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Birkhäuser

Boston • Basel • Berlin



William M. McEneaney
Department of Mechanical and Aerospace Engineering
and Department of Mathematics
University of California at San Diego
9500 Gilman Dr.
La Jolla, CA 92093-0112
USA

AMS Subject Classification: 35B37, 35F20, 47D99, 49Lxx, 60J60, 65M99, 65N99, 93-02, 93C10

Library of Congress Cataloging-in-Publication Data

McEneaney, William M.
Max-plus methods for nonlinear control and estimation / William M. McEneaney.

p. cm. – (Systems and control)
Includes bibliographical references and index.
ISBN 0-8176-3534-3 (alk. paper)
1. Nonlinear control theory. 2. Matrices. I. Title. II. Systems & control.

QA402.35.M44 2005
629.8’36–dc22 2005053046

ISBN-10 0-8176-3534-3 e-ISBN 0-8176-4453-9
ISBN-13 978-0-8176-3534-3

Printed on acid-free paper.

c©2006 Birkhäuser Boston
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To the world’s misfits



Preface

The control and estimation of continuous-time/continuous-space nonlinear
systems continues to be a challenging problem, and this is one of the cen-
tral foci of this book. A common approach is to use dynamic programming;
this typically leads to solution of the control or estimation problem via the
solution of a corresponding Hamilton–Jacobi (HJ) partial differential equa-
tion (PDE). This approach has the advantage of producing the “optimal”
control. (The term “optimal” has a somewhat more complex meaning in the
class of H∞ problems. However, we will freely use the term for such controllers
throughout, and this meaning will be made more precise when it is not obvi-
ous.) Thus, in solving the control/estimation problem, we will be solving some
nonlinear HJ PDEs. One might note that a second focus of the book is the
solution of a class of HJ PDEs whose viscosity solutions have interpretations
as value functions of associated control problems. Note that we will briefly
discuss the notion of viscosity solution of a nonlinear HJ PDE, and indicate
that this solution has the property that it is the correct weak solution of the
PDE. By correct weak solution in this context, we mean that it is the solution
that is the value function of the associated control (or estimation) problem.
The viscosity solution is also the correct weak solution in many PDE classes
not considered here, and references to further literature on this subject will
be given. Note that the value function is defined to be the optimal cost that
can be achieved, typically as a function of the initial state of the system being
controlled.

Perhaps at this point we should indicate the classes of nonlinear control
and estimation problems that will be addressed here. One class is comprised of
nonlinear optimal control problems (in the absence of disturbances). However,
the classes of problems that were the primary motivation for the work were
the nonlinear robust/H∞ control and estimation problems.

Although H∞ control was first formulated in the frequency domain, the
state-space representation quickly appeared. In the case where one is comput-
ing the optimal H∞ controller, the state-space form generally takes the form of
a zero-sum differential game (although a subclass will be of special interest).
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One player is the controller, and the other player is the disturbance process.
The controller will be minimizing the same cost that the disturbance player
will be maximizing. The corresponding PDE will be a Hamilton–Jacobi–Isaacs
(HJI) PDE, although in many cases of interest, the PDE will belong to the
subclass of Hamilton–Jacobi–Bellman (HJB) PDEs. We will more often be
interested in the case where one is testing a potential feedback controller to
determine whether it is indeed an H∞ controller. In this case, as in the optimal
control case, the value function is the viscosity solution of an HJB PDE. The
robust/H∞ estimation problems will also have associated PDEs which take
the form of HJB PDEs.

In all of the above cases, any disturbance or control process will have fi-
nite energy over finite time periods. Consequently, we will be interested in
solving first-order, nonlinear HJB PDEs. Our focus will be on solving con-
trol/estimation problems through solving associated HJB PDE problems, but
one could also imagine that for others the primary motivation would be the
solution of HJB PDEs with the control interpretation being ancillary.

The most common methods for solving HJB PDEs are finite element meth-
ods. With first-order PDEs there are certain conditions implied by the flow of
information that must be met in order to obtain good performance in these
algorithms. One approach to finite element methods where these conditions
are met is through a Markov chain interpretation of the algorithm. A serious
problem for solution of HJB PDEs associated with control problems is that
the space dimension of the PDE is the dimension of the state-space of the
control problem. Since the dimension of the state-space is generally relatively
high (≥ 3) for most control systems of interest, this problem, referred to as
the curse-of-dimensionality, is ubiquitous.

An alternate approach, which attempts to avoid this problem, is through
the use of characteristics (as, for instance, in the Pontryagin Maximum Prin-
ciple). In this case, one needs only to propagate the solution along (one-
dimensional) paths to obtain the value and control at a desired point on such
a path. Given a point in state-space, one can ideally propagate a single charac-
teristic trajectory passing through that point to obtain the value and optimal
control there. Of course, there are a number of technical difficulties with this
approach as well. First of all, one needs to apply some shooting technique
to find the correct initial conditions so that the path will pass through the
desired point. Second, the viscosity solution is generally nonsmooth, and the
projection of the characteristics onto the state-space often generates projected
characteristics that cross. Further, there may be regions of state-space through
which no such projected characteristic passes. (These last two difficulties are
somewhat analogous to shocks and rarefaction waves in conservation laws.)
This leads to the need to generate generalized characteristics, and there are
associated “bookkeeping” problems which have, so far, proved to be somewhat
of a deterrent to application of this method for large or complex problems.

The max-plus-based methods described in this monograph for solution of
HJB PDEs belong to an entirely new class of methods for solutions of such
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PDEs; they are not equivalent to either the finite element or characteristic
approaches. As this is an entirely new class of numerical methods, the disci-
pline is still in its infancy. It is hoped that this book can become a resource
for those who would like to develop this new class of methods to a mature
level. Through the judicious selection of chapters/sections, it can also provide
a readable, concise description of the area for those who are only tangentially
interested in this area of research.

Perhaps this is the correct place at which to broadly describe the main
facets of this max-plus-based class of methods for first-order HJB PDEs. Non-
linear HJB PDEs have solutions that may be interpreted as the value functions
for associated control problems. The semigroup that propagates the solution
of such a PDE is identical to the dynamic programming principle (DPP) for
the control problem. We assume that this control problem has a maximizing
control. (If the control is minimizing, one uses the min-plus algebra rather
than the max-plus algebra. The analysis is a mirror image of the maximizing
case, and so we will deal mainly with the max-plus case.)

The semigroup associated with the nonlinear HJB PDE is a max-plus lin-
ear operator. This leads to what is essentially a max-plus analogue of spectral
methods for linear (over the standard field) PDEs. In order to exploit this
max-plus linearity, one needs to develop the notion of a vector space over
the max-plus algebra (actually a semifield). By considering expansions of the
desired solution in terms of the coefficients in a max-plus basis expansion,
one obtains the first max-plus technique. In particular, propagation forward
in time with a finite, truncated expansion reduces to max-plus matrix-vector
multiplication. That is, the coefficients in the expansion one time-step into
the future are obtained by max-plus multiplication of the current vector of
coefficients by a matrix related to the problem dynamics. Steady-state PDE
problems reduce to max-plus eigenvector problems, and steady-state varia-
tional inequalities reduce to affine max-plus algebraic problems.

This approach, solving a max-plus eigenvector problem to approximately
solve the HJB PDE, has proven very effective. Additional, related approaches
have also proven effective. In particular, it has been observed that, in applying
this max-plus eigenvector approach, the computational cost of constructing
the matrix is typically an order of magnitude higher than that of finding the
eigenvector given the matrix. This motivated the development of methods
where the computational cost of obtaining the matrix could be reduced. In
particular, one can compute matrices for (standard-sense) linear problems,
and then take max-plus linear combinations of these to generate the matrix
corresponding to the HJB PDE that one wishes to solve.

However, this last concept can sometimes be taken much further. The ma-
trix being referred to is actually a discretization of the kernel of the dual of the
original max-plus linear operator. For linear problems, this kernel can be com-
puted analytically (modulo solution of a Riccati equation). One can then take
max-plus linear combinations of these analytically obtained kernels to gener-
ate the desired kernel. This concept leads to a method, which for a certain
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class of HJB PDEs avoids the curse-of-dimensionality. In particular, the com-
putational complexity grows at a polynomial rate in state-space dimension,
and is instead exponential in a certain measure of problem complexity.

We note that the max-plus algebra (more correctly the max-plus semifield)
has been under intense research during the last decade. Much of this research
has been directed toward the use of the max-plus algebra in discrete-event
system problems. The max-plus additive and multiplicative operations, ⊕ and
⊗, are defined as a⊕ b = max{a, b} and a⊗ b = a + b, respectively. There is
extensive literature on the research area. The contribution of this monograph
is on the application of the max-plus algebra to solution of HJB PDEs.

Reiterating from above, this book is intended for researchers and graduate
students with an interest in the solution of nonlinear control problems and/or
HJ PDEs. It should be suitable both for those working in the field and for
those who have only tangential interest.

The author would like to thank Wendell H. Fleming whose collaboration
has been invaluable. The author also thanks Matthew R. James, J. William
Helton and Peter M. Dower for helpful discussions.
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1

Introduction

One of the chief aims of this book is the presentation of some entirely new
classes of numerical methods for the solution of nonlinear control problems
and, more generally, Hamilton–Jacobi–Bellman partial differential equations
(HJB PDEs). These methods are based on the max-plus formulation of these
problems. The development of the max-plus viewpoint on deterministic non-
linear control problems is a second major motivation. The max-plus algebra
is a commutative semifield which has come under intense study in the last
decade. This interest is due to the confluence of several factors. First of all,
there is a rich mathematics including probability theory, analysis and geom-
etry which can be built on the max-plus algebra. A second important factor
is that the max-plus algebra is the most natural language for the study of
many problems in discrete event systems. However, it was only more recently
that the usefulness of the max-plus viewpoint for solution of nonlinear control
problems in continuous space arose.

In the max-plus algebra, the addition operation is maximization, and the
multiplication operation is what one usually refers to as addition. The additive
identity is −∞, and the multiplicative identity is 0. This algebra arises from
the standard algebra through large deviations limits (c.f. [1], [84], [82], [97],
[98]) and/or the quantization limit of quantum mechanics [69]. If one thinks of
control as maximizing some accumulated cost (say an integral cost), then it is
clear that the max-plus algebra is a natural framework for the study of these
problems. Perhaps it should be noted that integral costs are multiplicative in
max-plus and costs that involve suprema over time are additive in the max-
plus sense. Both these multiplicative and additive forms are handled within
the max-plus framework. It should be noted that when the optimization is of
a minimizing form, the min-plus algebra is used instead.

One of the most generally applicable approaches to solving nonlinear con-
trol problems is dynamic programming (DP). The Dynamic Programming
Principle (DPP) can be viewed as an operator mapping the value function
(optimal cost as a function of system state) at one time to the value func-
tion at a later (or earlier) time. In the continuous-time case, if one takes the
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limit in the DPP as the time-interval goes to zero, the Dynamic Programming
Equation (DPE) is obtained. For continuous-tme/continuous-space problems,
this DPE takes the form of an HJB PDE. This PDE is a nonlinear, first-order
PDE.

The typical approach is to obtain the HJB PDE corresponding to the
control problem of interest, and then to apply a numerical method to solve
the HJB PDE, thereby obtaining the value function. (Ignoring some technical
issues, the value function can yield the optimal control in a feedback form.)
The most common approach to solving the HJB PDE is to apply a technique
for solution of general PDEs — the finite element method. There are some
HJB-specific issues that arise in applying the finite element method to such
PDEs (cf. [8], [66]).

Another approach is to consider the characteristic equations associated
with the (first-order) HJB PDE. By solving these ordinary differential equa-
tions (ODEs), one can, in principle, obtain the value function along the pro-
jection of a path of a characteristic curve into the state space. Some serious
issues arise due to nonsmoothness. In particular, the projections into state
space can cross, or they may not cover the entire space. These roughly cor-
respond to shock and rarefaction waves in conservation laws (cf. [27], [90],
[93]).

Max-plus methods work directly with the DPP rather than the limit PDE.
As noted above, the DPP corresponds to an operator, and in fact, the time-
step parameterized family of DP operators for a problem is a semigroup whose
generator is the HJB PDE. The naturalness of the max-plus framework for
solution of deterministic control problems (and HJB PDEs) is reflected by
the fact that these operators are max-plus linear operators. The solution of
time-dependent problems reduces to propagation by the linear operator, while
steady-state problems reduce to eigenfunction problems corresponding to the
linear operator. This linearity was first noted by Maslov [71].

A key to the exploitation of this linearity is the development of function
spaces over the max-plus algebra. (These are often referred to as moduloids;
see [6], [20] and the references therein.) A well-known similar approach is when
linear second-order PDEs are solved by considering Fourier series expansions
of the solution. In order to utilize this same approach, one must define the
appropriate max-plus spaces, and obtain bases for these spaces. Unfortunately,
the lack of additive inverses in the max-plus algebra precludes a direct analogy
with Hilbert spaces. However, there are nonetheless useful bases for these max-
plus spaces.

If one truncates the basis expansions of elements of a max-plus space,
the max-plus linear semigroups correspond to finite-dimensional matrices.
Then, approximate propagation reduces to max-plus matrix-vector multipli-
cation, and approximate solution of steady-state problems reduces to finite-
dimensional max-plus eigenvector problems. The resulting class of numerical
methods is completely new, and is not subsumed by any other existing class of
methods. Further, these methods are specifically relevant to control problems
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and HJB PDEs. Additional classes of methods are obtained by taking max-
plus linear combinations of simple, analytically obtainable, max-plus dual op-
erators to approximately generate the max-plus dual operator for the problem
of interest. As these classes are entirely new, a single book can only provide
some initial foundations for these classes of methods. There is much more that
can be done.

In addition to the numerical developments enabled by the max-plus alge-
bra, the algebra provides a new language for formulation of the problems them-
selves. For instance, the supremum over L2 functions (with an L2 cost) can be
represented as a max-plus expectation. Solution of deterministic control prob-
lems becomes propagation of max-plus conditional expectations. Zero-sum
differential games become max-plus stochastic control problems (c.f. Flem-
ing, [39], [40]). Suprema over time are max-plus integrals, and standard-sense
integrals are max-plus multiplicative operators.

1.1 Some Control and Estimation Problems

We briefly indicate some control and estimation problems that will be ad-
dressed in this book. More rigorous formulations of these problems will appear
further below. The chief purpose here is to give some idea of the classes of
problems that will be addressable by the machinery to follow. Throughout,
the state at time t will be denoted by ξt. The state space will be Rn, and
points in the state space will be denoted as x ∈ Rn.

One obvious class of problems appropriate for max-plus analysis are the
finite time-horizon optimal control problems. Let the dynamics and initial
condition be

ξ̇ = f(ξ, u),

ξs = x,

where ut is an input process, taking values in the set U ⊆ Rk. This input
process may be viewed either as a control input or as a disturbance input.
The mathematics for solution of the associated HJB PDE will be the same
regardless of the real-world interpretation. We will refer to the space of func-
tions to which this input must belong as the control (or disturbance) space,
denoted generically by U . If the finite time-horizon problem is over time in-
terval [s, T ] (where T is referred to as the terminal time), then the space of
input functions might be designated as u· ∈ U[s,T ]. For instance, one might
have

U[s,T ] = {u : [s, t]→ U |u is measurable }
if U is compact. If U is not compact (e.g., U = Rk), then one might take

U[s,T ] =

{
u : [s, t]→ U

∣∣∣∣
∫

[s,T ]

|ut|2 dt < ∞
}

.
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It will generally be of interest to consider optimization of a payoff (or cost
criterion) through choice of this input process. In the case where u represents
a controller, we may interpret the problem as an optimal control problem with
the given cost criterion. Such a criterion would typically take a form such as

J(s, x; u)
.
=

∫ T

s

L(ξt, ut) dt + φ(ξT )

or, somewhat more generally,

J(s, x; u)
.
=

∫ T∧τ

s

L(ξt, ut) dt + φ(ξT∧τ ),

where x ∈ G ⊆ Rn, G satisfies certain conditions, τ = inf{t ≥ s| ξt �∈ G}
and T ∧ τ = min{T, τ}. In this case, L would be referred to as the running
cost, and φ would be referred to as a terminal cost or exit cost. Also, τ would
be referred to as the exit time. The above payoff is max-plus multiplicative.
(This will be discussed later.) Other problem formulations where one takes
suprema or limit-suprema over time will also be of interest. If one desired to
maximize the payoff, then the value function for this problem would be

V (s, x) = sup
u∈U

J(s, x; u).

Problems where one maximizes over the control space will be amenable to
max-plus methods. If instead, one wished to minimize, the min-plus algebra
would be appropriate.

A particularly interesting class of problems will be the robust/H∞ infinite
time-horizon control problems. We will consider first the case where there is
a fixed feedback control and an unknown disturbance process. The typical
dynamics in such cases would take the form

ξ̇ = f(ξ, v(ξ)) + σ(ξ)u = g(ξ) + σ(ξ)u, (1.1)

ξ0 = x ∈ Rn.

Note that, in this case, v(x) is the fixed feedback controller, and the first term
in the dynamics, g(ξ) = f(ξ, v(ξ)) represents the nominal dynamics — the
dynamics in the absence of a disturbance process. It will typically be assumed
that g(0) = 0 so that the origin is an equilibrium point. Also, in this case,
u represents an input disturbance process. If the range space of u were Rk,
then the disturbance space (also referred to as the control space for u) would
typically be

U = Lloc
2 ([0,∞);Rk) = {u : [0,∞) → Rk|u[0,T ] ∈ L2(0, T ) ∀T ∈ [0,∞)}

(1.2)
where L2(0, T ) is the set of square-integrable functions over [0, T ] where the
range space will not be included in the notation when there is no possibility
of confusion. This system is said to satisfy an H∞ criterion with disturbance
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attenuation parameter γ ∈ (0,∞) if there exists a locally bounded β : Rn →
[0,∞) where β(0) = 0 such that

∫ T

0

L(ξt) dt ≤ β(x) +
γ2

2
‖u‖2[0,T ]

.
= β(x) +

γ2

2

∫ T

0

|ut|2 dt (1.3)

for all T ∈ [0,∞) and all u ∈ U . Here, L(·) is assumed nonnegative, and more
specifically, strictly positive definite (i.e. L(0) = 0 and L(x) > 0 otherwise),
and often takes the form of a quadratic. Note that a function is locally bounded
if it is bounded on compact sets. The associated value function (known as the
available storage [12], [52], [108]) is given by

W (x) = sup
u∈U

sup
T∈[0,∞)

∫ T

0

L(ξt)−
γ2

2
|ut|2 dt

= sup
T∈[0,∞)

sup
u∈U

∫ T

0

L(ξt)−
γ2

2
|ut|2 dt

= lim
T→∞

sup
u∈U

∫ T

0

L(ξt)−
γ2

2
|ut|2 dt. (1.4)

Under the indicated assumptions, one has W (0) = 0 and W (x) > 0 if x �= 0.
An H∞ problem with active control which will be considered has dynamics

ξ̇ = A(ξ) + B(ξ)v + σ(ξ)u,

ξ0 = x ∈ Rn,

where A is a vector-valued function of length n, B is an n×m matrix-valued
function, and σ is an n× k matrix-valued function. The payoff is

J(x, T ; v, u) = 1
2

∫ T

0

ξT
t Cξt + vtDvt − γ2

2 |ut|2 dt,

where C and D are symmetric positive definite matrices. The active control
H∞ problem is a zero-sum, differential game with this payoff. The value func-
tion can be expressed as an Elliott–Kalton [35] game value. In particular, the
value of interest is

W (x) = inf
θ∈Θ

sup
u∈U

sup
T∈[0,∞)

J(x, T ; θ[u], u),

where Θ is the set of nonanticipative mappings from the disturbance space, U ,
into the control space. Nonanticipativity and game values will be discussed at
more length below. Under a certain condition, this problem will be addressable
with techniques employing the min-plus algebra.

A class of problems that have come under study in recent years (c.f. [55],
[56]) are ones with mixed L∞/L2 criteria. The dynamics may take the form
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ξ̇ = g(ξ) + σ(ξ)u, ξ0 = x ∈ Rn. In this case, however, the criteria take a more
general form such as

J(x, T, u) = ℓ(ξT ) +

∫ T

0

L(ξt)− η(|ut|) dt,

and one may sometimes have an added constraint that |ut| ≤ M < ∞ for
all t ≥ 0. The η function typically satisfies η(0) = 0 with η monotonically
increasing, and one would have L, ℓ ≥ 0. One considers a problem,

W (x)
.
= sup

T≥0
sup
u∈U

J(x, T, u).

Note that due to the presence of the ℓ term, the supremum over time may be
achieved at some finite value (rather than as T →∞ in the above case), and
so this is referred to as a stopping-time problem.

These same techniques can be applied to the robust/H∞ filtering problem.
In this problem, the dynamics are

ξ̇ = g(ξ) + σ(ξ)u,

ξs = x ∈ Rn,

where x is unknown. The disturbance process, ut, is unknown. There may be
an observation process. If the observations occur at discrete times, tn, then
the observation process may be

yn = h(ξtn
) + ρ(ξtn

)wn

where the wn represent unknown disturbances in the observation process. One
looks for an estimator, xt such that

∫ t

s

(ξr − xr)
T C(ξr − xr) dr ≤ φ(ξs) +

∫ t

s

γ2
1

2
|ur|2 dr +

Nt∑

n=o

γ2
2

2
|wn|2

where C is positive definite and Nt = max{n| tn ≤ t}. Then xt will be a robust
estimator. This will also be discussed more fully below.

1.2 Concepts of Max-Plus Methods

We outline the basic concepts behind the classes of max-plus methods.
Consider the value function given by (1.4) with dynamics (1.1) and con-
trol/disturbance space (1.2). The value function, W (x), is a function of the
initial state. A common approach to solving such a problem is dynamic pro-
gramming, or DP (see for instance [8], [46], [47] and [48]). DP methods gener-
ally lead to a dynamic programming equation (DPE) which in this case takes
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the form of a steady-state, nonlinear, first-order HJB PDE. In the case of this
example, the HJB PDE is

0 = − supu∈Rm

{
[g(x) + σ(x)u]T∇W + L(x)− γ2

2 |u|2
}

= −
[

1
2γ2 (∇W )T σ(x)σT (x)∇W + gT (x)∇W + L(x)

]
.

(1.5)

The boundary condition is that the solution is zero at the origin, that is

W (0) = 0, (1.6)

where we note that 0 will be used to represent the origin in Rn for any n ≥ 1
throughout the text. Since this is a first-order, nonlinear PDE, one cannot
generally expect a smooth solution. Among the class of weak solutions, the
most useful class appears to be that of viscosity solutions (c.f. [8], [22], [23],
[47], [48], [57]). For most HJB PDEs, there exists a unique viscosity solu-
tion. However, for problems such as (1.5), (1.6), one may not have uniqueness
among the class of viscosity solutions, and in such cases an additional condi-
tion is needed in order to uniquely specify the “correct” viscosity solution [88],
[106]. Here, the “correct” solution is the value function, W , given by (1.4).

Once one has (1.5), a PDE solver is used to compute the solution. The
most common approaches to numerical solution of PDEs are the finite element
(FE) methods. A number of authors have developed FE methods specifically
adapted to solution of first-order HJB PDEs (c.f. [8], [18], [32], [34], [66]). In all
cases, the methods suffer from the curse-of-dimensionality. In particular, one
must solve PDE (1.5) over Rn if the state takes values in Rn. Consequently,
the computational cost grows exponentially in the state-space dimension n —
this computational growth being the aforementioned curse-of-dimensionality.

Other approaches have been applied. One class is that of characteris-
tics (bicharacteristics, generalized characteristics). In this case, one computes
W (x) and the optimal feedback, u∗(x), by solution of a 2n-dimensional second-
order ordinary differential equation (ODE) with two boundary conditions.
Such a method may be appropriate for real-time computation, as well as
for precomputation and storage. Unfortunately, the nonsmoothness property
makes it difficult to propagate the “correct” solution of the ODE since the
propagation across hypersurfaces of nonsmoothness can be quite technical.
Further, one must apply a shooting approach to deal with the two-point
boundary conditions. Lastly, for (1.5) in particular, there are typically both
stable and unstable manifolds emerging from the origin, and shooting to a
boundary condition such as limt→∞ ζ(t) = 0 is extremely difficult. For discus-
sion of such methods, one can see [27], [37], [49], [90], [72], [93].

With max-plus methods, one does not work with the HJB PDE, but with
the semigroup associated with the HJB PDE. More specifically, instead of
applying DP to derive the PDE, one works with the DPP prior to taking the
infinitesimal limit in time. The DP associated with (1.4) is
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W (x) = sup
u∈U

[∫ τ

0

L(ξt)− γ2

2 |ut|2 dt + W (ξτ )

]
(1.7)

with dynamics given by (1.1). The right-hand side is an operator on the space
that W lies in. (Such spaces will be considered in more detail later.) Suppose
W is in the space of semiconvex functions, S. For any τ ≥ 0, (1.7) takes the
form

W = Sτ [W ],

where Sτ maps some domain D(Sτ ) ⊆ S into S, and for any φ ∈ D(Sτ ),

Sτ [φ]
.
= sup

u∈U

[∫ τ

0

L(ξt)−
γ2

2
|ut|2 dt + φ(ξτ )

]
.

Note that the operator Sτ is indexed by τ ; that is, the Sτ form a one-parameter
family of operators indexed by time, τ . Further, Sτ satisfies the semigroup
properties [96]:

Sτ1+τ2 = Sτ1Sτ2 ∀ τ1, τ2 > 0, (1.8)

S0 = I, (1.9)

where I represents the identity operator. There are multiple classes of con-
tinuous semigroups [96] obtained by invoking various continuity requirements
with respect to the time variable, but continuity issues will not be the focus
here. We do note that the corresponding HJB PDE (1.5) is the generator of
the semigroup.

Before proceeding with this introduction to max-plus methods, we need
to briefly discuss the max-plus algebra. This will be discussed in detail in
Chapter 2. Here, we include only the information needed to continue this
informal discussion. The max-plus algebra is a commutative semifield over
R− .

= R ∪ {−∞}. The addition and multiplication operations, ⊕ and ⊗ are
defined for a, b ∈ R− as

a⊕ b = max{a, b}, a⊗ b = a + b.

The additive identity is −∞, and the multiplicative identity is 0. The mul-
tiplicative inverse of a > −∞ is −a. Note that one does not have addi-
tive inverses — this being the reason for the appellation “semifield” rather
than field. As with standard vector spaces (i.e., spaces over the usual addi-
tion/multiplication operations), the max-plus addition of two functions (or
two vectors) is done pointwise. Specifically, for functions φ1(x) and φ2(x), the
max-plus sum is [φ1 ⊕ φ2](x) = φ1(x) ⊕ φ2(x) = max[φ1(x), φ2(x)] for all x.
Multiplication by a scalar is analogous to the standard case as well. That is,
for a ∈ R− and function φ1(x), [a⊗ φ1](x) = a⊗ φ1(x) = a + φ1(x) for all x.

We will find that S is a max-plus vector space, and in particular, the above
addition and multiplication operations of the previous paragraph will be well-
defined for elements of S. A fundamental issue will be that for a1, a2 ∈ R−

and φ1, φ2 ∈ D(Sτ ) ⊆ S,
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Sτ [a1 ⊗ φ1 ⊕ a2 ⊗ φ2] = a1 ⊗ Sτ [φ1]⊕ a2 ⊗ Sτ [φ2]. (1.10)

In other words, Sτ is a max-plus linear operator for each τ ≥ 0. The proof will
appear in Chapter 4. The max-plus methods will seek to exploit this linearity.

As indicated above, max-plus methods may require basis expansions of
the solutions (as elements of some max-plus vector space). Suppose W (x) =⊕

i ei⊗ψi(x) for all x where {ψi}∞i=1 forms a max-plus basis (in a sense to be
defined in Chapter 2) for S. Then one has

⊕

i

ei ⊗ ψi = Sτ

[⊕

i

ei ⊗ ψi

]
.

If only a finite number of basis functions, say N , were required, the max-plus
linearity of Sτ would yield

N⊕

i=1

ei ⊗ ψi =

N⊕

i=1

ei ⊗ Sτ [ψi] . (1.11)

The errors introduced by truncation to a finite number of elements in a basis
expansion will be considered in detail. Equation (1.11) is typically equivalent
to

0⊗ e = e = B ⊗ e, (1.12)

where e is the vector of length N with components ei, and B is a matrix
associated with Sτ . In other words, approximate solution of (1.5)/(1.4) reduces
to solution of max-plus eigenvector problem (1.12). Similarly, propagation
forward in time of time-dependent HJB PDEs takes the form

at+τ = B ⊗ at

for time-step τ . Lastly, the mixed L∞/L2 problems lead to max-plus affine
problems of the form

e = B ⊗ e⊕ c.

In this case, the problem data generate both matrix B and vector c; one then
solves this max-plus affine problem for e. Note that this max-plus approach
does not obviously remove the curse-of-dimensionality. If one expects the num-
ber of necessary basis vectors to grow exponentially in space dimension, n,
then the computational costs will also grow exponentially in n. It should be
noted that the entire matrix B is not generally needed — only an analogue to
the terms in a banded matrix are needed. The expected advantage of such an
approach follows from the expectation that exploitation of the linearity may
lead to a lower computational cost and lower computational growth rate.

Some other max-plus methods will be mentioned. Specifically, some ap-
proaches related to semiconvex duality and the Legendre/Fenchel transform
will be discussed. It should be noted that the Legendre/Fenchel transform
plays a role similar to the Fourier and/or Laplace transform for standard-sense
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algebra. In fact, a particularly promising class of methods stems from taking
max-plus linear combinations of transformed operators for simple problems to
obtain approximate transformed operators for the problem of interest. If the
simple problems are, say linear, then the transformed operators can be ob-
tained analytically. This approach entirely avoids the curse-of-dimensionality
for a class of HJB PDEs — which is a particularly exciting development.

From the above discussion, one sees several pieces of machinery that are
needed for development of max-plus methods. The structures of max-plus
spaces are discussed in Chapter 2. One also needs to prove that the value func-
tions lie in appropriate max-plus vector spaces (or min-plus spaces in some
cases). The ones that will be considered in the most detail will be spaces of
convex and semiconvex functions. Secondly, one needs the DPP/semigroups
and proofs of their max-plus linearity (the latter being rather trivial). In
order to make rigorous statements about the quality of solutions to be com-
puted with max-plus methods, one needs to understand convergence rates
and error bounds for these methods. Exploration of semiconvex duality and
Legendre/Fenchel transforms will obviously also prove useful.

The machinery needed for the various problem forms of Section 1.1 is
somewhat uniform across problem classes. The most thorough discussion will
be for the H∞ problem (1.4), where in particular, a full error analysis will be
provided. The machinery for other problem forms and solution methods will
be discussed after the H∞ problem form, and not all the technical issues will
be explored in detail in those cases.



2

Max-Plus Analysis

In this chapter we introduce the max-plus algebra and some basics of func-
tional analysis over the max-plus algebra. We will refer to our usual operations
(addition and multiplication) on the real line as the standard field. The max-
plus algebra is a commutative semifield over R− = R ∪ {−∞}. The addition
and multiplication operations are

a⊕ b = max{a, b},
a⊗ b = a + b.

(2.1)

In particular we take

a⊕−∞ = a ∀ a ∈ R−,

a⊗−∞ = −∞ ∀ a ∈ R−.
(2.2)

As evidenced by (2.2), the additive identity is −∞. The multiplicative identity
is 0 (a ⊗ 0 = a + 0 = a ∀a ∈ R−). The multiplicative inverse of a > −∞
is −a (the standard additive inverse). The additive identity, −∞, does not
have a multiplicative inverse (which is analogous to the same property in the
standard field). With the exception of the additive identity, −∞, no elements
have additive inverses. In [6], an approach to dealing with this lack of inverses
in algebraic equations is resolved through the use of “balances.”

We note that the commutative, associative and distributive properties
hold:

a⊕ b = b⊕ a,

a⊕ (b⊕ c) = (a⊕ b)⊕ c,

a⊗ b = b⊗ a,

a⊗ (b⊗ c) = (a⊗ b)⊗ c,

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

The usual precedence ordering between operations will be employed, that is
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a⊗ b⊕ c⊗ d = (a⊗ b)⊕ (c⊗ d).

For more information on the max-plus algebra, the reader is referred to [6],
[25], [63], [70], and the references therein.

We say that a sequence {an}∞n=1 ⊂ R− converges to a ∈ R (denoted as
an → a) if |an − a| → 0 where | · | represents the (standard) absolute value,
and we say an → −∞ if given M < ∞, there exists NM < ∞ such that
an < −M for all n > NM . Equivalently, we say that R− is equipped with its
usual topology given by the metric d−(a, b)

.
= |ea − eb|. This also relates to

log-plus algebras and large deviations, c.f. [1], [39], [82], [97], and [98].
We now define a vector space over the max-plus algebra; this will generally

be referred to as a max-plus vector space or a max-plus space. These are
referred to as moduloids in [6]. We say X is a max-plus vector space (with
zero element denoted by φ0 ∈ X ) if

a⊗ φ ∈ X ∀ a ∈ R−, ∀φ ∈ X ,

φ⊕ ψ = ψ ⊕ φ ∈ X ∀φ, ψ ∈ X ,

(a⊗ b)⊗ φ = a⊗ (b⊗ φ) ∀ a, b ∈ R−, ∀φ ∈ X ,

(a⊕ b)⊗ φ = a⊗ φ⊕ b⊗ φ ∀ a, b ∈ R−, ∀φ ∈ X ,

a⊗ (φ⊕ ψ) = a⊗ φ⊕ a⊗ ψ ∀ a ∈ R−, ∀φ, ψ ∈ X
φ⊕ φ0 = φ, a⊗ φ0 = φ0, −∞⊗ φ = φ0, 0⊗ φ = φ ∀ a ∈ R−, ∀φ ∈ X .

If X is defined as a set of vectors of elements of R− indexed by λ ∈ Λ for
some index set Λ, then we may denote elements of X as φ = {φλ}λ∈Λ, each
element being denoted by φλ. In some cases the notation φ(λ) may be used
in place of φλ.

We say the sequence {φn}∞n=1 converges to φ ∈ X (denoted as φn → φ)
if φn

λ → φλ for all λ ∈ Λ. Further, if given any ε > 0, there exists Nε < ∞
such that |φn

λ − φλ| < ε for all λ ∈ Λ and all n ≥ Nε, we say φn converges
uniformly to φ. Let −∞· denote the element of X such that φλ = −∞ ∈ R−

for all λ ∈ Λ. Note that since −∞ ∈ R− is the additive identity, this is
somewhat analogous to the origin in X . In particular, φ0 appearing in the
above definition will be −∞·. We say φn → −∞· ∈ X uniformly if given
M < ∞, there exists NM < ∞ such that φn

λ ≤ −M for all λ ∈ Λ and all
n ≥ NM .

Example 2.1. Let BR(0) ⊂ Rn be the ball of radius R, that is BR(0) = {y ∈
Rn| |y| < R} where | · | indicates Euclidean norm. The notation BR will be
used freely in place of BR(y) when y is the origin. Let X be the space of
continuous functions mapping BR = BR(0) into R appended by −∞·. Then
for any φ1, φ2 ∈ X and any a ∈ R−, (a⊗φ)(y) = a+φ(y) and (φ1⊕φ2)(y) =
max{φ1(y), φ2(y)} for all y ∈ BR. Clearly X is closed under these operations,
and is a max-plus vector space. This is also true with BR(0) replaced by its
closure, BR(0).
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Example 2.2. The natural definition of continuous functions with range in
metric space (R−, d−) applies here. More specifically, φ : Rn → R− is con-
tinuous at y0 ∈ Rn if given any sequence yn → y0, φ(yn) → φ(y0). Then the
space of continuous functions from Rn (or appropriate subset of Rn) into R−

is also a max-plus vector space.

We say that {φn}∞n=1 ⊂ X is Cauchy if given ε > 0, there exists Nε < ∞
such that |φn

λ − φm
λ | < ε for all λ ∈ Λ and all n, m ≥ Nε. X is standard-

complete if given any Cauchy sequence {φn}∞n=1, there exists φ ∈ X such that
φn → φ.

Example 2.3. Let XK be the space of real-valued functions over BR = BR(0)
which are all Lipschitz with the same constant, K < ∞, with −∞· appended.
Then XK is a standard-complete max-plus vector space. To see that XK is
closed under the max-plus operations, let φ

.
= a⊗ φ1 ⊕ b⊗ φ2 where a, b ∈ R

(the case of a or b being −∞ being trivial) and φ1, φ2 ∈ XK . Fix y0 ∈ BR.
Suppose a⊗ φ1(y0) ≥ b⊗ φ2(y0). Then for any y ∈ BR,

φ(y0)− φ(y) ≤ [a + φ1(y0)]− [a + φ1(y)] = φ1(y0)− φ1(y) ≤ K|y − y0|.

Using symmetry, one sees that XK is closed. Completeness follows in the usual
way, and a proof is not included.

Let C ⊆ Rn be convex. (C is convex if y1, y2 ∈ C and λ ∈ [0, 1] imply
λy1 + (1− λ)y2 ∈ C.) Recall that φ : C → R− is convex if for any y1, y2 ∈ C
and any λ ∈ [0, 1], φ(λy1 + (1 − λ)y2) ≤ λφ(y1) + (1 − λ)φ(y2) where these
operations are standard-sense [53], [101], [102]. Note that if φ(y3) = −∞ for
some y3 ∈ C, then one must have φ ≡ −∞·.

Example 2.4. Let X be the set of convex functions mapping the convex domain
C ⊆ Rn into R, with the function −∞· appended. Then X is a max-plus
space. If one adds the additional requirement that each φ ∈ X be Lipschitz
with some constant, K < ∞, X remains a max-plus space.

2.1 Spaces of Semiconvex Functions

Various spaces of semiconvex functions will be of particular interest. These
will be max-plus vector spaces. In the following definition, the (standard-
sense) closure of any set G ⊆ Rn is denoted by G.

Definition 2.5. A function, φ : Rn → R− is semiconvex (over Rn) if given
any R < ∞, there exists c < ∞ such that φ(y) + c

2 |y|2 is convex over BR(0).

Fix any R > 0, and consider BR(0) (or BR(0)). We say φ : BR(0) → R−

(φ : BR(0) → R−) is semiconvex over BR(0) (BR(0)) with constant c if
φ(y) + c

2 |y|2 is convex over BR(0) (BR(0)).
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Suppose φ is semiconvex over Rn. Fix R ∈ (0,∞). Let

cR
.
= inf{c ∈ R |φ(y) + c

2 |y|2 is convex over BR(0)}.

We will refer to cR as the minimal semiconvexity constant for φ over BR, and
we will say φ is semiconvex over BR with minimal semiconvexity constant cR.
In particular, cR = −∞ in the case where φ is the function −∞..

Lemma 2.6. Suppose φ is semiconvex over BR with minimal semiconvexity
constant cR. Then φ(y) + cR

2 |y|2 is convex.

Proof. Let y1, y2 ∈ BR, α ∈ [0, 1] and ε > 0. Let c ∈ (cR, cR + ε/R2). Then

φ(λy1 + (1− λ)y2) +
cR

2
|λy1 + (1− λ)y2|2

< φ(λy1 + (1− λ)y2) +
c

2
|λy1 + (1− λ)y2|2

which by convexity (of the entire right-hand side)

≤ λφ(y1) + (1− λ)φ(y2) + λ
c

2
|y1|2 + (1− λ)

c

2
|y2|2

< λφ(y1) + (1− λ)φ(y2) + λ
cR

2
|y1|2 + (1− λ)

cR

2
|y2|2 + (c− cR)R2

< λ
[
φ(y1) +

cR

2
|y1|2

]
+ (1− λ)

[
φ(y2) +

cR

2
|y2|2

]
+ ε.

Since this is true for all ε > 0, one obtains the result. ⊓⊔

Let S denote the space of semiconvex functions mapping Rn into R−.
Let SR be the space of semiconvex functions mapping BR(0) ⊂ Rn into R−.
Let Sc

R be the space of semiconvex functions mapping BR ⊂ Rn into R−

with semiconvexity constant, c. Let ScL
R be the space of functions mapping

BR ⊂ Rn into R− which are semiconvex with constant c and Lipschitz with
constant L. Note that if φ is in S, SR, Sc

R or ScL
R , and there exists a y0 in the

domain such that φ(y0) = −∞, then φ(y) = −∞ for all y in the domain. We
will also find it convenient to work with spaces of functions over the closed
ball. Let the mnemonically handy notation SR̄, Sc

R̄
and ScL

R̄
represent the

obvious analogues of the spaces SR, Sc
R and ScL

R but where the domain is the
closed ball, BR = BR(0) rather than the open ball BR(0).

Theorem 2.7. Let R, c, L ∈ (0,∞). Then S, SR, Sc
R, ScL

R , SR̄, Sc
R̄

and ScL
R̄

are max-plus vector spaces.

Proof. We consider only the space ScL
R ; proofs for the other spaces are similar.

Let φ1, φ2 ∈ ScL
R , and a1, a2 ∈ R−. One must show a1⊗φ1⊕a2⊗φ2 ∈ ScL

R . The
case with a1 or a2 being −∞ is trivial; suppose not. Note that [a1⊗φ1⊕a2⊗
φ2](y) = max{a1 + φ1(y), a2 + φ2(y)}. One easily sees that adding a constant
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to a semiconvex or Lipschitz function does not affect the semiconvexity or
Lipschitz constants. All that remains is to note that the pointwise maximum
of two functions which are semiconvex with constant c and Lipschitz with
constant L, is also semiconvex with constant c and Lipschitz with constant L.
This is not difficult, and the proof is not included. ⊓⊔

It is useful when working with max-plus spaces (and more generally, idem-
potent spaces, that is, spaces over algebras for which a⊕a = a) to use certain
notions of completeness which are quite natural in this setting. Let ≤ denote
the natural order on R− (e.g., 7 ≤ 18). Let A ⊆ R−. We let the supremum
of A, sup(A), be the standard definition, that is, the least upper bound. A
semifield is b-complete if any nonempty set which is bounded above has a
supremum. Clearly, R− is b-complete. We say a semifield is complete (also
known as a-complete) if any nonempty set has a supremum. The max-plus
algebra, which we can denote here as (R−,⊕,⊗) can be completed by the
addition of a top element, +∞, where a ≤ +∞ for all a ∈ R−., and we let
R−+ .

= R− ∪ {+∞}. Then, (R−+,⊕,⊗) is a complete semifield. We define
−∞ = sup(∅) where ∅ is the empty set. Note that since −∞ is absorbing, one
needs to set

−∞⊗+∞ = −∞.

2.2 Bases

The max-plus numerical methods which have been developed for solution
of HJB PDEs and nonlinear control rely on basis expansions in max-plus
spaces and/or transforms between max-plus spaces. Heuristically, this ap-
proach uses max-plus analogues of spectral methods, Fourier/Laplace series
and Fourier/Laplace transforms. The starting point is the development of ba-
sis expansions for max-plus spaces such as ScL

R̄
. Note that we will not have the

notion of a complete orthonormal set which one has in Hilbert spaces. Instead
we will use the notion of a “countable max-plus basis” (where this concept
will be clarified in Definition 2.12). We begin the development by recalling a
core result from convex analysis ([53], [101], [102]). This general result appears
in a number of contexts, and is referred to as the Fenchel transform, convex
duality, or the Legendre transform (it actually being essentially an extension
of the classical Legendre transform). Let CL

R̄
be the space of mappings from

BR into R− which are convex and Lipschitz with Lipschitz constant L <∞.
Let BL(0) ⊂ Rn. The following is a version of convex duality, but simplified
due to the Lipschitz condition.

Theorem 2.8. Let φ̂ ∈ CL
R̄
. Then for all y ∈ BR,

φ̂(y) = max
p∈BL

[
pT y + ψ̂(p)

]
= max

p∈G

[
pT y + ψ̂(p)

]
(2.3)

for any G ⊇ BL, where
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ψ̂(p) = − max
y∈BR

[
yT p− φ̂(y)

]
(2.4)

for all p ∈ Rn. If φ̂ = −∞·, then ψ̂ = −∞·.

The reader is referred to one of the many works on convex analysis for
a proof and context. See, for instance, [100], Section 12; [101], Section 3;
[53]; and/or [102]. A sketch of a proof is included in the appendix as an aid.

Note that −ψ̂ is convex, and may be referred to as the convex conjugate, or
sometimes the convex dual, of φ̂. In particular, (2.3), (2.4) are more often
written as

φ̂(y) = max
p∈BL

[
pT y − ψ̃(p)

]
, ψ̃(p) = max

y∈BR

[
yT p− φ̂(y)

]
, (2.5)

where ψ̃ = −ψ̂.
This duality can be expanded to spaces of semiconvex functions, and this

will form one of the fundamental building blocks for the max-plus numerical
methods. Recall that ScL

R̄
is the space of functions mapping BR into R− which

are semiconvex and Lipschitz with (positive) constants, c and L, respectively.
The following result from [78] is a minor variant of a result which first appeared
(at least in this context) in [44].

Theorem 2.9. Let φ ∈ ScL
R̄

. Let C be a symmetric matrix such that C−cI ≥ 0
(i.e., such that C−cI is non-negative definite). Let DR ≥ |C||C−1|R+|C−1|L
where |C| is the induced matrix norm of C. (In particular, one may take
DR = (|C|R + L)/c.) Then, for all y ∈ BR,

φ(y) = max
|Cy|≤(L+|C|R)

[
ψ(y)− 1

2 (y − y)T C(y − y)
]

(2.6)

= max
y∈BDR

[
ψ(y)− 1

2 (y − y)T C(y − y)
]

(2.7)

= max
y∈G

[
ψ(y)− 1

2 (y − y)T C(y − y)
]

(2.8)

(2.9)

for any G ⊇ {y : |Cy| ≤ (L + |C|R)}, where

ψ(y) = − max
y∈BR

[
−φ(y)− 1

2 (y − y)T C(y − y)
]

(2.10)

for all y ∈ Rn. Further, if C− cI > 0 (i.e., if C− cI is positive definite), then
ψ(y) > −∞ for all y.

Proof. The case φ = −∞· (whence ψ = −∞·) is trivial; we suppose φ �= −∞·.

Define φ̂ : BR → R− by

φ̂(y) = φ(y) + 1
2yT Cy. (2.11)
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First it will be shown that φ̂ is convex (i.e., φ̂(λy1 + (1 − λ)y2) < λφ̂(y1) +

(1− λ)φ̂(y2) for all y1, y2 ∈ BR, y1 �= y2, λ ∈ (0, 1)). Note that

φ̂(λy1 + (1− λ)y2) = φ(λy1 + (1− λ)y2) + 1
2c|λy1 + (1− λ)y2|2

+ 1
2 (λy1 + (1− λ)y2)

T [C − cI](λy1 + (1− λ)y2)

which by the convexity of φ(·) + 1
2c| · |2

≤ λφ(y1) + (1− λ)φ(y2) + 1
2λc|y1|2 + 1

2 (1− λ)c|y2|2

+ 1
2 (λy1 + (1− λ)y2)

T [C − cI](λy1 + (1− λ)y2)

= λφ̂(y1) + (1− λ)φ̂(y2) + 1
2λ[c|y1|2 − yT

1 Cy1]

+ 1
2 (1− λ)[c|y2|2 − yT

2 Cy2]

+ 1
2 (λy1 + (1− λ)y2)

T [C − cI](λy1 + (1− λ)y2),

which, after some algebra,

= λφ̂(y1) + (1− λ)φ̂(y2)

−λ(1− λ)(y1 − y2)
T (C − cI)(y1 − y2),

which by the non-negative definiteness of C − cI

≤ λφ̂(y1) + (1− λ)φ̂(y2).

(Note that if C − cI > 0, then one obtains strict convexity.)
Also note that

|φ̂(y1)− φ̂(y2)| ≤ |φ(y1)− φ(y2)|+ | 12yT
1 Cy1 − 1

2yT
2 Cy2|

≤ L|y1 − y2|+ |(Cy3)
T (y1 − y2)|

for some y3 ∈ BR

≤ (L + |C|R)|y1 − y2|,

which implies that φ̂ is Lipschitz with constant (|C|R + L).
Then, by Theorem 2.8 for any y ∈ BR,

φ(y) = φ̂(y)− 1
2yT Cy

= max
|p|≤(L+|C|R)

[
pT y + ψ̂(p)− 1

2yT Cy
]
,

where ψ̂ is given by (2.4)

= max
|p|≤(L+|C|R)

[
− 1

2 (pT C−1p− 2pT y + yT Cy) + ψ̂(p) + 1
2pT C−1p

]

= max
|p|≤(L+|C|R)

[
− 1

2 (y − C−1p)T C(y − C−1p) + ψ̂(p) + 1
2pT C−1p

]
,

and letting y
.
= C−1p, this is
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= max
|Cy|≤(L+|C|R)

[
− 1

2 (y − y)T C(y − y) + ψ̂(Cy) + 1
2yT Cy

]
. (2.12)

Define
ψ(y)

.
= ψ̂(Cy) + 1

2yCT y. (2.13)

Combining (2.12) and (2.13), one has

φ(y) = max
|Cy|≤(L+|C|R)

[
ψ(y)− 1

2 (y − y)T C(y − y)
]
.

Now, from (2.4),

ψ̂(p) = − max
y∈BR

[
yT p− φ̂(y)

]

= − max
y∈BR

[
yT p− φ(y)− 1

2yT Cy
]

(2.14)

(and, further, this is > −∞ if C − cI > 0). Combining (2.13) and (2.14),

ψ(y) = − max
y∈BR

[
− 1

2 (yT Cy − 2yT Cy + yCy)− φ(y)
]

= − max
y∈BR

[
− 1

2 (y − y)T C(y − y)− φ(y)
]

(where, further, this is > −∞ if C − cI > 0). This yields (2.6), (2.10). Equiv-
alent forms (2.7) and (2.8) follow similarly using the second equality of (2.3)
rather than the first. ⊓⊔

Remark 2.10. It may sometimes be useful to replace the scalar semiconvexity
constant, with a matrix constant. Let C ′ be a symmetric, positive definite
matrix. Let SC′L

R̄
be the set of mappings, φ, from BR into R− which are

Lipchitz with constant L, and such that φ(y) + 1
2yT C ′y is convex. A result

equivalent to Theorem 2.9 (i.e., (2.6)– (2.10)) holds where an assumption that
C − C ′ > 0 replaces the assumption that C − cI > 0.

The above results can also be applied to spaces of functions that are strictly
convex. This can be quite useful in numerical methods if one suspects the
solution that one is searching for is convex to the extent required in the
following theorem.

Theorem 2.11. Suppose φ is Lipschitz with contant L over BR. Suppose that
there exists c > 0 such that φ(y)−(c/2)|y|2 is convex on BR. Let C be a positive
definite, symmetric matrix such that cI − C ≥ 0. Let DR ≥ |C||C−1|R +
|C−1|L. Then, for all y ∈ BR,
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φ(y) = max
|Cy|≤(L+|C|R)

[
ψ(y) + 1

2 (y − y)T C(y − y)
]

(2.15)

= max
y∈BDR

[
ψ(y) + 1

2 (y − y)T C(y − y)
]

(2.16)

= max
y∈G

[
ψ(y) + 1

2 (y − y)T C(y − y)
]

(2.17)

for any G ⊇ {y : |Cy| ≤ (L + |C|R)} where

ψ(y) = − max
y∈BR

[
−φ(y) + 1

2 (y − y)T C(y − y)
]

(2.18)

for all y ∈ Rn (and ψ(y) > −∞ for all y if cI − C > 0).

Proof. The proof is a variation on the proof of Theorem 2.9, and consequently,
only a sketch is provided. Let φ̂(y) = φ(y) − 1

2yT Cy with φ �= −∞·. Then φ̂
is strictly convex, and is Lipschitz with constant (L + |C|R). Using Theorem
2.8, one finds that for any y ∈ BR,

φ(y) = φ̂(y) + 1
2yT Cy

= max
|p|≤(L+|C|R)

[
−pT y + ψ̃(p) + 1

2yT Cy
]
,

where ψ̃(p)
.
= ψ̂(−p) and ψ̂ is given by (2.4). Letting y

.
= C−1p, one finds

= max
|Cy|≤(L+|C|R)

[
1
2 (y − y)T C(y − y) + ψ̃(Cy)− 1

2yT Cy
]
.

Letting ψ(y) = ψ̃(Cy)− 1
2yT Cy, one has

φ(y) = max
|Cy|≤(L+|C|R)

[
ψ(y) + 1

2 (y − y)T C(y − y)
]
.

One then obtains (2.18) from the fact that ψ(y) = ψ̂(−Cy) where ψ̂ is given
by (2.4). ⊓⊔

Similar results can also be obtained for spaces of concave and semicon-
cave functions. In such spaces, the elements, φ(·), will have representation in
terms of minima of quadratics rather than maxima. For example, a semicon-
cave duality result for φ(·) can be obtained directly from the corresponding
semiconvex duality result for −φ(·). In order to reach our goal more quickly,
such results will be delayed until we need them.

The above duality results can be used to obtain bases for spaces of convex
and semiconvex functions when these spaces are endowed with the max-plus
operations rather than the standard field. Let X be a b-complete (a-complete)
max-plus space. Let {ψi}∞i=1 ⊆ X . The inifinite sum

⊕∞
i=1 ψi is defined to be

sup[{ψi}∞i=1], and this is guaranteed to exists if X is a-complete or if {ψi}∞i=1

is bounded and X is b-complete.
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Definition 2.12. Let X be an a-complete or b-complete max-plus vector
space. Let A .

= {ψi}∞i=1 ⊆ X . Then A is a countable basis for X if given
φ ∈ X , there exists {ai}∞i=1 ⊂ R− such that

φ =

∞⊕

i=1

(
ai ⊗ ψi

)
.

Where no confusion arises, we will typically refer to a countable max-plus
basis simply as a basis. The usage of the term basis is nonstandard here.
However, we do not have a notion of “complete orthonormal set,” and so we
will work with countable basis expansions of elements of our max-plus space
in place of expansions in terms of complete orthonormal sets.

Consider ScL
R̄

. (Note that ScL
R̄

is b-complete; the a-completion of ScL
R̄

is

ScL−+
R̄

= ScL
R̄
∪{+∞·} where +∞· is the function that is identically +∞. this

last result is discussed more fully at Proposition 2.18.) Let C be a symmetric
matrix such that C−cI > 0. Let E = {y ∈ Rn : yT (C2)y ≤ (L+ |C|R)2}. Let
A .

= {yi}∞i=1 be a countable dense subset of E . Let N denote the set of natural
numbers. For each i ∈ N , let ξi(y)

.
= − 1

2 (y − yi)
T C(y − yi). Let φ ∈ ScL

R̄
. By

Theorem 2.9, for all y ∈ BR

φ(y) = max
y∈E

[
ψ(y)− 1

2 (y − y)T C(y − y)
]
,

where

ψ(y) = − max
y∈BR

[
−φ(y)− 1

2 (y − y)T C(y − y)
]

for all y ∈ E . Also let ai
.
= ψ(yi) for all i ∈ N . Then, by the denseness of

{yi}∞i=1,

φ(y) = sup
i∈N

[
ψ(yi)− 1

2 (y − yi)
T C(y − yi)

]
= sup

i∈N

[
ai + ξi(y)

]

=

∞⊕

i=1

[ai ⊗ ξi(y)] , (2.19)

where
ai = − max

y∈BR

[
−φ(y) + ξi(y)

]
∀ i. (2.20)

This yields the following:

Theorem 2.13. Let c, L, R > 0, and let symmetric matrix C satisfy C−cI >
0. Let ξi(y)

.
= − 1

2 (y − yi)
T C(y − yi) for all i ∈ N where the yi form a

countable dense subset of E = {y ∈ Rn : yT (C2)y ≤ (L + |C|R)2}. Then,
{ξi : i ∈ N} ⊂ R is a countable basis for max-plus vector space ScL

R̄
. Further

a choice of coefficients in the expansion of any φ ∈ ScL
R̄

is given by (2.20).
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We note that the ai given by (2.20) may not form the only set of coefficients
such that (2.19) holds. For example, suppose L+ |C|R > R (so that BR ⊂ E),
and let φ(y) = 0 for all y ∈ BR. Then any set of coefficients such that ai = 0
if yi ∈ BR and ai < 0 otherwise, satisfies (2.19). Thus there are multiple
expansions in such a case.

By similar approaches to that yielding the above basis for ScL
R̄

, one can
obtain countable bases for other max-plus spaces such as those above. For
instance, one may use Theorem 2.8 to obtain a basis for CL

R̄
; the basis would

consist of a countable set of linear functionals. The reader can easily produce
such bases.

Remark 2.14. As with the extension of Theorem 2.9 considered in Remark
2.10, Theorem 2.13 may be extended to matrix semiconvexity constants. In
particular, let C ′ be a symmetric, positive definite matrix, and suppose sym-
metric C satisfies C−C ′ > 0. Then the set {ξi : i ∈ N} given in Theorem 2.13
is a countable basis for max-plus vector space SC′L

R̄
. Again the coefficients in

the expansion of any φ ∈ SC′L
R̄

are given by (2.20).

2.3 Two-Parameter Families

Two-parameter families of basis functions may be of interest. There is an
obvious analogy to wavelets here, but to the author’s knowledge, this has not
been extensively explored (see however, [2] and references therein). Consider
ScL

R̄
. Let {cj}j∈N be a countable, unbounded subset of [c,∞). Let {yi}i∈N

be a countable dense subset of BDR
where ĉ

.
= infj cj and DR = R + L/ĉ.

For each i, j ∈ N , let ξi,j(y)
.
=

−cj

2 |y − yi|2. Then {ξi,j | i, j ∈ N} forms a
countable basis for ScL

R̄
. However, in this case there is little to be gained. One

can also take Dj
R = R + L/cj for any j, and let {yi,j}i∈N be dense over the

ball of radius Dj
R. Then, letting ξi,j(y)

.
=

−cj

2 |y − yi,j |2 for each i, j, one still
has that {ξi,j | i, j ∈ N} forms a countable basis for ScL

R̄
.

Two-parameter families may be more useful when one does not have a
bound on the semiconvexity constant. For instance, consider S. Let {yi} be
a countable, dense set over Rn, and let {cj}j∈N be a countable, unbounded

subset of (0,∞). Again take ξi,j(y)
.
=

−cj

2 |y − yi|2. Then let Σ
.
= {ξi,j | i, j ∈

N}. Fix some R < ∞. Let φ ∈ S. Then (see [42] for instance), there exist
c, L < ∞ such that the restriction of φ to BR, denoted φR, is in ScL

R̄
. There

exists j̄ such that cj̄ > c. Let Dj̄
R > R + L/cj̄ . Let I ⊆ N be such that

{yi}i∈I is a dense subset of B
Dj̄

R

. Then there exists {ai}i∈I ⊂ R− such that

φR(y) =
⊕

i∈I ai ⊗ ξi,j(y) for all y ∈ BR. In other words, any semiconvex

function over any ball BR can be represented as an infinite max-plus linear
combination of elements of Σ.
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2.4 Dual Spaces and Reflexivity

This section discusses some of the results for max-plus function spaces which
would best be described as max-plus functional analysis. The results here are
not directly necessary for the study of the numerical methods to follow, and so
a reader with the goal of getting directly to the applicable material could skip
this section on a first reading without risk of difficulty later.

The general theoretical material here is a condensation of results on idem-
potent spaces (spaces over semifields for which b ⊕ b = b, of which max-plus
is one example). In particular, some important references are [1], [20], [63]
and [70]. The presentation here will closely follow the approach of [20]. This
general theory is applied to an example in the space of convex functions.

Let (X ,⊕,⊗) be a max-plus vector space with elements φ = {φy}y∈Y .
Throughout, when we speak of a max-plus space, it will be assumed that we
have such a representation for its elements. For φ1, φ2 ∈ X , we define the
partial order φ1 ≤ φ2 if φ1

y ≤ φ2
y for all y ∈ Y. Note that X is complete as a

partially ordered set if any subset has a supremum (defined in the standard
way, as a least upper bound according to the partial ordering). For any such
partially ordered (or ordered) space, X , and subset A, we define the greatest
lower bound or infimum by

inf(A)
.
= sup{b ∈ X | b ≤ a ∀a ∈ A}.

We say (X ,⊕,⊗) is a complete max-plus vector space if X is complete as a
partially ordered set (not to be confused with completeness defined in terms
of Cauchy sequences), and if the maps a �→ X given by fφ(a) = a ⊗ φ and
φ �→ X given by fa(φ) = a⊗ φ are continuous for all a ∈ R−+ and all φ ∈ X .
Here, fφ is (max-plus sense) continuous if fφ(sup(A)) = supa∈A[fφ(a)] for all
A ⊂ R−+, and similarly, fa is continuous if fa(sup(G)) = supφ∈G[fa(φ)] for
all G ⊂ X . A max-plus space will be the completion of max-plus space X over
(R−,⊕,⊗) if it is the smallest complete max-plus space over (R−+,⊕,⊗)
containing the set X .

Let CR be the space of convex functions mapping BR(0) ⊂ Rn into R−

over the max-plus algebra, (R−,⊕,⊗).

Proposition 2.15. The completion of CR over (R−,⊕,⊗) is the space of
lower semicontinuous (lsc), convex functions mapping BR into R−+, and this
will be denoted by C−+

R . More specifically, the max-plus space is the set C−+
R

over the complete max-plus semifield (R−+,⊕,⊗).

Proof. We first verify that C−+
R as a set is complete (a-complete) in the max-

plus sense defined above. Note that this implies that the set C−+
R contains

the completion of CR. Let G ⊆ C−+
R , and index G as G = {φα}α∈A for

some index set A. For each y ∈ BR, let φ̂y
.
= supα∈A φα

y (where we recall
the notational equivalence φy = φ(y)). It is easy to show that the resulting
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function φ̂ : BR → R−+ is lsc (see, for instance, [104]). Now, let y1, y2 ∈ BR

and λ ∈ [0, 1]. Given ε > 0, there exists ᾱ ∈ A such that

φ̂[λy1+(1−λ)y2] ≤ φᾱ
[λy1+(1−λ)y2]

+ ε

≤ λφᾱ
y1

+ (1− λ)φᾱ
y2

+ ε

≤ λφ̂y1
+ (1− λ)φ̂y2

+ ε.

Because this is true for all ε > 0, φ̂ is convex. Consequently, one finds that
φ̂ ∈ C−+

R , and so C−+
R , as a partially ordered set, is complete. Further, one can

easily verify that this is complete as a max-plus vector space over (R−+,⊕,⊗).

Next, one must show that any φ̂ ∈ C−+
R takes the form φ̂ = sup{G} for

some G ∈ CR. However, by [101], pp. 15–16, given φ̂ ∈ C−+
R , there exists a

φ∗
v : Rn → R−+ such that for any y ∈ BR, φ̂y = φ̂∗∗

y
.
= supv∈Rn{y · v − φ∗

v}.
Since y · v − φ∗

v ∈ CR for any v ∈ Rn, one sees that φ̂ has the form sup{G},
G ⊆ CR. ⊓⊔

Let Sc−+
R be the space of lower semicontinuous functions, φ, mapping

BR ⊂ Rn into R−+ such that φ(y) + (c/2)|y|2 is convex. It is worth noting
the following.

Lemma 2.16. The mapping φ �→ φc from Sc−+
R into C−+

R given by φc
y =

φy + (c/2)|y|2 is a bijection.

Proposition 2.17. The completion of Sc
R (over (R−,⊕,⊗)) is Sc−+

R (over
(R−+,⊕,⊗)).

