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V

Foreword

The present monograph is written by an outstanding specialist in the field
of first-order phase transitions, Professor Vladimir G. Baidakov. He studied
physics and completed his PhD thesis in 1973 at the Ural Institute of Tech-
nology in Ekaterinburg, Russia. In the same year, he started working at the
Institute of Thermal Physics of the Ural Branch of the Russian Academy of
Sciences in Ekaterinburg. In the recent years, he was the Vice-Director for
Research and presently he is the Director of this institute and Head of the
Laboratory of Cryogenics and Energetics. He is a pupil and long-standing
co-worker of the late Professor Vladimir P. Skripov, who, about 45 years ago,
initiated the research on the properties of substances in the metastable state
and the kinetics of phase transformation processes performed at the Institute
of Thermal Physics of the Russian Academy of Sciences in Ekaterinburg.

Professor Baidakov’s work focuses on experimental and theoretical inves-
tigations of the kinetics of first-order phase transitions and, in particular, on
the investigation of the kinetics of boiling, the analysis of bulk and surface
properties of fluids in thermodynamically stable and metastable states, and
the investigation of the properties of bubbles of critical sizes determining the
rate of bubble formation. The results of the work of V. G. Baidakov and his
co-workers are outlined in six monographs and 125 journal publications. In
acknowledgment of his results, he was awarded with the Russian State Prize
in Science and Technology in 1999.

The results of the long-standing, highly original investigations have been
presented by the author and his co-workers and discussed in several research
workshops (Nucleation Theory and Applications) which take place in Dubna
(near Moscow) at the Bogoliubov Laboratory of Theoretical Physics of the
Joint Institute for Nuclear Research and have been organized by the editor
of the present book each year since 1997. The first comprehensive accounts
of these results are published in English in the workshop proceedings (Nu-
cleation Theory and Applications, Dubna, Russia, 1999, 2002, 2005) and in the
monograph Nucleation Theory and Applications published by Wiley-VCH in
2005 (V. G. Baidakov: Boiling-Up Kinetics of the Solutions of Cryogenic Liquids,
pp. 126–177).



VI Foreword

It is a real pleasure to be able to now present the extended English trans-
lation of the monograph of the author published in Russian language in
1995. The present book gives for the first time the opportunity to the inter-
ested reader to get a comprehensive overview in English on the experimental
and theoretical investigations performed by the author and his co-workers
on the thermodynamic properties of fluids and the kinetics of boiling of one-
component liquids and liquid solutions. Finally, I would like to express my
gratitude to Mrs. Antje Schmelzer for her support in the preparation of the
final version of the manuscript for publication.

Rostock (Germany) & Dubna (Russia), August 2006 Jürn W. P. Schmelzer
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Preface

Dedicated to the memory of my teacher, Academician Vladimir Pavlovich Skripov

The monograph is devoted to the description of the kinetics of spontaneous
boiling of superheated liquefied gases and their solutions. Experimental re-
sults are given on the temperature of accessible superheating, the limits of
tensile strength of liquids connected with the existence of processes of cavita-
tion, and the rates of nucleation of classical and quantum liquids. The kinetics
of evolution of the gas phase is analyzed in detail for solutions of cryogenic
liquids and gas-saturated fluids. The properties of the critical clusters of the
newly evolving gas phase are analyzed for initial states near the equilibrium
coexistence curves of liquid and gas, for states near the limits of accessible
superheating and for initial states near the respective spinodal curves. Par-
ticular attention is devoted to the peculiarities of nucleation in highly corre-
lated systems, e.g., for states in the vicinity of critical and tricritical points and
near the spinodal curve and to some of the problems of the kinetics of spin-
odal decomposition in liquid solutions. Experimental results are given on the
limiting values of the supersaturation of helium solutions 3He–4He and the
tensile strength of one-component fluids of the different helium isotopes (3He
and 4He) for temperatures near the absolute zero. The experimental results are
compared with the kinetic theories of thermally activated and quantum nucle-
ation. Initiated and heterogeneous nucleation of boiling is discussed as well as
nucleation on electron bubbles and ring vortices in quantum liquids. Finally,
processes of explosive boiling of cryogenic liquids are analyzed occurring as a
result of outflow processes and intensive interactions with high-temperature
liquid masses.

The monograph is based mainly on the results of experimental and theo-
retical analyses performed by the author and his co-workers at the Institute
of Thermal Physics of the Ural Branch of the Russian Academy of Sciences in
Ekaterinburg, Russia. These results are partly supplemented by data reported
by other research groups for completeness. In particular, this procedure is
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employed in the book with respect to quantum nucleation, nucleation near
critical points, and spinodal decomposition.

The topics discussed in the present book are partly outlined in an earlier
publication (V. G. Baidakov, Superheating of Cryogenic Liquids, Publisher of the
Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia, 1995)
written in Russian. The respective chapters have been revised, however, con-
siderably taking into consideration the new results that have been obtained
since the publication of the Russian version. They are supplemented in the
present monograph by new chapters devoted to the analysis of boiling in bi-
nary and ternary solutions of cryogenic liquids, the limits of tensile strength
of liquefied gases, the analysis of the surface tension of bubbles of critical sizes
in multicomponent systems, and the kinetic theory of boiling in superheated
liquid solutions.

Finally, I would like to express my deep gratitude for Dr. Jürn W. P.
Schmelzer, who performed a large work in the preparation of the mono-
graph for publication and for Mrs. E. V. Urakova for helping in the translation
of the Russian manuscript.

Ekaterinburg (Russia), August 2006 Vladimir G. Baidakov
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1
Introduction

When dealing with the thermodynamic properties of matter, the systems
under consideration are usually investigated in thermodynamic equilibrium
states. However, in a variety of cases configurations are realized which do
not correspond to global but local maxima of the entropy or minima of the in-
ternal energy or other relevant thermodynamic functions. These states are
metastable and have a finite lifetime. Metastability is a common property
of first-order phase transformations and manifests itself in systems of quite
different nature such as nuclear matter and quark–gluon plasmas, electron–
hole fluids, biological systems near the self-organization threshold, as well as
in more conventional evaporation, condensation, segregation, crystallization,
and melting processes.

Phase transformations represent a macroscopic manifestation of the action
of the intermolecular forces in systems consisting of a large number of parti-
cles. The similarity of the interaction forces results in an essentially universal
picture of phases and phase transitions, at least, in simple systems. Proper-
ties of substances may behave differently in the course of phase transforma-
tions. Phase transitions can roughly be separated into first and second orders.
Correlations of anomalously growing fluctuations in the vicinity of points of
second-order phase transformations result in the scale invariance of the prop-
erties of systems, which differ profoundly with respect to the structure and
character of the interactions between the particles of the system. In contrast,
such fluctuations may be disregarded at first-order phase transformations,
and the properties of the substances under consideration are characterized by
a lower order universality at this point, i.e., by the thermodynamic similarity,
which is a reflection of the similarity of intermolecular forces. Therefore, the
microscopic theory of phase transformations of first order and phase metasta-
bility encounters the same difficulties as the physics of the condensed state.

Since the law of particle interactions dominates first-order phase transfor-
mations, for the study of principal problems of phase metastability and phase
transitions, those systems are of particular interest whose molecules have a
spherically symmetric or an almost spherically symmetric shape and a sim-
ple dispersion type dependence of the intermolecular forces. Such (simple)
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substances serve as a “touchstone” in the theoretical analyses of problems di-
rected to condensed media. Since the interparticle bonding forces are weaker
than those in complex molecular compounds, simple substances exist in the
liquid state at temperatures lower than normal temperatures on the Earth, i.e.,
they represent liquefied gases.

Liquefied gases with a normal boiling temperature of below 120 K are clas-
sified as cryogenic fluids. Local heat supply and pressure pulses in storage
and transport systems of cryogenic fluids can cause considerable superheats
of the fluids. The establishment of such high local degrees of superheating is
facilitated by good wettability of most of the solids with cryogenic fluids and
a small content of dissolved gases contained in them.

A superheated fluid represents a particular case of a system in a metastable
state and a very convenient object of study. A low viscosity of superheated
fluids ensures quick relaxation of the structure. This is not always the case
in supercooled fluids. Unlike the liquid–crystal phase transformation, where
the interfacial energy is unknown in most cases of interest, the surface tension
in the liquid–vapor system can be measured directly. If the condensation of a
supersaturated vapor is studied, it is much more difficult to remove the initi-
ating effect of walls, which represent ready and/or easily activated centers of
condensation, than active centers during boiling.

The observation of a fluid in the state of a metastable equilibrium was first
mentioned in the second half of the 17th century when experiments, which
were performed by Huygens and Boyle, revealed the existence of water and
mercury at negative pressures. An interpretation of this phenomenon in phys-
ical terms became possible only after van der Waals derived his famous equa-
tion of state (1873). The terms “metastable” and “unstable” were introduced
by Ostwald in order to distinguish sections of different degree of stability in
the van der Waals isotherms. Pioneering reproducible quantitative data con-
cerning the accessible temperature of superheating of some fluids were ob-
tained by Wismer et al. (1922–1927). Still earlier, in 1878, Gibbs [1] explained
phase transformations with the appearance of nuclei of a new phase. The
ideas expressed by Gibbs laid the foundation of the classical theory of ther-
mally induced fluctuation nucleation. It was formulated by Volmer and We-
ber [2], Farkas [3], Becker and Döring [4], Zeldovich [5], and Frenkel [6]. This
theory is universal in its thermodynamic principles and is applicable to vari-
ous types of phase metastability.

The study of phase metastability includes a wide range of tasks. The present
monograph is dedicated mainly to the analysis of the nucleation kinetics in
metastable liquefied gases and their solutions. Nuclei may be formed spon-
taneously in systems which are free of inclusions which may initiate a phase
transformation. Such a mechanism of initiating a phase transformation is de-
noted as homogeneous nucleation. The knowledge of the mechanisms of ho-
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mogeneous nucleation is highly significant since it determines the upper lim-
its of stability of a metastable phase with respect to discontinuous changes of
the state parameters. In the theoretical description of thermodynamic and
kinetic aspects of these processes, we employ both Gibbs’ thermodynamic
method and the continuum’s approach, which goes back to van der Waals’
works on the theory of capillarity [7] (Chapter 2).

The fluctuation-induced boiling-up of a superheated fluid is preceded by
the formation of nuclei having a characteristic size of 5 to 10 nm. Properties
of such small objects can be expected to depend considerably on the charac-
ter of interparticle interactions and should differ from the properties of the
respective bulk phases. By comparing experimental results with the theory
of homogeneous nucleation it is possible to develop estimates of the lower
bound of the validity of the thermodynamic description of such small molec-
ular systems.

In a variety of cases, the theoretical limits of accessible supersaturation de-
termined by the homogeneous nucleation theory may not be reached in real
systems due to the presence of foreign nucleation centers in the system under
consideration, which favor the formation of nuclei of the new phase. Beyond
them, specific nucleation centers, which are not found in ordinary fluids, may
be present in liquefied gases at low temperatures. Such specific nucleation
centers include electron bubbles in liquid He, H2 and Ne, vortex lines, and
rings in superfluid helium, thermal spikes resulting from the ortho–para con-
version in normal hydrogen. These and other topics of nucleation in one-
component liquefied gases are discussed in Chapter 3.

Chapter 4 deals with the fluctuation-induced boiling-up kinetics in super-
heated solutions. Two types of solutions are considered: solutions with a com-
plete solubility of the different components, and gas-saturated systems with
partial solubility. In contrast to one-component fluids, the problem of the the-
oretical description of the spontaneous boiling-up kinetics in liquid solutions
is so far not completely solved. In addition to size effects, both adsorption
and the time scale of establishment of the absorption equilibrium may consid-
erably affect nucleation in solutions.

The critical point of one-component fluids or solutions is the only point
where the boundaries of the regions of essential instability of a metastable
phase are adjacent to the region of stable states of the substances under con-
sideration. As this point is approached, the width of the metastable region
tends to zero, and the radius of correlations and the relaxation time of hydro-
dynamic modes increase unlimitedly. These factors have a specific effect on
the character of the phase transformations in the vicinity of the critical point.
In this range of initial states, not only the metastable region becomes more or
less easily accessible to experimental studies, but also the region of unstable
states. The theoretical description of nucleation in intensively fluctuating sys-
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tems near critical and tricritical points is discussed in Chapter 5. This chapter
also deals with relaxation near the spinodal and the theoretical description of
spinodal decomposition.

The occurrence of nucleation induced by thermal fluctuations is impossi-
ble near the absolute zero temperature, and the decay of a homogeneous
metastable phase can proceed here only via quantum tunneling of a het-
erophase fluctuation through the respective thermodynamic potential barrier.
In its basic premises, the theory of quantum nucleation was developed by Lif-
shitz and Kagan [8]. In the recent years, considerable attention was devoted
to the experimental detection of processes of quantum nucleation in liquefied
gases and solutions as well as in other systems. The achievements and prob-
lems encountered in this field of research constitute the contents of Chapter 6.

The design and creation of large cryogenic systems for transportation and
storage of cryogenic fluids, bubble chambers, ultrahigh frequency cooling sys-
tems and molecular quantum generators have set up some fundamentally
new scientific problems including the problem of fast phase transformations,
which are accompanied by deviations from phase equilibrium. The cessation
of superheating may in some cases lead to considerable hydraulic shocks. The
prevention of any superheating of the fluids is one of the possible methods
for making the cryogenic equipment more reliable. At the same time, it is
desirable to maintain phase metastability of fluids for a long time in order to
ensure the cavitation-free operation of cryogenic pumps. A strong metastabil-
ity is required for the operation of bubble chambers, too. Superheated fluids
represent an interesting object not only for theoretical studies but also for new
technological applications. Problems regarding the dynamics of boiling-up of
cryogenic fluids are discussed in Chapter 7.

Since 1961, systematic studies of the phenomenon of superheating of fluids
and boiling have been performed by Skripov and his co-workers first at the
Ural Polytechnical Institute and then at the Institute of Thermal Physics of the
Ural Branch of the Russian Academy of Sciences. Results of those studies were
summarized in the monographs [9–13]. After the publication of Skripov’s
monograph “Metastable Liquids” [9], published in its English translation by
Wiley in 1974, a large number of investigators joined the study of these types
of problems, resulting in an increase in the number of publications. The re-
sults of the research performed in the last few years are generalized in reviews
and monographs [14–16]. They are extended and systematized in the present
monograph.

The demand for such a systematic presentation of the state-of-the-art prob-
lems and prospects of experimental investigations of phase metastability is felt
not only by experimental physicists but also by theorists who, in the course of
their analyses, come across with a variety of problems regarding the interpre-
tation of experimental results concerning the properties of different systems in
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the metastable state, and also by engineers who have to deal with processes of
intensification of heat and mass exchange, and fast phase transitions. One can
confidently say that the requirements concerning the level of knowledge of
the properties of matter in metastable states and the processes taking place in
them will increase in the course of further progress in science and technology.

This book is primarily meant for readers who are interested in the liquid
state of substances, liquid–vapor phase transitions, and boiling. It is based on
studies performed at the Institute of Thermal Physics of the Ural Branch of the
Russian Academy of Sciences. A considerable part of the experimental data
was obtained jointly with Kaverin, Rubshtein, and Sulla. I would also like to
express my sincere thanks to Professor Vladimir P. Skripov, who acquainted
me with the “world of phase metastability,” for his advice and support.
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2
Equilibrium, Stability, and Metastability

2.1
Types of Equilibria: Stability Criteria

Under certain conditions, a one-component system is capable of decaying into
macroscopically coexisting phases. If external fields are absent, an equilibrium
in a two-phase system is established under the conditions that temperature,
T, pressure, p, and chemical potentials, µ, are the same in each of the phases
under consideration, i.e., the relations

µ′(T, p) = µ′′(T, p) (2.1)

have to be fulfilled.
The condition given by Eq. (2.1) results from the general conditions for an

equilibrium of thermodynamic systems formulated by Gibbs [1]. The deriva-
tion of these conditions is based on the method of thermodynamic potentials
and the principle of virtual displacements. According to Gibbs, the equilib-
rium state corresponds to extreme values of the entropy, S, or one of the other
appropriate thermodynamic potentials. The choice of the potential is hereby
determined by the boundary conditions imposed on the system. For a system
at constant entropy, S, and constant volume, V, the equilibrium is established
when the condition

(δU)eq = 0 (2.2)

is fulfilled. Here U is the internal energy while the symbol δ refers to infinites-
imally small and otherwise arbitrary changes of the function following it.

One can distinguish different types of equilibrium states. If, at S = const
and V = const, the internal energy of a system has the lowest of all possible
values, then such an equilibrium is absolutely stable (i.e., the system exists in
the state of a stable equilibrium; see Fig. 2.1a). Provided that another local min-
imum exists with a higher value of the internal energy, this local minimum
of the internal energy corresponds to a state of metastable equilibrium. Such
states are stable with respect to infinitesimal perturbations not changing qual-
itatively the initial state of aggregation of the system. Following Frenkel [6],
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Fig. 2.1 Shape of the surface of the internal energy in the vicinity of
states of stable or metastable (a) and unstable (b) equilibria (specified
by X0 and Y0).

we shall call such perturbations homophase fluctuations. In the configurational
space, the minima of the internal energy, corresponding to metastable and
stable states of the system, are separated by a certain barrier. The height of
such a barrier depends on the thermodynamic state of the ambient phase and
may vary in a wide range. Under certain conditions, the system is capable
to overcome the barrier and to go over into an energetically more favorable
(stable) state. Such processes may proceed due to the formation of heterophase
fluctuations, which take the system out of the initial state of aggregation and
lead to the formation of a nucleus of a new phase capable to grow further.
Any metastable system is unstable with respect to such (finite) changes in the
state parameters of the ambient phase, and, after some more or less extended
period of time, relaxes into a state corresponding to the stable phase.

The homogeneous state of a system is unstable (in a state of unstable equi-
librium) if the internal energy at given values of entropy, S, and volume, V,
has reached a maximum (Fig. 2.1b). Relaxation processes at the initial stages
of phase separation proceed here without the formation of nuclei and do not
require overcoming of activation barriers. It is assumed that such unstable
equilibrium states may be described by the equation of state of homogeneous
phases similar to the states of stable and metastable equilibrium.

Metastable states are realized in first-order phase transitions. According to
Eq. (2.1), in the (µ, T, p)-space the curve of phase equilibrium (i.e., the bin-
odal) is determined by the intersection of the surfaces of the chemical poten-
tials of both the possible phases (Fig. 2.2). A homogeneous system may pass
through the line of phase equilibrium without undergoing a phase transition.
At the point E, the phase with the chemical potential µ′ is metastable, i.e.,
stable against infinitesimal perturbations, but thermodynamically less stable
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Fig. 2.2 Surface of the chemical potential of a one-component sys-
tem in the region of liquid–gas phase transition: DC is the binodal
curve; AC, BC are the different branches of the spinodal curve. In the
(p, T)-plane, the projections of these lines are shown, and in the plane,
T = const, the traces of the surface µ(p, T) for liquid (a, a′) and vapor
(b, b′) are shown.

compared to the phase with the chemical potential µ′′ at the same values of T
and p.

In order to distinguish between stable, metastable, and unstable states, the
condition of equilibrium (2.2) has to be supplemented by the requirement of
stability [1] with respect to finite perturbations,

(∆U)eq > 0. (2.3)

The symbol ∆ denotes a finite change of a given quantity, in the present case, of
the internal energy. Condition (2.3) implies that the state under consideration
corresponds to a minimum of the internal energy. If this condition is fulfilled
for any arbitrary perturbations, the considered equilibrium state is absolutely
stable. For infinitesimal perturbations, inequality (2.3) takes the form

(δ2U)eq > 0. (2.4)

In contrast, if inequality (2.4) is not fulfilled, the system is in an unstable equi-
librium state.

Equations (2.2) and (2.4) represent the necessary and sufficient conditions
for the existence of a stable thermodynamic equilibrium state with respect to
continuous changes of the state parameters. It gives the possibility of formu-
lating specific explicit stability criteria. These criteria are independent of the
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system size and nature of the perturbations. In discussing these specific sta-
bility criteria, we will therefore always consider a well-defined amount of the
substance under consideration (either a mole or a unit volume, etc.). For the
specification of the thermodynamic parameters referred to such a unit we will
employ lowercase letters. The particular choice of the unit employed will be
specified separately. In the present section, we assume that the unit of sub-
stance is equal to one mole.

Let us examine a two-component homogeneous and isotropic system
and formulate explicit stability criteria for them. Stability criteria for one-
component systems may be obtained as a special case when the number
of particles of one of the components tends to zero. We again assume
that external fields are absent and that the thermodynamic system is suffi-
ciently large, so that its surface energy is negligible compared with the bulk
terms. If, in a binary system, the molar fraction of the second component,
c = c2 = n2/(n1 + n2), is taken as the independent parameter, the first
variation of the molar internal energy, u, is given by

δu = usδs + uvδv + ucδc. (2.5)

In this case, the stability condition (2.4) reads

δ2u = uss(δs)2 + 2usvδsδv + uvv(δv)2

+ 2uscδsδc + 2uvcδvδc + ucc(δc)2 > 0.
(2.6)

In Eqs. (2.5) and (2.6), the following notations have been employed:

us =
(

∂u
∂s

)
v,c

= T, uv =
(

∂u
∂v

)
s,c

= −p,

uc =
(

∂u
∂c

)
s,v

= µ1 − µ2 = ∆µ, uss =
(

∂T
∂s

)
v,c

,

uvv = −
(

∂p
∂v

)
s,c

, us,v =
(

∂T
∂v

)
s,c

= −
(

∂p
∂s

)
v,c

,

ucc =
(

∂∆µ

∂c

)
s,v

, usc =
(

∂T
∂c

)
v,s

=
(

∂∆µ

∂s

)
v,c

,

uvc = −
(

∂p
∂c

)
s,v

=
(

∂∆µ

∂v

)
s,c

.

(2.7)
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The necessary and sufficient conditions that the real quadratic form (2.6)
is positive definite consist in the requirement that the determinant, det usvc,
be composed of the coefficients of the quadratic form, and all minor subde-
terminants be larger than zero. In order to formulate the stability conditions
in a simple way, let us convert the quadratic form given by Eq. (2.6) into the
canonical form. Using Eqs. (2.7), inequality (2.6) can be rewritten as

δ2u = δTδs − δpδv + δ∆µδc > 0. (2.8)

Expressing the variation of the difference in the chemical potentials of the two
components of the solution in terms of the variables T, p, and c, we get [17]

δ2u =
(

∂T
∂s

)
v,s

(δs)2 −
(

∂p
∂v

)
T,c

(δv)2
c +

(
∂∆µ

∂c

)
p,T

(δc)2 > 0, (2.9)

where

(δv)c =
(

∂v
∂s

)
p,c

δs +
(

∂v
∂p

)
s,c

δp. (2.10)

Homogeneous states of thermodynamic systems are, consequently, stable if
the conditions

det usvc = −
(

∂T
∂s

)
v,c

(
∂p
∂v

)
T,c

(
∂∆µ

∂c

)
p,T

= −
(

∂T
∂s

)
p,c

(
∂p
∂v

)
s,c

(
∂∆µ

∂c

)
p,T

> 0
(2.11)

and

−
(

∂p
∂v

)
T,c

= (vβT,c)−1 > 0,
(

∂T
∂s

)
v,c

=
T

cv,c
> 0 (2.12)

or

−
(

∂p
∂v

)
s,c

= (vβs,c)−1 > 0,
(

∂T
∂s

)
p,c

=
T

cp,c
> 0 (2.13)

are fulfilled. Here cv,c and cp,c are the isochoric and isobaric heat capacities at
constant composition, and βT,c = −v−1(∂v/∂p)T,c and βs,c = −v−1(∂v/∂p)s,c
are the isothermal and the adiabatic compressibilities at constant composition,
respectively.

The stability determinant (2.11) consists of elements which may be written
as second-order derivatives of the thermodynamic potentials with respect to
the generalized coordinates. Some derivatives are taken at constant values of
the generalized coordinates (adiabatic stability coefficients), others at constant
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values of the generalized thermodynamic force and concentration (mixed sta-
bility coefficients), or at constant values only of generalized forces (isodynamic
stability coefficients) [17, 18].

The first inequalities in Eqs. (2.12) and (2.13) express the conditions of me-
chanical stability for a homogeneous system, respectively, against isothermal
and adiabatic perturbations, the second terms specify the conditions of ther-
mal stability at constant volume or pressure. In order to ensure stability of a
binary system, the fulfillment of these conditions is necessary, but not suffi-
cient. Besides thermal and mechanical perturbations, variations of composi-
tion may occur here and, according to Eq. (2.11), inequalities (2.12) and (2.13)
should be supplemented by the condition of stability against diffusion(

∂∆µ

∂c

)
p,T

> 0. (2.14)

In the limiting case of a one-component system (c → 0 or c → 1), Eqs. (2.11)–
(2.13) yield

det usv = −
(

∂T
∂s

)
v

(
∂p
∂v

)
T

= −
(

∂p
∂v

)
s

(
∂T
∂s

)
p

> 0, (2.15)

−
(

∂p
∂v

)
T

> 0 or
(

∂T
∂s

)
p

> 0. (2.16)

These inequalities (2.15) and (2.16) have a simple geometrical interpretation.
The Gaussian curvature, Kg, of the surfaces of the internal energy in the vicin-
ity of the equilibrium state is given by the expression [19]

Kg =
det usv

(1 + u2
s + u2

v)2 . (2.17)

Since the denominator in Eq. (2.17) is positive, Eq. (2.15) yields the inequality
Kg > 0, and the point of stable equilibrium u(s0, v0) is an elliptic point. The
main radii of curvature R1 and R2 are proportional to the derivatives (∂T/∂s)v

and −(∂p/∂v)T.
The response of a thermodynamic system to changes of its state determines

its degree of stability. Such changes in the state of the system may be of both
internal and external nature. In the absence of external perturbations, the ac-
tual degree of perturbations is determined by the level of thermal fluctuations.
The probability, Peq, of a given fluctuation in an isolated thermodynamic sys-
tem in thermodynamic equilibrium is determined by the Einstein formula [20]

Peq ∼ exp
(

∆s
kB

)
∼ exp

(
− W

kBT

)
, (2.18)

where ∆s is the variation of the entropy of the system due to the evolution of
the fluctuation considered, and W is the minimum work required to generate
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such variation of the thermodynamic state in a reversible process. In applica-
tion to homophase fluctuations, Eq. (2.18) can be written as follows:

Peq ∼ exp

[
−1

2
(δ2u)eq

kBT

]
. (2.19)

According to Eq. (2.19), the coefficients of the determinant in Eq. (2.11)
determine the probability and the magnitude of the fluctuations. In a one-
component system, the moments of second order for volume and entropy
fluctuations are proportional to the isodynamic stability coefficients

〈(v − 〈v〉)2〉 = kBTvβT, 〈(s − 〈s〉)2〉 = kBcp. (2.20)

The squared averages of the fluctuations are connected, consequently, with
the correlation functions [21] as

ρkBTβT = 1 + ρ
∫

G(�r)d�r =
[

1 − ρ
∫

C(�r)d�r
]−1

, (2.21)

where G(�r) and C(�r) are the pair and the direct correlation functions, and
ρ = v−1 is the density. Stability of a thermodynamic system in a homogeneous
state can be realized, consequently, only if the pair-correlation function is not
equal to zero in a finite volume of the system.

2.2
Boundary of Essential Instability

On a thermodynamic surface, the line of phase equilibrium divides the re-
gions of stable and metastable states and, as a result, determines the bound-
ary of the region in thermodynamic phase space where a given phase is ab-
solutely stable. A metastable system retains its restoring reaction with respect
to infinitesimal perturbations of arbitrary wavelength. The value of determi-
nant (2.11) may be regarded as a measure of stability of the metastable state
with respect to continuous long wavelength perturbations. A value of the de-
terminant equal to zero corresponds to the boundary of metastability and the
transition of the system to states of essential instability of the phase under con-
sideration (spinodal). According to Eq. (2.11), a crossover process like this one
takes place if at least one of the stability coefficients becomes zero. It can be
shown [17] that in the stable phase the adiabatic stability coefficient is always
not less than the isodynamic stability coefficient. Hence, penetrating deeper
into the metastable region of a solution, first one will observe the manifesta-
tion of the diffusion instability. The diffusion spinodal, or simply the spinodal,
of a binary solution is determined by the condition(

∂∆µ

∂c

)
p,T

= 0. (2.22)



14 2 Equilibrium, Stability, and Metastability

If the stability determinant is equal to zero and a stability coefficient of some
kind becomes zero, then all other stability coefficients of this kind are also
equal to zero.
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Fig. 2.3 Phase diagram of an argon–krypton solution (c = 0.5): 1—
binodal; 2—diffusional spinodal; 3—mechanical spinodal; 4—adiabatic
spinodal; C—critical point.

Besides Eq. (2.22) [17], the following relations are fulfilled at the diffusion
spinodal:(

∂∆µ

∂s

)
p,T

=
(

∂T
∂c

)
p,∆µ

= 0,
(

∂∆µ

∂v

)
p,T

= −
(

∂p
∂c

)
T,∆µ

= 0,(
∂T
∂s

)
p,∆µ

= 0, −
(

∂p
∂v

)
T,∆µ

= 0,
(

∂T
∂v

)
p,∆µ

= −
(

∂p
∂s

)
T,∆µ

= 0.
(2.23)

If, as an additional limitation, constancy of composition and homogeneity is
imposed on a system, the stability of the equilibrium state will be determined
only by the mixed and adiabatic stability coefficients. In this case, the bound-
ary of stability (mechanical spinodal) is determined by equality to zero of the
minors of the quadratic form (2.9), which does not contain isodynamic deriva-
tives

det usv = −
(

∂T
∂s

)
v,c

(
∂p
∂v

)
T,c

= −
(

∂T
∂s

)
p,c

(
∂p
∂v

)
s,c

= 0. (2.24)

Condition (2.24) does not presuppose zero values of the adiabatic stability
coefficients, but requires vanishing of all mixed derivatives which are deter-
mined through the minor of det usv, i.e.,

−
(

∂p
∂v

)
T,c

= 0,
(

∂T
∂s

)
p,c

= 0,
(

∂T
∂v

)
p,c

= −
(

∂p
∂s

)
T,c

= 0. (2.25)
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Simultaneously with the mixed stability coefficients, the inverse isody-
namic stability coefficient (∂∆µ/∂c)−1

p,T becomes zero. This property ensures a
nonzero value of det usvc on the mechanical spinodal. In (T, ρ)-coordinates, the
mechanical spinodal of a two-component system is “inserted” into the diffu-
sion spinodal and in the general case has no contact points with it (Fig. 2.3). In
the limit c → 0 or c → 1, the diffusion and the mechanical stability boundaries
merge into one line. In the case of a one-component system, the mechanical
spinodal, or simply spinodal, is determined by the equations

−
(

∂p
∂v

)
T

= (vβT)−1 = 0,
(

∂T
∂s

)
p

=
T
cp

= 0. (2.26)

If perturbations develop strictly adiabatically and homogeneity of the com-
position is retained, the stability of a binary solution is lost at

−
(

∂p
∂v

)
s,c

= 0,
(

∂T
∂s

)−1

p,c
=

cp,c

T
= 0,

(
∂∆µ

∂c

)−1

p,s
= 0. (2.27)

Such boundary is called adiabatic spinodal [22]. On this boundary, the inequal-
ities det usvc �= 0 and det usv �= 0 hold. The adiabatic spinodal is located
inside the mechanical one if (∂s/∂T)v,c �= 0 holds (Fig. 2.3). At cv,c → ∞,
all coefficients of the minor det usv are equal to zero, and the adiabatic spin-
odal coincides with the mechanical spinodal. Further properties of stability
boundaries of a homogeneous binary solution are examined in Ref. [17].

Y

X
X

0
,Y

0

U

Fig. 2.4 Shape of the surface of the internal energy at the boundary of
thermodynamic stability.

Penetrating the metastable region of a solution, the diffusion spinodal is
reached first. In a one-component system, this statement applies to the me-
chanical spinodal (note, however, that not every metastable state of a system
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is necessarily bounded by a spinodal curve, a boundary of essential instabil-
ity; such a boundary is absent, for instance, in a one-component supercooled
liquid [23]). These boundaries of thermodynamic stability correspond to par-
abolic points of the surface of the nonequilibrium thermodynamic potential
(Fig. 2.4). At these points, the Gaussian curvature, Kg, is equal to zero. One of
the main radii of curvature takes on here an infinitely large value, whereas the
other has a finite positive value. The spinodal has one single point of crossing
from a region of metastable states into a stable region. This point corresponds
to the critical point in a one-component system. In a binary system, the cross-
ing proceeds along some line. The critical point belongs both to the spinodal
and to the binodal. The line of critical points of a two-component system is
determined by the equation [1]

∂(T,−p, det usvc)
∂(s, v, c)

= 0. (2.28)

Using the technique of Jacobians and expressing the derivatives of the sta-
bility determinant in terms of the second-order derivatives of the thermody-
namic variables on the line of critical points, we get the following conditions
in addition to Eqs. (2.22) and (2.23):(

∂2∆µ

∂c2

)
p,T

= 0,
(

∂2∆µ

∂v2

)
p,T

= 0,
(

∂2∆µ

∂s2

)
p,T

= 0,

(
∂2 p
∂c2

)
T,∆µ

= 0,
(

∂2 p
∂v2

)
T,∆µ

= 0,
(

∂2 p
∂s2

)
T,∆µ

= 0,

(
∂2T
∂c2

)
T,∆µ

= 0,
(

∂2T
∂v2

)
T,∆µ

= 0,
(

∂2T
∂s2

)
T,∆µ

= 0.

(2.29)

At the critical point of a one-component system, besides Eq. (2.26), the fol-
lowing relations hold:(

∂2 p
∂v2

)
T

= 0,
(

∂2T
∂s2

)
p

= 0. (2.30)

According to Eqs. (2.20) and (2.21), at the critical point and on the spinodal
both the intensity of density fluctuations and their correlation radius are infi-
nite.

2.3
Elements of Statistical Theory

The theory of thermodynamic stability assumes that the thermodynamic po-
tential, for example, the chemical potential (see Fig. 2.2), of each of the phases
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is uniquely determined on both sides of the line of phase equilibrium. This
assumption implies that the extensions of all substance properties from the
stable into the metastable region are unique and smooth. Such definiteness
will not be observed in the statistical interpretation of metastable states.

In a statistical interpretation, the following quantity is identified with the
density of the Helmholtz free energy:

f (ρ, T) = −kBT lim
V→∞,N→∞,(N/V)=ρ=const

ln Z(N, V, T)
V

, (2.31)

where Z(N, V, T) is the partition function. The thermodynamic limit is equiv-
alent to the requirement of an infinitely long time of observation of a system
during which the phase point has to pass all regions of phase volume allowed
by the boundary conditions of the system. In general, the finite lifetime of a
metastable state makes it impossible to realize the thermodynamic limit and
to determine the thermodynamic functions in a metastable region.

With regard to stable states, the existence of a finite value of the density of
the Helmholtz free energy at requirements not too rigid with respect to the in-
termolecular potential has been proven by van Hove (cited by [21]). As shown
by Penrose and Lebowitz [24], the function f (ρ, T) may be determined in a
metastable region only, if, in calculating the partition function, a limiting tran-
sition to infinitely weak forces with an unlimited radius of interaction is simul-
taneously performed. In this case, a subregion �, which corresponds to the
metastable state, can be specified in the phase space of the system. Although
it is not very probable to find the phase point in this subregion, the limiting
probability of leaving it is equal to zero. In systems with long-range forces one
can also observe genuine first-order phase transitions described by the van
der Waals equation of state in combination with the Maxwell rule [25]. The
transition to attractive forces with long-range macroscopic interaction radii
reduces the many-particle problem to the problem of the behavior of one par-
ticle in a certain averaged force field. The mean-field theory does not take
into consideration fluctuations and yields thermodynamic functions of a hy-
pothetical system, which are necessarily homogeneous at distances of action
of the attractive forces. This theory becomes rigorous in the limit of long-
range attractive forces and describes not only stable and metastable but also
unstable states (Fig. 2.5). S-shaped loops on precritical isotherms of statistical
models of the liquid state are the result of the application (in many cases in an
implicit way) of the mean-field approximation and the condition of density
homogeneity.

Attempts to extend the approach of Penrose and Lebowitz [24] to systems
with real interaction potentials were not successful [26–28]. It turned out that
in the phase space of systems of particles with short-range attractive forces
there is no localized subregion, �, which would correspond to metastable
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Fig. 2.5 Thermodynamic (p, v, T)-surface of a van der Waals fluid
and its projections: ACB is the binodal; KCD is the spinodal; C is the
critical point.

states. Nevertheless, the results of the mean-field theory may also be obtained
in systems with short-range forces if the dimensionality of space, d, is formally
considered to be infinite [29]. The limiting transition, d → ∞, is equivalent to
a transition to long-range forces.

According to the well-known results of van Hove [21], Yang and Lee [30],
the point of a first-order phase transition in systems with a finite interaction ra-
dius is a peculiar point of the thermodynamic potential. The character of this
peculiarity was first investigated by Andreev [31]. Similar results were later
obtained in Refs. [32–35]. According to these papers, the points of the ther-
modynamic potential corresponding to a phase transition of first order are
essentially peculiar (infinitely differentiable) points. The physical reason of
such peculiarity consists in heterophase fluctuations in the metastable phase.
Apparently, the infinitely differentiable peculiarity is not observed experimen-
tally; it does not interfere with an extension of equilibrium functions from the



2.4 Phase Stability Against Finite Perturbations 19

stable into the metastable region, but leads to an uncertainty in the charac-
ter of such extension. If we present the pressure in the form of a series with
respect to the deviations of the parameters of the system from total equilib-
rium, this series is separated in a metastable region [35]. At first the terms
decrease up to the nth component, and then increase infinitely. The value
of the nth component determines the limiting accuracy up to which one can
calculate the pressure in a metastable region. The value of n decreases with
increasing depth of penetration into a metastable region. On the spinodal, the
uncertainty in the thermodynamic properties becomes infinitely large. Purely
phenomenological evaluations lead to the conclusion [36] that in regions of
low and high metastability the value of such uncertainty is small compared
to the level of thermal fluctuations. This property makes it possible to speak
about the uniqueness of extensions of the properties of the substance beyond
the line of phase equilibrium and the application of the same equations of state
for both the stable and the metastable regions.

At present, the thermophysical properties of cryogenic liquids have been
analyzed comprehensively not only in the stable, but also in the metastable
(superheated) region. The following properties have been studied at high de-
grees of superheating: (p, ρ, T)-properties [37–42], velocity [42–47], and ab-
sorption [48,49] of ultrasound, isochoric heat capacity [50,51]. On the basis of
existing experimental data, unified equations of state have been constructed
valid for both the stable and the metastable region. The results of this work are
generalized in the reviews [52,53]. Analytical parametrizations of experimen-
tal data made it possible to approximate the boundary of essential phase in-
stability, the spinodal, and to suggest equations determining the density of the
free energy of simple substances in stable, metastable, and unstable states [54].

2.4
Phase Stability Against Finite Perturbations

Retaining the stabilizing reaction with respect to infinitesimal perturbations, a
metastable system displays instability against discontinuous finite changes of
the state parameters. The result of such instability is the emergence of a new
phase in the system. In this case, the conditions of stability determine the min-
imum length, R∗, and energy, W∗, scales, at which a heterophase fluctuation
becomes a viable center (nucleus) of the newly evolving phase. In order to de-
termine these parameters, R∗ and W∗, the methods of local thermodynamics
in its point formulation are no longer applicable.

While examining the conditions of stability for a metastable system against
finite changes in the state parameters it is more convenient to use instead of
the internal energy, U, the Helmholtz free energy, F, expressed via the appro-



20 2 Equilibrium, Stability, and Metastability

priate variables V and T. These variables are the independent parameters of
the thermal equation of state. We shall restrict ourselves to the case of one-
component isotropic systems and assume that the state of the system is fully
determined by specifying the chosen variable, the density (number of particles
per volume) ρ(�r), assuming the temperature to be constant (T = const). The
local density ρ(�r) is supposed to be homogeneous on the scale of the radius
of action of the attractive forces, r0. The discontinuity of changes in the state
parameters implies the emergence of a finite inhomogeneity in the system. In
this case, the thermodynamic potential has to contain a term specifying its lin-
ear scale. Following van der Waals [7], we shall present the Helmholtz free
energy of a unit volume of an inhomogeneous system as a series in terms of
derivatives of the local density as

f = f
(

ρ,∇ρ,∇2ρ, . . .
)

= f (ρ) + κ1

(
∇ρ)2 + κ2(∇2ρ

)
+ · · · . (2.32)

Here f (ρ) is the density of the free energy of an inhomogeneous system, and
κ1 and κ2 are the expansion coefficients which depend, in general, on temper-
ature and density. Terms, linear in ∇ρ, do not occur in Eq. (2.32) since they
do not form a scalar. Considering weakly inhomogeneous systems, where the
characteristic scales of the inhomogeneities are much larger than the radius of
action of the intermolecular forces r0, in expanding Eq. (2.32) one may restrict
oneself only to terms that are quadratic in ∇ρ (square-gradient approximation).
In this case, the Helmholtz free energy is written as follows:

F[ρ] =
∫ [

f (ρ) + κ(∇ρ)2
]

d�r, (2.33)

where the notation κ = κ1 + dκ2/dρ is introduced. In Eq. (2.33), the surface
contribution to the Helmholtz free energy from the system boundaries is ex-
cluded. According to the conditions of stability for a homogeneous state, the
inequality κ > 0 must hold. The value of the expansion coefficient is deter-
mined outside the framework of thermodynamics; it can be expressed as [55]

κ =
kBT

3

∫
r2C(�r)d�r = r2

0kBTρ−1. (2.34)

Considering the total volume of the system, V, as being fixed and taking
into account the condition of conservation of the number of particles∫

(ρ − ρ0)d�r = 0, (2.35)

where ρ0 is the density of a homogeneous metastable phase, for the change in
the Helmholtz free energy, ∆F = F[ρ] − F[ρ0], connected with a heterophase
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fluctuation, ∆ρ = ρ − ρ0, we have

∆F[ρ] =
∫ [

∆ f (ρ) + κ(∇ρ)2
]

d�r, (2.36)

∆ f = f (ρ)− f (ρ0)− (ρ − ρ0)µ0. (2.37)

The functional (2.36) has the meaning of the excess grand thermodynamic po-
tential; µ0 = (∂ f /∂ρ)0 is the chemical potential of the metastable phase.

The shape of the hypersurface of the functional, ∆F(ρ), in the configura-
tional space of functions of local density is determined by the character of the
dependence of the density of free energy of a homogeneous system on ρ and T.
In the subsequent derivations it is assumed that this dependence is described
by the van der Waals equation of state (Figs. 2.6a and b). The conditions of
validity of introduction of such approximation are analyzed in Refs. [56, 57].
Figures 2.6c and d show the dependences ∆ f (ρ) in application to the cases
when the initial density of the metastable phase, ρ0, is close to the liquid or-
thobaric density, ρ′s, and the liquid density on the spinodal, ρ′sp. The minima
of ∆ f (ρ) correspond to homogeneous states with the same values of the chem-
ical potential. The inflection points of the curve ∆ f (ρ), where (∂2 f /∂ρ2)T = 0
holds, separate metastable and unstable states. If perturbations do not disturb
the homogeneity of a metastable phase, the second component in the inte-
grand in Eq. (2.35) is equal to zero. In this case, F = f V, and the conditions of
stability are written as Eqs. (2.2) and (2.4).

sp''s'' sp' s'

f )

+ sp
'

0
'

s
'

f d)

sp''s'' sp' s'

p b)

+ sp
'm 0

' s'

f c)

Fig. 2.6 Density of the Helmholtz free energy (a), pressure (b) and
excess density of the free energy of the van der Waals fluid for states
close to the binodal (c) and the spinodal (d).
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According to Eq. (2.35), the emergence of a local inhomogeneity in a system
results in an increase of the Helmholtz excess free energy. The more diffusive
the heterophase fluctuation, the smaller its contribution to ∆F[ρ]. For a stable
phase, the first component in the integrand in Eq. (2.35) is always positive,
and homogeneities of any amplitude and spatial extent will disperse. In a
metastable region, heterophase fluctuations with an amplitude smaller than
|ρ0 − ρm| result in an increasing excess density of free energy (see Fig. 2.6c).
The emergence of a stronger density inhomogeneity results in a decrease in
∆ f (ρ). In this case, at a certain value of ρ = ρ+, the excess density of free
energy becomes negative. A detailed analysis proves the existence of a certain
critical heterophase fluctuation. Precritical heterophase fluctuations are ther-
modynamically disadvantageous, therefore they decay and reappear at other
parts of the system. Supercritical heterophase fluctuations (nuclei) are viable
centers of a new phase; their growth is thermodynamically irreversible. For a
critical heterophase fluctuation, the following conditions should be fulfilled:

(δF[ρ])∗ = 0, (δ2F[ρ])∗ = 0. (2.38)

At small supersaturations, the function ∆ f [ρ] has a large maximum and be-
comes negative only at densities close to the equilibrium density of the com-
peting phase (see Fig. 2.6c). The characteristic linear size of a transition
layer in a heterophase fluctuation is proportional to the correlation radius
ξ = [κ/(∂2 f /∂ρ2)T]1/2. Far from the critical point, the correlation radius, ξ,
coincides in the order of magnitude with the radius of action of intermolecu-
lar forces. To compensate the abrupt increase of energy in a transition layer, a
viable heterophase fluctuation has to contain a large number of particles, i.e.,
it needs to have linear dimensions which considerably exceed the thickness of
the transition layer.

When the metastable phase is close to the boundary of essential instability,
the correlation radius is large. The presence of a gradient term in Eq. (2.30) is
disadvantageous with respect to the formation of a nucleus of a stable phase of
small size. Here, a critical heterophase fluctuation should have larger spatial
dimensions but a small density amplitude, which proves to be sufficient to
compensate for the small hump with regard to the dependence ∆ f (ρ) (see
Fig. 2.6d).

There is an infinite number of ways how a heterophase fluctuation may
evolve into a viable nucleus. With respect to energetic aspects, those are the
most advantageous which are passing the lowest point of the Helmholtz free
energy barrier separating the metastable phase from the stable one. This point
is the saddle point of the functional (2.36). Thus, the conditions given by
Eqs. (2.38) are necessary, but not sufficient for answering the question whether
the heterophase fluctuation they determine is a critical nucleus.
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In an isotropic system a critical heterophase fluctuation will be a spheri-
cally symmetric formation (the validity of such an assumption is discussed in
Section 5.2). In order to describe such nuclei, let us introduce spherical coordi-
nates with the origin of the system of coordinates at the center of a heterophase
fluctuation. The first condition in Eq. (2.38) (the condition of extremum of the
functional (2.36)) yields [58]

d2ρ

dr2 +
2
r

dρ

dr
+

1
2κ

∂κ

∂ρ

(
dρ

dr

)2

=
1

2κ

∂∆ f
∂ρ

=
1

2κ
(µ − µ0). (2.39)

Equation (2.39) describes the density distribution in a heterophase fluctuation
corresponding to an extremum of the thermodynamic potential. This equation
has to be solved accounting for the boundary conditions

ρ → ρ0 for r → ∞,
dρ

dr
= 0 for r → 0 and r → ∞.

(2.40)

These conditions imply as essential requirements inhomogeneity, locality, and
smoothness of the function ρ(r) at all points, including the point r = 0. Be-
sides, it is assumed that the emergence of a heterophase fluctuation corre-
sponding to an extremum of the thermodynamic potential in a metastable
system does not change its thermodynamic state parameters.

2.5
Critical Heterophase Fluctuations

All density distributions, ρ∗(�r), satisfying Eq. (2.39), correspond to minima,
maxima, or saddle points of the functional ∆F[ρ]. To solve the question
as to whether the function ρ∗(�r) describes a critical nucleus, it is necessary
to investigate the sign of the second variation of ∆F[ρ] at extremum. Let
δρ(�r) = ρ(�r) − ρ∗(�r) be a small perturbation of the extremal distribution,
ρ∗(�r). Expanding ∆F[ρ] into a series and restricting ourselves to terms qua-
dratic in δρ(�r), we have

δ2∆F =
1
2

∫∫
δ2F

δρ(�r)δρ(�r)

∣∣∣∣
ρ=ρ∗(�r)

δρ(�r)δρ(�r′)d�rd�r′

=
1
2

∫
δρ(�r)L̂δρ(�r)d�r,

(2.41)

where

L̂ =
[

d2∆ f
dρ2 − κ∇2

]
ρ=ρ∗(�r)

(2.42)

is the differential operator (operator of stability).
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At the saddle point of the functional (2.33), the sign of δ2∆F depends on
the choice of the variation of δρ(�r), i.e., on the direction of deviation from the
extremum. Such kind of behavior is possible only if the spectrum of the oper-
ator, L̂, contains both positive and negative eigenvalues. We shall expand an
arbitrary variation of δρ(�r) into a series in terms of the eigenfunctions, ψ�s(�r),
of the Hermitian operator, L̂, as

δρ(�r) =
∞

∑
�s=0

x�sψ�s(�r). (2.43)

Here,�s is the number of the eigenfunction, and x�s is the expansion coefficient.
We shall restrict ourselves to the spherically symmetric case and present

ψ�s(�r) as the product of the radial and the angular parts as

ψ�s(r) = ψn,l(r)Yl,m(θ, ϕ), (2.44)

where (r, θ, ϕ) are the spherical coordinates, and Yl,m(θ, ϕ) is the spherical
Laplace function. The subscript n is a series of positive numbers, including
zero. At a given l, the subscript m takes the values m = 0,±1,±2, . . . ,±l. The
functions ψn,l(r) and Yl,m(θ, ϕ) are solutions of the eigenvalue problem of the
operator, L̂,[

− 1
r2

d
dr

(
r2 d

dr

)
+

l(l + 1)
r2 + Veff(r)

]
ρ=ρ∗(r)

ψn,l = en,lψn,l , (2.45)

l̂2Yl,m = l(l + 1)Yl,m. (2.46)

Here,

l̂2 = −
[

1
sin2 θ

∂2

∂ϕ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
(2.47)

is the operator of the momentum squared, and the effective potential is given
by Veff = (∂2∆ f /∂ρ2)/2κ.

Substitution of Eq. (2.43) into Eq. (2.41) taking into account Eq. (2.45) and
the orthonormalization of the eigenfunctions of the operator L̂ transforms the
quadratic form into the canonical expression

δ2∆F =
1
2

∞

∑
�s

e�s|x�s|2. (2.48)

The sign of the eigenvalue of e�s determines the sign of the curvature of the
hypersurface ∆F[ρ] at the extremum point in the direction specified by the
vector�s.

Equation (2.45) gets the form of the Schrödinger equation for a particle mov-
ing in a spherically symmetric field with the potential Veff(r) [59]. The charac-
ter of the dependence Veff(r) is determined both by the function ∆ f (ρ) and by
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the spatial dispersion of the equilibrium distribution ρ∗(r). The potential Veff
is equal to zero on the spinodal and is negative in the unstable region.

Differentiating Eq. (2.39) with respect to r (κ = κ(T)), we have[
− 1

r2
d
dr

(
r2 d

dr

)
+

2
r2 +

1
2κ

∂2∆ f
∂ρ2

]
dρ∗(r)

dr
= 0. (2.49)

It follows from Eqs. (2.45) and (2.49) that the derivative dρ∗/dr is the eigen-
function of the operator L̂ with l = 1 and the eigenvalue en,1 = 0. According
to the oscillation theorem of quantum mechanics [59], the circumstance that in
the whole region of its definition, including the boundaries r → ∞ and r → 0,
the derivative dρ∗/dr in a one-component system has no zeros, leads to n = 0
and

ψ0,1(r) =
dρ∗
dr

, e0,1 = 0. (2.50)

The harmonic function ψ0,1(r) reflects a translational mode and describes the
shift of the distribution of ρ∗(r) as a whole. In the reference system which
is connected with the center of the extremum distribution, the decomposition
term in Eq. (2.48) with n = 0, l = 1 is equal to zero, and the translational mode
does not change the energy of the system.

At small l, the harmonics ψ0,l(r) may be approximated by the function
dρ∗/dr [60]. In this case, we get from Eqs. (2.45) and (2.49) the following result:

e0,l 
 l(l + 1)− 2
2R2∗

, (2.51)

where R∗ is the effective radius of the extremum configuration. According
to Eq. (2.51), the spectrum of the operator L̂ contains only one negative eigen-
value e0,0 = −R−2∗ , which is responsible for the instability of the configuration.
It means that, in the spherically symmetric case, all solutions of Eq. (2.39) with
the boundary conditions (2.40) correspond to extremums of the surface ∆F[ρ]
of the saddle-point type, i.e., they describe the critical nucleus. Any shift in
the configurational space of the functions of local densities ρ(r) from the point
ρ∗(r) in the direction specified by the numbers n = l = m = 0 leads to a de-
crease in the Helmholtz free energy. As in the region of low metastability, the
eigenfunction ψ0,0(r) is localized mainly in a spherical layer of finite thickness
with an effective radius R∗ and its evolution is connected with an increase
(decrease) in the nucleus size. The remaining eigenvalues of the operator L̂
are positive. Modes with n > 0 and l > 2 describe changes of the nucleus
shape retaining its volume, density profile, and the position of the center of
mass. The set of states with n = 1 corresponds to perturbations at which a nu-
cleus retains its spherical shape, but the density profile in the transition layer
is distorted. At a certain value n = n∗, a continuous spectrum of nonlocalized
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eigenfuctions is found, which describes fluctuations in the volume of the liq-
uid. As distinct from a metastable homogeneous phase, these fluctuations are
“distorted” by the presence of a near-critical nucleus.

2.6
Relaxation Processes in Metastable Phases

A metastable state is a particular state of partial equilibrium. It is assumed
that in a one-component system it is determined uniquely by specifying two
thermodynamic variables. Changes in thermodynamic parameters cause a re-
construction of the configurations of the system leading to a transition from
one equilibrium distribution to another. Such a transformation proceeds dur-
ing a time τr, the characteristic relaxation time of the system. If the changes
take place during times exceeding τr, a metastable system passes through a
sequence of quasiequilibrium states. Otherwise the distribution of particles
cannot follow the change of the state parameters and a frozen-in nonequilib-
rium state is obtained.

The process of relaxation of the system includes different mechanisms, each
of which has its own characteristic time scales. Two kinds of stability may
be correlated with two classes of space and time scales. The dynamic behav-
ior of the system is determined by the utmost slowly relaxing parameters. In
application to a one-component system, these parameters are the following
hydrodynamic variables: local density, local velocity, and the local density
of entropy. The characteristic scales of changes in hydrodynamic variables
(modes), which will be represented by the variable, a, exceed the correlation
radius, ξ, considerably. Let a0 be the equilibrium value of a certain hydrody-
namic variable, a(�r, τ), determined by the minimum value of the correspond-
ing thermodynamic potential, E. The deviation from equilibrium causes a
relaxation process—the value of a(�r, τ) tends in time to a0. For a weakly
nonequilibrium state, the rate of change of a(�r, τ) is proportional to the force
conjugate to it, i.e., [61]

∂a
∂τ

= −Γ̂
δE
δa

. (2.52)

Here, the kinetic coefficient Γ̂ is a linear operator. Its form is specified by the
law of conservation of the parameter a(�r, τ). The law of conservation deter-
mines whether the perturbation will relax in a local way or, before disappear-
ing, will propagate to the entire volume of the system. Regarding large-scale
motions, we have [62]

Γ̂ = Γn − Γc∆, (2.53)
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where Γn and Γc are smooth functions of temperature and density. If a(�r, τ)
satisfies the law of conservation, Γn = 0 or Γ̂ = Γn holds.

The process of relaxation differs qualitatively with respect to homophase
and heterophase fluctuations with the presence or absence of a conserva-
tion law for the hydrodynamic variables. Let us examine a one-component
isotropic system, whose state is characterized by a single mode—the density
of the number of particles, ρ(�r, τ). The equilibrium value of ρ0 is determined
by the minimum of the Helmholtz free energy. Both homogeneous and in-
homogeneous perturbations may evolve in the system, and in a metastable
region the requirements of their infinitesimality are imposed on the latter, i.e.,
|δρ(�r, τ)| = |ρ(�r, τ) − ρ0| < |ρm − ρ0| (see Fig. 2.6c). Expanding the integrand
in Eq. (2.33) in terms of δρ(�r, τ) and keeping only terms in it not higher than
of second order, we have

F[ρ] =
∫ [

f (ρ0) +
1
2

∂2 f
∂ρ2 (δρ)2 + κ(∇δρ)2

]
d�r. (2.54)

If we represent the perturbation δρ(�r, τ) in the form of a superposition of pla-
nar waves

δρ(�r, τ) = ∑
�q

ρ�q(τ) exp(i�q�r), (2.55)

substitution of Eq. (2.55) into Eq. (2.54) results in

∆F[ρ] = F[ρ]− F0 =
1
2 ∑

�q
χ−1(�q)|ρ�q(τ)|2, (2.56)

χ−1(�q) = χ−1(0) + 2κq2, χ−1(0) =
(

∂2 f
∂ρ2

)
T

= (ρ2
0βT)−1. (2.57)

Here, χ(�q) is the function describing the response of the system to perturba-
tions with the wavelength λ = 2π/q, χ(0) being the long-wavelength limit
of the response function. Summation in Eqs. (2.55) and (2.56) is performed
with respect to wave numbers smaller than the inverse of the radius of the
attractive interaction forces of the molecules. From the general condition of
stability, ∆F[ρ] > 0, it follows that χ−1(�q) > 0 holds for all values of �q. On the
spinodal (χ−1(0) = 0), a one-component system loses its stabilizing reaction
to long-wavelength perturbations retaining stability against short-wavelength
density fluctuations. With deeper penetration into the unstable region, more
and more short-wavelength perturbations lead to the disturbance of space ho-
mogeneity [64].

Let us assume that Γ̂ = Γn (the local density) is a nonconserved parameter if
the system has small velocity gradients causing viscous friction [65]). Then, as
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a consequence from Eqs. (2.52) and (2.56) for the regular growth rate of each
of the Fourier components δρ(�r, τ), we have

∂δρ�r
∂τ

= −Γnχ−1(�q)δρ�q. (2.58)

Equation (2.58) gives the exponential law of change with time in the Fourier
harmonics of density

ρ�q(τ) = ρ�q(0) exp(iΩ�qτ), (2.59)

where Ω�q is the frequency of the collective mode, the reciprocal of the relax-
ation time

Ω�q = iτ−1
�q = iΓnχ−1(�q) = iτ−1

0 + 2iΓnκq2, τ−1
0 = Γnχ−1(0). (2.60)

A decrease in the isothermal elasticity, observed as the spinodal is approached,
results in an unlimited increase in the relaxation time of long-wavelength
Fourier components of density. In this case, the relaxation times of the Fourier
components with �q �= 0 are finite and decrease with increasing�q.

In the spatially homogeneous case, the response function does not depend
on the wave number, and the relaxation time increases proportional to the
isothermal compressibility. The same nonequilibrium value of δρ in the whole
system may be created only by an external action. These features are typical
results of the mean-field approximation employed where spontaneous fluctu-
ations are suppressed.

If the density is a conserved quantity, then Γ̂ = −Γc∆, and Eq. (2.52) is the
continuity equation. In this case, instead of Eq. (2.60), we have

Ω�q = iτ−1
�q = iΓcχ−1(�q)q2. (2.61)

For hydrodynamic variables, the relation τ�q ∼ Γcχ−1(0)q2 holds. On the spin-
odal of a one-component system, the relaxation time of long-wavelength per-
turbations is infinitely large and finite for short-wavelength perturbations. Ir-
respective of the degree of vicinity to the spinodal, a homogeneous (�q = 0)
variation of density in the whole volume will be retained as long as desired.
It means that, accounting for the conservation law, weak density inhomo-
geneities will relax the slower, the smaller the density gradient.

Within the long-wavelength (hydrodynamic) limit, relaxation processes in
one-component systems are connected with two collective modes: nonpropa-
gating entropy fluctuations (the thermal diffusion mode) and pressure fluctu-
ations (the acoustic mode) [66]. The time dependence of each of the collective
modes looks like that presented in Eq. (2.59), where Ω�q is a complex quantity.
For the thermal diffusion and the acoustic modes, we obtain, respectively,

Ω�q = iDTq2, (2.62)

Ω�q = ±Cq + iDsq2. (2.63)
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Here, DT = Λ/ρcp is the thermal diffusivity, Λ is the thermal conductivity,
C = (∂p/∂ρ)1/2

s is the low-frequency sound velocity, and Ds is the logarithmic
damping coefficient of sound waves,

Ds = DT

(
cp

cv
− 1

)
+

1
ρ

(
4
3

η + ηv

)
, (2.64)

where η and ηv are the shear and the bulk viscosity, respectively.
In the region of weak and moderate metastability of simple liquids (T =

0.9Tc), the thermal diffusivity is DT 
 (25–50) × 10−9 m2 s−1, and the dis-
persion time of a temperature inhomogeneity at length scales, l = 10−3 m,
is ∼ (0.5–1) s. Under the same conditions the characteristic time of damp-
ing of acoustic excitations is approximately an order of magnitude smaller.
The pressure in a liquid relaxes much more rapidly. For parameter values,
C = 400 m s−1 and l = 10−3 m, we obtain τr 
 4 × 10−7 s.

As the stability boundary is approached, relaxation times of hydrodynamic
variables increase. On the spinodal, at least one of the collective modes be-
comes unstable (soft)—the complex excitation frequency at a fixed �q becomes
zero. The conditions of damping of fluctuations may be regarded as condi-
tions of stability for an equilibrium state with respect to infinitesimal pertur-
bations [67, 68].

With regard to a one-component system the thermal diffusion mode is the
soft one. The behavior of thermal diffusivity in the vicinity of the spinodal was
examined by Zeldovich and Todes [69]. On the spinodal, DT = 0 holds, and
the thermal conductivity in this case is either a positive finite or a diverging
(but slower than cp) quantity. Beyond the spinodal DT < 0, and exponen-
tially increasing temperature differences appear in the system leading to the
separation of the system into phases.

The velocity of a low-frequency sound is finite on a mechanical spinodal
and becomes zero at the boundary of stability against adiabatic mechanical
perturbations. The formulation of an answer to the question how the damping
of the acoustic mode has to be described, is a more complicated task [67].
According to Eq. (2.64), the damping is infinitely large if all of the three kinetic
coefficients DT, η, and ηv at some supersaturation become zero.

In solutions, along with thermal diffusion and acoustic modes, there is
also a diffusion mode responsible for the relaxation of composition fluctua-
tions. Relaxation times of concentration inhomogeneities at small superheats
in an argon–krypton solution are approximately five times as long as the time
needed for equalization of temperature inhomogeneities. The diffusion mode
becomes soft on the diffusion spinodal.

According to Eq. (2.61), relaxation times of hydrodynamic modes are pro-
portional to the square of the wavelength. When a system is rapidly trans-
ferred into a metastable region, long-wavelength fluctuations are not excited.
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In the absence of total thermodynamic equilibrium, equilibrium with respect
to the interactions of the nearest neighbors is achieved rapidly. Such a system,
which has relaxed by small-scale degrees of freedom, should be described
by the mean-field approximation. This viewpoint was developed by Zel-
dovich [70]. It allows one to consider the equation of state, derived using the
mean-field theory, as a certain zeroth-order approximation for the equation of
state of a metastable system.

2.7
Dynamics of Heterophase Fluctuations

Let us examine a thermodynamic system in a metastable state. Infinitesi-
mal perturbations cause a reversible modification of a metastable system, and
after the lapse of time τ0 an equilibrium distribution of small-scale fluctua-
tions is established. Instability against finite perturbations leads to a spon-
taneous emergence of large-scale configurations of fields of hydrodynamic
modes ai(�r, t), so-called heterophase fluctuations, in the system. Precritical
heterophase fluctuations are not viable and are absorbed by the chaotic ther-
mal motion. The decay of a metastable phase begins with the appearance of
a supercritical heterophase fluctuation, the nucleus of the new phase. The
distinguished linear scales of the problem are the correlation length ξ, the dis-
tance at which the effect of a local inhomogeneity on the distribution of den-
sity in its vicinity is realized and the size of a critical nucleus, R∗. The relation
between ξ and the characteristic linear dimension of the critical nucleus, R∗,
is established by the condition of extremum of the functional ∆E at the saddle
point.

The characteristic expectation time of a critical nucleus is τ̄ (the relaxation
time of large-scale degrees of freedom). For the characteristic times of two
kinds of relaxation processes in the metastable phase τ0 and τ̄ one can write
[71]

τ̄ ∼ τ0 exp
(

∆E(a∗)
kBT

)
� τ0, (2.65)

where ∆E(a∗) = E(a∗) − E(aA) is the difference of the energy values in the
state of the metastable equilibrium (point A), E(aA), and at the saddle point
of the potential barrier, E(a∗).

Fluctuations of different sizes are constantly born and disappearing in sys-
tems of large numbers of particles due to chaotic thermal motion. In this case,
the microscopic state of a medium changes many times faster than the macro-
scopic state of a system. Rapid spontaneous fluctuations of a medium may
be regarded as a random process characterized by the correlation time τc, the
memory time of a random process. In simple liquids, characteristic correlation
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times at the scales of the radius of interaction of the intermolecular forces r0
are approximately equal to 2r0/vt 
 10−11 s, where vt is the average velocity
of thermal motion of the molecules.

The effect of small-scale fluctuations on the behavior of large-scale hydro-
dynamic modes can be taken into account by the introduction of a random
force, ζi(τ), as a source of emergence of noise in the ith hydrodynamic mode.
The properties of the random force are determined under the assumption of
the existence of an equilibrium distribution of small-scale (homophase) fluc-
tuations in the metastable phase. The force ζi(τ) has a Gaussian shape with
a zero average value. The correlation between the values of the random force
at two moments of time τ and τ′ is different from zero only for time intervals
|τ − τ′| ∼ τc, the time of interaction of small-scale and large-scale degrees of
freedom. Since τc ∼ τ0 � τ̄, the limiting transition τc → 0 is usually per-
formed considering the system as a medium without memory or with Gauss-
ian white noise. The average value and the correlation function of such a noise
will look like

〈ζi(τ)〉 = 0 , (2.66)

〈ζi(τ)ζ j(τ′)〉 = 2Dijδijδ(τ − τ′). (2.67)

Here, Dij is the intensity of the source of force ζi(τ). Averaging is performed
with respect to all realizations of the random force.

Taking into account the random force, the equations of motion for the fields
of hydrodynamic modes read [62, 63]

∂ai

∂τ
= −∑

j
Γij

δE
δaj

+ ζi(τ). (2.68)

Here, the elements of the matrix of kinetic coefficients, Γ̂ = Γij, are linear
operators, determined by Eq. (2.53).

According to the stochastic equation of motion (2.64), the hydrodynamic
variables, ai(�r, τ), are random quantities, and for them one may introduce
the distribution function P({a}, τ), where {a} is the abbreviation for the set
ai(�r, τ) of variables. The theory of homogeneous random processes shows
[72] that the function P({a}, τ) which determines the density of probability
of finding a system at the moment, τ, with the configuration of fields, {a},
satisfies the Fokker–Planck multidimensional equation [32, 60, 73, 74].

As was done in previous sections, we shall restrict our consideration to sys-
tems with one hydrodynamic mode, ρ(�r, τ). In the multidimensional space of
functions ρ(�r) to each configuration of the density field there corresponds a
certain phase point, and to the Helmholtz free energy, which is the functional
of ρ(�r), a certain hypersurface. The relative minimum of the hypersurface,
∆F[ρ], corresponds to the metastable state, and the absolute minimum to the
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stable state. The system may leave the state of metastable equilibrium by over-
coming the barrier formed by the hypersurface of the Helmholtz free energy
around the point of the relative minimum. The most probable mechanical tra-
jectory of a heterophase fluctuation will pass through the point to which the
minimum barrier height (saddle point) corresponds.

In order to determine the flux of heterophase fluctuations, we write the
Fokker–Planck equation as a continuity equation [60]

∂P
∂τ

= −
∫

δj
δρ(�r)

d�r, (2.69)

where

j[�r] = −Γ̂
[

δF
δρ(�r)

P + kBT
δP

δρ(�r)

]
(2.70)

is the functional of ρ(�r), a component of the fluxes of probability in the infinite-
dimensional space of functions ρ(�r). The first term in Eq. (2.70) determines
the flux into the region of smaller values of the thermodynamic potential, the
second one, into the direction of lower probability. According to Eq. (2.68), the
coefficient to P is the rate of regular change of the variable ρ(�r, τ).

In the equilibrium state, the distribution function, P = Peq, is determined
by Eq. (2.18), where W = ∆F[ρ], the resultant flux, j, is equal to zero, and the
Einstein relation follows from Eq. (2.70):

Γij =
Dij

kBT
. (2.71)

In the critical region of the saddle point, defined as the region where |F[ρ]−
F[ρ∗]| ≤ kBT, the quadratic approximation (2.41) is valid. A rearrangement of
Eq. (2.43) transforms the quadratic form (2.41) into the normal representation
given by Eq. (2.48). The variable x0(�s = 0), responsible for the instability of
the critical configuration, gives the direction of the energetically most advan-
tageous growth of a heterophase fluctuation at the hypersurface ∆F[ρ], which
corresponds to the bottom of a valley going through the pass. In terms of the
variables x�s, the density of probability of fluxes, Eq. (2.70), takes the form

j�s =
∫

ψ�s(�r)j(�r)d�r = −∑
�s

Γ̃�s�s′

(
∂F

∂x�s′
P + kBT

∂P
∂x�s′

)
. (2.72)

For purely dissipative systems, Γ̃�s�s′ is a symmetric, positive definite matrix of
the kinetic coefficients. If the variable ρ(�r) is retained, we have

Γ̃�s�s′ =
∫

(∇ψ�s)Γc(∇ψ�s′)d�r. (2.73)
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Otherwise, we get

Γ̃�s�s′ =
∫

ψ�sΓnψ�s′d�r. (2.74)

In the stationary case, ∂P/∂τ = 0 holds, and from Eqs. (2.69) and (2.72) we
have

∑
�s

∂j�s
∂x�s

= −∑
�s�s′

∂

∂x�s
Γ̃�s�s′

(
∂F

∂x�s′
P + kBT

∂P
∂x�s′

)
= 0, (2.75)

where Γ̃�s�s′ is the transposed matrix of kinetic coefficients.
Following Langer [60], we find the solution of Eq. (2.75) in the form

P({x}) = Peq({x})
∞∫

0

exp

−1
2

(
ε + ∑

�s
n�sx�s

)2
 dε, (2.76)

where n�s is a constant vector connected with the direction of the flux of
heterophase fluctuations through the pass. The boundary conditions for
Eq. (2.75) are determined by the requirements of coincidence of the stationary
and the equilibrium distribution functions close to the point of conventional
minimum of the hypersurface, ∆F[ρ],

P({x}) 
 Peq({x}) for {x} 
 {xA} (2.77)

and the finite total number of nuclei in the system

P({x}) 
 0, when {x} → {∞}. (2.78)

The latter condition means that beyond the well there is only a flux of nuclei
going over the slope of the hypersurface ∆F[ρ] to infinity.

Substitution of Eq. (2.76) into Eq. (2.69) yields an equation for n�s. In the
spectrum of the stability operator, Eq. (2.42), there is only one negative eigen-
value of e0. The variable x0 which corresponds to this eigenvalue is called
the unstable variable. The distribution function in the unstable variable x0 is
found by integrating the full distribution function (2.76) over all stable vari-
ables x�s(�s �= 0) at the condition x0 = const,

P(x0) = C0 exp
(
−∆F∗

kBT

) ∞∫
0

dε
∫

exp

[
− 1

2kBT ∑
�s

e�sx2
�s−

−1
2
(ε + ∑

�s
n�sx�s)2

]
∏
s �=0

dx�s. (2.79)

Here, C0 is the normalization constant of the equilibrium distribution function
with respect to the unstable variable.
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The inner integral in Eq. (2.79) is a Gaussian integral. On determining the
position of the maximum of the exponent of the exponential curve in terms of
the variables x�s(�s �= 0), after integration we have [75]

P(x0) = Peq(x0)
( |e0|

2πkBT

)1/2 ∞∫
x0

exp
(
−|e0|ε2

2kBT

)
dε, (2.80)

where

Peq(x0) = C0 exp

(
−|e0|x2

0
2kBT

)
exp

(
−∆F∗

kBT

)
. (2.81)

The distribution with respect to the unstable variable does not depend on
the kinetic coefficients, whereas the expression for the full stationary distribu-
tion function, Eq. (2.76), includes the components of the vector n�s depending
on Γ̃�s�s′ .

According to Eqs. (2.52) and (2.48), the rate of regular change of the hydro-
dynamic variable x�s is described by the equation

∂x�s
∂τ

= −∑
�s′

Γ̃�s�s′e�s′x�s′ . (2.82)

The eigenvalues of the matrix
(
−Γ̃�s�s′e�s′

)
are solutions to the characteristic

equation

det[Γ̃�s�s′e�s′ + λδ�s�s′ ] = 0. (2.83)

Since the spectrum of the stability operator, Eq. (2.42), contains only one neg-

ative eigenvalue e0, the matrix
(
−Γ̃�s�s′e�s′

)
can have only one positive eigen-

value, λ0. This property results in the existence of one exponentially increas-
ing solution to Eq. (2.82),

x�s = b0 exp(λ0τ), (2.84)

where b0 is the eigenvector of the matrix
(
−Γ̃�s�s′e�s′

)
corresponding to the

eigenvalue λ0. All the other eigenvalues λi (i �= 0) are negative, and the
solutions of Eq. (2.84) corresponding to them decay exponentially. The eigen-

vector�b0 of the matrix
(
−Γ̃�s′ e�s′

)
corresponding to the eigenvalue λ0 gives the

direction of the probability flux through the saddle point of the pass. Owing
to the nondiagonal character of the matrix of the kinetic coefficients, the most
probable trajectory of the heterophase-fluctuation growth does not coincide
generally with the energetically most advantageous path.
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From Eq. (2.72) taking into account Eqs. (2.82), (2.83), and (2.84), after inte-
gration with respect to all x�s besides x0, we have

jx0 = λ0

(
x0P +

kBT
|e0|

∂P
∂x0

)
, (2.85)

where jx0 = j(x0) is the one-dimensional flux of heterophase fluctuations
along the x0-axis. In the steady state, j(x0) is independent of x0. If the dis-
tribution (2.80) is established then all other components of the flux vanish. In
this case, the value of jx0 is not only a one-dimensional but also a total flux,
i.e., it determines the number of viable nuclei emerging in a metastable system
in a unit of time, J. Substitution of Eq. (2.80) into Eq. (2.85) yields

J = λ0

(
kBT

2π|e0|
)1/2

Peq(x0) |x0=0 = C0λ0

(
kBT

2π|e0|
)1/2

exp
(
−∆F∗

kBT

)
. (2.86)

The !nucleation rate, J, is the main kinetic characteristic property of a relax-
ing metastable system. According to Eq. (2.86), the value of τ̄ ∼ J−1 is deter-
mined to a large extent by a thermodynamic factor, namely the height of the
activation barrier, W∗ = ∆F∗. The kinetic factors connected with the dynamics
of growth of heterophase fluctuations affect τ̄ only through the parameter λ0.

Gibbs [1] regarded W∗ as the measure of stability for the metastable phase.
The dimensionless complex in the power of the exponential function in
Eq. (2.86) (the Gibbs number)

G∗ =
W∗
kBT

(2.87)

determines the ratio of the height of the activation barrier to the average en-
ergy of thermal motion per degree of freedom. The Gibbs number is infinite
on the binodal and is equal to zero on the spinodal. In the derivations of
Eq. (2.86), we assumed that G∗ � 1. Generally, the work of formation of a
critical nucleus depends on the conditions how the process evolves and may
be calculated employing thermodynamic [1, 76] or quasithermodynamic [58]
methods.

2.8
Kinetic Nucleation Theory (Multiparameter Version)

The theory of nucleation mediated by thermal fluctuations was formulated in
its basic features by Volmer and Weber [2], Farkas [3], Becker and Döring [4],
Zeldovich [5], Frenkel [6], and others. It is commonly denoted as the clas-
sical nucleation theory. The classical theory describes heterophase fluctua-
tions as microscopic fragments of a new phase (vapor bubble, liquid droplet).
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This assumption limits the area of applicability to low supersaturations. Frag-
ments of a new phase are assumed to be spherically symmetric pieces of the
new phase. Their state is characterized by one distinguished (unstable) vari-
able, the radius R or the number of molecules in a fragment. It is believed
that formation and growth of the fragments are caused by uncompensated
evaporation–condensation acts of single molecules. Such a point of view on
the mechanism of growth of new-phase fragments introduced into nucleation
theory by Farkas [3] ensures the slowness (diffuseness) of motion through a
potential barrier and makes it possible to omit the term proportional to the
acceleration in the stochastic equation (2.64) and the terms proportional to the
rate and the derivatives of the rate in the Fokker–Planck equation, Eqs. (2.69)
and (2.70). Besides, neglecting inertia effects in the one-parameter version of
the nucleation theory ensures the establishment of an equilibrium size distri-
bution of fragments in a metastable potential well.

However, in most cases of interest the state of a new-phase fragment is de-
termined not only by one but by several variables. By this reason, nucleation
is a multiparameter activation process. The multiparameter interpretation of
nucleation considered in Refs. [60,75,77–79] gives rise to a broad variety of sce-
narios for the nucleation event, which is connected with a possible spread of
time scales for different variables. In particular, there appear anomalous (dif-
ferent from classical) nucleation regimes: the bypassing of the saddle point of
a potential relief by a nuclei flux, the disturbance of the Boltzmann equilib-
rium distribution for precritical aggregates, a nonequilibrium composition in
a critical nucleus [80–82].

Let us now examine in more detail the multiparameter approach to the
problem of nucleation. Among the parameters that characterize the state of
a new-phase fragment we distinguish the most slowly relaxing (significant)
variables. The variables that are not significant are included in a thermal en-
semble which simulates small-scale fluctuations and is taken into account by
random fields. The significant variables are counted off from their values for
a critical nucleus and are denoted as ai, where i = 1, . . . , N and N is the total
number of significant variables. We suppose that in variables ai the expression
for the work of formation of a nucleus E in the vicinity of the saddle point has
a quadratic form (without cross terms), i.e.,

E = E∗ +
1
2 ∑

ij
eijaiaj = E∗ +

1
2 ∑

i
eia

2
i . (2.88)

The determination of variables for which the matrix Ê = (eij) is of diagonal
form is reduced to the search for a respective transformation. Among the
eigenvalues of the matrix Ê, one is negative.

