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PREFACE

This book is the successor to High Collection Nonimaging Optics, published by
Academic Press in 1989, and Optics of Nonimaging Concentrators, published 10
years earlier, by W. T. Welford and R. Winston. Walter Welford was one of the most
distinguished optical scientists of his time. His work on aberration theory remains
the definitive contribution to the subject. From 1976 until his untimely death in
1990, he took on the elucidation of nonimaging optics with the same characteris-
tic vigor and enthusiasm he had applied to imaging optics. As a result, nonimag-
ing optics developed from a set of heuristics to a complete subject. We dedicate
this book to his memory.

It incorporates much of the pre-1990 material as well as significant advances
in the subject. These include elaborations of the flow-line method, designs for pre-
scribed irradiance, simultaneous multiple surface method, optimization, and sym-
metry breaking. A discussion of radiance connects theory with measurement in a
physical way.

We will measure our success by the extent to which our readers advance the
subject over the next 10 years.

RW
JCM
PB
NS
JB

xi

Photograph of W. T. Welford 
(courtesy of Jacqueline Welford)
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NONIMAGING OPTICAL
SYSTEMS AND 
THEIR USES

1

1.1 NONIMAGING COLLECTORS

Nonimaging concentrators and illuminators have several actual and some poten-
tial applications, but it is best to explain the general concept of a nonimaging con-
centrator by highlighting one of its applications; its use of solar energy. The
radiation power density received from the sun at the earth’s surface, often denoted
by S, peaks at approximately 1kWm-2, depending on many factors. If we attempt
to collect this power by absorbing it on a perfect blackbody, the equilibrium tem-
perature T of the blackbody will be given by1

(1.1)

where s is the Stefan Boltzmann constant, 5.67 ¥ 10-8 Wm-2 °K-4. In this example,
the equilibrium temperature would be 364°K, or just below the boiling point of
water.

For many practical applications of solar energy this is sufficient, and it is well
known that systems for domestic hot water heating based on this principle are
available commercially for installation in private dwellings. However, for larger-
scale purposes or for generating electric power, a source of heat at 364°K has a
low thermodynamic efficiency, since it is not practicable to get a very large tem-
perature difference in whatever working fluid is being used in the heat engine. 
If we wanted, say, ≥300°C—a useful temperature for the generation of motive
power—we should need to increase the power density S on the absorbing black-
body by a factor C of about 6 to 10 from Eq. (1.1).

This, briefly, is one use of a concentrator—to increase the power density of
solar radiation. When it is stated plainly like that, the problem sounds trivial. The
principles of the solution have been known since the days of Archimedes and his
burning glass:2 we simply have to focus the image of the sun with an image-forming

sT S4 =

1 Ignoring various factors such as convection and conduction losses and radiation at lower
effective emissivities.
2 For an amusing argument concerning the authenticity of the story of Archimedes, see
Stavroudis (1973).



system—a lens—and the result will be an increased power density. The problems
to be solved are technical and practical, but they also lead to some interesting pure
geometrical optics. The first question is that of the maximum concentration: How
large a value of C is theoretically possible? The answer to this question is simple
in all cases of interest. The next question—can the theoretical maximum concen-
tration be achieved in practice?—is not as easy to answer. We shall see that there
are limitations involving materials and manufacturing, as we should expect. But
there are also limitations involving the kinds of optical systems that can actually
be designed, as opposed to those that are theoretically possible. This is analogous
to the situation in classical lens design. The designers sometimes find that a
certain specification cannot be fulfilled because it would require an impractically
large number of refracting or reflecting surfaces. But sometimes they do not know
whether it is in principle possible to achieve aberration corrections of a certain
kind.

The natural approach of the classical optical physicist is to regard the problem
as one of designing an image-forming optical system of very large numerical aper-
ture—that is, small aperture ratio or f-number. One of the most interesting results
to have emerged in this field is a class of very efficient concentrators that would
have very large aberrations if they were used as image-forming systems. Never-
theless, as concentrators, they are substantially more efficient than image-forming
systems and can be designed to meet or approach the theoretical limit. We shall
call them nonimaging concentrating collectors, or nonimaging concentrators for
short. Nonimaging is sometimes substituted by the word anidolic (from the Greek,
meaning “without image”) in languages such as Spanish and French because it’s
more specific. These systems are unlike any previously used optical systems. They
have some of the properties of light pipes and some of the properties of image-
forming optical systems but with very large aberrations. The development of the
designs of these concentrators and the study of their properties have led to a range
of new ideas and theorems in geometrical optics. In order to facilitate the devel-
opment of these ideas, it is necessary to recapitulate some basic principles of geo-
metrical optics, which is done in Chapter 2. In Chapter 3, we look at what can be
done with conventional image-forming systems as concentrators, and we show how
they necessarily fall short of ideal performance. In Chapter 4, we describe one of
the basic nonimaging concentrators, the compound parabolic concentrator, and we
obtain its optical properties. Chapter 5 is devoted to several developments of the
basic compound parabolic concentrator: with plane absorber, mainly aimed at
decreasing the overall length; with nonplane absorber; and with generalized edge
ray wavefronts, which is the origin of the tailored designs. In Chapter 6, we
examine in detail the Flow Line approach to nonimaging concentrators both for
2D and 3D geometries, and we include the description of the Poisson brackets
design method. At the end of this chapter we introduce elliptic bundles in the
Lorentz geometry formulation. Chapter 7 deals with a basic illumination problem:
designing an optical system that produces a prescribed irradiance with a given
source. This problem is considered from the simplest case (2D geometry and point
source) with increasing complexity (3D geometry, extended sources, free-form sur-
faces). Chapter 8 is devoted specifically to one method of design called Simulta-
neous Multiple Surfaces (SMS) method, which is the newest and is more powerful
for high concentration/collimation applications. Nonimaging is not the opposite of
imaging. Chapter 9 shows imaging applications of nonimaging designs. Sometimes

2 Chapter 1 Nonimaging Optical Systems and Their Uses



the performance of some devices is theoretically limited by the use of rotational or
linear symmetric devices, Chapters 10 and 11 discuss the problem of improving
this performance by using free-form surfaces departing from symmetric designs
that are deformed in a controlled way. The limits to concentration or collimation
can be derived from Chapter 12, which is devoted to the physical optics aspects of
concentration and in particular to the concept of radiance in the physical optics.
Chapters 13 and 14 are devoted to the main applications of nonimaging optics:
illumination and concentration (in this case of solar energy). Finally, in Chapter
15 we examine briefly several manufacturing techniques. There are several appen-
dixes in which the derivations of the more complicated formulas are given.

1.2 DEFINITION OF THE CONCENTRATION
RATIO; THE THEORETICAL MAXIMUM

From the simple argument in Section 1.1 we see that the most important prop-
erty of a concentrator is the ratio of area of input beam divided by the area of
output beam; this is because the equilibrium temperature of the absorbing body
is proportional to the fourth root of this ratio. We denote this ratio by C and call
it the concentration ratio. Initially we model a concentrator as a box with a plane
entrance aperture of area A and a plane exit aperture of area A¢ that is just large
enough to allow all transmitted rays to emerge (see Figure 1.1). Then the concen-
tration ratio is

(1.2)

In the preceding definition, it was tacitly assumed that compression of the
input beam occurred in both the dimensions transverse to the beam direction, as
in ordinary lens systems. In solar energy technology there is a large class of
systems in which the beam is compressed in only one dimension. In such systems

C A A= ¢
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Figure 1.1 Schematic diagram of a concentrator. The input and output surfaces can face
in any direction; they are drawn in the figure so both can be seen. It is assumed that the
aperture A¢ is just large enough to permit all rays passed by the internal optics that have
entered within the specified collecting angle to emerge.



all the operative surfaces, reflecting and refracting, are cylindrical with parallel
generators (but not in general circular cylindrical). Thus, a typical shape would
be as in Figure 1.2, with the absorbing body (not shown) lying along the trough.
Such long trough collectors have the obvious advantage that they do not need to
be guided to follow the daily movement of the sun across the sky. The two types
of concentrator are sometimes called three- and two-dimensional, or 3D and 2D,
concentrators. The names 3D and 2D are also used in this book (from Chapter 6
to the end) to denote that the optical device has been designed in 3D geometry or
in 2D geometry (in the latter case, the real concentrator, which of course exists in
a 3D space, is obtained by rotational or translational symmetry from the 2D
design). In these cases we will use the name 2D design or 3D design to differen-
tiate from a 2D or a 3D concentrator. The 2D concentrators are also called linear
concentrators. The concentration ratio of a linear concentrator is usually given as
the ratio of the transverse input and output dimensions, measured perpendicular
to the straight-line generators of the trough.

The question immediately arises whether there is any upper limit to the value
of C, and we shall see that there is. The result, proved later, is very simple for the
2D case and for the 3D case with an axis of revolution symmetry (rotational con-
centrator). Suppose the input and output media both have a refractive index of
unity, and let the incoming radiation be from a circular source at infinity sub-
tending a semiangle qi. Then the theoretical maximum concentration in a rota-
tional concentrator is

(1.3)

Under this condition the rays emerge at all angles up to p /2 from the normal
to the exit face, as shown in Figure 1.3. For a linear concentrator the correspond-
ing value will be 1/sinqi.

The next question that arises is, can actual concentrators be designed with
the theoretically best performance? In asking this question we make certain ide-

C imax sin= 1 2 q
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Figure 1.2 A trough concentrator; the absorbing element is not shown.



alizing assumptions—for example, that all reflecting surfaces have 100% reflec-
tivity, that all refracting surfaces can be perfectly antireflection coated, that all
shapes can be made exactly right, and so forth. We shall then see that the 
following answers are obtained: (1) 2D concentrators can be designed with the 
theoretical maximum concentration; (2) 3D concentrators can also have the theo-
retical maximum concentration if they use variable refractive index material or a
pile of infinitely thin surface waveguides properly shaped; and (3) some rotational
symmetric concentrators can have the theoretical maximum concentration. In case
(3) it appears for other types of design that it is possible to approach indefinitely
close to the theoretical maximum concentration either by sufficiently increasing
the complexity of the design or by incorporating materials that are in principle
possible but in practice not available. For example, we might specify a material of
very high refractive index—say, 5—although this is not actually available without
large absorption in the visible part of the spectrum.

1.3 USES OF CONCENTRATORS

The application to solar energy utilization just mentioned has, of course, stimu-
lated the greatest developments in the design and fabrication of concentrators. But
this is by no means the only application. The particular kind of nonimaging con-
centrator that has given rise to the greatest developments was originally conceived
as a device for collecting as much light as possible from a luminous volume (the
gas or fluid of a Čerenkov counter) over a certain range of solid angle and sending
it onto the cathode of a photomultiplier. Since photomultipliers are limited in size
and the volume in question was of order 1m3, this is clearly a concentrator problem
(Hinterberger and Winston, 1966a,b).

Subsequently the concept was applied to infrared detection (Harper et al.,
1976), where it is well known that the noise in the system for a given type of detec-
tor increases with the surface area of the detector (other things being equal).

1.3 Uses of Concentrators 5

Figure 1.3 Incident and emergent ray paths for an ideal 3D concentrator with symmetry
about an axis of revolution. The exit aperture diameter is sin qi times the exit aperture diam-
eter; the rays emerge from all points in the exit aperture over a solid angle 2p.



Another type of application was to the optics of visual receptors. It has been
noted (Winston and Enoch, 1971) that the cone receptors in the human retina have
a shape corresponding approximately to that of a nonimaging concentrator
designed for approximately the collecting angle that the pupil of the eye would
subtend at the retina under dark-adapted conditions.

1.4 USES OF ILLUMINATORS

Nonimaging collectors are also used in illumination. The source (a filament, an
LED, etc.) is in general emitting in a wide angular spread at low intensity, and
the problem consists of designing an optical device that efficiently collimates this
radiation so it is emitted in a certain angular emitting region, which is smaller
than the angular emitting region of the source. The problem is conceptually similar
to the concentrating problem, substituting aperture areas for angular regions
sizes. We will see soon that both statements are equivalent.

There are several other possible applications of nonimaging concentrators, and
these will be discussed in Chapters 9, 13, and 14.

REFERENCES
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SOME BASIC IDEAS IN
GEOMETRICAL OPTICS

7

2.1 THE CONCEPTS OF GEOMETRICAL OPTICS

Geometrical optics is used as the basic tool in designing almost any optical system,
image forming or not. We use the intuitive ideas of a ray of light, roughly defined
as the path along which light energy travels, together with surfaces that reflect
or transmit the light. When light is reflected from a smooth surface, it obeys the
well-known law of reflection, which states that the incident and reflected rays
make equal angles with the normal to the surface and that both rays and the
normal lie in one plane. When light is transmitted, the ray direction is changed
according to the law of refraction: Snell’s law. This law states that the sine of the
angle between the normal and the incident ray bears a constant ratio to the sine
of the angle between the normal and the refracted ray; again, all three directions
are coplanar.

A major part of the design and analysis of concentrators involves ray tracing—
that is, following the paths of rays through a system of reflecting and refracting
surfaces. This is a well-known process in conventional lens design, but the require-
ments are somewhat different for concentrators, so it will be convenient to state
and develop the methods ab initio. This is because in conventional lens design the
reflecting or refracting surfaces involved are almost always portions of spheres,
and the centers of the spheres lie on one straight line (axisymmetric optical
system) so that special methods that take advantage of the simplicity of the forms
of the surfaces and the symmetry can be used. Nonimaging concentrators do not,
in general, have spherical surfaces. In fact, sometimes there is no explicitly ana-
lytical form for the surfaces, although usually there is an axis or a plane of sym-
metry. We shall find it most convenient, therefore, to develop ray-tracing schemes
based on vector formulations but with the details covered in computer programs
on an ad hoc basis for each different shape.

In geometrical optics we represent the power density across a surface by the
density of ray intersections with the surface and the total power by the number
of rays. This notion, reminiscent of the useful but outmoded “lines of force” in elec-
trostatics, works as follows. We take N rays spaced uniformly over the entrance
aperture of a concentrator at an angle of incidence q, as shown in Figure 2.1.



Suppose that after tracing the rays through the system only N¢ emerge through
the exit aperture, the dimensions of the latter being determined by the desired
concentration ratio. The remaining N - N¢ rays are lost by processes that will
become clear when we consider some examples. Then the power transmission for
the angle q is taken as N¢/N. This can be extended to cover a range of angle q as
required. Clearly, N must be taken large enough to ensure that a thorough explo-
ration of possible ray paths in the concentrator is made.

2.2 FORMULATION OF THE 
RAY-TRACING PROCEDURE

To formulate a ray-tracing procedure suitable for all cases, it is convenient to put
the laws of reflection and refraction into vector form. Figure 2.2 shows the geom-
etry with unit vectors r and r≤ along the incident and reflected rays and a unit
vector n along the normal pointing into the reflecting surface. Then it is easily
verified that the law of reflection is expressed by the vector equation

(2.1)

as in the diagram.
Thus, to ray-trace “through” a reflecting surface, first we have to find the point

of incidence, a problem of geometry involving the direction of the incoming ray and

r r n r n≤ = - ◊( )2

8 Chapter 2 Some Basic Ideas in Geometrical Optics

Figure 2.1 Determining the transmission of a concentrator by ray tracing.

Figure 2.2 Vector formulation of reflection. r, r≤, and n are all unit vectors.



the known shape of the surface. Then we have to find the normal at the point of
incidence—again a problem of geometry. Finally, we have to apply Eq. (2.1) to find
the direction of the reflected ray. The process is then repeated if another reflection
is to be taken into account. These stages are illustrated in Figure 2.3. Naturally,
in the numerical computation the unit vectors are represented by their compo-
nents—that is, the direction cosines of the ray or normal with respect to some
Cartesian coordinate system used to define the shape of the reflecting surface.

Ray tracing through a refracting surface is similar, but first we have to for-
mulate the law of refraction vectorially. Figure 2.4 shows the relevant unit vectors.
It is similar to Figure 2.2 except that r¢ is a unit vector along the refracted ray.
We denote by n, n¢ the refractive indexes of the media on either side of the refract-
ing boundary; the refractive index is a parameter of a transparent medium related

2.2 Formulation of the Ray-Tracing Procedure 9

Figure 2.3 The stages in ray tracing a reflection. (a) Find the point of incidence P. (b) Find
the normal at P. (c) Apply Eq. (2.1) to find the reflected ray r≤.



to the speed of light in the medium. Specifically, if c is the speed of light in a
vacuum, the speed in a transparent material medium is c/n, where n is the refrac-
tive index. For visible light, values of n range from unity to about 3 for usable
materials in the visible spectrum. The law of refraction is usually stated in the
form

(2.2)

where I and I¢ are the angles of incidence and refraction, as in the figure, and
where the coplanarity of the rays and the normal is understood. The vector 
formulation

(2.3)

contains everything, since the modulus of a vector product of two unit vectors is
the sine of the angle between them. This can be put in the form most useful for
ray tracing by multiplying through vectorially by n to give

(2.4)

which is the preferred form for ray tracing.1 The complete procedure then paral-
lels that for reflection explained by means of Figure 2.3. We find the point of inci-
dence, then the direction of the normal, and finally the direction of the refracted
ray. Details of the application to lens systems are given, for example, by Welford
(1974, 1986).

If a ray travels from a medium of refractive index n toward a boundary with
another of index n¢ < n, then it can be seen from Eq. (2.2) that it would be possi-
ble to have sin I¢ greater than unity. Under this condition it is found that the ray
is completely reflected at the boundary. This is called total internal reflection, and
we shall find it a useful effect in concentrator design.

n n n n¢ = ¢ ◊ - ◊( )r r r n r n n¢ ¢+

n n¢ ¥ = ¥r n r n¢

n I n I¢ ¢sin = sin
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Figure 2.4 Vector formulation of refraction.

1 The method of using Eq. (2.4) numerically is not so obvious as for Eq. (2.2), since the coeffi-
cient of n in Eq (2.4) is actually n¢ cos I¢ - n cos I. Thus, it might appear that we have to find r¢
before we can use the equation. The procedure is to find cos I¢ via Eq. (2.2) first, and then Eq. (2.4)
is needed to give the complete three-dimensional picture of the refracted ray.



2.3 ELEMENTARY PROPERTIES OF 
IMAGE-FORMING OPTICAL SYSTEMS

In principle, the use of ray tracing tells us all there is to know about the geomet-
rical optics of a given optical system, image forming or not. However, ray tracing
alone is of little use for inventing new systems having properties suitable for a
given purpose. We need to have ways of describing the properties of optical systems
in terms of general performance, such as, for example, the concentration ratio C
introduced in Chapter 1. In this section we shall introduce some of these concepts.

Consider first a thin converging lens such as one that would be used as a mag-
nifier or in eyeglasses for a farsighted person (see Figure 2.5). By “thin” we mean
that its thickness can be neglected for the purposes of our discussion. Elementary
experiments show us that if we have rays coming from a point at a great distance
to the left, so that they are substantially parallel as in the figure, the rays meet
approximately at a point F, the focus. The distance from the lens to F is called the
focal length, denoted by f. Elementary experiments also show that if the rays come
from an object of finite size at a great distance, the rays from each point on the
object converge to a separate focal point, and we get an image. This is, of course,
what happens when a burning glass forms an image of the sun or when the lens
in a camera forms an image on film. This is indicated in Figure 2.6, where the
object subtends the (small) angle 2q. It is then found that the size of the image is
2fq. This is easily seen by considering the rays through the center of the lens, since
these pass through undeviated.

Figure 2.6 contains one of the fundamental concepts we use in concentrator
theory, the concept of a beam of light of a certain diameter and angular extent.
The diameter is that of the lens—say, 2a—and the angular extent is given by 2q.
These two can be combined as a product, usually without the factor 4, giving qa,
a quantity known by various names including extent, étendue, acceptance, and
Lagrange invariant. It is, in fact, an invariant through the optical system, pro-
vided that there are no obstructions in the light beam and provided we ignore
certain losses due to properties of the materials, such as absorption and scatter-
ing. For example, at the plane of the image the étendue becomes the image height
qf multiplied by the convergence angle a/f of the image-forming rays, giving again
qa. In discussing 3D systems—for example, an ordinary lens such as we have sup-
posed Figure 2.6 to represent—it is convenient to deal with the square of this quan-
tity, a2q2. This is also sometimes called the étendue, but generally it is clear from
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Figure 2.5 A thin converging lens bringing parallel rays to a focus. Since the lens is tech-
nically “thin,” we do not have to specify the exact plane in the lens from which the focal
length f is measured.



the context and from dimensional considerations which form is intended. The 3D
form has an interpretation that is fundamental to the theme of this book. Suppose
we put an aperture of diameter 2fq at the focus of the lens, as in Figure 2.7. Then
this system will only accept rays within the angular range ±q and inside the diam-
eter 2a. Now suppose a flux of radiation B (in Wm-2sr-1) is incident on the lens
from the left.2 The system will actually accept a total flux Bp2q2a2W; thus, the
étendue or acceptance q2a2 is a measure of the power flow that can pass through
the system.

The same discussion shows how the concentration ratio C appears in the
context of classical optics. The accepted power Bp2q2a2W must flow out of 
the aperture to the right of the system, if our preceding assumptions about how
the lens forms an image are correct3 and if the aperture has the diameter 2fq.
Thus, our system is acting as a concentrator with concentration ratio C = (2a/2fq)2

= (a/fq)2 for the input semiangle q.
Let us relate these ideas to practical cases. For solar energy collection we have

a source at infinity that subtends a semiangle of approximately 0.005 rad (1/4°) so
that this is the given value of q, the collection angle. Clearly, for a given diameter
of lens we gain by reducing the focal length as much as possible.
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Figure 2.6 An object at infinity has an angular subtense 2q. A lens of focal length f forms
an image of size 2fq.

2 In full, B watts per square meter per steradian solid angle.
3 As we shall see, these assumptions are only valid for limitingly small apertures and objects.

Figure 2.7 An optical system of acceptance, throughput, or étendue a2q2.



2.4 ABERRATIONS IN IMAGE-FORMING 
OPTICAL SYSTEMS

According to the simplified picture presented in Section 2.3, there is no reason why
we could not make a lens system with an indefinitely large concentration ratio by
simply decreasing the focal length sufficiently. This is, of course, not so, partly
because of aberrations in the optical system and partly because of the fundamen-
tal limit on concentration stated in Section 1.2.

We can explain the concept of aberrations by looking again at our example of
the thin lens in Figure 2.5. We suggested that the parallel rays all converged after
passing through the lens to a single point F. In fact, this is only true in the lim-
iting case when the diameter of the lens is taken as indefinitely small. The theory
of optical systems under this condition is called paraxial optics or Gaussian optics,
and it is a very useful approximation for getting at the main large-scale proper-
ties of image-forming systems. If we take a simple lens with a diameter that is a
sizable fraction of the focal length—say, f/4—we find that the rays from a single
point object do not all converge to a single image point. We can show this by ray
tracing. We first set up a proposed lens design, as shown in Figure 2.8. The lens
has curvatures (reciprocals of radii) c1 and c2, center thickness d, and refractive
index n. If we neglect the central thickness for the moment, then it is shown in
specialized treatment (e.g., Welford, 1986) that the focal length f is given in parax-
ial approximation by

(2.5)

and we can use this to get the system to have roughly the required paraxial 
properties.

Now we can trace rays through the system as specified, using the method out-
lined in Section 2.2 (details of ray-tracing methods for ordinary lens systems are
given in, for example, Welford, 1974). These will be exact or finite rays, as opposed
to paraxial rays, which are implicit in the Gaussian optics approximation. The
results for the lens in Figure 2.8 would look like Figure 2.9. This shows rays traced
from an object point on the axis at infinity—that is, rays parallel to the axis.

In general, for a convex lens the rays from the outer part of the lens aperture
meet the axis closer to the lens than the paraxial rays. This effect is known as

1 1 1 2f n c c= -( ) -( )
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Figure 2.8 Specification of a single lens. The curvature c1 is positive as shown, and c2 is
negative.



spherical aberration. (The term is misleading, since the aberration can occur in
systems with nonspherical refracting surfaces, but there seems little point in
trying to change it at the present advanced state of the subject.)

Spherical aberration is perhaps the simplest of the different aberration types
to describe, but it is just one of many. Even if we were to choose the shapes of the
lens surfaces to eliminate the spherical aberration or were to eliminate it in some
other way, we would still find that the rays from object points away from the axis
did not form point images—in other words, there would be oblique or off-axis aber-
rations. Also, the refractive index of any material medium changes with the wave-
length of the light, and this produces chromatic aberrations of various kinds. We
do not at this stage need to go into the classification of aberrations very deeply,
but this preliminary sketch is necessary to show the relevance of aberrations to
the attainable concentration ratio.

2.5 THE EFFECT OF ABERRATIONS IN 
AN IMAGE-FORMING SYSTEM ON 
THE CONCENTRATION RATIO

Questions regarding the extent to which it is theoretically possible to eliminate
aberrations from an image-forming system have not yet been fully answered. In
this book we shall attempt to give answers adequate for our purposes, although
they may not be what the classical lens designers want. For the moment, let us
accept that it is possible to eliminate spherical aberration completely, but not the
off-axis aberrations, and let us suppose that this has been done for the simple col-
lector of Figure 2.7. The effect will be that some rays of the beam at the extreme
angle q will fall outside the defining aperture of diameter 2fq. We can see this more
clearly by representing an aberration by means of a spot diagram. This is a
diagram in the image plane with points plotted to represent the intersections of
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Figure 2.9 Rays near the focus of a lens showing spherical aberration.



the various rays in the incoming beam. Such a spot diagram for the extreme angle
q might appear as in Figure 2.10. The ray through the center of the lens (the prin-
cipal ray in lens theory) meets the rim of the collecting aperture by definition, and
thus a considerable amount of the flux does not get through. Conversely, it can be
seen (in this case at least) that some flux from beams at a larger angle than q will
be collected.

We display this information on a graph such as in Figure 2.11. This shows the
proportion of light collected at different angles up to the theoretical maximum,
qmax. An ideal collector would behave according to the full line—that is, it would
collect all light flux within qmax and none outside. At this point it may be objected
that all we need to do to achieve the first requirement is to enlarge the collecting
aperture slightly, and the second requirement does not matter. However, we recall
that our aim is to achieve maximum concentration because of the requirement for
high operating temperature so that the collector aperture must not be enlarged
beyond 2fq diameter.

Frequently in discussions of aberrations in books on geometrical optics, the
impression is given that aberrations are in some sense “small.” This is true in
optical systems designed and made to form reasonably good images, such as
camera lenses. But these systems do not operate with large enough convergence
angles (a/f in the notation for Figure 2.6) to approach the maximum theoretical
concentration ratio. If we were to try to use a conventional image-forming system
under such conditions, we should find that the aberrations would be very large
and that they would severely depress the concentration ratio. Roughly, we can say
that this is one limitation that has led to the development of the new, nonimag-
ing concentrators. Nevertheless, we cannot say that imaging-forming is incom-
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Figure 2.10 A spot diagram for rays from the beam at the maximum entry angle for an
image-forming concentrator. Some rays miss the edge of the exit aperture due to aberra-
tions, and the concentration is thus less than the theoretical maximum.



patible with attaining maximum concentration. We will show later examples in
which both properties are combined.

2.6 THE OPTICAL PATH LENGTH AND 
FERMAT’S PRINCIPLE

There is another way of looking at geometrical optics and the performance of
optical systems, which we also need to outline for the purposes of this book. We
noted in Section 2.2 that the speed of light in a medium of refractive index n is
c/n, where c is the speed in a vacuum. Thus, light travels a distance s in the
medium in time s/v = ns/c; that is, the time taken to travel a distance s in a medium
of refractive index n is proportional to ns. The quantity ns is called the optical path
length corresponding to the length s. Suppose we have a point source O emitting
light into an optical system, as in Figure 2.12. We can trace any number of rays
through the system, as outlined in Section 2.2, and then we can mark off along
these rays points that are all at the same optical path length from O—say, P1, P2.
. . . We do this by making the sum of the optical path lengths from O in each
medium the same—that is,
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Figure 2.11 A plot of collection efficiency against angle. The ordinate is the proportion of
flux entering the collector aperture at angle q that emerges from the exit aperture.

Figure 2.12 Rays and (in broken line) geometrical wave fronts.



(2.6)

in an obvious notation. These points can be joined to form a surface (we are sup-
posing rays out of the plane of the diagram to be included), which would be 
a surface of constant phase of the light waves if we were thinking in terms of 
the wave theory of light.4 We call it a geometrical wave front, or simply a wave
front, and we can construct wave fronts at all distances along the bundle of rays
from O.

We now introduce a principle that is not so intuitive as the laws of reflection
and refraction but that leads to results that are indispensable to the development
of the theme of this book. It is based on the concept of optical path length, and it
is a way of predicting the path of a ray through an optical medium. Suppose we
have any optical medium that can have lenses and mirrors and can even have
regions of continuously varying refractive index. We want to predict the path of a
light ray between two points in this medium—say, A and B in Figure 2.13. We can
propose an infinite number of possible paths, of which three are indicated. But
unless A and B happen to be object and image—and we assume they are not—
only one or perhaps a small finite number of paths will be physically possible—in
other words, paths that rays of light could take according to the laws of geomet-
rical optics. Fermat’s principle in the form most commonly used states that a phys-
ically possible ray path is one for which the optical path length along it from A to
B is an extremum as compared to neighboring paths. For “extremum” we can often
write “minimum,” as in Fermat’s original statement. It is possible to derive all of
geometrical optics—that is, the laws of refraction and reflection from Fermat’s
principle. It also leads to the result that the geometrical wave fronts are orthogo-
nal to the rays (the theorem of Malus and Dupin); that is, the rays are normal to
the wave fronts. This in turn tells us that if there is no aberration—if all rays meet
at one point—then the wave fronts must be portions of spheres. So if there is no
aberration, the optical path length from object point to image point is the same
along all rays. Thus, we arrive at an alternative way of expressing aberrations: in
terms of the departure of wave fronts from the ideal spherical shape. This concept
will be useful when we come to discuss the different senses in which an image-
forming system can form “perfect” images.

nsÂ = const.
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4 This construction does not give a surface of constant phase near a focus or near an edge of
an opaque obstacle, but this does not affect the present applications.

Figure 2.13 Fermat’s principle. It is assumed in the diagram that the medium has a con-
tinuously varying refractive index. The solid line path has a stationary optical path length
from A to B and is therefore a physically possible ray path.



2.7 THE GENERALIZED ÉTENDUE OR
LAGRANGE INVARIANT AND 
THE PHASE SPACE CONCEPT

We next have to introduce a concept that is essential to the development of the
principles of nonimaging concentrators. We recall that in Section 2.3 we noted that
there is a quantity a2q2 that is a measure of the power accepted by the system,
where a is the radius of the entrance aperture and q is the semiangle of the beams
accepted. We found that in paraxial approximation for an axisymmetric system
this is invariant through the optical system. Actually, we considered only the
regions near the entrance and exit apertures, but it is shown in specialized texts
on optics that the same quantity can be written down for any region inside a
complex optical system. There is one slight complication: If we are considering a
region of refractive index different from unity—say, the inside of a lens or prism—
the invariant is written n2a2q2. The reason for this can be seen from Figure 2.14,
which shows a beam at the extreme angle q entering a plane-parallel plate of glass
of refractive index n. Inside the glass the angle is q ¢ = q/n, by the law of refrac-
tion5 so that the invariant in this region is

(2.7)

We might try to use the étendue to obtain an upper limit for the concentra-
tion ratio of a system as follows. We suppose we have an axisymmetric optical
system of any number of components—that is, not necessarily the simple system
sketched in Figure 2.7. The system will have an entrance aperture of radius a,
which may be the rim of the front lens or, as in Figure 2.15, possibly some limit-
ing aperture inside the system. An incoming parallel beam may emerge parallel,
as indicated in the figure, or not, and this will not affect the result. But to sim-
plify the argument it is easier to imagine a parallel beam emerging from an aper-
ture of radius a¢. The concentration ratio is by definition (a/a¢)2, and if we use the
étendue invariant and assume that the initial and final media are both air or
vacuum—refractive index unity—the concentration ratio becomes (q ¢/q)2. Since

étendue = n a2 2 2q ¢
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5 The paraxial approximation is implied so that sin q ~ q.

Figure 2.14 Inside a medium of refractive index n the étendue becomes n2 a2q ¢2.



from obvious geometrical considerations q ¢ cannot exceed p /2, this suggests (p /2q)2

as a theoretical upper limit to the concentration.
Unfortunately, this argument is invalid because the étendue as we have

defined it is essentially a paraxial quantity. Thus, it is not necessarily an invari-
ant for angles as large as p/2. In fact, the effect of aberrations in the optical system
is to ensure that the paraxial étendue is not an invariant outside the paraxial
region so that we have not found the correct upper limit to the concentration.

There is, as it turns out, a suitable generalization of the étendue to rays at
finite angles to the axis, and we will now explain this. The concept has been known
for some time, but it has not been used to any extent in classical optical design,
so it is not described in many texts. It applies to optical systems of any or no sym-
metry and of any structure—refracting, reflecting, or with continuously varying
refractive index.

Let the system be bounded by homogeneous media of refractive indices n and
n¢ as in Figure 2.16, and suppose we have a ray traced exactly between the points
P and P¢ in the respective input and output media. We wish to consider the effect
of small displacements of P and of small changes in direction of the ray segment
through P on the emergent ray so that these changes define a beam of rays of a
certain cross section and angular extent. In order to do this we set up a Cartesian
coordinate system Oxyz in the input medium and another, O¢x¢y¢z¢, in the output
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Figure 2.15 The étendue for a multielement optical system with an internal aperture stop.

Figure 2.16 The generalized étendue.



6 It is necessary to note that the increments dL and dM are in direction cosines, not angles.
Thus, in Figure 2.17 the notation on the figure should be taken to mean not that dM is the angle
indicated, but merely that it is a measure of this angle.
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medium. The positions of the origins of these coordinate systems and the direc-
tions of their axes are quite arbitrary with respect to each other, to the directions
of the ray segments, and, of course, to the optical system. We specify the input ray
segment by the coordinates of P(x, y, z), and by the direction cosines of the ray 
(L, M, N). The output segment is similarly specified. We can now represent small
displacements of P by increments dx and dy to its x and y coordinates, and we can
represent small changes in the direction of the ray by increments dL and dM to
the direction cosines for the x and y axes. Thus, we have generated a beam of area
dxdy and angular extent defined by dLdM. This is indicated in Figure 2.17 for the
y section.6 Corresponding increments dx¢, dy¢, dL¢, and dM¢ will occur in the output
ray position and direction.

Then the invariant quantity turns out to be n2 dx dy dL dM—that is, we have

(2.8)

The proof of this theorem depends on other concepts in geometrical optics that
we do not need in this book. We have therefore given proof in Appendix A, where
references to other proofs of it can also be found.

The physical meaning of Eq. (2.8) is that it gives the changes in the rays of a
beam of a certain size and angular extent as it passes through the system. If there
are apertures in the input medium that produce this limited étendue, and if there
are no apertures elsewhere to cut off the beam, then the accepted light power
emerges in the output medium so that the étendue as defined is a correct measure
of the power transmitted along the beam. It may seem at first remarkable that
the choice of origin and direction of the coordinate systems is quite arbitrary.
However, it is not very difficult to show that the generalized étendue or Lagrange
invariant as calculated in one medium is independent of coordinate translations
and rotations. This, of course, must be so if it is to be a meaningful physical 
quantity.

The generalized étendue is sometimes written in terms of the optical direction
cosines p = nL, q = nM, when it takes the form

(2.9)dx dydpdq

n dx dy dL dM n dx dydL dM¢ ¢ ¢ ¢ ¢ =2 2

Figure 2.17 The generalized étendue in the y section.



An étendue value is associated to any 4-parameter bundle of rays. Each combina-
tion of the four parameters defines one single ray. In the example of Figure 2.16,
the four parameters are x, y, L, M (or x¢, y¢, L¢, M¢), but there are many other pos-
sible sets of 4 parameters describing the same bundle. For the cases in which the
rays are not described at a z = constant (or z¢ = constant planes), then the follow-
ing generalized expression can be used to calculate the differential of étendue of
the bundle dE:

(2.10)

The total étendue is obtained by integration of all the rays of the bundles. In what
follows we will assume that the bundle can be described at a z = constant plane.

In 2D geometry, when we only consider the rays contained in a plane, we can
also define an étendue for any 2-parameter bundle of rays. If the plane in which
all the rays are contained is a x = constant plane, then the differential of étendue
can be written as dE = n dy dM. As in the 3D case, the étendue is an invariant of
the bundle, and the same result is obtained no matter where it is calculated. For
instance, it can be calculated at z¢ = constant, and the result should be the same:
n¢ dy¢ dM¢ = n dy dM, or, in terms of the optical direction cosines, dy¢ dq¢ = dy dq.

We can now use the étendue invariant to calculate the theoretical maximum
concentration ratios of concentrators. Consider first a 2D design, as in Figure 2.18.
We have for any ray bundle that transverses the system

(2.11)

and integrating over y and M we obtain

(2.12)

so that the concentration ratio is

(2.13)

In this result a¢ is a dimension of the exit aperture large enough to permit 
any ray that reaches it to pass, and q ¢ is the largest angle of all the emergent 
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Figure 2.18 The theoretical maximum concentration ratio for a 2D optical system.



rays. Clearly q ¢ cannot exceed p /2, so the theoretical maximum concentration 
ratio is

(2.14)

Similarly, for the 3D case we can show that for an axisymmetric concentrator the
theoretical maximum is

(2.15)

where again q is the input semiangle.
The results in Eqs. (2.14) and (2.15) are maximum values, which may or may

not be attained. We find in practice that if the exit aperture has the diameter given
by Eq. (2.15), some of the rays within the incident collecting angle and aperture
do not pass it. We sometimes also find in a number of the systems to be described
that some of the incident rays are actually turned back by internal reflections and
never reach the exit aperture. In addition, there are losses due to absorption,
imperfect reflectivity, and so forth, but these do not represent fundamental limi-
tations. Thus, Eqs. (2.14) and (2.15) give theoretical upper bounds on performance
of concentrators.

Our results so far apply to linear concentrators [Eq. (2.14)] with rectangular
entrance and exit apertures and to rotational concentrators with circular entrance
and exit apertures [Eq. (2.15)]. We ought, for completeness, to discuss briefly what
happens if the entrance aperture is not circular but the concentrator itself still
has an axis of symmetry. The difficulty with this case is that it depends on the
details of the internal optics of the concentrator. It may happen that the internal
optical system forms an image of the entrance aperture on the exit aperture—in
which case it would be correct to make them similar in shape. For an entry aper-
ture of arbitrary shape but uniform entry angle ±qi all that can be said in general
is that for an ideal concentrator the area of the exit aperture must equal that of
the entry aperture multiplied by sin2qi. We will see in Chapter 6 that such con-
centrators can be designed.

2.8 THE SKEW INVARIANT

There is an invariant associated with the path of a skew ray through an axisym-
metric optical system. Let S be the shortest distance between the ray and the
axis—that is, the length of the common perpendicular—and let g be the angle
between the ray and the axis. Then the quantity

(2.16)

is an invariant through the whole system. If the medium has a continuously
varying refractive index, the invariant for a ray at any coordinate z1 along the axis
is obtained by treating the tangent of the ray at the z value as the ray and using
the refractive index value at the point where the ray cuts the transverse plane z1.
The skew-invariant formula will be proved in Appendix C.

If we use the dynamical analogy described in Appendix A, then h corresponds
to the angular momentum of a particle following the ray path, and the skew-
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invariant theorem corresponds to conservation of angular momentum. In terms of
the Hamilton’s equations, the skew invariant is just a first integral that derives
from the symmetry condition.

2.9 DIFFERENT VERSIONS OF THE
CONCENTRATION RATIO

We now have some different definitions of concentration ratio. It is desirable to
clarify them by using different names. First, in Section 2.7 we established upper
limits for the concentration ratio in 2D and 3D systems, given respectively by Eqs.
(2.14) and (2.15). These upper limits depend only on the input angle and the input
and output refractive indices. Clearly we can call either expression the theoreti-
cal maximum concentration ratio.

Second, an actual system will have entry and exit apertures of dimensions 2a
and 2a¢. These can be width or diameter for linear or rotational systems, respec-
tively. The exit aperture may or may not transmit all rays that reach it, but in any
case the ratios (a/a¢) or (a/a¢)2 define a geometrical concentration ratio.

Third, given an actual system, we can trace rays through it and determine the
proportion of incident rays within the collecting angle that emerge from the exit
aperture. This process will yield an optical concentration ratio.

Finally, we could make allowances for attenuation in the concentrator by
reflection losses, scattering, manufacturing errors, and absorption in calculating
the optical concentration ratio. We could call the result the optical concentration
ratio with allowance for losses. The optical concentration ratio will always be less
than or equal to the theoretical maximum concentration ratio. The geometrical
concentration ratio can, of course, have any value.
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SOME DESIGNS OF
IMAGE-FORMING
CONCENTRATORS
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3.1 INTRODUCTION

In this chapter we examine image-forming concentrators of conventional form—
paraboloidal mirrors, lenses of short focal length, and so forth—and estimate their
performance. Then we shall show how the departure from ideal performance sug-
gests a principle for the design of nonimaging concentrators—the “edge-ray prin-
ciple,” as we shall call it.

3.2 SOME GENERAL PROPERTIES OF IDEAL
IMAGE-FORMING CONCENTRATORS

In order to fix our ideas we use the solar energy application to describe the mode
of action of our systems. The simplest hypothetical image-forming concentrator
would then function as in Figure 3.1. The rays are coded to indicate that rays from
one direction from the sun are brought to a focus at one point in the exit aper-
ture—that is, the concentrator images the sun (or other source) at the exit aper-
ture. If the exit medium is air, then the exit angle q ¢ must be p /2 for maximum
concentration. Such a concentrator may in practice be constructed with glass or
some other medium of refractive index greater than unity forming the exit surface,
as in Figure 3.2. Also, the angle q ¢ in the glass would have to be such that sinq ¢
= 1/n so that the emergent rays just fill the required p /2 angle. For typical mate-
rials the angle q ¢ would be about 40°.

Figure 3.2 brings out an important point about the objects of such a concen-
trator. We have labeled the central or principal ray of the two extreme angle beams
a and b, respectively, and at the exit end these rays have been drawn normal to
the exit face. This would be essential if the concentrator were to be used with air
as the final medium, since, if rays a and b were not normal to the exit face, some
of the extreme angle rays would be totally internally reflected (see Section 2.2),
and thus the concentration ratio would be reduced. In fact, the condition that the
exit principal rays should be normal to what, in ordinary lens design, is termed



the image plane is not usually fulfilled. Such an optical system, called telecentric,
needs to be specially designed, and the requirement imposes constraints that
would certainly worsen the attainable performance of a concentrator. We shall
therefore assume that when a concentrator ends in glass of index n, the absorber
or other means of utilizing the light energy is placed in optical contact with the
glass in such a way as to avoid potential losses through total internal reflection.

An alternative configuration for an image-forming concentrator would be as
in Figure 3.3. The concentrator collects rays over qmax as before, but the internal
optics form an image of the entrance aperture at the exit aperture, as indicated
by the arrow coding of the rays. This would be in optics terminology a telescopic
or afocal system. Naturally, the same considerations about using glass or a similar
material as the final medium holds as for the system of Figures 3.1 and 3.2, and
there is no difference between the systems as far as external behavior is concerned.

If the concentrator terminates in a medium of refractive index n, we can gain
in maximum concentration ratio by a factor n or n2, depending on whether it is a
2D or 3D system, as can be seen from Eqs. (2.13) and (2.14). This corresponds to
having an extreme angle q ¢ = p /2 in this medium. We then have to reinstate the
requirement that the principal rays be normal to the exit aperture, and we also
have to ensure that the absorber can utilize rays of such extreme angles.

In practice there are problems in using extreme collection angles approaching
q ¢ = p /2 whether in air or a higher-index medium. There has to be very good match-
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Figure 3.1 An image-forming concentrator. An image of the source at infinity is formed at
the exit aperture of the concentrator.

Figure 3.2 In an image-forming concentrator of maximum theoretical concentration ratio
the final medium in the concentrator would have to have a refractive index n greater than
unity. The angle q ¢ in this medium would be arcsin (1/n), giving an angle p /2 in the air
outside.



ing at the interface between glass and absorber to avoid large reflection losses of
grazing-incidence rays, and irregularities of the interface can cause losses through
shadowing. Therefore, we may well be content with values of q ¢ of, say, 60°. This
represents only a small decrease from the theoretical maximum concentration, as
can be seen from Eqs. (2.14) and (2.15).

Thus, in speaking of ideal concentrators we can also regard as ideal a system
that brings all incident rays within qmax out within q ¢max and inside an exit aper-
ture a¢ given by Eq. (2.12)—that is, a¢ = nasinqmax/n¢sinq ¢max. Such a concentrator
will be ideal, but it will not have the theoretical maximum concentration.

The concentrators sketched in Figures 3.1 and 3.2 clearly must contain some-
thing like a photographic objective with very large aperture (small f-number), or
perhaps a high-power microscope objective used in reverse. The speed of a photo-
graphic objective is indicated by its f-number or aperture ratio. Thus, an f/4 objec-
tive has a focal length four times the diameter of its entrance aperture. This
description is not suitable for imaging systems in which the rays form large angles
approaching p/2 with the optical axis for a variety of reasons. It is found that in
discussing the resolving power of such systems the most useful measure of per-
formance is the numerical aperture or NA, a concept introduced by Ernst Abbe in
connection with the resolving power of microscopes. Figure 3.4 shows an optical
system with entrance aperture of diameter 2a. It forms an image of the axial object

3.2 Some General Properties of Ideal Image-Forming Concentrators 27

Figure 3.3 An alternative configuration of an image-forming concentrator. The rays col-
lected from an angle ±q form an image of the entrance aperture at the exit aperture.

Figure 3.4 The definition of the numerical aperture of an image forming system. The NA
is n¢ sin a¢.



point at infinity and the semiangle of the cone of extreme rays is a ¢max. Then the
numerical aperture is defined by

(3.1)

where n¢ is the refractive index of the medium in the image space. We assume that
all the rays from the axial object point focus sharply at the image point—that is,
there is (to use the terminology of Section 2.4) no spherical aberration. Then Abbe
showed that off-axis object points will also be sharply imaged if the condition

(3.2)

is fulfilled for all the axial rays. In this equation h is the distance from the axis of
the incoming ray, and a ¢ is the angle at which that ray meets the axis in the final
medium. Equation (3.2) is a form of the celebrated Abbe sine condition for good
image formation. It does not ensure perfect image formation for all off-axis object
points, but it ensures that aberrations that grow linearly with the off-axis angle
are zero. These aberrations are various kinds of coma. The condition of freedom
from spherical aberration and coma is called aplanatism.

Clearly, a necessary condition for our image-forming concentrator to have the
theoretical maximum concentration—or even for it to be ideal as an image-forming
system (but without theoretical maximum concentration)—is that the image for-
mation should be aplanatic. This is not, unfortunately, a sufficient condition.

The constant in Eq. (3.2) has the significance of a focal length. The definition
of focal length for optical systems with media of different refractive indices in the
object and image spaces is more complicated than for the thin lenses discussed in
Chapter 2. In fact, it is necessary to define two focal lengths, one for the input
space and one for the output space, where their magnitudes are in the ratio of the
refractive indices of the two media. In Eq. (3.2) it turns out that the constant is
the input side focal length, which we shall denote by f.

From Eq. (3.2) we have for the input semiaperture

(3.3)

and also, from Eq. (2.13),

(3.4)

By substituting from Eq. (3.3) into Eq. 3.4 we have

(3.5)

where qmax is the input semiangle. To see the significance of this result we recall
that we showed that in an aplanatic system the focal length is a constant, inde-
pendent of the distance h of the ray from the axis used to define it. Here we are
using the generalized sense of “focal length” meaning the constant in Eq. (3.2),
and aplanatism thus means that rays through all parts of the aperture of the
system form images with the same magnification. Thus, Eq. (3.5) tells us that in
an imaging concentrator with maximum theoretical concentration the diameter of
the exit aperture is proportional to the sine of the input angle. This is true even
if the concentrator has a numerical exit aperture less than the theoretical
maximum, n¢, provided it is ideal in the sense just defined.

a f¢ = sin maxq

a
a

NA
¢ = sin maxq

a f NA= ◊

h n= ¢ ¢ ¥sin .a const

NA n= ¢ ¢sin maxa
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From the point of view of conventional lens optics, the result of Eq. (3.3) is
well known. It is simply another way of saying that the aplanatic lens with largest
aperture and with air as the exit medium is f/0.5, since Eq. (3.5) tells us that a =
f. The importance of Eq. (3.5) is that it tells us something about one of the shape-
imaging aberrations required of the system—namely distortion. A distortion-free
lens imaging onto a flat field must obviously have an image height proportional to
tanq, so our concentrator lens system is required to have what is usually called
barrel distortion. This is illustrated in Figure 3.5.

Our picture of an imaging concentrator is gradually taking shape, and we can
begin to see that certain requirements of conventional imaging can be relaxed.
Thus, if we can get a sharp image at the edge of the exit aperture and if the diam-
eter of the exit aperture fulfils the requirement of Eqs. 3.3–3.5, we do not need
perfect image formation for object points at angles smaller than qmax. For example,
the image field perhaps could be curved, provided we take the exit aperture in the
plane of the circle of image points for the direction qmax, as in Figure 3.6. Also, the
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Figure 3.5 Distortion in image-forming systems. The optical systems are assumed to have
symmetry about an axis of rotation.



inner parts of the field could have point-imaging aberrations, provided these were
not so large as to spill rays outside the circle of radius a¢. Thus, we see that an
image-forming concentrator need not, in principle, be so difficult to design as an
imaging lens, since the aberrations need to be corrected only at the edge of the
field. In practice this relaxation may not be very helpful because the outer part of
the field is the most difficult to correct. However, this leads us to a valuable prin-
ciple for nonimaging concentrators. Not only is it unnecessary to have good aber-
ration correction except at the exit rim, but we do not even need point imaging at
the rim itself. It is only necessary that rays entering at the extreme angle qmax

should leave from some point at the rim and that the aberrations inside should
not be such as to push rays outside the rim of the exit aperture. We shall return
to this edge-ray principle later in connection with nonimaging concentrators.

The above arguments need only a little modification to apply to the alterna-
tive configuration of imaging concentrator in Figure 3.3, in which the entrance
aperture is imaged at the exit aperture. Referring to Figure 3.7, we can imagine
that the optical components of the concentrator are forming an image at the exit
aperture of an object at a considerable distance, rather than at infinity, and that
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Figure 3.6 A curved image field with a plane exit aperture.

Figure 3.7 An afocal concentrator shown as two image-forming systems.



this object is the entrance aperture. Alternatively, we can imagine that part of the
concentrator is a collimating lens of focal length f, shown in broken line in the
figure, and that this projects the entrance aperture to infinity with an angle sub-
tending 2a/f. The same considerations as before then apply to the aberration 
corrections.

3.3 CAN AN IDEAL IMAGE-FORMING
CONCENTRATOR BE DESIGNED?

In Section 3.2 we outlined some requirements for ideal image-forming concentra-
tors, and we now have to ask whether they can be designed to fulfill these require-
ments with useful collection angles.

High-aperture camera lenses are made at about f/1.0, but these are complex
structures with many components. Figure 3.8 shows a typical example with a focal
length of 50mm. Such a system is by no means aberration-free, and the cost of
scaling it up to a size useful for solar work would be prohibitive. Anyway, its
numerical aperture is still only about 0.5. The only systems with numerical aper-
tures approaching the theoretical limit are microscope objectives. Figure 3.9 shows
one of the simplest designs of microscope objective of numerical aperture about
1.35, drawn in reverse and with one conjugate at infinity. The image or exit space
has a refractive index of 1.52, since it is an oil immersion objective. Such systems
have good aberration correction only to about 3° from the axis. Beyond this the
aberrations increase rapidly, and also there is less light transmission because of
vignetting.1 The collecting aperture would be about 4mm in diameter. Again, it
would be impracticable to scale up such a system to useful dimensions.

Thus, a quick glance at the state of the art in conventional lens design sug-
gests that imaging concentrators in the form of lens systems will not be very effi-
cient on a practical scale. Nevertheless, it is interesting to see what might be done
with the classical imaging design techniques if practical limitations are ignored.
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Figure 3.8 A high-aperture camera objective. The drawing is to scale for a 50-mm focal
length. The emerging cone of rays has a semiangle of 26° at the center of the field of view.

1 Vignetting is caused by rims of components at either end of a long system shearing against
each other as the system is turned off-axis.



Roughly, the position seems to be that we cannot design an ideal concentra-
tor—one with the theoretical maximum collection efficiency, using a finite number
of lens elements. But, by increasing the number of elements sufficiently or by pos-
tulating sufficiently extreme optical properties, we can approach indefinitely close
to the ideal. Exceptions to the preceding proposed rule occur in optical systems
with spherical symmetry. It has been known since the time of Huygens that a
spherical lens element images a concentric surface, as shown in Figure 3.10.

The two conjugate surfaces have radii r/n and nr, respectively. The configura-
tion is used in microscope objectives having a high numerical aperture, as in
Figure 3.9. Unfortunately, one of the conjugates must always be virtual (the object
conjugate as the figure is drawn), so the system alone would not be very practical
as a concentrator. It seems to be true, although this has not been proven, that no
combination of a finite number of concentric components can form an aberration-
free real image of a real object. However, as we shall see, this can be done with
media of continuously varying refractive index. The system of Figure 3.10 would
clearly be useful as the last stage of an imaging concentrator. It can easily be
shown that the convergence angles are related by the equation
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Figure 3.9 An oil-immersion microscope objective of high numerical aperture. Such
systems can have a convergence angle of up to 60° with an aberration-free field of about ±3°.
However, they can only be designed aberration free for focal lengths up to 2mm—that is,
an actual field diameter of about 200 mm.

Figure 3.10 The aplanatic surfaces of a spherical refracting surface.



(3.6)

Also, if there is a plane surface terminating in air, the final emergent angle a≤ is
given by

(3.7)

Thus, the system could be used in conjunction with another system of relatively
low numerical aperture, as in Figure 3.11, to form a fairly well-corrected concen-
trator. This is, of course, merely a reinvention of the microscope objective of Figure
3.9, and the postulated additional system still needs to operate at about f/1 if ordi-
nary materials are used. If we assume some extreme material qualities—say, a
refractive index of 4 with adequate antireflection coating for the aplanatic com-
ponent—then the auxiliary system only needs to be f/8 to give p /2 emergent angles
in air, as in Figure 3.12.

This is not a difficult requirement. In fact, it is probably true that if we ignore
chromatic aberration—that is, if we assume our postulated material of index 4 has
no dispersion—this system could be designed in moderate sizes for which the aber-
rations are indefinitely small over a reasonable acceptance angle.

sin sin¢¢ =a an2

sin sina a¢ = n
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Figure 3.11 An image-forming concentrator with an aplantic component.

Figure 3.12 Use of an aplanatic component of high refractive index to produce a well-
corrected optical system.



Ultimately the ray aberrations of optical systems become negligible because
the performance, as an imaging system, is limited by diffraction effects. Thus, if
an imaging optical system of a certain numerical aperture is used to form an image
of a point source and if there are precisely no ray aberrations, the image of the
point will not be indefinitely small. It is shown in books on physical optics2 that
the point image will be a blurred diffraction pattern in which most of the light flux
falls inside a circle of radius

(3.8)

where l is the wavelength of the light. This provides us with a tolerance level for
ray aberrations below which we can say the aberrations are negligible. This is
sometimes expressed in the form that all of the points in the spot diagram for the
aberrations (see Figure 2.10) must fall within a circle of radius given by Eq. (3.8).
Another way of setting a tolerance is to say that the wave-front shape as deter-
mined by the methods outlined in Section 2.6 would not depart from the ideal
spherical shape by more than a specified amount, usually l /4. Other tolerance
systems are also described by Born and Wolf (1975).

Thus, in some way we could arrive at tolerances for the geometrical aberra-
tions such that an imaging concentrator with aberrations inside these tolerances
would have ideal performance. Any lens system made with available materials
would be impractically complicated and costly if scaled up to a size suitable for
solar concentration. But hypothetical materials could be used to bring the aber-
rations within the diffraction limit with a simple design such as in Figure 3.12.

At this point it might be interesting to consider a different example of a lens
system as a concentrator. It is well known that an ellipsoidal solid lens will focus
parallel light without spherical aberration, as in Figure 3.13, provided the eccen-
tricity is equal to 1/n. In order to use this as a concentrator we put the entry aper-
ture in front of the ellipsoid, as in Figure 3.14, so that the principal ray emerges
parallel to the axis. We find that the ellipsoid has very strong coma of such a sign
that all other rays meet the image plane nearer the axis than the principal ray.
Thus, all rays strike within this circle. However, this is not an ideal concentrator,
since, as can be seen from the diagram, the radius of this circle is proportional to
tan(qmax) whereas, according to Eq. (3.5), all rays should strike within a circle of
radius proportional to sin(qmax).3

3.4 MEDIA WITH CONTINUOUSLY VARYING
REFRACTIVE INDICES

We stated in Section 3.3 that it is thought to be impossible to design an ideal
imaging concentrator with a finite number of reflecting or refracting surfaces, even
with spherical symmetry, although the example of Figure 3.10 shows that perfect
imagery is possible if one conjugate surface is virtual. It has long been known that
if we admit continuously varying refractive index, then perfect imagery between
surfaces in a spherically symmetric geometry is possible. James Clerk Maxwell
(1854) showed that if a medium had the refractive index distribution

0 61. l NA
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2 See, for example, Born and Wolf, 1975.
3 In fact, on account of the curvature of the ellipse, the radius is even slightly greater than a
value proportional to tan(qmax).



(3.9)

where a and b are constants and r is a radial coordinate, then any point would be
perfectly imaged at another point on the opposite side of the origin. If a = b = 1,
the distances of conjugate points from the origin are related by

n
a

b r
=

+

2

2 2
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Figure 3.13 A portion of an ellipsoid of revolution as a single refracting surface free from
spherical aberration. The generating ellipse has eccentricity 1/n and semimajor axis a. The
figure is drawn to scale with n = 1.81.

Figure 3.14 An ellipsoid of revolution as a concentrator. The entry aperture is set at the
first focus of the system.
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(3.10)

and a typical set of imaging rays would be as in Figure 3.15. This system, known
as Maxwell’s fisheye lens, is not very useful for our purposes, since both object and
image have to be immersed in the medium. Luneburg (1964) gave several more
examples of media of spherical symmetry with ideal imaging properties. In par-
ticular, he found an example, now known in the literature as the Luneburg lens,
where the index distribution extends over a finite radius only and where the object
conjugate is at infinity. The index distribution is

(3.11)

This distribution forms a perfect point image with numerical aperture unity, as in
Figure 3.16, and on account of the spherical symmetry, it can be shown to form an
ideal concentrator of maximum theoretical concentration.

Appendix F presents a more detailed treatment that shows how the ray paths
are calculated. You can see that the Luneburg lens satisfied Abbe’s sine condition
[Eq.(3.2)]. Also, it follows from the spherical symmetry that perfect point images
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Figure 3.15 Rays in the Maxwell fisheye. The rays are arcs of circles.



are formed from parallel rays coming in all directions. It is then possible to con-
sider the Luneburg lens as having theoretical maximum concentration ratio for
any desired collection angle qmax up to p /4 but collecting from a concave spherical
source at infinity onto a concave spherical absorber attached to the lens. Apart
from the practical problem of making the lens this is rather an artificial configu-
ration, since up until now we have been considering plane entry and exit aper-
tures. Yet, the Luneburg lens would have an exit aperture in the form of a spherical
cap and an entrance aperture that changes in shape with the angle of the rays.
Nevertheless, we show in Appendix F that with reasonable and consistent inter-
pretations of “entrance aperture” and “exit aperture” the Luneburg lens has an
optical concentration ratio equal to the theoretical maximum.

3.5 ANOTHER SYSTEM OF 
SPHERICAL SYMMETRY

The discussion in the last section, in which it was suggested that the ideas of con-
centration could be extended to nonplane absorbers, suggests a way in which the
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Figure 3.16 The Luneburg lens.



aplanatic imaging system of Figure 3.10 could be used by itself as a concentrator,
as in Figure 3.17. The surface of radius a/n forms the spherical exit surface, and
the internal angle 2a of the cone meeting this face is such that sina = 1/n. Thus,
the emerging rays cover a solid angle 2p, as with the Luneburg lens. The entry
aperture is now a virtual aperture on the surface of radius an. The collecting angle
qmax is thus given by sinqmax = 1/n2. The concentration ratio from air to air is n4 for
a 3D system—that is, it is determined only by the refractive index. Similarly, the
collecting angle is fixed. Thus, this is not a very flexible system, apart from the
fact that it has a virtual collecting aperture. But it does have the theoretical
maximum concentration ratio, and, if we admit such systems, it is another example
of an ideal system.

3.6 IMAGE-FORMING MIRROR SYSTEMS

In this section we examine the performance of mirror systems as concentrators.
Concave mirrors have, of course, been used for many years as collectors for solar
furnaces and the like. Historical material about such systems is given by Krenz
(1976). However, little seems to have been published in the way of angle-
transmission curves for such systems. Consider first a simple paraboloidal mirror,
as in Figure 3.18. As is well known, this mirror focuses rays parallel to the axis
exactly to a point focus, or in our terminology, it has no spherical aberration.
However, the off-axis beams are badly aberrated. Thus, in the meridian section
(the section of the diagram) it is easily shown by ray tracing that the edge rays at
angle q meet the focal plane further from the axis than the central ray, so this
cannot be an ideal concentrator even for emergent rays at angles much less than
p /2. An elementary geometrical argument (see, e.g., Harper et al., 1976) shows
how big the exit aperture must be to collect all the rays in the meridian section.
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Figure 3.17 The aplanatic spherical lens as an ideal concentrator; the diagram is to 
scale for refractive index n = 2; the rays shown emerge in air as the extreme rays in a solid
angle 2p.



Referring to Figure 3.19, we draw a circle passing through the ends of the
mirror and the absorber (i.e., exit aperture). Then, by a well-known property of
the circle, if the absorber subtends an angle 4qmax at the center of the circle, it sub-
tends 2qmax at the ends of the mirror, so the collecting angle is 2qmax. The mirror
is not specified to be of any particular shape except that it must reflect all inner
rays to the inside of the exit aperture. Then if the mirror subtends 2f at the center
of the circle, we find

(3.12)

and the minimum value of a¢ is clearly attained when f = p /2. At this point the
optical concentration ratio is, allowing for the obstruction caused by the absorber,

(3.13)
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Figure 3.18 Coma of a paraboloidal mirror. The rays of an axial beam are shown in broken
line. The outer rays from the oblique beams at angle q meet the focal plane further from
the axis than the central ray of this beam.

Figure 3.19 Collecting all the rays from a concave mirror.



It can be seen that this is less than 25% of the theoretical maximum concentra-
tion ratio and less than 50% of the ideal for the emergent angle used.

If, as is usual, the mirror is paraboloidal, the rays used for this calculation are
actually the extreme rays—that is, the rays outside of the plane of the diagram
all fall within the circle of radius a.

The large loss in concentration at high apertures is basically because the single
concave mirror used in this way has large coma—in other words, it does not satisfy
Abbe’s sine condition [Eq. (3.2)]. The large amount of coma introduced into the
image spreads the necessary size of the exit aperture and so lowers the concen-
tration below the ideal value.

There are image-forming systems that satisfy the Abbe sine condition and have
large relative apertures. The prototype of these is the Schmidt camera, which has
an aspheric plate and a spherical concave mirror, as shown in Figure 3.20. The
aspheric plate is at the center of curvature of the mirror, and thus the mirror must
be larger than the collecting aperture. Such a system would have the ideal con-
centration ratio for a restricted exit angle apart from the central obstruction, but
there would be practical difficulties in achieving the theoretical maximum. In any
case a system of this complexity is clearly not to be considered seriously for solar
work.

3.7 CONCLUSIONS ON CLASSICAL
IMAGE-FORMING CONCENTRATORS

It must be quite clear by now that, whatever the theoretical possibilities, practi-
cal concentrators based on classical image-forming designs fall a long way short
of the ideal. Our graphs of angular transmission will indicate this for some of the
simpler designs. As to theoretical possibilities, it is certainly possible to have an
ideal concentrator of theoretical maximum concentration ratio if we use a spheri-
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Figure 3.20 The Schmidt camera. This optical system has no spherical aberration or coma,
so, in principle, it could be a good concentrator for small collecting angles. However, there
are serious practical objections, such as cost and the central obstruction of the aperture.



cally symmetric geometry, a continuously varying refractive index, and quite un-
realistic material properties (i.e., refractive index between 1 and 2 and no disper-
sion). This was proved by the example of the Luneburg lens, and Luneburg and
others (e.g., Morgan, 1958, and Cornbleet, 1976) have shown how designs suitable
for perfect imagery for other conjugates can be obtained.

Nevertheless, imaging and nonimaging are not opposite concepts. Not only the
Luneburg lens and the other systems shown in this chapter proves it but also the
new nonimaging designs found with the SMS method (Chapter 8), whose imaging
properties are analyzed in Chapter 9, showing that the combination of imaging
and nonimaging properties is possible with very simple devices, thus opening the
field of new applications.

Perfect concentrators have not been obtained with plane apertures and axial
symmetry only if we restrict ourselves to a finite number of elements. However,
we will see in Chapter 6 that it is possible to have perfect concentrators with axial
symmetry and plane apertures if we are allowed to use a continuously varying
index or a multifoliate structure of thin waveguide surfaces.
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4.1 LIMITS TO CONCENTRATION

The relationship between the concentration ratio and the angular field of view 
is a fundamental one that merits more than one demonstration. We shall give a
thermodynamic argument in the context of solar energy concentration. Imagine
the sun itself as a spherically symmetric source of radiant energy (Figure 4.1). The
flux falls off as the inverse square of the distance R from the center, as follows 
from the conservation of power through successive spheres of area 4pR2. There-
fore, the flux on the earth’s surface, say, is smaller than the solar surface flux 
by a factor (r/R)2, where r is the radius of the sun and R is the distance from the
earth to the sun. By simple geometry, r/R = sin2 q where q is the angular subtense
(half angle) of the sun. If we accept the premise that no terrestrial device can 
boost the flux above its solar surface value (which would lead to a variety of 
perpetual motion machines), then the limit to concentration is just 1/sin2 q. 
We call this limit the sine law of concentration. This relationship may seem 
similar to the well-known Abbe’s sine condition of optics, but the resemblance 
is only superficial. The Abbe’s condition applies to well-corrected optical systems
and is first order in the transverse dimensions of the image. There are no such
limitations to the sine law of concentration, which is correct and rigorous for any
size receiver. As already shown in Eqs. 2.14 and 2.15, there is an escape clause to
this conclusion when the target is immersed in a medium with index of refraction
(n) because then the limit is n2/sin2 q. Of course, the limit we have derived is for
concentration in both transverse dimensions, which we will refer to as 3-
dimensional concentration (or 3D concentration for short). For concentration in
one transverse dimension, which we’ll call 2-dimensional (2D) concentration, the
limit is clearly 1/sinq While the concept of concentration in our demonstration
refers to solar flux, implicit in our discussion is good energy throughput. We gen-
erally deal with concentrators that throw away as little energy as possible. Good
energy conservation is an essential attribute of a useful concentrating optical
system (see Figure 4.1).



4.2 IMAGING DEVICES AND THEIR LIMITATIONS

If one were to ask the proverbial man on the street for a suggestion of how one
might attain the highest possible level of concentration of, say, solar flux, a plau-
sible response would be to use a good astronomical telescope—perhaps the 200-
inch telescope on Mt. Palomar or any preferred telescope. Of course, such an
experiment had better remain in the realm of imagination only, since beginning
astronomers are admonished never to point their telescopes at the sun at the risk
of catastrophic damage to the instrument. But to continue this train of thought,
the concentration limit of a telescope is readily shown to be sin2(2f)/4sin2 q after
an elementary calculation (Figure 4.2). Here we have introduced a new parame-
ter, f, which is the rim angle of the telescope. The best one can do is make the
numerator 1 for rim angle f = 45°, so the best concentration achieved is 1/4sin2 q,
which falls short of the fundamental limit by a factor of 4! Now factors of 4 are
significant in technology (and many other forms of human endeavor). It was the

44 Chapter 4 Nonimaging Optical Systems

Sun

R

r q

Earth
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desire to bridge the gap between the levels of concentration achieved by common
imaging devices and the sine law of concentration limit that motivated the inven-
tion of nonimaging optics. Entirely similar considerations can be applied to 2D or
trough concentrators. A straightforward generalization to a strip absorber rather
than a disk absorber gives a limit for, say, a parabolic trough of sin(2f)/2sinq, with
a consequent upper limit of 1/2sinq for rim angle f = 90°. This would be a useful
configuration for a photovoltaic concentrator, with the strip consisting of solar
cells. However, a more useful geometry for a parabolic trough thermal concentra-
tor is a tubular receiver (Figure 4.3). In that case, the concentration relation
becomes sinf/p sinq, which attains its maximum value of 1/p sinq at 90° rim angle.
This helps to explain why parabolic solar troughs tend to have large rim angles.
In either case, we fall significantly short of the sine law of concentration limit, this
time by a factor of 2 or p, depending on the configuration. As we shall see later,
this factor of 2 or p makes the difference between the possibility and impossibil-
ity of fixed solar concentrators. The possibility of fixed concentrators opens up a
broad vista of solar energy applications.

4.3 NONIMAGING CONCENTRATORS

These simple examples of imaging systems and their attendant shortfalls in con-
centrating performance (we could have examined lenses and reached similar con-
clusions) suggest that the requirement that an optical concentrator form an image
is unduly restrictive. After all, we are after transport of radiant energy. Imaging
the sun may be useful in solar astronomy or in the study of sun spots, but it has
no obvious advantage in solar energy conversion systems. Thus, even taking a
more empirical optimization approach, it is plausible that relaxing the imaging
requirement has the potential of improving concentrating performance; in other
words, one would expect to be able to trade off one against the other. Approaching
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the subject this way does lead to incremental improvements over various classi-
cal imaging designs such as parabolic reflectors. Our approach in this book is to
show methods that actually attain, or closely approach, the theoretical sine law
limit to concentration while maintaining high throughput, methods that bear little
resemblance to classical imaging approaches. An analogy with fluid dynamics may
be useful to bring this point home. In fluid dynamics, as in optics, a useful repre-
sentation is in “phase space.” Phase space has twice the dimensions of ordinary
space and consists of both the positions and momenta of elements of the fluid. In
optics, the momenta are the directions of light rays multiplied by the index of
refraction of the medium. In optics, as in fluid dynamics, the volume in this phase
space is conserved, a sort of incompressible fluid flowing in this space of twice the
number of physical dimensions. Now consider an imaging problem taking the sim-
plest example of points on a line. An imaging system is required to map those
points on another line, called the image, without scrambling the points (Figure
4.4a)—that is, to focus the rays issuing from every object point into their corre-
sponding image points. All the rays issuing from a point are represented by a ver-
tical line in the phase space, and the system is required to faithfully map line onto
line (Figure 4.4b). That may appear quite demanding, but it is precisely what an
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imaging system is asked to perform. But suppose we consider only the boundary
or edge of all the rays. Then all we require is that the boundary be transported
from the source to the target. The interior rays will come along (Figure 4.4c). They
cannot “leak out” because were they to cross the boundary, they would first become
the boundary, and it is the boundary that is being transported. To complete the
analogy, the volume of container of rays is unchanged in the process. This is the
conservation of phase space volume. It is very much like transporting a container
of an incompressible fluid—say, water. The fact that elements inside the container
mix or the container itself is deformed is of no consequence. To carry the analogy
a bit further, suppose one were faced with the task of transporting a vessel (the
volume in phase space) filled with alphabet blocks spelling out a message. Then
one would have to take care not to shake the container and thereby scramble the
blocks. But if one merely needs to transport the blocks without regard to the
message, the task is much easier. This is the key idea of nonimaging optics.

4.4 THE EDGE-RAY PRINCIPLE OR 
“STRING” METHOD

Figure 4.4c suggests the notion of transporting the boundary or edge of the con-
tainer of rays in phase space. This leads to one of the most useful algorithms of
nonimaging optics. We shall see that transporting the edges only, without regard
to interior order, allows attainment of the sine law of concentration limit.

To motivate the method we begin with the statement that all imaging optical
design derives from Fermat’s principle. The optical path length between object and
image points are the same for all rays (Figure 4.5a). When this same principle is
applied to “strings” instead of rays, it gives the edge-ray algorithm of nonimaging
optical design (Figure 4.5b). First we must explain what strings are, which is best
done by example. We will proceed to solve the problem of attaining the sine law
limit of concentration for the simplest case: that of a flat absorber. Referring to
Figure 4.6, we loop one end of a “string” to a “rod” tilted at angle q to the aper-
ture AA¢ and tie the other end to the edge of the exit aperture B¢. Holding the
length fixed, we trace out a reflector profile as the string moves from C to A¢. From
simple geometry, the relation BB¢ = AA¢ sinq immediately follows. This construc-
tion gives the 2D compound parabolic concentrator, or CPC. Rotating the profile
about the axis of symmetry gives the 3D CPC with radius (a) at the entrance and
(b) at the exit. The 2D CPC is an ideal concentrator—that is, it works perfectly
for all rays within the acceptance angle q (in 2D geometry). As we will see, the 3D
CPC is very close to ideal in 3D geometry. The flat absorber case is a natural can-
didate for rotating about the axis because the square of the ratio of diameters 
(sin2 q) agrees with the maximum concentration. Other absorber shapes such as
circular cross-sections (cylinders in 2D, spheres in 3D) do not have this corre-
spondence because the area of the sphere is 4pb2, whereas the entrance aperture
area is pa2. Notice that we have kept the optical length of the string fixed. For
media with varying index of refraction (n), the physical length is multiplied by n.
Of course, we have not demonstrated that this construction actually works. One
admittedly tongue-in-cheek approach is to state that anything this “neat”—in
other words, that satisfies the conservation laws in a natural way—has to work.
Perhaps a more serious “proof” is to notice that the 2D CPC rejects all stray radi-
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ation and therefore must be ideal by conservation of phase space (Ries and Rabl,
1994; Winston, 1970). The string construction is very versatile and can be applied
to any convex (or at least nonconcave) absorber. Figure 4.7 shows the string con-
struction for a tubular absorber as would be appropriate for a solar thermal con-
centrator. This time 2pa = BB¢ sinq, where a is the radius of the cylindrical
absorber (Winston, Hinterberger, 1975).
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4.5 LIGHT CONES

A primitive form of nonimaging concentrator, the light cone, has been used for
many years (see, e.g., Holter et al., 1962). Figure 4.8 shows the principle. If the
cone has semiangle g and if qi is the extreme input angle, then the ray indicated
will just pass after one reflection if 2g = (p /2) - qi. It is easy to arrive at an expres-
sion for the length of the cone for a given entry aperture diameter. Also, it is easy
to see that some other rays incident at angle qi, such as that indicated by the
double arrow, will be turned back by the cone. If we use a longer cone with more
reflections, we still find some rays at angle qi being turned back. Clearly, the cone
is far from being an ideal concentrator. Williamson (1952) and Witte (1965)
attempted some analysis of the cone concentrator but both restricted this treat-
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ment to meridian rays. This unfortunately gives a very optimistic estimate of the
concentration. Nevertheless, the cone is very simple compared to the image-
forming concentrators described in Chapter 3 and its general form suggests a new
direction in which to look for better concentrators.

4.6 THE COMPOUND PARABOLIC
CONCENTRATOR

The flat absorber case occupies a special place because of its simplicity. Histori-
cally it was the first to be discovered. For these reasons its description and prop-
erties merit a separate discussion.

If we attempt to improve on the cone concentrator by applying the edge-ray
principle, we arrive at the compound parabolic concentrator (CPC), the prototype
of a series of nonimaging concentrators that approach very close to being ideal and
having the maximum theoretical concentration ratio.

Descriptions of the CPC appeared in the literature in the mid-1960s in widely
different contexts. The CPC was described as a collector for light from Cerenkov
counters by Hinterberger and Winston (1976a,b). Almost simultaneously, Baranov
(1965a), and Baranov and Mel’nikov (1966) described the same principle in 3D
geometry, and Baranov (1966) suggested 3D CPCs for solar energy collection.
Baranov (1965b; 1967) obtained Soviet patents on several CPC configurations.
Axially symmetric CPCs were described by Ploke (1967), with generalizations to
designs incorporating refracting elements in addition to the light-guiding reflect-
ing wall. Ploke (1969) obtained a German patent for various photometric applica-
tions. In other applications to light collection for applications in high-energy
physics, Hinterberger and Winston (1966a,b; 1968a,b) noted the limitation to 
1/sin2 q of the attainable concentration, but it was not until some time later that
the theory was given explicitly (Winston, 1970). In the latter publication the author
derived the generalized étendue (see appendix A) and showed how the CPC
approaches closely to the theoretical maximum concentration.

The CPC in 2D geometry was described by Winston (1974). Further elabora-
tions may be found in Winston and Hinterberger (1975) and Rabl and Winston
(1976). Applications of the CPC in 3D form to infrared collection (Harper et al.,
1976) and to retinal structure (Baylor and Fettiplace, 1975; Levi-Setti et al., 1975;
Winston and Enoch, 1971) have also been described. The general principles of CPC
design in 2D geometry are given in a number of U.S. patents (Winston, 1975;
1976a; 1977a,b).

Let us now apply the edge-ray principle to improve the cone concentrator.
looking at Figure 4.9, we require that all rays entering at the extreme collecting
angle qi shall emerge through the rim point P¢ of the exit aperture. If we restrict
ourselves to rays in the meridian section, the solution is trivial, since it is well
known that a parabolic shape with its axis parallel to the direction qi and its focus
at P¢ will do this, as shown in Figure 4.10. The complete concentrator must have
an axis of symmetry if it is to be a 3D system, so the reflecting surface is obtained
by rotating the parabola about the concentrator axis (not about the axis of the
parabola).

The symmetry determines the overall length. In the diagram the two rays are
the extreme rays of the beam at qi, so the length of the concentrator must be such
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as to just pass both these rays. These considerations determine the shape of the
CPC completely in terms of the diameter of the exit aperture 2a¢ and the maximum
input angle qi. It is a matter of simple coordinate geometry (Appendix G) to show
that the focal length of the parabola is

(4.1)

the overall length is

(4.2)

and the diameter of the entry aperture is

(4.3)

Also, from Eqs. (4.2) and (4.3) or directly from the figure,
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Figure 4.9 The edge-ray principle.

Figure 4.10 Construction of the CPC profile from the edge-ray principle.



Figure 4.11 shows scale drawing of typical CPCs with a range of collecting
angles. It is shown in Appendix G that the concentrator wall has zero slope at the
entry aperture, as drawn.

The most remarkable result is Eq. (4.3). We see from this that the CPC would
have the maximum theoretical concentration ratio (see Section 2.7)

(4.5)

provided all the rays inside the collecting angle qi actually emerge from the exit
aperture. Our use of the edge-ray principle suggests that this ought to be the case,
on the analogy with image-forming concentrators, but in fact this is not so. The
3D CPC, like the cone concentrator, has multiple reflections, and these can actu-
ally turn back the rays that enter inside the maximum collecting angle. Never-
theless, the transmission-angle curves for CPCs as calculated by ray tracing
approach very closely the ideal square shape. Figure 4.12, after Winston (1970),
shows a typical transmission-angle curve for a CPC with qi = 16°.

It can be seen that the CPC comes very close to being an ideal concentrator.
Also, it has the advantages of being a very practical design, easy to make for all
wavelengths, since it depends on reflection rather than refraction, and of not
requiring any extreme material properties. The only disadvantage is that it is very
long compared to its diameter, as can be seen from Eq. (4.2). This can be overcome
if we incorporate refracting elements into the basic design. In later sections of this

a
a i¢

= 1
sinq
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Figure 4.11 Some CPCs with different collecting angles. The drawings are to scale with
the exit apertures all equal in diameter.



chapter we shall study the optics of the CPC in detail. We shall elucidate the 
mechanism by rays inside the collecting angle which are turned back, give 
transmission-angle curves for several collecting angles, and give quantitative com-
parisons with some of the other concentrators, imaging and nonimaging, that have
been proposed. In later chapters we shall discuss modifications of the basic CPC
along various lines—for example, incorporating transparent refracting materials
in the design and even making use of total internal reflection at the walls for all
the accepted rays.

We conclude this section by examining the special case of the 2D CPC or
troughlike concentrator. This has great practical importance in solar energy appli-
cations, since, unlike other trough collectors, it does not require diurnal guiding
to follow the sun. The surprising result is obtained that the 2D CPC is actually
an ideal concentrator of maximum theoretical concentration ratio—that is, no rays
inside the maximum collecting angle are turned back. To show this result we have
to find a way of identifying rays that do get turned back after some number of
internal reflections. The following procedure for identifying such rays actually
applies not only to CPCs but to all axisymmetric conelike concentrators with inter-
nal reflections. It is a way of finding rays on the boundary between sets of rays
that are turned back and rays that are transmitted. These extreme rays must just
graze the edge of the exit aperture, as in Figure 4.13, so that if we trace rays in
reverse from this point in all directions as indicated, these rays appear in the entry
aperture on the boundary of the required region. Thus, we could choose a certain
input direction, find the reverse traced rays having this direction, and plot their
intersections with the plane of the input aperture. They could be sorted according
to the number of reflections involved and the boundaries plotted out. Diagrams of
this kind will be given for 3D CPCs in the next chapter.

Returning to the 2D CPC, we note first that the ray tracing in any 2D trough-
like reflector is simple even for rays not in a plane perpendicular to the length of
the trough. This is because the normal to the surface has no component parallel
to the length of the trough, and thus the law of reflection [Eq.(2.1)] can be applied
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Figure 4.12 Transmission-angle curve for a CPC with acceptance angle qi = 16°. The cutoff
occurs over a range of about 1°.



in two dimensions only. The ray direction cosine in the third dimension is con-
stant. Thus, if Figure 4.14 shows a 2D CPC with the length of the trough per-
pendicular to the plane of the diagram, all rays can be traced using only their
projections on this plane. We can now apply our identification of rays that get
turned back. Since, according to the design, all the rays shown appear in the entry
aperture at qmax, there can be no returned rays within this angle. The 2D CPC has
maximum theoretical concentration ratio and its transmission-angle graph there-
fore has the ideal shape, as in Figure 4.15.1

Since this property is of prime importance, we shall examine the ray paths in
more detail to strengthen the verification. Figure 4.16 shows a 2D CPC with a
typical ray at the extreme entry angle qmax. Say this ray meets the CPC surface at
P. A neighboring ray at a smaller angle would be represented by the broken line.
There are then two possibilities. Either this ray is transmitted as in the diagram,
or else it meets the surface again at P1. In the latter case we apply the same 
argument except using the extreme ray incident at P1, and so on. Thus, although
some rays have a very large number of reflections, eventually they emerge if 
they entered inside qmax. Of course, in the preceding argument “ray” includes 
“projection” of a ray skew to the diagram.

This result shows a difference between 2D and 3D CPCs. The 2D CPC has
maximum theoretical concentration, in the sense of Section 2.9. In extending it to
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Figure 4.13 Identifying rays that are just turned back by a conelike concentrator. The rays
shown are intended as projections of skew rays, since the meridional rays through the rim
correspond exactly to qi by construction for a CPC.

Figure 4.14 A 2D CPC. The rays drawn represent projections of rays out of the plane of
the diagram.

1 Strictly, this applies to 2D CPCs that are indefinitely extended along the length of the trough.
In practice, this effect is achieved by closing the ends with plane mirrors perpendicular to the
straight generators of the trough. This ensures that all rays entering the rectangular entry aper-
ture within the acceptance angle emerge from the exit aperture.



3D, however, we have included more rays (there is now a threefold infinity of rays,
allowing for the axial symmetry, whereas in the 2D case we have to consider only
a twofold infinity). We have no more degrees of freedom in the design, since the
3D concentrator is obtained from the 2D profile by rotation about the axis of sym-
metry. The 3D concentrator has to be a figure of revolution, and thus we can do
nothing to ensure that rays outside the meridian sections are properly treated. We
shall see in Section 4.7.3 that it is the rays in these regions that are turned back
by multiple reflections inside the CPC.

This discussion also shows the different causes of nonideal performance of
imaging and nonimaging systems. The rays in an image-forming concentrator such
as a high-aperture lens all pass through each surface the same number of times
(usually once), and the nonideal performance is caused by geometrical aberrations
in the classical sense. In a CPC, on the other hand, different rays have different
numbers of reflections before they emerge (or not) at the exit aperture. It is the
effect of the reflections in turning back the rays that produces nonideal perfor-
mance. Thus, there is an essential difference between a lens with large aberra-
tions and a CPC or other nonimaging concentrator. A CPC is a system of rotational
symmetry, and it would be possible to consider all rays having just, say, three
reflections and discuss the aberrations (no doubt very large) of the image forma-
tion by these rays. But there seems no sense in which rays with different numbers
of reflections could be said to form an image. It is for this reason that we continue
to draw the distinction between image-forming and nonimaging concentrators.
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Figure 4.15 The transmission-angle curve for a 2D CPC.

Figure 4.16 To prove that a 2D CPC has an ideal transmission-angle characteristic.



4.7 PROPERTIES OF THE COMPOUND
PARABOLIC CONCENTRATOR

In this section we examine the properties of the basic CPC of which the design
was developed in the last section. We’ll see how ray tracing can be done, the results
of ray tracing in the form of transmission-angle curves, certain general properties
of these curves, and the patterns of rays in the entry aperture that get turned
back. This detailed examination will help in elucidating the mode of action of CPCs
and their derivatives, to be described in later chapters.

4.7.1 The Equation of the CPC
By rotation of axes and translation of origin we can write down the equation of
the meridian section of a CPC. In terms of the diameter 2a¢ of the exit aperture
and the acceptance angle qmax this equation is

(4.6)

where the coordinates are as in Figure 4.17. Recalling that the CPC is a surface
of revolution about the z axis we see that in three dimensions, with r2 = x2 + y2,
Eq. (4.6) represents a fourth-degree surface.

A more compact parametric form can be found by making use of the polar equa-
tion of the parabola. Figure 4.18 shows how the angle f is defined. In terms of this
angle and the same coordinates (r, z) the meridian section is given by
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Figure 4.17 The coordinate system for the r - z equation for the CPC.

Figure 4.18 The angle f used in the parameteric equations of the CPC.



(4.7)

[f = a¢(1 + sinqmax)].
If we introduce an azimuthal angle y we obtain the complete parametric equa-

tions of the surface:

(4.8)

The derivations of these equations are sketched in Appendix G.

4.7.2 The Normal to the Surface
We need the direction cosines of the normal to the surface of the CPC for ray-
tracing purposes. There are well-known formulas of differential geometry that give
these. If the explicit substitution r = (x2 + y2)1/2 is made in Eq. (4.6), and the result
is written in the form

(4.9)

the direction cosines are given by

(4.10)

The formulas for the normal are slightly more complicated for the parametric
form. We first define the two vectors

(4.11)

Then the normal is given by

(4.12)

These results are given in elementary texts such as Weatherburn (1931).
Although the formulas for the normal are somewhat opaque, it can be seen

from the construction for the CPC profile in Figure 4.10 that at the entry end 
the normal is perpendicular to the CPC axis—that is, the wall is tangent to a 
cylinder.

4.7.3 Transmission-Angle Curves for CPCs
In order to compute the transmission properties of a CPC, the entry aperture was
divided into a grid with spacing equal to 1/100 of the diameter of the aperture and
rays were traced at a chosen collecting angle q at each grid point. The proportion
of these rays that were transmitted by the CPC gave the transmission T(q, qmax)
for the CPC with maximum collecting angle qmax. T(q, qmax) was then plotted against
q to give the transmission-angle curve. Some of these curves are given in Figure
4.19. They all approach very closely the ideal rectangular cutoff that a concentra-
tor with maximum theoretical concentration ratio should have. The transition

n a b a b a b= ¥ - ◊{ }2 2 2 1 2

a x y z b x y z= ( ) = ( )∂ ∂ f ∂ ∂ f ∂ ∂ f ∂ ∂ y ∂ ∂ y ∂ ∂ y, , , , ,

n F F F F F Fx y z x y z= ( ) + +( ), , 2 2 2 1 2

F x y z, ,( ) = 0

x
f

a

y
f

a

z
f

= -( )
-

- ¢

= -( )
-

- ¢

= -( )
-

2
1

2
1

2
1

sin sin
cos

sin

cos sin
cos

cos

cos
cos

max

max

max

y f q
f

y

y f q
f

y

f q
f

r
f

a z
f= -( )

-
- ¢ = -( )

-
2

1
2

1
sin

cos
,

cos
cos

max maxf q
f

f q
f

4.7 Properties of the Compound Parabolic Concentrator 57



from T = 0.9 to T = 0.1 takes place in Dq less than 3° in all cases. Approximate
values are

qmax 2° 10° 16° 20° 40° 60°
Dq 0.4° 1.5° 2° 2.5° 2.7° 2.0°

We may also be interested in the total flux transmitted inside the design col-
lecting angle qmax. This is clearly proportional to

(4.13)

and if we divide by , we obtain the fraction transmitted of the flux 

incident inside a cone of semiangle qmax. The result of such a calculation is shown
in Figure 4.20. This gives the proportion by which the CPC fails to have the 
theoretical maximum concentration ratio. For example, the 10° CPC should have
the theoretical concentration ratio cosec2 10° = 33.2, but from the graph it will 
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Figure 4.19 Transmission-angle curves for 3D CPCs with qmax from 2° to 60°.

Figure 4.20 Total transmission within qmax for 3D CPCs.



actually have 32.1. The loss is, of course, because some of the skew rays have been
turned back by multiple reflections inside the CPC.

It is of some considerable theoretical interest to see how these failures occur.
By tracing rays at a fixed angle of incidence, regions could be plotted in the entry
aperture showing what happened to rays in each region. Thus, Figure 4.21 shows
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Figure 4.21 Patterns of accepted and rejected rays at the entry face of a 10° CPC. The
entry aperture is seen from above with incident rays sloping downward to the right. Rays
entering areas labeled n are transmitted after n reflections; those entering hatched areas
labeled Fm are turned back after m reflections. The ray trace was not carried to completion
in the unlabeled areas. (a) 8°, qmax = 10°; (b) 9°, qmax = 10°; (c) 9.5°, qmax = 10°; (d) 10°, qmax =
10°; (e) 10.5°, qmax = 10°; (f ) 11°, qmax = 10°; (g) 11.5°, qmax = 10°.
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Figure 4.21 Continued

these plots for a CPC with qmax = 10° for rays at 8°, 9°, 9.5°, 10°, 20.5°, 11°, 11.5°.
Rays incident in regions labeled 0, 1, 2, . . . are transmitted by the CPC after zero,
one, two . . . reflections; F2, F3 . . . indicate that rays incident in those regions
begin to turn back after two, three, . . . reflections. Rays in the blank regions will
still be traveling toward the exit aperture after five reflections. The calculations
were abandoned here to save computer time. In the computation of T(q, qmax) where
these rays were omitted for q less than qmax it is most likely that all these rays are
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Figure 4.21 Continued

transmitted, as we shall show next, but for q greater than the qmax, this is prob-
ably not so. Thus, the transitions in the curves of Figure 4.19 are probably slightly
sharper than shown.

The boundaries between regions in the diagrams of Figure 4.21 are, of course,
distorted images of the exit aperture seen after various numbers of reflections. It
can be seen that the failure regions—regions in which rays are turned back—
appear as a splitting between these boundary regions. For example, the regions
for failure after two and three reflections for 9° appear in the diagram as a split
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Figure 4.21 Continued

Figure 4.22 Rays at the exit aperture used to determine failure regions.

between the regions for transmission after one and two reflections. This confirms
the principle stated in Section 4.3 that rays that meet the rim of the exit aperture
are at the boundaries of failure regions. Naturally enough, each split between
regions for transmission after n and n + 1 reflections produces two failure regions,
for failure after n + 1 and n + 2 reflections.

We can delineate these regions in another way, by tracing rays in reverse from
the exit aperture. Thus, in Figure 4.22 we can trace rays in the plane of the exit
aperture from a point P at angles g to the diameter P¢. Each ray will eventually
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emerge from the entry face at a certain angle q (g) to the axis and after n reflec-
tions. The point in the entry aperture from which this ray emerges is then the
point in diagrams, such as those of Figure 4.21, at which the split between rays
transmitted after n - 1 and n reflections begins. For example, to find the points A
and B in the 9° diagram of Figure 4.21, we look for an angle g that yields q (g) =
9° and find the coordinates of the ray emerging from the entry face after two reflec-
tions. There will, of course, be two such values of g, corresponding to the two points
A and B. This was verified by ray tracing.

Returning to the blank regions in Figure 4.21, the rays entering at these
regions are almost tangential to the surface of the CPC. Thus, they will follow a
spiral path down the CPC with many reflections, as indicated in Figure 4.23. 
We can use the skew invariant h explained in Section 2.8 to show that such rays
must be transmitted if the incident angle is less than qmax. For if we use the
reversed rays and take a ray with g = p /2 in Figure 4.22, this ray has h = a¢. When
it has spiraled back to the entry end (with an infinite number of reflections!), it
must have the same h = a¢ = asinqmax—that is, it emerges tangent to the CPC
surface at the maximum collecting angle. Any other ray in the blank regions closer
to the axis or with smaller q has a smaller skew invariant and is therefore 
transmitted.

The preceding argument holds for regions very close to the rim of the CPC.
The reverse ray-tracing procedure shows that for angles below qmax the failures
begin well away from the blank region—in fact, at approximately half the radius
at the entry aperture. Thus, we are justified in including the blank regions in the
count of rays passed for q < qmax, as suggested above. This argument also shows
that the transmission-angle curves (Figure 4.19) are precisely horizontal out to a
few degrees below qmax.

A converse argument shows, on the other hand, that rays incident in this
region at angles above qmax will not be transmitted. There seems to be no general
argument to show whether the transmission goes precisely to zero at angles 

Figure 4.23 Path of a ray striking the surface of a CPC almost tangentially.



sufficiently greater than qmax, but the ray tracing results suggest very strongly that
it does.

4.8 CONES AND PARABOLOIDS 
AS CONCENTRATORS

Cones are much easier to manufacture than CPCs. Paraboloids of revolution
(which of course CPCs are not) seem a more natural choice to conventional optical
physicists as concentrators. We therefore provide some quantitative comparisons.
It will appear from these that the CPC has very much greater efficiency as a con-
centrator than either of these other shapes.

In order to make a meaningful comparison, the concentration ratio as defined
by the ratio of the entrance and exit aperture areas was made the same as for 
the CPC with qmax = 10°—that is, a ratio of 5.76 to 1 in diameter. The length of the
cone was chosen so that the ray at qmax was just cut off, as in Figure 4.24. For the
paraboloid the exit aperture diameter and the concentration ratio completely
determine the shape, as in Figure 4.25.
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Figure 4.24 A cone concentrator, showing dimensions used to compare with a CPC.

Figure 4.25 A paraboloid of revolution as a concentrator.
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Figure 4.26 Transmission-angle curve for a cone; qmax = 10°.

Figure 4.27 Transmission-angle curves for paraboloidal mirrors. The graphs are labeled
with angles qmax given by sin qmax = a¢/a in Figure 4.25.

2 The section of a paraboloid of revolution in front of the focus is used for x-ray imaging, since
most materials are good reflectors for x-rays at grazing incidence.