Proof. Let G ⊆ Sc
R. Let Gc = {φc ∈ CR | ∃φ ∈ G such that φc

y = φy +
(c/2)|y|2 ∀y ∈ BR}, and denote this mapping from subsets of Sc

R into subsets
of CR by Gc = F (G). Let φ̄c = sup{Gc}, and note that, by Proposition 2.15,
φ̄c ∈ C−+

R . Let φ̄y = φ̄c
y − (c/2)|y|2 for all y ∈ BR. Then, by Lemma 2.16,

φ̄ ∈ Sc−+
R . It is not hard to show φ̄ = sup{G}. This implies that Sc−+

R is
complete.

To demonstrate that it is the smallest complete set containing Sc
R, let

φ̃ ∈ Sc−+
R . Let φ̃c

y = φ̃y+(c//2)|y|2, which implies φ̃c ∈ C−+
R . From Proposition

2.15, there exists Gc ⊆ CR such that φ̃c = sup{Gc}. Let G = F−1(Gc) ⊆ Sc
R.

One can easily show φ̃ = sup{Gc}. ⊓⊔

Let ScL−+
R be the space of functions mapping BR into R−+ which are

semiconvex and Lipschitz with constants c and L, respectively. Note that

ScL−+
R = ScL

R ∪ {+∞·}. (2.21)

Proposition 2.18. The completion of ScL
R is ScL−+

R .
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Proof. Let G ⊆ ScL−+
R , and let φ̂ = sup{G}. One must prove that φ̂ ∈

ScL−+
R . Suppose that φ̂ �= +∞·; otherwise this is trivial. The proof that φ̂ is

semiconvex with constant c is similar to the proof of convexity for Proposition
2.15, and so is not included. Let y1, y2 ∈ BR. Given ε > 0, let φε ∈ ScL−+

R be

such that φε
y1
≥ φ̂y1 + ε. Then

φ̂y1 − φ̂y2 ≤ φε
y1
− φε

y2
+ ε ≤ L|y1 − y2|+ ε.

Because this is true for all ε > 0, φ̂y1 − φ̂y2 ≤ L|y1 − y2|. Then, by symmetry,

one has the Lipschitz condition |φ̂y1 − φ̂y2 | ≤ L|y1−y2|. Consequently, ScL−+
R

is complete.
Now, suppose φ̂ ∈ ScL−+

R . It must be shown that φ̂ = sup{G} for some

G ⊆ ScL
R . Recall ScL−+

R = ScL
R ∪ {+∞·}. If φ̂ �= +∞·, let G = {φ̂} ⊂ ScL

R ;
otherwise, let G = ScL

R . ⊓⊔
In the development so far, the operations of addition of two elements of

a max-plus space and multiplication of an element of a max-plus space by a
scalar were inherited directly from the underlying max-plus algebra. Conse-
quently, the max-plus vector space could be specified by the set of elements
and the underlying max-plus semifield. In the following development, we will
need to allow the operations on the space to be other than those directly
inherited from the max-plus algebra. Consequently, for the remainder of this
section we will specify a max-plus space with notation (X ∗,⊕∗,⊗∗) over say
(R−+,⊕,⊗). When the operations are directly inherited from the underlying
field, we may simply denote the space as X ∗ over say (R−+,⊕,⊗).

Let X be a complete max-plus vector space over (R−+,⊕,⊗) where
vectors φ ∈ X take the form {φy}y∈Y . We will define the opposite space,
(X op,⊕op,⊗op) over (R−+,⊕,⊗) as follows. Let X op=X (as a set). Define
multiplication of φ ∈ X op by a scalar a ∈ R−+ by

(a⊗op φ)y = a \◦φy ∀ y ∈ Y, (2.22)

where for a, b ∈ R−+,

a \◦ b
.
= max{c ∈ R−+| a⊗ c ≤ b} =

{
+∞ if a = b = +∞

or a = b = −∞,
b− a = b⊗ a−1 otherwise,

(2.23)
where we use ≤ to indicate the original ordering on R−+, and the exponentia-
tion a−1 is in the max-plus sense, that is, a−1 .

= −a. (With regard to the above
defintion, it is helpful to recall that −∞⊗+∞ = −∞.) For φ1, φ2 ∈ X op, let

φ1 ⊕op φ2 .
= min∗{φ1, φ2} .

= inf{φ1, φ2}
(which defines notation min∗), and recall that this is

= sup{φ̂ ∈ X op = X| φ̂ ≤ φ1, φ̂ ≤ φ2}.
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More generally, for any A ⊆ X op, the possibly infinite sum is

op⊕

φ∈A

φ
.
= inf∗A .

= inf A

(which defines the notation inf∗), and recall that this is

= sup{φ̂ ∈ X op = X| φ̂ ≤ φ ∀φ ∈ A}.

Note that the additive identity is the element such that φy = +∞ for all
y ∈ Y, and denote this element as +∞·. One should also note that the natural
ordering on X op is defined by φ1 ≤op φ2 if φ1 ⊕op φ2 = φ2.

Lemma 2.19. If (X ,⊕,⊗) is a complete max-plus vector space over semifield
(R−+,⊕,⊗), then (X op,⊕op,⊗op) is also a complete max-plus vector space
over (R−+,⊕,⊗). (Note that the underlying semifield is unchanged.)

Proof. See [20]. ⊓⊔

Example 2.20. Let X = C−+
R . Then, by Proposition 2.15 and Lemma 2.19,

(X op,⊕op,⊗op) = (C−+
R ,⊕op,⊗op) over (R−+,⊕,⊗) (with ⊕op,⊗op defined

as above), and this is a complete max-plus space. Specifically, note that for
φ1, φ2 ∈ X op,

φ1 ⊕op φ2 = sup{φ̂ ∈ C−+
R | φ̂ ≤ φ1, φ̂ ≤ φ2}.

In other words, φ1 ⊕op φ2 is the convexification of the minimum of φ1 and φ2

[53], [101], [102]. Consequently φ1 ⊕op φ2 ∈ C−+
R . As above, for a ∈ R−+ and

φ ∈ C−+
R , one has

(a⊗op φ)y =

{
+∞ if a = φy = +∞ or a = φy = −∞
φy ⊗ a−1 otherwise.

Let us verify that (C−+
R ,⊕op,⊗op) over (R−+,⊕,⊗) is, in fact, a max-plus

vector space. If a, b ∈ (−∞,+∞) and φy ∈ (−∞,+∞), then

[(a⊗ b)⊗op φ]y = φy − (a + b) = (φy − b)− a

= (b⊗op φ)y − a = [a⊗op (b⊗op φ)]y.

The other cases (where a, b and/or φy are ±∞) are easily checked, and the
details are not included. Also,

[(a⊕ b)⊗op φ]y = φy −max{a, b} = φy + min{−a,−b}
= min{φy − a, φy − b} = min{a⊗op φy, b⊗op φy}.

This implies
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(a⊕ b)⊗op φ = min{a⊗op φ, b⊗op φ},
and since both functions on the right-hand side are convex,

= min∗{a⊗op φ, b⊗op φ} = (a⊗op φ)⊕op (b⊗op φ).

Now, let a ∈ R−+ and φ1, φ2 ∈ C−+
R (and note that we will continue skipping

the special cases where ±∞ occur). Then

[a⊗op (φ1 ⊕op φ2)]y = [min∗{φ1, φ2} − a]y

= [min∗{φ1 − a, φ2 − a}]y = [(a⊗op φ1)⊕op (a⊗op φ2)]y

for all y ∈ BR. Lastly, recall that +∞· is the zero function of C−+
R while −∞

is the zero element of R−+. One easliy sees that

−∞⊗opφ = +∞·, a⊗op (+∞·) = +∞·, 0⊗opφ = φ ∀ a ∈ R−+, ∀φ ∈ C−+
R .

This completes the verification.

Example 2.21. Let X = Sc−+
R . Then, by Proposition 2.17 and Lemma 2.19,

(X op,⊕op,⊗op) = (Sc−+
R ,⊕op,⊗op) over (R−+,⊕,⊗), and this is a complete

max-plus space. Note that

φ1 ⊕op φ2 = sup{φ̂ ∈ Sc−+
R | φ̂ ≤ φ1, φ̂ ≤ φ2}.

Alternatively, noting the bijection given by Lemma 2.16, one has

(
φ1 ⊕op φ2

)
y

=
(
sup

{
φ̂y − (c/2)|y|2

∣∣ φ̂ ∈ C−+
R , φ̂y ≤ φ1

y + (c/2)|y|2

and φ̂y ≤ φ1
y + (c/2)|y|2 ∀ y ∈ Y

})
y

=
(
[φ1 + (c/2)| · |2]⊕op

c [φ2 + (c/2)| · |2]
)

y
− (c/2)|y|2

where ⊕op
c indicates the opposite addition operation corresponding to the

max-plus space C−+
R . In other words, φ1 ⊕op φ2 can be obtained by adding

(c/2)|y|2 to φ1, φ2, taking the convexification of the minimum, and then sub-
tracting (c/2)|y|2.

It is useful to note the following [20]

Lemma 2.22. If (X ,⊕,⊗) is a complete max-plus space, then

([X op]op, [⊕op]op, [⊗op]op) = (X ,⊕,⊗).

Before proceeding to linear functionals and dual spaces, it is helpful to
note the following technical result regarding the min∗ operation.

Proposition 2.23. Let X be a complete max-plus space over (R−+,⊕,⊗).
Let (X op,⊕op,⊗op) denote the opposite space. Then for any φ ∈ X and any
φ1, φ2 ∈ X op,
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sup
y∈Y

[
φy − (min∗{φ1, φ2})y

]
= sup

y∈Y

[
φy − (min{φ1

y, φ2
y})

]
. (2.24)

More generally, for any A ⊆ X op,

sup
y∈Y

[φy − (inf∗A)y] = sup
y∈Y

[φy − inf{φy|φ ∈ A}] . (2.25)

Proof. We prove only the first assertion; the proof of the second is nearly iden-
tical. Let A12

.
= {φ ∈ X op|φy ≤ min{φ1

y, φ2
y} ∀ y ∈ Y}. Then, by definition

of A12, (sup
φ̂∈A12

φ̂)y ≤ min{φ1
y, φ2

y} for all y. By the definition of min∗, this

implies (
min∗{φ1, φ2}

)
y
≤ min{φ1

y, φ2
y} ∀ y ∈ Y.

This yields

sup
y∈Y

[
φy − (min∗{φ1, φ2})y

]
≥ sup

y∈Y

[
φy − (min{φ1

y, φ2
y})

]
. (2.26)

We now prove the reverse. Fix any φ̂ ∈ X . Fix any y ∈ Y. Let

β
.
= (min∗{φ1, φ2})y − φ̂y. (2.27)

Suppose there exists ε > 0 such that φ̂y + β + ε < min{φ1
y, φ2

y} for all y ∈ Y.

Then, by the definition of min∗ and the fact that φ̂ ∈ X ,

(min∗{φ1, φ2})y ≥ φ̂y + β + ε. (2.28)

But this contradicts (2.27). Therefore, given ε > 0, there exists yε ∈ Y such
that

φ̂yε + β + ε ≥ min{φ1
yε , φ2

yε}. (2.29)

By (2.27),

φ̂y − (min∗{φ1, φ2})y = −β,

which by (2.29),

≤ φ̂yε + ε−min{φ1
yε , φ2

yε}
≤ sup

y∈Y

[
φ̂y −min{φ1

y, φ2
y}

]
+ ε.

Because this is true for all ε > 0,

φ̂y − (min∗{φ1, φ2})y ≤ sup
y∈Y

[
φ̂y −min{φ1

y, φ2
y}

]
.

Then, because this is true for all y,

sup
y∈Y

[
φ̂y − (min∗{φ1, φ2})y

]
≤ sup

y∈Y

[
φ̂y −min{φ1

y, φ2
y}

]
. (2.30)

Combining (2.26) and (2.30) completes the proof. ⊓⊔
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It is also useful to define the following operation. Let φ, φ̂ belong to com-
plete max-plus space X . Define

φ \◦ φ̂ = max
{

λ ∈ R−+|λ⊗ φ ≤ φ̂
}

= inf
{

φ̂y − φy| y ∈ Y ′
}

(2.31)

where Y ′ .
= {y ∈ Y| neither φ̂y = φy = +∞ nor φ̂y = φy = −∞} where we

recall inf ∅ = +∞. Now, recalling that set-wise X op = X , define the mapping
from X op ×X into R−+ given by

〈
φ̂, φ

〉
.
= −

(
φ \◦ φ̂

)
= − inf

y∈Y′

[
φ̂y − φy

]
= sup

y∈Y′

[
φy − φ̂y

]
, (2.32)

where sup ∅ = −∞.

Theorem 2.24. 〈φ̂, ·〉 : X → R−+ and 〈·, φ〉 : X op → R−+ are linear
mappings.

Proof. It is obvious that 〈φ̂, ·〉 is linear for any φ̂ ∈ X op.

Let φ ∈ X . Consider 〈·, φ〉. Note that for a ∈ R−+ and φ̂ ∈ X op (where
we continue skipping special cases where ±∞ appear),

〈a⊗op φ̂, φ〉 = sup
y∈Y

[
φy −

(
a⊗op φ̂

)
y

]

= sup
y∈Y

[
φy − φ̂y + a

]
= a + sup

y∈Y

[
φy − φ̂y

]
= a⊗

〈
φ̂, φ

〉
.

Now, note that for any φ1, φ2 ∈ X op,

〈φ1 ⊕op φ2, φ〉 = sup
y∈Y

[
φy − (min∗{φ1, φ2})y

]

which by Lemma 2.23,
= sup

y∈Y

[
φy − (min{φ1

y, φ2
y})

]

= sup
y∈Y

[
max{φy − φ1

y, φy − φ2
y}

]

= max
{

sup
y∈Y

[φy − φ1
y], sup

y∈Y
[φy − φ2

y]
}

= 〈φ1, φ〉 ⊕ 〈φ2, φ〉.⊓⊔

Let f map complete max-plus space X into complete max-plus space X̂ .
The mapping, f , is monotone if f(φ1) ≤ f(φ2) whenever φ1 ≤ φ2 (where
the ≤ ordering is with respect to the natural ordering on the space in which
the relation is being used). A monotone map, f : X → R−+ (where X is
a complete max-plus space), is continuous if f(sup[A]) = sup[f(A)] for all
A ⊆ X . When the range of a mapping is R−+ (or R−), the term “functional”
will be freely used for the mapping.
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Theorem 2.25. Let X be a complete max-plus space. 〈φ̂, ·〉 : X → R−+ and
〈·, φ〉 : X op → R−+ are continuous linear functionals.

Proof. The proof is similar to the proof of Theorem 2.24, but employing the
second assertion of Lemma 2.23 rather than the first. ⊓⊔

When 〈φ̂, ·〉 and 〈·, φ〉 are continuous linear functionals, they are referred

to as a predual pair [20]. Let X , X̂ be complete max-plus spaces such that

〈φ̂, φ〉 : X̂ × X → R−+ is a predual pair. Then (see [20]) X̂ separates X if

〈φ̂, φ1〉 = 〈φ̂, φ2〉 ∀ φ̂ ∈ X̂ implies φ1 = φ2,

and X separates X̂ if

〈φ̂1, φ〉 = 〈φ̂2, φ〉 ∀φ ∈ X implies φ̂1 = φ̂2.

A predual pair satisfying both separation conditions is a dual pair [20]. By
Corollary 2.1, [20], if (X ,⊕,⊗) is complete, then X op separates X and vice

versa. Consequently, 〈φ̂, φ〉 forms a dual pair. It is also shown (Corollary 2.2,
[20]) that one has a Riesz representation theorem.

Theorem 2.26. Any continuous linear functional, f , on complete max-plus
space (X ,⊕,⊗) has the representation

f(φ) = 〈φ̂, φ〉

for a unique φ̂ ∈ X op.

Combining this with Lemmas 2.19 and 2.22, one has

Corollary 2.27. Let X be a complete max-plus space (which implies X op com-
plete). Any continuous linear functional, f , on X op has the form

f(φ̂) = 〈φ, φ̂〉op

for a unique φ ∈ (X op)
op

= X = X op.

Perhaps it should be noted here that

〈φ, φ̂〉op = −max{λ ∈ R−+|λ⊗op φ̂ ≤op φ}
= −max{λ ∈ R−+| (λ⊗op φ̂)y ≥ φy ∀ y ∈ Y},

which after a small bit of work for the special cases

= − inf{φ̂y − φy| y ∈ Y ′},
where Y ′ .

= {y ∈ Y| neither φ̂y = φy = +∞ nor φ̂y = φy = −∞}
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= sup{φy − φ̂y| y ∈ Y ′},
which by (2.32)

= 〈φ̂, φ〉. (2.33)

Combining (2.33) with Corollary 2.27 yields the following representation
result.

Corollary 2.28. Let X be a complete max-plus space. Any continuous linear
functional, f , on X op has the form

f(φ̂) = 〈φ̂, φ〉

for a unique φ ∈ X .

It is natural to refer to this property as reflexivity. Recalling from Example
2.20 that C−+

R is a complete max-plus space, we see that it is reflexive in
this sense. The dual space is again C−+

R but with the opposite operations
being given there. (In particular, recall that φ1 ⊕op φ2 = min∗{φ1, φ2} is the
convexification of the minimum of φ1 and φ2.) The second dual is once again
C−+

R but with operations (⊕op)op = ⊕ and (⊗op)op = ⊗ being the original
max-plus operations again. This is easily verified by noting that

(
φ1(⊕op)opφ2

)
y

.
=

(
inf{φ̃ ∈ C−+

R | φ̃ ≤op φ1, φ̃ ≤op φ2}
)

y

=
(
inf{φ̃ ∈ C−+

R | φ̃ ≥ φ1, φ̃ ≥ φ2}
)

y

= max{φ1
y, φ2

y} = (φ1 ⊕ φ2)y.

Similarly, Sc−+
R and ScL−+

R (the completions of Sc
R and ScL

R ) are reflexive.
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Dynamic Programming and Viscosity Solutions

In this chapter, we present the theory of dynamic programming and viscosity
solutions for some specific classes of continuous-time/continuous-space deter-
ministic optimal control problems and games. Dynamic programming (DP)
is a mature subject, and there are many excellent references. [8], [15], [36],
[46], [47], [48] are a few among many such references. In the specific context
of H∞ and games, [12] and [13] are also excellent.

For the class of continuous-time/continuous-space problems, DP consists
of two parts: The first part, the Dynamic Programming Principle (DPP),
makes a statement about optimality when the time interval of the problem
is broken into two segments. The second part, the Dynamic Programming
Equation (DPE), will take the form of a Partial Differential Equation (PDE),
and is obtained by taking an infinitesimal limit in the DPP. The DPP is a
principle that holds in great generality. These results are well known. However,
in the interest of making this book self-contained, some relevant DPP results
will be proved.

On the other hand, the DPE/PDE part is much more problematic. When
the DPE has a smooth (classical) solution, it is generally straightforward to
demonstrate that there is a unique solution, and this solution is the value
function of the originating control (or game) problem. Fleming–Rishel [46]
is an excellent reference on this topic. However, the PDEs generated by de-
terministic control and game problems seldom have smooth solutions. Even
seemingly innocuous problem statements lead to value functions that have
discontinuities in the gradient. Further, in the cases where the DPE has an
associated boundary condition (due to an exit condition in the control prob-
lem), this boundary condition may not be attained in the classical/pointwise
sense. These difficulties were not cleanly resolved until the advent of the vis-
cosity solution definition of solution of a PDE. Some early references are [10],
[22], [23], [24], [38], [57], [58], and some useful books are [8], [11], [36], [47] and
[48]. It should be noted that another, essentially equivalent, solution defini-
tion, “minimax solution,” was obtained independently by Subbotin (see [107]
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and the references therein). However, viscosity solution theory is the dominant
formulation.

If one drops the requirement on smooth/classical solutions, there are gener-
ally many weak-sense solutions (for instance, solutions that are smooth almost
everywhere). The great benefit of viscosity solution theory is that it typically
isolates the unique correct weak solution. By “correct,” we mean the solution
corresponding to the value function. Interestingly, this is also the limiting so-
lution when one adds a diffusion term to the dynamics with a multiplicative
small parameter on the diffusion, and lets the parameter go to zero. This has
led to the name, “vanishing viscosity” solution, and later simply to viscosity
solution.

It is useful to note that for certain infinite time-horizon problems, the
standard H∞ problem being one of them, the viscosity solution conditions are
not sufficient to specify the unique correct solution. In this case, an additional
condition is needed [88], [89], [106]. This issue is mentioned because this class
of problems will be one of the main classes we use as a basis for development
of the theory in this book.

3.1 Dynamic Programming Principle

Let us begin by deriving DPP results for the example problem classes we will
be considering. The two most ubiquitous DPPs to appear here are the control
and game problem DPPs where the cost function consists of an integral cost
possibly plus a terminal cost. We will focus on these here; for problems with
an exit cost, we refer the reader to [33], [47] and [48]. Further below we will
consider a problem with an L∞ payoff, and this will lead to a different form of
DPP. However, we place that DPP result with the corresponding development
in Chapter 9.

Consider first the control problem with dynamics and initial condition
given by

ξ̇t = f(t, ξt, ut), (3.1)

ξs = x. (3.2)

In other words, the state process here is ξt with initial condition ξs = x ∈ Rn.
The terminal time will be T < ∞. The control process is u·, and we let the
control space (for controls over any time interval [s, t)) be

UU
s,t =

{
u : [s, t)→ U ⊆ Rl

∣∣∣∣
∫ t

s

|ur|2 dr < ∞
}

.

If one simply has U = Rl, then we use the notation Us,t. The choice of L2

norm here is arbitrary, and is used since our examples will generally be from
this class. We assume throughout that f ∈ C(R×Rn×U ;Rl) and that there
exists K < ∞ such that
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|f(t, x, u)− f(t, y, v) ≤ K(|x− y|+ |u− v|) ∀ t ∈ R,∀x, y ∈ Rn,

∀u, v ∈ U.
(A3.1G)

We note that with this assumption and the definition of UU
s,T , one is guaranteed

existence and uniqueness of solutions to (3.1), (3.2). The payoff for the control
problem will take the form

J(s, x; u)
.
=

∫ T

s

L(r, ξr, ur) dr + φ(ξT ), (3.3)

where ξr satisfies (3.1)–(3.2), L will be referred to as the running cost, and
φ will be referred to as the terminal cost. We assume throughout that L ∈
C(R×Rn × U ;R) and that there exists C <∞ such that

|L(t, x, u)| ≤ C
[
|x|2 + |u|2

]
∀ t ∈ (−∞, T ), ∀x ∈ Rn, ∀u ∈ U. (A3.2G)

Similarly, we assume throughout that φ ∈ C(Rn×U ;R) and that there exists
Cφ < ∞ such that

|φ(x)| ≤ Cφ|x|2 ∀x ∈ Rn. (A3.3G)

The value of the control problem is defined to be

V (s, x) = sup
u∈UU

s,T

J(s, x; u). (3.4)

The DPP for this problem is given by the following theorem.

Theorem 3.1. For any −∞ < s ≤ t < T < ∞ and any x ∈ Rn,

V (s, x) = sup
u∈UU

s,t

{∫ t

s

L(r, ξr, ur) dr + V (t, ξt)

}
. (3.5)

Proof. By definition,

V (t, ξt) = sup
u1∈UU

t,T

[∫ T

t

L(r, ξ1
r , u1

r) dr + φ(ξ1
T )

]
,

where ξ1 satisfies (3.1) with initial condition ξ1
t = ξt and input u1. Substituting

this into the right-hand side of (3.5) yields

sup
u∈UU

s,t

{∫ t

s

L(r, ξr, ur) dr + V (t, ξt)

}

= sup
u∈UU

s,t

{∫ t

s

L(r, ξr, ur) dr + sup
u1∈UU

t,T

[∫ T

t

L(r, ξ1
r , u1

r) dr + φ(ξ1
T )

]}

= sup
u∈UU

s,t

sup
u1∈UU

t,T

{∫ t

s

L(r, ξr, ur) dr +

∫ T

t

L(r, ξ1
r , u1

r) dr + φ(ξ1
T )

}
,

and it is easy to show that this is
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= sup
u∈UU

s,T

{∫ T

s

L(r, ξr, ur) dr + φ(ξT )

}
. ⊓⊔

The DPP for the infinite time-horizon problem we consider is equally sim-
ple. Suppose the problem again has dynamics (3.1), but now with no time
dependence in the dynamics (i.e., ξ̇ = f(x, u)) and initial condition

ξ0 = x ∈ Rn (3.6)

(i.e., with initial time always t = 0). Also take L to be time-independent (i.e.,
L(s, x, u) = L(x, u)). Again make assumptions (A3.1G), (A3.2G), (A3.3G),
but now take

UU = Lloc
2 ([0,∞);U)

.
=

{
u : [0,∞) → U ⊆ Rl

∣∣∣
∫ T

0

|ur|2 dr < ∞ ∀T ∈ [0,∞)
}

,

and of course

U = Lloc
2 ([0,∞);Rl).

Note that Lloc
2 �= L2[0,∞). Note also that there exists a unique solution to

(3.1), (3.6) for all time for any x ∈ Rn.
Let the payoff be

J(x, T ; u)
.
=

∫ T

0

L(ξr, ur) dr, (3.7)

and for the moment assume that J(x, T ; u) exists for all x ∈ Rn, T ∈ [0,∞)
and u ∈ UU . Let the value function be

W (x) = sup
u∈UU

sup
T∈[0,∞)

J(x, T ; u) (3.8)

which we also assume exists for all x ∈ Rn. The DPP then takes the following
form.

Theorem 3.2. For any 0 ≤ t < ∞ and any x ∈ Rn,

W (x) = sup
u∈UU

0,t

{∫ t

0

L(ξr, ur) dr + W (ξt)

}
. (3.9)

The proof is nearly identical to the proof of Theorem 3.1, and so we do
not include it.

The above discussion was kept highly general to indicate that few assump-
tions are required for proof of the DPP. As noted earlier, we will have a few
problem classes for which we will prove all our results. The results could be
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proved for more general problems, but then the assumptions would need to
be more abstract; for instance, we assumed the existence of J(x, T ; u) for all
x, T, u, and W (x) for all x just above. By focusing on specific problem classes,
we will be able to make the assumptions much more concrete and easily check-
able. If one desires to prove the theory for another problem class, then one can
make analogous assumptions and follow similar chains of theorems to obtain
the results. We expect that the general max-plus numerical methods theory
will hold generically, but that one would need to prove specific results for var-
ious problem classes. This is, of course, similar to other principles and general
methods/theory.

Let us specialize the above general DPP results to specific classes which
we will follow throughout the text. We will also sharpen the results for these
problems as needed. First, we take the dynamics to have the specific form

ξ̇ = f(t, ξ) + σ(ξ)u (3.10)

with initial condition
ξs = x ∈ Rn (3.11)

for the finite time-horizon case, and

ξ̇ = f(ξ) + σ(ξ)u (3.12)

with initial condition
ξ0 = x ∈ Rn (3.13)

for the infinite time-horizon case. For the finite time-horizon case, we assume

f ∈ C(R×Rn;R),

|f(t, x)− f(t, y)| ≤ K|x− y| ∀ t ∈ R, ∀x, y ∈ Rn,

|f(t, x)| ≤ K(1 + |x|) ∀ t ∈ R, ∀x ∈ Rn,

(A3.1F)

for some K < ∞. (Although an inequality of the second type above follows
from the first, we include it explicitly to indicate that we will be using the
same constant, K, for both bounds.) We also assume

σ ∈ C(Rn;L(Rl,Rn)),

|σ(x)− σ(y)| ≤ Kσ|x− y| ∀ x, y ∈ Rn,

|σ(x)| ≤ mσ ∀ x ∈ Rn,

(A3.2F)

for some Kσ, mσ < ∞. We keep the same definitions of UU
s,T , Us,T , UU and U

as above. For the finite time-horizon problem, consider a payoff form

J(s, x; u)
.
=

∫ T

s

l(r, ξr)−
γ2

2
|ur|2 dr + φ(ξT ). (3.14)
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Remark 3.3. The more general running cost l(r, ξr)− 1
2uT

r ΓT Γur dr with pos-
itive definite ΓT Γ is equivalent to the above problem by a simple change in
σ, and so we are content to use form (3.14).

We replace the above assumption on L, (A3.2G), with an assumption that

l ∈ C(R×Rn;R),

0 ≤ l(t, x) ≤ Cl

[
1 + |x|2

]
∀ x ∈ Rn, ∀ t ∈ R,

|l(t, x)− l(t, y)| ≤ Cl(1 + |x|+ |y|)|x− y| ∀x, y ∈ Rn, ∀ t ∈ R,

(A3.3F)

for some Cl < ∞. Similarly, we assume that there exists Cφ < ∞ such that

φ ∈ C(Rn;R),

0 ≤ φ(x) ≤ Cφ

[
1 + |x|2

]
∀ x ∈ Rn,

|φ(x)− φ(y)| ≤ Cφ(1 + |x|+ |y|)|x− y| ∀ x, y ∈ Rn.
(A3.4F)

Let
V (s, x) = sup

u∈UU
s,T

J(s, x; u) (3.15)

for some U ⊆ Rn, U �= ∅.
We will be obtaining a DPP where there is a bound on the L2-norm of the

u in the supremum. First, one must get a bound on the behavior of V (s, x).
Let QT = [0, T ]×Rn.

Lemma 3.4. V (s, x) ≥ 0 for all (s, x) ∈ QT . Further, there exists γ2 < ∞
and C1 < ∞ such that for all γ > γ2

V (s, x) < C1(1 + |x|2) ∀(s, x) ∈ QT .

Proof. Taking u ≡ 0 and noting that l, φ ≥ 0, yields the first assertion. We
proceed to the second assertion. By (3.10) and Assumptions (A3.1F) and
(A3.2F),

|ξt| ≤ |x|+ K

∫ t

s

(1 + |ξr|) dr + mσ

∫ t

s

|ur| dr.

By Gronwall’s inequality, this implies there exists C2 = C2(T ) <∞ such that

|ξt| ≤ C2

[
1 + |x|+

∫ t

s

|ur| dr

]
. (3.16)

Using Hölder’s inequality, one finds there exists C3 = C3(T ) < ∞ such that

|ξt|2 ≤ C3

[
1 + |x|2 +

∫ t

s

|ur|2 dr

]
. (3.17)

Now by assumptions (A3.3F) and (A3.4F),
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∫ T

s

[
l(r, ξr)−

γ2

2
|ur|2

]
dr + φ(ξT )

≤
∫ T

s

[
Cl(1 + |ξr|2)−

γ2

2
|ur|2

]
dr + Cφ(1 + |ξT |2)

which by (3.17) with Ĉ = max{Cl, Cφ}

≤ Ĉ(1 + T )[1 + C3(1 + |x|2)] +

∫ T

s

[
ĈC3(1 + T )− γ2

2

]
|ur|2 dr

which upon letting γ2
2 = 2ĈC3(1 + T ), becomes

= Ĉ(1 + T )[1 + C3(1 + |x|2)] +

∫ T

s

[
γ2
2

2
− γ2

2

]
|ur|2 dr. (3.18)

From (3.18), one immediately obtains the second assertion. ⊓⊔

Lemma 3.5. Let γ > γ2 and ǫ ≤ 1. There exists C2, Ĉ2 < ∞ such that for
any ε-optimal ũ (i.e., such that J(s, x; ũ) ≥ V (s, x)− ε), one has

∫ T

s

|ũr|2 dr ≤ Ĉ2

γ2 − γ2
2

(1 + |x|2)

and ∫ t2

t1

|ũr| dr ≤ C2(1 + |x|)|t2 − t1|1/2 ∀ t1, t2 ∈ [s, T ].

Proof. Let ξ̃ satisfy (3.10), (3.11) with input ũ. By assumption and the first
assertion of Lemma 3.4,

γ2

2

∫ T

s

|ũr|2 dr ≤
∫ T

s

l(ξ̃r) dr + φ(ξ̃T ) + ǫ,

which as in the proof of Lemma 3.4 yields (noting ǫ ≤ 1)

γ2

2

∫ T

s

|ũr|2 dr ≤ Ĉ2

2
(1 + |x|2) +

γ2
2

2

∫ T

s

|ũr|2 dr

for proper choice of Ĉ2, γ2 ∈ (0,∞). Consequently,

∫ T

s

|ũr|2 dr ≤ Ĉ2

γ2 − γ2
2

(1 + |x|2).

By Cauchy–Schwarz then for any t1, t2 such that s ≤ t1 < t2 ≤ T

∫ t2

t1

|ũr| dr ≤
[

Ĉ2

γ2 − γ2
2

(1 + |x|2)
]1/2

|t2 − t1|1/2 ≤ C2(1 + |x|)|t2 − t1|1/2

with C2 = [Ĉ2/(γ2 − γ2
2)]1/2. ⊓⊔
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Remark 3.6. Let Mx = C2(1 + |x|), M ∈ [Mx,∞) and define

GM
s,T =

{
u ∈ UU

s,T :

∫ t2

t1

|ur| dr ≤ M |t2 − t1|1/2 ∀ t1, t2 ∈ [s, T ]

}
.

We have shown that V (s, x) = supu∈GM
s,T

J(s, x; u).

Lemma 3.7. Let ξr be a solution of (3.10) on [s, T ] driven by u ∈ GM
s,T . Then

there exist B1, B2, B3 < ∞ such that

|ξr − x| ≤ B1(r − s) + B2

√
r − s + B3|x|(r − s) ∀ r ∈ [s, T ].

Proof. By (3.10),

ξr − x =

∫ r

s

f(ξρ)− f(x) dρ + f(x)(r − s) +

∫ r

s

σ(ξρ)uρ dρ.

Consequently, using (A3.1F), (A3.2F) and the assumption on u, one finds

|ξr − x| ≤ K(1 + |x|)(r − s) + Mmσ

√
r − s + K

∫ r

s

|ξρ − x| dρ.

Employing Gronwall’s inequality then yields the result. ⊓⊔

We can now obtain some DPP results which will be more helpful for this
specific class of problems than the general result of Theorem 3.1.

Theorem 3.8. For any 0 ≤ s ≤ t ≤ T < ∞ and any x ∈ Rn,

V (s, x) = sup
u∈GMx

s,t

{∫ t

s

l(r, ξr)−
γ2

2
|ur|2 dr + V (t, ξt)

}
. (3.19)

Proof. Let t ∈ (s, T ). For any y ∈ Rn,

V (t, y) = sup
û∈UU

t,T

{∫ T

t

l(r, ξ̂r)−
γ2

2
|ûr|2 dr + φ(ξ̂T )

}
, (3.20)

where ξ̂· is driven by û from initial state ξ̂t = y. Let the right-hand side of
(3.19) be denoted by R(s, x). Substituting (3.20) into the right-hand side of
(3.19), one obtains

R(s, x) = sup
ũ∈GMx

s,t

sup
û∈UU

t,T

{ ∫ t

s

l(r, ξ̃r)−
γ2

2
|ũr|2 dr

+

∫ T

t

l(r, ξ̂r)−
γ2

2
|ûr|2 dr + φ(ξ̂T )

}
,
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where ξ̂t is driven by û with initial condition ξ̂t = ξ̃t, and ξ̃ is driven by ũ
with initial condition ξs = x. Concatenating the two trajectory segments, and
noting that the concatenation of ũ with û is an element of UU

[s,T ), one has

R(s, x) ≤ sup
û∈UU

s,T

{∫ T

s

l(r, ξr)−
γ2

2
|ur|2 dr + φ(ξT )

}
= V (s, x).

The reverse direction has an analogous proof, and we do not include it. For a
similar proof in a deterministic game context, see [91]. ⊓⊔
Remark 3.9. Minor modifications of the above proof also yield the DPPs

V (s, x) = sup
u∈GM

s,t

{∫ t

s

l(r, ξr)−
γ2

2
|ur|2 dr + V (t, ξt)

}

for any M ≥ Mx and

V (s, x) = sup
u∈UU

s,t

{∫ t

s

l(r, ξr)−
γ2

2
|ur|2 dr + V (t, ξt)

}
.

We now turn to a DPP for a more specific infinite time-horizon problem
than the general problem given above. Recall that the dynamics and initial
condition are given by (3.12) and (3.13). The assumptions on the dynamics
are modified as follows. We now assume

f ∈ C(Rn;R),

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ Rn,

(x− y)T [f(x)− f(y)] ≤ −cf |x− y|2 ∀x, y ∈ Rn,

f(0) = 0,

(A3.1I)

for some K, cf < ∞. We note that this implies

xT f(x) ≤ −cf |x|2

for all x. This last inequality implies exponential stability of the system when
u ≡ 0. As before, we suppose

σ ∈ C(Rn;L(Rl,Rn)),

|σ(x)− σ(y)| ≤ Kσ|x− y| ∀ x, y ∈ Rn,

|σ(x)| ≤ mσ ∀ x ∈ Rn,

(A3.2I)

for some Kσ, mσ < ∞.
Consider the payoff

J(x, T, u) =

∫ T

0

l(ξr)−
γ2

2
|ur|2 dr, (3.21)
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and value function (also known as available storage in this context [52], [108])

W (x) = sup
u∈UU

sup
T<∞

J(x, T, u). (3.22)

We assume that

l ∈ C(Rn;R),

|l(x)− l(y)| ≤ Cl(1 + |x|+ |y|)|x− y| ∀ x, y ∈ Rn,

0 ≤ l(x) ≤ αl|x|2 ∀ x ∈ Rn,
(A3.3I)

for some Cl, αl < ∞. Lastly, we assume that
γ2c2

f

2m2
σαl

> 1. (A3.4I)

We remark that under these assumptions the value exists, and that for suffi-
ciently small δ > 0 (Section 3.2 below and [88])

0 ≤ W (x) ≤ cf
γ2 − δ

2m2
σ

|x|2 ∀x ∈ Rn. (3.23)

We now indicate the more specific DPP that one can obtain in this context.

Theorem 3.10. Let ξ satisfy (3.12), (3.13). Let δ > 0 be sufficiently small
such that (3.23) holds, and such that with γ̂2 .

= γ2 − δ one still has the
inequality (γ̂2c2

f )/(2m2
σαl) > 1. Then for any ε > 0, for all x ∈ Rn

W (x) = sup
u∈U

U,ε,|x|

0,T

{∫ T

0

l(ξr)−
γ2

2
|ur|2 dr + W (ξT )

}
, (3.24)

where

UU,ε,|x|
0,T

.
=

{
u ∈ UU

∣∣∣ 1

2
‖u‖2L2(0,T ) ≤

ε

δ
+

1

δ

[
cfγ2

2m2
σ

e−cf T +
αl

cf

]
|x|2

}
.(3.25)

Proof. The following proof is adapted from [88]. From Theorem 3.2 and (3.21),

W (x) = sup
u∈UU

0,T

{∫ T

0

l(ξr)−
γ2

2
|ur|2 dr + W (ξT )

}
.
= sup

u∈UU
0,T

Ĵ(x, T, u).

(3.26)
Let

QT
.
=

∫ T

0

αl|ξt|2 dt +
cf γ̂2

2m2
σ

|ξT |2, (3.27)

which by (A3.3I) and (3.23)

≥
∫ T

0

l(ξt) dt + W (ξT ). (3.28)
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Note that Q is absolutely continuous and the indefinite integral of its deriva-
tive. Then, almost everywhere,

Q̇T = αl

[
|x|2 +

∫ T

0

2ξT ξ̇ dt

]
+

cf γ̂2

m2
σ

ξT
T ξ̇T ,

which by (3.12), (A3.1I)

≤ αl|x|2 − 2cfαl

∫ T

0

|ξ|2 dt− cf
cf γ̂2

m2
σ

|ξT |2

+2αl

∫ T

0

ξT σ(ξ)u dt +
cf γ̂2

m2
σ

ξT
T σ(ξT )uT

= αl|x|2 − 2cfQ + 2αl

∫ T

0

ξT σ(ξ)u dt +
cf γ̂2

m2
σ

ξT
T σ(ξT )uT . (3.29)

Using the fact that 2a · b ≤ cf |a|2 + 1
cf
|b|2 on the last two terms of (3.29)

yields

Q̇T ≤ αl|x|2 − cfQ +
αl

cf

∫ T

0

uT σT (ξ)σ(ξ)u dt +
γ̂2

2m2
σ

uT
T σT (ξT )σ(ξT )uT

which by (A3.2I)

≤ αl|x|2 − cfQ +
αlm

2
σ

cf

∫ T

0

|u|2 dt +
γ̂2

2
|uT |2.

Solving this ordinary differential inequality with Q0 =
cf γ̂2

2m2
σ
|x|2, we find

QT ≤
cf γ̂2

2m2
σ

|x|2e−cf T +
1− e−cf T

cf
αl|x|2

+

∫ T

0

[
αlm

2
σ

cf
ecf (t−T )

∫ t

0

|ur|2 dr +
γ̂2

2
ecf (t−T )|ut|2

]
dt.

Applying integration by parts to the first term in the integral yields

QT ≤
[
cf γ̂2

2m2
σ

e−cf T +
αl

cf

]
|x|2+

∫ T

0

[
αlm

2
σ

c2
f

(1− ecf (t−T )) +
γ̂2

2
ecf (t−T )

]
|u|2 dt

=

[
cf γ̂2

2m2
σ

e−cf T +
αl

cf

]
|x|2 +

∫ T

0

[
αlm

2
σ

c2
f

− γ̂2

2

]
(1− ecf (t−T ))|u|2 dt

+
γ̂2

2
‖u‖2L2[0,T ]. (3.30)

Let δ̃
.
= γ̂2

2 −
αlm

2
σ

c2
f

, and note by (A3.4I) that δ̃ > 0. We have

QT ≤
[
cf γ̂2

2m2
σ

e−cf T +
αl

cf

]
|x|2 − δ̃

∫ T

0

(1− ecf (t−T ))|u|2 dt +
γ̂2

2
‖u‖L2[0,T ].

(3.31)
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Then, by (3.26), (3.28), (3.31) and the definition of γ̂,

Ĵ(x, T, u) ≤
[
cfγ2

2m2
σ

e−cf T +
αl

cf

]
|x|2 − δ̃

∫ T

0

(1− ecf (t−T ))|u|2 dt− δ

2
‖u‖2L2[0,T ]

≤
[
cfγ2

2m2
σ

e−cf T +
αl

cf

]
|x|2 − δ

2
‖u‖2L2[0,T ]. (3.32)

On the other hand, by (A3.3I), (3.23) and (3.26), Ĵ(x, T, 0) ≥ 0, and so for
ε-optimal u

Ĵ(x, T, u) ≥ −ε. (3.33)

Comparing (3.32) and(3.33), we see that for ε-optimal u, we have

1
2‖u‖2L2[0,T ] ≤

ε

δ
+

1

δ

[
cfγ2

2m2
σ

e−cf T +
αl

cf

]
|x|2. (3.34)

This is an upper bound on the size of ε-optimal u which is independent of T
(using e−cf T ≤ 1). ⊓⊔

3.2 Viscosity Solutions

In the previous section, we concentrated on the relationship between the DPP
and the control problem value function for the example problem classes we will
concentrate on. As noted earlier, the DPE is obtained by an infinitesimal limit
in the DPP, and takes the form of a nonlinear, first-order Hamilton–Jacobi–
Bellman PDE (HJB PDE) in these problem classes. In the finite time-horizon
problem, it is a time-dependent PDE over (s, T ) × Rn with terminal-time
boundary data. In the infinite time-horizon case, it is a steady-state PDE
over Rn, with “boundary” data only at x = 0 (W (0) = 0) in the specific
problem class we will concentrate on.

The value functions for such control problems are typically viscosity so-
lutions of the corresponding HJB PDEs. Thus, when we use our numerical
method to obtain the value function, we are also solving the nonlinear HJB
PDE (for a viscosity solution). Alternatively, if one has a nonlinear, first-order
HJB PDE, one may solve it via a numerical method for the associated control
problem. PDEs have associated semigroups [96], and in the HJB case, this
semigroup is equivalent to the DPP.

The relationship between the HJB PDE and the associated control problem
is a classical topic. Some early references are [14], [46], [65], among many
notable others. This early theory was restricted mainly to the case where
the PDE had a classical solution (everywhere differentiable, and meeting the
boundary conditions pointwise). However, it was well known that such control
problems (unless containing an additional nondegenerate diffusion term in
the dynamics) did not typically have classical solutions. (One of the very few
counterexamples is the linear/quadratic case.)
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A major advance came in the 1980s with the development of the notion of
the viscosity solution of a PDE. A few early works are [10], [22], [23] and [24],
and some books are [8], [11], [36], [47] and [48]. Again, the relevant literature
is vast, and these represent only a tiny fraction of the work in this area. The
viscosity solution of an HJB PDE need not be a classical solution, and typi-
cally has discontinuities in the gradient; in some problem classes it may even
have discontinuities in the solution itself as well as not meeting the boundary
conditions pointwise. Note that there are typically many weak solutions to
a PDE which solve the PDE pointwise almost everywhere, and the viscosity
solution conditions isolate the correct such weak solution. Specifically, there
is generally a unique viscosity solution to the HJB PDE with given boundary
data. A counterexample to this is our steady-state problem class example,
where an additional condition is required to isolate the correct solution [88],
[89], [106].

We will not actually need viscosity solution theory to compute the control
problem value function, as we work, instead, directly with the DPP. Of course,
viscosity solution theory is necessary to associate this value function with the
solution of the associated HJB PDE. Consequently viscosity solution theory is
not absolutely essential to the bulk of the theory developed after this chapter.
Nonetheless, viscosity solution theory is a fundamental component in the way
one thinks about nonlinear control, and so has a place in any book dealing
with DP and nonlinear control. There are many excellent works on the theory
of viscosity solutions (see above references), and we will not duplicate that
material here. However, it will be useful to review the basics of viscosity
solution theory here, and to indicate the relationship between the viscosity
solution and the value function more completely for our example problem
classes.

We start with a definition of viscosity solution for the finite time-horizon
problem. (One can give a single definition for both the finite time-horizon
and infinite time-horizon cases, but it appears that it will be simpler for our
needs here to write separate definitions.) The following definition is for a
continuous viscosity solution, as our assumptions will preclude problems with
discontinuous viscosity solutions. We will also only need to consider cases
where the boundary conditions are met pointwise. More general definitions
can be found in the references.

The result for the finite time-horizon problem is quite well known. We con-
sider the problem with dynamics (3.10), (3.11), payoff (3.14) and value (3.15)
for initial times s ∈ (0, T ). We assume (A3.1F)–(A3.4F). The corresponding
PDE problem is

0 = −Vs(s, x) + H(s, x,∇xV (s, x)) ∀ (s, x) ∈ (0, T )×Rn, (3.35)

V (T, x) = φ(x) ∀x ∈ Rn, (3.36)

where the Hamiltonian, H, is given by
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H(s, x, p)
.
= −max

u∈U

{
[f(s, x) + σ(x)u]T p + l(s, x)− γ2

2
|u|2

}
. (3.37)

Here, Vs represents the partial derivative with respect to time variable, and
∇xV represents the gradient with respect to the space variable. Where no
confusion arises, we may often use ∇ in place of ∇x to represent the gradient
with respect to the space variable. It is helpful to note that in the common
case where U ≡ Rl, this Hamiltonian takes the form

H(s, x, p) = −
[
fT (s, x)p + l(s, x) +

1

2γ2
pT σ(x)σT (x)p

]
. (3.38)

There are several equivalent definitions of a continuous viscosity solution,
particularly with regard to the set of test functions. We recall one definition
of a continuous viscosity solution of (3.35) (c.f. [48], definition 2.4.1). Suppose
V ∈ C((0, T ] ×Rn). Further, suppose that for any g ∈ C1([0, T ] ×Rn) and
(s, x) ∈ (0, T )×Rn such that V − g has a local maximum at (s, x), one has

−gt(s, x) + H(s, x,∇xg(s, x)) ≤ 0.

Then V is a continuous viscosity subsolution of (3.35). On the other hand,
suppose that for any g ∈ C1([0, T ] ×Rn) and (s, x) ∈ (0, T ) ×Rn such that
V − g has a local minimum at (s, x), one has

−gt(s, x) + H(s, x,∇xg(s, x)) ≥ 0.

Then V is a continuous viscosity supersolution of (3.35). If V is both a con-
tinuous viscosity subsolution and a continuous viscosity supersolution, then
it is a continuous viscosity solution.

We now state the viscosity solution result. This result is rather standard;
the fact that we allow quadratic growth in the cost criteria moves it slightly
beyond the realm of the most basic results. For completeness, we also provide a
partial proof. See the references for a more complete discussion and extensions.

Theorem 3.11. Under assumptions (A3.1F)–(A3.4F), and taking γ > γ2

(see Lemma 3.4), the value function (3.15) is a continuous viscosity solution
of (3.35) meeting the terminal condition (3.36) pointwise.

Proof. As noted above, we provide a partial proof for completeness. First we
address the continuity issue. Let ξ and η satisfy (3.10) with initial conditions
ξs = x and ηs = y, respectively, for some s ∈ [0, T ). In particular, fix some
R < ∞, and let |x|, |y| ≤ R. Let u ∈ UU

s,T be ε-optimal for either x or y with
ε ∈ (0, 1]. We have

ξt − ηt = ξs − ηs +

∫ t

s

[f(r, ξr)− f(r, ηr)] dr +

∫ t

s

[σ(ξr)− σ(ηr)]ur dr.

Using Assumptions (A3.1F) and (A3.2F), this yields
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|ξt − ηt| ≤ |x− y|+ K

∫ t

s

|ξr − ηr| dr + Kσ

∫ t

s

|ξr − ηr||ur| dr.

By Cauchy–Schwarz, there exists C1 < ∞ (dependent on T ) such that

|ξt − ηt|2 ≤ C1

{
|x− y|2 +

[
1 +

∫ t

s

|ur|2 dr
] ∫ t

s

|ξr − ηr|2 dr

}
.

By the ε-optimality of ur and Lemma 3.5, there exists C3 < ∞ (dependent
on R, T ) such that

|ξt − ηt|2 ≤ C3

{
|x− y|2 +

∫ t

s

|ξr − ηr|2 dr

}
.

Then, using Gronwall’s Inequality, we find that there exists C4 = C4(R, T ) <
∞ such that

|ξt − ηt| ≤ C4|x− y| ∀ t ∈ [s, T ], ∀x, y ∈ BR(0) (3.39)

(where we recall BR(0) = {x ∈ Rn| |x| ≤ R}).
Now, let us specifically take uε to be ε-optimal for initial condition ξs = x

(rather than for ηs = y). Then

V (s, x)− V (s, y) ≤ J(s, x, uε)− J(s, y, uε) + ε

≤
∫ T

s

[l(t, ξt)− l(t, ηt)] dt + φ(ξT )− φ(ηT ) + ε,

which by (A3.3F) and (A3.4F)

≤ Cl

∫ T

s

(1 + |ξt|+ |ηt|)|ξt − ηt| dt

+Cφ(1 + |ξT |+ |ηT |)|ξT − ηT |+ ε,

which by (3.39)

≤ C4|x− y|
{

Cl

∫ T

s

(1 + |ξt|+ |ηt|) dt + Cφ(1 + |ξT |+ |ηT |)
}

+ε,

which by (3.16) with the C2 = C2(T ) given there

≤ C4|x− y|
{

Cl

[
T + 2C2(1 + R)T + 2C2

∫ T

s

∫ t

s

|ur| dr dt

]

+Cφ

[
1 + 2C2(1 + R) + 2C2

∫ T

s

|ut| dt

]}
+ ε.

Then, using Lemma 3.5, there exists C5 = C5(R, T ) < ∞
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≤ C5|x− y|+ ε.

Because this is true for all ε > 0,

V (s, x)− V (s, y) ≤ C5|x− y|

(with |x|, |y| ≤ R). By symmetry, one obtains

|V (s, x)− V (s, y)| ≤ C5|x− y| (3.40)

(with |x|, |y| ≤ R). This is (local Lipschitz) continuity in the space variable.
Continuity with respect to the time variable follows similarly, and we do not
include the proof.

Now that we have continuity of value function V , we show that it satisfies
the conditions for a viscosity solution of (3.35). Suppose (s, x) is a local max-
imum of V − g where g ∈ C1, and that the viscosity subsolution inequality is
not satisfied at (s, x). Then there exists θ > 0 such that

−gt(s, x) + H(s, x,∇xg(s, x)) ≥ θ > 0.

Then, by the definition of H and the assumptions, there exists δ > 0 such
that for t ∈ [s, s + δ), y ∈ Bδ(x),

−gt(t, y) + H(t, x,∇xg(t, y)) ≥ θ/2.

Let ũ ∈ GMx

s,T . Let ξ satisfy (3.10), (3.11) with control ũ. By Lemma 3.7,

there exists δ̃ ∈ (0, δ) such that for all t ∈ [s, s + δ̃], one has ξt ∈ Bδ(x).
Consequently, for t ∈ [s, s + δ̃],

−gt(t, ξt) + H(t, ξt,∇xg(t, ξt)) ≥ θ/2,

and then by the definition of H, one has

−gt(t, ξt)−
{

[f(t, ξt) + σ(ξt)ũt]
T∇xg(t, ξt) + l(t, ξt)−

γ2

2
|ũt|2

}
≥ θ/2.

Integrating (and multiplying by −1), one finds

∫ t

s

l(r, ξr)−
γ2

2
|ũr|2 + [f(r, ξr) + σ(ξr)ũr]

T∇xg(r, ξr) dr ≤ −θ(t− s)

2
,

which implies

∫ t

s

l(r, ξr)−
γ2

2
|ũr|2 dr + g(t, ξt)− g(s, x) ≤ −θ(t− s)

2
. (3.41)

Recall that V satisfies the DPP of Theorem 3.8. Let ε ∈ (0, 1], and let û
be ε-optimal in (3.19), and let ξ· again represent the corresponding trajectory.
Then, by Theorem 3.8,
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V (s, x) ≤
∫ t

s

l(r, ξr)−
γ2

2
|ûr|2 dr + V (t, ξt) + ε. (3.42)

By continuity and the supposition that (s, x) is a local maximum of V − g,

there exists δ̂ ∈ (0, δ̃] such that

V (s, x)− g(s, x) ≥ V (t, ξt)− g(t, ξt) ∀ t ∈ [s, s + δ̂]. (3.43)

Combining (3.42) and (3.43), one has

−ε ≤
∫ t

s

l(r, ξr)−
γ2

2
|ûr|2 dr + g(t, ξt)− g(s, x).

Letting ε < (θt)/2, one has

∫ t

s

l(r, ξr)−
γ2

2
|ûr|2 dr + g(t, ξt)− g(s, x) > −θ(t− s)

2
. (3.44)

On the other hand, taking ũ = û in (3.41) yields

∫ t

s

l(r, ξr)−
γ2

2
|ûr|2 dr + g(t, ξt)− g(s, x) ≤ −θ(t− s)

2
. (3.45)

Clearly, (3.44), (3.45) is a contradiction, and so

−gt(s, x) + H(s, x,∇xg(s, x)) ≤ 0.

Consequently, value function V is a continuous viscosity subsolution of (3.35).
The proof that the supersolution condition holds is similar, and we do not
include it. ⊓⊔

Remark 3.12. Note that it has also been shown that V is locally Lipschitz
continuous in the space variable, x.

It has now been demonstrated that the value function is a continuous
viscosity solution of the associated HJB PDE for this problem class. However,
this is of course only half of the story with regard to the relationship. The
other half is the demonstration that the value is the only continuous viscosity
solution (uniqueness).

Such uniqueness results have been a foundation of viscosity solution the-
ory. As noted before, there are many excellent references on viscosity solution
theory, and that is not a principal focus of this book, so we will not go into
this in great detail. We will attempt to present sufficient detail so that the
reader is comfortable with the area, but not so much as to detract from the
principal focus of the book — max-plus based numerical methods. It is im-
portant to note that the max-plus results will be used to obtain solutions of
DPPs, and therefore by the results of the previous section, control problem
value functions. It is the one-to-one relationship between value functions (or
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DPP solutions) and viscosity solutions of HJB PDEs that then allows us to
say that our numerical methods are producing the unique solutions of the
corresponding HJB PDEs.

Early uniqueness results for finite time-horizon HJB PDEs can be found
in [10], [22], [23], [24], [57] among others, but the first results did not allow
for Lipschitz dynamics/quadratic cost criteria (critical to much control theory
which has a long history in studying linear/quadratic problems). A uniqueness
result handling our problem here was obtained in [92] for this class of problems,
but it required a constant σ. Closely related results appear in [9], [59]. In
[26], a more general result (due to DaLio) for a game problem subsumes the
uniqueness result needed here. Below, we provide a particularization of that
result.

We first need to define the space in which uniqueness will be obtained. It
is the set of continuous solutions satisfying a quadratic growth bound. This
space, denoted by K, is given by

D+
x U(t, x) =

{
p ∈ Rn : lim sup

y→x

U(t, y)− U(t, x)− (y − x) · p
|x− y| ≤ 0

}
,

||U ||R := sup{|U(t, x)|+ |p|, (t, x) ∈ [0, T ]×BR(0) , p ∈ D+
x U(t, x)},

and

K :=

{
U ∈ C([0, T ]×Rn) : U(t, x) ≥ 0, ||U ||R < +∞ ∀R > 0

and sup
(t,x)∈[0,T ]×Rn

|U(t, x)|
1 + |x|2 < +∞

}
.

Note that by Lemma 3.4 and Remark 3.12, the value function lies in K.

Theorem 3.13. Assume (A3.1F)–(A3.4F). If V1, V2 ∈ K are two continuous
viscosity solutions in class K, then V1 = V2. Further, if γ > γ2 (see Lemma
3.4), then the value function is the unique continuous solution of (3.35), (3.36)
in the class K.

In order to focus on the max-plus numerical methods, a simplification of
Da Lio’s proof to the case here is delayed to Appendix A.

We now turn to the HJB PDE for the infinite time-horizon problem class
discussed in the previous section. As noted above, the viscosity solution of
a PDE is typically unique (and is typically the “correct” solution as well).
The infinite time-horizon problem with Lipschitz dynamics and quadratic (or
higher) growth in the cost criterion violates this rule of thumb.

The HJB PDE corresponding to the infinite time-horizon problem (3.12),
(3.13), (3.21), (3.22) is

0 = H(x,∇W (x)) ∀x ∈ Rn \ {0}, (3.46)

W (0) = 0, (3.47)

where the Hamiltonian, H, is given by
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H(x, p)
.
= −max

u∈U

{
[f(x) + σ(x)u]T p + l(x)− γ2

2
|u|2

}
. (3.48)

Again, in the case where U ≡ Rl, the Hamiltonian takes the form

H(x, p) = −
[
fT (x)p + l(x) +

1

2γ2
pT σ(x)σT (x)p

]
. (3.49)

As with the finite time-horizon case, we can restrict our attention to conti-
nous viscosity solutions meeting the boundary condition pointwise (W (0) = 0
in this case). Let W ∈ C(Rn). W will be a continuous viscosity solution of
(3.46) if it satisfies both of the following viscosity subsolution and viscosity
supersolution conditions. Suppose that for any g ∈ C1(Rn) and x ∈ Rn such
that W − g has a local maximum at x, one has

H(x,∇g(x)) ≤ 0.

Then W is a continuous viscosity subsolution of (3.46). One the other hand,
suppose that for any g ∈ C1(Rn) and x ∈ Rn such that W − g has a local
minimum at x, one has

H(x,∇g(x)) ≥ 0.

Then W is a continuous viscosity supersolution of (3.46).
A simple, one-dimensional example indicating the lack of uniqueness is

0 = −
[
−xWx + x2 + 1

8W 2
x

]
.

There are two C∞ solutions with W (0) = 0:

W 1(x) = (2−
√

2)x2 and W 2(x) = (2 +
√

2)x2,

and an infinite number of viscosity solutions such as

W (x) =

{
(2−

√
2)x2 if x ≤ 1

(2 +
√

2)x2 − 2
√

2 if x > 1.

We will show that there exists a continuous viscosity solution of (3.46),
(3.47) satisfying growth condition (3.23), and that this solution is the value
function (3.22). As with the finite time-horizon case, there will be two major
parts to the proof of the above statement. Here, we will start with what is
referred to as a verification theorem — which states that a solution of the
PDE must be the value function. The second major component will be the
proof that there exists a solution. The results presented here are distilled from
a game problem discussed in [88] (see also [89]). The results in [88] rely heavily
on the structure of our particular problem class. A related but different type
of result, under weaker conditions, can be found in [106].
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Suppose W is a continuous viscosity solution of (3.46), (3.47) satisfying
condition (3.23) and locally Lipschitz in x. Then for any T ∈ (0,∞), W is
also a (steady-state) solution of the Cauchy problem

0 = −Vs(s, x) + H(x,∇V (s, x)) ∀ (s, x) ∈ (−∞, T )×Rn, (3.50)

V (T, x) = W (x) ∀x ∈ Rn, (3.51)

where H is given by (3.48). However, (3.50), (3.51) is identical to our finite
time-horizon PDE problem (3.35), (3.36). Consequently, by Theorem 3.13, we
have

Lemma 3.14. W is the unique continuous viscosity solution of (3.50), (3.51)
in class K.

We also immediately find that if γ > γ2(T ) (see Lemma 3.4), then W is
the value function of the corresponding finite time-horizon control problem
with dynamics (3.12) for any initial condition

ξs = x (3.52)

with payoff and value

J(s, x, T, u) =

∫ T

s

l(ξt)−
γ2

2
|ut|2 dt + W (ξT ), (3.53)

V (s, x) = V (s, x; T ) = sup
u∈UU

J(s, x, T, u), (3.54)

where we use the notation V (s, x; T ) to emphasize the dependence on the
terminal time (actually dependence on T − s). However, this result is not
quite sufficient for our needs. Using the stability implied by the third and
fourth parts of Assumption (A3.1I), one finds

Lemma 3.15. W is the value function of problem (3.12), (3.52), (3.53),
(3.54) for any γ satisfying (A3.4I), i.e., W (x) = V (s, x) for all −∞ < s ≤
T < ∞, for all x ∈ Rn.

The proof can be found in Appendix A.
Note that W is the value function for the finite time-horizon problem

independent of s, T . We now use this representation of W to show that it
must be the value of our infinite time-horizon problem. Specifically, we will
take s = 0, and let T →∞. By showing that near optimal trajectories (of the
dynamics) are such that ξt → 0 (roughly speaking), the terminal cost satisfies
W (ξT ) → 0 (roughly speaking), and we obtain the result. Let us now fill this
argument in a bit.

Lemma 3.16. Let ξ satisfy (3.12), (3.52). Let δ > 0 be sufficiently small
such that (3.23) holds, and such that with γ̂2 .

= γ2 − δ one still has inequality
(γ̂2c2

f )/(2m2
σαl) > 1. Then for any ε > 0,



3.2 Viscosity Solutions 51

W (x) = V (0, x) = V (0, x; T ) = sup
u∈U

U,ε,|x|

0,T

{∫ T

0

l(ξr)−
γ2

2
|ur|2 dr + W (ξT )

}

for all T ∈ (0,∞) and x ∈ Rn where UU,ε,|x|
0,T is given by (3.25).

Note that Lemma 3.16 follows directly from the definition of V (0, x) =
V (0, x; T ) and Theorem 3.10.

Lemma 3.17. Let u be ε-optimal for problem (3.12), (3.52), (3.53), (3.54)
and let ξ be the corresponding state process. Then

∫ T

s

|ξt|2 dt ≤ 2ε

δ

m2
σ

c2
f

+

[
m2

σ

δcf

(
2αl

c2
f

+
γ2

m2
σ

)
+

1

cf

]
|x|2. (3.55)

Proof. Let RT
.
=

∫ T

s
|ξt|2 dt. Then by (3.12) and (A3.1I),

ṘT ≤ −2cf

∫ T

s

|ξ|2 dt + 2

∫ T

s

ξT σ(ξ)u dt + |x|2, (3.56)

which by the fact that 2a · b ≤ cf |a|2 + (1/cf )|b|2 for all a, b and (A3.2I)

≤ −cfRT +
m2

σ

cf

∫ T

s

|u|2 dt + |x|2. (3.57)

Solving this ODI, one finds

RT ≤
m2

σ

c2
f

∫ T

s

(1− ecf (t−T ))|u|2 dt +
1

cf
|x|2.

