

Sorption may either be considered as to be instantaneous (equilibrium approach) or as time 
dependent (kinetic approach). In equilibrium, the relation between c and S is given by 
empirical relationships, which are denoted as adsorption isotherms. For many pesticides, these 
isotherms are nonlinear. Some often used relationships are the adsorption isotherms of 
Freundlich 

(3.77) 

and Langmuir 

S = -  Pc (3.78) 
c + K  

Figure 3.15 shows adsorption isotherms of Quinmerac in different soils, which fit well to 
Freundlich’s equation, Eq. (3.77). 

The starting point of the equilibrium approach is the mass balance equation Eq. (3.34) 
derived for the case of a single application of dose D at time to 

(3.79) 

where S and kl are allowed to depend on c. Differentiation with respect to time yields 



3.2.2.1 Equilibrium Approach 63 

After rearrangement, one obtains the following differential equation for c: 

(3.80) 

(3.8 1) 

- 12 

z lo 

s 
$ 6  
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Fig. 3.15: Fit of Freundlich isotherm (Eq. (3.77)) to observed equilibrium sorption of Quinmerac in 
different soils (soiuwater ratio in the batch study was V3) .  

Even if the liquid phase degradation rate kl is independent on c, the apparent rate constant 
k is concentration dependent, if the isotherm is a nonlinear function of c.  For the 
Freundlich law one obtains 
ef f  

kr 

and for the Langmuir isotherm 

- kl 
keffhngrnuir - 1 + -  P P K  

(c  + K ) 2  

(3 .82)  

(3.83) 

Thus, the resulting differential equations turn out to be nonlinear for nonlinear binding 
isotherms. If the effective rate constant keff is concentration dependent, the reaction is no 
more of first order. Deviations from first order kinetics are often not obvious from single 
decay curves. They become apparent only in a series of experiments with varying initial 
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concentrations. Figure 3.16 demonstrates this effect. It shows three different decay curves 
obtained for a fictive pesticide with a Freundlich isotherm. The initial values are normalized 
to 100 %. The differences between the resultant decay curves are obvious. 

. . 0.1 ppm - 1 ppm - 10 ppm 

W 

0 
0 

A w 
a 20-  

0 20 40 60 80 100 120 140 

TIME AFTER APPLICATION [days] 

Fig. 3.16: Nonlinear binding isotherms render the kinetics nonlinear as is demonstrated in these 
simulations for a Freundlich isotherm. Although the degradation is linear the kinetic behavior depends 
on initial concentrations. The decay curves shown here are normalized to 100 % with respect to initial 
concentration. 

3.2.2.2 Kinetic Approach 

The Langmuir isotherm can be derived from a receptor binding model assuming a limited 
number of binding places. The species in the solute phase react with a free receptor R 
forming the receptor-substrate complex [R s]. Let rp r1 and rt denote the concentrations of 
free, occupied and total receptor sites. Then the elementary chemical reaction equations of 
the scheme 

can be written down as 

The conservation of the sum of all receptor species demands that 

rt  = ro + r1 = const 

combining the last two equations and identifying r1 with S yields 

dS - = k l ( r t  - S ) c  - k - , S  
dt 

(3.84) 

(3.85) 

(3.86) 
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Under equilibrium assumptions, i.e. for dSldt = 0, one obtains 

k-  1 
c + -  

(3.87) 

which is identical to Eq. (3.78) with 

k- 1 

k l  
K = - and p = rt  

The parameter rt is also referred to as strong adsorption capacity (SAC). 

Nonlinearities have a strong influence on the kinetic behavior, which may turn out to be 
drastic under long-term applications, which shall be demonstrated by the following scenario. 
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Fig. 3.17: a) Simulated time course of a fictive pesticide in solid matter and soil solution under 
multiple applications assuming a strong adsorption capacity of soil colloids. The limited binding 
capacity causes a dramatic rise in liquid phase concentrations if the soil is saturated. b) If the binding 
is linear and not capacity limited no accumulation can occur. 
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A substance with a limited adsorption capacity is considered. In this case, the model of 
Langmuir applies. It is assumed that the binding is strong, i.e. that k-l << k l .  This substance 
is now applied to a noncontaminated soil once a year over a period of 10 years. 
Figure 3.17 a shows the time courses of c and S. In the first years, S is far below the 
adsorption capacity, which is, however, steadily approached. After the third application, the 
effect of the limited binding capacity becomes obviously. A further application leads now to 
high concentrations of the substance in the bioavailable solute phase. As a consequence, 
phytotoxicity is much longer maintained as at the beginning of the application. For 
comparison, the long-term behavior of a linear system with unlimited binding capacity is 
demonstrated in Fig. 3.17 b. 

3.2.3 Nonlinearities due to Spatial Heterogeneity 

Up to now, the models describe reactions in an environment, which might be characterized 
as "well stirred". Consider now a soil sample, which is heterogeneous at a scale much 
smaller than the characteristic scale of a test volume. Let us assume, that the sample is made 
up of a large number of small homogeneous subsamples and that in each subsample a linear 
kinetic law is valid. Then, due to the varying soil properties, each model has different kinetic 
parameters. Consider for instance the influence of organic soil content on the Kd-value. Even 
if degradation rates are constant over the whole test volume, the effective degradation rate 
depends on the Kd-value via Eq. (3.35). What is measured then, is a mean value over a large 
number of first order reactions exhibiting a large range of effective degradation rates. The 
weighting factors wi are introduced to account for different sizes of the subsamples. 

(3.88) 

Since the local distribution of soil properties can be regarded as random, the parameters ki 
are realizations of a random variable K. We shall not consider the concept of spatial random 
processes here, which are treated in chapter 7. Let us assume, that the random variable K is 
characterized by a probability density function f l k )  with the following properties: 

i) The counterdomain of k) is [O,-) .  
ii) The expectation E [e -'] is finite. 

Since the concentration is a function of the random variable K, it is also a random variable, 
which is denoted by C. Then, in the limit n + - the expectation of the concentration at 
time t, E [C (t)], is given by the integral 

m 

(3.89) 

Gustavson and Holden (1990) evaluated this integral for the Gamma density function 



3.2.3 Nonlinearities due to Spatial Heterogeneity 67 

-hk 
for a,h,k > 0 a a - l e  f(k) = h k - 

l- (a) 

with 

The expectation of a Gamma distributed random variable K is 

m 

E [ K ]  = Jkf(k)dk = E 
h 0 

and its variance is given by 

m 

a 
h2 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

Figure 3.18 shows plots of Gamma densities for different sets of parameters exhibiting a 
variety of shapes from exponential to approximately Gaussian. The use of a Gamma density 
was motivated by the fact that frequently soil properties such as Kd-values or water 
conductivities follow positively skewed distributions, which can be modeled by a Gamma 
density function. 
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Fig. 3.18: Gamma density functions of order 1, 2, 3, 4 and 5. 
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Employing the Gamma density the integral (Eq. (3.89)) yields the simple formula 

(3.94) 

This kinetic expression differs markedly from the mono-exponential decay law. Figure 3.19 
shows a series of plots of Eq. (3.94) dependent upon the parameter a. The deviations from 
linearity are obvious. Note that for growing a the exponential decay curve is apparently 
approached. If one varies the parameter h with a fixed, shapes very similar to double 
exponential decay curves are obtained. 
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Fig. 3.19: Plots of Eq. (3.94) dependent upon the parameter a. For growing a the shape of a mono- 
exponential decay curve is approached. 

A fit of Eq. (3.94) to decay data of Terbufos (Felsot, 1982) demonstrates the applicability of 
this model (cf. Fig. 3.20). Gustavson and Holden (1990) reported a fairly large number of 
examples, where this model was applicable. 

However, care should be taken as to the interpretation of the results. The type of curve 
described by Eq. (3.94) can also be derived from linear kinetic models including sorption and 
desorption. Figure 3.21 shows a fit of the Terbufos data to a model with a slow linear 
sorption and desorption, which was derived in section 3.1.2 (Eq. (3.31)). The model contains 
three parameters, the liquid phase degradation rate kl and the parameters a and Kd for 
sorption and desorption. The fit was obtained for the total soil concentration, which has the 
mathematical form 

-h ,  t 
ct = 8 c  + pS = co(Ae + B e  - 

A + B = I  

(3.95) 

The macroscopic parameters A, B, h, and 
(cf. section 3.1.2). 

are functions of the kinetic parameters 
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Fig. 3.20: Fit of Eq. (3.94) to decay data of Terbufos observed by Felsot (1982). 
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Fig. 3.21: Fit of kinetic model with slow linear sorption and desorption (Eq. (3.95)) to the same 
Terbufos data (Felsot, 1982) as shown in the previous figure, Fig. 3.20. 
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Table 3.2 summarizes the results of parameter estimation for both models (for methods 
cf. chapter 4) including the mean square error as a measure for the goodness of the fit. The 
residuals of both fits are plotted in Fig. 3.22. The mean square errors of both models differ 
only slightly. Admittedly, the stochastic model yields the best fit and is in addition most 
parsimonious concerning the number of parameters. It should be emphasized, however, that 
model discrimination is not feasible by statistical analyses of concentration measurements of 
one component alone (total or solute phase concentrations). Only additional information on 
the time course of bound residues would allow to discriminate between the two models. 

Tab. 3.2: Results of the statistical analysis of a stochastic (Eq. (3.94)) and a deterministic model 
(Eq. (3.95)) applied to degradation data of Terbufos (Felsot, 1982), standard deviations in brackets. 

Parameter 

stochastic model (Eq. (3.94)) 
a 
h 

R2 
MSQ 

deterministic model (Eq. (3.95)) 

2 A 

R2 
MSQ 

Estimate (st. dev.) 

1.230 (0.3) 
13.330 (4.9) 

0.998 
0.041 

0.018 (0.9*10-2) 
0.120 (0.4* 1 0-2) 
0.380 (0.17) 

0.997 
0.046 

A further important conclusion from this model concerns the concept of effective parameters. 
According to this concept, there exist so-called effective parameters which transform the 
deterministic equation into the equation obtained for the expectation. 

E[C(t)]  = cge -keff' (3.96) 

As we have seen, the mathematical form of the expectation of the concentration profile is not 
of the form of a single profile. Therefore, it is not possible to find a value of the kinetic 
parameter k such that Eq. (3.96) holds. However, in the limit of Vur [a + 0 Eq. (3.94) 
approaches the mono-exponential decay law as can be seen from the following. 

a with h = - 
a+m.h+m ( I  + ;)a k 

= e  - k t  I lim 
(3.97) 
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3.2.4 Nonlinearities Encountered in Biological Degradation 

In this section the following additional notations are used: 

m 
d 
P 
Y 
KI 
c1 
et 
e0 
e l  

P 
S 

: maximum velocity of an enzyme catalyzed reaction [M/L3/T] 
: Michaelis constant [Mn31 
: microbial population density [W3] 
: microbial mortality rate [ I n ]  
: coefficient of nonlinear mortality [L~/MI 
: gain factor for biomass roduction [ l ]  
: inhibition constant [M/L ] 
: maximum microbial growth rate 1/T] 
: total enzyme concentration [M/L ] 
: concentration of free enzyme [ML3] 

3 : concentration of enzyme-substrate complex [M/L 3 
: substrate concentration [Mn3] 
: product concentration [M/L3] 

e, 
4 

3.2.4.1 Capacity Limited Degradation 

Many organic substances are degraded or biotransformed by microorganisms. Most biological 
reactions are mediated by enzymes, which act as specific catalysators. The simplest reaction 
scheme (Michaelis and Menten, 1913) is 

k - l  k2 

kl 

E + S  * [ES] + E + P  

The substrate S binds to a free enzyme E forming the enzyme-substrate complex [ES 1, which 
decays into the product P and the free enzyme E. With the notations eo, s, e l ,  et and p for 
the concentrations of free enzyme, substrate, enzyme-substrate complex, total enzyme 
concentration and product concentration the differential equations for the elementary chemical 
reactions are written as 

- dp = k2e l  
d t  

(3.98) 

(3.99) 

(3.100) 

Conservation of enzymatic forms is expressed by 
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e l  + eo = et  = const (3.101) 

Assuming quasi steady state for the formation and decay of the enzyme-substrate complex 
stationary concentrations of the enzymatic forms are obtained by setting dell& = 0 and 
employing the conservation equation Eq. (3.101): 

Inserting this expression into equation (3.100) yields finally 

= - d P  = -  k2ets = -  Vmax s ds - - 
dt dt k2 + k-1 s + KM 

+ s  
kl 

(3.102) 

(3.103) 

and 

This simple nonlinear differential equation is not amenable to an explicit analytical solution. 
Asymptotically, the equation becomes 

and 

for s >> KM (3.104) 

(3.105) 

yielding pseudo first order for low and pseudo zero order kinetics for high concentrations. 

Figure 3.23 shows simulated decay curves of Di-allate obtained for three different initial 
concentrations normalized to 100 %. The dependence of the kinetics on the initial 
concentration is obvious. A further example is given in chapter 4. 
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Fig. 3.23: Simulated decay curves of Di-allate based on a Michaelis-Menten degradation kinetics, 
obtained for three different initial concentrations normalized to 100 %. 

3.2.4.2 Substrate Inhibition 

At high concentrations, inihibition of microbial activity frequently occurs (Fournier et al., 
1981; Hurle, 1982). A simple mechanism is an enzymatic reaction with substrate inhibition: 

(3.106) 

0 1  
0 40 80 120 160 

2.4-D CONCENTRATION [ppmw] 

Fig. 3.24: Fit of the substrate inhibition model (Eq. (3.106)) to 2,4-D degradation rates as a function 
of initial concentrations (data from Parker and Doxtader, 1982). 
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This simple kinetic model is a possible mechanism for the concentration dependent time lags 
as observed for instance in experiments with Di-allate and 2,4-D. Figure 3.25 shows 
simulated decay curves obtained for a large range of initial concentrations. The curves are all 
normalized to 100 9i to allow a better comparison. At low concentrations, the decay curve 
is approximately mono-exponential. With increasing initial concentrations, the nonlinear 
effects become apparent. The decay is delayed and lag times increase with initial 
concentrations. 

2,4-D INITIAL CONCENTRATION 

1 w i g  - 20 re/g - 50 re/s 

0 50 100 150 
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Fig. 3.25: Simulated decay curves based on the substrate inhibition model (Eq. (106)). High initial 
concentrations cause time lags. 

3.2.4.3 Population Dynamic Effects 

If a microbial population is able to grow on a pesticide as substrate, microbial population 
dynamics has to be modeled explicitly. Note that in the foregoing enzyme kinetic models the 
microbial density is implicitly contained in the parameter V-, which is, however, assumed 
to remain constant in time. The following model, which goes back to Monod, couples 
microbial population dynamics with degradation. 

m - dm(1 + pm) dm C 
= c 1  dt c + K M  

_. (3.107) 

(3.108) 

Equation (3.107) is the mass balance equation of microbial growth. The first term is the 
growth rate, which depends on nutrient concentration c by a Michaelis-Menten type response 
function. The growth rate equals the consumption rate (Eq. (1.108)) corrected by the gain 
factor l/y. The second term of Eq. (3.107) describes loss by mortality. The mortality rate is 
formulated density dependent in order to limit the population size. The coefficient p measures 
the deviation of mortality rate from linearity. Only for p > 0 microbial growth is limited in 
the case of a constant level of c. If B = 0 the population either increases to infinity or dies 
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back, if the decay rate exceeds the growth rate. The introduction of a mortality rate as a 
function of microbial density prevents the population to grow beyond limits at surplus 
nutrient supply. Note that for the special case of a linear dependence of the mortality rate on 
density as is assumed in Eq. (3.107) the differential equation is equivalent to logistic growth 
if c is kept constant, which can be seen from 

(3.109) 

with 

K(c)  is denoted as environmental capacity of the population. In terms of the theory of 
dynamic systems, K(c) is a stable attractor of the differential equation Eq. (3.109), i.e. the 
population density approaches this value asymptotically the region of attraction being the 
interval 0 < m < 00. Due to the density dependent mortality rate the capacity at surplus 
supply is limited by 

This model may be generalized to n nutrient components and 1 biomass fractions the 
microorganism is able to grow on. Let pi denote maximum growth rate on biomass fraction 
i and N.. nutrient component j in biomass fraction i. The simplest way to model the 
dependence of growth rate on several essential nutrient components is to take the product of 
Michaelis-Menten type response functions and summing up over the biomass fractions. One 
thus arrives at the general model 

rl 

(3.1 10) 

The consumption rate of the nutrients are coupled to microbial growth. If microbial biomass 
is expressed in C-units, the consumption of nutrient component j depends on the C/Nj - ratio 
of the nutrient with respect to the microorganism. Let this ratio be denoted as aj and let yi 
denote the gain factor pertaining to biomass fraction i. The differential equations for the 
nutrients are then 

(3.111) 

An alternative formulation is based on Liebig's minimum principle stating that the rate of 
any biological process is determined by the concentration of that nutrient, which is minimal. 
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- dm = m k  p i [  min [ Nii ]] - dm(1 + pm) 

dt i = l  j = 1  ...I N i j  + Kij  
(3.1 12) 

Let us now consider the case of two C-sources, one naturally occurring and the other being 
the pesticide. All other nutrients are assumed to be present in surplus, i.e. with levels high 
above the respective q.-values. In this case, the general formula Eq. (3.1 10) leads to 

J 

C’lC - dm - - poco m + -m - dm(1 + pm) 
dt CO + KO c + K, 

which is equivalent to 
/ 

dm 
dt 
- 

(3.1 13) 

(3.1 14) 

It is important to consider at least one additional C-source. Otherwise, the population will 
totally disappear in the absence of the pesticide. According to Eq. (3.1 14) microbial density 
and hence microbial activity have two limiting states. In the presence of the pesticide as 
carbon source, population levels will rise from KO to a maximum value K,, which is 
asymptotically reached at concentrations larger than the KM-value: 

IPRODIONE 

0 20 40 60 80 100 120 

TIME AFTER APPLICATION [days] 

Fig. 3.26: Time course of the fungicide Iprodione obtained under three subsequent applications of the 
same dose in a soil not previously treated with the pesticide (experimental data from Walker and Welch, 
1990). Note that a time lag occurs only after the first application. 
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The model explains the frequently observed effect of acceleration of degradation under 
multiple applications. Figure 3.26 shows the time course of the fungicide Iprodione, obtained 
under three subsequent applications of the same dose in a soil not previously treated with the 
pesticide. Only after the first application, a time lag occurs. 

3.2.4.4 Long Term Persistence of Activity 

The models treated so far suffer a major drawback concerning the long term persistence of 
activity. Once the available C-source in form of the pesticide is consumed, population levels 
begin to decline. The lifetime of the activity is determined by the in general short lifetime of 
the microorganisms. Experience shows, however, that the potential for degradation may 
persist for periods much longer than the average lifetimes. 

This can be modeled by introducing an active state and a dormant state of the 
microorganisms. If conditions are favorable as concerns humidity and substrate, the 
organisms are in an active state which is characterized by rapid population growth and high 
mortality rates. Under unfavorable conditions, the organisms change into a dormant state 
characterized by low activity levels and low mortality rates. This behavior is typical for the 
so-called zymogenous microorganisms. 

One possibility for modelling is the introduction of a dormant state and of transition rates 
which depend upon the environmental conditions and nutrient levels. Let ma and md denote 
population levels in  the active and dormant state respectively and kad and kda the transition 
rates from active to dormant state and vice versa. The model takes the form 

(3.1 15) 

(3.1 16) 

For each state, a different set of mortality parameters is defined. The function Q, is a 
response function normalized to 1, which depends on nutrient levels C and N, temperature T 
and humidity 8. The dynamic behavior of the system is determined by the mathematical form 
of the transition rates. Let 

Then the population of the active state (no dormant states) will die back, if p becomes less 
than da. In terms of dynamical systems theory, the state ma = 0 then becomes a stable 
attractor. It is thus reasonable to let the transition rates depend on p in a nonlinear way with 
a threshold parameter ps > da. A suitable mathematical form is 
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and 

(3.1 17) 

(3.1 18) 

Figure 3.27 shows the graph of these functions. The parameter ps determines the location of 
the threshold and the parameter y determines its steepness. 

. gamma= 1 c -  

- .  gamma = 5 I I 1 - . gamma = 1 

- .  gamma = 5 

- gamma = 10 . . . . . . '. ...' 0.8 - 

0.6 - 
u' 
9 0.4 - 

0.2 - ,:. 

I , I I 

0 20 40 60 80 100 0 20 40 60 80 100 

Ll 

Fig. 3.27: Transition rate from dormant to active state as a function of actual growth rate p according 
to Q. (3.118). 

In contrast to the models presented in the foregoing section the dormant state model allows 
the modelling of the persistence of the activity for long time periods. In other words, the 
model is capable of taking into account the long term treatment history of a soil. This is 
demonstrated in the following example. Hurle and Pfefferkorn (1972) investigated the 
degradation of DNOC under various pretreatment "histories". They found that the kinetic 
behavior both with respect to the characteristic times and the shape of decay curves is 
determined by the pretreatment level. Figure 3.28 shows the decay data of DNOC obtained 
by Hurle and Pfefferkorn (1972), 31 days after a pretreatment with 0 to 1.25 mgkg soil. 

Note that with increasing pretreatment level the lag phase becomes shorter and finally 
disappears. This dynamic pattern is matched by the model as is shown in Fig. 3.28. To allow 
for the initial decline of concentrations, the model is completed by a linear kinetic binding 
component. Parameters were identified for all experiments simultaneously with the methods 
described in chapter 4. 
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Fig. 3.28: Decay curves of DNOC obtained by Hurle and Pfefferkorn (1972). 31 days after 
pretreatment with 0 to 1.25 mg/kg soil. Increasing pretreatment levels cause a shortening of lag phases. 
This experiment is simulated by the model described by Eqs. (3.1 15) to (3.1 18). The systematic 
deviations are possibly due to nonlinear binding, which is not included in the model. 

In the experiment of Hurle and Pfefferkorn (1972), both effects, the direct influence of the 
substrate on growth and the transition from dormant to active state are superimposed. In case 
of a long time lag between subsequent treatments the active component totally disappears and 
the degradation potential is solely preserved in  the dormant component. Figure 3.29 shows 
the long-term behavior of the system for a fictitious treatment scenario. 
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Fig. 3.29: Long-term behavior of the active-dormant state model. Long time lags between treatments 
cause the transition from active to dormant states. 

Another concept, which goes back to Panikov (1992), introduces the notion of an activity 
state function, R(t) ,  which depends on the nutritional situation. Both, growth and mortality 
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- C-SOURCE - MICROBES . ACTIVITY 

rates are modulated by this function. In its simplest form, this concept is modeled by a 
system with the three components microbial density, nutrient concentration and activity state. 

(3.1 19) 

(3.120) 

(3.121) 

If the initial value of the activity state lies in the interval [O,I], R(t) can only assume values 
within this interval. This is seen from the differential equation Eq. (3.121) for R. The 
argument goes as follows. For fixed levels of c the equilibrium value of R equals the first 
term in the bracket of the 1.h.s. of the equation. However, this term can take on only values 
between 0 and 1 .  In the case of low nutrient levels, the activity is reduced and the population 
is kept alive at a low activity level. Figure 3.30 shows the behavior of this model under a 
long term treatment scheme. 
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Fig. 3.30: Behavior of the Panikov model (Eqs. (3.1 19) - (3.121)) under subsequent applications. The 
activity function R decreases with substrate and thus causes a slow down of all metabolic processes. 

3.2.4.5 Stochastic Approach for Activity Life Times 

If a pesticide has been applied over a long period, persistence of activity is likely to persist 
for some time after the offset of the application. This effect was modeled in the previous 
section by the introduction of dormant states. Although this concept is appealing from a 



3.2.4.5 Stochastic Approach for Activity Life Times 81 

conceptual point of view, in practice, it is difficult to obtain measurements of microbial 
densities in different states. In a routine situation usually merely the time course of 
concentrations in the soil often even not differentiated with respect to liquid and solid phase 
is measured. 

Therefore, for practical purposes, a simple model is needed whose parameters are estimable 
from routine data. From concentration measurements, lag times can be derived easily. A lag 
time can be considered as a random variable which is modeled by its probability density 
function. The probability density function is related to the kinetic parameters via the 
distribution function. Let T denote the random variable lag time,f(t) its density function and 
F(t)  its distribution function. 

The distribution function is defined as F(r) = Proh(T < t ) ,  i.e. as the probability that the 
realization of the random variable T is less then t ,  or in  other words as that part of the 
(statistical) population with lag times less then t. From this definition the relation between the 
reaction rate of a first order reaction and the distribution function of T becomes quite obvious 

(3.122) 

The statistical interpretation can be applied to the microbial population. In this context, F(t )  
is that part of the microbial population with capability of biodegradation of the pesticide 
under study. A suitable life time distribution is the Weibull distribution 

F ( t )  = I - e -[q (3.123) 

with density function 

(3.124) 

Its expectation and variance are given by 

(3.125) 

(3.126) 

where r denotes the Gamma function. 
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Figure 3.31 shows plots of a Weibull distribution and a Weibull density function. 
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Fig. 3.31: Weibull distribution function and density function for activity life times. 

The d5cay of activity can be modeled in a similar way by employing a survival function. Let 
Fd ( t  ) denote the distribution function f f  activity IiFtimes after the termination of 
applications. Then the survival functio; S(t ) = 1 - Fd (t ), which denotes that part of the 
population which is still active at time t , is used to describe the decay of activity. To trigger 
the onset of induction or of decay of activity, threshold concentrations c, are introduced. For 
a first order decay reaction, the model then takes the form: 

(3.127) 

where it is assumed, that concentrations are above threshold cs the first time at time t = 0 
and below threshold for t > t, where t* = t - t,. The model is specified by the five 
parameters k-, T,, yI , T~ and y2. 

The model is capable of simulating typical long term treatment effects: enhanced degradation 
at the beginning of an application period and the decay of activity at the end. 

Figures 3.32 a,b show time courses of concentrations and activities for a long term treatment 
scenario. First, the activity builds up and persists as long as the treatment is continued. After 
the end of the treatment, activity decays and builds up again only if the treatment is resumed. 
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Fig. 3.32: Multiple applications simulated by the stochastic activity life time model (Eq. (3.127)): a) If 
the second application is given prior to the decay of activity, enhanced degradation occurs. b) About 
100 days after the first application the activity state has decayed. Degradation occurs only after the 
renewed built up of the activity state. 

3.2.4.6 Shift of Population Composition 

The application of an organic chemical may also influence the ecological (quasi) equilibrium 
at the microbial level. To study this effect the classical Lotka-Volterra (Lotka, 1925; 
Volterra, 1926) competition model is combined with a degradation kinetic model. Let us 
assume, for simplicity, that two logistic populations exist in stable coexistence: 

(3.128) 

(3.129) 
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The coefficients a and p are a measure of the mutual competition between the species and 
K1 and K2 denote the environmental capacity of each species in the absence of the other. The 
stationary solutions of this system are 

z01=(".') 

Go2 = [i2) 

(3.130) 

(3.131) 

(3.1 32) 

From local stability analysis the following stability conditions are derived: 

i) 
ii) 
iii) 

State (1) is stable, if K1 > a K2 and K2 c I3 K1. 
State (2) is stable, if K1 < 01 K2 and K2 > I3 K1. 
State (3) is stable, if K ,  > a K2 and K2 > I3 K1. 

Let us now assume, that a pesticide increases the mortality rate of population 2 and is 
cometabolically degraded by population 1 .  Let us further assume, that population 2 is 
dominant if no herbicide is present, i.e. its densities are much higher than those of 
population 1 .  The model equations for these processes are 

(3.133) 

(3.134) 

The second term in the last equation models the pesticide induced mortality in analogy to a 
bimolecular reaction with rate dh. 

(3.135) 

T2 analyze the qualitative behavior of this system, let us start from a constant herbicide level 
c . In this case, Eqs. (3.133) and (3.134) are identical in form with Eqs. (3.128) and (3.129), 



3.2.4.6 Shift of Population Composition 85 

if one replaces r2 and K2 by 
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An increase of equilibrium level c* shifts equilibrium population densities in favor to 
population 1. From the stability conditions it is obvious, that above a threshold value even 
the coexistence conditions are no more fulfilled which causes the eventual extinction of 
population 2. 

The dynamics of the system under multiple applications is shown in Fig. 3.33. If the time lag 
between subsequent applications is short, enhanced degradation occurs. After the degradation 
of the herbicide, the system assumes its prior state losing its "memory" of the pretreatment 
and degradation occurs only after a further shift in population densities. 

In practice, it is extremely difficult to monitor the population dynamics of different microbial 
species. Only few data are available in the current literature. Kunc and Rybarova (1983) 
measured the time courses of the densities of microbial species following the application of 
2,4-D. Their data can be described by the time courses produced by the above model. 
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Figure 3.34 shows a comparison between model and data. The estimated model parameters 
are presented in Tab. 3.3. Note that part of the parameters had to be fixed due to the 
overparameterization of the model (cf. chapter 4 for details of the estimation procedure). 
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Fig. 3.34: Change in soil microbial composition after application of 50 mg 2,4-D per kg soil, observed 
by Kunc and Rybarova (1983). The fit is based on Eqs. (3.133) to (3.135). 

Tab. 3.3: Result of fitting Eqs. (3.133) to (3.135) to observed time courses of 2.4-D concentration and 
microbial densities (standard deviations in brackets). The resulting fit is shown in Fig. 3.34. 

Parameter 

a 
P 
'1 
'2 
dh 

k := V&Kc 

I Estimate (st. dev.) 

1.1510 (0.5689) 
1.9987 (0.3374) 
0.6362 (0,0153) 
0.0269 (0.2245) 
0.0009 (0.0001) 

o.Ooo1 (<O.ooOol) 

fued 
K1 
K2 
"0 1 

cO 
"02 

R2 

300.0 
300.0 

8.8 
207.8 
50.0 

I 0.997 
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3.2.4.7 Interactions 

Similar to the interactions of drugs in an organism the simultaneous application of several 
pesticides may provoke synergistic or antagonistic effects (Poschenrieder, 1978; Hurle and 
Walker, 1980; Nash, 1981; Auspurg, 1985). 

Consider the case that a fungicide and a biodegradable herbicide are simultaneously applied. 
Then it is most likely that the biodegradation of the herbicide is inhibited by the fungicide, 
if fungi play an important role in the breakdown of the herbicide. 

However, synergistic effects have also been reported. Hurle et al. (1982) found that 
degradation of Chlorotoluron was enhanced in the presence of the fungicide "Cercobin Super" 
and inhibited by the insecticide "Metasystox R". The following model describes the 
interactions of two pesticides assuming that the degradation of the first is inhibited by the 
second. 

The following notations hold: 

c1 
c2 
kh kf : first order degradation constants for the herbicide and fungicide respectively [lfl] 
K, : inhibition constant [M/L3] 
n : shape parameter [ l ]  

3 : concentration of a herbicide, e.g. Simazine [IWL ] 
: concentration of a fungicide, e.g. Captan [W3] 

The inhibition is modeled by a term analogous to noncompetitive inhibition of an enzymatic 
reaction. 

(3.137) 

(3.138) 

These equations are amenable to an analytic solution, because the interaction is not mutual. 
The solution of Eq. (3.137) for the initial condition c,(t=O) = c20 is inserted into Eq. (3.138) 
yielding 

(3.139) 

For a single application with initial concentration cl0 the solution of Eq. (3.139) is obtained 
by the method of separation of variables: 
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Parameter 

kh t n 

(3.140) 

Simazine / Captan Prometryn / Thiram 

0.0 14 0.019 
0.033 0.06 1 

16.433 0.009 
1.249 1.392 

kh with K = - and a = 

nkf  

This model is applied to the interaction between Simazine and Captan as investigated by 
Kibler (1979). Figure 3.35 shows decay curves obtained for each substance separately and for 
Simazine in the presence of Captan. 
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Fig. 3.35: Inhibition of Simazine degradation due to simultaneous application of the fungicide Captan, 
observed by Kibler (1979). Degradation rate of Simazine is decreased in the presence of Captan. 
Simazine degradation is modeled by Eq. (3.140). 

