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Preface

The objective of this volume is to provide a comprehensive review of the state and progress of
solid-state photoemission, including closely-related methods, both from a theoretical and from
an experimental point of view. This material should be of particular interest to a wide range
of theoretical and experimental physicists, materials scientists, and chemists, from graduate
students to experts, dealing especially with surfaces and other nanostructures.

Many excellent treatments of major aspects of this field have appeared in the last decade:
we mention in particular Inglesfield and Plummer’s 1992 review article1, which focused on
the fundamental principles of valence-level angle-resolved photoemission, and the 1995 book
by Hüfner2, which adopted a more experimental perspective.

This field has continued to grow at a fast pace on many fronts, greatly expanding its ca-
pabilities and achievements. We thus felt that it was necessary and timely to bring together
diverse developments in a single monograph, in an attempt to provide a degree of up-to-date
completeness of the current state of the art.

Given that photoemission is intimately tied to ground and excited electronic states, this
book starts with an exposition of contemporary theory of such states. It then provides a unified
overview of the theoretical principles of core and valence photoemission. This is then followed
by a much more thorough treatment of the theory of core level photoemission.

Turning to valence photoemission, a chapter is devoted to valence bands and VUV spectra,
while another addresses actual development of spatial imaging of valence levels besides the
traditional spectroscopic analysis. The very important application to the study of magnetic
materials is covered in the following chapter. In the subsequent chapter, recent progress to-
wards a compact photoemission program based on an all-electron ab-initio representation is
described in the context of band structure theory.

Several very exciting novel developments with two-particle spectroscopies and their inher-
ent access to many-particle properties such as lifetime and correlation are introduced in three
separate chapters dealing with: time-resolved two-photon photoemission; low-energy (e,2e)
spectroscopy; and one-photon two-electron transitions at surfaces.

The book next shifts the attention toward the use of core levels, in particular for surface
structure determination. For that purpose, an overview of the known structures of surfaces is
offered, being fundamental to many surface processes, including photoemission itself.

1 J. E. Inglesfield and E. W. Plummer, The physics of photoemission in S. D. Kevan (ed.) Angle-resolved photoemis-
sion, (Elsevier 1992)

2 S. Hüfner, Photoelectron spectroscopy in Springer Series in Solid State Sciences, Vol. 82 (Springer, Berlin 1995)



VI Preface

This is followed by a very recent application of core-level angle resolved photoelectron
spectroscopy to surface structural analysis; its implications for the valence band structure
are also discussed. Then, new holographic approaches to obtaining surface structure are ad-
dressed.

Several related methods of surface analysis are covered next. One is X-ray absorption fine
structure and its derivative techniques. Another is the use of X-rays and their properties in
photoemission and X-ray emission. Finally, developments in low-energy electron diffraction
are addressed in the last chapter, covering the important issue of surface vibrations.

Wolfgang Schattke and Michel A. Van Hove, Editors

August 2003



In memoriam Lars Hedin (1930–2002)

Tragically, soon after completing his chapter for this Handbook, Professor Lars Hedin passed
away.

Lars was born in 1930 and raised in Örebro, Sweden. He met and within one year married
his lifetime companion Hillevi in 1953. They now have three daughters and six grandchildren.
His higher education was at the Royal Institute of Technology in Stockholm, Uppsala Univer-
sity, and finally Chalmers University of Technology in Gothenburg, from which he obtained
his Ph.D. in 1965. He then became Professor of Physics at Linköping University (1970–71),
and subsequently at Lund University (1971–95), where he spent most of his career. During
his years in Lund, he made extended visits to Stanford, Nijmegen, and Yokohama. He was
head of a theory group at the Max Planck Institute in Stuttgart from 1994-98, at which time he
returned to Lund as Professor Emeritus, and continued to maintain an active research program
until his death. Beyond this, Lars was an editor of Solid State Communications (1971–90),
played a leading role in the organization of the International Conferences on Vacuum Ultravi-
olet Radiation Physics (1977–92), and was a member of many other committees and editorial
boards in Sweden and abroad.

The field of condensed matter theory has been enriched by Lars’ many outstanding and
fundamental contributions over the last half century. He is responsible for various impor-
tant advances, particularly in the theory of interacting electron systems. These began in the
1960s, the fascinating period during which many of the analytical tools of many body theory
were being developed. His contributions took place in parallel with the development of vari-
ous powerful spectroscopic tools for studying complex electronic systems, and Lars provided
crucial insights for linking theory with experiment, as illustrated in his chapter for this Hand-
book. His theoretical developments demonstrate his unique ability to combine mathematical
rigor and physical intuition within formal analytical frameworks which he designed. A multi-
tude of scientific milestones testify to his profound impact. In particular, Lars’ theories paved
the way for a quantitative understanding of electronic excitations, in particular in photoemis-
sion and X-ray absorption spectra. These theories provide the basis for many calculations of
electronic structure and for a quantitative understanding of experimental investigations that
now dominate the science of the microscopic world.

Those who personally know him will agree that Lars combined a most friendly and engag-
ing personality with an exacting scientific attitude that made him a great researcher, teacher,
and friend. We are most grateful for having received Lars’ manuscript in time for inclusion
in this Handbook. It reflects most of the topics he was devoted to, especially in the last few
years of his very productive life. As such it represents one of his last scientific achievements,
and it also provides a solid foundation for many of the topics covered in the Handbook. By
dedicating this Handbook to Lars Hedin, we hope to show how very much alive his influence
will remain within the scientific community.

Wolfgang Schattke and Michel A. Van Hove
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1 Electronic structure theory for ground and excited state
properties of materials

Arthur J. Freeman, Ryoji Asahi, Alessandra Continenza, and Ruqian Wu

1.1 Introduction

It is now well recognized that recent major advances in the quantitative computation of ground-
state properties in solids are essentially related to the development of density-functional the-
ory (DFT) in the local density approximation (LDA) and the local spin density approximation
(LSDA). [1,2] These efficient approximation schemes give the electronic ground-state energy
and density distribution as a function of the position of the atomic nuclei, which in turn de-
termine the molecular and crystal structure and give the forces acting on the atomic nuclei
when they are not at their equilibrium positions. The LDA (or LSDA) has been widely used to
solve problems in atomic, molecular, and condensed matter physics, such as phase transitions,
vibration spectra, chemical reactions, and magnetic properties.

Recent advances in experimental techniques such as X-ray absorption and inverse photo-
emission strongly require understanding of unoccupied states by first-principles calculations in
addition to the occupied states. Although excitation properties are outside the domain of DFT,
LDA eigenvalues have been frequently interpreted as quasiparticle states. This is because
LDA is so widely used and much easier to perform than full many-body theories. In practice,
LDA band structures successfully give an account of experiment including some excitation
properties, e.g., photoemission spectra of metals. This procedure, however, is certainly not
valid for all the eigenvalues and excitation properties.

One of the major problems in describing excitation properties is that the LDA gives a
substantial underestimate of the band gap in semiconductors and insulators, typically by 40–
50% in comparison with experiment. This problem, the so-called band gap problem, is so
serious when considering fundamental properties in semiconductors for instance, that it has
been intensively discussed over 20 years. A complication of the problem comes from the
difficulty to access an exact form of the exchange-correlation functional or the corresponding
exchange-correlation potential in the Kohn Sham (KS) scheme.

Several attempts have been undertaken to set up alternatives to LDA in order to improve
LDA and to extend its applicability to excitation properties. These can be divided into mainly
two groups. One is to obtain the quasiparticle energies, which directly correspond to the
excitation energies of a many-body Dyson equation, by the perturbation expansion of the self-
energy. A comprehensive discussion including a more realistic approximation, known as the
GW approximation, to the self-energy was given by Hedin [3]. Another theoretical approach
in going beyond LDA is to attempt to find better energy functionals by modeling the exchange-
correlation hole but still within DFT framework; this includes the self-interaction correction
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2 1 Electronic structure theory for ground and excited state properties of materials

(SIC), [4] the LDA+U, [5] and the optimized effective potential (OEP) method, [6–8] the
generalized density functional theory, [9–11] and the generalized Kohn-Sham (GKS) scheme
with the screened-exchange LDA method [12, 13] (sX-LDA).

The simplification of the GW calculation, called the model GW method, [14, 15] is one
way to reduce the numerical effort of the GW calculations. Although the accuracy should
be limited by the neglect of local-field effects and dynamic screening, the results for various
nonmagnetic semiconductors [14] and for transition metal oxides [15–18], give mostly good
agreement with experiment and the results of full GW calculations. While the method gives
self-consistent eigenvalues and wavefunctions with respect to the perturbed self-energy cor-
rections, the reliability of the total energy, and therefore of the ground states obtained, has not
been established.

The applicability of the SIC and the LDA+U approaches is relatively limited to the par-
ticular systems where localized states are involved. The LDA+U works reasonably well for
the Mott-Hubbard insulators or rare-earth metal compounds, where the partially filled 3d or
4f bands are split by the Coulomb interaction, forming the upper and lower Hubbard bands.
The SIC also describes the Mott-Hubbard insulators and the 3d monoxides. However, these
methods fail to give satisfactory results for more itinerant systems; in particular, the SIC does
not yield good band gaps of sp semiconductors, e.g., Si and Ge. [19]

The basic idea of the OEP method was proposed [6] by Sharp and Horton in 1953, show-
ing the way to obtain a local exchange potential exactly from the Hartree-Fock potential. The
method was revised to improve the LDA description. Kotani [7] used the OEP with the cor-
relation energy in the random-phase approximation (RPA) and presented results for Cu, Fe,
Co, Ni, Si, and MnO. The results for metals are very close to those of LDA, and a good
agreement with experiment is obtained for MnO. However, the band gap of Si is improved
by only 0.2 eV. Städele et al. suggested [8] that a main effect for improvement of the band
gap by the OEP method is a self-interaction reduction, not including the discontinuity of the
exchange-correlation potential which is supposed to be dominant for Si. [20]

The screened-exchange LDA method (sX-LDA) was first proposed [12] by Bylander and
Kleinman in order to obtain a better band gap. Seidl et al.showed [13] that the method
is actually described in the framework of the generalized Kohn-Sham scheme (GKS), and
that the discontinuity of the exchange-correlation potential is introduced through the nonlocal
screened potential. Encouraging results for the band gaps, structural properties, and optical
properties were demonstrated for several bulk semiconductor materials. [12, 13, 21–23] The
method was also applied to surface and superlattice. [24] The advantages of the sX-LDA over
the GW calculations are that it is much less computationally demanding, and that it permits
the self-consistent determination of ground-state properties.

In this chapter, after a short introduction to density functional theory and its most precise
implementation via the full-potential linearized augmented plane wave (FLAPW) method, we
present a brief discussion on the general aspects of the band gap problem and its prescrip-
tions, theoretical frameworks of the model GW and the sX-LDA are presented. The former
is derived from the quasiparticle picture through the GW approximation, and the latter is
introduced as a particular case of the generalized KS scheme. These two methods have a
capability to obtain self-consistent properties including band gaps in a wide range of semicon-
ductors. Moreover, rather light computational demands allows us to implement them into an
all-electron methods, the FLAPW method. The applications of these method are also demon-
strated in the case of semiconductor and magnetic properties.
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1.2 Density functional theory and the FLAPW method

1.2.1 Introduction

The full-potential spin-polarized linear augmented plane wave (FLAPW) method is consid-
ered to be the most accurate electronic structure calculation scheme. It has its origin in the
augmented plane wave (APW) method introduced by Slater [25] (details about this method
can also be found in Ref. [26]). In this approach, real space is partitioned into spherical re-
gions around atoms (“muffin-tins” or “atomic spheres”) and interstitial regions between the
spheres. Computationally, the APW method is demanding since the basis functions are energy
dependent and the eigenvalue problem non-linear. The subsequent linearization of the APW
method (LAPW) [27,28], where the energy dependence is removed by selecting a fixed set of
suitable muffin-tin radial functions and their energy derivatives, represented an important de-
velopment. In the full-potential (F)LAPW method there is no shape approximation for either
the charge density or the potential, and all electrons are treated in the self-consistent pro-
cess; the core electrons are treated fully relativistically and the valence electrons are treated
semi-relativistically. Further details can be found in original papers [29, 30] and in recent
reviews [31, 32].

Aside from the early important introduction of a total energy capability [33], recent im-
provements and extensions to the present FLAPW calculation scheme include: (i) evaluation
of forces on the atoms, which affords automatic optimization of the atomic geometry [34–36],
(ii) methodological developments resulting in significant speed-ups [37], (iii) spin-orbit cou-
pling affording calculation of magnetic properties, namely, magnetocrystalline anisotropy
(MCA), surface magneto-optic Kerr effect (SMOKE), and magnetic circular X-ray dichro-
ism (MCD), (iv) optical properties, (v) the option of several different exchange-correlation
functionals, i.e., the local density approximation (LDA) and the generalized gradient approx-
imation (GGA) and (vi) the treatment of excited states via screened exchange (sX), as well
as model GW treatments, and (vii) the calculation of vibrational frequencies. A very recent
and important break-through is the successful implementation of a parallelized version of the
code.

1.2.2 Density-functional theory

The FLAPW method employs density-functional theory (DFT), introduced by Hohenberg and
Kohn [38] and Kohn and Sham [39]. The underlying theorem (Hohenberg-Kohn-Sham the-
orem) on which this theory rests is that the total energy, E, of an atomistic system can be
expressed as a functional of its electron density, ρ, namely, E = E[ρ], that E is at its mini-
mum for the ground-state density, and is stationary with respect to first-order variations in the
density.

Typically, the Born-Oppenheimer approximation [40] is employed which assumes that
the motion of the nuclei are negligible with respect to that of electrons. This implies that
the electronic structure is calculated for a given atomic geometry; the nuclei are then moved
according to classical mechanics.
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The Kohn-Sham equations

To obtain the ground-state density, the variational principle is applied with respect to the one-
particle wave functions:[

(−�
2/2m)∇2 + Veff (r)

]
ψi(r) = εiψi(r), (1.1)

where

Veff (r) = VC(r) + µxc[ρ(r)] (1.2)

is the effective potential and εi the effective one-electron eigenvalues. Equations (1.1) are the
“Kohn-Sham equations” and the solutions, ψi(r), form an orthonormal set,
i.e.,

∫
ψ∗

i (r)ψj(r) dr = δij . The Coulomb or electrostatic potential is given as:

VC(r) = −e2
∑
α

Zα

|r − Rα|
+ e2

∫
ρ(r′)
|r − r′|dr

′ (1.3)

which can also be calculated using Poisson’s equation, i.e.,

∇2VC(r) = −4πe2q(r) , (1.4)

where q(r) represents the electronic charge distribution and the positive point charges at po-
sition Rα. The exchange-correlation potential is given by

µxc = ∂Exc[ρ]/∂ρ . (1.5)

Because the exchange-correlation potential (and energy) are not known, approximations have
to be made.

Spin-polarized density functional theory

The generalization of density-functional theory to spin-polarized systems has been made
within the local spin density approximation (LSD) [41, 42]. The important quantity, in ad-
dition to the electron density ρ(r), is the spin density σ(r) which is the density difference
between the spin-up and spin-down configurations, i.e., σ(r) = ρ↑(r) − ρ↓(r); the total den-
sity being given by ρ(r) = ρ↑(r) + ρ↓(r). Because the exchange-correlation potential for
spin-up and spin-down electrons is in general different, the spin-polarized form of the Kohn-
Sham equations are:[

(−�
2/2m)∇2 + V σ

eff (r)
]
ψσ

i (r) = εσ
i ψσ

i (r), where σ =↑ or ↓ , (1.6)

and

V σ
eff (r) = VC(r) + µσ

xc[ρ(r), σ(r)] . (1.7)

Thus there are two sets of single-particle wave functions, one for spin-up (or “majority”)
electrons and one for spin-down (“minority”) electrons, each with corresponding one-electron
eigenvalues.
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Exchange-correlation functions

Local-density approximation (LDA) A very successful and widely used approximation for
the exchange-correlation energy is the local-density approximation (LDA). Here the exchange-
correlation energy is assumed to depend only on the local electron density of each volume
element dr:

Exc[ρ] ≈
∫

ρ(r)εxc[ρ(r)]dr . (1.8)

εxc[ρ] is the exchange-correlation energy per electron of a homogeneous electron gas and
is expressed as an analytic function of the electron density, as is the exchange-correlation
potential, µxc. There are various forms of the LDA in the literature; we refer to those of Hedin-
Lunqvist [43] and Wigner (non-spin-polarized forms), and Barth-Hedin [41] (spin-polarized
form) since they are the ones implemented in the present FLAPW program version.

Generalized gradient approximation (GGA) In recent years, the generalized gradient
approximation (GGA) is being considered as a possible improvement over the LDA. The GGA
has been found to generally improve the description of total energies, ionization energies,
and electron affinities of atoms, atomization energies of molecules [44–46] and some solid
state properties [47–50]. Adsorption energies of adparticles on surfaces are also reported
to be improved [51, 52] as are reaction energies [53, 54]. Furthermore, the GGA leads to
significantly better activation energy barriers for H2 dissociation [55, 56] and also the relative
stability of structural phases appears to be better described for magnetic [57] and non-magnetic
systems [58, 59].

There are a number of GGA approaches in the literature. The generic form of the GGA
exchange-correlation energy may be written as:

EGGA
xc [ρ] =

∫
ρ(r)εGGA

xc

(
ρ(r),∇ρ(r)

)
dr (1.9)

so that it depends locally on the electronic density ρ(r) and its gradient.
The GGA developed by Perdew and Wang (PW) [44] is derived essentially from first

principles, combining the gradient expansions of the exchange and correlation holes of a non-
uniform electron gas with real-space truncations to enforce constraints imposed by properties
of the physical exchange-correlation hole. The GGA developed by Becke and Perdew [60]
on the other hand relies on fitted parameters. In the present program version of the FLAPW
program the GGA implemented is that proposed by Perdew, Burke and Ernzerhof (PBE) [61].
This functional is regarded to be conceptually more concise than the PW GGA but appears to
yield very similar results [62].

1.2.3 The FLAPW basis-set

In the FLAPW method, in bulk material, real space is partitioned into spherical regions around
atoms (“muffin-tins” or “atomic spheres”) and interstitial regions between the spheres. In the
spherical region, the basis functions are products of radial functions and spherical harmonics,
and in the interstitial region plane waves are used. For the film geometry, there is a number
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of atomic layers surrounded by vacuum, thus in addition to spherical and interstitial regions,
one defines a vacuum region, which starts at ±D/2 and ends at ±D̃/2 (see Fig. 1.1), where
the wave functions are products of two-dimensional (2D) plane waves and z-dependent func-
tions which are solutions of the one-dimensional Schrödinger equation of the (x, y)-averaged
potential in the vacuum region.

Figure 1.1: Geometry for
a film calculation showing
division of space in a film
geometry.

Specifically, the FLAPW one-particle wave functions in the film geometry are:

ψi(r,k‖) =
∑

j

cijφ(r,Kj); Kj = k‖ + Gj , (1.10)

where k‖ is an arbitrary vector of the 2D BZ and Gj is a three-dimensional (3D) reciprocal
lattice vector (in the z-direction an artificial periodicity between the boundaries at ±D̃/2 is
imposed). The basis functions are:

φ(r,Kj) =


Ω−1/2eiKj .r interstitial∑

lm[Aα
lm(Kj)ul(Eα

l , rα) + Bα
lm(Kj)u̇l(Eα

l , rα)]Ylm(r̂α) sphere∑
q[Aq(Kj)ukq(Eν , z) + Bq(Kj)u̇kq(Eν , z)]ei(k‖+K‖

q).r vacuum
(1.11)

The Coulomb potential V (r) is obtained by solving Poisson’s equation in each of the three
regions. At infinity the potential is gauged equal to zero in the case of the film geometry. The
effective single-particle potential is constructed by adding the exchange-correlation potential,
which is determined by the charge density in real space and transformation of it into each
representation. The core electrons are treated fully relativistically and are updated at each
iteration using a scheme for free atoms (only the spherical part of the potential is used). The
valence electrons are expanded in a variational basis set and are treated scalar-relativistically.

1.3 Electronic structure theory for excited states

1.3.1 Band gaps and derivative discontinuities

The band gap is rigorously defined as the difference between the lowest conduction-band
energy and the highest valence-band energy: the latter is the energy required to remove an
electron from the insulating N-particle ground state to infinity, i.e., the ionization potential, I;
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the former is obtained by adding an electron to the insulating N-particle ground state, i.e.,
the electron affinity, A. Thus the exact band gap is defined in terms of the total energy of the
M-particle system, E(M), and the chemical potential, µ(M), as

Eg = I − A (1.12)

= E(N − 1) − E(N) − (E(N) − E(N + 1)) (1.13)

= −µ(N − δ) + µ(N + δ), (1.14)

where we used the definition of the chemical potential,

µ(N) =
∂E(N)

∂N
. (1.15)

On the other hand, the ground-state total energy in DFT satisfies the variational principle
formulation subjected to the constraint,

∫
drn(r) = N , with a Lagrangian multiplier µ′;

δ

δn

(
E0[n] − µ′

∫
drn(r)

)
= 0, (1.16)

or

δE0[n]
δn(r)

= µ′. (1.17)

Actually µ′ is exactly µ since [63]

µ(N + δ) δ = E0[nN+δ] − E0[nN ]

=
∫

dr
δE0[n]
δn(r)

∣∣∣∣
N+δ

(nN+δ(r) − nN (r))

=
∫

drµ′(N) {nN+δ(r) − nN (r)}

= µ′(N) δ. (1.18)

From Eqs. (1.14) and (1.17) the band gap is expressed as

Eg =

[
δE0[n]
δn(r)

∣∣∣∣
N+δ

− δE0[n]
δn(r)

∣∣∣∣
N−δ

]
n=n0

, (1.19)

i.e., the band gap is rigorously determined by derivatives of the total energy functional with
respect to the ground-state density, n0(r).

Now we consider the KS scheme, [2], expressing the total energy functional in terms of
the non-interacting kinetic energy functional Ts[n],

E0[n] = Ts[n] +
∫

dr veff(r) n(r), (1.20)

where veff(r) is the effective local potential. The band gap in this case comes only from the
discontinuity of the δTs[n]/δn(r). In other words, the band gap is exactly evaluated in terms
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of the difference of the eigenvalues in the non-interacting system. Thus we can write a KS
gap as

EKS
g =

[
δTs[n]
δn(r)

∣∣∣∣
N+δ

− δTs[n]
δn(r)

∣∣∣∣
N−δ

]
n=n0

(1.21)

= εKS
N+1 − εKS

N . (1.22)

The origin of the derivative discontinuity of the kinetic energy is, of course, just the finite
change of the highest occupied orbital which may occur when the electron number increases
by an integer. The question here is whether the effective potential, veff(r), obtained with the
LDA would yield the exact KS gap. One answer can be found in the results [20] of Godby
et al. They evaluated the local exchange-correlation potential generated from the GW self
energy, which is assumed to be close to the exact effective potential, and concluded that the
LDA band gap agrees very closely with the true KS gap, at least in Si.

The main source of the band gap problem is hidden in the previous KS scheme using the
effective external potential veff(r). Actually, exact DFT yields another derivative discontinuity
from the exchange-correlation energy functional Exc[n];

Eg = εKS
N+1 − εKS

N

+

[
δExc[n]
δn(r)

∣∣∣∣
N+δ

− δExc[n]
δn(r)

∣∣∣∣
N−δ

]
n=n0

= EKS
g + ∆xc, (1.23)

where ∆xc is the derivative discontinuity of the exchange-correlation energy or the discon-
tinuity of the exchange-correlation potential. The existence of ∆xc in insulators has been
shown by an analysis taking the limit r → ∞, [64] by the two-plane-wave model, [65] and by
a finite one-dimensional model. [66] The derivative discontinuity of the exchange energy has
a similar origin to that of the kinetic energy; the highest occupied orbital of the Fock potential
may have a finite change through the gap. However, that of the correlation energy is more
complicated, and not well understood.

Note that while the band gap is not correctly evaluated from the KS eigenvalues, the center
of the gap relative to the vacuum level, εm, is accurately obtained; [67]

εm = −1
2
[I + A]

=
1
2
[εKS

N+1 + εKS
N ]. (1.24)

In particular for metals, from the continuity condition, I = A, we have

Φ = I = A = −εKS
N (1.25)

where Φ is the work function.
One way to describe the band gap is to construct the self-energy operator given the ground-

state density, and to solve a quasiparticle Dyson equation. On the other hand, it has been
suggested [65, 68] that if the potential of the band theory includes the nonlocality and energy
dependence, as in the self-energy, the eigenvalues could describe the accurate band gap.
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1.3.2 Band gaps and nonlocal potentials

Göling and Levy showed [69] that the discontinuity of the exchange-correlation potential with
respect to particle number is related to the difference between local and nonlocal treatments of
the exchange-correlation potential. In the KS scheme, the many-body N-electron ground state,
|Ψ(N)〉, is equivalent with a single Slater determinant of the KS orbitals in the ground-state
N-electron system, |Φ(N)〉 = |{ψi}〉, which is the solution of the non-interacting Schrödinger
equation,

(T̂ + V̂eff)|Φ(N)〉 = E|Φ(N)〉, (1.26)

and yields the ground-state density, n(r). Accordingly, we can assume the zeroth order many-
body (N+1)- and (N-1)-electron states in terms of the Slater determinant of the KS orbitals to
be

|Ψ(N + 1)〉 � |Φ(N + 1)〉,
|Ψ(N − 1)〉 � |Φ(N − 1)〉. (1.27)

Expressing the Hamiltonian using V̂eff = Ŵs + V̂xc + V̂ ,

Ĥ = T̂ + V̂ + Ŵc

= T̂ + V̂eff +
[
{Ŵc − Ŵs} − V̂xc

]
, (1.28)

where Ŵs, V̂xc, V̂ and Ŵc are the energy operators corresponding to the Hartree, the exchange-
correlation, the external, and Coulomb potentials, respectively, the band gap Eg is thus evalu-
ated up to the first order as follows:

Eg = E(N + 1) − E(N) − [E(N) − E(N − 1)]

= 〈Φ(N + 1)|Ĥ|Φ(N + 1)〉 − 〈Φ(N)|Ĥ|Φ(N)〉

−
[
〈Φ(N)|Ĥ|Φ(N)〉 − 〈Φ(N − 1)|Ĥ|Φ(N − 1)〉

]
� εKS

N+1[n] − εKS
N [n]

+〈ψN+1|v̂NL
x [n] − v̂L

x [n]|ψN+1〉 − 〈ψN |v̂NL
x [n] − v̂L

x [n]|ψN 〉.
= EKS

g + ∆x (1.29)

where v̂NL
x and v̂L

x are nonlocal and local exchange potentials, and correlation terms are ne-
glected since those are higher order with respect to e2. Equations (1.23) and (1.29) thus
suggest

∆xc � 〈ψN+1|v̂NL
xc [n] − v̂L

xc[n]|ψN+1〉
−〈ψN |v̂NL

xc [n] − v̂L
xc[n]|ψN 〉, (1.30)

i.e., the discontinuity of the exchange-correlation potential would be described by difference
between the nonlocal and the local exchange-correlation potential energies. This consequence
is one of the foundations of the sX-LDA method we describe in Sec. 1.3.4.
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1.3.3 Quasiparticle calculations

The GW approximation

Hedin [3] derived a set of coupled equations to solve the quasiparticle equation. The lowest
expansion of the self-energy is called GW approximation, representing the Green’s function
G times the screened interaction W . The detailed derivation is given in Ref. [3]. Here we will
make clear the concept of the quasiparticle spectrum.

The amplitudes fs and the energies es are defined in terms of the one particle annihilation
operator, ψ, as

〈N − 1, v|ψ(x)|N, 0〉 = fv(x)θ(µ − ev),
ev = EN − EN−1,v + iδ,

〈N, 0|ψ(x)|N + 1, c〉 = fc(x)θ(ec − µ),
ec = EN+1,c − EN − iδ.

(1.31)

The energies es are interpreted as the change in the total energy when a particle in the state s is
added to or removed from the N -particle system. In particular, fundamental energy gap Eg in
a semiconductor is, by definition, directly given by the difference between two quasiparticle
energies:

Eg = [EN+1,c − EN ] − [EN − EN−1,v] = ec − ev, (1.32)

where ec and ev are the quasiparticle energies at the bottom of the conduction band and the
top of the valence band, respectively. This point is in contrast with the LDA eigenvalues for
which Eq. (1.32) is generally not valid except in the vicinity of the Fermi energy.

The Green’s function is expressed using Eq. (1.31) as

G(x, x′; e) = −i〈N |T [ψ(x, t)ψ+(x′, t′)]|N〉

=
∑

s

fs(x)f∗
s (x′)

e − es
, (1.33)

here T is the time-ordering operator. Constructing the equation of motion for the Green’s
function, we get the eigenvalue equation for the quasiparticle:

[e − h(x) − v(x)] f(x) −
∫

Σ(x, x′′; e)f(x′′) dx′′ = 0. (1.34)

Now quasiparticle states f(x) and energies e are obtained as the solutions of Eq. (1.34). The
self-energy Σ in the GW approximation equals to iGW . One can compare it with the Kohn-
Sham equation in LDA,[

eLDA − h(x) − v(x)
]
φ(x) − vxc(x)φ(x) = 0, (1.35)

where the exchange-correlation potential vxc(x) is derived by DFT-LDA in the N -particle
system, and eLDA and φ(x) are the eigenvalues and the eigenfunction of LDA. Since both
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Eqs. (1.34) and (1.35) give the same ground-state charge density, f(x) and φ(x) are not ex-
pected to be so different, although they are exactly identical only in the non-interacting elec-
tron system. So the quasiparticle energies can be formulated in terms of the LDA eigenvalues
and eigenfunctions, invoking perturbation theory, as

es = eLDA
s + 〈φs|Σ(es) − vxc|φs〉 + O

(
(Σ(es) − vxc)2

)
≈ eLDA

s − 〈φs|vxc|φs〉 + 〈φs|Σ(es)|φs〉

+(es − eLDA
s )〈φs|

(
∂Σ
∂e

)
eLDA

s

|φs〉. (1.36)

This procedure yields up to the first order,

es = eLDA
s +

〈φs|Σ(eLDA
s ) − vxc|φs〉

1 −
(

∂Σ
∂e

)
eLDA

s

. (1.37)

One of the major computational efforts in self-energy calculations is to calculate the
screened interaction. The physical features of W are well known; the imaginary part of W
is characterized by a strong peak corresponding to a plasmon excitation at the plasmon fre-
quency. Thus, the simplest form of the so-called plasmon-pole approximation is given by [70]

Im ε−1(q, ω) = Aqδ(ω − ωq). (1.38)

The two parameters Aq and ωq are determined from the sum rules. In the case of the electron
gas, this is strictly true in the long wave length limit. For finite q, the spectrum also contains
particle-hole excitations at lower energies. Since the imaginary part of the self-energy is
assume to be zero except at the plasmon-poles, the life-time of the quasiparticles cannot be
calculated. Nevertheless, the plasmon-pole approximation has been widely applied for bulk
semiconductors, and the results for s-p electron systems are generally good. [71]

The GW calculations have been performed for many semiconductors and insulators by
a number of authors, giving good agreement with experiment, typically within an error of
0.1 eV. The results are summarized in recent reviews. [72, 73]

While the GW approximation has shown a lot of successful results, there are some restric-
tions to its applications. First, the large computational demands restrict it to simple crystal
systems. Second, although it is possible in principle to calculate the total energy from the
Green’s function, it is by no means clear that the resulting total energies would be accurate.
The second point comes from the fact that the formalism and the approximation of the GW
approximation is not directly supported by the variational principle for the total energy in con-
trast with DFT-LDA, and that it is difficult to estimate the errors in the GW approximation
itself and in the dielectric function included in W with the complicated cancellations that exist
among them. Finally, the self-consistent GW has not given successful results and remaines
an open question how to find suitable vertex corrections. [72]

The model GW method

The model GW method [14, 15] (sometimes called as LDA+δΣCOHSEX ) is considered to
be one of the simplifications of the GW approximation. Gygi et al. proposed [14] to focus
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on the discrepancy in the self-energy between metals and semiconductors. The self-energy is
then rewritten into two terms:

Σ(r, r′; e) = i

∫
G(r, r′; e + e′)W IEG(r, r′; e′) de′

+i

∫
G(r, r′; e + e′)δW IEG(r, r′; e′) de′. (1.39)

The first term on the right-hand side of Eq. (1.39) is the self-energy of a metallic inhomoge-
neous electron gas, and can be approximated by the LDA expression, vxc(r)δ(r− r′).

The main contribution of the difference in the screened interactions, δW , comes from
the different screening behavior in the long wave length region from the metallic one. The
screened interactions for metals [74], semiconductors [75], and zero-gap semiconductor [76]
are asymptoticly expressed as,[

εM (q)q2
]−1 q→0−→

[
q2 + k2

TF

]−1 (metal)[
εSC(q)q2

]−1 q→0−→
[
ε(0)q2

]−1 (semiconductor)[
εSM (q)q2

]−1 q→0−→ q−1 (zero-gap semiconductor) (1.40)

where kTF is the Thomas-Fermi wavevector and ε(0) is the dielectric constant of the semi-
conductor. In metals, the screened interaction decreases rapidly for |r − r′| > k−1

TF , but in
semiconductors, it decreases as [ε(0)|r − r′|]−1 for large |r− r′| due to the incompleteness of
the screening in semiconductors.

Focusing on the above point, it is assumed that δW depends only on |r − r′|, which is
strictly valid only when |r − r′| → ∞. It has also been shown numerically that in semi-
conductors the local field effects become negligible when |r − r′| exceeds the interatomic
distance. [71] Furthermore, the energy dependence of δW can be neglected since the exci-
tation energies around the gap are much smaller than the plasmon frequency, as seen in the
plasmon-pole approximation. The correction term of the self-energy to the LDA is therefore
approximated in the following form:

δΣ(r, r′) = −ρ(r, r′)δW (|r− r′|) + δΣCOH, (1.41)

where the first term is the screened exchange contribution and ρ(r, r′) is the two-particle
density matrix. The second term of Eq. (1.41) is given as

δΣCOH =
Ω

2(2π)3

∫
dr δW (r), (1.42)

which shifts all eigenvalues by the same constant. The Fourier component of δW is given by

δW̃ (q) =
4π

Ωq2

[
ε−1
SC(q) − ε−1

M (q)
]
, (1.43)

where ε−1
SC(q) is the diagonal part of the inverse static dielectric matrix of the semiconductor

and ε−1
M (q) is that of the metal.
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Table 1.1: Energy gaps at L, Γ , and X , measured from the top of the valence band, and valence
band width (VBW) of Si, Ge, InSb, GaAs in eV calculated by FLAPW within LDA (FLAPW),
model GW using the FLAPW implementation (mGW-FLAPW), model GW using the pseu-
dopotential (mGW-PP), the sX-LDA using the FLAPW implementation (sX-FLAPW), and the
sX-LDA using the pseudopotential (sX-PP), which are compared with experiment (Expt). The
results of FLAPW and sX-FLAPW are taken from Ref. [21], those of mGW-FLAPW are taken
from Ref. [78], those of mGW-PP are taken from Ref. [14] with spin-orbit effects added, and
those of sX-PP and Expt are taken from Ref. [13] and references therein.

L Γ X VBW

Si FLAPW 1.40 2.48 0.58 12.08
mGW-FLAPW 2.30 3.40 1.53 12.66

mGW-PP 2.10 3.21 1.33
sX-FLAPW 2.17 3.22 1.30 12.61

sX-PP 2.18 3.37 1.55 12.47
Expt 1.65± 0.01 3.05, 3.4 1.25 12.5± 0.6

2.1, 2.4± 0.15
Ge FLAPW −0.04 −0.27 0.58 12.92

mGW-FLAPW 0.63 0.32 1.36 13.58
mGW-PP 0.55 0.27 1.24

sX-FLAPW 0.68 0.63 1.22 13.65
sX-PP 0.66 0.28 1.45 13.41
Expt 0.74 0.89 1.3± 0.2 12.6, 12.9± 0.3

InSb FLAPW 0.12 −0.72 0.99 11.01
mGW-FLAPW 0.65 −0.47 1.56 11.67

sX-FLAPW 0.82 0.18 1.55 11.57
sX-PP 1.02 0.21 1.82 11.02
Expt 0.24 1.79 11.7, 11.2

GaAs FLAPW 0.78 0.21 1.29 12.89
mGW-FLAPW 1.57 0.96 2.20 13.62

mGW-PP 1.67 1.11 2.22
sX-FLAPW 1.64 1.19 2.01 13.70

sX-PP 1.70 1.11 2.35 13.40
Expt 1.81 1.52 1.98 13.1

Applications of the model GW method

Gygi et al. implemented the model GW method with the pseudopotential method (mGW-
PP) and tested for simple semiconductors, [14] and Massidda et al. implemented it with the
FLAPW basis (mGW-FLAPW) and applied to several transition metal oxides. [15–18]

While good agreement with experiment for diamond, Si, and GaP is demonstrated. a
relatively large discrepancy from experiment still remains in the band gaps at Γ for Ge, InSb,
GaAs as seen in Table 1.1. [14, 78] The accuracy for these materials should be limited by the
neglect of local-field effects and dynamic screening.
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Figure 1.2: Partial densities of spin-up
states of antiferromagnetic MnO. Top
panel: the total O 2p projection into
the O spheres. Second and third pan-
els: d projection into the two inequivalent
Mn spheres. Solid (dashed) lines corre-
spond to the model GW (LSDA) calcu-
lations. Bottom panel, upper curves: in-
verse photoemission spectrum (Ref. [79])
and difference between the on- and off-
resonance photoemission spectra (Ref.
[80]), representing the Mn 3d contribu-
tion. Lower curves: GW d-projected
DOS into both Mn spheres. (Taken from
Ref. [15]).

On the other hand, for the systems which involve correlated d electrons, model GW gen-
erally exhibits good results. The densities of states of antiferromagnetic MnO calculated with
LSDA and model GW are shown in Fig. 1.2 [15]. Significant improvement, upon going
from LSDA to the model GW , and in particular, good agreement with photoemission spec-
tra [79, 80] are demonstrated. The band gap and magnetic moment of the model GW , 4.2 eV
and 4.52 µB , can be compared with the experimental values, 3.8–4.2 eV and 4.58–4.79 µB ,
which are also improved over the LSDA results, 1.0 eV and 4.29 µB , respectively.

The band structure of antiferromagnetic NiO is compared with experimental angle-resolved
photoemission (ARPES) data as shown in Fig. 1.3.

An agreement of the model GW band dispersion with the ARPES data is in overall good
agreement with and much better than that of the LSDA results. The bandgaps calculated by
model GW and LSDA are 3.7 eV and 0.3 eV, respectively, which compared with experiment,
4.0–4.3 eV. The importance to include self-consistently self-energy corrections in transition-
metal oxides, due to large changes in the wave functions, is emphasized.

The above results demonstrate the capability of the model GW method to calculate strongly
correlated systems. As expected, however, the method can not explain the high-binding-
energy satellite observed in photoemission. [15, 18] This requires going beyond the GW ap-
proximation where a vertex correction, e.g., ladder diagrams, should be included. [77]

1.3.4 Density functional theory using non-local functionals

The generalized Kohn-Sham scheme and the sX-LDA method

The KS scheme employed the non-interacting energy functional, Ts[n], instead of the Hohen-
berg-Kohn functional, [1] FHK [n], by introducing the effective potential, veff(r), as seen in
Eq. (1.20). However the choice of the energy functional is rather arbitrary. One can consider
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Figure 1.3: Model GW self-consistent band
structure of NiO, compared with the APRES
data. (Taken from Ref. [18]) and references
therein.

the model system or the energy functional in which some part of the electron-electron inter-
action is taken into account. Seidl et al. generalized [13] the KS scheme (GKS scheme) for
some energy functional, Fs[n], chosen with a correction energy function, Rs[n], so that

FHK [n] = T [n] + Ws[n] + Exc[n] = Fs[n] + Rs[n]. (1.44)

A main extension for Fs[n] is that it can include some part of the interacting energy functional
as well as the non-interacting one. In order to guarantee the existence of self-consistent single
particle equations, the interaction should be represented by the density and/or a single Slater
determinant Φ = {ψ}. The total energy is given as

E0[n] = Fs[{ψ}, n] + Rs[n({ψ})] +
∫

dr v(r) n({ψ}, r) (1.45)

and the corresponding single-particle equations (GKS equations) are

Ôs[{ψ}]ψj + υRψj + vψj = εjψj , (1.46)

where Ôs[{ψ}] may depend on the orbitals, and

υR(r) =
δRs[n]
δn(r)

. (1.47)

Whether the density constructed from ψj is v-representable and equals the true density re-
mains a question as in the KS scheme; the method, however, has an advantage that a suitable
choice of Fs can result in Rs being small compared to the total energy.

The sX-LDA method was first proposed [12] by Bylander and Kleinman (who called the
method the modified LDA) in order to describe a better band gap. Seidl et al. showed that the
method can be actually described in the GKS framework. Using Eq. (1.44), the choices of Fs
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and Rs in the sX-LDA method are given by

F sx
s [{ψ}, n] = T sx[n] + Ws[n] + Esx

x [{ψ}], (1.48)

Rsx
s [n] = T [n] − T sx[n] + Exc[n] − Esx

x [n]
� ELDA

xc [n] − Esx
x [n]. (1.49)

Here ELDA
xc [n] is the exchange-correlation energy expression in LDA, and we assumed

T sx[n] � T [n]. The functional Rsx
s is constructed so that the accuracy of the total energy

in the sX-LDA is as good as that in the LDA. The single-particle equation, Eq. (1.46), is
obtained as[

−�
2

2 me
∇2 + veff(r)

]
ψi(r)+

∫
dr′ υNL

sx (r, r′)ψi(r′)−υL
sx(r)ψi(r) = εsx

i ψi(r), (1.50)

where veff(r) is the effective potential formulated by LDA, and υNL
sx (r, r′) and υL

sx(r) are
nonlocal and local screened exchange potentials. The virtue of this method is that the sX-
LDA eigenvalues can describe the discontinuity of the exchange-correlation potential for the
band gaps; from Eq. (1.50) we obtain

Esx
g = εsx

N+1[n] − εsx
N [n]

� εLDA
N+1[n] − εLDA

N [n]

+〈ψN+1|υ̂NL
sx − υ̂L

sx|ψN+1〉 − 〈ψN |υ̂NL
sx − υ̂L

sx|ψN 〉.
� Eg, (1.51)

where we used the consequence of Eqs. (1.23) and Eq. (1.30). Therefore the sX-LDA is a
promising method which can realize accurate ground-state total energies, ground-state charge
densities, and band gaps. Note that even though the sX-LDA is expected to have good band
gaps, it does not mean that all the sX-LDA eigenvalues correspond to the quasiparticle ener-
gies. The meaning of the sX-LDA eigenvalues is still nothing but Lagrange parameters as in
the LDA. However, providing that the LDA can yield the excited states with a certain accuracy
except the band gap, we expect equivalent or better results for the sX-LDA eigenvalues in the
excited states.

Implementation of the sX-LDA method

In the sX-LDA, a GKS equation is written invoking perturbation theory as

(ĥLDA + ∆υ̂sx)|i〉 = εsx
i |i〉, (1.52)

where

∆υ̂sx = υ̂NL
sx − υ̂L

sx. (1.53)

Here ĥLDA is the LDA Hamiltonian, υ̂NL
sx the nonlocal screened Fock exchange operator,

υ̂L
sx the corresponding local one, and |i〉 are the eigenkets of the sX-LDA. The screened Fock

exchange operator is given as

υNL
sx (r, r′) = −

occ∑
j

W (r, r′)〈r|j〉〈j|r′〉. (1.54)
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Employing the simple Thomas-Fermi screening for ∆υ̂sx, we have the screened interac-
tion in the form

W (r) =
e−kTFr

r
, (1.55)

and the corresponding local potentials, [81]

υL
sx[ρ(r)] = −2

(
3
π

ρ(r)
)1/3

F (γ), (1.56)

F (γ) = 1 − 4
3
γ arctan

2
γ
− γ2

6

[
1 −

(
γ2

4
+ 3

)
ln

(
1 +

4
γ2

)]
. (1.57)

Here γ = kTF/qF , where kTF is a Thomas-Fermi screening wave vector, k2
TF = 4qF /π, and

qF = (3π2ρ̄)1/3 is a Fermi wave vector corresponding to the average density ρ̄. It needs to be
emphasized that, as discussed in Ref. [12], it is assumed that the local screened exchange den-
sity functional has the same dependence on the local density as the LDA exchange functional,
so that γ has no dependence on ρ(r) and qF depends only on ρ̄.

Now let’s consider the case of films or superlattices (FLM/SL). [24] The essential differ-
ence between the FLM/SL and the bulk is that the linear response for the FLM/SL, χ(r, r′),
is spatially non-uniform, necessitating a translationally non-invariant response function in the
z direction, whereas the response function in the form χ(r − r′) is used for the bulk; in other
words, we need to include local field effects in the z direction. In the GW calculations, the
response function and the corresponding screened interaction are directly calculated by the
random-phase approximation (RPA). Instead of its heavy evaluation, we employ a rather sim-
ple but reasonable nonlocal response function as

χ(r1, r2) = χ (r12; ρ12) , (1.58)

where

ρ12 =
ρ(z1) + ρ(z2)

2
, (1.59)

i.e., the response function depends on an intermediate density between planar-averaged den-
sities, ρ(z1) and ρ(z2), and the distance of the two positions r12 = |r1 − r2|. Apparently,
in a homogeneous system, Eq. (1.58) is reduced to the response function which depends only
on a constant average density over the solid, i.e., the approximation used in sX-LDA for bulk.
Equation (1.58) was applied to calculations for the H2 molecule [82] and for a surface en-
ergy [83], which give reasonable improvement over the results using the homogeneous form.

Corresponding Thomas-Fermi screening function for FLM/SL is given by

W (r12; z1, z2) =
e−kFS(z1,z2) r12

r12
, (1.60)

where the nonlocal Thomas-Fermi wave vector kFS is defined by

[kFS(z1, z2)]2 =
4
π

(3π2ρ12)1/3. (1.61)
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For a local screened potential, we use Eq. (1.56) but assume that γ depends on ρ(z), and keep
it independent of ρ(r). With this particular choice of screening function, a Fourier component
of Eq. (1.60) is given as

W̃ (qxy; z1, z2) =
1
A

∫
drxy W (r12; z1, z2)e−iqxy·rxy

=
2π

A

∫ ∞

d12

dr J0

(
qxy

√
r2 − d2

12

)
e−kFS(z1,z2) r, (1.62)

where qxy is a two dimensional wave vector, d12 = |z1 − z2|, A is the area of the unit cell,
and J0 is the zeroth order Bessel function.

We solve the secular equation, (1.52), self-consistently in a second variational way; the
sX-LDA Bloch states |i〉 are expanded in terms of the FLAPW basis set |n〉 as

|i〉 =
∑

n

|n〉〈n|i〉. (1.63)

Starting from the LDA results calculated by the usual FLAPW procedure, we construct per-
turbation matrix elements. [24,84] After diagonalization, the new eigenfunctions obtained are
used to update the screened Fock exchange operator in the following iteration until the charge
densities and eigenfunctions satisfy self-consistency.

Applications of the sX-LDA method

We here present some of the results calculated by the sX-LDA method implemented with the
FLAPW basis (sX-FLAPW).

Figure 1.4: Self-consistent band structure
of Ge by the sX-LDA method (solid line)
and LDA (dashed line). (Taken from Ref.
[21]).

The calculated sX-FLAPW band structure for cubic Ge is shown in Fig. 1.4 in comparison
with the band structure within LDA results. [21] Even erroneous negative band gaps at the Γ
and L points obtained by LDA are now corrected by the sX-LDA method. In Table 1.1, the
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Figure 1.5: Calculated v.s. experimental energy-band gaps for 24 elemental and binary semi-
conductors. Results from sX-FLAPW calculations are shown as solid circles. Values obtained
within LDA are represented as stars. (Taken from Ref. [23])

calculated band gaps and valence band widths (VBW) of cubic semiconductors are summa-
rized, in comparison with the sX-LDA results obtained using the plane-wave pseudopoten-
tial method (sX-PP), [13] and with experiment. The improvement of the band gaps by the
sX-LDA method is clearly shown for all materials, and agreement with experiment is good.
Although the FLAPW results give a larger discrepancy of the band gaps from experiment
than the more approximate plane-wave pseudopotential method, [13] the corrected sX-LDA
results, sX-FLAPW and sX-PP, show overall agreement with each other; the sX-FLAPW re-
sults are closer to experiment at the Γ point in Ge and at the X point in GaAs than the sX-PP
results.

Fundamental band gaps for several semiconductors are calculated as shown in Fig. 1.5.
[23] Typical deviations between experimental values and sX-FLAPW predictions are a few
tenths of 1 eV. A systematic investigation of effective masses reveals a similar picture, namely,
that sX-FLAPW improves the overall agreement with experiment [85–88], as shown in Table
1.2. [23] In particular, the performance of sX-FLAPW in predicting mΓ

c is rather remarkable.
Nevertheless, in some cases involving flat bands, significant discrepancies remain (e.g., mX

l

of GaAs and mX
t of GaSb).

The sX-LDA results generally overestimate the valence band width while the LDA results
give better agreement with experiment as seen in Table 1.1. Engel [89] proposed a screening
function that is possibly better than the traditional Thomas-Fermi function. The new screened
interaction, W2, is given by

W2(q) =
4π

Ωq2
Θ(q − ks), (1.64)
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Table 1.2: Computed and measured effective masses (conduction masses: mc, longitudinal and
transverse conduction masses: ml and mt, heavy hole and light hole masses: mhh and mlh).
For InAs, effective density of states masses are defined as: mL = [16mL

l (mL
t )2]1/3 and mX =

[9mX
l (mX

t )2]1/3. (Taken from Ref. [23])

LDA sX-FLAPW Exp.

GaAs mΓ
c 0.011 0.055 0.067a, 0.063b

mL
l 1.749 1.870 1.9b

mL
t 0.099 0.126 0.075b

mX
l −0.978 −0.973 1.98c, 1.9b

mX
t 0.272 0.275 0.3c,0.19b

mΓ
hh 0.312 0.323 0.45c, 0.51b

mΓ
lh 0.105 0.091 0.085c, 0.082b

GaSb mΓ
c 0.066e 0.014 0.0412a

mL
l 0.080 0.014

mL
t 1.745 1.714 0.95b

mX
l 0.095 0.123 0.11b

mX
t −0.721 −0.626 1.51b

mΓ
hh 0.954e 0.691 0.28a, 0.22b

InP mΓ
c 0.019 0.089 0.0765a, 0.079d, 0.081d

mL
t 0.145 0.180 0.25b

mX
t 0.402 0.392 0.32b

mΓ
hh(001) 0.415 0.456 0.56a, 0.52d, 0.61d

mΓ
hh(111) 1.011 1.032 0.60a, 0.95d, 0.63

mΓ
lh(001) 0.165 0.172 0.12a, 0.104d, 0.118d, 0.089b

InAs mΓ
c (100) 0.094e 0.022 0.0231a

mΓ
c (111) 0.112e 0.021

mL 0.862 0.821 0.29b

mX 1.367 1.254 0.64b

mΓ
hh 0.353e 0.388 0.41b

mΓ
lh 0.046e 0.025 0.026b

aReference [85] bReference [86]
cReference [87] dReference [88]
eA proper assignment of valence and conduction bands is hampered by the incorrect band over-
lap in the LDA.

where Θ(q − ks) is a step function with a cutoff, ks. In this case, the corresponding local
field factor behaves quite similar to that obtained by quantum Monte Carlo simulations [90]
in predicting that the higher density region contributes to the narrowing of the band width
– in contrast with the consistently larger band width (compared with LDA) that is obtained
for the Thomas-Fermi function in the whole density region. There is, however, difficulty in
implementing this newly proposed screening function; since the minimum cutoff parameter
ks in W2 is placed at about 0.9qF where the contribution is large, the result is very sensitive
to the choice of the cutoff, and because of this, a small number of special k-points does not
give a smooth band structure over the Brillouin zone.
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The sX-FLAPW implementation for films, i.e., Eq. (1.60), was applied to calculations of
the 2x1 reconstruction surface of Si(100). [24] The band structures of the Si(100)2x1 surface
and bulk Si along the [010] direction on the SBZ calculated by the sX-FLAPW methods,
compared with angle-resolved photoemission data, [91] are presented in Fig. 1.6. In order to
put the bulk band structure together with the film band structure, the Si 1s core level in the
sixth layer from the surface was used as a reference, which showed a good convergence within
0.05 eV between the fifth and the sixth layers. In this way, the absolute value of the valence
band maximum measured from the vacuum level, i.e., the ionization energy, was evaluated to
be 5.35 eV, in good agreement with an experimental value of 5.15±0.08 eV. [92]

Figure 1.6: Self-consistent band structures
in the [010] direction for the Si(100)2x1
surface calculated by the film sX-FLAPW
method (dashed lines), and for the bulk Si
band structure projected into the 2x1 sur-
face Brillouin zone calculated by the bulk
sX-FLAPW method. Filled circles (labeled
F, S, and B) represent the experimental data
taken from Ref. [91]. The valence-band
maximum of bulk Si is set to be zero.

The occupied surface states (Dup) calculated by sX-FLAPW show good agreement with
the experimental dispersion S1 in Fig. 1.6. Good agreement between experimentally observed
occupied structures, B1 and B2, and the present folded bulk bands indicates that both struc-
tures come from the bulk resonance states. While the FLAPW calculations give a metallic
surface with the negative Ddown state at J ′, the sX-FLAPW calculations give a semiconduct-
ing surface which is observed in experiment. Focusing on the corrections at Γ where both
LDA results agree with each other, we found that the Ddown states of sX-FLAPW are lower in
energy than those of the GW approximation using the RPA dielectric matrix [93] by about 0.2
eV, but are quantitatively comparable with those of the GW method using the model dielectric
function (with ε∞ = 10.0) proposed by Hybertsen and Louie. [94] Note that the sX-FLAPW
method has an obvious advantage over the above model dielectric function; the latter needs
to calculate or assume the dielectric constant ε∞(r) which significantly changes in space at
surfaces. [95]

Recently the sX-FLAPW method was also applied to describe band offsets in the strained
InAs/InSb superlattices [24] and the Burnstein-Moss shift in a transparent conducting mate-
rial, [96] In-doped CdO.
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1.4 Application to semiconductor materials

In this section, we discuss how ab-initio electronic structure calculations can give important
insights to designing novel materials suited to fit specific requirements for semiconductor de-
vice applications. Understanding the electronic properties of a given material is, in fact, the
basis for the full comprehension of its thermal, transport and electric properties; thus, band
structure calculations provide a powerful tool to explore real complex materials, – providing
valuable information such as density of states, energy level transitions and carrier effective
masses. In the following, we focus on semiconductors as intrinsic materials as well as fun-
damental constituents of more complex engineered materials, such as heterostructures and
interfaces.

1.4.1 Bulk semiconductor materials

Ordered ternary systems, based on III-V semiconductors, constitute an important class of new
materials of relevant scientific interest, whose structural, electronic and transport properties
can be properly tuned, as a function of the constituent materials, alternating layer widths,
strain or doping. The flexibility of their electronic properties has thus opened new perspectives
in the technological field: superstructures and heterojunctions have recently been proposed as
fundamental components in many applications, such as laser diodes, infrared detectors and
non-linear optical devices [97].

In the following, we focus on the properties of ternary and quaternary [98] III-V semi-
conductor alloys that have been the subject of many experimental [99] and theoretical [100]
studies. For example, it has been shown that the efficiency of thermophotovoltaic devices de-
pends strongly on carrier diffusion lengths, which is related to the carrier effective mass and
electron–hole pair lifetime. Both the effective mass and carrier lifetime are greatly affected by
details of the band structure. With an aim at meeting specific technological requirements, our
work focuses on understanding key chemical and structural effects which influence critical
points in the conduction band of III-V alloys. Thus, we studied ordered InxGa1−xX systems
(with x = 1

4 , 3
4 and X = As, Sb), which are promising materials for thermo–photovoltaic

(TPV) devices. Moreover, we focus on the luzonite structure and in particular on the Γ − Γ
and Γ − L transitions (the overbar denoting electronic states of ternary compounds), which
can play a key role in determining the carrier lifetime in these materials.

Since the widely used density functional theory (DFT) in the local density approxima-
tion (LDA) [101] gives unphysical negative band gaps and incorrect excitation energies for
these compounds, we use the screened-exchange LDA (sX-LDA) approach [102] to obtain
quasiparticle energies within our FLAPW method [103]. This scheme goes beyond DFT by
modelling the exchange hole within a non-local scheme [104] and is discussed in detail in
Sect.III D above.

We recall that carriers in conduction side band valleys (e.g. those at L and X) in III-
V semiconductors have much higher effective masses than those in the primary valley (Γ),
because the band curvature at Γ is steeper. It follows that valence band electrons that are
excited into these valleys will have relatively short diffusion lengths and, thus, will have a
low probability of being collected at the leads of a TPV device. Moreover, carriers originally
in the conduction band minimum at Γ may also be scattered into the L or X side valleys by
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non-radiative processes, such as Auger or scattering due to impurities and alloy disorder. In
essence, then, these indirect transitions are a loss mechanism competing with the direct Γ−Γ
transition. As a consequence, in addition to the Γ − Γ (EΓ−Γ) and Γ − L gaps (EΓ−L), it is
particularly important to examine the so called “Γ−L separation”, ∆EΓ−L = EΓ−L−EΓ−Γ.

We examine [105] III-V ternary compounds based on InAs and InSb, alloyed with Ga at
different concentrations and study the behaviour of the transitions of interest (namely Γ − Γ
and Γ−L) as well as the previously defined Γ−L separation, as a function of volume and Ga
concentration. In the calculations, we use experimental lattice constants [106] (the FLAPW
calculated values [107] are within 0.5 % of experiment) for the binary compounds while the
equilibrium lattice constants for the ternaries, Ax B1−x C, were chosen according to Vegard’s
rule: aV egard = (x) aAC + (1− x) aBC . More details regarding the calculation can be found
in Ref. [105] and are not repeated here.

As well-known, band folding in superstructures can cause a repulsion due to the coupling
of two binary states of different symmetries folded onto states of the same symmetry in the
ternary system. As a result, we find an appreciable reduction of the direct band gap in going
from the average band gap to the luzonite calculated value.

If we concentrate on the Γ−Γ and Γ−L transitions [105], obtained within self-consistent
sX-LDA (spin-orbit included) as a function of the cubic lattice constant, we note a dramatic
volume effect on the direct energy gap: in all the systems considered, variations of the lattice
constant of ± 4 % can change the band gap by as much as 0.7–0.8 eV. On the other hand, the
effect of pressure on the Γ − L transition is less evident (around 0.3 eV for changes of ± 4%
in the lattice constant) [105]. In all the structures, the trend is almost perfectly linear, leading
to a smaller band gap as the lattice constant is increased. Most remarkably, the compounds
at different Ga concentrations follow the same trend: upon expansion of the lattice, the direct
and indirect energy band gaps diminish with a slope af approximately −1.6 eV/a.u. and
−0.5 eV/a.u., respectively. It is therefore possible to tune the transition energies by varying
the lattice constant.

The Γ − L separation as a function of volume for all systems considered is shown in
Fig. 1.7: the energy separation is found to increase in all the systems. We recall that two major
effects determine energy band gaps in III-V semiconductors: (i) the splitting of bonding and
anti–bonding states (valence band and conduction band) due to chemical interactions between
anion s, p states and cation s, p states and (ii) the width of each band. As cations and anions
are brought into closer contact and reduce the lattice parameter, the splitting between bonding
and anti–bonding states increases. At the same time, both the valence and the conduction
bands are broadened due to the increased overlap of the wave functions. This second effect
tends to close the band gap and to drive the system towards a metallic state. As it turns out, the
splitting of the bonding–antibonding states prevails and one observes a band gap that widens
with decreasing lattice parameter. Moreover, the volume dependence of the direct gap as well
as the indirect gap is fairly independent of the specific chemical nature of the cation in the
III-V semiconductors investigated in this study.

The Γ − L separation is determined by an energy difference within a band and therefore
depends primarily on the width of the conduction band, i.e. on the overlap of the states forming
the conduction band. Since cationic s and p states dominate the conduction band, the width
of the conduction band is related to the nature and distance of the cations. For typical Ga–Ga
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Figure 1.7: sX-LDA Γ − L separation (in eV) for the luzonite structures as a function of the
cubic lattice constant (in Å): Ga–rich InGaAs (empty squares); In–rich InGaAs (filled squares);
Ga–rich InGaSb (empty circles); In–rich InGaSb (filled circles).

and Ga–In equilibrium spacings in III-V semiconductors, the Ga and In wave functions are
quite similar and size effects prevail over chemical effects.

The dependence of the characteristic transitions on anion substitution (Sb versus As) is
more complex. A complete study would of course imply the examination of disordered alloys:
however, we can study the trend as a function of composition in ordered structures, considering
only five different compositions: x = 0 and 1 (binary compounds), x = 0.25, x = 0.5 (CuAu
system) and x = 0.75 (luzonite structures).

In Fig. 1.8 (a), the sX-LDA values for the direct transitions in InGaAs (circles) and InGaSb
(stars) respectively, are shown together with a parabolic fit. The trend of the direct band gap
versus composition is well represented by a parabolic behaviour, so that both As and Sb based
compounds show an appreciable deviation from linearity (“bowing” [105]), mainly due to
ordering effects. Moreover, the energy range that the direct gap can span is larger in As-based
than in Sb-based compounds; therefore, InGaAs systems appear to be more suitable for band
gap tuning purposes.

We show in Fig. 1.8 (b), the composition dependence of sX-LDA energy values for the
first and second conduction band states at L (with respect to the valence band maximum) in
InGaAs systems. As a result of the different composition–dependent character of the states
involved [105], the strongest reduction in the Γ−L transition is obtained for In-rich systems.

Our results can be summarized as follows: (i) both the direct band Γ − Γ and indirect
Γ − L band gap decrease linearly as the lattice parameter is increased; (ii) the reduction is
two times faster for the direct than for the indirect band gap; (iii) the slope of this linear
behaviour is nearly independent of the chemical composition;(iv) the direct band gap shows
a parabolic dependence on the ternary concentration with a non-negligible bowing parameter
(i.e. about 1 eV). Therefore, pressure as well as composition can be used as valid tools to
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Figure 1.8: (a) sX-LDA direct band gaps (in eV) for InGaAs (circles) and InGaSb (stars) sys-
tems versus Ga concentration (the dot-dashed line shows a linear average of the direct band gaps
in the binaries). (b) sX-LDA lowest (squares) and second-lowest (diamonds) indirect band gaps
at L in InGaAs systems (the dot-dashed line shows a linear average of the indirect band gap in
the binaries).

vary the transitions considered; in particular, due to the symmetry properties of the ternary
luzonites, In-rich systems show a strong reduction of the Γ − L transition, compared to the
linear average of the Γ − L band gaps in binaries. Finally, As-based systems are predicted to
have larger Γ − L gaps than Sb-based luzonites and therefore seem to be more promising for
achieving high carrier mobilities in TPV device applications.

1.4.2 Semiconductor/semiconductor interfaces

Particular attention has been devoted to the electronic properties of interfaces between two
semiconductors. The relevant quantity in this case is the relative position of the band gap
which determines the potential steps (the so-called “valence band offset” (VBO) and “con-
duction band offset”) that the different charge carriers (holes and electrons) have to overcome
to allow conductivity across the interface. The relative alignment of the potential in the two
materials in contact is determined by some intrinsic bulk properties (i.e. the position of the
conduction and valence band with respect to the vacuum level) and by the charge rearrange-
ment at the interface.

One important area is the determination of the valence band offset and its dependence on
strain and growth conditions. As example, we consider homopolar isovalent heterostructures
and in particular III-V superlattices (SLs), namely the common-anion system GaSb/InSb (lat-
tice mismatch of 5.7 %) and the common-cation system InAs/InSb (lattice mismatch of 6.4 %),
and concentrate on the effect of ordering direction and strain conditions determined by pseu-
domorphic growth on a given substrate [108]. The dependence of the VBO on the strain at an
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Table 1.3: Interface term (∆ b), strained bulk term (∆ Eb) and valence band offset (∆ Ev)
for elastically relaxed (GaSb)3/(InSb)3 and (InAs)3/(InSb)3 -average substrate- superlattices as
a function of the ordering direction. The suffix nr (r) denotes scalar-relativistic (relativistic)
treatment. Energy differences (in eV) are considered positive if the level relative to the InSb
layer is higher in energy with respect to the GaSb (InAs) layer in the common-anion (common-
cation) system.

∆ b ∆ E
(nr)
b ∆ E

(r)
b ∆ E

(nr)
v ∆ E

(r)
v

(GaSb)3/(InSb)3 [001] +0.19 −0.21 −0.12 −0.02 +0.07
[111] +0.29 −0.27 −0.13 +0.02 +0.16

(InAs)3/(InSb)3 [001] +0.07 +0.27 +0.47 +0.34 +0.54
[111] +0.17 +0.30 +0.51 +0.47 +0.68

AC/BC junction is examined in different strain conditions: (i) pseudomorphic growth of a BC
epilayer on an AC substrate; (ii) “free standing mode”, equivalent to a system grown on an
A0.5B0.5C substrate (“Av. subs.”); and (iii) pseudomorphic growth of an AC epilayer on a BC
substrate.

On the other hand, the dependence of the VBO on the ordering direction is studied through
a comparison of the [001] and [111] ordered SLs grown on a fixed substrate with average lat-
tice constant, but different crystallographic orientations. This choice of the substrate, and
the consequent lattice relaxation, lead to a small difference (about 1.4 %) between the lattice
constants of the binary constituents along the [001] and [111] growth direction. In analogy
with the common experimental approach followed in photoemission measurements, we eval-
uate the VBO using core electron binding energies as reference levels [109]. We consider the
1s-levels of the common atom C (i.e. Sb in the common-anion system and In in the common-
cation system); other choices of core levels for different atoms would produce a VBO value
differing from those reported here by at most 0.06 eV, which has thus to be considered as our
numerical uncertainty.

The calculation of the VBO, ∆ Ev , is done according to the usual expression [109]:

∆ Ev = ∆ b + ∆ Eb (1.65)

where the interface term ∆ b indicates the relative core level alignment of the two C atoms at
opposite sides of the interface (one belonging to the AC side and the other to the BC side),
while ∆ Eb indicates the binding energy difference (relative to the valence band maximum
(VBM)) of the same core levels evaluated in the binary constituents, opportunely strained to
reproduce the elastic conditions of the SL. Table 1.3 lists the contributions due to the inter-
face (∆ b) and to the strained bulks (∆ Eb) and the resulting values of the VBOs (∆ Ev) as
a function of the ordering direction; the superscripts (nr) and (r) indicate respectively the
non-relativistic and relativistic (i.e. spin-orbit coupling treated in a perturbative approach)
calculations.

We note that the first contribution (∆ b) is seen to be sensitive to the crystallographic
ordering (the two values for [001] and [111] growth axis differ by 0.1 eV ), while the second
contribution to the VBO (∆ Eb) is almost uninfluenced by the ordering direction. Overall,
we do not observe a marked dependence of the VBO on the crystallographic ordering at the
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Table 1.4: Interface term (∆ b), strained bulk term (∆ Eb) and valence band offset (∆ Ev) for
(GaSb)3/(InSb)3 and (InAs)3/(InSb)3 [001] superlattices as a function of the substrate lattice
parameter. Energy differences (in eV) are considered positive if the level relative to the InSb
layer is higher in energy with respect to the GaSb (InAs) layer in the common-anion (common-
cation) system.

∆ b ∆ E
(nr)
b ∆ E

(r)
b ∆ E

(nr)
v ∆ E

(r)
v

GaSb-subs. +0.20 +0.10 +0.14 +0.30 +0.34
(GaSb)3/(InSb)3 Av. subs. +0.19 −0.21 −0.12 −0.02 +0.07

InSb-subs. +0.18 −0.47 −0.34 −0.29 −0.16

InAs-subs. +0.09 +0.65 +0.79 +0.74 +0.88
(InAs)3/(InSb)3 Av. subs. +0.07 +0.27 +0.47 +0.34 +0.54

InSb-subs. +0.05 −0.04 +0.18 +0.01 +0.22

interface. Since it is well-known, for lattice matched structures [110, 111], that the band line-
up is independent of interface orientation, the VBO change we find in going from the [001]
to the [111] ordered SLs has to be related only to the appreciable mismatch which causes a
different relaxation of the interface bond-lengths.

Let us now look at the role of the mismatch in determining the band line-up. Our re-
sults for [001] systems [108] with different pseudomorphic growth conditions are shown in
Table 1.4. Note that the interface term ∆ b is very similar in the same SL grown on the three
different substrates, implying that the charge readjustment at the interface is almost indepen-
dent of strain conditions. On the other hand, the ∆ Eb term (i.e. the bulk contribution to
the VBO) varies dramatically, showing that the core level binding energies in the strained bi-
nary suffer an appreciable change when growing the SL on different substrates. In fact, the
energy of the topmost valence level (and hence the binding energy Eb) is determined by the
interplay of the spin-orbit coupling and the non-cubic “crystal field” [112]. In particular, the
second of these two effects is critically dependent on strain conditions, and is thus the origin
of the large difference between the ∆ Eb in Table 1.4. Furthermore, the clear trend shown
by the VBO as a function of the substrate lattice constant is remarkable: the smaller the asub,
the more the InSb topmost valence level is raised with respect to the VBM of the other SL
constituent. Figure 1.9 illustrates the linear dependence of the VBO on the lattice parameter
for the common-anion case (the results for common-cation are similar and hence not shown)
and reports other theoretical results [110,113–116]. Thus, GaSb/InSb and InAs/InSb SLs pro-
vide a good opportunity for VBO tuning: a range of about 0.5 eV for common-anion and of
0.7 eV for common-cation systems is covered by varying the strain conditions determined by
the substrate.

In summary, our results indicate that under the same strain conditions, the ordering direc-
tion has quite a small effect on the band line-up. On the other hand, a much more important
effect is due to pseudomorphic growth on different substrates: the high tunability of the VBO
is evidenced by its linear decreasing trend as the substrate lattice constant is increased, mainly
due to the bulk contribution to the band line-up.
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Figure 1.9: Valence band offset (in
eV) for GaSb-InSb SLs as a function
of the substrate lattice parameter. Our
results (together with their error bars)
are evidenced by filled squares ([001]
SLs) or filled circles ([111] SLs) and
solid line. The dotted line shows
the behaviour of unstrained GaSb and
InSb. Empty squares: Ref. [114];
empty diamonds: Ref. [113]; filled
diamond: Ref. [116]; empty circles:
Ref. [115].

1.4.3 Semiconductor/metal interfaces

GaN has certainly been one of the most studied compounds in the last few years, mainly be-
cause of both its interesting optical properties and remarkable thermal stability, which render
this semiconductor particularly suitable for important technological applications. As is well-
known, however, device performances depend on good metallic contacts and so the study of
Schottky barrier heights (SBH) in GaN/metal systems is of great relevance: as an example,
the performance of GaN–based laser diodes is still limited by the difficulty in making low re-
sistance ohmic contacts. In this regard, surface reactivity and the presence of interface states
are also seen to play a relevant role in Schottky barrier formation.

We investigated the GaN/Al system, which is considered to be a reactive interface due to
the Ga–Al exchange reaction driven by AlN formation at the immediate interface; we studied
the ideal interface [117], as well as the effects on the interface properties of some defects (such
as atomic swap and GaxAl1−xN intralayers [118]) at the initial stages of SBH formation [119].

We here describe results of ab-initio calculations for GaN/M interfaces (with M = Ag,
Au) [120] which are considered to be non–reactive [121] and compare the results (such as
metal induced gap states (MIGS) and SBH) with those obtained for GaN/Al, in order to un-
derstand the dependence of the relevant electronic properties on the deposited metal. The
interest in studying noble metal contacts resides in understanding the effect of the d states
on the Fermi level position, which has been thought to be relevant in the case of GaAs/metal
interfaces [122].

By comparing the partial density of states for the GaN/Al interface with the GaN/Au or
GaN/Ag systems [120], we find that the main differences are found on the metal induced
gap states which are seen to affect mainly the first layer close to the interface on both sides.
The reason for this behavior is that in GaN/Au, the Au 3d states are occupied and interact
strongly with the N p states, which are also filled. As a result, the antibonding states rise in
energy above the semiconductor VBM and form peaks at around 1.5 eV, just in proximity to
the Fermi level. Such features, present in the PDOS of the interface N and Au atoms [120],
completely disappear on atoms far from the junction inside GaN and are absent in the GaN/Al
case.
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Figure 1.10: 3D plot of the GaN/Au MIGS charge density due to the DOS peak in proxim-
ity to EF projected on a plane which cuts the N–Au interface bond. Values on the z-axis in
electrons/cell.

The spatial location of the charge density corresponding to the peak around EF is shown
in Fig.1.10: these states, which have a clear anti–bonding character between N and Au, are
mainly localized in the interface region with a resonant behavior inside the Au region (not
shown) and a negligible charge density in the GaN region. A similar situation occurs in the
GaN/Ag system (not shown) and was also reported for a [110] GaAs/Ag interface [122].

To calculate the values of the SBH, we adopt the usual procedure [109, 123] which takes
core levels as reference energies. In analogy with the semiconductor heterostructures consid-
ered in the previous section, the potential discontinuity can be expressed as the sum of two
terms: ΦB = ∆ b + ∆ Eb, where ∆ b and ∆ Eb denote an interface and bulk contribution,
respectively. We evaluate ∆ b by taking the difference of Ga 1s and the noble–metal 1s core
levels energies in the superlattice: ∆ b = EGa

1s − ENM
1s . On the other hand, the bulk contri-

bution can be evaluated from separate calculations for bulk GaN and noble–metal, calculating
binding energies differences referred to the Fermi level or the VBM (for further references
see [109, 123]).

Table 1.5: Schottky barriers (in eV) at the GaN/Al, GaN/Ag and GaN/Au interfaces.

GaN/Al GaN/Au GaN/Ag

ΦB 1.51 1.08 0.87
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Table 1.6: Interplanar distances (in Å) between the different atomic planes in the GaN/Al,
GaN/Ag and GaN/Au interfaces (first three columns) and Schottky barrier heights (in eV – last
column).

dGa−N
int dN−M

int dM−M
int ΦB

GaN/Al 1.11 1.11 1.88 1.51
Step I 1.11 1.32 1.88 0.76
Step II 1.11 1.32 1.60 0.80
Step III 1.07 1.32 1.60 0.71
GaN/Ag 1.07 1.32 1.60 0.87

The p-type SBH values obtained, shown in Table 1.5, include a spin–orbit perturbation
∆GaN

SO ≈ 0.1 eV, but do not include quasi–particle corrections. We note that the SBH values
in the noble–metal case are lower than the SBH in the GaN/Al interface (ΦBp

(GaN/Al) =
1.51 eV). To better understand this result, we should consider that the Al and noble metal
interfaces differ in two main aspects: (i) different chemical species of the metal overlayer and
(ii) different structural properties, i.e. different bond lengths at the interface that include an
interfacial strain contribution. In particular, Ag and Au structures show very similar dN−M

int

and dM−M
int interplanar distances [120], which are at variance with those with Al. In order

to separate the chemical from the strain contribution, we evaluate the SBH for three different
structures that can be regarded as intermediate steps necessary to bring the GaN/Al structure
to match perfectly the GaN/Ag one. We show in Table 1.6 the interface interplanar distances
and final SBH values for the equilibrium GaN/Al and GaN/Ag systems and for the three
intermediate interfaces. In the first structure (Step I), the interplanar dN−M

int distance of the
GaN/Al SL is taken equal to that optimized for the GaN/Ag SL (dN−M

int = 1.32 Å): the SBH is
reduced from 1.5 eV to 0.76 eV (this surprising result will be discussed in detail later on). As
a second step (Step II), we change dM−M

int to recover that calculated for the GaN/Ag structure:
dM−M

int = 1.60 Å. As expected, the SBH is remarkably less sensitive to this parameter. In the
third structure (Step III), the Ga-N interface distance is brought to its value in the GaN/Ag
superlattice, dGa−N

int = 1.07 Å, and we have a system where Al atoms perfectly replace Ag in
GaN/Ag. Although this last structural change is very small (about 4 %), the potential lineup
change is significant, due to incomplete screening in the semiconductor. This SBH is quite
close (within 0.2 eV) to the value found for the real GaN/Ag interface, showing that interface
strain plays a more important role than does the bare chemical contribution.

The most surprising result of our tests is the very strong dependence of the SBH on the
interface N–Al distance, whose variation represents the larger contribution to the difference
between the GaN/Al and GaN/Ag (Au) SBHs. Test calculations have shown an almost per-
fect linear behaviour of ΦB against dN−Al

int , leading to an Al effective charge Z∗
L = 0.08,

(Z∗
L = Z∗

T /ε∞, where Z∗
T is the Born dynamical charge and ε∞ is the electronic static di-

electric constant). This result is in sharp contrast with the case of GaAs/Al [124], where
no significant changes were found for small elongations of the As-metal interface distance,
therefore resulting in Z∗

L ∼ 0 – an almost perfect metallic behavior.
Let us make a few rough assumptions, such as a simple Yukawa–like screened potential,

and consider a “metallic” behavior inside the semiconductor up to distances of the order of



1.5 Applications of the first-principles FLAPW approach to studies of magnetism 31

λ, the MIGS decay length; the potential difference across the metal/semiconductor junction
induced by displacements of the Al interface atom scales with the factor e−kT F λ. If we now
estimate values of the Thomas–Fermi screening lengths, kTF , using the GaN/Al and GaAs/Al
superlattice value of the density of states at the Fermi level (N(EF ) [120]), and the extrap-
olated values of the MIGS decay length (λGaN ≈ 2 Å [120] and λGaAs ≈ 3 Å [125, 126]),
we find that a unit displacement of the interface Al atoms produces a potential change across
the interface which is roughly 7 times larger in GaN/Al than in GaAs/Al. Considering the
crudeness of this model, such an estimate is in satisfactory agreement with the first–principles
results, which indicate a factor of ≈ 10 for the same ratio. In other words, GaAs screens out
almost perfectly all the structural changes in the interface region (namely, displacements of
the interface Al atoms), while the same is not true for GaN.

The dispersion of the SBH values seems to exclude a Fermi level pinning in the GaN
case, as experimentally confirmed by the large spread in values reported in the literature for
the SBH between GaN and different metals. In particular, let us recall those obtained for n-
GaN/Ag and n-GaN/Au: Φexpt

Bp
(n−GaN/Ag) = 2.7 eV [127] and Φexpt

Bp
(n−GaN/Au) ≈

2.4 eV [128] and 2.2 eV [129, 130]. On the other hand, recent photoemission measure-
ments [130] performed for Au deposited on p-type GaN show that the Fermi level is stabilized
around 1 eV above the p-GaN VBM, in apparent good agreement with our calculated value
(ΦB = 1.08 eV). The disagreement between some of these values and our calculated ones are
certainly related to the different conditions of the GaN surface (which is ideal in our calcula-
tions and subject to different preparations in the experimental case); moreover, we considered
the GaN zincblende structure and [001] oriented interfaces, whereas all the experimental sam-
ples are grown on [0001] wurtzite GaN.

In conclusion, our calculations show that there is an appreciable density of MIGS in the
noble metal interfaces considered (even higher than in the GaN/Al case); however, the pres-
ence of the gap states is relevant in the interface layer only, being strongly reduced already
in the sub–interface layer. We demonstrate that the appreciable SBH reduction in going from
the free–electron to the noble–metal case is mostly due to structural effects.We find that the
largest structural differences between the various GaN/M interfaces considered are related to
the N-M interface distance, mainly determined by the different bonding nature between N
and free–electron–like or noble metals. Finally, we are able to show that the lack of Fermi
level pinning in GaN can be understood in terms of electrostatic effects related to variations of
the interface anion–metal dipole: these effects are not properly screened in GaN, so that they
contribute considerably to the final potential lineup at the interface.

1.5 Applications of the first-principles FLAPW approach
to studies of magnetism

1.5.1 Magnetism

State-of-the-art ab initio density functional electronic structure calculations have achieved
great success in the exciting field of thin film magnetism, in both explaining existing phenom-
ena and, more importantly, in predicting the properties of new systems. [131] The prediction
of enhanced magnetic moments with lowered coordination number at clean metal surfaces
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and interfaces has stimulated theoretical and experimental investigations for new magnetic
systems and phenomena in man-made transition metal thin films, which has accompanied the
renaissance of magnetism and led to a major impact on the magnetic recording industry [132].

Significant progress has been made for the treatment of the weak spin-orbit coupling
(SOC) in magnetic transition metal systems, using modern first principles electronic struc-
ture methods, especially the highly precise full potential linearized augmented plane wave
(FLAPW) approach [133]: Very reliable results for the magneto-crystalline anisotropy (MCA)
energies, EMCA, can now be obtained for most magnetic thin films (a few tenths meV/atom),
and even for magnetic cubic bulk materials (a few µeV/atom). This enables us to solve a
long-standing problem – the first principles determination of the magnetostrictive coefficients
in bulk transition metals, and their alloys and compounds with rare-earth metals. Using linear
response theory, magneto-optical properties such as the magneto-optical Kerr effect (MOKE)
and soft X-ray magnetic circular dichroism (MCD) can now be determined. The results pre-
sented here for several selected systems indicate that high quality ab initio calculations of
magnetic systems can achieve high accuracy and precision for a wide range of SOC induced
magnetic properties of transition metal and rare-earth metal systems.

1.5.2 Magneto-crystalline anisotropy in thin films.

The lack of neighbors and the lowered symmetry at a surface or interface can give rise to a so
called magnetocrystalline surface anisotropy. In addition to the uniaxial contribution due to
the lattice strian, the MCA energy in magnatic thin films grown on different substrates may
reach as much as 10−3 eV/atom, a value which is sufficient to overcome the shape anisotropy
and turn the easy axis of magnetization to the perperdicular direction [134–139]. This is a very
important phenomenon for high-density magnetic recoding [140] and challenges theoretical
understanding for the key factors that control the orientation of magnetization.

Most previous first principles calculations of EMCA employ the MCA force theorem (with
a perturbative treatment for the SOC Hamiltonian, Hsoc = ξ s · L) [141, 142],

EMCA = E(→) − E(↑) =
∑
occ′

εi(→) −
∑
occ′′

εi(↑) + O(δρn) (1.66)

where εi stands for the band energy of the ith state and the arrows in the parentheses denote
the directions of magnetization. Strong numerical uncertainties have been encounted because
the sets of occupied states, i.e., {occ′} and {occ′′}, were determined through the usual Fermi
filling scheme which relies on the very limited information from the eigenvalues, εi [143].
One had to use a huge number of k-points (>10,000 in the two dimensional Brillouin zone for
thin films) to obtain reliable EMCA and thus only few model systems (e.g., free monolayer or
simple alloys) could be treated. A simple solution for this problem is the state tracking (ST)
approach in which the {occ′} and {occ′′} states are determined according to their projections
back to the occupied set of unperturbed states [144]. Since this procedure ensures the mini-
mum change in the charge and spin densities, as required by the force theorem, and excludes
possible randomness in the Brillouin zone (tracking at a given k-point), very stable MCA re-
sults were obtained with a relatively small number of k-points for magnetic thin films such as
Fe, Co and Ni monolayers in the free standing case as well as on various substrates [145].
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Figure 1.11: The calculated band structure (thin lines) and MCA energy of a free standing Co
monolayer (a=4.83 a.u.) along the high symmetric lines in the two-dimensional Brillouin zone.

A torque (TQ) method can further depress the remaining uncertainties resulting from the
SOC interaction between near-degenerate states around the Fermi level (so called surface pair
coupling) [146]. We found for uniaxial systems, EMCA can be directly evaluated through

EMCA =
∑
occ

< Ψ
′
i|dH/dθ|Ψ

′
i > |θ=45◦ =

∑
occ

< Ψ
′
i|∂Hsoc/∂θ|Ψ

′
i > |θ=45◦ (1.67)

where Ψ
′
i is the ith perturbed wave function. The advantage of the torque method is obvious

since EMCA is expressed as the expectation value of the angular derivative of Hsoc and thus it
is much more insensitive to distortions of the Fermi surface and only one Fermi surface needs
to be determined.

To understand the behavior of MCA energies of magnetic films in different environments,
it is instructive to analyze the electronic origin of the MCA energy for free standing magnetic
monolayers. The k-distributions of the MCA energy, EMCA(

−→
k ), and the band structures of

a Co monolayer, for example, are plotted in Fig. 1.11 along the high-symmetry directions
in the 2D BZ. The obvious correlation between major EMCA changes and the locations of
Fermi surfaces (where bands cross the Fermi level) indicates some simple physical insights
for MCA, which once was thought to originate from very sophisticated interactions. Note
that (i) only SOC interaction between the pairs of states across EF contributes to EMCA, and
(ii) the pair with the same (different) magnetic quantum number(s), m, leads to a positive
(negative) contribution to EMCA.

From Fig. 1.11, the large negative MCA energy for the Co monolayer (−1.34 meV/atom)
is mainly from the contributions around the M point. This is due to the SOC interaction be-
tween the occupied dxz,yz (m = ±1) states and the unoccupied dz2 state (m = 0). Knowing
the detailed information about the origin of MCA for model system, one can thus understand
the MCA behaviors of more complicated systems and furthermore tailor the MCA energy.
For Co thin films, for example, one can enlarge the energy separation between the Co dxz,yz

and dz2 through the proximity effect of different substrates. Owing to the Co-Cu d-band hy-
bridization, for example, the dxz,yz states are splitted and diluted in a wide energy range for
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these systems. As a result, the negative contribution to EMCA around M is drastically re-
duced. The MCA energy for Cu/Co/Cu(001) becomes positive (0.54 meV/adatom, indicating
a strong perpendicular anisotropy), as observed experimentally [135,136]. Many calculations
have been done in this direction to study the effects of metal substrates or capping layers on
the MCA of ultra-thin magnetic thin films. It is well established now that high quality first
principles theory can obtained quite satisfactory results of uniaxial EMCA for magnetic thin
films [131].

To optimize the atomic structures, however, the generalized gradient approximation (GGA)
[147] improves the calculation since the description of local spin density approximation [148]
for the exchange-correlation interaction is known to significantly underestimate the lattice
constants of 3d transition metals. For example, with the in-plane lattice constant fixed (a=4.83
a.u.), the optimized Co-Cu interlayer distance in Co/Cu(001) and Cu/Co/Cu(001) is 3.44 a.u.
from GGA calculations [149], but it is only 3.08–3.11 a.u. if the LDA is adopted [150, 151].
The large difference in atomic arrangement, as well as the gradient correction in exchange-
correlation functionals, may strongly affect all the magnetic properties such as magnetic mo-
ments, magnetic ordering and MCA energies [152].

1.5.3 Higher-order magneto-crystalline anisotropy

The first principles determination of high-order EMCA such as in cubic bulk magnetic Fe, Co
and Ni or the in-plane anisotropy in square lattice is still one of the most challenging problems
in condensed matter physics. The high-order EMCA in these systems is extremely small –
only about 1µeV /atom. Quantitatively, such a scale of energy difference is very close to or
beyond the limit of precision of total energy calculations for most approaches. Our FLAPW
calculations found that the in-plane coefficients [153] of EMCA is extremely sensitive to the
change in environment and structural relaxation [149]. For cubic magnetic crystals, early
calculations with the force theorem repeatedly gave the wrong sign for either Fe or Ni (or
both). Using the LMTO-ASA approach, Daalderop et al. [154] obtained the right magnitude
of EMCA, but the wrong easy axis for hcp Co and fcc Ni. Guo et al. [155] and Strange et
al. [156] also obtained the wrong easy axis or wrong magnitude for bulk Fe and Ni in their
LMTO and KKR calculations. Based on the full potential LMTO method, Trygg et al. [157]
treated the SOC Hamiltonian self-consistently but obtained (with spd−basis functions) almost
the same results as Daaderop et al.. The accuracy of total energy calculations was re-examined
by Halilov et al. [158], also using the LMTO-ASA method with combined corrections. They
obtained the correct easy axis for all three metals through total energy calculations with a
larger set of k-points. Beiden et al. [159] implemented a real-space locally self-consistent
multiple scattering method. Again, they obtained the wrong easy axis for Ni and oscillatory
results for hcp Co.

We extended the torque method [146] for the determination of EMCA in cubic crystals,
where the total energy can be well approximated in the form

E = E0 + K1

(
α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3

)
+ K2α

2
1α

2
2α

2
3 (1.68)

Here α1, α2 and α3 are directional cosines referred to the cubic edges along the x, y and z
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axes. Clearly, the EMCA can be evaluated from the coefficients of K1 and K2 as

E111 − E001 =
K1

3
+

K2

27
; E110 − E001 =

K1

4
(1.69)

As in Eq. (3) for thin films, the torque here, T(θ), is defined as the derivative of the total energy
with respect to the polar angle away from the z-axis (denoted as θ below). To determine the
values of K1 and K2, we focus on two special cases: (1) for α2 = 0 (α2

1 = 1 − α2
3), we have

T1(θ) ≡ dE(θ)
dθ

∣∣∣∣
φ=0◦

=
K1

2
sin(4θ) (1.70)

and (2) for α1 = α2 (α2
1 = α2

2 = (1 − α2
3)/2)

T2(θ) ≡ dE(θ)
dθ

∣∣∣∣
φ=45◦

= T1(θ) +
sin(2θ) sin2(θ)

4
[
2K1 + K2(3 cos2 θ − 1)

]
(1.71)

where φ denotes the azimuzal angle in the xy plane. We have

T1(θ = 22.5◦) = K1/2 T2(θ = 45◦) = (2K1 + K2/2)/8 (1.72)

and finally the MAE coefficients K1 and K2 can be evaluated very efficiently through

K1 = 2T1(θ = 22.5◦) K2 = 16T2(θ = 45◦) − 4K1 (1.73)

The calculated K1 and K2 for bcc Fe with the FLAPW-GGA approach are given in
Fig. 1.12. While K1 is found to still be oscillatory but stable in sign with 70×70×70 k-
points in the full BZ for the cubic cell (with two atoms), K2 changes its sign very rapidly.
It appears that more k-points are needed to get a converged result for K2. Fortunately, K2

remains very small and does not affect the anisotropy energy too much (cf., the 1/27 scaling
factor in Eq. 6 for E111 − E001). The calculated EMCA (E111 − E001) for bcc bulk Fe is
0.9 (0.7) µeV/atom with GGA (LDA) formula (the (001) direction is the easy axis). The LDA
value is very close to the results obtained by Daalderop et al. (0.5 µeV/atom, with the force
theorem) [154], Trygg et al. (0.5 µeV/atom, with total energy) [157] and Beiden et al. (0.78
µeV/atom, with a real space approach). The discrepancy between theory (0.5–0.9 µeV/atom)
and experiment (1.4 µeV/atom) appears not to be due to numerical problems, but to other
physical reasons such as possible orbital polarization [157, 160].

For fcc Co and Ni, the calculated EMCA results with the FLAPW approach are also very
close to those obtained in previous density functional calculations. With 50×50×50 k-points
in the full BZ for the cubic cell (with four atoms), the correct easy axis is obtained for Co, but
not for Ni. In addition, the theoretical EMCA results are much smaller in magnitude than the
experimental data. The failure of the density functional description for EMCA in bulk fcc Ni
appears to be mainly due to s − d charge transfer. Note that with a=6.66 a.u., the calculated
spin magnetic moments of Ni are 0.62 µB and 0.67 µB with LDA and GGA, respectively.
These values are markedly larger compared to the experimental result, 0.57 µB . Since the
spin magnetic moment in Ni is almost equal to the number of holes in its minority spin d-
band, this discrepancy indicates that the Ni-d band has about 0.05–0.10 fewer electrons than
what it should have. Such an error in band filling is enough to change the sign of EMCA.
EMCA (E111 − E001) could change sign by moving only 0.03 electrons from the Ni s-band
to its d-band.
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Figure 1.12: MCA coefficients of the bulk bcc Fe with GGA. The bold solid lines are for k1

(with either 0 or 15 meV Gaussian broadening) while the thin dashed line is for k2.

1.5.4 Magnetostriction

In general, the size of the magneto-elastic strain induced by rotation of the magnetization de-
pends on the directions of the measured strain and of the spin moment with respect to the
crystalline axes of the material. For a cubic material, the directional dependence of the frac-
tional change in length can be expressed in terms of the direction cosines of the magnetization
(αi) and of the strain measurement direction (βi) with respect to the crystalline axes [161]

∆l

l0
=

3
2
λ001

[
3∑

i=1

α2
i β

2
i − 1

3

]
+ 3λ111

3∑
i 	=j

αiαjβiβj (1.74)

If the measurement is carried out along the (001) direction for example, βx = βy = 0 and
βz = 1, then Eq. (1.74) can be simplified as ∆l

l0
= 3

2λ001[α2
z − 1

3 ] or further, for systems with
a single domain

λ001 =
2
3

l0(αz = 1) − l0(αz = 0)
l0(αz = 1)

(1.75)

Clearly, λ001 represents the change in length along (001) when the magnetization turns from
the x,y plane to the z direction.

The equilibrium length along the z direction, l0, can be obtained by fitting the calculated
total energy as a quadratic function of l

E(αz = 1) = al2 + bl + c; E(αz = 0) = E(αz = 1) + EMCA(l) (1.76)

and so

λ001 = −2E
′
MCA/3b (1.77)
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Figure 1.13: The calculated total and MCA energies of the bulk bcc Fe (with LDA) with respect
to the length of c-axis. The constant volume distortion mode was adopted

Here E
′
MCA = dEMCA/dl, which is much smaller than the value of b. Note that b is always

negative (since both a and l0 are positive), and thus λ and E
′
MCA have the same sign.

As an important benchmark test, the magnetostriction coefficients of cubic bulk magnetic
transition metals are studied first. As shown in Fig. 1.13, the calculated MCA energy for the
bulk bcc Fe is a smooth monotonic function of the vertical strain. The slope of EMCA and
thus the magnetostrictive coefficient (λ001) are found to be positive for Fe and Co but negative
for Ni [162]. This means that bulk Fe and Co (Ni) stretch (shrink) along the direction of
magnetization, a conclusion that agrees well with experiment.

Quantitatively, the value of λ001 depends sensitively on the distortion mode (i.e., Pois-
son’s ratio). As listed in Table 1.7, the value of Poisson’s ratio for Fe, Co and Ni optimized
through total energy minimization is about 0.40, which is very close to that obtained using the
measured elastic stiffness constants (σ = −c12/(c11 + c12)) for bulk Fe and Ni (0.37–0.38).
As a result, satisfactory quantitative agreement is achieved for λ001 between our (zero tem-
perature) theory and experiment. The theoretical result can be further improved by using the
GGA [147]. As seen in Table 1.7, LDA leads to a 3% underestimation for the lattice constant
and a more substantial difference for the spin magnetic moments at the equilibrium geometry.
With GGA, most of the calculated values of the various magnetic properties are closer to ex-
periment, especially for Fe in which the number of holes with majority spin is very sensitive
to the change of environment.

The inverse effect of magnetostriction is strain-induced uniaxial EMCA in thick epitax-
ial magnetic films. This effect is believed to play a key role for the spin-reorientation of
Ni/Cu(001) when the Ni film becomes thicker than 7 layers [163] and magnetic anisotropy
of other magnetic thin films [164]. For Ni/Cu(001), we calculated the volume contribution to
the MCA energies of Ni films from fct bulk Ni with the fixed lateral lattice constant of the
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Table 1.7: Calculated equilibrium lattice constants a (in a.u.), Poisson’s ratio (σ), spin and
orbital magnetic moments (MS and ML, in µB), E111 − E001 (EMCA, determined with the
experimental lattice constants, in µeV) and magnetostriction coefficients (in 10−6) obtained
with LDA and GGA corrections.

a σ MS ML EMCA λ001

bcc Fe
LDA 5.20 −0.409 2.05 0.048 0.7 52
GGA 5.37 −0.486 2.17 0.045 0.9 29
EXP 5.41 −0.368 2.22 0.08 1.4 21
fcc Co
LDA 6.48 −0.374 1.59 0.076 −−− 92
GGA 6.67 −0.396 1.66 0.073 −0.6 56
EXP 6.70 −−− 1.72 −−− −1.8 79
fcc Ni
LDA 6.46 −0.332 0.62 0.049 0.7 −63
GGA 6.64 −0.376 0.66 0.050 0.8 −56
EXP 6.66 −0.376 0.57 0.05 −2.7 −49

Cu(001) substrate (a=6.831 a.u.) [165]. The EMCA is found to be a linear function of the
lattice distortion along the c-axis. When the measured length of the c-axis (l = 6.43 a.u.) is
adopted, the calculated MCA energy is +65µeV/atom. This result agrees vary well with ex-
periment, which gave EMCA =+70 µeV/atom extrapolated to zero temperature [166]. Using
the FLMTO approach, Hjortstam et al. [167] obtained a value of 60 µeV/atom for the strain
induced EMCA.

If the orbital polarization is included, Hjortstam et al. [167] obtained EMCA =140 µeV/atom
for fct Ni. They also gave a very large magnetostrictive coefficients for fct Ni, λ001 =
−270 × 10−6 and λ111 = −107 × 10−6, which are almost three times larger in magnitude
than experiment [168, 169], λ001 = −71 × 10−6 and λ111 = −39 × 10−6. Thus, it appears
that the orbital polarization term, while improving the calculated orbital magnetic moments,
overcorrects the SOC far too much for the determination of EMCA. By contrast, our recent
FLAPW-GGA-SOC calculations obtained λ001 = −71 × 10−6 and an equilibrium length of
the c-axis of l0 =6.43 a.u.; both results are in excellent agreement with experiment.

Now, NixFe1−x and NixCo1−x magnetic alloys are widely used in magnetic recording
technology and invar materials. The calculated magnetostrictive coefficients are listed in Ta-
ble 1.8. Reasonable agreement has been achieved for the alloys studied, providing that the
experimental data taken quite a long time ago strongly depend on the temperature and com-
position [170]. Our recent studies for FeGa alloys indicate that the observed giant magne-
tostriction is not necessarily due to the ground state. While the B2-like structure is unstable
under tetragonal distortion and higher in energy that the L12 and DO3 structure, it provides
positive magnetostrictive coefficients (as observed in experiments) while the other two phases
give negative magnetostriction. Owing to the reduced hybridization between Fe atoms, the
magnetostrictive coefficient, λ001, is enhanced by a factor of 10–20 compared to that for bulk
bcc Fe.



1.5 Applications of the first-principles FLAPW approach to studies of magnetism 39

Table 1.8: Calculated lattice constants a (in plane, in a.u.) and c (along z,in a.u.), magnetic moments
(M, in µB), the Poisson ratio (σ), magneto-crystalline anisotropy energy (EMCA, in µeV/cell) and mag-
netostriction coefficient (λ001, in 10−6). The corresponding experimental data are given in parentheses.

FeCo FeCo3 FeNi FeNi3 CoNi CoNi3

a 5.38(5.39) 6.70 6.76(6.76) 6.70(6.71) 6.62(6.67) 6.66(6.65)
c 5.38(5.39) 6.70 6.76(6.76) 6.70(6.71) 6.78(6.67) 6.66(6.65)

EMCA 0 0 63 0 143 0
σ −0.35 −0.36 −0.33 −0.35 −0.34 −0.36

λ001 83(126) −68 10(10 − 26) 27(13) 42 (40 − 100) 33

Table 1.9: Calculated and measured (in parentheses) lattice constant, a, total magnetic moment
per perimitive unit cell, M , spin magnetic moment of itinerant electrons in rare-earth (MRE)
and transition metal MTM , and magnetostrictive coefficient, λ001 for different compounds.

a (a.u.) M(µB) MRE(µB) MTM (µB) λ001(10−6)

GdCo2 13.72(13.68) 4.99(4.9) 0.46 −1.24 −407(−1200)
NdCo2 13.84(13.77) 5.28(3.8) 0.32 −1.14 −171
SmCo2 13.74(13.71) 2.73(2.0) 0.52 −1.26 −290
ErCo2 13.70(13.50) 7.06(7.0) 0.28 −1.10 −516(−1000)
GaFe2 13.85(13.94) 3.85(2.8) 0.58 −1.96 44(39)

Rare-earth intermetallic compounds have attracted great attention since the late 1960’s due
to their extraordinary magnetic properties, especially their large magnetostrictive coefficients
(10−3) at room temperature [161,171,172]. While it was believed that the localized rare-earth
4f states play a dominant role in magnetization and magneto-elastic coupling, recent experi-
ments found that the effects of itinerant states can be equally important [161, 173]. Although
a phenomenological approach was developed long ago to describe the dependence of single
crystal magnetostriction on magnetization and measurement directions, the magnetostrictive
coefficient for a given material, especially the contribution of itinerant electrons, has never
been accurately calculated [161].

Very recently, we investigated the magnetostrictive properties of several rare-earth com-
pounds in the C15 cubic Laves phase structure, a close-packed arrangement of spheres with
two different sizes. As listed in Table 1.9, the calculated magnetostrictive coefficient agree
with the experimental data available. Furthermore, the large values of λ001indicate that the
contribution from itinerant electrons is comparable to that from the f-shell. Using a rigid band
picture, we found that the difference in the magnetostrictive behaviors of GdFe2 and GdCo2

is mainly due to the change in band filling. A GdFexCo2−x compound (x = 0.9 − 1.2) is
predicted to be a strong magnetostrictive material with a positive sign for λ001 (+450×10−6)
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1.5.5 Magneto-optical effects

The magneto-optical Kerr effect (MOKE) is now a widely used in situ tool for studies of
magnetic properties of thin films and surfaces [175]. It is known that the MOKE is induced
by the SOC interaction among the d-states. In the polar geometry, the Kerr rotation angle, θK ,
and ellipticity, εK , can be expressed as

θK + iεK =
−σxy

σxx

√
1 + 4πi

ω σxx

(1.78)

where the diagonal (σxx) and off-diagonal (σxy) elements of the optical conductivity tensor
can be evaluated by means of Kubo-Greenwood linear response theory [176] as

σαβ =
−ie2

m2�Ω

∑
k

∑
mn

fm − fn

ωmn

Πα
nm(k)Πβ

mn(k)
ω − ωmn + iδ

(1.79)

Here fm is the Fermi function; ωmn is the energy difference (�ωmn = εm − εn) and Πα
nm(k)

is the momentum matrix element.
Following the pioneering work of Wang and Callaway [177], MOKE spectra can now be

calculated with quite satisfactory results with several first principles approaches [178]. Proto-
type studies for bulk Fe, Co and Ni have been recently reported by many groups with basically
similar results [179–183]. Theoretical calculations have been performed for many different
kinds of materials, such as compounds, Heusler alloys, surfaces and multilayers [184–187].
To describe the strong correlation effects, the LDA+U scheme is usually employed when rare-
earth and actinide elements are involved [188]. In general, Kerr rotation spectra vary with
composition in a rather complex and unforeseeable way, even for simple systems like Co-Ni
alloys. Therefore, the first principles calculations are essential to explain the measured MOKE
spectra.

Stimulated by interesting experimental observations by Weller et al. [189], several groups
have paid close attention to the anisotropy of MOKE in hcp bulk Co, CoPt and FePt alloys and
compounds [190]. From our recent FLAPW calculations [191], we found that the anisotropy
of the MOKE spectra for bulk Co is negligible for either the (001) or (111) magnetization
direction.

1.5.6 Magnetic circular dichroism

The possibility to determine both the orbital and spin moments (denoted as < Sz > and
< Lz >, respectively) directly from X-ray magnetic circular dichroism (MCD) [192] spectra
by applying recently proposed simple but powerful sum rules has attracted considerable ex-
citement and attention [193]. As stated in the MCD sum rules, integrations of the MCD and
total absorption spectra relate directly to < Lz >, < Sz > and < Tz > for the unoccupied
states

Im =
∫

L3+L2
σmdE

It =
∫

L3+L2
σtdE

=
< Lz > /2

Nh =
∫

ρ(E)dE
(1.80)
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Table 1.10: Calculated values of < Lz >, < Sz >, < Tz >, < Se > and Nh and sum rule
errors R1 = Im

It
/<Lz>

2Nh
− 1, R2 = Is

It
/<Se>

Nh
− 1 and R3 = Im

Is
/<Lz>

2Se
− 1 for Ni(001),

Co(0001) and Fe(001) surface (S) and bulk-like center (C) layers.

Atom < Lz > < Sz > 7< Tz > < Se > Nh R1 R2 R3

Ni(S) −0.069 −0.67 −0.082 −0.250 1.81 0.27 0.52 −0.10
Ni(C) −0.051 −0.62 −0.027 −0.215 1.66 0.20 0.36 −0.11

Co(S) −0.090 −1.61 0.240 −0.457 2.60 0.11 0.24 −0.09
Co(C) −0.078 −1.52 0.014 −0.502 2.55 0.09 0.22 −0.10

Fe(S) −0.111 −2.71 0.230 −0.828 3.70 0.10 0.16 −0.04
Fe(C) −0.063 −2.10 0.028 −0.691 3.34 0.04 0.15 −0.09

and

Is =
∫
[σs =

∫
(σm,L3 − 2σm,L2)]dE

It =
∫

L3+L2
σtdE

=
< Se >= (< Sz > +7 < Tz >)/3

Nh
(1.81)

where σm = σ+–σ− and σt = σ+ + σ− + σz . T is the spin magnetic dipole operator, i.e.,
�T = 1

2 [�S − 3r̂(r̂ · �S)], (Tz = Sz(1 − 3 cos2 θ)/2 for �S aligned along the z direction). The
number of valence holes, Nh, can be obtained from an integration over the unoccupied density
of states (ρ(E)).

We carried out first principles calculations to check the validity and applicability of the
sum rules for transition metal systems [194]. As listed in Table 1.10, the deviation of the spin
and orbital sum rules is denoted by R1 = Im

It
/<Lz>

Nh
−1, and R2 = Is

It
/<Se>

Nh
−1. Obviously,

the orbital sum rule is seen to work very well (within 10%) for Fe and Co systems, and the
error becomes larger for Ni since the number of s,p holes is almost equal to that of d holes
(we used an energy cutoff of 6 eV above EF ). By contrast, the errors of the spin sum rule
are much larger: it actually fails severely for the Ni surface since R2 is as large as 52%. A
better way is to combine the < Lz > and < Sz > sum rules, as was done recently in some
experiments on bulk transition metals [195]. From our first principles calculations, we found
that the error in the ratio R3 = Im

Is
/<Lz>

<Se> − 1, is 10% or so for all systems studied.
In addition, the < Tz > term in the spin sum rule is negligible only for atoms in cubic

symmetry. For atoms in non-cubic environments such as surfaces and interfaces, as seen from
Table 1.10, its importance is obvious, since its magnitude becomes 8.5%, 12% and 15% of
< Sz > for Fe(001), Ni(001) and Co(0001), respectively. The hybridization between different
l shells is the main mechanism causing the failure of the MCD spin sum rule for transition
metals [194]. Recently, these sum rules have been extensively applied for the determination
of spin and orbital magnetic moments, magnetic ordering and element-specific hysteresis and
MCA energies (a more comprehensive review is given by J. Stöhr [196]).

Based on a second order perturbation theory, Bruno [197] showed that EMCA in magnetic
thin films can be related to the anisotropy of the orbital magnetic moment (< Lz > − <
Lx >). This model was corroborated by Weller et al. [198] and Dürr et al. [199], who mea-
sured the value of < Lz > − < Lx > for Au/Co/Au, Ni and Co/Ni thin films with the MCD
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sum rules. However, the relation is not universally valid. As pointed out by van der Laan [200]
recently, the proportionality between EMCA and < Lz > − < Lx > relies on an assumption
that all d-holes are in the minority spin band. This condition is usually satisfied for Co and Ni
systems but not for Fe systems.
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2 Overview of core and valence photoemission

W. Schattke, M.A. Van Hove, F.J. García de Abajo, R. Díez Muiño, and N. Mannella

2.1 Introduction

This chapter attempts to give a general and systematic introduction to the theory and compu-
tation of photoelectron emission from both core and valence levels in surfaces and molecules.
Given this subject’s long history and ample literature, it is not possible, or indeed necessary,
to cover all aspects and contributions here.

It is hoped that this chapter provides a basis for a better understanding of the other contri-
butions in this volume, and that it offers an educational foundation for those wishing to enter
or study the field: it is written in particular with the experimentalist and new reader in mind,
stressing concepts and omitting detailed derivations.

Figure 2.1 describes the basic principles of photoelectron spectroscopy, illustrating various
effects that can take place.

Figure 2.1: Photoemission spectroscopy from a surface, plotted as energy vs. position perpen-
dicular to the surface, with the bulk at left. The curves at right represent measured photoemission
yields. The photon energy is �ω. The potentials felt by a photoexcited electron may differ be-
tween atoms A and B, even if these are of the same type, as a result of a chemical shift due to
the surface.
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The treatment of the photoemission process starts here with an introduction to Green func-
tion methods, which have found wide and profound applications to address one-particle as
well as many-body problems, both analytically and numerically. The notion of Green func-
tions is presented in a step-wise and didactic fashion in Section 2.2, to introduce the language
and tools used by many theorists in tackling the relatively complicated many-body problem
that underlies processes like photoemission. Simplified models are discussed in relationship
to the more general and accurate description. In particular, the photocurrent expression is
decomposed into its basic ingredients: initial state, final state, transition operator (matrix ele-
ments). And powerful concepts such as self-energy, quasiparticles and spectral representation
are carefully introduced.

The famous Golden Rule is discussed in detail, connecting it with the one-step formulation
of photoemission in Section 2.3: the distinction with the three-step formulation is shown to
have mainly historical relevance, as it is no longer significant with current methods. The basic
photoemission operator is introduced in its various representations and approximations, in
particular the dipole approximation, in Section 2.4.

Of great importance for a numerically accurate treatment of photoemission is knowledge
of the initial and final electronic states. For the initial state, in which the photoelectron resides
before the photoemission process, a clear distinction is drawn between localized levels on
the one hand (such as core levels in a solid surface, or any atomic levels in a free atom) and
delocalized levels on the other hand (such as valence states in a solid surface or molecule).
This is treated in Section 2.5.

The final state describing the photoelectron after excitation can be viewed either in a
multiple-scattering representation, or in a band picture in terms of its full wavefunction. Com-
putational methods to efficiently handle these often complicated states are also discussed in
Section 2.6.

The photoemission matrix elements are treated in Section 2.7: these combine the initial
and final states according to the photoexcitation operator. Again, a distinction is made between
core and valence initial states: it is shown in particular how the case of extended states can be
reduced to the case of localized states.

Optical effects due to the incoming photons are often neglected in modeling photoemis-
sion, in the hope that they are small. Here the focus is on the interaction of the photon with
the material before a photoexcitation occurs. Examples include atomic resonances, treatable
from a localized point of view (Section 2.8.1), and screening as well as plasmon resonances,
which need a delocalized treatment (Section 2.8.2).

More generally, a variety of optical effects can be treated theoretically and computation-
ally, and can be shown to be quite significant under suitable circumstances. These include
short-wavelength local fields, non-local response, higher-order many-body Coulomb terms,
and mean-field Fresnel considerations, even within a linear response assumption.

Very useful degrees of freedom in photoemission are the polarization of the incident pho-
tons, and the electron spin, usually measured as spin polarization of the outgoing electrons.
In particular, these can be very fruitfully combined in studies of magnetism at surfaces and
interfaces. They also provide high sensitivity to small effects such as relaxed atomic positions.
Relativistic effects also contribute to spin polarization, and are covered as well in Section 2.9.

Finally, the success of the theoretical formalisms is borne out with the help of compu-
tational codes: these make it possible to actually compare theory to experiment, in a first
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stage, and then to extract useful new information from experiment. A number of such codes
have been produced, and several of them are advanced enough in their user-friendliness to be
distributed for general use by surface and interface scientists, as discussed in Section 2.10.

The subjects covered in this chapter also highlight needs for the future. Topics such as
dynamic screening of the electron hole, and inclusion of proper thermal vibrations have been
much discussed but not implemented in a systematic way. Also lacking is a proper treatment
of non-linear optical effects, observed with strong incident light; these will become even more
important with free-electron lasers. Likewise, there is a need for inclusion of time-dependent
effects in the theory, such as occur in pump-probe experiments. To some of these fields de-
tailed reference is found in other chapters of this book.

2.2 Green function methods

2.2.1 Photoemission and the many-body problem

Fundamental to the behavior of a collective system are the interactions between the many par-
ticipating bodies. The many-body problem can be defined as the study of how the interactions
between bodies alters the behavior of the isolated, non-interacting bodies.

The photoemission process in its original concept is viewed as a single-particle probe –
two-electron photoemission has been studied only recently (as described in two chapters [30,
36] of this volume). A single electron is removed from its binding environment and its spec-
tral and angular distributions are recorded outside the material. Thus, two questions arise.
First, how are the many-body effects on the one-particle spectra isolated so as to yield the
simple and accustomed interpretation of one-electron photoexcitation? This asks for a quasi-
particle picture, which is the subject of many treatments of many-body theory. Photoemission
will directly reflect the distribution of those quasi-particles if the picture works at least in an
approximate manner. This is by far the most widespread motivation and application of the
technique. The second question is: what can be learned from photoemission about the many-
body behavior of the system? The one-electron spectra describe excitations, but these do not
necessarily have a quasi-particle-like character. Instead, several particles or even collective
modes may mix into the excitations and thus affect the entire photoemission process. Then of
course, the simple direct interpretation of spectra breaks down and one of the main advantages
of this spectroscopy seems to be lost.

However, excitations of the many-body system clearly can be revealed by photoemission,
as with any spectroscopy that couples to the excitation process. The angular-resolution ca-
pability of photoemission adds a valuable selection property typical for solid state systems.
Thus, it is the many-body excitation spectrum which is hidden in the photoelectron spectral
distribution. Investigations have made significant progress toward this goal, including anal-
yses of the many-body spectral density, of the Fermi-liquid type or the shape of the Fermi
surface [21, 94], of the intrinsic and extrinsic inelastic losses by plasmon shake-offs [49], and
of magnetic excitations [55]. The momentum resolved gap in semiconductors hides many-
body effects, and is an experimental quantity that can be extremely carefully determined by
photoemission. Theoretical investigations have culminated in the quantitative evaluation of
the GW -approximation now most common to bandstructure calculations. [37, 59] Strongly
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correlated systems present another challenging problem of many-body physics [60] where
spectroscopy has opened a new branch with two-electron photoemission, see [36].

Thus, the present development of photoemission increasingly requires the treatment of
many-body effects. For that reason, we here introduce the main ideas of many-body theory at
a relatively basic level, meant to offer non-specialists insight into the main concepts. A more
extensive treatment is available in many books. [24, 61, 83] Several chapters of this handbook
will address in much greater detail several aspects that are critical for photoemission and
related techniques.

The importance of the many-body problem derives from the fact that almost any property
of a real physical system of particles is to some degree governed by the quantum mechanical
interactions between the particles themselves. Thus, the many-body problem is not necessarily
a branch of solid-state, nuclear or atomic physics. It deals with general methods applicable
to all many-body systems. The difficulty of solving the many-body problem is extreme, and
because of this not much progress was made for a long time. The simplest way to deal with
the many-body problem was simply to ignore it, i.e. to neglect the interactions between the
particles of the system (One-Body Approximation). It is surprising and mysterious how this
simple picture was able to produce good results nonetheless. An explanation such as ’many-
body corrections often arise according to alternating semiconvergent series where subsequent
terms tend to cancel, thus wisdom only keeps the lowest order’ sounds mysterious as well and
asks for examples and proof.

In a series of papers around 1956-57, it was shown that the methods of Quantum Field
Theory, already famous for its success in elementary particle physics, were able to provide
a powerful, systematic and unified way to attack the many-body problem. One of the most
important results emerging from this approach is a new simple picture of matter according
to which systems of interacting real particles are described in terms of approximately non-
interacting fictitious bodies, called quasi-particles, and collective excitations. To a large ex-
tent, the properties of quasi-particles and the description of the collective excitations can be
calculated by means of quantum-field-theoretical techniques pictorially assisted by the so-
called Feynman diagrams. Actually, this represents the most general and systematic access to
the many-body problem.

The discovery of the Hohenberg-Kohn theorem [56] has sparked a whole “industry” of
bandstructure calculations for which photoemission has proved to be the most accurate tool
of experimental investigation. The theorem describes the exact ground state energy as a func-
tional of the electron density which is variationally exploited once this functional is known.
Various approximations to the latter have been developed with increasing accuracy. Further-
more, in contrast to the fact that only the ground state is covered by the theorem, excitation
energies are identified in an approximate way with the constraint parameters of the variational
equations, the Kohn-Sham equations [69]. The agreement with experiment widely confirms
this procedure in density functional theory (DFT). Because of their importance, many-body
treatments can no longer be considered separately from DFT. It is well known [99] that the
Kohn-Sham equations can be regarded as a procedure to solve the exact Dyson equation for
Green functions with a suitable self-energy. Thus, the formulation of many-body theory with
Green functions embeds DFT in its most frequently applied environment.

The general development of many-body theory for solids proceeds via Green functions
and so does photoemission theory. Therefore, Green functions will be the basis of the fol-
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lowing presentation. In Section 2.2.2, we will introduce Green functions in the context of the
one-particle Schrödinger equation. In Section 2.2.3, we will discuss elementary excitations
in systems of interacting particles. Section 2.2.4 will address the concept of the self-energy,
while Section 2.2.5 will consider independent particle states and related methods. Perturba-
tion expansions will be discussed in Section 2.2.6, and diagrams in many-body systems will
be presented in Section 2.2.7. Section 2.2.8 introduces the spectral representation, while Sec-
tion 2.2.9 deals with the photocurrent.

2.2.2 Green functions and one-particle Schrödinger equation

Let us consider a single quantum mechanical particle with Schrödinger’s equation written in
Dirac’s notation as

(EÎ − Ĥ0)|ψ〉 = V̂ |ψ〉 (2.1)

Here Ĥ0 is a Hamiltonian for which the eigenfunctions φn and the eigenvalues En (widehatI ,
identity operator) are known, while V̂ is a

Such an equation can be solved provided that we know the inverse of the operator (EÎ −
Ĥ0), namely the Green function Ĝ0 = (EÎ − Ĥ0)−1 (we will often abbreviate “Green func-
tion” to GF). In light of this, we observe that the operators (EÎ − Ĥ0) and Ĥ0 share the same
eigenfunctions φn(r) since they commute, while the eigenvalues of the operator (EÎ−Ĥ0) are
shifted, equal to E −En. The Green function of the operator (EÎ − Ĥ0) is therefore brought
into the position representation, G0(r, r′, E) =< r|Ĝ0|r′ >, by expanding with respect to its
eigenfunction system

G0(r, r′, E) =
∑

n

φn(r)φ∗
n(r′)

E − En
(2.2)

Here we can appreciate a powerful feature of the Green function: by finding the values of the
parameter E for which the denominator of the GF vanishes, we can obtain the eigenenergies
of the operator Ĥ0. This result motivates the use of the GF formalism later on when dealing
with the much more complex problem of the interaction of a quantum mechanical particle
within an interacting-particle system. In particular, we will see later that in that case the GF
has poles at values of the parameter E equal to the excitation energies of the whole system.

By applying the GF operator we get from Eq. (2.1)

|ψ〉 = |ψ0〉 + Ĝ0V̂ |ψ〉 (2.3)

where |ψ0〉 is the solution of the associated homogeneous equation (EÎ − Ĥ0)|ψ0〉 = 0. By
successive approximations of the particular solution Ĝ0V̂ |ψ〉 through iteration of Eq. (2.3), it
is possible to express the general solution as

|ψ〉 = |ψ0〉 + Ĝ0V̂ |ψ0〉 + Ĝ0V̂ Ĝ0V̂ |ψ0〉 + · · · (2.4)
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We can also consider the following problem: if we know the Green function Ĝ0 for the
operator Ĥ0, what is the GF G for the operator Ĥ0 + V̂ ? By definition,

Ĝ(E) =
(
EÎ − Ĥ0 − V̂

)−1

Since
(
EÎ − Ĥ0 − V̂

)
Ĝ (E) = Î , we have(

EÎ − Ĥ0

)
Ĝ (E) = Î + V̂ Ĝ (E) (2.5)

and multiplying both sides by Ĝ0(E), we obtain

Ĝ (E) = Ĝ0(E) + Ĝ0(E)V̂ Ĝ(E) (2.6)

which is called Lippman-Schwinger equation. Projecting onto the position eigenstates |r〉,
Eq. (2.3) and the Lippman-Schwinger equation are respectively written as

ψ(r) = ψ0(r) +
∫

G0(r, r′)V (r′)ψ(r′) dr′ (2.7)

G(r, r′, E) = G0(r, r′, E) +
∫

G0(r, r′′, E)V (r′′)G(r′′, r′, E) dr′′ (2.8)

Both these equations are integral equations which can be solved up to the desired order by
successive iterations. Both formulas find widespread application in multiple scattering theory.

