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Fundamentals of Digital Communication

This textbook presents the fundamental concepts underlying the design of
modern digital communication systems, which include the wireline, wire-
less, and storage systems that pervade our everyday lives. Using a highly
accessible, lecture style exposition, this rigorous textbook first establishes a
firm grounding in classical concepts of modulation and demodulation, and
then builds on these to introduce advanced concepts in synchronization, non-
coherent communication, channel equalization, information theory, channel
coding, and wireless communication. This up-to-date textbook covers turbo
and LDPC codes in sufficient detail and clarity to enable hands-on imple-
mentation and performance evaluation, as well as “just enough” information
theory to enable computation of performance benchmarks to compare them
against. Other unique features include the use of complex baseband represen-
tation as a unifying framework for transceiver design and implementation;
wireless link design for a number of modulation formats, including space—
time communication; geometric insights into noncoherent communication;
and equalization. The presentation is self-contained, and the topics are selected
so as to bring the reader to the cutting edge of digital communications research
and development.

Numerous examples are used to illustrate the key principles, with a view to
allowing the reader to perform detailed computations and simulations based
on the ideas presented in the text.

With homework problems and numerous examples for each chapter, this
textbook is suitable for advanced undergraduate and graduate students of
electrical and computer engineering, and can be used as the basis for a one
or two semester course in digital communication. It will also be a valuable
resource for practitioners in the communications industry.

Additional resources for this title, including instructor-only solutions, are
available online at www.cambridge.org/9780521874144.

Upamanyu Madhow is Professor of Electrical and Computer Engineering at the
University of California, Santa Barbara. He received his Ph.D. in Electrical
Engineering from the University of Illinois, Urbana-Champaign, in 1990,
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Preface

The field of digital communication has evolved rapidly in the past few
decades, with commercial applications proliferating in wireline communi-
cation networks (e.g., digital subscriber loop, cable, fiber optics), wireless
communication (e.g., cell phones and wireless local area networks), and stor-
age media (e.g., compact discs, hard drives). The typical undergraduate and
graduate student is drawn to the field because of these applications, but is
often intimidated by the mathematical background necessary to understand
communication theory. A good lecturer in digital communication alleviates
this fear by means of examples, and covers only the concepts that directly
impact the applications being studied. The purpose of this text is to provide
such a lecture style exposition to provide an accessible, yet rigorous, intro-
duction to the subject of digital communication. This book is also suitable for
self-study by practitioners who wish to brush up on fundamental concepts.

The book can be used as a basis for one course, or a two course sequence, in
digital communication. The following topics are covered: complex baseband
representation of signals and noise (and its relation to modern transceiver
implementation); modulation (emphasizing linear modulation); demodulation
(starting from detection theory basics); communication over dispersive chan-
nels, including equalization and multicarrier modulation; computation of per-
formance benchmarks using information theory; basics of modern coding
strategies (including convolutional codes and turbo-like codes); and introduc-
tion to wireless communication. The choice of material reflects my personal
bias, but the concepts covered represent a large subset of the tricks of the
trade. A student who masters the material here, therefore, should be well
equipped for research or cutting edge development in communication sys-
tems, and should have the fundamental grounding and sophistication needed
to explore topics in further detail using the resources that any researcher or
designer uses, such as research papers and standards documents.

Chapter 1 provides a quick perspective on digital communication. Chapters 2
and 3 introduce modulation and demodulation, respectively, and contain



Xiv

Preface

material that I view as basic to an understanding of modern digital communi-
cation systems. In addition, a review of “just enough” background in signals
and systems is woven into Chapter 2, with a special focus on the complex
baseband representation of passband signals and systems. The emphasis is
placed on complex baseband because it is key to algorithm design and imple-
mentation in modern digital transceivers. In a graduate course, many students
will have had a first exposure to digital communication, hence the instructor
may choose to discuss only a few key concepts in class, and ask students to
read the chapter as a review. Chapter 3 focuses on the application of detection
and estimation theory to the derivation of optimal receivers for the additive
white Gaussian noise (AWGN) channel, and the evaluation of performance
as a function of E,/N, for various modulation strategies. It also includes a
glimpse of soft decisions and link budget analysis.

Once students are firmly grounded in the material of Chapters 2 and 3,
the remaining chapters more or less stand on their own. Chapter 4 contains
a framework for estimation of parameters such as delay and phase, starting
from the derivation of the likelihood ratio of a signal in AWGN. Optimal non-
coherent receivers are derived based on this framework. Chapter 5 describes
the key ideas used in channel equalization, including maximum likelihood
sequence estimation (MLSE) using the Viterbi algorithm, linear equaliza-
tion, and decision feedback equalization. Chapter 6 contains a brief treatment
of information theory, focused on the computation of performance bench-
marks. This is increasingly important for the communication system designer,
now that turbo-like codes provide a framework for approaching information-
theoretic limits for virtually any channel model. Chapter 7 introduces channel
coding, focusing on the shortest route to conveying a working understanding
of basic turbo-like constructions and iterative decoding. It includes convolu-
tional codes, serial and parallel concatenated turbo codes, and low density
parity check (LDPC) codes. Finally, Chapter 8 contains an introduction to
wireless communication, and includes discussion of channel models, fading,
diversity, common modulation formats used in wireless systems, such as
orthogonal frequency division multiplexing, spread spectrum, and continuous
phase modulation, as well as multiple antenna, or space—time, communica-
tion. Wireless communication is a richly diverse field to which entire books
are devoted, hence my goal in this chapter is limited to conveying a subset
of the concepts underlying link design for existing and emerging wireless
systems. I hope that this exposition stimulates the reader to explore further.

How to use this book

My view of the dependencies among the material covered in the different
chapters is illustrated in Figure 1, as a rough guideline for course design
or self-study based on this text. Of course, an instructor using this text
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Chapter 2 (modulation)
Chapter 3 (demodulation)

Chapter 4 (synchronization and
noncoherent communication)

~

Figure 1 Dependencies among
various chapters. Dashed lines
denote weak dependencies.

Chapter_5 . Chapter 6 (information-theoretic| _.| Chapter 7 (channel coding)
(channel equalization) limits and their computation)
7 — - - -
e — -
~ . ~
= a yA =~

Chapter 8 (wireless communication)

may be able to short-circuit some of these dependencies, especially the
weak ones indicated by dashed lines. For example, much of the material
in Chapter 7 (coding) and Chapter 8 (wireless communication) is accessible
without detailed coverage of Chapter 6 (information theory).

In terms of my personal experience with teaching the material at the Uni-
versity of California, Santa Barbara (UCSB), in the introductory graduate
course on digital communication, I cover the material in Chapters 2, 3, 4,
and 5 in one quarter, typically spending little time on the material in Chapter 2
in class, since most students have seen some version of this material. Some-
times, depending on the pace of the class, I am also able to provide a glimpse
of Chapters 6 and 7. In a follow-up graduate course, I cover the material in
Chapters 6, 7, and 8. The pace is usually quite rapid in a quarter system, and
the same material could easily take up two semesters when taught in more
depth, and at a more measured pace.

An alternative course structure that is quite appealing, especially in terms
of systematic coverage of fundamentals, is to cover Chapters 2, 3, 6, and part
of 7 in an introductory graduate course, and to cover the remaining topics in
a follow-up course.
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CHAPTER

Introduction

We define communication as information transfer between different points
in space or time, where the term information is loosely employed to cover
standard formats that we are all familiar with, such as voice, audio, video,
data files, web pages, etc. Examples of communication between two points
in space include a telephone conversation, accessing an Internet website from
our home or office computer, or tuning in to a TV or radio station. Examples
of communication between two points in time include accessing a storage
device, such as a record, CD, DVD, or hard drive. In the preceding exam-
ples, the information transferred is directly available for human consumption.
However, there are many other communication systems, which we do not
directly experience, but which form a crucial part of the infrastructure that
we rely upon in our daily lives. Examples include high-speed packet trans-
fer between routers on the Internet, inter- and intra-chip communication in
integrated circuits, the connections between computers and computer periph-
erals (such as keyboards and printers), and control signals in communication
networks.

In digital communication, the information being transferred is represented
in digital form, most commonly as binary digits, or bits. This is in contrast to
analog information, which takes on a continuum of values. Most communica-
tion systems used for transferring information today are either digital, or are
being converted from analog to digital. Examples of some recent conversions
that directly impact consumers include cellular telephony (from analog FM
to several competing digital standards), music storage (from vinyl records to
CDs), and video storage (from VHS or beta tapes to DVDs). However, we
typically consume information in analog form; for example, reading a book
or a computer screen, listening to a conversation or to music. Why, then,
is the world going digital? We consider this issue after first discussing the
components of a typical digital communication system.
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1.1 Components of a digital communication system

Figure 1.1 Block diagram of a
digital communication link.

Consider the block diagram of a digital communication link depicted in
Figure 1.1. Let us now briefly discuss the roles of the blocks shown in the
figure.

Source encoder Information theory tells us that any information can be effi-
ciently represented in digital form up to arbitrary precision, with the number
of bits required for the representation depending on the required fidelity. The
task of the source encoder is to accomplish this in a practical setting, reducing
the redundancy in the original information in a manner that takes into account
the end user’s requirements. For example, voice can be intelligibly encoded
into a 4 kbit/s bitstream for severely bandwidth constrained settings, or sent at
64 kbit/s for conventional wireline telephony. Similarly, audio encoding rates
have a wide range — MP3 players for consumer applications may employ
typical bit rates of 128 kbit/s, while high-end digital audio studio equipment
may require around ten times higher bit rates. While the preceding examples
refer to lossy source coding (in which a controlled amount of information
is discarded), lossless compression of data files can also lead to substantial
reductions in the amount of data to be transmitted.

Channel encoder and modulator While the source encoder eliminates
unwanted redundancy in the information to be sent, the channel encoder
introduces redundancy in a controlled fashion in order to combat errors that
may arise from channel imperfections and noise. The output of the channel
encoder is a codeword from a channel code, which is designed specifically
for the anticipated channel characteristics and the requirements dictated by
higher network layers. For example, for applications that are delay insensitive,
the channel code may be optimized for error detection, followed by a request
for retransmission. On the other hand, for real-time applications for which
retransmissions are not possible, the channel code may be optimized for
error correction. Often, a combination of error correction and detection may
be employed. The modulator translates the discrete symbols output by the
channel code into an analog waveform that can be transmitted over the

|
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information —— encoder encoder Modulator |
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| Channel :
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1.1 Components of a digital communication system

physical channel. The physical channel for an 802.11b based wireless local
area network link is, for example, a band of 20 MHz width at a frequency of
approximately 2.4 GHz. For this example, the modulator translates a bitstream
of rate 1, 2, 5.5, or 11 Mbit/s (the rate varies, depending on the channel
conditions) into a waveform that fits within the specified 20 MHz frequency
band.

Channel The physical characteristics of communication channels can vary
widely, and good channel models are critical to the design of efficient commu-
nication systems. While receiver thermal noise is an impairment common to
most communication systems, the channel distorts the transmitted waveform
in a manner that may differ significantly in different settings. For wireline
communication, the channel is well modeled as a linear time-invariant sys-
tem, and the transfer function in the band used by the modulator can often
be assumed to be known at the transmitter, based on feedback obtained
from the receiver at the link set-up phase. For example, in high-speed digital
subscriber line (DSL) systems over twisted pairs, such channel feedback is
exploited to send more information at frequencies at which the channel gain
is larger. On the other hand, for wireless mobile communication, the channel
may vary because of relative mobility between the transmitter and receiver,
which affects both transmitter design (accurate channel feedback is typically
not available) and receiver design (the channel must either be estimated, or
methods that do not require accurate channel estimates must be used). Fur-
ther, since wireless is a broadcast medium, multiple-access interference due
to simultaneous transmissions must be avoided either by appropriate resource
sharing mechanisms, or by designing signaling waveforms and receivers to
provide robust performance in the presence of interference.

Demodulator and channel decoder The demodulator processes the analog
received waveform, which is a distorted and noisy version of the transmitted
waveform. One of its key tasks is synchronization: the demodulator must
account for the fact that the channel can produce phase, frequency, and
time shifts, and that the clocks and oscillators at the transmitter and receiver
are not synchronized a priori. Another task may be channel equalization, or
compensation of the intersymbol interference induced by a dispersive channel.
The ultimate goal of the demodulator is to produce tentative decisions on the
transmitted symbols to be fed to the channel decoder. These decisions may be
“hard” (e.g., the demodulator guesses that a particular bit is O or 1), or “soft”
(e.g., the demodulator estimates the likelihood of a particular bit being O or 1).
The channel decoder then exploits the redundancy in the channel to code to
improve upon the estimates from the demodulator, with its final goal being
to produce an estimate of the sequence of information symbols that were the
input to the channel encoder. While the demodulator and decoder operate
independently in traditional receiver designs, recent advances in coding and



Introduction

communication theory show that iterative information exchange between the
demodulator and the decoder can dramatically improve performance.

Source decoder The source decoder converts the estimated information
bits produced by the channel decoder into a format that can be used by the
end user. This may or may not be the same as the original format that was
the input to the source encoder. For example, the original source encoder
could have translated speech into text, and then encoded it into bits, and the
source decoder may then display the text to the end user, rather than trying
to reproduce the original speech.

We are now ready to consider why the world is going digital. The two key
advantages of the digital communication approach to the design of transmis-
sion and storage media are as follows:

Source-independent design Once information is transformed into bits by
the source encoder, it can be stored or transmitted without interpretation: as
long as the bits are recovered, the information they represent can be recon-
structed with the same degree of precision as originally encoded. This means
that the storage or communication medium can be independent of the source
characteristics, so that a variety of information sources can share the same
communication medium. This leads to significant economies of scale in the
design of individual communication links as well as communication networks
comprising many links, such as the Internet. Indeed, when information has to
traverse multiple communication links in a network, the source encoding and
decoding in Figure 1.1 would typically be done at the end points alone, with
the network transporting the information bits put out by the source encoder
without interpretation.

Channel-optimized design For each communication link, the channel
encoder or decoder and modulator or demodulator can be optimized for the
specific channel characteristics. Since the bits being transported are regener-
ated at each link, there is no “noise accumulation.”

The preceding framework is based on a separation of source coding and
channel coding. Not only does this separation principle yield practical advan-
tages as mentioned above, but we are also reassured by the source—channel
separation theorem of information theory that it is theoretically optimal for
point-to-point links (under mild conditions). While the separation approach
is critical to obtaining the economies of scale driving the growth of digital
communication systems, we note in passing that joint source and channel
coding can yield superior performance, both in theory and practice, in certain
settings (e.g., multiple-access and broadcast channels, or applications with
delay or complexity constraints).

The scope of this textbook is indicated in Figure 1.1: we consider modula-
tion and demodulation, channel encoding and decoding, and channel modeling.
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1.2 Text outline

Source encoding and decoding are not covered. Thus, we implicitly restrict
attention to communication systems based on the separation principle.

The objective of this text is to convey an understanding of the principles
underlying the design of a modern digital communication link. An introduc-
tion to modulation techniques (i.e., how to convert bits into a form that can
be sent over a channel) is provided in Chapter 2. We emphasize the impor-
tant role played by the complex baseband representation for passband signals
in both transmitter and receiver design, describe some common modulation
formats, and discuss how to determine how much bandwidth is required to
support a given modulation format. An introduction to demodulation (i.e., how
to estimate the transmitted bits from a noisy received signal) for the classical
additive white Gaussian noise (AWGN) channel is provided in Chapter 3. Our
starting point is the theory of hypothesis testing. We emphasize the geometric
view of demodulation first popularized by the classic text of Wozencraft and
Jacobs, introduce the concept of soft decisions, and provide a brief exposure
to link budget analysis (which is used by system designers for determining
parameters such as antenna gains and transmit powers). Mastery of Chap-
ters 2 and 3 is a prerequisite for the remainder of this book. The remaining
chapters essentially stand on their own. Chapter 4 contains a framework for
estimation of parameters such as delay and phase, starting from the derivation
of the likelihood ratio of a signal in AWGN. Optimal noncoherent receivers
are derived based on this framework. Chapter 5 describes the key ideas used
in channel equalization, including maximum likelihood sequence estimation
(MLSE) using the Viterbi algorithm, linear equalization, and decision feed-
back equalization. Chapter 6 contains a brief treatment of information theory,
focused on the computation of performance benchmarks. This is increas-
ingly important for the communication system designer, now that turbo-like
codes provide a framework for approaching information-theoretic limits for
virtually any channel model. Chapter 7 introduces error-correction coding.
It includes convolutional codes, serial and parallel concatenated turbo codes,
and low density parity check (LDPC) codes. It also provides a very brief
discussion of how algebraic codes (which are covered in depth in coding
theory texts) fit within modern communication link design, with an emphasis
on Reed—Solomon codes. Finally, Chapter 8 contains an introduction to wire-
less communication, including channel modeling, the effect of fading, and
a discussion of some modulation formats commonly used over the wireless
channel that are not covered in the introductory treatment in Chapter 2. The
latter include orthogonal frequency division multiplexing (OFDM), spread
spectrum communication, continuous phase modulation, and space—time (or
multiple antenna) communication.
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Introduction

Useful resources for getting a quick exposure to many topics on commu-
nication systems are The Communications Handbook [1] and The Mobile
Communications Handbook [2], both edited by Gibson. Standards for com-
munication systems are typically available online from organizations such as
the Institute for Electrical and Electronics Engineers (IEEE). Recently pub-
lished graduate-level textbooks on digital communication include Proakis [3],
Benedetto and Biglieri [4], and Barry, Lee, and Messerschmitt [5]. Under-
graduate texts on communications include Haykin [6], Proakis and Salehi [7],
Pursley [8], and Ziemer and Tranter [9]. Classical texts of enduring value
include Wozencraft and Jacobs [10], which was perhaps the first textbook
to introduce signal space design techniques, Viterbi [11], which provides
detailed performance analysis of demodulation and synchronization tech-
niques, Viterbi and Omura [12], which provides a rigorous treatment of mod-
ulation and coding, and Blahut [13], which provides an excellent perspective
on the concepts underlying digital communication systems.

We do not cover source coding in this text. An information-theoretic treat-
ment of source coding is provided in Cover and Thomas [14], while a more
detailed description of compression algorithms is found in Sayood [15].

Finally, while this text deals with the design of individual communication
links, the true value of these links comes from connecting them together
to form communication networks, such as the Internet, the wireline phone
network, and the wireless cellular communication network. Two useful texts
on communication networks are Bertsekas and Gallager [16] and Walrand and
Varaiya [17]. On a less technical note, Friedman [18] provides an interesting
discussion on the immense impact of advances in communication networking
on the global economy.
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Figure 2.1 A simple example
of binary modulation.

Modulation

Modulation refers to the representation of digital information in terms of
analog waveforms that can be transmitted over physical channels. A simple
example is depicted in Figure 2.1, where a sequence of bits is translated into
a waveform. The original information may be in the form of bits taking the
values O and 1. These bits are translated into symbols using a bit-to-symbol
map, which in this case could be as simple as mapping the bit O to the symbol
+1, and the bit 1 to the symbol —1. These symbols are then mapped to
an analog waveform by multiplying with translates of a transmit waveform
(a rectangular pulse in the example shown): this is an example of linear
modulation, to be discussed in detail in Section 2.5. For the bit-to-symbol
map just described, the bitstream encoded into the analog waveform shown
in Figure 2.1 is 01100010100.

While a rectangular timelimited transmit waveform is shown in the example
of Figure 2.1, in practice, the analog waveforms employed for modulation
are often constrained in the frequency domain. Such constraints arise either
from the physical characteristics of the communication medium, or from
external factors such as government regulation of spectrum usage. Thus, we
typically classify channels, and the signals transmitted over them, in terms of
the frequency bands they occupy. In this chapter, we discuss some important
modulation techniques, after first reviewing some basic concepts regarding
frequency domain characterization of signals and systems. The material in this
chapter is often covered in detail in introductory digital communication texts,

+1 +1  +1 41 +1 +1 +1

=
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but we emphasize some specific points in somewhat more detail than usual.
One of these is the complex baseband representation of passband signals,
which is a crucial tool both for understanding and implementing modern
communication systems. Thus, the reader who is familiar with this material
is still encouraged to skim through this chapter.

Map of this chapter In Section 2.1, we review basic notions such as the
frequency domain representation of signals, inner products between signals,
and the concept of baseband and passband signals. While currents and volt-
ages in a circuit are always real-valued, both baseband and passband signals
can be treated under a unified framework by allowing baseband signals to
take on complex values. This complex baseband representation of passband
signals is developed in Section 2.2, where we point out that manipulation of
complex baseband signals is an essential component of modern transceivers.
While the preceding development is for deterministic, finite energy signals,
modeling of signals and noise in digital communication relies heavily on finite
power, random processes. We therefore discuss frequency domain description
of random processes in Section 2.3. This completes the background needed
to discuss the main theme of this chapter: modulation. Section 2.4 briefly
discusses the degrees of freedom available for modulation, and introduces
the concept of bandwidth efficiency. Section 2.5 covers linear modulation
using two-dimensional constellations, which, in principle, can utilize all avail-
able degrees of freedom in a bandlimited channel. The Nyquist criterion for
avoidance of intersymbol interference (ISI) is discussed, in order to establish
guidelines relating bandwidth to bit rate. Section 2.6 discusses orthogonal and
biorthogonal modulation, which are nonlinear modulation formats optimized
for power efficiency. Finally, Section 2.7 discusses differential modulation
as a means of combating phase uncertainty. This concludes our introduction
to modulation. Several other modulation formats are discussed in Chapter 8,
where we describe some modulation techniques commonly employed in wire-
less communication.

This section contains a description of just enough material on signals and
systems for our purpose in this text, including the definitions of inner product,
norm and energy for signals, convolution, Fourier transform, and baseband
and passband signals.

Complex numbers A complex number z can be written as z = x +jy,
where x and y are real numbers, and j = ~/—1. We say that x = Re(z) is
the real part of z and y = Im(z) is the imaginary part of z. As depicted in
Figure 2.2, it is often advantageous to interpret the complex number z as



Figure 2.2 A complex number
Z represented in the
two-dimensional real plane.
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Re(z)

a two-dimensional real vector, which can be represented in rectangular form
as (x, y) = (Re(z), Im(z)), or in polar form as

r=lzl= vty

0 = arg(z) = tan~! Y,
x

Euler’s identity We routinely employ this to decompose a complex expo-
nential into real-valued sinusoids as follows:

e = cos+jsin6. (2.1)

A key building block of communication theory is the relative geometry
of the signals used, which is governed by the inner products between sig-
nals. Inner products for continuous-time signals can be defined in a manner
exactly analogous to the corresponding definitions in finite-dimensional vec-
tor space.

Inner product The inner product for two m x 1 complex vectors s =
([1],....s[m]DT and r = (¢/[1], ..., {m])T is given by

(s,r) = is[i]r*[i] =r"s. (2.2)

Similarly, we define the inner product of two (possibly complex-valued)
signals s(¢) and r(z) as follows:

(s,r) = / s(2)r* (1) dt. (2.3)
The inner product obeys the following linearity properties:
(ays1+ays,, r) = a(s;, r) +a(s,, r),
(s, ayr +ayry) = ai(s, r) +ax(s, r),

where a,, a, are complex-valued constants, and s, s,, §,, r, 1, I, are signals
(or vectors). The complex conjugation when we pull out constants from the
second argument of the inner product is something that we need to remain
aware of when computing inner products for complex signals.
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Energy and norm The energy E of a signal s is defined as its inner product
with itself:

E,=[IsIF = (s.5) = [ Is)r 24)

where ||s|| denotes the norm of s. If the energy of s is zero, then s must be
zero “almost everywhere” (e.g., s(f) cannot be nonzero over any interval, no
matter how small its length). For continuous-time signals, we take this to be
equivalent to being zero everywhere. With this understanding, ||s|| = 0 implies
that s is zero, which is a property that is true for norms in finite-dimensional
vector spaces.

Cauchy-Schwartz inequality The inner product obeys the Cauchy-
Schwartz inequality, stated as follows:

[, L= MlsII7Il (25)

with equality if and only if, for some complex constant a, s(¢) = ar(t) or
r(t) = as(t) almost everywhere. That is, equality occurs if and only if one
signal is a scalar multiple of the other. The proof of this inequality is given
in Problem 2.4.

Convolution The convolution of two signals s and r gives the signal

q(t) = (s*1)(t) = /: s(u)r(t — u)du.

Here, the convolution is evaluated at time ¢, while u is a “dummy” variable that
is integrated out. However, it is sometimes convenient to abuse notation and
use g(t) = s(¢) = r(t) to denote the convolution between s and r. For example,
this enables us to state compactly the following linear time invariance (LTI)

property:
(ars;(t—1))+ a5, (t — 1)) xr(1) = a,(s; xr) (1 — 1)) + ar (s, x 1) (1 — 1),

for any complex gains a; and a,, and any time offsets ¢, and #,.

Delta function The delta function &(¢) is defined via the following “sifting”
property: for any finite energy signal s(z), we have

/ " 8(1— 1y)s(1)dt = s(1,). (2.6)

In particular, this implies that convolution of a signal with a shifted version
of the delta function gives a shifted version of the signal:

O(t—ty) xs(t) = s(t—t,). 2.7)

Equation (2.6) can be shown to imply that §(0) = oo and 6(¢f) =0 for # # 0.
Thus, thinking of the delta function as a signal is a convenient abstraction,
since it is not physically realizable.
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Multipath components

Figure 2.3 A signal going
through a multipath channel. . . . .
Convolution plays a fundamental role in both modeling and transceiver

implementation in communication systems, as illustrated by the following
examples.

Example 2.1.1 (Modeling a multipath channel) The channel between
the transmitter and the receiver is often modeled as an LTI system, with
the received signal y given by

y(1) = (sxh) (1) + (1),

where s is the transmitted waveform, 4 is the channel impulse response, and
n(t) is receiver thermal noise and interference. Suppose that the channel
impulse response is given by

h(t) = %a,ﬁ(r —t).

Ignoring the noise, a signal s(¢) passing through such a channel produces
an output

M
y(1) = (sxh)(t) =3 ais(t—1,).
i=1
This could correspond, for example, to a wireless multipath channel in
which the transmitted signal is reflected by a number of scatterers, each
of which gives rise to a copy of the signal with a different delay and
scaling. Typically, the results of propagation studies would be used to
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obtain statistical models for the number of multipath components M, the
delays {;}, and the gains {a;}.

Example 2.1.2 (Matched filter) For a complex-valued signal s(r), the
matched filter is defined as a filter with impulse response syp(2) = s*(—1);
see Figure 2.4 for an example. Note that Sy;z(f) = S*(f). If the input to
the matched filter is x(¢), then the output is given by

Re(s(t)) Re(sye(t) = Re(s(-1))
1 +1

1 2! 2 - !

Im(s(t)) Im(spe(t)) = -Im(s(-1))

1.5

-1.5 ; ;

1.5

-1.5

Figure 2.4 Matched filter for a complex-valued signal.

Y0 = (o)) = [ " () sy (1 — ) dut = / " ()5 (u—du. (2.8)

The matched filter, therefore, computes the inner product between the
input x and all possible time translates of the waveform s, which can be
interpreted as “template matching.” In particular, the inner product (x, s)
equals the output of the matched filter at time 0. Some properties of the
matched filter are explored in Problem 2.5. For example, if x(¢) = s(¢ —t,)
(i.e., the input is a time translate of s), then, as shown in Problem 2.5, the
magnitude of the matched filter output is maximum at ¢ = ¢,. We can, then,
intuitively see how the matched filter would be useful, for example, in
delay estimation using “peak picking.” In later chapters, a more systematic
development is used to reveal the key role played by the matched filter in
digital communication receivers.
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Figure 2.5 The indicator
function of an interval has a
boxcar shape.
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Indicator function We use /, to denote the indicator function of a set A,
defined as

1, xeA,

0, otherwise.

Lo -

For example, the indicator function of an interval has a boxcar shape, as
shown in Figure 2.5.

Sinc function The sinc function is defined as
) sin(7rx)
sinc(x) = ——=,
X

where the value at x = 0, defined as the limit as x — 0, is set as sinc(0) = 1.
The sinc function is shown in Figure 2.19. Since |sin(7x)| < 1, we have that
|sinc(x)| < (1/7rx). That is, the sinc function exhibits a sinusoidal variation,
with an envelope that decays as 1/x. We plot the sinc function later in this

chapter, in Figure 2.19, when we discuss linear modulation.

Fourier transform Let s(¢) denote a signal, and S(f) = F(s(¢)) denote its
Fourier transform, defined as

S(f) = / s(r)e 2 dr. (2.9)
The inverse Fourier transform is given by
s(r) = f S(f)e™ df. (2.10)

Both s(#) and S(f) are allowed to take on complex values. We denote the
relationship that s(¢) and S(f) are a Fourier transform pair by s(t) <> S(f).

Time—frequency duality in Fourier transform From an examination of
the expressions (2.9) and (2.10), we obtain the following duality relation:
if s(r) has Fourier transform S(f), then the signal r(r) = S(¢) has Fourier
transform R(f) = s(—f).

Important Fourier transform pairs

(i) The boxcar and the sinc functions form a pair:

s(1) = Ii_z 1)(t) < S(f) = Tsinc(fT). (2.11)
(ii) The delta function and the constant function form a pair:
s(1) =06(1) < S(f) = 1. (2.12)

We list only two pairs here, because most of the examples that we use
in our theoretical studies can be derived in terms of these, using time—
frequency duality and the properties of the Fourier transform below. On
the other hand, closed form analytical expressions are not available for
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many waveforms encountered in practice, and the Fourier or inverse
Fourier transform is computed numerically using the discrete Fourier
transform (DFT) in the sampled domain.

Basic properties of the Fourier transform Some properties of the Fourier
transform that we use extensively are as follows (it is instructive to derive
these starting from the definition (2.9)):

(i) Complex conjugation in the time domain corresponds to conjugation and
reflection around the origin in the frequency domain, and vice versa;

s*(1) < S*(—),
s*(—1) < S*()). 2.13)

(ii) A signal s(¢) is real-valued (i.e., s(¢) = s*(¢)) if and only if its Fourier
transform is conjugate symmetric (i.e., S(f) = S*(—f)). Note that con-
jugate symmetry of S(f) implies that Re(S(f)) = Re(S(—f)) (real part
is symmetric) and Im(S(f)) = —Im(S(—f)) (imaginary part is antisym-
metric).

(iii) Convolution in the time domain corresponds to multiplication in the
frequency domain, and vice versa;

5(1) = (5, £3)(1) < S() = $,(NS,(. o1
$(0) =51 (05,(8) < S() = (5% ) (). |

(iv) Translation in the time domain corresponds to multiplication by a com-
plex exponential in the frequency domain, and vice versa;

s(t—ty) < S(f)e ?™/n,

S S(f~ 1) 219
(v) Time scaling leads to reciprocal frequency scaling;
1
s(at) <& — ! . (2.16)
la|* \a

(vi) Parseval’s identity The inner product of two signals can be computed in
either the time or frequency domain, as follows:

(s = [ si0si0dr =[SOS = (5.5, @17)

Setting s, = s, = 5, we obtain the following expression for the energy E|
of a signal s(¢):

E=lslP = [ boPa=["IsPar  @1s)



15

2.1 Preliminaries

Energy spectral density The energy spectral density E,(f) of a signal s(¢)
can be defined operationally as follows. Pass the signal s(¢) through an ideal
narrowband filter with transfer function;

L fo_%<f<fo+%,
Hf"(f) o { 0, else.

The energy spectral density E,(f,) is defined to be the energy at the output
of the filter, divided by the width Af (in the limit as Af — 0). That is, the
energy at the output of the filter is approximately E,(f,)Af. But the Fourier
transform of the filter output is

S, fo_% <f<fo+¥,
0, else.

Y() = S(OH(H = {

By Parseval’s identity, the energy at the output of the filter is

44

00 fo Tf
[ R ar= [ ISOF af 2 IS Af,

assuming that S(f) varies smoothly and Af is small enough. We can now
infer that the energy spectral density is simply the magnitude squared of the
Fourier transform:

E(f) =IS(H)I. (2.19)

The integral of the energy spectral density equals the signal energy, which is
simply a restatement of Parseval’s identity.