In order to take into account inertia effects, we will introduce into consider-
ation the rates of change of the variables ai: aN+i ≡ dai/dτ ≡ ȧi (i = 1, . . . , N).
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In this case, the state of a new-phase fragment will be determined by a point in
the 2N-dimensional phase space {a} = a1, . . . , a2N. The energy of the system,
E, in such a case is the Hamiltonian, H. In the vicinity of the saddle point, the
Hamiltonian looks like

H = E(a1, . . . , aN) + K(aN+1, . . . , a2N) = E∗ +
1
2 ∑

i,j
hi,jaiaj

= E∗ +
1
2

(
N

∑
i=1

eia
2
i +

2N

∑
i=N+1

meffa
2
i

)
, (2.89)

where meff is the effective mass of the fragment in variables {a}.
The stochastic equations of motion, Eq. (2.64), retain their form taking into

account the fact that i, j = 1, . . . , 2N and E = H. In dynamical systems the
matrix Γ̂ contains, besides the symmetric kinetic part, Γ̂+ (Γ+

ij �= 0 only for
the subscripts i and j corresponding to the rates), an antisymmetric dynamic
part, Γ̂−. It is connected with the fact that the variables ai (i = 1, . . . , N)
(coordinates) remain unchanged with changes of the sign of time, whereas
the variables aN+i (rates) change sign [20].

The evolution in time of the distribution function of new-phase fragments in
variables {a} obeys a Fokker–Planck multidimensional equation which may
be represented as [73, 74]

∂P({a}, τ)
∂τ

=
2N

∑
ij

∂

∂ai

[
Dij

(
1

kBT
∂H
∂aj

+
∂

∂aj

)]
P({a}, τ), (2.90)

where Dij is the matrix of diffusion coefficients in the space {a} related to the
matrix of kinetic coefficients, Γij, by relation (2.71). We are interested in the
stationary solution of Eq. (2.90) corresponding to the flux of fragments of an
ambient phase from the region of heterophase fluctuations where equilibrium
is considered to be established, through the saddle to the other side into the
region of two-phase states. In the stationary case, Eq. (2.90) looks after being
linearized in the vicinity of the saddle point like

∑
ij

∂

∂ai
Dij

(
1

kBT ∑
κ

hjκaκ +
∂

∂aj

)
P({a}) = 0. (2.91)

The boundary conditions for this equation presuppose that equilibrium is dis-
turbed only in the vicinity of the saddle point. Outside this region, Eqs. (2.77)
and (2.78) are fulfilled. If the equilibrium distribution function Peq({a}), be-
ing a solution of Eq. (2.91), is established, fluxes of fragments along the axes
ai vanish. This equilibrium distribution is given by the expression

Peq({a}) = C exp
[
−H({a})

kBT

]
. (2.92)
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By analogy with the one-dimensional case [83], we search for the stationary
solution of Eq. (2.90) in the form

P({a}) = w({a})Peq({a}). (2.93)

Substitution of Eq. (2.93) into Eq. (2.91) gives

∑
ij

Dij

(
1

kBT ∑
κ

hjκaκ +
∂

∂aj

)
∂

∂ai
w({a}) = 0. (2.94)

With the boundary conditions (2.77) and (2.78), the solution of this equation is

w({a}) =
1

(2πkBT)1/2

∞∫
u

exp
(
− z2

2kBT

)
dz. (2.95)

Here, the value of u is determined by deviations from the saddle point, i.e.,

u = ∑
i

niai. (2.96)

In Eq. (2.96),�n is a constant vector which points into the direction of the fastest
descent from the pass. Substitution of Eq. (2.95) into Eq. (2.94) leads to the
following equation for determining �n:

∑
ij

niD̃ijhjκ +

(
∑
ij

niDijnj

)
nκ = 0, (2.97)

where D̃ij is the transposed matrix to Dij. Equation (2.97) leads to the charac-
teristic equation

−∑
ij

niD̃ijhjκ = kBTλnκ (2.98)

for determining the eigenvalues of λ and the eigenvectors �n of the matrix

− ˜̂DĤ and the condition of normalization of the eigenvector �n,

∑
ij

niDijnj = kBTλ. (2.99)

The latter relation may be written in an equivalent form as [74]

∑
ij

nih
−1
ij nj = −1, (2.100)

where Ĥ−1 = (h−1
ij ) is the matrix inverse to Ĥ.
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We assume that in the diagonal representation of the Hamiltonian (2.89) to
the unstable variable, denoted as a0, a certain, formally introduced subscript
i = 0 is assigned to one of the 2N subscripts of variables ai. In this case, h0 < 0
holds. In accordance with the presence of one unstable variable the matrix

− ˜̂DĤ has one positive eigenvalue of λ0, and all other λi possess a negative

real part. Since the matrix − ˜̂DĤ is real, its eigenvector �n0 with a positive
eigenvalue may also be considered real.

In accordance with Eq. (2.98), the eigenvalue λ0 is determined as the root of

the characteristic equation (in the matrices − ˜̂DĤ and −D̂Ĥ the eigenvalues λ

are the same, as distinct from the eigenvectors)

det(D̂Ĥ + kBTλ Î) = 0. (2.101)

Far away from the saddle point, fluctuations are insignificant, and fragments
that have passed through the saddle move, as follows from Eq. (2.64), accord-
ing to the equation

dai

dτ
= − 1

kBT ∑
j

Dijhjaj. (2.102)

The general solution of Eq. (2.102) taking into account Eq. (2.98) is

ai = A0n0i exp(λ0τ) +
2N−1

∑
j=1

Ajnij exp(λjτ), (2.103)

where the coefficients A0, A1, . . . , A2N−1 are determined by the initial values
of ai.

From Eq. (2.103) it follows that at τ → ∞ the value of |a0| → ∞, and all ai
where i �= 0 become zero. Thus, the variable a0 is unstable not only thermody-
namically determined by the work of nucleus formation, but also kinetically
by the macroscopic equations of motion, Eq. (2.102).

The distribution function with respect to the variable a0 is found by integra-
tion of the complete distribution function, Eqs. (2.93) and (2.95), over all stable
variables ai (i �= 0) at the condition that a0 = const,

P(a0) =
C

(2πkBT)1/2 exp
(
− W∗

kBT

)
exp

(
− 1

2kBT ∑
i

hia
2
i

)

×
∞∫

u

exp
(
− z2

2kBT

)
dz ∏

i �=0
dai. (2.104)

Taking into consideration Eqs. (2.98) and (2.99), this procedure leads to a result
coinciding with Eqs. (2.80) and (2.81), i.e., e0 = h0.



40 2 Equilibrium, Stability, and Metastability

In the vicinity of the saddle point, the multidimensional equation of nucle-
ation kinetics, Eq. (2.90), may be written in the form of a continuity equation
for the flux of states of the system under consideration directed from the re-
gion of heterophase fluctuations into the two-phase region (see Eqs. (2.90) and
(2.91)). For the density of the fluxes of states along the variable ai according to
Eq. (2.90), we have

ji({a}, τ) = −∑
j

Dij

(
1

kBT
∂H
∂aj

+
∂

∂aj

)
P({a}, τ). (2.105)

Hence, taking into account Eqs. (2.92), (2.95), and (2.96), we obtain

ji({a}) =
1

(2πkBT)1/2 ∑
j

DijnjPeq({a}) exp
(
− u2

2kBT

)
. (2.106)

In order to find the nucleation rate it is necessary to integrate the complete
flux ∑i ji({a}) going through the pass with respect to its cross-section. Since
the divergence of a complete stationary flux is equal to zero, the result of inte-
gration is independent of the orientation of the hypersurface, with respect to
which the integration is performed, relative to the flux direction. Determining
the surface of integration by the condition u = 0, we have

J = ∑
i

∫
u=0

ji({a})dsi. (2.107)

Substitution of Eq. (2.106) into Eq. (2.107), taking into account the normaliza-
tion condition (2.99), yields

J = C
λ0

2π

[∣∣∣∣∣det

(
Ĥ

2πkBT

)∣∣∣∣∣
]−1/2

exp
(
− W∗

kBT

)
, (2.108)

where C is the normalization constant of the complete equilibrium distribu-
tion function given by Eq. (2.92).

Separating the distribution function with respect to the unstable variable
from Eqs. (2.99) and (2.89) we have

Peq({a}) = Peq(a0) ∏
i �=0

Peqi({a})

= Peq(a0) ∏
i �=0

Ci exp

(
− 1

2kBT

2N

∑
i �=0

hia
2
i

)
.

(2.109)

The conditions of normalization for the functions Peqi({a}) describing the
equilibrium distribution of fragments over the variables ai (i �= 0) are

Ci

+∞∫
−∞

exp

(
− 1

2kBT

2N

∑
i �=0

hia
2
i

)
= 1. (2.110)
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It follows from Eqs. (2.109) and (2.110) that

C = C0 ∏
i �=0

Ci = C0 ∏
i �=0

(
hi

2πkBT

)1/2

. (2.111)

Substitution of Eq. (2.111) into Eq. (2.108) gives Eq. (2.86). Equations (2.108)
and (2.86) are the final result of the multidimensional steady-state nucleation
theory. With respect to their form, they coincide with the equation obtained in
one-dimensional nucleation theory [5, 6]. All the information on the effect of
multiparametricity on the rate of passage of new-phase fragments through the
saddle point of the potential barrier is contained in the increased decrement
of the unstable variable, λ0.

We rewrite, now, Eq. (2.108) in the form which is usually employed when
compared to experiment [9, 10]

J = ρz0z1λ0

(
kBT

2π|e0|
)1/2

exp
(
− W∗

kBT

)
= ρz0B exp(−G∗), (2.112)

where ρ is the number of particles per unit volume of the metastable phase,
z0 is the factor that corrects the normalization of the equilibrium distribution
function, z1 is the factor that determines the transition from the distribution
function with respect to the number of molecules in the nuclei, and B is the
kinetic prefactor. The value of B is proportional to the rate of passage of frag-
ments through the critical size.

2.9
Approximations and Limitations of Classical Nucleation Theory

We examine, in the present section, the hierarchy of times given by the sto-
chastic equation of motion, Eq. (2.64). For this purpose we restrict ourselves
to the simplest case, where the state of a new-phase fragment is determined
by only two variables, the size, R, and the rate of its change, Ṙ. As was done
before, by choosing the origin of the system of coordinates at the saddle point
of the potential barrier, we have a1 = R − R∗ = x and a2 = Ṙ = v. From
Eq. (2.64) we get

ẋ = −Γxx
∂H
∂x

− Γxv
∂H
∂v

,

v̇ = −Γvx
∂H
∂x

− Γvv
∂H
∂v

+ ζv(τ).

(2.113)

In the vicinity of the saddle point, the Hamiltonian has the form of Eq. (2.88).
By differentiating Eq. (2.88) with respect to x and v and substituting the ob-
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tained result into Eq. (2.113), we have

ẋ = Γxx|e|x − Γxvmeffv, (2.114)

v̇ = Γvx|e|x − Γvvmeffv + ζv(τ). (2.115)

From the identity ẋ = v and the principle of symmetry of kinetic coefficients
for the dynamic part of the matrix Γ̂ it follows that Γxx = 0 and Γvx = −Γxv =
1/meff, where meff is the effective mass of the fragment in variables (x, v). In
this case, the system of equations (2.114) and (2.115) takes the form

ẋ = v, (2.116)

v̇ =
|e|

meff
x − Γvvmeffv + ζv(τ), (2.117)

where the random force ζv(τ) is determined by the expressions

〈ζv(τ)〉 = 0, (2.118)

〈ζv(τ)ζv(τ′)〉 = 2Dvvδ(τ − τ′) = 2kBTΓvvδ(τ − τ′). (2.119)

Equation (2.117) may be represented as(
dv
dx

+ Γvvmeff

)
v =

|e|
meff

x + ζv(τ). (2.120)

Hence it follows that inertia effects in the evolution of the fragments may be
neglected if

dẋ
dx

� Γvvmeff. (2.121)

In this case, the system of equations (2.116) and (2.117) is reduced to one sto-
chastic equation

ẋ =
|e|

Γvvm2
eff

x +
1

Γvvmeff
ζv(τ) =

|e|
Γvvm2

eff
x + ζx(τ), (2.122)

where

〈ζx(τ)〉 = 0, (2.123)

〈ζx(τ)ζx(τ′)〉 = 2Dxxδ(τ − τ′). (2.124)

Here, the notation Dxx is introduced for the diffusion coefficient in the space
of fragment sizes. Equation (2.119) includes the diffusion coefficient in the
space of velocities Dvv. According to Eqs. (2.119) and (2.122), we have

Dxx =
kBT

Γvvm2
eff

. (2.125)
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In application to the case of a purely deterministic motion, Eq. (2.122) can be
rewritten as

dẋ
dx

=
|e|

Γvvm2
eff

. (2.126)

In this case, the condition of neglecting inertia effects, Eq. (2.121), takes the
form

|e|
Γvvm2

eff
� Γvvmeff. (2.127)

According to Eqs. (2.116) and (2.117), three characteristic time scales can be
distinguished with respect to the fragment evolution. The first characteristic
is the time of relaxation of the velocity, τv, due to the action of the frictional
force determined by the second term on the right-hand side of Eq. (2.117). If
any other forces are absent, it follows from Eq. (2.117) that

τv =
1

Γvvmeff
. (2.128)

The potential barrier E(x) restricts the motion of fragments, and there appears
a second time scale, τD, which is the characteristic diffusion time, i.e., the time
required for a fragment to pass the critical region of the potential barrier,

τD =
x2

+
Dxx

. (2.129)

According to Eq. (2.88), x2
+ 
 kBT/|e| holds. With Eq. (2.125), from Eq. (2.129)

for τD we have the relation

τD =
Γvvm2

eff
|e| . (2.130)

The third term in Eq. (2.117) is the random (Langevin) force that takes into
account the atomic structure and the fluctuations of the metastable phase. In
view of the δ-correlation of the Langevin source, Eq. (2.67), the correlation
time equals τc = 0. Thus, only two time parameters τv and τD are different
from zero. With Eqs. (2.128) and (2.130), the condition of neglecting inertia
effects, Eq. (2.127), takes the form

τv � τD. (2.131)

Inequality (2.131) implies that if a nucleation theory is developed in the config-
urational space, it examines only probabilities of transitions in periods exceed-
ing the relaxation time, τv, considerably. In the theory of Brownian motion,
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such regime is known as the regime of strong friction [80]. It presupposes that
the Maxwellian velocity distribution is instantaneously established for precrit-
ical fragments, and the formation of supercritical nuclei results from the slow
(on the scale of the problem under consideration) motion of fragments via the
potential barrier along the size axis.

In variables (x, v) the time-independent Fokker–Planck equation (2.91) lin-
earized in the vicinity of the saddle point has the form[

− ∂

∂x
v − ∂

∂v

( |e|
meff

x − Dvv
meff

kBT
v
)

+ Dvv
∂2

∂v2

]
P(x, v) = 0. (2.132)

The boundary conditions for this equation are

P(x, v) =


Peq(x, v), x = −∞

0, x = +∞
(2.133)

In accordance with the procedure of solving the Fokker–Planck multidimen-
sional equation described in the previous section we determine the positive

eigenvalue λ0 and the eigenvector �n0 of the matrix − ˜̂DĤ corresponding to it.
From Eq. (2.96) the following system of equations can be derived:

− |e|
meff

nv = λnx, (2.134)

−nx − Dvvmeff
kBT

nv = λnv, (2.135)

with the solution

λ0 = −1
2

Dvvmeff
kBT

+

√(
Dvvmeff

2kBT

)2

+
|e|

meff
. (2.136)

The eigenvector corresponding to this eigenvalue has the form

�n = χ

(
1,−λ0meff

|e|
)

. (2.137)

Thus, the direction of the vector �n, determining the direction of the fastest
descent from the pass, through λ0 depends on all the physical parameters
of the problem. In the limiting case that inertia effects may be neglected
(Eq. (2.127)), from Eqs. (2.137) and (2.125) we have

λ0 
 |e|kBT
Dvvm2

eff
= kBT|e|Dxx. (2.138)

At Dvv → ∞, we have λ0 → 0 and�n → χ (1, 0), i.e., the direction of the vector
�n coincides with the x-axis.
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From the normalization conditions (2.99) and (2.100), we find a value of χ

equal to

χ =

(
|e|2kBT

Dvvm2
effλ0

)1/2

. (2.139)

By substitution of Eqs. (2.136), (2.137), and (2.139) into Eqs. (2.93) and (2.95)
for the steady-state distribution function of new-phase fragments along the
variables x and v we have

P(x, v)
Peq(x, v)

=

(
|e|2

2πDvvm2
effλ0

)1/2 ∫
x−λ0meffv/|e|

exp

(
− |e|2z2

2Dvvm2
effλ0

)
dz. (2.140)

When inertia effects are neglected, λ0 is determined by Eq. (2.138). The sub-
stitution of this relation into Eq. (2.140) at Dvv → ∞ gives

P(x)
Peq(x)

=
( |e|

2πkBT

)1/2 ∫
x

exp
(
− |e|z2

2kBT

)
dz. (2.141)

This function in dependence on the unstable variable P(x) may also be ob-
tained by integrating the complete distribution function (2.140) along the sta-
ble variable v provided that x = const. As is evident from Eq. (2.141), the
stationary distribution along the unstable variable x does not depend on the
kinetic coefficients whereas the expression for the complete distribution func-
tion (2.140) includes elements of the matrix of the generalized diffusion coeffi-
cient. Expressions (2.136), (2.140), and (2.86) are the final result of solving the
stationary nucleation problem.

Let us examine the limits of applicability of the solutions to Eqs. (2.140) and
(2.141). The integral in Eq. (2.140) becomes a constant if

λ0meffv
|e| − x �

(
λ0Dvvm2

eff
|e|2

)1/2

. (2.142)

In this region of the parameters (x, v), the stationary distribution function
P(x, v) coincides with the equilibrium distribution function Peq(x, v). Con-
dition (2.142) is fulfilled only for energies smaller than the work of formation
of a critical nucleus when

meffv2

2
− |e|x2

2
< 0. (2.143)

Substitution of Eq. (2.143) into Eq. (2.142) gives

−x �
(

λ0Dvv

|e|
)1/2 meff(

|e|1/2 − λ0m1/2
eff

) . (2.144)
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This condition determines the range of sizes for new-phase fragments where
their equilibrium distribution is distorted only slightly by transitions over the
potential barrier. If inertia effects in the motion of fragments can be neglected
(Eq. (2.127)), then, taking into account Eq. (2.138), from Eq. (2.144) we get

−x �
(

kBT
|e|

)1/2

. (2.145)

It means that the function P(x, v) differs from the equilibrium distribution
function Peq(x, v) only in the critical region of the potential barrier, where E∗ −
|E(x)| 
 kBT � E∗. As is evident from Eq. (2.141), beyond this region the
stationary distribution coincides with respect to the unstable variable x with
the equilibrium distribution Peq(x).

Otherwise, if Eq. (2.127) and

|e|kBT
Dvvm2

eff
� Dvvmeff

kBT
(2.146)

hold, it follows from Eqs. (2.136) and (2.86) that

λ0 =
( |e|

meff

)1/2

, (2.147)

J = C0

(
kBT

2πmeff

)1/2

exp
(
− W∗

kBT

)
. (2.148)

Formula (2.148) corresponds to the theory of absolute reaction rates [74],
where inertia effects in the evolution of a nucleus in the absence of “friction”
lead to the independence of the flux over the barrier from the shape of the
barrier.

In fulfilling inequality (2.146), condition (2.144) is reduced to

−x �
(

kBT
|e|

)1/2
(
|e|1/2kBT

Dvvm3/2
eff

)1/2

(2.149)

and the function P(x, v) is different from the equilibrium distribution in a
much wider range than that given by inequality (2.145). When Dvv → 0, the
quadratic approximation for the top of the potential barrier used in solving
Eq. (2.132) is violated. This property determines the limits of applicability of
Eqs. (2.136), (2.86), and (2.148). In a first approximation, the width of the po-
tential barrier (as well as of the potential well) is equal to (W∗/|e|)1/2. Then
from Eqs. (2.146) and (2.149) it follows that

kBT|e|1/2

m3/2
eff

� Dvv � (kBT)2|e|1/2

W∗m3/2
eff

. (2.150)
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This inequality determines the range of applicability of Eqs. (2.136), (2.86), and
(2.148). Since homogeneous nucleation is a purely fluctuation phenomenon,
in the limit Dvv → 0 we have to expect J = 0. Equations (2.136), (2.86), and
(2.148) do not satisfy such asymptotics.

2.10
Nucleation at a High Degree of Metastability

The classical nucleation theory is developed based on the assumption that the
characteristic passage time of a new-phase fragment through the critical re-
gion of a potential barrier, τD, considerably exceeds the relaxation time, τv,
connected with the dynamics of interaction between the fragment and the
medium (τD � τv). In this case, the Maxwellian fragment velocity distri-
bution is established immediately, and the “slow” motion of fragments over
the potential barrier along an unstable variable ensures the presence of the
Boltzmann equilibrium distribution for precritical fragments.

An illustrative model of the evolution of the new phase, providing diffu-
sive motion along an unstable variable, is the Szilard schema. According to
this model, a chain of alternating acts of attachment and detachment of single
molecules at the surface of a fragment determines the evolution. This ap-
proach is introduced into nucleation theory by Farkas [3]. This schema was
first used in describing the condensation of supersaturated vapors, where the
formation of a nucleus by the mechanism of elementary evaporation and con-
densation acts seems to be evident. For a superheated liquid, such a nucle-
ation mechanism may be expected to occur in a region of weak metastability,
at temperatures that are not far from the critical point. It is less evident at cav-
itation in a stretched liquid or destruction of a stretched crystal. Here, critical
nuclei are voids. The use of the traditional schema in this case requires the
introduction into consideration of a virtual particle, a hole [9].

The classical scenario of formation of a new-phase nucleus is the most prob-
able, but not the only possible one. At high supersaturations, when a system is
in a state in the vicinity of the spinodal (in a region of high metastability), the
appearance of a nucleus may not be preceded by a sequence of single acts of at-
tachment and detachment of molecules. The possibility of such different coop-
erative mechanism of nucleation was first suggested by Skripov [9]. The coop-
erative decay of metastable systems under high supersaturations is confirmed
by the results of computer experiments [84, 85]. A nucleation theory built on
the assumption of a the cooperative mechanism is examined in [86–88].

We will evaluate the characteristic times of processes assuming that nucle-
ation is initiated by the decay of unstable regions that form in the vicinity of
the spinodal as a result of chaotic thermal motion [87]. The dynamics of such
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a process is different from the condensation–evaporation mechanism, and the
condition τD � τv may be violated. Following Zeldovich and Todes [69]
we assume that the rate of decay of an unstable state in a one-component
system is limited by the heat exchange between the expanding and the con-
tracting elements of the volume. In this case, the decrement of the increase
of density inhomogeneities (a quantity inversely proportional to τv) will be
determined by the thermal diffusivity of the medium, DT. Perturbations with
wavelengths exceeding a certain critical value, l∗, are unstable. The value of
l∗ is determined by the isothermal compressibility, l∗ ∼ |βT|1/2 [89]. At the
decay of unstable regions, nucleus formation is possible if l∗ ≥ R∗. In a linear
approximation, τv ∼ l2∗/DT. In the vicinity of the spinodal βT ∼ (ρ − ρsp)−1

holds. If the heat conductivity on the spinodal is finite, then the relations
DT ∼ (ρ − ρsp) and τv ∼ (ρ − ρsp)−2 are fulfilled. Assuming a quadratic po-
tential barrier, the time τD is evaluated by data on the effective nucleus mass
and the surface tension and depends only slightly on the distance from the
spinodal [87]. Thus, in the vicinity of the spinodal it is possible to realize the
condition τv � τD, which is characterized by a weak interaction of a new-
phase fragment with the parent medium. The term “weak” means that the
interaction with the medium has a weak effect on the motion of a precritical
fragment and is not sufficient for the maintenance of the Boltzmann equilib-
rium distribution in a metastable state, which is disturbed when new-phase
fragments leave it. The diffusion variable of the fragment in this case is not
its size, but the energy, which is the most slowly-changing variable [87, 88].
If the energy generated during the decay of an unstable region proves to be
insufficient for the formation of a viable new-phase fragment (nucleus), the
originating density inhomogeneity disperses. At a subsequent appropriate
fluctuation, another unstable region is formed and through its decay the sys-
tem with a new amount of energy makes another attempt to overcome the
barrier. Thus, when the interaction between a new-phase fragment and the
medium is weak, the kinetics is determined by the energy diffusion from the
depth of the potential well to the value W∗ equal to the height of the potential
barrier. In this case, thermal equilibrium is absent for precritical fragments.

The motion of a Brownian particle, representing to some extent a certain
analog of a new-phase fragment, at a very weak interaction with the medium,
was first examined by Kramers [83]. For the case of two independent vari-
ables, the characteristic size of a fragment, a1 = R − R∗ = x, and the rate of its
change, a2 = ẋ = v, the kinetic equation of nucleation in the regime of energy
diffusion may be derived from the Fokker–Planck equation, Eq. (2.90), when
going over in the latter from the variables (x, v) to the variables angle, φ, and
total energy, H,

H =
meffv2

2
+ E (2.151)
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or angle, φ, and action, I,

I =
∮

{2meff [H − E(x)]}1/2 dx. (2.152)

Here, as before, meff is the effective mass of a new-phase fragment. Along the
action variable, the kinetic equation has the form [83, 87]

∂P(I, τ)
∂τ

=
∂

∂I

{
D(I)

[
1

kBT
dH
dI

+
∂

∂I

]}
P(I, τ), (2.153)

where D(I) is the diffusion coefficient along the coordinate I, and P(I, τ) is
the function of action distribution of new-phase fragments. For the energy
distribution function, we have

∂P(H, τ)
∂τ

=
∂

∂H

{
D(H)

[
1

kBT
+

∂

∂H

]}
∂H
∂I

P(H, τ), (2.154)

where D(H) is the diffusion coefficient along the variable H. The diffusion
coefficients D(I) and D(H) are connected via

D(H) = D(I)
∂H
∂I

. (2.155)

In the stationary case from Eqs. (2.152) and (2.154) for the nucleation rate in
the space of energies we have

J = −D(H)
[

1
kBT

+
∂

∂H

]
P(I). (2.156)

This expression may be presented as

J = −D(H) exp
(
− H

kBT

)
∂

∂H

[
P(H) exp

(
H

kBT

)]
. (2.157)

Integrating Eq. (2.157) with respect to energy from a value close to the value of
H at the bottom of the potential well (point A) to the value of H corresponding
to a certain point B removed from the top of the potential barrier, we get

J =
P exp

(
H

kBT

)∣∣∣∣
nearA

− P exp
(

H
kBT

)∣∣∣∣
B

B∫
nearA

1
D(H)

exp
(

H
kBT

)
dH

. (2.158)

Owing to the integral divergence in Eq. (2.158) at H = 0, integration should be
performed starting with an energy of the order of the thermal energy, i.e., kBT.
Moreover, assuming that the new-phase fragments that have passed over the
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potential barrier do not return, the term P exp (H/kBT)|B in Eq. (2.158) may
be set equal to zero, and the upper limit of the integral in Eq. (2.158) may be
considered equal to W∗. Thus, we obtain

J 
 P exp
(

H
kBT

)∣∣∣∣
nearA

 W∗∫
kBT

1
D(H)

exp
(

H
kBT

)−1

. (2.159)

In a first approximation, we may assume

P exp
(

H
kBT

)∣∣∣∣
nearA

= CE, (2.160)

where CE is the normalization constant of the energy distribution function of
fragments in the potential well.

At W∗ � kBT, the main contribution to the integral in Eq. (2.159) is made
by the values of H close to W∗. Taking D(H) 
 D(W∗), we get

J 
 CE
D(W∗)

kBT
exp

(
− W∗

kBT

)
(2.161)

or

J 
 CI

(
∂H
∂I

)
A

D(I∗)
kBT

exp
(
− W∗

kBT

)
. (2.162)

Here, I∗ is the value of the action at the peak of the potential barrier, CI is the
normalization constant of the action distribution function, and the subscript
A refers to the potential well.

It follows from Eqs. (2.86) and (2.161) that two qualitatively different chan-
nels of spontaneous formation of new-phase nuclei lead to formally equiva-
lent expressions for the stationary nucleation rate. In both cases, the expo-
nential term, exp(−W∗/kBT), dominates. The differences are connected with
the value and the temperature dependence of the pre-exponential factor. The
problem of determining the coefficients D(W∗) and D(I∗) in the regime of en-
ergy diffusion is complicated by the absence of an equilibrium distribution for
precritical fragments.

In the limit D(W∗) → 0, the nucleation rate tends to zero, i.e., J = 0. This
property distinguishes Eq. (2.161) from another asymptotic formula (2.148),
which implies that nucleation is also possible in the absence of fluctuations.
This result is a consequence of the assumption of the presence of equilibrium
in the ensemble of precritical fragments made in deriving Eq. (2.148).

In conclusion we shall note that cooperative processes of formation of new-
phase nuclei, as an alternative to the Szilard schema of single acts of con-
densation and evaporation, may also proceed without the participation of the
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unstable phase. A rapid formation of local inhomogeneities with properties
of the competing phase may also take place in the process of chaotic thermal
motion.

2.11
Nucleation Bypassing the Saddle Point

Both in classical homogeneous nucleation theory (Section 2.7) and in its non-
classical version (Section 2.8) it is assumed that the most probable trajectory
of motion for new-phase fragments always passes through the saddle point of
a potential barrier. The possibility of an anomalous regime, where the equi-
librium distribution for precritical fragments is not established and nucleation
proceeds bypassing the saddle point, was discussed by Trinkaus [80]. Using
two-dimensional nucleation as an example, he showed the possibility of such
an anomaly for the case, if one of the elements of the matrix of the generalized
diffusion coefficients is much smaller than the others, and suggested a theory
for such a nucleation regime. Later on, the nucleation regime bypassing the
saddle point was examined in [81, 82, 90]. This problem is most important in
nucleation in multicomponent systems, where situations may arise easily that
the rate of supply to a growing fragment of one of the mixture components
will prove to be lower than that of the others by many orders of magnitude.

Here, we examine multidimensional nucleation without taking into account
inertia effects. As we have done before, we represent the state variables of
fragments of the newly evolving phase by ai (i = 1, . . . , N) and the set of
these variables by {a}. The distribution function of fragments P({a}, τ) is
found by solving Eq. (2.90). It is believed that the potential relief in the space
of {a} has a saddle point and is described by the matrix Ê, which has one neg-
ative eigenvalue and N − 1 positive eigenvalues. To simplify the subsequent
calculations, we also assume that the matrix of the generalized diffusion coef-
ficients, D̂, is diagonal with one of the elements of the matrix D̂, let it be D11,
considerably smaller than the others.

The small value of D11 implies that the motion along the variable a1 is re-
tarded, all the other variables a2, . . . , aN having sufficient time for adiabatic
adjustment to this motion. In a multidimensional space, all other variables
adjust to the slow variable a1 being determined via

a0
2(a1), . . . , a0

N(a1), (2.163)

and resulting from the conditions (i �= 1)(
∂E
∂ai

)
a1

= 0,

(
∂2E
∂a2

i

)
a1

> 0. (2.164)
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In this case, the distribution function P({a}, τ) reads

P({a}, τ) = P0(a1, τ)φeq({a′}), (2.165)

φeq({a′}) = exp

(
− 1

2kBT ∑
i,j

qij∆ai∆aj

)
, (2.166)

qij =

(
∂2E

∂ai∂aj

)
a1 = const
ai = a0

i (a1)

, ∆ai = ai − a0
i (a1), (2.167)

i.e., it becomes of Boltzmann type with respect to the variables {a′}. Here, the
notation {a′} means that the variable a1 is excluded from the set of variables
{a}.

Let us exclude the fast variables {a′} from Eq. (2.90). For this purpose, we
will introduce the distribution function of the slow variable

P(a1, τ) =
∫

P({a}, τ)d{a′} (2.168)

and integrate Eq. (2.90) with respect to the fast variables {a′}. As a result we
have

∂P(a1, τ)
∂τ

= − ∂J1

∂a1
− j(a1). (2.169)

Here J1 is the total flux of fragments at a fixed value of a1, and j(a1) is the total
flux in the space of {a′} at a given value of a1. If we assume that in the vicinity
of the line a0

i (a1) the element D11 of the matrix of the generalized diffusion
coefficients depends only weakly on the variables {a}, and that P({a}, τ) has
the form of Eq. (2.165), then the flux J1 may be presented as

J1 = −D11 exp
(
− Eeff

kBT

)
∂

∂a1
exp

(
Eeff

kBT

)
P(a1, τ), (2.170)

where

Eeff = −kBT ln
∫

exp
(
− E

kBT

)
d{a′} (2.171)

is the effective potential, which is a potential of the average force along the
coordinate a1. The value of D11 in Eq. (2.170) is calculated on the line ai0(a1)
and is a function of a1, exclusively.

Next we will examine the stationary case assuming that ∂P/∂τ = 0. From
Eq. (2.169) taking into account Eqs. (2.165)–(2.168), (2.170) a time-independent
equation for the determination of the function P(a1) follows as

− d
da1

D11

(
P

kBT
dEeff

da1
+

dP
da1

)
+ j(a1) = 0, (2.172)
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Eeff = E0 +
kBT

2
ln �, E0 = E(a0

i (a1)). (2.173)

The quantity �(a1) in Eq. (2.173) has been obtained as a result of integrating
Eq. (2.166) with respect to the variables {a′} as

�(a1) =
det q̂(a1)

(2πkBT)N−1 , (2.174)

∫
φeqd{a′} = �−1/2(a1), P(a1) = P0(a1)�−1/2(a1). (2.175)

In the stationary case, Eq. (2.169) reads

∂J1

∂a1
+ j(a1) = 0. (2.176)

The second term, j(a1), in Eq. (2.176) determines the withdrawal of new-phase
fragments. If there is no saddle point in the subspace {a′}, then j(a1) = 0
holds and a withdrawal does not occur. In this case, Eq. (2.176) takes the form

∂J1

∂a1
=

∂J
∂a

= 0 (2.177)

and describes ordinary one-dimensional nucleation.
If in the space {a′} there is a saddle point, then nucleation is possible at a

fixed value of a1, the process scenario being determined by the outflow term.
If, despite the presence of j(a1), fragments of a new phase moving along the
line given by Eq. (2.163) grow to values exceeding a1∗ = 0, the process will
be determined by the passage of the saddle-point region. If the run-off in-
hibits the growth of nuclei at a certain level a1 < 0, a Boltzmann-type equi-
librium distribution close to the critical region of the potential barrier will not
be achieved, and the line of the flux of new-phase fragments will bypass the
saddle point.

An analytical solution to the diffusion problem with a run-off can be ob-
tained only in the limiting cases of a strong and a weak run-off. For an
approximate solution of Eq. (2.176), we will use the approach suggested in
Refs. [82, 90]. The Gibbs thermodynamic potential at the initial point on the
line given by Eq. (2.163) is E0(a1). The position of the saddle point in the sub-
space {a′} is shifted with respect to {a∗} of the saddle point in the space {a}.
If we assume that the saddle point of the subspace {a′} is in the critical region
where the expansion Eq. (2.88) is valid, then for the thermodynamic potential
at the shifted saddle point we can write

E+ = E∗ +
1
2

det Ê

det Ê1
a2

1, (2.178)
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where the matrix Ê1 is the minor of the matrix Ê obtained by deletion of
the column and the line with numbers 1. Since at the saddle points the de-
terminants of the matrices Ê and Ê1 are negative, the second component in
Eq. (2.178) is positive.

According to Eq. (2.178), the activation energy for passing through the
shifted saddle point in the subspace {a′} is

W ′ = ∆E′(a1) = E+ − E0 = E∗ +
1
2

det Ê

det Ê1
a2

1 − E0(a1). (2.179)

The run-off term j(a1) may be calculated according to Eqs. (2.101) and (2.108)
with the substitutions C → P0(a1), D̂ → D̂1(a1), Ĥ → Ê1(a1), and W∗ → W ′
as

j(a1) =

P0(a1)
λ1

2π

[
|det Ê1(a1)|

2πkBT

]1/2
 exp

(
− W ′

kBT

)
, (2.180)

where λ1 is the positive root of the equation

det
[
λ1 Î + D̂1(a1)Ê1(a1)/kBT + λ1

]
= 0. (2.181)

Now moving from the function P0(a1) to the function P(a1) = P0(a1)�−1/2,
for the run-off term we get

j(a1) = γP(a1), (2.182)

γ(a1) =
λ1

2π

[
det q̂(a1)

det Ê1(a1)

]1/2

exp
(
− W ′

kBT

)
. (2.183)

According to Eqs. (2.172) and (2.182), Eq. (2.176) can be presented as

d
da1

D11(a1) exp
(
− Eeff

kBT

)
d

da1
exp

(
Eeff

kBT

)
P(a1) = γ(a1)P(a1). (2.184)

The diffusion equation with a run-off describes the competition of two pro-
cesses: diffusion relaxation leading to the establishment of an equilibrium
distribution and superbarrier transitions in the motion in the subspace {a′}
resulting in the withdrawal of particles from the critical region of the saddle
point.

Expression (2.179) is valid only in the critical region of the saddle point.
However, even as we move away from the saddle point, the function ∆E′(a1)
retains its main property; it decreases in the interval from a1 = aA to a1 = 0.
Therefore, the run-off term j(a1) “is turned on” at quite a great distance from
the bottom of the well (a1 = aA). Until the run-off force has not reached
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a certain critical value, the distribution function P(a1) is close to equilibrium
Peq(a1). Then, the run-off is exponentially rapidly established. If we accept the
indicated qualitative pattern, we may substitute the solution of the problem
with a run-off by a solution neglecting it, but with an absorbing boundary
condition at a certain point a1 = aα. Then, instead of Eq. (2.184), we have to
look for the solution of equation

d
da1

D11Peq(a1)
d

da1

P(a1)
Peq(a1)

= 0, P(aα) = 0. (2.185)

Integrating Eq. (2.184) on the interval (a0, aα), we get

J1(aα) − J1(a0) +
aα∫

a0

γ(a1)P(a1)da1 = 0, (2.186)

where, according to Eq. (2.170), J1(a1) is

J1(a1) = −D11(a1)Peq(a1)
d(P/Peq)

da1
. (2.187)

If the point aα is at the bottom of the well, then J1(a0) → J+, where J+ is the
nucleation rate sought. As a result, according to Eq. (2.186), we have

J+ = J(aα) +
aα∫

0

γ(a1)Peq(a1)da1. (2.188)

Here, it is assumed that equilibrium is established up to the nearest vicinity of
the point aα where the absorbing boundary condition is imposed. The posi-
tion of the point aα at the hypersurface of the potential relief may be evaluated
from the condition of equality of the rates of the processes of diffusion relax-
ation and superbarrier transitions [82]

D11

[
E′

eff(aα)
kBT

]
= γ(aα). (2.189)

Equation (2.189) follows from Eqs. (2.184), (2.185), and (2.187) if we assume
that at the point aα the function P/Peq changes more rapidly than Peq and D11.
The run-off term γ(aα) increases away from the bottom of the potential well.
Therefore, the closer the point aα to the bottom, the smaller the value of D11.
The integral in Eq. (2.188) can also be calculated for an arbitrary position of
the point aα, as long as it is located within the limits of the critical region of
the saddle point. In such cases, we get [90]

J+ = J
[1 + erf(∆)]

2
+ J1(aα), (2.190)
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∆ =

(
det Ê

2kBT det Ê1

)1/2

aα. (2.191)

If ∆ � 1, then erf(∆) ≈ 1, J1(a1) → 0 and J+ 
 J, i.e., Eq. (2.190) describes the
ordinary nucleation regime through the saddle point. If aα < 0 and besides
|∆| � 1, then

J+ = J
exp(−∆2)
2π1/2|∆| + J1(aα). (2.192)

When condition (2.189) is used for finding the point aα, the expression for
the nucleation rate, Eq. (2.192), may be presented as

J+ = J1(aα)

[
1 +

E′
eff(aα) det Ê1

|aα|det Ê

]
. (2.193)

Hence it follows that as the point aα departs from the saddle point, the contri-
bution of the first term in Eq. (2.190) decreases. The one-dimensional growth
of a new-phase nucleus proceeds up to the point aα, whereupon the formation
of a critical nucleus via the saddle point in the subspace {a′} can be observed,
i.e., with bypassing the main saddle point. In this case, J+ ≈ J1(aα) holds.
Generally, the nucleation rate proves to be smaller than that one would calcu-
late by the commonly employed formula, Eq. (2.108).

In the following, we examine the changes in the mechanism of growth of
new-phase nuclei due to changes in the element of the matrix D11 of the gen-
eralized diffusion coefficient. As long as the value of D11 is comparable with
the other elements of the matrix D̂, the growth proceeds through the saddle
point. The nucleation rate is determined by the general expression (2.108),
which includes the barrier parameters. As the element D11 decreases, a tran-
sition to the asymptotics of this expression can be observed which differs only
by the determination of the eigenvalue λ. Instead of Eq. (2.101) we have the
equation

det

(
D̂Ê
kBT

+ λ Î

)
1

= 0. (2.194)

Here, the subscript 1 means that we take the minor of the matrix obtained by
deleting the line and the column with numbers 1. The pre-exponential factor
in Eq. (2.108) no longer depends on the element D11 of the matrix of the gener-
alized diffusion coefficient. However, the classical nucleation theory remains
valid as long as the condition aα � 0 is fulfilled. With a further decrease of
D11, when point aα approaches the bottom of the well, a new growth mecha-
nism develops characterized by a different dependence of the nucleation rate,
Eq. (2.193), on the parameters of the problem under consideration, the absence
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of equilibrium for precritical aggregates, the bypassing of the saddle point,
and a different composition of the critical nucleus. The process rate in this
case is controlled by an element of the matrix D11 of the generalized diffusion
coefficient, the slow variable a1. Equation (2.190) ensures with the change of
aα a smooth transition from nucleation through the saddle point to nucleation
bypassing it.

Apart from the value of D11, the boundary of transition to the anoma-
lous regime of nucleation depends on the height of the activation barrier
(Eqs. (2.190), (2.193)). If the activation energy is high, the region of the anoma-
lous regime may prove to be unattainable. At the same time, at low barriers
(≤ 10kBT) the transition to the regime with bypassing the saddle point proves
to be less critical for the value of D11.

2.12
Some Comments on Nucleation Theory

A solution to the problem of the theoretical description of the nucleation kinet-
ics in the form of Eqs. (2.86) and (2.108) has been obtained for the stationary
state. It is the distribution function of new-phase fragments in chosen vari-
ables P({a}) that is stationary. A nonstationary solution to the multidimen-
sional kinetic equation, Eq. (2.90), is considered in Refs. [77, 78]. It is assumed
that since the stable variables ai (i �= 0) are not connected with the process of
overcoming the activation barrier, they are faster than the unstable variable,
a0. The distribution function of fragments in the unstable variable is written
then as [78]

P(a0, τ) = P(a0) + ∑
j=1

Hj(a0) exp(−jλ0τ), (2.195)

where the coefficients Hj(a0) are expressed in terms of the Hermite polynomi-
als. The stationary distribution is represented in Eq. (2.195) by the first term.
The value of jλ0 (j = 1, 2, . . .) in the exponent of the exponential function
gives the spectrum of inverse times for the establishment of the stationary
distribution, in which the dominating term is that with j = 1. In a first ap-
proximation, we have

P(a0, τ) = P(a0) + [Peq(a0) − P(a0)] exp(−λ0τ). (2.196)

After the time τl 
 λ−1
0 , supercritical fragments, irrespective of their initial

distribution, begin to form at a regular rate, J.
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The nonstationary evolution of a flux of new-phase fragments in the critical
region of the potential barrier is presented by Zeldovich [5] as

J′(τ) = J exp

[
− e0a2

+
4kBTλ0τ

]
, (2.197)

where a+ is the value of an unstable variable at the lower boundary of the
critical region. The time of relaxation, τl , of the flux, J′, to the stationary value
of J may be evaluated as the time of diffusive motion of fragments across the
critical region

τl 

e0a2

+
4kBTλ0

=
1

2λ0
. (2.198)

In the order of magnitude, this estimate of the period of nonstationarity coin-
cides with other, more rigorous approaches [91–95].

An important task in homogeneous nucleation theory is the determination
of the equilibrium distribution function of fragments with respect to the un-
stable variable. The presence of a stationary flux of nuclei deforms the distri-
bution function Peq(a0) at a0 < 0 only slightly. The factor C0 which appears
in the final result of the stationary nucleation theory (2.86) is the normaliza-
tion constant of the equilibrium distribution function in the unstable variable.
This factor cannot be expressed exclusively in terms of macroscopic charac-
teristics [61]. A correct solution to the problem of determination of the dis-
tribution function, Peq(a0), presupposes the consideration of the Gibbs grand
canonical ensemble [79, 96–98]. In the phase space of a system it is necessary
to distinguish regions pertaining to the microheterogeneous (“droplet”) states
of a substance. It is furthermore necessary to sum up the distribution func-
tion of the ensemble with respect to all states leaving only the distinguished
fragment variables free. However, such a procedure cannot be realized up to
a certain completion. Therefore, the problem is solved employing a number
of assumptions. For a qualitative evaluation of C0 it may be assumed that
this factor is proportional to the density, ρ, of the number of particles in the
metastable phase and the derivative dN/da0, where N is the number of parti-
cles in a new-phase nucleus.

The classical nucleation theory does not take into account the effects of the
possible memory of the medium. Since the mass of new-phase fragments
considerably exceeds the mass of a molecule, correlation times in the subsys-
tem of nuclei are much larger than those characterizing the adjustment of the
medium. As shown in Ref. [99], the non-Markovian dynamics can always be
presented as a Markovian process in a system with a large number of vari-
ables.

The homogeneous nucleation theory presupposes the presence of a sin-
gle source of heterophase fluctuations in the metastable system, which is the
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chaotic thermal motion. Such a mechanism of formation of viable new-phase
centers is known as homogeneous nucleation. Purely homogeneous nucle-
ation may be observed only in homogeneous systems which are not exposed
to initiating external actions and do not contain any foreign inclusions. In
practice, there are always different impurities, which may initiate the appear-
ance of new-phase nuclei. Such “impurities” in superheated liquids are dis-
solved gases, gas-saturated solid particles, and cracks in vessel walls, places
with reduced wettability, etc. Nucleation on foreign inclusions is called het-
erogeneous. Since it is impossible to create ideally pure conditions in an exper-
iment, there are always some doubts as to whether the homogeneous mecha-
nism of nucleation is realized.

For constructing a theory of heterogeneous nucleation, an approach similar
to that used in the consideration of homogeneous nucleation can be employed.
The main difficulty here is connected with the lack of data on the activity of
foreign centers and their distribution in the volume of the metastable phase.
When centers of fluctuational growth are precritical new-phase inclusions, for
instance electronic bubbles in a quantum liquid, the stationary rate of hetero-
geneous nucleation can be written as [100, 101]

Jhet 
 BPhet(a0) 
 C′B exp
[
− (W∗ −W0)

kBT

]
, (2.199)

where Phet(a0) is the distribution function of inclusions in the variable a0 and
W0 is equal to the minimum work of formation of an inclusion.

The exponential factor in Eq. (2.199) is smaller than in Eq. (2.86), and there-
fore heterogeneous nucleation manifests itself earlier than homogeneous nu-
cleation. Since ρhet � ρ and the value of the kinetic factor at heterogeneous
nucleation is limited from above by the value of B for the homogeneous nu-
cleation mechanism (in Eq. (2.199), Bhet is taken equal to B), ρhetBhet � ρB
and the rate of heterogeneous nucleation is a weaker temperature function
than that of homogeneous nucleation. At a certain superheating, ∆T = ∆T+,
the rate Jhet is equal to J, and for ∆T > ∆T+ homogeneous nucleation will be
dominant even with a comparatively small number of boiling centers in the
system. The great steepness of the temperature dependence of J as compared
to Jhet makes it possible to experimentally distinguish the effects of heteroge-
neous and homogeneous nucleation.
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3
Attainable Superheating of One-Component Liquids

3.1
Two Approaches to the Determination of the Work of Formation of a Critical
Bubble

The minimum work, W, required in order to create a fragment of a new phase
of given size in a metastable system depends on the mechanism and the condi-
tions with regard to which the process takes place. Let us consider the process
of homogeneous formation of a vapor phase in a superheated liquid at con-
stant external pressure, p′, and temperature, T. In a one-component system,
the constancy of p′ and T implies also constancy of the chemical potential,
µ′, of the liquid. The difference in the values of the Gibbs thermodynamic
potential for the initial state, which consists of a homogeneous metastable liq-
uid, and the final state, which includes a vapor bubble of radius, R, and a
metastable liquid, determines the work of formation of a certain amount of
the vapor phase via

W = ∆Φ = (p′ − p′′)V + σA + (µ′′ − µ′)N′′. (3.1)

Here, σ is the surface tension, N′′ is the number of molecules, V = 4
3 πR3, is the

volume and A = 4πR2 is the surface area of the bubble. All of these quantities
will be determined employing the surface of tension as the dividing surface.
One prime in Eq. (3.1) indicates that the respective parameter describes the
state of the liquid, whereas two primes specify the intensive state parameters
of the vapor.

The internal equilibrium of a bubble as an isolated complex is characterized
by [76]

Adσ + S′′dT − Vdp′′ + N′′dµ′′ = 0. (3.2)

Differentiation of Eq. (3.1) taking into account Eqs. (3.2) employing the condi-
tions of constancy of T, p′, µ′ and the relation N = N′ + N′′ yields

d∆Φ =
[
(p′ − p′′) + σ

dA
dV

]
dV + (µ′′ − µ′)dN′′. (3.3)
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In a thermodynamic equilibrium state, the function ∆Φ(V, N ′′) has an ex-
tremum, i.e., (d∆Φ)∗ = 0, and from Eq. (3.3) the conditions are obtained for
mechanical

p′′∗ − p′ = σ
dA
dV

∣∣∣∣∗ =
2σ

R∗
(3.4)

and diffusion

µ′′(p′′∗ , T) = µ′(p′, T) (3.5)

equilibrium of a vapor bubble in a superheated liquid.
At the extremum of ∆Φ, we obtain with Eqs. (3.4) and (3.5) the following

expression:

(d2∆Φ)∗ = σ
d2A
dV2

∣∣∣∣∗ (dV)2 + dσdA − dp′′dV + dµ′′dN′′. (3.6)

Assuming that the pressure at any time is connected with the number of par-
ticles in a bubble by the equation of state of the ideal gas, and the surface
tension at the vapor bubble/liquid interface is a function only of temperature,
Eq. (3.6) can be presented as

(d2∆Φ)∗ = −
(

2σA∗
9V2∗

+
N′′∗ kBT

V2∗

)
(dV)2 − 2

kBT
V∗

dVdN′′ + kBT
N′′ (dN′′∗ )2

= −2σA∗
9V2∗

(dV)2 +
V∗
p′′∗

(dp′′)2. (3.7)

It follows from Eq. (3.7) that in variables V and p′′, as distinct from the set of
variables V and N′′, the quadratic form d2∆Φ contains no cross terms. The
different signs of the coefficients in the squares of the differentials dV (or dR)
and dp′′ indicate that the surface of the Gibbs thermodynamic potential in the
vicinity of the extremum point is a hyperbolic paraboloid, and the extremum
point itself is a saddle point (Fig. 3.1). The line along the ridge represents a
water shed between the region of a relative (metastable) minimum and the
region containing the absolute (stable) minimum of the thermodynamic po-
tential. The line tangent to the water-shed line at the saddle point coincides
with the pressure axis and passes the thermodynamic potential surface at a
height lower than the water-shed line, i.e., the variable (p′′ − p′′∗ ) is stable.
The line along the valley going through the pass coincides with the axis of the
bubble volume. The equilibrium of a bubble within a metastable liquid with
respect to the variable (V − V∗) is unstable. The saddle point is the point of
intersection of the lines of the water shed and the path along the valley, and
also of the lines of mechanical (Eq. (3.4)) and diffusion (Eq. (3.5)) equilibrium
of a vapor bubble. The bubble in an unstable equilibrium, corresponding to
the saddle point, is the critical nucleus in the considered process of boiling.
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Fig. 3.1 The surface of the Gibbs thermodynamic potential and its
projection onto the plane (R, p′′). (1, 2): lines of mechanical and diffu-
sion equilibrium of a bubble; (3, 4): lines of spillway and water shed of
the saddle surface; A: saddle point.

Substitution of Eqs. (3.4) and (3.5) into Eq. (3.1) results in the following ex-
pression for the work of formation of a critical nucleus [1]:

W∗ = min max ∆Φ =
1
3

σA∗ =
1
2
(p′′∗ − p′)V∗ =

16πσ3

3(p′′∗ − p′)2 . (3.8)

In the range of weak metastability, (G∗ = W∗/kBT � 1), a critical nucleus
contains a large number of molecules, and the pressure and density in the criti-
cal nucleus are close to the equilibrium values of the state parameters of the co-
existing macroscopic phases. The surface tension of the critical bubble/liquid
interface may be taken in a first approximation as equal to its value at a planar
interface. Such assumption is commonly denoted as the macroscopic or cap-
illarity approximation. The difference of pressures (p′′ − p′) at small degrees
of superheating can be approximated with a good accuracy via [9]

p′′∗ − p′ = (ps − p′)
(

1 − ρ′′s
ρ′s

)
, (3.9)
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where ps is the saturation pressure at a planar interface, and ρ′s and ρ′′s are
the orthobaric densities. All the quantities in Eq. (3.8) can be experimentally
determined in this case.

Penetrating deeper into the metastable region, the radius of the surface of
tension, R∗, of the critical nucleus decreases, and the compressibility of the
liquid and the correlation radius, ξ, increase. Since the correlation length, ξ, is
directly proportional to the thickness of the interface, at a certain supersatura-
tion the appearance of totally inhomogeneous nuclei can be expected. Some
authors [56, 102] suppose that this case determines the limit of applicability
of the Gibbs method. In discussing this problem, Gibbs writes [1]: “This,
however, will cause no difficulties if we regard the inner-mass phase as the
one determined by the same relations” (Eqs. (3.4), (3.5) in the present book,
V.B.) “connecting it with the outer mass as in all other cases.” And further,
in explaining his thoughts, in a note on this paragraph, he continues: “When
applying our formulae to a microscopic ball of water in vapor, we should re-
gard the density and the pressure of the inner mass not as the actual density
or pressure at the center of the ball, but as the density of liquid water, which
has the temperature and the potential of vapor.” With such an approach to the
determination of the nucleus properties, the thermodynamic method will be
valid down to values of the work of critical cluster formation equal to W∗ = 0.

The value of the surface tension will be, in general, not equal to the respec-
tive value for an equilibrium coexistence of both phases at planar interfaces.
The conclusion about the dependence of the surface tension of a critical nu-
cleus on the radius of curvature of the separating surface follows logically
from Gibbs’ theory of capillarity. Since the value of W∗ does not depend on
the choice of the separating surface, and, as distinct from σ and R∗, may be
determined beyond the Gibbs method, Eqs. (3.4) and (3.8) may be regarded as
equations determining the function σ(R∗) [57, 103].

An approach to compute the work of formation of a critical nucleus differ-
ent from that of Gibbs was suggested by Cahn and Hilliard [58]. It does not
require the introduction of a parameter of the nucleus such as surface tension.
The Cahn–Hilliard method is based on van der Waals’ theory of capillarity [7].
In the van der Waals approach, the Helmholtz excess free energy, ∆F[ρ], of
an inhomogeneous system is expressed as a functional of the local density,
ρ(�r), and is written in the form of Eq. (2.36). For an incompressible liquid of
infinite size, the density distribution in a critical bubble is found by solving
Eq. (2.39) with the boundary conditions, Eq. (2.40). The function ρ∗(�r) cor-
responds to the saddle point of the potential barrier, ∆F[ρ], separating in the
configurational space the state of metastable equilibrium from an absolutely
stable state,

W∗ = min max ∆F[ρ]. (3.10)
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Excluding the term κ(∇ρ)2 with the help of Eq. (2.39) from Eq. (2.36), we have

W∗ = 4π

∞∫
0

{
∆ f (ρ)− 1

2
(ρ − ρ0)[µ(ρ)− µ0]

}
r2dr. (3.11)

In the vicinity of the line of phase equilibrium, the effective radius of the nu-
cleus is large compared with the thickness of the transition layer, and integra-
tion of Eq. (2.36) yields the Gibbs expression for the work of formation of a
nucleus, i.e.,

W = ∆F � 4πR2σ +
4
3

πR3(p0 − ps), (3.12)

where

4πR2σ � 4πκ

∞∫
0

(∇ρ)2r2dr, (3.13)

p0 − ps � ∆ f (ρ′, ρ′′). (3.14)

From Eqs. (3.11) and (3.12), we obtain the formula for the work of formation
of a critical nucleus, Eq. (3.8).

The Cahn–Hilliard approach requires the knowledge of the coefficient, κ,
and the density of free energy of a homogeneous system, ∆ f , in the metastable
and unstable regions. Such information may be obtained on the basis of exper-
imental data on the first- and the second-order derivatives of the thermody-
namic potential and the surface tension. Another way of finding the unknown
parameters of the functional of the Helmholtz free energy is connected with
the application of the statistical theory of the liquid state.

3.2
Boiling-Up Kinetics of Superheated Liquids

The problem of boiling-up of a superheated one-component liquid is a multi-
parameter problem of the kinetics of first-order phase transitions. Even in an
isothermal approximation, the thermodynamic state of a vapor-phase nucleus
is characterized by, at least, two macroscopic variables (see Eq. (3.7)). Taking
into account the nonisothermality of the nucleation process, the inertial forces,
the nonspherical shape of a bubble, and some other factors, the number of pa-
rameters determining the state of the bubble increases.

The stationary nucleation process in a superheated one-component liquid
was first examined by Döring [104]. It was assumed by him that the growth of
vapor bubbles is exclusively determined by the rates of evaporation and con-
densation of molecules. The condition of mechanical equilibrium, Eq. (3.4),
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was considered to be fulfilled for the whole ensemble of precritical bubbles.
A boiling-up liquid was assumed to be ideal and inertialess, and a vapor bub-
ble was characterized by only one variable, the number of molecules in the
bubble. Employing the above-mentioned approximations, an expression for
the nucleation rate was obtained. In the literature, it is known as the Döring–
Volmer formula [104–107]. The kinetic factor of the Döring–Volmer formula
takes the form (see Eq. (2.112))

B = B1 =
[

6σ

πm(3 − b)

]1/2

, (3.15)

and the factor that corrects the normalization of the equilibrium distribution
function can be written as

z0 = exp
(
− l

kBT

)
. (3.16)

In Eqs. (3.15) and (3.16), m is the molecular mass, b = 1− p′/p′′∗ = 2σ/(p′′∗R∗),
and l is the heat of evaporation per molecule.

Stranski [106, 107] supposed the introduction of the factor z0 of Eq. (3.16)
into the function of bubble size distribution by Volmer [105] to be incorrect and
suggests to take the value z0 = 1 instead. Zeldovich [5] examined cavitation in
a viscous liquid deliberately excluding processes of evaporation of molecules
into a bubble and heat relaxation from consideration. As distinct from Döring,
who regarded the evolution of bubbles that originated by means of fluctuation
as a sequence of condensation and evaporation acts of single molecules, Zel-
dovich, making use of the theory [83], presented the fluctuational growth of
precritical bubbles as a one-dimensional diffusion process in the space of their
sizes.

The most rigorous and complete solution to the problem of boiling-up of
a pure liquid was obtained by Kagan [108] who took into account all main
factors determining the bubble growth: viscous and inertial forces, the rate of
evaporation of molecules into the cavity and the rate of heat supply to the bub-
ble. As was supposed by Döring [104] and Zeldovich [5], the state of a bubble
was described by one variable, its characteristic size. Deryagin, Prokhorov,
and Tunitsky [79] analyzed the growth of precritical bubbles in a superheated
liquid as a process of their diffusion in the space of two variables, the volume,
V, and the pressure, p′′, of the vapor in a bubble. The problem was solved
without taking into account the effect of the inertial forces and heat relaxation
at the bubble–liquid interface.

Let us examine the boiling-up kinetics of a one-component liquid employ-
ing the following approximations: (i) Moderate stretching of the liquid or de-
grees of superheating which result in a sufficiently large nucleation barrier
(W∗ � kBT). (ii) Near-critical bubbles are spherically symmetric; we neglect
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inhomogeneities of pressure and temperature in them. (iii) The phase sur-
rounding a bubble is a viscous, volatile, and incompressible liquid. (iv) The
bubble itself consists of a gas which is described as an ideal gas.

As the thermodynamic variables for the description of a nucleus, we chose
its volume, V, and vapor pressure, p′′, of the gas in the bubble. These vari-
ables are the most convenient parameters as in them (or, more precisely, in the
deviations of these variables from their values for a critical nucleus) the sec-
ond differential of the work of formation of a near-critical bubble has the form
of the sum of squares (see Eq. (3.7)), i.e., it does not contain any cross terms.
Variables such as the number of molecules in a bubble and the deviation of its
pressure from the value corresponding to the conditions of mechanical equi-
librium [109] are also capable of bringing the work of bubble formation to the
form of the sum of squares.

The growth of a bubble leads to a pressure increase in the vicinity of its
wall. This additional pressure is connected with the forces of inertia, and the
work performed by the vapor against this pressure is spent for supplying ki-
netic energy to the liquid. Taking into account inertia effects in the kinetics of
boiling-up of a superheated liquid requires inclusion among the determining
variables of a nucleus a dynamic parameter, the rate of change of the bubble
volume, V̇ = (dV/dτ).

In accordance with the general approach to multiparameter nucleation (see
Section 3.8), the problem of determining the stationary rate of formation of ag-
gregates of a new phase consists of two tasks: finding a potential hypersurface
in the phase space of the parameters of a vapor bubble and determining the
generalized diffusion tensor of the bubble in this space. In order to proceed in
this direction, we introduce the dimensionless variables

x =
V − V∗

V∗
, y =

p − p′′∗
p′′∗

, v =
1

V∗
dV
dt

, t =
τ

τr
, (3.17)

where the relaxation time is chosen as the characteristic time, τr. It is the time
required to establish the equilibrium bubble growth-rate distribution. The di-
mensionless potential relief in the space of the variables (x, y, v) will be written
as [83]

Ψ(x, y, v) =
∆Φ(x, y)

kBT
+

Meff

2kBTτ2
r

v2. (3.18)

Here, ∆Φ(x, y)/kBT is the dimensionless potential of the external field,
Eq. (3.1), corresponding to the minimum work of formation of a bubble of
volume, x, with the vapor pressure, y, at a temperature, T, of the liquid, the
second term is the kinetic energy of a growing bubble, Meff is the effective
mass of a bubble in the variables (x, y, v). The potential relief, Ψ(x, y, v), has
the form of Eq. (3.18) at times τ � τr when the equilibrium bubble growth-
rate distribution is established.
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Expanding Ψ(x, y, v) into a series in powers of (x, y, v) in the vicinity of the
origin (0, 0, 0), which corresponds to the state of an unstable equilibrium in
a “bubble + liquid” system, and restricting ourselves to terms up to second-
order, we have

Ψ(x, y, v) = Ψ∗ +
1
2
(�rΨ̂�r) = G∗

(
1 − 1

3
x2 +

1
b

y2 +
1

3χ
v2

)
, (3.19)

where

χ =
2kBTG∗τ2

r
3Meff

(3.20)

is a dimensionless parameter characterizing the contribution of the internal
forces, G∗ is the dimensionless work of formation of a critical nucleus (Gibbs
number), �r(x, y, v) is the radius vector of an arbitrary point drawn from the
origin of the system of coordinates (0, 0, 0), and

Ψ̂ = 2G∗


−1

3 0 0

0 1
b 0

0 0 1
3χ

 (3.21)

is the matrix of second-order derivatives of Ψ(x, y, v) at the saddle point of the
potential surface. The first derivatives of Ψ(x, y, v) are equal to zero due to the
conditions of mechanical and diffusion equilibrium of a critical bubble, with a
zero rate of its growth at the saddle point.

The problem of determining the generalized diffusion tensor is reduced to
finding the forces acting on a nucleus and the rates of change of its parameters
under the action of these forces. The bubble radius (the bubble center is at rest)
is determined at any moment of time by

ρlRR̈ +
3
2

ρl Ṙ
2 = p′′ − p′ − 2σ

R
− 4η

Ṙ
R

, (3.22)

where ρl is the density of the liquid mass and η is the shear viscosity. The rate
of change of the number of molecules in a bubble is given by

Ṅ′′ =
παvtR2

kBT
(p′′R − p′′), (3.23)

where vt = (8kBT/πm)1/2 is the average velocity of thermal motion of vapor
molecules, α is the condensation coefficient, and p′′R is the pressure of saturated
vapor in a bubble of radius R.

With regard to bubble growth, a significant role is played by the absorption
of heat caused by the evaporation of molecules into a cavity and the result-
ing temperature decrease at the interface (the opposite situation occurs with
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respect to bubble collapse). Accounting for this process requires the inclusion
of temperature into the set of variables determining the state of a nucleus,
and the system of equations, Eqs. (3.22) and (3.23), has to be supplemented by
the nonstationary heat conduction equation. The characteristic time of bubble
growth is proportional to (R/Ṙ). The time of heat relaxation has a value of
the order of (R2/DT), where DT = Λ/ρcp is the thermal diffusivity. In the
vicinity of the saddle point of the potential barrier, the size of the bubble, R, is
a small quantity, therefore (R2/DT) � (R/Ṙ) holds, and in the heat conduc-
tion equation it is possible to omit the derivative of temperature with respect
to time, and also the term containing the temperature gradient. Thus, the heat
conduction equation is reduced to

d2T
dr2 = 0. (3.24)

The solution of this equation with the appropriate boundary conditions is

∆T =
l

4πΛ
Ṅ′′

R
, (3.25)

where ∆T is the temperature decrease at the bubble boundary.
With respect to the quantities appearing in Eqs. (3.22) and (3.23), only the

value of p′′R will be affected by a relatively small change of temperature. This
feature makes it possible not to include the temperature into the variables de-
termining the state of a nucleus, but to account for the thermal effect through
p′′R(T) as has been done by Kagan [108], i.e., by assuming the temperature to
be constant in all parameters of the problem except with respect to pressure
p′′R(T), for which

p′′R(T − ∆T) = p′′R(T) − d∆T (3.26)

holds. The value of d in Eq. (3.26) may be determined in a first approxima-
tion by the well-known temperature dependence of the pressure of saturated
vapors over a planar liquid–vapor interface. Using Eqs. (3.25) and (3.26) in
Eq. (3.23), we have

Ṅ′′ =
παvtR2

kBT(1 + δ)
[

p′′R(T) − p′′
]

, (3.27)

where

δ =
αvtlRd
4ΛkBT

. (3.28)
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A linerization of Eqs. (3.22) and (3.27) and transformation of the variable
from N′′ to p′′ yield

R̈ =
2σ

ρlR3∗
∆R +

1
ρl R∗

∆p′′ − 4η

ρl R2∗
Ṙ, (3.29)

ṗ′′ =
3αvt

4R∗(1 + δ)
∆p′′ − p′′

R∗
Ṙ. (3.30)

Let us go over further in Eq. (3.29) to dimensionless quantities (defined via
Eq. (3.17)). We then obtain

v̇ =
2στ2

r

ρlR3∗
x +

3p′′∗τ2
r

ρl R2∗
y − 4ητr

ρlR2∗
v. (3.31)

To find the effective mass of a bubble, Meff, and the value of τr, we bring
Eq. (3.31) into the form of the equation of motion in a medium with a friction
coefficient, ζ,

Meff

τ2
r

v̇ = −∂∆Φ
∂x

− ∂∆Φ
∂y

− Meff

τr
gv (3.32)

in the field of forces

−∂∆Φ
∂x

=
2
3

W∗x, −∂∆Φ
∂y

= −p′′∗V∗y = −2
b

W∗y. (3.33)

Substitution of Eq. (3.33) into Eq. (3.32) gives

v̇ =
2
3

G∗kBTτ2
r

Meff
x − 2

b
G∗kBTτ2

r
Meff

y − gτrv. (3.34)

In the absence of external forces, the first integral of Eq. (3.34) is

v = v0 exp(−gτrt), (3.35)

where v0 is the initial rate of change of the dimensionless volume of a bubble,
and t is the dimensionless time, the reference parameter which is the time of
relaxation. Thus, from Eq. (3.35) taking into account Eq. (3.31) it follows that

τr =
1
g

=
ρlR2∗
4η

. (3.36)

Comparing Eqs. (3.31) and (3.34), for Meff we arrive at the result

Meff =
4
9

πρl R
5∗, (3.37)

and substitution of Eqs. (3.36) and (3.37) into Eq. (3.20) yields

χ =
ρlσR∗

8η2 . (3.38)
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We can rewrite Eq. (3.32) as

Meff

τr

(
1
τr

dv
dx

+ g
)

v = −∂∆Φ
∂x

− ∂∆Φ
∂y

. (3.39)

The inertia term in Eq. (3.39) may be neglected if

1
τr

dv
dx

� g (3.40)

holds or in the notation employed,

χ � 1. (3.41)

After going over to dimensionless variables in Eqs. (3.29) and (3.30), the
system of equations of bubble motion in the vicinity of the saddle point of the
pass takes the form

ẋ = v, (3.42)

ẏ = −χωy − v, (3.43)

v̇ = χx +
3χ

b
y − v, (3.44)

where

ω =
3
2

αvtη

σ(1 + δ)
. (3.45)

The matrix of the generalized diffusion tensor can be obtained from the sys-
tem of equations (2.102), which in this case can be written as

DxxFx + DxyFy + DxvFv = ẋ, (3.46)

DyxFx + DyyFy + DyvFv = ẏ, (3.47)

DvxFx + DvyFy + DvvFv = v̇, (3.48)

where (Fx, Fy, Fv) are the forces directed parallel to the axes (x, y, v),

Fx = −∂Ψ
∂x

=
2
3

G∗x, Fy = −∂Ψ
∂y

= −2
b

G∗y, Fv = −∂Ψ
∂v

= −2
3

G∗
χ

v (3.49)

and the rates of change of the variables (x, y, v) are determined by the equa-
tions of motion, Eqs. (3.42)–(3.44). Setting equal the coefficients at (x, y, v) in
Eqs. (3.42)–(3.44) and Eqs. (3.46)–(3.48), we get

D̂ =
3χ

2G∗

 0 0 −1
0 1

3 bω 1
1 −1 1

 . (3.50)
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The absence of symmetry of the matrix of the generalized diffusion coeffi-
cients shows that the system under investigation is not dissipative [110]. This
property is connected with the inclusion of dynamic variables into the set of
parameters describing the state of the nucleus.

The increment of the increase of the nucleus volume, λ̃0 = ẋ/dx, is deter-
mined by the solutions of the characteristic equation, Eq. (2.101). Substitution
of Eqs. (3.21) and (3.50) into Eq. (2.101) yields the cubic equation

λ̃3 + (1 + ωχ)λ̃2 + χ

(
ω +

3 − b
b

)
λ̃ − χ2ω = 0 (3.51)

with one positive root equal to λ̃0 = λ0τr.
The kinetic factor in the expression for the stationary nucleation rate is re-

lated to the increment λ0 by Eq. (2.112), where z1 = dN′′/dV|∗ = ρ′′∗ is the
density of the vapor phase in a critical bubble. After a transition to dimen-
sionless quantities we have

B = ρ′′∗λ0R2∗
(

kBT
σ

)1/2

. (3.52)

Equation (3.52), when substituting into it the solution of Eq. (3.51) (B ≡ B2),
determines the stationary flow of nuclei in a superheated or stretched liquid
in the whole range of values of volatility, viscosity, inertia effects taking into
account the effect of heat relaxation at the boundary of a growing bubble.

Next we examine different limiting cases of nucleation. According to
Eq. (3.41) the effect of inertial forces may be neglected if the viscosity of
the liquid and the value of supersaturation are high, and the value of the
surface tension is low. In this case, the cubic equation (3.51) is reduced to the
quadratic equation

λ̃2 + χ

(
ω +

3 − b
b

)
λ̃ − χ2ω = 0. (3.53)

Substituting the solution of Eq. (3.53) into Eq. (3.52) yields B = B20 or

B =
ρ′′∗σR∗

4η

(
kBT

σ

)1/2
{
−

(
ω +

3 − b
b

)

+

[(
ω +

3 − b
b

)2

+ 4ω

]1/2}
. (3.54)

At ω � 1 and ω � 3/b, the limiting factor of bubble growth in the absence
of inertia effects is the liquid viscosity, and Eq. (3.54) is transformed into the
limiting expression

B ≡ B21 =
σ

bη

(
kBT

σ

)−1/2

. (3.55)
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The use of Eq. (3.55) in Eq. (2.112) and the choice of the normalization factor
in the form of z0 = 1 yield an expression for the nucleation rate which co-
incides with Eq. (34) derived by Kagan [108]. The corresponding expression
to (34) proposed by Deryagin, Prokhorov, and Tunitsky [79] differs from that
presented here by the factor z0 = ρ′/ρ′′∗ .

At η → 0, we obtain the case of boiling-up of a nonviscous volatile liquid.
We shall restrict ourselves to the region of states where the viscosity is low
(ω � 3/b − 1), but not to an extent that inertia effects in the liquid become
important, i.e., χ � 1. If b � 3, which corresponds to a stretching pressure
−p′ � 2p′′∗ , Eq. (3.54) is reduced then to

B ≡ B22 =
ρ′′∗σR∗(b − 3)

2ηb

(
kBT

σ

)1/2

, (3.56)

which, in the case of neglecting the term 3/b, is transformed into Eq. (3.55).
At b � 3, which corresponds to positive and limited negative values of p′,
Eq. (3.54) leads to

B ≡ B23 =
ρ′′∗R∗αvtb
4(1 + δ)

(
kBT

σ

)1/2

. (3.57)

The nucleation rate calculated with B = B23 and the factor z0 = 1, correct-
ing the equilibrium distribution function, coincides with Kagan’s formula (36)
[108] and neglecting temperature effects at the bubble boundary (δ = 0) dif-
fers from equation (39) proposed by Deryagin, Prokhorov, and Tunitsky [79]
by the factor z∗ = ρ′/ρ′′∗ .

If we assume that α = 1 and δ = 0, Eq. (3.57) yields

B ≡ B10 =
(

2σ

πm

)1/2

. (3.58)

This equation coincides with the formula of Döring–Volmer, Eq. (3.15) (b � 3).
At (3 − b)/b � 1 and δ � 1, the determining factor of bubble growth is heat
supply and

B ≡ B24 =
2ΛkBT
ldR∗

(
σ

kBT

)1/2

(3.59)

holds.
Let us now examine the boiling-up of a nonvolatile liquid in the presence of

inertial forces. In the case under consideration, we have b → ∞, ω → 0 and
Eq. (3.51) is written as follows:

λ̃2 − λ̃ − χ = 0. (3.60)
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The positive root of this equation is given by

λ̃0 = −1
2

+

√
1
4

+ χ. (3.61)

At high viscosities (χ � 1), it follows from Eq. (3.61) that λ̃0 = χ. The ex-
pression for the kinetic factor B ≡ B31 in this case coincides with that obtained
earlier (Eq. (3.55)). At low viscosities, when χ � 1, we have from Eq. (3.61)

λ̃0 = χ1/2. (3.62)

For the kinetic factor, Eq. (3.52), we then obtain

B ≡ B32 = ρ′′∗
(

2kBTR∗
ρl

)1/2

. (3.63)

Equation (3.63) corresponds to the theory of absolute reaction rates devel-
oped by Eyring [111, 112], in which the inertial motion of a nucleus in the
absence of friction results in an independence of the flow from the form of the
upper part of the potential barrier. In the limit χ → ∞ (η → 0), the result
of Eq. (3.63) is “nonphysical.” At η = 0, the kinetic factor has to be equal to
zero. The finite value of the kinetic factor at a low friction is caused by postu-
lating an equilibrium distribution of precritical new-phase nuclei. However,
such distribution is absent in the case under consideration. At χ → ∞, the
nonequilibrium region encompasses not only the critical region of the saddle
point, but also the potential well where nuclei of a new phase are formed. In
this case, Eqs. (2.112) and (3.52) are no longer valid. Now the energy is the
unstable variable and not the characteristic size of a new-phase nucleus. In
this case, nucleation theory should be developed based on a model differing
from the classical model [86–88].

3.3
Elements of the Stochastic Theory of Nucleation

Fluctuation theory treats the formation of a critical nucleus as a random pro-
cess proceeding with time in a homogeneous system. A random process is
considered to be determined if its distribution, mean, and dispersion func-
tions are known. The problem of finding the distribution function of expec-
tation times for the occurrence of the first nucleus may be solved within the
same probabilistic scheme of evolution of precritical bubbles that was used by
Volmer [105], Zeldovich [5], and Frenkel [6].