Now we consider the time evolution of a single quantum mechanical particle with unper-
turbed Hamiltonian Ĥ0. Schrödinger’s equation in this case can be written as[

i�
∂

∂t
− Ĥ0

]
|φ(t)〉 = 0 (2.9)

Projecting onto the position eigenstates, the Green function G0(r, r′, t, t′) of the operator
i� ∂

∂t − Ĥ0 satisfies the following differential equation

i�
∂

∂t
G0 (r, t, r′, t′) − H0

(
r,

�

i
∇
)

G0 (r, t, r′, t′) = �δ (t − t′) δ (r− r′) (2.10)

Equation (2.2) shows that the solution G0(r, r′, t, t′) of Eq. (2.10) is the Fourier transform of
the Green function G0(r, r′, E)

G0(r, t, r′, t′) =
1
2π

∫
G0(r, r′, E)e−

i
�

E(t−t′)dE (2.11)

where the zeros of the denominator of the Green function G0(r, r′, E) are appropriately
avoided by suitable choice of an integration path in the complex plane. Equivalently, one
integrates on the real axis and moves the zeros off that axis by defining

G
r/a
0 (r, r′, E) =

∑
n

φn(r)φ∗
n(r′)

E − En ± iδ
(2.12)



56 2 Overview of core and valence photoemission

with δ an infinitesimal positive quantity and the sign leading to a retarded (r) or advanced (a)
choice(+ or - sign,respectively). It is possible to close the contour of integration in the lower
half-plane if t > t′ and in the upper half-plane if t < t′, so that Gr

0(r, t, r′, t′) = 0 for t < t′

and Ga
0(r, t, r

′, t′) = 0 for t > t′. The Green functions G
r/a
0 (r, t, r′, t′) are both solutions of

equation (2.10), but with different prescriptions for the boundary condition on the time axis.
Through Eq. (2.10) an interesting property of the Green function shows that, given an

arbitrary initial wave function φ(r′, t′) at time t′, it is possible to write the solution of the
Schrödinger equation at a later time t as

φ(r, t) = i

∫
Gr

0(r, t, r
′, t′)φ(r′, t′)dr′ (2.13)

as proved with help of Eq. (2.10) and the equal-time property iG
r/a
0 (r, t, r′, t) = δ(r − r′).

For this reason Gr
0 is called retarded propagator: Gr

0 “propagates” the wave function through
time. The condition Gr

0 = 0 for t < t′ ensures that values φ(r′, t′) for times later than t
do not contribute to the determination of φ(r, t). In this sense the Green function Gr

0 and the
corresponding advanced Green function Ga

0 embody the principle of causality.
Now that we have the solutions of the unperturbed Green function Eq. (2.10), we can

solve the problem of determining the time evolution for a quantum mechanical particle with
Hamiltonian H0 and with a perturbing potential V̂ (t) which can be time-dependent. In this
case the Schrödinger equation can be written as[

i�
∂

∂t
− Ĥ0

]
|Ψ(t)〉 = V̂ (t)|Ψ(t)〉 (2.14)

The solution of this equation is obtained by applying the Green function operator on the RHS,
so that

Ψ(r, t) = φ(r, t) +
1
�

∫
G

r/a
0 (r, t, r′, t′)V (r′, t′)Ψ(r′, t′)dr′dt′ (2.15)

where φ(r, t) is the solution of the associated homogeneous Eq. (2.9) and G
r/a
0 (r, t, r′, t′)

is the unperturbed Green function which corresponds to V̂ = 0. The retarded version yields
a forward solution, i.e. φ is the prescribed initial wave function before the potential V̂ is
switched on, and the advanced version yields the backward solution, i.e. φ is the final wave
function after V̂ has been switched off. Replacing in Eq. (2.10) Ĥ0 by Ĥ = Ĥ0 + V̂ and G0

by the full Green function G constitutes the differential equation for G and is equivalent to an
integral equation, namely

Gr/a(r, t, r′, t′) = G
r/a
0 (r, t, r′, t′)

+
∫

G
r/a
0 (r, t, r′′, t′′)V (r′′, t′′)Gr/a(r′′, t′′, r′, t′) dr′′dt′′

(2.16)

We notice that by Fourier transforming Eqs. (2.15) and (2.16) into the energy domain we get
Eqs. (2.7) and (2.8) in the case that V does not depend on time.
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When the particle propagator is expanded in a perturbation series by successive iteration
of Eq. (2.6), the structure of the terms can be complicated. The use of GF as propagators is a
powerful method to help visualizing the physical picture: we sketch this approach next.

The free propagation of the quantum mechanical particle (in the absence of interactions)
can be drawn as a straight line. The effects of the interactions of the particle due to an external
potential V are symbolized by open circles with attached broken line, as in Fig. 2.2a. We
can now visualize the different orders of the interactions in the perturbation expansion of
the propagator as a series of scattering events caused by the potential V . Each term in the
perturbation expansion is represented by a diagram, so that each of the lines and circles in the
diagrams has a definite factor associated with it. There is a one-to-one correspondence of each
diagram with each term occurring in expression (2.6), or, in other words, with each term of the
perturbation expansion of the propagator. The result of the infinite sum is the exact propagator
depicted by a double line, as in Fig. 2.2b. The first aim of a perturbation theory is to regard
the series as a power expansion with respect to a small parameter which leads to a cut-off at
low order.

Figure 2.2: Graphical representation of Green function diagrams: a) Green function with zero, one, and
n insertions of the perturbing potential; b) graphical summation of the geometrical series up to infinite
order to get G

The perturbation series is sometimes evaluated by summing to infinite order over only a
subset of diagrams, that is, summing only over some terms in the perturbation expansion cor-
responding to certain types of diagrams. This is the so-called partial or selective summation.
The partial sum is usually evaluated by showing that it involves a convergent infinite series, or
that it is equivalent to an integral equation which has already been solved.

As an example, consider a quantum mechanical particle which is moving under the influ-
ence of the sum of two external potentials VA and VB . If such an expansion were summed up
to second order according to ordinary perturbation theory, one would retain only five terms:
two linear terms (in VA and VB) and three quadratic terms (in V 2

A, V 2
B , and VAVB). If, on

the contrary, one of the perturbations cannot be considered small, it is not possible to apply
ordinary perturbation theory. For example, if VA � VB , it is possible to consider only the
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diagrams involving VA, neglecting VB and resulting in the “partial” result

Ĝ (E) = Ĝ0(E) + Ĝ0(E)(V̂A + V̂B)Ĝ(E)

≈ Ĝ0(E) + Ĝ0(E)V̂AĜ0(E) + Ĝ0(E)V̂AĜ0(E)V̂AĜ0(E) + · · ·

= Ĝ0(E) ·
∞∑

n=0

(
V̂AĜ0

)n

=
Ĝ0(E)

1 − V̂AĜ0

=
1

Ĝ−1
0 (E) − V̂A

(2.17)

It is interesting to note how this approximation and the summation are visualized in terms of
diagrams. In particular, the approximation consists in considering only the series pictured in
Fig. 2.2a, while Fig. 2.2b shows how the diagrams can be effectively used as a symbolic guide
to performing calculations, since they can be manipulated as if they were algebraic quantities.

2.2.3 Elementary excitations in systems of interacting particles

The elementary excitations play a dominant role in the low temperature behavior of a solid,
up to room temperature for the electrons. Often, these excitations have quasi-particle prop-
erties in the sense that a group of several particles maintains its identity through the course
of time and obeys a certain type of statistics, being e.g. of Fermi or Bose character. These
quasi-particles have energy and momentum and can thus be treated much like normal particles
in theory and experiment. Therefore, it is convenient to discriminate between an excitation
which concerns a finite number of particles, such as an electron with its polarization cloud,
and an excitation where all the particles are simultaneously involved, so-called collective ex-
citations, such as phonons, spin waves, or current-carrying states of superconductivity. Many
intermediate forms exist and can be imagined.

For a homogeneous non-interacting system, the energy E versus momentum dispersion
relation of a single particle with momentum p and mass m is quadratic, i.e. E(p) = p2/2m.
When a real particle moves through a system of interacting particles, its motion is considerably
modified. In fact, we can imagine that the real particle becomes surrounded by a cloud of
other particles in the system. The system consisting of the real particle plus the cloud of other
particles around it is called quasi-particle, or synonymously dressed, clothed or renormalized
particle. The properties of the quasi-particles are different from those of the real particles:
quasi-particles have an effective mass and a lifetime.

Since the real particle is screened by the other particles, quasi-particles interact only
weakly with one another. This is why the formulation of the quasi-particle concept is so
useful in studying many body systems: systems of strongly interacting real particles may be
regarded as composed of independently and/or weakly interacting quasi-particles.

The quasi-particles are what we see when we probe such systems, and they can behave
quite differently from the free particles. For example, the energy versus momentum depen-
dence of a quasi-particle can be very different from that of a free particle. Such behavior is
what angle resolved photoemission is in fact supposed to elucidate.

We can define quasi-particles as effective single-particle states, meaning that they act like
free particles with a renormalized energy ε′k replacing the energy εk of the bare particle, and a
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lifetime τk. In an approximate manner, the finite lifetime of a single-particle state is described
by regarding the energy as a complex quantity. By doing so, it is possible to account for the
exponential decay in time of the amplitude of the wave function, thus describing the fact that
the scattering due to a potential tends to knock a particle out of its single particle state. Thus,
we consider the energy with real part equal to ε′k and imaginary part equal to −1/τk. In fact,

the eigenfunction of a free particle with momentum �k can be written as φk(t) = φke−i
ε′k
�

t.
When interactions are turned on, the energy changes to ε′k and the particle starts to decay out
of the single particle state k, so that for a quasi-particle the wave function can be written as

φ′
k(t) = φke

−i
(

ε′k
�
−i 1

τk

)
t = φke−i

ε′k
�

te−t/τk (2.18)

showing the exponential decay of the state with rate 1
τk

.
The quasi-particles are more or less well defined, depending on the value of the decay

time. Schemes like Hartree or Hartree-Fock, which rely on the solution of a one-particle-like
Schrödinger equation, local or nonlocal, with hermitean Hamiltonian, conserve the particle
number and thus also the identity of a single particle. The Kohn-Sham eigenvalues of density
functional theory also exhibit definite single-particle properties, even though this approach is
questionable because it describes only the ground state; however, it is empirically in wide use.
An important criterion for the validity of the notion of a quasi-particle is that the lifetime of the
quasi-particles has to be longer than the time required to detect the quasi-particle state. Since
the many-body interactions scatter the particle out of its single-particle state, a measurement of
the lifetime of the state is very useful because it gives insight into the interaction mechanisms.

At the other end of the scale of fictitious particles in a many-body system are the col-
lective modes or collective excitations. These can be defined as the quanta associated with
collective wave-like motion of the system as a whole. Examples of collective excitations in-
clude phonons, plasmons and magnons. Collective excitations have particle-like qualities,
such as complex energies with finite lifetime. Unlike quasi-particles, however, they are not
described in a localized picture.

An important aspect of many-body systems is that of the correlations in particle positions
brought about by their mutual interaction, giving rise to coherence effects. Such correlations
frequently take the form of screening, that is, the alteration in the effective interaction of a pair
of particles brought about by the remaining particles in the system. In fact, the particle in a
system cannot distinguish between an external perturbation and an internal potential produced
by the response to that perturbation from the rest of the system. A particle reacts not to
the external field but to the total field, including the response of all the other particles. The
result of allowing the rest of the system to adapt itself is to reduce drastically the effective
potential. For example, a given electron in a dense electron gas acts to polarize its immediate
surroundings: it pushes other electrons away until its associated screening cloud possesses a
charge nearly equal (and opposite) to its own. The quasi-particles (electrons plus screening
clouds) interact via an effective short-range interaction of the order of the interparticle spacing,
in contrast to the original Coulomb interaction which in principle has infinite range. One of
the first big successes of many-body theory was the decomposition of the Coulomb excitations
into extended plasma waves and short-ranged screening clouds, the former corresponding to
collective excitations and the latter to quasi-particles. [12,77] Charges are locally balanced and
the remaining long range interaction (q = 2π/λ → 0) is connected with wave-like deviations
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from this balanced charge equilibrium at significantly higher energies corresponding to the
classical plasma frequency.

It should be noted that each bare particle is simultaneously the core of a quasi-particle and
a transient member of the cloud of several other quasi-particles. Therefore, if one wants to
describe a many-body system in terms of quasi-particles, caution is necessary because each
particle will be counted more than once. For this reason, the quasi-particle concept is valid
provided that one talks about a few quasi-particles at a time (few compared to the total number
of particles in the system).

It is convenient to define quasi-particles in terms of an experiment in which one removes
or adds a particle in a system, and observes the behavior of this extra particle (or hole) as it
moves through the system. This picture is closely related to photoemission, direct and inverse,
respectively. It is automatically accounted for in the formal definition of the Green function
for a many-body system.

2.2.4 The self-energy

At this point it is natural to ask how we can describe the GF propagator when we consider
the many-body interactions which are present in a system of particles. A useful aspect of
the one-particle many-body Green function is that it allows retaining a one-particle picture
while considering many-body systems. In fact, following Dyson, it is possible to describe
the many-body interactions of a single particle by introducing an energy dependent effective
potential called self-energy Σ̂(E). As the name suggests, the self-energy includes all the
particle interaction effects. In other words, the particles of the system are perturbed by the
incoming particle in such a way that their motion follows (or “is correlated with”) the motion
of the incoming particle itself. The incoming particle affects the many-body system, which
in turn acts back on the particle, altering its energy. The interactions between the incoming
particle and the system take place in a dynamic rather than in a static way, so that the self-
energy describes the dynamics of these interactions, i.e. the time dependence of the response
of particle motion correlated with the incoming particle. For this reason the self-energy is
an external effective potential which is time dependent, and hence energy dependent upon
Fourier transforming.

In a crude way, the self-energy might be introduced by the following equation reminiscent
of Eq. (2.1) with the potential V replaced by the self-energy Σ̂(

EÎ − Ĥ0

)
|Ψ〉 = Σ̂ (E) |Ψ〉 (2.19)

where Ĥ0 is a Hamiltonian whose eigenvalues and eigenfunctions are well known, typically
taken to be of one-particle form. According to the derivation following Eq. (2.3), the for-
mal solution of Eq. (2.19) is obtained through the corresponding GF which is determined
by means of the Lippman-Schwinger equation, now called (when the self-energy is present)
Dyson equation

Ĝ (E) = Ĝ0 (E) + Ĝ0 (E) Σ̂ (E) Ĝ (E) (2.20)
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The Dyson equation can be solved formally

Ĝ (E) =
1

Ĝ−1
0 (E) − Σ̂ (E)

(2.21)

This shows how the poles of the GF are moved in energy by Σ̂ from those of the non interacting
GF Ĝ0, thus describing the motion of the particle through the system as a combination of its
free motion and all of its interactions with the rest of the system, expressed by the self-energy.
Equation (2.20) is depicted in Fig. 2.3, where the double lines are associated with the GF
Ĝ (E) , while single lines denote the free propagator Ĝ0 (E).

Figure 2.3: Self-energy: a) multiple insertions of self-energy to infinite order for G written in b) by
summing them up in Dyson’s equation.

The solution of Dyson’s equation is symbolic, meaning that it is possible if we know
how to calculate the self-energy Σ̂. This task, however, is impossible in full generality. It
is possible to calculate it by means of approximations of the many-body interactions which
are present in the system. A qualitative look at the methods which allow performing this
many-body perturbation expansion will be the object of the next paragraphs. The method of
second quantization or occupation number formalism historically facilitated the development
significantly. The reason for this is twofold. First, this formalism allows handling systems with
variable numbers of particles. This capability can be appreciated if we think about the fact
that we will be able to describe test particles which are added to or removed from the system,
as embodied in the definition of the GF. As another example, we can formally express the
particle-hole approach, where the number of particles and holes is variable. Furthermore, the
operators already describe (through the commutation relations that they satisfy) the symmetry
properties of Fermi and Bose systems, so that we do not have to worry about keeping the wave
functions properly symmetrized, the result being a simplification and a more compact form.

2.2.5 Independent particle states and related methods

It is necessary to use determinantal wavefunctions even for the simplest problems that satisfy
the quantum statistics of fermions: such wavefunctions are unwieldy expressions, so it is
desirable to find a formalism that is easier to manipulate. The required basic information is
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how many particles are in the single-particle state α, how many in state β, and so on. In
Dirac’s notation:

|Ψ〉 = |nα, nβ, . . . , nν , . . .〉 (2.22)

In this number representation one defines the construction and destruction operators, ĉ† and
ĉ respectively, to construct a state like Eq. (2.22). They increase and decrease, resp., by one
the number of particles in a specified one-particle state ρ, σ, . . .. The symmetry properties of
the system are implicitly contained in the commutation relations obeyed by these operators,
viz.

ĉ†ρĉ
†
σ = ±ĉ†σ ĉ†ρ or

[
ĉ†ρ, ĉ

†
σ

]
∓ = 0 (2.23)

where we have the anticommutation relation (lower sign) for fermions and the commuta-
tion relation (upper sign) for bosons. An independent fermion state is written according
to Eq. (2.22) as

|Ψ〉 = (ĉ+
α )nα(ĉ+

β )nβ · · · (ĉ+
ν )nν · · · |0〉 (2.24)

by adding particles to the vacuum state |0〉.
The criterion according to which we write the operator in second quantization is that when

operating between two states it gives the same matrix elements as given before in the more
classical notation, between two many-particle wavefunctions. As an example, let us consider
an operator like

Ô =
N∑

i=1

Ôi

(
ri,

�

i
∇i

)
(2.25)

along with its matrix element evaluated between two independent particle states differing by
one single-particle wavefunction

〈ρ|Ô|σ〉 =
∫

d3r φ∗
ρ(r)O

(
r,

�

i
∇
)

φσ(r) (2.26)

Such operators are called one-body operators since they are sums of operators each of which
acts separately on one particle. An example of such an operator is the kinetic energy operator.
In second quantization formalism, it can be shown that the expression for such operators is
given by

Ô =
∑
ρσ

〈ρ|Ô|σ〉ĉ†ρĉσ (2.27)

In an analogous way a two-body operator is represented by a product of two destruction and
two creation operators and a corresponding matrix element.

Consider again a state in the form of Eq. (2.22) and disregard mathematical subtleties
concerning the difference between discrete and continuous states. If we take as the single-
particle states α, β, etc. the eigenstates of the position operator r̂1, r̂2, . . . , r̂i, then nri

gives



2.2 Green function methods 63

the number of particles in the single-particle state δ(r − ri), i.e., nri
particles at the point

ri. Similarly, the creation and destruction operators become ĉ†ri
and ĉri

, which respectively
create and destroy a particle at ri. These two operators are usually called field operators
and are denoted by ψ̂†(ri) and ψ̂(ri), respectively. The exact formal definition of the field
operators is by means of linear combination of the creation and destruction operators, namely

ψ̂(ri) =
∑

k

ĉkψk(ri)

with a suitable set of one-particle states ψk(r). From the commutation relations satisfied by
the operators ĉ† and ĉ it is easy to show the respective relations for the field operators. The
expressions for the one-body and two-body operators in terms of the field operators become∫

d3r ψ̂†(r)O(r,p)ψ̂(r) (2.28)∫∫
d3r1d

3r2 ψ̂†(r1)ψ̂†(r2)O(r1,p1, r2,p2)ψ̂(r1)ψ̂(r2)

where the momentum p stands for the corresponding nabla (∇) expression and applies to its
right.

A convenient starting point for a many-body calculation often can be taken from suitable
one-body states. The Hartree-Fock (HF) method is a well known example. A determinantal
ansatz of single-particle functions is used to minimize the variational energy and thereby fix
these functions. The one-body potential might for instance be given by the nuclei’s potential
Uion(r) = − Ze2

4πε0

∑
R

1
|r−R| and the two-body potential by the electron-electron Coulomb

interaction. The ground state energy E0 within the HF approximation, summed over electronic
states, is given by

E0 = 〈Ψ|Ĥ|Ψ〉 =
N∑
a

〈a|ĥ|a〉 +
1
2

N∑
a,b

〈ab||ab〉 (2.29)

where we denoted with ĥ the one-electron part of the Hamiltonian, that is, the kinetic energy
and the one-body interaction operators. We also have defined

〈ab||ab〉 = 〈ab|V̂ |ab〉 − 〈ab|V̂ |ba〉 (2.30)

The first term on the right hand side of Eq. (2.30) is the self-consistent field, while the second
one is the exchange term. The HF equations are variationally obtained from Eq. (2.29) by
varying the one-particle states involved in the matrix elements. The resulting one-particle
states are then occupied according to their corresponding eigenvalues up to a maximum value,
the Fermi energy, such that it exhausts the particle number. It is synonymous with the chemical
potential in the case of a metal. The Hartree-Fock eigenvalues εk, referring to the chemical
potential µ, are given by

εk + µ = 〈k|ĥ|k〉 +
N∑
b

〈kb||kb〉 (2.31)
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The split-off of the chemical potential from the one-particle energies is common practice in
many-body statistical theory and is adopted here, too. Alternatively, in experimental practice,
the chemical potential µ is often left out of this and the following two equations, providing a
more direct connection between the eigenvalues of the Hartree-Fock hamiltonian, the binding
energy and the electron affinity. At first, these eigenvalues arise as Lagrangian multipliers for
norm conservation of the wave function, as in Ritz’s variational principle. These eigenvalues
get the meaning of one-particle excitation energies known as Koopman’s theorem. To this
end, one subtracts from Eq. (2.29) the corresponding expression with one particle missing and
obtains the ionization potential IP , i.e. the energy required to remove from the N -particle
ground state a particle occupying a single-particle state. In particular, we have

EN−1
k − EN

0 − EN−1
k = −〈k|ĥ|k〉 −

N∑
b

〈kb||kb〉 = −(εk + µ) =: IP (k) (2.32)

Therefore, we see that, given an N -particle Hartree-Fock ground state, the energy required to
remove a particle in a single-particle state |k〉 is −εk. In a similar way, we can consider the
process of adding a particle in a single-particle state |r〉 to the ground state of the N -particle
system. The assumption is that the remaining single particle states remain unchanged. The
energy required for this process, the electron affinity EA, is then given by

EN
0 − EN+1

r = 〈r|ĥ|r〉 +
N∑
b

〈rb||rb〉 = −(εr + µ) =: EA(r) (2.33)

The sum of both expressions represents the excitation energy keeping the number of electrons
constant. We note that the ionization potential and the affinity usually are positive quantities
with suitable choice of the one-particle energy zero.

To solve the Hartree-Fock equations for a solid is quite cumbersome and the validity of
the results is questionable. For example, the gap in insulators and semiconductors is some-
times overestimated by well over 100%. The reason is found in the exchange energy which is
negative with an absolute value that is too high: this is due to neglect of the Coulomb hole, an
electron’s neighborhood of charge density reduced by screening. Thanks to the development
of the Hohenberg-Kohn theorem, density functional theory (DFT) has become very successful
and has almost entirely replaced all other single-particle-like methods. Various levels of ac-
curacy and variants of the density functional are used. Details can be found elsewhere in this
handbook [37, 70]. In the first version of the theory, gaps are underestimated by some 10%.
This shortcoming is attributed to the failure of the ground state theory to describe excitations.
Koopman’s theorem does not hold, contrary to Hartree-Fock. Electron-electron interactions
are partly present in the formalism, depending on the choice of the density functional, but
its more or less local form does scarcely account for the neighboring electron configuration
during excitation. Thus, transferring from a bonding to an antibonding state expands the
charge which interacts with and changes the neighborhood via electrostatics and exchange,
by Coulomb hole and screened exchange contributions. Improvements with respect to corre-
lation, i.e. the difference between the true many-body state and the Hartree-Fock state, have
been developed. Of course, they generally aim to take many-body corrections into account.
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In DFT, the energy

E[n] = T [n] +
∫

drV (r)n(r) +
e2

8πε0

∫
drdr′

n(r)n(r′)
|r − r′| + Exc[n] (2.34)

has to be minimized under the constraint of particle number conservation with respect to the
density n. Square brackets denote functional dependence. The exchange-correlation func-
tional Exc[n] is adapted in an approximate way from its homogeneous electron gas form,
thereby replacing the constant density n0 by the true density n. The second term on the right
of Eq. (2.34) includes the electron-nucleon potential and, if present, an external force. The
third term is the classical electrostatic electron-electron interaction. The kinetic energy T [n]
can be chosen such that a set of Schrödinger-like equations arises as variational equations, the
so-called Kohn-Sham equations(

− �
2

2m
∇2 + veff(r)

)
φk(r) = εkφk(r) (2.35)

with an effective one-body potential

veff(r) = V (r) +
e2

4πε0

∫
dr′

n(r′)
|r − r′| +

δExc[n]
δn(r)

(2.36)

The density is given by a sum over occupied states

n(r) =
∑

k

|φk(r)|2 (2.37)

which can be solved iteratively to self-consistency together with Eq. (2.35).

2.2.6 Perturbation expansion

To develop a suitable perturbation approach, let us start with the formal definition of the one-
particle many-body time-ordered Green function G for fermions:

G (k1, t1, k2, t2) = G+ (k1, t1, k2, t2) = −i
〈
ΨN

0

∣∣∣ck1 (t1) c†k2
(t2)

∣∣∣ΨN
0

〉
, t1 > t2

G− (k1, t1, k2, t2) = +i
〈
ΨN

0

∣∣∣c†k2
(t2) ck1 (t1)

∣∣∣ΨN
0

〉
, t1 < t2

(2.38)

Here c†k (t) and ck (t) = e
i
�

bHtcke−
i
�

bHt are, respectively, the creation and destruction oper-
ators at time t in a single-particle state k. The time dependence used here is attributed to
the so-called Heisenberg representation. By k we denote a set of quantum numbers like, for
example, momentum k and spin α. An equation analogous to Eq. (2.10) can be derived for
G by differentiating Eq. (2.38) with respect to time but with the essential difference that, be-
sides the H0 · G term in Eq. (2.10), expectation values over more than two particle operators
arise, owing to the number of four c-operators in the interaction part of H . They cannot be
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decomposed into a product of known quantities factoring out G in a closed form. Instead, by
definition the self-energy Σ is formally introduced according to Eq. (2.20), while tools must
still be developed to determine Σ explicitly. In the single-particle case, however, Eq. (2.38)
defines G as obeying Eq. (2.10). The functions G± are also defined by Eq. (2.38), postu-
lating them to be zero outside the ascribed time interval. They merely serve here for short
hand notation. They are different from the retarded and advanced functions which are used
in Eq. (2.12) for the one-particle case. The latter can be obtained by Gr = G − G< and
Ga = G − G>, respectively, through the quantities G> (G<) which equal G+ (G−) but ex-
tend the specific definition (2.38) to the whole time domain. Let us now take a look at the
physical interpretation of the above defined quantities.

An inspection of Eq. (2.38) suggests considering G+ written as G+ = −i 〈B|A〉 , where

|A〉 = c†k2
(t2)

∣∣ΨN
0

〉
and 〈B| = |B〉† =

(
c†k1

(t1)
∣∣ΨN

0

〉)†
. Then the many-body GF G+

describes the following sequence of events. Initially, the system is in its ground state
∣∣ΨN

0

〉
.

A particle is created at t2 in a single-particle state (sps) k2. Later on, at time t1, the system
has the added particle in the sps k1. G+ is proportional to the overlap of these two states,
i.e. the probability amplitude that the system at time t1, after a particle has been introduced
at time t2 in the sps k2, has the added particle in a sps k1, which corresponds to the physical
interpretation given already. In an analogous way one obtains G−, the propagator of a hole.
When one wants to calculate the GF of Eq. (2.38), a big challenge lies in the fact that

∣∣ΨN
0

〉
is

the ground state of the interacting N -particle system, which is impossible to calculate in full
generality. In fact, it would be more convenient to calculate the matrix elements appearing
in Eq. (2.38) between the states corresponding to the ground state of the non-interacting N -
particle system. In principle, the idea is to start off with a non-interacting system, “switch on”
the interactions and wait until the new interacting stationary state has been achieved.

It is possible to arrive at a formula which allows calculating the propagator by successive
approximations. To accomplish this, one moves to the interaction picture. So far we have
worked within the Schrödinger picture, namely by using the Schrödinger equation as given
by Eq. (2.9), with Ĥ instead of Ĥ0. To solve it approximately in terms of a perturbation
expansion with respect to a small quantity one has to split off a relatively small part V̂ of the
total Hamiltonian Ĥ = Ĥ0+V̂ and expand. The method is again not limited to simply cutting
off the expansion at a certain order, but it allows partial summation over certain subsets which
appear to yield dominant contributions to the exact result. This becomes especially clear if
single terms diverge at any order for special values of the parameters involved. It indicates
an instability which would also appear in the exact expression as some kind of singularity
at the radius of convergence given by the special parameter values. The partial summation
and also the exact result may even hide this singularity which artificially appears in the single
expansion terms, because the derivatives may exist up to some order thereby smoothing the
parameter dependence of the summed result. Think e.g. of a geometrical series of terms each
diverging at the same special parameter value where, however, the series converges to zero
and has by continuation a convergence radius which covers that parameter value.

Therefore, one has to design an expansion scheme such that a power series with respect to
V̂ is generated, no matter whether it converges or not. This needs some formal manipulations
of the Schrödinger equation where the known time evolution of the unperturbed Hamilto-
nian Ĥ0 is taken into account from the beginning: the correction to this time dependence is
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formulated as a new evolution equation in the so-called interaction representation. In this
representation, the wavefunction of the system |ψ (t)〉I is transformed according to

|ψ (t)〉I = e
i
�

bH0t |ψ (t)〉 (2.39)

The time evolution of the states |ψ (t)〉I and operators in the interaction representation are
given by

i�
∂

∂t
|ψ (t)〉I = V̂I (t) |ψ (t)〉I (2.40)

ÔI (t) = e
i
�

bH0tÔe−
i
�

bH0t (2.41)

Thus, in the interaction representation, the interaction wavefunction |ψ (t)〉I satisfies a Schrö-
dinger equation with the Hamiltonian V̂I , while all operators carry now an explicit time de-
pendence defined by the non-interacting Hamiltonian Ĥ0. We can now determine how the
functions |ψ (t)〉I evolve with time in the interaction representation. Instead of the wave func-
tion we will use the Green function. We will omit the index I in the following, understanding
all time dependence taken in the interaction representation.

The definition of the propagator Eq. (2.38) contains as unknown quantities the exact
ground state and the time dependence of the Fermi operators through the full Hamiltonian.
The transition to the interaction picture splits off the perturbation in a way similar to the pro-
cedure in the wave equation, see Eq. (2.40). The time dependence is then composed of the bare
Hamiltonian via Ĥ0 and a complicated correction which involves V̂ . The latter is expanded in
terms of V̂ . The unknown ground state is dealt with in an analogous manner and reduced to
the corresponding ground state of the unperturbed system by means of the adiabatic hypothe-
sis. It consists in assuming that the interacting ground state is obtained from the bare ground
state by switching on the interaction infinitely slowly, i.e. adiabatically or without change of
energy. It turns out that a very convenient representation of the many terms of the different
series occurs, through the time ordering which is denoted by T̂ . All factors appearing after
that operator have to be ordered in an ascending time sequence from right to left. Thus, one
gets an expression for the GF in the form of a perturbation expansion, with the advantage that
the matrix elements have to be evaluated between unperturbed ground state vectors of a many-

body system. Such matrix elements consist of terms like 〈Φ0| T̂
{

Â1...Ân

}
|Φ0〉 , where the

operators Âi are creation or destruction operators for particle and holes in the interaction rep-
resentation. The propagator of Eq. (2.38) then reads

G (k1, t1, k2, t2) = −i
∞∑

n=0

1
n!

(− i

�
)n

∞∫
−∞

dt′1

∞∫
−∞

dt′2 . . .

∞∫
−∞

dt′n (2.42)

〈
Φ0

∣∣∣T̂ {
V̂ (t′1)V̂ (t′2) . . . V̂ (t′n)ĉk1 (t1) ĉ†k2

(t2)
}∣∣∣Φ0

〉C

The matrix elements are evaluated by using Wick’s theorem which states that such an expecta-
tion value over a product of creation and destruction operators can be decomposed into a prod-
uct of expectation values of pairs each containing one creation and one destruction operator,
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i.e. the unperturbed propagators arise. Take Eq. (2.38), replace the true state Ψ0 by the unper-
turbed state Φ0, and use for the time dependence of the operators the unperturbed Hamiltonian
Ĥ0. A detailed explanation of the mathematics which allow calculating the matrix elements
in a systematic way are beyond the scope of this introduction , see e.g. references [33, 80].
We want to stress, however, that to each term in the series expansion corresponds a proper
diagram. In particular, some of the diagrams can be divided into different unconnected pieces,
and for this reason they are called disconnected diagrams. It is possible to show that only
connected or linked diagrams must be taken into account in the evaluation of the propagator,
according to the so-called linked cluster theorem. That is indicated by the superscript C.

There is an alternative method to derive the perturbation expansion which is entirely equiv-
alent to the above, and also frequently used. The association of Eq. (2.38) with the notion of a
Green function as developed in the foregoing paragraphs is more suggestive in that procedure.
Briefly, the method uses an equation of motion for the quantity (2.38) obtained from the time
dependence of the creation and destruction operators in the Heisenberg representation. A four-
operator product appears on the right hand side of this equation within the expectation value
bracket. The time evolution of that higher order Green function yields in turn successively
higher orders, leading to a hierarchy of equations with an increasing number of operators in
the expectation value for the higher-order Green functions. The equation of motion has a
structure formally equal to Eq. (2.10), thus suggesting the notion of a Green function. The
diagrammatic expansion also follows the rules given below. However, the reasoning for ap-
proximations differs occasionally. What appears as a summing up of a subseries of the whole
expansion in the language of diagrams is a decoupling or factorization of a higher-order Green
function into lower-order ones.

2.2.7 Diagrams in many-body systems

We already introduced some diagrams in the case of a single quantum mechanical particle and
introduced the concepts of selective summation. Here we extend the treatment to a system
of N particles. The unperturbed Hamiltonian Ĥ0 =

∑
n < n|h|n > ĉ†nĉn, is assumed

diagonal in the single particle states, say of the one-particle potential of a solid. As < ΨN
0 |

and |ΨN
0 > in Eq. (2.38) are the same states (fully occupied up to the Fermi surface), G0

is diagonal in the configuration index n, as well. We now focus on a two-body particle-
particle interaction. In second quantization the interaction terms have the form of the two-
body operator V̂I = 1

2

∑
k,l,m,n

〈kl|V |mn〉ĉ†kĉ†l ĉnĉm, where the matrix element 〈kl|V |mn〉

involves four single-particle states. Such a matrix element describes the interaction between
two particles or holes which, starting as single-particle states φm and φn, collide and scatter
into the single-particle states φk and φl, respectively. This expression for V̂I has to be inserted
in Eq. (2.42). Applying Wick’s theorem as indicated will yield a sum of products of bare
propagators G0 (l2, t2, l1, t1) which are characterized by two time and two configurational
indices.

The book-keeping of the whole series expansion is now illustrated by diagrams and rules
governing their construction, their manifold, and the quantitative expression in Eq. (2.42)
associated with them. Instead of Fourier transforming to energies, the original time variables
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are used here. The propagator G0 is drawn as a line with the endpoints 1 and 2 whose notation
comprises occasionally both space and time variables, cf. Fig. (2.4). Each of these points is
connected through the indices with an interaction matrix element, with the exception of the
outer indices belonging to the left hand side of Eq. (2.42). The matrix element is plotted as a
wavy line. It actually has four endpoints (connections) according to the indices of 〈kl|V |mn〉.
They are grouped pairwise such that (k, m) and (l, n) are at opposite ends of the wavy line,
with (m, n) on one side of the line and (k, l) on the other. One can think of the pair (k, m) as
belonging to one particle and (l, n) to the other. For example, two matrix elements appear in
Fig. (2.4c) associated with a wavy line, the left one with indices 〈k1m|V |kl〉 and the right one
with 〈kl|V |k2m〉. The connecting points are called vertices and their indices are summed or
integrated over, depending on whether the index labels discrete configurations or a continuous
time, respectively. There is only one time associated with each wavy line. The perturbation
series for the single particle propagators are built as the sum of all possible different connected
diagrams which can be constructed with the basic two-body forces interaction diagram. Such
diagrams illustrate how the many body interactions which take place in the system modify the
single particle or hole propagators. There is a one to one correspondence between each of
these diagrams and each of the terms in the perturbation series expansion. Besides the general
case where one does not distinguish between different orders of time, diagrams can be ordered
by time: this involves the explicit notation giving the time relation in the propagator, i.e., the
notation with particle and hole propagators. Both pictures are valuable and used below.

We will limit our attention to some of the main diagrams which are obtained in the lowest
order of approximation for the particular case of the single particle propagator. When ordered
by time a particle diagram is drawn such that the particle enters at the start of a line, undergoes
all the possible interactions with the background and then leaves at the end of a line. There
are only two first order diagrams, corresponding to n = 1 in Eq. (2.42). The first diagram,
shown in Fig. (2.4a), describes the direct interaction of the particle with any particle n of the
background. One line leaves and enters at the same point, a so-called loop. It means equal
times in that propagator.

Figure 2.4: First order a) and b), second order c) Coulomb interaction graphs, instead of space momen-
tum variables are denoted in b) and c); only GF indices are shown, matrix elements are e.g. 〈1n|V |2n〉,
〈k1l|V |lk2〉 in a), b), resp..

A propagator associated with a single loop represents the particle/hole occupation num-
ber. If the configuration index denotes the momentum of a homogeneous system and if the
bare ground state is the free-electron Fermi sphere, then the vertex of the loop has two equal
momentum indices, i.e. momentum does not change at one end of the interaction. If momen-



70 2 Overview of core and valence photoemission

tum is conserved, as e.g. in the Coulomb interaction, then also at the other end no change
of momentum can occur. The second process, shown in Fig. (2.4b), corresponds to a particle
which undergoes exchange scattering against the background particles.

In second order, which means that there are two interactions, the particle propagator can
be affected by several scattering processes. A well known and very important type of diagram
is shown in Fig. (2.4c), and corresponds to the polarization of the background particles due to
the perturbation induced by the incoming particle. Initially the particle (k1) propagates freely,
and then it interacts with the background particles by creating a particle-hole pair (lm). The
original particle (now k) and the created particle-hole pair propagate free from interactions,
until a new scattering interaction with the original particle annihilates the pair, so that the
background returns to its original ground state. This diagram is a non-trivial example of self-
energy diagrams. Such diagrams must be considered as an indirect interaction of the particle
via the medium with itself. The particle creates a disturbance in the system (interaction) which
is then reabsorbed by the particle as it propagates.

We have already pointed out how Dyson’s Eq. (2.20) changes the problem of calculating
the single particle GF into one of calculating the self-energy. Thus, rather than calculating
the whole propagator series, the solution of the problem can be attempted by calculating the
self-energy contribution starting directly from the diagrams, and then converting them into an
analytical form.

We now illustrate qualitatively the use of Feynman’s diagrams in expanding the self-
energy. This process is the selective or partial summation, which is equivalent to performing
an infinite summation on a series of terms which may even be divergent: in an extreme case,
this can produce a new series in which all terms are finite. The original perturbation series
usually are not convergent even if the single terms are finite, mostly they are only semicon-
vergent (asymptotically convergent). Thus they give only a formal representation of the exact
expression. One tries to remedy both possible defects, lack of convergence and infinite values
of individual terms of the series, by partial summation, which may involve reordering, can-
cellation of individual terms or cancellation of an infinite number of terms. Not only is the
summation performed on self-energy diagrams, but also the interactions themselves are renor-
malized. This is equivalent to considering effective interactions rather than bare ones. The
physical meaning of the effective interactions is that the bare interaction virtually polarizes
the medium, and the polarization cloud in turn shields the bare interaction converting it to the
much weaker effective interaction. The screened interaction between two points consists of a
large number of excitations involving many electron-hole pairs, thus involving the system as
a whole.

The diagrams describing the terms in the perturbation expansion can be divided into two
classes: reducible (improper) and irreducible (proper). Reducible diagrams can be divided
into two by cutting one internal fermion line as e.g. the last two diagrams in Fig. 2.3a, while
irreducible ones cannot, as those in Fig. 2.4.

First we attempt to calculate the self-energy. We define as a self-energy part any diagram
without external lines, which can be inserted into a particle or hole line. The solution of the
Dyson equation is exact, in the sense that all the diagrams have been counted, proper ones and
their repetitions. The repetitions appear through the iteration of the Dyson equation; the proper
diagrams are to be contained already in the self-energy. Thus, the self-energy must not contain
improper diagrams. In principal, it is possible to sum over all repetitions of all irreducible self-
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energy parts. We have actually shown this process already in Fig. 2.3a. We have only summed
over the repeated proper parts, but we still need to sum over the proper parts themselves. This
is impossible in full generality, and is normally done with approximations. Understanding
which diagrams have more weight in the self-energy expansion is actually challenging: such
choice in fact reflects the approximations which are used to describe the system. In other
words, choosing the right diagrams to sum over when expanding the self-energy is equivalent
to outline the most important physical interactions which take place in a many-body system.

As we associate the full propagators to the straight lines instead of just G+ or G−, we have
a particle line for the positive time difference, and a hole line otherwise. By suppressing the
time order, the drawing of the diagrams can be greatly reduced to their topological equivalence
and without any time arrows.

Now we look at the interactions. We define as proper or irreducible polarization part any
diagram without external interaction lines which can be inserted into an interaction line and
which cannot be split into two by cutting an internal interaction line. When we include all
the possible polarization parts, we get the fully screened interactions, as diagrammatically
sketched in Fig. 2.5. This procedure is called the dressing or renormalization of the inter-
action. As an effect of the renormalization, no interaction lines have inserted polarization
parts and all interaction lines are dressed. Moreover, as shown in Fig. 2.5b, the interactions
obey an equation with the same structure as Dyson’s equation, obtained by summing the bare
interaction lines with all the possible insertions of proper polarization parts.

Figure 2.5: Renormalization of interaction by polarization diagrams: a) contributions to polarization,
first two graphs are irreducible, third is reducible decomposing into two irreducible ones by cutting the
interaction right of the left bubble and has to be removed from a) because it automatically appears in b);
b) analog of Dyson equation for interaction.

So far we have seen that the series for the propagator can be expressed in terms of the
proper self-energy Σ which can in turn be expressed in terms of the effective interactions. As
in Fig. 2.3 we also dress propagator lines. In fact, the self-energy Σ is obtained by summing
over all diagrams in which the propagator lines already contain the self-energy. This produces
a series in which no propagator lines can be grouped into self-energy parts and all of them
have been replaced by clothed propagators.
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A vertex is defined as any point in a diagram determined by the intersection of two fermion
lines and one interaction line. Then, the vertex part is any diagram without external lines which
can be inserted in place of a vertex. The summation for the vertex part can be decomposed in a
procedure analogous to renormalization into an irreducible part and its repetition. The lowest
order vertex is just a point with three plug-ins, one for the interaction and two for fermions.
Any approximation beyond the bare point is called vertex correction.

Altogether, it would be the aim to renormalize simultaneously the interactions, the prop-
agators and the vertices. In the literature the double lines are often omitted, and it is stated
that both the interactions and the propagator lines have been renormalized. The whole proce-
dure sketched above produces a large simplification of the book-keeping, illustrating the series
expansion of Eq. (2.42).

2.2.8 Spectral representation

We now show how the Green functions G± can be expressed in a form which is related to the
excitation spectrum of the full Hamiltonian.

By inserting in the definition of the Green function, Eq. (2.38), the unity operator I =∑
n,M

∣∣ΨM
n

〉 〈
ΨM

n

∣∣ (here, n denotes excited states of an M -particle system), we have with
t1 = t, t2 = 0 and k1 = k2 = k

G+(k, t) = −iθ(t)
∑

n

|〈ΨN+1
n |ĉ†k|Ψ

N
0 〉|2e− i

�
(EN+1

n −EN
0 )t (2.43)

After Fourier transforming, we get an expression very similar to the one-particle case treated
before, namely

G+(k, E) =
∑

n

|〈ΨN+1
n |ĉ†k|ΨN

0 〉|2

E − (EN+1
n − EN

0 ) + iδ
(2.44)

Similarly, we get G− with M = N − 1 for hole creation, with negative imaginary part in the
denominator, and with opposite sign of the energies within the parentheses of the denominator.
As already pointed out earlier, the poles of the single particle propagator occur at the difference
between the exact energy of the excited states of the N ± 1-particle system and the exact
ground state energy of the N-particle system. By introducing the N ± 1 ground state energies
EN±1

0 and referring the total excitation energies to them, we obtain εN+1
n and εN−1

n . We
define the chemical potentials µN±1 of the N - and N − 1-particle systems, respectively, by

EN+1
0 − EN

0 = µN+1, EN
0 − EN−1

0 = µN−1 (2.45)

These are assumed to be independent of the particle number for large N . Thus we have for G,
see Eq. (2.38),

G (k, E) = G+ (k, E) + G− (k, E)

=
∑

n

|〈ΨN+1
n |ĉ†k|ΨN

0 〉|2

E − εN+1
n − µ + iδ

+
∑

n

|〈ΨN−1
n |ĉk|ΨN

0 〉|2

E + εN−1
n − µ − iδ

(2.46)
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The structure of the denominators in G± accounts for the widespread application of the GF
formalism in spectroscopy. In fact, we can see that the poles of the GF G+ and G− give,
respectively, the affinities and the ionization potentials of the N -particle system. Thus, a
minimum εN±1

n = 0 refers to the lowest affinity and ionization potential in a conduction band
of a metal. In particular, we may consider the conservation of energy for the photoemission
process,

hν + EN
0 = εkin + EN−1

n (2.47)

where hν is the photon energy and εkin the kinetic energy of the photoelectron outside the
solid. We write W for −µ, the work function, represented by the vacuum barrier. Eq. (2.47)
is generally valid for atoms, molecules and solids. In the case of surfaces, it is common to
explicitly take into account the effect of the solid-vacuum barrier, so that the work function
W is added to εtextkin to get the binding energy εb from the difference to the photon energy.
The binding energy of the photoelectron is then given by

εb = hν − εkin − W = EN−1
n + µ − EN

0 = εN−1
n (2.48)

so that εb yields a measure of the excitation energies for the N − 1-particle system. Note that
it is defined as a positive quantity. In photoemission, binding energies are normally referred
to the Fermi level, so that εtextkin is the kinetic energy measured by the spectrometer with the
specific work function of the spectrometer. The latter is constant and can be subtracted from
all measurements after standard calibration procedures. It is interesting to evaluate the many-
body GF of Eq. (2.46) in the case of a system described in the Hartree-Fock approximation.
Again we are assuming that the remaining single particle states remain unchanged in the
process of adding to or subtracting a particle from the N -particle ground state, so that we can
approximate the final states of the N + 1- and N − 1-particle systems as |ΦN+1

n 〉 = ĉ†n|ΦN
0 〉

and |ΦN−1
n 〉 = ĉn|ΦN

0 〉, respectively. Thus the GF of Eq. (2.46) becomes

G(k, E) =
∑

n

|〈ΦN
0 |ĉnĉ†k|ΦN

0 〉|2

E − εN+1
n − µ + iδ

+
∑

n

|〈ΦN
0 |ĉ†nĉk|ΦN

0 〉|2

E + εN−1
n − µ − iδ

(2.49)

Measuring the energy with respect to the chemical potential, ε := E − µ and introducing
εN+1
n = εk > 0, εN−1

n = −εk > 0 for the Hartree-Fock energies εk of particles and holes,
respectively, we obtain

G(k, ε) =
θ(k − kF )
ε − εk + iδ

+
θ(kF − k)
ε − εk − iδ

(2.50)

We thus retrieve Koopman’s theorem, according to which the value of εk + µ are the affinity
and the binding energy of the system for k > kF and k < kF , respectively. If we leave out
µ (as discussed earlier), the same equation (2.50) results. It is interesting to note that both
residues around the poles are equal to one and the imaginary part goes to zero, reflecting the
fact that these are exact single particle states with infinite lifetime.

As regards the photoemission process, it is of fundamental importance to observe that the
derivation of Eq. (2.50) is based on the assumption that |ΦN−1

n 〉 = ĉk|ΦN
0 〉, that is, in the
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process of subtracting from the N -particle ground state a particle in the sps k, the remaining
single-particle states remain unchanged. This is the reason why Koopman’s theorem provides
the binding energies in the so called frozen-orbital approximation, meaning that only the sps
state k is considered “active” in the photoemission process, while the other N − 1 electrons
are “passive” spectators, “frozen” in their original single-particle states.

The main ingredient which is neglected in the frozen-orbital approximation is the fact
that when a photoelectron in a sps k is emitted from a N -particle system, the remaining
N − 1 electrons relax into a new energy state with energy lower than the Hartree-Fock energy
EN−1

n by an amount equal to δErelax, called relaxation energy. As a result of neglecting the
relaxations, such calculations tend to over-estimate the binding energy. Moreover, Koopman’s
theorem must be corrected with the electron-electron correlation effects which are obtained in
going beyond the HF approximation and which reduce the total energy from its HF value.

The correlation energy is defined as the difference between the exact energy and the one
calculated with Hartree-Fock, namely Ecorr = Eexact − EHF . The correlation energies must
be considered for both the initial and the final states, and they are larger in absolute value
for systems with higher particle number. Since the correlation energies are negative, the net
contribution to the binding energies from correlation effects is positive, i.e. δEcorr = EN−1

corr −
EN

corr > 0.
Therefore, taking into account relaxation and correlation effects, the correction to the ex-

pression of the binding energies obtained by Koopman’s theorem is given by

εk = −εk − δErelax + δEcorr (2.51)

We notice that the corrections due to relaxation effects and correlation effects tend to cancel
each other out, so that Koopman’s theorem provides a reasonable approximation for the bind-
ing energies in photoemission. Striking counterexamples are presented by insulators whose
HF gaps are significantly overestimated.

We now define the spectral density functions:

A± (k, ε) =
∑

n

∣∣〈ΨN±1
n |â|ΨN

0

〉∣∣2 δ
(
ε − εN±1

n

)
(2.52)

Here â stands for ĉ†k or ĉk, respectively, for the upper or lower sign. The spectral density func-
tions are obviously positive, vanish for ε < 0, and are related to the momentum distribution

function 〈nk〉 =
〈
ΨN

0

∣∣∣ĉ†kĉk

∣∣∣ΨN
0

〉
through

∫ ∞

0

dxA+(k, x) = 1 − 〈nk〉 ,

∫ ∞

0

dxA− (k, x) = 〈nk〉 , (2.53)

From this the sum rule immediately follows:∫ ∞

0

dx
[
A+ (k, x) + A− (k, x)

]
= 1 (2.54)

We can represent the Green function of Eq. (2.46) with the help of the spectral functions,
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namely

G (k, ε) =
∫ ∞

0

dx
A+ (k, x)
ε − x + iδ︸ ︷︷ ︸
G+

+
∫ ∞

0

dx
A− (k, x)
ε + x − iδ︸ ︷︷ ︸
G−

(2.55)

which in turn yields the spectral functions via

A±(k, ε) = ∓ 1
π

Im G(k,±ε), ε > 0 (2.56)

Thus, the Green function G contains the particle as well as the hole spectrum whereas each
spectral function A+ and A− is associated with only one spectrum. For free particles the
spectral density is a δ-function

A± (k, ε) = θ (±k ∓ kF ) δ
(
ε − εN±1

n

)
= θ (±k ∓ kF ) δ (ε ∓ εk) (2.57)

that is, the spectral functions are δ-functions at the energies of the single-particle states. In
other words, if we are able to detect single-particle states in the system, these must have a
spectral function which is a δ-function. Therefore, quasi-particles, which are effective single-
particle states, must have a spectral function which resembles a δ-function, like a single peak.
We can imagine any curve resembling a sharp peak as being composed of a quasi-particle
peak plus a background. We can then make use of Eq. (2.55) with a spectral function which is
not a δ-function any more but function with a certain width centered around the peak position.
The spectral function dominates in the integral, and it may be assumed that the peak can be
represented as a Lorentzian line, i.e. two complex conjugate poles at a quasi-particle state
ε′k ± iΓ with peaked contribution in A+ and at a quasi-hole state −ε′k ± iΓ peaked in A−. If
we write the spectral functions as

A±(k, ε) = θ(ε)
1
π

ΓZ

(ε ∓ ε′k)2 + Γ2
+ background (2.58)

then Eq. (2.55)yields the following Green function through contour integration – both parts
G+ and G− complete the full real axis and of the poles at ±iΓ only that one is picked up
which belongs to the imaginary half-plane opposite to that of the pole characterized by the
infinitesimal δ in Eq. (2.55):

G(k, ε) =
Z

ε − ε′k + iΓsign(ε)
+ background (2.59)

Note again that ε′k > 0 holds for the particle case with A+ carrying the peak contribution, and
ε′k < 0 for the hole case with A−. We can view Z as the residue of G±, the so-called renor-
malization constant. It represents the spectral weight of the dominant structure, the remaining
background being smooth. Since A± (k, ε) obeys the sum rule of Eq. (2.54), Z < 1 follows,
because the first term in Eq. (2.58) integrates to Z and the positive background accounts for
the difference from unity according to the sum rule. Equation (2.59) reflects the fact that the
quasi-particle is a single-particle state with a probability less than unity. The quantities Γ and
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Z may depend on k as well as on ε, because they derive from the self-energy, the more im-
portant dependence owing to Γ(ε). For example, if Γ(ε)/ε → 0 for ε → 0 in approaching the
Fermi energy, the right part Eqs. (2.53) and Eq. (2.58) reveal that < nk > vanishes from above
(ε′k = 0+) and coincides with Z from below (ε′k = 0−). Thus the Z is equal to the disconti-
nuity of the momentum distribution function at the Fermi level: as expected, the discontinuity
is equal to 1 for a noninteracting system, where the Fermi function is a θ function at T = 0
which drops discontinuously to zero, and it is less than 1 (and the step function gets partly
smeared) when the interactions are turned on. A particle peak of finite width above the Fermi
sea is not entirely confined to above the tail leading to a finite hole occupation below. That is
reflected according to Eqs. (2.53) and (2.58) by non-vanishing A−(k, ε) for ε′k > 0 with ε > 0.
A finite value of Γ shows a finite lifetime of the quasi-particle state. Investigating many-body
effects such as in strongly correlated systems photoemission spectra predominantly are inter-
preted in terms of quasi-particle energies and the spectral function, which seduces because of
its simplicity bearing the danger of misinterpretation, however. [39] The actual photoemission
analysis becomes a little delicate if the energy-dependent lifetime vanishes at the Fermi level
depending on the kind of Fermi-liquid. The spectral density is then no longer Lorentzian and
is sensitive to the asymptotic law , which can be experimentally investigated. [20, 48] For a
peak ε′k within the Fermi sea, Z may be identified with the integral of A− – compare Eq. (2.55)
with (2.59) – which thus corresponds via Eq. (2.53) to the quasi-particle weight of the T = 0
occupation number.

In spite of the advantage offered by the quasi-particle picture, there still remains the ques-
tion whether it is applicable in specific cases. However, if the perturbation theory for the
proper self-energy holds and if the self-energy can be analytically expanded in a power series
with respect to the perturbation parameter, then quasi-particle states may adequately reflect
the excitations provided the obtained lifetime is reasonably long. The latter decreases e.g.
in metals with decreasing distance from the Fermi level, so the picture may break down far
from it.

For the particular case of photoemission, neglecting the Z factor, the hole GF for a quasi-
particle (we should say “quasi-hole”) can be written as

G(k, ε) =
1

ε − ε′k − iΓ
(2.60)

with 1
�
Γ = τ−1 being the inverse lifetime τ of the single-particle state. This form is partic-

ularly useful because it allows us to see a direct connection among GF, spectral function and
self-energy, see Eq. (2.21). In fact, if the self-energy can be estimated, all the many body
effects can then be described by considering a quasi-particle with renormalized energy equal
to ε′k = εk + Σr + iΣi, where εk is the energy of the bare particle and the self-energy is
expressed by its real and imaginary parts as Σ = Σr + iΣi. Therefore, we see that the real part
of the self-energy describes the correction to the value of the energy of the bare particle, while
the imaginary part describes the finite lifetime of the quasi-particle state. In other words, we
consider in Eq. (2.60) ε′k = εk + Σr and Γ = Σi.
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We thus obtain the following formulas often found in the literature

G(k, ε) =
1

ε − εk − Σ
=

1
ε − (εk + Σr) − iΣi

(2.61)

A− (k,−ε) =
1
π

Im G(k, ε) =
1
π

Σi

[ε − (εk + Σr)]2 + Σ2
i

(2.62)

2.2.9 Photocurrent

A general expression for the photocurrent in photoemission is given by the expectation value
of the current operator, cf. [64], using SI units:

j(r, t) = 2
(

e�

2m
(∇′

r −∇r) +
ie2

m
A(r, t)

)
G<(rt, r′t)

∣∣∣∣
r′=r

(2.63)

with G< the electron-occupation propagator as denoted by Caroli et al. [17] and A is the
vector potential of the photon field. Imagine replacing the particle operators in G< by one-
particle wavefunctions, then this expression reduces to what one derives for the current in
usual quantum mechanics. A gauge is used with vanishing scalar potential. The last term
in Eq. (2.63) leads to a paramagnetic contribution proportional to the vector potential A. It
occurs as a product of the particle density and A both taken at the position of the detector
which lies far outside the solid, and thus vanishes. One is left with the first part where time
has to be made infinite or which has to be averaged over time (according to the Abelian
limit) so as to obtain the whole photocurrent, thereby leaving the DC component. The time
averaging allows the representation by an energy integral of the Green function by Fourier
transformation. However, energy resolution as achieved by experimental analyzers can be
theoretically simulated by adding a retarding grid-like artificial vacuum level W = W0 + εkin

at the desired energy far outside the solid. Thus, the energy resolved current at time T with
detector at position R is obtained by differentiating with respect to the work function:

−dj(R, T )
dεkin

= − d

dW
j(R, T )

∣∣∣∣
W=W0+εkin

= −e�

m

d

dW
(∇R′ −∇R)G<(R,R′; T, T )

∣∣∣∣R′=R

W=W0+εkin

(2.64)

Here, the Green function includes, besides the full interacting Hamiltonian, an external field
which depends explicitly on time. A convenient treatment in the framework of Green-function-
based nonlinear transport theory is offered by the Keldysh technique [68]. It is very similar to
usual ground-state or equilibrium perturbation theory, so the details are not important in this
context. Because the time dependence of the field extends over the total interval of the mea-
suring process, the particle operators in G< do not only locally depend on the time entering
the field. The destruction of a particle at time t2 occurs when the field could already act upon
the ground state for some time. It acts further at times before and after the associated creation
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of a particle at t1, resulting in a state whose probability as part of the ground state is probed
in G<. These features have to be treated within this kind of perturbation expansion.

The diamagnetic part is expanded in powers of A according to a perturbation series. The
zeroth order of G< carries no current and the first order contributes to the linear conductivity
at the detector, which may be discarded by reasoning similar to the neglect of the paramagnetic
current. The first non-trivial part arises in second order, G(2)<, showing photoemission as a
quadratic response effect. Much higher fields would require orders that are higher than the
second considered in the following.

The one-body Hamiltonian of the external field consists of a linear and a quadratic expres-
sion in A,

hp + hd =
ie�

2m
(A · ∇ + ∇ · A) +

e2

2m
A2 (2.65)

a paramagnetic and diamagnetic part, respectively. The latter has to be treated in first order,
the former in second order. In the first-order term, the time averaging of the photocurrent
appearing in Eq. (2.64) simply yields the time average of A2 because the field-free ground-
state Green functions depend only on the time difference. In frequency space, this means a
static field which does not contribute to excitations of non-vanishing energy and thus not to
those above the vacuum level for the photocurrent. Only the second order term remains

G(2)<(R,R′; T, T )

=
i

�2

∫
d1d2 < N |ψ†(1)hp(1)ψ(1)ψ†(R′, T )ψ(R, T )ψ†(2)hp(2)ψ(2)|N >

(2.66)

where the notation of space and time variables has been condensed into numbers 1 and 2. The
time ordering in this time dependent formalism has already been inserted, thus leading to the
above sequence of operators. To lowest order, i.e. no electron-electron interaction contained
in the formal time dependence of ψ(†)(t), G(2)< can be decomposed through decoupling into
(ψ, ψ†) pairs (Wick theorem):

G(2)<(R,R′; T, T ) =
1
8π

∫
dE

∫
d3(r1, r2)

Gr(R, r1; E)hp(r1)G<(r1, r2; E − �ω)hp(r2)Ga(r2,R′; E) (2.67)

Here we have abbreviated hp(r) = ie�

2m (A(r) · ∇ + ∇ · A(r)), the retarded Gr = G −
G< and advanced Ga = G − G> Green functions, and specified the vector potential as
A = A(r) cos(ωt). Expression (2.67) must be inserted into Eq. (2.64) for the photocurrent.
Only the absorptive part of cos(ωt) contributes, leading to E − �ω. We recall that the above
Green functions may still include the whole many-body interaction processes. However, the
expansion in the external field cannot be fully decoupled without taking the interaction into
account, i.e. there might be, for instance, a Coulomb interaction taking place between any two
electrons before and after the excitation at r1, which is ignored by decoupling as a product
of three Green functions. Instead, one should go back to Eq. (2.66), which consists of a
product of six fermion operators to be averaged over the ground state. The presented term
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corresponds only to that which factorizes into three Green functions which can of course be
taken as dressed by the interactions in the form of self-energies. Other terms involve a higher
number of Green functions which cannot be accounted for by that dressing. These processes
yield an example of vertex renormalization. Let us represent the basic expression of Eq. (2.67)
with undressed Green functions by the triangle as in Fig. 2.6a: then possible contributions are
represented in Fig. 2.6b, dressing according to Eq. (2.67) as well as renormalizations of the
vertex. The Green function considered in the figure has been doubly time-Fourier-transformed
into the energy regime.

Figure 2.6: Schematic representation of contributions to photocurrent: a) General dressed Green func-
tion (top), second order with respect to external field O and interactions neglected (middle), and same
as above closed to a vertex with upper corner decorated by external nablas of current (bottom); b)
self-energy insertions contributing to the dressing of Green functions in equation (2.67) (top), vertex
renormalizations beyond (2.67) (bottom), broken lines represent Coulomb interactions.

The equivalence of Eqs. (2.64) and (2.66) in the one-body limit with the Golden Rule
formula and with other representations has been shown, see e.g. [31, 74, 75, 96]. With the
asymptotics of outgoing states, see e.g. [41, 93] (we will come back to that point shortly), we
expand with respect to a full set for energies εk = W0 + εkin above the vacuum level W :

Gr(R, r1; E) =
∑

k

< R|Φ−
k >< Φ−

k |r1 >

E − εk − µ + iδ
(2.68)

Similarly, Ga is obtained with a negative sign in front of the infinitesimal. Denoting the
occupied one-particle bound states by < r|j > the electron-occupation propagator simplifies
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to

G<(r1, r2; E − �ω) = 2πi
∑

j

occ
< r1|j >< j|r2 > δ(E − �ω + εj − µ) (2.69)

The R → ∞ behavior of Eq. (2.68) follows from Eq. (2.8) by using the asymptotics of the
free-particle Green function which describes an outgoing spherical wave and by expanding in
the exponent |R − r| = R − r · R/R + ...

Gr(R, r; E) = − m
√

ν

2π�2R
eik0R < Φ−

k0
|r > (2.70)

< Φ−
k0
|r > =

1√
ν

(e−ik0·r +
∫

d3r1e
−ik0·r1V (r1)Gr(r1, r; E)) (2.71)

Periodic boundary conditions with cell volume ν have been applied. The function defined in
Eq. (2.70) is the complex conjugate of an asymptotically plane wave with wave vector k0 =√

2mE
�2 R/R leading to the detector, accompanied by scattering waves of the potential running

into the solid. The function itself shows an “incident” plane wave from the detector to the
sample and scattered waves leaving the sample, which characterizes the state in a low energy
electron diffraction (LEED) experiment. However, the complex conjugate will appear in the
subsequent matrix elements at those positions where the wave function should be present,
similar to its appearance in Eq. (2.68). Consequently, it is the time-reversed LEED state
which occurs as the final state in photoemission. This result is here inferred from the property
of the retarded Green function. Note that < R|Φ−

k0
> vanishes below the vacuum barrier, thus

a step function Θ(E − µ − W ) is implicit to the definition of Eq. (2.70).
Quantization of the light as one photon with energy �ω and unit vector e of polarization

yields:

hp =

√
e2�3

2ε0m2ων

1
2
(e · ∇ + ∇ · e) (2.72)

Introducing the matrix elements

< Φ−
k0
|hp|j >=:

√
e2�3

2ε0m2ων
∆k0j (2.73)

the expression (2.67) becomes:

G(2)<(R,R′; T, T )

=
im2ν

16π2�4RR′ e
ik0(R−R′)

∫
dE

∑
j

occ
| < Φ−

k0
|hp|j > |2δ(E − �ω + εj − µ)

(2.74)

This is inserted into Eq. (2.64) and account is taken of the implicit step function Θ(E−W−µ)
in |Φ−

k > with respect to the lower energy bound at W + µ when differentiating:

−dj(R, T )
dεkin

=
1

4πR2

e�k0

m

e2

4πε0

1
�ω

∑
j

occ
|∆k0j |2δ(W0 + εkin + εj − �ω) (2.75)
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Equation (2.75) displays the differential photocurrent with respect to kinetic energy dεkin

from the flux of one photon. The counts per solid angle d dJ
dεkin

are obtained by multiplying
with R2dΩ. This is the Golden Rule formula, in valence band spectroscopy often denoted
as the one-step model [91] because it implicitly includes the three steps of excitation, scat-
tering by the lattice and penetration through the surface as a single step. The last two steps
are completely contained in the LEED wavefunction whose time reverse obviously enters the
matrix elements. The Golden Rule condenses these together with the excitation into one co-
herent process. It is clear that self-energy dressing of the Green functions does not violate the
above derivation within the one-particle approximation. Thus, an optical potential in Gr(Ga)
describes a part of the extrinsic losses that the electron suffers after excitation. Instead of
Eq. (2.69) the hole spectral density function A−, see Eq. (2.52), may be introduced in the
position representation, which takes account of intrinsic broadening, as for instance with the
finite lifetime of a particle-hole excitation. However, photoelectron-photohole interaction is
discarded in both.

The consideration of the general photocurrent is accomplished systematically via the Green
function technique described below Eq. (2.67) with an expansion to arbitrary order.

Different physical insight is gained through exact decomposition of Eq. (2.66) with a
complete set of states for (N − 1) particles, as given by Almbladh’s derivation [3]. The time
integration is carried out and only the light absorption part is retained, viz.

G(2)<(R,R′; T, T ) =
i

4

∫
d3(r1, r2)

∑
s

< N |ψ†(r1)hp(r1)ψ(r1)
1

EN
0 + �ω − H − iη

ψ†(R′)|N − 1, s >

< N − 1, s|ψ(R)
1

EN
0 + �ω − H + iη

ψ†(r2)hp(r2)ψ(r2)|N >

(2.76)

where the index s enumerates the states of the set. The particle operators which appear with
their arguments at an asymptotic distance are expanded with respect to a full set of one-particle
states, ψ†(R′) =

∑
k′ φ�

k′(R′)c†k′ , chosen to asymptotically exhibit spherical-wave behavior,
i.e. φ�

k′ ∝ 1
R′ e

±ik′R′
, both inbound and outbound. We denote as εk′ the corresponding

energies of a free particle and consider the first matrix element in Eq. (2.76). An N -particle
excited state with an electron at the detector position can be defined as

|N − 1, s,R′ >
m
√

ν

2π�2R
:=

1
EN

0 + �ω − H − iη
ψ†(R′)|N − 1, s > (2.77)

=
∑
k′

φ�
k′(R′)

EN
0 + �ω − EN−1

s − εk′ − iη
(1 +

H − EN−1
s − εk′

EN
0 + �ω − H − iη

)c†k′ |N − 1, s >

(2.78)

Led by the one-particle derivation above, we consider here the first term in the parentheses
which is the only one that remains when c†k′ |N − 1, s > is an eigenstate of H with energy
EN−1

s +εk′ . Contour integration with respect to εk′ has to proceed along the lower half-plane
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to yield a non-vanishing result, because it then encloses a pole, located at εk′ = EN
0 + �ω −

EN−1
s . Only the negative sign in the exponent of e±ik′R′

allows closing along the lower half-
plane such that only a spherical wave which is incident onto the solid survives. Extracting
this asymptotic factor similar to Eq. (2.70), the sum over the directions k̂′ leaves a state which
has to overlap with the emitter volume for non-zero result. This fixes k̂′ = R′/R′ which
yields a plane wave incident into the detector with wave vector k0 because c†k′ |N − 1, s >
is asymptotically an outgoing state, in view of the sign of −iη. This is characteristic of a
time-reversed LEED state, i.e. spherical wave in and plane wave out as seen from the emitter
volume.

The second term in the parentheses corrects for the many-body coupling of this state to
the emitter volume. Expanding ψ(r) =

∑
j φj(r)cj with respect to a set of states bounded

within the emitter volume, inserting in Eq. (2.64), and using µ = −W0 we arrive at

− dj(R, T )
dεkin

= N
∑

s

∣∣∣∑
ij

∆ij < N |c†i cj |N − 1, s,R >
∣∣∣2

· δ(EN
0 + �ω − EN−1

s − εkin) (2.79)

where N denotes the normalizing factor in front of the sum in Eq. (2.75). The δ-function of
energy conservation arises again via an implicit step function within the state |N − 1, s,R >
which must vanish for energies below the detector’s vacuum level.

We can see a relation to the sudden approximation by replacing in the notation of |N −
1, s,R > the position R by the momentum k of the emitted electron, which is a convenient
characterization of the exact outgoing state of Eq. (2.77).

In the sudden approximation [50, 51] the photoelectron is approximately decoupled from
the solid by defining a particle operator with respect to that state

|N − 1, s,k >= c†k|N − 1, s >

with the assumption that c†k does not depend on s and vice versa |N−1, s > not on k. It leaves
a matrix element < N |c†i cjc

†
k|N − 1, s > which couples the isolated photoelectron c†k only

to the density fluctuation c†i cj , but does not influence the choice of the excited N − 1-particle
states |N − 1, s >. All of the latter are now summed independently disregarding the state
of the photoelectron. It is similar to suddenly creating the photoelectron in the detector at a
probability with which it is contained in the density fluctuations of arbitrary (non-adiabatic)
excitations, see also the chapters by Hedin and by Rehr, Albers, and Ankudinov. The property
of being sudden becomes still more apparent by approximately equating cjc

†
k = δjk, i.e.

neglecting its coupling to the fluctuations. The current can then be expressed as

− dj
dεkin

= N
∑

s

∣∣∣∑
i

∆ik < N |c†i |N − 1, s >
∣∣∣2

· δ(EN
0 + �ω − EN−1

s − εkin) (2.80)

or with help of the spectral density matrix, see Eq. (2.52),

− dj
dεkin

= N
∑
ij

∆ikA−
ij(�ω − W0 − εkin)∆kj (2.81)
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Unlike Eq. (2.52), a matrix generalization of the spectral density is implied with analogous
definition, namely instead of the same index for both operators c and c† squared, two in-
dices have been applied. However, in its simplest version this sudden approximation assumes
that the hermitean matrix A is already diagonal. With equation (2.81) we are back to the
one-particle photoemission formula of Eq. (2.67) inserted in (2.64), with the Green functions
appropriately dressed.

At the heart of the sudden approximation lies the assumption that in the photoemission
process the photoelectron can be treated as if it were independent from the other particles of
the system. Then, the photoemission process can be described as consisting of two decoupled
and non interfering processes, the transition from an initial to a final one-particle state of the
photoelectron and the many-body response of the (N − 1)-particle system to the creation of
the hole left behind.

The series of approximations within the sudden approximation usually goes further in
simplifying the matrix elements ∆ik, in the limit assuming them to be constant. The one-step
model whose main achievement was the introduction of the time-reversed LEED state is then
entirely lost.

According to their definitions, the spectral functions A+ and A− describe the spectrum
of the excitation energies when a particle is added or removed from the system and are said
to describe the situation of an idealized inverse or direct photoemission experiment. What
these approximations omit from a realistic description of photoemission is that the particle
will be measured with a detector that is still part of the system, even if separated from the
solid by a surface. Also missing is that the process is a result of interaction with light which
is associated with a cross section. Last but not least it lacks the treatment of the photoexcited
particle with its screened hole when leaving the solid. Thus, in the many cases where the
spectral density is taken as the theoretical counterpart of the photocurrent, also called sudden
approximation, only a rather poor description is achieved. [39] Nonetheless, since effects
of matrix elements and final states on the photoelectron energy distribution are governed by
the energy scale of bandstructures, i.e. eV, it may sometimes be possible to single out and
identify tiny structures due to many-body interactions on an meV scale, such as those seen in
superconducting systems. [19] However, it remains true that the photoelectron is artificially
and suddenly decoupled from the many-body system and no interaction is taken into account.
Recently, it has been recognized theoretically [6, 78] as well as experimentally [13, 38] that
matrix elements and their dependence on the final state are important in high temperature
superconductivity and that their neglect could lead to misinterpretations of the spectra.

2.3 Three-step model versus one-step model

By way of introduction to this section, we shall focus on one aspect that has become a long-
standing but also increasingly confusing concept, namely the issue of the three-step versus the
one-step model of photoemission.

The three-step model dates back to Berglund and Spicer [9] on angle resolved photo-
emission from solids, which presents a first approach to its theoretical interpretation. The
photocurrent is decomposed into three separate factors: the probability of excitation in the
bulk solid, the probability of scattering of the excited electron on its path to the surface by
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the atoms constituting the solid, and the probability of transmission through the surface for its
final acceptance in the detector. The essential point is to calculate separate entities which are
easily accessible if they do not interfere with each other. If valence level spectroscopy is the
goal, then the focus of attention is on the excitation process from an occupied band state and
the photocurrent shows the energy levels at specific directions which are identified with the
k value (i.e. the electron momentum in the bulk). The two remaining factors, scattering and
transmission, are considered to be less important: they may even be set to unity by neglect-
ing those effects. By contrast, photoelectron diffraction might lie at the center of interest, as
for instance in core level spectroscopy or in imaging methods like holography: in that case,
the k dependence of the occupied states is trivial but the scattering by bulk and surface deter-
mines the angle variation of the photocurrent. Then, the first factor, excitation, becomes rather
unimportant whereas the other two dominate the interpretation.

In contrast to the three-step model the coherent evaluation of all three steps which a priori
do interfere is usually denoted as the one-step model. It was originally developed to obtain
reliable intensities of valence band spectroscopy for investigating bulk as well as surface char-
acteristics [34], so bringing the accuracy on an equal footing with LEED calculations where
refined computer codes existed. [57, 58, 90] Thus, the scattering in the bulk and at the sur-
face is condensed into a coherent final state which must be introduced into the matrix element
of photoexcitation, the so-called time-reversed LEED state. [31] As photoelectron-diffraction
schemes are closely related to LEED those calculations already obeyed the conditions of the
one-step model in principle, though with an important practical simplification by considering
only localized, i.e. atomic-like, transitions as they occur in core excitations.

Nowadays, state-of-the-art calculations of photocurrents use the one-step model, even
though some valuable short cuts exist. The incorporation of “true” final states which cor-
rectly describe the scattering and propagation near and outside a surface is required by the
physical situation of accepting the excited electron in the detector at infinite times away from
the sample: this is the essential ingredient of the one-step model. The model exists at sev-
eral levels of sophistication, depending on the extent to which many-body effects are taken
into account. Originally, the one-step model was designed as a one-particle theory applying
the Golden Rule for one-particle states. The many-body formulation according to the con-
siderations in Sec. 2.2 in principle should use correct final states as well, and thus fits into
the concept of the one-step model. Thus, it would be informative to characterize any given
one-step model by describing its level of accuracy in addition to its “one-step” property.

Let us confine the remaining of this section to one single initial state as e.g. in core
level spectroscopy. Incorporation of an arbitrary number of states as in the valence band
regime will be described in subsequent sections. Current theories of photoemission in solids
rely in general on one-electron effective potentials to describe the photoelectron. At low
kinetic energies, these potentials must incorporate many-body effects in an effective way (e.g.,
exchange and correlation via the Hara or other approximation). Then, the photoelectron wave
function can be expressed as

ψ(r) =
∫

dr′Gr(r, r′)VI(r′)ψi(r′)

where VI describes the perturbation of the external light, ψi is the initial state one-electron
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wave function of energy Ei, and

Gr(r, r′) =
∑

f

ψ∗
f (r′)ψf (r)

Ei + �ω − Ef + iδ

is the Green function of the solid at the photoelectron energy Ei+�ω , cf. Eqs. (2.7) and (2.12).
The latter must incorporate all multiple elastic scattering effects of the photoelectron, as well
as inelastic processes in which the photoelectron loses energy to create photons, plasmons, or
other excitations in the solid.

2.4 Golden Rule

2.4.1 Linear response in the external field

Let us here start with the Hamiltonian of one electron in a system described by a potential
V (r), to which an external electromagnetic field is applied:

H =
1

2m

(
p − e

c
A(r)

)2

+ V (r)

=
p2

2m
+ V (r) − e

2mc
[A(r) · p + p · A(r)] +

e2

2mc2
|A(r)|2 , (2.82)

where A(r) is the vector potential associated with the field. Let us split the Hamiltonian H
into two terms (H = H0 + VI ), such that VI describes the excitation:

H0 =
p2

2m
+ V (r)

VI =
−e

2mc
[A(r) · p + p · A(r)] +

e2

2mc2
|A(r)|2 . (2.83)

For low intensities of the external field, first order perturbation theory can be used to study the
interaction between the electromagnetic radiation and the system. Thus, applying the Golden
Rule to calculate the photocurrent, we obtain:

I(f) = |Mif |2 = | < ψf |VI |ψi > |2 , (2.84)

where the one-electron wavefunctions ψi and ψf are eigenfunctions of the Hamiltonian H0,
and the final wavefunction ψf behaves as an outgoing wave at infinity (i.e., ψf is an inverse
LEED state).

The flexibility introduced by the gauge choice in the theory of electrodynamics facilitates
the calculation of the matrix element. A common choice is to work in the Coulomb gauge, in
which:

∇ · A(r) = 0 , (2.85)

and consequently

(A(r) · p − p · A(r)) = i�∇ · A(r) = 0 . (2.86)
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The interaction potential VI can thus be expressed as:

VI(r) = − e

mc
[A(r) · p] +

e2

2mc2
|A(r)|2 . (2.87)

So far, the most important approximations introduced in the theoretical formalism are
the restriction to a one-electron picture, and the use of only first-order perturbation theory
to calculate the interaction between the incident radiation and the system (Eq. (2.84)). The
latter approximation is equivalent to neglecting terms of order ∼ |A|2 in the calculation of
the photocurrent. In order to be consistent with this approximation, the term of order ∼ |A|2
in the interaction potential VI (Eq. (2.87)) is omitted as well. This approximation remains
valid provided that the flux of incident photons is relatively low. For higher intensities of the
external field these terms cannot be neglected and the theoretical formalism becomes more
intricate.

The matrix element Mif after keeping only the lowest-order terms can be written as:

Mif = < ψf |VI |ψi > =
−e

mc
< ψf |A(r) · p|ψi >

=
ie�

mc
< ψf |A(r) · ∇|ψi > , (2.88)

where we have used the identity p̂ = −i�∇̂. This way of writing the matrix element has been
usually called in the literature the velocity form of the matrix element.

2.4.2 Dipole approximation

The theoretical description of the interaction between the electromagnetic field and the system
is usually simplified by means of the so-called dipole approximation. The dipole approxima-
tion assumes that the variation of the external field A(r) is small in the spatial region in which
the matrix element Mif is not negligible. The latter seems a reasonable assumption for the
low energy range of the photon spectrum and/or for the photoexcitation of localized electrons,
although it is more difficult to justify in some other cases (such as excitation from valence
levels). In general terms, it works better in the evaluation of total cross sections than in the
calculation of photoelectron angular distributions. Recent measurements in small systems
show that significant deviations from the dipole approximation can be found even in systems
for which it has been traditionally applied [22]. Nevertheless, let us restrict ourselves to the
calculation of the photocurrent in the dipole approximation.

When the external electromagnetic field is periodic in space, it can be expressed as:

A(r) = A0 e eikr = A0 e (1 + ikr + · · · ) , (2.89)

where A0 is the complex amplitude of the field (a scalar number), e is a unitary vector in the
direction of the light polarization, and k is a vector pointing in the propagation direction of the
field. The dipole approximation consists in keeping only the first term of this expansion in the
calculation of the photocurrent via Eq. (2.84) (i.e., it is assumed that |kr| � 1). Notice that
the range of r for which the approximation remains valid is delimited by the spatial extent of
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the wavefunctions ψi(r) and ψf (r). The matrix element in the dipole approximation can thus
be expressed as follows:

Mif =
ie�

mc
A0 < ψf |e · ∇|ψi > . (2.90)

Let us remember at this point that the momentum operator p̂ can be written as the com-
mutator of two other operators:

p̂ = − i�∇̂ = − im

�

[
r̂ , Ĥ0

]
. (2.91)

Hence, if ψi and ψf are eigenstates of the Hamiltonian H0, the matrix element Mif can
be calculated as:

Mif = − ie

�c
A0 (Ef − Ei) < ψf |e · r|ψi > , (2.92)

and this is known as the length form of the matrix element. A third form, known as the
acceleration form of the matrix element, is sometimes used in the literature as well:

Mif =
−ie�

mc

A0

(Ef − Ei)
< ψf |e · (∇V )|ψi > , (2.93)

in which the identity

< ψf |∇|ψi > =
1

(Ef − Ei)
< ψf | [H,∇] |ψi >

= − 1
(Ef − Ei)

< ψf |∇V |ψi >

(2.94)

has been used.
The three forms of the matrix element are in principle equivalent, provided that ψi and

ψf are eigenstates of the Hamiltonian H0. This is not always the case in real calculations of
the matrix element, and some differences may be found in the final result depending on the
form used. See for instance Ref. [81] for a discussion on the most accurate form of the matrix
element depending on the problem under study.

For a single atom, the dipole approximation leads to certain selection rules in the symmetry
of the photoemitted electron wavefunction. These selection rules can be easily derived by
expanding the wavefunctions in the basis set of spherical harmonics Ylm(Ωr). For the sake
of simplicity, let us assume that the initial wavefunction ψi(r) of the electron is a core level
whose quantum numbers li and mi are well defined. ψi(r) thus can be written as:

ψi(r) = Ri
limi

(r)Ylimi
(Ωr) , (2.95)

where Ri
limi

(r) is the radial part of the wavefunction.
The final wavefunction after photoemission has a similar form and can be written in gen-

eral as:

ψf (r) =
∑

lf ,mf

Rf
lf mf

(r)Ylf mf
(Ωr) . (2.96)
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Let us first take linear polarization of the light, and assume that the polarization e is parallel
to the OZ axis. The incoming light dipole operator (cf. Eq. (2.92)) can thus be expanded as:

e · r =
(

4π

3

)1/2

r Y10(Ωr) . (2.97)

The expansions of the wavefunctions and the dipole operator can be introduced into
Eq. (2.92) to obtain the matrix element as:

Mif = − ie

�c
A0 (Ef − Ei)

(
4π

3

)1/2 ∑
lf ,mf

{∫
dr r3

[
Rf

lf mf
(r)

]∗
Ri

limi
(r)

}

×
{∫

dΩrY
∗
lf mf

(Ωr)Y10(Ωr)Ylimi
(Ωr)

}
. (2.98)

The integral over angles Ωr determines the allowed symmetries for the final states. Ac-
cording to general properties of the spherical harmonics, this integral is different from zero
only if lf = li ± 1 and mf = mi.

If the incoming light is circularly polarized, the mathematical description can be also sim-
plified by modifying the geometry. In this case, let us take the OZ axis as parallel to the
direction of propagation of the light. Hence the plane of polarization of the light is perpendic-
ular to the OZ axis, and the incoming light dipole operator can be written as:

e · r =
(

8π

3

)1/2

r Y1m(Ωr) , (2.99)

where m = 1 corresponds to right circularly polarized light and m = −1 corresponds to
left circularly polarized light (although the opposite convention is sometimes found in the
literature as well). The matrix element for circularly polarized light can be calculated in a
similar way as the matrix element for linear polarization (Eq. (2.98)). We only need to replace
the spherical harmonic Y10(Ωr) by Y1m(Ωr). As a consequence, the integral over angles Ωr

now generates new selection rules: lf = li ± 1 (as before), but mf = mi + m = mi ± 1.
The selection rules in the dipole approximation are strictly valid only for atomic systems.

Nevertheless, in the case of molecules, clusters or solids, the scattering theory provides a
simplified picture in which the selection rules fit as well. The photoemission process from
a core level can be described as the photoexcitation from a single atom, followed by the
transport of the photoelectron on its way to the detector. In this picture, the selection rules
remain valid for the first step of the process (the photoexcitation from the single atom). The
subsequent scattering of the outgoing electron by the surrounding atoms will add other partial-
wave contributions to the final photoelectron pattern.

2.5 Initial state

2.5.1 Core levels

In core level spectroscopy photoelectrons emerge from single atomic levels which simplify
the initial state as far as the single particle picture is concerned. Chemical shifts may change
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the levels due to local effects near a surface, but the levels may still be considered to be
independent (not counting systematic atomic-like degeneracies). Therefore, we will discuss
this topic within the description of the final states, see Sec. 2.6, where the core level emission
constitutes the simplest case to be treated. A rather more complicated situation arises if many-
body effects are considered, see e.g. [87]. Then, the relaxation of the core hole multiplet
together with its interaction with the photoelectron represents a challenging problem. Progress
in this field is described in chapter [49] of this handbook. Aside from spectroscopy, in an
extremely important development core level emission has served as source for photoelectron
diffraction and holography [27] (see chapter [47] and chapter [28]), owing to the localized
nature of the source of emission.

2.5.2 Valence bands

Angle resolved photoelectron spectroscopy represents the most general tool for full valence
band investigation at highest accuracy. The aim is to extract from the photocurrent the band-
structure over the whole Brillouin zone. Though ab initio bandstructure calculations have
reached a high level of reliability, their accuracy is limited by computational restrictions and
the physical border line of many-body effects. Thus, the experiment is needed as confirma-
tion on one hand and as access to uncover new properties not considered in the bandstructure
calculation on the other.

The interpretation of valence band spectra uses intuitive methods relying more or less on
energy and momentum conservation or is assisted by full calculations of the intensities, at best.
To discuss both, we write the Golden Rule formulation taking into account the continuum of
valence band states ψ indexed by the band ν and the three-dimensional momentum k

I ∝
∑

νk | < Φ�
LEED(E,k0

‖) | O | ψν(k) > |2δ(E − Eν(k) − �ω). (2.100)

The final state Φ depends on the surface parallel momentum k0
‖ and on the final state energy E

which corresponds to the perpendicular momentum component in vacuum. The index LEED
relates to a LEED state and the star refers to its time inverse. Energy conservation is guar-
anteed by the δ-function. Momentum conservation is reduced to the parallel momentum. It
arises from the evaluation of the matrix element with operator O = A · p + p · A. Transla-
tional invariance is only maintained parallel to the surface, the vector potential being assumed
constant in the case of long wavelengths, including the vacuum ultraviolet regime. Discrete
translations according to the lattice periodicity are meant here when speaking about invariance
and the Bloch vector is thus associated with momentum. The surface breaks invariance in the
perpendicular direction. The parallel momentum which is calculated in vacuum through ki-
netic energy and direction of the detector has to be folded back into the first surface Brillouin
zone to be identified with k0

‖ of Eq. (2.100).
From Eq. (2.100) it is obvious that three-dimensional momentum will be conserved if one

replaces the final state by any eigenstate of a system with three-dimensional translational in-
variance. This is done within the band-mapping scheme where in the simplest case the final
states are taken to be three-dimensional plane waves. In a more sophisticated treatment, the
set of eigenstates of the bulk may be used as final states. Furthermore, solving the bulk hamil-
tonian with complex Bloch vectors generalizes this set and admits exponentially decreasing
and increasing solutions; of the latter only those which increase in the direction towards the
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surface are physically reasonable. All these sets are eigenstates of the Bloch momentum and
thus conserve the total momentum in the matrix element. The interpretation of the photocur-
rent within these schemes identifies the possibilities of transitions between all valence states
and all final states belonging to the chosen set and allowed by energy and three-dimensional
momentum conservation, the so-called direct transitions. Primarily, this takes advantage only
of the spectral peak positions. Their height will correspond in some way to the weight of the
matrix element and their width may be associated with the lifetime of the valence states. In
any case, this description yields a mapping between momentum and energy for all momentum
space points which can be associated with peaks in the spectra, i.e. it yields parts of the band
structure. [32, 65] It is more or less accurate depending on the ability to define a clear peak.

The accuracy of the band-mapping can be estimated by comparing it with a full calculation
of Eq. (2.100). In Fig. 2.7 a spectrum computed accordingly is presented and interpreted by
direct transitions which is represented by bars on top of the peaks obtained by a deconvolution
procedure. Any of the known deconvolution techniques leads to similar positions. Above
the spectrum the valence bandstructure together with the complex bandstructure is shown
shifted by the amount of the photon energy such that the intersections give the allowed direct
transitions. These intersections are also marked by bars in the spectrum. If both kinds of bars
agree in position the momentum associated with the intersection has to be attributed to the
peak and its binding energy. Of course, only distinct peaks may be considered. However,
the result of Fig. 2.7 shows clear misfits which reach up to 200 meV. If we had taken the
peaks of the spectra to be granted and with a knowledge of the final states bandstructure, had
extrapolated through their energy to the associated momenta, then the momentum would be
wrong and the maximum error in energy could reach values up to 200 meV. This error is
large compared to the actual energetic resolution of photoelectron spectroscopy which can be
below 10 meV. Nevertheless, it is the most advanced procedure within the framework of band-
mapping, using the complex bandstructure, i.e. eigenstates of a hamiltonian which simulates
the solid-vacuum system by bulk.

A different but less instructive view on the observed spectra entirely neglects the final
states’ bandstructure: it assumes that, because of the dense distribution of excited states at
high energies, the δ-function can always be fulfilled and the matrix elements are constant
throughout. Then the sum over initial states in Eq. (2.100) condenses into the density of initial
states. As the parallel momentum is prescribed by the detector, this is a one-dimensional
density of states which counts the states per energy only along the perpendicular direction.
The selection rule for the perpendicular momentum is replaced now by the dominance of
band edges and critical points, the only structures in the spectra surviving in this model. A
single direct transition would have no weight, e.g. see insert of Fig. 2.7.

In physical reality both pictures, band-mapping and density of states, will contribute.
However, the amount of nonconservation of perpendicular momentum and the necessity to
refer to density-of-states effects can be estimated with a knowledge of the final states’ bands.
The final state in Eq. (2.100) can be decomposed in the interior of the solid with respect to
the complex Bloch vector states and a weight is associated with each. The imaginary part of
the Bloch vector partly results from the imaginary part of the self-energy and partly from the
damped penetration from surface into bulk if the electron’s energy coincides with a forbidden
gap region. It determines the momentum broadening of the surface perpendicular component
and thus limits the admissible uncertainty for a deviation. The equation sums up all these
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Figure 2.7: Ab initio computed spectrum of GaAs(001) for photon energy 28 eV (lower part) decon-
voluted to yield peaks at energies marked by bars with full dots, compared with bare bars mapped from
intersections of initial bands (black lines) with final bands (flat curves) shifted by photon energy down to
binding energy scale (upper part), one example shown by dotted line; insert shows density of states and
a matrix element, position of direct transition near −4.5 eV indicated. See also color figure on page 461.

contributions. Other transitions cannot occur and thus the density-of-states effect has to be
embedded in direct transitions.

In contrast with its general deficiencies, the density of states interpretation has experienced
a development towards many-body effects. The energy conservation δ-function can be seen
as the imaginary part of the Green function if the imaginary part of the self-energy tends to
zero. For finite lifetime this becomes the spectral density in the framework of many-body
theory. The δ-function including valence wavefunction and the sum over band index ν has
to be replaced by the spectral density matrix A−

ij(k, E) in the representation by any basis set



92 2 Overview of core and valence photoemission

| i > with fixed Bloch vector k via∑
ν

δ(E − Eν(k)) < i | ψν(k) >< ψν(k) | j >→ A−
ij(k, E), (2.101)

see Eq. (2.52) where index k now denotes (ν,k). Thus, it takes into account the correct many-
body distribution of valence levels if the terms with the Dirac brackets are generalized to the
many-body transition amplitudes < ΨN−1

n |ĉi(k)|ΨN
0 > of Green functions in Eq. (2.101):

I ∝
∑
ijk

< Φ�
LEED(E,k0

‖) | O | i >< j | O+ | Φ�
LEED(E,k0

‖) > A−
ij(k, E),(2.102)

compare with Eq. (2.81) and the discussion following it. In practice, one neglects the whole
non-valence part of the Golden Rule, i.e. final states as well as matrix elements, and takes
merely the diagonal A to represent the photocurrent. This procedure may be justified for
instance in cases where the interesting structures of the photoemission spectra vary rapidly
as compared to the variation induced by matrix elements. The latter is characterized by band
energies of the order of magnitude of eV. As a consequence, the analysis of spectral features
from HTC superconductivity with a meV scale of variation may be justified. [82]

Between the direct transition and density of states interpretations a series of intermediate
schemes have been proposed in the literature, some of them occurring also in the context of
other chapters in this book, where they are further described.

In the following, we present specific examples of full one-particle calculations in the
framework of the Golden Rule formula.

The first main development in this respect concerned photoemission from metals for which
the use of muffin-tin potentials in the framework of a multiple scattering method is suit-
able. [57, 91] The layer-KKR code had the time inverse LEED state implemented according
to the calculational schemes for LEED intensities and used KKR for the valence state as well.
It was thus designed for surfaces. Eq. (2.100) written in position space with help of the hole
Green function Ghole reads

I ∝ Im
∫

d3r

∫
d3r′ < Φ�

LD(E,k0
‖) | O | r > Ghole(r, r′, E − �ω,k0

‖) (2.103)

· < r′ | O+ | Φ�
LD(E,k0

‖) >

Both the Green function and the LEED state are expanded in terms of spherical harmonics in
order to use the KKR scheme. An important simplification arose from the use of the matrix
element in the acceleration form because between the muffin-tin spheres the potential V is
constant. The integration in the matrix element is thus confined within the muffin-tin spheres:
the wavefunctions need to be constructed here. An obstacle in this muffin-tin scheme was
found in the treatment of the potential barrier at the surface.

This method has been further completed by generalizing to the relativistic case [1,2,14,15,
40,46,105] The 2x2 spin density matrix ρτ,τ ′ is evaluated via a formula similar to Eq. (2.103)
where the four component Dirac spinors < Φ | and | Φ > carry the index τ and τ ′, resp.,
G<(r, r′) is a 4x4 component Dirac matrix, and the transition operator O contains the vector
potential as α · A using 4x4 matrices αik = σ(1 − δik), i, k = 1, 2 with Pauli spin matrices
σ. Spin-averaged photocurrent, spin polarization, and individual spin-resolved photocurrent
are obtained via spin averaging of the respective observables with the spin density matrix. A
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transformation analogous to Eq. (2.93) confining integration to the muffin-tin spheres can be
used in this case, too.

The above scheme was further developed to include non-spherical parts of the poten-
tial. [44] The multiple scattering scheme remained essentially the same. However, instead
of a muffin-tin model the Wigner-Seitz cell with the so-called “true potential” inside and zero
outside the cell was taken to solve the Schrödinger equation within the circumscribing sphere
and matching to free solutions outside. The result served as the basis for the multiple scatter-
ing expansion.

The LEED scheme and similarly the above approaches according to their initial design
showed slow convergence for low kinetic energies with low damping. Additionally, the full
potential yields non-diagonal t-matrices which slows down the code again. A limitation to
spherical potentials was out of the question when considering semiconductors. Especially,
surface reconstructions specific to semiconductors made the scheme rather cumbersome. The
surface bandstructure could not be obtained within the Bloch scheme used leading to the
complex bandstructure only. The photoemission part of the code met similar difficulties in
treating emission from surface states which near the valence band maximum are scarcely
damped.

Thus, a separate approach was developed for such materials. It benefits from the existence
of self-consistent ab-initio calculations for the bandstructure. A suitable basis | ψi > adapted
to or directly taking those solutions forms the representation for the initial states. It is con-
densed in a Green matrix Gij for the halfspace system which includes an arbitrary surface
potential and is used in Eq. (2.100) to yield

I ∝ Im
∑
i,j

< Φ�
LD(E,k0

‖) | O | ψi > G<
ij(E − �ω,k0

‖) (2.104)

· < ψj | O | Φ�
LD(E,k0

‖) >

The basis normally chosen used a layer resolved LCAO set with Bloch sums along surface
parallel layers and respective Bloch vectors k0

‖ . Ab initio pseudopotentials are used for the
evaluation of final states.

As an example, the result of a calculation via 2.104 for TiTe2 is presented in Fig. 2.8.
Slight deviations in binding energy shown by the different energy surfaces in that figure can
be discriminated by a comparison of experimental with theoretical photoemission patterns
which confirms the matching of both energy scales in this case. The demand of computer
resources for such a calculation consists of the whole of separate runs for each angle and sums
up to a still considerable amount even within this code which is fast compared to the original
KKR schemes.

2.6 Final state

We now turn our attention to the final state. This higher-energy state describes how the pho-
toelectrons scatter and propagate as they leave the emitter site and travel to the detector in the
vacuum outside the solid.

One point to keep in mind is that an electron in the final state senses a different potential
than an electron in the initial state: the difference in kinetic energy causes differences in the
effective potential felt by an electron.
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Figure 2.8: Theoretical and experimental pattern of photocurrent into emission hemisphere with hν =
26 eV from Fermi energy for TiTe2(0001) (bottom); Fermi surface plot (top left) compared with energy
surface slightly above EF (top right) . See also color figure on page 462.

2.6.1 Direct solution of Schrödinger equation

In contrast to the multiple scattering procedure which actually uses Green functions as to
be subsequently discussed, the final states of photoemission may be directly incorporated
via their wavefunctions. This is especially useful in the low kinetic energy range where the
anisotropic potential in the interstitial region and at the surface becomes important. Plane-
wave based descriptions are convenient in a pseudopotential version though augmented plane
waves have started to be applied, too. [70] Thus, the path to an all-electron computation is
paved. The pseudopotential formalism is comparably fast and has been applied in most cases.

The evaluation of wavefunctions proceeds via a direct solution of the Schrödinger equa-
tion. The formulation of the boundary condition is a little tricky because physical intuition
would view it as an initial value problem solved backwards in time. The photoemission final
state in principle must be described as an outgoing state with plane wave asymptotics char-
acterized by the observed momentum in the detector at infinite time. Time is replaced by
the coordinate perpendicular to the surface such that plane wave asymptotics are required at
infinite distance from the surface in vacuum. An elliptic equation encounters numerical insta-
bilities which become apparent when using a step procedure as solver. One has to transform
the asymptotic condition into a boundary condition for a closed domain. This can be done
at a sufficiently remote interface within vacuum which leads to mixed boundary values, i.e.
a relation between the function and its derivative at that interface. [79] In formulating these
conditions use has been made of smooth continuity and vanishing potential at that fictitious
interface. It might be interesting to note that on the vacuum side of that interface a single plane
wave travels to the detector whereas a set of plane waves propagates towards the interface in
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order to satisfy a correct matching. From the solid side a similar set is impinging onto the
surface such that the time reverse of all the terms constitutes a so-called scattering solution,
i.e. one plane wave incident and scattered waves into all directions. This degenerates here, be-
cause of the unboundedness of the laterally infinite scatterer, into two sets of scattered waves
traveling away from the interface into both half-spaces.

An intermediate step deserves separate consideration because it is appropriate for a short-
cut interpretation of photoemission data. One obtains the complex bandstructure as the so-
lution of the inverse bandstructure problem, i.e. prescribing the energy and solving for the
eigenvalues of the perpendicular momentum. The Bloch condition yields real and complex
values for that momentum, which is obvious especially for energies within the gap. One set,
that with exponentially increasing wavefunctions towards the semi-infinite bulk, is discarded,
but the remaining set constitutes a full set of states which are bounded in the bulk and are
bounded up to the surface in the opposite direction. The energy vs. Real(k⊥) relation yields
the complex bands with their imaginary part describing the exponential drop-off of such a
band state in the interior. Considering the correct solution as a superposition of such states,
those with large imaginary part will contribute less in view of a matching at the surface to the
outside solution. The spatial variation proceeds on a scale given by the kinetic energy and this
yields an order of magnitude beyond which a significantly shorter scale of decay will not con-
tribute. Plotting the complex bandstructure for only reasonably low imaginary part together
with the real bandstructure of the initial states of photoemission gives a first impression of the
photocurrent to be expected in the direct transition model. Figure 2.9 shows electron distri-
bution curves (EDC) for normal emission for GaN in comparing theory with experiment. [23]
Agreement is obtained that is typical for this spectroscopy. The origin of the theoretical peaks
is traced back in that figure to the intersection of the initial bands, shifted by the photon energy,
with the final bands thereby assuming direct transitions, i.e. strict momentum conservation.
The dispersion of the peaks with photon energy is indicated by dotted lines as a guide to the
eye. Following the binding energies of the intersections when the bandstructures’ shift by the
photon energy is varied scans the observed dispersion in the theoretical and experimental spec-
tra. In many cases it is appropriate to relax the accuracy slightly and to simplify the system so
that it consists of the bulk pseudopotential including an optical potential and the sharp edge of
a step-potential. In examples which need a more accurate modelling, e.g. of a surface layer,
two potential steps are convenient as well. Then, a simple matching of the wavefunctions, i.e.
plane waves in the region of constant potential and Bloch states of complex bandstructure in
the bulk, gives reasonable results if used for the final states of a one-potential-step calculation.
Matching instabilities at single energies occur which are manually removed by considering
energies close by. This difficulty and the lack of some accuracy is balanced by an appreciable
gain in computational time. The spectra in Fig. 2.9 are calculated by this scheme with one
potential step.

Among several methods for the practical solution of the above mentioned boundary value
problem, using the Laue representation together with layer doubling proved to be the fastest.
The basis of that representation consists of plane waves in the surface parallel directions,
their coefficients depending on the perpendicular coordinate z. The latter solve a system of
ordinary differential equations (indexed by the reciprocal lattice vectors of the plane waves)
with suitable boundary conditions with respect to the perpendicular coordinate. Discretizing
z leads to an algebraic system with a matrix that is band diagonal with respect to z in its ki-
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Figure 2.9: Theoretical (middle) and experimental [23] (right) normal emission spectra from Ga termi-
nated GaN(0001)1x1, intensity vs. binding energy for various photon energies as marked, with single
spectrum (bottom left) and both initial and complex final bandstructures ( top left) for photon energy
35 eV; vertical bars at theoretical spectra indicate main direct transitions; final state decomposes into
complex bands with weights denoted by bars at curves; both band systems are brought to coincidence
through shifting by photon energy.

netic energy part but also in its potential part, provided the latter has a suitably limited range.
With respect to the discretized z a layer doubling renormalization converges rapidly to the
entire halfspace. The method uses pseudopotentials. Ab-initio pseudopotentials have to be
transformed to a quasi-local form. [5, 11, 98] An example for such a final state wave function
is shown in Fig. 2.10. Phase coherence is quickly lost in penetrating into the solid via more
inclined directions. The potential may contain complex parts to account for the optical po-
tential or more general many-body corrections, see below. In an example for TiTe2 a series
of final state wave functions between 5-100 eV has been computed and subsequently Fourier
transformed with respect to its surface perpendicular position dependence to yield Fig. 2.11.
Only slight differences occur by either fixing somehow or averaging the surface parallel posi-
tion component. It is an obvious message that only one band, which, of course, is backfolded
and actually is close to a parabola, dominantly contributes, i.e. plane waves distributed in a
rather narrow range around the the parabolic dispersion constitute mainly the final state. This
is often anticipated in experimental analyses. It was found for the layered transition metal
dichalcogenides and for III-V semiconductors. However, the distribution becomes broader for
higher energies and furthermore, the behaviour is best established for normal emission and
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Figure 2.10: Plot of phase, a and d, and modulus, b and c, of wavefunction for Si(001) entering surface
from vacuum (top) to solid (bottom), inclied electron escape (a,b), normal escape (c,d); dots show nuclei
positions, frame indicates interface. See also color figure on page 462.

deteriorates for inclined directions. The experimental confirmation of the correctness of the
final states’ calculation arises from ARUPS rather indirectly because the latter is primarily
determined by the initial states in valence band spectroscopy. Core-level initial states might
give a more direct access because of their lack of dispersion, but that is not yet in actual favor.
A direct method is available via very low energy electron diffraction (VLEED) with intensity
spectra, I(U), which yield the angle dependent electron reflection and absorption in the elas-
tic channel. This is intimately described by the wavefunctions used for the final states which
can thus be tested. [104]. Total current spectroscopy represents the complementary case of
this method. [89, 98] A simple illustration follows from the fact that the incident electron is
strongly reflected by the surface in those energy regions where a gap appears in the band
structure of the solid.

Finally, the obtained wavefunction is inserted into the Golden Rule, Eq. (2.100), for
|Φ�

LD(E,k0
‖) > which is integrated in direct space to calculate the photocurrent.

At this point, a remark must be made about the optical potential physically motivated by
the losses of the propagating electron and a necessary ingredient for convergence in the bulk.
Seen from many-body theory, such losses are represented by the lifetime of a quasi-particle
state, which corresponds to the imaginary part of the self-energy Σ. Apart from heuristic
approaches to this quantity, especially to its energy dependence, it can be calculated nowadays
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Figure 2.11: Wave functions Fourier transformed along (0001) direction (AΓA) of TiTe2(0001), for
each energy intensity of shading represents modulus of Fourier coefficient vs. wave vector; real band-
structure (black lines)is underlaid. See also color figure on page 463.

in a more systematic way, e.g. via the “GW ” approximation, i.e. writing the self-energy as
a product of the Green function G and the screened Coulomb interaction W according to the
first term of an expansion with respect to W . Then the real part of Σ is accessible, too, and the
entire quantity may be used as the quasi-particle correction to the final state. The solution for
these states as described above can include the self-energy in a very general form, i.e. more
general than in a merely energy dependent form.

The presence of the self-energy is required within the quasi-particle Green function which
in turn is obtained by Dyson’s equation, on one hand. On the other hand, the self-energy is
represented by a set of quasi-particle states which are obtained from a solution of the homoge-
neous variant of the Dyson equation which corresponds to the usual Schrödinger equation plus
a complex Σ. Thus, in the excited energy regime these states may be considered as final states
of photoemission taking suitable boundary conditions. [98] In the occupied energy regime they
represent the initial states. It follows that, because Σ is energy dependent, both sets of states
belong to different one-particle hamiltonians even for the hermitean no-loss case. Therefore,
it is not required that the states emerge from one single hamiltonian. This gives freedom to
treat the states by different methods adapted more specifically to each energy range.

The form of Im Σ in the final states’ regime follows a general shape, specifically, it in-
creases from a low value, below a tenth of an eV at the bottom of the conduction states, with
a significant jump at the plasma frequency up to several eV in the VUV range of photoelec-



2.6 Final state 99

Figure 2.12: Im Σ as matrix in reciprocal lattice vectors calculated with GW for diagonal elements
(left), (1,1) element to be compared with empirical optical potential, and for non-diagonal elements
(right).

tron spectroscopy. The increase through plasmon losses is sometimes modelled by a Fermi
function-like shape. [43] The consequence of that increase is generally an increase of the
imaginary part of the Bloch vector and consequently of the perpendicular momentum non-
conservation or spread of indirect transitions. It does not increase the width of the photoemis-
sion peaks. That is determined by the lifetime of the occupied states. Actual state-of-the-art
calculations use the GW approximation. [35, 37, 97] A comparison for TiTe2 between the
heuristic shape and that calculated by GW for the unoccupied states reveals a rough agree-
ment in the overall dependence whereas the details differ, see Fig. 2.12. Slope and edge
position can thus be calculated. The asymptotic decrease in the magnitude of the GW result
is attributed to the energy cut-off.

Some additional structure is present in the GW plot and is reminiscent of the electronic
transitions which appear in the dielectric function involved in the screened interaction W .
However, the details are smoothed by the integrations involved in the calculation. A scheme
for an independent determination of (Im Σ) via VLEED has been recently described. [72]

2.6.2 Multiple scattering method

An alternative approach for dealing with the final state wave function is to actually consider
the individual scattering events suffered by the photoelectron in its elastic interaction with
the solid atoms along its way to the detector. This is the so called multiple scattering (MS)
method, which consists in calculating the one-electron wave function of the photoelectron as
the sum of the direct unscattered photoemission wave and the result of MS due to the surface
atoms.
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In this context, the surface atoms are usually described by spherically-symmetric muffin-
tin potentials, and this is a good approximation for electrons with relatively high kinetic energy
(E > 50 eV); these are insensitive to the details of the atomic potential tails and see the atoms
basically as spherical entities [90]. The generalization to space-filling arbitrary potentials can
be made with some care [42].

Two basic approaches are in use to represent a surface: the semi-infinite model which
preserves periodicity in two dimensions, and often truncates the surface to a finite depth as
a slab; and the cluster model, which retains only a finite-size piece of the surface, thus more
easily allowing non-periodic structures to be represented. The semi-infinite model is used in
particular in the work of Pendry, Tong and others [91, 107] In the following, we will describe
the cluster model, which is simpler but also functions as an ingredient in many semi-infinite
models.

Thus, we shall approximate the solid by a cluster of non-overlapping spherical muffin-tin
potentials. The size of the cluster is dictated by the finite electron mean free path. Each muffin-
tin potential represents a solid atom centered at a position Rα. The potential outside the
muffin-tin spheres and within the solid is set to a constant value, the muffin-tin zero, to which
the photoelectron energy E is referred. The effect of inelastic attenuation is incorporated by
adding a small imaginary part to E [90] (which is equivalent to adding it to the photoelectron
self-energy).

For simplicity, we shall consider core-level photoemission, so that the initial-state wave
function is fully contained within the muffin-tin sphere of the emitter atom, which we will
denote α0. This will be generalized to extended initial states (e.g., in valence photoemission)
in Sec. 2.7.

To represent scattering by the atoms, the electron wave function is then expressed in spher-
ical harmonics and spherical Bessel functions centered on each atom of the cluster. In particu-
lar, the direct photoelectron wave function φ0 (that is, the wave which originates at the emitter
in the absence of MS) can be projected on a complete basis set of outgoing and incoming
spherical waves centered on the emitter, and the physical requirement that there should be no
net incoming flux for any partial wave component leads to the fact that only outgoing waves
contribute in this case. More precisely,

φ0(r) =
∑
L′

h
(+)
L′ [k(r − Rα0)] ϕ

0
L′ (2.105)

for r outside the muffin-tin sphere of the emitter α0, where h
(+)
L (kr) = ilh(+)

l (kr)YL(Ωr)
represents an outgoing spherical wave, h

(+)
l is a spherical Hankel function [85], L = (l, m)

labels spherical harmonics YL, and k =
√

2E is the electron momentum relative to the muffin-
tin zero.

In order to study MS effects, we need to consider φ0(r) near the other cluster atoms
α �= α0. This can be conveniently done by expressing each of the partial waves L′ of φ0 in
terms of spherical waves centered on another atom α �= α0, which can be done by using the
translation formula of spherical harmonics [88]

h
(+)
L′ [k(r − Rα0)] =

∑
L

jL[k(r − Rα)]Gαα0,LL′ , (2.106)
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where

Gαα0,LL′ = 4π
∑
L′′

h
(+)
L′′ [k(Rα − Rα0)]

×
∫

dΩ YL(Ω)YL′′(Ω)Y ∗
L′(Ω) (2.107)

and jL = iljlYL is a spherical wave centered at α that can be regarded as the spherical
component of a plane wave passing by atom α.

The above translation allows one to express Eq. (2.105) as a sum of jL waves in the vicinity
of a given atom α. The contribution of the scattering of these waves from α is obtained if we
make the substitution

jL → jL +
∑
L′

tα,L′Lh
(+)
L′ , (2.108)

where tα,LL′ is the so-called scattering matrix, which for spherical atoms, becomes diagonal
and is given in terms of the scattering phase shifts δα

l as [85]

tα,LL′ = tα,lδLL′ = sin δα
l eiδα

l δLL′ . (2.109)

The second term in Eq. (2.108) is the scattered part of a plane wave component, as obtained
by standard partial wave analysis [90]. Then, summing over all possible first-order scattering
events (i.e., over all atoms α), the photoelectron wave function calculated within first order
reduces to

φ1(r) =
∑
α

∑
L′

h
(+)
L′ [k(r − Rα)] φ1

α,L′ , (2.110)

where

φ1
α,L′ = φ0

α,L′ +
∑
LL′′

tα,L′L′′
∑

β

Gαβ,L′′Lφ0
β,L (2.111)

and φ0
β,L′ = δβα0ϕL′ are the direct wave coefficients, which are zero for atoms other than the

emitter α0.
This procedure can be repeated with each of the hL components of Eq. (2.110) to lead to

second-order scattering and so on. A recurrence relation can be obtained in this way, so that
the coefficients of the expansion at order n can be obtained from those at order n − 1 as

φn
α,L = φ0

α,L′ +
∑
L′L′′

tα,LL′′
∑
β 	=α

Gαβ,L′′L′φn−1
β,L′ , (2.112)

where the restriction that β �= α reflects the fact that the unscattered propagation from any
atom to itself must be excluded.

In the n → ∞ limit, Eq. (2.112) becomes a self-consistent secular equation,

φα,L = φ0
α,L′ +

∑
L′L′′

tα,LL′′
∑
β 	=α

Gαβ,L′′L′φβ,L′ , (2.113)
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which has to be satisfied by the wave function components φα,L of the photoelectron wave
function

φ(r) =
∑
α

∑
L′

h
(+)
L′ [k(r − Rα)] φα,L′ (2.114)

outside the muffin-tin spheres.
From a numerical point of view, Eq. (2.113) can be approximated by a finite system of

N(lmax + 1)2 equations if one considers a cluster of N atoms and a maximum angular mo-
mentum number lmax, which scales roughly as lmax ∼ krmt with the electron momentum
k and the atomic muffin-tin radius rmt. Unfortunately, the direct inversion of Eq. (2.113)
is computationally very demanding and can be performed only for very limited cluster sizes
and small values of lmax (low energies) [45]. Therefore, approximations have been intro-
duced [90], some of them inspired by the high-energy limit, where the electron propagation
reduces to plane-wave factors (plane-wave approximation) and each term in the MS series
becomes a product of scattering amplitudes [7,8,62]. Beyond this, full curved-wave formula-
tions of the problem have been also implemented [18, 26, 92].

Codes based upon the Rehr-Albers formalism make use of a convenient factorization of the
path Green function into matrices that represent individual scattering events and that contain
curved wave effects up to any required accuracy (e.g., MSCD [18]); this results in a compu-
tation time that scales with the cube of the number of atoms in the cluster, but a path-cut can
be introduced to reduce the computational demand drastically at the expense of small errors
arising in the truncation of the multiple scattering series.

It is also possible to solve the multiple scattering equations without any approximation in
the Green function by using iterative techniques based upon the recursion method. This is the
procedure employed in EDAC [26], which presents the advantage of preventing any eventual
lack of convergence in the multiple scattering. The computation time in this code scales with
the square of the number of atoms, which allows calculations for clusters of up to several
thousand atoms.

2.7 Matrix elements: core versus valence levels

The theoretical model introduced in Sec. 2.6.2 for calculating the photoelectron intensity from
a core level can also be applied to study the photoemission from extended states, such as
valence levels of molecules, clusters or solids. When the initial state of the electron is extended
over several atoms, the initial wavefunction can be expanded as:

Ψi(r) =
emitters∑

a

∑
L

κa
Lψa

L(|r− ra|)YL(Ωr−ra
) . (2.115)

In the latter equation, ψa
L(r − ra) are atomic orbitals centered about site a. The initial state

is thus a combination of several atomic orbitals (hence the sum over L) at several sites (hence
the sum over a). The factors κa

L are the coefficients of this linear combination.
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Following a formalism similar to that of core-level photoemission, the wavefunction at the
detector position φ(Rd) can be obtained as:

φ(Rd) =
emitters∑

a

e−ikra

∑
L

κa
L

atoms∑
α

∑
L′

φaL
α,L′

eikRd

kRd
YL′(ΩRd

) , (2.116)

where the coefficients φaL
α,L′ now depend on L and a as well (the initial atomic orbital of

quantum numbers L at emitter a), and the Hankel functions of Eq. (2.114) have been replaced
by their asymptotic expansions. The final wavefunction (and consequently the photoelectron
intensity at the detector position) is thus obtained as a coherent sum over emitters a with
coefficients κa

L. An additional phase factor e−ikra accounts for the electron path difference
between emitters. This assumes in-phase arrival of the incident photon wave at all emitter
sites, namely an infinite photon wavelength; an additional phase factor can be inserted to
account for a finite photon wavelength.

In the case of a perfect three-dimensional periodic lattice (for instance, an ideal infinite
crystal without any surface), the initial state in the photoemission process can always be
described as a Bloch state. In this case, the coefficients multiplying the atomic orbitals in
Eq. (2.115) can be written in a different way, so that the Bloch condition is apparent:

Ψi(r) =
emitters∑

a

eikra

∑
L

KLψa
L(|r− ra|)YL(Ωr−ra

) . (2.117)

The new coefficients KL do not depend on the site a because all sites are equivalent. They
only depend on the quantum numbers L. The vector k, which satisfies the Bloch condition,
has the same dimensions of the periodic lattice. It does not change during the photoexcitation
process (the electron momentum is conserved in the limit of an infinite photon wavelength).
The final wavefunction at the detector position is then:

Ψf (Rd) =
emitters∑

a

eikra

∑
L

KL

atoms∑
α

∑
L′

φaL
α,L′

eikRd

kRd
e−ik(rα+ra)YL′(ΩRd

)

=
emitters∑

a

∑
L

KL

atoms∑
α

∑
L′

φaL
α,L′

eikRd

kRd
e−ikrαYL′(ΩRd

)

= N
∑
L

KL

atoms∑
α

∑
L′

φaL
α,L′

eikRd

kRd
e−ikrαYL′(ΩRd

) . (2.118)

In the latter equation N is a normalization constant arising from the sum over equivalent
lattice sites, with no important role in the calculation of the intensity. Eq. (2.118) shows that,
for a 3D periodic system, the final wavefunction (and consequently the photoelectron intensity
at the detector position) can be evaluated by calculating the photoelectron intensity from one
single site a; more generally, from all those sites that are translationally inequivalent within
a unit cell. Every single equivalent site of the lattice emits coherently but there is no phase
shift among the photoemission processes from different equivalent sites for an infinite photon
wavelength. A similar formalism can be developed for a system in which there is periodicity
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in only two dimensions. Then emitters at different depths are no longer equivalent and their
emission must be considered separately, but still coherently.

For a finite photon wavelength, the photon path differences among different emitters must
be included in the previous equations. Especially for very large systems, such as with infinitely
extended initial states, an additional phase factor, depending on the emitter position and on
the light wavevector, will thus appear in Eq. (2.118).

2.8 Optical effects

Generally, the photons can be dressed by any type of excitation that they are able to produce
in a solid (e.g., plasmons, phonons, and all kind of quasiparticles).

Screening of the external light is important for photoemission from solids, specially at low
photon energies, and in particular near the plasmon energy, in which case the medium induces
an electric field that can be comparable in magnitude to the external field provided by the light
near the surface. It then can be also comparable in wavelength with the atomic spacing.

Strong variations of the electric field near the surface can play a substantial role in the
so-called surface emission, which has been clearly observed in angle resolved photoemis-
sion [86], and that is relatively well described by the Fresnel equations [63], which requires
knowledge of the dielectric function of the solid material. The latter can be obtained from ex-
periment. In particular, for low photon energies (e.g., < 50 eV) complex collective excitations
(e.g., plasmons) dominate the response. At these low energies, the photon wavelength (> 24
nm) is much larger than the typical surface lattice constant, and therefore, principally the
medium should be well described by its macroscopic, frequency-dependent dielectric func-
tion, which neglects all kind of details on the atomic scale. But as it will be outlined in
subsection 2.8.2, induced local fields yield important perturbations on a lattice scale near the
plasmon frequency.

2.8.1 Resonant photoemission

Resonant photoemission is an interesting phenomenon which takes place when the photon
energy is tuned to a resonance of the emitting atoms. Then, the photoelectron has two different
emission channels: (i) direct excitation by absorbing an external photon and (ii) excitation
of the resonance followed by its decay while the excess of energy is carried away by the
photoelectron. These two different quantum channels leave the sample in exactly the same
final state, and thus, they have to be added coherently, leading to interference effects that in
general follow Fano profiles [29].

This phenomenon can be considered to be a screening effect: the external photon is dressed
by interaction with a many-body system that is able to hold localized excitations (the atomic
resonance), similar to excitons in solids. This is particularly important at low incidence angles,
which can limit the penetration depth of the light dramatically, especially in metals, where the
so-called skin depth of visible and near UV light is only a few nanometers. Also, dramatic
effects have been observed under total reflection conditions [52, 84].

At higher photon energies (e.g., > 100 eV), the response is governed by the X-ray scat-
tering factors of the solid atoms, so that the screening at those energies comes primarily from
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dynamical X-ray scattering. Besides, the effective dielectric function at those energies is very
close to 1, since the response is small. However, some effects can be observed at the energies
of the absorption edges. More precisely, when the external light is tuned at the energy of an
absorption resonance of one of the atoms in the solid, strong induced fields comparable in
magnitude with the external field are produced, especially at low incidence angles. This has
been recently observed in photoemission from O 1s in MnO illuminated with light near the
Mn2p absorption edge ( 640 eV) [25, 66, 67]. The O 1s photoelectron signal showed a strong
modulation near that photon energy, and this has been explained in terms of the Mn resonating
atoms, which suffer virtual excitations by the incoming light to decay later while transferring
the excitation energy to O 1s electrons.

This is the so-called multi-atom resonant photoemission (MARPE), which provides a way
to identify the chemical nature of neighboring atoms in a solid, since the resonance energy
is a characteristic of one kind of atoms while the observed photoelectrons are emitted from a
different kind of atoms. An example of this if offered in Fig. 2.13 for emission from oxygen
near the Mn2p absorption edge in MnO [25, 66, 67]. The theory in this figure is based upon
first principles calculation of the atomic polarizability of Mn in MnO and multiple scattering
of photons in between different Mn scatterers. The result of this multiple scattering produces
an effect that can be also explained in terms of a dielectric model (using Clausius-Mossotti to
convert the Mn polarizability into dielectric function), where the emission intensity maps the
square of the external electric field at the surface region.

A very good agreement has been obtained between theory and experiment in this latter
case, and also between a microscopic theory of the solid response based upon first principles
calculations of the atomic scattering factors as compared with a macroscopic description using
Fresnel’s equations and the dielectric function derived from the Clausius-Mossotti relation.