Autocorrelation function The inverse Fourier transform of the energy
spectral density E (f) is termed the autocorrelation function R (7), since it
measures how closely the signal s matches delayed versions of itself. Since
IS(H? = S(F)S* () = S(f) Sy (f), where sy (f) = s*(—1) is the matched filter
for s introduced earlier. We therefore have that

oo

E.(f) = |S()]? < R,(T) = (s % 5pp)(7) = /oo s(u)s*(u—7) du.  (2.20)

Thus, R (7) is the outcome of passing the signal s through its matched filter,
and sampling the output at time 7, or equivalently, correlating the signal s
with a complex conjugated version of itself, delayed by 7.

While the preceding definitions are for finite energy deterministic signals,
we revisit these concepts in the context of finite power random processes
later in this chapter.

Baseband and passband signals A signal s(¢) is said to be baseband if

S(H=~0, |f]>W (2.21)

for some W > 0. That is, the signal energy is concentrated in a band around
DC. Similarly, a channel modeled as a linear time-invariant system is said to
be baseband if its transfer function H(f) satisfies (2.21).
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Figure 2.6 Example of the
spectrum S(f) for a real-valued
baseband signal. The
bandwidth of the signal is B.

Figure 2.7 Example of the
spectrum S(f) for a real-valued
passband signal. The
bandwidth of the signal is B.
The figure shows an arbitrarily
chosen frequency f. within the
band in which S(f) is nonzero.
Typically, f. is much larger
than the signal bandwidth B.

Modulation

A signal s(t) is said to be passband if
S(f)=0,

where f, > W> 0. A channel modeled as a linear time-invariant system is
said to be passband if its transfer function H(f) satisfies (2.22).

Examples of baseband and passband signals are shown in Figures 2.6 and
2.7, respectively. We consider real-valued signals, since any signal that has
a physical realization in terms of a current or voltage must be real-valued.
As shown, the Fourier transforms can be complex-valued, but they must
satisfy the conjugate symmetry condition S(f) = S*(—f). The bandwidth
B is defined to be the size of the frequency interval occupied by S(f),
where we consider only the spectral occupancy for the positive frequencies

lf£f|>W (2.22)

Re(S(f))
1
f
-B 0 B
Im(S(f))
1
f
-B B
-1
Re(S,(f))
B
} .ee eee } f
_fc fc
Im(S,(f))

oh




17

2.1 Preliminaries

for a real-valued signal s(¢). This makes sense from a physical viewpoint:
after all, when the FCC allocates a frequency band to an application, say,
around 2.4 GHz for unlicensed usage, it specifies the positive frequencies that
can be occupied. However, in order to be clear about the definition being
used, we occasionally employ the more specific term one-sided bandwidth,
and also define the two-sided bandwidth based on the spectral occupancy for
both positive and negative frequencies. For real-valued signals, the two-sided
bandwidth is simply twice the one-sided bandwidth, because of the conjugate
symmetry condition S(f) = S*(—f). However, when we consider the complex
baseband representation of real-valued passband signals in the next section,
the complex-valued signals which we consider do not, in general, satisfy
the conjugate symmetry condition, and there is no longer a deterministic
relationship between the two-sided and one-sided bandwidths. As we show in
the next section, a real-valued passband signal has an equivalent representation
as a complex-valued baseband signal, and the (one-sided) bandwidth of the
passband signal equals the two-sided bandwidth of its complex baseband
representation.

In Figures 2.6 and 2.7, the spectrum is shown to be exactly nonzero outside
a well defined interval, and the bandwidth B is the size of this interval. In
practice, there may not be such a well defined interval, and the bandwidth
depends on the specific definition employed. For example, the bandwidth
might be defined as the size of an appropriately chosen interval in which a
specified fraction (say 99%) of the signal energy lies.

Example 2.1.3 (Fractional energy containment bandwidth) Consider
a rectangular time domain pulse s(7) = I}y 5. Using (2.11) and (2.15), the
Fourier transform of this signal is given by S(f) = Tsinc(fT)e ™7, so
that

ISP = T7sinc? (/).

Clearly, there is no finite frequency interval that contains all of the signal
energy. Indeed, it follows from a general uncertainty principle that strictly
timelimited signals cannot be strictly bandlimited, and vice versa. How-
ever, most of the energy of the signal is concentrated around the origin, so
that s(7) is a baseband signal. We can now define the (one-sided) fractional
energy containment bandwidth B as follows:

[ isr ar=a [ Is(r af, )

where 0 < a <1 is the fraction of energy contained in the band [—B, B].
The value of B must be computed numerically, but there are certain
simplifications that are worth pointing out. First, note that 7' can be set to
any convenient value, say 7 = 1 (equivalently, one unit of time is redefined

to be T). By virtue of the scaling property (2.16), time scaling leads to
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reciprocal frequency scaling. Thus, if the bandwidth for 7 =1 is B,, then
the bandwidth for arbitrary 7 must be B; = B, / T. This holds regardless
of the specific notion of bandwidth used, since the scaling property can be
viewed simply as redefining the unit of frequency in a consistent manner
with the change in our unit for time. The second observation is that the
right-hand side of (2.23) can be evaluated in closed form using Parseval’s
identity (2.18). Putting these observations together, it is left as an exercise
for the reader to show that (2.23) can be rewritten as

B,
/ sinc’f df = a, (2.24)
7B]
which can be further simplified to
By . 2 a
[ sinc’f df = 3. (2.25)
0

using the symmetry of the integrand around the origin. We can now
evaluate B, numerically for a given value of a. We obtain B, = 10.2 for a =
0.99, and B, = 0.85 for a = 0.9. Thus, while the 90% energy containment
bandwidth is moderate, the 99% energy containment bandwidth is large,
because of the slow decay of the sinc function. For an arbitrary value of
T, the 99% energy containment bandwidth is B =10.2/T.

A technical note: (2.24) could also be inferred from (2.23) by applying a
change of variables, replacing fT in (2.23) by f. This change of variables
is equivalent to the scaling argument that we invoked.

2.2 Complex baseband representation

We often employ passband channels, which means that we must be able to
transmit and receive passband signals. We now show that all the informa-
tion carried in a real-valued passband signal is contained in a corresponding
complex-valued baseband signal. This baseband signal is called the complex
baseband representation, or complex envelope, of the passband signal. This
equivalence between passband and complex baseband has profound practical
significance. Since the complex envelope can be represented accurately in dis-
crete time using a much smaller sampling rate than the corresponding passband
signal s,(f), modern communication transceivers can implement complicated
signal processing algorithms digitally on complex baseband signals, keeping
the analog processing of passband signals to a minimum. Thus, the transmitter
encodes information into the complex baseband waveform using encoding,
modulation and filtering performed using digital signal processing (DSP).
The complex baseband waveform is then upconverted to the corresponding
passband signal to be sent on the channel. Similarly, the passband received
waveform is downconverted to complex baseband by the receiver, followed
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by DSP operations for synchronization, demodulation, and decoding. This
leads to a modular framework for transceiver design, in which sophisticated
algorithms can be developed in complex baseband, independent of the phys-
ical frequency band that is ultimately employed for communication.

We now describe in detail the relation between passband and complex
baseband, and the relevant transceiver operations. Given the importance of
being comfortable with complex baseband, the pace of the development here
is somewhat leisurely. For a reader who knows this material, quickly browsing
this section to become familiar with the notation should suffice.

Time domain representation of a passband signal Any passband signal
s,(t) can be written as

5,(1) = V/25,(1) cos 2w f, 1 — /25, (1) sin 27f, 1, (2.26)

(Il
S

where s, () (“c¢” for “cosine”) and s,(¢) (“s” for “sine”) are real-valued signals,
and f, is a frequency reference typically chosen in or around the band occupied
by S,(f). The factor of V2 is included only for convenience in normalization
(more on this later), and is often omitted in the literature.

In-phase and quadrature components The waveforms s,(7) and s,(7) are
also referred to as the in-phase (or I) component and the quadrature (or Q)
component of the passband signal s,(7), respectively.

Example 2.2.1 (Passband signal) The signal
5,(1) = ~/21g () cos 3007t — ~/2(1 — |t])I|_, ,(¢) sin 30077

is a passband signal with I component s.(7) = I ;;(f) and Q component
s,(1) = (1 —=[t))I;_, ;1 (7). Like Example 2.1.3, this example also illustrates
that we do not require strict bandwidth limitations in our definitions of
passband and baseband: the I and Q components are timelimited, and
hence cannot be bandlimited. However, they are termed baseband signals
because most of their energy lies in the baseband. Similarly, s,(7) is termed
a passband signal, since most of its frequency content lies in a small band
around 150 Hz.

Complex envelope The complex envelope, or complex baseband represen-
tation, of s,(#) is now defined as

s(t) = s, () +js,(1). (2.27)

In the preceding example, the complex envelope is given by s(2) = Ijp ;;(?) +
JA =D -y (D).
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Time domain relationship between passband and complex baseband We
can rewrite (2.26) as

5,(1) = Re(v/2s(1)e>™"). (2.28)
To check this, plug in (2.27) and Euler’s identity (2.1) on the right-hand side

to obtain the expression (2.26).

Envelope and phase of a passband signal The complex envelope s(¢) can
also be represented in polar form, defining the envelope e(t) and phase 0(t) as

e(t) = |s()| = /2(t) +2(),  6(r) = tan™" jgg (2.29)

Plugging s(f) = e(t)e!’® into (2.28), we obtain yet another formula for the
passband signal s:

5,(1) = e(t) cos(2mf 1 + 6(7)). (2.30)

The equations (2.26), (2.28) and (2.30) are three different ways of expressing
the same relationship between passband and complex baseband in the time
domain.

Example 2.2.2 (Modeling frequency or phase offsets in complex base-
band) Consider the passband signal s, (2.26), with complex baseband
representation s = s, 4 js,. Now, consider a phase-shifted version of the
passband signal

5,(1) = V/2s,(1) cos 2,1 + 0(1)) — ~/2s,(t) sin(27f,.1 + (1)),

where 6(f) may vary slowly with time. For example, a carrier frequency
offset a and a phase offset b corresponds to () = 2matr + b. We wish to
find the complex envelope of 5, with respect to f.. To do this, we write
5, in the standard form (2.28) as follows:

5,(1) = Re(v/25(1)el@mhei+00))
Comparing with the desired form
5,(1) = Re(v/23(1)el?™"),
we can read off
5(1) = s(1)el", (2.31)

Equation (2.31) relates the complex envelopes before and after a phase
offset. We can expand out this “polar form” representation to obtain the
corresponding relationship between the I and Q components. Suppressing
time dependence from the notation, we can rewrite (2.31) as

5. +j5, = (5. +js,)(cos O+ jsin 0)
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using Euler’s formula. Equating real and imaginary parts on both sides,
we obtain

=s.c086 —s,sin 0,

2.32
s = S, sin 0+ s, cos 0. (2:32)

This is a typical example of the advantage of working in complex baseband.
Relationships between passband signals can be compactly represented in
complex baseband, as in (2.31). For signal processing using real-valued
arithmetic, these complex baseband relationships can be expanded out to
obtain relationships involving real-valued quantities, as in (2.32).

Orthogonality of I and Q channels The passband waveform x.(f) =
«/Esc(t) cos 2w f,t corresponding to the I component, and the passband wave-
form x,(f) = v/2s,(t) sin 277, corresponding to the Q component, are orthog-
onal. That is,

(xg, x,) =0. (2.33)
Since what we know about s, and s, (i.e., they are baseband) is specified in
the frequency domain, we prove this result by computing the inner product
in the frequency domain, using Parseval’s identity (2.17):

(reox) = (X X) = [ XX A

We now need expressions for X, and X,. Since cosf = (e’ +e7%) and
sinf = zlj(ej" —e71%) we have

x(t)= \%uc(r)é”fcfﬂc(r)eJ‘”fcf) S X(f)= %(Sc(f—fc)+5c(f+fc)),

()= %J.(x(r)é”fc' (e P o X(f) = %ZJ

The inner product can now be computed as follows:

(% X0 =5 [5G = £+ G+ L SIF =)= S0+ 11
(2.34)

(S(f =S =8(f + /)

We now look more closely at the integrand above. Since f, is assumed
to be larger than the bandwidth of the baseband signals S, and S, the
translation of S.(f) to the right by f, has zero overlap with a translation
of S¥(f) to the left by f.. That is, S.(f — f.)SI(f + f.) = 0. Similarly,
S.(f+f)S*(f — f.) = 0. We can therefore rewrite the inner product in
(2.34) as
1 Oo * OO *
Ko X) = 5 [ | SU=18:r=10af = [ S+ )8 (f+fc)df}
1

-1 [/:Sc(f)Sf(f)df—f

Al st <o 239)
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where we have used a change of variables to show that the integrals involved
cancel out.

Exercise 2.2.1 Work through the details of an alternative, shorter, proof of
(2.33) as follows. Show that
u(t) = x.(t)x,(t) = 2s.(t)s,(t) cos 2arf t sin 27 f .t

is a passband signal (around what frequency?), and thus infer that

/jc u(r)dt = U(0) = 0.

Passband and complex baseband inner products For real passband sig-
nals a,, and b, with complex envelopes a and b, respectively, the inner product
satisfies

(i, v,) = (e, ve) + iy, vg) = Re((u, v)). (2.36)

To show the first equality, we substitute the standard form (2.26) for u, and v,
and use the orthogonality of the I and Q components. For the second equality,
we write out the complex inner product {u, v),

o) = [0+ )~ jun(0) ds

= ((Ue, ve) + ug, v3)) +j (=g, vg) + s ve)) - (2.37)

and note that the real part gives the desired term.

Energy of complex envelope Specializing (2.36) to the inner product of a
signal with itself, we infer that the energy of the complex envelope is equal to
that of the corresponding passband signal (this is a convenient consequence
of the specific scaling we have chosen in our definition of the complex
envelope). That is,

[IsII* = lIs,1*- (2.38)

To show this, set u = v =s and u, = v, = s, in (2.36), noting that Re((s, 5)) =

Re([Is][) = IIs|[*.

P

Frequency domain relationship between passband and complex baseband
We first summarize the results relating S,(f) and S(f). Let S (f) = S,(/){1-q
denote the segment of S, (f) occupying positive frequencies. Then the complex
envelope is specified as

S(f) =28 (f+ 1) (2.39)

Conversely, given the complex envelope S(f) in the frequency domain, the
passband signal is specified as

§ (= SU—RIES 1)

Y . (2.40)
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We now derive and discuss these relationships. Define

v(t) = V2s(1)e>™ < V(f) = V25(f - £.). (2.41)
By the time domain relationship between s, and s, we have
v(t) +v* (1) V(A +V*(—1)

s,(1) = Re(v(1)) = 3 < 8,(f)=

_ S —f)+S(=f 1)
= 7 )
If S(f) has energy concentrated in the baseband, then the energy of V(f) is
concentrated around f,, and the energy of V*(—f) is concentrated around — f.
Thus, S,(f) is indeed passband. We also see from (2.42) that the symmetry
condition S,(f) = S;(—f) holds, which implies that s,(7) is real-valued. This
is, of course, not surprising, since our starting point was the time domain
expression (2.28) for a real-valued signal s, (7).

Figure 2.8 shows the relation between the passband signal S,(f), its scaled
version V(f) restricted to positive frequencies, and the complex baseband
signal S(f). As this example emphasizes, all of these spectra can, in general,
be complex-valued. Equation (2.41) corresponds to starting with an arbitrary

2

(2.42)

Re(S,(f)) Im(S,(£))
+B
1A
- e e - f ~fe - - f
-f, f, fo
Re(V(f)) Im(W(f))
2%
2A+
oee oee } f oes oes f
f, fo
Re(S(f)) Im(S(f))
J28B
TV2A
f f

Figure 2.8 Frequency domain relationship between a real-valued passband signal and its complex
envelope. The figure shows the spectrum S,,(f) of the passband signal, its scaled restriction to positive
frequencies V(f), and the spectrum S(f) of the complex envelope.
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baseband signal S(f) as in the bottom of the figure, and constructing V(f) as
depicted in the middle of the figure. We then use V() to construct a conjugate
symmetric passband signal S, (f), proceeding from the middle of the figure to
the top. This example also shows that S(f) does not, in general, obey conjugate
symmetry, so that the baseband signal s(7) is complex-valued. However, by
construction, S,(f) is conjugate symmetric, and hence the passband signal
5, (1) is real-valued.

General applicability of complex baseband representation We have so
far seen that, given a complex baseband signal (or equivalently, a pair of real
baseband signals), we can generate a real-valued passband signal using (2.26)
or (2.28). But do these baseband representations apply to any real-valued
passband signal? To show that they indeed do apply, we simply reverse the
frequency domain operations in (2.41) and (2.42). Specifically, suppose that
s,(¢) is an arbitrary real-valued passband waveform. This means that the
conjugate symmetry condition S,(f) = S;(—f) holds, so that knowing the
values of S, for positive frequencies is enough to characterize the values for
all frequencies. Let us therefore consider an appropriately scaled version of
the segment of S, for positive frequencies, defined as

25,(f), f>0,

vin =i ={ o3 1 043

By the definition of V, and using the conjugate symmetry of S,, we see
that (2.42) holds. Note also that, since S, is passband, the energy of V is
concentrated around +f.. Now, let us define the complex envelope of S, by
inverting the relation (2.41), as follows:

S() = %V(f+fc)- (2.44)

Since V(f) is concentrated around + f,, S(f), which is obtained by translating
it to the left by f,, is baseband. Thus, starting from an arbitrary passband
signal S,(f), we have obtained a baseband signal S(f) that satisfies (2.41)
and (2.42), which are equivalent to the time domain relationship (2.28). We
refer again to Figure 2.8 to illustrate the relation between S,(f), V(f) and
S(f). However, we now go from top to bottom: starting from an arbitrary
conjugate symmetric S,(f), we construct V(f), and then S(f).

Upconversion and downconversion Equation (2.26) immediately tells us
how to upconvert from baseband to passband. To downconvert from passband
to baseband, consider

«/Esp(t) cos(2mf.t) = 2s.(t) cos’ 27 f.t — 2s,(t) sin 27w f,t cos 27 .t
= 5,() +5,(t) cosdmf,t —s,(¢) sindf,r.

The first term on the extreme right-hand side is the I component, a baseband
signal. The second and third terms are passband signals at 2f,, which we can
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Figure 2.9 Upconversion from
baseband to passband and
downconversion from passband
to baseband.

get rid of by lowpass filtering. Similarly, we can obtain the Q component by
lowpass filtering —ﬁsp(t) sin27f.t. The upconversion and downconversion
operations are depicted in Figure 2.9.

Information resides in complex baseband The complex baseband rep-
resentation corresponds to subtracting out the rapid, but predictable, phase
variation due to the fixed reference frequency f., and then considering the
much slower amplitude and phase variations induced by baseband modula-
tion. Since the phase variation due to f, is predictable, it cannot convey any
information. Thus, all the information in a passband signal is contained in its
complex envelope.

Example 2.2.3 (Linear modulation) Suppose that information is en-
coded into a complex number b = b, +jb, = re’, where b., b, are real-
valued numbers corresponding to its rectangular form, and r > 0, 0 are
real-valued and correspond to its polar form. Let p(¢) denote a baseband
pulse (for simplicity, assume that p is real-valued). Then the linearly modu-
lated complex baseband waveform s(¢) = bp(¢) can be used to convey the
information in b over a passband channel by upconverting to an arbitrary
carrier frequency f,. The corresponding passband signal is given by

5,(1) = Re (ﬁs(t)ei2”fcf) — V2 (bp(t) cos 2mf.t — b p(r) sin 27, 1)

= ~2rcos2mf,t+0).

Thus, linear modulation in complex baseband by a complex symbol b can
be viewed as separate amplitude modulation (by b_, b;) of the I component
and the Q component, or as amplitude and phase modulation (by r, 0) of the
overall passband waveform. In practice, we encode information in a stream
of complex symbols {b[n]} that linearly modulate time shifts of a basic
waveform, and send the complex baseband waveform Y, b[n]p(t — nT).

Linear modulation is discussed in detail in Section 2.5.
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Figure 2.10 The relationship
between passband filtering and
its complex baseband analog.
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Complex baseband equivalent of passband filtering We now state another
result that is extremely relevant to transceiver operations; namely, any pass-
band filter can be implemented in complex baseband. This result applies to
filtering operations that we desire to perform at the transmitter (e.g., to con-
form to spectral masks), at the receiver (e.g., to filter out noise), and to a
broad class of channels modeled as linear filters. Suppose that a passband
signal s,(7) is passed through a passband filter with impulse response A, (7).
Denote the filter output (which is clearly also passband) by y,(¢) = (s, * h,)(?).
Let y, s and h denote the complex envelopes for y,, s, and h,, respec-
tively, with respect to a common frequency reference f,. Since real-valued
passband signals are completely characterized by their behavior for positive
frequencies, the passband filtering equation Y, (f) = S,(f)H,(f) can be sep-
arately (and redundantly) written out for positive and negative frequencies,
because the waveforms are conjugate symmetric around the origin, and there
is no energy around f = 0. Thus, focusing on the positive frequency seg-
ments Y, (f) = Y,(N 10y S (f) = Sy (Np=0p> Hi () = Hy(f)]}-¢), We have
Y, (f) =S (/HH,(f), from which we conclude that the complex envelope of
y is given by

1

Y(f) :\/EY+(f+fc) :‘/§S+(f+fc)H+(f+fc) = ﬁ

S(HH(S).

Figure 2.10 depicts the relationship between the passband and complex
baseband waveforms in the frequency domain, and supplies a pictorial proof
of the preceding relationship. We now restate this important result in the time
domain:

Passband Complex baseband
H, (f) H(f)
}LA J2A  Filter
f f
fC
Sp (f) S(f)
] J2B Input
f AL f
fC
Yo Y(f)

- AB (\ J2AB Output
f f




27

Figure 2.11 Complex
baseband realization of
passband filter. The constant
scale factors of 1/4/2 have
been omitted.

2.2 Complex baseband representation

Passband

signal  —— Downconverter
Sp (1)

Real baseband operations

(1) = %(s % h)(f). (2.45)

That is, passband filtering can be implemented in complex baseband, using
the complex baseband representation of the desired filter impulse response.
As shown in Figure 2.11, this requires four real baseband filters: writing out
the real and imaginary parts of (2.45), we obtain

1
—s,xh), y,=—=(s;xh.+s.xh). (2.46)

1
c:_sc*hc
=5 7

Remark 2.2.1 (Complex baseband in transceiver implementations)
Given the equivalence of passband and complex baseband, and the fact that
key operations such as linear filtering can be performed in complex baseband,
it is understandable why, in typical modern passband transceivers, most of
the intelligence is moved to baseband processing. For moderate bandwidths
at which analog-to-digital and digital-to-analog conversion can be accom-
plished inexpensively, baseband operations can be efficiently performed in
DSP. These digital algorithms are independent of the passband over which
communication eventually occurs, and are amenable to a variety of low-cost
implementations, including very large scale integrated circuits (VLSI), field
programmable gate arrays (FPGA), and general purpose DSP engines. On the
other hand, analog components such as local oscillators, power amplifiers,
and low noise amplifiers must be optimized for the bands of interest, and are
often bulky. Thus, the trend in modern transceivers is to accomplish as much
as possible using baseband DSP algorithms. For example, complicated filters
shaping the transmitted waveform to a spectral mask dictated by the FCC can
be achieved with baseband DSP algorithms, allowing the use of relatively
sloppy analog filters at passband. Another example is the elimination of ana-
log phase locked loops for carrier synchronization in many modern receivers;
the receiver instead employs a fixed analog local oscillator for downcon-
version, followed by a digital phase locked loop implemented in complex
baseband.
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Real baseband operations for undoing frequency and phase offset

Figure 2.12 Undoing frequency and phase offsets in complex baseband after downconverting using a
local oscillator at a fixed carrier frequency f.. The complex baseband operations are expanded out into
real arithmetic as shown.

Example 2.2.4 (Handling carrier frequency and phase offsets in com-
plex baseband) As shown in Figure 2.12, a communication receiver
uses a local oscillator with a fixed carrier frequency f, to demodulate an
incoming passband signal

V(1) = V2[y(1) cos2m(f. + )t + b) = y,(1) sin27(f, + @)1 + b)),

where a, b, are carrier frequency and phase offsets, respectively. Denote
the I and Q components at the output of the downconverter as y., y,,
respectively, and the corresponding complex envelope as y =y, +jy,. We
wish to recover y,, y,, the I and Q components relative to a reference that
accounts for the offsets a and b. Typically, the receiver would estimate
a and b using the downconverter output y; an example of an algorithm
for such frequency and phase synchronization is discussed in the next
chapter. Assuming that such estimates are available, we wish to specify
baseband operations using real-valued arithmetic for obtaining y., y, from
the downconverter output. Equivalently, we wish to recover the complex
envelope y =y, +jy, from y. We can relate y and y via (2.31) as in
Example 2.2.2, and obtain

Sj(t) — y(t)ej(ZTraH—b)-
This relation can now be inverted to get y from y:

y(f) — y(t)e—j(Zﬂ'at+b) .
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Plugging in I and Q components explicitly and using Euler’s formula, we
obtain

Ye(1) +jys(1) = (3e(1) +j3,(1)) (cos(2mar + b) — jsin(2mat + b)) .

Equating real and imaginary parts, we obtain equations involving real-
valued quantities alone:

Yo = y.cos(2mat + b) + y, sin(2wat + b)

¥ = =y, sin(2mat + b) + y, cos(2mat + b). (247)

These computations are depicted in Figure 2.12.

Example 2.2.5 (Coherent and noncoherent reception) We see in the
next two chapters that a fundamental receiver operation is to compare
a noisy received signal against noiseless copies of the received signals
corresponding to the different possible transmitted signals. This com-
parison is implemented by a correlation, or inner product. Let y,(7) =
V2Re(y(1)e2™/<') denote the noisy received passband signal, and 5,(1) =
V/2Re(s(1)e?™:") denote a noiseless copy that we wish to compare it with,
where y =y, +]jy, and s = s, + s, are the complex envelopes of y, and
s,, Tespectively. A coherent receiver (which is a building block for the
optimal receivers in Chapter 3) for s implements the inner product (y,, s,)-
In terms of complex envelopes, we know from (2.36) that this can be
written as

(p» 8p) =Re((y, 5)) = (¥es 5e) + (Vs> 59)- (2.48)

Clearly, when y = As (plus noise), where A > 0 is an arbitrary amplitude
scaling, the coherent receiver gives a large output. However, coherent
reception assumes carrier phase synchronization (in order to separate out
and compute inner products with the I and Q components of the received
passband signal). If, on the other hand, the receiver is not synchronized
in phase, then (see Example 2.2.2) the complex envelope of the received
signal is given by y = Ae/’s (plus noise), where A > 0 is the amplitude
scale factor, and 6 is an unknown carrier phase. Now, the coherent receiver
gives the output

o .
(3> 5,) = Re((Ae"s, s)) (plus noise)
= Acosf||s||* (plus noise).

In this case, the output can be large or small, depending on the value
of 0. Indeed, for 8 = /2, the signal contribution to the inner prod-
uct becomes zero. The noncoherent receiver deals with this problem by

using the magnitude, rather than the real part, of the complex inner
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Figure 2.13 Complex
baseband implementations of
coherent and noncoherent
receivers. The real-valued
correlations are performed
using matched filters sampled
at time zero.
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product (y, s). The signal contribution to this noncoherent correlation is
given by

[(y, s)| = |(Ae"s, s) (plus noise)| = Als||> (ignoring noise),

where we have omitted the terms arising from the nonlinear interac-
tion between noise and signal in the noncoherent correlator output. The
noiseless output from the preceding computation shows that we do get
a large signal contribution regardless of the value of the carrier phase
0. It is convenient to square the magnitude of the complex inner prod-
uct for computation. Substituting the expression (2.37) for the complex
inner product, we obtain that the squared magnitude inner product com-
puted by a noncoherent receiver requires the following real baseband
computations:

[ )P = (s )+ (a5 0,)” + (=t v) + (g 0))*. - (249)

We see in Chapter 4 that the preceding computations are a building block
for optimal noncoherent demodulation under carrier phase uncertainty. The
implementations of the coherent and noncoherent receivers in complex
baseband are shown in Figure 2.13.

Remark 2.2.2 (Bandwidth) Given the scarcity of spectrum and the potential
for interference between signals operating in neighboring bands, determining
the spectral occupancy of signals accurately is an important part of commu-
nication system design. As mentioned earlier, the spectral occupancy of a
physical (and hence real-valued) signal is the smallest band of positive fre-
quencies that contains most of the signal content. Negative frequencies are
not included in the definition, since they contain no information beyond that
already contained in the positive frequencies (S(—f) = S*(f) for real-valued
s(t)). For complex baseband signals, however, information resides in both
positive and negative frequencies, since the complex baseband representa-
tion is a translated version of the corresponding passband signal restricted to

t=0

Coherent receiver output

Low pass
filter
Squarer
Passb.and J2 cos 2nf t Noncoherent
received i
ol E}- receiver
output

Squarer

-J2sin 2nf t

Low pass
filter
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positive frequencies. We therefore define the spectral occupancy of a complex
baseband signal as the smallest band around the origin, including both posi-
tive and negative frequencies, that contains most of the signal content. These
definitions of bandwidth are consistent: from Figure 2.8, it is evident that
the bandwidth of a passband signal (defined based on positive frequencies
alone) is equal to the bandwidth of its complex envelope (defined based on
both positive and negative frequencies). Thus, it suffices to work in com-
plex baseband when determining the spectral occupancy and bandwidth of
passband signals.

2.3 Spectral description of random processes

So far, we have considered deterministic signals with finite energy. From the
point of view of communication system design, however, it is useful to be
able to handle random signals, and to allow the signal energy to be infinite.
For example, consider the binary signaling example depicted in Figure 2.1.
We would like to handle bitstreams of arbitrary length within our design
framework, and would like our design to be robust to which particular bit-
stream was sent. We therefore model the bitstream as random (and demand
good system performance averaged over these random realizations), which
means that the modulated signal is modeled as a random process. Since
the bitstream can be arbitrarily long, the energy of the modulated signal
is unbounded. On the other hand, when averaged over a long interval, the
power of the modulated signal in Figure 2.1 is finite, and tends to a constant,
regardless of the transmitted bitstream. It is evident from this example, there-
fore, that we must extend our discussion of baseband and passband signals
to random processes. Random processes serve as a useful model not only
for modulated signals, but also for noise, interference, and for the input—
output response of certain classes of communication channels (e.g., wireless
mobile channels).

For a finite-power signal (with unbounded energy), a time-windowed real-
ization is a deterministic signal with finite energy, so that we can employ
our existing machinery for finite-energy signals. Our basic strategy is to
define properties of a finite-power signal in terms of quantities that can be
obtained as averages over a time window, in the limit as the time window
gets large. These time averaged properties can be defined for any finite-power
signal. However, we are interested mainly in scenarios where the signal is
a realization of a random process, and we wish to ensure that properties we
infer as a time average over one realization apply to most other realizations
as well. In this case, a time average is meaningful as a broad descriptor
of the random process only under an ergodicity assumption that the time
average along a realization equals a corresponding statistical average across
realizations. Moreover, while the time average provides a definition that has
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operational significance (in terms of being implementable by measurement or
computer simulation), when a suitable notion of ergodicity holds, it is often
analytically tractable to compute the statistical average. In the forthcoming
discussions, we discuss both time averages and statistical averages for several
random processes of interest.

Power spectral density As with our definition of energy spectral density,
let us define the power spectral density (PSD) for a finite-power signal s(7)
in operational terms. Pass the signal s(¢) through an ideal narrowband filter
with transfer function

H,(f) = {

The PSD evaluated at f;, S,(fy), can now be defined to be the measured
power at the filter output, divided by the filter width Af (in the limit as
Af —0).

The preceding definition directly leads to a procedure for computing the
PSD based on empirical measurements or computer simulations. Given a
physical signal or a computer model, we can compute the PSD by time-
windowing the signal and computing the Fourier transform, as follows. Define
the time-windowed version of s as

st,(8) = s( ]z 1)(1), (2.50)

where T, is the length of the observation interval. (The observation interval
need not be symmetric about the origin, in general.) Since 7, is finite, s7. (¢)
has finite energy if s(¢) has finite power, and we can compute its Fourier
transform

I, fo_7<f<f0

0, else.