As a further example, the interaction between Prometryn and Thiram as measured by 
Wagenbreth et al. (1970) is simulated. Figure 3.36 shows the comparison between model and 
data. The interaction is quite strong causing a considerable time lag of the degradation of 
Prometryn. The parameter sets of these two simulations are presented in Tab. 3.4. 

Tab. 3.4: Results of fitting Eqs. (3.138) and (3.140) to Simazine/Captan and PrometrynA'hiram 
inhibition data (Kibler, 1979; Wagenbreth, 1970). 
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Fig. 3.36: Inhibition of Prometryn degradation due to simultaneous application of the fungicide Thiram 
(experimental data of Wagenbreth, 1970). Prometryn degradation is modeled by Eq. (3.140). 

3.3 Kinetics of Dose-Response 

3.3.1 Linking Concentration and Effect 

The assessment of optimal application schemes for herbicides necessitates the modelling of 
the potential response in dependence on herbicide concentrations and hence as a function of 
time. Whereas there exist many kinetic models, there are only few publications concerned 
with linking kinetics and dynamic response. 

It is sometimes helpful to look around into other disciplines. One finds that there is a striking 
similarity between kinetics of pharmacons and herbicides. As far as only the kinetics are 
concerned the mathematical approaches are identical in structure. Adsorption and desorption 
have their counterpart in tissue and protein binding, the elimination rates of some drugs are 
capacity limited and follow an enzyme kinetic expression and even time lags may occur 
caused by induction. In both fields, it does not suffice to be able to simulate the time course 
of concentrations. The goal is rather the prediction of the wanted effect and of side effects 
which are correlated with concentration levels. In pharmacology, the link is established by 
modelling drug receptor interactions and relating the number of occupied receptor binding 
sites directly to the effect. 

Other approaches establish a statistical relationship between concentration levels and effect 
in form of a response function. This approach is also applicable to the analogous problem in 
herbicide dynamics. 

Under the assumption that the characteristic times of herbicide action are much shorter than 
the characteristic times of degradation, time courses of concentrations are directly coupled to 
dose response functions. By this simple transformation of concentrations, time courses of the 
response are obtained. Since typical response functions are characterized by sharp thresholds 
and saturation levels, this transformation yields time courses characterized by abrupt changes 
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in the neighborhood of threshold concentrations. If there is a pronounced time lag between 
concentration and effect, this could be taken care of by the introduction of an additional 
component, the so-called "effect component". This is common practice in pharmakokinetics. 

Such models provide information about the optimal application of a herbicide to ensure 
sufficient weed control over a critical period of time. Relating herbicide concentration 
profiles to its biological efficacy provides a means to fulfil both the needs of the farmers, 
which require an optimal weed control and the environmental protection in using the lowest 
herbicide application dose for a given soil. By introducing crop-specific thresholds, it is 
possible to simulate carryover effects for crop rotations. 

The residual concentration of a soil applied herbicide in the upper soil horizon is only one 
of the factors critical for its efficacy. The amount of herbicide required to control a given 
weed in a given soil depends furthermore on physico-chemical properties as covariates and 
on the phenological state of the weed. If weed emergence occurs over a long period of time, 
the optimal timing depends both on the emergence pattern of the weed and the developmental 
stage of the crop. 

3.3.2 Mathematical Form of Dose-Response-Curves 

Additional notations: 

p, al, a2 : fitting parameters of response functions [I] 
R 
W 
L 
U 
D 
D e ,  : effective dose [M/L3] 
ceff : effective concentration [M/L 

'crit 
a 

: plant response function (e.g. reduction of dry weight of weeds) [% of biomass] 
: integral over the response function: performance criterion of an application schedule 
: weed production without control [M/L2] 
: weed production under high application rates [M/L2] 
: dose, amount of herbicide per unit of soil [W3] 

'31 : concentration threshold [M/L 3 
: rate constant of decay of microbial activity [lm] 

Herbicide activity is a function of both bioavailability and metabolic efficacy. For each 
combination of herbicide and organism there exists a bioactive threshold level necessary to 
produce a significant metabolic effect (Bailey and White, 1964). A large number of bioassays 
under controlled conditions have been analyzed to determine the range of herbicide 
concentrations required for weed injury in different soils. Plant response to a chemical is 
frequently described by a logistic equation (Streibig, 1988): 

+ L  u - L  R =  
-2(al + aZln(D)) 

1 + e  
(3.141) 

The asymptotic limits of this function are the parameters U (in the limit D + =) and L (in 
the limit D + 0). The parameters al and a2 determine the horizontal position and the slope 
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of the curve half way between these limits. If one transforms Eq. (3.141) according to 
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(3.142) 

the transformed response variable is a linear function in ln(D). This transformation is denoted 
as logit transformation and is frequently used in dose response experiments. 

(3.143) 

The EDs0-value, defined as the dose that causes 50 % of the total achievable growth 
reduction of the plant is given by 

a2 EDso = e 
(3.144) 

The shape of the curve is shown in Fig. 3.37. However, this curve decreases monotonically 
and has no peak for any values of the parameters. So this model is not capable to describe 
stimulation of growth at low doses, which has been observed in weeds such as Alopecurus 
myosuroides (Brain and Cousens, 1989). 

Brain and Cousens (1989) therefore suggest to modify the logistic doses response curve in 
the following way allowing for the occurrence of a peak a low doses: 

-2(al + a2In(D)) 
+ L  U - L + f D e  R =  (3.145) 



92 3 Kinetics 

Parameterfmeasures the initial rate of increase in plant yield at low herbicide dose, i.e. the 
degree of stimulation by the chemical. 

Figure 3.38 shows the herbicide response curve obtained for sugar beet treated with 
Chlorsulfuron. 

0.2 - 

0 ,  
0.04 0.4 4 

CHLORSULFURON CONCENTRATION [ppmw] 

Fig. 3.38: Dose response curve of root length for sugar beet treated with Chlorsulfuron allowing for 
growth stimulation at low doses (data and model from Brain and Cousens, 1989). The fit is obtained by 
the modified logistic regression model Eq. (3.145). 

A further suitable response function is the Weibull distribution function, which is used in 
statistics to model life time distributions (cf. section 3.2.4.5). Written in the following form, 
the meaning of its parameters becomes quite clear: the parameter ccrir characterizes a 
threshold and the parameter j’ determines its steepness. 

R = e  -(e)B (3.146) 

If the response is expressed as toxicity rather than in dry biomass of the weed, the dose 
response curves take the form 
- 

R = l  - R  

Figure 3.39 shows the application of the Weibull function to dose response experiments of 
the herbicides Quinmerac and Quinchlorac with carrot (Duucus curotu) as the sensitive 
indicator plant (Schmider, 1990). The response variable in this experiment is the reduction 
in dry weight. 
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Fig. 3.39: Dose response curve (phytotoxicity) of Quinmerac and Quinchlorac with Duucus curotu as 
indicator plant (data from Schmider, 1990). The fit is obtained by the Weibull response function 
Eq. (3.146). 

The critical concentration ccrit depends both on soil factors and weed species. If one assumes 
that only solute phase concentrations are directly related to the response, D has to be 
modified accordingly. In the case of linear adsorption and desorption D is replaced by the 
effective concentration (cf. section 3.1.3) 

(3.147) 

Thus sorption results in a shift of the response curve to the right. Figure 3.40 shows a fit of 
Eq. (3.146) to data of Quinmerac activity in three different soils, where ccrit and I3 are 
obtained from dose response relations in water. The fit permits the direct comparison of 
sorption strengths of different soils. 
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Fig. 3.40: Dose response curves of Quinmerac in different soils and water with Duucus carotu as 
indicator plant (data from Schmider, 1990). The fit is obtained by the Weibull response function 
Eq. (3.146). 
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3.3.3 Time Courses of the Response 

Under the assumptions, that (i) the response is directly related to solute phase concentrations 
and that (ii) the time delay between the response and the current concentration is negligible, 
time courses of the responses are simply obtained by inserting the time dependent solute 
concentrations into the dose response functions. 1.e. the time courses of the response 
functions are simply nonlinear transformations of solute concentration curves. 

Linear Kinetics 

Inserting a mono-exponential decay function into the Weibull response function yields the 
time dependent response function 

(3.148) 

with 

Note, that sorption influences R(t) in two opposite ways: on the one hand, the solute 
concentrations are lowered resulting in a shift of the response curve, on the other hand 
degradation is retarded resulting in a prolonged response. 

Figure 3.41 shows a fit of Eq. (3.148) to bioassay studies of Schmider (1990) with 
Quinmerac in three different soils. 
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Fig. 3.41: Time courses of phytotoxicity of Quinmerac in different soils (data from Schmider, 1990). 
The fit is obtained by Eiq. (3.148). 
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The effective degradation rate is highest in the organic soil. This is probably due to higher 
microbial density which is correlated to the organic matter content. In addition, the high pH- 
value in this soil also prohibits strong adsorption of Quinmerac. 

To illustrate the effect of the degree of adsorption and hence of the soil properties on the 
response, an experiment performed by Loux et al. (1989) is analyzed. The results are shown 
in Figs. 3.42 a,b. Imazaquin kinetics and response (inhibition of root growth of wheat) were 
measured in two soil types. Degradation of Imazaquin in the upper 7.5 cm of Cisne and 
Drummer soil was found to be biphasic. A fast degradation phase of about 60 days after 
application is followed by a phase of slow degradation. In this soil, Imazaquin concentrations 
above the toxicity threshold are maintained over a long period due to desorption (cf. 
Fig. 3.42 b). This might explain the carryover effects of Imazaquin and resulting corn injury 
reported by Renner et al. (1988). The fit was obtained by inserting the biphasic kinetics 
(Eq. (3.31)) into a Weilbull response function. 
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Fig. 3.42: Time courses of Imazaquin concentrations and toxicity on wheat (indicator variable root 
biomass with respect to a control) in two different soils: a) in a sandy soil (Cisne), where sorption is 
weak, toxicity levels are fading 90 days after application and b) in a loamy soil (Drummer) with strong 
sorption toxicity levels are maintained for a long time period. The fit was obtained by inserting the 
biphasic kinetics (Eq. (3.31)) into a Weilbull response function (Eq. (3.146)). 
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The rate constants of Quinmerac degradation in a clay soil depend on initial concentrations, 
indicating deviations from first order kinetics. For each initial concentration the fit to a first 
order model is very close. The rate constants and half-lives, however, differ considerably. 
This may lead to drastic effects on the shape of the response curves in the neighborhood of 
the threshold. Due to the nonlinear decay mode (longer half-lives at higher concentrations) 
unexpected carryover effects may occur when concentrations are increased. Figure 3.43 
shows time courses of the response of Daucus carota under three different concentrations. 

Enhanced microbial degradation of EPTC in previously treated soils causes problems in 
control of weeds (Rahman and James, 1983). For effective control of early flushes of wild 
proso millet, EPTC is applied preplant incorporated at 2.2 to 6.7 kg ha-' and must persist in 
significant quantities for approximately 15 to 30 days (Harvey, 1987). The data of EPTC 
degradation after repeated application, obtained by Obrigawitch et al. (1983), indicate a 
microbial adaptation to EPTC. 

Because of lack of explicit data about the dynamics of degrading microorganisms a 
simplified version of model Eqs. (3.107) and (3.108) combined with a linear adsorption 
kinetic is fitted to experimental data, assuming first order degradation kinetics and replacing 
microbial density m by activity a.  

da - = kca - a a  
dt 

(3.149) 

(3.150) 

(3.151) - ds = k12c - k Z 1 S  
dt 
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Figure 3.44 shows the fit of this model to decay data of EPTC (Obrigawitch et al., 1983). 
The time course of the potential efficacy of EPTC with respect to Echinochloa crus galli is 
simulated by use of the Weibull response function fitted to dose effect data published by 
Subba-Rao et al. (1987). In contrast to the effects shown previously, carryover effects are not 
to be expected but a fading of response following multiple applications. 
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3.3.4 Optimal Application Schedules 

Once the link between kinetics and potential effect has been established, the potential effect 
can be evaluated in dependence of the mode of application and the application scheme. A 
convenient performance criterion is the area under the response curve. 

W = R(2)dz J 
0 

(3.152) 

Let us regard as example the influence of the release kinetics of a sustained release form on 
the performance criterion W. In this example it is assumed, that both the release kinetics and 
the degradation follow first order reactions. Let D denote the concentration of herbicide in 
the depot phase with initial value Do and c,  as usual, the liquid phase concentration. The 
kinetic equations are then 

= - k,D dD 
dr 
- (3.153) 
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- dc = v ,  - k,c 
dt 

with 

-k , t  
v, = k,Doe 

The solution for the initial concentration c(t=O) = 0 yields 

Dok, -k,t  -k , t )  
c(t) = -(e - e 

kr - ke 

(3.154) 

(3.155) 

For a Weibull type response function the performance criterion is then given by 

(3.156) 

For a single application, the decisive parameter is the release rate constant k,. 

Figures 3.45 a,b show series of concentration profiles and the corresponding response profiles 
obtained by variation of the parameter k,. 
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Fig. 3.45 a: a) Effect of release rate k, of a sustained release form on the time course of the 
concentration. 
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Fig. 3.45 b: b) Effect of release rate k, of a sustained release form on the time course of the response. 

The plot of the performance criterion W vs. k, (Fig. 3.46) shows that there exists an optimal 
value of k,  for given D,#and k,. If the release rate is too slow the concentration levels move 
below the response threshold ccrit. If, on the contrary, the release form is designed such that 
the release is fast, high concentration levels above threshold are reached, which are 
maintained only for a short time. 

0 0.2 0.4 0.6 0.8 1 
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Fig. 3.46: Plot of the response function Eq. (3.156) as a function of the release rate k,. 

Of course, real situations are much more complicated involving multiple applications and 
population dynamics of the weed. The next example shows how the optimal timing is related 
to the emergence pattern of a weed. 

Figure 3.47 shows cumulative emergence of wild oat in summer barley and winter wheal 
obtained by Rauber (1978) and the resulting fit of a emergence function (Weibull function) 
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Fig. 3.47: Cumulative emergence of wild oat in summer barley and winter wheat (Rauber, 1978). The 
emergence is described well by a Weilbull function. 
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Fig. 3.48: Simulation of the effect of two different doses of herbicide on weed emergence. 
a) A significant reduction of wild oat emergence is only achieved in case of the higher dose. b) The 
lower dose causes just a small reduction. 
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Wild oat density manifests itself after three weeks in summer barley and after about ten 
weeks in winter wheat because of slow wheat growth. After this time wild oat is suppressed 
by the cereals and the emergence rate of the weed sharply decreases. The consequence for 
agricultural practice is to provide a sufficient effective herbicide concentration over this 
critical period of time. Figures 3.48 a,b show simulated time courses of degradation of a 
herbicide and of weed emergence and development in a treated and in an untreated field. 

Figure 3.49 shows the required dose of Quinmerac for obtaining a phytotoxic effect of more 
than 90 % against Daucus carota over a period of 30 days in dependence on sorption and 
degradation capacity of the soil. 

Fig. 3.49: Required dose of Quinmerac for maintainig a phytotoxic effect of more than 90 % on 
Daucus carota over a period of 30 days as a function of degradation rate and Kd-value. 

3.4 Environmental Covariates 

Notations: 

activation energy [J/mol] 
temperature ["C (O'Neill function), resp. K (Arrhenius function)] 
gas constant = 8.314 JK-' mol-' 
reaction rate as a function of temperature [l/T] 
reaction rate at reference temperature To [1/T] 
optimal temperature ["C] 
maximum temperature ["C] 
threshold temperature ["C] 
maximum reaction rate [ l/T] 
factor by which reaction velocity is increased at a temperature rise of 10 degrees [ I ]  
organic matter content [%I 
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3.4.1 Temperature and Humidity 

3.4.1.1 Chemical and Biological Temperature Response-Functions 

Arrhenius Law 

The reaction rate of a chemical reaction depends upon temperature according to the classical 
"law" of Arrhenius, which was first formulated in 1889: 

A E  
RT 
- 

k(T) = koe 
(3.157) 

This equation is valid to a good approximation for elementary chemical reactions. 

O'Neill Function 

When a substance is primarily degraded by microorganisms, the pure physico-chemical form 
of temperature dependence is no more valid. Biological activity depends upon temperature in 
a specific way: below a threshold temperature Ts no activity occurs. Above threshold, 
activity is increased with increasing temperature until a maximum rate is reached. At still 
higher temperatures, activity decreases again until an upper sometimes lethal temperature is 
reached. 

Temperature influences basic life processes at the level of biochemistry in two ways: 
elementary reaction rates increase with temperature according to pure physico-chemical laws. 
Because biochemical reactions are mediated by enzymes which function only if a complex 
secondary structure is maintained, a rise in temperature leads to an enhanced decay rate of 
secondary structure: the enzymes are denatured. Both effects are superimposed. Thus, the 
reaction rate of a biological reaction depends on temperature in a typical way as shown in 
Fig. 3.50. A suitable empirical equation was derived by O'Neill (1968) and O'Neill et al. 
(1972), which depends on parameters, which are easily derived from empirical data: 

(3.158) 

h(T - T,) denotes the step function, which takes the value of 1 for T- > T 1 Ts and is zero 
otherwise. The four parameters are the maximum reaction rate k-, the optimum and lethal 
temperatures T and T- and the Qlo-value. 

opt 
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Figure 3.50 shows the degradation rate of 2,4-D as a function of temperature with 
Topt = 23.1 "C, T,, = 50°C and x = 3.064 (data from Nash, 1989). 

0.1 
- ONEILL-FUNCTION OBSERVED DATA 

0 1  I 1 

0 10 20 30 40 

TEMPERATURE ['C] 

Fig. 3.50: Degradation rate of 2,4-D as a function of temperature with To = 23. I "C, T,, = 50°C 
and x = 3.064 (data from Nash, 1989). The data are modeled by the OTfeiIl temperature response 
function Eq. (3.158). 

The O'Neill function is apt to describe typical temperature responses occurring in biology. 
It also applies well to the development rate of whole organisms. 

Figures 3.5 1 a-d show the development rates of eggs, larvae, pupae and adults of the cabbage 
root fly as obtained from laboratory experiments by Miiller-Pietralla (Sondgerath and Miiller- 
Pietralla, 1996). Although the shape of the response is different for each developmental stage, 
each curve is matched fairly well by the O'Neill function. 
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Fig. 3.51 a: Application of the O'Neill function to the development rate of developmental stages of 
the cabbage root fly (data from Sondgerath and Miiller-Pietralla, 1996): a) eggs. 
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Fig. 3.51 b-d: Application of the O'Neill function to the development rate of developmental stages 
of the cabbage root fly (data from Sondgerath and Miiller-Pietralla. 1996): b) larvae, c) pupae and d) 
adults. 
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3.4.1.2 Influence of the Time Resolution of Temperature Pattern on the Kinetics 

I05 

For practical applications of pesticide degradation models it is important to know the 
influence of the time resolution of temperature on the long term kinetic behavior. 
Temperature is usually logged into degradation models as daily mean temperature or as a 
moving average over some time interval e.g. a week. Higher temperature resolutions are 
usually not considered in practice. As was demonstrated in the foregoing section, temperature 
response may be strongly nonlinear in certain temperature intervals. It is to be expected that 
the kinetic behavior is most sensitive to the temporal resolution if the temperature is strongly 
varying within these intervals. For a temperature and hence time dependent reaction rate the 
initial value problem 

- dc = - k[T(t)Ic 
dr 

has the solution 

wirh C ( f 0 )  = co (3.159) 

(3.160) 

To examine the influence of temporal resolution on the kinetics, an ideal annual temperature 
course is assumed taking into account daily variations and a seasonal variation of temperature 
extremes. The following function was developed by Webb et al. (1975) for the air 
temperature of an Oregon forest. It serves as standard temperature variation curve in the 
following analysis: 

T ( t )  = P W  + R(t)E(t) 

R(t) = Ro + Rm,,sin 27c ( ;6?) 

(3.161) 

E ( t )  = sin 2n- ( ..I0) 

Maximum temperature is reached at day 198, minimum temperature is reached at day 16. 
Daily minimum and maximum temperatures are assumed at 04:OO and at 16:OO. 
Figures 3.52 a,b show the annual time course and the daily variation over an interval of 10 
days. 

If k is a nonlinear function of T, the integral of k[T(t)]  over a 24 hour period using variable 
temperature differs from the value obtained by using the mean temperature. For an Arrhenius 
law, these differences are negligibly small as is demonstrated for a realistic parameter set in 
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Fig. 3.53. The differences encountered lie within the measurement errors. 

30 i I TEMPERATURE ['C] 
- T m e m  ' '_  Tmln - Tmax 

_---. F - 20- 
W 

-10 I 
0 50 100 150 200 250 300 350 400 

TIME [day.] 

TEMPERATURE ['C] 
- T(t) - T mean - T max T min 

25 
g7 

F! 

I 

w 20 
IE 

b, 15 
W a p 10 

5 1  
0 1  I ,  I ,  I I I I I I 

0 1 2  3 4 5 6 7 8 9 10 

TIME [days] 

Fig. 3.52: Time course of temperature according to the model of Webb et al. (1975), Eq. (3.161): 
a) Annual time course of temperature and b) daily temperature variation over an interval of 10 days. 
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Fig. 3.53: Influence of the time resolution of the time course of temperature on degradation. In the 
case of an Arrhenius temperature dependence, the curves obtained by using the daily mean temperature 
T,,, and by the daily varying temperature T(r) differ only slightly. 
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The O’Neill function yields considerable differences, when temperatures are moving in the 
neighborhood of threshold or optimum temperatures. Figure 3.54 a shows degradation curves 
obtained with mean daily temperatures (cf. Fig. 3.54 b) and with daily varying temperatures. 
The differences are largest in those intervals, where mean temperatures are below threshold 
with daily excursions above threshold. 
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Fig. 3.54: a) Sensitivity of temperature response function on temperature resolution. For an O’Neill 
temperature response function the differences between degradation curves obtained for daily mean and 
for daily varying temperature are larger than is the case for an Arrhenius response function. b) Time 
course of temperature underlying the simulations shown in Fig. 3.54 a. 

3.4.1.3 Influence of the Response-Function on Degradation 

The form of the response curve exerts the greatest influence on the kinetics. Frequently in 
practice an Arrhenius response function is employed, derived from experiments in a limited 
temperature range, where the accordance with data is fairly well. Temperature response- 
functions are usually derived on the basis of degradation studies at 10, 20 and 30°C. In this 
range the Arrhenius and O’Neill response-functions are often quite similar in form. For 
temperatures outside this range the Arrhenius approach always predicts too low 
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concentrations. Figure 3.55 shows several fits of response-functions to degradation data of 
2,4-D. If one considers only the 2,4-D degradation rates at 5, 15 and 20°C in the fitting 
procedure, no significant differences between the Arrhenius and O'Neill-function occurs. 

. .  . .  MODEL FUNCTION . .  . .  . .  . .  . .  . .  
1 -ONEILL I 

-ARRHENlUS . .  . .  
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Fig. 3.55: Response of degradation of 2,4-D on temperature. If one only considers the temperature 
range from 5 to 20°C, the Arrhenius and O'Neill functions differ slightly. Differences are most 
pronounced at high temperatures. Dotted lines show extrapolations obtained by using the first three and 
the first four data points in the Arrhenius model. 

Taking into account degradation data at 25 and 35°C reveals drastic differences between the 
two response curves and hence to drastic differences of the degradation kinetics as shown in 
Fig. 3.56. 
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Fig. 3.56: The form of the temperature response curve has a large influence on the degradation rate. 
Simulations were performed for 2,4-D with the temperature response curves shown in Fig. 3.55. In 
addition to the semilogplot of concentration the underlying temperature is contained in the figure. 
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3.4.1.4 Humidity 

- 
P 

z 
5 I 0 '08 -  

The humidity response of the degradation rate is similar to the temperature response. The 
degradation rate increases with water content of the soil. This is described by the empirical 
formula of Walker (1984). 

FUNCTION SUBSTANCE 
".Eq. (3.162) -Eq. (3.163) 9 METRIBUZIN X MBT - 0.04 - 

6 
P 
v- I 

k ( 8 )  = ABa (3.162) 

For many pesticides the degradation rate decreases at water content near saturation. This is 
taken into account by the following response function. 

r 1 

(3.163) 

Figure 3.57 shows as example the dependence of Metribuzin and Methabenzthiazuron (MBT) 
on humidity and the resulting fits. 

3.4.1.5 Combined Effect of Temperature and Humidity 

Under field conditions both factors act simultaneously, i.e. the kinetic parameter k is a 
function of T and 8. A reasonable approach is to formulate k as the product of both response 
functions: 

k(T ,8 )  = k ( T )  k ( 8 )  (3.164) 

where the parameter A of the humidity response function is set equal to 1 .  Equation (3.164) 
determines a response surface. The response surface for degradation rate of Chlorotoluron 
based on the product of Arrhenius function and the humidity function (3.162) is shown in 
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Figure 3.58 a. For the combination of the O’Neill function Eq. (3.158) with Eq. (3.163) the 
response surface is shown in Fig. 3.58 b. 
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Fig. 3.58: Response surface of the degradation rate of Chlorotoluron with respect to temperature and 
humidity: a) combination of the Arrhenius function with the humidity response function Eq. (3.162) and 
b) combination of the O’Neill function Eq. (3.158) with the humidity response function Eq. (3.163). 

Under time varying temperature and humidity conditions the degradation curve of a first 
order reaction is then given by 
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*TEMPERATURE *HUMIDITY 

(3.165) 
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The combination of the O’Neill response function with humidity response function 
Eq. (3.163) was used to simulate the degradation of Chlorotoluron. In a first step the 
parameters of the response surface were estimated from laboratory experiments. The model 
was then applied to simulate the degradation of Chlorotoluron under field conditions. 
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Fig. 3.59: a) Time courses of humidity and temperature during a Chlorotoluron degradation study 
performed by Kibler (1979). b) Simulated degradation curve obtained by using the combined 
temperature humidity response function Eq. (3.164) based on the O’Neill temperature response function 
and on the humidity response function k(T, 0) Eq. (3.163). The figure also shows the time course of the 
reaction rate. 
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3.4.2 Soil Parameters 

Soil parameters such as the pH-value or the organic matter content act both on the 
degradation rate and the parameters pertaining to sorption and desorption. Therefore it is 
difficult to separate both effects for substances with a strong binding. For linear degradation 
kinetics and linear equilibrium sorption Eq. (3.35) is formally written as 

(3.1 66) 

The effective degradation rate keff depends on all environmental covariates. 

The quantification of the influence of soil properties on degradation and sorption is the 
necessary step for transferring the models from the laboratory scale to the field scales and 
higher scales (cf. chapter 7). It should be clear, that such an undertaking demands a large 
body of experimental data and that the mathematical relationships are solely empirical. 

3.4.2.1 Organic Matter Content 

Microbial activity is related to the organic matter content of a soil. Therefore it is to be 
expected that biological transformation is also positively correlated to the organic matter 
content. In the case of the herbicide Bentazone sorption is only weak and it is possible to 
measure the degradation rate as a function of the Corg-content. Figure 3.60 shows a plot of 
Bentazone degradation rates versus C -content (von Gotz, 1996). The relation is slightly 
nonlinear and can best be described by a second order polynomial. 
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Fig. 3.60: Dependence of the degradation rate of Bentazone on the COrg-content. The relationship is 
nonlinear (data courtesy von Gotz, 1996). 

Humified organic soil substances are the most important adsorbents for most pesticides in 
soil, because of the great sorptive surface area and the great number of functional groups. 
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Sorption of unpolar pesticides is mainly due to hydrophobic interactions with organic soil 
substances so that sorption intensity of these pesticides is a linear function of the humus 
content of a soil. Sorption intensity of polar pesticides can better be described by the 
nonlinear hyperbolic equation: 

(3.167) 

where a and b are shape parameters of the curve. Figure 3.61 shows the dependence of 
sorption intensity of the polar herbicide CIPC on organic matter content. Hamaker and 
Thompson (1972) account this nonlinear sorption behavior of polar chemicals to the 
Piling-Up effect. In soils with low organic matter content, surrounding layers of organic soil 
colloids are relatively thin, so that the adsorbents can reach sorption places unhindered. With 
increasing organic matter content, a part of sorption places cannot be reached directly, so that 
the sorption capacity is limited by the accessibility of protected sorption places (Miiller- 
Wegener, 1982). 
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Fig. 3.61: Dependence of sorption intensity of the herbicide CIPC (data from Harris and Sheets, 1965) 
on soil content of organic matter. The fit is based on the nonlinear Eq. (3.167). For comparison the fit 
to a linear model is also shown. 

3.4.2.2 pH-Value 

Sorption of polar chemicals is influenced by the pH-value of soil, because the pH-value 
determines the degree of dissociation. Walker (1989) describes the dependence of the 
sorption coefficient of pesticides on the pH-value by the equation: 

(3.168) 

where a and b denote shape parameters. In Eq. (3.169) the Kd-value is written as the sum of 
a pH-independent constant, KoI and a pH-dependent term, which contains a threshold 
pH-value pHs corresponding to the pKA-value (dissociation constant) of the chemical. 
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(3.169) 

where Kd- denotes the maximum value of the sorption coefficient. 

Figure 3.62 shows the fit of Eq. (3.169) to sorption coefficients of 2,4-D and 4-Nitrophenole 
measured at different pH-values of the adsorbent. At pH-values greater than 5.0, 2,4-D exists 
completely in anionic form and is sorbed independently of the pH-value, corresponding to the 
anion desorption capacity of soil. 
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Fig. 3.62: Dependence of sorption intensity of 2.4-D (PKA = 2.7) and 4-Nitrophenole (PKA = 7.2) on 
pH-value of peat (data from Kukowsky and Briimmer, 1987). Both chemicals possess a pH-dependent 
and a pH-independent sorption range. Fit of Eq. (3.169) to sorption coefficients of 2.4-D and 
4-Nitrophenole measured at different pH-values of the adsorbent. 

Because soil colloid surfaces exhibit, in general, lower pH-values than the total solid phase 
(Goring and Hamaker, 1972), sorption of 2,4-D increases with decreasing pH-values lower 
than 5.0, although 2,4-D exists in soil solution mainly in anionic form. At pH-values greater 
than about 6.5, Nitrophenole exists mainly in cationic form and is sorbed in accordance to 
cation adsorption capacity of soil. 

3.4.2.3 Combined Effect of Organic Matter Content and pH-Value 

Under field conditions both factors, the organic matter content and pH-value, influence 
simultaneously the sorption coefficient. The most simple approach is a multiple linear 
regression model of the form 

Kd(C,rg,PH) = a0 + a1 Corg + a2 PH + a3 PH Corg (3.170) 

A further possibility is to formulate Kd as the product of the response functions for Corg- 
content (Eq. (3.167)) and pH-value (Eq. (3.169)): 
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r 1 

Figure 3.63 shows this response surface for the Kd-value of Quinmerac. 
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Fig. 3.63: Dependence of sorption intensity of the herbicide Quinmerac on soil content of organic 
matter and pH-value. The fit is based on Eq. (3.171). 

This function is applied to data obtained for the distribution coefficient of 2,4,5-T, 
determined in batch studies with 0.0 1 molar CaCIpolution and a soil/solution relationship 
of 5/1. 

Figure 3.64 shows the resulting fit of Eqs. (3.170) and (3.171). For alkaline soils with low 
C 

Figure 3.65 shows the application of both models to a profile in a loamy soil obtained by 
Hamaker and Thompson (1972). The multiple linear regression model Eq. (3.170) leads to 
unrealistic predictions. In the topsoil sorption intensity of 2,4,5-T is drastically overestimated, 
whereas negative sorption coefficients are predicted in soil depths greater than 180 cm. 