Beyond this simple model, ab initio theories have been developed to compute the response
function of the solid, although severe approximations have to be made in order to cope with
the complexity of the surface. These models take into consideration the detailed band struc-
ture of the solid in order to construct the response function. In the simplest scheme, one
simply uses one-electron wave functions to obtain the RPA susceptibility [59]. While this
approach generally gives good results for metals, several problems emerge when it is applied
to insulators: excitons are not described at all and one needs to go beyond the RPA and use
the Bethe-Salpeter equation for a correct description of electron-hole pairs [33].

2.8.2 Photoemission by surface optical response fields

The assumptions in Eq. (2.89), with respect to periodicity as well as to long wavelength,
must be questioned if the response of the emitting material to the incident light adds induced
fields capable of appreciable separate excitations. Such fields change on a length scale of the
lattice constant because they originate from the ionic polarizability, and they are non-periodic
because of the surface. These effects become important for a small real part of the dielectric
function ε(r, r′, ω) implying large fields for even small amplitude external light which might
occur especially for ω near the plasmon frequency.

Because of their short wavelength these fields are denoted as “local fields” well known
from optics: they drastically change the homogeneous dielectric constant ε0(ω) from its mi-
croscopic to the macroscopic observable value. The surface adds nonlocality to ε as stressed
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by noting the dependence on two local variables r, r′. It arises e.g. from surface scattering of
the electromagnetic wave and from further enhancement by plasmon generation. Though both
effects are well known in the literature, (the latter especially has been first observed in connec-
tion with photoemission [73]), the full incorporation into one-step photoemission calculations
is still lacking. A few calculations include the dielectric function in the determination of the
photocurrent, but use more or less heuristic models. Two examples applying to solids will be
described in the following (further details may be found in Ref. [97]): In particular, optical
investigations carry more information about local fields [71] and surface response [76].

Local fields are conveniently illustrated in layered crystals, e.g. in TiSe2 where they appear
as polarization fields perpendicular to the layers, i.e. parallel to the axis of the valence Se-
pz orbitals across the layers. Thus, the induced field will couple to that orbital leading to
additional photoemission from it. Quantitatively, the vector potential A in Eq. (2.87) must be

Figure 2.13: Multi-atom resonant photoemission in MnO(100) surfaces. (a) A photon can produce
photoemission from an O atom, but in a different channel the same photon can excite a Mn atom of
the sample, which decays transferring its energy to the first O atom. The final state in both channels is
the same, so that they have to be added coherently. (b) Measured absorption spectrum near the Mn2p
edge, showing the energies where Mn can actually be efficiently excited. (c) O1s photoelectron intensity
within the Mn2p resonance energy range.
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replaced by

AG(ω) = (ε−1)G0Aext
0 (ω) (2.119)

where Aext refers to the incident external light, G denotes a reciprocal lattice vector, and (ε−1)
refers to the matrix element with respect to the two vector indices G and 0. Here, the incident
wavelength is assumed long compared to the lattice spacing, which is valid up to the vacuum
ultraviolet regime. Values for ε must be taken from separate optical calculations. They show a
strong enhancement near the plasma frequency, i.e. around 20 eV for TiSe2, which can cause
100% changes in the photocurrent, leading to a dominating peak for the Se-pz emissions.
The reciprocal lattice vector G of the prominent induced-light component is 2π/c [0001], the
first non-zero vector perpendicular to the layers corresponding to a wavelength equal to the
perpendicular lattice spacing c. [10]

Nonlocal response also has been investigated for layered materials. Owing to the lack of
any general ab-initio determination of the surface response, the hydrodynamic model of the
bulk electron gas may give a first impression of the induced longitudinal plasmon waves and
the correspondingly longitudinal response fields for photons above the plasmon frequency.
Because of the boundary conditions, the induced field points perpendicularly to the surface
and propagates into the interior of the solid. It varies locally on a scale involving the valence
electron density and the difference between light and plasma frequency: the induced field in-
creases when the plasma frequency increases and the light frequency decreases. Again, the
corrected field is introduced into the photoemission calculation via Eq. (2.119). [95] Simi-
lar to the above case, the additional field can excite Se-pz emissions, also yielding a 100%
enhancement of the photocurrent close to the plasma frequency above it. [95]

This topic is now still developing from its rather model-like state, depending on the growth
in computer power. The effect on the electron distribution curves of photoemission can be
extremely large, such that its neglect produces doubtful peak heights and peak positions under
the above circumstances of observation. In Fig. 2.14 the high significance of these effects
becomes apparent. A structure dispersing between 0 and −2 eV which consists mainly of pz

orbitals is enhanced by including the local fields induced by the incident photon in contrast to
the non-dispersive peak at −3 eV. The experiment reveals that the theory overestimates this
effect which, of course, is related to the crude approach of using the bulk dielectric matrix for
the local fields.

An ab-initio calculation of the full dielectric matrix function for semi-infinite systems has
been completed recently. [16] Its application to photoemission with the aim considered here
is in progress.

2.9 Spin effects

The spin of the electron plays an important role in photoemission from magnetic atoms or
when states that suffer strong spin-orbit coupling are involved. Normal detectors do not dis-
criminate between spin polarization of the photoelectrons, unless strongly spin-polarized ini-
tial states are considered [101,106]. However, the increasing enhancement in photon flux from
new generations of synchrotrons and free-electron lasers are making it possible to collect rea-
sonable signals using spin-selective Mott detectors, where the electron detection efficiency is
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Figure 2.14: Theoretical photoelectron spectra at left, including (solid) and neglecting (broken) local
fields, for normal emission from TiSe2(0001) with bandstructure plotted on top, compared with experi-
mental spectra [4] at right; photon energy as parameter at the curves

low since spin separation is performed by tiny differences in the angular distribution of Mott
scattering of photoelectrons at the detector.

Magnetic samples define a category of experiments where spin is important. Common
techniques in this context involve measuring magnetic dichroism, that is, the fractional change
in photoelectron intensity either when the magnetization of the sample is reversed [54] or when
the light polarization is changed (e.g., from left to right circularly polarized light [101]).

From an atomic point of view, the magnetic dichroism signal in core-level photoemission
permits establishing the magnitude of spin-orbit coupling in the final state of the ionized emit-
ting atom [100]. It also provides quantitative information on the magnetic moment of oriented
magnetic atoms, and can be used to determine Curie and Néel temperatures near the surface
of the material from which the photoelectron originates (these temperatures may differ from
the bulk values [106]).

Spin effects are to some extent a reflection of the initial and final states of the emitting
atom, which can be generally described by one-electron states in the case of closed shells
(e.g., in emission from Fe2p or Gd4d [100]). General open shell configurations however
involve complex many-electron states, which result in photoemission spectra composed of
many multiplet lines.
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Multiple scattering of the photoelectron introduces additional spin dependence originating
in the different scattering properties of electrons polarized either parallel or antiparallel with
respect to the magnetic moment of the atoms [53,106]. Besides, spin-orbit coupling effects in
photoelectron scattering from solid atoms (Mott scattering) can play an important role even in
the VUV region. This is particularly true along scattering directions of strong spin anisotropy
when they coincide with atomic bonds that produce forward focusing effects. These effects
introduce spin dependence in multiple scattering for non-magnetic atoms as well [102].

Spin effects can be easily implemented in the multiple scattering scheme discussed in
Sec. 2.6.2. In particular, the atomic scattering matrix needs to be supplemented by the elec-
tron spin quantum number. In magnetic atoms with negligible spin-orbit coupling, the scat-
tering matrix can be split into disconnected spin-up and spin-down pieces, each of which is
described by the corresponding atomic potential that takes into account exchange and corre-
lation effects [108]. When spin-orbit coupling is included, a complex interplay with magnetic
exchange leads to dense scattering matrices [102, 103]. Finally, the propagation of the elec-
tron in the muffin-tin interstitial potential can be performed in the same way as in Sec. 2.6.2,
independently for each spin component. These possibilities are contemplated in the EDAC
code [25] (see Sec. 2.10).

2.10 Computer codes for photoelectron diffraction and
spectroscopy

A variety of computer codes have been written to simulate photoelectron diffraction. A major-
ity of these codes were designed for surface structure determination, similar to LEED codes.
This often includes some form of automatic fitting of structural parameters such as atomic co-
ordinates that affect interlayer spacings or bond lengths near the surface. Other codes aim to
study different aspects of surfaces, including magnetic or relativistic effects, electronic band
structure and/or the spatial distribution of electrons.

We here discuss and compare several codes for which we have detailed information (a
number of other codes exist):

• MSPHD by R. Gunnella, C.R. Natoli, F. Solal and D. Sébilleau
(superfici.unicam.it/photoelectron_diffraction.htm)

• SPEC by D. Sébilleau;

• PRAPD by M.D. Pauli, H.C. Poon, D.K. Saldin and A. Wander (giotto.phys.uwm.edu) –
this code also models Auger electron diffraction;

• ‘Fritzsche’ (as we will call this code, since it does not appear to have an established
name) by V. Fritzsche;

• MSCD by Y. Chen, M.A. Van Hove, C.S. Fadley, F. Bondino and R. Díez Muiño
(http://electron.lbl.gov/mscdpack/mscdpack.html);

• EDAC by F.J. García de Abajo, M.A. Van Hove and C.S. Fadley
(http://electron.lbl.gov/edac, http://csic.sw.ehu.es/edac);
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• ZBE110 by J.-V. Peetz and W. Schattke
(http://www.theo-physik.uni- kiel.de/theo-physik/schattke/);

• KSAP by T. Strasser, C.-H. Solterbeck, J. Henk, A. Bödicker and W. Schattke
(http://www.theo-physik.uni-kiel.de/theo-physik/schattke/);

• ISOLDA by E.E. Krasovskii, F. Starrost, O. Tiedje and W. Schattke
(http://www.theo-physik.uni-kiel.de/theo-physik/schattke/).

The codes can be distinguished according to their basic geometric approach: atomic clus-
ters of various shapes and sizes vs. two-dimensionally periodic surfaces of variable depth. As
with electronic structure calculations at surfaces, the relative advantages and disadvantages of
these two fundamental choices have been hotly debated. For core-level emission, in which
a single atom emits waves of spherical character (since other atoms emit incoherently), the
cluster approach is intuitive: it is used by MSPHD, SPEC, Fritzsche, MSCD and EDAC. For
core- level emission, the periodic-surface model requires thinking in terms of ’inverse LEED
states’, so that plane waves become prominent and LEED-like layer-by-layer methods become
applicable, as used in PRAPD, ZBE110 and KSAP.

Very few photoelectron diffraction codes can now handle valence-level emission; excep-
tions are KSAP and ISOLDA. With valence levels, the initial state is a molecular or band state
that extends over several atoms or an infinite number of atoms. Photoemission from such a
state can be viewed as the coherent superposition of atomic-like emissions, and this can be
done within either a cluster model or a periodic-surface model; the latter has clear advantages
for dealing with infinitely extended valence bands and resembles the current highly-developed
bandstructure codes. As the photoemission final states are not accessible by these bandstruc-
ture codes, an independent confirmation through VLEED or TCS in this energy domain de-
serves interest. Such information is supported by calculations via codes such as ZBE110
because of their full-potential capability.

The different codes generally can model the various standard modes of data collection:
polar and azimuthal scans, hemispherical scans, energy-dependent scans, and combinations
of these. Most codes also accept both linear-polarized and unpolarized light, while a few
allow circular and elliptical polarization of the incident light (MSCD, EDAC).

However, very few codes consider the effect that the surface has on the incident radiation
itself: its refraction, change of polarization, attenuation, etc. KSAP is an exception, since it
includes these effects via the input.

The photoexcitation is normally treated in the Golden Rule approximation, assuming the
dipole and sudden approximations (MSPHD uses the Z + 1 approximation). With EDAC and
KSAP, non-dipole effects can be included through an input file.

Relativistic and magnetic effects are usually only allowed to the extent that the electron
scattering phase shifts that are input from an external source include relativistic effects. EDAC
explicitly includes both relativistic and magnetic effects through spin-dependent phase shifts
and scattering amplitudes, yielding for instance spin polarization. Furthermore, this code is
fully automated, and in particular, scattering phase shifts and excitation matrix elements are
calculated internally without the need for further input.

Many schemes for treating photoemission either by multiple scattering or by direct solu-
tion of the Schrödinger equation have been programmed: each code seems to use a different
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formulation. However, it is accepted that all these schemes can converge to the same correct
result if brought to full convergence, even though there are cases of divergence. Since in prac-
tice each scheme is truncated due to limits on computer size and especially computing time,
some small differences in results are inevitable.

Inelastic effects (energy losses of the emitted electrons) are accounted for by one of two
schemes: complex phase shifts that include the loss process in the atomic scattering (MSPHD,
SPEC); or attenuation of the waves propagating from atom to atom with elastic atomic scat-
tering (all other codes). Attenuation can be described either as a mean free path or as an
imaginary component of the constant potential outside the atoms. In the direct solution of the
Schrödinger equation a complex optical potential is applied throughout space.

The effect of vibrations is mostly modeled through an uncorrelated Debye-Waller factor
acting at each scattering in a multiple-scattering path. Some codes neglect the effect altogether
(MSPHD, KSAP); others include a correlated Debye-Waller factor (MSCD) which takes into
account that the vibrations of nearby atoms are partly correlated, so that the apparent vibra-
tions are less strong as seen by an electron scattering in succession from nearby atoms.

The emitted electron has to pass the potential barrier step between solid and vacuum. This
is usually treated only as a refractive effect (with no reflection), but it is neglected in MSPHD:
refraction makes an electron change its propagation direction due to its change of momentum
perpendicular to the surface. In KSAP and ISOLDA, this effect is included to any desired
accuracy, including reflection.

The computational time requirements of the different codes have various scaling laws as
a function of the problem size: these scaling laws depend strongly on the particular algorithm
used to perform the multiple scattering. The time requirements normally grow significantly
with increasing electron energy, and with the number of inequivalent atoms. For instance,
PRAPD scales roughly as g2N , where g is the number of plane waves used and N is the
number of atomic planes present in the surface slab of finite thickness. MSCD and EDAC
scale as N3 and N2, respectively, if N is the number of atoms present in the cluster. KSAP
and ISOLDA scale as N3 with N being the number of atoms per surface unit cell of the semi-
infinite system.

Most codes are written in Fortran, and are generally run under Unix or Linux. MSCD and
EDAC are written in C++, having versions for PC, Mac, Unix and parallel machines (this one
only for MSCD).

The degree of availability, documentation and support of the different codes varies widely:
one should consult with the respective authors for details. MSPHD is available through
Computer Physics Communications. SPEC has short documentation and in-house training.
PRAPD is well documented and training is available. One may download MSCD with its
extensive documentation. A demo version of EDAC may be interactively run on the web,
while its full version is to appear in Computer Physics Communications. KSAP, ISOLDA and
ZBE110, with brief comments, are available on the web.
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3 General theory of core electron photoemission

Lars Hedin

3.1 Introduction

Core electron photoemission spectroscopy (PES) is a mature and sophisticated subject with
important applications in materials research and other areas of science. In a mature subject
there are naturally many treatments on different levels. A recent comprehensive treatment
of photoelectron spectroscopy in general is given by Hüfner. [1] Inglesfield and Plummer in
a review article concentrated on the basic physics of photoemission. [2] Still relevant is an
article by Almbladh and Hedin. [3] And there are many other reviews on specialized topics.
So why one more review on this large classic subject? Hüfner’s book looks at the subject
from the viewpoint of an an experimentalist, while in this short chapter we will concentrate
on basic theoretical concepts. Our presentation is more in line with the article by Inglesfield
and Plummer, but they put the emphasis on valence electron PES, while we here discuss the
core electron case. The Almbladh and Hedin work is twenty years old and much has happened
since then.

The large literature we have on PES is very fragmented and there is no unified description
which accounts for the basic many body physics. In principle the diagram expansion of the
three-current correlation function should give us all the answers, but in practice this approach
has mainly remained a rather sterile formal framework which has generated little of the sim-
plified approximations which are the essence of physics. It has e.g. given no understanding
of incomplete relaxation [4] or the closely related PES resonance phenomena [5, 6], where
instead a discussion in terms of states classified by core hole configurations and use of quasi-
boson models has given a detailed and practical description. [3] In this review we have avoided
the diagram approach. Instead we have tried to derive general properties as far as possible,
and we have then introduced a model Hamiltonian which maps many of the important general
properties and allows us to obtain a number of explicit results. Such an approach presents a
possibility to quantify the theory for comparison with experiment. This does not mean that
once the physics is understood by a model approach, it could not also be illustrated, repro-
duced and perhaps extended by using diagrams. We will discuss general concepts like initial
and final state properties, adiabatic and sudden, intrinsic and extrinsic, time-scales, shake-up
and shake-down, satellites, one-step, three-step, and semi-classical approximations. We will
also discuss fundamental physical effects as resonant PES (RESPES), the Mahan-Nozieres-
de Dominicis effect (MND effect), multi-atom resonant PES (MARPE), photoelectron-Auger
coincidence spectroscopy, and charge transfer processes. We will not take up mixed valent
systems. This is a very specialized and sophisticated topic, and we instead refer to recent
reviews. [7, 8]
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Core electron PES is basically a very simple experiment. A photon of energy ω (we use
atomic units where m = |e| = � = 1) is absorbed and an electron is ejected from a localized
core level. The electron leaves the solid with the momentum k and energy εk = k2/2. The
direction and energy of the photoelectron is measured, which means that we know k. Also
the photoelectron spin as well as the direction and polarization vectors of the absorbed photon
can be monitored. If we neglect the effects of the core electron life-time, the maximum kinetic
energy the photoelectron can have is obtained when the system is left in its completely relaxed
state in the presence of the core hole. The total energy E is conserved

E = ω + E (N, 0) = εk + E (N − 1, 0) . (3.1)

The energy Ec = E (N, 0) − E (N − 1, 0) is called the core electron quasi-particle energy.
The photoelectron energy εk is the photon energy ω minus the core electron binding energy
|Ec| = −Ec, εk = ω−|Ec|. The ejection of the core electron may create excitations in the re-
maining system, and the photoelectron then, by energy conservation, has correspondingly less
energy. Measuring the EDC (electron distribution curve) when the photon energy is fixed and
the distribution of photoelectron energies is measured, shows a peak at the core quasi-particle
energy and a more or less structured “satellite” at lower kinetic energies (higher “binding”
energies). The satellite structure typically carries some 20-30 % of the total strength. There
are also important cases (charge-transfer systems) when the leading peak has smaller strength
than the following peak at lower kinetic energy. The leading peak is then sometimes called a
shake-down satellite.

The loss of energy from the photoelectron to the remaining system may occur in the ex-
citation process (intrinsic loss) or when the photoelectron travels through the solid on its way
out through the surface to the detector (extrinsic loss). The extrinsic losses were first discussed
by Berglund and Spicer in their three step model, excitation, transport (with losses) to the sur-
face, and passage (with losses) through the surface. [9] These two loss mechanisms are not
possible to separate sharply. This is clear for a small system like an atom or molecule, and also
for a solid when the mean free path is short. The two loss amplitudes, as best we can define
them, have to be added, and we can have interference effects. In a metal the losses can come
from low energy electron-hole excitations. Such losses show up as a low energy asymmetry of
the quasi-particle line, the perfectly sharp edge position given by Ec. The removal of the core
electron also can cause excitations of the phonons. At zero temperature these excitations show
up as structure below Ec, but at finite temperatures the phonons can also deliver energy to the
photoelectron, giving structure above Ec. Due to the core hole lifetime this structure should
be convoluted with a Lorentzian. We have here described the physics in terms of energy states,
which is always possible and correct.

The final states in PES are identical with the states we have in electron scattering, and like
in scattering, it is often useful to think about PES as a process in time. Quantitative results
can be obtained by calculating electron scattering states, or by solving the time-dependent
Schrödinger equation for the PES process. A time-dependent semi-classical description has
been useful to calculate losses. The photoelectron is then taken as a classical particle moving
on a straight line with constant velocity and the losses are calculated quantum mechanically
from the time dependent perturbation of the moving photoelectron and the suddenly created
core hole. This semi-classical description is however very dubious at low photoelectron ve-
locities (adiabatic limit) since one has to neglect the difference in momentum of the electron
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before and after the inelastic event. For photon energies which barely are large enough to take
the electron above the Fermi level there is clearly no energy available to make satellites (or
line shape asymmetry).

The first and most obvious property to study is the core electron energy Ec. The value of
Ec varies depending on the chemical surrounding of the atom that is excited. The development
of the instrumentation to measure these chemical shifts accurately enough and its application
to “Electron Spectroscopy for Chemical Analysis” (ESCA) was rewarded a Nobel prize 1981
to K. Siegbahn. Today the resolution is in the meV range, and e.g. surface core shifts as well as
the relation between (temperature dependent) lineshapes and phonon properties are studied in
detail. [10,11] For such studies often synchrotron radiation is used due to the high resolution,
the tunability (e.g. to monitor the escape depth) and the low noise to signal ratio. [12]

To make the discussion more firm we start with some simple basic definitions and elemen-
tary derivations. We will mainly consider the zero temperature case, but some results will be
extended to finite temperatures. For zero temperature the initial state is the ground state of the
system, |N〉. We take |N〉 as the fully correlated state of N electrons with the nuclei station-
ary. The final state has a photoelectron “k”, and the state of the remaining N − 1 electrons
is defined as “s”. When the photoelectron is about to be picked up by the detector the final
state is a product φk (r1)ΨN−1,s (r2, r3, . . . , rN ). We however need to know the final state
also when the photoelectron is inside the solid, and we use the notation |N − 1, s;k〉 for a
wavefunction where the photoelectron motion is correlated with that of the other electrons. A
simple approximation is

|N − 1, s;k〉 = c†k |N − 1, s〉 , (3.2)

where c†k is related to a wavefunction with (one-electron) scattering state boundary conditions
(time-inverted LEED state, LEED stands for low energy electron diffraction). This approx-
imation means that we neglect the interactions between the photoelectron and the solid left
behind, i.e. the inelastic losses. The inelastic losses can never be neglected in a solid, and we
will discuss them later in detail. They however mainly show up in the satellite region (more on
satellites later) of the spectrum, and much information of interest can be extracted neglecting
these losses.

The photo-electron current can be obtained from (many-body) scattering theory. [13] The
current is proportional to a Golden Rule type expression, which we call D (k, ω), [3]

D (k, ω) =
∑

s

|〈N − 1, s;k |∆|N〉|2 δ (ω − εk + εs) . (3.3)

As mentioned earlier εk is the energy of the photo-electron, εk = k2/2, εs gives the energy
of the final state of the solid as

εs = E (N, 0) − E (N − 1, s) , (3.4)

ω is the photon energy, and ∆ the optical transition operator,

∆ = Ap + pA =
∑
ij

〈i |∆| j〉 c†i cj . (3.5)
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Calculation of ∆ is a delicate problem since the electromagnetic field varies strongly at the
surface, and also with frequency. [14] So far only limited progress has been made. [15] We
should note that εk is the energy of a free electron and not the quasi-particle energy Ek. In
valence PES however Ek enters the theory through the conservation rules of the optical dipole
matrix element ∆ij . [16]

For non-interacting electrons |N − 1, s;k〉 and |N〉 are Slater determinants, and
|N − 1, s;k〉 = c†kcs |N). Here the index “s” stands for an occupied one-electron state (e.g.
a core electron state or a state in the valence band). Equation (3.3) reduces to the well-known
form

D (k, ω) =
occ∑
s

∣∣〈k |∆| s〉
∣∣2δ (ω − εk + εs) , (3.6)

where εs is a one-electron energy. We see that the photocurrent depends on the electron
energies in the initial state εs as well as on the initial state wavefunctions “s”, which appear
in the dipole matrixelements ∆ks. On this level of approximation PES thus maps initial state
properties.

To do better than one-electron theory we use the product approximation in Eq. (3.2). If
we insert the dipole operator, Eq. (3.5) in Eq. (3.3), and use Eq. (3.2), the matrixelement
〈N − 1, s;k |∆|N〉 becomes〈

N − 1, s;k
∣∣∆∣∣N〉

�
〈
N − 1, s

∣∣∣ck ∑
ij

〈i |∆| j〉 c†i cj

∣∣∣N〉
.

If the photo-electron “k” is fast enough, there are no virtual states “k” in |N〉 to annihilate,
and then ck must match c†i

〈N − 1, s;k |∆|N〉 �
〈
N − 1, s

∣∣∣∑
j

〈k |∆| j〉 cj

∣∣∣N〉
. (3.7)

This commonly made approximation, [17], becomes more accurate the higher the photoelec-
tron energy is. For non-interacting systems this matching of course is exact. We now have

D (k, ω) =
∑

s

∣∣∣∑
j

〈k |∆| j〉 〈N − 1, s |cj |N〉
∣∣∣2δ (ω − εk + εs) . (3.8)

This is a very common level of approximation where D (k, ω) is given by the so called one-
electron spectral function A(ω)

Aij (ω) =
∑

s

〈N − 1, s |ci|N〉
〈
N

∣∣∣c†j∣∣∣N − 1, s
〉

δ(ω − εs),

D (k, ω) =
∑
ij

〈k |∆| j〉Aij (εk − ω) 〈j |∆|k〉 .

For a core electron spectrum cj refers to a one-electron core state “b”, and∑
j

〈k |∆| j〉 〈N − 1, s |cj |N〉 = 〈k |∆| b〉 〈N − 1, s |b|N〉 .



120 3 General theory of core electron photoemission

It is usually quite accurate to approximate |N〉 by a direct product of valence and core elec-
tron parts, |N〉 = |Nv, 0〉 |Nc, 0〉. We write b |N〉 = |Nv, 0〉 |Nc − 1〉, where |Nc − 1〉 =
b |Nc, 0〉. Similarly for |N − 1, s〉 we write |N − 1, s〉 =

∣∣∣Ñv, s
〉
|Nc − 1〉. The tilde indi-

cates that the valence electrons are influenced by the core hole potential. Collecting the pieces
gives

D (k, ω) =
∣∣〈k |∆| b〉

∣∣2 ∑
s

∣∣∣〈Ñv, s|Nv, 0
〉∣∣∣2 δ (ω − εk + Ec − ωs) , (3.9)

where we have replaced εs by Ec − ωs

εs = E (N, 0) − E (N − 1, s) = Ec − ωs.

Here Ec = E (N, 0) − E (N − 1, 0) gives the energy to remove a core electron and leave
the system in its lowest possible state, the “completely relaxed state” (the removal energy is
actually −Ec since Ec < 0). The state E (N − 1, 0) of course is not stationary, it can decay by
an Auger or a radiative transition. For many cases of interest this decay is slow, and it is then
a good approximation to take E (N − 1, 0) as stationary. We have written Ec rather than εc

to mark that we have the quasi-particle core electron energy, not the bare one-electron energy
εc. The quantity ωs is the excitation energy of the valence electrons moving in presence of the
core hole

ωs = E (N − 1, s) − E (N − 1, 0) = E
(
Ñv, s

)
− E

(
Ñv, 0

)
.

Equation (3.9) is very basic for core electron PES, and apart from the extrinsic losses and ne-
glect of core-valence exchange, it gives an accurate representation, provided the photoelectron
energy is not too small. We have neglected core electron shake-up excitations. They do not
have a negligible amplitude, but they occur at energies outside the primary region of interest.

A common mode of PES measurement is to take the electron distribution curve (EDC),
which corresponds to take D (k, ω) as function of εk for fixed ω and fixed direction of k. The
maximum possible value of εk is ω + Ec = ω − |Ec| since ωs ≥ 0. The satellite curve is
sharply cut at εk = 0 since the photoelectron must have a positive energy, which means at an
energy ω − |Ec| below the quasi-particle peak. Equation (3.9) gives the same EDC’s for all ω

values apart from the modulation by the matrix element |〈k |∆| b〉|2 and apart from being cut
at εk = 0. This peculiar behavior signals that we cannot trust Eq. (3.9) for small εk.

There are some consequences of Eq. (3.9) which can be discussed without any deeper
analysis. First without core-hole potential we would have

〈
Ñv, s|Nv, 0

〉
= 〈Nv, s|Nv, 0〉 =

δs,0. Since ω0 by definition is zero we see from the deltafunction in Eq. (3.9) that this means
we have one sharp deltafunction peak at ω = εk − Ec. In reality we have an overlap matrix
between states belonging to different Hamiltonians (with and without core hole potential) and
we get a function D (k, ω) which gives an EDC satellite down to εk = 0 since the system
has arbitrary large excitation energies ωs. The function D (k, ω) starts with, we expect, some
quasi-particle peak as a relict of the deltafunction. In metals this peak has the famous power
law behavior, (εmax

k − εk)−α, where α is the MND (Mahan, Nozieres, de Dominicis, see
Ref. [18])singularity index. We should remember that there is no guarantee that the spectrum
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actually starts at the maximum possible value εk = ω − |Ec| since the wavefunction overlap
or the dipole matrix element can suppress or even in principle take away the intensity.

The peak is followed by what is called a satellite structure or intrinsic loss structure.
The electron energy loss spectrum (EELS) gives a qualitative idea on the important excitation
energies, in metals we e. g. expect a strong plasmon peak. Later we will actually find a close
relation between the satellite structure and EELS. A recent review on EELS can be found
in Ref. [19]. The extrinsic losses, which we so far have neglected, are also closely related to
EELS, and experimentally we cannot separate these two contributions to the satellite structure.

We note that the spectrum rather measures final than initial state properties since the main
information is the energy -Ec of the core hole state, which comes from the completely relaxed
final state. Also the line shape and the satellite give information on final state properties,
the distribution of excited states

∣∣Ñv, s
〉

created by the sudden removal of the core electron.
For metals the excited states with small energy, those that give the MND line, come from
electron-hole and phonon excitations, while the strong plasmon peak comes from the creation
of a plasmon.

The shift in the core electron energy in a solid as compared to that in a free ion has a simple
physical background. The shift has two components. One is the Coulomb potential from the
valence electrons in the ground state and the other is half the induced Coulomb potential
from the distortion of the valence charge caused by the presence of the core hole. The factor
one half is a simple classical effect connected with the adiabatic switch-on of the core hole
potential. [20] The core electron energies may differ by say 0.1 eV between bulk and surface.
Changes of adsorbate levels between different surface positions can be much larger, say 1 eV.
There are many specialized effects which can be studied with core electron PES, but we will
make no attempt to list them here.

3.2 Theory

3.2.1 General considerations

The general expression which gives the PES current was stated in Eq. (3.3). Thus besides the
(ground) state wavefunction |N〉 we need the final state function |N − 1, s;k〉. The final state
function is an eigenfunction of the fully interacting Hamiltonian H with the boundary condi-
tion that when one of the coordinates, say r1, becomes large the wavefunction has the form
φk (r1)ΨN−1,s (r2, r3, . . . , rN ) where ΨN−1,s is the wavefunction for the residual system
and φk a plane wave. Also ΨN−1,s is an eigenfunction of H . We have suppressed the spin
variables. The one-electron wave function φk (r1) is a scattering wavefunction with incom-
ing waves boundary condition. For a small system, say an atom or molecule, the incoming
waves are spherical waves, for a solid they are plane waves, and for solids one often speaks of
“time-reversed LEED states”.

For a small system we can make the usual configuration interaction (CI) expansion here
called the close coupling approach (A is the anti-symmetry operator)

|N − 1, s;k〉 = A
∑

n

Fn (r1) ΨN−1,n (r2, r3,, . . . , rN ) ,
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where all quantities on the right hand side depend on s, the Fn are scattering wavefunctions,
and where the ΨN−1,n are eigenfunctions of H , which in turn have CI expansions. If there
is only one term in the sum, we have the sudden approximation; with many terms we have
interchannel interactions. For small systems the Hulthén-Kohn or the Schwinger variational
principles are very useful. [21]

For solids, where we have a continuum of states, CI is usually not practical. We then
instead follow Chew and Low [22] and write

|N − 1, s;k〉 =
[
1 +

1
E − H − iη

(H − E)
]

c†k |N − 1, s〉 . (3.10)

Here η is a positive infinitesimal, and E as usual the total energy, E = E (N, 0) + ω =
E (N − 1, s) + εk. It is easy to check that this expression satisfies the Schrödinger equation,
and if the states “k” have the correct boundary conditions, so does |N − 1, s;k〉. It is inter-
esting that the details of how the states “k” behave inside the solid are arbitrary. If it were
possible to write H = H0 +V where c†k |N − 1, s〉 is an eigenfunction of H0 with eigenvalue
E, and where V gave the interaction between the photoelectron and the residual solid, we
would have a Lippman-Schwinger expression

|N − 1, s;k〉 =
[
1 +

1
E − H − iη

V

]
c†k |N − 1, s〉 . (3.11)

Unfortunately this is not possible in general since the photoelectron and the electrons in the
residual system are identical particles. In the high energy limit we can however identify a
coupling potential V . To do this we follow Chew and Low and write Eq. (3.10) as

|N − 1, s;k〉 = c†k |N − 1, s〉 +
1

E − H − iη
VCL |N − 1, s〉 ,

where

VCL =
[
H, c†k

]
− εkc†k.

We now use the freedom in the choice of the states “k” to take them to diagonalize the Hartree-
Fock like Hamiltonian〈

k1

∣∣−∇2/2 + Vnucl

∣∣k〉 +
∑
k2k3

〈k1k2 ||v||kk3〉
〈
N − 1, s

∣∣∣c†k2
ck3

∣∣∣N − 1, s
〉

,

which gives

VCL =
∑

k1k2k3

c†k1
〈k1k2 ||v||kk3〉

(
1
2

c†k2
ck3 −

〈
N − 1, s

∣∣∣c†k2
ck3

∣∣∣N − 1, s
〉)

,

where 〈k1k2 ||v||kk3〉 is an anti-symmetrized Coulomb matrix element. “Hartree-Fock like”
means that the Coulomb potential is precisely the correct Coulomb potential from the true
charge density. Also the “exchange” term differs slightly from HF, however this change tends
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to zero at high energy. So far the results are still general. We now take the high energy limit
and can then obtain the V in Eq. (3.11) [23] as

V =
fast∑

k1k2

slow∑
l1l2

c†k1
ck2 〈k1l1 |v|k2l2〉

[
c†l1cl2 −

〈
N − 1, s

∣∣∣c†l1cl2∣∣∣N − 1, s
〉]

. (3.12)

Here “fast” means fast electrons with energies of the same order as that of the photoelectron,
and “slow” means electrons with velocities comparable to those of the valence electrons. At
high energies we thus, as expected, can treat the photoelectron as a distinguishable particle
interacting with the density fluctuations of the residual system. This result is true for all
systems, also strongly interacting ones. The expression we need for PES now is

D (k, ω) =
∑

s

|τs (k, ω)|2 δ (ω − εk + εs) ,

τs (k, ω) =
〈

N − 1, s

∣∣∣∣ck

(
1 + V

1
E − H + iη

)
∆
∣∣∣∣N〉

. (3.13)

3.2.2 A model Hamiltonian with a priori determined parameters

A practical way to handle the PES problem [24] is to work with a model Hamiltonian H =
H0 + V , where

H0 =
∑
k

εkc†kck +
∑

s

ωsa
†
sas, V =

∑
s kk′

V s
kk′

(
as + a†

s

)
c†kck′ . (3.14)

This model Hamiltonian sums up a large amount of detailed properties. For energies εk below
the vacuum level the index k stands for electrons in a crystal with a surface, while above the
vacuum level it stands for time inversed LEED states. The index k stands for both crystal
momentum and bandindex (below the vacuum level), as well as spin index. When k stands
for a core level it is more appropriate to give it another name since the core level band width
is usually negligible. The crystal potential is the Hartree-Fock (HF) one. The energies εk

are free electron energies above the vacuum level, and HF energies below. The label “s”
stands for excited states of the residual system with excitation energies ωs like electron-hole
pairs and plasmons, and the coupling coefficients V s

kk′ are closely connected with the spec-
tral resolution of the dielectric response function, in fact they are precisely charge fluctuation
potentials. [25] To lowest non-trivial order the coefficients V s

kk′ appear in a quadratic expres-
sion and can then be replaced by the imaginary part of the dynamic screened potential for a
system with a surface, Im W (r, r′; ω). When V is taken into account to second order the
energies εk are renormalized to quasi-particle energies Ek to the level of the GW approxi-
mation. [25] Above the vacuumlevel V gives the photoelectron-residual system coupling in
Eq. (3.12), (3.14) which is understandable if we recall that the V s

kk′ are matrixelements of
the density fluctuation operators. (compare a detailed discussion in Ref. [24]). A somewhat
related approach, but based on the Bohm-Pines theory, was used by Penn to discuss losses
in PES. [26, 27] Im W (r, r′; ω) is directly connected with the electron energy loss function
EELS. [19] Examples of fluctuation potentials V s (r) for a jellium model are given in Fig. 3.1.
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Figure 3.1: Bulk and surface plasmon potentials in a jellium model for parallel momentum
Q=0.2 au (bulk) and Q=0.05 au (surface) according to Bechstedt (solid line), Inglesfield (dashed
line), and RPA (dotted line) dielectric functions. The dot-dashed curve gives the imaginary part
of the potential in the RPA case. [23]

How good is such a model Hamiltonian? The GW approximation has been very useful in
improving LDA calculations for not too strongly correlated systems. It however only takes
into account the coupling to charge density fluctuations. Also coupling to spin fluctuations
are often important, maybe even for s and p electron systems. Further the short range strong
correlations in d and f electron systems described by Anderson and Hubbard model Hamil-
tonians are missing. Here dynamic mean field theory (DMFT) [28] may be an important step
forward beyond the simplified model Hamiltonians to include local strong correlations. There
are also interesting attempts to combine GW with DMFT which would allow the basic band
structure background and thus the chemistry to enter.
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And how low in energy can the photoelectron-residual system coupling of Eq. (3.12) be
trusted? There are unfortunately no estimates on this. Explicit calculations with quite crude
approximations on sp-systems [23, 29, 30] give plausible results. The quantum mechanical
results agree well with the semiclassical ones at higher energies, say above 100 eV, which
is an indication that both may be correct. A stronger argument for the photoelectron-residual
system coupling to be useful is the fact that it is of precisely the same form as the coupling suc-
cessfully used in the GW approximation for bandstructure calculations, and there is nothing
that precludes that it may work right down to the Fermi level.

We now can simplify Eq. (3.13). We expand V (E − H + iη)−1 in Eq. (3.13) in powers
of V

V (E − H0 + iη)−1 + V (E − H0 + iη)−1
V (E − H0 + iη)−1 + · · ·

Since V is bilinear in the operators ck and |N〉 is a state which only has excitations “s” we can
use basisfunctions of the form |N − 1, s〉 |k〉 with only one photoelectron. The expression for
τs (k, ω) becomes

τs (k, ω) =
∑
l

〈
k
∣∣∣∣ 〈N − 1, s

∣∣∣∣(1 + V
1

E − H + iη

)
cl

∣∣∣∣N〉
∆
∣∣∣∣l〉. (3.15)

The transition amplitude τs (k, ω) now has the form of a one-electron expression

τs (k, ω) =
∑
l

〈k|T s
l (ω) ∆ |l〉 ,

where

T s
l (ω) =

〈
N − 1, s

∣∣∣∣(1 + V
1

E − H + iη

)
cl

∣∣∣∣N〉
=

∑
k1k2

T s
l (k1k2; ω) c†k1

ck2 .

We can make a partial summation in V keeping only terms where two scatterings bring us

back to |N − 1, s〉 . These “on-shell” terms renormalize |k〉 to a “damped” state
∣∣∣k̃〉,

〈
k̃
∣∣∣ =

〈
k
∣∣∣ ( iη

εk − hHF − Σp + iη

)
,

which is an eigenfunction of the GW Hamiltonian εk − hHF − Σp, where Σp is the dy-
namic (polarization) part in ΣGW . [23, 30]. The renormalized functions have decaying tails
inside the solid since Im Σp is non-zero. This is a crucial feature for having a realistic theory
where the photocurrent is proportional to the surface area and not to the volume. The terms
in V (E − H + iη)−1 which have disappeared by the renormalization process, result in re-
placing V by a projection QV Q, where Q = 1− |N − 1, s〉 〈N − 1, s|. As already discussed
by van Hove [31], a finite number of extended excitations “s” does not have any effect on
expectation values like the Hartree potential or the self-energy (see also Refs. [25, 32]). We
hence can omit the Q projections in the expression for T s and have

τs (k, ω) =
∑
l

〈
k̃
∣∣∣T s

l (ω)∆
∣∣∣l〉. (3.16)
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That we should have a renormalized state
∣∣k̃〉 is intuitively very clear. For one-electron

PES for solids it was demonstrated by Adawi [33] that the final state is a time-inversed scatter-
ing state, and from Bell and Squires [34] we know that the potential entering elastic electron
scattering from a many-body system is exactly the one-electron self-energy. How

∣∣k̃〉 enters
an expression including inelastic scattering as in Eq. (3.16) is however not trivial to demon-
strate. Equation (3.16) is easy to understand. The optical operator takes an electron from the
occupied one-electron state l and then T s

l (ω) propagates it to its final photo electron state k̃.
As usual in many-body theory the difficult correlation problems are transferred to an effective
one-body operator, here T s

l (ω). The full expression for D (k, ω) becomes

D (k, ω) =
∑
sl

∣∣τsl (k, ω)
∣∣2δ (ω − εk + El − ωs) .

Here we have specified the excited final states by the index l for the (non-decaying) quasi-
particle state (the hole created by the photon), and s for the excitation state of the quasi-boson
system,

εsl = E (N, 0) − E (N − 1, s, l) = El − ωs,

El = E (N, 0) − E (N − 1, 0, l) ,

ωs = E (N − 1, s, l) − E (N − 1, 0, l) =
∑

q

ns
qωq.

Here the ns
q are the occupation numbers for the different quasi-boson states q.

We have here chosen to discuss PES from a basically very simple approach without in-
volving any advanced techniques. The early pioneering papers by Caroli et al. [35] and by
Feibelman and Eastman [36] used three-current correlation function which can be systemat-
ically expanded in Keldysh path ordered diagrams. The qualitative physical insight that can
be obtained from the three current approach however also comes from the present elementary
description, which in addition gives a practical way to obtain quantitative results. The diagram
technique is as usual plagued with the difficulty what diagrams to sum and the inflexibility in
the choice of basis functions. Thus e.g. the problem of bringing in

∣∣k̃〉 was not solved until
the thorough and careful analysis by Almbladh 1985. [37] The Keldysh technique has recently
been applied to the photoelectron diffraction problem by Fujikawa and Arai. [38]

3.2.3 Extrinsic and intrinsic losses in core electron photoemission

In core electron PES the electron is ejected from a specific core level, let’s call it “b”. The
amplitude in Eq. (3.16) becomes

τs (k, ω) =
〈
k̃
∣∣∣∣ 〈N − 1, s

∣∣∣∣(1 + V
1

E − H + iη

)
b

∣∣∣∣N〉
∆
∣∣∣∣b〉. (3.17)

We neglect the complications of spin and orbital degeneracy of the core level. We also take
|N〉 and |N − 1, s〉 as products of core and valence electron parts,

|N〉 = |Nc〉 |N◦
v 〉 , |N − 1, s〉 = b |Nc〉

∣∣Ñs
v

〉
.
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We have put a tilde on the final state wavefunction
∣∣Ñs

v

〉
to remember that the valence electrons

move in the presence of the potential from the core hole. The core part b |Nc〉 can be taken
out, and the amplitude becomes

τs (k, ω) =
〈
k̃
∣∣∣∣ 〈Ñs

v

∣∣∣∣(1 + V
1

E − h − Hv − V − Vc + iη

)∣∣∣∣N0
v

〉
∆
∣∣∣∣b〉,

where we have used the Hamiltonian,

H = h + Hv + V + Vcbb
† + ε0

cb
†b,

which is the same as in the well-known “Langreth” model [3], except that we have split off
the photoelectron part h and the interaction V between the photoelectron and the valence
electrons. We now can write the full amplitude as a sum of intrinsic and extrinsic amplitudes

τs (k, ω) = τ intr
s (k, ω) + τ extr

s (k, ω) , (3.18)

where,

τ intr
s (k, ω) =

〈
Ñs

v

∣∣∣ N0
v

〉〈
k̃
∣∣∣∆∣∣∣b〉

τ extr
s (k, ω) =

〈
k̃
∣∣∣∣ 〈Ñs

v

∣∣∣∣V 1
E − h − Hv − V − Vc + iη

∣∣∣∣N0
v

〉
∆
∣∣∣∣b〉,

and the photocurrent expression becomes

D (k, ω) =
∑

s

∣∣τs (k, ω)
∣∣2δ (ω − εk + εs) ,

εs = E (N, 0) − E (N − 1, s) = Ec −
∑

q

ns
qωq.

We remind that Ec = E (N, 0)−E (N − 1, 0) is the core electron quasi-particle energy. The
excited states “s” are specified by the occupation numbers ns

q of the different quasi-bosons
labeled q,

E (N − 1, s) − E (N − 1, 0) =
∑

q

ns
qωq,

since only the valence electrons and not the ion core are allowed to be excited (c.f. Eq. (3.14)).
The intrinsic amplitude has a no-loss part (s = 0 → n0

q = 0). If we separate off the no-loss
part we have1

D (k, ω + εk − Ec)

=
∣∣∣〈Ñ0

v

∣∣∣ N0
v

〉∣∣∣2 ∣∣∣〈k̃
∣∣∣∆∣∣∣b〉∣∣∣2 δ (ω) +

∑
s 	=0

∣∣τs (k, ω)
∣∣2δ (ω −

∑
q

ns
qωq

)
.

1 Up to the end of this subsection energy ω in τs(k, ω) refers to ω + εk −Ec with ω fixed by the δ-function. (eds.)
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The ground state-ground state overlap
∣∣〈Ñ0

v |N0
v

〉∣∣2 in an insulator is typically 0.7–0.8. In an
insulator the smallest ωq is finite while it is zero in a metal (the small ωq then correspond to
electron-hole excitations). Thus in a metal we have no split-off deltafunction, and the delta
function is replaced by the MND singular line. [18] We note that the dipole matrix elements
involve damped photoelectron functions,

〈
k̃
∣∣∆ |b〉, and thus the photocurrent becomes pro-

portional to the surface area and not to the volume of the crystal as in Eq. (3.6).
Comparing with Eq. (3.14) we have,

Hv =
∑

q

ωqa
†
qaq, V =

∑
q

V q
(
aq + a†

q

)
, V q =

∑
kk′

V q
kk′c

†
kck′

h =
∑
k

εkc†kck, Vc = −
∑

q

V q
cc

(
aq + a†

q

)
.

To evaluate Eq. (3.18) we note that
∣∣N0

v

〉
is an eigenfunction of Hv , while

∣∣Ñs
v

〉
is an eigen-

function of H̃v ≡ Hv + Vc. Since we have two harmonic oscillator Hamiltonians there is a
simple relation between their eigenfunctions. The relation between the two ground states is

∣∣N0
v

〉
= e−a/2 exp

(
−

∑
q

V q
cc

ωq
a†

q

)∣∣∣Ñ0
v

〉
, a =

∑
q

(
V q
cc

ωq

)2

.

To lowest order in the coupling coefficients V q we only have excited states “s” with one quasi-
boson “q”, ns

q′ = δq,q′ . [23] For simplicity we call these states “q”. The transition amplitude
becomes,

τq (k, ω) = e−a/2
〈
k̃
∣∣∣ (V qG (εk + ωq) −

V q
cc

ωq

)
∆ |b〉 , (3.19)

where

G (ω) =
1

ω − h − Σp (ω)
.

Here G (ω) is the one-electron Green’s function, and Σp (ω) the polarization part of its self-
energy. The real part of Σp can be combined with h to an effective one-electron operator
heff , and for the imaginary part of Σ it is reasonable to use (an energy-dependent) constant
−iΓ (ω) (Γ > 0),

G (ω) =
1

ω − heff + iΓ (ω)
.

Equation (3.19) is straight-forward but complicated to calculate. We need the time-inverted
LEED state

∣∣k̃〉 and the Green’s function propagator G perhaps best expressed as a multiple
scattering expansion as in photoelectron diffraction [39] and EXAFS [40]. We also need
the fluctuation potentials V q. When we take the square of τq (k, ω) we have a quadratic
expression in the V q which can be related to the imaginary part of the dynamically screened
potential Im W (r, r′; ω). Futher Im W (r, r′; ω) has to be calculated in the presence of the
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surface since the PES process takes place in a thin region close to the surface. The estimates
which have been made so far have used fairly rough approximations. [16, 23, 29, 30, 41].

Equation (3.19) diverges for metals at small ωq . It is however possible to sum the most
divergent terms in the power series expansion for D (k, ω) and get an exponential expression
[23] provided we introduce some approximations. We neglect reflection of the LEED function
at the surface which makes the damped wave inside the solid match the outside wave with
equal amplitude. The integral

〈
k̃
∣∣∆ |b〉 comes from a small region around rc, the position of

the core hole, and we write〈
k̃
∣∣∣∆∣∣∣b〉 = eiekrc

〈
k̃
∣∣∣∆∣∣∣b〉0

,

where the index 0 indicates that the wavefunction
∣∣k̃〉 is centered at rc and normalized in

the cell around rc. The imaginary part in k̃ gives the reduction in amplitude of
∣∣k̃〉 at rc.

We expand the Green’s function around rc, and pick up the factor 〈k′|∆ |b〉0 where k′ is the
wavevector that corresponds to the energy εk + ωq in the Green’s function. We neglect the
difference between k̃ and k′ in the two dipole matrix elements. This gives the amplitude

τq (k, ω) = e−a/2eiekrc

〈
k̃
∣∣∣∆∣∣∣b〉0

[∫
φ0ek (r)∗ V q (r)G (r, rc;k

′) dr − V q
cc

ωq

]
,

where φ0ek is normalized in the cell with rc. Thus φ0ek grows exponentially going from rc to the

surface, while G (r, rc;k′) decays exponentially. The two effects closely cancel when k̃ and
k′ are close.

In solids with pronounced plasmon structure the cancellation!between intrinsic and extrin-
sic amplitudes is very large up to energies in the keV region. In Fig. 3.2 we show results for
bulk plasmon satellites for ω − ωth ranging from 2 to 90 au. “BS” stands for the “Berglund-
Spicer” approach [9] where the intrinsic spectrum is convoluted with a loss function, “QM”
for “Quantum Mechanical” (the present approach), and “SC” for “Semi-Classical”, the ap-
proximation where the losses are calculated quantum-mechanically from the perturbation of
a classical charge moving on a straight line and a suddenly switched-on core hole potential.
Figure 3.3 shows the total intensity of surface and bulk plasmons relative to the elastic peak.
The strong peak in the bulk plasmon intensity can be explained from the Γ (ω) curve. Γ (ω)
starts to rise strongly, due to plasmon damping, at about 1.1 au, and has a maximum at about
2 au. When ω is below 2 au the elastic photo-electron thus has a stronger damping than the
electrons in the satellite, and the relative satellite intensity is increased. This effect does not
come in the SC approximation, where the damping is put in by hand, and is the same for the
elastic peak and the satellites.

Summation over the most divergent terms gives

D (k, ω + εk − Ec) �

∣∣∣∣〈k̃
∣∣∣∆∣∣∣b〉0

∣∣∣∣2
2π

∫ ∞

−∞
eiωt exp

[∑
q

|gq|2
(
e−iωqt − 1

)]
dt, (3.20)

where

gq =
∫

φ0ek (r)V q (r)G (r, rc;k
′) dr − V q

cc

ωq
.
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Figure 3.2: Bulk plasmon satellite spectra for various photon energies, and for three different ap-
proaches: BS (solid curves), QM (dotted curves), and SC (dashed curves). At 90 au no semi-classical
results are shown. For the QM and SC results the Inglesfield’s fluctuation potential has been used. The
inset shows bulk QM results, with Bechstedt’s potential (dotted curve) and with Inglesfield’s potential
(solid curve). The photo-electron energies are with respect to the elastic peak position. [23]

If we only keep the intrinsic losses Eq. (3.20) precisely reproduces the intrinsic terms. It also
gives results which agree with the semiclassical ones for energies above about 100 eV. Detailed
discussions are given in [23]. It should be noted that the calculations made so far are only
exploratory and based on using plane waves. Also the more general expressions given here
should be regarded as sketches on how to proceed. Any future detailed calculations must start
from Eq. (3.19) and a more careful analysis of the damped waves and the Green’s functions. In
Fig. 3.4 we show the near edge structure of the spectrum calculated from Eq. (3.20). It is clear
that the intrinsic amplitude completely dominates for small energies close to the edge. This is
in contrast to the satellite region, where the intrinsic and extrinsic amplitudes are comparable,
and strong interference takes place.
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Figure 3.3: Total intensity of bulk and surface plasmon satellites relative to the elastic peak
weight, as a function of photon energy. In the top panel the two upper curves give bulk, and the
two lower surface plasmons. The QM bulk curve shows a strong peak, while the SC curve is
smooth. In the lower panel (emission at 60◦), the bulk curves change very little, while the QM
surface plasmon curve has a small peak. Bulk modes from Inglesfield’s potential, and surface
modes from Bechstedt’s. [23]

It is convenient to define an “asymmetry function”

α (ω)
ω

=
∑

q

|gq|2 δ (ω − ωq) ,
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Figure 3.4: RPA result from particle-hole pairs plus surface plasmons for the energy 5au, and a
core distance 20 au. Total spectrum – solid line, intrinsic spectrum – dots, extrinsic spectrum –
dashed line, and interference contribution – dot-dashed line. [23]

giving

D (k, ω + εk − Ec)

�

∣∣∣∣〈k̃
∣∣∣∆∣∣∣b〉0

∣∣∣∣2
2π

∫ ∞

−∞
eiωt exp

[∫
α (ω′)

ω′
(
e−iω′t − 1

)
dω′

]
dt. (3.21)

Then α0 = α (0) gives the asymmetry index for the MND lineshape

D (k, ω) � 1
(ω − ωth)1−α0

, (ω − ωth) → 0,

where ωth = εk − Ec is the threshold value for exciting the core electron. There is a close
relation between α (ω) and the sum over momenta of the EELS function. [41] We now give a
qualitative discussion of D (k, ω). The index function α (ω) for a metal starts at a finite value
α0 and then slowly changes until stronger absorption processes enter. It is often reasonable to
split α (ω) in a “low energy” flat part and a “high energy” stronger part.

α (ω) = αLE (ω) + αHE (ω) ,

αLE (ω) = α0θ (ω0 − ω) ,

αHE (ω) = [α (ω) − αLE (ω)] θ (ω − ω0) .
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The omitted tail α (ω) − α0 out to ω0 has a fairly small influence. [41] Since the two contri-
butions add in an exponent we can write D (k, ω) as a convolution,

D (k, ω) =
∣∣∣∣〈k̃

∣∣∣∆∣∣∣b〉0
∣∣∣∣2 ∫ DLE (k, ω − ω′)DHE (k, ω′) dω′,

where both DLE and DHE are defined to be normalized to unity and we have put the origin
for ω at Ec − εk. For DHE (k, ω′) we can make a Taylor expansion and keep only the first
term,

DHE (k, ω) =
∣∣∣∣〈k̃

∣∣∣∆∣∣∣b〉0
∣∣∣∣2 exp

[
−

∫
α (ω′) dω′

ω′

] [
δ (ω) +

αHE (ω)
ω

]
. (3.22)

We have then omitted the multiple quasi-boson excitations starting at ω = 2ω0. DLE can be
obtained analytically for ω < ω0. Broadened with a Lorentzian of width Γ (FWHM = 2Γ)
we have for ω < ω0

DLE (k, ω) = C (α0)
cos [πα0/2 − (1 − α0) arctan (ω/Γ)](

1 + (ω/Γ)2
)(1−α0)/2

,

C (α0) =
e−γα0

(α0 − 1)!ωα0
0 Γ1−α0 sin [πα0]

.

(3.23)

where γ = 0.577 is the Euler constant. The coefficient C (α0) in Eq. (3.23) was derived in
Ref. [3] (see Eq. (162)). For ω > ω0, DLE (ω) has only a fairly weak tail with less than 10%
of the norm (for α0 < 0.4). In the convolution with αHE we take DLE (ω) as a deltafunction
and have

D (k, ω) � exp
[
−

∫
α (ω′) dω′

ω′

] [
DLE (k, ω) +

αHE (k, z0; ω)
ω

]
.

In the high energy limit∫
α (ω′) dω′

ω′ =
z0

λ
+ aHE , aHE =

∫
αintr (ω′) dω′

ω′

where λ essentially is the mean free path. [23]
Al metal is rather special in having a very sharp plasmon peak carrying most of the loss

spectral strength (see e.g. Fig. 4.14 in Ref. [1]). To study the effect of the shape of α (ω),
which reflects that of the loss function, we did some comparisons between Al and Cu. In
Fig. 3.5 we show α (ω) for Al at two different photoelectron energies, and compare results
from taking only the intrinsic contribution (intr) with the BS and QM cases. Clearly both
extrinsic and interference effects are strong also at the higher energy. In Fig. 3.5 we also show
the photocurrent as function of the photon energy obtained with the exponential expression,
Eq. (3.21) at the two photoelectron energies. The same results for Cu are shown in Fig. 3.6. It
is clear that extrinsic and interference effects are just as strong in Cu as in Al. The difference in
the loss spectra of the two metals however shows in the shape of the satellites, the Cu satellite
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Figure 3.5: Curves of α (ω) and D (k, ω) for Al metal with a photoelectron energy of 0.85 au

(upper panel) and 9.85 au (lower panel). The D (k, ω) curves are for given k values as func-
tions of ω, i. e. they are “constant final state spectra” (CFS).

is featureless as could be expected. The curves mirror well the prediction by Eq. (3.22). In
Fig. 3.7 we show both the intrinsic (intr) and the quantum mechanical (QM) results for the
quasi-particle peaks for Al and Cu, broadened by a Lorentzian of FWHM = 600 meV, and
for two photoelectron energies. It is clear that both FWHM and asymmetry in practice are
unaffected both by photoelectron energy and by extrinsic losses.

Losses in core electron PES have been discussed in a series of papers by Tougaard and
collaborators from somewhat different types of approximations. [42, 43] Core level shifts
and the lineshape problems, neglecting extrinsic losses, were recently treated in a review by
Andersen and Almbladh. [11]

3.2.4 Charge transfer and shake-down satellites

The effect of the core hole potential on the outer levels can be large and even lead to a change in
the level order. A well-known and important case is that of copper dihalides. In the initial state
a ligand orbital φL is occupied while there is an unoccupied copper d-level φd. The core hole
potential has a larger effect on the more localized d-level, and shifts it below the ligand level.
The strengths of the main line and the satellite are given by the overlaps IM =

〈
φ̃d|φL

〉2
and

IS =
∣∣〈φ̃L|φL

〉∣∣2. If there were no change in the orbitals then IM = 0 and IS = 1, i.e. there
would be no main line, only a satellite. Due to hybridization the levels mix, and the mixing
is different in the initial and final states. The mixing depends on the hybridization coupling
and on the position of the energy levels before and after the photoelectron ejection. Often the
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Figure 3.6: The same results as in Fig. 3.5 for Cu metal.

Figure 3.7: Curves of the asymmetric quasi-particle peak for Al metal (left) and Cu metal
(right). The curves have a 300 meV Lorentzian broadening, and give results for emission from
an atom 10 au from the surface. Results for a photoelectron kinetic energy of 0.85 and 9.85 au,
and also when only the intrinsic contribution (independent of photoelectron energy) is included.

satellite is stronger than the main line. Since the satellite is stronger we could call it the main
line, and call the line with a d-electron a satellite. This is then a shake-down satellite since
the electron is shaken down from its ligand orbital into the lower lying d-orbital. This kind of
situation is quite common, and it has been studied for rare earth compounds, chemisorption
systems, transition metal compounds, and high-Tc compounds.(For references see [44]).

In a localized system this problem can be studied with a very simple model Hamiltonian
which allows a numerically exact solution of the photoemission problem for all photon ener-
gies. [44] It was found that the effect of the photoelectron-residual system interaction becomes
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small already at 5–10 eV above threshold. Perhaps surprisingly the variation of the dipole ma-
trix element with energy was as large or larger than the variation due to the coupling to the
photoelectron.

3.2.5 Resonant photoemission

Resonant photoemission spectroscopy (RESPES) has played an important role to map prop-
erties of strongly correlated systems. Typically we have a resonant effect when the core state
(of say d symmetry) has a large dipole matrix element to a quasi-localized outer state (of say f
symmetry) with a fairly sharply defined energy (we typically have a Coster-Kronig situation).
With the photon energy tuned in the vicinity of this energy we will have two competing pro-
cesses leading to the same final state. In one process the photon directly ejects an electron
from the f-type state. The other process goes in two steps, first a (say) d-f transition and then
an Auger decay which fills the d-hole and ejects an f-type electron. Since the final state is
the same (one hole in the f-state) we have to add the amplitudes for the two processes and
experimentally a Fano type line shape is seen. The resonance effects can be huge when the
photon energy sweeps the resonance line, and one talks of giant resonances. RESPES is a
large and complex topic, and we cannot here cover it in any depth. A comprehensive analysis
of the theory is given in Ref. [3], and of experiment in Ref. [45]. In addition to summarizing
the material in the earlier works we also discuss the extrinsic and intrinsic losses.

To discuss this case we cannot regard the core-hole state as stationary but have to include
the Auger coupling term which allows it to decay. We now have two perturbations, the cou-
pling between the photoelectron and the valence electrons, V , and the Auger coupling, VA.
We first treat VA. The final state then is

|N − 1, s;k〉 =
[
1 +

1
E − H0 − V − VA − iη

VA

]
|N − 1, s;k〉0 , (3.24)

where |N − 1, s;k〉0 now includes the effects of the interaction V but not VA. Both |N − 1, s;k〉
and |N − 1, s;k〉0 are eigenstates with the core hole filled and a photoelectron “k”, The dif-
ference between the two states is that |N − 1, s;k〉 contains virtual contributions with a core
hole, i.e. |N − 1, s;k〉 is a mixture of states with no core hole |N − 1, s;k〉0 and states gen-
erated by VA. Thus VA destroys the photoelectron and creates a core hole, putting the two
electrons in the resonance level. The operator VA in the denominator can, after some algebra,
be replaced by the self-energy Σc (a scalar),

|N − 1, s;k〉 =
[
1 +

Pc

E − H0 − V − Σ+
c

VA

+
1

E − H0 − V − iη
VA

Pc

E − H0 − V − Σ+
c

VA

]
|N − 1, s;k〉0 ,

which is the usual Fano expression. Here Σ+
c is the self-energy connected with the core hole,

which for a narrow resonance can be treated as a complex constant giving the level shift and
the lifetime, and Pc is a projection operator on the manifold of states with a core hole. The
upper index on Σ+

c signals a positive imaginary part. We remind of the well-known fact that,
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at resonance, the term explicitly of second order in VA gives a contribution comparable to
those of zero and first order. Second order terms of course also appear in Σc. The transition
amplitude is

0〈
N − 1, s;k

∣∣∣∣[1 + VA
Pc

E − H0 − V − Σ−
c

+VA
Pc

E − H0 − V − Σ−
c

VA
1

E − H0 − V + iη

]
∆
∣∣∣∣N〉

. (3.25)

The three terms describe the Fano resonance; the first term directly gives the photoelectron
(PE), the second gives a resonance state followed by decay to give the PE, and the third gives
a virtual PE, followed by an “inverse” Auger transition creating a core hole, and finally an
Auger decay which fills the core hole and gives the PE. As mentioned all three terms are
comparable in importance to produce the Fano line.

We now have to take account of the photoelectron-residual system interaction V , and
evaluate |N − 1, s;k〉0 ,

|N − 1, s;k〉0 =
[
1 +

1
E − H0 − iη

V

]
c†k |N − 1, s〉0 ,

where |N − 1, s〉0 is a state for the residual system calculated without virtual core hole con-
tributions. In Eq. (3.25) the right part is a sum of states of the form c†k′ |N − 1, s′〉0[

1 + VA
Pc

E − H0 − V − Σ−
c

+VA
Pc

E − H0 − V − Σ−
c

VA
1

E − H0 − V + iη

]
∆ |N〉

=
∑
s′k′

αs′k′c†k′ |N − 1, s′〉0 . (3.26)

In calculating the coefficients αs′k′ the effect of V on the second term should be small since
∆ has created a quasi-localized state, which then Auger decays. In the third term, where
∆ generates a virtual photoelectron, V will cause both a damped propagation and inelastic
scatterings. Explicit results can be worked out using the method presented in Ref. [25],

1
E − H0 − V + iη

|N − 1, s〉 |k′〉 =
[
Gd + GdV Gd · · ·

]
|N − 1, s〉 |k′〉 ,

where

Gd =
∑

s

PsG
d
s , Gd

s =
1

E − εs − h − Σp (E − εs)
, Ps = |s〉 〈s| .

H0 is given in Eq. (3.14), and Σp (E) is the self-energy from the photoelectron scattering with
GW as the lowest approximation. The states |s〉 are eigenstates of (H0 − h). We note that the
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expression in Eq. (3.26) converges also without using a damped propagator, and that the effect
of the damped propagator should be to reduce this term (the asymmetry term) in magnitude.

We can do the same analysis as before to get a damped photoelectron state

0〈
N − 1, s;k

∣∣∣c†k′

∣∣∣N − 1, s′
〉0

=
〈
k̃
∣∣∣∣ 0〈

N − 1, s

∣∣∣∣1 + V
1

E − H0 − V + iη

∣∣∣∣N − 1, s′
〉0 ∣∣∣∣k′

〉
. (3.27)

This is a similar expression as we have for loss processes in valence electron PES, Eq. (3.15),
and the damping here is, as before, necessary to get a photocurrent proportional to surface
area and not to volume. We can expect the same type of loss effects in RESPES as in valence
electron PES. Surprisingly both intrinsic and extrinsic losses can be large also in valence elec-
tron PES. [1] However structured loss peaks are mainly expected in solids with pronounced
plasmon excitations and Coster-Kronig transitions are occurring in d and f electron systems
where structured plasmon effects normally are absent.

Finally we note that the method to separate states with specific core configurations and
coupling them with Auger terms does not work for mixed valent situations. The reason is that
the “quasi-core” states in mixed valence have energies overlapping the valence band, and then
the mixing terms in the Anderson Hamiltonian are important, terms which are small when
the core configuration is well separated from the valence band, and which we have neglected
here. [3]

Multiatom resonant PES (MARPE) is a related effect. Here the two interfering processes
involve two different atoms A and B not too far from each other. In one process there is
ordinary PES from a core level of atom A. In the other process the photon spends its energy
by exciting an electron from a core level on atom B to a quasi-localized level on the same
atom. In the next step the electron drops down leaving atom B unchanged and through an
Auger matrix element excites the core electron on atom A to the same final state as in the first
process. [46]

3.2.6 Phonons and temperature effects

These effects are pronounced only for quasi particle lines, where the intrinsic approximation
works well. The theory was carefully mapped out in [3], and more recently in [11]. We find
no reason to here summarize this classic and well-known subject.

3.3 Concluding remarks

Core electron photoemission is still under rapid development due to the continuing improve-
ments in synchrotron radiation sources. The fundamental theory is well understood, but there
is still a large gap to good quantitative methods to evaluate its consequences. The goal should
be that theory can say something not only about characteristic structure in the spectra but on
the full spectral form. Only then can the accurate experimental data have full impact on the
theoretical understanding. To achieve this the electron loss problem must be handled in a
much better way.
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It seems true that quasi-particle line shapes are dominantly determined by the intrinsic
spectra, i.e. the extrinsic losses are very small in that region. On the other hand many the-
oretical calculations on strongly correlated systems are made for two-dimensional systems,
and then the shake-up effects on the embedding three dimensional system are lost. So when
the 3D system has low energy excitations like electron-hole pairs and acoustic plasmons, the
effects of these on the quasi-particle line shape are lost. [41]

Auger photoelectron coincidence (APECS) measurements were first made long ago by
Haak, Sawatzky and Thomas. [47] It is a very difficult experiment, particularly for solids, but
recently this field has become active due to improved instrumentation. [48] This interesting
field relies on a description of the Auger decay as a one-step process, rather then the usual
two-step process. Such theories are available. [3, 5]

There is a long-standing problem on how to treat pronounced atomic multiplet effects in a
solid state environment. Although cluster calculations can go a long way to explain solid state
systems as shown by the Sawatzky and Kotani groups, the full embedding problem remains
to be solved. In recent work [41] a crude embedding model was proposed to treat a two-
dimensional system in a three-dimensional surrounding. For theoreticians this remains an
important area for future progress.
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4 Valence band VUV spectra

I. Bartoš and W. Schattke

4.1 Introduction

Photoelectron spectroscopy provides the most direct information about the valence bands of
crystals and of their surfaces. Some basic properties, like dispersion relation E(k), can be
approximatively learned in a straightforward manner from angular resolved spectral peaks us-
ing only conservation laws for energy and momentum. Photoemission process, however, is
not only affected by the occupied electron initial states but also by unoccupied excited states
above the vacuum level. The spectra, due to the surface sensitivity of photoemission, do not
reflect only the bulk valence bands but also characteristic surface properties. The traditional
three-step model of photoemission had to be generalized to describe correctly the interfer-
ence between bulk and surface contributions and so the one-step model has been developed.
Into these frameworks it was also possible to incorporate, at least phenomenologically, some
aspects of interelectron interactions like finite lifetimes of excited electrons and holes which
determine the surface sensitivity of electron spectroscopies.

In order to exploit the rich information contained in the angular resolved spectra not only
the peak positions and widths are to be used. In recent years progress of photoemission spec-
troscopy continued on the experimental side (synchrotron radiation sources, enhancement of
energy and angular resolution etc.) and on the theoretical side (realistic structures, refinements
in interaction description). This makes it possible to compare the full shapes of the measured
and calculated intensities of photoemitted electrons. The comparison then enables to extract
detailed information about the origin of various features in the experimental spectra following
from layer- and orbital-compositions of theoretical spectra.

4.2 Electrons at crystal surfaces

Surfaces of solids represent a special interface: the interface between a solid and vacuum. Full
specification of a surface requires that geometrical arrangement of atoms and their chemical
nature are known. Surfaces, even in the most ideal cases of low-index clean surfaces, repre-
sent a region of finite thickness where physical properties differ from those in the underlying
bulk: e.g. a geometrical atomic arrangement exhibits often complicated relaxations and re-
constructions depending on surface preparation and growth temperatures. Only in exceptional
cases the surface arrangement is close to an ideal termination of the bulk structure.

We will not discuss core electron states and concentrate on the occupied valence electron
states and on unoccupied states above the vacuum level. In a description of the system of
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electrons, complicated theoretical analysis of the interacting system of ions and electrons has
to be simplified. As in the bulk, two general approaches can be used, each stressing one of the
two important classes of interactions: electron-electron or electron-ion. Only more recently,
both interactions have been taken into account simultaneously to provide a realistic description
of crystal surfaces.

Here, we will sketch the basic principles of the theoretical description of the electron
structure of crystal surfaces referring to the literature for more details.

4.2.1 One-electron approach

When electron-ion interaction is stressed, the effective interaction in a crystal can be repre-
sented by some periodic potential. The solution of the Schrödinger equation gets substantially
simplified by the Bloch theorem for the shape of the electron wave functions. In the semi
infinite crystal, the translational symmetry is reduced to just two directions along the crys-
tal surface. Therefore, only surface components of the wave vector remain good quantum
numbers for electrons in crystals limited by a plane surface.

Simple one-dimensional models with a step-potential surface barrier are often used to give
basic features of the surface electron structure. Qualitatively new types of states – surface
states – can exist which, in contrast to the delocalized Bloch states from the bulk, display
spatial localization in the direction perpendicular to the surface: the surface barrier restricts
electron propagation into the vacuum and the band gap makes it impossible into the bulk of the
crystal. Apart from surface states, electron states from the allowed energy bands are modified
in the vicinity of the surface: the local density of states differs from that in the bulk due to
the reflection of propagating electron states in the surface region. These changes may be very
strong in the case of surface resonances which represent a continuation of surface state bands
into (bulk) allowed bands. Similarly, above the vacuum level, band gaps are responsible for the
enhanced reflectivity of the surface for electrons incident from the vacuum (LEED intensity).
Historically, two one-electron approaches have been developed: crystal potential and crystal
orbital methods [1].

In the first class of methods, formulated in the coordinate representation, the description is
formulated as a standard problem of quantum mechanics: general solutions of the Schrödinger
equation in the two half-spaces are found and then matched at the surface so that the electron
wave function together with its derivative normal to the surface are continuous. To this end,
the concept of the (real) band structure has been generalized [2] to include also solutions with
the imaginary component of the wave vector perpendicular to the surface. In the complex
band structure, e.g. individual branches of the real band structure are connected by the loops
of solutions within the gaps.

In addition to the matched wave function also the general formula for the so called Surface
Green function (SGF is defined only at the surface and is identical with the projection of the
full Green function of a semi infinite crystal there) has been found [3] by matching of the
Green functions of (infinite) crystal and of the vacuum; it enables to treat both the bound and
scattering electron states on an equal footing. Full Green function can be obtained from the
SGF in a straightforward manner [4].

In the crystal orbital methods, the electron wave function is expanded in terms of local-
ized atomic orbitals as in the quantum chemistry (MO LCAO). The crystal surface is then
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represented by broken bonds between neighbors at the surface. The advantages of this de-
scription are its simplicity together with intuitive understanding in terms of atomic orbitals
and their hybridization. The simple boundary condition oversimplifies the problem so that
gradual transition from bound to scattering electron states (LEED) is not possible.

Surface state energies and wave functions depend on the shape of the effective potential
in the surface region. This potential is codetermined by the electron distribution here and
the selfconsistent procedure is required for its determination. We have to start with some
reasonable potential (e.g. model potential, strictly periodic till the surface), to solve the cor-
responding Schrödinger equation in order to obtain the charge distribution; from the Poisson
equation then a new potential is determined. After several repetitions of this procedure a self-
consistent solution is obtained which provides a realistic description of the electron structure
of a crystal.

First selfconsistent calculations have been performed [5] by matching the bulk general
solution at a plane situated below the surface so that the surface deviations of the potential
from the bulk behavior could be neglected there. Solutions have been found for Na(100) from
the vacuum region by numerical integration through the modified surface region to the plane
discussed above.

Another class of calculations [6] utilizes finite repeated slabs of the crystal to represent
the crystal with a surface. In this representation with regularly alternating layers of crystal
and vacuum the problem to be solved gets transformed into that of the infinite crystal. The di-
mension of the unit cell in the direction perpendicular to the surface (layer stacking direction)
becomes substantially increased, of course.

General conclusions of model calculations that the surface region width (localization of
surface states and of modifications of local densities of states) is limited to several atomic
planes has been confirmed by selfconsistent calculations. Only the extent of bent bands in
semiconductors is much wider and their bending can be described quasiclassically [7].

4.2.2 Many-electron approach

In the other extreme case, the role of electron-electron interaction is emphasized and electron-
ion interaction is neglected. The jellium, where crystal periodic potential is replaced by uni-
form background charge, was treated in detail. For surface studies the semi infinite jellium
with an abrupt termination of the background charge at a surface plane was investigated [8].
In this model, the electrons spill out into the empty half-space giving thus rise to the dipole
part of the effective surface barrier and their density exhibits Friedel oscillations into the bulk.
The electron work function, in addition to the dipole part, contains also a contribution from
the exchange-correlation terms.

In the density functional theory (DFT) in the local density approximation (LDA) the ef-
fective surface barrier decays exponentially into the vacuum in contrast to the well known
asymptotic 1/z behavior, required by the electrostatic laws (the image potential). The image
potential, treated, first, in model calculations [9] and later for real metals [10], is responsible
for the existence of the new type of electron surface states, so called image states. Because of
the Coulomb asymptotics of the potential these states form Rydberg series below the vacuum
level. This contrasts with surface states found in step barrier models. Also, the space localiza-
tion of the image states is different: these are concentrated further into the vacuum and thus
their interaction with the crystal bulk is reduced.



144 4 Valence band VUV spectra

LDA DFT approximation, which is founded on exact theorems about the ground state of
the many-electron system, is often used to provide also low-lying excited states of the system.
The eigenvalues of the Kohn-Sham equations are then interpreted as energies of the excited
states. There is no straightforward justification for this extension of the formalism. This proce-
dure appeared to fail for example in getting correct magnitude of the gaps in semiconductors;
in addition the lifetimes of these states are infinite.

Correct description of the excitations in the many-electron problem can be given by means
of the Green functions. The self-energy Σ(k, E) characterizes then the quasiparticle proper-
ties: its real part is responsible for the renormalization of the energy of excited electrons
and holes and its imaginary part determines the (finite) lifetime. Evaluation of the screened
interaction W is of central importance in the GW approximation [13]. This approximation
provides results connected with the excited electron states (narrowing of bands, magnitude of
gaps) in much better agreement with experimental data than the LDA. Detailed discussion and
comparison of recent results, in particular for nearly free-electron metals, is given in [12].

The quasiparticle lifetime is determined by the imaginary component of the self-energy.
The electron-electron interactions represent the dominating contribution (except at very low
energy excitations where phonon contributions are important) to this quantity. Detailed in-
vestigations of the homogeneous system of interacting electrons – of jellium – show general
energy dependence trends: in the ground state (electron at the Fermi level) the electron life-
time is infinite; inelastic collisions of an excited electron, accompanied by creations of the
electron-hole pairs, give rise to the quadratic increase of the imaginary part of Σ above the
Ef . Steep rise of Im Σ at higher energies is connected with overcoming the energy thresh-
old for collective excitations – plasmons. Finally, with further increasing energy the Im Σ
decreases. The electron lifetime, together with its group velocity, determines the electron in-
elastic mean-free path, which plays a central role in surface sensitivity of low energy electron
spectroscopies. From the energy dependence of the electron lifetime then follows the well-
known U-shaped “universal curve” of the inelastic mean-free path.
Crystals are inhomogeneous and therefore generally k-dependence or anisotropy of Σ is to be
expected. In comparison with calculations of Re Σ for real crystals, only a smaller attention
has been paid to Im Σ [15].

In crystals with surfaces, similarly the lifetimes of surface states can be studied. The
image-type states can be expected to have long lifetimes due to their small interaction with
bulk electrons. Detailed review of calculated and experimentally determined image-state life-
times on various surfaces of metals have been given recently [11].

4.3 Photoelectron spectroscopy

In photoemission, the electromagnetic radiation incident on a solid excites the electrons from
the ground state so that some electrons can be detected outside the irradiated sample in the sur-
rounding vacuum. Photoelectron spectroscopy is usually performed with a monochromatic ra-
diation (discharge lamps, synchrotron radiation in VUV range) and energy distribution curves
(EDC) of photoemitted electrons are recorded: either the total electron flux or electron flux
in specific direction only. For the study of the valence bands the VUV excitation sources are
most suitable due to the large cross-section of the photoemission. In addition, the surface sen-
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sitivity of the ultraviolet photoelectron spectroscopy (UPS) is predominantly determined by
the short mean free path of emitted low energy electrons.The attenuation of the incident radi-
ation in the surface region is mostly of minor importance and will not be discussed here. For
radiation frequencies in the vicinity of the plasmon frequency this attenuation may become
very important [16, 17].

The interpretation of the recorded spectra can be undertaken in various stages of sophisti-
cation: The scheme using only the energy conservation applies well to polycrystalline samples
(no long-range order leading to the electron momentum conservation) and also to crystalline
samples studied in the XPS regime: in the latter case the high energy of emitted electrons
is responsible for effective averaging over the Brillouin zone even in the angularly resolved
mode [20]. It can be expected that the EDC in the integral mode will reflect the energy de-
pendence of the density of occupied electron states in the valence band. This simple picture
is distorted by mixing of bulk and surface contributions and by the matrix elements giving
different amplitudes of probabilities of various electron transitions from their occupied to un-
occupied states.

4.3.1 Band mapping (peak positions)

More detailed information can be obtained from EDCs in the angular resolved photoemis-
sion using the energy and momentum conservation (in crystals). For crystals with ordered
surfaces the three-dimensional bulk translational symmetry is preserved (or reduced) only in
two directions along the surface. Therefore, only the surface component of the wave vec-
tor k‖ remains a good electron quantum number. The small momentum of photons in VUV
region can be neglected with respect to the dimensions of the (surface) Brillouin zone and
the transitions of electrons will be direct, it is conserving the k vector (with the exception of
Umklapp processes). The knowledge of the energy and of the wave vector of the detected
electron permits determination of the initial state of this electron which is complete for two-
dimensional systems (surface states and to a certain degree electrons in overlayers and layered
materials) and only partial for three dimensional systems (k⊥ component of the bulk electron
remains undetermined). Band mapping, it is determining the electron dispersion E(k) is thus
straightforward for 2D systems and less direct for 3D. The excitation process represents one
of the three stages in the three-step model: bulk electron excitation, propagation to the surface
and transmission through the surface barrier to vacuum. It has to be a vertical transition in
the one-dimensional section of the band structure (for example, for normal photoemission the
band structure along the line going through the Brillouin zone center in the direction perpen-
dicular to the surface is to be considered). Then, ideally, the EDC should consist of a series
of discrete δ-functions corresponding to vertical electron transitions from the occupied to the
unoccupied branch of the band structure. In real spectra the isolated lines are replaced by
peaks and their energy positions are used for the band structure determinations. In order to
determine k⊥ some assumption is needed about the form of the dispersion relation of the final
electron states Ef (k). Most often, the free-electron approximation is used (with a rigid shift
determined by one parameter). Another possibility consists in utilizing the band structure
calculations or more complicated schemes with triangulation techniques.

In Fig. 4.1 the final states’ bands of bulk GaAs in a direction normal to the (110) surface
are displayed together with the Fourier decomposition of the true inverse LEED states cal-
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Figure 4.1: Wave vector Fourier decomposition of the inverse LEED state (brown shaded) for
several Γ̄ points with normal emission in center of circle and underlaid pseudopotential band
structure (black lines). See also color figure on page 464.

culated for a pseudopotential half-space with step barrier to vacuum. A set of Γ points for
several Brillouin zones with respect to k‖ is shown the underlaid band structure being identi-
cal, of course. The intensity of brown shading represents the amplitude of the wave function
Fourier transformed with respect to the surface perpendicular wave vector for every energy
above the escape threshold. The figure clearly suggests an overall roughly parabolic energy
dispersion for the states coupling to vacuum with one branch in the case of the central Γ point
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Figure 4.2: (a) He I excited energy spectra from Cu(111) at a polar angle of 66◦, taken at various
azimuthal angles around the [112] direction. Vertical lines limit the energy window applied for
obtaining the Fermi surface map shown in (b). The white arc indicates the azimuthal scan range
for the spectra of (a) [37].

and several branches in the general case. It confirms the anticipated experimental data in-
terpretation relying on a parabolic dispersion somehow, more for normal emission, less for
inclined emission. Illustrations of the procedure and of the results of the band mapping for
metal and semiconductor crystals as well as further references can be found in [18–20].

Another technique developed recently in this context consists in measurement of full hemi-
spherical photoemission electrons in [37] (and references there), see Fig. 4.2.

By setting a narrow energy window at a selected energy in the valence band (instead
of mapping E(k) along some direction) a section of the constant energy surface is imaged
(e.g. at Ef for Fermi surface imaging) given by the frequency of the exciting radiation. The
full picture of the constant energy surface in E(k) can be reached by continuous change of
the frequency of this radiation (to enable transitions from the whole 2D surface of occupied
states at a given energy into available unoccupied branches of the electron band structure), see
Chapters 5 and 12. Despite its widespread application up to these days [21] the method has
of course the limitations familiar to band mapping, as the neglect of the structure from final
states and matrix elements which could be experimentally demonstrated. [22, 23]

For precision limits of the electron band structure mapping it should be kept in mind that
the assumption of the three-step model consisting in conservation of the wave vector compo-
nent perpendicular to the surface is not strictly valid. The errors introduced by this assumption
have been demonstrated in the computer simulation of photoemission profiles evaluated in the
one-step model [24]. The bands were known and the evaluated EDC were analyzed by stan-
dard experimental techniques; the deviations of “experimental” peak positions from energies
of direct transitions were shown to be of the order of tenths of eV, see also Chapter 2.
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The mapping of occupied electron states (from the valence band bulk states and from
surface states) can be extended to unoccupied states also: to this end, either the inverse photo-
emission or the two-photon photoemission can be used. In the latter technique intensive laser
irradiation is used for excitation of electrons: first photon excites electron from the occupied
state to the intermediate (sufficiently long-lived) unoccupied state below the vacuum level and
then the second photon excites the electron from the investigated state into the vacuum where
it can be detected, Chapter 8 and [25](and references there).

So far, only the energies of peaks – peak positions – in the EDCs of photoemitted electrons
have been needed. Next, the information contained in peak widths will be discussed.

4.3.2 Electron and hole lifetimes (peak widths)

Till now, electrons in their initial and final states were treated as noninteracting particles. In
real systems interactions among electrons have to be taken into account and the electrons have
to be treated as quasiparticles, it is as weakly interacting “dressed” particles. The quasiparticle
in the state with wave vector k is described by the spectral function A(k,ω) which, for inter-
acting particles, is no more δ-function in energy but has a finite spread in energy. The energy
distributions of spectral functions for good quasiparticles are described by Lorentzians; their
widths determine the quasiparticle lifetimes. In the three-step model of photoemission then
the individual branches of the electron energy bands E(k) become correspondingly broadened
and the energy conservation law can be easier fulfilled: instead of δ-function peaks in the
EDCs in angular resolved spectra we can expect peaks with finite widths.

In contrast to broadening of the discrete eigenvalues the broadening in crystals, manifested
in finite EDC peak widths, is affected not only by the electron and hole lifetimes but also by the
slopes of the initial and final bands participating in the photoemission process. In a reasonable
approximation it was shown that the intensity of photoemitted electron current as a function
of a variable like energy or angle becomes also a Lorentzian and its half-width is given by a
simple formula [26, 27], with γh, γe representing hole and electron inverse lifetimes and the
derivatives of the initial and final bands normal to the surface , vi, vf .

Similar formulas applying also to other modes of photoemission than EDCs (taken at fixed
excitation energies) like CIS (constant initial state) and CFS (constant final state) have been
given in [28], see Fig. 4.3.

If the band structure is known for both the initial (occupied) and the final (unoccupied)
bands the peak width is still determined by two inverse lifetimes γh, γe. In order to determine
γe from the peak width Γ, transitions originating just below the Ef (where γh approaches
zero) have to be investigated. The electron lifetimes have been studied by ARUPS either at
fixed angle of exit, varying continuously the excitation energy (normal emission [26]) or at
fixed excitation energy, varying the electron exit angle [27].

Determining the inverse lifetime of holes γh is straightforward for surface states with zero
dispersion in a direction normal to the surface: then γh = Γ. Also bulk states at points of higher
symmetry with zero slope of the initial band can be studied in this manner. Electron-electron
correlation represents a dominant contribution to the electron/hole lifetime; this interaction is
always present -even in perfect crystals. Any deviation from a perfect periodicity (disorder,
impurities, vibrations) contributes to the broadening of photoemission peaks by relaxing the
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Figure 4.3: Geometrical representation of measured linewidths (Γm) for the three principal
modes of photoemission data taking (a) EDC (energy-distribution curve), (b) CIS (constant
initial-state spectrum), and (c) CFS (constant final-state spectrum), kI

i , (kI
f ) refer to the inverse

lifetimes γh(γe) resp. via the dispersion [28].

momentum conservation conditions. Therefore, great care has to be given to analyzing the
data so as to obtain the information about electron correlation in crystals [29].

Rather high experimental demands are imposed on energy and angular resolutions, in
particular if excited electron states close to the Fermi level are investigated. The energy de-
pendence of the electron lifetimes close to Ef is expected to bring important evidence about
deviations from the Fermi liquid behavior expected e.g. in high temperature superconductors.

Collection of the hole and electron lifetimes obtained both from ARUPS peak widths and
from the time-resolved two-photon spectroscopies was given in [30]. The two techniques
have opposite limitations in their application range: whereas by means of linewidths very
long-lived states cannot be studied, the time-resolved techniques fail with very short-lived
states. The limitation is given by minimum energy resolution in the former case (5 meV) and
by minimum time-resolution in the latter case (5 fs). In a case studied by both techniques (
surface state on Cu(111)) good agreement of the determined lifetimes has been reported [30].

In the time-resolved techniques, the electron lifetimes measured at a given energy are in-
fluenced by two processes: drifting of electrons into the bulk shortens the measured lifetime,
on the other hand, Auger (and subsequent cascade processes) processes increase the popu-
lation of the investigated energy level and thus effectively increase the measured lifetime.
These processes should be taken into account in detailed analyses of electron lifetimes due to
electron-electron correlation [31, 32].

The energy region close to the Fermi level has been studied in detail: the energy depen-
dence of electron lifetimes from experimental data was compared with theoretical predictions,
in particular with quadratic energy dependence obtained for the interacting electron gas in the
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Fermi liquid theory. Recent careful examination of d hole lifetimes at copper surfaces [33]
showed deviations from a monotonous energy dependence due to the band structure (d-bands).
This was also confirmed in the calculations of the electron self-energy in the GW approxima-
tion where in addition also substantial anisotropy of Σ has been reported. Although quali-
tative agreement of theory and experiment has been achieved, nonnegligible differences still
do exist. Small scale energetic features as being especially investigated in research related to
superconductivity are often discussed in terms of a proportionality between photocurrent and
spectral density, see also Chapter 2. With highest experimental resolution and some assump-
tions on the principal shape of the spectral density detailed behavior of the hole self-energy
can be deduced [34].

Electron lifetimes at low excitation energies can also be expected to be strongly affected by
band structure effects in final unoccupied states: the electron lifetimes will not simply decrease
with their energy and they will exhibit pronounced anisotropies [15]. New studies employing
the STM techniques have been recently applied based on the investigation of the shape of the
onset of electron tunneling into a surface state [35] and of the decay of the interface pattern in
the local density of surface states in the step vicinity [36]. In these investigations structurally
perfect parts of the surface can be analyzed and contributions of defects eliminated. Similarly,
the role of finite temperature can be either taken into account or avoided when working at low
temperatures.

4.3.3 Orbital orientation (peak intensities)

For the analysis of photoemission space distribution from surface atoms or bonds conservation
laws are no more sufficient and some specific model of the photoemission process is neces-
sary. For example, the simple geometrical idea about atomic shadowing in the electron path
was adopted. In interpretations of pronounced azimuthal variations of electron photoemission
from the d-part of the valence band in layered compound crystals [19] the shadowing concept
provided incorrect conclusions. More successful was just the opposite idea of atoms acting
like electron focussing lenses [38], in particular at higher electron energies. This model fol-
lows from the well-known fact that electron scattering probability from atoms has a strong
forward contribution which clearly dominates at higher energies. The interpretations based on
this simple idea (searchlight effect) succeeded in investigations of the surface crystallography
of clean surfaces, of epitaxial layers and of molecular adsorbates [20]. More careful analysis
revealed, however, that apart from focussing also defocussing effects [39] take place and that
for more detailed investigations the photoemission process has to be treated more carefully.

Angular resolved photoemission, mostly with X-ray excitation of electrons from core lev-
els to high energy states, is being used in the photoelectron diffraction for surface structure
determinations [40]. For theoretical modelling cluster calculations either in single scattering
approximation or with multiple electron scatterings are used.

Angular dependence of electron intensity emitted from oriented orbitals in atoms, which is
expressed by the differential cross-section of photoemission, can be calculated in the one-step
model by means of electron transitions from initial localized states into excited final delocal-
ized states. The resulting electron space distribution gets extremely simply related to the initial
state wave function if final state is approximated by a plane wave [41].Then the intensity of
photoemitted electron distribution in space copies the initial orbital shape. This approxima-
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tion is realistic at high electron energies (X-ray excitation), it describes well the main features
of the azimuthal distributions for VUV excitations [19] and enables to chose the proper ex-
perimental geometry for the electron holography [42]. It fails to deliver more details at lower
electron energies where the final electron state has to be described more realistically than by
a simple plane wave. First, taking into account the atomic potential appears to be responsible
for qualitative redistributions of photoemitted electrons which changes strongly with electron
energy (interferences among different exit channels) as demonstrated in [43]. This modifica-
tion of the final electron state may be dominant in emissions from isolated adsorbates when
electron reflectivity from the underlying substrate is small. Second, multiple scatterings of an
electron emitted from an atom with other atoms in the surface region introduces additional
interfering paths into the final emitted electron distribution. When both of these effects have
been taken into account [44] good agreement between experimental and theoretical azimuthal
profiles has been achieved even in subtler details for excitations from d-levels in layered com-
pounds [19]. In another example, excitation from a dangling bond surface state on GaAs(110),
also very good agreement of experimental and theoretical azimuthal profiles of photoemission
has been found [24]: the azimuthal distribution here is governed by the density of electrons in
initial states but strongly superimposed by the space orientation of the dangling bonds. This
result demonstrates the simultaneous impact of two aspects of studied orbitals: their spatial
orientation and their translational periodicity along the surface.

From the theoretical analysis of the contributions from different regions in atoms [45] an
important difference of the origin of ultraviolet and X-ray excited spectra appeared: whereas
in XPS substantial contribution comes from the vicinity of atomic nucleus in UPS it is mostly
the outer region of atoms which determines the photoemitted electron current, see Fig. 4.4.

Thus information about the bonds between surface atoms is reflected in the spectra ob-
tained by means of ultraviolet radiation [45].

4.3.4 EDC spectra (profiles)

In addition to the analysis of individual EDC peaks and of their shifts and modifications with
electron emission angle or excitation energy the overall picture of the valence band requires
the whole shape of the EDC to be reasonably described in the one-step model. A proper
description of initial and final electron states is needed to get photoemission intensities in
ARUPS correctly, in particular at low energy excitations where band structure effects play an
important role. In contrast to the three-step model in the one-step model electron states of
a semi infinite crystal are to be used: bound states for initial occupied states and scattering
(inverse LEED) states for unoccupied final states. These excited states are properly described
by the self-energy Σ: its real part provides electron level shifts and its imaginary part deter-
mines electron and hole lifetimes due to electron-electron interactions. Comparison of various
theoretical approaches to electron scattering states at crystal surfaces has been presented re-
cently [54].

The self-energy is a rather complicated quantity (complex, energy dependent,nonlocal)
and, therefore, various approximations have to be used. The simplest one describing homoge-
neous systems (jellium), is characterized by the energy dependent imaginary part (modelling
thus the averaged electron mean-free path); a version of the local density approximation has
been proposed recently to describe the inhomogeneity of the crystal and the results showed
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Figure 4.4: Spatial sensitivity of angular dependence on kinetic energy: photocurrent of exci-
tation to several final energies Efin, middle and outer region separated by sphere of radius of
0.3 Å from nucleus.
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not only quite substantial deviations from the monotonous energy-dependence but also strong
anisotropy of Σ(k, E) in GaAs. [15]

Relatively straightforward tests of the quality of the final states above the vacuum level
can be performed by means of elastic scattering of very low energy electrons (VLEED) from
crystal surfaces and of closely related target current spectroscopy (TCS) where electric current
through the sample is measured [46, 54].

Electron reflectivity in VLEED as a function of incident electron energy provides infor-
mation about the electron band structure above the vacuum level Ev.For example, at normal
incidence the absolute positions of band gaps in E(k⊥) and thus ReΣ can be determined.
From the peak widths also the information about the ImΣ can be obtained: in this way evi-
dence about its strong suppression at some energies in transition metals [48] has been found
and about its anisotropy [49, 50] has been determined. Comparing TCS spectra with ab-initio
calculations accurate information on Σ(k, E) over an appreciable extent of the variables can
be extracted [51]. Here, in contrast to photoemission where bound and scattering electron
states are involved in determining the photoemission intensity, scattering states are isolated.
These states may be slightly different due to the fact that a system with additional external
electron is treated.

Depending on the value of the electron Im Σ, i.e. the optical potential, the full range
from direct transitions allowing a band mapping to dominance of the initial state’s density
(DOS) is covered with respect to the k⊥-problem (correct choice of k⊥) [52]. In the lat-
ter case e.g., a high density of states emerging in photoemission at a saddle point Van Hove
singularity of low-dimensional systems may point at high critical temperatures of cuprate
superconductors [53]. Limitations of a simple band mapping procedure occur in cases where
translational symmetry is reduced (the translation period is increased) but the magnitude of the
underlying atomic rearrangement or potential change is small. An example of such a change
connected with translations along the surface represent surface reconstructions: translational
period along the surface may be much bigger though the atomic displacements may be rela-
tively small and limited to the topmost atomic layer. An example of a change in the direction
perpendicular to the surface is given by superlattices where the thickness of individual com-
ponents determines the enhanced translational period but the change of the effective potential
may be rather small if a superlattice is composed from chemically similar components.

Intuitively it can be expected that the bulk electron structure cannot be changed strongly.
Because of the backfolding of the bands into smaller Brillouin zone, on the other hand, new
direct optical transitions should become possible. This contradiction is resolved if intensities
of photoelectrons in the new channels are considered: they may be very small. This situation
would be more reasonably described in terms of spectral representations A(k, ω) than just
E(k).

The changes accompanying surface reconstructions may be illustrated on the c(4x4) re-
constructed polar surface of GaAs(100). Here, the band mapping procedure applied to the
surface state situated just below the valence band top requires shorter period in E(k‖) in both
perpendicular higher symmetry directions along the surface: however, the experimental data
show that only along Γ J ′ the period is in agreement with the dimension of the Brillouin
zone of the reconstructed surface; along Γ J the period remains to correspond to the ideal
surface [55]. The contradiction in the latter case was explained by a strong admixture of bulk
states which contributes to the experimentally observed photoemission periodicity [56].
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The translational period may be strongly increased in superlattices with regularly alter-
nating crystalline epitaxial layers of different composition stacked during the growth process.
Small dimension of the Brillouin zone in this direction is responsible for small E(k) disper-
sion in the direction perpendicular to the surface. Therefore, a simple feature distinguishing
bulk states from surface states associated with dispersive or nondispersive character in this
direction becomes inefficient. This behavior is developed already in superlattices with very
thin components, e.g.in (GaAs)2(AlAs)2 [47, 57]. Because of the backfolding of the elec-
tron energy bands into smaller Brillouin zones the number of direct transitions allowed by
energy and momentum conservation laws increases; these rules do not specify probabilities of
allowed transitions and therefore the band mapping procedure becomes of limited value and
the whole EDC profiles (experimental and theoretical) have to be compared. The intensities
of photoemission in these materials with large unit cell in one direction may be, in addition,
strongly influenced by electron confinement effects where electron localization in one part of
the unit cell is encountered [58].

Figure 4.5: EDCs from GaAs(001)c4x4 in normal direction and along ΓJ for HeI excitation;
layer-resolved contributions, number counted from top, to photoemission intensity for electron
emissions: (left) θ = 0◦, (middle) θ = 30◦, (right) θ = 45◦; for 45◦ also experimental data are
shown [56].

In particular, in the systems with larger unit cells the detailed interpretation requires to use
complete information provided by the angular resolved photoemission: the full EDC profiles
are to be compared with their theoretical counterparts. When good agreement is achieved,
the detailed information extractable from theoretical modelling (contribution of individual
layers, of individual atomic orbitals to the emitted intensity) can help in deep interpretation
of the experimental spectra. For example, the important point in attributing the origin of
individual features in the spectra to bulk or surface contributions can be solved investigating
the byproducts of the theoretical calculation. Contributions of individual layers below the
surface to the total photoemission intensity may converge gradually (bulk states) or the total
outcome may be reached within the topmost layer (surface states) [56], see Fig. 4.5. Even
a buried interface below 20 monolayers can still be detected in the EDC’s, not through the
photoexcitation of the atoms at the interface because of the prohibitively small escape depth
but through the ground state wave function to be excited which experiences the interface as a
kind of boundary condition [59].
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Figure 4.6: Local emissivity of extended initial states: hemispherical photocurrent plotted for
selected spatial areas cutted out of the whole volume as depicted by the blue region in side view
scheme of GaAs(110) surface aside each pattern; note that additionally interference between
these areas exists and has to be taken into account. See also color figure on page 465.

In a similar way features in the hemispherical photoemission pattern can be traced back to
special spatial emitting regions as shown in Fig. 4.6.

Also small changes in the angular distribution of the photoemission from adsorbates (or
magnetic systems) when excited by left- or right- circularly polarized radiation can be ade-
quately described by calculated angular plots [24, 40].
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4.4 Summary

Angular resolved ultraviolet photoelectron spectroscopy provides rich information about the
electron structure of crystals and of their surfaces. Basic characteristics like electron dis-
persion relation E(k) can be obtained relatively simply by band mapping procedures from
the peak positions in the energy distribution curves. Quasiparticle features like lifetimes of
excited states can be inferred in a straightforward manner from more detailed ARUPS peak
widths studies and from two-photon time resolved spectroscopies. The experimental data rep-
resent important tests for theoretical descriptions of the electron structure in the ground state,
about low-energy excitations and about the role of many-body effects there.

The full information from the angular resolved spectra (EDCs or angular plots) can be ex-
tracted when experimental data are reasonably described by corresponding calculations per-
formed within the one-step model of photoemission. To this end, well resolved spectroscopic
data from carefully prepared samples and calculations including all important interactions are
required.
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5 Angle-resolved photoelectron spectroscopy:
From photoemission imaging to spatial resolution

Kai Roßnagel, Lutz Kipp, and Michael Skibowski

5.1 Introduction

In the last two decades, angle-resolved photoemission spectroscopy (ARPES) has emerged as
the most powerful probe of the momentum-resolved electronic structure of materials. This
success story has largely been due to the construction of new sources for synchrotron ra-
diation as well as due to the extreme progress in the field of spectrometer design. Today,
modern photoelectron spectrometers not only provide very high energy and momentum res-
olution at a single electron emission angle, but automated angle scanning techniques also
facilitate a full hemisphere mapping of the electron distribution in momentum space. As a
consequence, ARPES has now become a powerful imaging technique providing very direct
k-space images of band dispersions as well as of constant energy surfaces. Moreover, in com-
bination with synchrotron radiation as a tuneable photon source the experimental restrictions
of ARPES regarding full k-space accessibility are strongly relaxed and it is possible to study
three-dimensional electronic structures in great detail.

In spite of the enormous potential of ARPES, however, there remains one disadvantage:
the spatial resolution of the technique is generally limited to the spot size of modern light
sources, i.e., generally to a few 100 µm. As one of the most important trends of photoemission
spectroscopy, future efforts will tend to push down this limit by some orders of magnitude in
order to be able to study the electronic properties of materials in the nanometer regime.

In this article the experimental technique of photoemission imaging will be introduced and
its accuracy will be discussed on data of the layered transition metal dichalcogenide TiTe2.
This material serves as an excellent test case, since it provides a simple and intuitive connec-
tion between the measured photoemission images and the calculated three-dimensional band
structure. We will then use the photoemission imaging technique to map the three-dimensional
Fermi surface of layered NbSe2 and investigate how Fermi surface geometry is related to the
formation of charge-density waves in this compound. On surface states of GaAs(110), we
will demonstrate how the spatial origin of photoelectrons can be deduced from photoemission
intensity maps when they are compared to calculations within the one-step model of photo-
emission. And finally, we will introduce a more direct experimental approach to high spatial
resolution in ARPES.
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5.2 Angle-resolved photoemission

The theory of angle-resolved photoemission has been excellently reviewed in this book by
I. Bartos and W. Schattke. Therefore, we limit our discussion here to a few simple concepts
that are necessary to understand intuitively the photoemission imaging technique.

Figure 5.1: Basic principle of an
angle-resolved photoemission experi-
ment.

The general idea of an ARPES experiment is illustrated in Fig. 5.1. Monochromatic light
of a given energy hν is absorbed by a crystalline material and the intensity of the outgoing
photoelectrons is measured as a function of their kinetic energy Ekin and emission angles ϑ
and ϕ (other experimental parameters such as light polarization or electron spin will not be
considered here). Via both energy and momentum conservation the measured quantities are
directly related to the energy and momentum of the electrons inside the crystal, i.e., to the
electronic band structure E(k): the binding energy with respect to the Fermi level is simply
given by

E = Ekin − hν + Φ, (5.1)

where Φ is the work function of the sample, and the surface-parallel wave vector k‖ can be
calculated from the emission angles by

k‖ =

√
2m

�2
Ekin sin ϑ

(
cos ϕ

sin ϕ

)
. (5.2)

To arrive at Eq. (5.2), we had to make the assumption that the wave vector of the exciting
photon is negligible compared to that of the electron, and we took advantage of the fact that the
surface-parallel component of the wave vector k‖ is conserved while the electron is refracted
at the boundary between the crystal and vacuum. In this process the surface-perpendicular
component k⊥ remains undetermined, so that additional information is needed to extract this
value. Ideally, the problem is solved with previous knowledge from theory about the final sta-
tes of photoemission for the investigated system. But often the straightforward approximation
of a free-electron final state is already a very good starting point for describing the photoex-
cited electron within the solid.

In practice, for a fixed photon energy two experimental photoemission modes are most
commonly applied to map the band structure of solids (see Fig. 5.2). Traditionally, complete



5.3 Experimental considerations 161

energy distribution curves (EDCs) were collected for rather few emission angles preferentially
along high symmetry directions of the Brillouin zone. During the acquisition of an EDC,
the variation of Ekin leads to simultaneous variation of the initial and final state energies,
and if an allowed transition lies within the scanned energy window, a peak will appear in
the photoemission signal. As illustrated in Fig. 5.2, an EDC closely corresponds to a (one-
dimensional) vertical cut through (E,k‖) space.

Figure 5.2: Electronic transitions for
fixed photon energy in angle-resolved
photoemission: mapping of the band
structure E(k‖) in the EDC (energy dis-
tribution curve) and PAD (photoelectron
angular distribution) mode. Ei and Ef

denote the initial and final state energy.

In addition to the standard EDC, photoelectron angular distributions (PADs) have become
very popular in recent years. In fact, this new way of data acquisition has turned ARPES into
a powerful imaging technique, especially for Fermi surfaces [1,2]. In a PAD, we measure the
intensity of photoelectrons with constant Ekin (i.e. constant initial and final state energy) as
a function of the emission angles relative to the crystal and thus as a function of k‖. Hence,
a PAD corresponds to a (two-dimensional) horizontal cut through (E,k‖) space, in which
allowed transitions will again appear as a sharp rise in the photoemission signal (see Fig. 5.2).

Essentially, it is the combination of the two experimental procedures for locating energy
bands that makes ARPES such a powerful technique. On the one hand, EDCs allow for a
very accurate determination of band dispersions including band masses, band velocities and
energy gaps, while on the other hand, PADs are used to image the topology of constant energy
surfaces within k-space, particularly of Fermi surfaces.

5.3 Experimental considerations

As outlined above, measuring a PAD consists of sweeping the detected electron emission di-
rection over the hemisphere above the sample surface and recording the photoemission inten-
sity at the chosen kinetic energy. Two different experimental realizations have been followed
for this procedure. First, display-type analyzers are used permitting very efficient parallel de-
tection of a large piece of solid angle [3,4]. But in practice, these analyzers suffer from angular
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distortions and limited energy resolution. Much more accurate measurements are carried out
using sequential data acquisition of one angle or a small angle range at a time. In this second
experimental approach either the sample is rotated and the analyzer is kept fixed in space or
the sample is fixed and the analyzer is swept across the emission hemisphere. The principal
difference between these two techniques is connected with the direction of light incidence: in
the first case it is fixed relative to the electron emission direction, while in the second case it is
fixed relative to the sample normal. Generally, both techniques provide equivalent information
on the location of bands. However, the rotating analyzer technique is often preferred because
the light polarization resides fixed inside the crystal and the resulting PADs thus contain ad-
ditional information on the k‖ dependence of the photoexcitation matrix element which for
example includes information on the orbital character of electronic states.

In the photoemission experiment of the University of Kiel at the Hamburger Synchrotron-
strahlungslabor [5], from which all of the data presented here have been taken, an optimized
hemispherical electron analyzer is rotated across the emission hemisphere by means of a two-
axis goniometer (see Fig. 5.3). Angle-scanning is performed by computer-controlled stepper
motors implementing a very high reproducibility and angular precision of 0.1◦. Typically
more than 3600 positions on the emission hemisphere are uniformly sampled in k‖ and at
each angle several energy channels are detected. The acquisition time is in the range of 5
to 10 hours and energy and angular resolutions of better than 30 meV and 1◦ are routinely
achieved.

Figure 5.3: The ASPHERE spectrometer
of the University of Kiel. The hemispher-
ical analyzer is mounted on a two-axis go-
niometer.

5.4 Photoemission imaging: TiTe2 as a test case

Alongside copper, the layered material TiTe2 may be called the fruitfly of angle-resolved pho-
toemission. TiTe2 is characterized by conventional metallic transport properties, its electronic
structure is simple and well known from both experiment and theory [6, 7], and it exhibits a
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Ti 3d-derived conduction band in close vicinity to the Fermi level whose photoemission spec-
tra are remarkably free from any background or other emissions. Therefore, in many-body
ARPES theory TiTe2 has served as a prominent test case for Fermi liquid-type behavior [8, 9]
as well as for the accuracy of Fermi surface determination [10,11]. In addition, from the view
of photoemission experiment, TiTe2 has the advantage of producing a flat, clean and defect-
free surface after simple cleavage in ultrahigh vacuum.

In order to illustrate the potential of the photoemission imaging technique, we present in
Figs. 5.4(a) and 5.4(c) gray scale intensity maps that were taken from TiTe2 at a photon en-
ergy of 24 eV using EDCs as well as PADs. In Fig. 5.4(a) a complete set of EDCs is shown
taken as a function of angle along certain high symmetry azimuths and then mapped on to
a regular k‖ grid using Eq. (5.2). In this data representation the measured band dispersions
can be compared directly to the corresponding calculated band structure [Fig. 5.4(b)] without
employing any numerical fits. Although the experimental curves are smeared out due to the
finite lifetimes of the initial and final states involved in the electronic transition, the corre-
spondence between experimental and theoretical band dispersions is very good. In particular,
we can identify all the predicted bands in the intensity map and confirm the semimetallic na-
ture resulting from the small band overlap of the Ti 3d-derived band at M and the two Te
5p-dominated bands at Γ.

From the E(k‖) representation of the band structure in Fig. 5.4(a) we can easily under-
stand how the high emission intensities in the PADs in Fig. 5.4(c) are formed: direct tran-
sitions move through the constant energy chosen and lead to a relatively sharp intensity rise
at the crossing k‖. These energy level crossings will naturally have some width in k-space
whereby the sharpness of the crossing mainly depends on the width of the energy peak and on
the band velocity. For a flat dispersion, as e.g. for the Ti 3d band of TiTe2 close to the Fermi
level, the crossings will be rather broad and smeared out. Nevertheless, in the map taken at the
Fermi energy we can clearly identify the well-known Fermi surface topology of TiTe2 with
the Ti 3d-related ellipsoidal Fermi surface pockets centered on the M and M ′ points and the
Te 5p-derived pockets at the Brillouin zone center. In accordance with the calculated band
structure, the Ti 3d emissions disappear at higher binding energies, while the Te 5p emissions
become more intense and develop into a rather complex shape.

All PADs shown nicely reflect the topology of the constant energy cuts through the cal-
culated band structure depicted in Fig. 5.4(d). However, there are some asymmetries in the
measured contour intensities for k‖ points in the Brillouin zone that are otherwise related to
each other by symmetry operations. In particular, two of the ellipsoidal Ti 3d Fermi surface
pockets are almost completely suppressed. These strong photoemission intensity modulations
are caused by the k‖ dependence of the excitation matrix element and are typical for experi-
ments that have been carried out with polarized radiation in the rotating analyzer technique.
In our case, linearly polarized synchrotron radiation enters from the right of the images at an
angle of incidence of 45◦. As can be seen, matrix element effects can obscure the band topol-
ogy in some unfavorable cases, but quite generally we can say that any well-defined feature,
regardless of its intensity, provides information on band locations in k-space.

Now that we have seen the fascinating potential of photoemission imaging in revealing
constant energy surfaces, we have to establish the accuracy of extracting band locations from



164 5 Angle-resolved photoelectron spectroscopy

Figure 5.4: Photoemission images from TiTe2. (a) Band mapping by ARPES: EDCs continuously taken
as a function of polar angle along the ΓM direction and interpolated in k‖ (hν = 24 eV). Photoemission
intensity is represented in a linear gray scale with white corresponding to high intensity. (b) Correspond-
ing theoretical band dispersions [7]. (c) Constant energy surface mapping by ARPES: PADs taken as a
function of energy relative to the Fermi level (hν = 24 eV). (d) Corresponding horizontal cuts through
the band structure E(k‖) at certain values of k⊥ [12].
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Figure 5.5: (a) Angle-resolved photoemission spectra of the Ti 3d-related band along the ΓM direction
of the Brillouin zone (T = 30 K, hν = 19.5 eV). (b) Gray scale representation of the photoemission
spectra with white corresponding to high intensity. The energy versus emission angle dispersion of the
center of gravity of the photoemission peak is indicated by open symbols. The thick solid line represents
a polynomial fit to the data further away from the Fermi level. The extrapolated Fermi level crossing is
at 15.5◦. (c) Photoemission intensity at the Fermi level. (d) Photoemission intensity integrated over the
whole spectrum. Thin solid lines mark the positions of the maximum and the maximum gradient of the
intensity, respectively. The dotted line indicates the Fermi level crossing obtained from (b).

these gray scale intensity maps. For this purpose we concentrate on the problem of Fermi
surface determination. In Fig. 5.5(a) we display high-resolution EDCs measured on the Ti 3d-
derived band of TiTe2 along the ΓM direction of the Brillouin zone at a temperature of 30 K.
For high emission angles the ARPES peaks appear rather broad and asymmetric, while with
decreasing ϑ they narrow considerably and shift closer to the Fermi level. Around ϑ = 16◦
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the photoemission peak seems to have its smallest binding energy and width, and the strong
intensity drop below indicates the Fermi level crossing. An extrapolation of the dispersion of
the peak centroid quantitatively confirms the Fermi level crossing at ϑF = 15.5◦. We have to
note, however, that near ϑF the center of gravity of the photoemission peak is not an adequate
measure of the energy dispersion [see Fig. 5.5(b)].

Since PADs are taken at one single energy, we naturally do not gain information on band
dispersions from these intensity maps. Hence, we need other methods to extract energy level
crossings. In the case of Fermi surface maps, two criteria are most commonly applied to deter-
mine the Fermi vectors. The simplest method is to interpret a local maximum in the detected
photoemission intensity at the Fermi energy as the Fermi level crossing of a conduction band.
We will refer to this approach as the “maximum intensity method”. Although this method
has intuitive appeal and reproduces the band topology quite well [just compare the brightest
contours in Fig. 5.4(c) with the theoretical ones in Fig. 5.4(d)], it is not at all clear how to
justify the maximum intensity method from a physical point of view. In a simple approxima-
tion [13], the photocurrent in an ARPES experiment as a function of wave vector k and energy
ω is given by the product of the transition matrix element I0(k) with the one-particle spectral
function A(k, ω), i.e.,

I(k, ω) = I0(k)A(k, ω)f(ω) (5.3)

where f is the Fermi-Dirac function. Though the spectral function exhibits in some cases a
local maximum at the Fermi level crossing (kF , EF ), the photocurrent will generally not.

Thus, to put the interpretation of Fermi surface maps on a more rigorous basis a second
approach for extracting Fermi vectors has been proposed [10, 14]. This “maximum gradient
method” is justified as follows: under the assumption of a weakly varying matrix element
the energy-integrated ARPES spectrum is proportional to the momentum distribution func-
tion [15]

n(k) =
∫ ∞

−∞
dω f(ω) A(k, ω) (5.4)

and from Fermi-liquid theory it is well known that n(k) drops discontinuously at the Fermi
vector kF . Thus, the location of Fermi vectors can principally be determined from the extrema
of the k-space gradient of the energy-integrated ARPES intensity. In the experimental imple-
mentation of the maximum gradient method photoemission intensity has to be accumulated
over a sufficiently wide energy range, ideally the entire conduction band width. In practice,
the energy integration is often replaced by the finite energy resolution of the photoelectron
spectrometer, but there is nonetheless a need to check on the adequate energy integration win-
dow, especially in the case of overlapping bands, which may lead to spurious peaks in the
gradient map.

In Fig. 5.5(c) and 5.5(d) we present the photoemission intensity at the Fermi level and the
intensity integrated over the whole spectrum as a function of the emission angle. The data
were taken from the EDC series shown in Fig. 5.5(a) with the true, i.e., non-normalized in-
tensity variations. As can readily be seen, both criteria—the maximum intensity as well as
the maximum gradient method—locate the Fermi level crossing at 17.6◦ (k‖ = 0.598 Å−1).
With respect to the value extrapolated from the dispersion of the peak centroid (15.5◦ or
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Figure 5.6: Fermi surface sections of TiTe2 in a high symmetry plane perpendicular to the surface of the
sample. (a) Theoretical Fermi surface (thick solid lines) obtained by bulk band structure calculation [7].
Open circles indicate free-electron final states for several photon energies. (b) Experimental Fermi
surface map obtained by angle-resolved photoemission spectroscopy at photon energies from 11 to 26 eV.
Photoemission intensity is represented in a logarithmic gray scale with white corresponding to high
intensity. (c) Sketch of the Brillouin zone with all relevant high symmetry points.

0.529 Å−1, respectively) this corresponds to an experimental error in Fermi surface determi-
nation of ∆k‖ = 0.069 Å−1 or about 7% of the relevant Brillouin zone dimension. Quite
obviously, this error arises from a strong k‖ dependence of the transition matrix element. In
other systems with stronger band dispersion and less varying matrix element the error in ex-
tracting energy level crossings might be smaller, but in general we have to keep in mind that
PADs and particularly Fermi surface maps are not as reliable as the beauty of the electronic
structures they reveal suggests.
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As mentioned earlier, there is an implicit uncertainty of k⊥ in the photoemission process.
In fact, we do not know a priori at which value of k⊥ the intensity maps in Figs. 5.4(a) and
5.4(c) are taken. The surface-perpendicular component of the wave vector is only implicitly
given by the condition that the photon energy connects initial and final states in a direct tran-
sition. Thus, the determination of k⊥ requires knowledge of the final state band dispersion
which is generally not available. However, final states can often reasonably well be approxi-
mated by a simple free-electron-like dispersion, and we will now establish the precision with
which a three-dimensional Fermi surface is represented by the mapping technique when using
these free-electron final states for data interpretation.

In order to map the shape of a three-dimensional Fermi surface we have to measure the
intensity of photoelectrons emitted from the Fermi level as a function of angle and photon
energy, i.e., we make use of tuneable synchrotron radiation. In Fig. 5.6(b) we show such an
intensity plot for the ΓMAL plane of TiTe2 mapped on to a k⊥ versus k‖ grid. The surface-
parallel component of the wave vector has been determined using Eq. (5.2) and k⊥ has been
calculated from the free-electron formula

Ekin + V0 =
�

2

2m
(k2

‖ + k2
⊥) (5.5)

where V0 denotes the so-called inner potential. In our case, a value of V0 = 14 eV gives
the best fit between the experimental map and the theoretical Fermi surface cut shown in
Fig. 5.6(a): the topology of the calculated Fermi surface with the Te 5p bands close to the ΓA
line and the Ti 3d band near the ML line is clearly mimicked by the measured contours.

From Fig. 5.6 it is obvious that EDCs we refer to as measured e.g. “along the ΓM direc-
tion” are actually not scanned along this high symmetry line but rather along some parabolic
path in the ΓMAL plane. Also, the PADs shown in Fig. 5.4(c) do not reflect horizontal
but parabolic cuts through three-dimensional k-space. However, from the good agreement of
the experimental maps and the constant energy cuts through the calculated band structure in
Fig. 5.4 we can conclude that no pronounced k⊥ effects occur within the individual PADs
from TiTe2. This observation is of course related to the relatively weak three-dimensional
character of this layered material.

The agreement found in Fig. 5.6 for the experimental and theoretical Fermi surface con-
tours puts in evidence that the free-electron final state approximation is a very good starting
point for three-dimensional k-space mapping. Additionally, since the measured contours are
quite sharp, it appears that k⊥ is relatively well defined. We can estimate the uncertainty in
determining k⊥ to about 0.2 Å−1, whereby this error is partly due to the uncertainty associated
with the inner potential of the free-electron final states and partly due to the intrinsic uncer-
tainty in k⊥ which is a consequence of the principal relaxation of k⊥ conservation caused by
the damping of the initial and final states in the solid. So, we finally end up with the con-
clusion that photoemission images are very well suited for mapping band topologies within
three-dimensional k-space, but that the accuracy of extracting exact band locations from these
images is rather limited to about 5 − 20% of a typical Brillouin zone dimension.
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Figure 5.7: Fermi surface mapping of NbSe2 by ARPES at T = 50 K (left panel) and theoretical Fermi
surface obtained by bulk band-structure calculations (right panel). Panel (a) shows the k‖ distribution
of the photoemission intensity measured at hν = 24.5 eV and panel (b) shows the modulus of the
two-dimensional intensity gradient in comparison with the calculated Fermi surface cut at k⊥ = 0. A
possible Fermi surface nesting vector is indicated. The k⊥ dependent Fermi surface mapping obtained
by polar angle scans along the ΓM direction of the Brillouin zone recorded at hν = 10 − 27 eV is
given in (c). The dashed lines illustrate the hν dependence of k⊥ along the zone boundaries. (d) The
corresponding theoretical Fermi surface cut is compared to the locations of the maximum photoemission
intensity gradient (indicated by filled symbols). The respective k⊥ values are determined assuming free-
electron final states. In (a), (b), and (c) the photoemission intensity is represented in a linear gray
scale with white corresponding to high intensity. The Brillouin zone and the high-symmetry points are
indicated.
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5.5 Three-dimensional Fermi surface mapping: NbSe2

As an example where the photoemission imaging technique can provide valuable information
on the underlying physics of an interesting material, we present in Fig. 5.7 Fermi surface mea-
surements on NbSe2 [16]. This layered transition metal dichalcogenide undergoes a second-
order phase transition into an incommensurate two-dimensional charge-density-wave (CDW)
phase at 33.5 K, i.e., below this temperature the conduction electron density and the crystal
lattice are periodically modulated. As confirmed by neutron scattering, the three equivalent
CDW wave vectors of the hexagonal Brillouin zone are aligned parallel to the ΓM directions
and have a magnitude of 0.688 Å−1, this value being slightly temperature dependent [17].