Supposing that u is ε-optimal, and using Lemma 3.16 and the definition of

UU,ε,|x|
0,T , yields the result. ⊓⊔

By (3.55) with s = 0, we see that for ε-optimal u there exists τ ∈ [T/2, T ]
such that

|ξτ |2 ≤
2

T

{
2ε

δ

m2
σ

c2
f

+

[
m2

σ

δcf

(
2αl

c2
f

+
γ2

m2
σ

)
+

1

cf

]
|x|2

}
(3.58)

for any T < ∞.
Now we need to assert that controls which are ε-optimal for the problem

over [0, T ] are also ε-optimal for the problem over [0, τ ] for any τ ∈ [0, T ].

Suppose that û is ε-optimal over [0, T ], with corresponding state process ξ̂
given by (3.12), (3.13). Then

∫ T

0

[
l(ξ̂)− γ2

2
|û|2

]
dt + W (ξ̂T ) ≥ W (x)− ε. (3.59)
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Let τ ∈ [0, T ] and suppose that û is not ε-optimal over [0, τ ]. Then

∫ τ

0

[
l(ξ̂)− γ2

2
|û|2

]
dt + W (ξ̂τ ) < W (x)− ε. (3.60)

However, because W is also the value function for problem (3.12), (3.52),
(3.53), (3.54) with s = τ , (3.60) implies

∫ τ

0

[
l(ξ̂)− γ2

2
|û|2

]
dt +

∫ T

τ

[
l(ξ̂)− γ2

2
|û|2

]
dt + W (ξ̂T ) < W (x)− ε

or ∫ T

0

[
l(ξ̂)− γ2

2
|û|2

]
dt + W (ξ̂T ) < W (x)− ε,

which contradicts (3.59). Thus one has obtained the following lemma.

Lemma 3.18. If u is ε-optimal for problem (3.12), (3.52), (3.53), (3.54) over
interval [0, T ], then it is also ε-optimal for problem (3.12), (3.52), (3.53),
(3.54) over any subinterval [0, τ ], i.e.,

∫ τ

0

[
l(ξt)−

γ2

2
|ut|2

]
dt + W (ξ(τ)) ≥ W (x)− ε. (3.61)

By (3.61) and (3.23), if u is ε-optimal , then

∫ τ

0

[
l(ξ)− γ2

2
|u|2

]
dt +

cfγ2

2m2
σ

|ξ(τ)|2 ≥ W (x)− ε. (3.62)

However, by (3.58), given ε > 0, we can choose T large enough so that |ξτ |2 ≤
ε. Therefore by (3.62), there exists T < ∞, τ ∈ [0, T ] and ε-optimal u such
that ∫ τ

0

[
l(ξ)− γ2

2
|u|2

]
dt ≥ W (x)− ε− cfγ2

2m2
σ

ε. (3.63)

Let

ũt
.
=

{
ut if t ≤ τ
0 if t > τ .

Then by Assumption (A3.3I) and (3.63)

∫ ∞

0

[
l(ξ̃)− γ2

2
|ũ|2

]
dt ≥ W (x)− ε− cfγ2

2m2
σ

ε,

where ξ̃ is the state process corresponding to ũ. This implies that

sup
u∈UU

∫ ∞

0

[
l(ξ)− γ2

2
|u|2

]
dt ≥ W (x)− ε− cfγ2

2m2
σ

ε.

Because ε and ε were arbitrary, we have
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sup
u∈UU

∫ ∞

0

[
l(ξ)− γ2

2
|u|2

]
dt ≥ W (x). (3.64)

By Assumption (A3.3I), this is equivalent to

W (x) ≤ sup
u∈UU

sup
T<∞

∫ T

0

[
l(ξ)− γ2

2
|u|2

]
dt. (3.65)

On the other hand, because W is the value of (3.12), (3.52), (3.53), (3.54),
we have

W (x) ≥
∫ T

0

[
l(ξ)− γ2

2
|u|2

]
dt + W (ξT ) ≥

∫ T

0

[
l(ξ)− γ2

2
|u|2

]
dt (3.66)

for all u ∈ UU and T < ∞. By (3.65) and (3.66) we have the representa-
tion/uniqueness result.

Theorem 3.19. Let W be a continuous viscosity solution of (3.46),(3.47)
satisfying (3.23), and which is locally Lipschitz in x. Then

W (x) = sup
u∈UU

sup
T<∞

∫ T

0

[
l(ξt)−

γ2

2
|ut|2

]
dt. (3.67)

This completes the verification theorem component of the relationship be-
tween the infinite time-horizon control problem and the corresponding HJB
PDE. All that remains is to prove that there actually exists a continuous vis-
cosity solution of (3.46), (3.47) satisfying (3.23) which is locally Lipschitz in
x. In some cases, results such as this can be taken directly from the PDE liter-
ature. In this case here, we can obtain existence by using a control argument.
In particular, we obtain the following.

Theorem 3.20. There exists a continuous viscosity solution to (3.46), (3.47)
satisfying (3.23), and which is locally Lipschitz in x.

Proof. Consider the finite time-horizon problem given by dynamics and initial
condition (3.12), (3.13) with payoff and value

Ĵ(x, T, u) =

∫ T

0

[
l(ξt)−

γ2

2
|ut|2

]
dt, (3.68)

V̂ (x, T ) = sup
u∈UU

Ĵ(x, T, u). (3.69)

Then by a proof similar to that of Lemma 3.15, V̂ is a continuous viscosity
solution to

0 = VT −
[

1

2γ2
∇V T σ(x)σT (x)∇V + gT (x)∇V + l(x)

]
(x, T )∈ Rn × (0,∞)

V (x, 0) = 0 x ∈ Rn (3.70)
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(where we note that T is the time variable in the PDE here).

Note that
∫ T

0
l(ξt) dt is similar to the QT appearing in the proof of Theorem

3.10 but without the terminal cost. So by the same arguments as used for Q,
one can show that

Ĵ(x, T, u) ≤ αl

cf
|x|2 − δ̃

2

∫ T

0

|ut|2 dt (3.71)

where δ̃
2

.
= γ2

2 −
αlm

2
σ

c2
f

> 0. This implies

Ĵ(x, T, u) ≤ αl

cf
|x|2,

and so by (A3.4I), there exists γ̂ < γ such that

Ĵ(x, T, u) <
cf γ̂2

2m2
σ

|x|2,

which yields

V̂ (x, T ) <
cf γ̂2

2m2
σ

|x|2 ∀ (x, T ) ∈ Rn × (0,∞). (3.72)

Let T2 > T1. Then by taking ut = 0 for t ∈ (T1, T2), it is easy to see that

V̂ (x, T2) ≥ V̂ (x, T1).

Because V̂ is monotonically increasing and bounded above, we see that there
exists Ŵ such that

V̂ (x, T ) ↑ Ŵ (x) ∀x ∈ Rn. (3.73)

We now show that this convergence is uniform on compact sets. By (3.71)
and (A3.3I), we see that for ε-optimal u for problem (3.69), we have

1

2
‖u‖2L2[0,T ] ≤

1

δ̃

[
ε +

αl

cf
|x|2

]
. (3.74)

Let x, y ∈ BR. Let ξ and η satisfy (3.12) with different initial conditions,
ξ0 = x and η0 = y, but both with the same control, u, which is ε-optimal for
initial condition x. Then by (A3.1I), (A3.2I)

d

dt
|ξt − ηt|2 ≤ −2cf |ξt − ηt|2 + 2|ξt − ηt| (Kσ|ξt − ηt||ut|)

and using inequality 2a · b ≤ cf |a|2 + |b|2/cf for all a, b, one finds

≤ −cf |ξt − ηt|2 +
K2

σ

cf
|ξt − ηt|2|ut|2.
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Solving this differential inequality yields

|ξt − ηt|2 ≤ |x− y|2e−cf t+
K2

σ
cf

∫
t

0
|ur|

2 dr
,

or by (3.74),

|ξt − ηt| ≤ |x− y| exp

{
K2

σ

δ̃cf

[
ε +

αlR
2

cf

]}
e

−cf t

2 . (3.75)

One also has (using (A3.1I) and (A3.2I))

d

dt
|ξt|2 ≤ −cf |ξi|2 +

m2
σ

cf
|ut|2.

By similar estimates as used above, one finds

|ξt|2 ≤
2εm2

σ

δ̃cf

+

[
1 +

2αlm
2
σ

δ̃c2
f

]
R2, (3.76)

and similarly for η. Then, by (3.75), (3.76) and (A3.3I)

∣∣∣∣
∫ T

0

l(ξt)− l(ηt) dt

∣∣∣∣ ≤
∫ T

0

Cl(1 + |ξt|+ |ηt|)|ξt − ηt| dt

≤ F (R)|x− y|

for some locally bounded function F independent of T ∈ [0,∞). This implies

V̂ (x, T )− V̂ (y, T ) ≤ Ĵ(T, x, u) + ε− Ĵ(T, y, u)

≤ ε + F (R)|x− y|.

Using the fact that ε was arbitrary and symmetry, we obtain

|V̂ (x, T )− V̂ (y, T )| ≤ F (R)|x− y| ∀ |x|, |y| ≤ R, ∀R < ∞, (3.77)

and note that this bound is independent of T ∈ (0,∞).
By (3.77) and the Ascoli–Arzela Theorem, we see that the convergence in

(3.73) is uniform on compact sets, and that Ŵ is continuous.
Define

V [T ](t, x)
.
= V̂ (x, t + T ) ∀ − T ≤ t ≤ 0, ∀x ∈ Rn,

so that for all T > 1, V [T ] is a viscosity solution of

0 = Vt−
[

1

2γ2
∇V T σ(x)σT (x)∇V + gT (x)∇V + l(x)

]
, (t, x) ∈ (−1, 0)×Rn.

(3.78)
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Then, by the uniform convergence, (3.78) and Lemma 2.6.2 of [48], Ŵ is a

continuous viscosity solution of (3.78) as well. But since Ŵ is independent of

t, we see that Ŵ is a continuous viscosity solution of

0 = −
[

1

2γ2
∇WT σ(x)σT (x)∇W + gT (x)∇W + l(x)

]
x ∈ Rn,

and by (3.72)

0 ≤ Ŵ (x) ≤ cf γ̂2

2m2
σ

|x|2. ⊓⊔

Remark 3.21. Note that by (3.73), we have also shown that the solution, W ,
is given by

W (x) = lim
T→∞

V̂ (x, T ) = sup
T>0

V̂ (x, T ) ∀x ∈ Rn. (3.79)

This completes our discussion of viscosity solution theory. We have consid-
ered two example problem classes — a finite time-horizon problem class and
an infinite time-horizon problem class. We have demonstrated equivalence be-
tween the control problem value functions and continuous viscosity solutions
of their corresponding HJB PDEs. In the following sections, we will develop
max-plus based numerical methods for solving these equivalent problems.



4

Max-Plus Eigenvector Method for the Infinite
Time-Horizon Problem

We now (finally) begin development of max-plus based methods for solution
of HJB PDE/nonlinear control problems. We will work first with an infinite
time-horizon control problem (3.12), (3.13), (3.21), (3.22). This, of course,
corresponds to the steady-state HJB PDE (3.46), (3.47). The infinite time-
horizon problem has some facets that are more complex than the finite time-
horizon problem. This is primarily due to the fact that the infinite time-
horizon problem essentially corresponds to the limit of the finite time-horizon
problem as the time-horizon goes to infinity. As we indicated in Chapter 3,
there are nonuniqueness issues here as well. Also, for the infinite time-horizon
problem, a fuller analysis of error sources and convergence rate for this first
max-plus method exists than in the finite time-horizon case.

Several max-plus based methods for infinite time-horizon problems will
be discussed in this book. In this chapter and the next, we will focus on
a method where the solution is found as a max-plus basis expansion over
a space of semiconvevx functions. The DPP, (3.24), for this problem takes
the form W = Sτ [W ] where Sτ (given by (4.14)) is max-plus linear. It will be
demonstrated that W is an element of a (max-plus vector) space of semiconvex
functions. Expanding W in terms of a max-plus basis over this space leads to
a max-plus eigenvector problem. More exactly, the vector of coefficients in this
max-plus expansion is the solution of a max-plus eigenvector problem with
max-plus eigenvalue zero. Other max-plus numerical methods and a somewhat
different min-plus problem will also be discussed later.

It makes a good deal of sense to break the development of this first nu-
merical method into two parts. In the first part, we will blindly truncate the
max-plus expansion of the value function (as an element of a space of semi-
convex functions; see Chapter 2). This will allow some of the main concepts
to come through. However, a successful application of the method will be
greatly enabled by a full understanding of the error/convergence analysis (for
the method), which is delayed to Chapter 5.

Before immersing ourselves in the development, we place this work in some
context. As noted above, the approach relies on the max-plus linearity of the
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associated semigroup/DPP. To the author’s knowledge, the first mention of
the max-plus linearity appears in [71], and one might also note the discussion
in [63]. The second key enabling concept is the notion of max-plus bases
for spaces of semiconvex functions (as discussed in Chapter 2). This was first
developed in [44]. The numerical method for the infinite time-horizon problem
was developed in the series of papers [75], [78], [79], [80], [81], [85], [86]. Closely
related papers are [50] and [76]. A somewhat different, but related approach
is being developed in [3], [4] (currently for the finite time-horizon problem
class).

4.1 Existence and Uniqueness

In this section, we recall the system and assumptions. We also provide some
basic results that will be needed below.

In order to have our materials handy, let’s recall the infinite time-horizon
problem we will consider here. The dynamics and initial condition are

ξ̇ = f(ξ) + σ(ξ)u (4.1)

with initial condition
ξ0 = x ∈ Rn (4.2)

The payoff and value function (available storage) are

J(x, T, u) =

∫ T

0

l(ξr)−
γ2

2
|ur|2 dr, (4.3)

and
W (x) = sup

u∈UU

sup
T<∞

J(x, T, u) (4.4)

where the control u lies in

UU = Lloc
2 ([0,∞);U)

.
=

{
u : [0,∞) → U ⊆ Rl |
∫

[0,T )

|ur|2 dr < ∞∀T ∈ [0,∞)

}
. (4.5)

Note that σ is an n× l matrix-valued multiplier on the control.
We will make the following assumptions which are similar (although not

identical) to the assumptions for the infinite time-horizon problem in Chapter
3. These assumptions are not necessary but are sufficient for the results to fol-
low. No attempt has been made at this point to formulate tight assumptions.
In particular, in order to provide some clear sketches of proofs, we will assume
that all the functions f , σ and l are smooth, although that is not required for
the results. We assume there K, cf ∈ (0,∞) such that
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|fx(x)| ≤ K ∀x ∈ Rn,

(x− y)T [f(x)− f(y)] ≤ −cf |x− y|2 ∀x, y ∈ Rn,

f(0) = 0.

(A4.1I)

We note that this implies

xT f(x) ≤ −cf |x|2

for all x, which implies exponential stability of the system when u ≡ 0. We
assume there exists Kσ, mσ ∈ (0,∞) such that

Range(σ(x)) = Rn ∀ x ∈ Rn,

|σx(x)| ≤ Kσ ∀ x ∈ Rn,

|σ(x)| ≤ mσ ∀ x ∈ Rn,

|σ−1(x)| ≤ mσ ∀ x ∈ Rn.

(A4.2I)

Here, we of course use σ−1 to indicate the Moore–Penrose inverse (c.f. [54]),
and it is implicit in the bound on σ−1(x) that σ is uniformly nondegenerate
(i.e., there exists η > 0 such that zT σ(x)σT (x)z ≥ η|z|2 for all x, z ∈ Rn).
We assume that there exist Cl, αl ∈ (∞) such that

|lxx(x)| ≤ Cl ∀ x ∈ Rn,

0 ≤ l(x) ≤ αl|x|2 ∀ x ∈ Rn. (A4.3I)

The system is said to satisfy an H∞ attenuation bound (of γ) if there
exists γ <∞ and a locally bounded available storage function (i.e., the value
function), W (x), which is nonegative, zero at the origin, and such that

W (x) = sup
u∈UU

sup
T<∞

∫ T

0

l(ξt)−
γ2

2
|ut|2 dt (4.6)

where ξ satisfies (4.1),(4.2). We reiterate that the corresponding HJB PDE is

0 = H(x,∇W (x)) ∀x ∈ Rn \ {0}, (4.7)

W (0) = 0, (4.8)

where the Hamiltonian, H, is given by

H(x, p)
.
= −max

v∈U

{
[f(x) + σ(x)v]T p + l(x)− γ2

2
|v|2

}
, (4.9)

which, in the case where U ≡ Rl, takes the form

H(x, p) = −
[
fT (x)p + l(x) +

1

2γ2
pT σ(x)σT (x)p

]
. (4.10)
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Because W itself (not its gradient) does not appear in (4.7), one can always
scale by an additive constant. It will be assumed throughout that we are look-
ing for a solution satisfying boundary condition (4.8) which fixes the additive
constant. Lastly, we assume that

γ2c2
f

2m2
σαl

> 1. (A4.4I)

Then one has the following result (see Chapter 3).

Theorem 4.1. There exists a unique continuous viscosity solution of (4.7),
(4.8), locally Lipschitz in x, in any class

0 ≤ W̃ (x) ≤ cf
γ2 − δ

2m2
σ

|x|2 (4.11)

such that δ > 0 sufficiently small that (A4.4I) holds with γ2 replaced by γ2−δ.

We also have the following. Consider the finite time-horizon control prob-
lem with dynamics (4.1), initial condition (4.2), and payoff and value given
by

J(x, T, u) =

∫ T

0

l(ξt)−
γ2

2
|ut|2 dt,

V̂ (x, T ) = supu∈UU J(x, T, u).

(4.12)

Theorem 4.2. The unique continuous viscosity solution in the class such that
(4.11) holds for some δ > 0 sufficiently small that (A4.4I) holds with γ2

replaced by γ2 − δ, is given by

W (x) = lim
T→∞

V̂ (x, T ) = sup
T<∞

V̂ (x, T ) (4.13)

which is also equivalent to representation (4.6).

This was proved in Theorem 3.20 and Remark 3.21.

4.2 Max-Plus Linearity of the Semigroup

We will show that W is a fixed point of the corresponding semigroup operator.
The semigroup is defined directly by the DPP for the finite time-horizon
problem. We begin with the following lemma which is a statement of the
DPP for this particular problem.

Lemma 4.3. Let V̂ be given by (4.12). Then,

V̂ (x, T ) = sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + V̂ (ξτ , T − τ)

}

(where ξ satisfies (4.1), (4.2)) for any 0 ≤ τ ≤ T < ∞ and any x ∈ Rn.
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Proof. Note that for any s ∈ (0, T ),

V̂ (x, T − s) = sup
u∈UU

[∫ T−s

0

l(ξr)−
γ2

2
|ur|2 dr

]
,

where ξ satisfies (4.1), (4.2). Since neither the dynamics nor the payoff is
time-dependent, one can shift the time variable to obtain

V̂ (x, T − s) = sup
u∈UU

[∫ T

s

l(ξr)−
γ2

2
|ur|2 dr

]
,

where ξ satisfies (4.1), ξs = x, which recalling (3.15)
= V (s, x).

Consequently, by Theorem 3.1 for any 0 ≤ τ ≤ T < ∞

V̂ (x, T ) = V (0, x) = sup
u∈UU

[∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr + V (τ, ξτ )

]

= sup
u∈UU

[∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr + V̂ (ξτ , T − τ)

]
. ⊓⊔

Define the semigroup Sτ [W ] for W in the domain of Sτ , Dom[Sτ ]
.
= {W ∈

S : Sτ [W (·)](x) < ∞ ∀x ∈ Rn}, by

Sτ [W (·)](x) = sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
, (4.14)

where ξ satisfies (4.1), (4.2). Note that the semigroup properties (1.8) and (1.9)
are easily verified. Also note that Dom[Sτ ] includes all semiconvex functions
satisfying (4.11).

Theorem 4.4. For any τ ∈ [0,∞), W given by (4.13) satisfies Sτ [W ] = W ,
and further, it is the unique solution in the class (4.11).

Proof. We begin with the first assertion. From (4.13), one has

W (x) = sup
T<∞

V̂ (x, T ),

which by Lemma 4.3

= sup
T<∞

sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + V̂ (ξτ , T − τ)

}
,

where ξ satisfies (4.1), (4.2)

= sup
u∈UU

sup
T<∞

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + V̂ (ξτ , T − τ)

}
,

which by (4.13) again
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= sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}

= Sτ [W (·)](x).

The proof of uniqueness is similar to the proof used to demonstrate unique-
ness of the viscosity solution and value within the class (4.11) in Chapter 3.
Let W satisfy W = Sτ [W ]. One shows that W (x) ≤ W (x) and W (x) ≥ W (x)
for all x ∈ Rn. The first of these two inequalities is more technical, and we
address that first.

Let m be any positive integer (which we eventually let go to ∞). Note
that by the semigroup property,

W (x) = Sm
τ [W ](x) = Smτ [W ](x)

= sup
u∈UU

{∫ mτ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξmτ )

}

.
= sup

u∈UU

J(x, mτ, u).

Let δ > 0 be such that with γ̂2 .
= γ2 − δ, one has

γ̂2c2
f

2m2
σαl

> 1 and 0 ≤ W (x) ≤
cf γ̂2

2m2
σ
|x|2. Fix any x ∈ Rn. Let

QT
.
=

∫ T

0

αl|ξt|2 dt +
cf γ̂2

2m2
σ

|ξT |2 (4.15)

where ξ satisfies (4.1), (4.2), and note that by (A4.3I) and (3.23)

≥
∫ T

0

l(ξt) dt + W (ξT ). (4.16)

Note that this definition of QT is identical to (3.27), and following the same

steps as found there (in the proof of Theorem 3.10. Specifically, letting δ̃
.
=

γ̂2

2 −
αlm

2
σ

c2
f

and noting that by (A4.4I) δ̃ > 0, one has

QT ≤
[
cf γ̂2

2m2
σ

e−cf T +
αl

cf

]
|x|2 − δ̃

∫ T

0

(1− ecf (t−T ))|u|2 dt + γ̂2

2 ‖u‖L2[0,T ].

(4.17)
Consequently, by (4.15), (4.16) and (4.17)

J(x, T, u) ≤
[
cfγ2

2m2
σ

e−cf T +
αl

cf

]
|x|2 − δ̃

∫ T

0

(1− ecf (t−T ))|u|2 dt− δ‖u‖2L2[0,T ]

≤
[
cfγ2

2m2
σ

e−cf T +
αl

cf

]
|x|2 − δ‖u‖2L2[0,T ]. (4.18)

On the other hand, by (A4.3I) and (4.11), J(x, T, 0) ≥ 0, and so for ε-optimal
u (where, as usual, we take ε ∈ (0, 1])



4.2 Max-Plus Linearity of the Semigroup 63

J(x, T, u) ≥ −ε. (4.19)

Comparing (4.18) and(4.19), and letting T = mτ , we see that for ε-optimal
u, we have

‖u‖2L2[0,mτ ] ≤
ε

δ
+

1

δ

[
cfγ2

2m2
σ

e−cf mτ +
αl

cf

]
|x|2

≤ ε

δ
+

1

δ

[
cfγ2

2m2
σ

+
αl

cf

]
|x|2. (4.20)

This is an upper bound on the size of ε-optimal u which is independent of m
(for large m).

By a similar analysis as for QT , one easily shows that by (A4.1I) and
(A4.2I),

|ξ(k+1)τ |2 ≤ e−cf τ |ξkτ |2 +
m2

σ

cf
‖u‖2L2(kτ,(k+1)τ)

for any u ∈ UU and any nonegative integer k < m. Repeating this estimate,
and combining terms, one finds that for any non-negative integers j, I such
that I + j ≤ m and any u ∈ UU

|ξ(I+j)τ |2 ≤ e−Icf τe−jcf τ |x|2+m2
σ

cf

{
e−jcf τ

[
I∑

i=1

e−icf τ‖u‖2L2((I−i)τ,(I+1−i)τ)

]

+

j−1∑

i=0

e−(j−1−i)cf τ‖u‖2L2((I+i)τ,(I+1+i)τ)

}

≤ e−Icf τe−jcf τ |x|2 +
m2

σ

cf
‖u‖2L2(0,(I+j)τ).

For simplicity, we consider only m which are even. Adding subsequent esti-
mates and taking I = m/2, one easily finds

m∑

j=m/2

|ξjτ |2 ≤ e−mcf τ/2

⎛
⎝

m/2∑

j=0

e−jcf τ

⎞
⎠ |x|2 +

m2
σ

cf
‖u‖2L2(0,mτ)

≤ e−mcf τ/2

(
1

1− e−cf τ

)
|x|2 +

m2
σ

cf
‖u‖2L2(0,mτ).

Let u be ε-optimal (over (0, mτ)). Then, substituting (4.20) into (4.21) yields

m∑

j=m/2

|ξjτ |2 ≤ e−mcf τ/2

(
1

1− e−cf τ

)
|x|2 +

m2
σ

cf

{
ε

δ
+

1

δ

[
cfγ2

2m2
σ

+
αl

cf

]
|x|2

}

which taking m ≥ 2
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≤
(

e−cf τ

1− e−cf τ

)
|x|2 +

m2
σ

cf

{
ε

δ
+

1

δ

[
cfγ2

2m2
σ

+
αl

cf

]
|x|2

}
,

which for proper choice of K1 and K2 independent of m

≤ K1 + K2|x|2. (4.21)

Fix some ε̂ > 0, and let m > 2
ε̂ (K1 + K2|x|2). Suppose |ξjτ |2 > mε̂/2 for all

j ≥ m/2. Then by this choice of m,

K1 + K2|x|2 <
mε̂

2
<

m∑

j=m/2

|ξjτ |2,

which by (4.21)
≤ K1 + K2|x|2

which is a contradiction. Therefore, given any ε̂ > 0, there exists an m < ∞
and a corresponding ε-optimal u such that there exists integer k̂ ∈ [m/2, m]
such that

|ξk̂τ |2 ≤ ε̂. (4.22)

Suppose we have chosen such m and (ε-optimal) u, and let k̂ be the above
integer. By Lemma 3.18, this u is also optimal over for the problem over time
interval (0, k̂τ). Consequently,

W (x) = Sk̂
τ [W ](x) ≤ J(x, k̂τ, u) + ε

=

∫ k̂τ

0

l(ξr)−
γ2

2
|ur|2 dr + W (ξk̂τ ) + ε.

Using (4.11) and the choice of γ̂, this is

≤
∫ k̂τ

0

l(ξr)−
γ2

2
|ur|2 dr +

cf γ̂2

2m2
σ

ε̂ + ε

≤ V̂ (x, k̂τ) +
cf γ̂2

2m2
σ

ε̂ + ε,

which by (4.13)

≤ W (x) +
cf γ̂2

2m2
σ

ε̂ + ε.

Because this is true for all ε > 0 and ε̂ ∈ (0, 1], we have W (x) ≤ W (x) which
is one of the desired inequalities.

For the reverse inequality, note that for an arbitrarily large integer m,
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V̂ (x, mτ) = sup
u∈UU

{∫ mτ

0

l(ξt)−
γ2

2
|ut|2 dt

}

which since W is in the class specified at (4.11)

≤ sup
u∈UU

{∫ mτ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}

= Smτ [W ](x) = Sm
τ [W ](x) = W (x). (4.23)

On the other hand, by Theorem 4.2,

V̂ (x, T ) → W (x). (4.24)

Then (4.23) and (4.24) imply W (x) ≥ W (x) (otherwise one obtains a contra-
diction). Thus, one has the two inequalities which imply that any solution of
W = Sτ [W ] in the class given in (4.11) must be W . ⊓⊔

Note that W is a fixed point of Sτ for any τ , which provides some freedom
in the choice of problem we wish to solve. This may be of interest in the actual
construction of numerical algorithms.

Now we will demonstrate that Sτ is linear in the max-plus algebra. Let
ψ, φ ∈ Dom[Sτ ]. For a ∈ R, the proof that max-plus multiplication passes
through the operator is trivial:

Sτ [a⊗ ψ](x) = Sτ [a + ψ](x)

= sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + a + ψ(ξτ )

}

= a + Sτ [ψ](x) = a⊗ Sτ [ψ](x) (4.25)

for all x ∈ Rn. In the case that a = −∞, one has

Sτ [−∞⊗ ψ](x) = sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + ψ(ξτ )−∞

}

= sup
u∈UU

{−∞} = −∞ = −∞⊗ Sτ [ψ](x)

for all x ∈ Rn. Now considering max-plus addition, we note that

Sτ [φ⊕ ψ](x) = sup
u∈UU

{
max[φ(ξτ ), ψ(ξτ )] +

∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr

}

= sup
u∈UU

max

{
φ(ξτ ) +

∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr,

ψ(ξτ ) +

∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr

}

= max

{
sup

u∈UU

[
φ(ξτ ) +

∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr

]
,
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sup
u∈UU

[
ψ(ξτ )] +

∫ τ

0

l(ξr)−
γ2

2
|ur|2 dr

]}

= max {Sτ [φ](x), Sτ [ψ](x)}
= Sτ [φ](x)⊕ Sτ [ψ](x)

= {Sτ [φ]⊕ Sτ [ψ]} (x). (4.26)

By (4.25) and (4.26), one has

Theorem 4.5. The semigroup, Sτ , is linear in the max-plus algebra.

Remark 4.6. Using the techniques of Chapter 3, it is not difficult to show that
Sτ [ψ] is well-defined for all continuous ψ belonging to the class given by (4.11)
for some δ > 0 satisfying the condition there. Consequently one may take the
domain of Sτ to be this set. One can further show that Sτ maps this domain
into itself (a property without which the semigroup property (1.9) could not
hold). The domain can be reduced to the subset of locally Lipschitz functions
in this class, and in that case, one can show that Sτ again maps this domain
into itself.

4.3 Semiconvexity and a Max-Plus Basis

In this section, we first show that the value, W , lies in the space of semicon-
vex functions, and then we describe the max-plus basis that we will use in
the following sections. The following result is equivalent to Lemma 3.16, but
introduces some new notation.

Lemma 4.7. Given ε ∈ (0, 1), R < ∞ and |x| < R, let uε,T be ε-optimal for
problem (4.12). Then, there exists MR < ∞ (where this is independent of ε,
|x| ≤ R and T ∈ (0,∞)) such that

‖uε,T ‖L2(0,T ) ≤ MR.

Lemma 4.8. Given ε ∈ (0, 1), R < ∞ and |x| < R, let uε,T be ε-optimal for
problem (4.12). Then, there exists dR < ∞ (where this is independent of ε,
|x| ≤ R and T ∈ (0,∞)) such that

|ξt| ≤ dR ∀ t ∈ [0, T ].

Proof. The proof follows directly from Lemma 4.7 and the assumptions, par-
ticularly the contractivity of f . Specifically, let ξ satisfy (4.1) with initial
|ξ0| = |x| ≤ R and ε-optimal disturbance, uε,T . Then,

d

dt

[
|ξt|2

]
= 2ξT f(ξ) + 2ξT σ(ξ)uε,T

which by Assumptions (A4.1I) and (A4.2I)
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≤ −2cf |ξ|2 + 2mσ|ξ||uε,T |

≤ −cf |ξ|2 +
m2

σ

cf
|uε,T |2.

Integrating, one finds

|ξt|2 ≤ |x|2e−cf t +
m2

σ

cf

∫ t

0

ecf (r−t)|uε,T
r |2 dr

which by Lemma 4.7

≤ |x|2 +
m2

σ

cf
M2

R

which yields the result with dR
.
=

[
R2 + (m2

σ/cf )M2
R

] 1
2 . ⊓⊔

The next result will be at the core of the methods, since we will be working
in spaces of semiconvex functions.

Theorem 4.9. V̂ (x, T ) is semiconvex (in x) with constants independent of
T ∈ [0,∞).

Proof. It is sufficient to show that the second differences of V̂ (·, T ) are
bounded from below on any BR(0) by some −cR. Let x ∈ BR(0), v ∈ Rn

and |v| = 1.
Let δ, ε ∈ (0, 1). Let u be ε-optimal for (4.12) with corresponding ξ0

· sat-
isfying (4.1) with ξ0

0 = x. Then

V̂ (x− δv, T )− 2V̂ (x, T ) + V̂ (x + δv, T ) ≥ Ĵ(T, x− δv, u + ∆)− 2Ĵ(T, x, u)

+Ĵ(T, x + δv, u)− 2ε (4.27)

where ∆ will be given below. Let ξ−δ, ξδ satisfy the dynamics of (4.1) with
initial conditions ξ−δ

0 = x − δv and ξδ
0 = x + δv. Also let the corresponding

disturbance processes be u + ∆ and u, respectively. Then,

ξ̇δ − ξ̇0 = f(ξδ)− f(ξ0) + (σ(ξδ)− σ(ξ0))u,

and
ξ̇0 − ξ̇−δ = f(ξ0)− f(ξ−δ) + σ(ξ0)u− σ(ξ−δ)(u + ∆).

Now we choose

∆
.
= −σ−1(ξ−δ){f(ξδ)− f(ξ0) + (σ(ξδ)− σ(ξ0))u− (f(ξ0)− f(ξ−δ))

−(σ(ξ0)− σ(ξ−δ))u}
= −σ−1(ξ−δ){f(ξδ)− 2f(ξ0) + f(ξ−δ)

+(σ(ξδ)− 2σ(ξ0) + σ(ξ−δ))u} (4.28)
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(Although ∆ is defined by the above feedback formula, the corresponding ∆
as a function of t is used.) By substitution, we see

ξ̇δ − ξ̇0 = ξ̇0 − ξ̇−δ,

and since ξδ
0 − ξ0

0 = δv and ξ0
0 − ξ−δ

0 = δv,

ξδ
t − ξ0

t = ξ0
t − ξ−δ

t ∀ t ≥ 0. (4.29)

Consequently, by (4.27) and (4.29)

V̂ (x− δv, T )− 2V̂ (x, T ) + V̂ (x + δv, T )

≥
∫ T

0

l(ξ−δ)− 2l(ξ0) + l(ξδ) dt− γ2

2

∫ T

0

|u + ∆|2 − 2|u|2 + |u|2 dt− 2ε

=

∫ T

0

l
(
ξ0
t − [ξδ

t − ξ0
t ]
)
− 2l(ξ0) + l

(
ξ0
t + [ξδ

t − ξ0
t ]
)
dt

−γ2

2

∫ T

0

2uT ∆ + |∆|2 dt− 2ε.

By Assumption (A4.3I), the second differences in l are bounded, and in fact,
one has

V̂ (x− δv, T )− 2V̂ (x, T ) + V̂ (x + δv, T )

≥ −
∫ T

0

2Cl|ξδ
t − ξ0

t |2 dt− γ2

2

∫ T

0

2uT ∆ + |∆|2 dt− 2ε. (4.30)

Now,

d

dt
|ξδ

t − ξ0
t |2 = 2[ξδ

t − ξ0
t ]T [ξ̇δ

t − ξ̇0
t ]

= 2[ξδ
t − ξ0

t ]T [f(ξδ
t )− f(ξ0

t )+(σ(ξδ
t )− σ(ξ0

t ))ut],

which by (A4.1I), (A4.2I) (and the general inequality 2ab ≤ cfa2 + b2/cf )

≤ −2cf |ξδ
t − ξ0

t |2 + 2Kσ|ξδ
t − ξ0

t |2|ut|

≤ |ξδ
t − ξ0

t |2
[
−cf +

K2
σ

cf
|ut|2

]
.

Using separation of variables (to solve the ordinary differential inequality) and
Lemma 4.7, one obtains

|ξδ
t − ξ0

t |2 ≤ |(x + δv)− x|2e−cf t+
K2

σ
cf

∫
t

0
|u|2 dt

≤ δ2e−cf te
K2

σ
cf

MR
2

.

Hence there exists c (independent of T ) such that



4.3 Semiconvexity and a Max-Plus Basis 69

|ξδ
t − ξ0

t |2 ≤ δ2ce−cf t. (4.31)

Substituting (4.31) into (4.30), we get

V̂ (x− δv, T )− 2V̂ (x, T ) + V̂ (x + δv, T ) ≥ −
∫ T

0

2Clδ
2ce−cf t dt (4.32)

−γ2

2

∫ T

0

2uT ∆ + |∆|2 dt− 2ε.

Now, by Lemma 4.8, |ξ0
t | ≤ dR for all t ≥ 0, and so by the smoothness of

f, σ, there exist Qf,R, Qσ,R < ∞ such that |fxx(x)| ≤ Qf,R, |σxx(x)| ≤ Qσ,R

on |x| ≤ dR + δ. Thus, by (4.28), (4.29) and (A4.3I),

|∆t| ≤ mσ

{
Qf,R|ξδ

t − ξ0
t |2 + Qσ,R|ξδ

t − ξ0
t |2|ut|

}
∀ t ∈ [0, T ],

where the bound is independent of T < ∞. Employing (4.31), this yields

|∆t| ≤ mσ c̃Rδ2
[
e−cf t(1 + |ut|)

]
∀ 0 ≤ t ≤ T < ∞ (4.33)

for appropriate choice of c̃R dependent on R.
Substituting (4.33) into (4.32) yields

V̂ (x− δv, T )− 2V̂ (x, T ) + V̂ (x + δv, T )

≥ −
∫ T

0

2Clδ
2ce−cf t dt− γ2

2

∫ T

0

[
2mσ c̃Rδ2(|ut|+ |ut|2)e−cf t

+2m2
σ c̃2

Rδ4(1 + |ut|2)e−2cf t
]
dt− 2ε

≥ −M̂Rδ2 − 2ε ∀ 0 ≤ t ≤ T < ∞
for appropriate choice of M̂R. Since ε > 0 was arbitrary, this implies semi-
convexity. ⊓⊔
Remark 4.10. Note that if one supposes uniformly bounded second derivatives
of f and σ, then the use of Lemma 4.8 (which requires the contractivity of
f) can be avoided. However, one still needs bounded ‖u‖, and the proof of
Lemma 4.7 also made use of the contractivity of f . Consequently, although
the addition of assumptions of uniformly bounded second derivatives would
shorten the proof, it is not clear that it would be useful unless one needed to
obtain a tighter bound on the growth of M̂R as a function of R.

Corollary 4.11. W (x) is semiconvex.

We will informally refer to the restriction of W (x) to any closed ball,
BR(0) = {x ∈ Rn | |x| ≤ R}, as W (x) as well. Recall that the semiconvexity
of W implies that given any ball BR(0), W is Lipschitz with some constant,
LR, over BR(0) (c.f. [42]). Recall also, from Chapter 2, that ScL

R̄
denotes the

space of semiconvex functions with (semiconvexity) constant c and Lipschitz
constant L over BR(0). Consequently, Corollary 4.11 immediately implies the
following.
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Corollary 4.12. Given any R ∈ (0,∞), there exist cR, LR ∈ (0,∞) such that
W ∈ ScRLR

R̄
.

Finally, it is useful here to recall Theorem 2.13 which we paraphrase as follows.

Theorem 4.13. Let C be a symmetric matrix such that C − cRI > 0. Let
ψi(x)

.
= − 1

2 (x − xi)
T C(x − xi) for all i ∈ N where the xi form a countable

dense subset of E = {x ∈ Rn : xT (C2)x ≤ (LR + |C|R)2}. Then, {ψi : i ∈ N}
is a countable basis for max-plus vector space ScRLR

R̄
. In particular, for any

φ ∈ ScRLR

R̄
,

φ(x) = sup
i∈N

[ai + ψi(x)] =

∞⊕

i=1

[ai ⊗ ψi(x)] , (4.34)

where
ai = − max

x∈BR

[−φ(x) + ψi(x)] ∀ i. (4.35)

4.4 The Eigenvector Equation

In order to reduce complexity, we suppose throughout the next two sections
that W has a max-plus basis expansion with a finite number of terms. Of
course, one must consider the error introduced by truncating the expansion
at a finite number of terms in the numerical computations. However, in order
to focus on the theory underlying the solution of the eigenvector equation (to
follow), we delay the error analysis to the next chapter.

Let W (x) =
⊕ν

i=1 ai⊗ψi, aT = (a1, a2, . . . , aν), and B be the ν×ν matrix
with entries

Bi,j = − max
x∈BR

(ψi(x)− Sτ [ψj ](x)). (4.36)

Here we are letting the finite number of terms in the basis expansion be ν.
Note that B actually depends on τ , but for this section we fix any value
τ ≤ τR, and suppress the dependence in the notation, where Sτ [ψi](x) is C2

on [0, τ)×BR(0) for all i. (See, for instance [37] for existence of τR.)

We assume we may choose C such that the semiconvexity of the
basis functions is increasing for small time; this ensures that the
elements of B are finite.

(A4.5I)

Remark 4.14. In practice, some informal checks are used to search for such a
C. Consider the linear/quadratic case where f(x) = Ax, σ(x) = σ (constant),
and l(x) = 1

2xT Dx, where the matrices are such that the above assumptions

are satisfied. The corresponding Riccati equation is Ṙ = D + AT R + RA +
1

2γ2 RσσT R with R0 = −C, and condition (A4.5I) is equivalent to choosing C
such that

D −AT C − CA +
1

2γ2
CσσT C > 0. (4.37)
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The current practice is to linearize the system at numerous points, and search
for a C such that (4.37) holds for all the linearized systems.

By the semiconvexity preserving property of Sτ for the given choice of C,
one notes that

Sτ [ψj ](x) =

ν⊕

i=1

Bi,j ⊗ ψi(x), (4.38)

where again we truncate the expansion, and postpone analysis of the errors
introduced by truncation to Chapter 5.

We will use the notation B ⊗ a for max-plus multiplication of matrix B
and vector a.

Theorem 4.15.

1. Suppose W is a solution to Sτ [W ] = W , and that any expansion W (x) =⊕ν
i=1 ai ⊗ ψi(x) on BR(0) requires ai > −∞ for ∀i. Then a = B ⊗ a.

2. Conversely, suppose a = B ⊗ a and that W (x) =
⊕ν

i=1 ai ⊗ ψi(x) on
BR(0). Then Sτ [W ] = W on BR(0).

Proof. We begin with the first assertion. We have

ν⊕

i=1

ai ⊗ ψi(x) = W (x)

which by assumption

= Sτ [W (·)](x) = Sτ

⎡
⎣

ν⊕

j=1

aj ⊗ ψj(·)

⎤
⎦ (x),

and then by Theorem 4.5

=

ν⊕

j=1

aj ⊗ Sτ [ψj ](x),

which by (4.38)

=

ν⊕

j=1

{
aj ⊗

[
ν⊕

i=1

Bi,j ⊗ ψi(x)

]}

=

ν⊕

j=1

{
ν⊕

i=1

(aj ⊗Bi,j ⊗ ψi(x))

}

=

ν⊕

i=1

⎧
⎨
⎩

⎡
⎣

ν⊕

j=1

(Bi,j ⊗ aj)

⎤
⎦⊗ ψi(x)

⎫
⎬
⎭ .

But this implies that
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max{a1 + ψ1(x), . . . , an + ψn(x)} = max{(max
j

(B1,j + aj) + ψ1(x)), . . .

. . . , (max
j

(Bν,j + aj) + ψν(x))}. (4.39)

Because it is necessary that any particular ai0 > −∞ (i.e., that this term
is needed in the expansion), there exists yi0 ∈ BR(0) such that ai0 +ψi0(yi0) >
aj + ψj(yi0) for all j �= i0. Then, by continuity, there exists a neighborhood
Bδ(z) ⊂ BR(0) with yi0 ∈ Bδ(z) such that the left-hand side of (4.39) is
simply ai0 + ψi0(x) for all x ∈ Bδ(z). Consequently,

ai0 + ψi0(x) = max
i
{max

j
[Bi,j + aj ] + ψi(x)} ∀x ∈ Bδ(z). (4.40)

However, the only way in which a maximum over a finite set of quadratics
can be exactly identical to another quadratic over an open neighborhood is if
one element of the set of quadratics is exactly the quadratic being matched.
Consequently, (4.40) yields

ai0 = max
j

[Bi0,j + aj ].

Since this must hold for any choice of i0, one has

a = B ⊗ a,

where a is the vector [ai] and B is the matrix [Bi,j ].
For the second assertion of the theorem, note that if a = B ⊗ a, then

ν⊕

i=1

ai ⊗ ψi(x) =

ν⊕

i=1

⎧
⎨
⎩

ν⊕

j=1

(Bi,j ⊗ aj)

⎫
⎬
⎭⊗ ψi(x)

=
ν⊕

j=1

{
aj ⊗

ν⊕

i=1

(Bi,j ⊗ ψi(x))

}

=

ν⊕

j=1

aj ⊗ Sτ [ψj ](x)

= Sτ

⎡
⎣

ν⊕

j=1

aj ⊗ ψj

⎤
⎦ (x).

Now since W (x) =
⊕ν

j=1 aj ⊗ ψj(x), one sees that this last expression is
W (x) = Sτ [W ](x). ⊓⊔

4.5 The Power Method

The goal then is to solve the eigenvector equation
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e = B ⊗ e, or, equivalently, 0⊗ e = B ⊗ e. (4.41)

There are two main steps. The first is to compute (approximately) B, and the
second is to solve the eigenvector equation given B. We will address the latter
step in this section; the former step will be discussed in the next section.

Note that because the eigenvalue is known, the solution of (4.41) reduces
to the solution of a linear system. One obvious approach would be to solve
this linear system directly. However, without the expansion of the max-plus
algebra in some way so as to compensate for the lack of additive inverses
(see [6]), one cannot proceed in that manner. Consequently, we instead have
used the power method to obtain the eigenvector. Not only does this yield a
numerical algorithm for the solution of (4.41), but interestingly, it has also led
to a proof of the fact that in this special case, there is a unique eigenvector
(corresponding to the unique eigenvalue of 0 — see [6] for the uniqueness of
max-plus eigenvalues). Of course, this uniqueness is in marked contrast to the
state of affairs over the usual field. To be more specific regarding the power
method, note that it will be shown that the eigenvector may be computed via
the iteration

e = lim
m→∞

Bm ⊗ 0

where 0 represents the (usual) zero vector, and Bm represents the max-plus
product of B with itself repeated m times. Interestingly, this will terminate
(i.e., the iterates will stop changing) in a finite number of steps. This method
is referred to as the power method.

Let W be the available storage (given by (4.13)). For the remainder of the
section, fix any τ ∈ (0,∞). Define

H(x, y)
.
= Sτ [W ](x)− sup

u∈UU
y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
, (4.42)

where ξ0 = x and UU
y =

{
u ∈ UU : ξτ = y

}
.

Lemma 4.16. There exist M|x|, M|x|,|y| < ∞, monotonically increasing as
functions of the subscripts, such that

Sτ [W ](x) = sup
u∈UU

M|x|

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}

and

sup
u∈UU

y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}

= sup
u∈UU

y,M|x|,|y|

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
,

where
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UU
M|x|

.
=

{
u ∈ UU : ‖u‖ ≤ M|x|

}
and UU

y,M|x|,|y|

.
=

{
u ∈ UU

y : ‖u‖ ≤ M|x|,|y|

}
.

In other words, ε-optimal u (for ε ≤ 1) are bounded in L2-norm by M|x| and
M|x|,|y| for each of the above problems, respectively.

Proof. The proof of the first assertion is simply Theorem 3.10. For the second
assertion, one has (because u ∈ UU

y )

sup
u∈UU

y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
= sup

u∈UU
y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt

}
+W (y).

After one has this form, the proof is a slight simplification of the proof of the
first assertion. Somewhat more specifically, one finds (for proper choice of C1,
C2,γ)

∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (y) ≤ C1|x|2 − C2,γ‖u‖2 dt + W (y) ≤ −1 (4.43)

if
‖u‖2 ≥ (1/C2,γ)[1 + C1|x|2 + W (y)]

.
= M|x|,|y|. (4.44)

On the other hand, taking u0 .
= 0 with corresponding trajectory ξ0(·), one

has
∫ τ

0

l(ξ0
t )− γ2

2
|u0

t |2 dt + W (y) =

∫ τ

0

l(ξ0
t ) dt + W (y) ≥ 0. (4.45)

Comparing (4.43) and (4.45) yields the result. ⊓⊔
Lemma 4.17. H is continuous.

Proof. The proof follows easily from the definition of H and Lemma 4.16, and
so we only sketch it.

The proof of continuity in y is clear. We consider only the continuity
in x. Let x1, x2 ∈ Rn, |x1 − x2| ≤ 1, and let R ≥ max{|x1|, |x2|}. Let
y ∈ Rn. Let u1,ε be ε-optimal for Sτ [W ](x1), and let u2,ε be ε-optimal for

supu∈UU
y

{∫ τ

0
l(ξt)− γ2

2 |ut|2 dt+W (ξτ )
}

with ξ0 = x2. Let the trajectory gener-

ated by (3.12) with ξ0 = xi and control uj,ε be denoted by ξi,j for i, j ∈ {1, 2}.
Then

H(x1, y)−H(x2, y) ≤
∫ τ

0

l(ξ1,1)− γ2

2
|u1,ε|2 dt + W (ξ1,1

τ )

−
∫ τ

0

l(ξ2,1)− γ2

2
|u1,ε|2 dt + W (ξ2,1

τ ) + ε

−
∫ τ

0

l(ξ1,2)− γ2

2
|u2,ε|2 dt +

∫ τ

0

l(ξ2,2)− γ2

2
|u2,ε|2 dt + ε

=

∫ τ

0

l(ξ1,1)− l(ξ2,1) dt + W (ξ1,1
τ )−W (ξ2,1

τ )

+

∫ τ

0

l(ξ2,2)− l(ξ1,2) dt + 2ε.
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However, u1,ε ∈ UU
MR

and u2,ε ∈ UU
y,MR,R

. Consequently (as for instance in

(4.31)), there exists δ > 0 such that if |x1 − x2| ≤ δ, then |ξ1,1
t − ξ1,2

t | ≤ ε,

|ξ2,1
t − ξ2,2

t | ≤ ε for all t ∈ [0, τ ] (and, of course, there exists d̂R < ∞ such

that |ξ1,1t |, |ξ2,1
t |, |ξ1,2

t |, |ξ2,2
t | ≤ d̂R for all t ∈ [0, τ). One then finds that, using

Assumption (A4.3I) and Corollary 4.12, for proper choice of M̃R,τ

H(x1, y)−H(x2, y) ≤ M̃R,τε

if |x1−x2| are sufficiently small. A reverse inequality follows through symme-
try. ⊓⊔

Lemma 4.18. H(0, 0) = 0, H(x, y) ≥ 0 for all x, y ∈ Rn, and H(x, x) > 0 if
x �= 0.

Proof. Noting that

H(x, y) = sup
u∈UU

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}

− sup
u∈UU

y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
, (4.46)

it is obvious that H(x, y) ≥ 0 for any x, y. (It might be worthwhile to note
that by the assumptions on the dynamics, UU

y �= ∅ for any y ∈ Rn, and so
H(x, y) < ∞.)

We consider the case x �= 0. To prove H(x, x) > 0, suppose H(x, x) ≤ 0.
Then by (4.46) and Theorem 4.4, this implies

W (x)− sup
u∈UU

x

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (x)

}
≤ 0,

or

sup
u∈UU

x

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt

}
≥ 0. (4.47)

As in the proof of Lemma 4.8, one has

d

dt
|ξt|2 ≤ −cf |ξt|2 +

m2
σ

cf
|ut|2,

which, using ξ0 = x, and solving the differential inequality (as before) yields

|ξt|2 ≤ |x|2e−cf t +
m2

σ

cf
‖u‖2L2(0,t).

Because we require ξτ = x (i.e., u ∈ UU
x ), this implies

‖u‖2L2(0,τ) ≥
cf

m2
σ

|x|2(1− e−cf τ ). (4.48)
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Now, by (A4.4I),

γ2 >
2m2

σαl

c2
f

.
= γ2.

Let

δ
.
= γ2 − γ2, (4.49)

and let

ε
.
=

δcf

8m2
σ

(1− e−cf τ )|x|2. (4.50)

Let uε be ε-optimal for (4.47) with corresponding trajectory ξε. Then ξε
τ = x

and ∫ τ

0

l(ξε
t )− γ2

2
|uε

t |2 dt ≥ −ε. (4.51)

Let

γ̃2 .
= γ2 − δ

2
(4.52)

(so that γ̃2 = γ2 + δ/2 > γ2). Then,

∫ τ

0

l(ξε
t )− γ̃2

2
|uε

t |2 dt =

∫ τ

0

l(ξε
t )− γ2

2
|uε

t |2 dt +

∫ τ

0

(γ2 − γ̃2

2

)
|uε

t |2 dt,

which by (4.51) and (4.52)

≥ −ε +
δ

4
‖uε‖2L2(0,τ),

which by (4.48) and (4.50)

≥ − δcf

8m2
σ

(1− e−cf τ )|x|2 +
δcf

4m2
σ

(1− e−cf τ )|x|2

=
δcf

8m2
σ

(1− e−cf τ )|x|2. (4.53)

Then, because ξε
τ = x, one may loop over this trajectory repeatedly by

employing the disturbance

ũt
.
= uε

t−n̄τ ∀ t ∈ [n̄τ, (n̄ + 1)τ), ∀n̄ ∈ {0, 1, 2, . . .}.

Letting ξ̃ be the corresponding trajectory, and employing (4.53), this yields

∫ n̄τ

0

l(ξ̃t)−
γ̃2

2
|ũt|2 dt ≥ n̄

δcf

8m2
σ

(1− e−cf τ )|x|2.

This implies that

lim
T→∞

sup
u∈UU

∫ T

0

l(ξt)−
γ̃2

2
|ut|2 dt = +∞,
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which contradicts Theorems 4.1 and 4.2 (because γ̃ > γ). Therefore H(x, x) >
0.

Lastly, we turn to the proof that H(0, 0) = 0. Because H(0, 0) ≥ 0 was
noted above, it is only required to show H(0, 0) ≤ 0. However, using (4.46)
and the fact that the first supremum in (4.46) is W (x) where W (0) = 0, one
has

H(0, 0) = − sup
u∈UU

0

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt

}
,

where ξ0 = ξτ = 0. But taking u ≡ 0 (and using l ≥ 0) implies that

sup
u∈UU

0

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt

}
≥ 0.

Consequently H(0, 0) ≤ 0. ⊓⊔

The proof of convergence of the power method relies on the following two
lemmas.

Lemma 4.19. Let u ∈ UU .

∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt ≤ W (x)−W (ξτ )−H(x, ξτ ), (4.54)

where ξ satisfies (4.1) with input u and initial condition ξ0 = x.

Proof. By (4.42) and the fact that W = Sτ [W ],

W (x) = H(x, y) + sup
u∈UU

y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
. (4.55)

Fix any u ∈ UU , and let y = ξτ where ξ· is the corresponding trajectory. Then

W (x) = H(x, ξτ ) + sup
u∈UU

y

{∫ τ

0

l(ξt)−
γ2

2
|ut|2 dt + W (ξτ )

}
.

But u ∈ UU
y , so the result follows. ⊓⊔

Now let the {xj} be such that x1 = 0, that is,

ψ1(x) = −1

2
xT Cx.

Lemma 4.20. B1,1 = 0. Also, there exists δ > 0 such that for all j �= 1,
Bj,j ≤ −δ.
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Proof. We prove the second assertion first. Let

xj = argmax{ψj(x)−W (x)}, (4.56)

the existence and uniqueness of which follows from the choice of the {ψj} —
in particular, the quadratic growth condition C−cRI > 0. In fact, there exists
K > 0 such that

W (xj)−W (x) ≤ ψj(xj)− ψj(x)−K|x− xj |2 ∀x ∈ Rn. (4.57)

Let uε be ε-optimal for Sτ [ψj ] with corresponding process ξε. Then

Sτ [ψj ](xj) ≤
∫ τ

0

l(ξε
t )− γ2

2
|uε

t |2 dt + ψj(ξ
ε
τ ) + ε,

which by Lemma 4.19,

≤ W (xj)−W (ξε
τ ) + ψj(ξ

ε
τ )−H(xj , ξ

ε
τ ) + ε,

which by (4.57),

≤ ψj(xj)−K|ξε
τ − xj |2 −H(xj , ξ

ε
τ ) + ε (4.58)

and so, by Lemmas 4.17 and 4.18, there exists δj > 0 such that

≤ ψj(xj)− δj + ε

which yields the assertion (with δ
.
= minj≤n δj).

We now prove the first assertion. First we should perhaps note that by
the definition of ψ1 and (4.11), x1 = 0, the origin. Note that for disturbance
process u0

t ≡ 0 and initial condition x = 0, the corresponding state process

is ξ0
t = 0 for all t. Consequently,

∫ τ

0
l(ξ0

t ) − γ2

2 |u0
t |2 dt + ψ1(ξ

0
τ ) = 0 Suppose

there exists a disturbance process, û and ε > 0 such that one has
∫ τ

0
l(ξ̂t) −

γ2

2 |ût|2 dt + ψ1(ξ̂τ ) ≥ ε > 0 where ξ̂ is the state process corresponding to

ξ̂0 = 0 and disturbance û.
Suppose ξ̂τ = 0. In that case, let û∞ be an infinite repetition of û, i.e., let

û∞
t = ût−ntτ ∀ t ≥ 0,

where nt is the largest integer less than or equal to t/τ . Then, letting ξ̂∞ be
the corresponding state process one has (using Theorem 4.2),

W (0) ≥ lim sup
n̄→∞

∫ n̄τ

0

l(ξ̂∞t )− γ2

2
|û∞

t |2 dt

≥ lim
n̄→∞

{n̄ε} = ∞, (4.59)

which contradicts the fact that W satisfies (4.11).
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Now consider the case ξ̂τ �= 0. This introduces an additional technical
complication. Essentially, after t = τ , one lets the system drift back arbitrarily
close to the origin, then pushes it directly to the origin with the disturbance
process. The integral over this whole path will be positive, and one again
creates an infinite repetition of this loop to obtain the same contradiction.
We now make this argument concrete. We first let ξ be a solution of (4.1)
with ξ0 = x �= 0 which will be driven to the origin in finite time as follows.

Let ūt = σ−1(ξt)
[
−f(ξt) − ξt/|ξt|

]
for t ∈ [0, |x|] so that ξ̇ = −ξt/|ξt|, and

consequently, ξ|x| = 0. Note also that by Assumptions (A4.1I) and (A4.2I),

|ūt| ≤ mσ[1 + K|ξt|] ≤ mσ[1 + K|x|] for all t ∈ [0, |x|]. Consequently, if |x| ≤
δ < 1, one has

∫ |x|

0
l(ξt)− γ2

2 |ūt|2 dt ≥ −γ2

2 m2
σ(1+Kδ)2δ ≥ −γ2m2

σ(1+K2)δ.

Now, we begin to construct our loop trajectory. Let û, ξ̂ be as above where
now ξ̂τ �= 0. Let ũt = ût for all t ∈ [0, τ), and so the corresponding trajectory

satisfies ξ̃t = ξ̂t (for all t ∈ [0, τ ]). Let ũt = 0 for all t ∈ [τ, τ̂) where τ̂ is

chosen such that |ξ̃τ̂ | ≤ δ where δ is yet to be specified and the existence of
such a τ̂ follows directly from Assumption (A4.1I). We take δ < 1 such that

γ2m2
σ(1 + K2)δ < ε/2. Now, let ũt = ūt−τ̂ so that with x = ξ0 = ξ̃τ̂ , one has

ξ̃t = ξt−τ̂ for all t ∈ [τ̂ , τ̂ + |ξ̃τ̂ |] and in particular

ξ̃
τ̂+|ξ̃τ̂ |

= 0.

Further,
∫ τ̂+|ξ̃τ̂ |

τ̂
l(ξ̃t)− γ2

2 |ũt|2 dt ≥ −γ2m2
σ(1+K2)δ > −ε/2. Putting all three

segments together, we see that
∫ τ̂+|ξ̃τ̂ |

0
l(ξ̃t) − γ2

2 |ũt|2 dt ≥ ε + 0 − ε/2 = ε/2

and that ξ̃
τ̂+|ξ̃τ̂ |

= ξ̃0 = 0. Then, as in the previous case, one repeats the

disturbance process ũ an infinite number of times to obtain a contradiction of
the form (4.59).

Thus, in either case, we find that there does not exist a disturbance process

such that
∫ τ

0
l(ξ̂t)− γ2

2 |ût|2 dt + ψ1(ξ̂τ ) > 0. Therefore, u0 ≡ 0 is optimal, and
so

Sτ [ψ1](0) =

∫ τ

0

l(ξ0
t )− γ2

2
|w0

t |2 dt + ψ1(ξ
0
τ ) = 0

or, equivalently, Sτ [ψ1](x1) = ψ1(x1). This implies

B1,1 ≤ 0. (4.60)

To get the reverse inequality, note that W (0) = 0 and W (x) ≥ 0 for all
x ∈ Rn. Because W is smooth in some arbitrarily small neighborhood of the
origin [108], one has ∇W (0) = 0. Further, since Sτ [ψ1](0) = 0, Sτ [ψ1](x) ≤
Sτ [W ](x) = W (x), W (0) = 0, ∇W (0) = 0 and Sτ [ψ1] semiconvex, one has
∇Sτ [ψ1](0) = 0. Then, by the semiconvexity preserving property of Sτ for our
choice of C (i.e., Assumption (A4.5I)), and the fact that ψ1(x) = − 1

2xT Cx,
we see that ψ1(x)− Sτ [ψ1](x) ≤ 0 for all x. Therefore
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B1,1 ≥ 0. (4.61)

By (4.60) and (4.61), we are done. ⊓⊔

Theorem 4.21. Let N ∈ {1, 2, . . . , ν}, {ki}i=N+1
i=1 such that 1 ≤ ki ≤ ν for

all i and kN+1 = k1. Suppose we are not in the case ki = 1 for all i. Then

N∑

i=1

Bki,ki+1 ≤ −δ.

Proof. By Lemma 4.20, this is true for N = 1. We first prove the case N = 2.
The proof of the general case will then be relatively clear, but we will also
provide a sketch of the induction argument. First note the monotonicity of
the semigroup in the sense that if g1(x) ≤ g2(x) for all x, then

Sτ [g1](x) ≤ Sτ [g2](x) ∀x ∈ Rn. (4.62)

Suppose either i �= 1 or j �= 1. Without loss of generality, suppose i �= 0.
By definition ψj(x) + Bj,i ≤ Sτ [ψi](x) for all x. Using (4.62), this implies

Sτ [ψj + Bj,i] ≤ Sτ

[
Sτ [ψi]

]
= S2τ [ψi],

and by the max-plus linearity of Sτ , this yields

Sτ [ψj ] + Bj,i ≤ S2τ [ψi],

which implies in particular that

Sτ [ψj ](xi) + Bj,i ≤ S2τ [ψi](xi), (4.63)

where xi is the argmax as given in (4.56).
On the other hand, by (4.58) (with ξε generated by an ε-optimal uε)

S2τ [ψi](xi) ≤ ψi(xi)−K|ξε
2τ − xi|2 −H(xi, ξ

ε
2τ ) + ε,

and then by Lemmas 4.17, 4.18 (as in the proof of Lemma 4.20)

≤ ψi(xi)− δi + ε. (4.64)

(Note here that one may need to reduce the size of δi and δ to allow for the
finite number of time horizons {τ, 2τ, . . . , ντ}.) Combining (4.63) and (4.64)
yields

Sτ [ψj ](xi)− ψi(xi) + Bj,i ≤ −δi + ε ≤ −δ + ε. (4.65)

Then, using the fact that Bi,j = minx{Sτ [ψj ](x) − ψi(x)}, and letting ε ↓ 0
yields Bi,j + Bj,i ≤ −δ.