-values negative Kd-values are obtained by use of the linear regression model. 
org 

Concluding Remarks 

The examples clearly demonstrate the superiority of biological response functions over pure 
physico-chemical response functions for the prediction of persistence of pesticides in soil. 
The use of appropriate response functions improves the quality of simulation models without 
great mathematical efforts. 
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Fig. 3.64: Observed and predicted sorption coefficients of 2,4,5-T in soils with different content of 
organic matter and different pH-values. Application of the linear function Eq. (3.170) leads to negative 
values for soils with low content of organic matter and high pH-values. Only the nonlinear model 
Eq. (3.171) yields reasonable Kd-values for the whole range of COrg-contents and pH-values. 
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Fig. 3.65: Application of both models to a profile in a loamy soil obtained by Hamaker and Thompson 
( 1  972). 



4 Parameter Estimation in Kinetic Models 

This is an important chapter for practical model applications. It outlines methods of 
parameter estimation for models in any form. The case, where the models are only implicitly 
defined as the solution of nonlinear ordinary differential equations, is devoted special 
attention. As was pointed out in the previous chapter, most models in explicit form are based 
on simple linear kinetics both as concerns the mode of degradation, sorption and desorption. 
In the past, most statistical tools were not apt to solve problems involving regression 
functions defined by differential equations. This has lead to the situation that, in practice, 
very simple models are applied in order to obtain a proper statistical treatment. Most models 
in form of nonlinear differential equations are therefore classified as "simulation models" or 
"scientific models" in  contrast to "management models". This distinction is, to the authors' 
opinion, simply wrong. If nonlinear kinetic effects are characteristic for a substance, 
oversimplified models lead to false predictions. Therefore it is necessary to provide a link 
between models and data by the application of advanced statistical and numerical 
methods to regression problems involving systems of differential equations. The basics 
of nonlinear regression are summarized in the following section. It is assumed that the reader 
i s  familiar with linear regression. 

4.1 Problem Statement 

4.1.1 The Estimation Problem 

Given are: 

i )  A dynamical (kinetic) model in form of ordinary differential equations with 
parameter vector @ = 

i i )  time courses of measured state variables y . . ,  e.g. concentrations or microbial biomass, v 
i i i )  a performance criterion such as the residual sum of squares and 
iv) an error structure. 

, ... , $J, 

The mathematical problem then is to find a parameter vector CP which minimizes the 
performance criterion chosen. Let y(r,@) denote the solution of the initial value problem 

The least squares criterion is 

(4.2) 

En vironznen Fate Modefling of Pesticides 
From the La hora tory to the Field Scale 
0. Richter,B. Diekkriiger & P. Nortersheuser 
copyright 0 VCH Verlagsgesellschaft mbH, 1996 
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and the least squares estimator is defined by 

L(&) = min[~(0 ) ]  0 E u (4.3) 

where U denotes the space of admissible parameters. If the initial value problem possesses 
an analytical solution, i.e. a solution in  form of known functions, the regression problem is 
called explicit. If solutions can only be attained approximately by numerical methods, the 
regression problem is called implicit. 

4.1.2 Performance Criteria of the Estimates and Experimental Design 

The estimates thus obtained are subject to error. The error structure of the data, the 
experimental design and the model structure influence the statistical properties of the 
estimates. In a statistical sense, the estimates are random variables possessing a distribution 
function and a covariance matrix. 

Important information on the statistical properties is contained in the covariance matrix, 
which is computed along with the estimates: 

............ 

p l  sp2 s p 3  ... spp 

(4.4) 

The elements on the main diagonal are the variances of single estimates, e.g. sI 
variance of 0,. They can be used for the construction of confidence intervals. 

is the 

The covariance matrix is related to the correlation matrix of the estimates by 

The elements of the covariance matrix are an important criterion for the "well posedness" of 
the estimation problem. In the limit of Ir..l = I the parameters ai and 0, cannot be 
estimated independently. The model is overparameterized with respect to the given 
experimental design. The following example clarifies this. 

I/ 

Example 4.1: Degradation of Quinmerac 

Consider the simultaneous biodegradation and abiotic decay of a substance. The model 
parameters are the decay constants A, and Ah. Let x denote the concentration of the substance 
and y the concentration of the metabolite of the biological degradation. For first order 
reactions, the kinetic model is easily derived (cf. section 3. I) :  
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Days after 
Application 

-(Au + 
x ( t )  = xoe 

' a  

(4.6a) 

-0.85 

-0.78 

-0.60 

(4.6b) 

0.996 

0.996 

0.995 

If only data of the time course of the parent substance are available, both parameters are 
perfectly correlated, and the model is overparameterized. Both parameters can be 
distinguished only, if additional data on the metabolite are available. 

It is interesting, that in this case only one data point of the metabolite is sufficient to remove 
the degeneracy. Fig. 4.1 shows the correlation coefficient dependent upon the time point of 
the additional measurement. Table 4. I contains further statistics. This example is resumed 
again in the next section. 

Tab. 4.1: Parameter estimates, their standard deviations (in brackets) and correlation coefficients 
between the estimates for the model equations (Eqs. (4.6a.b)) in dependence of the allocation of a single 
data point of the second component. Note that the coefficient of determination R2, which is a measure 
for the goodness of the fit, is nearly independent of the experimental design. The correlation 
coefficient r, which measures the dependence between the parameters, decreases with increasing 
measuring time. 

31 I 0.0046 
(0.0005) 

60 0.0053 I (0.0004) 

90 0.0050 

210 I 0.0053 
(0.0003) 

0.0049 
(0.0003) 

0.005 I 
(0.0003) 

'b 

0.0040 
(0.0009) 

0.0043 
(0.0005) 

0.0036 
(0.0037) 

0.0040 
(0.0003) 

0.0042 
(0.0003) 

0.0036 
(0.0002) 

0.0040 
(0.0002) 

~ 

0.0038 
(0.0002) 

I 0-996 
-0.95 

I 0.995 
-0.5 1 

-0.48 I 0.995 

-0.42 0.995 

-0.38 0.998 



120 4 Parameter Estimation in Kinetic Models 

I- 

P 
0 
LL 
Y 

B 
z 
E 
5 

8 
w a a 

Om2 1 
0 1  I 1 I I I 1 

0 100 200 300 400 500 600 700 000 

TIME [days] 

Fig. 4.1: Influence of the experimental design on the correlation coefficient between parameter 
estimates of parameters ha and hb of Eq. (4.6a). The plot shows the effect of the allocation of a single 
measurement of the metabolite. 

4.1.3 Multi-Experiment Problems 

The kinetic properties of a substance can only be assessed on the basis of decay data 
obtained for a wide range of initial concentrations and experimental conditions such as 
temperature and humidity. As was pointed out in chapter 3, deviations from linear kinetics 
are difficult to detect from a single experiment alone. Consider the case of a Michaelis- 
Menten decay mode. The estimation of the parameters Vm, and K necessitates the analysis 
of a series of experiments run under different initial concentrations. This means that the 
parameters have to be estimated from a least squares criterion built up of all experiments. 

M 

Let ek denote the experimental condition pertaining to experiment k and yijk the measurement 
taken on component i at time 3 under experimental condition ek. The least squares criterion 
is then given by 

Worked examples are given in the next sections of this chapter. 

4.2 Models in Explicit Form 

(4.7) 

If the underlying dynamic model is linear, analytical solutions are obtained (cf. section 3.1) 
as sums of exponential functions. In this section three case studies are presented, which are 
chosen to represent typical problems frequently occurring in practice. 
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4.2.1 A Multicompartment System 

Consider again biodegradation of a substance, which decays into two identified metabolites, 
CO, and the rest. Under the assumptions that the decay of the metabolites is slow compared 
to the decay of the mother substance and that the decay reaction is of first order, the kinetic 
model is given by 

- dx = - (h ,  + h2 + h, + h 4 ) x  
dt 

(4.8a) 

(4.8b) 

The following notations hold: 

X 

yi 
hi : kinetic constants [IK] 

: concentration of parent substance [M/L3] 
: concentration of 1st and 2nd metabolite, C 0 2  and a rest [MA3] 

With the initial values x(r=O) = xo and yi(t=O) = 0 for i = 1, ... , 4 the differential equations 
have the solution 

-ht x ( t )  = xoe 

4 

i = l  

yi(t) = -[I ‘0 hi - e -hr]  wirh h = c hi 
h 

(4.9a) 

(4.9b) 

The least squares criterion is made up of the sum of squares of each component: 

There are many codes available for nonlinear parameter estimation. Meanwhile classical 
statistical program packages like SAS or BMDP offer the opportunity to solve nonlinear 
regression problems with user defined functions. For this example we employed BMDP as 
a representative out of this class. The handling of BMDP will be explained in some detail in 
example 4.6. 

Table 4.2 summarizes a part of the output of a BMDP run. Convergence is achieved after 
14 iterations. Analysis of the correlation matrix shows that no close correlations occur. 

Figure 4.2 shows a plot of the estimated time courses of concentrations together with the 
data. Figure 4.3 shows in addition the 99% confidence bands for the parent substance and the 
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0.01430 
0.00543 
0.00477 

0.0039 1 
0.00391 
0.0039 1 

first metabolite. Notice that the last two values of the parent substance (low concentrations) 
lie outside the confidence band. This may be a hint, that systematic deviations occur at low 
concentrations probably due to sorption, which is not included in this model. 

Tab. 4.2: Part of BMDP output (handling of BMDP see section 4.3. I ,  example 4.6): 

a) Sequence of parameter estimates and residual sum of squares (RSQ) encountered during the iteration. 

0.00100 0.00200 
0.00154 0.00070 
0.00185 0.00064 

0.00207 0.0003 
0.00207 0.00053 
0.00207 0.00053 

Iteration 
No. 

Parameter Estimate Standard Deviation 

0.0024 0.00020 
0.0039 0.00011 
0.002 1 0.000 10 
0.0005 0.00009 

t 
43 
A4 

0 
1 
2 

Coefficient of Variation 

0.0839 
0.0287 
0.0478 
0.1755 

12 
13 
14 

RSQ 

9894.57208 
132 1.26321 
342.6698 1 

103.28692 
103.24831 
103.2483 1 

0.00500 
0.00 105 
0.00252 

0.002361 
0.00236 1 
0.002355 

b) Final parameter estimates 

c) Correlation matrix of parameter estimates. The absolute values of the correlation coefficients are far 
less than 1 indicating that all parameters of the model are estimable. 

The over all R' is 0.994. 
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Fig. 4.2: Time courses of Quinmerac and its main metabolites in a sandy loam at initial concentration 
of 10 ppmw Quinmerac. Solid lines represent the fit of the model equations (Eqs. (4.9a.b)) to observed 
data (BASF, unpublished). 
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Fig. 4.3: 99% confidence intervals of predicted time courses of Quinmerac and its metabolite 
BH 518-2. 

Statistical criteria like confidence limits, mean square errors and correlation coefficients alone 
do not suffice to judge the goodness of a fit. In addition to statistical measures the fit has 
always to be judged by eye. This is supported by the analysis of the residuals. Figure 4.4 a 
shows the time course of the residuals, which do not exhibit a systematic trend. Furthermore, 
the statistical distribution of all residuals is analyzed by a normal probability plot as given in 
Fig. 4.4 b. The plot reveals only minor deviations from a normal distribution. 
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4 -I SUBSTANCE 
* OUNIMERAC *METABOLITE BH 518-2 h /  +METABOLITE BH 518-5 8 C 0 2  

1 3 5 7  1 3 5 7  1 3 5 7  1 3 5 7  

EXPERIMENT NO. 

99.9 -1 I 

0.1 4 
- 3 - 2 - 1  0 1 2  3 4 5 

RESIDUALS 

Fig. 4.4: Analysis of residuals of the Quinmerac example: a) time course of the residuals and 
b) analysis of the statistical distribution of the residuals by a normal probability plot. 

4.2.2 Strong Sorption and Degradation 

The binding of organic chemicals to soil was treated in the foregoing chapter in some detail. 
Apart from fast reversible sorption-desorption processes chemicals may be bound strongly to 
the soil matrix. The strong binding is a slow process compared to sorption and desorption. 
The following simple model is valid for the situation that only one binding site exists and 
that the binding is irreversible. For linear kinetics the model equations are 

doc - = - 0 ( k ,  + kb)c 
dt 

(4.11a) 

(4.1 1 b) 
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From the solution of these equations with the initial values c(t=O) = co and S(t=O) = 0 the 
total concentration clot is obtained as (cf. chapter 3) 

Singular Fit 

Parameter Initial Concentration Initial Concentration 
2 Pk 20 Cldg 

ctot(f) = 0 c  + p S  = OcOe - (k /  + kb)t + -[I OkbcO - e -(k/ + kb)r] 

k l  + kb 

Simultaneous Fit 

(4.12) 

0.030 (0.005) 
0.008 (0.005) 

kl 

0.857 kb 
r 

Example 4.3: Binding and Degradation of Atrazine 

0.036 (0.0006) 0.037 (0.0008) 
0.021 (0.0008) 0.02 1 (0.00 10) 
0.879 0.873 

The kinetics of Alachlor, Atrazine and Metolachlor can be described well by this model 
(Richter et al., 1992a). As an example, kinetic data of Atrazine are analyzed here. 
Experiments were performed with initial concentrations differing by a factor of ten (2 and 
20 pg/ml). There are only four measurements in each series. The data base is rather poor and 
it is questionable, whether a sound statistical analysis is still possible. In a first step, each 
data set is analyzed separately. Comparisons of the estimates (cf. Tab. 4.3) and of the 
resulting trajectories (cf. Figs. 4.5 a,b) do not reveal significant differences. Therefore, it may 
be assumed that the model is valid for both concentration ranges. To improve the estimates 
by increasing the degrees of freedom, parameters are estimated from both experiments 
simultaneously. 

Tab. 4.3: Comparison of results achieved by analysis of single experiments and by simultaneous 
analysis of both experiments (standard deviations in brackets). The underlying model is given by 
Eq. (4.12). 

Thus it is possible to get reasonable parameter estimates and good fits even if only few data 
are available by combining data from several experiments. (Assuming the model is correct 
and measurement errors are small.) 
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Fig. 4.5: Degradation of Atrazine in a Vertic Eutrochrept soil and simulated time courses of Atrazine 
concentration in soil solution and soil matrix. The data (Richter et al., 1992a) are fitted to the model for 
the total concentration (Eq. (4.12)): a) initial concentration 2 ppmw Atrazine and b) initial concentration 
20 ppmw Atrazine. 

Temperature and Humidity Dependence of Kinetic Parameters 

In section 3.4 the temperature and humidity dependence of degradation kinetics was 
considered in detail. This section is concerned with the technical problem of parameter 
estimation. The analysis of temperature and humidity dependence of a reaction necessitates 
the performance of series of experimental runs under different temperatures and humidities. 
There are in principal two methods for parameter estimation. 

i) Two stage procedure 

In the first stage, the rate of decay is estimated from each experiment separately. In the next 
step, these values are used as independent variables of a nonlinear regression problem for the 
temperature (humidity) model. 
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i i )  Simultaneous estimation 

The data of all experimental runs are used to estimate the parameters of the temperature 
(humidity) model. The setup of the residual sum of*squares is given by Eq. (4.7). For the 
case of an Arrhenius law this equation is specified by 

(4.13) 

Here, the index i refers to data within one experimental run and the index j refers to the 
experimental run. The parameters to be estimated are the activation energy EA and the 

th reference reaction rate k,. yoj denotes the initial concentration of the j 

Example 4.4: Temperature Dependence of Isoproturon Degradation 

experimental run. 

The degradation of Isoproturon (cf. Pestemer, 1992) was measured under three constant 
temperatures. The fit to an Arrhenius law (cf. Fig. 4.6) reveals systematic deviations between 
data and predicted values. At low temperature, the estimated reaction rate is too fast and 
most data points lie above the predicted curve. This corroborates the assumption that the 
Arrhenius law is not appropriate for degradation reactions mediated by microorganisms. 
Although the fit shows that the applied model is not correct, the correlation coefficient 
(coefficient of determination) for this fit amounts to R2 = 0.96. This underlines the warning 
that one statistical criterion alone is not sufficient to judge the goodness of a model. 

If a biological temperature response function is used the problem arises that the number of 
different temperatures in the experiment is too small to allow the estimation of all parameters 
of the response curve. The model is overparameterized with respect to the experimental 
design, This is a situation frequently met in practice. Consider for instance the O’Neill 
temperature response function (cf. section 3.4.1.1). 

(4.14) 

This function contains the four parameters k-, a ,  T,, and To t .  The last two parameters 
have a simple biological meaning and it is easy to choose reasonagle optimum and maximum 
temperatures. In this example T,, was set to 50°C and Topt to 35°C. The remaining free 
parameters k,, and a were estimated. 

Figure 4.7 shows the resulting fit. Comparison with Fig. 4.6 clearly demonstrates the 
superiority of the biological temperature function over the Arrhenius function. 
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Fig. 4.6: Degradation of Isoproturon at three different temperatures. The fit is obtained by use of the 
Arrhenius temperature law. Reaction rates are overestimated at low temperatures and underestimated at 
high temperatures (data courtesy of Pestemer, 1992). 
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Fig. 4.7: By use of the biologically motivated temperature law of O'Neill it is possible to describe the 
degradation at all three temperatures fairly well. The fit was obtained by using the same data set as in 
Fig. 4.6 (Pestemer, 1992). 

Table 4.4 summarizes the results of both fits. Note that R2 has augmented to 0.99 for the 
biological temperature function, which does not seem much compared to the value of 0.96 
achieved with the Arrhenius approach. However, systematic deviations are obviously 
removed. 
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Arrhenius- 
Function 

Parameter Estimate 

1835.9 (3088.3) 

26400.8 (5489.4) 

k0 

EA 

R2 0.960 

O'Neill- 
Function 

Parameter Estimate 

kopt 0.078 (0.002) 
50.00 (fixed) 

T*pt 35.00 (fixed) 
a 2.039 (0.002) 
R2 0.991 

Trnax 

Example 4.5: Temperature and Humidity Dependence of the Degradation of Quinmerac 
and Chlorotoluron 

Parameter Quinmerac 

0.018 (0.001) kopt 
50.00 (fixed) Tmax 

26.01 (0.594) Topt 
a 9.715 (1.435) 

0.626 (0.02 1) ',,it 
b 2.207 (0.145) 
R2 0.923 

For the combined influence of temperature and humidity on the degradation rate a product 
approach was chosen 

k(T ,0 )  = k ( T )  k ( 0 )  (4.15a) 

where k(T) is given by Eq. (4.14) and the humidity response by 

Chlorotoluron 

0.021 (0.002) 
50.00 (fixed) 
28.55 (2.495) 
4.501 (2.063) 
0.690 (0.074) 
1.5 14 (0.233) 

0.926 

(4.15b) 

A plot of this function is shown in section 3.4 (Fig. 3.58). As in the previous example, the 
model is slightly overparameterized in view of the data available. The parameter TmM was 
fixed to 50°C, all other parameters were allowed to vary. Figures 4.8 a,b show model curves 
and data for the parameter values given in Tab. 4.5. 

Tab. 4.5: Parameters of the combined temperature and humidity response function (Eqs. (4.14) and 
(4.15)) estimated from degradation data of Quinmerac (Nortersheuser, 1993) and Chlorotoluron 
(Pestemer, unpublished) (example 4.5). standard deviation in brackets. 
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Fig. 4.8: Dependence of degradation rate of Chlorotoluron (Pestemer, unpublished) on temperature 
["Cl and moisture of soil [% of m a .  water capacity]. The tit is based on a combination of the O'Neill 
Function and the moisture dependence formulated by 9. (4.15b): a) different temperatures and constant 
soil moisture of 60 % of maximum water capacity, b) different soil moistures and constant temperature 
of 20°C. Note that the whole data field as shown in both figures is described by only one model. 

4.3 Models in Form of Ordinary Differential Equations 

As was shown in chapter 3, most nonlinear kinetic models lead to initial value problems, 
which are not amenable to analytical solutions. Therefore, one is faced with the parameter 
identification problem for regression functions, which are only implicitly defined as solutions 
of nonlinear initial value problems and are not available as explicit functions. 

A straightforward procedure is a combination of nonlinear regression algorithms with 
algorithms for the numerical solution of initial value problems. This method has been applied 
since about two decades (cf. Bard, 1974). It is implemented into the statistical program 
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package BMDP (Ralston et al., 1984) and is thus available for routine tasks. To enable the 
reader to handle this program, a detailed example is given including BMDP instructions and 
FORTRAN program where the differential equations are defined. 

However, from the point of view of scientific computing and of numerical mathematics, this 
so-called initial value method, suffers from major drawbacks concerning the range of 
convergence of initial parameter sets and speed of calculation. Therefore, a numerical 
advanced method based on a boundary value approach will also be described, although it is 
not available as a program package as yet. 

initial parameterset 

I 

I I 

1 

criterion 

Compute matrix of , , 
partial derivatives 

Solution 
of the 

initial value 
problem 

Solution of a local 

regression problem 

Compute next 

Statistical analysis of solution 
- Confidence intervals 
- Correlation matrix 
- Variance of estimates 

and other statistics 

Fig. 4.9: Flow chart of the initial value procedure. At each step of the iteration, the differential 
equations are solved numerically. Implementation is achieved by linking a differential equation solver 
with a standard routine for derivative free nonlinear regression. 
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4.3.1 Initial Value Method 

A flow chart of this method is given in Fig. 4.9. As can be seen from this chart, a subroutine 
for the numerical solution of initial value problems is embedded in an iteration procedure for 
the solution of least squares problems. The latter are usually derived from a gradient 
procedure such as the Gauss-Newton or Levenberg-Marquard scheme. Since these iteration 
schemes need the derivates of the regression function with respect to parameters, these partial 
derivates have to be computed along with each iteration step. 

This can be achieved by numerical integration of the sensitivity equations along with the 
solution of the differential equations. This approach is described by Bard (1974), a practical 
application is given by Haffner et al. (1981). Although this procedure is quite attractive from 
a mathematical point of view, the major disadvantage of this method is that the number of 
differential equations is augmented by the product of number of parameters times the number 
of model equations. Apart from errors in the setup frequently numerical instabilities are met 
in the course of the iteration due to the increased number of equations, which are, in general, 
nonlinear. 

So called "derivative free" regression methods as implemented in various statistical program 
packages evaluate the derivatives by a finite difference approximation. Such a procedure is 
used in the BMDP subprogram PAR 'Derivative free nonlinear regression'. 

The algorithm in BMDP (Ralston et al., 1984) is based on a sequence of local multiple linear 
regression problems. Numerical integration of the differential equations is performed by a 
Runge-Kutta-Fehlberg routine, which is a 5th order method with variable step size control. 

Example 4.6: Degradation of 2-4 D by Microorganisms 

The underlying experiments were carried out by Li-Tse Ou (1985). The data obtained in 
these experiments are an excellent basis for parameter estimation in degradation models with 
explicit microbial population dynamics. 10 mgkg I4C-labeled 2,4-D was applied to a Cecil 
and a Webster soil respectively. 2,4-D concentration, bound residues, microbial biomass and 
labeled C 0 2  were measured simultaneously. Microbial biomass was estimated by the most 
probable number method. 

In a first trial, the model given in chapter 3 (Eqs. (3.107) and (3.108)) was analyzed. 
However, correlation coefficients very close to one between parameter estimates, for example 
between the parameters of the Michaelis-Menten law K,,,, and V-, indicated that this model 
is overparameterized with respect to the data structure, i.e. the model contains superfluous 
parameters. As a consequence, a simplified version was used assuming first order reactions 
instead of Michaelis-Menten kinetics and no density dependent mortality rate. This reduction 
in the number of parameters removed the degeneracies encountered in the original estimation 
problem. A further equation is added for the bound residues. The model equations are: 

dc - = - k , c m  - kbc 
dt 

(4.16a) 
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(4.16b) dm - = yk ,cm - d m  
dt 

(4 .16~)  

The model is specified by the four parameters k,, y, d and kb. To illustrate the easy handling 
of the BMDP program, BMDP control instructions and the FORTRAN program, where the 
differential equations are supplied by the user, are listed in Tabs. 4.6 a,b. BMDP instructions 
are organized in paragraphs (beginning with /) and sentences. In the input and variable 
paragraphs the number of variables, the format and variable names are defined. In the 
regression paragraph the dependent variable is chosen. The data are organized in sequence, 
so only one dependent variable (KONZ) is needed. The variable KOMP determines the 
component (concentration of 2,4-D, microbial biomass, bound residues and C02). In the 
parameter paragraph initial values and constraints are specified. 

Tab. 4.6: Setup of a BMDP program to solve a regression problem in ordinary differential equations. 
a) The BMDP instructions are the same as in explicit problems. The user has to supply a FORTRAN 
subroutine (Tab. 4.6b) where the differential equations are defined. The program pertains to 
example 4.6. 

Tab. 4.6 a: BDMP instructions 

/PROB TITLE IS "HERBICIDE DEGRADATION EXAMPLE 4.6". 
/INPUT VARIABLES ARE 3. 
FORMAT IS FREE. 
/VARIABLE NAMES ARE ZEIT,KONZ,KOMP. 
/REGRES DEPENDENT IS KONZ. 
PARAMETERS ARE 4. 
ITER=200. 
PARAM INITIAL ARE 0.0 12,20.9,0.125,0.026. 
MIN=O,O,O,O. 
MAX= 1,30, I ,  1. 
NAMES ARE AK,GAMMA,D,AKB. 
PLOT VARIABLE IS ZEIT. 
RESIDUALS. 
PROBIT. 
END. 
0 10.000 1 
3 8.500 1 

0 0.004 2 
3 7.000 2 



134 4 Parameter Estimation in Kinetic Models 

Tab. 4.6 b: FORTRAN subroutine which contains the model equations 

oooO1 
m 2  
m 3  
OOOO4 
m 5  
oooO6 
m 7  
oooO8 
m 9  
00010 100 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 200 
00020 
0002 1 
00022 
00023 
00024 
00025 
00026 300 
00027 
00028 
00029 

SUBROUTINE DIFFEQ(F,P,X,N,KASE,NVAR,NPAR,IPASS,XLOSS) 

COMMONLIECONE( lO),DZ( lO),T,NEQN,IGO,IT,NEW 
DIMENSION X(NVAR),P(NPAR) 
AK=P( 1) 
GAMMA=P(2) 
D=P( 3) 
AKB=P(4) 
GOT0 (199,200,300),IGO 
Continue 
IT= 1 
MXCNT= 100000 
NEQN=3 
Z(1)=10 
Z( 2)=0.004 
Z(3)=0 

IMPLICIT REAL*8 (A-H,O-Z) 

RETURN 
CONTINUE 
V=AK*Z( 1) 
DZ( l)=-V*Z(2)-AKB*Z( 1) 
DZ(2)= V*Z( 2)* GAMMA-D*Z(2) 
DZ(3)= AKB*Z( 1) 

RETURN 
CONTINUE 
F=Z( 1) 
IF (X(3).EQ.2) F=Z(2) 
IF (X(3).EQ.3) F=Z(3) 

In the FORTRAN subroutine the differential equations are supplied in the IGO = 200 part of 
the subroutine. The arrays P and X contain the current parameter values and the data 
respectively. DZ is the array for the differential equations, Z for the state variables. In the 
IGO = 100 part of the program initial values are specified, which may also be defined as 
parameters to be estimated. In this example initial values are kept fixed. F denotes the value 
of the regression function which is needed for the computation of the sum of squares. F is 
defined in the IGO = 300 part of the program. The current value of X(3) determines the 
component to be chosen as regression function. Table 4.7 summarizes the results of a BMDP 
run obtained for the data of Li-Tse Ou (1985) from two experiments performed in two 
different soils. 

Figure 4.10 a shows the behavior in the loamy soil Webster. Under the conditions in this soil, 
microbial activity is markedly decreased compared to the sandy soil Cecil (cf. Fig. 4.10 b), 
although maximum population densities differ only slightly. Note that the amount of bound 
residues is higher under optimal microbial conditions. 
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Tab. 4.7: Results of the BMDP program presented in Tab. 4.6 obtained for degradation data of 2,4-D 
in two soils (Cecil and Webster; data from Li-Tse Ou, 1985), standard deviation in brackets. The 
underlying model is given by Eqs. (4.16a-d). Note that the efficiency factor gamma is estimated > 1. 
This simply reflects the different dimensions of biomass and 2,4-D concentration (cf. Figs. 4.10 a,b). 

Parameter 

ke 
Y 
d 

kb 
mO 
CO 

R2 

Cecil (loamy sand) I Webster (loam) 

0.021 (0.004) 
7.652 (1.660) 
0.182 (0.037) 
0.023 (0.005) 
0.004 (fixed) 
10.00 (fixed) 

0.95 

0.008 (0.001) 
7.913 (1.703) 
0.170 (0.020) 
0.003 (0.001) 
0.009 (fixed) 
10.00 (fixed) 

0.98 
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Fig. 4.10: Degradation of 2.4-D and microbial growth in two soils, a) Cecil loamy sand and 
b) Webster loam (data from Li-Tse Ou, 1985). 
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Initial Concentration [ppmw] 

2 
5 
10 

Example 4.7: Estimation of Enzyme Kinetic Parameters from a Series of Experiments 

k p d l  ~ ~ 5 0  [dl R~ 

0.062 (0.020) 11.18 > 0.99 
0.037 (0.007) 18.73 > 0.99 
0.020 (0.005) 34.66 > 0.99 

Nonlinearity arising from Michaelis-Menten kinetics is difficult to analyze from single 
experiments. Unless the initial concentrations are high above saturation, pseudo zero order 
kinetics cannot be distinguished from first order kinetics due to measurement errors. The 
assessment of Michaelis-Menten kinetics necessitates a series of experiments with varying 
initial concentrations. As an example degradation curves of Bentazone for three different 
initial concentrations are analyzed. Table 4.8 shows the results of the analysis of single 
experiments assuming first order kinetics. 

Tab. 4.8: Results of single fits of a simple first order degradation model to degradation data of 
Bentazone at different initial concentrations (data from BASF, unpublished). Note that the half-lives 
(DC50-values) vary considerably with initial concentrations. 

2 For each initial concentration the fit to a first order model is very close with R -values 
greater than 0.99. However, the rate constants and half-lives differ considerably indicating 
deviations from first order kinetics. It is evident, that predictions based on a first order model 
are not reliable if half-lives are in the range from 11 to 35 days. However, single analysis 
with a Michaelis-Menten model fails because of high correlations between the parameters. In 
order to estimate the parameters V- and KM of the Michaelis-Menten kinetic law, all 
experimental data have to be analyzed simultaneously. From the statistical point of view one 
has to solve a multi-experiment regression problem. According to Eq. (4.17) the sum of 
squares is constructed from all experiments. 

where ci(fj) is the solution of the initial value problem 

(4.17) 

(4.18) 

at time fj with initial concentration ci(r=O) = cio. This regression problem was solved by use 
of the statistical program package BMDP, subprogram PAR (Nonlinear Derivative Free 
Regression). The multi-experiment problem was programmed in a straightforward manner by 
formulating a system of repeated identical differential equations differing only with respect 
to their initial values. Table 4.9 shows the results of the regression analysis. The parameters 
VmM and K M  become estimable. The correlation between parameter estimates is still high, 
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but the regression problem remains well posed from the numerical point of view and 
convergence is achieved. As shown in Fig. 4.1 1 the data of the three experimental runs are 
fairly well described by the nonlinear model. 

II BENTAZONE 

Tab. 4.9: Simultaneous fit of three degradation curves of Bentazone obtained for three different initial 
concentrations to a Michaelis-Menten degradation model (example 4.7), standard deviations in brackets. 

II Parameter I Estimate (std. dev.) 11 
0.197 (0.04) 
4.463 (2.02) 

R2 0.96 
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Fig. 4.11: Degradation of Bentazone at different initial concentrations fitted to the Michaelis-Menten 
kinetic law (data from BASF, unpublished). 