In general, the occurrence of a CDW in low-dimensional materials is explained by an
instability of the Fermi surface with the CDW wave vector given by the so-called nesting con-
dition, which means that the CDW wave vector has to span large parallel portions of the Fermi
surface. Evidently, three-dimensional Fermi surface mapping making use of synchrotron ra-
diation is very well suited to verify this simple picture and probe the parallelism of certain
Fermi surface sheets. And in fact, we find in Fig. 5.7(c) that the critical Fermi surface parts of
NbSe2, i.e., those parts of the central hexagon [see Fig. 5.7(a) and 5.7(b)] that are connected
by the vector indicated in Fig. 5.7(b), are fairly parallel with respect to the k⊥ axis. This
high degree of two dimensionality—even higher than expected from the calculation shown
in Fig. 5.7(d)—strongly suggests that the driving mechanism for the transition into the CDW
state in NbSe2 is indeed a simple Fermi surface nesting. However, this interpretation has to be
contrasted with the fact that the distance between the critical Fermi surface features is larger
than 0.8 Å−1 as we can directly read off from Fig. 5.7(d). Since this value is quite far off the
experimentally observed value of 0.688 Å−1, it becomes obvious that simple Fermi surface
nesting is not a sufficient explanation for the CDW phase transition in NbSe2. Hence, we
have to conclude our brief analysis of Fermi surface topology of NbSe2 here with the state-
ment that an appropriate model for the CDW phase transition in this compound must include
a more sophisticated approach to electron-phonon interaction than the simple Fermi surface
nesting model does.

5.6 Spatial origin of photoelectrons: GaAs(110) surface
states

As we have seen above, angle-resolved photoemission is a very powerful technique for study-
ing the electronic structure of solids. However, in the presented experimental results ARPES
has only been used to investigate the energy positions of valence bands in three-dimensional
k-space. That is, the intensities of the spectral peaks were not analyzed quantitatively and the
information contained in the matrix element prefactor in Eq. (5.3) was omitted. One reason
for this limitation in photoemission studies is the lack of any simple rules for explaining such
spectra beyond those that have been found useful for band mapping. In angle-resolved pho-
toemission the most often applied model is that of direct (wave-vector-conserving) transitions
between bulk bands [20], with the final state often simplified to a plane wave [21]. Beyond
this, free-electron final states with atomic like optical transitions [22, 23] and final state scat-
tering of electrons emerging from a localized core orbital [24, 25] have been used to better
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Figure 5.8: Measured (gray) and calculated (black) photocurrents at k‖ = 0.6 Å−1 for the dangling
bond (left) and back bond (right) surface states of GaAs(110). Azimuthal angles of the incident light are
indicated.

understand the resulting angular distributions in photoemission. Recently, the highly accurate
one-step model of photoemission [26] has been applied to calculate photoemission intensi-
ties [27–29]. Measurements of photoelectron angular distributions (PADs) in combination
with calculations then yield information about wave functions participating in the photoemis-
sion process [30].

Applying the PAD mode of ARPES on cleaved GaAs(110) surfaces we show two ex-
amples for the characteristic angular dependence of the photocurrent delivered by different
surface states (Fig. 5.8). The polar plots show a comparison of experimental (light gray) and
theoretical (dark gray) photocurrents at constant absolute wave vector of k‖ = 0.6 Å−1 for
the dangling bond (left plot) and back bond surface state (right plot) of GaAs(110). Calcu-
lations of the photocurrent were performed in the highly accurate one-step model of photo-
emission [30]. Note the excellent agreement between the experimental and theoretical spectra.
Calculated intensities very well reproduce the characteristic spectral features observed exper-
imentally.

From photoemission experiment alone it is not possible to deduce the spatial origin of
photoelectrons contributing to particular spectral features. In combination with theory accu-
rately describing the experimental spectra, however, such information can be delineated. In
Fig. 5.9 calculations of the back bond surface state photocurrent are shown when the integra-
tion runs over different areas in real space. Partial photocurrents emerging from the middle
and outer areas around the Ga and As surface atoms are shown in comparison to the total
current. The current from the middle region which is the spherical volume between radii of
0.08 and 0.29 Å around the As cores and 0.09 and 0.3 Å around the Ga is magnified by 100
relative to that from the outer region. The outer region is the space outside these spheres.
It is evident that the main contribution to the photocurrent comes from the bonding region.
From the localized middle area arises less than 1% of the total current. Contributions from the
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innermost part are even smaller and completely negligible. This example demonstrates that
measurements of photoelectron angular distributions in combination with theoretical calcula-
tions within the one-step model allow to delineate the spatial origin of VUV photoelectrons.
It may be viewed as an extrapolation of X-ray photoelectron diffraction (XPD) towards low
kinetic energies. Whereas with the effective localization at the core the XPD patterns reflect
the geometry, angle-resolved photoemission in the VUV probes the bonding region with an
intensity distribution showing information about the bonds.

Figure 5.9: Spatial origin of VUV pho-
toelectrons from GaAs(110). Summations
of theoretical photocurrents over different
spatial regimes.

5.7 Angle-resolved photoelectron nanospectroscopy

A more direct approach to spatial resolution in angle-resolved photoemission spectroscopy
could be achieved by focusing the exciting radiation to very small spot sizes which then define
the spatial resolution. Scanning the spot across the sample then provides a spatial resolved
image of the electronic structure. However, spot sizes that can be achieved with 3rd generation
synchrotron light sources are well above the micron scale. Using Fresnel zone plates to further
focus the radiation down to about 30 nm can be achieved today. The intensity contained in the
focus, however, is low such that angle-resolved measurements of photoemission are hardly
possible on acceptable time scales.

Fourth-generation light sources based on free-electron lasers (FEL) will be capable of
producing X-rays of such extreme brilliance that new ways of focusing the radiation will
emerge. A device based on the simple concept of an array of pinholes, could be possible. The
’photon sieve’ [31] exploits the monochromaticity and coherence of light from a free-electron
laser to focus soft X-rays with unprecedented sharpness. The combination of an excellent
focus with extreme flux will provide new opportunities for photoelectron spectroscopy with
highest angle, energy and spatial resolution.
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Figure 5.10: Photon sieve. Tens of thousands to millions of pinholes are arranged to diffract light or
X-rays to a small focus.

Light passing a circular pinhole produces a diffraction pattern of concentric rings of de-
creasing width with increasing radius. If light is passed through a mask made up of the same
pattern of rings a focus is formed. These Fresnel zone plates are used to focus soft X-rays
where conventional optics fail because of strong absorption of all materials in this spectral
region.

The ultimate resolution of a Fresnel zone plate is determined by the width of the outermost
zone. The focal spot is surrounded by rings of intensity (secondary maxima) that blur the
images obtained in X-ray microscopy and scanning spectroscopy.

These limitations can be overcome by using a large number of appropriately distributed
pinholes instead of rings as the diffracting elements. To obtain a distinct first-order focus, the
pinholes have to be positioned such that the optical path length from the source via the center
of the pinholes to the focal point is an integral number of wavelengths.

The diameter of the pinholes is not limited by the width of the corresponding Fresnel zone.
It can in fact be larger and yields a maximal contribution to the focus for a diameter of about
1.5 times the width of the zone. For larger pinholes up to about 2.4 times the ring width the
contribution decreases but it still remains positive. This allows pinholes to be positioned on
Fresnel zones that are narrower than the fabrication limit (20–40 nm) and the spatial resolution
of the optical element could be better than 10 nm.
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Figure 5.11: Intensity distribution on the focal plane of a photon sieve compared to a zone plate. Small-
est structure size for both optical elements is 30 nm. For the photon sieve, the suppression of the sec-
ondary maxima is evident. This provides sharper images. See also color figure on page 466.

Furthermore, with photon sieves, the unwanted ring-like secondary maxima generated by
zone plates can be suppressed. For a zone plate each ring contributes equally to the amplitude
in the focus. This contribution drops abruptly to zero beyond the outermost ring which leads
to strong intensity oscillations in the diffraction pattern. With a photon sieve the number of
pinholes per ring can be readily adjusted to yield a smooth transition which minimizes the
secondary maxima.

The development of fourth-generation synchrotron light sources that deliver coherent radi-
ation in the soft X-ray regime in combination with photon sieves will provide a wealth of new
opportunities in X-ray microscopy, spectroscopy and lithography. Photon sieves for use at the
Hamburg Free-Electron Laser facility (HASYLAB at DESY) are currently being developed.

5.8 Conclusions

Photoelectron spectroscopy with high energy and angular resolutions applied to prototype ex-
amples ranging from two-dimensional layered transition metal dichalcogenides to covalent
semiconductor surfaces has revealed a wealth of new information on the electronic structure
of geometrically well defined samples going far beyond ”simple band mapping” which was
the early domain of angle-resolved photoemission. However, on the way to extract more
subtle information from spectroscopic results sophisticated theories become more and more
important. Imaging wave functions and Fermi surfaces as well as probing spatial distribu-
tions of valence charges at VUV energies and their redistribution during phase transitions or
reconstructions with highest spatial resolutions may be viewed as promising future directions
interfacing experiment and theory.
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Figure 5.12: Schematic of a nanospectroscope capable of recording high-resolution images revealing
chemical composition, morphology, and the electronic properties of materials in the nanometer regime.
See also color figure on page 466.
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6 Electronic states of magnetic materials

Franz J. Himpsel and K.N. Altmann

6.1 Introduction

Interest in the electronic structure of magnetic materials is growing with the advent of new
magnetic materials that are tailored on the nanometer scale for applications in data storage,
permanent magnets, and many other areas. The growing field of magnetoelectronics is based
on the notion that the spin of an electron can play an equally important role as the charge
in microelectronics. In fact, various “spintronic” devices have already been realized, such as
reading heads for hard disks which use the effect of giant magnetoresistance (GMR) in mag-
netic multilayers. The latest improvements of these devices require engineering of magnetic
interfaces down to the atomic scale for achieving maximum spin selectivity. Other mag-
netoelectronic devices have been prototyped, such as the magnetic random access memory
(MRAM). Finally, there is a class that has been conceptually proven to be workable but is not
practical yet, such as spin transistors.

In order to make systematic progress towards improved performance in these devices one
needs a better understanding of the physics behind the phenomena [1]. Photoemission has
proven to be a reliable method of probing the electronic structure of materials [2–4]. Com-
bined with spin detection for the photoelectrons and circular polarization for the photons it is
a powerful technique uniquely-suited for mapping all the quantum numbers of an electron in
a solid. Advances in the energy resolution have made it possible to map out the states that
are relevant to charge transport, magnetic coupling, and magnetic phase transitions. They lie
within thermal energies around the Fermi level (kT = 25 meV at room temperature). Under-
standing the microscopic origin of these phenomena opens prospects for rational synthesis of
nano-structured materials with tailored magnetic properties.

This review begins with a brief outline of the technique in Sec. 6.2. It will be shown how
the observables in angle-resolved photoemission are mapped onto the quantum numbers of the
electrons, resulting in a energy-versus-momentum band structure plot (6.2.1). The technique
will be applied to the several classes of magnetic materials. We begin with delocalized (“itiner-
ant”) electrons, which exhibit significant E(p) dependence (= band dispersion). Examples are
ferromagnetic metals (6.2.2), antiferromagnetic metals (6.2.3), and magnetic alloys (6.2.4).
Then we will discuss the other extreme, i.e., localized states with negligible band dispersion.
These can be understood in terms of the energy levels of an atom surrounded by a small cluster
of nearby ligands. The classic examples are magnetic insulators, such as transition metal ox-
ides, but they also include the parent compounds of high temperature superconductors (6.3.1)
and half-metals (6.3.2), which are insulating for one spin orientation and metallic for the other.
Magnetic semiconductors in (6.3.3) and magnetic alloys in (6.6.2) will introduce the concept
of magnetic doping.
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For each of these classes of materials we will attempt to boil down the complicated band
structure to a few critical features that determine their magnetic properties. These are the
group velocity, the magnetic splitting, and the gaps for charge and spin excitations. Often the
magnetic properties are determined by just a few regions on the Fermi surface. The scope
is expanded from the ground state to finite temperatures, and in particular to the magnetic
phase transition in ferromagnets (6.4.1) and antiferromagnets (6.4.2). Section 6.5 progresses
from bulk materials to multilayer structures, where the electronic and magnetic properties
can be tailored by confining electrons at interfaces with spin-dependent reflection coefficients.
Section 6.6 gives an outlook on the role that multilayer structures play in magnetoelectronic
devices. A connection is made between the electronic properties determined by photoemis-
sion and the desired electronic properties, such as giant magnetoresistance (GMR) and spin-
polarized tunneling.

6.2 Band structure of magnetic materials

6.2.1 Mapping of energy bands

To learn about the electronic states in a material, one has to identify the complete set of
quantum numbers which characterizes an electron in a solid. In a bulk crystal these are energy
E = �ω, momentum p = �k, point group symmetry (the equivalent of angular symmetry in
atoms), and spin [2]. All of these values can be summarized in a E(k) plot with labels for
point group symmetry and spin. Such a band structure plot, or band dispersion, in principle
contains the complete information for characterizing electronic and magnetic properties (for
an overview of band ferromagnetism, see [5]). For example, it is possible to calculate optical
constants from a fit to an experimental band structure [6]. For disordered solids, such as
random alloys, there is a finite momentum spread that leads to smeared-out E(k) relations.
The complete electronic picture will typically contain some localized electronic states with flat
E(k) band dispersions, e.g. the 4f levels in rare earths or the 3d states in ionic compounds,
and delocalized s,p-states with steep E(k) that correspond to a high group velocity vg =
∂E/∂p = ∂ω/∂k. The 3d-levels in the common transition metal ferromagnets Fe, Co, and
Ni lie in between these extremes and have stimulated a long debate over which states are
the most likely to make the biggest contribution to magnetism and transport properties. This
issue becomes moot if one realizes that in a solid the distinction between s,p, and d angular
momentum states becomes blurred because of the lower symmetry, which causes them to
hybridize strongly.

Photoemission and inverse photoemission (Fig. 6.1) provide just the right number of in-
dependent variables for establishing a unique correspondence to the quantum numbers of an
electron in a solid (for reviews on photoemission see [2–4, 7], for inverse photoemission [8–
11]. Photoemission probes occupied states by removing an electron and creating a positive ion
state, inverse photoemission maps out unoccupied states by adding an electron and creating
a negative ion state. The energy of an electron in the neutral ground state is unobservable,
because there is no way to measure it without taking the electron out. At best, one could
preserve neutrality by promoting an electron to a higher-lying bound state. That corresponds
to an electron-hole pair, which is more complicated than a single electron or hole. At kinetic
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Figure 6.1: Photoemission and inverse photoemission as probes of occupied and unoccupied
electronic states. Conservation laws make it possible to determine energy and momentum of
the lower state (l) in the solid from the measured energy and momentum of the upper state (u)
in vacuum by subtracting the photon energy hν. Occupied states correspond to holes and unoc-
cupied states to extra electrons in the solid, a somewhat counter-intuitive notion. The electronic
levels of the neutral ground state are unobservable.

Figure 6.2: The probing depth in photoemission, determined by the mean free path λ of the
photoelectrons. The phase space available for electron hole pair creation increases with the
number of d-holes and shortens the mean free path (from [12]).

energies of 1–100 eV the mean free path of an electron is only a few atomic layers (Fig. 6.2,
[12]). That makes it possible to detect bulk states as well as surface states.

The energy E is obtained from the kinetic energy of the electron. The two momentum
components parallel to the surface, k||, are derived from the polar and azimuthal angles of
the electron (ϑ and ϕ). The third momentum component, k⊥, is varied by tuning the photon
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energy hν. This is achieved by using tunable synchrotron radiation. The polarization of the
photon provides the point group symmetry and the spin-polarization of the electron the spin
quantum number.

Figure 6.3: Energy-versus-momentum band dispersions of ferromagnetic Ni, showing the
parabolic s,p-band crossing the flat 3d-bands [13]. There is an avoided band crossing near
the Fermi level EF , where s,p-states hybridize strongly with 3d-states. The 3d-bands are split
by the ferromagnetic exchange splitting dEex. Modern electron spectrometers with energy and
angle multidetection can map out the bands directly, as shown for the boxed-in area of the band
structure. High photoemission intensity is shown dark.

A typical band dispersion of a ferromagnet is given in Fig. 6.3 for Ni. The calculated E(k)
dispersion contains two sets of bands, the lower-lying majority spin bands (“spin up”) and the
higher-lying minority spin bands (“spin down”). The experiment selects a small portion of
the bands near the Fermi level EF (indicated by a box in the calculated bands). These are
states relevant to transport and magnetic coupling. A pair of spin up/down bands can clearly
be identified close to EF . The bands quickly broaden below EF due to electron-electron
scattering, and the spin splitting fades. Such many-electron effects have not been incorporated
yet in most calculations.

For two-dimensional states, such as surface states and quantum well states, the determina-
tion of energy bands is almost trivial since only E and k|| have to be determined. The state we
wish to learn about is the lower state l in Fig. 6.1 with energy El and parallel momentum k

||
l .
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The information we have is from the upper state u with the observed energy Eu (relative to the
vacuum level) and parallel momentum k

||
u . This state corresponds to the emitted photoelectron

in photoemission or the incoming electron in inverse photoemission. The relations between
them are straightforward due to simple conservation laws for energy, momentum, and spin.
To begin:

|k||
u| = (2mEu)1/2/� · sin ϑ = 0.51 Å

−1 · (Eu/eV)1/2 · sin ϑ (6.1)

Then El and Eu as well as k
||
l and k

||
u are related through conservation laws:

El = Eu − hν (6.2)

k
||
l = k||

u − g|| (6.3)

hν is the photon energy and g|| a vector of the reciprocal surface lattice, which is negligible
for most clean metal surfaces due to the absence of surface reconstruction.

For three-dimensional bulk states we need the perpendicular momentum k⊥. It is not
conserved when the electron crosses the surface barrier, requiring more elaborate methods
[2]. At high enough electron energy (typically > 20 eV) the upper state can be approximated
inside the solid by the parabolic band of a free electron, shifted by an inner potential V0. That
provides an additional equation for determining k⊥:

Eu ≈ �
2/2m · k2

u + V0 = 3.81 eV · (k||
u

2
+ k⊥

u

2
) · Å

2
+ V0 (6.4)

A typical value of V0 is −13 eV relative to the vacuum level Evac, or −8 eV relative to the
Fermi level EF , using a typical work function Φ = Evac−EF ≈ 5 eV. For transitions between
bulk states inside the solid one has full k conservation, therefore:

k⊥
l = k⊥

u (6.5)

The accuracy of the nearly-free electron approximation for the upper band can be tested by
symmetry checks and by taking data from surfaces with different crystallographic orientations,
as shown in Fig. 6.3. Here the s,p-band is mapped along the [1 1 0] line in k-space (= Σ) using
two different crystal surfaces of Ni at different photon energies hν. Equation (6.4) is used to
locate the spheres in k-space where the transitions occur at a given hν (see Fig. 4 in [13]). For
Ni(100) and hν = 44 eV one starts from Γ(2,0,0) at k||= 0 and moves towards X(2,1,1) at k||

= (0,1,1) (in units of 2π/a). For Ni(110) and hν = 27 eV one moves in the reverse direction
from X(1,1,0) at k||= 0 to Γ(0,2,0) at k|| = (1, 1, 0). The band dispersions in Fig. 6.3 are
nearly mirror images of each other, as expected in the nearly-free electron approximation.
The k scales coincide after subtracting the k|| values of the Ni(110) data from that of Γ(0,2,0),

which is
√

2 · 2π/a = 2.52 Å
−1

.
The data in Fig. 6.3 were obtained with a state-of-the-art photoelectron spectrometer [14]

which incorporates multidetection of energy E and polar angle ϑ. The E(k||) band dispersion
can be viewed directly on a television monitor. In fact, the results in Fig. 6.3 represent the
time-average of such an image with the contrast inverted (high photoemission dark). Having
angle multidetection is quite useful for mapping states at the Fermi level via a momentum
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distribution curve (MDC) at constant energy, which corresponds to a horizontal cut in Fig. 6.3
(compare Sec. 6.2.4 and Fig. 6.8 below). Such a spectrum focuses on the sharp states at EF

that are relevant to magnetism and transport properties. Traditional spectrometers provide an
energy distribution curve (EDC) at constant momentum, i.e., a vertical cut in Fig. 6.3. In that
case the lifetime broadening varies across the spectrum, leading to distorted, asymmetric line
shapes. In MDCs one finds simple Lorentzians with a single lifetime broadening.

The spin assignment of the data in Fig. 6.3 is obvious after comparing the two bands
with the calculation, even though the experiment was done without explicit spin analysis. In
more general cases, such as alloys or quantum wells, such an assignment cannot be taken for
granted and an explicit spin analysis is needed. Spin polarized photoemission provides direct
information about the spin of an electron band by measuring the spin of the photoelectrons
and using the conservation of spin during the photoemission process (for reviews see [7, 15].
A typical system combines a hemispherical energy analyzer with a Mott detector. The photo-
electrons are accelerated to 20–100 keV and scattered off a gold or thorium foil. Spin in the
up/down direction give rise to a right/left asymmetry in the Coulomb scattering off the nuclei
due to spin-orbit interaction [15]. A difficulty of spin-polarized photoemission experiments
is the inefficiency of a Mott detector. A common figure of merit is η = S2I/I0 measuring
the ratio of the scattered and collected current I to the incident current I0, and multiplying
by the Sherman function which quantifies the discrimination between spin up and down. A
typical value of the Sherman function is 10−4, making spin-polarized photoemission a rather
inefficient process compared to regular angle-resolved photoemission. Up to now, a choice
has to be made between either resolving spin or resolving energy better than kT, but with the
brightest synchrotron light sources it might become possible to achieve both. Spin-polarized
inverse photoemission [16] uses a spin-polarized electron source, which typically consists of
a cesiated GaAs surface illuminated with circularly-polarized light at the photoelectric thresh-
old.

So far we have considered states consisting of a single electron or hole. In addition, there
are two-electron excitations (such as electron-hole and hole-hole pairs) and many-electron
excitations, such as spin waves. These can be described by an E, k diagram, too, where E and
k are the collective energy and momentum (Fig. 6.4).

In a ferromagnet, a special type of electron-hole pair can be created by a spin-flip transi-
tion from an occupied spin-up band to the unoccupied portion of a spin-down band (Fig. 6.4a).
At zero momentum transfer the energy of the spin-flip excitations corresponds to the magnetic
exchange splitting δEex which separates spin up and spin down bands (Fig. 6.4b). Although
forbidden for photons, such an electron-hole pair can be excited with electrons [17]. A mini-
mum energy ∆S is required in ferromagnets with a filled majority spin band, such as Co and
Ni (“strong ferromagnets”). This Stoner gap ∆S can be read off the band structures in Fig. 6.5,
neglecting electron-hole interaction. In Co, it spans from L3 = Γ−

5 to EF and in Ni from X5

to EF . Fe lacks such a gap since the top of the majority spin band at H′
25 lies above the Fermi

level. The results are summarized in Table 6.1.
Hole-hole pair excitations are observed for 3d transition metals. The classic example is

a satellite in the photoelectron spectrum of Ni at 6 eV below EF which has been assigned to
two d-holes on the same site [18, 19]. This peak takes away spectral weight from the single-
particle bands all the way up to the Fermi level [20–24]. For example, the width of the d-bands
is reduced by 40% in Ni and theFermi velocity diminishes accordingly. Furthermore, the two-
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Figure 6.4: Magnetic excitations involving more than one electron or hole. They can be classi-
fied into electron-hole pairs (Stoner excitations) and spin waves (from [151]).

Table 6.1: Magnetic exchange splitting δEex and Stoner gap ∆S of the elemental ferromagnets,
compared to the magnetic moment µ.

Fe Co Ni Gd5d Gd4f

µ [µB] 2.2 1.7 0.6 0.6 7
δEex [eV] 1.8 – 2.4 0.93 – 1.05 0.17 – 0.33 0.8 12

[37] [37] [37] [34, 42, 162] [195, 196]
∆S [eV] – 0.35 0.11 – –

[197] [22, 198]

hole satellite is spin-polarized [25, 26] and thus affects the bands for spin-up and spin-down
differently. As a consequence, the measured magnetic splitting in Ni is 2–3 times smaller than
expected from local density calculations for the ground state.

The fundamental many-electron excitation is a spin wave or magnon, (see Fig. 6.4b). Spin
waves are probed by neutron scattering. They start out with a well-defined, parabolic E(k)
dispersion at k = 0 that broadens out when reaching the electron-hole pair excitations above
the Stoner gap. Special spin wave modes develop at surfaces and in multilayers due to the
altered boundary conditions [27, 28].

6.2.2 Ferromagnetic metals

The experimental bulk bands of the elemental ferromagnets Fe, Co, Ni, and Gd are shown
in Fig. 6.5. These are empirical fits using a combined interpolation scheme [6, 29] which
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Figure 6.5: (a) Bulk band structure for ferromagnetic Fe, Co, Ni, and Gd [1].

condense a variety of angle-resolved photoemission data into a coherent set of bands. First
principles, local density calculations work well for Fe [30–32]. However, they have difficulties
explaining the magnetic splitting and d-band width in Ni due to the neglect of two-hole exci-
tations in the spectral function (see above). There have been efforts to take two-hole effects
into account, starting with tight binding models and evolving towards first principles methods
[21–24].

The 3d transition metals are all characterized by a steep s,p-band dispersing across a region
of flat d-bands, as exemplified most clearly for Ni in Fig. 6.3. The d-states disperse less than
the s,p-states because they are more localized. That results in less overlap between adjacent
atoms and a smaller energy spread between bonding and antibonding combinations of d-states.
To a first approximation, the s,p-band can be approximated by a parabolic free-electron band
whereas a d-band resembles a flat, atomic level. If s,p- and d-states have the same point group
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Figure 6.5: (b) Bulk band structure for ferromagnetic Fe, Co, Ni, and Gd [1].

symmetry an avoided level crossing occurs, where the band has both s,p- and d-character. That
happens for Ni close to the Fermi level (Fig. 6.3, box) for the Σ1 states with s,pz ,d2

z- character
along the [110] direction. As the atomic number increases from Fe to Co and Ni, the d-bands
become increasingly-filled. The Fermi level moves past the top of the majority spin d-band in
Co and Ni and creates a Stoner gap ∆.

In addition to the stable phases fcc Ni, hcp Co, and bcc Fe there exist additional phases
that can be stabilized in thin films, such as fcc Co and Fe. Their band structures are also
given in Fig. 6.5 in order to demonstrate the possibilities for altering the electronic structure
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Figure 6.5: (c) Bulk band structure for ferromagnetic Fe, Co, Ni, and Gd [1].

of ferromagnets in thin films. The band topology and exchange change dramatically when
going from bcc to fcc Fe. More details on these phases can be found in Sec. 6.4 of [1].

The rare earths exhibit additional f-states, which are so localized that they do not exhibit
any measurable band dispersion. Gadolinium is the prototype rare earth ferromagnet. The oth-
ers exhibit complicated, temperature-dependent magnetic order including antiferromagnetism
and spiral spin waves. Since the f-shell is half-filled and fully-polarized in Gd according to
Hund’s first rule, one has an occupied f-level occupied by 7 spin-up electrons, combined with
an unoccupied f-level containing 7 spin-down states (see Fig. 6.13 below).
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(d) (e)

Figure 6.5: (d), (e) Bulk band structure for ferromagnetic Fe, Co, Ni, and Gd [1].

Apart from their dispersion, the s, p, d, and f states can be distinguished by the behavior
of their cross sections with photon energy. For example, s,p-states dominate at low photon
energies (below 10 eV), d-bands start at about 20 eV, and f states turn on above 30 eV. This
behavior is determined by the overlap between the wave functions of the initial and final
states in the matrix element for the optical transition from initial to final state. d- and f-
states are more localized and require a shorter wavelength, thus higher energy of the final
state for a match. An additional trick for selecting states with a particular angular momentum
character is resonant photoemission [18, 19, 33–35]. This is an interference effect between
a strong, l → l+1 core-to-valence transition and the valence-to-continuum photoemission
process. The 3p → 3d or 2p → 3d transitions enhance the 3d-states in transition metals
(particularly excitations with two 3d holes), and the 4d → 4f or 3d → 4f transition bring
out the 4f–states in rare earths. Taking the difference between a photoemission spectrum at
resonance and a few eV below discriminates the d- or f-states from ligand states.
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Figure 6.5: (f) Bulk band structure for ferromagnetic Fe, Co, Ni, and Gd [1].

The magnetic exchange splitting δEex between majority and minority spin bands is the key
feature of a magnetic band structure. In a ferromagnet it is directly related to the imbalance
in the occupation of majority and minority spin bands that creates the magnetic moment. As
the magnetic moment increases, so does the magnetic splitting (see Table 1 and [36, 37]).
Figure 6.6 shows results for δEex in Fe from spin-resolved photoemission [38] and inverse
photoemission [39, 40]. In transition metals most of the moment is carried by the 3d electrons
(about 110%), whereas the s,p-electrons are weakly-polarized in the opposite direction (about
−10% of the total moment). For Gd one has a total moment of 7.6µB carried mostly by the
4f electrons (7µB), with the 5d electrons contributing 0.6µB .

There is some variation of δEex with momentum k, which appears to be mainly tied to
the symmetry of the bands. In Ni, bands with t2g(Γ′

25X5) symmetry have a larger splitting
than those with eg (Γ12, X2) symmetry, e.g., 0.33 eV versus 0.17 eV [21, 22]. This varia-
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Figure 6.6: Observation of the ferromagnetic exchange splitting δEex in Fe by spin-polarized
photoemission (left [38]) and by inverse photoemission (right [40]).

tion blurs the expected correlation between δEex and the magnetic moment. Nevertheless, the
momentum- and symmetry-averaged value of δEex turns out to be an indicator of the local
magnetic moment for 3d transition metals, not only for ferromagnets but also for antiferro-
magnets and, in the absence of long-range order, for spin glasses and free atoms. As a rule of
thumb, the 3d moment is about 1 Bohr magneton per eV exchange splitting [37]. This trend
provides a quick first look at the size of the local moments in thin films and monolayers. It is
interesting to note that the δEex/µ ratio is connected to the exchange integral I which appears
in the Stoner criterion for ferromagnetism (see Sec. 6.4.1).

Surface states play an important role in transition metals and rare earths because the d
orbitals are fairly directional and act similar to broken bond orbitals on semiconductors. As in
the bulk, there exist d-like and s,p-like surface states, with d-states carrying most of the spin-
polarization. Typically, their ferromagnetic exchange splitting is more than twice as large as
that of s,p-states. A typical d-like surface state is seen on Fe(100) by photoemission [41], and
s,p-like states have been found on Ni by inverse photoemission [5, 11]. The Gd(0001) surface
exhibits an interesting d2

z surface state that straddles the Fermi level. The majority component
is seen with photoemission [42], the minority component with inverse photoemission [43, 44],
and both states are accessible to scanning tunneling spectroscopy [45]. Having two states with
opposite spin close to the Fermi level in Gd has made it possible to perform spin-polarized
scanning tunneling microscopy [45]. The spin distribution of this surface state is discussed in
more detail in [11] and [199].
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6.2.3 Antiferromagnetic metals

Antiferromagnets exhibit a band structure with a magnetic splitting, too, such as shown in
Fig. 6.7 for Cr [46]. However, the splitting occurs only at special points in k-space. These
are related to of the extra reciprocal lattice vectors induced by the antiferromagnetic spin
ordering. A doubling of the unit cell in real space by the anti-ferromagnetic order cuts the
unit cell in reciprocal space in half. At the new zone boundary the extra potential induced
by antiferromagnetic order creates small band gaps. These have magnetic character. The
antibonding state at the upper end of the gap corresponds to a spin-down electron at a spin-up
site and vice versa, the bonding state at the lower end of the gap is a spin-up electron at a spin-
up site (or a spin-down electron at a spin-down site). This is rather similar to the situation in
a ferromagnet. States that are locally in the minority lie at higher energy than local majority
states.

In antiferromagnets with localized states there is little E(k)-dispersion, and one would
expect the splitting to extend throughout most of the Brillouin zone, such as in oxides or in the
parent compounds of high temperature superconductors. Such a situation can be described by
a pair of Hubbard bands, each containing only one electron per unit cell (see Sec. 6.3).

6.2.4 Magnetic alloys

Determining the band structure of an alloy brings up conceptual questions. Is there a separate
set of bands for each of the constituents, or is there a common band structure? Is there a
difference between an ordered alloy and a random alloy? Band calculations have been per-
formed for both cases [47–50]. An ordered alloy is equivalent to a superlattice, which gives
rise to a dense set of backfolded bands that are difficult to disentangle. For a random alloy the
bands remain simple, but they are expected to broaden according to band calculations using
the coherent potential approximation.

With dilute magnetic alloys it is interesting to pursue the concept of magnetic doping
(compare also Sec. 6.3.3 on magnetic semiconductors). There is a rapidly-developing field of
magnetoelectronics with the goal of replacing charge currents by spin currents (see Sec. 6.5).
By analogy with semiconductor electronics, one might be able to use spin-polarized impurities
for shifting the balance between spin up and spin down carriers. In addition to manipulating
the carrier density n there is the option of affecting the mean free path l using spin-selective
scattering at magnetic impurities.

There is great interest in finding materials that approach 100% spin-polarization at the
Fermi level and allow the injection of fully spin-polarized currents. Theoretically, this feat
should be achievable with half-metallic ferromagnets which are metallic for the majority-spin
electrons but semi-conducting for minority-spin. Among them are transition metal alloys,
such as the Heusler alloys. Half-metals will be discussed in the context of oxides (Sec. 6.3.2).

Permalloy (Ni0.8Fe0.2) can be chosen as a prototype magnetic alloy. It is probably the
most common material used in the magnetic data storage industry and plays a role equally as
important as silicon in that sector of microelectronics. And yet, very little is known about the
electronic structure of permalloy. There have been measurements of electronic states using
photoemission [51–54], inverse photoemission [55], and appearance potential spectroscopy
[56]. None of them provides a systematic mapping of the energy bands. This is in contrast
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Figure 6.7: Fermi surface (top) and magnetic splitting (bottom left) of antiferromagnetic Cr
(from [46]). The magnetic δEex splitting is labeled as ∆ in the lower left. It vanishes above the
Néel temperature (lower right). High photoemission intensity is shown bright.

to the extensive photoemission work on the energy bands of pure Ni [20, 22, 29, 57–62].
Calculations of the energy bands of permalloy and the related ordered alloy Ni3Fe exist [48,
50, 63, 64]. However, one expects fairly large deviations from experiment for ground state
calculations based on the difficulties explaining the band width and exchange splitting of
Ni [20]. Fermi surface techniques, such as the de Haas van Alphen effect [65, 66], have
difficulties handling alloys because of the reduced mean free path.

The band structure of permalloy has been mapped recently [67]. It closely resembles the
bands of Ni along the ΓΣKSX line, except when approaching the Fermi level. The most
obvious difference is in the line width of the minority spin state (see Fig. 6.8). While the
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Figure 6.8: Momentum distribution curves (MDCs) of Ni and Ni0.8Fe0.2 (permalloy), taken at
the Fermi level. Data on the left [67] are compared to a local density calculation on the right
(from [64]). A small amount of Fe introduces a large momentum broadening of the minority spin
states, i.e. it shortens the mean free path of minority spins and acts as spin filter. A mechanism
based on scattering at spin-dependent potential barriers is shown in Fig. 6.9.

spin-up peak remains as narrow as in pure Ni (0.046 Å
−1

), the spin-down peak broadens
by a factor of five to 0.22 Å−1. The inverse of the width corresponds to the mean free path
[53, 67]. It is reduced from > 22 Å in Ni to 5 Å for minority spins in permalloy (for a
similar analysis on other alloys, see Sec. 6.6.2 and [67]. Secondly, the magnetic splitting
is slightly larger in permalloy than in Ni (δEex = 0.27 eV versus δEex = 0.23 eV). The
larger magnetic splitting of permalloy reflects its increased magnetic moment (1.0 µB versus
0.6 µB in Ni [68, 69], following a general trend in 3d transition metals [37]. One of the
other important parameters for magnetic transport that can be discerned from a band structure
plot is the group velocity vF = ∂E/∂p = �

−1∂E/∂k. In permalloy, the measured group
velocity is 0.22 ± 0.02 · 106 m/s. This compares quite closely to the value measured for Ni,
vF = 0.28 · 106 m/s.

These band structure studies of permalloy allow extrapolation with regard to basic con-
cepts about the band structure of alloys in general [70]. Overall, the results fit into a model
that contains two competing energies, the band width W and the splitting δ between the bands
of the two constituents. These numbers have to be considered for each band separately, in-
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Figure 6.9: Model for spin-selective elastic scattering induced by impurities, with Fe and Cr in
Ni as examples [67].

cluding spin. Estimates of W and δ can be obtained from the bands of pure Ni and fcc Fe in
Fig. 6.5. For W>δ we can neglect the splitting between the bands to first order and arrive at a
common band that is slightly broadened by an amount δ compare [71, 72]). For W < δ we ar-
rive at two separate bands. In permalloy, the s,p-band has a large width W ≈ 10 eV (Fig. 6.3)
which explains why we do not observe a separate s,p-band for Fe upon alloying. The d-bands
need to be considered individually for each spin. As shown schematically in Fig. 6.9, the
d-bands line up for majority spin but are separated by δd ≈ 0.8 eV for minority spin. There-
fore, one might expect a common majority d-band but separate minority d-bands. A second,
Fe-like minority d-band would be consistent with the changes observed in the Fermi surface
at higher Fe concentrations [73]. This extra d-band is expected to be mostly unoccupied due
to the larger magnetic splitting of Fe, which matches its larger magnetic moment (2.7 µB for
Fe vs. 1.0 µB for Ni in permalloy [74]). Near the Fermi level we have an avoided crossing
of the s,p- and d-bands (compare Sec. 6.2.2 and Fig. 6.3). That makes W comparable to δ.
Therefore, neither of the simple limits applies, and one has to rely on sophisticated first prin-
ciples calculations. These have been performed recently for permalloy [64] and clearly show
the strong broadening of the Ni minority band by alloying with Fe (Fig. 6.8 right).

6.3 Magnetic insulators

Magnetic insulators are typically ionic compounds, where the electrons relevant to magnetism
become localized at a transition metal or rare earth ion. Examples are halides and oxides, the
undoped parent compounds of high temperature superconductors, and the manganites, which
exhibit colossal magnetoresistance (CMR). They can be ferromagnetic, antiferromagnetic, or
ferrimagnetic. Their electronic structure is driven by strong correlations between localized
electrons, which give rise to a wealth of interesting electronic phenomena including magnetic
phases and metal-insulator transitions (for a review see [75]). Among the large variety of
such compounds we focus on a few to demonstrate the principles of classifying electronic
states that are localized. Some related materials are treated in other sections, such as the
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Figure 6.10: Level schemes explaining the energies relevant for localized electronic states and
metal-insulator transitions (compare [75] and Eqs. (6.6), (6.7)). For a half-filled band, the (un-
observable) ground state level (left) is split by the Coulomb interaction U into a positive and
negative ion state (right), which represent photoemission and inverse photoemission. The charge
energy ∆ promotes an electron from a ligand L (for example oxygen) to a transition metal site.
These levels are further split by the crystal field (below).

parent compounds of high temperature superconductors in Sec. 6.3.2 and half-metallic oxides
in Sec. 6.3.1.

In many of these compounds the magnetic states are so localized that their band dispersion
becomes small compared to the interactions that give rise to level splittings in atoms. There-
fore, an atomic picture has been the preferred way of describing them (Fig. 6.10) and the band
dispersion is added afterwards. d-electrons in transition metals and f-electrons in rare earths
and actinides are assumed to be localized to specific atomic sites in the crystal lattice. An
important interaction in a localized electron system is the on-site Coulomb energy U, which
is the energy cost of creating a positive and a negative ion from two neutral sites i and j.

dn
i + dn

j + U −→ dn−1
i + dn+1

j dn
i = ground state (6.6)

Going from left to right we have removed a d-electron from site i and added it to site j. That
is the basis of the classic Mott-Hubbard theory of metal-insulator transitions [76–78]. The
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energy U splits an normal band into two Hubbard bands (Fig. 6.10 top). The lower Hubbard
band corresponds to the photoemission state, where an electron has been removed from a
site and has lost its Coulomb binding energy to the hole in the emission process. The upper
Hubbard band is the inverse photoemission state, where an electron has been added to a site
against the Coulomb repulsion by the electrons that are already there. Each of these contains
one electron per unit cell, while a normal band holds two electrons, one spin-up and one
spin-down. A normal band is metallic when half-filled, but becomes insulating if it splits into
two Hubbard bands, as long as their separation U that is larger than their band width W. The
magnetic exchange splitting δEex (see Sec. 6.2.2) adds to the Coulomb splitting U. These two
quantities are frequently lumped together and their sum is labeled U or δEex. For localized
electrons the Coulomb part U dominates over the magnetic part δEex, e.g. U ≈ 7 eV in NiO
[79] compared to δEex ≈ 1.3 eV [80]. A second important energy in the system is the charge
transfer energy ∆ (Fig. 6.10 top). It is defined as the energy required to remove an electron
from a ligand and add it to a localized d-site:

dn
i + ∆ −→ dn+1

i L dn
i = ground state (6.7)

L stands for a ligand hole, e.g., O1− instead of O2−. This energy scale is included in the
Anderson Hamiltonian [81]. The two most significant interactions U and ∆ can be normalized
to smaller, third energy scale T, which describes the hybridization between the localized d-
states and the ligand, e.g., Ni3d and O2p in NiO. That leads to a general classification scheme
for transition metal compounds [82]. Various regions in the U/T versus ∆/T “phase” diagram
describe materials as diverse as Mott-Hubbard insulators, charge-transfer semiconductors, d-
band metals, and “p”-type metals, where the holes reside in the ligand valence band (e.g., Mn
in GaAs, see Sec. 6.3.3). The band gap Eg can be calculated if a fourth energy scale W is
included, which represents the width of the ligand band.

All these interaction energies can be extracted from the photoemission and inverse photo-
emission spectra, such as those shown in Fig. 6.11 for NiO [75, 83–88]. The ground state con-
figuration of NiO is predominantly d8 (i.e., Ni2+O2−) with an admixture of d9L (Ni1+O1−).
Photoemission removes an electron and leads to states, such as d7, d8L, d9L2. Inverse pho-
toemission (= bremsstrahlung isochromat spectroscopy BIS) adds an electron and creates the
d9, d10L states. They can be assigned on the basis of cluster calculations that produce an
atomic-like level spectrum [79, 82, 87, 89]. That provides values of the relevant energies in
NiO: U ≈ 7 eV, ∆ ≈ 4 eV, Eg ≈ 4 eV, T ≈ −1.4 eV [79]. Going across the series of
transition metal oxides one finds that U increases when the 3d-shell becomes filled, due to the
stronger localization of the 3d orbitals by the higher nuclear charge. ∆ decreases across the
transition metal series because the higher electronegativity makes it easier for the transition
metal to pick up an electron from the ligand [75].

Note that the sign of the energy is reversed when comparing a photoemission spectrum
[86] to a total energy diagram [82]. For example, if the total energy of d7 is higher than d8L in
Eq. (6.7), then the d7 peak comes out lower in the photoemission spectrum (Fig. 6.11), where
the kinetic energy of a photoelectron is plotted. Promoting an electron to a higher energy state
costs energy. Thus, the kinetic energy of the photoelectron is reduced. In all our figures we plot
energies appropriate for photoemission spectra (see Figs. 6.10, 6.11, 6.13), but Eqs. (6.6), (6.7)
are for total energies. This reversal does not happen for inverse photoemission because one
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Figure 6.11: Interpretation of photoemission (PES) [83] and inverse photoemission (BIS) [86]
of NiO in terms of localized states along the lines of Fig. 6.10 (from [86]; compare [75, 87]).

deals with electrons and not holes. After reversing the signs of photoemission (= positive ion)
states in Eqs. (6.6), (6.7) one can use the assignment in Fig. 6.11 to find approximate values for
U and ∆: U = (d9−d8) + (d8−d7) =d9−d7 ≈ 11 eV and ∆ =d9L−d8 ≈d9L2−d8L≈ 6 eV.
We have added a ligand hole L to the definition of ∆ in Eq. (6.7) in order to get away from
neutral states and move to the positive ion states seen in photoemission. Adding a ligand
hole does not introduce a Coulomb energy in this simplest approximation, while adding a
d-hole would. Other level assignments in Fig. 6.11 can be used as well [82]: U+∆ =d10L -
d9 ≈ 14 eV and U−∆ =d8L−d7 ≈ 4 eV. The sum and difference give U = 1/2 [(d10L−d9) +
(d8L - d7)] ≈ 9 eV and ∆ = 1/2 [(d10L−d9)− (d8L - d7)] ≈ 5 eV.

The band gap is given by the spacing between the photoemission and inverse photoemis-
sion spectra. One obtains Eg ≈ 4.3 eV for NiO in this fashion by taking the half-height of
the first peaks as band edges [86]. Care has to be taken with these insulating samples to make
sure that there is no charging or resistive voltage drop, particularly for inverse photoemission
where the current is higher. An extrapolation from elevated temperature (200◦C) to room
temperature and from typical currents of 100 µA to zero current was required in this case.



6.3 Magnetic insulators 197

There are two general types of insulators (Fig. 6.10 top). For ∆ > U one has a Mott-
Hubbard insulator, where the gap occurs between the dn−1

i and dn+1
j states. Eg scales linearly

with U. For ∆ < U a charge transfer insulator is formed. The bottom of the gap corresponds
to a ligand hole dn

i L instead of a d-hole dn−1
i . Eg scales linearly with ∆. The opposite trends

of U and ∆ with d-band filling produce Mott-Hubbard insulators for a nearly empty d-shell
and charge transfer insulators for a nearly-filled d-shell.

In the assignment of the features in Fig. 6.11 to Ni3d versus O2p holes it is useful to vary
the photon energy hν. The O 2p states are strong for hν ≤25 eV, the Ni3d states become
strong at high hν and at the Ni3p resonance (hν = 66 eV, see Fig. 6.11 bottom curve [83,
90]).

Figure 6.12: Angle-resolved photoemission from NiO and CoO showing both localized and delocalized
states (flat versus dispersing bands) [91].

Band dispersions are resolvable for the more delocalized ligand bands by angle-resolved
photoemission, as shown in Fig. 6.12 for the O2p bands in NiO and CoO [91–93]. They
are well described by local density calculations. It is even possible to discern a back-folding
of the bands due to the extra reciprocal lattice vectors in the antiferromagnetic phase. For
the ligand band width in NiO and CoO one obtains W ≈ 4 eV. The dispersion of localized
transition metal d-bands is barely detectable beyond the broadening of these bands. They
are at least a factor of 4 narrower than calculated, showing that the localized 3d states are
better treated as atomic levels. For describing both the localized transition metal states and the
delocalized ligand states it is necessary to extend band calculations of the neutral ground state
to the excited state in photoemission, where a hole is present. Such quasiparticle calculations
have begun for NiO [94]. Qualitatively, one might think of the bands in Fig. 6.12 as hybrids
between the Ni3d and O2p states in Fig. 6.10 bottom. Interaction between the two leads
to bonding/antibonding combinations. The bonding part has mostly O2p character and is
delocalized, as evidenced by the measured band dispersion in Fig. 6.12. The antibonding part
has localized Ni3d character and corresponds to the nearly dispersionless upper band.
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A full explanation of the NiO spectra in Fig. 6.11 needs to take the Ni4s,p states into
account, not only the Ni3d and O2p states. Because of the charge transfer from Ni to O, the
Ni4s,p states are unoccupied and show up in the inverse photoemission spectrum. They are
best seen at low photon energies where the cross section for the Ni3d states has not yet turned
on (see [95, 96]).

One more refinement of the level diagrams is the inclusion of multiplet splittings. They
are a combination of two comparable interactions, i.e., the Coulomb-exchange interaction
between all the electrons in the d-shell and the crystal field splitting. The many-electron mul-
tiplets essentially spread each dn configuration into a whole spectrum of levels as indicated
in Fig. 6.11 (for details we refer to [75]). The crystal field splitting is shown in Fig. 6.10
bottom for typical cases. A cubic crystal field splits the five atomic d-levels for each spin into
two manifolds, a doubly-degenerate eg = Γ12 level containing the dx2−y2 and d2

z states and
a triply-degenerate t2g = Γ′

25 level encompassing the dxy , dyz , dzx states. The sign of the
splitting provides additional information. It reverses itself between octahedral and tetrahedral
environments, with the octahedral coordination typical for transition metals and their oxides.
Examples are the Γ points in the band structures of the cubic transition metals Ni and Fe in
Fig. 6.5 and the energy level schemes for CrO2 and LaCaMnO in Fig. 6.13. Such level split-
tings are essential for understanding the 100% spin-polarization in half-metals (Section 6.3.2)
and the effect of colossal magnetoresistance (CMR) in manganites. The alignment of the tran-
sition metal d-manifold with respect to the oxygen 2p levels changes as the d-shell fills up. If it
is nearly empty, the d-levels are high and cause an interaction of the t2g states with the O2px,y

states (see CrO2 in Fig. 6.13). A nearly-filled d-shell lies lower and causes an interaction of
the eg states at the top with the O2px,y states (see La2CuO4 in Fig. 6.13 and high temperature
superconductors).

Figure 6.13 gives an overview of the level structures that are encountered with increas-
ing number of d-electrons. They represent a best estimate based on available photoemission,
inverse photoemission, and optical data combined with the results of first principles calcula-
tions, such as local spin density + U or Hartree-Fock-Slater (for Gd see [97, 98] for CrO2 see
[99–102], for LaCaMnO see [103–106], for NiO see [75, 86–89, 91, 92, 107], for CuO see
[75, 108], for LaCuO see [35, 109]).

6.3.1 Magnetic superconductors

Despite the competition between magnetism and superconductivity there are examples of
magnetic superconductors. Superconductivity coexists with antiferromagnetism in ternary
rare earth (RE) compounds, such as (RE)Mo6S8, (RE)Mo6Se8, and (RE)Rh4B4 (for an over-
view, see [110, 111]). More complicated spiral spin structures occur in other superconducting
rare earth compounds. Ferromagnetism is more difficult to reconcile with superconductivity,
unless the pairing is p-wave. In that case the spins are parallel, whereas they are anti-parallel
for conventional s-wave or d-wave pairing. Strontium ruthenate is a p-wave superconductor
that is almost ferromagnetic (for photoemission results see [112, 113]). The possibility of
a ferromagnetic surface phase is still being debated [114, 115]. ZrZn2 is a superconducting
ferromagnet with p-wave or inhomogneous s-wave [116].

A different class of ferromagnetic superconductors is based on the layered perovskite
structure of the high temperature superconductors. Ru1−xSr2GdCu2+xO8 is predominantly
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Figure 6.13: Semi-quantitative level diagrams for localized states with d- and f-electrons, based
on photoemission, inverse photoemission, the optical band gap, and calculations (local spin den-
sity + U). The t2g levels and then the eg levels gradually become filled as the d-count increases
from left to right and top to bottom. EF corresponds to the neutral ground state, states below
EF are position ion states corresponding to photoemission (with an electron removed to infin-
ity), and states above EF are negative ion states corresponding to inverse photoemission (with
an electron taken from infinity). (For sources see the text.)

antiferromagnetic with a magnetic moment µRu ≈ 1.2µB, but it has a small ferromagnetic
component with µRu ≈ 0.05µB . A possible explanation for the compatibility between ferro-
magnetism and superconductivity is a layered model, where superconductivity is localized in
the CuO2 planes and ferromagnetism in the RuO2 planes (see [111] and references therein).
That would be an extreme type II superconductor with the magnetic flux confined to individual
atomic planes.
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The undoped parent compounds of high temperature superconductors (for a review see
[109]) are antiferromagnetic, e.g., La2CuO4. They resemble the transition metal oxides dis-
cussed in Sec. 6.3. In fact, the Cu2+ in the superconducting [CuO2]2− planes is isoelectronic
to CuO, which has been classified as charge-transfer semiconductor [82]. Typical band gaps
are 2 eV. Antiferromagnetism gives way to superconductivity after doping with holes, e.g., by
substituting Sr for La in La2−xSrxCuO4 with x ≈ 0.15. A doped hole site in the [CuO2]2−

plane is isoelectronic to NiO, which falls into the intermediate region between Mott-Hubbard
and charge-transfer insulators [82]. The NiO photoemission spectrum in Fig. 6.11 might pro-
vide a first insight into the rather complex spectra of high temperature superconductors. As
in NiO, the superconducting holes have strong O2p ligand character, i.e., d9L = Ni1+O1−

= Cu2+O1− in the neutral ground state (which is not observable) and d8L = Ni2+O1− =
Cu3+O1− in the positive ion state of a photoemission experiment.

The oxygen character of the superconducting holes is evidenced by strong transitions from
the O1s core level into the unoccupied hole states, which can be measured by electron energy
loss spectroscopy [117] or by soft X-ray absorption [118–120]. Furthermore, from the polar-
ization dependence of these transitions one can establish that the holes have in-plane O2px,y

orientation [120]. They hybridize with the Cu3dx2−y2 states whose lobes point from the Cu
towards the in-plane O atoms. The spin of the ligand hole L = O1− = O2p5 couples antifer-
romagnetically with the spin of the Cu3d9 state of Cu2+, thereby forming a singlet [121].

Angle-resolved photoemission has produced numerous contributions to the understanding
of high temperature superconductors because of its ability to resolve the momentum of the
electronic states. A review of this fast-moving field is beyond the scope of this chapter. Nev-
ertheless, there are some intriguing connections to magnetism that are interesting to mention.
The dx2−y2 symmetry of the superconducting gap has been determined by angle-resolved
photoemission. It contains nodes in k-space as opposed to the isotropic, s-like symmetry
of conventional superconductors. Such a symmetry suggests a magnetic pairing mechanism
as opposed to the conventional phonon mechanism. In fact, the undoped parent compounds
are antiferromagnets. Between the antiferromagnetic and superconducting regions lies an
intermediate regime where the material is not yet superconducting, but already exhibits a
pseudo-gap whose magnitude and angular dependence resemble that of the superconducting
gap. Superconductivity and magnetism of the 3d orbitals seem to be related in these materials,
although the exact connection is not clear yet. One of the possibilities is a phase separation
into antiferromagnetic and superconducting stripes that fluctuate on the nanometer scale.

6.3.2 Half-metals

In a half-metal the bands are metallic for one of the two spin orientations and semiconduct-
ing/insulating for the other [122]. That gives rise to 100% spin-polarization at the Fermi level,
a very attractive feature for magnetoelectronic devices. Several classes of materials are ex-
pected to be half-metallic from band calculations, such as the Heusler alloys (e.g., NiMnSb)
and transition metal oxides (e.g., CrO2). Experimentally it has been difficult to reach the ex-
pected 100% spin-polarization at EF , due to spin-scattering at the surface (in photoemission)
or at the interface (in transport measurements). The stoichiometry of these compounds is diffi-
cult to maintain all the way to the outermost atomic layer. Nevertheless, a record polarization
of 98.4% has been reached in CrO2 using Andreev reflection at point contacts [123]. Other
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compounds exhibit appreciable spin polarization as well [124]. Spin-polarized photoemission
is more surface sensitive than transport measurements and has generally given lower polariza-
tion [125–127]. For example, measurements on CrO2 have been impaired by the stable Cr2O3

surface oxide that is formed by reduction of Cr4+ to Cr3+[126, 127]. In the following we
discuss the electronic structure of CrO2 in more detail as a prototype of other half-metallic
oxides.

Like many other transition metal oxides, CrO2 has a fairly localized set of Cr3d levels
that split into two main groups with approximate eg = Γ12 and t2g = Γ′

25 symmetry (see
Fig. 6.13). The t2g states lie below the eg states, as in the manganites and the ferromagnetic
transition metals. A tetrahedral distortion of the splits the t2g triplet into a singlet dxy and a
doublet dxz ,yz and the eg doublet into two singlets d2

z and dx2−y2 . Apart from the crystal field
splitting one has to take the Coulomb energy U and the magnetic splitting δEex into account.
A ferromagnetic exchange splitting δEex ≈ 1.6 eV can be inferred from local density ground
state calculations [99, 100, 128], which is in consistent with the magnetic moment of 2µB

according to the 1 eV/µB rule [37]. The observed magnetic splitting between the spin-up
and spin-down states depends on whether both are in the same charge state or not. Using
photoemission and inverse photoemission for the t2g states one compares occupied spin-up
states with unoccupied spin-down states, i.e., one has to add the on-site Coulomb energy U
to the ground-state δEex for obtaining the observed magnetic splitting. (Note that the terms
U and δEex are also used for the sum of the Coulomb and magnetic splitting). Subtracting
the calculated δEex ≈ 1.6 eV from the observed splitting of 5 eV one obtains U ≈ 3.4 eV
[99]. The Coulomb energy U shifts the unoccupied part of the 3d t2g orbital from its ground
state position just above EF to about 4 eV above EF in the inverse photoemission spectrum.
It should be possible to measure δEex directly by comparing the spin-up and spin-down eg

states, which are both unoccupied. However, it is difficult to resolve the eg states from the
dominating spin-up t2g states in the inverse photoemission spectra.

For adding the O2p orbitals to this picture one could use the charge transfer energy ∆
as an extra parameter. Since the calculations find an almost pure O2p band crossing EF

one would expect a negative ∆, i.e., the top of the O2p band lies above EF [100]. Specific
experimental information about the oxygen states comes from soft X-ray absorption, which
probes transitions from the O1s core level into the empty O2p states. The metallic majority
spin states just above EF produce a strong peak, which indicates substantial hybridization of
O2p states with the metallic Cr3d t2g states [99, 102]. The magnetic character of these states
is corroborated by the magnetic circular dichroism (MCD) observed for this peak [129]. The
energy position at 0.7 eV above the O1s core level binding energy gives the center of the
unoccupied part of the spin-up t2g band [102]. It compares to a shoulder at 0.8 eV above EF

in inverse photoemission [99].
The orientation of the O2p orbitals can be obtained from the polarization dependence of

the O1s-to-2p absorption spectrum [102]. The first absorption peak is excited with the electric
field vector perpendicular to the tetragonal c-axis, i.e., in the a-a plane. Consequently, the
100% spin-polarized states at EF are a mixture of O2px,y and Cr3dxz,yz . The situation is
quite similar to the high temperature superconductors where the in-plane oxygen ligand holes
are strongly hybridized with the transition metal 3d states at the Fermi level (see Sec. 6.3
and [120]. The only difference is the t2g character of the 3d states in CrO2 compared to eg

character in cuprate superconductors. This is due to the fact that the 3d shell is nearly empty
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in CrO2 and nearly full in the cuprates, which places EF in the upper eg manifold for the
cuprates (see Fig. 6.13).

Having the relevant energies in hand one can construct a level diagram (Fig. 6.13) and
populate the levels with the two 3d electrons of Cr4+ in the ground state configuration of
CrO2. These two electrons are accommodated by the spin-up t2g orbital in agreement with
Hund’s first rule that maximizes spin. Since the upper t2g(dxz,yz) orbital is only half-filled
we have a metallic configuration. Overall, the three energies U, δEex, and the eg−t2g crystal
field splitting are comparable for CrO2 and make it difficult to come up with simple label in
the classification scheme discussed in Sec. 6.3. A more realistic picture has to rely on detailed
band structure calculations, such as local density theory with the Coulomb energy U added
[100, 128, 130].

Photoemission from other half-metallic compounds has encountered problems with sur-
face stoichiometry similar to those in CrO2. The Heusler alloys, such as NiMnSb, have
reached only 20–50% spin-polarization in photoemission [131, 132] and 28% in spin-polarized
tunneling [133].

Manganites have a structure that is related to that of the high temperature superconduc-
tors. They are primarily studied for their colossal magnetoresistance effect (CMR), but they
are also interesting as potential half-metals. La0.7Sr0.3MnO3 has produced spin-polarized
photoemission spectra with 100% spin-polarization near EF at low temperature 40 K while
unpolarized at 380 K [134]. Surprisingly, the spin-polarization measured in photoemission is
higher than that in electrical measurements (54–81%) and theoretical predictions (36%). This
could be due to an enhanced group velocity for majority spins giving a higher spin tunneling
current [135], or caused by a different surface phase [136]. The level structure of manganites
is similar to that of CrO2, except for the higher occupancy of four electrons instead of two.
They fill the majority spin t2g level completely and bring the next higher level into play, an
eg state with d2

z character (Fig. 6.13, [105, 137]). Looking very closely at the energy region
around the Fermi level with angle-resolved photoemission one finds a weak, dispersing band.
The suppression of its intensity and an alteration of the band dispersion near EF are taken as
a sign of strongly electron-phonon interaction [138]. Indeed, polarons have been implicated
in the mechanism for colossal magnetoresistance (CMR) in these materials.

6.3.3 Magnetic semiconductors

One of the latest developments in magnetoelectronics is the search for magnetic semicon-
ductors that would allow a seamless coupling of magnetoelectronic and semiconductor de-
vices. Injection of spin-polarized currents from conventional, metallic ferromagnets into
semiconductors has not been successful due to depolarization at the interface, where disor-
dered spins lead to spin-flip scattering. A better interface can be created between an intrinsic
and magnetically-doped semiconductor, where the lattice is not disturbed. Doping of III-V
and II-VI semiconductors with transition metals has been successful in producing ferromag-
netic materials, but the Curie temperatures are still well below room temperature [139]. For
example, Mn can be incorporated into GaAs up to a concentration of about 5%, reaching a
Curie temperature of 110 K. At higher Mn concentration the cubic zincblende crystal struc-
ture starts breaking down, defects appear in high concentration, and eventually the structure
transforms to hexagonal MnAs. Nanostructuring helps pushing TC beyond room temperature.
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Multilayers of MnAs/ZnSe achieve TC= 325 K [140] and dot arrays of MnSb on GaAs ex-
hibit large magnetoresistance at room temperature [141]; photoemission data exist, see [142].
Another possible pathway to room temperature ferromagnetism is Mn doping of large gap
semiconductors, such as GaP and ZnO.

Figure 6.14: Magnetic semiconductor obtained by doping of GaAs with Mn. The Mn impurity
creates magnetic states at the top of the valence band, which are seen in a difference spectrum
between doped and pure GaAs (high photoemission intensity shown bright, from [143]).

Photoemission from Mn-doped semiconductors sheds light on the electronic states respon-
sible for ferromagnetism, as shown in Fig. 6.14 for Mn in GaAs (from [143] Fig. 3c,d; For
a review see [144]). Difference spectra between doped and undoped GaAs exhibit an extra,
dispersionless feature near the Fermi level. It corresponds to holes induced by Mn in the As4p-
like top of the valence band of GaAs. The Mn3d levels lie much lower at about 4.5 eV below
EF and have no direct influence on magnetic transport. Their role is to polarize the holes at
the top of the valence band, and they are very efficient at that. One Mn dopant polarizes many
holes, leading a very large g-factor for these carriers [145]. In the language used for magnetic
oxides in Sec. 6.3 the holes near EF correspond to the d5L photoemission state, where on has
a 4p hole at the As ligand. The state at 4.5 eV below EF would be the d4 state. A cluster
model analysis finds that the As4p ligand holes at EF are coupled antiferromagnetically to
the Mn3d spins. That is a situation analogous to the high temperature superconductors, where
where a O2p ligand hole couples antiferromagnetically to the Cu3d spin, forming a singlet
[121, 146].

The small density of extra states induced by dilute Mn can be detected by resonant pho-
toemission, utilizing the cross section enhancement at the Mn3p core level threshold near 50
eV photon energy [147]. Taking the difference between spectra at and below the resonance
produces a density of states with Mn3d character. The state at 4.5 eV below EF resonates like
a 3d-like state, whereas the state near EF does not, in agreement with the assignment above.
Similar studies have been carried out for other magnetically-doped semiconductors, such as
Cd1−xMnxS, Se, Te [148] and references therein) and Zn1−xMnxO [149].



204 6 Electronic states of magnetic materials

6.4 Phase transitions

After mapping out the electronic states of magnetic materials it is interesting to go one step
further and explore whether it is possible to investigate to origin of magnetism. What are
the energetic driving forces that stabilize magnetism? The magnetic splitting offers important
clues. In antiferromagnets the splitting plays a role similar to that of the energy gap in super-
conductivity and charge density waves. It determines the critical temperature and the energy
gain due to ordering. That brings up the question whether the magnetic splitting acts as order
parameter and vanishes at the critical temperature. Ferromagnets do not exhibit such a simple
behavior and lead beyond the mean field theory that describes superconductors.

6.4.1 Ferromagnets

Ferromagnetism occurs in rather few elements, i.e., Fe, Co, Ni, Gd, and a few rare earths with
low Curie temperatures. (There are many more elemental superconductors than that!) The
stability of ferromagnetism in just a few elements has been explained by the Stoner criterion
(Eq. (6.8) and Fig. 6.15, from [150, 151]). The density of states at the Fermi level D(EF ) and
an atomic exchange integral I are taken as the only input. The prediction is that in ferromagnets
the product of the two is larger than unity [36, 150, 152, 153]:

D(EF ) · I > 1 (6.8)

Figure 6.15: The Stoner criterion for the existence of ferromagnetism. The requirement that
the product of the density of states at EF and an atomic exchange integral I be larger than unity
correctly selects Fe, Co, Ni as the only ferromagnetic elements with atomic number Z < 50

(from [150, 151]).

The Stoner criterion explains why Fe, Co, and Ni are singled out for ferromagnetism.
Analogous to superconductivity, the density of states at the Fermi level D(EF ) and a cou-
pling parameter are the critical quantities (here the exchange integral I instead of the electron-
phonon coupling λ). However, there is no energy prefactor that could lead to a simple formula
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for TC , such as the mean field equation in superconductivity and antiferromagnetism (Eq. (6.9)
below). The simple Stoner model has failed miserably in predicting the Curie temperature of
ferromagnets, typically coming out too high by a factor of two. The difficulty for a realistic
calculation of the Curie temperature is the variety of single- and many-electron excitations
that become thermally accessible near the Curie temperature [154]. Those excitations, com-
bined with thermally-excited phonons broaden the photoemission spectra near TC and make
it difficult to tell whether or not there is a residual splitting. This may be an intrinsic problem
that renders the question moot.

One of the key questions has been the possible persistence of local magnetic order at and
above the Curie temperature TC , despite the lack of long-range order [23, 152, 155, 156].
Experimentally, this question can be addressed by photoemission because the probing volume
determined by the mean free path of the photoelectrons is very small, typically (0.5nm)3 (see
Fig. 6.2). If there is still magnetic order within such a volume one expects the magnetic
splitting to persist above TC , even though the long range order disappears, and with it any
spin-polarization signal. To illustrate this possibility consider an extreme case, the magnetic
spitting of the 4f level in Gd. The spin alignment of the seven 4f electrons inside each Gd
atom remains unaffected above TC . Such an atomic alignment is not guaranteed for the 5d
valence electrons in Gd.

Not every ferromagnet lends itself to studies of the magnetic splitting at the Curie tem-
perature. High temperatures are involved in Fe and Co. However, the Ni3d and the Gd5d
electrons have served as test cases for an extensive number of studies (for Ni3d see [57, 59,
61, 157–161], for Gd5d see [34, 42, 44, 45, 162]). There is still a great amount of debate about
the spin-splitting near TC , both experimentally and theoretically. Nevertheless, it is enticing
to imply that the splitting of delocalized states vanishes at TC as expected from mean field
theory, whereas localized states preserve a residual splitting above TC , such as in the extreme
case of the Gd4f states. A measure of localization is the steepness of the bands, which de-
termines the group velocity and the band width. The steepest band in Ni is the s,p-band, and
its magnetic splitting vanishes at TC [57, 61]. The more d-like the bands become, the more
likely is the existence of a finite splitting and a finite local spin-polarization above TC . In Fe
the bands are rather flat near the Γ point and their behavior near TC is more complicated than
a simple collapse of the splitting with the magnetization [38].

Magnetic compounds offer an even larger variety of phenomena to be explored near TC .
For example, high-resolution spectroscopy of CoS2 has found a sharp peak appearing at EF

when going below TC , which has been assigned a partial population of a band that is unoc-
cupied in the paramagnetic phase ([163]. Apparently, the magnetic exchange splitting in the
ferromagnetic phase induces such an auto-doping.

Surface ferromagnetism is very sensitive to the local electronic structure at the surface.
Figure 6.15 suggests that there are several elements very close to the ferromagnetic threshold,
for example Pd. These might become magnetic at surfaces if the density of states is enhanced
by the reduced band width that accompanies fewer neighbor atoms. On the other hand, re-
duced coordination will negatively affect a cooperative phenomenon, such as ferromagnetism.
Indeed, the Curie temperatures in thin films decreases when the thickness is reduced and ap-
proaches zero for about a monolayer. These counteracting phenomena establish very rich
magnetic phase diagrams of surfaces and thin films [164, 165]. The connection between mag-
netism and the electronic structure of thin films and surfaces is reviewed in [1], Chapters 4
and 5.
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6.4.2 Antiferromagnets

Like ferromagnetism, antiferromagnetism is driven by a large density of states at the Fermi
level. However, in this case only specific points in k-space play a role, which are related to
the antiferromagnetic reciprocal lattice vector [166]. The antiferromagnetic ordering opens a
band gap Eg at these k-points that lowers the energy of the occupied states at the bottom of
the gap and removes the high density of states from the Fermi level. There is a close analogy
with the opening of a gap in superconductivity. In fact, antiferromagnetic order in Cr behaves
analogous to the superconducting order parameter in the mean field approximation. In both
cases there is a relation between the critical temperature (here the Néel temperature TN and
the gap Eg:

Eg ≈ 3.5kTN (6.9)

This relation is only a rough guide, as the case of Cr shows, where a Néel temperature of
311 K and an optical gap [167, 168] of 0.12 eV give Eg ≈ 5kTN . Surface-sensitive photo-
emission experiments [46] measure an enhanced gap of 0.2 eV combined with an enhanced
Néel temperature of 440 K with a similar ratio (for enhanced surface magnetism, see [1]
Chapter 5.1).

As with the ferromagnetic splitting one can pursue the development of the antiferromag-
netic splitting when approaching the Néel temperature TN . The data for Cr in Fig. 6.7 are
consistent with a reduction of the splitting to zero at TN [46]. As with ferromagnets, there are
other, more localized electron systems, such as NiS, where there is no observable gap change
near TN [169].

6.5 Magnetic multilayers

The magnetism of bulk elements and alloys is a rich field by itself, but there is even more to
be explored when thin magnetic films are considered. The electronic states of thin films are
unique due to the reduction in dimensionality from the bulk. In addition, when magnetic layers
get combined with other magnetic layers, with nonmagnetic metals, or with insulators, there
are many new phenomena to consider, including quantum well states and oscillatory magnetic
coupling. This leads to the possibility of tailoring the electronic and magnetic properties by
the proper choice of magnets and spacers. In the following we select two highlights that are
characteristic of this field and defer a more extensive discussion to [1], Chapter 5.

6.5.1 Quantum well states

The properties of magnetic layer structures are dependent on the reflection of electrons at
interfaces. Electrons are confined to layers with lower inner potential and momentum and
energy are quantized in the direction perpendicular to the layers. The resulting discrete states
are quantum well states. The band dispersion in the plane of the film is not affected by the
confinement and remains continuous. Particularly important for magnetism and transport are
quantum well states at the Fermi level. Figure 6.16 shows the photoemission intensity at the
Fermi level for of a Cu film on Fe as a function of Cu film thickness. The density of states
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oscillates with a maximum appearing nearly every 6 layers. The maxima in the oscillations
correspond to quantum well states number 2–5 crossing the Fermi level. The schematic on the
right shows the square of the wave function for the n = 3 maximum. One might assume that
there is a node in the wave function at the interfaces, but it turns out that there is a maximum,
as evidenced by the peak in the density of states when approaching zero Cu thickness. A
simple way of envisioning the formation of quantum well states is through an optical analog:
the Fabry-Perot interferometer (Fig. 6.17, [170]). The Cu spacer has two interfaces which
act as mirrors for electrons. By changing the spacing between the interfaces one produces
interference fringes every half wavelength, as in the optical analog. A phase shift of zero at
the interfaces produces the observed interference pattern. Thus, one has an interference device
of atomic dimensions for electrons, which directly measures their wavelength.

Figure 6.16: Quantum well states inducing oscillations in the density of states at the Fermi level
for k|| = 0 when the film thickness is varied [170, 172].

The density of states at the Fermi level is modulated by quantum well states quite signifi-
cantly, as demonstrated in Fig. 6.16 for a specific k point. This modulation can be compared to
the density-of-states variations in Fig. 6.15 that determine ferromagnetism, and it becomes ob-
vious that there is a potential for tailoring magnetic properties via quantum well states. More
generally, the density of states at EF is able to trigger electronic phase transitions, such as
superconductivity, charge density waves, ferromagnetism, and antiferromagnetism. Carriers
for electrical and thermal transport are also located at the Fermi energy. The initial connection
was made between quantum well states and oscillatory magnetic coupling [170–172]. Since
then a variety of other connections have been established, for example with the magnetic
anisotropy [173], with the magneto-optical response [174–176], with electrical measurements
[177], and with “magic” thicknesses in the growth of thin films [178, 179].
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Figure 6.17: Spin polarized quantum well states [182] induced by a spin-dependent potential
barrier at the Cu/Co interface (see Fig. 6.18).

Magnetic effects can only be transmitted if quantum well states are spin-polarized, even if
they reside in a noble metal film. This rather counter-intuitive picture of a “magnetized” noble
metal has been confirmed by spin-polarized photoemission [180–182]. Figure 6.17 shows
spin-resolved spectra of a quantum well state in a Cu film on fcc Co(100) near the neck of
the Cu Fermi surface [182]. The minority spin band splits into two peaks, while the majority
spin band remains a continuum. There is a rather simple explanation for the spin-polarization
of quantum well states in magnetic multilayers. The reflection coefficient for electrons at an
interface depends on the inner potential in the materials. The inner potential for majority
and minority spin electrons differs by the magnetic exchange splitting which causes a spin-
dependent reflectivity. Only states with significant band offset to the non-magnetic spacer
band are being confined. For metals to the right of the ferromagnets - particularly noble metals
- the majority bands are nearly lined up (Fig. 6.18). Therefore, minority spins experience
a band offset and are confined into quantum well states, but majority spins behave like a
continuous bulk band that extends throughout noble metal and ferromagnet. For spacers to the
left of the ferromagnets, e.g. Cr, the minority bands line up, and a majority spin polarization is
expected for the quantum well states. This argument works independent of the specific band
topology, but it does not guarantee full confinement, i.e. 100% reflectivity at the interface.
Only in particular cases one encounters a situation where minority spins become totally Bragg-
reflected since they run into a band gap in the ferromagnet. This is the case in the spectrum of
Fig. 6.17.
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Figure 6.18: Spin-dependent step in the inner potential between ferromagnetic transition metals
and noble metals (for example Co and Cu). The majority spin 3d-band of Ni and Co is filled
and lines up with that of Cu, whereas the minority spin band of Co is shifted up by the magnetic
splitting δEex [1].

6.5.2 Oscillatory coupling

Oscillatory coupling occurs in magnetic multilayers, where ferromagnetic layers are separated
by nonmagnetic spacers. The prototype is a trilayer where two ferromagnetic layers are cou-
pled by a noble metal, as shown in Fig. 6.16 (bottom right). The magnetization of the layers
alternates between parallel and antiparallel when the thickness of the spacer is increased. Os-
cillatory magnetic coupling has been observed for many combinations of ferromagnets and
spacer materials [183]. Typical oscillation periods are about 10 Å, but shorter and longer
periods have been observed, too. A comparison with quantum well state oscillations, such
as in Fig. 6.16, shows that the appearance of quantum well states at EF roughly coincides
with antiparallel coupling. The periods are identical wherever comparative data exist (see [1]
Fig. 40). Figure 6.19b,c demonstrates that using a wedge-shaped Cu spacer to map the thick-
ness dependence of the oscillations by photoemission [184]. Quantum well oscillations with
two distinct periods are observed at two different k points. The periods are beat frequencies
between the Fermi wavelength and the lattice spacing, i.e., 5.6 monolayers at the belly of the
Cu Fermi surface in b, and 2.7 monolayers at the neck in c. The same frequencies determine
the periodicity of the envelope wave function of the quantum well states, which is shown
schematically in Fig. 6.16. In panel d, the interlayer coupling is shown, as determined by
X-ray magnetic linear dichroism (XMLD). It clearly reflects the two periods of the quantum
well states and matches the quantum well model in panel e.



210 6 Electronic states of magnetic materials

Figure 6.19: Quantum well states with two different periods (b) and (c) at different k|| are
observed by a wedge technique (a). These give rise to oscillations in the magnetic coupling of
Co/Cu/Co tri-layers with two periods (from [184]).

Another approach for explaining oscillatory coupling has been the RKKY (Ruderman-
Kittel-Kasuya-Yosida) model [185]. It brings in the Fermi wavelength as well by coupling
two spin impurities in an electron gas via spin density oscillations. The RKKY periods are
usually identical to those obtained for quantum well states, and a close connection with the
quantum well model can be established [186]. There is a simple way of viewing the similarity
and potential differences between the two models. The RKKY oscillation is caused by a spin
density wave in the electron gas, whereas a quantum well state represents a coupled spin
and charge density wave. It is conceivable that the reflection coefficient of a spin wave at
the boundary of the quantum well is different from that of a charge wave, particularly if the
boundary is rough. For example, the magnetic roughness of an interface can be smaller than
the roughness in the charge density, as demonstrated by resonant magnetic scattering of soft
X-rays [187]. That might explain why oscillatory coupling can still be found in structures that
are too rough to observe quantum well states.

6.6 Magnetoelectronics

The central goal of magnetoelectronics is the generation and switching of spin currents. The
spin-dependent current density j = σE in an electric field E is controlled by the conductivity
σ = (e2/m)nτ for the two spin directions. It is determined by the carrier density n and their
lifetime τ , which is related to the mean free path l and the Fermi velocity vF via τ = l/vF .
Manipulating these quantities is the quest of the designer of new magnetic materials. Among
the options are doping with magnetic impurities (Sections 6.6.2 and 6.3.3) and manipulating
the spin-dependent reflectivity of interfaces (Secs. 6.5, 6.6). Multilayer structures with single
digit nanometer dimensions confine electrons to quantum wells and allow for sophisticated
combinations of spin reflectors and spin filters. Such structures are now widely used in reading
heads for hard disks, and non-volatile magnetic random access memory (MRAM) is under
development [188].
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6.6.1 Giant magnetoresistance (GMR) and spin-polarized tunneling

Magnetoresistance is a key phenomenon in the development of magnetoelectronics. Read-
ing heads in hard drives now make use of giant magnetoresistance (GMR), and the current
development of magnetic memory (MRAM) depends on junction magnetoresistance (JMR)
in spin-polarized tunneling. These two effects have much in common, due to their similar
basic structural unit. Each phenomenon takes place in a trilayer where two ferromagnetic
layers are separated by a nonmagnetic layer. The difference is that the separation layer is
an insulator in magnetic tunneling and a metal in GMR. If the two ferromagnetic layers are
oriented antiparallel, the resistance is high, if they are parallel the resistance decreases. Al-
though the microscopic explanation is still rather sketchy, there is a simple optical analog that
visualizes this effect (Fig. 6.20). Magnetic interfaces (or the magnetic layers themselves) act
as spin filters. The parallel configuration transmits one of the two spin-polarizations, the an-
tiparallel configuration blocks both, as with crossed optical polarizers. The goal of a device
engineer is to maximize the magnetoresistance by optimizing the spin filtering effect. That
can be achieved at the interfaces by adding monolayers of a ferromagnetic material as spin-
reflective coating. Such interface engineering is already in use with GMR reading heads of
hard disks. Alternatively, one might achieve spin filtering by spin-dependent scattering inside
the magnetic layers. That brings in the concept of magnetic doping.

Figure 6.20: Explanation of giant magnetoresistance (GMR) as spin filter effect, using an anal-
ogy with parallel and crossed optical polarizers. Achieving spin-dependent reflectivity at inter-
faces is the key to obtaining large magnetoresistance.

Giant magnetoresistance occurs in two geometries, i.e., with the current in the plane of the
layers (often labeled CIP) and perpendicular (CPP). The perpendicular geometry is much less
practical than the in-plane, due to the extremely small resistance across the nanolayers, but it
is conceptually simpler and exhibits larger magnetoresistance. The picture of GMR given in
Fig. 6.20 for the perpendicular geometry allows majority and minority spins to be treated as
separate current channels, as in a parallel resistor network.

There is still not complete agreement as to whether the spin-dependent scattering takes
places at the interfaces or in the interior of the films. It might not even be specular, as in the
simplified picture of Fig. 6.20, but rather diffuse, due to inelastic scattering by d-electrons.
In either case, there is a resulting resistance change as long as there is spin-dependent scat-
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tering. A natural explanation for interface scattering comes from the spin-dependent step in
the inner potential (see the discussion of Fig. 6.18 in Sec. 6.5.1). In optimal cases one has a
band gap that causes total reflection of minority spins and spin-polarized quantum well states.
Spin-dependent bulk scattering is caused by electron-hole pair creation at the Fermi level. In
ferromagnets with a filled majority spin d-band, such as Co and Ni, the majority spin bands
are similar to that of a noble metal and the mean free path of spin-up electrons is long. Spin-
down electrons, on the other hand, have many other spin-down states near EF to interact with
and do not travel far. Such an argument holds since spin is approximately conserved during
scattering.

Spin-polarized tunneling can occur between various combinations of ferromagnets, nor-
mal metals, and superconductors [189]. In all cases the insulating spacer layer acts as barrier
for planar tunneling. Due to the high barrier in the insulator, only electrons close to the Fermi
level participate in the tunneling process, and of those the s,p-electrons with their more ex-
tended wave functions dominate. The density of majority states n↑ is higher for s,p-states at
the Fermi level than that of minority s,p-states n↓. Consequently, a large number of majority
spin electrons emitted into the junction meets a high density of empty states when the mag-
netic orientation is parallel. Therefore, the resistance is low, as in GMR. Defining the spin
polarization as

P =
[
(n↑ − n↓)/(n↑ + n↓)

]
(6.10)

and generalizing to two electrodes with different spin polarizations P1 and P2 one obtains a
formula for δR/R.[190]

(δR/R) = 2P1P2/(1 + P1P2) (6.11)

The formula shows that the tunneling magnetoresistance is sensitive to the spin polariza-
tion at the Fermi level of the electrodes. In this respect, the use of spin-polarized photoemis-
sion and the hunt for highly polarized or even half-metallic (Sec. 6.3.2) materials can have an
impact on designing spin-polarized tunneling devices.

6.6.2 Spin scattering and magnetic doping

Transport measurements [191, 192] suggest that magnetic impurities can influence the mean
free path of carriers and thereby create spin polarization. Importantly for magnetic trans-
port, the mean free path in an alloy can be spin dependent. A change in the constituents or
concentrations in an alloy will alter the mean free path of one or both of the spin channels.
Careful selection, then, of an alloy’s makeup will allow the possibility of magnetic doping,
with impurities that shift the balance towards spin up or spin down carriers. Magnetoresis-
tance measurements of multilayer structures and resistivity measurements on ternary alloys
have provided estimates for the spin-dependent mean free path. However, relatively little is
known about the microscopic mechanism that causes the spin dependence. In order to have
the maximum impact on the theory of electronic states in these alloys, angle-resolved photo-
emission measurements of the relevant states near EF are needed that resolve the momentum
k of specific states on the Fermi surface. The energy resolution needs to be better than the
thermal energy kT (≈ 25 meV at room temperature), and the momentum resolution better
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than an inverse mean free path (≈ 0.03 Å
−1

at EF ; note that λ−1 ≈ 0.2 Å
−1

in Fig. 6.2 is for
much higher energies of many eV above EF ).

The spin-dependent mean free path for an alloy can be determined from the momentum
broadening by high-resolution photoemission [67]. Figure 6.8 shows a set of momentum
distribution curves (MDCs) from permalloy (Ni0.8Fe0.2) and Ni collected with angle multide-
tection from data sets similar to those in Fig. 6.3. Similar data have been taken for NiCr alloys
[67]. With MDCs, only the states at EF are examined, which are the ones relevant to mag-
netism and transport properties. In this case, the Σ1 band Fermi level crossing in Ni and NiFe
alloys is shown. The widths δk↑, δk↓ of the two spin peaks provide the mean free paths l↑, l↓
through a straightforward application of the uncertainty relation. An exponentially-decaying
wave function ψ(x) whose probability density ψ*ψ decays with length l gives a Lorentzian
for the probability density Ψ*Ψ of its Fourier transform Ψ(k). The full width half maximum
is δk=1/l. In Fe-doped Ni only the minority peak is broadened. Its width δk↓ is roughly pro-
portional to the Fe concentration x, i.e., the mean free path l↓ decreases like 1/x. In Cr-doped
Ni both peaks are broadened, with δk↑ slightly larger than δk↓ and both comparable to the δk↓
for Fe doping. In addition, the area ratio of minority/majority spins decreases by a factor of
2–3 with Fe impurities, thereby reinforcing the spin selectivity. While the magnetic splitting
does not change significantly for the Fe concentrations considered here, it decreases with Cr
doping, tracking the decreasing magnetic moment. δkex reaches zero at a Cr concentration
close to 13% where NiCr alloys become paramagnetic.

Models for spin-selective scattering can be broadly divided into elastic and inelastic pro-
cesses. The variation in the crystal potential at the impurity induces a random potential barrier
(Fig. 6.9, compare also Fig. 6.18). That gives rise to elastic scattering of Bloch waves and
broadens the energy bands [47]. The scattering is similar to the spin-dependent reflectivity
that confines magnetic quantum well states (Fig. 6.17). In fcc Fe, the majority states are very
close to their Ni counterparts, which has been tested by appearance potential spectroscopy,
which maps the density of states of Fe and Ni separately [56]. The minority states, however,
lie significantly higher due to the larger magnetic splitting (Fig. 6.5). Therefore, only the mi-
nority states see a scattering potential at a Fe impurity. For Cr, both spins have a significant
band offset since the reduced filling raises the Cr bands (Fig. 6.9). The discontinuity is some-
what larger for spin up states. This model suggests a strategy for selecting hosts and dopants
that favor minority spin carriers: Align the minority spin bands by choosing a host with a large
ferromagnetic splitting, such as Fe and Co, and a dopant with lower band filling. Indeed, such
systems exhibit inverse GMR [193, 194] and vastly different resistivity for the two spins [191,
192]. Sophisticated first principles calculation of the alloy band structure and the photoemis-
sion spectra have begun, which should make it possible to obtain a deeper understanding of
the band structure of magnetic alloys [64]. The calculated momentum distributions in Fig. 6.8
agree well with the data. That suggests an elastic scattering process at the impurity poten-
tial, as depicted schematically in Fig. 6.9. The calculation will be able to give a much more
realistic picture of the scattering potential.
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7 The band structure theory of LEED and photoemission

E.E. Krasovskii

7.1 Introduction

Photoemission measurements have been a source of most detailed information about the elec-
tronic structure of solids. Since the state-of-the-art ab initio calculations fail to pointwise
reproduce the experimental spectra, the role of the theory remains to extract the information
from the experiment. This concerns, in the first place, the understanding of the many-body
interactions in solids, which are included in the theoretical calculations in very crude approx-
imations. Simpler aspects of the band structure, such as the exact shape of the one-electron
potential and wave functions, should be, however, taken into account as accurately as possible,
so that unavoidable approximations are kept under control. This calls for the development of
computational approaches that would draw on the progress in the bulk band structure method-
ology.

Within the independent-particle model photoemission is described by optical excitations
of electrons into the time-reversed LEED states [1, 2]. LEED measurements have been tradi-
tionally used to study the crystal structure of surfaces. Since early 1980’s the measurements at
very low energies (VLEED) have become a tool to study also the unoccupied band structure
of the substrate [3–5]. If the interaction of the photoelectron with the hole left behind in the
photoexcitation process can be neglected the connection between the photoemission and the
low energy electron diffraction experiment becomes very simple. In this chapter, we restrict
ourselves to a simplest version of the one-particle picture: the wave functions are solutions
of the Kohn-Sham equations and the interaction of the particles is taken into account by a
self-consistent field. This approach has proven its wide applicability, and its adequacy and
limitations have been extensively discussed in the literature (see Chapter 1).

The formulation of the scattering problem (LEED problem) in terms of Bloch waves is
straightforward [6,7]. The space is divided into the vacuum half-space and the bulk half-space
by a matching plane. In the crystal half-space the LEED function is a linear combination of
bulk solutions. Far from the crystal surface, where the potential is periodic, they reduce to
propagating and evanescent Bloch waves, and the coefficients are determined by matching the
trial function in the bulk to the vacuum half-space at the plane. Until recently, the LEED or
photoemission calculations within the Bloch waves theory have been performed only within
the pseudo-potential approach using the plane-wave basis set (see review article [8]).

In this chapter, we consider an all-electron approach to the scattering states in the semi-
infinite crystal, which makes use of the most robust and accurate band structure technique, the
augmented plane waves method (APW). The APW method was proposed in 1937 by Slater.
This computational algorithm attracted practical users by the possibility to achieve arbitrarily
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high accuracy of the variational band energies without having a complete basis set. The first
APW calculation was performed in 1939 by Chodorow; since then the growth of computer
technology has opened a way to intensively exploit the idea of augmentation. For decades
the APW approach has been being developed in order to reconcile a linear-algebra formu-
lation of the variational problem with the convergence properties of the original formulation
and to extend the method to crystal potentials of general shape. Great progress of the APW
methodology is due to the concept of linear methods introduced by Andersen in 1975. Aug-
mented plane waves have become the basis for numerically most precise and reliable band
structure techniques, such as, for example, the full-potential linear APW method, with which
the majority of all-electron ground-state studies have been performed (see Chapter 1).

Originally designed for the boundary value problem, the APW approach has recently
started to penetrate the field of electron scattering. The most direct access to the Bloch-wave
treatment of low energy electron diffraction is given by the k · p formulation of the inverse
band structure problem, i.e., the problem of constructing all Bloch states at a given energy
with a given surface projection of the Bloch vector. The k · p method reduces the problem to
a matrix eigenvalue equation, whose solutions form the complex band structure of the semi-
infinite crystal.

In this chapter, after an introduction to the APW formalism and the computational proper-
ties of APW-like methods, we discuss the application of the band structure theory to electron
scattering in semi-infinite crystals. Special attention will be paid to an optical-potential de-
scription of inelastic processes. The theory will be illustrated by a study of VLEED in NbSe2

and surface state photoemission in Al.

7.2 Ultima ratio regnum: the APW method

The direct variational methods to calculate the one-electron Bloch states are divided with
regard to the eigenvalue dependence of the basis set into nonlinear methods, e.g., the Korringa-
Kohn-Rostocker method [9] and the APW method [10], and linear methods, of which the
most widely used are the linear muffin-tin orbitals method (LMTO) [11] and the APW-like
schemes [11–18]. The former approach requires that the trial function pointwise satisfy the
Schrödinger equation inside the so-called muffin-tin spheres, whereas in the linear methods it
is a linear combination of a number of spherical waves.

The nonlinear methods are precise in the sense that they allow the eigenenergies and wave
functions to be determined with unlimited accuracy. However, they lead to a nonlinear eigen-
value problem and, in general, produce wave functions with a discontinuity in slope at the
sphere boundary. In addition to this, in the case that the potential inside the muffin-tin spheres
is not spherically symmetric, additional programming effort is required to construct the ex-
act solution in the spheres. The above difficulties are avoided in the linear methods, which
employ an eigenvalue-independent basis set. There the wave function is by construction con-
tinuous with continuous derivative everywhere in the unit cell. Another advantage of using
the fixed basis set is that the formalism is easily extended to the case of a potential of general
shape [22].

A common problem of direct variational methods is that a good convergence of eigenval-
ues does not ensure a high accuracy of eigenfunctions. The quality of the wave function in a
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given region depends upon how sensitive to it is the eigenvalue. In calculations for the semi-
infinite crystal, the requirements of the accuracy of wave functions are especially stringent
because the observables depend on the behavior of the wave function at the matching surface
(rather than on volume integrals, such as band energies or momentum matrix elements). In
Sec. 7.2.1, we discuss various APW-like methods and their accuracy. In Sec. 7.2.3, we intro-
duce the extended LAPW-k ·p method – the basic computational tool of our studies. The k ·p
approach can be viewed as a compromise between pseudo-potential and all-electron1 methods
in the sense that the basis set is k-point independent, but the potential remains all-electron and
local.

7.2.1 The augmented plane waves formalism

In a variational method the wave function of Bloch vector k and band number λ is sought as
a linear combination of basis functions satisfying the Bloch boundary conditions. The most
straightforward way would be to expand the function in the Fourier series

ψkλ(r) =
∑

Fkλ
G exp[i(k + G)r]. (7.1)

Here G are the reciprocal lattice vectors and FG are variational coefficients. It has been
realized by Slater that owing to the singularity of the crystal potential at the nucleus, the plane
wave series would converge very slowly and the diagonalization of the Hamiltonian matrix
in terms of plane waves is impracticable. Even with the modern computational hardware the
plane waves are used only in the context of pseudo-potential calculations.

In the APW method the singularities are surrounded with so-called muffin-tin spheres,
which do not overlap and usually are chosen such that they occupy maximum volume. By
augmentation one understands the replacement of the Bessel functions jl(Kr) in the Rayleigh
decomposition of the plane wave inside the sphere with radial functions Φl(K, r), which
match the Bessel functions in value and in slope2 at the sphere radius.

Inside the sphere located at r = 0 the APW reads

ξ(K, r) =
∑
lm

4πi lΦl(K, r)Y ∗
lm(K̂)Ylm(r̂), K = k + G, (7.2)

and the trial function is

ψkλ(r) =
N∑

i=1

Ckλ
i ξi(K, r). (7.3)

The variational coefficients Ci uniquely determine the wave function in the interstitial. In ex-
tended linear methods additional variational coefficients are introduced, which are responsible

1 By the word ‘all-electron’ one means a true crystal potential, which diverges as r−1 at the nucleus, as opposed to
the pseudo-potential, in which the singularity is removed. That does not mean, however, that the LAPW calculation
generates all states down to the 1s state. The core states do not appear among the LAPW eigenstates (unless it is
desired for a specific purpose) because their overlap with the LAPW basis functions is negligible. The core states
are treated separately by an atomic-like calculation.

2 Among the linear methods the exception is the APW+lo method [17], in which the continuity of derivative is not
required.
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for the shape of the functions Φl and enter as coefficients of localized orbitals [16, 18, 25]. In
contrast to linear methods, in Slater’s formulation of the method the variation of functions Φl

is achieved by their explicit dependence upon the energy to be found Ekλ, which makes the
procedure nonlinear.

Owing to the matching conditions at the boundaries of the muffin-tin spheres, the shape
of the trial function inside the spheres is connected to its shape in the interstitial. Numerous
versions of the linear APW can be divided into rigid schemes [11–14], in which the function is
uniquely determined by its shape in the interstitial, and flexible schemes [15–18], which allow
the functions Φl certain variational freedom after the matching conditions have been fulfilled.

The first linearization of the APW method was the modified APW method presented in
1970 by Bross [15]. However, this method has not been widely used and the majority of
the APW calculations have been based on the LAPW formalism developed five years later by
Andersen [11]. In the 1990s the growing requirements to the accuracy of band-structure calcu-
lations brought the flexible methods into wider use; extended versions of the LAPW [16–18]
and LMTO [20] have been developed and applied to ground-state as well as to spectroscopic
studies. There exists a variety of the APW schemes, which employ different prescriptions
for the radial basis functions. However, the convergence properties of the APW methods are
primarily determined by the degree of the flexibility of the radial basis set, while the shape
of individual basis functions is of secondary importance. The simplest version of a rigid
LAPW [11, 19] (see Sec. 7.2.2) has been adopted in the majority of studies, and more sophis-
ticated rigid schemes [12–14] did not show any noticeable advantage over it.

In the majority of implementations the radial functions Φl are linear combinations of a
number of solutions of the radial Schrödinger equation φνl(Eνl, r), and their energy deriva-
tives φ̇ νl(Eνl, r)

(Ĥr − Eνl) φνl(Eνl, r) = 0, (7.4)

(Ĥr − Eνl) φ̇νl(Eνl, r) = φνl(Eνl, r),
〈

φ̇νl | φνl

〉
= 0. (7.5)

Eνl are called energy parameters of the method. Of this set only two functions for each l are
needed to match an APW in both value and slope at the sphere.

7.2.2 Andersen’s LAPW

Let the augmentation function Φl(K, r) be a linear combination of two radial functions that
matches the Bessel function jl(Kr) both in value and in slope at the sphere radius. To within
a factor, the function Φ(K) is determined by its radial logarithmic derivative D. For the
normalized radial function we shall use the notation Φ(D) = Φ(K)/

√
〈Φ(K) | Φ(K) 〉.

To represent Φ(D) by a linear combination of a solution φν and its energy derivative φ̇ν

was suggested in 1967 by Marcus [24]. This way of augmentation results in a convenient and
elegant formalism because the functions φν and φ̇ν are orthogonal and have the same energy
expectation value Eν . It leads to the classical LAPW method: one chooses a set of energy
parameters {Eνl} – one parameter per angular momentum channel – and solves the Eqs. (7.4)
and (7.5) to obtain the potential parameters for constructing energy independent Hamiltonian
and overlap matrices. The formalism of the method was described by Andersen in Ref. [11]
and the properties of the method were analyzed by Koelling and Arbman in Ref. [19].
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Figure 7.1: Behavior of the parametrization
curve Epar(D) [see Eq. (7.7)] depending on
the location of the energy parameter. The exact
curve, Dtrue(E), is shown by full lines. The
circles denote the location of the parameters
for the three cases [see Eq. (7.10)]. Cases 1
and 2 are shown by dotted lines and case 3 by
the dashed line. The dashed line in the lower
panel shows the logarithmic derivative depen-
dence of the energy expectation value of the
radial function normalized so as to match the
exact solution in both value and slope at the
sphere. Note, that the choice of the energy pa-
rameter Eν for p-orbitals in the valence band
region (between −0.45 Ry and EF = 0) leads
to case 3.

To get the idea of how good the choice of the energy parameters is one compares the exact
energy dependence of the radial logarithmic derivative,

Dtrue(E) = S
φ′

l(E, r)
φl(E, r)

∣∣∣∣
S

, (7.6)

to the energy parametrization curve

Epar (D) = 〈Φl(D) | Ĥr | Φl(D) 〉. (7.7)

The exact curve has a cotangent-like shape, the branches being referred to by the main
quantum number. Figure 7.1 shows an example for the p-orbitals in the muffin-tin sphere of Nb
metal. Using Eqs. (7.4) and (7.5) one can operate the Hamiltonian Ĥr on the function Φl(D)
to obtain an analytical expression for the one-valued function Epar (D). By differentiating
with respect to the argument D one can establish main characteristic features of the curve. Its
slope changes sign twice at D = D+ and D = D−, see upper panel of Fig. 7.1,

D± = Dν̇ + S−1

φν(S)φ̇ν(S) ± φ̇2
ν(S)√

〈 φ̇ν | φ̇ν 〉

−1

, Dν̇ = S
φ̇′

ν(r)
φ̇ν(r)

∣∣∣∣∣
S

. (7.8)

The vertical asymptote of the curve Epar (D) is at

εa = Eν − φν(S)/φ̇ν(S)
1 + 〈 φ̇νl | φ̇νl 〉φ2

ν(S)/φ̇2
ν(S)

. (7.9)
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In the vicinity of Dνl ≡ Dtrue(Eν) the variational estimate (7.7) is correct to o (E − Eν)3

[11, 19]. Depending on the position of Eν relative to the asymptotes of the true curve, the
parametrization curve adopts one of three possible shapes (see Fig. 7.1). For the n-th branch
(n > 1) two energies, εd < εu, divide the branch into three intervals, the shape of the
parametrization curve being determined by which interval Eν belongs to:

case 1, Eν ≥ εu : Dν̇ ∈ [D−, D+], Dν̇ ≥ Dν ,

case 2, Eν ≤ εd : Dν̇ ∈ [D−, D+], Dν̇ < Dν ,

case 3, εd < Eν < εu : Dν̇ �∈ [D−, D+].

In the cases 1 and 2 the Epar (D) curve extends to the (n+1)-st and (n−1)-st branch respec-
tively; in both cases the corresponding asymptotes are properly described, and the interval of
the unphysical behavior of the parametrization, where dD/dE > 0, is finite. In the third case
the parametrization curve has negative slope only within a finite interval, and its asymptote is
far from those of the true curve. In band structure calculations the states in the vicinity of the
asymptote are usually of physical interest, so case 3 is normally avoided.

Thus, if the energy parameters are close to the eigenvalue in question the accuracy can
be systematically improved by including more APWs until the convergence in the intersti-
tial is achieved. However, if the eigenvalue lies far from the energy Eν the well-converged
eigenvalue may happen to be much less accurate than the parametrization curve in the upper
panel of Fig. 7.1. The reason is that two functions that have the same logarithmic derivative
D and the same energy expectation value are not necessarily close to each other. Indeed,
the functions φl(E) and Φl[Dtrue(E)], whose energy expectation values are compared in
the upper panel of Fig. 7.1, are equally normalized but have different values at the sphere
radius, φl(E, S) �= Φl[Dtrue(E), S]. To assess the quality of the variationally obtained ra-
dial function one should compare the function to the exact solution having not only the same
logarithmic derivative but also the same value at the sphere. If we lift the requirement of nor-
malization and impose the constraint of matching to the interstitial then we arrive at the dashed
line in the lower panel of Fig. 7.1, which shows the contribution to the energy of the function
Φl[D(E), r] · φl(E, S)/Φl[D(E), S]. The energy range where the error of the radial function
is small is seen to be considerably narrower than that suggested by the Epar (D) curve.

What we have analyzed so far is the accuracy of wave functions that have the correct loga-
rithmic derivative Dtrue at the sphere. In practice, except for atomic-like states, the variational
procedure almost never generates precise logarithmic derivatives (see Ref. [21]). As a result,
in the rigid methods one can obtain perfectly parameterized radial functions, which are in-
finitely close to solutions of the radial Schrödinger equation, though for an energy which is
far from the eigenvalue in question.

The only way to systematically improve the accuracy over a wide energy interval is to
extend the basis set of the method by including further radial functions in addition to φ and
φ̇. This approach gives rise to the extended LAPW method (ELAPW) [25] as well as to other
flexible versions of the LAPW method, LAPW+LO (local orbitals) [16,26] and APW+lo [17].
The ELAPW method yields the wave functions of semi-core states, valence band, and free-
electron-like states as orthogonal eigenvectors of a single matrix eigenvalue problem and
without much computational effort provides reliable results over an energy interval of about
50 eV. The performance of the ELAPW method with regard to spectroscopic calculations
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has been analyzed by the present author in Refs. [25] and [18]. The convergence properties
of LAPW+LO and APW+lo methods in connection to the ground-state properties have been
discussed by Singh in Refs. [16] and [26] and by Sjöstedt et al. in Ref. [17], respectively.

7.2.3 The extended LAPW - k·p method

The k · p formalism reduces the k-point dependence of the basis set to a multiplication of the
basis functions with a reference Bloch vector k0 by the function exp [i(k − k0)r]. Then the
Schrödinger equation

Ĥψkλ = Eψkλ (7.10)

leads to the matrix equation[
Ĥk0 + 2∆k · P̂k0 + (∆k2 − E)Ôk0

]
Ckλ = 0, (7.11)

Hij = 〈ξk0
i | − �

2

2m
∆ + V (r) | ξk0

j 〉,

Oij = 〈ξk0
i | ξk0

j 〉,
Pij = 〈ξk0

i | −i�∇ | ξk0
j 〉.

The k · p formulation is convenient when the functions have sophisticated numerical repre-
sentation, as, e.g., in the ELAPW method, because the time-consuming operations of setting
up the Hamiltonian Ĥ , overlap Ô, and momentum P̂ matrices are performed only once for a
given crystal potential.

Figure 7.2: The energy error of the ELAPW-k · p
method vs the distance from the reference point for
several extensions [23]. The reference point is at
the center of gravity of the irreducible part of the
Brillouin zone. The energies Ekλ calculated on a
uniform k-point mesh by the ELAPW-k · p method
and by the pure ELAPW are compared. Four basis
sets have been considered with the radial extension
for angular momenta up to lmax = 1, 2, 3, and 5.
The ∆k-dependence of the error is averaged over
the directions of ∆k and over the energy interval
from the bottom of the valence band to 0.5 Ry above
the Fermi level.
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That the basis set of a k ·p method is not Bloch-vector-adjusted causes the accuracy of the
method to deteriorate with the distance ∆k = |k−k0| from the reference point. The problem
is especially severe in the case of localized states, such as semicore states or d states of noble
metals. For example, to reproduce an orbital Φlm(r) = Φl(r)Ylm(r̂) the trial function has to
take the form Φlm(r) exp [−i(k − k0)r], which is an infinite angular momentum series, with
radial functions being not solutions of the radial Schrödinger equation any more. Owing to
the extension of the radial basis set, the distorted functions can be reproduced with acceptable
accuracy; an example for Cu is presented in Fig. 7.2. The energy error is seen to be a power
function of the distance from the reference point, the exponent being close to 2. That means
that the error in the wave function is approximately proportional to ∆k. In the valence band
of Cu localized d states dominate; it is seen that including the f -functions reduces the error
by an order of magnitude, whereas functions of d, g, and h character are of virtually no
importance. The great improvement is achieved by adding a new radial solution φf (E2)
and its energy derivative φ̇f (E2) to the pair φf (E1) and φ̇f (E1) employed in the non-k · p
calculation. To further improve the accuracy we have to add the functions arising from the
product Φlm(r) exp [−i(k − k0)r], namely, for the angular momentum l the orbitals of the
first order in ∆k, Φl±1(r)r, and orbitals of the second order, Φl(r)r2 and Φl±2(r)r2 [31].

7.2.4 Back to plane waves

Owing to rapid oscillations of the all-electron wave function near the nucleus, its plane wave
expansion (7.1) converges very slowly. The rapidly varying part can, however, be separated
out, which offers a very convenient representation of the wave function. We introduce a sphere
of radius Sγ < SMT and strongly damp the function within the sphere by multiplying it by
a smooth positive definite function γ(r), which is equal to unity at r = Sγ and vanishes at
r = 0, see Fig. 7.3

ψ(r) = γ(r)ψ(r) + [1 − γ(r)]ψ(r). (7.12)

The damped wave function γ(r)ψ(r) coincide with the original one everywhere in the
unit cell except for the small spheres surrounding the nuclei, and its plane wave expansion
converges very fast. This is illustrated by Fig. 7.3, which shows the density distribution in
the muffin-tin sphere of Li metal obtained from the plane wave expansion of the damped
wave functions. The rapidly varying part of the density is ‘gouged out’, and the Fourier
representation of the damped density is seen to become very accurate with the γ-spheres
occupying less than 10% of the volume of the unit cell (dotted curve). On the other hand, even
for this nearly-free-electron metal, the APWs strongly deviate from the plane waves, and the
full density is poorly reproduced by the plane waves (dashed curve). By gouging less than 2%
of the valence charge we transfer the error to the close vicinity of the nucleus. These 2% are,
however, retained by the orbital representation.

It is desirable to be able to calculate the dipole matrix elements between the valence sta-
tes and the outgoing photoelectron state in terms of plane waves. The Bloch vectors of the
semi-infinite crystal eigenfunctions are complex, and the APW-based numerics becomes very
sophisticated. Having obtained the all-electron eigenfunctions, one can change to a PW rep-
resentation by performing the gouging. In the k ·p method this is particularly simple because
the transfer matrix between the APW and PW representation is k-vector independent.
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Figure 7.3: Left panel: Separation of an all-electron wave function into a damped and a localized part
(see Eq. (7.12)). Right panel: The gouging transformation of the valence density of the bcc Li [29].
The true radial distribution is shown by the solid line in the lower panel. Even for this simple metal
the Fourier decomposition of the damped density (dotted line) converges much faster than the Fourier
decomposition of the true density (dashed line). The difference between the true density and the Fourier
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Figure 7.4: Imaginary part of the element ε00 of the
dielectric matrix of BaTiO3 [30]. The shaded area
shows the spectrum obtained with momentum ma-
trix elements (MME) calculated from original all-
electron wave functions. The line corresponds to
MME calculated from the plane-wave decomposi-
tion of gouged wave functions. The maximum at
18.5 eV results from the transitions from Ba 5p
semi-core band located at −10 eV to Ba 5d reso-
nance centered at 8.5 eV (energies are relative to the
valence band maximum).

That this approximation works well is illustrated by Fig. 7.4, in which we compare the
function ε00(ω) of the BaTiO3 perovskite as given by true wave functions and by damped
ones. The radii Rγ are 1.4 a.u. for Ba and 0.4 a.u. for Ti and O. The PW set comprises 4945
PW’s, approximately ten times more than the number of APWs. With these parameters the
PW decomposition converges very fast, and only a small contribution to the matrix element
from the close vicinity of the nuclei is sacrificed. The spectrum is seen to be reproduced with
a reasonable quality, especially in the far UV region (Ba 5p → 5d transitions).
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7.3 Electron diffraction in semi-infinite crystals

A semi-infinite crystal is a 3D system with a 2D periodicity that is composed of bulk and
vacuum half-spaces separated by a slab inside which the crystal potential changes from its
bulk distribution to a constant value in the vacuum.

Within a simplified one-particle approach, the LEED problem reduces to solving the
Schrödinger equation for a semi-infinite crystal given the energy E and the initial condi-
tions of the incident electron, i.e., the asymptotics of the wave function in the vacuum. In the
plane parallel to the crystal surface the LEED wave function obeys the Bloch theorem and is
characterized by the 2D Bloch vector k||. In the vacuum, far from the crystal surface, it is a
superposition of plane waves: the plane wave propagating towards the crystal defines incident
current, and the total current carried by the LEED state is the transmitted current. The ratio of
the two currents is the transmission coefficient T (E).

Computational methods to treat the electron diffraction can be divided into two groups
depending on whether the crystal is represented as a finite number of monolayers or is treated
as a half-space. The former approach is adopted in the multiple-scattering layer KKR tech-
nique [32] and in purely direct-space methods [33], and the latter one gives rise to Bloch-waves
based methods [6, 7].

In the Bloch-waves approach the LEED wave function in the bulk half-space is a lin-
ear combination of the Bloch functions Ψn for a given energy (propagating and evanescent),
which form the complex band structure and thereby take into account all multiple scattering
in the crystal [7]. In Sec. 7.3.1, we show how Ψn are obtained as solutions of a matrix eigen-
value problem. Their linear combination is then matched at a plane parallel to the surface to
the solution in the surface region (a slab inside which the crystal potential changes from its
bulk distribution to a constant value in the vacuum). The latter, in turn, must be matched to
the wave function in the vacuum half-space, where it is a linear combination of the incident
and the reflected plane waves. The matching problem is discussed in Sec. 7.3.2.

7.3.1 Inverse band structure problem

Similarly to the pseudopotential plane wave method [7], in the ELAPW-k · p method the
complex band structure can be obtained by an analytical continuation of the k · p Eq. (7.11)
to the complex k space. In the direct k · p method we fix the target point k and solve the
eigenvalue problem[

Ĥk0 + 2∆k · P̂k0 + (∆k2 − E)Ôk0

]
Ckλ = 0, (7.13)

for the energies E [see also Eq. (7.11)]. Real k vectors yield the real band structure, and real
eigenvalues corresponding to complex k vectors comprise the complex band structure.

In application to semi-infinite systems, we use the ELAPW-k·p method to solve the in-
verse band structure problem; i.e., given two real Cartesian components of the Bloch vector
k‖ = (kx, ky) and the energy E, we find the values of k⊥ that satisfy the Schrödinger equation

ĤΨn(E,k‖ + nk⊥
n ; r) = EΨn(E,k‖ + nk⊥

n ; r) (7.14)
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for the Bloch vector with a complex z component k⊥
n (n is a unity vector normal to the

surface). The choice of the reference point depends upon k‖: k0 = k‖ + nk⊥
0 . The normal

projection k⊥
0 is arbitrary, usually it is chosen at the center of the k⊥-interval of interest. Now

the k·p representation of the trial function

Ψk⊥(E; r) = exp[ i(k⊥ − k⊥
0 )z]

∑
i

C k⊥
i (E,k0)ξi(k0, r) (7.15)

leads to the matrix equation[
Ĥ + 2δ⊥n · P̂⊥ + (δ⊥2

n − E)Ô
]
Cn = 0, (7.16)

P̂⊥ = P̂ · n,

k⊥
n = k⊥

0 + δ⊥n .

We define the vector Dn = −(2P̂⊥+δ⊥n Ô)Cn and reduce Eq. (7.16) to a matrix equation
of twice the dimension:

(
0 Ĥ − EÔ

Î 2P̂⊥

)(
Dn

Cn

)
= δ⊥n

(
Î 0
0 −Ô

)(
Dn

Cn

)
. (7.17)

Thus, the solutions of the inverse band structure problem δ⊥n are obtained as solutions of this
generalized non-Hermitian eigenvalue problem. Solutions of Eq. (7.14) are orthogonal in the
sense that at the plane z = const the non-diagonal elements of the current operator vanish:

�

2m

∫
S

[(
−i

d

dz
Ψn

)
Ψ∗

n′ −
(
−i

d

dz
Ψ∗

n′

)
Ψn

]
d2r = Jznδnn′ . (7.18)

Here the integral is over the surface of the unit cell. In other words, the current carried by a
sum of the Bloch states with the same E and k‖ is the sum of the individual currents [34].

An evanescent wave is a product of the ‘Bloch part’ and the decaying factor exp[−κz].
From Eq. (7.16) it follows that the expectation value of the momentum operator P̂⊥ for the
Bloch part vanishes, and that its energy expectation value is κ2 + E. It is well-known that
the higher is the energy of the Bloch state the poorer is its convergence, i.e., the larger is
the number of the plane waves (or, equivalently, the number of the spherical functions) that
must be included in the basis set. This means that the accuracy of the evanescent waves
deteriorates with increasing the imaginary part of the Bloch vector irrespective of the method
of calculation.

Other formulations of the complex band structure problem in terms of APWs include the
‘assembly of boundary controlled monolayers’ method of Wachutka [35], a similar method of
Stiles and Hamann [36], and a Green function approach of Wortmann et al. [45].

7.3.2 Matching the solutions at the crystal surface

Let Φ be a solution of the Schrödinger equation for a semi-infinite crystal. In the bulk, z ≤ 0,
Φ is a linear combination of the eigenfunctions Ψn(E,k‖). Far from the surface, where the
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crystal potential is periodic, Ψn satisfy the Eq. (7.14) with Im k⊥
n = 0 for propagating Bloch

states and Im k⊥
n < 0 for evanescent states. For a LEED state, the condition that the incident

electron comes from the vacuum implies that Φ contains only the partial waves propagating
(or decaying) into the interior of the crystal,

ΦLEED(r‖, z) =
∑

n

tnΨn(E,k‖; r‖, z). (7.19)

Here k‖ is the surface projection of the wave vector of the incident electron. In the vacuum,
the function is a linear combination of (propagating and evanescent) plane waves

ΦLEED(r‖, z) = exp[ik‖r‖ − ik0z] +
∑

s

as exp[i(k‖ + Gs)r‖ + iksz], (7.20)

where the normal wave vector components ks are connected to the surface reciprocal lattice
vectors Gs and the kinetic energy E by the relation | k‖ + Gs |2 + k 2

s = E. The normal
projections ks are either purely real or purely imaginary with Im ks > 0.

In the case of a step-like surface barrier, with a periodic bulk potential V (r) for z < 0 and
a zero potential for z ≥ 0, the two representations in both half-spaces hold right to the surface
and the coefficients as and tn are determined by matching the wave function and its derivative
over the plane z = 0. The eigenfunctions Ψn(r‖, z) are expanded into the 2D Fourier series3

Ψn(r‖, z) =
NF −1∑
s=0

fsn(z) exp[iKsr‖], (7.21)

−i
d

dz
Ψn(r‖, z) =

NF −1∑
s=0

dsn(z) exp[iKsr‖], Ks ≡ k‖ + Gs. (7.22)

By simple algebra one can get rid of the mismatch in the values of Φ(r‖, 0) so that the function
is continuous by construction; then the coefficients {as} are expressed in terms of {tn}, the
latter being independent coefficients.

For a one-dimensional system the matching can be performed exactly, but for a 3D crys-
tal, to match the functions pointwise over the surface would require an infinite number of
constituents Ψn. Practical treatment of the semi-infinite crystal problem depends upon the an-
swer to the question: Given a finite set of bulk Bloch waves, what is the best approximation
to the wave function?

In the simple matching scheme [7], the coefficients tn are determined by exactly matching
NF Fourier components (FCs). Then it is necessary to include Nsol = NF solutions, and the
rest of the Fourier components are left unmatched. However, it may happen that some of the

3 To get a Laue representation of the wave functions becomes untrivial when the matching plane intersects the muffin-
tin spheres. Here we again transfer to a plane wave decomposition, which is easy to obtain in a k · p method. The
calculations are facilitated by the possibility to use the gouging technique described in Sec. 7.2.4. The technique is
ideally suited for this problem: the gouging spheres are chosen so as to touch the matching plane, which provides
a rapidly convergent plane wave expansion of the wave functions. An elegant method to avoid the intersection of
the matching plane with the muffin-tin spheres has been developed by Ishida [37]. He introduced a buffer region
and defined the boundary conditions on an artificial planar surface by integrating the Schrödinger equation in the
buffer region.
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NF solutions contain more than NF non-negligible FCs and the situation cannot be improved
by increasing NF .

A number of variational schemes have been proposed, in which Nsol is independent of
NF . Then the mismatch is allowed to distribute over all the NF Fourier components, and the
freedom can be used to reduce the integral mismatch as compared to the simple matching. The
method of Bross [38] is aimed at minimizing the current mismatch at the interface. However,
the current mismatch is not a positive definite quantity; consequently, the mismatches due
to different Gs may compensate each other, thus providing a good current conservation, but
producing a solution which is far from smooth. Appelbaum and Hamann [39] minimized the
integral mismatch with a least squares method. A disadvantage of this procedure is that all
the FCs are treated equally, and no preference is given to the Gs according to their individual
contributions to the solution Φ. The mismatch is uniformly distributed over the vector set,
and large Gs, for which the amplitudes fsn are very small and numerically unreliable, can
contribute to the mismatch considerably. In order to cure this deficiency, Krasovskii and
Schattke have suggested [27] to damp the unphysical contributions by introducing different
weights for mismatches coming from different FCs. The weights are proportional to | fs |2
and are determined self-consistently in the course of matching. Thus, instead of neglecting the
large Gs vectors, as one does in the simple matching, here one damps the components whose
contribution to the current is unimportant. The details of the formalism and its performance
in comparison to other methods are discussed in Ref. [27].

The above review reveals an ambiguity in assessing the ‘smoothness’ of the wave function.
The question of whether the function is ‘smooth enough’ can, however, be avoided if we
construct a smoothly continuous trial function Φ by continuing each solution Ψn of Eq. (7.14)
with continuous derivative into the vacuum region [40]. For a given energy E and a given set
of Bloch waves Ψn we require that their linear combination Φ minimize the energy deviation
‖(Ĥ − E)Φ‖ under constraints dictated by the physical nature of the problem. Since Ψn

are variational solutions, this criterion is quite natural: when the quality of the trial function
becomes comparable to the quality of the individual partial solutions the inclusion of more
evanescent states with larger Im k⊥ would not improve the results.4

The scheme is very easy to implement in the case when the potential in the vacuum half-
space is constant. We smoothly continue the Laue decomposition (7.21) of each function Ψn

to the half-space z > 0. The functions fsn(z) are extended by attaching a linear combination
of two tails: a ‘physical’ tail, which has a correct asymptotics at z → +∞, and an auxiliary
tail, which decays rapidly with the distance from the surface. The ‘physical’ tail

ps(r‖, z) = exp[iKsr‖ + iksz], K2
s + k2

s = E, (7.23)

may be a propagating wave, Im ks = 0, or an evanescent wave, Im ks > 0, depending on E
and K2

s . For convenience, the auxiliary tail can be taken as a sum of evanescent plane waves

asj(r‖, z) = exp[iKsr‖ + iqsjz], K2
s + q2

sj = Ej , (7.24)

4 The accuracy of the partial Bloch waves according to the energy criterion inevitably deteriorates with increasing
the imaginary part of the Bloch vector – see the discussion in the end of Sec. 7.3.1.
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with Im qsj > 0. The auxiliary energies Ej are taken considerably lower than E, so that
the auxiliary tails decay fast. For Gs = 0 the physical part p0(z) is always propagating: it
is the outgoing (specular beam) plane wave. The functions Ψn are thereby defined in the
whole space. However, none of them contain an incident wave. The incident wave enters in a
linear combination with the outgoing and the auxiliary wave, which vanishes with vanishing
derivative at the surface. The function constructed in this way is zero in the crystal half-space.
It gives rise to the right hand side of a system of linear equations.

We have thereby arrived at a set of smoothly continuous functions, any linear combination
of which by construction satisfies the Schrödinger equation in the bulk half-space and far from
the surface in the vacuum.5 The error is confined to the surface region (on the vacuum side).
The minimization of ‖(Ĥ − E)Φ‖ under the constraint that the incident current is equal to
unity (LEED regime) leads to a system of linear equations. In the case of bounded states (no
incident waves) it leads to an eigenvalue problem.