Figures 4.26 and 4.27 show the transmission-angle curves for cones and para-
boloids, respectively. It is obvious that the characteristics of both these systems as
concentrators are much worse than ideal. For example, the total transmission
inside qmax for the paraboloids, according to Eq. (4.13), is about 0.60 for all the
angles shown. The cones clearly have definitely better characteristics than the
paraboloids, with a total transmission inside qmax of order 80%. This is perhaps a
verification of our view that nonimaging systems can have better concentration
than image-forming systems, since the paraboloid of revolution is an image-
forming system, albeit with very large aberrations when used in the present way.2

Rabl (1976b) considered V-troughs—that is, 2D cones—and used a well-known
construction (e.g., Williamson, 1952) shown in Figure 4.28 to estimate the angular



width of the transition region in the transmission-angle curve. He showed that its
width was equal to the angle 2f of the V-trough and the center of the transition
came at d + f, where d is the largest angle of an incident pencil for which all rays
are transmitted. If we assume the same holds for a 3D cone, it suggest that the
transition in the transmission-angle curve becomes sharper as the cone angle
decreases—in other words, smaller-angle cones are more nearly ideal concentra-
tors. This accords with Garwin’s result (Garwin, 1952), which may be said to imply
that a very long cone with a very small angle is a nearly ideal concentrator.3

A different way to look at the performance of the cone is to note that for small
f the concentration ratio a/a¢ is approximately 1/sin (d + f). Thus, as the cone
length increases while a/a¢ is held fixed, f/d tends to zero, and from the diagram,
the transition region in the transmission-angle diagram becomes sharper. Never-
theless, there is always a finite transition even for V-troughs and more so for cones
so that the comparison with the CPC always shows that the cone is much less effi-
cient and departs further from the ideal than the CPC.

Finally, Figure 4.29 shows the pattern of rays accepted and rejected by a 10°
cone as seen at the entry aperture. This may be compared with Figure 4.21d, which
shows the pattern for a 10° CPC.
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Figure 4.28 The pitch-circle construction for reflecting cones and V-troughs. A straight line
through the entry aperture of the V-trough emerges from the exit aperture if it cuts the
pitch circle. Otherwise, it is turned back. The construction is only valid for meridian rays
of a cone.

3 Garwin showed that, in our terminology, a 3D concentrator can be designed to transform an
area of any shape into any other while conserving étendue but that it is necessary to start the
concentrator as a cylindrical surface and to change its shape adiabatically. In effect, this means
that the concentrator would have to be infinitely long to achieve any concentration greater than
unity!
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DEVELOPMENTS AND
MODIFICATIONS OF THE
COMPOUND PARABOLIC

CONCENTRATOR

69

5.1 INTRODUCTION

There are several possible ways in which the basic CPC as described in Chapter
4 could be varied for specific purposes. Some of these have been mentioned already,
such as a solid dielectric CPC using total internal reflection. Others spring to mind
fairly readily for specific purposes, such as collecting from a source at a finite dis-
tance rather than at infinity. In this chapter we describe these developments and
discuss their properties.

5.2 THE DIELECTRIC-FILLED CPC WITH 
TOTAL INTERNAL REFLECTION

Both 2D and 3D CPCs filled with dielectric and using total internal reflection were
described by Winston (1976a). If we consider either the 2D case or meridian rays
in the 3D case, we see that the minimum angle of incidence for rays inside the
design collecting angle occurs at the rim of the exit aperture, as in Figure 5.1. If
the dielectric has refractive index n, the CPC is, of course, designed with an accep-
tance angle q ¢ inside the dielectric, according to the law of refraction. It is then
easy to show that the condition for total internal reflection to occur at all points
is

(5.1)

Since the sine function can only take values between 0 and 1, the useful values
of n are greater than . This is in good agreement with the range of useful optical
materials in the visible and infrared regions. In a 3D CPC, rays outside the merid-
ian plane have a larger angle of incidence than meridian rays at the same incli-
nation to the axis so Eq. (5.1) covers all CPCs. The expressions in Eq. (5.1) are
plotted in Figure 5.2. For most purposes it is unlikely that collecting angles exceed-

2

sin sin¢ < - ( ) < - ( )q qi in or n n1 2 22



ing 40° would be needed so that the range of useful n coincides very well. For
trough collectors there is always total internal reflection at the perpendicular end
walls, since there is the same angle of incidence here as for the ray at q ¢ at the
entry aperture on the curved surface. In fact, it could be shown that for n > it
is impossible for a ray to get into a trough CPC and not be totally internally
reflected at the end face.

The angular acceptance of the dielectric-filled 2D CPC for nonmeridional rays
is actually larger than a naive analogy with the n = 1 case would indicate. To see
this, it is convenient to represent the angular acceptance by the direction cosine

2
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Figure 5.1 A dielectric-filled compound parabolic concentrator. The figure is drawn for an
sentry angle of 18° and a refractive index of 1.5. The concentration ratio is thus 10.2 for a
3D concentrator.

Figure 5.2 The maximum collecting angles for a dielectric-filled CPC with total internal
reflection, as functions of the refractive index.



variables introduced earlier. Let x be transverse to the trough, let y lie along the
trough, and let L and M be the corresponding direction cosines. We recall that the
ordinary (n = 1) 2D CPC accepts all rays whose projected angles in the x, z plane
are £qi, the design cutoff angle. This condition is represented by an ellipse in the
L, M plane with semidiameters sin qi and 1, respectively (shown in Figure 5.3a).
Therefore, the acceptance figure just inside the dielectric is such an ellipse with
semidiameters sinqi and a. In terms of direction cosines, Snell’s law is simply
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Figure 5.3 Angular acceptance for dielectric-filled concentrators, plotted in direction cosine
space.



(5.2)

so one might expect the acceptance ellipse in the L, M plane to be scaled up by n.
However, physical values of L and M lie inside the unit circle

(5.3)

It follows that the accepted rays lie inside the intersection of the scaled-up 
ellipse and the unit circle. This region, as seen in Figure 5.3b, is larger than an
ellipse with semidiameters sinqi¢ and 1, respectively. A quantitative measure of
this enhancement is useful in discussing the acceptance of such systems for diffuse
(i.e., totally isotropic) radiation. Diffuse radiation equipopulates phase space.
Hence, it is uniformly distributed in the L, M plane. The area of the acceptance
figure for an ordinary 2D CPC (corresponding to Figure 5.3a) is p sinqi. Therefore,
the fraction of diffuse radiation accepted is just sinqi. However, for the dielectric-
filled case, the area depicted by Figure 5.3b is found to be

(5.4)

where qC is the critical angle sin-1(1/n). There exceeds p sinqi by a factor

(5.5)

This enhancement factor assumes the limiting value for small angles qi

(5.6)

and slowly decreases to unity as qi increases to p /2. For example, for n = 1.5, a
value typical for plastics, the enhancement is ª1.17 for small qi (£10°) and reduces
to ª1.13 for qi = 40°. We shall return to this property in Chapter 13, where this
extra angular acceptance is shown to be advantageous for solar energy collection.

The dielectric-filled CPC has certain practical advantages. Total internal
reflection is 100% efficient, whereas it is difficult to get more than about 90% reflec-
tivity from metallized surfaces. Also, for the same overall length the collecting
angle in air is larger by the factor n, since Eqs. (4.1)–(4.4) for the shape of the CPC
would be applied with the internal maximum angle qi¢, instead of qi. If the absorber
can be placed into optical contact with the exit face and if it can utilize rays at all
angles of incidence, the maximum theoretical concentration ratio becomes, from
Eq. (2.13), n2/sin2qi—that is, it is increased by the factor n2 (or n for a trough con-
centrator). However, if the rays had to emerge into air at the exit aperture, it is
clear that many would get turned back at this face by total internal reflection.
Thus, the CPC design needs to be modified for this case.

5.3 THE CPC WITH EXIT ANGLE LESS THAN p /2

There may well be instances such as that mentioned at the end of the last section
where it is either impossible or inefficient to use rays emerging at up to p /2 from
the normal to the exit aperture. The CPC designs can be easily modified to achieve
this. It would then be close to being what we have called an ideal concentrator but
without maximum theoretical concentration ratio.

2
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Let qi be the input collecting angle q0 and the maximum output angle. Then
an ideal concentrator of this kind would, from Eq. (2.12), have the concentration
ratio

(5.7)

for a 2D system or

(5.8)

for a 3D system. Following Rabl and Winston (1976) we may call this device a qi/q0

transformer or concentrator. It is convenient to design the qi/q0 concentrator by
starting at the exit aperture and tracing rays back. As for the basic CPC we start
by considering the 2D case or the meridian rays for the 3D case. Let QQ¢ = 2a¢ be
the exit aperture in Figure 5.4. We make all reversed rays leaving any point on
QQ¢ at angle q0‚ appear in the entrance aperture at angle qi to the axis. This is
easily done by means of a cone section Q¢R making an angle 1/2(q0 - qi) with the
axis. Next, we make all rays leaving Q at angles less than q0 appear at the entry
aperture at angle qi; this is done in the same way as for a CPC by a parabola RP¢
with focus at Q and axis at angle qi to the concentrator axis. The parabola finishes
as usual where it meets the extreme ray from Q at qi, so its surface is cylindrical
at the entry end.

We have ensured by construction that in the meridian section all rays enter-
ing at qi emerge after one reflection at less than or equal to q0, and it is easily seen
by examining a few special cases that all rays entering at angles less than qi

emerge at less than q0. This must therefore be an ideal qi/q0 concentrator with

(5.9)

We can also prove this slightly more laboriously from the geometry of the
design; this is done in Appendix H.

Clearly the 2D qi/q0 concentrator is an ideal concentrator, since the same rea-
soning as in Section 4.4 can be applied. In 3D form there will be some losses from
skew rays inside qi being turned back. We show in Figure 5.5a the transmission-
angle curve for a typical case. The transition is as sharp as for a full CPC, but
when we compare Figure 5.5b with Figure 4.14, we see that the pattern of rejected
rays is quite different.

a a i¢ = sin sinq q0

C n ni i iq q q q, sin sin0 0 0
2( ) = ( ) ( )[ ]

C n ni i iq q q q, sin sin0 0 0( ) = ( ) ( )
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Figure 5.4 The qiq0 concentrator; as shown, qi = 18° and q0 = 50°.



Although the 2D qi/q0 concentrator transmits within q0 all rays incident inside
qi, it does not reject all rays incident outside qi but transmits some of them outside
q0. The reason for this can be seen by noting that the straight cone section in Figure
5.4 lies outside the continuation of the parabolic section, and this parabolic section
is the same as the section of an ordinary CPC with entry angle qi. Thus, some rays
outside qi must be transmitted, and since the concentrator is ideal for rays inside
qi, these extra rays must emerge outside qi. The same applies to the 3D version
and the effect of these extra rays is not shown in Figure 5.5a.

5.4 THE CONCENTRATOR FOR A SOURCE AT 
A FINITE DISTANCE

So far we have assumed the source to be at infinity, as in the straightforward appli-
cation to solar energy collection. There are, however, obviously cases where we
should like to collect from a source at a finite distance, and the edge-ray principle
enables us to derive the shape very simply (Winston, 1976c).

In Figure 5.6, let AA¢ be the finite source and let QQ¢ be the desired position
of the absorber. Then if we apply the edge-ray principle, it is clear that the reflect-
ing surface has the cross section of an ellipse, P¢Q, with foci at A and Q. For a 3D
system the complete surface would be obtained by rotating this ellipse about the
axis of symmetry.

We can show that as a 2D system this has maximum theoretical concentra-
tion by noting that all rays from AA¢ that enter the concentrator do emerge (by
the same reasoning as for the basic CPC), and the calculating the dimensions of
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Figure 5.5 (a) The transmission-angle curve for a 10°/60° concentrator. (b) Rays transmit-
ted and turned back in the 10°/60° concentrator for 10° input angle (see Figure 4.14 for full
legend).



the system by coordinate geometry. This approach is complicated, partly because
of the geometry but also because it is not so easy to define the collecting angle for
a source at a finite distance. It is better to use a more physical approach and cal-
culate the étendue at either end of the system.

We take an object AA¢ = 2h and an aperture PP¢ a distance z apart, as in Figure
5.7; if the coordinate y is measured from the center of the aperture, the étendue
is

(5.10)

It is useful to rewrite Eq. (5.10) in the form

(5.11)

because this version, a remarkably simple result due to Hottel (1954), actually
gives the correct étendue formula even when there is no particular symmetry
between the relative positions of aperture and source.
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Figure 5.6 A concentrator for the object AA¢ at a finite distance.

Figure 5.7 Calculating the étendue for a source AA¢ at a finite distance. The collecting aper-
ture is at PP¢.



Now, returning to Figure 5.6, we have from the fundamental property of the
ellipse that the sum of the distances from the two foci top any point on the curve
is a constant—that is,

or

(5.12)

so that the étendue measured at the output end is 2Q¢Q. Since Q¢Q is perpendicu-
lar to the axis, this must mean that rays emerge from all points of the exit 
aperture with their direction cosines distributed uniformly over ±1—that is, this
system has the maximum theoretical concentration ratio.

For the 3D case with rotational symmetry (Figure 5.6 now represents a merid-
ional section) a straightforward calculation gives for the étendue (Winston, 1978)

(5.13)

while the maximum value assumed by the skew invariant is

(5.14)

Notice that, just as for the case of an infinitely distant source (qi = constant), both
Eqs. (5.13) and (5.14) are consistent with maximum concentration onto an exit
aperture of the diameter given by Eq. (5.12). Nevertheless, this system in 3D will
turn back some rays, just as for the basic CPC, and so will not be quite ideal.

5.5 THE TWO-STAGE CPC

In Section 5.2 we discussed the dielectric-filled CPC using total internal reflection,
and we noted that the use of a refractive index greater than unity at the exit 
aperture permits in principle a greater concentration ratio. In order to utilize this
the absorber must be in optical contact with the dielectric, and preferably also the
interface must be matched to minimize reflection losses by a suitable coating or a
grading of the refractive index. This seems possible, but we then have the practi-
cal difficulty that CPCs are very long and therefore a large volume of possibly
expensive dielectric is needed. This difficulty may be circumvented by a two-stage
system like the one in Figure 5.8. The first stage in air is a qi/q0 concentrator to
give whatever final output angle is needed.

h AP APmax = ¢ -( ) 2

p 2 2 4AP AP¢ -( )

AP AP Q Q¢ - = ¢
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Figure 5.8 Two-stage system ending in a dielectric of index n. In the diagram, q = 10°, 
q ¢ = 60°, q≤ = 24.5°, and n = 1.85.



This two-stage system, if designed to give maximum concentration n/sinq,
where q is the collecting angle in air, is always longer than a basic CPC designed
for concentration 1/sinq but with the same collecting aperture. If we make the
dielectric part as short as possible—that is, if we maximize q≤ according to Eq.
(5.1)—then it can be shown that the overall length of the two-stage system is

(5.15)

whereas the basic CPC has length

(5.16)

It is easily seen that (5.15) is greater than (5.16). Figure 5.9 shows some typical
values for comparison.
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Figure 5.9 A comparison of the overall lengths of single- and two-stage concentrators
according to Eqs. (5.15) and (5.16). The ordinate is the ratio of length to radius of collecting
aperture, and the graphs are labeled with the refractive index of the second stage.



5.6 THE CPC DESIGNED FOR SKEW RAYS

As we saw in Chapter 4, the basic 3D CPC turns back some skew rays, and this
makes its concentration efficiency slightly less than ideal, as shown in Figure 4.15.
The basic CPC is designed by applying the edge-ray principle to meridian rays,
and this uses up all the degrees of freedom available, so it is not surprising that
some skew rays fail. This suggests that we should try designing a concentrator by
applying the edge-ray principle to skew rays. The result might then have a slightly
closer approach to maximum theoretical concentration ratio.

Figure 5.10 shows a view from the entry aperture of a concentrator. The entry
aperture has diameter 2a and the exit aperture 2a¢ = 2asinqi. Let this system be
designed to fulfill the edge-ray principle for skew rays with skew invariant h (see
Section 2.8 and Appendix C for the skew invariant). In this projected view a ray
that enters at qi and that grazes the entry aperture at A and the exit aperture at
B is reflected across to C on the exit aperture (double arrows). The segment BC is
thus tangent to a circle of radius h/sinqi. Another ray AD, also entering at qi, meets
the opposite entry edge at D and is reflected there. In order to satisfy the edge-
ray principle it must meet the edge of the exit aperture and therefore is like the
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Figure 5.10 Design of a concentrator by applying the edge-ray principle to rays with
nonzero skew invariant.



double-arrowed segment AB rotated around the axis so that A reaches D. Thus,
the segment reflected from D touches the circle of radius h/sinqi. We can show that
this segment meets the exit aperture at the same point C as the segment BC
reflected at B by calculating the angles subtended at the center by the various ray
segments; the proof is given in Appendix C.

The design is completed by requiring that all rays that leave the exit aperture
at its rim shall have entered at the input angle qi. These rays in the projection of
Figure 5.10 are typified by the three-arrowed segments—that is, reflection at some
point E along the concentrator to emerge at F on the exit rim. It turns out that
the rays do not in general emerge at the same point on the exit rim. Thus, we have
a situation where the edge-ray principle is less restrictive than, say, a requirement
for imaging at the exit rim. This process completely determines the concentrator
as a surface of revolution, but it does not seem to be possible to represent it by
any analytical expression. We show in Appendix C how the differential equation
of the surface, which is first-order nonlinear, is obtained. But it can only be solved
numerically. P. Greenman computed the solution for several values of the input
angle qi and skew invariant h. The results are, briefly, that the shapes are very
similar to those of the basic CPC for the same qi but that the overall lengths are
less and the transitions in the transmission-angle curves are correspondingly more
gradual. Figure 5.11 shows some of these curves.

The overall length of this concentrator is determined, as for the basic CPC, by
the extreme rays, as in Figure 5.12. This figure shows the rays aDC and aBC of
Figure 5.10, both inclined at the extreme input angle to the axis and both grazing
the exit aperture after one and no reflections from the concentrator, respectively.
Then in order to admit all rays at qi or less, the concentrator surface must finish
at the point A determined by the intersection of the ray ABC with the surface.
This geometry is obvious for the basic CPC, and also in that system the ratio of
input to output diameters is set as part of the design data at the desired value
1/sinqi. In the present system the design is developed from one end, and it does
not follow that the ratio of input to output diameters will have any particular
simple value. In fact, it can be shown (Appendix C) that this ratio is again 
1/sinqi—a result that is by no means obvious. In spite of this, the concentrator
with nonzero h has even less than the maximum theoretical concentration ratio
than the basic CPC, as can be seen by comparing Figures 5.11 and 4.19. This is
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Figure 5.11 Transmission-angle curves for concentrators designed for nonzero skew invari-
ant h. All the concentrators have exit apertures of diameter unity.



because the shorter length permits meridian rays at angle greater than qi to reach
the exit aperture directly. Thus, by volume conservation of phase space (Appendix
A), more rays inside qi must be rejected.

Figure 5.13 shows a scale-drawing comparison of the basic 40° CPC with con-
centrators designed for nonzero h. It can be seen how meridian rays at angles
greater than qi reach the exit aperture.

In Appendix C we show that in an ideal concentrator most transmitted rays
have small values of the skew invariant h. In fact, we calculate the relative fre-
quencies of occurrence of h and show that the greatest frequency is at h = 0. This
tends to support our finding that the solution for the concentrator design with 
h = 0 is best.

5.7 THE TRUNCATED CPC

A disadvantage of the CPC compared to systems with smaller concentration is that
it is very long compared to the diameter of the collecting aperture (or width for
2D systems). This is naturally important for economic reasons in large-scale appli-
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Figure 5.12 How the length of a concentrator is determined by the extreme rays.

Figure 5.13 Comparison of concentrator profiles for qi = 40°; (a) h = 0; (b) h = 0.32. It can
be seen that meridian rays from the edge of (b) at angles greater than 40° are transmitted,
since rays at 40° from the edge of (a) just get through the exit aperture.



cations such as solar energy. From Eq. (4.2) the length L is approximately equal
to the diameter of the collecting aperture divided by the full collecting angle—that
is,

(5.17)

If we truncate the CPC by removing part of the entrance aperture end, we find
that a considerable reduction in length can be achieved with very little reduction
in concentration, so this may be a useful economy.

It is convenient to express the desired relationships in terms of the (r, f) polar
coordinate system as in Figure 5.14. We denote truncated quantities by a subscript
T. We are interested in the ratio of the length to the collecting apertures and also
in the ratio of the area of the reflector to that of the collecting aperture. We find

(5.18)

(5.19)

(5.20)

so that

(5.21)

Plots of this quantity against the theoretical concentration ratio aT/a¢ for 2D
truncated CPCs were given by Rabl (1976c) and by Winston and Hinterberger
(1975). Figure 5.15 shows some of these curves, and it can be seen that initially—
for points near the broken line locus for full CPCs—the curves have a very large
slope, so the loss in concentration ratio is quite small for useful truncations.
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Figure 5.14 The polar coordinates used in computing truncation effects.



In addition to the ratio of length to aperture diameter we may be interested
in the ratio of surface area of reflector to aperture area, since this governs the cost
of material for the reflector. The general forms of the curves would be similar to
those in Figure 5.15 but with differences between 2D and 3D concentrators. The
explicit formulae for reflector area divided by collector area are, for a 2D truncated
CPC,

(5.22)

and for a 3D truncated concentrator

(5.23)

Derivations of the preceding results and the explicit form of the integral in Eq.
(5.23) are given in Appendix I. Some representative plots of these functions are
given in Figures 5.16 and 5.17. It should be noted that in these figures the theo-
retical concentration ratios are respectively (aT/a¢) and (aT/a¢)2. We conclude from
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Figure 5.15 Length as a function of concentration ratio for 2D truncated concentrators.
The numbers marked on the curves are the actual truncation ratios—that is, LT/L.
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Figure 5.16 Concentrator surface area as a function of concentration ratio for 2D truncated
concentrators. The numbers marked on the curves are the actual truncation ratios—that is,
LT/L.

Figure 5.17 Concentrator surface area as a function of concentration ratio for 3D truncated
concentrators. The numbers marked on the curves are the actual truncation ratios—that is,
LT/L.



this that losses in performance due to moderate truncation would be acceptable in
many instances on account of the economic gains.

5.8 THE LENS-MIRROR CPC

A more fundamental method for overcoming the disadvantage of excessive lengths
incorporates refractive elements to converge the pencil of extreme rays. By con-
sistent application of the edge-ray principle we leave the optical properties of the
concentrator essentially identical to the all-reflecting counterpart while substan-
tially reducing the length in many cases. The edge-ray principle requires that the
extreme incident rays at the entrance aperture also be the extreme rays at the
exit aperture. In the all-reflecting construction (Figure 4.10) this is accomplished
by a parabolic mirror section that focuses the pencil of extreme rays from the wave
front W onto the point P2 on the edge of the exit aperture. To incorporate, say, a
lens at the entrance aperture, the rays from W, after passage through the lens,
are focused onto P2 by an appropriately shaped mirror M (Figure 5.18). Therefore,
the profile curve of M is then determined by the condition

(5.24)

To comprehend the properties of the lens-mirror collector, it is useful to con-
sider a hypothetical lens that focuses rays from P onto a point F. From Eq. (5.24)
the appropriate profile curve for M is a hyperbola with conjugate foci at F and P2

(Figure 5.18).1 This example illustrates the principal advantage of this configura-
tion. The overall length is greatly reduced from the all-reflecting case to L = f, the
focal length of the lens. A real lens would have chromatic aberration, so M would
no longer be hyperbolic but simply a solution to Eq. (5.24). A solution will be pos-
sible so long as the aberrations are not so severe as to form a caustic between the
lens and the mirror. For the example in Figure 5.18, where the lens is plano-convex
with index of refraction n ~ 1.5, this means we must not choose too small a value
for the focal ratio of this simple lens (an f/4 choice works out nicely). Alternatively,
we may say that the mirror surface corrects for lens aberrations, providing these

nds
W

P
=Ú const.

2
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Figure 5.18 The lens-mirror CPC.

1 By suitable choice of parameters, the hyperbola can be a straight line.



are not too severe, to produce a sharp focus at P2 for the extreme rays. Of course,
this procedure can only be successful for monochromatic aberrations so that it is
advantageous to employ a lens material of low dispersion over the wavelength
interval of interest.

We may expect the response to skew rays in a rotationally symmetric 3D
system to be nonideal just as in the all-reflecting case, and, in fact, ray tracing of
some sample lens-mirror configurations shows angular cutoff characteristics indis-
tinguishable from the simple CPC counterpart. We note that certain configura-
tions of the lens-mirror type were proposed by Ploke (1967).

5.9 2D COLLECTION IN GENERAL

For moderate concentration ratios for solar energy collection, there is considerable
interest in systems that do not need diurnal guiding for obvious reasons of economy
and simplicity (see, e.g., Winston, 1974; Winston and Hinterberger, 1975). These
naturally would have troughlike or 2D shapes and would be set pointing south2 at
a suitable elevation so as to collect flux efficiently over a good proportion of the
daylight hours. So far our discussion has suggested that these might take the 
form of 2D CPCs, truncated CPCs, or compound systems with a dielectric-filled
CPC as the second stage. In discussing all these it was tacitly assumed that the
absorber would present a plane surface to the concentrator at the exit aperture,
and this, of course, made the geometry particularly simple. In fact, when applica-
tions are considered in detail, it becomes apparent that other shapes of absorber
would be useful. In particular, it is obvious that cylindrical absorbers—that is,
tubes for heating fluids—suggest themselves. In this chapter we discuss the devel-
opments in design necessary to take account of such requirements.

5.10 EXTENSION OF THE EDGE-RAY PRINCIPLE

In Chapter 3 we proposed the edge-ray principle as a way of initiating the design
of concentrators with concentration ratios approaching the maximum theoretical
value. We found that for the 2D CPC this maximum theoretical value was actu-
ally attained by direct application of the principle.

We now propose a way of generalizing the principle to nonplane absorbers in
2D concentrators. Let the concentrator be as in Figure 5.19, which shows a gen-
eralized tubular absorber. We assume the section of the absorber is convex every-
where, and we also assume it is symmetric about the horizontal axis indicated.
Then we assert that the required generalization of the edge-ray principle is that
rays entering at the maximum angle qi shall be tangent to the absorber surface
after one reflection, as indicated.

The generalization can easily be seen to reduce to the edge-ray principle for a
plane absorber. In order to calculate the concentration we need to have a rule for
constructing the concentrator surface beyond the point P¢0‚ at which the extreme
reflected ray meets the surface. Here we choose to continue the reflector as an
involute of the absorber surface, as indicated by the broken line. A reason for this
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choice will be suggested following. We shall be able to show that this design for a
2D concentrator achieves the maximum possible concentration ratio, defined in
this case as the entry aperture area divided by the area of the curved absorber
surface.

Following Winston and Hinterberger (1975) we let r be the position vector of
a current point P on the concentrator surface and take R as the position vector of
the point of contact of the ray with the absorber. Then we have

(5.25)

where t is the unit tangent to the absorber—that is, we have

(5.26)

where S is the arc length round the absorber. Let k be a unit vector along the direc-
tion of the extreme rays so that in the coordinate system shown k = (sinqi, 0, 
-cosqi). Our condition that the tangent to the absorber be reflected into k takes
the form, equating sines of the angles of incidence and reflection,

or

(5.27)

Now by differentiating Eq. (5.25) we obtain

and on scalar multiplication by t this gives

(5.28)

On substituting in Eq. (5.27) and integrating we obtain

(5.29)S l-( ) = -( ) ◊2
3

3 2r r k

t r◊ = -d dS dl dS1

d dS d dS dl dS ld dSr R t t= - -

t r k r◊ = ◊d dS d dS

t r k r◊ = ◊d d

t d dS= R

r R t= - l

86 Chapter 5 Developments and Modifications of the Compound Parabolic Concentrator

Figure 5.19 Generalizing the edge-ray principle for a nonplane absorber.



In this equation the points 2 and 3 would be those corresponding to the extreme
reflected rays, as in the diagram.

Between points 1 and 2 we have postulated that the concentrator profile shall
be an involute of the absorber, and the condition for this is

(5.30)

Thus, for this section of the curve we have from Eq. (5.28)

or, since our involute is chosen to be the one that starts at point 1

(5.31)

Thus, Eq. (5.29) gives

(5.32)

From the figure it can be seen that (r3 - r2) ·k is equal to the projection of P0¢ A¢
onto AP0¢ . Thus

and on substituting into Eq. (5.32) we find

(5.33)

Recalling that the second section of the concentrator is an involute, we see
that l2 = S2. Thus,

(5.34)

We have proved that the concentrator profile generated in this way has the theo-
retical ratio of input area to absorber area—that is, it has the maximum theoret-
ical concentration ratio if no rays are turned back.

If the property of the involute that its normal is tangent to the parent curve
is remembered, it is easy to see that a concentrator designed in this way sends all
rays inside the angle qi to the absorber, including those outside the plane of the
diagram if it is a 2D system. Thus, from arguments based on étendue and on phase
space conservation (see Section 2.7 and Appendix A) the system is optimal. For a
further generalization of the the edge ray principle see Appendix B.

5.11 SOME EXAMPLES

It is easy to apply our generalization to plane absorbers. Figure 5.20 shows an
edge-on fin absorber QQ¢ with extreme rays AQP0¢ and A¢QP0. Clearly the section
of the concentrator between P0 and P0¢ is an arc of a circle centered on Q and the
section A¢P0¢ is a parabola with focus at Q and axis AQP0¢.

The two-sided flat plate collector normal to the axis, as in Figure 5.21, is a
slightly more complicated case. Following our rules, there are three sections to the
profile. OP¢ receives no direct illumination and is thus an involute of the segment
OQ¢; that is, it is an arc of a circle centered on Q¢ and therefore part of a parabola
with focus at Q and axis AQ¢P¢. R¢A¢ must focus extreme rays on Q and is there-
fore a parabola with focus Q and axis parallel to AQ¢P¢.

S S S a i= + =3 2 2 sinq

S l a i3 2 2+ = sinq

r r k3 2 3 2 2-( ) ◊ = - +( ) +l l a isinq

S l3 3 3 2- = -( ) ◊r r k

S l2 2=

S S l l2 1 2 1- = -

t r◊ =d dS 0
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In all cases it can easily be seen from the general mode of construction
described in Section 5.10 that the segments of different curves have the same slope
where they join; for example, in Figure 5.21 the normal at P¢ is a ray for the cir-
cular segment OP¢ and the parabolic segment P¢R¢, and at R¢ the incident ray at
angle qi is required to be reflected to Q¢ by the segment P¢R¢ and to Q by the
segment R¢A¢.

Figure 5.22 shows to scale the profile for a circular section absorber. Here the
actual profile does not have a simple parabolic or circular shape, but we shall give
the solution in Section 5.12. It is noteworthy, however, that in Section 5.10 we
deduced the property of having maximum theoretical concentration ratio without
explicit reference to the profile, just as we were able to do for the basic CPC (see

88 Chapter 5 Developments and Modifications of the Compound Parabolic Concentrator

Figure 5.20 The optimum concentrator design for an edge-on fin.

Figure 5.21 The optimum concentrator design for transverse fin.



Chapter 4). The case of the circular section absorber is important for solar energy
application (Chapter 10) and has been actively pursued by a number of investi-
gators. For example, Ortobasi (1974) independently developed the ideal mirror
profile in an innovative collector program at Corning Glass Company.

5.12 THE DIFFERENTIAL EQUATION FOR 
THE CONCENTRATOR PROFILE

It is straightforward but laborious to set up a differential equation for the con-
centrator profile. The equation, given with its solution in Appendix H, is used for
the region of the profile that sends extreme rays tangent to the absorber after one
reflection—that is, the region between points 2 and 3 in Figure 5.19. The remain-
ing region is an involute arranged to join the profile smoothly, and the equation
for this is also given in the appendix. However, it is worth noting that for many
practical applications the involute curve can be drawn accurately enough to scale
by the draftsman’s method of unwinding a taut thread from the absorber profile.

5.13 MECHANICAL CONSTRUCTION FOR 
2D CONCENTRATOR PROFILES

In the discussion of Figure 5.19 in Section 5.20, it appeared that part of the con-
centrator surface was generated as an involute of the absorber section. It is pos-
sible to combine this result with the fact that optical path lengths from a wave
front to a focus are constant to obtain a simple geometrical construction for the
concentrator profile. Figure 5.23 shows a system similar to that shown in Figure
5.19, but we have drawn in a wave front AB of the incoming extreme pencil, and
we assume the source is at a large but finite distance.

The construction is then as follows. We tie a string between the source and
the point 1 at the rear of the absorber and pull the string taut with a pencil, as
in the so-called gardener’s method of drawing an ellipse. The length of the string
must be such that it will be just taut when it is pulled right around the absorber
to reach point 1 from the other side, as in Figure 5.24. It is then unwound, keeping
the string taut, and the pencil describes the correct profile. To check this we simply
have to show that the line drawn is at the correct angle to produce reflection. In
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Figure 5.22 The optimum concentrator design for a cylindrical absorber.



Figure 5.25 the string is tangent to the absorber at A, the source point is at C, and
B is a typical position of the pencil. If the pencil is moved to B¢ where BCB¢ is a
small angle e, then we have

(5.35)

so that

(5.36)

Thus, by Fermat’s principle BB¢ must be a portion of a reflecting surface that
reflects CB into BA.

Figure 5.26 shows this method generalized further to a convex source and a
convex absorber. The string is anchored at two suitably chosen points A and B and
stretched with the pencil P. The length of the string is chosen so that it just reaches
to the point Q when wound around the absorber. It is easily seen that this gener-
ates a 2D ideal concentrator. Here we are generating a concentrator that collects

CBA CB A= ¢ + ( )0 2e

CBA CB A AA O= ¢ ¢ - ¢ + ( )e2
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Figure 5.23 A concentrator for a source at a finite distance and a nonplane absorber.

Figure 5.24 The string construction for the concentrator profile.



all the flux from the source and sends it all to the absorber, and for this to be phys-
ically possible, we must make the perimeters of the source and absorber equal. If
this were not so, the construction would not work because the string would not be
the correct length to just close the curve, and this would mean we were trying to
infringe the rules dictated by conservation of étendue.

Returning to Figure 5.26 we note that a solution is possible for any distance
between source and absorber. We note also that the solution appears not to be
unique, in the sense that we could break the reflector at its widest part and insert
a straight parallel-sided section of any length, since such a section clearly trans-
forms an étendue of width 2a and angle p. However, from obvious practical con-
siderations, it is desirable to minimize the number of reflections of a given ray,
and this is clearly done by not inserting such a straight section.
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Figure 5.25 Proof that the string construction gives a concentrator surface that agrees with
Fermat’s principle.

Figure 5.26 The case of a convex source and a convex absorber treated by the string 
construction.



We could, of course, vary these solutions still further by adding in CPCs and
q0/qi systems (Section 5.3) at the preceding break points instead of or in addition
to the cylindrical sections. Again, this adds to the number of reflections, and it
seems that there is always a unique “most economical” solution for which the
extreme rays have at most one reflection.

We could generalize the string method to media with nonuniform refractive
index by postulating that the string is elastic in such a way that it always assumes
the optical path length, Ún ds, of the medium through which it passes. There is, of
course, no way in which such a string could be realized, but the concept shows how
ray trajectories—that is, geodesics—between the extremes of the apertures always
define the correct mirror surface.

In another example of parallel development, the “string method” for generat-
ing ideal mirror profiles was discovered independently by Bassett and Derrick
(1978) of the University of Sidney.

5.14 A GENERAL DESIGN METHOD FOR 
A 2D CONCENTRATOR WITH 
LATERAL REFLECTORS

In this section we formulate a more general treatment of the 2D concentrator with
lateral reflectors, from which most other results in this chapter could be derived.
A further generalization will be shown in Chapter 6. We shall describe a proce-
dure in which an input surface and an output surface of given shapes are postu-
lated enclosing and surrounded by regions of given refractive index distributions.
On each of these surfaces a distribution of extreme rays is given. Then the proce-
dure enables us to design a 2D concentrator that will ensure that all rays between
the extreme incoming rays and none outside are transmitted so that the concen-
trator is optimal.

Suppose we have, as in Figure 5.27, two surfaces AB and A¢B¢, and let AB be
illuminated in such a way that the extreme angle rays at each point form pencils
belonging respectively to wave fronts Sa and Sb. Similarly, rays at intermediate
angles belong to other wave fronts, so the whole ensemble of rays comes ultimately
from a line of point sources and is transformed by a possibly inhomogeneous
medium in such a way that the rays just fill the aperture AB. These rays then
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Figure 5.27 Beams of equal étendue to fit a concentrator.



have a certain étendue H, and we shall see following how to calculate it. Similarly,
we draw rays and wavefronts emerging from A¢B¢ as indicated, and we postulate
that these shall have the same étendue H.

Now we want to know how we can design a concentrator system between the
surfaces AB and A¢B¢, possibly containing an inhomogeneous medium, that shall
transform the incoming beam into the emergent beam without loss of étendue.

To solve this problem, we postulate a new principle (we shall see that our edge-
ray principle of Chapter 4 can be regarded as derived from it): The optical system
between AB and AB¢ must be such as to exactly image the pencil from the wave
front Sa into one of the emergent wave fronts and Sb into the other. By “exactly”
we mean that all rays from Sa as delimited by the aperture AB must just fill A¢B¢
so that none is lost and there is no unused space, and the same for the rays from
Sb. This principle is relaxed in the formulation of Chapter 6, where it is only
required that the optical system images the rays of Sa,»Sb into rays of any of the
emergent wavefronts.

At this point it may be objected that the preceding seems to have little con-
nection with our original edge-ray principle. But consider a system such as in
Figure 5.28, which shows rays from one extreme wave front Sa in a CPC-like con-
centrator, and also a wave-front Sa¢ gradually moves into coincidence with the edge
A¢ of the exit aperture. We then recover the CPC geometry and the original edge-
ray principle. Thus, this new principle could be stated in the form that extreme
points of the source must be imaged through the system by rays that just fill the
exit and entry apertures.

To see how this principle leads to a solution of the general problem stated at
the beginning of this section, we must first show how to calculate the étendue of
an arbitrary beam of rays at a curved aperture, as in Figure 5.27. We use the
Hilbert integral, a concept from the calculus of variations. In the optics context
(Luneburg, 1964) the Hilbert integral for a path from P1 to P2 across a pencil of
rays that originated in a single point is

(5.37)

where n is the local refractive index, k is a unit vector along the ray direction at
the current point, and ds is an element along the path P1P2. Thus, I(1, 2) is simply
the optical path length along any ray between the wave fronts that pass through
P1 and P2, so it is independent of the form of the path of integration. We can now
use this to find the étendue of the beams in Figure 5.29. The Hilbert integral from
A to B for the a pencil is seen from Eq. (6.14) to be

I n ds
P

P
1 2

1

2
,( ) = ◊Ú k
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Figure 5.28 The edge-ray principle as a limiting case of matching wave fronts.



(5.38)

where f is the angle of incidence of a ray on the line element ds. Thus,

(5.39)

where < > denotes the average and LAB is the length of the curve from A to B.
It follows that provided the aperture AB is filled with rays from the line of

point sources just indicated, the étendue is simply

But

(5.40)

where the square brackets denote optical path lengths along the rays so that we
obtain for the étendue

(5.41)

This result can be seen to be a simple generalization of the result of Eq. (5.11).
Now let there be some kind of system constructed that achieves the desired

transformation of incident extreme pencils with emergent extreme pencils, as in
Figure 5.30. The system takes Sa into Sa¢ and Sb into Sb¢, and we want it to do so
without loss of étendue. We write down the optical path length from Pa Pa¢ and
equate it to that from Pa to Pa¢ . Similarly, for the other pencil,

(5.42)

where

(5.43)
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Figure 5.29 Calculating the étendue.



The left-hand side of this equation can be seen by comparison with Eq. (5.41) to
be the difference between the étendues at the entry and exit apertures. Since we
require this difference to vanish, we have to make the right-hand side of Eq. (6.19)
vanish. A simple way to do this would be to ensure that the optical system of the
concentrator is such that the a and b ray paths from A to B¢ coincide, and the same
for those from B to A¢. We can do this by starting segments of mirror surfaces at
A and A¢ in such directions as to bisect the angles between the incoming a and b
rays. We then continue the mirror surfaces in such a way as to make all b rays
join up with the corresponding emerging b¢ rays; in other words, we image the b
pencil exactly into the b¢ pencil, and similarly for the other mirror surface con-
necting B and B¢. We have thus completed the construction and used up all degrees
of freedom in doing so. For this construction we need to have one and only one a
ray and one and only one b ray crossing the points of the mirror. This condition
excludes wave fronts whose caustic is close to the mirror to design.

It appears from this theorem that it is always necessary to incorporate lateral
mirrors in the design of ideal concentrators. Something like this emerges in con-
sidering simpler symmetric concentrators based on the edge-ray principle. The
concentrator has to image the extreme ray pencils sharply at the rim of the exit
aperture, and since any lens extends equally on either side of the axis, it must
operate on both extreme ray pencils. This requires that a given region of the lens
away from the axis shall produce stigmatic imagery of two pencils at different
angles, which is the way in which the SMS design method of Chapter 8 solves the
problem. The need of the lateral reflectors for this design method will be clearer
in Chapter 6 with the introduction of the flow lines.

5.15 APPLICATION OF THE METHOD: 
TAILORED DESIGNS

Let us reconsider the case of Figure 5.18 where we have a lens at the entry of the
concentrator to design. Assume that the lens can no longer be considered a thin
lens, but just as a refracting surface. The objective is to design a reflector accord-
ing to the rules of the preceding section. The first step of the design is to trace the
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rays of the wave front W across the lens. After the refraction, the wave front W¢
will not be plane in general, and since we don’t know anything about the shape of
the lens, we cannot conclude that the wave front after refraction is spherical. The
reflector must be designed to focus the rays of W¢ into the point P2. This is a gen-
eralized Cartesian Oval problem (see Chapter 8). If the wave front W¢ were spher-
ical, as in the case of Figure 5.18 (with center at F in this example), then the
reflector obtained would be the branch of a hyperbola (with focuses at P2 and F).

These types of designs, in which the incident wave fronts are not planes, have
been called tailored designs. The first reference of one application of these designs
(excluding the cases like the one of Figure 5.18, in which the refracted wave front
is spherical, so the reflector has an analytic expression) is the Linear Integrated
Tubular Concentrator1 (see Appendix C) whose cross section is a 2D design with
a refracting circle at the entry aperture. The plane wave front W is refracted by
this circle.

In other tailored designs, the plane wave fronts are reflected at a prescribed
mirror instead of being refracted. Reference2 shows more details of this applica-
tion. Many practical applications of nonimaging concentrators are within this
case3,4,5,6. As we will see in Chapter 7, there is other type of tailored designs for
which the calculation of the incident wave fronts is not so straightforward.

5.16 A CONSTRUCTIVE DESIGN PRINCIPLE FOR
OPTIMAL CONCENTRATORS

We conclude this chapter with a discussion of a design prescription for optimal
concentrators that historically has been a fertile source of new and useful solu-
tions. In contrast to the edge-ray principle, which is allied to such abstract notions
as étendue and the Hilbert integral theorem, this practical procedure directly
instructs us how to draw the profile curve of the mirror. The statement is simply
that we maximize the slope of the mirror profile curve consistent with reflecting
the extreme entrance rays onto the absorber and subject to various subsidiary con-
ditions that we may wish to impose. This generic principle for designing optimal
concentrators is inherent in the earliest references (Hinterberger and Winston,
1966a,b).

To see how this rule operates we notice that the CPC designs for variously
shaped absorbers are obtained when we don’t impose any subsidiary conditions.
On the other hand, the qi/q0 design results when we impose the condition that the
maximum exit angle not exceed q0. This approach is particularly useful in situa-
tions where the subsidiary conditions preclude an ideal system—hence strict appli-
cation of the edge-ray principle. For example, the various totally internally
reflecting designs are obtained by specifying total internal reflection at the exter-
nal wall as a condition. As discussed earlier in this chapter, when the input ray
distribution and index of refraction fall outside a specified range, ideal solutions
are not possible. However, efficient designs are still available.

Consider the example in Figure 5.31, where the front entrance face is curved
and the index of refraction is not sufficiently high to totally reflect the extreme
rays along the portion P2, P3, were we to follow the edge-ray principle. The
maximum slope rule would suggest we maintain a constant angle (the critical
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angle) between the extreme ray and normal to the wall along this portion of the
profile curve. In the approximation that the curve face images the extreme pencil
onto a point, the portion between P1, P2 is a hyperbola, whereas the portion
between P2, P3 is an arc of an equiangular spiral.
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6.1 THE CONCEPT OF THE FLOW LINE

We have seen that the edge-ray approach to nonimaging concentration has con-
siderable flexibility in handling 2D problems. Its application in 3D is more limited,
and, although useful designs are obtainable in 3D, these fall short of ideal 
concentration. This motivates the search for alternatives to edge-ray designs, 
especially in 3D applications (Winston and Welford, 1979a).

In the geometrical optics approximation, we describe the propagation of light
rays as trajectories in a six-dimensional phase space (p, x), where the components
of x are the generalized coordinates (xl, x2, x3) and the components of p are the gen-
eralized momenta. These momenta give the optical path length when the light ray
traverses length ds through a medium with an index of refraction n by the rela-
tion n ds = p1dx1 + p2dx2 + p3dx3. For example, in cartesian coordinates (x, y, z) the
components of p are just the optical-direction cosines.

It is useful to picture the propagation of the totality of light rays as if it were
a fluid flow in this six-dimensional space. This flow is subject to conservation 
theorems that are essentially geometric and follow from the law of propagation 
of light rays. These are loosely referred to as Liouville’s theorem, but they are more
properly called the integral invariants of Poincaré. For our purpose, the most
useful invariant is constructed out of a vector J, whose components are

(6.1)

Postulating as always a medium with no attenuation or radiation sources, the
surface integral of J ª ÚJ ·dA is invariant so that J has zero divergence. We call J
the geometrical vector flux and the direction of J the flow line. Quantities like J
occur in radiative transfer where J dA is proportional to the net flux through the

J J J1 2 3 2 1 3 3 1 2= = =Ú ÚÚdp dp dp dp dp dp, , ,



surface element dA and in photometry where Jz is proportional to the illumina-
tion on the x, y plane. This is most readily seen by rewriting

(6.2)

where qz, is the inclination of the elementary beam to the z axis.

6.2 LINES OF FLOW FROM LAMBERTIAN
RADIATORS: 2D EXAMPLES

All Lambertian radiators that subtend the same solid angle at a point in the strict
sense that they are bounded by the same cone give the same vector flux J at that
point. This can be made clear by some simple examples (see Winston and Welford,
1979b).

Consider a strip AA¢ in the x, y plane, of width 2 in the y direction, as in Figure
6.1. A simple calculation shows that J points along the bisector of the angle APA¢,
and its magnitude is |J| = 2sinq, where the angle APA¢ = 2q. From elementary
geometry the lines of flow are confocal hyperbolae with A and A¢ as foci. Notice
that the difference of distances from P to the foci |AP| - |A¢P| is constant along
a flow line from the property of hyperbolae. As a second example, Figure 6.2 shows
a semi-infinite strip. It is easily seen that the flow lines are confocal parabolas,
with the focus at the end A of the strip. A final example is a wedge: Figure 6.3
shows an example where the wedge angle is 60°. In regions where only one face
of the wedge is seen, the pattern is the same as for the semi-infinite strip of Figure
6.2. From any point where both faces are seen, the effect is of a uniform 

J z zn d= Ú 2 Wcosq
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Lambertian source subtending an angle of 60°. Thus |J| is constant in this region,
and the lines of flow are parallel as indicated.

Figure 6.4 shows a truncated 60° wedge RQQ¢R¢, which is infinitely extended
back from the apex with an included angle 2qo, = 60°. We have to consider four dif-
ferent regions in calculating vector flux fields; these are separated by the bound-
ary lines of the wedge produced, as shown in broken lines, and they are labeled
regions A (and A¢), B, C (and C¢), and D. A point P in region A receives flux only
from the face RQ so that the J distribution is the same as for a semi-infinite strip;
that is, the flow lines are confocal parabolas with focus at Q, and the loci of con-
stant |J| are straight lines radiating from Q. If P is in region B, it receives flux
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only from the strip QQ¢, and again we have the result that the lines of flow are
confocal hyperbolas with Q and Q¢ as foci, and the loci of constant |J| are arcs of
circles through QQ and Q¢ If P is anywhere in region D, the source has the con-
stant angular subtense 2qo; thus |J| is constant at 2sinqo throughout this region,
and the lines of flow are straight lines perpendicular to QQ¢. Finally, in region C
the point P receives radiation from RQ and QQ¢ and the angular subtense is 2q as
show in Figure 6.14. The direction of J thus bisects the angle between a constant
direction (parallel to QR) and the radius from a fixed point Q¢; thus, the lines of
flow in region C are confocal parabolas with focus at Q¢ and axis through Q¢ and
parallel to RQ. The loci of constant |J| are straight lines radiating from Q¢, since
the angle 2q as constructed is constant along these lines. The lines of flow for a
truncated wedge are shown in Figure 6.5.

6.3 3D EXAMPLE

A disk as a Lambertian radiator—that is, the circular opening of a black body
cavity—is the most important example to consider. The components of J can be
calculated by integrating expressions such as Eq. (1.1) over the surface of the disk.
These integrations have been carried out for radiative transfer purposes, and we
shall simply quote the results. Sparrow and Cess (1978), for example, provide the
details, and they also give a useful transformation of the surface integral over 
the disk into a line integral around its edge; this considerably simplifies the 
calculation.

Let c be the radius of the disk and take the coordinate axes as in Figure 6.6.
Then the components of J in the y, z plane, which from symmetry are all that need
be considered, are given by

(6.3)
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The slope of the lines of flow is given by arctan(Jy/Jz), and when this is cal-
culated, it turns out that the lines of flow are the same hyperbolas as for the 2D
case. The lines of flow in three dimensions are obtained by rotation about the 
z axis, as shown in Figure 6.7.

6.4 A SIMPLIFIED METHOD FOR CALCULATING
LINES OF FLOW

In certain cases it is easier to calculate the étendue than to perform the preced-
ing integrals. In case the étendue is known, we can use the solenoidal property of
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J to find the lines of flow. For example, in the case described by Figure 6.8, the
étendue H from F, F¢ to A, A¢ is equal to [A¢F] - [AF¢] in the 2D case and p2{[AF]
- [AT¢]}2/4 in the 3D case (the Hottel strings!). Then holding H = constant means
we intercept a constant flux of J and therefore move along a line of flow. But
holding the difference of distances to two foci, F, F¢ constant is the geometric def-
inition of a hyperbola. Hence we recover the hyperbolic flow lines with lighter com-
putation. By similar reasoning we can also obtain the components of J. Thus, the
relations Jz = (∂H/∂y)/2py and Jy = -(∂H/∂z)/2py give Eq. (3).

6.5 PROPERTIES OF THE LINES OF FLOW

Let dS be a small surface element with a 100% reflecting mirror surface on one
side. If we place dS in a vector flux distribution at a point P (Figure 6.9) so the
lines of flow lie in its surface, then the lines of flow locally on the mirror side will
be undisturbed. To see this, we note that before the mirror is placed at position P,
the resolved part of J normal to the surface is zero, since J lies along the lines of
flow. Now this zero normal component is made up of equal and opposite compo-
nents J+

n and J-
n = -J+

n from rays coming from either side of dS. But the effect of
inserting the mirror is to remove J-

n and replace it by J+
n with reversed sign, accord-

ing to the law of reflection, so there is no local disturbance.
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The insertion of a mirror can, of course, disturb the lines of flow ¢ at some dis-
tance because it does not follow from J-

n = -J+
n that each ray from one side is paired

with a ray in the same plane of incidence and with the same angle of incidence on
the other side. However, this simple situation does hold for a 2D vector flux field
illuminated by a Lambertian radiator without obstructions and in the important
case of a 3D field produced by a Lambertian disk.

6.6 APPLICATION TO CONCENTRATOR DESIGN

We have noted that a mirror surface placed along lines of flow of the vector flux
will not disturb the overall flow pattern under a certain condition. This condition
is that the zero normal component of J must result from the fact that, for each
ray r1 incident on one side of the surface, there must be a corresponding ray r2

incident on the other side such that r2 is in the direction of the reflection of r1; we
call this a condition of detailed balance of the rays. It is possible to have Jnormal =
0 at a surface containing the lines of flow without the condition of detailed balance
being fulfilled, and then J would remain undisturbed locally but not over the entire
illuminated region. Clearly, the condition of detailed balance holds for a 2D field
illuminated by a Lambertian source without obstructions.

We may therefore place mirrors along any of the flow lines of Figure 6.5
without disturbing the flux patterns. For example, suppose we place a mirror along
the flow line from Q, ending at the point T where the flow line meets the contin-
uation of the wedge boundary R¢Q¢, and similarly another mirror Q¢T¢ symmetri-
cally on the other side. These mirrors take the Lambertian flux (|J| = 2) from QQ¢
and convert it to a uniform flux with |J| = 1 at TT¢. The rays in the emergent
beam must spread over an angle ±30°, since |J| = 1. Clearly, we have constructed
a concentrator in reverse, and our construction with parabolas with tilted axes is
precisely that for the compound parabolic concentrator.

Since light rays, and therefore flow lines of J, are reversible, we see that a
way to construct a concentrator with maximum theoretical concentration is to
place mirrors in the flow lines under conditions of detailed balance of the rays.
This constitutes an entirely new perspective on concentrator design.
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6.7 THE HYPERBOLOID OF REVOLUTION AS 
A CONCENTRATOR

The results of the previous section lead to another interesting new perspective on
the design of nonimaging concentrators. Suppose we start with the disk radiator
and we place a mirror in the form of a hyperboloid of revolution coincident with a
set of flow lines as in Figure 6.10. We truncate the mirror at some distance so the
open end is a circle of diameter AA¢. Considering the inside as a mirror, this forms
a nonimaging concentrator with unusual properties. The foci of the hyperbolas in
the section shown are at F and F¢, the ends of the diameter of the original disk.
Then all rays entering the aperture AA¢ and pointing somewhere inside the disk
will be reflected by the mirror so as to strike, eventually, the inner disk of diam-
eter BB¢. Thus, the concentrator takes all rays from the virtual source FF¢, which
can pass the entry aperture AA¢ and concentrates them into an exit aperture BB¢.

This result is easily proved for rays in a meridional section—that is, in the
plane of the diagram. Consider a ray passing through A¢ and aimed at F, as indi-
cated by the double arrow; after the first reflection, it will, by a basic property of
conic sections, be aimed at F¢, and so on as indicated. Thus, the extreme angle rays
emerge from the exit aperture but only after an infinite number of reflections. It
is easily seen that rays at angles inside the extreme angles all emerge. Thus, in
the meridional plane this is a concentrator of maximum theoretical concentration.
This property also holds for skew rays, although this is not quite so obvious. We
give in Appendix K proof that any skew ray incident on the mirror and pointing
on the rim of the disk FF¢ will be reflected to another point on the rim and the
result follows directly. When used in reverse, the same design produces a virtual
ring that fills the space between a Lambertian source of diameter BB¢ and the
larger diameter FF¢. The visual effect produced is striking.

6.8 ELABORATIONS OF THE HYPERBOLOID: 
THE TRUNCATED HYPERBOLOID

The properties of the truncated hyperboloid are evident from the preceding dis-
cussion. We refer to Figure 6.11, where the hyperboloid stops short of the plane of
the virtual source. For example, rays collected from the source of diameter FF¢ by
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the small aperture will appear to originate from the same source upon emerging
from the large aperture. Alternatively, rays directed toward the source of diame-
ter FF¢ at the large aperture will illuminate the same source upon exiting the small
aperture. The truncated hyperboloid may be useful on its own, but usually it is in
combination with lenses, as discussed following.

6.9 THE HYPERBOLOID COMBINED WITH 
A LENS

We have seen that, for the bare hyperboloid, both real and virtual Lambertian
sources are in the same plane. This is a limitation in certain applications; however,
we can manipulate these positions with lenses to place the sources at more con-
venient locations. We show in Figure 6.12 the full hyperboloid with a positive lens
of diameter AA¢ = 2a at the large aperture, which takes the source plane to infin-
ity—that is, the source is in the focal plane of the lens. Consider the properties of
this design. For simplicity we neglect off-axis aberrations of the lens; a complete
discussion is found in Welford, O’Gallagher, and Winston (1987). We only remark
that, since the requirements on the lens need not be severe (e.g., the focal ratio
may be chosen large, as will be shown following), the aberrations can be made neg-
ligible in practice. In this approximation, the cone of rays of angle q is imaged by
the lens onto the circle of diameter FF¢ = 2b. The hyperboloid collects the rays that
fill this cone and concentrates them to a smaller circle of diameter BB¢ = 2c. We
show in Appendix L that c/a = sinq. Therefore, this is an ideal concentrator. This
result could have been anticipated from the fact that we have postulated an ideal
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lens while the hyperboloid on its own is an ideal concentrator, albeit operating on
a virtual source.

The design considerations readily follow from the geometry of a hyperbola.
With reference to Figure 6.12, the focal ratio of the lens can be estimated from the
slope a of the asymptote to the hyperbola. The slope is given by sina = c/b; the
acceptance angle q determines the focal length of the lens, completing the design.

6.10 THE HYPERBOLOID COMBINED WITH 
TWO LENSES

We have seen that we can construct a 3D concentrator approaching ideal proper-
ties by placing a suitable lens at the large aperture of the hyperboloid. Similarly,
we can construct a 3D q1/q2 concentrator (angle transformer) by placing an addi-
tional negative lens at the small aperture of the truncated hyperboloid, which
moves the source plane to infinity as shown by Ning (1988). The construction is
shown in Figure 6.13, where it is apparent that the focal lengths of the two lenses
are related by F1/F2 = tanq1/tanq2, whereas their focal ratios are related as f1/f2 =
cosq1/cosq2. We see that this design lends itself to all dielectric versions, since the
positive and negative lenses are readily molded into the shape of the transformer,
whereas in practical cases the condition for total internal reflection is likely to be
satisfied.

6.11 GENERALIZED FLOW LINE
CONCENTRATORS WITH 
REFRACTIVE COMPONENTS

In 2D it is possible to generalize the flow line construction following the notions
expressed in Section 6.4. For simplicity, we confine our discussion to systems that
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are symmetrical transverse to the optic axis. As already noted in Section 6.4, the
étendue H generalizes to the difference of optical path lengths (up to an overall
constant). This remains true even in the presence of refractive media, provided
the optical path lengths are measured along rays. These rays need not be straight
lines. Thus, in Figure 6.14, the étendue H from Lambertian source AA¢ to section
PP¢ is proportional to [A¢P] - [AP], where the brackets indicate optical path
lengths. It follows that the lines of flow (indicated by arrows in the figure) lie along
contours of H = constant. Since the detailed balance condition holds in 2D, we may
construct concentrators by placing mirrors along the flow lines. However, it does
not follow that the 3D construction obtained by rotating the 2D flow line about the
optic axis will automatically satisfy detailed balance. Specific cases will have to be
checked with respect to detailed balance before the usefulness of the 3D designs
can be evaluated.

6.12 HAMILTONIAN FORMULATION

6.12.1 Introduction
The principles of Geometrical Optics can be formulated in several ways, all of them
being equivalent in the sense that they can provide the same information. Never-
theless, there are some particular problems for which one formulation is better
than the others—for example, the problem is more easily stated and sometimes
more easily solved using one of the formulations. This is common to disciplines
having more than one mathematical model. Probably, the most well-known 
formulation of Geometrical Optics is the variational one (Fermat’s principle). In
Section 6.12.2 we will see another well-known formulation: the Hamiltonian equa-
tions. This formulation will be useful for stating and solving some nonimaging
design problems both in 2D and 3D geometry with the Poisson Brackets method.
This method is unique in the sense that it is able to give ideal designs in 3D geom-
etry in some cases. Unfortunately, the 3D designs obtained with this method
require graded refractive index materials, which limits its practical use.

The Hamiltonian formulation has been widely used in imaging optics. The
most important results are the characteristic functions and the simplicity with
which some optical invariants are recognized (see, for instance, Luneburg, 1964).
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arrows indicate row lines; the plain lines, rays.



One of these invariants is a common tool in nonimaging optics, the conservation
of étendue. Within the Hamiltonian formulation, this invariant is one of the 
Poincaré’s invariants. Although Hamilton originally developed his equations for
optics, their applications in mechanics developed faster, so some of the results of
the theory may sound as if they belong to mechanics more than to optics. This may
be the case of the Poisson brackets. In other cases, the same result has two dif-
ferent names: one for optics and one for mechanics. For instance, in mechanics
Fermat’s principle is known as the principle of least action or the principle of 
Maupertuis. The Hamiltonian formulation, when applied to nonimaging optics,
makes little use of the results for imaging optics, and because of this, its results
may appear more mechanic than optic.

6.12.2 Hamilton Equations and Poisson Bracket
As we will see, the Hamiltonian formulation is not unique. We start with the
description of the Hamilton equations that we will use in the most general form
we need. Let x1 = x1(s), x2 = x2(s), x3 = x3(s), t = t(s) be the equations of a ray 
trajectory in parametric form (s is the parameter) in the space x1 - x2 - x3 - t (x1

- x2 - x3 are the Cartesian coordinates, and t is the time). For each point of the
trajectory of a ray—that is, for each value of s, we have a value of the wave vector
k = (k1, k2, k3) and a value of the angular frequency w. Let k1 = k1(s), k2 = k2(s), 
k3 = k3(s), w = w(s) be the values of the three components of the wave vector and
the angular frequency, respectively. The set of eight functions x1 = x1(s), x2 = x2(s),
x3 = x3(s), t = t(s), k1 = k1(s), k2 = k2(s), k3 = k3(s), w = w(s) define a ray trajectory in
the phase space x1 - x2 - x3 - t - k1 - k2 - k3 - w. In general we are only interested
in the trajectory of the ray in the space x1 - x2 - x3, sometimes also including t.
The introduction of the other variables in this case is still interesting because they
simplify the formulation of the equations. The variables k1, k2, k3, - w are called
the conjugate variables of x1, x2, x3, t in the Hamiltonian formulation.

A key point of the Hamiltonian formulation is the so-called Hamiltonian func-
tion. In the case of optics, K(x1, x2, x3, t, k1, k2, k3, w) is a function such that K = 0
defines the surface of the wave vector k (Arnaud, 1974). The equation K = 0 is also
called Fresnel’s surface of wave normals, and it is directly related to the Fresnel’s
Differential Equation (Kline and Kay, 1965). The function K can be determined by
the properties of the medium where the rays are evolving.

The Hamiltonian equations can be written as

(6.4)

The solutions of this system of equations are sets of eight functions x1 = x1(s), x2 =
x2(s), x3 = x3(s), t = t(s), k1 = k1(s), k2 = k2(s), k3 = k3(s), w = w(s). It can be proved
that the solutions of this equation system are curves contained in the hyper-
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surfaces K = constant of the phase space x1 - x2 - x3 - t - k1 - k2 - k3 - w—that is,
the function K is a first integral of the system (Arnold, 1976). A function F(x1, x2,
x3, t, k1, k2, k3, w) is a first integral of the system of Eq. (6.4) if F is constant along
any ray trajectory—that is, dF/ds = 0. F is said to be a “constant of motion” in
mechanics (Abraham and Marsden, 1978; Leech, 1958). This can be written as

(6.5)

The total derivative of F with respect to s can be written as (using Eq. (6.4))

(6.6)

The right-hand side of Eq. (6.6) is called the Poisson bracket of F and K, and it is
noted by {F, K }. With this notation Eq. (6.6) can be written as dF/ds = {F, K }. Thus,
a function F is a first integral of the Hamiltonian system when {F, K } = 0. It is
easy to check that {K, K } = 0 and thus to conclude that the solutions of the system
of Eq. (6.4) are contained in hypersurfaces K = constant.

Not all the solutions of Eq. (6.4) represent ray trajectories. The ray trajecto-
ries in the phase space x1 - x2 - x3 - t - k1 - k2 - k3 - w are only the solutions of
this equation system that are consistent with K = 0—that is, the curves contained
in the hypersurface K = 0.

The equation of this hypersurface K = 0 can be expressed in different ways.
For instance, let f(x) be any function such that f(x) = 0 only if x = 0. Then f(K) =
0 represents the same surface as K = 0. It can be easily seen that if f(K) is used
as the Hamiltonian function instead of K in Eq. (6.4), then the same ray trajecto-
ries are obtained (with different parameterization) provided that df/dx π 0 when
x = 0. In particular, if we multiply the Hamiltonian function by a nonzero func-
tion, the solutions of the Hamiltonian system remain the same but with different
parameterization, that is, instead of getting x1 = x1(s), x2 = x2(s), x3 = x3(s), t = t(s),
k1 = k1(s), k2 = k2(s), k3 = k3(s), w = w(s), we would get another set x1 = x1(s¢), x2 =
x2(s¢), x3 = x3(s¢), t = t(s¢), k1 = k1(s¢), k2 = k2(s¢), k3 = k3(s¢), w = w(s¢) but still giving
the same phase space trajectories.

One useful property fulfilled by the solutions of the Hamiltonian system is
given by the Maupertius principle (in mechanics), also known as the least action
principle, which corresponds to the Fermat’s principle of optics (Arnold, 1974). In
terms of the Hamiltonian system of Eq. (6.4) this principle says that the integral

(6.7)

along the ray trajectories in the space x1, x2, x3, t is an extremal among all the
curves connecting point A and point B that also fulfill K = 0—that is, among the
curves whose trajectory in the phase space x1 - x2 - x3 - t - k1 - k2 - k3 - w is con-
tained in the hypersurface K = 0. A and B are two points of the space x1, x2, x3, t.
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In other words, choose any curve of the space x1, x2, x3, t connecting A and B. Now
choose arbitrary functions k1 = k1(x1, x2, x3, t), k2 = k2(x1, x2, x3, t), k3 = k3(x1, x2, x3,
t), w = w(x1, x2, x3, t) such that the Hamiltonian K vanishes along the curve. If these
functions are compatible with the solution of the Hamiltonian system of Eq. (6.4),
then the integral in Eq. (1.7) is an extremal among the other possible choices
(Arnold, 1974). Observe that there is no restriction on the relationship of kj and
dxj /dt in this way to establish Fermat’s principle in contrast with the usual way
to present it. Nevertheless, it can be proved that both ways to present the princi-
ple are equivalent (Arnold, 1974).

We shall restrict the analysis to time-invariant isotropic media. In this case,
the surface of the wave vectors is a simple equation

(6.8)

where co is the light velocity in vacuum and n(x1, x2, x3, w) is the refractive index
at the point x1, x2, x3 for the angular frequency w (see Arnaud, 1976, and Kline and
Kay, 1965, for obtaining the Hamiltonian function in other cases). Because the
media is time-invariant, the Hamiltonian function does not depend on t and thus
the last equation of the Hamiltonian system Eq. (6.4) expresses that w is inva-
riant along any ray trajectory (dw /ds = 0). Thus, w is a first integral of the 
Hamiltonian system in this case.

If w = constant and we are not interested in the dependence of t with the para-
meter s, then we only need the first six equations of the system. Furthermore, if
we make the change of variables pj = kj ·co /w a new Hamiltonian system is obtained

(6.9)

where the parameterization s now is not the same as before. The system of Eq.
(6.9) is also a Hamiltonian system for the independent variables x1, x2, x3, p1, p2,
p3 (the last three variables are the conjugate variables of the first three ones).
Again, the ray trajectories are only the solutions of the system of Eq. (6.9) that
are consistent with P(x1, x2, x3, p1, p2, p3) = 0, being the Hamiltonian function P

(6.10)

Observe that now w is a constant and thus an independent analysis can be done
for each value of w. The variables p1, p2, p3 are called the optical direction cosines
of a ray—that is, p1 is n(x1, x2, x3) times the cosine of the angle formed by the
tangent to the ray trajectory with respect to the x1 axis (p2 and p3 are defined in
a similar way with respect to the x2 axis and the x3 axis).

The Poisson bracket is defined in a similar way as before and the total 
derivative of a function F(x1, x2, x3, p1, p2, p3) along the trajectories can also be
written as
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(6.11)

Thus, if F is a first integral of the Hamiltonian system, then it must fulfill {F, P}
= 0.

When the Hamiltonian function is a first integral (and it is so in all the for-
mulations that we have shown), then a new Hamiltonian system with two fewer
variables can be built up, provided that the equation P = 0 can be solved for one
variable (Arnold, 1974). Assume that this variable is p3. Then, the new formula-
tion of Hamilton equations is

(6.12)

The ray trajectories are now the solutions of the system, without restriction to 
H = 0. The parameter of these ray trajectories is x3—that is, the conjugate vari-
able of p3 in the system of Eq. (1.9). The function H is H = -p3 when solved from
the equation P = 0—that is,

(6.13)

Eqs. (6.12) and (6.13) are the usual way in which Hamiltonian equations are intro-
duced in optics (Luneburg, 1964). Nevertheless, we won’t use it. For our purposes,
Eq. (6.9) with the condition P = 0 is a more convenient way to set the basic equa-
tions of Geometrical Optics.

Before going further, we still need a last system of Hamilton equations. This
is the one obtained when a change of variables from x1, x2, x3 to a new set of orthog-
onal coordinates i1, i2, i3 is done. This transformation belongs to a class of vari-
able transformations called canonical (Leech, 1958), and owing to this fact, the
Hamilton equations remain very similar (Leech, 1958; Miñano, 1986). Canonical
transformations are characterized by a “generating function” G. For our purposes
the expression of G is

(6.14)

where the functions i1, i2, i3 in Eq. (6.14) give the values of the coordinates i1, i2, i3

for a point x1, x2, x3 ·u1, u2, u3 are the conjugate variables of i1, i2, i3. According to
the canonical transformation theory, the new conjugate variables can be expressed
as

(6.15)

The resulting Hamiltonian system is

p
p
p

i
x

i
x

i
x

i
x

i
x

i
x

i
x

i
x

i
x

u
u
u

1

2

3

1

1

2

1

3

1

1

2

2

2

3

2

1

3

2

3

3

3

1

2

3

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

G x x x u u u u i x x x u i x x x u i x x x1 2 3 1 2 3 1 1 1 2 3 2 2 1 2 3 3 3 1 2 3, , , , , , , , , , ,( ) = ( ) + ( ) + ( )

H n x x x p p∫ - ( ) - -2
1 2 3 1

2
2
2, , ,w

dx
dx

H
p

dp
dx

H
x

dx
dx

H
p

dp
dx

H
x

1

3 1

1

3 1

2

3 2

2

3 2

= = -

= = -

∂
∂

∂
∂

∂
∂

∂
∂

dF
ds

F P
F
x

P
p

F
p

P
x

F
x

P
p

F
k

P
p

F
x

P
p

F
p

P
x

= { } = - + - + -,
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂1 1 1 1 2 2 2 2 3 3 3 3

6.12 Hamiltonian Formulation 113



(6.16)

and the Hamiltonian function is

(6.17)

where a1, a2, and a3 are, respectively, the modulus of the gradient of i1, i2, and 
i3 over the refractive index n (i.e., aj = |—ij|/n). Remembering the expressions of
the scale factors hj (Weisstein, 1999) of Differential Geometry, we can write aj =
1/(hj n). The refractive index n is in general a function of i1, i2, i3.

With the aid of Eq. (6.15) it is easy to find the physical meaning of the conju-
gate variables ui: A point i1, i2, i3, u1, u2, u3 of the new phase space represents a
ray passing by the point i1, i2, i3 with optical direction cosines a1u1, a2u2, a3u3 with
respect to the three orthogonal vectors —i1, —i2, —i3. Figure 6.15 shows these three
orthogonal vectors and an arbitrary ray. The i1 lines are given by equations i2 =
constant, i3 = constant. The i2, i3 lines are defined in a similar way.

6.12.3 Optical Path Length
With the information provided in Figure 6.15 it is easy to see that the differential
of path length dL can be written as

(6.18)

Taking into account Eq. (6.17), the optical path length LAB of a ray is given by the
integral of Eq. (6.7) applied to our problem—that is,
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(6.19)

This integral is evaluated along a ray trajectory in the phase space. With Eq. (6.16)
we get

(6.20)

Taking into account Eq. (6.17),

(6.21)

Note that H = 0 for the ray trajectories. Eq. (6.21) provides the information we
need to understand the physical meaning of ds: 1/2 of the optical path length dif-
ferential dL. It should be remembered that the parameterization of the ray tra-
jectory, and thus the physical meaning of s, is associated with the Hamiltonian
function we are using.

6.13 POISSON BRACKET DESIGN METHOD

The Poisson bracket design method is, as yet, one of the few known 3D nonimag-
ing concentrator design methods. In general, this method provides concentrators
requiring variable refractive index media, which is impractical in most of the cases.
The main interest of the Poisson bracket method is that it provides ideal 3D con-
centrators, and thus it proved that such ideal concentrators exist. In particular,
we will design a 3D maximal concentrator illuminated by a bundle of rays having
an angular spread q with respect the entry aperture’s normal, that is, the set of
rays that are concentrated are formed by all the rays that impinge a flat entry
aperture forming an angle smaller than a certain value q with the normal to this
aperture. The concentrator has maximal concentration, and thus the ratio of entry
to exit apertures areas is n2/sin2q, where n is the refractive index of the points of
the exit aperture, which is the same for all of them. Figure 6.16 shows a scheme
of such a concentrator.

The work presented here was developed some years ago (Miñano, 1985b;
1985c; Miñano, 1993a; 1993b; Miñano and Benítez, 1999). Some nontrivial ideal
3D nonimaging concentrators were already known when the Poisson brackets
method was developed. Among these, the most important is the hyperboloid of rev-
olution (Winston and Welford, 1979). Figure 6.17 shows one of these concentra-
tors. A reflector whose cross-section is a hyperboloid forms it. The foci of this
hyperboloid generate the circumference C when the cross-section is rotated around
the axis of revolution symmetry. If the inner side of the hyperboloid of revolution
is mirrored, then it becomes an ideal nonimaging concentrator with the following
definitions of the input and output bundles: The input bundle is formed by all the
rays crossing the entry aperture that would reach any point of the circle C (virtual
receiver) if there was no mirror. The set of rays crossing the exit aperture forms
the output bundle. The concentrator is ideal in the sense that any ray of the input
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bundle is transformed in a ray of the output bundle by the concentrator, and any
ray of the output bundle comes from a ray of the input bundle. Thus, the same
rays form both bundles. The only difference is that the input bundle describes the
transmitted bundle at the entry aperture and the output bundle describes it at
the exit aperture. Additionally, the concentrator has maximal concentration
because the output bundle comprises all the rays crossing the exit aperture, and
thus the exit aperture has the minimum possible area such that all the rays of the
transmitted bundle cross it.

From the preceding definition of ideal concentrator we can conclude that any
device may be an ideal concentrator with a proper definition of the input and
output bundles. Nevertheless, the name “ideal” used to be restricted to cases in
which both input and output bundles have a practical interest. There are two types
of bundle that deserve special attention.

1. Finite source. The rays of this bundle are those linking any point of a given
surface with any point of another given source (see Figure 6.18).

2. Infinite source. This bundle can be described as formed by all the rays that
meet (real or virtually) a given surface forming an angle smaller than or equal
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q with a given reference direction. Then, this bundle is fully characterized by
the surface (also called aperture), by the angle q, and by the reference direc-
tion. This bundle is a typical input bundle for solar applications: The rays to
be collected are those reaching the concentrator aperture forming an angle
with the normal to this aperture smaller than the acceptance angle of the
system (see Figure 6.19).

The input bundle of the hyperboloid of revolution of Figure 6.17 is a finite source
where C1 is the entry aperture and C2 is the virtual receiver. The output bundle
is an infinite source of the type shown in Figure 6.19 with q = 90°.

A thin lens with focal length f can be considered as a concentrator whose input
bundle is an infinite source of angle q and whose output bundle is a finite source
of the type shown in Figure 6.18, C1 being the lens aperture and C2 being a circle
located at the focal plane with radius equal to f · tan(q). For a real lens this descrip-
tion is approximate. The approximation is better for smaller since q is smaller.
Therefore, a combination of a hyperboloid of revolution reflector and a thin lens
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Figure 6.18 Example of finite source. The rays of this bundle are those linking any point
of the circle C1 with any point of the circle C2.

Figure 6.19 Example of infinite source of angle q. It can also be considered as a particu-
lar case of the bundle shown in Figure 6.18 when one of the circles is infinitely far from the
other and of infinite radius.



is, approximately, an ideal concentrator of the type shown in Figure 6.16 (at least
for small values of q) (Welford, O’Gallagher, and Winston, 1987), if the combina-
tion is done in such a way that the output bundle of the thin lens, which is the
finite source defined by the circles C1 and C2, is made to coincide with the input
bundle of the hyperboloid (see Figure 6.20).

A characteristic of the hyperboloid of revolution as a nonimaging concentra-
tor is that its transmitted bundle is what we call an elliptic bundle. An elliptic
bundle is defined as one whose edge rays cross any point of the x1 - x2 - x3 space
form—in this space, a cone with an elliptic basis. Figure 6.21 shows one of these
cones corresponding to the bundle of rays illuminating the circle C. This bundle
is of the elliptic type, and thus the rays form an elliptic cone at any point of the
space. The figure shows also two flow lines of this bundle.

If the elliptic bundle is such that its flow lines are the coordinate lines of a
three-orthogonal coordinate system (i1, i2, i3), then it can be easily proved that the
edge rays conjugate variables u1, u2, u3 fulfill an equation like
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Figure 6.20 A thin lens combined with a hyperboloid of revolution behaves approximately
like an ideal 3D concentrator with maximal concentration for an infinite source subtending
an angle q.

flow line 

elliptic cone

C 

Figure 6.21 The edge rays of an elliptical bundle passing through a point form a cone with
an elliptical basis.



(6.22)

where the functions a1, a 2, a3 are arbitrary functions of i1, i2, i3. This equation,
together with Eq. (6.17) defines a conic curve (ellipse, parabola, or hyperbole) in a
un - um plane (n, m = 1, 2, 3, n π m). Note that it is necessary that Eq. (6.17) be
fulfilled because the rays are the solutions of the Hamiltonian system that are con-
sistent with H = 0, which is Eq. (6.17).

6.13.1 Statement of the Problem
The ray trajectories in the phase space x1 - x2 - x3 - p1 - p2 - p3 or (i1 - i2 - i3 - u1

- u2 - u3) do not cross between them. This property, which derives from the unique-
ness of the solution of a system of first order differential equations passing through
a given point of the phase space is particularly useful for describing visually the
problem that we want to solve and comparing it with the typical synthesis problem
in imaging optics. For the purpose of describing qualitatively both problems, we
are going to consider a simplified case. This is when the rays are contained in a
plane (for instance the x1 - x2). We call this case a 2D system, and it can be derived
from the general case by establishing ∂n/∂x3 = 0 and p3 = 0. In this case the phase
space can be limited to four variables x1 - x2 - p1 - p2. Moreover, since the ray tra-
jectories are restricted to P = 0 (P is defined in Eq. (6.10)), then p2 = ±[n2(x1, x2) -
p1

2]1/2—that is, for each point x1, x2, p1 there are only two possible values of p2 such
that x1, x2, p1, p2 describes a ray. Both values of p2 give the same ray path (x2

increases with the parameter s for one value of p2 and for the other value x2

decreases with increasing s). Thus, if we forget one of the two possible directions
of the ray, we can say that each ray can be fully characterized by a point x1, x2, p1.
Fortunately, these are only three variables, and the trajectories can be easily rep-
resented. For instance, Figure 6.22 shows the trajectory of a ray in the phase space
x1 - x2 - p1 and its projection on the x1 - x2 plane. This projection has the equation

(6.23)

This ray trajectory is the one obtained for meridian rays in a fiber whose square
of the refractive index has a parabolic profile versus x1 (see Miñano, 1985b).

A one-parameter family of ray trajectories in the phase space forms, in general,
a surface. For instance, consider the family of rays derived from Eq. (6.23) taken
C as the parameter of the family (A and B are kept constants). The representa-
tion of this family in the phase space are the cylinders shown in Figure 6.23. The
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Figure 6.22 Ray trajectory in the phase space x1 - x2 - p1 (heavy line) and in the x1 - x2

plane.



ray trajectories in this phase space are wrapped around the cylinder, and they
don’t cross. Different cylinders correspond to different values of A and B.

Now let us consider the problem of designing a 2D nonimaging concentrator
in the phase space. In general the problem involves determining the optical system
such that a given bundle of rays described at a line called the entry aperture is
transformed by the optical system in another prescribed bundle of rays at the exit
aperture. Assume for simplicity that the entry aperture is at x2 = 0 and that the
exit aperture is at x2 = 1. The bundle at the entry aperture can be defined by a
region of the plane x2 = 0, as well as the bundle at the exit aperture is defined by
another region of the plane x2 = 1 (see Figure 6.24 and Miñano, 1993a). Because
of the conservation of étendue, both regions must have the same area.

The edge-ray principle simplifies the problem of design: To get the aforemen-
tioned goal we must design an optical system that transforms the edge rays of the
bundle at the entry aperture in the edge rays of the bundle at the exit aperture.
This is equivalent to stating that the edge rays’ trajectories will form a tubelike
surface in the phase space that cuts the x2 = 0 plane and the x2 = 1 plane at the
contours of the regions defining the bundles at the entry and at the exit.
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Figure 6.23 Surfaces of the phase space representing three one-parameter bundles of rays.
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Figure 6.24 The nonimaging design problem: The bundles of rays at the entry aperture 
(x2 = 0) and at the exit aperture (x2 = 1) are prescribed (left side). An optical system has to
be designed such that the edge rays at the entry are the same as the edge rays at the exit;
that is, the edge ray trajectories in the phase space must form a surface connecting the edge
rays’ representations at both apertures.



In general the imaging problem has less degrees of freedom. Figure 6.25 shows
the phase space representation for this case. At the object and at the image plane
there is a prescribed family of one-parameter bundles of rays to be coupled. The
rays issuing or reaching a point of the object or imaging planes form each one of
these one-parameter bundles. From the mathematical point of view, in the non-
imaging problem we have to find an optical system that admits a given particular
integral of the Hamilton equations, whereas in the image problem we have to find
an optical system that admits a given first integral of the Hamilton equations.

Now let us go back to the 3D case. Let us call restricted entry phase space to
the points of the phase space whose spatial coordinates x1, x2, x3 belong to the entry
aperture. The restricted exit phase space is defined in a similar way. In the non-
imaging design the edge rays have prescribed descriptions in the restricted entry
and exit phase spaces. The edge rays in the restricted phase spaces form a curve
that encloses the set of points representing the rays of the transmitted bundle.
Note that in the 3D case, the edge rays form a three-parameter bundle of rays,
and thus their trajectories in the six-dimensional phase space (x1 - x2 - x3 - p1 -
p2 - p3) form a four-dimensional subset that must be contained in the subset P(x1,
x2, x3, p1, p2, p3) = 0. The subset P = 0 is then five-dimensional, and thus a four-
dimensional subset can be characterized by an additional equation of the type w(x1,
x2, x3, p1, p2, p3) = 0 (w here has no relation with the angular frequency, which is
not considered in this analysis). The surface of the edge rays’ trajectories is then
defined by P = 0 together with w = 0. The function w(x1, x2, x3, p1, p2, p3) is not
uniquely determined except when w = 0.

The question now is to find the conditions on the function w so w is a surface
formed by ray trajectories. The answer is that the Poisson bracket of w and P
should be zero, when P = 0 and when w = 0—that is,

(6.24)

Remember that the Poisson bracket is defined as
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Figure 6.25 The imaging problem: A family of one-parameter bundles of rays at the object
plane (x2 = 0) and another one at the image plane (x2 = 1) are prescribed (left side). An optical
system has to be designed such that each bundle at the object plane is imaged to its corre-
sponding bundle at the image plane.



Since the variable transformation from x1 - x2 - x3 - p1 - p2 - p3 to i1 - i2 - i3 - u1

- u2 - u3 is canonical, the problem can be easily established in the new variables:
Eq. (6.24) becomes (now w is a function of the variables i1, i2, i3, u1, u2, u3 obtained
with the preceding transformation from the function w(x1, x2, x3, p1, p2, p3))

(6.26)

The Poisson bracket of the functions w and H is expressed with the new variables
as

(6.27)

We have now new tools to proceed with the design problem. For instance, we 
can propose a function w that fulfills the contour conditions at the restricted entry
and exit phase spaces and apply Eq. (6.26) and find out the conditions on the
Hamiltonian function H (see Eq. (6.17)) and thus the conditions on the refractive
index distribution and on the modulus of the gradients of the coordinate variables
(more precisely, the conditions on the functions aj = |—ij|/n).

Because we are not completely free to choose the Hamiltonian function
(because, for instance, its dependence with the squares of the conjugate variables
must be linear if a three-orthogonal coordinate system is used), then choosing the
function w is not completely free either. In order to find the restrictions we must
impose to the function w, we must expand Eq. (6.27).

The problem is further simplified if we restrict the analysis to elliptic edge ray
bundles that can be defined by a couple of equations H = 0 (H is defined in Eq.
(6.17)) together with

(6.28)

Observe that with this restriction, w and H are both linear functions of the squares
of the conjugate variables u1, u2, u3. The definition of Eq. (6.28) implies that the
cone formed by the rays of the bundle passing through any point i1, i2, i3 has three
planes of symmetry. Therefore, the flow lines of the bundle are one of the three
coordinate lines. Thus, we are restricting elliptic bundles to those whose flow lines
may be coordinate lines of a three-orthogonal system. This restriction implies, for
instance, that the flow lines are orthogonal to a family of surfaces and thus that
J ·— ¥ J = 0 (J is the geometrical vector flux) which is not a necessary condition
for J. This restriction is not imposed in the analysis done further in this chapter
using the Lorenz geometry tools, where, nevertheless, the refractive index is
assumed to be constant.

The type of bundle given by Eq. (6.28) can be used as an edge ray bundle in
the flow-line design method where the existence of a reflector surface connecting
entry and exit apertures borders permits the edge ray bundle to be unbounded in
the spatial variables i1, i2, i3 (see Appendix B). This won’t to be the case of the
Simultaneous Multiple Surface design method described in Chapter 8.

Owing to the symmetries of the elliptic bundles, if we find a refractive index
distribution that has as a solution a prescribed elliptic bundle, then we will easily
be able to design a concentrator with the flow-line method. All we will have to do
is choose a surface formed by flow lines of the bundle as reflector. In the definition
of elliptic bundles given by Eq. (6.28) it is implicitly established that one of the
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three coordinate lines are flow lines of the bundle and that the plane tangents to
the surfaces ij = constant ( j = 1, 2, 3) at each point i1, i2, i3 are planes of symme-
try of the bundle at this point. Assume, for instance, that the coordinate lines i1

(i.e., the lines i2 = constant i3 = constant) are the flow lines of interest. Then, any
surface i2 = constant will contain flow lines and its tangents are planes of sym-
metry of the bundle. Then, if the surface i2 = constant is mirrored, the bundle result
is unaffected (from the collection point of view), and thus we will obtain the desired
concentrator provided the surface i2 = constant defines the entry and exit aperture
of the concentrator according to our requirements. The concentrator will be formed
by a mirror with the i2 = constant surface shape and the refractive index distribu-
tion. The mirror edges will define the shape of the entry and exit apertures. Addi-
tionally we know that the rotational hyperbolic concentrator is a solution of this
type, and thus we know that there is at least one solution for this problem.

The analysis of elliptic bundles may appear too restrictive, and that may be
so. Nevertheless, we have to take into account that the edge-ray bundle of any
nontrivial ideal 3D concentrator known at present is an elliptic bundle. Moreover,
the concept of an elliptic bundle can also be applied in 2D geometry (see Section
6.16), and in this case any edge-ray bundle can be viewed as an elliptic bundle.
Since the majority of design methods of nonimaging concentrators (other than the
Poisson brackets and the numerical methods) are actually 2D methods, we can
conclude that the concept of elliptic bundle is not so restrictive.

6.13.2 Elliptic Edge-Ray Bundle Analysis
Let us define the following vectors.

(6.29)

(6.30)

(6.31)

The vectors a and a depend solely on i1, i2, i3. Using this notation, equations 
H = 0, w = 0 remain as

(6.32)

(6.33)

Note that for a given edge-ray bundle—that is, for a given surface (H = 0, w = 0)—
the vector a is not uniquely determined: Any vector

(6.34)

where m is an arbitrary parameter m π 1 defines the same edge-ray bundle. Eqs.
(6.32) and (6.33) must be independent—that is, a ¥ a π 0.

The equation {w, H} = 0 can be written as

(6.35)

Because only the power 2 of u1, u2, u3 appears in the equations w = 0 and H = 0,
then if there is a point (i1, i2, i3, u1, u2, u3) belonging to w = 0 and H = 0 it is nec-
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essary that the points (i1, i2, i3, ±u1, ±u2, ±u3) also belong to w = 0 and H = 0. Thus,
if {w, H} = 0 at (i1, i2, i3, u1, u2, u3), it is necessary that {w, H} = 0 also at (i1, i2, i3,
±u1, ±u2, ±u3). This means that the factors of odd powers of u1, u2, and u3 in Eq.
(6.35) must be zero. From this result we obtain three equations instead of Eq.
(6.35).

(6.36)

These three equations together with Eqs. (6.32) and (6.33) should be satisfied by
a one-parametric set of vectors u at each point i1, i2, i3. Eqs. (6.32) and (6.33) are
assumed to be independent—that is, a ¥ a π 0. Thus, any of Eq. (6.36) must be a
linear combination of Eqs. (6.32) and (6.33)—that is, any Tj must be parallel to 
a - a:

(6.37)

From this result we get six differential equations involving the functions aj and
aj, which, surprisingly, can be combined so they become easily integrated:

(6.38)

(6.39)

Where the functions fj,k fulfill that ∂fj,k/∂ij = 0.
Eq. (6.47) can also be written as

(6.40)

Where 1 is the column vector (1, 1, 1) and [M] is the matrix

(6.41)

Since the matrix Eq. (45) must be satisfied by the vectors a and a, and these vectors
fulfill a ¥ a π 0, then the determinant of [M] must be zero (this equation could be
got directly from Eq. (6.39))

(6.42)

where the dependence on the variables i1, i2, i3 has been explicitly written. Let us
rearrange this equation as follows:

(6.43)

Eq. (6.43) is a functional equation in which the left-hand side does not depend on
i3. If we fix a value of i3 in the right-hand side, we get an equation that establishes
that the left-hand side is a product of a function of i1 times a function of i2 (see
Castillo, 1996; and Castillo and Ruiz-Cobo, 1992). Therefore, we can write the fol-
lowing equations:
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(6.44)

where n1, n2, n3 are three functions that only depend on one variable as specified;
that is,

(6.45)

Let us introduce the functions s1, s2, s3 as

(6.46)

that is, sj fulfills

(6.47)

With these new functions Eq. (6.40) can be written as

(6.48)

where the vectors S and N are

(6.49)

(6.50)

From Eq. (6.48) it is concluded that

(6.51)

Expanding Eq. (6.51) with the definitions in Eqs. (6.49) and (6.50) and dividing
over n1(i1) n2(i2) n3(i3) we get a functional equation called the generalized Sincov’s
equation (Castillo, 1996; Castillo and Ruiz-Cobo, 1992). Its solution is

(6.52)

where V is a vector whose components fulfill

(6.53)

Introducing the solution in Eq. (6.48) leads to

(6.54)

(6.55)

Thus, if an elliptic bundle defined by Eq. (6.33) exists in a medium characterized
by the Hamiltonian of Eq. (6.32), then there must be vectors V and N of the type
shown in Eq. (6.50) and Eq. (6.53) fulfilling Eqs. (6.54) and (6.55).

From these equations it is concluded that the vector a - a is parallel to V ¥
N. Therefore, taking into account Eq. (6.34), we get that different edge-ray bundles
should have different directions of the vector V ¥ N.

Eqs. (6.32) and (6.33) together with Eqs. (6.54) and (6.55) give the following
result concerning the values of u1, u2, u3 of the edge rays
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(6.56)

where l is a parameter. Note that we can choose any new vector Vn such that 
Vn = Vo + k1 N, where k1 is an arbitrary constant. We can also choose a new vector
Nn such that Nn = k2 No, where k2 is another arbitrary constant (k2 π 0). These
changes only affect to the range of values of l giving positive components of u.

Keeping constant the coordinates of the point i1, i2, i3 and varying l in Eq.
(6.56), we can get the different values of the edge rays passing through i1, i2, i3.
Eq. (6.56) can also be written as

(6.57)

From Eq. (6.57) we can obtain the equation of the edge rays at a given point 
(i1, i2, i3) and verify the conic shape in the u1 - u2, u1 - u3, or u2 - u3 planes. For
instance, we can get:

(6.58)

Eq. (6.58) shows that the expression of the edge rays in terms of u1 - u2 is invari-
ant when we move along an i3-line—that is, a line where i1 = constant, i2 = con-
stant. A similar result can be obtained for the other couples of variables.

6.13.3 Decomposition of the Edge-Ray Bundle in 
Normal Congruences

This section shows some properties of the parameter l appearing in Eq. (6.56).
These properties are not necessary to understand the design procedure. Using Eq.
(6.57) we can obtain l as a function of i1, u1 (or as a function of i2, u2 or as a func-
tion of i3, u3). Expressing i1, u1 as functions of the parameter s along the ray 
trajectories—that is, i1 = i1(s) and u1 = u1(s)—we can easily evaluate the variation
of l along the trajectory; that is, we can evaluate dl/ds

(6.59)

Let’s take the first component of Eq. (6.56)

(6.60)

Derivation of this expression with respect to i1 and u1 gives

(6.61)

(6.62)

Derivation of Eq. (6.32) with respect to i1 and u1 gives

(6.63)
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(6.64)

Derivation of Eqs. (6.54) and (6.55) gives

(6.65)

(6.66)

Restricting the values of u in Eq. (6.64) to those of the edge-ray bundle—that is,
introducing Eq. (6.56) in Eq. (6.64) and using Eqs. (6.65) and (6.66), we get

(6.67)

Introducing Eqs. (6.61), (6.62), (6.63), and (6.67) in Eq. (6.59), we obtain dl/ds = 0
for the edge rays, so the value of l along each edge ray is constant. l is an invari-
ant (a constant of motion) for the edge rays, but it is not for the remaining rays.
This means that there is a function w2(i1, i2, i3, u1, u2, u3) such that it is a first inte-
gral of the Hamiltonian system (a constant of motion) and such that w2 = l for the
points of the phase space region H = 0, w = 0 (this is the phase space hyper-
surface formed by the trajectories of the edge rays).

Moreover, each value of l defines a normal congruence (or orthotomic system)
of rays. A normal congruence of rays is a two-parametric set of rays for which there
is a family of surfaces (the wavefronts) normal to the trajectories of the rays (in
the space i1, i2, i3) (Starroudis, 1972)—that is, there is a function F(i1, i2, i3) such
that its gradient —. F is a vector giving the optical direction cosines of the ray with
respect to the three unit vectors i1, i2, i3. These three optical direction cosines are
a1u1, a2u2, and a3u3. Thus, what we have to prove is that the curl of n(a1u1, a2u2,
a3u3) is zero—that is, — ¥ n(a1u1, a2u2, a3u3) = 0. It can be easily checked that 
this expression is zero (see Weisstein, 1999, for the expression of the curl in 
three orthogonal curvilinear coordinates, remembering that aj is the inverse of the
corresponding scale factor times the refractive index n) when u1, u2, and u3 are
given by Eq. (6.56) with l = constant. Another way to prove that the subset of edge
rays defined by l = constant is a normal congruence is to check that the differen-
tial of 2D étendue dE2P is zero for this bundle (see Appendix D). dE2P can be
expressed as dE2P = di1du1 + di2du2 + di3du3, which is clearly zero when each uj is
a function of ij solely, as it is in Eq. (6.56) when l = constant. Thus, we have got
a decomposition of the edge rays in normal congruencies (or orthotomic systems)
of rays.

The phase space trajectory of each of these normal congruences can be defined
by the equations H = 0, w = 0, l = l0. It is thus the intersection of the three 
integrals in a six-dimensional phase space. The Liouville theorem can then be
applied, and the angle-action variables can be introduced. We will not pursue this
subject further. The reader can find more details in Abraham and Marsden, 1978,
and Arnold, 1974.
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6.14 APPLICATION OF THE POISSON 
BRACKET METHOD

As an example of application of the preceding results we are going to solve two
problems: First, we are going to design a concentrator with rotational symmetry
and graded refractive index. Second, we are going to find the elliptic bundles asso-
ciated to an elliptic system of coordinates with rotational symmetry. Because there
is rotational symmetry in both examples, we will analyze the conditions for rota-
tional symmetry first.