4.3.2 Boundary Value Method 

Although the initial value approach is intuitively appealing, it suffers from two major 
drawbacks which become apparent in numerical practice. 

a) It frequently occurs that the differential equations become unsolvable for parameter values 
attained in the course of an iteration procedure, although the solution of the regression 
problem may exist. According to the authors’ experience this is likely to happen in models 
containing growth terms. Often, the region of attraction of this procedure is quite small and 
appropriate initial values have to be searched by time consuming trial and error guesses. 
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b) The prior information available on the trajectories in form of the data or in form of 
knowledge is not used. 

The boundary value approach, which was developed by Bock (1993 and 1987), uses the full 
information. In a first step, a suitable mesh z1 c z2 c ... < T, is chosen, which is a subset of 
the data points. The basic idea is, to avoid integration over the whole interval [zl, T,]. 
Therefore, m - 1 independent initial value problems are solved, one for each interval 
[Ti, ~ i + l l *  

For component y i  the successive initial value problems are 

(4.19) 

For each variable of the differential equation system m initial values (s l,..., 3,) are 
introduced as additional parameters (the index i is dropped for ease of presentation). Natural 
initial values for the s. are the data. At this point, the prior information in form of the data 
enters the procedure. f t  is even possible, to "invent" plausible data points, if the density of 
the data is not sufficient or if data in one component of the system are totally lacking. Of 
course, these invented data are omitted in the construction of the performance criterion. By 
this trick, the trajectories remain close to the data even if only poor estimates of the initial 
values are available. By choosing a sufficiently small mesh size, it is always possible to 
avoid singularities. However, the trajectory thus obtained is discontinuous at the nodes. 
Therefore, constraints have to be added to ensure continuity of the solution. 

(4.20) 

The optimization problem (Eq. (4.2)) is thus augmented by the number of the additional 
parameters sj and by the continuity constraints. In the algorithm PARFIT developed by Bock 
(1987) this problem is solved by a generalized Gauss-Newton method. 

Example 4.8: Degradation of 2,4-D by Microorganisms (continued) 

To illustrate the method, example 4.6 is reanalyzed by this procedure. Figures 4.12 a-c show 
a sequence of trajectories generated in the course of the iteration. The rationale behind the 
boundary value method becomes quite clear by this sequence: the first figure shows the 
solution obtained for the starting values: the trajectories of each interval start from a data 
point. In the course of the iteration, the discontinuities at the nodes are gradually smoothed 
as the initial values s. move from their initial values, which are the data. By this mode of 
convergence the residual sum of squares or similar measures of the goodness of the fit are 
zero at the beginning of the iteration and increase during the iteration procedure. This is just 
contrary to the behavior of the classical iteration schemes. Parameter estimates obtained by 
both methods are compared in Tab. 4.10. In both cases the convergence criterion was met. 
Whereas parameter estimates are quite similar, the standard deviations of the estimates differ. 
It is important to note that the initial value method did only converge, if the initial values co 
and mo were kept fix. The boundary value method converged even for this case. 
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Fig. 4.12: Sequence of trajectories generated during the iteration of the boundary value method: 
a) starting trajectories, b) trajectories after the third iteration and c) final solution. 
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Tab. 4.10: Comparison between the initial value method and the boundary value method for the 
identification problem given in example 4.6 (Cecil loamy sand; data from Li-Tse Ou, 1985), standard 
deviations in brackets. A better fit was obtained by estimating also the initial values co and mo. which 
was not possible in the initial value method. 

Initial Value Method (BMDP) 

0.021 (0.004) 
7.652 (1.660) 
0.182 (0.037) 
0.023 (0.005) 
0.004 (fixed) 

10.000 (fixed) 

Boundary Value Method (PARFIT) 

0.009 (0.001) 
7.808 (1.200) 
0.186 (0.027) 
0.028 (0.005) 
1.328 (0.390) 
9.854 (1.389) 

0.024 (0.002) 
6.694 (1.250) 
0.159 (0.03 1) 
0.029 (0.005) 
0.004 (fixed) 

1O.OOO (fixed) 

0.99 
13.52 
0.68 

0.95 
57.34 
2.87 

Concluding Remarks 

The examples have shown that a thorough statistical analysis is feasible for nonlinear kinetic 
models even if the differential equations are not amenable to analytical solutions. Parameter 
estimation in nonlinear ordinary differential equations can be performed by use of a widely 
spread statistical program package. It is therefore obsolete describing reactions of fractal 
order simply for facilitating parameter estimation. There is no doubt, that such functions can 
be fitted to kinetic data. The use of such models for predictive purposes, however, is rather 
questionable. 

Nowadays, there are many tools available for parameter identification in systems of ordinary 
differential equations. Only recently, the software system EASY-FIT (Schittkowski, 1996) 
was released. EASY-FIT is a multipurpose system to identify parameters in explicit 
functions, dynamic systems of equations, Laplace transformations, systems of ordinary 
differential equations, differential algebraic equations or systems of partial differential 
equations. The code is based on advanced mathematical techniques. 

Another valuable tool is the software system MODEL MAKER (SB Technology, 1994). This 
system not only allows to develop simulation models quickly under Windows with much 
graphical support but offers also the opportunity of parameter identification and of 
performing sensitivity analyses of parameters in a systematic way. 
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4.4 Sparse Data Analysis 

Additional notations: 

cii(t) : concentration measurement in thejth soil at time ti [ML 3 ] 
f : known, even nonlinear, regression function 
pi : regression parameters 
mo : initial microbial activity [ I ]  
K,, : maximum microbial activity [ l ]  
e : vector of population parameters 
02E : residual error variance [M/L3] 
E. : random vector of error [m3I I j  

: individual random perturbation from 8 with mean zero and variance 2 q i  
Xi : vector of covariables (e.g. soil properties as pH-value, COrg-content of soil, 

r(eK,,, Om,, 0,) 

temperature) 

(J 2 K ~ ~ ,  dmo, 02, : variances of K-, mo and r, resp. [l], resp. [lm] 
: growth rate [ lm] 

In recent years techniques capable of analyzing sparse data have been developed, particularly 
for population based kinetic evaluation of phase III clinical studies. Such studies normally 
include a great number of patients, with a varying number of drug concentration 
measurements at different time points. With population based pharmacokinetics, factors 
which contribute to interindividual variability in pharmacokinetics can be identified, even in 
sparse data situations, e.g. in situations where only one or two blood concentration 
measurements per subject are available. These methods are meanwhile established in 
pharmaceutical research and realized in several statistical program packages e.g. NONMEM 
(Beal and Sheiner, 1982) or P-PHARM, version 1.3 (Simed, 1994). 

The theory and implementation of these methods has been described elsewhere (Dempster et 
al., 1977; Beal and Sheiner, 1982; Beal, 1984; Sheiner, 1984; Colburn and Olson, 1988; 
Sanathanan, 1991; Aarons, 1993; Gomeni et al., 1994; Bressolle et al., 1996) and will not be 
considered here. We will only focus on the great benefits these new methods have for 
evaluation of kinetics and dynamics of pesticides and pesticide monitoring. 

Distribution of kinetic model parameters and their dependencies on environmental conditions, 
e.g. soil characteristics are traditionally analyzed according to the so-called 'Two Stage 
Procedure'. That means that firstly, an appropriate kinetic model is fitted to the observed 
time courses of each soil separately, followed by a second stage in which the distribution of 
the fitted parameters is analyzed. This procedure requires intensive experimentation. Often 
time courses of pesticides are observed only for a limited number of soils, mostly standard 
soils. 

With sparse data analysis techniques, it is possible to characterize the disposition of a 
pesticide in a soil e.g. with a kinetic model which may contain many parameters, in 
situations where only very few measurements (e.g. 1 or 2 samples per soil) are available for 
analysis and where parameter estimation with standard procedures fails. 
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Sparse data analysis techniques have great impact for pesticide monitoring and pesticide 
adjustment. With this new method pesticide kinetics and dependencies of kinetic parameters 
on environmental conditions can be evaluated with less experimental effort. 

Population based analysis is particular appropriate for parameter estimation problems 
involving a lot of different soils, with a varying number of sampling points. For ease of 
presentation however, this method is applied to the 2,4-D concentration data in Melfort, 
Oxbow and Meota soil, shown in Fig. 1.4. 

th .th The i concentration measurement in the] soil, cij, at time f j  is given by 

cj j ( t )  = f (Pj , t i j )  + E i j  (4.21) 

wherefis a known, even nonlinear, function with regression parameters p. random vector of 
error E~ Assuming that the degradation of the substance is proportionai to the activity of 
microorganisms 

- dc = - m(t)c 
dr 

(4.22) 

and describing the activity with the nonlinear differential equation of logistic growth 
(cf. chapter 2) 

dt 

yield the analytic solutions 

t 

- Jm(.r) dz 
0 c(t) = coe 

. .  

mo - (mo - K,,)e - r t  

(4.23) 

(4.24) 

(4.25) 

(4.26) Kmaxj 

- r j t  
moj  - (moj - Kmaxj)e 

( - K m a x j t )  
f = c0,j e 

The parameters Pj account for the interindividual variability of soils and are assumed to arise 
from some multivariate probability distribution with mean 8. 
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(4.23) 

The Eij-values are independent, identically distributed statistical errors with mean zero and 
and variance CT , and represent all uncertainty, e.g. caused by intra-individual time variation 
in the model parameters, model misspecification, analytical error in concentration 
measurement, or error in reported sampling time. 

2 

In the programs P-Pharm or NONMEM, cited above, the distribution of the random effects 
and the residual error variance can be modeled in different ways. The distribution of 
parameters within the population for example, can e.g. be assumed as lognormal and residual 
error variance as heteroscedastic (increase of error variance in proportion to the measured 
concentration). This details however will not be considered here. In our introductory example, 
the distribution of the random effects is assumed as normal and the residual error variance 
as homoscedastic. 

Estimation of individual and population parameters is performed using the EM-type algorithm 
(Dempster, 1977), implemented in P-Pharm, version 1.3. This is an iterative two-step process 
suitable for computing the maximum likelihood estimates in complicated problems of missing 
and incomplete data. 

In the first step, the expectation step (E-step), the individual parameters for each individual 
are estimated (Bayesian estimate) given the current population parameters and the individual 
data. 

In the second step, the maximization step (M-step), the population parameters are estimated 
by maximum likelihood given the current estimates (E-step) of the individual parameters. The 
steps E and M are iterated up to the convergence of the algorithm (Bressolle et al., 1996). 

Results 

In a first approach the kinetic model given above, is fitted simultaneously to all concentration 
measurements of the three soils. Sparse data analysis is based on the premise that population 
parameters can be modeled as random variables, with estimates of the kinetic parameters for 
any individual soil as a realization of the random variable distribution. 

In our example, initial parameter values have to be given for the 7 population parameters: 
mean values for model parameter Kma, mo, and r(BKma, Om,, BJ, the variances (CT KmM, 
C T ~ , ~ ,  CT ,.) and the residual error variance (0 

The results of parameter estimation are shown in Fig. 4.13 and Tabs. 4.12 a,b. As surrogate 
parameter for exposition of soils with 2,4-D, the time period needed for halving the initial 
concentration (DC50-value) is calculated. 

2 
2 2 ), which are shown in Tab. 4.1 1. 
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Parameter 

Knzax [ lh l  
mg [ lh l  
r [ lh l  

2 
6 ,  

Tab. 4.11: Initial population parameter estimates. 

M=(0) Variance(& Coefficient of Variation [ % 1 

1 .o 0.33 57.7 
1 .o 0.33 57.7 
1 .o 0.33 57.7 

1 .o 

Kmar [ lh l  

r [ lh l  
2 
6 ,  

mg [ lh l  
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0.013 0.0004 93.7 
0.147 0.0017 28.4 
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Fig. 4.13 : Resulting fit with the complete data set. 

0.149 0.0293 0.148 12.2 
0.220 0.0047 0.189 19.5 
0.181 0.0043 0.104 30.0 

Tab. 4.12: a) Final population with complete data set. 

Tab. 4.12: b) Individual parameter estimates with complete data set. 
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These values were compared to the ones estimated using only 4 observations per soil. The 
start values of model parameters were the same as shown in Tab. 4.11. Due to practical 
considerations, the concentration measurement 0, 12, 24 and 40 hours after application were 
used for parameter estimation (Fig. 4.14, Tabs. 4.13 a,b). 

Parameter Mean(€)) 

K,, [ l h l  0.176 
mo WI 0.007 
r Tlhl 0.199 

50 

40 

30 

20 

10 

0 

Variance(02) Coefficient of Variation [%I 

0.00322 32.4 
0.00003 82.7 
0.00537 36.8 

REDUCEDDATASET 

0 10 20 40 

TIME [days] 

Fig. 4.14: Resulting fit with the reduced data set. 

Tab. 4.13: a) Final population with reduced data set. 

I 2 6 ,  0.554 

Tab. 4.13: b) individual parameter estimates with reduced data set. 

Soil Kmax W I  mo [lhl r [lhl DCso [hl 

Melfort 0.129 0.0148 0.269 12.7 
Oxbow 0.2 18 0.0035 0.214 19.3 
Meota 0.182 0.0033 0.1 14 30.6 

Differences of the fitting results for both the complete and reduced data sets are very small. 
The use of prior knowledge provide a means for reducing experimental effort for quantifying 
exposition of soils with a given pesticide. 

Given the population parameters, the time course of a pesticide in a given soil can even be 
modeled with one additional sampling, as shown in Figs. 4.15 and 4.16. 
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REL. FREQUENCY 

1 .m 

Fig. 4.15: Estimated distribution of model parameters km and r within the underlying population, 
follows a bivariate normal distribution (distribution parameters shown in Tab. 4.12). 
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Fig. 4.16: Simulation of 2,4-D time course in a fictive soil with population parameter distribution, 
shown in Fig. 4.15 and one observation (DCso = 17.6 h). 

In the example given above, we give a short overview about the possibilities of sparse data 
analysis techniques. Pesticide concentrations obtained at random (but known) intervals after 
application can be used to model kinetic parameters, even of models with a greater number 
of parameters. This method allows the inclusion of pesticide measurements made at different 
times both within and across soils and also permits varying numbers of sampling points per 
soil. With those approaches covariables influencing the fate of pesticides in soils can be 
determined on basis of a great number of soils with a limited number of samplings, which 
have a great impact on a better dose adjustment and pesticide monitoring. 
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When prior knowledge of the mean and the dispersion of the kinetic parameters of the 
population (i.e. population of soils to which the selected soil belongs) is available, and 
treatment goals exists (e.g. assuring a minimum effective pesticide concentration over a 
distinct period of time), treatment strategies can be developed on basis of covariates and 
population parameters. With two or three additional samplings over the treatment period, the 
validity of the underlying model assumptions can be proofed. Following this procedure, the 
model basis for further simulations increases step by step, and additional sampling becomes 
superfluous step by step. One additional advantage is, that distribution of model parameters 
can be observed in the target population, so that factors, that control treatment variability 
may be discovered with a greater chance than in experiments with standard soils. 



5 Transport and Reactions in the Soil 

5.1 Water Movement 

Notations 

i 
S 

vm 

vh 

0, 
‘r 
0 : = (0-0,)/(0 -0 normalized water content [ l ]  
$ 
P : bulk density [ML’] 

Kr 
K,  
K(8 )  

: volumetric water flux density [LIT] 
: = S(y, x ,  y ,  z, t)  = source and sink term L /L IT] 
: soil matric potential [hPa], resp. [(MLIT )/L2] 1’  ’ 

I y f m (  : soil suction [hPa], resp. [(MLR 2 2  )/L ] 

2 
: hydraulic potential [hPa], res . [(ML/T 2 2  )/L ] 

: water content [L’/L’] 
: saturated water content [L3/L3] 
: residual water content [L3/L3] 

: gravitational potential [M/LT 3 ] 

: porosity [L 3 /L 4 =  3 

: water capacity [cm3/cm3/hPa] resp. [L 1 /L3/((MW 2 2  )/L )I 

: normalized hydraulic conductivity [ 13 
: saturated hydraulic conductivity [LR] 
: = Kr K,  = hydraulic conductivity [LIT 

C(W) 

5.1.1 The Classical Approach: Richards’ Equation 

A transport equation for water is derived by applying the general principle outlined in 
section 2.2. The basic equation is the mass conservation equation 

which states that the rate of change of the water content per unit volume equals the net gain 
of fluid per unit volume plus sinks or sources within this unit. This equation has to be 
completed by a functional relationship between the flow vector q‘ and the water content 8. 
Darcy’s law relates the water flow to the gradient of a potential, the hydraulic potential vh, 
which in turn depends on the water content 0. 

The hydraulic potential is the sum of the gravitational potential, the matric potential and the 
pressure potential. 

The gravitational potential is simply expressed by the vertical distance from a reference 
elevation. The matric potential is due to the adsorptive forces of the soil matrix. It depends 
on the water content of the soil. The pressure potential is related to the weight of the water 

En vironznen Fate Modefling of Pesticides 
From the La hora tory to the Field Scale 
0. Richter,B. Diekkriiger & P. Nortersheuser 
copyright 0 VCH Verlagsgesellschaft mbH, 1996 
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column above the point under consideration. The latter potential is only important in 
saturated soils. For details concerning measurements confer any textbook on soil physics, e.g. 
Hanks and Ashcroft (1980). The water flow is then related to the water potential by 

For a homogeneous, isotropic medium K is a scalar, the hydraulic conductivity. In an 
anisotropic medium K is a tensor, the conductivity tensor. In this case, Eq. (5.3) becomes 

Q =  - (5.4) 

Note that K is a function of the water content 8. This relation is referred to as the 
conductivity curve. Combination of the equation of conservation of mass with Darcy's law 
yields 

If the soil is homogeneous and isotropic this equation takes the form 

Equation (5.6) still contains both state variables, 0 and v h .  The pressure potential v is 
negligible in the unsaturated case, and the gravitational potential is given by yz = z. rfote 
that the sign of z is negative below the surface, if the surface is chosen as reference level. If 
8 is given as a function of \vm, Eq. (5.6) can be written either in 0 or in y. The functional 
relationship between 8 and yf, is referred to as water retention curve. (For ease of 
presentation the subscript m of \v will be dropped in the following. Unless otherwise stated, 
v has the meaning of the matric potential). Equation (5.6) is written in uy by elimination of 
0 by 

(5.7) 

The function C(v) is referred to as capacity function. The resulting partial differential 
equation for v 
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is valid for both saturated and unsaturated conditions. In a similar way Eq. (5.6) can be 
written in the variable 0. Replacing the partial derivatives of y with respect to the spatial 
coordinates by 

and introducing 

leads to 

(5.10) 

(5.11) 

Equation (5.1 1) is only valid for unsaturated conditions, because C(y) becomes zero if the 
soil is saturated. Equations (5.8) and (5.11) have to be specified by the retention and 
conductivity curves. It is quite usual, to introduce normalized hydraulic conductivities and 
water contents. The conductivity function is written in the form K = K,  K,, where K, denotes 
the saturated conductivity, which is a parameter, and K ,  describes the functional relationship. 
Kr is referred to as normalized hydraulic conductivity. The normalized water content is 
defined by 

0 - 0, 

0s  - e r  
@ = -  

Several parameterizations of empirical relationships are in use. The parameterizations of 
Brooks and Corey (1964) and Burdine (1953) are given by 

(5.12) 

K, = 0 3 +2/h (5.13) 

in which Wb denotes the bubbling pressure and h the pore size distribution index. The 
retention and conductivity curves according to van Genuchten (1980) and Mualem (1976), 
which are in wide use, are more flexible than the above functions, i.e. they can be applied to 
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a larger number of soil types. 

(5.14) 

I 1 for y~ > 0 

where m = 1- l ln  and a and n are fitting parameters. The conductivity curves are 
parameterized as a function of the water content 

or as a function of the matric potential. 

(5.15) 

(5.16) 

Figures 5.1 and 5.2 show some retention and conductivity curves in the van Genuchten 
parameterization. 

Boundary conditions 

At the lower boundary, either continuously measured soil suction data, the measured depth 
of the groundwater table (both Dirichlet boundary conditions) or the water flux in a certain 
depth (Neumann boundary condition) has to be provided. When lysimeters are simulated a 
mixture of both boundary conditions has to be chosen. At the upper boundary either the net 
rainfall rate (precipitation - interception) or the evaporation rate has to be provided (Neumann 
boundary condition). For calculating the infiltration rate at the soil surface, the following 
cases have to be distinguished: 

r - f  for y~,, < dzmitt, 1 12 

4infil = [ K ( @ ) [ y J n  ;--1 +'1 for y~, = dzmitt, 112 
(5.17) 

According to this equation the infiltration rate equals the rainfall r minus the interception f 
until saturation occurs at the soil surface. Assuming a constant gradient of unity the soil 
suction at the middle of the upper computational layer n equals half the depth of this layer 
at this time of ponding (cf. Fig. 5.3). In this case the boundary condition changes from a 
prescribed water flux (Neumann boundary condition) to a constant soil suction in the upper 
layer y~, = d~mi#,,+~/2 (Dirichlet boundary condition). In the latter case the infiltration rate 
and the runoff can be calculated from the solution of the Richards' equation. The Dirichlet 
boundary condition will not change until the net rainfall r - f drops below the infiltration rate. 
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Fig. 5.1: Retention curves in the van Genuchten parameterization for different soils in different depths 
(clayey soil, 15 cm; loamy soil, 120 cm; sandy soil, 25 cm) fitted to observed water contents. 

Fig. 5.3: Discretization of soil column for calculating the upper boundary condition. 
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5.1.2 Two-Region Models 

In the model given before it is assumed that the porous media can be described by a 
macroscopic approach assuming uni-modal pore-size distribution (cf. Eqs. (5.12) to (5.16)). 
Often microscopic structures like fractures, fissures, aggregate pores and macropores 
influence the water fluxes significantly resulting in transport behavior not explainable by the 
classical one-domain approach (preferential flow). These micro-structures are reflected in the 
retention and conductivity curve close to saturation. Even if macropores are neglected the 
measured retention and conductivity curve often show two or more peaks of the pore-size 
distribution. These peaks are ignored when the van Genuchten or Brooks and Corey 
relationship is applied. 

Models for water transport in structured porous media are often described by a two-domain 
approach. While most of the models concentrate on matric and macropore flow (German and 
Beven, 1985; Jarvis, 1991) only few approaches assume two (or more) capillary flow 
domains (Othmer et al., 1991; Diekkriiger, 1992; Gerke and van Genuchten, 1993). 

Water Transport in Soils with two Capillary Domains 

If the measured retention and conductivity data show significant deviation from a uni-modal 
pore-size distribution it is necessary to modify the standard approach for retention and 
conductivity curves as given in Eqs. (5.12) to (5.16). Assuming that the measurements on the 
macroscopic scale are representative for the capillary pore-system then the resulting 
conductivity and retention curves can be described as a superposition of two (or more) uni- 
modal curves (Othmer et al., 1991): 

i 
~ T ( w )  = C e i ( w )  

i = l  

i 

(5.18) 

(5.19) 

(5.20) 

In this approach for each uni-modal pore-size distribution one conductivity curve has been 
derived using the approach of Mualem (1976). In opposite to this approach Durner (1992) 
applied Mualem’s model to Eq. (5.18) using numerical integration which is time consuming 
compared to the analytical method. Durner’s approach results in one instead of two (or more) 
conductivity curves. In order to apply his approach in simulation models it is necessary to 
store the results of this integration in a conductivity-soil suction table. 



5.1.2 Two-Region Models 155 

In order to decide if one or more distinct flow domains exist in the soil further information 
concerning aggregate distribution, fissures and fractures have to be provided. If it can be 
assumed that only one flow domain exists the derived multi-modal retention and conductivity 
curves can be applied directly in Eq. (5.8) (Diekkriiger, 1992; Durner, 1992). In this case the 
model is not able to calculate preferential flow because the basic assumptions on the flow 
behavior as included in the Richards’ equation are still valid. 

If the soil structure implies that two (or more) capillary flow domains exist then it is 
straightforward to compute the Darcy-type water flow by Richards’ equation for each 
domain i separately and linking the domains using a first-order water transfer term S, 
(cf. Fig. 5.4): 

r 1 

(5.21) 

Fig. 5.4: Water flux in a soil with two flow-domains (Diekkriiger, 1992). There have to be considered: 
1) the infiltration into soil aggregates, 2) the lateral infiltration into the aggregates, 3) vertical water 
fluxes within the aggregates and 4) infiltration and percolation between the aggregates. 

It has to be noted that each flow domain is characterized by one soil suction which allows 
instationary simulation of water flow and non-equilibrium soil suction in all domains. The 
transfer term between the domains is usually derived from Darcy’s law as lateral flow 
proportional to the gradient of soil suction between different domains (here given for a two- 
domain problem): 

w1 - w2 

Ax 
S, = K, (5.22) 

The distance between both pore-systems Ax is given as the sum of the characteristic half 
widths of both pore-systems (Othmer et al., 1991; Diekkriiger, 1992) or as the half width of 
the matrix pore-system (Gerke and van Genuchten, 1993). While Othmer et al. (1991) 
proposed that the conductivity used for calculating the lateral exchange (K,) is best 
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represented by the minimum of the unsaturated conductivities of both pore-systems, 
Diekkriiger (1992) calculated the water fluxes using the geometric mean of both unsaturated 
conductivities. In opposite to these approaches Gerke and van Genuchten (1993) suggest to 
calculate the water fluxes using the relative hydraulic conductivity of the soil matrix and a 
significantly lower saturated hydraulic conductivity (in their sensitivity analysis the authors 
chose a value of 1 % of the conductivity of the soil matrix). 

Water flux into the second pore-system occurs when the infiltration capacity of the soil 
matrix is exceeded. In this case the soil at the surface is saturated and runoff at the 
microscopic scale occurs. Calculating the infiltration rate qinfil into the soil matrix 
(subscript 1) according to Eq. (5.17) the upper boundary condition (layer n) for two pore- 
systems can be described as 

I I  = r - f  yl ,n < dmittnt2 

12 = o  
(5.23) 

yl,n 2 dzmittn+l t2 

In solute transport models the two-domain approach is well accepted although often for 
simplicity only water transport in one (mobile) domain is considered. The presented two- 
domain approach for water transport of Diekkriiger (1992) and Othmer et al. (1991) was used 
by Gerke and van Genuchten (1993) as the basis of their model. Except small changes of the 
water transfer term the main improvement was to complete the approach by a solute transport 
model for two mobile domains. For a comprehensive discussion of various model approaches 
concerning water and solute transport in structured soils we refer to the paper of Gerke and 
van Genuchten (1993) and for model application to Othmer et al. (1991) and Diekkriiger 
( 1992). 

Water Transport in Soils with Macropores 

If macropores exist the water flow can not be described by the capillary two-domain concept. 

As given before the one-dimensional water flow in the soil matrix 

is coupled to the water flow in the macropore system 

(5.24) 

(5.25) 

by the exchange term S ,  (Eq. (5.22)). 
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-100 

-1 20 

Assuming film flow in the macropores Ax of Eq. (5.22) is given as the half width of the 
matrix pore system. 

-; , . TENSIOMETER DATA - SIMULATION (75 cm) 
- SIMULATION (25 cm) 

I I I 

According to German and Beven (1985) the gravity flow of water in the macropores can be 
described by the following relationship between water flux qma and the macropore moisture 
content €Ima 

(5.26) 

in which a is an empirical constant and €Is,,, the macropore volume. The upper boundary 
condition of this model is the same as given In Eq. (5.23). Only few models consider that 
O,,, is not a constant but may vary with soil structural changes due to swelling and 
shrinking (Jarvis, 1991; Bronswijk, 1992). 
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Fig. 5.5: Simulations and measurements of a) soil suctions (in depths of 25 and 75 cm) and 
b) percolating water for three irrigations. 
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Figures 5.5 a,b and 5.6 a,b show the results of a lysimeter study carried out by Stange et al. 
(1996). They extracted six undisturbed soil columns with a diameter of 30 cm and a height 
of 85 cm from a pit. The soil was loam with a silt content of about 80 9%. In order to 
distinguish between soil matrix and macropore effects one of the soil columns was destroyed 
and repacked. Before the experiment the soil columns were saturated up to field capacity. In 
addition to the soil columns small soil samples were taken for analyzing the retention and the 
hydraulic conductivity. 

I 
40- 

6 0 -  

All soil columns were irrigated three times with an intensity of 25 mm/h for one hour. 
Between subsequent irrigation periods the soil was covered to avoid evaporation. Each 
experiment lasted about ten days. The soil suction was measured in two different depths 
(25 and 75 cm) and the percolating water was measured every 36 minutes (cf. Fig. 5.5 a,b). 
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The tracer bromide was applied with the irrigation water. One hour before the first irrigation 
took place the two pesticides were applied. The pesticide Methabenzthiazuron (MBT) is 
strongly sorbing with a Kd-value of about 9.4 mYg, Chlorotoluron (CT) is weakly sorbing 
with a Kd-value of about 2.2 ml/g. Figure 5.6 a shows the simulated and the measured 
bromide concentration in the disturbed soil column. 
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Fig. 5.6: Simulated and measured Bromide, Chlorotoluron (CT) and Methabenzthiazuron (MBT) 
concentrations 10 days after application a) in the disturbed and b) in an undisturbed soil column. Note 
that the pesticides are found in greater depth in the undisturbed column due to the bypass flow. 

It demonstrates that the transport behavior can be described using the classical convection- 
dispersion equation. The profiles of bromide and pesticides are totally different in the 
undisturbed soil columns as it is shown in Fig. 5.6 b. Due to the bypass flow in the 
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macropores bromide as well as pesticides can be found in greater depths and in the 
percolating water (cf. Fig. 5.5 b). This was simulated by the model SIMULAT (Diekkriiger 
et al., 1996) in which the approaches discussed before are integrated. It has to be noticed that 
although many parameters were measured the parameters of the macropore model had to be 
calibrated. Nevertheless, a sensitivity analysis showed that the simulation results are mainly 
influenced by the choice of the boundary condition. The simulated profiles of solute 
concentration are only weakly influenced by the parameter of the macropore model. 

5.2 Applications of the Convection Dispersion Equation 

Notations 

ct 
C 

g 
S 
8 
I 
i 
Q 

'In 

aL 
aT 
KH 
VE 
' E  
'air ', 

' d  

' h  

K 
d 
0 
P 
E 

5.2.1 

: total concentration [ m 3 1  
: liquid phase concentration [ W 3 ]  
: gaseous phase concentration [M/L3] 
: solid phase concentration [ W 3 ]  

3 3  : volumetric water content [L /L J 
: flux density [M/L2/T] 
: volumetric water flux density [LIT] 
: source and sink term [W3/T] 
: coefficient of molecular diffusion [L2iT 

: coefficient of hydrodynamic dispersion [L /TI 
: longitudinal dispersivity [L] 
: transversal dispersivity [L] 
: Henry constant [I] 
: effective solute convection velocity [L/T] 
: effective diffusion coefficient in soil [L2/T] 
: diffusion coefficient in air [L2/T] 
: diffusion coefficient in the gaseous phase of the soil [L2/T] 
: transport coefficient across the soil-air boundary layer [L2/T] 
: thickness of the soil-air boundary layer [L] 
: porosity [ L ~ / L ~ I  
: bulk density [W3] 
: volumetric air content [ L ~ / L ~ I  

il : coefficient of mechanical dispersion [L 2' /T 

Derivation of the Convection Dispersion Equation 

The starting point for the derivation of a transport equation for a chemical is the equation of 
mass conservation for the total concentration 

+ a 
at 
--(ct) = - V - J ,  + Q (5.27) 

with 
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C t  = ec + p s  + Eg (5.28) 

The mass balance equation has to be completed by an expression for the total flux .$ The 
total flux is composed of the following components: 

i) Molecular diffusion in the liquid phase 

The classical approach of diffusion theory is to relate a flux to a gradient, here the gradient 
of the concentration. 