7.3.3 Embedding

The above formalism is easy to implement if we assume that the periodic bulk potential holds
right to the surface, where it abruptly changes to the constant potential in the vacuum. This
approximation works fairly well for the surfaces of elementary metals [40] and layered crystals
[41]. However, for reconstructed surfaces or adsorbates the actual potential distribution in the
surface region cannot be neglected. The ground state density distribution can be obtained
within the DFT from a slab calculation (see Chapter 1), and the resulting potential can be then
used as an approximation for the potential felt by the LEED wave. For a sufficiently thick slab,
the potential in the depth of the slab matches the periodic bulk potential; the slab calculation
provides us thereby with all necessary information to calculate the scattering states as well
as bounded states. The latter are the initial states of the photoemission process, and for them
the actual shape of the potential near the surface must be taken into account in the first place.
The output of the slab calculation cannot, however, be immediately fed into the photoemission
calculation because, for an isolated slab, the k‖ projected band structure represents a discrete
set of energy levels, which does not contain any information about the k‖ projected density
of states of the semi-infinite crystal. The photoemission experiment, on the contrary, reflects
the one-dimensional density of states, which is a continuous function of energy and depends
upon the band structure of the substrate.

Thus, we need to put several atomic layers on top of the substrate and develop a prac-
ticable computational formulation of the resulting aperiodic-potential problem. An embed-
ding method has been proposed by Inglesfield [42], in which the substrate is represented
by an energy dependent embedding potential defined on the matching surface and derived
from the Green function for the perfect crystal. This potential enters the variational prob-
lem for the surface region, which is treated explicitly. The method has been implemented
within the LAPW formalism and a number of self-consistent calculations for surfaces were
performed [37, 43, 44]. Recently, the method has been extended to the calculation of electron
transmission through the interface [45, 46].

5 Owing to the variational character of the bulk partial solutions, the Schrödinger equation in the bulk region is
satisfied only with a certain accuracy.
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Figure 7.5: The embedding setup: The
substrate is represented by the complex
band structure of the ideal semi-infinite
crystal and the interface region is a part of
a slab.

We now present an alternative embedding method, in which the substrate is represented
by its complex band structure. Consider an interface region composed of true surface layers
attached to the substrate as shown in Fig. 7.5.

By embedding we mean the continuation of the substrate Bloch waves Ψn [that satisfy
Eq. (7.14)] to the interface region Ω (see Fig. 7.5). Given the initial conditions at the plane
z = zS [fs and ds of Eqs. (7.21) and (7.22)] we must integrate the Schrödinger equation over
the interface region. This region is a fraction of a slab, for which a boundary value problem
has been solved, and a complete set of eigenfunctions {ξm} has been obtained.

Ĥslabξm = εmξm. (7.25)

The continuation of the function Ψn can be expanded into a convergent series of the slab
solutions

Ψ(r) =
∑
m

amξm(r). (7.26)

(Here the subscript n of Ψ is dropped.) The set {ξm} is complete in Ω because any function
defined in Ω can be extended to the slab domain (i.e., to z < zS and z > zV, see Fig. 7.5) so
as to satisfy the slab boundary conditions. On the other hand, the set is overcomplete because
such an extension is not unique. The coefficients am must satisfy the Schrödinger equation

(ĤΩ − E)
∑
m

amξm =
∑
m

am(εm − E)ξm = 0 (7.27)

and the initial conditions

Ψ(r‖, zS) =
∑
m

amξm(r‖, zS), and

d

dz
Ψ(r‖, zS) =

∑
m

am
d

dz
ξm(r‖, zS). (7.28)

Similar to the procedure of Sec. 7.3.2 we find the coefficients am by minimizing the energy
deviation

‖(ĤΩ − E)Ψ‖ =
∑
m′m

(εm′ − E)(εm − E) 〈 ξm′ | ξm 〉Ω a∗
m′am (7.29)
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under the constraints (7.28). Computationally, the problem reduces to calculating the integrals

〈 ξm′ | ξm 〉Ω =
∫
Ω

ξ∗m′(r)ξm(r) d3r. (7.30)

An example of an embedding calculation for the surface state on the (100) surface of
aluminum is shown in Fig. 7.6. In the region z < zS the state is represented by a single
evanescent eigenfunction of the bulk Hamiltonian (dashed line). With the initial conditions at
zS the Schrödinger equation for the aperiodic potential in the embedded region is integrated
through the zV plane, at which the function is matched to a sum of evanescent plane waves
– the asymptotic vacuum solutions for each G‖. For a given shape of the potential in the
interface region, the matching of the function and its derivative at both zS and zV is possible
only at a certain energy, which the present calculation [47] has located at 2.62 eV below the
Fermi energy. The resulting density distribution is shown by the full line. The dashed line for
z > zS is an attempt to replace the self-consistent potential distribution in the surface region
by a step-like potential: the periodic potential of the bulk crystal is cut by a plane at z = z0, at
which the asymptotic vacuum solutions are attached (by matching in value and not in slope).
The kink in the dashed curve at z = z0 is not visible, which suggests that the change in energy
due to the potential variation is not dramatic: indeed, for the step-like potential the surface-
state occurs some 0.25 eV higher in energy. However, the wave function reacts much more
strongly: the imaginary part of the evanescent tail Bloch vector changes by 20% from 0.036
to 0.045 Å−1.

7.3.4 Current attenuation and current conservation

Gross features of the LEED spectrum depend upon the band structure of the bulk crystal: the
energies at which the band ceases transmitting the current (e.g. when the group velocity van-
ishes) and other critical points are reflected in experimental spectra. For example, the trans-
mission T (E) drops abruptly to zero when an energy gap in the k|| projected band structure
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   step
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Figure 7.6: Density distribution in
the surface state on the Al (100)
surface. The surface state wave
function is continued into the sur-
face region with initial conditions
defined at the plane zS. The full
line is the plane-averaged density
obtained with a realistic surface po-
tential, which gradually grows in the
embedded region. The shaded area
shows the solution for a step-like po-
tential; the location of the step is
shown by the dashed line.
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is encountered. However, owing to inelastic processes, one never observes zero transmission
in the experiment, and instead of a sharp drop predicted by the simple theory one observes a
rather smooth decrease of the transmission as a sign of the critical point.

In 1937 Slater [49] showed that the broadening of the spectral structures and the absence of
energy gaps can be reproduced by adding an imaginary term, the optical potential −iVi, to the
potential in the crystal half-space. Slater’s idea is to associate the effect of the optical potential
with a spatial damping of the wave functions rather than with a decay in time. Then the Bloch
vector acquires an imaginary part (see Fig. 7.7). For sufficiently large group velocities v⊥,
mv⊥2 � Vi, the imaginary part Im k is of the order of Vi/�v⊥, or, in terms of the mean free
path d = 1/Im k, it is Vi = �v⊥/d. The optical potential is, thus, understood as the inverse
lifetime of the quasi-particle.

In the case of a non-absorbing crystal potential (Vi = 0) the LEED function obeys the
current conservation rule: the flux through a cross-section S of the unit cell z = const is
independent of z. In the vacuum the current is carried by the incident and reflected beams and
in the bulk it is the sum of the currents carried by the Bloch constituents, see Eq. (7.18). An
individual current is proportional to the group velocity of the Bloch wave, which is calculated
as an integral over the unit cell of the bulk crystal,

1
S

∫
S

j(r) dS =
〈
ψ

∣∣∣ −i
�

m

d

dz

∣∣∣ ψ
〉
. (7.31)

Owing to the variational character of the wave functions and to the imperfectness of match-
ing, calculated LEED functions conserve current only approximately. To assess the quality
of the calculation one compares the flux at +∞ (in the vacuum) and at −∞ (in the bulk,
by Eq. (7.31)). An example for a layered material VSe2 is shown in Fig. 7.8. The current
mismatch almost never exceeds some 5% of the incident current, which is physically quite
acceptable.

In an absorbing medium the current is not conserved. The analogue of the current conser-
vation law is given by the relationship between the current in the vacuum and the charge of
the LEED electron in the crystal half-space

∫
S

j(r) dS =
2Vi

�

−∞∫
0

∫
S

|Φ(r)|2 d2r dz. (7.32)

Γ-G/2  G/2

Re k

 E
(k

)

Im k

V
i
 = 0

V
i
 = 0/

V
i
 = 0

/

1

Transmitted Current

V
i
 = 0

Figure 7.7: Effect of the optical potential on the
band structure in a one-dimensional case. The ‘elas-
tic’ band structure, Vi = 0, is shown by dashed lines
in the left panel, and the corresponding transmission
spectrum in the right panel. Full lines correspond to
a finite optical potential. The horizontal extent of the
shaded band shows the imaginary part of the Bloch
vector.
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Figure 7.8: Target current spectrum of
VSe2. Lower panel: the no-absorption
calculation; full line is the total current of
the LEED state calculated in the vacuum
half-space and dashed line is the current
in the bulk. Middle panel: full line is the
current in the vacuum for Vi = 0.5 eV
and dashed line is the right-hand side of
Eq. (7.32). Upper panel: experiment by
Strocov et al. [4, 50].

The integration in the right-hand side is over the unit cell of the semi-infinite crystal, which
has an infinite extent in the z direction. The central panel of Fig. 7.8 shows that Eq. (7.32)
is well fulfilled in practical calculations. The density integration has been performed in the
plane wave representation. Because of the gouging (see Sec. 7.2.4) the right-hand side is sys-
tematically smaller than the left-hand side. The idea to consider the penetrated charge was
put forward by Strocov et al. [48, 51] as a way to compare the contributions to the transmit-
ted/absorbed current from different Bloch constituents of the LEED state.

The inclusion of the optical potential is seen to bring the sharpness of the calculated struc-
tures into agreement with the experiment. Above 15 eV the experiment does not show any
distinct structures, which exemplifies the general trend of the lifetime to diminish with en-
ergy. In the next section we show how a quantitative information on the energy dependence
of Vi can be extracted from the measured T (E) spectra by comparing the broadening of ex-
perimental and calculated spectral structures.

It should be noted that in the band structure theory of scattering the reflected beams in the
vacuum feel the absorbing potential in the crystal via the matching conditions at the surface.
Thus, one cannot expect that increasing Vi would always reduce reflectance. An example
is presented by Fig. 7.7: even in a 1D case increasing the optical potential may lead to a
decrease of transmission. However, the relationship (7.32) ensures that the LEED intensities
behave physically: the reflected current cannot exceed unity and the evanescent states in the
gaps always absorb current.

7.4 Is band structure a legitimate concept at high energies?

In analyzing the LEED or photoemission spectra we try to trace back the spectral structures
to the features of the band structure of the solid. On the theoretical side the difficulties arise
from the neglect of many-body effects in the band structure. A correct (quasi-particle) band
structure would have resulted from a one-particle equation that includes the many-body effects
through the exact self-energy operator Σ̂ [52],

[Ĥ0 + Σ̂(E)]|ψ〉 = E|ψ〉, (7.33)
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where Ĥ0 describes the kinetic energy and Coulomb interaction, and the operator Σ̂ is, in
general, energy dependent, nonlocal, and not Hermitian. An ab initio determination of Σ̂,
even within the approximate theories (see Chapter 1), is very time consuming, and in the
majority of the state-of-the-art calculations Σ̂ is replaced with a local exchange-correlation
potential vxc(r) obtained within the local density approximation. The potential vxc(r) is
designed to describe the ground-state properties within the density functional theory, which
does not ascribe any physical meaning to the unoccupied eigenfunctions. At the present-day
level of the many-body theory it is not possible to a priori estimate the error of the simplified
one-electron calculations, and the comparison with the experiment remains the main argument
in judging on the adequacy of approximation.

Another source of uncertainty is the description of inelastic processes by a phenomeno-
logical parameter Vi. The finite optical potential causes the wave functions to decay, which
modifies the photoexcitation matrix elements. Its immediate consequence is that the band-gap
emission becomes allowed, i.e., the photoemission due to genuine evanescent states in the
gaps of the k‖ projected real band structure becomes comparable with the bulk photoemis-
sion. Optical potential is, thus, a necessary ingredient of the theory. It should be noted, that
the particle in the Slater theory [49] (see Sec. 7.3.4), which is described by a damped wave,
has an infinite lifetime, whereas the particle with a finite lifetime is not, strictly speaking,
described by a wave function. Thus, the evaluation of the photoemission intensity from the
matrix elements of a perturbation operator is a heuristic procedure. The same is true for the
evaluation of the LEED intensity from the matching of the wave functions.

Nevertheless, as will be shown in the next two sections, the ab initio one-particle theory
augmented by the optical potential provides a a fairly good description of the unoccupied elec-
tronic structure and offers a reasonable starting point for the understanding of experimental
observations.

7.4.1 Target current spectroscopy of NbSe2

The unoccupied band structures of layered quasi-2D materials, such as graphite [53] or tran-
sition metal dichalcogenides, [4, 54, 55] are particularly interesting: owing to the interlayer
potential barrier, a nearly-free-electron model fails to provide even a qualitative picture of the
unoccupied states. In particular, the experimental LEED spectra of 2H-NbSe2 show very rich
structure over the energy interval up to 50 eV above the Fermi level [41].

With the methodology of Sec. 7.3 we have performed a LEED calculation and analyzed
the real band structure to determine the states responsible for transmitting the current into
the crystal. The k|| = 0 spectra of NbSe2 along with the underlying real band structure are
presented in Fig. 7.9. The Vi = 0 calculation yields partial currents carried by the Bloch states
(shown by whiskers). It reveals the ‘current-carrying bands’, thereby offering an interpretation
of the VLEED spectrum in terms of conducting fragments of the band structure: the abrupt
changes in T (E) all reflect critical points in the conducting bands.

A special feature of the normal incidence spectrum is that the conducting bands do not
overlap, i.e., there is only one dominant propagating constituent in the LEED function. In
this respect the picture is similar to that of the Slater 1D model (Fig. 7.7). Already at a
moderate value of Vi = 0.5 eV (dashed curve in Fig. 7.9) the intensity variations level out
and the narrow gaps in the T (E) spectrum almost completely disappear, so one can hardly
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expect them to be observed in the experiment. Wider gaps remain well visible, although the
reflected intensities are strongly reduced and the structures broadened with respect to those
obtained with a Hermitian Hamiltonian. If the theoretical and and the experimental peak
positions agree well we can fit the shape of the calculated curve to the experiment by varying
the function Vi(E). Thereby we extract the information about the damping of quasi-particles
from the experiment.

In order to compare the calculated transmission coefficient T (E) with the measured target
current spectra I(E) we, first of all, need to bring the I(E) spectrum to the same absolute
units as T (E). This is not trivial because of the presence of the unknown background caused
by the secondary electrons contributing to the reflectivity. In view of the close similarity of the
fine structure of the measured I(E) and theoretical T th(E) spectra over a wide energy region,
see Fig. 7.10, we can determine the experimental T (E) curve by fitting I(E) to T th(E) with
the linear transformation T exp(E) = aI(E) + b + cE. Here the function b + cE represents
a linearly varying background.

The energy dependence Vi(E) is calculated by comparing the sharpness of the dT/dE
extrema (maxima and minima) in the experimental and theoretical spectra. Strong intensity
variations in the T (E) spectrum are much more important for the band structure information
than the shape of the maxima [5], which are very broad even if the damping is neglected (see
Fig. 7.9). The function Vi(E) derived from the experiment is presented in the right panel
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Figure 7.9: Calculated unoccupied band
structure of NbSe2 in the ΓA direc-
tion [41]. The lines in the left panel
show the band structure E(k⊥) for Vi =
0 obtained with the direct ELAPW-k ·
p method. The conducting bands are
marked by whiskers. The length of the
whisker is proportional to the contribu-
tion of the Bloch wave to the target cur-
rent. Transmission coefficient T (E) is
shown in the right panel by the solid line.
The dashed line is the T (E) spectrum
with the optical potential Vi = 0.5 eV
added to the Hamiltonian Ĥ in Eq. (7.17).
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Figure 7.10: Left panel: Comparison of the normal incidence target current I(E) and transmission
coefficient T (E) spectra of NbSe2 [41]. The measured I(E) curve is shown by the dot-dashed line.
Theoretical T (E) and dT/dE spectra are shown by dashed lines in the lower and upper panels respec-
tively; they are calculated with an energy dependent optical potential (the Vi(E) function is shown in the
right panel). To arrive at the experimental T (E), the original I(E) function is fitted to the theoretical
T (E) by a linear transformation that involves scaling and subtracting the background. The resulting
experimental T (E) and dT/dE curves are shown by solid lines.
Right panel: Dependence of the optical potential Vi on the incident electron energy extracted from the
normal (◦) and an off-normal (×) incidence spectrum [41]. The function Vi(E) used in the calculations
is shown by the dashed line. The solid line is the energy integral (7.34) of the loss function.

of Fig. 7.10. Two spectra are analyzed: the normal incidence data (circles) and the data for
k|| = 1

4ΓK (crosses, 1
4 |ΓK| = 0.3 Å). The absolute values of Vi agree very well, and both

spectra suggest a sharp increase of Vi at around 20 eV.

An optical potential is associated with the imaginary part of the electron self-energy
Σ, whose energy dependence is expected to reflect singularities of the energy loss function
−Im[1/ε(q, ω)]. In particular, in the GW approximation [52], Im Σ is given by an integral,
whose integrand contains the inverse dielectric function. A rough idea of the average effect of
plasmon excitations on the energy dependence of the electron lifetime can be obtained from
the DF for q = 0 by plotting the integral

E∫
0

−Im
[

1
ε(ω)

]
dω. (7.34)
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Figure 7.11: Experimental (left) and theoretical (right) k‖ distribution of the T (E) spectral intensity
shown in a linear gray scale [41]. White areas correspond to maximal T (E). The energy region shown
begins 0.5 eV above the transmission onset. Note the scale change at 18.5 eV (marked by a white line).

We have calculated the dielectric function ab initio in the random phase approximation. In
Fig. 7.10 (right panel) the integral function 7.34 is compared to the experimental dependence
Vi(E). The sharp increase of the optical potential agrees well with the location of the plasmon
at 21 eV.

The values of Vi determined in this way are necessarily overestimated. First, in addition to
the inelastic processes in the electronic system, there exist broadening mechanisms dependent
upon experimental conditions, such as surface roughness and finite energy resolution. Also
the angular spread of the incident beam contributes to the broadening owing to the k‖ disper-
sion of spectral structures. Second, our theoretical spectra do not take into account inelastic
scattering in the surface barrier region, e.g., scattering on the surface defects. This effect re-
sults in an additional reduction of the spectral structures, but, unlike the inelastic scattering
in the bulk, it hardly affects their energy broadening. These mechanisms should, however, be
less significant for the layered materials because of rather small electron density at the surface
and a small concentration of defects on the cleaved surface. On the other hand, our absolute
values of Vi are in accord with the recent ab initio results on the quasi-particle lifetimes for
noble and transition metals [56]: For energies around E−EF = 5 eV the calculated lifetimes
do not exceed a few femto seconds (Vi ∼ 0.2–0.7 eV).

Experimental and theoretical T (E) spectra for k|| ranging from zero to ΓK are presented
in Fig. 7.11 as a gray-scale T (k||, E) plot. A very good agreement between the measured
and calculated k|| dispersion of the T (E) intensity proves that the theoretical approach de-
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Figure 7.12: Comparison of the measured [57]
energy dependence of the photoemission inten-
sity of the surface state (full circles) with an ab
initio ELAPW-k ·p calculation (full line). The
relevant transmission spectrum for two values
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ters A to F label the dashed bars, which show
the energies of the special points of the real
band structure (see Fig. 7.13). The inset com-
pares the theoretical spectrum shifted by 3 eV
to higher energies with the experiment.

scribed in this chapter is adequate. The results have turned out rather sensitive to details of
the potential distribution in the bulk half-space; it should be stressed that the advantage of the
ELAPW-k·p method of accurately taking into account the strong non-muffin-tin effects makes
the method an indispensable tool for studying the electron diffraction on layered materials.

7.4.2 Photoemission from the surface state on the Al (100) surface

The photoemission from an intrinsic surface state offers another possibility to efficiently probe
the unoccupied band structure. In comparison to the valence band photoemission in the con-
stant initial state mode, the deciphering of the experimental spectrum is simplified by the
absence of the k⊥ dispersion of the initial state. Unlike the continuous part of the energy
spectrum, where the existing many-body effects or the uncertainties of the one-electron po-
tential may lead to ambiguities in the choice of the initial state for the theoretical simulation,
the intrinsic surface state, which is located in a gap of the k‖ projected real band structure,
is easily identified. Thus, the energy dependence of the photoemission intensity provides an
informative image of the unoccupied band structure.

The surface state on the Al (100) surface has been observed in a number of photoemission
experiments, see Refs. [57] and [58] and references therein. According to the measurements of
Ref. [57], the state at k‖ = 0 is located at 2.75 eV below the Fermi level in a gap between the
X ′

4 (experimentally at 2.83 eV) and X1 (1.15 eV) states. The ELAPW LDA calculation [47]
yields 2.78 and 1.78 eV for X ′

4 and X1 respectively, and 2.62 eV for the surface state. In the
crystal half-space the surface state is a single evanescent wave with the real part of the Bloch
vector k⊥

ss at point X and the imaginary part of 0.036 Å−1 (see Fig. 7.6 in Sec. 7.3.3). Close
results have been obtained with a pseudo-potential method for a thick slab [59], in a scattering
matrix approach (layer KKR) [60], and with the embedding method of Inglesfield [43].
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The measured [57] energy dependence of the photoemission intensity of the surface state is
compared in Fig. 7.12 with an ab initio ELAPW-k ·p calculation. The LEED states | ΦLEED 〉
[see Eqs. (7.19) and (7.20)] are calculated as explained in Sec. 7.3, and the resulting electron
transmission spectrum is shown in the lower panel of Fig. 7.12. In the upper panel the calcu-
lated photoemission intensities

J(E) ∼
√

E − Evac | 〈 Φ∗
LEED(E) | − i∇| ss 〉 |2 (7.35)

are depicted with the full line. To make the intensity variations over the spectrum comparable
to those observed in the experiment, an optical potential of 2 eV was introduced. The damping
of the final states has, however, small effect on the total width of the ‘emission window’: with
Vi = 0 it remains 23 eV wide (see the right panel of Fig. 7.13). The wide emission interval is
a consequence of the localized nature of the surface state, which levels out the k⊥ dependence
of the transition probability and gives rise to an appreciable contribution from the evanescent
part of the complex band structure. It is clear that since the real part of k⊥

ss is at X and the
imaginary part is rather small (0.023 2π/a), the resonance Bloch constituents Ψn(E, k⊥

n ) [see
Eqs. (7.19) and (7.14)] must be located in the vicinity of point X . (A periodic oscillatory
behavior in surface-state emission intensity has been discussed in Ref. [61] within a spectral
decomposition theory).

To understand the spectrum, one must take into account not only the details of the band
structure, but also the coupling of the individual Bloch waves Ψn(E, k⊥

n ) to the vacuum, i.e.,
the coefficients tn of the Bloch waves [see Eq. (7.19)].6 In Fig. 7.13 we show the relevant
fragment of the real band structure superimposed on the E(k⊥

n ) lines (thick lines) that mark
the most important Bloch constituents of the photoemission final states. The letters A to F
denote special points of the real band structure at which the real lines of the complex band
structure originate. The individual contributions to the photocurrent are shown by the shaded
area, whose horizontal extent is proportional to the matrix element | tn 〈 Ψn |−i∇| ss 〉 | (not
squared). The E(k⊥

n ) lines include the evanescent states, whose contribution to the spectrum
is seen to be very important: the emission over wide intervals AB, CD, and EF is due to
genuine evanescent states. Note that the two maxima in the theoretical curve, at 65 and at
73 eV, correspond to minima of transmission.

The calculated onset of the surface state emission is 3 eV lower than in the experiment (see
the inset of Fig. 7.12), which may be a manifestation of self-energy effects. Apart from that,
the expression (7.35) does not take into account the spatial variation of the vector potential in
the surface region caused by the dielectric response of the solid (see Chapter 2). The local field
effects may considerably modify the intensity distribution over the spectrum. Nevertheless,
the simplified theory of Eq. (7.35) in connection with the realistic complex band structure
explains the width of the emission band and locates it correctly in the 60-eV-wide interval of
the final state energies.

6 The evanescent solutions of the inverse band structure problem are not normalized, so the coefficients tn have no
physical meaning; still we write it as tnΨn to emphasize that the coupling to the vacuum has been taken into
account.
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8 Time-resolved two-photon photoemission

Thomas Fauster

8.1 Basics of two-photon photoemission

In this chapter time resolution will be introduced to photoemission experiments. This means
not just a series of regular photoemission measurements to monitor the changes of a sample
with time. In two-photon photoemission the time delay between the two photons is an addi-
tional experimental parameter which can be controlled with femtosecond resolution, i.e., on a
time scale relevant for electronic processes. At the same time, the introduction of the second
photon leads to the participation of an additional electronic state in the energy diagram for
photoemission.

8.1.1 Energy diagram

In Figure 8.1 the transition from initial state |1〉 to an intermediate state |2〉 after the absorption
of the photon with energy hνa is shown. The second photon of energy hνb excites the electron
out of the intermediate state into the final state |3〉. If the final state energy E3 is above
the vacuum energy Evac, the electron might leave the surface and its kinetic energy Ekin is
measured with an electron energy analyzer. Obviously, the initial state has to be occupied, i.e.,
its energy E1 should be below the Fermi energy EF . The intermediate state on the other hand
has to be empty at first. In most cases it is desirable to keep the photon energy hνa below
the work function Φ = Evac − EF , because this constitutes the threshold for one-photon
photoemission. This applies also to the other photon, because processes with the role of the
two photons interchanged are possible as well.

8.1.2 Energy-resolved spectroscopy

The spectrum sketched at the right of Fig. 8.1 shows a peak at the final state energy E3. The
cutoff at kinetic energy zero corresponds to the vacuum level Evac of the sample. Electrons
with the highest energy after the absorption of the photons with energies hνa and hνb appear
at kinetic energy Emax − Evac = hνa + hνb − Φ. These limits are familiar from regular
photoemission spectroscopy and can be used to determine the work function from the width
of the spectrum. Similarly, the momentum k‖ of the electron parallel to the surface is con-
served for single-crystal surfaces. For electrons emitted at an angle ϑ with respect to the
surface normal one obtains �k‖ =

√
2mEkin sin ϑ. Umklapp processes would add reciprocal

lattice vectors of the surface to the momentum conservation, but play usually no role in two-
photon photoemission. One has to keep in mind that the kinetic energies are generally quite
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Figure 8.1: Energy diagram for a two-photon-
photoemission process and results of time- (top)
and energy-resolved (right) measurements.

low. The requirement that both photons should have energies below the work function leads
to maximum kinetic energies less than the work function, i.e., usually below 5 eV. One con-
sequence is a very limited accessible k‖ range. Most two-photon-photoemission experiments
are performed at normal emission. This geometrical restriction permits the use of a negative
bias voltage (typically a few Volts) at the sample in order to accelerate the electrons into the
analyzer. At the low kinetic energies obtained without bias the transmission of most analyzers
drops significantly and magnetic fields have to be shielded very carefully.

8.1.3 Time-resolved measurements

The two-photon photoelectron spectroscopy discussed in the previous section does not exploit
the time delay between the two photons and it has been tacitly assumed, that the time delay
is fixed. The time-resolved mode of two-photon photoemission is performed at fixed kinetic
energy and the delay between the two photons is scanned. The first photon pumps the inter-
mediate state and the second photon probes the population of this state. Such measurements
are shown in Fig. 8.2 for the first two image-potential states (see Sec. 8.4.2) on Cu(001) and
one recognizes a rapid increase of the emission rate followed by an exponential decay with
pump-probe delay Td. The time constant for the decay indicates the lifetime of the selected
intermediate state. The increase of the signal and the delay zero are determined by the tem-
poral shape of the photon pulses. Their cross correlation can be obtained from measurements
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at energies where the lifetime at the energy of the intermediate state is much shorter than
the pulse durations. For the spectra in Fig. 8.2 the cross correlation has a full width at half
maximum of 60 fs. For identical photon energies hνa = hνb the cross correlation becomes
symmetric (autocorrelation) and pump and probe pulses cannot be distinguished. For identical
polarization of the two photon beams the autocorrelation is dominated by interference effects
(see Fig. 8.7).

State-of-the-art lasers used for two-photon photoemission can produce pulses of some
10 fs. This time scale is comparable to the lifetime of electronic excitations at surfaces. The
shift of the measured signal relative to the time zero obtained from the cross correlation is a
good approximation for lifetimes shorter than the pulse widths [1, 2].
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The time-resolved measurement mode presumes that the energy of the intermediate state
is independent of the time delay. This is usually fulfilled, but should be checked by measuring
energy-resolved spectra for a few selected time delays. An example for such a series of spectra
is shown in Fig. 8.3 for image-potential states (see Sec. 8.4.2) on Cu(001). The spectra are
normalized to same height and the intensity variation with time delay can be inferred from
Fig. 8.2. The energy position of the peaks is indeed independent of the delay. The change of
linewidth with delay will be discussed in Sec. 8.2.

8.1.4 Variation of photon energy

In regular photoelectron spectroscopy the variation of the photon energy leads to the constant
initial or constant final state spectroscopy, depending on the particular state under investiga-
tion. In two-photon photoemission there are in addition intermediate states and two different
photons. A constant intermediate state spectroscopy (E2 = const.) could be done in different
ways (cf. Fig. 8.1):

• Tune hνa at fixed hνb and Ekin.

• Tune hνb and Ekin at fixed hνa.

• Tune hνa, hνb and Ekin.

Similarly constant initial (E1 = const.) and final (E3 = const.) state spectroscopies could
be done in a variety of modes. All these modes play no role in practice, because the photon
energy of femtosecond lasers is rather difficult to tune. In addition, the delay between the
two laser pulses has to be controlled very carefully. This makes a continuous variation of the
photon energies for spectroscopic purposes infeasible.

Measurements at several discrete photon energies are, however, important in order to iden-
tify a particular peak in a spectrum as initial, intermediate, or final state:

• The energy of a final state should obviously not depend on either photon energy hνa or
hνb.

• The intermediate state is emitted after absorption of photon with energy hνb. Its kinetic
energy should therefore change proportional to the change ∆hνb. Because hνa and hνb

might switch their role as pump and probe pulses, the change of kinetic energy could
also be ∆hνa. This process would correspond of course to a different intermediate state
energy [3]. It should be noted, that the sequence of the excitations may be determined
also from time-resolved measurements [4]. If hνb is absorbed before hνa, the exponential
decay appears at negative delays (see Fig. 8.10).

• An initial state is excited directly by two photons. Consequently the change of the kinetic
energies is given by the sum ∆hνa + ∆hνb.

An example for the photon energy dependence of initial and intermediate states is given
in Fig. 8.4 for Cu(111) at 100 K [5, 6]. The n = 0-peak which shows the stronger variation
with photon energy corresponds to the well-known occupied surface state (see also Sec. 8.4.1)
on Cu(111) and is an initial state. The other peak shows less variation and is an n = 1
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Figure 8.4: Series of two-photon-
photoemission spectra from Cu(111) for
various photon energies with hνa = 3hνb.
The spectra are normalized to same height and
plotted with an offset proportional to hνb.

image-potential state (see Sec. 8.4.2) which is populated as intermediate state. At the photon
energy hνa = 4.536 eV a resonant excitation from the surface to the image-potential state
occurs [7, 8]. This resonance enhancement cannot be seen in Fig. 8.4, because the spectra are
normalized to same height.

The considerations of identifying initial, intermediate and final states by a variation of the
photon energy apply strictly only to surface states which show no dispersion with momentum
perpendicular to the surface. For transitions between bulk bands the energies of both involved
bands change with photon energy in a way determined by the bulk band structure. This might
lead to changes of the kinetic energy not covered by the cases listed in the previous paragraph.
The observation of bulk bands by two-photon photoemission will be discussed in Sec. 8.3.1.

8.1.5 Experimental setup

The basic requirements for a two-photon-photoemission experiment are a light source and an
electron energy analyzer. The main difference to a regular photoemission experiment rests
in the light source which has to be intense enough to stimulate the second-order photoemis-
sion process. This involves pulsed lasers in all cases. A typical setup is shown in Fig. 8.5.
A Ti:sapphire laser pumped by an all solid-state laser emitting green light produces pulses at
1.55 eV photon energy with pulse durations down to 12 fs at a repetition rate of 86 MHz. These
pulses are frequency-doubled by second-harmonic generation and the third harmonic is gener-
ated by sum-frequency generation in non-linear optical crystals. The photon energies hνa and
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Figure 8.5: Experimental setup for two-
photon photoemission.

hνb are usually based on a common fundamental laser frequency. Deriving the two laser pulses
from the same laser source is essential for recombining the pulses with femtosecond precision
on the sample for time-resolved experiments. The ultimate time-resolution is obtained by in-
terferometric control of the delay stage to a fraction of the wavelength [9]. Interference occurs
only for identical photon energies hνa = hνb and polarization. For best performance of the
experiment a good characterization of the laser pulses is necessary (see following Sec. 8.2
and Ref. [10]). This involves pulse compression by prism pairs such as shown in Fig. 8.5
and measurement of the autocorrelation and spectrum of the laser pulses (not shown). The
proper characterization of the cross correlation or autocorrelation can, however, only be done
by measuring the photoemission or second harmonic signal from the sample [1, 9, 11].

The main advantage of Ti:sapphire laser systems over excimer-laser-pumped dye lasers
is the high repetition rate. Previous systems had comparable output power, but were limited
by space-charge effects [12]. At high repetition rate a few electrons are emitted per laser
pulse and no space charge can develop. Employing Ti:sapphire lasers the count rate could be
increased by four orders of magnitude over previous systems [13] with the added bonus of
time resolution in the femtosecond regime.

A reduction of the repetition rate below 1 MHz is necessary if the electron energy analy-
sis is done by time-of-flight detection [14, 15]. The energy resolution for such a system can
compete with hemispherical analyzers, because the kinetic energies of the electrons are rather
low and consequently the flight times are quite long. The ultimate performance of any detec-
tion system is limited by the number of electrons which can be registered per laser pulse [16].
Hemispherical analyzers with several channeltrons as shown in Fig. 8.5 are best in combina-
tion with high-repetition-rate lasers. At low repetition rate, time-of-flight detection has the
advantage of registering for each laser pulse all electrons with any kinetic energy.

Some two-photon-photoemission experiments combining lasers and synchrotron light
sources have been reported [17]. The pulse length of the electron bunches in the synchrotron
limits the time resolution and the synchronization between laser and synchrotron constitutes
a difficult task [18]. However, such experiments might become more important in the future
with the construction of new free-electron-laser sources. It is interesting to note that the laser
sources for two-photon photoemission provide more photons per second than a state-of-the-art
synchrotron beam line albeit typically at lower photon energies.
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8.2 Theoretical description of two-photon photoemission

Two-photon photoemission involves the absorption of two photons and the two optical tran-
sitions are treated usually as independent consecutive processes. The matrix elements can be
obtained according to the well developed theories for regular photoemission. The energy and
momentum conservation have been exploited already in Sec. 8.1. An analysis of two-photon-
photoelectron spectra using the obvious extension of the one-step model of photoemission [19]
has not been done so far. There are a few aspects in the two-photon-photoemission process
which are absent in regular photoemission and will be discussed in this section.

8.2.1 Coupling between electron and hole

In regular photoemission the optical transition couples to a free-electron wave function in
vacuum. This holds also for the second transition in two-photon photoemission. The first
optical transition in contrast occurs between two bound states, because the intermediate state
has an energy below the vacuum level. This opens the possibility for a coupling between the
initial-state hole |1〉 and the intermediate-state electron |2〉 and the formation of an exciton.
Such effects have been predicted for the transition between the occupied surface state and the
n = 1 image-potential state on Cu(111) shown in Fig. 8.4 [20]. An experimental verification
is still lacking since the lifetime of this exciton is only a few femtoseconds and the energy shift
is only a few meV. For semiconductors [21], molecular adsorbates [22, 23] or insulators [24]
excitonic effects might be more important. One interesting aspect would be the lifting of
momentum conservation by the spatial localization of the exciton [21, 22].

8.2.2 Phase coherence

In a time-resolved two-photon-photoemission experiment the pulse duration can be compa-
rable to the time scale of the temporal quantum-mechanical evolution of the involved states.
This can be stated in different ways depending on the particular circumstances:

• The lifetime is long compared to the pulse duration, or equivalently,

• the linewidth is narrow compared to the spectral bandwidth of the laser pulses.

• The energy differences of some states are comparable to the spectral bandwidth.

These statements apply also to the absorption of a single photon, but the time resolution in
two-photon photoemission leads to particular effects which makes the phase coherence of
the quantum-mechanical time evolution accessible. Note, that this refers not to the (spatial
or temporal) coherence of the laser light which is described by the electric field. Coherence
effects between the two laser pulses occur only for identical photon energies and polarization
state. These lead to some special effects discussed in Ref. [9]. The formal description in
this situation is identical to the one outlined here, if the interference of the photon fields is
incorporated.

The interaction of the laser fields with the electronic states |k〉 leads to a superposition

|Ψ〉 =
∑

k

ck(t)|k〉. (8.1)
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In the absence of the laser fields the time dependence ck(t) would be given by

ck(t) = c0
k e−t/2τkeiφk(t)eiEkt/� with c0

k = ck(0). (8.2)

The exponential decay is described by the lifetime τk and the energy Ek determines the
quantum-mechanical phase. The term containing φk(t) describes additional changes of the
phase. Such phase-breaking events are (quasi-)elastic scattering of the electron with no or
negligible change of energy or population |ck(t)|2. The experiment samples the population of
the final state |c3(t)|2 and this quantity depends on both laser fields, and in particular on the
time delay between pump and probe pulse, as can be inferred from Eq. (8.1). The sampling
of a time-dependent population of the intermediate state |2〉 by the excitation with photon
hνb into the final state |3〉 is the essential difference to regular photoemission which probes a
constant population in the initial state |1〉.

For the calculation one has to introduce the Hamilton operator Ĥ0 of the unperturbed
system which obeys Ĥ0|k〉 = Ek|k〉. The photons are described in the dipole approximation
by the time-dependent electric fields �E(t) = �Ea(t) + �Eb(t) leading to an interaction operator
V̂ with only off-diagonal matrix elements Vkl ∝ 〈l|�E · �p|k〉 and the momentum operator �p.
The solution of this problem may be done by perturbation theory up to fourth order in the
electric fields [25]. The Liouville-von-Neumann equations [26] are basically equivalent and
more convenient, because the density matrix ρ̂ contains the population ρ33 = |c3(t)|2 directly:

�
d

dt
ρkl =

1
i

[
Ĥ0 + V̂ , ρ̂

]
kl
− Γklρkl (8.3)

The damping matrix Γ̂ is introduced phenomenologically to describe the decay of population
and phase included in Eq. (8.2). The matrix elements are real and can be written as [27]

Γkl =
1
2
(Γk + Γl) + Γ∗

kl, with Γ∗
kl = Γ∗

lk and Γ∗
kk = 0. (8.4)

The decay rates Γk are directly related to the lifetimes τk = �/Γk, whereas the dephasing
rates Γ∗

kl describe the breaking of the phase relation between states |k〉 and |l〉.
The system of differential equations (8.3) can be solved numerically. It may be simplified

by retaining only terms with photon energies close to the energy differences between the states.
For this case, only the envelopes of the electric fields have to be considered. The resulting
optical Bloch equations [26] may be solved analytically in certain limiting cases [8,10,28] for
a three level system. Instead of discussing solutions of the optical Bloch equations in detail,
some of the more surprising features will be illustrated by selected results.

The description of regular photoemission spectra by two-level optical Bloch equations
yields the familiar result of a Lorentzian convoluted with the spectrum of the laser pulse [10].
The Lorentzian width contains a sum of decay and dephasing rates, which cannot be sepa-
rated. One- and two-photon photoemission start from a constant initial-state population, but
the two-photon process samples a time-dependent intermediate-state population with the sec-
ond photon. This time dependence changes upon tuning the photon energy on or off resonance
for a transition between discrete initial and intermediate states. In Fig. 8.4 the linewidth at res-
onance (hνb = 1.512 eV) is narrower than the linewidth observed for each state off resonance.
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This has been observed also using 15 ns laser pulses [6]. A simple interpretation based on the
multiplication of two Lorentzian lineshapes convoluted with a Gaussian apparatus function
gave a satisfactory fit to the data [6, 27]. Using the optical Bloch equations for infinitely long
pulses, the experimental lineshape can be described quite well and values for the decay and
dephasing rates of the surface and image-potential state can be obtained [8].

The linewidths of the peaks observed in the energy-resolved spectra of Fig. 8.3 are plotted
in Fig. 8.6 as a function of pump-probe delay. A constant value is reached for long delays,
whereas a linear increase is obtained towards negative delays. This surprising behavior can be
explained quantitatively by calculations with a three-level system of optical Bloch equations.
The parameters decay and dephasing rates as well as pulse durations for the Gaussian-shaped
pulse envelopes were fitted independently and results close to the values obtained from dif-
ferent, independent measurements were obtained [10]. The dashed lines show the results for
hyperbolic-secant pulse envelopes which do not describe the experimental data for negative
delays satisfactorily. Note that the pulse shape in the UV cannot be measured by autocorre-
lation and that even in the infrared it is difficult to measure the autocorrelation with sufficient
accuracy to distinguish between Gaussian and hyperbolic-secant pulse shapes. It should be
pointed out, that the spectral width of the femtosecond pulses can be larger than the analyzer
resolution or linewidth of the electronic state.

Another example for the dependence of the lineshape on pump-probe delay is shown in
Fig. 8.7. Using two identical photon beams the delay can be controlled interferometrically
with subwavelength resolution. Two-photon photoemission spectra for the occupied surface
state on Cu(111) (see Fig. 8.4 and Sec. 8.4.1) taken for in and out of phase conditions between
the two electric fields show different lineshapes and energy positions [29]. In these experi-
ments not only the phase of the wave function but also of the photon fields is important. This
opens the possibility of a coherent control of the excitations.

In the last example the temporal phase of the wave function enters directly. If the energy
separation of intermediate states is comparable to the bandwidth of the laser pulses, several
states can be excited coherently. The optical Bloch equations have to be solved including
several intermediate states [13, 30]. When the pump pulse is over, the intermediate state pop-



256 8 Time-resolved two-photon photoemission

Figure 8.7: Top: Interferometric two-photon photoemission signal for the occupied surface
state on Cu(111) as a function of pump-probe delay. Bottom: Spectra taken for in and out of
phase conditions between pump and probe pulses (after Ref. [9]).

ulation is given by the square of the sum of all excited states ck(t) (see Eq. (8.2))):∣∣∣∑
k

ck(t)
∣∣∣2 =

∑
k

∣∣c0
k

∣∣2 e−t/τk

+ 2
∑
k 	=l

∣∣c0
k

∣∣ ∣∣c0
l

∣∣ e−t/2τk−t/2τl−Γ∗
klt/� cos((Ek − El)t/�).

(8.5)

The last term oscillates with a frequency which depends on the energy difference of the
coherently excited states. These oscillations are damped by the lifetimes of the states and
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the loss of phase coherence described by the dephasing rates Γ∗
kl. The average population

decays exponentially with time constants τk as indicated by the first term of Eq. (8.5). An
experimental illustration is given in Fig. 8.8 for image-potential states (see Sec. 8.4.2) on
Cu(100) [2, 13]. The oscillatory and exponential contributions can be separated and show
different time constants for decay. Thus the decay and dephasing can be identified directly
and assigned to different scattering processes.

A coherent control of the quantum beats could be achieved by adding a chirp to the laser
pulses, i.e., manipulating the arrival time of the different spectral components while maintain-
ing the spectrum of the pulse. One could then excite the n = 4 state before the n = 3 state and
shift the phase of the quantum-beat pattern. Such effects have not yet been observed in two-
photon photoemission, but have be used to control chemical reactions by feedback-optimized
phase-shaped femtosecond laser pulses [31].

8.3 Bulk properties

This section deals with two-photon photoemission involving bulk states. Because electron
spectroscopies are always surface sensitive, it is not easy to identify specific bulk features
in two-photon photoemission spectra. In particular, the bulk-sensitive region at high kinetic
energies known from regular photoemission is not accessible here. The discussion is divided
between the observations of bulk states and the properties of hot electrons excited by fem-
tosecond laser pulses in the sample.

8.3.1 Direct bulk transitions

The first report of transitions of bulk states by two-photon photoemission identified an unoc-
cupied state at 1.48 eV above EF on Cu(001) [32]. It was observed by a resonance from the
occupied X5 state (top of the d-bands) and assigned to the X4′ point, the edge of the sp-band
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gap at X. Later inverse photoemission measurements locate a surface resonance at 1.4 eV
above EF [33], which might reverse the assignment of the bulk transition to a surface state.

The second example also involves a reinterpretation of a previous result. In the pioneering
work of Giesen et al. [34] an unoccupied state 1.92 eV above EF was found for Ag(111) which
could not be satisfactorily explained by any surface- or bulk-band-structure calculations. A
later study showed, that there is no intermediate state involved, and assigned the transition to
a two-photon excitation between two bulk sp-bands [35]. The dispersion of the bands in the
relevant energy range leads to a photon-energy dependence mimicking an intermediate state.
A similar direct transition between sp-bands has also been identified for Cu(111) [36].

These two examples show that the observation of a peak at a fixed intermediate state en-
ergy as a function of photon energy is not sufficient to assign the peak to a bulk or surface state.
However, one can use the fact familiar from regular photoemission, that only bulk bands show
a dispersion perpendicular to the surface and consequently with photon energy. Consequently,
a transition which does not exhibit a constant initial, intermediate, or final state energy must
involve bulk bands. Several examples for this behavior have been found on the Si(100) surface
and assigned to various transitions between bulk bands [37]. The agreement between experi-
ment and bulk band structure calculations is far from perfect. The strong intensity variations
with photon energy [38, 39] leave the possibility of a reinterpretation.

The identification of transitions involving bulk bands can obviously be quite difficult in
two-photon photoemission spectroscopy. This explains the lack of time-resolved measure-
ments for bulk states. A notable exception might be the identification of a saddle point in the
band structure of graphite through an anomaly in the lifetimes of hot electrons [40].

8.3.2 Lifetimes of hot electrons

A short high-intensity laser pulse creates a large number of electronic excitations in a sample.
The electrons or holes are generated within the penetration depth of the light which is typically
considerably larger than the escape depth of the electrons in a two-photon photoemission
experiment. The excited (hot) electrons rapidly loose energy by scattering with the other
electrons which are available at high density in a solid. The transfer of energy to the lattice
via electron-phonon coupling occurs much slower on a time scale of ps.

The Fermi-Dirac distribution of the electron gas can be seen directly at the high-energy end
of a regular photoemission spectrum. Using laser pulses with high intensity to heat the electron
gas, the rise of the electron temperature and the cooling by the lattice was observed [41].
For photon energies within a few kT below the work function one-photon photoemission
processes might still be observable at the low-energy end of the electron spectrum. Only the
exponential tail of the Fermi-Dirac distribution is visible and the temperature of the electron
gas can be measured [12]. If one- and two-photon processes are visible in a spectrum, the
relative intensity of these processes can be estimated to 104 . . . 105 [12]. In order to distinguish
between one- and two-photon processes, it can be helpful to measure the intensity dependence
of the spectral features. For identical photons hνa = hνb the electron signal depends linearly
or quadratically on the laser intensity for one- and two-photon processes, respectively. When
two different photons are used, one may use the disappearance of the two-photon features,
if either of the two laser beams is blocked or a suitable time delay is introduced. Note that
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Figure 8.9: Two-photon photoemission spectra (linear scale at the bottom) and relaxation times
of hot electrons (logarithmic scale at the top) from Cu(111) for various photon energies (after
Ref. [42]).

processes involving two photons from a single laser pulse can be identified only by intensity
variation, if they cannot be excluded by energy considerations (see Sec. 8.1.2)

Choosing the photon energies hν � Φ ensures that only two-photon photoemission pro-
cesses are observed. Examples for spectra obtained at a Cu(111) sample are shown at the bot-
tom of Fig. 8.9. The energy scale refers to an intermediate state which leads to opposing shifts
of the vacuum edge (left) and the Fermi edge (right) with photon energy. The energy distri-
bution of hot electron decreases monotonically with energy. The superimposed peak shifting
parallel to the Fermi edge corresponds to emission from the top of the d-bands at constant
initial-state energy. The relaxation time obtained at the respective intermediate-state energies
is plotted at the top of Fig. 8.9 on a logarithmic scale. The dependence follows roughly the
prediction ∝ (E − EF )−2 from Fermi-liquid theory [43]. The deviations around 1.5 eV are



260 8 Time-resolved two-photon photoemission

presumably due to secondary electrons arising from the Auger decay of d-holes [42, 44, 45].
The lifetime of d-holes is longer than the hot-electron lifetime at the respective energy [45]
leading to an apparent increase of the observed relaxation time. The decay of the hot electrons
themselves also leads to the generation of secondary electrons which appear at low kinetic
energies. This intrinsic process makes the determination of lifetimes close to EF difficult and
can be reduced by using low photon energies [46]. In many studies this requires a lowering of
the work function by suitable adsorbates [42,44,47]. There seems to be a negligible influence
by the adsorbates on the measured lifetimes.

The last observation proves that mainly the properties of the hot electrons in the bulk are
measured by these time-resolved two-photon photoemission experiments. The large penetra-
tion depth of the light compared to the escape depth of the electrons suggests that transport
effects might influence the data. Some electrons from deeper layers can travel into the sam-
pled volume near the surface while on the other hand some electrons leave the surface region.
These effects can be modeled using ballistic transport [48] or bulk band structure calcula-
tions [42]. The latter method is able to explain the differences observed for various low-index
copper surfaces [49]. A more direct proof of the transport effect is given by the dependence
of hot-electron lifetimes on thickness of thin noble-metal films [50].

All these experiments show that in the absence of specific intermediate states time-resolved
two-photon photoemission is able to obtain valuable information on the lifetime of hot elec-
trons in the bulk, if secondary electrons and transport effects are taken into account. This
applies also for (111) surfaces of noble metals where a band gap exists for emission in the
measurement direction normal to the surface. Apparently, scattering associated with the emis-
sion process ensures that electrons from the whole Brillouin zone reach the detector. This
ensures that the experiment samples the complete distribution of hot electrons in the bulk and
explains the good agreement of the measured lifetimes with simple free-electron models based
on Fermi-liquid theory.

8.4 Surface properties

The previous section showed that the lifetimes of electronic excitations in the bulk are usually
quite short which makes time-resolved two-photon photoemission a surface-sensitive tech-
nique. Electrons coupled only weakly to the bulk can be found as surface states and in par-
ticular as image-potential states. Loosely bound adsorbates might also have long-lived states
which are potentially important for photochemical reactions. One common feature of all these
surface-related states is the absence of dispersion perpendicular to the surface which unam-
biguously makes them pure initial or intermediate states. The different types of states will be
the topic of the final section of this chapter.

8.4.1 Surface states

On semiconductor surfaces the broken bonds lead to a rearrangement of the geometric and
electronic structure which in most cases results in occupied and unoccupied dangling bond
states separated by a band gap. Electrons in the lowest conduction band states (bulk or sur-
face) can decay only by recombination with a hole. This process is quite unlikely and may
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Figure 8.10: Time-resolved spectra for the surface (open circles, n = 0) and image-potential
state (open squares, n = 1) on Pd(111). The solids dots show the cross correlation determined
for the occupied surface state on Cu(111).

lead to rather long lifetimes of the respective states. The time scale of the relaxation of higher
excited electrons might lead to a delayed filling of the conduction band minima. These pro-
cesses are qualitatively similar to the generation of secondary electrons in metals as discussed
in the previous section and can result in complex electron dynamics [39]. The work on semi-
conductor surfaces has been reviewed by Haight [51].

On metals a variety of surface states are well known from photoemission and inverse pho-
toemission studies. Only states near the center of the surface Brillouin zone are accessible by
two-photon photoemission, because of the low kinetic energies used. This restricts the stud-
ies mainly to close-packed surfaces. For Ag(111), Cu(111), and Au(111) the surface states
have been observed by two-photon photoemission (see Figs. 8.4, 8.7 and Ref. [12]). Owing to
the large work function three-photon photoemission has been employed on Pt(111) to excite
the occupied surface state [52]. In time-resolved experiments occupied states show the cross
correlation between pump and probe pulses and do not yield any interesting information on
the electron dynamics. For Pd(111) the surface state is unoccupied and its lifetime has been
determined [4]. The experimental data are shown in Fig. 8.10 on a semilogarithmic scale. The
occupied surface state (n = 0) is pumped by the IR pulse and probed by the UV pulse. The
population follows the cross correlation (solid dots) for positive delays and persists towards
negative delays, when the UV pulse follows the IR pulse. The opposite behavior is displayed
by the n = 1 image-potential state (see Sec. 8.4.2) which is pumped by the UV pulse. From
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data obtained over a dynamic range of several orders of magnitude one can extract the life-
time directly from the exponential decay of the intensity (straight lines in the semilogarithmic
plot of Fig. 8.10) at delay times where the laser pulses show negligible intensity in the cross
correlation (solid dots in Fig. 8.10). The results are confirmed by fits using the optical Bloch
equations [4].

8.4.2 Image-potential states

Time-resolved two-photon photoemission was illustrated in the previous sections using exam-
ples involving image-potential states [12, 62–64]. The image force acting on an electron in
front of a metal surface can be derived from a long-range Coulomb-like potential as illustrated
in Fig. 8.11. A band gap in the band structure may impede the penetration of the electron into
the metal along the direction of the motion. This results in a series of bound states with bind-
ing energies relative to the vacuum level of approximately 1/16 of the values in the hydrogen
atom. Figure 8.11 shows the wave functions of the first two image-potential states on Cu(001)
which hardly penetrate into the metal and have maxima several Ångstroms away from the sur-
face. [62]. These states are only weakly coupled to the metal which leads to lifetimes matching
the current experimental possibilities. The corresponding measured lifetimes are listed in Ta-
ble 8.1 for normal emission (k‖ = 0). The data compilation shows the n3 dependence of the
lifetime for large quantum numbers n [62,65]. The importance of the band gap can be seen for
Cu(111) where the first image-potential state has a longer lifetime than the second, which lies
outside the band gap [15,56]. The ab initio theoretical description of image-potential states is
fairly complex due to the long-range potential arising from the screening in a many-body sys-
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Figure 8.12: Binding energies (left) and lifetimes (right) for image-potential states as a function
of Xe coverage on Ru(0001). The solid lines show the result of a tunneling model, the dashed
lines correspond to a continuum model (after Ref. [60]).

tem. However the agreement between calculated and experimental values for binding energies
and lifetimes is remarkably good [4, 43, 61].

Surface states are by their very nature always rather sensitive to adsorption. This holds also
for image-potential states which are completely quenched by many adsorbates [14]. However,
adsorbates without electronic states close to the vacuum level may be described as a dielectric
spacer layer. The modification of the image potential can then be treated by classical contin-
uum electrostatics [60, 66, 67]. For adlayers of noble gases the lifetime increases with layer
thickness, because the coupling to metal is reduced. Figure 8.12 shows experimental data for

Table 8.1: Measured lifetimes in fs of image-potential states on clean metal surfaces.

τ1 τ2 τ3 τ4 τ5 Refs.

C(0001) 40 ± 6 [53]
Ni(111) 7 ± 3 [54]
Cu(001) 40 ± 6 120 ± 15 300 ± 20 630 1200 [11, 13]
Cu(119) 15 ± 5 39 ± 5 105 ± 15 200 ± 20 350 ± 40 [55]
Cu(117) 15 ± 5 39 ± 5 95 ± 15 190 ± 20 350 ± 40 [55]
Cu(111) 18 ± 5 14 ± 3 40 ± 6 [56, 57]
Cu(775) 18 ± 2 [58]
Ag(001) 55 ± 5 160 ± 10 360 ± 15 [11]
Ag(111) 32 ± 10 ≤ 20 [59]
Ru(0001) 11 +6

−3 [60]
Pd(111) 25 ± 4 [4]
Pt(111) 26 ± 7 62 ± 7 [61]
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Xe on Ru(001), but illustrates also the problem of quantitative modelling the results [60]. For
adlayers with electronic bands degenerate with the image-potential states a description by a
quantum-well model is more appropriate [68–70].

8.4.3 Adsorbate states

The image-potential states provide a nice model system to study the electron dynamics at a
surface with the experimental possibilities available today. With regard to the understanding
and possible applications in photochemistry at surfaces it is important to gain access to the
decay of electronic excitations at adsorbates or the charge transfer into the substrate. For
many systems the relevant time scales are much shorter than the time resolution of two-photon
photoemission experiments. Therefore only a few time-resolved studies of adsorbate states
have been reported up to now. For C6F6 on Cu(111) an unoccupied molecular resonance
could be identified and its lifetime was measured as a function of film thickness [70, 72, 73].
For Cs on Cu(111) an alkali-derived resonance is shown in the right panel of Fig. 8.13 at
an energy 2.75 eV above EF [71]. Its lifetime is significantly larger compared to the values
obtained on the clean surface as shown by the increased width of the autocorrelation traces
(left panel of Fig. 8.13). At low temperatures the electron resides even longer on the Cs
atom [74]. This leads to desorption and the bond breaking can be monitored by changes in the
electronic structure as a function of time and distance [75, 76].
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8.5 Outlook

Time-resolution was introduced to two-photon photoemission about 15 years ago [77, 78].
With the advent of easy to use, high-repetition rate Ti:sapphire lasers the experimental pos-
sibilities expanded tremendously. Today it is possible to study more systems in ever more
detail. Current work is directed to an understanding of electron scattering processes on a fem-
tosecond time scale with high energy and momentum resolution [22, 66, 79–82]. Continuous
progress is made in the development of solid-state and free-electron laser sources as well as
improved detection systems. The list of interesting surfaces and adsorbates is far from being
exhausted. We are therefore looking into a bright future for time-resolved photoemission with
lots of new and surprising physics to come.
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9 Low-energy (e,2e) spectroscopy

R. Feder and H. Gollisch

A review is given of the current status of low-energy (e,2e) spectroscopy from solid surfaces. An exposi-
tion of the basic concepts is followed by an outline of a general theoretical framework, of approximations
made in view of computational viability, and of selection rules inherent in the Coulomb matrix elements.
The analysis and interpretation of experimental and calculated (e,2e) spectra is demonstrated to provide
information on (a) the near-surface electronic structure with an emphasis on surface state and (b) electron
scattering dynamics regarding mainly elastic one-electron scattering and the Coulomb pair correlation.
Using spin-polarized primary electrons reveals more details of spin-dependent collision dynamics and
of magnetic surface properties.

9.1 Introduction

While angle-resolved ultraviolet photoemission spectroscopy (cf. e.g. [1–5], other Chapters in
the present volume, in particular Chapters 1 and 6, and references therein) is the traditional and
currently most widely used tool for studying the electronic and magnetic structure of solids
and their surfaces, a particularly surface-sensitive new spectroscopy has evolved over the past
decade, in which low-energy electrons rather than photons are used as projectiles.

For electrons impinging on atomic or solid targets an important reaction channel involves
a single collision event with a valence electron resulting in two electrons leaving the solid.
Energy- and angle-resolved (i.e. momentum-resolved) observation of these two electrons in
coincidence is usually referred to as (e,2e)-spectroscopy. The history, the current status and
recent highlights of this very wide field, which involves atomic and solid state physics, are
covered in recent monographs ( [6, 7], which also provide ample references to a vast body of
original literature.

As for solids, (e,2e)-spectroscopy using high-energy primary electrons (10–50 keV) and
operating in the transmission mode through a thin free-standing target membrane (i.e. detect-
ing electron pairs emerging “on the other side”) is a well-established technique with a rather
long history of success (cf. e.g. [8–11] and references therein). Since at these high energies
incoming and outgoing electrons can be described by independent plane waves, a golden-rule-
type formula for the reaction cross section reduces to a product of an electron-electron colli-
sion factor and the valence or core electron spectral function in three-dimensional momentum
space. Experimental data thus rather directly contain information on bulk-like electronic prop-
erties. A more recent experimental set-up operates in the reflection mode: primary electrons
with medium-energy (about 300 eV) impinge on a surface and two electrons subsequently
emerging from this surface are detected in coincidence (cf. [12–14] and references therein).
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Since a plane-wave approximation is no longer adequate, the theoretical treatment is more
complicated. Application to highly oriented pyrolytic graphite yielded the bulk energy band
structure and momentum density.

In view of accessing the surface electronic structure and of studying electron collision dy-
namics in the vicinity of the surface, a different reflection mode experiment was developed,
which uses primary electrons at low energies (typically less than 50 eV) ( [15, 16] and refer-
ences therein). Two electrons arriving in coincidence at two position-sensitive detectors are
individually energy-analyzed by means of a time-of-flight technique. Experimental achieve-
ments include in particular the observation of surface state on metal surfaces [17] and of the
near-surface valence electron spin polarization of a ferromagnet [18, 19]. The understand-
ing of the physical mechanisms, the quantitative interpretation of experimental data and the
pointing out of future directions have been the aims of a number of theoretical investigations
( [20–28] and references therein). At low electron energies, theory is much more demanding
than at high energies, since firstly elastic multiple scattering of the incoming and of the outgo-
ing electrons by the crystal lattice has to be fully taken into account, and secondly Coulomb
correlation between the two outgoing electrons can be of importance.

In this article, we present a review of low-energy (e,2e) spectroscopy from surfaces, which
is organized as follows. Section 9.2 is devoted to the basic concepts and some experimental
key aspects. In Sec. 9.3, we outline a general theoretical framework, practicable approxima-
tions and selection rules. Section 9.4 illustrates experimental and theoretical results by some
prototypical (e,2e) spectra. In Sec. 9.5 the analysis of (e,2e) spectra is shown to provide infor-
mation on electron scattering dynamics with focuses on elastic scattering by the crystal lattice
and on the Coulomb correlation between the two detected electrons. Section 9.6 addresses
the information potential of (e,2e) spectroscopy on the valence electronic structure with an
emphasis on surface sensitivity, surface state and symmetry resolution via selection rules. In
Section 9.7 we demonstrate the use of spin-polarized primary electrons for studying spin-orbit
coupling effects, spin-dependent scattering dynamics and ferromagnetic surface properties.

9.2 Setup and basic concepts

The geometry of (e,2e) spectroscopy in the reflection mode is sketched in Fig. 9.1. A primary
electron, which at the source (electron gun) has kinetic energy E1, momentum k1 and spin
alignment σ1 = ± with respect to some given axis e, impinges on a solid surface system.
As will be shown below, spin polarization has to be incorporated in theoretical treatments
even if the corresponding experiment employs an unpolarized primary beam. The direction
of incidence, which is given by the momentum direction, is conveniently characterized by the
polar angle θ1 relative to the surface normal (z-axis) and an azimuthal angle φ1. Amongst the
various possible reaction channels, the following one is selected by the experimental setup:
the collision of the primary electron with a valence electron of energy E2 < EF , where EF

is the Fermi energy, produces two electrons, which leave the surface with kinetic energies
E3 and E4, momenta k3 and k4 and spin alignments σ3 and σ4. Like σ1, the latter two are
essential in theory, although spin analysis of the two outgoing electrons is beyond present-day
experimental capabilities.



9.2 Setup and basic concepts 271

Figure 9.1: Geometry of (e,2e) spectroscopy.
Upon impact of an electron (labeled as 1) on
a surface and collision with a valence electron,
two electrons (labeled as 3 and 4) exit into the
vacuum region in the directions of two energy-
analyzing detectors connected by coincidence
circuitry.

The energy E2 of the valence electron is determined from the known energies of the pri-
mary and the detected electrons by the conservation law E1 + E2 = E3 + E4. In the case of
crystalline systems (including ultrathin metal films or other adsorbates on a crystalline sub-
strate), which have lattice periodicity parallel to the surface, the valence electron is further
characterized by the surface-parallel momentum k‖

2. Since the surface-parallel momenta k‖
1

of the incident electron and k‖
3 and k‖

4 of the outgoing electrons are given as the surface pro-

jections of the respective three-dimensional momenta, which are experimentally known, k‖
2

of the valence electron is determined by the conservation law k‖
1 + k‖

2 = k‖
3 + k‖

4, modulo a
surface reciprocal lattice vector.

From the above it is clear that (e,2e) spectroscopy can yield more specific information
than the well-established related electron-energy-loss spectroscopy (EELS), in which only
one outgoing electron with energy E1 − ∆E is detected. Firstly, this electron may stem from
a collective-excitation (e.g. plasmon) loss mechanism. Secondly, even if it originates from
the collision with a valence electron, neither energy nor parallel-momentum of the latter are
determined.

For details of experimental technique and apparatus in (e,2e) spectroscopy we refer to the
original literature ( [12, 13, 15, 16, 18, 22] and references therein) and to a review on two-
electron photoemission spectroscopy [29], for which practically the same detection apparatus
as in (e,2e) spectroscopy has been used. In the following we outline a few key features.
(1) Two electrons are detected in coincidence, i.e. counted as an “event” if both of them
arrive within a specified time window (typically 200 ns). Thus, in addition to pairs, which
originate directly from a binary collision with a valence electron, one also counts collision
events, in which the primary electron has suffered some energy loss (e.g. excitation of a
plasmon or of an electron) before generating the outgoing pair, and (to an extent minimized
by experimental skill) accidentally coincident electrons (e.g. if two primary electrons arrive
within the specified time window and each of them produces only one outgoing electron). (2)
Angular resolution can in principle be achieved by using multichannel plates as “position-
sensitive” detectors, which may be viewed as an array of point-like detectors. Because of
the concomitant loss of counting statistics, however, events have usually been summed over
a finite detection cone (typically up to ±10◦ around the nominal detection direction). (3)
The energy of each of the two detected electrons is determined separately by a time-of-flight
technique: the times of flight from sample to detector (distance L), which we denote by T3

and T4, are measured and converted into the kinetic energies E3 and E4 according to Ei =
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(m/2)(L/Ti)2 with i = 3, 4. (4) While in the majority of experiments the primary electrons
were unpolarized, very recently spin-polarized electrons (produced by a GaAs photocathode
with circularly polarized light) were employed for the study of ferromagnets [18, 19].

9.3 Theory

9.3.1 Framework

Foregoing a full-fledged many-body theoretical formulation, which is rather abstract and
presently by far defies numerical implementation, we adopt a theoretical framework, which
retains a physically intuitive picture of the (e,2e) process (cf. Sec. 9.2) and which allows
computations sufficiently realistic to quantitatively reproduce experimental data. The pri-
mary electron, the relevant valence electron and the two outgoing electrons are represented
by quasi-particles, i.e. their interaction with the nuclei and the other electrons of the solid
is subsumed in optical potentials. Taking the Coulomb interaction U between these “active”
electrons, which is screened by the other electrons, as a perturbation, the reaction cross section
is obtained by standard scattering theory.

The initial asymptotic state of the system is thus an antisymmetrized direct product of two
single quasi-particle states, which represent the projectile electron and an individual valence
electron, i. e. |1, 2〉 = |1〉 ⊗ |2〉. The states |1〉 and |2〉 are solutions of a Dirac equation
involving optical potentials V1 and V2, respectively, which include an effective magnetic field
in the case of a ferromagnetic target. For a crystalline system with lattice periodicity parallel
to the surface, one-electron states |i〉 are characterized by energies Ei, surface-parallel two-

dimensional wave vectors k‖
i and spin labels σi. The number i in |i〉 is thus an abbreviation for

the set of quantum numbers (Ei,k
‖
i , σi). State |1〉, with the set (E1,k

‖
1, σ1) prescribed by the

experimental conditions, comprises the elastic scattering by the crystal potential and is well
known from Low-Energy Electron Diffraction (LEED) theory (cf. e.g. [30–32] and references
therein ). The Dirac equation is used, since spin-orbit coupling (SOC) and scalar relativistic
effects are known to be important both for LEED (especially spin-polarized LEED, cf. [30,
33]) and for the valence electron structure (cf. e.g. [34, 35] and references therein). SOC
in the valence bands manifests itself in particular in the spin polarization of photoelectrons
produced from non-magnetic surface systems by circularly and by linearly polarized light,
and in various forms of magnetic dichroism (i.e. intensity asymmetries upon magnetization
reversal) in the case of ferromagnetic systems (cf. e.g. [36–39] and references therein).

The transition amplitude for the initial state |1, 2〉 to go over into the two-electron excited
state |3, 4〉 is 〈3, 4|U |1, 2〉. Strictly speaking, |3, 4〉 is a solution of a two-electron Dirac equa-
tion involving the total potential V3,4 = V3 + V4 + U , where V3 and V4 are one-particle
optical potentials, and with asymptotic boundary conditions such that an electron with mo-
mentum k3 and spin alignment σ3 arrives at one detector and an electron with momentum k4

and spin alignment σ4 at the other detector. For a polarized primary beam, the spin-resolved
(e,2e) scattering cross section (“intensity”) is then given by the golden rule form

Iσ1
σ3,σ4

=
k3k4

k1

∑
E2,k‖

2 ,σ2,n2

|〈3, 4|U |1, 2〉|2 δ(E1+E2−E3−E4)δ(k
‖
1+k‖

2−k‖
3−k‖

4). (9.1)
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In the valence state summation, the index n2 accounts for possible further degeneracies.
All states in Eq. (9.1) are solutions of the respective quasiparticle equations, which involve
complex self-energies. The quasiparticle Hamiltonians being thus non-Hermitian, one has
to distinguish between “right-hand” and “left-hand” solutions (bi-orthogonal eigenfunctions)
(cf. [40] and, specifically for the Dirac Hamiltonian, [41]). This distinction is implicit in the
convention that all “bras” are left-hand solutions and all “kets” are right-hand solutions. The
energies E1, E3 andE4 are imposed as real by the stationary scattering states boundary condi-
tions (at the electron gun and the detectors), but the energies E2 of the bound valence states are
complex if their finite life-time is taken into account (by means of an imaginary self-energy
part). In this case, the energy δ function in Eq. (9.1) has to be understood as a Lorentzian with
width 2 Im E2. We recall that the use of quasiparticle states (“Dyson orbitals”) in a golden rule
expression is well known in the context of photoemission (cf. [42,43] and references therein).

With the spin- and k‖-resolved valence electron spectral function

− 1
π

Im Gr
2(E, k‖

2, σ2) =
∑

E2,n2

|2〉〈2|δ(E − E2) (9.2)

where Gr
2 is the retarded single-particle Green function, the cross section Eq. (9.1) is easily

rewritten as

Iσ1
σ3,σ4

=
k3k4

k1
〈3, 4|U |1〉

(
− 1

π

)
Im Gr

2(E3+E4−E1, k‖
3+k‖

4−k‖
1, σ2) 〈1|U |3, 4〉 . (9.3)

Representing the spectral function (Eq. (9.2)) in real space and taking its trace with the spatial
integration restricted to the m-th atomic layer parallel to the surface, one obtains the k‖- and
spin-resolved layer density of states Nm(E, k

‖
2 , σ2).

If the primary electrons are polarized relative to an axis e (i.e. spin polarization vector
P1 = σ1e), one obtains spin-dependent intensities Iσ1 and an asymmetry A as

Iσ1 =
∑

σ3,σ4

Iσ1
σ3,σ4

and A = (I+ − I−)/(I+ + I−) (9.4)

9.3.2 Approximations and computational aspects

The expressions Eq. (9.1) and (3) contain the two-electron state |3, 4〉. One thus faces the
severe problem of solving a two-electron Dirac equation with the electron-electron interac-
tion potential U. Since to date no computationally viable methods are available in the case of
solids, one has to resort to approximations. The simplest and most frequently used one is to
neglect U in the two-electron potential V3,4 = V3 + V4 + U. The state |3, 4〉 then reduces to
an antisymmetrized direct product of two independent one-electron states |3〉 and |4〉, each
of which is a time-reversed relativistic LEED state. An approximate incorporation of U was
put forward by [25] by transforming it into two one-electron potential parts v3 and v4 such
that v3 depends on the crystal momentum of electron 4 and vice versa. This amounts to a
dynamical screening of the original one-electron optical potentials V3 and V4. Solution of
the one-electron Dirac equations containing these screened potentials yields modified states
|3〉 and |4〉, which are again combined into an antisymmetrized product. As has been found
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in [25], the effect of U, i.e. Coulomb correlation, in |3, 4〉 on (e,2e) spectra is rather strong for
very low energies and for near-parallel exit directions. For a more detailed discussion of the
Coulomb pair correlation problem we refer to [29] in the context of two-electron photoemis-
sion, for which pair correlation is of vital importance.

Taking |3, 4〉 as an antisymmetrized product and writing the four one-electron states |i〉 as
four-component Dirac spinors ψσi

i (r), Eq. (9.1) becomes

Iσ1
σ3,σ4

= (k3k4/k1)
∑

E2,k‖
2 ,nσ2

| fσ1,nσ2,σ3,σ4 − gσ1,nσ2,σ3,σ4 |2

· δ(E1 + E2 − E3 − E4)δ(k
‖
1 + k‖

2 − k‖
3 − k‖

4), (9.5)

where f and g are direct and exchange scattering amplitudes:

fσ1,nσ2,σ3,σ4 =
∫

ψσ3∗
3 (r)ψσ4∗

4 (r′)U(r, r′)ψσ1
1 (r)ψnσ2

2 (r′) drdr′; (9.6)

the expression for g is the same except for r and r′ interchanged in the first product term. The
alternative formula Eq. (9.3), in which the valence electron is described by a Green function,
can be evaluated along similar lines, yielding rather lengthy expressions (cf. [44]).

For numerical computations, the golden rule form Eq. (9.5) is much less demanding than
the Green function form if the life-time of the valence-band hole is taken as infinite, i.e. E2

is real. While finite hole life-time can in good approximation be incorporated ex post by
convoluting the spectra with a Lorentzian, this approach has the drawback that surface state
can practically not be included. In contrast, they are reliably and conveniently accessible
by the Green function approach since they are a priori life-time-broadened and can therefore
easily be found by scanning over a reasonably fine energy grid.

In the interaction U of the incident electron with a particular valence electron, magnetic
and retardation effects (as are e.g. approximated by the Breit Hamiltonian) need not be taken
into account in the present context, since they should be small in collisions at low energies.
An order of magnitude estimate has, in the context of relativistic electron-atom scattering,
been made in ref. [45]. We are thus left with a Coulomb interaction, which is screened by the
ground state electrons of the target. Assuming this screening as static, we have

U(r, r′) =
∫

dr′′ε−1(r, r′′)/|r′′ − r′| ≈ e−
|r−r′|

λ

|r − r′| (9.7)

where ε(r, r′′) is the dielectric function of the crystalline surface system, and λ is a screening
length, which for computational purposes has so far been taken as the Thomas-Fermi screen-
ing length for an electron gas with the valence electron density of the respective target system.

The incoming and the two outgoing one-electron states are LEED and time-reversed LEED
states, respectively, and can therefore be readily calculated by the relativistic layer-KKR
method routinely employed in LEED and photoemission calculations (cf. e.g. [30, 46]). All
elastic multiple scattering events by the ion core lattice, i.e. loosely speaking “band structure
effects”, are thereby fully taken into account.
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For the calculation of the valence electron spectral function a relativistic multiple scat-
tering formalism of the layer-KKR type ( [44, 46]), which has been successful in numerous
photoemission studies (cf. [36, 39] and references therein), is most suitable. In order to com-
pute the (e,2e) cross section in the simpler matrix element form of Eqs. (9.5), (9.6), one needs
the valence electron wave function ψσ2

2 (x) of the semi-infinite system. This wave function
can be obtained by means of a Bloch wave matching method (cf. [22]). Briefly, one first cal-
culates bulk Bloch waves by diagonalizing the layer transfer matrix and then matches at the
surface those Bloch waves, which propagate from the interior outward towards, with linear
combinations of inward-propagating and decaying Bloch waves and with linear combinations
of decaying plane waves on the vacuum side. surface state may in principle be handled by this
method (matching without an outward propagation Bloch wave), but are very hard to find in
practice.

The construction of the effective one-electron potentials, which are required for numeri-
cal calculations, is a problem, which (e,2e) spectroscopy shares with LEED and with VUV
valence band photoemission (cf. e.g. [3–5, 30, 31, 47], where many further references may
be found). It must suffice here to briefly mention approximations, which are directly relevant
for the numerical results presented in the following sections. The complex self-energy per-
taining to the valence electron and to the scattering states is approximated by an empirical
energy-dependent local potential. The imaginary part of the latter is uniform and increases
from near-zero at EF in forms taken from LEED and photoemission experience. For the
real part we employ an LDA + β potential, which is obtained from a self-consistent LDA-
FLAPW [48] slab charge densitiy using a non-local exchange correlation approximation such
that the calculated bulk bands agree with the quasi-particle bands determined by photoemis-
sion experiments (for details see [4]).

9.3.3 Selection rules

The Coulomb matrix elements give rise to selection rules (for details see [28]) if spin-orbit
coupling is neglected. Replacing in Eq. (9.6) each spinor ψσi

i by a product of a scalar wave
function ϕi with a two-componont basis spinor, it is easily seen that nonvanishing amplitudes
f and g exist only for a very reduced number of the sets (σ1, σ2, σ3, σ4). If the valence
electron spin is parallel to the primary electron spin, i.e. σ2 = σ1 =: σ, there is only the direct
amplitude

fσ,nσ,σ,σ =
∫

ϕ∗
3(r)ϕ

∗
4(r

′)U(r, r′)ϕ1(r)ϕ
(n)
2 (r′) drdr′ = : fn (9.8)

and the exchange amplitude gn, which is obtained from fn by interchanging r and r′ in the
first two terms. Eq. (9.6) (with the arguments of the two delta functions abbreviated by E and
k‖ ) then yields the cross section for the production of a parallel-spin electron pair

Ipar := Iσ
σ,σ(E3, E4) = (k3k4/k1)

∑
E2,k‖

2 ,n

| fn − gn |2 δ(E)δ(k‖) . (9.9)
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For a valence electron with spin antiparallel to the primary electron spin, the outgoing elec-
trons have antiparallel spins, with the reaction cross section

Iantipar := (k3k4/k1)
∑

E2,k‖
2 ,n

(| fn |2 + | gn |2) δ(E)δ(k‖) . (9.10)

The above is valid for arbitrary (e,2e) geometry (cf. Fig. 9.1). Consider now setups, in
which the directions of the incident and of the two outgoing electrons are in the same plane
(reaction plane), which is perpendicular to the surface. If this plane is a mirror plane of the
semi-infinite crystalline system, the wave functions ϕ1, ϕ3 and ϕ4 are symmetric under the
mirror operation, while ϕ2 is either symmetric or antisymmetric. In the latter case, the scat-
tering amplitudes fn and gn are identically zero (cf. [28]). Consequently, the cross sections
Ipar (Eq. (9.9)) and Iantipar (Eq. (9.10)) and thence also the spin-unresolved (e,2e) cross section
Ipar + Iantipar for an unpolarized primary beam are identically zero.

A second selection rule holds for coplanar symmetric geometry with normal incidence of
the primary beam and equal energies E3 = E4 of the detected electrons if there is a mirror
plane, which is perpendicular to the surface and to the reaction plane. If ϕ

(n)
2 is symmetric with

respect to this mirror plane, the cross section Ipar (Eq. (9.9)) for the production of parallel-spin

pairs vanishes, whereas it is non-zero and determined by 4 | fn |2, if ϕ
(n)
2 is antisymmetric.

Ipar thus selectively reflects collisions with valence electron states, which are antisymmetric
with respect to a mirror plane perpendicular to the reaction plane.

For clarity, the selection rules have been formulated above for non-magnetic systems.
They can however readily be extended to ferromagnets. Strictly speaking, they are valid only
in the absence of spin-orbit coupling. If the latter is taken into account, they are relaxed due
to hybridization of different spatial symmetry types, but still can be expected to be useful in a
large number of situations, in which the valence electron spinor is dominated by a particular
spatial symmetry type.

9.4 Prototypical spectra

In this section, we initiate the presentation of a topical selection of low-energy (e,2e) results by
showing (in Fig. 9.2) typical experimental data obtained in the reflection mode from a W(001)
surface by the time-of-flight coincidence technique, which has been developed by Kirschner
and co-workers (cf. [15, 16, 22] and references therein). We recall (cf. also Sec. 9.2) that the
primarily measured quantities are the times of flight of the two detected electrons, which we
call T3 and T4. The time-of-flight scale is chosen such that its zero point corresponds to the
arrival time of elastically reflected primary electrons.

In Fig. 9.2a we show, as an example, the two-dimensional time-of-flight distribution of
time-correlated electron pairs obtained from W(001) in a coplanar symmetric geometry with
normal incidence of primary electrons with energy E1 = 20 eV. Coincidence events were
integrated over the acceptance cones of the detectors (Ω = 0.21sr), without making correc-
tions for the slightly different flight paths for the different angles. The coincidence events are
displayed by a two-dimensional gray scale plot, in which black corresponds to the highest
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Figure 9.2: (e,2e) spectra from W(001) for normal incidence of primary electrons with energy
E1 = 20 eV and detection of two outgoing electrons in the (100) plane at polar angle 40◦

relative to the surface normal and azimuthal angles 0 and 180◦ with times of flight T3 and T4

and corresponding energies E3 and E4:
(a) Experimental two-dimensional time-of-flight distribution. The black point in the upper right
corner corresponds to the accidental coincidence of two elastically reflected electrons and serves
as a calibration point.
(b) Corresponding two-dimensional energy distribution.
(c) Histogram of the measured distribution as a function of the total energy E3 + E4 of a
pair. The height of a column represents the number of events within the total energy band
E3 + E4 ± 0.25 eV.
(d) Energy sharing distribution of the detected pairs. The height of a column represents the
number of pairs with the energy difference E3 − E4 within the total energy band E3 + E4 =

15 ± 0.25 eV.
(e) Calculated two-dimensional energy distribution.
(f) Calculated energy sharing distribution within the total energy band E3 +E4 = 15±0.25 eV.
(Panels (a)-(d) from [22], panels (e) and (f) from present calculation).

number of events. A ridge-like maximum in this plot represents the most probable combina-
tions of flight times. As one would expect from the symmetry of the set-up, the distribution
looks quite symmetric with respect to the diagonal (dashed line) of the frame. Points on this
line represent pairs with equal times of flight of both electrons.

Converting the times of flight T3 and T4 of the two detected electrons into their energies
E3 and E4 (cf. Sec. 9.2), one obtains the energy distribution shown in Fig. 9.2b. The ridge-like
maximum of the time-of-flight distribution is seen to be transformed into a diagonal “band”
roughly located between the two lines defined by the “total energy” E3 + E4 values 14 eV
and 15 eV. If the detected electron pair is produced in a single collision between the incident
electron and a target electron, the corresponding energies E2 of the target electrons (relative
to the vacuum level) are obtained from energy conservation (cf. Sec. 9.2) as −6 and −5 eV,
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i.e. — with the work function of W(001) 4.6 eV — 1.4 and 0.4 eV below the Fermi energy.
The creation of electron pairs is thus seen to be most likely for target electrons with energies
close to the Fermi level. Most of these electron pairs must have been created in a direct (e,2e)
process, because any additional inelastic scattering would have decreased their total energy.
Pairs with lower total energies may originate either from the excitation of bound electrons
in deeper energy levels or from a multi-step electron-electron scattering process. From the
above energy distribution, summation over the the number of events in total energy bands with
(E3 + E4) = ±0.25 eV yields the “total energy distribution” histogram shown in Fig. 9.2c.

In order to display more details it is useful to plot, for a sequence of fixed values of
E3 +E4, the number of pairs with energy difference E3 −E4 within an energy band centered
at E3 + E4. As an example of such energy sharing distributions, we show in Fig. 9.2d the
one obtained from the data in Fig. 9.2b for the total energy band E3 + E4 = 15 ± 0.25 eV. It
is seen to be symmetric with respect to the energy difference E3 − E4 = 0. This symmetry
corresponds to the symmetry of the energy distribution in Fig. 9.2b with respect to the E3 =
E4 line, which is dictated by the geometrical symmetry of the normal-incidence set-up.

Calculations of the reaction cross section on the basis of a relativistic layer-KKR formal-
ism (cf. Sec. 9.3) yielded the spectra shown in Fig. 9.2e and Fig. 9.2f. Comparing the theoret-
ical two-dimensional distribution (Fig. 9.2e) to its experimental counterpart (Fig. 9.2b), it first
must be mentioned that the experimental setting of the time windows implied an energy cut-
off at 1.8 eV. Consequently, pairs with very large energy differences could not be detected.
Furthermore, the experimental data contain, in addition to the pure binary collision events
treated in the calculations, accidental coincidences and events, in which the primary electron
has suffered some energy loss before colliding with a valence electrons. This accounts for a
substantial measured intensity for E3 + E4 below about 7 eV, where the calculated values are
vanishingly small. Most importantly, the main experimental feature, the intense “band” for
E3 +E4 above about 14 eV, is seen to be well reproduced by the calculations. This agreement
corroborates that this “band” does originate from binary collisions of the incoming electrons
with valence electrons in the vicinity of EF .

The calculated energy sharing curve (Fig. 9.2f) (which involves a summation over shar-
ing curves in the E3 + E4 interval of 0.5 eV) agrees with its experimental counterpart in the
dominance of near equal energy sharing events. The larger width of the experimental energy
sharing histogram is mainly due to the integration over a 22◦ angular acceptance cone rather
than being restricted to the sharp angles used in the calculations. We emphasize that (calcu-
lated) energy sharing curves usually vary significantly over 0.5 eV total energy intervals. For
the purpose of detailed interpretation and analysis, experiment should therefore, as has in fact
been achieved more recently, narrow the energy interval.

9.5 Electron scattering dynamics

9.5.1 Elastic one-electron reflection

The primary electron as well as the two outgoing electrons experience elastic multiple scatter-
ing from the ion core lattice. In particular, they are back-diffracted (reflected) at lattice planes
parallel to the surface. We denote the elements of the three relevant amplitude reflection matri-
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Figure 9.3: Symbolic diagrams of scattering paths in the (e,2e) process for normal incidence of the
primary electron (labeled 1) and polar angles 40◦ of the detected electrons (3 and 4). The vertical thin
solid line indicates the surface. The filled circle symbolizes the collision with the valence electron.
The vertical thin dashed line stands for the atomic planes, and the Ri

gg′ at its right-hand side are the
elastic reflection matrix elements, which are relevant in the individual diagrams. The refraction angle of
electron 3 at the surface has been drawn equal to that of electron 4, which is actually the case only for
E3 = E4. For E3 �= E4, the diagrams are topologically equivalent to the ones shown, but – due to the
energy dependence of refraction at the surface – the internal angles of electron 3 are different from those
of electron 4.

ces by R
(i)
gg′ , where the index i = 1, 3, 4 distinguishes between the primary electron state and

the two ejected electron states, and g enumerates the surface reciprocal lattice vectors (with
g = 0 corresponding to g = (0, 0)). A selection of scattering paths, which consist of typical
combinations of the collision with elastic reflections, is visualized by symbolic diagrams in
Fig. 9.3. Diagrams like (b) are, in a terminology used in EELS, of the type “diffraction-loss”
(DL), whereas diagrams like (c) and (d) are of the type “loss-diffraction” (LD). Formally,
the diagrams correspond to additive terms in a scattering path expansion of the direct and
exchange scattering amplitudes f and g (cf. Eq. (9.6)). Because of the absolute square in
Eq. (9.5) it is clear that the magnitude of individual (e,2e) cross section features is in general
not equal to the sum over partial intensities (obtained from the f and g parts symbolized by
the diagrams). There may even be destructive interference. In numerical (e,2e) calculations,
all elastic multiple scattering, and therefore especially the above reflections, is easily included,
since such is standard in LEED theory (cf. e.g. [30–32]) and the primary electron and the two
outgoing electrons are represented by LEED and time-reversed LEED states, respectively. The
actual importance of elastic reflections for individual features in (e,2e) spectra can readily be
determined by performing additional calculations, in which the reflection matrices are selec-
tively taken as zero, i.e. switched off. We demonstrate this in Fig. 9.4 for two energy sharing
curves from W(001). Without reflection of the primary electron (R(1) = 0), the spectra are
seen to have almost the same shapes as the actual spectra, but with an overall reduction of
intensity. Without reflection of neither electron of the created pair, however, the line shapes
change, most drastically so in the left-hand part of Fig. 9.4. If only electron 4 is reflected
(R(3) = 0), peak D is almost unchanged, but its partner D’ is strongly reduced. This implies
that the path, in which both electrons are reflected, is negligible compared to the two paths, in
which one electron is reflected and the other one directly emitted (cf. Fig. 9.3d). Without any
reflection, the shape is the same as without R(3) and R(4), but the intensity is reduced. Similar
analyses for other primary energies and other geometries [22, 24]) also indicate an important
role of the reflection of one or both of the outgoing electrons and a rather minor one of the
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Figure 9.4: (e,2e) energy sharing curves from W(001) in symmetric coplanar geometry for
primary electron energy 20 eV and pair total energy E3 + E4 = 10.4 eV (i.e. valence electron
energy E2 = EF − 6 eV) (left-hand side) and 14.9 eV (i.e. E2 = EF − 0.5 eV) (right-hand
side). Results of the “complete calculation” (uppermost panel on each side) are compared with
results of calculations, in which elastic layer reflection matrices R(i) in the four one-electron
states (1: primary electron, 2: valence electron, 3 and 4: outgoing electrons) were selectively
switched off as indicated in the respective panels.

reflection of the primary electron. In a grazing incidence case, paths including R(1) were even
found to reduce spectral features, i.e. to produce destructive interference.

9.5.2 Pair diffraction and coulomb correlation

The Coulomb correlation between the two outgoing electrons, which corresponds to the devi-
ation of the actual two-electron state |3, 4〉 from an antisymmetrized product of one-electron
states, can be studied by viewing the pair as a single compound particle, which is character-
ized by the center-of-mass wave vector K+ = k3 + k4 and the interelectronic wave vector
K− = (k3 − k4), i.e. an internal degree of freedom (cf. [49, 50]). Diffraction of the pair by
the lattice is governed by the Laue-like condition K+

‖ = k‖
3 + k‖

4 + g‖, where g‖ is a surface
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reciprocal lattice vector. Only the center-of -mass wave vector of the pair enters in this con-
dition. The above is equivalent to the diffraction of a fictitious particle located at the pair’s
center of mass. While K+ thus determines the positions of the diffraction peaks, their height
and shape is controlled by the interelectronic correlation. This is illustrated by the measured
and calculated cross sections in Fig. 9.5. The asymmetry between K+

x and −K+
x is due to

the off-normal incidence of the primary beam, i.e. a nonzero k1x in the above diffraction
condition.
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Figure 9.5: (e,2e) from Fe(110) with unpolarized primary electrons of energy 50 eV incident
in the x-z plane at polar angle θ1 = 5◦. The two detectors are in the same plane at azimuthal
angles 0 and 180◦ and polar angles 50◦ and 35◦. The experimental (fat dots with a broken line
to guide the eye) and theoretical (solid line) cross section is shown as a function of the surface-
parallel component K+

x of the electron pair momentum at fixed pair energy E3 + E4 = 44 eV.
(From [49]).

In a more quantitative investigation of Coulomb pair correlation effects, (e,2e) cross sec-
tion distributions from the W(001) surface were calculated using a dynamical screening model
and compared to their counterparts calculated without Coulomb correlation [25]. While the
modifications of fixed-geometry (e,2e) intensity distributions were in general fairly modest, a
drastic effect was found for a set-up, in which the detection direction of one electron is fixed
and that of the other sweeps over the entire hemisphere. We show this in Fig. 9.6. Without
correlation, the emission probability is seen (cf. upper half of Fig. 9.6) to be maximal when
the two electrons escape into the same direction and with the same velocity. This unphysical
result is remedied by the pair interaction (cf. lower half of Fig. 9.6) which carves a consid-
erable “pair correlation hole” around the position where electrons are close to each other in
velocity space. For regions where the two electrons emerge with diverging directions, the
effect of the pair correlation becomes less and less visible.
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Figure 9.6: Calculated (e,2e) angular distribution from W(001) for primary electrons of energy
17.2 eV incident at polar angle θ1 = 88◦ (grazing incidence) and azimuthal angle ϕ1 = 0◦. The
outgoing electrons have energies E3 = E4 = 6 eV. One detector is in a fixed direction defined
by θ3 = 47◦ and ϕ3 = 180◦, and the other scans over the angles θ4 and ϕ4, which correspond to
the radial and angular coordinates in the contour plots. The Coulomb pair correlation is switched
off in the left-hand panel and taken into account in a dynamical screening approximation (cf.
[25]) in the right-hand panel. The broken circle around θ4 = 47◦ and ϕ4 = 180◦ marks the
direction of parallel escape of the two electrons, i.e. the center of the ‘pair correlation hole’.
(From [25]).

9.6 Valence electronic structure

In the following, we address the information, which (e,2e) spectra may yield on the valence
electronic structure. We demonstrate that there is a strong weighting on the surface region and
that selection rules may be harnessed to resolve with respect to spatial symmetry types.

9.6.1 Surface sensitivity and surface states

Since the Coulomb matrix elements, which determine the scattering cross section (cf. Sec. 9.3),
involve three one-electron states decaying into the crystal (the incident electron state and the
two outgoing ones), it seems plausible that low-energy (e,2e) spectroscopy should in general
be more surface sensitive than LEED or photoemission, in which there is only one decaying
one-electron state. This expectation was confirmed theoretically by layer-resolved (e,2e) cal-
culations for the cases of Fe(110) [23] and W(001) [27, 44]. Experimentally, spectra from
W(001) were found to change distinctly upon contamination of the surface and to reveal sur-
face state and resonances [17] in accordance with earlier photoemission results (cf. [51] and
references therein). An adsorbate state was observed for p(2x1) O/W(001) [52].

A very instructive case, which has been studied theoretically [26], is the Cu(111) surface.
It exhibits (cf. Fig. 9.7) the text-book paradigm of a Shockley surface state, which resides
— near EF and well above the d-band region — in an s-p like bulk energy gap and forms a
two-dimensional nearly free electron gas. References to the large amount of literature, which
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has been dealing with this surface state, may e.g. be found in the photoemission papers [4,53]
and in the report on the observation by scanning tunnelling microscopy of two-dimensional
standing electron wave patterns [54].

first layer

Cu(111)

S

second layer

S

bulk layer

Energy (eV)

D
en

si
ty

of
St

at
es

0.0-1.0-2.0-3.0-4.0

L

k

Figure 9.7: Layer-resolved density of states (LDOS) of Cu(111) for �k‖ = 0. S denotes the sp-
derived Shockley surface state. The bottom panel shows the corresponding bulk band structure
of Cu along Γ-L. On the energy axis, 0 corresponds to the Fermi energy.

Calculated (e,2e) spectra and underlying layer densities of states are shown in Fig. 9.8 for a
symmetric coplanar setup with normal incidence. For fixed primary energy E1, reaction plane
and exit angles θ3 = θ4, the (e,2e) cross section is then a function I(E3, E4) of the energies
of the two outgoing electrons and can be represented by a contour plot in the (E3, E4) plane.
Furthermore, for each pair (E3, E4), the pair (E2, k‖

2) — with E2 = E3 + E4 − E1 and

k‖
2 = k‖

3 +k‖
4−k‖

1 —, at which the valence electron spectral function in Eq. (9.3) is evaluated,

is uniquely determined. Obviously, k‖
2 is in the reaction plane, with the component k

‖
2 =

(
√

2E3 −
√

2E4) sin(θ3) (in atomic units). The layer-restricted trace of the valence electron

spectral function, i.e. the density of states Nm(E2, k‖
2) for the m-th layer, can therefore also

be represented by a contour plot in the (E3, E4) plane. In this plot, the diagonal E3 = E4,
on which k

‖
2 = 0, can be viewed as the E2 axis, and the other diagonal, which marks the
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Fermi energy, as the k
‖
2 axis (with a non-linear scale). In this manner, the first two columns of

Fig. 9.2 represent the first and second layer densities of states N1 and N2 for θ3 = θ4 = 30◦

and 60◦ With increasing k
‖
2 the d-band LDOS has almost no dispersion, whereas the surface

state feature is seen to disperse upward towards EF . The narrowing of the apparent dispersion
relation with increasing θ3,4 is readily understood from the above expression for k

‖
2 .

Figure 9.8: Calculated (e,2e) cross sections and corresponding valence electron surface DOS of Cu(111)
in symmetric coplanar geometry with normally incident 17 eV primary electrons and detection of the
emerging electrons at polar angles θ3 = θ4 and azimuthal angles ϕ3 = 0 and ϕ4 = π The orientation
of the surface (in the xy plane) is such that x is along the [1,−1,0] direction and y along [−1,−1,2], i.e.
the yz plane is a mirror plane of the semi-infinite crystal, which is normal to the reaction plane (xz).
Top row : For θ3 = θ4 = 30◦, the three panels show the surface layer DOS N1(E2, k2x), the second
layer DOS N2(E2, k2x) and the (e,2e) intensity distribution Ixz(E3, E4).
Bottom row : as top row, but for θ3 = θ4 = 60◦.

Comparing the (e,2e) intensity distribution (see Fig. 9.8) with the LDOS plots, we notice
a strong overall similarity. In the d-band region, Ixz(E3, E4) is be roughly a superposition of
N1 on the one hand and of N2 and deeper-layer N on the other hand, with some broadening
and a modified weighting of individual features, which is due to matrix element effects. The
surface state appears with a substantial weight and the shape of its dispersion is perfectly
preserved. The mirror symmetry with respect to the diagonal, i.e. upon interchange of E3

and E4, is readily understood from the fact that the reaction plane is perpendicular to the (yz)
mirror plane of the semi-infinite crystal.

Most recently, an experimental (e,2e) investigation of Cu(111) clearly produced the Shock-
ley surface state and its dispersion [55].
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Table 9.1: Selection rules in coplanar symmetric equal-energy (e,2e) spectroscopy from
fcc(110) surfaces: cross sections Iantipar (Eq. (9.10)) and Ipar (Eq. (9.9)) for the detection
of antiparallel-spin and parallel-spin pairs from valence states with spatial symmetry types
Σ1, Σ2, Σ3, Σ4. The topmost row indicates the scattering planes as (x,z) and (y,z), where x
and y are in the surface plane along [1 −1 0] and [001], respectively, and z is normal to the
surface.

(x,z) plane (y,z) plane
Iantipar Ipar Iantipar Ipar

Σ1 2 | f1 |2 0 2 | f1 |2 0
Σ2 0 0 0 0
Σ3 0 0 2 | f3 |2 4 | f3 |2
Σ4 2 | f4 |2 4 | f4 |2 0 0

9.6.2 Symmetry resolution by selection rules

The (e,2e) selection rules presented in Sec. 9.3.3 provide access to the spatial symmetry types
of the valence electrons. We demonstrate this for Cu(110) both analytically and numerically.

In the symmetric coplanar geometry with normal incidence of the primary beam and equal
energies of the two detected electrons, parallel-momentum conservation dictates that the rel-
evant valence electron states have k‖

2 = 0. The wave functions ϕ
(n)
2 (r) of the semi-infinite

system (crystal half-space plus vacuum-half-space) can therefore be classified according to
the spatial symmetry types Σn with n = 1, 2, 3, 4. Choosing the coordinate system such
that z is along the surface normal [110], and x and y are in the surface plane along [1 −1
0] and [001], respectively, the ϕ

(n)
2 thence show the following behavior under reflection at

the surface-perpendicular mirror planes (x, z) and (y, z): ϕ
(1)
2 is symmetric with respect to

both, ϕ
(2)
2 is antisymmetric with respect to both; ϕ

(3)
2 is antisymmetric with respect to (x, z)

and symmetric with respect to (y, z), while for ϕ
(4)
2 it is the other way round. Choosing the

reaction plane firstly as (x, z) and secondly as (y, z), application of our above two selection
rules immediately yields the results summarized in Table 9.1. Valence states of Σ2 symmetry
can thus not be “seen” in the (e,2e) spectra, whereas Σ3 and Σ4 states individually mani-
fest themselves in the spectra Ipar (Eq. (9.9)) for emitted pairs with parallel spins because of
g3 = −f3 and g4 = −f4, respectively. The spectra Iantipar for anti-parallel spins (Eq. (9.10))
are determined by the sums 2 | f1 |2 +2 | f3 |2 and 2 | f1 |2 +2 | f4 |2, respectively.
The Σ1 contribution I(Σ1) can therefore readily be retrieved from (measured or calculated)
antiparallel- and parallel-spin spectra according to I(Σ1) = Iantipar − Ipar/2 .

We note that the above results are the same for σ = + and σ = −, i.e. they do not
depend on the spin orientation of the primary beam. They therefore hold as well if one uses
unpolarized primary electrons. If the relative spin orientation of the emitted electrons is not
detected, as is the case in present-day experiments, one observes the sum of Ipar and Iantipar

and thus forfeits the second selection rule.
The first selection rule however holds even for completely spin-unresolved experiments:

Σ2 states do not contribute, and Σ3 or Σ4 states are excluded depending on the choice of the
reaction plane.
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Figure 9.9: Valence state symmetry resolution by selection rules. Panels (a) and (b): scalar-
relativistically calculated (e,2e) intensity spectra from Cu(110) in symmetric coplanar geometry (cf.
insets) with normally incident primary electrons with energy E1 = 17 eV and detection of emitted elec-
trons with energies E3 = E4 at polar angles θ3 = θ4 = 45◦ and azimuthal angles ϕ4 = ϕ3 + π. The
intensities are thus functions of E3 = E4 and can, because of energy conservation E2 = 2E3−E1, also
be regarded as functions of the valence electron energy E2, which we take (relative to the Fermi energy)
as the abscissa. The reaction plane intersects the surface along [1−1 0] (panel (a)) and along [001] (panel
(b)). Thin solid lines: total intensities Ipar + Iantipar (cf. Eqs. (9.9) and (9.10)); thick solid line and thick
dashed line: Ipar originating from Σ4 and Σ3 states, respectively; dotted lines: I(Σ1) = Iantipar − Ipar/2.
Panel (c): Bulk band structure (without SOC) along Γ− (Σ)−X with the numbers 1 to 4 indicating the
spatial symmetry types Σi of the individual bands. Panel (d): Valence electron surface DOS of Cu(110)
resolved with respect to �k‖ = 0 and symmetries Σi. (The Σ2-DOS is not shown since transitions from
Σ2 states are absent in accordance with our first selection rule).

Numerically calculated results are shown in Fig. 9.9. The Ipar spectrum in panel (a) (la-
beled as 4) has a broad peak between −3.2 and −2 eV, i.e.the energy range of the Σ4 bulk band
and the Σ4 surface layer DOS peak. This is obviously in accordance with our selection rules
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(cf. Table 9.1). Likewise, the Ipar spectrum in panel (b) (labeled as 3) extends between −4 and
−2 eV, the energy range of the Σ3 bulk band and surface DOS. The peak near −3.4 eV coin-
cides with the surface DOS peak and the high bulk DOS near the Γ point, and the peak around
−3.8 eV appears to reflect the bulk DOS at the bottom of the Σ3 band. In accordance with our
first selection rule, Σ3 valence states do not manifest themselves in (e,2e) spectroscopy in the
first reaction plane case (panel (a)) and Σ4 valence states not in the second one (panel (b)). Σ2

contributions are absent in both cases. The substantial difference of the Σ1 feature between
−5 and −4 eV in the two reaction plane cases is ascribed to the fact that the off-normal time-
reversed LEED states ψ3 and ψ4 and consequently the matrix elements are quite different in
the two cases. All the partial spectra in Fig. 9.9 mainly reflect the respective surface densities
of states (for k‖ = 0) but have some contributions from the electronic structure in sub-surface
layers.

In the above two cases, the reaction plane is parallel to a mirror plane of the crystalline
system. Excitation of Σ2 valence states is therefore forbidden by the first selection rule, just
as it is by non-relativistic dipole selection rules in normal photoemission. If however the
reaction plane is rotated about the surface normal by some arbitrary angle, Σ2 valence states
will manifest themselves — together with states of the other three symmetry types — in the
partial and total (e,2e) cross sections.

Experimentally, the first selection rule is inherent in all (e,2e) spectra obtained to date us-
ing an unpolarized or polarized primary beam. The second selection rule is not yet accessible,
since it requires spin analysis of the outgoing electron pair.

9.7 Spin-polarized (e,2e) spectroscopy

In the cases presented above, the primary electron beam is unpolarized and the (e,2e) cross sec-
tion is therefore the average over the spin-dependent cross sections I+ and I− (cf. Sec. 9.3).
Since spin polarization effects due to spin-orbit interaction and magnetic exchange interaction
are abundant in LEED and photoemission, they must occur also in (e,2e) which involves the
same types of one-electron states.

9.7.1 Non-magnetic surfaces

Spin-orbit coupling effects in (e,2e) have been investigated by symmetry considerations and
numerical calculations for coplanar geometries [24]. Consider electrons with spin polarization
vector −P1 impinging on a cubic (001) surface ((x,y) plane). The reaction plane is chosen as
the (x,z) plane, which is parallel to the (010) plane and hence is a mirror symmetry plane of
the crystal. Furthermore, it is a mirror plane of the complete set-up if the primary beam is
unpolarized or has its spin polarization vector P1 parallel to the y-axis. If P1 is parallel to the
(x,z)-plane, the mirror operation Mxz transforms it into −P1 while leaving the remainder of
the set-up unchanged. In particular, the intensity I+, which is a scalar quantity, is invariant
under Mxz . This implies I+ = I−, i.e. the asymmetry A (Eq. (9.4)) is identically zero in this
case. In contrast, for P1 parallel to y, i.e. normal to the reaction plane, there is no general
connection between I+ and I−. One can thus in general expect a non-vanishing asymmetry
A. We recall that the above findings are analogous to what is well-known in spin-polarized
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LEED (SPLEED) (cf. e.g. [30]). For our numerical investigations of spin-polarized (e,2e), we
therefore choose the primary electron spin alignment along y.

Figure 9.10: Spin polarized (e,2e) from W(001) in symmetric coplanar geometry with the
emerging electrons at polar angles θ3 = θ4 = 40◦ and azimuthal angles ϕ3 = 0 and ϕ4 = π.
The two panels show the sum and the difference of the cross sections I+ and I− calculated for
normally incident primary electrons of energy 24.6 eV with spins aligned parallel and antipar-
allel to the y axis (normal to the reaction plane).

Numerical calculations were done for W(001), in which spin-orbit coupling is strong be-
cause of its large atomic number Z = 74. A typical spin-dependent spectral distribution result
is shown in Fig. 9.10 for coplanar symmetric geometry and primary electron energy 24.6 eV.
Since I+ + I− is equivalent to I obtained for an unpolarized primary electron beam, the left-
hand contour plot is roughly similar to the one (for E1 = 20 eV) presented above (Fig. 9.2e).
In particular, most of the emitted electron pairs are associated with valence electrons close to
EF . The distribution of the intensity difference (right-hand plot in Fig. 9.10) is firstly seen to
be antisymmetric with respect to the E3 = E4 diagonal, i.e. changes sign upon interchanging
the two detected electron energies. This is easily understood by applying the mirror operation
with respect to the (y,z) plane. Secondly, I+ − I− is more richly structured than I+ + I−.
This suggests that it contains additional and more detailed physical information. A few typ-
ical energy sharing curves are shown in Fig. 9.11, which demonstrate that there are sizeable
differences between I+ and −I−, which correspond to asymmetry values up to 30 %. With
the aid of additional calculations, in which spin-orbit coupling was selectively switched off in
the four one-electron states, spin-orbit coupling in the valence state was identified as the main
source of the asymmetry. The intensity peak, which is seen in the upper panel at E3−E4 = 0,
originates from a surface resonance, which exists for k‖

2 = 0 at E2 = EF −0.3 eV and is well
known from photoemission work (cf. [51] and references therein).

On the experimental side, a very recent spin-polarized (e,2e) study of W(001) [55] pro-
duced asymmetry spectra, which are in encouraging agreement with their theoretical counter-
parts.
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Figure 9.11: Spin polarized (e,2e) from W(001) for conditions as in Fig. 9.10: I+, I− and
asymmetry A = (I+ + I−)/(I+ - I−) energy sharing curves for pair energies 19.7 and 19.3 eV,
i.e. valence electron energies 0.3 and 0.7 eV below the Fermi energy.

9.7.2 Ferromagnetic surfaces

The exchange-induced dependence of the (e,2e) reaction cross section on the spin polarization
of the primary electron beam has recently been investigated experimentally and theoretically
for the case of the ferromagnetic Fe(110) surface [18, 19, 23, 56]. It is maximal if the spin
polarization vector P1 of the primary electron is collinear with the magnetization direction,
which for Fe(110) is in the surface plane and normal to the chosen reaction plane. In the
following, the primary electron spin label σ1 = ± refers to P1 parallel/antiparallel to the
majority spin direction.

In Fig. 9.12 we show an example of experimental and theoretical I+ and I− spectra ob-
tained for equal energies E3 = E4 of the outgoing pair as functions of the valence electron
energy E2 relative to EF . The dominant feature, peak C, is obtained for σ1 = +. This may
seem surprising at first glance, since for E2 near EF and k‖

2 = 0 the (layer-resolved) density of
states (right-hand part of Fig. 9.12) is much larger for minority spin than for majority spin. It
is however readily explained by the second selection rule presented in Sec. 9.3.3. The valence
states near EF being symmetric with respect to the plane, which is normal to the surface and
to the reaction plane, I−par for the collision of a spin-down primary electron with a spin-down
valence electron (resulting in a parallel-spin pair) vanishes, which leaves I+

antipar, i.e. colli-
sions of spin-up primary electrons with spin-down valence electrons. Differently put, there
is singlet scattering only. (The small peak C ′ is a “shadow” of C due to the degree of spin
polarization of the primary beam being 65 % rather than 100 % ). Likewise, the I− peak A
arises from collisions of spin-down electrons with majority spin valence electrons. The cross
section asymmetry (cf. Eq. (9.4)) thus semi-quantitatively reflects the negative of the valence
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Figure 9.12: Spin polarized (e,2e) from ferromagnetic Fe(110) (with magnetization �M parallel to the
surface along [1,0,0] (y axis)) in coplanar symmetric geometry (reaction plane (x,z)) with the electron
detectors at polar angles θ3 = θ4 = 40◦. The normally incident primary electrons of energy 22.6 eV are
spin-polarized antiparallel/parallel to �M (i.e. parallel/antiparallel to the majority spins of the target) with
a polarization degree of 65 %. Left: Experimental [55] and theoretical [56] spin-dependent intensities
I+ and I− for equal energy sharing (E3 − E4 = 0 in the calculations and between −0.1 and +0.1
(E3 + E4) in the experimental data) as functions of the valence electron energy E2 (relative to EF ).
Right: Layer-resolved density of states of majority- and minority-spin valence electrons for �k

‖
2 = 0.

electron spin polarization P2(E2) = (N+(E2) − N−(E2))/(N+(E2) + N−(E2)). As the
displacement of the I− peak C relative to the minority DOS peak near EF indicates, however,
matrix element effects are of importance. This is supported by further calculations, accord-
ing to which peak C moves when the primary energy E1 is varied [56]. An identification
of surface features in distinction from bulk-like features is rather complicated and still under
investigation in the case of Fe(110), since there are numerous surface resonances, which have
substantial weight over the first few layers, from which most of the detected electron pairs
originate.

In Fig. 9.13 we show an experimental energy sharing curve of the asymmetry A together
with its calculated counterpart. The energies have been chosen such that the relevant valence
electron energy E2 is within about 1 eV from EF . The decline of the asymmetry, i.e. the
increasing weight of I− relative to I+ as one moves away from equal energy sharing (i.e.
away from k‖

2 = 0) is qualitatively plausible: collisions between parallel-spin-down electrons
become increasingly possible. This trend is however modified due to majority electron states
occurring closer to EF . To disentangle the various contributions, spin resolution of the out-
going electrons would be most useful. Experimentally, this might be achievable by placing a
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Figure 9.13: Spin polarized (e,2e) from ferromagnetic Fe(110) for set-up as in Fig. 9.12 and
primary energy 26 eV: Measured and calculated energy sharing distributions of the asymmetry
A for fixed pair energy (E3+E4) = 21 eV. The theoretical results are averaged over the angular
resolution of the detectors. (From [23]).

spin analyzer foil consisting e.g. of a free-standing Au/Co /Au film (cf. [57]) in the electron
paths between the sample and the detectors.

While the theoretical curve in Fig. 9.13, which was calculated without spin-orbit coupling,
is symmetrical with respect to E3 − E4 = 0, the experimental data are somewhat asymmet-
rical. Rather than ascribing this completely to experimental uncertainties, it is tempting to
regard it partly as a manifestation of the interplay between spin-orbit coupling and exchange
interaction. The investigation of magnetic dichroism phenomena is one of the future directions
of (e,2e) spectroscopy.
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10 One-photon two-electron transitions at surfaces

N. Fominykh, J. Berakdar1, J. Henk, S. Samarin, A. Morozov, F. U. Hillebrecht, J. Kirschner,
and P. Bruno

10.1 Introduction

The theoretical description of the behaviour of N interacting electrons moving in an external
field implies the solution of a complicated many-body problem. An efficient, and in many
cases adequate approach to this problem of interacting fermions has been provided by the
effective field approach, i. e., by considering an individual particle to move independently
in an effective field created by the average interaction with other particles. The Hartree-Fock
scheme and the density functional theory within the local density approximation are prominent
representatives for effective field procedures [1–3], which in general yield accurate predictions
for a number of properties of materials. The limitations of these approaches become however
evident when strongly correlated systems are considered, e. g., transition-metal oxides and
heavy Fermion compounds [1].

In this work we focus on one of the tools to assess the effects of electronic correlations
and the range of validity of effective field models. Generally speaking, one can expect the
effective field approximation to break down whenever the strong short-range components of
the electron-electron interaction are relevant. This is because in such an approach the electrons
move independently from each other. This implies that the wavefunction contains a large
portion of configurations, in which two electrons are so close to each other that they are
exposed to the strong repulsive electron-electron interaction. In this situation, the concept of
an effective, averaged field is clearly inadequate. In the realm of many-body theory a number
of methods have been proposed to deal with this kind of correlation effects. Here we mention
the Brueckner hole-line expansion [4–6], the ‘exponential S’ or coupled cluster method [7,8],
quantum Monte-Carlo techniques [9, 10], and the Green’s function method which we shall
employ in the following. All these methods provide correlated many-body wavefunctions that
account for the details of the inter-particle interaction. At the same time, the question arises
which kind of experimental techniques are suitable to expose the effect of the short-distance
electron-electron interaction and to assess the range of validity of various theoretical models.

To show the effect of correlation in a heuristic way let us consider the case of an infinite,
homogeneous electron gas: The mean-field wavefunction is then a Slater determinant built out
of plane-wave states, labeled by wavevectors ki. All single-particle states with ki smaller than
the Fermi wavenumber kF are occupied. Including correlations in this uncorrelated state leads
to a partial depletion of some single-particle states with ki < kF and a nonvanishing occu-
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pation of some states with higher wavenumbers. This simple example illustrates that a study
of the high-momentum components in the single-particle wavefunctions has the potential to
uncover the effects of short-range correlations. A way to investigate experimentally the high-
momentum components is offered by measuring the coincident spectrum for the electron-pair
emission upon electron impact, i. e., the (e,2e) experiment (one electron in, two electrons out).
This kind of studies is reviewed by Feder and Gollisch in this book [11]. Another spectro-
scopic method for electronic correlation is the coincident, photon-induced electron-pair emis-
sion (γ,2e). This technique is even more sensitive to the effects of correlations than (e,2e)
experiments. In fact, it can be shown that the cross section for (γ,2e) vanishes in absence of
correlations [12]. Experimentally, the realization of the (γ,2e) process at surfaces has long
been a challenge due to the low count rates (compared to single electron emission) which is
inherent to coincidence studies. First experiments with a momentum resolution of the photo-
electrons have been reported in Refs. [13, 14]. For atomic, molecular and nuclear matter the
multi-particle coincidence technique is well established and has yielded a wealth of impor-
tant information on the many-particle excitation dynamics. This information has been used
to test various many-body theories (for recent reviews we refer to [15–20]). In this article
we extend this multi-particle spectroscopy to solids and surfaces. A brief account is given on
the theoretical and the experimental status of the photo-induced two-electron emission from
surfaces. The formal theory and the current numerical implementations will be discussed and
the results for the angular and the energy-correlation functions of the two photoelectrons will
be presented and compared with presently available experimental data.

10.2 General considerations

This section provides the formal theoretical foundations and the calculational ingredients
needed for a theoretical description of the (γ,2e) process. We also point out relation be-
tween the (γ,2e) and the (e,2e) reactions. There are a number of theoretical tools to deal
properly with electronic correlations, however most of them, like the hole-line expansion and
the coupled-cluster methods [3,21], are restricted to deal with ground-state properties. An ap-
propriate framework for the treatment of (γ,2e) and (e,2e), which involves correlated excited
states, is provided by the Green’s function approach. This method offers an access to dynamic
properties like, e. g., the single- and the two-particle spectral functions which are closely re-
lated to the cross section of single and two-particle emission [as produced by (e,2e) and (γ,2e)
processes]. A general description of the Green’s function approach can be found in various
textbooks [21–25]. Here we focus on the aspects which are of immediate relevance to (γ,2e)
and (e,2e).

10.2.1 The single-particle Green’s function

The single-particle Green’s function g(αt, βt′) can be considered as an expectation value
for the time-ordered product of two operators evaluated with respect to the correlated, exact
ground-state |Ψ0〉 of the N electron system (we assume |Ψ0〉 to be properly normalized):

i g(αt, βt′) = 〈Ψ0|T [aHα(t) a†
Hβ(t′)]|Ψ0〉, (10.1)
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where T is the time ordering operator. a†
Hβ(t′) and aHα(t) stand respectively for the fermionic

creation and annihilation operators in the Heisenberg picture represented in an appropriate
basis, the members of which characterized by quantum numbers α and β. For a translationally
invariant system, the appropriate basis states are the momentum eigenstates. The effect of the
chronological operator T can be described in terms of the step function Θ(t − t′), in which
case the Green’s function is given by

ig(k, t − t′) = Θ(t − t′)〈Ψ0|aHk(t)a†
Hk(t′)|Ψ0〉

− Θ(t′ − t)〈Ψ0|a†
Hk(t′)aHk(t)|Ψ0〉

= Θ(t − t′)
∑

γ

e
−i

h
E(N+1)

γ −E
(N)
0

i
(t−t′)

∣∣∣〈Ψ(N+1)
γ |a†

k|Ψ0〉
∣∣∣2

− Θ(t′ − t)
∑

δ

e
−i

h
E

(N)
0 −E

(N−1)
δ

i
(t−t′)

∣∣∣〈Ψ(N−1)
δ |ak|Ψ0〉

∣∣∣2 .

(10.2)

In this equation, Ψ(N+1)
γ and Ψ(N−1)

δ denote a complete set of eigenstates of the (N + 1)-
and the (N − 1)-particle system, respectively. The energies E

(N)
0 , E

(N+1)
γ , and E

(N−1)
δ refer

to the exact energies for the correlated ground state of respectively the N -, the (N + 1)-, and
the (N − 1)-particle system. The exponential with the energies in Eq. (10.2) is due to the
Hamiltonians in the exponential functions in the definition of the Heisenberg operators.

Noting that the step function has the integral representation

Θ(t) = − lim
η→0

1
2πi

∫ ∞

−∞
dω

e−iωt

ω + iη
, (10.3)

the Green’s function in energy space can be obtained via Fourier transforming the time differ-
ence t− t′ to the energy variable ω. This yields the spectral or Lehmann representation of the
single-particle Green’s function [26],

g(k, ω) = lim
η→0

∑
γ

∣∣∣〈Ψ(N+1)
γ |a†

k|Ψ0〉
∣∣∣2

ω − [E(N+1)
γ − E

(N)
0 ] + iη

+
∑

δ

∣∣∣〈Ψ(N−1)
δ |ak|Ψ0〉

∣∣∣2
ω − [E(N)

0 − E
(N−1)
δ ] − iη

 . (10.4)

Relation (10.4) points out that the single-particle Green’s function is representable in terms of
measurable quantities: The poles of g(k, ω) correspond to the change in energy (with respect
to E

(N)
0 ) if one particle is added (E(N+1)

γ −E
(N)
0 ) or one particle is removed (E(N)

0 −E
(N−1)
δ )

from the reference ground state with N interacting particle. The residua of these poles are
given by the spectroscopic factors, i. e., the measurable probabilities of adding and removing
one particle with wavevector k to produce the specific state γ (δ) of the residual system.
Clearly, the latter probability is of a direct relevance to the (e,2e) process. The infinitesimal
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quantity η in Eq. (10.4) shifts the poles below the Fermi energy [the states of the (N − 1)
system] to slightly above the real axis and those above the Fermi energy [the states of the
(N + 1) system] to slightly below the real axis.

It is customary to write the spectral representation of the single-particle Green’s function
in terms of the hole and particle spectral functions that are defined as

Sh(k, ω) =
1
π

Im g(k, ω), for ω ≤ εF (10.5)

=
∑

γ

∣∣∣〈Ψ(N−1)
γ |ak|Ψ0〉

∣∣∣2 δ
(
ω − (E(N)

0 − E(N−1)
γ )

)
,

Sp(k, ω) =
1
π

Im g(k, ω), for ω > εF

=
∑

γ

∣∣∣〈Ψ(N+1)
γ |a†

k|Ψ0〉
∣∣∣2 δ

(
ω − (E(N+1)

γ − E
(N)
0 )

)
. (10.6)

The single-particle Green’s function is then written as

g(k, ω) = lim
η→0

(∫ εF

−∞
dω′ Sh(k, ω′)

ω − ω′ − iη
+

∫ ∞

εF

dω′ Sp(k, ω′)
ω − ω′ + iη

)
. (10.7)

The single-particle Green’s function is particularly important since it establishes a direct link
to experimental processes that study the effect of a removal or an addition of a particle to
the correlated system. As mentioned above, the (e,2e) process is related to the hole spec-
tral function. In addition, the Green’s function allows the evaluation of the expectation value
for any single-particle operator Ô (this is because 〈Ô〉 =

∑
αβ

∫ EF

−∞ dωSh(αβ, ω)〈α|O|β〉
where 〈α|O|β〉 is the matrix representation of Ô in the basis |α〉). This in turn highlights the
importance of single-particle removal or addition spectroscopies, such as single photoemis-
sion [27, 28] and (e,2e) processes, which allow insight into the respective part of the Green’s
function. A further advantage of the Green’s function approach is that it offers a systematic
way for approximations using the diagram technique [23]. In the diagrammatic expansion
for g one introduces the concept of the self-energy Σ [29]. The knowledge of Σ allows the
evaluation of g according to the Dyson equation

g(αβ; ω) = g0(αβ; ω) +
∑
γ δ

g0(αγ; ω) Σ(γδ; ω) g(δβ; ω), (10.8)

where g0 is the Green’s function of a (noninteracting) reference system. The self-energy Σ
accounts for all excitations due to the interaction of the particle with the surrounding medium
and acts as a nonlocal, energy-dependent, and complex single-particle potential.