Following the theory of homogeneous random processes [72], we introduce
the transition probability

p(R, R0, r) = 〈R − R(τ)〉 . (3.64)
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Here, R(τ) is the solution of the stochastic equation of motion, Eq. (2.64) (a =
R, i = 1), where averaging is performed over all realizations of the random
force, ζ(τ). The function p(R, R0, τ) determines the probability that at the
moment, τ, the bubble radius will be equal to R if, at τ = 0, the value of R
is equal to R = R0 < R∗. In the region R < R∗, the transition probability,
p(R, R0, τ), as well as the bubble size distribution function, P(R, τ), satisfies
the one-dimensional Fokker–Planck equation,

dp
dR

=
∂

∂R

[
D

(
1

kBT
∂E
∂R

+
∂

∂R

)]
p. (3.65)

The solution of this equation may be presented as

p(R, R0, τ) =
∞

∑
i=1

Aiπi(R)Wi(τ), (3.66)

where the coefficients Ai are determined by the initial distribution p(0, R0, 0).
The eigenfunctions πi(R) which correspond to the eigenvalues λi satisfy the
condition of orthonormalization and the boundary condition πi(R∗) = 0. For
Wi(τ), we have

dWi

dτ
= −λiWi. (3.67)

If in a one-component metastable system the temperature and the pressure
are maintained constant, the eigenvalues, λi, are time independent. The con-
dition G∗ � 1 ensures the presence in the spectrum of eigenvalues of a char-
acteristic break, i.e., λ1 � λ0. This property reflects the establishment in the
liquid of a stationary bubble size distribution in a time λ−1

1 , which is much
shorter than the time of expectation of its subsequent destruction, λ−1

0 . The
time λ−1

1 is the time lag, τl. For superheated cryogenic liquids far from the crit-
ical point, we have τl � (10−9–10−8) s [113]. Characteristic expectation times
of formation of the first critical nucleus during homogeneous nucleation in
the region of moderate metastability equal seconds to hours. It means that in
Eq. (3.66) the term with i = 0 is dominant. According to the theory of stochas-
tic processes [114], the moment of initiation of the first event at sufficiently
large τ does not depend on the initial distribution p(0, R0, 0) if a stationary
regime is established. Solving Eq. (3.67) while taking into account the consid-
erations above and the condition of normalization of the transition probability,
we have

p(R, R0, τ) � exp(−λτ)π0(R). (3.68)

Here and in the subsequent discussion, λ = λ0 holds.
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The probability that within the time, τ, a bubble of radius, R0, will not reach
the critical size R = R∗ is equal to

W0(τ) =
R∗∫
0

p(R, R0, τ)dR. (3.69)

In the region R < R∗, the eigenfunction π0(R) is close to the stationary distri-
bution function, P(R), and differs from the equilibrium function, Peq(R), only
in the critical region of the activation barrier. Substitution of Eq. (3.68) into
Eq. (3.69) gives an asymptotic formula for the probability of the absence in the
liquid of a critical nucleus within the time τ in the form

W0(τ) = exp(−λτ)
R∗∫
0

π0(R)dR � exp(−λτ). (3.70)

The probability that within the time τ the bubble will reach the critical size is
(1 −W0(τ)), and the density of the probability of initiation of the first critical
nucleus is

w1(τ) = −∂W0

∂τ
= λ exp(−λτ). (3.71)

The first moment of the distribution given by Eq. (3.71) is equal to the aver-
age expectation time of a critical nucleus,

τ1 = τ̄ =
∞∫

0

λτ′ exp(−λτ′)dτ′ = λ−1. (3.72)

According to the definition of the nucleation rate and Eq. (3.72), between λ, τ̄,
J and the volume occupied by the metastable phase, V, the evident relation

τ̄ = (JV)−1 = λ−1 (3.73)

holds.
Equations (3.71) and (3.72) describe a Poissonian homogeneous stationary

process. The dispersion of expectation times of occurrence of the first critical
nucleus in the Poisson process

(τ2 − τ2
1 )1/2 =

 ∞∫
0

λτ′2 exp(−λτ′)dτ′ − τ̄2

−1/2

= λ−1 (3.74)

is equal to the average value of τ itself.
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If a superheated liquid changes its thermodynamic state steadily in time,
the parameter λ is a function of time. In this case, nucleation is described by a
nonstationary Poissonian process, and the solution of Eq. (3.67) is written as

W0(τ) = exp

− τ∫
0

λ(τ′)dτ′
 . (3.75)

The density of the probability of occurrence of the first critical nucleus is then

w1(τ) = −dW0

dτ
=

[
λ(τ)− VP(R∗)

dR∗
dτ

]
W0(τ). (3.76)

The additional term in Eq. (3.76), as compared with Eq. (3.71), is caused by
the fact that at varying supersaturation viable centers of a new phase form not
only by the mechanism of diffusive growth, but also as a result of transforma-
tion of prenuclei into nuclei with decreasing heights of the activation barrier
and critical size (athermal nucleation) [115]. Regarding the ratio of the rates
of athermal and ordinary nucleation, according to Eqs. (2.112), (3.4), (3.8), and
(3.76), one can write

Ja

J
=

3n∗σ ṗ
BR∗(ps − p′)2(1 − ρ′′s /ρ′s)2 . (3.77)

In a region of intensive nucleation of cryogenic liquids (p′ = 0.1 MPa): B �
10−10 s−1, σ � 3 mN m−1, n∗ � 200, R∗ � 4 nm [113] and the athermal
mechanism will be competitive with the ordinary one at rates of the decrease
of pressure of the order ∼ 5× 108 MPa s−1 or superheating rates ∼ 1010 K s−1.
Such huge rates of change of the state variables are not realized in experiments
on nucleation kinetics. The characteristic time of transferring a liquid into the
metastable state corresponding to these rates (∼ 5 × 10−9 s) coincides at the
order of magnitude with the time of establishment of a stationary distribution
for precritical bubbles τl, and therefore the contribution of athermal nucleation
to Eq. (3.76) may be neglected.

Let us now examine processes of isothermal expansion and isobaric heat-
ing of liquids. We shall denote the parameter that changes when entering a
metastable region (p or T) by x and assume that ẋ = dx/dτ = const. Go-
ing over in Eq. (3.75) from integration with respect to time to integration with
respect to x, we have

w1(t) =
J(x)V

ẋ
exp

− x∫
x0

J(y)V
dy
ẋ

 , (3.78)

where x0 = x(τ = 0) is the value of the parameter x at the moment of the
beginning of observations. In a region of intensive homogeneous nucleation,
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Gx = d ln J/dx � const [113] holds. In this case, for the density of the proba-
bility of formation of a critical bubble we have

w1(x) =
J(x)V

ẋ
exp

{
− [J(x)− J(x0)]V

ẋGx

}
. (3.79)

The function w1(x) has a characteristic maximum. Differentiating Eq. (3.79)
with respect to x, we obtain for the most probable value of xn

J(xn)V = ẋGx(xn). (3.80)

According to Eqs. (3.73) and (3.80), the characteristic time scale in the regime
of changing state variables with constant rates may be determined as

τ1 = ẋGx(xn). (3.81)

The halfwidth of the distribution of Eq. (3.79) does not depend on the rate of
change of the state variables and is determined by

δx1/2 =
2.44
|Gx|xn

. (3.82)

Equations (3.79) and (3.82) have been obtained in Ref. [116] in examining nu-
cleation as a Markovian discrete process. They were previously used for pro-
cessing experimental data on the kinetics of spontaneous crystallization of su-
percooled liquids [117].

3.4
Experimental Procedures in the Analysis of Boiling in Superheated Liquids

The kinetics of nucleation in superheated liquids is studied both under fixed
conditions with respect to the state of the ambient phase and in the regime of
changing state variables, where the change proceeds with a constant rate. A
liquid may be brought to predetermined values of p and T in a metastable re-
gion in different ways (Fig. 3.2). In isobaric heating, the degree of metastability
of the liquid is characterized by the degree of superheating, ∆T = T − Ts(p).
The temperature of attainable (limiting) superheating, Tn, is interpreted as the tem-
perature where boiling occurs with a rate corresponding to the value of the nu-
cleation rate registered in the experiment. According to Eq. (3.80), the value
of J depends on the volume, V, of the superheated liquid and the heating rate,
Ṫ. By varying the values of V and Ṫ in the experiment, the dependence J(T)
can be determined.

Among all possible pathes of transferring a liquid into the metastable state,
those with the lowest sluggishness are preferred. In this respect, a decrease
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Fig. 3.2 Different ways of transferring liquids to a predetermined
metastable state. 1: isobaric; 2: isothermal; 3: isochoric.

in the pressure on the liquid is favored as compared with its isobaric heating.
The depth of penetration into a metastable region at T = const is determined
by the value of the tensile stretch, ∆p = ps(T) − p. In an isochoric process,
penetration into a metastable region is connected with the cooling of a liq-
uid. The degree of metastability is determined here as δT = Ts(ρ) − T or
δp = ps(ρ) − p. Owing to the large value of the derivative (∂p/∂T)p, the in-
equality ∆T > δT holds. The isochoric process of transferring a liquid into
the metastable state has some advantages over the isobaric one. In the vicinity
of the critical point, δT determines the scaling value of supersaturation (see
Chapter 5).

Experimental investigations of the kinetics of stationary nucleation presup-
pose the determination of the nucleation rate, J, as a function of temperature
and pressure. Information on the nucleation rate may be obtained from data
on the distribution functions for the moments of formation of the first critical
nucleus. It requires repeated experiments on one sample or measurements
with a system of equivalent samples. As in the Poissonian process, the mean-
square error of determining the average time of expectation, τ̄, and, conse-
quently, J, in a series of N measurements is

στ̄ =
τ̄

N1/2 . (3.83)

In order to get values στ̄ = 0.1τ̄, it is necessary to have N � 100 [9].
In an experiment, it is commonly difficult to detect the formation of the

first critical nucleus. By this reason, not the moment of formation of a critical
nucleus is usually registered but one or another manifestation of the result of
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formation in the system of a viable center of a new phase (liquid boiling-up,
the amount of the vapor phase at a certain moment, etc.). The phase-transition
process includes the formation of vapor-phase centers and their subsequent
growth. High growth rates of vapor bubbles in highly superheated liquids
make it possible to realize conditions in which the average expectation time
of occurrence of a viable center, τ̄, will considerably exceed the characteristic
time of decay of the metastable phase, τg. Thus the characteristic time of decay
of one cubic centimeter of liquid argon superheated at atmospheric pressure
by ∆Tn � 44 K after the formation of a critical bubble does not exceed 10−4 s,
which makes it possible to determine the time of formation of a critical nucleus
by the moment of boiling-up of the sample under investigation.

As the critical point is approached, owing to the inhibition of heat-transfer
processes, the growth rate of the bubbles decreases considerably, and at a cer-
tain distance from the critical point the inequality τ̄ � τg may be violated.
Liquid boiling-up will lose its explosive character, and the characteristic sig-
nal of a phase transition will then be the volume fraction of the vapor phase, η,
at the moment, τ. Under conditions of constant pressure, p, and temperature,
T, the dependence η(τ) is determined by Kolmogorov’s formula [118]

η(τ) = 1 − exp

− τ∫
0

J(τ′)V(τ − τ′)dτ′
 , (3.84)

where V(τ − τ′) is the volume of the bubble formed at the moment τ′ at
time τ. Possessing experimental data on η(τ), information on the nucleation
rate can be obtained from Eq. (3.84).

Experimental methods of studying the kinetics of spontaneous boiling-up
of superheated liquids are subdivided into quasistatic and dynamic methods.
Quasistatic experiments are conducted at relatively low rates of change of
state variables. The characteristic feature of such experiments is the fulfill-
ment of conditions of homogeneous nucleation in preparing an experiment,
but not in its course. Practice shows [113,119] that superheated liquids are not
critical to the presence of small quantities of dissolved gases and solid parti-
cles. A more considerable effect on the liquid limiting superheating may be
exerted by the conditions on the walls of a measuring cell. Good wettabil-
ity and low roughness are the main requirements in choosing a material for a
measuring cell. Glasses fulfill these requirements to a large degree. Indeed,
employing glass capillaries in their experiments, Wismer [119], and Kenrick,
Gilbert, and Wismer [120] obtained the first reproducible data on the attain-
able superheating for a number of organic liquids. The setup of Wismer et
al. was a prototype for further developments of more informative quasistatic
methods of studying the kinetics of nucleation [9, 10, 121]. In a number of
cases a good wettability of glass and other solid materials by cryogenic liq-
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uids is close to complete; a low content of dissolved gases and solid particles
in them distinguish these systems as the most convenient objects for studying
the kinetics of spontaneous nucleation.

Dynamic methods do not require “purity” of a system. A liquid is super-
heated to the temperature of homogeneous nucleation as a result of organiz-
ing a powerful heat release which considerably exceeds the heat sink into the
evaporation centers (shock boiling-up regime) [9, 11]. The required heating
rates are evaluated from the inequality [10](

1
πΩ̃d〈ϕd〉

)1/dα Ṫ
T∗ − Ts

� 1, (3.85)

where Ω̃d is the effective bulk (d = 3) or surface (d = 2) density of heteroge-
neous nucleation centers, and T∗ is the temperature of intensive homogeneous
nucleation. If bubble growth is limited by heat supply (R = ϕτα, α = 1/2), the
value of ϕd averaged on the interval Ts, T(τ) is equal to

〈
ϕd

〉
=

3
2τd/2

τ∫
0

ϕdτ′(d/2−1)dτ′. (3.86)

The quantity Ω̃d presupposes a replacement of the action of centers of all
sizes by the action of a certain effective number of centers where bubble
growth begins immediately after passing the saturation temperature, Ts. In-
formation on the bulk and the surface density of centers is extremely limited.
With Ω̃d=3 = Ω̃V � 1010 m−3 in high-temperature organic liquids, the shock
boiling-up regime is realized at heating rates Ṫ > 106 K s−1 [10]. Owing
to lower superheating values, in cryogenic liquids the conditions of intensive
fluctuation nucleation will be achieved at lower values of Ṫ. At the same ef-
fective density of boiling centers, heating rates for liquid argon are to be about
∼ 104 K s−1, for liquid helium not less than 10 K s−1. Taking into account
the purity of cryogenic liquids and the good wettability of solid materials by
them, the expected values of Ω̃d in liquefied gases will be smaller than those
in high-temperature liquids. This feature is also bound to decrease the char-
acteristic values of the rate of realization of the shock boiling-up regime.

In studying the kinetics of nucleation in superheated cryogenic and low-
boiling liquids, methods of continuous isobaric heating [121–124], floating-up
droplets [125–127], determination of the average lifetime [113, 128, 129] (qua-
sistatic methods) and the method of pulsed heat transfer [130–132] (dynamic
method) were employed.
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3.5
Quasistatic Methods of Investigating Limiting Superheatings of Liquids

The method of continuous isobaric heating was first used for studying the
nucleation kinetics in condensed inert gases [121–123]. In this method, a liquid
is superheated in the lower part of a glass capillary where a constant pressure
is maintained. The distribution of events of liquid boiling-up in dependence
on temperature is found, and the temperature of attainable superheating and
the nucleation rate are determined at given values of pressure and heating
rate.
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Fig. 3.3 Schematic diagram of a setup for determination of the tem-
perature of attainable superheating for hydrogen by the method of
continuous heating [133].

The schema of the measuring device for determining the attainable super-
heating temperature for liquid hydrogen is given in Fig. 3.3 [133]. The capil-
lary (7) is filled with hydrogen on a special stand at the temperature of liquid
helium and soldered. The inner diameter of the capillary is of the order of
∼ 1 mm, and the outer one is of the order of ∼ 2 mm. The compensation
reservoir (2) prevents the capillary from rupture when hydrogen contained
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in it is heated to room temperatures. The pressure in the capillary is created
and maintained by thermostating (±0.005 K) the liquid vapor interface in an
aluminium unit (5). The temperature in the unit is measured by a platinum
resistance thermometer (6) (± 0.02 K). The part of the liquid (V � 20 mm3) in
the unit (8) is superheated. In order to decrease convection and heat supply
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Fig. 3.4 Histogram of experiments on the superheating of methane
[113]: p = 1.83 MPa; Ts = 174.0 K; N = 80; Ṫ = 1.0 K s−1. The
smooth curve shows the results of calculations employing Eq. (3.87).

in the capillary, the superheated volume is separated from the section of pres-
sure creation by a construction on the capillary. The moment of boiling-up
is registered by the ejection of the liquid from the superheated volume. For
this purpose, unit (5) has a longitudinal through window, and the glass De-
war flask (4) unsilvered vertical strips. The measuring device is suspended on
capron threads (1) in a glass vacuum chamber. For fast cooling of unit (8), a
thermal switch (10) is used. In experiments on hydrogen, a manganin resis-
tance thermometer (9) was employed as a temperature-sensitive element. The
temperature of superheating of the liquid in other variants of the setup was
registered with copper–constantan [121–123] and gold–cobalt–copper thermo-
couples [124,134,135]. The error of temperature determination, depending on
the substance under investigation and the sensing element employed, was
±(0.03–0.5) K.

In an experiment (with p = const., Ṫ = const.), 30–50 values of the boiling-
up temperature are measured, and a histogram is constructed for the distribu-
tion of events of boiling-up, n, per temperature interval (T, T + ∆T) in a series
of N measurements. The characteristic shape of the histograms is shown in
Fig. 3.4. On the basis of the histogram, we can determine the temperature of



84 3 Attainable Superheating of One-Component Liquids

attainable superheating, Tn, as the most probable boiling-up temperature, the
derivative GT from the distribution halfwidth, according to Eq. (3.82), and the
nucleation rate, J, by Eq. (3.80). The smooth curve in Fig. 3.4 was calculated
by

n =
(

N JV
Ṫ

)
∆T exp

(
− JV

GTṪ

)
. (3.87)

In different variants of the device described above, the heating rates varied
from 0.01 K s−1 to 3 K s−1, and the amount of the superheated liquid volume
was equal to 0.02–0.2 cm3. The values of nucleation rates registered in the ex-
periment are 107–1013 m−3 s−1. The experimental procedure and the methods
of processing experimental data are described in detail in Ref. [123].

The method of floating-up drops was developed by Wakeshima and Takata
[136], Moor [137], Skripov et al. [9,10,138], and Blander et al. [125,127]. Liquid
drops float up in a vertical column of another, background liquid which does
not interact chemically with the liquid under investigation, and has higher
values of surface tension, density, and boiling temperature, but a lower freez-
ing temperature than the boiling temperature of the substance under investi-
gation. A stationary temperature gradient is created in the background liquid
with the help of a system of heaters. When rising, a drop of the liquid under
investigation is superheated and evaporates explosively at a certain height.
The temperature of the medium at the site of the drop explosion is taken as
the boiling-up temperature.

Figure 3.5 represents the schema of the device used in investigating the at-
tainable superheating of low-boiling liquids [127]. The working section of the
setup is a glass tube (4) filled with a background liquid. If the temperature
of normal boiling, Ts, of the substance under investigation is not lower than
210 K, water eutectics of ethylene glycol are used as a background liquid, at
Ts ≥ 190 K, water solutions of lithium chloride, and at Ts ≥ 173 K, water
eutectics of ammonia. The temperature gradient (from 0.03 to 10 K cm−1)
along the length of the working section is created by pumping a glycol/water
solution through the internal jacket (3). The temperature of the solution is pre-
determined and maintained by an external thermostat. The vacuum jacket (2)
serves as a heat insulator. Emulsification of the liquid under study, injected
through the tube (5), takes place in the chamber (7) by a mixer. The emulsion
temperature is controlled by a thermocouple (9). An emulsifying agent (7)
is placed in a Dewar flask (8) with acetone and cooled by pumping nitrogen
vapors. Drops 0.1–1 mm in diameter enter the working section through a con-
necting capillary (6) and float up in the background liquid. The temperature
at the site of explosion of drops is measured by two thermocouples (1) located
in such a way that one of them is below and the other above the place where
up to 95% of all floating-up drops evaporate. The average value of the data
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supplied by the thermocouples is taken as the temperature of attainable super-
heating. At characteristic heating rates of 0.03–50 K s−1 and drop volumes of
10−7–10−4 cm3, the effective values of nucleation rates are 103–1014 m−3 s−1.
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Fig. 3.5 Schematic diagram of a setup determining attainable super-
heating temperatures of low-temperature boiling liquids by the method
of floating-up drops [127].

The advantage of the discussed method is the “purity” of the liquid–liquid
interface. However, the absence of appropriate liquid media with freezing
temperatures lower than 170 K makes it impossible to use it for studying
limiting superheatings of cryogenic liquids. Besides, this method has a com-
paratively large error of determining the temperature of attainable superheat-
ings, which for the most low-temperature boiling of the investigated liquids,
ethane, is ± 1 K. The halfwidth of the distribution of boiling-up events in
temperature for this substance is less than 0.5 K. The method of floating-up
drops has been used for finding the pressure dependence of Tn, and also for
measuring the lifetime of superheated liquids [9, 10, 138].



86 3 Attainable Superheating of One-Component Liquids

6

8

9

7

5
4

3

2

1

Fig. 3.6 Schematic diagram of a setup for measuring lifetimes of su-
perheated cryogenic liquids [129].

Measuring the lifetimes of a superheated liquid: The first systematic in-
vestigations of nucleation kinetics in superheated liquids through the determi-
nation of the mean lifetime were made by Sinitsyn and Skripov [139]. Experi-
ments were conducted on liquid hydrocarbons. Penetration into a metastable
region was realized by pressure release to a thermostated liquid. The lifetime,
τ, of a liquid in the metastable state was determined, and the average value of
τ was found at given values of p and T. This average value is connected with
the nucleation rate, J, by Eq. (3.73)

Figure 3.6 shows the schema of the measuring device of a setup for study-
ing the attainable superheating of cryogenic liquids [129]. The liquid under
investigation is superheated in a glass capillary (3) with an inner diameter of
∼ 1 mm and an outer diameter of ∼ 6 mm. The liquid has a working volume
of V � 60 mm3. The capillary is thermostated in a copper unit (2). The tem-
perature is measured (±0.02 K) by a platinum resistance thermometer (1). By
means of a Kovar–glass junction the capillary is connected to the chamber of
the bellows (4). The pressure is created by compressed helium and through
the bellows is passed to the liquid under investigation. The bellows (4), the
low-temperature valve (7) are thermostated in a massive copper unit (6) at a
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temperature close to the temperature of normal boiling of the liquid being in-
vestigated. The operating chamber of the setup is mounted in a vacuum jacket
(8) made of stainless steel. Cooling is realized with liquid nitrogen poured into
a metal Dewar flask (9). Pressure release and supply are realized with the help
of a system of electromagnetic valves. In order to decrease the effect of adi-
abatic cooling during pressure release, a two-step transfer of a liquid to the
predetermined state in the metastable region is used: release to the pressure
p1 (p < p1 < ps(T)), delay, the final release to the pressure p, at which τ is
measured.
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Fig. 3.7 Histogram of experiments on the superheating of argon [128]:
p = 1.4 MPa; T = 135.3 K; N = 147; τ̄ = 0.75 s. The smooth curve
shows results of calculations by Eq. (3.88).

The measurements of the lifetime of a superheated liquid begin from the
moment of establishing the lower pressure, p. Boiling-up is registered by a
water hammer. Its action results in touching of the bottom of the bellows to
the electric contact (5). Under given conditions of temperature and pressure,
from 50 to 150 values of the expectation times of boiling-up, τ, are registered
in order to realize the required accuracy, and the mean lifetime, τ̄ = ∑ τi/N, is
determined. The density of probability of formation of the first critical nucleus
may be found as the ratio of the number of boiling-ups, n, at the time interval
τ, τ + ∆τ to the total number of tests

n = Nτ̄−1∆τ exp
(
−τ

τ̄

)
. (3.88)

In Fig. 3.7, an experimental histogram is compared with the results of calcu-
lating n(τ) by Eq. (3.88). Experiments [128,129,140–142] trace the temperature
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and pressure dependence of the mean lifetime of superheated liquefied gases
with τ varying from 0.1 s to 30–40 min, which corresponds to the interval of
nucleation rates 104–108 m−3 s−1. The error of determining the temperature
of attainable superheating by this method is estimated as ±(0.06–0.2) K.

3.6
Dynamic Methods of Investigating Explosive Boiling-Up of Liquids

The method of pulse heating of a liquid on thin platinum wires in conditions
of the shock boiling-up regime has been suggested by Pavlov and Skripov
[9–11]. A platinum wire immersed in the liquid under investigation serves
simultaneously as a heater and a resistance thermometer. The wire is heated
by a current pulse. The moment of the beginning of the explosive boiling-
up of the liquid is connected with an abrupt change in the resistance of the
wire. This method was used in studying the attainable superheating of high-
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Fig. 3.8 Schematic diagram of the measuring chamber of a setup for
pulse helium superheating on a bismuth monocrystal.

temperature organic liquids and water. Since the values of the superheating
of cryogenic liquids are some orders of magnitude smaller than those of high-
temperature organic liquids, and the electrical resistance of platinum, other
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metals and alloys become extremely low at the temperatures of liquid helium,
platinum wires prove to be inefficient sensors in low-temperature regions.

In Refs. [130–132], it is suggested to use a bismuth monocrystal as a ther-
mometer heater for investigating limiting superheatings of helium isotopes.
The electrical resistance of bismuth in magnetic fields increases by several or-
ders making it possible to achieve a sensitivity S = 1/RB(dRB/dT) in the
range (1.7–5.2 K) from 0.1 to 0.25 K−1. A bismuth thermometer-heater pos-
sesses a small time constant (less than 100 µs) and a low resistance (the tem-
perature difference between the crystal surface and liquid helium that is in
contact with it does not exceed 20 mK). The total error of measurement of
temperatures with a bismuth resistance thermometer, according to the evalu-
ations of the authors of Ref. [130], is equal to ± 10 mK.

The schema of the operating chamber of a setup for investigating the attain-
able superheating of liquid helium is shown in Fig. 3.8. A bismuth monocrys-
tal (1) in the form of a rectangular parallelepiped which is 6 cm high, 5 mm
wide, and 1.5 mm thick with polished surfaces is fixed in a holder (3). Poten-
tial leads (2) of a copper wire, 0.05 mm in diameter, are fixed at the center of
the crystal by the method of spot welding. Thicker current wires (3) are sol-
dered to the ends of the crystal. The holder with the crystal is mounted in the
stem of a glass Dewar flask (4) with liquid helium, which is located between
the poles of an electromagnet (6). The direction of the magnetic field with re-
spect to the crystal may be changed by turning the magnet. The magnetic-field
induction is equal to 1–1.5 T.

In an experiment, the monocrystal temperature is registered as a function
of time with an electronic circuit at several values of the supplied power, qA.
The moment of helium boiling-up manifests itself as a characteristic break
on the thermogram (Fig. 3.9). The supplied power, calculated per unit of
the monocrystal surface, varies from 5 to 430 mW cm−2, which corresponds
to rates of liquid helium heating of 2–1700 K s−1. At qA > 30 mW cm−2

(Ṫ > 15 K s−1), the temperature of helium boiling-up does not depend on
the value of the supplied power. The dashed lines in Fig. 3.9 show the results
of calculating the dependences T(τ) under the assumption that the whole heat
transfer from the surface of the thermometer-heater into liquid helium is re-
alized only by thermal conductivity. The error of determining the tempera-
ture of attainable superheating for liquid 4He by data from Refs. [131, 132] is
±0.02 K.

Let us now evaluate the nucleation rates realized in these experiments. In
the approximation of free growth for the number of nuclei formed in the time
τ in the near-surface layer of a liquid of volume Ax where A is the area of the
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Fig. 3.9 Thermograms of experiments on the superheating of 4He at
atmospheric pressure on a bismuth monocrystal. The power supplied
per unit surface area of a monocrystal is: 1: 5; 2: 9; 3: 15; 4: 29; 5: 41;
6: 72 mW cm−2.

crystal surface, one can write

i =
τ∫

0

x∫
0

JAdxdτ′. (3.89)

Assuming the heating rate, Ṫ, to be constant and expanding the exponent in
the expression for the nucleation rate, Eq. (2.112), into a series in the vicinity
of x = 0, τ′ = τ [9], we get

G[T(τ′, x)] = G[T(τ, 0)] + GT

(
∂T
∂τ′

)
x=0,τ′=τ

(τ′ − τ) (3.90)

+ GT

(
∂T
∂x

)
x=0,τ′=τ

x + · · · ,

and after substitution of Eq. (3.90) into Eq. (3.89) we obtain

J � i
A

G2
TṪ

(
∂T
∂x

)
x=0,τ′=τ

. (3.91)

In calculating the integral (3.89), the Laplace asymptotic method [143] was
applied. Most of the bubbles are formed in the boundary liquid layer of
thickness δ � (DTτ)1/2 adjacent to the heating surface where DT is the ther-
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mal diffusivity. Since the bubble radius is about the thickness of the super-
heated layer, R(τ) � δ, determining the area of the monocrystal surface oc-
cupied by the vapor phase as A(τ) = πR2(τ) and using the approximation
∂T/∂x � (Tn − Ts)/δ, from Eq. (3.91) we have

J � A(τ)
A

G2
TṪ5/2

4πDT
3/2(Tn − Ts)1/2

. (3.92)

For liquid helium at p � 0.1 MPa, Ṫ � 35–200) K s−1, Tn − Ts � 0.35 K
and GT � 650 K−1. Assuming that the boiling-up signal corresponds to
η = A(τ)/A � 0.1, from Eq. (3.92), we obtain J = (1016–1021) m−3 s−1. The
authors of Refs. [131, 132] compare their experimental data on the attainable
superheating of liquid helium with the theory of homogeneous nucleation at
J = 107 m−3 s−1.

3.7
Results of Experiments on Classical Liquids

This section presents the results of experimental investigations of the attain-
able superheating of cryogenic and low-boiling liquids, with respect to which
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Fig. 3.10 The line of attainable superheating Tn, of the spinodal, Tsp,
and the binodal, Ts, of xenon (a), krypton (b), argon (c), methane (d),
oxygen (e), nitrogen (f). 1: method of measuring the lifetime (J =
107 m−3 s−1); 2: method of continuous heating (J = 1011 m−3 s−1)
[121,122,128,140–142,145,146].
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the influence of quantum effects on the thermodynamic properties may be
neglected. The first experiments in the cryogenic range of temperatures were
made on liquid argon [121,128]. Subsequent papers [122,123,140–142,144–146]
investigated the limiting superheats of liquid nitrogen, oxygen, methane,
xenon, and krypton. Experimental data have been obtained in a wide pressure
range by the methods of continuous isobaric heating and measuring the life-
time. At atmospheric pressure, the attainable superheating of liquid nitrogen
and oxygen was also investigated by Nishigaki and Saji [124]. The results of
this work agree within 0.3 K with the results of earlier investigations [140,142].

Tab. 3.1: Temperature of attainable superheating, Tn, of pure liquids at atmospheric pressure
(except for 3He) and nucleation rate, J, in m−3 s−1. PM: pulse method; CH: method of contin-
uous isobaric heating; LT: method of measuring the lifetime; FD: method of floating-up drops;
(+): data refer to the pressure p = 0.0135 MPa; (*): calculation by Eqs. (2.112), (3.52) and
z0 = 1 with the use of surface tension values from Refs. [153–161] obtained on samples of the
liquid from the lots on which the attainable superheating was investigated. All the remaining
theoretical values of Tn have been calculated by Eqs. (2.112), (3.15) with z0 = 1.

Substance Ts (K) lg J Tn (K) Method Reference

Experiment Theory

Helium (3He) 1.81 20 2.46 2.50+ PM [149]

Helium (4He) 4.21 20 4.55 4.56 PM [132]

4.21 7 4.45 4.50 CH [135]

4.21 6 4.58 4.50 LT [150]

Neon (Ne) 27.09 11 38.0 38.64∗ CH [100]

27.20 7 38.0 38.40 CH [134]

Argon (Ar) 87.29 8 130.5 131.0∗ LT [128]

87.29 11 130.8 131.5∗ CH [121]

Krypton (Kr) 119.78 7 181.0 182.0 LT [145]

119.78 11 181.5 182.7∗ CH [122]

Xenon (Xe) 165.03 7 250.6 252.0∗ LT [145]

165.03 11 251.9 253.3∗ CH [122]

Hydrogen 20.38 11 27.8 28.05∗ CH [133]

(nH2) 20.4 7 28.1 28.06∗ CH [134]

Nitrogen 77.35 7 109.7 110.3∗ LT [142]

(N2) 77.35 11 109.9 110.7∗ CH [146]

77.3 7 110.0 109.8 CH [124]

77.35 17 110.3 111.1 PM [147]

Oxygen 90.19 7 134.0 134.8∗ LT [140]

(O2) 90.19 11 134.2 135.3∗ CH [146]

90.1 7 134.1 134.2 CH [124]

Chlorine (Cl2) 8 366.5 367.8 LT [151]

Methane 111.66 7 165.1 166.0∗ LT [141]

(CH4) 111.66 11 166.0 166.6∗ CH [146]

Ethane 184.95 7 267.4 LT [152]

(C2H6) 185.0 12 269.2 269.7 FD [127]
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Tab. 3.1: (continued)

Substance Ts (K) lg J Tn (K) Method Reference

Experiment Theory

Propane 231.1 7 327.2 327.4∗ LT [148]

(C3H8) 231.1 12 326.2 328.5 FD [127]

231.1 12 329.2 FD [126]

Isobutane 261.3 7 361.2 361.7∗ LT [148]

(iC4H10) 261.4 12 361.0 360.9 FD [127]

261.5 12 359.2 FD [126]

n-Butane 272.7 12 378.4 378.6 FD [125]

(nC4H10) 272.7 12 376.9 378.3 FD [127]

Sulphur dioxide 263.2 12 323.2 CH [120]

(CS2)

Propadiene 238.7 12 346.2 FD [125]

(C3H4)

Propene 249.9 12 356.8 FD [125]

(C3H4)

Propylene 225.5 12 325.6 323.5 FD [125]

(C3H6)

Cyclopropane 240.3 12 350.7 FD [125]

(C3H6)

2-Methilpropane 266.3 12 369.6 372.5 FD [125]

(C4H6)

1-Butene 266.9 12 371.0 373.4 FD [125]

(C4H6)

1,3-Butadiene 268.8 12 377.3 FD [125]

(C4H6)

Chloromethane 249.0 12 366.2 FD [125]

(CH3Cl)

Cloroethilene 259.3 12 374.1 FD [125]

(C2H3Cl)

Fluoroethilene 201.0 12 290.1 FD [125]

(C2H3F)

1,1-Difluoro- 248.5 12 343.6 FD [125]

ethane (C2H4F2)

Difluorocloro- 232.4 12 232.4 FD [125]

methane

(CHF2Cl)

Sinha, Brodie, and Semura [147] measured superheating temperatures of
liquid nitrogen by the method of pulse heating on metal wires. It is noted that
the degree of superheating did not depend (±0.3 K) on the length of the wire,
its positioning (vertical, horizontal), and the material employed (platinum,
constantan, manganin). The main data array has been obtained on platinum
wires which were 30.9 mm in length and 0.1 mm in diameter. The authors of
Ref. [147] estimate the effective value of the nucleation rate as 1012 m−3 s−1.
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Calculations with Eq. (3.92) give (1018–1020) m−3 s−1. When reduced to the
same value of the nucleation rate, the results of Refs. [142] and [147] agree
within ± 0.2 K.

In contrast to ordinary fluids, cryogenic liquids have a considerably smaller
value of the attainable superheating, ∆Tn = Tn − Ts. If at atmospheric pres-
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Fig. 3.11 Nucleation rate in superheated liquid argon (a) [128] (1: p
= 0.19 MPa; 2: 0.36; 3: 0.81; 4: 1.10; 5: 1.40), krypton (b) [145] (1:
p = 0.40 MPa; 2: 1.00; 3: 1.60; 4: 2.20), and xenon (c) [145] (1: p =
0.24 MPa; 2: 0.55; 3: 0.99; 4: 1.48; 5: 1.98). Dashed lines show results
of calculation by Eqs. (2.112), (3.15) and z0 = 1; thin solid lines by
Eqs. (2.112), (3.52) and z0 = 1; dashed-dotted lines by Eqs. (2.112),
(3.52) and z0 = ρ′/ρ′′∗ . In all cases, the work W∗ is determined em-
ploying the capillarity approximation, σ = σ∞.

sure the limiting superheating of water is estimated as 205 K [10], for propane
we have ∆Tn � 96 K [148], and for liquid nitrogen ∆Tn � 23 K [142]. The
differences are caused by a relatively weak molecular interaction in cryogenic
liquids. This feature also manifests itself in a low value of the surface tension,
low values of the critical temperature and the heat of evaporation.

The results of experiments on the determination of the temperatures of
attainable superheat for cryogenic liquids and liquids with normal boiling
temperatures lower than 273 K (at atmospheric pressure) are presented in
Table 3.1. There, the effective values of the nucleation rate are also given.
Figure 3.10 shows temperatures of attainable superheating for liquefied gases
obtained by the methods of continuous isobaric heating and measuring the
lifetime. The results of these experiments refer to different values of the nu-
cleation rate. The value of the attainable superheating decreases with increas-
ing pressure vanishing at the critical point. A similar pressure dependence is
found for the spinodal. At atmospheric pressure, the spinodal point of liquid
argon is 5.8 K higher than the maximum superheating experimentally regis-
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tered. The limits of essential instability for one-component liquids presented
in Fig. 3.10 have been approximated by the results of (p, ρ, T)-measurements
in the region of metastable states [52].

Tab. 3.2 Experimental and theoretical values of the attainable superheating temperature for
one-component liquids at different pressures and a fixed nucleation rate. For superheated
liquid 3He, 4He, and Cl2, the theoretical values have been calculated by Eqs. (2.112), (3.15)
and z0 = 1. The temperatures of attainable superheating for the remaining liquids have been
determined from Eqs. (2.112), (3.52) and z0 = 1 by the data on σ∞ from Refs. [153–161].

p, MPa Tn, K p, MPa Tn, K

Exp. Theory Exp. Theory

Helium-3 [149] 0.510 39.1 39.44

J = 1014 m−3 s−1 0.687 39.5 39.80

0.833 39.9 40.09

0.00507 2.387 2.439 0.983 40.3 40.41

0.0135 2.460 2.504 1.099 40.5 40.65

0.0199 2.536 2.553 1.203 40.7 40.88

0.0280 2.605 2.616 1.285 41.0 41.06

0.0380 2.683 2.695 1.444 41.4 41.40

0.0501 2.767 2.792 1.451 41.3 41.42

0.0645 2.900 2.908 1.592 41.7 41.74

Helium-4 [132] Argon [128]

J = 1020 m−3 s−1 J = 105 m−3 s−1

0.0374 4.22 4.23 0.19 130.9 131.46

0.0540 4.31 4.31 0.36 131.5 132.06

0.0667 4.37 4.38 0.81 133.3 133.67

0.0801 4.45 4.46 1.10 134.4 134.73

0.1008 4.55 4.56 1.40 135.4 135.84

Helium-4 [64] Argon [121]

J = 107 m−3 s−1 J = 1011 m−3 s−1

0.0374 4.22 4.23 0.10 130.8 131.5

0.0540 4.31 4.31 0.26 131.5 132.1

0.0667 4.37 4.38 0.41 131.9 132.6

0.0801 4.45 4.46 0.60 132.8 133.2

0.1008 4.55 4.56 0.81 133.7 134.0

1.15 135.1 135.2

Neon [100] 1.42 136.0 136.2

J = 1011 m−3 s−1 1.72 137.1 137.3

2.14 138.6 138.9

0.131 37.9 38.70 2.45 139.5 140.2

0.351 38.7 39.13 2.71 141.3 141.1

Continued on the next page
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p, MPa Tn, K p, MPa Tn, K

Exp. Theory Exp. Theory

Krypton [145] 0.83 256.3 256.9

J = 107 m−3 s−1 0.99 256.2 257.8

1.07 257.2 258.2

0.40 182.40 183.35 1.26 258.2 259.3

1.00 185.24 186.00 1.47 259.6 260.6

1.60 188.10 188.73 1.55 260.3 261.0

2.20 191.11 191.56 1.68 261.0 261.8

1.75 261.6 261.2

Krypton [122] 1.86 261.9 262.9

J = 1011 m−3 s−1 1.97 262.8 263.5

2.07 263.4 264.2

0.40 182.5 184.0 2.17 263.8 264.7

0.82 184.3 185.8 2.37 265.2 265.9

1.20 187.0 187.5 2.48 266.1 266.6

1.41 187.6 188.4 2.63 266.9 267.6

1.63 189.1 189.4 2.75 267.5 268.3

1.90 189.9 190.5 2.85 267.8 268.8

2.20 192.1 191.9 2.97 269.1 269.6

2.43 192.9 193.0 3.05 269.7 270.2

2.80 194.8 194.9 3.13 270 270.6

3.14 196.6 196.5 3.45 272 272.7

3.46 198.0 198.1 3.63 273 273.9

3.80 199.4 199.8

Xenon [145] Hydrogen [133]

J = 107 m−3 s−1 J = 1011 m−3 s−1

0.143 28.1 28.21

0.24 251.41 252.78 0.195 28.2 28.41

0.55 253.34 254.53 0.200 28.5 28.43

0.99 256.06 257.06 0.270 28.6 28.69

1.48 259.03 259.95 0.325 28.7 28.90

1.98 262.18 262.98 0.412 29.1 29.24

0.480 29.4 29.51

Xenon [122] 0.568 29.9 29.86

J = 1011 m−3 s−1 0.655 30.1 30.22

0.660 30.2 30.24

0.50 254.1 255.0 0.760 30.8 30.66

Continued on the next page
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p, MPa Tn, K p, MPa Tn, K

Exp. Theory Exp. Theory

0.898 31.4 31.36 1.667 140.0 140.39

2.252 142.4 142.61

Nitrogen [142]

J = 107 m−3 s−1 Oxygen [146]

J = 1011 m−3 s−1

0.5 111.55 112.04

1.0 113.85 114.18 0.26 134.9 135.8

1.5 116.25 116.43 0.40 135.4 136.3

0.55 136.0 136.8

Nitrogen [146] 0.68 136.5 137.2

J = 1011 m−3 s−1 0.92 137.4 138.0

1.18 138.3 138.9

0.41 111.4 112.0 1.35 139.0 139.5

0.52 112.0 112.4 1.48 139.4 140.0

0.61 112.1 112.8 1.74 140.7 140.9

0.70 112.7 113.2 2.03 141.9 142.0

0.82 113.2 113.7 2.26 142.8 142.8

0.94 113.8 114.2 2.50 143.6 143.7

1.06 114.2 117.7 2.70 144.5 144.5

1.21 114.8 115.3 2.97 145.9 145.5

1.33 115.5 115.9

1.36 115.6 116.0 Chlorine [151]

1.46 116.2 116.4 J = 1011 m−3 s−1

1.59 116.8 117.0

1.62 117.0 117.1 0.88 373.0 371.4

1.73 117.6 117.6 1.20 372.2 373.0

1.77 117.7 117.8 1.60 374.3 375.0

1.87 118.3 118.3 2.06 377.6 377.4

1.92 118.4 118.5

2.07 119.1 119.2 Methane [141]

J = 107 m−3 s−1

Oxygen [140]

J = 107 m−3 s−1 0.4 166.58 167.41

1.0 169.64 170.30

0.686 136.2 136.85 1.6 172.76 173.31

1.171 138.2 138.57 2.0 174.86 175.38

Continued on the next page
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p, MPa Tn, K p, MPa Tn, K

Exp. Theory Exp. Theory

Ethane [152] 1.1 373.04 373.17

J = 107 m−3 s−1 1.9 383.28 383.15

0.335 269.00 Methane [146]

0.913 273.15 J = 1011 m−3 s−1

1.447 277.00

1.973 281.00 0.40 167.6 167.9

0.62 168.3 168.9

Propane [148] 0.82 169.3 169.8

J = 107 m−3 s−1 1.03 170.5 170.8

1.23 171.4 171.8

0.7 332.43 332.73 1.43 172.1 172.7

1.3 338.17 338.31 1.63 173.1 173.7

1.9 344.37 344.15 1.83 174.0 174.7

2.03 175.2 175.8

Isobutane [148] 2.22 176.4 176.8

J = 107 m−3 s−1 2.43 177.6 177.8

2.63 178.6 178.9

2.63 178.6 178.9

0.4 364.65 365.02 2.82 180.0 179.9

The temperature and pressure dependences of the nucleation rate have
been experimentally determined by measuring the lifetime of superheated
liquids. The results of experiments on condensed inert gases are presented
in Fig. 3.11. Sections with abruptly increasing Tn (the boundary of sponta-
neous boiling-up of the liquid) correspond to the maximum superheatings.
Cryogenic liquids are characterized by a very strong temperature and pres-
sure dependence of the nucleation rate. If in superheated liquid n-pentane at
p = 0.1pc and J = 107 m−3 s−1 the derivative d lg J/dT � 2 K−1, in liquid
nitrogen d lg J/dT � 12 K−1 is found. At low superheatings, experimental
curves have characteristic bends caused by the action of the background ra-
diation initiating the nucleation process [9, 10] and the effect of weak spots in
the liquid-measuring-cell system [113] (see Sections 3.12 and 3.13).

Most organic liquids display the initiating effect at rates J < Ji∗ = 6 ×
106 m−3 s−1 [9, 10] in cryogenic liquids, condensed inert gases, and benzene
at J < Ji∗ = (1.5–2.5) × 106 m−3 s−1 [10, 128, 140–142, 145]. The highest re-
sistance to ionizing radiation is shown by xenon. Here, the threshold value of
the rate of initiated nucleation Ji∗ is only 2.2 × 104 m−3 s−1 [145] (Fig. 3.11c).
The low radiation sensitivity of xenon, first discovered by Glaser et al. [162],
is caused by its considerable scintillation properties. As a result, the energy of
an ionizing particle is de-excited rather than transformed into heat. The scin-
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tillation properties of condensed inert gases increase with increasing atomic
number of the element [163]. Experimental investigations of the kinetics of
fluctuational boiling-up of liquid Ar, Kr, Xe [128,145] confirm such a tendency.
The results of investigating the pressure dependence of the attainable super-
heating temperature for liquefied gases are presented in Table 3.2.

In addition to the experimental data, Tables 3.1, 3.2 and Figs. 3.10–3.12
present the values of the temperatures of attainable superheating obtained
from the homogeneous nucleation theory. Calculations of Tn have been made
in a macroscopic approximation, i.e., without taking into account the depen-
dence of the properties of critical nuclei on the curvature of the dividing sur-
face. Comparing theory and experiment, besides the error of experimental
data, it is necessary to take into account both the errors caused by the ap-
proximate character of the theory itself and those caused by the uncertainty
of the knowledge of the thermodynamic parameters of the substances under
consideration used in the calculations. Different variants of the homogeneous
nucleation theory discussed in Section 3.2 differ in the value of the kinetic pref-
actor B and the factor z0, which corrects the equilibrium distribution function.
Table 3.3 gives the results of computation of the kinetic factor by the theories
of Döring–Volmer (Eq. (3.15)), Kagan (Eq. (3.52)), Deryagin, Prokhorov, and
Tunitsky (Eq. (3.52)) with z0 = ρ′/ρ′′∗ . Discrepancies in the values of B do not
exceed two or three orders of magnitude. This uncertainty results in differ-
ences in the values of Tn from several hundreds to several tenths of kelvin.
For all approximations the value of B shows only a weak dependence on tem-
perature and pressure as compared with the exponential factor in Eq. (2.112).

Numerical values of the factor B according to Kagan’s theory are approx-
imately 15–20 times lower than those derived by Deryagin, Prokhorov, and
Tunitsky. The Döring–Volmer formula (3.15), as compared with Kagan’s for-
mula, Eqs. (3.52), (3.51), and z0 = 1, underestimates the value of B by approx-
imately one order of magnitude. If bubble growth in a superheated liquid is
limited by viscous forces (Eq. (3.55)), the value of the factor B21 differs from
the general solution of B2 by 1.5–2 times. Somewhat larger discrepancies are
observed if the approximation B24 (Eq. (3.59)) is employed.

The largest contribution to the value of the nucleation rate, Eq. (2.112), is
supplied by the exponential factor, which contains in the exponent the work
of formation of a critical bubble. The accuracy in the knowledge of the data
on the thermodynamic properties of the substance, employed in the computa-
tions of W∗, is of great importance for the correct evaluation of its value. Data
on the surface tension and the pressure of the saturated vapor in the nucleus
are particularly critical for a correct determination of the nucleation rate, J.
One percent error in the determination of the surface tension, σ, leads to an
error in the value of J of about one order of magnitude. For liquid Ar, Kr,
Xe, N2, O2, CH4, C2H6, C3H8, and C4H10, in Refs. [153–161] results of mea-
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Fig. 3.12 Nucleation rate in superheated liquid isobutane along differ-
ent isobars. 1: p = 0.4 MPa; 2: 1.1; 3: 1.9 [148]. For the meaning of
the dashed, thin full, and dashed-dotted lines, see Fig. 3.11.

Tab. 3.3 The kinetic factor, B (in 1010 s−1), and the temperature of attainable superheating,
Tn (in K), of propane are given according to different versions of the homogeneous nucleation
theory. B1: Eq. (3.15), B2: Eq. (3.52) and z0 = 1, B3: Eq. (3.52) and z0 = ρ′/ρ′′∗ . The experi-
mental values of the temperature of attainable superheating are specified by the superscript ∗.

lg J p (MPa) B1 B2 B3 Tn(B1) Tn(B2) Tn(B3)

4 0.7 0.292 3.01 69.5 332.34 332.15 331.90

1.3 0.347 3.11 67.0 338.00 337.86 337.66

1.9 0.423 3.02 62.7 343.91 343.82 343.68

7 0.7 0.299 2.98 67.3 332.94 332.73 332.46

332.43∗

1.3 0.354 3.09 65.0 338.47 338.31 338.11

338.17∗

1.9 0.429 3.01 60.9 344.25 344.15 344.00

344.37∗

9 0.7 0.304 2.96 65.7 333.37 333.15 322.87

1.3 0.359 3.07 63.5 338.81 338.65 338.43

1.9 0.434 3.00 59.6 344.50 344.39 344.24

surements of the surface tension are collected performed on samples of the
liquid taken from the same lots of substances for which experiments on the
nucleation kinetics have been conducted. This approach makes it possible to
compare the results of theory and experiment with higher confidence.
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Fig. 3.13 Nucleation rate in superheated liquid ethane for differ-
ent isotherms. 1: T = 269 K; 2: 273.15; 3: 277; 4: 281 [152]. For
the meaning of the dashed, thin full, and dashed-dotted lines, see
Fig. 3.11.

Tables 3.1, 3.2 and Figs. 3.10–3.12 show a satisfactory agreement between
the homogeneous nucleation theory and experiment. At the same time, a more
detailed comparison reveals two principal tendencies. First, for simple liquids
(such as Ar, Kr, Xe, N2, O2, CH4) the values of Tn registered experimentally
for the boundary of spontaneous boiling-up are systematically lower than the
calculated ones. This effect is not observed for liquids with a more complex
molecular structure (such as C3H8, C4H10) [148]: the measured values of Tn

and those calculated by the homogeneous nucleation theory in a macroscopic
approximation agree within the limits of the total error of experiment and cal-
culation. At a pressure of 0.1pc, the value of ∆ = (Ttheor

n − Texp
n )/(Ttheor

n − Ts)
is 2.4% for simple liquids. For liquid propane and isobutane, ∆ � 0.6%. In the
methane series, ethane has an intermediate position between a simple liquid
(CH4) and liquids with a complicated molecular structure (C3H8, etc.). For
this substance, we have ∆ � 1% (Fig. 3.13).

Discrepancies in Tn can be eliminated assuming that the homogeneous
nucleation theory underestimates the value of the pre-exponential factor in
Eq. (2.112) by approximately six orders of magnitude or that the surface ten-
sion of critical bubbles is about 5–7% smaller than that of a planar interface.
Different versions of the homogeneous nucleation theory lead to an uncer-
tainty in the kinetic factor B2, which does not exceed three orders of magni-
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tude. As will be shown in Section 3.9, abandoning the macroscopic approxi-
mation in calculating the work of formation of critical bubbles makes it possi-
ble to eliminate the discrepancy between theory and experiment with respect
to the values of Tn.

Second, for all liquids investigated, experiments give a weaker curvature for
the temperature dependence of the nucleation rate. It should be noted, how-
ever, that in experiments the value of the derivative d ln J/dT is determined
with a large error which reaches 20–35%. Owing to a very weak temperature
and pressure dependence of the pre-exponential factor in Eq. (2.112), we have

d ln J
dT

� −d(W∗/kBT)
dT

= −GT , (3.93)

i.e., the temperature dependence of the nucleation rate is mainly determined
by the temperature dependence of the Gibbs number.

The theoretical value of J should be compared with the value of Jexp − Ji,
where Ji is the initiated nucleation rate which is usually unknown. For liq-
uid krypton and xenon in the region of initiated nucleation, ln Jexp is a lin-
ear function of temperature (see Figs. 3.11b and c). If we assume that here
Jexp � Ji and introduce in this approximation a correction to the superheats
measured at the boundary of spontaneous boiling-up, at p = 1.0 MPa we get
d ln J/dT � 14.3 K−1 (Kr). According to the homogeneous nucleation theory,
d ln J/dT � 19 K−1, and the experimental value is d ln Jexp/dT � 12 K−1.
The experimental data in Figs. 3.11–3.13 and Tables 3.1 and 3.2 are presented
without any correction accounting for initiated nucleation.

In experiments on continuous isobaric heating, the slope of the temperature
dependence of J is determined by the halfwidth of the distribution of liquid
boiling-up events as a function of temperature. A good “inscription” of the
experimental histogram into the theoretical curve (3.87) (see Fig. 3.4) is an
indication of the agreement between theory and experiment not only in the
value of Ts, but also in the temperature dependence of J. Differentiating the
logarithm of the nucleation rate, Eq. (2.112), with respect to pressure (at T =
const), we have

d ln J
dp

� −d(W∗/kBT)
dp

= Gp. (3.94)

Equations (3.4) and (3.7) yield

Gp = − 32π

3kBT
σ3

(p′′ − p)3 = − V∗
kBT

, (3.95)

i.e., the slope of the pressure dependence of J determines the characteristic
size of a critical bubble.
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The boundary of spontaneous boiling-up of superheated condensed inert
gases satisfies the law of corresponding states [122], and in reduced thermo-
dynamic variables (T̃ = T/Tc, p̃ = p/pc) may be approximated by the equa-
tion [100]

T̃n = 1 − 0.139(1− p̃)0.955(1 + 0.075 p̃). (3.96)

The analysis of the thermodynamic similarity with respect to the condi-
tions of spontaneous nucleation for a wider class of radii requires the intro-

Tab. 3.4 Parameters of the critical point (Tc, pc), the parameter of thermodynamic similarity
(A), and the quantum-mechanical parameter (Λ) of liquefied gases.

Substance Tc (K) pc (MPa) A Λ

3He 3.324 0.1149 19.93 1.889
4He 5.189 0.2274 15.07 1.411

Ne 44.40 2.653 4.637 0.238

Ar 150.66 4.860 4.075 0.0749

Kr 209.39 5.510 4.066 0.0410

Xe 289.77 5.842 4.011 0.0255

Rn 377.6 6.32 4.00

pH2 32.98 1.293 8.66 0.7600

nH2 33.24 1.297 8.61 0.7560

HD 35.90 1.484 7.50 0.605

HT 37.13 1.570 6.80 0.520

nD2 38.35 1.665 6.63 0.516

oD2 38.26 1.650 6.65 0.515

DT 39.42 1.773 6.17 0.461

nT2 40.44 1.850 5.87 0.418

N2 126.20 3.400 3.553 0.0920

O2 154.58 5.043 3.751 0.0829

F2 144.50 5.250 3.617

Cl2 417.16 7.709 3.137

CO 132.92 3.498 3.457

CO2 304.20 7.382

CF4 227.7 3.74 2.23

CD4 192.5 4.65

SF6 318.69 3.761

CH4 190.54 4.598 3.927 0.0953

C2H6 305.33 4.871 2.886

C3H8 370.4 4.252 2.396

iC4H10 407.85 3.631 2.060

nC4H10 425.16 3.796 2.040
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duction into the law of corresponding states of additional criteria [164] re-
flecting special features of the particular substances. In accordance with the
one-parameter version of thermodynamic similarity we have

T̃n = T̃n( p̃, A), (3.97)

where A is an individual parameter which has the meaning of a characteristic
similarity criterion. Following Filippov [164], we shall assume

A = 100 p̃0,625. (3.98)

Here, p̃0,625 is the reduced saturation pressure at the reduced temperature,
T̃ = 0.625. The values of the similarity parameter A, and also the critical
parameters for the substances studied in this book, are given in Table 3.4.
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Fig. 3.14 Reduced temperature of attainable superheating (J =
107 m−3 s−1) as a function of the parameter A at p/pc = 0.1. 1: argon
[128]; 2: krypton [145]; 3: xenon [145]; 4: methane [141]; 5: oxygen
[140]; 6: nitrogen [142]; 7: ethane [152]; 8: propane [148]; 9: isobutane
[148]; 10: n-pentane [10]; 11: n-hexane [10]; 12: n-heptane [10];
13: n-octane [125]; 14: n-nonane [125]; 15: n-decane [125].

In Fig. 3.14, the temperatures of attainable superheating are presented as
functions of the similarity criterion A [164] of liquids belonging to different
classes of chemical compounds. The smoothness of the A-dependence of Tn

confirms the universal character of Eq. (3.97) for normal liquids. For liquefied
gases (with the exception of quantum liquids), the function T̃n( p̃, A) is linear
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Fig. 3.15 Reduced temperature of limiting supercooling in an isochoric
process as a function of the reduced saturation temperature of argon
(1), nitrogen (2, 3), and oxygen (4, 5) at nucleation rates: 1, 2, 4: J =
1011 m−3 s−1; 3, 5: 107 m−3 s−1.

in A and approximated in Ref. [100] by

T̃n = 1 − b(1 − p̃)q(1 + cp̃), (3.99)

where

b = 1− T̃n( p̃ = 0) = 0.0955 + 0.01045A; q = 0.955; c = 0.075. (3.100)

Equations (3.96) and (3.99) are not applicable in the near vicinity of the critical
point as they do not satisfy the condition dT̃n/dp̃|c = dT̃s/dp̃|c.

The temperature dependence of the limiting stretching pressure may be rep-
resented for a wide class of normal liquids at different values of nucleation
rate as [165]

p̃n = p̃s − a
σ̃3/2

T̃1/2

(
1 − ρ̃′′s

ρ̃′s

)−1

. (3.101)

Here, p̃s is the reduced saturation pressure, ρ̃′s = ρ′s/ρc and ρ̃′′s = ρ′′s /ρc are
the reduced liquid and vapor orthobaric densities, and a is a parameter which
is a function of the nucleation rate,

a =
[

7.28
(36.8− lg J)

]1/2

. (3.102)
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The factor (1 − ρ̃′s/ρ̃s)−1 has an appreciable effect on the value of p̃n only
at temperatures close to the critical point and may be omitted at T̃ < 0.99.
Equation (3.101) makes it possible to calculate the value of the stretching limit
for normal liquids employing the known values of (pc, Tc, A), making use of
the dependences σ̃(T̃, A) and p̃s(T̃, A) presented in Refs. [10, 57, 164].

Some other correlations for the line of attainable superheating are also dis-
cussed in the literature. At a fixed density of the liquid, the following simple
relation holds (Fig. 3.15) [38]:

[Tc − Tn(ρ)]
Tc

= γ
[Tc − Ts(ρ)]

Tc
, (3.103)

where γ = 1.182 if J = 107 m−3 s−1 and γ = 1.191 if J = 1011 m−3 s−1.
According to Ref. [135], at atmospheric pressure the reduced superheating
(Tn − Ts)/(Tc − Ts) is for all normal liquids approximately constant and equal
to 0.68.

3.8
Superheating of Quantum Liquids

At sufficiently low temperatures the physical properties of macroscopic sys-
tems are largely determined by quantum effects. Besides helium, quan-
tum effects show up noticeably in the properties of isotopes of hydro-
gen and, to a lesser degree, of neon. When the de Broglie wavelength,
λT = (2πh̄2/mkBT)1/2, exceeds the typical dimension of a critical nucleus,
R∗, the thermo-activation mechanism of nucleation is replaced by quantum
tunneling of heterophase fluctuations through a potential barrier [8] (see Sec-
tion 3.1). According to the estimates made in Ref. [101], the temperature of
the change of the nucleation regimes, T∗, is equal to 0.3 K for liquid helium
and 2–3 K for hydrogen. In liquid neon, we have T∗ � 1.5–2 K [100]. At
T > T∗, quantum effects may have an indirect influence on the boiling-up
kinetics of a superheated liquid through thermophysical parameters and pe-
culiar nucleation centers not typical for classical systems, vortex lines and
rings in superfluid helium [101,166], thermal spikes of ortho–para conversion
in normal hydrogen [133], electronic and positronic bubbles in liquid neon,
hydrogen, and helium [100, 101, 133].

Owing to the repulsive exchange forces between the electron and atoms of
some cryogenic liquids, in the latter there may occur a localization of the elec-
tron inside a spherical cavity. The existence of such electronic bound state
(electronic bubble) has been confirmed by experiments on the mobility of
charged particles in quantum liquids [101, 167, 168]. Free electrons may de-
velop when ionizing particles of cosmic radiation are passing through a liq-
uid. As a result of a large number of collisions, the electron energy decreases
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to the thermal energy. This effect makes its effective localization in a number
of liquids possible.

The change of the liquid free energy during the formation of an electronic
bubble may be presented as [169]

∆F = Fe + FR + Fp − E0, (3.104)

where Fe is the energy of the ground state of the electron in a spherically sym-
metric potential well, FR is the work of formation of a vapor bubble of radius
R in the liquid, Fp is the energy of polarization interaction of the electron with
the surrounding particles, and E0 is the value of the energy barrier between
the electron and the atoms of the liquid. In writing the excess thermodynamic
potential in the form given by Eq. (3.104), we assume that the lifetime of the
electron on a density fluctuation considerably exceeds the characteristic time
of thermal relaxation in the medium. We assume furthermore that there is
enough time for the establishment of a local equilibrium in the liquid.

The minimum value of the work of bubble formation is given by Eq. (3.11).
In a polar liquid, owing to the interaction with induced dipoles of molecules,
a localized electron gains some additional energy

Fp = − ε − 1
2ε

e2

R
, (3.105)

where ε is the dielectric constant of the liquid and e is the electron charge. If
in helium the polarization contribution is small (Fp � 3.2 × 10−21 J) and may
be neglected, in liquid hydrogen it is comparable in magnitude with the other
terms in Eq. (3.104) (Fp � 1.6× 10−20 J) and has to be taken into account when
one is calculating the energy of localization of the electron.

In the Wigner–Seitz approximation [170], the energy of an electron in the
field of the atoms surrounding it is

E0 =
h̄2q2

0
2me

, (3.106)

q0Rs = tg [q0 (Rs − l)] . (3.107)

Here, me is the electron mass, Rs = ((4/3)πρ)−1/3 is the radius of the Wigner–
Seitz sphere, and l is the electron scattering length on a liquid atom. The
value of Fe is found by solving the problem of description of the motion of an
electron in a spherically symmetric potential well, the depth of which taking
into account the polarization interaction is equal to E′

0 = E0 − Fp [59].
The dependence ∆F(R) for an electronic bubble in normal liquid hydrogen

is shown in Fig. 3.16. The electron scattering length was assumed to be equal
to 1.51a0 [171], where a0 is the Bohr radius. Electron localization is possible
if ∆F < 0 holds. The equilibrium radius of an electronic bubble, R0, is deter-
mined by the condition d∆F = 0. Penetrating deeper into a metastable region,
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an increase in the volume work against the pressure forces can be observed
determined by the second component in Eq. (3.104). At a certain degree of su-
perheating, on the curve describing the dependence of ∆F on R the minimum
disappears. In such a case, the existence of a stable equilibrium of an electronic
bubble becomes impossible. At the boundary of stability ∂2∆F/∂R2 = 0, and
R0 = R+.
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Fig. 3.16 Hydrogen excess free energy as a function of the electronic
bubble radius at pressures p = 0.1 MPa and temperatures T (in K). 1:
14; 2: 20; 3: 25; 4: 29. The dashed line corresponds to the equilibrium
bubble.

According to the calculations made in Refs. [100, 101, 133], electronic bub-
bles in superheated liquid helium, hydrogen, and neon are stable in the whole
range of state variables from the curve of phase equilibrium to the line of at-
tainable superheating corresponding to the nucleation rate J � 1015 m−3 s−1.
At pressures 0 < p < 0.7pc, the equilibrium radius of an electronic bubble
in liquid helium is 2.0–3.2 nm, in hydrogen 1.4–2.5 nm, and in neon 1–2 nm.
The size of an electronic bubble increases with temperature and approaches
infinity at the critical point.

With a subsystem of electronic bubbles in a superheated liquid, nucleation
may take place not only as a result of spontaneous formation of viable cen-
ters of a new phase, but also by fluctuational “growing-up” of electronic bub-
bles up to critical dimensions. If homogeneous nucleation is connected with
an overcoming of the potential barrier, W∗, nucleation initiated by electronic
bubbles requires lower activation barriers [101, 133], i.e.,

We = W∗ − W0, (3.108)
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where

W0 = 4πR2
0σ − 4

3
πR3

0(p′′ − p). (3.109)

In the stationary case, the nucleation rate on the subsystem of electronic
bubbles may be presented in the form of Eq. (2.199). The total flux of nuclei
taking into account the homogeneous nucleation and that initiated by elec-
tronic bubbles is

J′ = J + Je. (3.110)

Electronic bubbles will have an appreciable effect on the boiling-up process at
J′ ≥ J.

Depending on the orientation of nuclear spins, the molecules of hydrogen
and its isotopes may be in different energy (ortho or para) states. The equilib-
rium ortho–para composition is determined mainly by temperature. Normal
hydrogen, i.e., hydrogen that is in equilibrium at room temperatures, contains
75% of ortho-hydrogen and 25% of para-hydrogen. When keeping liquefied
normal hydrogen, a spontaneous transformation of an ortho-modification into
a para-modification can be observed. The ortho–para transition is accompa-
nied by local heat emissions and, consequently, by an increase in the probabil-
ity of formation of a nucleus in the vicinity of the ortho-molecules that have
interacted.

We now examine the possibility of initiating the boiling-up of superheated
normal hydrogen by elementary acts of spontaneous ortho–para conversion
[133]. In the absence of a catalyst, ortho–para conversion is caused by the mag-
netic interaction of ortho-molecules. The frequency of the elementary acts of
conversion is proportional to the square of concentration of ortho-molecules,
x [172],

J′′ = c0ρ′x2, (3.111)

where c0 = 3.51× 10−6 s−1, and ρ′ is the particle number density in the liquid.
The conversion will result in an appreciable contribution to the nucleation
process if the amount of heat released is sufficient for the formation of a critical
nucleus, and the frequency of the elementary acts of conversion exceeds the
rate of homogeneous nucleation and that of nucleation initiated by some other
factors. At T = 28–30 K, we get J′′ = 1022 m−3 s−1. The energy released in the
transformation of two hydrogen molecules from the ortho- into the para-state
is

∆h � 2(uoH2 − upH2), (3.112)

where

u = kB
∂ ln Z

∂(1/T)
, (3.113)
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and Z = Zo and Z = Zp are the rotational components of the partition func-
tion of ortho-particles and para-particles [20]. At sufficiently low tempera-
tures (T < TR = h̄2/2kB Im, where Im is the moment of inertia of the molecule)
limiting ourselves to the first terms of the expansion of the partition function
into a series, we have

∆h � 4kBTR. (3.114)

For hydrogen TR = 85 K; then ∆h = 5× 10−21 J. The total energy, W ′′, required
for the formation of a critical-size bubble consists of the energy of reversible
formation of the bubble and the sum of irreversible energy losses connected
with liquid inertia, viscosity, and thermal conductivity [173]. On the line of
attainable superheating (J = 1011 m−3 s−1) at T = 29 K we have W ′′ = 2.5 ×
10−18 J, the equilibrium work of formation of a critical bubble equals W∗ =
2.7× 10−20 J. The value of W ′′ changes only slightly with pressure, decreasing
with it. Thus, natural ortho–para conversion in normal hydrogen may not
have a considerable effect on the process of spontaneous nucleation. The effect
of initiation may be observed if paramagnetic impurities exist in the system.
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Fig. 3.17 Temperature of attainable superheating for neon. 1: ex-
perimental data [100]; 2: [134]; Tsp: spinodal; Te: electronic bub-
ble stability boundary; Tn: boundary of spontaneous boiling-up
(J = 1011 m−3 s−1); Ts: binodal.

Data of measurements of the temperature of attainable superheating for
neon [100, 134], hydrogen [133, 134], and helium isotopes [132, 135, 149, 150]
are presented in Tables 3.1 and 3.2. They have been obtained by the meth-
ods of continuous isobaric heating, lifetime measurement, and by the pulse
method. The results of Refs. [100, 134] on the superheating of liquid neon by
the method of continuous isobaric heating in glass capillaries agree well with
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each other and with the homogeneous nucleation theory (Fig. 3.17). Similar to
other liquefied inert gases, at low pressures there is a systematic liquid “un-
derheating” to theoretical values of Tn. At a pressure p = 0.1pc, the attainable
superheating is 8.0 K (J = 1011 m−3 s−1) [100]. On the spinodal, ∆Ts � 9.9 K.
The stability boundary of an electronic bubble corresponds to a superheat-
ing that exceeds the attainable superheating by only 0.3 K. The closeness of
superheats achieved by experiment to those calculated by the homogeneous
nucleation theory indicates that the concentration of free electrons in liquid
neon capable of forming electronic bubbles does not exceed (1011–1016) m−3.

The first investigations of the superheating of liquid hydrogen were di-
rected to the development of liquid-hydrogen bubble chambers and cryop-
umps [174, 175]. The authors of Ref. [174], employing a pure bubble chamber
of volume � 3 cm3, determined the mean expectation time of liquid hydrogen
boiling-up (τ̄ = 22 s) at atmospheric pressure and temperature T = 24.7 K.
Figure 3.18 shows the lower boundary of the zone of liquid-hydrogen sensi-
tivity to high-energy particles obtained on the bubble chamber of the Joint In-
stitute for Nuclear Research in Dubna, Russia, with 100 cm in diameter. Hord
et al. [175] investigated superheated liquid hydrogen in a glass Dewar flask
(V � 1 l) creating an abrupt pressure decrease in the vapor cavity. The mo-
ment of boiling-up was registered by a pressure burst. The rates of the pres-
sure decrease were equal to 0.14–9.0 MPa s−1. The results of the experiments
are shown in Fig. 3.18. At pressure-release rates exceeding 7 MPa s−1, lim-
iting stretches of liquid hydrogen are close to their predictions based on the
homogeneous nucleation theory.

In experiments on continuous isobaric heating, a considerable spread in
boiling-up temperatures of normal liquid hydrogen can be observed [133,134].
Thus, at a heating rate of 0.03 K s−1 and a pressure of 0.15 MPa, the boiling-up
of nH2 was found to take place in the temperature range from 26.0 to 28.1 K.
With increasing heating rate the halfwidth of the temperature distribution of
liquid boiling-up events decreased, always remaining larger than the theoreti-
cal value of δT1/2 � 0.03 K. In the papers [133,134], the maximum value of the
registered boiling-up temperature was taken as the attainable superheating
temperature of hydrogen.

The first measurements of the temperature of attainable superheating for
liquid helium

(4He
)

were made applying the method of pulse heating on bis-
muth monocrystals (see Tables 3.1 and 3.2, Fig. 3.19) [131, 132]. The experi-
mental data have been approximated by the equations (note that Eq. (3.116) is
not applicable in the nearest vicinity of the critical point)

∆Tn = 4.322
(

1 − Ts

Tc

)1.534

, (3.115)

T̃n = 0.783 + 0.224 p̃. (3.116)
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Fig. 3.18 Limiting superheating of liquid hydrogen. 1: experimen-
tal data [133]; 2–4: [175] at rates of pressure decrease equal to p =
1.8 MPa s−1; 3.3; 8.0, respectively; 5: boundary of radiation sensitiv-
ity [173]; 6: boundary of stability of electronic bubbles; Tn: boundary of
spontaneous boiling-up (J = 1011 m−3 s−1), Ts: binodal, Tsp: spinodal.

It was noted that the superheating temperature, Tn, does not depend on
the quality of processing a bismuth thermometer–heater surface, the external
magnetic field, and the intensity of X-ray radiation. The authors of Ref. [132]
refer their data to the nucleation rate J = 107 m−3 s−1. Our evaluations (see
Section 3.3) resulted in J = 1018–1021 m−3 s−1.

In Fig. 3.19, experimental data on the temperature of attainable superheat-
ing of liquid helium [132, 135, 150] are compared with the results of calcu-
lation by the homogeneous nucleation theory (the Döring–Volmer variant,
Eqs. (2.112), (3.15), and z = 1). The values of the surface tension recommended
in Ref. [57] are used.

The results of Nishigaki and Saji [135] obtained by the method of continuous
isobaric heating refer to the nucleation rate J = 107 m−3 s−1, and taking this
into account agree well with the data of the Brodie group [132]. The authors
of Ref. [135] point out that, having achieved a satisfactory agreement between
experiment and theory, the values of Tn calculated from the homogeneous
nucleation theory are systematically higher than the experimental values.

Experiments on the mean lifetime of superheated 4He [150, 176] have
yielded dependences τ̄ = τ̄(T) qualitatively different from those of other
liquids: the value of τ was practically temperature independent in the whole
range from the saturation line to the boundary of spontaneous boiling-up
(Fig. 3.20). The superheating of helium was realized in glass cells of volume
V � 2 cm3 with a limiting rate of initiated nucleation Ji∗ � 5 × 105 m−3 s−1.
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Fig. 3.19 Attainable superheating of liquid 4He. 1: experimental data
[132]; 2: [135]; 3: [150]. I, II: calculation by Eqs. (2.112), (3.15), and
z0 = 1 for J = 107 m−3 s−1 and J = 1020 m−3 s−1, respectively;
ps: binodal; psp: spinodal.

This result is less than the respective one for argon and krypton, but larger
than that for xenon. The reasons for such a behavior of 4He are yet to be
explained. Helium is used as a working substance in bubble chambers, but no
information was given on any peculiarities for the boundary of the initiation
zone in this substance [173]. Besides, the limiting superheats of liquid helium
obtained in Ref. [150] at p > 0.08 MPa considerably exceed those registered in
Ref. [132], although they refer to much lower nucleation rates (see Fig. 3.19).
The phenomenon of superheating is also characteristic of the superfluid phase
of 4He (HeII).

In Refs. [177, 178] superfluid helium was superheated in glass cells of vol-
ume V � 0.72 cm3. An electric heater and a resistance thermometer were
transferred into a liquid. The change in temperature of the liquid was regis-
tered at a fixed heating rate. Collapse of the metastable state of HeII resulted
in an abrupt temperature decrease or increase in the cell. The first case cor-
responds to the boiling-up of liquid helium, the second one, to the HeII–HeI
phase transition. In the (p, T)-diagram (Fig. 3.21), the points of the HeII–HeI
transition form a smooth curve, which is an extension of the λ-line into the
region of metastable states.
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Fig. 3.20 Temperature dependence of the mean lifetime for super-
heated 4He at a pressure of p = 0.073 MPa.

In experiments on the pulse heating of liquid 3He on bismuth monocrystals,
it was possible to determine the temperature of attainable superheating only
at pressures that were lower than 0.5pc [149]. The comparison of the data
obtained with the homogeneous nucleation theory is complicated due to the
lack of reliable information on the surface tension of the light helium isotope.
At temperatures above 2.5 K, discrepancies between the results of different
authors in σ reach 30% [57]. Table 3.2 presents the theoretical values of Tn

obtained by using the values of surface tension from Ref. [179].
Figure 3.22 shows the lines of attainable superheating for liquefied inert

gases, hydrogen, and helium isotopes in reduced thermodynamic coordinates
[100]. Deviations of the boundaries of spontaneous boiling-up of neon, hydro-
gen, and helium from the law of corresponding states are caused by quantum
effects. The degree of quantization of the system is determined by the value
of the de Boer parameter, which may be written in terms of the critical param-
eters of the respective substances as

Λ = 2πh̄
p1/3

c

m1/2(kBTc)5/6 . (3.117)

In a quantum liquid T̃n = T̃n( p̃, Λ). With an error that does not exceed
0.5%, the temperature of attainable superheating (for a nucleation rate J =
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Fig. 3.21 λ-line of helium-4. 1: by data of Ref. [177]; 2: [178]. ps: line
of liquid–vapor phase equilibrium.

1011 m−3 s−1) for liquids exhibiting quantum effects may be approximated by
Eq. (3.99) where

b = 0.1288 exp(0.4397Λ), q = 0.948 + 0.0823Λ,

c = 0.0866− 0.155Λ.
(3.118)

In a wide range of nucleation rates, the cavitation strength of quantum (as
well as classical) liquids is calculated by Eq. (3.101). The explicit form of the
dependence σ̃(T̃, Λ) is given in Ref. [57]. The reduced orthobaric densities ρ̃s

and ρ̃′s also depend on the parameter Λ, but the ratio ρ̃′s/ρ̃′s is a much weaker
function of Λ than σ̃(T̃, Λ). The factor (1 − ρ̃′′s /ρ̃′s)−1 should be taken into
account only in the nearest vicinity of the critical point.

3.9
Surface Tension of Vapor Nuclei

Spontaneous boiling-up of a superheated liquid is preceded by the formation
of a small nucleus, the critical bubble. Critical-bubble radii range from 3.5 to
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Fig. 3.22 Temperature of attainable superheating for cryogenic liquids
according to experimental data. 1: Ar [122]; 2: Kr [122]; 3: Xe [122];
4: Ne [100]; 5: nH2 [133]; 6: 4He [132]. Solid lines show the results of
calculations by Eqs. (3.96) (Ar, Kr, Xe) and (3.99), (3.118) (Ne, nH2,
4He, 3He). The dashed line shows the spinodal curve of neon. The
region of states between the saturation lines of Ar and 3He is shaded.

5.0 nm; the number of molecules contained in them is 300–1000 (for p < 0.7pc).
In the classical homogeneous nucleation theory it is usually assumed that the
properties of such small objects do not differ from those of macroscopic phases
(macroscopic or capillary approximation). If in calculating the work of forma-
tion of a critical bubble Gibbs’ method of separating surfaces is used, the cap-
illarity approximation implies to use for bubbles of all sizes the value of the
surface tension for equilibrium coexistence of the respective liquid and gas at
a planar interface, i.e., σ = σ∞.

Tab. 3.5 Radius and number of molecules in a critical bubble and value of the surface tension
of the liquid–vapor interface in xenon.

T (K) p (MPa) R∗ (nm) N ′′∗ σ (mN m−1)

σ(R∗) σ∞ [156]

251.41 0.24 3.9 245 3.97 4.25

253.34 0.55 4.0 285 3.73 3.98

256.06 0.99 4.2 360 3.40 3.61

259.03 1.48 4.5 480 3.02 3.22

262.18 1.98 4.9 660 2.63 2.81
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Experimental data on the kinetics of nucleation in simple liquids show that,
with satisfactory agreement between the homogeneous nucleation theory and
experiment, the measured values of temperatures of attainable superheating
are systematically lower than the calculated values. Neglecting the depen-
dence of the properties of the critical nuclei on the radius of the separating
surface can be considered as a possible reason for such a discrepancy [180].
If the homogeneous nucleation mechanism is experimentally achieved, then
from data on Tn and J and from Eqs. (2.112) and (3.8) we can evaluate the ex-
cess free energy of a nucleus, σ(R∗) [9, 10]. In Table 3.5, values of the surface
tension for critical bubbles of xenon, obtained in such a way, are compared
with data referring to a planar interface [145]. The parameters T and p corre-
spond to the nucleation rate J = 107 m−3 s−1. The radii of the critical bubbles
have been calculated by Eq. (3.4); the number of molecules in a bubble has
been computed from the well-known vapor density. The values of σ(R∗) are
systematically lower than those of σ∞; the discrepancy is of the order of 5–7%.
Similar discrepancies are found for all other simple liquids [180]. In contrast,
if systems are considered where the molecular structure of the liquid is more
complicated, then the differences in σ(R∗) and σ∞ decrease. Thus, for propane
and isobutane the value of ∆σ = σ∞ − σ(R∗) is already comparable with the
total error of calculation and experiment [148].

0.0 2.5 5.0 7.5 10.0

-4

-2

0

[
'-

(r
 =

0)
]. 1

0-2
,k

g.
m

-3

1 2 3 4 5 6

r,nm

Fig. 3.23 Density distribution in critical bubbles of nitrogen at a pres-
sure of p = 1.0 MPa and different temperatures [142]. 1: T = 117 K;
2: 116; 3: 114; 4: 113; 5: 112; 6: 111.