(5.29) 

The negative sign determines the direction of the flux (from higher to lower concentration). 
The above relation only holds in an isotropic homogeneous medium. In general, Dd is a 
tensor with space dependent components. In this section, only the case that Dd is a scalar is 
treated. In the liquid phase of a porous medium, the coefficient of molecular diffusion 
depends in a nonlinear way upon the water content 8. This is due to the fact that the 
microscale pathways in a porous medium are twisted. This effect is taken into account by an 
empirical tortuosity factor ~ ( 0 ) :  

Dd(e)  = w w 0  (5.30) 

where Do denotes the coefficient of molecular diffusion in water. Kemper and van Schaik 
( 1968) proposed the empirical relationship 

b9 (5.31) z(8) = a e  

where a and b are positive constants. Millington and Quirk (196 1) relate the tortuosity factor 
to the porosity @ in the following way: 

8 1013 
qe)  = - 

@2 

ii) Molecular diffusion in the gaseous phase 
* 

J ,  = - D,Vg 

Here, also the approach of Millington and Quirk (1961) is frequently used. 

10/3 
D = -D,i,. 

Q2 
, 

iii) Convection 

(5.32) 

(5.33) 

(5.34) 

If there is water movement, the substance is in addition transported by convection giving rise 
to the flux 
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+ 

J ,  = qc (5.35) 

iv) Dispersion 

The movement of the solute along with the water is associated with a further spread arising 
from the random motion of the water through the porous medium. 1.e. streamlines are not 
straight lines but deviate in a random manner from the mean direction due to the random 
geometries of the pore space. This effect is called mechanical dispersion and is treated in 
analogy to molecular diffusion: 

+ 

J ,  = - BD,VC (5.36) 

In general, D, is a tensor. In the one dimensional case the following approach (cf. Ogata, 
1970) is frequently used 

D,(q) = cxLT (5.37) 

assuming that D, increases linearly with pore water velocity. Since the diffusive and 
dispersive fluxes are both proportional to the gradient of c, they are combined to a single 
flux 

with 

(5.38) 

(5.39) 

The coefficient (tensor resp.) Dh(8,q) is referred to as the coefficient (tensor resp.) of 
hydrodynamic dispersion. Combining the mass conservation equation (Eq. (5.27)) with the 
fluxes yields the convection dispersion equation (CDE) 

(5.40) 

The term Q summarizes all sources and sinks of the substance, i.e. all processes creating and 
consuming the substance. 

5.2.2 Analytical Solutions in the One-Dimensional Case 

Under steady state water flow conditions the one-dimensional version of the partial 
differential equation (Eq. (5.40)) is amenable to analytical solutions for a lot of boundary and 
initial conditions. A convenient method for solution is the Laplace transform technique, 
which was employed in chapter 3 for the solution of ordinary differential equations. In the 
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Laplace domain, ordinary differential equations are transformed to algebraic equations. In the 
case of partial differential equations the Laplace transform leads to ordinary differential 
equations in the Laplace domain. These are solved by use of the Laplace transformed initial 
and boundary conditions and transformed back into the time domain. 

Let us consider now the following simple diffusion boundary value problem, which is a 
special case of the convection dispersion equation for q = 0 and Q = 0. 

with boundary condition 

c(x=O,t)  = co for t > 0 

and initial condition 

c(x, t=O) = 0 for x > 0 

Laplace transform (cf. chapter 3) of the differential equation yields 

By interchanging the integral and differentiation operation one obtains 

2 d -  
m 

"c(x, t )dt  = -c 
a!r2 

(5.41) 

(5.42) 

(5.43) 

Taking into account that c(x,f=O) = 0 the resulting ordinary differential equation in the 
Laplace domain is derived as 

Laplace transform of the boundary condition yields 

m 

CO L[co]  = Jco. -"dt = - 
S 0 

(5.44) 

(5.45) 

hx The above ordinary differential equation is linear and second order. By trying the ansatz e 
the general solution is found to be 
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C(X) = Ae -" + Be with h = 
(5.46) 

Since the second term of the general solution increases exponentially with x ,  this term does 
not represent a physically meaningful solution and has to be omitted (setting B = 0) . The 
constant A is determined by the Laplace transform of the boundary condition: 

- coe 
c ( x )  = - 

S 

(5.47) 

From the table of inverse Laplace transforms (cf. appendix A.l) one finally obtains the 
solution in the time domain as 

r 1 
- 1  - c(x,t) = L [c] = (5.48) 

with erfc(z) = 1 - e$(.z), where e n z )  denotes the errorfunction and erfc(z) the errorfunction 
complement. 

This function is defined by the integral (cf. section 2.2) 

Figure 5.7 shows a plot of Eq. (5.48) as a function of x at several time points. 
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0 ,  
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X (0.g. SOIL DEPTH) 

Fig. 5.7: Plot of Fq. (5.48) as a function of x at the time points 1 ,  5, 10 and 50 days. 

(5.49) 
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Let us now consider the same boundary value problem for q > 0: 

(5.50) 

with 

c(x=O.t)  = co for t > 0 

and initial condition 

c(x,r=O) = 0 for x > 0 

Following the procedure of the previous example the Laplace transform of Eq. (5.50) is 
obtained as 

- 
d2C v dF sc - --- - -  = o  

2 Dak D 
X 

The solution of this ordinary differential equation is 

h2x F(x )  = A e  ' I x  + B e  

with 

(5.51) 

(5.52) 

v2 s 
h,,, = 2o f - + - 

4 4 D 2  

Since the positive root leads to a positive value of h, the second term of Eq. (5.52) grows 
exponentially with increasing x in contradiction to physical evidence. Therefore, only the 
negative root is taken and B is set equal to zero. The remaining integration constant A is 
determined via the Laplace transform of the initial condition 

CO L[co]  = - 
S 

(5.53) 

yielding 

(5.54) 

In the table of Laplace transforms in appendix A.1 one finds the inverse Laplace transform 
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I 
wirh q = - I; (5 .55)  

which is, after a change of variables, appropriate for the solution of the above problem. 
Employing the transformation 

(5.56) 

one obtains 

V 
(5.57) 

Remember that the inverse Laplace transform is the integral over the Gaussian plane 

o+iw  

Therefore the substitution s = z - 01 transforms e sf to e " e -a! Application of the Laplace 
transform (Eq. (5.55) to Eq. (5.57)) yields 

r 1 

(5.58) 

These two examples may suffice to get a feeling for classical analytical methods, which are 
"laborious but straightforward " (Lindstrom et al., 1967). Van Genuchten and Alves (1982) 
have published a collection of analytical solutions of the convection dispersion equation for 
various initial and boundary conditions. 

5.2.3 Linear Sorption and First Order Degradation 

Sorption and degradation is incorporated into Eq. (5.40) by simply adding two reaction terms 
on the right hand side. If degradation proceeds only in the liquid phase, the reaction rate has 
to be multiplied by the water content 8. If degradation takes place at equal rates in both 
phases e.g. for radioactive decay, this factor is set equal to one. As usual, S denotes the solid 
phase concentration. Assuming linear kinetics one obtains 
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Under equilibrium conditions, S = Kd c, Eq. (5.59) is simplified to 

(5.59) 

(5.60) 

with retardation factor (cf. chapter 3) 

P 
= ' + s K d  

Note that the linear decay term does not change the form of the basic convection dispersion 
equation. This is seen by the following argument. After division by R the decay term 
becomes -WR c. The equation is now multiplied by the factor e (WR)r. This is equivalent to 
the "trick" of the integrating factor previously applied to the solution of ordinary differential 
equations (cf. sections 2.1 and 3.1.2). After rearranging one obtains 

(5.61) 

D V with D *  = - and V *  = - 
R R 

The left hand side of this equation may be written as 

Introducing now the v%iable c* = c e 
differential equation in c is identical to 

one easily sees that the resulting partial 

ac * *a2c * * ac* 
at ax ax 

- = D  - - v  - (5.62) 

This is an important result: the basic CDE is invariant with respect to linear equilibrium 
sorption and linear degradation. 

The following initial and boundary value problem describes a typical column outflow 
experiment. 
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(5.63a) 

c(x,t) = 0 for t = 0 

The analytical solution of this boundary value problem is (cf. van Genuchten and Alves, 
1982) 

(5.63b) 

with 

V 2 0  A ( x , t )  = -e v + u  

V 2 0  + - e  v - u  

x t  v2 V- - k- 
+ - e  

2kD 

U = \iv2 + 4 k D  

Figure 5.8 shows time courses of concentrations obtained by this equation for several 
combinations of the retardation factor R and decay constant k. Note that the retardation 
causes longer half-lives of the substance due to the assumption that degradation only 
proceeds in the solute phase. 

Thus far c is always referred to as the volume averaged resident concentration. For the 
simulation of outflow experiments, e.g. the determination of a solute breakthrough curve from 
effluent measurements, flux-averaged concentrations have to be defined. These are the ratio 
of the solute and water fluxes. Flux averaged concentrations and resident concentrations are 
related via 

- D aCresidenr 
cflux - Cresident - - v ax (5.64) 
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Fig. 5.8: Time courses of concentrations for a typical column outflow experiment. Shown are plots of 
the analytical solution refemng to van Genuchten and Alves (1982) for combinations of the retardation 
factors a) R = 0.01, b) R = 0.1 and c) R = 1 and decay constants k = 0.01 d-', 0.1 d-' and 1 d-' in a 
soil depth of 1 cm. 
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5.2.4 Volatilization 

Following the approach of Jury et al. (1983) volatilization is included into the model in a 
straightforward way by specifying boundary conditions at the soil surface. The model 
development is based on the general transport equation Eq. (5.40) in one-dimensional form 
as given by 

(5.65) 

Assuming linear kinetic laws and equilibrium conditions the above mass balance equation can 
be written in only one variable. With 

s = KdC 

the total concentration ct is expressed as 

ct = R,S = R ~ c  = R g g  (5.66) 

where 

e K H  R ,  = p + - + E- 

K d  K d  

Kd 8 

K H  K H  
R ,  = p- + - + E 

Employing these relations, Eq. (5.65) may be written in terms of only one variable. It is 
convenient to formulate the equation in terms of the total concentration and then to derive the 
remaining concentrations via the equilibrium relations. Thus, Eq. (5.65) is written as 

r 1 

in terms of the total concentration, where 

4 and V E  = - K H D g  + D h  D E  = 
R Rl 

(5.67) 

In this model the rate of decay is assumed to be identical in each phase. 
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Jury et al. (1983) solved the above equation for the following situation: 

i) 
ii) 
iii) 

iv) 

The pesticide is uniformly incorporated to a depth L. 
The soil column is homogeneous. 
There exists a stagnant air boundary layer at the surface 
controlling the rate of volatilization. 
The water flux is constant. 

The initial conditions for this situation are 

CO O < z l L  

1 0  z > L  
C,(Z,O) = 

At the upper boundary, diffusion controlled volatilization occurs. Employing Fick’s law of 
diffusion for transport across the stagnant boundary layer of thickness d,  the diffusive flux 
is given by 

(5.68) 

The diffusion coefficient for diffusion across the surface layer, K, is related to the diffusion 
coefficient in air by 

K = -  Dair (5.69) 
d 

The concentration at the upper surface of the boundary layer, g(d,t), is assumed to be zero. 
Therefore, the flux boundary condition at z = 0 becomes 

(5.70) 

with 

Note that loss by volatilization at the surface is equivalent to a first order decay process. 
As usual, the lower boundary condition is taken to be 

lim c,(z,t) = 0 
z+- 

The analytic solution of this boundary value problem is given by Jury et al. (1983) as 
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Thickness d of the boundary layer determines the volatilization flux at the surface. According 
to Jury et al. (1983), d may be related to the evaporation flux E by 

The following assumptions are made: 

i)  
ii) 

Water vapor is saturated at the surface: pw (0) = ps. 
Evaporation occurs only during the day. 

With pwv (d) = ps RH the thickness d of the boundary layer is given as 

(5.72) 

(5.73) 

where the factor 1/2 reflects assumption (ii). As shown in Figs. 5.9 a,b volatilization fluxes 
are strongly influenced by upward water flow. The figures also reveal the influence of 
physico-chemical properties of the chemicals on volatilization. Here, the behavior of 2,4-D 
and Lindane is compared for various evaporation rates. The adsorption affinity of Lindane is 
much higher than the affinity of 2,4-D. Therefore, 2,4-D is more mobile, whereas Lindane 
remains localized near the soil surface. This is demonstrated in Figs. 5.10 a,b, which show 
depth profiles obtained 30 days after application. From this it becomes plausible, that 
volatilization is the major loss pathway of Lindane and degradation is the major loss pathway 
of 2,4-D. The parameters of these calculations, which are taken from the paper of Jury et al. 
(1983), are given in Tab. 5.1. 
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Tab. 5.1: Physical-chemical properties of Lindane and 2,4-D at 25°C. 

II Property I Lindane I 2,4-D II 
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Fig. 5.10: Depth profiles of a) 2,4-D and b) Lindane obtained 10, 30, 100 and 300 days after 
application. Lindane remains near the soil surface. Therefore the maximal soil depths differ in both 
profiles. 
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5.2.5 Kinetic Adsorption 

In the following, the kinetic equations derived in chapter 3 (cf. Eqs. (3.15 a,b)) are coupled 
to the transport equation. Neglecting the transport in the gaseous phase, one obtains in the 
non-equilibrium case a partial differential equation for the mobile liquid phase concentration 
and an ordinary differential equation for the solid phase concentration, which is immobile. 
Degradation may occur in the liquid phase and in the solid phase with rates kl and ks 
respectively. 

as 
at 
- = a ( K d c  - s) - k,S 

(5.74) 

(5.75) 

For the case of two site adsorption with S1 (equilibirum) and S2 (kinetic) binding sites 
(cf. chapter 3, Eqs. (3.42 - 3.45) and Fig. 3.10) one obtains the equations 
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(5.77) 

Degradation takes place in the liquid phase (kl) and in both solid phases (ksl, ks2). Total 
adsorption is then given as S = S, + S,. 

Van Genuchten and Wagenet (1989) give analytical solutions for an initially solute free soil 
column under a pulse input: 

(5.78) 

c(z, t)  = S,(O,t)  = S,(O,t) = 0 for t = 0 

It is convenient to write the equations in the mathematically most simple form for ease of 
representation and to facilitate the mathematical derivations. The "relatively straightforward 
but extremely lengthy" (van Genuchten and Wagenet, 1989) details of the derivation shall not 
be repeated here. The solutions are obtained by the Laplace transformation technique. 

All distances are normalized with respect to a characteristic length L, which may be thought 
of as the depth of the soil profile under study. The equations are then written in 
dimensionless form as 

with 
V t  

L 
z = - ,  X z = - - ,  

L 

a 
0 = -(1 - P)RL, 

V 

C 
c , = - ,  

CO 

V L  
D 

P = - ,  

f P K d  
R , = 1  + - ,  

0 

(5.79) 

(5.80) 
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The solution of the above boundary value problem as given by van Genuchten and Wagenet 
(1989) is 

where 

with 

J(a,b) is defined by the following integral 

a 

J(a,b)  = 1 - e -"e -hzo[2&T]dh 
0 

(5.81) 

(5.82) 

(5.83) 

where Zo denotes the modified Bessel function of order zero. The parameters a and b are 
given by 
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g(z,<) is obtained from the analytical solution of the equation 

subject to the initial and boundary conditions given above as 

For the case of volume-averaged resident concentrations the solution is obtained as 

(5.84) 

For flux averaged concentrations (cf. Eq. (5.64)), the expression for g(z,T) becomes 
r 1 

(5.85 b) 

5.2.6 Two-Region Transport Model 

Additional notations 

' r n  
cim 
8, 
8, 
k,  
kim 

In section 5.1.2 two-region models for water transport were derived partitioning the soil into 
regions of different mobility. The following model, which goes back to van Genuchten and 
Wagenet (1989), partitions the soil into mobile and totally immobile regions. If one assumes 
that diffusion of a solute between these regions occurs, the resulting equations are equivalent 
to those derived for kinetic adsorption. 

: concentration in mobile phase [Mn31 
: concentration in immobile phase Mn3I 

3 3  
: water content of mobile phase [L L3] 
: water content of immobile phase [L /L ] 
: mobile phase degradation rate [ l/T] 
: immobile phase degradation rate [1/T] 

5 
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Figure 5.1 I illustrates the concept of the underlying two-region soil system. 

Fig. 5.11: Concept of the two-region soil system (van Genuchten and Wagenet, 1989); with: 
1 = sorption, 2 = degradation, and 3 = solute exchange between mobile and immobile liquid regions. 

The underlying assumptions are: 

i)  
ii) 

Convective-dispersive transport occurs only in mobile liquid regions. 
Exchange of a solute between mobile and immobile regions takes place by simple 
diffusion in analogy to a reversible linear first order reaction. This presumes that 
mobile and immobile regions are intermingled at a small scale. 
Degradation rates are different in mobile and immobile regions due to 02-availability 
or distribution of microbial activities. 

iii) 

Omitting sorption the transport equation for the mobile phase is given by 

a(emcm) = g m D Z c m  a - qcm] - a ( c m  - c im)  - O,kmcm 

at 
(5.86) 

For the stagnant region no convection or diffusion occurs. The mass balance equation can be 
simplified to 
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(5.87) 

These equations are identical in structure with the kinetic adsorption model described by 
Eqs. (5.74) and (5.75). Van Genuchten and Wagenet (1989) complete these equations by 
introducing sorption in the inter- and intra-aggregate regions. Written in dimensionless form 
they prove to be identical in structure with Eqs. (5.79) and (5.80). 

5.2.7 Three-Dimensional Form of the Convection Dispersion Equation 

The application range of the one-dimensional form of the convection dispersion equation is 
limited to substrates with only slight spatial heterogeneities. Lateral flow becomes important 
if the soil contains random three-dimensional structures giving rise to random parameter 
fields. In chapter 7 some examples will be given. 

In a general three-dimensional situation the coefficient of hydrodynamic dispersion D ,  
becomes a tensor. The anisotropy is due to the flow field of the water. This tensor has the 
general form (Bear, 1979): 

V k  vm Dij = aijkm-f(Pe,6) 
I v’l 

(5.88) 

f is a correction factor, which depends on the peclet number Pe and on the pore geometry. 

Lv’ Pe = Peclet number = - 
Dd 

with L being some characteristic length of the pores and Dd being the coefficient of 
molecular diffusion of the solute in the considered liquid phase. In most application f is set 
equal to 1. The coefficient aukrn is element of a fourth rank tensor, the dispersivity tensor. 
In the isotropic case it reduces to 

(5.89) 

where 6ij denotes the Kronecker symbol and aL and aT are the longitudinal and transversal 
dispersivity. The elements of the tensor of hydrodynamic dispersion are thus given by 

(5.90) 

In Cartesian coordinates the above equation yields 
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- (aL - aT)vxvy  

D x y  = D y x  - v' 

(5.91) 

- (aL - aT)vyvz  
D y z  = D z y  - v' 

At every point in space the components of the velocity field determine the elements of the 
dispersivity tensor. 

5.3 Coupling of Nonlinear Kinetics and Transport 

The art of obtaining analytical solutions of initial boundary value problems involving the 
convection dispersion equation coupled to sorption and degradation is confined to linear 
kinetic laws. Nonlinearities have two effects: 

1. In all practically relevant cases no analytical solutions can be obtained. 
2. Nonlinear kinetics may drastically change the transport behavior. 

5.3.1 Nonlinear Sorption 

Sorption may influence both transport behavior and degradation. This was shown in the 
preceding chapters (cf. sections 3.1 and 5.2.3). In the linear equilibrium case the effect of 
sorption is summarized in one parameter, the retardation factor R. This factor decreases the 
diffusion constant and the convective flux term. If first order degradation occurs only in the 
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liquid phase retardation reduces the rate constant without changing the linear character of the 
reaction. In the following, a CDE with a first order degradation term is coupled with 
nonlinear sorption omitting transport in the gaseous phase. 

(5.92) 

Lc := a - [eDce,4,-  ac - 4 e ]  az aZ 

For Langmuir binding the kinetic equation for S is given by Eq. (3.86) 

- as = k , (P  - S ) c  - k - l S  (5.93) 
at 

Rao and Yessup (1989) relate the deviation of S from its equilibrium value to the rate of 
change of S. 

--a- as - pK - s] 
at 

(5.94) 

Both expressions become identical in the equilibrium case (cf. section 3.2.2.2). 

For Freundlich binding a similar formulation is used by Rao and Yessup (1989). 

- as = a ( K F c  K - k-l  S )  (5.95) 
at 

For small values of c both functions are similar in shape for n < 1 .  At high concentrations, 
the Langmuir binding is bounded by a finite capacity p, which is not the case for Freundlich 
binding. Under equilibrium conditions the retardation factors (cf. section 3.2.2.1) are derived 
as 

and 

P n - 1  

0 RFreundlich = ' + - K F n c  

For both binding laws the respective retardation factor decreases monotonically with 
increasing c.  Note that Freundlich's approach becomes unrealistic for c + 0 if n < 1 .  

The decreasing of retardation with concentration has drastic effects both on degradation and 
transport for substances with a small binding capacity. This is demonstrated in the following 
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simulations. Figure 5.12 a-c show three depth profiles of a substance obtained from initial 
concentration values differing in order of magnitude. To allow comparison, the profiles are 
all normalized with respect to initial concentration co. 

t f 
2 0.3 ' 
H t 

1.2 

TIME AFTER APPLICATION 
- I  MONTH '2 MONTHS + 14 MONTHS 

1.5 

REL. CONCENTRATION [XI 

0.6 I! i 
1.2 
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- 1 MONTH * 2 MONTHS + 14 MONTHS 

1.5 
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0.6 ii i 
0.0 1 :  + 

+ 

TIME AFTER APPLICATION 
- 1 MONTH * 2 MOMHS + 14 MONTHS 

1.5 
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REL. CONCENTRATION [XI REL. CONCENTRATION [XI 

Fig. 5.12: Three depth profiles of a substance underlying Freundlich's adsorption. The initial 
concentrations differ in order of magnitude: a) initial concentration of 1 mg/kg, b) 10 mg/kg and 
c) 100 mg/kg. The profiles are normalized with respect to the initial concentration co. 

5.3.2 Coupling Transport and Microbial Population Dynamics 

Kinetic processes are formulated as ordinary differential equations, whereas transport 
processes are modeled by a set of partial differential equations. Under the assumption that the 
movement and transport of microorganisms is negligible compared to the movement of the 
substance, it is straightforward to extend the kinetic and population dynamic equations by a 
spatial component. Consider for instance the case that a herbicide is the primary carbon 
source of a microbial population. The state variables of Eq. (3.107) and (3.108)' are 
formally written as function of time and depth coordinate z: 

Notations are slightly changed, because a and p are already used for binding. 
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m := m(r,z) and c := c( t ,z )  

and the differential equation (3.108) is completed by a transport part. 

pc m(z , t )  (5.96) ac 
at Y C + K M  

- = L c - -  

- - am - pc m - o m ( l  + a m )  
at + K M  

(5.97) 

For each differential soil layer [z, z + dz] the ordinary differential equations have to be 
integrated along with the partial differential equations. Spatial variation of kinetic parameters 
can be taken into account by assigning a parameter set to each layer. 

The combination of transport processes and populations dynamic models generates complex 
spatio-temporal patterns as is demonstrated by the following examples. The kinetic models 
of these examples are derived from experimental data. The parameters of the water retention 
curve refer to well defined soil types, e.g. loamy sand, and are derived from own data. 
However, the parameters related to leaching are only plausible guesses because of lack of 
appropriate data. 

The above model equations are applied to 2,4-D. To allow for the long lag times observed, 
the first term of Eq. (5.97), the substrate response function, is multiplied by the substrate 
inhibition factor 

(5.98) 

(cf. section 3.2.4.2). Figure 5.13 a,b show the fit of the solutions of the above equations for 
L = 0 (no transport, only kinetics) for a series of initial concentrations to data of 2,4-D 
obtained by Hurle (1982). For ease of presentation, data (cf. Fig. 5.13 a) and simulated time 
courses (cf. Fig. 5.13 b) are plotted separately. The model was fitted to the data of all 
experimental runs simultaneously by the boundary value method described in chapter 4. 

The kinetic parameters thus obtained were then used in a simulation involving also 
nonstationary water transport. The parameters of the water retention curve refer to a loamy 
sand (8,=0.45, 0,.=0.0, K,=lOO c d d ,  a-O.016, n=1.4; cf. McVoy et al., 1995). Precipitation 
data were taken from an investigation site near Braunschweig in the year 1989 (cf. Fig. 5.14). 
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Fig. 5.13: a) Experimental data (Hurle, 1982) and b) simulated time courses of 2,4-D (Eqs. (5.96)- 
(5.98) with L = 0, i.e. no transport, only kinetics) for different initial concentrations. 
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Fig. 5.14: Time course of measured precipitation and simulated evapotranspiration in the year 1989 
at an investigation site near Braunschweig, used for simulation of herbicide transport in Figs. 5.13 a,b. 
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Fig. 5.15: Development in time of microbial activity and concentration profiles following the 
application of a-c) a “low“ dose beyond and d-f) a “high’ dose above the inhibition threshold of 2,4-D. 
a,d) 7, b,e) 10 and c,f) 25 days after application. 
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The spatio-temporal patterns generated by the application of low and high amounts of the 
pesticide were investigated. By “low” we mean a concentration below the inhibition threshold 
yielding pseudo first order kinetics. Figures 5.15 a-c show the development in time of the 
microbial activity profile and the concentration profile. Microbial activity builds up first in 
the upper layers and follows the movement of the pesticide. The time courses of 
concentration and activity in a depth of 10 cm are given in Fig. 5.16 a. The time lag is due 
to building up of the population. 

This simple pattern is drastically changed, if a high dose is applied. Figures 5.15 d-f show 
the development of activity and concentration profiles: in the upper layers, concentrations are 
above the inhibition threshold suppressing the onset of microbial activity. In deeper layers, 
where concentrations are low due to diffusion and dispersion, microbial activity builds up 
first and decreases again. Only after a long lag phase, a zone of activity develops in the 
upper layer, too. This is also shown in the time courses of concentration and activity in a 
depth of 10 cm (cf. Fig. 5.16 b). Irregularities in the time course of concentrations are due 
to precipitation and evapotranspiration (cf. Fig. 5.14). 

4 
t 
N 

1 

TIME AFTER APPLICATION [days] 

Fig. 5.16: Time courses of microbial activity and concentration in a depth of 10 cm following the 
application of a) a “low“ and b) a “high” dose of 2.4-D. 
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The same model was applied to 1,3-D data (Vink et al., 1993). Figures 5.17 a,b show a fit 
of observed time courses of 1,3-D to the kinetic part of the model Eqs. (5.96) and (5.97). 
These laboratory experiments were carried out for four different initial concentrations (0.03, 
0.3, 5 and 15 mgkg). At the low initial concentrations the kinetic is apparent first order 
although in a log-plot deviation from the expected exponential decay can be detected. At high 
concentrations the nonlinearity of the system becomes obvious (cf. section 3.2.4). Both 
behaviors, apparent first order and nonlinear, can be described by one set of equations. 
Because microbial activity was not measured it is not possible to determine the microbial 
mortality rates. 
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Fig. 5.17: Fit of observed time courses of 1,3-D concentration to the kinetic part of the model 
Eqs. (5.96) and (5.97) at 5°C and different initial concentrations. Note the different kinetic behavior at 
a) low and b) high concentrations. 
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The parameters were used to simulate transport and degradation of 1,3-D under field 
conditions (Vink et al., 1993). On the 14th of September 1990, 1,3-D was injected into the 
soil and the residues were monitored in different depths for a period of 40 days. Transport 
parameters were derived from measurements of water retention and hydraulic conductivity 
data. Figures 5.18 a,b show the time course of concentration and microbial densities for the 
depths of 10 and 30 cm. Figures 5.19 a-c show a comparison of modeled and measured 
concentration profiles together with the simulated microbial densities. 

As explained before the microbial mortality rate could not be estimated from the laboratory 
experiments. Therefore, the simulated microbial activity does not decrease after reaching the 
maximum level. Considering that all parameters for this simulation of the field data were 
derived from laboratory experiments and that they were used in this simulation without 
further calibration the agreement between observed and forecasted values is not too bad. 
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Fig. 5.18: Simulated time courses of 1,3-D concentrations and microbial activity at depths of a) 10 cm 
and b) 30 cm. Additionally, observed 1,3-D concentrations are shown. 



188 5 Transport and Reactions in the Soil 
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Fig. 5.19: Simulated and observed concentration profiles of 1,3-D and of microbial activity a) 3, b) 7 
and c) 13 days after application (Vink et al., 1993). 

5.3.3 Soil Aggregate Model 

Notations 

c(r,t) : concentration of substrate [W3] 
P(t)  : substrate consumed up to time t [W3] 

3 qt) : total residual concentration in the aggregate at time t [W ] 
rn(r,t) : microbial density [W3I 
M(t)  : total biomass within an aggregate [W3] 
D : coefficient of molecular diffusion [L2R] 
p : maximum growth rate [ln] 
d : microbial decay rate [ l R ]  
0 : maintenance coefficient [W] 
Y : yield coefficient [l] 
K,,,, : Michaelis-Menten constant [W3] 

J, : intrinsic substrate release rate Mn31 
FlaYer : volume of the surface layer [L 5 ] 
Fsphere: volume of the aggregate [L 3 ] 

R : aggregate radius [L] 

The models considered so far do not explicitly take into account soil structure. They consider 
the soil as represented by the parameters of water and matter transport such as the water 
conductivity or the coefficient of dispersion. The spatial variability of model parameters can 
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be regarded as realizations of a spatial random process. In a later chapter, it will be shown 
how to generate realizations from the underlying spatial stochastic process and to solve the 
transport equation over the random parameter field. In this section, we take a closer look to 
the soil structure. A structured soil consists of a distribution of aggregates differing in shape 
and size. Following the theory of Nietfeld et al. (1992), microbial growth and biodegradation 
mainly take place within an aggregate, a so called microhabitat. For computational ease, the 
case of spherical microhabitats is analyzed. The model concept, which is depicted in 
Fig. 5.20, involves a homogeneous spherical aggregate surrounded by a thin layer of 
substrate. As initial condition it is assumed that a minimal substrate concentration is 
homogeneously distributed within the aggregate maintaining a low level of microbial density. 

spherical 

transformation 

0 

film 

Fig. 5.20: Model concept refemng to Nietfeld et al. (1992), additionally showing the subdivision of 
the aggregate into layers for computational use. 

The basic mass balance equation for the substrate within an aggregate is given by 

(5.99) 

This equation couples the spread of the substrate due to diffusion (first term of the r.h.s) with 
the consumption by the growing microbial population (second term). It is necessary to 
introduce an intrinsic substrate release rate Jl in order to maintain a low stationary microbial 
density. Because of the spherical symmetry the model is written in spherical coordinates. For 
isotropic aggregates only the radial component needs to be considered. 

For the diffusion term one obtains 

J g  = D[$ + (5.100) 

The total consumption rate of the microorganisms is given by 
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(5.101) 

Microbial population dynamics is modeled by Eq. (5.97) omitting the density dependent part 
of the mortality rate. 

- am = [  Pc - d ] m  
at + K M  

In the approach of Nietfeld et al. (1992), the second term in the bracket is interpreted as the 
rate of substrate utilization for maintenance respiration. In this case 

d = oy 

The intrinsic substrate release rate Jl compensates for the maintenance respiration necessary 
to maintain the initial density mo. 

J I  = omo (5.102) 

With all terms specified, Eq. (5.99) now reads 

(5.103) 

\"' 
The boundary condition at the surface of the aggregate is derived from the mass balance 
equation: at each time t the total amount of substrate which was initially present in the 
surface layer and within the aggregate partitions into the substrate present in the surface 
layer, the amount of substrate consumed by the microorganisms and into the remaining 
substrate within the aggregate. 

(5.104) 

The concentration necessary to maintain the initial population density, mo, is given as the 
stationary solution of Eq. (5.97) neglecting the density dependent part of the mortality rate 
(I3 = 0). 