The case for N > 2 follows easily by induction, and we give only the main
points. To obtain the result analogous to (4.63) for N > 2, suppose that for
some N ≥ 2, one has
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Sτ [ψj ] + Bj,k1 +

N−2∑

l=1

Bkl,kl+1
≤ SNτ [ψkN−1

] (4.66)

which we already have for N = 2, Then

Sτ [ψj ] + Bj,k1 +

N−2∑

l=1

Bkl,kl+1
+ BkN−1,i ≤ SNτ [ψkN−1

] + BkN−1,i

= SNτ [ψkN−1
+ BkN−1,i]

≤ SNτ [Sτ [ψi]] = S(N+1)τ [ψi].

Consequently, an induction argument yields this for all N . The remainder of
the proof follows analogously to that for the case of N = 2. ⊓⊔

A sufficient condition that a matrix has exactly one max-plus eigenvalue
is that it not have any entries that are −∞. This is demonstrated under a
weaker sufficient condition in [6], Theorem 3.23. (See also [25].) By the above
results, this eigenvalue must be zero (ignoring errors due to approximation).

Theorem 4.22. limN→∞ BN⊗0 exists, converges in a finite number of steps,
and satisfies e = B ⊗ e.

Proof. Given the matrix B, one can associate a corresponding directed graph
with ν nodes (recall B is ν × ν) where the transition cost from node i to
node j is Bi,j . (This is referred to as the precedence graph in [6], and more
information on the relationship between the precedence graph and the matrix
may be found there.) Let us refer to the node corresponding to ψ1 as the origin
node. The elements of BN ⊗ 0 correspond to the optimal costs of transition
paths of length N , that is, [BN ⊗ 0]i is the maximum cost over all paths of
length N starting at node i and ending at any node k. For instance,

[B2 ⊗ 0]i =
⊕

j

⊕

k

[Bi,j ⊗Bj,k ⊗ 0] = max
j,k

[Bi,j + Bj,k + 0].

A loop will be defined to be any path (or segment of a larger path) that
starts and ends at the same node. Because the graph has only ν nodes, any
path of length greater than ν must contain at least one loop. Let li be the
maximal cost of a path from node i to the origin node. By Theorem 4.21,
any loop other than the trivial loop (the loop of length one from the origin
node back to itself) must have negative cost to travel the loop. Thus, the path
corresponding to cost li must not have any loops (except possibly trivial loops
which we will ignore). Consequently, the length of the path corresponding to li
might as well be assumed to be no longer than ν and have no loops. Similarly,
let l0 be the maximal cost of a path from the origin node to any other node.
By the same analysis as for li, one may assume without loss of generality that
the path has no loops and has length no longer than ν. Then li

.
= li + l0 is the
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maximal cost of any path from node i through the origin node to any node
k, and the maximal cost path will have no loops (ignoring trivial loops). This
path has length ≤ 2ν.

Let the maximum cost path from any node to any other node without
loops be CB .

Let N > 2ν. Suppose a path from node i to some other node has length
N . The path must contain at least one loop. In fact, defining MN to be the
largest integer less than N/ν, a path from node i to the origin node of length
N must contain at least MN loops. Thus, by Theorem 4.21, the path must
have cost at most CB−MNδ unless at least one of the loops is the trivial loop.
Suppose N is sufficiently large that CB −MNδ < li. Suppose the path does
not contain the trivial loop. Then, the path yielding cost li with the addition
of trivial loops until the length becomes N (recall the path passed through the
origin node) has cost li > CB −MNδ, and so has larger cost. Alternatively,
suppose the path does contain at least one trivial loop and at least one other
loop. Let the other loop have length m. Then the path cost may be increased
by at least δ by elimination of this loop followed by the addition of m trivial
loops (so as to maintain total path length N). Thus, we find that any path
of length sufficiently large so that CB −MN/δ < li (and N > 2ν) cannot be
of maximal cost unless it is the loopless path of cost li with the addition of
trivial loops until the length becomes N . Therefore, [BN ⊗ 0]i = li for all N
such that CB −MN/δ < li and N > 2ν.

Thus, we see that BN ⊗ 0 converges in a finite number of steps. Denote
the limit as e. Note that

e = lim
N→∞

BN ⊗ 0 = B ⊗ lim
N→∞

BN−1 ⊗ 0

= B ⊗ lim
M→∞

BM ⊗ 0 = B ⊗ e,

and so we see that e is a max-plus eigenvector corresponding to max-plus
eigenvalue 0. ⊓⊔

Not only is the max-plus eigenvalue unique [6], but one also obtains the
following.

Corollary 4.23. There is a unique max-plus eigenvector, e up to a max-plus
multiplicative constant, and of course this is the output of the above power
method.

Proof. Let e be the eigenvector obtained by the above power method iteration
(i.e., e = limN→∞ BN ⊗ 0). Consider [BN ⊗ e′]i when e′ is any eigenvector
and N will be taken sufficiently large. This is the maximal cost of any path of
length N starting at node i and ending at any node k with terminal cost e′k.
By a proof similar to that used in the proof of Theorem 4.22, for N sufficiently
large, say N ≥ N , the maximal cost path will pass through the origin node,
and the only loops will be trivial loops. Let li again be the maximal cost of a
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loopless path from node i to the origin node, and now let l̂0e′ be the maximal
cost of a loopless path from the origin node to any node, k, with terminal cost
ek. Then, the maximal cost of the path of length N will be given by li + l̂0e′

independent of N ≥ N .
Because e′ is an eigenvector, for each i ∈ {1, 2, . . . , n}

e′i =
[

lim
N→∞

BN ⊗ e′
]

i
= li + l̂0e′ = li + l0 + (l̂0e′ − l0)

(where l0 is given in the proof of Theorem 4.22)

=
[

lim
N→∞

BN ⊗ 0
]

i
+ (l̂0e′ − l0)

= ei + (l̂0e′ − l0)

= (l̂0e′ − l0)⊗ ei.

Thus, e′ = (l̂0e′ − l0)⊗ e which proves the result. ⊓⊔

4.6 Computing B: Initial Notes

The obvious first step in application of this method is the computation, more
exactly numerical approximation, of B. A more complete discussion of the
computation of B will appear in the next chapter. For completeness in this
chapter, we indicate one approach (but see Section 5.3.1 for a more complete
discussion).

Recall that,for any specific τ , (see definition (4.36))

Bi,j = − max
x∈BR

{
ψi(x)− sup

u∈UU

[∫ τ

0

l(ξt)−
γ2

2
|wt|2 dt + ψj(ξτ )

]}
, (4.67)

where we suppress the dependence of B on τ to reduce notation. Also, recall
that (see, e.g., [37]) given any R < ∞, there exists a τR < ∞ such that

V̂ (x, τ) = Sτ [ψj ](x) is a C2 solution of (4.7) on BR × [0, τR). Consequently,
for τ ∈ (0, τR), one can use a first-order Taylor approximation. That is,

Bi,j ≃ − max
x∈BR

{
ψi(x)−ψj(x)−τ

[ 1

2γ2
∇ψT

j σ(x)σT (x)∇ψj+fT (x)∇ψj+l(x)
]}

.

Of course, one can proceed to higher-order terms.

Remark 4.24. It has been observed that one does not need to compute the
entire B matrix. That is, there exists δ > 0 such that one may take B̃i,j =

−∞ if |xi − xj | > δ with B̃i,j = Bi,j otherwise, and then B̃ has the same
eigenvector as B. The value of δ appears dependent on τ . Some thoughts on
the dependence of such a δ on τ can be found in [3], [4], [67].
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Remark 4.25. Recall that τ > 0 is free. Ideally, one obtains the same solution
for all τ (ignoring error analysis — discussed in the next chapter). Interest-
ingly, one may use different values of τ for different rows of the B matrix
without altering the eigenvector. A discussion of the dependence of the error
size on τ appears in Chapter 5.

4.7 Outline of Algorithm

For purposes of readability, we briefly outline the steps in the max-plus eigen-
vector algorithm for (approximate) computation of W over a ball, BR.

1. Choose a set of max-plus basis functions of the form ψi(x) = −1
2 (x −

xi)
T C(x−xi) where the xi lie in BDR

. (In practice however, a rectangular
grid has been used.) Choose a “time-step,” τ .

2. Compute (approximately) elements of the matrix B given by

Bj,i = − max
x∈BR

{ψj(x)− Sτ [ψi](x)}.

A reasonably efficient means of computing B is important, and a Runge–
Kutta based approach is indicated in Section 5.3.1.

3. Compute the max-plus eigenvector of B corresponding to max-plus eigen-
value λ = 0 (i.e., the solution of e = B ⊗ e). This is obtained from the
max-plus power method a(k+1) = B ⊗ a(k) starting from a(0) where a(0)

is taken to be the zero vector. This converges exactly in a finite number
of steps, say n. Let the limit be a = a(n).

4. Construct the solution approximation from Ŵ (x)
.
=

⊕ν
i=1 ai ⊗ ψi(x) on

BR(0).

4.8 A Control Problem Without Nominal Stability and a
Game

In this last section, we briefly indicate two extensions: one to a minimizing
control problem where the dynamics are not nominally stable, and another
to a game problem whose DPE is an HJB PDE. The material in this section
may be skipped without creating any difficulty in the following chapters.

Consider the control problem with dynamics

ξ̇ = A(ξ) + Q(ξ)v, (4.68)

ξ0 = x, (4.69)

where v ∈ U = Lloc
2 ([0,∞);Rl). Let the payoff and value be given by
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J2(x, T, v) =

∫ T

0

l(ξt) + 1
2 |vt|2dt, (4.70)

W2(x) = inf
v∈U

sup
T∈[0,∞)

J2(x, T, v). (4.71)

Note that v· is a minimizing controller.
Assume that Q is uniformly bounded and nondegenerate in the sense that

there exist α1, α2 ∈ (0,∞) such that

α1|y|2 ≤ 1
2yT Q(x)QT (x)y ≤ α2|y|2 ∀x, y ∈ Rn

(A4.1m)

Note that Assumption (A4.1m) implies

|Q(x)|, |Q−1(x)| ≤ c2 ∀x ∈ Rn (4.72)

for some c2 ∈ (0,∞).
We assume that A, Q, l ∈ C2(Rn). We also assume that there exists c1 ∈

(0,∞) such that

|Ax(x)|, |Axx(x)| ≤ c1 ∀x ∈ Rn,

A(0) = 0,

|Qx(x)|, |(Q−1)x(x)|, |(Q−1)xx(x)| ≤ c1 ∀x ∈ Rn.

(A4.2m)

We assume that there exist c3, c4, c5 ∈ (0,∞) such that

|lxx(x)| ≤ c3 ∀x ∈ Rn, (A4.3m)

and

c4|x|2 ≤ l(x) ≤ c5|x|2 ∀x ∈ Rn. (A4.4m)

The quadratic bounds in (A4.4m) are chosen for convenience; it is expected
that most of the results will hold for more general polynomial bounds (but
which still enforce l(0) = 0 and l(x) > 0 for x �= 0).

Note that we do not assume stability of the nominal dynamics; more ex-
actly, we do not keep our typical assumption which in this context would be
xT A(x) ≤ −kA|x|2 for some kA and all x. However, the facts that l(0) = 0,
l(x) > 0 for x �= 0 and the non-negativity of the 1

2 |vt|2 term imply that near-
optimal controls must drive the system toward the origin. (This statement
will be made more exact below.) Consequently, any near optimal control will
stabilize the system to the origin.

Lastly, note that again by the non-negativity of the running cost

W2(x) = inf
v∈U

{∫ ∞

0

l(ξt) + 1
2 |vt|2dt

}
. (4.73)

We begin with a result that serves to produce some a priori bounds on the
behavior of near-optimal trajectories of the system.

Lemma 4.26. Given R < ∞, there exists MR < ∞ such that W2(x) ≤ MR

for all x ∈ BR(0). Further, there exists M̂R < ∞ such that for any ε ∈ (0, 1)
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the following statements hold: If vε is ε-optimal for control problem (4.73),

then ‖vε‖L2[0,∞) ≤ M̂R, and ‖ξε‖L2[0,∞) ≤ M̂R where ξε satisfies (4.68),
(4.69) with input vε. If vε is ε-optimal for finite horizon problem

V (x, T ) = inf
v∈U

{∫ T

0

l(ξt) + 1
2 |vt|2dt

}
, (4.74)

then ‖vε‖L2[0,T ] ≤ M̂R, and ‖ξε‖L2[0,T ] ≤ M̂R.

Proof. Suppose x = 0. Note that with input v0 ≡ 0, one has ξ0
t = 0 for all

t ≥ 0 by Assumption (A4.2m). Therefore, J(0, T, v0) = 0. Since l ≥ 0, we
have W2(0) = V (0, T ) = 0.

Now suppose x �= 0. Let

ṽt
.
=

{
Q−1(ξt)

(
− x

|x| −A(ξt)
)

if 0 ≤ t ≤ |x|,
0 if t > |x|.

Then
˙̃
ξ = A(ξ̃) + Q(ξ̃)ṽ =

{− x
|x| if 0 ≤ t ≤ |x|,

A(ξ̃) if t > |x|
,

which yields

ξ̃t =

{
x
(
1− t

|x|

)
if t ≤ |x|

0 if t > |x|,
and this implies ṽ ∈ C[0,∞) with ṽt = 0 for t ≥ |x|. Therefore

J2(x, T, ṽ) =

∫ |x|

0

l

(
x− tx

|x|

)
+ 1

2 |ṽt|2 dt

for all T > |x|. Because |Q|, |Q−1| are bounded, ṽ ∈ U . Thus, there exists
some MR < ∞ (independent of T > |x|) such that

V (x, T ) = inf
v∈U

J2(x, T, v) ≤ MR ∀T ≥ |x|,

W2(x) = inf
v∈U

lim
T→∞

J2(x, T, v) ≤ MR (4.75)

for all x ∈ BR(0). Using this same ṽ for T ∈ (0, |x|], one obtains (4.75) for all
T ∈ (0,∞) and x ∈ BR(0).

If vε is ε-optimal for V , then

∫ T

0

1
2 |vε

t |2 dt ≤
∫ T

0

l(ξε
t ) + 1

2 |vε
t |2 dt < V (x, T ) + ε ≤ MR + 1

and
∫ T

0

c4|ξε
t |2 dt ≤

∫ T

0

l(ξε
t ) + 1

2 |vε
t |2 dt < V (x, T ) + ε ≤ MR + 1.
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Consequently,

‖vε‖L2[0,T ] ≤ [2(MR + 1)]
1/2

and
‖ξε‖L2[0,T ] ≤ [(1/c4)(MR + 1)]

1/2
.

Similarly, if vε is ε-optimal for W2, then ‖vε‖L2[0,∞) ≤ [2(MR + 1)]
1/2

and

‖ξε‖L2[0,∞) ≤ [(1/c4)(MR + 1)]
1/2

. To complete the proof, simply let M̂R :=

max
{

[2(MR + 1)]
1/2

, [(1/c4)(MR + 1)]
1/2

}
. ⊓⊔

The corresponding HJB PDE problem is

0 = − inf
v∈Rl

{
(A(x) + Q(x)v) · ∇W + l(x) + 1

2 |v|2
}

(4.76)

= −
[
A(x) · ∇W + l(x)− 1

2 (∇W )T Q(x)QT (x)∇W
] .
= H(x,∇W ),(4.77)

with boundary condition W (0) = 0. The following two results are entirely
standard, and in fact, simpler that the infinite time-horizon results of Chapter
3, due to the fact that one is minimizing a non-negative cost here. We do not
include the proofs.

Theorem 4.27. W2 satisfies the DPP:

W2(x) = inf
v∈U

{∫ τ

0

l(ξt) + 1
2 |vt|2dt + W2(ξτ )

}
(4.78)

for any τ ∈ (0,∞).

Theorem 4.28. W2 is a continuous viscosity solution of HJB PDE (4.77).

We now proceed to demonstrate that the value function is semiconcave.
First we will need a technical lemma.

Lemma 4.29. Given ε ∈ (0, 1], R < ∞ and |x| < R, let vε,T be ε-optimal for
finite time-horizon problem (4.74). Then there exists dR < ∞ (independent of
ε, x, and T ) such that

|ξt| ≤ dR ∀ t ∈ [0, T ].

Proof. For T ≤ 2, the result is obvious by the bound on vε,T in Lemma 4.26
combined with (4.72) and (A4.2m).

We consider the case T > 2. Let t1 ∈ (0, T ) and s ∈ (−t1, T − t1). For ease
of notation, consider only the case s > 0 for the moment. One has

∣∣∣∣
∫ t1+s

t1

ξ̇t dt

∣∣∣∣ ≤
∫ t1+s

t1

|A(ξt) + +|Q(ξt)| |vt| dt

and by the assumptions, there exist k0, k1 < ∞ such that
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≤
∫ t1+s

t1

k0 + k1|ξt|+ k1|vt| dt

≤ k0s + k′
1

[
‖ξ‖L2(0,T ) + ‖v‖L2(0,T )

]√
s

for proper choice of k′
1. Considering also the case s < 0, one then easily sees

that for any s ∈ (−t1, T − t1),

|ξt1+s| ≥ |ξt1 | − k0|s| − k′
1

[
‖ξ‖L2(0,T ) + ‖v‖L2(0,T )

]√
|s|.

If v is ε-optimal with ε ∈ (0, 1], then combining this with Lemma 4.26, one
finds

|ξt1+s| ≥ |ξt1 | − k0|s| − 2k′
1M̂R

√
|s|. (4.79)

By (4.79),

‖ξ‖2L2(0,T ) ≥
∫ T

0

(
|ξt1 | − k0|r − t1| − 2k′

1M̂R

√
|r − t1|

)2

dr. (4.80)

However, there exists ρ : [0,∞) → [0,∞) such that

k0|s|+ 2k′
1M̂R

√
|s| ≤ α/2 ∀ s ≤ ρ(α),

where ρ(α) →∞ as α →∞. Consequently,

(
|ξt1 | − k0|r − t1| − 2k′

1M̂R

√
|r − t1|

)2

≥ |ξt1 |2
4

(4.81)

if |r − t1| ≤ ρ(α).
Combining (4.80) and (4.81), one finds

‖ξ‖2L2(0,T ) ≥
|ξt1 |2

4
min {T/2 , ρ(|ξt1 |)} ,

which since T > 2,

≥ |ξt1 |2
4

min {1 , ρ(|ξt1 |)} .

Combining this inequality with Lemma 4.26 yields

max
t1∈[0,T ]

[ |ξt1 |2
4

min {1 , ρ(|ξt1 |)}
]
≤ M̂2

R,

which yields the result. ⊓⊔

The definition of semiconcavity is directly analogous to that of semicon-
vexity, and we do not include it. The semiconcavity of the value function
will follow directly from the uniform-in-time semiconcavity of the finite time-
horizon value function.
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Theorem 4.30. The value function for the finite time-horizon problem (4.74),
is semiconcave in x, and the semiconcavity constant over any BR is bounded
uniformly in T .

Proof. We will show that second differences of V in x are bounded from above.
Let R < ∞ and x ∈ BR. Recall

V (x, T ) := inf
v∈U

J2(x, T, v). (4.82)

Since we are interested in the long-term semiconcavity, we will assume T ≥ 1.
Let η ∈ Rn with |η| = 1. Let δ, ε ∈ (0, 1). Let vε be ε-optimal for (4.74). Let

ξ̇ε = A(ξε) + Q(ξε)vε, ξε(0) = x,

ξ̇ε,+ = A(ξε,+) + Q(ξε,+)vε,+, ξε,+(0) = x + δη,

ξ̇ε,− = A(ξε,−) + Q(ξε,−)vε,−, ξε,−(0) = x− δη,

where the controls vε,+, vε,− are given as follows. Let

vε,+
t =

{
Q−1(ξε,+

t )
[
A(ξε

t )−A(ξε,+
t ) + Q(ξε

t )vε
t − δη

]
if t ≤ 1

vε
t if t > 1

and

vε,−
t =

{
Q−1(ξε,−

t )
[
A(ξε

t )−A(ξε,−
t ) + Q(ξε

t )vε
t + δη

]
if t ≤ 1

vε
t if t > 1.

With these choices of vε,+, vε,−, one has

ξε,+
t − ξε

t = δ(1− t)η, ξε,−
t − ξε

t = −δ(1− t)η (4.83)

for t < 1 and
ξε,+
t = ξε

t = ξε,−
t

for t ≥ 1.
Now V (x, T ) ≥ J2(x, T, vε)− ε by the choice of vε, so that

V (T, x + δη)− 2V (t, x) + V (T, x− δη)

≤ J2(x, T + δη, vε,+)− 2J2(x, T, vε) + J2(x, T − δη, vε,−) + 2ε

≤
∫ 1

0

l(ξε,+
t )− 2l(ξε

t ) + l(ξε,−
t ) dt

+
1

2

∫ 1

0

|vε,+
t |2 − 2|vε

t |2 + |vε,−
t |2 dt + 2ε

which by (4.83) and (A4.3m)

≤ c3δ
2 +

1

2

∫ 1

0

(
|vε,+

t |2 − |vε
t |2

)
+

(
|vε,−

t |2 − |vε
t |2

)
dt + 2ε. (4.84)
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Considering the integral of the second difference in vε on the right-hand side
of (4.84), (where, for simplicity of exposition, we drop the notation indicating
the t-dependence), one has

∫ 1

0

|vε,+|2 − 2|vε|2 + |vε,−|2 dt

=

∫ 1

0

∣∣Q−1(ξε,+)[A(ξε)−A(ξε,+)− δη + Q(ξε)vε]
∣∣2 − 2|vε|2

+
∣∣Q−1(ξε,−)[A(ξε)−A(ξε,−) + δη + Q(ξε)vε]

∣∣2 dt

=

∫ 1

0

∣∣Q−1(ξε,+)[A(ξε)−A(ξε,+)− δη]
∣∣2

+
∣∣Q−1(ξε,−)[A(ξε)−A(ξε,−) + δη]

∣∣2 dt

+

∫ 1

0

2[A(ξε)−A(ξε,+)− δη]T Q−T (ξε,+)Q−1(ξε,+)Q(ξε)vε

+2[A(ξε)−A(ξε,−) + δη]T Q−T (ξε,−)Q−1(ξε,−)Q(ξε)vε dt

+

∫ 1

0

∣∣Q−1(ξε,+)Q(ξε)vε
∣∣2 − 2|vε|2 +

∣∣Q−1(ξε,−)Q(ξε)vε
∣∣2 dt. (4.85)

Considering the three integrals on the right-hand side of (4.85) separately,
we first have, using 2a · b ≤ |a|2 + |b|2,

∫ 1

0

∣∣Q−1(ξε,+)[A(ξε)−A(ξε,+)− δη]
∣∣2

+
∣∣Q−1(ξε,−)[A(ξε)−A(ξε,−) + δη]

∣∣2 dt

≤ 2

∫ 1

0

∣∣Q−1(ξε,+)[A(ξε)−A(ξε,+)]
∣∣2 +

∣∣Q−1(ξε,+)δη
∣∣2

+
∣∣Q−1(ξε,−)[A(ξε)−A(ξε,−)]

∣∣2 +
∣∣Q−1(ξε,−)δη

∣∣2 dt,

which using (4.72) and Assumption (A4.2m),

≤ 2c2
2

∫ 1

0

∣∣A(ξε)−A(ξε,+)
∣∣2 +

∣∣A(ξε)−A(ξε,−)
∣∣2 + 2δ2|η|2 dt

≤ 2c2
1c

2
2

∫ 1

0

∣∣ξε − ξε,+
∣∣2 +

∣∣ξε − ξε,−
∣∣2 dt + 4c2

2δ
2

and by (4.83)

= 4c2
1c

2
2

∫ 1

0

∣∣δ(1− t)η|2 dt + 4c2
2δ

2 ≤ 4(c2
1 + 1)c2

2δ
2. (4.86)

The second integral on the right-hand side of (4.85) can be bounded as
follows:
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∫ 1

0

2[A(ξε)−A(ξε,+)− δη]T Q−T (ξε,+)Q−1(ξε,+)Q(ξε)vε

+2[A(ξε)−A(ξε,−) + δη]T Q−T (ξε,−)Q−1(ξε,−)Q(ξε)vε dt

= 2

∫ 1

0

{
[A(ξε)−A(ξε,+)]T Q−T (ξε,+)Q−1(ξε,+)

+[A(ξε)−A(ξε,−)]T Q−T (ξε,−)Q−1(ξε,−)
}
Q(ξε)vε

−δηT [Q−T (ξε,+)Q−1(ξε,+)−Q−T (ξε,−)Q−1(ξε,−)]Q(ξε)vε dt

= 2

∫ 1

0

{
[A(ξε)−A(ξε,+)]T [Q−T (ξε,+)Q−1(ξε,+)−Q−T (ξε,−)Q−1(ξε,−)]

+[A(ξε)−A(ξε,+) + A(ξε)−A(ξε,−)]T

·Q−T (ξε,−)Q−1(ξε,−)
}
Q(ξε)vε dt

−2

∫ 1

0

δηT [Q−T (ξε,+)Q−1(ξε,+)−Q−T (ξε,−)Q−1(ξε,−)]Q(ξε)vε dt.(4.87)

Combining Assumption (A4.2m) and (4.72) yields

∣∣(Q−T (x)Q−1(x))x

∣∣ ≤ 2c1c2 ∀x ∈ Rn. (4.88)

Therefore, the second integral on the right-hand side of (4.87) is

≤ 4c1c2δ

∫ 1

0

|η| |ξε,+ − ξε,−| |Q(ξε)| |vε| dt

≤ 4c1c
2
2δ

∫ 1

0

|η| |2δ(1− t)η| |vε| dt ≤ 8c1c
2
2M̂Rδ2. (4.89)

The first integral on the right-hand side of (4.87) becomes

2

∫ 1

0

{
[A(ξε)−A(ξε,+)]T [Q−T (ξε,+)Q−1(ξε,+)−Q−T (ξε,−)Q−1(ξε,−)]

−[A(ξε,+)− 2A(ξε) + A(ξε,−)]T Q−T (ξε,−)Q−1(ξε,−)
}
Q(ξε)vε dt

≤ 2

∫ 1

0

|A(ξε)−A(ξε,+)|

· |Q−T (ξε,+)Q−1(ξε,+)−Q−T (ξε,−)Q−1(ξε,−)| |Q(ξε)| |vε| dt

+2

∫ 1

0

|A(ξε,+)− 2A(ξε) + A(ξε,−)| |Q−T (ξε,−)| |Q−1(ξε,−)| |Q(ξε)| |vε| dt.

Employing (A4.2m), (4.72), and (4.88), one finds

≤ 4c2
1c

2
2

∫ 1

0

|ξε − ξε,+||ξε,+ − ξε,−| |vε|+ 2c1c
3
2

∫ 1

0

|ξε,+ − ξε,−|2|vε| dt,

which using (4.83) and Hölder’s Inequality
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≤ (4c2
1c

2
2 + 8c1c

3
2)M̂Rδ2. (4.90)

Combining (4.87), (4.89) and (4.90), one finds that the second integral on the
right-hand side of (4.85) satisfies

∫ 1

0

2[A(ξε)−A(ξε,+)− δη]T Q−T (ξε,+)Q−1(ξε,+)Q(ξε)vε

+2[A(ξε)−A(ξε,−) + δη]T Q−T (ξε,−)Q−1(ξε,−)Q(ξε)vε dt

≤ [8c1c
2
2 + 4c2

1c
2
2 + 8c1c

3
2]M̂Rδ2. (4.91)

The third integral in (4.85) involves the second differences of vε.

∫ 1

0

∣∣Q−1(ξε,+)Q(ξε)vε
∣∣2 − 2|vε|2 +

∣∣Q−1(ξε,−)Q(ξε)vε
∣∣2 dt

=

∫ 1

0

vεT QT (ξε)Q−T (ξε,+)Q−1(ξε,+)Q(ξε)vε

−2vεT QT (ξε)Q−T (ξε)Q−1(ξε)Q(ξε)vε

+vεT QT (ξε)Q−T (ξε,−)Q−1(ξε,−)Q(ξε)vε dt. (4.92)

Consider any C2 function F : Rn → R and x ∈ Rn, and let x+ = x + δη,
x− = x − δη. Denote the first and second directional derivatives in direction
η by Fη and Fηη. Then

F (x+)− 2F (x) + F (x−) =

∫ δ

0

Fη(x + rη)− Fη(x− δη + rη) dr

=

∫ δ

0

∫ δ

0

Fηη(x− (δ + r)η + ρη) dρ dr

≤ max
|r|≤δ

|Fηη(x + rη)|δ2. (4.93)

Taking F (x) = ζT [Q−T (x)Q−1(x)]ζ with ζ ∈ Rn, one has by (A4.2m) and
(4.72)

|Fηη(x)| ≤ |[Q−T (x)Q−1(x)]xx| |ζ|2 ≤ 2(c1c2 + c2
1)|ζ|2. (4.94)

Combining (4.92) with (4.93) and (4.94) (for x = ξε, x+ = ξε,+, x− = ξε,−

and ζ = Q(ξε)vε ) yields

∫ 1

0

∣∣Q−1(ξε,+)Q(ξε)vε
∣∣2 − 2|vε|2 +

∣∣Q−1(ξε,−)Q(ξε)vε
∣∣2 dt

≤
∫ 1

0

2(c1c2 + c2
1)|Q(ξε)vε|2δ2 dt

≤ 2c2
2c1(c2 + c1)δ

2

∫ 1

0

|vε|2 dt ≤ 2M̂2
Rc2

2c1(c2 + c1)δ
2. (4.95)
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Combining (4.86), (4.91) and (4.95) bounds the right-hand side of (4.85);
therefore there exists c5 < ∞ such that

∫ 1

0

|vε,+|2 − 2|vε|2 + |vε,−|2 dt ≤ c5δ
2.

Substituting this into (4.84) yields

V (T, x− δη)− 2V (t, x) + V (T, x + δη) ≤ (c3 + c5)δ
2 + 2ε. (4.96)

Because δ, ε ∈ (0, 1) were arbitrary, this implies semiconcavity. ⊓⊔

Lemma 4.31. V (x, T ) → W2(x) uniformly on compact sets.

Proof. Note that V (x, T ) is monotonically increasing in T and bounded above
by W2(x). The proof that, in fact, V (x, T ) → W2(x) uniformly on compact
sets is similar to that appearing in the proof of Theorem 3.20. ⊓⊔

Combining Theorem 4.30 and Lemma 4.31 yields the following.

Corollary 4.32. W2 is semiconcave.

One can now use a semiconcave space structure analogous to the semi-
convex case. First, in analogy with the max-plus algebra, one defines the min-
plus algebra (commutative semifield) over R+ = R ∪ {+∞} with operations

a⊕− b
.
= min{a, b}, a⊗− b

.
= a + b.

In direct analogy with max-plus spaces, a variety of spaces of concave and
semiconcave functions are min-plus vector spaces (or moduloids [6]). One
would then proceed in a manner analogous to that in the previous sections
of this chapter to obtain an approximate computation of the value function
(4.71) via a min-plus eigenvector problem with eigenvalue zero. We leave the
development to future researchers.

4.8.1 A Game Problem

There is a class of game problems that are closely related to control prob-
lems such as these. These game problems encompass a subclass of nonlinear
H∞ control problems (via their state-space game representations).

Consider the game problem with dynamics

ξ̇ = A(ξ) + D(ξ)u + σ(ξ)w (4.97)

with initial condition
ξ0 = x,∈ Rn, (4.98)

where here u· will be the control for the minimizing player and w· will be the
control for the maximizing player. We suppose u ∈ U = Lloc

2 ([0,∞);Rl) and
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w ∈ W = Lloc
2 ([0,∞);Rk). Here D and σ are n× l and n× k matrix-valued,

respectively. Consider the payoff

J1(x, T, u, w) =

∫ T

0

l(ξt) +
η2

2
|ut|2 −

γ2

2
|wt|2 dt. (4.99)

We will be using the Elliott–Kalton definition of value (c.f. [8], [35], [38]).
A nonanticipative strategy for the minimizing player is a mapping λ : W → U
such that if wr = ŵr for almost every r ∈ [0, t], then λr[w] = λr[ŵ] for almost
every r ∈ [0, t], for all t > 0. Let the set of nonanticipative strategies for
the minimizing player be denoted by Λ. A nonanticipative strategy for the
maximizing player is a mapping θ : U → W such that if ur = ûr for almost
every r ∈ [0, t], then θr[u] = θr[û] for almost every r ∈ [0, t], for all t > 0. Let
the set of nonanticipative strategies for the maximizing player be denoted by
Θ. The lower and upper (Elliott–Kalton) values are

W 1 = inf
λ∈Λ

sup
w∈W

sup
T∈[0,∞)

J1(x, T, λ[w], w) (4.100)

and
W 1 = sup

θ∈Θ
inf
u∈U

sup
T∈[0,∞)

J1(x, T, u, θ[u]).

(Note that the existence of these upper and lower values follows from the
Soravia [106] result discussed below.) If W 1 = W 1, then the game is said to
have value (in the Elliott–Kalton sense), and we say that W1

.
= W 1 = W 1 is

the value of the game.
The DPE corresponding to a game is referred to as a Hamilton–Jacobi–

Isaacs (HJI) PDE. The HJI PDE corresponding to the lower value is (c.f. [8],
[38])

0 = − max
w∈Rk

min
u∈Rl

{
[A(x) + D(x)u + σ(x)w] · ∇W + l(x)

+
η2

2
|u|2 − γ2

2
|w|2

}
(4.101)

= −A(x) · ∇W − l(x)− min
u∈Rl

{
(D(x)u) · ∇W +

η2

2
|u|2

}

− max
w∈Rk

{
(σ(x)w) · ∇W − γ2

2
|w|2

}
(4.102)

= −
[
A(x) · ∇W + l(x)

−(∇W )T

(
D(x)DT (x)

2η2
− σ(x)σT (x)

2γ2

)
∇W

]
(4.103)

= − min
u∈Rl

max
w∈Rk

{
[A(x) + D(x)u + σ(x)w] · ∇W + l(x)
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+
η2

2
|u|2 − γ2

2
|w|2

}

with boundary condition W (0) = 0. Note that the right-hand side for the last
equation corresponds to the HJI PDE for the upper value. In this case, we
say that the Isaacs condition is satisfied, and one generally expects the game
to have value, the value being the unique (correct, as discussed in Chapter 3)
viscosity solution of the HJI PDE.

We consider only the case where the controller dominates the disturbance
in the sense that

QQT

2
:=

DDT

2η2
− σσT

2γ2

is uniformly bounded and nondegenerate in the sense of Assumption (A4.1m).
In this case we see that the HJI PDE for this game, i.e., (4.103), coincides
with the HJB PDE (4.77) for the control problem (4.68)–(4.71).

Now note that, by Soravia [106], one also has that the game value function,
W1, and the control value function, W2, are both minimal, non-negative, con-
tinuous viscosity supersolutions of (4.103)(equivalently (4.77)). Consequently,
W1 ≡ W2, and of course then by Theorem 4.28 and Corollary 4.32, W 1 is a
semiconcave viscosity solution of (4.103). Therefore, the min-plus algorithm,
outlined above, to compute control problem value W2 also obtains the value
of the game problem, W1.

4.9 An Example

As an example, we consider the two-dimensional min-plus problem with ξ =
(ξ1, ξ2)

T and dynamics

d

dt

(
ξ1

ξ2

)
=

(
ξ2

(3/4) arctan(2ξ1)

)
+

(
0
1

)
u +

(
0
1

)
w. (4.104)

Let γ, η be such that the reduction of the previous section yields a matrix in
the quadratic term in the gradient given by

QQT

2
=

[
0 0
0 1/2

]
.

Note that this example was chosen so as to represent a second-order sys-
tem of the form ÿ = (3/4) arctan(2y) + u + w. The running cost was simply
l(x) = x2

1+x2
2. One might note that the assumption of uniform nondegeneracy,

(A4.1m), is violated in this example (although one still has controllability).
The corresponding PDE is

0 = −
{
x2Wx1 + 3

4 arctan(2x1)Wx2 + 1
2 (x2

1 + x2
2)− 1

2W 2
x2

}

with usual boundary condition W (0) = 0.
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The computations were run at a coarseness level that allowed computation
in less than 10 seconds on a 2000 Sun Ultra 10. The left-hand plot in Figure 4.1
depicts W . The right-hand plot in Figure 4.1 and the left-hand plot in Figure
4.2 depict the partials of W ; note the nonsmoothness. The right-hand plot
in Figure 4.2 depicts the approximate backsubstitution error — computed
by taking first-order differences on the grid to approximate ∇W , and then
substituting this back into the PDE. The resulting error values were scaled
by dividing by 1 + |x|2.
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5

Max-Plus Eigenvector Method Error Analysis

In the preceding chapter, the basics of a max-plus eigenvector method for an
infinite time-horizon control problem were laid out. In that development, we
assumed the extremely “unlikely” case that the value function had a finite
max-plus expansion. Proceeding in that way allowed us to analyze the power
method for solution of the eigenvector without great delay. We now return to
the problem, and remove this assumption. The mechanics developed in the
previous chapter will continue to be used for solution of the finite-dimensional
eigenvector problem. However, we will now analyze the errors induced by the
truncation of the infinite-dimensional max-plus eigenvector (eigenfunction) to
a finite number of terms. In particular, the truncation will be achieved by
taking the centers, xi, of the basis functions, ψi = − 1

2 (x− xi)
T C(x− xi), on

a uniform grid over the ball of radius DR (see Theorems 2.11 and 2.13). At
the same time, we will consider the errors induced by the fact that we cannot
compute the elements of the (finite) B matrix exactly, but only approximately.
We will find that the convergence of the approximate solution to the exact
solution will depend on the relative rates at which the distance between the
basis function centers and the errors in the computation of the elements of
the corresponding B matrices go to zero.

The problem dynamics continue to be given by (3.12) with initial condi-
tion (3.13). The payoff and value, W , continue to be (3.21) and (4.4). Con-
sequently, the HJB PDE and boundary condition remain (4.7) and (4.8). We
retain assumptions (A4.1I)–(A4.4I). The value function is the unique, “cor-
rect” solution of the eigenvector problem 0 ⊗W = Sτ [W ] and/or HJB PDE
in the appropriate class (as given in Theorems 4.1 and 4.4).

Let cR be the semiconvexity constant discussed in Section 4.3. In this chap-
ter, we modify Assumption (A4.5I) to allow matrix semiconvexity coefficients
(see Remarks 2.10 and 2.14).

We assume that one may choose symmetric matrix C such that
C−cRI > 0 and such that Sτ [ψi] ∈ SC′L′

R̄
for all i where C−C ′ > 0,

|C||C−1|R + |C−1|L′ ≤ DR and ψi(x) = − 1
2 (x− xi)

T C(x− xi).
(A5.5I)
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This assures us that each Sτ [ψi] has a max-plus basis expansion in terms of
the basis {ψj}. We remark that in the linear/quadratic case with f(x) = Ax, σ
constant, and l(x) = 1

2xT Dx with A, σ, D, γ such that Assumptions (A4.1I)–
(A4.4I) are met, condition (A5.5I) is satisfied. This follows from the fact that
matrix expression D−AT C−CA+ 1

2γ2 CT σσT C is positive definite for C = cI
with sufficiently large c. We note that this assumption will need to be replaced
by a slightly stricter assumption (A5.6I) in Section 5.2 for the results there
and beyond.

Sections 5.1 to 5.3 will provide development of the error estimates. The
details will be somewhat technical. For those desiring a preview, we note that
a summary of these results appears in Section 5.4.

5.1 Allowable Errors in Computation of B

In this section, we obtain a bound on the maximum allowable errors in the
computation of B. If the errors are below this bound, then we can guarantee
convergence of the power method to the unique eigenvector. In particular,
the guaranteed convergence of the power method relies on Lemma 4.20 and
Theorem 4.21 because these imply a certain structure to a directed graph
associated with B (see [78], [85], and for a more general discussion, [6]). If
there was a sequence {ki}i=N+1

i=1 such that 1 ≤ ki ≤ ν for all i and kN+1 = k1

such that one does not have ki = 1 for all i, and such that

N∑

i=1

Bki,ki+1 ≥ 0

then there would be no guarantee of convergence of the power method (nor
the ensuing uniqueness result for that matter). In order to determine more
exactly, the allowable errors in the computation of the elements of B, we first
need to obtain a more exact expression for the δ that appears in Lemma 4.20
and Theorem 4.21, and this will appear in Theorems 5.4 and 5.5. That will be
followed by results indicating the allowable error bounds. To begin, one needs
the following lemma.

Lemma 5.1. Let ξ satisfy (3.12) with initial state ξ0 = x ∈ Rn. Let K, τ ∈
(0,∞), and let u ∈ L2[0, τ ]. Suppose δ > 0 sufficiently small so that

δ ≤ Km2
σ

cf (1− e−cf τ )
(5.1)

where cf , mσ are given in Assumptions (A4.1I), (A4.2I). Then

K|ξτ − x|2 + δ‖u‖2L2[0,τ ] ≥
δcf

8m2
σ

|x|2
(
1− e−cf τ

)4
.
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Remark 5.2. It may be of interest to note that the assumption on the size of δ
may not be necessary. At one point in the proof to follow, this assumption is
used in order to eliminate a case that would lead to a more complex expression
on the right-hand side in the result in the lemma statement. If some later
technique benefited from not having such an assumption, the lemma proof
could be revisited.

Remark 5.3. It is perhaps also worth indicating the intuition behind the in-
equality obtained in Lemma 5.1. Essentially, it states that, due to the nature
of the dynamics of the system, the only way that |ξτ −x|2 can be kept small is
through input disturbance energy ‖u‖2, and so their weighted sum is bounded
from below. The dependence on |x| on the right-hand side is indicative of the
fact that |f(x)| goes to zero at the origin.

Proof. Note that by (3.12) and Assumptions (A4.1I) and (A4.2I),

d

dt
|ξ|2 ≤ −2cf |ξ|2 + 2mσ|ξ||u| (5.2)

≤ −cf |ξ|2 +
m2

σ

cf
|u|2. (5.3)

Consequently, for any t ∈ [0, τ ],

|ξt|2 ≤ e−cf t|x|2 +
m2

σ

cf

∫ t

0

|ur|2 dr

and so
‖u‖2L2(0,t) ≥

cf

m2
σ

[
|ξt|2 − |x|2

]
∀ t ∈ [0, τ ]. (5.4)

We may suppose

|ξt| ≤
√

1 + (1− e−cf τ )4/2 |x| ∀ t ∈ [0, τ ]. (5.5)

Otherwise by (5.4) and the reverse of (5.5), there exists t ∈ [0, τ ] such that

K|ξτ − x|2 + δ‖u‖2L2[0,τ ] ≥ δ‖u‖2L2[0,t] ≥
δcf

2m2
σ

(1− e−cf τ )4|x|2 (5.6)

in which case one already has the desired result.
Define K

.
=

√
1 + (1− e−cf τ )4/2. Recalling (5.2), and applying (5.5), one

has
d

dt
|ξt|2 ≤ −2cf |ξt|2 + 2mσK|x||ut|.

Solving this ODI for |ξt|2, and using the Hölder inequality, yields the bound

|ξτ |2 ≤ |x|2e−2cf τ +
mσK|x|‖u‖

√
cf

(
1− e−4cf τ

)1/2
. (5.7)
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This implies

|ξτ | ≤ |x|e−cf τ +
1

c
1/4
f

√
mσK|x|‖u‖

(
1− e−4cf τ

)1/4
. (5.8)

We consider two cases separately. First we consider the case where |ξτ | ≤
|x|. Then, by (5.8)

|ξτ − x| ≥ |x| − |ξτ |

≥ |x|(1− e−cf τ )− 1

c
1/4
f

√
mσK|x|‖u‖

(
1− e−4cf τ

)1/4
. (5.9)

Now note that for general a, b, c ∈ [0,∞), a + c ≥ b implies

a2 ≥ b2

2
− c2. (5.10)

By (5.9) and (5.10) (and noting the non-negativity of the norm),

|ξτ − x|2 ≥ max

{
1

2
|x|2(1− e−cf τ )2 − mσK

√
cf
|x|‖u‖

(
1− e−4cf τ

)1/2
, 0

}

which implies

K|ξτ − x|2 + δ‖u‖2

≥ max

{
K

2
|x|2(1− e−cf τ )2 − KmσK

√
cf

|x|‖u‖
(
1− e−4cf τ

)1/2
+ δ‖u‖2 ,

δ‖u‖2
}

. (5.11)

The right-hand side of (5.11) is a maximum of two convex quadratic func-
tions of ‖u‖. The second is monotonically increasing, while the first is positive
at ‖u‖ = 0 and initially decreasing. This implies that there are two possibil-
ities for the location of the minimum of the maximum of the two functions.
If the minimum of the first function is to the left of the point where the two
functions intersect, then the minimum occurs at the minimum of the first
function; alternatively it occurs where the two functions intersect. The min-
imum of the first function occurs at ‖u‖min (where we are abusing notation
here, using the min subscript on the norm to indicate the value of ‖u‖ at
which the minimum occurs), and this is given by

‖u‖min =
KmσK|x|(1− e−4cf τ )1/2

2
√

cfδ
. (5.12)

The point of intersection of the two functions occurs at
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‖u‖int =

√
cf |x|(1− e−cf τ )2

2mσK(1− e−4cf τ )1/2
. (5.13)

The two points coincide when

δ =
Km2

σK
2
(1− e−4cf τ )

cf (1− e−cf τ )2
=

Km2
σ[1 + (1− e−cf τ )4/2](1− e−4cf τ )

cf (1− e−cf τ )2
,

and ‖u‖int occurs to the left of ‖u‖min for δ less than this. It is easy to
see that assumption (5.1) implies that δ is less than the value at which the
points coincide, and consequently, the minimum of the right-hand side of
(5.11) occurs at ‖u‖int.

Using the value of the right-hand side of (5.11) corresponding to ‖u‖int,
we find that for any disturbance, u,

K|ξτ − x|2 + δ‖u‖2 ≥ δcf |x|2

4m2
σK

2

(1− e−cf τ )4

(1− e−4cf τ )
,

which, using definition of K

, =
δcf |x|2
4m2

σ

(1− e−cf τ )4

(1− e−4cf τ )[1 + (1− e−cf τ )4/2]

≥ δcf |x|2
8m2

σ

(1− e−cf τ )4. (5.14)

Now we turn to the second case,

|ξτ | > |x|. (5.15)

In this case, (5.15) and (5.8) yield

|x|e−cf τ +
1

c
1/4
f

√
mσK|x|‖u‖

(
1− e−4cf τ

)1/4
> |x|. (5.16)

Upon rearrangement, (5.16) yields

‖u‖ >

√
cf |x|

mσK

(1− e−cf τ )2

(1− e−4cf τ )1/2
.

Consequently, using the definition of K and some simple manipulations,

K|ξτ − x|2 + δ‖u‖2 ≥ δcf |x|2(1− e−cf τ )4

m2
σ(1− e−4cf τ )[1 + (1− e−cf τ )4/2]

≥ δcf |x|2
2m2

σ

(1− e−cf τ )4. (5.17)

Combining (5.14) and (5.17) completes the proof. ⊓⊔
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Now we turn to how Lemma 5.1 can be used to obtain a more detailed
replacement for the δ that appears in 4.20 and Theorem 4.21. Fix τ > 0. Let

γ̂2
0 ∈

(
2m2

σαl

c2
f

, γ2

)
, (5.18)

and in particular, let γ̂2
0 = γ2 − δ where δ is sufficiently small so that

δ < γ2 − 2m2
σαl

c2
f

. (5.19)

Then all results of Chapter 4 for W hold with γ2 replaced by γ̂2
0 , and we

denote the corresponding value by W γ̂0 . In particular, by Theorem 2.13, for

any R < ∞ there exists semiconvexity constant c0
R < ∞ for W γ̂0 over BR,

and a Lipschitz constant, L0
R also for W γ̂0 over BR,. Note that the required

constants satisfy c0
R < cR (see proof of Theorem 2.13). If L0

R > LR sufficiently
so that |C||C−1|R + |C−1|L0

R > DR, we modify our basis to be dense over
BD0

R
where D0

R ≥ |C||C−1|R + |C−1|L0
R (and redefine DR

.
= D0

R in that

case). Then, as before, the set {ψi} forms a max–plus basis for the space of

semiconvex functions over BR with semiconvexity constant, c0
R, i.e., Sc0

R,L0
R

R̄
.

For any j, let
xj ∈ argmax

|x|≤R

{ψj(x)−W γ̂0(x)}. (5.20)

Then for any x ∈ BR,

ψj(x)− ψj(xj) ≤ W γ̂0(x)−W γ̂0(xj)−K0|x− xj |2, (5.21)

where 2K0 > 0 is the minimum eigenvalue of C − c0
RI > 0. Note that K0

depends on γ̂0.

Theorem 5.4. Let γ̂0 satisfy (5.18). Let K = K0 satisfy (5.21) (where we
may take K0 > 0 to be the minimum eigenvalue of C − c0

RI > 0 if desired).

Let δ > 0 satisfy δ ≤ γ2

2 −
γ̂2
0

2 and (5.1). Then, for any j �= 1,

Bj,j ≤
−δcf |xj |2

8m2
σ

(
1− e−cf τ

)4
.

(Recall that by the choice of ψ1 as the basis function centered at the origin,
B1,1 = 0; see Lemma 4.20.)

Proof. Let K0, τ, δ satisfy the assumptions (i.e., (5.1), (5.19), (5.21)). Then

Sτ [ψj ](xj)−ψj(xj) = sup
u∈L2

{∫ τ

0

l(ξt)− γ2

2 |ut|2 dt+ψj(ξτ )−ψj(xj)

}
, (5.22)
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where ξ satisfies (3.12) with ξ0 = xj . Let ε > 0, and uε be ε-optimal . Then
this implies

Sτ [ψj ](xj)− ψj(xj) ≤
∫ τ

0

l(ξε
t )− γ2

2
|uε

t |2 dt + ψj(ξ
ε
τ )− ψj(xj) + ε,

and by (5.21) and the definition of γ̂0

≤
∫ τ

0

l(ξε
t )− γ̂2

0

2
|uε

t |2 − δ|uε
t |2 dt + W γ̂0(ξε

τ )−W γ̂0(xj)

−K0|ξε
τ − xj |2 + ε

and by Theorem 4.4 (for W γ̂0),

≤ −δ‖uε‖2 −K0|ξε
τ − xj |2 + ε.

Combining this with Lemma 5.1 yields

Sτ [ψj ](xj)− ψj(xj) ≤
−δcf |xj |2

8m2
σ

(
1− e−cf τ

)4
+ ε.

Because this is true for all ε > 0, one has

Sτ [ψj ](xj)− ψj(xj) ≤
−δcf |xj |2

8m2
σ

(
1− e−cf τ

)4
. (5.23)

But

Bj,j = min
|x|≤R

{Sτ [ψj ](x)− ψj(x)} (5.24)

which by (5.23)

≤ −δcf |xj |2
8m2

σ

(
1− e−cf τ

)4
. ⊓⊔

Theorem 5.5. Let γ̂0 satisfy (5.18). Let K0 be as in (5.21), and let δ > 0 be
given by

δ = min

{
K0m

2
σ

cf
,

γ2

2
− γ̂2

0

2

}
(5.25)

(which is somewhat tighter than the requirement in the previous theorem). Let
N ∈ N , {ki}i=N+1

i=1 such that 1 ≤ ki ≤ ν for all i and kN+1 = k1. Suppose we
are not in the case ki = 1 for all i. Then

N∑

i=1

Bki,ki+1 ≤ −max
ki

|xki
|2 δcf

8m2
σ

(
1− e−cf Nτ

)4
.

Proof. By Theorem 5.4, this is true for N = 1. We prove the case N = 2. The
proof of the general case will then be obvious. First note the monotonicity of
the semigroup in the sense that if g1(x) ≤ g2(x) for all x, then
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Sτ [g1](x) ≤ Sτ [g2](x) ∀x ∈ Rn. (5.26)

Suppose either i �= 1 or j �= 1. By definition, ψj(x) + Bj,i ≤ Sτ [ψi](x) for
all x ∈ Rn. Using (5.26) and the max-plus linearity of the semigroup yields

Sτ [ψj ](x) + Bj,i ≤ S2τ [ψi](x) ∀x,

which implies in particular that

Sτ [ψj ](xi) + Bj,i ≤ S2τ [ψi](xi). (5.27)

Now, employing the same proof as that of Theorem 5.4, but with τ replaced
by 2τ (noting that condition (5.1) is satisfied with 2τ replacing τ by our
assumption (5.25)), one has as in (5.23)

S2τ [ψi](xi)− ψi(xi) ≤
−δcf |xi|2

8m2
σ

(
1− e−2cf τ

)4
. (5.28)

Combining (5.27) and (5.28) yields

[
Sτ [ψj ](xi)− ψi(xi)

]
+ Bj,i ≤

−δcf |xi|2
8m2

σ

(
1− e−2cf τ

)4
.

Using the definition of Bi,j , this implies

Bi,j + Bj,i ≤
−δcf |xi|2

8m2
σ

(
1− e−2cf τ

)4
. (5.29)

By symmetry, one also has

Bi,j + Bj,i ≤
−δcf |xj |2

8m2
σ

(
1− e−2cf τ

)4
. (5.30)

Combining (5.29) and (5.30) yields

Bi,j + Bj,i ≤ −max
{
|xi|2, |xj |2

} δcf

8m2
σ

(
1− e−2cf τ

)4
. ⊓⊔

The convergence of the power method (see Chapter 4) relied on a certain
structure of B (B1,1 = 0 and strictly negative loop sums as described in the
assumptions of Theorem 4.21). Combining this with the above result on the
size of loop sums, one can obtain a condition that guarantees convergence of
the power method to a unique eigenvector corresponding to eigenvalue zero.
This is given in the next theorem.

Theorem 5.6. Let B be given by Bj,i = −maxx∈BR

{
ψj(x)− Sτ [ψi](x)

}
for

all i, j ≤ ν, and let B̃ be an approximation of B with B̃1,1 = 0 and such that
there exists ε > 0 such that for all (i, j) �= (1, 1),
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|B̃i,j −Bi,j | ≤ max
{
|xi|2, |xj |2

}(
δcf

8m2
σ

)(
1− e−cf τ

)4

ν2
− ε, (5.31)

where

δ = min

{
K0m

2
σ

cf
,

γ2

2
− γ̂2

0

2

}
. (5.32)

Then the power method applied to B̃ converges in a finite number of steps to
the unique eigenvector ẽ corresponding to eigenvalue zero, that is

ẽ = B̃ ⊗ ẽ.

Proof. Let N ∈ N , and consider a sequence of nodes {ki}N+1
i=1 with k1 = kN+1.

We must show that if we are not in the case ki = 1 for all i, then

N∑

i=1

B̃ki,ki+1 < 0.

Suppose N > ν2. Then any sequence {ki}N+1
i=1 with k1 = kN+1 must be

composed of subloops of length no greater than ν2. Therefore, it is sufficient
to prove the result for N ≤ ν2. Note that by the assumptions and Theorem
5.5,

N∑

i=1

B̃ki,ki+1 ≤
N∑

i=1

Bki,ki+1 +

N∑

i=1

|B̃ki,ki+1 −Bki,ki+1 |

≤ −max
ki

|xki
|2 δcf

8m2
σ

(
1− e−cf Nτ

)4

+ max
ki

|xki
|2 δcf

8m2
σ

(
1− e−cf Nτ

)4
(N/ν2)− ε

≤ −ε.

Then by the same proofs as for Theorem 4.22, and Corollary 4.23, the result
follows. ⊓⊔

Theorem 5.6 will be useful later when we analyze the size of errors intro-
duced by our computational approximation to the elements of B.

If the conditions of Theorem 5.6 are met, then one can ask what the size of
the errors in the corresponding eigenvector are. Specifically, if eigenvector ẽ is
computed using approximation B̃, what is a bound on the size of the difference
between e (the eigenvector of B) and ẽ? The following theorem gives a rough,
but easily obtained, bound.

Theorem 5.7. Let B be given by Bi,j = −maxx∈BR

(
ψj(x) − Sτ [ψi](x)

)
for

all i, j ≤ ν, and let B̃ be an approximation of B with B̃1,1 = 0 and such that
there exists ε > 0 such that
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|B̃i,j −Bi,j | ≤ max
{
|xi|2, |xj |2

}(
δcf

8m2
σ

)(
1− e−cf τ

)4

νµ
− ε ∀ i, j (5.33)

where µ ∈ {2, 3, 4, . . .} and δ is given by (5.32). Then the power method will

yield the unique eigenvectors e and ẽ of B and B̃, respectively, in finite num-
bers of steps, and

‖e− ẽ‖ .
= max

i
|ei − ẽi| ≤

(
DR

)2
(

δcf

8m2
σ

)(
1− e−cf τ

)4

νµ−2
− ε.

Proof. By Theorem 5.6, one may use the power method to compute ẽ, and so
one has that for any j ≤ ν2,

ẽj =
[
B̃ν2 ⊗ 0

]
j

= max
m≤ν2

[
B̃m ⊗ 0

]
j

= max
m≤ν2

max
{kl}m

l=1
, k1=j

m∑

l=1

B̃kl,kl+1

where the exponents on B̃ represent max-plus exponentiation and the bound
m ≤ ν2 follows from the fact that under the assumption, the sum around
any loop other than that of the trivial loop, B̃1,1 = 0, are strictly negative.
Therefore,

ẽj ≤ max
m≤ν2

max
{kl}m

l=1
, k1=j

[
m∑

l=1

∣∣B̃kl,kl+1
−Bkl,kl+1

∣∣ +

m∑

l=1

Bkl,kl+1

]

which by the assumption (5.33) and the fact that e is the eigenvector of B,

≤
(
DR

)2
(

δcf

8m2
σ

)(
1− e−cf τ

)4

νµ−2
− ε + ej .

Using symmetry, one obtains

|ẽj − ej | ≤
(
DR

)2
(

δcf

8m2
σ

)(
1− e−cf τ

)4

νµ−2
− ε. ⊓⊔

We remark that by taking ε sufficiently small, and noting that 1−e−cf τ ≤
cfτ for non-negative τ , Theorem 5.7 implies (under its assumptions)

‖e− ẽ‖ = max
i
|ei − ẽi| ≤

(
DR

)2
(

δc5
f

8m2
σ

)
τ4

νµ−2
. (5.34)

Also note that aside from the case i = j = 1 (recall B1,1 = 0), one has

min
i 	=1

{
|xi|2

}
≤ max

{
|xi|2, |xj |2

}
∀ i, j.

Using this, and choosing ε > 0 appropriately, one has the following theorem
(where we note the condition on the errors in B is uniform but potentially
significantly stricter). The proof is nearly identical to that for Theorem 5.7
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Theorem 5.8. Let B be as in Theorem 5.7, and let B̃ be an approximation
of B with B̃1,1 = 0 and such that

|B̃i,j −Bi,j | ≤ min
i	=1

{
|xi|2

}(
δcf

9m2
σ

)(
1− e−cf τ

)4

νµ
∀ i, j, (5.35)

where µ ∈ {2, 3, 4, . . .} and δ is given by (5.32). Then the power method will

yield the unique eigenvectors e and ẽ of B and B̃, respectively, in finite num-
bers of steps, and

‖e− ẽ‖ ≤ min
i 	=1

{
|xi|2

}(
δcf

9m2
σ

)(
1− e−cf τ

)4

νµ−2
.

A simpler variant on this result may be worth using. Note that for τ ∈
[0, 1/cf ], one has 1− e−cf τ ≥ (cf/2)τ . Then by a proof again nearly identical
to that of Theorem 5.7, one has:

Theorem 5.9. Suppose τ ≤ 1/cf . Let B be as in Theorem 5.7, and let B̃ be

an approximation of B with B̃1,1 = 0 and such that

|B̃i,j −Bi,j | ≤ min
i 	=1

{
|xi|2

}(
δc5

f

9(16)m2
σ

)
τ4

νµ
∀ i, j (5.36)

where µ ∈ {2, 3, 4, . . .} and δ is given by (5.32). Then the power method will

yield the unique eigenvectors e and ẽ of B and B̃, respectively, in finite num-
bers of steps, and

‖e− ẽ‖ ≤ min
i 	=1

{
|xi|2

}(
δc5

f

9(16)m2
σ

)
τ4

νµ−2
.

This variant is included because the simpler right-hand sides might sim-
plify analysis.

5.2 Convergence and Truncation Errors

In this section we consider the approximation due to using only a finite number
of functions in the max-plus basis expansion. It will be shown that as the
number of functions increases (in a reasonable way), the approximate solution
obtained by the eigenvector computation of Chapter 4 converges from below
to the value function, W . Error bounds will also be obtained. These error
bounds will be useful in the error summary to follow in Section 5.4.
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5.2.1 Convergence

This subsection contains a quick proof that the errors due to truncation of
the basis go to zero as the number of basis functions increases (more exactly,
as the distance between basis function centers decreases). No specific error
bounds are obtained; those require the more complex analysis of the next
subsection.

Note that in this subsection, a slightly different notation for the index-
ing and numbers of basis functions in the sets of basis functions is used.
This will make the proof simpler. This alternate notation appears only in this
subsection. Specifically, let us have the sets of basis functions indexed by ν,
that is the sets are indexed by ν. Let the cardinality of the νth set be I(ν).

For each ν, let X (ν) .
= {x(ν)

i }I(ν)

i=1 and X (ν) ⊂ X (ν+1). For instance, in the
one-dimensional case, one might have X (1) = {0}, X (2) = {−1/2, 0, 1/2},
X (3) = {−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4}, and so on. Further, we will let

the basis functions be given by ψ
(ν)
i

.
= −1

2 (x − x
(ν)
i )T C(x − x

(ν)
i ), and con-

sider the sets of basis functions Ψ (ν) .
= {ψ(ν)

i : i ∈ I(ν)}. Then define the
approximations to the semigroup operator, Sτ by

S(ν)
τ [φ](x)

.
=

Iν⊕

i=1

a
(ν)
i ⊗ ψ

(ν)
i (x), (5.37)

where
a
(ν)
i

.
= −max

x

[
ψ

(ν)
i (x)− Sτ [φ](x)

]
. (5.38)

In other words, S
(ν)
τ is the result of the application of the Sτ followed

by the truncation due to a finite number of basis functions. More specif-

ically, if one defines T (ν)[φ](x) =
⊕Iν

i=1 a
(ν)
i ⊗ ψ

(ν)
i (x) with the a

(ν)
i given

by (5.38), then S
(ν)
τ [φ] = T (ν) ◦ Sτ [φ]. Also, let Y(ν) = {φ : BR(0) →

R| ∃{a(ν)
i } such that φ(x) =

⊕Iν

i=1 a
(ν)
i ⊗ ψ

(ν)
i (x) ∀x ∈ BR(0)}. Then note

that for φ ∈ Y(ν), one has

S(ν)
τ [φ](x) =

Iν⊕

i=1

⎡
⎣

Iν⊕

j=1

B
(ν)
i,j ⊗ a

(ν)
j

⎤
⎦⊗ ψ

(ν)
i (x) (5.39)

where B
(ν)
i,j corresponds to S

(ν)
τ (i.e., B

(ν)
i,j = −maxx

{
ψ

(ν)
i (x)−S

(ν)
τ [ψ

(ν)
j ](x)

}
).

Lastly, we use the notation Sτ
N to indicate repeated application of Sτ N

times. (Of course, by the semigroup property, Sτ
N = SNτ .) Correspondingly,

we use the notation S
(ν)
τ

N
to indicate the application of S

(ν)
τ N times.