6.14.1 Rotational Symmetry
Let us restrict our problem to systems having rotational symmetry around an axis.
Assume that i2 is the angular coordinate around this axis, i2 = q. The second com-
ponent of vector a is a2 = |—i2|/n = 1/(n r), where r is the shortest distance from
a point to the symmetry axis. Both r(i1, i3) and the refractive index distribution
n(i1, i3) are not functions of q. The conjugate variable of q is the skew invariant h;
u2 = h. This can be verified with the definitions given in Figure 6.15. i1 and i3 are
coordinates on a meridian plane. Then, neither a1 nor a3 depend on q, and thus
vector a does not depend on q. We are interested in solutions having rotational
symmetry, too, so vector a does not depend on q either. With Eqs. (6.50), (6.53),
(6.54), and (6.55) it is concluded that the second components of V and N, (v2 and
n2) are constants. Summarizing,

(6.68)

(6.69)

Application of the preceding results to the second and the last terms of Eq. (6.57)
establishes that l is a function of h and thus that the invariance of l along the
edge rays is just a particular case of the skew invariant for rotational symmetric
systems. Besides this, Eq. (6.57) contains two more equalities.

Because we can choose a new V as the sum of the old V and N, and we can
choose a scale factor for N, then we can set without loss of generality that

(6.70)

6.14.2 Design of a Nonimaging Concentrator with
Graded Refractive Index

The goal of this section is to design an ideal 3D nonimaging concentrator with flat
entry and exit apertures, collecting the rays that impinge its entry aperture
forming an angle smaller than b with the aperture normal, with maximal con-
centration, and such that the refractive index of the exit aperture points is nx. The
medium outside the concentrator has refractive index 1.
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6.14.2.1 Circular Bundles
Because the possibility of designing the refractive index distribution provides
enough degrees of freedom, we can impose additional requirements to the design.
In particular we will require that the edge-ray bundle be circular. A circular bundle
is a particular case of elliptic bundle in which the ray cones at any point have a
circular base. Observe that any plane containing the tangent to a flow line at a
given point is a plane of symmetry for the circular bundle at this point (see Figure
6.26). This property will allow us to design nonrotational symmetric concentrators
once we have obtained the refractive index distribution.

Assume that the i3 lines are the flow lines of the bundle (we have seen before
that the flow lines are one of the coordinate lines). Then a circular edge-ray bundle
can be characterized by an equation like this

(6.71)

Note that Eq. (6.71) expresses that the optical direction cosine of the edge rays
with respect to the i3 line is the constant at any point i1, i2, i3—that is, they form
a circular cone. Therefore, a circular bundle can be characterized by a vector a in
which a1 = a2 = 0.

Application of these results to Eqs. (6.54) and (6.55) gives

(6.72)

Note that the preceding result implies that a3 depends only on i3. Thus, a. is

(6.73)

6.14.2.2 Basic Equations
Combination of the circular bundle equations and those of rotational symmetric
systems with the equalities in Eqs. (6.54) and (6.55) regarding vector a gives

(6.74)

(6.75)

Let’s now express ai as functions of the refractive index n and of the gradients of
the coordinates (aj = |—ij|/n) using the results in Eq. (6.68).
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(6.76)

(6.77)

These equations do not contain any dependence with q. The first one is an eikonal
type equation, and it expresses that the lines i1 = constant (these are the i3 lines
because q is also constant) have the shape of wave fronts in a media with refrac-
tive index 1/r. The lines orthogonal to them—that is, the i1 lines are thus rays in
a medium with refractive index 1/r. The rays in such media are circles with centers
at the symmetry axis—that is, at r = 0 (Miñano, 1986). Since i3 is constant in a i1

line, we can define a function R(i3) giving the radius of the circle of each of these
lines. The second equation, Eq. (6.77), will be used to calculate the refractive index
distribution.

6.14.2.3 Contour Conditions
The contour conditions are the edge-ray bundle descriptions at the entry and exit
apertures given before. From these descriptions the geometrical vector flux at both
surfaces can be calculated. Since the flow lines are tangent to the geometrical
vector flux, it can be concluded that the flow lines—the i3 lines—must be normal
to both surfaces. Therefore, two i1 lines must coincide with the entry and exit aper-
tures. We can choose the value of i3 for each of these surfaces as i3 = 0 for the entry
aperture and i3 = 1 for the exit aperture. Thus, we need the surfaces i3 = 0 and 
i3 = 1 to be flat. This result is compatible with the spherical shape of the i3 = con-
stant surfaces imposed by Eq. (6.76). All we have to require is that

(6.78)

Using Eq. (6.56) and the previous results for the components of the vectors V and
N of our problem we get

(6.79)

For maximal concentration, the direction cosine with respect to the i3 lines must
be 0 at the exit aperture, i3 = 1 (see Figure 6.15 for the relationship between the
conjugate variables and the direction cosines). Thus,

(6.80)

Using Eq. (6.77) and remembering that the refractive index of the exit aperture
points must be nx, we get

(6.81)

With a similar reasoning at the entry aperture and taking into account that the
medium outside the concentrator has refractive index 1 and so that there is a
refraction at the entry aperture, we get

(6.82)
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6.14.2.4 Refractive Index Distribution Calculation
For the following calculations it is useful to introduce now the last cylindrical co-
ordinate z. This coordinate z, as well as r, can be expressed as a function of i1, i3.
Without loss of generality we can choose the coordinate i3 so i3(r = 0) = z. In the
same way we can choose i1 so i1(z = 0) = r. With this selection, the equation of the
spherical surfaces i3 = constant can be given as

(6.84)

This equation, which mixes cylindrical and i1 - i3 coordinates for simplicity, con-
siders only the half sphere down the center. With it we can express (—i3)2 as a func-
tion of R(i3) and r:

(6.85)

We already know that the i3 lines have the shape of wave fronts in a medium of
refractive index 1/r and that i1(z = 0) = r. The entry aperture is at z = 0, which
coincides with i3 = 0. With these data we can calculate i1 as function of R(i3) 
and r:

(6.86)

We can easily check that i1(z = 0) = i1(i3 = 0) = r. Note that R(i3 = 0) = •.
(—i1)2 can be calculated by derivation of Eq. (6.86) with respect to r and z (using

Eq. (6.85) for the partial derivatives with respect to i3):

(6.87)

When i3 = 1, such as at the exit aperture (which also coincides with z = 1), R(i3 =
1) = • and thus

(6.88)

Let us call to the ratio of the entry and exit aperture diameters. Since r i1 i3

= 0 = i1 (at the entry aperture) and the flow lines are i1 = constant, we conclude
that is the ratio of r at the entry and exit apertures for any i1 = constant line.

(6.89)

From the étendue conservation we know that = nx /sinb. We shall check later
that this equation is fulfilled.

Using Eqs. (6.76) and (6.87), we see
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(6.90)

Using Eqs. (6.81), (6.83), (6.86), and (6.87) and noting that R Æ • for the points
of the entry and exit apertures, we get

(6.91)

(6.92)

These two equations imply that = nx /sinb.
All we need now to obtain the refractive index distribution is to choose the

functions R(i3) and v3(i3). R(i3) has to fulfill Eqs. (6.78) and (6.89). We choose

(6.93)

where m is a constant (m = 4/(15 ln(Cg))), satisfying Eq. (6.89).
With R(i3) and with the aid of Eq. (6.85), we can calculate (—i3)2 at the entry

and exit apertures. The result is (—i3)2 = 1 in both cases. The conditions on the
function v3(i3) can now be obtained with Eqs. (6.80) and (6.82)

(6.94)

(6.95)

There are no more conditions on v3(i3), so we still have degrees of freedom. We
shall use these degrees of freedom to choose a refractive index equal to nx for the
points of the entry aperture (i3 = 0 or z = 0) and for the points of the axis (i1 = 0
or r = 0). We could impose this condition in any other line crossing all the range
of values of i3.

(6.96)

Finally, we can express the refractive index distribution as a function of R, r and
i3:

(6.97)

Giving values to r and i3, we can calculate z with Eq. (6.84), and thus we can cal-
culate n(r, z) with the preceding equation.

Figure 6.27 shows the resulting refractive index distribution for nx = 1.5, 
b = 30°, a function R(i3) given by Eq. (6.93) and a function v3(i3) such that the
refractive index is equal to nx at the points of the axis. Only values in the range
0 £ i1 £ 0.3 and 0 £ i3 £ 1 are shown. The refractive index is symmetric with respect
to the z axis—that is, n(i1, i3) = n(-i1, i3). A wider range of i1 requires unrealistic
values of the refractive index.
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6.14.2.5 Reflector Surface
The last and easiest step to build up the concentrator is to define the reflector
surface. The elliptic cones formed by the rays of an elliptic bundle at any point
have two planes of symmetry that contains the cone axis. A reflector surface that
has one of these two planes as a tangent plane at the referred point is a surface
that does not disturb the flow of the bundle at this point. If the reflector surface
fulfills this condition for all the points, then the bundle is not disturbed by the
introduction of the reflector. With the definitions that we have used in the pre-
ceding sections, these two planes of symmetry are the tangent planes to the sur-
faces i1 = constant and q = constant. Thus, a surface i1 = constant or a surface 
q = constant or a combination of a finite number of i1 = constant portions and q =
constant portions can all be reflectors that do not disturb the flow. Figure 6.28
shows the lines i1 = constant and the lines i3 = constant in a meridian plane. We
can choose any line i1 = constant and its symmetric i1 = -constant as the cross
section of the reflector. With this reflector we can get a circular entry and exit aper-
tures. The smallest is the value of i1, the lowest the variation of the refractive
index within the concentrator and the highest the aspect ratio (depth to entry aper-
ture diameter ratio). In the limit case i1 Æ 0, an ideal 3D concentrator infinitely
deep with constant refractive index is found. This limit case was already found by
Garwin (1952). As we said before, to get realistic values of the refractive index, i1

should be limited to |i1| £ 0.3.
We can also choose two nonsymmetric i1 = constant lines. In this case we will

obtain ring-shaped apertures.
Combinations of i1 = constant and q = constant surfaces would give us entry

and exit apertures with shapes formed by circular arcs and straight radial por-
tions. Note that according to Eq. (6.89) the ratio of r at the entry aperture to the
r at the exit aperture is a constant for the i3 lines (these are the flow lines, which
are contained in the reflector surface). Since q = constant along these lines we can
conclude that the shape of the entry and exit apertures is the same except a scale
factor that is .

As we have seen before, the rays of a circular bundle passing through any
point form a circular cone that is symmetric with respect to any plane containing

Cg
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Figure 6.27 Refractive index distribution with rotational symmetry such that the rays
impinging its entry aperture (z = 0) with an angle smaller than 30° find the exit aperture
(z = 1). And any ray hitting the exit aperture finds the entry aperture at an angle smaller
than 30°. (nx = 1.5, b = 30°.) The refractive index at the points of both apertures (z = 0 and
z = 1) and at the z-axis is equal to 1.5.



the cone axis. This property implies that any reflector whose surface is formed by
flow lines will be a reflector that won’t disturb the flow—that is, for circular
bundles—the reflectors are not limited to surfaces (or portions of surfaces) i1 = con-
stant or q = constant. Any surface defined by an equation G(i1, q) = 0, where G is
an arbitrary function, can be a reflector surface that does not disturb the flow.
Figure 6.29 shows the case forming squared entry and exit apertures. Note that
the lines z = constant are squares only at the apertures; in other words, this reflec-
tor is not formed by crossing two troughlike ones. Of course, the refractive index
distribution is rotationally symmetric.

6.14.3 Elliptic Bundles in an Elliptic Coordinate System
with Constant Refractive Index

Manufacturing a dielectric material with a prescribed variation of the refractive
index is a difficult task except in some well-known cases. Understanding this, it
is of major practical interest to find concentrators using a small number of differ-
ent homogeneous materials. The subject of this section is to use the preceding
results to find elliptic bundles in a given coordinate system when n is fixed to a
constant (n = 1). This is another way to work with Eqs. (6.54) and (6.55). Vector a
is now prescribed, and we have to find the vectors N and V and then find the ellip-
tic bundles.
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Figure 6.28 Reflector surface formed by a i1 = constant surface. Since the flow is not dis-
turbed with respect to the one existing without the reflector (the one corresponding to the
refractive index distribution of Figure 6.27), we can state that a concentrator formed by this
reflector and this refractive index distribution will collect all the rays impinging its entry
aperture with an angle smaller than 30° with maximal concentration, and thus it is an ideal
3D concentrator.



The hyperboloid of revolution concentrator, which is the first ideal 3D con-
centrator known excluding trivial cases, can be derived from the elliptic bundle
formed by all the rays emitted by a disk in media with n = 1 (Welford and Winston,
1989). The flow lines of this bundle are coordinate lines of a elliptic coordinate
system with symmetry of revolution. Not only concentrators but also confining cav-
ities have been generated from this bundle (Miñano, 1990). Elliptic bundles in
media with n = 1 have been analyzed successfully with other tools (Gutiérrez et
al., 1996), and from this study we know that there are other elliptic bundles in
this type of coordinate system (see Section 6.17). Summarizing, we know that we
will find solutions if we study the elliptic coordinate system. For simplicity we
restrict ourselves to the case of rotational symmetry—we’ll say, one of the coordi-
nates, i2, is the angular coordinate q. Consequently, its conjugate variable is the
skew invariant u2 = h. There are also solutions in the general elliptic coordinate
system (Benítez, 1999).

The equations defining the coordinate change from Cartesian to elliptic coor-
dinates with rotational symmetry is
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Figure 6.29 z = constant lines of a reflector surface formed by a G(i1, q) = 0 surface defin-
ing a square at the entry and exit apertures. The reflector surface is not formed by two
crossed linear surfaces, although it is close to this case. A concentrator formed by this reflec-
tor and the refractive index distribution of Figure 6.27 collects all the rays impinging its
entry aperture with an angle smaller than 30° with maximal concentration, and thus it is
again an ideal 3D concentrator.



The i1 lines (q = constant and i3 = constant) are confocal ellipses (with foci at the
circumference in the plane x3 = 0 of radius 1 and centered at x1 = x2 = 0). The 
i3-lines are confocal hyperbolas with foci in the same locus (see Figures 6.30 and
6.31).

The vector a can be calculated from the preceding equations (note that n = 1).

(6.101)

Eqs. (6.54) and (6.55) applied to vector a can be considered as functional equations
where the unknowns are the vectors N and V. As an example, we are going to find
the vector N.
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(i2 = q), and u2 is the skew invariant h (u2 = h). The cone of edge rays passing through a
point is also represented.

Figure 6.31 Lines i1 = constant and i3 = constant in a q = constant plane given by Eqs.
(6.98), (6.99), and (6.100).



(6.102)

Solving for n2(i2), we get

(6.103)

The right-hand side of this equation only depends on i2, whereas the other 
side only depends on i1 and i3. The only solution is that both sides are equal to a
constant that we will call -na. Now let us group Eq. (6.103) as follows:

(6.104)

Again, we find that the left-hand side of Eq. (6.104) only depends on i1, whereas
the other side only depends on i2. Both sides must be equal to a constant that we
will call nb - na. Thus, N can be written as

(6.105)

With a similar reasoning, using Eq. (6.55), we find

(6.106)

Where va and vb are arbitrary constants. As said before, we can choose the scale
factor for the vector N and we can choose a new vector V as the sum of the old
vector V plus the vector N times any factor, and still Eq. (6.56) represent the same
edge-ray bundle. Therefore, no set of four parameters na, nb, va, and vb provides a
different edge-ray bundle. The different edge-ray bundles depend only on two 
parameters. We can write the expressions for N and V using two parameters 
(g and kv) so different pairs represent different edge-ray bundles:

(6.107)

(6.108)

With these equations and Eq. (6.56) we can find the expression of any elliptic
bundle in n = 1 such that the i1, i2, or i3-lines are flow lines of the bundle. For
instance, the bundle of rays emitted by the disk of radius 1 (this is the bundle with
which the hyperbolic rotational concentrator is generated) corresponds to the case
g = 0, kv = -1. The disk is defined by the equation i3 = 1. The equation of the edge
rays with variables u1 and u2 for this bundle—that is, Eq. (6.58) applied to this
bundle is simply

(6.109)

This equation can be easily formulated with the variables x1, x3 (using Eqs. (6.98)
and (6.100)) and with the direction cosines with respect the tangents to the i1 lines
and q lines (using Eq. (6.101) and the expressions given in Figure 6.15).
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Any concentrator derived from these bundles is formed by reflector surfaces
shaped with one or more coordinate surfaces. The hyperbolic concentrator is one
case. The elliptic cavity (Miñano, 1990) (which is not a concentrator but is gener-
ated in a similar way) also derives from one of these elliptic bundles.

6.15 MULTIFOLIATE-REFLECTOR-BASED
CONCENTRATORS

When a mirror is positioned such that it intercepts the rays of a bundle, in general
it will disturb the flow lines. The flow lines are not disturbed when the mirror
surface contains these lines and the rays of the bundle have some symmetry. This
property is used to fix a spatial limitation of the concentrator’s designs based in
the flow-line method. This spatial limitation is needed because the definitions 
of the input and output bundle do not contain such spatial limitation. For instance,
the edge-ray bundle defined by Eqs. (6.71), (6.72) and (6.73) does not contain any
limitation in the i1, i2 spatial variables. This edge-ray bundle exists in the refrac-
tive index distribution of Figure 6.27. This refractive index distribution has only
realistic values if i1 is less than @ 0.25. The reflector placed in a surface i1 = con-
stant avoids this problem. If we don’t want to use these mirrors, we need a defin-
ition of the edge-ray bundle that is bounded in its phase-space representation—in
other words, that is also spatially bounded. It is done this way in the SMS design
method (Chapter 8).

The way flow lines of a bundle can be disturbed by a mirror depends on both
mirror and flow lines geometry. In some cases, the flow lines are disturbed in such
a way that the new flow lines are contained in the reflector surface. In the general
case, the new flow lines are “reflected” by the reflector. For instance, Figure 6.32
shows the flow lines of the bundle of rays collected by a CPC before and after 
the insertion of the CPC (2D geometry). In this case, the new flow lines are either
contained in the reflector surface or never touch it. Figure 6.33 shows the other
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case in which the flow lines are “reflected” by the flat mirror. For our purposes, we
do not need to go further in these considerations (which also would require a more
detailed definition of the flow lines).

When the flow lines find the reflector surface such that the geometrical vector
flux is contained in the tangent to the surface, then it may happen that the new
flow lines are contained in the reflector surface. This property has been used to
design a multifoliate ideal 3D concentrator by Forbes and Basset (1982), which is
shown in insert Figure 6.34. This concentrator is formed by many (infinite in the
theoretical limit case) two-sided mirrors with a spherical shape. The center of the
spheres is at the center of the entry aperture. The reflectors’ surfaces are extended
in the right hemisphere defined by the entry aperture plane, excluding the points
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Figure 6.33 Flow lines reflected by a flat mirror.

Figure 6.34 Multifoliate ideal 3D nonimaging concentrator that collects with maximal con-
centration all the rays impinging its entry aperture within an angular cone a = 20°.



inside the sphere S. In this region, the meridian rays form a constant angle equal
to f with respect to the tangents to the circumferences centered at the entry aper-
ture center. At the entry aperture, not only the meridian rays but the remaining
ones form an angle f with these tangents. The meridian section of S is the cir-
cumference whose points subtend an angle 2f with the exit aperture diameter.

Because of the multiple reflections suffered by the rays in their passage
through the multifoliate mirrors, Forbes and Basset suggested total internal reflec-
tion. Simply using a set of transparent solid thin spherical shells can get the
desired performance. This 3D ideal concentrator can be very well approximated in
the real world using nonzero thickness dielectric layers. Both articles by Bassett
and Forbes (1982) examine other cases in which the desired output bundle is not
the one illuminating the exit aperture isotropically but illuminating it with a
restricted angle, called angle transformers. Again, the design of Forbes and Basset
gives ideal concentrators in 3D geometry.

It can be proved that the bundle of collected rays of the multifoliate concen-
trator is also an elliptic bundle. For this reason, we can use the Poisson bracket
method to find out the refractive index distribution that can substitute the multi-
foliated region. For this, it is convenient to choose a triorthogonal coordinate
system so the flow lines are one of the coordinate lines. These coordinates are
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spherical. The coordinate change from cylindrical coordinates (r, q, z) to the new
ones is given by

(6.110)

Vector a is thus

(6.111)

The rotational symmetry of the bundle we are considering implies that the second
component of the vectors V and N should be a constant. Application of Eqs. (6.54)
and (6.55) to vector a, taking into account this consideration, gives

(6.112)

(6.113)

We are looking for a refractive index distribution such that the meridian rays form
an angle f with the tangents to the circumferences centered at r = 0 and the bundle
is circular in the plane z = 0—that is, when i3 = 0. With this description we can
calculate vector a.

We can choose vector a so its third component is zero because the third com-
ponent of vector a is zero only when i1 Æ • (see Section 6.13.2, Eq. (6.34)). Then
a1 = 1/(u1)2 when u2 = 0, (Eq. (6.33))—and u1 is the optical direction cosine of merid-
ian edge rays with respect the i1 lines. Thus, we can write

(6.114)

From Eq. (6.54), and taking into account that the edge rays form a circular bundle
at the plane i3 = 0, we derive

(6.115)

From Eq. (6.55) it is concluded that

(6.116)

Where C is an arbitrary constant (C2 = (C2 - v2)/cos2 f).
What is important in this result for our purposes is (1) there is an arbitrary

multiplicative constant, and (2) the flow lines are contained in surfaces of the same
refractive index (surfaces i1 = constant).

Let us take a thin layer between the surfaces i1 = const. and i1 + Di1 = const.
Since the flow lines are contained in these surfaces, we can isolate this region by
mirroring the two surfaces. The bundle of edge rays is not disturbed by this action,
and, therefore, it is still the same one we used for the preceding calculations.
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Assume that Di1 is thin enough to consider that the refractive index is constant in
this layer. We can still choose C so the refractive index of this layer is a given
one—for instance, n = 1.

This reasoning is independent of the value of i1, and thus it can be applied to
any thin layer in between two i1 = constant. In this way we get that multifoliate
region of the concentrator of Figure 6.34 can also be derived from the Poisson
bracket method. In the Forbes and Bassett (1988) articles it is explained in detail
that the bundle exiting the multifoliate region is coincident, at the sphere S, with
the bundle of rays reaching the receiver disk.

As also noted in these articles, a practical way to manufacture an efficient
multifoliate concentrator should rely on total internal reflection. The geometry of
the concentrator of Figure 6.34 permits the total internal reflection condition with
practical materials of refractive index around 1.5.

6.16 THE POISSON BRACKET METHOD IN 
2D GEOMETRY

When the spatial variables are only 2, i1, and i2, it is called a 2D geometry problem.
Consequently, their conjugate variables are also 2, u1, and u2. The formulation of
the problem is identical to the 3D case, except i3 and u3 do not appear. The equa-
tions H = 0 and w = 0 can be written as in Eqs. (6.32) and (6.33), but now, u, a,
and a are two-dimensional vectors.

(6.117)

(6.118)

Since it is assumed that a and a are independent, then these two equations define
uniquely a vector u. This means that for any point i1, i2 of the concentrator there
is a single vector u associated to it—that is, there are four possible combinations
of values of the conjugate variables (±u1, ±u2), which represent the two possible
directions of the edge rays passing through the point i1, i2.

The result of the elliptic bundle analysis in 2D geometry is the equivalent to
Eq. (6.55).

(6.119)

Where now V is a two-dimensional vector that fulfills

(6.120)

Vector u can be written as (equivalent to Eq. (6.56))

(6.121)

In the 3D problem we restricted the analysis to a certain type of bundles (the ellip-
tic bundles). In the 2D problem, the description of the edge-ray bundle given by
Eqs. (6.117) and (6.118) is more general. In fact, it covers all the cases in which
there are a couple of edge rays at every point i1, i2 of the concentrator. This case
includes all 2D concentrators considered in this book.

The design procedure is much simpler in the 2D case, and the number of solu-
tions is much broader than in the 3D case. One possible design procedure is to fix

u V=

V = ( ) ( )[ ]v i v i1 1 2 2,

a V V◊ = ◊ =a 1

w ∫ ◊ - =u a 1 0

H ∫ ◊ - =u a 1 0
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the refractive index distribution and then find the vector V and the coordinates i1

and i2 that fulfill the contour conditions. This procedure is essentially the string
method (see Section 4.4). The way in which we fix the string is what we call here
the contour conditions. The fact that the string is straight between fixing points
is equivalent to establish the refractive index distribution (rays are straight lines
in a constant refractive index distribution). The movement of the pencil along the
string is equivalent here to the calculation of the flow lines—one of the coordinate
lines. In order to clarify this equivalence, let us introduce Eq. (6.121) in Eq. (6.119)
using Eq. (6.120), and using the expression of aj in terms of |—ij| and n.

(6.122)

This equation together with the condition of orthogonality of the coordinate lines
(—i1 - —i2 = 0) and noting that the components of vector u—that is, v1 and v2 must
be positive lead to

(6.123)

where

(6.124)

The functions m1 and m2 are the optical path lengths of the two sets of edge rays
(remember that there were two edge rays at every point) and Eq. (6.123) is simply
their eikonal equation.

6.16.1 Example: The Compound 
Triangular Concentrator

Another possible design procedure is to propose a vector V that fulfills the contour
condition, select a set of orthogonal coordinates i1 and i2, and then calculate the
refractive index distribution in a way quite similar to the one shown in Section
6.14.2. For instance, let’s choose the set of orthogonal coordinates show in Figure
6.36. These coordinates can be chosen such that |—ij| has a constant value in each
of the four regions defined by the straight-lines AE and A¢E¢. Let v1(i1) and v2(i2)
be linear functions of i1 and i2, respectively. These functions and this coordinate
system define what is called the Compound Triangular Concentrator (CTC)
(Miñano, 1985a, 1985c).

Figure 6.36 shows the i1 and i2 lines of a CTC concentrator. These lines have
three straight segments. Consequently, there is a discontinuity on —i1 and —i2 at
the points where these straight segments connect (lines AE¢ and A¢E). The design
is done in such a way that the refractive index is the same for all the points out
of the lines where the discontinuities are (nb). The refractive index at the discon-
tinuities was studied as if the CTC was a limited case of concentrators in which
—i1 and —i2 vary sharply but continuously at lines AE¢ and A¢E. It was concluded
that the refractive index has a minimum in these lines, whose value is called nl.
This refractive index minimum causes the lines AE¢ and A¢E1 behave as non-
existent layers for rays forming an angle with the normal smaller than sin-1(n1/nb)
and behaves like a mirror (by total internal reflection) otherwise. Figure 6.37
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shows the refractive index distribution. As in any other concentrator designed with
the flow line method, the final step is to choose two flow lines as reflectors. In the
case of Figure 6.37 the lines chosen are i1 = ±1. These flow lines define the edges
of the entry (AA¢) and exit (EE¢) apertures.

It should be emphasized that with our definitions, a 2D concentrator is not
the same as a 3D concentrator with linear symmetry. An ideal 2D concentrator
will not in general generate an ideal 3D concentrator by linear symmetry. The con-
fusion arises from the fact that when the refractive index is constant (for instance,
in the CPC), then the linear concentrator derived from the 2D concentrator is ideal
with respect to the input and output bundles that are generated from the 2D case
by the same linear symmetry. This is not the case of the CTC because its refrac-
tive index is not constant.

6.17 ELLIPTIC BUNDLES IN 
HOMOGENEOUS MEDIA

Gutiérrez et al. (1996) applied the Lorentz geometry to the problem of finding ellip-
tic bundles in a medium of constant refractive index. The rapid development of
Lorentz geometry is due to Einstein’s general relativity theory of gravitation. It
provides a cone structure on an open subset ¬ of the space—that is, a cone at each
point X of ¬ (formally, in the tangent space Tx¬ of X, which is isomorphic to �3).
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This cone is called the light cone in Einstein’s theory because it is formed by the
directions of the light rays in the continuous space-time. In nonimaging optics,
Lorentz metric is used in a quite different interpretation. This cone is formed by
the directions of the edge rays passing through a point in the conventional 3D
space (see Figure 6.38a). We’ll briefly discuss Lorentz geometry here, but the 
interested reader can consult O’Neill (1983) for some background on differential
geometry.

Let B = {e1, e2, e3} be the canonical global basis vector field on ¬, which is ortho-
normal with respect to the usual Euclidean metric. For each point X of ¬, Bx is
the canonical basis of the tangent space Tx¬. A Lorentz metric g on ¬ is a map
that assigns to every point X of ¬ a bilinear map gx: Tx¬ ¥ Tx¬ Æ �, with some
additional properties. These properties may be expressed through the matrix G
associated with the map g in the basis B. Using this matrix, one can formulate
the map as gx(Y, Y¢) = YtG(X)Y¢, where Y and Y¢ are two vectors of Tx¬ (the 
superscript t denotes transposition). The matrix G must verify the following three
properties:

1. G is symmetric on every point X of ¬.
2. |G| π 0 on every point of ¬.
3. G has one negative and two positive eigenvalues on every point of ¬. This is

expressed by saying that g has the signature (-, +, +).

The elements of G(X) are functions on ¬ defined by gif(X) = gx(ei, ej). If they
are differentiable of class C•, the above properties characterize a C• Lorentz metric
on ¬. Similarly, a Cr Lorentz metric can be introduced (r Œ �).

Three different types of vector Y are considered: spacelike if YtGY > 0 or Y =
0, timelike if YtGY < 0, and lightlike if YtGY = 0 and Y π 0. The set of all lightlike
vectors forms the light cone, whose equation is YtGY = 0. If g : � Æ ¬ is a C1 curve
and g. is its derivative, then g is called spacelike if g.(t) is spacelike for all t. The
timelike and the lightlike curves are defined in a similar way.

Let us look at the role of the eigenvalues and eigenvectors of the matrix G of
a Lorentz metric g. Because G is a symmetric matrix, it can be diagonalized,
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leading to a matrix G¢ = diag(l1, l2, l3), where l1, l2, l3 Œ �. This transformation
from G to G¢ is just a change of basis, and thus G¢ may be expressed as G¢ =
A-1GA, where A is the matrix changing between the orthonormal canonical basis
Bx and a new one Bx¢, which is also orthonormal (and thus A-1 = At). The new basis
Bx¢ is formed by three eigenvectors of G. The columns of A are the components of
these eigenvectors in the canonical basis Bx, and the elements l1, l2, l3 of the diag-
onal of G¢ are the eigenvalues of G associated with the corresponding eigenvec-
tors. Because g is Lorentzian, the signature is (-, +, +); thus only one eigenvalue
is negative, and the other two are positive. There is no loss of generality if we
assume that l1 < 0 and |A| = 1 (changing the order of the columns of A if neces-
sary). Thus, the basis Bx¢ in which G¢ is a diagonal matrix has a nice geometric
interpretation, since it can be obtained from the canonical basis Bx by a rotation.

Now the study of the cone structure in the basis Bx¢ is trivial. Bx¢ = {J, U, V},
where J, U, and V are the eigenvectors of G associated with l1, l2, and l3, respec-
tively. Let Y π 0 be a lightlike vector. If the components of Y in the basis Bx¢ are
(y1, y2, y3), the equation of the lightlike vectors in this basis is YtG¢Y = 0—that is,

(6.125)

which is a cone whose axis is parallel to the vector J (remember that l1 < 0, and
l2, l3 > 0). The intersection of the cone and the plane y1 = 1 is the ellipse

(6.126)

The ellipse axes are parallel to the vectors U and V (see Figure 6.38b), and their
respective semiaxis lengths are (-l1/l2)1/2 and (-l1/l3)1/2.

To summarize:

1. The light cone at X is elliptic, "X Œ ¬.
2. The direction of the elliptic cone axis is the direction of J, the eigenvector of

G associated with the negative eigenvalue of G.
3. The directions of the principal axis of the elliptic cone are the directions of U

and V, the eigenvectors of G associated with the positive eigenvalues of G.

Sections 6.17.1 and 6.17.2 are devoted to the “optical condition,” which is the con-
dition that the Lorentz geometry must fulfill to make the lightlike curves define
the edge rays of the bundle. In Section 6.17.2 we examine the system of partial
differential equations, which are derived from the general optical condition. We
also discuss a specific set of solutions of said system, which coincide with the
already identified bundles found by other methods. Section 6.17.4 describes some
examples of elliptic bundles, and the conclusions are given in Section 6.18.

6.17.1 The Restricted Optical Condition
Let us consider a medium with constant refractive index n = 1. Thus, the ray tra-
jectories will be straight lines. In the Lorentz geometry approach of Gutierrez 
et al. (1996), a “restricted optical condition” was used, which stated that every
lightlike geodesic of the Lorentz metric must be a geodesic of the Euclidean metric.
The application of this condition forces the lightlike curves to be geodesics of both
the Lorentz metric and the Euclidean metric but provided tools to find new ellip-
tic bundles.
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Let us eliminate requirement of the lightlike curves being geodesics of the 
Euclidean metric from restricted optical condition. Then every lightlike geodesic
of the Lorentz metric must be a straight line. This condition will be called “refor-
mulated restricted optical condition”.

Thus, we can reformulate the restricted optical condition of Gutiérrez et al.
(1996) as follows: If g is a C2 curve in ¬ such that g.(t) π 0, " t Œ �, then, for 
k Œ {1, 2, 3},

(6.127)

where the symbol Ÿ denotes the vector product.
The upper left equation establishes that g is a geodesic curve in Lorentz geom-

etry. The lower left one implies that g is a lightlike curve. The equation on the
right-hand side states that g̈ (t) is parallel to g.(t), which is the general condition
for g to be a straight line.

Gk is a matrix formed by the elements Gk
ij, which are the Christoffel symbols of

the Lorentz metric (O’Neill, 1983). The expression of these symbols using Einstein’s
notation for the summation (in which the summation symbol is omitted) is

(6.128)

where G = (gij); G-1 = (gij).
Let us see that the restricted optical condition Eq. (6.127) is fulfilled if

(6.129)

where f k are functions on ¬, and the matrices Ak are formed by the elements 

, ak are also functions on ¬ and dki is the Kronecker delta 

function. By substitution of Gk in the upper-left equation in Eq. (6.127), and taking
into account the lower-left equation in Eq. (6.127), we obtain: 

(6.130)

where a denotes the vector a = (a1, a2, a3).
Equations Eq. (6.129) are the reformulated restricted optical equations. Let

us prove that Eq. (6.129) is not only sufficient but necessary for the restricted
optical condition Eq. (6.127) to be fulfilled. Consider a point X in ¬ and a lightlike
vector Y at X, which must fulfill

(6.131)

Let the straight line g (t) be the lightlike curve fulfilling g (to) = X and g.(to) = Y. If
G denotes the vector whose components are the matrices Gk, from (1):

(6.132)

where the right-hand side equation is obtained by substitution of the upper left
equation in the lower left one. Setting t = to in the equation on the right, the fol-
lowing two independent equations are obtained:
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(6.133)

In Eq. (6.132) we indicate explicitly that Gk is not a function of Y.
As the equations Eq. (6.132) are third-order polynomials in the components of

vector Y and must vanish for all the vectors Y defined by the quadric Eq. (6.131),
then the third-order polynomials must be decomposed as:

(6.134)

where D = (d1(X), d2(X), d3(X)) and E = (e1(X), e2(X), e3(X)) are vectors whose coef-
ficients are functions on ¬. Developing Eq. (6.134) and identifying the coefficients
of the powers of Y, it is found that D and E fulfill

(6.135)

being f k functions on ¬, and the following system of differential equations is
obtained:

(6.136) 

It is straightforward to see that the 15 equations Eq. (6.136) and the 18 equations
Eq. (6.129) are equivalent: Eq. (6.136) can be obtained from Eq. (6.129) by elimi-
nation of the 3 unknown functions ak.

Let us solve the restricted optical equations Eq. (6.129). Using the expressions
for the Christoffel symbols Gk

ij, we can write the restricted optical equations as

(6.137)

Calling Fk = f k + gmkam/2, this system of equations can be rewritten as

(6.138)

Assume that the metric is C2 and that the functional coefficients Fk and ak are C1.
The integrability conditions of system Eq. (6.138), given by forcing the equality of
the second-order cross derivatives (gij,mk = gij,km), lead to the following expressions
for the functions Fk and ak: 

(6.139)

The upper equations say that the vector a = (a1, a2, a3) is irrotational, and thus
the must be a potential function V(X) on ¬ fulfilling: 

(6.140)

Taking into account Eq. (6.140), the lower equations in Eq. (6.139) can be easily
integrated, and the solution can be written in terms of V as: 
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where q, m1, m2, m3 Œ �. Eqs. (6.140) and (6.141) are the integrability conditions of
the system.

Let us show that, without loss of generality, we can set V = 0 in expression
Eq. (6.141). This implies that ak = 0, Fk = f k = qxk + mk and will simplify the inte-
gration of the restricted optical equations Eq. (6.137).

Consider an arbitrary C2 function h(X) on ¬ fulfilling h > 0 and a Lorentz
metric G that fulfills the restricted optical equations for certain functions f k and
ak. The matrix G¢ = hG also defines a Lorentz metric with the same cone struc-
ture. By direct calculation using Eq. (6.128) it can be obtained that

(6.142)

where G¢kij denotes the Chistoffel symbols for the matrix G¢. Taking into account
that the restricted optical equations are fulfilled for G (Eq. (6.129)), then from Eq.
(6.142) we get that the restricted optical equations are also fulfilled for G¢, for the
functions f ¢k and a¢k given by

(6.143)

Let us select the function h = e-V, where V is the potential function associated to
the vector a = (a1, a2, a3). By the definition of V in Eq. (6.140) and from Eq. (6.143),
we get that for this function h, G¢ fulfills the restricted optical equations Eq. (6.129)
with f ¢k = eVFk and a¢k = 0. This implies, again by Eq. (6.140) that the potential
function for G¢ is V¢ = V0 (= constant). Therefore, by Eq. (6.141), F¢k = e-Vo(q ¢xk + m ¢k)
= hxk + ek where h and ek are also real numbers that group the exponential factor
in the unknown constants q¢ and m¢k associated to G¢. Obviously, with no loss of
generality we can set V0 = 0.

Therefore, we have proved that for any Lorentz metric G fulfilling the
restricted optical equations Eq. (6.129), there exist an equivalent Lorentz metric
G¢, which fulfills the more restrictive equations

(6.144)

which differs from Eq. (6.129) in that a¢k = 0. This condition, when introduced 
in Eq. (6.130), provides that g (t) = 0, which means that the edge rays of G¢ are 
not only geodesics of the Lorentz metric but also geodesics of the Euclidean 
metric. These equations Eq. (6.144) are the restricted optical equations defined in
Gutiérrez et al. (1996), where the restricted optical condition was stated forcing
also the lightlike curves to be geodesics of the Euclidean metric. Therefore, here
we have shown that eliminating the additional constrain set does not lead to new
elliptic bundles.

6.17.2 The General Optical Condition
The “general optical condition” that we are interested in can be stated this way:
For every lightlike vector Y at X, Y must be also a lighlike vector at X¢ = X + Yt,
for all t. This can be expressed as
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(6.145)

This general optical condition can equivalently be stated as follows: For every
lightlike vector Y at X, there must be a lightlike curve with g.(0) = Y that is a
straight line.

In order to express the general optical condition Eq. (6.145) by a system of
partial differential equations in the elements gij(X) of G, let us consider the Poisson
bracket method (Miñano, 1986) in Cartesian coordinates. In this framework, a ray
is described in the phase space by the Hamilton equations, which constitutes a
system of ordinary differential equations on the functions (x1, x2, x3; p1, p2, p3) with
respect to a parameter s that progress along the ray. The solutions of this system
of equations must vanish the Hamiltonian H ∫ (p2

1 + p2
2 + p2

3 - n2)/2—that is, it must
be consistent with the additional equation p2

1 + p2
2 + p2

3 = n2. Since we are consid-
ering the case n = 1 and the Hamilton equations state that x.i = pi, then |X

.
| = 1.

Therefore, in this case n = 1, s is the arc length along the ray and the vector 
P = (p1, p2, p3) is a vector with unit modulus.

Let us consider the cone structure of equation PtG(X)P = 0 defined in ¬. 
The general optical condition states that this equation must define a manifold 
w. ∫ PtG(X)P = 0 in the phase space that is composed by ray trajectories. As indi-
cated in Miñano (1986), the necessary and sufficient condition for a manifold to be
composed by ray trajectories is given by the vanishing of the Poisson bracket of
the Hamiltonian and the manifold. In Cartesian coordinates, that is given by

(6.146)

Taking into account the expressions of H and w, we get 

(6.147)

for the values of X and P vanishing the manifold equation and the Hamiltonian.
—G denotes the vector whose components are the matrices ( gij,1), ( gij,2), and ( gij,3).

Let us consider now a lightlike vector Y, in general, not unitary. This means
that Y = aP for certain a Œ �. From the cone structure equation and Eq. (6.147),
the lightlike vectors Y fulfill

(6.148)

Note that the second equation in Eq. (6.148) can also be obtained by deriving the
left-hand side of Eq. (6.145) with respect to the parameter t and setting t = 0 for
all X Œ ¬. As the second equation in Eq. (6.148) is a third-order polynomial in the
components of vector Y and must vanish for all the vectors Y defined by the first
equation in Eq. (6.148), which is a quadric, then the third-order polynomial must
be decomposed as

(6.149)

where C = (c1(X), c2(X), c3(X)) is a vector whose coefficients are functions on ¬.
Developing Eq. (6.149) and identifying the coefficients of the powers of Y, the fol-
lowing system of differential equations is obtained: 
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where i, j, k Œ {1, 2, 3}. We will refer to these equations as the general optical 
equations.

6.17.3 Results
Let us consider the particular case in which the functions ck fulfill following 
conditions: 

(6.151)

The upper equations say that the vector C = (c1, c2, c3) is irrotational, and thus
there must be a potential function U(X) on ¬ fulfilling: 

(6.152)

where — denotes the gradient operator. Let us show that we can set additionally
without loss of generality that:

(6.153)

Consider an arbitrary function h(X) on ¬ fulfilling h > 0, and a Lorentz metric G
fulfilling the general optical equations Eq. (6.150) for certain functions ck. As can
be easily checked, the matrix G¢ = hG also defines a Lorentz metric. Moreover, 
both metrics are equivalent for our purpose because they define the same cone
structure:

(6.154)

Let U be the corresponding potential function of C, and thus ck = Uk. Taking 
h = eU, and since the metric G¢ = ( g¢ij) = eUG defines the same cone structure as G,
obviously G¢ also fulfills the general optical condition. By substitution of G = e-UG¢
in Eq. (6.150), we immediately find that the functions c¢k associated to G¢ are of
the form given by Eq. (6.153).

The integration of Eq. (6.150), taking into account Eq. (6.153), is straightfor-
ward. It leads to the following matrix G:

(6.155)

where a, b, c, d, e, f, p, q, r, s, t, u, m, B, D, E, a, b, g, and d are real numbers that
appear as constants of integration. There are other conditions, apart from the
optical conditions stated in Section 6.17.1, that we have to impose on the matrix
G in order to describe the elliptic bundles. The values of the parameters in Eq.
(6.155) must be such that G defines a cone—that is, that the determinant of G
does not vanish, and its signature is (-, +, +), as indicated in the Introduction.
These conditions define the region ¬ where the elliptic bundle exists.
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This matrix G was first discussed in Benítez (1999), with an approach based
on the application of a series expansion from the bundle defined at a reference
surface.

On the other hand, the elliptic bundles described recently using the Poisson
bracket design method in curvilinear coordinates (Miñano and Benítez, 1999) coin-
cide with the subset of elliptic bundles given by Eq. (6.155) with rotational sym-
metry (see the next section on imposing this condition) and when g = 0. With this
approach, the coordinate curves of the curvilinear coordinate system coincide with
the curves tangent to the eigenvectors of the matrix G. The bundles with g π 0 are
not found with this approach because no curvilinear coordinate system can be
defined in this case. This is due to the nonintegrability of the eigenvector field, as
shown in Benítez (1999) and in the next section.

With respect to the solution of the restricted optical condition (Gutiérrez et
al., 1996), it is equivalent to Eq. (6.155), except only 10 of the 20 parameters in
Eq. (6.155) are independent. Therefore, for the elliptic bundles given by Eq. (6.155)
that do not fulfill the restricted optical condition, the edge rays are not geodesics
of the Lorentz metric.

Therefore, all the known elliptic bundles are the solutions of the general
optical equations when the vector C is irrotational. Finding new elliptic bundles
when the vector C is not irrotational is an open problem and deserves further
research. We have checked that not all vectors C provide elliptic bundles. For
instance, let consider the vectors C of the form

(6.156)

where F is an arbitrary C1 function in ¬, and ek is one of the vectors of the canon-
ical basis. It is straightforward to check that — ¥ C π 0 (where — ¥ denotes the
rotational operator). By direct calculations we have proven that the only matrix
G fulfilling the general optical equations for this vector C is the null matrix (which
is the trivial degenerate solution). What are the conditions on the vector C for the
existence of solutions of the system Eq. (6.150)? This is a problem to work on. Nec-
essary conditions may come out from the integrability conditions of the system,
which are given by the equality of the second-order cross derivatives of the matrix
coefficients ( gij,mk = gij,km).

6.17.4 Examples
Let us consider the subset of the elliptic bundles given by Eq. (6.155) with rota-
tional symmetry with respect to the x1 axis. Imposing this symmetry (Benítez,
1999) lead to the following conditions for the parameters in the matrix G in Eq.
(6.155)

(6.157)

Therefore, the elliptic bundles in homogeneous media with rotational symmetry
when that — ¥ C = 0 are described by the matrix
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The subset of the rotational-symmetric solutions Eq. (6.158) that fulfill the
restricted optical equations are the ones given by Eq. (6.158) setting g = 0 and ap-
s2 = mf. Although the bundles not fulfilling these two conditions are different from
those fulfilling it, the concentrators that are designed by the application of the flow
line method are the same ones. The flow line concentrator design method is based
on the fact that if the reflector surface is tangent to one of the symmetry planes
of the elliptic cones at any point, the reflection does not disturb the bundle, in
other words, the reflector exchanges ray trajectories among rays of the bundle, but
the cones formed by the rays of the bundle remain the same.

Therefore, Eq. (6.158) contains, for instance, apart from the elliptic bundle
defined by a disk, which is ideally concentrated in 3D by the FLC, other bundles
that are also ideally transmitted in 3D by this well-known concentrator. Let us
examine just two representative examples of solutions that do not fulfill the
restricted optical equations.

A. Case g = 0, s = 0, a = 0, p < 0, f > 0, m > 0
For m = 0, the trivial bundle was obtained, for which the matrix G = diag(f, p, p),
independent of X, represents an elliptic bundle (for f < 0, p > 0) of vertical and cir-
cular cones that are equal at all points in space. Again, the additional degree of
freedom m π 0 provides four new nontrivial types of elliptic bundles. Let us con-
sider the one obtained for the parameters p < 0, f > 0, m > 0 (that we will call
bundle A). Introducing the values of the parameters in the matrix Eq. (6.158), and
particularizing in the plane x3 = 0

(6.159)

which is also a diagonal matrix. The eigenvalues of G are, obviously, the elements
of the principal diagonal, and their eigenvectors are the canonic basis. Through
revolution symmetry it is deduced that the eigenvectors corresponding to l1 = f
and l2 = p are parallel to the meridian planes—specifically, (1, 0, 0) is an eigen-
vector of l1 = f and (0, x2, x3) of l2 = p. The eigenvectors corresponding to l3 = mx2

2

+ p are perpendicular to the meridian planes. The region ¬ where the bundle exists
(i.e., where the signature (-, +, +) is obtained) is x2

2 + x3
3 > -p/m—that is, the exte-

rior of the cylinder defined by the equation |G| = 0. The eigenvalue correspond-
ing to vector J (which is tangent to the flow line) is l2.

Figure 6.39a shows some edge-ray cones of this bundle. The cone axes are hor-
izontal pointing toward the axis X1. It can be easily proven that the edge rays con-
tained in horizontal planes are tangent to the surface |G| = 0. The vertical
semiaxis of the ellipse has a constant value, and the horizontal axis increases as
r decreases, becoming infinite on |G| = 0.

As the flow lines are horizontal straight lines and are contained in meridian
planes, it is deduced that the CC with linear symmetry, shown in Figure 6.39b,
transmits this bundle ideally (independently of the constant semiaxis value), as
well as the conventional linear bundle (into which this bundle A degenerates when
f = 0). This means that the linear CC collects ideally any elliptic bundle tangent
to the cylinder that defines it, maintaining the value of the semiaxis of the cones
of edge rays in the direction of the cylinder axis.
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The preceding example is a particular case of the general solution in which 
g = 0. Let us consider now that g π 0. In this situation the vector (0, 0, 1) is not an
eigenvector of the matrix G in x3 = 0, as occurred in the bundles with g = 0 (includ-
ing the solutions of the restricted optical equations). This implies that the merid-
ian planes are not planes of symmetry of the cones of edge rays of the bundle. To
illustrate this new situation, let us consider the following example.

B. Case s = 0, a = 0, m = 0, fp π 0, g π 0
Once again, if g = 0, we obtained the trivial bundle. The condition g π 0 leads to
the appearance of two new nontrivial bundles, which will be called B1 and B2. The
matrix G in x3 = 0, given by Eq. (6.158), for the parameter values of this case, takes
the form

(6.160)

whose eigenvalues are
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Figure 6.39 Bundle A: (a) Edge rays and flow lines. (b) This bundle is ideally transmitted
by the cone concentrator with linear symmetry.



(6.161)

The range p > 0 leads to the two elliptic bundles B1 and B2 described in Table 6.1.
Both bundles have the negative eigenvalue l3. The eigenvalue l2 = p has as its
eigenvector (0, 1, 0) in x3 = 0, as is easily confirmed. Through revolution symme-
try it is deduced that the eigenvector of l2 has always y1 = 0 and is parallel to the
meridian planes, and that the eigenvectors of l1 and l3 are normal to this direc-
tion and therefore tangent to cylinders of equation r = cte. In the case of the eigen-
vector J (corresponding to l3), from its equation GJ = l3J it is found that the angle
it forms with the vertical is

(6.162)

Figure 6.40a-b represent schematically the bundles B1 and B2 for the case 
g > 0. In elliptic bundle B1, the value of the angle f is zero (i.e., the vector J is ver-
tical) on the axis X1 and increases as r increases, tending toward the value 
f = 45°. Bundle B2 only exists outside the cylinder r > (fp)1/2/|g|, on whose surface
the two semiaxes of the elliptic cone vanish. A particular case of bundle B2, p = f,
g > 0, is interesting because the angle f = 45° for all points in ¬.

The flow lines of the bundles B1 and B2 are helices with constant pitch (given
by the angle f of Eq. (6.162)) and centered with respect to axis X1 (see Figure
6.40a–b). The corresponding concentrator is the vertical cylinder, which also trans-
mits the trivial bundle. An important difference with the bundles A (and with all
bundle when g = 0) is that bundles B1 and B2 verify that the vector fields corre-
sponding to the eigenvectors parallel to the cylinder r = cte (U and J) cannot be
integrated—that is, there does not exist a continuous surface normal to each vector
field. This is deduced from the integrability condition of the vector field, which
they do not fulfill (i.e., U ·— ¥ U π 0, and J ·— ¥ J π 0), as can be easily seen by
direct calculations. Figure 6.40c shows this for the particular case p = f of bundle
B2.

6.18 CONCLUSION

Using poisson brackets is a smart way to establish the general nonimaging design
problem. Nevertheless it is not by itself a useful tool unless the bundle to work
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Table 6.1. Some characteristics of the elliptic bundles with
g π 0, s = 0, a = 0, m = 0, pf π 0 .
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with has remarkable characteristics. This is the case of elliptic bundles whose flow
lines are coincident with one of the coordinate lines of a three-orthogonal system.
The equation defining the elliptic bundle in this case (Eq. (6.28)) is an expression
of the same type as the Hamiltonian function H (Eq. (6.17)) in the Hamiltonian
formulation that we use. The condition for w = 0 to be a particular integral of the
Hamiltonian system (Eq. (6.26)) results in a system of three linear equations where
the independent variables are the squares of the conjugate variables. This allows
us to reach relatively simple solutions. In fact, these solutions are connected with
the general solutions of the Eikonal equation with arbitrary orthogonal coordi-
nates and separation of variables.

The condition for w to be a particular integral of the Hamiltonian system (Eq.
(6.26)) is symmetrical with respect to w and H. Therefore, if a bundle defined by
w is a particular integral of a Hamiltonian system with function H, then H is also
a particular integral of a Hamiltonian system with function w. This reasoning
would lead us to the concept of dual concentrators if w, as a Hamiltonian function,
represents an optical system. In the case of elliptic bundles whose flow lines are
coincident with one of the coordinate lines of a three-orthogonal system, the
expression w = 0 has the same form as H = 0, and so the function w may be the
Hamiltonian function of an optical system. All we need is that the functions |a1|,
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Figure 6.40 In elliptic bundles B1 (a) and B2 (b), the cones of edge rays are not symmet-
rical with respect to the meridian planes. The flow lines are helices with constant pitch. 
(c) In bundle B2 with p = f, the path shown is normal at every point to U if g > 0 and to J
if g < 0, but it is not closed. This is equivalent to the nonintegrability of these vector fields.



|a2|, |a3| be the modulus of the gradients of the coordinates of a three-
orthogonal system over an arbitrary positive function (this positive function would
be the square of the refractive index distribution). The conditions that three func-
tions must fulfill to be the modulus of the gradients of the coordinates of a three-
orthogonal system are not simple. These conditions are a system of six differential
equations called the Lamé equations (Benítez, 1999; Gutiérrez et al., 1996). Owing
to this difficulty, the problem of finding the dual concentrator (or more exactly, the
dual bundle) remains unsolved.

One of the reasons to study elliptic bundles is that at any point these bundles
are symmetrical with respect to three planes, and this allows applying the flow-
line method to build up the reflectors. Only one plane of symmetry is required for
the application of the flow-line design method. Moreover, the existence of such sym-
metry is only needed at the surface where the reflector is going to be placed. There-
fore, we are clearly reducing the degrees of freedom with respect what is strictly
needed. Fortunately, enough degrees of freedom still remain to find a solution.
These considerations suggest that there may be a much wider set of solutions (i.e.,
of ideal 3D concentrators) than the ones found here and that it is very likely that
ideal 3D concentrators with prescribed apertures and with constant refractive
index exist.

In fact, the multifoliate concentrator can be considered as one of these cases.
In this chapter we have analyzed the multifoliate concentrator with the Poisson
brackets tools, and this analysis has opened new possibilities for designing ideal
concentrators. If a concentrator is found such that the flow lines are contained in
surfaces of constant refractive index, then a multifoliate solution using constant
refractive index may exist.

For the case of elliptic bundles in a homogeneous medium, we have presented
both the Lorentz geometry and the Poisson bracket approaches (applied in Carte-
sian coordinates). The latter provides the general partial differential equations
that must be accomplished by all possible elliptic bundles in a homogeneous
medium. As a result, all the known elliptic bundles, which were found by other
methods, are obtained as a particular solution of the system, and the question
about the existence of other bundles remains open.
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7.1 INTRODUCTION

Generally speaking, designs in Nonimaging Optics act as transformers of extended
ray bundles. The bundle of rays impinging on the surface of the entry aperture of
the nonimaging device is called the input bundle and is denoted by Mi. The bundle
of rays that exits the surface of the exit aperture of the concentrator is the exit
bundle Mo. Collected bundle Mc is the name given to the set made up of the rays
common to Mi and Mo, connected to one another by means of the concentrator.

There are two main groups of design problems in Nonimaging Optics. Although
both groups have usually been treated separately in the nonimaging literature,
there are examples of design problems, such as photovoltaic concentrators, that
belong to both groups.

For the first group, which can be referred to as “bundle-coupling” problems,
the design problem consists in specifying the bundles Mi and Mo, and the objective
is to design the concentrator to couple the two bundles—that is, making Mi = Mo

= Mc. This design problem is the one that has been considered in previous 
chapters.

This chapter is devoted to the second group of design problems, usually
referred to as “prescribed irradiance” or “prescribed intensity” type. In this case,
it is only specified that one bundle must be included in the other—for example, Mi

in Mo (so that Mi and Mc will coincide)—with the additional condition that the
bundle Mc produces a certain prescribed irradiance distribution on one target
surface at the output side. Since Mc is not fully specified, this problem is less
restrictive than the bundle-coupling one (this states, for instance, that some design
problems can be exactly solved with a single optical surface).

The prescribed irradiance/intensity problems appear in most of the illumina-
tion applications. For instance, in automotive lighting, the light source is a light-
bulb or an LED, and the target surface is the far-field sphere, where the intensity
distribution is prescribed. It is also interesting in nonillumination applications.
For example, it is used for wide-angle ceiling IR receivers in indoor wireless com-
munications, where the receiver sensitivity is prescribed to compensate the dif-
ferent link distances for multiple emitters on the desks (in this case, Mo is included



in Mi, and the irradiance distribution is prescribed at the input side, at the plane
of the desks). The receiver angular sensitivity plays the same role as the intensity
pattern in a luminary design.

Although there are more degrees of freedom in a “prescribed intensity” design,
designing in 3D geometry is still quite complex. The last section of this chapter is
devoted to an overview of some of these design methods, in particular those that
simplify the problem considering the source as a point (nonextended) source.

7.2 REFLECTOR PRODUCING A PRESCRIBED
FUNCTIONAL TRANSFORMATION

For illustrative and pedagogical reasons, we will first consider the simpler case in
which the sources are small compared to the other parameters of the problem. This
problem was studied by Boldirev (1932), Komissarov (1941), and Elmer (1980). The
size of the source may be much smaller than the closest distance of approach to
any reflective or refractive component, or the angle subtended by the source at any
reflective or refractive component may be much smaller than the angular diver-
gence of the beam (point source approximation). Then it is useful to consider the
limiting case where the source has no extent. We will idealize the source by a line
or point with negligible diameter and seek a one-reflection solution.

Using polar coordinates R, f from the source as origin and q for the angle of
the reflected ray, the geometry in Figure 7.1 shows that the following relation
between source angle and reflected angle holds:

(7.1)

where a is the angle of incidence with respect to the normal. Clearly,

(7.2)

Eq. (7.1) is readily integrated,

(7.3)log tanR d= +Ú a f const

a f q= -
2

d R
d
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a
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so that,

(7.4)

Eqs. (7.4) and (7.2) determine the reflector profile R(f) for any desired functional
dependence q (f).

7.3 SOME POINT SOURCE EXAMPLES WITH
CYLINDRICAL AND ROTATIONAL OPTICS

Suppose we want to radiate power with a particular angular distribution Po(q);
which we assume to be axially symmetric. For example, Po(q) = const. from q = 0
to q1 and Po(q) ª 0 outside this angular range. If the line source radiates an angular
distribution Pi(f), then, since by conservation of energy Po(q) dq = ±Pi(f)df (neglect-
ing material reflection loss), we need only to ensure that

(7.5)

to obtain the desired radiated beam profile. The alternative in the sign corresponds
to two possible families of solutions, depending on the sign of the derivative dq/df.
The positive sign is usually called converging or elliptic type surface, and the neg-
ative is called diverging or hyperbolic type. The difference between these two cases
can also be seen because the rays after the reflection cross in the elliptic case and
do not cross in the hyperbolic case (i.e., the caustic of the exit-ray bundle is real
in the elliptic case and virtual in the hyperbolic case).

To illustrate the method, consider the preceding example of a constant Po(q)
for a rotational symmetric line source. By this rotational symmetry, dPi(f)/df =
constant so that, according to Eq. (7.5) we want q to be a linear function of f—say,
q = a·f (with the boundary condition that q = 0 at f = 0). Then the solution of 
Eq. (7.4) is

(7.6)

where,

(7.7)

and Ro is the value of R at f = 0.
We note that the case a = 0 (k = 2) gives the parabola in polar form,

(7.8)

while the case q = constant = q1 gives the off-axis parabola,
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Suppose we desire instead to illuminate a plane with a particular intensity dis-
tribution. Then we correlate position on the plane with angle q and proceed as
before.

Turning next to a spherically symmetric point source, we consider the case of
an exit constant Po(Wo), where Wo is the radiated solid angle. Now we have by
energy conservation,

(7.10)

where Wo is the solid angle radiated by the source. By spherical symmetry of the
point source, Po(Wo) = constant. Moreover, we have dWo = 2p d(cosq) and dWi =
2p d(cosf), so we need to make cosq a linear function of cosf,

(7.11)

With the boundary conditions that q = 0 at f = 0, q = q1 at f = fo, we obtain,

(7.12)

(7.13)

This functional dependence is applied to Eq. (7.6), which is then integrated,
perhaps numerically.

7.4 THE FINITE STRIP SOURCE WITH
CYLINDRICAL OPTICS

7.4.1 Flow Line Mirror
We have now developed the analytical tools to solve the real problems that involve
finite size sources. We do this combining the previous technique with the edge ray
method that has proved so effective in nonimaging designs—that is, we apply the
preceding methods to rays from the periphery. As an example, we apply the pre-
ceding methods to a planar Lambertian source in order to achieve a far-field illu-
mination of predetermined shape. Looking at Figure 7.2 we design the edge rays
of the nonimaging reflector to satisfy the condition.
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(7.14)

The exponent n together with f(q) determine the far-field illuminance. For
example, for uniform far-field illuminance from a two-dimensional (strip) source,
f(q) = constant and n = 2 are appropriate, since sin(f + q) cos2 q just cancels the
cos3(q) fall-off in illuminance of a bare source. On the other hand, for rotationally
symmetrical sources whose far-field illuminance would fall off as cos4(q), f(q) = con-
stant and a value of n between 2 and 3 would be appropriate. After performing
some algebra and using the identity tan1/2(f + q) + cot(f + q) = 1/sin(f + q), we
obtain

(7.15)

This can be simplified by the substitutions y = f + q - p /2 so that dy/dq = 1 +
dy/dq, sin(f + q) = cosy, cos(f + q) = -siny. Then,

(7.16)

This equation would be solved by standard numerical methods with starting
values y = 0 at q = 0. Many other cases have been worked out along the lines illus-
trated in the example. See, for example, Winston and Ries (1993).

7.4.2 Sequential Optical Surface
It is also possible to produce in 2D geometry (i.e., for the meridian rays of a strip
source) a prescribed intensity for an emitter or prescribed sensitivity for a receiver
by a means of a sequential optical surface. This design procedure was first pro-
posed by Ries and Winston (1994) for reflectors and tubular source (see Section
7.6). In the example considered in this section (Hernández, 2003), a refractive
surface is used, which corresponds to the upper surface of a lens that encapsulates
a flat receiver (see Figure 7.3). This specific example will be useful for the com-
parison with the design in 3D geometry, shown in Section 7.5.

Let Lap(q) be the prescribed sensitivity of the device, which is assumed for this
example to be symmetric with respect to q = 0 and to extend in the angular range
-qM £ q £ qM, and to be null outside that range. Lap(q) has units of length and
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Figure 7.3 Lens to be calculated to provide a prescribed sensitivity Lap(q) to the flat receiver
in two dimensions.



(neglecting the optical losses) can be understood as the apparent projected length
of the receiver as seen through the lens (see Figure 7.3).

Maximum concentration is required, and thus the étendue conservation
theorem states an integral condition over the specification Lap(q), given by

(7.17)

where L is the receiver length and n is the lens refractive index.
The input parameters of this design are Lap(q), d, n, and the x coordinate of

the point A0 (shown in Figure 7.4) of the lens along the receiver line. The design
procedure has in general two types of solutions, converging and diverging (Ries
and Winston, 1994). Due to the limited power of the refractive surface to deflect
the ray trajectories, the converging solution is not practical, and we will refer only
to the diverging one. These are the steps to follow.

1. Select point A along the receiver line.
2. Calculate the portion of the Cartesian oval passing through A0 that focus the

parallel rays impinging from direction q = qM onto point R¢ (See Figure 7.4).
The edges of this portion of the Cartesian oval are A0, and the point B, which
is the one fulfilling that the projection of the segment A0 - B normal to the
direction q = qM toward equals the prescribed value Lap(qM). Take N points of
the oval in point Aj, j = 0, . . . N (where A0 = A and AN = B) and their corre-
sponding normal vectors Nj to the surface.

3. Refract (inversely) at point (A1, N1) the ray r1 emitted from R, and take the
resulting direction angle q = q1 (note that q1 < qM).

4. Calculate the new point AN+1 of the refractive surface as the intersection point
between the straight line passing through the last point AN with direction per-
pendicular to the normal vector NN and the ray r1¢ impinging from direction 
q = q1, whose distance to ray r1 is Lap(q1).

5. Calculate the normal vector NN+1 by (inverse) application of the Snell’s law 
considering that the ray r1¢ is refracted toward R¢.

6. Repeat steps 3 to 5 for tracing (inversely) through each successive point Aj

(with j = 2 and so on) the ray rj from R, calculating the direction angle qj (note
that qj < qM), and new point Aj+N using the straight line through the last point
Aj-1+N perpendicular to Nj-1+N and the ray rj¢ (distant Lap(qj) to rj).

2
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7. The design finishes when j = J such that the point AJ+N reaches the z axis (see
Figure 7.5).

In general, the resulting normal vector at the z-axis point, NJ+N, is not parallel 
to the z-axis. Moreover, in general, the last designed direction qJ > 0 strictly, and
thus there are no degrees of freedom to guarantee the prescribed sensitivity for 
0 < q < qJ.

Figure 7.6 shows the ray-tracing result (labeled as “2D analysis”) over a lens
designed using this procedure. The sensitivity was prescribed with the linear law

(7.18)

from 0 < q (degs) < qM = 60° and null outside that range. The design parameters
are L = 2mm, n = 1.49, A0| = 15mm, and it gets |AJ+N| = 12.4mm. As can be seen,
the design does not follow the prescription for q < qJ = 15.1°.
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Figure 7.6 In continuous line, the 2D sensitivity ray-trace of a refractive lens analyzed by
ray-trace designed for a prescribed linear sensitivity in 0 < q < qM = 60° (and null outside)
and design parameters are L = 2mm, n = 1.49, |A0| = 15mm. As can be seen, the design does
not follow the prescription for q < qJ = 15.1°. In dashed line, the 3D sensitivity of a rota-
tional lens generated from the profile of the 2D design.



The impossibility to adjust the prescribed sensitivity for 0 < q < qJ is intrinsic
to the use of a single optical surface. The design can also be done from border to
center, and then the prescription can be adjusted in the whole range 0 < q < qM,
but the stepped transition to zero at q = qM cannot be achieved (i.e., the prescrip-
tion for q > qM cannot be adjusted) because there are no degrees of freedom to make
the outer portion of the lens be a Cartesian oval (as illustrated in Section 7.5 for
the rotational case). However, it is possible to achieve the full-prescription (includ-
ing the ranges 0 < q < qJ and q > qM) if two surfaces are used, and the SMS design
method (see Chapter 8) is applied. (This will also be illustrated in Section 7.5.)

In the bundle-coupling type problems, when the prescribed input and output
ray bundles have rotational symmetry with respect to z-axis, it is usual to make
a 2D design symmetric with respect to the z-axis, generate the 3D device by apply-
ing the rotation and analyze its 3D performance by ray-tracing. This leads to ex-
cellent results in many cases. However, if the same strategy is applied to
prescribed-intensity problems, the results are not that good. This calculation has
been done for the aforementioned 2D example, and the result is also shown in
Figure 7.6 labeled “3D analysis.” The expected linear sensitivity in 3D is given as
apparent area by

(7.19)

for 0 < q (degs.) < qM = 60°, and null outside this range. The low performance of the
3D lens generated from the 2D design suggests the need to design the rotational
lens directly in 3D (using not only meridian but also skew rays). This is the topic
of next section.

7.5 THE FINITE DISK SOURCE WITH
ROTATIONAL OPTICS

A single rotational optical surface can also provide a prescribed rotational inten-
sity for an extended source (Benítez et al., 2000). We will consider here again the
example of a sequential refractive surface, as in Section 7.4.2.

The design procedure described can provide the desired angular response (the
function Aap(q)) for an optoelectronic receiver with a single rotational-symmetric
refracting surface (see Figure 7.7). When the receiver is a photodiode or photo-
transistor, the material surrounding the receiving area may just substitute for the
conventional optoelectronic encapsulation.
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Although the explanation in this section has points in common with the 2D
case, it will be self-contained for clarity. The procedure can be applied (as the 2D
procedure) for designing from rim to center, or the opposite. Since the 2D descrip-
tion was done from rim to center, in this section the center to the rim design will
be used.

The angular response to be provided by the receptor or emitter is specified as
input data for the design procedure. In the case, Figure 7.7, as an example, the
lens provides the receiver set with an angular sensitivity inversely proportional
to the Nth power of the cosine of the angle of incidence of the ray—that is, pro-
portional to 1/cosNq, N being an integer, for angle of incidence in a range Q. This
type of sensitivity for N = 3 is the one necessary if we wish, for example, to place
the receiver on the ceiling of a room in which there is an isotropic emitter (that
is, with an intensity independent of the angle of emission) situated at a certain
height above the floor, and for the output signal from the receiver to be indepen-
dent of the horizontal displacement of the emitter.

Other cases of note are obtained when the angular sensitivity provided by a
lens to either receiver or the emitter is constant and when it is linear with q. The
latter case may be considered as an interesting approximation of these angular
responses of the type 1/cosNq, due to its simplicity.

In order to describe the design procedure we shall consider as an example the
specific case in which the lens is composed of an axisymmetric aspherical refrac-
tive surface that illuminates a receiver, such as a photodiode with circular active
area.

Let I(q) be the prescribed angular dependence of the current photogenerated
by the photodiode of the receptor when being illuminated by parallel rays of con-
stant radiance and appropriate wavelength at angles in the range Q. This speci-
fication is relative—that is, the photogenerated current will be kI(q), where k is a
constant. This is the same as specifying k¢Aap(q), where k¢ is another constant. As
an additional objective to that of obtaining this relative angular response Aap(q),
we shall aim to make the value of the constant k¢ as high as possible. In order to
get the highest possible k¢, no rays outside the range Q must be collected and, addi-
tionally, the optical losses (Fresnel reflections, absorption, etc.) have to be reduced
as much as possible.

A good approach consists in considering that the photogenerated current is
proportional to the photon flux that penetrates the photodiode bulk. Thus, given
an arbitrary optical system for illuminating the photodiode it is possible to eval-
uate this current within the framework of Geometric Optics by means of a con-
ventional ray-tracing. If desired, losses of the optical system and those due to
reflection on the photodiode surface can both be included in the design procedure
so the desired Aap(q) is obtained taking into account these losses. The latter of the
two types of losses may vary greatly according to whether the photodiode has an
antireflective coating or not.

Figure 7.8 shows the coordinate system x-z that will be used to describe the
design procedure of the lens. The y-axis, corresponding to the third dimension of
the space, is perpendicular to the plane of that figure. R and R¢ are the points of
intersection of the edge of the active area of the photodiode with the plane y = 0.
As the system will have rotation symmetry with respect to the z-axis, without loss
of generality, we can consider that the impinging rays will be parallel to the plane
x-z with direction vector U(q) = (-sinq, 0, -cosq).
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To simplify the problem, the range Q will be considered limited by two values—
that is, q Œ Q if qMIN £ q £ qMAX. In addition to the function Aap(q) and the angles
qMIN and qMAX, other parameters to be chosen in the design are the diameter D of
the active area of the photodiode, the position of the vertex V of the refractive
surface on the z-axis, the normal NV to the refractive surface at that point (if 
NV is not vertical, then the surface will have a peak at that vertex), the 
refractive index n of the lens, and the angular sensitivity of the photodiode active
surface.

The design procedure consists in the calculation of isolated points of the refrac-
tive surface by means of an iterative process based on ray-tracing techniques and
involves the following steps.

1. Choose a point P1 of the refractive surface in the first quadrant of the plane
x-z of Figure 7.8 (thus verifying that its y coordinate is null). Calculate the
normal N1 of the refractive surface at P1 with the condition that the ray
impinging at P1 with direction U(qMIN) is refracted toward R. This calculation
is carried out by inverse application of Snell’s law. From the normal calculate
the tangent T1 to the refractive surface at P1 contained in the plane x-z and
with the direction that verifies that the y component of P1 ¥ T1 > 0. Calculate
the central portion of the refractive surface by interpolating between P1 and
V in the plane x-z a gentle curve (e.g., a polynomial of third order), in such a
way that the normal to the curve at both points coincides with N1 and NV,
respectively. Carry out the 3D ray-tracing on the portion of lens between P1

and V to obtain the function Aap1(q), which is the angular response of that
portion. Normalize the function Aap(q) by multiplying it by the value
Aap1(qMIN)/Aap(qMIN) (note that the specification Aap(q) was relative). In what
follows, Aap(q) should be understood as the normalized function. Set a small
Dq value—for example, (qMAX - qMIN)/1000—identify q1 ∫ qMIN and calculate 
q2 = q1 + Dq.

2. Choose an initial value for a distance s > 0 and calculate the point P2 = P1 +
sT1 as the next point of the refractive surface. Find the normal N2 at P2 with
the condition that the ray impinging at P2 with direction U(q2) is refracted
toward R. From the normal calculate the tangent T2 to the refractive surface
at P2 contained in the plane x-z and with the direction that verifies that the 
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y component of P2 ¥ T2 > 0. Estimate an intermediate point P12 = (P1 + P2)/2
and its normal N12 = (N1 + N2)/2.

3. Carry out the 3D ray-tracing on P12, associating it with the area of refractive
surface between P1 and P2 with the direction of impingement U(q2) to obtain
the value DAap12 and thus calculate Aap2(q2) = Aap1(q2) + DAap12, estimated angular
response for the angle q2 of the portion of lens up to P2.

4. Repeat the steps from 2 to 3, iterating on the value of the parameter s (note
that DAap12 increases with s), until obtaining that |1 - Aap(q2) /Aap2(q2)|< e, e being
a preset margin of error.

5. Carry out the 3D ray-tracing on the point P12 resulting from the iteration 4,
associating it with the area of the refractive surface between P1 and the point
P2 resulting from the iteration 4, in order to obtain the function DAap12(q) and
thus calculate Aap2(q) = Aap1(q) + DAap12(q), estimated angular response of the
portion of lens up to P2.

6. Increase the value q3 = q2 + Dq and repeat the steps from 2 to 5, increasing the
subindices by one unit, until for a given angle qn the coordinate z of point Pn

is negative.
7. Repeat the steps 1–6, iterating on the abscissa of point P1 until |1 - qn /qMAX| <

e ¢, e¢ being another preset margin of error.

The design is finished. The refractive surface is defined by the set of points cal-
culated in the process. If required, it is possible to fit these points by a spline or
a polynomial curve, which facilitates handling of the data.

The design guarantees that the prescription is adjusted in the whole range 
0 < q < qM, but the stepped transition to zero at q = qM is not (i.e., the prescription
for q > qM cannot be adjusted) because there are no degrees of freedom to make
the outer portion of the lens perform as a Cartesian oval (as done in Section 7.4.2
for the linear case).

However, it should be emphasized that the design procedure uses rays imping-
ing on the receiver from nearly all possible directions (the whole field of view of
the photodiode is covered). This situation is close to optimum in terms of maxi-
mizing sensitivity—that is, making the constant A0 (and k¢) as large as possible.
The optimum is equivalent to get isotropic illumination of all the points of the
receiver with rays from the specified range qMIN < q < qMAX.

In the case that the active surface is not flat, as is common in the case of the
surface of LED or IRED emitters, the procedure described is applicable simply by
considering the corresponding geometry of the active surface for the ray tracings
and directing the refracted ray tangent to that surface (as a generalized concept
of the point R) for the calculation of the normal at Pk.

The method can be easily generalized to include preset rotational sequential
surfaces (either refractive or reflective), which deflect the ray trajectories. This is
the case shown in Figure 7.9 shows the cross section of a lens designed for a cir-
cular photodiode active area of silicon without antireflection coating. The lens has 
n = 1.49, and an encapsulating material of n¢ = 1.56 is assumed. The surface 
separating both media is preset to a sphere. The prescribed Aap(q) function is the
linear function of Eq. (7.19).

The actual function Aap(q) function is finally calculated by ray tracing (includ-
ing Fresnel losses at the air-lens and lens-silicon interfaces) is shown along with
the specifications in Figure 7.10a. The procedure, if applied to other angular sen-
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sitivity functions as Aap(q) = 1/cos(q) inside for 0 < q < 80° (and null outside that
range) lead to another lens (whose profile is not shown here) that also produces
the specified sensitivity accurately, as shown in Figure 7.10b.

Figure 7.11 shows the results from M. Hernández (2003) of ray trace on several
lenses designed for a linear prescribed relative sensitivity with different values of
the z-coordinate of the on-axis point of the lens V (obtained from different selec-
tions of the z-coordinate of the point A1). All show very good agreement with the
linear prescription (perhaps except near q = 0, especially for small Vz values). The
very noticeable difference is that the smaller Vz value, the smoother the transition
of the sensitivity at q = qM = 60°. Note that, since by étendue conservation all curves
in Figure 7.11 fulfill the integral condition

(7.20)

the useless sensitivity for q > 60° makes that the constant A0 in Eq. (7.19) increases
with Vz.
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Figure 7.9 Cross-section of a lens designed to get a linear angular sensitivity function in
the range 0 £ q £ 60°. (lens refractive index n = 1.49; encapsulant refractive index n¢ = 1.56)
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Figure 7.10 (a) Angular sensitivity Aap(q) of the lens of Figure 7.9 (bold line) obtained by
ray tracing and specified curve and 5% tolerance curves (dashed lines). (b) Angular sensi-
tivity Aap(q) of the another lens (profile not shown here) for producing 1/cos(q) dependence
for 0 < q < 80°.



In order to get the maximum possible value of the constant A0, the stepped
transition to zero at q = qM is needed (i.e., the null prescription for q > qM must
also be adjusted). This cannot be done with a single sequential optical surface, as
already discussed, but it is possible if two surfaces are used. This is done with the
SMS design method presented in Chapter 8. Two complete surfaces are not needed
to solve this design problem. For both refractive surfaces, one possible design is
indicated in the next steps, which will refer to the points indicated in Figure 7.12:

1. Preset surface SQ from the center. The last point QT 2 of the present portion of
surface SQ will be calculated in step 3.

2. Apply the procedure just described to achieve the prescribed intensity for the
calculation of refractive surface SP through the present surface SQ up to point
PT, which is the point such that the ray r¢ traced (inversely) from R¢ passing
through PT (after the refraction on SR at point QT1) exits the lens toward direc-
tion q = qM.

3. Calculate the point QT2 as the point of SQ on which the ray r from R is refracted
toward PT. Note that, up to this point, the intensity prescription has been
designed for 0 < q < qT, which is the exit direction of ray r.
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4. Calculate a new portion of surface SP as the Cartesian oval that makes that
the rays r¢ traced (inversely) from R¢ and refracted at SQ at the portion between
QT1 and QT2 are refracted on the new points of SP toward direction q = qM.

5. Apply the procedure just described to achieve the prescribed intensity for the
calculation of refractive surface SQ through the already known portion of
surface SP calculated in step 4.

6. Repeat steps 4 and 5 up to convergence onto the line R–R¢.

7.5.1 Comparison with Point Source Designs
The point source approximation of Section 7.3 can also be applied to the design
problem of a refractive sequential rotational surface for prescribed sensitivity. A
comparison shows how important the finite dimension of the source is in a specific
example (Hernández, 2003).

The comparison of the performance for different lens sizes designed with the
point source approximation but ray-traced with the receiver of diameter D = 3mm
is shown in Figure 7.13. The linear prescription is well achieved only for large
sizes (VZ = 10D). For the size of this lens with practical interest, which is about 
Vz = 3mm, the point size model leads to a lens profile that performs far from the
specification, in contrast with the result for Vz = 3mm already presented in Figure
7.11.

7.6 THE FINITE TUBULAR SOURCE WITH
CYLINDRICAL OPTICS

Another particularly useful case is producing a constant irradiance on a distant
plane from a cylindrical source of uniform brightness, such as a Lambertian
source. As already mentioned, this was worked out by Ries and Winston (1994).
In fact, Ong, Gordon, and Rabl (1996) showed that there are four basic types of
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solutions for this type of problem. Two classes derive from the fact that the reflec-
tor curve can be diverging or converging—that is, the caustics formed can fall
behind or in front of the reflector. These types have been referred to as compound
hyperbolic concentrator (CHC) or compound elliptical concentrator (CEC). The pos-
sibilities are then doubled because the design can be done with the near edge or
far edge of the source being always illuminated. The interested reader can find
further information in the cited reference.

7.7 FREEFORM OPTICAL DESIGNS FOR 
POINT SOURCES IN 3D

Freeform (without any prescribed symmetry) designs in 3D are not a simple exten-
sion from the 2D case. These designs become much more difficult, and conse-
quently, they are less developed than their 2D equivalents. In this section we
examine overview 3D freeform design methods for point sources—that is, methods
that use the point source approximation. This means that the designs will perform
as the theory foresees if the optical surfaces are far enough from the source (in
terms of source diameter) so it can be considered as a point. At present only one
method, which is currently being developed, is able to manage extended sources
in 3D geometry. This method is the extension to 3D of the SMS method of Chapter
8 (Benítez et al., 2003).

A basic problem in illumination design is that of designing a single surface
(reflective or refractive) that transforms a spherical wave front (point source) with
a given intensity pattern into an output wave front with a prescribed intensity
pattern. Variations of this basic problem are to have a prescribed irradiance
pattern at a given surface instead of the output intensity pattern or to have a plane
wave front at the input instead of the spherical one.

The basic equation governing the solution of this problem is a second order
nonlinear partial differential equation of Monge-Ampere type. This was found in
1941 by Komissarov and Boldyrev (1994). Schruben (1972) created the equation
governing the design of a luminary reflector that provides a prescribed irradiance
pattern on a given plane when the reflector is illuminated by a nonisotropic punc-
tual source.

During the 1980s and 1990s a strong development of the method was encour-
aged by reflector antennas designers. Wescott, Galindo, Graham, Zaporozhets,
Mitra, Jervase, and (see References) others contributed to this field of antenna
reflector design. The method starts with a procedure purely based in Geometrical
Optics. This is the part in which we are more interested for illumination applica-
tions. After the Geometrical Optics design, a Physical Optics analysis and syn-
thesis procedure is necessary for a fine-tuning of the design. At present there is
commercial software for designing these antenna reflectors based on this method
(see, for instance, http://www.ticra.dk/).

The method is particularly useful for satellite applications. Satellite reflector
antennas must provide a given far-field (or intensity) pattern to fit, for instance,
a continent contour, in satellite-to-earth broadcasting applications. And this should
be done efficiently. In this case a single-shaped reflector is enough to solve the
problem. The requirement is equivalent to saying that the amplitude of the field
at the aperture is prescribed. In other cases it is required to achieve a prescribed
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irradiance pattern at the antenna aperture (in general, this is required to reduce
the side-lobes emissions) besides the specified far-field pattern. In these cases, two
shaped reflectors are enough to solve the problem, and not only the output ampli-
tude is controlled, but also the phase distribution at this aperture. This second
problem is very similar to the first, although it may look different.

The single reflect or designs for satellite applications do not differ strongly
from a parabola shape because the desired intensity pattern is highly collimated
in general. This fact has allowed developing several approximate methods to solve
the Monge Ampere that worked well within these conditions.

Beginning in the 1980s until the present, the subject has been of interest to
mathematicians like Oliker, Caffarelli, Kochengin, Guan, Glimm, and Newman
(see References). Conditions of existence and uniqueness of the solutions have been
found as well as new design procedures have been proposed. For instance, Glimm
and Oliker (2003) have shown recently that the problem can also be solved as a
variational problem in the framework of a Monge-Kantorovich mass transfer
problem, which allows solving the problem numerically by techniques from linear
programming. The designs are not limited to reflectors but extend also to refrac-
tive surfaces. Already in the present decade, the subject has come back to the illu-
mination field by Ries and Muschaweck (2002). In this reference, multigrid
numerical techniques are efficiently used to solve the Monge-Ampere equation.
The solutions are classified into four types depending on the location of the centers
of curvature of the output wavefronts to design: In two of these types, the surfaces
of curvature centers (each one corresponding to one of the two families of curva-
ture lines) are at one “side” of the optical surface, whereas in the remaining types
the surfaces of curvature centers are at both sides of the optical surface.

7.7.1 Formulation of the Problem
We shall restrict the explanations to the problem of designing a single optical
surface (reflective or refractive) that transforms a given intensity pattern of the
source into another prescribed intensity pattern (Min̂ano and Benítez, 2002). Let
r̂ be a unit vector characterizing an emitting direction of the source. This unit
vector can be determined with two parameters, u and v. These two parameters
can be, for instance, the two angular coordinates (q, f) of the spherical coordinates.
In this case, r̂ is given by (see Figure 7.14)

(7.21)ˆ cos sin , sin sin , cosr = ( )f q f q q
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Let the unit vector ŝ define an outgoing direction of the rays after deflection on the
optical surface. Using spherical coordinates (a, b), ŝ can be written as

(7.22)

Because r̂ and ŝ are unit vectors, then

(7.23)

Nevertheless r̂u is not necessarily normal to r̂v and su is not necessarily normal 
to sv.

The differential of solid angle dWr subtended by the rays in a differential dudv
can be written as

(7.24)

The second equality of Eq. (7.24) assumes that we have chosen the parameters u
and v such that the vector r̂u ¥ r̂v points in the same direction as r̂. A similar equa-
tion applies for the vector ŝ and the solid angle dWs.

7.7.2 Basic Equations
7.7.2.1 Laws of Reflection and Refraction
According to Herzberger (1958), if we have two surfaces defined by the vectors a�
and a�¢ that are crossed by a one-parameter beam of rays and such that u is the
parameter, we have

(7.25)

where the unit vectors ŝ¢ and ŝ are pointing in the ray directions at each one of the
surfaces, E is the optical path length from the surface defined by a�¢ to the surface
defined by a�, and n¢, n are, respectively, the refractive indices at each one of the
surfaces. We can obtain both the equation of reflection and the equation from 
Eq. (7.25).

Assume that the one-parameter bundle of rays is passing through the coordi-
nate origin. The surface defined by the vector a�¢ is just a point and thus a�¢u = 0.
Let r� be a vector defining a reflective surface. r� is the vector a� of Eq. (7.25).

Now consider a two-parameter bundle of rays passing through the coordinate
origin. The two parameters are u and v. Then, application of Eq. (7.25) gives (see
Figure 7.15)
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(7.26)

where it has been taken into account that Eu = ru; r is the modulus of r�—that is,
r = r�. Eq. (7.27) is derived from this definition of the modulus.

(7.27)

Combining Eqs. (7.26) and (7.27) we get the reflection law in the form that we are
going to use (note that the vectors r̂u and r̂v are not a unit vectors)

(7.28)

We can apply Eq. (7.25) to a refractive surface to obtain the refraction law in a
similar way as we got the reflection law. The result is

(7.29)

that is, for our purposes, both laws can be summarized in Eq. (7.29) taking n = 1
in the case of reflection.

7.7.2.2 Power Conservation
Let E(ŝ) be the desired output radiant intensity (for instance, in Watt/stereora-
dian), and let I(r̂) be the intensity emitted by the source. Energy conservation can
be written as

(7.30)

Expressing the vectors r̂ y ŝ as functions of the two parameters (u, v), then we have
that

(7.31)

Eq. (7.31) is the form that we will use for the energy conservation.
Using Eq. (7.24), Eq. (7.31) can be written as

(7.32)

Where the sign ± takes into account that the trihedron ŝ - ŝu - ŝv may have two 
possible orientations. We have chosen r̂, r̂u, r̂v to be in the positive orientation 
(r̂·r̂u ¥ r̂v > 0), but we don’t have the freedom to choose the orientation of ŝ - ŝu - ŝv.

7.7.2.3 Malus-Dupin Theorem
The dependence of ŝ with (u, v) is not totally free. This is due to the Malus-Dupin
theorem, which states that a normal congruence remains like this after being
deflected by a mirror or a lens surface. For our particular case (a single reflective
or refractive surface and a punctual source) the Malus-Dupin theorem is nothing
else than the equality of the crossed derivatives of the function describing the
optical surface—that is, ruv = rvu (see Eq. (7.26)).
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which can also be written as

(7.34)

7.7.3 Mathematical Statement of the Problem
Eqs. (7.29), (7.32), and (7.34) form a system of equations with unknown vari-
ables r(u, v) and ŝ(u, v). Variable r can be eliminated with Eqs. (7.29) and (7.34),
resulting

(7.35)

The system is now formed by Eqs. (7.35) and (7.32), where the unknown function
is ŝ(u, v)—that is, we have to find a mapping of the unit sphere into itself satisfy-
ing Eqs. (7.35) and (7.32). We can take (q, f) in Eq. (7.21) as the parameters u, v
and take a(u, v), b(u, v) (Eq. (7.22)) as the unknown functions of this equation
system.

Eliminating ŝ and its derivatives from the equation system Eqs. (7.29), (7.32),
and (7.41) leads to a single, second order partial differential equation of the Monge
Ampere type, which can be found, for instance, in Schruben (1972). In this case
the unknown is the function r(u, v).

7.7.4 Dual Optical Surfaces
The previous development allows us to introduce easily the concept of dual optical
surfaces (Miñano and Benítez, 2002). As seen in the previous section, the mathe-
matical problem can be summarized in

(7.36)

assume that this equation system is solved—that we know the function ŝ(u, v) sat-
isfying Eq. (7.36) with the contour conditions. The calculation of the optical surface
can be done with Eq. (7.28)—that is, by integration of r(u, v).

Note that the system of Eq. (7.36) is the same that we would have if

(a) r̂ is the output unit vector.
(b) ŝ is a unit vector departing from the source.
(c) I(r̂) is the required intensity distribution and E(ŝ) is the source intensity 

distribution.

In this case, the optical surface would be given by the function s(u, v) by means of

(7.37)

Assume that we have two functions ŝ(u, v) y r̂(u, v) satisfying the system of Eq.
(7.36), then we have two functions r(u, v) ys(u, v) fulfilling Eq. (7.28) y Eq. (7.37)
and generating two optical systems that we call duals. Functions r(u, v) and 
s(u, v) fulfill 

(7.38)
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(7.39)

If one of the systems is known, the other can be easily calculated with Eq. (7.39).
One of the systems produces a pattern E(ŝ) when the point source radiates as

given by I(r̂), and the other (dual) system produces the pattern I(r̂) when the source
is radiating as E(ŝ).
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8.1 INTRODUCTION

In this chapter we examine the Simultaneous Multiple Surface (SMS) (U.S. Letters
Patent, 6,639,733, “High Efficiency Non-Imaging Optics”) design method in 2D geom-
etry. As with the 2D flow-line method, actual concentrators are generated by sym-
metries from the 2D designs. Typical symmetries are linear and rotational, but none
are excluded. This procedure does not ensure the ideality of the actual 3D concen-
trators. Only the subsets of edge rays that have been used in the 2D design are 
fulfilling the hypothesis of the edge-ray principle. There is an infinite possible set
of edge rays that contain this subset. In some special cases (linear symmetry with
constant refractive index distribution, for instance) the invariant imposed by the
symmetry allows one to calculate the trajectories of the rays from the trajectories
of their projections (on a plane normal to the axis of symmetry, in the linear case).
In this way, a full set of edge rays can be derived from the 2D subset of edge rays.

In general, ray tracing is necessary to calculate the bundle of rays transmit-
ted by the 3D concentrator. This ray tracing will be the final step of the 3D design
if its result is sufficiently satisfactory.

The reflectors joining entry and exit apertures’ edges are an essential part 
of all concentrators designed with the flow-line design method. Sometimes these
reflectors are inconvenient. For instance, in optoelectronic applications, the exit
aperture is the semiconductor surface. A reflector close to this surface complicates
the routing of the electrical contact. In solar thermal applications the reflector may
be a source of thermal losses. To avoid the reflector being close to the receiver,
incorporation of cavities in the design of the reflector has been proposed. This solu-
tion allows a sizable gap between the receiver and the reflector, with a small reduc-
tion in the concentration (Winston, 1980). For nonmaximal concentration, the exit
aperture does not coincide with the receiver, and thus the reflectors do not touch
it. If the receiver is circular, it is possible to design a set of nonmaximal concen-
trators that together give maximal concentration with reflectors not touching the
receiver but with complex reflector structure (Chaves and Collares-Pereira, 1999).
In the SMS method there are no reflectors that join entry and exit apertures. This
will require handling the edge rays in a slightly different way, as with the flow-



line method. In the latter, some of the edge rays passing through the borders of
the entry or exit apertures are not considered in the design procedure (see Appen-
dix B). In the SMS method every edge ray must be considered.

8.2 DEFINITIONS

Let Si be the entry aperture of the optical system, and let So be the exit aperture.
These apertures may be real or virtual. Assume that both the entry and exit aper-
tures are on a z = constant plane. Assume also that the rays coming from a source
and impinging on the entry aperture form the input bundle and that the rays illu-
minating any point of a receiver from the exit aperture form the output bundle.
These assumptions simplify the following reasoning. Figure 8.1 shows a 3D con-
centrator with its entry and exit apertures, a source, and a receiver. In our 2D
problem we will be restricted to the plane x-z (see Figure 8.2).
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Let ni be the index of refraction of the medium between the source and the
entry aperture, and let no be the index of refraction of the medium between the
exit aperture and the receiver. Typically, ni = 1 and no = 1, or it is in the range 
ª 1.4 to 1.6. Let p be the optical direction cosine of a ray with respect to the x-axis.
For instance, p is ni times cos(a) (a is the angle formed between the ray and the
x-axis) when p is calculated at a point of the ray-trajectory between the source and
the entry aperture, and p is nocos(a) at the point of the trajectory where the cal-
culations are done between the exit aperture and the receiver. Let r be the optical
direction cosine with respect to the z-axis. Then p2 + r2 = n2, n being the index of
refraction of the point where p and r are calculated.

In 2D geometry, every ray reaching the entry aperture Si can be characterized
by two parameters. These parameters can be, for instance, the coordinate x of the
point of interception of the ray with the entry aperture and the coordinate p of 
the ray direction at this point of interception. Similarly, the rays issuing from the
exit aperture So can be characterized by another pair of parameters—for instance,
the coordinate x of the point of interception of the ray with the receiver and the
optical direction cosine p of the ray at this point of interception. A region of the
phase space x-p represents the set of rays linking the source with the entry aper-
ture. We call this set of rays the input bundle, Mi. Similarly, the output bundle Mo

is a region of the phase space x-p whose points represent the rays linking So with
the receiver.

The purpose of this section is to design an optical system such that the rays
of Mi leave the system as rays of Mo and the rays of Mo, if reversed, leave the
system as rays of Mi. If this is the case, then the rays of Mi and Mo are the same
(Mi = Mo), the only difference being that Mi is the representation at Si and Mo is
the representation at So. We consider as a particular case when Mo includes all
possible rays reaching the receiver. This case is called maximal concentration.

The requirement for the optical system is that Mi = Mo, regardless of the par-
ticular transformation of each one of the rays, just that Mi and Mo represent the
same bundle of rays at two different surfaces (at Si and at So). In general, an actual
optical system does not achieve this condition perfectly. The bundle of rays Mc con-
necting the source with the receiver through the optical system does not coincide
with Mi, or with Mo in the general case. Obviously Mc must be a subset of Mi

because the definition of Mc includes the rays connecting source and receiver
through the optical system—that is, the rays of Mc should cross the entry aper-
ture (and also the exit aperture). Similarly, Mc is a subset of Mo.

If Mi and Mo have to be the same set of rays (i.e., Mi = Mo), then necessarily
the étendue E of Mi and Mo must be the same—that is,

(8.1)

As any other design method for nonimaging concentrators, a key part of the
procedure is the edge-ray theorem (see Appendix B), which establishes that for 
Mi = Mo it is enough that ∂Mi = ∂Mo, where ∂Mi and ∂Mo are, respectively, the sets
of edge rays of Mi and Mo, which are represented by the points of the borders of
the regions Mi and Mo in the phase space. In other words, the optical system to be
designed must transform the rays of ∂Mi into the rays of ∂Mo and vice versa. Again,
there are no requirements about which ray of ∂Mi has to be linked with a given
ray of ∂Mo.

E M dxdp dxdp E Mi
M

o
Mi o

( ) = = ∫ ( )Ú Ú
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In our 2D geometry problem, the regions Mi and Mo are two-parametric (i.e.,
to distinguish one ray of Mi from another, it is necessary to give two parameters),
whereas the regions ∂Mi and ∂Mo are one-parametric: This reduction of the number
of parameters clearly simplifies the design problem.