The substrate consumed up to time t is obtained by the integral 
R t  

E ( t )  = 3 JJ[!. Y C + K M  Pc - J l ] r ' d r d ~  
R 3  0 0  

(5.105) 

(5.106) 

and the total amount of residual substrate within the aggregate is obtained by integration over 
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The total biomass within the sphere is obtained in an analogous manner 

8 
P 

P 
0.5 - fi 

R 
M = L J m ( r , t ) r  2 dr 

R~ o 

AGQREGATE RADIUS [cml 
'0.10 - 0.50 -1.00 -1.50 

(5.107) 

(5.108) 

Nietfeld et al. (1992) solved the above equations for the following initial and boundary 
conditions. The initial densities within the aggregate are assumed as homogeneous. The initial 
substrate density on the surface layer, co, is assumed to be greater than cmin. In the center of 
the aggregate, by symmetry reasons 
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'0.10 - 0.50 - 1.00 - 1.50 
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TIME [h] 

0 5 10 15 20 25 

TIME [h] 

Fig. 5.21: a) Normalized total amount of residual substrate and b) normalized total amount of biomass 
in aggregates with radii R = 0.1 cm, R = 0.5 cm, R = 1 .O cm and R = 1.5 cm. 
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An important result of the simulations is the dependence of the kinetics on the geometry, i.e. 
the size of the aggregates. Figure 5.21 a,b show series of biomass growth curves and total 
concentration degradation curves for different aggregate radii. Since the substrate supply of 
the microorganisms within an aggregate is diffusion limited, degradation proceeds fastest in 
small aggregates. A closer view inside the aggregates indicates an effect of the aggregate size 
on the distribution of substrate and biomass as well. Figures 5.22 a,b and 5.23 a,b show the 
development in time of substrate concentration and total microbial density in distinct layers 
of aggregates (R = 0.1 cm and R = 0.5 cm). 

IN LAYER r/R [%] R E 0.1 crn 
- film - boundary - 75% + 50% rC 25% * center 

0.75 

0 0.25 0.5 0.75 1;; 2.5 5 7.5 10 12.5 

TIME [h] 

2.5 

0 5 10 15 20 25 

TIME [h] 

Fig. 5.22: a) Relative substrate concentration c(r,t) and b) relative microbial density rn(r,t) in distinct 
layers of an aggregate with radius R = 0.1 cm. 

Comparison of the kinetics obtained in small (R < 0.2 cm) and bigger aggregates leads to the 
following conclusions: 

i) A fast balancing of substrate concentration takes place in the small aggregates 
(cf. Fig. 5.22 a). This ensures nearly identical microbial growth in all layers (cf. Fig. 5.22 b). 
The diffusion is fast in comparison to the process of substrate consumption. Consequently the 
diffusional limitation has no effect on the substrate supply. 
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ii) Microbial consumption in the outer parts of the larger aggregates is faster than the 
subsequent delivery of substrate by diffusion. Hence gradients of microbial density and 
substrate concentrations are built up inside of the larger aggregates (R > 0.2 cm) 
(cf. Fig. 5.23 a). Within aggregates of large size biomass growth is accelerated in the outer 
parts (cf. layers "boundary" and "75%" in Fig. 5.23 b). In contrast the biomass growth is 
hardly noticed in the inner regions (cf. layers "center" and "25%" in Fig. 5.23 b). The larger 
the size of the aggregate, the greater is this effect and the more important is the gradient. 

IN LAYER rlR W] R = 0.5 cm 
- film - boundary * 75% + 50% * 25% + center 
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Fig. 5.23: a) Relative substrate concentration c(r,t) and b) relative microbial density rn(r,t) in distinct 
layers of an aggregate with radius R = 0.5 cm. 

Figures 5.24 a-c allow a different look at these geometric effects. They show the 
development in time of microbial density profiles of aggregates with radii R = 0.1 cm, 
R = 0.5 cm and R = 1.0 cm. In the case of large aggregates with radii R > 1.0 cm the 
transformation of substrate is limited to the outer spheres. Omitting the intrinsic substrate 
supply (term J, in Eq. (5.99)) the biomass decreases in the central regions of these aggregates 
(cf. Fig. 5.24 c). 
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Fig. 5.24: Development in time of microbial density profiles. The aggregate radii are: a) R = 0.1 cm, 
b) R = 0.5 cm and c )  R = 1.0 cm. 
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The corresponding concentration profiles are shown in Fig. 5.25 a-c. Simulations with larger 
microbial growth rates or lower effective diffusion coefficients lead to results which are 
similar to those obtained by using larger aggregate sizes. 
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Fig. 5.25: Development in time of substrate concentration profiles in aggregates with radii: 
a) R = 0.1 cm, b) R = 0.5 cm and c) R = 1.0 cm. 
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Statistical distribution of aggregate sizes: 

In a study of Schroder et al. (1996) the model of Nietfeld et al. (1992) was applied to an 
ensemble of aggregate sizes, that characterize natural soils. This procedure allows to find a 
representative aggregate size. It can be used in simulations that do not consider the effects 
induced by the geometry. 

First the distribution of aggregate sizes has to be discretized to obtain a set of aggregates. 

A "graphical" Monte-Carlo-Simulation was adapted: a random processor for uniformly 
distributed pseudo-random numbers generates (x,y)-coordinates, standardized to the maximum 
relative frequency and the boundaries of the distribution. The x-coordinate of each point lying 
inside the area of the distribution is accepted into the desired set of aggregate radii. Since 
each class of the distribution covers exactly that part of the whole "simulation area" 
corresponding to its relative frequency, the random variables thus generated are distributed 
according to the underlying density function (histogram). Figure 5.26 should help to clarify 
this procedure. It shows a distribution of aggregate sizes for a vertic cambisol (Pelosol) and 
the generated cluster of points. 

--SIMULATION AREA I 
5 0 1  - - I * I l -  - - - - 

20 

10 k 0 0 0.5 

- I t 1  

1 1.5 2 2.5 3 3.5 

AGGREGATE RADIUS [cm] 

Fig. 5.26: Distribution of aggregate sizes for a vertic cambisol (Pelosol) (Albers and Hartmann, 1991) 
and the overlaid cluster of points generated by Monte-Carlo-Simulation. The x-coordinates of those 
points characterized by "+" are accepted in the data set, those of points characterized by "-" are not 
accepted. 

The set of radii thus generated in turn generates a population of microbial growth curves and 
substrate depletion curves. Figure 5.27 a,b show as an example an ensemble of 10 OOO 
aggregates. To represent the ensemble of curves, an effective radius has to be identified. The 
curve resulting from this parameter should be in a yet to be defined way closest to the mean 
of all curves. The problem to obtain so called effective parameters is treated in section 7.4. 
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Fig. 5.27: Simulation result for a distribution of 10 000 aggregate sizes. Shown are mean and standard 
deviation of all curves as well as the curves refemng to minimal, maximal and mean radius of the 
ensemble. The curves refer a) to the normalized total amounts of substrate and b) the normalized total 
amounts of biomass. 

The analysis of a large number of realizations of Monte-Carlo-Simulation shows that the 
mean radius is quite suitable as representative radius. 

5.3.4 Metabolites 

Biodegradation of organic compounds leads to reaction products with modified physico- 
chemical properties. Frequently, degradation products have lower Kd-values than the parent 
substance. Most degradation experiments are confined to measurements of the parent 
substance. Because of analytical difficulties only few studies (Bahadir and Kreuzig, 1994) 
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also consider the kinetics and sorption properties of metabolites. However, metabolites cannot 
be neglected in the assessment of the environmental impact of a chemical. As an example a 
system with a parent substance and one metabolite is considered. 

8 il 

8 -  
11 

10 - 

12 - 

14 ?' 

-(eel d + ps,) = L ~ C ~  - e+, (5.109) 
at 

1 0 -  

I t  I 

12 - 
TIME AFTER APPLICATION 

- 1  day + 1  week '3 week8 +E weeks 

TIME AFTER APPLICATION .- 1 day + 1 week * 3 weaka + 8 weeks 

I I I I I 14 ? I I I I 

(5.1 10) 

with 
r 

f denotes that fraction of the parent substance, which goes into the metabolite c2. As an 
example, Fenpropimorph (FPM) and its metabolite Fenpropimorphic acid (FPMA) is 
considered. Because of the higher polarity of the metabolite, Kd-values of the parent 
substance and metabolite differ considerably. Bahadir (1993) measured values of 128.5 ml/g 
for FPM and 1.6 ml/g for FPMA in a loamy soil and 50.5 ml/g and 0.4 ml/g in a sandy soil. 
Figures 5.28 a,b show the development in time of simulated depth profiles of FPM and 
FPMA respectively. 

. 

FPM CONCENTRATION [rng/kg] FPMA CONCENTRATION Imo/kgl 

Fig. 5.28: Depth profiles of a) FPM and b) its metabolite FPMA 1 day, resp. 1 ,  3 and 6 weeks after 
application of FPM. 
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5.4 Soil Temperature Fields 

5.4.1 The Heat Conduction Equation 

Notations: 

: heat flux [W/m2] 
: heat flux due to diffusion [w/m2] 
: heat flux due to convection [W/m2] 
: water flux [m/s] 
: thermal conductivity [W/m/K] 
: temperature ["C] 
: depth [m] 
: specific heat capacity of water [J/g/K] 
: volumetric heat capacity [J/m3/K] 
: heat capacity of solids [J/m3/K] 
: heat capacity of water [J/m3/K] 
: heat capacity of air [J/m3/K] 
: heat capacity of organic material [J/m3/K] 
: volume fraction of solids = 
: volume fraction of quartz [m /m ] 

+3@m [m 3 3  /m 3 

: volume fraction of other minerals [m 3 3  /m ] 
: water content [m 3 3  /m ] 
: volume fraction of air [m 3 3  /m ] 
: volume fraction of organic material [m 3 3  /m ] 

: mean daily temperature ["C] 
: amplitude of the mean daily temperature ["C] 
: (2 n) / (time period) [l/d] 

lmean : mean annual temperature ["C] 
Tampi : max. amplitude at the lower boundary ["C] 

to : time at which T = Tme,,, [d] 

The heat conduction equation is derived in a similar manner as the convection dispersion 
equation. Starting point is the continuity equation for heat flow 

C/,$ f v*qh = 0 (5.1 11) 

stating that the rate of temperature change in a control volume equals the net gain of heat per 
unit volume plus sinks or sources within this volume. In direct analogy with Fick's law of 
diffusion the heat flow is related to the temperature gradient by 

i h  = -hVT (5.1 12) 

If there is in addition a flow of water in the soil, heat is also transported by conduction 
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(5.113) 

Combining the continuity equation for heat with the flow equations yields the heat 
conduction equation 

aT = V-(hVT - cw4;uT) 
C h a r  

(5.1 14) 

Note that this equation is only valid if frost and thaw of ice are neglected. 

Boundary Conditions 

Upper boundary 

At the upper boundary the soil surface temperature depends on the air temperature and the 
radiative and latent heat transfer. The surface temperature equals the air temperature when 
the radiative and latent heat transfer can be neglected. 

In cases where the heat transfer can not be neglected the radiative heat transfer can be 
calculated considering global radiation, longwave sky irradiance, the surface albedo and the 
air temperature. The latent heat flux can be computed by evaporation models like the 
Penman-Monteith equation (Monteith, 1976). 

Lower boundary 

At the lower boundary the annual fluctuation of temperature with time can be described by 
a sinusoidal cycle 

(5.115) 

This assumes that the daily variation of soil temperature at the lower boundary can be 
neglected in the chosen depth. Analytic solutions of the one-dimensional version of 
Eq. (5.1 11) can be obtained for simplified boundary conditions and constant soil properties. 
Assuming that the thermal conductivity and the volumetric heat capacity are constant with 
depth and the upper boundary condition is given by 

T(o ,~)  = T, + ~ , s in (wr )  

then the boundary value problem has the analytical solution 

(5.1 16) 

(5.1 17) 
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6 -  

Figures 5.29 a-c show the time courses of daily temperatures at different depths computed by 
the numerical solution of Eq. (5.1 14) during a vegetation period. The soil properties 
necessary for the simulation model were not calibrated but estimated using approach of 
McInnes (1981) which will be discussed below. Because this simulation is a forecast and no 
calibration was performed the results are satisfactory. 
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Fig. 5.29: Fig. 5.29: Comparison of simulated and measured daily temperatures for the depths of a) 
5 cm, b) 25 cm and c) 50 cm obtained by the numerical solution of Eq. (5.1 14). 



202 5 Transport and Reactions in the Soil 

Soil properties 

The parameter of the heat flow model depend on soil constituents and water content. The 
volumetric heat capacity of the soils is the sum of all soil constitutents 

(5.1 18) 

Typical values for heat capacity and for thermal conductivity are given in Tab. 5.2 for 
different soil constituents. Ignoring the contribution of the soil air and assuming similar 
properties for mineral and organic material Eq. (5.1 18) reduces to: 

(5.1 19) 

The non-linear relationship between the thermal conductivity and water content can be 
described by the empirical approach of McInnes (1981): 

(5.120) 

in which 

0.57 + 1.734d + 0.934, 

1 - 0.744d - 0.494, 
A =  - 2.84, (1 - $,I 

B = 2.8 4,e 

C = 1 + 2 . 6 6  

2 D = 0.03 + 0.74, 

E = 4.0 

and m, denotes the clay fraction. 

For mineral soils with a particle density (p) of 2.65 g/cm3 the following simplification holds 

B = 1 . 0 6 ~ 8  

D = 0.03 + 0 . 1 ~ ~  

If the quartz fraction can be neglected the parameter A reduces to 

A = 0.65 - 0 . 7 8 ~  + 0 . 6 0 ~ ~  
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Density Specific Heat Thermal 

[Mg/m31 [J/g/Kl [ W / M I  
Conductivity 

Quartz 2.66 0.80 8.80 

Clay minerals 2.65 0.90 2.92 

Organic 1.30 1.92 0.25 
matter 

Water 1 .oo 4.18 0.57 

I 

Air (20°C) 0.00 12 1.01 0.025 

Ice 0.92 1.88 2.18 

Tab. 5.2: Thermal properties of soil materials (Campbell, 1985). 

Volumetric 
Specific Heat 

[ M J/m3/K] 

2.13 

2.39 

2.50 

4.18 

0.0012 

1.73 

5.4.2 Influence of the Temperature Field on Degradation and Transport 

Temperature influences degradation and transport in several ways. In the first place, it 
directly affects degradation rates as described in detail in section 3.4. In addition, the 
parameters of the water transport equation are temperature dependent. This effect is neglected 
here. However, the effect on degradation rates indirectly influences the leaching behavior. 
Assuming, that the microbial activity is related to the C,, -profile of the soil, degradation 
decreases with depth. That part of the substance, which willaave surpassed the reactive zone 
will undergo only chemical transformation and will eventually reach the groundwater. Thus 
the amount of substance reaching the aquifer is influenced by the temperature regime in the 
upper soil. This effect is simuated by the following scenarios: a herbicide is applied under 
two different temperature regimes (cf. Fig. 5.30 a) all other factors held constant. In 
Fig. 5.30 b the breakthrough curves under the active soil horizon are shown. Since the area 
under the breakthrough curve is a measure of the total amount of substance it is evident from 
these figures that under lower temperatures more subtance is transported to the groundwater. 

It should be kept in mind, however, that this is only a scenario invented to demonstrate the 
effect. In a real situation, other processes such as volatilazation losses at the surface have 
also to be considered. 
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Fig. 5.30: a) Time courses of temperatures used for simulating the effect of temperature on 
degradation and leaching. Simulation were carried out by using measured daily temperatures and 
temperatures 3°C lower than measured. b) Simulated breakthrough curves below the plowing layer. 
Because the area under the breakthrough curve is a measure of the total amount of substance it is 
evident that under lower temperatures more substance is transported to the groundwater. 



6 Parameters for Water Transport Models 

As mentioned earlier water transport models based on Richards' equation need parameters of 
the retention curve and the saturated hydraulic conductivity of each soil horizon. Different 
methods for deriving these parameters are available: 

a) Measurement of soil hydraulic properties 

Several methods for measuring hydraulic parameters of the unsaturated zone in a laboratory 
and under field conditions have been developed (Campbell, 1974; Klute, 1986). These 
methods can be divided into steady state and unsteady state (dynamic) methods. However, 
they include restrictions, which make their application expensive and time consuming. 
Therefore these methods are applicable only for single investigation sites. Furthermore, due 
to the boundary conditions the laboratory methods are only partly transferable to field condi- 
tions. 

b) Estimating soil hydraulic properties from basic soil data 

This method provides an easy to use method to derive parameters necessary for simulation 
models from available soil information stored in a soil map. This method is explained in 
detai 1 be1 ow. 

c) Calibration of soil hydraulic properties using field measurements 

Often calibration of water transport model based on Richards' equation is performed using 
a trial and error method to determine the hydraulic parameters. By this method the 
parameters are varied until the simulated and the measured time courses agree. Because the 
trial and error method is subjective, no statistical measure can be given concerning the 
quality of the estimates. Performing automatic parameter estimation leads to the question how 
to solve the inverse problem. This will be discussed in section 6.2. 

6.1 Pedotransfer Functions for Water Retention Curves and 
Saturated Hydraulic Conductivities 

An alternative method for estimating soil properties is necessary especially if large 
catchments are simulated from which only basic soil data like soil texture and bulk density 
are available. This method is referred to as pedotransfer function technique (FTF) (Bouma 
and van Lanen, 1987). 

PTFs are algorithms (mostly regression functions) which compute saturated hydraulic 
conductivities and retention data or parameters of the retention curve according to van 
Genuchten (1980) or Brooks and Corey (1964) relation from particle size distribution, organic 
carbon content and pore volume (cf. section 5.1): 

En vironznen Fate Modefling of Pesticides 
From the La hora tory to the Field Scale 
0. Richter,B. Diekkriiger & P. Nortersheuser 
copyright 0 VCH Verlagsgesellschaft mbH, 1996 
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f f 

T2 pedotransfer $2 water transport 
* * 

function model 

basic soil 
properties 

(e.g. texture) 

model parameters 
(e.g. €I&) curves) simulation results 

According to Tietje and Tapkenhinrichs (1993) three different methods are available: 

a) Point regression method 

The water content at certain matrix potentials is computed in this method by means of 
(generally multiple linear) regression analysis (e.g. Husz, 1967; Gupta and Larson, 1979; 
Rawls and Brakensiek, 1982; Puckett et al., 1985). The main disadvantage of this method is 
that for simulation models a curve fitting must be performed after estimating retention data. 
Some of the PTFs do not provide enough data to fit parameters of a closed form equation 
from the retention data (e.g. Husz, 1967). 

b) Physical model method 

This method consists of three steps: 1) calculation of the pore-size distribution from the 
particle size distribution, 2) predicting water content from pore-size distribution considering 
mass conservation and 3) calculating matrix potential from pore-size distribution by means 
of capillarity equation. The transformation between particle size and pore size may be linear 
(Haverkamp and Parlange, 1986), non-linear (Arya and Paris, 1981) or fractal (Tyler and 
Wheatcraft, 1989). 

c) Functional parameter regression method 

Parameters of closed form equations for the relation between y~ and 8 are estimated using 
regression techniques (e.g. Cosby et al., 1984; Rawls and Brakensiek, 1985; Vereecken et al., 
1989). 

The quality of 13 different pedotransfer functions were analyzed by Tietje and 
Tapkenhinrichs (1993). They compared measured with estimated soil hydraulic properties for 
more than loo0 soil samples from Northern Germany. The authors differentiated between 
PTFs which compute water content at distinct matrix potentials, methods based on physical 
principles and PTFs which estimate parameters of a retention function. 

PTFs which compute the parameters of retention and conductivity curves are directly 
applicable in simulation models. If a PTF only computes single retention data a following 
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curve fitting has to provide the parameters necessary for the simulation models. This 
presumes that a sufficient amount of retention data were estimated which is not true in all 
cases. Furthermore some of the PTFs only compute retention curves and not saturated 
conductivities. In this case not all parameters necessary for modelling are available. 

- 

In order to recommend a PTF for simulation purposes it is important to know on which data 
set the PTF was established and calibrated. If possible it would be most satisfactory to find 
a PTF applicable to all texture classes. Although it can be assumed that the prediction of a 
PTF would be more accurate if information on soil genesis is included (Wagenet, 1990) only 
slight dependence of the performance on soil type was reported by Tietje and Tapkenhinrichs 
( 1993). 

RETENTION 

-ESTIMATION BY PTF 3f DATA 

In their comparison Tietje and Tapkenhinrichs found the PTF of Vereecken et al. (1989) to 
be the best applicable for all soils even for high organic matter contents. Nevertheless, 
analyzing the mean differences and the root of the mean squared differences computed by 
Tietje and Tapkenhinrichs it can be found that some of the PTFs show a bias in the comput- 
ed retention curve. This is illustrated in Fig. 6.1 in which measured retention data of a loamy 
soil and the estimated retention curve according to Rawls and Brakensiek (1985) is 
compared. This figure shows that the shape of the retention curve is described correctly 
which means that the water capacity (Eq. 5.7) of the estimated curve is similar to the water 
capacity of the data. Although the absolute differences in water content are unimportant for 
calculating the water fluxes it may lead to a systematic bias in calculating the leaching of 
solutes due to the effect the water content has on the pore water velocity and the degradation 
process. 
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Fig. 6.1: Measured retention data and retention curve estimated by the pedotransfer function of Rawls 
and Brakensiek (1985). The FTF of Rawls and Brakensiek is known to underestimate the water content. 

Because it is difficult to forecast the effects of the differences between measured and 
predicted conductivity and retention data on the water fluxes it is necessary to evaluate the 
applicability of PTFs in simulation models. Diekkriiger (1992) used those PTFs for 
simulating water fluxes which in the study of Tietje and Tapkenhinrichs yielded acceptable 
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results. He compared the simulation results for a three years period of time using PTFs with 
the simulation results obtained by using calibrated parameters. The calibration was performed 
by minimizing the differences between simulated and measured time courses of soil suction 
and water content. Because some of the PTFs work well only under certain conditions (e.g. 
only for sandy soil) it was decided to use simulations from a clayey soil, a loamy and a 
sandy soil in this comparison. 

From the 13 FTFs analyzed by Tietje and Tapkenhinrichs (1993), Diekkriiger (1992) 
recommended only two for the application in simulation models: Vereecken et al. (1989) and 
Rawls and Brakensiek (1985). Vereecken et al. (1989) estimate the parameters of the van 
Genuchten (1980) approach for the retention curve, the parameters of the Gardner (1958) 
approach for the unsaturated hydraulic conductivity and the saturated hydraulic conductivity. 
The disadvantage of this approach is that Vereecken et al. fixed m to 1 in Eq. (5.14) which 
may lead to values for n c 1. In this case Eq. (5.14) becomes singular for ty + 0. This 
causes problems in simulating the transition from the unsaturated to the saturated situation. 
Rawls and Brakensiek estimate the parameters of the Brooks and Corey (1964) relation and 
the saturated hydraulic conductivity. In a former study the PTF of Rawls and Brakensiek was 
already applied successfully to the simulation of water fluxes on different sites in Northern 
Germany using the simulation model OPUS (Diekkriiger et al., 1991). The disadvantage of 
this PTF is that the water content is underestimated permanently (about 0.05 cm3/cm3), 
especially for clayey and loamy soils and soils with high organic carbon content. 

6.2 Inverse Problems in Partial Differential Equations 

Several methods have been developed for the identification of the hydraulic parameters under 
laboratory conditions by solving the inverse problem. These methods require measured data 
such as water flux, water content or soil suction. Many authors are using water flux data 
from soil columns (one-step outflow experiments), where the boundary conditions are clearly 
fixed (Hornung, 1983; Parker et. al., 1985 a,b; Passiora, 1976; Valiantzas and Kerkides, 
1990; Zachmann et. al., 1981 a,b). Others are using water contents and soil suction data 
measured in time and space (Dane and Hruska, 1983; Kool and Parker, 1988; Milly, 1987). 
All methods have shown that the identification of hydraulic parameters of the Richards’ 
equation is feasible although the problem is frequently ill posed. I11 posedness is a 
mathematical technical term meaning that the solution of the mathematical problem is not 
unique. Nevertheless, it is not shown whether the optimization procedure is applicable to 
field conditions. 

In the following a method for estimating hydraulic parameters from field measurements is 
introduced. This method is tested using measured water contents and soil suction data from 
a five year period from an investigation site (loamy soil) in northern Germany. We 
investigated whether these measurements offer enough information for calibrating the 
hydraulic parameters by solving the inverse problem. Furthermore, we studied whether the 
estimated parameter vectors are reliable in comparison with water retention curves and 
conductivity curves obtained by laboratory methods and estimated using a pedotransfer 
function (Rawls and Brakensiek, 1985). 
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The Estimation Problem 

Given are 
i)  

i i )  

iii) 

iv) an error structure. 

a dynamical model in form of a partial differential equation with parameter vector 
Q, = ($1  , ... , $& and with initial and boundary conditions, 
time courses of measured state variables, e.g. water content and/or soil suction in one 
or several depth layers, 
a performance criterion which measures the deviations between model predictions and 
observations and 

The mathematical problem then is to find a parameter vector Q, which minimizes the 
performance criterion chosen. 

Performance Criteria 

The choice of the performance criterion has a large influence on the convergence of the 
optimization procedure. The most widely used criterion is the weighted sum of squared 
deviations between predicted and observed values. 

with weighting factors w . .  . The y i j  denote measurements taken at time 3 in depth layer i and 
j i j  denote the solution ofthe boundary value problem. 

In water transport models time lags of several days between observed and simulated time 
courses of the soil suction frequently occur and are acceptable. In this case the application 
of the least squares criterion results in large residual sum of squares and in a bad 
performance of the optimization procedure. Convergence is frequently not achieved at all or 
the procedure converges to a "wrong" minimum yielding parameter values which cause the 
trajectories to run through the mean values of the data. 

It is therefore necessary to employ alternative measures of deviations between model 
predictions and measurements (cf. Fig. 6.2). One possibility is to use the euclidean distance 
between the simulated curve and the measurements: 

for any depth i F is given by 

F = ((yi - j ( Q , ) ) 2  + ( t j  - ?(Q,)) 2 )  l'* 
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where ? and j ,  are the coordinates of the point with minimum distance from the data point 
y(t) .  The disadvantage is that in cases where large amplitudes at a small temporal scale are 
measured this method may try to minimize the wrong deviations, e.g. to minimize the 
deviation between an increase in measurements and a decrease in simulation results. 

The third criterion is the difference of the areas under the simulated and measured time 
curves where the time course of measured data is approximated by a polygon: 

r 1 

in which jQ denotes the polygon of the measurements in depth layer i. 

I b 
method 1 method 2 method 3 t 

Fig. 6.2: Comparison of different optimization criteria. Criterion 1:  deviation between simulation and 
measurement at time t .  Criterion 2: deviation between simulation and any measurement in a given time 
span. Criterion 3: area between simulation and measurements. 

In a study of Arning et al. (1996) it was shown that this criterion gives the best results when 
time lags occur. 

The identification problem is thus to find a parameter vector Q, such that 

where U denotes the admissible parameter space and Q, = (K,, 8,, 8 ,  a, n). If data sets of 
water content 8 and matrix potential w are used simultaneously for the estimation, the total 
deviation is calculated as a weighted sum of both performance criteria: 

Ltotal = LW + gL0 (6.6) 

where g denotes a weighting factor. The weighting factor is necessary to compensate for 
different orders of magnitude between water content and soil suction. 
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In order to reduce the programming effort it is necessary to combine commercial statistical 
software with simulation models. In the example discussed below we used: 

the Deterministic Site Model (DESIM, Diekkriiger et al., 1982), which solves 
Richards' equation numerically using the van Genuchtenhlualem parameterization 
(1980), cf. section 5.1. 
the model AMBETI (Braden, 1995), which solves the upper boundary condition 
(evaporation and interception) and the transpiration using the Penman-Monteith 
equation (Penman, 1948; Monteith, 1965). AMBETI is connected to DESIM by the 
sinWsource term of Eq. (5.1). 
the subroutine AR of the statistic software BMDP (Dixon, 1981) for solving the least 
square problem by using a derivate-free algorithm (Ralston and Jennrich, 1978). This 
statistical software was already used for estimating parameters in ordinary differential 
equation (cf. chapter 4). 

The models DESIM and AMBETI are interconnected in such a way that both models run 
simultaneously and exchange their results. Most statistical program packages provide 
capabilities for the solution of non-linear regression problems. The program package BMDP 
offers an interface for a user-written FORTRAN subroutine for derivate free non-linear 
regression problems. The algorithm is based on the Gauss-Newton scheme. 

By means of this interface, the water transport model (DESIM and AMBETI) is linked to the 
BMDP routine AR. From the deviation between simulation results and measurements BMDP 
calculates a new parameter vector which is afterwards used in the next simulation. This 
iterative scheme stops when a given number of iterations is reached, the performance 
criterion is less than a given value, or the performance criterion does not change anymore. 

6.3 Worked Examples 

In a study Arning et al. (1995) investigated whether it is possible to estimate all five 
parameters of the van GenuchtedMualem functions (Eqs. (5.14) - (5.15)) from field 
measurements. In a first step the authors used "error-free'' measurements of a non-layered soil 
generated by means of a simulation model. The range of these measurements were limited 
to the range of the field measurement devices (e.g. 1000 hPa for soil suction). They showed 
that a unique solution can only be obtained when the "measurements" are exact. If a normal 
distributed error superimposes the "measurements" no unique solution can be gained. This is 
due to the fact that the hydraulic relationship is significantly influenced by the saturated soil 
properties. Because saturation rarely occurs under field conditions the estimated van 
Genuchten parameterization is reliable in the range of measurements (e.g. 100 - 1000 hPa) 
but not for wet or dry conditions. This is shown in Figs. 6.3 a,b where the deviation of the 
estimated functions derived from erroneous measurements is compared with the soil 
properties used to generate the "measurements". For the measurement range the curves 
compare well but especially for wet conditions great differences occur. In order to obtain a 
unique solution it is necessary either that the range of measurements covers the whole range 
from saturation to the permanent wilting point or that soil properties at saturation or for dry 
conditions are determined by other methods. 
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Fig. 6.3: Comparison of a) the retention curve and b) the conductivity curve used for generating "field 
measurements" with retention curves obtained by solving the inverse problem. The field measurements 
are superimposed by an error of 2 and 5 %. For the parameter estimation the range of measurements 
is constrained from 100 to loo0 hPa. Note that for the range of measurements the estimated curves are 
reliable but not for wet conditions. 

In a second step the authors studied whether continuous field measurements contain enough 
information to determine hydraulic properties for a layered soil profile. They used 
measurements of soil suction and water content from two different sites with loamy and 
sandy soils consisting of five and four horizons respectively. This means that up to 25 
parameters have to be estimated simultaneously from the field measurements. 

A further objective of the investigation of Arning et al. (1995) was the study of the influence 
of different measurement periods on the estimates. The qualities of the estimated sets of 
parameters were verified by comparing long-term simulations of about five years with field 
measurements. For all calibration periods it was possible to find a set of parameters which 
computes an acceptable agreement with the measurements. This is illustrated for one example 
in Figs. 6.4 a-d. 
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Fig. 6.4: a) Precipitation data and b-d) simulated and measured soil suction for the calibration period 
2/1988 - 8/1988 for the depths of b) 40 cm, c) 100 cm and d) 210 cm. 

When the estimated set of parameters is applied to a long-term forecast often reliable 
simulation results are obtained (cf. Figs. 6.5 a-e and Figs. 6.6 a-e) for the upper and lower 
part of the soil profile. In the root zone a large range of soil suction and water content was 
measured while in the lower part of the profile only wet condition due to a perched water 
table occur during the whole period. Because the temporal variability of the state variables 
is low below the root zone the estimates for this layer exhibit high standard deviations. 
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Fig. 6.6: a) Precipitation data and b-d) simulated and measured soil suction for a five years period of 
time for the depths b) 40 cm, c) 80 cm and d) 150 cm. The parameters were estimated by solving the 
inverse problem employing criterion 3. 