Define φ0(x) ≡ 0 and

φ
(ν)
0 (x)

.
=

Iν⊕

i=1

a0(ν)
i ⊗ ψ

(ν)
i (x), a0(ν)

i
.
= −max

x

[
ψ

(ν)
i (x)− φ0(x)

]
. (5.40)
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From Chapter 3 (among many other sources) one has that

lim
N→∞

Sτ
N [φ0] = W. (5.41)

Also, note that since X (ν) ⊂ X (ν+1), one has

S(ν)
τ

N
[φ

(ν)
0 ](x) ≤ Sτ

(ν+1)N
[φ

(ν+1)
0 ](x) ≤ Sτ

N [φ0](x) (5.42)

for all x ∈ BR.
Note that by (5.40), and the definition of φ0, the corresponding coefficients,

a0(ν)
i , satisfy a0(ν)

i = 0 for all i. Combining this with Theorem 4.22 and (5.39),
one finds that for each ν, there exists N(ν) such that

S(ν)
τ

N
[φ

(ν)
0 ] = S(ν)

τ

N(ν)
[φ

(ν)
0 ] ∀N ≥ N(ν). (5.43)

Defining

W (ν)∞ .
= S(ν)

τ

N(ν)
[φ

(ν)
0 ], (5.44)

we further find that the limit is the fixed point. That is,

S(ν)
τ [W (ν)∞] = W (ν)∞. (5.45)

Then, by (5.41), (5.42) and (5.44), we find that

W (ν)∞ is monotonically increasing in ν (5.46)

and
W (ν)∞ ≤ W. (5.47)

Therefore, there exists W∞∞ ≤ W such that

W (ν)∞ ↑ W∞∞, (5.48)

and in fact, one can demonstrate equicontinuity of the W (ν)∞ on BR given
the assumptions (and consequently uniform convergence).

Under Assumption (A5.5I), one can show (see for instance Lemma 5.12
below, although this is more specific than what is is needed, or Theorem 3.3
in [81]) that given ε > 0, there exists νε < ∞ such that

W (ν)∞(x) = S(ν)
τ [W (ν)∞](x) ≥ Sτ [W (ν)∞](x)− ε

for all x ∈ BR for any ν ≥ νε. On the other hand, one always has

S(ν)
τ [φ] ≤ Sτ [φ].

Combining these last two inequalities, one obtains

W (ν)∞ = S(ν)
τ [W (ν)∞] ≤ Sτ [W (ν)∞] ≤ S(ν)

τ [W (ν)∞]+ε = W (ν)∞+ε. (5.49)

Combining this with (5.48), one finds
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Theorem 5.10.
W∞∞ = Sτ [W∞∞], (5.50)

or in other words, W∞∞ is a fixed point of Sτ .

Then, with some more work (see [81], Theorem 3.2), one obtains a conver-
gence theorem.

Theorem 5.11.
W∞∞(x) = W (x) ∀x ∈ BR.

5.2.2 Truncation Error Estimate

Theorem 5.11 demonstrates convergence of the algorithm to the value func-
tion as the basis function density increases. Here we outline one approach to
obtaining specific error estimates. The estimates may be rather conservative
due to the form of the truncation error bound used; this issue will become
clearer below. The main results are in Theorem 5.14 and Remark 5.15. Note
that these are only the errors due to truncation to a finite number of basis
functions; as noted above, analysis of the errors due to approximation of the
entries in the B matrix is discussed further below.

Recall that we choose the basis functions throughout such that x
(ν)
1 = 0,

or in other words, ψ
(ν)
1 (x) = −1

2 xT Cx, for all ν. (Note that we return here
to a notation where the (ν) superscript corresponds to the number of basis
functions — as opposed to the more complex notation with cardinality I(ν),
which was used in the previous subsection only.) Also, we will use the notation

W
(ν)
N,τ (x)

.
= Sτ

(ν)N
[φ

(ν)
0 ](x)

and we reiterate that the N superscript indicates repeated application of the

operator N times. Also, φ
(ν)
0 is the finite basis expansion of φ0 (with ν basis

fucntions).
To specifically set C, we will replace Assumption (A5.5I) with the follow-

ing:

We assume throughout the remainder of the chapter that one
may choose symmetric C such that C − cRI > 0 and δ′ ∈ (0, 1)
such that with C ′ .

= (1 − δ′)C, one has Sτ [ψi] ∈ SC′L′

R̄
for all i

where |C||C−1|R + |C−1|L′ ≤ DR.

(A5.6I)

Note that one could be more general, allowing C ′ to be a more general positive
definite symmetric matrix such that C − C ′ > 0, but we will not generalize
to that here. Finally, it should be noted that δ′ would depend on τ ; as τ ↓ 0,
one would need to take δ′ ↓ 0. Since δ′ will appear in the denominator of the
error bound of the next lemma (as well as implicitly in the denominator of
the quotient on the right-hand side of the error bound in Theorem 5.14), this
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implies that one does not want to simply take τ ↓ 0 as the means for reducing
the errors. This will be discussed further in the next section.

The following lemma is a general result about the errors due to truncation
when using the above max-plus basis expansion. The proof is long and rather
technical.

Lemma 5.12. Let δ′, C ′, L′ be as in Assumption (A5.6I), and let φ ∈ SC′L′

R̄

with φ(0) = 0, φ differentiable at zero with ∇xφ(0) = 0, and − 1
2xT C ′x ≤

φ(x) ≤ 1
2M̂|x|2 for all x for some M̂ < ∞. Let {ψi}ν

i=1 consist of basis

functions with matrix C and centers {xi} ⊆ BDR
such that C − C ′ > 0, and

let ∆
.
= maxx∈BDR

mini |x− xi|. Let

φ∆(x) = max
i

[ai + ψi(x)] ∀x ∈ BR

where
ai = − max

x∈BR

[ψi(x)− φ(x)] ∀ i.

Then

0 ≤ φ(x)− φ∆(x) ≤
{
|C|

[
2β̂ + 1 + |C|/(δ′cR)

]
|x|∆ if |x| ≥ ∆

1
2

[
M̂+ |C|

]
|x|∆ otherwise,

where β̂ is specified in the proof.

Proof. Recall that

φ(x) = max
x̃∈BDR

[a(x̃) + ψ
x̃
(x)] ∀x ∈ BR,

where
a(x̃) = − max

x∈BR

[ψ
x̃
(x)− φ(x)] ∀ x̃ ∈ BDR

and
ψ

x̃
(x)

.
= − 1

2 (x− x̃)T C(x− x̃) ∀x ∈ BR, x̃ ∈ BDR
.

(There is obviously a slight conflict in notation between such a ψ
x̃

where the
subscript x̃ ∈ Rn and ψi where the subscript is an index of xi ∈ Rn, but this
should not lead to confusion, and seems the best compromise.) It is obvious
that 0 ≤ φ(x)− φ∆(x), and so we prove the other bound.

Consider any x ∈ BR. Then

φ(x) = a(x̃) + ψ
x̃
(x) (5.51)

if and only if
C(x− x̃) ∈ −D−

x φ(x),

where
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D−
x φ(x) =

{
p ∈ Rn : lim inf

|y−x|→0

φ(y)− φ(x)− (y − x) · p
|y − x| ≥ 0

}
.

We denote such an x̃ corresponding to x (in (5.51)) as x̃. By the Lipschitz
nature of φ, one can easily establish that

|x̃− x| ≤ |C−1|L′. (5.52)

However, it will be desirable to have a bound where the right-hand side de-
pends linearly on |x|. (Actually, this may only be necessary for small x, while
(5.52) may be a smaller bound for large x, but we will obtain it for general
x.) Using (5.51), and noting that φ ≥ −1

2xT C ′x ≥ −1
2xT Cx, one has

1
2 (x− x̃)T C(x− x̃) ≤ a(x̃) + 1

2xT Cx.

Also, because a(x̃) + ψ
x̃
(·) touches φ from below at x, one must have

1
2 (x− x̃)T C(x− x̃)− 1

2 (x− x̃)T C(x− x̃)

≤ a(x̃) + 1
2xT Cx− 1

2 (x− x̃)T C(x− x̃)

≤ φ(x) + 1
2xT Cx ≤ 1

2M̂|x|2 + 1
2xT Cx

for all x ∈ BR where the last inequality is by assumption. Define

F (x)
.
= 1

2 (x− x̃)T C(x− x̃)− 1
2 (x− x̃)T C(x− x̃)− 1

2M̂|x|2,

and we see that we require F (x) ≤ 1
2xT Cx for all x ∈ BR. Taking the deriva-

tive, we find the maximum of F at x̂ given by

x̂ = (C + M̂I)−1Cx̃ (5.53)

and so
x̂− x̃ = −M̂(C + M̂I)−1x̃. (5.54)

(In the interest of readability, we ignore the detail of the case where x̂ /∈ BR(0)
here.) Therefore, F (x̂) ≤ 1

2xT Cx implies

(x− x̃)T C(x− x̃) ≤ x̃
TM̂(C + M̂I)−1C(C + M̂I)−1M̂x̃

+x̃
T
C(C + M̂I)−1M̂(C + M̂I)−1Cx̃ + xT Cx

= M̂x̃
T
[
M̂(C + M̂I)−1C(C + M̂I)−1

+M̂(C + M̂I)−1M̂I(C + M̂I)−1

−M̂2(C + M̂I)−2 + C(C + M̂I)−2C
]
x̃ + xT Cx

= M̂x̃
T
[
M̂C(C + M̂I)−2 + C(C + M̂I)−2C

]
x̃ + xT Cx

= x̃
TM̂C(C + M̂I)−1x̃ + xT Cx. (5.55)
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Noting that C is positive definite symmetric, and writing it as C =
√

C
√

C
T

where
√

C = S
√

Λ with S unitary and Λ the matrix of eigenvalues, one may
rewrite the first term on the right-hand side of (5.55) as

x̃
TM̂C(C + M̂I)−1x̃ = x̃

TM̂ 1
2

[
C(C + M̂I)−1 + (C + M̂I)−1C

]
x̃

= x̃
T√

CQ
√

C
T
x̃

where

Q
.
= 1

2M̂
[√

C
T
(C + M̂I)−1

√
C

−T
+
√

C
−1

(C + M̂I)−1
√

C
]
.

Making the change of variables y =
√

C
T
x, (5.55) becomes

|y − ỹ|2 ≤ ỹ
T
Qỹ + |y|2.

Noting that
√

C
T
(C + M̂I)−1

√
C

−T
is a similarity transform of (C +

M̂I)−1, one sees that the eigenvalues of Q are the eigenvalues of (C +M̂I)−1.

Now, since (C + M̂I) is positive definite,

(C + M̂I) = S Λ S
−1

with Λ the diagonal matrix of eigenvalues and S the unitary matrix of

eigenvectors. Therefore, M̂(C + M̂I)−1 = S(M̂Λ
−1

)S
−1

, and note that

β
.
= maxi{M̂λ

−1

i } < 1 where the λi are the diagonal elements of Λ.
Consequently,

|y − ỹ|2 ≤ β|ỹ|2 + |y|2 (5.56)

where β ∈ (0, 1). This implies

|ỹ − y|2 ≤ β|ỹ − y + y|2 + |y|2

= β
[
|ỹ − y|2 + |y|2 + 2(ỹ − y) · y

]
+ |y|2

≤ β|ỹ − y|2 + (β + 1)|y|2

+β
[ (1− β)/2

β
|ỹ − y|2 +

β

(1− β)/2
|y|2

]
,

which after some rearrangement, yields

|ỹ − y|2 ≤ 2(1 + β2)

(1− β)2
|y|2 (5.57)

or equivalently,

(x− x̃)T C(x− x̃) ≤
[
2(1 + β2)

(1− β)2

]
xT Cx.

Consequently, there exists β̂ <∞ (i.e., β̂ = [|
√

C|/√cR][
√

2(1 + β2)/(1−β)] )
such that
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|x− x̃| ≤ β̂|x|. (5.58)

Given x̃, let i ∈ argmini |xi − x̃|, and note that

|xi − x̃| ≤ ∆. (5.59)

It is easy to see that

|ψ
x̃
(x)− ψi(x)| ≤ 1

2 |(x− x̃)T C(x− x̃)− (x− x̃)T C(x− xi)|
+ 1

2 |(x− x̃)T C(x− xi)− (x− xi)
T C(x− xi)|

≤ 1
2 |C|

[
|x̃− xi||x− x̃|+ |x̃− xi||x− xi|

]

≤ 1
2 |C|

[
|x̃− xi||x− x̃|+ |x̃− xi|(|x− x̃|+ |x̃− xi|)

]
,

which by (5.59)

≤ |C|
[
|x− x̃|∆ + 1

2∆2
]
. (5.60)

Combining (5.58) and (5.60), one finds

|ψ
x̃
(x)− ψi(x)| ≤ |C|

[
β̂|x|∆ + 1

2∆2
]
. (5.61)

Now note that

φ(x)− φ∆(x) ≤ a(x̃) + ψ
x̃
(x)− [ai + ψi(x)]

which by (5.61)

≤ |C|
[
β̂|x|∆ + 1

2∆2
]

+ a(x̃)− ai. (5.62)

We now deal with the last two terms in this bound. Let

xi

.
= argmax

x∈BR

[ψi(x)− φ(x)].

(Note that we will also skip the technical details of the additional case where
xi lies on the boundary of BR, and consider only the case where the argmax
in the interior, BR.) Then,

−C(xi − xi) ∈ D−φ(xi)

and
−C(x− x̃) ∈ D−φ(x).

By the semiconvexity, one has the general result that p ∈ D−φ(x), q ∈ D−φ(y)
implies

(p− q) · (x− y) ≥ −(x− y)T C ′(x− y).

Consequently,
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−(xi − xi + x̃− x)T C(xi − x) ≥ −(xi − x)T C ′(xi − x).

Recalling that C ′ = (1− δ′)C , we see that this implies

−(xi − x)T C(xi − x) + (1− δ′)(xi − x)T C(xi − x) ≥ −|C| |xi − x| |xi − x̃|
≥ −|C| |xi − x|∆,

or
δ′(xi − x)T C(xi − x) ≤ |C| |xi − x|∆.

Noting that C − cRI > 0, this implies

|xi − x| ≤ |C|
δ′cR

∆. (5.63)

Now,

ã− ai ≤ ψi(xi)− ψ
x̃
(xi)

= ψi(x)− ψ
x̃
(x) + [ψi(xi)− ψ

x̃
(xi)]− [ψi(x)− ψ

x̃
(x)],

which, after cancellation,

= ψi(x)− ψ
x̃
(x)− (x− xi)C(xi − x̃)

≤ |ψi(x)− ψ
x̃
(x)|+ |C|∆|x− xi|,

which by (5.61) and (5.63)

≤ |C|
[
β̂|x|+

(
1
2 + |C|/(δ′cR)

)
∆
]
∆. (5.64)

Combining (5.62) and (5.64) yields

φ(x)− φ∆(x) ≤ |C|
[
2β̂|x|+

(
1 + |C|/(δ′cR)

)
∆
]
∆. (5.65)

Suppose |x| ≥ ∆. Then, (5.65) implies

φ(x)− φ∆(x) ≤ |C|
[
2β̂ + 1 + |C|/(δ′cR)

]
|x|∆, (5.66)

which is the first case in right-hand side of the assertion.
Lastly, suppose |x| < ∆. By assumption, there exists M̂ < ∞ such that

φ(x) ≤ 1
2M̂|x|2. Therefore,

φ(x)− φ∆(x) ≤ 1
2 (M̂+ |C|)|x|2 ≤ 1

2 (M̂+ |C|)|x|∆

which completes the proof. ⊓⊔
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The above lemma is a general result about the errors due to truncation
with the above max-plus basis expansion. In order to apply this to the problem
at hand, one must consider the effect of repeated application of the truncated

operator S
(ν)
τ . Note that S

(ν)
τ may be written as the composition of Sτ and a

truncation operator, T (ν) where we have

T (ν)[φ] = φ∆

in the notation of the previous lemma, where in particular, φ∆ was given by

φ∆(x) = max
i

[ai + ψi(x)] ∀x ∈ BR,

where
ai = − max

x∈BR(0)
[ψi(x)− φ(x)] ∀ i.

In other words, one has the following equivalence of notation

S(ν)
τ [φ] = {T (ν) ◦ Sτ}[φ] = {Sτ [φ]}∆, (5.67)

which we shall use freely throughout the remainder of this chapter.
We now proceed to consider how truncation errors accumulate. In order

to simplify the analysis, we simply let

MC′
.
= max

{
|C|

[
2β̂ + 1 + |C|/(δ′cR)

]
, 1

2

[
M̂+ |C|

]}
. (5.68)

Fix ∆. We suppose that we have ν sufficiently large (with properly distributed
basis function centers) so that

max
x∈BDR

min
i
|x− xi| ≤ ∆.

Let φ0 satisfy the conditions on φ in Lemma 5.12. (One can simply take
φ0 ≡ 0.) Then, by Lemma 5.12,

φ0(x)−MC′ |x|∆ ≤ φ
(ν)
0 (x) ≤ φ0(x) ∀x ∈ BR(0). (5.69)

Now, for any x ∈ BR, let u1,ε,x be ε/2-optimal for Sτ [φ0](x), and let ξ1,ε,x

be the corresponding trajectory. Then,

0 ≤ Sτ [φ0](x)− Sτ [φ
(ν)
0 ](x)

≤ φ0(ξ
1,ε,x
τ )− φ

(ν)
0 (ξ1,ε,x

τ ) +
ε

2
,

which by (5.69)

≤MC′ |ξ1,ε,x
τ |∆ +

ε

2
. (5.70)

Proceeding along, one then finds
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0 ≤ Sτ [φ0](x)− S(ν)
τ [φ

(ν)
0 ](x)

= Sτ [φ0](x)− Sτ [φ
(ν)
0 ](x) + Sτ [φ

(ν)
0 ](x)− S(ν)

τ [φ
(ν)
0 ](x),

which by Lemma 5.12, the fact that Sτ [φ
(ν)
0 ] ∈ SC′L′

R̄
(by Assumption (A5.6I)),

and (5.70)

≤MC′ |ξ1,ε,x
τ |∆ +MC′ |x|∆ +

ε

2
. (5.71)

Let us proceed one more step with this approach. For any x ∈ BR, let
u2,ε,x be ε/4-optimal for Sτ [Sτ [φ0]](x) (that is, ε/4-optimal for problem Sτ

with terminal cost Sτ [φ0]), and let ξ2,ε,x be the corresponding trajectory.
Then, as before,

0 ≤ S2τ [φ0](x)− Sτ [S(ν)
τ φ

(ν)
0 ](x)

= Sτ [Sτ [φ0]](x)− Sτ [S(ν)
τ [φ

(ν)
0 ]](x)

≤ Sτ [φ0](ξ
2,ε,x
τ )− S(ν)

τ [φ
(ν)
0 ](ξ2,ε,x

τ ) +
ε

4
. (5.72)

Now let

u2,ε
t

.
=

{
u2,ε,x

t if t ∈ [0, τ ]

u
1,ε,ξ2,ε,x

τ

(t−τ) if t ∈ (τ, 2τ ],

and let ξ
2,ε,x

be the corresponding trajectory. Then combining (5.71) and
(5.72), one has

0 ≤ S2τ [φ0](x)− Sτ [S(ν)
τ φ

(ν)
0 ](x)

≤MC′ |ξ2,ε,x

2τ |∆ +MC′ |ξ2,ε,x

τ |∆ +
ε

2
+

ε

4
. (5.73)

Applying Lemma 5.12 again, but now using (5.73), one has

0 ≤ S2τ [φ0](x)− S(ν)
τ [S(ν)

τ [φ
(ν)
0 ]](x)

= Sτ [Sτ [φ0]](x)− Sτ [S(ν)
τ [φ

(ν)
0 ]](x) + Sτ [S(ν)

τ [φ
(ν)
0 ]](x)− S(ν)

τ [S(ν)
τ [φ

(ν)
0 ]](x)

≤MC′ |ξ2,ε,x

2τ |∆ +MC′ |ξ2,ε,x

τ |∆ +MC′ |x|∆ +
ε

2
+

ε

4

= MC′∆

2∑

i=0

|ξ2,ε,x

iτ |+
2∑

i=1

ε

2i
. (5.74)

It is then clear that, by induction, one obtains

Lemma 5.13.

0 ≤ SNτ [φ0](x)− S(ν)
τ

N
[φ0](x) ≤MC′∆

N∑

i=0

|ξN,ε,x

iτ |+
N∑

i=1

ε

2i
, (5.75)

where the construction of ε-optimal ξ
N,ε,x

· by induction follows in the obvious
way as above.
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Theorem 5.14. Let {ψi}ν
i=1, C ′ and ∆ be as in Lemma 5.12. Then, there

exists m,λ ∈ (0,∞) such that

0 ≤ W (x)−W (ν)∞(x) ≤MC′

(
em

1− e−λτ

)
|x|∆ ∀x ∈ BR

where MC′ is given in (5.68).

Remark 5.15. By Theorem 4.22, there exists N = N(ν) < ∞ such that

W (ν)∞(x) = W (ν)N
(x) ∀x ∈ BR,

and so Theorem 5.14 also implies

0 ≤ W (x)−W (ν)N
(x) ≤MC′

(
em

1− e−λτ

)
|x|∆ ∀x ∈ BR

for N ≥ N(ν).

Proof. Let ε ∈ (0, 1). Fix φ0 and x. For each N < ∞, construct uN,ε
· as

above along with the corresponding ξ
N,ε,x

. Let u∞,ε
t = uN,ε

t if t ∈ [0, Nτ ],

and similarly, ξ
∞,ε,x

t = ξ
N,ε,x

t if t ∈ [0, Nτ ]. Then, by the results of Chapter

3, there exists K̃ < ∞ (independent of ε ∈ (0, 1) ) such that

‖u∞,ε‖L2(0,Nτ) ≤ K̃(1 + |x|2)

for all N < ∞. Consequently, using Assumptions (A4.1I) and (A4.2I), there
exist m,λ ∈ (0,∞) such that

|ξ∞,ε,x

t | ≤ |x|em−λt ∀ t ∈ [0,∞). (5.76)

(We remark that m and λ may depend on the particular u∞,ε constructed
above.) Then, by Lemma 5.13 and (5.76),

0 ≤ SNτ [φ0](x)− S(ν)
τ

N
[φ0](x) ≤MC′∆|x|em

N∑

i=0

e−λiτ +

N∑

i=1

ε

2i

≤MC′∆|x| em

1− e−λτ
+ ε.

Because this is true for all N ∈ N , and S
(ν)
τ

N
[φ0](x) = S

(ν)
τ

N+1
[φ0](x) =

W (ν)∞(x) for all N ≥ N(ν), one obtains the result by taking the limit as
N →∞ and then as ε ↓ 0. ⊓⊔

Lastly, we note that for τ sufficiently small, where

τ ≤ 1/λ (5.77)

is sufficient (so that λτ/2 ≤ (1− e−λτ ) ), one has
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0 ≤ W (x)−W (ν)∞(x) ≤MC′∆

(
em

1− e−λτ

)
|x| ≤ K1,τ |x|(∆/τ)(5.78)

with
K1,τ

.
= 2MC′em/λ. (5.79)

We note that through the dependency of K1,τ on MC′ , and in turn the de-
pendency of MC′ on δ′ (see (5.68)), K1,τ →∞ as τ ↓ 0 (see (A5.6I) and the
discussion following it).

5.3 Errors in the Approximation of B

In the previous section, we considered the errors due to truncation while as-
suming that B and consequently, the eigenvector e were computed exactly. Of
course, as discussed in Section 5.1, there is an allowable upper limit for errors
in the elements of B, below which one can guarantee the convergence of the
power method. The errors in B also translate into errors in the eigenvector and
consequently the approximate solution as discussed in Sections 5.1 and 5.4.
In this section, we consider a power series (in t) for V (x, t)

.
= St[ψi](x) where

we recall Bj,i = −maxx∈BR(0)[−ψj(x)−Sτ [ψi](x)]. With the power series for

V (x, t) = St[ψi](x) truncated at some level, tν
′−1 (for each i), we obtain a

relationship between ν′, τ and basis function density which guarantees that
the errors in B do not exceed the allowable bounds obtained in Section 5.1.
In addition to the errors incurred by truncation of the power series, there
may be errors in the computation of the terms in the series themselves. In
Subsection 5.3.1, one particular method for computing the power series terms
to sufficient accuracy is given.

As noted above, one approach to the computation of B is a Taylor series (in
t) approximation to St[ψi](x). More specifically, letting V (x, t) = St[ψi](x),
so that V satisfies

Vt = f · ∇V + l + 1
2γ2∇V T σσT∇V, (5.80)

V (x, 0) = ψi(x),

one may approximate V as

V (x, t) = V0(x) + V1(x)t +
1

2
V2(x)t2 + · · · . (5.81)

Here V0(x) = ψi(x) and V1 is the right-hand side of (5.80) with ψi replacing
V . Specifically,

V1(x) = fψix + l +
1

2γ2
ψixaψix,

where a = σσT and we drop the gradient/vector notation for simplification
here and below. The higher-order terms are computed by differentiating (5.80)
at t = 0. Of course this process requires some smoothness for V . The following
is well known, and so we only sketch a proof.
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Theorem 5.16. Given R′ < ∞ and ν′ ∈ N , there exists τ ′ > 0 such that
V ∈ Cν′

(BR′ × (0, τ ′) ).

Proof. The result for C2 can be found, for instance, in [37] as well as many
earlier works (see the references in [37] as well as [47] and [48]). In order to
obtain continuity of higher derivatives, one simply differentiates (5.80), and
applies the same technique. For example, the partial V xl

(x, t) satisfies

Ut =
[
fxl

V x + lxl
+ V xaxl

V x

]
+

[
f + 2V xa

]
Ux,

U(x, 0) = ψixl
(x).

Note that τ ′ may depend on ν′. ⊓⊔

Fix some R′, ν′ < ∞. Let τ ′ be given by Theorem 5.16. We assume τ <
min{τ ′, 1, 1/c} (where the motivation for the bounds of 1 and 1/c appear in

(5.87) and (5.90) below) and R̃ < R′. Then we may approximate V over
B

R̃
× (0, τ) by

Ṽ (x, t) = V0(x) + V1(x)t + V2(x)
t2

2
+ · · ·+ Vν′−1(x)

tν
′−1

(ν′ − 1)!
. (5.82)

Letting
MR′,ν′

.
= max

(x,t)∈B
R̃
×[0,τ ]

|V t(ν′)(x, t)|,

one has

|V (x, t)− Ṽ (x, t)| ≤MR′,ν′

τν′

(ν′)!
∀ (x, t) ∈ B

R̃
× [0, τ ]. (5.83)

Now define the corresponding approximation to B by

B̃j,i = − max
x∈B

R̃

{
ψj(x)− Ṽ (x, τ)

}
. (5.84)

By (5.83) and (5.84), one has

|Bj,i − B̃j,i| ≤MR′,ν′

τν′

(ν′)!
. (5.85)

Comparing (5.85) with Theorem 5.9, one finds that a sufficient condition

for the convergence of the power method (using B̃ computed from approxi-

mation Ṽ ) is that τ ≤ 1/cf and that for some µ ∈ {2, 3, 4, . . .} (µ = 2 is the
weakest condition)

MR′,ν′

τν′

(ν′)!
≤

[
min
i 	=1

|xi|2
]( δc5

f

9(16)m2
σ

)
τ4

νµ
.
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Note that the τ ≤ 1/cf condition can be removed by using Theorems 5.7 and
5.8 instead of 5.9.

Because computation of B̃j,i requires the maximization operation, below

we will introduce an approximation for B̃j,i, to be denoted by B̂j,i (where
the maximum may only be computed approximately rather than exactly).
Suppose further that

|B̃j,i − B̂j,i| ≤MR′,ν′

τν′

(ν′)!
. (5.86)

Then, by (5.86), (5.85) with Theorem 5.9, one finds that a sufficient condition

for the convergence of the power method (using B̂) is that τ ≤ 1/cf and that
for some µ ∈ {2, 3, 4, . . .} (µ = 2 is the weakest condition)

2MR′,ν′

τν′

(ν′)!
≤

[
min
i 	=1

|xi|2
]( δc5

f

9(16)m2
σ

)
τ4

νµ
, (5.87)

and so, alternatively, a sufficient condition is

τν′−4 ≤
[
min
i	=1

|xi|2
]( δc5

f (ν′)!

9(32)m2
σMR′,ν′

)
1

νµ
. (5.88)

Suppose a rectangular grid of evenly spaced basis function centers with ND

centerpoints per dimension, and recall that ψ1 is centered at the origin which
implies ND is odd. (Perhaps it should be noted that this is conservative in
that we are considering a rectangular grid encompassing BDR

rather than just
those basis functions centered in the sphere itself.) This implies mini 	=1 |xi|2 =
4D2

R/(ND − 1)2, and (5.88) becomes

τν′−4 ≤
(

D2
Rδc5

f (ν′)!

9(8)m2
σMR′,ν′

)(
1

ND

)nµ(
1

ND − 1

)2

,

which implies a sufficient condition is

τν′−4 ≤
(

D2
Rδc5

f (ν′)!

9(8)m2
σMR′,ν′

)(
1

ND

)nµ+2
.
= M̃R′,ν′

(
1

ND

)nµ+2

, (5.89)

where we recall that n is the dimension of the state space.
Therefore, if one fixes τ < min{1, 1/cf}, then it is sufficient that

ν′ ≥ 4 +
logM̃R′,ν′ + (nµ + 2) log (1/ND)

log τ
. (5.90)

Alternatively, one may, without loss of generality, require M̃R′,ν′ ≥ 1 in which
case (noting that log τ < 0 because τ < 1) (5.90) yields the sufficient condition

ν′ ≥ 4 +
(nµ + 2) log (1/ND)

log τ
(5.91)

in which case the lower bound on ν′ scales like log (1/ND) . We remark that
this sufficient condition may be quite conservative.
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5.3.1 A Method for Computing B

As noted above, one would not typically have a closed-form expression for
the Bj,i or even the B̃j,i terms, and we denote the approximation of B̃ by

B̂. In this subsection, we indicate some specifics of a numerical method for
the approximation. This is not essential to the error analysis, but it seems
appropriate to sketch an approximation technique so as to concretely indicate
one approach to this subproblem.

This particular approach requires one to define

X̃j,i(t)
.
= argmax{ψj(x)− Ṽ (x, t)},

where Ṽ is given by (5.82) (i.e., the truncated power series expansion of

St[ψi](x)), and then to propagate X̃j,i as the solution of an ODE forward

from t = 0 to τ via a Runge–Kutta method. One difficulty is that X̃j,i(t)
diverges as t ↓ 0. In order to remedy this, and also remedy unbounded deriva-
tives as t ↓ 0, we replace ψj(x) by ψτ

j,i(x, t) where

ψτ
j,i(x, t)

.
= −1

2
(x− ζt)

T [(C + δ(1− t/τ))I](x− ζt), (5.92)

where
ζt

.
= xi + (t/τ)(xj − xi), (5.93)

and δ > 0. Then one may define

X̃τ
j,i(t)

.
= argmax

x
{ψτ

j,i(x, t)− Ṽ (x, t)}, (5.94)

and note that

X̃τ
j,i(τ) = X̃j,i(τ) = argmax{ψj(x)− Ṽ (x, τ)}.

Because X̃τ
j,i(t) is the argmax at each time t ∈ [0, τ ], this implies

[ψτ
j,i]x(X̃τ

j,i(t), t)− Ṽx(X̃τ
j,i(t), t) = 0

for all t ∈ [0, τ ]. Differentiating with respect to time, implies

[
[ψτ

j,i]xx(X̃τ
j,i(t), t)− Ṽxx(X̃τ

j,i(t), t)
]

˙̃
X

τ

j,i(t)

+
[
[ψτ

j,i]tx(X̃τ
j,i(t), t)− Ṽtx(X̃τ

j,i(t), t)
]

= 0,

or

˙̃
X

τ

j,i(t) =
[
[ψτ

j,i]xx(X̃τ
j,i(t), t)− Ṽxx(X̃τ

j,i(t), t)
]−1

[
[ψτ

j,i]tx(X̃τ
j,i(t), t)− Ṽtx(X̃τ

j,i(t), t)
]
. (5.95)
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The initial state for (5.95) is

X̃τ
j,i(0) = argmax

x

{
ψτ

j,i(x, 0)− Ṽ (x, 0)
}

= argmax
x

{
− 1

2 (x− xi)
T (C + δI)(x− xi)− ψi(x)

}
= xi.

Note that
[
[ψτ

j,i]xx(x, 0)− Ṽxx(x, 0)
]

= −[C + δI] + C = −δI, (5.96)

which is negative definite, and
[
[ψτ

j,i]xx(x, τ)− Ṽxx(x, τ)
]

= −C − Ṽxx(x, τ) (5.97)

would be negative definite on BR by Assumption (A5.6I) if approximation

Ṽ (·, τ) were replaced by Sτ [ψi]. Also,

X̃τ
j,i(0) = xi ∈ BDR

and X̃τ
j,i(τ) ∈ BR (5.98)

if approximation Ṽ (τ, ·) is replaced by Sτ [ψi]. This suggests the following
assumption (which is only used for this approach to computing B). Suppose

there exists δ̂ > 0 such that
[
[ψτ

j,i]xx(x, t)− Ṽxx(x, t)
]

+ δ̂I < 0 ∀ |x| ≤ ĝ(t), ∀t ∈ [0, τ ]

and
|X̃τ

j,i(t)| ≤ ĝ(t) ∀ t ∈ [0, τ ]
(5.99)

where g : [0, τ ] → R is any function such that ĝ(0) = DR, ĝ(τ) = R and ĝ
is monotonically decreasing. Note that, by (5.96)–(5.98), the conditions are

satisfied at both endpoints (t = 0 and t = τ) when Ṽ (τ, ·) is replaced by Sτ [ψi].
Consequently, this may not be significantly more restrictive than the general
assumptions, and for the purposes of sketching this particular approach to
computing B, let us assume (5.99). Note that this guarantees the existence of

the inverse in (5.95), and further that X̃τ
j,i(τ) is the unique maximizer in BR.

Analytical expressions for the right-hand side of (5.95) can be obtained
from (5.82) and (5.92). (These can be used to generate sufficient conditions
that guarantee (5.99), but these are likely much too conservative.) Thus, one
merely needs to propagate the n-dimensional ODE (5.95) forward to time τ .
A Runge–Kutta method may be used for this, and the resulting approximate
solution denoted by X̂τ

j,i. The approximation of the elements of B̂ are then
given by

B̂j,i = −
{

ψτ
j,i(X̂

τ (τ))− Ṽ (τ, X̂τ (τ))
}

= −
{

ψj(X̂
τ (τ))− Ṽ (τ, X̂τ (τ))

}
. (5.100)
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Note the following:

The number of steps in the Runge–Kutta algorithm must be
controlled so that (5.86) is satisfied.

(5.101)

5.4 Error Summary

The error analyses of the previous three sections will now be combined. In
particular, the errors due to truncation and the errors in computation of B
will be combined to produce overall error bounds (5.109), (5.110). A condition
required for the algorithm to work (assuming one uses the power series of
Section 5.3 for computation of B) is also obtained.

Theorems 5.6 to 5.9 provided sufficient conditions for the power method
step to converge to the max-plus eigenvector. Employing the simplest condi-
tion (but also the strictest), that of Theorem 5.9, convergence of the power

method with approximation B̂ to B is guaranteed if

|B̂i,j −Bi,j | ≤ min
i	=1

{
|xi|2

}(
δc5

f

9(16)m2
σ

)
τ4

νµ
∀ i, j, (5.102)

where µ ∈ {2, 3, 4, . . .} and δ is given by (5.32). Note that we are assuming
τ ≤ min{1, 1/cf , τ ′} as in Section 5.3 (as well as all assumptions including
(A5.6I) and technical conditions (5.1), (5.19) which appear in Section 5.1).
Then, Theorem 5.9 implies that a resulting error bound for the max-plus
eigenvector given by

‖e− ê‖ .
= max

i
|ei − êi| ≤ min

i	=1

{
|xi|2

}(
δc5

f

9(16)m2
σ

)
τ4

νµ−2
, (5.103)

where ê corresponds to B̂. We remark that slightly different error estimates
(under slightly different conditions) are also given in Theorems 5.7 and 5.8.

Suppose we adopt the notation Ŵ (x)
.
=

⊕ν
i=1 êi ⊗ ψi(x) and W f (x)

.
=⊕ν

i=1 ei ⊗ ψi(x) so that W f corresponds to the finite expansion with zero
error in the computation/approximation of B. Then, by (5.103),

‖Ŵ −W f‖ .
= max

|x|≤R
|Ŵ (x)−W f (x)| ≤ min

i 	=1

{
|xi|2

}(
δc5

f

9(16)m2
σ

)
τ4

νµ−2

= min
i	=1

{
|xi|2

}(
δc5

fτ4

9(16)m2
σ

)(
1

ND

)n(µ−2)

, (5.104)

where again, ND is the number of centers of basis functions per dimension
of the state space with a rectangular, evenly spaced grid of centers. It should
be recalled that the basis functions are such that ψ1 is centered at the origin
(x1 = 0), and so ND is odd. (Perhaps one should note that we are being
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sloppy here by using the number of basis functions corresponding to covering
the entire rectangle which encloses the sphere BDR

, although only those with
centers covering the sphere itself are required for the bound. Consequently,
the above bound is a bit more conservative.) Also, with the evenly spaced
basis function centers, (5.104) can be written as

‖Ŵ −W f‖ ≤
(

D2
Rδc5

fτ4

9(4)m2
σ

)(
1

ND

)n(µ−2)(
1

ND − 1

)2

. (5.105)

Using the approach of Section 5.3, (5.102) is satisfied if

τν′−4 ≤ M̃R′,ν′

(
1

ND

)nµ+2

(5.106)

where M̃R′,ν′ is given by (5.89) and ν′ is the number of terms (including
zeroth order) in the Taylor series, and if (5.101) is satisfied.

This does not account for the truncation errors induced by using only a
finite number of basis functions. Let W be the true value function. Then, by
(5.78),

|W (x)−W f (x)| ≤ K1,τ
|x|
τ

(
2DR

ND − 1

)
∀x ∈ BR, (5.107)

where K1,τ is given by (5.79) (and we recall K1,τ →∞ as τ ↓ 0), 2DR/(ND−
1) = ∆, and τ satisfies (5.77); τ now must satisfy

τ ≤ min{1, 1/cf , 1/λ, τ ′}. (5.108)

The error bound (5.107) is not without drawbacks. In particular, τ appears
in the denominator. However, it does not seem possible with the techniques
presented here to remove that term. This is the reason for concentrating in
Section 5.3 on fixed τ with increasing ν′ as the means for reducing errors.

Combining (5.105) and (5.107), the total error bound (assuming conver-
gence of the power method — for which (5.106) and (5.101) form a sufficient
condition — and τ ≤ min{1, 1/cf , 1/λ, τ ′}) is given by

|W (x)− Ŵ (x)|≤
(

D2
Rδc5

fτ4

9(4)m2
σ

)(
1

ND

)n(µ−2)(
1

ND − 1

)2

+ K1,τ
|x|
τ

(
2DR

ND − 1

)
,

which for ND ≥ 3

≤
(

D2
Rδc5

fτ4

18m2
σ

)(
1

ND

)n(µ−2)+2

+ K1,τ
|x|
τ

(
2DR

ND

)
. (5.109)

Because the best error rate is limited by the 1/ND in the last term, we take
µ = 2, and find in that case
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|W (x)− Ŵ (x)| ≤
[

D2
Rδc5

fτ4

18m2
σ

+ 2K1,τDR
|x|
τ

](
1

ND

)
. (5.110)

That is, the total error goes down linearly in (1/ND). Note that this rate is
constrained by the fact that the solutions are only viscosity solutions — which
may have discontinuous first derivatives. It is conjectured that with smooth
solutions, the rate would instead be (1/ND)2.

This assumes that conditions (5.106) and (5.101) are met as well as (5.108).
Also, as in Section 5.3, one may prefer to write (5.106) as

ν′ ≥ 4 +
logM̃R′,ν′ + (nµ + 2) log (1/ND)

log τ
,

or assuming without loss of generality that M̃R′,ν′ ≥ 1, one has the less tight
but clearer bound of

ν′ ≥ 4 +
(nµ + 2) log (1/ND)

log τ

in which case the lower bound on ν′ scales like log (1/ND) . From this, one
sees, for instance, that doubling ND would typically imply the addition of

⌈
(

(2n + 2) log (1/2)

log τ

)
= ⌈

(
(2n + 2) log 2

log (1/τ)

)

to ν′ where ⌈(z) indicates the smallest integer greater than or equal to z.
Again, this assumes the use of the Taylor series/Runge–Kutta approach of
Section 5.3 toward the approximation of B. Alternate approaches may yield
different conditions.

Remark 5.17. All error bounds are actually conceived as the errors that may
be achieved with given computer effort. A key underlying assumption of this
chapter is that all the elements of B are computed. This requires substan-
tial effort because the number of terms in B is the square of the number of
basis functions. In practice, it has been observed that elements of B, Bi,j ,
corresponding to basis function pairs where |xi− xj | is large generally do not
contribute at all to the resulting eigenvector (recall that this is the max-plus
algebra). By not computing these terms, one can greatly reduce the compu-
tations. All examples computed by the author have used this computation
reduction method. This is a question for further study.

5.5 Example of Convergence Rate

As an example, we consider the problem (4.1)–(4.4) in two dimensions with
dynamics
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d

dt

(
ξ1

ξ2

)
=

(−2ξ1[1 + 1
2 arctan(3ξ2

2/2)]
1
2ξ1 − 3ξ2(e

−ξ1/3)

)
+

(
w1

w2

)
. (5.111)

The running cost is l(x) = 1
2 |x|2 and γ2 = 1. The corresponding HJB PDE is

0 = −
{
−2x1

[
1 + 1

2 arctan(3x2
2/2)

]
Wx1 +

[
x1/2− 3x2e

−x1/3
]
Wx2

+ 1
2 (x2

1 + x2
2)− 1

2 (W 2
x1

+ W 2
x2

)
}

with usual boundary condition W (0) = 0.
The backsubstitution errors (obtained by substituting the approximated

partials back into the PDE) for a basis function center spacing of 0.07 is de-
picted in the left plot of Figure 5.1. (The partials are approximated by simple
first-order differences — possibly too coarse a method for examination of the
errors.) This is a much higher density of basis functions than we normally use,
and the code took roughly 15 seconds to run on a 2000 Sony Vaio laptop. The
right plot of Figure 5.1 depicts the convergence as the spacing between basis
function centers goes to zero (i.e., as the number of basis functions increases).
In the left plot of Figure 5.1, one can see the effect of having a region where
none of the basis functions in our supply of basis functions is the one that
would achieve the solution there; this is evidenced by the sharp rise in errors in
the right-hand corner. There are two error convergence plots in the right-hand
graph. The lower one is the maximum backsubstitution error magnitude over
the plotting region when one excises that region not properly covered by our
basis function set. The upper curve includes this region not properly covered
in its computation of the maximum error. Considering the lower curve, one
sees that the convergence actually appears to be closer to second order than
first order as predicted in Section 5.4. As noted above, one actually expects
convergence to be second order in C1 regions, and this is the effect we appear
to see in the plot.
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Fig. 5.1. Backsubstitution errors for one case and error convergence rate
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A Semigroup Construction Method

In this chapter, we develop a different max-plus based approach to the solution
of nonlinear control problems. We will again consider infinite time-horizon
problems. In particular, we will use the same problem class considered in
Chapters 4 and 5 as a vehicle for the development of the approach. Of course
the approach is not limited to this particular class, but it will be convenient
to work with the same class.

We continue to express the solution/value function in terms of a max-plus
basis, and again the coefficients in this expansion will satisfy an eigenvector
equation, 0 ⊗ e = B ⊗ e. Recall that the main steps in the eigenvector al-
gorithm (Chapters 4 and 5) were the computation of B and the solution of
the eigenvector problem given B. It has been observed that the first step was
typically an order of magnitude more computationally expensive than the sec-
ond. (This was the case even when the technique for not computing the entire
matrix B, indicated in Remarks 4.24 and 5.17, was used.) This motivates a
search for alternative methods for computation of B.

Recall that B = Bτ operates on the discretization of the semiconvex dual
of the value, W where W satisfies W = Sτ [W ] (or 0⊗W = Sτ [W ]). Suppose
we have an indexed set of operators Bm = Bm

τ for m ∈ M .
= {1, 2, . . . , M},

and let B̄ =
⊕

m∈M Bm. (More generally one can let B̄ be a general max-
plus linear combination as B̄ =

⊕
m∈M cm ⊗ Bm for some coefficients cm ∈

R−.) If each Bm is relatively easy to compute, then B̄ is relatively easy to
construct. We will see that B̄ is related to S̄τ =

⊕
m∈M Sm

τ . Suppose each
Sm

τ corresponds to an HJB PDE problem 0 = Hm(x,∇W ), W (0) = 0. Let

H̃(x, p)
.
= maxm∈M Hm(x, p), and let the semigroup corresponding to H̃ be

S̃τ . Then, for small τ > 0, S̃τ may be closely approximated by S̄τ . Thus
solution of the eigenvector problem for B̄τ may closely resemble solution of
W = S̃τ [W ], and consequently, solution of HJB PDE problem 0 = H̃(x,∇W ),
W (0) = 0.

The theory in support of the above discussion will be developed in this
chapter. We will also indicate application with a simple example. A class of
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problems where this method is especially handy is the class of problems with
a set of linear dynamics coupled to a switching controller. That is, where one
has ξ̇ = Aµtξt +σµtut where the µt process will take values in some finite set,
say {µm|m ∈ M}, while ut will be an L2 control process. In such problems,
the HJB PDE is nonlinear, and solution of the problem cannot typically be
obtained by piecewise pasting together of solutions of the constituent prob-
lems. Of course, one could apply this approach to a wider class of problems
as well.

As in Chapter 4, we will make the unwarranted assumption that the value
has a finite max-plus basis expansion (i.e., requiring only a finite number
of nonzero terms). This will again allow us to quickly obtain the algorithm.
However, in this case, we will not generate an error analysis analogous to that
in Chapter 5 as inclusion of such analyses for each max-plus algorithm and/or
application would be excessively long.

6.1 Constituent Problems

We will be solving a nonlinear HJB PDE problem

0 = H̃(x,∇W ),

W (0) = 0,
(6.1)

where, as always, W (0) = 0 is the boundary data indicating that W is zero

at the origin. We will be interested in H̃ that take the form

H̃(x,∇φ)
.
= max

m∈M
sup

u∈Rl

[
(fm(x) + σm(x)u)T∇φ + lm(x)− γ2

2
|u|2

]

= max
m∈M

(fm(x))T∇φ + lm(x) +
1

2γ2
∇φT σT (x)σ(x)∇φ (6.2)

where M = {1, 2, . . . , M} and M < ∞. One may also want to consider H̃
that are only approximated by a finite maximization of this form, but that is
a problem for future research. Define the constituent Hamiltonians as

Hm(x,∇φ)
.
= sup

u∈Rl

[
(fm(x) + σm(x)u)T∇φ + lm(x)− γ2

2
|u|2

]

= (fm(x))T∇φ + lm(x) +
1

2γ2
∇φT σT (x)σ(x)∇φ

so that
H̃ = max

m∈M
Hm.

All of the constituent Hm will correspond to constituent control problems,
and will also have associated semigroups Sm

τ and their duals Bm = Bm
τ . These

constituent problems should be ones such that the Bm are relatively easily
computable. An obvious class consists of linear/quadratic problems.
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Remark 6.1. Perhaps we should remark here that it is the interplay of the
max-plus and standard algebras that makes this approach (as well as that of
Chapter 7) possible. Linear problems are particularly simple in the standard
algebra. However, standard-sense linear combinations of linear problems only
yield linear problems. However, max-plus linear combinations of standard-
sense linear problems yields a larger class of problems.

Although the obvious class of constituent problems are the linear/quadratic
problems, the analysis will be kept at a more general level. In particular, con-
sider a set of contituent system dynamics indexed by m ∈ M and given by

ξ̇m = fm(ξm) + σm(ξm)u,

ξm
0 = x ∈ Rn,

(6.3)

where we note that all the systems have the same initial condition, and u ∈
U will be a (payoff-maximizing) input. To be specific, we continue to take
U = Lloc

2 ([0,∞);Rl). As noted above, the underlying concept being developed
in this chapter could be applied to a wide range of systems. However, to
be specific we will use the same class as considered in Chapters 4 and 5.
Consequently, we assume the following.

Each of the fm and σm satisfy (A4.1I) and (A4.2I), respectively.
In particular, the constants K, cf , Kσ and mσ are independent
of m.

(A7.1I)

We consider constituent payoffs and values given by

Jm
τ (x, u)

.
=

∫ τ

0

lm(ξm
t )− γ2

2
|ut|2 dt (6.4)

Wm(x)
.
= sup

τ∈(0,∞)

sup
u∈L2(0,τ)

Jm
τ (x, u) = lim

τ→∞
sup

u∈L2(0,τ)

Jm
τ (x, u)

= sup
u∈U

sup
τ∈(0,∞)

Jm
τ (x, u), (6.5)

where ξm satisfies (6.3). We also assume that

Each of the lm satisfy (A4.3I) where the constants Cl and αl are
independent of m. Further, the constants satisfy (A4.4I).

(A7.2I)

The corresponding (max-plus linear) semigroups are again given by

Sm
τ [φ](x)

.
= sup

u∈U

{∫ τ

0

lm(ξm
t )− γ2

2
|ut|2 dt + φ(ξm

τ )

}
(x), (6.6)

where ξm satisfies (6.3). The corresponding max-plus eigenvector problems
are

0⊗ φ = Sm
τ [φ], (6.7)

where it is implicit that we are looking for solutions satisfying φ(0) = 0 (which
of course eliminates the nonuniqueness due to max-plus multiplication by a
constant). The corresponding HJB PDE problems are given by
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0 = Hm(x,∇φ), (6.8)

φ(0) = 0. (6.9)

Let

Cδ
.
=

{
semiconvex φ : Rn → R−

∣∣∣∣ 0 ≤ φ(x) ≤ cf
(γ − δ)2

m2
σ

|x|2 ∀x ∈ Rn

}
.

From Chapters 3 and 4 (see Theorem 4.1, Theorem 4.4, and Corollary 4.11),
we have the following.

Theorem 6.2. Suppose Assumptions (A7.1I), (A7.2I) hold. For fixed δ > 0
sufficiently small, each value function Wm (given by (6.5)) is the unique solu-
tion in Cδ of the corresponding HJB PDE problem (6.8), (6.9). Further, each
Wm is also the unique solution in Cδ of the corresponding fixed-point/max-plus
eigenvector problem (6.7).

We will be interested in solving our original problem (with Hamiltonian

H̃) over some ball centered at the origin. Fix any R > 0. Then there exist
c′, L ∈ (0,∞) (independent of m) such that

Wm ∈ Sc′L
R̄ ∀m ∈M. (6.10)

(We will adjust the values of c′, L, δ below, but the presentation is improved by
delaying this point.) Note that we abuse notation by using the notation Wm

for both the value function and its restriction to BR. Let C be a symmetric
matrix satisfying C − c′I > 0. For xi ∈ Rn, define

ψi(x)
.
= − 1

2 (x− xi)
T C(x− xi).

Recall from Theorem 2.13 that if a set {xi : i ∈ N} form a countable dense
subset of E = {x ∈ Rn : xT (C2)x ≤ (L+ |C|R)2}, Then, the set {ψi : i ∈ N}
is a countable basis for max-plus vector space Sc′L

R̄
. Further, the coefficients

in the expansion of any φ ∈ Sc′L
R̄

are given by (2.20). That is,

φ(x) =

∞⊕

i=1

[ai ⊗ ψi(x)] ,

where
ai = − max

x∈BR

[ψi(x)− φ(x)] ∀ i.

Throughout this chapter, we will assume that such available storage func-
tions actually have finite max-plus expansions, i.e., that

Wm(x) =

ν⊕

i=1

[am
i ⊗ ψi(x)] ∀x ∈ BR (6.11)

for some ν < ∞. Note that we used this same assumption in Chapter 4.
However, as noted above, an error analysis analogous to that in Chapter 5
will not be included.
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6.2 Operating on the Transformed Operators

We are not concerned here with a direct numerical method for solution of
HJB PDEs based on the max-plus eigenvector problem solution, but rather on
the construction of B matrices for max-plus eigenvector problems from other
matrices whose max-plus eigenvector problems are analytically tractable, and
the relationship of the constructed matrices to corresponding HJB PDEs. The
following theorem makes a critical connection between the problems over the
corresponding domains.

Theorem 6.3. Let Sm
τ be defined by (6.6) for each m in some finite set M.

Suppose that for each j ∈ {1, 2, . . . , ν} and each m ∈ M, there exists a finite
basis expansion of Sm

τ [ψj ], i.e., that

Sm
τ [ψj ](x) =

ν⊕

i=1

Bm
i,j ⊗ ψi(x) ∀x ∈ BR. (6.12)

Define S̄τ [φ] for any φ in the domain (to be specified for specific problems
below) by

S̄τ [φ](x) = sup
u∈U

{
max
m∈M

[∫ τ

0

lm(ξm
t )− γ2

2
|ut|2 dt + φ(ξm

τ )

]}
(6.13)

for all x ∈ BR where ξm satisfies (6.3). Then

S̄τ [ψj ](x) =

ν⊕

i=1

B̄i,j ⊗ ψi(x) (6.14)

for all x ∈ BR where

B̄i,j = max
m∈M

Bm
i,j =

⊕

m∈M

Bm
i,j (6.15)

for all i, j ∈ {1, 2, . . . , ν}.
Proof. The proof is a simple manipulation given by

S̄τ [ψj ](x) = sup
u∈U

{
max
m∈M

[
Jm

τ (x, u) + ψj(ξ
m
τ )

]}

= max
m∈M

Sm
τ [ψj ](x) = max

m∈M
max

i∈{1,2,...,ν}
Bm

i,j ⊗ ψi(x)

= max
i∈{1,2,...,ν}

[
max
m∈M

Bm
i,j

]
⊗ ψi(x) =

ν⊕

i=1

B̄i,j ⊗ ψi(x). ⊓⊔

By simple modifications of the proofs of Theorem 4.4 and Corollary 4.11,
one also has the following.

Theorem 6.4. Suppose Assumptions (A7.1I), (A7.2I) hold. For sufficiently
small δ > 0, Then there is a unique solution in Cδ of W = S̄τ [W ].
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Remark 6.5. If necessary, we adjust the δ of Theorem 6.2 so that Theorem 6.4
also holds. Further, if necessary we adjust c′, L so that W ∈ Sc′L

R̄
.

Corollary 6.6. Suppose Assumptions (A7.1I), (A7.2I) hold. Further, assume
that the expansion for W is finite with ν coefficients which we denote as
W =

⊕ν
i=1 ēi ⊗ ψi. Also assume that each ψi is active in the sense that⊕

i 	=j ēi ⊗ ψi �=
⊕ν

i=1 ēi ⊗ ψi for any j ≤ ν. Then the vector of coeffi-

cients, ē is the solution of the max-plus eigenvector equation ē = B̄⊗ ē where
B̄i,j =

⊕
m∈M Bm

i,j for all i, j.

Proof. By assumption, for all x ∈ BR

ν⊕

i=1

ēi ⊗ ψi(x) = W (x)

= S̄τ [W ](x) = S̄τ

[ ν⊕

j=1

ēj ⊗ ψj

]
(x) =

ν⊕

j=1

ēj ⊗ S̄τ [ψj ](x),

which by Theroem 6.3

=
ν⊕

j=1

ēj ⊗
[ ν⊕

i=1

B̄i,j ⊗ ψi(x)

]
=

ν⊕

i=1

[ ν⊕

j=1

B̄i,j ⊗ ēj

]
⊗ ψi(x).

Using the assumption that all the ψi are active, this implies that ēi =⊕ν
j=1 B̄i,j ⊗ ēj ∀i, or equivalently, ē = B̄ ⊗ ē. ⊓⊔

6.3 The HJB PDE Limit Problems

Now suppose that instead of desiring to solve for fixed points of the semi-
groups, one desires to solve related HJB PDEs. Consider the sets of measur-
able processes with values in M given by

D∞ = {µ : [0,∞) →M| measurable }
and

DT = {µ : [0, T ) →M| measurable } .

Then by standard dynamic programming results under typical assumptions
(cf. [78], [79], [86], [88]), one obtains the following theorem. A specific example
of a class of dynamics, cost and set C is given in the remark just below the
theorem statement.

Again by simple modifications of the proofs of Theorem 4.1, Theorem
4.4, and Corollary 4.11, we have the following. Note that we are implicitly
adjusting the values of δ, c′, L if necessary.

Theorem 6.7. Suppose Assumptions (A7.1I), (A7.2I) hold. There exists a
unique solution in Cδ of PDE (6.1), and this viscosity solution is also the
unique solution in Cδ of
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W̃ = S̃τ [W̃ ] (6.16)

where

S̃τ [φ](x)
.
= sup

µ∈Dτ

sup
u∈U

{∫ τ

0

lµt(ξ̃t)−
γ2

2
|ut|2 dt + φ(ξ̃τ )

}
, (6.17)

˙̃
ξ = f̃(ξ̃, u, µ)

.
= fµt(ξ̃t) + σµt(ut). (6.18)

This solution is given by

W̃ (x) = sup
µ∈D∞

sup
u∈U

sup
T<∞

∫ T

0

lµt(ξ̃t)−
γ2

2
|ut|2 dt (6.19)

where ξ̃ satisfies (6.18).

Note that the operators S̄τ do not necessarily form a semigroup, although
they do form a sub-semigroup (i.e., S̄τ1+τ2

[φ](x) ≤ S̄τ1 S̄τ2
[φ](x) for all x and

all φ in the domain). Further, it is easily seen that Sm
τ ≤ S̄τ ≤ S̃τ for all m.

With τ acting as a time-discretization step-size, let

Dτ
∞ =

{
µ : [0,∞) →M

∣∣ for each n ∈ N ∪ {0}, there exists mn ∈M

such that µ(t) = mn for t ∈ [nτ, (n + 1)τ)
}

,

and for T = n̄τ with n̄ ∈ N define Dτ
T similarly but with domain [0, T ) rather

than [0,∞). Let MN denote the outer product of M, N times. Let T = n̄τ ,
and define

¯̄S
τ

T [φ](x) = max
{mk}

n̄−1
k=0

∈MN

{
n̄−1∏

k=0

Smk
τ

}
[φ](x)

where the
∏

notation indicates operator composition.
Roughly speaking the following theorem simply states that any nearly

optimal (worst case) u ∈ DT can be arbitrarily closely approximated (in
terms of the cost) by a piecewise constant u ∈ Dτ

T for some small τ .

Theorem 6.8. Suppose that for any x ∈ Rn, the origin lies in the interior of
the convex hull of the set {fm(x)}m∈M and that Assumptions (A7.1I), (A7.2I)
hold. Given T < ∞, R < ∞ and ε > 0, there exists N ∈ N sufficiently large

such that letting τ = T/N , one has S̃T [Wm](x) − ε ≤ ¯̄S
τ

T [Wm](x) for all
x ∈ BR and all m ∈M.

Sketch of Proof. The proof is heuristically clear, but technically com-
plex; we present only a sketch of the main points. We note that the first
assumption is essentially some sort of technical controllability assumption
which is sufficient for the proof, but may not be necessary. The first step is
to work with simple integrals. Consider some gm ∈ Rn for all m ∈ M, and



136 6 A Semigroup Construction Method

suppose 0 ∈ 〈{gm}m∈M〉◦ (i.e., that the origin is in the interior of the convex
hull of the set of the gm where the ◦ superscript denotes interior and the
angle brackets denote convex hull). This guarantees that for any T̂ < ∞ and
∆0 ∈ Rn, there exists L < ∞ and {λ0

m}m∈M such that λ0
m ∈ [0, 1] for all

m,
∑

m λ0
m = 1 and ∆0 = LT̂

∑
m∈M λ0

mgm. Then, given ε > 0, T̂ ∈ (0,∞),

µ ∈ DT and ∆0, {gm}, L as above, there exist N < ∞, τ = T̂ /N and µ ∈ Dτ

T̂
such that

∣∣∣∣∣

∫ T̂

0

gµt dt−
[
∆0 +

∫ T̂

0

gµt dt

]∣∣∣∣∣ < ε +
L

L + 1
|∆0|. (6.20)

In particular, one has
∫ T̂

0
gµt dt = T̂

∑
m∈M λ1

mgm for appropriate coefficients

λ1
m (where λ1

m ∈ [0, 1] for all m,
∑

m λ1
m = 1). The gµt process is created by

setting the time-steps where µt = m for each m to approximate the fraction
of time needed according to the {λ0

m} and {λ1
m} allocations, and this yields

(6.20). One then approximates (6.18) over [0, T ) by holding the ξ̃ terms on the

right-hand side constant over each [Ñ T̂ , (Ñ + 1)T̂ ) for Ñ ∈ {0, 1, . . . , N̂ − 1}
where N̂ T̂ = T as

˙̂
ξ̃t = fµt(ξ̃

ÑT̂
) + σµt(ξ̃

ÑT̂
)ut. (6.21)

For N̂ sufficiently large, max
Ñ
|̂̃ξ

NT̂
− ξ̃

NT̂
| can be made arbitrarily small.

(Because there is no a priori bound on ‖u‖ in this formulation, an L2 bound
on near-optimal u processes which holds under Assumptions (A7.1I), (A7.2I)
is used here; see Chapter 3.) A similar discretization approximation is em-
ployed with the state driven by the µ process. Note that (6.21) takes the

form
˙̂
ξ̃t = gµt

1 + gµt

2 ut. The final discretization of [0, T ] is then with time-step

τ = (T/N̂)/N . ⊓⊔
Now note that because Wm, W ∈ C, one has ∀m (see proof of Theorem

3.20)

lim
T→∞

S̃T [Wm] = W̃ , lim
T→∞

S̃T [W ] = W̃ . (6.22)

Also, for all T < ∞,
W̃ = S̃T [W̃ ] = lim

T→∞
S̃T [W̃ ] (6.23)

uniformly on compact sets. By (6.22) and (6.23), given R < ∞ and ε > 0,

there exists T̂ < ∞ such that for all T ≥ T̂ and all m ∈M,

S̃T [W̃ ](x)− ε ≤ S̃T [Wm](x) ∀x ∈ BR. (6.24)

Also note that

W = S̄τ [W ] =

n−1∏

k=0

S̄τ [W ] ≥
n−1∏

k=0

Sm
τ [W ].

which using the fact that W ≥ 0 from Theorem 6.4 and the monotonicity of
Sm

τ [·]
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≥
n−1∏

k=0

Sm
τ [0]

where 0 represents the function identically equal to zero. Because this is true
for all n, one has (using Theorem 2.6, [88])

W ≥ lim
n→∞

Sm
nτ [0] = Wm (6.25)

for any m ∈M. On the other hand,

W =

n−1∏

k=0

S̄τ [W ] ≤
n−1∏

k=0

S̃τ [W ] = S̃nτ [W ]

which implies (using (6.22))

W ≤ lim
T→∞

S̃T [W ] = W̃ . (6.26)

Combining (6.25) and (6.26), one has

Wm ≤ W ≤ W̃ ∀m ∈M. (6.27)

Also, by definition it is obvious that

¯̄S
τ

T [φ] ≤ S̃T [φ] ∀φ ∈ C. (6.28)

Now, by Theorem 6.8 and (6.24), given R < ∞ and ε > 0, there exist
T < ∞ and n̄ < ∞ such that with τ = T/n̄, one has

W̃ (x)− 2ε = S̃T [W̃ ](x)− 2ε ≤ ¯̄S
τ

T [Wm](x)

which by (6.27), (6.28) and the monotonicity of S̃T [·]

≤ ¯̄S
τ

T [W ](x) ≤ S̃T [W ](x) ≤ S̃T [W̃ ](x) = W̃ (x)

∀x ∈ BR. Because W (x) = S̄τ [W ](x) = (S̄τ )n̄[W ](x) = ¯̄S
τ

T [W ](x) on BR, this
implies

Theorem 6.9. Given R < ∞ and ε > 0, there exists τ > 0 such that

W̃ (x)− 2ε ≤W (x) ≤ W̃ (x) ∀x ∈ BR (6.29)

where W̃ and W satisfy W̃ = S̃τ [W̃ ] and W = S̄τ [W ].