8.3 DESIGN OF A NONIMAGING LENS: 
THE RR CONCENTRATOR

The simplest example to start with is the design of a nonimaging lens, also called
RR concentrator. Figure 8.3 shows an example of these lenses. The source extends
from S to S¢ and the receiver from R to R¢. The lens entry aperture is a curve
extending from N to N¢, and the exit aperture is a curve from X to X¢. The purpose
of the design is find two refractive curves such that every ray from the source
hitting the entry aperture is refracted at these curves in such a way that it exits
the lens as a ray linking the exit aperture and the receiver. We use the same expla-
nation as in Miñano and González (1991; 1992).

In order to fix the conditions of the design, let us assume that the receiver
width is 2 (the receiver edges R and R¢ are at x = -1 and x = 1). Figure 8.4 shows
the representation of Mi and Mo in the phase space x-p at the entry aperture (left)
and at the exit aperture (right). Each point (x, p) represents a ray. The points cor-
responding to the rays drawn in Figure 8.3 are represented in Figure 8.4.
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It is well known that a single refractive or reflective surface can sharply image
a bundle of rays into a point if no more than one ray passes through each point of
the surface. In general, a single surface can transform a given bundle of rays into
another predetermined one if there is no more than one ray crossing each point of
this surface. We call these surfaces generalized Cartesian ovals (see, for instance,
Luneburg, 1964, and Stavroudis, 1972). The problem of determining a generalized
Cartesian can be solved simply requiring the constant path length between the
incident and the emergent wavefront (see Wolf, 1948, and Wolf and Preddy, 1947,
for an example of a generalized Cartesian Oval of refraction). A Cartesian oval
problem is that of finding an optical surface (refractive or reflective) that couples
two spherical wave fronts (including the case of infinite radius sphere—that is,
the plane). We call it a generalized Cartesian oval problem when we don’t require
the wave fronts to be spherical. Figure 8.5 shows the cross-section of a refractive
Cartesian oval.

Of course, Cartesian ovals also apply in 2D geometry: The rays issuing from
one point can be sharply focused onto another by a single refractive curve. The
problem here is slightly different: There are two curves to be designed (the two
refractive curves) and there are two edge rays passing through every point of these
two curves (except the extreme points of these surfaces, which are crossed by a
bundle of edge rays). A solution to this problem also exists, and the procedure to
get it is the basis of the SMS design method. This procedure calculates the refrac-
tive (or reflective) surfaces point-by-point in a way similar to that used by Schulz
in the design of aspheric lenses (Schulz, 1983, 1988). Each new point of one of the
surfaces permits the calculation of another point of the other surface and so on.
In this way both surfaces are calculated simultaneously.

Before applying this method we shall impose certain conditions on the trans-
formation of the rays of ∂Mi into the rays of ∂Mo. These conditions derive from the
statement of the problem. For instance, note that the rays reaching the extreme
point of the lens N (or N¢) cannot be the same as the rays departing from the
extreme point of the lens X (or X¢) unless the lens has zero thickness at its edges.
Only the ray ra (and its symmetric counterpart rd) crosses N¢ and X¢ (rd crosses
N and X; see Figure 8.3). The trajectory of ra reaches the point N¢ of the entry
aperture with the most negative value of p (this ray comes from S). This ray must
cross the most x-negative point of the exit aperture (point X¢), and the value of p
of this ray at the point X¢ must be the highest one when compared to the other
rays of ∂Mo crossing X¢. Then the x-p representation of the ray ra at the exit aper-
ture must be r¢a—that is, the ray linking the x-negative edge of the exit aperture
and the x-positive edge of the receiver (R) (see Figure 8.4, the notation r and r¢
referring to the same ray before and after crossing the lens).
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Because of the symmetry of the lens, the conditions are only stated for the
rays crossing the x-positive side of the lens. These are the additional conditions to
start the design.

1. The ray represented by one corner of ∂Mi (rd) is transformed into a corner of
∂Mo (r¢d).

2. The ray represented by the other corner of ∂Mi (re) is transformed in a ray (r¢e)
that crosses the lens exit aperture at a point Y different from X.

3. The other corner of ∂Mo (r¢c) represents a ray that come from a ray rc that
crosses the entry aperture at a point M different from N.

4. By symmetry, similar conditions hold for the rays ra, rb, and rf.

The preceding conditions determine the portions MN (and M¢N¢) and XY (and
X¢Y¢) of the two surfaces of the lens: The profile MN must be a portion of a Carte-
sian oval imaging the rays coming from S¢ (between rc and rd) at the point X; and
the profile YX must also be a portion of a Cartesian oval that images N at R¢.

The receiver points R and R¢ are assumed to have coordinates x = 1 and x =
-1, respectively. The size and position of the source (relative to the receiver) are
considered known data. The design procedure can be described as follows.

1. The étendue E of the input manifold Mi is chosen. Remember that this is a 2D
design procedure, so E is the étendue of a two-dimensional bundle of rays.
After this selection of Mi, the points N and X are chosen so that they set the
same étendue of the manifolds Mi and Mo. This means that the point N must
lie on the hyperbola |NS¢| - |NS| = E/2, and the point X must lie on the hyper-
bola defined by |XR¢| - |XR| = E/2, where |XR| means the optical path length
from X to R. The selection of N and X fully determines the Cartesian ovals
MN and XY. The first Cartesian oval is the one crossing N and images S¢
at X. The second one is a Cartesian oval crossing X and imaging N at R¢. Point
M is the intersection of the ray rc coming from R and crossing X (note that the
normal to the refractive surface at X is known, since the Cartesian oval cross-
ing X is known, and so it is possible to trace the trajectory of the ray rc inside
the lens and then calculate the point M). In a similar way the point Y can be
calculated with the ray re coming from S and refracting at N.

2. Now consider an arbitrary point O of the lens surface between M and N (see
Figure 8.6). The ray rg impinging on O from S must be directed to R¢. The tra-
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jectory of rg inside the lens can be easily calculated (with the refraction law),
since the profile MN is known. Then, point P, where the ray rg leaves the lens,
can be calculated by specifying that the optical length l from S to R¢ be the
same through re or through rg—that is, |SNYR¢| = |SOPR¢| (note that |SNYR¢|
can be calculated because all the points S, N, Y, and R¢ are known). A new
portion of the rightmost surface of the lens can be obtained by applying this
procedure to all the points between N and M. The derivative of the surface at
the point P can be calculated using its neighboring points or by the applica-
tion of the refraction law to ray rg to give the lens surface normal at point P.

3. Now consider ray rh, which links P and R. The trajectory of rh inside the lens
can be calculated because the normal to the profile at P is known. This ray
must impinge on the leftmost surface of the lens at a point Q in such a way
that rh comes from S¢. If the lens is symmetric (with respect to the z-axis), the
optical length along rh from S¢ to R must be l, and so the point Q and the
normal to the profile at Q can be calculated just as we did with the point P. A
new portion of the leftmost surface of the lens can be calculated by repeating
the preceding procedure with the rays linking R with the calculated portion
of the rightmost surface of the lens (i.e., the portion XY and the portion cal-
culated in step 2 of the procedure).

4. The remaining points of the lens are calculated by repeating steps 2 and 3
until the surfaces reach its center at the z-axis.

5. The x-negative side of the lens is obtained by symmetry.

Generally, the lens obtained with this procedure is untypical in that its surface is
not normal to the z-axis at x = 0 (this is not a necessary condition for the design
of the lens), so that there may be a discontinuity of the derivative of the profile
there. To get lens profiles normal to the z-axis at x = 0, it is necessary to system-
atically repeat the design procedure with different initial points N and X. First,
point N can be kept in its initial position, and point X is moved along the hyper-
bola |XR¢| - |XR| = E/2 until the leftmost surface of the lens is normal to the z-axis
at x = 0 (more than a single solution may exist). Second, the point X is kept con-
stant and the point N is moved along the hyperbola |NS¢| - |NS| = E/2 until the
rightmost surface of the lens is normal to the z-axis at x = 0. By iteration of this
procedure it is possible to find a lens having both surfaces normal to the z-axis at
x = 0. Finally, when the x positive side of the lens has been designed with their
surfaces normal to the z-axis at x = 0, the x negative side of the lens is obtained
by symmetry, as we said before.

Generally, there is not a single solution. To choose the best, one must consider
other features of the lenses, as their performance as 3D lenses, or the thickness
at the center of the lens, and so on. The thinnest lens is found when N coincides
with X, but mounting considerations may preclude its use.

This design procedure ensures that the bundles ∂Mi and ∂Mo (see Figure 8.4)
contain the same rays, except for a small subset of rays crossing the central region
of the lens. In order to study this small subset of rays, assume that the x positive
side of the lens is designed so that both surfaces of the lens are normal to the 
z-axis at x = 0. The design procedure ensures that all the rays of ∂Mi impinging
on the entry aperture from the points N to L (see Figure 8.7) are rays of ∂Mo

after crossing the lens.
The same can be said of the rays that cross the lens through the portion XZ

of the rightmost surface of the lens. The design method also ensures that the rays
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of ∂Mi coming from S¢ and impinging on the portion C1L of leftmost surface of the
lens become rays of ∂Mo (in the case shown in Figure 8.7 these rays are focused
at R), and that the rays crossing CrZ (rightmost surface) and focused to R¢ are rays
of ∂Mi coming from S. Let us construct the x-negative side of the lens by symme-
try with respect to the z-axis. The design method does not ensure that the rays
from S impinging on the lens through C1L (these rays belong to ∂Mi) will be imaged
at R¢, except for of two of these rays: those crossing the points C1 and L (see Figure
8.8). The same condition can be obtained at the exit aperture of the lens. There is
no evidence that the rays focused to R from CrZ are rays coming from S¢, except
for the rays crossing the points Cr and Z. The portions C1L and CrZ are fully deter-
mined by the design procedure, so there are no more degrees of freedom for solving
this problem, unless we accept, for example, the rare possibility of an additional
small lens (with different refractive index) between Q and Q¢.

In practice this problem does not occur when the number of times that steps
2 and 3 are done is high, which corresponds to a selection of initial points N and
X close to each other. When this is so, the rays impinging on the lens through ClL
and coming from S come to be focused on R¢ (similarly for the rays focused on R
and crossing CrZ), so ∂Mi = ∂Mo in 2D geometry. Nevertheless, we cannot estab-
lish rigorously that the method ensures that ∂Mi = ∂Mo.

In any case, from the energy-transfer point of view, it would not be critical
even if ∂Mi π ∂Mo at the central regions of the profiles, if these central regions do
not generate a significant portion of area of the 3D concentrators generated by
rotational symmetry around the z-axis.
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The x-negative side of the lens can also be generated using the same proce-
dure with which the x-positive side has been calculated—that is, following the pro-
cedure without stopping at x = 0. In this case the lens is, in general, asymmetric
(except when the lens surfaces are normal to the z-axis at x = 0), so a 3D rota-
tional symmetric lens (with rotational symmetry around the z-axis) cannot be 
constructed. Another possibility is to construct the x-negative side of the lens by
symmetry even if the surfaces are not normal to the z-axis at x = 0 and so accept-
ing that the lenses have a kink at the center.

As said before, these nonimaging lenses are also called RR concentrators
(RRc), where RR means that the rays are twice refracted between the source 
and the receiver. We shall keep this notation to avoid confusion with other 
concentrators.

Hereafter the analysis is restricted to nonimaging lenses designed for a source
placed at infinity. Therefore, the source is not characterized by the position of the
points S and S¢ but by the angular spread of the source, ±qa.

8.4 THREE-DIMENSIONAL RAY TRACING OF
ROTATIONAL SYMMETRIC 
RR CONCENTRATORS

In this section, the results of the ray tracing of several rotational symmetric RR
concentrators are presented. The axis of symmetry is z.

As a part of the 3D ray tracing of the RRs, a 2D ray tracing can be done to
verify that Mi = Mo in 2D geometry—that is, to verify that (1) any meridion ray
impinging on the entry aperture of the lens NN¢ with -sin(qa) £ p £ sin(qa) reaches
the receiver RR¢, and (2) any meridian ray linking the exit aperture of the lens
XX¢ and the receiver RR¢ has crossed the entry aperture NN¢ with -sin(qa) £ p £
sin(qa).

Figure 8.9 shows the results of the 3D ray-tracing analysis (neither absorp-
tion nor Fresnel losses have been considered). The curves in this figure are the
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transmission-angle curves T(q, qa) (other characteristics of these lenses are given
in Table 8.1). The function T(q, qa) gives the percent of rays transmitted to the
receiver out of those impinging upon the entry aperture at the incidence angle q
(with respect to the z-axis) for several RR concentrators that are characterized by
the angular extension of the source used in the design (qa). A trace of 9000 rays
was used for each incidence angle q. The function T(q, qa) was more closely explored
near the transition (around q = qa) to ensure that T(qi, qa) - T(qi+1, qa) < 0.1 (qi and
qi+1 being two consecutive values of q for which the function T(qi, qa) is calculated).

If only meridian rays were considered, the transmission-angle curves would
be T(q, qa) = 1 if q £ q a and T(q, qa) = 0 if q > q a because the method of design
ensures this stepped transition. Nevertheless, since these concentrators are not
ideal in 3D geometry (some skew rays with q £ qa are not sent to the receiver, and
some other skew rays with q > qa are sent to it), the transition from T(q, qa) = 1 to
T(q, qa) = 0 is not stepped. In other words, the set of rays impinging on the con-
centrator entry aperture with q £ q a (the set Mi) does not coincide with the set of
rays linking the concentrator exit aperture and the receiver (Mo) in 3D geometry.
Nevertheless, the étendue of these two sets E3D is the same because of the method
used for the construction of the concentrator. This étendue can be calculated either
at the entry or at the exit apertures (Welford, 1989),

(8.2)

where Ae is the area of the concentrator’s entry aperture (Ae = p xN
2, xN being the

coordinate x of the point N).
Because the concentrator is not ideal in 3D, Mi π Mo. Let us call Mc to the set

of collected rays—that is, the set of rays impinging the entry aperture within the
cone defined by qa that finally reach the receiver. Obviously, Mc is a subset of Mi

and Mo.
An important figure characterizing the transmission of the concentrators is

the total transmission T(qa), which can be defined as the ratio of the étendue of
Mc to E3D (therefore T(qa) £ 1). T(qa) is the total flux transmitted inside the design
collecting angle (Welford, 1989). Its expression is
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Table 8.1. Geometrical Characteristics, and 3D Ray-Tracing Results of Some Selected RR
Concentrators. Lens refractive index 1.483; Receiver radius 1.

qa (Degrees) 0.5 2 5 10 20

Geometrical concentration, Cg3D 3,600 225 36 12.25 2.25
Total transmission, T(qa) (%) 97.5 98.0 96.9 96.6 95.9
Cut-off angular spread Dq (degrees) 0.04 0.065 0.5 0.6 2
Thickness at the center 101.5 25.65 9.5 3.99 1.33
Length/entry aperture diameter, f 1.161 1.16 1.161 1.036 1.073
Exit aperture radius, Ro 20 5 2.5 2.5 1.2
Exit aperture to receiver distance zR - zX 32.53 8.09 3.98 3.16 1.81
Entry aperture to receiver distance 72.35 17.95 7.84 4.28 2.27

zR - zN



T(qa) is a quality factor of the concentrator (an ideal 3D concentrator would
have a rectangular cutoff at q = qa, and so T(qa) = 1). Another figure characteriz-
ing the transmission-angle curves is the angle difference Dq = q9 - q1, where q9 and
q1 fulfill T(q9, qa) = 0.9 and T(q1, qa) = 0.1.

Table 8.1 shows the total transmission and Dq obtained from the 3D ray tracing
of the RRc whose transmission-angle curve is shown in Figure 8.9. The table gives
also some other features of the RRc: the geometrical concentration Cg3D (ratio of
the entry and exit aperture areas), the ratio f of the length of the concentrator (dif-
ference between the z-coordinate of the receiver and the center of the leftmost
surface of the lens) to the lens diameter, the thickness at the center of the lens
(thickness), the exit aperture radius Ro, and the z-coordinate of the points X and
N relative to the receiver plane RR¢ (zR - zX and zR - zN, respectively). The receiver
radius is always 1, and the refractive index of the lens is 1.483.

Figure 8.10 shows the cross-section of an RR with qa = 10 degrees (see Table
8.1 for other data). When the acceptance angle of design qa is small and the lens-
to-receiver distance is greater than twice (approximately) the lens diameter, then
the RRc is approximately equivalent to a conventional imaging lens.

Only in some particular cases is it possible to get RR close to the maximal con-
centration case (when Mo includes every ray reaching the receiver). Maximal con-
centration with an RR can be achieved if a rotational hyperbolic concentrator is
attached to it. The attachment must be such that the reflector fits with the RR
exit aperture and the RR receiver coincides with the circle generated by the hyper-
bola foci. The receiver of the new concentrator is the receiver of the FLC—that is,
the circle generated by the apex of the hyperbola, which is smaller than the
receiver of the RRc. This new concentrator has the same total transmission T(qa)

8.4 Three-Dimensional Ray Tracing of Rotational Symmetric RR Concentrators 191

0 2 4 6 8
-4

-2

0 

2 

4 

FLC receiver

RR receiver

FLC profile

X 

Z 

L 

M 

N 

Z 

X 

Y 

Figure 8.10 RRc-FLC combination with acceptance angle 10° and geometrical concentra-
tion 33.2. The portion of Cartesian ovals (MN and XY) and the points L and Z are also shown.



and angle transmission curves T(q, qa) as the RRc, since the FLC is ideal in 3D
geometry, as we mentioned before. The geometrical concentration (ratio of entry
aperture area to receiver area) reaches the upper bound (Cg = 1/sin2qa), and so this
new concentrator would be optimal if T(qa) = 100%. Notice in Table 8.1 that the
values of T(qa) are quite close to 100%, but none is exactly equal to 100%. The total
transmission increases when the acceptance angle decreases and the length from
the receiver to the lens apex increases—that is, when the RR approaches a 
thin lens. Such combinations (thin lens-FLC) are detailed analyzed in Welford,
O’Gallagher, and Winston (1987).

Imaging solutions using a single lens clearly don’t give a satisfactory solution
when maximal concentration is required. As we have seen, the RR also fails. Nev-
ertheless, other devices designed with the same procedure (RX, XR, RXI, XX)
attain the goal, or very close to it. The next sections are devoted to these devices.

8.5 THE XR CONCENTRATOR

There are other possibilities for designing 2D optimal concentrators with the
method of the preceding section. Generally speaking, the method requires a
minimum of two optically active surfaces to be designed. The two surfaces provide
sufficient degrees of freedom to generate the design. These two surfaces need not
be both refractive, as in the case of the RR; one can be refractive and another
reflective, or both can be reflective. Additional restrictions can make some of these
possibilities impractical. In this section we shall study the XR concentrator, one
formed by a reflective (X) and a refractive (R) surface such that the rays coming
from the source intercept first the reflective surface and then the refractive surface.
The medium between the concentrator and the source is assumed to have a refrac-
tive index of 1, so the receiver is immersed in a medium of refractive index n > 1
(note that the rays intercept the refractive surface only once), and so the maximum
achievable geometrical concentration Cg is increased by a factor n2 with respect to
the cases in which the receiver is immersed in a medium of refractive index 1.

The design procedure is qualitatively identical to that of the RR. The only dif-
ference is that now there is one reflective and one refractive surface instead of the
two refractive surfaces of the RR. Figure 8.11 shows one of these concentrators
designed for maximal concentration and for a source placed at infinity.

We shall describe the general procedure of design when the source is placed
at a finite distance from the concentrator and when the set of rays Mo is not the
one containing all possible rays reaching the receiver (see Figure 8.12). The loca-
tion of the points N and X is done as before: taking into account that the conser-
vation of étendue theorem has to be fulfilled. This means, in this case, that the
point X must lie on the hyperbola |XR¢| - |XR| = E/2 and the point N on the hyper-
bola |NS¢| - |NS| = E/2 (the points R and R¢ are assumed to be on the straight line
z = 0 with x = ±1). Note that the optical path lengths |XR¢| and |XR| are the lengths
between the corresponding points multiplied by the refractive index n.

Once the points N and X have been chosen, the design of the profiles can start
with the portion XY of the lens, a Cartesian oval that images the points N and R¢.
Since the positions of the points N, X, and R¢ are known, such a Cartesian 
oval can be easily constructed. The point Y is obtained as the intersection of the
Cartesian oval and the ray coming from S and reflecting at N.
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The portion NM of the mirror is obtained in a similar way: NM is a part of an
ellipse imaging the points S¢ and X. The point M is the intersection of this ellipse
and the ray departing from R and crossing X. Observe the qualitative similarity
between the portions XY and NM of the XR and those portions of the RR (see
Figures 8.3 and 8.12).

The design can now start from the portion XY: First, rays crossing XY are
traced from R and a portion of mirror is calculated requiring that these rays be
the reflection of those reaching the mirror from the point S¢. Second, rays coming
from S are reflected in the last calculated portion of the mirror, and another portion
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of the lens surface is obtained by requiring that these rays be focused at R¢. The
procedure is repeated until the profiles at x = 0 are known. If it is desired to have
surfaces normal to the z-axis at x = 0, then usually one must iterate the procedure
with different starting points X and N until the surfaces are normal to the z-axis
at x = 0.

The design procedure does not always produce a real device. Sometimes loops
appear in the reflective or refractive surfaces caused by the caustics of the edge
rays, which can be generated by an inappropriate selection of the points X and N.
Whether the selection is proper or not is something that can be concluded only
during the design. In some cases, these problems can be avoided by defining a
virtual exit aperture that is not touching the refractive surface. Note that it has
been implicitly assumed that the exit aperture of the concentrator is the segment
NN¢—that is, the exit aperture edges are on the refractive surface. This assign-
ment is quite arbitrary and sometimes it can be useful to define an exit aperture
that has no points in common with the refractive surface—for instance, an exit
aperture that is fully inside the dielectric medium.

As in the case of the RR, there is a region around the center of the optical
system where there are not enough degrees of freedom to ensure that all the edge
rays are correctly directed. Again, it is found that, up to the accuracy of the 2D
ray-tracing, these edge rays are correctly directed so ∂Mi = ∂Mo. Nevertheless, we
cannot establish rigorously that this last condition is exactly fulfilled by a subset
of the edge rays crossing the above-mentioned regions of the mirror and the lens.

8.6 THREE-DIMENSIONAL RAY TRACING OF
SOME XR CONCENTRATORS

The 3D concentrators to be analyzed here are again constructed by rotational sym-
metry around the z-axis. The calculations are restricted to the case in which the
source is at infinity, as it was done before. The angle formed by a set of parallel
rays with respect to the z-axis is called the incidence angle q. The calculations are
also restricted to the designs made for an output bundle Mo comprising all possi-
ble rays hitting the receiver—that is, the point X is aligned with R and R¢ (see
Figure 8.12). The points N and M of the mirror become the same point in this case.
The 3D étendue of the bundle of rays crossing the entry aperture and reaching the
receiver is E3D = p n2Ar, where Ar is the receiver area.

Figure 8.13 shows the transmission angle curves of several XRc’s, one of which
is the concentrator shown in Figure 8.11 (the one corresponding to qa = 1°). Other
data on these concentrators appear in Table 8.2. For large values of qa (greater
than 10–15 degrees), the design method may fail, or the resulting portion of dielec-
tric is so big compared with the entry aperture that its shadow on the mirror makes
the concentrator useless.

Table 8.2 includes two values of the total transmission T(qa). The first one
takes into account the shadow made by the dielectric on the mirror—in other
words, it is assumed that the light impinging on the entry aperture at the back
side of the dielectric (or the back side of the receiver) is lost. The second one does
not consider the shadow.

The dielectric thickness is measured at the center. zN - zR is the distance from
the plane of the entry aperture to the plane of the receiver. This distance can be
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negative when qa is small, meaning that the dielectric and the receiver are fully
inside the volume enclosed by the mirror surface and the plane of the entry 
aperture.

8.7 THE RX CONCENTRATOR

Conceptually identical to the XR case is the one introduced in this section. The RX
is a concentrator in which the rays from the source are first refracted (R) and the
reflected (X) (see Figure 8.14) (Miñano, Benítez, and González, 1995). Because of
the reversibility of the rays, this case is not different from the XR. Nevertheless,
the result is quite different, not only because from practical considerations (the
RX can be made in a single solid piece, and its dielectric is bigger than the one of
the XR), but also because the optical properties are different. In particular, an RX
can sometimes behave also as a good imaging device in addition to its excellent
properties as a nonimaging concentrator.
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Figure 8.13 Transmission-angle curves for several 3D XRc designed for sources at the infin-
ity with an angle qa. The curve numbering is the acceptance angle. (See Table 8.2.)

Table 8.2. Geometrical Characteristics and 3D Ray-Tracing Results of Some Selected XR
Concentrators. Refractive index 1.483; Receiver radius 1.

qa (Degrees) 0.5 1 3 5 7

Geometrical concentration, Cg3D 28,880 7,221 802.9 289.5 148
Total transmission, T(qa) (%) 94.43 94.62 90.22 90.03 80.74
Total transmission without shadow, T(qa) 98.67 95.64 92.38 93.9 88.18
Cutoff angular spread, Dq (degrees) 0.05 0.15 0.65 1.0 1.5
Concentrator depth/entry aperture 0.257 0.287 0.313 0.356 0.348

diameter
Dielectric thickness at the center 13.56 4.56 2.57 2.57 2.33
Dielectric radius 35 8.5 4 3 3
Entry aperture to receiver distance -5.42 10.08 5.88 5.91 3.77

zN - zR



The design procedure is conceptually identical to the previous cases. Figure
8.15 shows the input and output bundles of the 2D concentrator to be designed.
Each one of the bundles (Mi and Mo) is formed by the rays linking two segments:
SS¢ and AA¢ for the input bundle and OO¢, RR¢ for the output bundle. The seg-
ments are parallel to the x-axis and are symmetric with respect to the z-axis.
Several usual cases are considered within this description of the input and output
bundles: If OO¢ and RR¢ are coincident, then the output bundle is formed by all
the rays impinging on RR¢ (the bundle Mo illuminates isotropically all the points
of RR¢) which will henceforth be called the receiver. If OO¢ is far from RR¢ (assume
it is toward the negative side of the z-axis), then the output bundle illuminates
the receiver with restricted exit angle (strictly speaking this will occur only when
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OO¢ is at infinity). In a similar way if SS¢ is at infinity (for instance, toward the
positive side of the z-axis), then the input bundle is equivalent to a source at infin-
ity. The rays are assumed to proceed from SS¢ to AA¢ and from OO¢ to RR¢, so if a
receiver is placed at RR¢, its active side must face rightwards.

Figure 8.16 shows the representation of the input and output bundles in the
plane x-p. Each point of this plane represents a ray. The correspondence between
points of this plane and rays may be done in many ways. For instance, in the 
representation of the input bundle in Figure 8.16, the abscissa (x) of a point of the
plane is the coordinate x of the point of intersection of the ray, and the segment
SS¢ and p is the refractive index times the cosine of the angle formed by the ray
and the x-axis at that point of intersection. The refractive index is assumed to be
1 for the input bundle and n (n > 1) for the output bundle. For the output bundle,
x and p are calculated in a similar way at the points of intersection of the rays
and the segment RR¢. The rays of the input and output bundles are those repre-
sented by the points inside the closed lines of Figure 8.16.

Since it is required that Mi = Mo, a necessary condition to start the design
process is to ensure that the étendues of both bundles are the same—that is, the
areas of the regions representing the bundles in the phase-space x-p must be the
same. Analytically, E(Mi) = E(Mo) can be expressed as

(8.4)

where |SA| denotes the length from the point S to the point A. Eq. (8.4) derives
from the application of Hottel formula (Welford and Winston, 1989) to the calcu-
lations of the étendues of Mi and Mo.

The design procedure is the same as the one shown for the RR (see Section
8.3) except that now the rays undergo one refraction and one reflection instead of
two refractions. The design ensures that the edge rays of the input bundle (∂Mi)
are transformed into the edge rays of the output bundle (∂Mo). Figure 8.17 shows
the trajectories of the input bundle edge rays in the x-z plane. Since there are no
more than two edge rays crossing a point of this plane, the representation of these
trajectories has been done in two separate drawings (left and right).

SA SA n RO RO¢ - = ¢ -( )
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8.8 THREE-DIMENSIONAL RAY TRACING OF
SOME RX CONCENTRATORS

The results of the 3D ray tracing of several RX concentrators are presented in this
section. In the following examples, Mo contains every ray reaching the active side
of the receiver. Rays of Mi, which, unlike RR and XR is not an infinite distance
(the rays link the disks SS¢ and AA¢), have been traced to identify which ones hit
the receiver by its active side. The unit of length is the receiver radius (|RR¢| = 2),
and the refractive index of the dielectric medium is n = 1.483.

Figures 8.18 and 8.19 show the cross sections of several RX concentrators. The
input bundle of these concentrators is the same: |SS¢| = 80, the difference between
the z coordinate of SS¢ and AA¢ is H = 120. |AA¢| can be derived from the preced-
ing data with Eq. (8.4). This type of input bundle is similar to the one obtained 
as the output bundle of an f/1.5 lens when illuminated by an extended source at
infinity.
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The points S and S¢ of the input bundle of the concentrator 5 (shown in Figure
8.20) are at infinity. This concentrator is not a typical case of one designed for a
source at infinity because the points A and A¢ are not coincident with D and D¢.

Table 8.3 shows some geometrical characteristics and the 3D ray-tracing
results of the RX concentrators #1 to #4. The second row in this table shows the
values Tt when the shadow of a surface placed at the receiver is taken into account.
Observe that this surface intercepts some rays in their trajectories from the refrac-
tive surface to the reflective surface. The third row shows the values of Tt when
the reflection losses at the mirror (reflection coefficient 0.91) and the Fresnel losses
at the dielectric interface (refractive index n = 1.483) are also considered.

Figure 8.21 shows the transmission function of the RX #3 (Figure 8.19). This
is a function of rS/SS¢ and rA/AA¢ (rS is the distance from a point of the circle SS¢
to the symmetry axis, and rA is the same for a point of the circle AA¢). The trans-
mission function gives the percent power reaching the receiver relative to the
power emitted from the ring rS, rS + drS (of the circle SS¢) toward the ring rA, 
rA + drA (of the circle AA¢). The radiance of all the rays is assumed to be identical
for this calculation. If the 3D concentrator were ideal, then the transmission func-
tion would be 1 if rS/SS¢ £ 1 and rA/AA¢ £ 1, and it would be zero elsewhere. The
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total transmission Tt appearing in Table 8.3 can also be defined as the percent
power reaching the receiver relative to the power emitted by the circle SS¢ toward
the circle AA¢. Calculation of the transmission function (and Tt) by averaging the
number of rays reaching the receiver must be carefully made. In this average each
ray rx should be weighted by the étendue of the pencil of rays represented by rx.
For instance, assume that the circles SS¢ and AA¢ of the input bundle are divided
into small regions of area dAS and dAA, respectively, and that the rays traced are
those linking the centers of the small regions of AA¢ with the center of the small
regions of AA¢. Then, each ray represents a pencil of rays whose étendue is

(8.5)

where D is the distance between the centers of both regions and q is the angle
formed by the ray and the z-axis.

As the XRs, the rotational symmetric RX performs well for maximal concen-
tration when the average angular spread of the input bundle is small. The geo-

dE
D

dA dAS A= cos2

2

q
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Table 8.3. Geometrical Characteristics and 3D Ray-Tracing Results of Selected RX 
Concentrators.

Concentrator Number

Concentrator Characteristics 1 2 3 4

Total transmission Tt (%) 99.4 98.2 98.3 95.7
Tt considering shadow losses (%) 99.4 98.2 97.8 94.3
Tt considering shadow reflection and 84.9 84.5 85.2 82.6

Fresnel losses (%)
Concentrator aperture diameter 91.9 77.5 51.8 28.6
Dielectric thickness at the center 28.5 24.0 17.0 11.0
Distance from the SS¢ plane to the 34.5 49.0 72.0 101.0

concentrator bottom

Concentrator parameters: Refractive index n = 1.483; receiver radius of 1; input bundle SS¢
with a diameter of 80; input bundle AA¢ with a diameter of 9.38; distance from SS¢ to AA¢
of 120; and output bundle yielding maximal concentration.
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Figure 8.21 Transmission function of the RX #3 of Figure 8.19. The plotted function gives
the power reaching the receiver over the power emitted by the points of the ring [rS, rS +
drS] (of the circle SS¢) toward the ring [rA, rA + drA] (of the circle AA¢).



metrical aspect of the RX concentrator is also quite compact, although less than
the XR concentrator. Moreover, the distance from SS¢ to the concentrator’s bottom
is smaller in an RX than in other classical nonimaging concentrators designed for
a finite source as an input bundle. This implies that if a lens is placed at SS¢ as
a first stage of concentration, then the aspect ratio of the whole concentrator is
more compact in the case of the RX. The total transmission Tt is, in general, better
for the RX than for an equivalent Compound Elliptical Concentrator (CEC) when
the input bundle has a small angular spread, and worse for the RX than for the
Flow Line Concentrator, which is one of the few known ideal 3D concentrators
(defined by Tt = 1). In the case of a large angular spread of the input bundle, the
CEC has better total transmission than the RX concentrator.

The RX uses much more dielectric material than an equivalent XR concen-
trator, but it can be made in a single piece, whereas the XR needs at least two
pieces that must be assembled. Then, the RX seems more appropriate than the
XR when the cost of the dielectric material is not critical or when the assembly
may be a complex process. In both concentrators (RX and XR), the receiver faces
in opposite direction as the concentrator’s entry aperture. This is a problem in
some applications, such as photovoltaics where the heat sink of the solar cell is in
the back side of the cell and may introduce additional losses because of its 
shadowing.

8.9 THE XX CONCENTRATOR

Similarly, we can design a concentrator in which both surfaces are reflective. The
design technique is the same, with no shadowing effect taken into account. In
general, one of the shadows of the mirrors dramatically degrades the performance
of the concentrators for maximal concentration on flat receivers (emitters). This
problem can be solved for tubular receivers (see Chapter 14); in other words, the
mirrors can be designed so the efficiency reduction due to shadowing is very small.
For flat receivers there is also a solution in some cases. This solution is based on
using layers of low refractive index material (n1) immersed in a high refractive
index layer (nh) (see Figure 8.22). Such layers appeared also in the design of the
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CTC (see Chapter 6). The basic idea is that if the layer is thin enough, it does not
modify the trajectory of the rays if these hit the interface at an angle smaller than
sin-1(n1/nh), or otherwise the layer behaves like a reflector.

Fortunately some XX designs are such that most of the collected rays cross
one of the mirror surfaces at small angles when they shouldn’t be reflected accord-
ing to the design technique, whereas they hit the mirror surface at great angles
when a reflection is necessary. Thus, the low index layer is adequate for such
designs. Figure 8.23 shows an example of an XX in which the low index layer tech-
nique applies. In the central part of the left mirror the incidence angle is not
enough to produce total internal reflection. For this reason it should be mirrored,
and this creates some losses by shadowing. These losses can be kept below 5% for
most of the designs with maximal concentration and collimated (<±8 degrees) infi-
nite source.

8.10 THE RXI CONCENTRATOR

As we saw before, both the XR and the RX have the active side of the receiver
(emitter) facing in the opposite direction of the entry aperture. This creates a prac-
tical problem when, for example, we want to use an optoelectronic component.
Heat sinks and electrical connections must be in the back side of the component.
The RXI concentrator was initially designed to solve this problem. The RXI can
also be made in a single dielectric piece but, unlike the RX, the receiver, which is
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also immersed in the dielectric, faces the entry aperture (Miñano, González, and
Benítez, 1995).

There is an important difference between the RXI concentrator and other
related concentrators: the RR, the XR, and the RX. All of these concentrators are
formed by two optical surfaces. The rays hit one of the surfaces and then the other
when they go from the source to the receiver. The RXI also has two optical sur-
faces, but unlike the other cases, the rays impinge on its entry aperture, twice.
First they suffer a refraction then they are reflected on the second surface and
finally they are reflected again (by total internal reflection) on the first surface and
sent toward the receiver (see Figure 8.24). The difference with respect to the RX
concentrator is that the rays interact twice with the first surface. This fact modi-
fies substantially the design procedure.

The condition for total internal reflection cannot be fulfilled at every point of
the entry aperture, and because of this, a small part of the entry aperture surface
should be mirrored.

The main aim in the design of the RXI was to obtain (1) a highly compact con-
centrator for maximal concentration designs in which Mi has a small angular
spread; (2) high values of the total transmission Tt (like in the XR and the RX);
(3) a concentrator that can be made in a single solid piece (like the RX); and (4)
the active side of the receiver facing the concentrator’s aperture. This last condi-
tion is what differentiates the potential applications of the RX and the RXI.

The RXI can be designed in an iterative process of XX and RX designs. Here,
the RXI is considered not as a two-surface optical device but as a three-surface
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one. Two of these surfaces (named 1X and 2) are reflective, and the last one (1R)
is refractive. It is also assumed that the rays of the input bundle Mi are first
refracted on surface 1R and then reflected by surface 2 and finally reflected by
surface 1X in this order, no matter what would actually happen. For example, the
first change of trajectory of a Mi ray is calculated at the point of interception of
the ray with the surface 1R, even if this ray has previously intercepted another
surface. Henceforth, the surfaces 1R, 2, and 1X will be designated curves 1R, 2,
and 1X, respectively, because only meridian rays are considered in the design. If
the iterative process is successful, curves 1R and 1X converge to the same curve,
which will be designated curve 1.

It is assumed that the description of the bundles Mi and Mo, as well as the
refractive index n of the dielectric material, is known for the design. Of course, Mi

and Mo must fulfill E(Mi) = E(Mo). In the examples shown in Figures 8.24, 8.27,
and 8.28, Mi is a source at infinity, and Mo yields maximal concentration (i.e., Mo

is formed by all the rays reaching the upper face of the receiver).
As an example of the design procedure, here are the steps to follow for design-

ing an RXI with maximal concentration (or close to it).

1. The iterative process starts with an arbitrary 1X curve subject to the follow-
ing restrictions: (a) every ray of the bundle ∂Mi intercepts the curve 1X once.
The same must happen with the rays of ∂Mo when reversed (see Figure 8.25).
It is assumed that the forward direction of the rays is from Mi and Mo. The
rays of Mi and Mo in Figure 8.25 advance rightward toward increasing values
of z. (b). The curve 1X is symmetric with respect to the z-axis.

2. Choose a 1R curve coincident with the 1X curve.
3. Trace the ray trajectory r1 after being refracted at the point R of the curve 1R

and the ray trajectory of r2 before being reflected at the point I of the curve
1X (see Figure 8.25). r1 is the edge ray of ∂Mi whose point of interception with
the curve 1R has the most negative coordinate x and whose direction cosine p
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(with respect to the x-axis) at this point is the most negative one when com-
pared with other edge rays reaching this point (this point is the point R in
Figure 8.25). When evaluating the sign of the direction cosine, it is important
to keep in mind the convention about the forward direction of the rays. r2 is
the ray of ∂Mo whose point of interception with the curve 1X has the most neg-
ative coordinate x (point I in Figure 8.25). The trajectories of r1 after refrac-
tion on 1R and that of r2 before reflection on 1X cross at the point X (if not,
start the process again with a new 1R curve at step 1). The point X will be a
point of the curve 2.

4. Now make up the subset ∂Mi- by choosing, at every point of the curve 1R, the
ray of ∂Mi with the most negative value of p and form ∂Mo- in a similar way
with the rays of ∂Mi when they intercept the 1X curve. The ray r1 belongs to
∂Mi-, and r2 belongs to ∂Mo-.

5. Calculate the reflector curve 2 that passes through X and couples ∂Mi- and
∂Mo- (Figure 8.25). The ray r1 will become r2 after reflection at X. Observe that
this problem is qualitatively identical to a Cartesian oval problem. In order to
solve it, it is necessary to have no more than one ray of ∂Mi- and no more than
one ray of ∂Mo- at any point on the curve 2. If this condition is not fulfilled,
the iterative process should be restarted again with another 1R curve (go to
step 1). This condition is not fulfilled when, for instance, the ∂Mi- rays form a
caustic after refraction on 1R or when the ∂Mo- rays form a caustic before
reflection on 1X. These cases can be easily recognized because a loop or a dis-
continuity of the slope appears in the shape of the curve 2. When that occurs
it is advisable to use a flatter curve 1R at step 1. Curve 2 must be calculated
from the point X up to the symmetry axis.

6. Trace the rays of ∂Mi+ (rays of ∂Mi not belonging to ∂Mi-) after refraction at
curve 1R and then after reflection at curve 2. Calculate now the new 1X curve
that passes through the point I and reflects the ∂Mi+ rays into the ∂Mo+ rays
(these are the ∂Mo rays not belonging to ∂Mo-; see Figure 8.26). The calcula-
tions needed to get the new 1X curve are again a Cartesian oval problem and
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the same considerations done in step 5 apply to this step. The curve has to be
calculated up to the symmetry axis.

7. If the old and new 1X curves are close enough, then the 2D design is finished;
if not, let the new 1R curve be equal to the last calculated 1X curve, and con-
tinue the process in step 5.

8. Analyze the condition for total internal reflection (for the edge rays) on curve
1 (at this step 1X and 1R have converged to the same curve). Usually, this con-
dition is not fulfilled in the central part of the curve, and thus this part should
be mirrored (see Figure 8.24).

The preceding design procedure does not always converge, and the analysis of the
conditions for convergence is a complex task. Obviously, convergence depends on
the selection of the 1X curve in step 1. In general, it is advisable to choose a smooth
curve in this step. When the starting curve 1X is very close to the receiver, then
the process may converge in an RXI concentrator that has part or its entire
receiver outside the dielectric. In this case the receiver is virtual.

Figures 8.24, 8.27 and 8.28 show three different RXI designs for maximal con-
centration and for a source at infinity (subtending angles ±1°, ±3°, and ±5°, respec-
tively). Figure 8.29 shows three RXI concentrators that have also been designed
for maximal concentration but whose input bundle is a finite source formed by the
rays issuing from every point of AA¢ toward every point of BB¢.
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8.11 THREE-DIMENSIONAL RAY TRACING OF
SOME RXI CONCENTRATORS

This section gives results of the 3D analysis of RXI obtained by rotational sym-
metry around the z-axis. Two types of RXI concentrators have been designed and
analyzed. The input bundle of the first type of RXI concentrator is a source at infin-
ity that comprises all the rays impinging on the concentrator aperture (surface

8.11 Three-Dimensional Ray Tracing of Some RXI Concentrators 207

receiver

10

15

–5

–10

–15

5 0 –5

0

5

Figure 8.28 The same as in Figure 8.24 but with an angle qi = 5°.

#1 #3#2

0 12010080604020
–40

–20

0

20

40

reflector

receiver

A¢

A

B ¢

B

Figure 8.29 RXI concentrators for the input bundle formed by the rays issuing from any
point of AA¢ toward any point of BB¢. The output bundle contains all the rays that reach the
receiver.



generated by curve 1) whose angle with the axis of symmetry is not greater than
a given value qi. The input bundle for the other type of RXI concentrators com-
prises the rays issuing from the disk with diameter AA¢ toward the disk with diam-
eter BB¢ (see Figure 8.29). The output bundle for both types of RXI concentrators
comprises all the rays reaching the receiver. This is a flat disk centered at the sym-
metry axis and orthogonal to it.

Figure 8.30 shows the transmission-angle curves for several RXIs with sources
at infinity and with different acceptance angles. Three of these RXIs are those
whose cross section appears in Figures 8.24, 8.27, and 8.28. These curves do not
take into account the shadowing of the front metallic area nor the one produced
by rays intercepting the back side of the receiver. Both shadowing effects are taken
into account in the calculations of the total transmission appearing in Tables 8.4
and 8.5—that is, for the calculations of the total transmissions in both tables, it
is considered that a ray is lost if it intercepts the outer face of the mirrored region
in the aperture surface or if it intercepts the back face of the receiver.

Table 8.4 also gives other results of the 3D analysis and some geometrical
characteristics of the rotational RXI concentrators designed for a source at infin-
ity. The geometrical concentration CG is defined CG = Ae/Ar, where Ae is the area 
of the projection of the concentrator entry aperture on a plane orthogonal to the
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Table 8.4. Geometric Characteristics and 3D Ray-Tracing Results of Selected RXI 
Concentrators for Maximum Concentration and Infinite Source. Refractive index n = 1.5,
length unit is equal to receiver radius.

Acceptance Angle q1 (degrees)

Parameters ±0.5 ±1 ±3 ±5

Geometric concentration CG 29,546 7,387 821.5 296.2
Total transmission, Tt(qi) (%) 96.9 97.3 94.5 86.9
Total transmission without shadow Tt(qi) (%) 97.4 97.7 96.6 96.7
Thickness/entry aperture diameter 0.278 0.279 0.289 0.332
Dielectric thickness 95.6 47.9 16.6 11.4
Entry aperture diameter 343.8 171.9 57.3 34.4
Diameter of the front metallic reflector 23.2 11.2 8.2 10.8
Receiver to concentrator bottom distance 76.0 38.6 11.6 6.5



symmetry axis, and Ar is the receiver area. Table 8.5 gives the results of the 3D
analysis of the rotational RXI concentrators whose cross section appears in Figure
8.29.

8.12 COMPARISON OF THE SMS
CONCENTRATORS WITH OTHER
NONIMAGING CONCENTRATORS AND 
WITH IMAGE FORMING SYSTEMS

The fundamental advantages of nonimaging concentrators versus imaging ones
are that those get concentrations closer (in general greater than 90%) to the ther-
modynamic limit (see Chapter 1) and that nonimaging concentrators can be very
simple (one or two optical surfaces are usually enough). For instance, a single 
parabolic mirror of revolution does not achieve concentrations greater than 25%
of the limit and not greater than 56% of the limit when the parabolic mirror is
combined with a spherical refracting surface with n = 1.5. Increasing the number
of components improves the concentration in an imaging device, but concentration
levels as high as in the nonimaging concentrators are only achieved with systems
or materials that are usually impractical, such as the Luneburg lens (see Appen-
dix F). Imaging concentrators, formed, for instance, by a single lens, compete
advantageously in the low concentration regime when the desired concentration
is small compared with the thermodynamical limit.

The best-known nonimaging concentrator, the compound parabolic concentra-
tor (CPC), is used as a reference for other nonimaging concentrators. The total
transmission of the CPC of revolution is above 95% for all acceptance angles (for
q < 5° the total transmission is about 95%). Its most important disadvantage is its
thickness for small acceptance angles, approximately 0.5(Cg)1/2. For instance, this
ratio is 43 for a CPC of n = 1.5 and q = ±1° to be compared with the ratio of 0.28
of an XR or an RXI. Practical CPCs for this acceptance angle range are truncated,
which only decreases slightly its total transmission, whereas the depth can be dra-
matically reduced (see Chapter 5). For larger acceptance angles, the CPC increases
its total transmission and decreases its size strongly, whereas the XR and the RXI
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Table 8.5. Geometric Characteristics and 3D Ray-Tracing Results of Selected RXI 
Concentrators for Maximum Concentration and Finite Source. Refractive index n = 1.5;
length unit is equal to receiver radius; input bundle AA¢ diameter, 80; input bundle BB¢
diameter, 9.5; distance from AA¢ to BB¢, 120.

Concentrator Number

Parameter 1 2 3

Total transmission, Tt (%) 96.0 93.2 86.7
Total transmission without shadow Tt (%) 97.8 96.8 95.1
Thickness/entry aperture diameter 0.252 0.256 0.226
Dielectric thickness 15.4 11.2 6.1
Entry aperture diameter 61.2 43.6 26.8
Diameter of the front metallic reflector 7.9 7.2 5.6
Receiver to concentrator bottom distance 11.3 8.2 4.0



decrease their total transmission and increase their size slightly, so the CPC
becomes a better candidate for large acceptance angles (above ª15°).

There are other concentrators of the CPC family with a smaller size. For
instance, the dielectric-filled CPC with curved entry aperture, called DTIRC (Ning,
Winston, and O’Gallagher, 1987), has a thickness to entry aperture ratio between
1 and 2 for acceptance angles above 10°.

When the acceptance angle is smaller, the combination of an imaging-forming
device such as a parabolic mirror with a concentrator of the CPC family (usually
a Compound Elliptical Concentrator, CEC) leads to more compact devices than a
single CPC-type concentrator. The highest levels of solar concentration have been
achieved with combinations of parabolic mirrors and nonimaging concentrators,
similar to the aforementioned one (except that the nonimaging concentrator is not
a CEC) (Gleckman, O’Gallagher, and Winston, 1989). Such combinations are
thicker than the equivalent SMS concentrators. Their optical performance may be
better or worse depending on the concentrator parameters. The theoretical limit
of concentration can be attained with these two-stage systems if the imaging stage
(parabolic mirror) is without aberrations—that is, when the mirror forms a sharp
image of the source at the CEC entry aperture. This requires f-numbers much
greater than 0.287. For instance, consider a combination of an f/2 parabolic mirror
with a dielectric filled CEC (n = 1.483) to form a concentrator with design accep-
tance angle qa = ±1°. The geometrical concentration of the first stage is Cg1 = sin2 y
cos2f/sin2qa = 181.76 (where f is the rim angle of the mirror as seen from the focal
point—that is, f = tan-1(1/2f )). The second-stage concentration is approximately
Cg2 = n2/sin2 f = 37.39, so Cg3D = Cg1Cg2 = 6796, which is 94% of the maximum con-
centration (Cg3D < n2/sin2qa). Considering this loss of concentration as a loss of total
transmission and assuming that the total transmission of the CEC is similar to
that of a CPC with acceptance angle qa ª f (i.e., TCEC ª 0.962; see Figure 4.13),
then the total transmission of the mirror-CEC combination is approximately
90%–which is 4.6% less than an XR (see Table 8.2). As the f number increases, the
transmission angle curve of the mirror-CEC combination is sharper, but the con-
centration of the first stage decreases, and then the concentration (and the size)
of the second stage increases. That reduces the total transmission of the CEC.
When f is very high, the shadow of the second stage on the mirror can be the cause
of the decrease of the total transmission.

The rays suffer a single metallic reflection in both systems (assuming that the
CEC can work by total internal reflection). The Fresnel reflections at the CEC
entry aperture are, approximately, those corresponding to a beam impinging 
on its entry aperture at angles (with the normal to the entry aperture) below 
j (f ª 14°). The angular distribution at the lens entry aperture of the XR is less
homogeneous. At the center of the lens the beam is impinging on the lens at angles
below 18.52°. Because of the quasi-spherical shape of the lens and because the
center of the lens is the point of the surface closest to the receiver center, it can
be expected that the rays will not form angles much greater than this with the
normal to the lens surface, and thus concluding that there will not be significant
differences in the Fresnel losses of both systems.

Optical losses depend on the type of materials used. Reflectivities between 85%
and 90% for the mirror reflection are easily achieved with an evaporated aluminum
coating. Fresnel losses can be reduced with an antireflection coating. Absorption
and dispersion losses not only depend on the type of dielectric material to be used
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but also on the average length of the rays, and thus it depends on the global 
size of the concentrator. Values of concentrator optical efficiencies between 70%
and 85% can be expected, using very common materials (for instance, poly-
methylmetacrylate as dielectric and aluminum coating as reflector) for average ray
length no greater than 60mm and acceptance angles greater than 1°. Another
source of losses are the imperfections of the optical surface (including roughness).
This type of loss depends on the technology used to make the concentrator and is
more important for small acceptance angles. Since the surfaces of nonimaging con-
centrators are aspheric, polymer injection molding is usually the most appropri-
ate technology. In that case, imperfections of the optical surfaces depend strongly
on the mold accuracy, mold surface roughness, molding cycle time, and the
maximum material thickness.

8.13 COMBINATION OF THE SMS AND 
THE FLOW-LINE METHOD

The Simultaneous Multiple Surfaces design method has been used in previous sec-
tions in the 2D design of several ideal concentrators, such as the RXI, RX, and XR.
These concentrators transfer the rays emitted by a source to a receiver through a
number of sequential incidences. For example, in the case of the RX all the rays
of the source that impinge on the concentrator undergo first a refraction and then
a reflection before reaching the receiver. In the case of the RXI, the rays undergo
a refraction, a metallic reflection, and a total internal reflection on their way from
source to receiver.

Let us take by way of example the RX concentrator that appears in Figure
8.31b. In the same way as the rays, the flow lines of the bundle transmitted by
the concentrator are refracted on the refractive surface and reflected on the mirror.
The functioning of the RX concentrator can thus be understood as the transfor-
mation, through two sequential incidences, of the flow lines of the source into those
of the receiver.

The string method with which the CPC was designed (see Chapter 4) is used
for calculating mirrors that coincide with the flow lines of the transmitted bundle
(see Figure 8.31a). These mirrors act as a guide for the flow lines instead of reflect-
ing them, as is the case with the SMS method. The behavior of these mirrors,
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moreover, is not sequential: The number of reflections that the rays from the source
may undergo before reaching the receiver is not equal for all the rays. We shall
call these mirrors nonsequential, in order to distinguish them from the sequential
mirrors used up to now in the SMS method.

This section deals with the inclusion of nonsequential mirrors in the SMS
design method. In principle the designs obtained are ideal in two dimensions (later,
some of them are truncated for practical reasons, as occurs in the CPC case), and
the nonsequential mirrors coincide with a flow line of the transmitted bundle, Mc.
The nomenclature used for referring to the different designs is similar to that of
the other concentrators obtained through the SMS method. Each concentrator is
named with a succession of letters indicating the order and type of incidence of
the optical surfaces that the bundle M encounters on its way from source to
receiver. The following symbols are used: R = refraction, X = sequential reflection,
XF = nonsequential reflection, and IF = nonsequential total internal reflection (the
subindex F refers to the coincidence of the nonsequential surface with the flow
line).

An example of a concentrator designed with the SMS method that contains
nonsequential mirrors is presented next, the XRIF. This design is made up of two
surfaces to be calculated. Other examples are presented as applied designs in
Chapter 14. Friedman, Gordon, and Ries (1995) and Friedman and Gordon (1996)
published two designs that can be considered as degenerate cases of SMS designs
with nonsequential mirrors. Using the nomenclature just described, the two-stage
solar collector of Friedman et al. (1995) is an XXF, whereas the monolithic con-
centrator of Friedman and Gordon (1996) is an RXF.

8.14 AN EXAMPLE: THE XRIF CONCENTRATOR

The XRIF concentrator is made up of a sequential primary mirror (X) and a sec-
ondary concentrator conceptually similar to that of Figure 5.31, composed of a
refractive surface (R) and two nonsequential mirrors that work by total internal
reflection (IF). We will call these types of concentrators (like the secondary one)
DTIRC (Dielectric Totally Internal Reflection Concentrator). Figure 8.32 shows an
XRIF design for an infinite source of acceptance ±a and maximum concentration
on the segment RR¢. The size of the secondary is not to scale, in order to facilitate
explanation. The points I and I¢, which are the rims of the primary mirror, define
the entry aperture of the concentrator. Therefore, the bundle Mo, which coincides
with MR, is composed of all the rays that impinge on the segment RR¢ from below,
and the bundle Mi by the rays that impinge on the segment II¢ with an angle of
incidence less than a. We shall call rays e(+) and e(-) those rays of Mi with angle
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Figure 8.32 Description of an XRIF concentrator. The secondary is not to scale.



of incidence +a and -a, respectively (the clockwise angles are taken as positive).
The secondary is considered as transparent for the rays of Mi before impinging on
the primary (its shadow will be considered later on).

The input parameters of the design are (1) the length of the receiver RR¢, (2)
the refractive index n of the secondary, (3) the acceptance angle a, (4) the rim angle
of the primary f, and (5) the profile of the two symmetric mirrors IF. It is not nec-
essary to design these mirrors because on the surfaces R and X there are suffi-
cient degrees of freedom for practical purposes.1 The edges of the mirror IF are the
points A (and A¢) and B ∫ R (and B¢ ∫ R¢). The profile of the surface IF should be
selected so that it produces total internal reflection and that all edge rays imping-
ing between A and B undergo a single reflection on the mirror. This condition is
used for the application of the edge ray theorem, as proven in Appendix B. Addi-
tionally, we will guarantee the following:

1. The rays of Mc that pass through the point A are edge rays and form a con-
nected bundle at A. The angle formed between the tangent to the mirror at A
and the ray ra is smaller than that it forms with r¢a. The rays of Mc at A situ-
ated between ra and its symmetric with respect to the tangent are the edge
rays dMA, which do not extend beyond A (that is, they are edge rays only before
reaching A).

2. The rays of Mc that pass through the point B are edge rays and form a con-
nected bundle at B. The angle formed between the tangent to the mirror at B
and the ray rb is smaller than that it forms with r¢b. The rays of Mc at B situ-
ated between rb and its symmetric with respect to the tangent are the edge
rays dMB, which begin at B (that is, they are edge rays only after passing
through B).

The positions of points I and I¢ are calculated with the angle f and the length
of segment II¢, which is equal to n/sina by conservation of the étendue.

Figure 8.33 shows the edge rays associated to one of the nonsequential mirrors
(IF), specifically those reflected toward R¢. The definition and use of these edge rays
are detailed in Appendix B. It should be noted that in this case the rays ra and r¢a
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Figure 8.33 Edge rays associated to the nonsequential mirror IF. The refraction on the
refractive surface has been omitted for the sake of clarity.

1 Later on we shall see that, strictly speaking, there is a small portion of the edge rays that
it is not possible to couple, as occurs in other SMS designs (Section 8.3). A subsequent ray tracing
shows that the coupling of these rays is good, even though it has not been guaranteed by the
design. The mirrors IF may be used for guaranteeing this coupling, although it is unnecessary
from a practical point of view.



bisect the bundle that impinges at A so that this bundle coincides with ∂MA. Mean-
while, the edge rays ∂MB couple directly with rays of ∂Mo because the points R (R¢)
and B (B¢) coincide. Note that the ray r¢b is reflected at R toward R¢.

The surfaces R and X are obtained by connecting the edge rays ∂Mi with ∂Mo

and ∂MA, a process illustrated in Figure 8.34 and that includes the following steps:

1. Trace r¢a, the ray e(-) that impinges at point I, is reflected toward point A, and
then refracted toward R¢ (see Figure 8.34a). Calculate the normal vectors to
the mirror at I and to the refractive surface at A so that the laws of reflection
and refraction are satisfied. Calculate the trajectory of the ray r¢b inside the
secondary, knowing that it is reflected at point R toward R¢ (the normal at R
is known).

2. Construct the first portion of the primary mirror, imposing the condition that
the rays e(-) are reflected toward point A (see Figure 8.34b). Obviously, the
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solution is the parabola with focus at A and whose axis is parallel to the rays
e(-) passing through I. The final point of this portion is given by the ray e(-)
that, after undergoing a refraction (on the refractive surface) at A and a reflec-
tion (on the mirror IF), reaches R¢. Moreover, this ray is the ray ra.

3. Calculate the first portion of the refractive surface with the condition that the
rays reflected at I must be refracted toward R¢ (see Figure 8.34b). The solu-
tion is the Cartesian oval with foci I and R¢ that passes through A. The ray
e(+) that impinges at I marks the end of this portion.

4. Calculate the next stage of the primary mirror knowing that the rays e(-),
after being reflected on it, must be refracted on the refractive surface, reflected
on the nonsequential mirror and impinge at R¢ (see Figure 8.34c). The solu-
tion can be calculated by applying the constancy of the optical path length that
must exist, according to Fermat’s principle, between the flat wavefront asso-
ciated to the rays e(-) and the spherical wavefront directed toward R¢. The
final point is that at which the impinging ray e(-) coincides with the ray r¢b
calculated in step 1.

5. Continue to calculate the primary mirror, imposing the condition that the rays
e(-), after being reflected on it, are refracted on the refractive surface toward
point R (see Figure 8.34c). Again, the condition of constant optical path length
determines the solution.

6. Calculate the following stage of the refractive surface, knowing that the rays
e(+), after being reflected on the mirror, are refracted toward point R¢ (see
Figure 8.34d).

7. Repeat steps 5 and 6 until the mirror and the refractive surface intersect the
symmetry axis (see Figures 8.34d and 8.34e).

The design is complete. In order to illustrate the procedure followed, Figure
8.35 shows the representation of the bundle Mi in the phase space of the entry
aperture and of Mo in the receiver phase space. The design procedure does not
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guarantee coupling between the two portions of edge rays shown in the figure
(defined by the rays rd, re, and their symmetrics with respect to the axis), although
a subsequent ray tracing indicates satisfactory coupling. This situation is usual in
two-surface SMS designs. No theoretical explanation for this fact is known.

Figure 8.36 shows an XRIF concentrator designed with the following parame-
ters: (a) the length unit is half the length of the receiver, (b) n = 1.5, (c) a = ±0.75°,
(d) f = ±80°, and (e) the surfaces IF are planes inclined at 70° to the vertical. The
design is optimal so that the collection efficiency is h = 100%, and the concentra-
tion is Cg = Cmax = n/sina = 114.6¥. The shadow produced by the secondary, cal-
culated as the ratio between the apertures of the secondary and the primary, is
6.4%.

It is noteworthy that the XRIF of Figure 8.36 is optimal in 2D and has a large
angle f (±80°), which leads to an aspect ratio (i.e., ratio between height and aper-
ture diameter) of 0.30 for the complete system. This is the main difference between
the XRIF and a conventional parabolic mirror-DTIRC combination. This combina-
tion behaves far from optimally if a large angle f is selected, as shown in Figure
8.37.
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Figure 8.36 XRIF concentrator designed with refractive index n = 1.5, geometrical concen-
tration 114.6x¢, acceptance angle a = ±0.75°, and primary rim angle f = ±80°.
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Figure 8.37 Comparison of the XRIF concentrator with the conventional parabolic mirror-
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Note also that if the mirrors IF were selected as horizontal planes, they would
not reflect any edge rays, and the angular size of the bundles ∂mA and ∂mB would
be null. This means that, at this extreme, the XRIF design coincides with an XR
design of Section 8.5.
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9.1 INTRODUCTION

The design of imaging optical systems is a classic field of research that has
achieved a high level of development. There are on the market optical design pro-
grams that permit the numerical optimization of the design parameters, allowing
us to obtain results that were unattainable with the analytical tools used before
the development of computers.

In many imaging applications it would be interesting to use an optical system
with an image-side numerical aperture (NA) as high as possible but satisfying a
specified imaging quality. This is the case of most radiation sensors, since their
sensitivity is proportional to the luminous power density (irradiance) and thus to
NA2. High values of the numerical aperture are especially desirable when working
with long wavelengths because the diffraction effects limit the minimum achiev-
able spot diameter, and this limit is proportional to l /NA (l is the wavelength of
the light in vacuum).

The image-side numerical aperture for paraxial optical systems can be calcu-
lated as NA = n¢sinb, where n¢ is the index of refraction of the image space and b
is the half-rim angle of illumination of the axial point of the image plane. When
the angle b is not small, the system cannot be considered paraxial, and in general
the preceding formula cannot apply. However, in the case of the optical systems
appearing in this chapter, this formula is still valid (as will be shown later). Since
sinb £ 1, the inequality NA £ n¢ defines an upper bound for NA, which is achieved
only if b = 90°.

Designing optical systems for very high numerical apertures, even with
modern design tools, is not an easy task. High-aperture camera objectives usually
have six lenses and obtain NA values of between 0.4 and 0.5, with n¢ = 1 and b =
25–30°. The designs with the highest values of NA are microscope objectives, which
need to be even more complex to avoid aberrations. In a simple oil immersion
microscope design, 10 lenses are typically used, and b ª 60° is achieved, which
implies NA around 1.35 with a refractive index n¢ = 1.52.

Nonimaging designs show that if image formation is not required, then it is
possible to obtain simple optical systems that concentrate the incident light much



more than imaging systems. A well-known example of a nonimaging concentrator
is the CPC (compound parabolic concentrator). This concentrator comes very close
to the thermodynamic limit of concentration, which corresponds to the isotropic
illumination (i.e., b = 90°) for every point of the receiver (as already seen in 
Chapter 4).

The limitations of language may lead to some confusion when using the term
“nonimaging.” It indicates that image formation is not required in the design
process, although image formation is not necessarily excluded. Therefore, there 
is no contradiction if a nonimaging concentrator is also an imaging device. The
Luneburg lens is an example of a perfect device in imaging and in nonimaging
contexts (Luneburg, 1964).

In this chapter we show that the RX concentrator, introduced in Chapter 8,
can also be considered a good imaging device. This characteristic, which was
studied in Benítez and Miñano (1997), should be added to its simplicity, its good
nonimaging performance, and its small thickness to aperture diameter ratio (it
can be smaller than 0.5). It is just an example of an SMS design applied to imaging
applications, but it is not necessarily the only one, nor is it the best one. Sections
9.2 and 9.3 present the analysis of the image formation capability of RX concen-
trators with rotational symmetry. All of them have been designed with n¢ = 1.5 and
a geometrical concentration of 95% of the theoretical maximum. This 95% implies
that b = 77°, and therefore the numerical aperture of these RXs is 1.46.

9.2 IMAGING PROPERTIES OF THE 
DESIGN METHOD

The RX is formed of two sequential optical surfaces, one of them refractive (R) and
the other reflective (X). The concentrator is thus a single dielectric piece bounded
by these two aspheric surfaces. The receiver is embedded in the dielectric with its
active side facing the mirror. Figure 9.1 shows the cross section of an RX designed
with an acceptance angle a of ±3°.

The design method of the RX concentrator is two-dimensional—that is, only
meridian rays are taken into account. Let us consider the design shown in Figure
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Figure 9.1 Cross section of an RX concentrator designed with n¢ = 1.5, acceptance ±3°, and
95% of maximum concentration. Its numerical aperture is NA = 1.46.



9.2, in which the source is the segment SS¢ and the receiver is RR¢. The concen-
trator is symmetric with respect to the optical axis. The profiles of the aspherics
are calculated with the following conditions:

(a) The rays emitted from S¢ and incident on the refractive surface between I¢
and B¢ are coupled with the rays reflected between E¢ and C toward R.

(b) The rays emitted from S¢ incident between A and I are coupled to the rays
reflected between D and O toward R.

(c) The rays emitted between S¢ and S passing through I¢ are coupled to the rays
reflected between O¢ and E¢ toward R.

Nevertheless, the design process does not have enough degrees of freedom to
guarantee the following:

(a¢) The rays emitted from S¢ incident between the points B¢ and A are coupled
to the rays reflected on the surface X between the points C and D toward R.

A 2D ray-tracing was made to establish whether (a¢) is accomplished, even
though it is not guaranteed by the design. In all the RXs considered in this chapter,
the maximum deviation of the points of incidence of the rays from the point R is
smaller than 6.10-6 times the aperture diameter. This means that if an aperture
diameter as large as 50mm is considered, a maximum deviation of 0.3mm is
obtained. This value is below the diffraction limit in the visible range even for a
numerical aperture as high as that of the RX.

As a conclusion, it can be considered that the condition (a¢) is also fulfilled
from a practical point of view. The reasons for such a fortunate result are still
under study. Observe that, because of the symmetry of the RX, the symmetric rays
of those mentioned from (a) to (a¢) are also coupled.

In nonimaging optics terms, the fulfillment of conditions (a), (b), (c), and (a¢)
means that the edge rays of the source and those of the receiver have been coupled
(Benítz and Miñano, 1997) and that the radiation emitted by SS¢ between I and
I¢ has been concentrated on RR¢ up to the thermodynamic limit. Observe that the
conditions (a), (b), and (a¢) imply that the meridian rays emitted from S¢ (and S) 
are sharply focused onto the point R (and R¢). Welford and Winston (1979) pro-
vides a proof of the impossibility, in general, of forming a perfect image of a 
nonaxial object point if skew rays are also considered, although the possibility of
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Figure 9.2 Description of the RX design process.



forming a perfect image for only meridian rays is admitted (this conclusion cor-
rects a previous analysis made in Welford and Winston, 1978). The RX is not a
formal example for this last statement due to the uncertainty related to condition
(a¢). Appendix E presents a rigorous example of a system that perfectly forms an
image of a nonaxial point for meridian rays.

Condition (c) implies that not all meridian rays impinging on the image points
R and R¢ come from the object points S¢ and S, respectively. The rays passing
through the points I¢ from the interior of the segment SS¢ are also focused onto R,
and the symmetric rays (passing through I) onto R¢. This does not affect the image
formation of S¢ and S¢ but implies that the points between S and S¢ are not per-
fectly imaged onto points of the segment RR¢. This assignment of rays corresponds
to the solution of the problem of nonimaging design with maximum concentration,
and is not adequate from the imaging point of view.

As these rays are located at the entry aperture rim II¢, the RX concentrators
can be truncated to improve the global imaging performance, although this implies
a reduction of the concentration. A truncation has been made for all the RX con-
centrators considered in this chapter. This truncation is such that the new entry
aperture diameter is 0.951/2 times the initial one. The resulting geometrical con-
centration is thus 95% of the upper bound.

Note that, although the truncated outer ring of the RX does not form an image,
the imaging quality of the RX for maximum concentration (before the truncation)
will be only slightly poorer than that of the truncated RX. This is because the 5%
of extra luminous power is not enough to degrade the imaging performance.

9.2.1 Conditions on the Wave Aberration Function W
The geometrical performance of an optical system with rotational symmetry can
be described in terms of the wave aberration function W(r, r, y) (Born and Wolf,
1975). The variables r, r, and y define a ray emitted from the source as shown in
Figure 9.3. For the imaging analysis, the source and receiver planes are the object
and image planes, respectively. The variable r is situated at the entry aperture
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Figure 9.3 Definition of the system of coordinates in the object and image spaces. The entry
aperture of the concentrator is the entry pupil of the optical system.



because this is the object-side pupil in all the optical systems considered in this
chapter. W is defined as the distance along the ray from the image-side pupil
sphere to the actual wave front, multiplied by the index of refraction n¢ of the
image space. From the axial symmetry of the system, it is deduced (Born and Wolf,
1975) that W is only a function of the variables r2, r2, and rrcosy.

The function W is usually expressed as a power series expansion. Let us
suppose that W is expanded in power series of the single variable r. It can thus be
written as

(9.1)

A perfect imaging system—that is, one with no aberrations—would have 
W(r, r, y) ∫ 0. This is equivalent to WK(r, y) ∫ 0 for all the subindices K. An 
optical system is said to attain axial stigmatism if W0(r, y) ∫ 0. This means that
W(r = 0, r, y) ∫ 0, so that the axial object point is imaged perfectly (also, stig-
matically). It is also said that the system is free of spherical aberration of all
orders. Cartesian ovals are examples of these systems.

An optical system is said to be aplanatic if W0(r, y) ∫ 0 and W1(r, y) ∫ 0. This
is equivalent to having axial stigmatism with fulfillment of the Abbe sine condi-
tion (Born and Wolf, 1975). The aplanatic systems are free of spherical aberration
and circular coma of all orders. In conventional designs of high numerical aper-
ture systems, aplanatism is considered a design goal.

In our case, the RX concentrator forms a stigmatic image with meridian rays
of the off-axis point S (and S¢) so that it verifies the following conditions:

(9.2)

where rS is the distance of S (and S¢) to the optical axis.
Because the value of rS is a design parameter, it can be chosen arbitrarily

small. Let us prove that when rS tends to zero, then the RX becomes aplanatic.
We will follow a similar procedure to those given by Schulz (1982; 1985) in the
design of aspheric lenses. Another proof, based on the concepts of flow lines of the
transmitted bundle, has been given (Benítez and Miñano, 1997).

Observe that when rS varies, the RX profiles change, and therefore so does the
wave aberration function W. The power series Eq. (9.1) can be rewritten with that
dependence:

(9.3)

As W depends only on (r2, r2, rrcosy; rS), the coefficients W0 and W1 can be
expressed as

(9.4)

and grouping the remaining terms in Eq. (9.3), it leads to

(9.5)

Using Eq. (9.5), the conditions Eq. (9.2) of the RX are

(9.6)

From equation Eq. (9.6) the functions a(r; rS) and b(r; rS) can be found:
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(9.7)

Note that the function c(r, r, y; rS) is continuous in r = rS for all rS if we admit
that W can be expanded in power series of the variable r. Therefore, it is deduced
from Eq. (9.7) that a(r; rS) Æ 0 and b(r; rS) Æ 0 when rS Æ 0, which implies the
vanishing of W0 and W1 by Eq. (9.4).

This proof implies that the design method of the RX converges to the con-
ventional two-asphere design method to attain aplanatism, first published by
Schwarzschild (Born and Wolf, 1975) in 1905 for a two-mirror configuration. Later
Wassermann and Wolf gave a method for designing the two-refractive aspheric for
achieving aplanatism (Wassermann and Wolf, 1949).

9.2.2 Distortion and Focal Length
An optical system forming a perfect image of infinity on the receiver plane is
assumed to have a constant ratio r¢/tanq, where r¢ is the distance from the image
point to the optical axis and q is the angle of incidence on the aperture with respect
to that axis. This ratio is called object-side focal length of the system (Born and
Wolf, 1975) and is denoted by f. Thus, the dependence of r¢ on q is of the form r¢(q)
= f tanq. An optical system is said to present distortion if, even forming a stigmatic
image of all points, it has a functional relationship between r¢ and q that is other
than ideal. From the conservation of the étendue it is easy to deduce that a system
that forms a stigmatic image for all of the object points and that attains maximum
concentration must verify that r¢(q) = Csin q, for a certain constant C. As 
sinq £ tanq, this distortion is called barrel distortion. For such a system the object-
side focal length is defined as the constant r¢/sinq, so that f = C. Figure 9.4 shows
the variation of r¢/sinq and r¢/tanq with respect to q for the RX concentrator of the
figure. In this case r¢ refers to the midpoint of the geometrical spot for each q, 
calculated by means of a ray-tracing in 3D. The function r¢/sinq is more constant
than r¢/tanq, so it can be written as

(9.8)f
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9.3 RESULTS

Because of the rotational symmetry, we can restrict the analysis to object points
located in a meridian plane without loss of generality. The coordinates are defined
as shown in Figure 9.3. The axis containing the object points is called the tan-
gential axis, and the orthogonal axis is the sagittal axis. These coordinates are
defined in analogue form in the image plane.

Figure 9.5 shows the geometrical spot diameters as a function of the angle of
incidence for four RX concentrators designed for different acceptances. The calcu-
lations have been made with a 3D ray-tracing procedure. These RXs have a
common entry aperture diameter of 50mm, which implies an object-side focal
length f of 17.1mm, in accordance with Eq. (9.8). All of these RXs have the same
distance between the vertices of the two aspherics (points A and C in Figure 9.2)
and the image plane. These distances are dA = 21.4mm and dC = 17.6mm. The
parameters f, dA, and dC, along with the acceptance angle a of the source, deter-
mine the RX design univocally (see Chapter 8). The values of a for each RX are
0°, 1.5°, 3°, and 4.5°. The RX with a = 0 is the conventional aplanatic design (see
Section 9.2), and is labeled “aplanatic RX” in Figure 9.5. The design method needs
a finite a, so this design has actually been calculated with a = 0.001°. Figure 9.5a
shows the tangential spot diameter (2sT), defined as twice the standard deviation
of the tangential coordinate xT of the points of incidence of the rays on the image
plane. The sagittal spot diameter (2sS), represented in Figure 9.5b, is defined in
a similar way, but the sagittal coordinate xS applies. The tangential spot diame-
ter for the incidence angle of design q = a (different for each RX) is not null because
the skew rays are not perfectly focused. Note that the distance D from the 
point of incidence of a ray to the midpoint (<xT>, <xS>) verifies D2 = (xT - <xT>)2 +
(xS - <xS>)2. Thus, the spot area can be estimated as p(sT

2 + sS
2).

9.3.1 Calculation of the Modulation 
Transfer Function (MTF)

The most accepted criterion for evaluating the imaging performance of an optical
system is the Modulation Transfer Function (MTF). The MTF can be defined as
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Figure 9.5 Tangential and sagittal spot diameters as a function of the angle of incidence
for various RX concentrators.



the ratio of the contrast of the image to the contrast of the object, and it can be
calculated as the normalized modulus of the Fourier Transform of the Point Spread
Function (PSF) (Williams and Becklund, 1989). Although in systems with large
numerical apertures the effects of polarization of the light may not be negligible
(Stamnes, 1986), we shall consider that the Scalar Wave Theory is valid for the
analysis. MTF is defined for each point of the object plane, and, as a consequence,
the MTF does not inform about the distortion (already seen in Section 9.2.2). In
rotational symmetric systems, two points of the object plane at the same distance
from the optical axis have the same MTF.

MTF is a function of two variables, the spatial frequencies (tangential fre-
quency fT and sagittal frequency fS, in line pairs per millimeter), which are the
Fourier variables corresponding to the tangential and sagittal spatial coordinates
in the image plane. For an MTF it is usual to represent only the two sections
MTF(fT, 0) and MTF(0, fS), which are also the Fourier Transforms of the tangen-
tial and sagittal line spread functions, respectively (Williams and Becklund, 1989).
These two sections of the MTF are referred to as tangential MTF and sagittal MTF.
In the case of the axial point, the MTF has rotational symmetry, and thus it is
only necessary to represent one section.

A perfect imaging system (i.e., one with no aberrations) without diffraction
effects (which is physically impossible) would have an MTF equal to one for all
spatial frequencies. The MTF of a perfect imaging system with diffraction effects
(usually called perfect MTF) decreases with the increasing spatial frequencies
until becoming null beyond the ellipse (fT/NAT)2 + (fS/NAS)2 = (2/l)2, where NAT and
NAS are the tangential and sagittal image-side numerical apertures of the optical
system for the point of analysis, and l is the wavelength of the light in vacuum
(Williams and Becklund, 1989).

These image-side numerical apertures are defined for nonparaxial optical
systems and for each point of the image plane. At the axial point the two numer-
ical apertures are equal and can be calculated with the classic formula n¢sinb,
where b is the half-rim angle of illumination of the axial point. According to their
definitions (Williams and Becklund, 1989), NAT and NAS have been computed for
the RX concentrators in this chapter for the corresponding object points inside the
source. The maximum deviation of NAT and NAS from the value n¢sinb is below
2% in all cases, so the NA = n¢sinb can be assumed as the numerical aperture of
the complete system.

This small variation of NAT and NAS is due to the similarity of the cones of
rays illuminating the points of the RX image plane. In the case of NAT, this implies
that the meridian rays impinging on the entry aperture with incidence angles
within ±a will reach the image plane with incidence angles approximately within
±b (when this is exact the system is called telecentric). Thus, the conservation of
the étendue in two-dimensions implies that

(9.9)

where rI and rR are the entry aperture radius and receiver radius, respectively. As
the maximum geometrical concentration is (n¢/sina)2, the preceding expression
states that sin2b is the ratio of (rI/rR)2 to this maximum. For example, a fraction
of 95% of the maximum concentration implies b ª sin-1(0.951/2) = 77.1°. Also, the
focal length introduced in Eq. (9.8) can be calculated as

r n rI Rsin sina b  ª ¢

226 Chapter 9 Imaging Applications of Nonimaging Concentrators



(9.10)

When a single value of NA can be assumed for the whole system (which is the 
case of the RX concentrators in this chapter), the perfect MTF is the same for all
object points and, moreover, has rotational symmetry and is null outside the circle
fT

2 + fS
2 = (2NA/l)2. The value 2NA/l is called the spatial cutoff frequency. It 

means that if a sinusoidal intensity pattern with a frequency greater than the
cutoff frequency is located in the object plane, the image will have no contrast.
The perfect MTF for low numerical apertures (Williams and Becklund, 1989)
depends only on NA/l, but when the NA is high and no paraxial approximation
can be assumed (Barakat and Lev, 1963), the perfect MTF also depends explicitly
on the rim angle b.

As the cutoff frequency for a perfect MTF is proportional to NA, the optimum
imaging system must have no aberrations and maximum NA = n¢ (b = 90°). 
An example of such a system is the Luneburg lens (Luneburg, 1964) (which has
n¢ = 1 and a nonflat receiver).

The method used here to calculate the MTF of a concentrator is the one that
appears in Smith (1966). This approximate method has been considered accept-
able especially when the optical system is far from being diffraction-limited. The
results of the method are usually pessimistic. The method consists of the follow-
ing steps:

(a) Calculate the Geometrical Point Spread Function (GPSF) of the concentrator
with a 3D ray tracing.

(b) Compute the Geometrical MTF (GMTF) as the Fourier Transform of the GPSF
normalized to its value at fT = fS = 0.

(c) Multiply this GMTF by the perfect MTF with the same values of NAT, NAS,
and b.

Steps (b) and (c) can also be calculated as (b¢) convolve the GPSF of the concen-
trator with the perfect Point Spread Function (PSF) with the same NAT, NAS, and
b (which is the Airy pattern when NA is low), and (c¢) apply the Fourier Trans-
form and normalize to its value at fT = fS = 0.

Observe that the GPSF changes proportionally with the scale of the system.
If the scale is reduced sufficiently, the GPSF approaches the Dirac d function when
compared with the corresponding perfect PSF (which is not scaled). In conse-
quence, the MTF of the system approaches the perfect MTF. This situation means
that the optical system is diffraction limited.

Let us consider once again the RX concentrators discussed in Section 9.3, with
a common entry aperture diameter of 50mm and a wavelength of l = 950nm.

The focal length for all of these RXs is 17.1mm. Figure 9.6 shows the MTF for
normal incidence and for an incidence angle q = 3° of several devices. These devices
are the aforementioned RX concentrators and an f/4.5 planoconvex spherical lens
with the same object-side focal length f = 17.1mm and optimum defocusing. The
MTF of this lens is shown for comparison purposes. The entry aperture diameter
of this lens is 17.1/4.5 = 3.8mm, and its numerical aperture is NA = 1/(2f/#) = 0.11.
Table 9.1 summarizes the data of these systems.

The image formation quality of the RX designed for a = 3° and that of the 
lens are similar for normal incidence. Note that if the scale of both devices is

f
r r

NA
Iª ¢ ª

sinq
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Figure 9.6 MTF for normal incidence and for incidence angle of 3° of a spherical planocon-
vex lens with f/4.5, the aplanatic RX, and the RX designed with acceptance angles of 1.5°,
3°, and 4.5°.

Table 9.1. Comparative Data Between the RX and the
Plano-Convex Spherical Lens.

Concentrator NA f/# f (mm) Entry aperture (mm)

RX 1.46 0.34 17.1 50
Lens 0.11 4.5 17.1 3.8

reduced, then the performance of the RX for normal incidence will be superior 
to that of the lens because the RX is further than the lens from being diffrac-
tion limited. The MTFs of the lens degrade when the incidence angle 
increases from zero. As will be explained following, that is not the case for the 
RX.



To compare the imaging performance of different systems and for different
object points a single number derived from the MTF is more useful than the full
curves. One possible criterion is the equivalent bandwidth, which is defined for
the tangential MTF and the sagittal MTF as

(9.11)

Observe that the axial symmetry of the optical systems implies fc,T = fc,S for the
axial object point. As an example, both the RX designed with a = 3° and the f/4.5
planoconvex spherical lens (optimally defocused) have fc,T = fc,S = 32.1mm-1 for
normal incidence.

When a single NA value can be applied to the image points to be studied, then
fc,T = fc,S for all the object points in a perfect MTF because the perfect MTF has
rotational symmetry in the variables (fT, fS). Direct calculations of the equivalent
bandwidth of the perfect MTF, which depends only on the values of NA and b,
demonstrate that dependence on b is small when NA is fixed. Neglecting this
dependence, it is easy to calculate the fc of the perfect MTF as 0.55 ¥ NA/l. 
For instance, A = 1.46 and b = 77° (which are the values of the RXs) gives 
fc = 845mm-1.

Figure 9.7 shows fc,T and fc,S as a function of the angle of incidence q for the
RX concentrators designed with a = 1.5°, 3°, and 4.5°, the aplanatic RX and their
diffraction limit of 845mm-1. All the RXs attain a maximum of fc,T for q = a. 
For q = 0, the smaller a, the greater fc,T. The same behaviour is observed in fc,S,
although the maximum is obtained at q ª 2a/3 and is less abrupt. In the case of
the aplanatic RX, the value of fc,T (and fc,S) equals the diffraction limit for q = 0.

Let us call fc(q) the smallest (i.e., the poorest) of fc,T and fc,S for each angle of
incidence. It is a global indicator of the imaging performance at the incidence angle
q. In the case of the former RXs, fc,T(q) > fc,S(q). Thus, fc(q) = fc,S(q). This fc is shown
in Figure 9.7b. Let us consider the one-parametric family of RX concentrators
designed with the input parameters f = 17.1mm, dA = 21.4mm, and dB = 17.6mm
but with variable a. The RX concentrators designed for a = 0°, 1.5°, 3°, and 4.5°
belong to this family. For this family of concentrators the function fc(q, a) can be
calculated, and its performance can be summarized as

f f df f f dfc T T T c s s s, ,, ,= ( ) = ( )
• •

Ú ÚMTF MTF2

0

2

0
0 0
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diffraction

Figure 9.7 (a) Tangential and (b) sagittal equivalent wavelengths as a function of angle of
incidence for the selected RX concentrators.



1. For q = 0, fc decreases when a increases.
2. For a given a, fc reaches a maximum at q ª 2a /3.

The imaging quality required for a certain application can be specified using fc(q),
imposing the following condition:

(9.12)

where fMIN is the minimum resolution allowed. On inspection of Figure 9.7, it is
easy to see that the RX of the one-parametric family verifying the Eq. (9.12) for 
0 £ q £ d, with maximum field of view d, is precisely that verifying fc(q = 0) = fMIN.
Let us call dOPT the maximum field of view corresponding to a given value of fMIN.
Figure 9.8 shows dOPT as a function of fMIN. Each point of this curve corresponds to
a different RX concentrator. Observe that this curve is wavelength and scale
dependent and that it is associated only with the one-parametric family of RXs
considered (only a has been varied, while the other design parameters have been
kept constant). Note that for any value of a, the concentrator designed with this
a is optimum for fMIN = fc(q = 0, a), achieving the field of view dOPT given by the
curve represented in Figure 9.8. The design for a = 0 is optimum when dOPT = 0.
As null fields of view are of no practical interest, this means that the aplanatic
RX is not the optimum for any practical case.

Remember that the RX design method implies that the meridian rays of two
symmetric off-axis object points (S and S¢ in Figure 9.2) are focused stigmatically
on their image points (R¢ and R in Figure 9.2, respectively). In the preceding
example, this strategy leads to better results than the conventional aplanatism.
Schulz described an algorithm to obtain second-order aplanatism that included a
similar construction but not with the same strategy: The off-axis points were
located as close as possible to the optical axis (Schulz, 1982).

9.3.2 Global Merit Function
The RX designed for a = 3 degrees and the f/4.5 lens, both with a focal length of
17.1mm, have a similar image quality for normal incidence but their luminosities
are very different. Ignoring optical losses, the ratio of the average irradiances on
the receivers of the RX concentrator and of the f/4.5 lens is (50mm/3.8mm)2 = 173.

f fc MINq( ) ≥
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Figure 9.8 Angular field of view (semiangle) as a function of the minimum specified 
equivalent wavelength fMIN for the optimum RX concentrator designed with parameter 
dA = 21.4mm and dC = 17.6mm.



In order to compare the global performance for imaging detection of an RX
designed for an infinite source with other optical systems, we shall assume that
the light is again monochromatic with wavelength l = 950nm, the object-side focal
length of the systems to compare is f = 17.1mm, and the field of view is d = ±3.2°.
Thus, the detector diameter is fixed at 17.1 ¥ 2 ¥ sin3.2° = 1.79mm. A concentra-
tor may be characterized for imaging detection by two numbers: (1) the global
equivalent bandwidth fc,G, defined as the minimum value of fc(q) when q varies in
the range (0, d), and (2) the square of the numerical aperture NA. The parameter
NA2 quantifies the luminosity of the concentrator (if no optical losses are consid-
ered), while fc,G quantifies its imaging quality.

Figure 9.9 shows the fc,G - NA2 plane using logarithmic scales for both axes.
The performance for imaging detection of any concentrator is represented by a
point (fc,G, NA2) of this plane, which will be called the performance point. The 
continuous line represents the locus of the performance points of the perfect (or
diffraction-limited) imaging devices. These points fulfill fc,G

2 = (0.55 ¥ NA/l)2. A
high fc,G means good imaging quality, and a high NA2 means high luminosity. The
figure also shows the points corresponding to (1) the RX designed for a = 3°, (2)
the aplanatic RX, (3) the f/4.5 planoconvex lens, (4) the f/4.5 ideal lens, (5) the f/9
ideal lens, and (6) the Luneburg lens.

For this wavelength, this focal length, and this field of view, the f/4.5 planocon-
vex lens has poorer imaging performance and much poorer luminosity than the
RX designed for a = 3°. This RX has more than double the luminosity of the Lune-
burg lens (which has n¢ = 1) and an imaging quality similar to the f/9 ideal lens 
(diffraction limited). Finally, the aplanatic RX is as luminous as the RX with 
a = 3° but with poorer imaging performance.

9.4 NONIMAGING APPLICATIONS

The image formation capability of RX concentrators gives it an interesting prop-
erty as a nonimaging concentrator: The same concentrator can be used for differ-
ent acceptance angles (within a certain range) simply by changing the receiver
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Figure 9.9 The performance of any concentrator for imaging detection is represented by a
point in the fc,G - NA2 plane (fc,G is the global equivalent bandwidth of the concentrator in
the field of view of d = ±3.2 degrees and indicates the imaging quality. The square of the
image-side numerical aperture NA2 indicates the concentrator luminosity).



diameter. Curve A in Figure 9.10 is the angle transmission curve T(q) of the RX
of Figure 9.1 (designed for a = 3°). This curve is very stepped around q = a, which
means that the concentrator’s performance is close to ideal.

Curves B to G in the figure are the transmission curves for the same RX using
different receiver diameters. Observe that these curves are also very stepped,
implying that the nonimaging performance of the concentrator is also good. The
calculations of T(q) take into account the receiver shadowing but not optical losses.

Figure 9.11 shows the collection efficiency as a function of the resulting semi-
acceptance angle, which is calculated for each receiver as the value of q for which
T(q) = 1/2. In all the cases, the geometrical concentration is 95% of the maximum
possible for each acceptance angle.

The RX concentrators achieve concentrations close to the thermodynamic
limit, even with receiver diameters that are quite different from that of the design.
This feature is not present in the classic nonimaging designs such as the CPC,
whose performance suffers if the receiver is changed.
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Figure 9.10 Curve A is the angle transmission curve of the concentrator of insert 
Figure 9.1. Each one of the other transmission curves corresponds to the same concentra-
tor but with a different receiver diameter d. If the entry aperture diameter is 50mm, 
then d(A) = 1.79mm, d(B) = 1.33mm, d(C) = 890mm, d(D) = 445mm, d(E) = 3.95mm, 
d(F) = 7.9mm, and d(G) = 11.86mm.

Collection efficiency (%)

Semiacceptance angle (degrees)

With shading

No
shading

Figure 9.11 Collection efficiency for the RX concentrator of Figure 9.1 for different receiver
diameters, as a function of the resulting semiacceptance angle. The upper curve considers
a transparent receiver, while the lower one takes into account the shadow losses it 
introduces. In both cases optical losses have been ignored.



Moreover, if the receiver and the source of an RX design are tailored in any
shape (the same for both), the RX still couples very well the rays of the source onto
the receiver. This means, for example, that any stepped angular transmission
response without rotational symmetry can be achieved with a rotational sym-
metric RX if the receiver is tailored with the proper shape.

9.5 SMS METHOD AND IMAGING OPTICS

In this chapter, the RX concentrators have been analyzed as imaging devices and
have been found to have good image formation capability. For example, for a field
of view of d = ±3.2°, an RX with 50mm aperture diameter and n¢ = 1.5 has an image
quality similar to that of an f/9 ideal thin lens of 1.9mm aperture diameter 
(l = 950nm). This image formation capability is added to its excellent performance
as a nonimaging concentrator, which means that its NA is close to the maximum
possible (NA = 1.46 for the preceding example). As a nonimaging concentrator, the
RX is a simple device that achieves concentration levels close to the thermody-
namic limit. The combination of the RX’s imaging and high concentration proper-
ties with its simplicity and compactness means that it is almost unique and makes
it an excellent optical device for low-cost, high-sensitivity Focal Plane Array 
applications.

The strategy used to design the RX (sharp imaging of meridian rays of two
off-axis points) suggests that aplanatism (traditionally used in the design of
systems with large NA) is not the best solution when a minimum imaging quality
is required within a non-null field of view. Moreover, aplanatism has been shown
to be a particular case in the RX design procedure when the two off-axis points
tend to an axial point.

Observe that if the design method is extended to three aspherics, the axial
object point could also be imaged stigmatically. In general, if 2N aspherics are
designed, the sharp imaging of the meridian rays of 2N symmetric off-axis points
can be achieved. With 2N + 1 aspherics the axial point could also be imaged. It
seems also possible to design to provide stigmatic imaging of skew rays. Theoret-
ically, designing two aspherics would allow the focusing of a one-parameter bundle
of skew rays emitted from an off-axis object point symmetricly with respect to the
meridian plane. An example of such a bundle is that formed by the skew rays 
y = ±90° in insert Figure 9.3. Analogously, 2N aspherics would focus N symmet-
ric skew ray bundles. Combining meridian and skew rays along with using dif-
ferent object points in the design may be more effective and an interesting strategy
for imaging optical system design.
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10.1 INTRODUCTION

The flux-transfer efficiency of passive nonimaging optical systems—such as lenses,
reflectors, and combinations thereof—is limited by the principle of étendue con-
servation. As a practical matter, many nonimaging optical systems possess a 
symmetric construction, translational and rotational symmetries being the most
common. In this chapter, we find that for such symmetric optical systems a further,
more stringent limitation on flux-transfer efficiency is imposed. This performance
limitation, which may be severe, can only be overcome by breaking the symmetry
of the optical system.

In the geometrical optics approximation, the behavior of a nonimaging optical
system can be formulated and studied as a mapping g : S2n Æ S2n from input 
phase space to output phase space, where S is an even-dimensional piecewise 
differentiable manifold and n (= 2) is the number of generalized coordinates. 
The starting point for this formulation is the generalization of Fermat’s variational
principle, which states that a ray of light propagates through an optical system 
in such a manner that the time required for it to travel from one point to 
another is stationary. Applying the Euler-Lagrange necessary condition to
Fermat’s principle, followed by the Legendre transformation, we obtain a canoni-
cal Hamiltonian system that defines a vector field on a symplectic manifold. A
vector field on a manifold determines a phase flow—that is, a one-parameter group
of diffeomorphisms (transformations that are differentiable and also possess a dif-
ferentiable inverse). The phase flow of a Hamiltonian vector field on a symplectic
manifold preserves the symplectic structure of phase space and consequently is
canonical.

The performance limitations imposed on nonimaging optical systems by rota-
tional and translational symmetry are a consequence of Noether’s theorem, which
relates symmetry to conservation laws (Arnold, 1989). Noether’s theorem states
that to every one-parameter group of diffeomorphisms of the configuration mani-
fold of a Lagrangian system that preserves the Lagrangian function, there corre-
sponds a first integral of the equations of motion. In Newtonian mechanics, 
the imposition of rotational and translational holonomic constraints (hence 



symmetries) results in the conservation of angular and linear momentum, respec-
tively. In geometrical optics, the imposition of these constraints results in the con-
servation of quantities known as the rotational and translational skew invariants,
which are analogous to, respectively, angular and linear momentum. In this
chapter we derive formulas for computing the performance limits of rotationally
and translationally symmetric nonimaging optical devices from distributions of the
rotational and translational skew invariants of the optical source and the target
to which flux is to be transferred.

10.2 ROTATIONAL SYMMETRY

Due to the inherent constraints of image formation, imaging optical systems typi-
cally are rotationally symmetric. Many nonimaging optical systems are also rota-
tionally symmetric. In some cases this design choice is suggested by the inherent
rotational symmetry of the source and target. However, even when both the source
and target are nonaxisymmetric, the optics are often rotationally symmetric due
to the ease of designing and manufacturing such components.