10.2.2 The two-particle Green’s function

As discussed in detail in Ref. [23], the Dyson equation (10.8) can be derived algebraically and
the single particle propagator g(αt, α′t′) can be related to the two particle Green’s function
gII(βt1, β

′t′1, γt2, γt′2). This is a first cycle in a hierarchy that links the N -particle propagator
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to the (N +1)-particle propagator [30,31]. Of direct relevance to this work is the two-particle
propagator gII(βt1, β

′t′1, γt2, γt′2).
Repeating the steps outlined above for the single particle case, one arrives at the Lehmann

representation of the two-particle Green’s function in terms of energies and states of the sys-
tems with N and N ± 2 particles [the (N − 2)-particle state of the system is achieved upon a
(γ,2e) reaction]:

gII(αβ, γδ; Ω) =
∑

n

〈
Ψ(N)

0

∣∣ aβaα

∣∣ Ψ(N+2)
n

〉〈
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δ
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〉
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+ iη

−
∑
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δ
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m

〉〈
Ψ(N−2)

m

∣∣ aβaα

∣∣ Ψ(N)
0

〉
Ω −

[
E

(N)
0 − E

(N−2)
m

]
− iη

.

(10.9)

Upon analogous considerations made for the one particle case to arrive at the single particle
spectral functions, Eqs. (10.5) and (10.6), one can obtain from gII the hole-hole spectral func-
tion as Shh(k1, k1, Ω) = Im gII(k1, k1, Ω), Ω ≤ 2εF/π which is intimately related to the
(γ,2e) reaction.

The two-particle Green’s function involves two kinds of diagrams: The first type includes
two noninteracting single-particle propagators [cf. Eq. (10.8)] and is supplemented by similar
diagrams that include all possible self-energy insertions [21]. The second defines the vertex
function Γ. The latter involves all generalization of the lowest-order correction to the two-
particle propagator in which two particles interact once. To visualize the role of Γ we write
gII in the form [21]

gII(αt1, α
′t′1, βt2, β

′t′2)

= i
[
g(αβ, t1 − t2) g(α′β′, t′1 − t′2) − g(αβ′, t1 − t′2) g(α′β, t′1 − t2)

]
×

∫
dta dtb dtc dtd

∑
abcd

g(α a, t1 − ta) g(α′ b, t′1 − tb)

× 〈ab|Γ(ta, tb; tc, td)|cd〉 g(c β, tc − t2) g(d β′, td − t′2).

(10.10)

From this equation it is clear that Γ can be considered as the effective interaction between
dressed particles. In addition, Γ plays a decisive role in the determination of its single-particle
counterpart, the self-energy Σ [21].

In energy-space, the result for the noninteracting (free) product of dressed propagators
including the exchange contribution, i. e., the zero-order term of Eq. (10.10) with respect to Γ,
reads

gII
f (αβ, γδ; Ω) =

i
2π

∫
dω

[
g(α, γ; ω) g(β δ; Ω − ω) − g(α, δ; ω) g(β γ; Ω − ω)

]
=
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m′ |a†
δ|Ψ

(N)
0 〉

Ω −
{
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}
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−
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+ iη

− (γ ←→ δ). (10.11)
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The integration over ω has been carried out by utilizing the Lehmann representation for the
single-particle Green’s functions. The ladder approximation to the two-particle propagator is
then given by:

gII
L (αβ, γδ; Ω) = gII

f (αβ, γδ; Ω)

+
1
4

∑
εηθζ

gII
f (αβ, εη; Ω)〈εη|V |θζ〉gII

L (θζ, γδ; Ω), (10.12)

where V stands for the naked two-body interaction. This integral relation can now be iterated
to yield a set of a ladder diagrams. The corresponding ladder sum for the effective interaction
Γ , as it appears in [cf. Eq. (10.10)] can be deduced from this result as

〈α1, β2|ΓL(Ω)|α′
1, β

′
2〉 = 〈α1 β2|V |α′

1 β′
2〉

+
1
4

∑
εηθζ

〈α1 β2|V |ε η〉gII
f (ε η, θ ζ; Ω)〈θ, ζ|ΓL(Ω)|α′

1, β
′
2〉. (10.13)

The analogous operators to gII
L and ΓL(Ω) in absence of the surrounding medium (e. g., as is

the case in a dilute gaseous system) are the Green function G and the transition operator T
which have been utilized to study multiple ionization of gaseous atomic and molecular targets
upon photon and particle impact [32, 33].

As noticed above, gII is of a direct relevance to the (γ,2e) reaction. It should be noted
however that the ladder approximation (10.12) for the two-particle Green’s function can be
employed to define the self-energy Σ [23, 31] which can then be used to obtain the single-
particle Green’s function via Eq. (10.8). On the other hand, this Green’s function enters in
the definition of the two-particle Green’s function, as clear, e. g., from Eqs. (10.11), (10.12).
Thus in principle, the Dyson Eqs. (10.8) and (10.12) for the one-body and two-body Green’s
functions have to be solved in a self-consistent manner.

As in the single particle case where we established the relevance of the spectral represen-
tation to the (e,2e) experiments, one can relate gII to the (γ,2e) measurements by means of
Eq. (10.9): gII shows poles at energies (relative to the ground state) corresponding to adding
[E(N+2)

n − E
(N)
0 ] or removing [E(N)

0 − E
(N−2)
n ] two particles from the unperturbed ground

state. The residua of these poles are related to the measurable spectroscopic factors for the
addition or removal of the two particles, e. g., as done in a (γ,2e) experiment. From the above
discussion we conclude thus that (γ,2e) and (e,2e) provide quite different information. On
the other hand they are related in as much as the single-particle and the two-particle spectral
functions are related to each other.

10.3 Photo-induced double-electron emission

Before we implement the expressions in the preceding section into a calculational scheme for
the evaluation of the coincident (γ,2e) signal, it is useful to discuss the experimental conditions
and limitations.
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Figure 10.1: The schematic view of the exper-
imental arrangement. The photon beam from
the synchrotron source impinges under normal
incidence onto the sample, and electron pairs
ejected from the sample are detected by two
channel-plate assemblies. The center axes of
the two detectors are at 40◦ to the light inci-
dence direction. The sample may be rotated
about an axis within its surface, normal to the
plane of light and detector axes.

10.3.1 Experimental details

Since double photoemission has a much smaller cross section than single photoemission, de-
tectors with a large acceptance are needed. The method of choice is a time-of-flight technique
which allows for a large acceptance both geometrically and in terms of electron energy [13].
By determining the electron energy from the time required by the electron to travel the dis-
tance from sample to detector, the large acceptance is achieved without compromising on the
energy resolution. In our experiment, we use two time-of-flight spectrometers to detect pairs
of electrons ejected from the sample by absorption of one photon (cf. Fig. 10.1). Each detec-
tor consists of a pair of 75 mm channel-plates with position sensitive detection via a resistive
anode. The detectors are at a distance of 160 mm from the sample, the two detector axes are at
±40◦ with the light axis. Position sensitive detection is necessary to avoid energy broadening
caused by different electron flight distances to the center or edge of the detectors.

Time-of-flight techniques require a pulsed photon source. Pulsed UV photon beams are
provided by synchrotron radiation sources, therefore the experiments shown here were per-
formed in the single bunch mode of the electron storage ring BESSY I in Berlin. The repe-
tition frequency of the storage ring in the single bunch mode is 5 Mhz, i.e. the time between
two light pulses is 200 ns, and their width is about 0.6 ns. To keep the accidental coincidence
rate below or comparable to the real coincidence rate, the mean beam intensity was adjusted
such that on average there was less than one photon per bunch.

To obtain the time-of-flight spectrum, the time difference between the photon bunch marker
signal delivered by the synchrotron and a fast timing signal provided any of the channel-
plate detectors was measured by time-to-amplitude conversion. The overall time resolution
achieved in both channels was about 1.2 ns. This yielded an energy resolution of the detected
electrons ranging from 0.1 eV for Ekin = 5 eV to 3.15 eV for Ekin = 50 eV. The fast timing
signals from both detectors were passed to an electronic time-coincidence condition, ensuring
that only those events were registered in which two electrons reached the detectors within a
time window of 200 ns. As the number of photons per bunch is distributed according to Pois-
son statistics, a certain number of bunches contained more than one photon. Thus, in addition
to correlated electron pairs, one normally detects a background of uncorrelated electrons, i.e.,
electron pairs generated by two different photons within one bunch. In our experiments this
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background was about 15% of the true coincidence rate. For subtracting this contribution
from the coincidence spectra, we measured separate background runs by increasing the coin-
cidence window from 200 ns to 1 ms, such that essentially only uncorrelated electron pairs
generated by different photon bunches were detected. Before subtraction, the coincidence and
background runs were normalized on the integrated single photoemission yield of both runs.

Because of the small escape depth of low energy electrons, the probing depth in an ex-
periment involving the detection of two electrons may be expected to be below 5 monolayers
for the energies considered here. Samples are prepared in the usual way by sputtering and
annealing of bulk single crystals, sample cleanliness is determined by Auger spectroscopy.
The small probing depth allows to investigate materials in the form of thin films deposited on
a substrate, which can be considered as representative for the surface of a bulk crystal.

10.3.2 Pathways for the electron-pair emission

For the kind of photons specified in the experimental section, we can treat the electromagnetic
field classically and employ the dipole approximation, as shown in detail in Ref. [12]. The
electric dipole operator is a sum over single-particle operators. Hence, the photon can be
absorbed only by one electron. The other electrons which are emitted in the course of this
process have to interact in some way with the photo-excited electron. This is the underlying
reason why double photoelectron emission is so sensitive to electronic correlation. In Fig. 10.2
we show the leading Feynman diagrams for the DPE process: In Fig. 10.2(a-b) the two-
electron scattering takes place in the initial state (i. e., prior to the photon absorption) via the
effective particle-particle interaction. In addition, the photon can excite a collective mode of
the system which then decays into two electrons, as schematically shown in Fig. 10.2 (c).
Other types of correlations that induce a DPE signal are termed final-state interactions (FSI)
[Fig. 10.2(d,e)]. As schematically shown in Fig. 10.2(d,e), one of the ground-state electrons
absorbs the photon and then scatters from a second electron. The latter scattering is mediated
also by the effective electron-electron interaction. A further important channel for DPE is
depicted in Fig. 10.2(f) where one electron absorbs the photon just like in single photoemission
(SPE) and undergoes a series of collisions with the crystal potential and with other electrons
until it has lost coherence with its initial phase. This photoelectron then scatters from another
electron into a two-electron vacuum state. Therefore, the process shown in Fig. 10.2(f) can be
considered as product of independent events (cross sections): a single photoemission process
followed by an (e,2e) scattering. There is a series of additional diagrams, in particular a
combination of the processes represented by Fig. 10.2(a,b) and Fig. 10.2(d,e), i. e., process
where the two electrons interact in the initial and the final states. In principle, a division
between initial and final state correlation is only a matter of semantics as far as the (γ,2e)
process is concerned, as demonstrated by the diagrams in Fig. 10.2(a,b) and Fig. 10.2(d,e):
The difference between collisions taking place in the initial or final state is in the time ordering
of the electron-electron interaction and the absorption process. This ordering is however of no
relevance for the two-photoelectron current J whose derivation involves an integration over
time. In fact, as derived in Ref. [34] J has the form

J ∝ 〈k1, k2|gIIr ∆ SII
hh(k′

1, k
′
2, E) ∆† gIIa|k1, k2〉, (10.14)
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Figure 10.2: The lowest-order Feynman diagrams that contribute to the photo-induced generation of
electron-pairs with asymptotic wave vectors k1 and k2. The crystal momenta of the two initially bound
electrons are denoted by k′

1 and k′
2. The thick dotted line indicates an interaction between the electron

mediated by the effective electron-electron interaction in the medium whereas the wiggly line symbolize
the electron-electron final-state interaction. The photon is indicated by its energy �ω. In inset (c) the
photon excites both the electron pair and collective modes of the system. The dotted line in (f) means
that the single photoemission process and the subsequent electron-electron scattering take place in two
steps and therefore these two processes are incoherent.
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Figure 10.3: Diagrammatic representation
of the photocurrent expression Eq. (10.14).
Wavy lines represent the photon, double
straight lines with arrows correspond to the
retarded and advanced two-particle Green’s
functions as indicated on the plots. The dou-
ble dashed line symbolizes the electrons emit-
ted into the vacuum.

where ∆ is the dipole operator, SII
hh is the hole-hole spectral function, and gIIa (gIIr) is the

advanced (retarded) two-particle Green’s function.
Similar to the case of single photoemission, the photocurrent can be represented by the

two-particle Caroli diagram, as shown in Fig. 10.3, which explicitly shows no signature of
time ordering. On the other hand, one can tune to initial or final state correlation by choice
of the wave vectors that appear in the current expression Eq. (10.14): If k1 and k2 are very
large (compared to the Fermi wave vector), one can expect the final-state interactions to be
limited to a small region in phase space where the two electrons escape with almost the same
velocities. Apart from this regime, FSI become less important which allows to highlight the
effect of initial-state correlations. On the other hand, if the two electrons escape with very low
(vacuum) velocities, FSI become the determining factor. These statements will be illustrated
below with numerical examples.

10.4 Numerical realization and experimental results

As is clear from Eq. (10.14), the evaluation of gII is the key ingredient for the numerical
evaluation of the two-photoelectron current. On the other hand, we have seen in the preceding
section that the single-particle Green’s function g is needed to obtain gII, and in turn gII goes
into the determination of g. Till now this self-consistent loop has been too complicated to be
realized numerically within a realistic description of the surface, i. e., for an inhomogeneous
electron gas. In fact, the exact evaluation of the generally valid Eq. (10.14) is still an open
question even for a system of few interacting charged particles, such as a few-electron atom.
This kind of systems is currently subject of active research, with DPE being the principle
tool to uncover the effect of particle-particle correlations and to test the validity of various
numerical suggestions for the evaluation of Eq. (10.14). For a recent reviews on this topic, we
refer to Refs. [15–19]. In the present case, we need to account for the few-particle scattering
in the presence of the surrounding inhomogeneous system of electrons.

10.4.1 Simple model calculations

The effect of the medium on the electron-electron interaction V can be estimated for the case
of a semi-infinite homogeneous electron gas in the long-wavelength regime (Thomas-Fermi
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Figure 10.4: (γ,2e) energy-sharing distributions from Cu(001) (left-hand panel) and Ni(001) (right-
hand panel) due a 45 eV photon incident normal to the surface. The experimental data ( [13, 14]) are
for electron pairs with sum energies E1 + E2 between 33 eV and 35 eV. The two photoelectrons are
emitted at 40◦ symmetrically to the left and to the right of the surface normal. The theoretical curves
show the coherent contributions from the diagrams depicted in Fig. 10.2(d,e) (dashed lines) whereas the
dotted line indicate the results for the cross section obtained from the process shown in Fig. 10.2(f) (for
the Cu case the dotted curve has been scaled up by a factor of 4 for visibility). The solid line is the
summed cross section, i.e. the incoherent sum of the dotted and dashed lines.

limit). In this case, V is well described by the modified, local potential U where [35]

U =
e−(|r1−r2|)/λ

|r1 − r2|
. (10.15)

Here, r1 − r2 is the relative distance between the two electrons. The screening length λ is
related to density of states at the Fermi level. With the electron-electron interaction potential,
the first order term in the ladder approximation for gII has been employed and the photocurrent
has been evaluated taking into account the diagrams shown in Fig. 10.2 (d,e,f) [cf. Eqs. (10.12)
and 10.14]. It should be stressed here that the diagrams Fig. (10.2) (d,e,f) should be calculated
within the same model, in which case the relative contributions of each of these processes can
be determined.

Figure 10.4 shows measured and calculated two-electron energy correlation functions. The
two electrons have a fixed total energy of 35 eV this energy is chosen such that the two elec-
trons are emitted from the vicinity of the (two-particle) Fermi level. Results are shown for the
(001) surfaces of Cu and Ni. The material properties within the theory enters via the density
of state which determines the screening length and via the characteristics of the surface po-
tentials. As shown in Ref. [12], the present model predicts that the two-photoelectron current
can be cast into the form ε̂ · (k1 + k2) L, where L is a complicated function of the electrons’
wave vectors and energies. ε̂ is the polarization vector of the light. Hence, for k1 = −k2

or for k̂1 ⊥ ε̂ ⊥ k̂2 the cross section vanishes. This is the origin of the minima for equal
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energy sharing, as observed in Fig. 10.4. This figure also indicates that the diagrams shown in
Fig. 10.2(f) and Fig. 10.2(d,e) deliver comparable contributions to the total current, which is
comprehensible, as all of these diagrams involve the same order of the electron-electron and
electron-photon interactions.

10.4.2 Numerical scheme with a realistic single-particle band structure

To improve on the above two-particle interacting jellium model, while taking into account the
electron-electron interaction explicity and treating the two photoelectrons on equal footing, we
proceed as follows: If we assume the two photoelectrons to be independent, then, according
to Eq. (10.12), the two-particle Green’s function gII reduces to gII = gII

f . This means gII

simplifies to an anti-symmetrized product of single-particle Green’s function gj(ki, Ei), i =
1, 2, which can be used to generate the single-photoelectron states. Employing the one-step
model for photoemission we can then calculate the single-photoelectron current. Our approach
towards this single-particle problem is based on the layer Korringa-Kohn-Rostoker (LKKR)
method which utilizes a density-functional approach combined with an empirical function for
the complex part of the self-energy. This single-particle part of the problem is essentially the
same as in the case of as in single photoemission [36, 37] and (e,2e) which has been reviewed
in details in the chapter by Feder and Gollisch of this volume. Therefore we focus here on how
the two independent photoelectron currents can be coupled to evaluate a finite two-electron
photocurrent J (we recall that J vanishes in absence of correlations].

For this purpose, we utilize the interaction potential U , defined by Eq. (10.15), as a starting
point and rewrite it in the following form:

U =
Z1

r1
+

Z2

r2
with Zj = a−1

j exp (−2aj

λ
rj), j = 1, 2. (10.16)

In these relations, we have introduced the functions aj = r12/(2rj). Equation (10.16) can
be interpreted in the following way: The effect of the electron-electron interaction potential
can be viewed as a modification Zj/rj to the single-particle potentials. This means that the
inter-electronic correlation is subsumed into a dynamic nonlocal screening interaction wj of
the electron with the lattice. The behaviour of this screening is dictated by the functions Zj ,
and has the following features: When the two electrons are on top of each other (r12 → 0) the
potential wj turns repulsive as to simulate the strong, short-range electron-electron repulsion.
If the two electrons are far away from each other (ri � rj , i �= j ∈ [1, 2]), the screening
strengths Z1 and Z2 become negligible and we end up with two independent particles. It
should be stressed that, within our model, the dynamic screening as introduced in Eq. (10.16)
is exact, since we merely performed rearrangements of the interactions involved in Eq. (10.15).
Hence, the evaluation of the two-photoelectron current will face the same problems as when
Eq. (10.15) is utilized. To circumvent the numerical difficulties we approximate the dynamical
screening strengths Zj by Z̄j where Z̄j = ā−1

j exp (−2ājrj/λ) and āj = k12/(2kj). Here
k12 = k1 − k2 is the inter-electronic relative wave number. This approximation is valid, if,
e. g., rj ∝ kj . In other words, the potential (10.15) is exactly diagonalized when the particles
proceed along trajectories satisfying the relation rj ∝ kj , e. g., uniform orbits. With this
screening being included, the modification Z̄j/rj to the original single-particle potential wj

can be taken into account and the single-particle Green’s function ḡj is generated. However,
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in contrast to g, each ḡj is dependent on the wave vectors of both electrons as well as on
the mutual, relative wave vector of the escaping electrons. The two-particle Green’s function
is approximated by ḡII which is the anti-symmetrized, direct product of the modified single-
particle Green’s functions ḡj (the first term in the ladder approximation, Eq. (10.12)). With
this model reasonable results have been obtained for the (e,2e) cross sections [11, 38, 39].

10.4.3 Numerical results for the angular pair correlation in Cu(001)

We discuss in this section pilot results for the correlated two-photoelectron current from a
clean Cu(001) surface. Only the diagrams shown in Fig. 10.2(d,e) have been evaluated.
The ground-state potentials have been calculated self-consistently with the scalar-relativistic
LMTO method. Life-time broadening of the spectra was simulated by employing a complex
optical potential. The photoelectrons’ current due to emission from the first 20 outermost lay-
ers was calculated. Convergence of the results with respect the maximum angular momentum,
number of reciprocal lattice vectors, and accuracy of the energy integration has been achieved.

To get an insight into the profound difference between single and double-photoelectron
emission, we compare in Fig. 10.5 the angular distribution of the photoelectron currents for
single photoemission (labeled SPE) and the double photoemission (indicated by DPE) for
an incoming s-polarized photon. The intensity variation is shown as function of the angular
position of one photoelectron with 9 eV kinetic energy. The photon energy is 15.5 eV in the
single photoemission case and 31 eV for double photoemission. We note that in the latter case
both photoelectrons escape with the same kinetic energy of 9 eV.

In single photoemission, the point group of the surface 4mm is reduced to 2mm in the
angular distribution (as indicated by the horizontal and vertical lines in Fig. 10.5) because
the electric-field vector of the incident photon (which lies in a mirror plane of the surface) is
not invariant under the operations C4 and C−1

4 . On the other hand in double photoelectron
emission, the group 2mm is reduced further to m (horizontal line in Fig. 10.5). This is due
to the presence of the second photoelectron whose emission direction is fixed in space and is
indicated on the plot by the small circle.

The influence of the correlation between the two photoelectrons is readily visible Fig. 10.5:
The repulsion between the two escaping photoelectrons leads to a vanishing photoelectron
current when the two electrons are close to each other. This is the origin of the correlation hole
surrounding the fixed detector position. On the other hand, if the two electrons are far from
each other, the electron-electron interaction diminishes in strength. Consequently, the two-
electron current drops dramatically, for this current must vanish in absence of correlation. The
interplay between these two effects leads to a ‘localization’ of the angular intensity distribution
of one of the photoelectrons around the position of the second one, as observed in Fig. 10.5.
It should be stressed that the two detected photoelectrons are not only coupled to each other
via the interaction (10.15) but also to the crystal potential. Therefore, the correlation hole is
not isotropic in space and depends sensitively on the photoelectrons’ energies.

To illustrate the dependence of the correlation hole on the short-range components of the
electron-electron interaction, we recall that the strength of the electron-electron scattering po-
tential (10.15) is primely determined by the screening length λ, which depends on the density
of state. Therefore, for the sake of demonstration, we can regard λ as a parameter and study
the correlation between the two-photoelectron current and the value of λ. This is depicted
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SPE DPE

Figure 10.5: Angular distribution of the photoemission intensity from Cu(001) in single-electron (la-
beled SPE) and double-electron photoemission (labeled DPE). The kinetic energy of the photo-electrons
is 9 eV, the photon energy of the s-polarized light 15.5 eV in the SPE case whereas in DPE the photon
energy is increased to 31 eV as to compensate for the additional energy needed to emit two electrons
instead of one. For the DPE case, the small circle indicates the emission direction of one of the detectors
(polar angle with respect to the surface normal is ϑ = 40◦). Low (high) intensities correspond to light
(dark) gray scale in the stereographic projection. Horizontal and vertical lines emphasize the symmetries
of the angular distributions.

in Fig. 10.6 which evidently shows that the correlation length λ is intimately related to the
two-photoelectron current. In fact, an angular measurement of the kind shown in Fig. 10.6
can provide an estimate of the correlation length λ in the material under study.

The difference between Fig. 10.6 and Fig. 10.5 is that the photoelectrons’ kinetic energies
are increased from 9 eV for each electron in Fig. 10.5 to 15 eV for each electron in Fig. 10.6.
As clear from the calculations shown in these figures the extent of the correlation hole shrinks
considerable when the electrons’ energies are increased. In fact, at extremely high energies,
the two electrons interact only in a very limited region when they are emitted in the same di-
rections and their velocities are comparable. This can be deduced directly from the interaction
potential (10.16).

10.4.4 Energy-correlation functions

In the preceding section we discussed the mutual angular correlation between the two photo-
electrons escaping with well-defined energies. Now, we study the energy electron-pair corre-
lations at a fixed angular position of the emitted electrons. This is done in Fig. 10.7 where
we present the two-photoelectron current from Cu(001) as a function of electrons’ energies
E1, E2 for a fixed photon energy (p-polarized light) and fixed angles of emission. Again, only



10.4 Numerical realization and experimental results 309

= 0.2 a.u. = 0.5 a.u. = 1.0 a.u.

Figure 10.6: The effect of the correlation length λ on the angular distribution of the two-photoelectron
current from Cu(001). The photon is s-polarized and has an energy of 45 eV. The photoelectrons have
equal kinetic energies of 15 eV. The angular arrangement of the detection geometry is as in Fig. 10.5.
The stereographic images show angular distributions for λ = 0.2 a. u. (left), 0.5 a. u. (middle), and
1.0 a. u. (right). The horizontal lines emphasize the mirror symmetry of the angular distributions.

Figure 10.7: The two-photoelectron current as
a function of energies E1, E2 of the two pho-
toelectrons. Black and white contrasts corre-
spond to low and high intensities, respectively.
The emission angles of the electrons are fixed
at θ = 30◦ symmetrically to the left and right
of the surface normal. The photon energy is
ω = 45 eV. The shaded triangle indicates the re-
gion below the bottom of the conduction band.

the diagrams depicted in Fig. 10.2 (d,e) have been taken into account. As in the case of the an-
gular distribution, we notice that the photoelectron current is appreciable in the region where
the two electrons can interact efficiently. According to our interaction potential (10.16), this
is the case when the two electrons do not differ too much in their kinetic energies. This is
reflected in the behaviour of the photoelectrons current as observed in Fig. 10.7.

From Fig. 10.7 we also notice that the photoelectron current (white region) originates
basically from the energy region E1 + E2 = E = 25 · · · 35 eV, where E is the total kinetic
energy of the pair. From energy conservation it is readily concluded that this energy interval
corresponds to the d-band of copper (≈3 eV band below the Fermi level) from which the initial
state electrons originate mostly; only a negligible fraction of electron pairs are emitted in the
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region E < 25 eV and in the narrow black band just below the line marked by the E = 35 eV.
This is due to the low density of the initial states in these configurations. It should be noted
in this context that in Fig. 10.7 we basically scan the two-photoelectron current through the
conduction band starting at the Fermi level (correspond to E ≈ 35 eV) and ending at the
bottom of the conduction band (which is at E ≈ 18 eV). In this case it is very important to
account (e.g. via a realistic self-energy function) for additional multiple elastic and inelastic
scattering processes of the electrons pairs [29]. In the calculations shown in Fig. 10.7 it has
not been yet possible to include this kind of additional processes. This limitation of theory
is however not applicable to the angular distribution results shown in Fig. 10.5, since in this
case the energy of the electrons can be chosen such that the photoelectrons are emitted from
the Fermi level where inelastic energy-loss processes can be deemed small.

10.5 Conclusions

The aim of the present work is to provide a general overview of the foundations and of the
numerical methods for describing the photo-induced two-electron emission from surfaces. A
brief account of the experimental techniques have been given and the experimental data have
been discussed in light of the numerical results. We have seen that the double photoelectron
emission is well suited for the study of particle-particle correlation in a very direct way, i.e.,
in actually detecting the two particles at the same time. A general expression has been given
to evaluate the (γ, 2e) current and some approximate calculation schemes have been outlined.
In particular, we employed a local but wave-vector dependent approximation of the electron-
electron interaction between the photo-electrons and established a multiple-scattering scheme
which is closely related to the well-studied one-step model of single photoemission. In par-
ticular, we can treat within the same numerical approach single and double-photoelectron
emission which allows for a reasonable comparison between the two processes. First numer-
ical results for the angular and the energy correlation functions of the photoelectrons emitted
from Cu(001) revealed the characteristics of the electronic correlation, as can be observed in
(γ, 2e). Future improvements of the present approximate model include the implementation
of a realistic single-particle self energy in the one-particle part of the problem as well as taking
explicitly into account the non-local screened Coulomb interaction.
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11 Overview of surface structures

M.A. Van Hove

The atomic-scale structure of a surface is fundamental to understanding its various properties, be they
electronic, magnetic, optical, chemical, or tribological. This chapter surveys the current state of knowl-
edge of surface structure, and includes a discussion of the main methods employed to determine surface
structure.

11.1 Introduction

Surface science [1, 2] has enabled the detailed structural determination of a large number of
well-prepared surfaces since about 1970 [3]. A wide variety of materials has been studied,
with particular emphasis on metals and semiconductors of interest for understanding catalysis
and electronic devices, respectively.

Ultra-high vacuum techniques have made it possible to control the composition and con-
dition of interfaces at the atomic level, and to determine their structure by using electrons,
photons, ions and other probes. Atomically clean crystalline surfaces can be prepared, and
can serve as substrate for deposition of foreign matter in submonolayer to multilayer amounts,
often called “adsorbate”. The interface between a substrate and a multilayer film can also be
studied structurally, although with greater difficulty.

Surfaces and interfaces are models for the understanding of many phenomena of tech-
nological importance, such as those occurring in semiconductor devices, in heterogeneous
catalysis, oxidation and corrosion, electrochemistry, friction and wear.

The substrate can be a metal, an alloy, a semiconductor (whether elemental or compound),
an insulator, or any other substance that crystallizes. The clean or adsorbate-covered substrate
surface can “reconstruct” into a lattice that is quite different from the three-dimensional bulk
lattice, a very characteristic phenomenon of surfaces.

Many types of adsorbate can be deposited on a substrate. Typically, one deposits molecules,
resulting frequently in atomic adsorbates due to molecular decomposition, or resulting in ad-
sorbed molecular species directly related to or different from the initial molecule. Atoms or
clusters can also be deposited, sometimes in ionic form. Deposition of metals often forms
metallic films. Chemisorption occurs when strong substrate-adsorbate bonds form. Otherwise
physisorption can occur (at low enough temperatures).

Submonolayer adsorbates often do not order into a lattice, but remain disordered, or else
they may create two-dimensionally ordered superlattices; they may also generate close-packed
islands. Multilayers can grow into thin films that may be epitaxial, i.e. grow in some orienta-
tional coincidence with the substrate lattice, or that may be pseudomorphic, i.e. have periodic
crystalline coincidence with the substrate.
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11.2 Techniques of surface structure determination

Since about 1970, many methods have been developed and applied to determine the atomic-
scale structure of surfaces and interfaces [4]. We will here focus on those methods that are
capable of finding atomic positions within about 0.1 Å (0.01 nm). The following list gives the
acronyms and full names of many of these techniques:

AD atomic diffraction
AED Auger electron diffraction
ARPEFS angle-resolved photoelectron emission fine structure
ARUPS angle-resolved ultraviolet photoemission spectroscopy
ARXPD angle-resolved X-Ray photoelectron diffraction
GIXS grazing-incidence X-Ray scattering
HEIS high-energy ion scattering
HREELS high-resolution electron energy loss spectroscopy
ICISS impact-collision ion scattering spectroscopy
IS ion scattering
ISS ion scattering spectroscopy
LEED low-energy electron diffraction
LEIS low-energy ion scattering
LEPD low-energy positron diffraction
MEED medium-energy electron diffraction
MEIS medium-energy ion scattering
NEXAFS near-edge X-Ray absorption fine structure
PD photoelectron diffraction
PED photoelectron diffraction
RBS Rutherford backscattering
RHEED reflection high-energy electron diffraction
SEELFS surface extended-energy-loss fine structure
SEXAFS surface extended X-Ray absorption fine structure
STM scanning tunneling microscopy
TED transmission electron diffraction
TOF-SARS time-of-flight scattering and recoiling spectrometry
XAFS X-Ray absorption fine structure
XANES X-Ray absorption near-edge spectroscopy
XRD X-Ray diffraction
XSW X-Ray standing waves

In this list, the same technique may appear under different acronyms or names. An exam-
ple is photoelectron diffraction, which appears as ARPEFS, ARUPS, ARXPD, PD and PED.
Another example is ion scattering: HEIS, ICISS, IS, ISS, LEIS, MEIS and RBS. The dif-
ferent names often reflect different conditions or parameter ranges, such as ultraviolet light
(ARUPS) vs. X-Rays (ARXPS), or low (LEED, LEIS), medium (MEED, MEIS) vs. high
(RHEED, HEIS) energies.
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Figure 11.1 graphs the number of structures determined by those techniques that have
produced detailed and complete structures up through the year 2000 [3]. It illustrates the pre-
dominance of LEED in surface structure determination, followed by photoelectron diffraction
(in its various forms) and ion scattering (in its various forms).

Figure 11.1: Graph of solved surface structures [from ref. 3], showing the number of structures
solved by different techniques through the year 2000. To be included in this graph a technique
must have solved structures accurately and completely. As an example, STM had solved only
one structure in detail, by comparing STM images to STM theory.

Figure 11.2 breaks down the relative contribution from the different techniques on a yearly
basis [from ref. 3]. This graph shows that LEED was the only technique in use until about
1978 and that it has continued to produce more than 50% of determinations since then. At that
time, several techniques using synchrotron radiation became available, including prominently
photoelectron diffraction, as well as ion scattering, which relies on ion accelerators.

In the next few sections, we will briefly describe groups of techniques, according to their
basic mechanism: diffraction, (non-diffractive) scattering, etc.

Then, we will discuss ordering principles at surfaces, which are responsible for the pe-
riodic crystallinity of most of the solved structures. Next we will address the types of sur-
face structure that have been solved, grouped according to types of surfaces, and discuss the
kinds of structures that have been found to occur: reconstructions, adsorption of atoms and
molecules as overlayers, penetration of adatoms into surfaces, etc.

11.2.1 Diffraction techniques

Diffraction has been a most successful approach to atomic-scale structure determination of
bulk materials and surfaces. Diffraction can deliver atomic coordinates at surfaces with preci-
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Figure 11.2: Graph of solved surface structures [from ref. 3], showing year by year the relative
contributions from different techniques (no structure was determined in 1970). The techniques
are labeled and drawn from bottom up in order of decreasing number of structures determined.

sions in the range of 0.01 to 0.1 Å. LEED, PED and XRD are the main diffraction techniques
which have been applied to surface structure determination.

The majority of known surface structures has been studied with low-energy electron diffrac-
tion (LEED) [5, 6]. LEED uses as probes elastically diffracted electrons with energies in the
20–300 eV range, which corresponds to electron wavelengths in the 0.5–2 Å range. Mono-
energetic electrons are beamed at a surface, from which they are diffracted (only elastically
scattered electrons are normally recorded). Inelastic scattering processes severely limit the
penetration depth of such electrons into a surface to about 5–10 Å, giving a surface sensitivity
of only a few atomic layers.

Interferences between different scattering paths pick up the local surface structure infor-
mation in the form of modulations of diffracted electron beam currents. Elastic interactions
are strong enough that multiple scattering of electrons from one atom to another is important
in this energy range. This complicates the analysis of experimental diffraction data, but the
necessary theoretical methods have been very successful in obtaining bond lengths and angles
at surfaces of almost any chemical composition (hydrogen atoms being the major exception).

The methods employed to analyze LEED measurements simulate the entire multiple scat-
tering process in a way similar to the calculation of electronic band structures in the bulk and
at the surface. An important part of the process is the fitting of atomic positions to reproduce
experimental diffraction data.

X-Ray diffraction, with its inherent conceptual simplicity, has been an obvious choice for
surface crystallography [7]. However, long mean free paths of X-Rays in solids permit the
desired surface sensitivity only when grazing incidence and/or emergence are used: angles
within a fraction of a degree from the surface plane are required. This demands extremely
flat surfaces and strict control of diffraction angles, both challenging experimental tasks. Also
a sufficient photon flux is required, which is often sought at synchrotron radiation facilities.



11.2 Techniques of surface structure determination 317

In fact, the relative impact of XRD has grown with the increased availability of synchrotron
radiation.

A variant of X-Ray diffraction has been applied to obtain interlayer spacings between ad-
sorbates and bulk atomic planes. These bulk atomic planes include not only the planes parallel
to the surface, but also any crystallographic planes inclined to the surface. Then “triangula-
tion” allows the adsorption site to be determined. This approach uses X-Ray standing waves
due to reflection from atomic planes in the crystal bulk [8]. This method is used in conjunction
with detection of the fluorescence that is unique to the adsorbate. The fluorescence is sensitive
to interference between the directly reflected beams and beams reflected from the bulk planes;
hence it can tell the interplanar separation.

A number of diffraction techniques use internal localized point sources of electrons, in-
stead of external beams. In the case of photoelectron diffraction [9, 10, 11], electrons are pho-
toemitted from particular electronic orbitals, such as core levels in individual surface atoms.
Often synchrotron radiation is used as a source of photons. Those electrons scattered from
nearby atoms toward the detector interfere with electrons traveling directly from the emitting
atom to the detector, in a way that depends on the local geometry. The electrons are emitted
with kinetic energies up to a few thousand eV, where single-scattering events dominate to give
a qualitatively simple scattering picture (but multiple scattering must be taken into account for
accuracy).

Another point-source diffraction technique is X-Ray absorption fine structure (XAFS) [12,
13, 14, 15]. Again, photoelectrons are excited and allowed to scatter from nearby surface
atoms. However, in this case the electrons return to the emitting atom and modulate (by wave
interference) the emission process itself. This modulation is again interpreted in terms of the
local geometry. SEXAFS (surface extended XAFS) uses electron kinetic energies of the order
of 1000 eV, and a single-scattering model is often adequate to interpret the experimental data.
Any emitted particle can be chosen for detection, including photons, electrons and ions.

Closely related to SEXAFS is near-edge X-Ray absorption fine structure (NEXAFS, also
called XANES) [14]. NEXAFS is SEXAFS conducted at much lower electron kinetic ener-
gies, where multiple scattering is strong. This technique is primarily used to monitor excita-
tions among valence electrons, from which structural information like molecular orientation
and bond lengths is accessible. And the polarization of the incident photons can be used to
detect the orientation of bonds and thus the orientation of molecules relative to the surface
plane, for example.

Another approach uses “electron holography” [16, 17, 10]. The angular distribution of an
emitted electron (e.g. a photoelectron) can be viewed not only as a diffraction pattern to be
fit, but also as a hologram to be inverted: such a pattern or hologram is due to interference
between the directly emitted wave and the same wave scattered from nearby atoms, in analogy
with optical holography. From this hologram, one can computationally reconstruct an image
of the neighborhood of the emitting atom, by a Fourier-transform-like inversion. The result
is a map that approximates the positions of atoms: each atom in principle is represented by a
maximum in this three-dimensional map. The method suffers however from distortions due
to electron scattering phase shifts and multiple scattering effects. But it has been found that
including holograms taken at multiple energies, together with energy-dependent phases, can
appreciably improve the quality of the resulting map. This approach is not guaranteed to work
in all cases, but when it does work it saves much effort in solving a structure. Typically, after
holographic inversion, a more standard fitting is performed to fine-tune atomic positions.
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11.2.2 Scattering techniques

A number of techniques rely on scattering, as opposed to diffraction (interference), to obtain
geometrical information from surfaces. Of particular value has been ion scattering both at low
energies (around 1 keV) [18, 19] and at medium and high energies (100–1000 keV) [20].

Low-energy ions cast wide shadows behind surface atoms. These shadows obscure further
atoms if they lie within the shadow cone. By varying the incidence direction, the shadow cone
can be swept through the surface and expose or hide individual atoms. It is possible to monitor
the disappearance and emergence of atoms in the shadow cone, thereby obtaining structural
information. This information tends to be restricted to the top one or two atomic layers, since
the shadows obscure all deeper layers. The technique is generally called LEIS (low-energy ion
scattering) [18]. Alkali ions provide particularly good structural sensitivity when monitored
near the 180◦ scattering direction: this feature is used in ALICISS (alkali-ion impact collision
ion scattering spectroscopy) [21].

Medium- and high-energy ions (helium nuclei and protons are commonly used) are di-
rected along bulk crystal axes of the surface material. The ions can channel relatively deeply
into the crystal between rows of atoms, because the shadow cones are in this case very nar-
row. But if surface atoms deviate from the ideal bulk lattice positions and block the channels
through which the ions move, the ions will scatter strongly back out of the surface. This
conceptually simple approach has been used successfully to obtain detailed structural infor-
mation for a number of clean and adatom-covered surfaces. It is uniquely suited to study
buried solid-solid interfaces (i.e. interfaces that lie deep in the bulk below a surface), since
the ions can be made to penetrate relatively deeply into a surface. The technique still re-
quires ultra-high vacuum for its operation, because the ion beams can only be formed in such
a vacuum [22]. Depending on the energy range used, and other experimental choices, the
technique is known under the names of medium-energy ion scattering (MEIS) or high-energy
ion scattering (HEIS).

11.2.3 Microscopic and topographic techniques

A number of powerful techniques have been developed that study surfaces in a microscopic
sense: they image directly individual microscopic parts of a surface rather than structure as
averaged over macroscopic distances. Some, like field-ion microscopy (FIM) [23, 24] and
scanning tunneling microscopy (STM) [25, 26] can image individual atoms.

However, none of these microscopic techniques readily provides complete information
about bond lengths or other bonding details (unless a close comparison with theory is made).
In special conditions, distances parallel to the surface can be obtained with some accuracy,
but mostly these techniques are used to map out surface topography or composition, down to
atomic resolution in the case of STM and FIM.

11.3 Two-dimensional ordering

Deposition of adsorbates on a single-crystal substrate can produce quite different two-dimen-
sional periodicities than the clean surface has. And the clean surface may have a differ-
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ent two-dimensional periodicity than one would expect from simple truncation of the three-
dimensional bulk lattice. We shall in this section first address the question of how ordering
takes place at surfaces, with emphasis on the case of adsorbates. Then we shall introduce
the main nomenclature that is used in surface science to describe ordered surface structures,
whether due to adsorbates or due to reconstructions.

11.3.1 Ordering principles at surfaces

A large number of ordered surface structures can be produced experimentally on single-crystal
surfaces, especially with adsorbates [27]. Ordering can manifest itself both as commensurate
and as incommensurate structures. There are also many disordered surfaces.

We shall here adopt the following common definitions of the terms coverage and mono-
layer (however, one should be aware that other definitions are also often used). The surface
coverage will be unity when each two-dimensional surface unit cell of the unreconstructed
substrate is occupied by one adsorbate (the adsorbate may be an atom or a molecule). A cov-
erage of 1/2 per cell thus corresponds to filling every other equivalent adsorption site. The
term monolayer will here indicate a saturated single adsorbate layer with a thickness equal
to the dimension of the adsorbate perpendicular to the surface. Thus, deposition after this
coverage can only be achieved by starting a second monolayer growing on top of the first
monolayer.

The driving force for surface ordering originates, analogous to three-dimensional crystal
formation, in the interactions between atoms, ions, or molecules in the surface region. The
physical origin of the forces is of various types (covalent, ionic, Van der Waals), and the spatial
dependence of these interaction forces is often complex.

For adsorbates, an important distinction must be made between adsorbate-substrate and
adsorbate-adsorbate interactions. The adsorbate-substrate interaction is due to strong covalent
or ionic chemical forces in the case of chemisorption, or to weak Van der Waals forces in the
case of physisorption. Adsorbate-adsorbate interactions may also be of different kinds: they
may be strong covalent bonding interactions (as with dense metallic layers), weaker orbital-
overlapping interactions or electrostatic interactions (e.g. dipole-dipole interactions), or weak
Van der Waals interactions, etc. These are many-body interactions that may be attractive or
repulsive depending on the system.

Frequently, an adsorbate lattice is formed that is simply related to the substrate lattice.
In the ordered case this yields commensurate superlattices. The most common of these are
simple superlattices with one adsorbate per superlattice unit cell. They occur for adsorbate
coverages of 1/4, 1/3 or 1/2 per cell, for example. An incommensurate relationship exists when
there is no common periodicity between an overlayer and the substrate. Such a structure is
dominated by adsorbate-adsorbate interactions rather than by adsorbate-substrate interactions.
The classic example is that of rare-gas monolayers physisorbed (weakly adsorbed) on almost
any substrate.

11.3.2 Nomenclature

Single-crystal surfaces are characterized by a set of Miller indices that indicate the particular
crystallographic orientation of the surface plane relative to the bulk lattice. Thus, surfaces are
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labeled in the same way that atomic planes are labeled in X-Ray crystallography. For example,
a Pt(111) surface exposes a hexagonally close-packed layer of atoms, given that platinum has
a face-centered cubic bulk lattice. For reference, such a surface is often additionally labeled
(1 × 1), thus Pt(111)-(1 × 1): this notation indicates that the surface is not reconstructed or
otherwise modified into a periodicity different from that expected from simple truncation of
the bulk lattice.

Most surfaces exhibit a different two-dimensional periodicity than expected from the bulk
lattice, as is most readily seen in diffraction patterns: often additional diffraction features
appear which are indicative of a “superlattice”. This corresponds to the formation of a new
two-dimensional lattice on the surface, usually with some simple relationship to the expected
“ideal” (1 × 1) lattice. For instance a layer of adsorbate atoms may occupy only every other
equivalent adsorption site on the surface, in both surface dimensions. Such a lattice can be
labeled (2 × 2): in both surface dimensions the repeat distance is doubled relative to the ideal
substrate.

In general, the (2 × 2) notation can take the form (m × n)Rα◦, called Wood notation
(Wood, 1964). Here the numbers m and n are two independent stretch factors in different sur-
face directions. These numbers need not be integers: irrational values yield incommensurate
lattices, while rational values, expressible as an integer or as a ratio of integers, correspond
to commensurate lattices. In addition, this stretched unit cell can be rotated by any angle α◦

about the surface normal. Thus, the Wood notation allows the (1 × 1) unit cell to be stretched
and rotated; however, it conserves the angle between the two unit cell vectors in the plane of
the surface, disallowing “sheared” unit cells.

A more general notation is available for all unit cells, including those that are sheared,
so that the superlattice unit cell can take on any shape, size and orientation. It is the matrix
notation, defined as follows (Van Hove et al, 1986a). We connect the unit cell vectors a’ and
b’ of the superlattice to the unit cell vectors a and b of the substrate by the general relations:

a′ = m11a + m12b,

b′ = m21a + m22b,

The coefficients mij define the matrix

M =
(

m11 m12

m21 m22

)
,

which serves to denote the superlattice. The (1×1) substrate lattice and the (2×2) superlattice
are then denoted by the matrices

M =
(

1 0
0 1

)
and

M =
(

2 0
0 2

)
,

respectively.
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11.4 Clean surfaces

Once a clean surface has been prepared, it is often found to have the two-dimensional peri-
odicity which one would expect from simple ideal truncation of the bulk lattice parallel to
the surface plane. However, there are many exceptions: they are often called reconstructions
and we shall define them to be those clean structures that involve relatively large atomic dis-
placements from an ideally-terminated bulk structure, including in particular the breaking of
remaining bonds and/or the making of new bonds. In all cases, whether reconstructed or not,
there is the possibility that bond lengths and interlayer spacings near the surface can differ
from those in the bulk: this is usually called “surface relaxation”.

Figure 11.3 gives an idea of the types of substrate for which the surface structure has been
solved (combining clean and adsorbate-covered surfaces). Notable is the preponderance of
non-reconstructed elemental metal surfaces. A good number of reconstructed semiconductor
surfaces is also included. There are far fewer structures known for surfaces of alloys and other
compounds, such as insulators.

Figure 11.3: Numbers of solved surface structures classified by types of substrate, through the
year 2000 [from ref. 3]. These numbers include both clean and adsorbate-covered surfaces.

Figure 11.4 breaks the surface structures down by substrate lattice. This makes clear that
most structure determinations were performed for fcc, bcc and hcp metal surfaces, as well as
diamond-lattice surfaces (mainly silicon).
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Figure 11.4: Numbers of solved surface structures classified by substrate lattice, through the
year 2000 [from ref. 3]. These numbers include both clean and adsorbate-covered surfaces.

11.4.1 Bulk-like lattice termination

A number of clean surfaces exhibit a bulk termination (with perhaps some minor relaxations
which we will discuss in Section 11.4.3). They are then denoted as having a (1 × 1) surface
lattice.

This occurs most prominently with many pure metal surfaces that have low Miller indices,
such as fcc(111), fcc(100), fcc(110), bcc(110), bcc(111), hcp(0001) and hcp(10–10). Among
the few oxide surfaces which have been studied, the low-index surfaces derived from the bulk
NaCl lattice also exhibit a (1 × 1) lattice, e.g. NiO(100). A number of alloy surfaces (again,
few have been studied) also have a bulk-like termination. Some semiconductor compounds
also have the (1×1) termination, such as the (110) surface of many III-V and II-VI compounds
(GaAs, AlAs, AlP, GaP, GaSb, InAs, InP, InSb, CdTe, ZnS, ZnSe and ZnTe), although they
may involve large atomic displacements (relaxations).

By contrast, the phenomenon of surface premelting has been well documented, at least for
certain Pb surfaces, particularly the (110) surface of this fcc metal [28]. Premelting within a
few outermost surface layers is observed already some 100 K below the bulk melting temper-
ature of about 600 K.
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11.4.2 Stepped surfaces

Well-annealed clean fcc and bcc metal surfaces often exhibit steps between adjacent flat ter-
races. So-called vicinal surfaces (which are cut somewhat off from a low-Miller-index plane),
have regular arrays of such steps. Such steps are found to be mostly of mono-atomic height
[2]. This is partly due to the fact that on ideal fcc and bcc surfaces, successive steps are struc-
turally equivalent and multiheight steps are less favorable. On hcp metal surfaces, however,
steps are often of double height. The difference is that on most hcp surfaces mono-atomic
height steps alternate among two inequivalent structures and can compose a more favorable
double-height step. Similarly, steps on many semiconductor surfaces have a two-atom height.
Little is known about step structures at bimetallic and other surfaces.

11.4.3 Relaxations

Surface atoms have a highly asymmetrical environment: they have neighbors toward the bulk
and in the surface plane, but none outside the surface. This anisotropic environment forces the
atoms into new equilibrium positions, relative to the bulk. For clean unreconstructed surfaces,
there is generally a contraction of bond lengths between atoms in the top layer and in the
second layer under the surface, relative to the bond length in the bulk: the contraction is on
the order of a few percent [3]. This relaxation in the topmost interlayer spacing is larger the
more open (or rougher) is the surface, i.e. the fewer neighbors the surface atom has [29].
The closest packed surfaces, such as fcc(111) and fcc(100), show almost no relaxation; there
may even be a very slight expansion for metals like Pd and Pt(111). Relatively large inward
relaxations occur by contrast at surfaces like fcc(110), with interlayer spacings contracted by
about 10%. The contractions are material dependent, Pb(110) showing a particularly large
interlayer spacing contraction of 16%, corresponding to a bond length contraction of 3.7%
[30].

Relaxations of interlayer spacings occur also deeper than the second layer [29, 31]. The
amplitudes of these relaxations decay approximately exponentially with depth. At least in
metals, it is common to observe alternating contractions and expansions in the interlayer spac-
ings. Typically, one may find, in penetrating the surface, first a contraction, then an expansion,
followed by another expansion, and then again a contraction.

Relaxations parallel to the surface are also expected and observed for atoms at step edges
[29, 31]: they tend to relax sideways toward the upper terrace of which they are a part.

Semiconductor surfaces often present larger relaxation effects than metal surfaces, be-
cause there is more room for bond angle changes in the less close-packed semiconductors [32,
33]. The bond lengths also appear to change more than they do in metals. For example, in
GaAs(110) and a number of similar unreconstructed surfaces of III-V and II-VI compounds,
large rotational relaxations occur. Whereas the bulk has tetrahedral angles of 109.5◦, some of
the bond angles at surface atoms are reduced to 90 ± 4◦ while others are increased to 120 ±
4◦. These changes vary from layer to layer, and decay to the bulk value within a few atomic
layers. In these examples, bond lengths change by up to 9%, but more typically by about
5%; both contractions and elongations occur in the same structure. Such effects are due to the
rehybridization of atomic orbitals around the surface atoms. At (110) surfaces of III-V com-
pounds, the group III element (anion) rehybridizes toward sp2 and a planar neighborhood with
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120◦ bond angles, whereas the group V element (cation) adopts a distorted p3 hybridization
that favors 90◦ bond angles.

11.4.4 Reconstruction

Among the clean metal surfaces, nearly a dozen are known to reconstruct. Over 40 clean
semiconductor reconstructions have been reported. Numerous reconstructions have also been
found for oxides and other compounds. Depending on preparation methods, some of these
surfaces can present different superlattices, some of which are metastable. Thus, Si(111)
reconstructs readily into a stable (7 × 7) structure, but can also be prepared as a (2 × 1)
structure, a (

√
3 ×

√
3)R30◦ structure and even an unreconstructed (1 × 1) form, all of which

are metastable. Similarly, Ir(100) normally reconstructs into a (1 × 5) lattice, but can be
prepared in a metastable (1 × 1) structure.

Several types of clean-surface reconstruction can be distinguished [34]. First, one finds
displacive reconstructions, in which atoms are displaced slightly from their ideal bulk-like
positions in different directions which break the ideal periodicity and create a superlattice.
Generally, no bonds are broken or created in this type of reconstruction, but bond lengths and
angles are changed. Mo and W(100) are good examples.

Next are the missing-row reconstructions, exemplified by Ir, Pt and Au(110) [35]. In this
case, rows of atoms are missing from the ideally-truncated substrate. This creates narrow
facets which are more close-packed than the ideal surface. The most common missing-row
reconstruction produces a (2 × 1) unit cell with facets 2 atoms wide.

Another type of reconstruction seen on metal surfaces is the formation of a closer-packed
top layer. Such a reconstruction occurs for Ir, Pt and Au(100), as well as Au(111) [36]. In
these cases, the interatomic distance within the topmost layer shrinks by a few percent parallel
to the surface. It then becomes more favorable for this layer to collapse into a denser layer that
is nearly hexagonally close packed rather than maintain the square lattice of the underlying
layers.

Semiconductors often exhibit bond breaking and creation in one or more surface layers,
relative to the ideal truncation [32, 33]. This effect is due to the directionality of the bonding in
these materials. The “dangling” bonds broken by the creation of the surface are energetically
unfavorable.

An important driving mechanism for semiconductor reconstruction is the minimization of
the number of such dangling bonds. This is accompanied by more or less drastic rearrange-
ments of the surface lattice. A relatively simple case occurs with Si(100), where atom pairing
satisfies half of the dangling bonds, forming a (2 × 1) superlattice. A more extensive rear-
rangement is found in the (2 × 1) reconstruction of Si(111) and diamond C(111): here atoms
bond in zigzag chains along the surface, while the 6-membered rings of the bulk are replaced
by 5- and 7-membered rings next to the surface.

The Si(111)-(7 × 7) surface is the most complex reconstruction solved to date [37, 38]. It
incorporates many of the abovementioned effects, and some additional ones. This reconstruc-
tion involves 12 “adatoms” per (7 × 7) unit cell. One half of the unit cell presents a stacking
fault between the first and second bilayers, as if the top bilayer had been rotated by 180◦ about
the surface normal. This stacking fault joins the non-faulted half of the unit cell at a seam that
consists of paired atoms. Six such seams meet at large and deep holes (one hole per unit cell),
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which expose the second bilayer. The combination of adatoms, dimers and stacking fault re-
duces the number of dangling bonds per (7× 7) unit cell from 49 on the ideal unreconstructed
surface to 19 on the reconstructed surface.

11.4.5 Surface segregation

A number of bulk compounds like oxides, carbides, sulfides and semiconductors maintain
their bulk composition at the surface. There are, however, numerous exceptions that exhibit a
deviating surface composition. An example is the case of the (111) faces of GaAs, GaP, and
other such semiconductors, where a deficiency of Ga leads to a (2 × 2) reconstruction due to
Ga vacancies [39].

The clean metallic alloys fall into two main categories: those for which the bulk alloy is
ordered and those for which it is disordered. It appears that the surface structures of ordered
bulk alloys are generally also ordered and maintain the bulk concentration. With disordered
bulk alloys, the surface is most often also disordered, but surface segregation can be very
marked and can be strongly layer-dependent, with the possibility of an oscillating layer-by-
layer concentration. Other alloys, exemplified by Cu-rich CuAl [40], are disordered in the
bulk, but order at some faces for certain bulk compositions.

11.4.6 Quasicrystals

Certain alloys form so-called quasicrystals: they are mostly ternary alloys with a majority
component of Al. Quasicrystals have orientational order but no translational periodicity, and
they can exhibit symmetries that are not allowed in periodic crystals, such as 5-, 8-, 10- and
12-fold rotational symmetry.

The surface structure of the 5-fold symmetrical surface of two quasicrystals has been stud-
ied: AlPdMn [41] and AlCuFe [42]. The main features are a bulk-like termination of the
lattice, exposing an Al-rich layer, with interlayer relaxations similar to those seen of metal
surfaces such as fcc(110).

11.5 Adsorbate-covered surfaces

A large number of atomic and molecular adsorbates have been studied on single-crystal sur-
faces over the last decades [27]. Very different structures are found when physisorption is
compared with chemisorption, or when comparing atomic with molecular adsorption, or when
mixing in a second type of adsorbate. Such differences will be addressed in this section. We
shall also discuss multilayer growth, relaxations, reconstructions, compound formation and
surface segregation of surfaces upon adsorption.

Figure 11.5 compares the numbers of surface structures solved for different adsorption
modes. Simple atomic overlayers form the great majority. There are also a good number
of molecular adsorbate structures, as well as a series of pseudomorphic ultrathin films (these
have a 2-dimensional lattice that coincide with that of the substrate).
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Figure 11.5: Numbers of solved surface structures classified by type of adsorption, through the
year 2000 [from ref. 3].

11.5.1 Physisorption

At low enough temperatures most gas-phase species will physisorb on any surface. Partic-
ularly with inert gases and with saturated hydrocarbons, physisorption is commonplace and
stable on many types of substrate.

The simpler among the observed LEED patterns for physisorbed species can often be eas-
ily interpreted in terms of structural models. The known Van der Waals sizes of the species
lead to satisfactory structures which are more or less close-packed. This is especially straight-
forward with inert gases.

Physisorption allows the formation of multilayers, which normally grow with their own
lattice constant on any substrate. For example, xenon films exposing a Xe(111) surface have
been grown on an Ir(100) substrate and analyzed by LEED to show that the bulk fcc Xe
structure is maintained [43].

11.5.2 Atomic chemisorption sites and bond lengths

Frequently, chemisorbed atoms order well on surfaces, particularly at specific coverages like
0.25, 0.5, 0.75, etc. per cell, where regular superlattices can develop. In many cases, order-
disorder transitions are observed as the temperature is raised.

We first consider the adsorption site of chemisorbed atoms. The simple atomic adsorption
structures on metal surfaces are generally characterized by the occupancy of high-coordination
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sites. Thus, Na, S, and Cl overwhelmingly adsorb over “hollows” of the metal surface, bond-
ing to as many metal atoms as possible [3].

The situation is slightly more complicated with the smaller adsorbates, such as H, C, N,
and O, on metal surfaces. And all adsorbates appear to behave in a more complex manner on
semiconductor surfaces. By contrast, little crystallography has been accomplished on atomic
adsorption on other types of substrates, such as insulating compounds and alloys.

With the adsorption of smaller adsorbates, there still remains a preference for high-co-
ordination sites. However, the atoms often penetrate deeper within or even below the first
substrate layer. The penetration can be interstitial (as occurs with small atoms on metals) or
substitutional (as is relatively more frequent on semiconductors and compounds). In either
case the surface can reconstruct as a result, especially at higher coverages. For instance, a
monolayer of N penetrates into interstitial octahedral sites between the first two layers of
Ti(0001) with minimal distortion of the Ti lattice [44]. Both C and N burrow themselves
within the hollow sites of the Ni(100) surfaces so as to be almost coplanar with the topmost
Ni atoms [45, 46, 47]. The nearest Ni atoms are also pushed sideways by perhaps 0.4 Å, a
good example of adsorbate-induced reconstruction.

One of the few known structures of an adatom at steps is that of O on Cu(410) [48]. The
Cu(410) surface consists of (100) terraces, 3 atoms wide, on which the O adatoms can arrange
themselves in a c(2 × 2) array at hollow sites. Oxygen atoms bond within the step edge
between adjacent Cu step atoms: the bonding arrangement is just like the 4-fold hollow site,
except that one of the four surrounding Cu atoms is missing.

Atomic adsorption on semiconductors shows three emerging major trends in the adsorp-
tion sites: low-coordination adatoms, high-coordination adatoms, and substitutional atoms.

Some atoms adsorbed on the (111) face of C (diamond), Si and Ge cap the dangling bonds
of the ideally truncated surface. For instance, H, Cl, Br and I choose capping sites on Si(111),
forming bonds through single coordination to Si atoms. These adatoms in effect continue the
bulk Si lattice outward, removing any clean-surface reconstruction when the adatom coverage
is large enough.

The second trend is illustrated by several adsorbed atoms on Si(111) and Ge(111) which
at low coverage appear to prefer the so-called T4 adatom site (the same site that Si and Ge
adatoms occupy in the clean-surface reconstructions: this site lies above a triangle of substrate
atoms, with one other substrate atom just below, resulting in 4 adsorbate-substrate bonds).
The adatoms are thereby bonded to 4 substrate atoms of the top bilayer. Examples are Pb on
Ge(111) [49], and both Al (50, 51) and Ga on Si(111) [52]. It appears from these results that
the larger adatoms induce larger distortions in the substrate.

The third trend involves substitutional penetration of the adsorbate into the substrate. One
example is boron on Si(111): instead of becoming a T4 adatom, B interchanges its position
with the Si atom immediately below the T4 site (this substitutional site is called B5 site) [53].
Another example is Al on GaAs(110), in which Al substitutionally replaces Ga atoms, largely
retaining the relaxations of clean GaAs(110) [54].

Next we consider bond lengths between adsorbate and substrate atoms. The observed
bond lengths generally fall well within 0.1 Å of corresponding bond lengths measured in
bulk compounds and molecules. In a few cases the accuracy is sufficient to detect chemically
significant variations in bond lengths. As a dramatic example, when the surface coverage of
Cs atoms is varied from 1/3 to 2/3 per cell on Ag(111), the Ag-Cs bond length changes from
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3.20 to 3.50 Å [55]. In this case the charging state of the adsorbate changes with coverage (as
observed through work function changes), with a concomitant effect on bond lengths. This
also illustrates an expected effect of mutual interactions between adsorbates: the denser the
adsorbate layer, the weaker the individual adatom-substrate bonds.

11.5.3 Atomic multilayers

Atomic multilayer growth has been studied most frequently for metal deposition on metal
surfaces, and for semiconductor or metal deposition on semiconductors [56, 57, 58]. Also, the
growth of oxides and other compounds has been studied, but rarely in structural detail. Two
aspects are of particular interest: 1) the growth mode, whether layer-by-layer and/or epitaxial
or as three-dimensional crystallites; and 2) the interface structure between the substrate and
the growing film. For metals, the growth mode tends to attract the most attention, while the
interface structure is of particular interest for growth on semiconductors.

Metallic adsorption on metals

At low coverages, most of the metallic adsorbates form commensurate ordered overlayers: the
overlayer unit cells are closely related to the substrate unit cells. Furthermore, in many cases a
(1 × 1) LEED pattern is observed. This suggests that these adsorbed metal atoms attract each
other to form two-dimensional close-packed islands. On the other hand, a disordered LEED
pattern is observed when the adsorbed metal atoms repel each other. This is found for example
in the case of alkali metal adsorption on a transition metal, since the charged adatoms undergo
repulsive interactions.

Some metals undergo layer-by-layer growth, while others form three-dimensional crys-
tallites (“balls”). Many cases fall between these two extremes. Comparison of the surface
tension of the adsorbate metal and of the substrate metal gives a rough and not very reliable
guide to these phenomena.

The limit of layer-by-layer growth has been studied in structural detail, thanks to the fre-
quent formation of simple (1 × 1) overlayer unit cells. Striking is the growth of metastable
films with lattices that are not favored in the bulk. Fe grown on Ni(100) [59] and Cu(100)
[60] has received considerable attention: the Fe film can be made to grow with an fcc-like
lattice (which continues the fcc lattice of Cu), rather than with its bcc bulk lattice. On Ni,
the outermost Fe layer tends to relax into a wavy pattern of positions. The spacing between
overlayers varies both from layer to layer and, for a given layer, as the film thickness grows,
so that the Fe film does not adopt a perfectly cubic lattice; but the Fe is 12-fold coordinated,
as in the fcc lattice. Such effects are particularly interesting in view of the magnetic properties
of thin metallic films, which appear to depend strongly on the growth geometry.

Multilayer growth on semiconductors

Multilayer growth on semiconductor substrates is of great importance to the semiconductor
industry: it is highly relevant to the formation and electrical properties of semiconductor-metal
contacts, of semiconductor-semiconductor heterojunctions and of “superlattices” (here under-
stood to mean the stacking of thin films of alternating composition). Nevertheless, relatively
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little structural information on the Ångström level is available. On a more qualitative level,
many of the features described above for metal-metal interfaces are thought to apply here as
well [58].

One reason for the scarcity of structural information of such interfaces is the difficulty
in studying deeply buried interfaces. Even with interfaces buried only a few atomic layers
below a solid-vacuum surface, few experimental techniques are capable of sampling the buried
structure. The technique which has been most successful in this respect has been high-energy
ion scattering (HEIS), while LEED, SEXAFS and LEIS have also contributed by studying
shallow buried interfaces.

A few interfaces between Si and a metal silicide have been investigated in detail. Examples
are the Si(111)-NiSi2(111) interface [61] and the similar interface produced with Co instead
of Ni [62]. In both cases, the two materials match very closely in lattice constant parallel
to the interface, forming a (1 × 1) surface lattice. Despite the identical lattices of NiSi2 and
CoSi2, the bonding arrangement across the silicon-silicide interface is topologically slightly
different between the two cases.

11.5.4 Molecular adsorption

Well over 400 ordered LEED patterns have been reported for the adsorption of molecules
[27]. By far the most frequently studied substrates are metals. Platinum substrates have been
most extensively used, due no doubt to their importance in heterogeneous catalysis. The
most common adsorbates are CO (carbon monoxide), NO (nitric oxide), C2H2 (acetylene),
C2H4 (ethylene), C6H6 (benzene), C2H6 (ethane), HCO2 (acetate), HCOOH (formic acid),
and CH3OH (methanol).

Ordered LEED patterns for organic adsorption are frequent at lower temperatures. They
can often be interpreted in terms of close-packed layers of molecules, consistent with known
Van der Waals sizes and shapes. These ordered structures usually are commensurate with
the substrate lattice, indicating strong chemisorption in preferred sites. It appears that many
hydrocarbons lie flat on the surface, using unsaturated π-orbitals to bond to the surface. By
contrast, non-hydrocarbon molecules form patterns that indicate a variety of bonding orienta-
tions. Thus CO and NO are found to strongly prefer an upright orientation. However, upon
heating, unsaturated hydrocarbon adsorbates evolve hydrogen and new species may be formed
which bond through the missing hydrogen positions, often in upright positions. An example
is ethylidyne, CCH3, which can be formed from ethylene, C2H4, upon heating. Ethylidyne
has the ethane geometry (H3CCH3), but three hydrogens at one end are replaced by three
substrate atoms: the resulting assembly could be denoted M3CCH3, where M is a metal atom.

Molecular adsorption sites and ordering

When the adsorbate-substrate bond is strong and localized, the molecule presents clear pref-
erences for particular adsorption sites and it orders well. Thus, ethylidyne (CCH3) bonds
through one carbon atom to a three-fold coordinated hollow site on many fcc(111) surfaces,
and typically orders as a (2 × 2) overlayer [63, 64].

When the molecular species is large and bonds to many metal atoms simultaneously, as is
the case with benzene lying flat on a surface, there is less preference for particular sites, which



330 11 Overview of surface structures

then depend on the metal and can easily be affected by coadsorbed species (e.g. acceptors
like CO). For instance, benzene will shift its center from a bridge site to a hollow site when
coadsorbed with CO on Rh(111). Ordering is relatively weak under such conditions. Thus,
benzene does not order at room temperature on Pd and Pt(111) surfaces, and only weakly
on Rh(111). (But coadsorption with CO produces stable ordering through strong interactions
between the distinct molecules.)

In the case of weaker chemisorption, such as when CO or NO adsorb intact, there is
also relatively little site preference and ordering is less pronounced as well: such molecules
choose sites that depend on the metal and on the coverage, as well as on coadsorbates, while
low order-disorder transition temperatures are found.

CO and NO adsorption

Detailed structural studies of adsorbed carbon monoxide and nitric oxide have been performed
for about 20 surface structures, primarily on close-packed metal surfaces [3]. They have
largely confirmed the site assignments based on vibrational frequencies, as originally derived
for metal-carbonyl and similar complexes [65], with, however, some notable exceptions at
higher coverages. On many metals, CO prefers low-coordination sites at low coverages, e.g.
linear coordination at top sites for CO on Rh(111). However, the low-coverage site depends
strongly on the metal and the crystallographic face: it is a bridge site on Pd(100) and a 3-fold
hollow site on Pd(111).

At higher coverages the coordination generally increases, towards two-fold bridge sites
and three-fold hollow sites (but apparently never four-fold hollow sites). The metal-C bond
length has been found to increase strongly with coordination, and the C-O bond length in-
creases slightly at the same time [66]. This is again in agreement with the case of metal-
carbonyl complexes, and confirms the C-O bond weakening implied by the decreasing vibra-
tion frequency.

At high coverages, crowding occurs and part of the CO and NO molecules have to settle
for less favorable sites. For instance, at a coverage of 3/4 per cell on Rh(111), one third of
the adsorbed CO molecules occupy the favored top sites, while another third occupies 3-fold-
coordinated “fcc-hollow” sites, while the remainder bond above “hcp-hollow” sites [67] (the
fcc- and hcp-hollow sites differ in that the latter has a metal atom right below this site in the
second metal layer, while the former does not). NO in the same circumstances behaves in
exactly the same manner [68].

Coadsorption of CO or NO with other adsorbates affects the adsorption site markedly and
can lead to dissociation. It is apparent that CO and NO are unusually sensitive monitors of the
surface condition. They react strongly to changes in substrate identity, coverage, and coad-
sorbates. The changes are easily measured, especially through vibrational analysis (HREELS
and IRAS).

Benzene adsorption

Benzene adsorbs parallel to fcc(100), fcc(111) and hcp(0001) surfaces, and probably also on
other close-packed surfaces [3]. Benzene does not order easily on close-packed metal surfaces,
compared to CO, NO and especially atomic adsorbates. At room temperature, benzene does
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not order at all on Pt and Pd(111), while it weakly orders on Rh(111) (a short exposure to the
LEED electron beam is sufficient to destroy the ordered structure).

The adsorption site of benzene is variable, depending on metal, crystallographic face and
coadsorbates. It has so far only been determined on fcc(111) and hcp(0001) surfaces [3, 69].
On Pt(111), the molecule centers itself over a bridge site, whether benzene is mixed with CO
or not [70, 71]. On Rh(111), the same site is found for a pure benzene layer, but a 3-fold
hollow site emerges in the presence of coadsorbed CO [72]. On Pd(111), in the presence of
CO, the 3-fold site is also found [73], while the site is not known for the pure benzene layer.
Since the 3-fold hollow site does not exist on other crystal faces, this already implies a change
of site in some of these cases.

11.5.5 Adsorbate-induced relaxations

Chemisorption on a surface modifies the chemical environment of the surface atoms and there-
fore affects the structure. In particular, upon adsorption, any clean-surface relaxation is gen-
erally reduced as the surface atoms of the substrate move back towards the ideal bulk-like
position or even beyond. Relaxations of deeper interlayer spacings are also usually reduced
upon adsorption. In addition, it is becoming increasingly clear that small local distortions on
the scale of 0.1 Å are induced around each adsorption site in directions other than the surface
normal.

Good examples of the outward relaxation of interlayer spacings are provided by atomic
adsorption on the (110) surfaces of nickel and other fcc metals [74]. The clean (110) surfaces
typically exhibit contractions by about 10% (0.1 to 0.15 Å) in the topmost interlayer spacing
relative to the bulk value. Upon adsorption these contractions are reduced to less than 3 to 4%
(0.03 to 0.05 Å).

11.5.6 Adsorbate-induced reconstructions

Adatoms can induce a restructuring of a surface in a variety of ways [74, 75]. A mild form
of reconstruction occurs when substrate atoms are displaced by small amounts in different
directions, thereby changing the unit cell of the substrate (displacive reconstruction). An
opposite situation is the removal of a clean-surface reconstruction by an adatom. Also possible
is the change from one reconstruction to another. Adatoms can furthermore give rise to new
compound formation, or can change surface segregation in an existing compound. On a larger
scale, adatoms have also been found to cause macroscopic reshaping of surfaces.

The energy needed for surface restructuring is paid for by the increased bond energies
between the adsorbed atom and the substrate. Therefore, such surface restructuring is expected
only upon chemisorption where the adsorbate-substrate bond energies are similar to or larger
than the bond energies between the atoms in the substrate. This is clearly the case for the
adsorption of carbon, oxygen, and sulfur on many transition metals.

Displacive local reconstruction induced by adsorption

The adsorption of atoms may displace substrate atoms to provide better adsorbate-substrate
bonding, in such a way that a new unit cell results in the substrate [34]. This is a generalization
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of the adsorbate-induced relaxations discussed above. The local displacements are of the same
order of magnitude, at most a few tenths of Å.

The effect is well illustrated with the structure induced by carbon or nitrogen adsorbed on
Ni(100) [45, 46, 47], also seen with O on Rh(100) [76]. The adatom occupies a four-fold site,
which it expands by pushing the four neighboring metal atoms outward from the site, parallel
to the surface. This allows the adatom to penetrate deeper into the metal surface and to bond
not only to the four first-layer metal atoms but also to a metal atom in the next layer. The
surrounding metal lattice cannot accept a corresponding compression at a coverage of 0.5 per
cell and instead forces a rotation of the square of four metal atoms about the surface normal.
Thereby, the average metal density in the top layer is kept constant, while accommodating the
additional foreign stoms.

Removal of reconstruction by adsorption

The chemisorption of atoms frequently removes surface reconstruction and produces a more
bulk-like surface structure.

Examples of this effect are offered by the removal with hydrogen of the reconstruction
of clean Si(100), Si(111) and diamond C(111), and the removal with carbon, oxygen or CO
of the reconstructions of the (100) and (110) faces of Ir and Pt. Electron acceptors, like O
and S, are particularly effective at removing reconstructions. Sometimes small amounts of
adsorbate suffice to remove a reconstruction, but more frequently amounts comparable to a
monolayer are required. Hydrogen has to be adsorbed to a coverage of 2 per cell to remove
the W(100)-c(2 × 2) reconstruction [77].

Creation of reconstruction by adsorption

Adsorbates have frequently been found to induce new reconstructions on surfaces that were
not reconstructed in the clean state [74]. Often a small fraction of a monolayer suffices to
make the entire surface reconstruct.

Electron donors, like alkali metals, are particularly well known to induce reconstructions
on metal surfaces. For example, a small coverage (below 0.1 per cell) of disordered alkali
adatoms is sufficient to cause reconstruction of the Ni [78], Cu [79], Pd [80], and Ag(110)
[81] surfaces, which transform to the (1 × 2) missing-row structure. Cs adsorbed on the
(1 × 2) reconstruction of Au(110) causes a (1 × 3) structure, with only about 5% coverage
per cell [82]. This structure is also of the missing-row type, but with deeper troughs than
the clean (1 × 2) structure. A likely reason for this is that large alkali atoms bond more
strongly (thanks to more near neighbors) within the deep troughs of the missing rows than in
the shallow troughs of the ideal (110) surface [83, 84].

Another good example is given by Li or Na adsorbed on Cu(100) or Ni(100) [85]. This
forms a series of complex reconstructions that involve a mix of both substitutional adsorption
within the top substrate layer and overlayer adsorption above that layer.

More generally, electron-donating adsorbates tend to stabilize metal reconstructions. Sta-
bilization is exemplified by alkali adsorption on the hexagonal reconstruction of Ir(100) [86].
There the clean-surface reconstruction is maintained in the presence of alkali atoms.
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Change of reconstruction by adsorption

It stands to reason that surfaces which are already reconstructed when clean are particularly
prone to further reconstruction in the presence of adsorbates. This is especially apparent with
semiconductor surfaces.

Numerous examples exist where adatoms change the reconstruction of semiconductor sur-
faces. However, the number of resulting structures which have been solved is relatively small.
They concern mostly metal adatoms, such as Al, Ga, and Pb deposited on Si and Ge(111) [52,
49, 53]. The substrate lattice relaxes noticeably around the adsorption site, with displacements
up to about 0.3 Å. Larger adatoms induce larger displacements. The relaxation is noticeable
down to the second double layer, which is strongly buckled.

11.5.7 Compound formation and surface segregation

In compound formation from adsorption, a reconstruction occurs that resembles a bulk com-
pound. Continued addition of adsorbate atoms may enable the formation of a thicker film
with the three-dimensional lattice of a bulk compound. Such behavior is characteristic of ox-
idation, nitridation, carbide formation and alloying of metal surfaces. Questions of interest
include whether the compound is ordered and, if so, which is the crystallographic orientation
of the growing compound. Also the question of lattice matching is important: most growing
compounds have a lattice which is mismatched to the substrate [74].

The initial oxidation step of a metal typically involves oxygen atoms nestling between
metallic surface atoms. For example, on Ta(100) a submonolayer amount of oxygen takes
interstitial positions between the first and second metal layers [87]. An intermediate nitridation
step which has been observed consists of the penetration of one monolayer’s worth of N atoms
between the first and second metal layers of Ti(0001) [88]; the same happens for N adsorbed
on Zr(0001) [89].

S on Ni(111) has been observed to form a compound monolayer of composition Ni2S [90].
It is suggested to have a square lattice of Ni atoms, with every other hollow site occupied
by S atoms in a c(2 × 2) array. This monolayer would lie on the Ni(111) substrate with a
(5
√

3 × 2)rect coincidence superstructure [91].
Metal silicide compounds are commonly formed after adsorption of metal atoms onto

silicon surfaces. Thus, upon Ni deposition on Si(111), NiSi2 grows with its (111) surface
interfaced to the substrate [61]. Cobalt [62] and other transition metals behave similarly. For
example, Al forms a substitutional GaAsAl compound after deposition on GaAs(110) [54].

Adsorbates may induce large changes of surface composition in multicomponent systems.
i.e. surface segregation [74]. Such changes involve atomic diffusion perpendicular to the sur-
face, and thus bond breaking and rebonding. This occurs particularly when the chemisorption
bond energies between the alloy components are very different.

One example is the behavior of the Ag-Pd alloy [92]. The clean surface of a Ag-Pd alloy
is enriched in silver at any bulk composition because of the lower surface energy of Ag as
compared to Pd. Upon adsorption of CO, the surface composition changes rapidly. Because
of the greater strength of the Pd-CO bond as compared to the Ag-CO bond, the Pd atoms move
to the surface and the alloy surface becomes enriched in Pd. Upon heating CO desorbs and
the surface excess of Ag is reestablished.
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12 Angle resolved photoelectron spectroscopy: From tradi-
tional to two-dimensional photoelectron spectroscopy

Hiroshi Daimon, Fumihiko Matsui, and Kazuyuki Sakamoto

Angle resolved photoelectron spectroscopy (ARPES) has provided decisive evidences in solv-
ing various issues in surface- and solid- physics and chemistry. Its angular dependence di-
rectly shows energy band structures. Traditional ARPES uses electron energy analyzers hav-
ing small acceptance angles so that angular resolution is high enough. Two applications on
the Si-adsorbate systems are described here as examples for concise pictures of photoelec-
tron spectroscopy by a traditional method. One is on the order-disorder transition of metallic
overlayers, and another is on the oxidation process at the initial stage.

Recently many full solid-angle ARPES measurement have been done especially for Fermi
surface mapping and photoelectron diffraction studies. In these measurements much detailed
information is obtained. However, different quality of information can be obtained when the
full solid-angle ARPES is measured by using a display-type analyzer and polarized incident-
light. In this case the non-uniformity of photoelectron peak intensity has fruitful information
in the relation to the polarization. By probing photoelectrons from core levels using circularly
polarized light, three-dimensional atomic geometries are derived. On the other hand, the com-
prehensive information on the motion and the character of valence electrons can be visualized
by two-dimensional valence band photoelectron spectroscopy using linearly polarized light.
Some examples are described here.

12.1 Experiment – semiconductors

12.1.1 Photoemission from semiconductor surfaces

12.1.1.1 Introduction

Motivated by the extremely wide use of semiconductor devices in electronic industry, studies
of semiconductor surfaces have been an active field. For most common semiconductors, sp3

hybrid bond orbitals are formed from the linear combinations of s- and p orbitals within an
atomic picture. In bulk, the bonding and anti-bonding levels, which are produced by the over-
lapping of the sp3 hybrid orbitals between neighboring atoms, are broadened into the valence
and conduction bands, respectively. On the surface, the atoms of the topmost layer have no
pairing atoms on the vacuum side, and each surface atom has one or two dangling bonds,
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whose number depends on the index of the surface. These dangling bonds are undesirable,
and in general, structures of clean semiconductor surfaces reconstruct to minimize the surface
energy by decreasing the number of dangling bonds. For example, one of the most frequently
studied semiconductor surface, the Si(111) surface, shows a metastable (2×1) reconstructed
structure for a cleaved surface, and a stable (7×7) structure after annealing the (2×1) sur-
face to above 600 K. In the case of the Si(111)-(2×1) surface, the atoms of the topmost layer
rehybridize from sp3 into sp2 orbitals and form π-bonded chains that reduce the number of
dangling bonds [1]. Regarding the Si(111)-(7×7) surface, the number of dangling bonds is
reduced by a factor of 19/49 from the number of a Si(111)-(1×1) ideal surface by the recon-
struction into the dimer-adatom-stacking-fault (DAS) structure [2]. The electronic structures
of the Si(111)-(2×1) [3,4] and (7×7) [5–7] surfaces were measured using angle-resolved pho-
toelectron spectroscopy (ARPES) studies, and their electronic structures were reported to be
semiconducting and metallic, respectively.

In connection with development of nano-electronic devices, technological and fundamen-
tal scientific interests in both metal/semiconductor interfaces and oxidation process of semi-
conductors increase. Adsorption of metal atoms modifies the electronic structures of clean
semiconductor surfaces, and in many cases, changes their geometric structures. To obtain
accurate information about these modified electronic and geometric structures, one needs to
compare experimental and theoretical results. It is possible to perform such comparison by
studying well-ordered systems. Regarding on the oxidation process of semiconductors, a great
deal of effort has been devoted to the atomic level understanding of the oxidation of Si. One of
the most important issues in the initial oxidation stage, is the presence of metastable oxygen
adsorbed on the Si(111)-(7×7) surface. In this section, we first review recent results obtained
by ARPES that show the surface electronic structures of ordered low-dimensional (one- and
two-dimensional) overlayers on semiconductor surfaces (for former review see for example
Ref. [8]), and ARPES and high-resolution core-level spectroscopy studies performed to deter-
mine the origin of phase transitions of low-dimensional structures formed on semiconductor
surfaces. Then, we review recent photoemission studies on the initial stage of oxidation pro-
cess of the Si(111)-(7×7) surface, which is not only important to understand the oxidation
process but is also an example of studies of non-ordered systems.

12.1.1.2 Ordered overlayers on semiconductor surfaces

Due to its simple electronic structure, the adsorption of alkali metal (AM), which has only
a single s electron interacting with the surface, is one of the prototype systems to study
metal/semiconductor interfaces. Among the reconstructions of AM/Si(111) surfaces, the
(3×1) structure, which is formed with a coverage of 1/3 ML, is the ordered structure observed
for all AM’s [9]. Figures 12.1(a) and (b) show the ARPES spectra of the Na/Si(111)-(3×1)
surface measured along the [112̄] and [101̄] directions, respectively [10]. Surface states that
have quite similar binding energies and show almost the same dispersions were also observed
for the Li [11] and K [12] adsorbed Si(111)-(3×1) surfaces. The origins of surface states of
AM/Si(111)-(3×1) surfaces are, however, not so easy to understand though a simple electronic
structure is expected. That is, the electronic structure of AM/Si(111)-(3×1) surface cannot be
explained by the adsorption of AM on a simple substrate structure, e.g., the saturation of ev-
ery third dangling bond of a (1×1) ideal surface, and thus suggests that the Si substrate has a
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(c)
(d)

(e)

Figure 12.1: ARPES spectra of the Na/Si(111)-(3×1) surface measured along the (a) [112̄] and (b) [101̄]
directions from Ref. [10]. The HCC model proposed for the metal adsorbed Si(111)-(3×1) surface is
shown in (c) (from Ref. [17]). (d) Calculated surface band structure (solid and dashed lines) with the
surface Brillouin zone of the Na/Si(111)-(3×1) surface from Ref. [19]. The filled circles in (d) represent
the experimental data of Ref. [10]. (e) Charge character of the representative surface states at the Ā point
(from Ref. [19]).

complicated geometric structure. The atomic geometry of the metal adsorbed Si(111)-(3×1)
surface has been studied using a vast number of experimental and theoretical methods, and
several structural models have been proposed [11–16]. Among them, the model shown in
Fig. 12.1(c), which is energetically more stable than the former ones, was reported indepen-
dently by several groups [17–19]. This model, called the honeycomb-chain-channel (HCC)
model, consists of four inequivalent Si surface atoms (labeled a-d in Fig. 12.1(c)) that form a
honeycomb-chain along the [1̄10] direction, and AM atoms that sit in the channel formed by
neighboring honeycomb chains. Further, the Si atoms labeled b and c rehybridize from sp3

into sp2 and pz , and form π bonds in this model. Based on the HCC model, the electronic
structure of the Na/Si(111)-(3×1) surface was calculated by density-functional theory [19].
As shown in Fig. 12.1(d), the calculated band structure (solid and dashed lines) agrees well
with the experimental results shown in Figs. 12.1(a) and (b) (filled circles in (d)). The good
agreement between the experimental and calculated results supports the HCC model for the
AM/Si(111)-(3×1) surfaces, and gives the following pictures for the origins of the surface sta-
tes. The surface states labeled S1 and S2 in Fig. 12.1(a) (S3 and S2 in Fig. 12.1(d)) originate
from the bonding states between the AM and the Si atom labeled a and that between the AM
and the Si atom labeled d, respectively, and the S3 (S1 in Fig. 12.1(d)) state results from the
π bonding state (Fig. 12.1(e)).

The Si(111)-(3×1) surface is formed by not only AM but also by alkaline-earth metals,
rare-earth metals (Sm and Yb), and Ag. Although some of the adsorbates actually show dif-



12.1 Experiment – semiconductors 341

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

5 4 3 2 1 0 -1

Binding energy (eV)

EF 

θ e   

[110]

0

20

40

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

5 4 3 2 1 0 -1

Binding energy (eV)

EF 

θ e   

0

20

40

[112]

(a) 

(b)

(c)

Figure 12.2: (a) LEED pattern of the three domain Ag/Si(111)-(6×1) surface at 300 K, at 100 K, and
the schematic LEED pattern of a three domain Si(111)-c(12×2) surface. (b) Valence band photoelectron
spectra of three-domain Ag/Si(111)-(6×1) and c(12×2) surfaces measured at emission angles of 0◦, 20◦,
and 40◦ along the [11̄0] and the [112̄] directions. Solid and dashed lines correspond to the Ag/Si(111)-
(6×1) and the Ag/Si(111)-c(12×2) surfaces, respectively. (c) Decomposition of the Si 2p core-level
spectra of the Ag/Si(111)-(6×1) surface measured at 300 K with a photon energy (hν) of 130 eV and an
emission angle (θe) of 0◦, and the Ag/Si(111)-c(12×2) surface measured at 100 K were recorded with
hν =130 eV at θe = 0◦ and 60◦. From Ref. [28].

ferent diffraction patterns, e.g., Ag shows a (6×1) pattern [20, 21], all reconstructed surfaces
are widely believed to have a quite similar structure based on the similarity of the low-energy
electron diffraction (LEED) I-V curves [22, 23], scanning-tunneling-microscopy (STM) im-
ages [15, 24–26], and surface core-level shift (SCLS) measurements [11, 26, 27]. In the case
of the Ag/Si(111)-(6×1) surface, the structure originates from a slight displacement of the
surface atoms of the (3×1) structure [17, 21]. Further, the Ag/Si(111)-(6×1) surface trans-
forms into a c(12×2) structure by cooling to 100 K [28]. Figure 12.2(a) shows the LEED
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pattern of the three domain Ag/Si(111)-(6×1) surface at 300 K, the LEED pattern obtained
after cooling the Ag/Si(111)-(6×1) surface to 100 K, and the schematic LEED pattern of a
three domain Si(111)-c(12×2) surface. The valence band spectra of the Ag/Si(111)-(6×1)
and c(12×2) surfaces are shown in Fig. 12.2(b). From Fig. 12.2(b), one notices that the
spectra of the Ag/Si(111)-(6×1) and c(12×2) surfaces are very similar along both the [11̄0]
and [112̄] directions. The analyzed Si 2p core-level spectra of the Ag/Si(111)-(6×1) and
c(12×2) surfaces, which give quantitative information for the structures, show that both the
Ag/Si(111)-(6×1) and c(12×2) surfaces have three surface components that agree well in the
energy shifts (Fig. 12.2(c)). Such results for the valence band and the Si 2p core-level spectra
from different surface structures, were also observed on the clean Si(001) surface [29]. That
is, the room temperature Si(001)-(2×1) and low temperature c(4×2) phases show very similar
valence band spectra, and almost the same Si 2p spectra that have surface components with
the same energy shifts. In this case, the similarity of the Si 2p core-level spectra indicates that
the local surface structure is the same for the two phases, and that the room temperature (2×1)
phase results from the dynamical flipping of the asymmetric dimers [30] at a high frequency.
Since the translational vectors of the c(12×2) unit cell are twice as long compared to the (6×1)
reconstructed structure, there should be an alternate displacement of Ag atoms and/or the site
of the top-layer Si atoms along both translational vectors. The observation of only the (6×1)
pattern at a higher temperature indicates a disorder in the atomic displacements due to ther-
mal vibrations in similarity with the clean Si(001) surface. These results reveal that the basic
unit cell of the so-called Ag/Si(111)-(6×1) surface has a c(12×2) periodicity, and the (6×1)
phase results from the thermally induced disorder of the atomic displacements of the c(12×2)
structure. Further, the origins of the Si 2p surface components are well explained using the
HCC model, and thus these photoemission results reveal that the structure of the Ag/Si(111)-
c(12×2) surface is basically the same as that of the HCC model but with a slight displacement
of Ag and/or top-layer Si atoms to introduce the necessary atomic displacements.

Besides the (6×1) structure, the Ag adsorbed Si(111) surface shows different phases at
different coverages and temperatures. At a coverage of 1 ML, a (

√
3 ×

√
3) phase is formed

after annealing the sample to above 600 K. Below room temperature, (
√

21×
√

21) and (6×6)
phases are formed by adding extra Ag on the (

√
3×

√
3) surface [31,32]. One of the interests

about these three phases is the change in the surface conductance, especially the high surface
conductance value of the (

√
21 ×

√
21) phase [32]. The high surface conductance of the

Ag/Si(111)-(
√

21 ×
√

21) surface and the low conductance of the (6×6) surface results from
their metallic and semiconducting electronic structures observed using ARPES [33]. Regard-
ing the Ag/Si(111)-(

√
3 ×

√
3) surface, a partially occupied dispersing surface state band,

which is labeled S1 in Fig. 12.3(A) and labeled S in (B), is observed in a number of ARPES
studies [34, 35]. Since the number of electron is even in the (

√
3 ×

√
3) unit cell, and thus

Ag/Si(111)-(
√

3 ×
√

3) surface should have a semiconducting electronic structure according
to the electron counting, a question arises on the metallic band observed in ARPES. That is,
is the partially occupied surface state observed in ARPES intrinsic or extrinsic? In order to
answer this question, a theoretical calculation [36] was performed on the two models proposed
for the Ag/Si(111)-(

√
3 ×

√
3) surface, i.e., the honeycomb-chained-triangle (HCT) [37, 38]

and the inequivalent triangle (IET) [36] models (Figs. 12.3(C)). As shown in Fig. 12.3(D),
one band crosses the bulk valence-band barely in the HCT model, while the crossing is clearer
in the IET model in the calculated band structures. Taking into account that the IET model is
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Figure 12.3: (A) ARPES spectra of the Ag/Si(111)-(
√

3×√
3) surface surface recorded with a photon

energy of 21.2 eV in the [011̄] direction from Ref. [34]. The emission angles correspond to emission
around the Γ̄ point of the second (

√
3 ×√

3) surface Brillouin zone. (B) ARPES spectra recorded with
hν =40 eV for the Ag/Si(111)-(

√
3 ×√

3) surface prepared by annealing the 1.2 ML adsorbed sample
at 813 K in (a) and at approximately 873 K in (b) (from Ref. [39]) (C) (a) Honeycomb-chained-triangle
(HCT) and (b)inequivalent triangle (IET) models proposed for the Ag/Si(111)-(

√
3 ×√

3) surface from
Ref. [36] (D) Calculated band structures of the HCT and IET models are shown in (a) and (b), respec-
tively (from Ref. [36]).

energetically more stable than the HCT model, this theoretical study suggested the IET model
to be the structure of the Ag/Si(111)-(

√
3 ×

√
3) surface and the observed metallic band to

be intrinsic. Another feature of the IET model is the split of the two bands labeled S2 and
S3 at the K̄ point, which are degenerate in the HCT model. However, in the ARPES mea-
surement [33], no splitting was observed at the K̄ point. This means that the IET model is
not supported experimentally, and that the metallic band observed in Figs. 12.3(A) and (B)
would be an extrinsic feature. Since the extra Ag atoms on the Ag/Si(111)-(

√
3 ×

√
3) sur-

face at low temperature do not only play a role for the formation of the superstructures but
also affect the electronic structure by donation of their outermost s electron to an unoccupied
surface band [33], it is natural to consider that the presence of extra Ag at room temperature
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can also affect the electronic structure of the (
√

3 ×
√

3) surface that is intrinsically unoccu-
pied. Figure 12.3(B) shows the ARPES spectra of the Ag/Si(111)-(

√
3 ×

√
3) surface formed

by annealing a 1.2 ML Ag adsorbed Si(111) surface at 813 K in (a), and by annealing at ap-
proximately 873 K in (b) [39]. Although both samples annealed at 813 K and 873 K showed
excellent

√
3 ×

√
3 LEED patterns, the spectra displayed in Figs. 12.3(B)(a) and (b) are quite

different. A metallic surface band is observed in Fig. 12.3(B)(a), whereas no state crosses the
Fermi level in Fig. 12.3(B)(b). Taking into account that Ag atoms desorb from the surface
at a temperature around 873 K, the difference observed in the ARPES spectra results from
the different amount of extra Ag on the surface. That is, a certain amount of extra (< 0.2
ML) Ag exists on the surface even after annealing at 813 K, whereas there is no extra Ag
after annealing at 873 K. This ARPES result indicates that the Ag/Si(111)-(

√
3×

√
3) surface

is intrinsically semiconducting, and the presence of extra Ag produces a metallic band by a
donation of electron to an intrinsically unoccupied surface band. Further, this result gives the
following suggestions. LEED observations is not enough to characterize the surface, and a
careful attention is necessary for the sample preparation to obtain intrinsic surface electronic
structures.

(a)

(b)

Figure 12.4: (a) Sn 4d core-level spectra from the Sn/Ge(111)-(
√

3 × √
3) and (3×3) surfaces from

Ref. [49]. (b) Surface state dispersion of the Sn/Ge(111)-(
√

3×√
3) and (3×3) surfaces along the major

symmetry lines of the surface Brillouin zones. Symmetry points of the (
√

3 × √
3) and (3×3) surface

Brillouin zones are indicated below and above the panels, respectively. Inset shows the (
√

3×√
3) (thick

lines) and (3×3) (thin lines) surface Brillouin zones (from Ref. [47]).

Compared to the complicated geometric structure of the Ag/Si(111)-(
√

3 ×
√

3) surface,
the (

√
3 ×

√
3) surfaces induced by group III atoms (Al, Ga and In) on Si(111) or Ge(111)

surfaces are quite simple. That is, these (
√

3 ×
√

3) surfaces are formed by the adsorption
of 1/3 ML of adatoms on the T4 sites of the (1×1) ideal surface [40]. The Ge(111)-(

√
3 ×√

3) surfaces induced by Sn or Pb, whose structures have also been considered to be the T4
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model, were reported to show an interesting transition into a (3×3) periodicity below room
temperature using STM [41,42]. This change in periodicity has been described to be a charge
density wave (CDW) transition driven by either electron-phonon coupling [41] or electron-
electron correlation [42,43]. Taking into account that all Sn atoms are adsorbed on equivalent
sites in the T4 model and that two different types of Sn are observed in STM for the (3×3)
phase, one expects to observe only one type of Sn atoms for the (

√
3 ×

√
3) phase and two

for the (3×3) phase in the core-level study within the CDW transition picture. However,
most of the Sn core-level studies [44–49] show the presence of two types of Sn atoms for
the (

√
3 ×

√
3) phase, and almost the same Sn core-level lineshape as that of the (

√
3 ×

√
3)

phase is observed for the (3×3) phase [46–49]. That is, as shown in Fig. 12.4(a), the two
major components (C1 and C2), which originate from Sn atoms that form the superstructures,
are observed in both phases (the C3 component results from the Ge substitutional defects). In
the valence band spectra, two surface bands are observed on both the (

√
3 ×

√
3) and (3×3)

phases (Fig. 12.4(b)) [47]. Further, the two surface bands observed on the (3×3) phase show
the same dispersion as those on the (

√
3×

√
3) surface. The similarities observed in the core-

level studies and the valence-band study for the (
√

3 ×
√

3) and (3×3) phases indicate that
the atomic structure of the two phases should be very similar, and that there should be two
types of Sn on both surfaces. The presence of two types of Sn reveals that the structure of the
(
√

3 ×
√

3) phase cannot be the simple T4 model. These photoemission results imply that the
origin of the (

√
3 ×

√
3) ↔ (3×3) change is not a general CDW transition, and for example

might be similar with that of the Ag/Si(111)-(6×1) ↔ c(12×2) surface and the Si(001)-(2×1)
↔ c(4×2) surface.

12.1.1.3 Initial stage of oxidation of the Si(111)-(7×7) surface

Adsorption and reaction of oxygen are important subjects of physical and chemical interest
for the understanding of the oxidation processes of materials. Regarding Si, the metastable
oxygen adsorbed on the Si(111)-(7×7) surface, whose lifetime was reported to be from ap-
proximately 10 min [50–53] to several hours [54–59], is one of the most important issues to
understand the initial chemisorption stage. Especially, the determination of its bonding con-
figuration is quite important to understand the oxidation process of Si on an atomic level. In
the early studies, the metastable species was reported to be a molecular species, the so-called
molecular precursor, that is adsorbed on top of an adatom of a clean Si(111)-(7×7) DAS [2]
structure (the “paul” configuration shown in Fig. 12.5(A)). However, in studies based on den-
sity functional theory (DFT) calculations [60, 61], it was stated that the metastable oxygen
has an atomic oxygen configuration (the “ad-ins” configuration in Fig. 12.5(A)). These DFT
calculations [60, 61] reinterpreted the earlier valence band photoemission [52, 54, 55, 62] and
O 1s core-level [52,58] results, in which the metastable oxygen was reported to be a molecular
species. Nevertheless, as shown in Fig. 12.5 (B), the complex valence band electronic struc-
ture of the Si(111)-(7×7) surface, which is observed by the experimental condition used in
the early studies, hinders the accurate information about the electronic structures of the oxy-
gen adsorbed species. For example, only one state that originates from the metastable state
is observed at a binding energy of 3.8 eV in Fig. 12.5(B). This means that even if the DFT
calculations reinterpreted the earlier spectroscopic studies, the bonding configuration of the
metastable oxygen is still unfixed at that point of time.
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Figure 12.5: (A) Schematic illustrations of the bonding configurations for the metastable oxygen on a
Si(111)-(7×7) surface. (B) Valence band spectra of a clean (left) and 0.15 L adsorbed (right) Si(111)-
(7×7) surface obtained with hν =40.8 eV (from ref. [62]). (C) Valence band spectra of a 0.5 L O2

exposed Si(111)-(7×7) surface measured with hν =21.2 eV (from Ref. [63]). (a) are recorded with
geometry of (θi = 45◦, θe = 15◦), (b) (θi = 45◦, θe = 20◦), and (c) (θi = 0◦, θe = 60◦). (D) High-
resolution O 1s core-level spectra recorded 15 min and 205 min after 20 L O2 exposure on Si(111)-(7×7)
surface (from Ref. [64].

Using a certain experimental condition, it is possible to minimize the intensity of the
electronic structure of the Si(111)-(7×7) surface, and thus to enhance the electronic structure
of the adsorbed oxygen species [63]. Figure 12.5(C) shows the valence band spectra of the
clean (open circles) and 0.5 Langmuir (1 L=1×10−6 Torr × 1 sec) oxygen exposed Si(111)-
(7×7) surfaces (filled circles) obtained at different experimental geometries. The spectra in
(a) are recorded with a geometry of (θi = 45◦, θe = 15◦), (b) (θi = 45◦, θe = 20◦), and (c)
(θi = 0◦, θe = 60◦), where θi is the incident photon angle and θe is the electron emission
angle. As shown in Fig. 12.5(C), the spectra of the clean surface obtained by θi = 45◦ (the
spectra in (a) and (b)) show complex electronic structures, whereas the spectrum of the clean
surface obtained using a condition of (θi = 0◦, θe = 60◦) is structureless. According to the
low intensity from the Si surface, five oxygen induced states, which are hardly recognized in
Figs. 12.5(C)(a) and (b), are clearly observed in (c). Among the five oxygen induced states,
the three at binding energies of 2.1, 3.8 and 5.1 eV disappear after annealing the sample at
600 K, and show the same oxygen dosage dependent-intensity. The disappearance at 600 K
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indicates that they result from the metastable oxygen, and the same dosage dependent-intensity
denotes that they originate from one and the same bonding configuration. Further, the dosage-
dependent intensities of the three metastable states follow the dosage-dependent decrease in
intensity of the back-bond states of adatoms of the DAS structure [2], and the dangling bond
states of adatoms reappear after the 600 K annealing. These results denote that the adsorption
of metastable species affects both the dangling bond and the back-bond of adatoms.

In the early O 1s core-level studies [52, 58], only two metastable components were ob-
served at most. These early results suggest that the metastable oxygen consists of two oxygen
atoms with different chemical environments. However, one has to notice that the poor res-
olution used in the early studies might hinder the determination of the accurate number of
atoms, which constitute the metastable species. In fact, the high-resolution O 1s core-level
study [64] reveals the presence of three metastable components. Figure 12.5(D) shows the
high-resolution O 1s core-level spectra recorded (a) 15 min and (b) 205 min after exposing
the Si(111)-(7×7) surface to 20 L of O2. Among the structures observed in Fig. 12.5(D),
the intensities of the 527.3-, 530.4-, and 534.9-eV peaks decrease with time, suggesting their
origins to be the metastable oxygen. Moreover, their intensities show the same dosage de-
pendence indicating that the three metastable components at 527.3, 530.4 and 534.9 eV result
from one and the same bonding configuration, and therefore that three oxygen atoms with
different chemical environments compose the metastable oxygen. Taking the symmetry of
the bonding configurations into account, one realizes that it is impossible to reproduce three
oxygen atoms with different chemical environments by the adsorption of atomic oxygen to
the dangling bond and the back-bonds of one adatom, and therefore that the configuration of
the metastable oxygen should be a molecular one. The valence band [63] and high-resolution
0 1s core-level [64] studies indicate that the metastable species does not adsorb on the clean
surface, i.e., it is not a precursor, but has the “ins-paul” configuration shown in Fig. 12.5(A).
Such result is hard to obtain by for example STM, and shows how powerful photoelectron
spectroscopy is to determine the atomic geometric structure of a non-ordered surface.

12.2 Two-dimensional photoelectron spectroscopy

12.2.1 Two-dimensional photoelectron diffraction stereograph

Two-dimensional angular distribution (2DAD) of photoelectrons has full information in pho-
toelectron spectroscopy, and recently applied to Fermi surface mapping or photoelectron
diffraction, and holography. 2DAD can be obtained either by rotating sample, rotating ana-
lyzer, or by using display analyzer. The relation between the orientation of the sample and the
direction of the electric vector of photon changes in the rotating-sample method. The informa-
tion obtained in the rotating-analyzer method and in the display analyzer method is basically
identical. Display-type spherical-mirror analyzer [65–67] can display 2DAD of photoelec-
trons of a specific kinetic energy at a time in a very wide acceptance angles without distortion.
This advantage allows this analyzer to be used in a variety of applications. Recently it was
modified so as to achieve higher energy resolution and even wider acceptance angles [68].

Here described are recent discovery and invention related to this analyzer, that is, “circular
dichroism in photoelectron diffraction” [69], and “stereo microscopy of atomic arrangement”
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[70]. The forward focusing peaks in a 2DAD pattern taken with left and right helicity light
were found to shift azimuthally [69]. These shifts are the same as the parallaxes in a stereo
view of atoms, and stereo photographs of atomic arrangement can be displayed directly on
its screen without any computer-aided conversion process [70]. Stereoscopic recognition of
three-dimensional atomic arrangement has become possible for the first time.

12.2.1.1 Display-type spherical mirror analyzer

A display-type spherical mirror analyzer (DIANA) (Fig. 12.6) was invented in 1988 [65] and
gradually improved [66,67]. Comparing with Eastman-type display analyzer [71,72], this an-
alyzer has two advantages. One is that the angles of emission and detection of photoelectrons
are exactly parallel; hence the pattern displayed on its screen is not distorted. The other is that
the acceptance angle can be made infinitely wide, because the convergence to the exit aperture
is exact irrespective of the angle and has no higher order terms. Hence one can measure the
angular distribution of particles of one particular kinetic energy up to about 2π steradian at a
time.

Figure 12.6: Display-type spherical mirror analyzer(DIANA)

The original analyzer has been applied to many surface studies, such as electron diffraction
[73], two-dimensional photoelectron diffraction [74,75], photoelectron holography [76], elec-
tron stimulated desorption ion angular distribution (ESDIAD) [77–82], circularly polarized
light photoelectron diffraction [69, 83–85], two-dimensional valence band analysis [86–95]
etc. In the development of the analyzer, the energy analysis method has been changed from
“focus-defocus” [65] to “high-pass and low-pass filter” [66, 67]. The energy resolution of the
conventional DIANA has been about 1% of the pass energy.

Figure 12.6 shows a schematic view of the new display-type spherical mirror analyzer [68].
It consists of a hemispherical grid G, obstacle rings Ob and guard rings Gd. The number of
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obstacle rings and guard rings are 260 and 20, respectively. The Ob’s are axially symmet-
ric with respect to the axis connecting the sample and the center O of the hemisphere, and
their inner surfaces are a part of concentric spheres. G is usually grounded. The poten-
tial V (r) of Ob’s and guard rings are biased according to their radii r from O by a formula
V (r) = −2E0(1 − a/r), where E0 is the pass energy and a is the radius of the main grid G.
The electrostatic field in the space surrounded by the electrodes G, Ob and Gd is thus made
spherically symmetric with respect to the center O. The orbits of the emitted electrons from
the sample are subjected to this field after passing through G, and their loci are ellipsoids
obeying Kepler’s law. Their trajectories inside G are straight lines.

The electrons converge exactly to the exit aperture A, which is located at the symmetric
position of S with respect to O. Their incident angles are exactly parallel to their emission
angles. Ob’s play essential roles in energy analysis by cutting unnecessary electrons that
have higher kinetic energies than the pass energy E0 [2,3]. An electron having a little higher
energy flies along a little outside locus and hit into the electrodes and absorbed or scattered,
and hardly passes through the small aperture A. Thus the Ob’s work as a “low-pass filter”.
On the other hand, retarding grid R works as a “high-pass filter” which retards the electrons
having lower kinetic energies than the applied potential.

The electrons having passed through the retarding grid are amplified by a pair of mi-
crochannel plates (MCP) M and converted by a phosphor screen P to light pulses, which are
detected from outside the vacuum chamber by a cooled CCD camera. The 2DAD on the
screen is the same as the original angular distribution in front of the sample. An electron gun
E is mounted for the purpose of LEED measurement. Synchrotron radiation SR is introduced
through a hole. The acceptance cone covered by the MCP is ±60◦. This acceptance angle can
be increased up to ±80◦ by using the lens L. The diameter of the main grid was two-times
enlarged from 150 mm of the old analyzer to 300 mm. The shaping accuracy of Ob was in-
tended to be within 50 µm. The energy resolution (∆E/E0) of the present analyzer has been
estimated to be 0.25% of the pass energy, which is four times higher than before. Angular
resolution was estimated to be 0.6◦.

12.2.1.2 Structure analysis by two-dimensional photoelectron diffraction, holography

The analysis of local atomic arrangements of surface and nano-materials is essential in un-
derstanding their microscopic phenomena. The development of the STM (scanning tunneling
microscope) has made it possible to obtain atomic images easily, but it cannot indicate the re-
lation between the top atom and the second layer atoms. An electron microscope can produce
atomic images, but they are only two-dimensionally projected image. Usually, LEED (low-
energy electron diffraction) or X-ray diffraction analysis is used to analyze detailed atomic
positions on a surface, but they are complicated and indirect methods.

Recently, many direct methods for three-dimensional analysis using the technique of elec-
tron diffraction and holography have been developed, such as photoelectron holography [76,
96, 97], Kikuchi-electron holography [98–100] or correlated thermal diffuse scattering [101].
Holography analysis produces the three-dimensional atomic arrangement around the emitter
atom by a Fourier transformation of the 2DAD pattern. Photoelectron holography is more
powerful than Kikuchi-electron holography because it can specify an emitter by selecting the
kinetic energy of photoelectrons. These holographic analyses are rather direct method be-
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cause they do not need a trial model of atomic arrangement. Although its accuracy is not high
(about 0.2 Å), it is useful for a distinction of various models or for making a first trial model
for LEED analysis.

Figure 12.7 shows a various features in 2DAD pattern. The atom O produces a photoelec-
tron wave Ψ0 when it was excited by an X-ray. Ψ0 produces a scattered wave ΨS when it hits
a scatterer atom, for example A. The 2DAD pattern is described by a square of the sum of Ψ0

and all ΨS’s from nearby atoms. When the emitter atom is in the surface region, the char-
acteristic features are “Forward focusing peaks” and “Interference rings”. When the emitter
atom is in the bulk they produce “Kikuchi bands” and “Kossel lines”.

Figure 12.7: Various features in two-dimensional angular distribution (2DAD) pattern.

12.2.1.3 Surface photoelectron diffraction

Forward focusing peaks When the kinetic energy of a photoelectron is higher than several
hundred eV, a strong forward focusing peak appears along the direction connecting the emitter
and the scatterer. Figure 12.8 is an example of forward focusing peaks. It is a 2DAD pattern of
the W 4f photoelectrons, from only the first-layer W atoms on W(110)1×12-O surface [102].
The photoelectrons from the first layer W atoms are easily distinguished from those of bulk
W atoms utilizing a large chemical shift (0.73 eV). The 2DAD pattern of bulk photoelectrons
will be shown later. Figure 12.8 is plotted by stereographic projection method. The center of
the pattern corresponds to the surface normal direction and the edge corresponds to the polar
angle of 90◦. The excitation light is Al Kα.

We can see six strong forward focusing peaks. There are two domains on this surface,
where O atoms are sitting at the middle of upward and downward triangles, as shown in
Fig. 12.9. The directions of the peaks A, B, C, A′, B′, and C′ correspond to the direction of
oxygen atoms seen from the first-layer W atoms.

The measurement of the directions of forward focusing peaks is sufficient for three-di-
mensional analysis when the structure is simple. In this case the position of adsorbed oxygen
was determined directly from the directions of these peaks [102]. Usually, however, the pre-
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Figure 12.8: 2DAD of surface W4f
XPD from W(110)1 × 12-O.

Figure 12.9: Structure of W(110)1× 12-O sur-
face.

cise structure can be obtained by comparing the observed pattern with the pattern calculated
including multiple-scattering.

Interference Rings The interference rings are hardly seen in Fig. 12.8, because the forward
focusing peaks are much stronger than them. Figure 12.10(a) shows an example of such
rings. This pattern is the angular distribution of O 1s photoelectrons from adsorbed oxygen
on W(110)1 × 12-O surface. We can see first, second, and even third order rings around the
axes 〈111〉, 〈001〉, and 〈110〉. Because the O atoms are sitting at the top of the surface, the
forward focusing peaks must appear along the surface, which are out of the measurement area.
Hence, we can see only diffraction rings. The fact that we can see these rings, whose center
is at the polar angle of 90◦, means that O atoms are sitting at the top of the surface. The order
of the size of the ring is 〈111〉, 〈001〉, and 〈110〉, which means that the nearest atoms are in
〈111〉 directions, and the second and the third nearest atoms are in 〈001〉 and 〈110〉 directions,
as shown in Fig. 12.9.

Figure 12.10: 2DAD of O1s photoelectrons from W(110)1 × 12-O surface.



352 12 Angle resolved photoelectron spectroscopy

Figure 12.11: Geometry of the
interference ring.

Figure 12.11 shows a diagram to show how these rings appear. Neglecting the phase of
the scattering factor of atom A, the phase difference between Ψ0 and ΨS is kR − kR cos θ.
Hence the rings appear at θ satisfying

kR(1 − cos θ) = 2πn (12.1)

where n is an integer. In Fig. 12.10(b) the data of Fig. 12.10(a) is plotted so that the distance
from the center is in proportion to cos θ, which is also proportional to the lateral momentum
of the photoelectron. We can see that the rings in Fig. 12.10(a) became parallel lines in
Fig. 12.10(b). This fact implies that Eq. (12.1) holds. The interatomic distance R can be
calculated easily from the spacing δ(k cos θ) as R = 2π/δ(k cos θ).

12.2.1.4 Bulk photoelectron diffraction

Figure 12.12 shows an example of bulk photoelectron diffraction pattern. We can see strong
peaks in [100] and [111] directions, which are forward focusing peaks along these crystallo-
graphic axes. The broad lines connecting these axes are called Kikuchi bands. The band edge
is dark here, but it will be bright if the mean-free-path of photoelectrons become longer at
higher kinetic energies. When these edges are strong, they are called Kossel lines. Original
spherical photoelectron waves are considered as plane waves in a distance. The Bragg reflec-
tions of these plane waves produce the Kossel lines and Kikuchi bands as shown in Fig. 12.7.
We can know the crystal orientation easily from Kikuchi pattern. The width of the band gives
interlayer spacing.

12.2.1.5 Photoelectron holography

As described in another section in this book, it has been recognized that the holographic
method (Fourier transformation) to obtain the real structure is not so straightforward. The
difficulty in the photoelectron holography comes mainly from the strong forward focusing
peaks in the 2DAD pattern, which always appear when the emitter atom is below the scatterer
atoms. Many efforts have been made to eliminate the disturbance from these forward focusing
peaks by means of SWIFT [98], SWEEP [103], energy extension [104], or differentiation
[105].

Because the pattern of Fig. 12.10 consists of only interference pattern, it seems a good
pattern for the holographic analysis, The Fourier reconstructed structure image of Fig. 12.10
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Figure 12.12: 2DAD of bulk W4f
XPD from W(110)1 × 12-O.

Figure 12.13: O1s holography from XPD of
W(110)1 × 12-O.

is shown in Fig. 12.13 [106]. We can see strong peaks near the expected positions indicated
by circles. The accuracy, however, is about 20% in this case.

12.2.1.6 Circularly polarized-light photoelectron diffraction

In general, a forward focusing peak has information about the direction from the emitter to
the scatterer but does not have the information about the distance between them. Recently, it
was found that the forward-focusing peak-positions in a 2DAD pattern excited by a circularly
polarized light rotate in the same direction as the rotation of the electric vector of the light
[69, 107]. This is a strong circular dichroism in photoelectron diffraction (CDPD) for non-
chiral and non-magnetic materials

Figure 12.14(a) and (b) are examples of CDPD [107]. The six peaks are the same forward
focusing peaks seen in XPD (Fig. 12.8). Here the photoelectron kinetic energy is 317 eV, the
photon was incident normal to the surface, and the polar take-off angle range is from 61.0◦ to
73.5◦.

Figure 12.14: Rotation of forward focusing peaks excited by (a) LP and (b) LCP.
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Figure 12.14(a) is the result of linearly polarized (LP) and (b) is of left circularly polarized
(LCP) light. Here the definition of LCP is that the rotation direction of the electric vector of
the photon in the plane of Fig. 12.14(b) is counter-clockwise (ccw). Because the emitter atom
is the top layer W atom and there are only O atoms above it, these forward peaks in Fig. 12.14
are considered to be dominated by single scattering. It is clear that there is a tendency for the
pattern to shift counterclockwise with LCP excitation in Fig. 12.14(b).

All these shifts are considered to be a rotation of the forward focusing peaks with respect
to the photon incident direction ([110] axis). Such peak “rotations” are of the same qualitative
type as seen for Si(001) [69], which was found recently by Daimon et al. in the photoelec-
tron diffraction patterns from non-chiral and non-magnetic systems. This rotation has been
explained as being due to the transfer of the angular momentum of photons to the photoelec-
trons, whose z component ratio has been biased while being excited by the circularly polarized
light.

The rotation angle ∆ of the peak around the photon incident axis is reproduced well by
the simple formula [69]

∆ = tan−1 m

kR sin2 θ
� m

kR sin2 θ
(12.2)

Detailed theoretical works [83, 108, 109] support this formula. Here, m is the magnetic
quantum number (z component angular momentum) of the photoelectron, k is its wave num-
ber, R is the internuclear distance between the emitter and the scatterer, and θ is the angle
between the photon incident direction and the outgoing photoelectron direction, as shown in
Fig. 12.15. When the position vector of the scatterer from the emitter is described as (R,
θ, φ), the peak position observed by using cw and ccw circularly polarized light appears at
(θ, φ ± ∆). Using this formula we can construct three-dimensional atomic structure directly
by measuring the azimuthal shift of the forward focusing peaks in the photoelectron diffrac-
tion patterns excited by the circularly polarized light [84, 85]. Hence, this method positively
utilizes the forward focusing peaks for the structural analysis.

12.2.1.7 Peak rotation and the orbital angular momentum

The characteristic feature of the photoelectrons excited by a circularly-polarized light is that
it has an orbital angular momentum around the incident light. We consider the photoelectrons
from an initial core state Ψi with the quantum number of the angular momentum l′ and its
z-component m′. Its angular part can be described by a spherical harmonic Yl′m′(θ, φ). The
quantum axis (z-axis) is the traveling direction of the incident circularly polarized light.

The transition operator r · e in photoexcitation process within the dipole approximation is
conveniently expressed using the spherical harmonics.

r · e =
1∑

µ=−1

√
4π

3
eµY µ

1 (θ, φ)r (12.3)

where e is the electric vector of the photon. The transition operator for a circularly polarized
light with the angular momentum of photon σhν (= µ) is expressed by the µ = ±1 term.
The transition matrix to the final state wave function Ψf with the quantum number l and m is
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Figure 12.15: Azimuthal rotation of forward focusing peak.

written as [110]

〈Ψf |r · e±〉 =
∑

l=l′±1

Rnl′→klc
1(lm, l′m′) (12.4)

where Rnl′→kl is a radial matrix element, and c1(lm, l′m′) is the Gaunt coefficient. This
c1(lm, l′m′) is not zero only when m = m′ ± 1. Hence, a circularly polarized light with the
angular momentum of photon σhν of ±1 excites the ground state with the magnetic quantum
number m′ to the final state with m = m′ ± 1. In other words, the angular momentum that
the electron gains by photoexcitation is ±1.

First we consider a final state with only one m component. The final state wavefunction
outside the emitting atom is expressed as

Ψ ∝ eikr

r
Ylm(θ, φ)

∝ eikr

r
Θlm(θ)eimφ (12.5)

where Θlm(θ) is the θ-function in the spherical harmonic.
The propagation direction of this final state wavefunction is intuitively calculated consid-

ering the wave front of Eq. (12.5) . The phase of the wave is expressed as

exp[(kr + mφ)] (12.6)

The equation of constant phase surface is expressed as

r = −mφ

k
+ C (12.7)

where C is a constant. This curve is a spiral, and shown in Fig. 12.16 by solid and broken
lines. The wave propagates perpendicular to these lines, which is the wave front, as shown by
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thick arrow in Fig. 12.16. The shift of the forward direction ∆ from OA direction is expressed
as

∆ = tan−1 m

kR sin2 θ
� m

kR sin2 θ
(12.8)

Figure 12.16: Constant phase surface of photoelectron wave with angular momentum m.

The physical base of the azimuthal shift is summarized as follows. The forward focusing
peak appears because the phases of all wavelets on the wave front being scattered by each
infinitesimal atomic potential coincide in the forward direction. This “forward direction” is
perpendicular to the wave front of the wave. When the wave has as angular momentum, the
wave front hit the scatterer at an angle. Hence the forward direction of the photoelectron
wavefunction is inclined at the scatterer. In other words, the peak does not shift from the
forward direction but the forward direction has shifted already before the scattering.

This formula for the direction of the forward focusing peak is exact when the photoelectron
wavefunction can be expressed by only one component of angular momentum. This condition
is satisfied in the excitation of s core, where final m should be ±1. In the following, described
is more general case of excitation.