Recall from Corollary 6.6, that under the conditions given there,

W (x) =

ν⊕

j=1

ēj ⊗ ψj(x) ∀x ∈ BR,
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where the vector of coefficients, ē, is the solution of the max-plus eigenvector
equation ē = B̄ ⊗ ē with B̄ =

⊕
m∈M Bm. Thus Theorem 6.9 implies that

one can (approximately) solve HJB PDE (6.2) by solution of this eigenvector
equation. If the Bm are such that they are easily computed (say by Riccati
equations), then one has a method for computation of (approximate) solu-
tions of nonlinear HJB PDEs of the form (6.2) (or those that can be closely
approximated by HJB PDEs of that form) where the most difficult portion of
the computation, that of B̄, can be greatly simplified by representation of B̄
as a max-plus sum of the Bm.

6.4 A Simple Example

As indicated above, a useful direction for application of this transform ap-
proach is as follows. One can solve simple linear/quadratic control problems
through solution of the corresponding Riccati equations. Given solutions of
the Riccati equations, one can construct the transformed operator (typically
the discretized version thereof), B, analytically with little effort. Thus, it is
natural to consider HJB PDEs that can be represented or approximated by
maxima of HJB PDEs corresponding to linear/quadratic problems. The sim-
plest example of this approach will be discussed here to give the reader some
flavor of a transformed operator construction approach.

Consider the HJB PDE over Rn given by

0 = max
m∈M

[(Amx)T∇W ] + 1
2xT Dx + 1

2∇WT Σ∇W, (6.30)

where Σ
.
= 1

γ2 σσT , and we assume D symmetric, positive definite, and

Assumptions (A7.1I), (A7.2I) with fm(x) = Amx, σm(x) = σ, lm(x) =
1
2xT Dx for all m. (Also, as above, we assume that M is a finite set.) The goal
here is to demonstrate the mechanics of a procedure for solution of (6.30). HJB
PDE (6.30) corresponds to a control problem which has both an unknown L2

disturbance process and a switching disturbance process given by

ξ̇t = Aµtξt + σut, ξ0 = x ∈ Rn (6.31)

W (x) = sup
τ∈[0,∞)

sup
u∈L2

sup
µ∈D∞

∫ τ

0

[
1
2ξT

t Dξt −
1

2γ2
|ut|2

]
dt. (6.32)

For each m ∈M, the corresponding HJB PDE and semigroups are

0 = (Amx)T∇W + 1
2xT Dx + 1

2∇WT Σ∇W (6.33)

and

Sm
τ [ψi](x) = sup

u∈L2

{∫ τ

0

[ 12ξm
t

T Dξm
t −

1

2γ2
|ut|2] dt + ψi(ξ

m
τ )

}

ξ̇m
t = Amξm

t + σut, ξ0 = x. (6.34)
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The solutions will be denoted by V m
i (0, x) = Sm

τ [ψi](x) where the V m
i : [0, τ ]×

Rn. Letting ψi(x) = − 1
2 (x − xi)

T C(x − xi), one may assume (without loss
of generality) that the V m

i take the form V m
i (t, x) = 1

2 (x − Λm
t xi)

T Qm
t (x −

Λm
t xi) + 1

2xT
i Rm

t xi. One then finds terminal conditions

Qm
τ = C, Λm

τ = I, Rm
τ = 0

and ordinary differential equations (ODEs)

Q̇m =
[
D + QmΣQm −

(
(Am)T Qm + QmAm

)]

Λ̇m =
(
Am −Qm−1D

)
Λ, Ṙm = −ΛmT DΛm.

It is important to note that none of these ODEs depend on xi. They only
need to be solved once for each m ∈ M. Noting that Sm

τ [ψi](x) = V m
i (0, x),

and that one then has Bm
i,j = −maxx∈BR

{
ψi(x)− V m

j (0, x)
}
, one can show

that
Bm

i,j = q1
i + q2

j + γT
i l1j − αT

i l2j , (6.35)

where we drop the m superscripts for notational simplicity, and where

q1
i = 1

2 (αT
i Cαi − γT

i Q0γ
T
i ), q1

i = 1
2 (βT

j Cβj − δT
j Q0δ

T
j ) + 1

2xT
j R0xj

l1j = q0δj , l2i = Cβi

αi = [(C −Q0)
−1C − I]xi, γi = (C −Q0)

−1Cxi

βj = (C −Q0)
−1Q0Λ0xj , δj = [(C −Q0)

−1Q0 + I]xj .

Note that the only computation that needs to be done for all pairs (i, j) is
(6.35). This implies that only 4n + 1 floating point operations need be per-
formed for each of the ν2 pairs (i, j) where ν is the number of basis functions
in the truncated expansion. The other operations above are performed only
once for each of the ν single indices i. (In practice, it has been observed that
one does not need to compute Bm

i,j for all pairs (i, j). The solution obtained
by computing only those Bm

i,j such that xi − xj is relatively small is identical
to the solution obtained by computing the entire matrix. That the solution
is identically the same rather than merely “close” is a typical property in
idempotent algebras. This is also noted in Remarks 4.24 and 5.17.) One then
obtains

B̄i,j = max
m∈M

Bm
i,j ∀ i, j.

Lastly, one solves ē = B̄ ⊗ ē. This max-plus eigenvector problem may be
solved via the power method (see Chapter 4). This converges exactly in a
finite number of steps to the unique eigenvector ē.

A simple example with M = {1, 2} has been included. The computation
takes about 5 seconds on a standard 2001 desktop PC. In the example,

A1 =

[
−1 0.5
0.1 −1

]
, A2 =

[
−1 0.1
0.5 −1

]
,
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D =

[
1.5 0.2
0.2 1.5

]
, Σ =

[
0.4 −0.1
−0.1 0.4

]

Perhaps we should note that the solution is not the piecewise combination of
the solutions of the constituent linear/quadratic problems. The value func-
tion, its two partials and a backsubstitution error are plotted in Figures 6.1,
and 6.2. (The backsubstitution error is computed through approximation of
the gradient via simple (perhaps overly simple) first-order differencing, and
substitution into the HJB PDE.) The sharp cleft in the error plot is due to
a discontinuity in the gradient of the value function. The rise at the corners
opposite this cleft indicates that some additional basis functions should have
been added to cover this region; thus the user can determine when one needs
to extend this set.
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Fig. 6.1. Value function and first partial

It is worth noting that when one uses HJB PDEs that are quadratic
functions of x and ∇W , the corresponding transformed operators, Bm are
quadratic functions. In particular, for the very simple example HJB PDE
above (with no linear or zeroth order terms), one finds that the Bm take the
simple quadratic form

Bm
i,j = 1

2 (xT
i , xT

j )Gm(xT
i , xT

j )T (6.36)

for a matrix Gm which is easily computed.
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Fig. 6.2. Second partial and backsubstitution error





7

Curse-of-Dimensionality-Free Method

In Chapter 6, we moved away from the direct eigenvector method. In par-
ticular, we considered problems where the semigroups could be constructed
(or possibly approximated) as max-plus sums of constituent semigroups, say
S̄τ =

⊕
m∈M Sm

τ . Equivalently, we considered eigenvector problems with ma-

trices B = Bτ =
⊕

m∈M Bm
τ . If the constituent Bm were easily computed,

then B would be also. Because, with the direct eigenvector method, the cost
of computing B dominates the cost of computing the eigenvector given B,
this could provide a superior method when B takes the form of a max-plus
sum of simple constituent Bm (or, possibly, is well approximated as such).

However, the number of basis functions required still typically grows expo-
nentially with space dimension. For instance, one might use only 25 basis func-
tions per space dimension. Yet in such a case, the computational cost would
still grow at a rate of (25k)n for some constant k where n continues to denote
the space dimension. We see that one still has the curse-of-dimensionality.
With the max-plus methods, the “time-step” tends to be much larger than
what can be used in finite element methods (because it encapsulates the action
of the semigroup propagation on each basis function), and so these methods
can be quite fast on small problems. However, even with the max-plus ap-
proach, the curse-of-dimensionality growth is so fast that one cannot expect
to solve general problems of more than say dimension 4 or 5 on current ma-
chinery, and again the computing machinery speed increases expected in the
foreseeable future cannot do much to raise this.

With the construction approach of Chapter 6, the computational cost of
computing B can be hugely reduced for some problems. However, one still
needs to compute the elements of B, and then the eigenvector, e, of dimension
Kn where K is the number of basis functions per dimension and n remains the
dimension of the state space. (We remark again that it appears one does not
need to compute the entire matrix, B, but only the elements corresponding to
closely spaced pairs of basis functions where the definition of “closely spaced”
needs clarification, and appears related to τ .) Consequently, even with a com-
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putational cost reduction of an order of magnitude, one can only expect to
gain roughly one additional space dimension over the direct method.

Many researchers have noticed that the introduction of even a single simple
nonlinearity into an otherwise linear control problem of high dimensionality,
n, has disastrous computational repercussions. Specifically, one goes from the
solution of an n-dimensional Riccati equation to the solution of a grid-based
(e.g., finite element) or max-plus method over a space of dimension n. While
the Riccati equation may be “relatively” easily solved for large n, the above
max-plus methods would not likely be computationally feasible for n > 6 in
the best cases (without further advances in the algorithms). Of course, grid-
based methods would not be computationally feasible either. This has been a
frustrating, counterintuitive situation.

This chapter discusses an approach to certain nonlinear HJB PDEs which
is not subject to the curse-of-dimensionality. In fact, the computational growth
in state-space dimension is on the order of n3. There is, of course, no “free
lunch,” and there is exponential computational growth in a certain measure of
complexity of the Hamiltonian. Under this measure, the minimal complexity
Hamiltonian is the linear/quadratic Hamiltonian — corresponding to solu-
tion by a Riccati equation. If the Hamiltonian is given as (or approximated
by) a maximum or minimum of M linear/quadratic Hamiltonians, then one
could say the complexity of the Hamiltonian (or the approximation of the
Hamiltonian) is M .

The elimination of the curse-of-dimensionality requires the elimination of
the max-plus basis function expansion. One works instead with the Legen-
dre/Fenchel transforms. The B matrices are replaced by the kernels of max-
plus integral operators on the transform/dual space. When the constituent
problems are linear/quadratic, the constituent kernels, Bm, are obtained
analytically. The discretization comes through repeated application of max-
plus sums of these operators. Let us give some more detail on this concept.

As in the previous chapter, we will be concerned with HJB PDEs given or
approximated as

H̃(x,∇W ) = max
m∈{1,2,...,M}

{Hm(x,∇W )} (7.1)

or
H̃(x,∇W ) = min

m∈{1,2,...,M}
{Hm(x,∇W )}.

In order to make the problem tractable, we will concentrate on a single class
of HJB PDEs of form (7.1). However, the theory can obviously be expanded
to a much larger class.

To give an idea of the proposed method, recall that the solution of (7.1)
is the eigenfunction of the corresponding semigroup, that is,

0⊗W = W = S̃τ [W ],
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where we recall that S̃τ is max-plus linear. The Legendre/Fenchel transform
maps this to the dual-space eigenfunction problem

0⊗ e = B̃τ ⊙ e

where we use the ⊙ notation to indicate B̃τ ⊙ e
.
=

∫ ⊕

Rn B̃τ (x, y) ⊗ e(y) dy =

supy∈Rn

[
B̃τ (x, y) + e(y)

]
where

∫ ⊕
denotes max-plus integration (maxi-

mization), c.f. [63]. Then one approximates B̃τ ≃
⊕

m∈M Bm
τ where M .

=
{1, 2, . . . , M} and the Bm

τ correspond to the Hm. The power method for finite-
size matrices (see Chapter 4) suggests that the solution is given by

e ≃ lim
N→∞

[ ⊕

m∈M

Bm
τ

]N

⊙ 0

where the N superscript denotes the ⊙ operation N times, and 0 represents
the zero function. Given linear/quadratic forms for each of the Hm, the Bm

τ

are obtained by solving Riccati equations for the coefficients in the quadratic

forms. Let eN
.
=

[⊕
m∈M Bm

τ

]N

⊙ 0. Note that

e1 =
⊕

m∈M

Bm
τ ⊙ 0

e2 =
⊕

(m1,m2)∈M×M

Bm1,m2
τ ⊙ 0

.
=

[
⊕

m2∈M

Bm2
τ

]
⊙

[
⊕

m1∈M

Bm1
τ

]
⊙ 0

e3 =
⊕

(m1,m2,m3)∈M×M×M

Bm1,m2,m3
τ ⊙ 0

.
=

[
⊕

m3∈M

Bm3
τ

]
⊙

⎡
⎣ ⊕

(m1,m2)∈M×M

Bm1,m2
τ

⎤
⎦⊙ 0

and so on. Then eN → e. The convergence rate does not depend on
space dimension, but on the dynamics of the problem. There is no curse-
of-dimensionality. The exponential computational growth is in M = #M.
(However, we remark that those Bm1,m2,...,mN

τ ⊙ 0 which are dominated by
others can be deleted from the list of such objects without consequence, which

is important in mollifying the growth.) The computation of each B{mi}
N
i=1

τ is
analytical given the solution of the Riccati equations for the Hm.

It should be remarked that, although only the case of Hamiltonians which
are maxima of linear/quadratic forms will be considered, much of the theory
is applicable to a much larger class of problems. In particular, the concepts of
Legendre/Fenchel transforms and kernels of max-plus linear operators on the
dual space could be applied in a wider setting. However, our interest here will
be focused on a certain computational approach which is greatly enabled in the
special case of Hamiltonians which are pointwise maxima of linear/quadratic
constituent Hamiltonians.
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7.1 DP for the Constituent and Originating Problems

There are certain conditions that must be satisfied for solutions to exist and
the method to apply. In order that the assumptions are not completely ab-
stract, we will work with a specific problem class — the infinite time-horizon
H∞ problem with fixed feedback. This is a problem class where we have al-
ready developed a great deal of machinery in the earlier chapters, and so less
analysis will be required for application of the new method. Of course the
concept is applicable to a much wider class.

As indicated above, we suppose the individual Hm are linear/quadratic
Hamiltonians. Consequently, consider a finite set of linear systems

ξ̇m = Amξm + σmu,

ξm
0 = x ∈ Rn.

(7.2)

Again let u ∈ U .
= Lloc

2 ([0,∞);Rl). Let the cost functionals be

Ĵm(x, T ; u)
.
=

∫ T

0

1
2 (ξm

t )T Dmξm
t −

γ2

2
|ut|2 dt, (7.3)

and let the value function be

Wm(x) = sup
u∈U

sup
T<∞

Ĵm(x, T ; u) = lim
T→∞

sup
u∈U

Ĵm(x, T ; u), (7.4)

where use of the limit over T is justified in Chapter 3. We remark that a
generalization of the second term in the integrand of the cost functional to
1
2uT (Γm)T (Γm)u with (Γm)T Γm positive definite is not needed because this

is equivalent to a change in σm in the dynamics (7.2). Obviously Ĵm and
Wm require some assumptions in order to guarantee their existence. The
assumptions will hold throughout the chapter. Because these assumptions only
appear together, we will refer to this entire set of assumptions as Assumption
Block (A7.1I), and this is:

Assume that there exists cA ∈ (0,∞) such that

xT Amx ≤ −cA|x|2 ∀x ∈ Rn, ∀m ∈M.

Assume that there exists mσ < ∞ such that

|σm| ≤ mσ ∀m ∈M.

Assume that all Dm are positive definite, symmetric, and let cD

be such that

xT Dmx ≤ cD|x|2 ∀x ∈ Rn, ∀m ∈M

(which is obviously equivalent to all eigenvalues of the Dm being
no greater than cD). Lastly, assume that γ2/m2

σ > cD/c2
A.

(A7.1I)
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These assumptions are obviously similar to (A4.1I)–(A4.4I), but with the
above linear systems notation. Note also that these assumptions guarantee
the existence of the Wm as locally bounded functions which are zero at the
origin (see Chapter 3). In fact, the specific linear/quadratic structure of the
above assumptions implies that these Wm will be quadratic.

The corresponding HJB PDEs are

0 = −Hm(x,∇W )

= −
{

1

2
xT Dmx + (Amx)T∇W + max

u∈Rl
[(σmu)T∇W − γ2

2
|u|2]

}

= −
{

1

2
xT Dmx + (Amx)T∇W +

1

2
∇WT Σm∇W

}

W (0) = 0,

(7.5)

where Σm .
= 1

γ2 σm(σm)T . Let Cδ be the subset of semiconvex functions on

Rn such that 0 ≤ W (x) ≤ cA(γ2−δ)
2m2

σ
|x|2 for all x. From Chapter 3, Theorem

3.19 and Chapter 4, Corollary 4.11 (undoubtedly among many other works
on linear systems),

Theorem 7.1. Each value function (7.4) is the unique viscosity solution of
its corresponding HJB PDE (7.5) in the class Cδ for sufficiently small δ > 0.

Defining
V̂ m(x, T ) = sup

u∈U
Ĵm(x, T ; u),

we have
Wm(x) = lim

T→∞
V̂ m(x, T ), (7.6)

where V̂ m is also the unique continuous viscosity solution of

0 = VT −Hm(x,∇V ),

V (0, x) = 0
(7.7)

(see Chapter 3). It is easy to see that these solutions have the form V̂ m(x, t) =
1
2xT Pm,f

t x where each (symmetric) Pm,f satisfies the differential Riccati equa-
tion

Ṗm,f = (Am)T Pm,f + Pm,fAm + Dm + Pm,fΣmPm,f , (7.8)

Pm,f
0 = 0.

By (7.6) and (7.8), the Wm take the form Wm(x) = 1
2xT Pmx where Pm =

limt→∞ Pm,f
t . With this form, and (7.5) (or (7.8)), we see that the Pm satisfy

the algebraic Riccati equations
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0 = (Am)T Pm + PmAm + Dm + PmΣmPm. (7.9)

Combining this with Theorem 7.1, one has:

Theorem 7.2. Each value function (7.4) is the unique classical solution of
its corresponding HJB PDE (7.5) in the class Cδ for sufficiently small δ > 0.
Further, Wm(x) = 1

2xT Pmx where Pm is the smallest symmetric, positive
definite solution of (7.9)

Corollary 7.3. Each Wm is strictly convex. Further, there exists symmetric,
positive definite C and ε > 0 such that Wm(x) − 1

2xT Cx is convex, and in
fact, bounded below by (ε/2)|x|2, for all m ∈M.

For each m define the semigroup

Sm
T [φ](x)

.
= sup

u∈U

[∫ T

0

1
2 (ξm

t )T Dmξm
t −

γ2

2
|ut|2 dt + φ(ξm

T )

]
(7.10)

where ξm satisfies (7.2). From Chapters 3 and 4, the domain of Sm
T includes

Cδ for all δ > 0.

Theorem 7.4. Fix any T > 0. Each value function, Wm, is the unique
smooth solution of

W = Sm
T [W ]

in the class Cδ for sufficiently small δ > 0. Further, given any W ∈ Cδ,
limT→∞ Sm

T [W ](x) = Wm(x) for all x ∈ Rn (uniformly on compact sets).

Proof. (Sketch of proof.) Neglecting the smoothness, the first statement is
equivalent to Theorem 4.4 and Corollary 4.11. The smoothness follows from
the quadratic form. The proof of the second statement is nearly identical to
the bulk of the proof of Theorem 4.4. In particular, note that the right-hand

side of (4.15) is greater than
∫ T

0
αl|ξt|2 dt + W (ξT ) for proper choice of δ in

(the definition of γ̂) in (4.15). The remainder of the proof follows similarly to
the remainder of the proof of Theorem 4.4. ⊓⊔

Recall that the HJB PDE of interest is

0 = −H̃(x,∇W )
.
= − max

m∈M
Hm(x,∇W ),

W (x) = 0.
(7.11)

The corresponding value function is

W̃ (x) = sup
u∈U

sup
µ∈D∞

J̃(x, u, µ)

.
= sup

u∈U
sup

µ∈D∞

sup
T<∞

∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt, (7.12)

where
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lµt(x) = 1
2xT Dµtx,

D∞ = {µ : [0,∞) →M : measurable },

and ξ satisfies

ξ̇ = Aµtξ + σµtut,

ξ0 = x.
(7.13)

Theorem 7.5. Value function W̃ is the unique viscosity solution to (7.11) in
the class Cδ for sufficiently small δ > 0.

Remark 7.6. The proof of Theorem 7.5 is identical to the proofs in Chapter
3 with only trivial changes, and so is not included. In particular, rather than
choosing any u ∈ U , one chooses both any u ∈ U and any µ ∈ D∞. Also,
the finite time-horizon PDEs now include maximization over m ∈ M. In
particular, (3.70) now becomes

0 = Ṽ f
T − max

m∈M

[
1
2xT Dmx + (Amx)T∇Ṽ f + 1

2 (∇Ṽ f )T Σm∇Ṽ f
]

Ṽ f (x, 0) = 0,

where previously there was no maximization over m.

Define the semigroup

S̃T [φ] = sup
u∈U

sup
µ∈DT

[∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt + φ(ξT )

]
, (7.14)

where
DT = {µ : [0, T ) →M : measurable }. (7.15)

In analogy with Theorem 7.4, one has the following.

Theorem 7.7. Fix any T > 0. Value function W̃ is the unique continuous
solution of

W = S̃T [W ]

in the class Cδ for sufficiently small δ > 0. Further, given any W ∈ Cδ,
limT→∞ S̃T [W ](x) = W̃ (x) for all x ∈ Rn (uniformly on compact sets).

The proof is nearly identical to the proof of Theorem 7.4, and so is not
included. In particular, the only change is the addition of the supremum over
DT — which makes no substantive change in the proof.

Importantly, we also have the following.

Theorem 7.8. Value function W̃ is strictly convex. Further, there exists
cW > 0 such that W̃ (x)− 1

2cW |x|2 is strictly convex.
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Proof. Fix any x, η ∈ Rn with |η| = 1 and any δ > 0. Let ε > 0. Given x, let

uε ∈ U , µε ∈ D∞ be ε-optimal for W̃ (x) (i.e., so that J̃(x, uε, µε) ≥ W̃ (x)−ε).
Then

W̃ (x− δη)− 2W̃ (x) + W̃ (x + δη)

≥ J̃(x− δη, uε, µε)− 2J̃(x, uε, µε) + J̃(x + δη, uε, µε)− 2ε. (7.16)

Let ξδ, ξ0, ξ−δ be solutions of dynamics (7.13) with initial conditions ξδ
0 =

x+ δη, ξ0
0 = x and ξ−δ

0 = x− δη, respectively, where the inputs are uε and µε

for all three processes. Then

ξ̇δ − ξ̇0 = Aµε
t [ξδ − ξ0] and ξ̇0 − ξ̇−δ = Aµε

t [ξ0 − ξ−δ]. (7.17)

Letting ∆+
t

.
= ξδ

t − ξ0
t , one also has ξ0

t − ξ−δ
t = ∆+

t , and by linearity one finds
∆̇+ = Aµε

t ∆+. Also, using (7.16) and (7.12)

W̃ (x− δη)− 2W̃ (x) + W̃ (x + δη)

≥ 1
2

∫ ∞

0

[
(ξδ

t )T Dµε
t ξδ

t − 2(ξ0
t )T Dµε

t ξ0
t + (ξ−δ

t )T Dµε
t ξ−δ

t

]
dt− 2ε

=

∫ ∞

0

(∆+)T Dµε
t ∆+ dt− 2ε. (7.18)

Also, by the finiteness of M, there exists K < ∞ such that

d

dt
|∆+|2 = 2(∆+)T Aµε

t ∆+ ≥ −K|∆+|2,

which implies
|∆+|2 ≥ e−Ktδ2 ∀ t ≥ 0. (7.19)

Let λD
.
= min{λ ∈ R : λ is an eigenvalue of a Dm}. By the positive

definiteness of the Dm and finiteness of M, λD > 0. Then, by (7.18)

W̃ (x− δη)− 2W̃ (x) + W̃ (x + δη) ≥
∫ ∞

0

λD|∆+|2 dt− 2ε,

which by (7.19)

≥ λD

K
δ2 − 2ε.

Because ε > 0 and |η| = 1 were arbitrary, one obtains the result. ⊓⊔

7.2 Max-Plus Spaces and Dual Operators

Let Sβ = Sβ(Rn) be the max-plus vector space of functions mapping Rn into
R− which are uniformly semiconvex with constant β (where φ is uniformly
semiconvex over Rn with constant β if φ(x)+(β/2)|x|2 is convex on Rn). Note
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that we will now be generalizing to β ∈ R, whereas we previously always im-
plicitly assumed that the semiconvexity constant was positive. (A negative
semiconvexity constant corresponds to functions from which subtracting the
appropriate convex quadratic still yields a convex function.) Combining Corol-
lary 7.3 and Theorem 7.8, we have the following.

Theorem 7.9. There exists β ∈ R such that given any β > β, W̃ ∈ Sβ and
Wm ∈ Sβ for all m ∈ M. Further, one may take β < 0 (i.e., W̃ , Wm are
convex).

We will be returning to using semiconvex duality again in this chapter, as
opposed to max-plus basis expansions. For simplicity, we use a scalar coeffi-
cient. Define ψ : Rn ×Rn → R as

ψ(x, z)
.
= (c/2)|x− z|2, (7.20)

where c ∈ R. Note that because we are allowing β < 0 in our class of semi-
convex spaces here, it is convenient to define ψ in (7.20) without the usual
minus sign. It is easy to check that the form of the semiconvex duality result,
Theorem 2.11, is essentially unchanged. In particular, we have the following.
(See also [101], [102].)

Theorem 7.10. Let φ ∈ Sβ. Let c ∈ R, c �= 0 such that −c > β. Let ψ be as
in (7.20). Then, for all x ∈ Rn,

φ(x) = max
z∈Rn

[ψ(x, z) + a(z)] (7.21)

=

∫ ⊕

Rn

ψ(x, z)⊗ a(z) dz = ψ(x, ·)⊙ a(·), (7.22)

where for all z ∈ Rn

a(z) = − max
x∈Rn

[ψ(x, z)− φ(x)] (7.23)

= −
∫ ⊕

Rn

ψ(x, z)⊗ [−φ(x)] dx = −{ψ(·, z)⊙ [−φ(·)]} , (7.24)

which using the notation of [20]

=
{
ψ(·, z)⊙ [φ−(·)]

}−
. (7.25)

Remark 7.11. Recall that φ ∈ Sβ implies that φ is locally Lipschitz (c.f. Chap-
ter 2 and [42]). We also note that if φ ∈ Sβ and if there is any x ∈ Rn such
that φ(x) = −∞, then φ ≡ −∞. Henceforth, we will ignore the special case
of φ ≡ −∞, and assume that all functions are real-valued.

Semiconcavity is the obvious analogue of semiconvexity. In particular, a
function, φ : Rn → R ∪ {+∞}, is uniformly semiconcave with constant β if
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φ(x)− β
2 |x|2 is concave over Rn. Let Sβ

− be the set of functions mapping Rn

into R ∪ {+∞} which are uniformly semiconcave with constant β. The next
lemma is an obvious result of Theorem 7.10.

Lemma 7.12. Let φ ∈ Sβ (still with −c > β), and let a be the semiconvex
dual of φ. Then a ∈ Sd

− for some d < −c.

Proof. A proof only in the case φ ∈ C2 is provided; the more general proof
would be more technical. Without loss of generality, one may assume x ∈ R;
otherwise, one considers restrictions to lines through the domain, and proves
convexity of the restrictions.

Noting that φ ∈ Sβ and −c > β, there exists a unique minimizer,

x(z) = argmin
x∈R

[φ(x)− ψ(x, z)],

and one has
a(z) = φ(x(z))− ψ(x(z), z). (7.26)

Differentiating, and using the fact that φx(x(z))− ψx(x(z), z) = 0, one finds

da

dz
= −ψz(x(z), z).

Differentiating again, one finds

d2a

dz2
= −ψzz(x(z), z)− ψzx(x(z), z)

dx

dz
. (7.27)

However, using the definition, one finds

dx

dz
= [φxx(x(z)− ψxx(x(z), z)]

−1
ψzx(x(z), z). (7.28)

Combining (7.27) and (7.28), one obtains

d2a

dz2
= −ψzz(x(z), z)− [φxx(x(z)− ψxx(x(z), z)]

−1
ψ2

zx(x(z), z)

= −c− c2

φxx(x(z))− c
. (7.29)

However, φxx(x) > −β > c for all x ∈ R, and consequently, (7.29) yields

d2a

dz2
< −c +

c2

β + c

Letting d
.
= −c + c2/(β + c), one has a ∈ Sd and d < −c. ⊓⊔

Lemma 7.13. Let φ ∈ Sβ with semiconvex dual a. Suppose b ∈ Sd
− with

d < −c is such that φ = ψ(x, ·)⊙ b(·). Then b = a.
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Proof. Note that −b ∈ Sd. Therefore, for all y ∈ Rn

−b(y) = max
ζ∈Rn

[ψ(y, ζ) + α(ζ)]

or equivalently,
b(y) = − max

ζ∈Rn
[ψ(y, ζ) + α(ζ)], (7.30)

where for all ζ ∈ Rn

α(ζ) = − max
y∈Rn

[ψ(y, ζ) + b(y)],

which by assumption
= −φ(ζ). (7.31)

Combining (7.30) and (7.31), and then using (7.23), one obtains

b(y) = − max
ζ∈Rn

[ψ(y, ζ)− φ(ζ)] = a(y) ∀ y ∈ Rn. ⊓⊔

It will be critical to the method that the functions obtained by application
of the semigroups to the ψ(·, z) be semiconvex with less concavity than the

ψ(·, z) themselves. In other words, we will want for instance S̃τ [ψ(·, z)] ∈
S−(c+ε). This is the subject of the next theorem. Also, in order to keep the
theorem statement clean, we will first make some definitions. Define

λD
.
= min{λ ∈ R : λ is an eigenvalue of Dm, m ∈M}.

Note that the finiteness of M implies that λD > 0. Let

K
.
= max

m∈M, x 	=0

|xT Amx|
|x|2 .

We define the interval

IK

.
=

(−λD

2K
,
λD

2K

)
.

Theorem 7.14. Let c ∈ IK , c �= 0. Then there exists τ > 0 and ν > 0 such
that for all τ ∈ [0, τ ]

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(c+ντ).

Remark 7.15. From the proof to follow, one can obtain feasible values for
τ , ν. For instance, if c > 0, c ∈ IK , then one may take ν = 1

2λD − Kc and

τ such that e−2Kτ = 1
2 . However, in practice, such a τ tends to be highly

conservative. Because these estimates are also quite technical, we do not give
explicit values.

Proof. We prove the result only for S̃τ . The proof for Sm
τ is nearly identical

and slightly simpler.
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The first portion of the proof is similar to the proof of Theorem 7.8. Again,
fix any x, η ∈ Rn with |η| = 1 and any δ > 0. Fix τ > 0, and let ε >

0. Given x, let uε, µε be ε-optimal for S̃τ [ψ(·, z)](x). Specifically, suppose

Îψ(x, τ, uε, µε) ≥ S̃τ [ψ(·, z)](x)− ε where

Îψ(x, τ, u, µ)
.
=

∫ τ

0

lµt(ξt)−
γ2

2
|ut|2 dt + ψ(ξT , z) (7.32)

and ξt satisfies (7.13). For simplicity of notation, let V̂ τ,ψ = S̃τ [ψ(·, z)]. Then

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη)

≥ Îψ(x− δη, τ, uε, µε)− 2Îψ(x, τ, uε, µε) + Îψ(x + δη, τ, uε, µε)

−2ε. (7.33)

Let ξδ, ξ0, ξ−δ, ∆+ be as given in the proof of Theorem 7.8. Note that

ψ(ξδ
τ , z)− 2ψ(ξ0

τ , z) + ψ(ξ−δ
τ , z) = c|∆+

τ |2. (7.34)

Note also that as in the proof of Theorem 7.8,

1
2

[
ξδ
t Dµε

t ξδ
t − 2ξ0

t Dµε
t ξ0

t + ξ−δ
t Dµε

t ξ−δ
t

]
= (∆+

t )T Dµε
t ∆+

t . (7.35)

Combining (7.32), (7.33), (7.34) and (7.35), one obtains

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη)

≥
∫ τ

0

(∆+
t )T Dµε

t ∆+
t dt + c|∆+

τ |2 − 2ε

≥
∫ τ

0

λD|∆+
t |2 dt + c|∆+

τ |2 − 2ε. (7.36)

Further, noting again that ∆̇+ = Aµε
t ∆+, one has

d

dt
|∆+|2 = 2(∆+)T Aµε

t ∆+.

Consequently, using the definition of K,

−2K|∆+|2 ≤ d

dt
|∆+|2 ≤ 2K|∆+|2,

and so
δ2e−2Kt ≤ |∆+

t |2 ≤ δ2e2Kt. (7.37)

Suppose c > 0. Then by (7.36) and (7.37),

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη) ≥ λDδ2

∫ τ

0

e−2Kt dt + cδ2e−2Kτ

−2ε

= δ2f(τ)− 2ε
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where

f(τ)
.
= λD

1− e−2Kτ

2K
+ ce−2Kτ .

Note that f(0) = c and f ′(τ) = (λD − 2Kc)e−2Kτ . Then f ′(0) = λD − 2Kc,
and we suppose λD − 2Kc > 0. Letting ν

.
= 1

2 (λD − 2Kc), one sees that there
exists τ > 0 such that

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη) ≥ δ2[f(0) + ντ ]− 2ε ∀ τ ∈ [0, τ ].

Because this is true for all ε > 0,

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη) ≥ δ2[c + ντ ] ∀ τ ∈ [0, τ ]. (7.38)

Now suppose c < 0. Then by (7.36) and (7.37),

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη) ≥ δ2f̂(τ)− 2ε (7.39)

where

f̂(τ)
.
= λD

1− e−2Kτ

2K
+ ce2Kτ .

Note that f̂(0) = c and f̂ ′(τ) = λDe−2Kτ + 2ce2Kτ . Then f̂ ′(0) = λD + 2Kc,
and we suppose λD + 2Kc > 0. Letting ν

.
= 1

2 (λD + 2Kc), one sees that there
exists τ > 0 such that

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη) ≥ δ2[f̂(0) + ντ ]− 2ε ∀ τ ∈ [0, τ ].

Because this is true for all ε > 0,

V̂ τ,ψ(x− δη)− 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δη) ≥ δ2[c + ντ ] ∀ τ ∈ [0, τ ]. (7.40)

Combining (7.38) and (7.40) yields the result if the two conditions λD−2Kc >
0 when c > 0 and λD + 2Kc > 0 when c < 0 are met. The reader can check
that these conditions are met if c ∈ IK . ⊓⊔

Corollary 7.16. We may choose c ∈ R such that W̃ , Wm ∈ S−c, and such
that with ψ, τ , ν as in the statement of Theorem 7.14,

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(c+ντ) ∀ τ ∈ [0, τ ].

Henceforth, we suppose c chosen so that the results of Corollary 7.16 hold,
and take ψ(x, z) = c

2 |x − z|2. We also suppose τ, ν chosen according to the
corollary as well.

Now for each z ∈ Rn, S̃τ [ψ(·, z)] ∈ S−(c+ντ). Therefore, by Theorem 7.10,
for all x, z ∈ Rn

S̃τ [ψ(·, z)](x) =

∫ ⊕

Rn

ψ(x, y)⊗ B̃τ (y, z) dy = ψ(x, ·)⊙ B̃τ (·, z), (7.41)

where for all y ∈ Rn
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B̃τ (y, z) = −
∫ ⊕

Rn

ψ(x, y)⊗
{
−S̃τ [ψ(·, z)](x)

}
dx

=
{
ψ(·, y)⊙ [S̃τ [ψ(·, z)](·)]−

}−
(7.42)

It is handy to define the max-plus linear operator with “kernel” B̃τ (where
we do not rigorously define the term kernel as it will not be needed here) as
̂̃Bτ [α](z)

.
= B̃τ (z, ·)⊙ α(·) for all α ∈ S−c.

Proposition 7.17. Let φ ∈ S−c with semiconvex dual denoted by a. Define
φ1 = S̃τ [φ]. Then φ1 ∈ S−(c+ντ), and

φ1(x) = ψ(x, ·)⊙ a1(·),
where

a1(x) = B̃τ (x, ·)⊙ a(·).

Proof. The proof that φ1 ∈ S−(c+ντ) is similar to the proof in Theorem 7.14.
Consequently, we prove only the second assertion.

φ1(x) = sup
u∈U

sup
µ∈D∞

[∫ τ

0

lµt(ξt)−
γ2

2
|ut|2 dt + φ(ξτ )

]

= sup
u∈U

sup
µ∈D∞

max
z∈Rn

[∫ τ

0

lµt(ξt)−
γ2

2
|ut|2 dt + ψ(ξτ , z) + a(z)

]

= max
z∈Rn

{
S̃τ [ψ(·, z)](x) + a(z)

}
,

which by (7.41)

=

∫ ⊕

y∈Rn

∫ ⊕

z∈Rn

B̃τ (y, z)⊗ a(z) dz ⊗ ψ(x, y) dy

=

∫ ⊕

y∈Rn

a1(x)⊗ ψ(x, y) dy. ⊓⊔

Theorem 7.18. Let W ∈ S−c, and let a be its semiconvex dual (with respect
to ψ). Then

W = S̃τ [W ]

if and only if
a(z) = max

y∈Rn

[
B̃τ (z, y) + a(y)

]
,

which of course

=

∫ ⊕

Rn

B̃τ (z, y)⊗ a(y) dy = B̃τ (z, ·)⊙ a(·) =
̂̃Bτ [a](z) ∀ z ∈ Rn.
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Proof. Because a is the semiconvex dual of W , for all x ∈ Rn,

ψ(x, ·)⊙ a(·) = W (x) = S̃τ [W ](x)

= S̃τ

[
max
z∈Rn

{ψ(·, z) + a(z)}
]

(x)

= max
z∈Rn

{
a(z) + S̃τ [ψ(·, z)](x)

}

=

∫ ⊕

Rn

a(z)⊗ S̃τ [ψ(·, z)](x) dz,

which by (7.41)

=

∫ ⊕

Rn

a(z)⊗
∫ ⊕

Rn

B̃τ (y, z)⊗ ψ(x, y) dy dz

=

∫ ⊕

Rn

∫ ⊕

Rn

B̃τ (y, z)⊗ a(z)⊗ ψ(x, y) dy dz

=

∫ ⊕

Rn

[∫ ⊕

Rn

B̃τ (y, z)⊗ a(z) dz

]
⊗ ψ(x, y) dy

=

[∫ ⊕

Rn

B̃τ (·, z)⊗ a(z) dz

]
⊙ ψ(x, ·).

Combining this with Lemma 7.13, one has

a(y) =

∫ ⊕

Rn

B̃τ (·, z)⊗ a(z) dz = B̃τ (y, ·)⊙ a(·) ∀ y ∈ Rn.

The reverse direction follows by supposing a(·) = B̃τ (z, ·) ⊙ a(·) and re-
ordering the above argument. ⊓⊔
Corollary 7.19. Value function W̃ is given by W̃ (x) = ψ(x, ·)⊙ ã(·) where ã
is the unique solution of

ã(y) = B̃τ (y, ·)⊙ ã(·) ∀ y ∈= Rn

or equivalently, ã =
̂̃Bτ [ã].

Proof. Combining Theorem 7.7 and Theorem 7.18 yields the assertion that W̃
has this representation. The uniqueness follows from the uniqueness assertion
of Theorem 7.7 and Lemma 7.13. ⊓⊔

Similarly, for each m ∈M and z ∈ Rn, Sm
τ [ψ(·, z)] ∈ S−(c+ντ) and

Sm
τ [ψ(·, z)](x) = ψ(x, ·)⊙ Bm

τ (·, z) ∀x ∈ Rn,

where

Bm
τ (y, z) =

{
ψ(·, y)⊙

[
Sm

τ [ψ(·, z)]
]−

(·)
}−

∀ y ∈ Rn.

As before, it will be handy to define the max-plus linear operator with “kernel”
Bm

τ as B̂m
τ [a](z)

.
= Bm

τ (z, ·) ⊙ a(·) for all a ∈ S−c. Further, one also obtains
analogous results (by similar proofs). In particular, one has the following
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Theorem 7.20. Let W ∈ S−c, and let a be its semiconvex dual (with respect
to ψ). Then

W = Sm
τ [W ]

if and only if
a(z) = Bm

τ (z, ·)⊙ a(·) ∀ z ∈ Rn.

Corollary 7.21. Each value function Wm is given by Wm(x) = ψ(x, ·) ⊙
am(·) where each am is the unique solution of

am(y) = Bm
τ (y, ·)⊙ am(·) ∀ y ∈= Rn.

7.3 Discrete Time Approximation

The method developed here will not involve any discretization over space.
Of course this is obvious because otherwise one could not avoid the curse-
of-dimensionality. The discretization will be over time where approximate µ
processes will be constant over the length of each time-step. This is similar to
a technique used in Chapter 6.

We define the operator S̄τ on Cδ by

S̄τ [φ](x) = sup
u∈U

max
m∈M

[∫ τ

0

lm(ξm
t )− γ2

2
|ut|2 dt + φ(ξm

τ )

]
(x)

= max
m∈M

Sm
τ [φ](x),

where ξm satisfies (7.2). Let

Bτ (y, z)
.
= max

m∈M
Bm

τ (y, z) =
⊕

m∈M

Bm
τ (y, z) ∀ y, z ∈ Rn.

The corresponding max-plus linear operator is

B̂τ =
⊕

m∈M

B̂m
τ .

Lemma 7.22. For all z ∈ Rn, S̄τ [ψ(·, z)] ∈ S−(c+ντ). Further,

S̄τ [ψ(·, z)](x) = ψ(x, ·)⊙ Bτ (·, z) ∀x ∈ Rn.

Proof. We provide the proof of the last statement, and this is as follows.

S̄τ [ψ(·, z)](x) = max
m∈M

Sm
τ [ψ(·, z)](x) =

⊕

m∈M

ψ(x, ·)⊙ Bm
τ (·, z)

=
⊕

m∈M

∫ ⊕

Rn

ψ(x, y)⊗ Bm
τ (y, z) dy

=

∫ ⊕

Rn

ψ(x, y)⊗
[
⊕

m∈M

Bm
τ (y, z)

]
dy

= ψ(x, ·)⊙
[
max
m∈M

Bm
τ (·, z)

]
. ⊓⊔
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We remark that, parameterized by τ , the operators S̄τ do not necessarily
form a semigroup, although they do form a sub-semigroup (i.e., S̄τ1+τ2 [φ](x) ≤
S̄τ1 S̄τ2 [φ](x) for all x ∈ Rn and all φ ∈ S−c). In spite of this, one does have

Sm
τ ≤ S̄τ ≤ S̃τ for all m ∈M.

With τ acting as a time-discretization step-size, as in Chapter 6, we let

Dτ
∞ =

{
µ : [0,∞) →M| for each n ∈ N ∪ {0}, there exists mn ∈M

such that µ(t) = mn ∀ t ∈ [nτ, (n + 1)τ)
}

,

and for T = n̄τ with n̄ ∈ N define Dτ
T similarly but with function domain

being [0, T ) rather than [0,∞). Let Mn̄ denote the outer product of M, n̄
times. Let T = n̄τ , and define

¯̄S
τ

T [φ](x) = max
{mk}

n̄−1
k=0

∈Mn̄

{
n̄−1∏

k=0

Smk
τ

}
[φ](x) = (S̄τ )n̄[φ](x)

where the
∏

notation indicates operator composition, and the superscript in
the last expression indicates repeated application of S̄τ , n̄ times.

We will be approximating W̃ by solving W = S̄τ [W ] via its dual problem

a = B̂τ [a] for small τ . Consequently, we will need to show that there exists a
solution to W = S̄τ [W ], that the solution is unique, and that it can be found
by solving the dual problem. We begin with existence.

Theorem 7.23. Let
W (x)

.
= lim

N→∞

¯̄S
τ

Nτ [0](x) (7.43)

for all x ∈ Rn where 0 represents the zero-function. Then, W satisfies

W = S̄τ [W ],

W (0) = 0.
(7.44)

Further, 0 ≤ Wm ≤ W ≤ W̃ for all m ∈M, and consequently, W ∈ Cδ.

Proof. Note that for any m ∈M (see Theorem 7.4),

Wm(x) = lim
N→∞

Sm
Nτ [0](x) ≤ lim sup

N→∞

¯̄S
τ

Nτ [0](x)

≤ lim
N→∞

S̃Nτ [0](x) = W̃ (x) ∀x ∈ Rn. (7.45)

Also,

¯̄S
τ

(N+1)τ [0](x) = ¯̄S
τ

Nτ [S̄τ [0](·)](x) (7.46)

= sup
û∈U

sup
µ̂∈DNτ

∫ Nτ

0

lµ̂t(ξt)−
γ2

2
|ût|2 dt
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+ sup
u∈U

max
m∈M

∫ (N+1)τ

Nτ

lm(ξt)−
γ2

2
|ut|2 dt,

which by taking u ≡ 0

≥ sup
û∈U

sup
µ̂∈DNτ

∫ Nτ

0

lµ̂t(ξt)−
γ2

2
|ût|2 dt = ¯̄S

τ

Nτ [0](x),(7.47)

which implies that ¯̄S
τ

Nτ [0](x) is a monotonically increasing function of N .
Because it is also bounded from above (by (7.45)), one finds

Wm(x) ≤ lim
N→∞

¯̄S
τ

Nτ [0](x) ≤ W̃ (x) ∀x ∈ Rn, (7.48)

which also justifies the use of the limit definition of W in the statement of the
theorem. In particular, one has 0 ≤ Wm ≤ W ≤ W̃ , and so W ∈ Cδ.

Fix any x ∈ Rn, and suppose there exists δ > 0 such that

W (x) ≤ S̄τ [W ](x)− δ. (7.49)

However, by the definition of W , given any y ∈ Rn, there exists Nδ < ∞ such
that for all N ≥ Nδ

W (y) ≤ ¯̄S
τ

Nτ [0](y) + δ/4. (7.50)

Combining (7.49) and (7.50), one finds after a small bit of work that

W (x) ≤ S̄τ

[ ¯̄Sτ

Nτ [0] + δ/2
]
(x)− δ,

which using the max-plus linearity of S̄τ

= ¯̄S
τ

(N+1)τ [0](x)− δ/2

for all N ≥ Nδ. Consequently, W (x) ≤ limN→∞
¯̄S

τ

Nτ [0](x) − δ/2 which is
a contradiction. Therefore, W (x) ≥ S̄τ [W ](x) for all x ∈ Rn. The reverse
inequality follows in a similar way. Specifically, fix x ∈ Rn and suppose there
exists δ > 0 such that

W (x) ≥ S̄τ [W ](x) + δ. (7.51)

By the monotonicity of ¯̄S
τ

Nτ with respect to N , for any N < ∞,

W (x) ≥ ¯̄S
τ

Nτ [0](x) ∀x ∈ Rn.

By the monotonicity of S̄τ with respect to its argument (i.e., φ1(x) ≤ φ2(x)
for all x implying S̄τ [φ1](x) ≤ S̄τ [φ2](x) for all x), this implies

S̄τ [W ] ≥ ¯̄S
τ

(N+1)τ [0] ∀x ∈ Rn. (7.52)

Combining (7.51) and (7.52) yields

W (x) ≥ ¯̄S
τ

(N+1)τ [0](x) + δ.

Letting N →∞ yields a contradiction, and so W ≤ S̄τ [W ]. ⊓⊔
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The following result is immediate.

Theorem 7.24.

W (x) = sup
µ∈Dτ

∞

sup
u∈U

sup
T∈[0,∞)

[∫ T

0

lµt(ξt)−
γ2

2
|ut|2 dt

]
,

where ξt satisfies (7.13).

Theorem 7.25. W (x)− 1
2cW |x|2 is convex.

Proof. The proof is identical to the proof of Theorem 7.8 with the exception
that µε is chosen from Dτ

∞ instead of D∞. ⊓⊔
We now address the uniqueness issue. Similar techniques to those used for

Wm and W̃ will prove uniqueness for (7.44) within Cδ. A slightly weaker type
of result under weaker assumptions will be obtained first; this result is similar
in form to that of [106].

Suppose V
′ �= W , V

′ ∈ Cδ satisfies (7.44). This implies that for all x ∈ Rn

and all N < ∞

V
′
(x) = ¯̄S

τ

Nτ [V
′
](x)

= sup
u∈U

sup
µ∈Dτ

∞

{∫ Nτ

0

lµt(ξt)−
γ2

2
|ut|2 dt + V

′
(ξNτ )

}
,

which by taking u0 ≡ 0 (with corresponding trajectory denoted by ξ0)

≥ V
′
(ξ0

Nτ ). (7.53)

However, by (7.13), one has ξ̇0 = Aµtξ0, and so |ξ0
t | ≤ e−cAt|x| for all t ≥ 0

which implies that |ξ0
Nτ | → 0 as N →∞. Consequently

lim
N→∞

V
′
(ξ0

Nτ ) = 0. (7.54)

Combining (7.53) and (7.54), one has

V
′
(x) ≥ 0 ∀x ∈ Rn. (7.55)

Also, by (7.44)

V
′
(x) = lim

N→∞

¯̄S
τ

Nτ [V
′
](x) ∀x ∈ Rn.

By (7.55) and the monotonicity of ¯̄S
τ

Nτ with respect to its argument, this is

≥ lim
N→∞

¯̄S
τ

Nτ [0](x) = W (x). (7.56)

By (7.55), (7.56), one has the uniqueness result analogous to [106], which is
as follows.
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Theorem 7.26. W is the unique minimal, non-negative solution to (7.44).

The stronger uniqueness statement (making use of the quadratic bound

on lµt(x)) is as follows. As with Wm and Ṽ , the proof is similar to those in
Chapters 3 and 4. However, in this case, there is a small difference in the
proof, and this difference requires another lemma. Due to this difference in
the case of W , we include a sketch of the proof (but with the new lemma in
full) in Appendix A.

Theorem 7.27. W is the unique solution of (7.44) within the class Cδ for

sufficiently small δ > 0. Further, given any W ∈ Cδ, limN→∞
¯̄S

τ

Nτ [W ](x) =
W (x) for all x ∈ Rn (uniformly on compact sets).

Henceforth, we let δ > 0 be sufficiently small such that Wm, W̃ , W ∈ Cδ

for all m ∈M.

Theorem 7.28. Let W ∈ S−c, and let a be its semiconvex dual. Then

W = S̄τ [W ]

if and only if
a(y) = Bτ (y, ·)⊙ a(·) ∀ y ∈ Rn.

Proof. By the semiconvex duality

ψ(x, ·)⊙ a(·) = W (x) = S̄τ [W ](x) (7.57)

= S̄τ

[
max
z∈Rn

{ψ(·, z) + a(z)}
]
(x),

which as in the first part of the proof of Theorem 7.18

=

∫ ⊕

Rn

a(z)⊗ S̄τ [ψ(·, z)](x) dz,

which by Lemma 7.22

=

∫ ⊕

Rn

a(z)⊗
∫ ⊕

Rn

ψ(x, y)⊗ Bτ (y, z) dy dz,

which as in the latter part of the proof of Theorem 7.18

=

[∫ ⊕

Rn

Bτ (·, z)⊗ a(z) dz

]
⊙ ψ(x, ·). (7.58)

By Lemma 7.13, this implies

a(y) = Bτ (y, ·)⊙ a(·) ∀ y ∈ Rn.

Alternatively, if a(y) = Bτ (y, ·)⊙ a(·) for all y, then
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W (x) = ψ(x, ·)⊙ a(·) =

[∫ ⊕

Rn

Bτ (·, z)⊗ a(z) dz

]
⊙ ψ(x, ·) ∀x ∈ Rn,

which by (7.57)–(7.58) yields W = S̄τ [W ]. ⊓⊔

Corollary 7.29. Value function W given by (7.43) is in S−c, and has repre-
sentation W (x) = ψ(x, ·)⊙ a(·) where a is the unique solution in S−c of

a(y) = Bτ (y, ·)⊙ a(·) ∀ y ∈ Rn (7.59)

or equivalently, a = B̂τ [a].

Proof. The representation follows from Theorems 7.23 and 7.28. The unique-
ness follows from Theorem 7.27 and Lemma 7.13. ⊓⊔

The following result on propagation of the semiconvex dual will also come
in handy. The proof is similar to the proof of Proposition 7.17, and so is not
included.

Proposition 7.30. Let φ ∈ S−c with semiconvex dual denoted by a. Define
φ1 = S̄τ [φ]. Then φ1 ∈ S−(c+ντ), and

φ1(x) = ψ(x, ·)⊙ a1(·),
where

a1(y) = Bτ (y, ·)⊙ a(·) ∀ y ∈ Rn.

We now show that one may approximate W̃ , the solution of W = S̃τ [W ],
to as accurate a level as one desires by solving W = S̄τ [W ] for sufficiently

small τ . Recall that if W = S̄τ [W ], then it satisfies W = ¯̄S
τ

Nτ [W ] for all

N > 0 (while W̃ satisfies W = S̃Nτ [W ]), and so this is essentially equivalent
to introducing a discrete-time µ ∈ Dτ

Nτ approximation to the µ process in

S̃Nτ . The result will follow easily from the following technical lemma. The
lemma uses the particular structure of our example class of problems as given
by Assumption (A7.1I). As the proof of the lemma is technical but long, it
is delayed to Appendix A. We also note that a similar result under different
assumptions appears as Theorem 6.9.

Lemma 7.31. Given ε̂ ∈ (0, 1], T < ∞, there exist T ∈ [T/2, T ] and τ > 0
such that

S̃T [Wm](x)− ¯̄S
τ

T [Wm](x) ≤ ε̂(1 + |x|2) ∀x ∈ Rn, ∀m ∈M.

We now obtain the main approximation result.

Theorem 7.32. Given ε > 0 and R < ∞, there exists τ > 0 such that

W̃ (x)− ε ≤ W (x) ≤ W̃ (x) ∀x ∈ BR(0).
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Proof. From Theorem 7.23, we have

0 ≤ Wm(x) ≤ W (x) ≤ W̃ (x) ≤ cA(γ − δ)2

m2
σ

|x|2 ∀x ∈ Rn. (7.60)

Also, with T = Nτ for any positive integer N ,

¯̄S
τ

Nτ [φ] ≤ S̃T [φ] ∀φ ∈ Cδ. (7.61)

Further, by Theorem 7.7, given ε > 0 and R < ∞, there exists T̂ < ∞ such
that for all T > T̂ and all m ∈M

S̃T [W̃ ](x)− ε/2 ≤ S̃T [Wm](x) ∀x ∈ BR(0). (7.62)

By (7.62) and Lemma 7.31, given ε > 0 and R < ∞, there exists T ∈ [0,∞),
τ ∈ [0, T ] where T = Nτ for some integer N such that for all |x| ≤ R

W̃ (x)− ε = S̃T [W̃ ](x)− ε

≤ S̃T [Wm](x)− ε/2

≤ ¯̄S
τ

T [Wm](x),

where ε̂(1 + R2) = ε/2, and which by (7.60) and the monotonicity of ¯̄S
τ

T [·],

≤ ¯̄S
τ

T [W ](x),

which by (7.61)

≤ S̃T [W ](x),

which by the monotonicity of S̃T [·]

≤ S̃T [W̃ ](x) = W̃ (x).

Noting (from Theorem 7.27) that W = ¯̄S
τ

T [W ] completes the proof. ⊓⊔

Remark 7.33. For this class of systems (defined by Assumption Block (A7.1I)),
we expect this result could be sharpened to

W̃ (x) ≤ −ε̂(1 + |x|2) ≤W (x) ≤ W̃ (x) ∀x ∈ Rn

by sharpening Theorem 7.7. However, this type of result might only be valid
for limited classes of systems, and it has not yet been pursued.

7.4 The Algorithm

We now begin discussion of the actual algorithm.
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Let ψ(x, z) = cW

4 |x − z|2 and W
0
(x) = cW

2 |x|2. By Theorem 7.23, W =

limN→∞
¯̄S

τ

Nτ [W
0
]. Given W

k
, let

W
k+1 .

= S̄τ [W
k
]

so that W
k

= ¯̄S
τ

kτ [0] for all k ≥ 1.

Let ak be the semiconvex dual of W
k

for all k. Because W
0 ≡ cW

2 |x|2, one
easily finds a0(y) for all y ∈ Rn. Note also that by Proposition 7.30,

ak+1 = Bτ (x, ·)⊙ ak(·) = B̂τ [ak]

for all n ≥ 0.
Recall that

Bτ (x, ·)⊙ ak(·) =

∫ ⊕

Rn

Bτ (x, y)⊗ ak(y) dy =

∫ ⊕

Rn

⊕

m∈M

Bm
τ (x, y)⊗ ak(y) dy

=
⊕

m∈M

∫ ⊕

Rn

Bm
τ (x, y)⊗ ak(y) dy

=
⊕

m∈M

[
Bm

τ (x, ·)⊙ ak(·)
]
. (7.63)

By (7.63),

a1(x) =
⊕

m∈M

â1
m(x)

where
â1

m(x)
.
= Bm

τ (x, ·)⊙ a0(·) ∀m.

(7.64)

By (7.63) and (7.64),

a2(x) =
⊕

m2∈M

∫ ⊕

Rn

Bm2
τ (x, y)⊗

[ ⊕

m1∈M

â1
m1

(y)

]
dy

=
⊕

{m1,m2}∈M×M

∫ ⊕

Rn

Bm2
τ (x, y)⊗ â1

m1
(y) dy.

Consequently,

a2(x) =
⊕

{m1,m2}∈M2

â2
{m1,m2}

(x)

where
â2
{m1,m2}

(x)
.
= Bm2

τ (x, ·)⊙ â1
m1

(·) ∀m1, m2

(7.65)
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andM2 represents the outer productM×M. Proceeding with this, one finds
that in general,

ak(x) =
⊕

{mi}k
i=1

∈Mk

âk
{mi}k

i=1
(x),

where
âk
{mi}k

i=1
(x)

.
= Bmk

τ (x, ·)⊙ âk−1

{mi}
k−1
i=1

(·) ∀ {mi}k
i=1 ∈Mk.

(7.66)

Of course, one can obtain W
k

from its dual as

W
k
(x) = max

y∈Rn
[ψ(x, y) + ak(y)]

=

∫ ⊕

Rn

[
ψ(x, y)⊗

⊕

{mi}k
i=1

∈Mk

âk
{mi}k

i=1
(y)

]
dy

=
⊕

{mi}k
i=1

∈Mk

{∫ ⊕

Rn

ψ(x, y)⊗ âk
{mi}k

i=1
(y) dy

}

.
=

⊕

{mi}k
i=1

∈Mk

Ŵ k
{mi}k

i=1
(x), (7.67)

where

Ŵ k
{mi}k

i=1
=

∫ ⊕

Rn

ψ(x, y)⊗ âk
{mi}k

i=1
(y) dy (7.68)

= max
y∈Rn

[ψ(x, y) + âk
{mi}k

i=1
(y)].

The algorithm will consist of the forward propagation of the âk
{mi}k

i=1

(according to (7.66)) from k = 0 to some termination step k = N , followed

by construction of the value as Ŵ k
{mi}k

i=1

(according to (7.68)).

It is important to note that the computation of each âk
{mi}k

i=1

is analytical.

We will indicate the actual analytical computations.
By the linear/quadratic nature of the m-indexed systems, we find that the

Sm
τ [ψ(·, z)] take the form

Sm
τ [ψ(·, z)](x) = 1

2 (x− Λm
τ z)T Pm

τ (x− Λm
τ z) + 1

2zT Rm
τ z,

where the time-dependent n× n matrices Pm
t , Λm

t and Rm
t satisfy Pm

0 = cI,
Λm

0 = I, Rm
0 = 0,

Ṗm = (Am)T Pm + PmAm + [Dm + PmΣmPm],

Λ̇m = −
[
(Pm)−1Dm −Am

]
Λm,

Ṙm = (Λm)T DmΛm.

We note that each of the Pm
τ , Λm

τ , Rm
τ need only be computed once.
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Next one computes each quadratic function Bm
τ (x, z) (one time only) as

follows. One has

Bm
τ = − max

y∈Rn
{ψ(y, x)− Sm

τ [ψ(·, z)](y)}

which by the above with c = cW /2

= min
y∈Rn

{
c
2 (y − x)T (y − x) + 1

2 (y − Λm
τ z)T Pm

τ (y − Λm
τ z)

+ 1
2zT Rm

τ z
}

. (7.69)

Recall that by Theorem 7.14, this has a finite minimum (Pm − (c + ντ)I
positive definite). Taking the minimum in (7.69), one has

Bm
τ (x, z) = 1

2

[
xT Mm

1,1x + xT Mm
1,2z + zT (Mm

1,2)
T x + zT Mm

2,2z
]

where with shorthand notation C
.
= cI and Dτ

.
= (Pm

τ − cI)−1,

Mm
1,1 =

[
CD−1

τ Pm
τ D−1

τ C − (D−1
τ C + I)T C(D−1

τ C + I)
]
,

Mm
1,2 =

[
(D−1

τ C + I)T CD−1
τ Pm

τ − CD−1
τ Pm

τ (D−1
τ Pm

τ − I)
]
Λm

τ ,

Mm
2,2 = (Λm

τ )T
[
(D−1

τ Pm
τ − I)T Pm

τ (D−1
τ Pm

τ − I)− Pm
τ D−1

τ CD−1
τ Pm

τ

]
Λm

τ

+Rm
τ .

Note that given the Pm
τ , Λm

τ , Rm
τ , the Bm

τ are quadratic functions with ana-
lytical expressions for their coefficients. Also note that all the matrices in the
definition of Bm

τ may be precomputed.
Now let us write the (quadratic) âk

{mi}k
i=1

in the form

âk
{mi}k

i=1
(x) = 1

2 (x− ẑk
{mi}k

i=1
)T Q̂k

{mi}k
i=1

(x− ẑk
{mi}k

i=1
) + r̂k

{mi}k
i=1

.

Then, for each mk+1,

âk+1

{mi}
k+1
i=1

= max
z∈Rn

{
Bmk+1

τ (x, z) + âk
{mi}k

i=1
(z)

}

= max
z∈Rn

{
1
2

[
xT Mm

1,1x + xT Mm
1,2z + zT (Mm

1,2)
T x + zT Mm

2,2z
]

+ 1
2 (x− ẑk

{mi}k
i=1

)T Q̂k
{mi}k

i=1
(x− ẑk

{mi}k
i=1

) + r̂k
{mi}k

i=1

}

= 1
2 (x− ẑk+1

{mi}
k+1
i=1

)T Q̂k+1

{mi}
k+1
i=1

(x− ẑk+1

{mi}
k+1
i=1

) + r̂k+1

{mi}
k+1
i=1

(7.70)

where

Q̂k+1

{mi}
k+1
i=1

= M
mk+1

1,1 −M
mk+1

1,2 D̂
(
M

mk+1

1,2

)T
,

ẑk+1

{mi}
k+1
i=1

= −
(
Q̂k+1

{mi}
k+1
i=1

)−1

M
mk+1

1,2 Ê,
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r̂k+1

{mi}
k+1
i=1

= r̂k
{mi}k

i=1
+ 1

2 ÊT Mm
2,2ẑ

k
{mi}k

i=1
− 1

2

(
ẑk+1

{mi}
k+1
i=1

)T

Q̂k+1

{mi}
k+1
i=1

ẑk+1

{mi}
k+1
i=1

,

D̂ =
(
M

mk+1

2,2 + Q̂k
{mi}k

i=1

)−1

,

Ê = D̂Q̂k
{mi}k

i=1
ẑk
{mi}k

i=1
.

Thus we have the analytical expression for the propagation of each (quadratic)
âk
{mi}k

i=1

function. Specifically, we see that the propagation of each âk
{mi}k

i=1

amounts to a set of matrix multiplications (and an inverse). One might note
that for purely quadratic constituent Hamiltonians (without terms that are
linear or constant in the state and gradient variables), one would expect that,
without loss of generality, one could take the ẑk

{mi}k
i=1

and r̂k
{mi}k

i=1

to be zero.