The effect of the nucleus curvature can be taken into account when, in
calculating the work of formation of critical bubbles, the Cahn–Hilliard ap-
proach [58] is used which is based on the theory of capillarity developed by
van der Waals [7]. Besides the nucleation work, this method makes it possible
to obtain information on the structure of the critical heterophase fluctuation.
According to Eq. (2.36), the functional of the excess free energy of a system
containing a heterophase fluctuation will be given if the free energy of a homo-
geneous system, f , which is to be determined in the metastable and unstable
states, and the coefficient, κ, are known. In Refs. [142,181], the function f (T, ρ)
was computed based on the experimental data on thermodynamic properties
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Fig. 3.24 Nucleation rate in superheated liquid nitrogen along differ-
ent isobars [142]. 1: p = 0.5 MPa; 2: 1.0; 3: 1.5. Dashed lines show
calculations performed by Eqs. (2.112), (3.8), (3.52), and z0 = 1 with
σ = σ∞; dashed-dotted lines: Eqs. (2.112), (3.11), (3.52), and z0 = 1.

of superheated liquids [52,53]. The coefficient κ was calculated from the equa-
tion

σ∞ = 2

ρ′′s∫
ρ′s

(κ∆ f )1/2dρ, (3.119)

employing data on the surface tension at a planar interface [57]. It was as-
sumed that the value of κ does not depend on density. The numerical solu-
tion of the Euler equation (2.39) for the search for an extremum of the func-
tional gives the density distribution in bubbles of critical sizes. The results
of such a calculation for liquid nitrogen are presented in Fig. 3.23 [142]. At
low superheatings, in a nucleus one can distinguish between a homogeneous
core and a transition layer, the thickness of which is smaller than the bub-
ble size. Penetrating deeper into the metastable region, the homogeneous
core decreases, and at a certain degree of superheating, the density distribu-
tion function takes the form of a dome. The density at the center of a va-
por bubble begins to differ, at very high superheatings, from the value de-
termined by the equilibrium condition, Eq. (3.5). A coefficient of metastabil-
ity, β = (ps − p)/(ps − psp) � 0.45, corresponds to such degrees of super-
heating. The work of formation of a critical nucleus obtained in the frame-
work of the Cahn–Hilliard approach (Eq. (3.10)) is smaller than that calcu-
lated by the Gibbs formula (3.8) employing in its evaluation the capillarity
approximation, σ(R∗) = σ∞. At the boundary of spontaneous boiling-up
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(J = 107–1011 m−3 s−1) the discrepancies are of the order of 15%. In this case,
the equilibrium density differs from the density at the center of a vapor bub-
ble only by 0.05%. Figure 3.24 presents, in a semilogarithmic scale, the results
of experiments on the measurements of the nucleation rate in liquid nitro-
gen [142]. The agreement between theory and experiment improves if in the
calculations of J one uses the expression for the work of formation of a critical
nucleus, Eq. (3.10).

When solving the system of equations (3.4), (3.5), (3.8), and (3.10), the de-
pendence of the surface tension of the nucleus on the curvature of the sepa-
rating surface can be determined [142, 181]. The results of such a calculation
for bubbles of nitrogen, oxygen, and methane at T = 0.95Tc in the region
of intensive homogeneous nucleation are shown in Fig. 3.25. The values for
the surface tension of bubbles of radius R∗ � 5 nm are by 4%, and of radius
R∗ � 2.5 nm by 15% smaller than that at a planar interface. The stratification
of the curves σ̃(R̃∗) is caused by the absence of a complete thermodynamic
similarity of the investigated liquids.
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Fig. 3.25 Surface tension of critical bubbles versus the radius of cur-
vature of the surface of tension (1–3) [181], the values of σ by data on
the attainable superheating (4–6), and σ∞ (7–9) of nitrogen (1, 4, 7),
oxygen (2, 5, 8), and methane (3, 6, 9).

Figure 3.26 presents temperature dependences of the surface tension for
critical bubbles of liquid nitrogen along isobars. The arrows show the tem-
peratures of attainable superheating [142]. Different approaches to the deter-
mination of the dependence of the surface tension of new-phase nuclei on the
curvature of the separating surface and the influence of the size effect on the
work of nucleus formation are discussed in Refs. [182–185].

In addition to the surface of tension we consider the equimolecular dividing
surface. For the radius of the equimolecular dividing surface of a vapor bubble
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Fig. 3.26 Temperature dependence of the surface tension of critical
nitrogen bubbles at different pressures. 1: p = 0.5 MPa; 2: 1.0; 3: 1.5.
σ∞ is the surface tension at a planar interface.

we have

Re =


3

∞∫
0

[ρ − ρ(r)]r2dr

ρ − ρ′′(0)



1/3

=
[

n+

ρ − ρ′′(0)

]1/3

, (3.120)

where ρ′′(0) is the density at the center of the nucleus calculated from the equi-
librium condition, Eq. (3.5). The quantity n+ denoted the number of particles
transferred to infinity during the formation of a bubble. The surface tension
of the equimolecular dividing surface and that of the surface of tension are
related by the following equation:

σe = σ

[
1
3

(
R∗
Re

)2

+
2
3

(
Re

R∗

)]
. (3.121)

Some characteristic parameters for critical bubbles of nitrogen, oxygen, and
methane at T = 0.9Tc and J = 1011 m−3 s−1 are given in Table 3.6.

At the boundary of spontaneous boiling-up of a superheated liquid, σe is
larger than σ by approximately 0.3%. For R∗ = 2.5–5.0 nm, the value of
δ(R∗) = Re − R∗ is positive and essentially depends on the curvature of the
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Tab. 3.6 Parameters of critical bubbles of nitrogen, oxygen and methane.

Parameter N2 O2 CH4

p (MPa) 0.9 1.39 1.31

R∗ (nm) 3.9 3.7 4.1

N ′′∗ 400 380 410

σ(R∗) (mN m−1) 1.54 2.09 2.09

δ(R∗) (nm0 0.19 0.21 0.20

σe (mN m−1) 1.64 2.25 2.28

δ∞ (nm) 0.44 0.42 0.45

dividing surface. The positive value of δ(R∗) means that the separating sur-
face is located closer to the liquid than the surface of tension. In the limit of
infinitely large radii of curvature of the surface of tension, the values of σ(R∗)
and δ(R∗) tend to their values at a planar interface, σ∞ and δ∞. The following
asymptotic formula for δ(R∗) [186–188] holds:

δ(R∗) = δ∞ +
α

R∗
, (3.122)

where the parameter α = dδ/d(1/R∗)|R∗→∞ is a function of temperature only.
According to the Tolman equation [76]

σ = σ∞

(
1 − 2

δ∞

R∗

)
, (3.123)

the surface tension of vapor bubbles (δ∞ > 0) at R∗ → ∞ is always smaller
than σ∞.

The question of the dependence of the surface tension of new-phase nuclei
on the curvature of the dividing surface is a topic of intensive discussions. At
present there are several papers available devoted to the experimental inves-
tigation of σ(R) for vapor bubbles. Wingrave et al. [189] measured times of
saturation with liquid for glass mesoporous spheres. The rate of adsorption of
the liquid is related to the driving capillary pressure and, consequently, to the
surface tension. The experiments were performed on water and five alkanes
(pentane, heptane, etc.). The effective radius of curvature of the liquid menis-
cus in mesopores is Reff � 4.2 nm. Values of the surface tension exceeding the
value of σ∞ by 5–50% were obtained at T = (0.45–0.62)Tc (smaller deviations
refer to water).

The opposite to the analysis of the result of Ref. [189] was registered in
experiments performed by Fisher and Israelachvili [190, 191]. These authors
[190] measured the adhesion force  between two crossed cylinders contain-
ing the liquid under investigation in the contact zone. The value of  does not
depend on the curvature of the liquid menisci and is equal to  = 4πR0σ cos θ,
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where R0 is the radius of the cylinders, and θ is the wetting angle. The effec-
tive radii of curvature of the liquid menisci (Reff � 0.3–50 nm) were deter-
mined in a separate experiment [191] or calculated from the Kelvin equation
using the well-known degree of supersaturation, S = p/ps. With respect to
liquid hydrocarbons (cyclohexane, benzene, n-hexane), the surface tension at
a curved interface (Reff > 0.5 nm) coincides within 10% with its macroscopic
value, σ∞. A stronger dependence σ(Reff) was revealed in experiments on
water. A deviation of σ(Reff) from σ∞ was observed at Reff ≤ 5 nm. All mea-
surements were performed at temperatures T = 0.45–0.58Tc. The data from
Refs. [190, 191] are in qualitative agreement with the results of determination
of the surface tension of vapor bubbles in experiments on nucleation kinet-
ics and calculations of the dependence σ(R∗) in the framework of the van
der Waals, Cahn–Hilliard model. According to this model, at a temperature
T = 0.6Tc and R∗ = 1 nm the surface tension of a vapor bubble of a simple
liquid differs from the macroscopic value of σ by approximately 10%.

3.10
Cavitation Strength of Cryogenic Liquids

In the form of metastable phases, liquids can exist also at negative pressures.
There are no fundamental differences between a superheated (p ≥ 0) and a
stretched (p < 0) liquid. Boiling-up and cavitation at temperatures sufficiently
far from absolute zero can be described by the classical theory of thermofluc-
tuation nucleation.

Up to now, extensive experimental data have been accumulated concerning
the value of the cavitation (or tensile) strength of liquids of different chemical
nature [9, 10, 192–199]. Limiting degrees of stretching have been registered in
experiments, but the data of most of the authors [192–198] are usually by tens
and even hundreds of times smaller than the theoretical values. And only
in recent years limiting stretches close to theoretical predictions have been
achieved for a number of liquids [10, 199]. The reason for the disagreement
between theory and experiment is usually connected with the imperfection
of the contact of the liquid with the interior walls of the measuring cell, and
the presence of dissolved gases and solid weighted particles in the liquid. In
this respect, cryogenic liquids are sufficiently pure. A lot of foreign gases con-
tained in them is frozen out and can be easily separated by filtration. The good
close to complete wettability of solid bodies with cryogenic liquids does not
allow vapor cavities to exist on the interior walls of a vessel for a long time.
This statement especially concerns liquid HeII, which possesses the property
of superfluidity.
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Tab. 3.7 Rupture tensile stress in cryogenic liquids.

Liquid T (K) p (MPa) References

Experiment Theory

Helium 2 −0.03 [194]

1.85 −0.014 −0.04 [195]

1.9 −0.016 −0.044 [196]

1.2 −0.003 [198]

2.09 −0.12 [200]

Argon 85 −1.2 −19.0 [196]

Nitrogen 71 −0.35 −6.0 [193]

75 −1.0 −14.0 [196]

Oxygen 75 −1.5 −35.0 [196]

In studying the cavitation strength of cryogenic liquids, both quasistatic
[193–198] and dynamic [199–201] methods have been employed. Misener et
al. [193, 194] investigated the cavitation strength of nitrogen and superfluid
helium in a device which was a system of two metal bellows connected by
a rigid link. The liquid that filled one of the bellows was transferred into
a metastable state when a compressed gas was filled into the inner space of
the other. The moment of boiling-up was observed visually. The results of
measurements are compared with calculations employing the homogeneous
nucleation theory in Table 3.7. In experiments on HeII no abrupt cavitation
effect was discovered. The detachment of a liquid from the bellow walls took
place practically at the moment of application of a tensile stress. The authors
of Ref. [194] conclude that if in HeII a negative pressure was realized, its value
did not exceed 0.03 MPa.

Experiments on cryogenic liquids were continued by Beams [195, 196]. In
these experiments [195], use was made of the centrifugal method. The limit-
ing values of the tensile strengths of liquid nitrogen, oxygen, argon, and he-
lium were investigated by applying inertial forces to them. A U-shaped glass
tube was immersed into a Dewar flask with the liquid to be investigated. The
forces that were stretching the liquid developed during tube braking. The
moment of cavitation was registered visually or with a carbon resistor (HeII).
The results of measurements are given in Table 3.7. The reproducibility of the
data obtained was ±0.1 MPa for nitrogen, oxygen, argon and ±0.003 MPa for
helium. Changing from a glass to a metal (stainless steel) tube did not affect
the value of the cavitation strength of HeII. All attempts of beams to determine
where—at the liquid–glass interface or in the volume of a stretched liquid—its
initial break takes place, did not give an unambiguous answer.

The cavitation strength of liquid helium was also investigated using the
methods of spouting [197] and osmotic pressure [198]. In Ref. [197], the tensile
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stress dependence of the mean lifetime of HeII is determined at a temperature
of 0.85 K (τ̄ = 100–600 s, V � 1 cm3). In the method of osmotic pressure, the
measuring device was a system of two cells, one of which contained 4He to
be investigated, the other, a solution of 4He–3He [198]. The cells were con-
nected by a capillary, practically impermeable to the light helium isotope. The
stretch was created at the expense of directed diffusion of 4He into the solu-
tion of 4He–3He. In analyzing the results of their experiments, the authors
of Ref. [198] came to the conclusion that the main reason for the discrepancy
between the homogeneous nucleation theory and experiment is the radiation
background and cosmic radiation. Ref. [202] mentions the high sensitivity of
stretched HeII to vibrations of the measuring device.

In the 1960s-1970s, much work was done on investigating the cavitation
strength of superfluid helium applying acoustic methods [200, 203–209]. The
first experiments [203–205] already revealed the dependence of the value of
the registered breaking load on the methods employed to register the initial
moment of the cavitation process. The pressure in an expansion wave corre-
sponding to the appearance of a cavitation noise in a number of experiments
was an order of magnitude lower than that required for the generation of vis-
ible bubbles [204, 209]. Some authors [203, 207] noted a cavitation noise even
at positive pressures. In all the first papers on acoustic cavitation in liquid
helium, the obtained stretches were much smaller than both the theoretical
values and the values achieved in quasistatic experiments [195–198].

Experimental data from Refs. [194–198,203–209] most probably support het-
erogeneous cavitation as the mechanism of nucleation in cryogenic liquids.
All the attempts to remove from the system under investigation possible com-
pleted and easily activated boiling-up centers did not lead to positive results.
The idea of realizing homogeneous cavitation in HeII based on the ideal wet-
tability of practically all solid materials with this substance did not prove to
work either. The strategy adopted in subsequent papers [199, 210–213] was
focused on an achievement of homogeneous nucleation in a stretched liquid
not at the expense of removing possible cavitation centers from a liquid, but
by means of their neutralization in the phase-transition shock regime. For
this purpose, focused acoustic fields were used making it possible to separate
the cavitation zone from the converter walls and reduce its volume to (λ/2)3,
where λ is the wavelength of an acoustic wave.

Acoustic vibrations in a liquid were generated and focused by a hemispher-
ical piezoelectric radiator, which operated at frequencies from 500 kHz to
1 MHz [199,213] (Fig. 3.27). The piezoradiator (1) was excited by a radio-wave
pulse with a duration of about 1 ms. The initiation of cavitation was registered
with the help of a helium–neon laser. A laser beam was focused by an opti-
cal lens (2) on the cavitation zone. The intensity of transmitted or scattered
light was measured by a photodiode (3). The piezoradiator was mounted in
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Fig. 3.27 Schematic diagram of a piezoradiator with a system of
recording the initiation of cavitation.

a helium bath, the temperature of which was changed by the pumping out of
vapors [199, 210, 211]. In Refs. [212, 213] a cell with 4He was used cooled by
3He vapors and capable of withstanding pressures up to 2 MPa.

The main !difficulty in investigating cavitation with the help of focusing
acoustic fields consists in the determination of the pressure in the liquid at the
moment preceding the cavitation initiation. The authors of Refs. [199,210,211]
used two approaches for its evaluation. First, the pressure was calculated by
data on the emitted power, the ultrasound absorption factor, and the piezora-
diator geometry. The error of determination of the pressure amplitude in this
case was ±10%. Second, the amplitude of the stretching pressure in the piezo-
radiator focus was found by light diffraction on the ultrasound lattice created
by acoustic vibrations. Up to temperatures of about 3 K, both methods gave
sufficiently consistent results. At higher temperatures, subboiling of the liq-
uid at the inner surface of the piezoradiator could be observed. It resulted in
a screening of the radiating surface by the vapor phase and disagreement in
pressure evaluations.

At rates of ultrasound vibrations in the range f = 500–1000 kHz, character-
istic times of liquid stretch are τ̄ � 0.2–0.5 µs. The volume of the cavitation
zone is V � (λ/2)3 = 10−5 cm−3. Hence for the nucleation rate, we have
J = (τ̄V)−1 � 1018 m−3 s−1. This value should be regarded as a lower esti-
mate. An upper estimate may be obtained from data on the acoustic energy
absorbed by vapor bubbles in the time from the initiation of nucleation till the
moment when the bubble size becomes comparable with the length of a trans-
mitted light wave. Calculations made in Ref. [210] for the nucleation rate in
this case resulted in a value of J � 1025 m−3 s−1.
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Fig. 3.28 Limiting stretches of 4He. 1: experimental data [211];
2: [212]; 3: [213]; 4: [214]; 5: [215]. A, B, D: classical nucleation the-
ory employing the macroscopic approximation, for J = 10−9 m−3 s−1;
108; 1021, respectively. The dashed-dotted curve shows the spinodal; ps
is the binodal.

By Brodie’s group [199, 210, 211], acoustic cavitation in liquid helium-4 was
investigated in the temperature range 1.6–4.2 K (Fig. 3.28). At the lower
boundary of the temperature interval, the maximum value of the stretching
pressure was −0.85 MPa. The data from Refs. [199,210,211] are in good agree-
ment with the classical homogeneous nucleation theory when the macroscopic
surface tension is used in the computations. Xiong and Maris [212] repeated
the experiments of Brodie’s group using similar equipment and bringing the
lower boundary of the temperature range under investigation down to 0.8 K.
According to these authors [212], the maximum stretches achieved for super-
fluid helium did not exceed 0.3 MPa (see Fig. 3.28).

Petterson, Balibar, and Maris [213] are inclined to see the reason for such
great disagreement between two identical experiments in the difficulties of
evaluating the pressure at the moment when cavitation starts. In their exper-
iments on acoustic cavitation in 4He, they gave up evaluations of breaking
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loads and investigated the statistic laws of cavitation depending on the tem-
perature (∆T = 0.8–1.5 K) and the value of the voltage supplied to the piezo-
radiator.

The probability, W1, of a break-up of the liquid was determined in a series
of one hundred attempts to excite cavitation at given values of temperature,
the amplitude of voltage, Um, on the piezoradiator, and the duration of the
exciting radio-wave pulse. The temperature dependence of W1 for four val-
ues of Um is given in Fig. 3.29. On the basis of Eqs. (3.73) and (3.75) for the
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Fig. 3.29 Probability of cavitation in liquid 4He as a function of the
temperature at several voltage amplitudes on the piezoradiator [213].
1: Um = 23.20 V; 2: 22.76; 3: 22.27; 4: 21.85.

probability of initiation of cavitation in the volume V in the time τ, one can
write

W1 = 1 − exp
[
−Vτ J0 exp

(
− W∗

kBT

)]
, (3.124)

where J0 is the pre-exponential factor in the expression for the stationary nu-
cleation rate,

J = J0 exp
(
− W∗

kBT

)
, (3.125)

and W∗ is the height of the energy barrier corresponding to the pressure of the
beginning of cavitation in the volume, V.

Within the cavitation zone, the pressure is a complex function of the spa-
tial, r, and time, τ, coordinates. There is a certain minimum pressure, pmin,
achieved in each half-period of an acoustic wave. Assuming that it happens
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at moment τ = 0 at point r = 0, then in the vicinity of pmin, where the nucle-
ation work, W, differs from W∗ by no more than kBT, one can write [213]

p(r, τ) � pmin

(
1 − 2π2r2

3λ2

)(
1 − 2π2τ2

T2∼

)
, (3.126)

where T∼ is the period of an ultrasound wave in a liquid.
Taking in a first approximation the pre-exponential factor, J0, independent

of pressure and the activation energy, W∗, independent of temperature, the
latter justified by a very weak temperature dependence of the surface tension
of superfluid helium (in the interval from 0.95 to 1.13 K variations of σ do not
exceed 1%), then we have for the distribution function of expectation times of
appearance of a cavitation center in the piezoradiator focus

W1 = 1 − exp
(
−N∼

∫
dV

∫
Jdt

)
, (3.127)

where N∼ is the number of half-periods of stretch in a radio-wave pulse, and
after substitution of Eqs. (3.125) and (3.126) into Eq. (3.127) and integration we
obtain

W1 = 1 − exp

[
− 33/2N∼λ3T∼(kBT)2 J0

4π2(d ln W∗/d ln ∆p)2W2
min

exp
(
−Wmin

kBT

)]
. (3.128)

Equation (3.128) makes it possible to estimate the values of J0 and Wmin
by experimental data on W1. In the case of spontaneous cavitation in HeII
the derivative d ln W/d ln ∆p � 7. According to the theory of cavitation for
classical liquids developed by Fisher [216], J0 = J′0T. The authors of Ref. [213]
extended this result to superfluid liquids, and in the temperature range 0.95–
1.13 K they obtained the following values: J0 � 1031–1033 m−3 s−1, Wmin �
(27–33)kBT. For superfluid helium (T < Tλ), the thermofluctuation theory
gives [101]

J0 = ρ′
(

4kBTσρ′

m∆pn

)1/2

, (3.129)

where m is the mass of the helium atom. According to Eq. (3.129), J0 � 6.5 ×
1039 m−3 s−1. If we assume that thermal phonons are responsible for pressure
fluctuations in HeII [213], then

J0 =
νR

τ3
R

=
(3kBT/h̄)4

C3 . (3.130)

Here, νR is the effective frequency, λR = h̄c/3kBT is the effective wavelength
of a thermal phonon, and C is the sound velocity. At T = 1 K, from Eq. (3.130)
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we have J0 = 2 × 1036 m−3 s−1. Thus, the values of J0 obtained on the ba-
sis of experimental data are underestimated with respect to their theoretical
evaluations by five-seven orders of magnitude, a fact that in the opinion of
the author of Ref. [213] considerably exceeds the error of determination of the
pre-exponential factor (one or two orders) from Eq. (3.128). The height of the
activation barrier, Wmin, also turns out to be underestimated by approximately
two or three times.

An attempt to obtain absolute values of the limiting tensile strength for
4He in acoustic experiments was made by Caupin and Balibar [215]. The au-
thors [215] measured threshold cavitation stresses U∗1/2 (stresses correspond-
ing to W1 = 1/2) depending on the static helium pressure in a cell. The upper
boundary of the cavitation threshold has been evaluated employing the as-
sumption that the amplitude of a sound wave in the cavitation zone is propor-
tional to the voltage supplied to the radiator, the sound absorption in helium
is absent, and the piezoradiator characteristics are independent of the voltage
supplied. In this case, the voltage of the cavitation threshold is a linear func-
tion of the static pressure. Extrapolation of this dependence into the region
of negative pressures to the value of U∗1/2 = 0 gives the upper boundary of
the cavitation threshold. The lower boundary of the limiting tensile strength
for 4He was calculated through the characteristics of the acoustic piezoradia-
tor and the properties of liquid helium. The results are presented in Fig. 3.28.
The discrepancies between the two means of evaluating pn are approximately
0.25 MPa.

Despite the apparently good agreement of experimental data on the cavita-
tion strength of liquid helium with the homogeneous nucleation theory (see
Fig. 3.28), a number of factors (differences in the values of the pre-exponential
factor, the work of nucleus formation, etc.) make it impossible to draw an
unambiguous conclusion about the nucleation mechanism. The authors of
Ref. [217] estimated the value of the cavitation strength of superfluid helium
in the vicinity of a glass surface, i.e., at a place where one can observe het-
erogeneous nucleation. Despite the fact that helium wets glass excellently, the
focus of acoustic vibrations at points of contact of liquid and glass decreased
the cavitation threshold from ∼ −(0.8–1.0) MPa to −0.3 MPa, and in a num-
ber of experiments even to zero. Another possible reason for a decrease in
the cavitation strength of a superfluid liquid may be nucleation on quantum
filaments or rings, which are capable of producing high-energy particles and
acoustic fields in a quantum liquid. The liquid circulation around a vortex
filament leads to a pressure decrease in the latter and, as a consequence, an
increase in the probability of formation of a cavitation cavity [218]. Correla-
tion between the vorticity and cavitation strength of HeII was experimentally
observed by Finch et al. [219–221].
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If in an incompressible liquid of density ρ′ an infinitely long vortex filament
with a hollow (ρ′ = 0) core of radius, R, is formed, then the energy of the
filament per unit length can be written as [222]

Evor = πR2∆p + 2πRσ +
πh̄ρ′

m2 ln
(

Rmax

R

)
, (3.131)

where ∆p = ps − p � −p and Rmax is the external radius of the vortex, Rmax �
3 nm. The last term on the right-hand side of Eq. (3.131) determines the kinetic
energy of a rotating liquid. At equilibrium dEvor = 0, and from Eq. (3.131) we
have

R
R0

=
−2|p∗vor|

p

[
1 ±

(
R

|p∗vor|
)1/2

]
. (3.132)

Here, the notations R0 = h̄2ρ′/2σm2 and p∗vor = −σ2m2/2h̄ρ′ are introduced.
At p > 0, Eq. (3.132) has only one stable solution (Fig. 3.30). The ra-

dius of the vortex core for very high pressures is approximately equal to
(h̄2ρ′/2pm2)1/2. If p < 0, then along with a solution that is stable with respect
to small perturbations, there also exists a solution which reflects the overcom-
ing of a certain activation barrier by the vortex. When p ≤ 0, the radius of the
vortex core is R � 2σ/|p|, and this solution may by interpreted as the forma-
tion of a bubble on the vortex. The stable and the unstable solution merge at
p = p∗vor, the vortex filament becoming unstable along the whole length with
respect to a radial stretch. The discussed simplified model of the vortex fila-
ment reproduces in a qualitatively correct way the results of more rigorous ap-
proaches based on the van der Waals theory of inhomogeneous systems [222]
and density functional methods [223]. At the absolute zero of temperature,
according to data of Ref. [222], pvor = −(0.6–0.7) MPa holds. According to
Ref. [223], p∗vor = −0.8 MPa. Equation (3.132) gives p∗vor = −1.95 MPa. The
pressure on the spinodal of superfluid helium is psp � −0.95 MPa [224].

The value of the energy barrier, ∆Evor = Emax − Evor, determining the work
of formation of a cavitation cavity on a quantum vortex has been calculated by
Maris in the framework of the van der Waals square gradient approximation
[222]. At all pressures, ∆Evor is smaller than the work of formation of a critical
nucleus in a homogeneous liquid and tends to zero when p → p∗vor. If at
small stretches the shape of a vapor bubble forming on a vortex is close to a
spherical, then with increasing |p| the bubble size along the vortex axis begins
to exceed its diameter, and at p → p∗vor the whole vortex becomes a cavitation
cavity.

If it is granted that in experiments of Petterson et al. [213] cavitation pro-
ceeds on quantum vortices, limiting stretches ∆p � 0.55 MPa correspond to
the cavitation energy Wmin = 30kBT. According to Gibbs’ classical formula,
the work of formation of a critical nucleus at a given pressure is W∗ � 100kBT.
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Fig. 3.30 Radius of a quantum filament in superfluid helium-4 as a
function of pressure [222]. The dashed line corresponds to stable vor-
tices, the full curve to vortices on which the vapor phase originates.

The number of nuclei forming in a unit time on a unit length of a vortex fila-
ment is given by

Jvor = J0,vor exp
(
−∆Evor

kBT

)
. (3.133)

In bulk boiling-up J0 = J0,vorLvor, where Lvor is the length of the vortex fila-
ment per unit volume of a liquid. Using the values of J0 calculated by experi-
mental data [213] and setting

J0,vor =
νR

λR
=

(3kBT/h̄)2

c
, (3.134)

we have Lvor � (1012–1014) m−2. The authors of Ref. [213] suppose that such
high densities of quantum vortices can be realized in experiments on acoustic
cavitation. Thus, densities of vortex filaments of the order of 108 m−2 were
registered in experiments of Schwarz and Smith [225] at intensities of ultra-
sound fields of several milliwatts per square centimeter. The intensities of
acoustic fields in the investigation of cavitation in HeII in Refs. [199, 210, 211,
213] were several Watt per square centimeter.

With respect to the behavior in the transition through the λ-point, in a num-
ber of papers [199,213] the existence of a break point was reported in the tem-
perature dependence of the line of the limiting stretch for liquid helium. If
cavitation in superfluid helium proceeds on quantum vortices, the formation
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boundary of cavitation strength by data of
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of a normal phase is accompanied by the disintegration of vortices with an
abrupt increase in the cavitation strength of helium. This effect was not ob-
served in experiment. The break point observed is more likely to be connected
with the change of helium properties during the transition across the λ-line,
which has an extension in the range of negative pressures. The character of
this extension was discussed by Skripov [226]. The latest data on this problem
are presented in Refs. [227, 228].

Helium-3, a lighter isotope than helium-4, is subject to more considerable
quantum fluctuations. Its molar volume in the liquid phase is large, and the
cohesive forces of the molecules are smaller. The cavitation strength of nor-
mal liquid 3He was investigated in Refs. [229–231]. In experiments, equip-
ment was used similar to that employed in studying acoustic cavitation in
Ref. [232]. A piezoceramic radiator with an internal radius of 8 mm generated
an acoustic pulse with a filling rate of 1 MHz which was focused in a region
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with a linear dimension of the order of 100 µm. Experiments were performed
in the temperature range 40 mK–1 K at a rate of arrival of pulses exciting cav-
itation of 0.2 Hz. In this case, the dissipation connected with the mechanical
vibrations of the radiator and the absorption of the laser beam in the liquid
did not exceed 2 µW. In Refs. [229, 230], only the stochastic laws of cavitation
are investigated. The authors did not reveal any qualitative differences for
3He and 4He in the dependences of W1 on the value of the voltage amplitude
on the piezoradiator and temperature.

In experiments on 3He, Vτ = 1.2 × 10−22 m3 s holds. The uncertainty in
theoretical evaluations of J0 results in differences in the values of the complex
J0Vτ reaching almost two orders (6 × 1014–1.8 × 1016) and small changes in
the value of the nucleation work, W∗. At W1 = 0.5, from Eq. (3.124) for W∗ we
have (34 ± 3)kBT. Caupin and Balibar [231] evaluated the upper, pn,max, and
the lower, pn,min, boundary of the cavitation threshold in helium-3 (Fig. 3.31).
The error of determination of pn,max was ± 0.005 MPa, and that of pn,min was
± 0.015 MPa. The differences between the values of pn,max and pn,min in 3He
are much smaller than those in 4He which is connected with less expressed
nonlinear effects in liquid helium-3. Extrapolation of the values of pn,max and
pn,min to T = 0 gives −0.305 MPa and −0.24 MPa, respectively.

Owing to the fact that experiments on acoustic cavitation in normal 3He
were conducted in the nearest vicinity of the spinodal, in calculating the work
of formation of a critical nucleus in the framework of density functional meth-
ods, the accuracy of determination of the position of the boundary of essen-
tial instability of the liquid phase is of great significance. The first evalua-
tions of the pressure on the spinodal of liquid helium-3 at T = 0 were made
in Refs. [214, 231, 233, 236, 237]. According to data of Maris [214], psp(0) =
−0.309 MPa holds. The author of Ref. [231] obtained psp(0) = −0.314 MPa.

Caupin, Balibar, and Maris [235] paid attention to the fact that the coef-
ficient of thermal expansion of the Fermi liquid changes its sign with de-
creasing temperature and becomes negative in the vicinity of the absolute
zero of temperature. Using the experimental data for the sound velocity of
Roach et al. [238] and the methods of approximating the spinodal described
by Maris [214], they recalculated data for the boundary of essential instabil-
ity of helium-3 in the temperature range 0–0.6 K and obtained a curve with a
minimum at Tmin = 0.4 K and pressure pmin = −0.29 MPa. The line of points
of density maxima of the liquid phase extrapolated from the stable into the
metastable region in (p, T)-coordinates is directed into the point of the spin-
odal extremum.

The presence of a minimum on the spinodal should also affect the tempera-
ture dependence of the limiting stretches of 3He. In the vicinity of the spinodal
and T � 0, Maris [214] presented the pressure dependence of the work of for-
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Fig. 3.32 Temperature dependence of the cavitation strength of 3He.
Dots: experimental data [235], dashed line: calculation by Eq. (3.136)
employing data from Ref. [233], full curve: the same by data for psp
from Ref. [235], ps: binodal.

mation of a critical nucleus as

W∗
k

= β[p − psp(T)]δ, (3.135)

where β is an individual constant of the substance equal to δ = 3/4. A sub-
stitution of Eq. (3.135) into Eq. (3.128) gives the following expression for the
temperature dependence of the cavitation pressure

pn(T) = psp(T) +
[

T
β

ln
(

J0Vτ

ln 2

)]1/δ

. (3.136)

In Fig. 3.32, the results of calculating the cavitation strength of 3He are com-
pared with experimental data [239,240]. It was assumed that J0Vτ = 6× 1014,
β = 47.13. Applying in calculations of pn(T) the values of psp(T) obtained
by Guilleumas et al. [233], one can observe a considerable disagreement of ex-
perimental and calculated data at elevated temperatures. This disagreement
is explained in Ref. [240] as a result of an incorrect approximation of the spin-
odal of 3He performed in Refs. [214, 231, 233, 236, 237, 239]. Application in
Eq. (3.136) of the data for psp(T) of Caupin et al. [235] results in a good agree-
ment between theory and experiment in the whole investigated temperature
range (see Fig. 3.32).

As has already been mentioned (Section 3.8), electrons may form in liquid
4He and 3He bound states in the form of electronic bubbles. Su et al. [241]
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Fig. 3.33 Stability limit for electronic bubbles in liquid 3He. Dots: ex-
perimental data [241], dashed line: calculation without regard for the
gas pressure in an electronic bubble, full curve: results of calculation
taking into account the presence of gas in electronic bubbles.

investigated cavitation on electronic bubbles in liquid helium-3. The design
of the measuring cell and the experimental procedure were similar to those
described in Refs. [229, 232]. Electrons injected into liquid helium lost their
kinetic energy and formed electronic bubbles. Using the probability of ap-
pearance of cavitation W1, which depends on the electrons in the system, the
amplitude of voltage on the piezoradiator was determined for each given tem-
perature, when W1 = 0. This voltage was related to the boundary of stability
of an electronic bubble in the liquid and assumed to determine the value of
the pressure at the boundary of its region of stability, pe.

Since for 3He, the polarization contribution to the excess free energy of an
electronic bubble is too small (see Eq. (3.105)), and the value of the potential
barrier keeping the electron in the cavity considerably exceeds the energy of
the electron, at low temperatures, with no regard for the gas pressure in the
bubble, from Eq. (3.104) we have

∆F =
π2 h̄2

2meR2 + 4πR2σ +
4π

3
R3 p. (3.137)

Hence for the pressure pe at the boundary of stability of an electronic bubble
(∂2∆F/∂R2 = 0) it follows that

pe = −16
5

(
me

10πh̄2

)1/4

σ5/4. (3.138)

With respect to 3He at T = 0, the value of pe = −0.7 MPa is obtained. At
finite temperatures it is necessary to take into account the gas pressure in the
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Tab. 3.8 Limiting tensile strength of liquid argon (J = 107 m−3 s−1), surface tension of critical
nuclei, their radius and the number of atoms contained in them.

T ps pn (MPa) σ (mN m−1) R∗ N ′′∗
(K) (MPa) W∗, σ∞ W∗, σ(R∗) σ∞ σ(R∗) (nm)

95 0.214 −14.78 −12.23 10.71 9.46 1.5 2

105 0.474 −9.43 −8.05 8.39 7.59 1.8 8

115 0.912 −5.16 −4.44 6.20 5.69 2.2 29

125 1.585 −1.67 −1.34 4.12 3.84 2.8 111

135 2.552 1.23 1.34 2.22 2.10 4.0 555

electronic bubble. For 3He, a simplified model of a gas-filled electronic bubble
is suggested in Ref. [241], in the framework of which the dependence pe(T)
has been obtained. The boundary of stability for electronic bubbles in normal
liquid 3He has been determined in the temperature range from 1.07 to 2.5 K
(Fig. 3.33). Experimental data are in good agreement with the results of theo-
retical calculations if the latter take into account the presence of the gas phase
in an electronic bubble. Equation (3.137) presupposes that the electron in a
bubble is in the ground state. A light wave may excite still higher energy lev-
els of the electron in the cavity, which results in a decrease in the threshold
value of pe. These problems are discussed in Refs. [242–244].

At low temperatures, superfluid helium-4 and normal helium-3 are de-
generate quantum liquids, and perhaps some peculiarities in the cavitation
strength of these liquids have to be expected which are not typical of classical
cryogenic systems. However, reproducible experimental data in this respect
are not yet available. Experiments on superheated (p > 0) cryogenic liq-
uids give an indication of a rise in activity of completed and easily activated
evaporation centers with decreasing pressure [113]. This effect hinders both
the performance of quasistatic experiments and the realization of the shock
phase-transition regime in the region of negative pressures.

Comparing the predictions of the homogeneous nucleation theory and ex-
periment in the region of negative pressures, one should take more care about
the approximations used in its construction. The classical nucleation theory
is based on the Szilard–Farkas schema, according to which the formation of a
viable nucleus is a chain of random acts of evaporation and condensation of
molecules. Since at negative external pressures a critical bubble is practically
empty, such an approach causes difficulties in consideration of cavitation in a
highly stretched liquid. This drawback is absent in a model which considers
the formation of a nucleus as the result of a single fluctuation [245].

A decrease in temperature leads to a decrease in the critical bubble radius (J
= const). Table 3.8 presents characteristic sizes of critical bubbles in stretched
liquid argon. The cavitation strength of argon has been calculated by the clas-



138 3 Attainable Superheating of One-Component Liquids

sical nucleation theory under the assumption that the bubble growth is limited
by the viscosity forces for two approaches of determining the work of nucleus
formation, employing either the Gibbs formula in a macroscopic approxima-
tion (σ = σ∞) or the Cahn–Hilliard formula, which takes into account the
dependence σ = σ(R∗). At the temperature of the triple point, the discrepan-
cies between σ∞ and σ(R∗) reach 15%. This deviation results in differences in
the values of the cavitation strength exceeding 20% [113]. It should be men-
tioned, however, that at low temperatures the thickness of the nucleus inter-
facial transition layer is comparable with the radius of molecular interaction.
This coincidence leads to restrictions in the applicability of the Cahn–Hilliard
approach based on the square-gradient approximation of the van der Waals
capillarity theory and requires to take into account higher order terms in the
expansion with respect to the gradients in calculations of the work of nucleus
formation [184, 246].

3.11
Attainable Superheating of Liquid Argon at Negative Pressures

As already mentioned in Sections 3.7 and 3.10, at temperatures below ∼ 0.9Tc

homogeneous nucleation proceeds at an appreciable rate only when a liquid
is stretched (p < 0). Numerous attempts [193, 196] to achieve stretches pre-
dicted by the homogeneous nucleation theory in simple classical liquids were
not successful. A considerable breakthrough was achieved in experiments on
helium isotopes [199, 210–213], for which tensile strengths close to theoretical
predictions were obtained. However, the realization of the method of bringing
acoustic vibrations into focus used in Refs. [199, 210–213] cannot be extended
to classical cryogenic liquids without a considerable elaboration as their limit-
ing stretches at 0.5Tc are approximately 20 times larger than those of helium-4.

Considerable tensile stresses in liquids are realized when a pressure wave is
reflected from the free surface of the liquid [248]. Rupture tensile stresses close
to theoretical predictions were achieved in experiments on the cavitation of or-
ganic liquids in an expansion wave at nucleation rates J > 1010 m−3 s−1 [249].
To advance into a region of higher values of nucleation rate, a combination
of two dynamic methods was suggested [250], i.e., pulse stretching in an ex-
pansion wave and pulse liquid superheating on thin wire heaters. Later on
this method was used for investigating limiting superheats of liquid argon at
negative pressures [251]. The schematic diagram of the setup of the measur-
ing chamber is given in Fig. 3.34. The liquid under investigation is filled into
a cylindrical chamber (8) with a diameter 40 mm and volume ∼ 80 cm3. The
liquid free surface is located at a distance of 3–5 mm from the chamber cover.
A platinum wire (2) of a length 1 cm and a diameter 20 µm is fixed along the
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Fig. 3.34 Schema of a setup determining the attainable superheating
of argon on a platinum wire in an expansion wave.

chamber axis with the help of lead-in wires (1) and immersed in liquid argon
to a length of 5–10 mm. A pressure pulse in the liquid was created with the
help of a bronze membrane (3), which is the chamber bottom. The membrane
is excited when a low-inductance capacitor is discharged onto a flat coil (4).
This setup was calibrated with the help of a pulse pressure transducer which
served as a substitute for the platinum wire. During calibration the value of
the pressure-pulse amplitude was determined as a function of the capacitor
supply voltage. The error of pressure determination in stretching a liquid is
∼ 5%.

The chamber was thermostated in a massive copper block (7) at tempera-
tures close to that of the normal boiling of the liquid under investigation. The
block-chamber system was located in a vacuum jacket (6) of stainless steel.
Cooling was realized with the use of liquid nitrogen poured into a metal de-
war (5). The temperature of the liquid in the chamber was measured by a
platinum resistance thermometer and controlled by the pressure of saturated
vapors over the liquid under investigation. At a given voltage across the ca-
pacitor C (U � 5–10 kV, C � 3 µF), a signal from the generator (5) is supplied
to the unit of control of its discharge (6) (Fig. 3.35). Simultaneously, the os-
cillograph (12) was started up. The capacitor discharge switched on the pre-
scribing generator (7), the output pulse of which controlled the operation of
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a square-wave generator (8). This generator formed a square heating pulse
on a platinum wire (1) with a duration of 15 to 100 µs. The wire is incorpo-
rated in a bridge measuring circuit (9). A high-frequency signal caused by the
boiling-up of a liquid on the wire was separated with the help of a differen-
tial amplifier (10), a comparator (11) and supplied to the oscillograph (12). A
pulse from the generator (7) was synchronized in such a way that the heating-
up of the platinum wire took place after the reflection of a pressure wave from
the liquid free surface. The amplitude of the heating pulse increased smoothly
till the moment of appearance of a boiling-up signal on the oscillogram. The
balance of the bridge (9) determined the wire temperature at the moment of
appearance of a boiling-up pulse.
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Fig. 3.35 Schematic diagram of the experimental setup.

In the regime of liquid pulse heating, up to the process of explosive boiling-
up the rate of increase of the temperature of the heater is constant in a first ap-
proximation (Ṫ0 = const) and is calculated taking into account the heat transfer
into the liquid. The thermal effect caused by the heat insulation of parts of the
heater and the heat transfer due to evaporation is added to the heat balance
at the stage of development of explosive boiling-up. As a result, the rate of
heating-up of a cylindrical heater registered at time t, counted from the begin-
ning of the heating-up, is an integral function of a complex of thermophysical
and geometrical characteristics at the liquid–vapor–heater interface,

Ṫ0 − Ṫ(t) = F
{

q′(t), S(t), L(t, τ), q̄(τ), R(τ), J(t), . . .
}

, (3.139)

where q′(t) is the density of the heat flow into the liquid, S(t) is the relative
heat-insulating area of the heater, L(t, τ) is the distribution of the wetting-line
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Fig. 3.36 Attainable superheating of liquid argon. Dots show exper-
imental data, the dashed line the results of computations performed
with Eqs. (2.112), (3.52), and z0 = 1 in a macroscopic approximation
(J = 1026 m−3 s−1), and the dotted line shows the same taking into
account the size effect; ps: binodal, psp: spinodal.

length in the time of its existence, τ, related to the unit of the heater area,
q̄(t) is the heat-flow rate related to the unit of the wetting-line length existing
for the time τ, R(τ) is the bubble growth law, and J(t) is the nucleation rate
at the heater temperature. The functions S(t), L(t, τ), q̄(τ) are calculated in
the framework of the general theory of heat removal from a rapidly heated
wire into a boiling-up liquid [252]. The form of the function q̄(τ) at limiting
superheatings depends on the regime (critical or presound) of the vapor flow
at the surface of an evaporating bubble. It is assumed that the vapor radius
varies according to the power law R(τ) = φτκ , where for negative pressures
the values of φ and κ are determined by the Rayleigh formula. The solution
of Eq. (3.139) makes it possible to obtain an approximate analytical expression
for the rate of spontaneous nucleation observed in an experiment and to relate
the rate of increase in the heater temperature to the slope of the increase of the
nucleation rate, GT = d ln J/dT. Methods of measuring the wire temperature
by a boiling-up signal and determining the nucleation rate are described in
Ref. [11].

Figure 3.36 presents the results of measuring the attainable superheating
temperature for liquid argon at positive and negative pressures. The data ob-
tained refer to different values of the nucleation rate. The averaged (effective)
value of the nucleation rate over all the measurements is J = (1 ± 100) ×
1026 m−3 s−1. In experiments at atmospheric pressure on the pulse heating of
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Fig. 3.37 Surface tension (referred to the surface of tension) of argon
critical bubbles versus curvature of the surface of tension at differ-
ent temperatures. 1: T = 140 K, 2: 120, 3: 90. The dashed line corre-
sponds to the reduced height of the activation barrier (Gibbs number)
G∗ = 70, the dotted line to G∗ = 20.

liquid argon on a platinum wire, the achieved temperature was about 2.5 K
higher than that in quasistatic experiments (J = 107 m−3 s−1) [128]. In this
case, a superheating 3 K higher than that recorded in the experiment of the
maximum superheating corresponds to the spinodal. A decrease in pressure
to p = −8.0 MPa increases the discrepancy between the superheating temper-
ature experimentally recorded and the temperature of the spinodal to 4.5 K
(Fig. 3.36).

The results of calculating the temperature of attainable superheating (J =
1026 m−3 s−1) for liquid argon by the classical homogeneous nucleation the-
ory (Eqs. (2.112) and (3.52)) in a macroscopic approximation with the use of
the data on the surface tension from Ref. [153] are presented in Fig. 3.36 by
a dashed line. In the whole pressure range investigated, a systematic “un-
derheating” of liquid argon with respect to theoretical values of Tn can be
observed. The magnitude of the “underheating” increases with decreasing
pressure, and at p = −(7–8) MPa reaches 2–3 K. Since the basic quantity de-
termining the value of Tn in Eq. (2.112) is the work of formation of a critical
nucleus, which is directly proportional to the cube of the surface tension at the
liquid–vapor bubble interface, it can be assumed that the recorded discrep-
ancy between theory and experiment is first of all connected with neglecting
theory of the size effect with respect to the surface tension.

In Fig. 3.36, a dotted line shows the results of calculating the temperature
of attainable superheating (J = 1026 m−3 s−1) for argon by the classical nu-
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Fig. 3.38 Theoretical dependence of the nucleation rate (1) and
Gibbs’ number (2) in superheated liquid argon at a pressure p =
0.5 MPa (Ts = 105.9 K) on temperature.

cleation theory (Eqs. (2.112) and (3.52)) taking into account the size effect of
nucleation in the framework of the Cahn–Hilliard approach [182]. As can
be seen in Fig. 3.36, the abandonment of the macroscopic approximation im-
proves the agreement between theory and experiment. Another important
argument in favor of the presence of size effects during nucleation in a region
of negative pressures is the value of the derivative GT = d ln J/dT, which
is recorded in an experiment irrespective of the value of J. According to
Eq. (3.93), the value of this derivative is mainly determined by the tempera-
ture dependence of the Gibbs number. With increasing superheating temper-
ature and decreasing pressure, the value of GT decreases. If in liquid argon
at pressures close to atmospheric and J � (101–1010) m−3 s−1 the derivative
GT � 20, which corresponds to an increase in the nucleation rate of about nine
orders with an increase in the superheating of 1 K, then at the same pressure
and J � 1020 m−3 s−1 the value of GT is two times lower.

A decrease in temperature is accompanied by an increase in the width of
the metastable region in pressure, and consequently in the pressure difference
inside and outside a critical bubble. This effect leads to a considerable reduc-
tion of the dimensions of critical bubbles at temperatures close to the triple
point as compared with the vicinity of the critical point. Thus, if in liquid ar-
gon at T/Tc = 0.95 (T � 143 K) and J = 107 m−3 s−1 the radius of a critical
bubble is 6.4 nm, and at J = 1026 m−3 s−1 we have R∗ � 3.4 nm, at T/Tc = 0.6
(T � 90 K), the radii of critical bubbles for the indicated values of the nu-
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cleation rate are 1.4 and 0.9 nm, respectively. At low temperatures the vapor
density is low, therefore critical bubbles in a stretched liquid prove to be prac-
tically empty. All these properties give rise to a number of difficulties in the
theoretical description of the nucleation process at negative pressures.
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Fig. 3.39 Derivative GT as a function of pressure at J = 1026 m−3 s−1.
Rectangles present experimental data, and their height defines the
error of determination of GT. A dashed line shows calculations by the
homogeneous nucleation theory in a macroscopic approximation, and
the full curve gives the same dependences taking into account σ =
σ(R∗).

Figure 3.37 presents the results of calculating the size dependence of the
surface tension of critical bubbles for argon in the framework of the Cahn–
Hilliard approach (see Section 3.9). The interface curvature leads to a mono-
tonic decrease in the surface tension. The size effect increases with decreasing
temperature. Some quantitative characteristics of the nucleation process for
argon are given in Table 3.8. The cavitation strength of argon (J = 107 m−3 s−1)
has been calculated by Eqs. (2.112) and (3.52) for the cases when the work of
formation of a critical nucleus has been determined by the Gibbs formula,
Eq. (3.8), under the assumption that σ = σ∞ and by the Cahn–Hilliard for-
mula, Eq. (3.11). At the temperature of the triple point, discrepancies between
σ∞ and σ(R∗) reach 15%. This difference leads to deviations in the values of
the cavitation strength exceeding 20% [113].

Figure 3.38 presents J versus the temperature and the Gibbs number on a
semilogarithmic scale. Data on the nucleation rate have been obtained from
calculations via Eqs. (2.112) and (3.52) in a macroscopic approximation. The
existence of saturation at high values of J[lg J → lg(ρB) ≈ 38] is connected
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with the exhaustion of places for the formation of bubbles and the finite rate of
molecular exchange processes. In the saturation region, the results of calcula-
tion are known to be inaccurate as the theory presupposes that nuclei bubbles
have no effect on each other, and the mean temperature and pressure do not
change.

The baric dependence of the derivative GT obtained by experiment and cal-
culated in the framework of the classical nucleation theory with and with-
out taking into account the size effect is shown in Fig. 3.39. It follows from
Fig. 3.39 that neglecting the size effect in nucleation theory underestimates
the value of GT as compared with experiment by 60% at p = −8.0 MPa
and by 20% at p = −3.0 MPa. Taking into account the size effect in the
Cahn–Hilliard approximation improves agreement between theory and ex-
periment. At p > −6.5 MPa, the discrepancies do not exceed the experimental
error. At p < −6.5 MPa, underestimates in the calculated values of GT may
be connected with neglecting higher order gradient terms in the functional,
Eq. (2.36). As is shown in Refs. [246, 247], the Cahn–Hilliard square-gradient
approximation is valid at temperatures exceeding (0.8–0.85)Tc.

3.12
Initiated Nucleation

Phase transitions often proceed in the presence of external factors of different
physical nature (radiation, ultrasonic, electromagnetic, and some other fields).
Such factors usually initiate the nucleation process, but in principle the effect
of its suppression is not excluded either. In the course of initiated boiling-up
of a liquid, the potential barrier that separates the stable from the metastable
state of the system can be overcome, at least, partly at the expense of the en-
ergy introduced into the system, which may considerably exceed the level of
thermal fluctuations. Despite the fact that in most cases the initiation mecha-
nism is known, its inclusion into the traditional schema of nucleation kinetics
proves to be a rather complicated task. Besides, external fields may have in-
direct effects on superheated liquids, giving rise to boiling-up centers such as,
for instance, electronic and positronic bubbles in some quantum liquids, vor-
tex lines and rings in superfluid helium. Commonly, a superheated liquid is
exposed to the influence of numerous factors which are difficult to control, and
it may be hard to distinguish the main source of nucleation initiation. One can
perform a check of the activity of different factors in the easiest way by acting
on a system purposefully with one or another initiating the nucleation factor.

The sensitivity of a superheated liquid to ionizing radiation was first
demonstrated by Glaser [253, 254]. This phenomenon has not only found
a direct application in nuclear physics (the development of bubble chambers),
but has also allowed the extension of the notion of possible nucleation centers
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in superheated liquids. All bodies on the surface of the Earth are exposed to
the action of cosmic radiation and natural radiation background. On aver-
age, one ionizing particle of secondary cosmic radiation (µ-mesons, electrons)
passes through 1 cm2 of the Earth’s surface every minute [101]. In interacting
with the atoms of the substance under consideration, high-energy particles
knock electrons out of them. If the energy of an expelled electron is suffi-
ciently high, in subsequent collisions with atoms it may cause their ionization
again. Such an electron is commonly called a δ-electron [173]. The energy of
δ-electrons is efficiently transformed into heat. Calculations show [173] that
in the course of braking of a δ-electron in a time of the order of ∼ 10−10 s
over a distance of ∼ 10−6 mm an energy of about 100 eV is released, which
proves to be sufficient for a critical nucleus to form on such a thermal spike.
The sizes of bubbles initiated by high-energy particles depend on the thermo-
dynamic parameters and molecular properties of the liquid and the energy of
the δ-electrons. Since under actual conditions one does not generally manage
to completely eliminate cosmic radiation and the natural radioactivity of ma-
terials, the flux, Jexp, measured in experiments on nucleation kinetics is the
superposition of spontaneous, J, and initiated, Ji, nucleation fluxes. Owing
to a very strong dependence of J on the thermodynamic state variables, the
radiation background manifests itself in a strong deviation of experimental
and theoretical nucleation rate curves.
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Fig. 3.40 Temperature dependence of the mean lifetime of super-
heated liquid argon on an isobar p = 0.36 MPa. 1: under natural
conditions; 2: in the field of γ-radiation [128].
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The first systematic investigations of the action of γ-radiation on the
boiling-up kinetics of superheated liquids were made by Sinitsyn and Skripov
[9, 10, 255]. Figure 3.40 shows the temperature dependence of the mean life-
time of superheated liquid argon under natural conditions and in the field of
γ-radiation (60Co of activity 0.2 mg eq. Ra) [128]. An increase in the intensity
of ionizing radiation reduces the expectation time of boiling-up. In the vicinity
of the boundary of spontaneous boiling-up in a number of liquids, a plateau
can be observed (see Figs. 3.12 and 3.13), which is connected with the hundred
percent probability of origination of a supercritical bubble on each thermal
spike created by an ionizing particle [255]. In phenomenological initiation
models [9, 256], they usually postulate the energy distribution law of thermal
spikes and the probability of origination of bubbles on them. Experimental
data on the mean lifetime of a superheated liquid on one isobar (isotherm)
make it possible to determine the free parameters of such a distribution and
calculate the rate of initiated nucleation. The coincidence of the character of
the temperature (pressure) dependence of Ji with experimental data on other
isobars (isotherms) is regarded as a corroboration of the initiation mechanism.
At present, there is no full confidence that the action of ionizing radiation is
the only reason for discrepancy between theory and experiment at small nu-
cleation rates. The similarity of temperature dependences of τ̄ and J obtained
under natural conditions and in the presence of a γ-source indicates only the
undeniable relation between these phenomena.
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Fig. 3.41 Nucleation rate in stretched liquid xenon under natural con-
ditions (light marks) and in an ultrasonic field (dark marks) with an
amplitude, pm = 0.1 MPa, at different initial pressures. 1, 2: p0 =
0.99 MPa; 3, 4: 1.98 [258]. Dashed lines show calculations by the ho-
mogeneous nucleation theory taking into account the dependence
σ(R). In the inset one can see the mean lifetime as a function of the
amplitude of voltage across the piezoradiator, T = 255.8 K.
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If under the action of radiation the boiling-up of a superheated liquid is the
result of a local heat release, in acoustic fields the formation of nuclei is initi-
ated by the creation of tensions in a liquid at moments of pressure lowering.
Apart from spontaneous nucleation, an acoustic wave may initiate the activ-
ity of completed boiling centers on various accidental inclusions. Owing to
a rectified heat transfer, vapor bubbles forming in such centers in a periodic
pressure field have a possibility of growing [101]. Let a superheated liquid
be under pressure p0. At the moment of time τ = 0, periodic pulsations of
pressure, p∼(τ), with an amplitude, pm(pm � ps − p0), and frequency, f , are
excited in the liquid. It is assumed that pressure pulsations do not disrupt the
stationarity of the bubble size distribution. Far from the critical point, this con-
dition is fulfilled if f ≤ 109 Hz. In an ultrasonic field, the rate J is a function
of the pressure p = p0 + p∼(τ). For the simplest case of a periodic process
described by

p∼(τ) = (−1)i+1
(

4τ

T∼
− 2i − 1

)
pm, (3.140)

where T∼ is the period of oscillations and i = E(2τ/T∼) is the integral num-
ber of half-periods, the density of probability of appearance in a superheated
liquid of the first critical nucleus, Eq. (3.76), may be presented as [257]

w1(τ) =
(J+ − J−)V

2Gp pm
exp

(
− (J+ − J−)V

2Gp pm
τ

)
. (3.141)

Here, J+ and J− are the nucleation rates at pressures p0 + pm and p0 − pm,
respectively. In an adiabatic process, we get

Gp =
2G(p0)
ps − p0

+
∂G
∂T

∣∣∣∣
p

∂T
∂p

∣∣∣∣
s

. (3.142)

According to Eq. (3.141), in weak fields of variable pressure, cavitation is a
Poissonian process. When expanding the expression for the nucleation rate,
Eq. (2.112), into a series in terms of p∼ and limiting ourselves to the first term
of the expansion, we have

J+ − J− � 2J(p0)sh(Gp pm). (3.143)

For the mean expectation time of the first nucleus, from Eqs. (3.72), (3.141),
and (3.143) we get

τ̄ = τ̄0
Gp pm

sh(Gp pm)
, (3.144)

where τ̄0 = [J(p0)V]−1 is the mean lifetime of a superheated (stretched) liquid
in the absence of a variable pressure field. The change in the form of the field
p∼(τ) does not alter the pattern of the phenomenon examined.
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Fig. 3.42 Temperature dependence of the mean lifetime of super-
heated liquid oxygen at an initial pressure p0 = 1.171 MPa under
natural conditions (1) and ultrasonic field (2: Um = 10 V, 3: 15) [258].
The dashed line shows calculations by the homogeneous nucleation
theory in a macroscopic approximation.

In Refs. [257, 258], the method of measuring the lifetime is used to inves-
tigate the boiling-up kinetics of superheated liquid xenon and oxygen in an
ultrasonic field of frequency f = 700 kHz. A liquid was superheated in glass
cells. Ultrasonic oscillations were excited by a piezoceramic radiator at the
moment of the transfer of the liquid into the metastable state. The incorpo-
ration of an acoustic field increased the probability of nucleation (Fig. 3.41).
The temperatures of attainable superheating for liquid xenon decreased by
approximately 0.5 K when a variable voltage with an amplitude Um = 52
V was supplied to the piezoradiator. The amplitude dependence of the mean
lifetime is shown in the upper-left corner of Fig. 3.41. As in the case of the qua-
sistatic pressure release, histograms of time distribution of boiling-up events
at ultrasonic cavitation were of the Poissonian form. The small volume of the
superheated liquid (V � 80 mm3) made it impossible to measure the ampli-
tude of the sound pressure. The value of pm was determined from Eq. (3.144)
by experimental data on the mean lifetime of a cavitating liquid. For liquid
xenon at Um = 52 V and J = 107 m−3 s−1 it gives pm � 0.1 MPa. From the
obtained value of pm and experimental data on d ln J(p0)/dT, the nucleation
rate was determined in the whole temperature range investigated.

The mechanism of acoustic cavitation in the temperature range where the
liquid boiling-up may be initiated by high-energy particles is more compli-
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cated. The result of the action of acoustic fields depends on the radiation
resistance of the liquid. As is seen from Fig. 3.42, the increase of the ampli-
tude of acoustic oscillations in liquid oxygen leads to a stronger decrease of
τ̄ in the proximity to the boundary of spontaneous boiling-up of the liquid,
where experimental isobars have a characteristic plateau. If we assume, as
has been mentioned above, that every ionizing particle on the plateau creates
a supercritical-sized vapor bubble, it is difficult to understand the mechanism
of the nucleation initiation by ultrasound. It is quite possible that the character
of the dependence τ̄(T) observed is a result of the joint action of the external
radiation background and weak spots at the liquid–glass boundary.
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Fig. 3.43 Thermograms of experiments on pulse heating of 4He on
a bismuth monocrystal under natural conditions (1) and under the
action of a light pulse of duration 24 µs and intensity 24 mW cm−2

(2–5) [259].

The effect of a strong initiating action of background radiation was revealed
in investigations of the superheating of liquid 4He on bismuth monocrys-
tals [259–261]. If liquid helium was superheated above a certain threshold
value TLT , the supply of a light pulse of duration from 2 µs to 1 ms and in-
tensity 1–200 mW cm−2 resulted in an abrupt temperature decrease at the
monocrystal surface. Within 3 µs from the moment of supply of a light sig-
nal, the monocrystal superheating with respect to the temperature of normal
boiling of liquid helium (� 4.2 K) decreased by 75%. Oscillograms of several
experiments, in which a light pulse of fixed duration and power but at differ-
ent moments of time (shown with arrows) was supplied to a heated monocrys-
tal, are collected in Fig. 3.43. The initiating action of light was observed only
after the superheating of liquid helium had reached ∆TLT = 0.29 K (the attain-
able superheating of liquid helium at atmospheric pressure, ∆Tn, is equal to
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0.35 K [132]). The value of TLT does not depend on the size and shape of the
heater, the state of its surface, the value of the magnetic field (from 0.4 to 2 T),
the duration of the light pulse, the orientation of the light flow with respect to
the monocrystal surface, and the induction lines of the magnetic field. The in-
crease of the light intensity to I = 200 mW cm−2 resulted in an increase of the
cooling effect. At I > 200 mW cm−2, and also with an increase in the wave-
length of the light above 420–450 nm, the monocrystal-cooling effect was not
recorded. The authors of Ref. [259] point out that the initiation of boiling-up
of superheated helium at the surface of a bismuth heater was observed even
at ordinary room light.

A photoelectronic hypothesis has been suggested for explaining the initiat-
ing action of light on the boiling-up of superheated liquid helium [261]. Ac-
cording to this hypothesis, the energy of photons is transferred to electrons
of the surface layer of a bismuth monocrystal. The absorption of phonons is
accompanied by the emission of photoelectrons, which form electronic bub-
bles in liquid helium. Close to the heater surface the probability of localiza-
tion of electrons into vapor cavities increases owing to helium superheating
and a higher level of density fluctuations. It is assumed that at temperatures
T > TLT electronic bubbles lose their stability and are transformed into liquid
boiling-up centers. The growth of such evaporation centers is accompanied
by the absorption of energy from the thermal boundary layer of a monocrys-
tal and its cooling. A photographic study of the process of formation of a
vapor film is made in Ref. [260].

3.13
Heterogeneous Nucleation

Since in daily practice it is impossible to eliminate the effect of accidental in-
clusions, heterogeneous nucleation is more widespread than homogeneous.
Boiling centers may also be present or originate in a system owing to various
pollutions of the volume at appropriate conditions on the wall of the system.
Like homogeneous nucleation, heterogeneous nucleation is a fluctuation phe-
nomenon. Foreign particles reduce the work of formation of a nucleus, as
compared to its evaluations in a pure system, thereby increasing the proba-
bility of liquid boiling-up. The impossibility of taking into account the whole
variety of incontrollable factors affecting the nucleation process is the main
difficulty in constructing a theory of heterogeneous nucleation processes in
metastable systems. Sources of nuclei are usually gases dissolved in liquids
and adsorbed in the cracks of walls, areas with decreased wettability on solid
weighted particles and surfaces that are in contact with liquids. The effect of
gas saturation on the superheating of cryogenic liquids is examined in Chap-
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ter 4. The main subject of discussion of the present section is heterogeneous
nucleation at the surfaces of solids.

The work of formation of nuclei on sufficiently small accidental inclusions
depends on their size and physical nature. The simplest case of heterogeneous
nucleation is nucleation on a smooth clean wall. All liquid molecules that are
in contact with such a wall may be regarded as potential centers of a new
phase with the same probability, and for the rate of heterogeneous nucleation,
by analogy with homogeneous, we can write

Jhet = ρhetBhet exp
(
−Ψ

W∗
kBT

)
, (3.145)

where ρhet is the number of molecules contacting the wall per unit volume;
Bhet is the kinetic factor, which in a first approximation may be considered
equal to the kinetic factor at homogeneous nucleation; and Ψ is the factor that
takes into account the decrease in the work of nucleus formation on the wall,
i.e., Whet = ΨW∗. If the formation of a spherical nucleus takes place at a
flat surface of a solid, a critical nucleus has the same radius as in the liquid
volume, and the work of its formation is smaller than that at a homogeneous
process by the value [1]

Ψ =
1
4
(1 + cos θ0)2(2 − cos θ0). (3.146)

Here, θ0 is the equilibrium (macroscopic) wetting angle. Similar to Eq. (3.146),
formulae may be written for a convex and a concave surface of a solid [76].

Actual surfaces of solids are not ideally clean and smooth. The origination
of vapor-phase centers usually takes place in microcracks, slots, and some
other defects of rough surfaces, and is characterized by lower values of the ac-
tivation energy [262]. The model of a conic cavity [263] is widely used for the
analysis of evaporation processes. In this case, Ψ = Ψ(θ0, β) holds, where β is
the angle between the axis and the generator of the cone. The nucleation work
is also reduced by impurities in the form of surfactants adsorbed at the surface
of a solid [6]. Such impurities may be concentrated on separate isolated areas
of the surface. If the wettability of a contaminated island is anomalously low
(θ0 � π), then Ψ � 3(π − θ0)2/16.

The relative purity and the good wettability of solid materials with cryo-
genic liquids do not ensure a total absence of initiating boiling centers in
them, but makes it possible to obtain high superheats in cells with a rough
surface, too. An experimental corroboration of this expectation was obtained
in Refs. [264, 265] in investigating the lifetime of superheated liquid oxygen
and nitrogen in U-shaped tubes of stainless steel and copper with an internal
diameter � 1.1 mm. The area of the surface contacting a superheated liquid
was 4.25 mm, and the volume was 95 mm3. The treatment of the inner sur-
faces of the tubes corresponded to the sixth or seventh class of roughness (the
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Fig. 3.44 Mean lifetime of superheated liquid oxygen in tubes of stain-
less steel (1, 2), copper (3) and glass (4) along different isobars [264].
A: p = 1.171 MPa; B: 2.252. The dashed line shows results of calcula-
tions by Eqs. (2.112), (3.8), (3.52), and σ = σ∞, z0 = 1.
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Fig. 3.45 Mean lifetime of superheated liquid nitrogen in tubes of cop-
per (1) and glass (2) along isobars [265]. A: p = 0.5 MPa; B: 1.0; C:
1.5. For the origin of the dashed line, see Fig. 3.44; the dashed-dotted
curve shows results of calculations by Eqs. (2.112), (3.11), (3.52), and
z0 = 1.

average size of microinhomogeneities was � 5 µm). Copper tubes were sub-
jected to an additional polishment. Figures 3.44 and 3.45 show temperature
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dependences of the mean lifetime for superheated liquid oxygen and nitrogen
in metal and glass tubes. The experimental data were reduced to one value of
the superheated volume (V = 100 mm3) by the formula τ̄1/τ̄2 = V2/V1.

Three characteristic regimes of boiling-up of a superheated liquid have
been distinguished in experiments on liquid oxygen on tubes of stainless steel
(Fig. 3.44) [264]. The initial stage of an experiment (regime I, run-in regime)
is characterized by a considerable spread of the values of τ̄ and the nonre-
producibility of data obtained under changes of the thermodynamic state of
the liquid. After several boiling-up acts, the mean lifetimes were reproduced
on the same tube under changes in (p, T) (regime II). The experimental data
form a smooth curve. The reproducibility is retained when liquid portions in
a tube are replaced. In the process of long measurements there always came
the moment when an abrupt increase in the expectation time of boiling-up (a
transition to regime III) was observed. In regime III, the values of τ̄ were re-
produced within the limits of statistical error during all start-ups of the setup,
and when the cells were replaced.
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Fig. 3.46 Distribution of expectation times of boiling-up of superheated
liquid oxygen in a stainless steel tube: p = 1.171 MPa; T = 137.66 K,
N = 191. The lines show results of calculations by Eq. (3.88) with τ̄ =
0.15 s (1) and τ̄ = 0.98 s (2).

The run-in duration depends on the state of the surface contacting the liquid
and the pressure. Under the conditions of the same roughness, a longer run-
in was required for the surface of tubes of stainless steel than for the surface
of copper tubes. In polished copper tubes, reproducible results were already
achieved after several tens of boiling-up acts. This result makes it possible
to assume that boiling centers were evidently a gas adsorbed in metal pores.
In the course of experiments, cases of an abrupt decrease in the lifetime of a
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metastable liquid with a subsequent restoration of the previous regime could
be observed. If the times registered were close to or lower than the setup
solubility limit (τ0 � 0.1 s), they were not taken into account in calculating the
mean lifetime of a superheated liquid.

In a number of cases, the distribution of expectation times of boiling-up
had a more complicated form in metal tubes than in glass ones. A histogram
of one of such experiments is given in Fig. 3.46 on a semilogarithmic scale
(regime II). The distribution observed may be presented as the superposition
of two Poissonian distributions with different values of τ̄. The presence of
two distinct scales of τ̄ is evidently connected with the action of two boiling
centers possessing different activation energies.

As follows from Figs. 3.44 and 3.45, temperature dependences of the mean
lifetime obtained in metal and glass tubes are qualitatively similar. With de-
creasing temperature, sections with an abrupt increase of τ̄ (short times) give
way to sections with a weaker dependence, τ̄(T). On the bends of experi-
mental isobars, mean lifetimes of a superheated liquid in metal tubes exceed
values of τ̄ obtained in glass tubes from three to five times. This result may
be connected with a somewhat higher intensity of the radiation background
in glass. However, as already noted, the bends of experimental isobars are,
evidently, a result of not only the initiation of volume liquid boiling-up with
high-energy particles, but also of the influence of the walls of the measuring
cell. For radiation-resistant liquids (Kr, Xe), even the presence of one defect
(a crack at the inner surface of a glass cell) disrupts the linear character of the
T-dependence of τ̄ in the region of initiated nucleation (Fig. 3.47) [113]. In this
case, experimental isobars have a form similar to that observed in liquids with
poorly defined scintillation properties (Ar, N2, O2, CH4). It is of fundamental
importance that experimental isobar bends, characteristic of low supersatu-
rations, may be observed in the presence of only one easily activated boiling
center at the inner surface of the cell.

Close to the boundary of liquid spontaneous boiling-up, the results ob-
tained in metal and in glass tubes agree with each other within the limits
of experimental error regarding both the superheating temperature and the
value of the derivative d ln τ̄/dT. Taking into account the dependence of the
properties of critical bubbles on the curvature of the separating surface, dis-
crepancies between the homogeneous nucleation theory and experiment here
do not exceed 0.1–0.2 K. Experiments with metal tubes have shown [265] that
at low pressures sections of isobars with a step T-dependence of τ̄ are not nec-
essarily achieved. A rise in temperature (Fig. 3.45, p = 0.5 MPa) resulted in
increasing boiling-up acts with times shorter than the limit of the setup solv-
ability. Thus, at T = 111.26 K, 54 boiling-up acts of liquid nitrogen led to only
two values of τ = 7.19 s and τ = 7.58 s, for the rest, τ < 0.1 s holds. These
results allow us to assume that the main reason for disagreement between
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Fig. 3.47 Mean lifetime of superheated liquid krypton at a pressure of
p = 1.60 MPa in a “clean” cell (1) and in the presence of a completed
boiling center (2).

theory and the results of quasistatic experiments on cavitation [193–198] is the
action of heterogeneous centers whose activity at negative pressures has to be
considerably higher.

In the process of run-in of tubes, gases adsorbed in microheterogeneities of
the solid surface are removed and dissolved in a liquid. At high superheat-
ings, critical nuclei are of the order of several or tens of nanometers. For such
small new-phase formations many microinhomogeneities may be regarded as
a flat smooth wall, but Eq. (3.146) is no longer applicable here as has been ob-
tained by neglecting the dependence of nuclei properties on the curvature of
the separating surface and does not take into account the excess energy of the
wetted perimeter line tension, γ [265]. The value and the sign of γ are deter-
mined by the peculiarities of interaction of contacting phases in the vicinity of
the wetted perimeter [266, 267].

Taking into account the effect of line tension, the factor that corrects the
nucleation work has the form [268]

Ψ =
1
4
(1 + cos θ∗)2(2 − cos θ∗) +

3
4

κ∗
R∗ sin θ∗

, (3.147)

where θ∗ is the critical value of the microscopic wetting angle, κ∗ = γ/σ. The
surface and the line of tension have been chosen as the separating surface and
line. It is assumed that the line of tension coincides with the intersection of the
surfaces of tension. The R-dependences of σ and γ are not taken into account.
At R � κ∗, Eq. (3.147) is reduced to Eq. (3.146).
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If it is assumed that in steep sections of isobars nucleation is also initiated
by a metal surface, then from Eq. (3.145) we have Ψ = 0.38; ρhet = 2.6 ×
1030 m−3 at p = 0.5 MPa and Ψ = 0.41; ρhet = 3.8 × 1030 m−3 at p = 1.0 MPa
(nitrogen). According to Eq. (3.146), the mentioned value of Ψ corresponds to
an equilibrium wetting angle θ0 � 98o. Such high values of wetting angles
are not characteristic of cryogenic liquids [269]. Thus, for liquid nitrogen θ0
on copper and stainless steel does not exceed 10◦.

Taking into account the line tension, the equilibrium condition for the criti-
cal bubble on a smooth wall is written as [268]

σSV − σSL = σ cos θ∗ − γ

(R∗ sin θ∗)
, (3.148)

where σSV and σSL are the surface tensions at solid–vapor and solid–liquid
interfaces. Substituting into Eq. (3.148) the equation

σSV = σSL + σ cos θ0, (3.149)

we get

κ∗
R∗

= sin θ∗(cos θ∗ − cos θ0). (3.150)

From Eqs. (3.4), (3.147), (3.150), and the data for Ψ given above, at θ0 = 10o

we have θ∗ = 50–65o. A smaller value of θ∗ refers to a higher pressure in the
liquid. The value of the line tension is negative and equals −(1.5–4.0)× 10−12

J m−1. A statistical calculation [270] for a drop of nitrogen on graphite gives
γ = −3.3 × 10−12 J m−1, θ∗ = 10.7o. Thus, although taking into account
the line tension results in decreasing values of the wetting angle as compared
with its evaluations from Eqs. (3.145) and (3.146), the values of θ∗ continue to
considerably exceed the equilibrium value of θ0. Suggestions that are some-
times made [271] about the deterioration of wettability for highly curved sur-
faces are not confirmed by direct measurements. When investigating breaking
loads under capillary condensation of liquids between mica cylinders, Fisher
and Israelachvili [191] did not discover any changes in the wetting angle down
to R � 4 nm.

The values of ρhet calculated from data on nucleation kinetics are approxi-
mately 107–108 times lower than the surface density of particles. This result
may be interpreted as a consequence of different activities of boiling centers
on the cell walls [272]. At the same time, owing to a practically total agree-
ment between data obtained in glass and in metal tubes, it should be assumed
that the distribution of “weak spots” is not sensitive to the wall material, i.e.,
its roughness. The independence of the number of heterogeneous nucleation
sites and the resulting reproducibility of the results on nucleation measure-
ments on the methods of preparation of the measuring cell (degassing, wash-
ing, oxidation) and the replacement of the liquid by other samples give a
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strong indication of the weak effect of these factors on the distribution and
the activity of surface centers. Thus, experimental data on the superheating
of cryogenic liquids in polished metal tubes point to the homogeneous rather
than the heterogeneous mechanism of nucleation. At least, these data can-
not be interpreted straightforwardly in the framework of traditional models
of the heterogeneous nucleation theory without the introduction of physically
unjustified assumptions.
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4
Nucleation in Solutions of Liquefied Gases

4.1
Critical Nucleus and the Work of its Formation

Liquid solutions are characterized by a variety of phase transition phenom-
ena. Along with ordinary critical points at which two phases become iden-
tical, in solutions a coexistence at higher order critical points is possible (tri-
critical points, critical finite points, etc.). Besides the instability with regard to
the formation of a vapor phase, a solution may also be unstable with respect to
dissolution of a gaseous phase inside the liquid (decay of a gas-supersaturated
solution) and separation into different liquid phases. In the present chapter,
the kinetics of boiling-up of liquid mixtures with full solubility of the compo-
nents and of gas-saturated liquids is considered.

At isothermal formation in a superheated binary (ν = 2) solution of a va-
por bubble of volume V with N′′

1 molecules of the first component and N ′′
2

molecules of the second component, the change of the Gibbs thermodynamic
potential is written as follows [76]:

∆Φ = (p′ − p′′)V + σA +
ν

∑
i=1

(µ′′
i − µ′

i)N′′
i , p′′ =

ν

∑
i=1

p′′i , (4.1)

where p′′i presents the partial pressures of the components of the mixture in
a bubble, and the other notations are the same as in Eq. (3.1). Equation (4.1)
presumes that the appearance of a bubble in a system does not change the
state of the phase that surrounds it.

The equality (d∆Φ)∗ = 0 corresponds to an equilibrium of a bubble in the
otherwise homogeneous solution. In this case, the conditions of mechanical,
Eq. (3.4), and diffusion equilibrium

µ′′
i (p′′∗ , T) = µ′

i(p′, T), i = 1, 2, . . . , ν, (4.2)

are fulfilled. Substitution of Eqs. (3.4) and (4.2) into Eq. (4.1) gives a relation
for the work of formation of an equilibrium (critical) nucleus in the solution
which has a form similar to that for a one-component liquid, Eq. (3.8). The
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type of the extremum is determined by the sign of the second-order differen-
tial

(d2∆Φ)∗ = σ
d2A
dV2

∣∣∣∣∗ (dV)2 + dσdA − dp′′dV +
ν

∑
i=1

dµ′′
i dN′′

i . (4.3)

Considering the vapor mixture in a bubble as an ideal gas and replacing the
chemical potential of the liquid in Eq. (4.1) by chemical potential of the vapor
in an equilibrium bubble equal to it, in the vicinity of the extremum of ∆Φ we
have

∆Φ = (p′ − p′′)V + σA + V
ν

∑
i=1

p′′i ln
p′′i
p′′i∗

, (4.4)

(d2∆Φ)∗ = −2σA∗
9V2∗

(dV)2 +
ν

∑
i=1

V∗
p′′i∗

(dp′′i )2. (4.5)

The absence of cross-terms in the quadratic form (4.5) implies that fluctuations
of the variables V, p′′1 , and p′′2 are statistically independent. Owing to the pres-
ence of one negative coefficient (at the square of dV) in Eq. (4.5), the surface
of the thermodynamic potential in the space (V, p′′1 , p′′2 ) in the vicinity of the
extremum point is a hyperbolic paraboloid, and the extremum point itself is
a saddle point. The equilibrium of a bubble with the metastable solution, de-
termined by Eqs. (3.4) and (4.2), is unstable with respect to the variable V at
constants p′′1 and p′′2 . The line of the energetically most favorable trajectory of
fluctuational change of the size of a precritical bubble follows the valley of the
potential and crosses the pass of the thermodynamic potential, ∆Φ(V, p′′1 , p′′2 ).
The equilibrium of a critical bubble with respect to pressure is stable. The
equalities V = V∗ = const, p′′1 = p′′1∗ = const and V = V∗ = const, p′′2 = p′′2∗ =
const give the lines of “water sheds” of the potential barrier. The saddle point
in this case is the intersection point of the lines of “water sheds” and the val-
ley, as well as of the lines of mechanical, Eq. (3.4), and diffusion, Eq. (4.2),
equilibria of a vapor bubble in solution. The minus sign at the variable V in
Eq. (4.5) indicates that this variable is unstable, while the variables p′′1 and p′′2
are stable.