This demonstrates that it is indispensable to estimate the saturated properties of the soil in a 
different way. As described in section 6.1 pedotransfer functions offer the possibility to 
estimate the soil hydraulic properties from soil texture. This would help to fix the wet part 
of the conductivity and retention curves in order to obtain a unique solution. 

The performance of different sets of parameters can be evaluated by comparing the water 
balances. This is shown in Tab. 6.1 where groundwater recharge and evapotranspiration are 
given for a simulation period of five years. The hydraulic properties were measured in the 
laboratory, estimated using the pedotransfer function of Rawls and Brakensiek (1985) and 
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[ml Lab 

estimated by solving the inverse problem for two different calibration periods. The 
differences between these simulations are small. It has to be noted that the evapotranspiration 
exerts the largest influence on the model outcomes. In this study the authors assumed that the 
evapotranspiration model is calibrated correctly because the most important parameters were 
determined in lysimeter studies. However, it is difficult to measure the temporal and spatial 
variable root length. Therefore the computed evapotranspiration may also be uncertain. 

PTF Inverse Problem Inverse Problem 
P2 a1988 - 9/1988 P5 12/1990-6/1991 

Nevertheless, considering the spatial and temporal variability of soil properties and boundary 
conditions the results of the study of Arning et al. (1995) are promising because they showed 
that plausible estimates of hydraulic properties are feasible. Assuming a further improvement 
of the measurement devices inverse modelling may be an appropriate method for determining 
model parameters. 

Groundwater 
Recharge 

Evapo- 
transpiration 

Evaporation 

Transpiration 

Tab. 6.1: Simulated water balances [mm] for the period 1/1987 - 12/1991 using parameters measured 
in the laboratory, derived from a pedotransfer function and by solving the inverse problem for two 
different periods. 

579 538 605 5 10 

2343 2391 2498 2519 

921 1066 1080 1060 

1416 1331 1418 1459 
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7.1 Transport Processes in Random Environments 

The models developed in the preceding chapters were derived under the assumption of 
homogeneous environments. As was pointed out before, model development has to start from 
simple situations, to which elementary physical and chemical laws or basic biological models 
can be applied. The resulting models are deterministic at scales larger than elementary 
volumes. Adequate mathematical structures are ordinary and partial differential equations. For 
applications, initial value and boundary value problems have to be solved. The advantage of 
this approach is that one is able to study the behavior of the system at a more general level 
by mathematical means. It is desirable to start from classes of problems, which are amenable 
to analytical solutions describing simple experimental situations. Analyses of this kind, 
together with laboratory experiments, are important to test the validity of the underlying 
physical, chemical and biological mechanisms. 

However, physical properties and chemical composition of real soils are inhomogeneous. 
Frequently, this inhomogeneity is not simply a noise, which can be dealt with by averaging, 
it is essential for the transport properties of a given soil. Let us consider water flow through 
a medium exhibiting a large range of water conductivities. If the conductivities are spatially 
correlated, then it is highly probable that interconnected regions of low and high 
conductivities occur giving rise to a random flow pattern with zones of preferential flow 
(cf. section 7.3.2, Fig. 7.14). 

Should one abandon therefore the deterministic approaches? We are faced with the dilemma, 
that deterministic models function well at the laboratory level under homogeneous conditions 
and that homogeneous conditions do not prevail in the field. A possible way out of this 
dilemma is the incorporation of the statistical variation of soil parameters into deterministic 
process models. 

This demands the development of stochastic models of spatial variability. To this end, soil 
parameters are conceived as the realization of a random spatial field. If it is possible to 
identify the rules of this random process, one is able to generate patterns according to these 
rules. The rules assign a value of the parameter e.g. water conductivity to each point in 
space. The patterns thus obtained are possible realizations of the underlying random process. 
In a subsequent step, the deterministic transport equations are solved for a given realization. 
The solutions of the transport equations are then, via the random parameter field, realizations 
of a random process. 

Each stochastic simulation creates a pattern, which is not exactly identical to any existing 
pattern - the probability to obtain an identical pattern is even zero for continuous processes -, 
but which is similar to existing patterns. Furthermore, by generating a large number of 
realizations, one is able to study the properties of the statistical distribution of model 
trajectories. 

En vironznen Fate Modefling of Pesticides 
From the La hora tory to the Field Scale 
0. Richter,B. Diekkriiger & P. Nortersheuser 
copyright 0 VCH Verlagsgesellschaft mbH, 1996 
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At larger scales, the parameters have to be aggregated into so called effective parameters 
representing a subunit of land in a yet to be defined way. Here we are confronted with the 
problem of scaling. The notions scaling, upscaling and downscaling are used in different 
ways in the literature. Frequently scaling is used in the sense of regionalization. Norman 
(1993) distinguishes between "Integration" and "Scaling". Integration is understood as an 
"orderly process of bringing component parts together as a whole" whereas "Scaling implies 
an intuitive leap that provides a quantitative connection between distant phenomena - a short 
cut." King (1991) defines "scaling up" as "the translation or extrapolation of ecological 
information from small local scales to larger landscapes and regional scales". Norman's 
definition is very ambitious because it demands a new theoretical concept. In addition it 
supposes that new phenomena will emerge at larger scales. This is not necessarily the case. 

Furthermore, scaling is confounded with statistical problems caused by spatial heterogeneity 
and by missing information. In conclusion one can state that there does not exist a general 
theory which allows to derive rules for scaling for the particular problem under study. 

In the following we will approach this problems from different angles trying to elucidate 
different aspects of scaling. 

7.2 The Concept of Random Soil Columns 

7.2.1 Introduction of Variability into Deterministic Models 

In this section we shall introduce a simple method to combine variability with deterministic 
models. The underlying concept bases on the notion of an ensemble of uncorrelated soil 
columns each with a different set of soil parameters. This implies'that lateral flow can be 
neglected. Model parameters are sampled from statistical distributions yielding a distribution 
of model trajectories. This method was already introduced in section 3.2.3 for distribution of 
the decay parameter k. In technical terms, this method transforms a density function (from 
which the parameter is sampled) of a parameter into a density function of a concentration (or 
water content) via a deterministic model. This technique is mostly applied to one-dimensional 
transport models. Note that this method is completely lacking any spatial aspect. 

Let us consider as an example the analytical solution of the CDE Eq. (5.63b) for the 
boundary conditions as given in Eq. (5.63a). Model parameters are the retardation factor R, 
the coefficient of hydrodynamic dispersion D, which is proportional to the pore water 
velocity, and the rate constant k for first order decay. Assume that the parameter set for each 
soil column is a realization of the joint statistical distribution of these parameters. Then the 
expectation of the concentration profile at any time t is given by 

m m m  

E[c(x, t ) l  = j c(x,t,R,D,k)f(R,D,k)dRdDdk 
R = O  D=O k=O 

(7.1) 

with c(x, t, R, D, k) given by Eq. (5.63b). Since c depends in a nonlinear way on the 
parameters 
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i.e. the expectation of c(x, t, R, D, k )  cannot be obtained by simply inserting the expectations 
of the parameters into the formula for c. 

The calculation of the expectation Eq. (7.1) requires the knowledge of the joint distribution 
function of the parameters R, D and k .  For single parameters, such as the Kd-value, skewed 
density functions were established which can be modeled by lognormal or gamma 
distributions. However, the assessment of the type of a distribution function requires large 
sample sizes. Often, only the first and second moment of the distribution (mean and variance) 
are known. Therefore, it is of practical importance to investigate, whether the shape of the 
expectation curve is similar to the shape obtained by inserting the mean parameter values into 
the original function. In section 3.2.3 it was shown for a simple first order decay model and 
a gamma distributed k-value, that the mathematical form of the expectation curve differs 
from the mono-exponential decay curve. 

Let us consider as an example the case that only the parameter D is random with all other 
parameters held fixed. Certainly the type of distribution function chosen will have an 
influence on the expectation curve. The above integral (Eq. 7.1) will be evaluated for the 
uniform, the normal, the lognormal and the gamma density function (for a brief description 
of some frequently used distribution functions cf. appendix A.2). For a gamma density 
Eq. (7.1) takes the form 

The notation c(x,t,DIR,k) reads "for R and k fixed". The parameters of the gamma- 
distribution are related to the expectation and variance by 

r r E [ D ]  = - and V [ D ]  = - 
h h2 

If one wants to investigate the influence of the form of the distribution function on the 
expected profile, one has to ensure that the first two moments of the distribution functions 
are identical. For given expectation j . ~  and variance o2 the parameters of the gamma 
distribution are 

P L  P 

o 2  o 2  
r = -  and h = -  

The parameters of the uniform and lognormal distribution are adjusted accordingly. In the 
case of the lognormal distribution a nonlinear equation system has to be solved. 

Figure 7.1 shows a plot of the density functions of these distributions. In the case of the 
normal distribution, a truncated version has to be used, since the parameter D can take only 
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positive values. 

40- 

with normalization factor 

DISTRIBUTION 
I -  \ 

' ', - LOGNORMAL - NORMAL ' ' _  UNIFORM + GAMMA 
I ' c  

m 

N = exp[ - @  - T ) 2 ] d D  

0 2 0 0  

0 0.02 0.04 0.06 0.08 0.1 

D r m w  
Fig. 7.1: Uniform, normal, lognormal and gamma density functions (cf. appendix A.2) for the 
parameter D. Because D can take only positive values, the normal distribution is truncated at D = 0. 

The subsequent plots (Figs. 7.2 a-d) show the time courses of the expected concentration 
(Eq. (7. I)) together with the curve obtained by the mean parameter curve. Surprisingly, the 
shapes of the expectation profile are very similar, although the underlying density functions 
are rather different in shape. 

Obviously, the variance of the distribution is more important than its form. Figure 7.3 shows 
a series of expectation curves obtained for increasing variance. 

Although these results cannot be generalized, they show us to which degree the ensemble 
curve is represented by the "mean parameter" curve, In practice transport models are applied 
to real soils and not to a single soil column. Usually only few measurements are available. 
Frequently only the soil type is known and model parameters are derived from pedotransfer 
functions or simply by rules relating soil types to likely parameter values. The question is 
then how well the fieldplot under study is represented by this single parameter value. In the 
above example the answer for the parameter D is that the expectation may be used as a 
representative parameter and that the expectation curve is robust against the shape of the 
density function. The decisive parameter is the variance of the distribution. 
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Fig. 7.2: Expectation of time courses of concentrations at a given depth obtained for different 
distributions of the parameter D. For comparison, the curve obtained by inserting the mean value of the 
parameter D into the model equations is also shown. The underlying distributions are a) uniform 
distribution b) truncated normal distribution c) lognormal distribution d) gamma distribution. 
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Fig. 7.3: Influence of the variance of the distribution of the parameter D (lognormal distribution) on 
the expectation of the time courses of concentrations. 
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The next problem concerns the computation of the variance of the concentration. By taking 
E[D]  + oD and E[D]  - oD as limiting parameters a first impression of the variability can be 
obtained. However, these concentration curves are not the true variances of the 
concentration c. Since c depends on the random parameter D it is itself a random variable 
with density functionfC(c). In order to evaluate the formula for the variance of c 

%ax 

V [ c ]  = (c  - E [ ~ ] ) ~ f ~ ( c ) d c  
0 

(7.5) 

one has to derive the density function f C ( c )  from the probability density function f@($) of the 
parameter $. Let $ be a continuous random variable with probability density function f@($) 
and g($)  a one-to-one mapping with continuous differentiable inverse function $ = g- (c). By 
application of a standard theorem from calculus on the change of variable in a definite 
integral the probability density function of c = g($)  is given by 

1 

Let us consider as an easy example a first order degradation model with random kinetic 
parameter $. With 

Eq. (7.6) becomes 

For a Gamma density (Eq. (3.94)) one obtains 

(7.7) 

(7.8) 

This density function is shown in Fig. 7.4 for some values of t. Figure 7.5 shows the time 
courses of E[c(t)]  and E[c(t)] f (V[C(~)])”~. It is instructive to compare these curves with 
those obtained by inserting E[$],  E[+] - o+ and E[$] + c@ into the original model (Fig. 7.6). 
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Fig. 7.4: Density function of concentration c at three different times. 
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Fig. 7.6: These curves are obtained by inserting the expectation of the parameter, E[+] ,  E[+] + o4 and 
E[+]  - om into a mono-exponential decay model. 
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The results of this analysis can be summarized as follows: 

1. The expectation curve markedly differs from the mean parameter curve. This leads to a 
systematic underestimation of concentrations. Relative differences increase with time. 

2. Standard deviations obtained from the transformed density function are smaller than those 
obtained from inserting the mean and standard deviation of the parameter into the model. 

7.2.2 The Latin Hypercube Method 

The examples of the foregoing section have shown that the computation of higher sample 
moments (variance) by direct integration demands the transformation of the density function. 
An analytical expression of the transformed density function can be obtained in only few 
cases. In most practical applications, the boundary value problems are not even amenable to 
analytical solutions. 

Problem statement: 

Given: i) 

ii) 

a deterministic dynamical model in form of a boundary value problem with 
parameter vector CP 
the density function of the parameter vector CP, f(0) 

The mathematical problem is to find estimators for the moments of the distribution of the 
state variables determining the dynamical model. The state variables, which are a function of 
time and of space, are the analytical or numerical solution of a boundary value problem. 

An intuitive appealing method is to generate a random sample of the parameter vector and 
to derive estimators from the sampling statistics of the model output. This approach is 
referred to as Monte Carlo method. In many practical situations the number of replications 
is limited by the running time of the numerical code. Therefore sampling techniques have 
been developed, which are more efficient than simple random sampling (McKay et al., 1979). 
These are stratified random sampling and Latin hypercube sampling. Let S denote the 
sampling space of the parameter vector CP. Stratified sampling is performed by partitioning 
S into disjoint subsets and to obtain random samples from each subset. Latin hypercube 
sampling is an extension of stratified sampling. Assuming that the components of CP are 
uncorrelated, the technical procedure is as follows: 

i) The range of each component of the random vector CP, CPp is partitioned into n intervals. 
The intervals are spaced such that the probability that CPi falls into any interval is l/n. The 
intervals can easily be constructed by means of the distribution function of CPi (cf. Fig. 7.7). 

k Let k denote the number of components of CP. The sample space is thus partitioned into n 
cells. 
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Fig. 7.7: Generation of realizations of random variables by means of its distribution function. 

ii) Select n cells such that all intervals are represented for each component. This is achieved 
by the so called latin hypercube sampling method. The rationale behind this method is 
explained by a two dimensional example with n = 5.  The sample space is thus partitioned 
into 25 cells. Suppose now that a sample of size n = 5 is to be obtained. A sampling scheme 
with the above properties can be constructed in the following way. 

Let the rows and columns of a 5 x 5 square represent the partitions of component and O2 
respectively. The restriction that each interval must be represented in the sample is equivalent 
to the condition that each row and each column is sampled once. Let a, b, c, d, e denote the 
cells of the first column of the square. Then subsequent columns are constructed by 
permutation. Figure 7.8 shows a possible arrangement. Feasible random samples are obtained 
by selecting all cells with the same label. It is easily seen from Fig. 7.8 that these cells occur 
once in each row and in each column. Such an arrangement is called a Latin square. The 
number of possible arrangements increases with the size of the square. For n = 3, there exist 
only 12 possible Latin squares, whereas for n = 5 the number of possible arrangements 
amounts to 161 280. So it is always possible, to choose a Latin square at random. 

Fig. 7.8: Latin square arrangement for a two-dimensional sampling problem. 
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This method ensures that each component of the random vector 0 has all partitions of its 
sample space represented and that the components are properly matched. Extension to more 
than two dimensions leads to Latin hypercubes. 

In the above example all components could be easily matched (n = 25 replications). In 
practice, the typical number of parameters is in the order of 5 to 10. Consider the case of 5 
parameters with 10 intervals for each parameter. Typical computation times for water 
transport models in the unsaturated zone including crop growth and evaporation over a 
vegetation period are in the order of 1 min on an IBM-3090 computer. If for one replication 
all lo5 partitions of the parameter space are simulated this would amount to about 70 days 
computing time. It is obvious that the computer time is prohibitively large and that only a 
limited number of partitions can be used. 

Frequently, parameters are correlated. In the case of a multivariate normal distribution, i.e. 

correlated random variables are generated as follows: 

In the first step n realizations y l ,  ... , yn of a standard normal distribution are generated. In 
the second step, these are transformed to the vector 

X = L Y ’ + y  

where L denotes the Cholesky decomposition of the variance covariance matrix Z, i.e. 

L L ~ = C  

The Latin hypercube sampling method has several advantages over random sampling and 
stratified random sampling, which was shown by McKay et al. (1979), who proved the 
following theorem: 

Let denote Y ( $ ~ ,  ..., $$ the state variable (solution of a boundary value problem) as a 
function of the parameters ..., $p. Let the parameters be a p-variate random variable with 
known probability density function. Let TL ,TR and Ts denote the estimators of the mean of 
Y obtained by Latin hypercube, random sampling and stratified random sampling 
respectively. 

Then: 

i) all three estimators are unbiased, 
ii) if y(ql, ..., $& is monotonic in each of its arguments then QTL1 I QTSl I v[TR]. 

Let us resume as example the convection-dispersion-equation. In the foregoing simulations, 
only the parameter D was taken as random. Since the coefficient of dispersion is linearly 
related to pore water velocity v, D = (11 v (cf. Eq. (5.37)), its randomness may be due to 
either the randomness of the coefficient 01 or the randomness of pore water velocity. In the 
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example at the beginning of this section it was (tacitly) assumed that v is constant. However, 
the pore water velocity is related to soil properties (hydraulic conductivity), which are 
random. In the following simulations, both parameters, v and a, are taken as lognormally 
distributed. 

0.03 

0.025 - 
z 
0 s 0.02- 
a + z 8 0.015- 
z 

Figure 7.9 shows mean breakthrough curves obtained by mean parameters, random sampling, 
and Latin hypercube sampling respectively. 

SAMPLING METHOD 
.' '. -MEAN -LATIN HYPERCUBE - RANDOM . .  . .  . .  

. .  . .  . .  . .  
. .  . .  

7.3 Microscale Variation of Spatial Structure 

7.3.1 Random Spatial Processes 

As was already stressed the concept of uncorrelated soil columns is based on the assumption 
that lateral flow can be neglected. This assumption is valid, if the soil properties are 
homogeneous within a soil column. If the soil consists of different layers, this assumption is 
made for each layer. Each soil column is described by a one-dimensional transport model. 
But what if microscale variation creates heterogeneous soil structure within a layer? 
Parameter fields can be modeled as realizations of spatially correlated random processes 
(cf. section 2.3). Consider for instance the hydraulic conductivity. If this parameter is the 
realization of a second order stationary stochastic process with a gaussian shape variogram 
then a realization creates connected zones of different conductivities. If the correlation length 
is in the order of magnitude of the column under study then it is most likely that connected 
regions of high conductivity will emerge. In these regions water flow and hence transport are 
facilitated. Obviously one-dimensional models are not capable of simulating these effects. 
How can one handle this kind of heterogeneity? A possible procedure involves the following 
steps: 
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1. Identification of the spatial random process and its parameters, e.g. the correlation length. 
2. Generation of realizations of the process. 
3. Three dimensional simulation of water and matter transport over realizations of the random 

4. Assessment of the statistical properties from a large number of realizations. 
parameter field. 

Let us assume that the basic stochastic process is given by 

$(?) = p + a(?) + E (7.9) 

where p denotes the general mean, w a second order stationary process and E a white noise 
(uncorrelated random variable). Stationarity ensures that 

(7.10) 

The properties of the second order process are determined by the form of the variogram. In 
order to solve deterministic transport processes over a random field it is necessary that the 
random field is differentiable. This is ensured, if the slope of the variogram in the origin is 
zero as is the case for the Gaussian model. 

(7.11) 

The parameter a characterizes the correlation length. Figure 7.10 shows a plot of a Gaussian 
variogram function. Figures 7.1 1 a-c show realizations of a random field for two different 
correlation lengths obtained by the turning bands method (cf. section 2.3; Journel and 
Huijbregts, 1989). 
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Fig. 7.10: Gaussian, spherical and exponential variogram functions. 
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Fig. 7.11: Realization of a spatial random field of hydraulic conductivity K, with three underlying 
variogram models: a) gaussian model, b) spherical model and c) exponential model. The realizations are 
generated by the turning bands method (Journel and Huijbregts, 1989). The parameters are chosen such 
that all variograms have the same sill and the same range (range = 87 cm, Vur (Ig(K,)) = 0.23, 
E[KJ = 20.97 cm d-I). 
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The surfaces generated by the process are smooth and it is clear by intuition that these 
surfaces are differentiable. For variograms with a nonzero derivative in the origin rather 
coarse surfaces are generated, which are not differentiable. Richards' equation (Eq. (5 .5) )  for 
water transport is no more valid, if the water conductivity is not a differentiable function of 
the space coordinates. Therefore only those random processes are admitted which yield 
L2-continuous (differentiable) surfaces. 

7.3.2 Transport Processes over Realizations of Random Fields 

Additional notations: 

aGkl 
L : characteristic length [L] 

KG 
kij  
V : kinematic viscosity [L2R] 
B 

T ~ .  
B'kG 

Under unsaturated conditions, the variability of water conductivity and retention curves have 
to be taken into account. The parameterization of van Genuchten (1980) and Mualem (1976) 
(cf. section 5.1, Eqs. (5.14) and (5.15)) depends on the five parameters K,, a, n, 8, and 8,. 

: elements of dispersivity tensor [l], resp. [L] 

: elements of conductivity tensor [l], resp. [WT] 
: elements of permeability tensor [l], resp. [L2] 

: conductance of a medium channel [ W ]  
: elements of tortuosity tensor [I], resp. [ L ~ I  
: oriented conductance of a channel [L/T] 

The water transport equation in the y~ formulation (Eq. (5.8)) depends on the capacity 
function C ( ~ I ) ,  which is the derivative of the retention function with respect to y ~ .  For the van 
Genuchten parameterization one obtains 

n - 1  c(y~) = - ae = 8, (n - 1)alayII (7.12) 
JyI (1 + layI1")' - 

where 8, = 8, - 8,. Therefore the water transport depends only on the four parameters 
K,, a, n and Ow, which are written in vector form as 

Z(2) = 

2 is the realization of a vector random field. In the stationary case the parameters reduce to 
K,, a and n. 

In the following example, which is taken from a paper of Tietje and Richter (1993), it is 
assumed that all parameters are lognormally distributed and that they are uncorrelated. Figure 
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7.12 shows the realization of the spatial parameter field of the parameter K,, Fig. 7.13 shows 
the resultant flow field. 

Fig. 7.12: Realization of a random spatial K,-field. 

Fig. 7.13: Flow field over this realization of a random spatial K,-field. 

The three-dimensional transport of a substance depends on the dispersivity tensor 
(Eq. (5.90)). In a random soil, one has to generate a random tensor field. The components of 
the dispersion tensor depend on the components of the velocity field of the water and, in 
isotropic soils, on the longitudinal and transversal dispersivity coefficients aL and aT To 
complicate matters, these coefficients are correlated to parameters of the water transport. In 
the following simulation, it is assumed that these coefficients are inversely proportional to the 
square of the hydraulic conductivity. 
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1 aL a - 
K 2  

(7.13) 

Thus regions of high conductivity are assumed to exhibit low dispersivity. The heuristic 
argument goes as follows. Both, the tensor of hydraulic conductivity and the dispersivity 
tensor are related to the permeability tensor as was shown by Bear (1969): 

(7.14) 

Both the elements of the permeability tensor and the elements of the dispersion tensor are 
related to the elements of a tensor BT9 This tensor reflects the microscopic configuration of 
the medium. B denotes the conductance of an elementary medium channel and Tij denotes the 
medium’s tortuosity. According to Bear and Vermijt (1987) the elements of the permeability 
tensor are related to the mean values of BTij 

and the elements of the dispersivity tensor are related to the variance of BTij 

(7.15) 

(7.16) 

From this equation, the above postulated inverse relationship between the conductivity and 
dispersivity coefficients becomes plausible. In isotropic soils, the dispersion tensor simplifies 
to the form given by Eq. (5.90), which depends on the two parameters aL and aT 

From the point of view of the stochastic process, the transport model acts as transformation 
of the random parameter field into a spatio-temporal random concentration field c(x,t) 

(7.17) 

In the study of Stock (1995) stationary flow and water content fields were generated by 
solving the water transport equation over a random field of K,-values. In addition a random 
field of the dispersivity coefficients was generated under the above assumption of a inverse 
proportional relationship between these coefficients and K,. Figure 7.14 shows the realization 
of inversely correlated K,- and aL-fields. 
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Fig. 7.14: Realization of inversely correlated K,- and aL-fields. L and H mark the location where the 
lowest and highest values occur. 

Figures 7.15 a-c show the development in time of a vertical cross section of the concentration 
field for a tracer for the following initial and boundary conditions: 

(.,y,z) E G c(x,y,z,t = 0) = 0 

c(x,y,z,r = 0) = c0 i f  z = 0, i.e. on the sur&ace 

Each figure also shows the mean concentration profile and the profile obtained from a 
hypothetical bore hole in the center of the region. 

For degradable substances a decrease of the degradation rate with depth has to be taken into 
account. This effect is due to the decreasing organic matter content, which is closely related 
to the degradation capacity and to the decreasing oxygen content of the soil (not included in 
the model). Figures 7.15 a-c show the development in time of a vertical cross section of the 
concentration field generated by the above initial conditions for a linear decreasing rate 
constant. The spatial heterogeneity has a large influence on the amount of the substance 
passing the reactive zone. Figures 7.16 a-c show the fate of a fast degradable substance, 
which nearly completely disappears during its passage through the reactive zone. In case of 
a slow degradable substance a significant amount of the applied substance will pass the 
reactive zone (cf. Figs. 7.17 a-c). 
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Fig. 7.15: Development in time of a cross section of a concentration field of a tracer in a soil with a 
high degree of heterogeneity. On the right side of the figures the mean concentration profiles and the 
concentration profiles obtained from a fictitious borehole in the middle of the cross section are shown: 
a) 5 days, b) 10 days and c) 20 days after simulation start. H marks the location where the highest 
values occur. 
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Fig. 7.16: Dcvclopment in time of a cross section of a concentration field of a fast degradable 
substance in a soil with a low degree of heterogeneity. On the right side the mean depth profiles and 
the profiles obtained by a fictitious borehole in the middle of the cross section: a) 5 days, b) 10 days 
and c) 20 days after simulation start. H marks the location where the highest values occur. 
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Fig. 7.17: Development in time of a cross section of a concentration field of a slowly degradable 
substance in a soil with a low degree of heterogeneity. On the right side the mean depth profiles and 
the profiles obtained by a fictitious borehole in the middle of the cross section: a) 5 days, b) 10 days 
and c) 20 days after simulation start. H marks the location where the highest values occur. 
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7.4 Effective Parameters 

7.4.1 Performance Criteria 

As we have seen the translation of transport and kinetic models from the laboratory scale to 
the field and to the catchment scale demands new concepts. One has to abandon the 
deterministic view valid at the laboratory level for homogeneous soil columns. The question 
is then: is it still possible to make reasonable predictions at larger scales on the basis of local 
process models? Mathematically, the problem is posed in the following way: 

Given: a process model valid on a local scale 

Problems: 

1. 
2. 

Find a parameter set, which summarizes small scale spatial heterogeneity. 
Derive a model, which describes the same process on a larger scale taking explicitly 
into account lower scale spatial heterogeneity. 

The second problem is very demanding from the mathematical point of view. Several 
approaches have been proposed such as stochastic partial differential equations. The whole 
subject is still in rapid development. In this book we shall dwell on the mathematically less 
ambitious problem of finding effective parameters. 

The concept of effective parameters means to apply the original deterministic model to a 
defined region - plot or field - with an appropriate set of parameters. These are called 
effective parameters or sometimes referred to as representative parameters. They can be 
defined only with respect to a given performance index. An obvious criterion is a measure 
of distance between the expectation of the concentration field and the value obtained by 
using an effective parameter: 

where 11 11 denotes a suitable measure of distance. Then it is straightforward to define an 
effective parameter $efl by 

(7.19) 

This definition is only of theoretical importance, since all the necessary information is 
already given by the knowledge of the probability density function of the parameters. 
However, the performance criterion allows the comparison between several definitions of 
effective parameters. A convenient measure of distance is the integral 
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(7.20) 

Let us apply now this criterion to the analytic solution of the convection dispersion equation 
used in the example treated in section 7.2.1. Figure 7.18 shows the dependence of this 
criterion on the effective parameter Defifor a lognormal distribution of D. Figure 7.19 shows 
the breakthrough curve obtained by the value of D which minimizes the criterion in 
comparison to the expectation and mean parameter curve. 

200 
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Fig. 7.18: Dependence of the performance criterion on the effective parameter Defl for a lognormal 
distribution of D. 
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Fig. 7.19: Effective parameter curve, mean parameter curve, expectation. 

In practice, one has to derive effective parameters by the information available from the 
probability density function (estimated by the histogram). We will tentatively define effective 
parameters by the mean value of D, by the mode of the density function and by the median. 
The integral (Eq. (7.20)) is computed for the integration intervals [0,100] cm and [0,30] days. 
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The best performance is achieved by the median if the underlying distribution is skewed. (For 
the normal density median and expectation are identical). 

For the assessment of environmental impacts, one is interested in mean properties of 
concentration and flow fields over large regions. The following mean properties are most 
important for practical applications: 

1. The amount of pesticide resident in the upper layer down to the plow horizon. 

(7.21) 

2. The flow of pesticide across the reactive soil layers into the ground water. The 
activity of a soil layer (with respect to pesticide degradation) is assumed to be 
proportional to its COrg-content. 

(7.22) 

These two properties are important criteria to judge the performance of effective parameters. 

7.4.2 Guidelines for the Use of Effective Parameters 

The foregoing analysis has shown that it is not recommendable to characterize transport by 
only one parameter, the effective parameter, alone without considering measures of 
uncertainty. Even in homogeneous soils such as loess soil parameters are statistically 
distributed. Figure 7.20 shows the density function of the Ks-value derived from data of a 
sandy soil. 

Ks [crn/dl 

Fig. 7.20: Histogram of K,-value in a sandy soil (data from Wierenga et al., 1989). 

The following guidelines should be regarded only as tentative. They reflect the authors 
experience with spatial variability in quaternary soils of Northern Germany. 
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Two aspects have to be distinguished. The first concerns randomness due to the underlying 
spatial random field. The second concerns missing information. 

Random soil columns 

This concept is based on the assumption, that lateral flow can be neglected. This implies that 
the correlation lengths of the underlying spatial fields are large so that microscale patterns 
only weakly influence the flow field. We consider first the case that the density function is 
known (this demands that the sample size is very large allowing to identify the distribution 
law). The recommended procedure is then straightforward. 

1. 

2. 

Calculate mean profiles either by direct integration or by the Latin Hypercube 
method! 
Construct percentile bands for the profiles at chosen locations or time points. This can 
either be done by density transformation techniques as demonstrated in section 7.2.1 
or by the Latin Hypercube method. The latter method has a larger range of 
applicability than the former, which demands a density transformation! 
Take any parameter set, which results in a profile within a prescribed percentile band 
as representative parameter set! 

3. 

However, in practice, sample sizes are frequently very small and the type of density function 
cannot be identified, or the data do not match any classical model such as a normal or 
lognormal density. In this case Latin Hypercube methods still apply. Calculations are 
performed based on the empirical distribution function. 

In large scale applications, model parameters have to be derived from the information 
contained in soil survey maps. The derivation of model parameters from this kind of 
information can be achieved by use of pedotransfer functions (cf. chapter 6). 