However, we will also be considering Hamiltonians with linear and constant
terms below.

At each step, k, the semiconvex dual of W
k
, ak, is represented as the finite

set of functions

Âk
.
=

{
âk
{mi}k

i=1
|mi ∈M ∀i ∈ {1, 2, . . . , k}

}
,

where this is equivalently represented as the set of triples

Q̂k
.
=

{(
Q̂k

{mi}k
i=1

, ẑk
{mi}k

i=1
, r̂k

{mi}k
i=1

)
|mi ∈M ∀i ∈ {1, 2, . . . , k}

}
.

At any desired stopping time, one can recover a representation of W
k

as

Ûk
.
=

{
V̂ k
{mi}k

i=1
|mi ∈M ∀i ∈ {1, 2, . . . , k}

}
,

where these V̂ k
{mi}k

i=1

are also quadratics. In fact, recall

W
k
(x) = max

z∈Rn
[ak(z) + ψ(x, z)]

= max
{mi}k

i=1

max
z∈Rn

[
1
2 (z − ẑk

{mi}k
i=1

)T Q̂k
{mi}k

i=1
(z − ẑk

{mi}k
i=1

) + r̂k
{mi}k

i=1

+ c
2 |x− z|2

]

.
= max

{mi}k
i=1

1
2 (x− x̂k

{mi}k
i=1

)T P̂ k
{mi}k

i=1
(x− x̂k

{mi}k
i=1

) + ρ̂k
{mi}k

i=1

.
=

⊕

{mi}k
i=1

V̂ k
{mi}k

i=1
(x),

where with C
.
= cI

P̂ k
{mi}k

i=1
= CF̂ Q̂k

{mi}k
i=1

F̂C + (F̂C − I)T C(F̂C − I),

x̂k
{mi}k

i=1
= −(P̂ k

{mi}k
i=1

)−1
[
CF̂ Q̂k

{mi}k
i=1

Ĝ + (F̂C−I)T CF̂ Q̂k
{mi}k

i=1

]
ẑk
{mi}k

i=1
,
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ρ̂k
{mi}k

i=1
= r̂k

{mi}k
i=1

+ 1
2 (ẑk

{mi}k
i=1

)T
[
ĜT Q̂k

{mi}k
i=1

Ĝ

+Q̂k
{mi}k

i=1
F̂CF̂ Q̂k

{mi}k
i=1

]
ẑk
{mi}k

i=1
,

F̂
.
= (Q̂k

{mi}k
i=1

+ C)−1,

and
Ĝ

.
= (F̂ Q̂k

{mi}k
i=1
− I).

Thus, W
k

has the representation as the set of triples

Pk
.
=

{(
P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k
{mi}k

i=1

)
|mi ∈M ∀i ∈ {1, 2, . . . , k}

}
. (7.71)

We note that the triples that comprise Pk are analytically obtained from the
triples (Q̂k

{mi}k
i=1

, ẑk
{mi}k

i=1

, r̂k
{mi}k

i=1

) by matrix multiplications and an inverse.

The transference from

(Q̂k
{mi}k

i=1
, ẑk

{mi}k
i=1

, r̂k
{mi}k

i=1
)

to
(P̂ k

{mi}k
i=1

, x̂k
{mi}k

i=1
, ρ̂k

{mi}k
i=1

)

need only be done once, which is at the termination of the algorithm propa-
gation. We note that (7.71) is our approximate solution of the original control
problem/HJB PDE.

The errors are due to our approximation of W̃ by W (see Theorem 7.32

and Remark 7.33), and to the approximation of W by the prelimit W
N

for termination time k = N . Neither of these errors are related to the
space dimension. The errors in |W̃ − W | are dependent on the step size

τ . The errors in |WN − W | = | ¯̄Sτ

Nτ [0] − W | are due to premature termi-

nation in the limit W = limN→∞
¯̄S

τ

Nτ [0]. The computation of each triple

(P̂ k
{mi}k

i=1

, x̂k
{mi}k

i=1

, ρ̂k
{mi}k

i=1

) grows like the cube of the space dimension (due

to the matrix operations). Thus one avoids the curse-of-dimensionality. Of

course, if one then chooses to compute W
N

(x) for all x on some grid over say
a rectangular region in Rn, then by definition one has exponential growth in
this computation as the space dimension increases. The point is that one does

not need to compute W
N ≃ W̃ at each such point.

However, the curse-of-dimensionality is replaced by another type of rapid
computational cost growth. Here, we refer to this as the curse-of-complexity.
If #M = 1, then all the computations of our algorithm (excepting the so-
lution of the Riccati equation) are unnecessary, and we informally refer to
this as complexity one. When there are M = #M such quadratics in the
Hamiltonian, H̃, we say it has complexity M . Note that

#
{

V̂ k
{mi}k

i=1
|mi ∈M ∀i ∈ {1, 2, . . . , k}

}
∼ Mk.
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For large k, this is indeed a large number. (We very briefly discuss means
for reducing this in the next section.) Nevertheless, for small values of M , we
obtain a very rapid solution of such nonlinear HJB PDEs, as will be indicated
in the examples to follow. Further, the computational cost growth in space
dimension n is limited to cubic growth.

7.5 Practical Issues

The bulk of this chapter develops an algorithm that avoids the curse-of-
dimensionality. However, the curse-of-complexity is also a formidable barrier.
The purpose of the chapter is to bring the existence of this class of algorithms
to light. Considering the long development of finite element methods, it is clear
that the development of highly efficient methods from this new class could be
a further substantial achievement. (Nevertheless, some impressive computa-
tional times are already indicated in the next section.) In this section, we
briefly indicate some practical heuristics that have been helpful.

7.5.1 Pruning

The number of quadratics in Q̂k grows exponentially in k. However, in practice
(for the cases we have tried) we have found that relatively few of these actually

contribute to W
k
. Thus it would be very useful to prune the set.

Note that if

âk
{m̂i}k

i=1
(x) ≤

⊕

{mi}k
i=1

	={m̂i}k
i=1

âk
{mi}k

i=1
(x) ∀x ∈ Rn, (7.72)

then

∫ ⊕

Rn

Bτ (x, z)⊗ ak(z) dz =

∫ ⊕

Rn

Bτ (x, z)⊗
[ ⊕

{mi}k
i=1

	={m̂i}k
i=1

âk
{mi}k

i=1
(z)

]
dz.

That is, âk
{m̂i}k

i=1

will play no role whatsoever in the computation of W
k
.

Further, it is easy to show that the progeny of âk
{m̂i}k

i=1

(i.e., those âk+j

{mi}
k+j

i=1

for which {mi}k
i=1 = {m̂i}k

i=1) never contribute either. Thus, one may prune
such âk

{m̂i}k
i=1

without any loss of accuracy. This shrinks not only the current

Q̂k, but also the growth of the future Q̂k+j .
In the examples to follow, we pruned âk

{m̂i}k
i=1

if there existed a single

sequence {m̃i}k
i=1 such that âk

{m̂i}k
i=1

(x) ≤ âk
{m̃i}k

i=1

(x) for all x. This signif-

icantly reduced the growth in the size of Q̂k. However, it clearly failed to
prune anywhere near the number of elements that could be pruned according
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to condition (7.72), and thus much greater computational reduction might be
possible. This would require an ability to determine when a quadratic was
dominated by the maximum of a set of other quadratic functions.

Also in the examples to follow, an additional heuristic pruning technique
was applied employed for a number of iterations to delay hitting the curse-of-
complexity growth rate. A function âk

{mi}k
i=1

was pruned if it did not dominate

at at least one of the corners of the unit cube. Specifically, let C = {xj} be the
corners of the unit cube. The set of functions was pruned down to a subset of
L ≤ 2n functions, {âk

{m̂l
i
}k

i=1

| l ≤ L}, such that ak(xj) = maxl≤L âk
{m̂l

i
}k

i=1

(xj)

for all xj ∈ C. This introduces a component of the calculations which is subject
to curse-of-dimensionality growth, but in the examples run to date, it reduced
the computational times over what was needed without the heuristic. (Also,
the curse-of-dimensionality growth due to this heuristic is 2n rather than on
the order of 100n for grid-based methods.)

7.5.2 Initialization

It is also easy to see that one may initialize with an arbitrary quadratic func-
tion less than an ak(x) rather than with a0 ≡ 0. Significant savings are ob-
tained by initializing with a set of M = #M quadratics, {am(x)} where the
am are the convex duals of the Wm (which are each obtained by solution of
the corresponding Riccati equation). With a0(z)

.
=

⊕
m∈M am(z), one starts

much closer to the final solution, and so the number of steps where one is
encountering the curse-of-complexity is greatly reduced. For the more gen-
eral quadratics of Section 7.7 below, determining how to make improvements
through initialization may be less trivial.

7.6 Examples

A number of examples have so far been tested. In these tests, the computa-
tional speeds were very great. This is due to the fact that M = #M was small.
The algorithm as described above was coded in MATLAB. This includes the
very simple pruning technique and initialization discussed in the previous sec-
tion. The quoted computational times were obtained with a standard 2001

PC. The times correspond to the time to compute W
N

or, equivalently, PN .
The plots below require one to compute the value function and/or gradients
pointwise on planes in the state space. These plotting computations are not
included in the quoted computational times.

We will briefly indicate the results of three similar examples with state
space dimensions of 2, 3, and 4. The number of constituent linear/quadratic
Hamiltonians for each of them is three. The structures of the dynamics are
similar for each of them so as to focus on the change in dimension.

The first example has constituent Hamiltonians with the Am given by
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A1 =

[
−1.0 0.5
0.1 −1.0

]
, A2 = (A1)T , A3 =

[
−1.0 0.5
0.5 −1.9

]
.

The Dm and Σm were simply

D1 = D2 = D3 =

[
1.5 0.2
0.2 1.5

]
,

and

Σ1 = Σ2 = Σ3 =

[
0.27 −0.01
−0.01 0.27

]
.

Figure 7.1 depicts the value function and first partial derivative (computed
by a simple first-difference on the grid points) over the region [−1, 1]× [−1, 1].
Note the discontinuity in the first partial along one of the diagonals. Figure 7.2
depicts the second partial and a backsubstitution error over the same region.
The second partial also has a discontinuity along the same diagonal as the first.
The error plot has been rotated for better viewing due to the high error along
the discontinuity in the gradient. The backsubstitution error is computed by
taking these approximate partials and substituting them back into the original
HJB PDE. Consequently the depicted errors contain components due to the
approximate gradient dotted in with the dynamics and the term with the
square in the gradient in the Hamiltonian. Perhaps it should be noted that
the solutions of such problems cannot be obtained by patching together the
quadratic functions corresponding to solutions of the corresponding algebraic
Riccati equations. The computations required slightly less than 10 seconds.
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Fig. 7.1. Value function and first partial (2-D case)

The second example has constituent Hamiltonians with the Am given by

A1 =

⎡
⎣
−1.0 0.5 0.0
0.1 −1.0 0.2
0.2 0.0 −1.5

⎤
⎦ , A2 = (A1)T , A3 =

⎡
⎣
−1.0 0.5 0.0
0.1 −1.0 0.2
0.2 0.0 −1.5

⎤
⎦ .
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Fig. 7.2. Value function and first partial (2-D case)

The Dm were

D1 =

⎡
⎣

1.5 0.2 0.1
0.2 1.5 0.0
0.1 0.0 1.5

⎤
⎦ , D2 =

⎡
⎣

1.6 0.2 0.1
0.2 1.6 0.0
0.1 0.0 1.6

⎤
⎦ , D3 = D1.

The Σm were

Σ1 =

⎡
⎣

0.2 −0.01 0.02
−0.01 0.2 0.0
0.02 0.0 0.25

⎤
⎦ , Σ2 =

⎡
⎣

0.16 −0.005 0.015
−0.005 0.16 0.0
0.015 0.0 0.2

⎤
⎦ ,

Σ3 = Σ1.

The results of this three-dimensional example appear in Figures 7.3–7.5. In
this case, the results have been plotted over the region of the affine plane x3 =
3 given by x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsubstitution error has
been scaled by dividing by |x|2 + 10−5. Note that the scaled backsubstitution
errors (away from the discontinuity in the gradient) grow only slowly or are
possibly bounded with increasing |x|. (Recall that the approximate solution
is obtained over the whole space.) Because the gradient errors are multiplied
by the nominal dynamics in one component of this term (as well as being
squared in another), this indicates that the errors in the gradient itself likely
grow only linearly (or nearly linearly) with increasing |x|. The computations
required approximately 13 seconds.

The third example has constituent Hamiltonians with the Am given by

A1 =

⎡
⎢⎣

−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.5 0.1
0.0 −0.1 0.0 −1.5

⎤
⎥⎦ , A2 = (A1)T ,
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Fig. 7.3. Value function and first partial (3-D case)
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Fig. 7.4. Partials with respect to second and third variables (3-D case)

A3 =

⎡
⎢⎣

−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.6 −0.1
0.0 −0.05 0.1 −1.5

⎤
⎥⎦ .

The Dm and Σm were simply

D1 = D2 = D3 =

⎡
⎢⎣

1.5 0.2 0.1 0.0
0.2 1.5 0.0 0.1
0.1 0.0 1.5 0.0
0.0 0.1 0.0 1.5

⎤
⎥⎦ ,

and
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Fig. 7.5. Scaled backsubstitution error (3-D case)

Σ1 = Σ2 = Σ3 =

⎡
⎢⎣

0.2 −0.01 0.02 0.01
−0.01 0.2 0.0 0.0
0.02 0.0 0.25 0.0
0.01 0.0 0.0 0.25

⎤
⎥⎦ .

The results of this four-dimensional example appear in Figures 7.6–7.8.
In this case, the results have been plotted over the region of the affine plane
x3 = 3, x4 = −0.5 given by x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsub-
stitution error has again been scaled by dividing by |x|2 + 10−5. The com-
putations required approximately 40 seconds. We remark that one cannot
change dimension independent of dynamics (except in the trivial case where
each component of the system has exactly the same dynamics of the other
components with no interdependence), and so one cannot directly compare
the computation times of these three examples. However, it is easy to see that
the computation time increases are on the order of square to cubic in space
dimension, rather than being subject to curse-of-dimensionality type growth.

7.7 More General Quadratic Constituents

The examples given in the previous section all possessed similar structures
where the partial derivatives were linear along straight lines passing through
the origin. This was due to the fact that the constituent Hamiltonians all had
the structure

Hm(x, p) = 1
2xT Dmx + 1

2pT Σmp + (Amx)T p. (7.73)

This implied that all the iterates had the form

W
k
(x) = max

{mi}k
i=1

∈Mk

1
2xT P̂ k

{mi}k
i=1

x,
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Fig. 7.6. Value function and first partial (4-D case)
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Fig. 7.7. Partials with respect to second and third variables (4-D case)

that is, the linear and constant terms were zero. Thus the W
k

were quadratic
along lines ℓv : {x = cv | c ∈ R} where v ∈ Rn. On the other hand, the spaces
of semiconvex functions are quite large, and any semiconvex function can be
expanded as a pointwise maximum of quadratic forms. Thus, we now expand
our class of constituent Hamiltonians to be of the form

Hm(x, p) = 1
2xT Dmx+ 1

2pT Σmp+(Amx)T p+(lm1 )T x+(lm2 )T p+αm, (7.74)

where lm1 , lm2 ∈ Rn and αm ∈ R. From Chapter 2, we know that any semi-
convex Hamiltonian, say Hsc, can be arbitrarily well-approximated on a ball,
BR ⊂ Rn ×Rn, by some finite maximum of quadratic constituent Hamilto-
nians, i.e., Hsc(x, p) ≃ maxm Hm(x, p) with Hm of the form (7.74). Conse-
quently, we now expand our class of HJB PDEs to

0 = −H̃(x,∇W ), W (0) = 0 (7.75)
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Fig. 7.8. Fourth partial and scaled backsubstitution error (4-D case)

with
H̃(x, p) = max

m∈M
Hm(x, p),

where the Hm have the form (7.74), and M is a finite set of indices.
We will not provide the theory, analogous to that in Sections 7.1–7.4, in this

case. We do note that it appears that existence of a constituent Hamiltonian
of pure quadratic form (7.73) satisfying our usual conditions (plus existence
of a solution to problem (7.75) of course) may be sufficient to guarantee that

the above approach will work in this wider class (when W̃ exists of course).
Instead, our goal here will only be to indicate some of the wider range of
behaviors that can be captured within this larger class. We present two simple
examples where a constant term has been added to one of the Hamiltonians.

For the first example, consider our standard problem, 0 = −H̃(x,∇W ),
W (0) = 0, where

H̃(x, p) = max{H1(x, p), Ĥ2(x, p)}
with

H1(x, p) =
1

2
xT Cx + (Ax)T p +

1

2
pT Σp

Ĥ2(x, p) =
1 + δ

2
xT Cx + (Ax)T p +

1

2
pT Σp− α2

2

with specific coefficients

A =

[
−1 0.5
0.1 −1

]
, C =

[
1.5 0.2
0.2 1.5

]
, Σ =

[
0.216 −0.008
−0.008 0.216

]

δ = 0.4, and α2 = 0.4.
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Let R1
.
= {(x, p) ∈ R4|H1(x, p) > Ĥ2(x, p)}. Setting H1 = Ĥ2, one finds

∂R1 as the cylindrical ellipsoid

∂R1 = {(x, p)|xT Cx = α2/δ}.

The boundary, x = 0, lies inside R1, and we can denote the solution of 0 =
−H1(x,∇W (x)), W (0) = 0 on R1 as W1. The astute observer will note

that one must verify that the characteristic flow of H̃ must be such that the
characteristics are flowing outward through ∂R1 in order to claim that W1

on R1 will be identical to the solution of the H̃ problem restricted to that
region.

It is interesting to note that constituent problem −Ĥ2(x,∇W (x)) = 0
on the complement, Rc

1 with boundary condition W (x) = W1(x) on ∂R1 is
equivalent to

0 = −H2(x,∇w) =
1

2
xT Cx +

1

1 + δ
(Ax)T∇W +

1

2(1 + δ)
∇WT Σ∇W

with boundary condition W (x) = W1(x) on ∂R1. As before, with Σ = σσT ,
it is easily seen that this is equivalent to

0 = −max
u∈Rl

{[
1

1 + δ
Ax + σu

]T

∇W +
1

2
xT Cx− 1 + δ

2
|u|2 − α2

2

}

with boundary condition W (x) = W1(x) on ∂R1. Of course, one also has

H1(x,∇W ) = max
u∈Rl

{
[Ax + σu]

T ∇W +
1

2
xT Cx− 1

2
|u|2

}
.

Therefore, solving 0 = −H̃(x,∇W ) with W (0) = 0 is equivalent to determin-
ing the value function of control problem with dynamics

ξ̇ =

{
Aξ + σu if ξ ∈ R1

1
1+δ Aξ + σu otherwise,

and payoff and value given by

J(x, T, u) =

∫ T

0

L̃(ξt, ut) dt,

V (x) = sup
u∈U

sup
T<∞

J(x, T, u),

where

L̃(x, u) =

{ 1
2xT Cx− 1

2 |u|2 if ξ ∈ R1

1
2xT Cx− 1+δ

2 |u|2 − α2

2 otherwise.

Thus there is a change in the dynamics across ∂R1 with a corresponding
change in the cost criterion.
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Fig. 7.9. Value function and partial with respect to first variable
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Fig. 7.10. Partial with respect to second variable and backsubstitution errors

The value, partial derivatives with respect to first and second variables, and
the backsubstitution error are depicted in Figures 7.9 and 7.10. The disconti-
nuity in the second derivative along the boundary of the ellipse xT Cx = α2/δ
is clearly evident.

As another example, we make a small change in the coefficients of the above
problem, and see a change in the structure of the solutions. In particular, we
consider the same H̃ as in the previous example with the exception that we
change matrices A and C to be

A =

[
−2 1.6
−1.6 −0.4

]
and C =

[
1.4 0.25
0.25 1.6

]
.

The value, partial derivatives and backsubstitution errors appear in Figures
7.11 and 7.12. Note the rotational effects induced by the change in A.
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Fig. 7.11. Value function and partial with respect to first variable
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Fig. 7.12. Partial with respect to second variable and backsubstitution errors

7.8 Future Directions

Pruning

In order to make these methods more practical, algorithms need to be devel-
oped for determining when a quadratic function is dominated by the function
that is the pointwise maximum of a set of quadratic functions. This has the
potential for greatly reducing the effects of the curse-of-complexity, and con-
sequently greatly decreasing computational times.

Wider Classes of Constituent Hamiltonians

The theory for an instantiation of this class of methods was developed here
only for the very particular type of Hamiltonian, H̃(x, p) = maxm{Hm(x, p)},
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where the Hm corresponded to a very specific type of quadratic problem
(see (7.5)). As indicated in the previous section, a much richer class of prob-
lems may be considered through constituent Hamiltonians of the form (7.74).
The theory for this wider class is not yet fully understood. Further, in the
work here, the Hm corresponded to linear/quadratic problems with maxi-
mizing controllers/disturbances. It is not known whether the constituent lin-
ear/quadratic problems need to be constricted in this way either. For instance,
could some or all of the Hm correspond to say game problems?

Convergence/Error Analysis

Only convergence of the approximation to the solution has so far been ob-
tained. Estimates of error size and convergence rate need to be determined.
For instance, it was hypothesized (and roughly observed in the examples) that
one obtains the solution over the whole state space with linear growth rate in
the errors in the gradient.

Other Nonlinearities

The model problem in this chapter considered only the case of a nonlinear-
ity due to taking the maximum of a set of Hamiltonians for linear/quadratic
problems. An obvious question is how well this approach might work for other
classes of nonlinearities. What classes of nonlinear HJB PDEs could be best
approximated by maxima over reasonably small numbers of linear/quadratic
HJB PDEs? Perhaps a single nonlinearity in only one variable (possibly ap-
pearing in multiple places) would be the most tractable.





8

Finite Time-Horizon Application:
Nonlinear Filtering

In this chapter we consider a finite time-horizon application. An obvious ex-
ample where this technology may be applicable is in nonlinear filtering —
specifically robust/H∞ nonlinear filtering. If the dynamics are time-invariant,
then between each successive pair of observations, one uses the same HJB PDE
to propagate the information state (to be discussed below) forward in time. If
the observations are at times ti = t0 + iδt, then one is repeatedly solving the
same HJB PDE for periods δt between observations; only the “initial condi-
tions” at the start of each time period change. With the max-plus approach,
the real-time solution of the PDE can be replaced by a max-plus matrix-vector
multiplication where the matrix is fixed, independent of time-step. Thus, the
matrix may be precomputed in advance rather than in real-time. We will use
this filtering application as the vehicle for motivation and development of a
max-plus approach to finite time-horizon problems. With respect to the fil-
tering aspects, some standard details will only be sketched; further material
and a continuous-time observation case are discussed in [44], [87]. It should
be noted that the approach in this chapter is analogous to results (over the
standard algebra) for estimation of nonlinear stochastic systems as obtained
by Rozovskii et al. (c.f. [103]) In fact, the existence of such results in the
stochastic case provided motivation for the developments presented here.

We consider a system with dynamics

ξ̇ = f(ξ) + σ(ξ)wt (8.1)

and unknown initial condition, ξ0. We wish to estimate the state, ξt at some
time t ≥ 0 using data up to that time. The measure of estimate quality will
be defined below. As usual, the state will take values in Rn, and we let the
disturbance process w· take values in W .

= Lloc
2 ([0,∞);Rl). Note that we

will not observe w· directly. As usual, σ will be n × l matrix-valued. Let the
observations occur at times ti = iδt for i = 1, 2, . . .. The observation at time
ti, yi, will be given by

yi = h(ξti
) + ρ(ξti

)vi (8.2)
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where yi ∈ Rk. The vi ∈ Rκ are unknown and ρ is k × κ matrix-valued. We
will assume that

f , σ, h and ρ are all smooth, and that f , σ and h are globally
Lipschitz in x.

(A8.1)

We also assume that there exists mσ < ∞ such that

|σ(x)| ≤ mσ ∀x ∈ Rn. (A8.2)

We will assume that

Range(ρ(x)) = Rk for all x ∈ Rn (which guarantees that for
any yi, ξti

there exists some vi satisfying (8.2)), that ρ−1 ∈ C2,
and that there exist mρ < ∞ such that |ρ−1(x)b| ≤ mρ|b| for all
x ∈ Rn and all b ∈ Rk,

(A8.3)

where we use the Moore–Penrose inverse [54]

ρ−1(x)b = argmin{|v| : ρ(x)v = b}. (8.3)

We will also assume that

Range(σ(x)) = Rn for all x ∈ Rn, that σ−1 ∈ C2, and that
|σ−1(x)b| ≤Mσ|b| for all x ∈ Rn and all b ∈ Rn.

(A8.4)

where we are again using the Moore–Penrose inverse. For notational simplicity,
we let a

.
= σσT .

Note also that these assumptions imply that if we view the integral version
of (8.1)

xT
.
= ξT = ξ0 +

∫ T

0

f(ξt) + σ(ξt)wt dt (8.4)

as a mapping from ξ0 to xT then this mapping is one-to-one and onto for any
w ∈ L2. Let φ : Rn → R. Assume there exists mφ < ∞ such that

φ(x) ≤ mφ(1 + |x|2) ∀x ∈ Rn, and that φ is locally Lipschitz. (A8.5)

In order to design the nonlinear robust/H∞ filter, we define the following
payoff

Jf (T, xT , w) = − ζ2

2 φ(ξ0)−
γ2

2

∫ T

0

|w(t)|2 dt− η2

2

NT∑

i=1

|vi|2, (8.5)

which, using Assumption (A8.3),

= − ζ2

2 φ(ξ0)−
γ2

2

∫ T

0

|w(t)|2 dt

−η2

2

NT∑

i=1

|ρ−1(ξti
)[yi − h(ξti

)]|2 (8.6)

where ξ0 is given by (8.4) for any particular ξT = xT and w, and NT
.
=

max{i ∈ N| ti ≤ T}. Further, define the value function
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P (T, xT ) = sup
w∈W

Jf (T, xT , w). (8.7)

This value function will be referred to as an information state (see, e.g., [12],
[52], [61] for more detail). In particular, at any time T ≥ 0, P (T, ·) will
contain sufficient information to estimate the state ξT . Note that J and P
depend on the observation sequence, {yi} and initial φ(·), although this will
be suppressed. The filtering goal will be to obtain a robust state estimate given
a specific observation sequence (up to the current time) and initial information
φ(·).

There are multiple estimators that have been defined using this infor-
mation state. One estimator, a “minimum energy” estimator, was developed
by Mortensen in the 1960s. In that case, the estimate of ξt is given by
argmaxx∈Rn P (T, x) (see [41], [95]). However, we are interested in a filter
estimate that has an interpretation in a robust/H∞ sense. This estimator is
also the natural estimator in that it is essentially the maximum likelihood
estimator in a certain max-plus probabilistic sense. (Max-plus probability is
discussed in [39], [40], [84], [97], [98] among others.) Further, it is the limit of
a risk-sensitive estimator [43]. In the state-space interpretation of H∞ control
(c.f. [12], [52], [108]), one develops a controller where for all (finite-energy) dis-
turbance inputs, the cost (typically L2) is bounded by a multiple of a measure
of the disturbance energy (where we use the term “energy” in a generalized
sense); see Chapter 1. In analogy with that, this robust/H∞ estimator is cho-
sen so that the squared estimate error is bounded by a measure of disturbance
energy. More specifically, at any time, T , one wants the estimate, êT , to satisfy
(for some ζ, γ, η ∈ R)

|êT − ξT |2 ≤
[

ζ2

2 φ(ξ0) +
γ2

2

∫ T

0

|wt|2 dt + η2

2

NT∑

i=1

|vi|2
]

, (8.8)

where ξ satisfies (8.1) for any possible ξ0, w·, v·. (Note that these are not
independent quantities given an observed y· process.) The existence of such
an estimator is guaranteed given that there exists x̄ ∈ Rn such that φ(x) ≥
|x − x̄|2 and that ζ, γ, η are sufficiently large. Further, under this condition
(and the above assumptions), there exist ζ, γ, η ∈ R such that (8.8) is satisfied
by the estimator

êT
.
= argmin

e
max

x

[
|x− e|2 + P (T, x)

]
(8.9)

(where the existence of unique minimizing e and maximizing x are guaran-
teed). Proofs of these claims can be found in Appendix A. See also [41], [87].
Some readers may note that the above information state differs from some
others which include an integral running cost term. Such other information
states are particularly suited to the problem of H∞ control under partial in-
formation as opposed the problem of robust state estimation considered here;
see [12], [61].
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Clearly the propagation of the robust/H∞ filter estimates requires the for-
ward propagation of the information state, P . We will propagate P (T, ·) for-
ward in time (approximately) by max-plus matrix-vector multiplication op-
erating on the (time-dependent) vector of coefficients in the max-plus expan-
sion of P (T, ·). We begin, as always, with the DPP which we present without
proof (but see Chapter 3 for general DPP arguments for a finite time-horizon
problem).

Theorem 8.1. Let T, T − δ ∈ [iδt, (i + 1)δt) for some integer i ≥ 0. Then for
any x ∈ Rn,

P (T, x) = sup
w∈W

{
P (T − δ, ξT−δ)−

γ2

2

∫ T

T−δ

|wt|2 dt

}
,

where ξt satisfies (8.1) with terminal condition ξT = x. Further, letting
P−(ti+1, x) = limt↑ti+1 P (t, x) for all non-negative integers i, one has

P−(ti+1, x) = sup
w∈W

{
P (T − δ, ξT−δ)−

γ2

2

∫ ti+1

T−δ

|wt|2 dt

}
,

where ξt satisfies (8.1) with terminal condition ξti+1 = x.

Although we will not be using the viscosity solution representation, com-
bining Lemma A.10 in the appendix and the machinery from Chapter 3, one
can show that the information state is given as a viscosity solution of the
associated HJB PDE between observation times.

Theorem 8.2. Over any time interval [ti, ti+1) (for non-negative integer i),
the information state, P is the unique viscosity solution of

0 = PT −H(x,∇xP) (8.10)

.
= PT −

[γ2

2
∇xPT a(x)∇xP − fT (x)∇xP

]
,

P(ti, x) = P (ti, x).

As usual, we use the DPP as a guide for defining a semigroup operator
which will be max-plus linear. Let

Sτ [ψ](x)
.
= sup

w∈W

{
ψ(ξ0)−

γ2

2

∫ τ

0

|wt|2 dt

}
, (8.11)

where ξt satisfies (8.1) with terminal condition ξτ = x, and the domain is
implicit (but will include classes of semiconvex functions). Note that time is
reversed in this definition relative to our usual semigroup, but it is not difficult
to verify that the semigroup property remains valid. A result that is, by now,
obvious is the following:

Theorem 8.3. Sτ is a max-plus linear operator for any τ > 0.
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Using Theorem 8.1, we find that for τ ∈ [0, δt) and any i ≥ 0,

P (ti + τ, x) = Sτ [P (ti, ·)](x), (8.12)

and that

P (ti+1, x) = P−(ti+1, x)− η2

2 |ρ−1(x)[yi+1 − h(x)]|2, (8.13)

where
P−(ti+1, x) = Sδt

[P (ti, ·)](x) (8.14)

for all x ∈ Rn. Note that (8.12)–(8.14) define the forward propagation of the
information state.

8.1 Semiconvexity

In order to make use of this propagation via the max-plus linear operator,
as usual we need to specify appropriate max-plus spaces of functions and
max-plus bases for these spaces. The appropriate spaces are of course spaces
of semiconvex functions. We first demonstrate that the information state is
indeed semiconvex.

In [44], two proofs of semiconvexity under slightly differing assumptions are
given. The following proof of semiconvexity is adapted from a proof appearing
there.

Let us introduce the following function, Vfs(T, x0, xT ), which we refer to
as a fundamental solution of (8.10). For x0, xT ∈ Rn, T > 0, let

Vfs(T, x0, xT ) = sup
w∈L2((0,T );Rl)

{
−γ2

2

∫ T

0

|w(t)|2 dt : ξ0 = x0, ξT = xT

}
,

(8.15)
where ξ· satisfies (8.1). From (8.11),

ST [φ](x) = sup
x0∈Rn

{
Vfs(T, x0, x) + φ(x0)

}
. (8.16)

We can rewrite Vfs in terms of the following calculus of variations problem
with fixed initial and terminal conditions. Let

L(ξ, ξ̇) =
γ2

2
|σ−1(ξ)(ξ̇ − f(ξ))|2,

I(T, x0, xT ; ξ·) = −
∫ T

0

L(ξt, ξ̇t) dt.

Then
Vfs(T, x0, xT ) = sup{I(T, x0, xT ; ξ·) : ξ0 = x0, ξT = xT }
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with ξ· satisfying (8.1). Equivalence of (8.15) and this calculus of variations
version follows easily by noting that for each path, ξ·, there is a correspond-
ing unique minimal-norm w· given in feedback form with the Moore–Penrose
definition of σ−1.

Lemma 8.4. Given δt, R, R0 ∈ (0,∞), there exists c = c(δt, R, R0) such that
Vfs(T, x0, x) + (c/2)|x|2 is convex on the closed ball BRT (x̃) where x̃

.
= x0 +

f(x0)T for all T ∈ (0, δt] and all |x0| ≤ R0.

Proof. Suppose T ∈ (0, δt], |x0| ≤ R0, and

|x− [x0 + f(x0)T ]| ≤ RT. (8.17)

Note that (8.17) implies

|x− x0| ≤ RT + |f(x0)|T. (8.18)

By Assumption (A8.1), there exists Kf < ∞ such that

|f(x1)− f(x1)| ≤ Kf |x1 − x2| ∀x1, x2 ∈ Rn (8.19)

|f(x1)| ≤ Kf (1 + |x1|) ∀x1 ∈ Rn (8.20)

By (8.18) and (8.20),

|x− x0| ≤ (R + Kf + KfR0)T (8.21)

Let

ξt
.
= x0 +

(
t

T

)
(x− x0).

Then

∣∣∣ξ̇ − f(ξ)
∣∣∣ =

∣∣∣∣ 1
T [x− (x0 + f(x0)T )] + f(x0)− f

(
x0 +

[
t

T

]
(x− x0)

)∣∣∣∣ ,

which by (8.17)

≤ R +

∣∣∣∣f(x0)− f

(
x0 +

[
t

T

]
(x− x0)

)∣∣∣∣ ,

which by (8.19)

≤ R + Kf

∣∣∣∣
[

t

T

]
(x− x0)

∣∣∣∣ ,

which by (8.21)

≤ R + Kf t(R + Kf + KfR0)

≤ R + Kfδt(R + Kf + KfR0)
.
= C1.
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for all t ∈ [0, δt]. Combining this bound with the definition of L and (A8.4),
one finds

−L(ξt, ξ̇t) ≥ −
γ2

2
M2

σC2
1 ∀ t ∈ [0, δt]. (8.22)

On the other hand, given x0, x, there exists optimal ξ∗· (c.f. [46]) such that
ξ∗ti

= x0, ξ∗T = x and

Vfs(T, x0, x) = I(T, x0, x; ξ∗· ).

Then by the optimality of ξ∗ and (8.22),

I(T, x0, x; ξ∗· ) ≥ I(T, x0, x, ξ·) ≥ −
γ2

2
M2

σC2
1δt,

and using (A8.2), this yields

∫ T

0

|ξ̇∗ − f(ξ∗(t))|2 dt ≤ m2
σM2

σC2
1δt. (8.23)

Now, noting (8.20), one has

d

dt
|ξ∗|2 = 2(ξ∗)T (f(ξ∗) + (ξ̇∗ − f(ξ∗)))

≤ 2Kf |ξ∗|2 + 2Kf |ξ∗|+ 2|ξ∗||ξ̇∗ − f(ξ∗)|
≤ 3Kf |ξ∗|2 + Kf + 2|ξ∗||ξ̇∗ − f(ξ∗)|
≤ (3Kf + 1)|ξ∗|2 + Kf + |ξ̇∗ − f(ξ∗)|2.

Integrating, and using (8.23), this yields

|ξ∗t |2 ≤ R2
0 + (Kf + m2

σM2
σC2

1 )δt +

∫ t

0

(3Kf + 1)|ξ∗r |2 dr.

Then, employing Gronwall’s inequality, one finds that there exist R1,M <
∞ (depending on R0, R, δt) such that |ξ∗t | ≤ R1 for all t ∈ [0, δt] and
‖ξ̇∗· ‖L2(0,δt) ≤M .

Next, consider any direction v ∈ Rn (|v| = 1) and scalar h ∈ [−1, 1]. Let

ξh
t

.
= ξ∗t +

t

T
hv.

Then ξh
ti

= x0 and ξh
T = x + hv. Moreover,

d2

dh2
I(T, x0, x + hv; ξh

· ) = vT Λhv,

where

Λh .
=

1

T 2

∫ T

0

[
t2L1,1(ξ

h, ξ̇h) + 2tL1,2(ξ
h, ξ̇h) + L2,2(ξ

h, ξ̇h)
]

dt,
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where Li,j represents the n× n matrix second partial of L with respect to its

ith and jth arguments. Because |ξh
t | and ‖ξ̇h

· ‖L2(0,T ) are uniformly bounded,

d2

dh2
I(T, x0, x + hv; ξh

· ) ≥ −c

for some constant c depending on δt, R, R0. Then I(T, x0, x+hv; ξh
· )+(c/2)h2

is a convex function of h for |h| ≤ 1. Consequently,

Vfs(T, x0, x + hv) + Vfs(T, x0, x− hv)− 2Vfs(T, x0, x)

≥ I(T, x0, x + hv; ξh
· ) + I(T, x0, x− hv; ξ−h

· )− 2I(T, x0, x; ξ∗· )

≥ −(c/2)h2.

This implies that Vfs(T, x0, x) + (c/2)|x|2 (as a function of x) is convex on
the closed ball B(R+Kf +Kf R0)T (x̃). ⊓⊔

Lemma 8.5. Let ε ∈ (0, 1], and δt, R1 ∈ (0,∞). There exists C2 = C2(δt, R1)
such that for all x ∈ BR1(0) and all T ∈ [δt/2, δt],

ST [φ](x) = sup
x0∈{|x0−[x+f(x)T ]|≤C2T}

{
φ(x0) + Vfs(T, x0, x)

}

= sup
x0∈G

{
φ(x0) + Vfs(T, x0, x)

}

for any G ⊆ Rn such that G ⊇ BC2T (x− f(x)T ).

Proof. By (8.15) and Lemma A.10

sup
x0∈Rn

{φ(x0) + Vfs(T, x0, x)} = sup
‖w‖2≤Mw

δt
(1+R2

1)

{
φ(ξ0)−

γ2

2

∫ T

0

|wt|2 dt

}

(8.24)
where ξ0 is given by (8.1) with terminal condition ξT = x, driven by w·.

Let ξε
· satisfy (8.1) with ξε

T = x and ‖wε‖2 ≤ Mw
δt

(1 + R2
1). Let ξ̃t

.
=

x + (t− T )f(x) for t ∈ [0, T ]. Then

d

dt
|ξε

t − ξ̃t|2 = 2(ξε
t − ξ̃t)

T [f(ξε
t )− f(x) + σ(ξε

t )wε
t ],

which using Assumption (A8.1)

≤ 2Kf |ξε
t − ξ̃t|2 + 2|ξε

t − ξ̃t| |σ(ξε
t )wε

t |,
and then using Assumption (A8.2)

≤ (2Kf + 1)|ξε
t − ξ̃t|2 + m2

σ|wε
t |2.

Integrating, one finds
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|ξε
t − ξ̃t|2 ≤ m2

σ‖wε‖2L2(t,T ) + (2Kf + 1)

∫ T

t

|ξε
r − ξ̃r|2 dr

≤ m2
σMw

δt
(1 + R2

1) + (2Kf + 1)

∫ T

t

|ξε
r − ξ̃r|2 dr.

Using Gronwall’s inequality, one can show this implies, for T ∈ (δt/2, δt),
there exists C2 = C2(δt, R1) such that

|ξε
0 − ξ̃0| ≤ C2T

where we skip the technical details. Therefore, if wε is ε-optimal with ε ∈ (0, 1],
one has |ξε

0− [x−f(x)T ]| ≤ C2T . Therefore, by (8.24) and (8.15), one has the
result. ⊓⊔

Lemma 8.6. Let δt, R1, d ∈ (0,∞). Let |x| ≤ R1 and T ∈ (0, δt]. There exists
R ∈ (0,∞) independent of x, T such that

BdT (x) ⊆
⋂

z∈BdT (x)

⋂

x0∈BC2T (z+f(z)T )

BRT (x̃(x0))

where x̃(x0)
.
= x0 + f(x0)T . Further, there exists R0 ∈ (0,∞) such that

⋃

z∈BdT (x)

BC2T (z − f(z)T ) ⊆ BR0
(0).

Proof. The second assertion is obvious. The first assertion will be proved if
one finds R < ∞ such that if |z − x| ≤ dT , |x0 − [z − f(z)T ]| ≤ C2T and
|y − x| ≤ dT , then |y − [x0 + f(x0)T ]| ≤ RT (i.e., y ∈ BRT (x̃(x0)). To prove
this, we note

|y − [x0 + f(x0)]| = |y − x + x− z + z − [x0 + f(x0)T ]|
≤ 2dT + |z − f(z)T − x0|+ |f(z)T − f(x0)T ]|
≤ 2dT + C2T + Kf |z − x0|T
≤ (2d + C2)T + Kf |z − f(z)T − x0|T + Kf |f(z)T |T
≤ (2d + C2)T + KfC2T

2 + K2
f (1 + R1 + d)T 2

≤ [2d + C2 + KfC2δt + K2
f (1 + R1 + d)δt]T.

The result follows if one takes R
.
= 2d + C2 + KfC2δt + K2

f (1 + R1 + d)δt. ⊓⊔

Theorem 8.7. Let R1, d, δt ∈ (0,∞), and let T ∈ (δt/2, δt). There exists
c = c(R1, d, δt) such that ST [φ](x) + (c/2)|x|2 is convex or BR1+dT (0).

Proof. Let R, R0 be as given by Lemma 8.6. Let x ∈ BR1(0). Let

G
.
=

⋃

ẑ∈BdT (x)

BC2T (ẑ − f(ẑ)T ).
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Let z ∈ BdT (x). By Lemma 8.5,

ST [φ](z) + (c/2)|z|2 = sup
x0∈G

[
φ(x0) + Vfs(T, x0, z) + (c/2)|z|2

]
. (8.25)

By Lemma 8.6 and z ∈ BdT (x), for any x0 ∈ G, one has z ∈ BRT (x̃(x0)) ∩
BR0(0). Consequently, by Lemma 8.4, Vfs(T, x0, z) + (c/2)|z|2 is convex over
z ∈ BdT (x). Therefore, the right-hand side of (8.25) is a supremum of convex
functions over BdT (x). Therefore, ST [φ](z)+(c/2)|z|2 is convex on BdT (x) for
any x ∈ BR1(0). Further, because R0 depends only on R1, d, δt and c depends
only on R0, R1, δt, we see that c is independent of x ∈ BR1

(0). Consequently,
ST [φ](z) + (c/2)|z|2 is convex on BR1+dT . ⊓⊔

Theorem 8.7 implies that the information state (in the absence of measure-
ment updates) will be semiconvex on [ti + δt/2, ti+1] for all i ∈ {0, 1, 2, . . .}.
To complete this discussion, one also needs to show that the measurement
updates (8.13) maintain semiconvexity.

Lemma 8.8. Suppose ψ is semiconvex. Then ψ(x) − 1
2 |ρ−1(x)[y − h(x)]|2 is

semiconvex for any y ∈ Rk. In particular, if ψ(x) + (c/2)|x|2 is convex over

BR1(0) and y ∈ BRy
(0), then there exists Ĉ = Ĉ(c, R1, Ry) such that ψ(x)−

1
2 |ρ−1(x)[y − h(x)]|2 + (Ĉ/2)|x|2 is convex over BR1(0).

Proof. Let G(x)
.
= |ρ−1(x)[y − h(x)]|2. Fix R < ∞. Then, because ψ is semi-

convex, there exists CR < ∞ such that ψ(x)+ CR

2 |x|2 is convex. But by (A8.1)

and (A8.3), there exists CR,y < ∞ such that |Gxx(x)| ≤ CR,y for all x ∈ BR.

Consequently ψ(x)− 1
2 |ρ−1(x)[y − h(x)]|2 +

CR+CR,y

2 |x|2 is convex. ⊓⊔

By Theorem 8.1, Theorem 8.7 and Lemma 8.8, we see that the infor-
mation state, P (t, ·), will be semiconvex for all t ∈ [ti + δt/2, ti+1] for all
i ∈ {0, 1, 2, . . .}.

It is interesting to note that there exists a semiconvexity constant over
BR1(0) which is uniform over

⋃
i(ti + δ/2, ti+1) such that the semiconvexity

constant depends on Ry where {yi} ⊂ BRy
(0), but independent of the yi.

8.2 Max-Plus Propagation

One would like to calculate P (t, x) in a region of interest around argmaxx

[
|x−

êT |2 + P (t, x)
]
. Suppose that the region of interest remains in some BR1(0)

for the period of interest say t ∈ [0, T̄ ] = [0, N̄δt]. By the above results, we
see that there exists c̄ <∞ such that P (t, ·) is semiconvex on BR1+1(0) with
constant c̄ for all t ∈ ⋃

i<N̄ [ti+δt/2, ti+1], and that P−(ti, ·) is also semiconvex
with the constant for i ≤ N̄ . Suppose φ is also semiconvex with constant c̄
over BR1+1(0).

Recall that semiconvexity of P (t, ·) (or P−(ti, ·)) implies that given any
ball BR(0), P (t, ·) (or P−(ti, ·)) is Lipschitz with some constant, L, over BR(0)
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(c.f. [42]). Recall also, from Chapter 2, that SC̄L̄
R̄1

denotes the space of semicon-

vex functions with (semiconvexity) constant c̄ and Lipschitz constant L̄ over
BR1(0). We view the restrictions of P (t, ·) (over appropriate time intervals as
given above) and P−(ti, ·) to BR1(0) as elements of SC̄L̄

R̄1
.

Let C̃ be an n × n symmetric matrix such that C̃ − c̄I > 0. Recall (see
Chapters 2 and 4) that the set of functions

ψi(x)
.
= −1

2
(x− xi)

T C̃(x− xi),

where the xi form a countable dense set over E = {x ∈ Rn : xT (C̃)2)x ≤
(L̄ + |C̃|R1)}, comprise a countable basis for max-plus vector space SC̄L̄

R̄1
. In

particular, for any P (t, ·) ∈ SC̄L̄
R̄1

,

P (t, x) = sup
i∈N

[ai + ψi(x)] =

∞⊕

i=1

[ai ⊗ ψi(x)] , (8.26)

where
ai = − max

x∈BR1

[−P (t, x) + ψi(x)] ∀ i. (8.27)

As in Chapter 4, we make the unwarranted assumption that P (tk, ·) and
P−(tk, ·) have finite max-plus basis expansions which we write as

P (tk, x) =

N⊕

i=1

ak
i ⊗ ψ(x) ∀x ∈ BR1 ,

P−(tk, x) =

N⊕

i=1

a−,k
i ⊗ ψ(x) ∀x ∈ BR1 .

Let ak and a−,k be the vectors of length N with elements ak
i and a−,k

i , respec-
tively. Also, let ψ(x) denote the vector function of length N with elements
ψi(x). We will not perform a convergence analysis with regard to the errors
introduced by such a truncation of expansions; an error analysis for an infinite
time-horizon control problem class appears in Chapter 5.

Recall that
P−(tk+1, x) = Sδt

[P (tk, ·)](x),

where Sδt
is max-plus linear. As in Chapter 4, we also suppose that the Sδt

[ψj ]
have finite max-plus basis expansions in terms of the same {ψi}N

i=1, and define
N ×N matrix B componentwise by

Bi,j = − max
x∈BR1

(ψi(x)− Sδt
[ψj ](x)),

in which case
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Sτ [ψj ](x) =

N⊕

i=1

Bi,j ⊗ ψi(x) ∀x ∈ BR1

for all j ≤ N . Then, with ⊙ representing the max-plus dot product here,

N⊕

i=1

a−,k+1
i ⊗ ψi(x) =

[
a−,k+1 ⊙ψ

]
(x) = P−(tk+1, x) = Sδt

[P (tk, ·)](x)

= Sδt
[ak ⊙ψ(·)](x)

which by the max-plus linearity of Sδt

=

N⊕

j=1

ak
j ⊗ Sδt

[ψj ](x)

=
N⊕

j=1

ak
j ⊗

[
N⊕

i=1

Bi,j ⊗ ψi(x)

]

=
N⊕

i=1

[
N⊕

j=1

Bi,j ⊗ ak
j

]
⊗ ψi(x).

This holds if we take

a−,k+1
i =

N⊕

j=1

Bi,j ⊗ ak
j

for all i, or in other words, if

a−,k+1 = B ⊗ ak.

This leads us to the following algorithm for the propagation of the
robust/H∞ filter information state.

1. Let k = 0 and compute a0
i = −maxx∈BR1

[ψi(x)− φ(x)] for all i ≤ N .

2. Propagate the dynamics forward in time by a−,k+1 = B ⊗ ak.
3. Transform back to state space by

P−(tk+1, x) =

N⊕

i=1

a−,k+1
i ⊗ ψi(x) = a−,k+1 ⊙ψ(x)

to obtain P−(tk+1, x) over BR1 .
4. Perform the measurement update via

P (tk+1, x) = P−(tk+1, x)− 1

2
|ρ−1(x)[yk+1 − h(x)]|2

for x ∈ BR1 .
5. Compute ak+1

i = −maxx∈BR1
[−P (tk+1, x) + ψi(x)] for all i ≤ N .
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6. Increment k and return to Step 2.

Remark 8.9. The above algorithm requires the precomputation of B, which
then allows one to bypass the computationally difficult propagation of the
HJB PDE forward in time. This leaves the transformations in Steps 3 and 5
as the most demanding portions of the computations.

Remark 8.10. Note that there exists a semiconvexity constant, c̄, such that
the P−(tk, ·) and P (tk, ·) are all semiconvex with this constant over BR1(0).
However, an approximation generated by forward propagation of a truncated
max-plus expansion, with say C̃ (where C̃ − c̄I > 0) as the quadratic growth
constant in the basis functions, may have a higher semiconvexity constant
than C̃. Employing the same basis functions to approximate this propagated
approximation, can induce additional errors in the propagation. One approach
to dealing with this issue is to search for a basis expansion such that the basis
functions do not become more concave with propagation over a time-step.
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Mixed L∞/L2 Criteria

In previous chapters we considered problems with cost criteria in integral
form. In this chapter we will introduce L∞-type criteria as well. Recall that
suprema over time correspond to max-plus integrals over time. This leads one
to refer to such criteria as max-plus additive criteria, and to standard-sense
integral criteria as max-plus multiplicative. In a sense, this is a very natural
class of cost criteria for max-plus analysis.

With the exception of Chapter 8, the approach so far has been to use
an infinite time-horizon problem as the basis for development of max-plus
methods. We continue that here. With the max-plus multiplicative criteria,
infinite time-horizon problems led to max-plus eigenvector problems, say e =
B⊗e. Here, the addition of L∞ (max-plus additive) components to our criteria
will lead to problems of the form a = c⊕B ⊗ a where now the problem data
yield both the matrix B and the vector c. One then solves the problem by
obtaining a. This approach was first studied in McEneaney and Dower [76].
Interestingly, a generalization of the power method from Chapter 4 can be
used here. Curse-of-dimensionality-free methods have not yet been explored
in this class. We will not perform an error analysis, but refer to Chapter 5 as
an example of how such an analysis might proceed.

9.1 Mixed L∞/L2 Problem Formulation

We return here to the familiar infinite time-horizon dynamic model that was
considered in Chapters 4–7. More specifically, we consider dynamics

ξ̇ = f(ξ) + σ(ξ)u (9.1)

with initial condition
ξ0 = x ∈ Rn. (9.2)

We again assume (A4.1I) and (A4.2I), and also that f, σ ∈ C2. However,
the theory to follow will hold for a much wider class of systems; see [76].
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As before, ut will take values in Rl. We will consider two classes of control
spaces: UM

[s,T ) for M ∈ (0,∞) and 0 ≤ s ≤ T < ∞, and UM
[s,T ) for M = ∞ and

0 ≤ s ≤ T < ∞, where specifically, we let

UM
[s,T )

.
=

⎧
⎪⎪⎨
⎪⎪⎩

{u : [s, T ) → Rl | ‖u‖L∞(s,T ) < ∞,
∫ T

s
η(|ut|) dt < ∞}

if M = ∞,

{u : [s, T ) → Rl | ‖u‖L∞(s,T ) ≤ M,
∫ T

s
η(|ut|) dt < ∞}

if M < ∞,
(9.3)

where η : [0,∞) → [0,∞) is continuous and strictly increasing with η(0) = 0.
Let ℓ, L ∈ C2(Rn) and η ∈ C2((0,∞)) ∩ C([0,∞)). Fix any M ∈ (0,∞].

One says that system (9.1), (9.2) satisfies the following mixed L∞/L2-gain
property if there exists a locally bounded nonnegative function β : Rn →
[0,∞) such that

ℓ(ξT ) +

∫ T

0

L(ξt)− η(|ut|) dt ≤ β(x) (9.4)

for all x ∈ Rn, u ∈ UM
[0,T ) and T ∈ [0,∞), where we assume throughout that

we use M = ∞ if and only if ℓ ≡ 0. This class of problems is closely related
to the stability notions (such as ISS — input-to-state stability) of Sontag et
al. (c.f. [105]). More complete discussions of this class of problems and their
relation to stability issues can be found in [55], [56], [62].

We assume there exist Cℓ, CL, k1, k2 ∈ (0,∞) such that

L(x), ℓ(x) ≥ 0 ∀x ∈ Rn,

ℓxx(x) + Cℓ ≥ 0 ∀x ∈ Rn,

Lxx(x) + CL ≥ 0 ∀x ∈ Rn,

η(|v1 + v2|)− η(|v1|) ≤ k1|v1||v2|+ k2|v2|2 ∀ v1, v2 ∈ Rl.

(A9.1I)

where we note that the last assumption (on η) holds if the second derivative of
η is bounded. We will now make two rather broad assumptions. These are not
specific in terms of say a Lipschitz bound on some function, but are instead
given in terms of the general behavior of the system. These assumptions are
left broad so as to cover the wide variety of problems being considered in this
chapter. For a specific problem form, one would need to verify whether these
following conditions are met. We assume:

There exists c1 < ∞ and β : Rn → R which is bounded on
compact sets, such that

|ξT |2 ≤ β(x) + c1T +

∫ T

0

η(|ut|) dt

for all x ∈ Rn, u ∈ UM
[0,T ) and T ∈ (0,∞).

(A9.2I)
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There exists c2 < ∞, α ∈ (0, 1) and β̂ : Rn → R which is
bounded on compact sets, such that

ℓ(ξT ) +

∫ T

0

L(ξt) dt ≤ β̂(x) + c2T + α

∫ T

0

η(|ut|) dt

for all x ∈ Rn, u ∈ UM
[0,T ) and T ∈ (0,∞).

(A9.3I)

For purposes of concise presentation, define

I(s, t, x, u)
.
=

∫ t

s

L(ξr)− η(|ur|) dr, (9.5)

J(s, t, x, u)
.
= ℓ(ξt) + I(s, t, x, u), (9.6)

where ξ· satisfies (9.1) with ξs = x. We will be primarily interested in value
function

W (x)
.
= sup

T<∞
sup

u∈UM
[0,T )

J(0, T, x, u). (9.7)

A closely related value function is given by

V (x)
.
= lim sup

T→∞
sup

u∈UM
[0,T )

J(0, T, x, u). (9.8)

These will be referred to as the stopping-time problem value function and the
infinite time-horizon problem value function, respectively. We will see that
the solution of the infinite time-horizon problem plays a role in the solution
of the stopping-time problem. The max-plus analysis of this problem first
appeared in McEneaney and Dower [76], and we follow that here. Note that
the presence of the ℓ(ξT ) term implies that supu∈UM

[0,T )
J(0, T, x, u) may not

be monotonically increasing as a function of T , and so W may not be equal
to V . This is distinct from the infinite time-horizon problem formulations
in Chapters 4–7. However, with ℓ ≡ 0, W is identical to the value function

considered there if one takes η(s) = γ2

2 s2. Further, in that case (ℓ ≡ 0, η(s) =
γ2

2 s2) one sees that, by considering u ≡ 0,

sup
u∈UM

[0,T )

J(0, T, x, u) = sup
u∈UM

[0,T )

{∫ T

0

L(ξt)−
γ2

2
|ut|2 dt

}

is monotonically increasing in T . Consequently in that case, W = V . Also
note that in that case

W (x) = sup
u∈UM,loc

sup
T<∞

J(0, T, x, u),

where
UM,loc .

=
{

u : [0,∞) → Rl |u[0,T ) ∈ UM
[0,T ) ∀T ∈ (0,∞)

}
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and u[s,T ) denotes the restriction of u to domain [s, T ). We note that
supT<∞ J(0, T, x, u) contains an L∞-type component. In particular, if L ≡ 0,
one has

sup
T<∞

J(0, T, x, u) = sup
T<∞

{
ℓ(ξT )−

∫ T

0

η(|ut|) dt

}
.

One can view this as a max-plus integral. Further, one can view the supu∈UM,loc

as an expectation with respect to a max-plus probability measure specified by
η (c.f. [1], [5], [28], [39], [40], [97], [98], [99]).

In keeping with the broad discussion of multiple problem forms in this
chapter, we assume directly that

V (x), W (x) ∈ R for all x ∈ Rn (i.e., V, W are finite). (A9.4I)

9.2 Dynamic Programming

We again begin with DPPs for these value functions. The DPP for the infi-
nite time-horizon problem will yield, as usual, a max-plus linear semigroup.
However, the DPP for the stopping-time problem will yield a max-plus linear
sub-semigroup.

9.2.1 Dynamic Programming Principles

It is not difficult to show that the stopping-time value W satisfies the following
DPP, and we will do so.

Theorem 9.1. Let τ ∈ (0,∞). W given by (9.7) satisfies for all x ∈ Rn,

W (x) = max
{

sup
T∈[0,τ)

sup
u∈UM

[0,T )

J(0, T, x, u), sup
u∈UM

[0,τ)

I(0, τ, x, u)+W (ξτ )
}

. (9.9)

Proof. Fix τ > 0. The supremum over T ∈ [0,∞) in (9.7) is equivalent to
maximum of the suprema over [0, τ) and [τ,∞). That is,

W (x) = max

(
supT∈[0,τ) supu∈UM

[0,T )
J(0, T, x, u),

sup
T∈[τ,∞)

sup
u∈UM

[0,T )

{ℓ(ξT ) + I(0, T, x, u) : ξ0 = x}
︸ ︷︷ ︸

=:ζτ (x)

)

where ξ satisfies (9.1) with ξ0 = x (as indicated) in the second term on the
right. Considering the ζτ (x) term only (i.e., the second term in the maximum),
one finds
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ζτ (x) = sup
T∈[τ,∞)

sup
u∈UM

[0,T )

{
I(0, τ, x, u) + ℓ(ξT ) + I(τ, T, ξτ , u) : ξ0 = x

}

= sup
T∈[τ,∞)

sup
u1∈UM

[0,τ)

sup
u2∈UM

[τ,T )

{
I(0, τ, x, u1) + ℓ(ξ2

T ) + I(τ, T, ξ1
τ , u2)

: ξ1
0 = x, ξ2

τ = ξ1
τ

}

where ξ1 (over [0, τ)) satisfies (9.1),(9.2) with input u1, and ξ2 (over [τ, T ])
satisfies (9.1) with input u2 and initial condition ξ2

τ = ξ1
τ . This is

= sup
u1∈UM

[0,τ)

{
I(0, τ, x, u1) + sup

T∈[τ,∞)

sup
u2∈UM

[τ,T )

[
ℓ(ξ2

T ) + I(τ, T, ξ1
τ , u2)

]

: ξ1
0 = x, ξ2

τ = ξ1
τ

}

= sup
u1∈UM

[0,τ)

{
I(0, τ, x, u1) + W (ξ1

τ ) : ξ1
0 = x

}
. ⊓⊔

In order to prove a dynamic programming principle for the infinite time-
horizon value V , it is useful to consider the following auxiliary finite horizon
optimization problem:

W̃ (x, T ) = sup
u∈UM

[0,T )

J(0, T, x, u) (9.10)

It follows immediately from (9.7), (9.8) and (9.10) that

W (x) = sup
T<∞

W̃ (x, T ), (9.11)

V (x) = lim sup
T→∞

W̃ (x, T ). (9.12)

Identity (9.12) will be used to prove the DPP for V . The following lemma is
essentially identical to a DPP from Remark 3.9, but with a change of variable
in the time component.

Lemma 9.2. W̃ given by (9.10) satisfies

W̃ (x, T ) = sup
u∈UM

[0,τ)

{
I(0, τ, x, u) + W̃ (ξτ , T − τ) : ξ0 = x

}
(9.13)

for all x ∈ Rn, 0 ≤ τ ≤ T < ∞.

Note that DPP (9.9) may also be proved using (9.13) by first rewriting
(9.13) so that it holds for all τ ∈ [0,∞); see [76].

We now continue by using Lemma 9.2 to prove the DPP for the infinite
horizon value function V . First we need the following technical lemma.

Lemma 9.3. Fix ρ ∈ [0,∞), ε ∈ [0,∞), and 0 ≤ τ ≤ T < ∞. Let ε ∈ (0, ε].
There exists R = R(ρ, τ, T, ε) < ∞ such that the following holds: Given any

x ∈ Bρ and ε-optimal ux,T,ε for W̃ (x, T ) (i.e., such that J(0, T, x, ux,T,ε) ≥
W̃ (x, T )− ε), one has ξx,T,ε

τ ∈ BR where ξx,T,ε satisfies (9.1) with ξx,T,ε
0 = x

and input ux,T,ε.
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Proof. In the case M < ∞, the proof is immediate. We turn to the case
M = ∞. Fix T ∈ (0,∞), ρ ∈ (0,∞) and x ∈ Bρ. let ε ∈ (0, 1]. Let uε

be ε-optimal for W̃ (x, T ). By the non-negativity of L, ℓ and the fact that
η(0) = 0,

−ε ≤ ℓ(ξε
T ) +

∫ T

0

L(ξε
t )− η(|uε

t |) dt,

where ξε is driven by uε with ξε
0 = x. By Assumption (A9.3I), this is

≤ (α− 1)

∫ T

0

η(|uε
t |) dt + c2T + β̂(x).

Rearranging this, one sees that
∫ T

0

η(|uε
t |) dt ≤ 1

1− α
[1 + c2T + β̂(x)] ≤ Cρ,T

1

for proper choice of Cρ,T
1 . Then, using Assumption (A9.2I) and the non-

negativity of η, we see that this implies that for any τ ∈ [0, T ],

|ξε
τ |2 ≤ β(x) + c1τ +

∫ τ

0

η(|uε
t |) dt ≤ β(x) + c1T + Cρ,T

1 .

Because β is bounded on compact sets, one has the desired bound. ⊓⊔
Definition 9.4. The limit supremum in (9.12) (equivalently, (9.8)) is at-
tained uniformly on compact sets from above if the following condition holds:
Given any compact set X ⊂ Rn and ε > 0, there exists T ε,X such that

W̃ (x, T ) ≤ V (x) + ε ∀T ≥ T ε,X , ∀x ∈ X . (9.14)

Definition 9.5. The supremum in (9.11) (equivalently, (9.7)) is attained uni-
formly on compact sets from below if the following condition holds: Given any
compact set X ⊂ Rn and ε > 0, there exists T ε,X such that given any x ∈ X ,
there exists Tx ∈ [0, T ε,X ] such that

W̃ (x, Tx) ≥ W (x)− ε. (9.15)

Further, the supremum in (9.11) (equivalently, (9.7)) is attained uniformly on
compact sets from below with a lower time if the following condition holds:
Given any compact set X ⊂ Rn, T0 ≥ 0 and ε > 0, there exists T ε,X ,T0

such that given any x ∈ X , there exists Tx ∈ [T0, T ε,X ,T0
] such that inequality

(9.15) holds.