STo(f) = -7(ST0)-
The energy spectral density of sy, is given by [Sy. ( )|?, so that an estimate of
the PSD of s is obtained by averaging this over the observation interval. We
thus obtain an estimated PSD

§ (o SO s

0

The computations required to implement (2.51) are often referred to as a
periodogram. In practice, the signal s is sampled, and the Fourier transform is
computed using a DFT. The length of the observation interval determines the
frequency resolution, while the sampling rate is chosen to be large enough to
avoid significant aliasing. The multiplication by a rectangular time window
in (2.50) corresponds to convolution in the frequency domain with the sinc
function, which can lead to significant spectral distortion. It is common, there-
fore, to employ time windows that taper off at the edges of the observation
interval, so as to induce a quicker decay of the frequency domain signal being
convolved with. Finally, multiple periodograms can be averaged in order to
get a less noisy estimate of the PSD.
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Autocorrelation function As with finite-energy signals, the inverse Fourier
transform of (2.51) has the interpretation of autocorrelation. Specifically,
using (2.20), we have that the inverse Fourier transform of (2.51) is given by

50 = SO =L f s @5}, (e=1) du

(o]

1 /TT"erin(O,'r) o~y ) d

= — sy (u)sy (u—7) du
T0 7T7°+max(0,7) T T

1% )

~~ 7/ sTﬁ(u)sTo(u —17) du, (2.52)

o

where the last approximation neglects edge effects as 7, gets large (for fixed
7). An alternative method for computing PSD, therefore, is first to compute
the empirical autocorrelation function (again, this is typically done in discrete
time), and then to compute the DFT. While these methods are equivalent in
theory, in practice, the properties of the estimates depend on a number of
computational choices, discussion of which is beyond the scope of this book.
The interested reader may wish to explore the various methods for estimating
PSD available in MATLAB or similar programs.

Formal definitions of PSD and autocorrelation function In addition to
providing a procedure for computing the PSD, we can also use (2.51) to
provide a formal definition of PSD by letting the observation interval get large:
S 2
5% OF T“T(f) C (2.53)

S.(f) = Jim
Similarly, we can take limits in (2.52) to obtain a formal definition of the
autocorrelation function as follows:
. 1 .
R(1)= Thm 7] w7 (u)sy (u—7) du, (2.54)
=00 5 _70 o o
where the overbar notation denotes time averages along a realization. As
we see shortly, we can also define the PSD and autocorrelation function as
statistical averages across realizations; we drop the overbar notation when we
consider these. More generally, we adopt the shorthand f(¢) to denote the
time average of f(¢). That is,

To

_ . 1 -
Fo= tim 2 [, S du
Thus, the definition (2.54) can be rewritten as

1_35(7) =s(u)s*(u—r1).
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Baseband and passband random processes A random process is baseband
if its PSD is baseband, and it is passband if its PSD is passband. Since the
PSD is defined as a time average along a realization, this also means (by
assumption) that the realizations of baseband and passband random processes
are modeled as deterministic baseband and passband signals, respectively. In
the next section, this assumption enables us to use the development of the
complex baseband representation for deterministic passband signals in our
discussion of the complex baseband representation of passband random pro-
cesses.

Crosscorrelation function For finite-power signals s, and s,, we define the
crosscorrelation function as the following time average:
R, (7) =5, (u)s3(u— 7). (2.55)

The cross-spectral density is defined as the Fourier transform of the cross-
correlation function:

S0 () = F (R, ,(N)- (2.56)

Example 2.3.1 (Autocorrelation function and power spectral density
for a complex waveform) Let s(¢) = s,.(f) +js,(¢) be a complex-valued,
finite-power, signal, where s, and s, are real-valued. Then the autocorre-
lation function of s can be computed as

R () = s(0)s* (1 = 7) = (s.(1) +js,(0) (5. (1 = 7) = js, (£ = 7))
Simplifying, we obtain

R(7) = [R, (1) + R, (D] +][R,  (7) = R, , ()] (2.57)

Taking Fourier transforms, we obtain the PSD

5.() =18, (N+S, N +ilS... (N =S, (D] (2.58)

We use this result in our discussion of the complex baseband representation
of passband random processes in the next section.

Example 2.3.2 (Power spectral density of a linearly modulated signal)
The modulated waveform shown in Figure 2.1 can be written in the form

s()=3. balp(t—nT),

where the bits b[n] take the values £1, and p(¢) is a rectangular pulse.
Let us try to compute the PSD for this signal using the definition (2.53).
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Anticipating the discussion of linear modulation in Section 2.5, let us
consider a generalized version of Figure 2.1 in the derivation, allowing the
symbols b[n] to be complex-valued and p(t) to be an arbitrary pulse in the
derivation. Consider the signal 5(¢) restricted to the observation interval
[0, NT], given by

s, = Y2 blnlp(t —n).

n=0

The Fourier transform of the time-windowed waveform is given by

N—-1 N—1
Sr.(f) = Y b[n]P(He ™" = P(f) 3" b[n]e >

n=0 n=0
The estimate of the power spectral density is therefore given by

|ST‘,(f)|2 _ |P(f)|?] ZnN;Ol bn]e 7T |2
T NT .

o

(2.59)

Let us now simplify the preceding expression and take the limit as 7, — oo
(i.e., N = 00). Define the term

N-1 . > | - | *
A= Z b[n]efﬂﬂ'fnT = Z b[n]CTZ#fnT (Z b[m]eﬂﬂ'fmr>
n=0 = >
N—1N-1 ‘
= Z Z b[n]b*[m]e—]Zﬂ'f(n_m)T.
n=0 m=0

Setting k = n — m, we can rewrite the preceding as

N-1 N-1 N-1
A=Y B+ Y e P S bulb*[n— k]
n=0 k=1 nek
-1 N-1+k
+ > e N bln]b*[n—k].
k=—(N-1) =0

Now, suppose that the symbols are uncorrelated, in that the time average
of b[n]b*[n— k] is zero for k # 0. Also, denote the empirical average of
|b[n]|* by o}. Then the limit becomes

Substituting into (2.59), we can now infer that

IS, (NP [P(HIPA L IP(f)I?
—2 " = lim =0, .
T, N—>o  NT T

5:01= jim

Thus, we have shown that the PSD of a linearly modulated signal scales
as the magnitude squared of the spectrum of the modulating pulse.
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The time averages discussed thus far interpret a random process s(f) as a
collection of deterministic signals, or realizations, evolving over time ¢, where
the specific realization is chosen randomly. Next, we discuss methods for
computing the corresponding statistical averages, which rely on an alternate
view of s(¢), for fixed 7, as a random variable which takes a range of values
across realizations of the random process. If T is the set of allowable values
for the index ¢, which is interpreted as time for our purpose here (e.g., T =
(—o0, 00) when the time index can take any real value), then {s(z),t€ T}
denotes a collection of random variables over a common probability space.
The term common probability space means that we can talk about the joint
distribution of these random variables.

In particular, the statistical averages of interest to us are the autocorrelation
function and PSD for wide sense stationary and wide sense cyclostationary
random processes (defined later). Since most of the signal and noise mod-
els that we encounter fall into one of these two categories, these techniques
form an important part of the communication system designer’s toolkit. The
practical utility of a statistical average in predicting the behavior of a par-
ticular realization of a random process depends, of course, on the ergodicity
assumption (discussed in more detail later) that time averages equal statistical
averages for the random processes of interest.

Mean, autocorrelation, and autocovariance functions For a random pro-
cess s(t), the mean function is defined as

m(t) = E[s(1)] (2.60)
and the autocorrelation function as

R(t;,1;) = E[s(2,)s™(1,)]. (2.61)

The autocovariance function of s is the autocorrelation function of the zero
mean version of s, and is given by

C,(11, o) = E[(s(2)) — E[s(t)) ] (s(t2) — E[s(t;)])*] = R, (1, t,) —m (1, )m(1,).
(2.62)

Crosscorrelation and crosscovariance functions For random processes s,
and s, defined on a common probability space (i.e., we can talk about the joint
distribution of samples from these random processes), the crosscorrelation
function is defined as

R, (1), 1) = E[s,(£))s55(,)] (2.63)
and the crosscovariance function is defined as
C,, ., (11, 1) = E[(s1(1;) — E[5,(t)]) (55(1,) — E[5,(22)])"]
=R, ,,(t;,1,) —m, (tl)m; (1) (2.64)
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Stationary random process A random process s(¢) is said to be stationary
if it is statistically indistinguishable from a delayed version of itself. That is,
s(t) and s(t — d) have the same statistics for any delay d € (—oo, 00).

For a stationary random process s, the mean function satisfies

ms(t) = ms(t - d)
for any , regardless of the value of d. Choosing d = ¢, we infer that
my(1) = m(0).

That is, the mean function is a constant. Similarly, the autocorrelation function
satisfies

Ry(t), 1) = R(t, —d, 1, —d)
for any 1, t,, regardless of the value of d. Setting 7 = t,, we have
R (1), 1) = R,(1; —1,,0).

That is, the autocorrelation function depends only on the difference of its
arguments.

Stationarity is a stringent requirement that is not always easy to verify.
However, the preceding properties of the mean and autocorrelation functions
can be used as the defining characteristics for a weaker property termed wide
sense stationarity.

Wide sense stationary (WSS) random process A random process s is said
to be WSS if
m,(t) =m,(0) for all ¢
and
R (t,,t,) =R, (t,—1,,0) forall t,,1,.

In this case, we change notation and express the autocorrelation function as
a function of 7 = ¢, —t, alone. Thus, for a WSS process, we can define the
autocorrelation function as

R, (1) = E[s(t)s*(t—7)] for s WSS (2.65)
with the understanding that the expectation is independent of ¢.

Power spectral density for a WSS process We define the PSD of a WSS
process s as the Fourier transform of its autocorrelation function, as follows:

S(f) =F (Ry(7)). (2.66)

We sometimes also need the notion of joint wide sense stationarity of two
random processes.
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Jointly wide sense stationary random processes The random processes
X and Y are said to be jointly WSS if (a) X is WSS, (b) Y is WSS, (c) the
crosscorrelation function Ry y(t,,t,) = E[X(#,)Y*(t,)] depends on the time
difference 7 = t; —t, alone. In this case, we can redefine the crosscorrelation
function as Ry y(7) = E[X())Y*(t —7)].

Ergodicity A stationary random process s is ergodic if time averages along
a realization equal statistical averages across realizations. For WSS processes,
we are primarily interested in ergodicity for the mean and autocorrelation
functions. For example, for a WSS process s that is ergodic in its autocorre-
lation function, the definitions (2.54) and (2.65) of autocorrelation functions
give the same result, which gives us the choice of computing the autocorre-
lation function (and hence the PSD) as either a time average or a statistical
average. Intuitively, ergodicity requires having “enough randomness” in a
given realization so that a time average along a realization is rich enough
to capture the statistics across realizations. Specific technical conditions for
ergodicity are beyond our present scope, but it is worth mentioning the fol-
lowing intuition in the context of the simple binary modulated waveform
depicted in Figure 2.1. If all bits take the same value over a realization, then
the waveform is simply a constant taking value +1 or —1: clearly, a time
average across such a degenerate realization does not yield “typical” results.
Thus, we need the bits in a realization to exhibit enough variation to obtain
ergodicity. In practice, we often use line codes or scramblers specifically
designed to avoid long runs of zeros or ones, in order to induce enough
transitions for proper operation of synchronization circuits. It is fair to say,
therefore, that there is typically enough randomness in the kinds of wave-
forms we encounter (e.g., modulated waveforms, noise and interference) that
ergodicity assumptions hold.

Example 2.3.3 Armed with these definitions, let us revisit the binary
modulated waveform depicted in Figure 2.1, or more generally, a linearly
modulated waveform of the form

s(t) = i b[n]p(t —nT). (2.67)

When we delay this waveform by d, we obtain

s(t—d) = i b[n]p(t —nT —d).

n=—oo

Let us consider the special case d = kT, where k is an integer. We obtain

kT = 3 balpli—(+ D) = Y. bln—Klp(t—nT), (2.68)

n=—oc n=—oo

where we have replaced n+k by n in the last summation. Comparing (2.67)
and (2.68), we note that the only difference is that the symbol sequence
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{b[n]} is replaced by a delayed version {b[n — k]}. If the symbol sequence
is stationary, then it has the same statistics as its delayed version, which
implies that s(¢) and s(t — kT) are statistically indistinguishable. However,
this is a property that only holds for delays that are integer multiples of the
symbol time. For example, for the binary signaling waveform in Figure 2.1,
it is immediately evident by inspection that s(¢) can be distinguished easily
from s(t—T/2) (e.g., from the location of the symbol edges). Slightly more
sophisticated arguments can be used to show similar results for pulses that
are more complicated than the rectangular pulse. We conclude, therefore,
that a linearly modulated waveform of the form (2.67), with a stationary
symbol sequence {b[n]}, is a cyclostationary random process, where the
latter is defined formally below.

Cyclostationary random process The random process s(t) is cyclostation-
ary with respect to time interval 7 if it is statistically indistinguishable from
s(t — kT) for any integer k.

As with the concept of stationarity, we can relax the notion of cyclosta-
tionarity by considering only the first and second order statistics.

Wide sense cyclostationary random process The random process s(f) is
wide sense cyclostationary with respect to time interval 7 if the mean and
autocorrelation functions satisfy the following:

my(t) =m,(t—T) for all ¢,
R,(t,,t,)) =R, (t,—T,t,—T) forall t,,t,.

We now state the following theorem regarding cyclostationary processes; this
is proved in Problem 2.14.

Theorem 2.3.1 (Stationarizing a cyclostationary process) Let s(t) be a
cyclostationary random process with respect to the time interval T. Suppose
that D is a random variable that is uniformly distributed over [0, T], and
independent of s(t). Then s(t — D) is a stationary random process. Similarly,
if s(t) is wide sense cyclostationary, then s(t — D) is a WSS random process.

The random process s(z — D) is a “stationarized” version of s(¢), with the
random delay D transforming the periodicity in the statistics of s(¢) into time
invariance in the statistics of s(t — D). We can now define the PSD of s to be
that of its stationarized version, as follows.

Computation of PSD for a (wide sense) cyclostationary process as a
statistical average For s(¢) (wide sense) cyclostationary with respect to
time interval 7, we define the PSD as

S,(f) = F(R(7)),
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where R, is the “stationarized” autocorrelation function,
R.(1) = E[s(t—D)s*(t— D —1)],

with the random variable D chosen as in Theorem 2.3.1.

In Problem 2.14, we discuss why this definition of PSD for cyclostationary
processes is appropriate when we wish to relate statistical averages to time
averages. That is, when a cyclostationary process satisfies intuitive notions of
ergodicity, then its time averaged PSD equals the statistically averaged PSD
of the corresponding stationarized process. We then rederive the PSD for a
linearly modulated signal, obtained as a time average in Example 2.3.2 and
as a statistical average in Problem 2.22.

2.3.1 Complex envelope for passband random processes

For a passband random process s, () with PSD Ss, (f), we know that the time-
windowed realizations are also approximately passband. We can therefore
define the complex envelope for these time-windowed realizations, and then
remove the windowing in the limit to obtain a complex baseband random
process s(t). Since we have defined this relationship on the basis of the
deterministic time-windowed realizations, the random processes s, and s obey
the same upconversion and downconversion relationships (Figure 2.9) as
deterministic signals. It remains to specify the relation between the PSDs
of s, and s, which we again infer from the relationships between the time-
windowed realizations. For notational simplicity, denote by 5,(¢) a realization
of s,(1) windowedA by an observation interval of length 7,; that is, 5,() =
sp(t)l[_% 1. Let SPA( /) denote the Fourier transform of s, 5(¢) the complex
envelope of §,, and S(f) the Fourier transform of 5(r). We know that the PSD
of 5, and s can be approximated as follows:
I8P
8,0~ =

P

. SN~

Furthermore, we know from the relationship (2.42) between deterministic

S 2

BAE (2.69)
TO

passband signals and their complex envelopes that the following spectral

relationships hold:
A 1 /- N
500 =7 (U =1+8 =),

Since the § (f) is (approximately) baseband, the right translate S (f—f.) and
the left translate S*(—f — f.) do not overlap, so that

~ 1/ A ~

8NP =5 (8¢ = fIP+18"(=F = £IF).
Combining with (2.69), and letting the observation interval 7, get large, we
obtain

5,00 =5 (5.0~ f)+ 8.~/ = 1) (270)
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In a similar fashion, starting from the passband PSD and working backward,
we can infer that

S.(f) =28E(f+ 1),
where S;; () =S, (/);1-q) is the “right half” of the passband PSD.

As with deterministic signals, the definition of bandwidth for real-valued
passband random processes is based on occupancy of positive frequencies
alone, while that for complex baseband random processes is based on occu-
pancy of both positive and negative frequencies. For a given passband random
process, both definitions lead to the same value of bandwidth.

2.4 Modulation degrees of freedom

While analog waveforms and channels live in a continuous time space with
uncountably infinite dimensions, digital communication systems employing
such waveforms and channels can be understood in terms of vector spaces
with finite, or countably infinite, dimensions. This is because the dimen-
sion, or degrees of freedom, available for modulation is limited when we
restrict the time and bandwidth of the signaling waveforms to be used. Let
us consider signaling over an ideally bandlimited passband channel spanning
f.—W/2 < f < f.+W/2. By choosing f. as a reference, this is equivalent
to an ideally bandlimited complex baseband channel spanning [—W/2, W/2].
That is, modulator design corresponds to design of a set of complex baseband
transmitted waveforms that are bandlimited to [—W/2, W/2]. We can now
invoke Nyquist’s sampling theorem, stated below.

Theorem 2.4.1 (Nyquist’s sampling theorem) Any signal s(t) bandlimited
to [—W/2, W/2] can be described completely by its samples {s(n/W)} at rate
W. Furthermore, s(t) can be recovered from its samples using the following
interpolation formula:
> n n
0= )e(r-). 271
s(1) E_ws(W r(-+ (2.71)

where p(t) = sinc(Wrt).

By the sampling theorem, the modulator need only specify the samples
{s(n/W)} to specify a signal s(¢) bandlimited to [—W/2, W/2]. If the signals
are allowed to span a large time interval T, (large enough that they are still
approximately bandlimited), the number of complex-valued samples that the
modulator must specify is approximately WT,. That is, the set of possible
transmitted signals lies in a finite-dimensional complex subspace of dimension
WT,, or equivalently, in a real subspace of dimension 2WT,. To summarize,
the dimension of the complex-valued signal space (i.e., the number of degrees
of freedom available to the modulator) equals the time-bandwidth product.
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The interpolation formula (2.71) can be interpreted as linear modulation
(which has been introduced informally via several examples, and is consid-
ered in detail in the next section) at rate W using the samples {s(n/W)}
as the symbols, and the sinc pulse as the modulating pulse gry(¢). Linear
modulation with the sinc pulse has the desirable characteristic, therefore, of
being able to utilize all of the degrees of freedom available in a bandlim-
ited channel. As we show in the next section, however, the sinc pulse has
its problems, and in practice, it is necessary to back off from utilizing all
available degrees of freedom, using modulating pulses that have less abrupt
transitions in the frequency domain than the brickwall Fourier transform of the
sinc pulse.

Bandwidth efficiency Bandwidth efficiency for a modulation scheme is
defined to be the number of bits conveyed per degree of freedom. Thus,
M -ary signaling in a D-dimensional signal space has bandwidth efficiency

_ log, M
=0

The number of degrees of freedom in the preceding definition is taken to

s (2.72)

be the maximum available. Thus, for a bandlimited channel with bandwidth
W, we would set D = WT, to obtain the number of complex degrees of
freedom available to a modulator over a large time interval 7. In practice,
the number of effective degrees of freedom is smaller owing to a variety of
implementation considerations, as mentioned for the example of linear mod-
ulation in the previous paragraph. We do not include such considerations in
our definition of bandwidth efficiency, in order to get a number that funda-
mentally characterizes a modulation scheme, independent of implementation
variations.

To summarize, the set of possible transmitted waveforms in a timelimited
and bandwidth-limited system lies in a finite-dimensional signal space. The
broad implication of this observation is that we can restrict attention to
discrete-time signals, or vectors, for most aspects of digital communication
system design, even though the physical communication mechanism is based
on sending continuous-time waveforms over continuous-time channels. In
particular, we shall see in Chapter 3 that signal space concepts play an
important role in developing a geometric understanding of receiver design.
Signal space concepts are also useful for describing modulation techniques,
as we briefly describe below (postponing a more detailed development to
Chapter 3).

Signal space description of modulation formats Consider a modulation
format in which one of M signals, s,(?), . . ., s,,(?), is transmitted. The signal
space spanned by these signals is of dimension n < M, so we can represent
each signal s,(f) by an n-dimensional vector s, = (s;[1],...,s;[n])T, with
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respect to some orthonormal basis i, (¢), . . . , ¥, (¢) satisfying (¢, ;) = &;,,
1 <k, ! < n. That is, we have

5;(1) = isi[l]wl(l)’ si{ll = (si ) = f s; (O] (1)de. (2.73)

By virtue of (2.73), we can describe a modulation format by specifying
either the signals s,(f), 1 <i < M, or the vectors s;, 1 <i < M. More
importantly, the geometry of the signal set is preserved when we go from
continuous-time to vectors, in the sense that inner products, and Euclidean
distances, are preserved: (s;, sj> = (s,-,sj> for 1 <i,j <M. As we shall
see in Chapter 3, it is this geometry that determines performance over the
AWGN channel, which is the basic model upon which we build when
designing most communication systems. Thus, we can design vectors with
a given geometry, depending on the performance characteristics we desire,
and then map them into continuous-time signals using a suitable orthonor-
mal basis {¢,}. This implies that the same vector space design can be
reused over very different physical channels, simply by choosing an appro-
priate basis matched to the channel’s time-bandwidth constraints. An exam-
ple of signal space construction based on linear modulation is provided in
Section 2.5.4.

2.5 Linear modulation

We now know that we can encode information to be transmitted over a
passband channel into a complex-valued baseband waveform. For a physical
baseband channel, information must be encoded into a real-valued baseband
waveform. We focus on more general complex baseband (i.e., passband)
systems, with physical real baseband systems automatically included as a
special case.

As the discussion in the previous section indicates, linear modulation is
a technique of fundamental importance for communication over bandlimited
channels. We have already had sneak previews of this modulation technique
in Figure 2.1 and Examples 2.3.2, 2.2.3, and we now build on these for a
more systematic exposition. The complex baseband transmitted waveform for
linear modulation can be written as

u(t) =3 bln)gry (t —nT). (2.74)

Here {b[n]} are the transmitted symbols, typically taking values in a fixed sym-
bol alphabet, or constellation. The modulating pulse g, (?) is a fixed baseband
waveform. The symbol rate, or baud rate is 1/T, and T is termed the symbol
interval.
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2.5.1 Examples of linear modulation

Figure 2.14 Some baseband
line codes using memoryless
linear modulation.

We now discuss some commonly used linear modulation formats for baseband
and passband channels.

Baseband line codes Linear modulation over physical baseband channels
is a special case of (2.74), with all quantities constrained to be real-valued,
since u(¢) is actually the physical waveform transmitted over the channel. For
such real baseband channels, methods of mapping bits to (real-valued) analog
waveforms are often referred to as line codes. Examples of some binary line
codes are shown in Figure 2.14 and can be interpreted as linear modulation
with either a {—1, +1} or a {0, 1} alphabet.

If a clock is not sent in parallel with the modulated data, then bit timing
must be extracted from the modulated signal. For the non return to zero
(NRZ) formats shown in Figure 2.14, a long run of zeros or ones can lead to
loss of synchronization, since there are no transitions in voltage to demarcate
bit boundaries. This can be alleviated by precoding the transmitted data so
that it has a high enough rate of transitions from O to 1, and vice versa.
Alternatively, transitions can be guaranteed through choice of modulating
pulse: the Manchester code shown in Figure 2.14 has transitions that are twice
as fast as the bit rate. The spectral characteristics of baseband line codes are
discussed further in Problem 2.23.

Linear memoryless modulation is not the only option The line codes in
Figure 2.14 can be interpreted as memoryless linear modulation: the waveform
corresponding to a bit depends only on the value of the bit, and is a translate
of a single basic pulse shape. We note at this point that this is certainly not
the only way to construct a line code. Specifically, the Miller code, depicted
in Figure 2.15, is an example of a line code employing memory and nonlinear
modulation. The code uses two different basic pulse shapes, +s,(¢) to send
1, and +£s,(7) to send 0. A sign change is enforced when 0 is followed by 0,
in order to enforce a transition. For the sequences 01, 10 and 11, a transition
is ensured because of the transition within s,(¢). In this case, the sign of the
waveform is chosen to delay the transition as much as possible; it is intuitively

A>0,B=0 Unipolar NRZ
Data (NRZ format) A0, B=-A Bipolar NRZ

Manchester code
Linear modulation with alphabet {+1,-1} and pulse
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Figure 2.15 The Miller code is 0 1 1 0 1 0 0 1
a nonlinear modulation format A
with memory.
Miller code
-A
A A
A
So (t) S (t)

plausible that this makes the modulated waveform smoother, and reduces its
spectral occupancy.

Passband linear modulation For passband linear modulation, the sym-
bols {b[n]} in (2.74) are allowed to be complex-valued, so that they can
be represented in the two-dimensional real plane. Thus, we often use the
term two-dimensional modulation for this form of modulation. The complex
baseband signal u(#) = u,(r) +ju,(r) is upconverted to passband as shown in
Figure 2.9.

Two popular forms of modulation are phase shift keying (PSK) and quadra-
ture amplitude modulation (QAM). Phase shift keying corresponds to choos-
ing arg(b[n]) from a constellation where the modulus |b[n]| is constant.
Quadrature amplitude modulation allows both |b[n]| and arg(b[n]) to vary,
and often consists of varying Re(b[n]) and Im(b[n]) independently. Assum-
ing, for simplicity, that g, (¢) is real-valued, we have

u (1) =Y Re(b[n]grx(t—=nT),  u (1) =3 Im(b[n])grx (1 —nT).

The term QAM refers to the variations in the amplitudes of I and Q com-
ponents caused by the modulating symbol sequence {b[n]}. If the sequence
{b[n]} is real-valued, then QAM specializes to pulse amplitude modula-
tion (PAM). Figure 2.16 depicts some well-known constellations, where we
plot Re(b) on the x-axis, and Im(b) on the y-axis, as b ranges over all
possible values for the signaling alphabet. Note that rectangular QAM con-
stellations can be interpreted as modulation of the in-phase and quadrature
components using PAM (e.g., 16-QAM is equivalent to I and Q modulation
using 4-PAM).

Each symbol in a constellation of size M can be uniquely mapped to
log, M bits. For a symbol rate of 1/7 symbols per unit time, the bit rate
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Figure 2.16 Some
constellations for
two-dimensional linear
modulation.
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is therefore (log, M)/T bits per unit time. Since the transmitted bits often
contain redundancy because of a channel code employed for error correction
or detection, the information rate is typically smaller than the bit rate.

Design choices Some basic choices that a designer of a linearly modulated
system must make are: the transmitted pulse shape g;y, the symbol rate 1/7,
the signaling constellation, the mapping from bits to symbols, and the channel
code employed, if any. We now show that the symbol rate and pulse shape
are determined largely by the available bandwidth, and by implementation
considerations. The background needed to make the remaining choices is built
up as we progress through this book. In particular, it will be seen later that
the constellation size M and the channel code, if any, should be chosen based
on channel quality measures such as the signal-to-noise ratio.

2.5.2 Spectral occupancy of linearly modulated signals

From Example 2.3.3, we know that the linearly modulated signal u in (2.74)
is a cyclostationary random process if the modulating symbol sequence {b[n]}
is a stationary random process. Problem 2.22 discusses computation of the
PSD for u as a statistical average across realizations, while Example 2.3.2
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Figure 2.17 PSD for linear
modulation using rectangular
and cosine timelimited pulses.
The normalization is such that
the power (i.e., the area under
the PSD) is the same in both
cases.

2.5 Linear modulation

discusses computation of the PSD as a time average. We now summarize
these results in the following theorem.

Theorem 2.5.1 (Power spectral density of a complex baseband linearly
modulated signal) Consider a linearly modulated signal

w(ty='3" blnlgyy(t—nT).

Assume that the symbol stream b[n] is uncorrelated and has zero mean. That

is, E[b[n]b*[m]] = E[|b[n]|*]8,,, and E[b[n]] = O (the expectation is replaced

by a time average when the PSD is defined as a time average). Then the PSD

of u is given by

E[|b[n]P*]
T

S.() = G (NI (2.75)

Figure 2.17 shows the PSD (as a function of normalized frequency fT') for
linear modulation using a rectangular timelimited pulse, as well as the cosine-
shaped timelimited pulse used for minimum shift keying, which is discussed
in Problem 2.24. The smoother shape of the cosine pulse leads to a faster
decay of the PSD beyond the main lobe.

Theorem 2.5.1 implies that, for uncorrelated symbols, the shape of the PSD
of a linearly modulated signal is determined completely by the spectrum of
the modulating pulse g;(7). A generalization of this theorem for correlated
symbol sequences is considered in Problem 2.22, which also discusses the
use of such correlations in spectrally shaping the transmitted signal. Another

Rect. pulse
— — Cosine pulse
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generalization of this theorem, discussed in Problem 2.23, is when the symbols
{b[n]} have nonzero mean, as is the case for some baseband line codes. In
this case, the PSD has spectral lines at multiples of the symbol rate 1/7T,
which can be exploited for symbol synchronization.

The preceding result, and the generalizations in Problems 2.22 and 2.23,
do not apply to nonlinear modulation formats such as the Miller code shown
in Figure 2.15. However, the basic concepts of analytical characterization of
PSD developed in these problems can be extended to more general modulation
formats with a Markovian structure, such as the Miller code. The details are
straightforward but tedious, hence we do not discuss them further.

Once the PSD is known, the bandwidth of u can be characterized using any
of a number of definitions. One popular concept (analogous to the energy con-
tainment bandwidth for a finite-energy signal) is the 1 — € power containment
bandwidth, where € is a small number: this is the size of the smallest contigu-
ous band that contains a fraction 1 — € of the signal power. The fraction of the
power contained is often expressed in terms of a percentage: for example, the
99% power containment bandwidth corresponds to € = 0.01. Since the PSD of
the modulated signal u is proportional to |G,y (f)|?, the fractional power con-
tainment bandwidth is equal to the fractional energy containment bandwidth
for G;x(f). Thus, the 1 — € power containment bandwidth B satisfies

B
2

[ 1GnFar=-e [ [Gu(pIar. (276)

We use the two-sided bandwidth B for the complex baseband signal to
quantify the signaling bandwidth needed, since this corresponds to the
physical (one-sided) bandwidth of the corresponding passband signal. For
real-valued signaling over a physical baseband channel, the one-sided
bandwidth of u would be used to quantify the physical signaling bandwidth.

Normalized bandwidth Time scaling the modulated waveform u(f) pre-
serves its shape, but corresponds to a change of symbol rate. For example,
we can double the symbol rate by using a time compressed version u(2t) of
the modulated waveform in (2.74):

(6 = 1(20) = X bl 2= T) = X blaler (2(-n3)).

Time compression leads to frequency dilation by a factor of two, while keep-
ing the signal power the same. It is intuitively clear that the PSD S, (f) =
1/28,(f/2), regardless of what definition we use to compute it. Thus, what-
ever our notion of bandwidth, changing the symbol rate in this fashion leads
to a proportional scaling of the required bandwidth. This has the following
important consequence. Once we have arrived at a design for a given symbol
rate 1/T, we can reuse it without any change for a different symbol rate a/T,
simply by replacing gy (7) with gry(at) (i.e., Gy (f) with a scaled version
of Grx(f/a)). If the bandwidth required was B, then the new bandwidth
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required is aB. Thus, it makes sense to consider the normalized bandwidth
BT, which is invariant to the specific symbol rate employed, and depends
only on the shape of the modulating pulse g,y (#). In doing this, it is also
convenient to consider the normalized time t/T and normalized frequency
fT. Equivalently, we can, without loss of generality, set 7 = 1 to compute
the normalized bandwidth, and then simply scale the result by the desired
symbol rate.

Example 2.5.1 (Fractional power containment bandwidth with time-
limited pulse) We wish to determine the 99% power containment band-
width when signaling at 100 Mbps using 16-QAM, using a rectangular
transmit pulse shape timelimited over the symbol interval. Since there are
log, 16 = 4 bit/symbol, the symbol rate is given by

_ 100 Mbps
~ 4 bit/symbol
Let us first compute the normalized bandwidth B, for T = 1. The transmit
pulse is gry(7) = I} 1)(1), so that

|Gy (NI* = [sinc ().