The transition probability to the l′ + 1 final state is much higher than that to the l′ − 1
final state. In the case of the photoexcitation from the Si 2p (l′ = 1) core state by a photon of
σhν = +1, which is the case of ref. [69], the final l is either 2 or 0, and the final (l,m) = (2,2),
(2,1), (2,0) and (0,0). The probability of realizing these three l = 2 final states is much higher
than that for l = 0, and is about 13:1 at the photon energy of around 350 eV [110].

The probabilities of realizing these three final m values are not equal because the Gaunt co-
efficients are different. For example, the probabilities for (l,m) = (2,2):(2,1):(2,0) are (6:3:1).
When σhν is -1, the ratio for m=(-2, -1, 0) is also (6:3:1). Even when the spin-orbit interac-
tion of the core state is considered, this ratio is unchanged for each spin-orbit split component
P1/2 and P3/2. This ratio, however, is that of the total cross section over 4π steradian and it
depends on the emission angle θ (but does not depends on φ).

The effective m value as a function of θ, m∗(θ), has been derived considering the spin-
orbit interaction [85]. When the small contribution of l′−1 component is neglected, the m∗(θ)
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for general l′ initial state is expressed as

m∗ =

l′∑
m′=−l′

m
∣∣c1(l′ + 1, m, l′, m′)Θl′+1,m

∣∣2
l′∑

m′=−l′

∣∣c1(l′ + 1, m, l′, m′)Θl′+1,m

∣∣2 (12.9)

where m = m′ + 1 for σhν = +1. More general formula is written in [85].
The angular dependence of the contribution of each m state in the final state, which is

|c1(l′ + 1, m, l′, m′)Θl′+1,m|2, is shown in Fig. 12.18 for l′ = 3. The effective m value
m∗(θ) of Eq. (12.9) is also shown in Fig. 12.17. The neglect of l − 1 channel causes an
error of a few percent. Eq. (12.9) is convenient because it depends only on the initial angular
momentum l′ and does not depend on energy or atomic species.

Figure 12.17: m∗(θ) for l = 4.

12.2.1.8 Stereograph by circular dichroism in photoelectron angular distribution

12.2.1.9 Stereoscopic photographs

A stereoscopic photograph consists of a pair of photographs; one is that to be seen by the left
eye, and the other is to be seen by the right eye. The positions of an identical object in the two
photographs differ by an amount of parallax, which is inversely proportional to the distance
from the observer. Assume that you are facing the x direction and looking at an object A with
your right and left eyes at E and F, respectively, as shown in Fig. 12.18. When the position of
the object A is described as (R,θ, 0) in polar coordinates, the relation between the distance R
and the azimuthal shift ±∆ of the object A in the two photographs is described as

∆ = tan−1 b

R sin θ
(12.10)

where b is one half of the distance between the two eyes (OE and OF in Fig. 12.18).
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Figure 12.18: Stereo view of atom A
with right and left eyes at E and F,
respectively.

12.2.1.10 Stereo photograph of atomic arrangement

Two photographs of atomic arrangement satisfying the condition of Eq. (12.10) can be ob-
tained by using a display-type spherical-mirror analyzer described above in the measurement
of circular dichroism in two-dimensional photoelectron angular distribution (CDAD). For ex-
ample, the CDAD pattern of W 4f photoelectrons from the W(110) surface at a kinetic energy
of 800 eV is shown in Fig. 12.19(a) and (b) [70]. These patterns are observed on a flat screen
of the analyzer. The angular range on the screen is about ±60◦. Figure 12.19(a) and (b) were
taken with cw and ccw circularly polarized light, respectively.

Figure 12.19: Stereo photograph of W crystal.

The center of the figure nearly corresponds to the surface normal direction, which is the
[110] axis, and the horizontal direction is [001]. The ccw and cw excitation light is incident
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Figure 12.20: (a) Three-dimensional
configuration of atoms imaged by
stereo photograph of Fig. 12.19.
(b) Structure of W crystal.

45◦ inclined to the surface normal, which is the [01̄0] direction, as shown in Fig. 12.20(b). We
can see five forward focusing peaks, such as A, B, C, in the directions shown in Fig. 12.20(a).
These forward peaks are produced by nearest neighbor atoms A, B, and C in Fig. 12.20(b).
In XPD [102], the positions of these forward peaks are the same as these directions, but their
positions in Fig. 12.19(a), (b) are slightly different from them. The patterns obtained by cw
and ccw light are symmetric with each other with respect to the central vertical line. For
example, the [100] peak A is slightly off the center to the right in (a) and left in (b), as shown
by dots in the figure.

Because in both cases (Eqs. (12.8) and (12.10)) the angular shift ∆ of the object is in-
versely proportional to the interatomic distance R from the emitter, these patterns can be
considered as stereoscopic photographs. The necessary condition is that the direction of the
photon be parallel to the z-axis in stereoscopic photography. Then, if we view the clockwise
(cw) circularly polarized-light photoelectron diffraction pattern (Fig. 12.19(a)) with the left
eye and the ccw pattern (Fig. 12.19(b)) with the right eye, we can image a three-dimensional
arrangement of atoms in W(110) crystal as shown in Fig. 12.20(a). The A atom looks closer,
the B and C atoms look farther, and others look the farthest. Moreover, near atoms look bigger
and far atoms look smaller as in the case of real view. The elongation of atom A is due to the
projection of the pattern to a flat screen.

To recognize the three-dimensional arrangement properly, it is necessary that the field of
vision of both images should be the same as that in the measurement. The solid angle of these
pictures is about ±60◦ in the measurement whereas it is only ±15◦ when these pictures are
viewed by using usual stereo-viewer. Special projection method, such as a combination of
polarized light projection and polarized glasses for individual image, is necessary to realize
the field of vision of ±60◦. If it is realized, the oval of atom A can be seen as a circle, and the
inter-atomic relation is to be proportional to the real relation.

When Eq. (12.8) and Eq. (12.10) are identical, there is no distortion. The necessary con-
dition is that m/(k sin θ) be constant in Eq. (12.8). For the objects in the x-y plane, there is
no distortion because m/(k sin θ) is constant. In this case, the magnification ratio is bk/m.

When b = 3 cm, k is 14 Å
−1

(for the kinetic energy of 800 eV), and m = 4, the magnification
ratio is about 109, which is 1000 times higher than usual electron microscope. When θ is not
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90◦, the sine function in the denominator of Eq. (12.8) would make the atoms closer to the
viewer. However, this distortion is hardly present in the actual case because the value m in
Eq. (12.8) is not constant, and the θ dependence of m∗(θ) is close to sin θ [85], as shown in
Fig. 12.17.

In this method the forward focusing peaks should be clearly seen in 2DAD pattern. This
restriction implies that the emitter atom must lie under the scatterer atoms and that the kinetic
energy of the photoelectron should be above several hundred eV. The photoelectron diffraction
and the multiple-scattering effect could modify the forward focusing peaks, but these effects
are order of magnitude smaller than the forward peaks. The peak positions have been repro-
duced well so far not only for the adsorbate single-scattering case [107] but also for the bulk
multiple-scattering case when the forward focusing peaks are clearly seen [84]. Hence, this
analysis is applicable not only to the molecules adsorbed on surfaces but also to the crystalline
substances.

12.2.1.11 Stereo microscope

This stereoscopic photograph can be obtained directly on the screen of above mentioned
display-type spherical-mirror analyzer [65–68] without any computer-aided conversion pro-
cess. Rotatable analyzer method to measure photoelectrons two-dimensionally can also take
this stereoscopic photograph with the aid of computer. However, rotating-sample method
produces much-distorted image. Other types of display analyzers such as Eastman-type an-
alyzer [71, 72] can also be used to take stereoscopic photographs. In this case, however, the
pattern obtained on the screen is distorted, and computer processing is inevitably necessary
to make the photograph. Because only the display-type spherical-mirror analyzer can obtain
a distortion-free image in much wider solid angles than the Eastman-type one, it is the best
analyzer to take the stereoscopic photographs.

Real-time observation will help understanding the dynamics of atoms. The problem in all
the atomic-structure analysis methods so far (electron diffraction, X-ray diffraction, photo-
electron diffraction and holography) is that the data obtained are that of reciprocal space, and
a real-space structure cannot be imaged before conversion. It takes some time to calculate the
atomic structure, and these methods are thus not suitable for real-time analysis. The situation
is even worse for fluorescent X-ray holography [111] because the time for data collection is
much longer than that for electron emission holography.

When the time required to switch the helicity of circularly polarized light is reduced and
the signal intensity increases, this display analyzer will give an opportunity for real-time
stereoscopic observation. On the screen of DIANA the stereo photographs for right eye and
left eye will be displayed alternately by switching the helicity of the light. An alternate glasses
can transmit each image to each eye by switching the transmittance of each glass with the
same period. In this way one can image three-dimensional atomic arrangement as shown in
Fig. 12.21 in real time. Although it takes about 30 min at present to obtain the photograph, the
development of synchrotron radiation and measurement techniques will continue to shorten
the measurement time. In the near future, measurement times at least as short as that of video
rate “real time” will be achieved.
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Figure 12.21: Stereo microscope. See also color figure on page 467.

12.2.2 Two-dimensional photoelectron spectroscopy of valence band

12.2.2.1 Photoelectron angular distribution from valence band

As the direct probe for the valence electrons, angle-resolved photoelectron spectroscopy
(ARPES) has been the indispensable tool for elucidating the electronic nature of various
solids [112]. ARPES gives the most detailed information about the band structure EB(k)
resolved in binding energy (EB) and wave vector k. Investigations of ARPES so far have been
concentrated in a certain two-dimensional cross-section of the valence band structure. That is
two-dimensional band dispersion EB(kx) at the high symmetry directions in reciprocal space
or an iso-energetic line shape such as a cross-section of Fermi surface, EF(kx, ky) [113].
However, most of information on the valence band structure in the full reciprocal space was
not utilized.

The two-dimensional photoelectron angular distributions (PEAD) can be thought as a
product of 1D-DOS, photoemission structure factor, and angular distribution from atomic or-
bitals (ADAO) [86]. By measuring PEAD obtained by using a linearly-polarized synchrotron
radiation (SR), the analyses for not only the even/odd symmetry but also the component ratio
among atomic orbitals, such as pz or dx2−y2 , become possible.

12.2.2.2 Determination of atomic orbitals composing Fermi surface

The calculated ADAO from several orbitals are shown in Fig. 12.22. The stereo-projection
method is used for the plot. The center is the polar angle of 0◦, and the periphery of the circle
correspond to the polar angle of 90◦. In the calculation, the formula given by Goldberg et
al. [110] was used for only l + 1 shells because usually l + 1 shell is excited much stronger
than l − 1 shell.

A two-dimensional display-type spherical mirror analyzer provides novel methods for
such a measurement. This analysis has been justified by many observed data such as graphite
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Figure 12.22: Calculated angular distribution from several atomic orbitals.

[87], TaS2 [114], Sr2RuO4 and so on. In these cases, the atomic orbitals are determined among
the orbitals with the same orbital angular momentum l. The discrimination of atomic orbitals
among those in the same l shell was easily done by measuring the azimuthal angle dependence
of the PEAD.

For example in the case of Bi2Sr2CaCu2O8 [91], the component ratio among five d orbitals
has been revealed quantitatively. Figures 12.23(a)–(g) are the PEAD patterns from the Fermi
surface of Bi2Sr2CaCu2O8. Brightness of the image is proportional to the intensity of the pho-
toelectron. White line indicates the Brillouin zone, and black curves show the Fermi surface
calculated by the FLAPW method [115]. The Fermi surface of Bi2Sr2CaCu2O8 are thought
to be composed of the state in the Cu-O layer and the Bi-O layer [115]. The PEAD pattern
changes gradually with rotating φ. The photoelectron intensity at point a in Fig. 12.23(a) is
strong at φ = 0◦, and becomes weak at φ = 90◦ (Fig. 12.23(e)). The photoelectron intensity
of point b is strong at φ = 45◦, and it becomes weak at φ = 135◦. The intensity of point
c is weak at φ = 0◦, and it becomes strong at φ = 90◦. From quantitative analysis of the
photoelectron intensity at points a, b and c, the symmetry of the atomic orbital constituting
the Fermi surface was shown to be dx2−y2 .

12.2.2.3 Three dimensional band dispersion of graphite

The visualization of the curved surfaces of the valence band is obtained from the two-di-
mensional (kx,ky) ARPES measurement. These band dispersion “surfaces” contain fruitful
information compared to the conventional band dispersion “curves” along a certain direction
in k space. For instance, the angular dependence of the slope (the velocity) and the curvature
(the mass) of local band structure can be derived. The integrated band energy over entire
Brillouin zone, which can be thought as the electronic part of the condensation energy could
also be obtained. When polarized light is used, the atomic orbitals composing each band
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Figure 12.23: PEAD patterns of Fermi surface (a)-(g) with various azimuthal angle φ. Each
PEAD images are plotted for polar angle θ = 0 ∼ 60◦ in reciprocal space. White line shows
the Brillouin zone and black curves are the calculated Fermi surface.

can be determined from two-dimensional photoelectron intensity distribution. The display
analyzer described in the previous section provides novel data acquisition method for two-di-
mensional photoelectron spectroscopy measurement. Here, three-dimensional (E,kx,ky) band
dispersion measurement and atomic orbital analyses applied to single-crystalline graphite are
presented.

The graphite π band has a parabolic dispersion with its bottom at the Γ point and the max-
ima at the six K points [116]. The PEAD patterns shown in Figures 12.24(a)–(d) correspond to
the cross-section of the π band at the binding energy of 0.0, 1.0, 2.0 and 3.0 eV, respectively.
Photon energy of 52.5 eV is used for the excitation. A synthesized single-crystalline graphite
was used for the experiment. Sample was oriented so that one of the shortest C-C bond (Γ−M
direction) lies horizontally, which is along the electric vector of the normal incident SR. White
hexagon indicates the first Brillouin zone of the graphite. All the PEAD patterns show two-
fold symmetry due to the linear polarization of the incident light. For instance, at the Fermi
level [Fig. 12.24(a)], bright spots appear at left and right four corners of the Brillouin zone,
while the top and bottom two corners remain dark. As the binding energy increases, the size
of these spots grows larger [Fig. 12.24(b)], and then starts to spread toward M and Γ points
[Fig. 12.24(c)]. Finally the adjacent M points on the right- and left-hand sides are bridged
as shown in Fig. 12.24(d). Note that these patterns show that photoelectrons predominantly
appear in the first Brillouin zone. The M points outside the first Brillouin zone remain dark
due to the ‘photoemission structure factor’ [86, 114].

As shown in Fig. 12.22, photoemission intensity is high along the central vertical line,
in the case of 2px. On the contrary, the same line is forbidden for the case of 2py and 2pz .
The photoemissions from 2py and 2pz can be distinguished from the azimuthal dependence of
the PEAD patterns, since the former has another horizontal forbidden line. The ratio among
atomic orbitals is obtained by fitting these calculated PEAD patterns to the observed patterns.
The observed PEAD patterns at hν = 52.5 eV indicated that the π band consists of mainly C
2pz atomic orbital [116].
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Figure 12.24: (a)-(d) The photoelectron angular distribution patterns from single crystal
graphite valence band excited by a linearly polarized light corresponding to the cross-section
of the π band at the binding energy of 0.0, 1.0, 2.0 and 3.0 eV, respectively. See also color
figure on page 467.

By stacking PEAD patterns as a function of binding energy, the band dispersion of the
entire Brillouin zone in kx − ky plane can be obtained. The PEAD patterns for binding
energies from −1.0 to 10.0 eV with respect to the Fermi level are taken with intervals of
0.2 eV. After stacking the PEAD patterns, spectra EB(kx, ky) are picked up at each (kx, ky).
This procedure is necessary to extract the band dispersions, by compensating the effect of
‘photoemission structure factor’. The bird’s-eye stereo-view of the three-dimensional band
dispersion surfaces extracted is shown in Fig. 12.25. This method enables the visualization of
the curved surface of the band dispersion, instead of curved line in the case of the conventional
ARPES method. The bright areas are where the original photoemission intensity is high. The
first Brillouin zone of the graphite is indicated as a green hexagonal prism with one-fourth of
its volume cut away to indicate the Γ-K and Γ-M directions. The top of the prism corresponds
to the Fermi level and the bottom to the binding energy of 10 eV. The patches of the hexagonal
tiles underneath stand for the other Brillouin zones. The three-dimensional shape of the π band
dispersion such as the saddle-like feature at the M points or vertices at the K points is easily
recognized. As the band theory teaches us, the binding energy at the M point is lowered due
to the periodic potentials in the C-C bond directions. The σ band dispersion colored yellow
has maximum at the Γ point and saddle-like feature at the M points.

Figures 12.25(b) and (c) are the top views of the π and σ bands, respectively, which are
two-dimensional distribution of excitation probabilities of these bands. The photoemission
intensity of the π band is high at left and right sides, which corresponds to the simulated an-
gular distribution pattern from a 2pz atomic orbital as shown in Fig. 12.22. However, the fine
structure of photoelectron intensity found around Γ point does not agree with this simulation.
This suggests the hybridization with atomic orbitals other than 2pz . The energy of the π band
averaged all over the Brillouin zone is 3.93 eV. The difference of this value and that of the
initial p atomic orbital gives the electronic contribution of π band to the formation energy of
graphite. This kind of information can only be obtained by three-dimensional measurement
of band structure.

On the other hand, the σ band shows no photoemission intensity at horizontal direction. Its
maximum intensity appears along upper and lower four Γ − M directions. These trends also
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Figure 12.25: (a) Bird’s-eye-view of three dimensional π (upper) and σ (lower) bands of
graphite. Photon energy of 37.5 eV is used for the excitation. The patches of the hexagonal
tiles underneath stand for the other Brillouin zones. (b,c) Photoemission intensity distributions
of the π and σ bands, respectively. See also color figure on page 468.

appeared in the simulated angular distribution pattern from a 2py atomic orbital in Fig. 12.22.
However the simulation indicates that the photoemission from 2py is forbidden along vertical
and horizontal lines. The intensity observed at this area of the σ band in Fig. 12.25(c) can be
attributed to the contribution from the overlapping C 2px orbital.

Figure 12.26 depicts the motion of electrons in the π band. Arrows indicates group ve-
locity and direction for every momentum k obtained by differentiating the curved π band
surface ∂E/∂k. Note that arrows point radially around Γ point but focus to K point at edge of
Brillouin zone [117].

Figure 12.26: The motion of electrons in
π band. The length, position and direction
indicate the group velocity, wavevector k
and direction of electrons. The Brillouin
zone is indicated by a hexagon.
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13 Holographic surface crystallography
Substrate as reference

R.J. Harder and D.K. Saldin

We propose methods for solving the inverse problem in surface X-ray diffraction and low energy electron
diffraction that might be termed holographic, in the sense that the structure factors may be written as a
sum of a known part (a reference wave) and an unknown part (as object wave). By regarding the object
wave as a linear combination of calculable independent elementary object waves, the coefficients of that
expansion are determined from the experimental data by an iterative maximum entropy algorithm. The
spatial distribution of these coefficients represents a solution to the surface structure in each case.

13.1 Introduction

Holography [1] is a technique for recovering a complete wavefield (an object wave) from a
diffraction pattern formed by its interference with a known reference wave. Today, it is perhaps
best known as the technique that produces ghostly three-dimensional images that appear on
viewing illuminated developed photographic emulsions (holograms), created by recording the
interference patterns of two or more beams of laser light.

Over the last fifteen years or so, holographic techniques [2] have also caught the imagi-
nation of surface crystallographers through techniques such as photoelectron holography [3],
holographic low energy electron diffaction (LEED) [4], Auger holography [5] etc. that exploit
the interference of electron waves generated at crystallographically equivalent atoms in a sam-
ple. The far-field diffraction pattern formed by the interference between the direct wave (the
reference wave) from the atomic source, and that resulting from the scattering of this wave
by neighboring atoms (the object wave) forms an electron hologram from which it is often
possible to perform a computer reconstruction of the three-dimensional spatial configuration
of the scattering atoms in relation to the source atom.

From a crystallographic standpoint, there have been several important successes of these
techniques, for example the use of photoelectron holography to elucidate the structures of
Al/Si(111) [6], and of acelylene and ethylene on Si(100) [7]. There is however one funda-
mental limitation of such techniques when using the low energy electrons that are necessary
for surface sensitivity: due to the decay of the amplitude of a point-source reference wave
with the inverse of the distance from the source, augmented by the short inelastic scattering
length of electrons of such energy, significant object-wave contributions to the diffraction pat-
terns come mainly from scattering atoms quite close to the source. Consequently, the relative
positions of only such nearby atoms may be determined by holographic reconstruction. While
this is a useful feature for structures containing only short-range order around the source atom,
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or when only such local structure is of interest, it is a handicap in determining the complete
structure of a well-ordered surface with a large unit cell.

A case in point is the (3×3) surface reconstruction of SiC(111). This structure contains
about 20 symmetrically-inequivalent atoms per surface unit cell whose positions need to be
determined, and its structure solution would normally be beyond the capabilities of conven-
tional methods of LEED that involve the trial-and-error matching of data simulations from
model structures with experimental spectra [8]. Since scanning tunneling microscopy (STM)
indicated the probable existence of a single protruding adatom in each surface unit cell [9–11],
the structure seemed to be apt for an application of the technique of holographic LEED [12].
Indeed, application of this technique correctly revealed the structure of a local cluster of five
atoms surrounding the adatom [13], but due to the limitations of its spatial range, alluded to
above, the technique was unable to determine any more of the structure. It should be men-
tioned that the structure determination of this local cluster was quite rapid, taking no more
than a few hours on a modern workstation. The determination of the rest of the structure by
conventional LEED techniques required much greater effort (although the rapid determination
of part of the structure undoubtedly reduced this considerably).

The rapid determination of structures as, or more complicated than, this one clearly re-
quires the development of an alternative direct method for structure solution that does not
involve trial-and-error search algorithms with their known practically insuperable barrier of
non-polynomial (NP) scaling [8]. This paper suggests such a method that promises to over-
come this problem and yet to enable the determination of the structure of an entire compli-
cated unit cell. It represents an extension to LEED of the maximum entropy method previously
developed for bulk protein X-ray crystallography [14], and also for surface X-ray crystallog-
raphy [15]. We begin with a review of the theory for X-ray crystallography, which is not
burdened by the extra complications of multiple scattering which are unavoidable in electron
diffraction.

13.2 Surface crystallography as a structure completion
problem

For diffraction from a single domain, the detected intensity in a surface X-ray diffraction
(SXRD) experiment may be written

Iq = |Fq|2, (13.1)

where Fq is the structure factor of a unit cell of the entire structure (surface plus bulk), and the
scattering vector q is defined as the difference between the wavevectors of the incident and
scattered X-rays. In SXRD this may be taken to be

q = Ha∗ + Kb∗ + Lc∗ (13.2)

where H , K, and L are Miller indices, a∗ and b∗ are reciprocal lattice vectors parallel to the
surface, and c∗ is one perpendicular to the surface. The periodicity of a crystal surface restricts
H and K to integer values. The breaking of the periodicity perpendicular to the surface due to
the crystal truncation allows a non-zero scattering amplitude over continuous range of L [15].
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In general, the structure factor Fq may be written as the sum of two contributions, Rq

due to scattering from the bulk (a reference wave in the holographic picture) and Oq from the
surface layers (the object wave). Thus,

Fq = Rq + Oq. (13.3)

The surface contribution, Oq may be written as the Fourier transform of the electron distribu-
tion {uj}, i.e.:

Oq =
∑

j

uj exp (iq · rj) (13.4)

where {uj} is defined on a uniformly distributed grid of voxels at positions rj within the
surface unit cell. The structure of the surface can usually be deduced if it is possible to recover
the distribution, {uj}, of surface electrons.

It is important to realize that in surface crystallography the 2D unit cell of the surface
atomic layers may be different (usually larger) than that of the bulk layers. Defining the
reciprocal lattice vectors a∗ and b∗ with respect to the surface unit cell therefore, some of the
reciprocal lattice rods (the so-called superstructure rods) corresponding to particular integer
values of H and K exist solely due to scattering from the surface layers. Consequently, for
those rods, Rq = 0, and the structure factor Fq has only contributions Oq from the surface.
Other reciprocal lattice rods corresponding to 2D reciprocal lattice vectors of the bulk, and
known as crystal truncation rods, (CTRs) have contributions from both the bulk and surface
regions according to Eq.(13.3).

If the set of amplitudes {Oq} may be found, the electron distribution {uj} follows by the
inverse Fourier transform of (13.4). The recovery of {Oq} from the set {Iq} of measured
intensities and the diffraction amplitudes {Rq} from the known part of the structure (the bulk)
is akin to the recovery of an object wave from a hologram using a knowledge of a reference
wave. The so-called holographic algorithm developed by Szöke and co-workers [16,17] seeks
to find {uj} by solving the simultaneous equations relating that distribution to {Iq} and {Rq}.
In the following we will describe alternative algorithms for recovering {uj} from the same set
of data, by using a knowledge of the reference wave {Rq} to phase the amplitudes {|Fq|}
accessible from the experiment.

13.3 Maximum entropy algorithm for surface
crystallography

13.3.1 Surface X-ray diffraction

The problem of obtaining stable and meaningful solutions from incomplete and noisy data has
been addressed in a variety of fields by means of the principles of Bayesian statistics [24], and
the maximum entropy method in particular [25, 26]. In X-ray crystallography, this idea has
been used to develop an exponential modeling algorithm [27,28] for improving the resolution
of a pre-existing electron density map of a protein. A similar exponential modeling scheme
has been used [29–32] as part of an iterative process of phase extension in which a knowledge
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of the phases of some low-resolution structure factors is extended to those of higher resolution
shells [33].

A maximum entropy algorithm, developed originally to improve the resolution of protein
electron density maps [27], has been adapted to solve the problem of structure completion
in protein crystallography [14] and surface X-ray diffraction [15]. The starting point of the
theory is the fact that in Boltzmann’s expression for the entropy, S, of a distribution {ul},
namely

S[{ul}] = k ln Ω[{ul}] (13.5)

where k is Boltzmann’s constant, and the number of microstates per macrostate, Ω, is propor-
tional to the probability (P ) of the distribution. Consequently,

P [{ul}] ∝ expS[{ul}]. (13.6)

Thus the most probable distribution {ul} corresponds to that which maximizes S. A conve-
nient form for the entropy, which is equivalent to Boltzmann’s expression above, is Gibbs’
form [34]:

S[{ul}] = −
∑

l

ul ln (ul/(eml)) (13.7)

where e the base of the natural logarithms, and {ml} the best prior guess of the optimum
distribution {ul} (which we could term the measure of the distribution). By differentiating S
with respect to uj (where j is a particular one of the set of indices {l}) it is easy to show that
the distribution {ul} that maximizes S is the trivial one that is identical to {ml}.

For our problem of finding the most probable electron distribution {ul} consistent with
the experimental data, we need to constrain the distribution by the method of Lagrange multi-
pliers. In the case of the structure completion problem, we identify {ul} with our best guess
of the distribution {u(n)

l } of the unknown part of a unit cell at step n of an iterative algorithm.

We identify the measure {ml} with our estimate {u(n−1)
l } of the electron distribution at the

previous iteration. We seek to maximize the functional:

Q[{u(n)
l }] = −

∑
l

u
(n)
l ln

[
u

(n)
l

eu
(n−1)
l

]
− λ

2

∑
q

|O(n)
q − T

(n−1)
q |2

σ2
q

(13.8)

where the first term on the right hand side (RHS) is Gibbs’ expression for the entropy of the
distribution {u(n)

l } with respect to the one {u(n−1)
l } from the previous iteration. The second

term on the RHS constrains the structure factors O
(n)
q , defined by

O(n)
q =

∑
j

u
(n)
j exp (iq · rj), (13.9)

from the unknown part of the structure to be consistent with the experimental data, represented
by a set of target structure factors T

(n−1)
q defined by

T (n−1)
q = |Fq| exp [φ(n−1)

q ] − Rq, (13.10)
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and

φ(n−1)
q = arg[Rq + O(n−1)

q ] (13.11)

is determined from the distribution {u(n−1)
l } at the prevíous iteration via (13.11) and (13.9).

The quantity σq in (13.8) is the estimated uncertainty in the measured structure factor ampli-
tude |Fq|, and λ′ is a Lagrange multiplier. Q may be maximized by requiring that

∂Q

∂u
(n)
j

= 0 ∀j. (13.12)

The differentiation of the entropy term in (13.8) is straightforward enough; that of the con-
straint term may be performed by writing |O(n)

q − T
(n−1)
q |2 as {O(n)

q − T
(n−1)
q } times its

complex conjugate and noting that O
(n)
q depends on u

(n)
i , but not T

(n−1)
q . After some alge-

bra, we obtain

u
(n)
j = u

(n−1)
j exp

(
−λ Re

[∑
q

{O(n)
q − T (n−1)

q } exp (−iq·rj) /σ2
q

])
. (13.13)

It should be noted that if we may approximate all errors σq by their mean value, < σq >,
(13.13) can be written as a “single-voxel” equation

u
(n)
j = u

(n−1)
j exp

(
−λ′

[
u

(n)
j − t

(n−1)
j

])
(13.14)

with the inverse Fourier transforms

u
(n)
j =

1
N

∑
q

O(n)
q exp (−iq · rj) (13.15)

and

t
(n)
j =

1
N

∑
q

T (n)
q exp (−iq · rj) (13.16)

where N is the number of voxels j, and λ′ = λN/ < σq >2. Eq.(13.14) is an implicit relation

for u
(n)
j in terms of u

(n−1)
j . It can be written as an explicit equation for u

(n)
j by substituting

u
(n−1)
j for u

(n)
j on the RHS. This substitution would be justified if

|δu(n)
j | � |u(n)

j − t
(n−1)
j | (13.17)

where

δu
(n)
j = u

(n)
j − u

(n−1)
j . (13.18)

Note that if λ′ were small enough it would be possible also to truncate the series expansion of
the exponential on the RHS of (13.14) to approximate this equation by

δu
(n)
j = −λ′u(n−1)

j

{
u

(n)
j − t

(n−1)
j

}
(13.19)
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from which it follows that condition (13.17) is equivalent to the requirement that |λ′u(n−1)
j | �

1, or alternatively λ′ � 1/u
(n−1)
j ∀i. This can be ensured by choosing

λ′ � 1/u(n−1)
max (13.20)

where u
(n−1)
max is the maximum value of the distribution {u(n−1)

j }. It should be noted a λ′

chosen according to this prescription would almost certainly also justify the truncation of the
series expansion of the exponential in (13.13) that leads to (13.19) (since u

(n−1)
j , u

(n)
j and

t
(n−1)
j are all similar in magnitude by construction), so the argument is self-consistent. Thus

we may replace (13.13) by the following explicit recursion relation:

u
(n)
j = u

(n−1)
j exp

[
−λ′{u(n−1)

j − t
(n−1)
j }

]
(13.21)

so long as λ′satisfies (13.20). This suggests that (13.13) may be replaced by the corresponding
explicit recursion relation for u

(n)
j in terms of u

(n−1)
j using (13.9), namely,

u
(n)
j = u

(n−1)
j exp

(
−λ Re

[∑
q

{O(n−1)
q − T (n−1)

q } exp (−iq·rj) /σ2
q

])
, (13.22)

provided

λ �
< σ2

q >

Nu
(n−1)
max

. (13.23)

Before each iteration, the input distribution is normalized by the condition∑
j

u
(n−1)
j = Nel, ∀n > 0, (13.24)

where Nel is the expected number of electrons in the surface unit cell. This algorithm has been
tested successfully on simulated SXRD data from a model of the surface of O/Cu(104), where
the superstructure has the same 2D periodicity parallel to the surface as the bulk, and hence
all diffraction rods may be termed crystal truncation rods and have contributions from both
the bulk crystal and the surface layers [15]. It has also convincingly generated the structure
of reconstructed surface such as GaAs(111)-(2×2) from a dataset consisting of a mixture of
superstructure and crystal truncation rods [15].

13.3.2 Low energy electron diffraction

Low energy electron diffraction (LEED) is an experiment in which electrons are directed
into a sample from a distant source and the intensities of elastically backscattered electrons
suffering different momentum transfers g parallel to the surface are monitored as a function
of the energy E of the incident electrons. In the case of a crystal surface, non-zero diffracted
intensities will be found only when g is a 2D reciprocal-lattice vector of the surface, i.e. when

g = Ha∗ + Kb∗ (13.25)
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in the notation of section 2. Each diffraction data point may then be specified by an index
ε representing a combination of diffracted beam g and electron energy E. The main differ-
ence between LEED and SXRD is that, due to the strong multiple scattering of LEED elec-
trons, there exists no simple Fourier transform relationship between any characteristic of the
structure and the diffraction amplitudes. Nevertheless, by identifying appropriate analogies,
an adaptation of the maximum entropy theory above is able to determine the structure from
LEED data also.

The first analogy is that, even in a case of strong multiple scattering, the dynamical (or
multiple-scattering) structure factor of a unit cell (or repeat unit of the sample) may be written
as the sum

Fε = Rε + Sε (13.26)

where Rε is the dynamical structure factor of the bulk crystal, which may be calculated exactly
if the structure of the bulk is known. Sε will then represent the effect of all multiple-scattering
paths that include at least one scattering event from an atom in the surface unit cell. The
second analogy we will draw on is that in LEED, to a very good approximation, it is possible
to express Sε in the form

Sε =
∑

j

pjOεj (13.27)

where Oεj represents a renormalized scattering matrix (in a plane-wave representation) of
a primitive 2D test superlattice, which includes an atom at a position j with respect to the
substrate. The term renormalization implies that included in the calculation of this matrix
is the dominant multiple-scattering between that layer and the substrate. It may be regarded
as a form of elementary object wave, which may be calculated without a knowledge of the
surface structure. The quantity Sε is thus regarded as a linear combination of calculable el-
ementary object waves, with a set of real and non-negative expansion coefficients pj . This
representation of Sε is an approximation that neglects multiple scattering between the sub-
lattices represented by the quantities Oεj . As we will see in the following, even in the rather
severe test of LEED electrons normally incident on a surface containing normally oriented CO
molecules this appears to be a good enough approximation. The important point is that writing
the structure factor of the surface slab in the form (13.27) makes it formally similar to the cor-
responding expression (13.9) in surface X-ray diffraction. In both cases, the surface structure
factor may be written as a linear combination of quantities calculable without a knowledge
of the distribution of atoms in a surface unit cell. Thus the third analogy is that between the
distribution {pj} of non-negative expansion coefficients and that {uj} of surface electrons in
SXRD. This suggests that {pj} may be determined by a similar maximum entropy algorithm
from the experimental data. Accordingly, we define an entropy of the distribution {pj} by the
expression

S[{p(n)
l }] = −

∑
l

p
(n)
l ln (p(n)

l /ep
(n−1)
l ) (13.28)

of the unknown distribution {p(n)
l } at iteration n, relative to one {p(n−1)

l } at the previous
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iteration, and a functional

Q[{p(n)
l }] = −

∑
l

p
(n)
l ln

[
p
(n)
l

ep
(n−1)
l

]
− λ′

2

∑
ε

|S(n)
ε − T

(n−1)
ε |2

σ2
ε

(13.29)

in analogy with with (13.8), where the distribution {p(n)
l } substitutes for the electron density

distribution {u(n)
l } at the nth iteration,

S(n)
ε =

∑
l

p
(n)
l Oεl, (13.30)

T (n−1)
ε = |Fε| exp [φ(n−1)

ε ] − Rε, (13.31)

and,

φ(n−1)
ε = arg[Rε + S(n−1)

ε ]. (13.32)

The quantity σq in (13.29) is the estimated uncertainty in the measured structure factor
amplitude |Fq|, and λ is a Lagrange multiplier. Q may be maximized by requiring that

∂Q

∂p
(n)
j

= 0 ∀j. (13.33)

The differentiation of the entropy term in (13.29) is straightforward enough; that of the con-
straint term may be performed by writing |O(n)

ε − T
(n−1)
ε |2 as {O(n)

ε − T
(n−1)
ε } times its

complex conjugate and noting that O
(n)
ε depends on p

(n)
i , but not T

(n−1)
ε . After some algebra

we obtain

ln

[
p
(n)
j

p
(n−1)
j

]
= −λ{µ(n)

j − τ
(n−1)
j } (13.34)

where

µ
(n)
j =

1
N

∑
ε

Re{S(n)
ε O∗

εj} (13.35)

and

τ
(n−1)
j =

1
N

∑
ε

Re{T (n−1)
ε O∗

εj} (13.36)

and λ = λ′N/ < σ2
ε >, where the individual variances σ2

ε are replaced by their mean value
< σ2

ε >. Hence

p
(n)
j = p

(n−1)
j exp

[
−λ{µ(n)

j − τ
(n−1)
j }

]
. (13.37)



378 13 Holographic surface crystallography – Substrate as referenc

Together with (13.35), (13.36), and (13.32), this consitututes an implicit relation for p
(n)
j in

terms of {p(n−1)
i }. It can be written as an explicit equation for p

(n)
j by substituting µ

(n−1)
j for

µ
(n)
j on the RHS. By analogy with the case of X-ray diffraction, we would expect this to be

valid if λ were chosen small enough. By the same analogy, it might be conjectured that the
condition is approximately

λ � 1/p(n−1)
max (13.38)

where p
(n−1)
max is the maximum value of the distribution {p(n−1)

i }. Thus we argue that (13.37)
may be replaced by the following explicit recursion relation:

p
(n)
j = p

(n−1)
j exp

[
−λ{µ(n−1)

j − τ
(n−1)
j }

]
. (13.39)

so long as λ approximately satisfies (13.38).
The algorithm may be initiated at interation n = 1 by taking {p(0)

j } to be a uniform
distribution normalized to the expected number Natom of atoms in the surface unit cell. That
is one may take

p
(0)
j =

Natom

Nvox
, ∀j (13.40)

where Nvox is the number of voxels at which the distributions {p(n)
j } are evaluated, and using

this expression to evaluate µ
(0)
j and τ

(0)
j via (13.35) and (13.36), respectively, with φ

(0)
ε found

from (13.32). After completion of each iteration, the new distribution is re-normalized by the
condition∑

j

p
(n)
j = Natom. (13.41)

Form of reference and object waves for LEED

We now turn to the question of the form of Rε and Oεj for a workable algorithm for LEED.
For a key to an understanding of this, consider first the evaluation of the scattering of a LEED
electron from a surface consisting of an ordered 2D test layer of the periodicity of the super-
lattice above a crystal substrate. We assume that the structure of the substrate is known, and
that thus it is possible to calculate exactly its reflection matrix B−+ in a plane wave basis.
If the “in-out” scattering matrix of the test layer (in the same basis) is defined as M−+, the
“in-in” matrix as M++, and the “out-out” matrix as M−− in the usual LEED notation, where
the second superscipt denotes the direction from which a wave is incident on the layer or sub-
strate, and the first one that of the scattered (or transmitted) wave. The superscript + indicates
a direction of flux from vacuum into the surface, and − the reverse flux. Exploiting the weak-
ness of back-scattering processes compared to forward-scattering ones, the scattering paths
involving the adsorbate layer and substrate may be ordered by the number of back-scattering
processes involved. Obviously, the minimum number of backscattering processes for the de-
tection of a flux of backscattered LEED electrons above the surface is one. Also exploiting
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the weakness of ∼90◦ scattering of LEED electrons of normal incidence compared with ei-
ther forward or back scattering, we approximate the scattering matrices M±± by “kinematic”
expressions [39], that neglect multiple scattering within the adlayer [40].

Figure 13.1: Representation of the electron propagation and scattering paths giving rise to
the reference wave Rε and three dominant contributions O

(1)
εj , O

(2)
εj , and O

(3)
εj to the object

wave Oεj arising when the origin the surface atomic layer is at the point j at a height d above
the outermost bulk atomic layer. The electron charge distribution of the surface is assumed to
extend to a height h above the bulk. The plane parallel to the surface at this height contains the
real-space origin O with respect to which all mutually coherent electron paths are referenced.
The conventional origin for the calculation of the bulk reflection matrix B−+ is assumed to be
at a point B just above the outermost bulk layer.

Suppose the electron cloud associated with the surface extends to a height h above the
uppermost atomic layer of the substrate (see Fig. 13.1). The plane parallel to the surface at
this height may then be regarded as the true interface between the sample and the vacuum. The
propagation of electrons below this layer must take account of both refraction and absorption.
It is thus convenient to define an origin, O, at some reference point in this interface plane,
with respect to which is measured the phase of a plane wave of unit amplitude representing
the incident LEED electron. Define also an origin j of the adsorbate layer, taken at the position
of an atom in the test layer, and in a plane of height d above the outermost substrate layer. And
define B to be the conventional origin assumed for the definition of the bulk reflection matrix
B−+. Let the propagation matrix (also in the plane wave representation) of an electron from O
to j be defined as PjO, that from j to B be PBj , and the corresponding propagation matrices
in the reverse directions be POj and PjB , respectively. Then the total reflection matrix of the
entire surface to first-order in backscattering may be written:

T = POjPjBB−+PBjPjO + POjM−+PjO...

+POj(1 + M−−)PjBB−+PBj(1 + M++)PjO (13.42)

where unit matrices 1 are added to the “in-in” and “out-out” matrices to take account of
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unscattered transmission. Since the product of two free-space propagator matrices involving
an intermediate point is independent of that intermediate point,

PBO = PBjPjO (13.43)

and

POB = POjPjB. (13.44)

From these relations, we see that the first term in (13.42) above is independent of the absorbate
layer. One of its elements forms a suitable reference wave for our purposes, namely:

Rε =
(
POBB−+PBO

)
g0

, (13.45)

where the indices g0 specify the matrix element for scattering from an incident wave to the
backscattered Bragg reflection labelled by the reciprocal lattice vector g. The remaining terms
in (13.42) enable the calculation of the corresponding object wave via:

Oεj =
(
POjM−+PjO + POj(1 + M−−)PjBB−+PBj(1 + M++)PjO

)
g0

� O
(1)
εj + O

(2)
εj + O

(3)
εj , (13.46)

where

O
(1)
εj =

(
POjM−+PjO

)
g0

, (13.47)

O
(2)
εj =

(
POBB−+PBjM++PjO

)
g0

, (13.48)

and

O
(3)
εj =

(
POjM−−PjBB−+PBO

)
g0

, (13.49)

where a fourth term involving the product of the scattering matrices M−− and M++ has
been neglected. Test computations [41] have shown this to be a reasonable approximation.
Representative scattering paths followed by electrons contributing to Rε, O(1)

εj , O(2)
εj , and O

(3)
εj

are illustrated in Fig. 13.1.
Taking the reference and elementary object waves to be of the form (13.45) and (13.46)

respectively is justified if substitution of these expressions into (13.27) and (13.26) would
give a reasonable approximation to the dynamical LEED structure factor Fε for a distribution
{pj} of atom positions within a surface unit cell, to be determined by the iterative algorithm
of the last section. An assumption of this approximation is that multiple scattering between
different adsorbate atoms may be neglected, and so the scattering. Again, due to the pre-
dominantly forward-scattering nature of atomic scattering factors for LEED electrons, this is
usually a good approximation for normally incident electrons and adsorbates confined to a
single layer parallel to the surface. What was therefore a little surprising, but very gratifying,
the result described in the next section where we found that this approximation may even be
used to determine the positions of both adsorbate atoms within the surface unit cell in the
almost worst-case scenario of an assumed layer of CO with molecular axes perpendicular to
the surface.
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Test case for LEED

In this paper we will give only a very basic proof of principle of our proposed inverse method
for LEED. We will aim to recover the height distribution of the C and O atoms above a Ni(001)
surface from a single I/E curve of the (00), or specular, reflected intensities, as calculated by a
standard and realistic computer program [42] over an experimentally accessible energy range
from a hypothetical c(2×2)-CO/Ni(001) surface. Also required as input to the calculations of
the reference waves, Rε, are the dynamical structure factors, B−+, of a clean Ni(001) surface.
The calculations of the propagation matrices, e.g. PjO, for the evaluation of Rε and Oεj

from (13.45) and (13.46), respectively, require only the evaluation of complex exponentials
with arguments containing the (complex) wavevectors of the plane-wave expansions between
the atomic layers and the vectors relating the fixed reference positions O and B, and the test
positions, j, of atoms within a surface unit cell.

Figure 13.2: Solid line: calculated LEED intensity vs. energy for the specular, or (00) beam
from a (1×1)-CO/Ni(001) surface from approximatey 100 to 450 eV. Dashed line: calculated
LEED intensity vs. energy of the same beam over the same energy range from a clean Ni(001)
surface with the same electron absorption parameters.

Figure 13.2 shows a calculated I/E curve (solid line) over an energy range from about 100
to 400 eV, of a c(2×2)-CO/Ni(001) surface, assuming atop adsorption of CO directly above
each of the Ni atoms in the outermost substrate layer. The Ni-C distance was taken to be
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1.7 Å, the C-O distance 1.5 Å, and the height h of the origin O above the outermost Ni layer
taken to be 3.93 Å. The square roots of the elements of this distribution are the structure factor
amplitudes |Fε| used as input to the algorithm of Sec. 13.3.2. Also shown as a dashed line in
Fig. 13.2 is the intensity from a clean Ni(001) surface for the same position of the origin O
relative to the Ni atoms [43]. These intensities are equal to |Rε|2, where the quantities Rε are
the calculated complex amplitudes representing the reference waves.

Since the specular beam for normal incidence in LEED is sensitive primarily to crystal-
lographic structure in a direction perpendicular to the surface we attempt to recover only the
distribution of the heights of the adsorbate atoms above the surface. That is, we specialize the
general theory of Sec. 13.3.2 to that of a one-dimensional problem in which ε is represented
by just the energy E of the specularly reflected LEED electrons (for which g=0) and {p(n)

j }
is a one-dimensional distribution at iteration n of the algorithm, and j is an index representing
the height above the Ni substrate.

One complication in the present case is that the two adsorbate atoms are of different chem-
ical species, and in principle it might be imagined that the theory would need to be generalized
for separate spatial distributions for the C and O atoms, with separate definitions of compo-
nent object waves Oεj for each chemical species. Yet, as we will see in the present example,
it appears that the kinematic layer scattering matices M±± of the same 2D unit cell size for
C and O are sufficiently similar for the matrices M±± in (13.46) to be defined for just one of
the chemical species (just O for our present simulations).

We assumed an initial distribution {p(o)
j } to be the least-biased normalized one (13.40).

The distribution {p(1)
j }, after a single iteration, is shown in Fig. 13.3(a). That {p(500)

j } after
500 iterations already gives an approximate indication of the heights of the atoms of the ad-
sorbed molecule, as seen in Fig. 13.3(b). The final result {p(3000)

j } after 3000 iterations, as
shown in Fig. 13.3(c), gives a remarkably clear and accurate indication of the heights of both
C and O atoms.

In practice, of course, data from all LEED beams available from an experiment (and not
just the specular one) will be used as input to the algorithm. With the use of a number of
these beams accesible from experiment, it is possible to recover the full 3D distribution of
adsorbates on surfaces [44].

13.4 Discussion and conclusions

To date most surface crystal structures have been solved by a combination of chemical intu-
ition, the pooling together of data from different physical probes, and by trial-and-error fitting
to experimental diffraction data, of simulations of diffraction data from guessed models of
the structure. The latter process invariably runs up against the exponential growth with com-
plexity of the structure of the number of models that need to be tested. Consequently, more
attention has been devoted in recent years to developing a reliable direct method for surface
crystallography that may lead rapidly from the experimental diffraction data to the surface
structure at the atomic scale. One of the ideas that has attracted attention in recent years is
that of interpreting the diffraction patterns in some sense as an interference pattern between
an assumed known spherical reference wave from an identifiable atom within a surface unit
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a) b)

c)

Figure 13.3: Evolution of the one-dimensional distribution of atomic scatterers as calculated by our
algorithm as a function of height above the outermost layer of Ni atoms of the substrate. (a) The dis-
tribution {p(1)

j } after a single iteration (b) that {p(500)
j } after 500 iterations, and (c) that {p(3000)

j } after
3000 iterations. The final distribution correctly reproduces the heights of the C and O atoms at approxi-
mately 1.7 Å and 3.2 Å, respectively.

cell and the object waves formed by the scattering of this wave from its neighboring atoms.
If such an interpretation is possible, holographic computer reconstruction algorithms are able
to reveal the three-dimensional arrangement of the neighboring atoms relative to the reference
wave source. When the hologram is formed by the interference of low energy electrons, the
decay of the reference wave with the inverse of distance from the source, as well as its attenu-
ation due to inelatic scattering, generally does not allow the recovery of more than just a few
atoms in the vicinity of the source. Also the existence of more than one reference wave source
could lead to the superposition of more than one local atomic environment, with a consequent
difficulty of interpretation.

In this paper we develop an alternative holographic interpretation for surface crystallogra-
phy that promises to overcome these problems. It is based on the idea that when an external
beam of radiation is directed into a surface, the radiation detected outside the sample will
have scattered from not just the outermost surface layers whose structure may need to be
determined, but also from parts of the underlying bulk crystal, whose structure is generally
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known. The calculable scattered radiation from this known part of the structure is thus iden-
tified with the reference wave and that scattered from the unknown part of the structure the
object wave. A conventional holographic algorithm would be capable of recovering the object
wave from the diffraction data and a knowledge of the reference wave (which may be calcu-
lated from a knowledge of the bulk structure). We go one step farther: by writing the object
wave as a linear combination of calculated components associated with given positions on a
uniform grid covering a 3D slab representing the surface unit cell, we develop an algorithm to
recover the coefficients of that linear sum.

In the case of X-ray diffraction the calculated components are simple exponential func-
tions, and the (non-negative) coefficients represent the electron density in the surface unit cell.
In the case of LEED, the components may be regarded as elements of effective (or renor-
malized) scattering matrices of a primitive lattice of test atoms of the 2D periodicity of the
superstructure in a given geometrical relation to the substrate. Such effective scattering ma-
trices may be calculated rapidly from standard LEED programs, taking account of the domi-
nant (first-order) multiple-scattering with the substrate. Only as many such scattering matrices
need be calculated as there grid points within a symmetry-reduced sector of the surface unit
cell multiplied by the number of energies at which LEED data are measured. This number
is independent of the structural complexity of the unit cell. The coefficients of the expansion
of these components of the object wave may be regarded as the elements of a non-negative
distribution of atoms in the surface unit cell, to be determined.

In the cases of either X-ray diffraction or LEED the relevant distribution is determined
by a maximum entropy algorithm, which iteratively satisfies the experimental constraints to
the reciprocal-space data, while also ensuring the non-negativity of all elements of the sought
distribution in real space at each iteration. The theory for X-ray diffraction has been given
in an earlier paper [15], which also contains examples of the operation of the algorithm to
recover the electron density of the surfaces of a number of structures from realistic simulations
of surface X-ray diffraction data from a standard program. In the present paper, we extend the
theory to LEED and demonstrate the algorithm for a very simple test case to determine from
simulated LEED data just the height above a Ni(001) substrate of the atoms of a CO molecule
with its molecular axis perpendicular to the surface. Future papers will show the effectiveness
of this algorithm also for the determination of the full 3D superstructures of surface layers.
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14 XAFS and related methods: Theoretical techniques

J.J. Rehr, R.C. Albers, and A.L. Ankudinov

Dramatic progress has been made over the past two decades in the development of the theory of X-ray
absorption (XAS) and related spectroscopies, e.g., X-ray absorption fine structure (XAFS), X-ray pho-
toelectron diffraction (XPD), etc. In this work we review the theoretical techniques and algorithmic de-
velopments needed for accurate calculations of these spectra. In particular real-space multiple scattering
(RSMS) theory, which is based on Green’s functions rather than wave functions and final state potentials
turns out to be particularly well suited to calculate such spectra. This one-electron approach has become
the standard model for most current XAS calculations and has led to efficient ab initio codes which
permit a quantitative interpretation. The theory differs significantly from ground state calculations, since
the spectroscopies of interest involve excited electronic states with a high energy photoelectron and a
core-hole. However, it retains a close connection to excited state electronic structure, since X-ray spec-
tra are directly related to a Green’s function for the excited photoelectron in the presence of a core-hole.
We also briefly discuss many-body corrections to this model.

14.1 Introduction

In this Chapter we review the theoretical techniques and algorithmic developments needed for
accurate calculations of X-ray absorption and related spectra. We focus on algorithms and
codes for practical calculations, rather than only on formal theory. In particular we discuss
the development of a one-electron approach based on real space multiple-scattering (RSMS)
theory and final state potentials, which has become a standard approach for such calculations.
These developments are discussed in detail in a recent review [1].

Since they involve similar interactions between X-rays and condensed matter, all X-ray
spectroscopies require similar theoretical treatments; that is, all can be described in terms
of excited state electronic structure and the response of condensed matter to electromagnetic
radiation at X-ray energies. The hard X-ray regime, with typical photon energies of order 102–
104 eV, differs in many respects from the optical and UV. This regime generally involves high
energy excited photoelectron states with typical photoelectron energies or order 101–103 eV
and the sudden creation of a deep core hole. A crucial difference between excited state and
conventional ground state electronic structure calculations is the need to include the effects of
inelastic losses in excited states. That is, the photoelectron must be treated as a quasi-particle
of finite lifetime, rather than as a stationary state. There is also a close connection between
RSMS theory and excited state electronic structure, since X-ray spectra are directly related to
a Green’s function for the excited photoelectron in the presence of a core-hole.
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The development of X-ray spectroscopy theory has roughly paralleled that of modern syn-
chrotron radiation X-ray sources over the past two decades. Advances in theory, particularly
in the theory of excited states multiple-scattering (MS) theory have revolutionized techniques
for local structure determinations such as extended X-ray absorption fine structure (EXAFS),
X-ray photoelectron diffraction (XPD) and others. Indeed, modern theories of X-ray spectro-
scopies have essentially replaced the more phenomenological early theories. As a result of
these advances, the basic theory of EXAFS and XPD can now be considered as well under-
stood. A fully quantitative treatment has yet to be achieved, due to a number of complications,
e.g., full potential corrections and many body effects such as core-hole effects and the screen-
ing of the X-ray field. However, significant progress has also been made in parallel with the
development of the current series of high brilliance X-ray sources, such as the ALS and APS,
as well as dramatically increased computational resources. This progress is largely aimed at
understanding the physics of the near edge structure i.e., the structure within about 30 eV
of threshold where strong chemical (and hence strong MS contributions) and excited state
many-body effects such as the core-hole interaction and screening are most important.

Perhaps the most pervasive and important result of all improvements in theory has been
the development of fast ab initio computer codes for the calculation of XAS and other X-
ray spectroscopies. An example is the RSMS code FEFF8 developed by our group, which
calculates both X-ray spectra and self-consistent electronic structure [2]. This code is highly
automated and intended to be user friendly, requiring a minimum of input and few adjustable
parameters. Such codes have now become quite sophisticated, and now include electronic and
magnetic structure, many-electron excitations, and thermal vibrations. For example, FEFF8
yields results for electronic densities of states in good agreement with modern full-potential
band-structure codes.

14.2 Standard one-electron theory of X-ray spectra

14.2.1 Theoretical considerations

As noted in the introduction, our primary focus in this Chapter is the theory of deep-core X-ray
spectra, i.e., photoexcitation of core-levels by hard X-rays of energies between about 102 and
104 eV. Such photons create high energy excited photoelectron states with electron energies
of order 101 and 103 eV, together with a deep and essentially structureless core hole at the
absorption site. These characteristics demand theoretical treatments which differ significantly
from those for the ground state. In particular at high energies, the photoelectron kinetic energy
dominates and hence scattering due to the atomic potentials is comparatively weak. Thus to
zeroth order, the photoelectron propagates in a uniform, lossy medium with a given electron
density, and scattering can be treated as a perturbation. For this reason multiple-scattering
(MS) theory [3] is well suited for practical calculations. Due to inelastic losses, the photo-
electron must be treated as a quasi-particle of finite lifetime, rather than as a stationary state.
Thus these losses give a photoelectron a finite mean-free path, so only a finite portion (typi-
cally a few tens of Å) of a system is typically probed by X-ray spectra. Thus long-range-order
features seen in band-structure calculations [4] of the spectra (e.g., van Hove singularities) are
smeared out by final state and lifetime broadening. Thus the theory of high energy excited
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states is complementary to ground state techniques. For these reasons real space approaches
within a finite cluster are advantageous [2]. Correspondingly Green’s function rather than
wave function based methods are more natural to handle effects of inelastic losses and self-
energy effects. Finally the core-hole interaction is often crucial for accurate calculations; that
is, a final state Hamiltonian is usually needed to describe the spectra [5]. In addition thermal
vibrations and disorder must also be taken into account, since they lead to strong Debye-
Waller damping effects on the spectra at high energies [6]. These considerations have led to
the development of a real-space multiple scattering (RSMS) formalism [7], which has become
the standard for most practical calculations of X-ray spectra.

14.2.2 Golden rule

Formal theories of X-ray spectra generally start from Fermi’s Golden rule: i.e., the full many-
body expression for X-ray absorption spectrum as a function of X-ray energy �ω is given
by

µ ∝
∑

f

∣∣∣∣〈ΨN
f

∣∣∣ N∑
j=1

pj · A(rj)
∣∣∣ ΨN

i

〉∣∣∣∣2δ(Ef − Ei − �ω), (14.1)

where |ΨN
i 〉 and |ΨN

f 〉 denote N -particle initial and final states at energies Ef and Ei respec-
tively, p · A is the electron-photon coupling with vector potential A, and the sum is over all
N -particle final states. However this formal expression is essentially useless for real calcu-
lations due to the difficulty of calculating many-body states. Thus practical calculations are
usually based the reduction of the Golden rule to a one-electron approximation. Although
the question of which one-electron states to use in a one-electron theory is not unambiguous,
many current calculations are based on the final state rule [5]. This rule states that final states
should be calculated in the presence of a screened core-hole. Also all many-body effects and
inelastic losses are lumped into a complex valued self-energy or optical potential. In prac-
tice the final state rule appear to work well for highly excited photoelectrons and has become
an important consideration in the standard model of XAS discussed in this Chapter. Vari-
ous corrections, such as multi-electron excitations generally add broadening, but little if any
additional structure.

Within this standard, one-electron model the Golden rule is simply

µ(E) ∼
∑

f

∣∣〈f |A · p|i〉
∣∣2δ(E − Ef ), (14.2)

where E = �ω−Ei is the photoelectron energy and the damped quasi-particle final states |f〉
are calculated in the presence of an appropriately screened core-hole. The final states |f〉 are
eigenstates of a lossy, non-Hermitian final state Hamiltonian,

H ′ =
p2

2
+ V ′

coul(�r) + Σ(E,�r), (14.3)

where the prime denotes the potential in the presence of a screened core hole (e.g., a self-
consistently determined core-hole potential), and Σ(E) is the non-Hermitian, energy depen-
dent self-energy operator, which replaces the exchange correlation potential of the ground state



390 14 XAFS and related methods: Theoretical techniques

density functional Hamiltonian. As discussed below, calculations of XAS from Eq. (14.2) can
then be made from either one-particle wave-function or Green’s function methods [8, 9]. For
X-ray spectra, the Green’s function approaches are generally preferable, since they are appli-
cable over a wider energy regime.

14.2.3 Green’s Function formalism

An important formal development in modern theories of X-ray spectra is the replacement of
explicit calculations of wave functions or scattering states in the Golden Rule with a Green’s
function approach [8, 9]. Calculations of final states is usually a computational bottleneck,
except possibly for symmetric molecules and periodic solids. However, many systems of
interest lack such symmetry. Also k-space methods developed for periodic solids generally
ignore important effects such as the core-hole and lattice vibrations, which spoil crystal trans-
lation symmetry. Moreover, inelastic losses are difficult to include in wave-function methods,
except a posteriori through Lorentzian broadening; this broadening smears out detailed band
structure features. Thus for excited states it is preferable to recast the Golden rule in terms of
one-electron Green’s function or photoelectron propagator in real space,

G(E) ≡ 1
E − H ′ + iη

=
∑

f

|f〉 1
E − Ef + iη

〈f | (14.4)

which implicitly sums over all final states. The propagator G(E) is the solution of an inhomo-
geneous Dyson equation [E − H ′]G(E) = δ(r − r′ ), which is analogous to the Schrodinger
equation. Thus in terms of G(E) the XAS in Eq. (14.2) can equivalently be expressed as

µ(E) ∼ − 1
π

Im 〈i| ε̂ · r′ G(r′, r, E) ε̂ · r |i〉. (14.5)

Calculations of G(E) at high energies are conveniently carried out using multiple-scattering
(MS) theory [3]. Within MS theory the propagator near a given site (e.g., the origin) can be
expanded as

G(r, r′, E) =
∑
L,L′

RL(r)GL0,L′0RL′(r′). (14.6)

Then the expression for µ can be reduced to a calculation of atomic dipole-matrix elements
ML = 〈i|ε̂ · r|L〉 and a propagator matrix GL0,L′0 ≡ GL,L′ in an angular momentum and
site representation |L,R〉. The relativistic generalization [10] is similar; however relativistic
effects (e.g, spin-orbit effects) are biggest in the atomic cores and mostly affect the dipole
matrix elements. Thus L = (κ, m) denotes a relativistic angular momentum basis.

With the representation of the Green’s function in Eq. (14.6), the Golden Rule for the XAS
can be written as from a core level i can be expressed as

µ(ω) =
4πe2ω

c

∑
i,LL′

MiL(ω)ρL,L′(E)ML′i(ω), (14.7)

where MiL(ω) = 〈RL|ε · r̂|i〉, are dipole matrix elements, ρL,L′(E) = (−1/π)ImGL,L′(E)
are elements of the density matrix, and E = ω+Ei−EF is the photoelectron energy (typically
varying from about 10–1000 eV).
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14.2.4 Multiple-scattering theory

To apply multiple-scattering theory [3] to EXAFS, it is necessary to separate the scatter-
ing potential into terms from individual sites i. Thus we define the final state potential as
V ′ = Σivi(r− Ri). For high energy scattering a spherically symmetric muffin-tin model
suffices. The scattering potentials vi are implicitly contained in the scattering t-matrices
which sum intra-atomic scattering at a given site to all orders. These are defined by the equa-
tion t = v + vGt at each site, and can be represented in terms of partial wave phase shifts
tl = exp(iδl) sin(δl). For XAS the usual procedure [8, 9] is to select out one site c as the
absorber, so we can write V ′ = v′c + V sc where V sc is the scattering potential from all other
scatterers. Then the Green’s function propagator GL,L′ = Gc

L,L′ + Gsc
L,L′ naturally separates

into intra-atomic contributions from the central atom and from MS. Consequently XAS µ(E)
can be separated into atomic and scattering parts as

µ = µ0(1 + χ). (14.8)

Note that the behavior of µ depends both on an (embedded) atomic background µ0 from the
potential v′c and on the MS or fine structure signal χ due to scattering from the environment,
i.e., the scattering potentials in V sc. This result is consistent with the experimental definition
of XAFS

χ =
µ − µ0

∆µ0
, (14.9)

where ∆µ0 is the jump in the smooth atomic-like background at a given edge.
The matrix GL,L′(E) can be re-expressed formally as a sum over all MS paths that a

photoelectron can take away from the absorbing atom and back [8]. For XANES, the MS
expansion is often carried to all orders (full MS) by matrix inversion [11, 12],

Gsc = eiδ[1− G0T ]−1G0eiδ′
. (14.10)

This approach is equivalent to exact treatments. e.g., the KKR band structure method [9].
However, as no symmetry is required it is particularly advantageous for calculations of com-
plex, aperiodic systems.

For EXAFS, the expansion of the inverse matrix in a geometric series gives rise to a MS
path expansion (discussed further below),

Gsc = eiδ′
[G0TG0 + G0TG0TG0 + · · · ]eiδ. (14.11)

where matrix indices have been suppressed for simplicity. Here T = tL,RδL,L′δR, R′ is
diagonal in a site-angular momentum basis, and only site-off diagonal elements of the free-
electron propagator G0

LR,L′R′ are included.

14.2.5 Scattering potentials

Calculations of the MS expansion require accurate potentials and phase shifts at each scat-
tering site up to large angular momenta lmax ∼ kR/2, where k is the electron wave number
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k ∼ (2E)1/2 and R a near neighbor distance [7]. Thus lmax is typically about 25 for EX-
AFS energies E ∼ 1000 eV. The calculation of scattering potentials simplifies for electrons of
moderate energy since scattering depends largely on the density in the core of an atom, where
spherical symmetry is a good approximation. Then the Coulomb part of these potentials are
well described by an overlapped atomic charge density and the muffin-tin approximation (i.e.,
the Mattheiss prescription) [13], while the exchange term can be well approximated by a local
self energy (see below). These approximations must be improved for XANES where chemi-
cal effects and charge transfer are important, in which case self-consistent (SCF) calculations
are necessary. The SCF approach implemented in FEFF8 also yields an accurate estimate of
the Fermi energy EF . Muffin-tin corrections may also be important in XANES, especially
in highly anisotropic systems, and hence the development of self-consistent, full-potential
approaches remains an important challenge.

14.2.6 Self energy and mean free path

Since the self-energy operator Σ(E) depends on both photoelectron energy E and position,
and is generally non-local, an efficient algorithm for its calculation is essential [14]. FEFF and
many other XAFS codes often use the GW electron gas self-energy of Hedin and Lundqvist
[14] for such calculations, which is based on a local density approximation. However, this
self-energy tends to overestimate losses at low energies. Alternatively the real Dirac-Hara
exchange approximation is sometimes better. However, as these approximations are based on
electron-gas theory, they can be inaccurate for XANES. One of the current challenges is to
develop more realistic approximations.

From the complex valued self energy one can then obtain the effective electron mean
free path [15]. For example, the XAFS mean free path is λk ≈ k/(|Im Σ| + Γ/2), where
Γ is the inverse core-hole lifetime. This mean free path differs from that in LEED, since
it depends on the core-hole lifetime. The self-energy is essentially a dynamically screened
exchange interaction, which is the analog of the exchange-correlation potential Vxc of ground
state density functional theory. Since the self energy varies by about 10 eV over EXAFS
energies, the variation leads to systematic shifts in energy of XAS peaks from their ground
state positions. Indeed this shift can be represented at low energies by an approximately linear
scaling with energy, i.e., Eexp = Eth(1 + α), where α is typically about 0.05 [16]. Although
this effect is often ignored in phenomenological XAFS theories (e.g., theories only containing
a mean-free path or an imaginary optical potential), it could have been anticipated, since the
presence of a mean-free-path implies the existence of a real energy shift due to the dispersion
relations satisfied by the self-energy operator.

14.3 Applications to X-ray spectroscopies

14.3.1 EXAFS

Curved-wave multiple scattering theory

One of the most successful theoretical developments in XAS is the theory of EXAFS. As
discussed above the XAFS is given by the scattering part of the electron propagator. For
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example the XAFS from a K shell can be written as χ(E) = −Im Trm Gsc, i.e., as the trace
of a matrix product

χ(E) = −Im Trm eiδ′
1 [G0TG0 + G0TG0TG0 + · · · ]1m,1meiδ1 , (14.12)

where matrix indices have been suppressed for simplicity. For example, the single scattering
terms come from the term G0TG0

1m,1m = ΣLRG0
1m,LRtLRG0

LR,1m. Because of curved wave
effects, requiring increasingly higher angular momentum states with increasing energy, the
matrices in the above have very large dimensions of order l2maxN , where N is the number of
sites. Thus exact MS calculations are extremely time-consuming and at high energies can only
be carried out for low-order MS paths [17]. The same angular momentum catastrophe at high
energies limits exact MS approaches and band structure techniques to energies below about
100 eV. Early treatments of XAFS used the plane wave approximation (PWA) to simplify
this expression, however this led to unacceptable errors in the theory. However, Rehr et al.
[18] showed how the dominant single scattering terms (G0TG0) could be recast in a form
analogous to the PWA, but with an effective, curved wave scattering amplitude feff . Curved
wave effects lead to phase shifts of order �(� + 1)/kR in each partial wave. Since feff has
an expansion in partial waves analogous to the scattering amplitude in the PWA, it differs
significantly from the plane wave back-scattering amplitude at all energies. This explains why
the PWA is always a poor approximation even at the highest photoelectron energies observed
in experiment (∼ 1500 eV).

Although the single-scattering terms often dominate the EXAFS, multiple-scattering con-
tributions are generally crucial beyond the nearest neighbor. Such MS contributions proliferate
exponentially and are also harder to calculate, involving many more high order matrix multi-
plications. Thus one of the most important advances in XAS theory was the development of
efficient approximations to treat curved wave effects both in single-scattering and multiple-
scattering. Some of the first such approaches were developed by Barton and Shirley [19]
for XPD. In an effort to improve on their approach, an efficient scattering matrix formal-
ism was derived, based on a separable representation of the free propagator G(E) [7]. This
Rehr-Albers approach turned out to overcome all the computational difficulties of the MS ex-
pansion, namely the large angular-momentum basis, and the proliferation of MS paths. The
approach also simplified the incorporation of correlated MS Debye-Waller factors in the the-
ory to treat vibrations and disorder. The first difficulty was overcome in two steps. First, by
using rotation matrices, successive bonds in a path are rotated to the z-axis, thus reducing the
problem to a calculation of z-axis propagators [7]. Propagators along the z-axis have greatly
simplified mathematical properties. Although the terminology “z-axis propagator” is recent,
these quantities have a long history and have been rediscovered several times [20, 21]. How-
ever it has also been found that it is both stable and accurate to use the recursive calculations
of the RA separable representation. A detailed discussion of the convergence of the RA ap-
proach has also been carried out [22]. The second step of the RA method is an exact, separable
representation of the z-axis propagators. Together these steps yield the exact representation

G0
LR,L′R′ =

eikR′′

kR′′ ΣλYL,λỸλ,L′ , (14.13)

where R′′ = R′ − R. The coefficients Y and Ỹ depend on bond angles and converge
rapidly in powers of 1/kR, so the representation can be severely truncated. The approach



394 14 XAFS and related methods: Theoretical techniques

becomes exact at low energies or for single scattering, and typically λ ∼ 6 suffices to within
experimental precision over the full range of wave numbers in EXAFS experiment. The ad-
vantage of a separable representation is that it permits one to combine and then sum all the
factors involving the angular momenta L at a given site into a low order scattering matrix
Fλ′,λ =

∑
L Ỹλ′,LtLYL,λ. This matrix is the analog of the plane wave scattering amplitude

and yields an accurate curved-wave XAFS formula analogous to the PWA, but with the usual
scattering amplitudes f(θ) replaced by low-order (6× 6) matrices. With such separable prop-
agators, the MS expansion can then be calculated efficiently as a sum over MS paths. For
EXAFS, for example, one then obtains the path expansion,

χ(k) = S2
0

∑
paths

|feff(k)|
kR2

sin(2kR + Φk)e−2R/λke−2σ2k2
, (14.14)

where k = [2(E − E0)]1/2 is the wavenumber measured from threshold E0, λk is the XAFS
mean-free path, and σ is the rms fluctuation in the effective path length R = Rpath/2. This
expression has the same form as the famous XAFS equation of Sayers, Stern and Lytle [23].
However, all quantities in Eq. (14.14) are redefined to include curved wave and many-body
effects. For example, instead of the plane wave back-scattering amplitude, feff(k) is the ef-
fective curved-wave scattering amplitude (from which the FEFF codes are named), and S2

0 is
a many-body amplitude reduction factor due to intrinsic losses, which was not in the original
formula. Because of the path dependent phase shift Φk, theoretical calculations are essen-
tial to analyze experimental XAFS data beyond the nearest neighbors, due to the difficulty of
obtaining suitable experimental MS EXAFS standards. With the RA approach, feff can be
calculated efficiently and accurately as a product of low-order (typically 6×6) matrices for all
XAFS energies, thus making high-order path expansions practicable. For XANES, however,
exact propagators may be needed, but it turns out that the RA approach in Eq. (14.13) still
provides a stable and efficient algorithm [24] for the propagator G0, which is implemented in
the FEFF codes for XANES calculations. At low energies only small angular momenta are
involved, so the matrix dimensions are still relatively small.

The introduction of an automated path enumeration scheme and path filters which restrict
the number of MS paths in the expansion [25] was another important development in EXAFS
theory. It was also key to efficient EXAFS analysis techniques, permitting fits to the spectra
in terms of a relatively small number of physical parameters, such as interatomic distances R.
At high energies it turns out that the vast majority of MS paths are numerically insignificant,
and the most important MS paths in EXAFS tend to be either linear and triangular. Although
the PWA is inadequate for precise calculations, it can give quick estimates of path amplitudes
for filtering purposes. With path filters only of order 102 distinguishable MS paths need to be
calculated to yield XAFS to within experimental accuracy of a few percent. For the near edge,
more paths (typically more than 103) are generally needed, but quite often, such a high order
MS treatment suffices to describe most XANES features, sometimes including white lines and
pre-edge structure [2, 26].
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Thermal and configurational disorder

The effects of disorder are of crucial importance in XAFS, as the approximation of a static
structure yields large overestimates of XAFS amplitudes at high energies. Indeed, it has been
known since the earliest investigations that EXAFS melts with increasing temperature. This
behavior turns out to be sensitive only to coarse details of the pair distribution function through
a Debye-Waller-like factor. However, unlike the Debye-Waller factors in X-ray diffraction,
those for EXAFS refer to correlated near-neighbor distance fluctuations. Thus a key theoreti-
cal development in in the theory was the use of the cumulant expansion of the Debye-Waller
factor, exp[−W (k, T )] = exp[−(2ik)nσ(n)(T )/n!]. This expansion yields an efficient pa-
rameterization of such thermal and configurational disorder [6,27] in terms of a few moments
or cumulants σ(n) of the correlated vibrational distribution function. The most important (har-
monic) term is the mean square variation in bond length, which leads to a gaussian Debye-
Waller factor exp(−2σ2k2) for each MS path. The thermal contributions to this factor can
often be calculated in terms of a correlated Debye model [28]. The anharmonic corrections
include the first cumulant σ(1), which is the thermal expansion, and the third cumulant σ(3),
which characterizes the skew of the pair distribution function. Relations between the cumu-
lants have been derived [29] which show that σ(1) ∝ σ2(T ) and σ(3) is also related to σ2(T ).
If the third cumulant is neglected in the analysis, bond distances obtained from EXAFS appear
too short. Additional cumulants are usually negligible. Improved treatments of XAFS Debye
Waller factors have been developed that go beyond the Debye approximation [30] now permit
fits of Debye-Waller factors to local spring constants. Another approach is to parameterize
the N -particle distribution as in the GNXAS code [31]. Molecular-dynamics approaches are
promising [32] as a less phenomenological approach, but accurate ab initio treatments require
computationally intensive, total energy calculations and remain a challenge for the future.
Another challenge is the need for better algorithms for treating disorder in full MS XANES
calculations.

14.3.2 XANES

With the representation of the Green’s function in Eq. (14.2) the XAS becomes

µ(ω) =
4πe2ω

c

∑
i,LL′

MiL(ω)ρL,L′(E)ML′i(ω) = µ0(1 + χ). (14.15)

Thus the calculations of XANES depend on both the fine structure χ and the dipole matrix
elements MiL(ω) = 〈RL|ε · r̂|i〉 where L = (κ, m) denotes a relativistic angular momentum
basis. The density matrix elements ρL,L′(E) = (−1/π)ImGL,L′(E) generally requires the
inversion of a large matrix, Eq. (14.10) when the path expansion in Eq. (14.11) converges
poorly.

Since the computational effort needed for matrix inversion in full MS calculations scales in
time as the cube of system size, XANES calculations are usually much more time-consuming
than EXAFS. Indeed, the matrix inversion approach becomes computationally intractable in
the EXAFS regime or for cases (e.g., low Z atoms) where the mean free path is very long [12].
Thus one of the big challenges in XANES theory is to increase the computational speed.
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Promising methods include the recursion method [33] repartitioning [34] and iterative ap-
proaches [35], which can provide substantial improvements on the conventional LU decom-
position. However, much more dramatic reductions are obtained from parallel computational
algorithms, which scale as A + B/N , where N is the number of processors, and hence can
provide one–two orders of magnitude further improvement [36]. Parallelization has been im-
plemented in FEFF8 with the MPI (message-passing-interface) protocol [37]. As a result
XANES calculations even for very large systems of order 103 atoms can now be carried out
in about one wall-clock hour on parallel computers with 32 processors.

14.3.3 Atomic-XAFS

As noted above [see Eq. (14.8)] the behavior of the XANES depends both on the fine structure
χ and on the absorption µ0 from the embedded atom at the absorption site with the scattering
potential vc. Although the behavior of atomic cross-sections are assumed to be structureless,
there is now both theoretical and experimental evidence for weak oscillatory structure in µ0

of atoms in condensed matter [38]. The origin of this atomic-XAFS or AXAFS [38,39] is the
scattering of a photoelectron at the periphery of an embedded atom due to intra-atomic charge
contributed from neighboring atoms. This effect is important for the analysis of EXAFS, since
if not removed by background subtraction, it would show up as a peak in the EXAFS Fourier
transform at about 1/2 the near neighbor distance [40]. AXAFS may also be important for the
interpretation of XANES since it is sensitive to the potential in the bonding region [41].

14.3.4 Photoelectron diffraction

The separable curved-wave multiple-scattering formalism of RA is also applicable to many
other spectroscopies that depend on the final state of the photoelectron. For example, for
XPD, the intensity at the detector is given by the RA expression [7](

dσ

dΩ

)
∝

∣∣∣∣∑
L,N

G
(N−1)
00,L ML(ε̂)eiδl

∣∣∣∣2, (14.16)

where the Green’s function G(E) propagates an electron from the origin to the detector at a
large distance with N scatterings, ML(ε̂) = 〈RL|ε̂ · r|c〉 is the dipole matrix element, and
the sum is over all N -leg MS paths Γ = [R∞ = RN ,RN−1 . . .0], N = 1, 2, . . . , where
R∞ = k̂R∞ is the vector to the detector. For example, for the most important direct (N = 1)
and single-scattering (N = 2) terms, the RA separable representation yields

(
dσ

dΩ

)
∝

∣∣∣∣∣∑
L

mL,c(ε̂)eiδc
l

(
YL(k̂) +

eikR(1−cos θ)

R

∑
λ

F00,λML,00
λ,00

)∣∣∣∣∣
2

. (14.17)

where F is the RA scattering matrix in Eq. (14.13). This sum can be interpreted as an ef-
fective curved-wave single-scattering amplitude for XPD. These RSMS techniques have also
been developed further for photoelectron diffraction (PD) [42]. Recently efficient Lanczos
techniques have also been developed for summing additional terms in the MS series [43].
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14.3.5 Other spectroscopies

Because the underlying physics is analogous, a similar RSMS approach can be applied to
many other spectroscopies. Examples include electron energy loss spectra (EELS) [44],
diffraction anomalous fine structure (DAFS) [45] and more recently for the the X-ray elas-
tic scattering amplitude [46]. In this latter approach, both real and imaginary parts of the
anomalous X-ray scattering amplitude are calculated simultaneously in the complex energy
plane, without the necessity of a Kramers-Kronig transform. The presence of XAFS gives
rise to very significant solid-state contributions in the anomalous scattering amplitudes, which
have been ignored in standard tables [47]. This approach also includes dipole-quadrupole
and quadrupole couplings and thus also allows calculations of X-ray natural circular dichro-
ism (XNCD) and the X-ray anomalous cross scattering amplitude (XACS) Fπσ, which are
both due entirely to solid state effects [48]. Similarly calculations of X-ray magnetic circu-
lar dichroism (XMCD) have be carried out with RSMS [49]. Calculations of XMCD for the
K-shell emphasize the importance of spin-orbit relativistic effects in the final state.

14.4 Many-body effects

14.4.1 Inelastic losses

The standard one-electron model outlined above is essentially a quasiparticle treatment, with
many-body effects incorporated into the photoelectron self-energy Σ(E). However, it has
long been known that this approximation is incomplete for XAS, since it ignores losses due to
excitations like plasmons and shake-off excitations which lead to satellites in the spectra [50].
The photoelectron-core hole interaction also influences these contributions. In this Section
we will briefly address the effects of these inelastic losses beyond the quasi-particle approx-
imation. It is traditional to differentiate two types of inelastic losses in the photoabsorption,
namely, intrinsic and extrinsic processes.

14.4.2 Extrinsic losses

Extrinsic effects refer to losses in propagation of the photoelectron and include excitations
such as plasmons, electron-hole pairs, and inelastic scattering in which the photoelectron loses
energy. As we have stressed, the inclusion of damping due to extrinsic losses is a key ingre-
dient in modern short-range-order theory of XAFS. These losses give the final photoelectron
state a finite lifetime and hence a decay of the final state, which has been accounted for phe-
nomenologically by an energy dependent mean-free-path λ(k) and hence a path-dependent
decay factor exp(−2R/λ(k)) of EXAFS amplitudes. As noted above, the extrinsic losses are
more precisely described in terms of a complex, energy-dependent self-energy Σ(E), which
gives both a real energy shift and decay from the imaginary part.

14.4.3 Intrinsic losses

Intrinsic losses, on the other hand, refer to excitations in response to creation of the core hole.
These losses are traditionally accounted for phenomenologically by a constant many-body
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amplitude-reduction factor S2
0 . However, more precisely, the amplitude reduction is energy

dependent and gives rise to a complex, path-dependent reduction factor. Although the theory
of XAFS is often couched in one-electron language, where a single electron makes a transition
from a core orbital to an excited state, the process is truly many body, as other electrons are
generally excited as well. Examples of intrinsic processes are the well known shake-up and
shake-off excitations in atoms. This secondary emission results from a relaxation of the N −1
electron Fermi sea in response to the creation of a core hole. Because both extrinsic and
intrinsic processes involve the same final states, their quantum-mechanical amplitudes can in
principle interfere, and hence one cannot simply add their transition rates. A treatment of such
intrinsic effects in EXAFS was given by Rehr et al. [50]. This treatment ignores interference
effects that can be important near the edge (as discussed below), but it appears to be adequate
for most current EXAFS calculations.

To understand the origin of intrinsic losses, consider the full many-body expression for
X-ray absorption spectrum in Eq. (14.1). In the Hartree-Fock approximation, for example, the
initial and final states are Slater determinants of one-particle states, calculated with different
self-consistent one-electron potentials, i.e., the ∆SCF approximation. The potential for the
initial state is that of the ground state, while that for the final states include a core hole and
a photoelectron. The calculations can be simplified if one assumes that the final state can be
factored, i.e., |Ψf 〉 = |Φ′

0
N−1〉|φf 〉, which is a reasonable approximation at high energies,

when the sudden approximation is valid. Then the dominant contribution to the many-body
dipole matrix element is given by

Mfi
∼= 〈φ′

f |ε̂ · r|φc〉〈Φ′N−1
0 |ΦN−1

0 〉, (14.18)

where the prime refers to states calculated in the presence of the core hole. Thus, the absorp-
tion in the lowest energy or primary channel is reduced in magnitude from the one-particle
expression by a many-body overlap integral,

S2
0 =

∣∣∣〈Φ′N−1
0

∣∣ ΦN−1
0

〉∣∣∣2. (14.19)

In this approximation, the one-electron matrix element for the primary channel is consistent
with the final-state rule, i.e., that the core orbital should be calculated with the initial ground-
state Hamiltonian and the final state with a fully relaxed core hole [5].

However, one must also take into account the contributions from the excited states. Indeed,
since S2

0 �= 1, there must be contributions from multi-electron transitions in which the (N−1)-
electron ion is left in an excited state |Φ′N−1

n 〉 with excitation energy En. The net absorption
is then given by a sum over excited states or channels n,

µ =
∑

n

µn =
∑

n

∣∣∣〈φ′
n

∣∣ ε̂ · r
∣∣ φc

〉∣∣∣2S2
n, (14.20)

where the many-body overlap integral Sn = 〈Φ′N−1
n |ΦN−1

0 〉. Also, the energy of the photo-
electron is reduced in accordance with energy conservation by the excitation energy En. The
quantity Sn is usually small (for n �= 0) and would vanish by orthogonality in the absence of
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relaxation. Thus, the total absorption from all channels can be written as a convolution of the
one-particle spectrum by a spectral function,

µ(ω) =
∫ ω

0

dω′µ(1)(ω − ω′)A(ω′), (14.21)

which is equivalent to a broadened one-particle calculation. Here µ(1) is the one-electron
spectrum and A(ω) =

∑
n S2

nδ(ω − En) is the intrinsic excitation spectrum.

14.4.4 Interference between extrinsic and intrinsic losses

Since the excitations of a system are indistinguishable, quantum interference between ex-
trinsic and intrinsic losses is also possible. For photoemission spectroscopy, for example, it
has been shown [51] that interference is strong near excitation thresholds, where the losses
strongly cancel due to the opposite signs of the coupling between the photoelectron and the
core-hole to excited states. A related treatment for XAFS has recently been developed by
Campbell et al. [52] based on an extension of work by Hedin and Bardyszewski [51]. This
theory is based on a quasi-boson (oscillator) model Hamiltonian, which includes couplings
between photoelectron and valence electrons Vpv , photoelectron and core electrons Vpc, and
valence electrons and core Vvc and only terms to second order in the coupling functions V n are
retained. The results can be formulated in terms of an effective one-particle propagator which
includes both inelastic losses and interference effects. This approach is essentially a gener-
alization of the GW approximation. However it is more general and also partly accounts for
edge-singularity effects and corrections to the final state rule. More importantly the approach
can provide semi-quantitative estimates of the XAFS amplitude reduction factor S2

0(ω) within
an electron gas model, which are in reasonable agreement with experiment. As in photo-
emission, there is appreciable cancellation of extrinsic and intrinsic losses by the interference
terms near threshold, while the strength of the primary channel increases. Thus the theory
explains the surprising weakness of multi-electron excitations in the observed XAS [52]. At
sufficiently high energies both the extrinsic and the interference contributions become negligi-
ble, and the theory crosses over to the sudden-approximation limit [50]. The limiting cases of
the theory are as follows: first, when the core-hole potential is neglected, one obtains an initial
state one-electron theory with an additional complex, energy dependent one-electron potential
Σ(ω), i.e., with only extrinsic losses; second, if there is no extrinsic scattering the interference
terms vanish and the sudden-approximation limit is recovered. This theory also leads to an
expression for the effects of inelastic losses in XAS as a convolution of the one-electron spec-
trum µ(1) similar to Eq. (14.21) but with an energy dependent, asymmetric spectral function
A(ω, ω′) and a slightly modified one-electron XAS, i.e.

µ(ω) =
∫

dω′ A(ω, ω′)µ(1)(ω − ω′). (14.22)

where the single-particle XAS is given by

µ(1)(ω) =
∑

k′>kF

∣∣∣〈k′ ∣∣ Pd
∣∣ b

〉∣∣∣2δ(ω − εk). (14.23)
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An important difference between µ(1) and the usual one-electron XAS is the presence of the
projection operator P in the dipole matrix element, which gives rise to edge singularity effects.
Above the edge P ≈ 1 and the standard one-electron expression for µ(1) is obtained. Thus
this theory provides a justification for the standard model of XAS, apart from many-body
broadening effects implicit in the spectral function.

14.4.5 EXAFS amplitude reduction factor S2
0

It is interesting to examine the effect of the losses and interference on the XAFS spectrum
using the convolution in Eq. (14.22). Each term in the MS path expansion for χ contributes a
rapidly oscillating energy dependent factor proportional to χR ∼ feff sin(2kR + Φ). The net
effect of the convolution over a normalized, positive spectral amplitude Ãeff(ω, ω′) is clearly a
decreased XAFS amplitude and a phase shifted oscillatory signal compared to the one-particle
XAFS χ(1). In particular, the effect on each multiple scattering path of effective length 2R
can be expressed as a “phasor sum” over the effective normalized spectral function,

S2
0(ω, R) =

∫ ω

0

dω′Ãeff(ω, ω′)ei2[k(ω−ω′)−k(ω)]R. (14.24)

This result is similar in form to that derived and discussed earlier by Rehr et al. [50]. However,
the effects of interference play a crucial role in the results, since the observed S2

0 is closer to
unity than in the intrinsic only model. Qualitatively the variation of S2

0 can be understood
as follows: At very low energies compared with the excitation energy the excitation terms
strongly cancel so A(ω, ω′) ≈ δ(ω − ω′) and hence, S2

0(ω, R) → 1. At high energies the
phase shift due to the excitation energy becomes negligible, and hence again S2

0(ω, R) → 1.
At intermediate energies, however, the value of S2

0(ω, R) has a minimum.

14.4.6 Local field effects

The above theory implicitly assumes that the vector potential A is that of the external X-ray
field. However, in general this external field will be screened by the dielectric response of the
material. This screening effect is usually small for very deep levels, but becomes increasingly
important for shallow levels. For example, it has been shown that such screening effects are
partly responsible for the anomalous L3/L2 transition intensity branching ratio in transition
metals, which differ markedly from the 2:1 value of one-electron theories. A useful approach
for calculating this screening is the time-dependent local density approximation (TDLDA)
[53]. As shown by Zangwill and Soven, the XAS including local field effects can be calculated
with a straightforward modification of the usual expression for the XAS of Eq. (14.7), i.e.,

µ(ω) =
4πe2ω

c

∑
v,LL′

M̃vL(ω)ρL,L′(E)M̃vL′(ω), (14.25)

where E = ω +Ev −EF is the photoelectron energy and M̃vL(ω) = 〈RL|φ|v〉 are renormal-
ized dipole matrix elements. Here φ denotes the screened dipole interaction φ = ε−1(ω)[ε · r]
where ε(ω) is the non-local dielectric matrix in the system [53]. Thus the TDLDA approach
can be straightforwardly incorporated the RSMS formalism used in FEFF8 with suitably mod-
ified dipole matrix elements.
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14.5 Conclusions

RSMS theory make possible a general treatment of XAS, encompassing both XAFS and
XANES as well as a number of other X-ray spectroscopies. The current state of XAFS is
now highly quantitative and is widely used for theoretical simulations and experimental anal-
ysis. Significant progress has also been made in XANES theory. In particular a standard one
electron model for XAS based on RSMS and a screened core hole is generally satisfactory
for XAS spectra, except near the edge. Many-body corrections can be incorporated in terms
of a convolution over an excitation spectral function. Improved treatments of the scattering
potential going beyond the muffin-tin approximation and better many-body treatments which
includes more accurate calculations of core-hole and excitation processes are still desirable;
however, efforts along these lines are currently in progress.
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15 X-ray optics, standing waves, and interatomic effects in
photoemission and X-ray emission

Charles S. Fadley, See-Hun Yang, Bongjin Simon Mun, and F.J. García de Abajo

15.1 Introduction

Optical effects in photoemission are discussed from a theoretical point of view elsewhere in
this Handbook (Chapter 2, Section 2.8), but we here focus on the special case of soft X-
rays in the energy range of approximately 200 eV to 1,500 eV incident on surfaces or other
nanostructures so as to excite photoelectrons or secondary decay processes such as X-ray
emission or X-ray inelastic scattering. The aim will be to consider ways in which these optical
effects can be used at both non-resonant and resonant energies to more quantitatively probe
surfaces, buried interfaces, and more complex nanoscale materials. We will begin with a brief
review of the history of such studies, and then turn to recent examples of experimental results
and theoretical simulations.

The theoretical calculations presented here will be mostly at the level of macroscopic
optics, fundamentally based on the Fresnel equations as applied via a complex dielectric con-
stant. However, at another extreme in discussing resonant interactions, a much more general
and fully quantum mechanical picture will be used, with this one being reduceable to the first
one in the limit of weak light-atom interaction, as is generally the case for soft X-rays, even at
resonant energies.

We begin by considering non-resonant effects; that is, where the X-ray energy is not close
to any sort of core-level absorption edge in any of the atoms present in the sample. Then we
consider resonant effects.

15.2 Non-resonant X-ray optical effects in photoemission

15.2.1 Background and first applications in the total reflection
geometry

The first discussions of X-ray optical effects on photoemission in the soft X-ray regime were
by Henke [1]. In this seminal work, he pointed out that the penetration depths of X-rays in
the 1 keV range are reduced to a few tens of Å when the incidence angle is lowered into
the total reflection regime. The complex index of refraction n can be written as n =

√
ε =

1− δ + iβ [2], with ε equal to the dielectric constant and δ and β the small real and imaginary
differences of n from unity, both assumed in the soft X-ray regime to be � 1 in magnitude.
In this description, the onset of significant reflectivity occurs at a critical incidence angle
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of θc
inc =

√
2δ. Figure 15.1 shows some of the results of this first study. In Fig. 15.1(a),

the penetration depth, which we shall take to be the exponential decay length perpendicular
to the surface, is shown for three X-ray energies in the soft X-ray regime as the incidence
angle goes into the total reflection regime. It is clear that the penetration depths decrease to
values comparable to, or even smaller than, the X-ray wavelength, and to typical photoelectron
inelastic attenuation lengths, and this immediately suggests using total reflection geometries
to enhance surface sensitivity in photoemission or other related spectroscopies excited by soft
X-rays. Jumping to the present time, we note that calculations of such depths for non-resonant
energies can be conveniently carried out with the aid of online computer programs [3]. Henke
went beyond this to note that the combined effects of reflection and refraction at the surface
caused an enhancement of photoelectron intensity as one enters the total reflection regime,
as shown in Fig. 15.1(b). This enhancement could be quantitatively predicted from optical
theory via the Fresnel equations and the experimental curve in fact used to determine the
optical constants δ and β, as shown in Fig. 15.1(c).

Figure 15.1: Results from the first study of non-resonant soft X-ray optical effects in photoemis-
sion by Henke. (a) The calculated variation of the exponential X-ray decay length (penetration
depth) below the surface of Au for three different photon energies. (b) The variation in Au 4f
photoelectron intensity as a function of X-ray incidence angle for a thick Au film deposited
on glass. Note the increase in intensity in passing over the critical angle. (c) Comparison of
experiment and X-ray optical theory for the intensity enhancement noted in (b). [From ref. [1].]
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This work stimulated immediate interest in using such surface enhancements to charac-
terize overlayers, and Fig. 15.2 summarizes some of these early results due to Mehta and
Fadley [4, 5]. In Fig. 15.2(a), the sensitivity of the surface enhancement to even the small
changes in photoelectron inelastic attenuation length from one kinetic energy to another are
illustrated via the measurement of peak intensity ratios in photoemission from Au as the total
reflection regime is approached. In Fig. 15.2(b), the ability to determine overlayer thick-
nesses is illustrated for an SiO2 overlayer grown on a single-crystal Si substrate. Oscillatory
scanned-angle X-ray photoelectron diffraction (XPD) effects are also evident in these data,
due to photoelectron scattering in the substrate.

This work led sometime later to renewed interest in such effects as an adjunct in surface
analytical studies, via work by Kawai and co-workers [6, 7] and Chester and Jach [8, 9]. In
these studies, it was also pointed out that the concentration of X-ray flux near the surface for
low incidence angles had the additional beneficial effect of significantly reducing the relative
intensity of inelastically scattered electrons that underlies all photoelectron spectra. That is,
since photoelectrons are preferentially created in a near-surface region of thickness compara-
ble to their inelastic mean free paths, they will have less chance to inelastically scatter before
escaping the surface. This effect is illustrated in Fig. 15.3 [10] for the case of a lightly ox-
idized Si surface. The overall benefits of being able to work in a total reflection geometry
in laboratory XPS experiments has by now led to the availability of a commercial instrument
specifically built for this purpose [10]. But beyond this, the inherently collimated nature of
soft X-ray beams from any synchrotron radiation source and the ease with which most sample
manipulators can vary the incidence angle through simple polar angle rotation make this type
of experiment of obvious utility in many surface and interface studies.

15.2.2 Standing wave effects for probing buried interface and
nanostructures

It is well known that, as soon as any significant reflectivity occurs at a solid surface, a standing
wave will be set up as an interference between the incident plane wave and the outgoing re-
flected plane wave. The fundamental process is illustrated in Fig. 15.4(a), together with some
fundamental relationships between incidence angle (= reflected angle) and standing wave pe-
riod. Such standing wave effects have been used for some time in the hard X-ray regime of
about 10 keV for studying surface structures and overlayers [11–13]. Here, the standing wave
formed by X-rays with wavelength of about 1 Å via Bragg reflection from various low-index
planes can be varied in position by rocking the incidence angle around the Bragg angle, thus
yielding atomic positions with sub-Å accuracy [11, 12], or by going into total reflection, a
simple standing wave of the type indicated in Fig. 15.4(a), but of longer wavelength due to the
small incidence angle may be established and used to determine distances above a surface [13].

We will here consider similar experiments with soft X-rays of approximately 10–60 Å
(1–6 nm) in wavelength, as this is the range most relevant to exciting typical photoemission
or soft X-ray emission/inelastic scattering spectra. In this case, the use of grazing angles
below the critical angle is always possible, but the standing wave in this case will have a very
long wavelength, since from Figs. 15.1(a) and 15.4(a) the relationship λSW = λx/2 sin Θinc

yields a standing wave period of roughly 3-10 times the X-ray wavelength, too large to probe
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Figure 15.2: Some first applications of non-resonant X-ray optical effects. (a) Observation of
the difference in inelastic attenuation lengths for different core-level photoelectron peaks from
Au through the dependence of intensity ratios as a function of X-ray incidence angle. The
observed change in these intensity ratios is due to the fact that the X-ray penetration depth de-
creases to values comparable to the electron inelastic attenuation lengths. Two different choices
of attenuation lengths are shown for the theoretical simulations to indicate the sensitivity of
these ratios to this parameter. [From ref. [4].] (b) Observation of the change in the ratio of
two chemically-shifted peaks from an oxidized Si sample as X-ray incidence angle is decreased.
Also evident are oscillatory scanned-angle photoelectron diffraction effects. [From ref. [5].]

on the nanometer scale that is most attractive. It has thus been proposed to use a synthetic
multilayer mirror of suitable period to Bragg reflect soft X-rays so as to generate a strong
standing wave with λSW of a few nanometers, and then to utilize the standing wave profile
above the surface in both photoemission [14–17] and X-ray absorption spectroscopy [18].
This type of reflection is illustrated in Fig. 15.4(b), from which it is clear that the standing
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Figure 15.3: Reduction of inelastic background in XPS spectra with total reflection, from a
slightly oxidized Si sample with a C-containing contaminant overlayer. [From ref. [10].]

wave period in first-order Bragg reflection is simply the periodicity of the multilayer dML.
Present synthetic methods permit making such mirrors with periods down to about 3 nm, and
with top-surface rms roughnesses of only 0.5 nm. Thus, they can be used as substrates of
reasonably high quality on which to grow various types of samples for study. The multilayer
mirror is in this context simply used as a standing wave generator (SWG).

Note also from Fig. 15.4(b) that, in the region of space above the surface in which the
incident and reflected waves overlap and interfere to form the standing wave, the modulation
strength of the standing wave goes roughly as the square root of the X-ray reflectivity Rx.
Adding the incident and reflected waves in a more accurate mathematical way in fact shows
that the maximum amplitude of the modulations in the standing wave should be ±2

√
Rx, or a

full normalized modulation around a unit incident intensity of 4
√

Rx. Thus, even a reflectivity
of 5% can give a standing-wave modulation of something like 40%, provided the phase shift
between incident and scattered waves is not too large (as is in fact found in realistic numerical
calculations [19]). With the correct choice of materials, in particular one of lower electron
density and X-ray scattering power (e.g. B4C) and the other of higher density (e.g. W),
1st order Bragg reflection can thus yield X-ray reflectivities Rx of 5-30% corresponding to
standing wave modulation strengths of roughly 40-100% as measured relative to the incident
wave, through the reasoning argument mentioned above.
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Figure 15.4: Basic geometry of standing wave formation. (a) General picture of standing wave
formation, regardless of reflection type. (b) Standing wave formation in reflection from a multi-
layer mirror. Various key quantities and relationships are indicated in both panels.

Before considering some first experimental results of this type in photoemission, we briefly
introduce the theoretical modeling of such non-resonant X-ray optical processes, as included
in a computer program written by Yang [19]. The various ingredients necessary are illustrated
in Fig. 15.5, here shown for a general multilayer system. Each layer is described by some
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index of refraction ni. Interfaces can have graded dielectric properties, with single and multi-
ple reflection and refractive transmission at each interface gradation being included. Once the
optical calculation is taken to convergence, the squared strength of the electric field appropri-
ate to the excitation of photoemission is calculated at each depth z. |E(z)|2 is then used to
modulate the appropriate product of atomic density and photoelectric subshell cross section
and inelastic attenuation factor on passing to the surface, with the end result being both the
distribution of photoelectron intensity as a function of depth, and the total intensity as well by
integration over depth. Refraction of the photoelectrons on crossing the barrier of the inner
potential is also included. The same program can also be used to calculate soft X-ray emis-
sion intensities as a function of depth, with the only difference being the final inclusion of a
different attenuation length due to absorption.

Figure 15.5: Calculation of X-ray optical effects on photoemission and soft X-ray emission.
Various key ingredients are labelled. [From ref. [19].]

Some results from these calculations for a B4C/W multilayer [19] are shown in Fig. 15.6.
Note the strong standing wave modulation for incidence at the Bragg angle, and the change in
the depth distributions of C 1s and W 4f photoelectron intensities on going from the situation
with no standing wave at the right to the Bragg condition at left. The C 1s emission has its
maximum in the center of the first B4C layer with the standing wave, whereas it is a maximum
at the surface without the standing wave. The W 4f distribution shows the opposite effect,
being compressed nearer the B4C/W interface with the standing wave. These results thus
qualitatively indicate the kind of depth distribution modification that can be affected by using
a soft X-ray standing wave for excitation.
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Figure 15.6: X-ray optical calculations of standing wave effects on the depth distributions of
electric field strength and photoelectron intensity from a multilayer mirror composed of alter-
nating layers of B4C and W. The right panels show the depth distributions when the incidence
angle is far from the multilayer Bragg angle, and the left panels the distributions at the Bragg
angle. Note the strong standing wave created at the Bragg condition, and the influence on both
the C 1s and W 4f depth distributions. [From ref. [19].]

As a recent first example of the application of this approach, we consider a study by
Yang et al. [16] and by Mun [17] of the buried interface between Fe and Cr, a prototypical
pair of ferromagnetic and non-magnetic metals, respectively, that has been much studied in
connection with the giant magnetoresistance (GMR) effect. The basic configuration of the
experiment is shown in Fig. 15.7. The sample to be studied, an Fe/Cr bilayer, was grown
on top of a multilayer mirror consisting of 40 periods of B4C/W bilayers, with a period of 4
nm each. Thus, the standing wave above the multilayer will have a period also of 4 nm (cf.
Fig. 15.4(b)). Beyond working with X-ray incidence angles near the first-order reflection of
the B4C/W multilayer mirror, the Cr layer underneath a constant-thickness Fe overlayer was
grown in a wedge form. As one key part of the experimental procedure, the variation of the
wedge thickness from 38 Å to 116 Å over a sample width along the x direction in Fig. 15.7 of
about 10 mm, together with the small X-ray spot size of 0.2 mm, permitted carrying out the
experiment for a range of positions of the standing wave with respect to the buried interface.
That is, as the sample is scanned along x, the standing wave is effectively scanned vertically
with respect to the interface, provided that the Fe/Cr bilayer does not influence the position of
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the standing wave. For a choice of photon energy that avoids any resonances in Fe or Cr, the
desired “pinning” of the standing wave position by the multilayer mirror has been verified by
direct calculations, as illustrated in Fig. 15.8. Even though the reflectivity is attenuated from
about 9% to about 4% over the wedge, the Bragg position remains very constant at 11.15◦,
and this change in reflectivity would only change the estimated standing wave modulation (via
the 4

√
Rx estimate mentioned above) from about 60% to about 40%.

Figure 15.7: Basic geometry of an experiment combining soft X-ray excitation of photoemis-
sion with a wedge-shaped bilayer sample grown on a multilayer-mirror standing wave generator
(SWG) so as to selectively study the buried interface between Fe and Cr. Scanning the sam-
ple position along the x axis effectively scans the standing wave through the interface. [From
ref. [16].] See also color figure on page 469.

As in prior standing wave studies, it is also possible in such SWG+wedge experiments
to scan the incidence angle around the Bragg angle, which is well known to both vary the
position of the standing wave and to reduce its amplitude for angles away from the Bragg
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Figure 15.8: Calculated reflectivity for the sample geometry of Fig. 15.7: a wedge-shaped Fe/Cr
bilayer on top of a 40-period multilayer mirror composed of bilayers of B4C and W. Note that,
although the reflectivity is attenuated by thicker Cr layers, the position of maximum reflectivity
is pinned at the same angular position by reflection from the multilayer. [From refs. [16], [17],
and [19].] See also color figure on page 470.

angle [18]. This provides a second method for varying the position of the standing wave with
respect to the interface, which, together with scanning the sample in x (cf. Fig. 15.7), should
yield an overdetermined set of data that can be analyzed in terms of models for composi-
tion and magnetization variation through the interface. We illustrate this complementarity of
measurement schemes for the Fe/Cr case in Fig. 15.9, where the Cr3p/Fe3p intensity ratio is
shown as a function of both incidence angle for various choices of Cr thickness (Fig. 15.9(a))
and Cr thickness for various choices of incidence angle. These results have been analyzed in
terms of the simple model shown at left in Fig. 15.10(a) and they lead to a determination of the
onset of the Fe/Cr interface at 12.8 ±2 Å depth and an overall interface mixing or roughness
of 6.8 ±2 Å in thickness. The center of the interface is thus measured in this way to be at
12.8 + 3.4 = 16.2 Å, in excellent agreement with the 15 Å expected from the quartz crystal
thickness monitor used to deposit this layer.
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Figure 15.9: Experimental results for the Cr3p/Fe3p intensity ratio from the sample of Fig. 15.7
as a function of both (a) X-ray incidence angles centered on the Bragg angle (rocking curves)
and (b) the thickness of the Cr layer. These data can be analyzed to determine the composition
variation through the interface, via the simple two-parameter linear model at left in Fig. 15.10(a)
and X-ray optical calculations of photoemission intensities as outlined in Fig. 15.5 and accom-
panying text, with the solid curves in (a) and (b) representing the final best fits. [From ref. [16].]

One can also measure magnetic circular dichroism for this Fe/Cr example by exciting
core level Fe 2p and 3p and Cr 2p and 3p spectra with circularly polarized radiation. The
nature of the MCD measurement means that ferromagnetic order will be detected only along
the y direction in Fig. 15.7 that is nearly parallel to the light incidence direction due to the
low Bragg angle of about 11o. Some of this data for 2p emission and two Cr thicknesses
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Figure 15.10: Non-destructive depth-resolved determination of composition and magnetization
profiles via standing-wave excited photoemission. (a) Sample geometry together with the mod-
els used to fit both the Cr3p/Fe3p intensity ratio of Fig. 15.9 (left side–linear model) and the
Fe 2p and 3p and Cr 2p and 3p magnetic circular dichroism (MCD) data of Fig. 15.11 (right
side–gaussian or half-gaussian models) are shown, together with the final best fits to the MCD
data. Note that only two parameters are used in the X-ray optical calculations for each set of
data: a position and a width, and that the five sets of data (Cr3p/Fe3p, Fe 2p MCD, Fe 3p MCD,
Cr 2p MCD, and Cr 3p MCD) have been analyzed independently. (b) Summary of the Fe 2p and
3p and Cr 2p and 3p MCD data, together with the best fits to experiment, and curves indicating
how much the calculated curves change for 3 Å changes in the two parameters involved in each
fit. [From ref. [16].]

denoted Positions B (standing wave a maximum at the Fe/Cr interface) and C (standing wave
a minimum at the interface) is shown in Fig. 15.11. The right-circular-polarized (RCP) and
left-circular-polarized (LCP) spectra are shown for both Fe and Cr, together with the difference
as the magnetic circular dichroism (MCD) in %. Although the Cr dichroism is much smaller
than that of Fe (a few % for Cr versus 10-15% for Fe) there is nonetheless clear evidence for
some ferromagnetic ordering of Cr, even though it is normally not ordered in this way, but
rather weakly antiferromagnetically ordered (with a transition temperature of 311 K near that
at which these measurements were carried out), in which case the MCD should be zero.
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The fact that the sign of the Cr dichroism is opposite to that of Fe also immediately in-
dicates that the Cr ferromagnetic ordering induced by the Fe is opposite in direction to that
of Fe, as qualitatively indicated in Fig. 15.10(a). It is also clear that varying the position of
the standing wave (e.g. from Position B to Position C) affects the relative magnitudes of the
MCD signal, with that of Fe increasing at C and that of Cr decreasing. Similar results were
obtained for 3p emission from both Fe and Cr, and the overall experimental data are shown in
Fig. 15.10(b), together with best-fit curves based on X-ray optical calculations in which the
two parameters for each of the four sets of MCD data shown at right in Fig. 15.10(a) were
varied. At right in Fig. 15.10(a) are also summarized the best-fit numbers, and it is interesting
that the onset of reduction of the Fe ferromagnetism in approaching the interface occurs just
where the Fe3p/Cr3p ratio analysis yields a reduction in the Fe atomic fraction. The Fe ferro-
magnetism also is found to go to zero at the point in the interface at which its atomic fraction
drops to 0.5. The Cr by contrast shows its slight ferromagnetic ordering over only a narrow
layer about one atomic layer in thickness, and about one atomic layer below the interface
mixing region.

Further details concerning this standing wave study of the Fe/Cr interface can be found
elsewhere [16, 17].

Figure 15.11: Magnetic circular dichroism measurements for Fe 2p and Cr 3p emission from the
bilayer of Fig. 15.7, at two choices of Cr thickness that lead to having a standing wave maximum
and a standing wave minimum at the buried interface (Positions B and C, respectively at left).
[From ref. [16].]

Although these are at present the only published experimental data of their kind, they
suggest some exciting future possibilities for selectively studying buried interfaces or other
vertically heterogeneous nanostructures with photoemission or other soft X-ray excited spec-
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troscopies such as soft X-ray emission. Soft X-ray emission (at least at non-resonant energies)
has an advantage over photoemission in probing more deeply, thus being more sensitive to the
standing wave modulation below the surface, and we return to consider it more specifically in
a later section. Beyond studying multilayer structures of relevance to magnetism and semi-
conductor device technology, one can suggest looking at self-assembled monolayers or other
nanocrystalline objects grown or somehow deposited on the top surface of a suitable SWG.
Combining spectromicroscopy using soft X-rays, which at present yields two-dimensional in-
plane information, with standing wave excitation by again growing the sample on an SWG,
could yield information on the third dimension perpendicular to the sample surface plane, a
topic to which we return below also.

15.3 Resonant X-ray optical effects and multi-atom
resonant photoemission

15.3.1 General considerations

On passing through a core-level absorption edge or resonance, the absorption coefficient can
increase dramatically, and this will be reflected also in the index of refraction via an increase
in β and concomitant changes in δ that are derivable via a Kramers-Kronig analysis [3(b)].
As an example of this, we show in Fig. 15.12 the variation of β and δ which arise in crossing
the Mn L2,3 = Mn 2p1/2,3/2 absorption edges in MnO. Since X-ray absorption at the 2p
resonances of the 3d transitions metals is much studied, especially in magnetism-related work
with dichroism, this type of data is of high relevance. We can see that both β and δ increase by
at least an order of magnitude in crossing these resonances, although they are still in magnitude
always much less than unity, and in fact do not exceed 1% in magnitude, a fact which we will
use later in making some simplifications in the optical analysis.

What effect will such resonant phenomena have on photoemission or other soft X-ray
excited spectroscopies? In order to calculate this for a homogeneous, semi-infinite solid, we
first follow the X-ray optical analysis of Yang [35] and Kay et al. [20], and then discuss
the same phenomena in terms of a microscopic theory of multi-atom resonant photoemission
[20–22].

15.3.2 Resonant X-ray optical theory

The resonant X-ray optical (RXRO) approach proceeds via the same basic ideas illustrated for
a multilayer system in Fig. 15.5, except that we simplify to the homogeneous, semi-infinite
solid with index of refraction n and a sharp vacuum-solid interface. The effect of the resonance
is assumed to influence only the local electric field E at some depth z below the surface of the
sample, with the associated differential photoelectric cross section dσ/dΩ varying only slowly
through the resonance, as described by the usual one-electron theory [23]. The variation of
photoemission intensity with photon energy I(hν) is then obtained by integrating over the
coordinate z perpendicular to the surface the product of the electric field strength |E(hν, z)|2
at depths z relevant for photoemission, the energy-dependent differential photoelectron cross
section dσ/dΩ appropriate to the experimental geometry (which may also in the experimental
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Figure 15.12: The optical constants β and δ of MnO as the Mn 2p absorption resonances are
crossed, The solid experimental curves were derived from an experimental determination of
the absorption coefficient and subsequent Kramers-Kronig transformation of the results. Also
shown are dashed theoretical curves based on the microscopic theory of multiatom resonant
photoemission (MARPE). [From refs. [20] and [22].]

data include the effects of photoelectron diffraction (PD) that result in modulations beyond the
simple atomic cross section [24], as seen already in the scanned-angle data of Fig. 15.2(b))
and the kinetic-energy-dependent inelastic attenuation length for electrons Λe, as

I(hν) ∝ dσ(Ê, hν)
dΩ

∫ ∞

0

| �E(hv, z)|2 exp
(
− z

Λe(Ekin) sin θ′e

)
dz, (15.1)

where Ê is a unit vector along �E and accounts for the polarization dependence in the cross
section, and we have not included factors of atomic density and the solid angle acceptance of
the analyzer that will be constant over an energy scan. In scanning photon energy through a
resonance, it is also possible that scanned-energy photoelectron diffraction effects will cause
intensity modulations [24], and these we will in fact see below.

Via an analysis based on the Fresnel equations [19, 20], it can finally be shown that the
integral in Eq. (15.1) reduces to

I(hν) ∝ dσ

dΩ
(Ê, hν)

|t(hν)|2
Im{4πn(hν) sin θ′

inc(hν)}
λx(hν) + 1

Λe(Ekin) sin θ′
e

, (15.2)
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where the quantity t for p-polarized radiation incident on a planar surface from vacuum with
nv = 1, and for a conducting or non-conducting, but non-magnetic, reflective medium, is
given by

t ≡ 2 sin θinc

sin θ′inc + nr sin θinc
, (15.3)

with θ′inc equal to the complex angle of propagation below the surface, again measured relative
to the surface, θ′e the real angle of propagation of the electron below the surface before allow-
ing for possible refraction effects in crossing the inner potential barrier V0, and λx the wave-
length of the radiation. θ′inc is further related to θinc via Snell’s Law: cos θinc = nr cos θ′inc,
with θimc real. Eqs. (15.2) and (15.3) are completely general formulas for calculating photo-
emission, with all dependences on energy explicitly indicated. Beyond optical constants such
as those in Fig. 15.12, the only other inputs needed are radial matrix elements and phase shifts
for calculating dσ/dΩ [23] and the electron inelastic attenuation length Λe, which we have
evaluated for the O 1s photoelectrons leaving MnO using a well-established semi-empirical
formula [25]. Henke [1] has carried out the same analysis using a somewhat different for-
malism, with simplifications going beyond the equivalents of Eqs. (15.2) and (15.3) that are
reasonable in view of his dealing with non-resonant cases.

Figure 15.13 now presents results from using Eqs. (15.2) and (15.3) for the case of MnO
with the optical constants of Fig. 15.12. The assumed experimental geometry is indicated in
Fig. 15.13(a). In Fig. 15.13(b), it is obvious that the penetration depth is drastically decreased
on going through the Mn 2p absorption resonances. In fact, its maximum for an energy just
at the Mn 2p3/2 resonance is only approximately 130 Å for normal incidence, as illustrated in
more detail by the solid curve in Fig. 15.14(a). On going to lower angles of incidence com-
parable to or below the critical angle at the Mn 2p3/2 resonance of

√
2δ ≈ 7◦, this decrease

is even more dramatic, with X-ray penetration depths of only about 20 Å that are comparable
to electron inelastic attenuation lengths [25]. Thus, the surface sensitivity of any soft X-ray
spectroscopic measurement can be significantly affected in passing over such resonances. For
comparison, we also show as the dashed curve in Fig. 15.14(a) a calculation from the Berkeley
Center for X-ray Optics (CXRO) web program [3(a)] , which makes use of standard tabula-
tions of the optical constants that do not fully include edge resonance effects [3(b)]. There
is a dramatic difference between these two curves, making it clear that a proper allowance
for the exact form of the absorption features is essential for properly estimating X-ray pene-
tration depths. As a test of the accuracy of our calculation method, we compare our results
off-resonance with those from the CXRO program off-resonance, and with the same optical
constants, and the two curves are identical. Fig. 15.13(d) also shows that reflectivity is signif-
icantly enhanced on passing through these resonances, which from our previous discussion of
course also implies an enhanced standing wave above the surface.

More interestingly from a spectroscopic point of view is the variation of the O 1s inten-
sity on passing through these resonances, which is shown in Fig. 15.13(c). These calculations
predict strong variations of photoelectron intensity as the X-ray incidence angle is decreased
toward the total reflection regime, but which nonetheless persist to some degree up to inci-
dence angles of 30–40◦ with respect to the surface. Such effects have in fact been observed
for MnO, as illustrated in Fig. 15.15(a) and 15.15(b). Figure 15.15(a) first shows a broad scan
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of the O 1s intensity over an energy region including the Mn 2p resonances, for an incidence
angle of 20◦. The most obvious feature here is a strong modulation of the intensity due to
scanned-energy photoelectron diffraction effects [24], but on top of this at the position of the
strongest 2p3/2 resonance at 640 eV is a modulation that is about 25% of the overall PD ef-
fect. Figure 15.15(b) shows similar data at an incidence angle of 10◦ and over a narrower
energy window, and the resonance effects, measured as the overall + and - excursion are now
considerably larger, being for example about 25% of the intensity just below the resonance,
which has been set equal to unity in both Figs. 15.15(a) and 15.15(b). This marked increase
is consistent with Fig. 15.13(d) in that the effects seen there also increase strongly on going
to lower incidence angles, and we note that the 10◦ of Fig. 15.15(b) is furthermore not too far
from the previously-estimated critical angle on the Mn 2p3/2 resonance of 7◦. Also shown in
Fig. 15.15(b) are the results of an X-ray optical calculation based on Eqs. (15.2) and (15.3)
and, if allowance is made for the general curve in the experimental data due to PD effects,
there is in general excellent agreement as to both the % effects (which have not been adjusted
between experiment and theory) and the fine structure in the resonance-induced modulations
for both the 2p3/2 and 2p1/2 features. Figure 15.15(c) shows the variation of the overall excur-
sion with incidence angle, and compares the experimental data points with XRO calculations.
Again, there is in general excellent agreement, together with a prediction that there will be
effects of at least a few % even for normal X-ray incidence. Finally, in Fig. 15.15(d) we show
similar results for O 1s emission from a NiO(001) surface [26], but at an even lower 5◦ inci-
dence angle, and here the experimental and theoretical curves are nearly identical, with both
leading to a modulation of about 86%. These data in fact show that an earlier search for such
resonant effects in NiO [27] was done at too high an incidence angle and with insufficient
statistical accuracy to resolve them.

As a final comment on the systematics of effects such as those seen in Figs. 15.15(c)
and 15.15(d), it has been pointed out by Kay et al. [20] that the modulation of photoelectron
intensity has a form very similar to the optical constant δ, and that, with certain simplifications
reasonable in view of the small magnitudes of both δ and β, Eqs. (15.2) and (15.3) lead to a
photoelectron intensity that is overall proportional to 1+δ, at least within the range of incidence
angles under consideration here.

In summary up to this point, significant X-ray optical effects occur on passing through
absorption resonances, especially for incidence angles close to the critical angle, but in fact
also leading to a complex modulation of photoelectron intensities which in the low-incidence-
angle limit are similar in form to the variation of δ.

15.3.3 An alternative viewpoint: multiatom resonant photoemission
(MARPE)

We now look at resonant effects from a different viewpoint, treating them in a more general
way as interatomic multiatom resonant photoemission (MARPE) [20–22]. This viewpoint is
thus different from normal resonant photoemission, which involves only orbitals on a single
atom [28, 29], and which can be termed single-atom resonant photoemission (SARPE) by
comparison. This topic has also been introduced in Chap. 2 of this book (cf. Fig. 1.13), but
we will amplify on it here.
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Figure 15.13: Resonant X-ray optical calculation for the experimental geometry in (a) of: (b)
the X-ray penetration depth = exponential decay length Λx, (c) the O 1s photoelectron inten-
sity, and (d) the reflectivity Rx. These calculations were carried out for p-polarized radiation
incident on a flat MnO surface and photon energies were scanned through the Mn 2p absorption
resonances. The plots in (a), (b), and (c) are all shown as a function of both photon energy and
incidence angle. [From ref. [19].] See also color figure on page 471.

The basic process envisioned is shown in Fig. 15.16(a). A single photon absorption pro-
cess involves both direct excitation of a photoelectron from the atom at left and a resonant
excitation via a strong bound-to-bound absorption resonance on the atom at right. If the ab-
sorption resonance were on the atom at left, we would have normal SARPE, but for the case
shown in Fig. 15.16(a), the resonances can occur on various atoms around a given emitter, and
hence this becomes both interatomic and multiatom. We will also implicity consider that both
of the excited levels involved are core in character, although similar effects can in principle
occur between more weakly bound electronic levels situated on two different atoms, as we
discuss below.