We have already seen that the conservation of étendue places an upper limit
on the performance of nonimaging optical systems. In this section we explore a
further, more stringent performance limitation that is imposed on the important
class of nonimaging optical concentrators having rotational symmetry. This limi-
tation can be derived from the fact that the rotational skew invariant of each ray
propagating through such a system is conserved. For purposes of brevity, the rota-
tional skew invariant will be referred to as the skew invariant, or simply as the
skewness, for the remainder of this section. The performance limitations of trans-
lationally symmetric optical systems will be discussed in Section 10.3.

A ray of light emitted by a light source will have a certain value of the 
skew invariant, or skewness, defined relative to a specified symmetry axis. An
optical system having one or more optical surfaces that are symmetric about 
this axis will not alter the skewness of the ray, no matter how many times the 
ray is reflected or refracted by the optical system. Since propagation through a
uniform medium also maintains skewness, the ray’s skewness will be preserved
even when it fails to intersect some or all of the optical surfaces, due to the 
presence of holes and/or apertures in any of these surfaces. This is true even for
holes or apertures that are not themselves rotationally symmetric, as long as 
all the optical surfaces are rotationally symmetric about the specified axis. Rota-
tionally symmetric gradient-index lenses will also preserve the skewness of the
ray.

An extended source will emit rays having a range of skewness values. We
define the skewness distribution of a source as the differential étendue per unit
skewness occupied by all regions of the source that lie within a differential skew-
ness interval centered on the value s. In other words, the skewness distribution
is the derivative of étendue with respect to skewness. It should be noted that the
skewness distribution is a function of the skewness. The functional form of the
skewness distribution obtained for a given light source will depend on the orien-
tation of the symmetry axis relative to the source. The skewness distribution will
be zero for skewness values greater than the source’s maximum skewness value
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or less than its minimum skewness value. Since the skewness of each ray emitted
by a source is conserved by an axisymmetric optical system, the source’s skewness
distribution must also be conserved.

We can also compute the skewness distribution of a desired output light dis-
tribution to be produced from the light distribution of the source by means of the
nonimaging optical system. We refer to such a desired output light distribution as
a target. Since a target is simply a desired distribution of light, it  can be treated
as just another source. Thus, the formulas derived below for computing the skew-
ness distribution of a source apply equally well for use in computing the skewness
distribution of a target. It is worth noting that skewness is conserved by an axisym-
metric optical system regardless of whether the light source or target are them-
selves axisymmetric.

10.2.1 Definition of the Skew Invariant
To define the skew invariant of a light ray, we consider an arbitrary vector rP linking
the optical axis with the light ray. The skew invariant, or skewness, of the ray is
defined as

(10.1)

where â is a unit vector oriented along the optical axis, and kP is a vector of 
magnitude equal to the refractive index, oriented along the ray’s propagation 
direction. The preceding formula for the skewness can easily be simplified to the
form

(10.2)

where rmin is the magnitude of the shortest vector rPmin connecting the optical axis
with the ray, and kt is the component of kP in the tangential direction perpendicu-
lar to both the optical axis and rPmin. It is apparent from Eq. (10.2) that the skew-
ness is always zero for meridional rays, since the vector kP for such rays always has
a tangential component of zero.

10.2.2 Derivation of the Skewness Distribution of an
Axisymmetric Surface Emitter

We now derive a formula for the skewness distribution of a source that emits 
light from an axisymmetric surface, under the assumption that the symmetry axis
of the optical system is coincident with that of the source. As depicted in Figure
10.1, we consider a differential source patch of surface area dA. The x,y,z-axes 
in Figure 10.1 comprise a right-handed Cartesian coordinate system, where the 
y,z-plane corresponds to the meridional plane, and the x-axis represents the 
tangential direction. The differential-area patch lies in the x,z-plane with its 
unit-surface-normal vector b̂ pointing in the y-direction. Although the z-axis is
coplanar with the symmetry axis, it is not necessarily parallel to the symmetry
axis. We assume the differential-area patch is located a distance r from the sym-
metry axis. Based on the definition of the skew invariant, the skewness of a ray

s r kmin t= ,

s r k a∫ ◊ ¥( )r r
ˆ ,
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emitted from this patch at tangential angle q measured relative to the meridional
plane is

(10.3)

where n is the index of refraction of the material in which the ray is propagating.
As shown in Figure 10.1, to completely specify the emission direction of a ray we
must specify not only the value of the tangential angle q but also of the azimuthal
angle f.

The differential solid angle can be expressed in the form

(10.4)

The differential étendue can be expressed as

(10.5)

where a is the angle between the surface normal of the patch and the ray. It is
not difficult to demonstrate that

(10.6)

Substitution of Eqs. (10.4) and (10.6) into Eq. (10.5) produces the following expres-
sion for the differential étendue:

(10.7)

Taking the derivative with respect to q of Eq. (10.3), we find that

(10.8)

Again using Eq. (10.3), we find that
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Figure 10.1 Geometry of ray emission from differential-area patch on surface of axisym-
metric source.



(10.9)

Substitution of Eqs. (10.8) and (10.9) into Eq. (10.7) gives the result

(10.10)

Integrating over the angle f and the source surface area, we obtain the skewness
distribution as a function of skewness:

(10.11)

where S is the region of the source’s surface area over which the integrand is
defined, and fmin and fmax are the minimum and maximum values of the azimuthal
angle f. We first determine the values of fmin and fmax. For the case in which the
source surface emits into a full 2p steradians of solid angle, the values of fmin and
fmax are simply 0 and 180°, respectively. However, to make our derivation some-
what more general, we consider the case in which the source radiance is zero for
all values of the local emission angle a greater than the cutoff angle amax, where 
0 < amax £ 90°. Combining Eqs. (10.3) and (10.6), we obtain

(10.12)

Solving for f after substitution of amax for a in the above formula produces the 
following expressions for the lower and upper limits on f:

(10.13)

and

(10.14)

We now determine the region S to be used for the area integration. Solving Eq.
(10.12) for r, we obtain

(10.15)

Examining the preceding equation, it is apparent that the minimum allowed 
value of r for a given value of s will occur when a = amax and f = 90°. Making 
these substitutions leads to the following expression for the minimum allowable
r-value:

r
s

n
=

- ( )
( )

1
2

2

cos
sin

.
a
f

f a
max

max

s
n r

= ∞ - ( )

-

È

Î
Í
Í

˘

˚
˙
˙

180
1

2

2 2

arcsin
cos

.

f a
min

max

s
n r

= ( )

-

È

Î
Í
Í

˘

˚
˙
˙

arcsin
cos

1
2

2 2

cos sin .a f( ) = - ( )1
2

2 2

s
n r

d
d

d d
e f f

f

fs
s

n
r

s
n r

A
min

max

S

( ) = - ( )ÚÚ 1
2

2 2
sin ,

d d d de f f= - ( )n
r

s
n r

A s1
2

2 2
sin .

cos sin .q q( ) = - ( ) = -1 12
2

2 2

s
n r

10.2 Rotational Symmetry 239



(10.16)

Thus, for a given value of s, the region S over which the area integration is to be
performed corresponds to all source regions satisfying the inequality

(10.17)

This inequality tells us that only source regions having greater than some
minimum r-value can contribute rays having a particular skewness value. To take
an extreme example, a ray emitted from a surface region at a radius value of zero
can only have a skewness value of zero. We now perform the integral over f in 
Eq. (10.11):

(10.18)

Substitution of Eqs. (10.17) and (10.18) into Eq. (10.11) then gives

(10.19)

This formula is a general expression for the skewness distribution of an axisym-
metric surface-emitting source. To compute the distribution for a source having a
particular shape, the integral over the surface area must be evaluated for the
geometry of interest. For the case of a disk-shaped emitter of radius R, Eq. (10.19)
can be shown to reduce to the form

(10.20)

where

(10.21)

For a spherical emitter of radius R, we have

(10.22)

For a cylinder of radius R and axial length H, we have

(10.23)

Figure 10.2 depicts plots of the skewness distributions corresponding to the disk,
sphere, and cylinder.
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Since each source has the same étendue as the other two, the area under each
curve is identical.

10.2.3 Homogeneous Versus Inhomogeneous Sources
and Targets

An important consideration in evaluating the performance limits of a nonimaging
optical system is the homogeneity of the source and target with which it is to be
used. A homogeneous source is one for which the radiance is constant throughout
the phase space of the source. An inhomogeneous source, on the other hand, is a
source for which radiance varies over its phase space.

Targets may also be classified according to whether they are homogeneous or
inhomogeneous. An inhomogeneous target is one for which certain regions of its
phase space are considered more important to fill with flux than are other regions.
The relative desirability of filling different regions of the phase space of an 
inhomogeneous target with flux can be expressed by means of a weight function
that varies with position over the phase space. Two candidate optical systems that
transfer the same amount of flux to the phase space of an inhomogeneous target
will not in general provide the same level of performance, since one of the two
systems will likely transfer a greater amount of flux into regions of the target’s
phase space having higher-weight values. An example of a design problem in 
which it would be advantageous to utilize an inhomogeneous target model is the
problem of coupling light into an optical fiber having transmission losses that are
a function of the position and angle of rays incident on the entrance aperture of
the fiber.

A homogeneous target is one for which all regions of its phase space have been
assigned the same importance weight. For such targets, performance is maximized
simply by transferring as much flux as possible from the source to the target
without regard to where in the target’s phase space the highest radiance values
occur.
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10.2.4 Étendue, Efficiency, and Concentration Limits for
Homogeneous Sources and Targets

We now derive the upper limits on étendue, efficiency, and concentration imposed
by the axisymmetric nature of the optical system for the case in which both the
source and target are homogeneous. Efficiency in this case is defined as the total
étendue transferred to the target divided by the total étendue of the source. Simi-
larly, concentration is defined as the total étendue transferred to the target 
divided by the total étendue of the target. Under these definitions, the values of
both efficiency and concentration will always be less than or equal to unity. It
should be noted that this definition of concentration differs from its other common
definition as the ratio of the source’s surface area to that of the target.

We consider a homogeneous source and target having skewness distributions
de1(s)/ds and de2(s)/ds, respectively. Since the axisymmetric optical system cannot
alter the skewness of any ray, the principle of étendue conservation must apply
not only for the integrated source and target étendue but also within each skew-
ness interval. Thus, for all skewness intervals for which de1 /ds < de2 /ds, all of the
source étendue may be transferred to the target, but some regions of the phase
space of the target within those skewness intervals will not be filled with radia-
tion. Within the differential skewness interval between s and s + ds, this repre-
sents a dilution of the radiation transferred to the target’s phase space by a factor
of de2/de1. On the other hand, for those skewness intervals within which de1 /ds >
de2 /ds, not all of the source étendue may be transferred because it would not fit
into the target’s phase space available within those skewness intervals. The frac-
tion 1 - de2 /de1 of the source étendue is lost within a given differential skewness
interval. Figure 10.3 illustrates the mechanisms of dilution and loss due to mis-
match of the source and target skewness distributions.

The maximum étendue per unit skewness that can be transferred from the
source to the target for any given skewness value s is min (de1 /ds, de2 /ds). The
maximum total étendue that can be transferred is obtained by integrating this
quantity over all skewness values:

(10.24)e e e
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The quantity emax is the fundamental upper limit imposed by skewness on the per-
formance of axisymmetric nonimaging devices with homogeneous sources and
targets.

It is also convenient to define two normalized versions of the transferred
étendue, which we refer to as the efficiency and concentration. We define the effi-
ciency h as the transferred étendue divided by the total source étendue. Similarly,
we define the concentration C as the transferred étendue divided by the total
target étendue. The upper limit on the efficiency is then the ratio of the maximum
étendue that can be transferred divided by the étendue of the source:

(10.25)

where the source étendue is given by the formula

(10.26)

The upper limit on the concentration is the ratio of the maximum étendue that
can be transferred divided by the étendue of the target:

(10.27)

where the target étendue is given by the formula

(10.28)

Without imposing the constraint that the optical system be axisymmetric, the
upper limits on efficiency and concentration are both unity for the étendue-
matched case of a source having the same étendue as the target. However, for
axisymmetric optics, the upper limits on both efficiency and concentration will be
less than unity for the étendue-matched case, except when the source and target
happen to have the same skewness distribution. As is apparent from their defini-
tions, efficiency will always equal concentration for the étendue-matched case,
when both the source and target are homogeneous. It should emphasized that the
performance limits given in Eqs. (10.24), (10.25), and (10.27) are theoretical upper
limits, which it will not necessarily be possible to achieve in practice.

By varying the size of the target relative to the source, or vice versa, one can
compute the upper limit of achievable efficiency as a function of concentration,
hmax(C), or, equivalently, the upper limit of achievable concentration as a function
of efficiency, Cmax(h). The performance of a specific concentrator for a given source
and target is represented by a single point on the C, h-plane. Due to the way h
and C are defined, this performance point always lies on the line

(10.29)

When the concentrator is axisymmetric, the distance along this line from the origin
to the performance point will always be less than or equal to the distance to the
curve hmax(C) along the same line. Thus, the hmax(C)-curve provides a convenient
way to visualize the flux-transfer performance envelope for axisymmetric optics
when the relative sizes of a given source and target are varied.
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10.2.4.1 Example: Flux Transfer Between Two 
Homogeneous Disks

In two dimensions, the compound parabolic concentrator (CPC) is known to be an
ideal concentrator owing to its ability to transfer 100% of the flux from a rectan-
gular Lambertian source to an equal-étendue rectangular aperture within its
acceptance half angle. In three dimensions, however, the CPC is known to be non-
ideal, because it transfers less than 100% of the flux from a Lambertian disk emitter
to an equal-étendue disk target within its acceptance half angle. Furthermore, the
3D CPC is also known to be nonoptimal considering that numerically optimized
axisymmetric reflective concentrators have been developed that reduce the perfor-
mance gap relative to ideality by approximately 15% (Shatz and Bortz, 1995).

It is reasonable to ask whether performance limitations arising from mis-
matched skewness distributions are responsible for the non-ideality of the three-
dimensional CPC. The answer to this question becomes immediately apparent
upon examining the formula for the skewness distribution of a disk emitter or
target, given in Eqs. (10.20) and (10.21). We see that the skewness distribution of
a Lambertian disk emitter is identical to that of an equal-étendue disk target
having any acceptance half angle amax. Therefore, the nonideality of the CPC is
not due to a skewness mismatch between the source and target.

10.2.4.2 Example: Flux Transfer Between an Open-Ended
Cylinder and a Disk

Using the previously derived formulas for the skewness distributions of an open-
ended cylinder and a disk, the hmax(C)-curves in Figure 10.4 were obtained for flux
transfer from a cylindrical source to a disk target. Cylinders having three differ-
ent aspect ratios (H/R) were considered: 5, 10, and 20. The curves were generated
by computing the upper limit on efficiency and concentration for different values
of the ratio of the cylinder’s radius to that of the disk.
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10.2.4.3 Example: Flux Transfer Between a Sphere and 
a Disk

A plot of the upper limit of efficiency versus concentration for the case of a spher-
ical source and a disk target is shown in Figure 10.5. The curve was generated by
computing the upper limit on efficiency and concentration for different values of
the ratio of the sphere’s radius to that of the disk. The maximum achievable effi-
ciency and concentration for the equal-étendue case is 75.3%. In the following
chapter, an axisymmetric reflective concentrator will be presented that provides
efficiency and concentration at the performance limit for the case of flux transfer
from a spherical source to a disk target.

10.2.5 Performance Limits for Inhomogeneous Sources
and Targets

We now consider the general case in which the target and source are inhomo-
geneous (Bortz, Shatz, and Ries, 1997). The source is assumed to emit a total flux
of Psrc,tot with radiance distribution Lsrc(x), where the vector x represents a point
in the source’s phase space S. For the target, we define the weight function Wtrg(x¢),
where the vector x¢ represents a point in the target’s phase space S¢. Our goal in
designing a nonimaging system for use with this source and target is to maximize
the weighted flux Pwgt transferred from the source to the target:

(10.30)

where Ltrg(x¢) is the radiance as a function of position transferred to the target’s
phase space and de (x¢) is the differential element of the target’s étendue. We now
derive a formula for the maximum achievable value of Pwgt, given the simultane-
ous constraints of étendue and skewness conservation.

We assume that rays emitted by the source have skewness ssrc (x) as a func-
tion of position x in the source’s phase space. The cumulative sorted source étendue
per unit skewness at a skewness value of s is given by
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Figure 10.5 Upper limit of efficiency versus concentration for a spherical source and a disk
target (Ries, Shatz, Bortz, and Spirkl, 1997).



(10.31)

where L is the source-radiance threshold, de(x) is the differential element of the
source’s phase-space volume, and the Dirac d-function ensures that only radiation
of skewness s is allowed to contribute to the integral. For purposes of brevity, 
we now introduce a dot to represent partial differentiation with respect to the
skewness:

(10.32)

The function e.src(L, s) represents the amount of source étendue per unit skewness
associated with regions of the source’s phase space for which the radiance is
greater than the radiance threshold value L and for which the skewness equals s.
Since increasing the radiance threshold reduces the étendue contributing to the
integral in Eq. (10.31), it is apparent that e.src(L, s) is a monotonically decreasing
function of L for Lmin,s(s) £ L £ Lmax,s(s), where Lmin,s(s) and Lmax,s(s) are defined as
the minimum and maximum values of the source radiance for a given skewness
value s. This monotonically decreasing function ranges from a maximum value of
e.src(Lmin,s(s), s) at L = Lmin,s(s) to a minimum value of zero at L = Lmax,s(s).

Because e.src(L, s) decreases monotonically with L, it can be inverted to obtain
the monotonically decreasing inverse function Ls(e

.
s, s), which ranges from Lmax,s(s)

at e.src = 0 to Lmin,s(s) at e.src = e.src(Lmin,s(s), s). The inverse function Ls(e
.
s, s) represents

the sorted source radiance as a function of e.src for skewness value s. The sorting
process forces the largest radiance value to occur at e.src = 0 with decreasing values
of radiance as e.src is increased.

For the target, the cumulative sorted étendue per unit skewness takes the
form

(10.33)

where W is the weight-function threshold and strg(x¢) is the skewness value cor-
responding to the position x¢ in the phase space of the target. The function e.trg(W,
s) is a monotonically decreasing function of W for Wmin,s(s) £ W £ Wmax,s(s), where
Wmin,s(s) and Wmax,s(s) are defined as the minimum and maximum values of the
target weight function for a given skewness value s. This monotonically decreas-
ing function ranges from a maximum value of e.trg(Wmin,s(s), s) at W = Wmin,s(s) to a
minimum value of zero at W = Wmax,s(s). It is therefore possible to invert the func-
tion e.trg(W, s) to obtain the monotonically decreasing inverse function Ws(e

.
trg, s),

which ranges from Wmax,s(s) at e.trg = 0 to Wmin,s(s) at e.trg = e.trg(Wmin,s(s), s). The inverse
function Ws(e

.
trg, s) represents the sorted target weight as a function of the étendue

per unit skewness for any given value of the skewness s. The sorting process has
forced the largest weight value to occur at e.trg = 0 with decreasing weight values
as e.trg is increased.

We can now write down an expression for the maximum possible value of Pwgt

for a rotationally symmetric optical system. This maximum occurs when the
source’s phase space is transferred to the target’s phase space in such a way that
the largest source-radiance values preferentially fill the regions of the target’s
phase space having the largest weight values. Thus, referring to Eq. (10.30), we
find that the maximum value of Pwgt can be expressed in the form
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(10.34)

where

(10.35)

(10.36)

(10.37)

and ssrc,min, ssrc,max, strg,min, and strg,max are the minimum and maximum skewness
values for the phase spaces of the source and the target.

Now that we have derived the upper limit on the transferred flux, we are in
a position to write down formulas for the upper limits on efficiency and concen-
tration. We define the efficiency h for inhomogeneous sources and targets as the
actual weighted flux transferred to the target divided by the weighted flux that
would be achieved if all of the source radiation were to be transferred to the region
of the target’s phase space for which the weight function has its maximum value:

(10.38)

where Wmax is the maximum target weight value and Psrc,tot is the total flux emitted
by the source. Similarly, the concentration C is defined as the actual weighted flux
transferred to the target divided by the weighted target flux level that would be
achieved if all of the target’s phase space were to be filled with radiation having
radiance equal to the maximum radiance level of the source:

(10.39)

where Lmax is the maximum radiance value of the source and ewgt
trg,tot is the total

weighted target étendue

(10.40)

The upper limits on efficiency and concentration are obtained by substitution of
Pwgt

max,s for Pwgt in Eqs. (10.38) and (10.39):

(10.41)

and

(10.42)

10.3 TRANSLATIONAL SYMMETRY

Just as the rotational skew invariant is conserved for each ray propagated 
through an axisymmetric optical system, an analogous quantity—known as the
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translational skew invariant—is conserved for each ray propagated through a
translationally symmetric optical system. When the translational skewness dis-
tribution of a source is different from that of the target, translationally symmet-
ric nonimaging systems are subject to performance limitations analogous to those
discussed in the last section for axisymmetric optical systems. (Bortz, Shatz, and
Winston, 2001)

10.3.1 The Translational Skew Invariant
We define a translationally symmetric nonimaging device as a nonimaging optical
system for which all refractive and reflective optical surfaces have surface normal
vectors that are everywhere perpendicular to a single Cartesian coordinate axis,
referred to as the symmetry axis. We consider an optical ray incident on a trans-
lationally symmetric optical surface, where the symmetry axis is assumed to be
the z-axis of a Cartesian x,y,z-coordinate system. The incident ray is assumed to
propagate through a medium of refractive index n0. We define the incident optical
direction vector as

(10.43)

where QP0 is a unit vector pointing in the propagation direction of the incident ray.
It is well known that the component of the optical direction vector along the sym-
metry axis is conserved for all rays propagating through a translationally sym-
metric optical system. This follows from the vector formulation of the laws of
reflection and refraction, in which the optical direction vector of a ray reflected or
refracted by the optical surface is

(10.44)

where MP1 is the unit vector normal to the surface at the point of intersection of
the incident ray with the surface. The formula for the quantity G is

(10.45)

for reflection and

(10.46)

for refraction of the ray into a material of refractive index n1.
In the preceding two formulas for G, the quantity I is the angle of incidence of

the ray relative to the surface-normal vector. The unit vector MP1 in the above 
formulation is, by definition, perpendicular to the z-axis, meaning that its z-
component equals zero. It therefore follows from Eq. (10.44) that the incident and
reflected (or refracted) optical direction vectors—SP0 and SP1—must have the same
z-component. Since the z-axis is the symmetry axis, we conclude that the compo-
nent of the optical direction vector along the symmetry axis is invariant for any
ray propagated through a translationally symmetric optical system. We refer to
this invariant component of the optical direction vector as the translational skew
invariant, or simply the translational skewness. The fact that a translationally sym-
metric nonimaging system cannot alter the translational skew invariant places a
fundamental limitation on the flux-transfer efficiency achievable by such a system.
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The translational skewness is a unitless quantity with absolute value less than
or equal to the refractive index. Its sign can be positive or negative depending on
the ray direction relative to the z-axis. A ray that is perpendicular to the symme-
try axis always has zero translational skewness. It should be noted that the only
requirement for the translational skewness to be an invariant quantity is that the
optical system be translationally symmetric. In particular, there is no requirement
that either the radiation source or the target to which flux is to be transferred be
symmetric.

The translational skewness is analogous to the component of linear momen-
tum of a particle along the symmetry axis of a translationally symmetric force
field. If we imagine a small unit-mass particle traveling along the ray path with
speed equal to the index of refraction, then the linear-momentum component of
the particle along the translational symmetry axis is equal to the translational
skewness of the ray. Refraction or reflection at a translationally symmetric surface
is analogous to imposition of a force having direction perpendicular to the sym-
metry axis. Such a force alters the momentum vector of the particle while pre-
serving its momentum component perpendicular to the symmetry axis.

If the translational skewness of each individual ray entering an optical system
is conserved, then the complete distribution of translational skewness for all
emitted rays must also be conserved. This places a much stronger condition on
achievable performance than the conservation of phase-space volume (étendue),
which is merely a scalar quantity. For purposes of brevity, we use the term 
skewness or skew invariant to refer to the translational skew invariant in the
remainder of this section.

10.3.2 Upper Limits on Efficiency and Concentration
We now consider a translationally symmetric optical system having the z-axis as
its symmetry axis. The skewness of any given ray is defined as the z-component,
Sz, of the ray’s optical direction vector. Suppose that the optical system transfers
flux from some extended optical source to an extended target. We use the notation
desrc(Sz) to refer to the differential source étendue as a function of skewness con-
tributed by all source flux having skewness values between Sz and Sz + dSz. Sim-
ilarly, detrg(Sz) refers to the available differential target étendue in the same
skewness interval. Since the skewness cannot be altered by the symmetric optical
system, it is impossible to transfer étendue from one skewness interval on the
source to a different skewness interval on the target. Therefore, the principle of
étendue conservation applies simultaneously to each differential skewness inter-
val. This places the following two constraints on the differential skewness detran(Sz)
transferred from the source to the target within any given differential skewness
interval:

(10.47)

and

(10.48)

Eq. (10.47) is a statement of the fact that the optical system cannot transfer 
more étendue to the target than is available in the source for any given differen-
tial skewness interval. Eq. (10.48) is a statement of the fact that the optical system

d de etran z trg zS S( )£ ( ).

d de etran z src zS S( )£ ( )
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cannot transfer to the target more source étendue than can be accommodated by
the available target phase-space volume for any given differential skewness inter-
val. It is convenient to combine the preceding two constraints into the single 
constraint:

(10.49)

where we have also divided the right and left sides by dSz in order to express the
inequality as a constraint on the derivative of étendue with respect to skewness.
We refer to this étendue derivative as a function of skewness as the skewness dis-
tribution. The quantities desrc(Sz)/dSz, detrg(Sz)/dSz and detran(Sz)/dSz are the skew-
ness distributions of the source, target, and transferred source-to-target flux,
respectively. It should be emphasized that the inequality of Eq. (10.49) only applies
for translationally symmetric optical systems.

In skewness intervals for which desrc(Sz)/dSz < detrg(Sz)/dSz, there is insufficient
source étendue to completely fill the available target étendue so étendue dilution
occurs. In skewness intervals for which detrg(Sz)/dSz < desrc(Sz)/dSz, there is insuffi-
cient target étendue to accommodate the source étendue, so that losses inevitably
occur. Only when detrg(Sz)/dSz = desrc(Sz)/dSz over the entire range of allowable skew-
ness values does the possibility exist of avoiding both losses and dilution using a
translationally symmetric optical system.

The total étendue is obtained by integrating the skewness distribution over
all skewness values. It follows from Eq. (10.49) that the upper limit on the total
étendue that can be transferred from the source to the target is

(10.50)

Following the terminology of Ries et al. (1997), we define the efficiency h as the
ratio of the transferred étendue to the total source étendue. Similarly, the con-
centration C is defined as the ratio of the transferred étendue to the total target
étendue. The maximum efficiency achievable by a translationally symmetric
optical system is therefore

(10.51)

where

(10.52)

is the total source étendue. The maximum achievable concentration is given by
the formula

(10.53)

where

(10.54)

is the total target étendue.
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10.3.3 Inhomogeneous Sources and Targets
The formalism of the previous subsection provides a means of computing the upper
limits on the transfer of étendue from a source to a target. For homogeneous
sources and targets, the efficiency and concentration limits also apply to the trans-
fer of flux. For inhomogeneous sources and targets, however, the formulas for the
flux-transfer limits are not the same as the formulas for the étendue-transfer
limits. The flux-transfer limits, in the case of a translationally symmetric optical
system with an inhomogeneous source and target, are obtained by substitution of
the translational skewness for the rotational skewness in the flux-transfer-limit
formulas for rotationally symmetric optics used with inhomogeneous sources and
targets. These formulas are provided in the previous section of this chapter.

10.3.4 Calculation of the Translational 
Skewness Distribution

We now derive an expression useful for calculating the skewness distributions for
certain types of sources and targets. As depicted in Figure 10.6, we consider a dif-
ferential patch of area d2A on the surface of an extended source or target. The unit
vector normal to the patch’s surface is designated as b̂. As long as the z-axis
remains parallel to the symmetry axis, we are free to reorient the Cartesian x,y,z-
coordinate system without loss of generality. It is convenient to place the origin at
the center of the patch and to orient the x- and y-axes such that the unit surface-
normal vector b̂lies in the y,z-plane. We define SPxy to be the projection of the optical
direction vector SP onto the x,y-plane. The skewness Sz can be expressed as

(10.55)

where n is the refractive index and q is the angle between the vectors SP and SPxy.
The differential étendue is given by

(10.56)d d d4 2 2 2e a= ( )n AW cos ,

S nz = ( )sin ,q
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where a is the angle between the vectors b̂and SP. The quantity d2W in Eq. (10.56)
is the differential solid angle. This can be written in the form

(10.57)

where f is the angle between the vector SPxy and the x-axis. The cosine of a can be
computed from the dot product of SP and b̂:

(10.58)

Using the fact that b̂ lies in the y,z-plane, we can evaluate the dot product in Eq.
(10.58) to obtain the formula

(10.59)

where b is the angle between b̂ and the y-axis. The sign convention for b is that it
always has the same sign as the z-component of b̂. Substitution of Eqs. (10.57) and
(10.59) into Eq. (10.56) produces the result

(10.60)

Taking the derivative of Eq. (10.55), we find that

(10.61)

Since , Eq. (10.55) allows us to express the cosine of q in terms
of the skewness:

(10.62)

The q-dependence in Eq. (10.60) can be converted into Sz-dependence through sub-
stitution of Eqs. (10.55), (10.61), and (10.62):

(10.63)

Integrating over the angle f and the total surface area, we obtain the desired
expression for the skewness distribution as a function of the skewness:

(10.64)

where the integrals are taken over all f-values and regions of surface area within
the phase-space volume. The limits on the f-integral of Eq. (10.64) can be a func-
tion of both Sz and position on the surface. In addition, the angle b can be a func-
tion of position on the surface.

For the important special case of a translationally symmetric source or target
having the same symmetry axis as the optical system, the skewness distribution
can be expressed in a particularly simple form. Noting that a is the angle between
the direction vector and the surface normal, we find that Eq. (10.56) can be rewrit-
ten as

(10.65)

where Wp is the projected solid angle:
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(10.66)

For a translationally symmetric source or target, the surface-normal vector bP coin-
cides with the y-axis so that the projected solid angle becomes a projection of the
solid angle onto the x,z-plane. This allows us to express the differential projected
solid angle in terms of the x and z-components of the optical direction vector:

(10.67)

The factor of n2 in the denominator of Eq. (10.67) is required to properly normal-
ize the projected solid angle since the optical direction vector is of length n. From
Eqs. (10.65) and (10.67) we obtain the desired formula for the skewness distribu-
tion of a translationally symmetric source or target having the same symmetry
axis as the optical system:

(10.68)

For the general case of non-translationally-symmetric sources and targets, it is
not difficult to demonstrate that Eq. (10.64) can be rewritten in the form

(10.69)

which reduces to Eq. (10.68) upon setting b equal to zero.

10.3.5 Examples of Translational 
Skewness Distributions

We now apply the formulas derived in the last section to determine the skewness
distributions for four specific sources. In each case we assume the source is 
Lambertian over a particular angular region and zero outside that region. In addi-
tion, we assume the angular distribution of emitted radiation is independent of
position over the surface of the source and that the source is translationally sym-
metric, with symmetry axis coincident with that of the optical system. To prevent
emitted source flux from being reabsorbed by the source, we require that the emit-
ting surface be convex. Each skewness distribution derived below also applies in
the case of an analogous translationally symmetric convex target, as long as the
allowed angular region of absorption for the target is identical to the angular
region of emission of the source for which the skewness distribution was derived.

10.3.5.1 Lambertian Source
As our first example, we derive the skewness distribution for the case of a source
that is Lambertian for all possible emission directions. Due to the translational
symmetry of the source, the surface-normal orientation angle b equals zero over
the entire surface area. The limits of the f-integral in Eq. (10.64) are 0 to p radians
for all allowed values of Sz and all positions on the surface. Eq. (10.64) therefore
reduces to
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where Atot is the total surface area of the source. A plot of this skewness distribu-
tion is provided in Figure 10.7. It is easily verified by integrating the preceding
skewness distribution over all allowed skewness values that the total étendue for
this source is

(10.71)

The skewness distribution of Eq. (10.70) can also be easily derived using 
Eq. (10.68) rather than Eq. (10.64). We first note that the projection onto the 
x,z-plane of the allowed optical direction vectors for this source is a 
circular region of radius n centered on the origin. Due to the circular geometry,
the integration range for the Sx-integral in Eq. (10.68) will be from 
to , for Sz-values such that |Sz| £ n. Thus, the Sx-integral equals 

for |Sz| £ n. For n < |Sz| the Sx-integral equals zero, since these Sz-values
are outside of the allowed circular region. Multiplying the Sx-integral by the total
area-integral contribution of Atot, we obtain Eq. (10.70).

10.3.5.2 Fixed Longitudinal Cutoffs Parallel to 
Symmetry Axis

As our next example, we consider a source that is Lambertian within a fixed range
of f-values centered on the y,z-plane. As is apparent from Figure 10.6, the angle
f is analogous to longitude. We therefore refer to this type of source as one having
fixed longitudinal angular cutoffs. In addition, since the set of optical direction
vectors S� having the same f-value all lie in a plane passing through the z-axis, we
say that these longitudinal angular cutoffs are parallel to the symmetry axis.

The f-integration in Eq. (10.64) must now be performed over the range

(10.72)
p f f p f
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Figure 10.7 Translational skewness distribution of a Lambertian source with 1m2 surface
area in a medium of unit refractive index.



where f0 is the angular half width of the emitted flux distribution. Setting b
equal to zero in Eq. (10.64) and using the above range of f -values, we immediately
obtain

(10.73)

The total étendue in this case is

(10.74)

Comparing Eqs. (10.70) and (10.73), we find that the skewness distributions for
the Lambertian case and the fixed-longitudinal-angular-cutoff case are identical
as long as the following two conditions are met:

• The indices of refraction for the two cases are equal.
• The surface area for the fixed-longitudinal-cutoff case divided by the surface

area for the Lambertian case equals 1/sin(f0).

The fact that the two skewness distributions match when these two conditions
are satisfied is consistent with the well-known fact that both the translationally
symmetric compound parabolic concentrator (CPC) and the translationally sym-
metric involute CPC are ideal concentrators capable of transferring all of the
source phase space to the phase-space volume of an equal-étendue target when
the source has fixed longitudinal angular cutoffs. When the indices of refraction
for the source and target are different, there is an inherent skewness mismatch
between the Lambertian and fixed-longitudinal-angular-cutoff cases, meaning that
a translationally symmetric concentrator cannot be ideal in this case.

10.3.5.3 Fixed Latitudinal Cutoffs Parallel to Symmetry Axis
As our third example of a skewness distribution, we consider another case of a
source that is Lambertian within a fixed angular band. However, we now consider
emission over a particular band of latitudinal angles rather than the longitudinal
band analyzed in the previous subsection. We define Q as the latitudinal angle
between the optical direction vector and the y,z-plane, where the y,z-plane is anal-
ogous to the equatorial plane. The sign of Q is assumed to equal the sign of the x-
component of the optical direction vector. We assume that the angular band is
centered on the y,z-plane with half width Q0. Because the set of optical direction
vectors SP having the same Q-value all lie in a plane parallel to the z-axis, we say
that the latitudinal angular cutoffs are parallel to the symmetry axis.

Due to the assumed latitudinal angular cutoffs, the source emits radiation only
for SP-values within the angular interval

(10.75)

The shaded region in Figure 10.8 depicts the projection onto the x,z-plane of the
allowed optical direction vectors within this angular band. The two straight edges
of this projected angular band intersect the circle of radius n at skewness values
of ±Sz,bnd, where
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The two darker-shaded regions in Figure 10.8 represent the subset of the projected
angular band for which the skewness values have magnitude greater than or equal
to Sz,bnd. The upper and lower limits of the allowed values of Sx in these two regions
occur on the perimeter of the circle. From the equation of this circle, we find that
these upper and lower limits as a function of Sz are . Incorporating these
limits into the Sx-integral of Eq. (10.68), we find that

(10.77)

The rectangular, lighter-shaded region of the projected angular band of Figure 10.8
represents the portion of the band having skewness values of magnitude less than
Sz,bnd. The upper and lower Sx-limits within this rectangular region are simply
±Sx,bnd, where Sx,bnd is the half width of the rectangle in the x-direction

(10.78)

Using these limits, Eq. (10.68) gives the formula

(10.79)

Combining Eqs. (10.77) and (10.79), along with the fact that the skewness distri-
bution must equal zero for skewness values greater than n, we find that the skew-
ness distribution over the entire range of skewness values is of the form

(10.80)
d

d

when 

when 

otherwise

e S
S

A n S S S

A n S S S nz

z

tot z bnd z z bnd

tot z z bnd z
( )

=

- <

- £ £

Ï

Ì
Ô

Ó
Ô

2

2

0

2 2

2 2

, ,

, .

d
d

when 
e S

S
A n S S Sz

z
tot z bnd z z bnd

( ) = - <2 2 2
, , .

S n Sx bnd z bnd, , .= -2 2

d
d

when 
e S

S
A n S S S nz

z
tot z z bnd z

( )
= - £ £2 2 2

, .

± -n Sz
2 2

256 Chapter 10 Consequences of Symmetry

circle of radius n

x

Sx,bnd

Q0

z

Sz,bnd

Figure10.8 Projection onto the x,z-plane of the allowed optical direction vectors of a source
having fixed latitudinal angular cutoffs parallel to the symmetry axis and centered on the
y,z-plane.



A plot of this skewness distribution is provided in Figure 10.9. Integrating Eq.
(10.80) over all Sz-values, we find that the total étendue is

(10.81)

For skewness values of magnitude greater than Sz,bnd, the skewness distribu-
tion of Eq. (10.80) has the same functional form as the Lambertian case discussed
in Section 10.3.5.1. However, for skewness values of lower magnitude, the skew-
ness distribution has a constant value, and therefore fails to match the -
dependence of a Lambertian source or target. This is consistent with the fact that
translationally symmetric concentrators are inherently incapable of transferring
all of the source’s phase space to the phase-space volume of an equal-étendue 
Lambertian target, when the source has fixed latitudinal angular cutoffs.

10.3.5.4 Fixed Longitudinal Cutoffs Parallel to Symmetry
Axis with Orthogonal Fixed Latitudinal Cutoffs

As a final example, we consider a slight modification of the case discussed in
Section 10.3.5.2. We retain the longitudinal cutoffs of that section, which are par-
allel to the symmetry axis and centered on the y,z-plane. In addition to these
angular cutoffs, we impose the restriction that emission is only allowed for optical
direction vectors having q-values satisfying

(10.82)

where q0 is the latitudinal angular half width. The latitude is now defined as the
angle q between the optical direction vector and the x,y-plane, as depicted in Figure
10.6. Using Eq. (10.55), the inequality of Eq. (10.82) becomes

(10.83)

For skewness values satisfying this inequality, the skewness distribution is iden-
tical to that of Eq. (10.73). However, for skewness values outside the interval of
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Figure 10.9 Translational skewness distribution in a unit-refractive-index medium for 
a 1-m2 source having fixed latitudinal angular cutoffs parallel to the symmetry axis and 
centered on the y,z-plane. An angular half width of Q0 = 30° is assumed.



Eq. (10.83), the skewness distribution is identically zero. The distribution for all
skewness values is therefore

(10.84)

A plot of this distribution is provided in Figure 10.10. Integrating Eq. (10.84) over
the full range of skewness values, we find that the total étendue for this source is

(10.85)

10.3.6 Examples of Computed Efficiency and
Concentration Limits

Once the skewness distributions of a source and target have been computed, Eqs.
(10.51) and (10.53) can be used to compute the upper limits on efficiency and con-
centration achievable for that combination of source and target, when the optical
system is translationally symmetric. We now compute the performance limits for
flux transfer to a translationally symmetric Lambertian target from translation-
ally symmetric sources having fixed angular cutoffs.

10.3.6.1 Flux Transfer to Lambertian Target from Source
Having Fixed Latitudinal Cutoffs Parallel to
Symmetry Axis

For this example, we consider a source of the type analyzed in Section 10.3.5.3.
We set the latitudinal half-angle, Q0, equal to 23.45° with refractive index n = 1
for both the source and the target. With these choices, the case is representative
of an east-west-oriented non-tracking solar concentrator located at the equator and
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Figure 10.10 Translational skewness distribution in a unit-refractive-index medium for a
unit-area source having fixed longitudinal angular cutoffs parallel to the symmetry axis and
centered on the y,z-plane, combined with orthogonal fixed latitudinal angular cutoffs cen-
tered on the x,y-plane. The longitudinal and latitudinal angular half widths are f0 = 30° and
q0 = 40°, respectively.



operating every day of the year from sunrise to sunset. The formulas for the target
and source étendue are given in Eqs. (10.71) and (10.81), respectively. We assume
the total surface area of the target is

(10.86)

Eq. (10.71) then allows us to calculate the target étendue:

(10.87)

When the source étendue is set equal to the target étendue, Eqs. (10.81) and (10.87)
give the following value for the total surface area of the source:

(10.88)

For this equal-étendue case, Figure 10.11 depicts the skewness distributions of
Eqs. (10.70) and (10.73). The upper limit on étendue that can be transferred from
the source to the target by a translationally symmetric concentrator is computed
using the integral of Eq. (10.50). For the equal-étendue case, this upper limit on
transferred étendue turns out to be

(10.89)

With reference to Figure 10.11, this étendue limit is equal to that portion of the
étendue region contained under the source’s skewness distribution that is inter-
sected by the étendue region contained under the target’s skewness distribution.
As indicated by Eqs. (10.51) and (10.53), the upper limits on efficiency and con-
centration are computed by dividing emax by the total source and target étendue,
respectively. For the equal-étendue case, the efficiency and concentration limits
have the same value:

(10.90)hmax maxC= = 90 14. %.

emax = 2 832 2. .m sr

Asrc = 2 029 2. .m

e ptrg s= m r2 .

Atrg = 1 2m .
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Figure 10.11 Translational skewness distributions in a unit-refractive-index medium for a
Lambertian target and a source having fixed latitudinal cutoffs parallel to the symmetry
axis. The angular half width of the source is Q0 = 23.45°. The source étendue equals that of
the target.



Using Eqs. (10.51) and (10.53), we can also compute the efficiency and concentra-
tion limits for source-to-target étendue ratios other than unity. The resulting effi-
ciency limit is plotted as a function of the concentration limit in Figure 10.12. The
diamond-shaped marker on this plot indicates the efficiency and concentration
limits for the equal-étendue case. It is also useful to plot the efficiency and con-
centration limits as a function of the source-to-target étendue ratio itself, as shown
in Figure 10.13. Note that the equal-étendue case corresponds to the crossing point
of the two curves in this plot.
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Figure 10.12 Plot of the efficiency limit as a function of the concentration limit for trans-
lationally symmetric nonimaging devices that transfer flux to a Lambertian target from a
source having fixed latitudinal cutoffs parallel to the symmetry axis. The angular half width
of the source is Q0 = 23.45°. The diamond-shaped marker indicates the performance limit
for the equal-étendue case.
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Figure 10.13 Plot of the efficiency and concentration limits as a function of the source-to-
target étendue ratio for translationally symmetric nonimaging devices that transfer flux to
a Lambertian target from a source having fixed latitudinal cutoffs parallel to the symme-
try axis. The angular half width of the source is Q0 = 23.45°. The equal-étendue case corre-
sponds to the crossing point of the two curves.



10.3.6.2 Flux Transfer to Lambertian Target from Source
Having Fixed Longitudinal Cutoffs Parallel to
Symmetry Axis with Orthogonal Fixed 
Latitudinal Cutoffs

As a second and final example, we now consider a source of the type analyzed in
Section 10.3.5.4. We set the latitudinal half angle equal to the latitudinal half
width of incident solar radiation for non-tracking solar concentrators:

(10.91)

The refractive index is assumed to be unity for both the source and the target.
With these choices, this case is representative of a north-south-oriented non-
tracking solar concentrator. For such a concentrator, the appropriate value of 
the longitudinal half angle f0 depends on the daily hours of operation. We assume
that

(10.92)

which corresponds to daily operation from sunrise to sunset at an equatorial loca-
tion. As is apparent from Eq. (10.84), the choice of f0 affects only the vertical
scaling of the skewness distribution. It therefore has no effect on the efficiency and
concentration limits as a function of étendue. The formulas for the target and
source étendue are given in Eqs. (10.71) and (10.85). As in Section 10.3.6.1, we
assume the total surface area of the target is

(10.93)

so that the target étendue is

(10.94)

When the source and target étendue are equal, Eqs. (10.85) and (10.94) give the
following value for the total surface area of the source:

(10.95)

For this equal-étendue case, the skewness distributions of Eqs. (10.70) and (10.84)
are as depicted in Figure 10.14. The upper limit on étendue that can be trans-
ferred from the source to the target by a translationally symmetric concentrator
is computed using the integral of Eq. (10.50). For the equal-étendue case, this
upper limit on transferred étendue turns out to be

(10.96)

The upper limits on efficiency and concentration are computed by dividing emax by
the total source and target étendue, respectively. For the equal-étendue case, the
efficiency and concentration limits have the same value:

(10.97)

As in Section 10.3.6.1, we can also compute efficiency and concentration limits for
source-to-target étendue ratios other than unity. The resulting efficiency limit as
a function of the concentration limit is shown in Figure 10.15. As before, the
diamond-shaped marker on this plot indicates the efficiency and concentration
limits for the equal-étendue case. Figure 10.16 provides plots of the efficiency and
concentration limits as a function of the source-to-target étendue ratio. Concen-

hmax maxC= = 49 30. %.

emax sr= 1 549 2. .m

Asrc = 2 029 2. .m

e ptrg sr= m2 .

Atrg = 1 2m ,

f0 90= ∞,

q0 23 45= ∞. .
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Figure 10.14 Translational skewness distributions in a unit-refractive-index medium for a
Lambertian target and a source having fixed longitudinal cutoffs parallel to symmetry axis
with orthogonal fixed latitudinal cutoffs. The latitudinal angular half width of the source is
q0 = 23.45°. The source étendue equals that of the target.
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Figure 10.15 Plot of the efficiency limit as a function of the concentration limit for trans-
lationally symmetric nonimaging devices that transfer flux to a Lambertian target from a
source having fixed longitudinal cutoffs parallel to symmetry axis with orthogonal fixed lat-
itudinal cutoffs. The latitudinal angular half width of the source is q0 = 23.45°. The diamond-
shaped marker indicates the performance limit for the equal-étendue case.

tration limit in this figure never exceeds the 49.30% value of Eq. (10.97). This is
because the half width of the skewness distribution of the source is always sin(q0)
= 0.3979, independent of the value of the source-to-target étendue ratio. Thus, no
matter what value of the source-to-target étendue ratio is used, no étendue can be
transferred from the source to the target by a translationally symmetric non-
imaging device for skewness values satisfying 0.3979 < |Sz| £ 1.



References 263

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0
0 0.5 1 1.5 2 2.5 3 3.5 4 54.5

Source-to-target étendue ratio

Efficiency limit
Concentration limit

E
ff

ic
ie

nc
y 

&
 c

on
ce

nt
ra

tio
n 

(u
ni

tle
ss

)

Figure 10.16 Plot of the efficiency and concentration limits as a function of the source-to-
target étendue ratio for translationally symmetric nonimaging devices that transfer flux to
a Lambertian target from a source having fixed longitudinal cutoffs parallel to symmetry
axis with orthogonal fixed latitudinal cutoffs. The latitudinal angular half width of the
source is q0 = 23.45°. The equal-étendue case corresponds to the crossing point of the two
curves.
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11.1 INTRODUCTION

Many nonimaging optical design problems encountered in practice have no known
closed-form solutions. When this is the case, it is possible to obtain high-
performance designs by means of global optimization. When applied to the design
problem, this process is referred to as inverse engineering. This computationally
intensive numerical design approach sequentially modifies the reflective and/or
refractive surfaces of the optical system within a given parameterization scheme
and constraint set until performance objective global optimality, evaluated upon a
system radiometric model, is achieved. Global optimization can be used to deter-
mine reflector and lens configurations that achieve maximal flux transfer to a
given target or that produce a desired radiometric distribution, such as an irradi-
ance or intensity pattern.

This chapter provides an overview of the application of inverse engineering to
the problem of nonimaging optical design. We begin with a brief summary of the
behavior of nonimaging optical systems in terms of properties of mappings. An
understanding of this behavior is central to the design problem, since it affects 
the limits on system performance, the choice of parametrization schemes, and the
choice of the class of global-optimization algorithms to be used. We review the
various factors affecting the performance of nonimaging optical systems, and
present generalized formulations of étendue limits for use with inhomogeneous
sources and/or targets. Following this preparatory material, we review the for-
malism of inverse engineering and include references to global-optimization algo-
rithms that are applicable in the domain of nonimaging optical design. Finally, we
provide five case studies of globally optimized designs, including three designs that
use symmetry breaking to overcome the limitations imposed by skewness mis-
matches between the source and target.



11.2 MATHEMATICAL PROPERTIES OF
MAPPINGS IN NONIMAGING OPTICS

In the geometrical optics approximation, the behavior of a nonimaging optical
system can be formulated and studied as a mapping g: S2n Æ S2n from input 
phase space to output phase space, where S is an even-dimensional piecewise dif-
ferentiable manifold and n is the number of generalized coordinates. The starting
point for this formulation is the generalization of Fermat’s variational principle,
which states that a ray of light propagates through an optical system in such a
manner that the time required for it to travel from one point to another is 
stationary.

Let g be a differentiable mapping. The mapping g is called canonical (Arnold,
1989) if g preserves the differential 2-form w2 = dpi Ÿ dqi i = 1 . . . n, where q is the
generalized coordinate and p is the generalized momentum. Applying the Euler-
Lagrange necessary condition to Fermat’s principle and then the Legendre trans-
formation, we obtain a canonical Hamiltonian system, which defines a vector field
on a symplectic manifold (a closed nondegenerate differential 2-form). A vector field
on a manifold determines a phase flow—that is, a one-parameter group of diffeo-
morphisms (transformations that are differentiable and also possess a differen-
tiable inverse). The phase flow of a Hamiltonian vector field on a symplectic
manifold preserves the symplectic structure of phase space and consequently is
canonical.

The properties of these mappings can be summarized as follows:

1. The mappings from input phase space to output phase space are piecewise dif-
feomorphic. Consequently they are one-to-one and onto.

2. The transformation of phase space induced by the phase flow is canonical—
that is, it preserves the differential 2-form.

3. The mappings preserve the integral invariants, known as the Poincaré-Cartan
invariants. Geometrically, these invariants are the sums of the oriented
volumes of the projections onto the coordinate planes.

4. The mappings preserve the phase-space volume element (étendue). The
volume of gD is equal to the volume of D, for any region D.

In order to uniquely determine a mapping, we require, in addition to Fermat’s
principle, knowledge of material properties and the stipulation of boundary con-
ditions, which constitute the geometry of the reflective and/or refractive surfaces.
Determining these boundary conditions is the subject of the nonimaging optical
design problem.

Because the mappings in nonimaging optics are diffeomorphic (i.e., smooth),
the solution topology for nonimaging optical design problems is Lipschitz contin-
uous. This is an advantageous property that can be exploited as regards the selec-
tion of a global optimization search algorithm. Certain choices of parameterization
schemes, particularly in designs involving multiple optical components, may lead
to a finite number of discontinuities in the topology. Since the optical source will,
in practice, be represented by a finite-sized ray set, the solution topology will be
mildly stochastic.
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11.3 FACTORS AFFECTING PERFORMANCE

We now summarize the key factors affecting the flux-transfer performance of non-
imaging optical designs—such as collection, projection or coupling optics—that
utilize three-dimensional sources and/or targets. Performance limits are associ-
ated with étendue matching, skewness matching, source and target inhomo-
geneities, design constraints, design goals, and nonidealities. The ultimate
performance of the nonimaging system will generally be driven by some combi-
nation of these performance-limiting factors.

11.3.1 Étendue Matching
Étendue matching is a dominant consideration in the design of nonimaging optical
systems. We define the target-to-source étendue ratio (TSER) as the total target
étendue divided by the total source étendue. When the target étendue is smaller
than that of the source, the upper limit of the fraction of source étendue that can
be transferred to the target’s phase space is equal to the TSER. When the 
target étendue is greater than that of the source, the upper limit on the fractional
étendue that can be transferred is unity, but the phase space of the target will 
be diluted. As a practical matter, the étendue of the source should be computed
based on an integration of experimental measurements or a valid source model,
whereas the étendue of the target can usually be computed using an analytical
integration.

11.3.2 Skewness Matching
A skewness mismatch between the source and target may cause severe perfor-
mance limitations. A comparison of skewness mismatch between candidate sources
and the target can be useful during the design selection process—for example, a
common dilemma is whether to select an on-axis or a transverse source orienta-
tion. Losses due to skewness mismatch may be recovered to a large extent by
employing an optimized nonrotationally symmetric design, which actively
attempts to match the skewness of the source to that of the target.

11.3.3 Source and Target Inhomogeneities
Source and target inhomogeneities will affect the performance limits. In order to
assess these limits, weight functions need to be introduced based on the source’s
specific spatial and angular radiance distributions and the target’s preferential
characteristics. A detailed method to accomplish this was introduced in the previ-
ous chapter for nonimaging optical systems exhibiting rotational or translational
symmetry. An analogous method for the case of nonsymmetric systems is the
subject of Section 11.4.
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11.3.4 Design Constraints
Real world designs are often subject to constraints. If constraints are active at the
optimal design point, then the performance of the system will be adversely
affected. Typical design constraints may include minimum source-to-reflector
clearance, reflector (or lens) diameter, and length constraints.

11.3.5 Competing Design Goals
We identify two main classes of design goals: maximum flux transfer and beam
shaping. Weighted combinations of these goals may also be constructed. Flux-
transfer performance limits may be adversely affected by the inclusion of beam
shaping considerations.

11.3.6 Nonidealities
In the real world, nonidealities exist that can limit performance. These include
reflectivity and variation of reflectivity with angle of incidence, as well as degrees
of nonspecularity in the reflecting surface. Low reflectivities tend to discourage the
use of multiple reflections in the design.

After a nominal design is achieved, off-nominal operating conditions should
be examined. These may include design robustness to variations in TSER and
skewness mismatch, as well as analysis of tolerance to optical-surface-figure errors
and component misalignments.

11.4 THE EFFECT OF SOURCE AND TARGET
INHOMOGENEITIES ON THE
PERFORMANCE LIMITS OF NONSYMMETRIC
NONIMAGING OPTICAL SYSTEMS

For many optical sources of interest, the radiance varies over the phase space of
the source. The radiance as a function of position along the length of an incan-
descent filament, for example, is typically greater near the center of the filament
than near either end. Optical sources also commonly exhibit angular radiance dis-
tributions that differ significantly from a Lambertian distribution. Sources having
nonuniform spatial and/or angular distributions are said to be inhomogeneous.

The radiance of a given source is often an extremely complicated function of
position within the source’s phase space. Fortunately, with the development in
recent years of experimental techniques that can achieve full phase-space source
characterization, high-fidelity virtual-source representations are now commer-
cially available (Rykowski and Wooley, 1997). Using a two-axis computer-
controlled goniometer on which a CCD camera is mounted, thousands of images
of the source are captured from view angles over 4p steradians. The captured
images contain detailed information about the spatial and angular distributions
of light radiating from the source, enabling a detailed model of the source’s radi-
ance distribution to be developed. From this model a radiometric ray set virtually
representing the three-dimensional physical source can be constructed. With addi-
tional processing to provide variance reduction, a stochastic ray-set model of the
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source can be readily prepared for insertion into a global optimization design loop.
A large variety of sources have been accurately characterized using this technique,
including filament lamps, xenon arc lamps, light emitting diodes, compact fluo-
rescent lamps, metal halide lamps, and so on.

A target may also be inhomogeneous. For example, a target could have an
absorptance function that decreases with increasing angle of incidence with
respect to the target’s local surface normal. To achieve high-performance flux
transfer to such a target, it would be preferable to transfer as much flux as pos-
sible to the regions of phase space corresponding to smaller, rather than larger,
angles of incidence. In general, we refer to a target as inhomogeneous when a non-
constant weight function has been defined over the phase space of the target in
order to specify the relative usefulness of flux transferred to different regions of
the target’s phase space.

When the source and/or target are inhomogeneous, the principle of étendue
conservation still applies, but the computation of the upper limit on performance
is complicated by the fact that more importance is attached to some regions of the
source and/or target phase spaces than to others. In this section we derive the
upper limits on flux-transfer performance for nonimaging optical systems designed
for use with inhomogeneous sources and targets. We consider the general case of
nonsymmetric optical systems, for which performance limitations due to the skew
invariant do not apply. The special cases of performance limits for rotationally and
translationally symmetric optics were considered in the previous chapter.

11.4.1 Flux Transfer from an Inhomogeneous Source 
to an Inhomogeneous Target

We consider an inhomogeneous source having a total emitted flux of Psrc,tot. The
source radiance is represented by the function Lsrc(x), where the vector x repre-
sents a point in the phase space S of the source. For the target we define the weight
function Wtrg(x¢), where x¢ represents a point in the phase space S¢ of the target.
Our goal in designing a nonimaging system is to maximize the weighted flux

(11.1)

transferred from the source to the target, where Ltrg(x¢) is the radiance as a func-
tion of position in the target’s phase space, and de(x¢) is the differential element
of the target’s phase-space volume. We now derive a formula for the maximum
achievable value of Pwgt.

To begin, we derive some useful formulas related to the source. We define the
cumulative sorted source étendue as

(11.2)

where L is the source-radiance threshold, and de(x) is the differential element of
the source’s phase-space volume. The function esrc(L) represents the amount of
source phase-space volume associated with regions of the source’s phase space for
which the radiance is greater than the radiance threshold value L. Since increas-
ing the threshold reduces the phase-space volume contributing to the integral in
Eq. (11.2), it is apparent that esrc(L) must be a monotonically decreasing function
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of L for Lmin £ L £ Lmax, where Lmin and Lmax are the minimum and maximum values
of the source radiance. Specifically, esrc(L) must decrease monotonically from a
maximum value of esrc(Lmin) at L = Lmin to a minimum value of 0 at L = Lmax. It is
also apparent that

(11.3)

where esrc,tot is the total phase-space volume associated with the source.
Because esrc(L) decreases monotonically with L, it can be inverted to obtain the

monotonically decreasing inverse function L(esrc), which ranges from a value of Lmax

at esrc = 0 to Lmin at esrc = esrc,tot. The inverse function L(esrc) represents the sorted
source radiance as a function of the source étendue. The sorting process has forced
the largest radiance value to occur at esrc = 0, with decreasing values of radiance
as esrc is increased. The integral of L(esrc) over the range, 0 £ esrc £ esrc,tot equals the
total source flux Psrc,tot.

We now consider quantities related to the target. In the phase space of 
the target, the weight function Wtrg(x¢)  plays a role analogous to that played by
the radiance function Lsrc(x) in the phase space of the source. We define the cumu-
lative sorted target étendue as

(11.4)

where W is the weight-function threshold. The function etrg(W) is a monotonically
decreasing function of W for Wmin £ W £ Wmax, where Wmin and Wmax are the
minimum and maximum values of the target weight function. This monotonically
decreasing function ranges from a maximum value of etrg(Wmin) at W = Wmin to a
minimum value of 0 at W = Wmax. It is therefore possible to invert the function
etrg(W) to obtain the monotonically decreasing inverse function W(etrg), which
ranges from Wmax at etrg = 0 to Wmin at etrg = etrg,tot, where etrg,tot = etrg(Wmin) is the total
target étendue. The inverse function W(etrg) represents the sorted target weight as
a function of the target étendue. The sorting process forces the largest weight value
to occur at etrg = 0, with decreasing weight values as etrg is increased.

We can now write down an expression for the maximum possible value of the
weighted flux Pwgt transferred from the source to the target for a nonsymmetric
optical system. This maximum occurs when the source radiation is transferred to
the target in such a way that the largest source-radiance values preferentially fill
the regions of the target’s phase space having the largest weight values. Thus,
referring to Eq. (11.1), we find that the maximum value of Pwgt can be expressed
in the form

(11.5)

where

(11.6)

is the lesser of the total target and source étendue values.
Now that we have derived the upper limit on the transferred flux, we are in

a position to write down formulas for the upper limits on efficiency and concen-
tration. For inhomogeneous sources and targets, the efficiency h is defined as the
actual weighted flux transferred to the target divided by the weighted flux level
that would be achieved if all of the source radiation could be transferred to the
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region of the target’s phase space for which the weight function has its maximum
value. In other words, the efficiency h is defined as Pwgt divided by the value of Pmax

wgt

that would be obtained by replacing W(e) and eupper by Wmax and esrc,tot, respectively,
in Eq. (11.5):

(11.7)

where

(11.8)

is the total flux emitted by the source. Analogously, the concentration C is defined
as the actual weighted flux transferred to the target divided by the weighted target
flux level that would be achieved if all of the target’s phase space could be filled
with radiation having radiance equal to the maximum radiance level of the source.
Thus, the concentration C is defined as Pwgt divided by the value of Pmax

wgt that would
be obtained by replacing L(e) and eupper by Lmax and etrg,tot, respectively, in Eq. (11.5):

(11.9)

where

(11.10)

is the total weighted target étendue. It should be noted that given the way h and
C have been defined, the values of both must always fall within the range from 0
to 1. The upper limits on the efficiency and concentration can now be obtained
simply by substitution of Pmax

wgt for Pwgt in Eqs. (11.7) and (11.9), respectively:

(11.11)

and

(11.12)

11.4.2 Flux Transfer from an Inhomogeneous Source to
a Homogeneous Target

This case is identical to the general case discussed in the previous section, except
that the assumption of target homogeneity allows us to set the weight function
equal to unity throughout the target’s phase space:

(11.13)

Since the weight function equals unity for all points x¢ in the phase space of the
target, the sorted target weight function W(etrg) must also equal unity over the
range of allowed values of etrg:

(11.14)

Thus, Eqs. (11.1) and (11.5) can be rewritten in the form
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(11.15)

and

(11.16)

The efficiency and concentration reduce to

(11.17)

and

(11.18)

where we have used the facts that, for a homogeneous target, Wmax = 1 and e wgt
trg,tot =

etrg,tot. Similarly, the formulas for the maximum efficiency and concentration become

(11.19)

and

(11.20)

11.4.3 Flux Transfer from a Homogeneous Source to 
an Inhomogeneous Target

This case is identical to the general case discussed in Section 11.4.1, except that
the assumption of source homogeneity allows us to set the radiance function equal
to a constant throughout the source’s phase space:

(11.21)

where L0 is the constant source radiance. Since the source radiance is constant for
all points x in the source phase space, the sorted source radiance function L(esrc)
must also be constant over the range of allowed values of esrc:

(11.22)

The expression for the weighted flux transferred to the target [Eq. (11.1)] cannot
be simplified, since source homogeneity does not guarantee that the target radi-
ance Ltrg(x¢) will be homogeneous. However, Eq. (11.22) allows us to simplify 
Eq. (11.5) to obtain the following formula for the upper limit on the weighted 
flux transferred to the target:

(11.23)

where

(11.24)

is the maximum possible weighted target étendue that can be filled by flux trans-
ferred from the source.
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The efficiency and concentration can then be expressed in the form

(11.25)

and 

(11.26)

where we have used the fact that Psrc,tot = L0esrc,tot for a homogeneous source. 
Similarly, the formulas for the maximum efficiency and concentration become

(11.27)

and

(11.28)

where Eq. (11.23) has been used.

11.4.4 Flux Transfer from a Homogeneous Source to 
a Homogeneous Target

This case is the same as the case discussed in the last section, except that the
assumption of target homogeneity allows us to set the weight function equal to
unity. This allows us to simplify the expression for the weighted on-target flux by
setting Wtrg(x¢) = 1 in Eq. (11.1) to give

(11.29)

which is equivalent to Eq. (11.15). Despite the homogeneity of the source, it does
not follow that the radiance produced in the target’s phase space is necessarily
homogeneous. Therefore, it is not possible to further simplify the expression for
Pwgt by setting Ltrg(x¢) equal to a constant in Eq. (11.29). Setting W(e) equal to unity,
Eq. (11.23) reduces to the following expression for the upper limit on the weighted
flux transferred to the target:

(11.30)

where Eq. (11.24) has been used. The formulas for the efficiency and concentra-
tion reduce to

(11.31)

and

(11.32)

The maximum efficiency and concentration are obtained by substitution of the
right-hand side of Eq. (11.30) for Pwgt in Eqs. (11.31) and (11.32):
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(11.33)

and

(11.34)

11.5 THE INVERSE-ENGINEERING FORMALISM

Suppose we wish to design an engineering system to achieve certain objectives.
Let us assume that this system supports a set of I piecewise continuous objective
functions Pi that accept a set of J inputs dj and that map a set of N independent
design parameters xn Œ A Œ RN into a set of I objective-function values Fi Œ B Œ
RI, where RN is the N-dimensional Euclidean space, A is the feasible space formed
by the action of a set of Q constraints hq on RN, and B is the co-domain of Pi. We
also assume that we have available a set of I computational models (algorithms)
Mi, such that Mi are equal to Pi under ideal conditions. Notice that the Mi are func-
tions and therefore generate multidimensional topologies fi Œ b Œ RI. Consequently
we may write

(11.35)

We can now write the inverse transformations Mi
-1 of the functions Mi Ã b ¥

A:

(11.36)

In the general case the inverse transformations Mi
-1 are not functions because the

Mi may be multimodal.
The basic axiom of inverse engineering can now be stated as follows: An engi-

neering design problem on a physical system, for which there exist ideal compu-
tational models Mi = Pi, can be reduced to a set of objectives and a set of constraints.
From this point on we shall only consider a single objective function (I = 1, a single
topology). One possible method for computing {xn} is to seek extremal points on the
solution topology, such as

(11.37)

In our experience, the solution topology for a broad range of nonimaging optical
design problems has been found to be multimodal and Lipschitz continuous. Con-
sequently, the use of local optimization techniques to accomplish nonimaging
optical system design has limited application. Over the past two decades, a branch
of optimization has emerged, which has come to be known as global optimization.
Global optimization algorithms (Otten and van Ginneken, 1989; Ratschek and
Rokne, 1988; Torn and Zilinskas, 1987) can find, under certain regularity condi-
tions (such as Lipschitz continuity), the locations of global optima in multimodal
topologies. Such techniques are therefore generally useful for engineering design,
and their use in this context has engendered the term inverse engineering.

The global optimization problem can be formally stated as follows: Minimize
f(dj, xn), xn Œ RN subject to the constraint set hq(dj, xn) = True, assuming that f is
piecewise continuous and exists almost everywhere and that the hq are piecewise
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continuous. The problem is to find the global minimum f *, which may not be
unique. In other words,

(11.38)

where Re, for any positive e, is given by

(11.39)

In the context of nonimaging optical design, the quantities Pi, Mi, dj, hq, and
xn take on the following meanings:

• The Pi represent one or more radiometric or photometric quantities to be opti-
mized, such as transmitted flux incident on a target or a measure of the dif-
ference between a delivered irradiance distribution and a required irradiance
distribution.

• The Mi represent the computational models available for calculating the cor-
responding functions Pi. The functions Mi differ from the Pi in the sense that
the Mi can only approximate the physics (e.g., the geometrical optics approxi-
mation) and typically are computed using numerical techniques (e.g., a quad-
rature employing a finite number of rays), which introduce a variance into the
calculation of each Mi. This causes the solution topologies to become stochas-
tic.

• The dj are problem-specific inputs describing known characteristics of the
optical system, such as surface reflectance, the spatial and angular radiance
distributions of the radiation source, and so forth.

• The hq are system design constraints, such as length and diameter limitations
on the optics, or more complex requirements such as a restriction of the solu-
tion to concave or nonreentrant optical forms, and so on.

• The xn are the independent parameters describing the design of the optical
system, such as reflector shape parameters, source location relative to the
optical system, choice of material for a refractive component, and so on.

The global optimization approach can search only within a finite dimensional
space. This means that we need to define a parametrization scheme in order to
approximately represent the general solution form and then find optimal values
for a finite-sized set of independent parameters. In order to reduce the time com-
plexity of the search process we desire a parsimonious representation. At the same
time, we require an ability to accurately approximate the form of the true solu-
tion. In order to achieve both of these goals, we seek a natural coordinate system
for the problem, which helps regularize the solution topology, and a set of basis
functions in that coordinate system.

If no information is available about the general form of the solution, then the
best that can be done is to choose a fixed Cartesian or polar coordinate system. If
an approximate solution is known—for example, through application of the edge-
ray principle—then that solution could be used to define a coordinate system. The
basis functions of the parameterization are then expressed in that coordinate
system. Good results have been obtained using natural splines as basis functions,
although many other parametric approximations are possible (in particular, the
now popular nonuniform rational B-Splines). Note that the concept of a coordinate
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system here is distinct from the concept of a “starting point,” which is required for
local optimization. In global optimization a starting point has little or no meaning;
a closed hypercube is generally used to confine the search space.

Figure 11.1 demonstrates, by way of example, a coordinate system specified
by means of a fixed arc and by deviations normal to it. A candidate reflector 
solution can now be represented in that coordinate system by means of the devi-
ations, which are provided by a natural cubic spline defined using four knots. The 
coordinate system does not necessarily have to be fixed during the search process
for a given design problem. For example, p of the design degrees of freedom may
be allocated to create a dynamic embedding—that is, a p-parameter group of coor-
dinate systems.

Finally, for the purposes of the ray-trace calculations, the solution form may
be transformed into a reference Cartesian or polar coordinate system and then
represented in that system. For this final representation we often use a natural
parametric spline system. This system uses a separate natural cubic spline to rep-
resent the dependence of each coordinate on the polygonal arc length s (e.g., in
polar coordinates these would be r(s) and f(s)), computed by connecting the knots
with straight-line segments. Since s varies monotonically with the true arc length
along the shape profile of the optical surface, this system can provide a compact,
continuous, twice differentiable representation of complex nonconcave and reen-
trant forms as necessary.

11.6 EXAMPLES OF GLOBALLY OPTIMIZED
CONCENTRATOR DESIGNS

In this final section, we present five examples of globally optimized concentrator
designs. We first consider axisymmetric designs for use in transferring flux to a
disk target from a disk source as well as a spherical source. Three optimized
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Figure 11.1. Definition of a coordinate system and a parameterization scheme for repre-
sentation of an axisymmetric reflective surface.



designs are then presented that use symmetry breaking to provide flux-transfer
efficiency beyond the skewness limit. The first two of these nonsymmetrical
designs transfer flux to a disk target from spherical and cylindrical sources, respec-
tively. The third is a non-tracking solar concentrator design for transferring flux
from a rectangular aperture to a cylindrical target.

11.6.1 Axisymmetric Concentrators for a Disk Source
and Disk Target

The compound parabolic concentrator (CPC), discussed elsewhere in this book, is
a basic edge-ray design. In its three-dimensional form, the CPC is used to trans-
fer flux between two equal-étendue disks, one having an emission (or acceptance)
half angle of 90° and the other having an acceptance (or emission) half angle of
less than 90°. The two-dimensional version of the CPC has been proven to be ideal
and, consequently, optimal. In three dimensions it is known to be nonideal, since
it transfers less than 100% of the flux from source to target. The question of
whether the three-dimensional form is also nonoptimal within the design space
comprising continuously differentiable axisymmetric perfectly specular reflective
forms had been an open problem for many years following the development of the
CPC. This question was eventually resolved by using global optimization to obtain
reflective concentrators having performance superior to that of the 3D CPC (Shatz
and Bortz, 1995). We now describe these globally optimized concentrators.

Our problem statement is as follows: Determine the profile of a rotationally
symmetrical 3D optimized spline concentrator (OSC) that maximizes the flux
transferred from a 10-cm-diameter disk source having a specified emission half
angle of less than 90°, to an equal-étendue disk target having a 90° acceptance
half angle.

The shape of the 3D OSC is represented by using a CPC to define a coordi-
nate system. A unitless axial scaling parameter Cscal is used to scale the length of
the concentrator, thus extending the coordinate system to form a 1-parameter
group. In this coordinate system we employ a radial natural cubic-spline basis
function Dr(x, rdev), where x is the axial coordinate and rdev is a vector of parame-
ters controlling the radial deviation. Using this formulation, the radial coordinate
of the OSC as a function of x is given by

(11.40)

where rCPC(x) is the radial coordinate of the CPC profile as a function of x. The
components of the vector rdev are the radial coordinate values of the Ndev cubic-
spline knots that define the radial cubic-spline deviation function. The corre-
sponding x-coordinates of the knots are equally spaced over the range of x-values
between the minimum and maximum x-coordinates of the CPC. To ensure that the
entrance and exit-aperture diameters of the OSC remain equal to the corre-
sponding aperture diameters of the CPC, the radial coordinates of the initial and
final knots on the deviation spline are set equal to zero and are not allowed to
vary. Therefore, the optimization parameters comprise the (Ndev - 2) internal radial
deviations plus the axial scaling parameter Cscal, providing a total of Nparam = Ndev

- 1 independent parameters. It is apparent from Eq. (11.40) that when Cscal = 1
and the radial deviation vector is equal to the null vector, the shape function 
rOSC(x) reduces to rCPC(x). Thus, the CPC shape is an allowed solution in the Nparam-
dimensional space of possible solutions. A total of Nparam = 8 optimization parame-

r x r x C r x COSC CPC scal scal dev( ) = ( ) + ( )D , ,r
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Figure 11.2 The 3D OSC with a 10° acceptance half angle.
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Figure 11.3 Radial shape difference between the 3D OSC and the 3D CPC as a function
of the axial coordinate for a 10° acceptance angle. The difference is plotted out to the
maximum length of the CPC. The 3D OSC is 1.13mm longer than the 3D CPC.

ters were used, consisting of seven radial deviation values plus the scaling para-
meter Cscal. Each radial deviation value was allowed to vary within the range of
±1.0cm, subject to the additional constraint that rOSC(x) was not allowed to exceed
the exit-aperture diameter. The axial scaling parameter Cscal was allowed to vary
between 0.9 and 1.1.

For the case of a 10° acceptance half angle, the global optimization procedure
produced the 3D OSC design depicted in Figure 11.2. The shape difference between
the 3D OSC and the 3D CPC is shown in Figure 11.3. Total transmission within
the acceptance angle is shown in Figure 11.4. For the 10° case, the 3D OSC trans-
mits 96.36% of the energy into the 10° beam, as compared to 95.68% for the 3D
CPC. The accuracy of these computations is estimated at ±0.002%. This improve-
ment accounts for 15.9% of the residual energy rejected by the 3D CPC. A com-
parable improvement is achieved for the 20° case. From Figure 11.5 it is apparent
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that the 3D OSC has a sharper transmission cutoff than the 3D CPC and that,
relative to the 3D CPC, it takes some of the input phase-space volume from beyond
10° and folds it into the 10° regime. Plots of transmission efficiency versus the
skew invariant are shown in Figure 11.6 for the two concentrators. Since the CPC
is an ideal 2D concentrator, we might expect the performance of the 3D OSC to be
inferior to that of the 3D CPC for low values of the skew invariant—that is, for
rays that are approximately meridional. Figure 11.6 shows that this is indeed the
case: the transmission curve for the 3D OSC lies below that of the 3D CPC in the
skew-invariant range 0.00–0.12cm. In the range 0.12–0.49cm, however, the 3D
OSC transmission efficiency exceeds that of the 3D CPC. It is the superior per-
formance of the 3D OSC for this range of values of the skew invariant that accounts
for its overall improved performance relative to the 3D CPC.

It is particularly interesting to note that a local optimization, using the 10°
3D CPC as a starting point, does not arrive at the solution of Figure 11.6. Another
solution is found, which, although it improves upon the 3D CPC and constitutes
a local maximum, achieves only 70% of the performance gain reported above. From
this we conclude that, although they appear to have similar shapes, the solution
of Figure 11.2 and the 3D CPC do not occupy the same mode in the solution 
topology. This is consistent with our experience that the solution topology for 
nonimaging design problems is generally multimodal.

11.6.2 Optimized Axisymmetric Concentrator for Use
with a Spherical Source

In the previous chapter the upper limits on performance for axisymmetric con-
centrators were presented. We now describe a numerically optimized axisymmet-
ric concentrator that achieves performance virtually identical to the theoretical
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upper limit on flux-transfer efficiency from a Lambertian spherical source to a
disk-shaped target having a fixed acceptance half angle.

A plot of the upper limit on achievable efficiency as a function of concentra-
tion for a spherical source and a disk target is shown in Figure 11.7. The equal-
étendue case occurs at the point on this curve where efficiency and concentration
are equal, in which case the efficiency and concentration are both equal to 75.3%.
It is apparent from the efficiency-versus-concentration curve that an efficiency
limit of 100% can only be achieved for concentrations less than or equal to about
40%. It can be shown that the exact value of this concentration limit is 4/p 2·100%
ª 40.5%. It can also be shown that a concentration limit of 100% can only be
achieved for efficiency values less than or equal to exactly 25%.

As an example, we consider the problem of determining the shape of a numer-
ically optimized reflective concentrator that provides maximal flux-transfer effi-
ciency from a 10-mm-diameter spherical Lambertian emitter to a disk-shaped
target that accepts flux only within a 30° half angle relative to its surface normal.
Additionally, we require that the source and target have equal étendue, which
occurs when the diameter of the target equals 40mm. The reflective concentrator
is assumed to have a loss-free, purely specular reflective coating. Its shape is
assumed to be continuously differentiable. Finally, we assume the reflector is
allowed to come in contact with both the source and the target. We refer to the
optimized reflective concentrator as a three-dimensional optimized spline reflec-
tor (3D OSR).

We now describe a parameterization scheme that defines the shape of the con-
centrator as a function of a set of shape parameters. This parameterization scheme
provided a solution that achieved performance very close to the theoretical upper
limit of 75.3% efficiency and concentration. Other parameterization schemes could
also be suggested.

The shape of the 3D OSR is represented by using a truncated involute CPC
(TICPC) to define a coordinate system. To enforce the requirement that the exit-
aperture radius of the TICPC must remain constant as its design parameters are
varied, we introduce the scaled source radius rs(t, qi, Rexit), as a function of the
truncation parameter t, the acceptance angle qi, and the required exit-aperture
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radius Rexit. The function rs(t, qi, Rexit) is defined as the design source radius that
keeps the exit-aperture radius of the TICPC equal to Rexit for any given pair of
values of t and qi. The function rs(t, qi, Rexit) is used only in specifying the size of
the TICPC and is not to be confused with the actual radius of the spherical source,
which is a constant designated as r. For purposes of notational brevity, we now
drop the explicit t, qi, and Rexit dependence of rs(t, qi, Rexit), referring to it simply
as rs. The radial and axial coordinate pairs on the profile of the TICPC can be con-
veniently expressed in parametric form as the functions

(11.41)

and

(11.42)

respectively, where q is the angular parameter ranging from a minimum value of

(11.43)

to a maximum value of

(11.44)

and t(q) is the edge-ray distance as a function of the angular parameter

(11.45)

The value of the truncation parameter t must lie in the range from 0 to 1,
where t = 0 corresponds to the untruncated case. Using this parametric shape rep-
resentation, the arc length sCPC(q) of the TICPC as a function of q can easily be
derived. The arc-length function sCPC(q) equals zero for q = qmin and increases
monotonically for values of q greater than qmin. We also define the adjusted 
arc-length,

(11.46)

where r is a positive real number, referred to as the deviation-knot spacing control
parameter. Since the adjusted arc length increases monotonically with q, the
inverse function q (s¢CPC) can also be defined. In practice, we use a natural cubic-
spline representation of this inverse function. We now consider the Ndev equally
spaced points

(11.47)

along the adjusted arc length, where

(11.48)

is the sampling interval. The radial and axial coordinates of the Ndev points on the
TICPC profile corresponding to these adjusted arc-length samples are rn =
rCPC(q (s¢n)) and xn = xCPC(q (s¢n)). Similarly, the values of the angular parameter and
edge-ray distance for these Ndev points are qn = q (s¢n) and tn = t(q ( s¢n)). We define
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Ndev deviation axes, each of which passes through a sampling point and is per-
pendicular to the local tangent to the TICPC profile at that point. Associated with
each of these Ndev deviation axes, we define a deviation knot, which must lie on its
corresponding deviation axis. The position of deviation knot n along its associated
deviation axis is given by the deviation-knot position parameter wn, which repre-
sents the distance of the deviation knot from the sampled coordinate (rn, xn) on the
TICPC profile. The allowed range of variation for each deviation-knot position
parameter wn is ±Wn/2, with Wn obtained from the formula

(11.49)

where a and b are real deviation-knot range-control constants. The OSR profile
intersects each of the deviation knots. The radial and axial coordinates of the devi-
ation knots are designated as Rn and Xn, respectively. The perturbed edge-ray dis-
tance corresponding to each of the Ndev deviation knots is of the form

(11.50)

Similarly, the perturbed angular parameter values Qn are given by the formulas

(11.51)

and

(11.52)

We define the knot deviations as the difference between the perturbed and unper-
turbed values of the edge-ray distance and the angular parameter

(11.53)

and

(11.54)

We can now generate the continuous edge-ray-distance deviation function dt(q)
as a function of q by means of cubic-spline interpolation between the Ndev Carte-
sian coordinate pairs (qn, dTn). Similarly, we obtain the continuous angular-
parameter deviation function dq (q) as a function of q by means of cubic-spline
interpolation between the Ndev Cartesian coordinate pairs (qn, dQn). Using these
continuous deviation functions [dt(q) and dq (q)], we can derive a formula for the
radial and axial coordinates on the OSR profile, based on a straightforward gen-
eralization of the formulas given in Eqs. (11.41) and (11.42) for rCPC(q) and xCPC(q):

(11.55)

and

(11.56)

During the optimization process, the coordinates of the first deviation knot
were kept equal to the coordinate values of the first sampling point on the unper-
turbed TICPC. The purpose of this was to force the initial knot to lie on the axis
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of symmetry of the OSR. Similarly, the coordinates of the last deviation knot were
kept equal to the coordinate values of the last sampling point on the unperturbed
TICPC. This was done to force the exit-aperture radius of the OSR to have the
required value. Since the first and last deviation knots were kept unperturbed,
only the (Ndev-2) intermediate deviation knots between the first and last values
were allowed to vary as part of the optimization procedure. In addition to the (Ndev-
2) deviation knots, the values of t, qi, r, and dxsrc were varied, where dxsrc is the
position shift of the spherical source along the axis of symmetry of the OSR. The
source position shift is defined such that dxsrc equals zero when the source surface
just touches the on-axis point of the OSR on the left side of the source, with the
exit pupil assumed to be on the right. For the OSR optimization discussed in this
paper, the number of knots was Ndev = 15 and the values of the deviation-knot
range-control parameters were a = 4mm and b = 0mm, respectively. The radius of
the actual source was r = 5mm. A required exit-aperture-radius value of Rexit =
20mm was used. Table 11.1 gives the lower and upper ranges used in varying the
parameters t, qi, r, and dxsrc.

The resulting shape profile of the numerically optimized 3D OSR design obtained
using the above-described parameterization scheme for a 30° half-angle beam is
shown in Figure 11.8. An unusual feature of this design is that the source protrudes
from the back of the reflector. The performance of this solution was computed by
tracing 200,000 rays, which provides an accuracy of better than 0.1% in concentra-
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Table 11.1. Lower and Upper Ranges of 3D OSR Optimization Parameters.

Parameter Description Symbol Units Lower Range Upper Range

Truncation t Unitless 0.00 0.05
Acceptance angle qi Degrees 20.0 30.0
Spacing-control parameter r Unitless 0.4 1.0
Axial source position shift dxsrc mm -2.0 2.0

20 
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–10 

–20

–10 0 10 20 30 40 50

Figure 11.8 3D OSR designed to transfer flux from a 10-mm-diameter sphere to an equal-
étendue disk having an acceptance half angle of 30°.



tion and efficiency. The solution provides both a concentration and efficiency of 75.1%,
which is virtually identical to the theoretical performance limit of 75.3%.

For purposes of comparison, we also consider the performance of two edge-ray
solutions. The two-dimensional (2D) involute CPC is an edge-ray solution capable
of collecting light incident on a rectangular aperture within a given input accep-
tance angle and transferring it to a cylindrical absorber with ideal concentration
and efficiency. The 3D involute CPC is defined as the shape swept out when the
shape profile of the 2D involute CPC is rotated about its symmetry axis. Operated
in reverse, the 3D involute CPC constitutes the edge-ray solution for the projec-
tion of energy from a spherical source into an emergent conical beam. We consider
two cases: (1) a 3D involute CPC designed for an acceptance half-angle of 30° and
then truncated to provide the required exit-aperture diameter of 40mm, and (2)
an untruncated 3D involute CPC having a design acceptance half angle of 51.76°.
The acceptance half angle of 51.76° was chosen in the latter case because this
happens to be the value of the half angle for which the exit-aperture diameter of
the untruncated concentrator equals 40.0mm.

A comparison of the efficiency versus concentration curve for the 3D OSR solu-
tion with the corresponding curves for the two edge-ray solutions is shown in
Figure 11.9. The upper-limit curve in Figure 11.9 is the same curve shown previ-
ously in Figure 11.7. The curves shown for the 3D OSR and for the two edge-ray
solutions were each obtained by computing both the efficiency and the concentra-
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tion as a function of the target’s phase-space volume and then plotting the result-
ing efficiency values as a function of the corresponding concentration values. The
target’s phase-space volume was varied by changing the acceptance half angle of
the target. All other system characteristics were held constant, including the radii
of both the source and the target, as well as the shape of each concentrator. 
It should be noted that the performance of the 3D OSR is superior to both in-
volute CPCs throughout most of the efficiency-versus-concentration regime. The
optimized nature of the 3D OSR is particularly evident by the tangency of its 
performance curve to the limiting curve at the design point. A comparison of the
efficiency versus the acceptance half angle for the 3D OSR and the two involute
CPCs is shown in Figure 11.10. It can be seen from this figure that the 3D OSR
tracks the limiting curve closely for operating half angles less than 30°, whereas
the deficiencies of the edge-ray solutions are clearly evident.

It is worth noting that the involute CPC, which is an ideal concentrator in two
dimensions, performs poorly when converted into a three-dimensional concentra-
tor. The reason for its poor three-dimensional performance is that when the 
two-dimensional source and target are étendue-matched, the corresponding 
three-dimensional source and target are not. This is not the case for the conven-
tional (noninvolute) CPC, which performs quite well, although not optimally, as a
three-dimensional concentrator.

Figure 11.11 shows the skewness distribution of all rays transferred from the
sphere to the disk by the 3D OSR. Also shown, for comparison, are the theoreti-
cal skewness distributions of the sphere and the disk. (The slightly jagged appear-
ance of the 3D OSR’s output skewness distribution is due to the finite number of
rays employed in the computation.) As shown in Figure 11.12, when we exclude
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from the flux output of the 3D OSR all rays beyond the projected half angle of 30°,
we find that the skewness distribution closely approximates the boundary of the
region of overlap between the skewness distributions of the sphere and the disk.
This is consistent with the fact that the efficiency and concentration of the 
optimized concentrator are virtually at the upper limit on performance for these
quantities.

11.6.3 Optimized Nonaxisymmetric Concentrator for 
a Spherical Source and a Disk Target

We now address the problem of designing a nonaxisymmetric nonimaging reflec-
tor that maximizes the flux transferred from a homogeneous spherical source to a
disk target of equal étendue (Shatz, Bortz, Ries, and Winston, 1997). The design
described in the previous subsection was achieved by applying numerical opti-
mization to a solution space, defined by means of a parameterization scheme,
resulting in an axisymmetric optimized spline reflector. That optimized solution
achieved an efficiency of 75.1%, which is practically at the analytically computed
theoretical limit of 75.3%. This performance represents a substantial improvement
over two edge-ray solutions, which provide efficiencies of 49.2% and 61.0%, respec-
tively. We now consider the generalized problem of designing a nonimaging reflec-
tor that is allowed to assume a non-axisymmetric form. Specifically, we consider
a class of forms designated as three-dimensional star concentrators. We refer to
the optimized design as a three-dimensional optimized star concentrator (3D OSC).
To begin, we develop a star-concentrator parameterization scheme, intended for
use in conjunction with numerical optimization procedures. The same parameter-
ization scheme is also utilized in designing a 3D OSC for transferring flux from a
cylindrical source to a disk target, as discussed in the following subsection. We ini-
tially consider a rotationally symmetric reflector. To generate this reflector shape
we define a two-dimensional profile, which is then rotated about an axis of sym-
metry. It is convenient to specify the two-dimensional profile parametrically, in the
form:

(11.57)
and

(11.58)

where r is the distance from the symmetry axis, x is the coordinate along the sym-
metry axis, and q is a parameter that varies over some convenient finite interval.
The functions r(q) and x(q) are assumed to be continuous functions of the 
parameter q.

Now suppose we want to break the symmetry of the reflector shape by intro-
ducing a dependence on the angular variable f, where f specifies the amount of
rotation about the x-axis. We define the f-coordinate such that it conforms to the
right-hand rule: When the thumb of the right hand points along the x-axis, the
fingers point in the positive f-direction. The f-dependence of the desired nonrota-
tionally symmetric shape is described in terms of constant-angle spirals on conical
surfaces. This will enable a parsimonious parameterization. We now consider 
characteristics of such spirals.

To define a constant-angle spiral, we consider a cone of half-angle b having
the x-axis as its axis of symmetry. Suppose that a continuous curve C has been
defined on the surface of this cone. We designate as T the line that is tangent to

x x= ( )q ,

r r= ( )q
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the curve C at some point P on C. We also define the circle c that passes through
the point P and is centered on the x-axis. The line tangent to c at point P is 
designated as T¢. The angle between T and T¢ is designated as a. A constant-angle
spiral is defined as any continuous curve C for which the angle a is a constant for
all points on the curve.

We define s to be the distance of a point P on a constant-angle spiral from the
vertex of the cone. We consider the differential change ds in the distance s pro-
duced by a differential change df in the angle f. The constant-angle criterion leads
to following relationship between ds and df:

(11.59)

The radial coordinate r can be expressed in the form

(11.60)

where r0 and s0 are the r and s-coordinates, respectively, of the starting point on
the spiral. Similarly, the axial coordinate x can be expressed as

(11.61)

where x0 is the x-coordinate of the starting point on the spiral. Substitution of Eq.
(11.60) into Eq. (11.59) gives

(11.62)

Integrating both sides of Eq. (11.62), we obtain an expression for s as a function
of f:

(11.63)

where f0 is the value of the angular coordinate f at the starting point of the spiral.
Substitution of Eq. (11.63) into Eq. (11.60) gives the r-coordinate as a function of f:

(11.64)

Substitution of Eq. (11.63) into Eq. (11.61) gives the x-coordinate as a function of f:

(11.65)

For the special case of b = 0°, Eqs. (11.64) and (11.65) become

(11.66)

and

(11.67)

For the special case of b = 90°, Eqs. (11.64) and (11.65) become

(11.68)
and

(11.69)

For the special case of b = 180°, Eqs. (11.64) and (11.65) become
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(11.70)
and

(11.71)

We now combine segments of constant-angle spirals to construct continuous curves
that are periodic in the variable f. If the number of periods per 360° is the integer
N, then the angular period of the curve is

(11.72)

Each of the N segments of the curve is assumed to consist of two subsegments
having a-values which are equal in magnitude but opposite in sign. The angular
width of each subsegment is

(11.73)

We define the two indices m and n, which refer to the mth subsegment of the nth

segment, where m = 0 or 1 and n = 0, 1, . . . , N - 1. The central f-value of the mth

subsegment of the nth segment is

(11.74)

It is also convenient to compute the value of m and n corresponding to any par-
ticular value of f between 0° and 360°:

(11.75)

and

(11.76)

where the function Int(x) is defined as the greatest integer that is less than or
equal to x. Substitution of Eqs. (11.75) and (11.76) into Eq. (11.74) allows us to
compute the central f-value of the subsegment in which any given f-value lies

(11.77)

When f0 in Eqs. (11.64) and (11.65) is replaced by fcent(f), we find that the 
periodic segmented spiral curve is specified by the formulas

(11.78)

and

(11.79)

where the constant angle a has been multiplied by [2m(f) - 1] to produce the
desired alternation of the sign of the spiral angle for adjacent subsegments. 
Similarly, for the special case of b = 0°, we obtain
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(11.80)
and

(11.81)

For b = 90°, we find that

(11.82)

and

(11.83)

For b = 180°, we have

(11.84)

and

(11.85)

By converting r0, x0, a, and b into the continuous functions r0(q), x0(q), a(q),
and b(q) of the parameter q, Eqs. (11.78) through (11.85) then provide us with 
the desired specification of the entire reflector surface. The specific forms of the
functions r0(q) and x0(q) are equivalent to the radial and axial coordinates for the
parameterization scheme described in the previous subsection for rotationally
symmetric reflectors. The cone-angle function b(q) is defined as the slope angle
with respect to the x-axis of the local surface normal of the parametric curve
defined by r0(q) and x0(q). We employ a finite-dimensional cubic-spline parameter-
ization to describe a as a function of q.

We now present a design example in which the parameters used to control the
shape deviation, truncation, acceptance angle, and axial source position shift were
the same 17 parameters used in the previous subsection. In addition, 10 degrees
of freedom (knots) were allocated to the description of a as a function of q, for a
total of 27 design degrees of freedom in the optimization. The lower and upper
parameter ranges for the original 17 variables were the same as used in the pre-
vious subsection. The lower and upper parameter ranges for the knots used to
define a as a function of q were 0° and 35°, respectively. When the shape devia-
tions of the star lobes as a function of f are sufficiently small, the ray tracing can
be simplified by modeling the f-dependent shape perturbations purely as slope
perturbations imposed on a rotationally symmetric surface. This approximation
was utilized in the ray tracing to obtain the results presented below.

Global optimization was used to determine the form of 3D OSC that maxi-
mizes the flux transferred from a 10-mm-diameter spherical Lambertian source
into an emergent conical beam subtending a 30° half angle. The constraint that
the source and the target must have equal étendue was enforced, which leads to
an aperture-to-source area ratio of 1/sin2(30°) = 4. Thus, a target disk diameter of
40mm was used. The reflector surface was assumed to be loss-free and specular.

The resulting shape of the 3D OSC design is shown in Figures 11.13 and 11.14.
In contrast to the axisymmetric solution discussed in the previous subsection, the
source does not protrude behind the back of the reflector, and there exists a small
clearance gap between the source and the reflector. The performance of this solu-
tion was computed using 200,000 rays, which provides accuracy better than 0.1%
in efficiency and concentration. The design produces a value of 84.9% for both flux-
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Figure 11.13 Shape profile of star concentrator optimized to transfer flux from a sphere to
a 30° disk.

Figure 11.14 3D cut-away view of star concentrator.

transfer efficiency and concentration. The variation of the star-lobe angle along
the arc-length of the reflector is depicted in Figure 11.15. The skewness distribu-
tions for the sphere, the disk, and the rays output within the required 30° half
angle are depicted in Figure 11.16. Note that the output skewness distribution
extends over the full skewness range of the disk target’s skewness distribution.
The symmetry-breaking star cross section has allowed the original skewness 
distribution of the source to be transformed into an output skewness distribution
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Figure 11.15 Star-lobe angle versus normalized arc length along reflector profile for 3D
OSC optimized to transfer flux from a sphere to a 30° disk.
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Figure 11.16 Skewness distributions for spherical source, disk target, and flux transferred
by 3D OSC to a disk within a 30° half angle.

providing a superior match to that of the target. Figure 11.17 depicts the 
efficiency versus concentration curve for the 3D OSC in comparison with the 
curve for the truncated 30° involute CPC and the theoretical limiting curve for
rotationally symmetrical systems. As previously discussed, the efficiency versus
concentration curves for the two concentrators were generated by varying the



acceptance half angle of the disk target, while keeping all other source, target, and
concentrator characteristics fixed. The large range of concentration values over
which the efficiency of the optimized design exceeds the limit for axisymmetric
designs is an indication of the robustness of the design relative to variations in
either efficiency or concentration from the nominal design point of equal étendue.
In Figure 11.18 we compare the far-field intensity profile produced by the 3D OSC
with that produced by the truncated 30° involute CPC. It is of interest to note that
the 3D OSC provides significantly improved far-field intensity uniformity relative
to the involute CPC design.