Note that the second item in Definition 9.5 poses a stronger requirement
than the first. For the remainder of this chapter, we assume that

the limit supremum in (9.12) is attained uniformly on compact
sets from above, and that the supremum in (9.11) is attained
uniformly on compact sets from below with a lower time.

(A9.5I)
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Lemma 9.6. V given by (9.8) satisfies

V (x) = sup
u∈UM

[0,τ)

{I(0, τ, x, u) + V (ξτ ) : ξ0 = x} (9.16)

∀x ∈ Rn, τ ∈ [0,∞).

Proof. Fix x ∈ Rn, τ ∈ [0,∞). Let the notation a∧ b denote min(a, b) for any
a, b ∈ R. Then, (9.13) implies that

W̃ (x, T ) = sup
u∈UM

[0,τ∧T )

{
I(0, τ ∧ T, x, u) + W̃ (ξ(τ∧T ), T − (τ ∧ T ))

}
(9.17)

for all τ ∈ [0,∞) where ξ0 = x. By (9.12) and (9.17),

V (x) = lim sup
T→∞

sup
u∈UM

[0,τ∧T )

{
I(0, τ ∧ T, x, u) + W̃ (ξ(τ∧T ), T − (τ ∧ T ))

}
,

where ξ0 = x, and this is

≥ sup
u∈UM

[0,τ)

lim sup
T→∞

{
I(0, τ, x, u) + W̃ (ξτ , T − τ)

}

= sup
u∈UM

[0,τ)

{
I(0, τ, x, u) + lim sup

T→∞
W̃ (ξτ , T − τ)

}

= sup
u∈UM

[0,τ)

{I(0, τ, x, u) + V (ξτ )} , (9.18)

which proves the inequality in one direction.
We now prove the reverse inequality. Fix τ ∈ [0,∞). Fix ρ ∈ (0,∞) and

x ∈ Bρ ⊂ Rn. From the definition of V , we know that there exists a strictly
monotonically increasing sequence, {Ti}, such that

V (x) = lim
i→∞

sup
u∈UM

[0,Ti)

J(0, Ti, x, u).

Consequently, given ε > 0, there exists i(x) with Ti(x) ≥ τ such that

V (x) ≤ sup
u∈UM

[0,Ti)

J(0, Ti, x, u) + ε ∀ i ≥ i(x).

Therefore, for any i ≥ i(x), there exists uε,i ∈ UM
[0,Ti)

such that

V (x) ≤ J(0, Ti, x, uε,i) + 2ε

= I(0, τ, x, uε,i) + J(τ, Ti, ξ
ε,i
τ , uε,i) + 2ε

where ξε,i is driven by uε,i with initial condition ξε,i
0 = x, and we note the

slight abuse of notation incurred by the use of uε,i where we should actually use
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the restriction of that process to the relevant time domain. By the definition
of W̃ , this obviously implies

V (x) ≤ I(0, τ, x, uε,i) + W̃ (ξε,i
τ , Ti − τ) + 2ε. (9.19)

Now by Lemma 9.3, there exists R = R(ρ, τ) (independent of x, uε,i) such
that

ξε,i
τ ∈ BR. (9.20)

Further, by the assumption that limit supremum in (9.8) is attained uniformly
on compact sets from above, one then finds that there exists T ε,R (independent
of ξε,i

τ ) such that

W̃ (x, T ) ≤ V (x) + ε ∀x ∈ BR, ∀T ≥ T ε,R. (9.21)

Combining (9.19), (9.20) and (9.21), one finds that for i ≥ i(x) sufficiently
large such that Ti − τ ≥ T ε,R,

V (x) ≤ I(0, τ, x, uε,i) + V (ξε,i
τ ) + 3ε.

Consequently,

V (x) ≤ sup
u∈UM

[0,τ)

{I(0, τ, x, u) + V (ξτ )}+ 3ε.

Because this is true for all ε > 0, one obtains the reverse inequality, and so
the proof is complete. ⊓⊔

9.2.2 Dynamic Programming Equations

By considering the DPPs (9.9) and (9.16) in the limit as τ ↓ 0, one would
typically find that W and V satisfy respectively a variational inequality (VI)
and an HJB PDE. Because the focus here is on max-plus methods rather
than PDE/VI–based methods, we only indicate the corresponding VI and
PDE problems.

Define the Hamiltonian

H(x, p)
.
= L(x) + sup

v∈Rl

{f(x, v) · p− η(|v|)} .

One expects W to be a viscosity solution of the VI (c.f. [8])

−max (ℓ(x)−W (x), H(x,∇xW (x))) = 0. (9.22)

One expects V to be a viscosity solution of the HJB PDE (see Chapter 3)

−H(x,∇xV (x)) = 0. (9.23)
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9.3 Max-Plus Representations and Semiconvexity

Define the time-indexed operator

Sτ [φ](x) = max

{
sup

t∈[0,τ)

sup
u∈UM

[0,τ)

J(0, t, x, u), sup
u∈UM

[0,τ)

[
I(0, τ, x, u) + φ(ξτ )

]}

and the semigroup

Lτ [φ] = sup
u∈UM

[0,τ)

[
I(0, τ, x, u) + φ(ξτ )

]

where the domains are implicit. Then DPP (9.9) can be rewritten ∀x ∈ Rn

as
W (x) = Sτ [W ](x) = max

{
sup

t∈[0,τ)

sup
u∈UM

[0,τ)

J(0, t, x, u),Lτ [W ](x)
}

and the DPP for V , (9.16) can be rewritten ∀x ∈ Rn as

V (x) = Lτ [V ](x)

One can easily show that Lτ is a max-plus linear operator. Define cτ :
Rn → R by

cτ (x) = sup
t∈[0,τ)

sup
u∈UM

[0,τ)

J(0, t, x, u) ∀x ∈ Rn. (9.24)

Then, for all φ in the domain of Lτ ,

Sτ [φ](x) = max
{
cτ (x),Lτ [φ](x)

}
= {cτ ⊕ Lτ [φ]}(x) ∀x ∈ Rn, (9.25)

and consequently, Sτ is a max-plus affine operator. Note that our DPP for
W , (9.9), now takes the form

W = cτ ⊕ Lτ [W ]. (9.26)

Similarly, one easily has (as in Chapter 4) that our DPP for V , (9.16),
takes the max-plus eigenvector form

0⊗ V = Lτ [V ]. (9.27)

We will focus in this chapter on methods similar to those used in Chapters
4–5; methods similar to those of Chapters 6 and 7 have not yet been developed
for this class of problems. Consequently, we will again be interested in spaces
of the form ScL

R̄
where c is the semiconvexity constant over BR and L is the

Lipschitz constant over BR. With this in mind, we see that it will be useful to
prove that the value functions, V and W are semiconvex. We again note that
this chapter is intended to be rather general in terms of the scope of prob-
lems. In particular, we are allowing the cost criterion and control spaces to
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take a variety of forms. Consequently, and in contradistinction to say Chapter
4, a single set of assumptions on f, σ, L, ℓ, η under which one could guaran-
tee semiconvexity of W, V for all cases would be far too restrictive. Instead,
we demonstrate semiconvexity for two specific subclasses of problems, and
then assume semiconvexity of value for the remainder of the chapter without
reference to a specific set of assumptions yielding the semiconvexity.

Theorem 9.7. Suppose ℓ ≡ 0, η(s) = γ2

2 s2, M = ∞ and (A4.3I), (A4.4I). If

(A4.4I) holds with γ2 replaced by γ2 − δ where 0 ≤ V (x) ≤ cf
γ2−δ
2m2

σ
|x|2 for all

x ∈ Rn (where we note V = W in this case), then V and W are semiconvex,
and consequently, given R < ∞, there exists c, L <∞ such that W, V ∈ ScL

R̄
.

Proof. This follows by Theorem 4.1, Theorem 4.2 and Corollary 4.11. ⊓⊔

The above result is really appropriate only to that subclass of problems
without an L∞ component. In keeping with the spirit of this chapter, we now
include a proof of semiconvexity under more general conditions which would
need to be verified for any specific mixed L∞/L2 problem.

Theorem 9.8. Suppose M < ∞, and that W, V : Rn → R. Assume that the
supremum in (9.11) (equivalently (9.7)) is attained uniformly on compact sets
from below (see Definition 9.5). Then W is semiconvex. Suppose, that the limit
supremum in (9.12) (equivalently (9.8)) is attained uniformly on compact sets
from above (see Definition 9.4), and that the supremum in (9.11) (equivalently
(9.7)) is attained uniformly on compact sets from below with a lower time (see
Definition 9.5). Then V is semiconvex.

Note that some assumptions which are already being assumed through-
out this chapter, are specifically called out in the above theorem statement
in order to be clear regarding exactly which ones are needed for each of the
two assertions. Prior to the proof we note the usual result that semiconvex-
ity implies the local Lipschitz property (c.f. [42]). This yields the following
corollary.

Corollary 9.9. Under the conditions of either Theorem 9.7 or Theorem 9.8,
V and W are locally Lipschitz.

Proof. (proof of Theorem 9.8) Fix R < ∞. Let x ∈ BR ⊂ Rn and v ∈ Rn

with |v| = 1. As in Chapter 4, we will prove semiconvexity by showing that
second differences of W and V , such as W (x + δv)− 2W (x) + W (x− δv), are
bounded from below for sufficiently small δ > 0. We will take δ ∈ (0, 1].

Let ε > 0. As the supremum in (9.11) is attained uniformly on compact
sets from below, we see that there exists T, T = TBR,ε with T ≤ T such that

W̃ (x, T ) ≥ W (x)− ε ∀x ∈ BR, ∀T ≥ T . (9.28)

Let uε ∈ UM
[0,T ) be such that
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J(0, T, x, uε) ≥ W̃ (x, T )− ε. (9.29)

Now define x+ = x + δv, x− = x − δv. Let trajectories ξε,+, ξε,− satisfy
(9.1) with initial conditions ξε,+

0 = x+, ξε,−
0 = x− and inputs u+

t = uε
t ,

u−
t = uε

t + ∆t. One has

ξ̇ε,+ − ξ̇ε = f(ξε,+)− f(ξε) + [σ(ξε,+)− σ(ξε)]uε,

ξ̇ε − ξ̇ε,− = f(ξε)− f(ξε,−) + σ(ξε)uε − σ(ξε,−)[uε + ∆].

Then, as in the proof of Theorem 4.9, one chooses

∆t
.
= −σ−1(ξε,−

t ){f(ξε,+
t )− 2f(ξε

t ) + f(ξε,−
t )

+[σ(ξε,+
t )− 2σ(ξε

t ) + σ(ξε,−
t )]uε

t} (9.30)

(As before, although ∆t is defined by the above feedback formula, the corre-
sponding ∆t as a function of t is used.) Consequently, one again obtains

ξε,+
t − ξε

t = ξε
t − ξε,−

t ∀ t ∈ [0, T ]. (9.31)

Thus, one has

W̃ (x + δv, T )− 2W̃ (x, T ) + W̃ (x− δv, T )

≥ ℓ(ξε
T + [ξε,+

T − ξε
T ])− 2ℓ(ξε

T ) + ℓ(ξε
T − [ξε,+

T − ξε
T ])

+

∫ T

0

L(ξε
t + [ξε,+

t − ξε
t ])− 2L(ξε

t ) + L(ξε
t − [ξε,+

t − ξε
t ]) dt

−
∫ T

0

η(|uε
t + ∆t|)− η(|uε

t |) dt− 2ε. (9.32)

Using Assumption (A9.1I), this yields

W̃ (x + δv, T )− 2W̃ (x, T ) + W̃ (x− δv, T )

≥ −2Cℓ|ξε,+
T − ξε

T |2 − 2Cl

∫ T

0

|ξε,+
t − ξε

t |2 dt

−
∫ T

0

k1|uε
t ||∆t|+ k2|∆t|2 dt− 2ε (9.33)

Using Assumptions (A4.1I) and (A4.2I), one has

d

dt
|ξε,+ − ξε|2 ≤ 2K|ξε,+ − ξε|2 + 2Kσ|ξε,+ − ξε|2|uε|

≤ 2(K + KσM)|ξε,+ − ξε|2 .
= C1|ξε,+ − ξε|2

which implies

|ξε,+
t − ξε

t |2 ≤ δ2eC1T ≤ δ2eC1T ∀ t ∈ [0, T ]. (9.34)
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Sustituting (9.34) into (9.33) yields

W̃ (x + δv, T )− 2W̃ (x, T ) + W̃ (x− δv, T )

≥ −
[
2Cℓe

C1T + 2Cl(T/C1)e
C1T

]
δ2 −

∫ T

0

k1|uε
t ||∆t|+ k2|∆t|2 dt− 2ε

.
= C2δ

2 −
∫ T

0

k1|uε
t ||∆t|+ k2|∆t|2 dt− 2ε. (9.35)

Noting that

d

dt
|ξε|2 ≤ 2|ξε|

[
|f(0)|+ K|ξε − 0|+ mσM

]

≤ |f(0)|2 + (mσM)2 + 2(K + 1)|ξε|2,

it is easy to show that there exists DR,T < ∞ such that

|ξε
t |2 ≤ DR,T ∀ t ∈ [0, T ], ∀x ∈ BR. (9.36)

By the smoothness of f and σ, there exist Qf
R,T , Qσ

R,T < ∞ such that

|fxx(x)| ≤ Qf
R,T and |σxx(x)| ≤ Qσ

R,T for all x ∈ BDR,T
. Using this, (9.30)

and Assumption (A4.2I), one has

|∆t| ≤ mσ[2Qf
R,T δ2 + 2Qσ

R,T Mδ2]
.
= C3,R,T δ2 ∀ t ∈ [0, T ] (9.37)

for any initial x ∈ BR. Combining (9.35) and (9.37) yields

W̃ (x + δv, T )− 2W̃ (x, T ) + W̃ (x− δv, T )

≥ −C2δ
2 − Tk1MC3,R,T δ2 − Tk2(C3,R,T )2δ4 − 2ε

≥ −C2δ
2 − Tk1MC3,R,T δ2 − Tk2(C3,R,T )2δ2 − 2ε

.
= −C4,R,T δ2 − 2ε.(9.38)

Combining the fact that W is a supremum over T of W̃ and (9.28) with (9.38)
yields

W (x + δv)− 2W (x) + W (x− δv) ≥ −C4,R,T δ2 − 4ε.

Using the fact that this is true for all ε > 0, one finds that W is semiconvex.
Now we proceed to prove that V is semiconvex. By the assumptions that

the limit supremum in (9.12) is attained uniformly on compact sets from
above, and that the supremum in (9.11) is attained uniformly on compact
sets from below with a lower time, one finds that there exist T , T ∈ (0,∞)
(dependent only on R) such that for any x ∈ BR, there exists T ∈ [T , T ]
(where T itself may depend on x) such that

W̃ (x, T ) ≥ W (x)− ε ≥ V (x)− ε, (9.39)

W̃ (x + δv, T ) ≤ V (x + δv) + ε, (9.40)

and
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W̃ (x− δv, T ) ≤ V (x− δv) + ε. (9.41)

By (9.39)–(9.41),

V (x + δv)− 2V (x) + V (x− δv) ≥ W̃ (x + δv, T )− 2W̃ (x, T ) + W̃ (x− δv, T )

−4ε,

which by (9.38)
≥ −C4,R,T δ2 − 6ε.

Because this is also true for all ε > 0, we see that V is semiconvex. ⊓⊔

9.4 Max-Plus Numerical Methods

We now have the structure needed to construct max-plus based methods.
In particular, we have semiconvexity of the value functions, and max-plus
linear and max-plus affine representations of the DPPs. Chapters 4–7 dis-
cussed max-plus numerical methods for steady-state problems. In Chapters
4 and 5, we discussed a max-plus eigenvector approach. In Chapters 6 and
7, we considered methods based on dual-space operator construction includ-
ing the curse-of-dimensionality-free method. The purpose of this chapter is
to give an overview for a wider class (mixed L∞/L2 problems), with a cor-
respondingly less specific study of detailed assumptions and calculations. In
keeping with this broad approach, we will indicate only the main points of
a generalization of the max-plus eigenvector approach. Error analyses will
not be provided. Operator construction/curse-of-dimensionality-free methods
have not yet been developed for this wider class of problems, but of course
the prospect is promising. We will, however, discuss an interesting max-plus
algebraic representation for a certain lack of uniqueness in the VI.

Suppose we wish to compute V, W over BR. We will assume throughout
this section that there are sufficient conditions such that one of the semicon-
vexity results of the previous section holds. Then, based on this semiconvexity,
one has that given R < ∞, V, W ∈ ScL

R̄
for some c ∈ R and L ∈ [0,∞). Recall

Theorem 4.13. In particular, let C be a symmetric matrix such that C−cI > 0.
Let ψi(x)

.
= − 1

2 (x− xi)
T C(x− xi) where the xi ∈ N form a countable dense

subset of E = {x ∈ Rn : xT (C2)x ≤ (L + |C|R)2}. Then, for any φ ∈ ScL
R̄

,

φ(x) = sup
i∈N

[ai + ψi(x)] =

∞⊕

i=1

[ai ⊗ ψi(x)] , (9.42)

where
ai = − max

x∈BR

[−φ(x) + ψi(x)] ∀ i. (9.43)

Now, as in Chapters 4–6, we will suppose that the value function, W (x)
has a max-plus expansion with a specific, finite number of max-plus basis
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functions. (Again we remark that an error analysis for a particular L2-gain
case appears in Chapter 5, and we do not perform a similar analysis here.)
Suppose

W (x) =

{ ν⊕

i=1

[ai ⊗ ψi]

}
(x) (9.44)

with the ai given in (9.43), with W replacing φ. Similarly, suppose that for
each i ∈ {1, 2, . . . , ν} one has a finite max-plus expansion of Lτ [ψi] which we
denote by

Lτ [ψi] =

ν⊕

j=1

[Bj,i ⊗ ψj ], (9.45)

where Bj,i = −maxx{ψj(x)− Lτ [ψi](x)}, and also that

cτ =

ν⊕

j=1

[cj ⊗ ψj ], (9.46)

where cj = −maxx{ψj(x)− cτ (x)}. Then, by (9.26) and (9.44)

ν⊕

j=1

aj ⊗ ψj = cτ ⊕ Lτ

[ ν⊕

i=1

ai ⊗ ψi

]
,

which by (9.45), (9.46) and the max-plus linearity of Lτ ,

=

[ ν⊕

j=1

cj ⊗ ψj

]
⊕

{ ν⊕

i=1

ai ⊗
[ ν⊕

j=1

Bj,i ⊗ ψj

]}

=

[ ν⊕

j=1

cj ⊗ ψj

]
⊕

{ ν⊕

j=1

[ ν⊕

i=1

ai ⊗Bj,i

]
⊗ ψj

}

=

ν⊕

j=1

[
cj ⊕

ν⊕

i=1

Bj,i ⊗ ai

]
⊗ ψj (9.47)

Under an assumption that each basis function is active (see Theorem 4.15),
(9.47) implies that the vector of coefficients ai, denoted simply by a, satisfies
the affine equation

a = c⊕
[
B ⊗ a

]
(9.48)

where c is the vector of coefficients ci, and B is the ν × ν matrix of elements
Bj,i. In summary, one finds the following.

Theorem 9.10. The solution of DPP (9.9) is given by W =
⊕ν

i=1 ai ⊗ ψi

where the vector of coefficients satisfies max-plus affine equation (9.48).

Similarly, suppose for now that V has the finite expansion (but see Chapter
5 for discussion of the associated errors in a simpler case with ℓ ≡ 0) with all
basis functions active
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V (x) =

{ ν⊕

i=1

[ei ⊗ ψi]

}
(x) (9.49)

with the ei given by
ei = −max

x
{ψi(x)− V (x)}. (9.50)

Then one has (see Theorem 4.15) the following:

Theorem 9.11. The solution of DPP (9.16) is given by V =
⊕ν

i=1 ei ⊗ ψi

where the vector of coefficients satisfies max-plus eigenvector equation

0⊗ e = B ⊗ e. (9.51)

9.4.1 Nonuniqueness for the Max-Plus Affine Equation

There are serious nonuniqueness issues for the DPPs for both W and V . It will
be simpler to quantify this lack of uniqueness with the technology below. Note
that this nonuniqueness also appears in the above PDE and VI forms. Some
(although not all) of these nonuniqueness issues also appear in the max-plus
algebraic forms of these equations, (9.48) and (9.51).

In the case of V , the max-plus equation (9.51) is simply an eigenvector
problem for eigenvalue zero. The following property can be shown to hold for
some problem forms. In particular, it is shown to hold for the L2-gain/H∞

problem form under reasonable conditions on the dynamics and cost (see
Chapter 4). We will assume throughout the remainder of the chapter that it
holds for the B matrix obtained above.

Max-Plus Matrix Dissipation Property: Let x1 = 0. B1,1 = 0, and there
exists NB < ∞, ε > 0 such that for all N ≥ NB and all {ki}N

i=1 such that

k1 = kN and not ki = 1 for all i, one has
∑N−1

i=1 Bki,ki+1 < −ε.

We will also suppose that Bj,i �= −∞ for all j, i, and this holds under rea-
sonable conditions on the dynamics and choice of C in the basis functions. In
particular, this has also been shown to hold in the problem of Chapters 4 and
5. The condition Bj,i �= −∞ for all j, i is sufficient (although not necessary)
to guarantee that B has exactly one max-plus eigenvalue [6]. Further, under
the additional condition of the Max-Plus Matrix Dissipation Property, there
is a unique eigenvector (modulo max-plus multiplication by a scalar, of course
— see Chapter 4 and [6]).

Now, consider our max-plus affine problem (9.48). Suppose this problem
has solution a0. Also suppose that the eigenvector problem, (9.51), has solu-
tion e0. Let a1 .

= a0 ⊕ e0. Then

a1 = a0 ⊕ e0

which, because a0 is a solution of (9.48), and e0 is a solution of (9.51),
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= [c⊕ (B ⊗ a0)]⊕ (B ⊗ e0)

= c⊕ [(B ⊗ a0)⊕ (B ⊗ e0)]

= c⊕ [B ⊗ (a0 ⊕ e0)] = c⊕ (B ⊗ a1).

Therefore, one has the following.

Theorem 9.12. Solutions of (9.48) are at most unique modulo max-plus ad-
dition by a max-plus eigenvector corresponding to max-plus eigenvalue zero.

This nonuniqueness also holds for the original problem (before truncation
of the basis expansion to finite length).

Theorem 9.13. Solutions of affine problem (9.26) are at most unique modulo
max-plus addition by a solution of eigenvector problem (9.27).

Proof. Let W 0 satisfy (9.26), and V 0 satisfy (9.27). Let W 1 .
= W 0⊕V 0. Then

W 1 = W 0 ⊕ V 0

=
(
cτ ⊕ Lτ [W 0]

)
⊕ Lτ [V 0]

which by the max-plus linearity of Lτ

= cτ ⊕ Lτ [W 0 ⊕ V 0]

= cτ ⊕ Lτ [W 1],

and so W 1 is a solution of (9.26). ⊓⊔

This also yields a way to view nonuniqueness in the originating DPP and
VI. More specifially, if W is a solution of the DPP or VI, and if V is a solution
of the corresponding DPP or PDE for the infinite time-horizon problem, then
the pointwise maximum of W and V (i.e., max-plus sum of W and V ) yields
another solution of the DPP or VI for W .

9.4.2 The Affine Power Method

Given this lack of uniqueness in the DPP and variational inequality for W ,
and the corresponding lack of uniqueness in the max-plus affine equation
(9.48), one could question how one would know that the solution computed
for any of these characterizations was the correct solution (the value function).
Interestingly, there is a method for solution of the max-plus affine equation
(9.48) that yields this correct solution. The underlying reason that it yields the
correct solution is that it corresponds to forward propagation of the original
control problem. One particularly nice property of the solution method is that
it converges exactly in a finite number of steps.

Let F : (R−)n → (R−)n be defined by

F [e]
.
= c⊕ (B ⊗ e). (9.52)
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The max-plus affine power method will simply be the repeated applicaton of
F until one has convergence.

Prior to discussing the max-plus affine power method in greater detail,
we recall the results of Chapter 4 for the solution of (9.51). In particular,
Theorem 4.22 and Corollary 4.23 indicate that (given the Max-Plus Matrix
Dissipation Property) limM→∞ BM ⊗0 (where, here, 0 indicates the vector of
length ν consisting entirely of zeros) exists and converges in a finite number
of steps to the unique solution of eigenvector problem (9.51).

We will denote the initial vector for the affine power method as a0. The
following requires only a very minor modification of the proof of Theorem
4.22.

Lemma 9.14. Given any a0, c ∈ (R−)n, and B satisfying the Max-Plus

Matrix Dissipation Property, there exists K̂ < ∞ such that

Bk ⊗ a0 = BK̂ ⊗ a0 and Bk ⊗ c = BK̂ ⊗ c

for all k ≥ K̂.

Now note that for any k ≥ K̂, one has

F k+1[a0] =

[
k⊕

i=0

(
Bi ⊗ c

)
]
⊕

(
Bk+1 ⊗ a0

)
,

which by the assumptions and that d⊕ d = d for any d (idempotency),

=

⎡
⎣

K̂⊕

i=0

(
Bi ⊗ c

)
⎤
⎦⊕

(
BK̂+1 ⊗ a0

)
= F K̂+1[a0].

Let
a∗ .

= lim
k→∞

F k[a0]. (9.53)

Then
a∗ = F K̂+1[a0]. (9.54)

Further,

F [a∗] = F K̂+2[a0] = F K̂+1[a0] = a∗.

Consequently, one has the following:

Theorem 9.15. For any initial a0, a∗ given by (9.53) is a solution of (9.48).

Not only is the limit a solution of (9.48) and achieved in a finite number
of steps, we will see that it is also the correct solution of (9.48) in that it is
the solution corresponding to the value function. Let the kth iterate be ak =
F k[a0]. Also, define the corresponding kth approximation of the solution to be
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W k(x)
.
=

⊕ν
i=1 ak

i ⊗ ψi(x). Note that from the above, one has W k = W K̂+1

for all k ≥ K̂ + 1. Let W ∗(x)
.
=

⊕ν
i=1 a∗

i ⊗ ψi(x) =
⊕ν

i=1 aK̂+1
i ⊗ ψi(x). We

will choose a0 such that

W 0(x) ≤ W (x) ∀x ∈ Rn, (9.55)

where W is the value function. Note that this is an assumption on the choice of
the a0

i coefficients. Under the above assumptions (specifically non-negativity
of L, ℓ and η(0) = 0), one has W (x) ≥ 0 for all x. Consequently, if the basis
functions are of the form ψ(x) = − 1

2 (x−xi)
T C(x−xi) with C positive definite,

then one only needs to take the a0
i ≤ 0 in order to satisfy (9.55).

Theorem 9.16. Suppose W 0 satisfies (9.55). W ∗ given by the above algo-
rithm is the correct solution of the DPP (i.e., the value function of the original
control problem).

Proof. The result will follow by showing that repeated application of the F
operator corresponds to forward propagation of the value function of a finite
time-horizon problem. We only sketch the main points of the proof. First note
that

W 1(x) =

ν⊕

i=1

{[
ci ⊕ (B ⊗ a0)i

]
⊗ ψi(x)

}

=

[ ν⊕

i=1

ci ⊗ ψi(x)

]
⊕

[ ν⊕

i=1

(B ⊗ a0)i ⊗ ψi(x)

]
,

which by the definitions of c and B,

= max
{

cτ (x),Lτ [W 0](x)
}

= max

{
sup

t∈[0,τ)

sup
u∈UM

[0,τ)

J(0, t, x, u),

sup
u∈UM

[0,τ)

[
I(0, τ, x, u) + W 0(ξτ )

]}
. (9.56)

Similarly,

W 2(x) =

ν⊕

i=1

{[
ci ⊕ (B ⊗ a1)i

]
⊗ ψi(x)

}

= max

{
sup

t∈[0,τ)

sup
u∈UM

[0,τ)

J(0, t, x, u), sup
u∈UM

[0,τ)

[
I(0, τ, x, u) + W 1(ξτ )

]}

and using (9.56),
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= max

{
sup

t∈[0,2τ)

sup
u∈UM

[0,2τ)

J(0, t, x, u), sup
u∈UM

[0,2τ)

[
I(0, 2τ, x, u) + W 0(ξ2τ )

]}
.

By induction, one finds

W k(x) = max
{

supt∈[0,kτ) supu∈UM [0,kτ) J(0, t, x, u),

supu∈UM
[0,kτ)

[
I(0, kτ, x, u) + W 0(ξkτ )

]}
.

(9.57)

The next step is to note that given ε > 0, there exists Kε,x < ∞ such that
(by the definition of W )

W (x) ≤ sup
t∈[0,kτ)

sup
u∈UM

[0,kτ)

J(0, t, x, u) + ε

for any k ≥ Kε,x. Consequently, using (9.57), one has

W (x) ≤ W k(x) + ε (9.58)

for any k ≥ Kε,x. On the other hand, by the DPP of Theorem 9.1 one has

W (x) = max

{
sup

t∈[0,kτ)

sup
u∈UM

[0,kτ)

J(0, t, x, u), sup
u∈UM

[0,kτ)

[
I(0, kτ, x, u) + W (ξkτ )

]}

which by the condition (9.55),

≥ max

{
sup

t∈[0,kτ)

sup
u∈UM

[0,kτ)

J(0, t, x, u), sup
u∈UM

[0,kτ)

[
I(0, kτ, x, u) + W 0(ξkτ )

]}

= W k(x). (9.59)

Combining (9.58) and (9.59) leads to the result. ⊓⊔





A

Miscellaneous Proofs

A.0.1 Sketch of Proof of Theorem 2.8

A short sketch of a proof of Theorem 2.8 follows. For a more general and
complete treatment see,[53]; [100], [101]; and/or [102].

Let ψ̂ be given by (2.4) (i.e., ψ̂(p) = −maxx∈BR
[xT p−φ̂(x)]). This implies

that

−ψ̂(p) ≥ xT p− φ̂(x) ∀x ∈ BR, ∀ p ∈ BL.

or
φ̂(x) ≥ pT x + ψ̂(p) ∀x ∈ BR, ∀ p ∈ BL

which implies
φ̂(x) ≥ max

p∈BL

[pT x + ψ̂(p)] ∀x ∈ BR. (A.1)

On the other hand, by the convexity and Lipschitz conditions, one can
show that given any x ∈ BR, there exists p ∈ BL and r ∈ R such that

φ̂(x) = pT x + r, (A.2)

φ̂(x) ≥ pT x + r ∀x ∈ BR. (A.3)

By (A.3),

r ≤ min
x∈BR

[φ̂(x)− pT x] = − max
x∈BR

[pT x− φ̂(x)] = ψ̂(p) (A.4)

Substituting this into (A.2), one finds

φ̂(x) ≤ pT x + ψ̂(p) ≤ max
p∈BL

[xT p + ψ̂(p)]. (A.5)

Comparing (A.1) and (A.5) yields the result. ⊓⊔
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A.0.2 Proof of Theorem 3.13

The following proof is a reduction of Da Lio’s uniqueness proof from [26] to the
case needed here. The main difference is that [26] concerned a game problem,
whereas we are concerned with a control problem here.

Recall that the HJB PDE problem of interest here is

0 = −Vs(s, x) + H(x,∇xV (s, x)) ∀ (s, x) ∈ (0, T )×Rn, (A.6)

V (T, x) = φ(x) ∀x ∈ Rn (A.7)

where the Hamiltonian, H, is given by

H(x, p)
.
= −max

u∈U

{
[f(x) + σ(x)u]T p + l(x)− γ2

2
|u|2

}
(A.8)

where U ⊆ Rl. We weaken the assumption that |σ(x)| ≤ mσ to |σ(x)| ≤
mσ(1+|x|) for all x for the purposes of maintaining a bit more of the generality
of the original. (Note that such a linear-growth bound is implied by (A3.1F),
but now we drop the condition |σ(x)| ≤ mσ and use the notation mσ for the
constant in the linear-growth bound, |σ(x)| ≤ mσ(1 + |x|) instead.)

Let V1, V2 ∈ K be viscosity solutions of (A.6) meeting boundary condition
(A.7). We first note that if (x, p) belongs to a compact set Ac ⊆ R2n, then

there exists R̂ > 0, depending on Ac, such that

H(x, p) = H
R̃
(x, p) (A.9)

.
= − max

u∈U,|u|≤R̂

{
[f(x) + σ(x)u]T p + l(x)− γ2

2
|u|2

}
∀ (x, p) ∈ Ac.

Now fix r > 0 and choose R > r. Because V1, V2 ∈ K and (A.9) holds, there

exists R̃ > 0 such that

H(x, p) = H
R̃
(x, p) ∀ p ∈ D+

x V1(t, x) ∪D+
x V2(t, x), (t, x) ∈ [0, T ]×BR(0).

Thus V1, V2 are viscosity solutions of

{−Vs(s, x) + H
R̃
(x,∇xV (s, x)) = 0 ∀(s, x) ∈ (0, T )×BR(0),

V (x, T ) = φ(x) ∀x ∈ BR(0).
(A.10)

Let Ũ
.
= U ∩ B

R̃
(0). The continuous viscosity solutions V of (A.10) satisfy

the optimality principle (see, e.g., Propositions 2.1 and 2.2 in [68]); namely,
for all x ∈ Br(0), s ∈ [0, T ] and 0 ≤ ρ ≤ T − s, the following estimate holds:

V (s, x) = sup

u∈UŨ

{
I(s, (s + ρ) ∧ tRx (u)) + V ((s + ρ) ∧ tRx (u), ξ(s+ρ)∧tR

x (u))
}

,

(A.11)
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where for all s, t ∈ [0, T ], I(s, t) :=
∫ t

s
l(ξτ )− γ2

2 |uτ |2 dτ , and tRx (u) is the time
of first exit of ξ from BR(0) where ξ satisfies the finite time-horizon dynamics
with ξs = x ∈ Br(0), i.e.,

tRx (u) := inf{t ≥ s| |ξt| ≥ R}.

In particular, (A.11) is satisfied by V1, V2.
Let λ

.
= infv∈U |u|2. Fix any ε ∈ (0, 1]. We observe that, because V1, V2 ≥ 0,

the supremum in (A.11) corresponding to ρ = T − s, may be confined to the
controls u such that for i = 1, 2, I(s, T∧tRx (u))+Vi(T∧tRx (u), ξT∧tR

x (u)) ≥ −Λ

where Λ
.
= −γ2

2 (λ + ε)T . Define the set

A .
=

{
u ∈ UU : I(s, T ∧ tRx (u)) + Vi(T ∧ tRx (u), ξT∧tR

x (u)) ≥ −Λ ∀i ∈ {1, 2}
}

.

Let vε ∈ U be such that |vε|2 ≤ λ + ε, and uε
· ∈ Uu be given by uε

τ ≡ vε

for all τ (which implies −γ2

2 ‖u‖2L2(s,T ) ≥ −Λ). We observe that uε
· ∈ A, and

consequently, A �= ∅.
Now we suppose that

T ≤ δ(γ, r, R)
.
= min

{
1,

R− r

K(1 + R)
, (A.12)

γ2(R− r)2

2m2
σ(1 + R)2[C(1 + R2) + Λ] + 2γ2K(R− r)(1 + R)

}
,

where

C = 2 max

{
Cl, Cφ, sup

(t,x)∈[0,T ]×Rn

|V1(t, x)|
1 + |x|2 , sup

(t,x)∈[0,T ]×Rn

|V2(t, x)|
1 + |x|2

}
.

We claim that if tRx (u) < T , then u /∈ A. In fact, suppose that ξt ∈ ∂BR(0), for
some t ∈ [s, T ), and ξt ∈ BR(0) for all t ∈ [s, t). Then we have the following
estimate:

R− r ≤ R− |x| = |ξt| − |x| ≤
∫ t

s

K(1 + |ξτ |) dτ +

∫ t

s

mσ(1 + |ξτ |)|uτ | dτ

≤ K(1 + R)(t− s) + mσ(1 + R)‖u‖L2(s,t)(t− s)1/2.

Thus ‖u‖L2(s,t) ≥ χ[r, R](t), where

χ[r, R](t)
.
=

R− r −K(1 + R)(t− s)

mσ(1 + R)(t− s)1/2
.

We observe that by supposition (A.12), χ[r, R](t) is positive for all t ∈
[s, T ]. Hence we have
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I(s, t) + Vi(t, ξt) ≤
∫ t

s

Cl(1 + |ξt|2)−
γ2

2
|ut|2 dt + C̃(1 + |ξt|2)

≤ Cl(1 + R2)(t− s)− γ2

2
|χ[r, R](t)|2 + C̃(1 + R2)

≤ C(1 + R2) + γ2 K(R− r)(1 + R)

m2
σ(1 + R)2

− γ2

2

(R− r)2

m2
σ(1 + R)2(t− s)

−γ2

2

K2(t− s)

m2
σ

≤ C(1+ R2)+ γ2 K(R− r)(1 + R)

m2
σ(1 + R)2

− γ2

2

(R− r)2

m2
σ(1 + R)2(T − s)

,

where C̃
.
= max(sup(t,x)∈[0,T ]×Rn

|V1(t,x)|
1+|x|2 , sup(t,x)∈[0,T ]×Rn

|V2(t,x)|
1+|x|2 ). Combin-

ing this with condition (A.12) and a little algebra, we have I(s, t)+V (t, ξt) <
−Λ, and this proves the claim. Therefore for all (s, x) ∈ [0, T ] × Br(0), each
Vi (i = 1, 2) satisfies

Vi(s, x) = sup

u∈UŨ

{I(s, T ) + φ(ξT )} , (A.13)

and we can conclude that V1 = V2 in [0, T ] × Br(0). In the case of T >
δ(γ, r, R), we can divide the interval [0, T ] into subintervals whose length is
less than δ(γ, r, R). Let 0 = t0, t1, . . . , tn = T be the points of such a division,
and for any k = 1, . . . , n let us consider the following Cauchy problem:

−Vs(s, x) + H
R̃
(x,∇V (s, x)) = 0 ∀ (s, x) ∈ (tk−1, tk)×BR(0),

V (tk, x) = φk(x) ∀x ∈ BR(0),

where the terminal value φk(x) can coincide either with V1(tk, x) or with
V2(tk, x). We start with k = n. Because |tn − tn−1| < δ(γ, r, R), we can argue
as above and obtain that the Vi’s coincide in [tn−1, tn] × Br(0). Then, by
proceeding backward in the time variable, we obtain that for all k ∈ {0, . . . , n},
V1 = V2 in [tk−1, tk]×Br(0), and this completes the proof. ⊓⊔

A.0.3 Proof of Lemma 3.15

From Lemma 3.14, we know that V is the unique continuous viscosity solution
of (3.46), (3.47). If we can prove that the value function of the indicated
problem is a continuous viscosity solution, then the uniqueness implies that
the value function and V are one in the same.

The first steps involve proving that the value is bounded above by a
quadratic function, and that consequently, there is an L2 bound on ε-optimal
controls u. In fact, we already have the quadratic bound. In particular, by
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(3.32) (using s rather than 0 as the starting time, and indicating this in the
argument list of J) we have

J(s, x, T, u) ≤
[
cfγ2

2m2
σ

ecf (s−T ) +
αl

cf

]
|x|2 − δ‖u‖2L2[s,T ] (A.14)

for all u ∈ UU , and by (A3.3I), (3.21)

J(s, x, T, 0) ≥ 0. (A.15)

(A.14) and (A.15) imply the value satisfies

0 ≤ V (s, x) ≤
[
cfγ2

2m2
σ

ecf (s−T ) +
αl

cf

]
|x|2. (A.16)

Also, for ε-optimal disturbances u, we already have from Theorem 3.10

1

2
‖u‖2L2[s,T ] ≤

ε

δ
+

1

δ

[
cfγ2

2m2
σ

ecf (s−T ) +
αl

cf

]
|x|2. (A.17)

We will use this to show that the state process satisfies a certain continuity
bound near the initial time for all ε-optimal controls u. This result ((A.18)
below) will be similar to the continuity proof in Theorem 3.11, and will be
obtained in the same manner. Let u be ε-optimal . By (3.12)

|ξt − x| ≤
∫ t

s

[
|f(ξr)|+ |σ(ξr)||ur|

]
dr,

which by (A3.1I), (A3.2I)

≤ K

∫ t

s

|ξr − x| dr + K|x|(t− s) + mσ

∫ t

s

|ur| dr

≤ K

∫ t

s

|ξr − x| dr + K|x|(t− s) + mσ

[∫ t

s

|ur|2 dr

] 1
2 √

t− s,

which by (A.17)

≤ K

∫ t

s

|ξr − x| dr + K|x|(t− s)

+mσ

[
2ε

δ
+

2

δ

[
cfγ2

2m2
σ

ecf (s−T ) +
αl

cf

]
|x|2

] 1
2 √

t− s.

Employing Gronwall’s inequality yields

|ξt − x| ≤ [C1 + C2|x|][(t− s) +
√

t− s] (A.18)
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for all t ∈ [s, s + (T − s)/2] for sufficiently large C1 and C2. One also obtains
continuity with respect to initial conditions similarly. In particular, if one lets
ξ and η satisfy (3.12) with ξs = x and ηs = y and the same control u which
is ε-optimal for x, one obtains

d

dt
|ξ − η|2 ≤ −2cf |ξ − η|2 + 2Kσ|ξ − η|2|u|,

which leads to

|ξt−ηt| ≤ exp

{
−cf t + 2Kσ

[
ε

δ
+

1

δ

(
cfγ2

2m2
σ

ecf (s−T ) +
αl

cf

)
|x|2

]}
. (A.19)

The next step is the DPP. The proof is standard, so is not included. (How-

ever, see the DPP results in Chapter 3.) The final steps in proving that Ṽ is
a continuous viscosity solution of the HJB PDE are similar to those in the
proof of Theorem 3.11 with for instance (A.19) replacing (3.39). The details
are not included. ⊓⊔

A.0.4 Sketch of Proof of Theorem 7.27

Fix δ > 0 (used in the definition of Cδ). Suppose V
′ ∈ Cδ satisfies (7.44). Then,

V
′
(x) = ¯̄S

τ

Nτ [V
′
](x)

= sup
u∈U

sup
µ∈Dτ

∞

{∫ Nτ

0

lµt(ξt)−
γ2

2
|ut|2 dt + V

′
(ξNτ )

}
∀x ∈ Rn

where ξ satisfies (7.13). Fix x ∈ Rn, and let µε ∈ Dτ
∞, uε ∈ U be ε–optimal,

that is,

V
′
(x) ≤

∫ Nτ

0

lµ
ε
t (ξε

t )− γ2

2
|uε

t |2 dt + V
′
(ξε

Nτ ) + ε,

where ξε satisfies (7.13) with inputs µε, uε.
Following the same steps as in Chapter 3, one obtains essentially the same

lemmas:

Lemma A.1 For any N < ∞,

‖uε‖2L2(0,Nτ) ≤
ε

δ
+

1

δ

[
cAγ2

m2
σ

e−cANτ +
cD

cA

]
|x|2.

Lemma A.2 For any N < ∞,

∫ Nτ

0

|ξε
t |2 dt ≤ ε

δ

m2
σ

cA
+

m2
σ

δ

[(
cD

c2
A

+
γ2

m2
σ

)
+

1

cA

]
|x|2.
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Lemma A.3 If uε, µε are ε-optimal over [0, Nτ), then they are also ε-optimal
over [0, nτ) for all n ≤ N , that is,

∫ nτ

0

lµ
ε
t (ξε

t )− γ2

2
|uε

t |2 dt + V
′
(ξε

nτ ) ≥ V
′
(x)− ε.

The independence of the above bounds with respect to N is important.
Specifically, because there is a finite bound on the energy (the bound on
uε) coming in to the trajectories, roughly speaking the ξε “tend” toward the
origin.

Now we need a lemma which will replace equation (3.58).

Lemma A.4 For any N < ∞,

N∑

n=1

|ξε
nτ |2 ≤

1

1− e−cAτ

[
|x|2 + (mσ/c2

A)‖uε‖2L2(0,Nτ)

]
.

Proof. Note that

d

dt
|ξε|2 ≤ −2cA|ξε|2 + 2mσ|ξε||uε| ≤ −cA|ξε|+ d̂|uε|2,

with d̂ = m2
σ/cA. Solving this on interval [nτ, (n + 1)τ) implies that

|ξε
t |2 ≤ |ξε

(nτ)|2e−cAτ + d̂‖uε‖2L2(nτ,(n+1)τ) ∀ t ∈ [nτ, (n + 1)τ ].

In particular, one has

|ξε
τ |2 ≤ |x|2e−cAτ + d̂‖uε‖2L2(0,τ),

|ξε
2τ |2 ≤ |ξε

τ |2e−cAτ + d̂‖uε‖2L2(τ,2τ),

and these two inequalities imply

|ξε
τ |2 + |ξε

2τ |2 ≤ (e−cAτ +e−2cAτ )|x|2 + d̂(1+ e−cAτ )‖uε‖2L2(0,τ) + d̂‖uε‖2L2(τ,2τ).

Continuing this process, one finds

N∑

n=1

|ξε
nτ |2 ≤

(
N∑

n=1

e−ncAτ

)
|x|2 + d̂

N∑

n=1

⎡
⎣
⎛
⎝

N−n∑

j=0

e−jcAτ

⎞
⎠ ‖uε‖2L2((n−1)τ,nτ)

⎤
⎦ .

Using the standard geometric series limit yields the result. ⊓⊔

Combining Lemmas A.2 and A.4, one obtains a bound on
∑N

n=1 |ξε
nτ |2

which is independent of N . Consequently, at least some of the |ξε
nτ | can be

guaranteed to be arbitrarily small for large N . The remainder of the proof
(of Theorem 7.27) then follows as in equations (3.62) to (3.66), but with Nτ
replacing T , and nτ replacing τ . This completes the sketch of the proof. ⊓⊔
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A.0.5 Sketch of Proof of Lemma 7.31

Fix ε̂, δ > 0 (where δ is used in the definition of Cδ). Fix m ∈ M. Fix any
T < ∞ and x ∈ Rn. Let ε = (ε̂/2)(1 + |x|2). Let uε ∈ W, µε ∈ D∞ be

ε-optimal for S̃T [Wm](x), i.e.,

S̃T [Wm](x)−
[∫ T

0

lµ
ε
t (ξε

t )− γ2

2
|uε

t |2 dt + Wm(ξε
T )

]
≤ ε =

ε̂

2
(1+|x|2) (A.20)

where ξε satisfies (7.13) with inputs uε, µε.
We will let ξ

ε
satisfy (7.13) with inputs uε and a µε ∈ Dτ

∞ (where τ has
yet to be chosen). Solving (7.13), one has

ξε
t = exp

[∫ t

0

Aµε
r dr

]
x +

∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
σµε

ruε
r dr

ξ
ε

t = exp

[∫ t

0

Aµε
r dr

]
x +

∫ t

0

exp

[∫ t

r

Aµε
ρ dρ

]
σµε

ruε
r dr.

Consequently,

|ξε
t − ξ

ε

t | ≤
∣∣∣∣exp

[∫ t

0

Aµε
r dr

]
− exp

[∫ t

0

Aµε
r dr

]∣∣∣∣ |x| (A.21)

+

{∫ t

0

∣∣∣exp
[∫ t

r

Aµε
ρ dρ

]
σµε

r − exp
[∫ t

r

Aµε
ρ dρ

]
σµε

r

∣∣∣
2

dr

}1/2

‖uε‖L2(0,t).

We now simply show that this can be made arbitrarily small by taking τ small.
We will use the boundedness of ‖uε‖ and ‖ξε‖ which is independent of t for
this class of systems (Chapter 3).

Consider the first term on the right in (A.21). Note that

∣∣∣∣exp

[∫ t

0

Aµε
r dr

]
− exp

[∫ t

0

Aµε
r dr

]∣∣∣∣

=

∣∣∣∣exp

[∫ t

0

Aµε
r dr

]∣∣∣∣
∣∣∣∣1− exp

[∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

]∣∣∣∣. (A.22)

Fix τ > 0. For any subset of R, I, let L(I) be the Lebesgue measure of I.
Let N be the largest integer such that Nτ ≤ t. Given m ∈M, let

Im = {r ∈ [0, Nτ) |Aµε
r = Am},

λm = L(Im).

Let n0 = 0. For 1 ≤ k < M = #M, let nk be the largest integer such that
nkτ ≤ λk + nk−1τ . For m < M let

µε
r = m ∀ t ∈ [nm−1τ, nmτ).
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Let µε
r = M for all t ∈ [nM−1τ, t) = [nM−1τ, Nτ) ∪ [Nτ, t). With this choice

of µε, one finds

∣∣∣∣1− exp

[∫ t

0

Aµε
r dr −

∫ t

0

Aµε
r dr

]∣∣∣∣ < β1
τ (A.23)

where β1
τ → 0 as τ → 0 independent of t. We skip the details.

Let y ∈ Rn. Define Ft = exp
[∫ t

0
Aµε

r dr
]
. Then,

d

dt

[
yT FT

t Fty
]

= yT
[
FT

t Ḟt + ḞT
t Ft

]
y = 2yT

[
FT

t Aµε
t Ft

]
y

= 2(Fty)T Aµε
t (Fty),

which by Assumption Block (A7.1I)

≤ −2cA|Fty|2 = −2cA

[
yT FT

t Fty
]
.

Solving this ordinary differential inequality, one finds

[yT FT
t Fty

]
≤ |y|2e−2cAt.

Because this is true for all y ∈ Rn, we have

∣∣∣∣exp

[∫ t

0

Aµε
r dr

]∣∣∣∣ ≤ e−cAt ∀ t ≥ 0. (A.24)

By (A.22), (A.23) and (A.24)

∣∣∣∣exp

[∫ t

0

Aµε
r dr

]
− exp

[∫ t

0

Aµε
r dr

]∣∣∣∣ ≤ β1
τe−cAt ∀ t ≥ 0. (A.25)

We now turn to the second term on the right-hand side of (A.21). Note
that

{∫ t

0

∣∣∣∣exp

[∫ t

r

Aµε
ρ dρ

]
σµε

r − exp

[∫ t

r

Aµε
ρ dρ

]
σµε

r

∣∣∣∣
2

dr

}1/2

≤
{

2

∫ t

0

∣∣∣∣exp

[∫ t

r

Aµε
ρ dρ

]∣∣∣∣
2 ∣∣∣σµε

r − σµε
r

∣∣∣
2

dr

+2

∫ t

0

∣∣∣∣exp

[∫ t

r

Aµε
ρ dρ

]
− exp

[∫ t

r

Aµε
ρ dρ

]∣∣∣∣
2 ∣∣∣σµε

r

∣∣∣
2

dr

}1/2

and proceeding as above

≤
{

2

∫ t

0

e−2cA(t−r)
∣∣∣σµε

r − σµε
r

∣∣∣
2

dr + 2β1
τ

∫ t

0

e−2cA(t−r)
∣∣∣σµε

r

∣∣∣
2

dr

}1/2
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≤
{

2

[∫ t

0

e−4cA(t−r) dr

]1/2 [∫ t

0

∣∣∣σµε
r − σµε

r

∣∣∣
4

dr

]1/2

+2β1
τm2

σ

∫ t

0

e−2cA(t−r) dr

}1/2

.

Further, there exists β2
τ such that [

∫ t

0
|σµε

r − σµε
r |4 dr]1/2 ≤ β2

τ where β2
τ → 0

as τ → 0, and we skip the obvious but technical details. Consequently,

{∫ t

0

∣∣∣∣exp

[∫ t

r

Aµε
ρ dρ

]
σµε

r − exp

[∫ t

r

Aµε
ρ dρ

]
σµε

r

∣∣∣∣
2

dr

}1/2

≤
{

2β2
τ (4cA)−1/2 + 2β1

τm2
σ(2cA)−1

}1/2

≤ β3
τ (A.26)

where β3
τ → 0 as τ → 0 (independent of t).

Combining (A.21), (A.25) and (A.26), one has

|ξε
t − ξ

ε

t | ≤ β1
τe−cAt|x|+ β3

τ‖uε‖L2(0,t). (A.27)

Now, by the system structure given by Assumption (A7.1I) and by the fact
that the Wm are in Cδ, one obtains the following lemmas exactly as in Chapter
3. These are also analogous to their counterparts in the proof of Theorem 7.27
above.

Lemma A.5 For any t < ∞,

‖uε‖2L2(0,t) ≤
ε

δ
+

1

δ

[
cAγ2

m2
σ

e−cANτ +
cD

cA

]
|x|2.

Lemma A.6 For any t < ∞,

∫ t

0

|ξε
r |2 dt ≤ ε

δ

m2
σ

cA
+

m2
σ

δ

[(
cD

c2
A

+
γ2

m2
σ

)
+

1

cA

]
|x|2.

Let c1
.
= ε/δ and c2

.
= 1

δ [ cAγ2

m2
σ

+ cD

cA
]. By Lemma A.5 and (A.27), for all

t < ∞ one has

|ξε
t − ξ

ε

t | ≤ β1
τe−cAt|x|+ β3

τ (c1 + c2|x|2)1/2

and by proper choice of β4
τ ,
≤ β4

τ (1 + |x|) (A.28)

where β4
τ → 0 as τ → 0 (independent of t > 0).

Now,
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∫ T

0

lµ
ε
t (ξε

t )− γ2

2
|uε

t |2 dt + Wm(ξε
T )

−
∫ T

0

lµ
ε
t (ξ

ε

t )−
γ2

2
|uε

t |2 dt + Wm(ξ
ε

T )

=

∫ T

0

[
ξε
t D

µε
t ξε

t − ξ
ε

tD
µε

t ξ
ε

t

]
dt + (ξε

T )T Pmξε
T − (ξ

ε

T )T Pmξ
ε

T . (A.29)

Note that the integral term on the right-hand side in (A.29) is

∫ T

0

(ξε
t )T Dµε

t (ξε
t − ξ

ε

t ) + (ξε
t )T

(
Dµε

t −Dµε
t

)
ξ

ε

t + (ξε
t − ξ

ε

t )
T Dµε

t ξ
ε

t dt

≤ β4
τ (1 + |x|)

∫ T

0

(
|Dµε

t | |ξε
t |+ |Dµε

t | |ξε

t |
)

dt + β5
τ

∫ T

0

|ξε
t | |ξ

ε

t | dt

for appropriate β5
τ → 0 as τ → 0, which after some work

≤ β6
τ (1 + |x|2)(1 +

√
T ) (A.30)

for appropriate choice of β6
τ → 0 as τ → 0 (independent of T ).

Similarly, the last two terms on the right-hand side in (A.29) are

ξε
T

T Pmξε
T − ξ

ε

T

T
Pmξ

ε

T = (ξε
T + ξ

ε

T )T Pm(ξε
T − ξ

ε

T )

≤ |Pm|
[
|ξε

T − ξ
ε

T |2 + 2|ξε
T | |ξε

T − ξ
ε

T |
]
,

which by (A.28)
≤ β7

τ (1 + |x|2) + β8
τ |ξε

T |(1 + |x|) (A.31)

for some β7
τ , β8

τ → 0 as τ → 0.
We also need the following lemma which is obtained in Chapter 3 as equa-

tion (3.58).

Lemma A.7 Given T < ∞, there exist T ∈ [T/2, T ] and ε-optimal uε ∈ W,

µε ∈ D∞ for S̃T [Wm] such that

|ξε
T |2 ≤

1

T

{
ε

δ

m2
σ

cA
+

m2
σ

δ

[(
cD

c2
A

+
γ2

m2
σ

)
+

1

cA

]
|x|2

}
.

Combining (A.31) and Lemma A.7, one finds that

ξε
T

T Pmξε
T − ξ

ε

T

T
Pmξ

ε

T ≤ β9
τ (1 + |x|2) (A.32)

for some β9
τ → 0 as τ → 0 (independent of T ).

Combining (A.29), (A.30) and (A.32),
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∫ T

0

lµ
ε
t (ξε

t )− γ2

2
|uε

t |2 dt + Wm(ξε
T )−

∫ T

0

lµ
ε
t (ξ

ε

t )−
γ2

2
|uε

t |2 dt + Wm(ξ
ε

T )

≤ β10
τ (1 + |x|2)(1 +

√
T ) (A.33)

for some β10
τ → 0 as τ → 0 (independent of T ).

Combining (A.20) and (A.33), one has

S̃T [Wm](x)−
∫ T

0

lµ
ε
t (ξ

ε

t )−
γ2

2
|uε

t |2 dt + Wm(ξ
ε

T )

≤ ε̂

2
(1 + |x|2) + β10

τ (1 + |x|2)(1 +
√

T ),

which for τ sufficiently small (depending on T now),

≤ ε̂(1 + |x|2).

This completes the proof of Lemma 7.31. ⊓⊔

A.0.6 Existence of Robust/H∞ Estimator and a Disturbance
Bound

The following theorem (with accompanying proof) supports the existence and
representation claim for the robust/H∞ estimator of Chapter 8.

Theorem A.8 Let state ξ dynamics be given by (8.1), and let observation
process y· be given by (8.2). Assume (A8.1)–(A8.5), and suppose that there
exists x ∈ Rn such that

φ(x) ≥ |x− x|2 ∀x. (A.34)

Let T ∈ (0,∞). There exist γ, ζ, η such that there exists an estimator êT such
that (8.8) holds for all possible w·, v· and initial conditions ξ0. Further, such
an estimator is given by (8.9).

The proof of Theorem A.8 will begin with a lemma. We suppose through-
out this section that φ satisfies (A.34).

Lemma A.9 Let P be given by (8.6), (8.7). Let T ∈ [0,∞). There exists
xT ∈ Rn such that

P (T, xT ) ≤ −MP
T |xT − xT |2 ∀xT ∈ Rn,

where

MP
T =

ζ2

2(C1
T )2(1 + m2

σTζ2/γ2)
.
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Proof. Let the global Lipschitz constant for f again be Kf . Let xT ∈ Rn be
such that ξ̄0 = x (with x given in (A.34)) when ξ̄· satisfies (8.1) with w ≡ 0
and terminal condition ξ̄T = xT . The existence of xT follows from the fact
that (8.4) as a mapping between xT and ξ0 for any specific w ∈ L2, including
w ≡ 0, is a bijection. Let ξ· satisfy (8.1) with any disturbance, w ∈ W, and
any terminal condition ξT = xT . Let x0

.
= ξ0. Then

|ξt − ξ̄t| =

∣∣∣∣(x0 − x) +

∫ t

0

[f(ξr)− f(ξ̄r) + σ(ξr)wr] dr

∣∣∣∣

≤ |x0 − x|+
∫ t

0

[Kf |ξr − ξ̄r|+ mσ|wr|] dr,

which by Cauchy–Schwarz

≤ |x0 − x|+ mσ

√
T‖w‖L2 +

∫ t

0

Kf |ξr − ξ̄r| dr. (A.35)

Employing (A.35) and Gronwall’s inequality yields

|xT − xT | ≤ (|x0 − x|+ mσ

√
T‖w‖L2)C

1
T ,

where C1
T

.
= 1 + KfTeKf T . Consequently,

ζ2

2
|x0 − x0|2 +

γ2

2
‖w‖2L2

≥ ζ2

2

[ |xT − xT |
C1

T

−mσ

√
T‖w‖L2

]2

+
γ2

2
‖w‖2L2

,

which after some calculations one can show

≥ ζ2

2(C1
T )2(1 + m2

σTζ2/γ2)
|xT − xT |2.

Therefore, by (8.6)

Jf (T, xT , w) ≤ − ζ2

2(C1
T )2(1 + m2

σTζ2/γ2)
|xT − xT |2.

Because this is true for all w ∈ W, one has the desired result. ⊓⊔

We now proceed to prove Theorem A.8.

Proof. Define

I(T, e, xT , w) = Jf (T, xT , w) + |xT − e|2,
which by (8.5)

= −ζ2

2
φ(ξ0)−

γ2

2

∫ T

0

|w(t)|2 dt− η2

2

NT∑

i=1

|vi|2 + |xT − e|2, (A.36)
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where ξ0 is given by (8.4). Let

W (T, e) = sup
xT ∈Rn

sup
w∈W

I(T, e, xT , w), (A.37)

and note that

W (T, e) = sup
xT ∈Rn

[
P (T, xT ) + |xT − e|2

]
,

which by Lemma A.9

≤ sup
xT ∈Rn

[
−MP

T |xT − xT |2 + |xT − e|2
]
.

Note that one can choose ζ, η, γ <∞ such that MP
T > 1, and consequently the

supremum on the right-hand side is finite and given by (MP
T /(MP

T − 1))|xT −
e|2. Thus

W (T, e) ≤ MP
T

MP
T − 1

|xT − e|2. (A.38)

Note that, as a function of e, W (T, e) is a supremum of strictly convex func-
tions, and so W (T, ·) is strictly convex (as well as going to infinity as |e| → ∞).
Consequently, there exists a unique minimizer. Let

êT
.
= argmin

e∈Rn

W (T, e),

which is exactly the estimator given by (8.9). Now,

W (T, êT ) ≤ W (T, xT ),

which by (A.38)

= 0.

Combining this with (A.37) and (A.36) yields

sup
xT ∈Rn

sup
w∈W

{
−ζ2

2
φ(ξ0)−

γ2

2

∫ T

0

|w(t)|2 dt− η2

2

NT∑

i=1

|vi|2 + |xT − e|2
}
≤ 0

which implies (8.8). ⊓⊔

The following lemma can be used with the machinery of Chapter 3 to show
that information state P is the unique viscosity solution of the corresponding
HJB PDE.

Lemma A.10 Let P be given by (8.6), (8.7). Let ε ∈ (0, 1], T ∈ (0,∞) and
xT ∈ Rn. There exists Mw

T < ∞ such that any ε-optimal w satisfies

‖w‖2 ≤ Mw
T (1 + |xT |2). (A.39)
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Proof. Let w0(t) = 0 for all t ∈ [0, T ]. Let ξ0 satisfy (8.1) with disturbance w0

and terminal condition ξ0
T = xT . By Assumption (A8.1), there exists Kf < ∞

such that |f(x)| ≤ Kf (1 + |x|) for all x. Consequently,

d

dt
|ξ0

t |2 ≥ −2Kf |ξ0|2 − 2Kf |ξ0| ≥ −4Kf |xi0|2 − (Kf/2),

which implies

|ξ0
t |2 ≤ e4Kf T |xT |2 +

1

8
e4Kf T ∀ t ∈ [0, T ]. (A.40)

This implies

Jf (T, xT , w0) ≥ −ζ2

2
mφ

[
1 + |ξ0

0 |2
]
− η2m2

ρ

NT∑

i=1

[
|yi|2 + |h(ξ0

ti
)|2

]
,

which noting that, by Assumption (A8.1), there exists Kh < ∞ such that
|h(x)| ≤ Kh(1 + |x|) for all x

≥ −ζ2

2
mφ

[
1 + |ξ0

0 |2
]
− η2m2

ρ

NT∑

i=1

[
|yi|2 + 2K2

h|ξ0
ti
|2
]

−2η2m2
ρK

2
hNT . (A.41)

Combining (A.40) and (A.41), one sees that there exists CT < ∞ such that

Jf (T, xT , w0) ≥ −CT (1 + |xT |2). (A.42)

On the other hand, for any w ∈ W,

Jf (T, xT , w) ≤ −γ2

2
‖w‖2. (A.43)

Combining (A.42) and (A.43) yields the result. ⊓⊔
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