We can now substitute into (2.76) to compute the power containment
bandwidth B. We have actually already solved this problem in Example
2.1.3, where we computed B, = 10.2 for 99% energy containment. We
therefore find that the bandwidth required is

1/T = 25 Msymbol/s.

B
B= 7‘ =10.2 x 25 MHz = 260 MHz.

This is clearly very wasteful of bandwidth. Thus, if we are concerned about
strict power containment within the allocated band, we should not be using
rectangular timelimited pulses. On the other hand, if we are allowed to be
sloppier, and can allow 10% of the power to spill outside the allocated
band, then the required bandwidth is less than 25 MHz (B, = 0.85 for
a=0.9, from Example 2.1.3).

2.5.3 The Nyquist criterion: relating bandwidth to symbol rate

Typically, a linearly modulated system is designed so as to avoid intersymbol
interference at the receiver, assuming an ideal channel, as illustrated in Figure
2.18, which shows symbols going through a transmit filter, a channel (also
modeled as a filter), and a receive filter (noise is ignored for now). Since
symbols are being fed into the transmit filter at rate 1/7, it is natural to expect
that we can process the received signal such that, in the absence of channel
distortions and noise, samples at rate 1/7 equal the transmitted symbols. This
expectation is fulfilled when the cascade of the transmit filter, the channel
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Symbols Transmit

{bln]} —= filter

rate 1/T grxlt)

Figure 2.18 Set-up for applying
Nyquist criterion.

Channel Receive A1)
filter filter Samplert——z(nT)
(t) (t)
9e 9ex ——77 When s z(nT) = bin?

filter, and the receive filter satisfy the Nyquist criterion for ISI avoidance,
which we now state.

From Figure 2.18, the noiseless signal at the output of the receive filter is
given by

z(1) =) _b[n]x(t —nT), (2.77)
where

x(2) = (87x * 8¢ * 8rx) (1)

is the overall system response to a single symbol. The Nyquist criterion
answers the following question: when is z(nT) = b[n]? That is, when is there
no ISI in the symbol-spaced samples? The answer is stated in the following
theorem.

Theorem 2.5.2 (Nyquist criterion for ISI avoidance) Intersymbol inter-
ference can be avoided in the symbol-spaced samples, i.e.,

z(nT) = b[n] for all n (2.78)
if
1, m=0,
X(mT) = 8, = { oy (279)

Letting X(f) denote the Fourier transform of x(t), the preceding condition
can be equivalently written as

/T i X(f+§) =1 forall f. (2.80)

k=—o0

Proof of Theorem 2.5.2 It is immediately obvious that the time domain
condition (2.79) gives the desired ISI avoidance (2.78). It can be shown that
this is equivalent to the frequency domain condition (2.80) by demonstrating
that the sequence {x(—mT)} is the Fourier series for the periodic waveform

i k
B(f)=1/T ) X(f—i-?)
k=—o00
obtained by summing all the aliased copies X(f + k/T) of the Fourier trans-
form of x. Thus, for the sequence {x(mT)} to be a discrete delta, the periodic
function B(f) must be a constant. The details are developed in Problem 2.15.

(|
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A pulse x(f) or X(f) is said to be Nyquist at rate 1/7 if it satisfies (2.79)
or (2.80), where we permit the right-hand sides to be scaled by arbitrary
constants.

Minimum bandwidth Nyquist pulse The minimum bandwidth Nyquist
pulse is

T, |f| <57,
0, else,

x( =
corresponding to the time domain pulse
. t
t)=sinc(—).
x() = sine ()

The need for excess bandwidth The sinc pulse is not used in practice
because it decays too slowly: the 1/¢ decay implies that the signal z(¢) in
(2.77) can exhibit arbtrarily large fluctuations, depending on the choice of
the sequence {b[n]}. It also implies that the ISI caused by sampling errors
can be unbounded (see Problem 2.21). Both of these phenomena are related
to the divergence of the series ) ., 1/n, which determines the worst-case
contribution from “distant” symbols at a given instant of time. Since the series
> >, 1/n® converges for a > 1, these problems can be fixed by employing a
pulse x(z) that decays as 1/¢ for a > 1. A faster time decay implies a slower
decay in frequency. Thus, we need excess bandwidth, beyond the minimum
bandwidth dictated by the Nyquist criterion, to fix the problems associated
with the sinc pulse. The (fractional) excess bandwidth for a linear modulation
scheme is defined to be the fraction of bandwidth over the minimum required
for ISI avoidance at a given symbol rate.

Raised cosine pulse An example of a pulse with a fast enough time decay
is the frequency domain raised cosine pulse shown in Figure 2.20, and spe-
cified as

~

l—a
IfI < 5
S0 =1 F[1=sin((Uf1 = 5 2] 5 <11 < B
l+a
0, If1> 57
where a is the fractional excess bandwidth, typically chosen in the range
where 0 < a < 1. As shown in Problem 2.16, the time domain pulse s(¢) is
given by
t\ cosmak
s(t) = sinc (?) TTz
1= (%)
This pulse inherits the Nyquist property of the sinc pulse, while having
an additional multiplicative factor that gives an overall (1/¢3) decay with
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Figure 2.19 Sinc pulse for
minimum bandwidth ISI-free
signaling at rate 1/T. Both
time and frequency axes
are normalized to be
dimensionless.

Modulation

X(f)

fT

-1/2 0 1/2

(a) Frequency domain boxcar

~0.4 L L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

t/T
(b) Time domain sinc pulse

time. The faster time decay compared with the sinc pulse is evident from a
comparison of Figures 2.20(b) and 2.19(b).

The Nyquist criterion applies to the cascade of the transmit, channel, and
receive filters. How is Nyquist signaling done in practice, since the channel is
typically not within our control? Typically, the transmit and receive filters are
designed so that the cascade Gy (f) Gy (f) is Nyquist, and the ISI introduced
by the channel, if any, is handled separately. A typical choice is to set G,y
and Gy to be square roots (in the frequency domain) of a Nyquist pulse.
Such a pulse is called a square root Nyquist pulse. For example, the square
root raised cosine (SRRC) pulse is often used in practice. Another common
choice is to set G,y to be a Nyquist pulse, and Gy to be a wideband filter
whose response is flat over the band of interest.

We had argued in Section 2.4, using Nyquist’s sampling theorem, that
linear modulation using the sinc pulse takes up all of the degrees of freedom
in a bandlimited channel. The Nyquist criterion for ISI avoidance may be
viewed loosely as a converse to the preceding result, saying that if there are
not enough degrees of freedom, then linear modulation incurs ISI. The relation
between these two observations is not accidental: both Nyquist’s sampling
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Figure 2.20 Raised cosine
pulse for minimum bandwidth
ISI-free signaling at rate 1/T,
with excess bandwidth a. Both
time and frequency axes

are normalized to be
dimensionless.

2.5 Linear modulation

-(1+a)J/2 -1/2 -(1-a)/2 |0 (1-a)/2 1/2 (1+a)/2

(a) Frequency domain raised cosine

-0.2 L
-5 -4 -3 -2 - 0 1 2 3 4 5

t/T

(b) Time domain pulse (excess bandwidth a=0.5)

theorem and the Nyquist criterion are based on the Fourier series relationship
between the samples of a waveform and its aliased Fourier transform.

Bandwidth efficiency We define the bandwidth efficiency of linear modu-
lation with an M-ary alphabet as

1 = log, M bit/symbol.

This is consistent with the definition (2.72) in Section 2.4, since one symbol
in linear modulation takes up one degree of freedom. Since the Nyquist
criterion states that the minimum bandwidth required equals the symbol rate,
knowing the bit rate R, and the bandwidth efficiency n, of the modulation
scheme, we can determine the symbol rate, and hence the minimum required
bandwidth B, .

Bmin ="
Mp

This bandwidth would then be expanded by the excess bandwidth used in the
modulating pulse, which (as discussed already in Section 2.4) is not included
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in our definition of bandwidth efficiency, because it is a highly variable
quantity dictated by a variety of implementation considerations. Once we
decide on the fractional excess bandwidth a, the actual bandwidth required is

R
B=(1+a)B,, =(+a)—>.
Mg

2.5.4 Linear modulation as a building block

Linear modulation can be used as a building block for constructing more
sophisticated waveforms, using a square root Nyquist pulse as the modulating
waveform. To see this, let us first describe the square root Nyquist property in
the time domain. Suppose that ¢/(z) is square root Nyquist at rate 1/7,. This
means that Q(f) = |W(f)|*> = W(f)¥*(f) is Nyquist at rate 1/7.. Note that
W*(f) is simply the frequency domain representation of ¥n(7) = ¥*(—1),
the matched filter for ¢/(¢). This means that

O(f) = WNT () « q(1) = (P Pye) (1) = / P(s)yp*(s—1) ds.  (2.81)

That is, g(¢) is the autocorrelation function of (), obtained by passing ¢
through its matched filter. Thus, ¢ is square root Nyquist if its autocorrelation
function ¢ is Nyquist. That is, the autocorrelation function satisfies ¢(kT,) =
0, for integer k.

We have just shown that the translates {{/(t — kT,)} are orthonormal. We
can now use these as a basis for signal space constructions. Representing a
signal s,(¢) in terms of these basis functions is equivalent to linear modulation
at rate 1/T, as follows:

N1
s; ()= s[klp(t—kT.), i=1,...M,
k=0
where s; = (s5;[0], . . ., s;,[ N —1]) is a code vector that is mapped to continuous

time by linear modulation using the waveform . We often refer to /(z) as the
chip waveform, and 1/T, as the chip rate, where N chips constitute a single
symbol. Note that the continuous-time inner product between the signals thus
constructed is determined by the discrete-time inner product between the
corresponding code vectors:

(550 = X X sk [ 0 —KT)W (= 1T)dr = Y KIS 1] = (5,.5,).
k=0 [=0 k=0

where we have used the orthonormality of the translates {¢/(r —kT,)}.
Examples of square root Nyquist chip waveforms include a rectangular
pulse timelimited to an interval of length T, as well as bandlimited pulses
such as the square root raised cosine. From Theorem 2.5.1, we see that the
PSD of the modulated waveform is proportional to |W(f)|* (it is typically a
good approximation to assume that the chips {s;[k]} are uncorrelated). That
is, the bandwidth occupancy is determined by that of the chip waveform .
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In the next section, we apply the preceding construction to obtain wave-
forms for orthogonal modulation. In Chapter 8, I discuss direct sequence
spread spectrum systems based on this construction.

2.6 Orthogonal and biorthogonal modulation

The number of possible transmitted signals for orthogonal modulation equals
the number of degrees of freedom M available to the modulator, since we can
fit only M orthogonal vectors in an M-dimensional signal space. However, as
discussed below, whether we need M real degrees of freedom or M complex
degrees of freedom depends on the notion of orthogonality required by the
receiver implementation.

Frequency shift keying A classical example of orthogonal modulation is
frequency shift keying (FSK). The complex baseband signaling waveforms
for M-ary FSK over a signaling interval of length T are given by

s()=eP™ g, =1, M,

where the frequency shifts |f; — f;| are chosen to make the M waveforms
orthogonal. The bit rate for such a system is therefore given by (log, M)/ T,
since log, M bits are conveyed over each interval of length 7. To determine
the bandwidth needed to implement such an FSK scheme, we must determine
the minimal frequency spacing such that the {s;} are orthogonal. Let us first
discuss what orthogonality means.

We have introduced the concepts of coherent and noncoherent reception in
Example 2.2.5, where we correlated the received waveform against copies of
the possible noiseless received waveforms corresponding to different trans-
mitted signals. In practical terms, therefore, orthogonality means that, if s;
is sent, and we are correlating the received signal against s;, j # i, then the
output of the correlator should be zero (ignoring noise). This criterion leads
to two different notions of orthogonality, depending on the assumptions we
make on the receiver’s capabilities.

Orthogonality for coherent and noncoherent systems Consider two com-
plex baseband waveforms u = u,+ ju, and v = v, +jv,, and their passband
equivalents u,(f) = Re(v/2u()e?™') and v,(f) = Re(v/2v(r)e?™"), respec-
tively. From (2.36), we know that

(u,, v,) =Re({u, v)) = (uc, v.) + (ug, vy). (2.82)

Thus, one concept of orthogonality between complex baseband waveforms
is that their passband equivalents (with respect to a common frequency and
phase reference) are orthogonal. This requires that Re ((#,v)) = 0. In the
inner product Re ({u, v)), the I and Q components are correlated separately
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and then summed up. At a practical level, extracting the I and Q components
from a passband waveform requires a coherent system, in which an accurate
frequency and phase reference is available for downconversion.

Now, suppose that we want the passband equivalents of u# and v to remain
orthogonal in noncoherent systems in which an accurate phase reference may
not be available. Mathematically, we want u,(f) = Re(v/2u(t)e™") and
D, (f) = Re(v/2v(1)ef@®™/+0)) to remain orthogonal, regardless of the value of
6. The complex envelope of ¥, with respect to f, is 0(f) = v(t)el’, so that,
applying (2.82), we have

(uy, U,) =Re((u, b)) = Re((u, v)e ™). (2.83)

It is easy to see that the preceding inner product is zero for all possible 6 if
and only if (u,v) =0; set # =0 and 6 = 7/2 in (2.83) to see this.

We therefore have two different notions of orthogonality, depending on
which of the inner products (2.82) and (2.83) is employed:

Re((s;, s;)) =0 Coherent orthogonality criterion

2.84
(s;8,) =0 Noncoherent orthogonality criterion. (2:84)

It is left as an exercise (Problem 2.25) to show that a tone spacing of 1/2T
provides orthogonality in coherent FSK, while a tone spacing of 1/T is
required for noncoherent FSK. The bandwidth for coherent M-ary FSK is
therefore approximately M/2T, which corresponds to a time—bandwidth prod-
uct of approximately M/2. This corresponds to a complex vector space of
dimension M/2, or a real vector space of dimension M, in which we can
fit M orthogonal signals. On the other hand, M-ary noncoherent signaling
requires M complex dimensions, since the complex baseband signals must
remain orthogonal even under multiplication by complex-valued scalars. This
requirement doubles the bandwidth requirement for noncoherent orthogonal
signaling.

Bandwidth efficiency We can conclude from the example of orthogonal FSK
that the bandwidth efficiency of orthogonal signaling is n; = (log, M + 1)
/M bit/complex dimension for coherent systems, and ny; = (log, M)/M
bit/complex dimension for noncoherent systems. This is a general observation
that holds for any realization of orthogonal signaling. In a signal space of
complex dimension D (and hence real dimension 2D), we can fit 2D signals
satisfying the coherent orthogonality criterion, but only D signals satisfying
the noncoherent orthogonality criterion. As M gets large, the bandwidth effi-
ciency tends to zero. In compensation, as we see in Chapter 3, the power
efficiency of orthogonal signaling for large M is the “best possible.”

Orthogonal Walsh—-Hadamard codes Section 2.5.4 shows how to map
vectors to waveforms while preserving inner products, by using linear modu-
lation with a square root Nyquist chip waveform. Applying this construction,
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the problem of designing orthogonal waveforms {s;} now reduces to designing
orthogonal code vectors {s;}. Walsh-Hadamard codes are a standard con-
struction employed for this purpose, and can be constructed recursively as
follows: at the nth stage, we generate 2" orthogonal vectors, using the 2"~
vectors constructed in the n — 1 stage. Let H, denote a matrix whose rows
are 2" orthogonal codes obtained after the nth stage, with H, = (1). Then
Hn — (Hn—l Hn—l ) .
H, , -H,_,

n—1
We therefore get

111
11 -1 1-1

H, = H, = tc.

! (1-1)’ Sl T S R R
1—1-1 1

The signals {s;} obtained above can be used for noncoherent orthogonal
signaling, since they satisfy the orthogonality criterion (s;, s;) =0 for i # j.
However, just as for FSK, we can fit twice as many signals into the same
number of degrees of freedom if we used the weaker notion of orthogonality
required for coherent signaling, namely Re((s;, s;)) = 0 for i # j. It is easy
to check that for M-ary Walsh—-Hadamard signals {s;,i=1, ..., M}, we can
get 2M orthogonal signals for coherent signaling: {s;,js;,i=1, ..., M}. This
construction corresponds to independently modulating the I and Q components
with a Walsh-Hadamard code.

Biorthogonal modulation Given an orthogonal signal set, a biorthogonal
signal set of twice the size can be obtained by including a negated copy of
each signal. Since signals s and —s cannot be distinguished in a noncoherent
system, biorthogonal signaling is applicable to coherent systems. Thus, for
an M-ary Walsh-Hadamard signal set {s;} with M signals obeying the non-
coherent orthogonality criterion, we can construct a coherent orthogonal signal
set {s;,]js;} of size 2M, and hence a biorthogonal signal set of size 4M, e.g.,

{85385 =535 —js;}

2.7 Differential modulation

Differential modulation uses standard PSK constellations, but encodes the
information in the phase transitions between successive symbols rather than
in the absolute phase of one symbol. This allows recovery of the information
even when there is no absolute phase reference.

Differential modulation is useful for channels in which the amplitude and
phase may vary over time (e.g., for a wireless mobile channel), or if there is
a residual carrier frequency offset after carrier synchronization. To see why,



58

Modulation

consider linear modulation of a PSK symbol sequence {b[n]}. Under ideal
Nyquist signaling, the samples at the output of the receive filter obey the
model

r[n] = h[n]b[n]+ noise

where h[n] is the channel gain. If the phase of h[n] can vary arbitrarily
fast with n, then there is no hope of conveying any information in the
carrier phase. However, if h[n] varies slowly enough that we can approximate
it as piecewise constant over at least two symbol intervals, then we can
use phase transitions to convey information. Figure 2.21 illustrates this for
two successive noiseless received samples for a QPSK alphabet, comparing
b[n]b*[n — 1] with r[n]r*[n — 1]. We see that, ignoring noise, these two
quantities have the same phase. Thus, even when the channel imposes an
arbitrary phase shift, as long as the phase shift is roughly constant over
two consecutive symbols, the phase difference is unaffected by the channel,
and hence can be used to convey information. On the other hand, we see
from Figure 2.21 that the amplitude of b[n]b*[n— 1] differs from that of
r[n]r*[n—1]. Thus, some form of explicit amplitude estimation or tracking is
required in order to generalize differential modulation to QAM constellations.
How best to design differential modulation for QAM alphabets is still a
subject of ongoing research, and we do not discuss it further.

Figure 2.22 shows an example of how two information bits can be mapped
to phase transitions for differential QPSK. For example, if the information
bits at time n are i[n] = 00, then b[n] has the same phase as b[n — 1]. If

Transmitted symbols

bln-1]
[ ]
o binl
blnlb*[n-1]

Noiseless received samples

rln]l=hln] bln]
rln=11=hln-1] bln-11] N
X
x r[nlr*[n-11

Figure 2.21 Ignoring noise, the phase transitions between successive symbols remain unchanged after
an arbitrary phase offset induced by the channel. This motivates differential modulation as a means of
dealing with unknown or slowly time-varying channels.
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Figure 2.22 Mapping
information bits to phase
transitions in differential QPSK.

2.7 Differential modulation

10

01

./11

i[n] = 10, then b[n] = &/™2b[n — 1], and so on, where the symbols b[n] take
values in {e/™/4, eP37/4 l7/4 eTm/4],

We now discuss the special case of binary differential PSK (DPSK), which
has an interesting interpretation as orthogonal modulation. For a BPSK alpha-
bet, suppose that the information bits {i[n]} take values in {0, 1}, the trans-
mitted symbols {b[n]} take values in {—1, +1}, and the encoding rule is as
follows:

b[n] =b[n—1]if i[n]=0,
b[n] = —=b[n—1] if i[n]=1.

If we think of the signal corresponding to i[n] as s[n] = (b[n — 1], b[n]), then
s[n] can take the following values:

for i[n] = 0, s[n] = +s,, where s, = (+1, +1),
for i[n] = 1,s[n] =+s,, where s, = (+1, —1).

The signals s, and s, are orthogonal. Note that s[n] = (b[n — 1], b[n]) =
b[n —1](1, b[n]/b|n —1]). Since b[n]/b[n—1] depends only on the infor-
mation bit i[n], the direction of s[n] depends only on i[n], while there is a
sign ambiguity due to b[n — 1]. Not knowing the channel /[n] would impose
a further phase ambiguity. Thus, binary DPSK can be interpreted as binary
noncoherent orthogonal signaling, with the signal duration spanning two sym-
bol intervals. However, there is an important distinction from standard binary
noncoherent orthogonal signaling, which conveys one bit using two complex
degrees of freedom. Binary DPSK uses the available degrees of freedom more
efficiently by employing overlapping signaling intervals for sending succes-
sive information bits: the signal (b[n], b[n —1]) used to send i[n] has one
degree of freedom in common with the signal (b[n+ 1], b[n]) used to send
i[n+ 1]. In particular, we need n+ 1 complex degrees of freedom to send n
bits. Thus, for large enough n, binary DPSK needs one complex degree of
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freedom per information bit, so that its bandwidth efficiency is twice that of
standard binary noncoherent orthogonal signaling.

A more detailed investigation of noncoherent communication and differen-
tial modulation is postponed to Chapter 4, after we have developed the tools
for handling noise and noncoherent processing.

Additional modulation schemes (and corresponding references for further
reading) are described in Chapter 8, when we discuss wireless communication.
Analytic computations of PSD for a variety of modulation schemes, including
line codes with memory, can be found in the text by Proakis [3]. Averaging
techniques for simulation-based computation of PSD are discussed in Chapter
8, Problem 8.29.

2.9.1 Signals and systems

Problem 2.1 A signal s(¢) and its matched filter are shown in Figure 2.4.

(a) Sketch the real and imaginary parts of the output waveform y(r) = (sx*
syr) (f) when s(7) is passed through its matched filter.

(b) Draw a rough sketch of the magnitude |y(7)|. When is the output magni-
tude the largest?

Problem 2.2 For s(f) = sinc(¢)sinc(2¢):

(a) Find and sketch the Fourier transform S(f).
(b) Find and sketch the Fourier transform U(f) of u(¢) = s(¢) cos(1007¢)
(sketch real and imaginary parts separately if U(f) is complex-valued).

Problem 2.3 For s(¢) = (10 — |¢[)];_ ;0 10)(1):

(a) Find and sketch the Fourier transform S(f).
(b) Find and sketch the Fourier transform U(f) of u(t) = s(¢) sin(10007¢)
(sketch real and imaginary parts separately if U(f) is complex-valued).

Problem 2.4 In this problem, we prove the Cauchy—Schwartz inequality
(2.5), restated here for convenience,

(s )l = | [ s o) ar| < st
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for any complex-valued signals s(¢) and r(¢), with equality if and only if one
signal is a scalar multiple of the other. For simplicity, we assume in the proof
that s(7) and r(¢) are real-valued.

(a) Suppose we try to approximate s(¢) by ar(t), a scalar multiple of r, where
a is a real number. That is, we are trying to approximate s by an element
in the subspace spanned by r. Then the error in the approximation is the
signal e(f) = s(¢) — ar(t). Show that the energy of the error signal, as a
function of the scalar a, is given by

J(@) = el = ls|* + @®|Irl]* — 2a(s, ).

(b) Note that J(a) is a quadratic function of a with a global minimum. Find
the minimizing argument a,;, by differentiation and evaluate J(a,,,). The
Cauchy—Schwartz inequality now follows by noting that the minimum
error energy is nonnegative. That is, it is a restatement of the fact that
J(@piy) = 0.

(c) Infer the condition for equality in the Cauchy—Schwartz inequality.

min

Note For a rigorous argument, the case when s(¢) = 0 or r(t) = 0 almost everywhere
should be considered separately. In this case, it can be verified directly that the
Cauchy—Schwartz condition is satisfied with equality.

(d) Interpret the minimizing argument a,,, as follows: the signal a,,r(t)
corresponds to the projection of s(¢) along a unit “vector” in the direction
of r(¢). The Cauchy—Schwartz inequality then amounts to saying that the
error incurred in the projection has nonnegative energy, with equality if
s(2) lies in the subspace spanned by r(¢).

Problem 2.5 Let us now show why using a matched filter makes sense for
delay estimation, as asserted in Example 2.1.2. Suppose that x(¢) = As(¢ —t,)
is a scaled and delayed version of s. We wish to design a filter /4 such that,
when we pass x through %, we get a peak at time f,, and we wish to make
this peak as large as possible. Without loss of generality, we scale the filter
impulse response so as to normalize it as [|A]| = ||s]].

(a) Using the Cauchy—Schwartz inequality, show that the output y is bounded
at all times as follows:

()] < [Allls]]*.

(b) Using the condition for equality in Cauchy—Schwartz, show that y(f,)
attains the upper bound in (a) if and only if h(f) = s*(—t) (we are
considering complex-valued signals in general, so be careful with the
complex conjugates). This means two things: y(¢#) must have a peak at
t = t,, and this peak is an upper bound for the output of any other choice
of filter (subject to the normalization we have adopted) at any time.
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Note We show in the next chapter that, under a suitable noise model, the matched
filter is the optimal form of preprocessing in a broad class of digital communication
systems.

2.9.2 Complex baseband representation

Problem 2.6 Consider a real-valued passband signal x,(f) whose Fourier
transform for positive frequencies is given by

V2, 20< f <22,
Re(X,(f)) =10, 0=<f<20,
0, 22<f<oo,

(1—f-22]), 21 < f <23,
0<f<2l,
23 < f < 0.

7
Im(X,(f)) = 0,
0,

(a) Sketch the real and imaginary parts of X, (f) for both positive and negative
frequencies.

(b) Specify the time domain waveform that you get when you pass
\/Exp(t) cos(407t) through a low pass filter.

Problem 2.7 Let v,(7) denote a real passband signal, with Fourier transform
V,(f) specified as follows for negative frequencies:

V() = f4+101, —101 < f <—-99,
P20, f<—=10lor —99 < f <0.

(a) Sketch V,,(f) for both positive and negative frequencies.

(b) Without explicitly taking the inverse Fourier transform, can you say
whether v, (7) = v,(—1) or not?

(c) Choosing f, = 100, find real baseband waveforms v,(#) and v,(¢) such
that

v, (1) = \/z(vc(t) cos 2mfyt — v,(t) sin 27 f t).
(d) Repeat (c) for f, = 101.

Problem 2.8 Consider the following two passband signals:
u,(1) = V2 sinc(21) cos 10077
and

v, (1) = V2 sinc(t) sin (lOlm + g) .



63

2.9 Problems

(a) Find the complex envelopes u(t) and v(z) for u
with respect to the frequency reference f, = 50.

(b) What is the bandwidth of u,(r)? What is the bandwidth of v,(¢)?

(c) Find the inner product (u,, v,), using the result in (a).

(d) Find the convolution y,(#) = (u, *v,)(t), using the result in (a).

» and (A respectively,

Problem 2.9 Let u(r) denote a real baseband waveform with Fourier trans-
form for f > O specified by

™ 0<f<l,

U(f):{o f>1

(a) Sketch Re(U(f)) and Im(U(f)) for both positive and negative frequencies.
(b) Find u(z).
Now, consider the bandpass waveform v(f) generated from u(t) as
follows:
v(t) = V2u(t) cos 20071,

(c) Sketch Re(V(f)) and Im(V(f)) for both positive and negative frequencies.
(d) Let y(t) = (v* hy,)(t) denote the result of filtering v(¢) using a high pass
filter with transfer function

i = |

Find real baseband waveforms y., y, such that

1 |f] =100
0 else.

¥(1) = V2(y,(f) cos 2007t — y, (1) sin 20077¢).

(e) Finally, pass y() cos2007r¢ through an ideal low pass filter with transfer
function

Lfl=1

0 else.

() - |

How is the result related to u(t)?

Remark It is a good idea to draw pictures of what is going on in the
frequency domain to get a good handle on this problem.

Problem 2.10 Consider a passband filter whose transfer function for f > 0
is specified by

1 fe=2=f=f
0 else.

Let y,(¢) denote the output of the filter when fed by a passband signal u,(t).
We would like to generate y,(#) from u,(¢) using baseband processing in the
system shown in Figure 2.23.
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Figure 2.23 Implementation of
a passband filter using
downconversion, baseband
operations and upconversion
(Problem 2.10).

Modulation

o m - |
| |
| |
| |
Real
J2 cos 2t | baseek?and | J2 cos 2nf,t E
up(t) — ! operations ! = Yplt)
-J2sin2nfit ! only |~ 2sin 2nft
| |
| |
| |

(a) For f, = f, = f., sketch the baseband processing required, specifying
completely the transfer function of all baseband filters used. Be careful
with signs.

(b) Repeat (a) for f; = f.+1/2 and f, = f.—1/2.

Hint The inputs to the black box are the real and imaginary parts of the complex
baseband representation for u(7) centered at f,. Hence, we can use baseband filtering
to produce the real and imaginary parts for the complex baseband representation for
the output y(7) using f; as center frequency. Then use baseband processing to construct
the real and imaginary parts of the complex baseband representation for y(7) centered
at f,. These will be the output of the black box.

Problem 2.11 Consider a pure sinusoid s,(¢) = cos2mf.t, which is the
simplest possible example of a passband signal with finite power.

(a) Find the time-averaged PSD S,(f) and autocorrelation function R,(7),
proceeding from the definitions. Check that the results conform to your
intuition.

(b) Find the complex envelope s(¢), and its time-averaged PSD and autocor-
relation function. Check that the relation (2.70) holds for the passband
and baseband PSDs.

2.9.3 Random processes

Problem 2.12 Consider a passband random process n,(7) = Re(v/2n(r)
el?™e) with complex envelope n(t) = n.(t) +jn,(?).

(a) Given the time-averaged PSD for n,, can you find the time-averaged PSD
for n? Specify any additional information you might need.

(b) Given the time-averaged PSD for n,, can you find the time-averaged
PSDs for n, and n,? Specify any additional information you might need.

(c) Now, consider a statistical description of n,. What are the conditions on
n. and n for n, to be WSS? Under these conditions, what are the relations
between the statistically averaged PSDs of n,, n, n. and ng?

Problem 2.13 We discuss passband white noise, an important noise model
used extensively in Chapter 3, in this problem. A passband random process
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n,(t) = Re(+v/2n(1)e”™") with complex envelope n(f) = n () +jn,(t) has
PSD
S(f)z %’ |f_fc|5%0r |f+fc|§%’
" 0, else,
where n_, n, are independent and identically distributed zero mean random
processes.

(a) Find the PSD S, (f) for the complex envelope n.
(b) Find the PSDs S, (f) and S, (f) if possible. If this is not possible from
the given information, say what further information is needed.

Problem 2.14 1In this problem, we prove Theorem 2.3.1 regarding (wide
sense) stationarization of a (wide sense) cyclostationary process. Let s(¢)
be (wide sense) cyclostationary with respect to the time interval 7. Define
v(t) = s(t — D), where D is uniformly distributed over [0, 7] and independent
of s.

(a) Suppose that s is cyclostationary. Use the following steps to show that v
is stationary; that is, for any delay a, the statistics of v(¢) and v(¢ — a)
are indistinguishable.

(i) Show that a4 D = kT + D, where k is an integer, and D is a random
variable which is independent of s, and uniformly distributed over
[0, T1.
(ii) Show that the random process 5 defined by 5(¢f) = s(r — kT) is sta-
tistically indistinguishable from s.
(iii) Show that the random process ¥ defined by ¥(7) = v(t —a) = 5(t — D)
is statistically indistinguishable from v.

(b) Now, suppose that s is wide sense cyclostationary. Use the following
steps to show that u is WSS.

(i) Show that m,(f) = I/TfOT my(v) dv for all ¢. That is, the mean
function of v is constant.
(ii) Show that

T
R,(t,, 1) = 1/T/ R.(t+1t, —1,,1) dr.
0

This implies that the autocorrelation function of v depends only on
the time difference ¢, —¢,.