11.6.4 Nonaxisymmetric Concentrator for a Cylindrical
Source and a Disk Target

We now consider the problem of designing a 3D OSC that maximizes the flux trans-
fer from a homogeneous cylindrical source to a coaxial disk target of equal étendue
(Shatz, Bortz, Ries, and Winston, 1997). We choose a height-to-radius ratio H/R =
10, which is typical of an incandescent filament. In this case the skewness mis-
match between the source and target is strongly pronounced. The theoretical per-
formance limit on efficiency for rotationally symmetric optics is 46.8% for the
equal-étendue case, which means that this problem is more strongly affected by
skewness mismatch than the case involving the spherical source.

We seek a star concentrator solution and state the design problem as one of
determining the form of a 3D OSC that maximizes the flux transferred from a
cylindrical Lambertian source into an emergent conical beam subtending a 30°
half angle. As in the previous subsection, we use a target disk diameter of 40mm.

294 Chapter 11 Global Optimization of High-Performance Concentrators

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Concentration (unitless)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

)sseltinu( ycneiciff
E

Skewness limit
3D OSC
Operating point, 3D OSC
Trunc. involute CPC (TICPC)
 Operating point, TICPC

Figure 11.17 Efficiency versus concentration for 3D OSC optimized to transfer flux from a
sphere to a disk within a 30° half angle.



The equal-étendue requirement, along with the chosen height-to-radius ratio,
leads to a source height and radius of 22.36mm and 2.236mm, respectively. The
optimization was performed using the same parametrization scheme, number of
optimization parameters, and parameter ranges as in the last subsection.

The resulting optimized shape of the 3D OSC design is shown in Figures 11.19
and 11.20. Note that the end of the source coincides precisely with the beginning
of the reflector. The performance of this design was computed using 200,000 rays,
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Figure 11.18 Far-field intensity versus emission angle for 3D OSC optimized to transfer
flux from a sphere to a 30° disk.
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Figure 11.19 Shape profile of star concentrator, optimized to transfer flux from a cylinder
to a 30° disk.



296 Chapter 11 Global Optimization of High-Performance Concentrators

Figure 11.20 3D cutaway view of star concentrator.
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Figure 11.21 Star-lobe angle versus normalized arc length along reflector profile, for 3D
OSC optimized to transfer flux from a cylinder to a 30° disk.

which provided accuracy better than 0.1% in dilution and efficiency. The solution
provides a 75.1% value of both efficiency and concentration. The variation of the
star-lobe angle along the arc-length of the reflector is depicted in Figure 11.21. As
was the case for the 3D OSC with the spherical source, we observe a generally
decreasing behavior of the angle as arc length is increased. The skewness dis-
tributions for the cylinder, disk target, and flux transferred to the target within
the 30° acceptance half angle are depicted in Figure 11.22. As with the 3D OSC
for the spherical source, the output skewness distribution extends the full range
of the disk’s skewness distribution. Figure 11.23 depicts the efficiency versus 
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Figure 11.22 Skewness distributions for cylindrical source, disk target, and flux trans-
ferred by 3D OSC to disk within its 30° acceptance half angle.
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Figure 11.23 Efficiency versus concentration for 3D OSC optimized to transfer flux from a
cylinder to a 30° disk.



concentration curve for the 3D OSC design in comparison with the theoretical 
limiting curve for rotationally symmetrical systems. The efficiency versus concen-
tration curve was generated by computing the efficiency and concentration for 
different values of the target’s acceptance half angle, while holding all other
system characteristics constant. It is of interest to note that the 3D OSC provides
efficiency superior to the performance limit for axisymmetric systems over a large
range of concentration values. Figure 11.24 depicts the efficiency versus TSER 
for the 3D OSC in relation to both the étendue limit, which is the upper limit for
nonaxisymmetric optics, as well as the skewness limit, which is the upper limit
for axisymmetric optics.

11.6.5 Nontracking Solar Concentrator with Broken
Translational Symmetry

We now consider an example of a globally optimized design that uses micro-
structure ridges to overcome the performance limits imposed by translational 
symmetry (Bortz, Shatz, and Winston, 1997). The problem to be solved is that of
designing a north-south-oriented nontracking solar concentrator in a material of
unit refractive index, as discussed in Section 10.3.6.2. The latitudinal half angle
of the solar radiation is 23.45°. The target is assumed to be a 20-mm-diameter
cylindrical tube. We consider the equal-étendue case, with longitudinal half angle

(11.86)

Since the sun’s angular position changes by 15° every hour, this half angle corre-
sponds to a total daily operation interval of 6hr, 40min. We recall that the trans-

f0 50= ∞ .
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Figure 11.24 Efficiency versus target-to-source étendue ratio (TSER) for 3D OSC optimized
to transfer flux from a cylinder to a 30° disk.



lational skew invariant places an upper limit on efficiency and concentration of
49.30%. It can be shown that the involute CPC operates at this upper limit for the
case considered here, and therefore represents an optimal translationally sym-
metric solution. The equal-étendue assumption—and Eq. (11.86)—gives a source-
to-target area ratio of

(11.87)

With this source-to-target area ratio, the involute CPC has a collection half angle
of

(11.88)

To improve performance beyond the 49.30% limit, we use a type of perturbed invo-
lute CPC. To break the symmetry, microstructure ridges are added to the surface
such that the ridge peaks and valleys are aligned with planes oriented perpen-
dicular to the translational symmetry axis. Rönnelid, Perers, and Karlsson (1994)
considered the effect of constant tilt-angle microstructure ridges, superimposed on
a conventional CPC. In the present case, however, the ridge tilt angle is a func-
tion of position along the reflector’s shape profile. The ridge slopes alternate in
sign as a function of position along the symmetry axis. The ridges are assumed to
be sufficiently small that they can be considered to alter only the surface-normal
vector as a function of position over the surface of the concentrator, without alter-
ing the macroscopic shape. In addition to the symmetry-breaking microstructure,
the macroscopic shape profile itself is perturbed relative to the involute CPC. The
parameterization scheme for the macroscopic shape perturbations is the same as
that described in Section 11.6.2. The microstructure tilt angle of the ridges as a
function of position along the shape profile is modeled as a cubic spline. The
absolute value of the tilt angle is constrained to be less than or equal to 30°. Impo-
sition of this angular limit improves manufacturability. In addition, it simplifies
the ray tracing and reduces reflection losses by preventing more than two reflec-
tions from occurring for each ray incident on the region between two ridges.

Global optimization was used to maximize the flux-transfer efficiency of the
nontranslationally symmetric solar collector. The computed efficiency and concen-
tration of the optimized collector were found to be

(11.89)

which represents a 47.4% performance improvement relative to the baseline trans-
lationally symmetric concentrator. The performance of this optimized design is
indicated by the square marker on the efficiency versus concentration plot shown
in Fig. 11.25. The shape profile of the optimized collector, with and without traced
rays, is shown in Fig. 11.26. For comparison, the profile of the baseline unper-
turbed involute CPC is depicted in Fig. 11.26 as a dashed line. A ray trace through
the baseline concentrator is shown in Fig. 11.27. The rays visible to the right 
of the aperture in Figs. 11.26 and 11.27 represent rays that have been rejected by
the concentrator. As expected from the higher efficiency of the optimized concen-
trator, fewer rejected rays are visible in Fig. 11.26 than in Fig. 11.27. A three-
dimensional depiction of the optimized concentrator is shown in Fig. 11.28. To
illustrate the microstructure geometry, the relative size of the symmetry-breaking
ridges has been magnified by a large factor in this figure. The tilt angle of the
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Figure 11.26 Shape profile of the optimized solar collector, with and without traced rays.
The dashed line indicates the shape profile of the baseline translationally symmetric con-
centrator, which is an involute CPC.

ridges as a function of the normalized position along the optimized concentrator’s
shape profile is plotted in Fig. 11.29.

Plots of the transferred skewness distributions for the baseline and optimized
concentrators are provided in Figs. 11.30 and 11.31. As expected, the skewness dis-
tribution for the translationally symmetric baseline design precisely matches the
region of overlap of the skewness distributions of the source and target. The non-
translationally symmetric optimized design, however, has produced a broadening
of the skewness distribution of the flux transferred to the target, thereby provid-
ing a better match to the target’s distribution.

The ridge microstructure used to break the symmetry of the optimized con-
centrator can be thought of as a form of diffuser. As such, it has the effect of intro-
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Figure 11.27 Shape profile of the baseline translationally symmetric concentrator (invo-
lute CPC), with traced rays.

Figure 11.28 Three-dimensional depiction of the optimized non-translationally-symmetric
concentrator. The symmetry-breaking ridge microstructure has been magnified by a large
factor.

ducing a large number of small holes in the phase-space volume transferred to the
target. Since these holes are not filled with radiation from the source, their pres-
ence reduces the achievable flux-transfer efficiency. The introduction of holes into
the phase-space volume is analogous to the production of froth by injecting air
bubbles into a liquid. In the same way that the presence of froth reduces the
amount of liquid that can be poured into a container of a given volume, the pres-
ence of phase-space froth reduces the amount of étendue that can be transferred
from a source to a target. For this reason, 100% flux-transfer efficiency from a
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Figure 11.30 Source, target, and transferred skewness distributions for the baseline trans-
lationally symmetric concentrator.
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Figure 11.29 Tilt angle of the microstructure ridges as a function of the normalized posi-
tion along the optimized concentrator’s shape profile.

source to a target of equal étendue can probably never be achieved by means of
concentrators using microstructure ridges of the type considered herein. A related
observation is that, since it is a diffuser, the microstructure can only produce a
spreading of the skewness distribution. When the target’s skewness distribution
is narrower than that of the source, this spreading of the skewness distribution
will only exacerbate the skewness mismatch between the source and the target,
thereby reducing the achievable efficiency and concentration.

A second nontranslationally symmetric north-south-oriented nontracking
solar collector was designed for the equal-étendue case with a longitudinal half-
angle of



(11.90)

This half angle is representative of dawn-to-dusk operation of the concentrator.
The computed flux-transfer efficiency and concentration for this second optimized
design were found to be

(11.91)

which represents a 38.7% performance improvement relative to the optimal trans-
lationally symmetric design.
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12.1 INTRODUCTION

Radiance, which is the density of radiative power in phase space has been the
subject of a rich literature over the past 40 and more years (Littlejohn and
Winston, 1993; Walther, 1968; 1973; Wolf, 1978). It is a tribute to the work of
Adrian Walther, Emil Wolf, and many others that the development of a wave
theory of radiance, known as “generalized radiance” continues to the present time.
This chapter is complementary to this line of development in that we attempt to
bridge the gap between theory and practical radiometry. Radiometric measure-
ments are important in many branches of science and technology. For example, in
illumination engineering, the visibilty of displays is quantified by radiometers. In
astrophysics, radiometry in the far infrared has played a critical role in under-
standing the large space-time structure of the universe (Mather, Toral, and
Memmati, 1986). Of course, in the short wave length limit where diffraction effects
can be neglected, geometrical optics suffices and one can dispense with the tech-
nical difficulties that the wave property of light introduces. But it is precisely in
the regime where diffraction effects cannot be neglected that the properties of the
measuring instrument have to be taken into account. Moreover, in the absence of
a consistent formalism which does take the diffraction property of the instrument
into account, it may be difficult to assess the significance of such effects. “Back of
the envelope” estimates of diffraction effects may not be reliable and the practical
radiometer is left with little guidence as to the magnitude of such effects. For
example, an excellent text on radiometry famously states that diffraction effects
are “beyond the scope” of the book. In recent papers (Sun et al., 2002; Winston,
Sun, and Littlejohn, 2002) we showed how the measurement of radiance can be
understood in terms of the statistical properties of the electromagnetic field and
the properties of the instrument. However the utility of this approach was limited
by the availability of accessable instrument functions that represent the measur-
ing apparatus. In the process we exhibited a remarkable analogy between the
result of measuring radiance and the van Cittert-Zernike (VCZ) Theorem. In this



chapter we first give an overview of a wave description of the measurement of 
radiance. referring details to previous publications. This approach is validated by
experimental results with highly sophisticated radiometers. The excellent agree-
ment with the analytical model suggests that while our demonstration was con-
fined to the measurement of radiance, it is likely that similar considerations apply
to a wide class of optical measuerements, where diffraction effects are significant.

12.2 THE VAN CITTERT-ZERNIKE THEOREM

The well-known van Cittert-Zernike theorem states that for an incoherent, quasi-
monochromatic source of radiation, the equal-time degree of coherence (2-point
correlation function) G(r, r¢) is proportional to the complex amplitude in a certain
diffraction pattern: the amplitude at r formed by a spherical wave converging to
r¢ and diffracted by an aperture the same size, shape, and location as the source
(Born and Wolf, 1999; Mandel and Wolf, 1995). The source could, for example, be
a thermal black body followed by a filter that selects a small wavelength range. 
A familiar geometry is a circular source. Then, apart from a normalizing factor.
G(r, r¢) in a transverse plane becomes the well-known Airy diffraction amplitude

(12.1)

where F(x) = 2J1(x)/x, k = 2p/l, qs is the angle subtended by the source at r or r¢,
and where s = |r - r¢|. Recall that G(r, r¢) has its first zero at s1 = 0.61l /qs. For a
numerical example, we consider terrestrial sunlight. Then qs is 4.7mrad, so that
for l = 0.5mm, s1 is approximately 65mm. This is the scale of the transverse cor-
relation of sunlight.

12.3 MEASURING RADIANCE

In a previous paper (Littlejohn and Winston, 1995), we examined the relationship
between the generalized radiance and the measuring process. We showed how this
process can be quantified by introducing the instrument function, which is a prop-
erty of the measuring apparatus (Sun et al., 2002; Winston, Sun, and Littlejohn,
2002). We showed that the result of the measurement is represented by the 
quantity

(12.2)(12.2)

where M̂ is a nonnegative-definite Hermitian operator that characterizes the mea-
suring apparatus, and Ĝ is the 2-point correlation function of the incident light,
viewed as an operator. The instrument function itself is a coordinate representa-
tion of the measurement operator M̂—for example, its matrix element or its Weyl
transform. The Weyl transform maps an operator to a Wigner function (for a dis-
cussion of the Wigner-Weyl formalism in optics, see Littlejohn and Winston, 1995).
It is appropriate to associate Q with the signal. We then derived an analytical form
for the instrument function for a simple radiometer in one space dimension.

One difficulty in using Eq. (12.2) is that it may not be easy to compute the
instrument function. Although the one-dimensional calculation in Littlejohn and

Q M= ( )Tr ˆ Ĝ

G r r, ¢( ) = ( ) ( )const F ks sq
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Winston (1995) was not too hard, we do not expect it to be easy to compute the
instrument function for many realistic radiometers, which are two-dimensional in
cross section and that may have complicated geometry. Therefore, we have con-
sidered other means for determining the instrument function. In a previous pub-
lication (Winston and Littlejohn, 1997) we considered the possibility that the
instrument function could be measured. In this chapter we present an alternative
approach. That is, we point out a physical interpretation of the instrument func-
tion that is similar to the van Cittert-Zernike theorem. We do this initially by
working through the example of a simple “pin hole” radiometer, and then we
comment about generalizations.

Radiance is the power per unit volume in phase space. Therefore, an instru-
ment for measuring radiance (called a radiometer) has to select a window func-
tion in phase space. For measurements close to the diffraction limit, the exact
shape of the window function is not critical. For this reason we examine a simple
radiometer, illustrated in Figure 12.1. The dotted line in the figure is the axis 
of the radiometer. Light enters from the left and passes through the circular pin
hole of radius a. It then passes through a drift space of length L, before passing
through another circular aperture of radius b. We assume L >> a, b, so the rays 
are paraxial. The detector is assumed to measure the total power passing through
the aperture b and can be thought of as composed of tiny, densely packed, inde-
pendent absorbing particles (which is a fairly good approximation to what com-
monly used detectors like photon detectors, thermal detectors, or photographic 
film do).

As explained in Littlejohn and Winston (1995) the effect of the radiometer on
the radiation field is described by the operator

(12.3)

which maps the wave field at the entrance aperture a into the wave field at the
exit aperture b. Here Â(a) is the aperture or “cookie cutter” operator representing
the pinhole, D̂(L) is the Huygens-Fresnel operator representing the drift space,
and Â(b) is the aperture operator for the aperture b. In the approximation L >> l
the drift operator has the kernel (or matrix element)

ˆ ˆ ˆ ˆP A b D L A a= ( ) ( ) ( )
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2a

2b
L

Figure 12.1 A pinhole radiometer. The dotted line is the axis. Light enters from the left,
passing through circular pinhole a, drift space of length L, and finally circular aperture b.



(12.4)

where r^ = (x, y), r¢̂ = (x¢, y¢), r = (x, y, z), r¢= (x¢, y¢, z¢), L = z - z¢ and R = |r - r¢|.
Here z is the coordinate along the optical axis and it is assumed that z > z¢. If in
addition we assume rays are paraxial (r^, r¢̂ << L), then the kernel can be written

(12.5)

Following the methods of Littlejohn and Winston (1995), the instrument is
represented by the operator M̂ = P̂†P̂ whose matrix elements are

(12.6)

where R1 = |r¢ - r≤|, R2 = |r - r≤|, and the integration is over the detector area. In
Eq. (12.6) the transverse variables r^ and r¢̂ are understood to lie in the entrance
plane (the pinhole), so that r^, r¢̂ £ a. If this condition is not met, the matrix
element is understood to be zero.

The expression (12.6) is identical (up to constants) to the mutual intensity
evaluated at aperture a of a uniform, delta-correlated source at aperture b (the
location of the detector). Thus, to form the van Cittert-Zernike interpretation of
the instrument function, we replace the detector (at aperture b, in this example)
by a delta-correlated source, and measure the radiation field emanating from the
entrace aperture of the instrument (the pinhole in this example). The instrument
function (at a given plane) is then proportional to the amplitude at r¢ formed by a
spherical wave converging to r and diffracted by an aperture the same size, shape,
and location as the detector. The detector emulates a delta-correlated source. In a
sense, this model involves running the radiometer backwards (exchanging the
detector for a source).

This interpretation applies also to other radiometers, for example, those with
lenses (see Figure 12.2). The essential property is that the operator P̂† should serve
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2a

2b

f

Figure 12.2 A practical radiometer. The pinhole is replaced by a lens. The drift space length
is essentially the focal length for distant objects L ª f.



as a propagator for wave fields traveling to the left (in the negative z direction), 
just as P̂ serves as a propagator for waves travelling to the right. The situation is
rather much like time reversal in quantum mechanics. Not all time evolu-
tions in quantum mechanics are time reversal invariant (only those for which the
Hamiltonian commutes with time reversal). In the case of optical fields, it is a 
kind of “z-reversal” that we need. Lenses, drift spaces, and apertures are “z-
reversal invariant,” as long as evanescent waves can be ignored. We remark 
that the same conditions apply to the usual van Cittert-Zernike theorem.

12.4 NEAR-FIELD AND FAR-FIELD LIMITS

It is useful to examine the pinhole radiometer and the formalism we have pre-
sented in two limiting cases. First, however, we explain some notation regarding
the correlation operator and function (see Littlejohn and Winston, 1995, for more
details). The mutual coherence is defined by G(r, r¢) = y(r)y*(r¢), where the overbar
means a statistical or ensemble average, and where we use a scalar model for the
wave field y, which in electromagnetic applications can be loosely identified with
one of the components of the electric field. When z = z¢ we can associate the mutual
coherence with an operator Ĝ(z) by G(r, r¢) = G(r^, z; r¢̂ , z) = �r^|Ĝ(z)|r¢̂ �, so that 

. Thus,

(12.7)

Thus, if we identify |y|2 with 4p times the energy density, then for paraxial rays
(c/4p) Tr Ĝ(z) is the power crossing the plane z.

Now let us consider the case that a uniform, thermal source is very 
close to the radiometer, which is useful for normalizing the signal. Then at the
entrance aperture the mutual intensity is proportional to a delta function, 
G(r, r¢) = I0l2d(r^ - r¢̂ ), where I0 is a constant with dimensions of energy/vol. A
thermal source is not really delta correlated, of course; the spatial correlation is
really a sine function with a width of the order of a wavelength. It is for this reason
that we insert the factor of l2 into the formula for the mutual coherence, so that
if we need to set r^ = r¢̂ for the purposes of taking the trace, we can interpret l2d(0)
as being of order unity. In any case, when we compute the signal according to Eq.
(12.2), we obtain

(12.8)

where we set

(12.9)

for the number of phase space cells in the acceptance region of the instrument.
The trace of M̂ is easy to compute. We first make the paraxial approximation in
Eq. (12.6), which gives

(12.10)

where the r≤̂ integration is taken over a circle of radius b. Now setting r^ = r¢̂ and
integrating r^ over a circle of radius a, we obtain
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(12.11)

where q0 = b/L.
The number Ni has a simple interpretation. A phase space cell in the 4-

dimensional k^ - r^ phase space has volume (2p)2. As viewed from the standpoint
of the exit aperture b of the radiometer, the rays passing through each point of
the aperture b occupy a solid angle of p(a/L)2, or a region of k^-space of area
p(ka/L)2. The region of r^-space is just the exit aperture, of area pb2. Multiplying
these areas and dividing by (2p)2 gives precisely Ni.

Next we consider the case of a very distant thermal source, which effectively
produces a coherent plane wave at the entrance aperture, say, , so that
·r^|Ĝ|r¢̂ Ò = I0(pq 2

s). The dimensionless factor pq 2
s will be explained below. Using this

and Eq. (12.10), we obtain

(12.12)

It is easiest to do the r^ and r¢̂ integrals first (both of which go out to radius a).
These are identical, and are given by

(12.13)

where s = r^ or r¢̂ . This leaves only the r≤̂ integration (taken out to radius b)

(12.14)

which agrees with the expected fraction of the Airy diffraction pattern contained
by the detector of radius b.

12.5 A WAVE DESCRIPTION OF MEASUREMENT

We begin with the statistical properties of the incident wave field. The two-point
correlation function at the source plane is

(12.15)

with r^ and r¢̂ inside the source, s, and equal to 0 otherwise. The matrix elements
of the Fresnel free space propagator of a distance L are given by

(12.16)

where k = 2p/l. The two-point correlation at a plane a distance L from the source
in the Fresnel diffraction regime is
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(12.17)

In Eq. (12.17), Fr(r^ - r¢̂ ) is the Fourier transform of the source area; it is the VCZ
result for the far field two-point correlation function.

We will be testing two source geometries, circular and square. For the square
geometry Fr is

(12.18)

with d the linear dimension of the source. For the circular geometry Fr is

(12.19)

with d the diameter of the source.

12.6 FOCUSING AND THE 
INSTRUMENT OPERATOR

The matrix elements for the lens operator are given by

(12.20)

The instrument operator is

(12.21)

where P̂ is the propagator from the aperture, Â(a), to the detector Â(b).

(12.22)

The matrix elements for Â(a) are given by

(12.23)

with r^ and r¢̂ inside the aperture, a, and equal to 0 otherwise. The matrix 
elements for Â(b) are given by

(12.24)

with r^ and r¢̂ inside the detector, b, and equal to 0 otherwise.
From Eqs. (12.16) and (12.20) we have
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(12.25)

This gives

(12.26)

with r^ inside the detector, r¢̂ inside the aperture, and equal to 0 otherwise.
The matrix elements of M̂ are given by

(12.27)

The integration is over the detector area.

(12.28)

(12.29)

with r^ and r¢̂ inside the aperture, a, and equal to 0 otherwise. Here Fi is

(12.30)

If the camera is focused on the source

(12.31)

where L is the distance between the camera entrance aperture and the source. In
this case the non-zero matrix elements are given by

(12.32)

The VCZ result for the nonzero matrix elements of M̂ are given by Eq. (12.30)
with the camera focused at infinity, l = f. This results in a slight difference between
the VCZ result and the general result in time phase space volume of M̂ defined by

(12.33)

with Ni being time number of phase space cells. The infrared camera we used in
the experiment has a circular entrance aperature and a square detector. We thus
have

(12.34)

with r^ and r¢̂ inside the circular entrance aperture of radius a and equal to zero
otherwise. The linear dimension of the square detector is 2b. From Eq. (12.32),
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(12.35)

where 2qi = 2b/l is the full acceptance angle. For all practical purposes, the dif-
ference in the values of Ni for the focused case and with l = f is negligible. Hence-
forth, we will mean l = f when referring to Ni.

12.7 MEASUREMENT BY FOCUSING THE
CAMERA ON THE SOURCE

From Eqs. (17) and (32), the detected signal, Q, is

(12.36)

The normalized signal, Qn, is defined as

(12.37)

12.8 EXPERIMENTAL TEST OF FOCUSING

The matrix elements of the instrument operator modeling the infrared camera
used in the experiment are given by Eq. (12.32). The experiment was conducted
by focusing the camera on the source. The results of the experiments are compared
with Eqs. (12.36) and (12.37).

The following is the protocol for processing the data. The value of the signal
when the detector of the camera is flood illuminated by the blackbody radiation
subtracted by the value of the signal when the detector is flood illuminated by the
background is used as the normalization. The measured normalized signal is
obtained by first subtracting the detected signal by the background and then
divided by the normalization. The normalized signal is compared with theory.

The camera has an interference filter and a HgCdTd detector giving a 
wavelength window with a peak at l = 8.8mm and Dl � ±0.75mm. The square
HgCdTd detector is of dimensions 75mm ¥ 75mm. The focal length of the camera
is f = 18.99mm. In Eq. (12.32) Fi is then given by Eq. (12.30), with b = (75/2)mm.

Two circular aperture plates of radii a = 0.136in and a = 0.272in were placed
in front of the camera aperture. We have Ni = 1.888 for the a = 0.136 in aperture
and Ni = 7.551 for the a = 0.272 in aperture. The face of each plate facing the lens
was painted with high emissive paint to provide the background. Time source size
and shape were controlled by placing aluminum masks with either square or cir-
cular apertures over a blackbody source set at T ~ 500°C.

Define Nr as,

(12.38)

where the integration is over the camera aperture. Nr can be interpreted as the
number of phase space cells of the radiation field intercepted by the camera 
aperture. Therefore, Nr can be much less than one without violating the uncer-
tainty principle. For a square source
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(12.39)

and for a circular source

(12.40)

Here qs is the half angle subtended by the source at the camera’s entrance aper-
ture. For the square source qs = d/2L with d being the linear dimension for the
square source. For the cirular source qs = d/2L with d being the diameter of the
circular source.

The results of the measured normalized signal are plotted with theory ver-
sus Nr in Figures 12.3 and 12.4. The agreement with experiment is highly 
satisfactory.
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Figure 12.3 Comparison of experiment with theory for the N = 1.888 peak measurements.
Filled circles are data points.



12.9 CONCLUSION

We have demonstrated a consistent approach to incorporating the diffraction prop-
erties of the instrument in optical measurements. We used a remarkable analogy
between the result of measuring radiance and the van Cittert-Zernike Theorem
that exploits the symmetry between an incoherent source whose radiance is being
measured and the detector whose signal represents the measurement. It turns out
that the measured radiance is represented (up to an overall constant) by the double
integral over time instrument aperture of the mutual intensity of the field and the
mutual intensity of a delta correlated source the same size, shape, and location as
the detector. While we have expressed our results in time context of radiometry,
one would go through a similar analysis in analyzing the detection of any partially
coherent wave. The signal is represented by the double integral of two mutual
coherence functions. One of these is for the incident wave, the other arising from
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Figure 12.4 Comparison of experiment with theory for the N = 7.551 peak measurements.
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the detector considered as a source. It is likely that entirely similar considera-
tions may apply to other signal detection processes where diffraction effects are
important.
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13.1 REQUIREMENTS FOR SOLAR
CONCENTRATORS

It may be appropriate to remind ourselves why it is advantageous to concentrate
the solar flux. After all, it is well known that flat-plate collectors are adequate for
heating a working fluid at temperatures up to about 80°C, and this is at present
the most economical way to use solar power for domestic hot water purposes. It 
is probably also best for domestic space heating in moderate climates, with 
the reservation that larger glass windows applying the greenhouse effect are also
good when appropriate to the use of the building. However, even modest levels of
concentration (say, 1.5–2) can dramatically increase the temperature at which 
heat from a solar collector can be extracted efficiently. The economics of photo-
voltaic conversion can improve significantly with intermediate levels of concen-
tration (say, 10–100). At high flux levels (of, say, 1,000) efficient generation of
electricity is technically feasible. And at the very highest flux levels achievable
(say, 40,000 or more) certain processes (e.g., efficient laser pumping) become acces-
sible to solar energy utilization, which may be of considerable interest. Therefore,
while one may argue over the appropriate flux level for a particular application,
there is general agreement that some degree of concentration would be desirable
for most applications. Why then are most practical solar installations nonconcen-
trating flat plates? The answer must be that the penalties in cost and complexity
associated with optical concentration outweigh its advantages. It is the task of
nonimaging optics to mitigate these penalties—that is, to concentrate the solar
flux at the least possible “cost” in tracking tolerance, precision of components, 
and so on.

In effect the optics of solar flux concentration has usually been “nonimaging,”
since the image quality is rarely an issue. But what nonimaging optics has come
to signify is the systematic study and development of design techniques that opti-
mize angular acceptance and throughput efficiency for a given flux concentration—
that is, “high collection optics.”



Concentrators are needed wherever we want to use solar power for applica-
tions requiring heat at temperatures above about 80°C.1 There are numberless
applications requiring temperatures up to about 300°C for both domestic and
industrial applications—for example, space cooling, cooking, desalination, elec-
tricity generation (via steam or some working fluid for turbines). Among the factors
that influence the design of concentrators for solar energy are the following:

1. Cost and ease of manufacture on an appropriate scale
2. Extent of guidance required for following the sun
3. Durability and maintenance
4. Required working temperature of absorber
5. Preferred geometry of absorber in relation to the mode of utilization of the

energy
6. Susceptibility to contamination and durability under ultraviolet irradiation

Most of these are, of course, interlinked, and their relative weightings are chang-
ing in response to economic factors rather rapidly at the time of writing. We cannot,
therefore, lay down specific guidance, and we restrict ourselves to descriptions 
of different systems in which we call attention to specific points of advantage or
disadvantage.

13.2 SOLAR THERMAL VERSUS PHOTOVOLTAIC
CONCENTRATOR SPECIFICATIONS

Besides the common requirements for solar thermal and photovoltaic concentra-
tors presented in the previous section, there are also important differences
between these two application fields. These specificities may make it so that a good 
concentrator design for one field is not appropriate for the other field. The most
remarkable differences are the receiver characteristics, the requirements of 
uniformity of irradiance on the receiver, and the effect of dispersion on the optical
efficiency corresponding to different receivers.

13.2.1 Receiver Characteristics
The thermal and the photovoltaic are completely different approaches to exploit
the solar energy, and these differences are clear in the receiver nature and its oper-
ating conditions. For instance, in photovoltaics, the cell temperature must be kept
as low as possible because the cell conversion efficiency decreases with tempera-
ture. As a rule of thumb, the photovoltaic system should be designed to provide 
a temperature at the cell p - n junction smaller than 65°C at standard operat-
ing conditions (ambient temperature = 25°C; wind speed = 1m/s; irradiance =
850W/m2). On the contrary, medium- to high-temperature solar thermal systems
operate with the absorber at a temperature over 300°C. In this situation, the optics
cannot be in touch with the receiver to avoid conduction losses and high thermal
stresses. In case it is necessary to place the optics close to the receiver (as in the
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1 For verify flat-plate collectors, the upper limit of useful operating temperature is somewhat
higher. However, their performance is improved significantly by concentration.



case of the CPC), at least a small gap must be provided. Moreover, these thermal
aspects are responsible for the difference between thermal and photovoltaics with
respect to the use of optically dense transparent media (n > 1) surrounding the
receiver. This is difficult to apply for thermal concentrators, and if excluded, the
concentration limit is reduced by a factor n2 for solar thermal systems (which is
n2 = 1.52 = 2.25 for typical materials).

Another aspect to consider is the electric nature of the photovoltaic cell. The
necessity of extracting the photogenerated current and of interconnecting the dif-
ferent cells must be considered at the optical design stage. Also, the use of metal-
lic mirrors in contact with the cell should be avoided to prevent short circuits.
Obviously, these problems do not matter for solar thermal systems.

Also, the spectral sensitivity of the receivers is different in both fields. 
For example, the quantum efficiency of the silicon solar cells is very low over 
1,200nm. This means that the further infrared radiation of the sun, which usually
is nearly 25% of the sun power, is not useful, contrary to the solar thermal case.
These spectral differences may make it so that a good optical material for photo-
voltaics may be unsuitable for solar thermal applications due to its poor infrared
response.

Finally, the last aspect to be considered here is the receiver geometry. This
geometry affects the design importantly, as we have seen in Chapter 5. In the case
of medium to high concentration in photovotaics, the active surface of the solar
cell is always flat, typically with a round or squared contour of the active area.
Sometimes the cells tessellate to build a strip receiver. The inactive face of the 
cell is used to evacuate the heat by fixing a heat-sink to this face. Only low-
concentration systems (typically C < 5) can use bifacial solar cells—that is, cells
that can collect the sunlight on their two faces. The bifacial geometry must be obvi-
ously considered in the concentrator design.

On the contrary, in solar thermal concentration there is a wider variety of
receiver geometries. Flat (monofacial and bifacial) and tubular are the most
common ones. In the case of a tubular receiver, the conventional cross section is
circular. However, the contour can also been considered a surface to design, which
constitutes an additional degree of freedom. As an example, for the specific case
of the parabolic through, Ries and Spirkl (1995) proved that designing the contour
using the caustic of the edge rays allows to noticeably increase the concentration
ratio, as shown in Figure 13.1. With 100% ray collection efficiency within the accep-
tance angle ±a, the geometrical concentration is limited to CMAX = 1/sina. For a
parabola with rim angle of ±90° and also for 100% collection efficiency, the circu-
lar receiver only achieves C/CMAX = 1/p = 0.32, while the optimum receiver provides
C/CMAX = 0.47.

13.2.2 Irradiance Uniformity on the Receiver
The irradiance distribution on the receiver produced by most concentrators is not
uniform. The effect of this nonuniformity has not been critical in solar thermal
systems, although it has some relevance in the development of Direct Steam 
Generation (DSG) systems (Goebel et al., 1996/1997). However, the nonuniform 
illumination of a photovoltaic cell may produce a dramatic decrease of its solar-to-
electric power conversion efficiency. This is due to the Joule effect power losses in
the cell series resistance RS (if the series resistance were null, the efficiency will

13.2 Solar Thermal Versus Photovoltaic Concentrator Specifications 319



always increase with concentration). The losses in the series resistance degrade the
cell fill-factor FF, which is one parameter that is related with the cell efficiency by
the formula

(13.1)

where PL is the solar power, VOC is the open-circuit voltage, ISC is the short-circuit
current, and FF is the fill factor. The nonuniform illumination mainly affects the
cell fill factor. As an example, Figure 13.2 shows the PSIPICE simulation with a
discretized cell of the effect of illumination nonuniformity on the performance of
a 1mm ¥ 1mm Gallium Arsenide (GaAs) solar cell (Álvarez, 2001). This cell was
designed for optimum performance at a uniform irradiance of 1,000 suns (1 sun =
1kW/m2). The simulation considers an average irradiance along the total cell area
of 1,000kW/m2 and a pillbox irradiance pattern with higher peak irradiance on a
squared area at the cell center and null irradiance outside said area. When the
cell is illuminated with a peak irradiance of 5 times the average, the cell conver-
sion efficiency reduces approximately as the fill factor does, and then the simula-
tion indicates that the efficiency decreases a 100(1 - 0.77/0.85) = 9.4%.

Both concentrator and cell designers should be concerned about this problem
at the design stage and try to minimize its negative effects. The variation of the
irradiance pattern with the mispointing angular error must also be considered.
Therefore, two issues must be addressed:

h = V I FF
P

OC SC

L
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Figure 13.1 The concentration of a solar thermal parabolic trough (on the left) can be max-
imized by designing the contour of the receiver (on the right). The conventional circular
receiver providing the same acceptance angle (for 100% ray collection) is shown for com-
parison purposes.
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1. How a given nonuniform irradiance distribution affects the cell efficiency. Note
that analytical models rather than numerical simulations verb (as that in
Figure 13.2) because the formers give much more information to the design-
ers about where and how much the light can be concentrated.

2. How to design concentrators producing the desired irradiance patterns, inde-
pendently of the sun position within the concentrator acceptance angle.

Discussing issue 1, the effect of the nonuniform illumination depends on both the
physical parameters of the solar cell and on the irradiance distribution. No general
analytical model to quantify this effect is available yet. As an illustrative example,
in the case in which the front metal grid contribution to the series resistance RS

is negligible, the cell voltage near the maximum power point can be estimated with
the following approximate formula (Benítez and Miñano, 2003):

(13.2)

where V0 is the cell voltage when the series resistance is null, kT/e is the thermal
voltage (about 29mV at usual cell operating temperatures), f(C) is the probability
density function of the irradiance C, and Isc,1sun is the cell short circuit current
under 1 sun irradiance. The parameter C0 coincides approximately with the con-
centration level at which the cell efficiency is maximum. The integrand in Eq.
(13.2) indicates the relative importance of the different concentration intervals 
(C, C + dC) on the cell performance degradation, pointing out that the dependence
on irradiance is strongly nonlinear due to the exponential function. Consequently,
even if a small fraction of power is highly concentrated, it can produce the cell
degradation dominating the integral in Eq. (13.2).

A general and simple rule of thumb that is generally used says that an irra-
diance distribution with a peak concentration doubling the average usually pro-
duces an affordable decrease of conversion efficiency. This rule is only inaccurate
when the average irradiance is several times higher than the paramenter C0. For
instance, following with the example of the cells fulfilling Eq. (13.2), let us con-
sider the two extreme irradiance distributions: (1) the pill-box type distribution
(half the cell is not illuminated and the other half is illuminated with double the
average irrradiance), which has maximum standard deviation; and (2) the distri-
bution with a very small area with the peak distribution, and the rest of the area
is illuminated slightly below the average, which is the minimum (null, at the limit)
standard deviation case. According to Eq. (13.2), the voltage difference near the
maximum power point between cases (1) and (2) is

(13.3)

For a high concentration GaAs cell, the 10% relative difference between the effi-
ciencies of cases (1) and (2), approximately coincides with V(2) - V(1) = 100mV.
This implies <C> ª 4C0. Since presently high concentration GaAs cells have C0 ª
500 suns, this limits the 10% guaranteed accuracy of the rule to <C> ª 2,000 suns.

It can be proved (Benítez and Miñano, 2003) that, for a given average con-
centration, the irradiance distribution maximizing Eq. (13.2) is uniform. However,
when the grid series resistance is not negligible, it is clear that the irradiance
pattern that produces the maximum conversion efficiency on conventional 
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concentrator cells is nonuniform (Benítez and Mohedano, 1999). The maximum
efficiency of this optimum irradiance pattern is close to that obtained for the
uniform illumination in practice. Therefore, the efficiency increase is not the main
interest of this optimal nonuniform irradiance distribution but the fact that it
guides the concentrator designers to where and how much can they concentrate
the sun light.

In order to address now issue (2), let us consider the uniform illumination dis-
tribution as the goal. If only the uniformity is required for a given concentration
factor, the solution to this design problem is well known and was described in
Chapter 7. However, in the photovoltaic application, especially due to the nonlin-
ear effects when series connected cell are illuminated differently (see Section
13.2.3), the concentrator is desired to have an acceptance angle a substantially
greater than the sun angular radius aS (typically, a ª ±1°, while aS ª ±0.26°). The
uniformity is then required for the sun placed anywhere inside the acceptance
angle, which is a more complex design problem (the solutions in Chapter 7 coin-
cide with case in which a = aS), especially because in high-concentration systems
(<C> >1,000), the value a ª ±1° approaches the thermodynamic limit (and thus the
maximum illumination angle of the cell, b, comes closer to ±90°, typically b ª
±60°–75°).

There are two methods in classical optics that potentially can achieve this
insensitivity to the source position. The two methods, used for instance in con-
denser designs in projection optics, are the light-pipe homogenizer and the Kohler
illuminator (commonly called integrator) (Cassarly, 2001).

The light pipe homogenizer uses the kaleidoscopic effect created in the multi-
ple reflections inside a light pipe, which can be hollow with metallic reflection or
solid with total internal reflections (TIR). This strategy have been proposed several
times in photovoltaics (Fevermann and Gordon, 2001; Jenkins, 2001; O’Gallagher
and Winston, 2001; Ries, Gordon, and Laxen, 1997), essentially attaching the cell
to the light pipe exit and placing the light pipe entry as the received of a conven-
tional concentrator. It can potentially achieve (with the proper design of the pipe
walls and length) good illumination on a squared light pipe exit with the sun in
any position within the acceptance angle. For achieving high-illumination angles
b, the design can include a final concentration stage by reducing the light pipe
cross section near the exit. However, this approach has not been proven yet to lead
to practical photovoltaic systems (and no company has commercialized it as a
product yet).

On the other hand, the integrating concentrator consists of two imaging 
optical elements (primary and secondary) with positive focal length (that is, 
producing a real image of an object at infinity, as a magnifying glass does). The
secondary is placed at the focal plane of the primary and the secondary images
the primary on the cell. This configuration makes it that the primary images of
the sun on the secondary aperture, and thus the secondary contour, defines the
acceptance angle of the concentrator. As the primary is uniformly illuminated by
the sun, the irradiance distribution is also uniform, and the illuminated area will 
have the contour of the primary and will remain unchanged when the sun moves
within the acceptance angle (equivalently when the sun image moves within the
secondary aperture). If the primary is tailored in square shape, the cells will be
uniformly illuminated in a squared area. The squared aperture is usually the 
preferred contour to tessellate the plane when making the modules, while the
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squared illuminated area on the cell is also usually preferred because it fits the
cell’s shape.

Integrator optics in PV was first proposed (James, 1989) by Sandia Labs in
the late 1980s, and it was commercialized later by Alpha Solarco. Now, high-
concentration SMS concentrators (see Section 13.4.3) are including this strategy
for achieving good uniformity and improving tolerances.

Sandia Labs’ approach used a Fresnel lens as primary and a single-surface
imaging lens (called SILO, from SIngLe Optical surface) that encapsulates the cell
as secondary, as illustrated in Figure 13.3.

This simple configuration is excellent for getting sufficient acceptance angle a
and highly uniform illumination, but it is limited to low concentrations because it
cannot get high angles b. Imaging secondaries achieving high b (high numerical
aperture, in the imaging nomenclature) are, to the present, impractical. Classical
solutions, which would be similar to high-power microscopes objectives, need many
lenses and would achieve b ª 60°. Another simpler solution that nearly achieves
b = 90° is the RX concentrator (Benítez and Miñano, 1997; Miñano, Benítez, and
Gonzalez, 1995) (see Figure 13.4). Although the Lens+RX integrator is still not
practical, it is theoretically interesting because shows that the optimum photo-
voltaic concentrator performance (squared aperture concentrator, acceptance angle
a several times larger than the sun radius aS, isotropic illumination of the cell (b
= 90°), squared uniform cell irradiance independently of the sun position within
the acceptance) is nearly attainable.

As an example, for a = 1°, this optimum performance concentrator will get a
geometrical concentration Cg = 7,387¥, which is the thermodynamic concentration
limit for that acceptance angle. Note that since all rays reaching the cell come from
the rays within the cone of angular radius a, no rays outside this cone are col-
lected by the optimum concentrator.

Of course, in practice, the optimum photovoltaic concentrator performance
might be not desired. For instance, as already mentioned, the high reflectivity of
nontextured cells for glazing angles may make the isotropical illumination useless.
As another example, illuminating a squared area inside the cell is perfect for back-
contacted solar cells (such as SunPower’s or Ammnix’ cells), but it may be not so
perfect for front-contacted cells, for which an inactive area is needed to make the
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Figure 13.3 The “Sandia concept 90” proved that the cell could be nearly uniformly illu-
minated on a square (with a squared Fresnel lens) for any position of the sun in the accep-
tance angle. (a) Normal incidence. (b) Incidence near the acceptance angle.



front contacts (breaking the squared shape active area restriction). Finally, for
medium concentration systems (let’s say, Cg = 100) the aforementioned optimum
performance would imply an ultrawide acceptance angle a = 8.6°. It seems logical
that over a certain acceptance angle, there must be no cost benefits due to the
relaxation of accuracies (and 8.6° seems to be over such a threshold). If this is the
case, coming close to the optimum performance seems to be unnecessary for this
medium concentration level.

The present challenge in the optical design for high-concentration photovoltaic
systems is concentrators that approach optimum performance and at the same
time are efficient and suitable for low-cost mass production.

13.2.3 Dispersion of the Optical Efficiency
Corresponding to Different Receivers

In solar thermal concentrating systems—for instance, in parabolic trough 
technology—the optical efficiency along the receiving tube does not need to be
uniform because the system performance depends on the cumulative solar power
cast along the receiver.

However, in general this is not the case in photovoltaic concentration systems.
The level of degradation of performance due to the dispersion of the solar power
cast by the different solar cells depends on the electrical interconnection configu-
ration. The extreme cases are the all-parallel connected cells, whose performance
degradation is unimportant, and the all-series connected cells, whose performance
is much worse when nonequally illuminated.

Consider a set of N solar cells illuminated by nonperfect concentrators that
produce dispersion of the solar power cast by each individual cell of the set. Assume
that the cells are identical (thus, when illuminated equally and independently, all
the individual cells present the same fill-factor FF, short-circuit current ISC, and
open-circuit voltage VOC). Since ISC is proportional to the power cast by the cell
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with very good approximation, instead of referring to the dispersion of the solar
power cast, we can directly refer to the dispersion of ISC instead.

Let us consider the effect of illuminating the cell set in the two extreme cases
(all cells are parallel connected or all cells are series connected). Referring to the
parameters of Eq. (13.1) applied to the cell sets, if all cells are equally illuminated
(ISC,k = ISC, 1 £ k £ N), we get

(13.4)

where VOC and FF are open-circuit voltage and fill-factor of all the (equally illu-
minated) individual cells. Therefore, according to Eq. (13.1), both series and par-
allel sets of cells get the same efficiency when uniformly illuminated.

However, when there is dispersion in the illumination, it is obtained that
(Luqve, Lorenzo, and Ruiz, 1980)

(13.5)

Although the fill-factor when cells are series connected is higher than when they
are parallel connected, the dominant difference with the equally illuminated case
is the decrease of the short circuit current in the series connection case, and in a
(pessimistic) first approximation, it can be said

(13.6)

Quantitatively, the degradation depends on the statistical distribution of the short
circuit current of the differently illuminated cells, which depends on the disper-
sion of different concentrators, their alignment, and so forth. Due to the fact that
the optical efficiency is usually maximum at normal incidence, misalignments
introduce an asymmetry that makes that asymmetric distributions (far from
Gaussian) are usually expected. As an illustrative example of this asymmetry, let
us consider the case of the EUCLIDESTM concentrator, which was developed jointly
by the Spanish Solar Energy Institute of the Technical University of Madrid (IES-
UPM), the British company BP solar and the Spanish Institute of Technology and
Renewable Energies (ITER). The biggest photovoltaic concentration plant in the
world, of 480kW, was made in Canary Islands with the EUCLIDESTM technology.
This concentrator tracks the sun with a single north-south axis, and it is composed
14 units of a parabolic trough 84m long (composed 140 individual parabolic
mirrors, as shown in Figure 13.5) that concentrate the sunlight onto silicon solar
cells, with a geometrical concentration of 38¥. The interconnection configuration
was based on 1,380 series connected cells grouped in 138 modules.

The structural support of the EUCLIDESTM is given by an equilateral trian-
gular beam. This beam suffers flexion and torsion due to the system weight and
the wind loads, which causes pointing errors along the concentrator trough. The
losses associated they’re beam deformations are not relevant for the annual energy
production (because with below 1%; see Arboiro, 1997), but the instantaneous
losses, which can be noticeable, are useful to illustrate the effect of the series con-
nection of the cells. Figure 13.6 shows the results of a simulation of the instanta-
neous performance of the EUCLIDESTM if installed in Madrid for the worst case
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(the time of the year when the beam deformation and the sun position make the
pointing errors maximum). Figure 13.6a shows the photocurrent IL of the cells
along the concentrators, as a function of the cell position and for several wind
speed values. The photocurrent of each cell IL is proportional to the optical effi-
ciency of the mirror that illuminates the cell. Figure 13.6b shows the losses intro-
duced by the nonlinear effects of the series connection as a function of the wind
speed. Note that this graph shows only the losses associated with the series con-
nection (it does not include the decrease of the average of the optical efficiency).
This means if the EUCLIDESTM were solar thermal, its corresponding value in
Figure 13.6b would be 100% independently on the wind speed. Note that for the
case of no wind, although there is up to ±5% of photocurrent dispersion, only a 2%
loss should be expected. However, if the wind has a speed of 30km/h, the minimum
photocurrent reaches the 62% of the nominal value, and the series connection effi-
ciency drops to 79%. In practice, this low value would be pessimistic because each
one of the 138 modules has a bypass diode, which keeps the series connection effi-
ciency at 83%. These bypass diodes (not mentioned before) introduce another non-
linear effect to provide a way for the current to flow skipping the low photocurrent
modules.

This difference between solar thermal and photovoltaics is important because
effects to basic concepts not always clearly identified. For instance, in solar
thermal it is usual to use the concept of effective sun. This consists of analyzing a
real system as perfect but transferring its different imperfections (mirror profile
and scattering, tracking errors, structural misalignments, etc.) to the sun shape
(Rabl, 1985). This model, which is correct for solar thermal, it is not correct for
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Figure 13.5 EUCLIDESTM photovoltaic concentrator plant installed in Tenerife, Spain.
(Courtesy of ITER, BP, and IES-UPM)



photovoltaics when the aforementioned nonlinear effects of series connection take
place.

Another direct consequence of all this is the definition of the acceptance angle.
Photovoltaic concentrators with series-connected cells cannot be used effectively
for the angular positions of the sun where the optical efficiency for some individ-
ual cells is low, whereas in solar thermal systems this can be allowed because the
optical efficiency is averaged along the receiver. For example, consider the afore-
mentioned EUCLIDESIM parabolic trough. Let us assume that each mirror 
has an angular collection curve that can be approximated by a Gaussian curve
with a 50% transmission angle of ±1°. It is easy to obtain from the Gaussian curve
formula that the 90% transmission angle is ±0.4°. In order to avoid a significant
system performance degradation, standard deviation of the mirror positioning and
structural deformation errors should be kept below 1° for the thermal case (speci-
fically, if these errors are Gaussian distributed, a 5% degradation implies a stan-
dard deviation of 0.65°). However, in the photovoltaic case, probably a better
criteria would be to keep the mirror positioning and structural deformation errors
below ±0.4° during 95% of the operation time (if these errors are Gaussian dis-
tributed, this implies a standard deviation of 1°/4.4 = 0.23°, to be compared with
0.65° for the solar thermal). This is the reason why in photovoltaic concentrators
the acceptance angle is usually defined at 90% transmission, whereas the 50%
transmission angle is used as the definition of acceptance angle in solar thermal
systems.

13.3 NONIMAGING CONCENTRATORS FOR
SOLAR THERMAL APPLICATIONS

Table 13.1 shows various solar thermal concentrator types ordered by their geo-
metrical concentration ratio (Cg). In this regard, it is worth pointing out that the
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concept of concentration ratio is frequently misapplied. As is clear from the pre-
ceding discussion, this ratio divides the entrance aperture area by the area of the
absorber. For example, the Cg for a trough of diameter D with tubular absorber
of radius r is D/2pr, and not D/2r. The latter definition is sometimes quoted for
parabolic troughs—perhaps because it gives a higher number—but it is not the
thermodynamically correct definition. We will discuss various concentrator
regimes with Cg as the organizing principle. As already noted, we are concerned
with energy efficient concentrators only. Systems with low throughput are not par-
ticularly useful for solar applications.

13.3.1 Stationary Concentrators (Cg < 2)
This category may well be the most important of all because of the practical advan-
tages enjoyed by fixed solar systems. Recall that the elevation angle of the sun
varies by over 6° over the course of the year, a consequence of the tilt of Earth’s
axis of 23° to the plane of the ecliptic (Figure 13.7).
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Table 13.1. Implications of availability of solar flux over a range of 1–100,000 suns.

Flux (Suns) Conditions Applications

1–2 Fixed concentrator Cooling and heating
2–100 Nontracking/tracking (linear focus) Power generation (cooling and 

heating)
500–10,000 Tracking tower/dish Power generation

20,000–50,000 Solar furnace Materials, lasers space propulsion
70,000–100,000 Speciality solar furnace Materials, lasers, experiments

S

N

December 21

winter

summer

60°

June 21

23.5°

S

N
23.5°

Solar Geometry

Figure 13.7 Tilt of Earth’s axis to the ecliptic plane produces about 60° change in solar 
elevation over the year.



Therefore a fixed concentrator would have to accommodate this annual excur-
sion in elevation on top of the diurnal east-west variation of nearly 180°. Clearly,
the diurnal variation indicates a 2D (trough) geometry aligned east-west. But what
of the excursion in elevation? At one time, the concept of a fixed concentrator was
considered an oxymoron. After all, the Cg of a parabolic trough is 1/p sinq for a
tubular receiver. So a parabolic trough aligned east-west that accepts, say, 60° in
elevation would have a concentration ratio Cg = 2/p. Therefore, such an arrange-
ment actually deconcentrates. To be sure, the geometry of the involute was known
to the ancient Greeks, as was the geometry of the parabola. The involute in 
principle would have a concentration ratio approaching 1 but, in practice, with a
necessary space or gap between absorber and reflector, Cg falls short of 1. With
the advent of nonimaging optics and the recognition of the sine law of concentra-
tion the situation changed dramatically. Fixed solar concentrators were developed
and applied to thermal uses where the temperature requirements exceeded that
of the flat plate collector. A number of CPC collectors for midtemperature use are
now manufactured (Figures 13.8 and 13.9). A particularly attractive use is thermal
driven absorption cooling. In this application, rooftop solar collectors convert solar
radiation that would otherwise warm up the building into heat at temperatures,
say, 115°C to 180°C (Figure 13.10). The low end of the temperature range can drive
a “single effect” absorption chiller, which can be characterized as quasi-static. They
show a coefficient of performance (COP) of about 0.7–0.8. COP is the ratio of heat
removed by the chiller divided by heat supplied to the chiller. Thermodynamically,
this ratio can exceed 1. The upper end is sufficient to drive a “double-effect” chiller
with a COP of about 1.1–1.2. The heat drives an absorption chiller that actively
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Figure 13.8 CPC “flat plate” collector for midtemperature.



cools the building, a double benefit. At the low end, the solar collector’s elements
can be nonevacuated, whereas at the upper end, vacuum insulation is needed.
When triple effect machines become commercially available, with driving temper-
atures in the 200°C range, solar cooling systems with stationary concentrators will
be even more efficient. One can look forward to the day when the COP compen-
sates for collector losses so that the amount of heat removed matches the heat 
collected.

13.3.2 Adjustable Concentrators (Cg = 2–10)
Narrowing the acceptance angle from 30° to, say, 6° still allows for stationary oper-
ation at least during the day. The required frequency of adjustments goes up
rapidly with Cg. Thus, Cg = 3 needs only biannual adjustment, whereas Cg = 10
requires almost daily updates. Thus, systems of this kind can be characterized as
quasi-static. Such collectors and systems have been successfully operated for
thermal and PV applications on both prototype and commercial scales. An indus-
trial process heat installation in Israel using seasonally adjusted nonevacuated
CPCs is shown in Figure 13.11. A project for heating in a very cold ambient used
a Cg = 3 nonevacuated CPC. This was a school building on a Navajo reservation
in Breadsprings, New Mexico, USA, that is over 2,000m elevation near the 
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Figure 13.9 Vacuum tube CPC collector for mid- to high temperature.
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Figure 13.10 Solar cooling using evacuated CPCs driving double-effect absorption chiller.



Continental Divide, which required only winter heating so that the collectors could
be stationary and oriented for winter use. Figure 13.12a shows a schematic
diagram of the collector, and Figure 13.12b shows the collector array on the roof.

13.3.3 Tracking Concentrators, One Axis (Cg = 15–70)
In this category, the most widely deployed type of solar concentrator is the para-
bolic trough, which is not a nonimaging solution. A good example is the solar power
plant at Kramer Junction, California, USA (Figure 13.13). The modern parabolic
trough technology was developed in the United States in the 1970s and early 1980s
with extensive testing and demonstration at Sandia Laboratory in New Mexico.
The technology was commercialized by the LUZ company in Israel, now succeeded
by the Solel Corporation. The parabolic mirrors are back-silvered glass for high
reflectivity and durability. The receiver heat collecting element (HCE) is stainless
steel tubing coated with a highly selective metallo-ceramic (cermet) material and
housed in an evacuated borosilicate glass tube. The glass is chemically treated to
reduce surface (Fresnel) reflections. The working fluid is heated to 400°C so that
the power block is a conventional steam turbine. The backup fuel to the solar heat
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Figure 13.11 CPC array (nonevacuated) for process heat.



input is natural gas. This system represents the largest-scale implementation by
far of solar electric power generation.

Nonimaging design approaches in this concentration range have been mainly
focused on the design of CPC-type secondary concentrators for the parabolic. This
has been done for two reasons: (1) increasing the concentration (which can increase
the conversion efficiency by raising the operation temperature of the absorber
tube) and (2) obtaining a more uniform irradiance distribution on the absorber
(which reduces the thermomechanical stress in the tube wall, especially in direct-
steam generation systems; see Goebel et al., 1996/1997).
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Figure 13.12 CPC (nonevacuated) collectors for winter heating and hot water.



Extensive work has been done considering the parabolic primary as an appar-
ent Lambertian source (Collares-Pereira and Mendes, 1995; Collares-Pereira,
Gordon, and Rabl, 1991; Mills, 1995). When the whole primary mirror is consid-
ered as a single Lambertian source, the achievable concentration is low when the
primary f-number is decreased (which is desired for improving the mechanical
design of the supporting structure). This occurs because the actual bundle imping-
ing on the parabola within ±a, after the reflection, is far from performing as a
Lambertian source (its étendue is significantly smaller). In order to obtain designs
for f/0.5 parabolic primaries (i.e., rim angles f = ±90°), several solutions based on
the division of the primary mirror in sections considered as Lambertian sources
have been developed. Figure 13.14 shows two examples of these secondary designs,
due to Mills (1995) and Collares et al. (1991). Neglecting the mirror reflectivity
losses, the design of Figure 13.14b has 100% ray collection efficiency within the
acceptance angle and gets a concentration of C/CMAX = 0.63, being CMAX = 1/sina,
while the parabola gets C/CMAX = 1/p = 0.32. On the hand, the design of Figure
13.14a has 98% ray collection efficiency and gets a concentration of C/CMAX = 0.80,
while the parabola gets C/CMAX = 0.37 for the same ray collection efficiency.

Later, Ries and Spirkl (1996) designed a CPC-type secondary, eliminating the
restriction of assuming the Lambertian-primary approximation—that is, consid-
ering the actual bundle of rays reflected by the primary (see Figure 13.15a). 
This design is similar to that of the TIR mirror of the dielectric-filled CPC with
circular aperture (Ning, Winston, and O’Gallagher, 1987), described in Chapter 5.
Ries and Spirkl’s design improved the simplicity of the aforementioned previous
designs by Mills and Collares et al. and gets C/CMAX = 0.68 for 100% ray 
collection efficiency.
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Figure 13.13 Large array of parabolic troughs for electric power generation.



Assuming that the primary mirror contour is fixed to a parabola is also an
unnecessary restriction, which limits the performance of the two-stage collectors.
Benítez et al. (1997) applied the SMS design method (see Chapter 8) to redesign
that of Ries and Spirkl to show that the simultaneous unrestricted design of
primary and CPC-like secondary noticeably improved the optical performance. The
comparison numbers of these two qualitatively identical designs given in Table
13.2. As a result, the SMS design for comparison, both secondaries and the caustic
of the edge rays reflected on the primary, are shown in Figure 13.15.
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Figure 13.14 (a) Mills (1995) and (b) Collares et al. (1991) designed CPC-type secondaries
for the Lambertian bundles coming from several primary sections.
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Figure 13.15 Secondary profile and caustics of the edge rays reflected by the primary when
the primary is (a) fixed to a parabola and only the secondary is designed, and (b) is designed
simultaneously with the secondary.



All the aforementioned secondary designs are flow-line mirrors (i.e., mirrors
that guide the flow lines as a funnel). This type of mirrors has been called “non-
sequential” mirrors in Chapter 8 and Appendix B. The flow-line mirrors have the
feature that they have to be located in contact (or very close) to the absorber tube
to achieve high concentration. This forces designers to locate the secondary inside
the evacuated tube, which may be unpractical from the manufacturing point of
view.

The SMS method of Chapter 8 was also used to design two contactless non-
imaging solar thermal collectors, called Snail and Helmet concentrators, which use
sequential mirrors instead of CPC-like mirrors (Benítez et al., 1997). These designs
have a sizeable gap between the optics and the absorber, which has practical inter-
est, as explained following. As in the case of the design of Figure 13.15b, in the
Snail and Helmet concentrators the primary and secondary mirrors are calculated
simultaneously. Since the primary is not forced to be parabolic, there are again
more degrees of freedom available to achieve an improved performance.

The cross section of primary and secondary (this is not to scale) of the Snail
concentrator is shown in Figure 13.14. Its name (and the Helmet’s) is due to the
shape of its secondary mirror. Figure 13.16 also shows some of the edge rays used
in the design process. A detailed explanation of the design procedure for the Snail
is given in Benítez et al., 1997.

The Helmet concentrator cross-sectional diagram is shown in Figure 13.17. On
the contrary to the Snail, the Helmet is symmetric as the conventional parabolic
trough. Further details about the design procedure can be found in Benítez (1998).
Figure 13.18 shows the cross sections of two selected designs.
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Table 13.2. Comparison of the edge rays and caustics of Benítez et al.’s (1997) concentra-
tor and Ries and Spirkl’s concentrator (1996). In the former the primary is designed simul-
taneously with the secondary, while in the latter the primary is constrained to have parabolic
profile.

C/CMAX

Rim angle f (degs) SMS Parabola + TERC Secondary shade

90° 0.74 0.68 2.2%
120° 0.67 0.50 1.7%

–a a

Figure 13.16 Edge rays used in the Snail concentrator design.



The Helmet concentrator fulfills the condition that the average number of
reflections on the secondary <n> is the lower bound attainable for two-stage col-
lectors and for its design parameters—that is, the same rim angles and geomet-
rical concentration. This lower bond can be expressed (for a small) as

(13.7)

where hH and hP are the collection efficiencies for r = 1 of the Helmet concentra-
tor and the parabolic concentrator with the same rim angles and geometrical con-
centration. The equality, reached by the Helmet, holds when (1) all the straight
lines that link every point P of the primary with the absorber coincide with 

n H P≥ -h h
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Figure 13.17 Edge rays used in the Helmet concentrator design (secondary not to scale).

Figure 13.18 Cross section of selected Snail and Helmet concentrators, designed for an
acceptance angle a = ±0.73°. The angle f is the upper rim angle. Other geometrical para-
meters are absorber radius = 1, (Helmet) CG = 54.6, Gap/absorber radius = 11.1, (Snail) CG

= 69.3, Gap/absorber radius = 6.8.



trajectories of rays reflected at P, and (2) the remaining collected rays reflected at
P suffer only a second reflection on the secondary before reaching the absorber.

In order to compare the performance of Snail and Helmet concentrators with
the designs presented previously, let us represent their corresponding points of the
h - C0 plane, where h is the collection efficiency, defined as the fraction of the inci-
dent power that reaches the absorber, and the optical (or flux) concentration C0,
which is the ratio of the average irradiance on the absorber to the irradiance at
the entry aperture and can be calculated as C0 = hCG. Figure 13.19a shows the
performance points of several Snail and Helmet concentrators designed for a =
±0.73° in the h - C0 plane, calculated by ray tracing assuming a uniform bright-
ness distribution within ±a. A reflectivity r = 0.95 for the primary and secondary
mirrors has been assumed. The C0 axis is normalized to the thermodynamic limit
of concentration, Cmax = 1/sina = 78.5.

The Snail concentrators get higher flux concentrations for the same collection
efficiencies than the Helmet concentrators. If a higher reflectivity of the secondary
is assumed (today available as the multilayer interferential mirrors of 3M), the
efficiency and concentration of Snail concentrators increase more than those of the
Helmet concentrators due to their different average number of reflections <n> on
their secondaries: 1.2–1.4 in the Snails and 0.3–0.5 in the Helmets. Figure 13.19b
shows the h - C0 plane in the limit case when r = 1 (not only for the secondaries
but also for the primaries). The performance points of the other two-stage con-
centrators of Collares-Pereira et al. (1991), Mills (1995), Collares-Pereira and
Mendes (1995), Ries and Spirkl (1996) and Benítez et al. (1997) (the last one,
labelled as Gull) are also represented in this figure for comparison purposes. These
concentrators are not shown in Figure 13.19a because the values of h and C0 with
reflection losses have not been reported for some of them. The calculation of h
considers as entry aperture only the nonshaded portion of the primary mirror in
all cases.
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The best concentrator in the h - C0 plane of Figure 13.19b would be an optimal
concentrator (not yet available in practice) which has h = 100% and C0 = Cmax. The
best parabolic troughs (with rim angle f = ±90 degrees) are also represented in the
figure.

The Snail and Helmet concentrators are as yet the only known concentrators
with a sizeable gap between the optics and the absorber that are efficient and
approach the optical concentration limit. The other two-stage concentrator designs
need the secondary to be very close to the absorber in order to be efficient, and
this implies that the secondary must be located inside the evacuated tube. Due to
the high temperature of the absorber, this might be complex guaranteeing low
heat-conduction losses through the secondary mirror supporting points. On the
contrary, secondary mirrors placed outside the evacuated tube or integrated with
it (as done with stationary evacuated CPC collectors) are possible when there is a
sizeable gap between absorber and optics, as shown in Figure 13.20.

In the case of the Helmet concentrator, the integrated secondary option is espe-
cially attractive in terms of its simplicity: If the secondary can be approximated
by an arc of circumference, it would be sufficient to metallize a conventional glass
tube. In this approximation, the parameters to optimize are the ordinate of the
center of the circumference zC and its radius R¢. Figure 13.21 shows the curves
associated with the Helmet concentrators with circular secondaries for various
values of R¢, with zC = R. This figure also shows the points corresponding to the
five Helmet concentrators in Figure 13.19 and the curve associated with the par-
abolic trough with rim angle ±90°, which are the references for comparison. The
calculations made assume a reflection coefficient of r = 100%. As it can be seen,
for an efficiency h = 96.8%, the circular secondary with radius R¢ = 6, R achieves
a concentration 1.92 times that of the 100% efficient parabola and 1.56 times that
of the parabola with the same collection efficiency. If a radius of RS = 11 R, is
assumed for the secondary factors of 2.07 and 1.68 are obtained, respectively. The
same comparison carried out for the Helmet concentrator with respect to the
parabola gives values of 2.29 and 1.86.

The Helmet concentrator is symmetric like the conventional parabolic trough
and has a rim angle close to ±90°, which is of interest for good mechanical stabil-
ity of the collector. In contrast, the Snail concentrator is not symmetric, although
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Figure 13.20 Example of integrated design of secondary concentrators and evacuated tube
for (a) the Snail concentrator and (b) the Helmet concentrator.



the upper rim angle of the primary is also high (90°–105°). The design of asym-
metric two-stage concentrators for tubular absorbers is not new. If a symmetric
system is preferred, it can be obtained by placing the two asymmetric designs (with
their respective receivers) “back to back.” Another way of obtaining a symmetric
collector is shown in Figure 13.22. An advantage of this configuration is that it
does not need a specific supporting structure for the absorber and the secondary
mirror. This strategy was first introduced in the SMTS (Single-Mirror Two-Stage)
photovoltaic concentrator, which will be presented in Section 13.4.2.

13.3.4 Tracking Receiver, Stationary Reflector
A useful hybrid configuration that retains many of the advantages of static systems
while maintaining the relatively high Cg of tracking troughs combines a fixed sta-
tionary reflector with a tracking absorber. Although a number of such configura-
tions have been successfully demonstrated in the past, we will describe one
promising system currently under development. The fixed primary reflector is a
cylinder. By symmetry, rays of any elevation angle are equally (but poorly) con-
centrated into a region bounded by two caustics. The concentrated flux zone moves
with incident direction so that the receiver has to track. By itself, this configura-
tion would not have a high enough Cg to be effective. But when combined with a
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Figure 13.22 Symmetric two-Snail systems: (a) parabolic trough type and (b) Single-Mirror
Two-Stage (SMTS) type.



secondary concentrator, the overall Cg can rival and even exceed the tracking par-
abolic trough. The angular distribution presented to the secondary concentrator 
is highly nonuniform and varies significantly across the aperture. Therefore, this
is a case for the tailored edge-ray method of nonimaging concentrator design. Such
systems are under development for mid- to high-temperature applications. A
prototype with Cg = 40 and evacuated receiver was tested at Sandia (Figure 13.23)
and showed a heat loss coefficient (the efficiency drops only 3% over a span of
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Figure 13.23 Stationary primary with tracking nonimaging secondary solar concentrator
for high temperature.



300°C), which is even lower than tracking parabolic troughs with evacuated
receivers. There are many advantages to having the primary reflector fixed. One
of the principal benefits is the ability to make the primary reflector part of the roof
structure of a building (Figure 13.24). Another is the potentially lower cost asso-
ciated with a fixed primary reflector.

13.3.5 Tracking Concentrators, Two-Axis (Cg = 50–1,000)
Common types of 2D concentrators are parabolic dishes and Fresnel lenses. Par-
abolic dishes for driving high-temperature engines such as Stirling and various
turbines have been under development for some time. The use of secondary con-
centrators has been proposed to improve performance by increasing either Cg, or
intercept, or reducing tracking and tolerance requirements. For practical reasons,
experiments have generally retrofitted existing dishes with secondary concentra-
tors, rather than taking the preferred path of designing both primary and sec-
ondary elements together. The flow-line design lends itself to this retrofit mode
because the secondary reflector is positioned forward of the focal plane of the
primary. For thermal applications, concentration is necessary to achieve high 
temperature.

Since the concentration for a focusing single-stage reflecting concentrator max-
imizes for values of f near 45°, most primaries designed for use without secon-
daries have f-number F/D ratios of between 0.5 and 0.7. Reflecting secondaries 
in retrofit applications with these primaries such as illustrated in Figure 13.25
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Figure 13.24 A building roof concept for stationary primary with tracking secondary solar
thermal system.



are limited to concentrations between 1.5 and 2.0. However, even this moderate
improvement can be quite important in increasing system performance. For
example, if the root-mean-squared (rms) slope errors on the primary are about 5
milliradians, the corresponding “thermodynamic limit” for the concentration of
sunlight in a medium with index of refraction n = 1 (i.e., in air) is about 1,600¥,
and the best single stage concentrator will be able to achieve only about one-
quarter of this, or about 400¥. A trumpet concentrator can increase this effective
concentration readily to about 750¥.

A project is currently being carried out at the University of Chicago group to
design a practical trumpet secondary concentrator to be used in combination with
a faceted membrane primary concentrator for dish-Stirling applications (Bean and
Diver, 1992). This is a retrofit design for a dish that was originally designed as a
single stage, and so it cannot attain the full power of a fully optimized two-stage
concentrator. The configuration is shown in Figure 13.26. Nevertheless, prelimi-
nary ray-trace studies show that the addition of a small trumpet to the receiver
aperture will allow a reduced aperture size and corresponding lower thermal losses
at the operating temperature of 675°C. In addition the secondary will significantly
increase tolerances for tracking error and surface slope errors on the faceted mem-
brane primary. The optical design has been completed, and a water-cooled proto-
type has been constructed and tested under the supervision of Sandia National
Laboratories. This relatively small step marks the beginning of the incorporation
of these devices into practical commercial solar thermal concentrators and is a first
step toward the eventual utilization of their full potential.
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The basic advantages of nonimaging concentrators have to do with their ability
to achieve the highest possible concentration within a given angular field of view.
The practical effects of this limit are very important but are often misunderstood.
One can combine the entire source broadening mechanisms into a single effective
Gaussian source distribution as follows:

(13.8)

where q is the incidence angle relative to the concentrator pointing axis and

(13.9)

is the root-mean-squared (rms) deviation characterizing the combined effective
source distribution and ssun, sslope, sspec, and stracking are the effective rms deviations
characterizing the sun shape, primary slope error, specularity, and tracking errors,
respectively. The factor of two in the slope error term comes about because an error
in the slope results in a change in the angle of a reflected ray by twice the amount
of the slope error, as can be seen from Figure 13.27 (for further details, see Chapter
14.). In principle, if the primary mirror surface slope errors could be reduced to

d s s s s2 2 2 2 22= ( ) + ( ) + ( ) + ( )sun slope spec tracking

S q
pd

q
d

( ) = -Ê
Ë

ˆ
¯

1
2 2

2

2
exp

344 Chapter 13 Applications to Solar Energy Concentration

~10.5"

1"

2"

Thermacore Heat Pipe
Receiver

(16.3 inch diameter
hemisphere)

2"

Trumpet
mounting
brackets (4)

Trumpet Profile
–Cu Spinning from
1/16" Sheet.
–Vapor Deposit Al
SiOx overcoat

1/2"O.D.
Copper Cooling

Coils

Insulation
Boards

(24" diameter)

Overall Outside
diameter @ 27.0¢

Aperture Plate

Foils &
Insulation
over Coils

Ceramic
Cone

Aperture
Thermocouples
1/4" O.D. ¥ 12" (4)
Type K

6.0"

Figure 13.26 Trumpet secondary with thermal receiver.



zero, C max could be somewhat over 46,000. This is the “thermodynamic limit” for
the concentration of sunlight in a medium with index of refraction n = 1.

For practical concentrators this slope error reduces the achievable concentra-
tion for a given slope error that can be achieved with a respectable intercept to
values well below the limit as illustrated for single- and two-stage systems in
Figure 13.28. Spherical primaries with a nonimaging secondary can exceed the
performance of a single-stage paraboloid if long focal length configurations are
employed as shown in Figure 13.29.
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13.3.6 Central Receiver (Cg = 500–1,000)
The central receiver or “solar power tower” concept has been developed and demon-
strated over many years. Proposed by Soviet scientists in the 1960s, the concept
was adopted in a U.S. program in the 1970s as a promising path for power 
generation (Vant-Hull and Hildebrandt, 1976). A good example is the very large-
scale demonstration Solar Two, a 10MW facility in the California Mojave desert.
The objectives of this large-scale demonstration of central receiver technology are
shown in Table 13.3. A distinctive feature of Solar Two compared to its predeces-
sor Solar One was the use of molten salt as the heat transfer and storage medium
(Figure 13.30). A schematic diagram is shown in Figure 13.31. The heliostat field
directs the incident solar radiation to a molten salt receiver on top of a tower
(Figure 13.32). The heated salt can be used to drive a turbine or be stored in tanks.
After successfully meeting its demonstration objectives, the plant was decommis-
sioned in early 1999.

An innovative development of the central receiver concept was adding a relay
reflector to position the concentrated solar flux close to the ground (Rabl, 1976).
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Table 13.3. The Solar Two project.

A six-year, $52 million utility/industry/government cost-shared project to validate
advanced molten-salt solar power tower technology by retrofitting Solar One.

Objectives:
• To stimulate the design, construction, and operation of the first commercial plants
• To validate the technical characteristics of a molten salt plant
• To improve the accuracy of economic projections
• To collect, evaluate, and distribute information to foster interest in commercialization
• To stimulate formation of a commercialization consortium



This has the obvious advantage of allowing the power block also to be on the
ground. In this configuration, the use of secondary concentrators is indicated to
attain high flux at the receiver. This has been done in a large-scale demonstration
at the Weizmann Institute of Science in Rehoveth, Israel. A schematic diagram of
the concept is shown in Figure 13.33. The demonstration is being carried out at
the Weizmann Solar Tower (Figure 13.34) (Yogev, 1997). Nonimaging final stage
concentrators (Figure 13.35) convey highly concentrated solar flux to a receiver
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Figure 13.30 “Solar Two” central receiver plant.
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Molten Salt Technology

Advanced molten salt technology with storage offers
• Solar/EPGS decoupling
• Load following capabilities
• Capacity factors to 60%
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Figure 13.31 Schematic of central receiver solar power plant.

Figure 13.32 Molten salt receiver on top of tower.
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Figure 13.33 Schematic of Weizmann “beam down” central receiver plant.

Figure 13.34 Weizmann solar tower with ground-based CPC receiver depicted to the right
of tower.



and heat exchanger (Figure 13.36). A test of the receiver components at the solar
tower is shown in Figure 13.37.

13.4 SMS CONCENTRATORS FOR PHOTOVOLTAIC
APPLICATIONS

The progress in solar cells’ development since their invention has been huge. The
investment needed has also been important. Present cells are much more 
efficient and the technology much more advanced. Next-generation approaches
attempt to further cell development, increasing the cell sophistication if needed.

However, the photovoltaic concentrator development has not accompanied
such progress. This is obvious in the fact that most photovoltaic concentrator
systems have been based either in the parabola or in the Fresnel lens (see Figure
13.38). The parabola has been recognized since Menaechmus (380–320 B.C.) and
its optical properties since Apolonius (262–190 B.C.), and Galileo (1564–1642) used
lenses for making the first refractive telescope. The thinning of such lenses to avoid
absorption was proposed by Georges de Buffon in 1748 (and later optimized by
Fresnel in 1822).
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Figure 13.35 The CPC receiver for the Weizmann “beam down” central receiver.



The parabola and the Fresnel lens perform far from the theoretical 
concentration-acceptance angle limits. The question is: Are they good enough, or
do we need to come closer to the limit? At low concentration, maybe. But the
present high-concentration trend, needed to reduce the effect in the global cost of
the expensive high efficiency cells, suggests that parabola and Fresnel lens are not
good enough.

Nonimaging optics came into the photovoltaic field as an option for low (static)
concentration (Winston, 1974) or as a CPC-type secondary optical element for
higher concentration photovoltaics (Rabl and Winston, 1976). The first full 
nonimaging device for nonstatic concentration was a nonimaging linear Fresnel
lens with curved aperture (Kritchman et al., 1979).

Among all these nonimaging systems, only the addition of the CPC-type 
secondary to a classical primary could work for very high-concentration sys-
tems (>1,000¥) with sufficient acceptance angle (a > 1°) (Ning, Winston, and O’Gal-
lagher, 1987). However, apart from the lack of illumination homogeneity and the
practical problems related with the flow-line mirrors, this solution is necessarily
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Figure 13.36 Detail of the Weizmann CPC and DIAPR receiver.
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Figure 13.37 Weizmann receiver under test.

Cell

Cell

Figure 13.38 Fresnel lenses and parabolic reflectors are the classical concentrators in 
photovoltaics.

incompact (depth H to entry aperture diameter D ratio H/D ª 1.5 for Fresnel lens,
and H/D ª 1 for parabolic mirror). This is due to the design approach, in which
the secondary and primary are designed separately, and thus the secondary does
not consider the actual rays exiting the primary but considers the primary as a
Lambertian source (Welford and Winston, 1980), as indicated before in Section
13.3.3 for the solar thermal case. The smaller H/D ratio, the lower accuracy of this
approximation, and thus the concentration-acceptance angle product is reduced.

The highest-performance compact concentrators need to design primary and
secondary simultaneously, as is done with the SMS method. This method has pro-



duced new photovoltaic concentrator families during the last decade, which are
presented in the next sections.

13.4.1 Static Concentrators for Bifacial 
Photovoltaic Solar Cells

The interest of static concentration in photovoltaics (PV) resides on several
aspects. First, the concentration reduces the area of the solar cell, which is by far
the most expensive component of a flat PV module, and thus cost reductions seem
possible. Second, as the cost of the module components is more distributed in con-
centration systems, they are less affected by the fluctuations of the market price
of silicon wafers. And third, when compared with tracked concentrators, the static
ones do not need higher maintenance than flat modules to operate.

The PV static concentrators are usually designed for bifacial solar cells. The
bifaciality doubles the possible ray trajectories that can reach the cell, which
implies that the concentration limit is also doubled. This type of cell is not practi-
cal in high concentration systems (as tracking ones) because there is no inactive
cell face to which to fix a heat-sink, and the dissipation becomes more difficult. The
low concentration required is compatible with the design for an acceptance angle
of a = ±30° (typically), which is needed to have a reasonable intercept factor (over
80% typically) when the collector is placed facing south and pointed to the ecliptic.

The concentration limit can also be increased if the cell is surrounded by an
optically dense media. If its refractive index is n, then the concentration limit 
multiplies by n2, so n = 1.5 implies a factor of 2.25 (slightly higher than that of 
the bifaciality). However, except for a few concentrator designs (Bowden, 1993;
Yoshioka et al., 1995), most approaches have linear symmetry (i.e., that of a
trough), which leads to a lower theoretical limit for the attainable concentration.
The factor 2.25 reduces to ~1.73 (as seen in Chapter 5, section 5.2). This concen-
tration limit reduction is possibly compensated with the simpler manufacturing of
linear symmetric devices by low-cost extrusion techniques.

The SMS design method (see Chapter 8) was applied to the design of two static
linear nonimaging designs for bifacial solar cells (Benítez et al., 1999). It has been
done under the framework of the “Venetian Store” project, partially funded by the
European Union via the JOULE program. This project is led by the Spanish PV
manufacturer ISOFOTON (which has already a bifacial cell technology) and aims
to develop a commercial static concentration product for building integration at
competitive cost with the aesthetic of a Venetian store, whose slats will be the 
concentrators.

These two SMS designs are compact and have a performance close to the 
thermodynamic limit in 2D geometry. The concentrators are named RXIF and the
RX-RXI, according to the nomenclature introduced in Chapter 8. In this nomen-
clature, each concentrator is named with a succession of letters indicating the
order and type of incidence on the optical surfaces that the transmitted bundle
encounters on its way from source to receiver. The following symbols are used: R
= refraction, X = sequential metallic reflection, I = sequential total internal reflec-
tion, XF = nonsequential metallic reflection, and IF = nonsequential total internal
reflection (the subscript F refers to the coincidence of the nonsequential mirror
with a flow line).

The RXIF concentrator is made by a dielectric piece of refractive index n with
one mirrored face (see Figure 13.39). The rays transmitted by the RXIF are
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refracted on the upper refractive surface (R), reflected on the back mirror (X) and
may reach the cell directly or after being reflected again (one or more times) by
total internal reflection (TIR) on the upper refractive surface (IF). Then, the upper
aspheric has a double function: It acts as a refractive surface for the incident light
and as a nonsequential mirror by total internal reflection for the rays after reach-
ing the cell. Thus, the edge R of the cell is in contact with the refractive surface
at P, as usual in nonsequential mirrors.

The edge rays of the input bundle that are used in the design are the rays
that form an angle of +a with the vertical direction (let us call these rays i(+)) and
those passing through the point P of the upper refractive surface. By the symme-
try of the concentrator, the symmetric rays are also designed trivially. Figure 13.39
shows the assignation of the edge rays used for the calculation of the optical sur-
faces. The +a rays impinging on the left half of the concentrator are focused on
the lower edge of the cell R¢ with one refraction and one metallic reflection. The
rays passing through P are focused on R and then, as P ∫ Q, the left portion of the
mirror is a circumference. The assignation of the +a rays impinging on the right
half of the concentrator is more complex (Figure 13.39b). The rays impinging on
the inner most portion of the upper refractive surface are focused on R with one
refraction and one metallic reflection. The rays impinging on the outer portion are
focused on R¢ with one refraction, one metallic reflection, and one total internal
reflection. In the transition between both portions, the rays are sent after one
refraction and one metallic reflection toward the TIR mirror with an incidence
angle equal to the critical angle sin-1(1/n) (as in the DTIR concentrator design, pre-
sented in Chapter 5, section 5.2).

The parameters of this design are (1) the acceptance angle a, (2) the refractive
index n, (3) the cell width, (4) the distance from R¢ to Q, and (5) the geometrical
concentration CG. The geometrical concentration (since the whole input ray bundle
is collected) is bounded by the 2D limit CMAX = 2n/sina. Because the total internal
reflection condition must be fulfilled, the attainable concentration is slightly lower
than this limit and can be estimated as C¢MAX @ (1 + cosb)n/sina, where the angle
b = sin-1(1/n) - tan-1(sina/(n - cosa)). For a = 30° and n = 1.5, the former expres-
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Figure 13.39 (a) Assignation of the edge rays used for the calculation of the optical sur-
faces in the RXIF concentrator. (b) Directional collection efficiency for concentrator 3 in Table
13.4 (neglecting the optical losses).



sion leads to b = 3.5°, and C¢MAX is 99.8% of as CMAX. The higher the concentration,
the less the compactness. Table 13.4 shows some geometrical characteristics of two
selected RXIF concentrator designs. Concentrator #2 is the one in Figure 13.39a,
and its 3D directional collection efficiency is shown in Figure 13.39b.

The complete technical design of the concentrator must take into account not
only optical aspects, but also electrical and thermal ones. Cell performance is
affected by the nonuniformity of the illumination and the operation temperature.
These aspects compromise the design, the manufacturing technology of the con-
centrator, and its scale. For instance, for the RXIF design #2, with a scale such
that the cell is 13mm wide, the thermal compromise excludes plastics as dielec-
tric materials. The reason is that the vertical position of the cell inside the dielec-
tric material makes the heat removal more difficult than in a flat module. The
finite differences solution of the problem of calculating the distribution of tem-
perature inside the dielectric provides the data shown in Table 13.5.

It shows that the cell temperature under uniform illumination would be 9.6°C
higher than that of a flat module under the same operating conditions. It also has
been found that the nonuniform illumination does not increase appreciably the
average cell temperature (1.2°C for a 56¥ pillbox-type illumination at the cell
bottom). This is due to the lateral heat conduction along the cell width, which is
good enough at these concentration scale levels.

The RXIF has by design a sizable gap between the bottom of cell (point R¢) and
the mirror. This situation is similar to that of the top edge of the CPC for bifacial
vertical receiver. However, as opposed to this CPC case, the RXIF gap has the 
property that no collected ray passes through it. Therefore, the metal tabs used
for interconnecting the cells can be placed vertically at the gap without shading.

In the photovoltaic case, gaps are important to ensure the environmental pro-
tection of the cell. Unfortunately, providing a gap for the top of the cell in the RXIF

produces optical losses (as in the case of the bottom of the cell in the bifacial CPC).
However, this is solved with the other aforementioned SMS design, the RX-RXI
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Table 13.4. Some geometrical characteristics of RXIF

designs with a = ±30° and n = 1.473 (CMAX = 5.89).

RXIF concentrator #1 #2

CG/CMAX 0.933 0.815
Gap size (QR¢/RR¢) 0.475 0.396
Aspect ratio (height/width) 0.472 0.438

Table 13.5. Cell temperature drop to ambient for the RXIF

#2. Operating conditions: Irradiance = 800W/m2, wind speed
= 2.3m/s (front) - 0m/s (back), cell efficiency = 10%.

D Temperature (in °C)

Illumination profile Uniform Punctual

RXIF, Glass 32.6 33.8
RXIF, Plastic 80.2 80.7
Flat module 23.0 —



concentrator, which has nonshading sizable gaps for both edges of the cell (see
Figure 13.40). Because no nonsequential mirror is used at this time, both edges R
and R¢ of the cell are not in contact with the optical surfaces.

The RX-RXI concentrator is also made by a dielectric piece with one mirrored
face. Conceptually, it is a combination of the well-known RX and RXI concentra-
tors (see Chapter 8). The point K (and K¢), where the mirror has a kink, separates
the RX and RXI portions. The rays transmitted by the central portion (which is
the RX one) are refracted on the upper surface (R) and reflected on the back mirror
(X) toward the cell. On the other hand, the rays transmitted by the outer portion
(which is the RXI one) reach the cell after being reflected once more by total inter-
nal reflection on the upper surface (I). Then, as in the RXIF, the upper aspheric
has again a double function, as a refractive surface and as a sequential mirror by
total internal reflection. The input ray bundle and its edge rays used in the design
are the same as those of the RXIF.

Figure 13.40a shows the assignation of the edge rays used for the calculation
of the optical surfaces. The parameters of this design are (1) the acceptance angle
a, (2) the refractive index n, (3) the cell width, (4) the distance from R¢ to Q, (5)
the distance from R to P, and (6) the geometrical concentration CG (which is
bounded by the limit CMAX = 2n/sina). Figure 13.40b shows a slightly modified RX-
RXI design that provides no kink at the center, which is an interesting feature for
the practical realization.

13.4.2 Single-Mirror, Two-Stage, One-Axis Concentrators
Although the higher concentration seems to lead to the lower cost, the necessity
of greater initial investments suggests that the medium concentration option can
be a good first step with low risk. There are several commercial products that
operate in the low concentration range (C ª 10–40). They use modified one-sun
silicon solar cells, already under fabrication, which permits the penetration in the
market with moderate volume of production. The optic of these systems consists
of linear Fresnel lenses. Because their focal length varies with the sun declina-
tion (due to the apparent increase of the refractive index of the lens with declina-
tion; see Appendix C), one axis tracking is only used for concentrations below 15.
A different approach is the EUCLIDESTM system (shown in Figure 13.5), which is
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Figure 13.40 (a) Assignment of the edge rays used for the calculation of the optical sur-
faces in the RX-RXI concentrator. (b) Practical RX-RXI concentrator with no kink designed
for a cell 13mm wide, a ± 30°, n = 1.473, Cg = 4.3¥ (0.728 Cmax).



the only one that uses mirrors and does one axis tracking (horizontal and N-S 
oriented). Its geometrical concentration is 38¥.

The Single-Mirror Two-Stage concentrator (SMTS) is also a mirror-based
linear system (as the EUCLIDESTM) for the medium concentration range. It was
designed with the SMS design method (Benítez et al., 1995), and is made up of
two mirrors and two receivers, as shown in Figure 13.41. Although the SMTS has
only one mirror per receiver, it is actually a two-stage concentrator: one portion of
each mirror acts as a sequential primary (X) for a receiver, while the rest is a non-
sequential secondary (XF) for the other receiver. Thus, the SMTS is a combination
of the two symmetric XXF designs. It gets a concentration of 60¥ with only one axis
tracking.

The simplicity of the SMTS makes it interesting for low-cost applications, such
as photovoltaic concentration. Moreover, the position of the receivers with respect
to the optic makes it unnecessary to add a specific support structure for the solar
cells and heat sinks (used for cooling the cells), and the latter may even have a
structural function. At the University of Reading (UK) a prototype of an SMTS
concentrator was developed jointly with the IES-UPM with an aperture of 1.5m2,
a geometrical concentration of Cg = 30¥, and an acceptance of a = ±1.5 degrees, as
part of a JOULE project financed by the EU (shown in Figure 13.42).

The Dielectric Single-Mirror Two-Stage concentrator (DSMTS) can be consid-
ered an advanced version of the SMTS (Benítez et al., 1997). It can work with one
axis tracking and a geometrical concentration as high as 100¥ . Its design is also
based on the SMS method.

Figure 13.43 shows the cross section of a DSMTS concentrator for Cg = 30¥
and some representative sun rays have been drawn. Like the SMTS concentrator,
it has a single mirror per cell row, which acts as a primary for one of the cell rows
and as a secondary for the other row. Additionally, a linear dielectric secondary in
contact with the cells increases the concentration-acceptance product by a factor
around 1.5. Figure 13.44a shows the cross section of the dielectric piece with a
bigger scale. It has three faces: one optically inactive, another refractive, and the
last one reflective.

When the sun rays impinge on the right mirror, they are reflected toward 
the cell row on the left. Then there are three possible paths for the rays before

13.4 SMS Concentrators for Photovoltaic Applications 357

Figure 13.41 SMTS concentrator designed with a = ±0.83° and geometrical concentration
60¥.
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Figure 13.42 SMTS concentrator for Cg = 30¥ and an acceptance angle ±1.5°.
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Figure 13.43 DSMTS concentrator designed with a = ±2.37° and geometrical concentration
30¥ (unit length = receiver width).



reaching the cells (see Figure 13.44a): (1) directly, after being refracted by the 
lens, (2) with a refraction on the lens followed by a reflection on the mirror, and
(3) with a reflection on the mirror followed by one refraction on the lens.

The design method of the DSMTS is two-dimensional. This means that if polar
mounting one-axis tracking is used, the concentrator is designed for a given 
declination angle d—that is, for a day within the solstices. As the only refractive
element in a DSMTS works with high local spread of the ray bundles, the con-
centrator will present the same efficiency and nearly equal acceptance angle for
all declinations within the solstices (|d| < 23.5°), as shown following.

The DSMTS shown in Figure 13.43 and Figure 13.44a has been designed for
the equinoxes (d = 0°) with a geometrical concentration of Cg = 30¥. The resulting
90% transmission acceptance angle is a = ±2.4° (see Figure 13.44b). This angle is
very wide compared to other designs with the same concentration: The SMTS 
had a = ±1.5°, and the EUCLIDESTM parabolic trough has a = ±0.7° for this 
concentration factor. This means that the manufacturing, mounting, and pointing
tolerances of the DSMTS are much more relaxed.

On the other hand, it is also possible to design the DSMTS for higher con-
centration with reasonable acceptance angle. For instance, for Cg = 100¥ and
dielectric refractive index 1.5 and acceptance angle a = ±0.72°. This concentration
is 2.6 times that of a parabolic trough with the same acceptance angle, a single
cell row, and rim angle ±45° (this rim angle has the greatest concentration).

Since the acceptance angle of the 100¥ DSMTS is smaller than that of the 30¥
DSMTS, it is more sensitive to the apparent increase of the refractive index of the
secondary lens. The continuous curve in Figure 13.45a represents the acceptance
angle of the 100¥ DSMTS designed for d = 0, as a function of the sun declination
angle d. Since it has been designed for the equinox, the acceptance decreases
slightly to a minimum value (0.64°) at the solstices.

As there is more irradiation at solstices than at equinoxes, it would be inter-
esting to have a higher acceptance at solstices. This can be done by designing for
an intermediate declination between the solstices (d = ±23.5°) and equinoxes 
(d = 0°). A value d = 15° has been used to design another 100¥ DSMTS. Figure 13.45a
shows the acceptance declination angles’ dependence for this case. Its angular
transmission at the equinox and the solstice is represented in Figure 13.45b.
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With respect to the illumination uniformity, the DSMTS is not specifically
designed for producing good uniformity. As an example, the illumination profile
near the solstice when the sun is centered in the acceptance angle is the one shown
in Figure 13.46. The input irradiance is assumed to be 800W/m2 (i.e., 0.8 suns),
and thus the resulting modeled averaged cell irradiance is 20.9 suns. The cell had
a single connection busbar at x = 0. Although the peak irradiance is over 100 suns,
since it is close to the busbar, the simulated cell efficiency at ambient temperature
only drops from 18.6% (uniform illumination) to 18.2%.

IES-UPM manufactured and measured one prototype of the DSMTS with 
Cg = 30¥. Here we will include a summary of the results, and the details can be
found in Mohedano (2001). Instead of using the design in profile, shown in Figure
13.43, which would require making a mirror coating of the reflective face of the
dielectric secondary, the design was slightly modified to guarantee that total inter-
nal reflection is guaranteed in that incidence (as it is done in the design of the
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DTIR concentrator; see Chapter 5), and thus the mirror coating was not needed.
As a consequence, for the same concentration factor, the acceptance angle reduced
from a = ±2.4° to a = ±2.0°, which is still very wide.

The manufacture of the dielectric secondary of this prototype was done by
direct machining on PMMA (for production, the glass-extrusion technology is pre-
ferred). On the contrary, the fabrication of the mirror was done using a potential
mass-production technique, which is interesting for its simplicity. It consists of
conforming the mirror by (see Figure 13.47) (1) taking an aluminum sheet of a
specified size (specifically, its cross-sectional length 2Lm) lamination on it a reflec-
tive film, (2) folding it at the center at a specified angle 2fm, and (3) fixing the
edges at a specified distance 2xm with a slope bm angle.