The theory of MARPE has been explored in detail elsewhere [20, 22], and for the case of
O 1s emission from MnO dealt with in Figs. 15.13(c) and 15.15(a),(b),(c), the energy levels
and basic matrix elements involved are as illustrated in Fig. 15.16(b). In brief summary, if the
system is initially prepared in its many-body ground state |g〉, the contribution of the direct or
unscattered wave function (that is, neglecting any sort of photoelectron diffraction effect) to
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Figure 15.14: X-ray penetration depth in MnO as a function of incidence angle, for a photon
energy (a) on the Mn 2p3/2 resonance of Fig. 15.12, and (b) below this resonance. The curve
labelled CXRO is calculated using tabulated optical constants that do not allow for the full effect
of the Mn 2p3/2 resonance [3(a)] . In (b), the two identical curves are from ref. [3(a)] and this
work, and used identical optical constants. [From refs. [3(a)] and [19].]

the photoelectron intensity can be written
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where �ke is the photoelectron wave vector, φ0
k(r) is the wave function at the detector, Ylµ is a

spherical harmonic, k̂e is a unit vector along �ke, h
(+)
l (kr) is a spherical Hankel function, and

MElµ = 〈Elµ, O1s |T | g〉 (15.5)

is the matrix element describing the transition to the final state with a photoelectron |Elµ〉 of
energy E = �

2k2/2m and an O 1s hole. Final-state photoelectron diffraction effects can also
be incorporated in this model by using MElµ as input for self-consistent multiple-electron-
scattering equations. If we keep only terms up to second order in in the perturbing potential V
that is involved in T , it reduces to the well-known Kramers-Heisenberg formula for resonant
photoemission [28, 29]

T = V 0
rad +

∑
j,m

V j
AI

|m, j〉 〈m, j|
�ω + Eg − Em + iΓm/2

V j
rad, (15.6)
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Figure 15.15: Resonant soft X-ray effects on O 1s emission from MnO and NiO on crossing the relevant
transition-metal 2p absorption edges. (a) O 1s emission at a 10◦ exit angle from an MnO single crystal
with (001) surface orientation, with photon energy scanned over a broad range which also reveals strong
photoelectron diffraction (PD) effects. The dashed curve is as measured, and the solid curve is after
correction for detector non-linearity. (b) As (a), but for a smaller energy range and with a 5◦ exit angle.
Also shown are theoretical curves from the X-ray optical model and the microscopic MARPE theory with
and without consideration of multiple scattering in the matrix elements. (c) The calculated variation of
the overall ± excursion of the resonant effect in crossing the Mn 2p3/2 absorption edge as a function of
X-ray incidence angle is compared to experimental data at four points. (d) As (b), but for O 1s emission
from NiO(001) and with experiment corrected via the removal of a smooth PD curve and both curves
renormalized to agree at the left and right ends. Note that the % variations in both experiment and theory
have not been adjusted in any of the panels here. [From refs. [20] and [26].]

where V 0
rad is the interaction of the radiation with the emitter, V j

rad is the interaction with the
resonating atom j, V j

AI is the autoionizing Coulomb interaction (cf. Fig. 15.16(b)) between
the emitter and atom j, Eg is the ground state energy, and the sums are over both Mn atoms j
and their intermediate many-body states |m, j〉 of energy Em and width Γm. A fully general
theory of MARPE should also include exchange effects in the matrix elements above, but we
expect them to be negligible for the cases we are treating. There is also a formal connection
between MARPE and interatomic Auger electron emission, since the same sorts of matrix el-
ements are embedded in the expressions describing both. However, the overall processes are
fundamentally different, since the interatomic Auger process can be viewed as a a two-step
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Figure 15.16: (a) Illustration of the basic process occurring in multiatom resonant photoemis-
sion (MARPE). (b) Additional diagram of the electronic transitions involved in the MARPE
process, for the specific case of O 1s emission from MnO and with the photon energy passing
over the Mn 2p3/2 absorption resonance. [After refs. [20] and [22].] See also color figure on
page 472.

phenomenon: creation of the initial hole on a neighbor atom, and then decay of this hole so as
to eject an electron from the central atom. A related process is interatomic excitation transfer
following the formation of an inner valence hole (compared to a core hole in typical inter-
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atomic Auger or MARPE), as recently discussed by Cederbaum and co-workers for atomic
and molecular clusters, referred to as interatomic coulomb decay (ICD) [30] and for which
experimental evidence has recently been published [31].

We now note two special points that have been considered previously and which make the
theory of MARPE in the soft X-ray regime different from other processes occurring at lower
excitation energies:

• the shorter wavelengths for soft X-ray excitation imply that retardation effects must be
considered in the interaction with the external radiation and in the autoionization inter-
action, and

• the interatomic autoionization interaction must be generalized to the fully-relativistic
Møller formula used previously in high-energy Auger theory [32].

In particular, retardation and relativistic effects lead to a dependence of the interatomic in-
teractions on interatomic distance r12 as k2/r12 (see Eq. (15.8) below). Here k is the mo-
mentum of the exchanged photon (dotted orange line in Fig. 15.16, which is sufficiently large
in core-level MARPE to make this leading term significant (actually it is dominant at large
separations in the MnO example discussed below). This is not the case in ICD [30,31], where
the exchanged photon energy is small, so that the leading term in the interatomic interaction is
provided by the non-retarded dipole-dipole expression, which behaves like 1/r3

12. A similar
behavior in interatomic interactions at low-energy transfers is known as the Forster effect [33].
The transfer rate in the Forster effect is ruled by the square of the interatomic interaction, and
therefore, it has been observed to decay like 1/r6

12 [33(b)]. A more detailed dicussion of the
differences between MARPE and the Forster effect appears elswhere [34].

At the level of MARPE theory introduced here, the treatment should be capable of de-
scribing all many-electron interactions up to second order in the perturbation via Eq. (15.6),
or up to arbitrary order via Eq. (15.5), including those for nearest-neighbors with the greatest
overlap and thus enhanced many-electron interactions with the emitting atom.

The near-neighbor autoionization interaction can now be conveniently expanded in multi-
poles, and, with the further neglect of multipoles higher than dipoles, the effective interaction
can be reduced to:

V j
AI ≈ e2r1r2

∑
µ1µ2

FRj
µ1µ2

Y1µ1 (r̂1)Y ∗
1µ2

(r̂2), (15.7)
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(+)
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(
R̂
)
〈Y1µ2 |Y2µ2−µ1Y1µ1〉

]
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and the bracket represents a Gaunt integral with standard normalization. Eq. (15.8) is actually
the retarded dipole-dipole interaction, which is retrieved from the Møller formula [32] under
the assumption that the relevant electronic states have a spatial extension much smaller than
both the wavelength and the inter-atomic separation. This is fully justified for the Mn2p and
O1s states of our case.
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Putting these results into a single expression now yields

MElµ = A〈E1 |r|O1s〉δl,1

∑
λ

εeff
λ 〈Y1µ|Y1λY00〉

= A〈E1 |r|O1s〉δl,1ε
eff
µ /

√
4π,

(15.9)

where A is a light-intensity normalization constant,

εeff
λ = ελ −

∑
λ′µ2

Fλµ2αµ2λ′ελ′ (15.10)

is now the effective polarization vector that includes the effect of resonant X-ray scattering
at the Mn sites, and the magnitude of the resonance is controlled by a product of a structure-
factor type of sum over Mn sites

Fλµ2 =
∑

j

F
Rj

λµ2
eikinc·Rj , (15.11)

and the Mn2+ polarizability tensor,

αµ2λ′ = −4πe2

3

∑
m

〈
g
∣∣rY ∗

1µ2

∣∣m〉
〈m |rY1λ′ | g〉

�ω + Eg − Em+iΓm/2
. (15.12)

The form for the polarizability given here makes it clear that it is directly related to the
usual description of resonant photoemission [29].

For the particular case of O 1s emission from MnO, this theoretical development predicts
both the optical constants β and δ, and the O 1s intensity variation with reasonable accuracy,
as seen in Figs. 15.12 and 15.15(b), respectively. It has furthermore been found by García de
Abajo et al. [20, 22] that higher-order terms in the MARPE matrix elements, which can be
considered to be multiple scattering of the radiation when resonantly scattered from one of
the neighbors to the emitter, must be included in order to quantitatively describe these effects,
as illustrated by two of the curves in Fig. 15.15(b). These higher-order contributions can be
obtained by replacing epsilon in Eq. (15.10) by the self-consistent polarization vector derived
from multiple scattering of the incoming photons at the Mn atoms of the crystal. The latter has
been in turn derived from a layer-KKR description of photon scattering at the atomic planes
parallel to the surface, yielding an equation similar to 15.10, but involving a dependence of
the self-consistent polarization on atomic layer [20]

Although this quantum-mechanical treatment of MARPE effects is much more complex
to deal with than the more macroscopic and empirically-linked resonant XRO picture, both
have been shown to represent the same physical processes [20]. However, the proper MARPE
theory outlined here obviously provides more insight into the nature of these interesting effects
and it will also permit treating systems that go beyond what can be dealt with by RXRO,
such as nanostructures localized in 1, 2, or 3 dimensions, or free molecules. We also note
other treatments of such interatomic resonant photoemission processes, by Forster and later
workers [33] and by Cederbaum et al. [30] with very low excitation energies assumed and by
Fujikawa and Arai with direct relevance to the theoretical model discussed here [35].
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As additional examples of experimental observations of related interatomic resonance ef-
fects in photoemission, we note that core-core MARPE effects analogous to those discussed
here for MnO [20] and NiO [26, 27] have also been seen in CuO [27]. Similar core-core
MARPE effects have also been seen in adsorbates on metals, specifically O on Ni(001) [36]
and N2 on Ru(111) [37]; for these cases also, it appears that the RXRO approach provides
at least a semi-quantitative description of the phenomena. In addition, a few other groups
have reported the enhancement of valence photoemission intensities primarily associated with
emission from a certain atom upon tuning the photon energy through more weakly bound core-
level or inner-valence absorption edges of a nearby atom, with this work including measure-
ments near solid-solid interfaces [38,39], on a free molecule [40] and on a free cluster, where
the effect has been referred to as interatomic coulomb deday [31]. More recently, Guilleumin
et al. appear to have seen core-core MARPE effects in free molecules through a more subtle
avenue, specifically, the non-dipole parameter in a photoelectron angular distribution [41].

It is thus clear that such interatomic resonant effects will be seen in other systems in the
future, and that they will not all be simply describable using an X-ray optical approach, which
in any case does not provide a microscopic understanding of them. Effects going beyond
a simple optical picture could provide interesting new information on the precise nature of
X-ray interactions, including via the interatomic character, a method for uniquely identify-
ing near-neighbor atoms in a complex sample, as originally proposed [21]. The microscopic
theory outlined here, as well as other recent work [30, 35] should provide a sound basis for
understanding and using these phenomena in surface and interfaces studies, nanostructure
characterization, and molecular and cluster research. We also note the discussion of related
optical effects in Chapter 2, Section 8 of this book, in which such phenomena are viewed in
terms of screening and local fields.

15.4 X-ray optical effects in X-ray emission and resonant
inelastic scattering

The two theoretical approaches outlined here, XRO calculations and microscopic MARPE
theory, as well as the use of standing waves, can also be applied to soft X-ray emission (XES)
and its close relative resonant inelastic X-ray scattering (RIXS), more bulk sensitive spectro-
scopic probes that are now coming into wider use [42] and which complement photoemission
in the study of almost any system. As to bulk versus surface sensitivity, we point out again
via Figs. 15.13(b) and 15.14(a) that, for the case of RIXS in which the incident energy is
tuned to various points along an absorption curve like that in Fig. 15.12(a), the degree of bulk
sensitivity may vary greatly from one energy to another.

The X-ray optical model can be simply modified to describe the overall intensity in such
XES or RIXS experiments more quantitatively. For the case of a homogeneous flat surface, an
emitted photon energy that is far from any resonance and with emission at an exit angle θem

that is large enough to minimize refraction and reflection at the surface, this would involve
replacing Λe sin θ

′
e with Λem sin θ′em ≈ Λem sin θem in Eq. (15.2), with Λem equal to

the fluorescent X-ray attenuation length along path length or λem/[4πβ(hνem)] in obvious
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notation. With this replacement, Eq. (15.2) becomes

I(hνinc, hvem) ∝
∣∣∣Mem(Ê, hνinc, hvem,�k)

em

∣∣∣2
· |t(hνinc)|2

Im{4πn(hνinc) sin θ′
inc(hνinc)}

λx(hνinc)
+ 1

Λem(hνem) sin θ′
em

(15.13)

where the matrix element Mem now allows for the precise X-ray transition involved, includ-
ing the formation of the initial hole and subsequent decay processes, and t is evaluated again
from Eq. (15.3), still at the incident wavelength. Equation (15.13) thus represents an accurate
method for handling what essentially reduces to the well-known self-absorption effects in X-
ray fluorescence that have been discussed previously in connection with MARPE [43, 44]. In
fact, viewed in this light, MARPE in X-ray emission can be viewed as having self absorption
as a key ingredient, but perhaps via specific near-neighbor effects described in the micro-
scopic theory, not necessarily the only ingredient. This connection has not been recognized
in some prior papers on MARPE in X-ray emission [44]. The microscopic model could also
be similarly extended to predict fluorescence intensities, but we will not present these details
here.

From the point of view of using standing waves to probe buried interfaces (cf. Figs. 15.6–
15.11), the greater penetration depths of soft X-rays as compared to photoelectrons represents
a significant advantage, since the depth-dependent distribution of intensity will much more
closely follow the the standing wave strength | �E|2, permitting the study of deeper interfaces
and a simpler analysis of the data. This is illustrated by comparing Fig. 15.6 for photoelectron
emission and Fig. 15.17 for X-ray emission, both based on calculations using the methodology
introduced in Fig. 15.5 [19]. Note that the depth profile of X-ray emission from each layer
almost exactly follows the standing wave strength, and that deeper layers can be probed if
desired. Future experiments of this type using the SWG+wedge method should thus be very
interesting.

15.5 Concluding remarks and future directions

In conclusion, soft X-ray optical effects, whether at non-resonant or resonant energies, can
strongly influence photoemission intensities. Among these effects are marked decreases in
X-ray penetration depth as the total reflection regime is approached, and significant decreases
in the secondary electron background underlying photoemission spectra, both of which can
be very useful for surface and interface studies. When incident energies are tuned to strong
absorption resonances and the total reflection region is approached, these penetration depths
can in fact be of the same magnitude as electron inelastic attenuation lengths, thus increasing
surface sensitivity markedly.

There can also be significant negative and positive changes in intensity when the absorp-
tion edges of an atom neighboring the emitter are crossed, and this can be viewed as multiatom
resonant photoemission (MARPE), with potential utility in identifying near-neighbor atoms in
complex systems. Both X-ray optical theory and a microscopic theory of interatomic resonant
photoemission have been succesfully used to describe these effects, which we expect to be ob-
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Figure 15.17: X-ray optical calculations of standing wave effects on the depth distributions of
electric field strength and soft X-ray emission intensity from an MnO thin-film sample grown on
a multilayer B4C/W mirror. The right panels show the depth distributions when the incidence
angle is far from the multilayer Bragg angle, and the left panels the distributions at the Bragg
angle. Note the strong standing wave created at the Bragg condition, and the influence on the O
Kα, C Kα, and Fe Lα X-ray depth distributions, whose intensity profiles with depth follow very
closely the standing wave profile. To be compared with Fig. 15.6 for photoelectron emission.
[From ref. [19].]

served in other systems beyond those discussed here in the future, including nanostructures,
free molecules, and clusters.

The standing waves created due to reflection from a multilayer mirror can also be used
to create a standing wave in the sample with period equal to the multilayer period, e.g. in
the few-nanometer range. Photoemission excited by this standing wave can be used to non-
destructively and selectively probe a buried interface, include magnetic order via circular
dichroism. The multilayer mirror-plus-wedge sample technique discussed here should be ap-
plicable to a wide variety of studies of buried interfaces, including multilayer samples and
other nanoscale objects that can be grown or deposited on top of a multilayer mirror. Future
studies involving X-ray emission or inelastic scattering excited by such standing waves also
look very promising. A final interesting potential application of such standing waves is in soft
X-ray spectromicroscopy [45–47], which presently provides imaging only in the two dimen-
sions lying in the sample surface plane, with some depth sensitivity in the third dimension



430 15 X-ray optics, standing waves, and interatomic effects in photoemission and X-ray emission

perpendicular to the surface through element- and chemical state-specific X-ray absorption
processes. Being able to work at sufficiently low angles of incidence in microscopes making
use of secondary electrons and an electron optical system for imaging [45] or in an X-ray
reflection, rather than transmission, geometry for another type of microscope making use of
Fresnel zone plates for imaging [46, 47], in combination with samples grown on a multilayer
mirror, could add much more quantitative information on the perpendicular coordinate.

In summary, being able to thus “tailor” the radiation field in soft X-ray spectroscopic
measurements should add considerably to the information derivable from photoemission and
related techniques in the future.
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16 Thermal vibrations at surfaces analyzed with LEED

W. Moritz and J. Landskron

16.1 Introduction

A detailed understanding of surface properties necessarily has to include the thermal vibra-
tions. Thermal vibration at surfaces is usually assumed to be larger than in the bulk which
follows from theoretical considerations (see for example: [1,2]) and there are a number of ex-
perimental studies showing enhanced vibration amplitudes at surfaces [3–6]. There is further
evidence for enhanced anharmonicity at surfaces [7]. A detailed knowledge of the anisotropy
and anharmonicity of thermal vibrations at surfaces would allow a better understanding of
numerous surface properties like phase transitions, surface reconstructions, adsorption and
desorption phenomena and growth processes. The main experimental method to investigate
thermal vibration at surfaces is HREELS [45], by which the frequencies of surface phonons
and normal modes are measured. This technique has been developed to high accuracy. Why
do we need to use a diffraction technique like LEED or surface X-ray diffraction, SXRD, for
the analysis of thermal vibrations?

There are two reasons for doing this. The first is the improvement of accuracy of the
LEED I/V analysis. A good agreement between experimental and calculated intensities and
correspondingly a high accuracy of the structural parameters can only be reached including
thermal vibrations. The second reason is that methods to measure vibration amplitudes at
surfaces are rare and their determination from LEED intensities would therefore be highly
desirable. There are also cases where the assignment of vibration modes to certain atoms is
not unambiguous. The surface sensitivity of LEED offers a potential for studying vibration
amplitudes at surfaces by temperature dependent measurements which has not been fully used
up to now.

As far as the accuracy of the structure analysis is concerned, it is well known in X-ray
structure analysis, that the accuracy of the atomic positions obtained with an overall tempera-
ture factor is usually improved by an order of magnitude when anisotropic thermal vibrations
are considered [9]. In the multiple scattering case the situation will be certainly not better
than in the single scattering case. It has been noticed also at the beginning of the development
of the LEED theory that the thermal motion is an essential part of the theory [10] and also
that LEED would be an adequate method to study thermal motion at surfaces as well [11].
In most of the LEED I/V analysis up to now only harmonic and isotropic vibrations have
been considered, because these can be easily treated in the multiple scattering theory and are
implemented in the existing programs. The reason why isotropic vibration is considered as
sufficient is the following: the comparison between experimental and calculated I/V curves is
done by comparing peak positions. A very common criterium for the agreement is Pendry’s
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r-factor [12] which mainly compares the position of the peaks in the I/V curves. It is quite
safe to argue that the peak positions are mainly determined by the atomic positions and the
interatomic distances, while the thermal motion has in general more influence on the height
of the peaks. Indeed, one of the reasons to use Pendry’s R-factor is to eliminate uncertainties
due to the insufficient the treatment of thermal vibrations in the multiple scattering theory,
besides further experimental uncertainties. The peak positions therefore can be more reliably
evaluated than the peak intensities.

Nevertheless, from the experience in X-ray diffraction we can expect that the extension of
the multiple scattering theory to anisotropic and anharmonic vibrations should lead to a better
agreement between calculated and measured I/V curves and that the accuracy obtained with
LEED can be increased. In many cases, namely for complicated structures, the agreement
which can be reached is not very satisfactory and thus the precision of the structure parame-
ters is not as high as is routinely obtained in X-ray structure analysis. Though the isotropic
temperature factors are certainly not the only cause of a misfit we can consider it as important
factor which limits the accuracy of the structure parameters.

The theory described below [13] is an extension of the method used in current LEED
programs by which isotropic vibration is included, namely the assumption of an uncorrelated
motion of the surface atoms [14, 15]. As multiple scattering effects play a dominant role in
LEED this approximation may be not sufficient. For an accurate description it would be re-
quired to include correlated motion in the multiple scattering paths. An applicable theory
to include correlation effects has not yet been developed and its influence on the LEED in-
tensities is unknown. Therefore the accuracy by which vibration amplitudes can determined
from a LEED I/V analysis may be limited. Nevertheless, the inclusion of anisotropic and an-
harmonic vibration in the analysis provides an improvement compared to the isotropic case.
Further improvement can be expected from a multiple scattering theory which includes cor-
related motion. The importance of this becomes obvious in RHEED and MEED experiments
where the thermal diffuse scattering is strong enough to be measured without large effort. The
analysis of the thermal diffuse scattering can be even used as an elegant method to determine
directly the local environment of surface atoms, see for example a recent review article by
Abukawa and Kono [8].

16.2 Thermal vibration in the kinematic theory of
diffraction

We repeat in short the treatment of thermal vibrations in the kinematic theory in order to
elucidate the way how anisotropic thermal motion can be included in the multiple scattering
theory. A detailed description of the kinematic theory can be found, for example, in Willis &
Pryor [16], a more recent review of theoretical and experimental methods to analyze atomic
displacements has been given by Kuhs [17]. In the kinematic theory of diffraction the intensity
of a reflection is given by

I(�q) =
∑
i,j

fi(q)f∗
j (q)ei�q(�ri−�rj)

〈
ei�q(�ui−�uj)

〉2

δ(�q − �g) (16.1)
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where �ri,�rj are the equilibrium positions of atoms i and j, the sum is taken over all atoms
of the crystal. �ui and �uj are the corresponding displacements at a given time, �q= �k’-�k is the
scattering vector. fi(q) are the atomic scattering factors. The brackets denote the average
in space and time. In this description the displacements include static displacements due
to defects like vacancies, interstitial atoms etc. as well as thermal vibrations. It has been
therefore proposed to use the expression ‘atomic displacement parameter’ (ADP) (Kuhs [17]
which we will follow here. Assuming a Gaussian distribution of displacements �ui, �uj the
average is given by:

〈exp [i�q(�ui − �uj)]〉 = 1 − 1
2

〈
[�q(�ui − �uj)]

2
〉

+ · · ·

= exp
{
−1

2

〈
[�q(�ui − �uj ]

2
〉}

= exp
{
−1

2

[〈
(�q �ui)

2
〉

+
〈
(�q �uj)

2
〉

+ 〈(�q �ui) (�q �uj)〉
]} (16.2)

It should be pointed out here that the assumption of a Gaussian distribution is an approxi-
mation, which is not in all cases justified, certainly not for static displacements around defects
where the displacement depends on the distance from the defect [18]. A better description
of the distribution may be even more important for LEED than for X-ray diffraction because
in the multiple scattering case resonances may occur in the scattering paths between nearest
neighbours. For the same reason a more detailed description of correlated motion should be
included. Nevertheless, we use the approximation of a Gaussian distribution here to derive the
expression for the kinematic temperature factor. In the following we may assume all atoms as
equal for simplicity and obtain for the average〈

(�q �ui)
2
〉

=
〈
(�q �uj)

2
〉

=
〈
(�q �u)2

〉
(16.3)

The intensity is obtained as

I = |f(q)|2 exp
[
−

〈
(�q �u)2

〉]∑
i,j

exp [i�q(�ri − �rj)] [1 + 〈(�q �ui) (�q �uj)〉 + · · · ] (16.4)

and thus can be separated into two terms. The first term is a sharp reflection IBragg, and second
term the thermal diffuse scattering ITDS

I = IBragg + ITDS (16.5)

The atomic displacements result in a reduction of the elastic scattered Bragg intensity by a
factor exp(−2M)

IBragg = |F (q)|2 |T (�q)|2 δ(�q − �g)

= |F (q)|2 e−2Mδ(�q − �g)
(16.6)

with

M =
1
2
〈
(�q �u)2

〉
(16.7)
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The intensity missing in the Bragg-peak is the thermal diffuse scattering (TDS). It is dis-
tributed over the Brillouin zone and is caused by correlated vibrations occurring in the term
〈(�q �ui) (�q �uj)〉 in Eq. (16.2). Though the TDS should not be neglected in the LEED I/V anal-
ysis their appropriate treatment in the multiple scattering theory is not solved. The treatment
described in Section 16.4 neglects the thermal diffuse scattering. In the following only the
Bragg intensity is described. Experimentally it has been found that the single phonon part is
distributed as 1/q from the Bragg-peak, while the multiphonon part is more equally distributed
in reciprocal space [19]. More recently the thermal diffuse scattering has been investigated by
Henzler and coworkers with a high energy resolution combined with a SPA-LEED [20].

In LEED calculations frequently not the displacement parameter u but Debye tempera-
ture θD is used as parameter. In the high temperature limit the relation to the displacement
parameter is given by:

〈
u2

〉
=

3�
2T

2mkBθ2
D

(16.8)

An alternative derivation of the temperature factor is obtained when the average in the left
hand side of Eq. (16.2) is calculated from the distribution of the atomic displacements, the
probability density function, PDF. The atomic Debye-Waller factor exp(-M) is then given

T (�q) =
∫

p(�u)ei�q�ud�u (16.9)

which is equivalent to

T (�q) = exp(−1
2
〈
(�q �u)2

〉
(16.10)

in case the PDF is a Gaussian distribution. The probability density p(u) is in general not
bound to a Gaussian distribution. When the temperature factor has been experimentally deter-
mined the corresponding probability density function can be obtained by the reverse Fourier
transform of the temperature factor:

p(�u) = (2π)−3

∫
T (�q) exp(−i�q �u) d�q (16.11)

16.2.1 Harmonic vibrations

In the harmonic approximation the distribution of atomic displacements described by the prob-
ability density function PDF can be assumed as Gaussian distribution in the high temperature
limit.

For isotropic vibrations the distribution is defined by a single parameter, the mean square
displacement.

P (u) =
(
2π

〈
u2

〉)−3/2

exp
(
− u2

2 〈u2〉

)
(16.12)
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The atomic Debye-Waller factor is given by the Fourier transform of the probability den-
sity function

T (q) = exp
(
−1

2
q2

〈
u2

〉)
(16.13)

In case of anisotropic vibration, assuming mean square displacements in the directions of
Cartesian coordinates, the atomic Debye-Waller factor is given by

T (�q) = exp
(
−1

2
qT

〈
uT u

〉
q

)
(16.14)

using the conventional crystallographic formulation, uT denotes the transpose of a vector. The
probability density function is given by

P (�u) =
(

detB−1

8π2

)
exp

(
−1

2
uT B−1u

)
(16.15)

with a symmetric matrix

B =

 〈
u2

x

〉
〈uxuy〉 〈uxuz〉

〈uxuy〉
〈
u2

y

〉
〈uyuz〉

〈uxuz〉 〈uyuz〉
〈
u2

z

〉
 (16.16)

The exponent �uT B−1�u is a quadratic function of the atomic displacements so that with
�uT B−1�u = const. an ellipsoid can be defined. Conventionally an ellipsoid is used such
that the integral over the volume of the ellipsoid is 0.5. The six independent matrix elements
describe the length of the axes and the orientation of the ellipsoid

Figure 16.1: Ellipsoid of vibration amplitudes, the lengths Ox, Oy, Oz are proportional to the

rms-displacements in the corresponding direction. Ox ∝ p〈u2
x〉 ≡ ux, Oy ∝

q˙
u2

y

¸ ≡
uy , Oz ∝ p〈u2

z〉 ≡ uz
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16.2.2 Anharmonic vibrations

Deviations from the Gaussian distribution result from the movement of the atom in an anhar-
monic potential and lead in general to a deviation from the ellipsoid. For a theoretical calcu-
lation of anharmonic lattice vibrations the partition function of the atom in the one-particle
potential is required [16]:

〈exp (i�q �u)〉 =

∫
exp (i�q �u) exp

(
−V

kBT

)
dV∫

exp
(

−V

kBT

)
dV

(16.17)

The exact calculation of Eq. (16.16) is extremely complicated and has been done only in
the case of simple metals. In surface structure determinations by LEED anharmonic thermal
vibrations have not been considered up to now. On the other side, physical properties like
the thermal expansion or temperature dependence of elastic constants can be explained only
by anharmonic effects. Enhanced anharmonicity has been found for example on the Cu(110)
surface by ion scattering [38]. It is therefore desirable to include anharmonic effects in the
multiple scattering theory in addition to anisotropy.

Instead of calculating the one particle potential and the atomic movements there exist two
possibilities to include anharmonic terms in the kinematic theory by a deformation of the
thermal ellipsoid. The temperature factor can be expanded in moments [21]:

〈exp (i�q �u)〉 =
∞∑

N=0

(1/N !)
〈
(�q �u)N

〉
(16.18)

or in cumulants [22]:

〈exp (i�q �u)〉 = exp

( ∞∑
N=0

(1/N !)
〈
(�q �u)N

〉
kum

)
(16.19)

The cumulant expansion has the advantage that in the harmonic case all cumulants with the
order higher than 2 vanish, which helps to identify and separate anharmonicity effects. For
LEED the application of these expansions in Cartesian coordinates is not quite appropriate as
an expansion of the PDF in spherical harmonics is used.

Experiments on surfaces are rare, one example is the motion of Cs on Cu(110) determined
by X-ray diffraction [23]

Anharmonicity occurs also in a number of special cases, e.g. libration modes and free
rotation of molecules. Such cases can be considered in the kinematic theory, see for example
Press [24] and require a treatment different from the conventional formalism described above
and will be omitted here. The implementation of libration modes in the multiple scattering
theory seems to be straightforward but has not yet been worked out.
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Figure 16.2: Example of anharmonic displacements at surfaces. The figure shows the PDF of
Cs on Cu(110) at 303 K. The left panel shows the result of the analysis restricted to harmonic
displacements, the right panel shows the result of the refinement allowing for anharmonic dis-
placements (from Meyerheim et al., 1995 [23]).

16.3 Multiple scattering theory

In the multiple scattering theory the diffracted intensity is formally described in the same way
as in the kinematic theory by summing up the scattering amplitudes:

I(�k′,�k) =

∣∣∣∣∣∑
ν

Fν(
−→
k′ ,

−→
k ) · ei(

−→
k′−−→

k )
−→
d ν

∣∣∣∣∣
2

(16.20)

the only difference is that atomic scattering factors Fν(�k′,�k) are generalized scattering factors
which represent all scattering paths ending in atom and depend explicitly on the wave vectors
�k and �k′ of both, the incoming and diffracted beam. The generalized scattering factors depend
also on the structure surrounding that atom in contrast to the kinematic theory where the
atomic scattering factors depend on the scattering vector �q = �k’ - �k and are independent of
the structure. The generalized scattering factors are usually calculated in a spherical wave
expansion as T-matrices and are given by:

Fν(
−→
k ′,

−→
k ) =

∑
lm,lm

(−1)mYl−m(ϑk, ϕk) · Tυ,lm,lm(
−→
k ) · Ylm(ϑk′ , ϕk′) (16.21)

Ylm(ϑk, ϕk) are the spherical harmonics. The T-matrices result from the solution of a self-
consistent equation which takes account of the multiple scattering processes:

Tν(
−→
k ) = tν(E) + tν(E) ·

∑
µ 	=ν

Gνµ(
−→
k ,

−→
P +

−→
d µ −−→

d ν)Tµ(
−→
k ) (16.22)

The indices lm,l’m’ have been dropped here for convenience. The derivation of Eq. (16.22)
and the definition of the matrices Tν(�k) and the electron propagator functions Gνµ(

−→
k ,

−→
P )
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can be found in text books (Pendry 1972 [15] and Van Hove 1986 [14]. The matrices tν(E)
describe the single scattering processes and are diagonal in case of spherical symmetric po-
tentials. Introducing the atomic displacement u of an atom the diffracted intensity is given
by:

I(
−→
k ′,

−→
k ) =

〈∣∣∣∣∣∑
ν

Fν(
−→
k ′,

−→
k ,−→u ν)ei(

−→
k ′−−→

k )(
−→
d ν+−→u ν)

∣∣∣∣∣
2〉

T

(16.23)

By multiple scattering the generalized scattering factors depend now on the displacements
and therefore the average cannot be restricted to the phase factors due to the displacements
as in Eq. (16.1). We neglect correlations and the thermal diffuse scattering and average the
scattering amplitudes. This corresponds to the approximation made in the kinematic theory
when only the first term of Eq. (16.2) is considered. We obtain for the intensity of the Bragg-
scattering:

I(�k′,�k′) =

∣∣∣∣∣∑
ν

〈
Fν(�k′,�k, �uν) ei(�k′−�k)(�dv+�uν)

〉
T

∣∣∣∣∣
2

=
∣∣∣〈Fν(�k′,�k)

〉
T

ei(�k′−�k)�dv

∣∣∣2
(16.24)

with thermally averaged scattering factors:

〈
Fν(�k′,�k)

〉
T

=
∑

lm,l′m′
(−1)m Yl−m (Ωk)

〈∑
υ

Tυ

(
�k′,�k

)
ei(�k′−�k)�uυ

〉
T

Yl′m′ (Ωk)

(16.25)

The average in the right hand side of Eq. (16.26) can be defined as averaged T-matrix〈
Tν(

−→
k )

〉
T

=
〈
Tν(

−→
k ,−→u ν)ei(

−→
k ′−−→

k )−→u ν

〉
T

(16.26)

It has been shown first by Duke and Laramore [10], Holland [25] and by Pendry [15]
that in the harmonic approximation the thermally averaged T-matrices are given by solving
the multiple scattering equations using the thermally averaged single scattering t-matrices.
Correlations between atomic displacements as well as correlations in the multiple scattering
series are neglected here:

Tν(�k, 〈�uυ〉) = tν(E, 〈�uυ〉)+tν(E, 〈�uυ〉)
∑
µ 	=υ

Gνµ(
−→
k ,

−→
d µ−

−→
d ν) Tµ(

−→
k , 〈�uµ〉) (16.27)

with

tν(E, 〈�uν〉) =
〈
tν(E) · ei(

−→
k ′−−→

k ) −→u υ

〉
T

(16.28)

Equation (16.28) means that the multiple scattering equations are solved with the thermally
averaged atoms in a rigid lattice, in other words, the electron is scattered by a spherical sym-
metric potential which is displaced, the deformation of the electron density and the potential is
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not considered. In the harmonic approximation and assuming a Gaussian distribution function
the average in Eq. (16.29) can be replaced by〈

ei(�k′−�k)�uν

〉
= exp

(
−1

2

〈[(
�k′ − �k

)
�uν

]2
〉)

(16.29)

which can be expanded in spherical harmonics leading to a diagonal form of the t-matrices by
which complex temperature dependent phase shifts are defined. This formulation makes the
calculation of temperature effects especially easy.

Now, if we want to introduce anisotropic and anharmonic vibrations we start from the
probability density of atomic displacements.〈

ei(�k′−�k)�uν

〉
=

∫
p(�u)ei(�k′−�k)�ud�u (16.30)

We can use a multipole expansion of the probability density function p(�u):

p(�u) =
∑
n,lm

Rn(u) · cn,lm · Ylm(ϑu, ϕu) (16.31)

where cn,lm are appropriate multipole expansion coefficients and Rn(u) radial functions. It
is convenient to derive the expansion coefficients and radial functions from the mean square
displacements in different directions assuming Gaussian distributions. The calculation pro-
cedure is described below. The multipole expansion of the PDF is not restricted to harmonic
vibrations and allows to include anharmonic terms as well. This case requires specific care to
select the appropriate parameters, an example will be discussed in Section 16.5. The thermally
averaged atomic scattering factor for single scattering is now given by

t(T,
−→
k ′,�k) = t(0,

−→
k′ ,�k) ·

∫
p(−→u ) · ei(

−→
k ′−−→

k ) −→u d�u (16.32)

where the atomic scattering factor at T = 0 is:

t(0,�k′,�k) =
−2πi

k

∑
l

(2l + 1) · eiηl · sin(ηl) · Pl(cosϑk,k′) (16.33)

l are the phase shifts. The scattering factors can be written as a diagonal matrix

t(0,�k′,�k) =
−8π2

k

∑
lm,lm

eiηl · sin(ηl) ·δll ·δmm ·Ylm(ϑk′ , ϕk′) ·Yl−m(ϑk, ϕk) · (−1)m

(16.34)

and for the phase factors a spherical wave expansion can be used.

ei
−→
k −→r =

∑
lm

4πil jl(kr)Ylm(ϑr, ϕr)Yl−m(ϑk, ϕk)(−1)m (16.35)
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Following the calculation for the isotropic case as given by Pendry [15] and using the same
notation we define expansion coefficients for the Fourier transform of the probability density
function:∫

p(�u)ei(�k′−�k)�ud�u

=
∑
L,M

∑
L′,M ′

WLM,L′M ′ YLM (ϑk, ϕk)YL′−M ′(ϑk′ , ϕk′)(−1)M ′
(16.36)

After multiplying both sides with the spherical harmonics and integrating over the angles we
obtain:

WLM,L′M ′ = 16π2
∑
n,lm

BLM,L′M ′,lm cn,lm

·
∫

Rn(u)(−1)L+L′
jL(ku) jL′(ku)u2du (16.37)

We can now define temperature dependent expansion coefficients of the scattering factors:

t(T,
−→
k ′,

−→
k ) = 8π2

∑
lm

∑
lm

tlm,lm(T ) Yl,m(ϑk′ , ϕk′) Yl−m(ϑk, ϕk) (−1)m (16.38)

with

tlm,l′m′(T ) =
1

8π2

∫∫
t
(
T,�k′,�k

)
(−1)m Yl−m (ϑk, ϕk)Yl′m′ (ϑk′ , ϕk′) dΩk dΩk′

(16.39)

where dΩk = sin2 ϑkdϑkdϕk. Inserting Eq. (16.32), (16.34) and using the expansions in
Eqs. (16.36) and (16.37) we obtain:

tlm,l′m′(T ) =
∑
LM

∑
L′M ′

WLM,L′M ′ DLM,L′M ′,lm,l′m′ (16.40)

where

DLM,L′M ′,lm,l′m′ =
2π

k

∑
l”m”

eiηl sin ηl BLM,lm,l”m” BLM,lm,l”m” (16.41)

are temperature independent factors and

BLM,L′M ′,lm =
∫

YLM (Ω) YL′−M ′ (Ω) Ylm (Ω) dΩ (16.42)

with the conditions

M − M ′ + m = 0, |L′ − l| ≤ L ≤ |L′ + l| , L + L′ + l = even (16.43)
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for non vanishing coefficients. Equations (16.40) and (16.41) define a temperature depen-
dent atomic scattering matrix which now contains off-diagonal terms instead of the diagonal
matrix, Eq. (16.34), for the case of isotropic displacements. The matrices can be inserted in
the conventional LEED programs which requires only slight changes to take care of the non
diagonal form.

The maximum number of angular momentum components in temperature dependent t-
matrix, Eq. 40, result from the maximum number of phase shifts used (l̃max + 1) and the
limits given in (16.43). It results in

lmax = l′max = l̃max, Lmax = L′
max = 2l̃max, l′′max = 2Lmax (16.44)

In the multipole expansion twice the number angular momentum components is required
as in the partial wave expansion of the scattering amplitude, i.e. the number of phase shifts.
Depending on the number of components in the multipole expansion the matrix of the expan-
sion coefficients (Eq. (16.38)) gets off-diagonal terms. Care has to be taken that a sufficient
number of phase shifts is used if large anisotropies occur.

In the case of isotropic and harmonic vibrations the result has to be consistent with the
conventional derivation leading to a diagonal matrix. For spherical symmetric vibrations all
coefficients cn,lm vanish unless l, m = 0 which leads to L = L′ and M = M ′ in Eq. (16.38)
and thus to a diagonal form of the matrix of expansion coefficients, see Fig. 16.3. The equiv-
alence to the conventional form is best seen by performing the Fourier transform of the PDF
prior to the expansion in spherical harmonics which immediately leads to the same derivation
as given by Pendry [15].

16.3.1 Calculation of the multipole expansion coefficients

It is neither very convenient nor practically possible to optimize the expansion coefficients in
Eq. (16.31) directly by fitting the experimental data. The appropriate way is to use the con-
ventional parameters of the thermal ellipsoid as free parameters in the analysis. This requires
the calculation of expansion coefficients as function of the vibration amplitudes and by this
the number of free parameters is reduced as well. For anisotropic harmonic vibration there is
a maximum number of 6 independent parameters which define the mean square displacements
in three directions and the orientation of the ellipsoid. The multipole expansion in Eq. (16.32),
on the other hand, requires the radial functions and a large number of expansion coefficients,
their number depends on the ratio of the displacement parameters.

Harmonic vibrations

We assume an anisotropic probability density function

P (�u) =
1√

8π3 〈ux〉2 〈uy〉2 〈uz〉2
exp(−1

2

[
u2

x

〈u2
x〉

+
u2

y〈
u2

y

〉 +
u2

z

〈u2
z〉

]
(16.45)

where
〈
u2

x

〉
,
〈
u2

z

〉
and

〈
u2

z

〉
are the mean square displacements in x-,y-, and z-direction. For

the moment we neglect a rotation of the ellipsoid. This is appropriate in cases where the site
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Figure 16.3: Off-diagonal terms in the matrix of the expansion coefficients WLM,L′M ′ , which
describe the Debye-Waller factor in angular momentum space, Eq. (16.38).

symmetry of the atom is mm2 and a matching choice of translation vectors parallel to the
coordinate axes. For higher site symmetry only the components parallel and normal to the
surface, u|| and u⊥, can be chosen as free parameters in the LEED calculations. The relation
is then

u� =
√
〈ux〉2 + 〈uy〉2 (16.46)

and u⊥ = uz

We need to calculate the expansion coefficients and the radial functions such that the
Gaussian shape of the probability density function is reproduced. The expansion of P (�u)
in spherical harmonics can be written as

P (�u) =
∑
n,lm

cn,lmRn(u)Ylm(Ωu) (16.47)
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where appropriate radial functions

R0(u) = (2πσ2
0)

−3/2 exp
(
− u2

2σ2
0

)
(16.48)

Rn(u) = u2 (2πσ2
n)−3/2 exp

(
− u2

2σ2
n

)
, n ≥ 1 (16.49)

are used for a Gaussian distribution. The expansion of the ellipsoid in spherical harmonics re-
quires in general high order coefficients, but there are symmetry restrictions. In the expansion
in Eq. (16.47) all odd order terms in l vanish because of the centrosymmetry. As the prob-
ability distribution is a real quantity there are further general restrictions for the coefficients
cn,lm:

cn,l0 = real (16.50)

cn,l−|m| = c∗n,l|m| m even (16.51)

cn,l−|m| = −c∗n,l|m| m odd (16.52)

and for harmonic distributions:

cn,lm = 0 l and m odd (16.53)

The number of expansion coefficients needed to match the Gaussian shape of the prob-
ability density function depends on the anisotropy of the vibration ellipsoid. The expansion
coefficients cn,lm and the widths of the radial functions n are determined from the inverse
relation∑

n,lm

cn,lmRn(u) =
∫

dΩu P (�u) Ylm(Ωu) (16.54)

We start from the isotropic case where only one parameter exists, the mean square dis-
placement

〈
u2

〉
, the distribution function is Gaussian. In this case is

p(u) ∝ e
− u2

〈u2〉 (16.55)

and all the expansion coefficients but c0,00 vanish. To calculate the higher order coefficients
we use the deviation from the isotropic average:

p′(−→u ) = p(−→u ) − e
− u2

〈u2〉 (16.56)

and calculate

cn,lmRn,lm (〈u〉) =
∫

p′ (�u)Ylm (Ω) dΩ (16.57)

The integral can be solved numerically. The validity of the expansion is shown in Fig. 16.4.
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Figure 16.4: Comparison of the exact calculation of the temperature factor (solid line) with the multipole
expansion for a thermal ellipsoid with the relation ux : uy : uz = 1 : 3 : 5. In the multipole expansion
n = 2 radial functions and lmax = 10 in Eq. (16.30) has been used. The left panel shows the definition
of the angles used in the right panel.

For an anisotropy of the vibration amplitudes up to 1 : 10 two radial functions R0 and R1

and lmax = 12 have been found to be sufficient.
The orientation of the ellipsoid of the thermal vibration provides another three degrees of

freedom. This is best considered by rotating the atomic t-matrix as has been shown by Nagano
and Tong [26]:

trot
l1m1,l2m2

=
∑

Dl1
m1,m′ (αβγ) tl1m′,l2m′′D∗l2

m2m′′ (αβγ) (16.58)

where appropriate rotation angles have to be defined.
The calculation of the rotation operator Dlmm′(αβγ) can be found in text books on quan-

tum mechanics, see for example [27]. Care has to be taken to apply the sequence of rotations
as shown in Fig. 16.6.
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Figure 16.5: Shape of the probability density function obtained with a different number of
angular momentum components included in Eq. (16.30). A rotational ellipsoid with a ratio
ux : uz = 10 has been assumed. lmax = 12 is required to match the ellipsoidal shape sufficiently
close.

Anharmonic vibrations

The expansion in Eq. (16.31) allows to use non-Gaussian probability density functions, so
that it is easily possible to treat anharmonic vibrations as well. In Fig. 16.5 it is also evident
that the Gaussian shape requires high order coefficients. The number of terms increases with
the anisotropy of the ellipsoid which has to be represented in the multipole expansion. An
appropriate choice of the parameters allows also to describe static displacements by choosing
the appropriate expansion coefficients in accordance with the local symmetry of the site.

Anharmonic vibrations produce a deviation of the PDF from a Gaussian. As the parity of
the spherical harmonics is (−1)l, i.e. Ylm(π−ϑ, ϕ+π) = (−1)lYlm(ϑ, ϕ) a generalized, non-
Gaussian PDF can be expanded as a sum of centrosymmetric and antisymmetric components
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Figure 16.6: Definition of the Eulerian angles for the rotation of the atomic t-matrices.

Figure 16.7: Examples of probability density functions resulting from an anharmonic potential.
Left panel: PDF obtained from a quadrupol term, right panel: shift of the mean position resulting
from odd order coefficients.

(the radial functions are always centrosymmetric):

p(−→u ) =
∑

n

Rn(u)

(∑
lm

cn,lm Ylm(ϑ, ϕ) +
∑
l′m′

cn,l′m′ Yl′m′(ϑ, ϕ)

)
(16.59)

with l even and l′ odd. The antisymmetric contributions represent an anharmonic distortion
of the Gaussian and shift the first moment (mean) of the PDF which corresponds to the aver-
aged position of the vibrating atom. Anharmonic deviations caused by the centrosymmetric
components of the distribution function let the atomic position unchanged but affect the even
moments of the distribution and therefore the mean square amplitude in a given direction.
In this way the shape of the ellipsoid of thermal vibrations is modified e.g. with lobes con-
straint by local symmetry of the surface atom. By considering anharmonic effects the number
of non-vanishing off-diagonal elements in the atomic t-matrix increases in comparison to the
harmonic case.
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16.4 Discussion

The multipole expansion of the probability density function provides an easy and obvious way
to introduce anisotropic and anharmonic thermal vibration into the multiple scattering formal-
ism. The averaged non-diagonal scattering matrices can be used in the current programs with-
out large changes and also for XPD programs. The computing times become longer, but as
large parts of the calculation needs to be done only once the computational effort remains bear-
able. The expansion coefficients are not appropriate parameters for the refinement, therefore
the determination of the necessary number of expansion coefficients to represent a thermal
ellipsoid turns out to be a necessary step. In case of anharmonic terms it is unavoidable to
visualize the result and to control the calculated PDF.

The method is more appropriate than the previously developed method of split posi-
tions [5, 28] which can be even easier incorporated into existing LEED programs, but is lim-
ited in the application to special cases and in general requires a large computational effort. By
split positions the distribution function is approximated by a small number of discrete posi-
tions. The expansion in spherical harmonics is, within the cutoff errors in the series expansion,
equivalent to theories using an expansion in Cartesian coordinates [30]. The theory described
here treats the multiple scattering effects correctly as long as the influence of correlated mo-
tion can be neglected. This is certainly not correct for nearest neighbours and it is just the
multiple scattering between nearest neighbours (see Fig. 16.8, right panel) which makes the
main contribution to the LEED intensities, next to the single scattering term. The correlation
coefficient!of atomic displacements can be defined as:

Cij =
〈(�ui�q) (�uj�q)〉{〈

(�ui�q)
2 (�uj�q)

2
〉}1/2

(16.60)

and has been calculated for the Debye model [14], as shown in Fig. 16.8 (left panel) as function
of nearest neighbour distance. It is obvious that the atomic motion is strongly correlated for
small distances. The correlated motion could be considered by distance dependent vibration
amplitudes.

In the theory presented here anharmonic effects are introduced in a straightforward man-
ner. The expansion coefficients of the PDF emerge directly from the fit procedure. There are
no apriori assumptions whether the vibrating atoms move in a harmonic potential or not. As
the PDF is determined by the atomic potential within which the atom vibrates anharmonic
contributions to the one particle potential can be analyzed in terms of the resulting PDF it-
self. Possible applications are for example the determination of diffusion paths near an order-
disorder transition or libration modes of molecules.

It is not likely that the determination of anisotropic thermal vibration is distorted by ef-
fects resulting from anisotropic atomic potentials. In the LEED calculation usually spherical
muffin-tin potentials are used. There have been a few attempts to introduce more general po-
tentials [26,31,32] where it has been found that the largest influence on the I/V curves appears
at low energies. The anisotropy of the atomic potential occurs in the outer shell of the muffin
tin sphere and this influences the scattering properties mainly at low energies, it becomes most
important for VLEED. Anisotropic thermal motion, on the other hand, becomes important at
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Figure 16.8: Left panel: Correlation coefficient as function of the nearest neighbour distance(
after [15]). Right panel: Multiple scattering paths. The strong attenuation of the electron beam
renders the multiple scattering between nearest neighbours the most important contribution to
the diffracted intensity.

high energies, because of the product �k�u in the exponential function. Therefore both effects
should be separable.

16.5 Applications

Two examples are shown here where anisotropic vibration amplitudes have been determined in
the LEED I/V analysis. For clean metal surfaces small anisotropies are expected and the anal-
ysis shows that even these can be detected by temperature dependent LEED measurements.
In the second example the vibration amplitudes of CO adsorbed on Ru(0001) is analyzed.
Here larger amplitudes are expected due to the bending mode, or libration mode, of the CO
molecule.

16.5.1 Cu(110)

The structure and the vibration amplitudes of the Cu(110) surface have been investigated in the
past by various methods [33–39]. Cu(110) is a model system where a measurable anisotropy
of the vibration amplitudes can be expected due to the two-fold symmetry of the structure, see
Fig. 16.9, and the surface has been studied in order to get better insight to the dynamics at
surfaces and to understand related phenomena like anharmonicity, the roughening transition
and surface melting on solid surfaces. Most of the experimental results agree in the geometry,
the top layer spacing is contracted, the second layer spacing expanded. From ion scattering
experiments and from theoretical calculations [35] enhanced vibration amplitudes in [001]
direction are expected.

In order to analyze the vibration amplitudes with LEED temperature dependent I/V curves
have been measured at nine temperatures in the range from 110 to 465 K. The intensities were
measured with a video system. The I/V curves of two beams at different temperatures are
shown in Fig. 16.10.
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Figure 16.9: Model of the Cu(110) sur-
face. The symmetry allows different vibra-
tion amplitudes in

ˆ
110

˜
and [001] direc-

tion.

Figure 16.10: Experimental I/V curves from Cu(110) at temperatures between 110 and 465 K.

The main temperature effect is the reduction of the intensity, some of the peak posi-
tions shift slightly. In the analysis the comparison of experimental and calculated curves by
Pendry’s R-factor [12] turned out to be less suited. Therefore R2, the mean square deviation
between experimental and calculated intensities has been used instead.

At first the analysis was done assuming isotropic vibrations. The result is shown in
Fig. 16.11.

In the analysis 4 layer spacings were optimized and the vibration amplitudes in the top
three layers. In the next step anisotropic vibration amplitudes were introduced in the top layer
only. It turned out to be important to use a common scale factor for all I/V curves. The result
is shown in Fig. 16.12.
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Figure 16.11: Vibration amplitudes for the top three layers in the Cu(110) surface.

Figure 16.12: Vibration amplitudes in x-, y- and z-direction in the top layer of Cu(110) as a
function of temperature.

The amplitudes normal to the surface are more or less the same as determined by assuming
isotropic vibrations shown in Fig. 16.11. For the determination of isotropic vibrations the r-
factors RP and R1 are used with individual scale factors for each beam. This is not appropriate
for the determination of anisotropic vibrations, therefore here R2 with the same scale factor for
all beams is used. In the r-factor plot, Fig. 16.13, is clearly an enhancement of the vibration
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amplitudes in y-direction, [001], visible. This is in agreement with theoretical calculations
[35] and with ion scattering results [7].

Figure 16.13: R-factors as function of the vibration amplitudes of the top layer in x and y-
direction at T=255 K.

16.5.2 CO/Ru(001)

The adsorption of CO on Ru(001) has been extensively studied by various methods, the ad-
sorption geometry has been determined by LEED, ESDIAD and ARUPS [40–42]. In the√

3×
√

3-structure CO occupies the top site and induces a slight buckling in the top Ru layer.
The structure model and the notation of the parameters used in the present calculation are
shown in Fig. 16.14.

The vibration of the CO molecule has been analyzed with temperature dependent LEED
measurements. I/V curves were measured at six temperatures between 25 and 350 K and
the anisotropy of the vibration amplitudes of C and O were analyzed using the multipole ex-
pansion formalism described above [43]. The same system has been analyzed independently
using a coherent superposition of partially occupied positions to simulate anisotropic thermal
vibration [5, 28]. The results were practically the same as those obtained with the multipole
expansion. Starting from the structure as previously determined with isotropic vibrations [40]
the analysis was performed with an optimization of the vertical and parallel vibration ampli-
tudes for C and O together with the structural parameters for each temperature. Note that
in this treatment the motions of C and O are independent of each other. As the variation of
the vibration amplitude has quite a drastic influence on the superstructure beams, we have
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Figure 16.14: Model of the adsorption structure CO/Ru(0001)-
√

3 ×√
3, (from ref. [43]).

used Pendry’s R-factor RP [12], and a second r-factor RDE [44], both leading to practically
the same result. To show how sensitive the superstructure intensities are to the thermal pa-
rameters the I/V curves for the (0.67, 1.67) beam are shown in Fig. 16.15, together with the
corresponding R-factors for this particular beam, Fig. 16.16.

The R-factors show also a noticeably better agreement between experimental and cal-
culated data with anisotropic than with isotropic vibrations. With isotropic vibrations the
R-Factors are RP = 0.29 at 25 K and increase to 0.39 at 350 K, while with anisotropic vi-
brations the optimum values for RP are 0.26 at 25 K and 0.34 at 350 K. The increase of the
R-factors with temperature is commonly observed in LEED-I/V analyses and could be the
result of anharmonicity, i.e. non-Gaussian probability density or a dependence of the lateral
vibrational amplitude on the azimuthal direction in-plane. In this case a triangular shape of
the in-plane PDF is compatible with the symmetry but this cannot be described within the
harmonic approximation. Therefore we have tested anharmonic models by including higher
terms in the multipole expansion. A deviation from the lateral isotropy in the probability den-
sity function could be detected, no improvement of the fit was found. It is indeed not expected
from the previous ESDIAD results [41] that preferential directions for the vibration parallel
to the surface exist. It is, nevertheless, conceivable that actually the correlated motion of the
C and O atoms is important. This cannot be considered in the present formulation of the
multiple scattering theory where only uncorrelated motions are possible, as mentioned above.
The remaining deviation from ideal fit could also result from defects, whose number increases
with temperature.

The results for the temperature dependence of the vibration amplitudes are shown in
Fig. 16.17. All amplitudes increase with temperature. The parallel displacement for the oxy-
gen atom is noticeable larger than that for the carbon atom except for the lowest temperature
where both amplitudes are equal. Both parallel components are larger than the vertical compo-
nents. After optimizing the thermal vibrations the structural parameters have been optimized
again, but no deviations were detectable within the error limits.
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Figure 16.15: I/V curves of the (2/3,5/3) superstructure beam of CO/Ru(001)-
√

3 × √
3 illus-

trating the importance of the temperature factor in the calculation. Full line: experimental curve,
dotted line: calculated curves with different vibration amplitudes of the O atom parallel to the
surface as indicated in each panel,(from ref. [43]).

16.6 Summary

There have been a number of studies performed where the vibration amplitudes of surface
atoms have been determined by LEED. Without intending to give a complete list we just men-
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Figure 16.16: R-factors of the (2/3,5/3) superstructure beam of CO/Ru(001)-
√

3×√
3 as func-

tion of the parallel component of the vibration amplitude of the oxygen atom, (from ref. [43]).

tion some recent examples, Al2O3(0001) [3], Rb/Al(111) [6], K/Cu(100) [4] where enhanced
vibration amplitudes have been found. The comparison of the results of different methods has
shown the reliability of LEED I/V analyses not only of the geometry but also of thermal vibra-
tions. Further improvement can be obtained by low temperature measurements and inclusion
of anisotropic vibrations in the LEED I/V analysis.

The analysis of anisotropic vibration amplitudes has been demonstrated for two cases, the
clean Cu(110) surface and an adsorbate system CO/Ru(0001). For the clean metal surfaces the
anisotropy of the thermal vibration is small, the anisotropy is small and the clean metal sur-
faces are certainly a limiting case. Nevertheless, it is shown that a measurable effect exists and
the anisotropy can be determined and is comparable with results from other methods, namely,
ion scattering and theoretical calculations. It is also obvious that precise measurements are
required where all I/V curves can be put on the same scale. The lateral anisotropy of thermal
vibration influences the relative intensities between the different beams. For each I/V curve
the momentum transfer parallel to the surface is constant. Allowing different scale factors for
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Figure 16.17: Vibration amplitudes of C and O in the CO/Ru(0001)-
√

3 × √
3 structure as a

function of temperature. The open circles refer to the fit using Pendry’s r-factor RP [12] and
the triangles refer to the fit using RDE [44]. uO

‖ and uO
⊥ represent the vibration amplitudes of

the O-atom parallel and normal to the surface, uC
‖ and uC

⊥ of the C atom, respectively, (from
ref. [43]).

each beam, or eliminating the common scale factor by comparing mainly the peak positions,
neglects the most important effect of the temperature factor. The CO/Ru(001)-

√
3×

√
3 adsor-

bat structure represents a case where larger amplitudes occur, where the influence on the I/V
curves is larger, especially for weak superstructure beams of higher order. The agreement be-
tween experimental and theoretical curves is substantially improved by including anisotropic
thermal vibrations.
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Color figures

Chapter 2

Figure 2.7: Ab initio computed spectrum of GaAs(001) for photon energy 28 eV (lower part) decon-
voluted to yield peaks at energies marked by bars with full dots, compared with bare bars mapped from
intersections of initial bands (black lines) with final bands (flat curves) shifted by photon energy down
to binding energy scale (upper part), one example shown by dotted line; insert shows density of states
and a matrix element, position of direct transition near −4.5 eV indicated.
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Figure 2.8: Theoretical and experimental pattern of photocurrent into emission hemisphere with hν =
26 eV from Fermi energy for TiTe2(0001) (bottom); Fermi surface plot (top left) compared with energy
surface slightly above EF (top right) .

Figure 2.10: Plot of phase, a and d, and modulus, b and c, of wavefunction for Si(001) entering surface
from vacuum (top) to solid (bottom), inclied electron escape (a,b), normal escape (c,d); dots show nuclei
positions, frame indicates interface.
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Figure 2.11: Wave functions Fourier transformed along (0001) direction (AΓA) of TiTe2(0001), for
each energy intensity of shading represents modulus of Fourier coefficient vs. wave vector; real band-
structure (black lines)is underlaid.
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Chapter 4

Figure 4.1: Wave vector Fourier decomposition of the inverse LEED state (brown shaded) for several
Γ̄ points with normal emission in center of circle and underlaid pseudopotential band structure (black
lines).
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Figure 4.6: Local emissivity of extended initial states: hemispherical photocurrent plotted for selected
spatial areas cutted out of the whole volume as depicted by the blue region in side view scheme of
GaAs(110) surface aside each pattern; note that additionally interference between these areas exists and
has to be taken into account.
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Chapter 5

Figure 5.11: Intensity distribution on the focal plane of a photon sieve compared to a zone plate. Small-
est structure size for both optical elements is 30 nm. For the photon sieve, the suppression of the sec-
ondary maxima is evident. This provides sharper images.

Figure 5.12: Schematic of a nanospectroscope capable of recording high-resolution images revealing
chemical composition, morphology, and the electronic properties of materials in the nanometer regime.
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Chapter 12

Figure 12.21: Stereo microscope.

Figure 12.24: (a)-(d) The photoelectron angular distribution patterns from single crystal graphite va-
lence band excited by a linearly polarized light corresponding to the cross-section of the π band at the
binding energy of 0.0, 1.0, 2.0 and 3.0 eV, respectively.
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Figure 12.25: (a) Bird’s-eye-view of three dimensional π (upper) and σ (lower) bands of graphite.
Photon energy of 37.5 eV is used for the excitation. The patches of the hexagonal tiles underneath
stand for the other Brillouin zones. (b,c) Photoemission intensity distributions of the π and σ bands,
respectively.
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Chapter 15

Figure 15.7: Basic geometry of an experiment combining soft X-ray excitation of photoemission with
a wedge-shaped bilayer sample grown on a multilayer-mirror standing wave generator (SWG) so as to
selectively study the buried interface between Fe and Cr. Scanning the sample position along the x axis
effectively scans the standing wave through the interface. [From ref. [16].]
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Figure 15.8: Calculated reflectivity for the sample geometry of Fig. 15.7: a wedge-shaped Fe/Cr bilayer
on top of a 40-period multilayer mirror composed of bilayers of B4C and W. Note that, although the
reflectivity is attenuated by thicker Cr layers, the position of maximum reflectivity is pinned at the same
angular position by reflection from the multilayer. [From refs. [16], [17], and [19].]
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Figure 15.13: Resonant X-ray optical calculation for the experimental geometry in (a) of: (b) the X-
ray penetration depth = exponential decay length Λx, (c) the O 1s photoelectron intensity, and (d) the
reflectivity Rx. These calculations were carried out for p-polarized radiation incident on a flat MnO
surface and photon energies were scanned through the Mn 2p absorption resonances. The plots in (a),
(b), and (c) are all shown as a function of both photon energy and incidence angle. [From ref. [19].]
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Figure 15.16: (a) Illustration of the basic process occurring in multiatom resonant photoemission
(MARPE). (b) Additional diagram of the electronic transitions involved in the MARPE process, for
the specific case of O 1s emission from MnO and with the photon energy passing over the Mn 2p3/2

absorption resonance. [After refs. [20] and [22].]
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k · p method 227, 229
k‖ projected band structure 233
k‖ projected real band structure 238
Γ − L transitions 23
Γ − Γ transitions 23
(GaAs)2(AlAs)2 154
(RE)Mo6S8 198
(RE)Mo6Se8 198
(RE)Rh4B4 198
(e,2e) geometry 270, 271, 276
(e,2e) process 272, 278, 279

absorption 379
absorption coefficient 417, 418
absorption edge 105, 423
absorption resonance 424, 428, 472
acceleration form 87, 92
acceptance angle 349
acceptor 332
accuracy of extracting band locations 163
accuracy of wave functions 222, 225
actinide 194
ADAO see angular distribution from atomic

orbitals
adatom-substrate bond 328
adiabatic 116
adiabatic hypothesis 67
adiabatic limit 117
adlayer 379
adlayers 264
adlayers of noble gases 263
ADP see atomic displacement parameter
adsorbate 151, 155, 313, 318, 319
adsorbate lattice 319
adsorbate states 264
adsorbate-adsorbate interaction 319
adsorbate-covered surfaces 325
adsorbate-induced reconstruction 331

adsorbate-induced relaxation 331, 332
adsorbate-substrate bond 331
adsorbate-substrate interaction 319
adsorbates 260, 263
adsorption 315, 345, 433
adsorption structure 454
advanced 78
advanced propagator 56
affinity 64, 73
Ag(001) 263
Ag(111) 258, 261, 263
Al 133–135
Al (100) 242
Al2O3(0001) 456
Al(111)/Rb 456
alloy 212
alloy band structure 213
amplitude reduction factor 399
Anderson Hamiltonian 195
Andreev reflection 200
angle resolved photoelectron spectroscopy

159–161, 163–166, 169–171, 338,
339, 344, 361, 362, 487

angle-resolved photoelectron nanospec-
troscopy 172

angle-resolved photoemission 159, 177, 197,
200, 202, 212

angle-resolved ultraviolet photoemission spec-
troscopy 148, 149, 151, 453

angular distribution 308, 362, 364, 365, 467
angular distribution from atomic orbitals 361
angular intensity distribution 307
angular momentum 355, 356, 443
angular momentum catastrophe 393
angular pair correlation 307
angular resolution 338, 349
angular resolved photoemission 145, 150
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angular resolved spectra 141
anharmonic correction 395
anharmonic distortion 448
anharmonic model 454
anharmonic potential 448
anharmonic thermal vibration 438, 449
anharmonic vibration 434, 438, 447
anharmonicity 433, 438, 449, 450, 454
anisotropic environment 323
anisotropic probability density function 443
anisotropic thermal vibration 433, 449
anisotropic vibration 434
anisotropic vibration amplitude 450, 451, 456
anisotropy 433, 445
anisotropy of self-energy 153
annihilation operator 297
anomalous X-ray scattering amplitude 397
anti-symmetrized product of single-particle

Green’s function 306
antibonding 64
antiferromagnet 206
antiferromagnetic metal 177, 190
antiferromagnetic reciprocal lattice vector 206
antiferromagnetic splitting 206
aperiodic system 391
appearance potential spectroscopy 213
APW method 221
ARPES see angle resolved photoelectron

spectroscopy
ARUPS see angle-resolved ultraviolet photo-

emission spectroscopy
asymmetric spectral function 399
asymmetry 163, 290
asymmetry function 131
asymmetry index 132
atomic adsorption 325
atomic diffusion 333
atomic dipole-matrix element 390
atomic displacement 434
atomic displacement parameter 435
atomic geometric structure 347
atomic multilayer 328
atomic multiplet effects in a solid 139
atomic orbital 142, 361–363
atomic position 316, 434
atomic resonance 51, 104
atomic scattering factor 435, 441
atomic shadowing 150
atomic-XAFS 396

attenuation length 410, 419, 428
attenuation of the incident radiation 145
Au 405, 407
Au(111) 261
Auger coupling term 136
Auger decay 136, 139
Auger electron emission 423
Auger holography 370
Auger photoelectron coincidence 139
Auger process 149
Auger transition 120
augmented plane waves 94
augmented plane waves formalism 222
autocorrelation 249, 252, 264
azimuthal distribution 151
azimuthal rotation of forward focusing peak

355
azimuthal shift 357

of the forward focusing peak 354

back-bond 171, 347
back-folding 153, 154, 197
back-scattering 378
background 302, 408
ballistic transport 260
band bending 143
band diagonal 95
band dispersion 161, 163, 166, 364
band dispersion of graphite 362
band dispersion surface 364
band ferromagnetism 178
band gap 6, 9, 142, 153, 196, 199, 200, 206,

208, 212, 260
band mapping 145, 147, 153, 161, 164, 170,

178
band mass 161
band overlap 163
band picture 51
band splitting 192
band structure 83, 90, 97, 105, 109, 124, 142,

145, 146, 148, 150, 151, 159, 163,
164, 177, 178, 180, 184–186, 190–
192, 198, 237, 306, 316, 340, 343,
361, 362, 364

calculation 52, 53, 125, 145, 202
code 110, 388
determination 145
of magnetic materials 178
theory 220
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band topology 186
band velocity 161
band width 192

of the laser pulses 253
band-gap emission 238
band-mapping 89, 90
bare interaction 70
bare particle 58
Bayesian statistics 372
bcc Fe 188
Bi2Sr2CaCu2O8 362
binding energy 73
Bloch condition 95, 103
Bloch theorem 142
Bloch vector 99
Bloch wave matching 275
Boltzmann’s expression for the entropy 373
bond breaking 264, 333
bond length 317, 318, 326, 327
bonding 64
bonding configuration 345–347
bonding region 172, 396
boson 62
bound states 142
boundary condition 94, 154
boundary value problem 95
Bragg angle 406, 410, 412, 429
Bragg intensity 435
Bragg reflection 406, 408
Bragg-peak 436
Bragg-scattering 440
Brillouin zone 146, 153, 154, 362, 363, 365,

436
broadening 148
Brueckner hole-line expansion 295
bulk band 170, 183, 258

structure 251
bulk photoelectron diffraction 352
bulk plasmon satellite 129
bulk plasmon satellite spectra 130
bulk plasmons 129
bulk protein X-ray crystallography 371
bulk reflection matrix 379
bulk sensitivity 427
bulk state 179
bulk-like lattice termination 322
buried interface 154, 329, 404, 406, 411, 416,

428, 429

C(0001) 263
cancellation 70

between intrinsic and extrinsic ampli-
tudes 129

carrier density 210
causality 56
Cd1−xMnxS 203
CDPD see circular dichroism in photoelectron

diffraction
CDW see charge density wave
CDW phase transition 170
center of gravity of the photoemission peak

166
center of the surface Brillouin zone 261
charge density fluctuation 124
charge density wave 159, 170, 204, 345
charge excitation 178
charge fluctuation potential 123
charge transfer 116, 134
charge transfer energy 195
charge transfer insulator 197
charge transport 177
charge-transfer semiconductor 195, 200
charge-transfer system 117
chemical environment 347
chemical potential 63, 72
chemical shift 88, 118
chemisorption 313, 319, 325, 329, 331
chemisorption bond 333
chemisorption site 326
chemisorption systems 135
Chew and Low 122
circular dichroism 397, 429
circular dichroism in photoelectron diffraction

347
circular polarization 177
circularly polarized light 354
circularly polarized light photoelectron

diffraction 348
circularly polarized radiation 155, 414
circularly polarized-light photoelectron

diffraction 353
Clausius-Mossotti 105
close coupling 121
clothed 58
cluster 100, 110, 177, 203, 389, 427
CMR see colossal magnetoresistance
Co 182, 183, 185, 187
Co/Cu/Co tri-layer 210



476 Index

coadsorption 330
coherent control of the excitations 255
coherent control of the quantum beats 257
coherent excitation 257
coherent final state 84
coherent potential approximation 190
coincidence 269–271, 276, 277
coincidence rate 301
coincident spectrum 296
collective 58
collective excitation 53, 59, 104, 144
collective mode 52, 302
colossal magnetoresistance 193, 198, 202
commensurate 319, 328, 329
commutation relation 62
completely relaxed final state 121
completely relaxed state 117, 120
complex band structure 90, 93, 95, 142, 229,

230, 234, 243
complex Bloch vector 89, 90
complex single-particle potential 298
composition profile 415
compound formation 325, 333
compound monolayer 333
computer code 51, 109, 388
conduction band 310
configuration interaction 121
configurational disorder 395
conservation law 141, 150, 179, 181, 253, 271
conservation of the wave vector 147
conservation rule 119
constant energy surface 161, 163
constant final state 148
constant final state spectra 134
constant final state spectroscopy 250
constant initial state 148
constant initial state spectroscopy 250
constant intermediate state spectroscopy 250
constraint 65, 373, 374
contraction 331
contraction of bond length 323
convergence 70, 102, 111
CoO 197
core electron energy 118
core electron PES 116, 120
core electron photoemission 116
core electron quasi-particle energy 127
core hole 117, 387, 388, 398
core-hole lifetime 392

core hole potential 120, 134
core level 88, 102, 150, 338, 345, 347
core level absorption edge 404, 417, 427
core-level emission 110
core-level photoelectron 407
core-level photoemission 100, 103
core-level spectra 342
core level spectroscopy 84
core photoemission 50
core shift 121
core-to-valence transition 187
correlated Debye model 395
correlated motion 434, 435, 449, 454
correlated system 295, 298
correlated thermal diffuse scattering 349
correlated two-photoelectron current 307
correlation 59, 64, 74, 84, 148, 193, 295, 302,

307
correlation coefficient 450

of atomic displacements 449
correlation energy 74
correlation hole 307
CoS2 205
Coster-Kronig 136, 138
Coulomb correlation 269, 270, 274, 280, 281
Coulomb energy 201
Coulomb excitation 59
Coulomb gauge 85
Coulomb hole 64
Coulomb interaction 194, 272, 274
Coulomb splitting 195
Coulomb term 51
coupled cluster method 295
coverage 319, 330, 342
Cr 190, 191, 206
Cr-doped Ni 213
Cr/Fe 414, 415
creation of the core hole 397
creation operator 62, 297
critical angle 405, 419, 420
critical temperature 204, 206
CrO2 198, 200, 201
Cr2O3 201
cross correlation 249, 252, 261
cross section 187, 269, 272, 296, 305, 356,

410, 417
cross section enhancement 203
cross-section 150
crystal field 194
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crystal field splitting 198, 201
crystal orbital method 142
crystal potential 221, 229
crystal potential method 142
crystal truncation rods 372
Cu 133, 135, 207
Cu dihalides 134
Cu film 208
Cu spacer 207, 209
Cu surfaces 150
Cu(001) 249, 257, 262, 263, 305, 307–309
Cu(100)/K 456
Cu(104)/O 375
Cu(110) 285, 286, 438, 450–452, 456
Cu(110) surface 451
Cu(110)/Cs 439
Cu(111) 147, 250, 251, 255, 256, 258, 259,

261, 263, 264, 282–284
Cu(111)/C6F6 264
Cu(111)/Cs 264
Cu(117) 263
Cu(119) 263
Cu(775) 263
Cu/Co interface 208
cubic bulk magnetic transition metals 37
cumulant expansion 438
cumulant expansion of the Debye-Waller fac-

tor 395
CuO 198, 200, 427
Curie temperature 108, 202, 205
current attenuation 235
current conservation 235
curved wave effect 393
curved-wave 102
curved-wave multiple-scattering theory 392
curved-wave scattering amplitude 394
cut-off 57, 66

d-band metal 195
damped photoelectron state 138
damped propagator 138
damped state 125
damped wave 129, 130
damping matrix 254
dangling bond 151, 171, 324, 338, 347
dangling bond states 260
DAS see dimer adatom stacking fault
de Haas van Alphen effect 191
Debye temperature 436

Debye-Waller damping 389
Debye-Waller factor 111, 395, 437, 444
decay 59, 257
decay of the hot electrons 260
deconvolution 90
decoupling 68
deep-core X-ray spectra 388
defect 435, 454
degeneracy of the core level 126
delocalized level 51
delocalized state 197
density fluctuation 82, 123
density functional theory 3, 53, 59, 64, 65,

143, 233, 238, 295, 340, 345
density of initial states 90
density of states 90, 153, 204, 206, 207, 305
dephasing 257
dephasing rate 254
depolarization at the interface 202
depth distribution 410, 411
depth profile 428
depth sensitivity 429
derivative discontinuities 6
desorption 264, 433
destruction operator 62
determinantal wavefunction 61
DFT see density functional theory
diagram 54, 57, 58, 68–70, 298, 304, 309
diamagnetic 78
diamagnetic part 78
DIANA see display-type spherical mirror an-

alyzer
dielectric constant 404
dielectric function 105, 106
dielectric matrix 400
dielectric matrix function 107
dielectric response function 123
diffraction anomalous fine structure 397
diffraction data 382
dilute magnetic alloy 190
dimer adatom stacking fault 339
dipole 143
dipole approximation 51, 86, 88, 302
dipole matrix element 119, 128, 136
dipole operator 88
Dirac equation 272
Dirac-Hara exchange 392
direct (wave-vector-conserving) transition

170
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direct bulk transitions 257
direct excitation 104
direct product 120
direct transition 90, 145, 153
direct transition model 95
disconnected diagrams 68
discontinuity 76
disorder 313, 325, 328, 342, 389, 395
disordered solid 178
disordered surfaces 319
dispersion 95, 141, 154, 163, 165, 166, 177,

178, 181, 186, 190, 194, 197, 206,
258, 339, 345, 361

dispersion of a ferromagnet 180
dispersion perpendicular to the surface 258,

260
dispersion relation 392
displacement parameter 436
displacive reconstruction 324, 331
display analyzer 347
display-type analyzer 161, 338
display-type spherical mirror analyzer 348,

360
distortion 359
distribution 376, 380
distribution in momentum space 159
distribution of excited states 121
distribution of the heights 382
divergent 70
DMFT see dynamic mean field theory
donation 343
donor 332
doping 202, 203, 210
double photoemission 301, 307
double-electron emission 300
double-electron photoemission 308
dressed 58
dressed Green function 79
dressed particle 299
dressing 71
dynamic mean field theory 124
dynamic screening 306
dynamics of atoms 360
Dyson equation 53, 61, 70, 71, 98, 298, 300,

390
Dyson orbitals 273

EDC see energy distribution curve and elec-
tron distribution curve

edge singularity 399, 400
EELS see electron-energy-loss spectroscopy
effective field 295
effective interaction 70, 299, 300, 425
effective mass 58

computed and measured 20
effective one-body operator 126
effective one-body potential 65
effective one-electron potential 275
effective particle-particle interaction 302
effective polarization vector 426
effective potential 84, 143
elastic constant 438
elastic one-electron reflection 278
elastic peak 129
elastic reflection matrix element 279
electromagnetic field 302
electron density of the surfaces 384
electron diffraction 229, 348
electron distribution 372
electron distribution curve 107, 117, 120
electron energy loss function 123
electron energy loss spectra 397
electron energy loss spectroscopy 200
electron focussing 150
electron hole pair creation 179
electron holography 317, 370
electron loss problem 138
electron microscope 359
electron propagation 379
electron scattering dynamics 269, 270, 278
electron scattering probability 150
electron scattering state 117
electron spectroscopy for chemical analysis

118
electron stimulated desorption ion angular dis-

tribution 348, 453
electron tunneling 150
electron-electron correlation 345
electron-electron interaction 143, 295
electron-electron scattering 180
electron-hole coupling 253
electron-hole excitation 117, 121
electron-hole pair 178, 182, 183, 397
electron-hole pair creation 212
electron-hole pair excitation 183
electron-ion interaction 142
electron-occupation propagator 77
electron-pair emission 296
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electron-phonon coupling 345
electron-phonon interaction 202
electronegativity 195
electronic phase transition 207
electronic states of magnetic materials 177
electronic structure 177, 339, 344, 388
electrons at crystal surfaces 141
elemental ferromagnet 183
elementary excitation 54, 58
ellipsoid of thermal vibration 448
ellipsoid of vibration amplitude 437
embedding 233
energy conservation 73, 89, 117, 145, 148,

160, 309
energy diagram 247
energy distribution curve 144, 145, 148, 151,

154, 161, 163–166, 168, 182
energy gap 161, 204
energy resolution 177, 212, 301, 349
energy resolved current 77
energy sharing curves 278, 290
energy sharing distribution 277, 278, 305
energy surface 147
energy-correlation function 296, 308
energy-resolved spectroscopy 247
epitaxial growth 328
ESCA see electron spectroscopy for chemical

analysis
escape depth 118, 154, 260, 302
ESDIAD see electron stimulated desorption

ion angular distribution
evanescent 229, 231, 232, 235, 237, 243
evanescent wave 230
EXAFS see extended X-ray absorption fine

structure
exchange 63, 84, 186, 423
exchange correlation 143
exchange correlation functional 65
exchange correlation potential 389
exchange integral 189, 204
exchange interaction 198, 287, 291
exchange scattering 70
exchange splitting 180, 183, 189
excitation 54, 83, 250
excitation energy 64, 123
excitation matrix element 163
excitation of the resonance 104
excited state 141, 144, 197
excited state electronic structure 387

excited state electronic structure calculation
387

exciton 104, 105, 253
expansion coefficient 449
expansion in the external field 78
exponential modeling algorithm 372
exponential S 295
extended initial state 100
extended LAPW - k·p method 226
extended linear method 222
extended state 51
extended X-ray absorption fine structure 388,

392, 394
extrinsic 116, 133, 397
extrinsic amplitude 127
extrinsic loss 52, 81, 117, 121, 126, 136, 138,

397, 399
extrinsic spectrum 132

factorization 68
Fano expression 136
Fano line 137
Fano profile 104
Fano resonance 137
Fano type line shape 136
fcc Co(100) 208
fcc Fe 186, 193
Fe 182, 183, 189, 198
Fe(110) 281, 282, 289–291
Fe-doped Ni 213
Fe/Cr 414, 416
Fe/Cr bilayer 411, 413, 416, 470
FEL see free-electron laser
femtosecond precision 252
femtosecond resolution 247
Fermi energy 63
Fermi level 180, 181, 185, 192, 200, 202, 204,

206, 207
Fermi level crossing 165, 166
Fermi liquid 52, 76, 149, 150, 163, 166
Fermi liquid theory 259
Fermi surface 52, 159, 161, 163, 168, 178,

191, 361–363
Fermi surface contours 168
Fermi surface geometry 159
Fermi surface instability 170
Fermi surface map 166
Fermi surface mapping 169, 170, 338, 347
Fermi surface nesting 170
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Fermi surface nesting vector 169
Fermi surface pocket 163
Fermi surface sections 167
Fermi vector 166
Fermi velocity 182
fermion 62
ferromagnet 182, 204, 212
ferromagnetic layer 211
ferromagnetic metal 177, 183
ferromagnetic order 414–416
ferromagnetic splitting 206
ferromagnetic surface phase 198
ferromagnetic surface properties 270
ferromagnetic surfaces 289
ferromagnetism 203, 204
Feynman diagram 53, 302, 303
field operator 63
field-ion microscopy 318
FIM see field-ion microscopy
final state 51, 74, 80, 89, 92, 93, 96, 108, 110,

116–118, 121, 126, 136, 147, 187,
355, 389, 390, 398, 422

final state Hamiltonian 389
final state potential 391
final state properties 116, 121
final state rule 389, 398, 399
final wavefunction 87, 103
final-state interaction 302, 304
finite lifetime 76
finite temperature 118, 178
FLAPW see full-potential linearized aug-

mented plane wave
FLAPW method 3
fluctuation potential 123, 128
fluctuations 82
fluorescence 317
fluorescent X-ray attenuation length 427
focusing the radiation 172
formation energy of graphite 364
Forster effect 425
forward focusing peak 348, 350, 351, 353,

356
forward-scattering 378, 380
Fourier reconstructed structure 352
Fourier transform of the Green function 55
fourth-generation synchrotron light source

174
free electron 181
free-electron approximation 145

free-electron final state 160, 168
free-electron laser 107, 172
free-particle Green function 80
Fresnel 51
Fresnel equations 104, 404, 405, 418
Fresnel zone plate 173, 430
Friedel oscillations 143
frozen-orbital 74
FSI see final-state interactions
full potential correction 388
full-potential linearized augmented plane

wave 2, 3, 13, 32, 362
fundamental band gaps 19

GaAs 145, 195, 202, 203
GaAs(001) 91, 461
GaAs(001)c4x4 154
GaAs(100) 153
GaAs(110) 151, 155, 159, 171, 172, 465
GaAs(110) surface states 170
GaAs(111)-(2×2) 375
GaN 95
GaN(0001)1x1 96
GaP 203
gap 144, 178
gauge 77, 85
Gaussian distribution 441
Gaussian distribution of displacements 435
Gd 183, 186–188, 205
Gd(0001) 189
Ge(111)-(

√
3 ×√

3) 344
Ge(111)-(

√
3 ×√

3)Sn 344
generalized gradient approximation 3, 5
generalized Kohn-Sham scheme 14
geometric approach 110
geometric structure 339
GGA see generalized gradient approximation
giant magnetoresistance 177, 178, 211
giant resonances 136
GKS see generalized Kohn-Sham scheme
GMR see giant magnetoresistance
Golden Rule 51, 79, 81, 84, 85, 89, 92, 97,

110, 118, 272–274, 389, 390
graphical summation 57
graphite 361, 363, 365, 468
graphite valence band 364, 467
grazing angle 406
Green’s function 53, 54, 57, 60, 65, 67, 72,

75–78, 91, 94, 98, 102, 128, 130,
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144, 230, 273, 274, 295, 296, 387,
389

Green’s function approach 274, 390
Green’s function formalism 390
Green’s function method 51, 52
ground state 296, 421
ground state calculation 387
ground state density functional Hamiltonian

390
ground state electronic structure calculation

387
ground state-ground state overlap 128
ground-state potential 307
group velocity 178
growth 433
growth mode 328
growth of thin film 207
GW approximation 10, 98, 99, 123, 124, 137,

144, 150, 240, 399
GW electron gas self-energy 392

half space system 93
half-metal 177, 198, 200
half-metallic ferromagnet 190
half-metallic oxide 194
half-space 96, 142, 146
halide 193
Hara approximation 84
hard X-ray regime 406
harmonic approximation 441
harmonic vibration 436, 443
Hartree potential 125
Hartree-Fock 63, 64, 73, 123, 295, 398
Hartree-Fock eigenvalue 63
Hartree-Fock like Hamiltonian 122
HCC see honeycomb-chain-channel
HCT see honeycomb-chained-triangle
heavy Fermion compound 295
Heisenberg picture 297
Heisenberg representation 65
hemisphere mapping 159
hemispherical energy analyzer 182
hemispherical photoemission 147, 155
heterogeneous nanostructure 416
Heusler alloy 190, 200, 202
hierarchy 298
high energy limit 123
high temperature superconductor 83, 177,

190, 193, 198, 200, 201, 203

high-Tc compounds 135
high-coordination adatom 327
high-coordination site 326
high-momentum component 296
higher order Green function 68
higher-order magneto-crystalline anisotropy

34
Hohenberg-Kohn theorem 53, 64
hole creation 72
hole Green function 92
hole propagator 69
hole spectral density function 81
hole spectral function 298
hole-hole pair 182
hole-hole pair excitation 182
hole-hole spectral function 299
holographic algorithm 372
holographic computer reconstruction 383
holographic inversion 317
holographic LEED 371
holographic low energy electron diffaction

370
holographic method 352
holographic reconstruction 370
holographic surface crystallography 370
holography 84, 89, 151, 347, 349, 370
homogeneous 144, 151, 417
homogeneous dielectric constant 105
homogeneous electron gas 65, 295, 304
homogeneous non-interacting system 58
honeycomb-chain-channel 340
honeycomb-chained-triangle 342
HTC superconductivity 92
Hubbard band 190, 195
Hulthén-Kohn 122
Hund’s rule 186, 202
hybridization 195, 201, 323, 364
hybridization coupling 134
hydrodynamic model 107

I/V curves 451, 455
ICD see interatomic coulomb decay
III-V semiconductors 96
image potential 143
image-potential states 250, 251, 260–262

on Cu(001) 262
image state 143
image-state lifetime 144
imaging 429
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improper 70
incoming 100
incommensurate 319
incomplete relaxation 116
independent particle state 61
individual atomic orbital 154
individual layer 154
induced field 105
inelastic loss 118, 387–389, 397
inelastic processes 85, 236, 238
inelastic scattering 126, 397
inequivalent triangle model 342
infinite summation 70
initial core state 354
initial state 51, 74, 88, 93, 102, 116, 121, 141,

187
initial state correlation 304
initial state properties 116, 119, 121
initial state wave function 100, 119
inner potential 168, 181, 209, 212, 410
inner valence absorption edge 427
insertion 71
instability 66
insulating spacer 212
intensities of photoemitted electrons 141
intensities of the spectral peaks 170
intensity distribution of a photon sieve 174,

466
intensity map 163, 166
interacting particles 58
interaction picture 66
interaction representation 67
interatomic Auger process 423
interatomic coulomb decay 425
interatomic distance 352, 359, 434
interatomic effect 404
interatomic multiatom resonant photoemission

420
interatomic resonant photoemission 426
interchannel interactions 122
interface 413, 414, 427
interface mixing 413
interface structure 328
interference 104, 117, 130, 141, 187, 399
interference device 207
interference effect 133, 398
interference ring 350–352
interferometric 255, 256
intermediate state 250

internuclear distance 354
intrinsic 116, 134, 397
intrinsic amplitude 127, 130
intrinsic loss 52, 117, 126, 130, 136, 138, 394,

397, 399
intrinsic loss structure 121
intrinsic spectra 139
intrinsic spectrum 132
intrinsic surface electronic structure 344
inverse band structure 229
inverse bandstructure problem 95
inverse dielectric function 240
inverse LEED state 110
inverse method for LEED 381
inverse photoemission 178, 179, 188, 189,

196, 201
inverse problem 370
inversion 102
ionization potential 64, 73
irreducible 70
irreducible part 72
irreducible polarization part 71
island 313
isotropic vibration 436, 451
iterative 102
iterative approach 396
itinerant electron 177

jellium 143
jellium model 123
JMR see junction magnetoresistance
junction magnetoresistance 211

Keldysh path ordered diagrams 126
Keldysh technique 77
Kikuchi band 350, 352
Kikuchi-electron holography 349
kinematic temperature factor 435
kinematic theory of diffraction 434
Kohn-Sham eigenvalue 59
Kohn-Sham equations 65
Koopman’s theorem 64, 73
Kossel line 350, 352
Kramers-Heisenberg formula 422

La0.7Sr0.3MnO3 202
La2−xSrxCuO4 200
La2CuO4 198, 200
LaCaMnO 198
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LaCuO 198
ladder approximation 300, 305, 307
ladder diagram 300
Lagrange multiplier 64, 373, 377
Lanczos technique 396
Langreth model 127
LAPW 223, 233
large unit cell 371
laser light source 251
lateral anisotropy of thermal vibration 456
lateral vibrational amplitude 454
lattice matching 333
Laue condition 280
Laue representation 95
layer composition of spectra 141
layer density of states 283
layer doubling renormalization 96
layer Korringa-Kohn-Rostoker 306
layer resolved LCAO 93
layer-by-layer growth 328
layer-KKR 92
layered compound 151
layered crystal 106
layered transition metal dichalcogenide 96,

159
LDA see local-density approximation
LDA+U method 2
LDOS see layer density of states
least-biased 382
LEED see low-energy electron diffraction
LEED wave function 229
LEED-I/V analysis 433, 450, 454
Lehmann representation 297, 299
length form 87
level crossing 163, 185
level diagram 199, 202
level order 134
level shift 136
libration mode 438
libration modes of molecule 449
lifetime 58, 59, 76, 81, 90, 91, 97, 136, 141,

144, 148, 149, 163, 210, 236, 237,
240, 241, 248, 249, 253, 254, 256,
260–264, 273, 274, 345, 387, 388,
397

lifetime broadening 182, 388
lifetime of hot electrons 258
lifetime of image states 263
light incidence 162

light polarization 108
light sources 159
linear method 221
linear response assumption 51
linear response in the external field 85
lineshape 118, 121, 132, 255
lineshape asymmetry 118
linewidth 149, 191, 250, 253, 254
linked cluster theorem 68
linked diagrams 68
Liouville-von-Neumann equations 254
Lippman-Schwinger 122
Lippman-Schwinger equation 55
LKKR see layer Korringa-Kohn-Rostoker
local density approximation 3, 143, 238, 295
local density calculation 183, 184, 192, 197,

201
local density of states 142
local density of surface states 150
local emissivity 155, 465
local field 51, 105, 106, 108
local field effect 400
local magnetic order 205
local spin density approximation 1
local-density approximation 5, 124
localized electron 193
localized electronic state 194
localized level 51
localized state 177, 190, 196, 197, 199
long-range order 205
loop 69
loss function 129, 133
loss of phase coherence 257
low temperature measurements 456
low-coordination adatom 327
low-coordination site 330
low-energy (e,2e) spectroscopy 269
low-energy electron diffraction 80, 118, 142,

146, 220, 235, 238, 315, 316, 341,
349, 371, 375, 376, 378, 380, 381,
384, 392, 433, 436, 438, 443, 444,
449, 453, 455, 464

LSDA see local spin density approximation

“magic” thickness 207
magnetic 109, 110
magnetic alloy 177, 190
magnetic anisotropy 207
magnetic atom 107
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magnetic band structure 188
magnetic circular dichroism 3, 40, 201, 397,

414–416
magnetic coupling 177, 180
magnetic dichroism 108, 272
magnetic doping 190, 211, 212
magnetic exchange splitting 182, 188, 195,

208
magnetic excitations 52, 183
magnetic impurity 190, 210, 212
magnetic insulator 177, 193
magnetic interface 177, 211
magnetic moment 108, 183, 188, 189, 192,

193, 199, 201
magnetic multilayer 177, 206, 208, 209
magnetic order 429
magnetic phase diagram 205
magnetic phase transition 177, 178
magnetic roughness of an interface 210
magnetic semiconductor 177, 202
magnetic splitting 178, 183, 184, 188, 190,

191, 201, 204, 205
magnetic state 194
magnetic structure 388
magnetic superconductor 198
magnetic system 155
magnetic transport 212
magnetism 182, 417
magnetism at surfaces 51
magnetization profile 415
magneto-crystalline anisotropy 3, 32
magneto-optical effects 40
magneto-optical Kerr effect 32, 40
magneto-optical response 207
magnetoelectronic devices 177, 178, 200
magnetoelectronics 177, 190, 202, 210, 211
magnetoresistance 203, 211

colossal 193, 198, 202
giant 177, 178, 211
of junction 211

magnetostriction 36
magnetostriction coefficients 37
magnification 359
magnon 59, 183
Mahan-Nozieres-de Dominicis effect 116
majority spin 180, 185, 188–190, 193, 201,

202, 208, 209, 212
majority/minority spin LDOS 290
manganite 193, 198, 202

many-body amplitude reduction factor 394,
397

many-body correction 387
many-body dipole matrix element 398
many-body effect 91, 388, 389, 397
many-body excitation spectrum 52
many-body overlap integral 398
many-body problem 51, 52, 295
many-body spectral density 52
many-body state 389, 423
many-electron approach 143
many-electron effect 180
many-electron excitation 182, 205, 388
many-electron interaction 425
many-particle excitation 296
MARPE see multiatom resonant photoemis-

sion
MARPE matrix element 426
mass 362
matched wave function 142
matching 95, 143, 230
matching instability 95
matching of the Green functions 142
matrix element 86–88, 90, 92, 102, 145, 147,

187, 419, 422, 423, 428
matrix inversion 395
matrix notation 320
maximum entropy 370, 371
maximum entropy algorithm 372, 373, 376,

384
maximum entropy method 372
maximum gradient method 166
maximum intensity method 166
MCA see magneto-crystalline anisotropy
MCD see magnetic circular dichroism
MCD sum rules 40
MCP see microchannel plates
MDC see momentum distribution curve
mean free path 100, 111, 133, 145, 179, 190–

192, 210, 212, 392, 395, 397
mean square amplitude 448
mean square deviation 451
mean square displacement 443, 445
mean-free path 144
MEIS see medium-energy ion scattering
metal induced gap states 28
metal-insulator transition 194
metal/semiconductor interfaces 339
metallic adsorbate 328
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metallic band 342
metallic overlayer 338
metallic surface band 344
metastable oxygen 345–347
metastable state 347
microscope 430
microscopic MARPE theory 427
MIGS see metal induced gap states
Miller indices 319, 371
minority spin 180, 188–193, 208, 209, 212,

213
mismatch 333
missing-row reconstruction 324
mixed valent situation 138
mixed valent system 116
mixing 134
MME see momentum matrix elements
Mn 195
MnAs 202
MnAs/ZnSe 203
MnO 105, 417–419, 422, 424, 426, 472
MnO thin-film 429
MnO(001) 421, 423, 471
MnO(100) 106
MnSb 203
model GW method 2, 11

applications 13
model Hamiltonian 123, 135
MOKE see magneto-optical Kerr effect
molecular adsorption 325, 329
molecular adsorption site 329
molecular resonance 264
molecular-dynamics 395
molecule 427
molecules adsorbed on surfaces 360
Møller formula 425
moment expansion 438
moments of the distribution 448
momentum 84, 179, 200
momentum broadening 90, 213
momentum conservation 89, 90, 95, 145, 149,

160, 247, 253
momentum distribution curve 182, 192, 213
momentum distribution function 76
momentum resolution 212
momentum-resolved electronic structure 159
monolayer 189, 319
Mott detector 107, 182
Mott scattering 109

Mott-Hubbard insulator 195, 197
Mott-Hubbard theory 194
MRAM see magnetic random access memory
muffin-tin corrections 392
muffin-tin model 391
muffin-tin potential 92, 100
multi-atom resonant PES 116
multi-electron excitation 399
multi-electron transition 398
multiatom resonant photoemission 105, 106,

138, 417, 418, 420, 424, 428, 472
multilayer 203, 313, 328
multilayer B4C/W mirror 429
multilayer growth 325
multilayer mirror 407, 409, 411–413, 429,

469, 470
multilayer sample 429
multilayer structure 210, 417
multiple elastic scattering 85
multiple quasi-boson excitations 133
multiple reflection 410
multiple scattering 92, 94, 105, 109, 128, 150,

151, 229, 270, 274, 275, 278, 316,
317, 351, 379, 380, 388, 390, 393,
423, 433, 434, 440

multiple scattering equations 102
multiple scattering formalism 449
multiple scattering in real space 387
multiple scattering method 99
multiple scattering of photons 105
multiple scattering of the radiation 426
multiple scattering theory 439
multiple-scattering expansion 391
multiple-scattering path 391, 393, 394
multiple-scattering path expansion 391
multiple-scattering representation 51
multiple-scattering theory 391
multiplet splitting 198
multipole expansion 441, 443, 446, 449
multipole expansion coefficient 441, 443

N -particle distribution 395
N -particle final state 389
Na(100) 143
nanometer regime 159
nanoscale material 404
nanospectroscope 175, 466
nanostructure 426, 429
nanostructure characterization 427
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NbSe2 159, 169, 170, 238–240
near edge structure 130, 388
near-neighbor atom 427, 428
nearly-free electron approximation 181
Néel temperature 108, 191, 206
neutron scattering 183
Ni 180–184, 191–193, 198, 205, 213
Ni0.8Fe0.2 190, 192, 213
Ni3Fe 191
Ni(001) 305
Ni(001)/CO(1×1) 381
Ni(001)/COc(2×2) 381
Ni(001)/O 427
Ni(100) 181
Ni(110) 181
Ni(111) 263
NiCr alloy 213
NiMnSb 200, 202
NiO 195–197, 200, 427
NiO(001) 420, 423
nomenclature 319
non-dipole parameter 427
non-Gaussian probability density 447, 454
non-interacting electrons 119
non-local response 51
non-magnetic layer 211
non-magnetic spacer 208, 209
non-magnetic surface system 272
non-magnetic surfaces 287
non-periodic structure 100
non-polynomial (NP) scaling 371
non-resonant effect 404
non-resonant soft X-ray 405
non-resonant X-ray optics 404, 407
non-retarded dipole-dipole interaction 425
non-spherical potential 93
nonlocal potentials 9
nonlocal response 107

object wave 370, 372, 380, 383, 384
occupied state 141
OEP see optimized effective potential
on-site Coulomb energy U 194
one-body operator 63
one-body potential 63
one-dimensional density of states 90
one-electron approach 142
one-electron approximation 389
one-electron Green’s function 390

one-electron PES 126
one-electron spectral function 119
one-electron wave function 85, 121
one-particle 237
one-particle photoemission formula 83
one-particle state 63
one-particle wave-function 390
one-photon two-electron transition 295
one-step 116
one-step formulation 51
one-step model 81, 83, 141, 150, 151, 159,

171, 253, 306
one-step process 139
optical analysis 417
optical Bloch equations 254, 255, 262
optical constant 178, 418, 419, 422
optical effects 51, 104
optical potential 81, 96, 97, 111, 153, 236–

238, 240, 241, 272, 307, 389, 392
optical transition operator 118
optimized effective potential method 2
orbital and spin moments 40
orbital angular momentum 354
orbital character 162
orbital composition spectra 141
orbital orientation 150
orbital spatial orientation 151
order parameter 204, 206
order-disorder transition 326, 338, 449
ordered alloy 190
ordering 329
orientation of bonds 317
orientation of molecules 317
orientation of the ellipsoid 446
oscillation 207
oscillation period 209
oscillatory coupling 209
oscillatory magnetic coupling 206
outgoing 100
outgoing spherical wave 80
outgoing state 79, 82
overlap 134
overlap matrix 120
overlayer 339
oxidation 345
oxidation of Si 339
oxidation process 338
oxide 190, 193
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PAD see photoelectron angular distribution
pair correlation hole 281, 282
pair diffraction 280
parabolic band 181
parabolic dispersion 96, 147
parabolic free-electron band 184
parallax 357
parallel computational algorithm 396
paramagnetic 78
paramagnetic contribution 77
partial photocurrents 171
partial summation 57, 66, 70, 125
partial wave 88, 100
partial wave expansion 443
particle propagator 69, 70
particle-hole excitation 81
particle-particle correlation 304
partition function 438
path filter 394
path Green function 102
Pd 205
Pd(111) 261, 263
PEAD see photoelectron angular distribution
peak intensity 150
peak position 141
peak rotation 354
peak width 148, 153
Pendry’s R-factor 433, 434, 451, 454
penetration depth 104, 404, 405, 419, 422,

428
penetration depth of the light 260
penetration of adatom 315
periodic surface 110
permalloy 190
perturbation expansion 54, 65–67
perturbation series 57, 70
PES see photoemission spectroscopy
PES resonance phenomena 116
phase coherence 96, 253
phase shift 408, 419, 443
phase surface 356
phase transition 204
phonon 59, 138
phonon excitations 121
phonon properties 118
photo-electron current 118
photochemistry 264
photocurrent 54, 77, 79, 95, 127, 150, 304
photocurrent in an ARPES experiment 166

photoelectron angular distribution 161, 163,
164, 166–168, 171

photoelectron current 307
photoelectron diffraction 84, 89, 109, 126,

128, 150, 317, 338, 347, 396, 418,
422

photoelectron diffraction pattern 354
photoelectron diffraction stereograph 347
photoelectron holography 348, 349, 352, 370
photoelectron inelastic attenuation length 406
photoelectron inelastic attenuation lengths

405
photoelectron intensity 420, 422
photoelectron propagator 390
photoelectron spectrometer 181
photoelectron spectroscopy 109, 144, 347
photoelectron-Auger coincidence 116
photoelectron-core hole interaction 397
photoelectron-photohole interaction 81
photoelectron-residual system coupling 123,

125
photoelectron-residual system interaction

135, 137
photoemission from metal 92
photoemission imaging 159, 163
photoemission intensity maps 159
photoemission spectroscopy 116, 123
photoemission structure factor 363
photon pulse 248
photon sieve 172–174
photon wavelength 104
physisorption 313, 319, 325, 326
pinholes 173
plane wave 89, 130, 150, 227
plane wave approximation 102, 393
plane wave asymptotics 94
plane wave expansion 227
plasma frequency 98
plasma wave 59
plasmon 52, 59, 121, 144, 241, 397
plasmon damping 129
plasmon energy 104
plasmon excitation 240
plasmon frequency 145
plasmon generation 106
plasmon intensity 129
plasmon peak 121, 133
plasmon potential 124
plasmon resonance 51
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plasmon structure 129
plasmon wave 107
polarizability 105
polarizability tensor 426
polarization 51, 70, 71, 88, 106, 180, 201,

317, 338, 418
polarization cloud 58
polarization part 128
polarized radiation 163
polaron 202
pole of Green function 297
position of the standing wave 413
potential distribution in the surface region 233
power expansion 57
pre-edge structure 394
primary channel 398, 399
probability density function 436, 437, 441,

442, 444, 447–449, 454
propagation matrix 379, 390
propagator 57, 60, 66, 69, 128, 439
propagator of a hole 66
proper 70
proper self-energy 71
protein crystallography 373
protein electron density map 373
pseudopotential 93, 94, 146
Pt(111) 261, 263
“p”-type metal 195
pulse width 249
pulsed lasers 251
pulsed photon source 301
pump-probe 248, 249
PWA see plane wave approximation

quadratic response 78
quantization of the light 80
quantum Monte-Carlo 295
quantum well state 180, 206–210
quantum well state oscillation 209
quantum-field-theoretical technique 53
quasi-boson 127
quasi-boson Hamiltonian 399
quasi-boson model 116
quasi-boson system 126
quasi-hole 76
quasi-particle 53, 58, 75, 76, 123, 144, 148,

236, 237, 239, 387, 388
quasi-particle calculation 197
quasi-particle concept 58

quasi-particle energy 119
quasi-particle Hamiltonian 273
quasi-particle peak 120
quasi-particle picture 52
quasi-particle state 76, 126, 273
quasi-particle weight 76
quasicrystal 325
quaternary III-V semiconductor alloys 22

R-factor 453, 454, 456
radiative transition 120
random alloy 190
rare earth 186, 189, 194
rare earth compounds 135

magnetostrictive properties 39
rare earth ferromagnet 186
reaction of oxygen 345
real-space multiple scattering 387, 389
real-time observation 360
real-time stereoscopic observation 360
rebonding 333
reciprocal lattice vector 190
recombination with a hole 260
reconstruction 141, 315, 319, 321, 324, 325,

339
reconstruction change by adsorption 333
reconstruction creation by adsorption 332
reconstruction removal by adsorption 332
recursion 102
recursion method 396
recursion relation 375, 378
reducible 70
reference wave 370, 372, 380–382, 384
refinement 449
reflection matrix 378
reflection of the LEED function 129
reflectivity 408, 413, 419, 470
refraction 111, 379, 410, 417
refraction angle 279
Rehr-Albers formalism 102, 393
relativistic 92, 109, 110
relativistic angular momentum 390
relativistic effect 51, 425
relativistic layer-KKR 274
relaxation 141, 323, 325, 331
relaxation energy 74
relaxation of k⊥ conservation 168
relaxation of the core hole 89
relaxation time 259
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renormalization 71, 72, 125
renormalization constant 75
renormalized dipole matrix element 400
renormalized function 125
renormalized particle 58
renormalized scattering matrix 376
reordering 70
repartitioning 396
repeated slabs 143
repetition rate 252
reshaping of surface 331
residual system 123
resonance 254, 264, 417–420, 422, 426, 435
resonant effect 404
resonant excitation 421
resonant inelastic scattering 427
resonant inelastic X-ray scattering 427
resonant interaction 404
resonant photoemission 104, 116, 136, 187,

203
resonant photoemission spectroscopy 136
resonant soft X-ray 423
resonant X-ray optical calculation 421, 471
resonant X-ray optical theory 417
resonant X-ray optics 417
resonating atom 105
response field 107
response function 105
retardation 425
retarded 78
retarded dipole-dipole interaction 425
retarded propagator 56
Ritz’s variational principle 64
RIXS see resonant inelastic X-ray scattering
RKKY see Ruderman-Kittel-Kasuya-Yosida
rocking curve 414
room temperature ferromagnetism 203
rotatable analyzer 360
rotating analyzer 347
rotating sample 347, 360
rotation angle 354
rotation of molecule 438
rotation of the forward focusing peak 354
rotation operator 446
roughening transition 450
roughness 413
RPA see random-phase approximation
RPA susceptibility 105
Ru1−xSr2GdCu2+xO8 198

Ru(0001) 263
Ru(0001)-

√
3 ×√

3/CO 454
Ru(0001)/CO 450, 456
Ru(0001)/Xe 263
Ru(001)-

√
3 ×√

3/CO 455–457
Ru(001)/CO 453
Ru(111)/N2 427
Ruderman-Kittel-Kasuya-Yosida model 210

SARPE see single-atom resonant photoemis-
sion

satellite 116, 117, 121, 129, 182, 397
satellite region 118, 130
satellite structure 121
Sb-based luzonites 25
SBH see Schottky barrier heights
scaling law 111
scanned-energy photoelectron diffraction 420
scanning tunneling microscopy 150, 318, 341
scanning tunneling spectroscopy 189
scattering 83, 88, 318
scattering amplitude 439
scattering factor 439, 442
scattering from the bulk 372
scattering from the surface layer 372
scattering matrix 101
scattering matrix formalism 393
scattering path 378, 379
scattering potential 391
scattering solution 95
scattering states 142, 151, 153, 390
scattering theory 118
scattering vector 371
Schottky barrier formation 28
Schwinger variational principle 122
SCLS see surface core-level shift
screened core-hole 389
screened exchange 64, 392
screened interaction 70, 144
screened potential 123, 128
screening 51, 59, 104, 400
screening cloud 59
screening interaction 306
screening length 305, 307
screening of external light 104
screening of the X-ray field 388
second quantization 61
secondary electrons 260
secondary emission 398
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selection rule 87, 88, 90, 269, 270, 275, 276,
282, 285–287

selective summation 57
self absorption 428
self-assembled monolayers 417
self-consistency 65, 300, 392
self-consistent equation 439
self-consistent field 63
self-consistent loop 304
self-consistent multiple-electron-scattering

equations 422
self-consistent procedure 143
self-consistent secular equation 101
self-energy 53, 54, 60, 66, 70, 71, 76, 79, 90,

98, 100, 125, 128, 136, 137, 144,
150, 151, 237, 240, 273, 275, 298–
300, 306, 310, 389, 392, 397

self-energy diagram 70
self-energy dressing 81
self-energy insertion 79
self-interaction correction method 1
semi-classical 116, 125, 129, 130
semi-classical description 117
semi-infinite 100, 142, 151
semi-infinite crystal 227, 229, 230, 237
semi-infinite jellium 143
semi-infinite solid 417
semi-infinite system 107
semiconducting 344
semiconducting electronic structure 342
semiconductor 93
semiconductor device 202
semiconductor device technology 417
semiconductor surface 338, 339
semiconductor-metal contact 328
semiconductor-semiconductor heterojunction

328
semiconductor/metal interfaces 28
semiconductor/semiconductor interfaces 25
semimetallic 163
separable representation of the z-axis propaga-

tor 393
shadow cone 318
shake-down 116
shake-down satellite 117, 134, 135
shake-off 398
shake-off excitation 397
shake-up 116, 398
shake-up effect 139

shake-up excitation 120
shape of the satellite 133
Sherman function 182
Si 406, 408
Si(001)-(2×1) 342
Si(100)/SiO2 406
Si(111)-c(12×2) 341, 342
Si(111)-c(12×2)Ag 341
Si(111)-(

√
21 ×√

21)Ag 342
Si(111)-(

√
3 ×√

3)Ag 342, 343
Si(111)-(1×1) 339
Si(111)-(2×1) 339
Si(111)-(3×1) 340
Si(111)-(3×1)Na 339, 340
Si(111)-(6×1)Ag 341
Si(111)-(7×7) 339, 345, 346
Si/(W/B4C)20 411
SIC see self-interaction correction
simulations of diffraction data 382
single photoemission 307
single-atom resonant photoemission 420
single-electron photoemission 308
single-particle Green’s function 296
single-particle operator 298
single-particle probe 52
singularity 66
singularity index 120
slab 233
SMOKE see surface magneto-optic Kerr ef-

fect
SOC see spin-orbit coupling
soft X-ray 404, 406
soft X-ray absorption 200, 201
soft X-ray emission 410, 417, 427
soft X-ray optics 428
soft X-ray regime 404
soft X-ray spectromicroscopy 429
space charge 252
spatial distribution of electrons 109
spatial emitting region 155
spatial origin of photoelectrons 159, 170–172
spatial resolution 159, 172
spatial resolved image of the electronic struc-

ture 172
spatial sensitivity 152
SPE see single photoemission
spectral 255
spectral density 91, 150
spectral density function 74
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spectral density matrix 82
spectral function 75, 76, 83, 148, 166, 184,

269, 273, 275, 283, 296, 298, 400
spectral representation 54, 72, 153, 297, 300
spectral weight 75
spectromicroscopy 417
spectroscopic factor 297, 300
spin analysis 270
spin current 190, 210
spin density matrix 92
spin density wave 210
spin detection 177
spin distribution 189
spin effects 107
spin excitation 178
spin filter 192, 210, 211
spin fluctuation 124
spin magnetic dipole operator 41
spin polarization 51, 92, 107, 110, 212, 270,

272, 273, 287, 289, 290
spin polarized photoemission 182
spin reflector 210
spin scattering 212
spin selectivity 213
spin tunneling current 202
spin wave 182, 183
spin-dependent mean free path 212
spin-dependent phase shift 110
spin-dependent potential barrier 208
spin-dependent reflectivity 208
spin-dependent reflectivity of interfaces 210
spin-dependent scattering 211
spin-dependent scattering dynamics 270
spin-dependent step 209
spin-flip transition 182
spin-orbit 107, 108, 390, 397
spin-orbit coupling 272, 275, 276, 288, 291
spin-orbit coupling effect 270
spin-orbit interaction 182, 287, 356
spin-polarization 180, 189, 198, 200, 202, 208
spin-polarized (e,2e) spectroscopy 287
spin-polarized current 202
spin-polarized impurity 190
spin-polarized inverse photoemission 182
spin-polarized LEED 288
spin-polarized photoemission 189, 201, 208
spin-polarized quantum well state 212
spin-polarized scanning tunneling microscopy

189

spin-polarized state 201
spin-polarized tunneling 178, 211
spin-polarized tunneling device 212
spin-resolved layer density of states 273
spin-resolved photocurrent 92
spin-resolved photoemission 188
spin-scattering at the surface 200
spin-selective elastic scattering 193
spin-selective scattering 190, 213
spintronic 177
SPLEED see spin-polarized LEED
split position 449
Sr2RuO4 362
standing wave 404, 406, 411, 412, 416, 419,

427–429
standing wave excitation 417
standing wave formation 409
standing wave generator 412, 469
standing-wave excited photoemission 415
step barrier 143
stepped surface 323
stereo microscope 360, 361, 467
stereo microscopy of atomic arrangement 347
stereo photograph 358
stereo photograph of atomic arrangement 358
stereograph by circular dichroism 357
stereographic image 308, 309
stereographic projection 350
stereoscopic photograph 357
stereoscopic recognition 348
STM see scanning tunneling microscopy
Stoner criterion 204
Stoner excitation 183
Stoner gap 182, 183, 185
strain-induced uniaxial 37
strong correlations 124
strongly correlated system 136, 139
structural complexity of the unit cell 384
structural parameter 453, 454
structure analysis 349
structure completion problem 371, 373
structure factor 371, 372, 381, 426
structure factor amplitude 374, 377
structure factor of a unit cell 376
structure factor of the bulk 376
structure parameter 434
substitutional atom 327
substitutional compound 333
substitutional defect 345
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substrate 313, 378, 384, 408
substrate as reference 370
substrate lattice 321
substrate-adsorbate bond 313
successive approximation 54, 66
successive iteration 55
sudden 116
sudden approximation 82, 83, 122, 398, 399
sudden removal of the core electron 121
sum rule 41, 74
summation over most divergent terms 129
superconducting hole 200
superconducting rare earth compound 198
superconductivity 204, 206
superlattice 190, 313, 320, 328, 378
superstructure 343, 345
superstructure rods 372
superstructures of surface layers 384
surface 404
surface band structure 93, 340
surface barrier 142, 143
surface composition 318
surface core shift 118
surface core-level shift 341
surface crystal structure 382
surface crystallography 150, 316, 383
surface electron structure 142
surface ferromagnetism 205
surface Green function 142
surface magneto-optic Kerr effect 3
surface melting 450
surface optical response 105
surface ordering 319
surface phase transition 433
surface photoelectron diffraction 350
surface plasmon satellite 131
surface plasmons 129
surface potential 93
surface properties 260
surface reciprocal-lattice vector 375
surface reconstruction 153, 433
surface relaxation 321
surface resonance 142
surface response 106
surface scattering of the electromagnetic wave

106
surface segregation 325, 331, 333
surface sensitivity 141, 144, 282, 316, 370,

419, 427, 433

surface state 142–145, 148, 150, 159, 179,
180, 189, 235, 242, 243, 251, 260,
261, 269, 270, 274, 275, 282, 339,
340

surface state dispersion 344
surface structure 313, 319, 321, 382
surface structure determination 109
surface topography 318
surface unit cell 372
surface X-ray crystallography 371
surface X-ray diffraction 371, 372, 433
surface-parallel wave vector 160
surface-perpendicular component of the wave

vector 168
surface-perpendicular wave vector 160
SWG see standing wave generator
sX-LDA method 14

applications 18
symmetry 87, 178, 180, 181, 185, 188, 200,

201, 307, 361, 363, 447, 450
symmetry of the atomic orbital 362
symmetry resolution 270, 285
synchrotron 107
synchrotron light source 182, 252
synchrotron radiation 118, 138, 141, 144, 163,

180, 301, 316, 317, 349, 361
synchrotron radiation X-ray sources 388

T-matrix 439, 440
target current spectroscopy 153, 238
target structure factor 373
TCS see target current spectroscopy
TDLDA see time-dependent local density ap-

proximation
TDS see thermal diffuse scattering
temperature 342
temperature dependence of the vibration am-

plitude 454
temperature dependent atomic scattering ma-

trix 443
temperature dependent I/V curves 450
temperature dependent LEED 453
temperature effects 138, 451
temperature factor 433, 434, 436, 446, 455
ternary III-V semiconductor alloys 22
thermal diffuse scattering 434–436
thermal disorder 395
thermal ellipsoid 438, 443, 446, 449
thermal expansion 438
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thermal vibration 388, 389, 433
thermal vibration at surfaces 433
thin film 185, 189, 205
thin magnetic film 206
Thomas-Fermi limit 305
Thomas-Fermi screening length 274
three step model 117
three-current correlation function 116, 126
three-step 116
three-step formulation 51
three-step model 83, 141, 145
threshold 132
time delay 247
time evolution 56, 67, 68
time ordering operator 297
time resolution 301
time window 301
time-dependent local density approximation

(TDLDA) 400
time-dependent population 254
time-inversed scattering state 126
time-of-flight 301
time-of-flight detection 252
time-of-flight distribution 277
time-of-flight technique 270, 271
time-ordered Green function 65
time-resolved measurements 248
time-resolved technique 149
time-resolved two-photon photoemission 247
time-resolved two-photon spectroscopy 149
time-reversed LEED state 80, 82, 84, 118,

121, 123, 128
time-reversed relativistic LEED state 273
time-scale 116
Ti:sapphire laser 251
TiSe2 106
TiSe2(0001) 108
TiTe2 93, 96, 99, 159, 162–165, 167, 168
TiTe2(0001) 94, 98, 462, 463
torque method 34
total current spectroscopy 97
total energy band 277, 278
total energy diagram 195
total energy distribution 278
total reflection 104, 404, 406, 419, 428
transition 345
transition amplitude 125, 128, 137
transition metal 188, 189, 194
transition metal alloy 190

transition metal compounds 135, 195
transition metal oxide 177, 195, 200
transition operator 51, 354
transition-metal oxides 295
translation formula of spherical harmonics

100
translational period 154
translational periodicity 151
translational symmetry 142, 153
transmission 84
transport 180, 182
transport measurement 201
triangulation 145
trilayer 209, 211
truncation of the series expansion 375
tuneable synchrotron radiation 168
tunneling magnetoresistance 212
two independent photoelectron current 306
two-body operator 63
two-body potential 63
two-dimensional display-type spherical mirror

analyzer 361
two-dimensional energy distribution 277
two-dimensional free electron gas 282
two-dimensional ordering 318
two-dimensional periodicity 319
two-dimensional photoelectron diffraction

348, 349
two-dimensional photoelectron spectroscopy

338, 347
of valence band 361

two-dimensional time-of-flight distribution
276, 277

two-dimensional valence band analysis 348
two-electron Dirac equation 272, 273
two-electron energy correlation function 305
two-electron photoemission 52
two-electron photoemission spectroscopy 271
two-hole excitation 184
two-particle Green’s function 298, 307
two-particle propagator 300
two-particle spectral function 300
two-photoelectron current 302, 304–306, 309
two-photon photoemission 148, 247
two-photon photoemission involving bulk sta-

tes 257
two-step process 139

ultraviolet photoelectron spectroscopy 145
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uncertainty 374, 377
unoccupied band structure 242
unoccupied state 141
UPS see ultraviolet photoelectron spec-

troscopy

vacuum ultraviolet regime 107
vacuum-solid interface 417
valence band 89, 144, 347, 362
valence band electronic structure 345
valence band offset 25
valence band photoelectron spectroscopy 338
valence band photoemission 345
valence band spectra 89, 345
valence band structure 361
valence band VUV spectra 141
valence band width 13, 19
valence bandstructure 90
valence electronic structure 270
valence level 102
valence level spectroscopy 84
valence photoemission 50, 100
valence state 51
valence-level emission 110
valence-to-continuum photoemission 187
VBO see valence band offset
VBW see valence band width
vector potential 77, 78, 85, 106
velocity 144, 192, 202, 210, 362, 365
vertex 69, 72
vertex function 299
vertex part 72
vertex renormalization 79
very low energy electron diffraction 97
very low energy electron spectroscopy 153
vibration amplitude 452, 453, 457
vibration frequency 330
vibrations 111, 342
vicinal surface 323
VLEED see very low energy electron diffrac-

tion
VUV 107, 144
VUV excitation 151
VUV range 98
VUV region 109

W(001) 276–282, 288, 289
W(001) energy sharing curve 280
W(001) work function 278

W(001)-O p(2x1) 282
W(110) 358
W(110)1 × 12-O 350, 351, 353
wave function 146, 207, 209, 213, 227
wave function based method 389
wavefunction 94, 97, 462
wavelength 207
wavevector 365
wedge technique 210
white lines 394
Wick’s theorem 67, 78
width 141
Wood notation 320
work function 73, 77, 143, 181, 248, 260, 261

X-ray absorption 387
X-ray absorption fine structure 317, 387, 392,

399
X-ray absorption near edge spectroscopy 391,

392, 395, 396
X-ray absorption spectroscopy 407
X-ray crystallography 372
X-ray diffraction 316, 384
X-ray emission 404, 427, 428
X-ray excitation 150, 151
X-ray fluorescence 428
X-ray inelastic scattering 404
X-ray interaction 427
X-ray magnetic linear dichroism 209
X-ray natural circular dichroism 397
X-ray optical analysis 417
X-ray optical approach 427
X-ray optical calculation 409–411, 414, 415,

420, 423, 429
X-ray optics 404, 409, 427
X-ray penetration depth 407
X-ray photoelectron diffraction 172, 387, 388,

396, 406
X-ray spectra 388
X-ray standing waves 317
X-ray structure analysis 434
X-ray transition 428
XAFS see X-ray absorption fine structure
XANES see X-ray absorption near edge spec-

troscopy
XAS see X-ray absorption
XMLD see X-ray magnetic linear dichroism
XNCD see X-ray natural circular dichroism
XPD see X-ray photoelectron diffraction
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z-axis propagators 393
Zn1−xMnxO 203
ZnO 203

zone plate 174

ZrZn2 198
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