We define the molar fraction of the second component in a bubble as c′′ =
N′′

2 /(N′′
1 + N′′

2 ) = N′′
2 /N′′. Employing this definition, in the vicinity of the

saddle point of the potential barrier we may then write

∆Φ = (p′ − p′′)V + σA + p′′V ln
p′′

p′′∗

+ p′′V
[
(1 − c′′) ln

1 − c′′

1 − c′′∗
+ c′′ ln

c′′

c′′∗

]
. (4.6)
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Accordingly, the second-order differential of Eq. (4.6) is

(d2∆Φ)∗ =
(
−2σA∗

9V∗
+

N′′∗ kBT
V2∗

)
(dv)2 − 2

kBT
V∗

dVdN′′ + kBT
N′′∗

(dN′′)2

+ N′′kBT
(

1
1 − c′′∗

+
1
c′′∗

)
(dc′′)2

= −2σA∗
9V∗

(dV)2 +
V∗
p′′∗

(dp′′)2 + p′′∗
(

1
1 − c′′∗

+
1
c′′∗

)
(dc′′)2. (4.7)

Equations (4.6) and (4.7) give the surface of the Gibbs thermodynamic poten-
tial in variables (V, p′′, c′′). The fluctuations of these variables are also statis-
tically independent. At the saddle point, the equilibrium of a bubble with its
surroundings is stable against variations in composition and the pressure in it
but unstable against variations in size.

Considering condensation in a binary mixture, Reiss [273] postulated the
incompressibility of liquid droplets in supersaturated vapors. In this case, the
number of independent variables of a nucleus decreases so that there are only
two of them left. Choosing N ′

1 and N′
2 as such variables, we have

(d2∆Φ)∗ =
(
−2

9
σA∗
N′2∗

+ kT
N′

2∗
N′

1∗N′∗

)
(dN′

1)
2 +

(
−2

9
σA∗
N′2∗

− kT
1

N′∗

)
dN′

1dN′
2

+
(
−2

9
σA∗
N′2∗

+ kT
N′

1∗
N′

2∗N′∗

)
(dN′

2)
2 . (4.8)

The lines of the “water shed” and the valley of the surface of the hyperbolic
paraboloid, ∆Φ(N′

1, N′
2), determining the stable and the unstable variable do

not coincide with the axes of N′
1 and N′

2, which is a consequence of the statis-
tical dependence of fluctuations in the variables N ′

1 and N′
2.

As for one-component liquids, in a region of weak metastability (G∗ � 1)
it is possible to obtain approximate relationships relating the work of forma-
tion of a critical bubble, its radius and composition to the parameters of the
solution at the line of phase equilibrium. At a sufficiently large distance from
the line of critical points, a liquid solution may be considered as incompress-
ible, and the vapor in a bubble as ideal. In such cases, Eqs. (3.4) and (4.2)
imply [173, 274]

p′′∗ = ps

{
c′′s exp

[
− (ps − p′)v′2

psv′′

]
+ (1 − c′′s ) exp

[
− (ps − p′)v′1

psv′′

]}
, (4.9)

c′′∗ = c′′s
{

c′′s + (1 − c′′s ) exp
[
(ps − p′)(v′1 − v′2)

psv′′

]}−1

. (4.10)

Here, v is the specific volume of the solution; the subscript s refers, as before,
to a flat interface.
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If v′i � v′′ (i = 1, 2), expanding the exponents into a series and restricting
ourselves to the first terms of the expansion, after substituting the result into
Eq. (3.4), for the critical-bubble radius we obtain

R∗ =
2σ

(ps − p′)
[

1 − v′1
v′′ − c′′s

(v′2 − v′1)
v′′

] , (4.11)

making it possible to present the work of formation of a critical nucleus in a
binary mixture, Eq. (3.8), as [274]

W∗ =
16π

3
σ3

(ps − p′)2
[

1 − v′1
v′′ − c′′s

(v′2 − v′1)
v′′

]2 . (4.12)

Taking into account that v′2 − v′1 � v′′ and v′1 � v′, Eq. (4.12) is trans-
formed into the formula for the work of formation of a critical bubble in a
one-component system if the approximation, Eq. (3.9), is accepted. In the case
of a weak solution of the gas in the liquid, considering the pure solvent as
incompressible and a vapor–gas mixture in a bubble as an ideal gas, one can
obtain formulae expressing the pressure and the gas concentration in a bubble,
and the work of formation of a critical nucleus only in terms of the parameters
of a pure solvent [275].

In the framework of the van der Waals square gradient expansion, the
change in the Helmholtz free energy of a two-component (ν = 2) system con-
nected with the density distribution of the heterophase fluctuation δ�ρ(�r) =
�ρ(�r) −�ρ, is written as [276]

∆F[�ρ] =
∫ (

∆ f +
ν

∑
i,j=1

κij∇ρi∇ρj

)
d�r, (4.13)

where

∆ f = f (�ρ)− f ′ −
ν

∑
i=1

(ρi − ρ′i)µ′
i. (4.14)

Here, f (�ρ) is the free energy of a unit volume of a homogeneous solution with
a local density of the components �ρ(�r) = {ρ1(�r), . . . , ρν(�r)}, ∇ρi is the density
gradient of the ith component, κij is the symmetrical matrix of the influence
coefficients connected with the interfacial contributions, and µ′

i is the chemical
potential of the ith component of the metastable phase.

A homogeneous metastable phase is stable against infinitesimal density per-
turbations. Therefore, the quadratic form in the second term of the integrand
in Eq. (4.13) must be positive. This condition is fulfilled if the inequalities

det κij = κ11κ22 − κ2
12 > 0, κ11 > 0 , κ22 > 0 (4.15)

hold.
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The density distribution of the components in a heterophase fluctuation cor-
responding to the extremum value of ∆F[�ρ] is found by solving the Euler sys-
tem of equations for the functional, Eq. (4.13),

2
ν

∑
j=1

∇(κij∇ρj)−
ν

∑
j,κ=1

∂κi,κ

∂ρi
∇ρj∇ρκ = µi(�ρ)− µ′

i =
∂∆ f
∂ρi

,

i = 1, 2, . . . , ν . (4.16)

Neglecting the dependence of the influence coefficients, κi,j, on ρ and consid-
ering only spherical inhomogeneities, the system of equations, Eq. (4.16), can
be transformed to

2
ν

∑
j=1

κij

(
d2ρj

dr2 +
2
r

dρj

dr

)
= µi(�ρ) − µ′

i =
∂∆ f
∂ρi

, i = 1, 2, . . . , ν, (4.17)

with the boundary conditions

ρi = ρ′i at r → ∞ ,

dρi

dr
= 0 at r = 0 and r → ∞ .

(4.18)

As has already been done for a one-component system (see Section 2.5), it can
be shown that all solutions of Eq. (4.17) in a metastable region with boundary
conditions, given by Eq. (4.18), correspond to saddle points of the functional
∆F[�ρ], i.e., they correspond to critical nuclei. The work of formation of a criti-
cal nucleus is found by substituting the solutions of Eq. (4.17) into Eq. (4.13)

W∗ = 4π

∞∫
0

{
∆ f − 1

2

ν

∑
i=1

(ρi − ρ′i)[µi(�ρ) − µ′
i]

}
r2dr. (4.19)

The equality sign in the first expression in Eq. (4.15) corresponds to the state
of an indifferent equilibrium. In this case, the expression

κ12 = (κ11κ22)1/2 (4.20)

determines the limiting value of the cross-coefficient, κ12. The use of Eq. (4.20)
in Eq. (4.13) for spherical inhomogeneities yields an equation similar to that
for a one-component liquid, Eq. (2.36),

∆F[�ρ] = 4π

∞∫
0

[
∆ f + κ22

(
dρβ

dr

)2
]

r2dr, (4.21)

where ρβ = ρ2 + (κ11/κ22)1/2ρ1.
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Fig. 4.1 Projection of the surface of the excess density of the free
energy of a homogeneous binary system onto the plane (ρ1, ρ2).

The density distribution of the components of the mixture, ρi(i = 1, 2), in a
critical bubble may be obtained by solving the Euler system of equations for
the functional (4.21), which includes the one differential equation

d2ρβ

dr2 +
2
r

dρβ

dr
=

µ2 − µ′
2

2κ22
, (4.22)

with boundary conditions similar to Eq. (4.18) and one algebraic equation

µ1 − µ′
1 =

(
κ11

κ22

)1/2

(µ2 − µ′
2). (4.23)

In this case, the work of formation of a critical bubble is given by

W∗ = min max ∆F[�ρ]. (4.24)

Equation (4.24) gives an alternative way as compared with Eq. (3.8) of calcu-
lating W∗ and makes it possible with Eqs. (3.4), (4.2), and (3.8) to determine
the dependence σ(R∗).

As distinct from a one-component system, where Eq. (2.39) inevitably leads
to a monotonic dependence of the density, ρ = ρ(r), in a binary system,
Eqs. (4.17), (4.22) and (4.23) allow the existence of nonmonotonic density pro-
files. Figure 4.1 shows the lines of a constant value of ∆ f (ρ1, ρ2) in coordinates
(ρ1, ρ2). This figure is similar to Fig. 2.6 for a one-component system. The lo-
cal minimum ∆ f (point A), separated from another deeper minimum (point B)
by a certain barrier with a saddle point C, corresponds to the metastable state.
The trajectory of motion between these minima (cf. Fig. 4.1, dashed line) is
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determined by the solution of the system of equations, Eq. (4.17). Its position
depends on the values of the influence coefficients, κij. Assuming that, for
instance, the function ρ1 is monotonic, then, according to Fig. 4.1, one must
observe a nonmonotonic behavior in the density profile of the second compo-
nent, ρ2. The adsorption of some of the components of the mixture may lead
to considerable changes in the surface tension of the nucleus, and therefore in
the work of its formation.

4.2
Theory of Nucleation in Binary Solutions

The kinetic nucleation theory in multicomponent systems was mainly devel-
oped in application to the problem of condensation in mixtures of supersat-
urated vapors. The first attempt to calculate the nucleation rate in a binary
mixture was made by Döring and Neumann [277]. However, these authors
did not manage to obtain quantitative results. Two-component nucleation in
supersaturated vapors, as a generalized diffusion in the variables (N ′

1, N′
2) in

the field of thermodynamic forces, was first considered by Reiss [273], and Ne-
sis and Frenkel [278]. This approach was further developed by Stauffer [279],
Trinkaus [80], Shi and Seinfeld [81], Kuni et al. [280], and Wu [281].

As distinct from a liquid droplet, a bubble in a liquid binary system cannot
be regarded as incompressible, and its thermodynamic state is already given
by three variables: the volume, V, and the partial pressures of the components
of the mixtures, p′′1 and p′′2 , or the volume V, the pressure in the bubble, p′′,
and its composition, c′′. The fact that three variables are required for describ-
ing the state of a bubble in a binary system in isothermal conditions is ex-
plained by the ability of the bubble to have at any given volume, V, and total
number of molecules, N′′, different compositions, i.e., different values of N ′′

1
and N′′

2 . An attempt to develop a theory of boiling-up of superheated binary
solutions was made in Ref. [274]. However, these authors mistakenly ignored
pressure fluctuations in a bubble and treated the process as a two-dimensional
problem in variables, (V, c′′). The boiling-up of a gas-filled liquid was exam-
ined by Deryagin and Prokhorov [282] and also by Kuni et al. [283, 284]. In
Refs. [282–285], the solvent is assumed to be nonvolatile, and for this reason,
the problem was reduced to a two-dimensional one. A theory of boiling-up for
binary solutions taking into account all the factors limiting the bubble growth
(volatility of the mixture components, viscous and inertial forces, thermal ef-
fects at the bubble boundary, diffusive substance supply to a growing bubble)
was developed by Baidakov [286–288].

We examine now the kinetics of spontaneous boiling-up of a binary liquid
solution whose initial state is given by temperature, T, pressure, p′, and con-
centration, c′. The initial supersaturation of the solution is considered small,
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so G∗ � 1 holds, and bubbles forming in the process of decay may be re-
garded as spherical formations whose properties are only slightly different
from those of the bulk phase. Isothermal conditions in the process of phase
transition are ensured by a high thermal conductivity and a high heat capac-
ity of the liquid. Temperature effects at the bubble boundary, which we do not
examine here, may be taken into account by an appropriate correction, as it is
done in our analysis of boiling in a one-component liquid (see Section 3.2). In
one-component liquids, only the free-molecular regime of exchange of mole-
cules between a vapor bubble and a liquid takes place. In contrast, during the
decay of a two-component solution besides the free-molecular regime there
may be established a diffusive regime when molecules of the mixture compo-
nents move to or from a bubble in a diffusive way.

We shall consider the gas in the bubble as a perfect one, and as the deter-
mining thermodynamic parameters of the bubble we choose its volume, V,
and the partial pressures of the components of the mixture, p′′1 and p′′2 , in the
bubble. Inertia effects in the boiling-up kinetics of the solution will be taken
into account by including a dynamic variable into the set of parameters of the
bubble, i.e., the rate of change of the bubble volume, V̇ = dV/dτ. In dimen-
sionless quantities (x, y, z, v)

x =
V − V∗

V∗
, y =

p′′1 − p′′1∗
p′′1∗

, z =
p′′2 − p′′2∗

p′′2∗
, v =

τr

V∗
dV
dτ

, (4.25)

the potential surface will be written as

Ψ(x, y, z, v) =
∆Φ(x, y, z)

kBT
+

Meff

2kBTτ2
r

v2. (4.26)

Here, the first term on the right-hand side is determined by Eq. (4.4), and
τr is the characteristic time of establishment of the equilibrium growth rate
distribution of bubbles. Expanding Eq. (4.26) into a power series in (x, y, z, v)
in the vicinity of the extremum, Ψ∗ = Ψ∗(0, 0, 0, 0), including terms of second
order, we obtain

Ψ(x, y, z, v) = Ψ∗ +
1
2
(�rΨ̂�r′) = G∗

(
1 − 1

3
x2 +

1
b1

y2 +
1
b2

z2 +
1

3χ
v2

)
, (4.27)

where

bi =
2σ

p′′i∗R∗
, i = 1, 2, (4.28)

holds (for the other notations, see Eq. (3.19)).
The matrix of second-order derivatives, Ψ̂, at the extremum of the potential

Ψ(x, y, z, v), which, as a consequence from Eq. (4.27), is the saddle point, will
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look like

Ψ̂ = 2G∗


−1

3 0 0 0

0 1
b1

0 0

0 0 1
b2

0

0 0 0 1
3χ

 . (4.29)

The interaction of a bubble with a solution is composed of the hydrody-
namic and the absorption–emission interaction. The hydrodynamic interac-
tion is caused by the pressure of the solution, the Laplace force, and the vis-
cous and inertial forces. The absorption–emission interaction includes the
free-molecular and the diffusion regime of molecular exchange of a bubble
and the phase surrounding it. The hydrodynamic interaction in a solution is
described by the equation for a one-component liquid (see Eq. (3.22)), in which
ρl, η, and σ are mass density, viscosity, and surface tension of the solution, re-
spectively. It can be shown that in this case the relaxation time τr, the effective
bubble mass, Meff, and the parameter χ in the solution are determined by
Eqs. (3.36), (3.64), and (3.65) for a one-component system. In dimensionless
quantities, the equation of motion for the bubble volume, Eq. (3.22), is written
as follows:

v̇ = χx + 3
χ

b1
y + 3

χ

b2
z − v. (4.30)

We now examine the absorption–emission interaction of a bubble with a
solution. It changes the number of molecules, (N ′′

1 , N′′
2 ), in the bubble but

does not change its volume. In the free-molecular regime, the rates of change
of the number of molecules of each of the bubble components are given by

Ṅ′′
mi =

παivtiR2

kBT
(p′′iR − p′′i ). (4.31)

The notations used are the same as in Eq. (3.23). The subscript i (i = 1, 2)
specifies the component of the solution considered.

Besides the free-molecular exchange, the supply of a substance to a growing
precritical bubble from the surrounding solution may be realized by diffusion.
In the general case, the concentration field around a bubble is determined by
the solution of the nonstationary diffusion equation. The characteristic time of
change of the bubble radius is proportional to (R/Ṙ). The characteristic time
of establishment of a stationary concentration field, c′(r), around a bubble is
(R2/Dg), where Dg is the coefficient of mutual diffusion. In the vicinity of
the saddle point of the pass, the rate is Ṙ, and RṘ � Dg holds. This inequal-
ity makes it possible to consider only the stationary solution of the diffusion
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equation

Dg
1
r

∂2

∂r2 rc′(r) = 0, (4.32)

with the boundary conditions

c′(r)|r=R = c′R, c(r)|r→∞ = c′s, (4.33)

which has the form

c′(r) = c′s + (c′R − c′s)
R
r

. (4.34)

Using the well-known formula for a diffusion flow of molecules of the ith
component in a solution [61] and taking into account the fact that the particle
number density of molecules in a solution is ρ′, for the rate of change of the
number of molecules in a bubble in the diffusion regime we obtain

Ṅ′′
gi = 4πR2ρ′Dg

∂c(r)
∂r

∣∣∣∣
r=R

= 4πRρ′Dg(c′R − c′s). (4.35)

A small change in the concentration around a growing bubble will consider-
ably affect only the values of p′′iR. Expanding p′′iR into a series in the vicinity of
c′ = c′s and restricting ourselves to the first terms of the expansion, we have

p′′iR = p′′i +
(

∂p′′i
∂c

)
(c′R − c′s). (4.36)

Substitution of Eq. (4.36) into Eq. (4.35) gives

Ṅ′′
gi = 4πRρ′DgHi(p′′iR − p′′i ). (4.37)

Here, Hi = (∂c/∂p′′i ).
The total rate of change in the number of molecules of the components of

the solution in a bubble as a result of free-molecular and diffusion exchanges
is given by

Ṅ′′
i = [(Ṅ′′

mi)
−1 + (Ṅ′′

gi)
−1]−1. (4.38)

Linearization of Eqs. (4.31) and (4.37), their substitution into Eq. (4.38)
and a subsequent transformation from variables Ṅ′′

i to variables ṗ′′i for the
emission–absorption interaction of a bubble with its surroundings yields

ẏ = − χω1

1 + γ1
y − v, (4.39)

ż = − χω2

1 + γ2
z − v. (4.40)
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Here, the following notations are introduced:

ωi =
3
2

αivtiη

σ
, (4.41)

γi =
αivtiR∗

4kBTρ′DgHi
. (4.42)

From the equations of motion of the bubbles, Eqs. (4.30), (4.39), and (4.40),
and from data on the thermodynamic forces determined by the matrix of the
second-order derivatives, Ψ̂ (Eq. (4.29)), for the matrix of the generalized dif-
fusion tensor, we obtain

D̂ =
3
2

χ

G∗


0 0 0 −1

0 ω1b1
3(1 + γ1)

0 1

0 0 ω2b2
3(1 + γ2)

1

1 −1 −1 1

 . (4.43)

Substitution of Eqs. (4.29) and (4.43) into the characteristic equation (2.101)
leads to the algebraic equation

λ̃4 +
(

1 +
ω1χ

1 + γ1
+

ω2χ

1 + γ2

)
λ̃3

+ χ

[
ω1ω2χ

(1 + γ1)(1 + γ2)
+

ω1

1 + γ1
+

ω2

1 + γ2
+

3
b1

+
3
b2

− 1
]

λ̃2

+ χ2
[

ω1ω2

(1 + γ1)(1 + γ2)
+

ω1

(1 + γ1)

(
3
b2

− 1
)

+
ω2

(1 + γ2)

(
3
b1

− 1
)]

λ̃

− χ3ω1ω2

(1 + γ1)(1 + γ2)
= 0 . (4.44)

The positive root λ̃0 of this equation determines the nucleation rate in a su-
persaturated binary solution with an arbitrary volatility, viscosity, and inertia
of the liquid.

As in the case of a one-component system, the nucleation rate in a binary
solution is determined by Eq. (2.112). It is usually assumed that a nucleus
can form on any molecule of the system. In this case, ρ = ρ′ = ρ′1 + ρ′2 holds,
where ρ′1 and ρ′2 are the number densities of the solvent and the dissolved sub-
stance in the liquid phase, and z0 = 1. Another approach to the determination
of ρz0 is proposed by Deryagin [97]. According to Ref. [97], z0 = ρ′/ρ′′∗ holds,
where ρ′′∗ is the density of the mixture in a critical-size bubble. For the factor
z1, which determines the transition from the distribution function of nuclei
per volume, V, to the distribution function referred to the number of mole-
cules, N′′, in the nuclei, we have z1 = dN′′/dV|∗ = ρ′′∗ . Thus, the nucleation
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rate in a superheated binary solution is given by Eq. (2.112), where the kinetic
factor is determined by Eq. (3.52) and the positive root of Eq. (4.44).

The final solution of the problem includes four dimensionless parameters

bi =
2σ

R∗p′′i∗
, χ =

ρlσR∗
8η2 , ωi =

3
2

αivtiη

σ
, γi =

αivtiR∗
4kBTDgρ′Hi

. (4.45)

The parameter bi characterizes the supersaturation of the solution, χ deter-
mines the contribution of inertial forces to the dynamics of nucleus growth, ωi
characterizes the role of the volatility of the components and the viscosity of
the medium, and the parameter γi determines the role of the free-molecular
and the diffusion regime in the absorption–emission interaction of a bubble
with the solution.

The diffusion supply of a substance to a bubble may be neglected if the
characteristic time of diffusion in the vicinity of the bubble is much shorter
than the other time scales connected with the pressure change in the nucleus.
In this case, the concentration in the solution is homogeneous up to the bubble
surface

γi � 1 (4.46)

and Eq. (4.44) takes the form

λ̃4 + (1 + ω1χ + ω2χ)λ̃3 + χ

(
ω1ω2χ + ω1 + ω2 +

3 − b
b

)
λ̃2

+ χ2
[

ω1ω2 + ω1

(
3
b2

− 1
)

+ ω2

(
3
b1

− 1
)]

λ̃ − χ3ω1ω2 = 0 ,
(4.47)

where 1/b = 1/b1 + 1/b2. Otherwise, in Eq. (4.46) the diffusion regime is
determined and, instead of Eq. (4.44), we have

λ̃4 +
(

1 +
χω1

γ1
+

χω2

γ2

)
λ̃3 + χ

(
χω1ω2

γ1γ2
+

ω1

γ1
+

ω2

γ2
+

3 − b
b

]
λ̃2

+ χ2
[

ω1ω2

γ1γ2
+

ω1

γ1

(
3
b2

− 1
)

+
ω2

γ2

(
3
b1

− 1
)]

λ̃ − χ3 ω1ω2

γ1γ2
= 0.

(4.48)

If inertia effects of the liquid are neglected (see Eq. (3.41)), then Eq. (4.44) yields

λ̃3 + χ

(
ω1

1 + γ1
+

ω2

1 + γ2
+

3 − b
b

)
λ̃2

+ χ2
[

ω1ω2

(1 + γ1)(1 + γ2)
+

ω1

1 + γ1

(
3
b2

− 1
)

+
ω2

1 + γ2

(
3
b1

− 1
)]

λ̃

− χ3ω1ω2

(1 + γ1)(1 + γ2)
= 0.

(4.49)
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We examine, now, the boiling-up of a nonviscous volatile solution. At a low
viscosity, inertia effects of the liquid become essential. Conditions (3.41) and
ω1/(1 + γ1) � 1, ω2/(1 + γ2) � 1 determine the region of superheatings in
which the solution may be considered as nonviscous and at the same time as
noninertial. Here, at

3 − b
b

� 0, (4.50)

which corresponds to high stretching pressures, −p′, from Eq. (4.49) it follows
that

λ̃0 = χ (4.51)

holds. If

3 − b
b

� 0, (4.52)

the cubic equation, Eq. (4.49), is reduced to a quadratic equation(
3 − b

b

)
λ̃2 + χ

[
ω1

1 + γ1

(
3
b2

− 1
)

+
ω2

1 + γ2

(
3
b1

− 1
)]

λ̃

− χ2ω1ω2

(1 + γ1)(1 + γ2)
= 0.

(4.53)

Substitution of the positive root, λ̃0, of Eq. (4.53) into Eq. (2.112) yields an
expression for the nucleation rate in a superheated nonviscous liquid with
volatile components at positive and limited negative pressures, p′.

The boiling-up of a gas-filled nonvolatile liquid (α1 = 0, p′′1∗ = 0) taking
into account inertia effects is described by

λ̃3 +
(

1 +
ω2χ

1 + γ2

)
λ̃2 + χ

(
ω2

1 + γ2
+

3
b2

− 1
)

λ̃ − χ2ω2

1 + γ2
= 0. (4.54)

Neglecting inertia effects and assuming that the volatility of the gas com-
ponent is caused only by a free-molecular exchange, the cubic equation,
Eq. (4.54), is reduced to a quadratic expression

λ̃2 + χ

(
ω2 +

3 − b2

b2

)
λ̃ − χ2ω2 = 0. (4.55)

In appropriate notations, Eq. (4.55) coincides with (39) from the paper by
Deryagin and Prokhorov [282].

Under the diffusion regime of absorption–emission interaction of a bubble
with a solution, Eq. (4.54) takes on the form

λ̃2 + χ

(
ω2

γ2
− 3 − b2

b2

)
λ̃ − χ2 ω2

γ2
= 0. (4.56)
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Tab. 4.1 Temperature of attainable superheatings of binary solutions at atmospheric pressure
in dependence on the molar fraction of the second component, c′, with J = 1011 m−3 s−1.

c′ Tn (K) c′ Tn (K) c′ Tn (K)

Ethane–propane [127]

0.04 269.8 0.36 285.1 0.83 312.2

0.14 275.1 0.62 302.1 0.90 317.7

0.21 280.7 0.72 304.6

Ethane–n-butane [127]

0.06 271.4 0.17 282.3 0.74 348.1

0.09 276.7 0.65 333.9 0.88 360.1

Propane–isobutane [289]

0.12 329.7 0.32 337.0 0.66 349.2

0.18 331.5 0.45 341.5 0.80 353.2

0.26 334.7 0.56 344.3 0.93 357.1

Propane–n-butane [127]

0.12 332.7 0.57 355.7 0.92 372.6

0.23 327.0 0.65 359.4

0.38 347.7 0.78 369.5

Substituting the positive root of Eq. (4.56) into Eq. (2.112) gives a result coin-
ciding with the data of the paper by Kuni et al. [283, 284].

4.3
Attainable Superheating of Solutions of Hydrocarbons

Experimental data on the temperatures of attainable superheatings of low-
temperature boiling liquid solutions have been obtained by the floating-
droplet method [127,289]. Measurements were made at atmospheric pressure
and a nucleation rate J = 1011 m−3 s−1 for binary and ternary solutions with
ethane, propane, and butane. The error of determination of the tempera-
ture of attainable superheatings is estimated as ±(0.5–1.0) K. The results of
measurements are presented in Tables 4.1, 4.2 and in Fig. 4.2.

With respect to their thermodynamic properties, the investigated liquids are
close to ideal solutions. For binary solutions, the dependence of the temper-
ature of attainable superheating on the molar concentration is linear within
the limit of experimental error (see Fig. 4.2). The values of the temperature
of attainable superheatings of the ternary ethane–propane–n-butane system,
which are calculated by an additional rule on the basis of the T0

n-values of pure
liquids and their molar fractions in the solution, are close to the experimental
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Tab. 4.2 Temperature of attainable superheatings of ethane–propane–n-butane solutions at
atmospheric pressure in dependence on the molar fraction of the second (c′2) and the third (c′3)
component for J = 1011 m−3 s−1.

c′2 c′3 Tn (K)

Experiment Eq. (4.57)

0.155 0.039 278.4–281.2 282.2

0.073 0.121 280.8–283.4 286.4

0.811 0.097 324.0–329.8 322.9

0.771 0.129 326.0–331.0 323.5

0.433 0.332 324.8–344.2 329.7

0.652 0.235 329.4–334.8 331.7

0.299 0.541 337.8–354.4 344.6

0.403 0.521 342.4–353.0 348.4

0.160 0.705 344.6–355.8 354.5

data (see Table 4.2)

Tad
n =

3

∑
i=1

c′iT
0
ni. (4.57)

A comparison between theoretical and experimental data in Refs. [127, 289]
has not been made because of the absence of data on the thermophysical prop-
erties of the investigated solutions which are a prerequisite for the calculations
by the homogeneous nucleation theory.
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Fig. 4.2 Concentration dependence of the temperature of attainable
superheatings of ethane–propane solutions at atmospheric pressure
[127].
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4.4
Methods of Experimentation on Solutions of Cryogenic Liquids

The equilibrium state of a liquid mixture is characterized by three parame-
ters: temperature, pressure, and composition. A transfer of a mixture into the
metastable region may be realized, for example, by changing any one of these
parameters retaining the other two constants.

Figure 4.3 shows the (p, c)-diagram of liquid (upper curve)–vapor (lower
curve) phase equilibrium for a binary mixture at a constant temperature,
T = Ts. It is assumed that the components in both phases are mixed in ar-
bitrary proportions. If at constant Ts and concentration in the liquid phase,
c′s, the pressure in the mixture is increased to the value p′, the solution will
be transferred into a supercompressed state, and the formation of the vapor
phase will be impossible. As a result of a rapid pressure decrease, a liquid
mixture may be transferred to the point B where it has the same composition
c′s, temperature Ts, but a pressure p′ < ps. An equilibrium isotherm, corre-
sponding to a certain temperature T, goes through this point. The liquid state
at the point B is superheated as the actual temperature, Ts, is higher than the
equilibrium one for this composition, c′s, and pressure, p′. The state at the
point B may also be regarded as supersaturated in the sense that the actual
concentration, c′s, is higher than the equilibrium concentration, c′, for the tem-
perature, Ts, and pressure, p′ (point C).

10 c'sc'
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T
s
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C
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Fig. 4.3 (p, c)-projection of the phase diagram of a binary mixture.

The nucleation rate in superheated solutions of cryogenic liquids was de-
termined by the lifetime measuring method [12, 291–294]. The experimental
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setup and the experimental techniques are similar to those used in experi-
ments on one-component liquids. The solution under investigation is filled
into a glass tube (3) and metallic bellows (7) (Fig. 4.4). In the experiment, a
part of the liquid solution with volume V � 70 mm3 thermostated (± 0.002 K)
in a copper block (1) was superheated. The temperature in the block was mea-
sured with a platinum resistance thermometer (2). The pressure was created
with compressed helium and transferred to the solution through bellows (7).
The bellows chamber and the low-temperature valve (6) were thermostated
(± 0.05 K) in the block (8) at a temperature close to the temperature of the
normal boiling of the solution. The measuring device was placed into the vac-
uum jacket (4) fixed in a Dewar vessel (5). Cooling was realized with liquid
nitrogen.
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Fig. 4.4 Schema of experimental apparatus.

An experiment begins with the preparation of the gas mixture of the re-
quired concentration. The mixture was condensed into the measuring device.
Differences in the temperatures of blocks (1) and (8) resulted in the evolution
of a concentration gradient throughout the height of the measuring device. To
define the solution concentration in a superheated volume before the begin-
ning and after completion of an experiment, the solution saturation pressure
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was measured. For this purpose, at the temperature T of the experiment (the
temperature in the block (1)) the pressure in the solution was decreased be-
low the saturation pressure. The liquid solution in the upper part of the tube
(3) then turned into a gaseous state. Subsequently, the pressure was gradu-
ally increased, and with the help of a system of detection of changes in the
volume of the solution under investigation the pressure was recorded at the
moment of the transition of the solution from a gaseous into a liquid state (the
saturation pressure, ps(T)). The system of detection of changes in the volume
consists of the rod (9) attached to bellows (7) and ending with a core (10) made
of a ferromagnetic material. The displacement of the core results in a change
of the reactance of the coil (11) connected in the bridge circuit. The error in
determining the saturation pressure was ±0.01 MPa. In calculating the con-
centration, data on the phase equilibrium were used. The error in determining
the concentration is ±0.5%.

After preparing a solution of the required concentration c′, the initial pres-
sure p1 > ps(T, c′) was created in the measuring system. The penetration into
the metastable region was realized by an abrupt pressure decrease below the
saturation pressure. To reduce both the effect of cooling a liquid solution and
the hydraulic oscillations in the measuring system, the liquid was brought to
a metastable state in two stages. At first the pressure was decreased to the
value p2, which is 0.3–0.5 MPa less than the saturation pressure, ps(T, c′). The
probability of boiling-up of a solution at pressure p2 is sufficiently small. The
solution was kept at this pressure, p2, for approximately 20 s, after which its
final release to the value p′ was realized. The error of the maintenance of the
pressure p′ was ±0.005 MPa. At the moment of the final pressure release, a
chronometer was started up. It recorded the time, τ, of the stay of the solu-
tion in the given metastable state before its boiling-up (the lifetime of a super-
heated solution). The moment of boiling-up was recorded by a water hammer
in the measuring system. After the boiling-up of a solution, the initial pres-
sure, p1, was created in the bellows chamber and the measurement process
was repeated. Up to N = 100 values of τ were measured at every given p′
and c′, and the mean lifetime, τ̄ = ∑i τi/N, was determined. In processing
the results of the experiments, corrections for the liquid cooling in the pro-
cess of pressure release were made and the delay time, τ0 (τ0 � 0.5 s), caused
by the inertia effects of the pressure-release system, was subtracted from the
measured value of τ̄.

In experiments with solutions as well as with pure liquids [9, 37], in the
whole range of (p′, T, c′)-values investigated, a near identity of the disper-
sion of the random quantity, τ, and the mean lifetime, τ̄, can be observed.
The Poissonian character of the boiling-up of a superheated solution is also
reconfirmed by the histograms of experiments (Fig. 4.5), which are in good
agreement with the distribution described by Eq. (3.88).
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Fig. 4.5 Histogram of exponential data. The parameter values are
c′ = 0.428; p = 1.6 MPa; T = 154.47 K; N = 40; τ̄ = 0.52 s. The
smooth curve has been calculated from Eq. (3.88).

4.5
Solutions with Complete Solubility of the Components

Solutions of simple classical liquids are convenient objects for the verification
of the homogeneous nucleation theory. The spherical symmetry of the force
field of the molecules makes it possible to express the free parameters of the
functional (4.13) in terms of thermodynamic properties of bulk phases and by
doing so to determine the work of nucleus formation without utilizing the
macroscopic approximation.

The kinetics of nucleation in superheated solutions Ar–Kr [290,291] and N2–
O2 [292] has been investigated in experiments measuring the mean lifetime of
the respective systems. The dependence of the mean lifetime of liquid Ar–
Kr and N2–O2 solutions on temperature and concentration has been traced
in experiments at two pressures (p′ = 1.0 and 1.6 MPa for Ar–Kr; p = 0.5
and 1.0 MPa for N2–O2). The interval of the investigated values of the mean
lifetime changes from 0.1 to 1000 s, which corresponds to the variation of the
nucleation rate from 104 to 108 m−3 s−1. Figure 4.6 shows in a semilogarithmic
scale the temperature dependences of the mean lifetime for several values of
the concentration [291]. The vertical size of the dots in the figure corresponds
to the statistical error of determination of τ̄. The character of the tempera-
ture dependence of τ̄ in solutions is similar to that in pure liquids [12, 37].
Along all lines of constant concentration, after reaching a certain temperature
(the boundary of spontaneous boiling) sections of an abrupt decrease of τ̄ can



178 4 Nucleation in Solutions of Liquefied Gases

be observed. We associate these sections of curves with homogeneous nucle-
ation. Here, with a temperature increase of 0.1 K the value of log τ̄ decreases
by 0.6–1.2.
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Fig. 4.6 Temperature dependences of the mean lifetime of argon–
krypton solutions at p = 1.0 MPa for different concentrations.
1: c′ = 0; 2: 0.109; 3: 0.428; 4: 0.708; 5: 0.938; 6: 1. Dashed lines
represent calculations using Eqs. (2.112), (3.52), (4.44), (3.8), z0 = 1
and σ = σ∞; dotted lines employ Eqs. (2.112), (3.52), (4.44), (3.11),
and z0 = 1.

The bend of experimental curves at τ̄ � 8–10 s is caused by heterogeneous
nucleation and the effect of ionizing radiation on nucleation. The source of
ionizing radiation in experiments is cosmic rays and the natural radiation
background. The increase of the intensity of ionizing radiation results in a
shift of the gently sloping sections of curves into a region of smaller values of
τ̄ without violating the character of the dependence τ̄(T). The effect of initia-
tion of nucleation in the series of condensed inert gases correlates with the ra-
diation stability and scintillation properties of the substance, which increases
with growing atomic number of the respective element [163]. The strongest
resistance to ionizing radiation, which is determined by well-expressed scin-
tillation properties, is found for liquid xenon. As a result, a part of the en-
ergy of ionizing radiation is not transformed into thermal energy but flu-
oresces. The bend of experimental curves for xenon manifests itself at the
initiation rate Jm = (τ̄V)−1 = 2.2 × 104 m−3 s−1 [145]. The bend of exper-
imental curves in the case of krypton manifests itself at the initiation rate
Jm � 1.5 × 106 m−3 s−1, and in the case of argon at Jm � (2–3) × 106 m−3 s−1.
The increase of the concentration of krypton in argon results in a monotonic
decrease of Jm (Fig. 4.7). As distinct from krypton, where at all pressures a
linear dependence of lg J on T can be observed, in argon at low pressures
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(p′ < 0.3 MPa, see [37]) a section of approximately constant radiation sen-
sitivity is revealed, which is adjacent to the boundary of liquid spontaneous
boiling-up. The presence of such a section may be connected with the fact
that the work of formation of a critical nucleus is here much smaller than the
average energy of a thermal spike, and the probability of boiling-up on every
thermal spike is close to unity [10].
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Fig. 4.7 Nucleation rate in superheated argon–krypton solutions
at p = 1.6 MPa for different concentrations. 1: c′ = 0; 2: 0.109;
3: 0.382; 4: 0.428; 5: 0.708; 6: 0.938; 7: 1. Dashed and dotted lines are
determined by the same dependences as explained in the caption to
Fig. 4.6.

The details of the process of transformation of the ionizing radiation energy
into thermal energy, and subsequently into the work of nucleation, are not
finally established to allow for a calculation of the probability of nucleation
initiation employing the molecular characteristics of a substance. Besides, at
present one cannot be absolutely sure that the action of ionizing particles is
the only reason for the observed bends of experimental curves at large waiting
times for boiling-up. The similarity of the temperature and pressure depen-
dences of τ̄ obtained at natural conditions and in the presence of a γ-source
is only indicative of the close link between these phenomena. As shown in
Ref. [264], the value of Jm changes in passing from glass to metallic measuring
cells. The character of the dependence τ̄(T) at J < Jm is affected by easily
activated boiling centers [12, 265] and ultrasound fields [258].

Figures 4.8a and b presents the results of experiments on the determina-
tion of the mean lifetime and the nucleation rate in the nitrogen–oxygen sys-
tem [292]. The components of the solution differ with respect to the similarity
criterion A (see Table 3.4) by 6%, whereas in the argon–krypton system this
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difference is only 1%. Lines of constant pressure and concentration values
have characteristic bends in the region of large τ̄ and, correspondingly, small
values of J. An increase in the concentration of oxygen results in an increase
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Fig. 4.8 Temperature dependences of the mean lifetime (a, p = 0.5
MPa) and the nucleation rate (b, p = 1.0 MPa) in the solution nitro-
gen–oxygen at different concentrations. 1: c′ = 0, 2: 0.105, 3: 0.300,
4: 0.670, 5: 1.0.

of the temperature of superheating of the solution. However, at small values
of c′ the opposite effect is also observed. Figure 4.8a shows that, when one dis-
solves in nitrogen up to 0.105 molar fraction of oxygen (p = 0.5 MPa), the tem-
perature of attainable superheating in the region of homogeneous nucleation
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increases by 2.3 K, whereas in the region of initiated nucleation this value is
only 0.5 K. In passing from initiated to homogeneous nucleation, the temper-
ature of superheating for pure nitrogen proves to be higher than that for the
solution N2–O2 by 1.5 K, i.e., small additions of oxygen into nitrogen can also
decrease the superheating. The temperature of attainable superheating, Tn,
for the solution N2–O2 at a fixed value of the nucleation rate J = 107 m−3 s−1

is given in Table 4.3 and Fig. 4.9.

Tab. 4.3 Temperature of attainable superheatings for nitrogen–oxygen solutions of different
molar fractions of the second component and two pressures, J = 107 m−3 s−1.

c′ Ts (K) ps (MPa) Tn (K)

p = 0.5 MPa

0 93.99 1.606 111.58

0.105 94.99 1.695 113.90

0.300 97.01 1.854 118.27

0.670 101.91 2.153 127.36

1.000 108.81 2.278 135.51

p = 1.0 MPa

0 103.73 1.823 113.86

0.105 104.91 1.889 115.92

0.300 107.25 2.046 120.22

0.670 112.69 2.346 129.21

1.000 119.62 2.494 137.49
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Fig. 4.9 Line of attainable superheatings (1, 2), binodal (1′, 2′) and
diffusion spinodal (1′′, 2′′) for a nitrogen–oxygen solution at a pressure
of p = 0.5 MPa (1, 1′, 1′′) and 1.0 MPa (2, 2′, 2′′).
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Experimental data on the temperature of attainable superheating for the
solution N2–O2 differ much less from the values calculated by the additivity
rule, Eq. (4.57), than for the system Ar–Kr. Thus, at a pressure of p = 1.0 MPa
the maximum deviation from Eq. (4.57) for the solution N2–O2 is � 0.75 K (c′
= 0.3), whereas for the mixture Ar–Kr it reaches 4.3 K (c′ = 0.5) (see Fig. 4.10).
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Fig. 4.10 Deviations from the additivity rule, Eq. (4.57), for the temper-
ature of attainable superheatings for nitrogen–oxygen (1) and argon–
krypton (2) solutions.

The position of the diffusion spinodal for the nitrogen–oxygen solution is
shown in Fig. 4.9. As in the case of the attainable-superheating temperature,
the concentration dependence of Tsp is close to linear. In the whole investi-
gated range of pressures and concentrations, the ratio of the attainable super-
heatings of the solution, ∆Tn = Tn − Ts, to ∆Tsp = Tsp − Ts is 0.75–0.8.

4.6
Solutions with Partial Solubility of the Components

A supersaturated solution of a gas in a liquid is an example of a two-
component metastable system in which nonequilibrium is caused by the
excess of the concentration of a dissolved component over its value in the
saturated state. The removal of supersaturation here takes place as a result
of formation of the gas phase in the form of numerous bubbles (“the effect
of champagne”). This phenomenon manifests itself also as Caisson’s disease,
it is used for degassing liquids, foaming of polymeric materials and in other
technological processes.

If at a given temperature and pressure of a supersaturated solution a pure
solvent (liquid) and a dissolved substance (gas) are in the stable state, the
solvent in the solution is characterized by a low volatility and the dissolved
gas by a low solubility. New-phase nuclei in such solutions practically fully
consist of molecules of the dissolved substance. The theory of boiling-up of
gas-filled nonvolatile liquids was suggested by Deryagin and Prokhorov [282]
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and Kuni et al. [283–285]. The first experimental investigations of nucleation
in nonvolatile gas-filled liquids were made by Hemmingsen [296], Gerth and
Hemmingsen [297], Finkelstein and Tamir [298], and Bowers et al. [299]. Su-
persaturation was created here by an abrupt release of pressure on the liquid
(water), which was saturated with a gas at pressures equal to several hun-
dreds of atmospheres. The concentration of a dissolved gas, c′, was deter-
mined in this case by the saturation pressure, ps, and the depth of penetration
into the metastable region, by the pressure difference pn(c′, T) = ps − pn,
where pn(c′, T) is the pressure of intensive gas emission.

An approach to the investigation of nucleation in gas-supersaturated wa-
ter solutions, different from that used in Ref. [296], was suggested by Rubin
and Noyes [300]. In a solution, which was in a vessel of a fixed volume at
controlled values of temperature and pressure, supersaturation was initiated
by a chemical reaction. If the rate of gas production during a chemical reac-
tion in a solvent considerably exceeds the rate of its removal through a free
interface, considerable supersaturations can be achieved in the volume of a
liquid solvent. A decay of the metastable state was accompanied by an abrupt
(explosive) gas liberation. The concentration of the dissolved gas in the su-
persaturated solution was determined by data for the volumes of the solu-
tion, gas and liquid phases in a measuring cell and the pressure increase in
the system during the initiation of gas liberation by stirring the solution or
by sonication. In this case, the supersaturation is characterized by the differ-
ence ∆c′n(p, T) = c′n − cs. According to the data of Ref. [300], the concentra-
tion, c′n, of nitrogen dissolved in water before the formation of bubbles was
approximately 20–40 times higher than its equilibrium concentration, cs, at
atmospheric pressure.

A comparison of experimental data, obtained by two different methods of
creating supersaturation in a gas-filled liquid with homogeneous nucleation
theory has shown that the degrees of metastability obtained by experiment
are considerably lower than their theoretical values. Thus, in the system
oxygen–water the limiting values of concentration, c′n, calculated from ho-
mogeneous nucleation theory at atmospheric pressure and a nucleation rate
J = 107 m−3s−1 have proven to be 15 times larger than those achieved by
experiment [301]. In this system, at the limiting values of supersaturation reg-
istered in experiment, the critical bubble is characterized by a radius, R∗ = 15
nm, and a pressure, p′′∗ = 9.5 MPa. The Gibbs number, G∗ = W∗/kBT, i.e., the
relation between the work of formation of a critical nucleus and the energy of
thermal motion of molecules, kBT, in this case is � 1.56 · 104 [302]. Overcom-
ing such a high potential barrier by means of homogeneous nucleation of the
gas phase in the characteristic times of experiment is an unlikely event. In the
case of spontaneous boiling-up of superheated pure liquids, the value of G∗ is
� 72 [12].
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To eliminate contradictions between theory and experiment, a number of
authors have suggested models of nucleation in gas-supersaturated solutions
different from the classical thermodynamic model [302, 303]. It is postulated,
for example, that the formation of gas bubbles in the solution proceeds in two
stages. At the first stage, according to Kwak [303], the molecules of a dis-
solved gas form a cluster, which has no distinct interface and, consequently,
no surface energy. In the paper by Bowers et al. [302], the spatial region of
increased gas concentration in the solution is called a “blob.” The small dif-
ference of gas concentrations in a “blob” and the surrounding liquid ensures,
according to the opinion of the authors of Ref. [302], a small surface contri-
bution to its excess free energy. The latter proves to be much lower than in
a bubble of the same size. Both the “cluster” of Kwak [303] and the “blob”
of Bowers et al. [302], after achieving a certain size exceeding the size of a
critical nucleus, are transformed into a supercritical gas bubble. The mod-
els described in Refs. [302, 303] make it possible, for limiting supersaturations
observed by experiment [296, 300], to decrease the height of the nucleation
barrier to ∼ 102 kBT. Some other approaches to the explanation of discrep-
ancies between the classical homogeneous nucleation theory and experiment
are discussed in Refs. [304, 341].

A peculiar situation for a gas-filled liquid is observed at temperatures close
to the critical point of the solvent. Here, a two-component system may prove
to be “doubly” metastable. At a given temperature, T, and concentration
of the dissolved component, c′, a solution at a pressure, p′, lower than the
saturation pressure, ps, is supersaturated and characterized by the degree of
metastability, ∆p(c′, T) = ps − p′, a pure solvent is superheated by the value
of ∆T(p′) = T − Ts(c′ = 0), where Ts(c′ = 0) is the saturation temperature
of a pure solvent at a given pressure. In the vicinity of the critical point, the
solvent volatility cannot be neglected any more, and viscous and inertia forces
and heat exchange at the interface start to play an important role in the bubble-
growth dynamics. The theory of boiling-up of such solutions has been treated
in detail by Baidakov [286–288].

Solutions of gases in liquids are generally characterized by a higher degree
of nonideality than systems with complete solubility of the components. In-
creasing nonideality is accompanied by an expansion of the region of two-
phase equilibrium, an increase in the surface adsorption and deviations from
the law of additivity. Studies of the kinetics of boiling-up of gas-saturated liq-
uids are of interest from the viewpoint of both homogeneous and initiated nu-
cleation. Gas saturation may stabilize gaseous inclusions on the vessel walls,
in the pores of solid foreign particles, and also initiate their growth at the ex-
pense of selective adsorption.

Depending on the chemical nature of substances and thermodynamic state
parameters, the water solubility of a gas varies in a sufficiently wide range.
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Fig. 4.11 Attainable superheatings of the solution C3H8–CO2 [126].
1: c′ = 0, 2: 0.09, 3: 0.15, 4: 0.22, 5: 0.3. Dashed and full lines
show results of calculations by homogeneous nucleation theory
(J = 106 m−3s−1). Ts is the binodal curve.

High solubility is characteristic of carbon dioxide in liquid hydrocarbons of
the methane series. The attainable superheatings of solutions C3H8–CO2 and
C4H10–CO2, and also nitrogen in organic liquids are investigated by Mori et
al. [126], Forest and Ward [306] by the method of emerging drops. The er-
ror of determination of the temperature of limiting superheatings for a solu-
tion is estimated as ±1.5 K, of the concentration as 1%. The dissolution of
carbon dioxide results in a shift of the boundary of spontaneous boiling-up
of a liquid toward lower temperatures (Fig. 4.11). The temperature of at-
tainable superheating for liquid isobutane (p � 0.1 MPa) decreases by 25 K
when one dissolves in it up to 0.33 molar fraction of CO2. The authors of
Ref. [126] compare the data obtained with the results of calculating Tn employ-
ing homogeneous nucleation theory of Döring–Volmer (Eqs. (2.112), (3.15),
and z0 = 1), in which, according to recommendations of Ward et al. [307],
the surface tension of a pure liquid has been replaced by the surface tension
of a solution, and the pressure of a vapor–gas mixture in a bubble is deter-
mined as the sum of the partial pressures of vapor and gas. At nucleation
rates J = (1024–1026) m−3s−1, gas-filled solutions of high-temperature liquids
were investigated by the method of pulse heating of a wire probe [308]. Gas
filling of a liquid resulted in a shift of the spontaneous boiling-up boundary
toward lower temperatures. The authors of Ref. [309] claim satisfactory agree-
ment between homogeneous nucleation theory and experiment, at least, in the
value of the limiting superheatings of the solutions.
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Fig. 4.12 Distribution of the number of boiling-up events, n, observed
within the interval τ, τ + ∆τ : c′ = 0.14 mol%; p = 1.171 MPa; T =
166.66 K; N = 31. Solid lines: τ̄ = 2.66 s at a “holding” time of 40 min,
dashed lines: τ̄ = 1.34 s at a “holding” time of 3 min.

Gas-saturated cryogenic liquids belong to the class of weak solutions. The
solubility of helium in oxygen and nitrogen at pressures lower than 5 MPa
does not exceed 2–5 mol% [310–312]. The considerable difference of the pa-
rameters of intermolecular interaction of helium atoms and the solvent mole-
cules results in an essential nonideality of the solvent, with helium behaving
like a surface-active substance decreasing the excess free energy of the liquid–
gas interface [313–317]. We used the method of determination of the mean
lifetime to investigate the nucleation kinetics in solutions of O2–He and N2–
He [293,294,318]. Experiments were conducted at two values of pressure and
several values of concentration for each of the solutions.

The technique of experiments on the mean lifetime of gas-saturated systems
is similar to that used in studying nucleation in solutions with complete sol-
ubility of the components. Under fixed external conditions (T, p, c′ = const),
the appearance of the first viable nucleus in a metastable liquid is an event
of the Poisson type. This statement has been confirmed by experiments on
one-component liquids [12]. In these experiments, the time of “hold-up” of
a liquid under pressure was ≈ 3 min. This time interval was sufficient for
complete decompression of the vapor phase and the relaxation of thermal in-
homogeneities in the measuring system. In experiments on gas-filled liquids,
it has been discovered that at times of “hold-up” of about three minutes one
can often observe boiling-up with expectation times that are “anomalously”
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Fig. 4.13 Temperature dependence of the mean lifetime of a
metastable mixture of oxygen and helium at a pressure p = 1.171 MPa
and several concentrations. 1: c′ = 0 mol%; 2: 0.08; 3: 0.14; 4: 0.20.
The dashed lines show results of calculations for a one-component sys-
tem by homogeneous nucleation theory with σ = σ∞; dotted lines
show results of computations by homogeneous nucleation theory with
σ = σ(R∗).

small for the given values of T, p, and c. “Anomalously” small values of τ

may appear and disappear in the course of experiments, or be retained dur-
ing the whole period of measurements. Such a behavior of a gas-filled system
is similar to that of a one-component system if the latter contains easily acti-
vated nucleation centers [12, 264]. The law of distribution of “anomalously”
low expectation times of boiling-up events is also close to the Poisson one
(Fig. 4.12, smooth curves). With an increase in the “hold-up” time between
measurements up to 30–40 min (i.e., by an order of magnitude) premature liq-
uid boiling-ups did not manifest themselves. In the course of treatment of
experimental data, “anomalously” low values of τ were excluded from con-
sideration.

Figures 4.13 and 4.14 show on a semilogarithmic scale the results of de-
termination of the mean lifetime and the nucleation rate in oxygen–helium
solutions at two values of pressure. As in the case of one-component liquids,
on the curves τ̄(T) and J(T) one can distinguish two sections with different
characters of the temperature dependences τ̄ and J. At low superheatings,
experimental isobars have characteristic gently sloping sections, which with
increasing temperatures give way to sections with an abrupt change of the
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expectation time of boiling-up of the solution. The first section is connected
with initiated and the second with spontaneous nucleation. Dissolution of
0.1 mol% of helium in liquid oxygen decreases the limiting superheatings,
∆T = Tn − Ts, by approximately 10%. In this case, in the region of initiated
nucleation the mean lifetime of a solution decreases by three or four times. It
is important here that gas saturation manifests itself most noticeably at very
low helium concentrations.
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Fig. 4.14 Temperature dependence of the nucleation rate of oxygen–
helium mixtures at a pressure p = 1.667 MPa and different concentra-
tions. 1: c′ = 0 mol%; 2: 0.08; 3: 0.14; 4: 0.20. For the way of determi-
nation of the dashed and the dotted curves, see caption to Fig. 4.13.

In sections of an abrupt decrease of τ (increase of J), the value of the deriv-
ative of J with respect to temperature (d ln J/dT) does not depend on concen-
tration within the experimental error. At a pressure of 1.171 MPa, it is about
18, at p = 1.667 MPa equal to 21. This value corresponds to an increase of the
nucleation rate by approximately 8 or 9 orders of magnitude with an increase
in temperature of 1 K. The character of the temperature dependence of τ̄ and J
on the lines of constant value of pressure, p, and concentration, c′, in the nitro-
gen–helium system is similar to that in the oxygen–helium mixture (Figs. 4.15
and 4.16).

In the region of homogeneous nucleation, the temperatures of attainable
superheatings are, in a first approximation, a linear function of the concen-
tration of the volatile component (Fig. 4.17a). With equal amounts of helium
dissolved in nitrogen and oxygen and similar values of the reduced pressure,
the value of T0

n − Tn(c′) in the system N2–He is smaller than in the system
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Fig. 4.15 Temperature dependence of the mean lifetime in the system
nitrogen–helium at a pressure p = 0.5 MPa and different concentra-
tions. 1: c′ = 0 mol%, 2: 0.051, 3: 0.16, 4: 0.35. For the meaning of the
dashed and the dotted lines, see Fig. 4.13.
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Fig. 4.16 Temperature dependence of the nucleation rate in the sys-
tem nitrogen–helium at a pressure p = 1.0 MPa and different concen-
trations. 1: c′ = 0 mol%, 2: 0.051, 3: 0.16, 4: 0.35. For the meaning of
the dashed and the dotted lines, see Fig. 4.13.

O2–He. This result correlates with the effect of helium on the surface prop-
erties of cryogenic liquids [313, 315]. The higher the adsorption of helium at
a liquid–gas interface, the smaller the ratio of the critical temperatures of the
gas and the liquid dissolved.

In the region of initiated nucleation, the effect of gas saturation on the tem-
perature of attainable superheatings shows up most vividly at small values
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Fig. 4.17 Difference in experimental values of temperatures of at-
tainable superheatings for solutions N2–He (1, p = 1.0 MPa), O2–He
(2, p = 1.171 MPa) and a pure solvent at J = 107 m−3s−1 (a) and
J = 106 m−3s−1 (b).

of c′. As it follows from Fig. 4.17b, the dependence of Tn on helium concen-
tration in nitrogen and oxygen at J = 106 m−3s−1 is essentially nonlinear. It
is rather difficult to explain such a behavior of Tn, when seeing the reason for
bends of experimental isobars only in the effect of radiation background.

4.7
Equation of State and Boundaries of Thermodynamic Stability of Solutions

For describing the properties of new-phase nuclei and the determination of
the boundary of stability for homogeneous solutions with respect to con-
stantly changing state variables (the spinodal curve), it is necessary to have
an equation of state which describes both stable and metastable states. Such
an equation of state for Ar–Kr, N2–He and O2–He systems has been obtained
in the framework of a one-liquid solution model on the basis of experimental
data on thermodynamic properties of pure components and phase equilibria
in solutions, and for the system N2–O2 and three-component solutions in the
framework of an extended law of corresponding states [325]. In order to ob-
tain these basic equations, equations of state for argon [319], nitrogen [320],
and oxygen [321] were used having a common form for the liquid and the
vapor phase. In the region of liquid–gas phase separation, these equations
have isotherms of the van der Waals type and satisfy the Maxwell rule. In the
general form, the equation of state of the solution is given by

p
ρRT

= 1 + η ∑
i,j

bijρ̃
i T̃−j. (4.58)
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Here, ρ̃ = ρ/ρc, T̃ = T/Tc and (ρc, Tc) are the density and the temperature at
the critical point, respectively. Both the parameters and the individual param-
eter η are functions of concentration. The coefficients bij are determined by
experimental data on the thermodynamic parameters of the less volatile solu-
tion component (argon, oxygen, nitrogen) and are given in Refs. [319–321].

Three individual parameters of Eq. (4.58), Tc, ρc = 1/vc, and η, have been
approximated by the expressions

Tc(c) = Tc,1c2 + 2αTTc,12c(1 − c) + Tc,2(1 − c)2, (4.59)

vc(c) = vc,1c2 + 2αvvc,12c(1 − c) + vc,2(1 − c)2, (4.60)

η(c) = η1c2 + 2αηη12c(1 − c) + (1 − c)2, (4.61)

where the cross terms Tc,12, vc,12, and η12 satisfy the combination rules

Tc,12 = δT(Tc,1Tc,2)1/2, (4.62)

vc,12 = δv

(
v1/3

c,1 + v1/3
c,2

)3

8
, (4.63)

η12 =
(1 + η1)

2
. (4.64)

where Tc,i and ρc,i are the temperature and density, respectively, at the critical
point of any of the pure components.

In developing an equation of state for an argon–krypton solution, we started
from the fact that for these substances the law of corresponding states is ful-
filled with an error close to the experimental one [53]. In reduced coordi-
nates, the (p, ρ, T)-properties of argon and krypton may be described by one
equation of state of the form of Eq. (4.58) with coefficients bi,j determined, for
example, by the properties of argon, η = 1. The coefficients δT = 1.0012
and δv = 1.017 have been found by minimizing the mean-square devia-
tions of experimental data concerning the pressure of saturated vapors [322]
and the density of the liquid phase [323] for Ar–Kr solutions calculated from
Eqs. (4.58), (4.59), (4.60), (4.62), and (4.63).

Since the region, where oxygen exists in a liquid phase, is located consider-
ably above the helium critical temperature, helium may be regarded here as a
gas close to a perfect one. This circumstance makes it possible to use the equa-
tion of state for oxygen for a description of helium having introduced into the
latter one the correction factor, η. In pure oxygen, η = 1. At η = 0.431, the
equation of state, Eq. (4.58), with coefficients bi,j of oxygen describes in the
best way the (p, ρ, T)-properties of helium in the range of reduced densities
0 < ρ̃ < 1 and temperatures 0.6 < T̃ < 1. The free parameters of the equation,
αT, αv and αη , may be determined by the pressure of saturated vapor and the
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composition of the liquid and the vapor phase of the solution. However, the
data available so far [324] on the set of parameters (ps, c′, c′′) have proven to
be insufficient for a reliable representation of the phase diagram in the range
of temperatures adjoining the solvent critical point. In the absence of infor-
mation about the (p, ρ, T, c)-properties of an oxygen–helium system, we used
data about the surface tension [314] as an additional information. By includ-
ing into consideration information about the properties of a liquid–vapor in-
terface it was possible not only to increase the reliability of description of the
(p, ρ, T, c)-properties of the solution by the equation of state, Eq. (4.58), but
also to determine the influence parameter of pure helium, k11. Calculations
were made by employing Eqs. (4.58)–(4.64).

The solvent influence parameter was determined from Eq. (3.119) by data
on the surface tension of pure oxygen [156]. The results of such calculations
may be presented in the following form:

k22ρ8/3
c,2 /pc,2 = 0.5552 + 12.6638ε − 187.164ε2 + 1468.46ε3

− 6583.0ε4 + 16993ε5 − 23465ε6 + 13500ε7,
(4.65)

where ε = 1 − (T/Tc,2). The temperature dependences of the free parameters
in Eqs. (4.59)–(4.61) and also the coefficient k11 have been approximated by
the following expressions:

αT = 3,

αv = 2.88 − 16.8ε + 54.0ε2 − 50.0ε3,

αη = −0.238 + 14.95ε − 61.1ε2 + 103.0ε3 − 61.0ε4,

(4.66)

and

k11ρ8/3
c,2

pc,2
= 7.93− 176.5ε + 1530ε2 − 6248ε3 + 12100ε4 − 8900ε5. (4.67)

The coefficient k12 was found according to Eq. (4.20).
The use of an extended law of corresponding states for the description of

metastable states in solutions [325] also presupposes the availability of unified
equations of state for pure fluids describing stable, metastable, and unstable
phases. In this case, the equation of state for a solution is written as

F(T, ρ,�c)
RT

= f̃ (T, ρ,�c)

= ∑
i

ci

{
f 0
i (T, ρ) + f r

i [Tr(�c)/T, ρ/ρr(�c)] + ln ci

}
+ f E[Tr(�c)/T, ρ/ρr(�c),�c].

(4.68)
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Here f̃ is the reduced free energy, �c is a set of concentrations of the different
components, f r

i is the configurational part of the free energy of the ith compo-
nent, f 0

i is the ideal-gas contribution to the free energy, f E is the correction for
nonadditivity, and Tr(�c) and ρr(�c) are the reduction parameters. The rules of
mixing for Tr(�c) and ρr(�c) and the expression for f E are given in Ref. [325].
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Fig. 4.18 (p, T)-projection of the phase diagram of oxygen–helium
mixtures. Solid lines show the curves of phase equilibrium, dashed lines
the diffusion spinodals. 1: c′ = 0 mol%; 2: 0.5; 3: 1; 4: 2; 5: 3. CC′ is
the critical line.

The most accurate unified equations of state for pure liquefied gases are pre-
sented in Refs. [326–328]. Describing stable one-phase and two-phase states,
these equations do not describe metastable and unstable regions in the space
of thermodynamic states. In Ref. [329], a procedure of “sewing together”
is suggested, which makes it possible to describe metastable and unstable
states of pure substances and solutions on the basis of standard equations of
state [326–328].

In the region of liquid-gas phase transition, the free energy of a pure fluid is
approximated by [329]

f = a0 − a1
1
ρ̃

+ a2
ln ρ̃

T̃
+ a3

ρ̃

T̃
+

a4

2
ρ̃2

T̃
+

a5

3
ρ̃3

T̃
+

a6

4
ρ̃4

T̃
+

a7

5
ρ̃5

T̃
. (4.69)

The coefficients a1, a2, . . . , a7 in Eq. (4.69) are functions of temperature. At a
given temperature, their values are determined by the following system of
equations:

p(ρ′s) = ps, p(ρ′′s ) = ps, (4.70)
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∂p
∂ρ

)
T

∣∣∣∣
ρ′s

= p′ρ,
(

∂p
∂ρ

)
T

∣∣∣∣
ρ′′s

= p′′ρ , (4.71)

(
∂2 p
∂ρ2

)
T

∣∣∣∣
ρ′s

= p′ρρ,
(

∂2 p
∂ρ2

)
T

∣∣∣∣
ρ′′s

= p′′ρρ, (4.72)

ρ′s∫
ρ′′s

p
ρ2 dρ = ps

(
1

ρ′′s
− 1

ρ′s

)
. (4.73)

The orthobaric densities ρ′s and ρ′′s , the saturation pressure ps, the first-order,
pρ, and the second-order, pρρ, derivatives of pressure along the saturation line
are determined by the standard equations of state, and Eq. (4.73) expresses
the Maxwell rule of equal areas. The coefficient a0 is determined by the free
energy on the saturation line. Thus, the polynomial, Eq. (4.69), proves to be
rigidly related to the binodal of the standard equation of state both in the value
of the free energy and in its derivatives with respect to the density.
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Fig. 4.19 Phase diagram of nitrogen–oxygen solution. L: phase-
equilibrium surface, M: diffusion-spinodal surface, CC′: critical line.

The phase diagram of an oxygen–helium system, calculated by Eq. (4.58),
is given in Fig. 4.18. The lines of phase equilibrium separate the regions of
stable and metastable phases on the thermodynamic surface of the homoge-
neous states. The metastable phase of a two-component system retains the
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restoring reaction to infinitesimal changes of state variables up to the diffu-
sion spinodal determined by the condition, Eq. (2.22). In a one-component
system, the stability of the metastable phase is disturbed, if Eq. (2.26) holds.
In pure oxygen at a temperature T = 140 K a stretch of the liquid phase by
∆psp(T) = ps − psp = 2.65 MPa corresponds to the spinodal. Dissolution in
oxygen of 1 mole% helium results in a rising limiting value of the tensile stress
up to ∆psp(T, c) = ps − psp � 3.17 MPa. Thus, with increasing concentration
of a dissolved gas, the width of the metastable region increases. It should be
mentioned that at high gas concentrations (c′ > 3 mole% ) penetration into
the metastable region at a fixed external pressure is already connected with
decreasing rather than increasing temperatures (see Fig. 4.18).

The phase diagram of the nitrogen–oxygen solution calculated by the equa-
tion of state, Eq. (4.68), with the use of experimental data on thermody-
namic parameters and phase equilibrium from Refs. [330, 331], is presented
in Fig. 4.19. The surfaces of phase equilibrium and the diffusion spinodal in-
tersect on the line of critical points, CNCO. The width of the metastable region
increases in pressure and temperature with increasing concentration of oxy-
gen in the mixture.

4.8
Properties of Critical Bubbles in Binary Solutions

A binary two-phase system containing a curved surface of discontinuity pos-
sesses three degrees of freedom. Therefore, at a given temperature the surface
tension of a nucleus is not only a function of the radius of curvature of the
dividing surface, but also a function of the composition [332]. The properties
of bubbles in solutions of simple liquids may be described in the framework
of the van der Waals square gradient representation for the functional of the
Helmholtz free energy, Eq. (4.13).

According to the Gibbs method of dividing surfaces [1], during the forma-
tion of a nucleus of radius R∗ in a metastable system, the change in the thermo-
dynamic potential is given by Eq. (4.1). For bubbles which are in equilibrium
with the surrounding liquid phase from Eqs. (4.1) and (3.8) we have

W∗ = 4πσR2 +
4π

3
(p′ − p′′)R3∗. (4.74)
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By solving the system of equations, Eqs. (4.21), (4.24), and (4.74), with re-
spect to the surface tension, we obtain

σ =
R∫

0

(p′′ − p)
r2

R2 dr +
∞∫

R

(p′ − p)
r2

R2 dr

+
∞∫

0

[
ρβ(µ2 − µ′

2) + k22

(
dρβ

dr

)2
]

r2

R2 dr .

(4.75)

Equations (4.75), (4.22) and (4.23) determine, employing the approximation of
Eq. (4.20), the value of the surface tension for a binary solution at a curved
interface.
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Fig. 4.20 Density distributions of the first (1) and the second (2) com-
ponent of argon–krypton solutions, and also of the generalized density
ρβ (3) in a critical bubble at T = 155 K and c′ = 0.5.

At small curvatures of the separating surface, the surface tension, σ, may be
presented as a series in terms of 1/R∗, in which the first expansion term is the
surface tension at a planar interface. Restricting ourselves to the terms that
are squared in curvature, we have

σ = σ∞ +
σ1

R∗
+

σ2

R2∗
. (4.76)

Now moving over to a new variable, z = r − R, and expanding the quantities
in Eqs. (4.22), (4.23), and (4.75) into a Taylor series, we obtain [333]

σ0 = 2k22

+∞∫
−∞

(
dρ0,0

dz

)2

dz, (4.77)
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Fig. 4.21 Dependence of the reduced surface tension of critical bub-
bles of the solution argon–krypton on the curvature of the dividing
surface at T = 145 K for different concentrations. 1: c′ = 0; 2: 0.1; 3:
0.3; 4: 0.5; 5: 0.7; 6: 1.

σ1 =
2

∑
i=1

µ′
i,1∆ρi,sδi,∞, (4.78)

σ2 = I1 + 2I2 + I3 + I4 + σ∞z2∗ +
1
2

2

∑
i=1

µ′
i,2∆ρi,sδi,∞, (4.79)

where ∆ρi,s = ρ′i,s − ρ′′i,s is the difference of the densities of the components at a
planar interface, and δi,∞ = zi,e − z∗ is the distance between the equimolecular
dividing surfaces and the surface of tension at a planar interfacial layer,

z∗ =
2k22

σ

+∞∫
−∞

(
dρ0,0

dz

)2

zdz, zi,e =
1

∆ρi,s

+∞∫
−∞

dρi,0

dz
zdz, (4.80)

I1 = 2k22

+∞∫
−∞

(
dρ0,0

dz

)2

(z − z∗)2dz, (4.81)

I2 =
2

∑
i=1

µ′
i,1

2

+∞∫
−∞

dρi,0

dz
(z − z∗)2dz, (4.82)

I3 =
2

∑
i=1

µ′
i,1

2

+∞∫
−∞

dρi,1

dz
(z − z∗)2dz, (4.83)

I4 = 2k22

+∞∫
−∞

dρ0,0

dz
ρ0,1dz. (4.84)
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Equations (4.77)–(4.84) express the parameters of Eq. (4.76) solely in terms of
characteristics of a planar interface. This method of calculating the functions
ρi,1(z) is described in Ref. [333].

Tab. 4.4 Characteristic parameters of critical bubbles in an argon–krypton solution at a pres-
sure 1.0 MPa.

Parameter c′

0 0.5 1.0

T (K) 134 155 186

ps (MPa) 2.440 2.906 2.738

W∗/kBT (Eq. (3.8)) 78.0 82.9 71.1

W∗/kBT (Eq. (4.24)) 64.1 76.7 57.9

lg J (Eqs. (2.86), (3.8)) 5.5 4.1 8.3

lg J (Eqs. (2.86), (4.24)) 11.5 6.8 14.0

σ∞ (mN/m) 2.402 3.065 2.952

δ∞ (nm) 0.035 −0.023 0.036

δ∞,1 (nm) 0.035 −0.210 –

δ∞,2 (nm) – 0.182 0.036

σ(R∗) (mN/m) 2.249 2.987 2.758

R∗ (nm) 3.55 3.62 3.59

N ′′∗ 319 330 265

N ′′
2∗ 0 75 265

δ (nm) 0.207 0.095 0.219

δ1 (nm) 0.207 −0.067 –

δ2 (nm) – 0.329 0.219

The values of the coefficients of decomposition for the chemical potential
µ′

i,1 and µ′
i,2 depend on how metastability is generated. At a constant tem-

perature, the penetration of a binary solution into a metastable region may be
realized in different ways. The particular way of penetration is determined
by a trajectory in the space of two independent variables whose role can be
played by densities, ρ1 and ρ2, chemical potentials, µ1 and µ2, etc. We shall
examine two ways of penetration: along the line determined by the condition

c′ =
ρ′2

(ρ′1 + ρ′2)
= const (4.85)

(c-penetration) and along the line

(µ′
1 − µ′

1,0) =
(

k11

k22

)1/2

(µ′
2 − µ′

2,0) (4.86)

(β-penetration). The first way mentioned is traditionally employed for experi-
mental investigations of nucleation in creating phase metastability in a binary
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system [12, 291]. The second possibility is interesting as it allows one estab-
lishing the isomorphism in the behavior of the surface tension of nuclei in a
binary and a one-component system.
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Fig. 4.22 Density distributions of the components of an oxygen–
helium solution in a critical bubble at the following values of the pa-
rameters: T = 140 K, c′ = 0.1 mol%, p = 1.0 MPa.

In fulfilling the condition expressed by Eq. (4.85), we obtain

ρ′2,1 = ρ′1,1
c′

(1 − c′) , ρ′2,2 = ρ′1,2
c′

(1 − c′) . (4.87)

As a result, for the decomposition coefficients of the chemical potential we can
write [333]

µ′
1,1 = µ′

2,1a, µ′
1,2 = µ′

2,2a + ρ2′
1 a, (4.88)

µ′
2,1 =

−2σ0

∆ρ1,0a + ∆ρ2,0
, (4.89)

µ′
2,2 =

ρ2′
1 ∆ρ1,0a +

2

∑
i=1

∆ρi,1µ′
i,1 + 4

2

∑
i=1

∆ρi,0µi,1δi,0

∆ρ1,0a + ∆ρ2,0
, (4.90)

a =
(

∂µ1,0

∂ρ

)
c=c′

/ (
∂µ2,0

∂ρ

)
c=c′

, (4.91)

b =
(

∂2µ1,0

∂ρ2

)
c=c′

−
(

∂2µ2,0

∂ρ2

)
c=c′

a, (4.92)
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ρ = ρ1 + ρ2, ρ1 = ρ1,1 + ρ2,1. (4.93)

At β-penetration, we have

µ′
1,1 =

(
k11

k22

)1/2

µ′
2,1, µ′

1,2 =
(

k11

k12

)1/2

µ′
2,1. (4.94)

As a result of isomorphism, the coefficients in Eq. (4.76), and also the quanti-
ties determining them, prove to be similar to a one-component system [333]

σ1 = −2σ∞δ0,0, (4.95)

σ2 = I1 + 2I2 + I3 + I4 + σ∞
∆ρ0,1

∆ρ0,0
δ0,0 + 3σ0δ2

0,0 + σ0z2
0,e, (4.96)

where

∆ρ0,0µ′
1,1 = −2σ∞, (4.97)

∆ρ0,0µ′
1,2 = −∆ρ0,1µ′

1,1 − 4µ′
1,1∆ρ0,0z0,e − 4σ∞z∗, (4.98)

I2 =
µ′

1,1

2

+∞∫
−∞

(
dρ0,0

dz

)
z2dz, I3 =

µ′
1,1

2

+∞∫
−∞

(
dρ0,1

dz

)
zdz. (4.99)
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Fig. 4.23 Surface tension of critical bubbles in an oxygen–helium solu-
tion along the line c′ = const at T = 140 K. 1: c′ = 0 mol%, 2: 0.1; 3:
0.2.

In the Gibbs method of dividing surfaces, the differential equation deter-
mining the size dependence of the surface tension takes the form [334]

1
σ

dσ

d(1/R∗)
=

2ψ

1 + 2ψ/R∗
, (4.100)
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where

ψ =
(

Γ1
dµ′

1
d(1/R∗)

+ Γ2
dµ′

2
d(1/R∗)

)/ (
∆ρ1

dµ′
1

d(1/R∗)
+ ∆ρ2

dµ′
2

d(1/R∗)

)
. (4.101)

Here, Γi is the absolute adsorption of the ith component. At a small curvature
of the dividing surface, the function ψ(R∗) may be presented as

ψ = ψ∞ +
ψ1

R∗
, (4.102)

where ψ1 is a parameter depending on temperature and concentration. Per-
forming a substitution of Eq. (4.102) into Eq. (4.100), we arrive at Eq. (4.76),
where

σ1 = −2ψ∞, σ2 = 4ψ2
∞ − ψ1. (4.103)

If ψ∞ < 0 and ψ1 � 4ψ2
∞, then Eq. (4.86) gives a nonmonotonic dependence

of σ(R) on R with a maximum at

σmax

σ∞
= 1 +

ψ2
∞

ψ1
, R∗max =

ψ1

(−ψ∞)
. (4.104)

In pure substances, the maximum manifests itself only in liquid droplets
[186]. In a binary system, the presence or the absence of a maximum on the
dependence σ(R∗) at constant temperature depends on how metastability is
created, i.e., on the trajectory of motion in the space of independent vari-
ables. Thus, if during the process of penetration of a liquid into the region
of metastable states a constant concentration is maintained, then a maximum
at the dependence σ = σ(R∗) of vapor bubbles will be observed [334] for the
solution of equimolecular composition. On the line c′ = const, vapor bubbles
and liquid droplets are characterized by two different parameters, ψ. For the
β-line, this is the parameter

ψ = ψβ =
Γρ

ρ′′ρ − ρ′ρ
, (4.105)

where Γρ = Γ1 + (k11/k22)1/2Γ2 is the absolute adsorption determined by
the density, ρβ. Distinct from the parameter ψ∞ on the line c′ =const, the
parameter ψ∞ on the β-line does not change its sign in passing from pure
substances to mixtures, and the character of the dependence, σ(R), in a binary
solution on the β-line is similar to the dependence, σ(R), in a one-component
system in the whole range of state variables from the binodal to the spinodal.

The functional, Eq. (4.13), is given if the equation of state of a homogeneous
solution and the matrix of the influence coefficients, κij, are known. Equations
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of state for binary solutions are presented in Section 4.7. The influence coef-
ficients, κ11 and κ22, may be obtained from Eq. (3.119) by experimental data
on the surface tension of pure substances at a planar interface [57]. The co-
efficient κ12 is related to the influence coefficient for pure components by the
combination rule

κ12 = δκ(κ11κ22)1/2. (4.106)

From the conditions of stability, Eq. (4.15), we have δ2
κ ≤ 1. The value of δκ

may be determined in the framework of the van der Waals capillarity theory
by experimental data on the macroscopic value of the surface tension, σ∞, of
the solution [276]

σ∞ = 2
+∞∫

−∞

2

∑
i,j=1

κij

(
dρi

dz

) (
dρj

dz

)
dz, (4.107)

where the density distributions of the components of the mixture in a planar
interfacial layer, ρi(z), are found by solving the system of differential equa-
tions to which Eqs. (4.17) are reduced when the radius of curvature of the
dividing surface is increased to infinity.