For given parameters Lm, fm, xm, and bm, the sheet profile adopted by elastic
deformation can be calculated by solving numerically the elastic curve differential
equation of mechanics (Timoshenko, 1983). These parameters can be optimized to
obtain the elastic mirror profile that has minimum standard deviation of the slope
error s with respect to the theoretical profile. For evaluating the slope errors, the
section of the mirror that works only as a secondary was excluded (see Figure
13.43), which is much more tolerant to errors due to the higher local angular
spread of the impinging bundle (see Chapter 14). The rest of the parameters of
the mirror (length of the cylinder L¢m and sheet thickness T) did not affect signi-
ficantly the elastic curve. In the case of the thickness, it must be large enough to
avoid the gravitational or normal wind losses to modify the profile significantly. 
The calculations showed that, in the prototype, T > 1mm for 2Lm = 71.7cm was
sufficient.

After the optimization, the resulting values of Lm, fm, xm, and bm were close to
the theoretical ones (but not exactly the same). The resulting optimized mirror for
the 30¥ SMTS design had a surprisingly low standard deviation of the slope error,
s = 0.014° (see Figure 13.48a). Ray tracing on the optimized elastic curve makes
it possible to predict the performance of the prototype. The angular transmission
curves (considering no optical losses and a perfect dielectric secondary) of the
selected 30¥ DSMTS concentrator with the designed mirror and the calculated
optimal elastic one are shown in Figure 13.48b. The acceptance angle at 90%
transmission reduced from a = ±2.0° to a = ±1.9°. This low standard deviation sug-
gests that this technology may even be suitable for the aforementioned 100¥
DSMTS (when applied to its mirror, s = 0.033° is obtained).
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Figure 13.47 The DSMTS mirror can be conformed just as the elastic curve is achieved
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slope at the sheet edges (bm) and the width of the system (2xm) subsequently fixed.



Apart from the simplicity of the mirror elastically conforming to the desired
shape, as in the SMTS, the DSMTS has the additional advantage of a simple sup-
porting structure because the heat sinks can act as structural beams, as shown in
Figure 13.49 and Figure 13.50.

The geometrical transmission of the DSMTS prototype versus incidence angle
and versus position at the entry aperture was carried out with a laser beam. By
integration over the spatial coordinate, the angular transmission curve shown in
Figure 13.50a was obtained. The maximum transmission was performed at normal
incidence, with 98% of the entry aperture collecting the laser beam light. The
acceptance angle at 90% transmission reduced from the designed value a = ±2.0°
to a = ±1.6°. The discrepancies between the calculated elastic curve model were
due to the inaccuracies in the actual fixing of the optimized parameters Lm, fm, xm,
and bm.
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The optical efficiency of the DSMTS was also measured outdoors. The current
gain with respect to the same cell with the flat panel encapsulation was 26.4.
Therefore, the optical efficiency was hopt = 26.4/30 = 0.88. The modeling of the dif-
ferent causes of optical losses fit well with measurement, and their contributions
are detailed in Figure 13.50b.

13.4.3 High-Concentration Photovoltaic Designs
In the case of high-concentration systems, the present trend goes toward two
research and development lines: single large optic dishes for illuminating a PV
module and many miniconcentrators (concentrator entry aperture diameter = 30–
85mm) for illuminating small cells (1–2mm). Up to now the SMS designs have been
applied to specific miniconcentrator designs, and we will refer only to that line.

In order to make efficient modules, the miniconcentrators are usually trun-
cated as squares for tessellation. In these designs, the acceptance angle remains
unchanged after truncation, and then the acceptance angle, concentration product
is reduced to the factor 2/p = 64%. This reduction would be smaller if the hexago-
nal concentrators were used, but square tessellation is usually considered more
aesthetic because it is free from edge effects.

The interest in miniconcentrators comes from the fact that the small cell 
technology is very close (even simpler) to that of the LED’s, which is very much
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(a)

(b)

Figure 13.50 DSMTS prototype designed for Cg = 30¥ and a = ±2, (a) TIR secondary and
(b) with mirror conformed by elastic bending.



developed and highly automated. As an example, highly efficient 1mm2 GaAs cells
for 1,000 suns operation have been demonstrated (Algora et al., 2001). The power
to be dissipated is around 0.7W. On the other hand, the Luxeon III LED of
Lumileds has a high-flux blue chip of also 1mm2, and its package was designed to
passively dissipate about 4W. Therefore, the thermal problem is higher in LEDs
than in high-concentration photovoltaics.

The first proposed photovoltaic miniconcentrator was the RXI (presented in
Chapter 8). In the framework of the European JOULE project entitled Ultra
Compact High-Flux GaAs Cell Photovoltaic Concentrator (HERCULES), project,
the IES-UPM developed an RXI and manufactured prototypes by injection molding
of PMMA (Álvarez et al., 1999).

The RXI design, whose cross section is shown in Figure 13.52, had a geomet-
rical concentration Cg = 1,256¥, circular entry aperture (40mm diameter), square
GaAs cell (1 ¥ 1mm2), cell illumination up to b = ±70°. The ray-traced 90% trans-
mission acceptance angle was a = ±1.8°.
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RXI prototypes were made by injection molding of PMMA. The mold is made
by a diamond turning technique, with an accuracy of ±1mm. The profiles of the
concentrator parts were measured with a contact profilometer. The profile error,
as the difference between theoretical and manufactured profile along the concen-
trator radius, can be seen in Figure 13.53. Metallization of the lower surface and
front mirror of RXI was made by evaporation of silver. After this, the metalliza-
tion is protected with a coat of painting. To encapsulate the receptor in the RXI,
we use a silicone rubber (Sylgard 184, Dow Corning), which glues the GaAs cell
to the concentrator.

In order to characterize the prototypes, the optical efficiency and angular
transmission curve were measured. The measurement of angular transmission
was made with a source of 890nm wavelength, using a collimated beam created
with a lens and an infrared LED. Figure 13.54 shows the angular transmission
curve of an RXI concentrator obtained from this measurement. The measured
acceptance angle was a = ±1.36°, and the 50% transmission angle was 1.9°.

The current gain (ratio of current with concentrator to current without it) mea-
sured was 1,095, and from it an optical efficiency hopt = 87.2% was deduced. This
was estimated taking into account the dependence of the noticeable reflectivity of
the GaAs with the incidence angle (see Álvarez, 1999; for further details).

The RXI concentrator had excellent performance in terms of optical efficiency
and acceptance angle, but its illumination uniformity was not good (unless its
acceptance angle was reduced, which was undesirable). In the prototype, the cell
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fill factor under the RXI concentrator was FF = 0.77, to be compared with the FF
= 0.85 obtained at the same concentration level under uniform illumination with
a flash lamp.

In order to improve the RXI, its design strategy could be modified. However,
other practical limitations for the photovoltaic application (curved top surface,
nonprotected total internal reflection, need of high reflectivity low-cost mirror) sug-
gested changing the development into a different concept. Thus, the TIR-R con-
centrator was proposed in the continuing European project INFLATCON (shown
in Figure 13.55).

The TIR lens was invented by Fresnel (Stevenson, 1835) as a revolutionary
optics for lighthouses at the beginning of the 19th century. More recently, TIR
lenses have proven to be excellent devices for illumination applications (Medreder,
Parkyn, and Pelka, 1997), with good exit aperture uniformity with the inclusion
of a second optical element (called a mushroom lens), whose geometry coincides
qualitatively with the TIR-R concentrator, although their design was not suitable
for getting good photovoltaic performance.

Using the SMS method to the TIR-R configuration (Álvarez et al., 2001) made
it possible to achieve high-concentration-acceptance angle products, good illumi-
nation uniformity, and sufficiently large aspheric facets (this is important for
keeping high efficiency, due to the possible vertex rounding when manufactured).

The theoretical characteristics of the squared aperture 1,250¥ TIR-R design,
with 2° tilt angle of the vertical facets, are acceptance angle a = ±1.3°, optical effi-
ciency (at l = 630nm) hopt = 82.5%, and irradiance on cell surface at normal inci-
dence (@850W/m2) <2,300 suns.

The inclusion of integration strategies in the TIR-R design is permitting to get
closer to the challenge of design for high-concentration photovoltaic systems that
have high efficiency, a sufficiently wide acceptance angle, sufficient illumination
uniformity, and suitable low-cost mass production.

13.5 DEMONSTRATION AND MEASUREMENT 
OF ULTRA-HIGH SOLAR FLUXES 
(Cg UP TO 100,000)

There has been very rapid progress from the first ultra-high flux measurements
conducted on the roof of the high-energy physics building on the University of
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Chicago in 1988, to the recent experimental investigation of potential laser
pumping and materials processing experiments carried out at the National Renew-
able Energy Laboratory High-Flux Solar Furnace and the Weizmann Institute
Solar Tower (Yogev, 1997). The progression of demonstration experiments is 
summarized in Table 13.6. We shall describe each of these experiments in order,
beginning with the small-scale experiments at Chicago and leading up to the
experimental demonstration of the attainment of 50,000 suns at a power level
approaching 1kW. However, before discussing the individual experiments a few
general features of the measurement procedures are presented.

The measurement of ultra-high fluxes may seem straightforward in principle,
but it is difficult to implement in practice. To measure intense solar fluxes, a mea-
surement of the power passing through an aperture of known area or incident on
a target surface of known area is first required. The flux is then determined by
the ratio of the measured power, P, to the corresponding area, A. Even when the
high fluxes are generated in air, the intense thermal input to most semiconductor
detection devices can very quickly raise their temperature above their operating
limits. In addition, when the flux is generated inside a high-index medium, the
measurement technique has to provide an accurate power measurement taking
account of the different indices of refraction between the medium and that of the
detector. For these reasons all of the measurements described in this work rely on
fluid-based calorimetric measurements. The calorimeter provides a medium for
absorbing the thermal energy and maintaining relatively low operating tempera-
tures. Measurements of temperature differences or temperature increases then
allow a quantitative measurement of the power delivered to the fluid.

For some of our measurements, a “ballistic calorimeter” approach was used in
which the fluid was exposed to the high flux for a measured time interval, and the
temperature rate of rise was measured. An internal electric heater was used to
calibrate the response of the calorimeter fluid to a known power input. Where the
operating scale permitted flow-through, calorimetry was used. In these cases the
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Table 13.6. Summary of Ultra-High Flux Measurements.

Measured Total
Date (Ref) Location Secondary Flux (suns) power

February 1988 Chicago Lens–oil filled 56,000 ± 5,000 ~44W
(Gleckman, 1988 silver vessel
Gleckman et al., (n = 1.53)
1989)

March 1989 Chicago Solid sapphire 84,000 ± 3,500 ~72W
(Cooke et al., 1990) DTIRC

(n = 1.76)
July–August 1990 NREL (Golden, Water-cooled 22,000 ± 1,000 ~3.5kW

(O’Gallagher et al., CO) reflecting silver
1991) CPC—air-filled

(n = 1.0)
March 1994 NREL (Golden, Fused silica 50,000 ± 2,000 ~900W

(Jenkins et al., 1996) CO) (quartz) DTIRC
with “extractor” 
tip (n = 1.46)



power was delivered to an absorbing cavity whose walls were surrounded and
cooled by a measured flow of water. The temperature difference between the inlet
and outlet of the cooling water together with the flow rate provides a continuous
measure of the steady state power, P, delivered.

Coupling of the calorimeter to the higher-index concentrating media requires
an even more elaborate setup. Because the high flux is inside a high-index
medium, it is necessary to get the light to the walls of the calorimeter so that it
can be absorbed. For the small-scale experiments (power levels 100–200W) we
used an oil-filled ballistic calorimetric as will be described further following. In
these cases, the exit aperture of the secondary concentrators is optically coupled
to an indexed-matched window into the calorimeter filled with an index-matched
calorimetric fluid. The oil-filled calorimeter, its window, the optical couplant, and
secondary concentrator act as one optical element. The light, after some small
Fresnel reflection losses, is absorbed by the calorimeter wall. The heating of the
oil inside the calorimeter determines the power passing through the concentra-
tor’s exit aperture, and the concentration is given by P/IA.

In all the geometries an accurate determination of the effective area is made,
and the measured flux is then given by F = P/A. The net “concentration factor,” C,
is then given by the ratio of F to the solar insolation level I measured by a normal
incidence pyronometer (NIP).

13.5.1 Exceeding the n = 1 Limit: Small-Scale
Experiments

To explore the application of these concepts to the generation of very high-solar
fluxes, laboratory scale versions of small two-stage systems were constructed at
the University of Chicago and used to establish new records for the concentration
of sunlight. The first of these systems used primary spherical mirror with a focal
ratio F/D = 2.0 and rim angle f = 11°, and the entire configuration was mounted
on an equatorial tracking system. The long focal length made the spherical aber-
rations from this primary negligible for this nonimaging application. The second
system was actually a miniature furnace, in that a flat heliostat was used to track
the sun and direct a parallel beam of unconcentrated sunlight toward a larger
fixed primary also with a focal ratio of 2.0 and a rim angle of 11°. The system fol-
lowed conventional design principles in that the target is centered on the axis of
the primary. Both primaries produced a concentrated flux of about 2,000kW/m2

(2,000 suns) in their focal zones. High-index secondaries and appropriate calorime-
try were then used to concentrate this sunlight manifold higher and to measure
the resulting flux.

13.5.2 A New Record for the Concentration of Sunlight
For these very first ultra-high-flux demonstrations, the secondary used was a spe-
cially designed CPC-type vessel that was filled with an oil of high refractive index
(n = 1.53). The vessel was made of very pure solid silver (obtained from a bullion
dealer), and its interior walls were highly polished. The vessel was covered with
a small lens that becomes a part of the secondary (its optical properties were used
in applying the “edge-ray” design approach to determine the wall profile curve).
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The exit aperture of the vessel forms the aperture through which the high flux
must pass, and it opens directly into the volume of the calorimeter, as shown in
Figure 13.56.

The ideal limit for this configuration is over 100,000, but reflection losses from
the primary along with absorption losses in the secondary reduced the net expected
concentration to about 60,000 suns. Another reason for a small shortfall is that we
measure insolation with a normal incidence pyranometer, or NIP, which has a
rather “loose” 5° (full-angle) acceptance cone that admits much of the circumsolar
radiation, while our concentrating optics is more tightly limited to the solar disc.
The “ballistic calorimeter” measured a flux concentration 56,000 1/-5,000 times
the ambient terrestrial sunlight intensity (56,000 suns) (Gleckman, 1988; Gleck-
man, O’Gallagher, and Winston, 1989). This exceeded previous high-solar-flux
measurements by more than a factor of three and provided the very first demon-
stration of the capability of nonimaging optics in generating such high solar power
levels.

13.5.3 Brighter than the Sun
In order to achieve even higher fluxes a second small-scale demonstration was
carried out using the heliostat and a slightly larger primary. In this case the
primary and secondary calorimeter assembly were able to be held fixed. The sec-
ondary was formed from sapphire with an index of refraction of n = 1.72, permit-
ting even higher flux concentrations to be attained than with the first experiments
with oil. The side wall profile was shaped so that all radiation inside the accep-
tance angle fulfilled the condition for total internal reflection (no additional metal
coating was necessary). However, in this case the secondary was solid and had to
be coupled into the calorimeter through an index matching (sapphire) window. A
special oil compound was formulated to have an index that precisely matched that
of the sapphire window and secondary, and this was used to fill the calorimeter
assembly shown in Figure 13.57. These experiments produced a flux of 84,000 suns
(Cooke et al., 1990). These measurements paved the way for a series of low-power
experiments on laser pumping using this heliostat and primary configuration
(Cooke, 1992).
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13.5.4 Large-Scale Experiments at the NREL High-Flux
Solar Furnace

The ultra-high-flux concentrators just described are low-power systems (approxi-
mately 100W total) intended for concept demonstration and small-scale applica-
tions. Following through with a long-standing desire to explore the development
of these techniques for larger-scale, higher-power applications, the National
Renewable Energy Laboratory (NREL) designed and constructed a scaled-up solar
concentrating furnace facility specifically intended to take advantage of nonimag-
ing optics (Lewandowski et al., 1991). This high-flux solar furnace (HFSR) concept
uses a modified long focal length design and is capable of delivering up to 10kW
to the focal zone and in particular to the entrance aperture of a secondary 
concentrator.

An artist’s rendition of the furnace concept is shown in Figure 13.58. The
design uses a faceted primary with a long focal length so that when combined 
with a nonimaging secondary element, the resulting configuration can approach
the allowed limit with a high intercept. This is very different from conventional
short focal length furnaces, since it is designed to be able to take advantage of the
use of optimized nonimaging secondaries and approach the thermodynamic limit.
As can be clearly seen in Figure 13.59, aside from the long focal length, the other
optically significant difference between the design of the NREL primary and the
conventional furnaces (made possible by the requirements of the nonimaging
design) is that the incident and target directions are off-axis. The major advan-
tage of this configuration is that the secondary concentrator and target, as well as
any associated equipment (e.g., cooling, data acquisition, etc.) do not shadow the
primary. In these high-concentration geometries an optimum reflecting design is
a CPC with an acceptance angle close to, but slightly larger than, the primary rim
angle, truncated to about 80% of its full height and with design entrance aperture
diameter sized to intercept as much focal plane energy as possible. An optimum
high-index secondary is a DTIRC with an acceptance angle about equal to the
primary rim angle and a spherical or aspheric front surface.
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13.5.5 Measurement of High Flux at Kilowatt Levels 
in Air (n = 1.0)

In order to demonstrate the potential of the furnace for conducting measurements
and experiments with high solar flux in air, the Chicago University group designed
and constructed an optimized CPC reflecting secondary concentrator for use with
the HFSR primary. In collaboration with the NREL staff, we tested two prototype
units during the summer of 1990. On several occasions, flux concentrations at mul-
tikilowatt levels in excess of 22,000 suns were achieved, surpassing the previous
values achieved in air (n = 1.0) by more than 20%. The secondary CPC units have
continued to be used at NREL for a variety of materials processing and chemical
reactor high-flux experiments.

The remainder of this section is concerned with the design and fabrication of
these CPC secondaries and the measurement and analysis of the high-flux per-
formance. A ray-trace model for analyzing the characteristics of nonimaging sec-
ondary elements to be used with the NREL facility was developed. The inputs to
this model are “ray files” generated by NREL. Each of these is a set of rays chosen
by a Monte-Carlo procedure to characterize the focal plane spatial and directional
distribution for a particular set of primary concentrator parameters. For these first
experiments it was decided to use a simple reflecting CPC-type secondary, since
these are easy to cool and the concentrated flux can be used in a low index (n > 1)
target. An analysis of the optical throughput and net concentration ratio of a large
number of different CPCs covering a wide range of design parameters was carried
out by tracing 5,000 or 10,000 rays through each. The peak and average flux con-
centration and total power delivered were investigated as a function of CPC design
acceptance angle, entrance aperture intercept factor, degree of truncation, and sec-
ondary surface reflectivity. In addition, information on the position and directional
distribution of concentrated solar flux in the target plane at the CPC exit aper-
ture was generated. The optimization procedure is shown in Figure 13.60. Each
point represents the predicted average flux concentration ratio at the exit aper-
ture of a particular CPC plotted versus the corresponding total power delivered.
The shape of each CPC is specified completely by three parameters, the aperture
radius, rent, the design acceptance angle fc, and the truncation fraction, ft. The
effects of all reflection losses are included in the ray-trace calculations. For pur-
poses of this calculation, a conservative value of r = 0.91 was used for the sec-
ondary reflectivity. Points for several families of CPCs are shown. The NREL
primary consists of 23 facets, each with a spherical contour and hexagonal perime-
ter, arranged in a roughly rectangular array, and each is individually aligned to
point toward the same off-axis design aiming point. The maximum convergence
angle f at this aiming point for the outer edges of the corner facets is 17.3°, while
19 of the 23 facets are contained within a cone of half angle 15°. The resulting 
flux distribution at the secondary entrance plane is approximately rotationally
symmetric with 90% of the energy lying within a circle 10cm in diameter. The
maximum secondary geometric concentration ratio for the reflecting (n = 1.0) CPC
decreases with increasing fc. For a fixed-acceptance angle, the average flux con-
centration in the entrance aperture decreases with increasing radius (and there-
fore decreases in the exit aperture), while the total intercepted power increases,
as can be seen from the dashed curves in Figure 13.60. The points represented by
the (solid squares) are for untruncated (full-height) CPCs of the indicated values
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of fc and rent. At a fixed small-entrance aperture (e.g., rent = 2cm) the average 
concentration achieved increases rapidly with decreasing fc at a relatively small
sacrifice in power, while for large apertures, the net concentration is not strongly
dependent on acceptance angle, but the total power is, as fc increases to “see” the
entire primary. Since one goal of these early experiments was to demonstrate flux
levels higher than ever achieved previously in air, and at the same time to deliver
these levels at a multikilowatt level over an appreciable area, the design selected
represented a compromise between the two extremes of high flux–low power and
low flux–high power. We chose a CPC with an entrance aperture radius of 3cm
and a design acceptance angle of fc = 14°.

Finally, the effect of truncation is illustrated in Figure 13.60 for six cases (fc

= 14° and 15°, and rent = 2, 3, and 4cm) by the points labeled with asterisks. As
each CPC is truncated to a fraction ft of its full height, the profile was rescaled to
keep the entrance aperture fixed. Thus, the exit aperture increases accordingly,
and the achieved flux eventually decreases. For illustration, a fully developed
(untruncated) 14° CPC profile with an entrance aperture radius of 3cm is shown
in Figure 13.61a alongside a CPC profile with the same acceptance angle and aper-
ture but truncated to 0.8¥ its full height. For each case values of ft from 1.0 down
to 0.5 are plotted in the Figure. For small truncations, the effect is negligible, and
in some cases it is more than offset by a decrease in the net reflection loss with
respect to the untruncated cases. Based on this analysis, the final secondary design
selected has an acceptance angle fc = 14° and was truncated to 80% of its full
height (see Figure 13.60b), corresponding to a geometric concentration ratio Cg =
16.4. The entrance and exit aperture diameters are 6.0cm and 1.48cm, respec-
tively. The combined optical models for the furnace and secondary predict that,
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when deployed in the focal plane of the SERI high-flux solar furnace, an average
concentration in excess of 20,000 suns at a net power of about 3.5kW will be deliv-
ered at the exit aperture. Two mechanically identical water cooled CPCs with the
profile of Figure 13.61b were constructed.

The material selected for the concentrator body was an alloy of tellurium and
copper that has thermal properties close to those of pure copper (high conductiv-
ity and heat capacity) but is much more readily machined. A cross-section drawing
is shown in Figure 13.62a. The concentrator profile was machined out of the inside
of a solid cylinder. Spiral grooves were cut around the outside surface to channel
the cooling water. The whole inside piece was then inserted into a separately
machined outer jacket—also made of the tellurium-copper alloy—and the two
pieces were soldered together. In order to provide clearance for the CPC exit aper-
ture to be fitted into the flux measuring calorimeter (see following), the lower 
12mm of the concentrator wall just above the exit aperture could not be directly
coupled to the cooling jacket. The wall in this portion was left thick to permit heat
to be conducted away from the concentrated flux region expected at the exit aper-
ture. After assembly and soldering, each unit was leak tested, and the inner
surface was given a preliminary polish.

The entire unit was then plated, first with nickel, then silver, and the inner
surface was again polished. Finally, a protective chromate coating was applied over
the inner silver surface. The appearance of the reflecting surface for each of the
two units was less specular than desired, although extra care was taken with the
second unit with some success. Quantitative data on the specular and total reflec-
tivity of these surfaces is not available, although values of r2 between 0.90 and
0.95 are typical. To measure directly the radiant energy emerging from the CPC
exit aperture, a small cold water calorimeter was designed and built. A cross
section (not to scale) is shown in Figure 13.62b. The basic design consists of a
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cavity absorber whose walls are made of the same tellurium-copper material as
the CPC. Grooved fins were machined in its outer surface to distribute cooling
water evenly around the outsides and bottom of the cavity walls, and the whole
piece was inserted into an insulating cylindrical container made of Teflon. The
components were held together by an O-ring seal and insulating cover, machined
so that the CPC exit aperture was flush with and precisely matched to the cavity
opening. The inside of the cavity was painted black with Pyromark paint (a = e =
0.95), and from the aspect ratio of the cavity the effective absorptivity of the cavity
aperture is calculated to be 0.998. The power absorbed within the cavity, Pcal, is
determined simply by recording DT, the difference between the inlet and outlet
temperatures of the cooling water measured with Type K immersion thermocou-
ples connected in a differential configuration and monitoring the volumetric flow
rate V

.
of the water. Then

(13.10)

where m is the mass per unit volume of water. The calorimeter was calibrated with
a 1kW lamp designed to fit tightly inside the cavity. When carefully insulated and
operated in equilibrium, the efficiency of the calorimeter was reliably and repro-
ducibly measured to be e = 0.99.

The high-flux measurement procedure was quite straightforward. The CPC
calorimeter assembly was mounted with its aperture and axis positioned at their
nominal (design) values. The calorimeter flow rate and DT were monitored while
an attenuating shutter was opened. During and after the time to reach equilib-
rium (1–2 minutes), a measure of the net observed concentration defined as

(13.11)C
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was calculated and continuously monitored. Here IDN is the direct normal compo-
nent of the insolation as measured by a normal incident pyronometer (NIP). For
instance, a value of Pcal = 3.5kW with rexit = 0.74cm and IDN 51,000W/m2 corre-
sponds to Cobs = 20,345 (suns).

Measurements with the first unit fell somewhat short of predictions, although
they did represent a new record for the concentration of sunlight in air (n = 1). On
June 26 and 27, values of Cobs = 17,000 to over 18,000 suns were obtained for
several time intervals of several minutes or more, exceeding previous highest
values of 16,000 suns. Later in July, regular readings over 19,000 suns were found
after moving the secondary back and forth along the optic axis to find the highest
value. The major reason for the lower than predicted values with this first proto-
type unit is thought to be nonspecularity of the CPC reflecting surface due to insuf-
ficient polishing of the reflector substrate and some characteristics of the nickel
undercoat. Other possible factors contributing are source broadening due to cir-
cumsolar radiation and short time-scale tracking instabilities caused by wind. The
greater care taken in polishing the second unit paid dividends. This CPC produced
values over 22,000 suns. Although these are very slightly higher than ray-trace
predictions, based on nominal heliostat, primary, and secondary reflectivity, this
result more than met expectations.

13.5.6 Measurement of High Flux at High Power Levels
in a Refractive Medium (n > 1.0)

After the successful demonstration of a high-power high-flux concentrator in air
at the solar furnace, it was desired to repeat the high-index demonstration at this
new larger scale. Because of the inherent optical errors in a larger system, it was
recognized that flux levels equal to those of the small-scale measurements could
not be reproduced at the same intercept and concentration levels. However, the
goal of generating and measuring a flux of 50,000 suns at near kilowatt levels was
adopted as a means of demonstrating the technology. Of course, for these experi-
ments a secondary DTIRC would have to be used, and an optimization procedure
similar to that carried out for the reflecting CPC in air and illustrated in Figure
13.60 was carried out by tracing rays from the primary through a large number
of individual trial DTIRC secondary designs. In all cases the material for the sec-
ondary was fused silica and the front surface arc angle was 50°. The results of this
optimization are shown in Figure 13.63, and the design selected had an entrance
radius of 1.5cm and an acceptance angle of 12°. The initial experiments attempted
to use a scaled-up version of the “ballistic calorimeters” used at Chicago for the
successful small-scale experiments. (See Figures 13.56 and 13.57.) The sec-
ondary/calorimeter assembly used at the HFSR is shown in Figure 13.64. Several
unsuccessful attempts were made to measure the high flux produced by the
furnace and this secondary. The problem had to do with the inability to find an
optical couplant material that would serve to couple the highly concentrated sun-
light from the tip of the secondary to the index-matched fused silica window (and
from there into the oil-filled calorimeter). The couplant invariably overheated and
burned, ruining the coupling and often destroying the tip of the secondary and
damaging the window in the process. It is felt that the inability to scale up from
the low-power measurements has to do with the fact that the heat dissipation
surface area grows only linearly with the linear dimension while the total power
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is growing as the square of the linear dimension, so there is therefore a funda-
mental problem with this approach.

Because of these difficulties in measuring high fluxes in large-scale high-index
media, new techniques were developed (Jenkins et al., 1995; Karni et al., 1994;
1995) to extract light from higher-index materials into lower-index ones. A new
way to measure the flux passing through a large dielectric aperture was developed
from research at the Weizmann Institute of Science (WIS) in Israel and at the Uni-
versity of Chicago. These investigations studied the use of long extensions attached
to the exit apertures of secondary nonimaging concentrators to extract light into
air. A relatively simple device was developed that extracts light into air from a
borosilicate medium (n = 1.46) with an efficiency greater than 99%. New DTIRC
secondaries were fabricated with such “extractor tips.” These secondaries were
then combined with the cold water calorimeter developed for the air measurements
(Figure 13.62b) as shown in Figure 13.65, and a successful measurement of the
power delivered through a small aperture surrounding the “waist” of the extrac-
tor tip was carried out. A photograph of the DTIRC with extractor tip is shown in
Figure 13.66.

How does an extractor work? Well, an efficient extractor works by the multi-
ple reflections of light rays at incrementally increasing angles along its length,
causing each ray to eventually fail TIR and refract into a lower-index medium. In
two dimensions, the model for how an extractor works is easy to visualize and is
shown in Figure 13.67a. A triangular extractor with a small wedge angle b forces
light rays hitting one surface with angle dn to deflect slightly so that the next reflec-
tion occurs with angle

(13.12)d d bn n+ = -1
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If the magnitude of the angle made with the normal to the triangle edge qn is less
than the critical angle qc (qc = arcsin(1/n)), TIR fails and most of the light refracts
out. About 5% of each ray Fresnel reflects under this condition.

But as b gets smaller (the extractor is lengthened) the average number of
reflections that fail TIR increases, causing the efficiency to approach 100% as the
extractor is lengthened. Designing of a three-dimensional extractor, however, is
not so simple. The 3D analogue to the triangle wedge in two dimensions is a cone.
This shape does not have 100% extraction efficiency as the length becomes very
large. Because axially symmetric systems conserve the skew invariant of light rays
upon reflection, some rays can spiral around inside the cone and never fail TIR.
More information explaining skew invariance is given in Appendix C. To visualize
this effect, we depict the light reflecting around a circle as shown in Figure 13.67b.
The angle each reflection makes with the normal to the surface of the circle is con-
served, and the skew invariant of a reflected ray is

(13.13)h r n= sinq

Figure 13.66 Photo of fused silica secondary with extractor tip.



where r is the circle radius and qn is the angle made with the normal to the circle.
Rays with h > Rsinqc cannot exit the circle, as reflection always fails TIR (qn > qc).
In a cone, the skew invariant is conserved, but the cross-sectional radius decreases
along the length. Keeping h constant increases the value qn. It is easily shown that
rays with h > Rsinqc never fail TIR at any position inside the cone. The perfor-
mance efficiency tested via a Monte Carlo ray-tracing algorithm indicates that the
maximum extraction efficiency of an axially symmetric conical extension is under
90%. Such a loss of 10% of the output power is very undesirable, so a modification
is needed.

It turns out that by taking an extension consisting of a long cylinder and
shaving off three planes, one breaks the axial symmetry, and there is no limit on
extraction. This extractor acts as a cone near the entrance and as a three-sided
pyramid at its tip. Inside a three-sided pyramid, the cross-section is an equilat-
eral triangle, as shown in Figure 13.67c. Rays inside this triangle, unlike those
inside a circle, cannot bounce around indefinitely without failing TIR. Since all
rays eventually refract out, the maximum extraction efficiency approaches 100%.
Cross sections with higher-degree polygons, such as squares and hexagons, also
break the axial symmetry that limits the maximum extraction efficiency. These
may also be able to reach 100% extraction efficiency, but they are inferior to an
extractor with triangular cross section as ray traces indicate that it has the highest
efficiency for a given extractor length. The efficiency of the three-sided extractor
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for n = 1.46 as a function of the length L relative to the exit radius R is shown in
Figure 13.68. Making the pyramid as long as possible for a given cylinder length
maximizes the extractor efficiency. For the experiment measuring a solar concen-
tration of 50,000, a L = 15mm long and R = 2.3mm extractor gives L/R > 6 and
more than 99% efficiency. The secondary concentrator and extractor tip is shown
in Figure 13.66. This design is very robust in that the tolerance on manufactur-
ing the planar surfaces is fairly high. Any plane can be tilted by fairly large angles
(up to 10°) with little effect on extraction efficiency. Implications and applications
of such devices on future work is explained later in this chapter.

13.6 APPLICATIONS USING HIGHLY
CONCENTRATED SUNLIGHT

Experiments performed at the Weizmann Institute of Science Solar Tower
(Krupkin, Kagan, and Yoger, 1993; Yoger, 1997) and at the National Renewable
Energy Laboratory’s (NREL) high-flux solar furnace (HFSF) have demonstrated
the effectiveness of using concentrated sunlight and advanced nonimaging secon-
daries to pump lasers and produce fullerenes (potentially useful new forms of 
molecular carbon). The recently developed techniques that allow more flexibility
in design (Jenkins and Winston, 1996) have been used to develop two new config-
urations, each of which couples the high solar flux available at the HFSF to unusu-
ally shaped targets that impose unusual constraints. The first was a Nd:YAG laser
crystal rod, 1cm in diameter and 13cm long. The second was a 6mm diameter
graphite rod used as feed-stock in an experimental fullerene production reactor.
The laser-pumping secondary is designed to deliver the solar flux around the sides
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of the barrel of the laser rod, which is perpendicular to the optic axis of the con-
centrator, while the fullerene secondary develops the high flux on the tip of one
end of the graphite rod, which could be fed into the bottom of the reactor along
the axis of the concentrator. Both the laser crystal rod and the fullerene reactor
require active water cooling.

13.6.1 Solar-Pumped Lasers
Soon after the first laser was built, people imagined machines that would convert
sunlight directly into laser radiation. Simple solar lasers have been around for
almost 30 years (Young, 1965). One main problem preventing widespread use of
sunlight-pumped lasers is that the power levels and efficiencies obtained are very
low. The power of sunlight hitting a typical square meter of Earth’s surface is 
relatively low, and concentrating enough sunlight to achieve lasing threshold can
be difficult. Recent advances in solid-state crystals have been shown to increase
the performance of commercial lasers greatly (by reducing the size of a given power
system), and these allow much higher-efficiency solar-pumped lasers to be built.
The main constraint is concentrating sunlight sufficiently to surpass lasing
threshold. The measurement of ultra-high fluxes limits how effectively sunlight
can pump a laser and what materials could possibly lase.

The most common solid-state lasing material is neodynium-doped yttrium alu-
minum garnet (Nd:YAG), and many experiments have pumped it using sunlight.
Other less common crystals, such as Nd:GSGG, have been used to increase the
laser efficiency. The overlap of the solar spectrum with Nd:YAG is about 14%, and
less common (and costlier) lasing materials increase this value significantly. A list
of solar lasing experiments to date is given in Table 13.7. As can be seen, many
different types of crystals have been used, and a wide range of solar configurations
from one-stage to two-stage systems have been employed. There are two methods
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Table 13.7. Summary of solar laser experiments.

Reference (year) Crystal Output Collecting Po/A
Type Power Area (m2) (W/m2)

High-power solar systems
Arashi et al. (1984) Nd:YAG 18 78.5 0.3
Weksler and Shwarz (1988) Nd:YAG 60 38.5 1.6

Nd:Cr:GSGG 100 38.5 2.6
Benmair et al. (1990) Er,Tm,Ho:YAG 65 38.5 1.7
Jenkins (1996) Nd:YAG 57 12.1 4.7

Multiple crystal lasers
Krupkin et al. (1993) Nd:YAG 500 660* 0.8

Small-scale systems (end-pumped systems)
Falk et al. (1975) Nd:YAG 4.5 0.29 15.5

Nd:Cr:YAG 5 0.29 17.2
Cooke (1992) Nd:YAG 1.7 0.41 4.1

Nd:Cr:GSGG 3.2 0.41 7.8

*Estimated by number of heliostat mirrors in secondary’s field of view (12) ¥ area of each
mirror (54.7m2).



for pumping lasers using sunlight: end pumping and side pumping. Figure 13.69
shows the two techniques. There are advantages and disadvantages in using both
ways. The end-pumping scheme can be used on very small scales, but the pump
light enters the laser crystal entirely from one end. This requires fluxes above
40,000 suns to lase Nd:YAG. Previous high-flux measurements (Jenkins et al.,
1995) show that this system cannot be scaled up indefinitely, as the optical cou-
pling between dielectric surfaces degrades when exposed to ultra-high solar fluxes
at the kilowatt power scale. An end-pumping scheme has a maximum output power
to about 5W. The side-pumping scheme doesn’t face this limitation because the
lasing medium is excited by sunlight entering over a much larger aperture 
(the side walls of the laser crystal). This lowers the threshold concentration, and
the output power can be scaled by increasing the laser rod’s length. The disad-
vantage is that the diameter of the laser crystal must be at least 0.5cm to get high
efficiency. If the mean absorption length of sunlight is large compared with the
diameter of the laser crystal, less sunlight is absorbed, and output power and effi-
ciency is reduced. The disadvantage of side-pumping is that large-scale solar fur-
naces (matching the flux region size to the size of the laser crystal) are required,
while the advantage is that these systems can be scaled up greatly, and output
powers above 500W have been reported (Krupkin et al., 1993). The most advanced
work on solar pumped lasers has been done at the Weizmann Institute Solar Tower.
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Figure 13.70 shows a schematic view of a side-pumped solar laser, and Figure
13.71 is a detailed view of how the solar energy is coupled to the laser crystal. The
overall experiment, which uses both 3D and 2D CPCs, is shown in Figure 13.72.

As can be seen from Table 13.7, the efficiencies of present solar lasers are fairly
low when compared with other solar processes, such as PV-electric generation. A
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square meter of primary mirror can presently be converted into about 5W of laser
output. With a solar insolation level of 1,000W/m2, this is a conversion efficiency
of 0.5%. This is not the appropriate standard of comparison because the cost of
industrial laser power is much more expensive than that of electricity. The impor-
tant factor determining solar laser use will depend on cost/benefit analysis of a
given application.

This is where forecasting becomes problematic, as applications for solar lasers
are somewhat speculative and futuristic. Current research suggests that space-
based applications hold the most promise for solar lasers (Brauch et al., 1991;
1992). In space, the solar insolation level, the input pump source, is more intense
and much more stable. This in turn allows more stable lasing configurations that
increase laser output efficiency and brightness (and building an electrically
pumped laser is difficult). On Earth, high-brightness lasers may require the res-
onator mirrors to move in real time as the solar insolation varies. Also, there are
partially and totally cloudy days (and nights) on Earth. This will prevents round-
the-clock operation of a solar-pumped laser and decreases potential for widespread
commercial use, as electrical-pumped lasers are a well-developed technology and
are becoming cheaper all the time. In space, the generation of electrical power to
pump a laser is not a trivial endeavor. The competition in space to direct pumping
of solar lasers is the use of photovoltaic cells to generate electricity for a commer-
cial laser. Directly pumped solar lasers compete very well with energy-inefficient
flash-lamp-pumped lasers. These commercial lasers are impractical to power by
photovoltaic (PV) cell arrays and have a low brightness (10–15 times the diffrac-
tion limit) in general. However, recently, high-power diode-pumped solid-state
lasers are being produced that have very high electrical to laser light conversion
efficiencies and beam divergences at 1.01 times the diffraction (minimum allowed)
limit (Gitin and Reingrube, 1995).

This system is the main competition to directly solar-pumped lasers. Addi-
tional advantages are that any material can be pumped, and the lasing technol-
ogy is very well developed. Conceptually, powering these lasers with PV panels 
is not very difficult to imagine. For PV cells converting sunlight into electricity
with around a 10% efficiency and with a conversion of electricity into laser power
of 5%, one gets the same efficiency as our directly pumped system (0.5%). Using 
different materials may increase the efficiency of either direct- or diode-pumped
solar lasers, leaving the question of which type of laser to use for future research.
Applications of space-based lasers include industrial processing materials 
at a lunar base, power transmission between satellites, and communications 
in space.

13.7 SOLAR PROCESSING OF MATERIALS

The properties of concentrated solar flux make it very amenable to any industrial
process that involves the heating of materials or surfaces. Sunlight has a very wide
wavelength band from 0.3mm to 2.5mm—much greater than that found in most
other industrial light sources, such as flash lamps or lasers.

Ideally (no atmospheric or optical system losses), concentrated sunlight can
cause materials to reach equilibrium temperatures equal to those found at the
sun’s surface (around 6,000K). Since, for most applications, heating materials need
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significantly lower temperatures (or else vaporization occurs), sunlight could pos-
sibly be used in a vast array of industrial processes. Ultra-high fluxes achieve the
highest temperatures and test the limits of what can be done with sunlight.
Samples with any absorption bands in the solar spectrum can be heated with solar
flux, and the rate of heating can be controlled. Laser light (with its extremely
narrow line widths) can have much lower overall absorption). Coupling in the cost
of producing laser light to direct power from sunlight, there is potential for sun-
light to replace laser processing in many areas. By varying the concentration
levels, the heating rate and final equilibrium temperature can be adjusted. The
limiting factor on heating is how much sunlight is absorbed over the entire solar
spectrum, the emissivity of the sample, and maximum concentration of sunlight
that a solar furnace can produce. Additionally, some processes, such as producing
fullerenes (Chibante et al., 1993; Fields et al., 1993), require that parts of the solar
spectrum be removed. Filtering of sunlight can be done before it is concentrated,
preventing damage to the filters when exposed to ultra-high solar fluxes. Ultra-
high fluxes probe the limits of what solar processing methods can cover. With
short-duration heating of a bulk material (1–30s), nonequilibrium processes are
studied. During short heating pulses the bulk material’s temperature barely rises,
while the surface temperature increases greatly. Thus, the surface is modified,
while the material’s bulk properties are unchanged. By setting down solar-treated
surface layers one after another, one sees the vast potential for industrial appli-
cations. Industrial processing of materials is depicted in Figure 13.73.

An excellent summary of the processes that are being researched currently
using highly concentrated sunlight is available in the article by Pitts and
Lewandowski (1993); Pitts et al., (1993); and Stanley, Fields, and Pitts (1990). By
using the high-flux solar furnace (HFSF) at NREL, solar-induced surface trans-
formation of materials (SISTM) includes the following research highlights:
surface-hardening of steel, cladding (bonding) of thin surface layers to cheaper
bulk materials, and rapid thermal annealing to remove defects in silicon wafers
(used as semiconductors and thin-film solar cells). Table 13.8 lists various
processes that could use ultra-high solar fluxes for materials processing.

386 Chapter 13 Applications to Solar Energy Concentration

Surface treatment
with short pulse
of concentrated
sunlight

Conveyer belt

Sample

Cool down and
new substrate
material added

Multiple-layer
processing

Figure 13.73 Schematic of a high-solar-flux materials process.



13.8 SOLAR THERMAL APPLICATIONS OF HIGH-
INDEX SECONDARIES

This is another possible use of high-index secondaries other than end-pumping
solid-state laser crystals in generating high temperatures to drive gas turbines.
Research is in progress at the Weizmann Institute of Science in Israel (Karni et
al., 1995) on the coupling of dielectric secondaries with gas turbines. They use a
six-sided extractor tip (Figure 13.74) to let solar flux out of the high-index sec-
ondary and into the high-temperature gas environment of the turbine (n = 1). By
sealing it to the electric generation system, it acts as the window to the turbine
and as a novel optical device to extract the solar flux from the borosilicate 
secondary into the low-index air environment where flowing gases are heated to
temperatures of 1,000°–1,350°C. Their thermal system design of the directly ir-
radiated annular pressurized receiver (DIAPR) requires solar concentrations of
5,000–10,000 to minimize reradiation losses when operating at such high 
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Table 13.8. Processes that use ultra-high solar fluxes for materials processing.

Process Explanation

Transformation hardening of steels Hardens surface while keeping bulk properties 
unchanged. Thin layers, such as those found on 
knife blades, could be produced with relatively 
little heat.

Cladding (bonding) of materials Similar to gold-plating materials.*
Self-propagating high-temperature Thermal pulse starts exothermic reaction and

synthesis (SHS) propagates throughout reaction mixture.
Plasma- and flame-sprayed coatings Solar processing may replace use of lasers to 

reduce cracking and imperfections of these 
coatings.

Modifying films produced by physical Thin layers are placed on substrates. Solar
vapor deposition (PVD) process creates desired coating by solid-state 

diffusion and reacting or by melting and liquid 
diffusion and reacting.

Chemical vapor deposition (CVD) Solar systems heat surfaces to help the reactive 
formation of materials procede.

Rapid thermal annealing Ion implantation very important for 
semiconductors. Fast solar pulses of 1–10s can 
anneal out defects during implantation, and 
current research studies the production of high-
efficiency thin-film solar cells†

Metalorganic deposition Similar to CVD. Heated surface aids in creation 
of materials.

Joining materials together Welding of mismatched joints may be helped by 
selective application of sunlight.

Space applications (more details in All of the preceding and processes in zero gravity
this chapter) may allow extremely pure samples to be 

created.

*See Tsuo et al. (1996).
†See Pitts and Lewandowski (1993) and Rawers et al. (1994).



temperatures (Figure 13.75). A summary of their system is given by Karni et al.
(1995). More detailed information on the extractor can be obtained from Karni et
al. (1994). The use of high-index concentrators with TIR reflection conditions (no
losses from reflection that occur on metal surfaces) minimize optical losses in the
system and increases the concentration limit by n2. In general, the use of a higher-
index material to form the aperture of a gas turbine will not produce higher 
operating temperatures.
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This is because the reradiation is proportional to n2 times the area of the sec-
ondary exit aperture, which normally cancels the n2 gain in concentration obtained
by using higher-index materials. All gas turbines operate at temperatures much
less than that of the sun (6,000K), and therefore the spectrum of reradiation is
considerably red-shifted into the infrared (IR) region. By applying selective coat-
ings onto the dielectric concentrator and extractor optics, one may prevent IR 
radiation from reradiating, and it may be possible to reduce heat losses inside
high-temperature electrical generation systems. The various thermal transfer
paths in the high-temperature receiver are shown in Figure 13.76.

13.9 SOLAR THERMAL PROPULSION IN SPACE

Solar thermal propulsion systems in space will require very high temperatures to
generate necessary levels of thrust by the direct solar heating and resulting expan-
sion and expulsion of the propellent material. The optimal material is hydrogen
gas because this lowest-mass molecule has the highest thrust to mass ratio. The
generation of such temperatures, in the range 1,400°–2,200°C, will in turn require
very high levels of solar flux concentration. In practice, to attain such levels it may
be useful and perhaps even necessary to incorporate some form of ideal or near
ideal nonimaging concentrator. In particular, recent work indicates that very 
substantial gains in performance can be generated through the incorporation of a
properly designed nonimaging secondary concentrator combined in a two-stage
configuration with a focusing primary concentrator. Two strategies for final stage
concentration are shown in Figure 13.77. The all-dielectric option has superior
thermal performance but is more demanding on materials. Figure 13.78 shows a
conceptual diagram of a solar-powered hydrogen turbine using an all-dielectric
concentrator with an extractor. The considerations in evaluating the two design
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options are summarized in Table 13.9. As of this writing, NASA has adopted the
more conservative option of a metal reflecting CPC (albeit the metal is a more
exotic iridium than copper) as the final stage concentrator in a solar-driven hydro-
gen turbine.
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Table 13.9. Refractive secondary concentrator overview.

Background Challenges

As the need for achieving super-high
temperatures (2500°K and above) in solar
heat receivers has developed, so also has 
the need for utilizing secondary
concentrators.

Secondary concentrators refocus the
already highly concentrated solar energy
provided by the primary collector, thereby
significantly reducing the heat receiver 
light entrance aperture and the resulting
radiation reflux loss from the cavity.

Benefits
The use of solid single-crystal optically

clear materials for the secondary 
concentrator offer a number of advantages 
over a hollow reflective secondary:

• Higher thermal efficiency (~95% vs ~80%)
• No special cooling required
• Blocks cavity outgassing by sealing the

cavity
• Provides for flux tailoring via flux extractor
• Potential reduction of IR reflux loss from

cavity

The technical challenges of designing 
and  fabricating refractive secondary
concentrator/flux extractors are many:

• Optical materials that can survive 
the environment (high temperature,
hydrogen atmosphere, etc.)

• Coatings for enhancing optical and
thermal performance

• Concentrator/extractor interface gap 
that reduces conductive losses

• Hardware attachments that can 
survive launch loads

• Material and fabrication sources

Applications
• Solar thermal propulsion (AITP, 

Shooting Star)
• Solar thermal power systems
• Solar bimodal system (e.g., ISUS)
• Space commercialization (e.g, solar

furnaces)
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14.1 INTRODUCTION

When a series of concentrators is manufactured, they necessarily differ from the
theoretical design model in several aspects. In the first place, the optical surfaces
have microscopic roughness, which causes some scattering of the incident light.
Second, the surfaces profiles have contour errors—that is, they do not fit perfectly
the theoretical ones. This results in slope variations between the two and thus
angular deviations of the exiting rays. Third, the relative positions of source,
receiver, and optical surfaces involve a certain tolerance. All of these errors affect
the performance of the concentrators, and for each application they should be kept
below a certain level to guarantee a specified quality.

The effect of errors is well known in the case of parabolic reflectors (Butler
and Pettit, 1977; Lof and Duffie, 1963; Rabl, 1985; Winter, Sizmann, and Vant-
Hull, 1990). Moreover, there exists an analytical framework that provides func-
tional relationships between the parameters involved. Within this theory,
concentrator errors are characterized by the probability density function (pdf) of
the angle of deviation of the reflected rays. The angular transmission of the real
parabola (i.e., with errors) is calculated as the convolution of this pdf with the the-
oretical angular transmission (i.e., without errors). It is also possible, in the two-
dimensional case, to transfer the mirror errors to the source (the sun, in solar
applications): The parabola can be considered error-free, but the source must be
widened through the convolution with the pdf. However, for concentrators with
two or more optical surfaces, no analytical theory that quantifies the effect of errors
is available, and manufacturing tolerances are therefore studied by means of ray-
tracing calculations.

In Section 14.2 we present a 2D-analytical error model for multiple optical
surface concentrators. The optical surfaces may be refractive surfaces, sequential
mirrors (such as a conventional parabola), or nonsequential mirrors (i.e., CPC-like
mirrors). The key to the model is the error transfer between optical surfaces: The
errors of one surface can be transferred to another one, leaving the first surface
apparently error-free and increasing the errors of the second one. Through this
transfer process it is possible, following the hypothesis of the model, to transfer



the errors of all the optical surfaces up to the entry aperture and combine them
there.

Using this model the complete concentrator can be studied at the entry aper-
ture with a single probability density function, as in the case of the parabolic reflec-
tor, and therefore the errors can be transferred from the concentrator to the source.
The model can be employed for predicting the behavior of the average concentra-
tor from a manufactured series (if certain parameters of the process are known)
or for estimating the behavior of a specific concentrator of the series.

In Section 14.4 we define the concentrator error multiplier M, which is a single
number that characterizes the concentrator for error calculations, when the errors
at all surfaces are equal. The utility of this number, which depends only on the
concentrator optics and geometry, is its principal characteristic: It is used for 
multiplying the slope error at the surfaces, which gives as a result an angle of
deviation associated with each concentrator. The convolution of the pdf of this
global angle of deviation with the theoretical angular transmission of the concen-
trator is the transmission of the concentrator with errors. In the well-known case
of the parabolic reflector M equals 2.

Finally, Section 14.5 looks at the problem of specifying the maximum slope
error acceptable for a given application. As will be seen, the maximum acceptable
error depends on the error multiplier M but not solely on it.

14.2 MODEL OF REAL CONCENTRATORS

The model presented in this section is two-dimensional—that is, only objects 
contained in a plane are considered. Section 14.3.5 deals with the problem of
extending this theory to three-dimensional concentrators with rotation symmetry.
This study concentrates on contour errors of optical surfaces, although other
errors, such as scattering, could easily be included.

14.3 CONTOUR ERROR MODEL

When a ray impinges on an optical surface with contour errors, it is found that (1)
the point of incidence is different from the expected one, and (2) the slope of the
surface at the point of incidence does not coincide with the theoretical value (see
Figure 14.1). Are position error (a) and slope error (b) of equal importance? The
general opinion is that, for optical purposes, position error is irrelevant, and only
slope errors should be considered (Rabl, 1985). The problem with regard to demon-
strating this statement is How do we compare the two types of error? In a specific
case, the comparison can be made by means of ray-tracing. However, this solution
does not quantify the sensitivity of the concentrator to position error, nor does it
provide information on the parameters that, in general, affect this sensitivity.

Let us prove that the position error can be transformed into an apparent slope
error, which is directly comparable with the real slope error. First, we’ll consider
that the optical surface is a refractive surface q on which a wavefront S impinges.
Let r be the ray associated with the front S that would impinge at point P of q if
this were error-free, and let RI and RC be the respective radii of curvature of S and
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q at P. Figure 14.2 shows the points I and C, center of curvature of S and q at P,
which are therefore distant from P by the values RI and RC, respectively.

Due to the contour errors of the refractive surface q, the real ray that emerges
from point P is not the theoretical ray r, but the ray r¢ that is refracted at P¢ and
with which r forms the deviation angle D [see Figure 14.2a]. The contour error at
P¢ is manifested as a displacement E with respect to the normal to the theoretical
profile and an angular difference S between its tangents. It is easy to see that E
and S are related, in mathematical terms, as S(s) ª dE(s)/ds, s being the arc-length
parameter of the theoretical profile.

The following relationships between angles are deduced from Figure 14.2:
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Figure 14.1 Contour errors of a refractive surface (not to scale).
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Figure 14.2 (a) The ray that appears to refract at point P with a deviation angle D actu-
ally impinges at P¢. (b) Detail of the zone of incidence in the real refractive surface and the
theoretical one.



(14.1)

As Snell’s law is fulfilled at P and P¢, we have

(14.2)

having obtained the final expression through the application of Snell’s law. From
Figure 14.2b, where the central area of Figure 14.2a is represented in enlarged
form, approximating the arc length for that of the chord in the theoretical profile,
it is deduced that

(14.3)

Combining Eqs. (14.1), (14.2), and (14.3), we obtain finally

(14.4)

The first factor in Eq. (14.4) will be called m, the error multiplier. The first term
of the second factor is S, the slope error at P¢. The second term can be interpreted
as an apparent slope error, associated with the position error E, of value

(14.5)

The definition of SE permits the comparison of the effects of the slope and position
errors. Assuming a deterministic sinusoidal error E = Esin(2ps/l) - s is the arc
length parameter of the theoretical profile, it is possible to calculate the spatial
wavelength lC for which the magnitudes of the two terms are equal—that is,
|S| = |SE|. Taking into account that S = dE/ds, we have

(14.6)

If the wavelength l associated with a contour error fulfils l << lC, then (and only
then) the slope error will be dominant with respect to the position error. Thus, 
Eq. (14.6) quantifies when the position error is negligible, an approximation that
is usually given only vague justification.

By way of an example, we might consider a parabolic concentrator with focal
distance f and rim angle ±fM. Given a point P of the parabola, if we call f the angle
formed by the straight line passing through P and the focus with the vertical, it
is easy to deduce that the radius of curvature RC of the parabola at P is 
RC = 2f/cos3(f/2). As for normal incidence Ri Æ • and qo = f/2, we obtain from 
Eq. (14.6) that the wavelength lC = 4pf/(sin(f/2) cos2(f/2), which is the minimum
so that f = 2 arctan(1/21/2) = 70.5°, where lC = 32.6 f. Thus, the position errors
would not be negligible with respect to the slope errors if the error wavelength
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were greater than ª 30 f/10 = 3 f, with the maximum position error being around
f = 70.5°. Note that the mirror length, for fM = ±90°, is L ª 4.6 f.

The extreme case l Æ •, in which the error is converted into a linear one, is
useful for studying tolerance with regard to errors of mirror positioning with
respect to the receiver. As we shall see following, the usual hypothesis that the
slope error is dominant is not valid in this case.

For wavelength errors l greater than lC, the expression Eq. (14.6) would say
the opposite to the usual hypothesis—that is, that the slope error is negligible with
respect to the position error. However, for values of l > 4L (for fM = ±90°, this
implies l > 18 f), the calculation carried out with Eq. (14.6) is not correct because
there is an edge effect: Since in the mirror there is “no room” for a quarter of a
wavelength of the error, the maxima of slope and position used for obtaining Eq.
(14.6) do not coexist in the mirror. Let us calculate, for example, the ratio between
the slope and position errors when l Æ •, in the most favorable case for the 
slope error to dominate (maximum at s = 0). At this extreme E Æ Eo(2pL/l) and
S Æ Eo(2p/l), from which we deduce that SE/S Æ Lsin(f/2) cos2(f/2)/2f. This ex-
pression is also maximum for f = 70.5° so that SE/S < 0.24 L/f. For example, in the
case fM = ±90° it is found that SE/S < 1.1—that is, that the position error is not
negligible with respect to the slope error even in this case of maximum slope error.

This tool is used for quantifying the maximum position error acceptable for
the “general opinion” to be correct. In any case, even though position error may
be considerable, its transformation into slope error permits the study of the optical
surface as though it had no position errors, at the cost of increasing (apparently)
its slope errors. For this reason, from now on we shall consider that only slope
errors are present.

Summarizing, a small slope error S produces angular deviation D with respect
to the theoretical exiting ray with value D = mS, where m is the error multiplier,
is given by

(14.7)

where qi is the angle of incidence of the ray and qo the theoretical angle of refrac-
tion, both calculated using the normal to the theoretical surface (see Figure 14.1).
Observe that the refractive surface formula can also be used for the mirror simply
by making qo = -qi. The quotient tan(qo)/tan(qi) tends to ni/no when qi Æ 0 (ni and
no are the refractive indices at the entry and exit sides, respectively).

When an optical surface is manufactured, the slope errors S that it presents at
each point may take different values with certain probability. From a mathemati-
cal point of view, the slope errors S constitute a stochastic process, which has at a
point Q of the surface an ensemble average E[S(Q)] and a standard deviation sS(Q),
and whose probability density function (pdf) is fs(Q)(q). The errors at different points
of the same surface may be correlated, with a self-correlation function RS(Q, Q¢).

The deviation angle D is also a stochastic process, a function of the slope error
and, in the case of a refractive surface, dependent on the angle of incidence qI. Its
pdf is calculated as (Rios, 1977)
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Therefore, the ensemble average of D is E[D(Q, qI)] = m(Q, qI) E[S(Q)] and its stan-
dard deviation sD(Q,qI)

= m(Q, qI)sS(Q).

14.3.1 ERROR TRANSFER

Consider an error-free concentrator with acceptance angle ±a. Assume that this
concentrator is composed of sequential optical surfaces (refractive surfaces or
mirrors) and nonsequential mirrors, which fulfill that no more than two edge rays
impinge on each point of a sequential surface and only one on each point of a 
nonsequential mirror (excepting its edge points). An additional condition is that
the number of incidences of the edge rays on the concentrator must be finite (which
excludes, for instance, the flow-line concentrator (Winston and Welford, 1979)).

The local half-acceptance angle b(Q) of the concentrator bundle at a given point
Q of an optical surface is given by half the angle formed by the two edge rays rQE

and rQE¢ impinging at Q in the case of sequential optical surfaces, and, in the case
of nonsequential mirrors, by the angle formed by the edge ray rQE impinging at Q
and the tangent to the mirror at Q (see Figure 14.3).

Suppose now that said concentrator has contour errors and that there may be
correlation of errors between points of one optical surface but that the errors at
points of different optical surfaces are independent. These contour errors cause
angular deviations of ray trajectories as indicated in Section 14.3. This implies
that there may be rays inside the acceptance at Q that are not collected and rays
outside it that reach the receiver. In the case of sequential optical surfaces, we
shall call neighbors of the edge rays rQE(rQE¢) those rays exiting from Q and forming
an angle with rQE(rQE¢) smaller than the angle formed with rQE¢ (rQE). There exists
a ray that is a neighbor of rQE and rQE¢: that which coincides with the ray trajec-
tory that bisects the bundle at Q, which forms an angle b(Q) with both edge rays,
an angle we shall refer to as DM(Q). In the case of nonsequential mirrors, the edge-
ray neighbors of rQE are those exiting from Q which, like rQE, are not subject to a
second reflection on the nonsequential mirror. For this case, let us call DM(Q) the
maximum angle formed by rQE with its neighbors within the acceptance at Q (i.e.,
with the first ray that impinges on the nonsequential mirror a second time).

For the correct application of the error transfer method explained following,
the deviation angle D at Q should be smaller than DM(Q) (Condition I). If this 
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(a) (b)

bQ bQ

Figure 14.3 Local acceptance angle bQ at the point Q (a) for a sequential optical surface
and (b) for a nonsequential mirror.



condition is fulfilled, the study can be made independently for the edge-ray neigh-
borhoods of +a and -a. There is a second limitation to the size of D (Condition II),
which will be specified later.

Figure 14.4 shows two optical surfaces, labeled #1 and #2 (refractive surfaces
in the figure, i.e., the concentrator is a lens), and a ray trajectory exiting from the
point P of surface #2. As the point of incidence of this ray on surface #1 is Q, let
us call this ray rPQ. In the example of this figure, rPQ belongs to the bundle of col-
lected rays so that it would reach the receiver if the surfaces were error-free. The
figure also shows the trajectory of rPQ after the refraction at Q when no errors are
present and the edge rays of the bundle at P and Q. The ray rPQ is a neighbor of
the edge rays labeled rPE and rQE.

Let us call S(QQ) the slope error of surface #1 at Q. In accordance with Section
14.3, the slope error S(QQ) that causes the exiting direction of rPQ, after refraction
at Q, to be deviated with an angle D(QQ) = m(Q, qIQ)S(QQ), where qIQ is the inci-
dence angle of rPQ at Q. The ray rPQ will reach the receiver if its trajectory still
coincides with that of a collected ray. The collected directions are characterized by
the pillbox transmission function t(Q, q), which is one between the edge-ray tra-
jectories at Q and zero outside (q is the angle with respect to the vertical at Q).

(14.9)

The direction in which the ray PQ is refracted is a random variable, a function of
the deviation angle, which is given by qD = q (rQE) + D(QQ). Thus, the transmission
at Q is a random variable (discrete, which takes a value 0 or 1), due to its depen-
dence on D(QQ) on substituting the previous expression in Eq. (14.9). The en-
semble average of the transmission of rPQ—which coincides with the probability
P[t(Q, qD) = 1]—is given by the convolution (Rios, 1977)
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Figure 14.4 Error transfer of the slope error at Q to the point P.



(14.10)

where dQ = q (rQE) - q (rPQ), as indicated in Figure 14.4. The final integral indicates
that, as rPQ is a neighbor of rQE and Condition I is fulfilled, the convolution can be
made with a steplike transmission function u(q, rQE), which has no step at rQE¢. In
the knowledge that, as shown in Figure 14.4, dP = q ¢(rPE) - q ¢(rPQ), q ¢ being the
angle with respect to the vertical at P, with the help of the linear change of 
variables D¢ = D(dP /dQ) in Eq. (14.10), we obtain

(14.11)

the new random variable being (Rios, 1977)

(14.12)

This means that the deviation angle at Q can be studied as an apparent deviation
angle at P, given by Eq. (14.12). The preceding change of variables is well defined
if dQ Æ 0 when dP Æ 0 and Condition I is fulfilled for D(QQ) at Q (if Condition I
is not fulfilled, the change of variables is still valid if dP/dQ ª d ¢P/d ¢Q, where d ¢P and
d ¢Q are the angles formed by rPQ with rEP¢ and rEQ¢, respectively).

Figure 14.5 shows two well-known concentrators (Welford and Winston, 1989),
a dielectric-filled CPC and a DTIRC, with which we shall illustrate the error trans-
fer process. Assume that both concentrators have slope errors S(QQ) at their
respective points Q, and let us transfer the errors to the points P. It is easy to see
that for the CPC dQ = dP and therefore, in accordance with Eq. (14.12), the appar-
ent deviation angle at PQ due to the error at Q is D(PQ) = D(QQ) = 2S(QQ). In 
the case of point Q of the DTIRC, the converging refractive surface causes dQ > dP,
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Figure 14.5 Example of error transfer in (a) a dielectric-filled CPC, and (b) a DTIRC.



so the apparent deviation is D(PQ) < 2S(QQ). Thus, the slope error at Q “seen”
from P is smaller in the DTIRC than in the CPC.

The next step consists of combining the deviation angle D(PP) produced by the
slope error at P, S(PP), with the apparent deviation angle D(PQ) produced by
S(QQ). The total angular deviation at P is

(14.13)

However, the calculation of the pdf of D(P) from Eq. (14.13) is not direct because
D(PP) and D(PQ) are not, in principle, independent random variables (even with
S(PP) and S(QQ) being independent). The reason is that, for a given point P, the
deviation angle D(PQ) differs, in general, for each ray rPQ because it depends on
point Q through dP/dQ and D(QQ) in Eq. (14.12). Mathematically, D(PQ) is said 
to be a random variable conditional on the ray rPQ, which can be expressed as
D(PQ/rPQ). This implies that the final integral in Eq. (14.11) is not in fact a con-
volution integral between the pdf of D(PQ/rPQ) and the steplike function u(q, rPE),
because this pdf varies with rPQ.

In order to make D(PP) and D(PQ) independent, or what amounts to the same,
to make the integral at P a convolution integral, we must impose a second condi-
tion on the deviation angles. At the limit dP Æ 0, the ray rPQ tends to the edge ray
rPE, which has an apparent deviation angle D(PQ/rPE). Let us consider the direc-
tion rPQ obtained by deviating the ray rPE with the angle D(PQ/rPE). Condition II
on D(PQ/rPE) states the following: it has to be small enough to make D(PQ/rPQ) ª
D(PQ/rPE). If this condition is fulfilled, the integral Eq. (14.11) represents the con-
volution between the pdf of D(PQ/rPE) and the steplike function u(q, rPE).

Thus, provided that Condition II is fulfilled, the total deviation angle at P
for all the neighbor rays of rPE is calculated as (for the neighbor rays of rPE¢ an
analogous expression holds)

(14.14)

where the random variables D(PP) and D(PQ/rPE) are independent (assuming
independence between S(PP) and S(QQ)). The pdf of total deviation angle for the
neighbor rays of rPE is also given by the convolution (Rios, 1977)

(14.15)

The process of transfer of the slope error at Q to the apparent angular deviation
at P does not require D(PQ/rPE) to fulfill Condition I. However, fulfillment of the
condition may lend the transfer a more physical sense (unnecessary from the
mathematical point of view), since the slope error at Q will be equivalent to a slope
error at P for the ray rPE, with a value

(14.16)

where dP and dQ must be small enough to fulfill Conditions I and II. The total error
is S(P/rPE) = S(PP) + S(PQ/rPE). In the case of sequential optical surfaces, the ratio
dP/dQ can usually be approximated by bP/bQ. Observe that if m(Q)/bQ << m(P)/bP, the
errors at Q are strongly attenuated when transferred to P.

The calculations of the transfer process can also be made with the angle fQ

(shown in Figure 14.4) instead of the angle dQ. These two angles are related by the
refraction law n2 sin(qIQ + fQ) = n3 sin(qRQ+ dQ), which implies dQ ª fQ tan qRQ/tan qIQ.
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The ratio dP/fQ, if calculated at the limit dP Æ 0, coincides with QC/PC, where C is
the point of the caustic of the edge rays at rPE (as is proven in Benítez, 1998).

All of the preceding formulas given for the two-refractive surface case can be
used if one or both surfaces are mirrors, making only qR = -qI.

The process of error transfer described can be applied to multiple surface 
concentrators, going from the receiver to the entry aperture along the edge rays
that emerge from the edges of the source (each one separately), accumulating the
errors of all the optical surfaces in between. The accumulated errors should fulfill
Conditions I and II so that precision is not lost. An edge-ray tracing can be used
to calculate the required parameters. The final formulas for the complete transfer
process for each point x of the entry aperture, to be applied separately to each edge
ray that passes through x, are

(14.17)

where the indices k indicate the intersection of the edge ray that passes through
the point x of the aperture with the surface k (k = 1, 2, . . . , N, numbered from the
receiver to the aperture). The surface N + 1 is the concentrator entry aperture.
The number N may be different for each of the two edge rays that pass through
x, as, for example, in the case of the SMTS concentrator presented in Chapter 13.

The ensemble average and standard deviation of the deviation angle at the
point x for each edge ray is thus given by

(14.18)

14.3.2 Angular Transmission
In Section 14.3.1 we obtained, under certain hypotheses, the two pdfs of the effec-
tive deviation angles for each point x of the entry aperture, associated with each
edge ray that passes through x. Let us suppose that the concentrator has been
designed for an infinite source with angular size ±a. Let fDeff(x,+) and fDeff(x,-) be the
pdfs associated with the rays impinging on x with angles +a and -a, respectively.
The next step should be to obtain a global pdf for the whole concentrator. The
ensemble average of the angular transmission T(q) of the concentrator when errors
are present is calculated with the integrals

(14.19)

where to(q, x) is the pulselike transmission function of the error-free concentrator
at x (which is equal to one between the edge rays and zero outside). The integral
can be called t(q, x), the transmission function of x without errors.
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If Condition (I) is fulfilled, the ensemble average of T(q) does not depend on
the correlation between points of the same optical surface.1 On the other hand, the
standard deviation of the values of T(q) (which provides information about the best
and worst concentrators) does depend on such a correlation, although it is not cal-
culated in this study.

If the concentrator and the error parameters are symmetrical with respect to
x = L/2, the resulting expected transmission will be symmetrical with respect to 
q = 0. Thus, only one of the integrals Eq. (14.19) need be studied.

The calculations in Eq. (14.19) can be simplified if the angular transmission
of the error-free concentrator To(q) is of pillbox type (i.e., one between ±a and zero
outside), since the function to(q, x) will be independent of x. Thus, it can be removed
from the integrals Eq. (14.19), leading to the global pdfs of the deviation angle

(14.20)

If, on the other hand, to(q, x) depends on x (so that To(q) is not stepped) but fDeff(x,±)

does not, then fDeff(x,±) is the global pdf and can be removed from the integrals Eq.
(14.19). In both cases of independence of x, the expected angular transmission is
calculated as

(14.21)

When both to(q, x) and fDeff(x,±) depend on x, the exact formula for calculating the
ensemble average of the transmission with errors is Eq. (14.19), and the process
given by Eqs. (14.20) and (14.21) is an approximation. Although strictly speaking
no global deviation angle pdf exists in this case, Eq. (14.20) can be considered as
an estimation.

Note that, since To(q) and fD(±) are the respective averages of to(q, x) and fDeff(x,±)

along the aperture, the process Eqs. (14.20) and (14.21) consists in calculating
these averages separately and then convolving them, while in the exact procedure
Eq. (14.19) the convolution is carried out at each point and the mean of the result
calculated. If the functions to(q, x) and fDeff(x,±) vary greatly with x, and do so in a
similar (i.e., parallel) way, the approximate procedure will be pessimistic, since in
the exact calculation there is a compensation of errors and acceptance that is not
present in the approximation: where the error is large (small) the acceptance
follows suit. However, if the functions to(q, x) and fDeff(x,±) vary greatly with x, but
in opposite ways, the approximate procedure will be optimistic, since the exact
transmission is situated in the worst case: Where there is most acceptance there
is also most error.
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1 In nonsequential mirrors with a strong correlation of errors between their points this 
affirmation may not hold, as it is possible that rays subjected to two reflections (which we do 
not consider as “neighbors” of the edge rays) are not collected if these reflections are strongly 
correlated.



Observe that, in general, the integration Eq. (14.20) does not conserve the 
pdf shape. For example, if sDeff(x,±) depends on x, the resulting global pdf is not
Gaussian, although fDeff(x,±) is Gaussian for all x.

If the ensemble average of the slope errors is zero, it is easy to prove from Eq.
(14.20) that the standard deviation of the global deviation angle is

(14.22)

Moreover, if the concentrator and the error parameters are symmetrical with
respect to x = L/2, then sD̄ ∫ sD̄(+) = sD̄(-), which can be calculated as

(14.23)

It is possible to give a breakdown of the contributions of each surface to the global
standard deviations Eq. (14.22). The global deviation angle associated with surface
k (used in Eq. (14.17)) has a standard deviation

(14.24)

and fulfills

(14.25)

14.3.3 Acceptance Angle
Once E[T(q)] has been computed, it is possible to calculate the ensemble average
of the acceptance angle with errors, E(a), defined, for example, at 95% of the
normal incidence transmission in E[T(q)]. This value may be different for q > 0
and q < 0 in an asymmetric concentrator (or one with asymmetric errors).

However, it is possible to estimate E(a) without calculating E[T(q)] when 
the errors have zero mean. Consider a symmetric concentrator and let us assume
the following simplifying approximations: (1) the global deviation angle pdf 
is Gaussian, and (2) the acceptance reduction due to errors for a nonstepped 
error-free angular transmission is equal to that for a stepped one. In this situa-
tion, if the error-free concentrator has an acceptance angle ao, E(a) is the number
verifying

(14.26)

This leads to the approximate value (Rios, 1977)

(14.27)

If the acceptance angle with errors is defined at 90% of the normal incidence trans-
mission, the coefficient 1.65 in Eq. (14.27) must be replaced by 2.
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14.3.4 Validation of the Model
The errors model just presented is strictly valid when its hypotheses are fulfilled.
It is not unusual that, for instance, Condition II fails at the concentrator edges.
However, as the failure of the model is limited to small portions of the aperture,
precision may still be high.

There are concentrators, such as the parabolic mirror-secondary CPC combi-
nation, where the condition dQ Æ 0 when dP Æ 0 is not fulfilled at any point of its
aperture. In this case, the model as presented is not applicable unless the sec-
ondary errors are negligible.

Let us check the validity of the model for the case of the XR concentrator
(Miñano and González, 1992) shown in Figure 14.6 by means of a 2D ray-tracing.
The design parameters of this XR are (1) 2D-geometrical concentration Cg = 34¥,
(2) acceptance angle a = ±2.48°, and (3) secondary refractive index n = 1.5.

For this example, suppose that the slope errors of each surface have equal
standard deviations at all their points. Consider also that the slope errors are 10
times greater in the refractive surface than in the mirror—that is, sS2 (mirror) =
0.1 sS1 (refractive surface). Expression Eq. (14.17) was used to transfer the errors
to the entry aperture and calculate the standard deviation of effective deviation
angle for each surface and for the whole concentrator at every point of the aper-
ture (i.e., standard deviations of Dk,eff(x) and Deff(x)). This calculation was made for
only one edge ray, given the symmetry, and the approximation dP/dQ ª bP/bQ was
used. Observe that, as bP << bQ (and m(Q) < m(P) also), the tolerance to errors of
the refractive surface is far greater than that of the mirror. Figure 14.7a shows
the result of this process, normalized to the value sS2.

The effective deviation angle of the refractive surface is smaller than that of
the mirror up to x ª 0.8 L/2 (x = 0 corresponds to the symmetry axis). From this
point to the aperture rim, the effective deviation of the refractive surface increases
rapidly due to the decrease of the local acceptance bQ in the external portion of the
refractive surface.

The standard deviation of the global deviation angle, calculated with Eq.
(14.24), is similar for the two surfaces. The mirror has 2sS2 and the refractive
surface 1.58sS2 (2.55sS2 total) in accordance with Eq. (14.25), although the refrac-
tive surface errors are 10 times higher.
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receiver

Surface X
(mirror)

Surface R (dioptric)

Figure 14.6 XR concentrator with a 2D-geometrical concentration 34¥ and acceptance
angle ±2.48°.



Assuming slope errors with Gaussian distributions and zero mean values, we
calculated with the model the ensemble average of the angular transmission
E[T(q)] for four different values of sS2. The result of the model’s predictions is
shown in Figure 14.7b with full curves. This figure also shows as points the values
obtained with a 2D-ray-tracing program, which fit well with the model even for
slope errors as high as sS2 = 8 mrads. Observe that, as the ray-tracing program
generates random numbers for surface slope for each incidence, the slope errors
within each surface are totally uncorrelated (i.e., S is “white noise”). It is easily
seen that in this situation the standard deviation of the angular transmission with
error sT(q) is null, which implies that the ray-tracing generates (if a sufficiently
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try axis (normalized)

Surface 1 (dioptric)

Surface 2
(mirror)
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no errors

Angle of incidence q (degrees)

Figure 14.7 (a) Standard deviation of the effective deviation angles for each surface of the
XR and the complete concentrator as a function of the distance to symmetry axis. (b) Ensem-
ble average of the angular transmission of the XR predicted by the model (full curves) and
by ray-tracing calculations (broken curves). The labels indicate the different values of the
mirror slope error, which are 10% of those of the refractive surface in all cases (sS2 = 0.1
sS1).



high number of rays are traced) the expected value of the transmission E[T(q)],
which is independent of such correlation.

14.3.5 Example of Application: Predictions for a Specific
Concentrator of a Manufactured Series

The error model presented can predict the behavior of the average concentrator of
a series, if the stochastic processes of the slope errors S of the optical surfaces of
the manufactured concentrator are known. This data can be obtained through the
measurement of these errors at each point of the surfaces of a sufficiently large
sample of the series.

Estimation of the behavior of a specific concentrator of the series can also be
made by applying the model, considering that the stochastic processes Sk are deter-
ministic and that their values coincide at each point with the measured value of
that concentrator, Sc,k(Q). This means that the pdf of Sk is given by

(14.28)

where d(·) represents Dirac’s delta function. Thus, E[Sk(Q)] = Sc,k(Q) and sS,k(Q) =
0 for all points Q. From Eqs. (14.16) to (14.18) it is easily demonstrated that the
apparent deviation angle at all entry points, Dk,eff, caused by the error Sk, is also
deterministic: It has a mean value Dc,k and null standard deviation. From the 
condition sDk,eff(x) = 0 and Eq. (14.20) it is deduced that

(14.29)

sDc,k being the standard deviation of the function Dc,k for the variable x. This result
can also be obtained from another more general one: when Dk,eff(x) is determinis-
tic, the total/global deviation angle associated with the surface k coincides, as a
random variable, with that which is obtained on applying the function Dk,eff(x) to
the random variable X, uniform in the interval [0, L]. The pdf of the global devi-
ation angle can therefore be calculated by applying the fundamental theorem of
functions of random variables (Rios, 1977).

The combination of the errors associated with the different surfaces can be
estimated by applying Eq. (14.25), which will be more precise the less the corre-
lation between the errors of the different surfaces (i.e., the smaller their correla-
tion coefficient, Rios, 1977).

14.3.6 Manufacturing Errors in 
Three-Dimensional Concentrators

The model proposed is 2D, so its predictions and analysis may not be precise in
practice, given that real concentrators are three-dimensional. In the case of linear
concentrators, the model takes into account only the rays perpendicular to the
translation direction, whereas in that of rotational concentrators only meridian
rays are considered.

For rotational concentrators it is possible to improve the estimation given by
the model by taking into account that in rotation symmetry the points of the pro-
files in 2D farthest away from the axis give rise to “more” points on the 3D 
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surfaces (proportional to r, distance from the axis). This can be achieved by 
calculating the integrals of the model that calculate the averages at the aperture
(0 < x < L), extended to the 3D aperture (in 0 < r < R, changing dx for 2prdr).

Given that the processes of mechanization of the surfaces produce mainly
contour errors with rotation symmetry, the ensemble average of the angular trans-
mission should be calculated using, instead of Eq. (14.21), the integral

(14.30)

14.4 THE CONCENTRATOR ERROR MULTIPLIER

Consider the case in which the slope errors of the points of all surfaces of a con-
centrator have zero mean value and the same standard deviation sS. If the con-
centrator is symmetrical, the concentrator error multiplier M is defined as the ratio

(14.31)

where sD is the standard deviation of the concentrator global pdf calculated in Eq.
(14.22). If the concentrator is not symmetrical, two M values should, in general,
be defined: one for q > 0 and another for q < 0.

The error multiplier M is dependent only on concentrator optics and geome-
try, and in accordance with Eqs. (14.8), (14.12), (14.18), and (14.22), M is given by

(14.32)

As in the case of sequential optical surfaces, usually dN+1/dk ª a/bk, it is deduced
from Eq. (14.32) that if mk/bk << mj/bj for 0 £ x £ L, the errors of surface k do not
contribute to the concentrator sensitivity (since they are negligible with respect to
the errors of surface j). Therefore, the tolerance to errors of said surface k is far
greater than that of surface j. This effect occurs, for instance, in the XR concen-
trator, as seen in Section 14.3.4.

The concentrator error multiplier, although a single number, contains much
information about the concentrator errors. Figure 14.8 shows the M values for
several selected concentrator designs. Both the parabola and the CPC have 
M = 2. The calculation with Eq. (14.32) in these cases is direct: N = 1, and for all
xd2 = d1 and m1 = 2, so that M = 2.

The dielectric-filled CPC with moderate acceptance (tan a ª a) has M = 3.04,
which is approximately n = 1.5 times that of the empty CPC. This factor of n coin-
cides with the reduction of the acceptance angle of the bundle after refraction on
the flat refractive surface. The remaining 0.04 is due to the refractive surface
errors. The calculation of M is also easy: N = 2, and for all x d2 = d1, d3 ª n d2, 
m1 = 2, m2 ª 1 - 1/n. Therefore, M = ((2n)2 + (1 - 1/n) n)2)1/2 = 3.04.

When a secondary is added to the parabola (or in the case of the XR), the M
factor is not increased because the secondary errors (if working with far greater
acceptances than the primary), when transferred to the primary, are negligible
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(this was already known for the CPC secondaries (Rabl, 1976) but is found to be
general).

The selected RXI and RX concentrators have M = 3.6 and M = 4.2, respectively.
It seems surprising that, although the collected rays undergo one more reflection
in the RXI than in the RX, the M value of the former is lower. This effect, which
occurs because the local acceptances in their respective mirrors are markedly dif-
ferent, is another clear exemplification of the fact that not only the optics but also
the geometry of the concentrator is important with regard to errors.

14.5 SENSITIVITY TO ERRORS

The error multiplier M does not alone define the error sensitivity of a concentra-
tor, since the acceptance angle ao of the error-free concentrator also plays a role.
For instance, in the example from the previous section, the CPC increases its M
value by a factor n = 1.5 on being filled with dielectric media. However, its accep-
tance ao also increases by the same factor so that the resulting acceptance with
errors E(a) can be expected to improve proportionally to n, even though M has
increased.

The parameter to compare must be this resulting acceptance angle E(a), which
depends on the theoretical acceptance angle ao and on M. It can be easily esti-
mated from Eqs. (14.27) and (14.31) as

(14.33)

where all concentrator surfaces are assumed to have slope errors with standard
deviation s.

As an example of the practical interest of the parameter M, let us calculate
the maximum slope error smax that can be tolerated for a given application. If the
minimum acceptance angle required is amin, according to Eq. (14.33)

E Ma a s( ) ª - 1 65.
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Figure 14.8 Concentrator error multipliers of several selected concentrators.



(14.34)

provided that ao > amin. If ao < amin, the concentrator could not be used in this appli-
cation, since it would not reach the minimum acceptance even without errors.

Figure 14.9 shows the specification of maximum errors admissible for several
selected concentrators for two different geometrical concentrations if the resulting
acceptance must be at least amin = ±0.75°. The values of smax depend on Cg through
ao. The M values calculated in the previous section have been considered valid for
both cases (M does not vary much with concentration).

The parabolic mirror with concentration Cg = 5¥ can be used for this applica-
tion if manufactured with slope errors below ª22 mrads. However, the parabola
cannot be used for Cg = 50¥ because the acceptance without errors is already infe-
rior to ±0.75 degrees. Observe that a concentrator may be more sensitive to errors
than another one for a given concentration but less sensitive for a different con-
centration value. This is the case of the RXI and the CPC in the preceding example.

14.6 CONCLUSIONS

This chapter has presented an error model for real concentrators that allows,
under certain hypotheses, the prediction of the (average) behavior of concentra-
tors after manufacture if the tolerances of the technology employed are known.
This prediction can be made in terms, for example, of the angular transmission
curve. From this model, moreover, design rules can be inferred in order to avoid
solutions sensitive to errors or with critical portions of optical surfaces.

The key to the model is error transfer between surfaces, a process that con-
sists in transforming the system composed of two surfaces with errors into an
equivalent system in which errors are transferred from one surface to the other,
eliminating the errors of one of them and apparently increasing the errors of the
other. Through the transfer process the errors of all the concentrator surfaces are

s a a
max

min

.
ª -

1 65M
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(a) (b) 

Figure 14.9 Specification of the maximum slope errors that can be allowed to obtain an
acceptance angle of ±0.75 degrees for several selected concentrators. The 2D-geometrical
concentration is (a) Cg = 5x, and (b) 50x.



transferred to the surface of the entry aperture or even to the source (leaving the
concentrator error-free).

A noteworthy result of this model is that the behavior of each concentrator is
characterized by a single number: its error multiplier M. In consequence, it is pos-
sible to classify concentrators on the basis of M in terms of errors in order to obtain
a degree of intrinsic sensitivity to manufacturing errors for each design.

Moreover, the number M has practical applications that are both simple and
very useful. For example, multiplied by the standard deviation of the slope error
of the optical surfaces of the concentrator, it gives directly the standard deviation
that must be added (quadratically) to the angular width of the source for trans-
ferring to it the errors of the concentrator. It is also possible to estimate from M
the maximum slope errors admissible for a given application, simply by carrying
out a subtraction and a division, as shown in equation Eq. (14.34).
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DERIVATION AND
EXPLANATION OF THE
ÉTENDUE INVARIANT,

INCLUDING THE
DYNAMICAL ANALOGY;

DERIVATION OF THE
SKEW INVARIANT

415

A.1 THE GENERALIZED ÉTENDUE

In Section 2.7 we introduced the invariant

(A.1)

The meaning of this was as follows: Let any ray be traced through an optical
system, and let rectangular coordinate axes be set up in the entry and exit spaces
in arbitrary orientations. Also, let the ray meet the x, y plane in the entry space
in (x, y), and let its direction cosines be (L, M, N), and similarly for the exit space.
Then for any nearby ray with coordinates (x + dx, y + dy, L + dL, M + dM) we have

(A.2)

We shall prove in Section A.2 that this result is true for any optical system and
for any choice of the directions of the axes. But first we discuss some different ways
of interpreting this result. We put p = nL and q = nM, and we treat (x, y, p, q) as
coordinates in a four-dimensional space. Let U be any enclosed volume in this
space. Then U is given simply by

(A.3)

taken over the volume. The result of Eq. (A.2) means that if we let a ray sweep
out the boundary of this volume in the four-dimensional entry space, it will sweep

dU dx dy dp dqÚ ÚÚÚÚ=

n dx dy dL dM n dx dy dL dM¢ ¢ ¢ ¢ ¢ =2 2

n dx dy dL dM2



out an equal volume in four-dimensional exit space or, clearly, in any intermedi-
ate space of the optical system. There is a useful analogy between this space and
the multidimensional phase space of Hamiltonian mechanics, so we shall call it
simply phase space. Thus, our result is that if a ray sweeps out a certain volume
of phase space in the entry region, it sweeps out the same total volume in the exit
region, or, more concisely, phase space volume is conserved. Of course, the shape
of the volume will change from entry to exit space or even if the origin of coordi-
nates is shifted parallel to the z direction. However, it can easily be shown that
rotating the axes about their origin does not change the phase space volume, so it
is a physical significant invariant.

Another picture that is particularly valuable for the purposes of this book may
be obtained by supposing that an area in the x, y plane (in real space, not phase
space) is covered with uniformly closely spaced points and that through each point
a large number of rays is drawn. These rays are to be in different directions so
that their direction cosines increase by uniform small increments over certain
ranges of L and M. The rays so drawn then represent “ray points” uniformly spaced
throughout a certain volume of phase space, and our theorem can then be stated
in the following form: The density of rays in phase space is invariant through the
optical system. If the four-volume U of Eq. (A.3) has been defined by means of
physical components in the optical system—that is, an aperture stop and a field
stop—it is known as the throughput or étendue of the system.

We can see from the ray-point representation that the étendue is a measure
of the power that can be transmitted through the optical system from a uniformly
bright source of sufficient extent, in the geometrical optics approximation. Here,
of course, in addition to neglecting interference and diffraction effects, we are
assuming no losses in the system due to reflections, absorption, or scattering. The
concept of étendue is applied in comparing the properties of many different kinds
of optical instruments, although usually only a simplified version appropriate to
axially symmetric systems is used.

A.2 PROOF OF THE GENERALIZED 
ÉTENDUE THEOREM

Equation (A.2) has been proved in many different ways. In particular, the analogy
from Hamiltonian mechanics can be used to give a simple proof (see, e.g., Marcuse,
1972; Winston, 1970). However, since we are here concerned with applications to
geometrical optics, it seems appropriate to give a proof based directly on optical
principles. We shall discuss the mechanical analogies in some detail in section A.3.

We follow closely the method of Welford (1974), which makes use of the point-
eikonal, or characteristic function, of Hamilton. This function is defined as follows.
We take arbitrary cartesian coordinate systems in entry and exit spaces of the
optical system under discussion. Let P and P¢ be any two points in the entry and
exit spaces, respectively, and let them be in the x, y planes of their respective coor-
dinate system1. Then the eikonal V is defined as the optical path length from P to
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1 This is in no way essential to the definition of the eikonal; it merely simplifies the present
calculation.



P¢ along the physically possible ray joining them. In general, one and only one ray
passes through P and P¢, but if there is more than one, then V is multivalued.
Thus, with the preceding restriction V is a function of x, y, x¢, and y¢. Let the direc-
tion cosines of the ray in the two spaces be (L, M, N) and (L¢, M¢, N¢); then the fun-
damental property of the eikonal can be stated as follows:

(A.4)

This property is proved in many texts on geometrical optics (e.g., Born and
Wolf, 1975; Welford, 1974). To prove our theorem we differentiate Eq. (A.4) again,
and we obtain, using the notations of Eq. (A.3) and using subscripts for partial
derivatives,

(A.5)

We next rearrange these terms and put the equations in matrix form

(A.6)

If we denote the two matrices by B and A and the column vectors by M and
M¢, this equation takes the form

(A.7)

and multiplying through by the inverse of B,

(A.8)

This matrix equation can be expanded, and we get together with three similar
equations

(A.9)

It can be seen that the determinant of the matrix B-1 A is the Jacobian

(A.10)

which transforms the differential four-volume dx dy dp dq—that is, we have

(A.11)

Our result will be proven if we can show that the Jacobian has the value unity.
But the determinant of matrix B has the value
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and that of matrix A has the same value, since Vxy¢ = Vy¢x, and so forth. Also, the
determinant of the product of two square matrices is the product of their deter-
minants, so that

(A.13)

Thus, det(B-1 A) = 1 and Eq. (A.13) yields our theorem, Eq. (A.2).

A.3 THE MECHANICAL ANALOGIES AND
LIOUVILLE’S THEOREM

In this section we shall indicate the analogies used to identify our theorem of the
invariance of U, the étendue, with Liouville’s theorem in statistical mechanics.

Fermat’s principle, on which all of geometrical optics can be based, can be
stated in the form

(A.14)

where ds is an element of the ray path from P1 to P2. This can be written in the
form

(A.15)

where

(A.16)

and the dots denote differentiation with respect to z. Also, we define

(A.17)

The analogy is to regard L as the Lagrangian function of a mechanical system
in which x and y are two generalized coordinates, p and q are the corresponding
generalized momenta, and z corresponds to the time axis. On this basis the ordi-
nary development of mechanics can be carried out, such as by Luneburg (1964,
Article 18), by solving the variational problem of Eq. (A.15). The Hamiltonian is
found to have the value

(A.18)

In other words, it is -nN where N is the z-direction cosine, and, of course, p and
q as just defined are respectively equal to nL and nM. The phase space for this
system has the four coordinates (x, y, p, q), and Liouville’s theorem in statistical
mechanics can be invoked immediately to state that phase space volume is 
conserved.

However, the meaning of Liouville’s theorem in mechanics is rather different
from the theorem of conservation of étendue. Liouville’s theorem is essentially 
statistical in nature, and it refers to the evolution in time of an ensemble of me-
chanical systems of identical properties but with different initial conditions. Each
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system is represented by a single point in phase space, and the theorem states
that the average density of points in phase space is constant in time. An example
would be the molecules of a perfect classical gas in equilibrium in a container. Each
point in phase space, which in this example has 2N dimensions, where N is the
number of molecules, represents one of an ensemble of identical containers, an
ensemble large enough to permit taking a statistical average of the density of rep-
resentative points. Liouville’s theorem states that if all the containers remain in
equilibrium, the average density of points remains constant.

Another example would be focused beams of charged particles, as in a parti-
cle accelerator. Here we can regard one pulse of particles as constituting one real-
ization of the ensemble and therefore one point in phase space. The statistical
averaging is carried out over the random positions and momenta of the particles
entering the focusing system from pulse to pulse.

The theorem has been applied to many different physical systems but the
essential point is that it makes a statistical statement about the average density
of points in phase space, whereas the throughput or étendue theorem is deter-
ministic in nature. Thus, although for convenience we may call the throughput
theorem “Liouville’s theorem,” it is desirable to remember that there is a funda-
mental difference in meaning.

A.4 CONVENTIONAL PHOTOMETRY AND 
THE ÉTENDUE

In discussing the action of concentrators we use the notion of a beam of radiation
in which a certain cross section dx dy is uniformly filled with rays covering uni-
formly the direction cosine solid angle dL dM. Note the useful relation dL dM =
N dW. Then an ideal concentrator takes all the rays from a source of finite area
within a certain range of direction cosines and delivers them at the exit aperture
to emerge over a solid angle 2p.

These ideas relate easily to particle beams, but it may not be quite clear 
how they relate to classical photometric ideas. In classical photometry we have 
a particular kind of ideal source called Lambertian for which the flux or power
radiated per unit solid angle per unit projected area of the source is constant 
over all directions. Many physical sources approximate closely to the Lambertian
condition and an ideal blackbody radiator must be Lambertian, since the radia-
tion in a blackbody cavity is isotropic. It is easy to show that if a source radiates
the same flux per unit area of the source and per unit element of direction cosine
space, then it is Lambertian. Thus, we see than an ideal concentrator will take
radiation from a Lambertian source over a certain solid angle and deliver it so as
to make the exit aperture appear to be a complete Lambertian radiator over solid
angle 2p.
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THE EDGE-RAY
THEOREM

421

B.1 INTRODUCTION

This theorem provides the key for the synthesis methods of concentrators. It has
been used as a powerful tool since the first designs of “nonimaging concentrators”
in the 1960s, although its first proof was given by Miñano much later (Miñano,
1985; 1986). Since then, other proofs and formulations have been proposed by
Davis (1994), Ries & Rabl (1994), and Benítez et al. (1997).

For simplicity of the explanation, we will consider here only the theorem in
2D geometry, partially following the approaches in Miñano (1985) and Benítez et
al. (1997). The reader interested in the 3D treatment can consult Miñano (1986).
First, in Section B.2, the theorem is formulated for the case of continuous in-
homogeneous refractive index media. The theorem in presence of sequential optical
surfaces and nonsequential mirrors (see Chapter 8 for this classification) is con-
sidered in Sections B.3 and B.4, respectively. Finally, in Section B.5 the modifica-
tions to the theorem introduced by the presence of slope discontinuities in
sequential optical surfaces is considered, and its application to an enjoyable
example, due to P. Davis (1994), that seems to constitute an offense against the 
edge-ray theorem at first sight.

B.2 THE CONTINUOUS CASE

Consider a certain two-parametric input bundle described at the plane y = yi by
the points contained in the region Mi of the space x-y-p, and assume that we must
design an optical system such that all the rays contained in the bundle Mi are cast
into the exit bundle described at the plane y = yo by the region Mo, if reversed; also
vice versa: all the rays of Mo if reversed, are cast into Mi. Consequently the tra-
jectories ¡(Mi) and ¡(Mo) must be the same rod in x-y-p space. Consider now the
one-parametric bundle of rays described by the boundary of region Mi (denoted by
∂Mi) and the one-parametric bundle described by ∂Mo. Since both bundles are one-
parametric, ¡(∂Mi) and ¡(∂Mo) will be two surfaces. The theorem states that (under
certain conditions that will be shown later) if ¡(∂Mi) = ¡(∂Mo), then ¡(Mi) = ¡(Mo).