(c) Now, let us show that, under an intuitive notion of ergodicity, the auto-
correlation function for s, computed as a time average along a realization,
equals the autocorrelation function computed as a statistical average for its
stationarized version u. This means, for example, that it is the stationarized
version of a cyclostationary process which is relevant for computation of
PSD as a statistical average.
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(i) Show that s(¢)s* (¢ — 7) has the same statistics as s(t+T)s*(t+7T — 1)
for any t.
(i) Show that the time-averaged autocorrelation estimate

. 1 *
Rin== / s(1)s* (1 — 7)dr
o T2

can be rewritten, for 7, = KT (K a large integer), as

K/2

R (1)~ l/T/OT% > s(t+kT)s*(t+kT — 7)dr.

k=—K/2

(iii) Invoke the following intuitive notion of ergodicity: the time
average of the identically distributed random variables
{s(t+kT)s*(t+kT —7)} equals its statistical average
E[s(t)s*(t — 7)]. Infer that

R T
R.(71) > 1/T[ R.(t, 1 —7)dt = R,(7)
0

as K (and T,) becomes large.

Problem 2.15 In this problem, we derive the Nyquist criterion for ISI avoid-
ance. Let x(7) denote a pulse satisfying the time domain Nyquist condition
for signaling at rate 1/T: x(mT) = §,,, for all integer m. Using the inverse
Fourier transform formula, we have

x(m?) = [ : X(f)e?™ T4,

(a) Observe that the integral can be written as an infinite sum of integrals
over segments of length 1/7"

)
_ ’ j2mfmT
K1) = 32 /7 X(f)e*" " df.
(b) In the integral over the kth segment, make the substitution v = f —k/T.

Simplify to obtain

o A
x(mT) = T/ 1 B(v)e 2™ dy,
—2T

where B(f)=1/T > ;. _ . X(f +k/T).
(c) Show that B(f) is periodic in f with period P = 1/T, so that it can be

written as a Fourier series involving complex exponentials:

B =Y almlet,

m=—oo

where the Fourier series coefficients {a[m]} are given by

a|m] = %[Z B(f) e ™7/ df.
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(d) Conclude that x(mT) = a[—m], so that the Nyquist criterion is equivalent
to a[m] = §,,,. This implies that B(f) = 1, which is the desired frequency
domain Nyquist criterion.

Problem 2.16 In this problem, we derive the time domain response of
the frequency domain raised cosine pulse. Let R(f) = 1[7%,%]( f) denote an
ideal boxcar transfer function, and let C(f) = 7/2acos(7/a f)I[,%,% | denote
a cosine transfer function.

(a) Sketch R(f) and C(f), assuming that 0 < a < 1.
(b) Show that the frequency domain raised cosine pulse can be written as

S(f) = (RxCO)().

(c) Find the time domain pulse s(¢) = r(¢)c(t). Where are the zeros of s(¢)?
Conclude that s(¢/7) is Nyquist at rate 1/7.

(d) Sketch an argument that shows that, if the pulse s(¢/7) is used for BPSK
signaling at rate 1/7, then the magnitude of the transmitted waveform is
always finite.

Problem 2.17 Consider a pulse s(¢) = sinc(at)sinc(bt), where a > b.

(a) Sketch the frequency domain response S(f) of the pulse.

(b) Suppose that the pulse is to be used over an ideal real baseband channel
with one-sided bandwidth 400 Hz. Choose a and b so that the pulse is
Nyquist for 4-PAM signaling at 1200 bit/s and exactly fills the channel
bandwidth.

(c) Now, suppose that the pulse is to be used over a passband channel
spanning the frequencies 2.4-2.42 GHz. Assuming that we use 64-QAM
signaling at 60 Mbit/s, choose a and b so that the pulse is Nyquist and
exactly fills the channel bandwidth.

(d) Sketch an argument showing that the magnitude of the transmitted wave-
form in the preceding settings is always finite.

Problem 2.18 Consider the pulse

0=<[t]=T,
p(1) =
0, else.

Let P(f) denote the Fourier transform of p(¢).

(a) True or False The pulse p(¢) is Nyquist at rate 1/7.
(b) True or False The pulse p(¢) is square root Nyquist at rate 1/7 (i.e.,
|P(f)|* is Nyquist at rate 1/T).
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Problem 2.19 Consider the pulse p(z), whose Fourier transform satisfies:

L, 0<|fl <A,

P(fH=1 U, A<|f|<B,

0, else,
where A =250kHz and B = 1.25MHz.

(a) True or False The pulse p(¢) can be used for Nyquist signaling at rate
3 Mbps using an 8-PSK constellation.

(b) True or False The pulse p(#) can be used for Nyquist signaling at rate
4.5 Mbps using an 8-PSK constellation.

Problem 2.20 True or False Any pulse timelimited to duration 7 is square
root Nyquist (up to scaling) at rate 1/7.

Problem 2.21 (Effect of timing errors) Consider digital modulation at rate
1/T using the sinc pulse s(¢) = sinc(2Wr), with transmitted waveform

100

y(0) =3 b,s(t—(n—1T),

where 1/T is the symbol rate and {b,} is the bitstream being sent (assume
that each b, takes one of the values +1 with equal probability). The receiver
makes bit decisions based on the samples r, = y((n—1)T), n=1,...,100.

(a) For what value of T (as a function of W)is r,=b,, n=1,...,100?

Remark In this case, we simply use the sign of the nth sample r, as an
estimate of b,,.

(b) For the choice of T as in (a), suppose that the receiver sampling times
are off by 0.25 T. That is, the nth sample is given by r, = y((n — )T +

0.257), n=1,...,100. In this case, we do have ISI of different degrees
of severity, depending on the bit pattern. Consider the following bit
pattern:

b (="' 1 <n<49,
"l (=" 50 <n<100.

Numerically evaluate the 50th sample r5,. Does it have the same sign as
the 50th bit bs,?

Remark The preceding bit pattern creates the worst possible ISI for the
50th bit. Since the sinc pulse dies off slowly with time, the ISI contribu-
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tions from the 99 bits other than the 50th sample sum up to a number
larger in magnitude, and opposite in sign, relative to the contribution due to
bsy,. A decision on by, based on the sign of r5, would therefore be wrong.
This sensitivity to timing error is why the sinc pulse is seldom used in
practice.

(c) Now, consider the digitally modulated signal in (a) with the pulse s(¢) =
sinc(2Wr)sinc(Wt). For ideal sampling as in (a), what are the two values
of T such that r, = b,?

(d) For the smaller of the two values of T found in (c) (which corresponds
to faster signaling, since the symbol rate is 1/7T), repeat the computation
in (b). That is, find r5, and compare its sign with by, for the bit pattern
in (b).

(e) Find and sketch the frequency response of the pulse in (c). What is the
excess bandwidth relative to the pulse in (a), assuming Nyquist signaling
at the same symbol rate?

(f) Discuss the impact of the excess bandwidth on the severity of the ISI due
to timing mismatch.

Problem 2.22 (PSD for linearly modulated signals) Consider the linearly
modulated signal

s(t)y= Y b[n]p(t—nT).

(a) Show that s is cyclostationary with respect to the interval T if {b[n]} is
stationary.

(b) Show that s is wide sense cyclostationary with respect to the interval T
if {b[n]} is WSS.

(c) Assume that {b[n]} is zero mean, WSS with autocorrelation function
R,[k] = E[b[n]b*[n — k]]. The z-transform of R, is denoted by S,(z) =
Yo R,[k]z7*. Let v(7) = s(t — D) denote the stationarized version of
s, where D is uniform over [0, 7] and independent of s. Show that the
PSD of v is given by

PP

S.(f) = S, = (2.86)

For uncorrelated symbols with equal average energy (i.e., R,[k] = 025,),
we have S,(z) = o7, and the result reduces to Theorem 2.5.1.

(d) Spectrum shaping via line coding We can design the sequence {b[n]}
using a line code so as to shape the PSD of the modulated signal v. For
example, for physical baseband channels, we might want to put a null
at DC. For example, suppose that we wish to send i.i.d. symbols {a[n]}
which take values &1 with equal probability. Instead of sending a[n]
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directly, we can send b[n] = a[n] — a[n — 1]. The transformation from
a[n] to b[n] is called a line code.

(i) What is the range of values taken by b[n]?
(ii) Show that there is a spectral null at DC.
(iii) Find a line code of the form b[n] = a[n]+ ka[n — 1] which puts a
spectral null at f =1/2T.

Remark The preceding line code can be viewed as introducing ISI in a
controlled fashion, which must be taken into account in receiver design.
The techniques for dealing with controlled ISI (introduced by a line code)
and uncontrolled ISI (introduced by channel distortion) operate on the same
principles. Methods for handling ISI are discussed in Chapter 5.

Problem 2.23 (Linear modulation using alphabets with nonzero mean)
Consider again the linearly modulated signal

s0)= Y blalplt—nT),

n=—oo

where {b[n]} is WSS, but with nonzero mean b = E [b[n]].

(a) Show that we can write s as a sum of a deterministic signal 5 and a zero
mean random signal § as follows:

s(t) =5(0) +5(¢),
where
5(=>b i p(t—nT)
and

5= > Blalp(t—nT),

where b[n] = b[n] — b is zero mean, WSS with autocorrelation function
R;[k] = C,[k], where C,[k] is the autocovariance function of the symbol
sequence {b[n]}.

(b) Show that the PSD of s is the sum of the PSDs of 5 and 5, by showing
that the two signals are uncorrelated.

(c) Note that the PSD of 5 can be found using the result of Problem 2.22(c).
It remains to find the PSD of 5. Note that 5 is periodic with period 7. It
can therefore be written as a Fourier series

5(6) = Y alk]e?™T,

k

where

T .
aln] = 1T /0 5(1)e 2™ dy,
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Figure 2.24 The envelope of a
PSK signal passes through zero
during a 180 degree phase
transition, and gets distorted
over a nonlinear channel.
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Argue that the PSD of s is given by
) k
SN =Y lalkIPs (f == ).
k

(d) Find the PSD for the unipolar NRZ baseband line code in Figure 2.14
(set A=1 and B =0 in the NRZ code in the figure).

Problem 2.24 (OQPSK and MSK) Linear modulation with a bandlimited
pulse can perform poorly over nonlinear passband channels. For example, the
output of a passband hardlimiter (which is a good model for power amplifiers
operating in a saturated regime) has constant envelope, but a PSK signal
employing a bandlimited pulse has an envelope that passes through zero
during a 180 degree phase transition, as shown in Figure 2.24. One way to
alleviate this problem is to not allow 180 degree phase transitions. Offset
QPSK (OQPSK) is one example of such a scheme, where the transmitted
signal is given by

0= 3 blilento-nD) +iblen (1-07= 3 ). @87

n=-—oo

where {b_[n]}, b[n] are £1 BPSK symbols modulating the I and Q channels,
with the I and Q signals being staggered by half a symbol interval. This leads
to phase transitions of at most 90 degrees at integer multiples of the bit time
T, = T/2. Minimum shift keying (MSK) is a special case of OQPSK with
timelimited modulating pulse

grx(0) =sin (22) I (. (2.88)

(a) Sketch the I and Q waveforms for a typical MSK signal, clearly showing
the timing relationship between the waveforms.

(b) Show that the MSK waveform has constant envelope (an extremely desir-
able property for nonlinear channels).

(c) Find an analytical expression for the PSD of an MSK signal, assuming
that all bits sent are i.i.d., taking values +1 with equal probability. Plot
the PSD versus normalized frequency f7T.

(d) Find the 99% power containment normalized bandwidth of MSK. Com-
pare with the minimum Nyquist bandwidth, and the 99% power contain-
ment bandwidth of OQPSK using a rectangular pulse.

/ \ Envelope is zero due to 180 degree phase transition
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(e) Recognize that Figure 2.17 gives the PSD for OQPSK and MSK, and
reproduce this figure, normalizing the area under the PSD curve to be the
same for both modulation formats.

Problem 2.25 (FSK tone spacing) Consider two real-valued passband
pulses of the form

5o(t) = cosQmfyt+ dy), 0<t<T,
s;(t) =cosQmfit+¢,), 0<t<T,

where f, > f, > 1/T. The pulses are said to be orthogonal if (s, s,) =
T
Jo So(t)s;(1)dt =0.

(a) If ¢y = ¢, =0, show that the minimum frequency separation such that
the pulses are orthogonal is f, — f, = 1/2T.

(b) If ¢, and ¢, are arbitrary phases, show that the minimum separation for
the pulses to be orthogonal regardless of ¢, ¢, is f, — f, = 1/T.

Remark The results of this problem can be used to determine the bandwidth
requirements for coherent and noncoherent FSK, respectively.

Problem 2.26 (Walsh-Hadamard codes)

(a) Specify the Walsh-Hadamard codes for 8-ary orthogonal signaling with
noncoherent reception.

(b) Plot the baseband waveforms corresponding to sending these codes using
a square root raised cosine pulse with excess bandwidth of 50%.

(c) What is the fractional increase in bandwidth efficiency if we use these
eight waveforms as building blocks for biorthogonal signaling with coher-
ent reception?

Problem 2.27 (Bandwidth occupancy as a function of modulation format)
We wish to send at a rate of 10 Mbit/s over a passband channel. Assuming
that an excess bandwidth of 50% is used, how much bandwidth is needed
for each of the following schemes: QPSK, 64-QAM, and 64-ary noncoherent
orthogonal modulation using a Walsh—Hadamard code?

Problem 2.28 (Binary DPSK) Consider binary DPSK with encoding as
described in Section 2.7. Assume that we fix »[0] = —1, and that the stream
of information bits {i[n],n=1,..., 10} to be sent is 0110001011.

(a) Find the transmitted symbol sequence {b[n]} corresponding to the pre-
ceding bit sequence.

(b) Assuming that we use a rectangular timelimited pulse, draw the corre-
sponding complex baseband transmitted waveform. Is the Q component
being used?
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(c) Now, suppose that the channel imposes a phase shift of —7/6. Draw the
I and Q components of the noiseless received complex baseband signal.

(d) Suppose that the complex baseband signal is sent through a matched filter
to the rectangular timelimited pulse, and is sampled at the peaks. What
are the received samples {r[n]} that are obtained corresponding to the
transmitted symbol sequence {b[n]}?

(e) Find r[2]r*[1]. How do you figure out the information bit i[2] based on
this complex number?

Problem 2.29 (Differential QPSK) Consider differential QPSK as shown
in Figure 2.22. Suppose that b[0] = e ™4, and that b[1], b[2], ..., b[10] are
determined by using the mapping shown in the figure, where the information
bit sequence to be sent is given by 00, 11, 01, 10, 10,01, 11, 00, 01, 10.

(a) Specify the phases arg(b[n]), n=1, .., 10.

(b) If you received noisy samples r{1] =2 —j and 2] = 1+j, what would
be a sensible decision for the pair of bits corresponding to the phase
transition from n =1 to n =27 Does this match the true value of these
bits? (A systematic treatment of differential demodulation in the presence
of noise is given in Chapter 4.)
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We now know that information is conveyed in a digital communication system
by selecting one of a set of signals to transmit. The received signal is a
distorted and noisy version of the transmitted signal. A fundamental problem
in receiver design, therefore, is to decide, based on the received signal, which
of the set of possible signals was actually sent. The task of the link designer
is to make the probability of error in this decision as small as possible, given
the system constraints. Here, we examine the problem of receiver design for a
simple channel model, in which the received signal equals one of M possible
deterministic signals, plus white Gaussian noise (WGN). This is called the
additive white Gaussian noise (AWGN) channel model. An understanding
of transceiver design principles for this channel is one of the first steps in
learning digital communication theory. White Gaussian noise is an excellent
model for thermal noise in receivers, whose PSD is typically flat over most
signal bandwidths of interest.

In practice, when a transmitted signal goes through a channel, at the very
least, it gets attenuated and delayed, and (if it is a passband signal) undergoes a
change of carrier phase. Thus, the model considered here applies to a receiver
that can estimate the effects of the channel, and produce a noiseless copy of
the received signal corresponding to each possible transmitted signal. Such a
receiver is termed a coherent receiver. Implementation of a coherent receiver
involves synchronization in time, carrier frequency, and phase, which are all
advanced receiver functions discussed in the next chapter. In this chapter,
we assume that such synchronization functions have already been taken care
of. Despite such idealization, the material in this chapter is perhaps the most
important tool for the communication systems designer. For example, it is the
performance estimates provided here that are used in practice for link budget
analysis, which provides a methodology for quick link designs, allowing for
nonidealities with a link margin.



75

3.1 Gaussian basics

3.1 Gaussian basics

Prerequisites for this chapter We assume a familiarity with the mod-
ulation schemes described in Chapter 2. We also assume familiarity with
common terminology and important concepts in probability, random vari-
ables, and random processes. See Appendix A for a quick review, as well as
for recommendations for further reading on these topics.

Map of this chapter In this chapter, we provide the classical derivation of
optimal receivers for the AWGN channel using the framework of hypothesis
testing, and describe techniques for obtaining quick performance estimates.
Hypothesis testing is the process of deciding which of a fixed number of
hypotheses best explains an observation. In our application, the observation
is the received signal, while the hypotheses are the set of possible signals
that could have been transmitted. We begin with a quick review of Gaussian
random variables, vectors and processes in Section 3.1. The basic ingredients
and concepts of hypothesis testing are developed in Section 3.2. We then
show in Section 3.3 that, for M-ary signaling in AWGN, the receiver can
restrict attention to the M-dimensional signal space spanned by the M signals
without loss of optimality. The optimal receiver is then characterized in
Section 3.4, with performance analysis discussed in Section 3.5. In addition
to the classical discussion of hard decision demodulation, we also provide
a quick introduction to soft decisions, as a preview to their extensive use
in coded systems in Chapter 7. We end with an example of a link budget
in Section 3.7, showing how the results in this chapter can be applied to
get a quick characterization of the combination of system parameters (e.g.,
signaling scheme, transmit power, range, and antenna gains) required to obtain
an operational link.

Notation This is the chapter in which we begin to deal more extensively with random
variables, hence it is useful to clarify and simplify notation at this point. Given a
random variable X, a common notation for probability density function or probability
mass function is py(x), with X denoting the random variable, and x being a dummy
variable which we might integrate out when computing probabilities. However, when
there is no scope for confusion, we use the less cumbersome (albeit incomplete)
notation p(x), using the dummy variable x not only as the argument of the density, but
also to indicate that the density corresponds to the random variable X. (Similarly, we
would use p(y) to denote the density for a random variable Y.) The same convention
is used for joint and conditional densities as well. For random variables X and Y,
we use the notation p(x, y) instead of py y(x, y), and p(y|x) instead of pyx(y|x), to
denote the joint and conditional densities, respectively.

The key reason why Gaussian random variables crop up so often in both natu-
ral and manmade systems is the central limit theorem (CLT). In its elementary
form, the CLT states that the sum of a number of independent and identically
distributed random variables is well approximated as a Gaussian random vari-
able. However, the CLT holds in far more general settings: without going into
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Figure 3.1 The shape of an
N(=5, 4) density.
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technical detail, it holds as long as dependencies or correlations among the ran-
dom variables involved in the sum die off rapidly enough, and no one random
variable contributes too greatly to the sum. The Gaussianity of receiver ther-
mal noise can be attributed to its arising from the movement of a large num-
ber of electrons. However, because the CLT kicks in with a relatively small
number of random variables, we shall see the CLT invoked in a number of
other contexts, including performance analysis of equalizers in the presence
of IST as well as AWGN, and the modeling of multipath wireless channels.

Gaussian random variable The random variable X is said to follow a
Gaussian, or normal distribution if its density is of the form:

exp <—M>, —00 < X < 00, (3.1)

p(x) = S 70

where m = E[X] is the mean of X, and v? = var(X) is the variance of X.
The Gaussian density is therefore completely characterized by its mean and
variance. Figure 3.1 shows an N(—5,4) Gaussian density.

Notation for Gaussian distribution We use N(m, v?) to denote a Gaussian
distribution with mean m and variance v?, and use the shorthand X ~ N(m, v?)
to denote that a random variable X follows this distribution.

Standard Gaussian random variable A zero mean, unit variance Gaussian
random variable, X ~ N(0, 1), is termed a standard Gaussian random variable.

An extremely important property of Gaussian random variables is that they
remain Gaussian when we scale them or add constants to them (i.e., when we
put them through an affine transformation).

Gaussianity is preserved under affine transformations If X is Gaussian,
then aX + b is Gaussian for any constants a and b.

In particular, probabilities involving Gaussian random variables can be
expressed compactly by normalizing them into standard Gaussian form.

plu)

-5 0 u
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Figure 3.2 The ® and Q
functions are obtained by plu)
integrating the N(0, 1) density
over appropriate intervals.

J«rﬂﬂ1
x | u

D(x) Q(x)

Conversion of a Gaussian random variable into standard form If X ~
N(m, v?), then (X —m) /v~ N(O, 1).

We set aside special notation for the cumulative distribution function (CDF)
®(x) and complementary cumulative distribution function (CCDF) Q(x) of a
standard Gaussian random variable. By virtue of the standard form conversion,
we can easily express probabilities involving any Gaussian random variable
in terms of the ® or Q functions. The definitions of these functions are
illustrated in Figure 3.2, and the corresponding formulas are specified below.

B(x) = PINO, 1) <] = [ m \/;_ﬂ_exp (-2) dr, (3.2)

o0 1 t2
Q(x)=P[NO, 1) > x| = ex (——) dr. 3.3
() =PINO. D = a1 = [ ——exn (=3 (3.3)
See Figure 3.3 for a plot of these functions. By definition, ®(x) + Q(x) = 1.

Furthermore, by the symmetry of the Gaussian density around zero, Q(—x) =
®(x). Combining these observations, we note that Q(—x) = 1 — Q(x), so that

Figure 3.3 The ® and Q

functions.
Q(x) D(x)
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it suffices to consider only positive arguments for the Q function in order to
compute probabilities of interest.

Example 3.1.1 X is a Gaussian random variable with mean m = —3
and variance v* = 4. Find expressions in terms of the Q function with
positive arguments for the following probabilities: P[X > 5], P[X < —1],
P[1 <X <4], P[X*+X>2].

Solution We solve this problem by normalizing X to a standard Gaussian
random variable X —mv = X+43/2:

P[X>5]=P[XT+3 > 5;3 } 0(4),
P[X < —1]=P[XTjL3 < _1;3 = 1} =d(1)=1-0(1),
Pl <X<4]=P[2: 1;3 < X;” < 4;3 :3.5} — B(3.5)— B(2)
=0(2)-0(.5).

Computation of the last probability needs a little more work to characterize
the event of interest in terms of simpler events:

P[X*+X>2]=P[X*+X-2>0]=P[(X+2)(X—-1) >0].

The factorization shows that X*+ X > 2 if and only if X+2 > 0 and
X—1>0,0or X+2 <0 and X —1 < 0. This simplifies to the disjoint
union (i.e., “or”) of the mutually exclusive events X > 1 and X < —2. We
therefore obtain

P[X*+X>2] = P[X>1]+P[X < —2]=Q<#)+q>(_22+3>
- Q(2)+<I>(%) =Q(z)+1—Q(§).

The Q function is ubiquitous in communication systems design, hence it
is worth exploring its properties in some detail. The following bounds on
the Q function are derived in Problem 3.3.

Bounds on Q(x) for large arguments

1 efxz/z —x2/2
(1 > J__Q()< rh x>0. (3.4)

These bounds are tight (the upper and lower bounds converge) for large
values of x.
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Figure 3.4 The Q function and
bounds.
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Upper bound on Q(x) useful for small arguments and for analysis
1 .
O(x) = 5e*”, x=0. (3.5)

This bound is tight for small x, and gives the correct exponent of decay for
large x. It is also useful for simplifying expressions involving a large number
of Q functions, as we see when we derive transfer function bounds for the
performance of optimal channel equalization and decoding in Chapters 5
and 7, respectively.

Figure 3.4 plots Q(x) and its bounds for positive x. A logarithmic scale is
used for the values of the function to demonstrate the rapid decay with x. The
bounds (3.4) are seen to be tight even at moderate values of x (say x > 2).

Notation for asymptotic equivalence Since we are often concerned with
exponential rates of decay (e.g., as SNR gets large), it is useful to introduce the
notation P = Q (as we take some limit), which means thatlog P/log Q — 1. An
analogous notation p ~ ¢ denotes, on the other hand, that p/qg — 1. Thus, P = Q
and log P ~ log Q are two equivalent ways of expressing the same relationship.

Asymptotics of Q(x) for large arguments For large x > 0, the exponential
decay of the Q function dominates. We denote this by

O(x)=e™?, x—oo, (3.6)

100 < T T T T T T T

L — Q(x)

102+ .. — - Lower bound (3.4) g
- + = Upper bound (3.4)

-+« Upper bound 2 (3.5)

108

108

10710

10—12 -

1074

10—16 I I I I I I I
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which is shorthand for the following limiting result:

log 0(x) 8@ - (3.7)
x—o00 —x2/2
This can be proved by application of the upper and lower bounds in (3.4). The
asymptotics of the Q function play a key role in design of communication
systems. Events that cause bit errors have probabilities involving terms such
as Q(v/a SNR) = e~ SNR/2 a5 a function of the signal-to-noise ratio (SNR).
When there are several events that can cause bit errors, the ones with the
smallest rates of decay a dominate performance, and we often focus on these
worst-case events in our designs for moderate and high SNR. This simplistic
view does not quite hold in heavily coded systems operating at low SNR, but
is still an excellent perspective for arriving at a coarse link design.

Often, we need to deal with multiple Gaussian random variables defined
on the same probability space. These might arise, for example, when we sam-
ple filtered WGN. In many situations of interest, not only are such random
variables individually Gaussian, but they satisfy a stronger joint Gaussianity
property. Before discussing joint Gaussianity, however, we review mean and
covariance for arbitrary random variables defined on the same probability space.

Mean vector and covariance matrix Consider an arbitrary m-dimensional
random vector X = (X,, ..., X,,)". The m x 1 mean vector of X is defined
asmy, = E[X] = (E[X,],...,E[X,])T. The m x m covariance matrix Cy has
its (i, j)th entry given by

Cyx (i, j) = cov(X;, Xj)

E[(X; — E[X:D(X; — E[X;])]
E[X:X;] - E[X;]E[X]].

More compactly,
Cy = E[(X - E[X])(X - E[X])] = E[XX"] - E[X](E[X])".

Some properties of covariance matrices are explored in Problem 3.31.

Variance Variance is the covariance of a random variable with itself.
var(X) = cov(X, X).

We can also define a normalized version of covariance, as a scale-independent
measure of the correlation between two random variables.

Correlation coefficient The correlation coefficient p(X,, X,) between ran-
dom variables X, and X, is defined as the following normalized version of

their covariance:
cov(X,, X,)

Vvar(X,)var(X,) .

p(X;, X,) =
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Using the Cauchy—Schwartz inequality for random variables, it can be shown
that |p(X,, X,)| < 1, with equality if and only if X, = aX, + b with probability
one, for some constants a, b.

Notes on covariance computation Computations of variance and covari-
ance come up often when we deal with Gaussian random variables, hence it
is useful to note the following properties of covariance.

Property I Covariance is unaffected by adding constants.
cov(X+a,Y+b)=cov(X,Y) for any constants a, b.

Covariance provides a measure of the correlation between random variables
after subtracting out their means, hence adding constants to the random vari-
ables (which changes their means) does not affect covariance.

Property 2 Covariance is a bilinear function.
cov(a, X, +a,X,, a3 X5+ a,X,) = a,ascov(X,, X5) +a,a.cov(X;, X,)
+ a,ascov(X,, X3) +a,a,cov(X,, X,).

By Property 1, it is clear that we can always consider zero mean versions of
random variables when computing the covariance. An example that frequently
arises in performance analysis of communication systems is a random variable
which is a sum of a deterministic term (e.g., due to a signal), and a zero mean
random term (e.g., due to noise). In this case, dropping the signal term is
often convenient when computing variance or covariance.

Mean and covariance evolution under affine transformations Consider
an m x 1 random vector X with mean vector my and covariance matrix Cy.
Define Y = AX +b, where A is an n x m matrix, and b is an n x 1 vector.
Then the random vector Y has mean vector m, = Amy + b and covariance
matrix C, = ACxAT. To see this, first compute the mean vector of Y using
the linearity of the expectation operator:

m, = E[Y]|=E[AX+b]=AE[X]+b =Amy +b. (3.8)
This also implies that the “zero mean” version of Y is given by

Y - E[Y]=(AX+b) — (Amx +b) = A(X —my),
so that the covariance matrix of Y is given by

C, =E[(Y—E[Y)(Y-E[Y])"] = E[A(X—my)(X —my)"AT] = ACxA".
(3.9)

Mean and covariance evolve separately under affine transformations
The mean of Y depends only on the mean of X, and the covariance of Y
depends only on the covariance of X. Furthermore, the additive constant b in
the transformation does not affect the covariance, since it influences only the
mean of Y.
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Jointly Gaussian random variables, or Gaussian random vectors Ran-
dom variables X, ..., X,, defined on a common probability space are said
to be jointly Gaussian, or the m x 1 random vector X = (X,,..., X,,)" is
termed a Gaussian random vector, if any linear combination of these random
variables is a Gaussian random variable. That is, for any scalar constants
the random variable a, X, + - - +a,,X,, is Gaussian.

Ay, ...,q,,

A Gaussian random vector is completely characterized by its mean vector
and covariance matrix The definition of joint Gaussianity only requires
us to characterize the distribution of an arbitrarily chosen linear combination
of X,,...,X,,. For a Gaussian random vector X = (X,, ..., X,,)7, consider
Y=aX+---+a,X,, where a,,...,a, can be any scalar constants. By
definition, Y is a Gaussian random variable, and is completely characterized
by its mean and variance. We can compute these in terms of m, and C using
(3.8) and (3.9) by noting that ¥ =a’X, where a = (a,,...,a,)". Thus,

my =a’'my,

Cy =var(Y) =a’Cya.

We have, therefore, shown that we can characterize the mean and variance,
and hence the density, of an arbitrarily chosen linear combination Y if and only
if we know the mean vector my and covariance matrix Cy. This implies the
desired result that the distribution of Gaussian random vector X is completely
characterized by m, and C,.

Notation for joint Gaussianity We use the notation X ~ N(m, C) to denote
a Gaussian random vector X with mean vector m and covariance matrix C.
The preceding definitions and observations regarding joint Gaussianity apply
even when the random variables involved do not have a joint density. For exam-
ple, it is easy to check that, according to this definition, X, and X, = 2X, —
3 are jointly Gaussian. However, the joint density of X, and X, is not well
defined (unless we allow delta functions), since all of the probability mass in
the two-dimensional (x,, x,) plane is collapsed onto the line x, = 2x; — 3.
Of course, since X, is completely determined by X,, any probability involv-
ing X, X, can be expressed in terms of X, alone. In general, when the m-
dimensional joint density does not exist, probabilities involving X,, ..., X
can be expressed in terms of a smaller number of random variables, and can

m
be evaluated using a joint density over a lower-dimensional space. A simple

necessary and sufficient condition for the joint density to exist is as follows:

Joint Gaussian density exists if and only if the covariance matrix is
invertible The proof of this result is sketched in Problem 3.32.
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Joint Gaussian density For X = (X, ..., X,,) ~ N(m, C), if C is invert-
ible, the joint density exists and takes the following form:

1 T (-1
—z(x—m) C (x—m)).
(3.10)

p(xys. .., x,) =pXx)= mexp(

In Problem 3.32, we derive the joint density above, starting from the definition
that any linear combination of jointly Gaussian random variables is a Gaussian
random variable.

Uncorrelatedness X, and X, are said to be uncorrelated if cov(X;, X,) =0.

Independent random variables are uncorrelated If X, and X, are inde-
pendent, then

cov(Xy, X;) = E[X, X,] - E[X,|E[X,] = E[ X, |E[X,] — E[X,]E[X,] = 0.

The converse is not true in general, but does hold when the random variables
are jointly Gaussian.

Uncorrelated jointly Gaussian random variables are independent This
follows from the form of the joint Gaussian density (3.10). If X,,..., X,, are
pairwise uncorrelated and joint Gaussian, then the covariance matrix C is diag-
onal, and the joint density decomposes into a product of marginal densities.

Example 3.1.2 (Variance of a sum of random variables) For random
variables X,, ..., X,,

m

var(X,+---+X,)=cov(X, +--+X,, X, +--+X,)

m m

=) Y cov(X;, X))

i=1 j=1

m m
=) var(X,)+ ) cov(X,. X)).
i=1 i,i;:jl
Thus, for uncorrelated random variables, the variance of the sum equals
the sum of the variances:

var(X, +---+X,,) =var(X,)+---+var(X,,) for uncorrelated
random variables.