The coefficients κij (Eq. (4.107)) are functions of temperature and exhibit a
weak dependence on density [57, 334]. If we neglect this weak dependence of
κij on ρi, the value of κii for a pure substance in solutions with complete sol-
ubility of the components may be determined by data on the surface tension
at a planar interface via Eq. (3.119). Numerical calculations of the values of
κ11(T) and κ22(T) by data on the surface tension of argon and krypton from
Refs. [153,154], and also of the coefficient δκ by the results of measuring σ∞ of
an argon–krypton solution [335–338] have shown that in this solution δκ � 1.
Thus, the properties of the nuclei in an argon–krypton system can be described
with good accuracy by Eqs. (4.21)–(4.23).

The results of numerical solution of the system of equations (4.21)–(4.23) for
states close to the boundary of spontaneous boiling-up of argon–krypton so-
lutions are presented in Fig. 4.20. At small supersaturations, a homogeneous
core and a transition layer can be distinguished in the nucleus. Hereby, the
thickness of the transition layer is small as compared with the bubble size.
With further penetration into a metastable region, the homogeneity core be-
comes smaller, and the functions ρ1(r) and ρ2(r) take a bell-like shape. A shift
in the distribution of ρ1(r) with respect to ρ2(r) means excess adsorption of
the first component in the surface layer of a nucleus.

By solving the system of Eqs. (3.4), (3.8), (4.2), and (4.24) with respect to σ

and R∗, the dependence of the surface tension on the radius of curvature of
the surface of tension can be determined. The results of such a calculation
at a fixed temperature and several values of solution concentration are given
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in Fig. 4.21. In contrast to a one-component system, where σ is a monoton-
ically increasing function of R∗ [184, 186, 187], for a solution with c′ � 0.5
the dependence σ(R∗) has a characteristic maximum [291]. The value of σmax
exceeds that of σ∞ only by 0.5–0.7%, which is close to the error of experimen-
tal determinations of σ∞. The results of numerical calculations of the depen-
dence σ(R∗) in a wide range of nucleus radii may be described by Eq. (4.76),
where the parameters σ1 and σ2 are determined by Eq. (4.103). Bubbles, re-
sponsible for the spontaneous boiling-up of a liquid up to nucleation rates
J = 1015 m−3s−1, are correctly described by Eq. (4.76). The results of calcu-
lating the properties of such bubbles in an argon–krypton system are given in
Table 4.4.

Distributions of the densities of components in a critical bubble of an oxy-
gen–helium solution are presented in Fig. 4.22. As distinct from solutions with
complete solubility of the components, the density of the first gas component
in a bubble is higher than in the solvent. The presence of a weak maximum on
the density profile on the side of the gas phase points to the excess adsorption
of the first component in the surface layer of a nucleus.

The Tolman parameters of the components of a binary solution (δi = Re,i −
R∗, i = 1, 2) behave similarly to the Tolman parameter, δ, of pure substances;
they increase monotonically with increasing curvature (in the region of weak
metastability where the dependence δi(1/R∗) is linear). At small radii of the
bubble, the Tolman parameter diverges proportionally to R−1/3∗ . As distinct
from σ1 and σ2, the value of δ1(2) = δ1 − δ2 = Re,1 − Re,2 shows a weak depen-
dence on both the curvature of the separating surface and the concentration.

Figure 4.23 shows the surface tension of critical bubbles of O2–He solutions
as a function of the curvature of the surface of tension at a constant tempera-
ture for several compositions of the ambient phase. Small additions of helium
in liquid oxygen do not change the character of the size dependence of the
surface tension, evenly shifting the whole dependence toward smaller values
of δ. Taking into account the dependence δ(R∗) in the work of formation of a
critical nucleus leads to a decrease in the height of the activation barrier from
G∗ = W∗/kBT = 85 to 70 and facilitates the boiling-up of a gas-filled solution.

The characteristic parameters of critical bubbles corresponding to the Gibbs
number G∗ = 70 are given in Table 4.5. It follows from the results presented
in the table that at T = 138 K and p = 1.171 MPa the radius of a critical
bubble, R∗, in superheated pure oxygen equals 3.732 nm, and the number of
molecules in the bubble equals N′′∗ ∼= 457. Dissolution in oxygen of 0.2 mol%
helium decreases the size of a critical bubble to R∗ = 3.615 nm. This de-
crease is balanced by increasing σ(R∗)-values from 2.288 to 2.422 mN/m. In
this case, the helium concentration in a bubble is equal to c′′∗ ∼= 6 mol%, the
number of molecules N′′∗ ∼= 428 and the bubble is practically free of helium
atoms, N′′∗1

∼= 31. Before the formation of a bubble, its volume was occupied
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Tab. 4.5 Characteristic parameters of critical bubbles of pure oxygen and oxygen–helium
mixtures at the pressure p = 1.171 MPa and the Gibbs number G∗ = 70.

Parameter c′ (mol%)

0 0.1 0.2

T (K) 138.149 137.650 137.150

ps (MPa) 2.567 2.665 2.754

B (108 s−1) 1.969 0.855 0.556

log J (Eqs. (2.86), (3.8)) 6.09 5.72 5.60

σ∞ (mN/m) 2.44 2.51 2.58

δ∞,1 (nm) – 0.301 0.297

δ∞,2 (nm) 0.0363 0.0367 0.0371

R∗ (nm) 3.732 3.673 3.615

σ(R∗) (mN/m) 2.288 2.354 2.422

N ′′∗ 457 442 428

N ′′
1∗ – 16 31

δ1 (nm) – 0.463 0.458

δ2 (nm) 0.215 0.213 0.210

c′′∗ (mol%) 0 3.03 6.02

N ′
1 0 5 9

N ′
2 3894 3731 3575

by N′
2
∼= 3575 oxygen molecules and N ′

1
∼= 9 helium atoms. It is evident that

the supply of ∼= 22 atoms of a dissolved gas to the growing bubble does not
require a diffusion process and may be caused by molecular exchange. Thus,
the process of nucleation in a gas-filled solution at temperatures close to the
temperature of the attainable superheating of the solvent differs only slightly
from the process of nucleation in a superheated pure liquid. The decrease of
the temperature of attainable superheating of the liquid, observed as a gas
component is dissolved in it, is first connected with a shift of the line of equi-
librium coexistence of phases and, to a lesser degree, with the change of the
surface tension. All these features are responsible for the differences of the be-
havior of a gas-filled solution in the vicinity of the critical point of the solvent
and a gas-filled liquid at low temperatures.

4.9
Comparison of Theory and Experiment for Binary Solutions

In the present section, experimental data on the boiling-up kinetics of binary
solutions of cryogenic liquids are analyzed in the framework of the homoge-
neous nucleation theory employing the expression for the steady-state nucle-
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ation rate. An evaluation of the time, τl , required for establishing a stationary
flux of critical nuclei in solutions is given in Ref. [286]. In the region of state
variables, where the experiments have been carried out, the time τl does not
exceed 10−8 s, which justifies the neglect of nonsteady state effects.

0.0 0.4 0.8
120

140

160

180

Ts

Tn

T, K

c'

Tsp

Fig. 4.24 Temperature of attainable superheatings of an argon–
krypton solution at p = 1.6 MPa. Circles are experimental data. Tn
has been calculated using Eqs. (2.86), (4.49), (3.8), and σ = σ∞,
J = 107 m−3s−1. Tsp specifies the location of the spinodal curve and
Ts the binodal curve of the liquid.

In the expression for the steady-state nucleation rate, the exponential term
is dominant. The kinetic factor, B, depends weakly only on temperature, pres-
sure, and concentration. A very strong dependence of the nucleation rate on
the exponential term makes differences in evaluations of the factor B insignifi-
cant. Thus, an uncertainty in the value of B of 1–2 orders of magnitude results
in an uncertainty in the temperature of the attainable superheatings of the
liquid equal to 0.1–0.2 K. This uncertainty does not exceed the error of deter-
mining this value by experiment. A change from the normalization constant
C0 = ρ′ (z0 = 1) to C0 = ρ′2/ρ′′∗ (z0 = ρ′/ρ′′∗ ) decreases the temperature of
attainable superheatings for oxygen–helium solutions by approximately 0.2–
0.3 K. Comparing theory and experiment, we use C0 = ρ′ as the normalization
constant for the distribution function.

In Table 4.6 and Figs. 4.6, 4.7, and 4.24 experimental data on the tempera-
ture of attainable superheatings for Ar–Kr solutions are compared first with
the results of their calculation by homogeneous nucleation theory in a macro-
scopic approximation and then incorporating the dependence σ = σ(R∗) into
the computations. In a macroscopic approximation, the discrepancies of the-
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Tab. 4.6 Temperature of attainable superheating in argon–krypton solutions for
J = 107 m−3s−1.

c′ Ts (K) ps (MPa) Tn (K)

Experiment Theorya Theoryb

p = 1.0 MPa

0.0 116.55 2.431 133.9 134.12 133.65

0.109 118.60 2.559 138.1 138.29 137.88

0.428 125.86 2.887 151.8 151.81 151.50

0.708 136.38 2.973 166.5 166.73 166.30

0.938 152.72 2.784 181.1 181.42 180.81

1.0 159.13 2.673 185.3 185.84 185.17

p = 1.6 MPa

0.0 125.18 2.698 136.2 136.41 136.05

0.109 127.63 2.823 140.5 140.63 140.33

0.382 134.76 3.098 152.1 152.19 151.97

0.428 136.21 3.151 154.4 154.37 154.14

0.708 148.09 3.224 169.2 169.42 169.10

0.938 164.71 3.034 183.8 184.21 183.72

1.0 170.70 2.934 188.1 188.63 188.10

a Calculations performed with σ = σ∞,
b Calculations with σ = σ(R∗).

ory and experiment in Tn do not exceed 0.6 K. They have the largest values
for pure substances and the lowest ones for solutions of equimolar composi-
tion. Taking into account the dependence σ(R∗) in the work of formation of
a critical bubble improves the agreement of theory and experiment for pure
substances and weak solutions. The nonmonotonic character of the depen-
dence σ(R∗) in a solution in the vicinity of equimolar composition leads to
the convergence of the values of σ for critical bubbles and σ∞. This property
manifests itself in a decreasing disagreement between experiment and the the-
oretical values of the temperature of attainable superheatings calculated in a
macroscopic approximation.

Temperature dependences of the nucleation rate are also close to the theo-
retical ones (Fig. 4.7). A shift in the temperature of 1 K results in the change of
J by 6–12 orders of magnitude. The derivative d ln J/dT becomes larger with
increasing pressure. The theory also provides for a qualitatively correct rep-
resentation of the concentration dependence of the temperature of attainable
superheatings observed experimentally (Fig. 4.24). At a pressure p = 1.0 MPa
and concentration c′ = 0.5, the attainable superheating, achieved experimen-
tally, was given by ∆T = Tn − Ts = 27.2 K. Under the same conditions, the
superheating ∆Tsp = 36.2 K corresponds to the diffusion spinodal. The spin-
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Tab. 4.7 Temperature of attainable superheatings of helium–oxygen mixtures for nucleation
rates, J = 107 m−3s−1.

c′, mol % Ts (K) ps (MPa) Tn (K)

Experiment Theorya Theoryb

p = 1.171 MPa

0 122.40 2.570 138.17 138.73 138.22

0.08 118.96 2.640 137.79 138.38 137.85

0.14 114.55 2.686 137.43 138.11 137.56

0.20 – 2.732 137.06 137.85 137.27

p = 1.667 MPa

0 129.05 2.786 140.00 140.53 140.13

0.08 127.12 2.860 139.72 140.18 139.76

0.14 125.34 2.910 139.46 139.91 139.47

0.20 123.04 2.963 139.23 139.64 139.19

a Calculations performed with σ = σ∞,
b Calculations with σ = σ(R∗).

odal has been calculated from Eq. (4.58) according to its definition (Eq. (2.22)).
Table 4.7 shows data on the temperature of attainable superheatings for an

oxygen–helium solution corresponding to a nucleation rate, J = 107 m−3s−1.
The experimental results are compared with calculations of Tn by homoge-
neous nucleation theory in a macroscopic approximation (σ = σ∞) and ac-
counting for the dependence of the bubble surface tension on the curvature of
its separating surface, σ = σ(R∗). The kinetic factor, B, was determined from
Eqs. (4.33) and (4.44). In addition, Table 4.7 shows the values of the satura-
tion temperature, Ts, at a given pressure, p, and the values of the pressure, ps,
corresponding to the experimental temperature of attainable superheatings,
Tn. In Figs. 4.13 and 4.14, the temperature dependences of τ̄ and J are shown,
calculated by Eq. (3.10) and taking into account the dependence σ(R∗). The re-
sults of calculation of the functions τ̄(T) and J(T) for pure oxygen in a macro-
scopic approximation are also presented. The data from Table 4.7, Figs. 4.13
and 4.14 show a good agreement between experiment and classical homoge-
neous nucleation theory if the latter takes into account the size dependence of
the properties of critical nuclei. The disagreement between theoretical and ex-
perimental values of the temperature of attainable superheatings is within the
limits of experimental error and accuracy of determining the thermophysical
parameters in Eqs. (3.10) and (3.11). The experimental data do not reveal any
peculiarities with respect to the nucleation kinetics in the vicinity of c′ = 0 and
c′ = 1, where the resultant flux of nuclei can develop by-passing the saddle
point. This result confirms the assumption of the equilibrium character of the
composition in a critical bubble used in the theory of binary nucleation.
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Figure 4.25 shows the line of attainable superheatings and the spinodal in
the oxygen–helium system at two investigated pressure values. The dissolu-
tion of helium in oxygen decreases both the temperature of superheating and
the temperature of stability loss of the system with respect to infinitely small
perturbations of concentration. At a helium concentration in oxygen of 0.3
mol%, the temperature of spontaneous boiling-up of the solution is approxi-
mately 1.2–1.5 K lower than that of oxygen. At a concentration of 0.1 mol%
and a pressure of 1.171 MPa, the superheating is ∆T � 20 K, and the loss of
stability of the homogeneous solution takes place at ∆Tsp � 25 K. Close to
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Fig. 4.25 Temperature of attainable superheatings of oxygen–helium
solutions (1, 2; J = 107 m−3s−1) and spinodal (1′, 2′) at pressures p =
1.171 (1, 1′) and 1.667 MPa (2, 2′). The dashed line shows the results
of the calculation by homogeneous nucleation theory in a macroscopic
approximation, σ = σ∞, the dotted line accounts for the dependence,
σ(R∗). The width and length of the rectangles determine the error in
the determination of temperature and concentration.

the temperature of spontaneous boiling-up of a pure solvent (T > 0.9Tc), a
critical bubble of a gas-filled solution contains about an order of magnitude
fewer molecules of a dissolved substance than of a solvent. If we assume
that an easily volatile component, which is to be dissolved, is distributed uni-
formly in a solvent, in the process of nucleation the solvent molecules will
then predominantly leave the volume where a critical bubble forms. To obtain
an equilibrium composition of a dissolved component in a bubble, diffusion
may not be required as the inflow of the lacking number of gas molecules may
take place at the expense of the thermal motion of the molecules.

The situation in a gas-filled solution changes cardinally if nucleation pro-
ceeds at temperatures much lower than the critical temperature of the solvent.
Thus, in an oxygen–helium solution at a temperature of 100 K, a pressure of
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1.171 MPa, a helium concentration c′ ∼= 3 mol%, the solution is supersaturated
(the Gibbs number equals G∗ � 80) and the radius of a critical nucleus will
be ∼= 1.7 nm, the number of helium molecules in a bubble N ′′

1∗ ∼= 176, and the
number of oxygen molecules N′′

2∗ ∼= 3. Before the formation of a nucleus took
place, in the volume of critical size about 12 helium atoms were contained in it.
To provide an equilibrium concentration in a bubble, helium atoms should dif-
fuse via distances approximately 2.5 times exceeding the bubble radius. The
characteristic times of diffusion in this case are τD

∼= 2 · 10−8 s, which is com-
parable with the time of establishment of a stationary nuclei size distribution.

At low temperatures, a stronger size dependence of the surface tension of
critical bubbles may be observed [339–341]. The character of the dependence
σ(R∗) differs not only quantitatively, but also qualitatively from that revealed
at elevated temperatures. At temperatures T = 0.6Tc, the radius of a criti-
cal bubble is 2–2.5 times smaller than at T = 0.9Tc. By this reason, at low
temperatures a stronger sensitivity of supersaturated solutions is found with
respect to inhomogeneities and accidental inclusions in a system and on the
walls of the surrounding vessel. An increase in the number of regions where
a viable bubble is easily activated hinders the experimental realization of the
homogeneous nucleation mechanism. However, even with existing boiling
centers and free liquid surfaces, the temperature of intensive fluctuation nu-
cleation in a supersaturated solution can be achieved in nonstatic processes
with a rapid introduction of heat into the system or an abrupt removal of the
external pressure [9, 10]. For this purpose, it is necessary that the speed of
penetration into a metastable region satisfies a certain criterion which would
be ensured by liquid superheatings under an intensive heat flow into existing
evaporation centers. At low temperatures, the conditions of realization of such
a shock liquid boiling-up regime prove to be more rigid than at temperatures
close to the critical point. Practically all experiments on the investigation of
nucleation in gas-filled solutions at low temperatures were carried out using
quasistatic methods [296–301] with a sufficiently slow transfer of the system
into a metastable state. As done in the case of cavitation [12], the achievement
of conditions of homogeneous nucleation here evidently requires the use of
nonstatic (pulse) methods.

4.10
Kinetics and Thermodynamics of Nucleation in Three-Component Solutions

Let us now examine some aspects of nucleation in ternary solutions. If nucle-
ation proceeds under constant external pressure and temperature, the Gibbs
excess thermodynamic potential is written as Eq. (4.1), where ν = 3. Substitu-
tion of the conditions of mechanical, Eq. (3.4), and diffusion, Eq. (4.2), equilib-



210 4 Nucleation in Solutions of Liquefied Gases

ria into Eq. (4.1) gives the work of formation of a critical nucleus, which has
the form of Eq. (3.8).

In a region of weak metastability (G∗ � 1), approximate relations can be
obtained relating the parameters of a critical bubble in a ternary system with
those of the line of phase equilibrium at a planar interface. Assuming that the
liquid solution is incompressible and the vapor in a bubble is ideal, we have

c′′2∗ = c′′2s

{
c′′1s + c′′2s exp

[
(ps − p′)

ps

(v′2 − v′3)
v′′

]
+ (1 − c′′2s − c′′3s) exp

[
(ps − p′)

ps

(v′2 − v′3)
v′′

]}−1

.

(4.108)

c′′3∗ = c′′3s

{
c′′3s + c′′2s exp

[
(ps − p′)

ps

(v′3 − v′2)
v′′

]
+ (1 − c′′1s − c′′2s) exp

[
(ps − p′)

ps

(v′2 − v′3)
v′′

]}−1

.

(4.109)

p′′∗ = ps

{
c′′2s exp

[
− (ps − p′)

ps

v′2
v′′

]
+ c′′3s exp

[
− (ps − p′)

ps

v′3
v′′

]
+ (1 − c′′2s − c′′3s) exp

[
− (ps − p′)

ps

v′1
v′′

]}
.

(4.110)

Here, c′′2s and c′′3s are the concentrations of the second and third components
of the solution at a planar interface at temperature, T, and pressure, ps, v′i is
the partial molar volume in the liquid phase, and v′′ is the molar volume of
the gas phase. If v′i � v′′ (i = 1, 2, 3), then expanding the exponential terms
in Eqs. (4.108)–(4.110) into a series and restricting ourselves to the first terms
of the expansion, after substituting the results into Eq. (3.8) for the work of
formation of a critical nucleus in a ternary mixture, we obtain

W∗ =
16π

3
σ3

(ps − p′)2
[

1 − c′′2s
v′2
v′′ − c′′3s

v′3
v′′ − (1 − c′2s − c′3s)

v′1
v′′

]2 . (4.111)

According to the van der Waals theory of capillarity, the change of the
Helmholtz free energy at the formation of a spherical inhomogeneity with the
properties of a competitive phase in a ternary mixture is given by Eq. (4.13),
where ν = 3. It follows from the conditions of stability of a two-phase three-
component system that the inequalities κ11 κ12 κ13

κ21 κ22 κ23
κ31 κ32 κ33

 > 0,
(

κ11 κ12
κ21 κ22

)
> 0, κ11 > 0, (4.112)
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have to be fulfilled. If, for the cross coefficients κ12, κ23, and κ13, we take

κ12 = (κ11κ22)1/2, κ23 = (κ22κ33)1/2, κ13 = (κ11κ33)1/2, (4.113)

the first and the second of inequalities (4.112) transform to an equality, which
corresponds to an indifferent equilibrium of the system with respect to density
gradients opposite in sign and determines the limiting value of the coefficients
κ12, κ23, and κ13. With Eq. (4.113), Eq. (4.13) can be written in the more simple
form

∆F[�ρ] = 4π

∞∫
0

[
∆ f + κ33

(
dρβ

dr

)2
]

r2dr. (4.114)

Here, ρβ = ρ3 + (κ11/κ33)1/2ρ1 + (κ22/κ33)1/2ρ2. Density distributions, ρi
(i = β, 1, 2, 3), in a critical bubble can be found from the solution of the Euler
system of equations for the functional equation. (4.114), which includes one
differential equation

d2ρβ

dr2 +
2
r

dρβ

dr
=

µ3 − µ′
3

2κ33
(4.115)

with the boundary conditions ρβ → ρ′β at r → ∞, dρβ/dr → 0 at r → 0 and
r → ∞ and two algebraic equations

µ1 − µ′
1 =

(
κ11

κ33

)1/2

(µ3 − µ′
3), (4.116)

µ2 − µ′
2 =

(
κ22

κ33

)1/2

(µ3 − µ′
3). (4.117)

In this case, the work of formation of a critical bubble is given by Eq. (4.24).
Let us examine the kinetics of nucleation in a three-component system as-

suming that the nucleation process is isothermal, the initial supersaturation is
small (G∗ � 1), and the gas in a bubble is ideal. The inertial properties of the
liquid in the process of bubble growth are neglected. In the approximations
mentioned above after introducing dimensionless quantities (see Section 4.2)
for the matrix of second-order derivatives of the thermodynamic potential,
Ψ(x, y, z, �), at the saddle point of the potential barrier we have

Ψ̂ = 2G∗


−1

3 0 0 0

0 1
b1

0 0

0 0 1
b2

0

0 0 0 1
b3

 . (4.118)
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The exchange of molecules of the mixture components between a growing
bubble and a liquid solution may take place in the free-molecular (Eq. (4.31))
and the diffusion (Eq. (4.37)) regimes. The total rate of change of the number
of molecules of each of the components in a bubble is then given by Eq. (4.38).

The rate of change of the bubble volume is determined by Eq. (3.22). Ne-
glecting the liquid inertia in the process of the nucleus growth implies, when
one restricts the attention to processes in the vicinity of the saddle point of the
pass, the elimination from Eq. (3.22) besides the term containing R̈2 and the
term containing R̈. The condition of such neglect is expressed by inequality
(4.43). Now moving to the equation of motion for the bubble volume and the
partial pressures of the solution components in the bubble to dimensionless
variables defined by Eq. (4.47), we obtain

ẋ ≡ dx
dt

=
1
3

x +
1
b1

y +
1
b2

z +
1
b3

�, (4.119)

ẏ ≡ dy
dt

= −1
3

x −
[

1
b1

+
ω1

3(1 + γ1)

]
y − 1

b2
z − 1

b3
�, (4.120)

ż ≡ dz
dt

= −1
3

x − 1
b1

y −
[

1
b2

+
ω2

3(1 + γ2)

]
z − 1

b3
�, (4.121)

�̇ ≡ d�

dt
= −1

3
x − 1

b1
y − 1

b2
z −

[
1
b3

+
ω3

3(1 + γ3)

]
�. (4.122)

Here t = τ/τm is a dimensionless time and τm = 4η/3bp′′∗ . By using the
relation between the rate of change of the characteristic variables of the nu-
cleus and the thermodynamic forces, Eq. (3.79), for the tensor of generalized
diffusion we have

D̂ =
1

2G∗



1 −1 −1 −1

−1 1 + ω1b1
3(1 + γ1)

1 1

−1 1 1 + ω2b2
3(1 + γ2)

1

−1 1 1 1 + ω3b3
3(1 + γ3)

 . (4.123)
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Substitution of Eqs. (4.118) and (4.123) into the characteristic equation,
Eq. (2.101), yields the algebraic equation

λ̃4 +
1
3

(
ω1

1 + γ1
+

ω2

1 + γ2
+

ω3

1 + γ3
+

3 − b
b

)
λ̃3 +

1
9

[
ω1

1 + γ1

(
3
b2

+

+
3
b3

− 1
)

+
ω2

1 + γ2

(
3
b1

+
3
b3

− 1
)

+
ω3

1 + γ3

(
3
b1

+
3
b2

− 1
)

+

+
ω1ω2

(1 + γ1)(1 + γ2)
+

ω2ω3

(1 + γ2)(1 + γ3)
+

ω1ω3

(1 + γ1)(1 + γ3)

]
λ̃2 +

+
1

27

[
ω1ω2

(1 + γ1)(1 + γ2)

(
3
b3

− 1
)

+
ω2ω3

(1 + γ2)(1 + γ3)

(
3
b1

− 1
)

+

+
ω1ω3

(1 + γ1)(1 + γ3)

(
3
b2

− 1
)

+
ω1ω2ω3

(1 + γ1)(1 + γ2)(1 + γ3)

]
λ̃ −

− 1
81

ω1ω2ω3

(1 + γ1)(1 + γ2)(1 + γ3)
= 0. (4.124)

The positive root, λ̃0, of this equation determines the nucleation rate in a su-
persaturated three-component viscous solution with allowance for the diffu-
sional and the molecular supply of a substance to a growing bubble.

The nucleation rate is determined by Eq. (2.112), where ρ′ is the particle
number density of a metastable solution, and the kinetic factor is given by

B = λ0ρ′′∗R2∗
(

kBT
σ

)1/2

. (4.125)

The diffusional mechanism will be decisive if γi � 1. Otherwise the con-
centration of the solution will be homogeneous up to the bubble surface, and
the molecular exchange will be determined only by the volatility of the com-
ponents of the mixture. In the limiting case ω3 → 0, b3 → ∞, Eq. (4.124) is
transformed into Eq. (4.51), which describes the boiling-up of an inertialess
binary solution.

4.11
Attainable Superheatings of Ternary Solutions of Cryogenic Liquids

In the present section, results of experimental investigations of nucleation in
ternary systems are presented. On the one hand, the increase of the number
of components in a mixture considerably complicates the description of pro-
cesses proceeding in it, but, on the other hand, makes it possible to hope for
revealing new phenomena connected with nucleation.

The first experimental data on the temperatures of attainable superheat-
ings for ternary solutions of cryogenic liquids were obtained for nitrogen–
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Fig. 4.26 Phase diagram of the system nitrogen–oxygen–argon. L:
phase equilibrium, M: diffusion-spinodal surface.

oxygen–argon and nitrogen–oxygen–helium systems [342, 343]. The qua-
sistatic method of measuring the lifetime, τ, of superheated solutions in glass
capillaries was used. The procedure of determining τ̄ in ternary systems is
similar to the one used previously for binary solutions (see Section 4.4). All
measurements were conducted at the same pressure, p′ = 1.0 MPa and con-
centrations, (c′2, c′3). For determining the composition of the solutions under
investigation, manometric, piezometric, and weight methods were employed.

The piezometric method, as distinct from the manometric and the weight
methods, allows one to determine the composition of the solution directly in
the measuring cell at the test temperature. For this purpose, the pressure de-
pendence of the specific volume of the solution is measured in the course of
the experiment, after completion of the cycle of measurements of the lifetime,
during the process of condensation of the mixture (T = const). The data ob-
tained on the phase-equilibrium pressure and data from the literature on the
phase diagram of a solution are used to determine the concentration of the
components in a mixture. For the system N2–O2–Ar, data on phase equilib-
rium from Ref. [325] were used, the phase diagram of the solution N2–O2–He
was not investigated by experiment. Figures 4.26 and 4.27 present the phase
diagrams of solutions in the region of the state variables at which the investi-
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Fig. 4.27 Phase diagram of the system nitrogen–oxygen–helium.
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gations of nucleation kinetics were carried out. The results of determination
of the temperature dependence of the nucleation rate, J, in solutions N2–O2–
Ar and N2–O2–He at fixed values of pressure and composition are presented
in Figs. 4.28 and 4.29. The character of the dependence J(T) is similar to that
of pure liquids and binary solutions. Along the experimental curves, there
are sections of an abrupt increase in the nucleation rate, which correspond to
spontaneous boiling-up of the solution. At given state variables (temperature,
pressure, composition), after the cut-off of premature acts of liquid boiling-up,
the distribution of expectation times of boiling-up for a metastable solution is
close to the Poissonian one (Eq. (3.88)).

For the solution N2–O2–Ar containing 0.442 molar fraction of oxygen (c′2)
and 0.166 molar fraction of argon (c′3) at a pressure p = 1.0 MPa and J =
107 m−3s−1, the temperature of attainable superheating was equal to Tn =
127.72 K. In this case, the value of the derivative (d lg J/dT) is equal to 15.2.
The value of the temperature of attainable superheatings, calculated by the
additivity rule Eq. (4.54) from the data on Tn for pure liquids, is 127.62 K,
which coincides with the experimental value within the limits of error of mea-
surements. The temperatures of attainable superheatings for a binary solution
containing 0.44 molar fraction of nitrogen (c′1) and 0.56 molar fraction of oxy-
gen (c′2) at a pressure p = 1.0 MPa and J = 107 m−3s−1 is 126.46 K. The disso-
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Fig. 4.28 Nucleation rate in the system N2–O2–Ar at p′ = 1.0 MPa, c′2
= 0.442, c′3 = 0.166.
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Fig. 4.29 Nucleation rate in the system N2–O2–He at p′ = 1.0 MPa, c′2
= 0.56, c′3 = 0.05 mol%. The dashed line shows results of calculations
by the homogeneous nucleation theory in a macroscopic approxima-
tion.

lution in a mixture N2–O2 of such a composition of 0.05 mol% helium leads to
a decrease in the temperature of attainable superheatings to Tn = 126.30 K.

The comparison of homogeneous nucleation theory and experiment for
ternary systems is hampered by the lack of data on a number of thermophys-
ical parameters. For the system N2–O2–Ar at temperatures above 115 K, data
on the surface tension and the interdiffusion coefficients are not available. The
surface tension of the solution N2–O2–He at temperatures close to the temper-
ature of its attainable superheatings is measured in Ref. [344], but the absence
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of a single equation of state for such a system did not allow us to perform
calculations of the work of formation of a critical bubble in the framework of
the van der Waals approach (see Section 4.8). The temperatures of attainable
superheatings for the system N2–O2–He were calculated in the framework of
the model described in Section 4.10.

The work of formation of a critical nucleus was determined by Eq. (4.11)
using the macroscopic approximation, σ(R∗) = σ∞. Due to the lack of data
on the interdiffusion coefficients of the components it was assumed that the
molecular exchange between a nucleus and the solution was determined only
by the volatility of the mixture components. Then, Eq. (4.124) takes the form

λ̃4 +
1
3

(
ω1 + ω2 + ω3 +

3 − b
b

)
λ̃3 +

1
9

[
ω1

(
3
b2

+
3
b3

− 1
)

+

+ ω2

(
3
b1

+
3
b3

− 1
)

+ ω3

(
3
b1

+
3
b2

− 1
)

+ ω1ω2 + ω2ω3 + ω1ω3

]
λ̃2 +

+
1

27

[
ω1ω2

(
3
b3

− 1
)

+ ω2ω3

(
3
b1

− 1
)

+ ω1ω3

(
3
b2

− 1
)

+ ω1ω2ω3

]
λ̃ −

− 1
81

ω1ω2ω3 = 0. (4.126)

The results of calculations of the nucleation rate in the system N2–O2–He are
compared with the experimental data in Fig. 4.29. Within the limits of exper-
imental error between theoretical and experimental values of the derivative
(∂ ln J/∂T)p,c′2,c′3 , theoretical values of the temperature of attainable superheat-
ings are 0.2–0.3 K higher than the experimental data.
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5
Nucleation in Highly Correlated Systems

5.1
Introduction

The critical point of a thermodynamic system is a singular point where the
curve enclosing the region of essential instability (the spinodal) divides un-
stable and stable states. In its vicinity both the correlation length, ξ, and the
relaxation time, τ, of fluctuations are large. For describing the kinetics of first-
order phase transitions in systems with a large correlation length, the meth-
ods of the theory of second-order phase transitions are employed here. Such a
description is based on the concept of an order parameter, ϕ, which has differ-
ent values in both co-existing phases and, therefore, undergoes a finite jump
in the process of phase transition [20]. We are interested in the formation and
growth of nuclei of a new phase, and also in the processes of decay of unstable
states in the vicinity of singular points of a thermodynamic system. Of all the
degrees of freedom of the system, we explicitly take into account only slowly
changing variables ai(�r, τ), (i = 1, 2, . . . , M), assuming that the remaining de-
grees of freedom adjust themselves adiabatically to such large-scale (hydro-
dynamic) modes. The variables ai either include the order parameter as an
independent mode or the order parameter is their certain linear combination.

The dynamics of the fields, ai, is described by a system of nonlinear equa-
tions, Eq. (2.64). Later on, unless not specified otherwise, it is assumed that
the system has only one large-scale mode described by the order parameter,
ϕ(�r, τ). For a one-component system it is the density field, ϕ(�r) = ρ(�r) − ρc,
for a binary solution, the concentration field, ϕ(�r) = c(�r) − cc, where ρc and
cc are the values of density and concentration at the corresponding critical
points. In the vicinity of a critical point, the Helmholtz free energy, F, may
be expanded into a series in powers of the order parameter. In the space of
dimensionality, d, assuming the invariance of the thermodynamic potential,
F, with respect to the inversion of the sign of ϕ, we have [20, 62]

F[ϕ] =
∫ [

1
2

aϕ2 +
1
4

bϕ4 − hϕ + κ(∇ϕ)2
]

ddr. (5.1)
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The coefficients a, b, and κ are functions of temperature and pressure; the
quantity h plays the role of an external field. The subsequent terms of the
expansion, Eq. (5.1), and the asymmetry may be taken into account in the
framework of the well-known models of the theory of critical phenomena [63,
345].

The properties of the system described by the functional equation (5.1) are
well-known [20]. At h = 0 and a = 0, a critical point is found in the system;
the line h = 0, a < 0 is the line of a first-order phase transition (binodal)

ϕs = ±
(
− a

b

)1/2
, b > 0, (5.2)

where

a = aot, t =
(Tc − T)

Tc
, ao < 0. (5.3)

The condition (∂h/∂ϕ)T = 0 determines the boundary of essential instability
of the metastable phase (spinodal)

ϕsp = ±
(
− a

3b

)1/2
, hsp =

(
2
3

) (
− a3

3b

)1/2

. (5.4)

In the absence of random forces, ζi(�r, τ), the system of equations, Eq. (2.68),
has stationary homogeneous solutions which are stable with respect to infin-
itely small perturbations, and also a class of quasistationary solutions describ-
ing critical heterophase fluctuations in the initial metastable phase. At small
values of the random forces, the solutions of Eqs. (2.68) are always perturba-
tions of quasistationary configurations of the fields, ai(�r, τ) [65]. The quantity
ζ may be regarded as a perturbation if for regions with a linear dimension
of the order of the correlation radius, ξ, the amplitude of the response of the
field, ϕ(�r, τ), is small compared to ϕs, i.e., [20]

〈[δϕ(�r)]2〉 � ϕ2
s . (5.5)

The correlation radius of fluctuations of the order parameter, ξ, is determined
by the expression

ξ =
(

κ

|a|
)1/2

. (5.6)

The region of values for the parameters of the potential, Eq. (5.1), at which
condition (5.5) is fulfilled, is given by the inequality (d = 3) [62, 63]

1 � |t| � Gi =
b2(kBTc)2

|ao|κ3 , (5.7)
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where the quantity Gi is known as the Ginzburg number. In a space of arbi-
trary dimensionality, d, inequality (5.7) is written as

G̃i
−1

=
ϕ2

s
〈[δϕ(�r)]2〉 � ϕ2

s

ξ2−dr−2
o vd−4

m
=

κd/2ϕ4−d
s

kBTcbd/2−1 � 1. (5.8)

Here, vm is the molecular volume and ro is the radius of molecular interaction.
The criteria (5.7) and (5.8) determine the range of applicability of the approach
discussed above, i.e., of the Landau mean-field theory [20].

In the case of strong fluctuations, the field ϕ(�r, τ) should be averaged over
perturbations with scales smaller than the characteristic linear dimensions of
space inhomogeneities. The relaxation equation for a smoothened field is
found by renormalization group methods [62, 63]. As long as the character-
istic size of a nucleus is larger than the correlation length R∗ � ξ, the relax-
ation equation and the thermodynamic potential have the same form like in
the case of weak fluctuations (Eqs. (2.68), (5.1)), but with renormalized coeffi-
cients, Γ̂∗, κ∗, a∗, b∗ [65]. The coefficients κ∗, a∗, b∗ are expressed in terms of the
measured characteristics of the system, such as the correlation radius ξ, the
susceptibility (isothermal compressibility) (∂ϕ/∂h)T , or the equilibrium value
of the order parameter, ϕs. In the asymptotic vicinity of the critical point, these
quantities are described by simple power laws

ϕs = ±Botβ, (5.9)(
∂ϕ

∂h

)
T

= χo|t|−γ, (5.10)

ξ = ξo|t|−ν. (5.11)

Between the critical exponents of thermodynamic quantities there exists the
relation

α + 2β + γ = 2, β(δ − 1) = γ, (5.12)

where α and δ are the critical exponents of the heat capacity and the critical
isotherm, respectively. In the mean-field theory, one obtains β = ν = 1/2,
γ = 1, α = 0, δ = 3, whereas in the fluctuation theory of critical phenomena,
the relations β � 0.33, γ � 1.23, ν � 0.63, α � 0.11, δ � 4.6 hold [345]. Besides,
in a space of arbitrary dimensionality, d, the following relationships are true:

νd = 2 − α, (d − 1)ν = µ, (5.13)

where µ is the critical exponent of surface tension. Critical exponents depend
only on the dimensionality of space, d, and the number of components of
the order parameter. The coefficients of proportionality in the power laws,
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Eqs. (5.9)–(5.11), are individual parameters of a substance and depend on the
direction of approach to the critical point.

Equations (5.12) make it possible to postulate the form of the singular part
of the density of the Helmholtz free energy in the vicinity of the critical point
as a homogeneous function of t and ϕ. The homogeneity hypothesis does not
determine the explicit form of f (t, ϕ) pointing only to the asymptotic proper-
ties of this function. This problem is solved in the method of renormalization
group by a successive decrease of the number of degrees of freedom by chang-
ing the scale.

5.2
Critical Configuration and its Stability

Let us determine the work of formation of an equilibrium nucleus in the vicin-
ity of the critical point of an isotropic system in a space of arbitrary dimension-
ality, d. According to Eq. (5.1), at a given configuration of the field of the order
parameter, ϕ(�r), the Helmholtz excess free energy may be written as

�F[ϕ] =
∫

[� f + κ(�ϕ)2]ddr, (5.14)

where

� f = f̃ − f̃o − (ϕ − ϕo)ho, (5.15)

f̃ =
1
2

aϕ2 +
1
4

bϕ4, (5.16)

ho = (µo − µs)/ρc = aϕo + bϕ3
o . (5.17)

Here, µs is the chemical potential on the saturation line. The subscript o refers
to the initial state of a homogeneous metastable phase.

We introduce dimensionless variables

Ψ =
ϕ

ϕs
, x =

(
bϕ2

s
4κ

)1/2

r =
1

2ξ
r, Ho =

4ho

|a|ϕs
. (5.18)

Now moving to dimensionless variables, Eq. (5.14) yields

�F[Ψ] = �Fo

∫
[(1 − Ψ2)2 − (1 − Ψ2

o)
2 + (Ψ − Ψo)Ho + (∇Ψ)2]ddx, (5.19)

where

�Fo =
κd/2ϕ4−d

s

bd/2−1 , Ho = 4(Ψ3
o − Ψo). (5.20)
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The equilibrium configuration of the field of the order parameter, Ψ∗(�x), is
determined by the Euler equation

d2Ψ
dx2 +

d − 1
x

dΨ
dx

+ 2(Ψ − Ψ3) − 1
2

Ho = 0 (5.21)

with the boundary conditions Ψ → Ψo at x → ∞, dΨ/dx = 0 at x = 0 and
x → ∞.

The form of the solutions of Eq. (5.21) depends on supersaturation and di-
mensionality of space, d. We shall restrict our consideration to small supersat-
urations (the region of weak metastability), when

ho � hsp or G∗ =
�F[Ψ∗]

kBT
� 1. (5.22)

In the one-dimensional case at Ho = 0, from Eq. (5.21), we have

Ψ(x) = ± tanh(x − xo), (5.23)

where xo is the value of the coordinate x determining the position of the inter-
face. If Ho 
= 0, and d = 1, Eq. (5.21) is reduced to(

dΨ
dx

)2

= 2[(1 − Ψ2)2 − (1 − Ψ2
o)

2 + (Ψ − Ψo)Ho] = 0. (5.24)

The characteristic feature of this equation is that the value of the order param-
eter at the center of the equilibrium configuration, Ψ�(0), coincides with the
physically undistinguished value of Ψ at which � f becomes equal to zero
(Fig. 5.1). Even in the vicinity of the binodal, the value of Ψ�(0) is much
smaller than the equilibrium value of Ψ+ determined from the condition of
equality of the chemical potentials of the initial and the newly evolving phase.
With increasing dimensionality of space, Ψ�(0) tends to Ψ+ and at d ≥ 3 prac-
tically coincides with Ψ+ (note that an exact equality Ψ�(0) = Ψ+ is unattain-
able as Ψ+ is the fixed point of Eq. (5.21)).

In a three-dimensional space the solution of Eq. (5.21), describing a planar
interface at (Ho = 0), will be similar to the solution of a one-dimensional
problem. At small supersaturations, the nucleus is sufficiently large, and its
boundary may be considered as being quasiplanar. Substituting into Eq. (5.21)
the factor (d − 1)/x for (d − 1)/x∗, where x∗ is the effective nucleus radius,
we get [65]

Ψ∗(x) � ± tanh(x − x∗) − 1
8

Ho, (5.25)

x∗ =
8

3|Ho| . (5.26)
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Fig. 5.1 Excess density of the Helmholtz free energy as a function of
the reduced order parameter and the dependence of the order param-
eter on the space coordinate in a one-dimensional system.

In the case of arbitrary values of Ho, Eq. (5.21) can only be solved numerically.
The algorithm of finding the distribution of the order parameter in the critical
configuration based on the Runge–Kutta method is described in Ref. [103].

The stability of the equilibrium distribution of the function Ψ∗(�x) with re-
spect to perturbations, δΨ(�x) = Ψ(�x) − Ψ∗(�x), is determined by the second
variation of the functional �F[Ψ] (Eq. (2.41), see Section 2.5). The character
of relaxation of the unstable mode, ψo,o(�x), depends on the dimensionality of
the space, which is connected with qualitative differences in the dependence
of the effective potential, Veff, on the coordinate �x. If, at d ≥ 3, the effective
potential is positive at the center of the equilibrium configuration Ψ∗(�x) and
changes the sign while passing through the minimum in the interface region
(Fig. 5.2b), in the one-dimensional case Veff < 0 at the center of the equilibrium
configuration and becomes positive at x → ∞ (Ψ → 0) (Fig. 5.2a). As a result
of such a behavior of Veff, for d ≥ 3 the eigenfunction of the critical configu-
ration ψo,o(�x) differs from zero only in the spherical layer that coincides with
the interface, and the evolution of the nucleus is connected with the increase
(decrease) of the radius of curvature of localization ψo,o(�x) (effective radius
of the nucleus, x∗). In the space with d = 1, a similar eigenfunction is con-
centrated at the center of a near-critical configuration, and the nucleus growth
begins with an increase in the amplitude of the field of the order parameter.
Only then an increase in the effective radius, x∗, is found [346, 347].

It is easy to verify that for the same initial conditions, (T, Ψo), the work
of formation of a one-dimensional nucleus is smaller than that of a three-
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Fig. 5.2 Effective potential, Veff, distribution of the order parameter in
a critical nucleus, Ψ∗, and eigenfunction ψo,o of the operator of stabil-
ity, L̂, for a one-dimensional (a) and a three-dimensional (b) system.

dimensional one. Even in an isotropic system a heterophase fluctuation is
spherical only on average, and the field, Ψ(�x), will change differently in differ-
ent directions from its center. Bursts of the field, Ψ(�x), along some randomly
distinguished directions may be interpreted as quasi-low-size heterophase
fluctuations. The appearance of quasi-low-size fluctuations is most proba-
ble at comparatively high degrees of metastability, when their effective size
is sufficiently small, and shape fluctuations are more significant. If in a re-
gion of weak metastability the value of the order parameter, Ψ, at the cen-
ter of a heterophase fluctuation is lower than the equilibrium value, such a
three-dimensional fluctuation is practically always precritical and disperses.
A one-dimensional fluctuation, on the contrary, may prove to be supercritical
and begin to grow, at first at the expense of an increase in the amplitude of Ψ,
and then in the effective radius, x∗. In the process of expansion, the convex
sections of an inhomogeneity will have a smaller growth rate than the con-
cave sections. The field Ψ(�x) spheroidizes, and the value of Ψ at its center
tends to Ψ+. A quasi-low-size nucleus becomes three dimensional, but when
it happens, it may already prove to be supercritical [347, 348].

By definition, from Eqs. (5.19) and (5.21) for the work of formation of a crit-
ical nucleus, we have

W∗ = min max�F[Ψ] = �FoΥ∗[Ψ∗], (5.27)

where

Υ∗ = 2
∞∫

0

(Ψo + Ψ)(Ψo − Ψ)3ddx. (5.28)
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The integral, Eq. (5.28), is temperature independent, increases infinitely with
Ψo tending to ±1 and is equal to zero on the spinodal. According to Eqs. (5.2),
(5.3), and (5.20), in the vicinity of the critical point the value of W∗ is directly
proportional to t2−d/2.

The criterion of weak metastability, Eq. (5.22), already contains the condi-
tion of a small intensity of fluctuations, and considering Eqs. (5.8) and (5.20) it
may be written as

G∗ =
W∗
kBT

=
κd/2ϕ4−d

s

kBTcbd/2−1 Υ∗ = G̃i
−1

Υ∗ � 1. (5.29)

Inequality (5.29) is always fulfilled if ro → ∞ or d > 4. In these cases, the
mean-field approximation becomes rigorous, and the region of strong fluctu-
ations in the vicinity of the critical point is absent.

At d = 3, we have

G∗ =
κ3/2 ϕsΥ∗
kBTcb1/2 =

|a|ϕ2
s ξ3Υ∗

kBTc
=

(
t

Gi

)1/2

Υ∗. (5.30)

Substitution of Eq. (5.25) into Eq. (5.28) and the transition to dimensionless
quantities yield

Υ∗ =
256π

81

( |a|ϕs

|ho|
)2

=
16π

9

(
R∗
ξ

)2

. (5.31)

Using the formula for the surface tension, Eq. (3.119), and the distribution,
Eq. (5.23), we get

σ = 2
∫

κ

(
dϕ

dz

)2

dz =
4
3

κ1/2 ϕ2
s |a|1/2 =

4
3

ϕ2
s ξ|a|. (5.32)

From Eqs. (5.27), (5.31), and (5.32) the Gibbs formula for the work of formation
of a critical nucleus follows as

W∗ =
4
3

πσR2∗ =
4
3

πσ3

ϕ2
s |ho|2 . (5.33)

According to Eqs. (5.29) and (5.30), the area of applicability of nucleation
theory, which is based on the mean-field approximation, is determined both
by the individual properties of a substance (Ginzburg number, Gi) and the pa-
rameters that characterize the thermodynamic state of the metastable phase
(distance from the critical point t, critical-nucleus radius R∗). The ratio, R∗/ξ,
is a scale invariant since the critical-nucleus radius has the same scaling be-
havior as the correlation radius. For regions of weak and strong fluctuations,
Eqs. (5.31), (5.10), and (5.11) result in [349]

R∗
ξ

=
4
3
|a|ϕs

|ho| =
4
3

Bo

χo

tγ+β

|ho| =
4
3

Bo

χo
S, (5.34)
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where S is the scaled dimensionless supersaturation. The Gibbs number,
G∗ = G∗(S), is a universal function of the scaled dimensionless supersatu-
ration. In experiments on nucleation kinetics, the quantity to be measured is
usually not the parameter S, but the value of supercooling, δT = Ts(ϕo) − To,
or supersaturation, δϕ = ϕs(To) − ϕo (Fig. 5.3). At a small depth of penetra-
tion into the metastable region, we have

ho � ∂h
∂ϕ

∣∣∣∣
s

δϕ � ∂h
∂ϕ

∣∣∣∣
s

(
dϕs

dT

)
δT = aϕsβ

δT
tTc

(5.35)

or

ho � ∂h
∂ϕ

∣∣∣∣
s

δϕ � aδϕ. (5.36)

Substitution of Eq. (5.35) into Eqs. (5.30) and (5.31) gives

G∗ =
W∗

kBTc
=

(
Xo

X

)2

, (5.37)

where

X =
δT
tTc

(5.38)
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is the reduced supercooling

Xo = 2
(π

3

)1/2
(

σ3
o

kBTc

)1/2
χo

βB2
o

, (5.39)

and σo is the critical amplitude of the surface tension. In writing Eqs. (5.37)–
(5.39), we used the definitions of the surface tension, Eq. (5.32), and the corre-
lation radius, Eq. (5.6).

After a similar substitution of Eq. (5.36) into Eqs. (5.30) and (5.31), we have

G∗ =
W∗

kBTc
=

(
Yo

Y

)2

, (5.40)

where

Y =
2δϕ

βϕs
(5.41)

is the reduced supersaturation

Yo = 4
(π

3

)1/2
(

σ3
o

kBTc

)1/2
χo

βB2
o

. (5.42)

The factor 2/β is included in the definition of Yo and Y for comparison with
the results of Refs. [350, 351].

5.3
Steady-State Nucleation

A stationary solution of the problem of the random walk of a local inhomo-
geneity, δϕ(�r), in the field of external forces given by the functional, Eq. (5.14),
is obtained in Section 2.7 (Eq. (2.86)). This solution determines the resulting
density of fluxes of the order-parameter field, ϕ(�r), via the saddle point of the
functional ∆F∗[ϕ∗], i.e., the nucleation rate J, and may be written as Eq. (2.112).
Since the thermodynamic potential, F[ϕ], in the Landau theory simultane-
ously is an effective Hamiltonian, the equilibrium density of probability, Peq,
of appearance in a unit volume of a metastable system of a near-critical field,
ϕ(�r), is determined by the expression [349, 352]

Peq =

exp
[
− F∗

kBT

] ∫
exp

[
− 1

2kBT

′
∑
�s

e�sx2
�s

]
D[x�s]

exp
[
− F0

kBT

] ∫
exp

[
− 1

2kBT ∑
i

eoix
2
oi

]
D[xoi]

. (5.43)
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In the numerator, integration is performed with respect to every possible
field ϕ(�r), in the denominator with respect to patterns corresponding to the
homogeneous metastable state. The prime in the sum signifies exclusion
from the summation of the unstable mode with a negative eigenvalue of e0
(n = 0, l = 0). By virtue of the stability of the metastable phase with respect
to continuous changes in the state variables, all eigenvalues eoi are positive,
and eigenfunctions are plane waves with wave vectors, �q. The spectrum of eoi
is continuous

eoi = q2 +
1
κ

∂2 f
∂ϕ2 , (5.44)

and in the long-wave limit eoi � ξ−2 holds. The calculation of the Gaussian
integrals in Eq. (5.43) [350] leads to

Peq = ℵ ∏
n≥0,l>1

(
2πkBT

en,l

)(2l+1)/2

∏
i

(
eoi

2πkBT

)1/2

exp
(
− ∆F

kBT

)
, (5.45)

where

ℵ =
(

1
3

∫
(∇ϕ∗)2d�r

)3/2

=
(

2πR2σ

3κ

)3/2

(5.46)

is the contribution of the translational mode.
If it is granted that large-scale inhomogeneities do not change the fluctua-

tion spectrum of the initial phase, then from Eq. (5.45) for the average number
of critical nuclei in a unit volume of the metastable phase at equilibrium con-
ditions, we have

Peq �
(

2πR2∗σ

3κ

)3/2 (
κ

πkBTξ2

)2

exp
(
− ∆F

kBT

)
. (5.47)

At stationary conditions, according to Eq. (2.86), the average number of critical
nuclei in a unit volume of the system is

Pst =
(

kBT
2π|e0|

)1/2

Peq(0). (5.48)

The pre-exponential factors in the distributions Peq and Pst are functions of
the scaled dimensionless supersaturation. Using Eqs. (2.51), (5.37), (5.38), and
(5.39), from Eqs. (5.47) and (5.48), we have

Pst =
A
ζ3

(
X0

X

)7/3

exp

[
−

(
X0

X

)2
]

, (5.49)
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where A � X3
0/(12 · 31/2). As has been shown by Gunther et al. [352],

Eq. (5.49) does not agree with the theory of scale invariance at large values of
X (small distances from the critical point, high supersaturations). For the elim-
ination of this drawback, Langer and Schwartz [351] introduced into Eq. (5.49)
an additional factor (1 − X/X0)φ, where φ = 10/3 + 1/δ � 3.55.

After finding the distribution function of heterophase fluctuations, Peq, the
calculation of the nucleation rate is reduced to determining the increase of
the decrement of the critical configuration, λ0. If, as expected, the system has
one large-scale mode, an order parameter ϕ(�r), whose relaxation is governed
by some single factor, the operator Γ̂ in Eq. (2.64) contains only one kinetic
coefficient. In particular, with the diffusive mechanism of the nucleus growth
in the vicinity of the critical point of mixing Γc = Dg/(∂µ/∂c)T , where Dg is
the diffusion coefficient, and from Eqs. (2.73) and (2.82) for λ0, we have

λ0 =
2Dgσ

(∂µ/∂c)T R3∗(∆c)2
. (5.50)

Here, ∆c is the concentration difference in the co-existing phases.
A thermodynamic system is described generally by a set of hydrodynamic

modes, and the order parameter is defined as a linear combination of fields,
ai(�r, τ). The effective thermodynamic potential of the system, E[ai], is given as
the Landau expansion [62] the coefficients of which are determined through
the quantities being measured. The kinetic coefficients, Γij, are found from
the linearized hydrodynamic equations. This approach to describe the kinet-
ics of nucleation in a liquid–vapor system and a binary solution separating
into layers in the vicinity of the corresponding critical points was already sug-
gested by Patashinsky and Shumilo [65, 349]. The state of a one-component
system was described by the particle density fields, ρ(�r, τ), and the density of
entropy, s(�r, τ). The functional E[ρ, s] is the internal energy of the system. For
the kinetic factor in Eq. (2.112), we get [65]

B =
2ΛkBT2ρ′′

l2ρ′2
1

(R∗ + L)

(
σ

kBT

)1/2

, (5.51)

where

L =
1

6ξ

Λ(ηv + 4
3 η)(ρ′/ρ′′)2

dT
, (5.52)

l is the heat of evaporation per molecule, d = dps/dT.
If L � R∗, the nucleus growth is limited by heat supply, and from Eq. (5.51),

we have

B ≡ Bc11 =
2ΛkBT2ρ′′

l2ρ′2R∗

(
σ

kBT

)
=

2ΛkBT
ldR∗

ρ′′2

ρ′∆ρ

(
σ

kBT

)
. (5.53)

This result differs from Eq. (3.59) by the factor ρ′′2/ρ′∆ρ.
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If Λ � R∗, nucleation is controlled by the viscosity

B ≡ Bc12 =
12kBT3dξ

l2ρ′2(ηv + 4
3 η)(ρ′/ρ′′)2

(
σ

kBT

)1/2

=
12kBTρ′′ρ′2ξ

(ηv + 4
3 η)(∆ρ)2

(
σ

kBT

)1/2

.

(5.54)

Equation (3.55) in Section 3.2 corresponds to this case. When η � ηv and
p′′ = ρ′′kBT, Eq. (5.54) differs from Eq. (3.55) by the factor 18(ξ/R∗)(ρ′/∆ρ)2.

Langer and Turski [350] calculated the kinetic factor, B, for the cases of
nondissipative nucleus growth by taking into account heat dissipation. Ac-
cording to these authors, viscous and inertial forces are weak in the vicinity
of the liquid–vapor critical point and were neglected. When the determining
factor of the nucleus growth is the thermal regime, we get

B ≡ Bc21 =
2

3π
√

3

(
σ

kBT

)3/2 (
R∗
ξ

)4 ΛσT
l2R3∗ρ′3

. (5.55)

(Note that a mistake was made in Ref. [350] in the deduction of Eq. (5.55).
Kawasaki [353] was the first to mention it. He pointed out that the rate of the
nucleus growth in the Langer–Turski formula did not satisfy the hypothesis of
dynamic scaling. In Eq. (5.55), this inaccuracy is corrected, and a factor that fits
it to the theory of scale invariance is introduced). This expression differs from
both Eqs. (3.55) and (5.53) of Patashinsky and Shumilo. If energy dissipation
is excluded, then

B ≡ Bc22 =
1

3π
√

3

(
σ

kBT

)3/2 (
R∗
ξ

)4 (
2σρ′′

mρ′2R3∗∆ρ2

)1/2

. (5.56)

The expression for the nucleation rate, Eq. (2.112), in the vicinity of the crit-
ical point may be presented in the scale-invariant form [354]

J = Ĵ · J̃(S)tj, (5.57)

where Ĵ is the nonuniversal amplitude factor, j is the critical exponent, and
J̃ is the universal function of scaled supersaturation. The value of j and the
type of the function, J̃(S), are determined by the properties of the relaxing
field, i.e., whether the order parameter is conserved or not. The following
equations have been obtained for a one-component liquid–vapor system in
the thermodiffusion regime [354]

J̃(X/X0) =
(

X
X0

)2/3 (
1 +

X
X0

)φ

exp

[
−

(
X0

X

)2
]

, (5.58)
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Ĵ =
DT0X6

0

ξ5
0

, (5.59)

j = ν(d + z). (5.60)

Here, z is the critical index and DT0 is the critical amplitude of thermal con-
ductivity.

5.4
Peculiarities of New Phase Formation in the Critical Region

As the critical point is approached, a region of strong fluctuations is en-
tered where the conditions of applicability of the mean-field approximation,
Eqs. (5.7) and (5.8), are violated. An expression for the density of free energy of
a homogeneous system, f (ϕ, T), in a region of strong fluctuations is found by
the renormalization group methods [63]. However, in a metastable region this
approach cannot be fully realized as a successive statistical averaging over
fluctuations on all length scales inevitably excludes from consideration not
fully stable (metastable) states. At low supersaturations, when the probability
of appearance of a competing phase is low, one can divide fluctuations into
homophase and heterophase fluctuations and perform averaging only over
the first type of fluctuations. In contrast, at R∗ � ξ such a division becomes
impossible. As has been shown by Sarkies and Frenkel [355], the application
of Widom’s scaled equation of state [356] in calculating the work of formation
of a critical nucleus yields lower values for the activation barrier than the Lan-
dau expansion Eqs. (5.15), (5.16), and (5.17). A decrease in the value of W∗ is
also observed when the ideas of finite-size scaling [357] are utilized in the nu-
cleation problem. According to Ref. [357], in systems that contain interfaces of
finite thickness the surface tension does not become zero at the critical point of
a macroscopic system (parent phase). In this case, the Gibbs number is written
as G∗ = Gcl∗ + δGf s, where δGf s < 0.

A different approach to construct a theory of nucleation in a region of large
radii of correlation of fluctuations is suggested by Binder and Stauffer [350].
These authors proceed from the cluster model of Fisher [358]. In this model,
the equilibrium distribution function of clusters with respect to the number of
molecules contained in them is written as

Peq(n) = q0n−(2+1/δ) exp
[
−hn − b0tn1/βδ

]
, (5.61)

where q0, b0 are the dimensional individual constants. The exponent con-
tains terms proportional to the volume and the surface of a cluster. The pre-
exponential term (geometric factor) gives the most compact form of a clus-
ter, corresponding to the minimum of its surface entropy. Clusters are be-
lieved to be noninteracting. The constants q0 and b0 are found from compar-
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ing experimental (p, ρ, T)-data with the equation of state of a cluster gas via
p = kBT ∑∞

n=1 Peq(n).
According to Binder and Stauffer [354], the theory based on the mean-field

approximation is applicable if G∗ > 100 (“geometric region”). The droplet
model should be used when 1 < G∗ ≤ 100. This region is called “fluctuation-
dominated.” Here, the scale function of the nucleation rate has the form

J̃ � A
(

δT
tTc

)(j−1/2)(γ+β−1)
exp

[
−Xφ

(
δT
tTc

)−1/(βδ−1)
]

, (5.62)

where A, Xφ are the individual constants and j = 2 − α + γ + 2ν. At the
boundary of the “geometric” and the “fluctuation-dominated” region (G∗ �
50 − 70) it is advisable to take for the Gibbs number, Eq. (5.37), retaining the
pre-exponential factor of Eq. (5.62). In the vicinity of the critical point this
procedure leads to higher superheats (supercoolings) than those given by the
classical approach.

In the case of an unconserved order parameter, for the coefficient of diffu-
sion of nuclei on the axis of their sizes, one can write [65]

DR ∼ Γnκ

(
Gi
t

)1/2 (
ξ

R∗

)2

. (5.63)

At low supersaturations (R∗ � ξ), in the region of weak (Gi < t) and strong
(Gi > t) fluctuations the coefficient of generalized diffusion is small. The
small value of DR and the concentration of large nuclei in the metastable phase
justify the assumption of ignoring the probability of their coalescence. When
G∗ � 1, the density of heterophase fluctuations is high, and the activation
barrier does not limit their increase. Here, evidently, it is necessary to take
into account the interaction of precritical formations even at the stage of nu-
cleation.

McGraw and Reiss [359], McGraw [360] believe that the interaction of nuclei
(effect of excluded volume) in the vicinity of the critical point has also an effect
in the range of weak metastability. Regarding precritical aggregates as a gas
of hard spheres, the authors [359] have shown that taking into account the
effect of excluded volume leads to a renormalization of the surface tension in
the expression for the work of formation of a critical nucleus, Eq. (5.33). The
effective surface tension is written as

σeff = σ∞ + σts, (5.64)

where σts is the surface tension of a hard sphere system. The dependence
of σeff on the curvature of the separating surface is not taken into account.
The value of σts is calculated in the framework of the Lebowitz–Helfand the-
ory [361]. In the vicinity of the critical point, one can observe good agreement
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between σeff and the results of computation of the surface tension from clas-
sical homogeneous nucleation theory by data on the attainable superheating
of binary solutions [362]. Heermann [363] took into account the dependence
σ(R∗) employing the Tolman formula and also obtained limiting superheat-
ings close to those observed by experiment [362].

Owing to the inhibition of diffusional processes, a new phase nucleus grow-
ing in the vicinity of the critical point has time to interact only with its nearest
surroundings, so that the actual volume, Ω, of a nucleus-parent phase sys-
tem is much smaller than the total volume, V. The value of Ω depends on
the time, τ, of formation of a nucleus, and the factors that determine the rate
of establishment of equilibrium. In a one-component system, in the vicinity
of the critical point the limiting factor is heat conduction, and for Ω one can
write [364]

Ω = Cω (DTτ)3/2 , (5.65)

where Cω is a coefficient of proportionality.
The work of formation of a nucleus in a system of finite volume is written

as

W = W(R) + ∆W(R, Ω). (5.66)

Here, W(R) is the work of formation of a new phase in a macroscopic system
(V → ∞), which is determined by Eq. (3.1), and ∆W(R, Ω) is a correction
depending on the dimensions of the nucleus of a new phase and the volume,
Ω.

The character of the dependence of W on R for different values of Ω is
shown in Fig 5.4. At τ → ∞, the value of Ω increases without limit, and
∆W → 0. In the vicinity of the critical point, the same interval of time τ deter-
mines a relatively small effective volume, Ω. As it is evident from Fig 5.4, if
Ω is smaller than a certain lower value Ω0, there is no maximum on the curve
of the dependence W = W(R). Nucleation is suppressed, and a certain time,
τ0, is required for its beginning. The relation between the expectation time, τ0,
and the value of scaled supercooling, δT/tTc, is determined by the conditions
δW = 0 and δ2W = 0. For a one-component system, we have [364]

δT
tTc

= A0t−φτ−3/8
0 , (5.67)

where

A0 = 211/43−3/4(d0β)−1/2B−1/2
0 χ1/4

0 Ω−1/4
0 (2DT0)

−3/8, (5.68)

ϕ =
β

2
+

γ

4
+ 3

ν

8
� 0.7.
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Here, d0 is a universal constant of the order of unity. Taking into account the
delay effect at the stage of formation of a critical nucleus leads to an increase
of the limiting superheat of the liquid. However, as shown by the results of
numerical evaluations, the value of such a correction is small. At a sufficiently
large distance from the critical point of the classical liquid t = 5 · 10−4, the
characteristic times of thermodiffusion on a length scale of the order of the
critical-nucleus radius, R∗ � 1.5 · 10−7 m, do not exceed 8 · 10−6 s.

R R0

W
W0

0

0

0

W

0
R

Fig. 5.4 Work of formation of a new-phase nucleus in a system of
finite volume, Ω.

A decrease in the coefficient of generalized nuclei diffusion, DR, at the ap-
proach of the critical point results in an increase of the time of establishment
of the stationary nuclei size distribution. When the characteristic time of an
experiment becomes comparable with the time lag, τl , the nucleation process
is nonstationary. The importance of taking into account the phenomenon of
nonsteady state effects in nucleation in the vicinity of the critical point was
first noted in Ref. [365]. As is shown in Refs. [366, 367], the value of τl de-
pends on the rate of transfer of a system into the metastable state. The rate of
penetration into the metastable region determines the characteristic length of
relaxation, lr. Perturbations with a linear size, R < lr, are in the state of equi-
librium with the phase surrounding them and may be described by the Gibbs
distribution. At lr � R∗ (slow penetration), equilibrium in a system of precriti-
cal heterophase fluctuations is rapidly achieved, and the stationary nucleation
regime sets in after the time, τl , determined by Eq. (2.198). If lr � ξ (rapid
penetration), then in the time of the transfer of the system into the metastable
region only heterophase fluctuations with R < lr are capable to reach equilib-
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rium, and the formation of a stationary flow requires a certain additional time,
in which a stationary distribution of heterophase fluctuations from lr to R∗ in
sizes is achieved. Since the coefficient of generalized diffusion, Eq. (5.63), is
inversely proportional to the square of the nucleus radius, for large nuclei this
time interval may be sufficiently large. In Refs. [366, 367], when solving the
nonstationary problem for the case lr � ξ the authors obtained the result

τ′
l = ℘0τl , (5.69)

where

℘0 = 2Γ
(

3
4

) (
kBT

4πσR2∗

)3/4

exp
(

πσR2∗
6kBT

)
. (5.70)

Here, Γ(x) is the Euler Gamma function.
For liquid xenon at t = 5 · 10−3, the surface tension equals σ � 10−5 Nm−1.

A superheating, at which R∗ � 10−7 m holds, corresponds to a stationary nu-
cleation rate, J = 107 m−3s−1. According to Eq. (2.198), the time of establish-
ment of a stationary flux of nuclei at a slow penetration into the metastable re-
gion is τl � 10−5 s. At rapid penetration, it is ℘0 � 4 · 106, and from Eq. (5.69),
we have τ′

l � 40 s.
The decay of the metastable state leads to the formation of a stable phase

and, besides nucleation, includes the stage of nuclei growth. At high super-
heatings of a liquid away from the critical point, the growth of the vapor phase
is of explosive character. The characteristic time of decay of 1 cm3 of liquid
xenon superheated at atmospheric pressure to the temperature Tn, at which
the mean expectation time of the first viable nucleus corresponds to τ̄ = 1 s,
is τg � 10−6 s. In the vicinity of the critical point, when t = 5 · 10−4 s, and
τ̄ = 1 s, τg � 10 s holds. The volume fraction, η(τ), of the vapor phase in
the liquid at time, τ, is determined by Eq. (3.84). At the initial stage of decay
(η(τ) � 1), the interactions of growing centers can be neglected. Expanding
the exponential function in Eq. (3.84) into a series, we have

η(τ) =
τ∫

0

J(τ′)V(τ − τ′)dτ′. (5.71)

Equation (5.71) is known as the free-growth approximation [117]. When the
growth of the vapor phase is limited by heat conduction, we instead get

[R(τ − τ′)]2 = R2∗ + DT
ϕ0 − ϕ′′

ϕs
(τ − τ′). (5.72)

A similar law of growth is observed in the case of a stratifying solution, where
diffusional processes are limiting the growth. At short distances from the crit-
ical point and low supercoolings, we arrive at

ϕ0 − ϕ′′ = ϕs
dϕs

dT
δT = ϕsβ

δT
tTc

. (5.73)
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Neglecting the effects of nonstationarity, from Eqs. (5.71)–(5.73), we have

η(τ) =
8π

15

(
DT

βδT
tTc

)3/2

Jτ5/2. (5.74)

Equation (5.74) determines the time, τg, required for the formation of a pre-
scribed fraction of the vapor phase. If η(τg) = 1/2, then

τg =

[
16π

15

(
DT

βδT
tTc

)3/2

J

]2/5

= t3ν

[
16π

15

(
DT0

δT
tTc

)3/2

Ĵ J̃
(

δT
tTc

)]2/5

.

(5.75)

In writing Eq. (5.75), the scaling equation for the nucleation rate, Eq. (5.57)
(d = z = 3), and the asymptotic law, DT = DT0tν, were used.

Taking into account in Eq. (5.71) the nonstationarity of the process of nucle-
ation, according to Eq. (2.197), we arrive at

η(τ) =
τ∫

0

J exp
(
− τl

τ′
)

V(τ − τ′)dτ′ =
8π

15

(
DT

βδT
tTc

)3/2

Jτ5/2ς(τl, τ), (5.76)

where

ς(τl, τ) =
5
2

1∫
0

exp
(
− τl

τy

)
(1 − y)3/2dy. (5.77)

In the case of “rapid” (τ < τl) penetration into the metastable region, we have

η(τ) �
(

DT
βδT
tTc

)3/2

J

(
τ7/2

τl

)
exp

(
−τl

τ

)
. (5.78)

In the case of “slow” penetration, we instead obtain

η(τ) �
(

DT
βδT
tTc

)3/2

J exp
(
−τl

τ

)
. (5.79)

Equations (5.74) and (5.76) do not take into account the change of supersat-
uration in the process of nuclei growth. Here, fluctuational formation of new
nuclei is practically excluded, and the increase of size of large nuclei takes
place at the expense of dissolution of smaller ones (coalescence process) [368].
A simplified version of the theory accounting for both the processes of forma-
tion of nuclei and their growth in the vicinity of the critical point of mixing
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of a binary solution was suggested by Langer and Schwartz [351]. The au-
thors proceeded from the equation of motion for the nuclei size distribution
function, P(R, τ), which is written as

∂P
∂τ

= − ∂

∂R

[
dR
dτ

P
]

+ j. (5.80)

The first term in the right-hand side of Eq. (5.80) describes nuclei growth and
the second term their generation. The function j(R) is given by the expression

J =
∞∫

R∗

j(R)dR. (5.81)

The integral

N(τ) =
∞∫

R∗

P(R, τ)dR (5.82)

determines the number of nuclei in a unit volume. Only supercritical aggre-
gates are considered to be a part of a new phase. Taking the first-order deriv-
ative of Eq. (5.82) with respect to time yields

dN
dτ

= J − P(R∗)
dR∗
dτ

. (5.83)

Multiplication of Eq. (5.80) by R with subsequent integration results in

dR̄
dτ

=
〈

dR
dτ

〉
+

1
N

∞∫
R∗

(R − R̄)j(R)dR + (R̄ − R∗)
P(R∗)

N
dR∗
dτ

, (5.84)

where R̄ is the average value of the nucleus radius at the time, τ. The first term
in the right-hand side of Eq. (5.84) is the average rate of deterministic growth
of a nucleus. The integral in the second term may be taken by the passage
method and gives

1
N

∞∫
R∗

(R − R̄)j(R)dR ∼= J
N

(R∗ − R̄ +
1
2

δR∗). (5.85)

Here, δR∗ is the width of the activation barrier at the height W∗ − kBT. The
function, P(R), has a sharp peak close to R∗, and is equal, in a first approxi-
mation, to

P(R∗) ∼= Nb0

R̄ − R∗
, (5.86)
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where the constant b0 is determined at the coalescence stage (τ → ∞) in the
framework of the Lifshitz–Slezov theory [368].

Equations (5.83) and (5.84), supplemented by the conservation law of dis-
solved substance (for the notations see Fig 5.3),

δϕ0 − δϕ

∆ϕ − δϕ
� 4

3
πR̄3N, (5.87)

form a complete system of equations for the problem under consideration.
The initial conditions for this system of equations are

δϕ = δϕ0, N = 0 at τ = 0. (5.88)

After a transition to dimensionless variables

s =
Y

Y+
, θ =

DY3
+τ

24ξ2 , q =
R̄Y+

2ξ
, q∗ =

R∗Y+

2ξ
� 1

s
, u =

64πξ3N
Y+

, (5.89)

the temperature-dependent quantities in Eqs. (5.83), (5.84), and (5.87) disap-
pear and one obtains

Y+ −Y = uq3, (5.90)

du
dθ

= J̃(s) − ub0

q − q∗
dq∗
dθ

, (5.91)

dq
dθ

=
1
q2

(
q
q∗

− 1
)

+
J̃(s)

u
(a − q − q∗) + b0

dq∗
dθ

, (5.92)

where J̃(s) is given by Eq. (5.58) and a ∼= 0.2 holds.
With J̃(s) = 0, the system of equations, Eqs. (5.90), (5.91), and (5.92), is

reduced to the system of equations of the Lifshitz–Slezov coalescence the-
ory [368], from which the asymptotic laws follow for the average nucleus
radius, R̄(τ) (the law of 1/3), the total number of nuclei, N(τ), and the super-
saturation, δc(τ). Excluding from Eqs. (5.90)–(5.92) the terms responsible for
coalescence, we obtain the law of free growth, Eq. (5.71). The result of solving
the system of equations, Eqs. (5.90)–(5.92), depends on the value of the initial
supersaturation, Y+. For low supersaturations with a height of the activation
barrier, G∗ ≥ 20, the decay of the metastable phase proceeds at a practically
constant initial level of metastability as a result of growth of a small number
of new-phase centers. Here, the free-growth approximation, Eq. (5.71), can be
used. At high supersaturations (G∗ ≤ 10), nucleation proceeds rapidly, and
the forming nuclei of a new phase immediately grow in the Lifshitz–Slezov
regime (R̄ ∼ τ1/3). As the two-phase state is approached, nuclei appear and
disappear at a practically equal rate.
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5.5
Experimental Investigations of Nucleation in the Vicinity of Critical and Tricriti-
cal Points

A metastable system in the vicinity of singular points of a thermodynamic
surface of states is a convenient object for an experimental study of homoge-
neous nucleation kinetics. As a result of the correlation radius being large,
many of the inhomogeneities and the defects on the walls of a measuring cell,
and foreign inclusions whose size is smaller than ξ have no effects on the for-
mation of a new phase. At the same time, the small width of the metastable
region imposes stringent requirements on both the accuracy of the parame-
ters measured in experiments and the data on thermodynamical properties
used in calculations by formulae of the kinetic nucleation theory. Here, it is
desirable to possess the totality of physical properties of the substance under
investigation obtained on portions from one batch with the use of the same
measuring systems. Experimental data [369, 370] testify that even in soldered
ampoules a “withdrawal” of the critical temperature and some other proper-
ties of solutions can be observed in the course of time.

As objects of investigation of the kinetics of phase separation in the vicinity
of critical points both one-component liquids and binary solutions are cho-
sen. The first evidence of a discrepancy between the homogeneous nucle-
ation theory and experiment in the critical region of a one-component liquid
was obtained by Dahl and Moldover [50] in experiments on isochoric heat
capacity. Systematic investigations of this phenomenon were continued in
Refs. [365] and [371], respectively, for carbon dioxide and xenon. As the criti-
cal point is approached, owing to a decrease in the difference of densities of co-
existing phases and the inhibition of diffusional processes, the boiling-up of a
metastable liquid loses its explosive character. This feature requires different
methods of registration of the moment of phase transition than with regard
to the interval T < Tc. In Refs. [365, 371], the decay of the metastable state
was registered by the thermal effect of a phase transition. As distinct from
carbon dioxide, xenon possesses an enhanced radiation stability, which made
it possible to realize the conditions of homogeneous nucleation in relatively
large liquid volumes. The measuring system was a modified calorimeter [365]
(Fig 5.5). Liquid xenon was superheated in a glass ampoule (5) (V � 0.34 cm3),
which was in contact with a copper sleeve (6). The sleeve was secured inside
a system of thermostating screens (1, 3). A standard platinum resistance ther-
mometer was mounted on the inner screen (3). The temperature of the track-
ing screen (3) was maintained equal to the ampoule temperature with an error
that did not exceed ±1 mK. At ampoule heating rates of (0.1–1.0) mK · s−1, the
temperature lag was less than 1 mK and reached 3 mK at Ṫ � 5 mK·s−1. The
temperature regime was controlled by differential copper–constantan thermo-
couples (shown by arrows). All the wires inserted into the measuring sys-
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tem had been previously brought into contact with a thermostated ring (4).
The surfaces of the screens and the ring were silver plated. With the help
of a copper capillary (8), the ampoule (5) is connected to a thermocompres-
sor, which ensured the creation of the required pressure in the system and its
maintenance with an error of ±50 Pa. The value of the excess pressure was
measured by a standard dead-weight pressure-gauge tester. The water ham-
mer caused by liquid boiling-up in the ampoule was reduced by a receiver
(7) (V � 0.5 cm3). The measuring system was mounted in a vacuum cham-
ber, which was immersed in a Dewar flask with petroleum ether. The cooling
was realized by pumping nitrogen vapors through a coil located in the Dewar
flask.
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5
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7

Xe
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Fig. 5.5 Schematic diagram of the chamber of a setup for determin-
ing the temperature of liquid superheating in the vicinity of the critical
point.

The boiling-up temperature for superheated liquid xenon was measured in
the pressure range from 4.8 to 5.8 MPa, which corresponds to distances from
the critical point along the saturation line t′ = 1− Ts(p)/Tc = (0.1–5.0) · 10−2.
The heating rates were (0.05–5.0) mK · s−1. The error in measuring the boiling-
up temperature did not exceed ±3 mK. From 3 to 10 boiling-up events were
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registered at given T and p, and the most probable boiling-up temperature of a
liquid was found as the arithmetic mean. The results of determining Tb at rates
Ṫ = 1 mK·s−1 are presented in Fig 5.6. Ibidem one can see Tb as a function
of the xenon heating rate. Along with experiments on isobaric liquid-xenon
heating [365], experiments have been performed [372] in which the most prob-
able boiling-up temperature, Tb, was determined in the process of an isochoric
liquid stretch. Xenon condensed into glass ampoules of volume V � 0.7 cm3,
which, after being filled, were soldered and placed in the measuring cell of a
Calve calorimeter [51]. The boiling-up temperature was measured at cooling
rates from 0.1 to 2.0 mK·s−1. Similar experiments have earlier been made with
carbon dioxide [371].