The inverse theorem, also considered in the references, has no application for the
design and will not be discussed here.

In order to prove this theorem, it is essential to consider the ray trajectories
in the Hamiltonian formulation (see Section 6.1) as solutions of the following
system of 1st order differential equations:

(B.1)

where the Hamiltonian H = p2 + q2 + r2 - n2(x, y, z) and t is a parameter along the
ray. This parameter is t = s/(21/2n) + k, being s is the arc length of the trajectory.
The constant k can be set arbitrarily to zero. The solution must be consistent with
H = 0.

Before proving the theorem, let us change the variables in the system of 
equations Eq. (B.1). The new variables are x, y, q, m, where x, y are equal to 
the old Cartesian coordinates of a plane and q, m are related to p, q by the 
equations

(B.2)

The proof of the theorem is clearer using the new variables, and its conclusions
can easily be extrapolated to the variables x, y, p, q. In these variables, the defined
regions are represented as shown in Figure B.1.

The trajectories of the rays are the solutions of the system Eq. (B.1) consis-
tent with H = 0 that is, consistent with n2 = p2 + q2. Using the new set of variables,
the trajectories of the rays remain as the solutions of another system of equations
involving x, y, q, m consistent with m = 0. This equation is necessarily a particular
integral of the new system of equations, since H = constant was a first integral of
system Eq. (B.1). Since m = 0, then the variable q can be viewed as the angle formed
by the ray and a line parallel to the x-axis.

p n q n= + = +cos sinq m q m

dx
dt

H
dp
dt

H

dy
dt

H
dq
dt

H

p x

q y

= = -

= = -

422 Appendix B The Edge-Ray Theorem

∂Mi 

¡

Mi 

Mo

∂Mo

Mi 

q = p

q

x

y

Figure B.1 The edge-ray theorem using coordinates x-y-q.



Introducing the new variables in the system Eq. (B.1) and taking into account
that m = 0 the following system is obtained:

(B.3)

The first two equations are obtained directly. Equations dp/dt = nnx and dq/dt =
nny from system Eq. (B.1) lead to the same equations (the last one of system 
Eq. (B.3)) when m = 0 and dm/dt = 0. Note that

(B.4)

and that

(B.5)

Assume that the conditions of existence and uniqueness of the solutions of
system Eq. (B.1) are fulfilled. Then, there is only one solution crossing a given
point (x1, y1, p1, q1) of this space x-y-p-q. Since the trajectories of the rays fulfill 
n2 = p2 + q2, there are only two rays crossing a given pint x1, y1, p1 of this space 
x-y-p: one of them with q1 = (n2 - p2

1)1/2 and the other with q1 = -(n2 - p1
2)1/2; that 

is, one of them proceeds toward increasing y and the other toward decreasing y
(excluding the case q1 = 0). Now consider only the rays with q1 ≥ 0. In this case
there is only one ray trajectory in the x-y-p space crossing a given point x1, y1, p1.
The relationship between p and q (p = ncosq) establishes a point-to-point mapping
between the region U of the space x-y-q defined by 0 £ q £ 180° and the region U¢
of the space x-y-p defined by n2 ≥ p2. We assume that this mapping is continuous
from U to U¢ and vice versa (for that n must be a continuous function), so it becomes
a homeomorphism.

If only the rays with q ≥ 0 are considered in x-y-p space then any trajectory
in U is transformed by the mapping into another trajectory in U¢, and vice versa—
that is, the mapping relates the solutions of the system of Eq. (B.3) with those of
the system of equations Eq. (B.1) together with H = 0.

We now give a proof of the theorem. Let Mi and Mo be two (simply connected)
sets in the planes y = yi and y = yo (∂Mi and ∂Mo are the boundaries of these sets).
Let ¬ be an open set in the x-y plane, including the trajectories of the rays of the
bundle ∂Mi (or ∂Mo, as we have assumed that the concentrator is built so that
¡(∂Mi) = ¡(∂Mo)), and let U be the region of the x-y-q space such that (x, y, q) belongs
to U if (x, y) belongs to ¬.

The hypotheses of the theorem are as follows:

a. The conditions for existence and uniqueness of the solutions of the system of
Eq. (B.3) are fulfilled in U, as are the conditions for the continuity of these
solutions with respect to the initial conditions x1, y1, q1.

b. ¡(∂Mi) = ¡(∂Mo). This surface will be called ¡ for simplicity.
c. ¡ is contained in the region 0 £ q £ p (the angle in radians).
d. ¡ is bounded.

dn
dt

n
dx
dt

n
dy
dt

nn nnyx y x= + = +cos sinq q

dp
dt

dn
dt

d
dt

d
dt

= +cosq q m

dx dt n
dy dt n
d dt n nx y

=
=
= +

cos
sin
sin cos

q
q

q q q

B.2 The Continuous Case 423



From the first hypothesis, and particularly from the uniqueness of the solutions,
it is derived that the trajectories of two rays, in the space x-y-q, cannot have
common points.

The equation of the surface ¡ can be written in parametric form as

(B.6)

where the parameters are t and t. The functions x1(t) and q1(t) give the values of
x1 and q1 for the points of ∂Mi, so these functions are periodical, and give the same
values when t is increased by one period. The parameter t is the one appearing in
Eq. (B.3). Without loss of generality, we can set t = 0 at the plane y = yi. It varies
along the ray trajectory from t = 0 when the ray departs from ∂Mi to the value 
corresponding to a point of ∂Mo. The functions x(x1, y1, q1, t), y(x1, y1, q1, t) and 
q(x1, y1, q1, t) are the solutions of Eq. (B.3) and x1, y1, q1 are the initial conditions.
Note that these functions are continuous with respect to all their parameters. By
choosing the appropriate parameter t a homeomorphism can be established
between the surface ¡ and a tube where ∂Me and ∂Mr are the boundaries of ¡. So
we can conclude that ¡ together with Me and Mr encloses a certain region of the
x-y-q space that will be called B.

Consider a ray described by the point pi that belongs to the interior points of
Mi (Int (Mi)). Four trajectories of this ray in the x-y-q space can be considered (see
Figure B.2) as follows:

1. The trajectory intercepts the surface ¡.
2. It intercepts the surface Mi and leaves B through it.
3. The trajectory never leaves B.
4. The trajectory intercepts a point of Int (Mo).

It is obvious that the trajectory departs from pi. Option (1) is not possible because
¡ represents trajectories of rays, and these cannot cross in U. Option (2) is also
impossible: The value of q at the point pi fulfills necessarily 0 < q < p (note that if
q were zero or p for a point of Int (Mi), due to the definition of the interior of a set,
then the value of q for some point of ∂Mi, which belongs to ¡, would no fulfill
hypothesis (¡)) and so the trajectory of the ray cannot be tangent to the plane 
y = yi. Then this trajectory enters into B. If the trajectory comes back to Mi, it is
necessary that q takes, at some point of the trajectory, values zero or p (note that
q is continuous along the trajectory)—that is, it is necessary that the trajectory
intercepts the planes q = 0 or q = p before it reaches Mi and these planes are out-
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Figure B.2 Trajectories considered in the proof of the edge-ray theorem.



side B or coincide at some point with ¡. Then the trajectory must exit B before
reaching Mi, which is contradictory to (2).

Assume that the trajectory of the ray pi never exits B—in other words, the tra-
jectory is inside B for t Œ (0, •), or in terms of the arc length along the trajectory,
s = t/(21/2n):

(B.7)

Since 0 < q (s) < p, 0 < sinq (s) < 1, and thus, Eq. (B.7) implies that

(B.8)

But then

(B.9)

which contradicts that ¡ is bounded (see condition (4)).
Summarizing these last results, the only possibility for the trajectory of pi is

to intercept a point of Mo, and so ¡(Int(Mi)) belongs to ¡((Mo)). A similar reason-
ing with respect to a ray po of Int(Mo) establishes that ¡(Int(Mi)), and so ¡(Int(Mi))
= ¡(Int(Mo)). Since ¡(∂Mi) = ¡(∂Mo) by hypothesis, then ¡(Mi) = ¡(Mo).

The homeomorphism between the region U of the space x-y-q and the region
U¢ of the space x-y-p allows us to establish easily the edge-ray theorem in the space
x-y-p. Effectively, if a ray intersects (or doesn’t) a surface in U, it will intersect or
not the corresponding surface in U¢. Also note that all the rays of Mi and Mo have
q ≥ 0. The theorem expressed in the variables x-y-p has the following hypotheses:

1. The conditions for existence and uniqueness of the solutions of the system of
equations Eq. (B.1) are fulfilled in U (U¢ is formed by the points x, y, p, q, such
that x, y belongs to ¬) as well as the conditions for the continuity of these solu-
tions with respect to the initial conditions.

2. ¡(∂Mi) = ¡(∂Mo). This surface is called ¡.
3. The rays of ¡ have q ≥ 0 all along their trajectories, as do the rays of Mi and

Mo at y = yi and at y = yo, respectively 4.¡ is bounded.

The fulfillment of these assumptions implies, as before, that ¡(Mi) = ¡(Mo).
The conditions mentioned in hypothesis (a) (or (a¢)) are (Hurewicz, 1978) that

the right-hand side of Eq. (B.3) (or Eq. (B.1)) are continuous with respect to x, y,
q, t (or x, y, p, q, t) and that they satisfy locally the Lipschitz condition with respect
to x, y, q (or x, y, p, q). These conditions can be substituted by requiring that n,
their first, and their second partial derivatives are continuous in ¬ (these last con-
ditions are sufficient but not necessary).*

The application of the theorem of conservation of the étendue implies that the
areas of Mi and Mo must be the same. However, it seems that Mi and Mo can be
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* All these conditions are sufficient conditions but not necessary. (As an example, the Luneb-
urg lens, see Appendix F, does not fulfill the uniqueness of the ray trajectories). The formulation
of the strictly necessary conditions still consitutes an open problem.



chosen such that their areas are different. This is not true. By means of the Stokes
theorem (Abraham and Marsden, 1978; Arnold, 1975; Godbillon, 1969) applied to
the conservation of the étendue theorem, it can be concluded that the condition
¡(∂Mi) = ¡(∂Mo) also implies that the areas of Mi and Mo must be equal.

This proof of the edge-ray theorem can be widened to input and exit aperture
shapes different than straight lines by using the coordinate system i-j defined by
the flow lines and the orthogonal lines. The entry and exit aperture would be con-
tained in two lines j = constant ( j = ji and j = jo, respectively).

The conditions of existence, uniqueness, and continuity of the solutions with
respect to the initial conditions are now fulfilled if the right-hand side of equations
Eq. (B.6) are continuous with respect to i, j, u, v, t and fulfill the Lipschitz condi-
tion with respect to i, j, u, v. Condition (c¢) must now be replaced by v ≥ 0. This
implies that the optical direction cosine of the rays with respect to the j lines (lines
with i = constant), bv, is not negative. Note that b = |grad j| Practical concentra-
tors use reflectors and discontinuous refractive index distributions (lenses),
neither of which is considered in the theorem just mentioned. The following sec-
tions will deal with these cases.

B.3 THE SEQUENTIAL SURFACE CASE

Once we’ve seen the continuous refractive index media case, consider the discon-
tinuous case in which sequential optical mirrors or refractive surfaces are used.
Sequential surfaces (as defined in Section 8.13) are defined as those on which all
rays of the transmitted simply connected bundle impinge once. First, consider the
line R of the x-y as a 2D refractive surface. As in the former section, assume first 
that all rays have q ≥ 0 (i.e., 0 £ q £ p). Without loss of generality, the origin of the
parameter t can be set at the points of the surface R for all the rays.

Since the whole bundle is refracted at that surface, we can identify the bundle
before and after such incidence, which we will denote as M- and M+, respectively.
Consider the points of the space x-y-q of the bundle just before the refraction 
at every point A = (x, y) of incidence on the surface R, which will be denoted as 
x(t = 0-), y(t = 0-). q (t = 0-), and also the points of the space x-y-q of the bundle just
after the refraction, x(t = 0+), y(t = 0+), q (t = 0+).

The edge ray theorem for the continuous media case of the former section
applies for t < 0 and also for t > 0. Then, the proof of the theorem for this discon-
tinuous case is reduced to proof that if ¡(∂M-) = ¡(∂M+), then ¡(M-) = ¡(M+).

In general, the ray trajectories in the phase space become discontinuous at
every point A (see Figure B.3). It will be sufficient to prove that the mapping of
the points of M- and M+ is a homeomorphism.* This is immediate because the
mapping between M- and M+ is given by

(B.10)
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* We must exclude the case in which there is glancing incidence on a refractive surface from
the medium of lower refractive index or incidence at the critical angle from the medium of higher
refractive index. In such incidences the trajectories of the rays are not uniquely determined.



where nA is the (discontinuous) refractive index at A, and qA is the angle of the
normal vector to R at A with respect to the x-axis.

The first two equations in Eq. (B.10) indicate that ray trajectory in the x-y
space is continuous. If the surface is refractive, the third surface is the Snell’s law
at A. Since by hypothesis 0 £ q £ p, the third equation is a homeomorphism.

The proof for the case of a reflective surface is analogous (in fact, setting 
n+

A = -n-
A we obtain the reflection law). For the analogous formulation, all the rays

after the reflection must have 0 £ q £ p or p £ q £ 2p. Nevertheless, as in the con-
tinuous case, the generalization for both refractive and reflective sequential sur-
faces can easily be extended to other input and exit aperture shapes by using the
coordinate system i-j defined by the flow lines and the orthogonal lines. The entry
and exit aperture would be contained in two lines j = constant ( j = ji and j = jo,
respectively).

B.4 THE FLOW-LINE MIRROR CASE

As seen above, in the case of the SMS designs without flow-line mirrors (also called
nonsequential mirrors in Chapter 8), the edge-ray theorem states that

(B.11)

In order to include nonsequential mirrors we must define other bundles of edge
rays and reformulate the theorem. Let us consider nonsequential mirrors of the
type shown in Figure 3.2a, in which the bundle M that is reflected on the mirror
is also represented.

This mirror fulfills the following:

1. The rays of M that pass through the point A are edge rays and form a con-
nected bundle at A. The angle formed between the tangent to the mirror at A
and the ray ra is smaller than that which it forms with r ¢a. The rays of M at A
situated between ra and its symmetric with respect to the tangent are the edge
rays ∂MA, which do not extend beyond A (that is, they are edge rays only before
reaching A).
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Figure B.3 The ray trajectories in the x-y-q are discontinuous at the cylinder whose base
is a sequential refractive surface. The blue dots belong to the trajectory of an edge ray and
the red dot to an interior ray.



2. The rays of M that pass through the point B are edge rays and form a con-
nected bundle at B. The angle formed between the tangent to the mirror at B
and the ray rb is smaller than that which it forms with r ¢b. The rays of M at B
situated between rb and its symmetric with respect to the tangent are the edge
rays ∂MB, which begin at B (that is, they are edge rays only after passing
through B).

3. All edge rays impinging between A and B undergo a single reflection on the
mirror.

In the case of Figure B.4a no more than one edge ray impinges at each point of
the mirror between A and B. This is not a condition for the formulation of the
theorem (although in practice it may be desirable).

If a concentrator is composed of sequential optical surfaces and a nonsequen-
tial mirror of the type just described, the edge-ray theorem can be expressed as

(B.12)

Thus, the design of such a concentrator is achieved by coupling (1) the edge
rays of ∂MA with the edge rays of the entry bundle ∂Mi, (2) the edge rays of ∂MB

with the edge rays of the exit bundle ∂Mo, and (3) the rest of the rays of ∂MA with
the rest of the rays of ∂MB. Figure B.4b shows an explanatory diagram of this assig-
nation of edge rays.

The demonstration of the edge-ray theorem can be obtained under the same
hypothesis as the continuous case. Now the region B is bounded by the surface of
the edge ray trajectories and the cylinder obtained by the translation of the flow-
line mirror profile parallel to the q axis (see Figure B.5). The edge rays ∂MA and
∂MB are represented as two vertical lines and belongs to the boundary of B. The
ray trajectories are discontinuous on the flow-line mirror, suffering a vertical jump
in the phase space x-y-q as in the case of the sequential refraction in Figure B.3,
given by the mapping
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Figure B.4 Edge rays of the bundle reflected in a flow-line mirror.



(B.13)

where qm is the mirror direction at the point given by the two first equations. (The
last equation in Eq. (B.11) is the reflection law). The proof of the theorem in this
case relies on the fact that any ray in B reflected at a point A of the mirror trans-
forms into another ray, which is also in B. This is guaranteed by Eq. (B.11) along
with the local symmetry of the bundle with respect to the flow line, from which it
is deduced that

(B.14)

This is illustrated in the phase space in Figure B.5.

B.5 GENERATION OF EDGE RAYS AT 
SLOPE DISCONTINUITIES

There are surfaces of practical interest for the nonimaging design that have slope
discontinuities. Examples are found, for instance, in microlens arrays, Fresnel,
and TIR lenses. To understand the effect of slope discontinuities in the edge ray
theorem, it is useful to consider a succession of continuous slope surfaces, con-
verging to the slope-discontinuous one. As an example, the case of a sequential
refractive surface is shown in Figure B.6. Two ray families are represented, cor-
responding to the two edge-ray families that cross a sequential surface. It is
deduced that the ray fan emitted from the discontinuity point P between the two
rays refracted at each side of the discontinuity (ra and rb for the top edge-ray family,
and rc and rd for the bottom one) are also edge rays that must be considered in the
design.

Furthermore, we could distinguish between two cases, depending on the con-
nection of the two ray fans emitted from P. The first case, shown in Figure B.7a,
is that in which the slope discontinuity is small enough so rb belongs to the ray
fan rc-rd and rc belongs to the ray fan ra-rb. In this situation, even the discontinu-
ity is present, the bundle as a set in the phase space remains as a connected set.
However, if the slope discontinuity is large enough compared with the bundle
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Figure B.5 Edge-ray theorem in presence of a flow-line mirror. The ray trajectories in the
x-y-q are discontinuous at the cylinder whose base is flow-line surface. The blue dots belong
to the trajectory of an edge ray and the red dot to an interior ray.



angular spread at the discontinuity point P, the two edge ray fans at P discon-
nects, and so does the bundle (see Figure B.7b).

B.6 OFFENCE AGAINST THE 
EDGE-RAY THEOREM

Consider the bundle Mi at n = 1 defined at the planes y = yi formed by the rays
that point toward decreasing y-values and form with the y-axis less than 45°. These
rays can be described as those fulfilling q < 0 & |p| < |q|. The edge rays of this
bundle (which has no spatial limitation) are the rays with p = q and p = -q.

Analogously, consider the bundle Mo at n = 1 defined at the planes y = yo and
also formed by the rays that point toward decreasing y-values and form with the
y-axis less than 45°. Also, the edge rays of this bundle (which has no spatial 
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Figure B.6 Edge rays generation at the slope discontinuities on a surface. On the left, a
continuous slope surface with a region of small curvature radius R. When R tends to zero,
the surface converges to the discontinuous slope surface on the right.
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Figure B.7 Depending on the slope discontinuity size compared to the bundle angular
spread at the discontinuity point, the discontinuity will (b) or will not (a) cause a discon-
nection of the bundle.



limitation) are the rays with p = q and p = -q. Trivially, the two bundles are coupled
by just the free-space propagation in index n = 1 (i.e., with no optical system), as
shown in Figure B.8a. The edge-ray theorem can be applied to this trivial case:
Since ¡(6Mi) = ¡(6Mo), then ¡(Mi) = ¡(Mo).

Imagine now that we introduce a solid square region of refractive index n > 1
in this plane, as shown in Figure B.8b. Since the square faces are parallel and 
perpendicular to the edge rays shown in Figure B.8a, their trajectories remain
unchanged. Therefore, it seems that we can also deduce, according to the edge-ray
theorem, that the bundle coupling ¡(Mi) = ¡(Mo) is also produced.

However, this is not true, because, as shown in Figure B.8b, there are interior
rays of Mi that do not transform into rays of Mo (of course, and vice versa). The
explanation of this apparent paradox is that the edge rays of the bundle in Figure
B.8a are not the only rays of the bundle transmitted in Figure B.8b, because, as
illustrated in Figure B.9:
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Figure B.8 (a) Extended bundle in 2D geometry formed by all the rays that progress down-
ward and form with the y-axis less than 45°. (b) The edge rays shown in (a) are not modi-
fied when a solid square of refractive index n > 1 is introduced. This seems to violate the
edge ray theorem, applied to the transmission of the bundle from the plane y = yi to y = yo.

Edge rays generated 
due to the slope 
discontinuity

Edge rays generated due to the slope 
discontinuity

Edge rays generated 
at glacing incidence 

Figure B.9 Solution to the offence against the edge ray theorem.



1. The square corners are slope discontinuities and thus generate new edge rays.
2. We have “forgotten” in Figure B.8b to refract the glacing incidence rays (all

along the square side). The generation of edge rays at glacing incidence is
present in the Luneburg lens and was specifically used for the design of the
ITC (Miñano, Ruiz, and Luque, 1983).
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MOMENTUM
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C.1 SKEW INVARIANT

The conservation of skew in rotational symmetric systems or the conservation of
linear momentum in the linear symmetric ones comes easily in the Hamiltonian
formulation. The Hamiltonian system is given by Eq. (6.16) for a system i1, i2, i3

of orthogonal coordinates. For a rotationally symmetric system, let us assume that
q is the coordinate of the symmetry—that is, ∂n/∂q = 0, where n is the refractive
index distribution function. We will identify q with i2 of Eq. (6.16) . Then we have

(C.1)

where the Hamiltonian function is

(C.2)

a1, a2, and a3 are, respectively, the modulus of the gradient of i1, q and i3 over the
refractive index n (i.e., aj = |—ij|/n). The refractive index n is in general a func-
tion of i1, i3, and it is independent of q. h is the conjugate variable of q, which is
usually called the skew.

Because i1, q, i3 is a triorthogonal coordinate system, and because of the rota-
tional symmetry, ∂|—i1|/∂q = ∂|—i3|/∂q = 0. Then, there is no dependence of a1 a3,
on q, as it is specified in Eq. (C.2). a2, which is a2 = |—q|/n, can be written as a2

= 1/(q n), where q is the distance of the point i1, q, i3 to the axis of rotational sym-
metry—that is, q is one of the cylindrical coordinates. q is a function of i1, i3 solely.

Now, it is simple to see that h is an invariant parameter along a ray: one of
the equations of the system given by Eq. (C.1) sets
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C.2 LUNEBURG TREATMENT FOR SKEW RAYS

In mathematical terms it is said that h is a first integral of the Hamiltonian
system. When a first integral of a Hamiltonian system is known, then a new
Hamiltonian system with two fewer variables can be built up, which obviously 
simplifies the problems. Using this property Luneburg show that the new 
Hamiltonian system represents also an optical system in 2D geometry. With the
Hamiltonian formulation that we are using this is simple to see:

As we have seen, the Hamiltonian function does not depend on q.

(C.4)

For a given value of h = h0, we can solve the system

(C.5)

with the condition H = 0. The results are sets of four functions i1 = i1(s), i3 = i3(s),
u1 = u1(s), u3 = u3(s); which give the projection of the phase space ray trajectories
in the subspace i1-i2-u1-u3.

For instance, assume that i1, i3 are the cylindrical coordinates r, z, respec-
tively. Then, the solution of the system Eq. (C.5) can provide us the functions 
r = r(s), z = z(s), (besides two other functions) that are the projection of the ray
trajectories on the r, z coordinates.

To get the complete trajectories in the phase space we must add the equation
h = h0 and integrate

(C.6)

which can be integrated because the functions i1 = i1(s), i3 = i3(s) are known.
The system of Eq. (C.5) together with Eq. (C.4) describes a 2D optical system

with configuration variables i1, and i3, and conjugate variables u1 and u3. The
refractive index of this 2D optical system is neq(i1, i3) given by

(C.7)

This can be easily verified by comparing the Hamiltonian equations of a 2D optical
system with this refractive index taking into account that the solutions of a Hamil-
tonian system remains the same if we multiply the Hamiltonian function by a
nonzero function (see Section 6.12.2).

Meridian rays are the ones whose trajectory in the space i1, q, i3 is contained
in a q = constant plane—that is, dq/ds = 0. These meridian rays are those with 
h = 0 (see Eq. (C.1) and Eq. (C.2)). Then, neq = n for meridian rays.

The Luneburg result can be summarized as follows: The projection of the tra-
jectory of a skew ray (with h = h0) in the q, zi1, i3 coordinates coincides with the
trajectory of a meridian ray if the refractive index distribution is modified as given
by Eq. (C.7).
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C.2.1 Optical Path Length
According to Eq. (6.19) the optical path length can be written as

(C.8)

The second term of the last part of Eq. (C.8) is the optical path length ray (in the
optical system with refractive index distribution neq(i1, i3)) of a meridian ray that
coincides with the projection of the ray on the i1, i3 coordinates.

C.3 LINEAR MOMENTUM CONSERVATION

A similar reasoning as done for rotationally symmetric systems can be done for
linear symmetric ones. The result equivalent to Eq. (C.3) gives

(C.9)

where p3 is the optical direction cosine of a ray with respect the x3-axis, which is
assumed to be the axis of linear symmetry.

The linear momentum conservation can also be deduced from the skew con-
servation by considering the linear system as a limit case of a toroidal system (and
thus a rotational symmetric system) that is infinitely far from the axis of rota-
tional symmetry—that is, when r Æ • (Miñano, 1984).

The Luneburg treatment of skew rays (which will be called nonmeridian rays
in linear symmetric systems) can also be applied here.

The projection of the trajectory of a nonmeridian ray (with p3 = p0) on a plane
normal to the axis of linear symmetry coincides with the trajectory of a meridian
ray if the refractive index distribution is modified as follows:

(C.10)

The optical path length can also be split in two parts, one of which is the optical
path length (in the optical system with refractive index distribution neq(i1, i2)) 
of the meridian ray that coincides with the projection of the ray on the i1, i2

coordinates

(C.11)

C.4 DESIGN OF CONCENTRATORS FOR
NONMERIDIAN RAYS

With the exception of the direct 3D design method (like the Poisson brackets
method), all other methods design a 2D device from which a 3D device is later gen-
erated by linear or rotational symmetry. In the final 3D device, this procedure only
guarantees that the optical device couples the meridian edge rays at the entry and
at the exit. With the aid of the preceding results we can do designs that couple
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nonmeridian edge rays instead of the meridian ones. The only thing we have to
do is to take into account Eq. (C.7) or Eq. (C.10) when passing from the 2D design
to the 3D one. In this way we can have, for instance, a rotational CPC designed
for meridian rays (h = 0), a rotational CPC designed for skew rays of h = h0, a
linear CPC designed for meridian rays ( p3 = 0) or a linear CPC designed for non-
meridian rays of p3 = p0.

Figure C.1 shows a linear concentrator that was designed for p3 = 0.35. This
concentrator, called Integrated Tubular Concentrator (ITC) (Miñano, Ruiz, and
Luque, 1983) is the first tailored design in the sense of Chapter 5. Figure C.2 
shows the angular transmission function of two linear designs. The one corre-
sponding to the figure on the left is a linear design whose cross-section is an ideal
2D design done for meridian rays—that is, p3 = 0. Consequently the transmission
curve T(p2, p3 = 0) takes only two values: 0 or 1. The figure on the right side cor-
responds to a linear concentrator whose cross section is an ideal 2D design for p3

= ±0.35 rays and consequently the curve T(p2, p3 = ±0.35) takes only two values: 0
or 1.

436 Appendix C Conservation of Skew and Linear Momentum

x1

x2 x3

reflector

bifacial receiver

dielectric filled

.05 
.35 

.65 
.95 

1 

.5

0 

–.5 

–1

–1 –.5 .50 1 

p2

p3 p3

p2

.05 
.35 

.65 

.95 

1 

.5

0 

–.5 

–1

–1 –.5 1 .50 

Figure C.1 Linear Integrated Tubular Concentrator. Designed according the section 5.6 for
a bifacial solar cell as receiver (dielectric refractive index 1.5).

Figure C.2 Angular transmission for a linear systems whose cross-section is designed for
meridian rays, i.e., for rays with p3 = 0 rays (left and side). All the p3 = 0 rays are collected
when p2 < 0.5 and all of the remaining p3 = 0 rays are rejected. Thus, the angular trans-
mission takes only values 0 or 1 for p3 = 0. The right hand side shows the angular trans-
mission of a linear system whose cross section is designed for p3 = 0.35 rays.
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The conservation of étendue belongs to a set of integral invariants applicable to
the solutions of any Hamiltonian system. Several authors discovered some of these
invariants independently. Henri Poincaré (1957) recognized them as a part of a
general statement. In this appendix we are going to see the applications to optics
one of them, which we call conservation of étendue for two-parameter bundles of
rays.

Different forms of this invariant have appeared in Geometrical Optics: The
theorem of Malus and Dupin, the Lagrange invariant, the Herzberger’s (1944,
1958) fundamental optical invariants (Herzberger, 1958) express totally or par-
tially this invariant (Miñano, 1984).

We will show this invariant in Poincaré’s way. Let’s consider a two-
parameter bundle of rays—that is, a set of rays such that each ray can be distin-
guished from others of the bundle by specifying the values of two parameters,
which we will denote by t1 and t2. The trajectory of a ray of this bundle in the
phase space x1-x2-x3-t-k1-k2-k3-w will be given in parametric form by eight functions
x1 = x1(t1, t2, s), x2 = x2(t1, t2, s), x3 = x3(t1, t2, s), t = t(t1, t2, s), k1 = k1(t1, t2, s), k2 =
k2(t1, t2, s), k3 = k3(t1, t2, s), w = w(t1, t2, s), where s is the parameter along the ray
curve (see Section for the variables definition). Let R be a hypersurface of the phase
space x1-x2-x3-t-k1-k2-k3-w that intercepts once and only once any phase space tra-
jectory of rays of the bundle. Let s(t1, t2) be the parameter s at the point of inter-
ception. Thus, the coordinates x1, x2, x3, t, k1, k2, k3, w of the rays of the bundle at
the surface R can be expressed as functions of t1 and t2. The conservation of
étendue for two-parameter bundle of rays says that the differential form dE2P is
independent of the surface R provided R intercepts all the rays of the bundle once
and only once

(D.1)

that is, dE2P is constant along the bundle trajectory in the phase space (see 
Flanders, 1989, for a detailed explanation of differential forms). The minus sign
of dtdw comes from the fact that the conjugate variable of t is not w but -w. The

dE dx dk dx dk dx dk dt dP2 1 1 2 2 3 3= + + - w



variables x1, x2, x3, t, k1, k2, k3, w
.

in Eq. (D.1) are the coordinates at the surface R.
Thus, dE2P can also be written as

(D.2)

where D(x, k)/D(t1, t2) is the Jacobian. The conservation of dE2P in Eq. (D.2) means
that the term between brackets is independent of the surface R. These surfaces R
can be such that s(t1, t2) = constant. For this case we can write

(D.3)

where now the variable s in the functions x1 = x1(t1, t2, s), x2 = x2(t1, t2, s), x3 = x3(t1,
t2, s), t = t(t1, t2, s), k1 = k1(t1, t2, s), k2 = k2(t1, t2, s), k3 = k3(t1, t2, s), w = w(t1, t2, s)
is not substituted by a function of t1, t2.

If a canonical transformation of the phase space x1-x2-x3-t-k1-k2-k3-w in another
phase space i1-i2-i3-i4-u1-u2-u3-u4 is done, Eq. (D.1) remains in a similar way

(D.4)

When the optical media is time independent the number of independent variables
of the Hamiltonian system can be reduced in two (see Section 6.12.2). Conse-
quently, Eqs. (D.1) and (D.4) remain as

(D.5)

(D.6)

where now, i1-i2-i3-u1-u2-u3 are obtained from a canonical transformation of x1-x2-
x3-k1-k2-k3.

The Lagrange invariant can be expressed as (Herzberger, 1993)

(D.7)

that is, the expression between brackets is constant along the ray trajectories (the
dot denotes dot product). This expression between brackets is

(D.8)

Then, Eq. (D.7) is expressing that dE2P (see Eq. (D.5)) is constant along the ray
trajectories—that is, the Lagrange invariant is the same as the conservation of
dE2P.

A two-parameter bundle such that dE2P is zero is a normal system of rays
(Luneburg, 1964), which are also called orthotomic systems or normal congruences
(Stavroudis, 1972)—that is, there is a family of surfaces normal to the rays (the
wavefronts). The converse theorem is also true: A normal system of rays has zero
dE2P. From here it follows that the theorem of Malus-Dupin is equivalent to the
conservation of the zero dE2P in normal system of rays.

The usual expression of the Lagrange invariant is a line integral on a closed
curve, and it refers only to normal systems of rays (Born and Wolf, 1993). This
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integral invariant relative to closed curves can be transformed into the integral
invariant obtained from Eq. (D.7) with the Stokes theorem.

D.1 CONDITIONS FOR ACHROMATIC DESIGNS

As an application of the preceding results, consider the two-parameter bundle of
rays (parameters t1 and t2) defined by the equations (in this example we follow
Minaño, Benítez, and Muñoz, 2001).

(D.9)

These equations represent a pulse of light leaving the point x1 = A, x2 = 0 at t = 0
and traveling in the x1-x2 plane. Consequently, the coordinates z and r do not
appear. Observe that the modulus of the wave vector k is k = wn/co where n is the
refractive index which depends on x1, x2, and w. Then, the expression of k2 in Eq.
(D.9) ensures that the bundle fulfills K = 0, where K is the Hamiltonian function
(see Section 6.12.2).

We want to find the conditions that n must fulfill for the pulse to reach a point
x1 = A¢, x2 = D (image point) independently of the value of w. We don’t care about
the value of t when the pulse rays reach at the image point. Thus, the bundle at
the image point will fulfill

(D.10)

Since n does not depend on t, then w is constant along the ray trajectories and
thus w = t2 for the entire trajectory.

Let us calculate dE2P at the start and at the end of the trajectories with the
aid of Eq. (D.2) and equate both results.

(D.11)

A simple calculation gives the following expression:

(D.12)

Let p1 be the direction cosine with respect x1 of the pulse issuing at t = 0—that is,
p1 = k1/k. Since t1 = k1 (at t = 0) and taking into account that t2 = w is kept con-
stant in the derivative of Eq. (D.12), this equation can be written as

(D.13)
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With the aid of the equation of the Hamiltonian system in Eq. (6.4) giving the total
derivative of t and the expression of the Hamiltonian function Eq. (6.8) we get
(note that in our problem the trajectory is contained in the x1-x2 plane)

(D.14)

where nw = ∂n/∂w. Let dl be the differential of length in the x1-x2 plane. Using again
Eq. (6.4) and Eq. (6.8) we can get

(D.15)

Thus, Eq. (D.14) can be written as

(D.16)

where it has been taking into account that w is constant along the trajectory, and
thus it can go out of the integral. P and P¢ are, respectively, the points x1 = A, 
x2 = 0, and x1 = A¢, x2 = D of the x1-x2 plane. The first integral of Eq. (D.16) is the
optical path length between P and P¢ over the light velocity in vacuum co. Let us
call the second integral of Eq. (D.16) the dispersion path length between P and P¢.
This second integral is evaluated along the ray paths.

If the pulse trajectories issuing from the point x1 = A, x2 = 0 at t = 0 reach the
coordinates x1 = A¢, x2 = D in the space x1-x2-t it is obvious that the trajectories pro-
jected in the x1-x2 plane are imaging the point P into the point P¢. Since the prin-
ciple of Fermat establishes that the optical path length between P and P¢ does not
depend on the direction cosine of emission p1, Eq. (D.13) with the aid of Eq. (D.16),
can be written as

(D.17)

which expresses that the dispersion path length from P to P¢ must be constant for
all the ray paths. Eq. (D.17) should not be confused with a variational principle.

Eq. (17), which is a generalized form of the Conrady’s formula (Welford, 1989),
can be used to design achromatic lenses in a simple way.

D.1.1 Example of Achromatic Aplanatic Lens 
Doublet Design

For instance, consider the design of a lens focusing the rays from P at the point
P¢ that is also achromatic in a neighborhood of w = wo. For this purpose, two equa-
tions should be fulfilled:
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To fulfill Eq. (D.18) a single refractive surface is enough (Cartesian ovals). A lens
fulfilling both (Eqs. (D.18) and (D.19)) requires a minimum of two surfaces. Assume
that the media outside the lens has n = 1 and nw = 0, and let us call a, b, c to the
three segments of the ray trajectory from P to P¢ (see Figure D.1). Then, Eqs. (D.18)
and (D.19) can be written as

(D.20)

where L and D are two constants.
From Eq. (D.20) it is got b = constant—that is, the ray path within the dielec-

tric is constant (and also the ray path outside the dielectric). If besides these equa-
tions we require the lens surfaces to be normal to the axis P-P¢, then the problem
has no solution (excepting trivial cases). Thus, we cannot get a rotational sym-
metric solution with continuous derivatives at the axis P-P¢. Schultz (1988) got the
same result for single achromatic lenses in which the word achromatic meant that
the lens is sharp focusing for two values of the wavelength. This definition of achro-
matic lens and our definition are coincident when the two values of the wavelength
converge to a single value. Nevertheless, we can get a nonsymmetric solution. For
this, we need a third equation plus Eq. (D.20). This third equation is Snell’s law
at any of the two dielectric interfaces.

To solve the symmetry problem we can add another surface and another mate-
rial—that is, we need a doublet. The new surface can be prescribed (not totally
free), or it can be designed. In the last case we can add an additional condition in
the design. This is the way we are going to solve the problem. This additional con-
dition will be the sine condition (see Figure D.2). In this way the final design will
be an achromatic and aplanatic aspheric doublet.

For a given value of f, we have five unknowns to determine the points of the
three surfaces crossed by the ray determined by f. Note that the two coordinates
of the point in surface A are linked once we fix f. These five unknowns are solved
with five equations: the sine condition, Eq. (D.18), Eq. (D.19), and Snell’s law
applied to two of the three surfaces A, B, C. Note that Snell’s law must necessar-
ily be fulfilled at the third surface because we made also use of Fermat’s principle
(Eq. (D.18)) for the full trajectory.

Figure D.3 shows the cross sections of two achromatic and aplanatic aspheric
doublets. Both have been designed with aperture diameters and f-numbers equal
to two commercial spherical achromatic doublets in order to compare the results.
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x1

x2

P¢P 
a c b 

Figure D.1 Single achromatic lens focussing P onto P¢. Their surfaces are not normal to 
P-P¢.



The wavelength of design was chosen to l0 = 486.13nm. The data of the materi-
als used in the lenses are ∆ 30mm, f/1.66.

1. Material between surface A and B: SF10 (Flint material) n(l0) = 1.7465; nl(l0)
= -0.2497mm-1.

2. Material between surface B and C: BaFN10 (Crown material); n(l0) = 1.6800;
nl(l0) = -0.1326mm-1. ∆6.25mm, f/2.4
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Figure D.2 Sine condition: The angle f is proportional to the coordinate x2 at the exit.
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Figure D.3 Cross-section of the aplanatic achromatic aspheric doublets. Surface A is
aspheric, although in the figure it looks flat.



3. Material between surface A and B: SF14 (Flint material) n(l0) = 1.7823; nl(l0)
= -0.2821mm-1.

4. Material between surface B and C: BaF13 (Crown material); n(l0) = 1.6794;
nl(l0) = -0.1394mm-1.

The geometrical (no diffractive effects) spot radius for different wavelengths
and different incidence angles has been calculated by ray tracing. Here incidence
angle means the angle formed by a bundle of parallel rays with the x1-axis (for
this calculation the rays proceed in reverse direction to the x1-axis). Figure D.4
shows the results of the commercial spherical achromatic doublets compared with
the achromatic and aplanatic aspheric doublets. It can be verified that the spot
radius is smaller for all wavelengths and incidence angles studied. The spherical
doublets look very similar to the aspheric ones. The comparison has been done on
the basis that the angle fm (see Figure D.3) as well as the aperture diameter are
the same for the spherical and aspheric lenses being compared. This means that
the f/#, defined as the effective focal length over the aperture diameter, is the same.
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Figure D.4 Results of the comparison between spherical achromatic doublets and aspheric
aplanatic achromatic doublets.



Two different sets of f/# and aperture diameter ∆ have been used: ∆ = 30mm,
f/1.66, and ∆ = 6.25mm, f/2.4.

D.2 CONDITIONS FOR CONSTANT FOCAL
LENGTH IN LINEAR SYSTEMS

The same procedure shown here can be applied to the design of linear lenses whose
focal length must be kept constant in a neighborhood of incidence angles around
the design condition.

Consider a linear symmetric optical system such that x3 is the axis of sym-
metry. Assume that we want to design such a linear system with the condition
that the rays issuing from the straight-line x1 = 0, x2 = A are focused on a straight
line x1 = D, x2 = A¢ (see Figure D.5). This problem is, from the mathematical point
of view, equivalent to the achromatic design problem considered in Section D.1.

This linear optical system is invariant with respect to x3, and we are only inter-
ested in the projection of the trajectories on the x1-x2. We require that these tra-
jectory projections focus the rays leaving from x1 = 0, x2 = A onto x1 = D, x2 = A¢. In
a similar way, the achromatic system of Section D.1 is invariant with respect to t
and we are only interested in the x1-x2 trajectory (we don’t mind about the time t).

Proceeding in the same way let us calculate dE2P of the bundle of rays leaving
a point in the object line. The coordinates x1, x2, x3, p1, p2, p3 of the rays of this
bundle as a function of the two parameters t1 and t2 are

(D.21)

Because this is a time invariant system and we are not interested in the chromatic
response, it is more advisable to use the Hamiltonian with the optical direction
cosines as conjugate variables as in Eq. (6.10) (instead of the wave vector compo-
nents which are just proportional to the optical direction cosines). The differential
dE2P can be written as
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Figure D.5 Linear system that focuses the rays issuing from the object line into the image
line.



The resulting dE2P = 0 for the bundle given by Eq. (D.21). It should be also zero
for the bundle described at the image line. This description is

(D.23)

Because dE2P = 0 at the image line, then

(D.24)

Similarly as done before, we will express Eq. (D.24) in terms of x1, x2. For this,
consider the equation giving dx3/ds in Eq. (6.9)

(D.25)

Now let us express ds as a function of the differential of length of the ray trajec-
tory projected on the x1 - x2 plane

(D.26)

(D.27)

where P and P¢ are, respectively, the points x1 = 0, x2 = A; and x1 = D, x2 = A¢ of the
x1 - x2 plane. Note that the integral in Eq. (D.27) is done along a trajectory on the
x1 - x2 plane and that p3 is constant along the trajectory of any ray in a linear
system (because n only depends on x1 and x2 and not on x3). These projected tra-
jectories fulfill Fermat’s principle with the equivalent refractive index distribu-
tions (see Eq. (C.10)); that is,

(D.28)

Eq. (D.24) expresses that the integral in Eq. (D.27) along the projection of the ray
trajectories on the x1 - x2 plane must be constant for all the rays leaving from point
P with the same value of p3. When p3 = 0 (i.e., rays contained in a plane normal
to the axis of translational symmetry), then Eq. (D.27) is always fulfilled. If n is
constant along the whole trajectory of rays (in the case of reflectors) then the inte-
grand in Eq. (D.27) is constant, and this equation only expresses that the projected
trajectories have a constant length. Which turns to be the same as Fermat’s 
principle.

Combining Eqs. (D.27) and (D.28) it is found again that a single lens fulfill-
ing them cannot be symmetric with respect the projection of the line joining P and
P¢. An analysis similar to those done in Sections 6.1 and 6.2 can also be done for
rotationally symmetric systems.
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E.1 INTRODUCTION

Let us consider a conventional axially symmetric lens system acting as a concen-
trator for a source at infinity (size ±b). The edge-ray theorem, when applied to this
case, states that in order to obtain an ideal imaging concentrator, it must focus
perfectly (i.e., on a single image point) the rays impinging on the entry aperture
of the system forming an angle +b with the optical axis.1 The impossibility of 
such perfect imaging of an off-axis point in three dimensions (3D) by an axially
symmetric optical system was the subject of a theorem proven in the late 1970s
(Welford and Winston, 1979). It was restricted to optical systems with homoge-
neous media separated by a finite number of optical surfaces and considered as
exceptions some trivial cases and systems with spherical symmetry (as the sphere
with its aplanatic points).

This theorem, but reduced to two dimensions (2D), or equivalently, to the
meridian rays of the axially symmetric system, caused some controversy. In
Welford and Winston (1978) it was stated that there was no solution (excluding
also some exceptions), but in their 1979 article, which corrected the one they wrote
in 1978, they admitted the solution existed, although none was provided.

The Simultaneous Multiple Surface (SMS) design method (Miñano and 
Gonzalez, 1992) of Nonimaging Optics (explained in Chapter 8) came into being
through the attempt to solve a conjecture, whose solution would also prove the fea-
sibility of imaging two off-axis points in 2D. It is a well-known fact that with the
incidence on a single refractive surface, it is possible to focus perfectly a wavefront
on a point if it is verified that for each point of that surface there passes only a
single ray of the bundle. These refractive surfaces are the well-known Cartesian
ovals1 (Stavroudis, 1972) (see Figure E.1a), whose equation is given by the con-
stancy of the optical path length from the wave front to the point.

1 Note that this condition is sufficient but too restrictive from the nonimaging requirements.
The sufficient and necessary condition in this example is that those +b rays are focused along the
receiver edge (i.e., astigmatism is an allowable aberration).



The initial hypothesis of the SMS method was to affirm that it is possible 
with sequential incidences on two refractive surfaces to focus perfectly two wave
fronts on two points, if it is verified that for each point of the two surfaces only
one ray of each wave front passes. Although no formal demonstration of this
hypothesis was offered, it was found to be true at least from a practical point of
view, by direct calculation of the surfaces (Miñano and González, 1992). The uncer-
tainty about the validity of this calculation as proof stems from the fact that, for
the ray assignation chosen, the design procedure had no degrees of freedom to
guarantee the focusing of some small fractions of the wave fronts near the optical
axis. Nevertheless, an “a posteriori” ray tracing showed that these rays fit 
surprisingly well (demonstrating validity for that example in practice). The first
solution found was an aspheric lens (in the current SMS nomenclature, RR con-
centrator, because of the two refracting surfaces) that made the edges of the two
refracting surfaces coincide (González, 1989–1990). This lens was designed to focus
on two points, A and A¢, two plane wave fronts, W and W¢, symmetric with respect
to the mediatrix m of the segment AA*, as shown in Figure E.1b. The symmetry
of the problem permitted to find a symmetrical solution with regard to this 
mediatrix.

E.2 THE 2D CASE

However, a rigorous solution of the 2D conjecture can be obtained by means of the
following assignation of rays. Consider the points P and Q in Figure E.2a located
in the object and image spaces, respectively, and that the refractive index n of the
lens is known. The object point P has not been placed at infinity (as in Figure E.1)
for the sake of simplicity, though its location is not relevant for the proof anyway.
Because of the symmetry of the lens, P¢ and Q¢, symmetric points of P and Q with
respect to the optical axis, will be also perfect conjugates.

Let DL and DR be the left- and the right-hand sides refracting surfaces, respec-
tively, that define the lens. The rays emerging from P undergo a first refraction
on DL and then a second refraction on DR before impinging at Q. The procedure to
calculate DL and DR consists of the following steps (see Figure E.2a):
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Figure E.1 (a) Cartesian oval that focuses a plane wave front on point A. (b) RR concen-
trator that focuses two plane wave fronts on two points, A and A*.



1. Choose the vertices L0 and R0 of curves DL and DR at the optical axis. For the
symmetry and, furthermore, to avoid a kink at the axis of the lens, the normal
vectors of the surfaces at L0 and R0 are chosen parallel to this axis.

2. Calculate the trajectory of the ray r that passes through Q and R0 before the
refraction at R0. Choose the point L1 of curve DL on said trajectory. The normal
at L1 is found applying the condition that the trajectory of ray r must pass,
before the refraction at L1, through P. The optical path length from P to Q,
l(P, Q), is calculated along the whole trajectory of the ray r.

3. Choose the profile of DL between L0 and L1 by interpolating a smooth curve
between them (for instance, a polynomial of third degree), which verifies that
its normal at L0 and L1 coincide with the ones found in steps 1 and 2. The sym-
metric curve with respect to the optical axis is also a portion of DL and goes
from L0 to L1¢, the symmetric point of L1.

4. Calculate the portion of DR between R0 and R1¢ with the condition that the rays
emitted from P and refracted on DL between L1 and L1¢ must be focused on Q,
after a second refraction on this curve. The solution to this problem is quali-
tatively similar to that of the Cartesian ovals and is given by the constancy of
the optical path length from P to Q, calculated in step 1. The symmetric curve
with respect to the optical axis is also a portion of DR and goes from R0 to R1,
the symmetric point of R1¢.

5. Calculate the portion of DL between L1 and L2, with the condition that the rays
emitted from P and refracted on this curve are refracted again on DR between
R0 and R1 toward Q. The dioptric DL extends from L2 to its symmetric point
L2¢ .

6. Calculate the portion of DR between R1¢ and R2¢ with the condition that the rays
emitted from P and refracted on DL between L1¢ and L2¢ must be focused into
Q after a second refraction on this curve. The dioptric DR extends from R2¢ to
its symmetric point R2.

7. Repeating steps 5 and 6 new portions of both surfaces (not shown in Figure
E.2a) can be calculated if a larger aperture is desired. Figure E.2b shows a
solution designed with this procedure that adds two portions to the one
depicted in Figure E.2a.
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Figure E.2 (a) Design procedure of a symmetric lens that images perfectly P on Q in 2D.
(b) Lens designed with n = 1.5, PP* = 3, QQ* = 1.5, dist(PP*, L0) = 5.48, dist(QQ*, R0) = 2.25,
dist(L0, R0) = 2.27.



E.3 THE 3D CASE

Returning to the three dimensional case, a new question arises: Is it possible to
extend the initial conjecture of the SMS method to three dimensions? Do there
exist two refractive surfaces that focus perfectly two wave fronts on two points in
3D geometry? As we shall see, the answer is once again yes (at least from a prac-
tical point of view), if it is verified, as in the 2D case, that for each point of the
surfaces only one ray of each wave front passes. Notice that the surfaces cannot
have rotational symmetry, as proven in Welford and Winston (1979).

Although a rigorous solution as in the 2D case could be constructed, we shall
find two solutions analogous to the first found with the SMS method in 2D: two
three-dimensional RR concentrators—from now on, RR(3D)—which verify that the
edges of the two refractive surfaces coincide in a curve C. The RR(3D) is designed
with the SMS method applied for the first time to 3D geometry.

Consider the Cartesian reference system shown in Figure E.3. We will denote
p, q, and r to the direction cosines with respect to the X-, Y-, and Z-axes, respec-
tively. Points A and A¢ have respective coordinates (1, 0, 0) and (-1, 0, 0) in this
system. Consider also two plane wave fronts W and W*, normal to the vectors 
V = (sinb, 0, -cosb) and V* = (-sinb, 0, -cosb), respectively. The rays associated
with W and W¢, which are contained in planes y = constant (since q is null) and
form with the Z-axis angles +b and -b, will be referred to as rays e(+) and rays 
e(-), respectively. Given that the lens will focus the rays e(+) on A, the optical path
length from W to A will be the same for all the rays, l(W, A). In a similar way, 
l(W¢, A¢) will be the optical path length common to all the rays e(-). Moreover, given
the symmetry of the data of the problem with respect to the planes x = 0 and y =
0, it is interesting to force the solution to have this same symmetry. This means
that l(W, A) = l(W¢, A¢).
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Figure E.3 The edge C1 of the RR(3D) concentrator is an ellipse located in a plane z =
constant and contained in the ellipsoid of revolution with foci A and A*.



E.3.1 Calculation of the Edge
In the first place we shall calculate the curve C, the edge of the lens, applying the
condition l(W, A) = l(W¢, A¢) = lC to the points of C. This is expressed as

(E.1)

There are two different curves, C1 and C2, fulfilling the equations (E.1). Let us con-
sider first the case of curve C1, which is contained in the ellipsoid of revolution
with respect to the X-axis with foci A and A¢ (see Figure E.3) and a plane z = zC:

(E.2)

Whose intersection is the ellipse (contained in z = zC)

(E.3)

where a, the semi-axis parallel to the X-axis, depends on zC via a2 sin2 b + zC
2tag2b

= 1, as deduced from the left equation in (E.2), making y = 0. The semi-axis of the
ellipse parallel to the Y-axis is b = acosb. The ellipse (E.3) is also depicted in Figure
E.3. The solution that has the curve C1 as edge fulfills that both wave fronts, W
and W¢, impinge first on a refractive surface on the left, DL, and both emerge after-
ward from a refractive surface on the right, DR, toward the object points A and A*
(see Figure E.4a).

The second curve fulfilling (1) is an ellipse in the plane x = 0, whose equation
is

(E.4)

The solution that has the curve C2 as edge fulfills that the wave front W impinges
first on a refractive surface on the back, DB, and emerge afterward from a refrac-
tive surface on the front, DF, toward the object point A; while the wave front W¢

y
l

z
l

lC

C

C

2

2

2

2

2

1 1
1

1

sin

sin tan

sin sinb

b b

b b
Ê
ËÁ

ˆ
¯̃

-
+

-È
ÎÍ

˘
˚̇

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

=

x
a

y
a

2

2

2

2 1+
( )

=
cosb

x y z z
l

zC
C

2 2 2 2 2 1
2
2

sin tan
sin cos

b b
b b

+ +( ) = = - ∫

d X A d X d X A d X lC, , , * , *( ) + ( ) = ( ) + ( ) =W W

E.3 The 3D Case 453

y

A

A*

z
x z

x

y

A

A*

(a) (b)

C1 C2

V*

V

Figure E.4 Qualitative difference between the solutions with (a) edge C1 and (b) edge C2.



impinges first on DF and emerge afterward from DB toward the object point A¢ (see
Figure E.4b).

E.3.2 Design of the Lens
Let us consider first a lens with a curve C1 as edge. The input parameters of the
design of the RR(3D) concentrator are (a) the refractive index n, (b) the angle b,
and (c) the coordinate zC. The curve C1 is known as soon as zC and b are fixed. The
steps to follow for calculating these two surfaces are as follows:

a. Take a finite number of points Pi (i = 1, 2, . . . , N) along the curve C1 in the
quadrant x > 0, y ≥ 0. With zC and b, find the optical path length lC with the
equation (E.2).

b. Calculate the vector normal to the two surfaces at each point Pi. The unitary
normal vectors NL and NR associated with each surface are given by the unique
solution of the system of equations that is derived from applying Snell’s laws
to the four incidences (two per ray) in Pi. Calculate also the vector TC tangent
to C1 at Pi, which is parallel to NLŸNR (Ÿ denotes vector product).

c. For each point Pi the point Li0 = Pi + eUi is calculated, Ui being the unitary
vector perpendicular to TC and NL in Pi pointing toward the interior of the 
lens (Ui is parallel to TCŸNL). The point Li0 is “approximately” a point of the
surface DL if the constant e is sufficiently small. Consider that the normal in
Li0 coincides with the normal in Pi.

d. Calculate the point Ri1 of the surface DR with the condition that the ray e(-)
refracted in Li0 is refracted again in Ri1 toward A*. This calculation can be
done because we know Li0 from step c and the optical path length lC from W*
to A* from step a. The normal in Ri1 can be found by the (inverse) application
of Snell’s law.

e. Calculate the point Li2 of the surface DL with the condition that the ray that
passes through Ri1 and A, before refracting in Ri1, comes from the ray e(+)
refracted in Li2. Again, this calculation is based on the fact that Ri1 is known
and that the optical path length from W to A is lC. Again, the normal in Li2 is
calculated verifying Snell’s law.

f. Repeat steps d and e to calculate, for each point Pi of the edge, successive points
Li,2k and Ri,2k+1 of the surfaces DL and DR that belong to the quadrant y ≥ 0, 
x > 0. The (finite) sets of points {Li,2k} and {Ri,2k+1} are isolated points of the sur-
faces. In fact, they constitute two (finite) sets of curves CL

2k and CR
2k+1 contained

in the surfaces DL and DR that are obtained by increasing arbitrarily the
number N of points Pi-selected in step a. This curves “touch” on the curve C1,
as shown in Figure E.5. It remains to calculate, therefore, the intermediate
points, situated between the curves CL

2k and CR
2k+1.

g. For each point Pi, interpolate a smooth curve between the consecutive points
Li0 and Li2 that is perpendicular to the normal vectors at these points. Since
Li0 and Li2 are points that are very close to one another and with very similar
normals, the interpolated curve is practically a straight line.

h. Choose a finite number of points Lj
i0 ( j = 1, 2, . . . , M) of the curve interpolated

between Li0 and Li2 and repeat M times steps d and e, taking as initial point
of the process Lj

i0. In this way the sets of points {L j
i,2k} and {Rj

i,2k+1} of the sur-
faces are obtained.
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The design of the RR(3D) concentrator is finished, since by choosing sufficiently
large M and N the surfaces can be defined with any specific precision within the
quadrant x > 0, y ≥ 0. In fact, in step h points of curves (which result from taking
very high N) have been calculated that are intermediate between those shown in
Figure E.5a. Specifically, between each pair of successive curves, CL

2k and CL
2k+2 on

the surface DL, and CR
2k+1 and CR

2k+3 on DR, are defined M curves C2k
L,j y CR, j

2k+1 to which
the calculated points {L j

i,2k} and {Rj
i,2k+1} belong. The lens is completed by symmetry

with respect to the planes x = 0 and y = 0.
The procedure just described is essentially valid for the case of edge C2. The

input parameters in this case are (a) the refractive index n, (b) the angle b that
defines the plane wave fronts, and (c) the Z-coordinate of the ellipse center zec

(which can be found in (E.4)). The only qualitative difference between both designs
is that the lens is symmetric with respect to the planes x = 0 and y = 0, and as C2

is placed in x = 0, we get

i. In step f, the successive points of the surfaces are calculated up to the point
that they converge to the opposite side of curve C2 (a condition of convergence
must be stated). Depending on the initial parameters of the design, such con-
vergence may not occur.

ii. The symmetry of the problem will make that surface DB is the symmetric of
DF with respect to the plane x = 0.

E.3.3 Results
Following the procedure described in Section E.3.2, a concentrator RR(3D) has
been calculated with edge curve C1, with input parameters n = 1.5, b = ±40°, and
zC = 0.8801. Figure E.6 shows a plan view of the surfaces DL and DR. Other data
of the lens are a = 1.0489 and b = 0.8035. Figure E.7 shows the cross sections of
the lens at the planes x = 0 and y = 0.

In order to analyze the performance of the lens as an off-axis concentrator, a
receptor disk of radius r = a/36.83 was positioned in the plane z = 0 with its center
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X X 

Y Y

Figure E.5 When N Æ •, the calculation process that starts with curve C generates curves
contained in the surfaces DL (left) and DR (right). Design parameters: n = 1.5, b = ±40°, 
zC = 0.8801.



at point A. The geometrical concentration is, therefore, Cg = (pab)/(pr2) = 1,243¥.
By means of three-dimensional ray tracing the angular transmission of the system
was calculated for the rays with p = sin40° (sagital section) and the rays with 
q = 0 (meridian section). The results are shown in Figure E.8. The transmission
for the direction of the design (p = sin40°, q = 0) is 100% and stays above 50% 
for angles of incidence that differ up to 0.75° from this direction.

It is interesting to point out that the bundles of the design of the RR(3D)
cannot be considered as paraxial. This means that a classical lens with symmetry
of revolution designed as a system for forming a paraxial image will present very
high aberrations for these angles. Nevertheless, it is possible to design a rotational
lens for nonparaxial functioning, which forms a stigmatic image of the meridian
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Figure E.6 Plan view of the surfaces DL (left) and DR (right). The changes in grays occur
at intervals of zC/20, with zC being the height of the lens edge, zC = 0.8801.

Figure E.7 Intersections of the designed RR(3D) with the planes (a) y = 0 and (b) x = 0.



rays that impinge with b = ±40° on points A and A¢, and has a on-axis rim angle
j = ±50 (see Figure E.7). Such a lens is in fact an RR concentrator designed in 2D
geometry—RR(2D)—whose meridian section coincides with the section y = 0 of the
lens RR(3D), shown in Figure E.7a. If for this lens we calculate the angular trans-
mission with the same receiver as before, we obtain a transmission for the desired
direction (p = sin40°, q = 0) below 10%. This happens because, despite the fact that
the design guarantees the transmission of all the meridian rays, the majority of
the “skew” rays (those that are not contained in a meridian plane) hit outside of
the receptor. In other words, the design criterion of the rotational RR is not
optimal, given that the transmission of all the rays should be maximized, not only
that of the meridian rays. From the point of view of image formation, the “spot”
is clearly astigmatic, with the plane of the receptor situated at the tangential focus
instead of in the plane of minimal confusion.

The contour lines of the surfaces of the RR(3D), shown in Figure E.6, approx-
imate to ellipses. This suggests that if from the concentrator RR(2D) we generate
a three-dimensional concentrator with “elliptical” symmetry instead of symmetry
of revolution, we could expect better results. Figure E.9 shows the results of the
ray tracing on the lens RR(3D) and on the elliptical lens, where it can be seen that
while the results from this lens are inferior to those of the RR(3D), they are quite
superior to those of the rotational lens. From a practical point of view, the ellipti-
cal lens may be easier to manufacture than the RR(3D).

The ray tracing has been done on two-variable polynomial approximations of
the surfaces of the form

(E.5)

The selected approximation criterion is the least-square fitting of the angle formed
by the normal vectors at 2,500 uniformly distributed points of the surfaces. This
seems to be the most appropriate criterion, because the accuracy in the perfor-
mance of an optical device is mainly sensitive to slope errors (as shown in Chapter
15). In our case, polynomial approximations of 14th degree show a excellent accu-
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i j
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Separation from direction of the design (degrees)
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rotational RR
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Figure E.8 Angular transmission for the rays with q = 0 (meridian section) and the rays
with p = sin40° (sagital section) of the lens RR(3D) and of a rotational lens RR coincident
with RR(3D) in y = 0. The receptor is a disk centered on A of radius a/36.83.



racy: for the RR(3D) in Figure E.7 they lead to standard deviations—in degrees—
from the theoretical normals of sSup = 7.813 10-4 and sInf = 0.91 10-4 for the supe-
rior and inferior surfaces, respectively.

The quality of these polynomial approximation can be also checked by doing
a ray tracing for the direction of design and calculating the meridian and sagittal
spot radius. The meridian (also tangential) spot radius (sT) can be defined in our
case as the standard deviation of the Y-coordinate of the points of incidence of the
rays on the plane z = 0. The sagittal spot radius (sS) is defined in a similar way,
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Figure E.9 As Figure E.7 for the concentrators RR(3D) and the elliptical RR. Note that the
scale of the axis of ordinates is different from that of Figure E.8.
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Figure E.10 Views of the RR(3D) design with edge C2: (a) section y = 0, and (b) plan contour
plot. The changes in grays occur at intervals Dx = 0.0166. Design parameters: n = 1.5, 
b = ±40°, zec = 1.4.



but the coordinate X applies. In the case of the RR(3D) of Figure E.7, with 105 rays
we get sT = 0.00573mm and sS = 0.0198mm. These values are very far from the dif-
fraction limit of the device for the visible spectrum.

Figure E.10 shows the cross section and the contour plot of an RR(3D) with
edge C2. The parameters of the lens of Figure E.10 are n = 1.5, b = ±40°, and 
zec = 1.4. Notice that the two refracting profiles are symmetric and its maximum
thickness does not lie at the ellipse center.

The ray-tracing analysis on this lens has also been done using a similar poly-
nomial approximation approach. In this case only one surface needs to be fitted
(the other one is symmetric) with the expression

(E.6)

The performance of the lens as an off-axis concentrator, using the same receptor
as in the former cases, can be seen in Figure E.11.
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with p = sin40° (sagittal section) of the RR(3D) with edge C2. The receptor is a disk in the
plane z = 0 and centered on A of radius 0.02848.





AAppppeennddiixx FF

THE LUNEBURG LENS

461

The Luneburg lens, discussed in Chapter 3, is not, of course, of any use as a prac-
tical concentrator. It is, however, the simplest example of an ideal concentrator
with maximum theoretical concentration for collecting angles up to p/2, and there-
fore we develop its theory and general properties in this appendix. The main ref-
erence is to Luneburg’s own work (Luneburg, 1964). Some of the general
geometrical optics background can also be found in Born and Wolf (1975), and
extensions are given by Morgan (1958) and Cornbleet (1976).

Our starting point is the differential equation of the light rays. Let s be dis-
tance along a ray measured from some fixed origin, let r be the position vector of
a point on a ray, and let n(r) be the refractive index, varying continuously as a
function of r. Then it can easily be shown [e.g., Born and Wolf (1975, Section 3.2.1)]
that the rays are given by solutions of

(F.1)

Let the refractive index distribution have spherical symmetry. Then we can
write n(r) ∫ n(r), where r is a radial coordinate from the origin. Also, on account
of the spherical symmetry, any light ray lies wholly in a plane through the origin,
and we can describe its path by the polar coordinates (r, q).

In order to do this we note that dr/ds is a unit vector along the tangent to the
ray—say, s. Now we have

from Eq. (F.1). But by spherical symmetry grad n is parallel to r and so we have

and a first integral of Eq. (F.1) is
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d
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This is a vectorial equation that is equivalent to establishes the conservation of
the skew relative to two orthogonal axes.

Since the rays are plane curves as just noted, this gives, say,

(F.2)

where f is as in Figure F.1. Since

Eq. (F.2) yields

(F.3)

and thus if n(r) is specified, the ray paths are obtained by quadrature

(F.4)

If we wish to find an index distribution n(r) that will act as an aberration-
free medium, we have to regard Eq. (F.4) as an integral equation for the function
n(r). Luneburg did this and considered the use of an index distribution inside the
unit sphere and with index unity at the surface of the sphere. He formulated 
the conditions for focusing from any point r0 to another r1 as in Figure F.2, and 
he obtained an explicit solution for the case of present interest, r0 = •, r1 = 1. 
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Figure F.1 Notation for ray paths in a medium with spherical symmetry.

Figure F.2 Luneburg’s general problem of an aberrationless unit sphere.



Luneburg’s derivation is very complex and closely argued. Rather than reproduce
his work we shall simply verify the solution he gave.

Let the lens have radius a and let the index vary in such a way that r has
only one minimum value for the ray path in the lens—say, r*—as in Figure F.3.
Then from Eq. (F.2) we have, using values at the beginning of the trajectory in the
lens,

and thus

(F.5)

Since the two halves of the trajectory on either side of the radius r* must be mirror
images we have

(F.6)

and thus Eq. (F.4) takes the form

(F.7)

to be satisfied by a function n(r) for any h < a.
Luneburg gave the distribution

(F.8)

as the solution of this integral equation. If we substitute for n(r), we have to 
evaluate

(F.9)

to verify the solution. From Eq. (F.5) we find
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Figure F.3 Luneburg’s problem for r0 = •, r1 = 1.



(F.10)

and if we make the change of variable

(F.11)

in the integral, it becomes

(F.12)

The indefinite integral has the value

(F.13)

and on substituting the limits of integration and recalling that h/a = sin 2q*, we
find that the value is q*, as required by Eq. (F.7). We have also obtained the actual
ray paths, since these are specified by q as a function of r for given h by

(F.14)

with sinb = [1 - (r2/a2)](1 - h2/a2)-1/2. Figure F.4 shows several rays plotted to scale.
In order to use the Luneburg lens as an ideal concentrator we choose an input

angle qi less than p/2 and use the opposite spherical cap as the absorbing surface,
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Figure F.4 Rays in the Luneburg lens.



as in Figure F.5. A ray incident at height h from the center emerges at an angle
to the surface arcsin (h/a) so that at any point on the exit surface rays emerge in
all directions up to p /2 from the normal and the sines of the angles are distrib-
uted uniformly. Thus, the exit surface is filled with rays at all possible angles, and
this must be in some sense a system with maximum theoretical concentration
ratio. We can make this more explicit by calculating the entering étendue. This is,
from Figure F.5, the area pa2 secq integrated over the direction cosines of the
incoming beam—that is, it is

where j is an azimuthal angle. The value of this is 2p2a2(1 - cosqi). Also, the inte-
gral over the direction cosines alone is

and this is psin2 qi. Thus the effective entry area must be pa2/cos2(1/2)qi.
The area of the spherical cap that forms the exit surface is 4pa2 sin2(1/2)qi

so that the concentration ratio is 1/sin2 qi, the theoretical value for a collecting
angle qi. Since all entering rays emerge, we have a 3D concentrator with maximum
theoretical concentration ratio.

We had to proceed in this slightly oblique way because the collecting aperture
of the lens shifts with angle and because the exit surface is not planar. Thus, the
correspondence with systems with well-defined and plane entry and exit apertures
is not perfect.
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Figure F.5 The Luneburg lens as a concentrator of maximum theoretical concentration
ratio for any entry angle qi less than p/4.





AAppppeennddiixx GG

THE GEOMETRY OF THE
BASIC COMPOUND

PARABOLIC
CONCENTRATOR

467

It is probably simples to obtain the basic properties of the CPC from the equation
of the parabola in polar coordinates. Figure G.1 shows the coordinate system. The
focal length f is the distance AF from the vertex to the focus. The equation of the
parabola is, then,

(G.1)

This result is given in elementary texts on coordinate geometry, and it may be 
verified by transforming to polars the more familiar cartesian form, z = y2/4f with
axes as indicated in the figure.

We apply this to the design of the CPC as in Figure G.2. We first draw the
entrance and exit apertures PP¢ and QQ¢ with the desired ratio in aperture
between them, and we choose the distance between them so that an extreme ray
PQ¢ (or P¢Q) makes the maximum collecting angle qi with the concentrator axis.
Then according to Section 4.3 the profile of the CPC between P¢ and Q¢ is a parabola
with axis parallel to PQ¢ and with focus at Q, and this parabola can be expressed
in terms of the polar coordinates (r, j) as on the diagram.

For the exit aperture we have, using Eq. (G.1)

so that, if QQ¢ = 2a¢, in our usual notation

(G.2)

Next we find
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(G.3)

Thus,

so that a = a¢/sinqi, as required. Finally, for the length of the concentrator
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Figure G.1 The parabola in polar coordinates with origin at the focus, r = 2f/(1 - cosf) =
f/sin2(1/2) f.

Figure G.2 Design of the CPC.



(G.4)

This, of course, is again as required by the way we set up the design of the CPC.
It is obvious from the geometry of the initial requirements for the CPC that

the profile at P and P¢ should have its tangent parallel to the axis. This also can
be verified from the preceding formulation. For the tangent of the angle between
the curve and the radius vector is, in polars,

for the parabola, and if we put r = QP¢ and f = 2qi, we find

as expected.
The parametric representation of the CPC profile given in Section 4.3 is easily

obtained from Figure G.2 if we take an origin for cartesian coordinates at the
center of the exit aperture and z-axis along the concentrator axis. We have from
the figure
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AAppppeennddiixx HH

THE qi/qo

CONCENTRATOR

Figure H.1 shows the concentrator with appropriate notation. From the triangle
QQ¢S we have

(H.1)

Also, since the angle RQ̂S is p - qo - qi, the triangle RQS is isosceles, and so 
QR = QS.

From the polar equation of the parabola,

(H.2)

so from Eq. (H.1) we find for the focal length of the parabola

(H.3)

Again using the polar equation of the parabola,

and

(H.4)

From Eq. (H.4) we find immediately

(H.5)

so that the qi/qo concentrator is actually ideal in two dimensions.
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The overall length of the concentrator is, from the figure,

(H.6)

just as for the basic CPC ((Eq. (G.4)).

L a a i= + ¢( )cotq
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Figure H.1 Design of the qi/qo concentrator.



AAppppeennddiixx II

THE TRUNCATED
COMPOUND PARABOLIC

CONCENTRATOR

In this appendix we give the derivations of the formulas in Section 5.3. We show
in Figure I.1 the parabolic section in polar coordinates. For these coordinates we
recall (see Appendix G) that the equation of the parabola is

(I.1)

If s is the arc length of the parabola, then

so that

or

(I.2)

from Eq. (I.1). We have to integrate this to find the arc length, which is propor-
tional to the reflector area in a 2D system. We have to evaluate the indefinite 
integral

On making the change of variable
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we obtain

(I.3)

The radius of the entrance aperture is simply

which gives Eq. (5.18) immediately. Thus, Eq. (5.22) for sT/aT is obtained. Likewise
the length LT of the truncated CPC is

from which Eq. (5.19) follows immediately, and thence Eq. (5.21).
For the 3D CPC the element of area of reflector is

where r is the radius of the CPC at the current point. Since r is rsin(f - qi) - a¢
we have
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Figure I.1 Construction for the truncated CPC.



This can be integrated by making the same change of variable, cosh u = cosec(f/2),
and the result for the ratio of area of collection surface divided by area of collect-
ing aperture is

(I.4)
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AAppppeennddiixx JJ

THE DIFFERENTIAL
EQUATION FOR THE 2D

CONCENTRATOR
PROFILE WITH

NONPLANE ABSORBER

It was shown in Chapter 5 that the concentrator profile that gives the theoretical
maximum concentration is obtained in two sections. The first section, that shad-
owed from the direct rays at angles less than qi, the maximum input angle, is an
involute of the absorber cross section. The second section is such that rays at qi

are tangent to the absorber after one reflection at the concentrator surface.
We suppose the absorber surface to be specified by its polar coordinates r, q,

as in Figure J.1. The current point P on the profile is at a distance t from the cor-
responding tangent point on the absorber. The condition for reflection is

(J.1)

The coordinates of the point P are

(J.2)

and, as usual,

(J.3)

Thus, on differentiating Eq. (J.2) and using Eq. (J.3) we obtain

(J.4)

In this equation t is the dependent variable and q the independent variable; r and
f are both known functions of q. Equation (J.4) is therefore a first-order linear dif-
ferential equation for the profile that could be solved by well-known methods.

For the involute portion of the profile we have the classical result
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478 Appendix J The Differential Equation for the 2D Concentrator Profile 

(J.5)

for the current point.
We can, however, write down the solution to Eq. (J.4) in closed form using the

“string method” described in Chapter 5. Thus, let s be the perimeter of the absorber
profile measured from the point corresponding to q = 0; q0, is the polar angle of 
the point Q that separates the shadowed from the directly viewed portion of the
absorber. Then, by simply imposing the condition of constant string length on the
geometry of Figure J.1, we obtain for the portion q > q0

(J.6)

For the involute portion (q < q0) we have

(J.7)

Rabl (1976a) set up these differential equations for the special case of great
practical importance when the absorber cross section is circular. In this case 
r. = 0, f = p/2, and Eq. (J.4) reduces to the form

or, setting 

(J.8)

As Rabl showed, this can be integrated by making the substitution
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Figure J.1 The differential equation for a 2D concentrator for a nonplane absorber.



to give

(J.9)

To determine the constant, we note that for q = qi + p/2, we desire t = r(qi + p/2).
This fixes the value of the constant in Eq. (J.9) and gives

(J.10)

for p/2 + qi < q < 3p/2 - qi. For q < qi + p/2,

(J.11)

Again, we could have skipped over the differential equation and obtained 
the solution directly by the string method, noticing that for the circle s = rq, q0 =
qi + p/2.
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AAppppeennddiixx KK

SKEW RAYS IN
HYPERBOLOIDAL
CONCENTRATOR

We shall prove that any ray aimed at the rim of the entry aperture is reflected to
some point on this rim. Let FF¢ in Figure K.1 be the diameter of the entry aper-
ture, so that F and F¢ are the foci of the hyperbolas in the plane of the diagram,
and let P be a point on a hyperbola. The bisector PR of angle FPF¢ is tangent to
the hyperbola, and thus the tangent plane at P passes through PR. Any skew ray
to the rim incident on the hyperbola at P passes through some point on the circle
of which FF¢ is the diameter and that is in a plane perpendicular to the diagram,
and all such rays generate an oblique circular cone. We now draw F1F1¢ through
R to make the same angle with PR, as shown. A plane through F1F1¢ perpendicu-
lar to the diagram cuts the cone in a certain curve; the cone is a (degenerate)
quadric surface, and therefore any plane intersects it in a conic section; but the
plane through FF¢ intersects the cone in a circle by construction, and since the
section through F1F1¢ has the same dimensions in and perpendicular to the plane
of the diagram, it too must be a circle. An incident skew ray aimed at Q on the
circle through FF¢ is reflected to some point Q¢ on the plane through FF¢, and by
our construction this point is the mirror image in the tangent plane to the hyper-
boloid of the point in which the ray cuts the plane through F1F1¢; thus Q¢ is on the
circle through FF¢.

Figure K.1 Geometry of hyperboloid concentrator for skew rays.
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AAppppeennddiixx LL

SINE RELATION FOR
HYPERBOLOIDAL/LENS

CONCENTRATOR

With reference to Figure L.1 the lens images the input beams inclined at angles
±q to the axis onto the edges FF¢ of the virtual source. Therefore, by Fermat’s prin-
ciple [QA¢] + [A¢F¢] = [AF¢], where the brackets denote optical path length, and simi-
larly for the other beam. From the geometry of the hyperbola, [AF¢] - [A¢F¢] = 2c.
Also [QA¢] = 2asinq, since QA is normal to the beam. The desired result follows:
c = a sinq.

483

Figure L.1 The thin lens at AA¢ images the input beam inclined at angle q to the axis 
onto F¢.





AAppppeennddiixx MM

THE CONCENTRATOR
DESIGN FOR SKEW RAYS

485

M.1 THE DIFFERENTIAL EQUATION

The profile of the modified concentrator described in Section 5.6 can be described
by means of the coordinate system in Fig. M.1. The origin is taken at the center
of the exit aperture and this latter has radius a¢ as usual. We trace a ray in reverse
from some point Q on the exit aperture to the point R(0, y, z) on the desired profile
and then reflect it. This ray must be constrained to leave Q with the chosen value
h of the skew invariant and after reflection it must have the inclination qi to the
axis. These constraints will determine the profile uniquely.

If Q is (x0, y0, 0), the direction cosines of the ray QR are

(M.1)

with the condition

(M.2)

Let the inclination of the normal at R be y, as indicated in the figure. Then the
law of reflection [Eq. (2.1)] gives for the direction cosines of the reflected ray RP

(M.3)

Our second constraint requires that g ¢ = cosqi, i.e.,

(M.4)

Now tany = dy/dz, the slope of the required profile, so Eq. (M.4) takes the form

(M.5)

This can be solved for dy/dz since b and g are functions of y and z through Eqs.
(M.1) and (M.2), and the result is a first-order nonlinear differential equation for
the profile.

The actual solution must, of course, be done numerically.
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M.2 THE RATIO OF INPUT TO OUTPUT AREAS
FOR THE CONCENTRATOR

The process explained in Section M.1 determines a unique profile for given h and
qi but nothing was put into the solution to ensure that the ratio of entry to exit
areas has the correct value, (1/sinqi)2. In other words, the length of the concen-
trator would be determined by where a ray starting in the plane of the exit aper-
ture with skew invariant h meets the surface, and there is no reason why the
diameter so found should equal 2asinqi. In fact, it turns out that this is always
so, so that this concentrator could, if all rays were transmitted, have maximum
theoretical concentration. We prove this result in this section.

We use in the proof a method of treating skew rays in an axisym-metric system
due to Luneburg (1964). In this method a skew ray in a part of the system with
uniform index of refraction is treated as a meridian ray in the same part of 
the system but with a radially varying index. We first derive this formalism. If 
(r, q, z) are cylindrical coordinates, then the optical path length along a ray
between planes z0 and z1 is, for any distribution of index n(r, z),

(M.6)

where the dots indicate differentiation with respect to z. In terms of these quan-
tities it is easily seen that the skew invariant is

(M.7)

From Eq. (M.6)

(M.8)
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Figure M.1 Constructing the differential equation for the concentrator designed for skew
rays.



Now, we can solve Eq. (M.7) for , giving

and if this is substituted in the integral in Eq. (M.8), we obtain

(M.9)

This result, due to Luneburg, has the significance that the optical path length
along a skew ray between planes z0 and z1 can be computed as that along a merid-
ian ray between z0z1 in a medium of “refractive index”

(M.10)

together with an azimuthal contribution h(q1 - q0). Let the longitudinal and
azimuthal components of the right-hand side of Eq. (M.9) be denoted by Vz and Vq.
Then the result shows that in the r, z plane the “rays” obey Fermat’s principle for
Vz with the fictitious index m given by Eq. (M.10), so that there is true image for-
mation in this plane.

Some rays in the concentrator designed for nonzero h appear as in Fig. M.2
in the Luneburg representation. We show rays entering with the collecting angle
qi and parallel to each other. Ray 1 strikes the entry aperture at A and is reflected
to the rim of the exit aperture at B, while ray 2 grazes the entry aperture at D
and is reflected at the exit aperture at E. Ray 2 has, from the design, the skew
invariant h, so that it travels perpendicular to the axis and meets the exit aper-
ture again at C. Points B and C are in fact coincident, but we have not yet shown
this. We wish to calculate the optical path lengths Vz1

and Vz2
from the source point

at infinity along rays 1 and 2 to points B and C on the exit rim. However, since
rays 1 and 2 are parallel before they enter the concentrator, it suffices to compute
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Figure M.2 Rays in the Luneburg representation.



the paths from a plane through D perpendicular to both rays. We have for these
paths

(M.11)

and V1(AB) = V2(DE), since these two paths are geometrically identical.
Now, in the Luneburg representation the longitudinal path lengths from infin-

ity to the exit rim are equal, since our solution of the differential equation in
Section M.1 has ensured this. Likewise, the longitudinal path lengths from A to
B and from D to E are equal, so that

or

(M.12)

where q1 and q2 are the appropriate azimuthal angles for the two paths. Combin-
ing Eqs. (M.12) and (M.12), we obtain

(M.13)

If we compute the angles q1 and q2 from infinity to B and C, respectively, and
remember that AB and DE subtend the same angles, we find

(M.14)

and also from the skew invariant we find

(M.15)

We use Eqs. (M.14) and (M.15) to eliminate a, a¢, qi, and q2 from Eq. (M.13) and
obtain

(M.16)

Now tanj - j is monotonic for j less than p/2 and the angles in Eq. (M.16) are
less than p/2, so we conclude that j1 = j2 and thus, from Eq. (M.15),

(M.17)

Thus the concentrator designed for the nonzero skew invariant has the ratio of
apertures required to give the maximum theoretical concentration ratio.

We can also calculate the length L of the concentrator:

(M.18)

M.3 PROOF THAT EXTREME RAYS INTERSECT AT
THE EXIT APERTURE RIM

We stated in Section 5.6 in connection with Fig. 5.8 that rays in a chordal plane
at qi and touching either side of the entry rim (points A and D in Fig. 5.8) will
emerge at the same point C of the exit aperture rim. We can show this result very
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simply, as in Fig. M.3; this is the same as Fig. 5.8 but with some construction lines
added.

We assume that the ray reflected from B meets the exit rim at C and that
reflected from D meets it at F, and we shall show that F and C coincide. First, by
construction the triangles AOB and DOF are congruent so that –GOB = –DOF.
Thus the external angle from G to F is given by

(M.19)

Next, the triangles AOD and BOC are similar, as may be seen from the radii
of the pairs of circles involved in the construction; the ratio of sides is sinqi. Thus
for the external angle from G to C we have

(M.20)

Thus comparing Eqs. (M.19) and (M.20) we have proved our result.

M.4 ANOTHER PROOF OF THE SINE RELATION
FOR SKEW RAYS

We may also obtain the sine relation for the concentrator designed for skew rays
by formally evaluating the étendue in the p, r plane using the fictitious index m

– = – + – = – + –
= – + –

GOC GOB BOC GOB GOD
GOB BOD2

– = – + –GOF GOB BOD2
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Figure M.3 Coincidence of the points C and F at which two rays emerge.



(bearing in mind that in these variables the concentration has ideal properties).
We need to calculate

(M.21)

where p is the optical direction cosine in the r direction,

(M.22)

and m(r, z) is given by Eq. (M.10).
To find the limits on p, the following identity is useful:

(M.23)

where q is the inclination of the ray to the z axis. Then the étendue over the
entrance aperture is

(M.24)

while the étendue over the exit aperture is

(M.25)

Performing the integrations and setting H = H¢, we obtain

(M.26)

the same relation as Eq. (M.16). Therefore, the sine relation is proved.

M.5 THE FREQUENCY DISTRIBUTION OF h

Having found a solution for fixed h, we may ask for the frequency of occurrence of
h in an ideal 3D system with rotational symmetry. This is readily found by writing
the étendue in cylindrical coordinates (r, q, z):

(M.27)

Here p is the generalized momentum conjugate to r obtained from differentiation
the integrand of Eq. (M.6) with respect to . Then h is distributed according to

(M.28)

We can just as well work in the Luneburg representation and obtain p from Eq.
(M.9) (the two are of course identical). The desired integration is therefore already
performed in the previous section and we may take over the result:

(M.29)

For purposes of plotting, this expression is more conveniently written
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ṙ

H dh dp d d= Ú r q

2 21 1 2 2h htan tanj j j j-[ ] = -[ ]

¢ = -( )¢

ÚH h d
h

a
2 1 2 2

1
2r r

H h di
h

a

i
= -( )Ú2 2 2 2

1
2sin

sin
q r r

q

m n1 2
1
2+( ) =˙ cosr q

p m z= ( ) +( )r r r, ˙ ˙1 2
1
2

H dp d= ÚÚ r

490 Appendix M The Concentrator Design for Skew Rays



where x = h/a¢ lies in the interval (-1, 1). This function is plotted in Fig. M.4. We
observe that the frequency distribution strongly peaks toward h = 0. We may check
that the distribution is properly normalized by integrating Eq. (M.30) over all h
values:

(M.31)

We recognize this to be the étendue of a diffusely illuminated disk of radius a¢.

H dH dh dh a
a

a
= ( ) = ¢

- ¢

¢

Ú p 2 2
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Figure M.4 Frequency distribution in h for an ideal 3D system. The ordinate scale is chosen
to have maximum value = 1.
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Concentrator profile, 89–92
differential equation, 89, 477–479
differential equation for two-dimensional

concentrator with non-plane absorber,
477–479

generalized string construction, 47–49,
89–92

mechanical construction, 89–92
string construction, 89, 92, 478–479

Cone concentrator, 64–67
Cone, retinal, 6
confining cavities, 135
Conjugate surface, 32
conservation law, 235, 266
constant of motion, 111
Constructive design principle for

concentrators, 96, 97
continuously differentiable forms, 277
CPC, 244, 255, 276–280
CTC concentrator, 143, 144
cylinder, 240, 244, 294–303

design constraints, 267, 268, 274, 275, 
277

design parameters, 274
Detectors, 5
Dielectric filled compound parabolic

concentrators with total internal
reflection, 69–72

angular acceptance, 70–72
diffeomorphism, 235, 266
Diffraction effects, 305, 306
Diffraction limit, 34, 219, 221, 226, 229,

300
Diffraction pattern, 34
dilution, 242, 250, 296
Direction cosines, 46, 70, 71, 415–420
disk, 240, 244, 276–298
dispersion path length, 442
Distortion, 29

Barrel, 29, 224
Pin cushion, 29

Earth-sun geometry, 328
edge ray theorem, 183
Edge-ray principle, see edge-ray theorem,

30, 47–49, 50, 74, 85–87, 421–431
extension to non-plane absorbers in two-

dimensional concentrators, 85–87
efficiency limit, 242, 249, 258–263
Eikonal, 416
elliptic bundle, 118
Enhancement factor, 72
Error multiplier, 410–411
Error transfer, 400–410
Etendue, 75, 76, 87, 91, 93–95, 415–420
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étendue, 235, 236, 238, 241–247, 249–251,
254, 255, 257, 258–263, 265–267,
269–272, 276, 277, 280, 281, 284, 286,
288, 291, 294, 295, 298, 299, 301, 
302

Euclidean space, 274
Euler-Lagrange necessary condition, 235,

266

Failure regions, 59–64
Fermat’s principle, 47, 90, 91, 215, 235,

266, 418
filament lamp, 268
Flow-line, 99–158

generalized concentrator, 108, 109
strip, 100
three-dimensional examples, 102, 

103
two-dimensional example, 100–102
wedge, 101

Focal length, 28–31, 51, 84, 224
Focusing, 313
Fresnel’s surface of wave normals, see

Hamiltonian function, 110

Gap, 319, 329, 336, 355
Garwin’s result, 66
Gaussian distribution, 406, 408
Gaussian optics, see paraxial optics
generalized coordinate, 266
Generalized Etendue, 18–22, 415–420
Generalized Flow-line concentrator,

108–109
Generalized radiance, see Radiance
Geometrical vector flux J, 99, 130
global optimization, 265
goniometer, 268
Gull concentrator, 338

Hamilton equations, 111, 122, 434
first integral, 121
particular integral, 109, 439

Hamiltonian function, 110, 433
Hamiltonian system, 235, 266
Heliostat, 346
Helmet concentrator, 337
Herzberger’s fundamental optical

invariant, 439
Hilbert integral, 93–95
holonomic constraints, 235
homogeneous sources and targets, 241,

242, 271–274
Hottel’s formula, 75
Huygens-Fresnel operator, 307, 308
Hyperbola, 97, 100–103
Hyperboloid concentrator, 105–107, 
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lens flowline, 107–109
skew rays, 41

Ideal qi/qo concentrator, 72–74, 471, 
472

Ideal concentrator, 25, 27, 31–34, 40, 49,
52, 55, 65, 66, 73, 76, 90, 95, 115, 116,
118, 461, 464

Imaging concentrators, 25–34, 209–212,
219–233

Infrared detectors, 159
inhomogeneous sources and targets, 241,

245, 251, 267–273
Inhomogenous medium, 92, 93
Instrument function, 306–308
Instrument operator, 311, 312
Integrator, 322–324
inverse engineering, 265
inverse transformation, 274
involute CPC, 255, 281–287
Involute, 87, 89, 478, 479
irradiance distribution, 275

Lagrange invariant, see Etendue, 439
Lambertian radiator, 162, 172
Lambertian source, 244, 253–255, 257, 268,

280, 281, 291, 294
Langrangian system, 235
Laser

solar-pumped, 282–285
latitudinal cutoff, 255–263
Law of reflection, 175
Law of refraction, 175
Least Action Principle, see Maupertius

principle, 111
Legendre transformation, 235, 266
light emitting diode, 268
Liouville’s theorem, 99, 428, 429
Lipschitz continuity, 266, 274
longitudinal cutoff, 254, 255, 257, 

261–263
Lorentz geometry, 144
Luneburg lens, 36, 37, 220, 461–466
Luneburg representation, 434

Malus and Dupin theorem, 439
Malus-Dupin theorem, 176
manifold, 235, 266
Manufacturing tolerances, see optical

tolerances for concentrators
mapping, 235, 266
Maupertius principle, 111
maximum flux transfer, 268
Maximum slope rule, 96

subsidiary condition, 96
Maxwell fisheye lens, 34, 36
Measuring radiance, 306–309

metal halide lamp, 268
microstructure ridges, 298–303
Mirror systems as concentrators, 

38–40
Modulation transfer function, 

225–229
equivalent bandwidth, 229

multifoliate-reflector, 138–142

natural cubic spline, 276, 277
Noether’s theorem, 235
Nonimaging concentrator, 45–49, 99

flow line approach, 99–158
general string design method, 85–87,

92–97
second-stage application, 76–78

nonimaging lens, see RR concentrator
Nonlinear effects of series connection in

photovoltaics, 324–327
Nonsequential mirror, see also flow-line,

336, 427
nonuniform rational B-splines, 275
Numerical aperture, 219

objective functions, 274
Optical path length, 47, 93, 435
Optical tolerances for concentrators,

395–413
optimized spline concentrator, 277–280
optimized spline reflector, 281–287

Parabola, 467–469, 471
equation, 467–475
polar equation, 56, 57

Parabolic trough concentrators, 320,
324–329, 332–334, 336, 339–342, 
359

Paraboloid of revolution, 64, 65
Paraboloidal mirror, 39
parametrization, 266, 275, 281, 284, 

288
Paraxial optics, 13, 18, 19
Patents, 50, 181
Patterns of accepted and rejected rays,

59–62
Perfect imaging system, 449–459
Perfect off-axis imaging system, 449–459
Phase space, 46–48, 99, 184, 415–420
Photometry, 419
Photovoltaic, 318–327, 350–366
piecewise continuity, 274
Pin Hole radiometer, 307
Poincare invariants, 99
Poincaré-Cartan invariants, 266
Point eikonal, 417
Poisson brackets, 110–114
Practical radiometer, 308
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Prescribed irradiance/intensity design
problem

for extended source, cylindrical optics,
162–173

for point source, 160–162, 172, 
174–178

free-form optics, 173–178

Radiance, 305–316
radiance distribution, 268
radiative transfer, 102
Radiometer, 307, 308
radiometric ray set, 268
Ray tracing, 52–55, 57–64

through a reflecting surface
through a refracting surface

reentrant forms, 276
Reflectors for uniform illumination, see

prescribed irradiance/intensity design
problem

rotational skew invariant, 236–248, 278,
280, 286, 287, 291, 293, 294, 
296–298

rotational symmetry, 235–247, 267, 283,
284, 288, 291

RR concentrator, 184
RX concentrator, 195–201, 220
RXI concentrator, 202, 364–365
RXIF concentrator, 353–355
RX-RXI concentrator, 353, 355–356

scaling parameter, 277
Schmidt camera, 40
Sequential optical surface, 336, 426
Shape tolerance for concentrators, see

optical tolerance for concentrators, 78,
345, 436

Signal, 306, 313
Simultaneous Multiple Surface design

method, see SMS
Simultaneous Multiple Surface design

method
combination with the flow line method,

211, 217
in 2D, 181–217
in 3D, 173

sine condition, 443, 444
Sine relation for skew rays, 78, 436
Single-Mirror Two-Stage, 340, 356–363
skew invariant, 235–263, 267, 268, 280,

286, 287, 291, 293, 296–298, 302, 
303

Skew invariant, 63, 76, 78–80, 
433–437

Skew rays, 54, 59, 78–80
concentrator design, 79–80

skewness, 235–263, 267, 268, 280, 286,
287, 291, 293, 296–298, 302, 303

skewness distribution, 236, 237–244,
249–259, 286, 287, 291, 293, 296, 297,
300, 302

skewness mismatch, 265, 294
slope errors, see optical tolerance for

concentrators
standard deviation, 408

SMS, 181–218
combination with flow-line design

method, 211–217
Snail concentrator, 336
Solar

cell, see photovoltaic
energy, 34, 317–394
furnace, 370, 381

Snell’s law, 7
solar concentrator, 258–263, 298–303
sphere, 240, 245, 280–287
Spot

diagram, 34, 14, 15
size, 225, 458

star concentrator, 288–298
Stationary collector, 1, 328–330, 353–356
Stefan-Boltzmann constant, 1
Stigmatism, 223
stochastic topology, 269
symmetry, 235–263, 267, 283, 284, 288,

291, 299, 300–302, 303
symplectic manifold, 235, 266

target-to-source étendue ratio, 267
Telecentric optical system, 26, 226
Telescopic, 26
Three-dimensional concentrator, 4, 5, 38,

50, 54, 55, 66, 102, 103, 106–109,
452–459

TIR-R concentrator, 366
topology, 266, 274
Total internal reflection, 53, 69–72, 76, 

96
Total transmission, 190, 191, 194, 200, 

208
translational skew invariant, 236, 248–263,

299, 300, 302, 303
translational symmetry, 235, 236, 247–263,

267, 299, 300–302, 303
Transmission angle curve, 53, 55, 57–64,

189, 195, 208
transmission function, 199, 200
Two-dimensional concentrator, 4, 5, 53–55,

85–97, 100–102, 105, 450–452,
477–479

generalized, 95
Two-sided flat plate collector, 87

Ultra high concentration, 317–319,
321–322, 324, 342–350, 363–387

Uses of concentrators, 5, 6
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van Cittert-Zernike theorem, 306
V-trough, 65–66

Wave aberration function, 222
Wave front, 92
Wigner function, 306

xenon arc lamp, 268
XR concentrator, 192–195
XRIF concentrator, 212
XX concentrator, 201–202