We now characterize the distribution of affine transformations of jointly
Gaussian random variables.
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Joint Gaussianity is preserved under affine transformations If X above
is a Gaussian random vector, then Y = AX + b is also Gaussian. To see this,
note that any linear combination of Y,,..., Y, equals a linear combination
of X;,...,X,, (plus a constant), which is a Gaussian random variable by
the Gaussianity of X. Since Y is Gaussian, its distribution is completely
characterized by its mean vector and covariance matrix, which we have just
computed. We can now state the following result:

If X ~ N(m, C), then

AX+b~ N(Am+b, ATCA). (3.11)

Example 3.1.3 (Computations with jointly Gaussian random variables)
The random variables X, and X, are jointly Gaussian, with E[X,]=1,
E[X,] = =2, var(X,) = 4, var(X,) = 1, and correlation coefficient
p(X, X,) = -1

(a) Write down the mean vector and covariance matrix for the random
vector X = (X, X,).

(b) Evaluate the probability P[2X, —3X, < 6] in terms of the Q function
with positive arguments.

(c) Suppose that Z = X, — aX,. Find the constant a such that Z is inde-
pendent of X.

Let us solve this problem in detail in order to provide a concrete illustration
of the properties we have discussed.

Solution to (a) The mean vector is given by
_(EX ) _( 1
me= ()= ()

We know the diagonal entries of the covariance matrix, which are simply
the variances of X, and X,. The cross terms

Cy(1,2) = Cy(2, 1) = p(X,, X,)/var(X,)var(X,) = — 14 = -2,

so that
4 -2
e (472

Solution to (b) The random variable Y = 2X, —3X, is Gaussian, by the
joint Gaussianity of X, and X,. To compute the desired probability, we
need to compute
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E[Y] = E[2X, —3X,] = 2E[X,] - 3E[X,] = 2(1) = 3(=2) = §;
var(Y) = cov(Y,Y) =cov(2X, —3X,,2X, —3X,)
= 4 cov(X;, X,) —6 cov(X,, X,)
—6 cov(X,, X,)+9 cov(X,, X,)
= 4(4) —6(—2) —6(—2)+9(1) = 49.
Thus,

P[2X, —3X, < 6] = P[Y < 6] = ¢<%> = (D<—§> = Q(%)

When using software such as MATLAB, which is good at handling vectors
and matrices, it is convenient to use vector-based computations. To do
this, we note that ¥ = AX, where A = (2, —3) is a row vector, and apply
(3.11) to conclude that

E[Y] = Am, = (2 —3) (_i) =3

and

var(Y) = cov(Y, Y) = ATC,A = (_§> <_‘2‘ f) (2 —3)=49.

Solution to (c) Since Z =X, —aX, and X, are jointly Gaussian (why?),
they are independent if they are uncorrelated. The covariance is given by

cov(Z, X,) =cov(X, —aX,, X,) =cov(X,, X,) —a cov(X,, X,) =4+ 2a,

so that we need a = —2 for Z and X, to be independent.

We are now ready to move on to Gaussian random processes, which are
just generalizations of Gaussian random vectors to an arbitrary number of
components (countable or uncountable).

Gaussian random process A random process X = {X(¢), t € T} is said to be
Gaussian if any linear combination of samples is a Gaussian random variable.

That is, for any number n of samples, any sampling times ¢, . . ., t,, and any
scalar constants a, . . ., a,, the linear combination a, X(#,) +- - -+ a,X(t,) is
a Gaussian random variable. Equivalently, the samples X(¢,), ..., X(t,) are

jointly Gaussian.

A linear combination of samples from a Gaussian random process is com-
pletely characterized by its mean and variance. To compute the latter quanti-
ties for an arbitrary linear combination, we can show, as we did for random
vectors, that all we need to know are the mean function and the autocovariance
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function of the random process. These functions therefore provide a complete
statistical characterization of a Gaussian random process, since the definition
of a Gaussian random process requires only that we be able to characterize
the distribution of an arbitrary linear combination of samples.

Characterizing a Gaussian random process The statistics of a Gaus-
sian random process are completely specified by its mean function my(¢) =
E[X(?)] and its autocovariance function Cy(t,, t,) = E[X(¢,) X(¢,)]. Since the
autocorrelation function Ry(¢,, t,) can be computed from Cy (¢, t,), and vice
versa, given the mean function my(¢), it also follows that a Gaussian random
process is completely specified by its mean and autocorrelation functions.

Wide sense stationary Gaussian random processes are stationary We
know that a stationary random process is WSS. The converse is not true in
general, but Gaussian WSS processes are indeed stationary. This is because the
statistics of a Gaussian random process are characterized by its first and second
order statistics, and if these are shift invariant (as they are for WSS processes),
the random process is statistically indistinguishable under a time shift.

As in the previous chapter, we use the notation Ry (7) and Cy(7) to denote
the autocorrelation and autocovariance functions, respectively, for a WSS
process. The PSD Sy (f) = F(Ry). We are now ready to define WGN.

White Gaussian noise Real-valued WGN n(¢) is a zero mean, WSS, Gaus-
sian random process with S, (f) = N,/2 = ¢2. Equivalently, R, (7) = %8(7) =
028(7). The quantity N,/2 = o2 is often termed the two-sided PSD of WGN,
since we must integrate over both positive and negative frequencies in order
to compute power using this PSD. The quantity N, is therefore referred to as
the one-sided PSD, and has the dimension of watt/hertz, or joules. Complex-
valued WGN has real and imaginary components modeled as i.i.d. real WGN
processes, and has two-sided PSD N, which is the sum of the two-sided PSDs
of its components. Figure 3.5 shows the role played by WGN in modeling
receiver noise in bandlimited systems.

WGN as model for receiver noise in bandlimited systems White Gaussian
noise has infinite power, whereas receiver noise power in any practical system
is always finite. However, since receiver processing always involves some
form of bandlimiting, it is convenient to assume that the input to the system
is infinite-power WGN. After filtering, the noise statistics obtained with this
simplified description are the same as those obtained by bandlimiting the
noise upfront. Figure 3.5 shows that real-valued WGN can serve as a model
for bandlimited receiver noise in a passband system, as well as for each of
the I and Q noise components after downconversion. It can also model the
receiver noise in a physical baseband system, which is analogous to using
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Figure 3.5 Since receiver processing always involves some form of band limitation, it is not necessary
to impose band limitation on the WGN model. Real-valued infinite-power WGN provides a simplified
description for both passband WGN, and for each of the | and Q components for complex baseband
WGN. Complex-valued infinite-power WGN provides a simplified description for bandlimited complex
baseband WGN.

only the I component in a passband system. Complex-valued WGN, on the
other hand, models the complex envelope of passband WGN. Its PSD is
double that of real-valued WGN because the PSDs of the real and imaginary
parts of the noise, modeled as i.i.d. real-valued WGN, add up. The PSD is
also double that of the noise model for passband noise; this is consistent with
the relations developed in Chapter 2 between the PSD of a passband random
process and its complex envelope.

Numerical value of noise PSD For an ideal receiver at room temperature,
we have
N, =kT,,

where k = 1.38 x 1072 joule/kelvin is Boltzmann’s constant, and 7, is a ref-
erence temperature, usually set to 290 K (“room temperature”) by convention.
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A receiver with a noise figure of F' dB has a higher noise PSD, given by

N, = kT107"°.

Example 3.1.4 (Noise power computation) A 5 GHz wireless local area
network (WLAN) link has a receiver bandwidth B of 20 MHz. If the
receiver has a noise figure of 6 dB, what is the receiver noise power P,?

Solution The noise power
P, = NyB=kT,10"7"°B = (1.38 x 107%)(290)(10°'%)(20 x 10°)

= 3.2x 107" watt = 3.2 x 107'° milliwatts (mW).

The noise power is often expressed in dBm, which is obtained by convert-
ing the raw number in milliwatts (mW) into dB. We therefore get

P, sgm = 10log,, P,(mW) = —95dBm.

3.2 Hypothesis testing basics

Hypothesis testing is a framework for deciding which of M possible hypothe-
ses, H,, ..., H,, “best” explains an observation Y. We assume that the obser-
vation Y takes values in a finite-dimensional observation space I'; that is, Y is
a scalar or vector. (It is possible to consider a more general observation space
I', but that is not necessary for our purpose.) The observation is related to the
hypotheses using a statistical model: given the hypothesis H;, the conditional
density of the observation, p(y|i), is known, for i = 1,..., M. In Bayesian
hypothesis testing, the prior probabilities for the hypotheses, (i) = P[H,],
i=1,...,M,are known (X", m(i) = 1). We often (but not always) consider
the special case of equal priors, which corresponds to (i) = 1/M for all
i=1,..., M.

Example 3.2.1 (Basic Gaussian example) Consider binary hypothesis
testing, in which H, corresponds to O being sent, H,; corresponds to 1
being sent, and Y is a scalar decision statistic (e.g., generated by sampling
the output of a receive filter or an equalizer). The conditional distribu-
tions for the observation given the hypotheses are H, : ¥ ~ N(0, v*) and
H,: Y ~ N(m,v?), so that

exp (—%) exp (——(y z_v’;’)z)
— PO =——.

p(y|0) = ;
0) 2702 2v?

(3.12)
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Figure 3.6 The conditional
densities and “sensible”
decision rule for the basic
Gaussian example.

3.2 Hypothesis testing basics

Decision rule A decision rule 6 : " — {1, ..., M} is a mapping from the
observation space to the set of hypotheses. Alternatively, a decision rule can
be described in terms of a partition of the observation space I' into disjoint
decision regions {I';,i=1,..., M}, where

Ii={yel:é(y)=i}.

That is, when y € I';, the decision rule says that H; is true.

Example 3.2.2 A “sensible” decision rule for the basic Gaussian example
(assuming that m > 0) is

_ 1, y>
O P

This corresponds to the decision regions I' = (5, ), and [}, = (—o0, 5

: (3.13)

MBS

The conditional densities and the “sensible” rule for the basic Gaussian exam-
ple are illustrated in Figure 3.6.

We would like to quantify our intuition that the preceding sensible rule,
which splits the difference between the means under the two hypotheses, is a
good one. Indeed, this rule need not always be the best choice: for example,
if we knew for sure that O was sent, then clearly a better rule is to say that H,
is true, regardless of the observation. Thus, a systematic framework is needed
to devise good decision rules, and the first step toward doing this is to define

ply|0)
N

m/2 m y

“Sensible” rule
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criteria for evaluating the goodness of a decision rule. Central to such criteria
is the notion of conditional error probability, defined as follows.

Conditional error probability For an M-ary hypothesis testing problem,
the conditional error probability, conditioned on H,, for a decision rule & is
defined as

P,; = P[say H; for some j # i|H, is true] =) P[Y €T}|H,]
J#i
=1-PYeT}|H], (3.14)

where we have used the equivalent specification of the decision rule in terms
of the decision regions it defines. We denote by P, = P[Y €I}|H,], the
conditional probability of correct decision, given H,.

If the prior probabilities are known, then we can define the (average) error
probability as

P = %ﬂ'(i)Pe‘,«. (3.15)

Similarly, the average probability of a correct decision is given by

P, =§7T(i)PC|i =1-P,. (3.16)

i=1

Example 3.2.3 The conditional error probabilities for the “sensible” deci-
sion rule (3.13) for the basic Gaussian example (Example 3.2.2) are

Pem:P[Y> %|H0] =Q(%>,

since Y ~ N(0, v?) under H,, and

Pel=P[Ys§|H1]=<b(%;m)=Q(2ﬂv),

since ¥ ~ N(m, v*) under H,. Furthermore, since P, = P, the average
error probability is also given by

r=o(2),

regardless of the prior probabilities.

Notation Let us denote by “arg max” the argument of the maximum. That is, for a
function f(x) with maximum occurring at x,, we have

max f(x) = f(xo), ~arg max f(x) = x,.
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Maximum likelihood decision rule The maximum likelihood (ML) deci-
sion rule is defined as

Oy () = arg max p(yli) =arg max logp(y[i). (3.17)

The ML rule chooses the hypothesis for which the conditional density of the
observation is maximized. In rather general settings, it can be proven to be
asymptotically optimal as the quality of the observation improves (e.g., as
the number of samples gets large, or the signal-to-noise ratio gets large). It
can be checked that the sensible rule in Example 3.2.2 is the ML rule for the
basic Gaussian example.

Another popular decision rule is the minimum probability of error (MPE)
rule, which seeks to minimize the average probability of error. It is assumed
that the prior probabilities {7(i)} are known. We now derive the form of the
MPE decision rule.

Derivation of MPE rule Consider the equivalent problem of maximizing
the probability of a correct decision. For a decision rule 6 corresponding
to decision regions {I';}, the conditional probabilities of making a correct
decision are given by

Py = [ pOlddy. i=1....M

and the average probability of a correct decision is given by
M

Po= Y w(i)Py; =Y 7() [ p(rli)ay.

i=1 i=1
Now, pick a point yeI'. If we see ¥ =y and decide H; (i.e., yeI}), the
contribution to the integrand in the expression for P, is (i)p(y|i). Thus,
to maximize the contribution to P, for that potential observation value y,
we should put y €I such that (i) p(y|i) is the largest. Doing this for each
possible y leads to the MPE decision rule. We summarize and state this as a
theorem below.

Theorem 3.2.1 (MPE decision rule) For M-ary hypothesis testing, the
MPE rule is given by

Owpe () = arg max ar(i)p(y|i) = arg max logm(i) +logp(yli). (3.18)

A number of important observations related to the characterization of the
MPE rule are now stated below.

Remark 3.2.1 (MPE rule maximizes posterior probabilities) By Bayes’
rule, the conditional probability of hypothesis H; given the observation is
Y =y is given by

m(D)p(yli)

P(Hi|y) = o)

s
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where p(y) is the unconditional density of ¥, given by p(y) = 3_; 7(j) p(y]))-
The MPE rule (3.18) is therefore equivalent to the maximum a posteriori
probability (MAP) rule, as follows:

Suap(y) = arg lfg,i’[fl P(H,y). (3.19)

This has a nice intuitive interpretation: the error probability is minimized by
choosing the hypothesis that is most likely, given the observation.

Remark 3.2.2 (ML rule is MPE for equal priors) By setting 7(i) = 1/M
in the MPE rule (3.18), we see that it specializes to the ML rule (3.17). For
example, the rule in Example 3.2.2 minimizes the error probability in the
basic Gaussian example, if 0 and 1 are equally likely to be sent. While the
ML rule minimizes the error probability for equal priors, it may also be used
as a matter of convenience when the hypotheses are not equally likely.

We now introduce the notion of a likelihood ratio, a fundamental notion
in hypothesis testing.

Likelihood ratio test for binary hypothesis testing For binary hypothesis
testing, the MPE rule specializes to

1, m(1)p(y|1) > m(0)p(y]0),
dwee(¥) =1 0, m(1)p(y[1) < m(0)p(y|0), (3.20)
don’t care, m(1)p(y[1) = m(0)p(y|0),

which can be rewritten as
Hl
_pO[) > (0)

~p(0) < (1)’
Hy

L(y) (3.21)

where L(y) is called the likelihood ratio (LR). A test that compares the
likelihood ratio with a threshold is called a likelihood ratio test (LRT). We
have just shown that the MPE rule is an LRT with threshold 7(0) / (1).
Similarly, the ML rule is an LRT with threshold one. Often, it is convenient
(and equivalent) to employ the log likelihood ratio test (LLRT), which consists
of comparing log L(y) with a threshold.

Example 3.2.4 (Likelihood ratio for the basic Gaussian example) Sub-
stituting (3.12) into (3.21), we obtain the likelihood ratio for the basic
Gaussian example as

L(y) = exp (% (my - m;)) . (3.22)
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We shall encounter likelihood ratios of similar form when considering the
more complicated scenario of a continuous-time signal in WGN. Comparing
log L(y) with zero gives the ML rule, which reduces to the decision rule
(3.13) for m > 0. For m < 0, the inequalities in (3.13) are reversed.

Irrelevant statistics In many settings, the observation Y to be used for
hypothesis testing is complicated to process. For example, over the AWGN
channel to be considered in the next section, the observation is a continuous-
time waveform. In such scenarios, it is useful to identify simpler decision
statistics that we can use for hypothesis testing, without any loss in perfor-
mance. To this end, we introduce the concept of irrelevance, which is used
to derive optimal receivers for signaling over the AWGN channel in the next
section. Suppose that we can decompose the observation into two compo-
nents: Y = (Y, Y,). We say that Y, is irrelevant for the hypothesis testing
problem if we can throw it away (i.e., use only Y, instead of Y) without any
performance degradation.
As an example, consider binary hypothesis testing with observation (Y;, Y,)
as follows:
H :Yy=m+N,, Y,=N,,

2
Hy:Y, =N, Y,=N,, (29

where N, ~ N(0,v?), N, ~ N(0,v?) are jointly Gaussian “noise” random
variables. Note that only Y, contains the “signal” component m. However,
does this automatically imply that the component Y,, which contains only
noise, is irrelevant? Intuitively, we feel that if N, is independent of N,, then
Y, will carry no information relevant to the decision. On the other hand, if
N, is highly correlated with N, then Y, contains valuable information that
we could exploit. As an extreme example, if N, = N,, then we could obtain
perfect detection by constructing a noiseless observation Y= Y, — Y,, which
takes value m under H, and value 0 under H,. Thus, a systematic criterion
for recognizing irrelevance is useful, and we provide this in the following
theorem.

Theorem 3.2.2 (Characterizing an irrelevant statistic) For M-ary hypoth-
esis testing using an observation Y = (Y}, Y,), the statistic Y, is irrelevant
if the conditional distribution of Y,, given Y, and H,, is independent of i. In
terms of densities, we can state the condition for irrelevance as p(y,|y,, i) =

p(aly,) for all i.

Proof If p(y,|y,,i) does not depend on i, then it is easy to see that
Ply1, D) =p(y,|y,) foralli=1, ..., M. The statistical relationship between
the observation Y and the hypotheses {H,} is through the conditional densities
{p(¥|i)}. We have

pOli) = p(yi, y.10) = p(yaly1, Dpili) = p(aly1) p(110).
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From the form of the MPE rule (3.18), we know that terms independent of i
can be discarded, which means that we can restrict attention to the conditional
densities p(y,|i) for the purpose of hypothesis testing. That is, Y, is irrelevant
for hypothesis testing. U

Example 3.2.5 (Application of irrelevance criterion) In (3.23), suppose
that N, is independent of N,. Then Y, = N, is independent of H; and N,
and hence of H; and Y, and

plyis i) = p(y,)s

which is a stronger version of the irrelevance condition in Theorem 3.2.2.
In the next section, we use exactly this argument when deriving optimal
receivers over AWGN channels.

We note in passing that the concept of sufficient statistic, which plays a
key role in detection and estimation theory, is closely related to that of an
irrelevant statistic. Consider a hypothesis testing problem with observation
Y. Consider the augmented observation ¥ = (¥, = f(Y), ¥, = Y), where f
is a function. Then f(Y) is a sufficient statistic if ¥, =Y is irrelevant for
hypothesis testing using Y. That is, once we know Y, = f(¥), we have all the
information we need to make our decision, and no longer need the original
observation ¥, =Y.

3.3 Signal space concepts

We are now ready to take the first step in deriving optimal receivers for
M-ary signaling in AWGN. We restrict attention to real-valued signals and
noise to start with (this model applies to passband and real baseband sys-
tems). Consider a communication system in which one of M continuous-time
signals, s,(?),...,s,(t) is sent. The received signal equals the transmitted
signal corrupted by AWGN. Of course, when we say “transmitted signal,” we
actually mean the noiseless copy produced by the coherent receiver of each
possible transmitted signal, accounting for the effects of the channel.

In the language of hypothesis testing, we have M hypotheses for explaining
the received signal, with

H :y@®)=s(t)+n(), i=1,...,M, (3.24)

where n(f) is WGN with PSD o? = N,/2. We show in this section that,
without any loss of detection performance, we can reduce the continuous-time
received signal to a finite-dimensional received vector.
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A note on signal and noise scaling Even before we investigate this model
in detail, we can make the following simple but important observation. If
we scale the signal and the noise by the same factor, the performance of
an optimal receiver remains the same (assuming that the receiver knows the
scaling). Consider a scaled observation y satisfying

H :5() = As.(t) + An(r), i=1,...,M. (3.25)

We can now argue, without knowing anything about the structure of the opti-
mal receiver, that the performance of optimal reception for models (3.24) and
(3.25) is identical. An optimal receiver designed for model (3.24) provides
exactly the same performance with model (3.25), by operating on y/A. Sim-
ilarly, an optimal receiver designed for model (3.25) would provide exactly
the same performance with model (3.25) by operating on Ay(r). Hence, the
performance of these two optimal receivers must be the same, otherwise we
could improve the performance of one of the optimal receivers simply by
scaling and using an optimal receiver for the scaled received signal. A con-
sequence of this observation is that system performance is determined by
the ratio of signal and noise strengths (in a sense to be made precise later),
rather than individually on the signal and noise strengths. Therefore, when
we discuss the structure of a given set of signals, our primary concern is with
the relative geometry of the signal set, rather than with scale factors that are
common to the entire signal set.

Next, we derive a fundamental property of WGN related to its distribution
when linearly transformed. Any number obtained by linear processing of
WGN can be expressed as the output of a correlation operation of the form

Z= /m n(Dyu(r)de = (n, ),

where u(r) is a deterministic, finite-energy, signal. Since WGN is a Gaussian
random process, we know that Z is a Gaussian random variable. To charac-
terize its distribution, therefore, we need only compute its mean and variance.
Since n has zero mean, the mean of Z is seen to be zero by the following
simple computation:

E[Z] = / E[n(1)]u(r)dt = 0,

where expectation and integral can be interchanged, both being linear oper-
ations. Instead of computing the variance of Z, however, we state a more
general result below on covariance, from which the result on variance can be
inferred. This result is important enough to state formally as a proposition.

Proposition 3.3.1 (WGN through correlators) Let u,(t) and u,(t) denote
finite-energy signals, and let n(t) denote WGN with PSD o = N,/2. Then
(n,u,) and {(n, u,) are jointly Gaussian with covariance

cov((n, uy), (n, u,)) = 0*(uy, uy).
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In particular, setting u, = u, = u, we obtain that

var({n, u)) = cov({n, uy, (n, u)) = o?||ul|*.

Proof of Proposition 3.3.1 The random variables (n, u,) and (n, u,) are
zero mean and jointly Gaussian, since n is zero mean and Gaussian. Their
covariance is computed as

cov((n. ), (. ) = E[(n,u,)(n, )] = E[[ n(t)u, (e [ n(s)uy(s)ds]
_ / / u, (1), (5)E[n()n(s)]dr ds
= /ful(t)uz(s)UZS(t—s)dt ds

a’zf u,(Huy(1)dt = a*(u,, u,).

This completes the proof. UJ

The preceding result is simple but powerful, leading to the following geo-
metric interpretation for white Gaussian noise.

Remark 3.3.1 (Geometric interpretation of WGN) Proposition 3.3.1
implies that the projection of WGN along any “direction” in the space of
signals (i.e., the result of correlating WGN with a unit energy signal) has
variance 0 = N, /2. Also, its projections in orthogonal directions are jointly
Gaussian and uncorrelated, and hence independent.

Armed with this geometric understanding of white Gaussian noise, we plan
to argue as follows:

(1) The signal space spanned by the M possible received signals is finite-
dimensional, of dimension at most M. There is no signal energy outside
this signal space, regardless of which signal is transmitted.

(2) The component of WGN orthogonal to the signal space is independent of
the component in the signal space, and its distribution does not depend on
which signal was sent. It is therefore irrelevant to our hypothesis testing
problem (it satisfies the condition of Theorem 3.2.2).

(3) We can therefore restrict attention to the signal and noise components
lying in the signal space. These can be represented by finite-dimensional
vectors, thus simplifying the problem immensely relative to our original
problem of detection in continuous time.

Let us now flesh out the details of the preceding chain of reasoning. We
begin by indicating how to construct a vector representation of the signal
space. The signal space S is the finite-dimensional subspace (of dimension
n < M) spanned by s,(?), ..., sy, (t). That is, 8 consists of all signals of
the form a,s,(¢)+-- -+ a,,s,,(¢), where a,, . . ., a,, are arbitrary scalars. Let
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P, (1), ..., ¢¥,(t) denote an orthonormal basis for §. Such a basis can be
constructed systematically by Gramm-Schmidt orthogonalization (described
below) of the set of signals s,(¢), . . ., s,(¢), or may be evident from inspec-
tion in some settings.

Example 3.3.1 (Developing a signal space representation for a 4-ary
signal set) Consider the example depicted in Figure 3.7, where there are
four possible received signals, s, ..., s,. It is clear from inspection that
these span a three-dimensional signal space, with a convenient choice of
basis signals,

b () =1_,0(), (1) =10y (D), P3(1) = I} 5 (D),

as shown in Figure 3.8. Let s; = (s;[1], s;[2], 5;[3])7 denote the vector
representation of the signal s; with respect to the basis, for i=1,...4.
That is, the coefficients of the vector s; are such that

5.(6) = 3 s [kl (9).

We obtain, again by inspection,

0 0 -1

ss=1(11, s, =111, ss=121, Sy = 1

1 0 0 -1
In general, for any signal set with M signals {s;(¢),i=1,..., M}, we can
find an orthonormal basis {¢,,k = 1,...,n}, where the dimension of the

signal space, n, is at most equal to the number of signals, M. The vector

Figure 3.7 Four signals 51(1) s)(t)
spanning a three-dimensional 2
signal space.
1 1
t t
0 2 -1 1
s3(1) s4(t)
2
1
t t
0 1 -1 0o |1 |2
-1
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Figure 3.8 An orthonormal
basis for the signal set in
Figure 3.7, obtained by
inspection.
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Pq(t) ¥olt) P3(t)
1 1 1
t t t
-1 0 0 1 0 1

representation of signal s;(f) with respect to the basis is given by s, =
(s;[1],...,s[n])T, where

slkl= (s ), i=1,...,. M, k=1,...,n.

Finding a basis by inspection is not always feasible. A systematic procedure
for finding a basis is Gramm—Schmidt orthogonalization, described next.

Gramm-Schmidt orthogonalization Letting S, denote the subspace
spanned by s, ..., s;, the Gramm-Schmidt algorithm proceeds iteratively:
given an orthonormal basis for §, it finds an orthonormal basis for &8, ;. The
procedure stops when k = M. The method is identical to that used for finite-
dimensional vectors, except that the definition of the inner product involves
an integral, rather than a sum, for the continuous-time signals considered here.

Step 1 (Initialization) Let ¢, =s,. If ¢, # 0, then set ¥, = ¢,/||$,||. Note
that ¢, provides a basis function for §,.

Step k+ 1 Suppose that we have constructed an orthonormal basis B, =
{¢,...4,} for the subspace S, spanned by the first k signals (note that
m < k). Define

Bear (0 = 5501 () — D (star. I 1),

i=1
The signal ¢, (¢) is the component of s, , (f) orthogonal to the subspace . If
¢y1 # 0, define a new basis function ¢, (1) = ¢, (2)/||$i;1 ]|, and update

thebasisas B, ., ={¢,.... ¥, ¥, }. If ¢, =0, thens, | €8,;,anditisnot
necessary to update the basis; in this case, we set B, = B, = {{, ..., ¢,}.
The procedure terminates at step M, which yields a basis B={{,, ..., ,}

for the signal space § = §,,. The basis is not unique, and may depend (and
typically does depend) on the order in which we go through the signals in the
set. We use the Gramm—Schmidt procedure here mainly as a conceptual tool,
in assuring us that there is indeed a finite-dimensional vector representation
for a finite set of continuous-time signals.

Exercise 3.3.1 (Application of the Gramm-Schmidt procedure) Apply
the Gramm-Schmidt procedure to the signal set in Figure 3.7. When the
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Figure 3.9 An orthonormal
basis for the signal set in
Figure 3.7, obtained by
applying the Gramm-Schmidt

procedure. The unknowns g, b,

and c are to be determined in
Exercise 3.3.1.
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U4(t) Uolt) 3t

2b

t t t
0 2 —1_b£)”14‘2 —1’ 0 1 |2

o

signals are considered in increasing order of index in the Gramm-Schmidt
procedure, verify that the basis signals are as in Figure 3.9, and fill in the
missing numbers. While the basis thus obtained is not as “nice” as the one
obtained by inspection in Figure 3.8, the Gramm-Schmidt procedure has the
advantage of general applicability.

Projection onto signal space We now project the received signal y(7)
onto the signal space to obtain an n-dimensional vector Y. Specifically,

set Y = ({y, ), ..., ). Under hypothesis H, (i = 1,..., M), we
have Y =s; + N, where s; = ({s;, #,), ..., (s, y, )T, i =1,..., M, and
N=({n,¢,),...,{n, ¢, )7 are obtained by projecting the signals and noise

onto the signal space. Note that the vector Y = (y[1], ..., y[n])? completely
describes the component of the received signal y(#) in the signal space, given by

3500 = 20 )0 = 2L ).
j= j=
The component of y(¢) orthogonal to the signal space is given by
P40 = 50 = 320) = 50 = L 0
j=
We now explore the structure of the signal space representation further.

Inner products are preserved We will soon show that performance of
optimal reception of M-ary signaling on an AWGN channel depends only
on the inner products between the signal, once the noise PSD is fixed. It is
therefore important to check that the inner products of the continuous-time
signals and their signal space counterparts remain the same. Specifically,
plugging in the representation of the signals in terms of the basis functions,
we get (s;[k] denotes (s;, i), for | <i<M, 1<k <n)

(si8) = (O, silKl, Z, sy =320 S skl [, )
- Zk 12[ 1 1 l]akl - Zk 1 z[k]s [ ] <Sz7 ]>
Recall that §,; denotes the Kronecker delta function, defined as

1 k=l
o, = ?
kl {0

k#1.
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In the above, we have used the orthonormality of the basis functions {1, k =
1,...,n} in collapsing the two summations into one.

Noise vector is discrete WGN The noise vector N = (N[1],..., N[n])”
corrupting the observation within the signal space is discrete-time WGN. That
is, it is a zero mean Gaussian random vector with covariance matrix o1, so
that its components {N[;]} are i.i.d. N(0, o) random variables. This follows
immediately from Proposition 3.3.1 and Remark 3.3.1.

Now that we understand the signal and noise structure within the signal
space, we state and prove the fundamental result that the component of the
received signal orthogonal to the signal space, y(t), is irrelevant for detection
in AWGN. Thus, it suffices to restrict attention to the finite-dimensional
vector Y in the signal space for the purpose of optimal reception in AWGN.

Theorem 3.3.1 (Restriction to signal space is optimal) For the model
(3.24), there is no loss in detection performance in ignoring the component
y1(t) of the received signal orthogonal to the signal space. Thus, it suffices
to consider the equivalent hypothesis testing model given by

H:Y=s,+N i=1,..., M.
Proof of Theorem 3.3.1 Conditioning on hypothesis H,, we first note that y*

does not have any signal contribution, since all of the M possible transmitted
signals are in the signal space. That is, for y(#) = s,(¢t) +n(t), we have

V() = (0 = 2 ) (1) = (1) +n(0) = X (s )4 ()

j=1

()= Y00 ,),(0) = ().

where n' is the noise contribution orthogonal to the signal space. Next, we
show that n' is independent of N, the noise contribution in the signal space.
Since nt and N are jointly Gaussian, it suffices to demonstrate that they are
uncorrelated. Specifically, for any # and k, we have

cov(n (1), Nk]) = E[n"(1)N[k]] = E[{n(r) _Z,n-=| NLjlgp; (1) }N[]]
= E[n()N[k]] - Z;l:l E[NINK]T, (). (3.26)
The first term on the extreme right-hand side can be simplified as
E[n()(n, )] = IE[n(t)/ n(s)i(s)ds]

= [ Bln(n()l(s)ds = [ 028(s = 1 (s)ds = oy, ().
(3.27)
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Plugging (3.27) into (3.26), and noting that E[N[j|N[k]] = %6 x» WE obtain
cov(n* (1), NIjl) = o* (1) — iy (1) = 0.