4.8 5.2 5.6

Tb

....12
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3
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21
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C

0 T, mK.s-1.

Fig. 5.6 Boiling-up temperature for liquid xenon in the vicinity of the
critical point (Ṫ = 1 mK·s−1). Ts: binodal; Tn: temperature of at-
tainable superheating (theory, J = 107 m−3· s−1). In the inset, the
heating-rate dependence of the boiling-up temperature is shown
(p = 5.511 MPa).

In the vicinity of the critical mixing point, nucleation was investigated
in binary solutions methylcyclohexane-perfluoromethyl-cyclohexane (C7H14–
C7F14) [362,369,373], methanol-cyclohexane [374], isobutylic acid–water (IBA–
H2O) [369, 375], 2.6-lutidin–water [376–378]. A phase transition in such sys-
tems was usually registered using optical methods to detect the abrupt change
in the intensity of the light passing through the measuring cell. The source
of optical radiation was a He–Ne-laser, whose beam, for separating the ef-
fects of heterogeneous nucleation on the walls, was focused onto the center
of an optical dish. The initial state was the two-phase state of a system or
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the homogeneous homophase state. As was already mentioned in Ref. [369],
if cooling was realized from a one-phase region, in experiments higher su-
percoolings could be observed as compared with those from a two-phase re-
gion. When Havland et al. [369] took the samples of C7H14–C7F14 of Heady
and Cahn [362], they obtained a good agreement in phase-separation temper-
atures with their results in entering the metastable region from a one-phase
state. Reproducibility was absent if a two-phase state was chosen as the initial
state.

Depending on the type of phase diagram, a solution was transferred into
a metastable state by lowering the pressure, which shifted the line of phase
equilibrium, or temperature (systems with an upper critical point: IBA–H2O,
C7H14–C7F14), or by heating (systems with a lower critical point: 2.6-lutidin–
water). Cooling was realized by decreasing the temperature of the ther-
mostated bath [369], heating, by passing a current pulse through the solu-
tion [378] or via microwave radiation [374]. An optical cell with a sample was
cooled (heated) continuously or employing the step method till the appear-
ance of a phase separation signal. In a number of experiments, a combined
way of entering a metastable region was chosen, i.e., pressure release to a
value which was in compliance with a supercooling making up about 80% of
the limiting value, with a subsequent step-by-step heating of a sample by 1–
5 mK with an intermediate time lag from 0.5 to 2 min. In experiments with
binary solutions, the interval from the line of phase equilibrium to the tem-
perature of phase transition, Tb, was usually passed within several minutes,
though in some experiments [369] this time was equal to hours. Cooling rates
varied in the range from 1 to 100 mK·min−1. In special experiments [378],
studying the dependence of Tb on the speed of entering the metastable region,
the value of Ṫ was as large as 2–30 mK·s−1. All authors, beginning with the
pioneering papers by Sundquist and Oriani [373], Heady, and Cahn [362], es-
tablished that in the vicinity of the critical mixing point experimental values
of δTb = Ts − Tb exceed theoretical values δTn = Ts − Tn.

An object for investigating the kinetics of spontaneous nucleation, unique
in its own way, are superfluid solutions of 4He–3He. Liquid 4He changes
from the normal into the superfluid state at a temperature Tλ = 2.172 K (λ-
transition). The solution in 4He of the light isotope 3He moves the λ-point
into a region of lower temperatures. Down to Tt = 0.872 K, the state of the
solution changes continuously. A further decrease in the temperature results
in a phase stratification (Fig 5.7). The lower (superfluid) phase of the solution
is enriched with the isotope 4He, the upper (normal) with the isotope 3He.
The point at which the λ-line is replaced by the line of phase transition of first
order is a critical point of higher order (tricritical point).

The first investigations of the kinetics of phase transitions in metastable so-
lutions of 4He–3He in the vicinity of the tricritical point were made by groups



244 5 Nucleation in Highly Correlated Systems

ccuct

T
l

T

T

tT
t T

c

-line
p

t       p
1
>p

t1
p1

T
c

a

Tt

cl
Fig. 5.7 Phase diagram of a solution at pressures p and p1. Tl , Tu are
branches of the stratification curve for the superfluid and the normal
phases, respectively; t: tricritical point; a: given metastable state.

of Leiderer [379, 380] and Hoffer [381, 382]. In all experiments, the pressure
dependence of the phase-separation curve (Fig 5.7) was employed to transfer
the system into a metastable state. The decay of the metastable state was reg-
istered by the method of light scattering. A peculiar feature of 4He–3He solu-
tions consists in the small difference in the refractive indices of the superfluid
and the normal phase and, as a consequence, a small value of repeated light
scattering. This feature makes it possible to use the method of light scattering
not only to register the moment of phase separation, but also for studying the
dynamics of growth of new-phase centers [380]. In Ref. [379], supercoolings
are investigated of both the superfluid and the normal phase of a solution.
The data from Refs. [381, 382] refer only to the superfluid phase. Despite the
asymmetry of the curve of co-existence of the phases, the values of relative su-
percooling (Tb − Ts)/(Tt − Ts) for the two phases of a solution coincide within
the experimental error. The effective cooling rates are 150 mK·s−1 [379] and
13–80 mK·s−1 [382].

A good agreement between experimental data and the classical homoge-
neous nucleation theory has been observed at t = (Tt − Ts)/Tt > 3 · 10−2, as
well as a considerably higher disagreement between theory and experiment
in the value of supercooling compared to solutions of organic liquids when
t → 0.
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5.6
Comparison of Theory and Experiment

The attainable superheating of liquefied gases and their solutions at pressures
p ≤ 0.7pc is the subject of consideration in Chapters 3 and 4. We will now
discuss the results of experiments on the kinetics of phase separation in the
vicinity of both critical and tricritical points. As it is shown in Section 5.3, the
general form of the equation for the stationary nucleation rate, Eq. (2.112), in
the vicinity of singular points of the thermodynamic surface of states remains
unchanged. As before, the dominant role is played by the exponential factor.

One or another indication of a phase transition is registered in experiments
on nucleation kinetics. It may be the boiling-up of a superheated liquid, the
appearance of a certain quantity of a new phase in phase-separating solutions
registered by a measuring system, etc. At given values of the state variables,
the characteristic sign of a phase transition may be correlated to a certain ex-
pectation time, τb. In the regime of continuous changes, the value of any state
parameter, e.g., temperature, is registered at the moment of manifestation of
the phase-transition, and it is denoted by the subscript, b. The parameters τb,
Tb, pb, etc. are quantities measured directly. On their basis, information can
be obtained on J, Tn, pn and so on.
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Fig. 5.8 Deviations of experimental values of the superheating tem-
perature of liquid xenon from those calculated by the Döring–Volmer
theory in a macroscopic approximation (J = 107 m−3· s−1). 1: [145];
2: [365]; A: calculation by Eqs. (2.112) and (3.15) with z0 = 1; B:
calculation from Eq. (5.75) for τg = 1 s.

In Fig 5.8, experimental values of the boiling-up temperature, Tb, for liq-
uid xenon obtained by the method of continuous isobaric heating (Ṫ =
0.2 mK·s−1) are compared with the results of calculating the temperature
of attainable superheating, Tn, by the Döring–Volmer theory (Eqs. (2.112) and
(3.15), z0 = 1) [365]. The work of formation of a critical bubble has been
determined in a macroscopic approximation, σ = σ∞, with the use of the
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values of σ∞ and ps from Refs. [155, 383, 384]. The values of the reduced tem-
perature along the boundary curve, t′ = 1 − Ts(p)/Tc, have been assigned
to the abscissa. The values of t′, t = 1 − Tn(p)/Tc and the relative liquid
superheating, ∆T/tTc = [Tn(p) − Ts(p)]/tTc, are connected by the relation
∆T/tTc = t′/t− 1. Parallel to the data from Ref. [365], Fig 5.8 presents the val-
ues of the temperature of attainable superheating for xenon, Tn, obtained in
experiments determining the mean lifetime [145]. The systematic underheat-
ing of liquid xenon to theoretical values of Tn at t′ > 10−1 is mainly connected
(see Section 3.9) with the neglecting of the dependence of the critical bubble
surface tension on the curvature of the separating surface.

In the asymptotic vicinity of the critical point, the expression for the nucle-
ation rate, Eq. (2.112), is written as

J = ρz0B exp

−G0

(
t(3/2)µ−βTc

∆T

)2
 , (5.93)

where for xenon

G0 =
16π

3kBTc

σ3
0

l2
0ρ2

c
� 54.05. (5.94)

The kinetic factor in the Döring–Volmer theory does not depend on superheat-
ing. For an isobaric process and J = 107 m−3· s−1, we have

∆T
t(3/2)µ−βTc

=
G1/2

0
[ln(ρcz0B/J)]1/2 � 1.5. (5.95)

At t′ < 10−2, boiling-up temperatures, Tb, for liquid xenon registered in exper-
iments are much higher than the temperature of attainable superheating, Tn,
calculated from Eq. (5.75). For t′ � 10−3, the value of Tb − Ts is approximately
two times as large as the theoretical value of Tn − Ts.

The relative supercooling, δT/tTc, in an isochoric process (J = 107 m−3·
s−1) is

δT
tTc

=
G1/2

0
[ln(ρczB/J)]1/2 � 0.1425 . (5.96)

The results of experiments regarding the measurement of boiling-up temper-
atures for liquid xenon in soldered glass ampoules are given in Fig 5.9 [372].
Ibidem experimental data can be found on the supercooling of carbon diox-
ide [371], helium-3 [50], 2.6-lutidin–water solutions [376], methylcyclohexane–
perfluoromethylcyclohexane [362] and isobutylic acid–water [369]. Systems
with essentially different properties in the vicinity of critical points demon-
strate an amazing agreement in the deviations of the measured values of Tb
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from the temperatures of limiting supersaturation, Tn, calculated by homo-
geneous nucleation theory. On the logarithmic scale, these data are grouped
along one line, which points to the asymptotic divergence of the ratio (Ts −
Tb)/(Tc − Ts) at the critical point.

As distinct from the Döring–Volmer theory, the kinetic factors B of other
versions of the homogeneous nucleation theory (Sections 3.2 and 5.3) depend
on the supersaturation. The most significant dependence of B on G∗ is given
by the Binder-Stauffer theory [354] constructed on the basis of Fisher’s droplet
model. The decrease of the kinetic factor with an approach to the critical point
results in an increasing relative supercooling, but this fact does not eliminate
the anomalous disagreement between theory and experiment.
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Fig. 5.9 Reduced supercoolings of liquid xenon (1), carbon dioxide
(2) [371], helium-3 (3) [50], solutions 2.6-lutidin–water (4), methyl-
cyclohexane-perfluoromethylcyclohexane (5) [362] and isobutylic acid–
water (6) [369]. The solid line shows the calculation from Eq. (5.75) for
τg = 1 s; the dashed line, the Döring–Volmer theory.

If at a sufficiently large distance from the critical point liquid boiling-up
takes place, due to a high rate of bubble growth the nucleation process may be
identified with the appearance in it of the first viable bubble, and Tb with Tn.
At T → Tc, the mean expectation time of appearance of the first viable bubble,
τ̄, is much shorter than the time of its subsequent growth, τg, and Tb 
= Tn. A
characteristic parameter of phase transition in the vicinity of the critical point
is the volume fraction of the vapor phase η, which in isothermal conditions is
determined by Eq. (5.74). In the regime of continuous heating (cooling) at a
constant rate Ṫ = dT/dτ, for the volume of a nucleus at temperature, T′, one
can write (evaluation from above)

V(T − T′) =
4
3

π

〈(
DT

βδT
tTc

)3/2
〉 [

T − T′

Ṫ

]3/2

, (5.97)
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where the angle brackets signify the average value on the interval (T, T′) [117].
In a free-growth approximation, Eq. (5.71) (isochoric process of penetration
into a metastable region), we have

η(t) =
4
3

π

(
Tc

|Ṫ|
)5/2

〈(
DT

βδT
tTc

)3/2
〉

z0ρcBς(t, t′). (5.98)

Here

ς(t, t′) =
t′∫

t

exp

[
−G0

(
x

x − t′

)2
]
|x − t|3/2dx. (5.99)

Given the fraction of a new phase at a certain time τg, Eqs. (5.74) and (5.98)
determine the stationary nucleation rate. In order to find J, it is necessary to
know what fraction of the incipient phase corresponds to the signal of its ap-
pearance registered in the experiment. Owing to a very strong dependence
of J on T, Eqs. (5.74) and (5.98) are noncritical to the value of η. The results
of calculating the boiling-up temperatures of liquid xenon for τg � 1 s and
η � 0.2 are shown in Fig 5.8 by the line B. The moment of liquid boiling-up in
an ampoule registered in an experiment approximately corresponds to such
a vapor-phase fraction (determined by photomicrography of a sample). The
good agreement of theory and experiment makes it possible to assert that the
considered model adequately depicts the main features of the phenomenon
being observed, at least to t′ � 10−3. At t′ > (10−3–10−4) and J < 1017 m−3·
s−1, processes of diffusional growth of new-phase centers and their coales-
cence are separated in time, which justifies the use of a free-growth approxi-
mation, Eq. (5.71). In the nearest vicinity of the critical point, the condition
of independence of nuclei growth is violated. Experimental data for one-
component liquids are not available here. In experiments with a minimum
of the dissolution curve of binary solutions, distances from the critical mixing
point reached t′ = 2 · 10−5. Here, it is already necessary to use the Langer–
Schwartz approach [351], which makes it possible to determine the value of
the initial supersaturation, Y(0) = Y+, given the amount of the new phase, η,
formed in the time, τg.

The time of observation scaled according to Eq. (5.89) is a universal function
of the initial supersaturation, Y+

θg(Y+) =
DgY3

0 τgt3ν

24ξ2
0

, (5.100)

Y+ =

[
1 −

(
1 +

δT
Tc − Ts

)−β
]

1
βY0

, (5.101)
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Fig. 5.10 Reduced initial supersaturation, Y+, as a function of the re-
duced temperature, εg. Dots show experimental data for the isobutylic
acid–water system [369]; 1, 2: calculation by the Langer–Schwartz
theory [351] for τg = 102 and 103 s, respectively; dashed line: Fu-
rukawa theory [364]; dashed-dotted line: theory of McGraw and Reiss
[359]; dotted line: Döring–Volmer theory.

where Y0 is determined by Eq. (5.42). The value of τg is prescribed by experi-
mental conditions. If a new reduced temperature is introduced

εg =

(
DgY3

0

24ξ2
0

)1/3ν

t, (5.102)

Eq. (5.100) establishes a relation between the scaled temperature, εg, and the
supersaturation, Y+, for a given time, τg

ε3ν
g =

θg(Y+)
τg

. (5.103)

In Fig 5.10, the results of calculating the dependence of Y+ on εg in the
isobutylic acid–water system for two values of time τg are compared with
experimental data [369]. According to the evaluations of the authors of
Ref. [369], at the chosen experimental conditions the characteristic times,
τg, are 200–400 s.

The Furukawa theory [364] is also in satisfactory agreement with the experi-
mental data [369]. Figure 5.10 shows the results of calculating Y+ by Eq. (5.67)
for τ0 = 20 s and A0 = 10−3.07. By considering the increase in the isothermal
compressibility of a solution with supersaturation it is necessary to increase
the time τ0. If the compressibility increases by two or three times, the value of
τ0 reaches 80–1800 s, which is already close to the characteristic time intervals
of Ref. [369].
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Taking into account the effect of excluded volume at the nucleation stage
also leads to an increase in the limiting supersaturation. In the theory of
Lebowitz and Helfand [361], the effective value for the surface tension of a
system of hard spheres, σts (Eq. (5.64)), depends on the wave vector of cutting,
q∗. McGraw [360] has determined the value of q∗ for the isobutylic acid–water
system by data on the shear viscosity (q−1∗ = 4.24 nm) and obtained consid-
erable discrepancies between theory and experiment. These discrepancies are
eliminated with q−1∗ = 12.0 nm.
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Fig. 5.11 Scaled nucleation rate depending on the relative supersatu-
ration of an isobutylic acid–water solution [375]. The line shows results
of calculation by the classical homogeneous nucleation theory.

Using the technology of two-level supercooling, which is widely applied in
thermodiffusion chambers for studying the condensation of supersaturated
vapors, Siebert and Knobler [375] in experiments with isobutylic acid–water
solutions separated the nucleation stage from the stage of nuclei growth. A so-
lution was supercooled down to a certain temperature, T0 (δT = 10 − 25 mK)
and held at that level for a certain time τ (τ = 5–300 s), within which the for-
mation and the accumulation of nuclei took place. The initial supersaturation
in this case practically did not change (Y � Y+). The number of new-phase
nuclei forming in a unit volume in the time τ is determined by

N = J(Y)τ. (5.104)

On expiry of the time τ, the solution temperature increased to T1 < Ts (in
this case the origination of new centers practically did not stop) and only cen-
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ters of size R̄ > R∗(T1) proved to be viable. Within 5–10 min they grew up
to sizes at which they could be detected and counted with the help of a mi-
croscope (N = 5–1000). The dependence of the nucleation rate on the value
of relative supersaturation obtained from Eq. (5.104) is presented in Fig. 5.11.
Ibidem one can see the results of calculating J by homogeneous nucleation
theory (Langer–Turski version). In the investigated range of nucleation rates
the Gibbs number has values of the order G∗ = (31–50). For the temperatures
Tn obtained from the homogeneous nucleation theory to coincide with Tb, it is
necessary to divide the Gibbs number by 15!

The growth of new-phase centers in the vicinity of evaporation and mixing
critical points was investigated in Refs. [377, 385]. The experiments consisted
in determining the average radii of nuclei at the last stages of their growth,
finding the average density of new-phase centers and some other parame-
ters which could be evaluated from the theories of Langer–Schwartz [351] and
Lifshitz–Slezov [368]. The data obtained point to the fact that, in the vicinity of
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- 1
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- 3

T

Fig. 5.12 Reduced supercoolings of solutions 4He–3He at different
cooling rates [382]. 1: Ṫ = 80 mK·s−1; 2: 21; 3: 13. A dashed line
shows data for the 2.6-lutidin–water system [378], Ṫ = 30 mK·s−1;
a dotted line shows the same dependence [376] with Ṫ = 1 mK·s−1;
a dashed-dotted line represents results of the classical homogeneous
nucleation theory.

the critical point, the discrepancies between the temperature of homogeneous
nucleation, Tn, and the temperature of phase transition, Tb, are not linked with
the peculiarities of nucleation, but are consequence of the critical inhibition of
the growth rate of the nuclei.

Peculiarities in the kinetics of near-critical phase separation similar to those
of classical liquids and solutions are also demonstrated by quantum solu-
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tions of 4He–3He in the vicinity of the tricritical point (Fig 5.12). At t′ =
[Tt(p) − Ts]/Tt(p) < 0.02, relative supercoolings of the superfluid solution
phase are described by the simple power law δT/t′Tt = atb, where t =
[Tt(p)− T]/Tt(p) [382]. The value of the coefficient, a, depends on the cooling
rate increasing with it. The superscript, b, in a first approximation does not
depend on Ṫ and is equal to � 1.28. For t′ > 0.012, the value of δT/t′Tt at
all cooling rates is approximately constant and close to that calculated from
homogeneous nucleation theory. As distinct from classical solutions, quan-
tum solutions demonstrate a stronger disagreement in the values of Tb and Tn

as the tricritical point is approached, which may be a specific feature of the
tricritical behavior. Being a higher order critical point, the tricritical point has
a boundary dimension dt = 3. The latter statement means that, with an accu-
racy of logarithmic corrections, the tricritical phenomenon may be described
even in the framework of the mean-field theory, i.e., the tricritical behavior is
almost classical.

In the vicinity of the tricritical point, the value of δc/∆c is related to the
supercooling, δT, and the distance from Tt by the expression

δc
∆c

= 0.818
δT

δT + t′Tt
. (5.105)

According to the Furukawa theory [364], which takes into account the effect
of crowded state, the value of supercooling δT, and consequently of δc/∆c, is
determined by Eq. (5.67), where the index φ is equal to 1.125 (tricritical indices
β = γ = ν = 1), whereas in solutions of organic liquids, φ � 0.70. The tricriti-
cal index, φ = 1.125, is close to the value b = 1.28 obtained from experimental
data. The results of experiments on the kinetics of phase separation in solu-
tions of 4He–3He [381, 382] are in good agreement with the Langer–Schwartz
theory [351] if τg = (0.5 ± 0.1) s, which is close to the characteristic times of
the experiment.

Bodensohn et al. [380] investigated the dependence of the number density
of normal-component centers in the superfluid phase of solutions 4He–3He
on the rate of the transfer of the system into the metastable state. Experiments
were performed in the vicinity of the tricritical point (t′ = 0.02) at cooling
rates dt/dτ ranging from 2·10−2 to 3 · 10−1 s−1. An increase in the cooling
rate results in an increasing number of new-phase centers, N. According to
the measurements made, N ∼ (dt/dτ)1.55±0.1. Numerical integration of the
system of equations, Eqs. (5.90), (5.91), and (5.92). yields a similar power law
for the number of new-phase centers in a unit volume. Here, the exponent is
equal to � 1.5.
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5.7
Nucleation in the Vicinity of a Spinodal Curve

As a result of an unlimited increase of the susceptibility with an approach to
the boundary of essential instability, the spinodal curve, here, similar to states
in the vicinity of the critical point, the intensity and the linear dimension of
fluctuations of the thermodynamic parameters of the system are anomalously
large. Let us assume that nonequilibrium states of a system in the vicinity
of the spinodal are fully determined by only one hydrodynamic mode, the
order-parameter field, ϕ(�r, τ). For definiteness we suppose that ϕ(�r, τ) is the
density ρ(�r, τ), thus the initial metastable phase is a one-component liquid.
The relaxation of the field, ρ(�r, τ), to the stable state is connected with the for-
mation and growth of nuclei. In the vicinity of the spinodal, the energy barrier
separating the metastable from the stable phase is small, and to describe nu-
cleation it will be sufficient to consider only density fluctuations for which
|ρ − ρ0| ∼ |ρsp − ρ0| (ρ0 is the density of a homogeneous metastable phase).
The change of the Helmholtz free energy, ∆F[ρ], connected with such a fluctu-
ation is determined by Eq. (2.36), where we can limit ourselves to cubic terms
of the expansion of ∆ f into a series in powers of ρ − ρ0 [8, 58]

∆ f = −1
6

f ′′′
[
3(ρsp − ρ0)(ρ − ρ0)2 − (ρ − ρ0)3

]
. (5.106)

Now moving to dimensionless variables

χ =
ρ − ρ0

2(ρsp − ρ0)
, (5.107)

we obtain

x =
( | f ′′′||ρsp − ρ0|

8κ

)1/2

r =
r

R0
, (5.108)

where R0 is a certain characteristic linear scale of a heterophase fluctuation.
In a space of dimensionality, d, the nonequilibrium functional, Eq. (2.36),

with allowance for Eqs. (5.106)–(5.108), is written as

∆F[ρ] = ∆F0

∞∫
0

[
4χ2 − 8

3
χ3 + (∇χ)2

]
ddx = ∆F0Υ[χ], (5.109)

where

∆F0 = 2
3
2 d−1κd/2| − f ′′′|1−d/2|ρsp − ρ0|3−d/2. (5.110)

If pressure p is presented as a series in powers of density differences, ρsp − ρ0,
i.e., as

p − psp =
1
2

ρsp| − f ′′′|(ρsp − ρ0)2, (5.111)
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then from Eq. (5.110) for ∆F0, we have

∆F0 = 21/2+5d/4κd/2| − f ′′′|−1/2−d/4ρ−3/2+d/4
sp |p − psp|3/2−d/4. (5.112)

The problem of finding the critical configuration of the field, ρ(�r), is reduced
to finding the “lowest,” and consequently the most accessible for the system,
passage point of the hypersurface, ∆F[ρ]. The Euler equation of the variational
problem, δ∆F[χ]/δχ|χ∗ = 0, for spherically symmetric nuclei is written as

χ′′ + d − 1
x

χ′ − 4χ + 4χ2 = 0, (5.113)

χ′ = 0 at x → 0 and x → ∞ ; χ → 0 at x → ∞. (5.114)

Since Eq. (5.113) does not contain any additional variables except χ(x), at fixed
d its solution is a certain universal function. χ∗(x) (Fig. 5.13).

The work of formation of a critical nucleus is

W∗ = ∆F∗ = min max ∆F[χ] = ∆F0 min max Υ{χ} = ∆F0Υ∗, (5.115)

where

Υ∗ =
4
3

∫
χ3ddx (5.116)

is a constant depending only on the space dimensionality. In the one-
dimensional case, Eq. (5.113) has an analytic solution [346, 386]. For d = 3,
numerical methods were used to obtain I∗ = 43.66; χ∗(x = 0) = 4.19;
x1/2(χ = χ∗/2) = 0.61 (Refs. [8, 58, 386] give results that differ from this one).
The distribution of the reduced density in a critical heterophase fluctuation,
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Fig. 5.13 Distribution of the reduced density in a critical heterophase
fluctuation, χ∗, and the eigenfunction, ψ0, of the stability operator, L̂, in
the vicinity of the spinodal curve.

χ∗, and the eigenfunction, ψ0, of the stability operator, L̂, in the vicinity of the
spinodal curve are shown in Fig. 5.13.
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From Eqs. (5.107), (5.108), (5.110), (5.112), and (5.115) it follows that, while
the characteristic linear dimension of the critical nucleus, R0 = r1/2, increases
without limit (R0 ∼ |ρsp − ρ0|−1/2 ∼ |p0 − psp|−1/4), the work of formation
of a nucleus, W∗, and the density at its center, ρ(r = 0), decrease, respectively,
as |ρsp − ρ0|3−d/2 ∼ |p0 − psp|3/2−d/4 and |ρsp − ρ0| ∼ |p0 − psp|1/2 [8, 58].

The consideration presented here assumes that fluctuations in the metastable
phase are small, i.e., the amplitude of density fluctuations, δρ = ρ − ρ0, in a
region with a linear scale of the order of the correlation radius, ξ, is small com-
pared with the value of |ρsp − ρ0|. The criterion of smallness of fluctuations
(Ginzburg criterion), Eq. (5.8), will be written here as [386, 387]

(ρsp − ρ0)2

r−2
0 ξ2−dvd−4

m
� 1. (5.117)

In accordance with the determination of the correlation length, Eq. (5.6), in the
vicinity of the spinodal, we have

ξ2 � κ

| − f ′′′||ρsp − ρ0| . (5.118)

Substitution of Eq. (5.118) into Eq. (5.117) gives

κd/2| − f ′′′|1−d/2|ρsp − ρ0|3−d/2

kBT
� 1. (5.119)

The numerator in Eq. (5.119) coincides with an accuracy of the numerical co-
efficient with the expression for ∆F0 (see Eq. (5.110)).

Criterion (5.119) is always fulfilled if d > 6, or if the interaction radius
r0 → ∞. In these cases the mean-field approximation becomes true. When
fluctuations are suppressed, the work of formation of a critical nucleus and,
consequently, the lifetime of the metastable phase are infinitely large [24].
For the spinodal and for the critical point there exists a threshold dimension,
dsp = 6 (dsp > dc = 4), above which the mean-field approximation is always
correct.

According to Fig. 5.13, in the vicinity of the spinodal the density distribu-
tion in a critical nucleus is different from a similar distribution in a region
of weak metastability. If in the latter case a critical nucleus is a certain com-
pact formation (bubble, drop) the volume V of which is connected with its
linear dimension, R∗, by the relation V ∼ Rd∗, and the density at the center is
close to the equilibrium value determined from the condition of equilibrium
of macroscopic phases, then in the vicinity of the spinodal a critical nucleus,
even at the center, contains no stable phase and wholly consists of a transition
layer. The continuums approach examined here describes a certain averaged
structure of a heterophase fluctuation. Investigations of nucleation in three-
dimensional Ising models by the Monte–Carlo method have shown that at a
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small amplitude and to a large extent the critical configuration has a ramified
structure of a percolation cluster, whose fractal dimension d f is smaller than

the space dimension d, i.e., V ∼ R
d f∗ , where d f < d [388–391].

Let us now examine the evolution of a near-critical configuration [386]. The
corresponding relaxation process is described by an equation of the type of
Eq. (2.64), in which ai = ρ(�r, τ). We assume that the relaxing parameter is not
conserved. We introduce the dimensionless time

θ =
τ

(4/Γn| − f ′′′||ρsp − ρ0|) =
τ

τ0
. (5.120)

Then from Eqs. (2.64), (5.107), (5.108), (5.109), and (5.120) it follows that

∂χ

∂θ
= − δΥ[χ]

δχ
+ g(�x, θ), (5.121)

where g(�x, θ) is a dimensionless random force imitating thermal fluctuations.
By linearizing Eq. (5.121) with respect to small deviations φ(�x, τ) =

χ(�x, θ) − χ∗(�x), we get

∂φ

∂θ
= ∆φ − 4φ + 8χ∗φ + g(�x, θ). (5.122)

We write φ(�x, θ) as

φ(�x, θ) = ∑
n

an(θ)ψn(�x). (5.123)

Substitution of Eq. (5.123) into Eq. (5.122) gives the equations for the expan-
sion amplitudes

dan

dθ
= λnan + gn(θ) (5.124)

and eigenfunctions[
d2

dx2 +
2
x

d
dx

− 4 + 8χ∗(x)
]

ψn(x) = λnψn(x). (5.125)

Here, gn(θ) is the corresponding harmonics of g(�x, θ), λn are the eigenvalues
of the linear operator

L̂ = [∆ − 4 + 8χ∗(x)]. (5.126)

The operator L̂ has a finite number of discrete eigenvalues. The eigenfunc-
tions, ψn(�x), corresponding to λn > 0, describe perturbations of the extreme
configuration, χ∗(x), which respect to which it is stable. The harmonics ψ1(�x)
with λ1 = 0 represents a translational mode. The instability of the extreme
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configuration is connected with the harmonics ψ0(�x), which is the solution of
Eq. (5.125) at the only possible negative eigenvalue of λ0 < 0. By means of
a numerical solution of Eq. (5.125) with the boundary conditions χ0 → 0 at
x → ∞ and χ0x = 0 at x → 0, we have obtained λ0 = −9.392. The eigenfunc-
tion ψ0(x) is shown in Fig. 5.13. As distinct from the case of weak metastabil-
ity, where in a space of dimension d ≥ 3 the eigenfunction with λ0 < 0 is equal
to zero at the nucleus center and is practically localized only in the spherical
layer coinciding with its interface (see Fig. 5.2b), a similar eigenfunction in the
vicinity of the spinodal is mainly concentrated at the nucleus center, as it is in
the one-dimensional case (see Fig. 5.2a). Thus, the evolution of near-critical
configurations in the vicinity of the spinodal is reduced to the change of their
amplitudes, and not of the effective radii.

The fluctuational growth of precritical configurations of the field, χ(x), may
be regarded as a diffusional process along the phase axis of amplitude c0 of the
unstable mode [386]

da0

dθ
= λ0a0 + g0(θ). (5.127)

Here, the first term on the right-hand side determines the rate of deterministic
growth, and the second one accounts for the contribution of fluctuations.

Just as it was done in describing the relaxation of weakly metastable states,
a Fokker–Planck equation can be formulated for the distribution function of
configurations of the field, χ(�x, θ), by the amplitude, a0

∂P
∂θ

= − ∂

∂a0
(λ0a0P) + D

∂2P
∂a2

0
. (5.128)

The stationary flux of nuclei through the saddle point of the functional,
Eq. (5.109), along the axis of a0 into the region a0 > 0 is

J = λ0a0P − D
dP
da0

. (5.129)

At c0 → +∞, we have P(a0) → 0. The values of a0 < 0 correspond to con-
figurations with precritical amplitudes. If we demand that for such values of
a0 the distribution P(a0) should coincide with the equilibrium distribution,
Peq(a0), then from Eq. (5.129) for the nucleation rate we get

J = C0

( |λ0|kBT
2π∆F0

)1/2

exp
(
− W∗

kBT

)
(5.130)

or in dimensional units (d = 3)

J = C02−7/4Γnκ−9/4| − f ′′′|3(ρsp − ρ0)7/4
( |λ0|kBT

214π

)
1/2exp

(
− W∗

kBT

)
. (5.131)
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A metastable phase can be considered as a statistically defined state only if
the characteristic time of its existence, τ̄ = (JV)−1, is much larger than the
time of establishment of a local equilibrium, τ0 � (Γn| − f ′′′||ρsp − ρ0|)−1.
According to Eq. (5.131), the time τ̄ is exponentially large compared to τ0 at
W∗/kBT � 1. Since the value of W∗ differs from that of ∆F determining the
range of applicability of the approximation of weak fluctuations, Eq. (5.119),
by a sufficiently large factor Υ∗, the criterion of applicability of the mean-field
theory in the vicinity of the spinodal for the description should be written as

∆F0

kBT
Υ∗ =

W∗
kBT

� 1. (5.132)

In the nearest vicinity of the spinodal, the theory under consideration is not
applicable. The reason is not the strengthening of the interactions between
fluctuations of scale ξ, but the short time of formation of a critical config-
uration. When the height of the activation barrier, W∗, is comparable with
the average energy of thermal motion per degree of freedom, it makes no
sense to speak about a nucleation process. The authors of Ref. [386] deter-
mine the boundary of stability of a fluctuating system employing the condi-
tion W∗/kBT = 1. They call this boundary the physical spinodal. Along this
line, the relation

|ρsp − ρ
φ
sp| =

(
kBT

23d/2−1κd/2| − f ′′′|1−d/2Υ∗

) 1
3−d/2

(5.133)

holds. In the region ρ
φ
sp > ρ > ρsp, the initial homogeneous state of a liq-

uid, stable with respect to long wave-length fluctuations, transforms into a
heterophase state under the action of fluctuations of the order of ξ in a time
comparable to the time of establishment of local equilibrium.

The approach considered presupposes that the resultant flux of nuclei goes
through the saddle point of the surface, F[ρ]. With an approach to the spin-
odal, both the characteristic size of the critical configuration of the field,
ρ(�r, τ), and the time of its formation increase. It is quite possible that un-
der these conditions a system leaves the state of metastable equilibrium not
through the configuration that is the most advantageous energetically, but by
means of formation of the configuration to which the minimum time of its
formation corresponds. Such a configuration may be more compact, and cor-
respond to a point along the ridge of the thermodynamic potential surface,
∆F[ρ], with a higher value of the activation energy than at the saddle point.
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5.8
Theory of Spinodal Decomposition

A first-order phase transition implies the existence of a region on the thermo-
dynamic surface where the homogeneous state of a substance is absolutely
unstable. This region is bounded by a spinodal (see Fig. 5.3). In passing
through the spinodal of a binary (one-component) system the susceptibility,
χT ∼ (∂c/∂µ)T (isobaric heat capacity, cp ∼ (∂S/∂T)p), becomes negative,
and consequently also the diffusion coefficient, Dg ∼ χ−1

T (thermal diffusivity,
DT ∼ c−1

p ) behaves similarly. Formally it is equivalent to changing the sign of
time in the equation of diffusion (thermal diffusivity) and leads to the appear-
ance of solutions with exponentially increasing concentration (temperature)
differences. A substance that is brought into the unstable state when relaxing,
loses space homogeneity rapidly. At the initial stage of relaxation, a peculiar
grain-cell (modulated) structure forms. Owing to thermodynamic instability,
such structurization is called spinodal decomposition.

The initial stage of spinodal decomposition in a one-component system was
first considered by Zeldovich and Todes [69]. A phenomenological theory
of formation of space-periodic structures in binary melts was developed by
Cahn [392–394]. Three stages can be distinguished regarding the kinetics of
evolution of unstable states: the initial, intermediate, and completing stages.
The relaxation rate at the last two stages, when fragments of phases form
from a continuous structure and their growth begins, depends on many fac-
tors [395–399].

We shall examine the kinetics of the process of restoration of equilibrium
in a system which at a time, τ = 0, is instantaneously transferred from the
stable state (see Fig. 5.3, point a) into a region where the homogeneous state of
the initial phase is absolutely unstable (point b). Hereafter, unless otherwise
stated, we assume the existence in the system of only one large-scale mode,
the order-parameter field, for which for sake of definiteness the concentration
field, c(�r, τ), will be chosen. The instantaneous penetration into the region of
unstable states means that no essential system rearrangement takes place in
the time of the transfer, variations in the order parameter remain at the level
of thermal noise.

The relaxation of the unstable state to equilibrium is described by Eq. (2.64).
The realization of the spinodal decay is possible only in systems with a con-
served order parameter. In the vicinity of the critical point, the thermody-
namic potential, F[c], is written as given by Eq. (2.33). Substitution of Eq. (2.33)
into Eq. (2.64) yields

∂c(�r, τ)
∂τ

= Γc∇2
(

∂∆ f
∂c

− 2κ∇2c+
)

+ ζ(�r, τ). (5.134)
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Expanding the derivative, ∂∆ f /∂c, into a Taylor series in terms of deviations
δc(�r, τ) = c(�r, τ) − c0, where c0 is the concentration of the homogeneous un-
stable system at the time τ = 0, we have

∂∆ f
∂c

=
(

∂∆ f
∂c

)
c0

+
(

∂2∆ f
∂c2

)
c0

δc +
∞

∑
n=3

1
(n − 1)!

(
∂n∆ f
∂cn

)
c0

(δc)n−1. (5.135)

Limiting ourselves to terms linear in δc(�r, τ), after substitution of Eq. (5.135)
into Eq. (5.134) and transition to the Fourier transform of the correlation func-
tion of fluctuations of the order parameter

S(�q, τ) ≡
∫

G(�r, τ) exp(i�q�r)ddr, (5.136)

where

G(�r, τ) ≡ 〈δc(�r′ +�r, τ)δc(�r′, τ)〉, (5.137)

we get

∂S(�q, τ)
∂τ

= 2ω(�q)S(�q, τ) + 2kBTΓc�q2. (5.138)

Here, the amplification factor is given by

ω(�q) = −Γcq2

[(
∂2∆ f
∂c2

)
c0

+ 2κq2

]
. (5.139)

The integration of Eq. (5.138) results in

S(q, τ) = S(q, 0) exp[2ω(q)τ] + S(q, ∞){1 − exp[2ω(q)τ]}. (5.140)

The value of S(q, 0) is given by the initial conditions. At τ → ∞, we have

S(q, ∞) =
−kBTΓcq2

ω(q)
. (5.141)

Equations (5.138) and (5.139) are the final result of the linear theory of spinodal
decomposition of Cahn and Cook [394, 400, 401].

In the stable and the metastable regions, (∂2∆ f /∂2)T > 0, and for all wave-
lengths, λ = 2π/q, the amplification factor in Eq. (5.139) is negative (Fig. 5.14).
Inside the spinodal, the value of ω(q) is positive if

q < qc =

√
− 1

2κ

(
∂2∆ f
∂c2

)
c0

. (5.142)

The homogeneous state proves to be unstable with respect to perturbations
with wavelengths, λ > λc = 2π/qc. Equation (5.139) reflects the competi-
tion between the forces leading at small q to phase separation (the term in
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square brackets) and the factor q2 responsible for the diffusion and impeding
the increase of long-wavelength perturbations. As a result, perturbations with
qm = qc/21/2 grow most rapidly (see Fig. 5.14), which leads to the formation
of a cell structure with a characteristic linear scale, l � 2π/qm.

2

qm

qc

q

(q)

1

0

Fig. 5.14 Amplification factor in the unstable (1) and the metastable
(2) regions.

In the first papers dealing with the theory of spinodal decomposition [392–
394], spontaneous fluctuations were not taken into account (the Cahn linear
theory). Then

S(�q, τ) = S(�q, 0) exp [2ω(�q)τ] . (5.143)

From Eq. (5.143) it follows that in the region of unstable states fluctuations die
out completely if q > qc and increase exponentially if q < qc. If the fluctua-
tion noise is taken into account, the increase of S(�q, τ) (Eq. (5.140)) will take
place not only at ω(q) > 0, but also at ω(q) < 0 if S(q, 0) < S(q, ∞). At
τ = 0, the critical value of the wave number determined by the condition
∂S(q, τ)/∂τ = 0 is

q∗c =

{
1

2κS(q, 0)

[
kBT −

(
∂2∆ f
∂c2

)
c0

S(q, 0)

]}1/2

. (5.144)

From Eq. (5.144) it follows that q∗c > qc. The maximum of S(q∗c , τ) is shifted
toward small q, and at τ → ∞ the value of qc(τ) tends to qc [402]. The time at
which q∗c (τ) reaches the value of q = qc is equal to

τc � 2κS(q, 0)

{
Γc

(
∂2∆ f
∂c2

)
c0

[
kBT −

(
∂2∆ f
∂c2

)
c0

S(q, 0)

]}−1

. (5.145)
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For τ < τc, the Cahn–Cook linear theory presents the dependence of S(q, τ)
on q and τ qualitatively and quantitatively correctly, predicting, however, an
unlimited growth of fluctuations for q < qc and τ → ∞. When the devia-
tions (c(�r, τ) − c0) cease to be small, in the expansion of Eq. (5.135) one can-
not restrict oneself only to terms that are linear in δc(�r, τ). Fluctuations cor-
responding to different q’s become statistically dependent, and the problem
turns essentially nonlinear. The linear theory of spinodal decomposition is
based on the mean-field approximation. The criterion of applicability of the
linear theory by Cahn [387, 402]

〈[δ(�r, τ)]2〉l � (c − csp)2 (5.146)

is similar to that used in describing nucleation in the vicinity of the spinodal,
Eq. (5.117). Averaging in Eq. (5.146) is made over volumes vm = ld ∼ q−d

m . At
the approach to the spinodal curve, the quantity q−1

m grows as the correlation
length ξ. Moreover, the expression on the left hand side of Eq. (5.146) may be
expressed as

〈[δc(�r, τ)]2〉l � 〈[δc(�r, 0)]2〉l exp[2ω(qm)τ]

� r−2
0 qd−2

m vd−4
m exp[2ω(qm)τ],

(5.147)

Taking into account both mentioned circumstances, the limiting time for the
applicability of the linear may be estimated from Eq. (5.146) as [402]

τ∗ � ω−1(qm) ln
(

r0|c − csp|v2−d/2
m q1−d/2

m

)
. (5.148)
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Fig. 5.15 Evolution of the structure factor according to the linear the-
ory of spinodal decomposition.

At τ < τ∗, the intensity of density fluctuations with a wavelength, λ = λm,
will increase, but λm in this case will not change (Fig. 5.15). Fluctuations “con-
dense,” but do not “roughen.” To a certain degree this process is similar to the
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process of nucleation on the metastable side in the vicinity of the spinodal (see
Section 5.7), where heterophase fluctuations first increase their amplitudes,
and only then the growth of their linear dimensions begins.

The limitation of the Cahn–Cook theory also manifests itself in the fact that
by substituting Eq. (5.139) into Eq. (5.141) a formula of the Ornstein–Zernike
type is obtained, where the component corresponding to the correlation length
is negative. Since this component is proportional to the coefficient at the linear
term of the expansion of Eq. (5.135), in order to arrive at the correct sign it is
necessary to take into account the nonlinear corrections of higher orders.

3
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P([c], )
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Fig. 5.16 Evolution of the distribution P([c], τ). Curves 1–3 corre-
spond to times τ3 > τ2 > τ1.

The first attempt to include nonlinear terms in the equation of relaxation,
Eq. (5.134), was made by Langer [395] and Langer et al. [396]. As shown in
Ref. [396], to describe the evolution of an unstable system, it is necessary to
supplement Eq. (5.134) by an equation for the functional of the distribution
P([c], τ) of configurations of the field, c(�r, τ). If we take into account the in-
teraction of fluctuations in a mean-field approximation [64] and assume that
at any time the distribution P([c], τ) coincides with the Gaussian distribution
centered at c0, then for S(�q, τ) we obtain Eq. (5.138), where

ω(q, τ) = −Γcq2

[(
∂2∆ f
∂c2

)
c0

+
1
2

(
∂4∆ f
∂c4

)
c0

〈δc2(τ)〉+ 2κq2

]
. (5.149)

Since the correlator, 〈δc2(τ)〉, is a positive increasing function of time, and
(∂4∆ f /∂c4)c0 > 0, the critical wave number, qm, will decrease in the process of
decay. This property will lead to a decrease in the rate of build-up of unstable
Fourier components of concentration. However, since the second component
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in the right-hand side of Eq. (5.149) is always smaller than the first one, in the
limit, τ → ∞, such a modification of the theory does not give the Ornstein–
Zernike formula for S(q, ∞). The conversion of sign in the component preced-
ing 2κq2 in Eq. (5.149) can be only obtained by assuming that the distribution
P([c], τ) changes its shape in time as shown in Fig. 5.16. The binodal character
of P([c], τ) signifies the appearance at intermediate stages of the decay of a
bound modulated structure, in which the concentration in cells is determined
by the position of the peaks of P([c], τ), and the characteristic linear dimen-
sion of cells by their halfwidth. The equation for S(q, τ) will still look like
Eq. (5.138), where

ω(q, τ) = −Γcq2[A(τ) + 2κq2]. (5.150)

For the function A(τ), Langer et al. [396] suggested the approximation

A(τ)S(�q, τ) =
∞

∑
n=2

1
(n − 1)!

(
∂n f
∂cn

)
c0

Sn(�q, τ). (5.151)

Here, Sn(�q, τ) are the Fourier transforms of the correlation functions of higher
orders

Gn(�r, τ) =
∫

δcn−1(�r +�r′, τ)δc(�r′, τ)d�r′. (5.152)

As distinct from the linear theory, the nonlinear theory of spinodal decompo-
sition [396] gives a nonexponential growth of S(qm, τ) at all values of q and
a shift of its maximum toward small q’s in time. Thus, nonlinear effects slow
down the structurization of a system in composition and lead to a time depen-
dence of the characteristic size of the cell structure. Numerical calculations
have yielded [403]

S(qm, τ) ∼ τ0.81, qm ∼ τ−0.212. (5.153)

The solution of Eq. (5.138) in the approximation of Eq. (5.151) gives the correct
Ornstein–Zernike asymptotics with A(τ → ∞) > 0. However, ignoring the
interaction of the order parameter c(�r, τ) with the other large-scale modes will
cause the theory of Langer, Bar-on, and Miller not to describe the approach of
the system to equilibrium.

The different theories of spinodal decomposition, discussed here briefly, are
strictly applicable only to media with an infinitely high viscosity (solid bod-
ies). In solutions and one-component liquids flows caused by pressure, con-
centration and temperature gradients may have a considerable effect on the
decomposition process. Such flows lead to hydrodynamic interactions of fluc-
tuations of the order parameter and the appearance of a nonlocal term in the
equation for the functional of the distribution P([c], τ) [404, 405]. In order
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to account for the hydrodynamic interactions, Kawasaki [404], Kawasaki and
Ohta [405] used the approximation of Langer, Bar-on, and Miller, Eq. (5.151).
The equations obtained only allow one a numerical solution and are applica-
ble at the intermediate stages of the spinodal decomposition process.

At the end of the intermediate stage of relaxation, stable phase boundaries
are formed in the system, and heterogeneities develop in the form of embed-
ments of one phase into the other. Further relaxation is then connected with
the coarsening of grains of the competing phases and is in many respects sim-
ilar to the process of nuclei growth in a metastable system. At τ → ∞, the
linear dimension of the separating phase increases by the law

l � q−1
m ∼ τp, (5.154)

and the dissipation intensity as

S(qm, τ) ∼ τn. (5.155)

At the intermediate stage of the decay n > 3p, and at the completing one,
n = 3p [406]. The exponents in the growth laws, Eqs. (5.154) and (5.155), also
depend on the dimensionality of space, d [407]. If the determining mechanism
at the completing stage of the decay is coagulation of grains, then p = 1/3
[406, 407]. The same value of the exponent in Eq. (5.154) will be found in the
case of the coalescence of grains [368].

In solutions and one-component liquids, the growth rate of grains at the last
stages of spinodal decomposition may be limited by viscosity, inertial forces,
and heat supply. Depending on the relations between the factors mentioned,
the exponent p in the growth law, Eq. (5.154), may take the values (d = 3):
2/5 (the determining factor is heat supply and inertial forces) [397], 1/3 (heat
supply and viscosity) [398], 2/3 (surface tension and inertial forces) [399]. As
it is shown by Siggia [408], the grains of separating phases in the vicinity of
the critical point form a bounded structure. This property leads to the growth
of separating phases at the expense of a substance flow from some regions to
others. Such a growth mechanism is limited by surface tension, viscosity and
described by Eq. (5.154) with p = 1.

Using the ideas of the dynamic theory of scale invariance, Binder and Stauf-
fer [354] wrote the structural factor as

S(q, τ) = Ld(τ)S̃[qL(τ)], (5.156)

where the scale-invariant function, S̃(x), has no explicit dependence on time.
The form of this function was found by Furukawa [409, 410]

S̃(x) =
(1 + γ/2)x2

γ/2 + x2+γ
, x = qL(t), (5.157)
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where γ = 2d if the entry into the unstable region is performed passing the
critical point, and γ = d + 1 in all other cases. Equation (5.156) predicts that
the values of S(q, τ) obtained at various times at different depths of penetra-
tion into the unstable region, in variables S(q, τ)qd

m(τ), q/qm should be de-
scribed by a single curve.

5.9
Experimental Studies of Spinodal Decomposition

Observation of spinodal decomposition is possible if the time of “preparation”
of the unstable state, τm is shorter than the characteristic time, τd, of phase sep-
aration. Owing to a very small value of τd in a one-component system, which
is (10−10–10−9) s [89,411,412], experimental investigations of spinodal decom-
position are confronted with considerable difficulties. Binary liquid mixtures
are more convenient objects for studying spinodal decomposition as the diffu-
sion coefficients in such systems are approximately two orders of magnitude
lower than the thermal diffusivities of pure liquids. Owing to the asymptotic
divergence of the diffusion coefficient at T → Tc, in the vicinity of the critical
point values of τd might be expected which are not too low. Besides, being
the point of tangency of the spinodal and the binodal, the critical point allows
a system transfer from a stable to the unstable region bypassing metastable
states.

Penetration into an unstable region may be realized either by a rapid de-
crease (increase for systems with a lower critical point) of temperature or by
an abrupt change of pressure, which shifts the co-existence curve [382]. The
pressure release is a less inertial method of realizing an unstable state than
the temperature shift. However, it may be accompanied by adiabatic heat-
ing or cooling of the liquid. A drawback of the methods of heating (by Joule
heat [412], microwave radiation [413], intensive stirring [414]) is the appear-
ance of a temperature difference between the liquid and the heat bath that
surrounds it. The change of concentration, as a means of the transfer of the
system into an unstable state, is a rather complicated method. Since the theory
of spinodal decay is formulated in the reciprocal space, its most direct proof
is given by diffraction methods, first of all by small-angle light scattering. The
quantity that is usually observed in experiments is the intensity of scattered
light I(�q, τ), which is proportional to the structure factor, S(�q, τ). The modu-
lus of the wave vector of scattering, �q, is related to the length of the radiation
wave, λ0, and the angle between the incident and the scattered beam by the
equation |�q| = 4π sin(Θ/2)/λ0. In order to observe fluctuations of composi-
tion (density) with a wavelength λ � 10−4 cm at λ0 � 632.8 nm, it is necessary
to have a scattering angle Θ � 0.05 rad.
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In experiments on spinodal decomposition, the angular light distribution is
registered by photomultipliers or photodiodes [382], a photodiode in combi-
nation with a rotable mirror, or by rapid filming [415]. Each of the methods
listed has its advantages and drawbacks. Thus, the method of a rotable mirror
is applicable only to systems where the time constant of the spinodal-decay
process is larger than 100 s. The drawbacks of rapid filming include a narrow
dynamic range and the complexity of data analysis, though the procedure of
conducting measurements is very convenient.

Up to now, spinodal decomposition has been investigated only in one cryo-
genic system, in a solution of 4He–3He [381, 382, 415]. In all other papers, the
objects of study are organic liquids with critical temperatures close to room
temperature. In liquid solutions of 4He–3He, the unstable region contacts the
region of stable states at the tricritical point. In Ref. [415], the transfer of a
solution into the unstable region was realized by a pressure release at a rate of
10 MPa s−1, which is equivalent to a rate of temperature decrease of ∼ 4 K s−1.
Pressure and temperature were registered by a capacity pressure transducer
and a germanium resistance thermometer, respectively. The optical setup in-
cluded a laser, a linear grid of 512 photodiodes with automatic scanning and
a digital oscillograph. The operation of the systems was controlled by a mini-
computer.

Spinodal decomposition is connected with the generation of inhomo-
geneities in the systems of a certain characteristic scale. In an isotropic
system, the angular distribution of the intensity of scattered light has the
form of a ring. The ring radius is determined by the most rapidly growing
Fourier-component with a wavelength, λm = 2π/qm. According to the linear
theory of spinodal decomposition, the brightness of the ring increases expo-
nentially, and its radius will not change in time. Experiments on solutions
of 4He–3He [381, 382, 415] and solutions of organic liquids [412–414, 416–418]
have not revealed such a relaxation regime. Almost immediately after the
appearance of scattered light a ring was formed, which was continuously
collapsing. For solutions of 4He–3He, the characteristic collapse time is ∼ 0.3
s, which is approximately 1000 times less than the time registered for disinte-
grating mixtures of organic liquids [417–424]. The latter property is connected
with a considerably smaller value of the diffusion coefficient in solutions like
isobutylic acid–water, 2.6-lutidine–water than in solutions of helium isotopes.
The scattering ring in a solution of 4He–3He formed in the process of pressure
release (with a time constant of the hydraulic system ∼ 0.2 s), whereas in
solutions of organic liquids a sharp image of the ring appeared only after ap-
proximately 30 s of observations. The total time of observation was ten times
longer than that in solutions of helium isotopes. In this time, the characteristic
size of inhomogeneities in the isobutylic acid–water system increased from
1.6 to 3.3 µm (the linear regime of relaxation was registered in one of the first
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papers on spinodal decomposition in binary liquid mixtures [416]; however,
as shown by subsequent investigations [417], it was the result of experimental
errors).

Some peculiarities of spinodal decomposition of solutions of 4He–3He may
be connected with the specific features of the tricritical system, which is char-
acterized by two order parameters, the macroscopic wave function Ψ, which
describes the superfluid phase and is a two-component vector, and the con-
centration, c, of the isotope 3He in 4He. The interaction of the vector and
the scalar order parameter leads to a considerable asymmetry of the curve
of co-existence of the normal and the superfluid phase and, consequently, to
different values of such properties as the diffusion coefficient, the correlation
length, etc., on the left and the right branches of the co-existence curve. The
peculiarities of the linear and the intermediate stages of spinodal decay in tri-
critical systems are examined in Refs. [419, 420], Ref. [421] is devoted to the
late stage of decay. The results of these papers show that for systems of tricrit-
ical composition the relaxation of the unstable state obeys the laws for critical
systems. Thus, in the vicinity of the critical and the tricritical point of solu-
tions of simple liquids and liquids with similar properties no linear stage of
spinodal decay is observed. According to Eq. (5.148), this result is due to the
small values of the radius of intermolecular interaction, the large values of the
diffusion coefficient, and also to the proximity of the spinodal. In solutions
of high-molecular compounds, in polymeric mixtures, where the values of r0
are large, the viscosity is high, and the diffusion coefficient is small, the linear
stage is observed [422, 423].
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Fig. 5.17 Reduced wave number, Qm, as a function of the reduced
time, θ, for the isobutylic acid–water system (light dots [418] and a bold
solid line [417]) and a solution of helium isotopes (dark dots [382]). 1:
theory of Langer, Bar-on, and Miller [396]; 2: Kawasaki, Ohta [405]; 3:
Lifshitz, Slezov [368] and Binder and Stauffer [354]; 4: Furukawa [410];
5: Siggia [408].
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As the characteristic linear scale for the spinodal decay, the correlation
radius ξ may be chosen, which is determined as ξ−1 = limτ→0 qm(τ) =
qm(τ = 0). One may distinguish here the time interval τc = ξ2/D, where
D = limτ→0[2ω(qm)/q2

m]. In the linear regime, D = ω(q)/q2|q=0 holds. The
scales introduced make it possible to go over to dimensionless variables

θ =
τ

τ0
, Qm =

qm(θ)
qm(0)

(5.158)

and write the laws (5.154) and (5.155) in reduced form as

Sm(θ, Qm) ∼ θn, Qm(θ) ∼ θ−p. (5.159)

Figure 5.17 shows Qm as a function of θ in isobutylic acid–water mixtures
[417, 418] and in a solution of 4He–3He [382]. The depth of penetration into
the region of unstable states for the isobutylic acid–water system is indicated
in the figure. All the data refer to mixtures of critical or tricritical (system 4He–
3He) composition. In Ref. [418], the transfer of the solution into a region of
unstable states is realized by lowering the temperature, in Refs. [382, 417], by
the method of pressure release. The excellent agreement between data for the
isobutylic acid–water system obtained in two different experiments [417, 418]
is a strong indication that the results are independent from the methods of
obtaining an unstable state. In constructing the function Qm(θ) for mixtures
of organic liquids, values of ξ and D from Refs. [414, 424] were used.

In the system 4He–3He, the values of ξ and D are different in the normal and
the superfluid phases [425, 426]. In reduced coordinates, the (Qm, θ)-data for
solutions of helium isotopes agree with the results for mixtures of organic liq-
uids if ξ = 10−5 cm, D/ξ2 � 5 · 103 s−1. The fact that the results, which have
been obtained at different values of the depth of penetration into the unstable
region and pertaining to systems of different chemical nature, form a single
curve in coordinates Qm(θ) is a convincing corroboration of the hypothesis of
scale invariance for the spinodal decay. Even at the lowest values of θ experi-
mental data disagree with the results of the nonlinear theory of spinodal decay
by Langer, Bar-on, and Miller [396], and up to θ � 100 are in good agreement
with the theory by Kawasaki and Ohta [405]. The latter is indicative of the
important role of hydrodynamic effects, which are partially accounted for in
Ref. [405].

Though the results presented in Fig. 5.17 cannot be approximated in the
whole region of variations of θ by the power law Eq. (5.159), two section on
the dependence Qm(θ) can be distinguished: the first corresponds to the in-
terval 0.3 ≤ Qm ≤ 0.6 (θ ≤ 80), where the exponent p � 0.3, the second to
0.08 ≤ Qm ≤ 0.1 (θ ≥ 80), and here p � 1. At small values of θ, experimental
data agree with the conclusions of the coalescence theory by Lifshitz and Sle-
zov [368] and the theory of cluster ripening by Binder and Stauffer [354]. The
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Fig. 5.18 Evolution of the structure factor of a solution of 4He–3He. 1:
τ = 24 ms; 2: 48; 3: 72; 4: 96; 5: 120.

linear law of Qm decrease holds true at the last stages of the decay, which cor-
roborates the Siggia theory [408] taking into account the effect of the surface
tension on the dynamics of decomposition of the solution. The linear growth
law is observed as long as qm ≤ qg = ξ(g∆ρ/σ)1/2, where g is the free fall
gravity acceleration, ∆ρ is the density difference of the separating phases. In
mixtures of organic liquids at a depth of penetration into the unstable region
tTc > 1 mK, we have qg < 7 · 10−3 and the values of qm < qg are located out-
side the region accessible for measurements. Owing to the small value of σ, in
solutions of 4He–3He the value of qg is about eight times as large, and gravi-
tational effects may influence the pattern of light scattering [382]. Leiderer et
al. [427] investigated the last stages of spinodal decay in solutions of helium
isotopes (0.5 < τ < 1.5 s) and discovered the asymmetry of the scattering
ring, which had the shape of an ellipse. The asymmetry of scattering leads to
different values of the vector, qm, in the vertical (qm,h) and the horizontal (qm,l)
directions, qm,h being a weaker function of time than qm,l .

Figure 5.18 presents normalized angular distributions of the intensity of
scattered light in a mixture of 4He–3He cooled down to temperatures 0.01 K
lower than the tricritical point [382]. The curves are numbered according to
the moments of observations following the transfer of the system into the un-
stable region. The time interval between each of the presented curves is 24
ms. If measurements of the diameter of the scattering ring in mixtures of or-
ganic liquids at the intermediate stage of the decay corroborate the theory by
Kawasaki, Ohta [405], then only a qualitative agreement is observed for data
on the scattering intensity.
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The calculation of S(q, τ) at the last stages of the decay is a rather com-
plicated mathematical problem. According to Refs. [354, 409], the similarity
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Fig. 5.19 Scaling function of the structure factor of a solution of 4He–
3He (normalized and averaged versions of the functions shown in
Fig. 5.18).

relation, Eq. (5.156), holds true here. To check this relation, the authors of
Ref. [382] presented it in a somewhat different form as

S̄(q, τ)q3
1(τ) = �

(
q

q1(τ)

)
, (5.160)

where

S̄(q, τ) =
S(q, τ)

∞∫
0

q2S(q, τ)dq
, (5.161)

and

q1(τ) =

∞∫
0

qS(q, τ)dq

∞∫
0

S(q, τ)dq
(5.162)

is the characteristic size of formations. As can be seen in Fig. 5.19, at the same
depth of penetration into the unstable region the function �(x) has the same
form for different times. The form of �(x) does not change while passing from
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the diffusional regime of growth (p = 1/3) to the regime where the surface
tension is the limiting factor (p = 1). The function �(x) retains its form under
variations of the depth of penetration into the unstable region [428] as well as
while passing to other solutions [429].

The peak of the function �(x) is located within the region of values 0.7 ≤
x ≤ 0.9. Beyond this region, the simple power law [382]

�(x) ∼ xφ (5.163)

holds, where φ � −4 if x ≥ 0.9, and φ = 4 when x ≤ 0.7. The asymptotic
behavior of �(x) at x � 1 and x � 1 was examined by Furukawa [409,
410]. The scaling function suggested by him, Eq. (5.157), does not agree with
experimental data on binary liquid mixtures. This failure may be connected
with the neglecting of hydrodynamic effects in the model.

The existence of a particular case of the general similarity relationship,
Eq. (5.160), for the particular value of q = qm results from the following sim-
ple considerations [418]. If we assume that the “grained” structure forming
in the intermediate and in the final stages of spinodal decay is close packed
and has a characteristic linear size L, and that the intensity of scattering from
every cell of such a structure is proportional to L6, which corresponds to the
limiting case of Rayleigh–Ganz in scattering theory, the structure factor S(q, τ)
is proportional to the number of cells in a unit volume multiplied by L6. Thus,
S(q, τ) ∼ L−3L6 = L3 ∼ q−3

m , and the product q3
mS(qm, τ) is independent of

time.
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6
Nucleation Kinetics Near the Absolute Zero of Tempera-
ture

6.1
Quantum Tunneling of Nuclei

Thermo-fluctuational nucleation is impossible near zero absolute tempera-
tures. Here nuclei of the new phase may appear as a result of quantum tun-
neling of heterophase fluctuations through the energetic barrier. Lifshitz and
Kagan were the first to examine the kinetics of quantum nucleation at first-
order phase transitions [8]. In their analysis they supposed incompressibility
of the metastable liquid and that no dissipation occurs in the process of evo-
lution of the critical nuclei and in further growth of the supercritical nuclei.
Neglecting the dissipation of energy means that new excitations do not ap-
pear at the quantum underbarrier decomposition of the metastable state, and
all parameters of the system adapt themselves adiabatically to the value of a
single distinguished parameter. Here the radius of a nucleus of the new phase
is chosen as such a parameter.

The process of quantum decomposition of a metastable phase differs sig-
nificantly from the mechanism of decomposition proceeding via thermal
fluctuations. The growth dynamics of a heterophase fluctuation at thermo-
fluctuational nucleation determines only the value of the kinetic factor (see
Eq. (2.112)) and does not influence the work of critical cluster formation. How-
ever, in the case of quantum tunneling the kinetic energy of a heterophase
fluctuation is directly part of the exponent in Eq. (2.112).

In treating quantum nucleation, an approach is commonly employed which
is based on the transition to an imaginary time τ, in order to describe the
quantum tunneling of nuclei through the barrier [430–434]. The probability
of nucleation in a quasiclassical approximation is defined with exponential
accuracy by the following expression:

P ∼ exp
(
− I∗

h̄

)
, (6.1)

where I∗ is the value of the effective action of I on the extremum trajectory,
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R(τ). An extremal has a period, ı = (h̄/kBT). The action of I is calculated
per period. A nucleus is a macroscopic formation at small-scale metastability,
and in the absence of dissipation of energy the Lagrangian of the system is a
function of the radius, R, and the speed, Ṙ, of the interphase boundary

I[R(τ)] =

1
2 ı∫

− 1
2 ı

[
1
2

M(R)Ṙ2 + W(R)
]

dτ, (6.2)

W(R) = 4πR2σ − 4
3

πR3ρ′′∆µ. (6.3)

Here, M(R) = 4πR3ρeff is the excess mass of a nucleus, ρe f f = (∆ρ)2/ρ′ is
the effective density of the excess mass, ∆ρ = ρ′ − ρ′′, ρ′, ρ′′ are the densities
of the metastable and the ambient phases, respectively, and ∆µ = µ′ − µ′′ is
the difference of chemical potentials. The first term in the integrand is the
kinetic energy and the second term is the potential energy of the nucleus. The
integration is performed with respect to the imaginary time from the entry
point to the exit point of the barrier.

There are two types of trajectories which lead to an extremum of the effec-
tive action, I. The first one is the classical trajectory that does not depend on
time and which passes through the maximum of the potential energy, W(R)
(Fig. 6.1). This trajectory implies zero values of the kinetic energy and leads to
the classical thermo-fluctuational regime of nucleation

I∗ =
h̄W∗
kBT

, W∗ =
4
3

πR2∗σ. (6.4)

R

W Thermal activation

Tunneling

R

Rc

W

Fig. 6.1 Two mechanisms of overcoming the potential barrier in nucle-
ation.
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The second trajectory evidently depends on time and describes quantum
tunneling through the potential barrier. In this case, the appearance of a nu-
cleus of critical dimension, R∗, in a metastable system is not sufficient for the
decomposition of the homogeneous state. The removal of supersaturation be-
gins only after the appearance of a nucleus of the dimension Rr(Rr > R∗),
which meets the exit point from the potential barrier. The value of R∗ de-
pends on the energy of the metastable phase where tunneling through the
barrier proceeds. If the tunneling process starts from a zero energetic level,
which is realized at T = 0, then

Rr = Rc =
3
2

R∗. (6.5)

The extremum trajectory at zero temperature is found from the condition

M(R)Ṙ2

2
− W(R) = 0, (6.6)

the solution of which is [431]

|τ(x)|
τc

=
π

2
− arctg

[(
x

1 − x

)1/2
]

+ [x(1 − x)]1/2,

x(τ) = 0 , |τ(x)| >
πτc

2
.

(6.7)

Here, x = (R/Rc) and τc = (ρeff/∆ρ)(ρ′R3
c /2σ)1/2. In the absence of dissipa-

tion, τ is the real time. The substitution of R(τ) from Eq. (6.7) into Eq. (6.2)
gives the value of the extremum action

I∗ =
5π

64
(8πσMR4

c)
1/2 =

5
√

2π2

16

(
ρeff

∆ρ

)
(ρ′σ)1/2R7/2

c . (6.8)

Since the time at T = 0 on the extremal is finite and the action (Eq. (6.2))
is local, it is same at T > 0 [8], so that P evidently does not depend on the
temperature right up to the transition to the activation regime. The tempera-
ture of this transition is determined by equality of the energy of activation at
classical and quantum nucleation

T∗ =
128h̄

135πkτc
=

128
√

2h̄
135πk

∆ρ

ρeff

(
σ

ρ′R3
c

)1/2

. (6.9)

By analogy with thermo-fluctuational nucleation we get

J = C0B exp
(
− I∗

h̄

)
, (6.10)
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where C0 is the number of virtual centers of nucleation in a unit volume of the
metastable phase, C0 � ρ′, B is the kinetic factor which is proportional to zero
temperature vibration frequency. At T = 0, we obtain [8]

BT=0 =

[
12π3/2

Γ (1/4)

]4/7
(4πσ)5/7R6/7

c

h̄3/7M2/7
. (6.11)

Here, Γ(x) is the Gamma function. At the order of magnitude, the kinetic fac-
tor at quantum tunneling coincides with the value of B at thermo-fluctuational
nucleation (for liquid helium B � 2.8 · 1012 s−1 [8]).

If T �= 0, a viable nucleus appears as a result of the optimal combination
of the thermal activation and tunneling. According to Lifshitz and Kagan [8],
nuclei appear in the systems described by Eq. (6.2) at 0 < T < T∗ only as a
result of the quantum mechanism (tunneling from zero level), and nucleation
is exclusively thermo activated at T > T∗. The frequency of nucleation is
again determined by Eq. (6.10), where the exponent for T < T∗ is calculated
by Eq. (6.8), and the kinetic coefficient has an additional factor

B(T<T∗) = B(T=0)

(
1 − T

T0

)−1

, T0 =
135
128

T∗. (6.12)

It is necessary to use the classical theory of nucleation in the range of temper-
atures, T > T∗.

Burmistrov and Dubovskii [430] examined the influence of viscous friction
on the expectance of the underbarrier tunneling of nuclei. The approach de-
veloped in Refs. [431–433] leads to the determination of the effective action.
This quantity is not local and an imaginary time was used to account for dis-
sipation. In the case of an incompressible quantum liquid, one obtains

I[R(τ)] = Irev + ∆Idiss, (6.13)

where

∆Idiss =
η

4π

1/2ı∫
−1/2ı


1/2ı∫

1/2ı

{
πT[γ(Rτ) − γ(Rτ′)]

sin πT

}2 dτ′

τ − τ′

 dτ, (6.14)

and Irev is determined by Eq. (6.2). We obtain the value of γ(R) through the
friction coefficient α(R) as

γ(R) =
∫ [

α(R′)
η

] 1
2

dR′. (6.15)

According to Eqs. (6.1) and (6.13), the internal friction decreases the possibility
of quantum nucleation and leads to an evident dependence of the exponent in
Eq. (6.1) on temperature.
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In the case of weak dissipation, we can consider the term ∆Idiss in Eq. (6.13)
a perturbation. The integral, Eq. (6.14), can be calculated in this case along
the trajectory, Eq. (6.7). In comparison with the dissipation-free kinetics, the
temperature of transition to the activation regime, T∗, decreases by ∆T∗, which
is proportional to ∆Idiss∗/I∗. The dissipation term in Eq. (6.13) is a result of the
interaction of the variable R(τ) with the excitations of the metastable phase.
If the free length of excitations is l(T) � Rc (Knudsen limit), then

∆Idiss∗ = 4πρeff(ρ′)−1 ηR4
c

l

[
1.49

π
+

13
768

(
πkBTτc

2h̄

)2
]

. (6.16)

At l(T) � Rc (the hydrodynamic limit), we have instead

∆Idiss∗ =
64π

9
ρeff(ρ′)−1ηR3

c

[
3.99

π
+ 0.035

(
πkBTτc

h̄

)2
]

. (6.17)

In the case of a strong dissipation the underbarrier tunneling is determined
entirely by the internal friction, and we can neglect the kinetic energy in Irev∗
(see Eq. (6.2)). As a result we have [430] for the extreme value of the effective
action

I∗ = ηγ2(Rc)	(t), (6.18)

where 	(t) is a universal function of the reduced temperature, t = 4kBTηγ2Rc

(27h̄W∗)−1. Consequently, dissipation leads to the emergence of a new limit-
ing temperature Tl, at which the free length, l(Tl), is equal to Rc. It influences
not only the exponent in Eq. (6.10), but also the kinetic factor and the shear
viscosity is now a constituent part of it. These features lead to a strong tem-
perature dependence of B(T).

The account of the compressibility of a metastable phase also leads to a
nonlocal property of the effective action. By restricting his consideration to
the main temperature-dependent term in developing I as a series in powers
of T and inverse powers of the speed of sound C, Korshunov [433] obtained a
correction to the effective action in dependence on the compressibility of the
liquid as

∆Icomp∗ = −490
(

3π

4

)6 (σρeff)2

C(ρ′′∆µ)3

(
kBT

h̄

)4

. (6.19)

The negative value, ∆Icomp∗, is caused by the fact that, when a nucleus ap-
pears, only a part of the metastable liquid has enough time to start moving
and the total kinetic energy is smaller than in the absence of compressibility.

Quantum nucleation is a result of the manifestation of quantum phenom-
ena at the macroscopic level. The theory of quantum nucleation was used in
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the research of the solidification of isotopes 3He and 4He [435], the kinetics of
stratification of liquid solutions of 4He–3He [436], the initiation of a B-phase
in a A-phase of superfluid 3He [437], the stability of supercooled liquid hy-
drogen [438], the processes of the faceting of quantum helium crystals [439],
the kinetics of appearance of molecular hydrogen in metastable metal hydro-
gen [440], the decomposition of the current states of Josephson contacts [441],
and the initiation of quantum vortices in superfluid 4He [442]. Recently, quan-
tum effects at nucleation have been intensively analyzed experimentally.

6.2
Limiting Supersaturations of 4He–3He-Solutions

Supersaturated superfluid solutions of 4He–3He are one of the few metastable
systems where we can expect the appearance of macroscopic quantum tun-
neling of nuclei in the liquid phase. Such solutions remain liquid up to zero
temperature, dissolution of 3He in 4He being limited here. Stratification be-
gins when the concentration of a light isotope reaches 0.064 mole fraction (see
Fig. 5.7). According to Lifshitz’s [435] estimates of the temperature of quan-
tum crossover for superfluid solutions of helium isotopes, we can expect here
T∗ � 14 mK.

In contrast to solutions of classical liquids, the presence of a liquid–vapor
boundary in the quantum system 4He–3He eliminates nonequilibrium with
respect to phase stratification. The phase enriched with 3He develops contin-
uously at insignificant supersaturations from a film of foreign atoms of 3He
existing at such a boundary [443]. The opposite effect takes place for a liquid–
solid boundary: due to van der Waals forces the vessel walls and particles are
covered with a film of 4He [444], these surfaces cannot act as centers of nucle-
ation any more. Thus, in the absence of a vapor phase, nucleation in supersat-
urated superfluid solutions 4He–3He is most likely to develop according to a
homogenous mechanism.

Significant supersaturations of solutions of 4He–3He were first distin-
guished in experiments in the determination of their physicochemical proper-
ties [445,446]. Brubaker and Moldover [447] examined limiting supercoolings
of superfluid solutions of helium isotopes and obtained values of δTn, which
are by orders of magnitude lower than predicted by the classical theory of
homogeneous nucleation. Both the temperature and the concentration range
of the examined state parameters were significantly extended in the following
papers [448–453].

The methods of continuous change of concentration [448–450], of pres-
sure release [449] and of simultaneous change of concentration and pres-
sure [451–453] were used in the study of the kinetics of spontaneous nucle-
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ation. Limiting supersaturations were registered according to the change of
the first sound velocity [448–450], of NMR-signal amplitudes [449], of a liquid
inductive capacity [448–453]. The experiments included the interval of tem-
peratures from 400 µK to 250 mK and the interval of pressures from 0.05 to
0.5 MPa.

Phenomena peculiar to superfluid solutions like thermo-osmosis and the
spouting effect [448] are used in the method of continuous change of con-
centration. The chamber of the setup consists of two cells connected with
each other by a capillary. One of them is a measuring cell (V � 6.17 cm3),
which has a capacitance-type transducer to measure dielectric permittivity
and a piezosensor to determine the first sound velocity. The other cell is a
controlling cell (V � 53.04 cm3). Its temperature can vary within rather wide
limits. The heating of the controlling cell leads to the flow of a light isotope
into the measuring cell. The composition of the mixture in the measuring cell
was determined simultaneously by acoustic and capacitive methods. The ve-
locity of concentration change was setup by the temperature of the controlling
cell.

The pressure release method is based on the fact that the phase equilibrium
curve (the left branch of the phase diagram in Fig. 5.7) shifts in the direction
of higher concentrations when pressure increases up to ∼ 1 MPa. Therefore,
the initial state of a homogeneous solution is close to the phase equilibrium
curve at increased pressure, but a solution will be in a metastable state after
pressure release. The measuring cell (V � 5.2 cm3) has a small-volume space
in the top part, which is covered by a NMR coil [449]. Since the amplitude,
h, of a NMR echo-signal is proportional to the number of nuclei of 3He, the
dependence h(τ) carries the information about the change of concentration
(supersaturation) of a solution. In Ref. [449], a solution has been beforehand
transferred by pressure decrease (ṗ � 1.5 · 10−4 MPa·s−1) into a metastable
phase, where its lifetime was equal to hours, and then nucleation was initiated
by heating with a rate (Ṫ � 15 − 30 µK·s−1). The results of Refs. [448–450] at
the pressure p = 0.05 MPa are shown in Fig. 6.2. When the temperature is
higher than 50 mK, the data obtained according to the methods of pressure
release and of continuous change of concentration agree well with each other.
At T < 50 mK, the method of pressure release gives higher supersaturations.

Before going over to the consideration of the kinetics of phase stratifica-
tion of 4He–3He solutions at ultralow temperatures, we compare the data of
Refs. [448–450] with the theory of homogeneous nucleation. Lifshitz [436]
generalized the theory to superfluid solutions of 4He–3He. At c < 0.6, the
metastable phase is a solution of normal Fermi liquid in a superfluid Bose
liquid. The motion in such a system is described by the two-speed hydrody-
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Fig. 6.2 Limiting supersaturations of the superfluid phase of solutions
of 4He–3He. Experiment: I is the method of continuous change of con-
centration [448]; I I is the method of pressure release [449]. Theory:
solid lines refer to calculations according to Eqs. (2.112), (6.21), (6.22),
and (6.24); dashed lines to solutions of Eqs. (2.112), (6.21), (6.22), and
(6.23) for J = 10−10 m−3·s−1, 100 (2), and 1010 (3). Tl is the phase
equilibrium line; Tsp is the spinodal curve.

namics [454]. The effective mass density of a nucleus is determined by

ρeff = ρ′n +
(ρ′′ − ρ′s)2

ρ′s
, (6.20)

where ρ′n and ρ′s are the normal density and the density of the superfluid com-
ponent, respectively, in a supersaturated solution, and ρ′′ is the density in a
nucleus. In the regime of thermo-activation nucleation, without taking into
account energy dissipation, we obtain [436] for the kinetic factor

B(T>T∗) = B(T=0)

[
2
3

(
πM

σ

)1/2 kBT
h̄

− 1

]−1

. (6.21)

Here, B(T=0) is given by Eq. (6.11).
The work of the formation of a critical nucleus in a solution is given by

W∗ =
16π

3
σ3

(∆µρ′′)2 , (6.22)

where ∆µ is the chemical potential difference of 3He in the metastable phase
and in a nucleus at the given temperature and pressure. ∆µρ′′ determines the
supersaturation of the parent phase and is not directly measured in the exper-
iment. Its value and also the composition of a critical nucleus are calculated
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from the conditions of equilibrium of the critical nucleus with the environ-
ment. At small supersaturations [455]

∆µ � (µ′ − µl)
(

1 − cl

cu

)
, (6.23)

where the indices l and u specify the quantity referring to the lower and the
upper phase, which are in equilibrium at a planar interface. This approxima-
tion is often used in literature

∆µ �
(

∂µ

∂c

)∣∣∣∣
c=c1

(c − cl). (6.24)

At T = 100 mK and ∆c = c − cl = 0.05, the discrepancies between the data of
Eqs. (6.23) and (6.24) reach 42%. The results of calculation of limiting super-
saturations of ∆cn from Eq. (2.112) using Eqs. (6.21)–(6.24), and C = ρ′, z0 = 1,
for three values of the nucleation frequency are shown in Fig. 6.2.