Soils with large microscale variation 

In these soils microscale variation creates heterogeneous patterns within the spatial dimension 
of a soil horizon. Only three-dimensional models are capable of simulating water and matter 
flow in such environments. One has to recall that an effective parameter is meant to replace 
an inhomogeneous block of soil by an equivalent homogeneous one. It is obvious that this 
approach yields only crude approximations in a block of soil with complicated spatial 
patterns, especially if degradation is involved. Hence in this situation effective parameters are 
only of limited value. Instead, we propose a new concept which is based on the notion of a 
representative parameter field. 

1. 
2. 

3. 
4. 

Generate realizations of the random process! 
For each realization compute the value of an appropriate criterion measure, e.g. the 
amount of pesticide crossing a soil layer! 
Construct the histogram of the criterion measure! 
Take any realization belonging to the modal value of the histogram as representative 
parameter field! 
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7.5 Macroscale Variation 

7.5.1 The Implementation of Simulation Models into 
Geographical Information Systems 

Pesticides are applied in large quantities at regional scales. The assessment of environmental 
fate and environmental impact has therefore to take into account the macroscale variation of 
soil types in connection with land use patterns and application habits of the farmers and 
meteorological data. The necessary link between spatial information and pesticide 
environmental fate models can best be achieved in the frame of a geographical information 
system (GIS). GIS efficiently store, manipulate, retrieve, analyze, and display geo-referenced 
spatial and nonspatial data (Burrough, 1986). In general, two types of data are stored in GIs: 
geographic definitions of earth surface features (objects) and attributes or qualities related to 
these objects. There are two different modes of storage. 

1. In the vector representation the boundary of any object is described as a point, a line or 
a polygon. Attributes are stored by using a database management software program. Data 
files are linked by an identifier number given to each feature in a map. Vector systems are 
efficient in database management and storage, because only boundaries of features are stored. 
This offers the advantage of a correct description of map features. 

2. Raster systems combine objects and attributes in unified data files. The land surface is 
subdivided into a fine mesh of grid cells. For each cell, a representative feature attribute is 
stored as code value. Although raster systems have some advantages over vector based 
systems concerning the simplicity of the data structure, the distortion of the object boundaries 
at high resolutions is a major drawback. 

Environmental modeling with GIS is an active area of research (Goodchild et al., 1993). It 
implies the coupling or even integration of models into a GIS. This demands that the models 
have a reference to spatial features both via initial and boundary conditions and via model 
parameters. There are two problems involved. The first one is a technical problem and 
concerns the level of model integration into a GIS. The second one concerns the link between 
earth surface features stored in the GIS and the model parameters. Consider the case of water 
transport in the unsaturated zone (cf. chapter 5) .  The model parameters required are the shape 
parameters of the water retention curve and the hydraulic conductivity. These parameters are 
not available from soil survey maps. They have to be derived from basic soil survey data 
(texture) by means of pedotransfer functions (cf. chapter 6). 

The simplest way to couple a GIS with a model is the ad-hoc integration (Tim and Jolly, 
1994). This means, that process models and GIS are developed separately each with its own 
operating system. Interaction is solely mediated by file exchange. The GIS provides initial 
and boundary conditions and the features for each elementary unit of space relevant for the 
process under study. This may be a hydrological unit or an ecotope, which results from the 
intersection of the soil survey map with the landuse map. In a first step, the qualitative 
information provided by the GIS have to be transformed to model parameters via 
pedotransfer functions. In the one dimensional case simulations are run for each dataset 
separately. Simulation results are then stored on files, which can be further processed by the 
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Fig. 7.21: General layout of GIs-model integration. 
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GIS for graphical display (cf. Fig. 7.21). However, such a system is difficult to handle and 
is time consuming, because two different software products are involved. 

I I  

graphical & herbicide content 

output (time & depth) 

statistical 0 water content 

Therefore, a form of integration is to be preferred, where model and GIS are linked by a 
common user interface. This can be easily done in ARCANFO by programming a user 
interface with the GIS ARCANFO programming language AML (Arc Macro Language). This 
interface allows easy access to the simulation models and the GIs, even for users without 
much knowledge of the code. 

I 

herbicide content 
v water content 

(time & depth) 

* 

7.5.2 Case Study 

In the following study (Lucke et al., 1995) the herbicide model FLOWCONC (Walker, 1987) 
was implemented into the GIS ARCLNFO. The objective of this study is the assessment of 
the recropping risk of winter wheat following sugar beet in a crop rotation. Typically, the 
herbicide Ethofumesate is applied to sugar beet cultures in spring, and the question is if 
residues 150 days after application are likely to cause crop damage in a catchment with 
different soil types. 

Figure 7.22 shows the layout of the coupling of FLOWCONC, pedotransfer functions and 
ARCANFO. The storage of the attribute data was realized using the ORACLE Data Base 
Management System (RDBMS). The GIS ARCANFO offers a direct link to the data base. 

USER INTERFACE 

Fig. 7.22: Scheme for the coupling of the GIS ARCDNFO with a pesticide simulation model. 
/ indicates calculation of potential evaporation according to Haude (1955). II  indicates a pedotransfer 
function for calculation of water content at field capacity and at -200 kPa according to Rawls and 
Brakensiek (1 985). / / I  indicates selection of adsorption/degradation parameters. 
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Simulation Model 

The simulation model FLOWCONC (Walker, 1987) was used to predict the herbicide 
persistence in soils. In this model herbicide degradation is described by first order kinetics 
dependent on soil temperature and moisture content. The temperature dependence is described 
by the Arrhenius function (cf. Eq. (3.157)) and the humidity dependence by an empirical 
function (Eq. (3.162)). The joint effect of both variables on the degradation rate is modeled 
by the product of both functions (cf. Eq. (3.162)). FLOWCONC refers to the half-life written 
in the following form, which is equivalent to Eq. (3.164). 

(7.23) 

with the notations 

AE : activation energy [kJ/mol] 
R : gas constant [kJ/(mol K)] 
T : temperature [K] 
To : standard temperature (in this study: 20 "C) 
A : half-life at To [K] and at 0 = 1 % 
B : moisture slope at To 
0 : water content [% by weight] 

The parameters A, B, and AE used in this model are determined in laboratory incubation 
assays according to Walker ( 1974) at different temperatures and soil moisture contents. 
Adsorption is described by a linear equilibrium approach. The distribution coefficient Kd is 
determined in laboratory measurements as described by Pestemer and Auspurg (1987). Since 
adsorption may increase with time (cf. section 3.1), the Kd-value is allowed to increase 
during the simulation (Walker, 1987). The calculation of transport and water flux is based on 
a cascade model, where water exceeding field capacity moves downwards. The model 
requires maximum and minimum air temperature, rainfall data and the potential evaporation 
on a daily base to predict the moisture content and soil temperature of each layer. Further 
input data required by the model are soil moisture content at field capacity and at pressure 
head of -200 kPa, bulk density, initial water content, and herbicide degradation parameters 
and distribution coefficients for the adsorption of the herbicide in soils. 

Integration GIS-Model 

The implementation of the herbicide model into GIS ARC/INFO was realized by 
programming a user interface with the A R W F O  programming language AML (Arc Macro 
Language). In the GIs, geometrical and topological data of the Eisenbach research catchment 
are stored (cf. Fig. 7.23). Overlaying land use patterns and soil type distribution yields 
789 small homogeneous areas (ecotopes) which are used for the simulations. Each ecotope 
is characterized by a parameter set for the degradatiodleaching model. The AML is used to 
generate a control file for the herbicide model. It controls the selection of correct model 
parameters from the data base and the transfer of the results to the RDBMS. After 
simulation, ARC/INFO is used to visualize the results. 
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Fig. 7.23: Soil map of the Eisenbach research catchment. Here: COrg- content. 

The Catchment 

The Eisenbach catchment is located in the north German Pleistocene sand plain about 80 km 
north of the city of Braunschweig, encompasses about 16 km2 and ranges between 60 and 
130 m above sea level. The catchment consists mainly of sandy soil with clay and loam 
lenses and is surrounded in the east, south and west by moraines. The geology and 
geomorphology are dominated by glacial sands and gravel deposited during the Saale 
(Illinoian) ice age. The main crops grown in this area are rye, barley, sugar-beet, and 
potatoes (McVoy, 1995). 
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Soil Properties 

A first soil survey ("Reichsbodenschatzung") was carried out in Germany starting in the 
thirties to provide fair taxation for arable land. For this purpose, grid samples were taken 
with 50 meters distance between the bore holes, each 1 meter deep. Samples with the same 
properties were grouped to homogeneous areas, each described by one representative data set. 
The measurements were made over the agricultural regions of Germany and have recently 
been repeated for Lower Saxony. The data set is available in digital form. 

Tab. 7.1: Translation of stored string classification to input data for the model. Field capacity is 
calculated using the pedotransfer function of Rawls and Brakensiek (1985). 

I String classes 11 Translated input data [%I 

Refers to the German Guideline for Soil Characterisation "Bodenkundliche Kartieranleitung" 
(Anon., 1982) (e.g. Su = silty sand, S1= loamy sand; the number indicates the variable fractions of sand 
clay and silt content). 
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The soil properties are grouped into different classes. For example the soil texture and 
organic carbon content is represented by string classification. The range for organic carbon 
content may be e.g. from 1 to 2 % (h2) or from 2 to 4 % (h3), according to the German 
Guideline for Soil Characterization "Bodenkundliche Kartieranleitung" (Anon., 1982). Table 
7.1 shows the transfer of string classes to numerical input data. For the translation from 
string classes, the average clay/silt/sand or organic matter content of each class are used. 
Water content at field capacity and at soil suction of 2 bar are calculated using retention 
curves which are estimated by the pedotransfer function (PTF) of Rawls & Brakensiek (1985) 
(cf. section 6.1). 

Herbicide Properties 

Ethofumesate is a herbicide mainly applied to sugarbeet in spring. Degradation in soil is 
fastest under wet and warm conditions (Rahman, 1978) and is mainly caused by 
microorganisms (Schweizer, 1976). Their activity is mainly influenced by the organic carbon 
content of the soil (Schweizer, 1976). 

Herbicide degradation characteristics were determined in laboratory assays at different soil 
moisture contents and temperatures according to Walker (1974). Degradation parameters are 
available for 5 and Kd-values for 11 different soils (Gottesburen, 1991). They are stored in 
the ORACLE data base. 

The possible damage to winter crop succeeding sugar beet was derived from a dose response 
curve for wheat established in hydroponic culture by Pestemer (1983) (cf. Fig. 7.24). 

0.01 0.1 1 

CONTENT OF ACTIVE SUBSTANCE [mgll] 

Fig. 7.24: Dose-response curve of Ethofumesate for winter wheat as established by Pestemer (1983). 

If sample sizes are large, it is possible to derive pedotransfer functions estimating sorption 
and degradation parameters (cf. section 3.4.2). Due to the limited amount of information on 
degradation rates and sorption constants a pedotransfer function can not be developed for 
Ethofumesate. In addition, the organic matter content of the soils is available only in three 
classes in the soil maps. Therefore, pesticide sorption was not related to organic carbon using 
Koc-values. 
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This lack of data is a situation commonly met in practice. There are data available, but not 
enough to establish exact relationships between soil data and model parameters. There is only 
one way out of this dilemma: one has to resort to more heuristic approaches. Anyway, the 
results of the last section of this chapter have drastically demonstrated that the randomness 
of soil properties renders the notion of exactness obsolete. The following method allows to 
derive model parameters from soil properties even from samples of small size. Each sample 
is presented as a point in the sample space. To each point belongs a model parameter, e.g. 
the half-life. For the parameter value of an arbitrary point in the sample space the value of 
its nearest neighbor is taken. Gottesburen (1991) introduced the following distance function 
for the Kd-value of Ethofumesate, which weighs the influence of the soil properties. 

with the notations 

D : distance [cm] 
C 
T 
P : pH [ I ]  

wi 

: organic matter content [% by weight] 
: clay content [% by weight] 

: weight coefficient of soil property i 

The index m denotes those soil properties, for which parameters are available. The 
coefficients for the distance function of the Kd-VdUeS are w1 = 0.8, w2 = 0.1 and w3 = 0.1, 
for the degradation rates w1 = 0.3, w2 = 0.6 and w3 = 0.1. 

Model Application Example 

Tramat 500 (50 % Ethofumesate) was assumed to be applied with a rate of 3 kg ha-' on 
May lSt, 1988. Weather data used in the simulation (daily minimum and maximum 
temperatures and rainfall) were provided by a weather station located within the catchment. 
The mean annual temperature in the catchment is about 9"C, the mean annual rainfall about 
700 mm. In addition to the natural rainfall, this catchment is imgated with about 125 mm 
year-'. In the growing season 1988 (May to September) the precipitation rate was 302 mm, 
the mean air temperature 15°C. Daily potential evaporation for this period was calculated by 
the empirical formula of Haude (1955) considering the actual and the saturated air humidity 
and the air temperature at the time 2 pm. 

Due to different textures, organic matter contents and field capacities, 21 different ecotope 
classes were derived from the 789 sites. Some important characteristics of these classes are 
shown in Tab. 7.1. The degradation parameters selected from the data base were estimated 
from laboratory studies with similar soils. Of five available parameter sets, two were selected 
by the system according to soil properties. For soils with clay content of 6.5 % or higher, 
moisture parameters A and B were 1247 d and 1.28, respectively, and the activation energy 
was 49.8 kJ mol-'. For the pure sandy soils, A was 231 d, B was 0.48, and AE was 
54.1 kJ mol-l . Adsorption coefficients (Kd-values) between 1.41 dm3 kg-' for low organic 
matter soils and 2.93 dm3 kg-l for higher organic matter contents were selected from the data 
base according to the corresponding soil properties. 
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The simulation was run for 150 days, a common duration for cropping of sugarbeet. Residue 
levels of Ethofumesate in the top 30 cm of the soil were given by the model. For the top 
10 cm layer also plant available residues were calculated. The possible damage to a 
succeeding winter wheat crop at this date was assessed by comparing the available residues 
with dose-response values for wheat established in hydroponic culture according to the 
method of Pestemer (1983). 

Results 

After 150 days, the simulation resulted in total residues between 0.2 and 23.8 9% of the initial 
concentration in soils, as shown in Fig. 7.25. 

Fig. 7.25: Map of residues in % of initial dose 150 days after application. 
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The spatial distribution of residues over the catchment correlate well with the clay content. 
Higher residues are found mainly in the sandy regions in the south and east of the catchment, 
where a lower moisture content throughout the period of the simulation caused a slower 
degradation compared to the silty and loamy soils with higher field capacities in the center 
of the area. 

For 17 9% of the arable land (1.6 km2), the total residues remaining in soil were below 10 % 
of initial dose. For 62 % (5.7 km2), the residues were higher than 20 % of initial dose. These 
residue levels are in accordance with other field persistence trials (Schweizer, 1976; Copin 
et al., 1985). Gottesburen et al. (1994) observed between 15 and 20 % of the dose on three 
different sites in three different years after about 5 months. 

On the sandy soils, residue levels are higher than 14 % of initial dose after 150 days on all 
sites. On the other soils, residues were below 8 % of initial dose. 

The field capacity is a sensitive parameter. Differences in residue levels in ecotopes with 
identical degradation parameter sets are mostly due to different field capacities and thus 
moisture contents (cf. Fig. 7.26). 

As shown in Fig. 7.26 a strong relationship (r = - 0.983) between water content at field 
capacity and residue level exists on the sandy soils. On the silty and loamy soils the 
correlation is less pronounced (r = - 0.783). 
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Fig. 7.26: Relationship between water content and residue levels. 

Different field capacity and adsorption values in soils may lead to different leaching behavior 
of herbicides in the study area. Analyzing all simulations, no Ethofumesate was leached 
below 20 cm depth during this summer period, and below 10 cm only traces occurred. From 
all simulated findings below 10 cm (1324 out of 1850 sites), only in 58 sites or 6 % of the 
area (0.55 km2) the residues were higher than 0.1 %, but in all cases they were below 1 % 
of the initial dose. These sites are all located in the sandy, low sorptive moraine area of the 
catchment, where the ground water level is below 10 m. Under these circumstances, even 
during a relatively wet summer season, the risk of ground water contamination is very low. 
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Similar leaching behavior, with no residues found below 10 cm depth in field trials during 
6 months, was found by Copin et al. (1985). Rahman (1978) found most of the applied 
Ethofumesate remained in the top 5 cm of soil. 

Recropping Risk 

For the evaluation of recropping risk, only the top 10 cm of the soil are taken into account 
where the roots of germinating plants and the highest herbicide concentrations are located. 
The results of the comparison between available residues and the dose-response curve are 
shown in Fig. 7.27. 

Fig. 7.27: Map of recropping risk. 
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For 17 % of the arable land (1.6 km2), no damage was predicted. For 21 % of the area 
(1.9 km2) the residue levels were between EDlo (10 % growth reduction in hydroponic 
culture) and ED30. In these cases, a slight crop damage may occur, but normal yields can 
still be expected. For 55 % of the area 5.1 krn2), available residues were higher than the 

with winter wheat cannot be recommended, because a great crop loss or even crop failure is 
likely. The sites of high risk were located mainly on the lighter soils in the eastern and 
southern parts of the catchment, where degradation was slower and availability to plants 
higher due to lower adsorption. 

ED3,,, and for the remaining 7 % (0.6 km \ ) higher than the ED5o. In both classes recropping 

Ethofumesate applied to sugar-beet in late spring is known to cause problems in crop 
rotations with susceptible crops (e.g. Stryckers et al., 1978). If applied in late autumn to 
grassland at 1 kg ha-' its phytotoxic activity may persist up to 7 months depending on the 
climate (Rahman, 1978). Gottesbiiren et al. (1994), however, did not find damage of winter 
wheat sown in autumn after spring application of 1.5 kg ha-' Ethofumesate, although slight 
or severe damage response was predicted for two sites. In general, the model tends to 
overestimate residues and therefore has an inherent safety margin for predictions of crop 
damage. 

7.6 Fuzzy-Approaches 

Notations 

Ai : input fuzzy sets 
n 

n, : number of rules 
C 

P 

: number of input fuzzy sets 
: output fuzzy sets 

: certainty factor ofj* rule 
: number of premises of a rule 

Bj 

j 

A totally new concept to cope with soil heterogeneity and uncertainty is based on fuzzy- 
logic. There are only few applications of fuzzy-logic in environmental fate modelling thus far 
(Ganoulis, 1994). The authors do not regard these approaches in contradiction to 
deterministic or stochastic process models. However, there are situations, where the 
information does not suffice to identify the process properly or to estimate parameters. In this 
case one has to resort to all sources of knowledge combining them into an expert system. It 
is assumed that the reader already has at least some notions of fuzzy-logic, which has gained 
broad attention these days in the field of control of technical systems. The following example 
of the application of fuzzy-logic to the prediction of the mode of decay and the DC50-value 
only serves to illustrate the modelling philosophy. This short section is not thought of as an 
introduction to fuzzy-logic. For this purpose, the reader is referred to standard textbooks (e.g. 
Zimmermann, 1991; Yager and Zadeh, 1992; Zadeh, 1987). 
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Fuzzy-Sets 

In ordinary set theory a set consists of well defined objects or elements. One can decide in 
a unique way whether an element belongs to the set or not. This can be expressed by its 
membership function. Let M denote a set and x an element out of a reference set X. Then the 
membership function is 

(7.23) 

The key concept of fuzzy theory is the introduction of membership functions, which can take 
on values in the interval [0,1], characterizing the degree by which an element belongs to a 
set. Let A denote the set "DCsO-value of a substance" with the three elements "slow", 
"medium" and "fast". Let us define as reference set X the time interval [0,100] days. Is a 
value of 30 days to be regarded as fast or as medium or as slow? Of course, this depends on 
the context. In the context of herbicide kinetics a DC50-value of 1 day would surely be 
regarded as fast, and a DCsO-value of 100 days would surely be judged as slow. For a DCsO- 
value of 30 days it is not that easy to decide to which category it belongs. This uncertainty 
or vagueness is modeled by the membership function expressing for any given DCsO-value 
the degree by which it belongs to any of the three categories. Figure 7.28 shows plausible 
membership functions for this example. 

I FAST MEDIUM SLOW 

0 20 40 60 80 100 

DCso [dW.l 

Fig. 7.28: Membership function for the fuzzy-set "low","medium" and "high" DC50-value. 

Degradation of Bentazone 

As an example the decay of Bentazone dependent on soil properties is modeled by a fuzzy- 
expert system. Experimental data of a small sample size show that the kinetic behavior 
drastically changes with soil properties. In soils with high Corg-content mono-exponential 
decay is observed, whereas in soils with low COrg-content long lag-phases occur followed by 
either a slow or fast decay. All decay curves vary between these two extremes. One can 
classify the decay curves into the four types: fast mono-exponential decay, slow mono- 
exponential decay, short lagphase followed by fast decay, long lagphase followed by slow 
decay. For ease of presentation, these classes are noted as mono-fast, mono-slow, lag-fast and 
lag-slow. Figure 7.29 shows sample curves for the classes mono-fast, mono-slow and lag-fast. 
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Fig. 7.29: Decay modes of Bentazone. 

The decay mode and the degradation rate are further influenced by the pH-value of the soil. 
We want to construct now a fuzzy-expert system, which predicts both the decay mode and 
the DC50-value. Information on both variables are important to judge the toxic effect of a 
herbicide, because the area under the concentration curve depends on the decay mode for 
otherwise identical DC50-values. We introduce the three fuzzy variables COrg-content, p H -  
value and kinetics. The components of a fuzzy-variable are fuzzy-sets. The fuzzy-sets of the 
variables are 

C,, = (low, medium, high, very high) (7.24) 

p H  = (low, medium, high) (7.25) 

(7.26) kinetics = (mono -fast,mono -slow,lag -fast,lag -slow) 

The linguistic variables are defined over their reference sets { Corg-content), (pH-value) and 
(DC5q-value). The ranges of organic matter content are chosen according to the german 
guideline for soil survey (Anon., 1982). Figures 7.30 a-c show the membership functions of 
the fuzzy-set of each variable. In accordance with common practice, trapezoidal and 
triangular membership functions are chosen. 

Rule Base 

The fuzzy-expert system consists of a set of rules, which map input fuzzy-sets A, here { Co, - 
content) and {pH-value) into output fuzzy-sets B, here {DC50-value). The rules can %e 
formulated by familiar "if ... then" statements, for example 

If (COv is low) and (pH is low) then (kinetics is lag-slow) with certainty 1. 
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The certainty factor expresses our confidence in the validity of this rule. Table 7.2 contains 
all rules for the prediction of the kinetics. Since there are four fuzzy-sets for the Co, -content 
and three fuzzy-sets for the pH-value, there are a total of twelve different cornbinafions. 

ILOW MEDIUM HlQH VERV HlQH I 

0 1 2 3 4 5 8 7 6 9  

ORQANIC MATTER CONTENT rk] 

3 4 5 8 7 8 9 

PH 

MONO-EXP. LAQ 

FAST 
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0 1s 30 45 80 75 90 

HALFLIFE [dEyE] 

Fig. 7.30: Fuzzy-sets of a) COrg-content b) pH-value and c) kinetics. 
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Tab. 7.2: Rule base of the example fuzzy system. 

The collection of rules together with the collection of logical operators constitute the so- 
called inference machine. It maps input fuzzy sets into output fuzzy sets. 

Inference Machine 

Figure 7.31 shows the layout of a general inference machine. An inference machine has n 
th input variables X I ,  ... , X,  and one output variable Y. Aii denotes the element of the i 

linguistic variable within rule j and B .  denotes the element of the output fuzzy-variable of 
rulej. With these notations the generaf form of a rule takes the form 

IF X i  = A l j  AND X2 = A2j AND ... AND Xn = Anj THEN Y = Bj 

j = 1,2, ..., nr  

An inference machine proceeds in four steps. 

In the first step, the compatibility between the actual facts (F1, F2, ... , F,) and the premises 
of each rule is computed via the membership functions. This is achieved by use of the so- 
called compatibility operator (compOp), which measures the distance between the actual fact 
and the premise of the rule. If the facts are real numbers, the compatibility measure is simply 
the value of the membership function of the fuzzy set of the premise in question. 
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ai, = compOp(AipFi) i = 1, . . . ,p  

The compatibility measures aij can take on values in the interval [0,1]. 

In the next step the compatibility measures of all premises of a rule are aggregated to one 
value a.  by use of a so-called aggregation operator (aggOp). J 

where p denotes the number of premises of rule j .  (A possible aggregation operator is the 
minimum operator.) To each rule a certainty factor c .  is assigned, which expresses the degree 
to which the expert believes that the rule is valid. The compatibility measure is finally 
modified by the certainty factor applying the so-called certainty operator (cerOp). 

* 
a .  J = cerop  0 apeJ 

Again, a reasonable operator is the minimum operator. 

In the third step, the fuzzy-set Bj pertaining to the j* rule is modified by its compatibility 
measure by use of the so-called inference operator (infop).  

BJ = infOp(u;, Bj) 

In the final step, all partial results are accumulated to a common fuzzy-output set via the so- 
called accumulation operator (accOp). 

- \ \  

Rule 
base 

Fig. 7.31: Layout of an inference machine. 
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The operators cornpop, aggOp, infop are derived from a class of operators called t-Norm 
operators. The simplest operator of this class is the minimum operator. Let pA and pB denote 
the membership functions of two fuzzy-sets A and B. Then the membership function of the 
fuzzy-set C = A n B is defined as 

The accumulation operator accop pertains to the union of fuzzy-sets. A possible definition 
is the maximum operator. The membership function of the fuzzy-set C = A u B is defined as 

p&) := rnax(PA(X),PB(X)) 

Defuzzification 

The output of an inference machine is a fuzzy-set. Frequently, the user of an expert system 
is interested in a number. In our example not only the qualitative information on the decay 
mode is important but also the DC,,-value. To get the DC50-value, one has to derive a 
number from the output fuzzy-set. This procedure is called defuzzification. A frequently used 
method is the computation of the center of gravity of the output fuzzy-set. Another 
possibility is to take the value where the maximum of the fuzzy-set occurs. If the output 
fuzzy-set has a plateau, one can take the right or left modal value or the midpoint value. 

We will follow all these steps for a Corg-content of 1.5 921 and a pH-value of 5 as input. 
From the fuzzy sets of the variable Corg as shown in Fig. 7.30 a one sees that the above 
value belongs exclusively to the set "medium" with membership degree of 1 (cf. Fig. 7.32 a). 
The above pH-value belongs to the fuzzy set "low" with membership degree 1 and to the set 
"medium" with membership degree of 0.5 (cf. Fig. 7.32 b). The facts given above activate 
the two rules (cf. Tab. 7.2): 

Rule 7 : IF (Corg IS medium) AND (pH IS medium) THEN (kinetics IS lag-fast) 

and 
with CF = 1 

Rule 9 : IF (Corg IS medium) AND (pH IS low) THEN (kinetics IS lag-slow) 
with CF = 0.8. 

For rule 7 the overall compatibility factor for both premises with the facts given is thus 
min { l,(min (0.5,1})} = 0.5. For rule 9 the decreased certainty of the rule has to be taken 
into account, so that the overall compatibility factor for both premises with the facts given 
is min {0.8,(min { 1, l ) ) )  = 0.8. Figures 7.32 a-c show, how the output fuzzy sets are 
modified by the inference operation. The last step consists of forming the union of both 
output fuzzy sets (cf. Fig. 7.32 c). Defuzzyfication is achieved by computing the center of 
gravity of the accumulated output fuzzy set yielding a value of 62.7 days for the DC50-value. 
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Fig. 7.32: Inference operation for an input of a C -content of 1.3 % and a pH-value of 4: a) input 
derived from the fuzzy set for the Corg:content, b) input derived from the fuzzy set for the pH-value 
and c) output fuzzy set and half-life denved by defuzzyfication by use of the center of gravity method. 

Performance of the Fuzzy-Expert System 

OF2 

The fuzzy-sets and the rule base are derived from a kinetic study involving 14 soils differing 
with respect to Corg-content, pH-value and other soil properties (von Gotz, 1996). Only the 
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first two properties have an effect on the mode of the kinetics and on the DC$value. 
Inspection of the data shows that the mode of decay is closely related to the Cor -content. 
The pH-value modifies these relations slightly. pH-values below or above the neufral range 
cause an increase of the DC50-value and possibly a shift of the decay mode from mono- 
exponential to the lag-phase type. This knowledge was used to set up the rule base as given 
in Tab. 7.2. Defuzzification was achieved by the center of gravity method. The expert system 
was then applied to the prediction of the DC50-value in four other soils. Figure 7.33 b shows 
the comparison between data and the outcome of the expert system for the training sample 
and the validation sample. The corresponding input values are shown in Fig. 7.33 a. 

Fig. 7.33: Performance of the fuzzy-expert system. a) Input variables and b) resulting half-lives in 
comparison with the measured data. The left part of the graphic shows the data used for calibration of 
the expert system. This sample is denoted as training sample. In the right part of the graphic predicted 
values are compared to data, which are not part of the training sample. 

Although the small sample size of this study does not allow to give a final statement on the 
performance of this expert system, the preliminary results are encouraging and show that 
fuzzy-expert system modelling is a possible means to cope with incomplete knowledge. 



A Appendix 

A.1 Table of Laplace Transforms 

Let At) denote a function with domain [0, -) and s a complex variable with Re@) > 0. Then 
the Laplace transform of Af) is defined by 

00 

~ ~ f ( t ) l  := l e  -St j ( t )dt  := ~ ( s )  
0 

I 

4 = D and x are always positive. a is unrestricted. 

Tab. Al:  Laplace Transforms (cf. Crank, 1975). 
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2 1 - x  

A.2 Basic Distributions 

In the following a brief list of some frequently used distribution functions will be given 
(cf. Richter and Siindgerath, 1990): 

1. Uniform Distribution: 

The density function is given by 

with -00 c a,b c - 
otherwise 

The expecation and variance of a uniformly distributed random variable are 

1 E[X] = - (a  - b) 
2 

2 
(a - b) V [ X ]  = 

12 
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The uniform distribution could as well be defined over the open interval (a,b) or over either 
of the halp-open-half-closeed intervals (a,b] or [a,b). All four of the possible densities have 
the same cumulative distribution function. 

2. Normal Distribution: 

The density function is given by 

The expecation and variance are the parameters p and 02: 

A normal distribution with p = 0 and o2 = 1 is called a standard normal distribution. 

3. Truncated Normal Distribution: 

If X is a normally distributed random varibale, then the density of X truncated on the left at 
a and on the right at b is given by: 

2 

which is the usual density function over the integral from the right to the left truncation. 

4. Lognormal Distribution: 

Let X be a positive random variable, and let a new random variable Y be defined as Y = In X .  
If Y has a normal distribution, then X is said to have a lognormal distribution. The lognormal 
density function is given by 
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1 2 --(lnx - p) 

2 0 2  - = < p < =  and 0 > 0  
1 

f ( x )  = - e 
X G O  

The expectation and variance of a lognormally distributed random variable are: 

1 2  
CI + 70 

E[X] = e 

2 2 
V[X] = e2CI + 2 0  - $c1 + 0 

and 

E[ln(X)] = p and V[ln(X)] = o2 

5. Gamma Distribution: 

The gamma density function is given by 

for r > 0 and h > 0 h 
f ( x )  = - ( h x ) ' - ' e  

T ( r )  

with r the gamma function. 

This function is defined as follows: 

and it has the following properties: 

7T r ( l  + X) = x T ( x )  and T(x)T(l - X) = - 
sin (EX) 

and for x EN: r(x) = (x - I)! 
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The expectation and variance of a gamma distributed random variable are: 

r E[X] = - 
h 

r V[X] = - 
h 2  

6. Exponential Distribution: 

If in  the gamma density r = 1, the gamma density specializes to the exponential density, 
given by: 

f ( x )  = he for x 2 o 

with the following expectation and variance: 

1 1 E[X] = - and V[X] = - 
h h 2  
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