Thus, conditioned on H,, y* = n* does not contain any signal contribution, and
is independent of the noise vector N in the signal space. It is therefore irrelevant
to the detection problem; applying Theorem 3.2.2 in a manner exactly analogous
to the observation Y, in Example 3.2.5. (We have not discussed how to define
densities for infinite-dimensional random processes such as y*, but let us assume
this can be done. Then y* plays exactly the role of Y, in the example.) |

Example 3.3.2 (Application to two-dimensional linear modulation)
Consider linear modulation in passband, for which the transmitted signal
corresponding to a given symbol is of the form

Sp,.p (1) = Abp(t) (V2 cos 21 f,t) — Ab,p(1)(v/2sin 27 f, 1),

where the information is encoded in the pair of real numbers (b, b,), and
where p(t) is a baseband pulse whose bandwidth is smaller than the carrier
frequency f.. We assume that there is no intersymbol interference, hence
it suffices to consider each symbol separately. In this case, the signal space
is two-dimensional, and a natural choice of basis functions for the signal
space is ¥, (t) = ap(t) cos2mf.t and Y (¢) = ap(t)sin27f,t, where « is
a normalization constant. From Chapter 2, we know that ¢, and i, are
indeed orthogonal. The signal space representation for s, , (7) is therefore
(a possibly scaled version of) (b., b,)”. The absolute scaling of the signal
constellation can be chosen arbitrarily, since, as we have already observed,
it is the signal-to-noise ratio that determines the performance. The two-
dimensional received signal vector (the first dimension is the I component,
and the second the Q component) can therefore be written as

=)= )+ (%) 029

where N,, N, are ii.d. N(0,c*) random variables. While the received
vector y is written as a column vector above, we reuse the same nota-
tion (y or y) to denote the corresponding row vector (y,, y;) when conve-
nient. Figure 3.10 shows the signal space representations of some PSK and
QAM constellations (which we have just observed is just the symbol alpha-
bet). We have not specified the scale for the constellations, since it is the
constellation geometry, rather than the scaling, that determines performance.

Now that we have reduced the detection problem to finite dimensions, we can
write down the density of the observation Y, conditioned on the hypotheses,
and infer the optimal decision rules using the detection theory basics described
earlier. This is done in the next section.
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Figure 3.10 For linear
modulation with no
intersymbol interference, the
complex symbols themselves
provide a two-dimensional
signal space representation.
Three different constellations
are shown here.
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3.4 Optimal reception in AWGN

We begin with a theorem characterizing the optimal receiver when the
received signal is a finite-dimensional vector. Using this, we infer the optimal
receiver for continuous-time received signals.

Theorem 3.4.1 (Optimal detection in discrete-time AWGN) Consider the
finite-dimensional M-ary hypothesis testing problem where the observation
is a random vector Y modeled as

H:Y=s+N i=1,.... M, (3.29)

where N ~ N(0, 0*1) is discrete-time WGN.

(a) When we observe Y =y, the ML decision rule is a “minimum distance
rule,” given by

Is I
. 3.30
S (330)

= 1 —8S. 2: L) —
Oy (y) =arg min [ly —s,||"=arg max (y.s;)

(b) If hypothesis H; has prior probability (i), i=1,..., M (Y2, m(i)=1),
then the MPE decision rule is given by

Sype(y) =arg min ||y —s;||* — 20 log (i)

s |2
=arg max (y,si>—u~|—azlog7r(z’).

S (3.31)
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Proof of Theorem 3.4.1 Under hypothesis H;, Y is a Gaussian random
vector with mean s; and covariance matrix oI (the translation of the noise
vector N by the deterministic signal vector s; does not change the covariance
matrix), so that

1 |y —silI>
pyi(¥IH;) = Qrodyh exp (—T'z . (3.32)

Plugging (3.32) into the ML rule (3.17), we obtain the rule (3.30) upon
simplification. Similarly, we obtain (3.31) by substituting (3.32) in the MPE
rule (3.18). Ll

We now provide the final step in deriving the optimal detector for the ori-
ginal continuous-time model (3.24), by mapping the optimal decision rules in
Theorem 3.4.1 back to continuous time via Theorem 3.3.1.

Theorem 3.4.2 (Optimal coherent demodulation with real-valued signals)
For the continuous-time model (3.24), the optimal detectors are given as
follows:

(a) The ML decision rule is

. I[s;] >
Oy (y) = arg max (v, ;) — — (3.33)

(b) If hypothesis H, has prior probability w(i), i=1,..., M (Z?il (i) =1),
then the MPE decision rule is given by

2
S
Sue() =arg max (.5) ~ AL 4 tog (). (334)

Proof of Theorem 3.4.2 From Theorem 3.3.1, we know that the continuous-
time model (3.24) is equivalent to the discrete-time model (3.29) in Theorem
3.4.1. It remains to map the optimal decision rules (3.30) and (3.31) back
to continuous time. These rules involve correlation between the received and
transmitted signals and the transmitted signal energies. It suffices to show
that these quantities are the same for both the continuous-time model and the
equivalent discrete-time model. We know now that signal inner products are
preserved, so that

s> = Il
Further, the continuous-time correlator output can be written as
(o) = s+ = s+ (500,
= (¥s: 5) = (¥.8:),
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where the last equality follows because the inner product between the signals
v and s; (which both lie in the signal space) is the same as the inner product
between their vector representations. U

Remark 3.4.1 (A technical remark of the form of optimal rules in contin-
uous time) Notice that Theorem 3.4.2 does not contain the continuous-time
version of the minimum distance rule in Theorem 3.4.1. This is because of a
technical subtlety. In continuous time, the squares of the distances would be

[y =il = llys =il *+ [P = [lys = s+ |In [

Under the AWGN model, the noise power orthogonal to the signal space
is infinite, hence from a purely mathematical point of view, the preceding
quantities are infinite for each i (so that we cannot minimize over 7). Hence,
it only makes sense to talk about the minimum distance rule in a finite-
dimensional space in which the noise power is finite. The correlator-based
form of the optimal detector, on the other hand, automatically achieves the
projection onto the finite-dimensional signal space, and hence does not suffer
from this technical difficulty. Of course, in practice, even the continuous-time
received signal may be limited to a finite-dimensional space by filtering and
time-limiting, but correlator-based detection still has the practical advantage
that only components of the received signal that are truly useful appear in the
decision statistics.

Correlators and matched filters The decision statistics for optimal detec-
tion can be computed using a bank of M correlators or matched filters as
follows:

() = [ Y(@s,(0dr = (755,50 0),

where s, g (f) = 5;(—1) is the impulse response of the matched filter for s,().

Coherent demodulation in complex baseband We can now infer the form
of the optimal receiver for complex baseband signals by applying Theorem
3.4.2 to real-valued passband signals, and then expressing the decision rule
in terms of their complex envelopes. Specifically, suppose that s; (), i =
1,..., M, are M possible real passband transmitted signals, y,(7) is the noisy
received signal, and n,(7) is real-valued AWGN with PSD N, /2 (see Figure
3.5). Let s;() denote the complex envelope of s, ,(1), i=1,..., M, and let
y(#) denote the complex envelope of y, (7). Then the passband model

H;:y,(0) =s,,()+n, (1), i=1,....M (3.35)
translates to the complex baseband model
H :y(t)=s,(0)+n(t), i=1,....M, (3.36)

where n(z) is complex WGN with PSD N,, as shown in Figure 3.5.
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Applying Theorem 3.4.2, we know that the decision statistics based on the
real passband received signal are given by

||Sip||2 ||S||2
—— =R ) S _;’
B e ((y, 1)) )

where we have translated passband inner products to complex baseband inner
products as in Chapter 2. We therefore obtain the following theorem.

<yp’ si,p) -

Theorem 3.4.3 (Optimal coherent demodulation in complex baseband)
For the passband model (3.35), and its equivalent complex baseband model
(3.36), the optimal coherent demodulator is specified in complex baseband
as follows:

(a) The ML decision rule is

[lsil?

5 (3.37)

O (y) = arg ]1327[}4 Re ({y, 5;)) —

(b) If hypothesis H, has prior probability w(i), i=1,..., M (Zf‘il (i) =1),
then the MPE decision rule is given by

2
Sure(y) = max Re (15)) ~ 0L 4 o?log (i), (339

Coherent reception can be understood in terms of real-valued vector
spaces In Theorem 3.4.3, even though we are dealing with complex base-
band signals, the decision statistics can be evaluated by interpreting each
complex signal as a pair of real-valued signals. Specifically, the coherent
correlation

Re((y, 51)) = (Yes $i.c) + (5o 8i5)

corresponds to separate correlation of the I and Q components, followed by
addition, and the signal energy

s = [1s; o |1* + Isi o I*

is the sum of the energies of the I and Q components. Thus, there is no cross
coupling between the I and Q components in a coherent receiver, because the
receiver can keep the components separate. We can therefore develop signal
space concepts for coherent receivers in real-valued vector spaces, as done
for the example of two-dimensional modulation in Example 3.3.2.

When do we really need statistical models for complex-valued signals?
We have seen in Example 2.2.5 in Chapter 2 that, for noncoherent receivers
that are not synchronized in carrier phase to the incoming signal, the I and Q
components cannot be processed separately. We explore this observation in
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far more detail in Chapter 4, which considers estimation of parameters such
as delay, carrier frequency, and phase (which typically occur prior to carrier
phase synchronization), as well as optimal noncoherent reception. At that
point, it becomes advantageous to understand complex WGN on its own
terms, rather than thinking of it as a pair of real-valued WGN processes, and
to develop geometric notions specifically tailored to complex-valued vector
spaces.

3.4.1 Geometry of the ML decision rule

Figure 3.11 Maximum
likelihood (ML) decision region
T; for signal s,.

The minimum distance interpretation for the ML decision rule implies that
the decision regions (in signal space) for M-ary signaling in AWGN are
constructed as follows. Interpret the signal vectors {s;}, and the received
vector y, as points in n-dimensional Euclidean space. It is easiest to think
about this in two dimensions (n = 2). For any given i, draw a line between
s; and s; for all j # i. The perpendicular bisector of the line between s; and
S; defines two half planes, one in which we choose s; over S, the other in
which we choose s; over s;. The intersection of the half planes in which s;
is chosen over s;, for j # i, defines the decision region I;. This procedure is
illustrated for a two-dimensional signal space in Figure 3.11. The line L; is
the perpendicular bisector of the line between s, and s;. The intersection of
these lines defines I’} as shown. Note that L, plays no role in determining
I',, since signal s; is “too far” from s,, in the following sense: if the received
signal is closer to sy than to s, then it is also closer to s; than to s; for
some i = 2,3,4,5. This kind of observation plays an important role in the
performance analysis of ML reception in Section 3.5.

The preceding procedure can now be applied to the simpler scenario of
the two-dimensional constellations depicted in Figure 2.16. The resulting ML
decision regions are shown in Figure 3.12. For QPSK, the ML regions are
simply the four quadrants. For 8-PSK, the ML regions are sectors of a circle.
For 16-QAM, the ML regions take a rectangular form.
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Figure 3.12 Maximum
likelihood (ML) decision
regions for some
two-dimensional constellations.

3.4.2 Soft decisions

3.4 Optimal reception in AWGN

QPSK

16-QAM

Maximum likelihood and MPE demodulation correspond to “hard” decisions
regarding which of M signals have been sent. Each such M-ary “symbol”
corresponds to log, M bits. Often, however, we send many such symbols (and
hence many more than log, M bits), and may employ an error-correcting code
over the entire sequence of transmitted symbols or bits. In such a situation,
the decisions from the demodulator, which performs M-ary hypothesis testing
for each symbol, must be fed to a decoder which accounts for the structure
of the error-correcting code to produce more reliable decisions. It becomes
advantageous in such a situation to feed the decoder more information than
that provided by hard decisions. Consider the model (3.29), where the receiver
is processing a finite-dimensional observation vector Y. Two possible val-
ues of the observation (dark circles) are shown in Figure 3.13 for a QPSK
constellation.

Clearly, we would have more confidence in the decision for the observed
value (1.5, —2), which lies further away from the edge of the decision region
in which it falls. “Soft” decisions are a means of quantifying our estimate of
the reliability of our decisions. While there are many mechanisms that could
be devised for conveying more information than hard decisions, the maximal
amount of information that the demodulator can provide is the posterior
probabilities

7(ily) = P[s; sently] = P[H,]y],
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Figure 3.13 Two possible
observations (shown in black
circles) for QPSK signaling,
with signal points denoted by
{s;,i=1,...,4}. The signal
space is two-dimensional.
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2+
52 O 1+ 0%
@ (0.25,0.5)
-2 -1 1 2
530 -1+ Os,
-2+ ® (1.5,-2)

where y is the value taken by the observation Y. These posterior probabilities
can be computed using Bayes’ rule, as follows:
. p(yI))P[H}] p(yli)P[H,]
7(ily) = P[H,|y] = = : :
p(y) > p(y|)PLH]
Plugging in the expression (3.32) for the conditional densities p(y|j) and
setting (i) = P[H,], we obtain

(i) exp (—%)
Y () exp (- 53E)

For the example in Figure 3.13, suppose that we set o> =1 and 7(i) = 1/4.
Then we can use (3.39) to compute the values shown in Table 3.1 for the
posterior probabilities:

The observation y = (0.25,0.5) falls in the decision region for s,, but
is close to the decision boundary. The posterior probabilities in Table 3.1
reflect the resulting uncertainty, with significant probabilities assigned to all
symbols. On the other hand, the observation y = (1.5, —2), which falls within
the decision region for s,, is far away from the decision boundaries, hence
we would expect it to provide a reliable decision. The posterior probabilities
reflect this: the posterior probability for s, is significantly larger than that of
the other possible symbol values. In particular, the posterior probability for
s,, which is furthest away from the received signal, is very small (and equals
zero when rounded to three decimal places as in the table).

Unlike ML hard decisions, which depend only on the distances between
the observation and the signal points, the posterior probabilities also depend

(3.39)

m(ily) =
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Table 3.1 Posterior probabilities for the QPSK constellation
in Figure 3.13, assuming equal priors and o2 = 1.

(ily) y =(0.25,0.5) y=(1.5,-2)
1 0.455 0.017

2 0.276 0

3 0.102 0.047

4 0.167 0.935

Table 3.2 Posterior probabilities for the QPSK constellation
in Figure 3.13, assuming equal priors and o2 = 4.

m(ily) y=(0.25,0.5) y=(1.5,-2)
1 0.299 0.183
2 0.264 0.086
3 0.205 0.235
4 0.233 0.497

on the noise variance. If the noise variance is higher, then the decision
becomes more unreliable. Table 3.2 illustrates what happens when the noise
variance is increased to o> =4 for the scenario depicted in Figure 3.13. The
posteriors for y = (0.25, 0.5), which is close to the decision boundaries, are
close to uniform, which indicates that the observation is highly unreliable.
Even for y = (1.5, —2), the posterior probabilities for symbols other than s,
are significant.

In Chapter 7, I consider the role of posterior probabilities in far greater
detail for systems with error-correction coding.

3.5 Performance analysis of ML reception

We focus on performance analysis for the ML decision rule, assuming equal
priors (for which the ML rule minimizes the error probability). The analysis
for MPE reception with unequal priors is similar, and is sketched in one of
the problems.

Now that we have firmly established the equivalence between continuous-
time signals and signal space vectors, we can become sloppy about the
distinction between them in our notation, using the notation y, s; and n to
denote the received signal, the transmitted signal, and the noise, respectively,
in both settings.
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3.5.1 Performance with binary signaling

The basic building block for performance analysis is binary signaling. Specif-
ically, consider on—off signaling with

Hy:y(1) = s(1) +n(0),

3.40
H, :y(t) = n(t). (3.40)
Applying Theorem 3.4.2, we find that the ML rule reduces to
H,
> IslP?
, . 3.41
0.5 - 5 (341)
Hy

Setting Z = (y, s), we wish to compute the conditional error probabilities
given by

po—p|znl b —p[zs B, 3.42
ell = <T| 1 elo = >T|0~ (3.42)

To this end, note that, conditioned on either hypothesis, Z is a Gaussian
random variable. The conditional mean and variance of Z under H, are
given by

E[Z|Hy] = E[(n, s)] =0,
var(Z|H,) = cov({n, s), {n,s)) = o?||s||?,
where we have used Proposition 3.3.1, and the fact that n(z) has zero mean.
The corresponding computation under H, is as follows:

E[Z|H,] = E[(s+n,5)]=|ls]]
var(Z|H,) = cov((s+n,s), (s+n,s)) =cov({n,s), (n,s)) =as|%

noting that covariances do not change upon adding constants. Thus, Z ~
N(0,v?) under H, and Z ~ N(m, v*) under H,, where m = ||s||* and v* =
o?||s||?. Substituting in (3.42), it is easy to check that

o _ (sl
Pe,ML - Pe\l - Pe|0 - Q ) . (343)
g

In the language of detection theory, the correlation decision statistic Z is
a sufficient statistic for the decision, in that it contains all the statistical
information relevant to the decision. Thus, the ML or MPE decision rules
based on Z must be equivalent (in form as well as performance) to the
corresponding rules based on the original observation y(z). This is easy to
check as follows. The statistics of Z are exactly as in the basic scalar Gaussian
example in Example 3.2.1, so that the ML rule is given by
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and its performance is given by
m
P e, ML = ) (E) >
as discussed previously: see Examples 3.2.1, 3.2.2, and 3.2.3. It is easy to see
that these results are identical to (3.41) and (3.43) by plugging in the values
of m and v?.
Next, consider binary signaling in general, with

H, : y(1) = 5,(1) + (1),
Hy (1) = sy(1) +n(0).

The ML rule for this can be inferred from Theorem 3.4.2 as

H,

I[s:]]> > |Isol|*

¥, 81) — 7 < (¥, $o) — 5
H,

We can analyze this system by considering the joint distribution of the correla-
tor statistics Z; = (y, s,), i =0, 1, conditioned on the hypotheses. Alternatively,
we can rewrite the ML decision rule as

H,

s sy = I llslF
< 2 2
H,

which corresponds to an implementation using a single correlator. The analysis
now involves the conditional distributions of the single decision statistic Z =
(y, 5, — 5. Analyzing the performance of the ML rule using these approaches
is left as an exercise for the reader.

Yet another alternative is to consider a transformed system, where the
received signal is y(7) = y(¢) — s,(¢). Since this transformation is invertible,
the performance of an optimal rule is unchanged under it. But the transformed
received signal y(¢) falls under the on—off signaling model (3.40), with () =
5;(t) — 50(¢). The ML error probability therefore follows from the formula
(3.43), and is given by

— d
Pe,ML =Len = Pe\O = Q (w> = Q (%) b (344)

where d = ||s; — s|| is the distance between the two possible received signals.

Before investigating the performance of some commonly used binary sig-
naling schemes, let us establish some standard measures of signal and noise
strength.

Energy per bit, £y, This is a measure of the signal strength that is univer-
sally employed to compare different communication system designs. A design
is more power efficient if it gives the same performance with a smaller £, if we
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Figure 3.14 Signal space
representations with
conveniently chosen scaling for
three binary signaling schemes.
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fix the noise strength. Since binary signaling conveys one bit of information,
E, is given by the formula

1
Ey = S (Ilsol "+ ls: 1),

assuming that O and 1 are equally likely to be sent.

Performance scaling with signal and noise strengths If we scale up both

s, and s, by a factor A, E, scales up by a factor A2, while the distance d

scales up by a factor A. We therefore define the scale-invariant parameter
dZ

Tlp

Now, substituting, d = \/npE, and o = ,/N,/2 into (3.44), we find that the
ML performance is given by

_ MLy | _ d_2 | v
P =0 ( 2N, ) =0 (\/;b 2N0> . (3.46)

Two important observations follow.

Performance depends on signal-to-noise ratio We observe from (3.46)
that the performance depends on the ratio E,/N,, rather than separately on
the signal and noise strengths.

Concept of power efficiency For fixed E,/N,, the performance is better
for a signaling scheme that has a higher value of n,. We therefore use the
term power efficiency for np = d* / E..

Let us now compute the performance of some common binary signaling
schemes in terms of E,/N,, using (3.46). Since inner products (and hence
energies and distances) are preserved in signal space, we can compute 7 for
each scheme using the signal space representations depicted in Figure 3.14.
The absolute scale of the signals is irrelevant, since the performance depends
on the signaling scheme only through the scale-invariant parameter 1. We
therefore choose a convenient scaling for the signal space representation.

1051
Sy S S So 0 So
0 1 -1 0 1 0 1
On-off keying Antipodal signaling Equal energy,

orthogonal signaling
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Figure 3.15 Bit error rate
versus Ey /N, (dB) for
antipodal and orthogonal
signaling.

3.5 Performance analysis of ML reception

On-off keying Here s5,(f) = s(#) and s,(f) = 0. As shown in Figure 3.14,
the signal space is one-dimensional. For the scaling in the figure, we have
d=1and E, =1/2(1240%) = 1/2, so that np = d*/E,, = 2. Substituting into
(3.46), we obtain P, \; = O(/E,/N,).

Antipodal signaling Here s,(f) = —s,(f), leading again to a one-
dimensional signal space representation. One possible realization of antipodal
signaling is BPSK, discussed in the previous chapter. For the scaling chosen,
d =2 and E, = 1/2(1> 4+ (—=1)?) = 1, which gives 1, = d*/E, = 4. Substi-
tuting into (3.46), we obtain P, \; = Q(y/2E,/N,).

Equal-energy orthogonal signaling Here s, and s, are orthogonal, with
[|5;]1*> = ||so||*>. This is a two-dimensional signal space. Several possible
realizations of orthogonal signaling were discussed in the previous chapter,
including FSK and Walsh-Hadamard codes. From Figure 3.14, we have
d=+/2and E, = 1, so that n, = d*/E, = 2. This gives P, \y. = O(/E,/N,).

Thus, on—off keying (which is orthogonal signaling with unequal energies)
and equal-energy orthogonal signaling have the same power efficiency, while
the power efficiency of antipodal signaling is a factor of two (i.e., 3 dB) better.

In plots of bit error rate (BER) versus SNR, we typically express BER on
a log scale (to capture the rapid decay of error probability with SNR) and
express SNR in decibels (to span a large range). Such a plot is provided for
antipodal and orthogonal signaling in Figure 3.15.
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3.5.2 Performance with M-ary signaling
We turn now to M-ary signaling. Recall that the ML rule can be written as
Sy (y) =arg max Z;,
where, for 1 <i < M, the decision statistics
1
Z. =y, s)—=||s:]|%
=) =5 llsi]

For a finite-dimensional signal space, it is also convenient to use the minimum
distance form of the decision rule:

1) = in D,
m(y) = arg min D,
where

D;=|ly—s]l|

For convenience, we do not show the dependence of Z; or D, on the received
signal y in our notation. However, it is worth noting that the ML decision
regions can be written as

Li={y: () =i} ={y:Z, > Z; forall j#i}={y: D, <D; for all j#i}.
(3.47)

In the following, we first note the basic structural property that the per-
formance is completely determined by the signal inner products and noise
variance. We then observe that exact performance analysis is difficult in gen-
eral. This leads into a discussion of performance bounds and approximations,
and the kind of design tradeoffs we can infer from them.

Performance is determined by signal inner products normalized by noise
strength The correlator decision statistics in the ML rule in Theorem 3.4.2
are jointly Gaussian, conditioned on a given hypothesis. To see this, condition
on H;. The conditional error probability is then given by

P,; = P[y ¢ I}|i sent] = P[Z; < Z; for some j # i|i sent]. (3.48)

To compute this probability, we need to know the joint distribution of the
decision statistics {Z;}, conditioned on H,. Let us now examine the structure
of this joint distribution. Conditioned on H,, the received signal is given by

y(1) = 5,(1) + n(2).
The decision statistics {Z;, 1 < j < M} are now given by
1 1
Z;=(y.8;) — EIISJ-II2 = (8i»57) +(n. ) — EIIS,-IIZ- (3.49)

The random variables {Z;} are jointly Gaussian, since n is a Gaussian ran-
dom process, so that their joint distribution is completely determined by



115

Figure 3.16 Transformations
of the signal constellation that
leave performance over the
AWGN channel unchanged.

3.5 Performance analysis of ML reception

means and covariances. Taking expectation in (3.49), we have (suppressing
the conditioning on H; from the notation)

1
E[Zj] = (s, Sj> - E”Ssz'
Furthermore, using Proposition 3.3.1,
cov(Z;, Z,) = 07 (51, 5)s

note that only the noise terms in (3.49) contribute to the covariance. Thus,
conditioned on H;, the joint distribution of {Z;} depends only on the noise
variance o and the signal inner products {{s;, sj), 1 <i,j < Mj}. Indeed, it is
easy to show, replacing Z; by Z;/o, that the joint distribution depends only
on the normalized inner products { (s;, sj)/ a2, 1<i, Jj < M}. We can now
infer that P,; for each i, and hence the unconditional error probability P, is

completely determined by these normalized inner products.

Performance-invariant transformations Since performance depends only
on normalized inner products, any transformation of the signal constellation
that leaves these unchanged does not change the performance. Mapping finite-
dimensional signal vectors {s;} to continuous-time signals {s;(¢)} using an
orthonormal basis is one example of such a transformation that we have
already seen. Another example is a transformation of the signal vectors {s;} to
another set of signal vectors §; by using a different orthonormal basis for the
vector space in which they lie. Such a transformation is called a rotation, and
we can write §; = Qs;, where Q is a rotation matrix containing as rows the new
orthonormal basis vectors we wish to use. For this basis to be orthonormal,
the rows must have unit energy and must be orthogonal, which we can write
as QQT =1 (that is, the inverse of a rotation matrix is its transpose). We
can now check explicitly that the inner products between signal vectors are
unchanged by the rotation:

(Qs;, Qs;) = szTQSi = S,TSi = (s;,8;)-

Figure 3.16 provides a pictorial summary of these performance-invariant
transformations.

Expand using basis functions

. Signal
T = {s(th
Signal = { g} Orthonormal basis {y,(t)} """ waveforms
vectors ~~__ T Tk
Project onto basis functions

Rotation - _1

matrix Q =aQ

thated { §i }

signal

vectors
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We have derived the preceding properties without having to explicitly com-
pute any error probabilities. Building further on this, we can make some broad
comments on how the performance depends on scale-invariant properties of
the signal constellation and signal-to-noise ratio measures such as E, /N,. Let
us first define the energy per symbol and energy per bit for M-ary signaling.

Energy per symbol, E; For M-ary signaling with equal priors, the energy
per symbol E; is given by

E=- §M [Is; 12
= — S .
N M l

Energy per bit, £}, Since M-ary signaling conveys log, M bit/symbol, the
energy per bit is given by
— ES
~ log, M
If all signals in an M-ary constellation are scaled up by a factor A, then E,
and E, get scaled up by A?, as do all inner products {(s;, s;)}. Thus, we can
define scale-invariant inner products {({s;, s;))/E,} that depend only on the
shape of the signal constellation. Setting o> = N, /2, we can now write the
normalized inner products determining performance as follows:
(si>8) _ (8>8)) 2E,
o> E, N,
We can now infer the following statement.

(3.50)

Performance depends only on E, /N, and constellation shape This follows
from (3.50), which shows that the signal inner products normalized by noise
strength (which we have already observed determine performance) depend
only on E,/N, and the scale-invariant inner products {(s;,s;)/ E,}. The
latter depend only on the shape of the signal constellation, and are completely
independent of the signal and noise strengths.

Specialization to binary signaling Note that the preceding observations
are consistent with our performance analysis of binary signaling in Section
3.5.1. We know from (3.46) that the performance depends only on E, /N, and
the power efficiency. As shown below, the power efficiency is a function of
the scale-invariant inner products defined above.
_ d_2 _ |51 = solI? _ (81, 81) + (895 50) — (815 Sp) — (50> 51)
"TET TR E, '

The preceding scaling arguments yield insight into the factors determining the
performance for M-ary signaling. We now discuss how to estimate the per-
formance explicitly for a given M-ary signaling scheme. We have shown that
there is a compact formula for ML performance with binary signaling. However,
exact performance analysis of M-ary signaling for M > 2 requires the compu-
tation of P, (for eachi = 1,..., M) using the joint distribution of the {Z}
conditioned on H,. This involves, in general, an integral of a multidimensional
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Figure 3.17 Distances
between signal points for
QPSK.
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Gaussian density over the decision regions defined by the ML rule. In many
cases, computer simulation of the ML rule is a more straightforward means of
computing error probabilities than multidimensional Gaussian integrals. Either
method is computationally intensive for large constellations, but is important
for accurately evaluating performance for, say, a completed design. However,
during the design process, simple formulas that can be quickly computed, and
can provide analytical insight, are often indispensable. We therefore proceed
to develop bounds and approximations for ML performance, building on the
simple analysis for binary signaling in Section 3.5.1.

We employ performance analysis for QPSK signaling as a running example,
since it is possible to perform an exact analysis of ML performance in this
case, and to compare it with the bounds and approximations that we develop.
The ML decision regions (boundaries coincide with the axes) and the distances
between the signal points for QPSK are depicted in Figure 3.17.

Exact analysis for QPSK  Let us find P,;, the conditional error probability
for the ML rule conditioned on s, being sent. For the scaling shown in the
figure, s, = (d/2, d/2), and the two-dimensional observation y is given by

d d
y=sl+(Nc7Ns): NC+E7N<+§ >

where N,, N, are i.i.d. N(0, o) random variables, using the geometric inter-
pretation of WGN after Proposition 3.3.1. An error occurs if the noise moves
the observation out of the positive quadrant, which is the decision region for
s;. This happens if N,+d/2 <0 or N,+d/2 < 0. We can therefore write

d d d d
Pe“:P NC+5<OOI'N§+§<O :P NC+§<O +P N§+§<0

d d
—P|:NC+5<OandNS+§<0:|.

$1
%20 N,

7/
J2d,”

7
7

N
- - - - - = - - - - - =

S3 54
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It is easy to see that

PN, d O0[=P|N, d 0f= d
g o] =g o] -e(37)

Using the independence of N,, N,, we obtain

r=20(L)-To(L)] a5

By symmetry, the preceding equals P,; for all i, which implies that the
average error probability is also given by the expression above. To express the
error probability in terms of E, /N,, we compute the scale-invariant parameter

d*/E,, and use the relation
d [ [E,
20 \ E,\ 2N,’

as we did for binary signaling. The energy per symbol is given by

1 XM d\* [d\* &
E,:_ -2= 2: —_ — = —,
S M;IIS,II [s]] <2> +<2> 5

which implies that the energy per bit is

E, E

S S

d2

E, = = .
® log, M log,4 4

This yields d?/E, =4, and hence d/20 = \/2E,/N,. Substituting into
(3.51), we obtain

P.=P,, =20 <,/%) -’ (,/%) (3.52)

as the exact error probability for QPSK.

Union bound and variants We now discuss the union bound on the perform-
ance of M-ary signaling in AWGN. We can rewrite (3.48), the conditional
error probability, conditioned on H;, as a union of M — 1 events, as follows:

Peli =P[Uj¢,'{zi < ZJ}|l Sent].

Since the probability of the union of events is upper bounded by the sum of
their probabilities, we obtain

Py, <Y PlZ, < Zi sent]. (3.53)

J#i
But the jth term on the right-hand side above is simply the error probability
of ML reception for binary hypothesis testing between the signals s; and s;.
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From the results of Section 3.5.1, we therefore obtain the following pairwise
error probability:

PlZ,<Zj|i sent]:Q(|| Zo-s ||>

Substituting into (3.53), we obtain the following union bound.

Union bound The conditional error probabilities for the ML rule are

bounded as
e,_ZQ<||S ;”) ZQ( ) (3.54)

J# J#i
introducing the notation d,; for the distance between signals s; and s;. This
can be averaged using the prior probabilities to obtain a bound on the average
error probability as follows:

r=yrir, =y ey o (1) =y a0 Yo (5L). 659
i i J#i i J#i
We can now rewrite the union bound in terms of E, /N, and the scale-invariant
squared distances d?j / E, as follows:

P, < >0 ( dff/Eb‘/Eb/2NO> , (3.56)

J#i

P, = 277( NPy <Y m(i)) Q <‘/d,21/E v b/2N0> (3.57)

i JFi

Union bound for QPSK For QPSK, we infer from Figure 3.17 that the
union bound for P, is given by

Pe=Pel_Q< >+Q< )+Q< )—2Q< )+Q<fd).