Considering the weak dependence of B(T>T∗) and ρ′ on supersaturation and
the temperature independence of σ at T < 300 mK, we get from Eqs. (2.112),
(6.22), and (6.24)

G∗ =
W∗
kBT

∼ (∆c2
nT)−1 = const. (6.25)

Experimental data [448–450] for T > 50 mK are qualitatively in agreement
with Eq. (6.25). This result proves the thermo-fluctuational mechanism of nu-
cleation in this temperature range.

In the regime of continuous increase of concentration the effective frequency
is determined by

J(cn) =
ċ
V

(
∂G
∂c

)
c=cn

. (6.26)

From the bar diagram of stratification event distribution at T = 90 mK,
ċ = 4 · 10−6 s−1 and ∆cn = 1.1 · 10−2 we obtain δc1/2 � 1.5 · 10−3 [450].
Then, according to Eqs. (6.25) and (6.26), we have (∂G/∂c)c=cn = 1.63 · 103,
and J = 1.1 · 103 m−3s−1. Figure 6.2 shows the significant difference of the
theoretical and the experimental results for the given nucleation frequency.
The refusal of the approximation (6.24) and the use of Eq. (6.23) in the cal-
culations increase the difference. Such a discrepancy may be connected both
with the approximations used in calculations according to the formulae of
the homogeneous nucleation theory and with the influence of heterogeneous
nucleation centers and external fields. The anomalous increase of limiting su-
persaturation at T → 0 according to Eq. (6.25) requires to take into account
the dependence σ(R) at rather small frequencies of nucleation [455].
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Satoh [451–453] used the method of simultaneous change of concentration
and pressure for the search of limiting supersaturations of solutions of 4He–
3He in the range of temperatures from 400 µK to 160 mK. The measuring cell
(V � 77 cm3) had two capacitance concentration sensors in the top and the
bottom part. Initially, 4He was condensed in the cell. There, it neutralized
the centers of nucleation by damping the interior surfaces of the cell. Then, a
predetermined quantity of 3He, which did not change during the experiment,
was filled into the cell. The conveying into the cell of HeII was performed
through a special filter which can only be passed by the superfluid component.
As a result of the increase of solubility of 3He with the rise of pressure and
the ratio 4He/3He the concentrated phase turned into the weak phase. After
preparing a compressed one-phase state, the process of dilatation began due
to the outflow of HeII, which was accompanied by the rise of concentration of
3He. The moment of stratification was registered as a leap in the indications
of concentration transducers.

10-1 100 101 102
0.0

0.2

0.4

T,mK

c,mol.%

Fig. 6.3 Limiting supersaturations of solutions of 4He–3He close to the
absolute zero of temperature [453].

The results of measurements are shown in Fig. 6.3. For temperatures lower
than 10 mK, the value of ∆cn does not depend on temperature. This effect
can indicate the appearance of quantum tunneling of nuclei. The increase
of ∆cn at T > 10 mK is connected with the pressure reduction. In order to
compare the theory of homogeneous nucleation and the experimental data
of Refs. [448–450] and [451–453], the latter should be corrected to a single
value of pressure and nucleation frequency or the data should be converted
to some degree of metastability “isomorphous” to a one-component system.
Burmistrov et al. [456] suggested to use in this respect the value of ∆µρ′′,
which directly defines the work of formation of a critical nucleus, Eq. (6.22), as
the reference supersaturation. Considering the practical independence of the
interfacial tension in the investigated state parameter region from tempera-
ture, the choice of ∆µρ′′ as the measure of metastability was equivalent to the
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admission of the radius of a critical nucleus. To convert the experimentally
registered values of ∆cn and pn, the following formula [456] was introduced:

(∆µρ′′)n �
{

ρ′′
[

vu − vl − (xu − xl)
∂v
∂x

] (
∂p
∂c

)
T

}
∆cn, (6.27)

where xl , xu and vl , vu are the mass concentrations of 3He and the specific
volume in the weak and the concentrated phase at phase equilibrium at a
planar interphase boundary.
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Fig. 6.4 The value of (∆µρ′′)∗ as a function of temperature.

The value of ∆µρ′′ at temperatures lower than T′∗ � 10 mK does not depend
within the experimental error on temperature and has a maximum at T′′∗ �
70 mK (Fig. 6.4). Further temperature increase is connected with a decreasing
degree of metastability of the solution, which is in agreement with the classical
theory of nucleation. The temperature independence of ∆µρ′′ at T < T′∗ is
a sound argument for the quantum tunneling of nuclei. In the range T <
T′∗(∆µρ′′)n,I � 0.024 MPa and from Eq. (6.22) for σ = 0.24 µN · m−1, we get
W∗/(kB) � 17 K. The radius of a critical nucleus under such conditions is
R∗ � 2.5 nm, the number of atoms of 3He contained in it equals n′′∗ � 103.

The effective action in a hydrodynamic approximation is determined by
Eq. (6.8), where the effective density of the additional mass is given by
Eq. (6.20). In the absence of dissipation of energy, the temperature of the
change of the nucleation mode is T∗ = h̄W∗/kB I∗ � 5 mK [453]. This tem-
perature is close to T′∗ and is more than an order of magnitude lower than the
value of T′′∗ to which it should be compared. Two reasons for such a great dis-
crepancy can be supposed. First, calculations of (∆µρ′′)n,I may be inaccurate
so that only the order of the value of T∗ can be determined reliably. Second,
the hydrodynamic approximation may be incorrect at ultralow temperatures,
where the length of the track of quasiparticles of 3He exceeds significantly the
radius of a critical nucleus. The temperature at which the value of (∆µρ′′) in
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the regime of thermo-fluctuational nucleation is equal to its value at the quan-
tum tunneling stage is denoted in Fig. 6.4 as T′′′∗ . Substitution of (∆µρ′′)n,I
into Eqs. (2.112), (6.22), (6.23), and (6.24) gives T′′′∗ � 200 mK, which is in good
agreement with the experimental value of T′′′∗ � 150 mK.

In the case of liquid solutions of 4He–3He, mass diffusion will be the key
mechanism of energy dissipation. The coefficient of diffusion of 3He atoms
rises with temperature decrease and below T′∗ dissipative processes in the ki-
netics of nucleation may be neglected [456, 457]. However, their contribution
to the kinetics of nucleation at T > T′∗ is significant. The authors of Ref. [453]
link the rise of (∆µρ′′)n on the interval T′∗, T′′∗ with the demonstration of dissi-
pation in quantum tunneling of nuclei.

6.3
Formation of Quantum Vortices in Superfluid Helium

Phase transitions of second-order (λ-transitions) take place in liquid 4He at a
pressure of the saturated vapor and a temperature, Tλ = 2.172 K. The low-
temperature phase (HeII), which evolves as a result of the phase transition, is
superfluid. Superfluid helium is a mixture of two components: a normal one,
which behaves as a common classical liquid, and a superfluid one with zero
viscosity. The hydrodynamic velocity, (�vn,�vs), and the density, (ρn, ρs) [454],
are determined by the respective properties of both components. The flow
of the superfluid component is always potential, i.e., it obeys the property
rot�vs = 0.

If in a volume of HeII we create a relative motion of the components (for ex-
ample, a rotation by moving some external object through the liquid which is
initially at rest), the superfluid component will flow without friction in contact
with the normal component, on the vessel walls or on the surface of a mov-
ing object. Such a state of motion is metastable since a state without relative
motion but with the same total momentum is more probable from a thermody-
namic point of view. The velocity corresponding to the boundary of essential
instability of the metastable state of motion is determined by (Landau num-
ber) [454]

|�vs −�vn| = min
[

ε(p)
p

]
= vsp, (6.28)

where ε(p) and p are the energy and the momentum of elementary excitations
in liquid helium, respectively. According to Eq. (6.28), the critical (spinodal)
velocity is approximately equal to 60 mm s−1. Experimental data [458, 459]
show the disruption of a superfluid motion in HeII at significantly lower val-
ues of the relative velocity.
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Similarly to the common types of first-order phase transitions, the metasta-
bility of a superfluid motion cannot be removed simultaneously in the whole
volume of a liquid because of its potential character. However, the mutual
friction between the normal and the superfluid component at the condition
rot�vs = 0 can appear on some special vortex filaments [460]. These vortex fil-
aments have a thickness of the order of the size of the atoms of the superfluid
liquid. Their quantum nature is manifested in the fact that the circulation
of the velocity of superfluid motion, κ̌, is quantized along this filament, i.e.,
κ̌ = nh̄/m, where n are integer numbers. Obviously, only the filaments with
the quantum number, n = 1 [454], are really stable in liquid HeII.

At a predetermined vortex length, the work of formation of a closed ring
is less than that of a filament. As a consequence, in the case of a flow of an
undefined configuration the appearance of vortex rings will be most probable.
Iordansky [461], and later Langer and Fisher [462], supposed that vortex rings
in superfluid helium are formed as a result of thermal fluctuations and play
a role which is similar to the role of Gibbs nuclei in the liquid–vapor phase
transition. The critical size of a vortex ring, R∗, is found from the condition of
equilibrium between the force of friction and the hydrodynamic forces which
affect the ring. In a quasiclassical approximation, the work of formation of a
circular vortex ring is determined by its energy, E(R), and momentum, �p(R),
in liquid at rest [460]

W = E(R)− �p(R)�vs, (6.29)

where

E(R) =
κ̌2

2
Rρs

(
η − 7

4

)
, η = ln

8R
a0

, (6.30)

p(R) = πκ̌R2ρs. (6.31)

Here, a0 is the radius of a vortex nucleus (a cortex). From Eq. (6.29) for the vor-
tex critical radius and for the work of its formation (accurate to terms which
are proportional to (a0/R)2) we have

R∗ =
κ̌

4πvs

(
η − 3

4

)
, (6.32)

W∗ � κ̌3

16πvs
ρs

(
η − 1

4

) (
η − 11

4

)
. (6.33)

The fluctuational increase of vortex rings is treated as a diffusion process in
the multidimensional space of their quantum numbers [460].

In order to describe such processes quantitatively, Iordansky took an un-
stable variable as the main parameter for the description which in this case
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was the radius of the ring, integrated it with respect to all stable variables
and then obtained a one-dimensional Fokker–Planck equation [61], in which
P(R, τ) is the distribution function of vortex rings with respect to their radii.
The increment of growth of an unstable mode is found due to the solution
of a linearized hydrodynamic problem. For further analysis the exact value
of the pre-exponential factor in a stationary solution of Eq. (2.112) does not
play a significant role. Therefore, following the general ideas of Kramers’ the-
ory [83], the equation for the frequency of vortex formation can be written
as

J = C0
ω0

2π
exp

(
− W∗

kBT

)
, (6.34)

where ω0 � 5 · 1012 s−1 is some characteristic frequency of processes on the
atom-size scale, C0, as before, is the normalization constant of the distribution
function of vortex rings. In a first approximation, we may write C0 � ρ′s.
From Eqs. (6.33) and (6.34), for the limiting velocity of a superfluid motion we
obtain

vs,n �
h̄3ρ′s

(
η − 1

4

) (
η − 11

4

)
16πm3kBT ln

(
ρ′sω0

2π J

) . (6.35)

In the vicinity of the λ-point, the temperature dependence of vs,n is mainly
determined by the temperature dependence of the density of the superfluid
component, ρ′s. It can be described by the power law [454]

ρ′s(T) � ρ′s0

(
1 − T

Tλ

)2/3

. (6.36)

Substitution of Eq. (6.36) into Eq. (6.35) yields

vs,n(T) � vs,n0

(
1 − T

Tλ

)2/3

, (6.37)

where

vs,n0 �
h̄3ρ′s0

(
η − 1

4

) (
η − 11

4

)
16πm3kBT ln

(
ρ′sω0

2π J

) (6.38)

is the value of the velocity of superfluid motion at T = 0.
The dependence of the kind given with Eq. (6.37) was obtained in experi-

ments on the flow of superfluid 4He through filter materials with pore diam-
eters of the order of 0.2 µm [458]. From the experimental data obtained, the
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Fig. 6.5 The temperature dependence of the limiting velocity of super-
fluid motion in 4He. Dots: experimental data [442]; dashed line: quali-
tative results of calculation according to Eqs. (6.34) and (6.29). In the
inset, the dependence of the work of vortex ring formation on its radius
is shown at velocities vs(1) < vs(2) < vs(3).

result vs,n0 � 3.8 m·s−1 is found. According to Eq. (6.38), the value of vs,n0 is
approximately four times larger. According to Refs. [458,462], this compliance
can be regarded as the confirmation of the thermo-fluctuational mechanism of
vortex formation in a superfluid liquid because of the complexity of the pore
configuration in filter materials. With decreasing temperature, the critical ra-
dius of a vortex ring decreases and Eq. (6.33) obtained by the expansion with
respect to the small parameter, a0/R, becomes invalid. The results of the nu-
merical computation of vs,n from Eqs. (6.29) and (6.34) supplemented by the
criterion (dW/dR)∗ = 0 are shown in Fig. 6.5. At T < 1 K, the function vs,n(T)
is close to the linear dependence vs,n = vs,n0(1 − T/T0), where T0 � 2.45 K
and vs,n0 � 10 m·s−1. The linear character of the dependence vs,n(T) at low
temperatures is confirmed by experiments on the flow of HeII through chan-
nels with an inner diameter less than one micron [459, 463].

Near absolute zero, where the sizes of the characteristic vortex rings are of
the order of nanometers, vortex formation is realized as a result of quantum
sub-barrier tunneling. If this motion proceeds without dissipation of energy,
the frequency of vortex formation does not depend on temperature and is
described by Eq. (6.10). The constancy of J at temperatures lower than T∗
implies the independence of the limiting value of the velocity of superfluid
motion of vs,n from temperature.
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Fig. 6.6 The frequency of quantum vortex formation in superfluid he-
lium at the passage of negative ions through it for different electric field
intensities [464]. 1: E = 8.85 kV·m−1; 2: 17.7; 3: 44.0.

The first experimental confirmations of quantum vortex tunneling near ab-
solute zero of temperature were received from experiments on the motion of
negative ions through liquid HeII [464] and on the flow of helium through
gaps of submicron sizes [442, 463]. In Ref. [464], negative ions in liquid he-
lium were accelerated to velocities of 50–65 m·s−1. The frequency of quantum
vortex formation was registered by a special inductive transducer. The exper-
iments were carried out in the interval of temperatures 50 ≤ T ≤ 500 mK
at pressures less than 1.2 MPa. As it follows from Fig. 6.6, the frequency of
vortex formation does not depend on temperature when it is less than 0.2 K.

In experiments on the outflow of helium through submicron gaps and
canals, the limiting velocity of superfluid motion is a measured parameter.
According to the data of Refs. [442,463] the value of vs,n at T < (150–200) mK
is temperature independent (Fig. 6.5). The temperature of the change of the
regime of vortex formation T∗ (see Eq. (6.9)) is given by

T∗ =
h̄ω0

2πkB
. (6.39)

If in Eq. (6.39) we use the experimental value of T∗ � 150 mK, then ω0 �
1.9 · 1010 s−1, which coincides by the order of magnitude with the frequency
of vortex rotation [465].

The temperature dependences of the limiting velocity and the frequency of
vortex formation in superfluid helium obtained in experiments with charged
particles and the flow of HeII through submicron canals are conform with
each other and with the theory of thermo-fluctuational formation of the rings.
We cannot see this agreement in the absolute values of vs,n. Near to T = 0,
experiments with negative ions give vs,n � 55 m·s−1. According to the data
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on the flow of HeII through the gaps, vs,n � 10 m·s−1. In the theory of thermo-
fluctuational vortex formation we can obtain both the results, since it includes
such directly immeasurable parameters as the vortex nucleus radius, a0, and
the frequency, ω0. Each of the described experiments is characterized by its
own frequency of vortex formation. This fact has not yet been taken into ac-
count as a tool of comparing theory and experiment. Vortex formation can
be initiated by external actions and by easily activated centers which are some
defects on the inner surface of a measuring camera, of canals and gaps, and ad-
mixtures of a light isotope of 3He [459, 466]. Thus, atoms of 3He “condensed”
in the center of a vortex ring decrease in this way the magnitude of the ac-
tivational barrier. Vortex formation can be initiated by cosmic radiation and
the so-called remnant vortices. Latter are caused by the absence of viscous
energy losses in the superfluid component, which leads to a long-term exis-
tence of vortex rings of undercritical size in liquid helium. It seems that to
create “pure” conditions for vortex formation is as difficult as to create them
for nucleation.

6.4
Quantum Nucleation Near the Boundary of Essential Instability

The classical theory of steady-state nucleation in a macroscopic approxima-
tion predicts an unlimited increase of the degree of metastability of a system
at T → 0. The account of the dependence of nucleus properties on supersat-
uration (its size) leads to the conclusion that the lines of constant value of nu-
cleation frequency tend, as the temperature decreases, to the spinodal, where
W∗ = 0 holds. Thus, the transition from the thermo-activational mechanism
of nucleation to the quantum mechanism of nucleation near absolute zero of
temperature takes place in a range of strong metastability. Here, the poten-
tial energy of heterophase fluctuations is determined by Eq. (5.109), and the
nucleus formed in passing the barrier does not possess any stable bulk phase
properties even in the center of the nucleus.

Lifshitz and Kagan [8] developed the theory of dissipationless quantum nu-
cleation near the boundary of instability. Considering a small change of den-
sity at the formation of heterophase fluctuations, a liquid is considered as an
elastic solid body with a modulus of rigidity equal to zero. In this case, the
kinetic energy of the fluctuation is determined by the field�ε(�r) and for the ef-
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fective action near the spinodal from Eqs. (6.2) and (5.109) (d = 3) we have [8]

I(θ) = ∆F0τ0

θ∫
0

{∫ [
1
2

(
∂�u
∂θ

)2

− 4χ2 +
8
3

χ3 − (�χ)2

]
d3x

}
dθ′

= ∆F0τ0

θ∫
0

ℵ{�u}dθ′. (6.40)

The dimensionless vector field

�u =

(
| f ′′′|ρ2

0
8κ|ρsp − ρ0|

)1/2

�ε, (6.41)

and the dimensionless time are introduced here

θ =
τ

τ0
, τ2

0 =
16mκ

| f ′′′|2(ρsp − ρ0)2ρ0
, (6.42)

and certain dimensionless quantities determined earlier, Eqs. (5.107) and
(5.108), are also used.

The extremum value of the effective action is

Υ∗ = ∆F0τ0Υ0 =
213/4m1/2κ2|ρsp − ρ0|1/2

| f ′′′|3/2ρ1/2 I0, (6.43)

where

Υ0 = min |Im
θ∫

0

ℵ{�u}dθ′| (6.44)

is a numerical constant equal to Υ0 � 102. The integral in Eq. (6.44) is taken
with respect to the imaginary time along the optimal trajectory from the entry
to the exit point of the barrier. The pre-exponential factor in Eq. (6.10) is by
the order of magnitude equal to [8]

C0B ∼ (R3
0τ0)−1 =

| f ′′′|5/2|ρsp − ρ0|5/2ρ1/2
0

213/2m1/2κ2 . (6.45)

In the case of quantum tunneling of nuclei, the exponent in Eq. (6.10) does
not depend on temperature, and the dependence of the effective action on the
degree of metastability, which is given by the value of ρsp − ρ0, is stronger than
its effect on the Gibbs number at thermo-fluctuational nucleation. From the
equality of exponents in the equations for thermo-activational and quantum
nucleation, we have

T∗ =
h̄
4k

| f ′′′||ρsp − ρ0|ρ1/2
0

m1/2κ1/2 . (6.46)
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Near the spinodal, the domain of applicability of the considered approach is
limited by the applicability of the quasiclassical approximation, I∗/h̄ � 1.
This criterion is similar to the inequality (5.132) for thermo-activated nucle-
ation.

The effect of the finiteness of the relaxation time on the rate of quantum
nucleation in the vicinity of a liquid–vapor spinodal has been considered by
Burmistrov and Dubovskii [467]. Small density oscillations are sound waves.
The character of the sound depends on the value of the product of the oscilla-
tion frequency with the relaxation time. The finiteness of the relaxation time
results in the frequency dispersion of the sound velocity and its absorption.
This effect is particularly important in quantum liquids as the relaxation time
is strongly temperature dependent.

In the approximation of one relaxation time, the relation between the wave
number, k, and the frequency, ω (dispersion equation), is written as

C2
=k2 = ω2 1 − iωτr

1 − iωτr(C∞/C=)2 . (6.47)

Here, τr = τr(T) is the relaxation time depending on the temperature T, C=
and C∞ are the low-frequency and the high-frequency limits of the sound ve-
locity, respectively. The low-frequency limit, ωτr � 1, corresponds to an ordi-
nary hydrodynamic sound, the high-frequency limit, ωτr � 1, to a collision-
free sound propagation.

Examining the process of quantum growth of a new-phase nucleus with
the help of an effective action on an imaginary time, Eq. (6.40), the authors
of Ref. [467] found the nucleation rate and evaluated the temperature of the
thermo-quantum crossover depending on the relaxation time, τr. Between the
extreme limits τr = 0 and τr = ∞ the following relationship is true:

I∞(T) =
C=

C∞
I0

(
C=

C∞
T
)

. (6.48)

At T = 0 and a zero value of the relaxation time (τr = 0), the action is evalu-
ated as

I0 ≈ 2560k2 ρ(ρ − ρsp)2

C3
=(ρ)

. (6.49)

The quantum nucleation rate increases monotonically with increasing relax-
ation time, τr, with a saturation in the limit, τr = ∞.

Depending on the ratio, C∞/C=, one can distinguish several regimes of
quantum nucleation. If C∞/C= ≥ 1, then, depending on the ratio between
the relaxation time and the proximity to the spinodal, the low-frequency or
the high-frequency regimes of nucleation can be observed, respectively. In the
case of a strong inequality, C∞/C= � 1, a crossover from the low-frequency
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regime proceeds through a transition regime, which corresponds to the vis-
cous overdamped nucleation regime. If the relaxation time, τr(T), increases
without limit at T → 0, the temperature dependence of the nucleation rate,
J = J(T), may have a nonmonotonic behavior with a minimum in the region
of temperature, T∗, of transition from classical to quantum nucleation. The
lines of limiting supersaturation of the metastable phase (J = const) in this case
have a maximum near T∗. The larger the ratio C∞/C=, the higher the relative
value of the effect. When τ−1

r (T → 0) → 0, then T∗ decreases in proportion
to the product C∞(ρ) · C=(ρ) becoming zero on the spinodal simultaneously
with the Gibbs number. Therefore, the nucleation process in the vicinity of the
spinodal has a thermo-activation character.

Nucleation in the vicinity of the spinodal proves to be qualitatively dif-
ferent in Bose and Fermi liquids, respectively. In the Bose liquid (4He), the
relaxation time, τr, rapidly increases with decreasing temperature. There-
fore, quantum nucleation corresponds to the high-frequency limit (ωτr � 1),
and the sub-barrier increase of the density fluctuation takes place in the
collision-free regime, when the length of the free path of excitations exceeds
the characteristic size of a nucleus. Owing to the small value of the ratio
(C∞ − C=)/C= ∼ ρn(T)/ρ � 1 at low temperatures, quantitative distinc-
tions between the low-frequency and the high-frequency nucleation regime,
and also temperature effects connected with the difference in the rates, C∞
and C=, are small. Therefore, a noticeable temperature change in the rate of
quantum nucleation in 4He is not to be expected.

In the normal Fermi liquid, the low-frequency and the high-frequency
modes of sound propagation are connected with different physical mecha-
nisms. Here, the sound velocities C= and C∞ are different even at T = 0. The
time of collisions between quasiparticles has a weaker temperature depen-
dence than in the Bose liquid. Therefore, in liquid 3He a noticeable minimum
in the temperature behavior of the nucleation rate in the region of transition
from the quantum to the thermo-fluctuational nucleation regime can be ex-
pected. This conclusion implies with regard to the lines J = const that the
value of δρn = ρn − ρsp passes through a minimum in going over from the
thermo fluctuation to the quantum nucleation regime with a subsequent,
almost temperature-independent behavior at sufficiently low temperatures.

The kinetics of quantum nucleation near the diffusion spinodal of super-
fluid solutions of 4He–3He is examined in Ref. [455]. The spinodal is approxi-
mated by

csp = c0

(
1 + βT2,33

)
. (6.50)

The parameters of this equation, c0 = 0.1646 and β = 4.217, are determined
at T < 0.3 K from experimental data on the chemical potential of 3He in a
solution. Equation (6.50) represents in a qualitatively correct way the configu-
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ration of the diffusion spinodal in the whole temperature interval from T = 0
to the tricritical point (Fig. 6.2). The influence coefficient, κ, is found from the
data on interfacial tension on the planar surface of discontinuity, according to
Eq. (3.119). Within the framework of the model of a regular solution we have

σ∞(T � 0) = 2(κe0)1/2ρ3/2
0

×
1∫

0

{
[c(1 − c)]1/2 +

kBT
e0

c ln c + (1 − c) ln(1 − c)
[c(1 − c)]1/2

}
dc,

(6.51)

where e0 is the energy of mixing. The integral of the first term in Eq. (6.51) is
taken analytically, of the second term, numerically. The result of the integra-
tion is

σ∞(T � 0) = 2(κe0)1/2ρ3/2
0

[
π

8
− 1.205

kBT
e0

]
. (6.52)

From Eq. (6.52) and the experimental data on σ∞ [57] we get κ = 2.5 · 10−14

Jm5 and e0 = 3.09 · 10−23 J.
The asymptotic behavior of the lines of limiting supersaturation near the

diffusion spinodal for the cases of thermo-fluctuational (Eq. (5.131)) and quan-
tum (Eqs. (6.10), (6.43), (6.45)) nucleation is shown in Fig. 6.7. Nowadays,
there is no theory which allows one a calculation of the effective action in that
region of state parameters where the macroscopic description of nuclei is no
longer applicable. Therefore, we estimate the temperature of change of the
nucleation regime as follows. At low supersaturations and states near to the
spinodal, the concentration dependence of T∗ is determined by Eqs. (6.9) and
(6.46). In the intermediate region of concentrations, we describe the behavior
by assuming some kind of crossover between these limiting behaviors. Deter-
mining the crossover function as

ϕ(c) = b(1 + d∆c), (6.53)

where b = −23.8, d = −32.2, we can write

T∗ = ϕ(c)∆c3/2(csp − c). (6.54)

The dependence T∗(c) reaches its maximum in the range of about 20 mK.
According to Eq. (6.54), for the case of homogeneous formation of a new
phase the transfer from the thermo activational to the quantum mechanism
takes place in a rather narrow interval of temperatures and concentrations (see
Fig. 6.7). This condition results in strict requirements concerning the methods
of carrying out experiments on the discovery of quantum tunneling of nuclei
in the system 4He–3He. We have to mention that estimations given above are
only valid by the order of magnitude.
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Fig. 6.7 Temperature of change of the nucleation mechanism in so-
lutions of 4He–3He. Tl∗: near the line of phase equilibrium (Eq. (6.9));
Tsp
∗ : near the spinodal (Eq. (6.46)); T∗: result of Eq. (6.54). 1, 2, 3: as-

ymptotic behavior of the lines of limiting supersaturation near the spin-
odal (Eq. (5.131)) for J = 10−10 m3s−1 (1), 100 (2), 1010 (3); dashed
line: the expected behavior of the line of limiting supersaturation; Tsp:
spinodal curve.

6.5
Quantum Cavitation in Helium

Helium-4 and helium-3 remain liquid as the temperature decreases to absolute
zero (if the static pressure does not exceed ∼ 2.5 MPa for 4He and 3.5 MPa for
3He). This behavior is due to the fact that at a certain temperature these liq-
uids become degenerate, and the energy of zero-point oscillations of the atoms
exceeds the energy of interaction. For liquid 4He, for which molecular-kinetic
phenomena are described by the Bose–Einstein statistics, the temperature of
quantum degeneration coincides with the temperature of the λ-transition, the
transition from the normal (HeI) into the superfluid (HeII) phase. The Fermi
liquid (3He) retains the normal state below the temperature of quantum de-
generation down to very low temperatures.

Homogeneous nucleation in degenerate liquid 4He and 3He takes place
at negative pressures and very low temperatures, when the occurrence of
quantum nucleation can be expected. The first evaluations of the tempera-
ture, T∗, and pressure, p∗, of the transition from thermal activation to nuclei
tunneling (quantum-crossover) in HeII were made by Akulichev [101]. Em-
ploying the data obtained by Akulichev [101], in the absence of initial cavita-
tion nuclei, we get T∗ � 0.31 K, the cavitation strength, ∆p∗, being equal to
1.46 MPa. Akulichev’s results were revised by Maris and Xiong [214,224,468],
who approximated the spinodal of liquid helium-4 and discovered that at
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T = 0, psp = −0.952 MPa. This value of psp(0) was later confirmed in
Refs. [241, 469] utilizing the data obtained by Caupin and Balibar [215] and
resulting in psp = −0.964 MPa. A value close to this one was also obtained in
the latest calculations of Maris and Edwards [228] giving psp = −0.962 MPa.
By evaluating the work of formation of a critical nucleus in the framework of
the van der Waals capillarity theory [7], Maris and Xiong [214] and Guilleu-
mas et al. [234] obtained the following values for the parameters of crossover
in HeII: T∗ = 200 mK and p∗ = −0.9 MPa. The results of Refs. [214, 234]
were based only on an analysis of the thermodynamic parameters of 4He. The
kinetic parameters and the processes in this case were not considered.
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Fig. 6.8 Probability of cavitation in superfluid helium-4 close to the
absolute zero of temperature depending on the voltage amplitude on
the piezoradiator at different temperatures [232]. 1: T = 65 mK; 2: 171;
3: 254; 4: 350; 5: 465; 6: 750.

The first attempt to realize the regime of quantum tunneling of vapor-phase
nuclei in experiments on cavitation in superfluid helium-4 was made by Lam-
bare et al. [232]. In studying acoustic cavitation, the authors [232] decreased
the temperature down to 65 mK. A measuring cell similar to that used in
Refs. [212, 213] was secured on the chamber of a helium mixing refrigera-
tor. For decreasing the thermal diffusion on the radiator, exciting radio-wave
pulses were used which were shorter by 30–70 µs than in the experiments dis-
cussed in Ref. [213]. As in the paper of Petterson et al. [213], a study was made
of the statistical laws of the cavitation process depending on the amplitude of
the voltage and the temperature applied to the radiator.

Figure 6.8 presents the probability of emergence of cavitation events, W1,
as a function of the voltage on a piezoradiator for several temperatures in
the range (65–750 mK). The voltage U∗1/2, at which the probability of cavi-
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tation W1 = 1/2, was defined as the cavitation threshold. The transfer from
the emergence of events of cavitation to the moment of its hundred-per-cent
realization takes place in the range of voltages that do not exceed 4% of the
threshold value. As it is evident from Fig. 6.8, at temperatures below 600 mK
the voltage U∗1/2 is temperature independent. This fact is illustrated more
clearly by Fig. 6.9, which presents temperature dependences of the voltage
U∗1/2 for three different values of the static pressure. All the curves demon-
strate the presence of a plateau below ∼ 600 mK. At higher temperatures, the
voltage U∗1/2 decreases with increasing temperature T < 600 mK, which is re-
garded by the authors of Ref. [232] as a transition from the thermo-activation
mechanism of nucleation to quantum tunneling of nuclei.
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Fig. 6.9 Amplitude of cavitation stress in HeII as a function of temper-
ature at different static pressures [215]. 1: p = 130 kPa, 2: 42.6; 3: 3.7.

At quantum cavitation, the nucleation rate is determined by Eq. (6.10). Us-
ing Eq. (6.10) in Eq. (3.124) and taking J0 = C0B, the extremum action, I∗1/2,
can be determined corresponding to the value of W1 = 1/2. We obtain

I∗1/2 = ln
(

J0Vτ̄

ln 2

)
. (6.55)

According to data of Maris [214], for 4He we have J0 = 2 · 1037 m−3s−1. Under
the assumption of a weak influence of nonlinear effects on the shape of an
acoustic wave, we have

V = λ3
(

3
2πA

)3/2

, τ̄ = T∼
(

1
2πA

)1/2

, (6.56)
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where λ and T∼ are the length and the period of an acoustic wave, respec-
tively, and

A =
(

I∗1/2

h̄

) (
d ln I
d ln p

)
. (6.57)

The derivative in Eq. (6.57) has been calculated by Maris [214]. Using the
obtained values of A in Eqs. (6.55)–(6.57), we get I∗1/2 = 32h̄ and Vτ̄ =
3.1 · 10−12 m3s. Then from Eq. (6.4) it follows that the limiting stretch cor-
responding to the transition from the thermo-fluctuation regime to quantum
tunneling is p∗ = −0.927 MPa. This value of −p∗ is only 0.035 MPa smaller
than the pressure on the spinodal of helium-4 at T = 0.

For stretched 4He, theoretical estimations [214,233] of the value of T∗ prove
to be approximately three times smaller than the temperature below which the
cavitation strength in an experiment [232] becomes independent of T (Fig. 6.9).
According to Refs. [215, 240], this contradiction is apparent and can be ex-
plained as follows: in a first approximation, an acoustic wave is adiabatic,
and therefore the temperature in the cavitation zone changes in the same way
as the pressure. At temperatures T < 0.7 K, the isoentropic process in su-
perfluid helium is characterized by a linear dependence of the sound velocity
on temperature [172]. The sound velocity measured at pn = −0.923 MPa (75
m·s−1) is approximately three times lower than that measured at p = 0 (238
m·s−1). Thus, the local temperature of the liquid in the piezoradiator focus at
the moment preceding the initiation of cavitation has to be three times lower
than the temperature of the liquid in the cell, i.e., to be approximately equal to
200 mK, predicted by theory [214, 234]. The data corrected in such a way are
presented in Fig. 6.10.

Burmistrov and Dubovskii [467] do not agree with such an interpretation
of experimental data performed by Lambare et al. [232], Caupin and Bal-
ibar [215]. In order to achieve that temperature variations in a sound wave
follow pressure variations, it is necessary to make nonlinear effects negligible,
and the average length of phonon–phonon scattering has to be much smaller
than the sound wavelength (lph � λ). Experiments [215,232] were conducted
at rates ω � 1 MHz. The characteristic time of sub-barrier motion in this
case is τ0 = 10−10 s. Thus, ωτ0 < 1, and nonlinear effects may really be
neglected. The length of phonon–phonon scattering, lph, in HeII at 0.7 K is
1.3 mm. It increases with decreasing temperature in proportion to T−7 and
reaches 15 mm at T = 0.5 K. At λ ∼ 0.1 mm, it means that the local tempera-
ture in a sound wave does not follow the pressure variations, and the temper-
ature in the piezoradiator focus in this case may not differ considerably from
the temperature of the liquid in a cell.

Experiments [215, 232] were conducted close to the spinodal, where the
sound velocity is small. In this case, the kinetic energy of a growing bub-
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Fig. 6.10 Comparison of experimental data [215, 232] on cavita-
tion in superfluid helium-4 close to the absolute zero of temperature
with quantum nucleation theories of Maris [214] (dashed line) and the
Barcelona group [233] (dotted line) after temperature correction in the
cavitation zone.

ble decreases considerably, which—according to data of Refs. [430, 433]—
leads to an increase in the temperature of the crossover transition, T∗. Thus,
T∗ = 0.6 K may quite be the genuine temperature of the quantum-crossover
[467]. Attempts to achieve the regime of quantum tunneling of nuclei of
the vapor phase in normal liquid helium-3 were made in Refs. [229–231].
According to Maris [214], the temperature of the crossover transition from
thermo-activation nucleation to quantum tunneling in normal liquid helium-
3 is 120 mK, and the pressure on the spinodal at T = 0 is equal to −0.31 MPa.
The data on limiting stretches of 3He obtained in Refs. [229–231] are close
to the spinodal ones (T < 100 mK) and do not reveal any temperature-
independent section on the curve of limiting stretches (see Figs. 3.31 and 3.32).
Caupin, Balibar and Maris [235] connect this behavior with the peculiar prop-
erties of a Fermi liquid in the region of negative pressures.

In the investigated temperature range (40–1000 mK), 3He is a normal vis-
cous Fermi liquid. In Ref. [214] in order to evaluate T∗, the authors ignored
the viscosity of helium-3. According to Eqs. (6.1) and (6.13), the internal fric-
tion decreases the probability of quantum nucleation. The dissipation contri-
bution connected with the internal friction is determined by the ratio between
the length of the free path of a quasiparticle, lF, and the characteristic nu-
cleus radius, Rc. In a Fermi liquid, lF ∼ T2 [470]. At T = 1 K, the value
of lF � 0.05 nm, i.e., lF � Rc � 0.1 nm. With decreasing temperature, the
value of lF increases and reaches 5 nm at T = 0.1 K. Here, lF � Rc. Thus,
in the range (1–0.1 K) nucleation proceeds in the hydrodynamic regime (see
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Eq. (6.17)), and the limiting temperature, Tl , in the vicinity of the spinodal of
3He is equal to � 0.18 K. This is a higher value of T∗ than that obtained by
Maris [214]. At T < Tl , the dissipation contribution to the effective action is
determined by the limit (specified by Eq. (6.16)) and the temperature of the
quantum crossover can be written as [467]

T∗ =
16
27

h̄σR2
c

∆Idiss∗
. (6.58)

The calculations performed in Ref. [467] have given a value of T∗ � 2 mK
for normal helium-3. This value is much lower than the temperatures at which
measurements of the cavitation strength of 3He were made [229–231]. Thus, as
distinct from superfluid 4He, in normal 3He dissipative processes connected
with the viscosity result in the main contribution to the effective action. In
this case, the temperature of the thermo-quantum crossover, T∗, proves to be
much lower than that given by the nondissipative model [471].

6.6
Some Other Problems of Phase Metastability

According to the arguments outlined in Ref. [23], a supercooled simple fluid
keeps its thermodynamic stability at temperatures as low as desired. If no
other kinds of instability appear in this metastable system and the kinetic
difficulties connected with the processes of nucleation and vitrification are
overcome, the liquid can be cooled to the temperature of its degeneration,
Td, whereupon solidification is no longer obligatory. In liquids composed of
molecules which have no spin, Bose condensates are formed at a temperature
lower than the temperature of degeneration, which is manifested in the super-
fluidity of a quantum liquid. For the ideal Bose gas, the temperature of Bose
condensation is

Tλ0 = 3.31
h̄2

kB

ρ′2/3

mg2/3 , (6.59)

where m is the atomic (molecular) mass, ρ′ is the number density, and g is
the statistical weight. In the case of 4He, the temperature is Tλ0 � 3.1 K,
whereas—according to experiment—the temperature is Tλ = 2.172 K. The dif-
ference between Tλ0 and Tλ is evidently connected first and foremost with the
inadequacy of the model of the ideal degenerate gas applied to liquid helium.

As it follows from Eq. (6.59), the smaller the molecular mass of a substance,
the higher the temperature of Bose condensation. Ginzburg and Sobyanin
[472] draw the attention to the fact that hydrogen, the molecules of which are
Bose particles with a mass less than the mass of helium atoms, has a rather
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high temperature of Bose condensation. From Eq. (6.59), for molecular hydro-
gen, Tλ0 � 6.6 K is found. This value is approximately half as high as the
temperature of fusion of hydrogen, Tm = 13.8 K. It is expected [438] that the
account of molecular interactions in hydrogen decreases the value of Tλ0 by
2–3 K.

After the publication of Ref. [472], several methods were proposed regard-
ing how the temperature of the λ-transfer in molecular hydrogen can be
obtained. In addition, first attempts of their experimental realization were
made [473, 474]. All methods offered are connected in one way or another
with the creation of phase metastability. For the attainment of Tλ, Ginzburg
and Sobyanin recommended to use the decrease of the temperature of fusion
of hydrogen at its extension into the range of negative pressures. However,
as mentioned in Ref. [101], the quasistatistical extension of liquid hydrogen
with the following cooling results in its disruption or in crystallization at the
temperature of degeneration. At the same time it is possible, according to
Ref. [101], to overcome the temperature barrier of 6 K in the dynamic regime
when the frequencies of nucleation are not lower than 1015 m−3s−1.

The fusion temperature of small samples depends on their size [117]. Bretz
and Thomson [473] examined crystallization and fusion of molecular hydro-
gen in mesopores of Vycor glass whose channel diameter was � 6 nm. The
minimum value of the temperature of crystallization was 9.5 K, which was
4.3 K lower than the fusion temperature of a massive sample. Another way to
achieve superfluidity in molecular hydrogen connected with supercooling of
small drops was studied by Maris et al. [474]. The measuring camera was a
glass cylinder with cupric lids. The temperature of the top lid was � 15 K, of
the bottom lid � 7 K. The camera was filled with gaseous helium. The temper-
ature gradient led to the appearance of a stationary distribution of the density
of helium throughout the height of the camera. Drops of liquid hydrogen from
50 µm to 1 mm in diameter, which floated freely at a certain height of the cam-
era, were injected into the camera. It was possible to vary the position and
consequently the temperature of the drops by pressure change. Maris et al.
observed drops with the help of a long-focus microscope. A drop descended
to a lower level after crystallization. In the experiment, Maris et al. deter-
mined the lifetime of the drop and calculated the mean lifetime, τ̄, and the
frequency of nucleation, J, for the ensemble of crystallized drops. The max-
imum value of the achieved supercooling of drops of liquid hydrogen was
∆Tn = Tm − Tn � 3.2 K.

The results of the experiments are shown in Fig. 6.11. The temperature de-
pendence of J calculated according to the theory of homogeneous nucleation
is also presented there. In application to crystallization of a supercooled liquid
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Fig. 6.11 Frequency of nucleation in supercooled liquid hydrogen
[474]. Line: calculation according to the theory of homogeneous nucle-
ation.

the kinetic factor in Eq. (2.112) is determined by the following expression [117]:

B =
kBT

h̄
exp

(
− Ea

kBT

)
, (6.60)

where Ea is the energy of activation of the process of molecule transfer from
the liquid to the crystal phase, which in Ref. [474] was set equal to the energy
of activation of self-diffusion in liquids. The work of formation of a crystal
nucleus is

W∗ =
16π

3
σ3

ls
(µl − µs)2ρ2

s
. (6.61)

Here, the index l refers to the liquid and s to the crystal. The chemical potential
difference of a liquid and a crystal taken at the temperature and the pressure
of the metastable phase is approximated by the following expression:

µl − µs � (Tm − T)lls

Tm
+

1
2

(Tm − T)2(cs − cl)
Tm

, (6.62)

where lls is the heat of fusion and c is the heat capacity. The interfacial tension,
being equal to σls = 0.874 mN · m−1, has been determined from the condition
of the best agreement between theory and experiment at high frequencies of
nucleation (see Fig. 6.11).

For hydrogen, the curve of the temperature dependence of the frequency of
nucleation is dome shaped (Fig. 6.12). If the interfacial tension is temperature
independent, then Jmax � 1022 m−3s−1, and Tmax � 7 K. With allowance for
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the dependence of σls on T in the framework of the Woodruff model [475], the
maximum shifts in direction of higher temperatures and Jmax � 1018 m−3s−1.
Drops of a size 1 µm in diameter at T = Tmax remain liquid on average dur-
ing ∼ 2 s. Even if drops of molecular hydrogen are supercooled during Tmax,
the question about their vitrification remains vague. Moreover, at rather low
temperatures, thermo-fluctuational nucleation is to give way to quantum tun-
neling. In Fig. 6.12, the lines A′ and B′ specify the temperature dependence
of the frequency of nucleation in the region of change of nucleation regimes
for the cases of σls = const and σls(T) [474], respectively. In this case the
temperature of the quantum crossover is equal to 2–3 K.

0 4 8 T,K

J,m-3 s-1

10-3

107
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B

Fig. 6.12 Temperature dependence of the frequency of nucleation in
supercooled liquid hydrogen at the thermo activated (A, B) and the
quantum (A′, B′) mechanism of formation of the crystal phase. Curves
A, A′ are obtained at the approximation σls =const.; B, B′ at the ap-
proximation σls = σls(T) [474].

Other systems, where we can expect the manifestation of quantum tun-
neling of nuclei, are supercooled liquid 3He, 4He, and solid metastable so-
lutions of 3He–4He. Crystallization of supercooled superfluid helium-4 was
investigated by the methods of hydrostatic compression [476, 477], and also
by the compression in acoustic [478] and electric [479, 480] fields. In all the
above-mentioned experiments, crystallization took place at supercompres-
sions ∆pn = pn − pm = (0.35− 10) kPa, where pm is the pressure on the fusion
line. The maximum depth of invasion into the range of supercooled states of
4He was achieved in experiments with focused acoustic fields [481–483]. As in
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the investigation of cavitation [211, 213], acoustic vibrations in liquid helium
( f = 1 MHz) were created and focused in a volume with a linear dimension
� 0.36 mm with the help of a hemispherical piezoprojector. The duration of
acoustic impulses was 3–6 µs. The amplitude of the focus pressure reached
± 2 MPa. In order to determine the pressure of crystallization of supercom-
pressed superfluid helium, a glass plate was used which was placed in such a
way that the acoustic vibrations were focused in the transition helium/glass
layer. In the experiment, the intensity of the reflected and the transmitted light
was measured from an Ar+ laser whose beam was directed to the acoustic fo-
cus at the helium/glass boundary. Employing transmitted light, the moment
of liquid crystallization was registered, and by measurements of the inten-
sity of the reflected light the index of environment refraction was determined.
The density of the liquid phase at the moment preceding crystallization was
calculated by the index of refraction with the help of the Clausius–Mossotti
equation. A static pressure equal to pm = 2.5324 MPa was created in the mea-
suring cell. The pressure of crystallization, pn, was calculated according to the
data on the density from the equation of state of 4He [481].

The experiments [481–483] were carried out in the range of temperatures
from 30 mK to 1.5 K. The nucleation of the crystal phase of helium has a sto-
chastic nature. The possibility of crystallization as a function of density was
similar to that presented in Fig. 6.8. The density of the liquid phase corre-
sponding to the probability of crystallization, W1 = 0.5, was recognized as
the limiting value of the density, ρn. The temperature dependence of the lim-
iting density, ρn, is given in Fig. 6.13. At T ≤ 300 mK, the value of ρn does
not depend on temperature. According to Refs. [481, 482], this result is due
to quantum tunneling of nuclei of the crystal phase of 4He. In the limit of
low temperatures, ρn(0) = (0.17552 ± 0.00010) g/cm3 holds. The pressure
pn = pm + (0.43 ± 0.02) MPa corresponds to this density. Balibar [240] esti-
mated the value of the activation barrier according to the experimental data
on the probability of crystallization of 4He and obtained the following value
G∗ = W∗/(kBT) � 10. For this value of the Gibbs number and for the frequen-
cies of nucleation realized in the experiments, the theory of homogeneous nu-
cleation gives the value of the supercompression ∆pn � 1.6 MPa. In this case
the radius of a critical nucleus is R∗ � 0.8 nm and the temperature of the
quantum crossover is T∗ � 0.8 K. If the supercompression ∆pn = 0.43 MPa
registered in the experiment would be in agreement with homogeneous nu-
cleation then R∗ � 10 nm and W∗/(kBT) � 104. Thus the formation of the
crystal phase of helium in the experiments [481–483] most likely took place
at heterogeneous centers where liquid helium and the glass plate are in con-
tact. However, this does not exclude the possibility of quantum nucleation at
T < 300 mK. The phenomenon of phase stratification takes place not only in
liquid but also in solid solutions of 3He–4He [172]. Stratification is observed
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Fig. 6.13 Temperature dependence of the nucleation threshold den-
sity, ρc(T) [481].

at temperatures lower than 0.4 K. The temperature of stratification depends
weakly on the value of the applied pressure.

The initial stage of the kinetics of phase decay of weak solid solutions of
4He in 3He and 3He and 4He was investigated in Refs. [484–486]. A sample of
a solid solution of 3He–4He was grown from a gas mixture in a disk-shaped
metal cell with an inner diameter of 9 mm and a height of 1.5 mm. After
the preparation, the sample was disconnected with the filling system by the
block of the supplying capillary. Supersaturation was created by supercooling
a crystal over the line of phase stratification to temperatures tn (200–300 mK).
During the process of phase stratification, the pressure in the cell was mea-
sured as a function of time [484]. The size of forming drops was registered
by nuclear magnetic resonance [486]. In Refs. [484, 485], the concentration
of 4He in 3He varied in the interval of 2.2–3.34%. The pressure in the cell
was 3.15–3.86 MPa. The dependence p = p(τ) was an exponential one, i.e.,
p(τ) ∼ exp(−τ/τ0). At high supercoolings, the value of τ0 did not depend
on the temperature and the concentration of the solution.

The concentration of nuclei of a new phase at the final stage of nucleation is
determined by the following expression [487]:

Nm � c7/4
0 β3/8 exp

[
−3

8
β3

(
ln

c0

cn

)−2
]

, (6.63)

where c0 is the initial concentration of the solution and cn is the equilibrium
value of concentration corresponding to the temperature Tn,

β =
8
3

π
a2σ

Tn
, (6.64)

σ is the interfacial tension and a is the interatomic distance.
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The characteristic time of nucleation is

τN =
(

4c0

Nm

)1/3 a2c
Dgβ

, (6.65)

where Dg is the diffusion coefficient. The characteristic time of duration of the
stage of diffusional growth of nuclei is

τD � a2N−2/3
m c−1/3

0
Dg

. (6.66)

The authors of Refs. [484, 485] estimated the interfacial tension from
Eqs. (6.63) and (6.65) according to the experimental data on c0, cn, N, τ. Ac-
cording to all investigated values of concentration, the average value of σ was
1.8 · 10−2 mN · m−1. The estimation of σ from Eqs. (6.63) and (6.66) yielded
1.3 · 10−2 mN · m−1. The authors of Ref. [484] considered the continuity of
the value of σ obtained by two methods of calculation as an evidence of the
homogeneous mechanism of nucleation. Similar work was performed for
weak solutions of 3He in 4He (∼ 1%) [486]. Using two methods for estimating
the interfacial tension, we obtained σ � 1.27 · 10−2 mN · m−1. When the con-
centrations of 3He were equal to 2% at the last stages of the phase transition,
the characteristic size of the evolved grains of a new phase was growing in
time according to the Lifshitz-Slezov law [368].

Superfluidity is typical for liquid 3He, too. At temperatures lower than
3 mK, atoms of 3He, which are fermions, form Cooper pairs (molecules) [488].
The strong anisotropy of Cooper molecules leads to the circumstance that su-
perfluid 3He has several phases, which combine in themselves the properties
of an ordered magnetic phase, a liquid crystal, and superfluid 4He. In the ab-
sence of a magnetic field there exists two stable superfluid phases, 3He-A and
3He-B (Fig. 6.14). At pressure pc � 2.12 MPa and temperature Tc � 2.55 mK,
they maintain equilibrium with each other and with the normal phase. If the
transition of the normal into the superfluid phase is a phase transition of sec-
ond order, the transition between the superfluid phases 3He-A and 3He-B at
temperatures lower than Tc is of first order.

Considerable supercoolings [489, 490] are characteristic of the superfluid
A-phase. According to Ref. [490], at a temperature of 0.15 Tc (0.39 mK), the
lifetime of the metastable A-phase is approximately 30 min, which is shorter
than that expected from the theory of thermo-fluctuational nucleation [491].
A small difference in the free energies of bulk phases and a relatively large
value of the interfacial energy lead to anomalously large values of radii of
critical nuclei in the supercooled A-phase. For T = 0.15Tc and p = 3.4 MPa,
the radius of a critical nucleus is R∗ � 0.55 µm, and the number of atoms
contained in it is 1010. A spontaneous center of crystallization in supercooled
liquid hydrogen contains only a few hundreds of molecules.
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Fig. 6.14 Phase diagram of 3He for temperatures lower than 3 mK.

Leggett [491] assumes that the reason for the “premature” disruption of
the metastable state of the superfluid A-phase is the initiating influence of
background radiation. When a particle of high energy passes through the
metastable A-phase, the normal phase of helium-3 appears on the thermal
spikes generated by δ-electrons (see Fig. 6.15). After the cooling of a thermal
spike, the B-phase appears in it, which eliminates phase metastability. There
are other points of view on the initiation of the decay of the supercooled state
of 3He-A [492, 493].
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Fig. 6.15 Process of formation of the B-phase in the supercooled A-
phase under the influence of cosmic radiation (muons).
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Fig. 6.16 Mean lifetime of the metastable A-phase as a temperature
function in a magnetic field with an induction of 28.2 mT [490]. 1: natu-
ral conditions; 2: thermal neutron radiation; 3: γ-radiation field.

The influence of γ-radiation and of neutrons on the stability of the
metastable A-phase was studied in Ref. [490]. At radiation of the supercooled
A-phase by γ-quanta from the source 60Co, the mean lifetime was diminished
by a factor of approximately 1650 in comparison with natural conditions
(Fig. 6.16). The increase of the γ-background intensity did not change the
nature of the temperature dependence, τ̄. At radiation by neutrons and by
γ-quanta, the lifetimes differed approximately by the factor of seven. The
results of measuring of τ̄ in the γ-radiation field were approximated by the
following formula [490]:

τ̄ = A exp

[
α

(
R∗
R0

)β
]

, (6.67)

where A = 2.11 · 10−4 s; α = 5.25; β = 1.5; R0 = 0.45 µm is the radius of a
critical nucleus at T = 0. According to the Leggett model [490], the exponent
in Eq. (6.67) should be equal to 3–5.

The addition of the magnetic field, H, significantly extends possible kinds of
metastable states in superfluid 3He [494,495]. By overheating the B-phase, the
metastable planar P-phase of 3He can be obtained [494]. It is supposed that
the overheated B-phase can keep equilibrium with the metastable P-phase.
According to Ref. [494], at T > T0 the transition between the metastable B-
and P-phases is a transition of second order, and at T < T0 it is a transfer of
first order. The point (T0, H0) is a tricritical point for these phases. According
to the experimental data of Ref. [496], T0 � 0.8 Tc and H0 � 2 kGs.
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For the same reasons as in HeII, quantum vortices appear in superfluid
3He. Two types of vortices have been observed experimentally in the B-phase.
They are different in structure and separated by a first-order phase transition
line (dashed line, Fig. 6.14) [496]. The theory predicts the existence of a large
number of vortices of other types. In particular, quantum vortices with nu-
merous circulation quanta can exist near the line of phase equilibrium in the
B-phase [495]. Such multiquantum vortices have a large core, which consists
of the metastable A-phase and is surrounded by the B-phase. This result is
contrary to the case of nucleation where the stable phase is surrounded by the
metastable phase.

The investigations of phase transitions in 3He are just beginning. Superfluid
3He is a unique model object not only for the studies of phase metastability
but also for solving the problems of cosmology. The propagation of sound
through superfluid helium is characterized by the same laws as the propaga-
tion of light in a gravitational field. The mathematics of cosmic strings is anal-
ogous to the mathematics of defects in liquid helium. According to several sci-
entists [497], the superfluid state of 3He-A precisely replicates all space-time
properties and the four-dimensional texture of the universe. The disruption
of the metastable phases 3He-A in 3He-B can thus explain the skewness of the
universe [493].
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7
Explosive Boiling-Up of Cryogenic Liquids

7.1
Superheating in Outflow Processes

The outflow of a compressed liquid with an initial temperature higher than
the temperature of normal boiling through short channels is characterized by
a high degree of metastability of the flow. At low superheatings, vapor bub-
bles forming on existing and easily activated boiling centers have no time to
provide a noticeable vapor content in a channel. The contribution of spon-
taneous evaporation centers at T < 0.9Tc is not significant. An increase of
temperature leads to the boiling-up of a liquid at the exit of the channel and
its closing [498].

Aiming at establishing the mechanism of evaporation in boiling-up flows
of cryogenic liquids, in Refs. [499–501] the flow-rate characteristics are inves-
tigated for cylindrical channels of length l = (0.48–4.05) mm and diameter
d = 0.32–0.5 mm during the outflow of nitrogen, oxygen, methane, and ar-
gon. The main data array has been obtained on a channel with l = 0.48 mm
and d = 0.40 mm (l/d = 1.2). The substance under investigation filled the
inner space of the bellows (V � 0.5 dm3) [502]. The pressure was created by
compressed helium. At specified values of temperature, T0, and pressure, p0,
in the chamber, the amount of liquid escaping through the channel into the
atmosphere was determined by the value of the compression by the bellows.
The outflow time was predetermined by an electronic relay and registered by
a frequency meter chronometer. The error in the determination of the specific
flow rate did not exceed 5%.

A study was performed regarding the dependence of the flow rate on the
initial pressure (by isotherms) or the temperature (by isobars). Measurements
were carried out in the temperature range from T0 = 0.6Tc to the saturation
temperature and pressures p0 = (0.3–1.5)pc. The character of the tempera-
ture (pressure) dependence of the specific volume, v, and mass, j, flow rates
depends on the channel size as well as on the initial values of temperature,
T0, and pressure, p0. For channels with l/d � 3 and pressures in the cham-
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ber p0 � 0.5p0, the temperature dependences of ν and j are close to straight
lines (Fig. 7.1). A linear dependence is also found for the square of the specific
flow rate in dependence on the pressure difference on the nozzle (Fig. 7.2).
The flow-rate characteristics (p0 � 0.5pc) have typical breaks indicative of
the change in the outflow regime. The temperature at which a bend of exper-
imental curves can be observed depends only slightly on pressure, increasing
with it. A transfer from short (l/d � 3) to long channels results in the degen-
eration of bends on the flow-rate characteristics [499].
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Fig. 7.1 Specific mass flow rate of liquid oxygen during its out-
flow through a channel with a length of l = 0.48 mm and a di-
ameter of d = 0.4 mm for different initial pressures in the chamber.
1: p0 = 2 MPa, 2: 3.0, 3: 3.8.

At T0 < 0.9Tc, the specific flow rates are calculated by

j = ρ′v = µ[2ρ′(p0 − p)]1/2, (7.1)

where µ = (0.68–0.69) is the flow-rate coefficient of a nonboiling liquid, are
close to those observed in experiment. This result is an indication of an in-
significant evaporation in the channel (Fig. 7.3). At the same time, a systematic
underestimation of the flow rates registered in experiment is found compared
with those values calculated by Eq. (7.1). The latter feature is connected with
the liquid evaporation from the free surface of a jet.

A numerical simulation of the process of outflow of nonboiling cryogenic
liquids through short channels is performed in Ref. [499]. It was assumed
that the vapor forming during evaporation from the jet surface has a velocity
equal to the velocity of sound at the exit of the channel and is equal to zero
when the temperature of the jet surface becomes equal to the temperature of
normal boiling of a liquid. The liquid was considered incompressible, there
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was no slipping between the liquid and the channel wall. The distributions of
pressure, temperature, and liquid velocity in the channel were found from the
system of Navier–Stokes, continuity and heat transfer equations

(�v∇)�v = − 1
ρ′ ∇p +

η

ρ′ ∆v, (7.2)

∆�v = 0, (7.3)

�v∇T = DT∆T. (7.4)

The temperature of the liquid in the channel is close to its value in the chamber,
and greater is the value of the excess with respect to atmospheric pressure in
the channel, the stronger the liquid is superheated. The results of calculating
the specific bulk flow rate of liquid argon by the hydraulic formula (7.1), when
the pressure in the channel is determined from Eqs. (7.2)–(7.4), are presented
in Fig. 7.3 by dashed-dotted lines.

0 1 2 3
0

5

10
 - 1
 - 2
 - 3

p, MPa

V 2·10-3, m 2·s-2

Fig. 7.2 Square of specific bulk flow rate of liquid methane as a func-
tion of the pressure difference on the channel for different isotherms.
1: T0 = 130 K; 2: 160; 3: 174. For the values of the channel parame-
ters, see Fig. 7.1.

If T0 > 0.9Tc, the liquid at the exit of the channel is transferred into the zone
of intensive fluctuation nucleation. Let us examine the dynamics of sponta-
neous boiling-up of a liquid passing through a short channel by introducing a
number of approximations that simplify the solution of the problem. We shall
assume that vapor bubbles formed by homogeneous nucleation are evenly
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distributed over the considered channel section and have a velocity equal to
the velocity of the liquid. The flow is one-dimensional, the current is station-
ary and isentropic. The internal friction of the liquid and the friction of the
flow against the channel walls are absent. The thermodynamic parameters of
the vapor in a bubble coincide with their equilibrium values at a given static
pressure. The process of outflow with nucleation is described in the approxi-
mations mentioned by the Euler equations of continuity, heat transfer and the
equation that determines the vapor content in the channel

ρv
dv
dz

= −dp
dz

, (7.5)

d
dz

j =
d
dz

(ρv) =
d
dz

[
ρ′v

1 + (ρ′/ρ′′ − 1)x

]
= 0, (7.6)

(h′′ − h′)dx
dz

+ (1 − x)c′p
dT
dz

+
[

x
(

dh′′

dp

)
s
− 1

ρ
+ (1 − x)

1
ρ′ (1 − α′pT)

]
dp
dz

= 0, (7.7)

dx
dz

=
d
dz

z∫
x0

m(z′, z)[1 − x(z′)] J(z′)
ρ′v(z′)dz′. (7.8)

Here, ρ is the density of the vapor–liquid mixture, x is the mass vapor content,
h is the enthalpy, αp is the coefficient of thermal expansion, m(z′, z) is the mass
of a bubble formed at the section z after having reached the section z′, and zs

is the section at which a liquid reaches the saturation state (J(zs) = 0).
The system of equations, Eqs. (7.5)–(7.8), allows one a numerical solution

exclusively [503]. Owing to a very strong dependence of J on ∆p = ps(T)− p,
there is a sufficiently narrow region in the flow in which the intensity of nu-
cleation of the vapor phase takes such values that the heat flow into growing
boiling centers stops any further increase of supersaturation. Let at the section
of the flow z, which is achieved at time τ, the maximum supersaturation be
∆p = ∆p∗. The rate of change of supersaturation ∆p in this case is equal to
zero, and for the nucleation rate one can write

J � J∗ exp
[
−1

2
Gp∆ p̈∗(τ − τ∗)2

]
, (7.9)

where Gp = (∂G/∂∆p)∗, ∆ p̈∗ = (d2∆p/dτ2)∗, J∗ is the nucleation rate at
p = p∗. The half width of the function (7.9) is

∆τ1/2 � 0.83
(

2
Gp∆ p̈∗

)1/2

. (7.10)
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Fig. 7.3 Specific volume flow rate of liquid argon as a function of tem-
perature at different initial pressures. 1: p0 = 2.18 MPa; 2: 2.84; 3:
3.60. Dashed lines show results of calculation by Eq. (7.1), dashed-
dotted lines, by Eqs. (7.1)–(7.4). For the channel parameters, see
Fig. 7.1.

Assuming that downstream of z∗ nucleation is absent, and upstream nucle-
ation is determined only by nuclei arising on the interval τ∗ − ∆τ1/2, Eq. (7.8)
with allowance for Eq. (7.9) may be integrated, and the system of differential
equations, Eqs. (7.5)–(7.8), is reduced to a system of algebraic equations for an
isolated flow section with intensive fluctuational nucleation. The vapor con-
tent at the section z∗ is determined by the value of J∗. The increase of x is
accompanied by a pressure increase in the channel, which results in a decreas-
ing nucleation rate. The competition of these factors leads to the realization of
the critical regime of outflow of a boiling-up liquid and bends on the flow-rate
characteristics (Figs. 7.1–7.3).

Due to the small size of the channels, the experimental determination of the
pressure and other parameters of a flow in the channels is extremely difficult.
The critical outflow regime of a boiling-up liquid, when there is practically a
homogeneous metastable liquid in the channel, makes it possible to evaluate
the minimum pressure in the channel from Eq. (7.1) by experimental data for
the flow rate. The results of such a calculation in reduced thermodynamic
coordinates are given in Fig. 7.4. In data processing, a correction was made for
the adiabatic cooling of the liquid. As it is evident from Fig. 7.4, the minimum
pressure in the channel lies in the range of state variables limited by the lines
of attainable superheating (J = 107 m−3s−1) and the spinodal, which points
to the spontaneous boiling-up of a liquid. Figure 7.4 also gives the results of
calculating the pressure in the channel in the absence of boiling-up (Eqs. (7.2)–
(7.4)) and during homogeneous nucleation (Eqs. (7.5)–(7.8)). The correlation
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Fig. 7.4 Reduced pressure in the channel during the outflow of argon
(1), nitrogen (2), oxygen (3), and methane (4). (5): results of solving
the system of Eqs. (7.2)–(7.4); (6): Eqs. (7.5)–(7.8). Light dots: p̃0 =
0.58; dark dots: p̃0 = 0.74. ps: saturation line; pn: line of attainable
superheating (J = 107 m−3s−1); psp: spinodal.

between the minimum pressure in short channels and the pressure along the
line of attainable superheating was previously observed during the outflow of
high-temperature liquids [498].

7.2
Vapor Explosion at the Interface of Two Different Liquids

The contact of two liquids, when the temperature of one of them exceeds the
saturation temperature of the other, may result in an explosive evaporation
(vapor explosion). The vapor explosion is a process of vapor generation char-
acterized by a smaller time scale than the time of acoustic relaxation and ac-
companied by the initiation of shock waves. The pressure difference at the
front of a shock wave in the liquid phase reaches thousands of atmospheres
or more [504]. Vapor explosions were registered when cryogenic liquids were
spread over a water surface [505, 506] and were widely discussed in special
literature in connection with the problem of safe water transportation of lique-
fied natural gas [507–509]. Similar safety problems are encountered in nuclear-
power engineering [510], and in metallurgy and paper industries [511, 512].

The probability and the power of vapor explosions increase with increasing
volumes of interacting liquids. And although the absence of the similarity
between a small-scale (interaction of a small amount of one liquid with a large
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mass of another) and a large-scale (interaction of large amounts of liquids)
vapor explosion has been established, all the experiments have revealed the
existence of temperature limits below and above which the phenomenon of
explosive evaporation is absent. Usually, models discussed in literature do
not predict such limitations on explosive evaporation [513].

The place of contact of two immiscible liquids possesses a lower population
of completed or easily activated boiling centers than a liquid/solid interface.
If contacting liquids wet each other well and are chemically inactive, a low-
boiling liquid can be superheated to the temperature of spontaneous boiling-
up. In the absence of the vapor phase at the place of contact of the liquids,
a thermal boundary layer is formed, the thickness, δ, of which increases with
the square root of time. Nucleation is possible when the value of δ is sufficient
for the formation of a critical nucleus.

The temperature in the boundary layer Ti may be evaluated by solving the
heat-transfer equation for two half-infinite volumes of a cold and hot liquid.
Neglecting the effects of liquid expansion, convection and considering the
thermophysical properties of the liquids as unchangeable, we have [514]

Ti = T2 − T2 − T1

1 − κ0
, (7.11)

where

κ0 =

[
(Λ′

2c′p2ρ′2)
(Λ′

1c′p1ρ′1)

]1/2

, (7.12)

and the indices 1 and 2 refer, respectively, to the cold and the hot liquid.
Let us examine phenomena proceeding at the interface of two immiscible

liquids at their free contact. The necessary conditions of realization of sponta-
neous nucleation in a boundary layer are reduced to the requirements

Tn ≤ Ti < Tsp, δ > 2R∗. (7.13)

The homogeneous nucleation rate has to be sufficient in order to guaranty that
at least one critical nucleus is formed in the boundary layer during its heating
to the temperature Ti. Homogeneous nucleation will also be determining in
the presence of completed boiling centers at the place of contact of the liquids
if the volume fraction of vapor forming on them is much smaller than the
volume of the thermal boundary layer [9–11]. For a drop of propane (d ≤
2–3 mm), the characteristic time of formation of a boundary layer, δ � 10 nm
thick with a temperature Tn, is τ∗ � 10−9 s. The diameter of a critical bubble
relatively weakly depends on superheating, and for the effective nucleation
rate in this case we have J = (τ∗Vδ)−1 = 1024 m−3s−1, where Vδ is the volume
of the superheated liquid layer.
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The conditions of realization of explosive evaporation accounting for the
interaction of small amounts of cryogenic and low-boiling liquids with heat-
transfer agents are investigated in Refs. [509, 515–517]. Experiments were
conducted on liquid hydrocarbons of the methane series (propane, isobu-
tane, n-pentane) and nitrogen [515, 516]. The main data array was obtained
on drops from 0.4 to 3 mm. The initial temperature of drops was equal to
the temperature of the normal boiling of a cold liquid (nitrogen, propane,
isobutane) or varied (experiments with n-pentane). Drops fell from a height
H � (20–150) mm or were brought into free contact (H ≤ 10 mm) with the
surface of a hot liquid (water, glycerin). The temperature of the latter varied
from room temperature to that close to the temperature of normal boiling. The
character of interaction of drops with the surface of a hot liquid depends on
their size, initial temperatures, and the height of the fall.

Statistical analysis was used for the results of observations. For drops with
0.3–1 mm in diameter, three characteristic types of interaction have been re-
vealed: evaporation in regimes of convective heat transfer, film and mixed
boiling (A); explosive boiling (B); film boiling of spheroids (C). At fixed val-
ues of T1 and T2, from 50 to 200 acts of interaction of drops with a hot liquid
were registered, and the number of outcomes of the enumerated types was
determined. Each of the interaction types was realized in certain temperature
limits (Fig. 7.5).

Explosively evaporating drops were observed in the temperature range
0.76T1c < T2 < 1.1T1c, where T1c is the temperature at the critical point of
the cold liquid. An explosion in this context means an abrupt evaporation of a
drop accompanied by a characteristic sound effect of the click type. Right after
the contact with the glycerin surface, a drop jumped up or was thrown off and
evaporated instantaneously. At the place of the explosion, there remained a
trace in the form of a rapidly scattering vapor cloud. In a number of cases, be-
fore the explosion drops were captured by a hot liquid (d ≤ 0.5 mm) or lived
(d ≥ 0.5 mm) for some time at the glycerin surface until their diameter became
less than ∼ (0.2–0.5) mm, whereupon they boiled up explosively. The rate of
realization of explosions of one type or another depended on the height of the
drop fall. Explosive evaporation could be initiated by the breaking of a drop,
when as a result of an impact upon the surface or intensive bubble boiling a
drop broke into several small parts, which then evaporated explosively.

The results of calculating the temperature of the boundary layer, Ti, for
propane drops are shown in Fig. 7.5 in the form of an additional axis at the
abscissa. The values of T∗

i , at which the probability of explosive boiling-up
of drops of a cold liquid reaches its maximum, are given in Table 7.1. These
data are compared with the results of experiments determining the tempera-
ture of attainable superheating of the investigated liquids (J = 107 m−3s−1).
The proximity of the values of T∗

i and Tn points to the determining role of
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Fig. 7.5 Probability of realization of an isolated regime of evaporation
of propane drops at the surface of glycerin. The initial temperature of
the drops is 230 K.

spontaneous nucleation in a vapor explosion, at least, regarding the behavior
of small drops. With respect to the liquids presented in Table 7.1 an increase
of the nucleation rate by five orders corresponds to an increase of the temper-
ature of superheating by approximately 1 K.

Tab. 7.1 Temperatures of the interface of liquids at the moment of explosive boiling-up of a
drop and the attainable superheating of the cold liquid.

Liquid C3H8 iC4H10 nC5H12 CHF2Cl

Ti (K) 330 [516] 357 [516] 418 [516] 333 [517]

Tn (K) 327 [148] 361.2 [148] 419.3 [256] 330 [126]

According to Eq. (7.11), with a decrease in the initial temperature of the drop
explosive boiling is realized at higher hot-liquid temperatures. In Fig. 7.6, the
hatching shows the region of explosive boiling-up for drops of n-pentane. The
initial temperature varied in these experiments from 273 to 308 K. The dashed
line shows the values of T∗

i corresponding to the temperature T2 = T+. Ibi-
dem, correlations can be observed between T1 and T2 when Ti is equal to the
temperature of the attainable superheating, Tn, and the spinodal, Tsp. Agree-
ment in the slopes of these lines supports the interpretation in terms of the
spontaneous mechanism of vapor generation and the legitimacy of the model
employed. To a large extent, the development of explosive evaporation will be
determined by the dynamics of growth of vapor bubbles. At the initial stages
of growth of microbubbles, the effect of inertial forces (Rayleigh phase) pre-
vails, at the final stages, the heat transfer (thermal phase) dominates. For re-
alization of explosive evaporation it is necessary that the inertial mechanism,
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at which the vapor pressure in a bubble is higher than the pressure in the sur-
rounding medium, should exist until the bubble reaches relatively large radii.
Owing to this mechanism, the breaking of a cold liquid takes place and the
initial shock wave is generated. When small drops, which form in the process
of breaking, contact a hot liquid, they evaporate explosively in the inertial
regime of growth of a vapor phase. Shock waves destroy the vapor film be-
tween the cold and the hot liquid, which, coming in direct thermal contact,
ensure explosive boiling-up.

An increase in the external pressure decreases the duration of the Rayleigh
phase, which results in the suppression of explosive boiling-up. Experimen-
tal corroboration of this conclusion is obtained in Refs. [517, 518], where at
pressures above 0.3 MPa the cessation of vapor explosions can be observed
in systems freon-22–petroleum oil and hydrocarbons of the methane series-
petroleum oil. No explosive processes were registered at a contact of nitrogen

500460420
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Fig. 7.6 Temperature of the thermal boundary layer at the contact of
n-pentane drops with glycerin depending on their initial temperatures.
Tn = 419.3 K (J = 107 m−3s−1); Tsp = 435 K; T∗

i = 418 K.

drops with water, the temperature of which varied from 290 to 373 K [516],
and spreads over the water surface (T2 � 293 K) of comparatively large
masses of nitrogen, methane, and ethane [509]. According to the model of
spontaneous nucleation, the temperature at the nitrogen/water interface is
Ti � (280–350) K, which considerably exceeds not only the temperature on the
spinodal, but also its critical temperature (T1c = 126.2 K). At the same time,
explosions in nitrogen–water and ethane–water systems took place if shock
waves of amplitude up to 5.8 MPa were artificially generated in them. A shock
wave caused the collapse of a vapor film with the formation of cold-liquid jets
hitting against the surface of a hot liquid and penetrating into its volume [519].
The mechanism of jet formation is connected both with the origination of the
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Rayleigh–Taylor instability in the process of bubble collapse and with the de-
velopment of the Landau instability at the stage of its growth [518, 519]. The-
oretical simulation of the destabilizing action of a pressure pulse on a vapor
film in the process of vapor explosion is given in Refs. [520, 521].

In a large-scale vapor explosion, spontaneous boiling-up of isolated drops
manifests itself only as an initiating event, as a result of which there form di-
vergent weak shock waves leading to explosions of neighboring drops. Break-
ing of cold-liquid drops to sizes ∼ 100 µm at the front of a shock wave and an
abrupt (103–104 times) increase in the contact area of the liquids result in the
formation of a detonation wave with a structure similar to that of the deto-
nation wave in chemically reacting media [522, 523]. Behind the front of such
a self-sustaining wave, a fine fragmentation of a cold liquid can be observed
connected with its fast superheating and subsequent expansion of the explo-
sion products into the surrounding space. The velocity of a blast wave is close
to the sound velocity in a mixture of reagents.

Another kind of vapor explosion connected with liquid superheating may
be realized under depressurization of high-pressure vessels that contain liq-
uids superheated to temperatures exceeding the temperature of their normal
boiling. An abrupt pressure drop results in the superheating of the liquid
phase, explosive boiling-up with generation of shock waves. This is most of-
ten observed in systems of storage of liquefied gases [524]. Cryogenic liquids
are usually stored and transported at pressures close to atmospheric in the
two-phase state. An equilibrium vapor content is maintained owing to the ac-
tion of a large number of completed boiling centers on the container walls. On
account of good wettability of solid materials with cryogenic liquids, many
of the boiling centers decrease their activity in time or stop their action al-
together. In this case, local heat inflows and pressure pulsations may lead
to local superheatings of a liquid, to its explosive boiling-up with the devel-
opment of considerable shock loads in cryogenic systems, which disturb the
normal functioning of cryogenic systems, and in a number of cases to their
destruction [525].
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List of Symbols

A – surface area of the nucleus, parameter of thermodynamic similarity
B – kinetic pre-factor
C – velocity of sound, proportionality factor in the distribution function

of nuclei
c – concentration, mole fraction, critical index
cp, cv – specific heat at constant pressure and constant volume
D – diffusion coefficient
DT – thermal diffusivity
E – total energy, general notation of thermodynamic potential
e0 – negative eigenvalue of stability operator
F – Helmholtz free energy
f – Helmholtz free energy density
G∗ – Gibbs’ number
Gi – Ginzburg number
h̄ – Planck constant; h̄ = h/2π

I – action
J – nucleation rate
j – mass flow rate
kB – Boltzmann constant
m – atomic (molecular) mass
N – number of molecules in a nucleus, total number of liquid

boiling-up events
n – number of liquid boiling-up acts

in a chosen interval of time (temperature, concentration)
P(xo, τ) – distribution function of nuclei in variables x0
P(xo) – stationary distribution function of nuclei in variables x0
Peq(xo) – equilibrium distribution function of nuclei in variables x0
p – pressure
p̃ – reduced pressure
�p – liquid stretch at isothermal conditions
q – wave number
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R – nucleus radius
�r – radius vector
S – entropy
s – specific entropy, index specifying the binodal
T – temperature
T̃ – reduced temperature
Ṫ – rate of change of temperature
Tn – temperature of spontaneous nucleation
Tsp – spinodal temperature
�T – superheating of the liquid at isobaric conditions
δT – supercooling at isochoric conditions or at constant concentration
t – reduced temperature
U – internal energy
u – specific internal energy
V – volume
v – specific volume, specific volume flow rate, velocity
W – work of nucleus formation
z – factor that corrects the normalization of the distribution

function of nuclei
βs, βT – adiabatic and isothermal compressibility
Γ – kinetic factor
ζ – random force
η, ηv – shear and bulk viscosity
κ – influence coefficient
Λ – thermal conductivity, quantum similarity parameter
λ – wave length, density of probability of formation of a critical

nucleus in a metastable phase
λo – increment of increase of an unstable variable at nucleation
µ – chemical potential, critical index
ξ – correlation length
ρ – number of molecules in a unit volume, mass density
σ – surface tension
τ – time
τ̄ – mean lifetime of a metastable phase
Φ – Gibbs potential
ϕ – order parameter
∗ – critical-nucleus index
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