Using d?/E, = 4, we obtain the union bound in terms of E, /N, to be

<20 ( / 5*’) +0 ( ivﬂ) QPSK union bound. (3.58)
0 0

For moderately large E,/N,, the dominant term in terms of the decay of the
error probability is the first one, since Q(x) falls off rapidly as x gets large.
Thus, while the union bound (3.58) is larger than the exact error probability
(3.52), as it must be, it gets the multiplicity and argument of the dominant
term correct.

The union bound can be quite loose for large signal constellations. However,
if we understand the geometry of the constellation well enough, we can tighten
this bound by pruning a number of terms from (3.54). Let us first discuss
this in the context of QPSK. Condition again on s, being sent. Let E, denote
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the event that y falls outside the first quadrant, the decision region for s,. We
see from Figure 3.17 that this implies that event E, holds, where E, is the
event that either y is closer to s, than to s, (if y lies in the left half plane), or
y is closer to s, than to s, (if it lies in the bottom half plane). Since E, implies
E,, it is contained in E,, and its (conditional) probability is bounded by that
of E,. In terms of the decision statistics Z;, we can bound the conditional
error probability (i.e., the conditional probability of E,) as follows:

P,y <P[Z,>Z or Z, > Z||s, sent] < P[Z, > Z,|s, sent]
d
+P[Z, > Z,|s, sent] =20 (—) .
20

In terms of E,/N,, we obtain the “intelligent” union bound;

P, =P, <20 ( %) QPSK intelligent union bound. (3.59)
This corresponds to dropping the term corresponding to s; from the union
bound for P,;. We term the preceding bound an “intelligent” union bound
because we have used our knowledge of the geometry of the signal constel-
lation to prune the terms in the union bound, while still obtaining an upper
bound for the error probability.

We now provide a characterization of the intelligent union bound for M-ary
signaling in general. Denote by Ny, (i) the indices of the set of neighbors
of signal s; (we exclude i from N, (i) by definition) that characterize the
ML decision region I';. That is, the half planes that we intersect to obtain I,
correspond to the perpendicular bisectors of lines joining s; and s;, j € Ny (7).
In particular, we can express the decision region in (3.47) as

Li={y:0() =i} ={y:Z, = Z, forall jeNy (i)} (3.60)

We can now say the following: y falls outside T} if and only if Z; < Z; for
some j € Ny ({). We can therefore write

P,; = Py ¢ I'}|i sent] = P[Z; < Z, for some j€ Ny (i)]i sent]  (3.61)

and from there, following the same steps as in the union bound, get a tighter
bound, which we express as follows.

Intelligent union bound A better bound on P is obtained by considering
only the neighbors of s; that determine its ML decision region, as follows:

Py< Y Q(—“s-"z;w). (3.62)

J € M ()

In terms of E,/N,, we get

d2
Pyp< Y O+ wa (3.63)
el E,\ 2N,
J € Ny (9) b 0
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(the bound on the unconditional error probability P, is computed as before
by averaging the bounds on P,,).

For QPSK, we see from Figure 3.17 that Ny, (1) = {2, 4}, which means
that we need only consider terms corresponding to s, and s, in the union
bound for P,;, yielding the result (3.59).

As another example, consider the signal constellation depicted in Figure
3.11. The union bound is given by

rsa($)a(5) a(5) (%) (%),

However, since Ny (1) = {2, 3, 4, 5}, the last term above can be dropped to
get the following intelligent union bound:

o) r0()-o(5)-o(5)

The gains from employing intelligent pruning of the union bound are larger
for larger signal constellations. In Chapter 5, for example, we apply more
sophisticated versions of these pruning techniques when discussing the per-
formance of ML demodulation for channels with intersymbol interference.
Another common approach for getting a better (and quicker to compute)
estimate than the original union bound is the nearest neighbors approxi-
mation. This is a loose term employed to describe a number of different
methods for pruning the terms in the summation (3.54). Most commonly,
it refers to regular signal sets in which each signal point has a number of
nearest neighbors at distance d,, from it, where d,; = rln¢1/n [|s;—s,||. Letting

N, (i) denote the number of nearest neighbors of s;, we obtain the following
approximation.

Nearest neighbors approximation

P~ N, ()Q < mm) (3.64)
Averaging over i, we obtain
Y dmin
P.~N, O—), (3.65)
min 20-

where Ndmm denotes the average number of nearest neighbors for a signal
point. The rationale for the nearest neighbors approximation is that, since
Q(x) decays rapidly, Q(x) ~ e /2, as x gets large, the terms in the union
bound corresponding to the smallest arguments for the Q function dominate
at high SNR.
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The corresponding formulas as a function of scale-invariant quantities and

E,/N, are:
|d>. | E,
P,~N, (i —= [ —]. 3.66
eli dmm(l)Q Eb 2N0 ( )

It is also worth explicitly writing down an expression for the average error
probability, averaging the preceding over i:

_ la. [ E
P,~N, O /= /=1, (3.67)
in E, \ 2N,

_ ¥
N, ==3N, (i
dmin M lgl: dmin (l)

where

is the average number of nearest neighbors for the signal points in the con-
stellation.
For QPSK, we have from Figure 3.17 that
Ny () =2=N,

‘min ‘min

and
d>, d?
_min = _—— 4’
E, E,
yielding

[2E,
Pe%2Q< 7)
0

In this case, the nearest neighbors approximation coincides with the intelligent
union bound (3.59). This happens because the ML decision region for each
signal point is determined by its nearest neighbors for QPSK. Indeed, the latter
property holds for many regular constellations, including all of the PSK and
QAM constellations whose ML decision regions are depicted in Figure 3.12.

Power efficiency While the performance analysis for M-ary signaling is
difficult, we have now obtained simple enough estimates that we can define
concepts such as power efficiency, analogous to the development for binary
signaling. In particular, comparing the nearest neighbors approximation (3.65)
with the error probability for binary signaling (3.46), we define in analogy
the power efficiency of an M-ary signaling scheme as

d*.
=i 3.68
Tp E, ( )



123

Figure 3.18 ML decision
regions for 16-QAM with
scaling chosen for convenience
in computing power efficiency.

3.5 Performance analysis of ML reception

We can rewrite the nearest neighbors approximation as

< MpE,
P, ~ N, . 3.69
e dmi“Q ( 2N0 ) ( )
Since the argument of the Q function in (3.69) plays a bigger role than the
multiplicity Ndmin for moderately large SNR, 7, offers a means of quickly
comparing the power efficiency of different signaling constellations, as well
as for determining the dependence of performance on E,/N,.

Performance analysis for 16-QAM We now apply the preceding perfor-
mance analysis to the 16-QAM constellation depicted in Figure 3.18, where
we have chosen a convenient scale for the constellation. We now compute
the nearest neighbors approximation, which coincides with the intelligent
union bound, since the ML decision regions are determined by the nearest
neighbors. Noting that the number of nearest neighbors is four for the four
innermost signal points, two for the four outermost signal points, and three
for the remaining eight signal points, we obtain upon averaging

N, =3. (3.70)

min

It remains to compute the power efficiency 1, and apply (3.69). For the
scaling shown, we have d,;,, = 2. The energy per symbol is obtained as
follows:

Q
@) O 3+ O O
O o 1+ O O
: : : : |
-3 -1 1 3
@) O-1+ O O
@) O-3+ O O
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E, = average energy of I component + average energy of Q component
= 2(average energy of I component)

by symmetry. Since the I component is equally likely to take the four values
+1 and £3, we have:

1
average energy of I component = 5(12 +3%) =5

and

We therefore obtain

10 5

E = = = -,
° log, M log,16 2

The power efficiency is therefore given by

. 22 8
= mn _ = _ 3.71
Tlp Eb % 3 ( )
Substituting (3.70) and (3.71) into (3.69), we obtain
4E,
P,(16-QAM) ~3Q| ./ —=> (3.72)
5N,

as the nearest neighbors approximation and intelligent union bound for 16-
QAM. The bandwidth efficiency for 16-QAM is 4 bit/2 dimensions, which is
twice that of QPSK, whose bandwidth efficiency is 2 bit/2 dimensions. It is
not surprising, therefore, that the power efficiency of 16-QAM (n, = 1.6)
is smaller than that of QPSK (n, = 4). We often encounter such tradeoffs
between power and bandwidth efficiency in the design of communication
systems, including when the signaling waveforms considered are sophisticated
codes that are constructed from multiple symbols drawn from constellations
such as PSK and QAM.

Figure 3.19 shows the symbol error probabilities for QPSK, 16-QAM, and
16PSK, comparing the intelligent union bounds (which coincide with near-
est neighbors approximations) with exact (up to, of course, the numerical
accuracy of the computer programs used) results. The exact computations
for 16-QAM and 16PSK use expressions (3.72) and (3.92), as derived in
the problems. It can be checked that the power efficiencies of the con-
stellations accurately predict the distance between the curves. For example,
Np(QPSK)/1p(16 — QAM) = 4/1.6, which equals about 4 dB. From Figure
3.19, we see that the distance between the QPSK and 16-QAM curves at
small error probabilities is about 4 dB.
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Figure 3.19 Symbol error
probabilities for QPSK,
16-QAM, and 16PSK.

3.5 Performance analysis of ML reception
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Performance analysis for equal-energy M-ary orthogonal signaling This
is a signaling technique that lies at an extreme of the power—bandwidth
tradeoff space. The signal space is M-dimensional, hence it is convenient to
take the M orthogonal signals as unit vectors along the M axes. With this
scaling, we have E, = 1, so that E, = 1/(log, M). All signals are equidistant
from each other, so that the union bound, the intelligent union bound, and the
nearest neighbors approximation all coincide, with da, =2 for the chosen
scaling. We therefore get the power efficiency

d?.
= - —2]og, M.
Mp E, 08,

Note that the power efficiency gets better as M gets large. On the other hand,
the bandwidth efficiency, or the number of bits per dimension, is given by
log, M
™=
and goes to zero as M — co. We now examine the behavior of the error
probability as M gets large, using the union bound.
Expressions for the probabilities of correct detection and error are derived
in Problem 3.25. Note here one of these expressions:

o= (M =1) [0 B —m) e 7

(3.73)
Exact error probability for orthogonal signaling,

2F, 2E, log, M
m= = | ————.
No No

where
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The union bound is given by

KSML4MKJ%>=M%4W< 5%%% (3.74)

Union bound for orthogonal signaling.

Let us now examine the behavior of this bound as M gets large. Noting that
the Q function goes to zero, and the term M — 1 goes to infinity, we employ
L’Hopital’s rule to evaluate the limit of the right-hand side above, interpreting
M as a real variable rather than an integer. Specifically, let

_of [E _ E, InM __
fl(M)_Q( N, IngM)—Q< N, ln2)’ fz(M)—M_1~

Since
dQ(x) 12
= — c s
dx 2
we have
df, (M) _ d [ |E,InM 1 e,( /%%)2/2
dm dm Ny In2 27
and
df,(M
f2( ) — —(M— 1)—2 ~ _M72.
dm
We obtain upon simplification that
dfi1 (M) ] %
Jim P fim 8 = im At 07)
aM

where A is a constant independent of M. The asymptotics as M — oo are
dominated by the power of M on the right-hand side. If E, /N, <21In2, the
right-hand side of (3.75) tends to infinity; that is, the union bound becomes
useless, since P, is bounded above by one. However, if E, /N, > 21In2,
the right-hand side of (3.75) tends to zero, which implies that P, tends to
zero. The union bound has quickly revealed a remarkable thresholding effect:
M-ary orthogonal signaling can be made arbitrarily reliable by increasing
M, as long as E, /N, is above a threshold.

A more detailed analysis shows that the union bound threshold is off by

3 dB. One can actually show the following result (see Problem 3.26):

. 0, %>m1
A}linooPe = . B 1o (3.76)
N N_(J < InZ.

That is, by letting M get large, we can get arbitrarily reliable performance
as long as E, /N, exceeds —1.6dB (In2 expressed in dB). Using the tools of
information theory, we observe in a later chapter that it is not possible to do
any better than this in the limit of communication over AWGN channels, as
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Figure 3.20 Symbol error
probabilities for M-ary
orthogonal signaling.

3.6 Bit-level demodulation
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the bandwidth efficiency is allowed to go to zero. That is, M-ary orthogonal
signaling is asymptotically optimum in terms of power efficiency.

Figure 3.20 shows the probability of symbol error as a function of E, /N,
for several values of M. We see that the performance is quite far away from
the asymptotic limit of —1.6dB (also marked on the plot) for the moderate
values of M considered. For example, the E, /N, required for achieving an
error probability of 107® for M = 16 is more than 9dB away from the
asymptotic limit.

3.6 Bit-level demodulation

So far, we have discussed how to decide which of M signals have been sent,
and how to estimate the performance of decision rules we employ. In practice,
however, the information to be sent is encoded in terms of binary digits, or
bits, taking value O or 1. Sending one of M signals conveys log, M bits of
information. Thus, an ML decision rule that picks one of these M signals is
actually making a decision on log, M bits. For hard decisions, we wish to
compute the probability of bit error, also termed the bit error rate (BER), as
a function of E,/N,.

For a given SNR, the symbol error probability is only a function of the
constellation geometry, but the BER depends also on the manner in which
bits are mapped to signals. Let me illustrate this using the example of QPSK.
Figure 3.21 shows two possible bitmaps for QPSK, along with the ML deci-
sion regions demarcated by bold lines. The first is a Gray code, in which
the bit mapping is such that the labels for nearest neighbors differ in exactly
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Figure 3.21 QPSK with Gray
and lexicographic bitmaps.

Demodulation

Ny N
foe -
’IOO 00 Nc 1 o 00 NC
d
Ye Y.
10 O 01 10 O O 01
Gray coded bitmap Lexicographic bitmap

one bit. The second corresponds to a lexicographic binary representation of
0, 1, 2, 3, numbering the signals in counterclockwise order. Let us denote the
symbol labels as b[1]b[2] for the transmitted symbol, where b[1] and b[2]
cach take values 0 and 1. Letting b[1]5[2] denote the label for the ML symbol
decision, the probabilities of bit error are given by p, = P[b[1] # b[1]] and
Dy = P[E[Z] # b[2]]. The average probability of bit error, which we wish to

estimate, is given by p, = 1/2 (p; + p,).

Bit error probability for QPSK with Gray bitmap Conditioned on 00
being sent, the probability of making an error on b[1] is as follows:

P[b[1] = 1]00 sent] = P[ML decision is 10 or 11|00 sent]

[ <-t]=o()=o(2).

where, as before, we have expressed the result in terms of E, /N, using the
power efficiency d?/E, = 4. Also note, by the symmetry of the constellation
and the bitmap, that the conditional probability of error of b[1] is the same,
regardless of which symbol we condition on. Moreover, exactly the same
analysis holds for b[2], except that errors are caused by the noise random
variable N,. We therefore obtain

2E,
Ph=P1=p,=0 N ) (3.77)

The fact that this expression is identical to the bit error probability for binary
antipodal signaling is not a coincidence; QPSK with Gray coding can be
thought of as two independent BPSK (or binary antipodal signaling) systems,
one signaling along the I (or “cosine”) component, and the other along the Q
(or “sine”) component.
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Bit error probability for QPSK with lexicographic bitmap Conditioned
on 00 being sent, it is easy to see that the error probability for b[1] is as with
the Gray code. That is,

However, the conditional error probability for b[2] is different: to make an
error in b[2], the noise must move the received signal from the first quadrant
into the second or fourth quadrants, the probability of which is given as
follows:

P[b[2] # b[2]]00 sent]=P[b[2] = 1]00 sent]
= P[ML decision is 01 or 11|00 sent]

d d d d
:P[NC < _E’NS > —§i| +P|:NC > _E’NS < —5]
We have a similar situation regardless of which symbol we condition on. An
error in b[2] occurs if the noise manages to move the received signal into
either one of the two quadrants adjacent to the one in which the transmitted
signal lies. We obtain, therefore,

) el )] ol )] )

for moderately large E,/N,. Thus, p, is approximately two times larger
than the corresponding quantity for Gray coding, and the average bit error
probability is about 1.5 times larger than for Gray coding.

While we have invoked large SNR to discuss the impact of bitmaps, the
superiority of Gray coding over an arbitrary bitmap, such as a lexicographic
map, plays a bigger role for coded systems operating at low SNR. Gray
coding also has the advantage of simplifying the specification of the bit-level
demodulation rules for regular constellations. Gray coding is an important
enough concept to merit a systematic definition, as follows.

Gray coding Consider a 2"-ary constellation in which each point is repre-
sented by a binary string b = (b, ..., b,). The bit assigment is said to be
Gray coded if, for any two constellation points b and b’ which are nearest
neighbors, the bit representations b and b’ differ in exactly one bit location.

Fortunately, QPSK is a simple enough constellation to allow for an exact
analysis. A similar analysis can be carried out for larger rectangular constel-
lations such as 16-QAM. It is not possible to obtain simple analytical expres-
sions for BER for nonrectangular constellations such as 8-PSK. In general, it
is useful to develop quick estimates for the bit error probability, analogous to
the results derived earlier for symbol error probability. Finding bounds on the
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bit error probability is difficult, hence the discussion here is restricted to the
nearest neighbors approximation.

Nearest neighbors approximation to the bit error probability Consider
a 2"-ary constellation in which each constellation point is represented by a
binary string of length n as above. Define d(b, b’) as the distance between
constellation points labeled by b and b’. Define d,,(b) = glill} d(b,b’) as the

distance of b from its nearest neighbors. Let N, (b, i) denote the number
of nearest neighbors of b that differ in the ith bit location, i.e., N, (b, i) =
card{b’ : d(b,b") = d,;,(b), b; # b;}. Given that b is sent, the conditional
probability of error for the ith bit can be approximated by

b0 (%)

so that, for equiprobable signaling, the unconditional probability of the ith bit
being in error is

P(b; wrong) ~ 2i 2N, (b.)Q <dmm<£b)>
b

P(b; wrong|b sent) ~ N,

min

For an arbitrary constellation or an arbitrary bit mapping, the probability of
error for different bit locations may be different. This may indeed be desirable
for certain applications in which we wish to provide unequal error protection
among the bits. Usually, however, we attempt to protect each bit equally. In
this case, we are interested in the average bit error probability

1 n
P(bit error) = — > P(b; wrong).
n

i=1

BER with Gray coding For a Gray coded constellation, N, (b, i) <1 for
all b and all i. It follows that the value of the nearest neighbors approximation

for bit error probability is at most Q(d,,;,/20) = Q (,/(nPEb /2N0)), where
My = d?,,/Ey, is the power efficiency.

E
P(bit error) ~ Q ( %) with Gray coding. (3.78)
V' 2N,

Figure 3.22 shows the BER of 16-QAM and 16PSK with Gray coding,
comparing the nearest neighbors approximation with exact results (obtained
analytically for 16-QAM, and by simulation for 16PSK). The slight pessimism
and ease of computation of the nearest neighbors approximation implies that
it is an excellent tool for link design.

Note that Gray coding may not always be possible. Indeed, for an arbitrary
set of M = 2" signals, we may not understand the geometry well enough to
assign a Gray code. In general, a necessary (but not sufficient) condition for
an n-bit Gray code to exist is that the number of nearest neighbors for any
signal point should be at most n.
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Figure 3.22 BER for 16-QAM
and 16PSK with Gray coding.

3.6 Bit-level demodulation
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Bit error rate for orthogonal modulation For M = 2"-ary equal energy,
orthogonal modulation, each of the m bits split the signal set into half. By
the symmetric geometry of the signal set, any of the M — 1 wrong symbols
is equally likely to be chosen, given a symbol error, and M/2 of these will
correspond to error in a given bit. We therefore have

M

2
M—1

P(bit error) = P(symbol error), BER for M-ary orthogonal

signaling. (3.79)

Note that Gray coding is out of the question here, since there are only m bits
and 2™ — 1 neighbors, all at the same distance.

Alternative bit-to-symbol maps Gray coding tries to minimize the number
of bit errors due to likely symbol error events. It therefore works well for
uncoded systems, or for coded systems in which the bits sent to the modulator
are all of equal importance. However, there are coded modulation strategies
that can be built on the philosophy of assigning different levels of importance
to different bits, for which alternatives to the Gray map are more appropriate.
We discuss this in the context of trellis coded modulation in Chapter 7.

3.6.1 Bit-level soft decisions

Bit-level soft decisions can be computed from symbol level soft decisions.
Consider the posterior probabilities computed for the scenario depicted in
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Figure 3.13 in Section 3.4.2. If we now assume Gray coding as in Figure
3.21, we have

P[b[1] = O[y] = P[s; or s, sent|y] = 7, (y) + 74(y).-
Similarly,
P[b[2] = Oly] = P[s; or s, sent|y] = m,(y) + 7(y).

We can now read off the bit-level soft decisions from Table 3.1. For exam-
ple, for y = (0.25, 0.5), we have P[p[1] =0]y] = 0.45540.167 = 0.622 and
P[D[2] = 0]y] = 0.455+0.276 = 0.731. As shall be seen in Chapter 7, it is
often convenient to express the bit-level soft decisions as log likelihood ratios
(LLRs), where we define the LLR for a bit b as

LLR(b) = log %

We therefore obtain the LLR for 5[1], conditioned on the observation, as

LLR(p[1]]y) =1 0622 0.498

= 10 = V. .
V=8 T 0,622
For Gray coded QPSK, it is easier to compute the bit-level soft decisions
directly, using the fact that b[1] and b[2] may be interpreted as being trans-
mitted using BPSK on two parallel channels. We now outline how to compute

soft decisions for BPSK signaling.

Soft decisions for BPSK Suppose that a bit b€ {0, 1} is sent by mapping
it to the symbol (—1)? € {—1, +1}. Then the decision statistic ¥ for BPSK
follows the model:

y_[A+N. b=0
Tl -A+N b=1,

where A > 0 is the amplitude and N ~ N(0, ). Suppose that the prior
probability of 0 being sent is 7,. (While 0 and 1 are usually equally likely,
we shall see the benefit of this general formulation when we discuss iterative
decoding in Chapter 7: decoding modules exchange information, with the
output of one module in the decoder providing priors to be used for LLR
computation in another.) Using Bayes’ rule, P[b|y] = P[b]p(¥|b)/p(y), b =
0, 1, so that the LLR is given by

[b=0[y] . mp(yl0)
b=1p] 2w p0l1)

P
LLR(b|y) =log 2

Plugging in the Gaussian densities p(y|0) and p(y|l) and simplifying, we
obtain

24
LLR(bly) = LLR 10, (b) + —, (3.80)
g
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where LLR;,, =logm,/m, is the LLR based on the priors. The formula
reveals a key advantage of using LLR (as opposed to, say, the conditional
probability P[0]y]) to express soft decisions: the LLR is simply a sum of
information from the priors and from the observation.

3.7 Elements of link budget analysis

Communication link design corresponds to making choices regarding transmit
power, antenna gains at transmitter and receiver, quality of receiver circuitry,
and range, which have not been mentioned so far in either this chapter or the
previous one. We now discuss how these physical parameters are related to
the quantities we have been working with. Before doing this, let us summarize
what we do know:

(a) Given the bit rate R, and the signal constellation, we know the symbol
rate (or more generally, the number of modulation degrees of freedom
required per unit time), and hence the minimum Nyquist bandwidth B, .
We can then factor in the excess bandwidth a dictated by implementation
considerations to find the bandwidth B = (1 4+ a)B,,;, required.

(b) Given the constellation and a desired bit error probability, we can infer the
E, /N, we need to operate at. Since the SNR satisfies SNR = E, R, /N, B,
we have

E R

SNR_, == -, (3.81)

reqd B
0/ reqd

(c) Given the receiver noise figure F (dB), we can infer the noise power
P, = NyB = kT,10"/1°B, and hence the minimum required received signal
power is given by

Pyx(min) = SNR 4P, = (—) & P,. (3.82)
No/teqa B

This is called the required receiver sensitivity, and is usually quoted in dBm,

as Ppy apm (Min) = 10log,, Pry (min)(mW).

Now that we know the required received power for “closing” the link, all
we need to do is to figure out link parameters such that the receiver actually
gets at least that much power, plus a link margin (typically expressed in dB).
Let us do this using the example of an idealized line-of-sight wireless link. In
this case, if Pry is the transmitted power, then the received power is obtained
using Friis’ formula for propagation loss in free space:

)\2

Prx = Prx GTX GRX m’

(3.83)
where

® Gy is the gain of the transmit antenna,
® Gy is the gain of the receive antenna,
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® A =c/f, is the carrier wavelength (¢ = 3 x 10® m/s, is the speed of light,
f. the carrier frequency),
® R is the range (line-of-sight distance between transmitter and receiver).

Note that the antenna gains are with respect to an isotropic radiator. As with
most measures related to power in communication systems, antenna gains are
typically expressed on the logarithmic scale, in dBi, where G ; = 10log,, G
for an antenna with raw gain G.

It is convenient to express the preceding equation in the logarithmic scale
to convert the multiplicative factors into addition. For example, expressing
the powers in dBm and the gains in dB, we have

/\2
P =P G +G 1101 —_— 3.84
RX,dBm x.dBm T G1x.a8i T Orx api T 1010g)o 1672 R2 ( )
where the antenna gains are expressed in dBi (referenced to the 0 dB gain of
an isotropic antenna). More generally, we have the link budget equation

PRX,dBm = PTX,dBm + GTX,dB + GRX,dB - Lpath,dB (R) (385)

where L, 45 (R) is the path loss in dB. For free space propagation, we have
from Friis” formula (3.84) that

2

A
Lyun.ag(R) = —10logy, TorRe path loss in dB for free space propagation.
(3.86)

However, we can substitute any other expression for path loss in (3.85),
depending on the propagation environment we are operating under. For exam-
ple, for wireless communication in a cluttered environment, the signal power
may decay as 1/R* rather than the free space decay of 1/R’. Propagation
measurements, along with statistical analysis, are typically used to charac-
terize the path loss as a function of range for the system being designed.
Once we decide on the path loss formula (L, q5(R)) to be used in the
design, the transmit power required to attain a given receiver sensitivity can
be determined as a function of range R. Such a path loss formula typically
characterizes an “average” operating environment, around which there might
be significant statistical variations that are not captured by the model used to
arrive at the receiver sensitivity. For example, the receiver sensitivity for a
wireless link may be calculated based on the AWGN channel model, whereas
the link may exhibit rapid amplitude variations due to multipath fading, and
slower variations due to shadowing (e.g., due to buildings and other obsta-
cles). Even if fading or shadowing effects are factored into the channel model
used to compute the BER, and the model for path loss, the actual environment
encountered may be worse than that assumed in the model. In general, there-
fore, we add a link margin L, g, again expressed in dB, in an attempt
to budget for potential performance losses due to unmodeled or unforeseen
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impairments. The size of the link margin depends, of course, on the confi-
dence of the system designer in the models used to arrive at the rest of the
link budget.

Putting this all together, if Pry 4p,(min) is the desired receiver sensitivity
(i.e., the minimum required received power), then we compute the transmit
power for the link to be

Prx agm = Prx aBm (min) — Grx g — Grx s + L unan (R)+ L argin,an- (3.87)

Let me now illustrate these concepts using an example.

Example 3.7.1 Consider again the 5 GHz WLAN link of Example 3.1.4.
We wish to utilize a 20 MHz channel, using QPSK and an excess band-
width of 33%. The receiver has a noise figure of 6 dB.

(a) What is the bit rate?

(b) What is the receiver sensitivity required to achieve a bit error rate
(BER) of 1076?

(c) Assuming transmit and receive antenna gains of 2 dBi each, what is
the range achieved for 100 mW transmit power, using a link margin
of 20dB? Use link budget analysis based on free space path loss.

Solution to (a) For bandwidth B and fractional excess bandwidth a, the
symbol rate

1 B 20

T T " 1+a 14033

and the bit rate for an M-ary constellation is

= 15 Msymbol/s

R, = R log, M = 15 Msymbol/s x 2 bit/symbol = 30 Mbit/s.

Solution to (b) The BER for QPSK with Gray coding is Q ( /2E, /NO).

For a desired BER of 107, we obtain that (E,/N,),.,q is about 10.2dB.
From (3.81), we obtain

req
30
SNR,.gq = 10.2+ 10log, 5~ ~ 12 dB.

We know from Example 3.1.4 that the noise power is —95 dBm. Thus,
the desired receiver sensitivity is

Ppx gpm(Min) = P qp +SNR 4.5 = —95+ 12 = —83 dBm.

Solution to (c¢) The transmit power is 100mW, or 20 dBm. Rewriting
(3.87), the allowed path loss to attain the desired sensitivity at the desired
link margin is

Lpath,dB (R) = Prx aBm — Prx,aBm (min) + Grx,ai T Grx.ai — Lmargin,dB

= 20— (—83)+2+2—20 =87 dB. (3.88)
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3.9 Problems

3.9.1 Gaussian basics

Demodulation

We can now invert the formula for free space loss, (3.86), to get a range R
of 107 meters, which is of the order of the advertised ranges for WLANs
under nominal operating conditions. The range decreases, of course, for
higher bit rates using larger constellations. What happens, for example,
when we use 16-QAM or 64-QAM?

Most communication theory texts, including those mentioned in Section 1.3,
cover signal space concepts in some form. These concepts were first presented
in a cohesive manner in the classic text by Wozencraft and Jacobs [10], which
remains recommended reading. The fundamentals of detection and estimation
can be explored further using the text by Poor [19].

Problem 3.1 Two random variables X and Y have joint density

22242

Ke= 772 xy=>0,
X,y) = =
px,y( y) {0 xy < 0.

(a) Find K.

(b) Show that X and Y are each Gaussian random variables.

(c) Express the probability P[X?+ X > 2] in terms of the Q function.
(d) Are X and Y jointly Gaussian?

(e) Are X and Y independent?

(f) Are X and Y uncorrelated?

(g) Find the conditional density pyy(x|y). Is it Gaussian?

Problem 3.2 (Computations for Gaussian random vectors) The random

vector X = (X, X,)T is Gaussian with mean vector m = (2, 1)7 and covariance

matrix C given by
1 —1
€= (—1 4>'

(a) Let Y, =X, +2X,,Y,=—X,+X,. Find cov(Y,, 1,).
(b) Write down the joint density of ¥; and Y,.
(c) Express the probability P[Y, > 2Y, + 1] in terms of the Q function.
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Problem 3.3 (Bounds on the Q function) We derive the bounds (3.5) and
(3.4) for

0(x) = e "2d1. (3.89)

© 1
/x 2
(a) Show that, for x > 0, the following upper bound holds:

| B
Qx) = e .

Hint Try pulling out a factor of e~ from (3.89), and then bounding the resulting
integrand. Observe that > x > 0 in the integration interval.

(b) For x > 0, derive the following upper and lower bounds for the Q function:

1 e—x2/2 e—x2/2
(1——2>—5Q(x)5 :
x° ) 2mx N 2mx

Hint Write the integrand in (3.89) as a product of 1/¢ and te="*/2 and then integrate
by parts to get the upper bound. Integrate by parts once more using a similar trick to
get the lower bound. Note that you can keep integrating by parts to get increasingly
refined upper and lower bounds.

Problem 3.4 (From Gaussian to Rayleigh, Rician, and exponential ran-
dom variables) Let X,, X, be i.i.d. Gaussian random variables, each with
mean zero and variance v2. Define (R, ®) as the polar representation of the
point (X, X,), i.e.,

X,=Rcos®, X,=Rsin®d,
where R > 0 and ® €0, 27].

(a) Find the joint density of R and ®.

(b) Observe from (a) that R, ® are independent. Show that ® is uniformly
distributed in [0, 277], and find the marginal density of R.

(c) Find the marginal density of R>.

(d) What is the probability that R? is at least 20 dB below its mean value?
Does your answer depend on the value of v*?

Remark The random variable R is said to have a Rayleigh distribution.
Further, you should recognize that R? has an exponential distribution. We use
these results when we discuss noncoherent detection and Rayleigh fading in
Chapters 4 and 8.
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(e) Now, assume that X, ~ N(m,, v*), X, ~ N(m,, v*) are independent, where
m, and m, may be nonzero. Find the joint density of R and ®, and the
marginal density of R. Express the latter in terms of the modified Bessel
function

1 2w
I)(x) = ﬁ/o exp(xcos6) df.

Remark The random variable R is said to have a Rician distribution in this
case. This specializes to a Rayleigh distribution when m, = m, = 0.

Problem 3.5 (Geometric derivation of Q function bound) Let X, and X,
denote independent standard Gaussian random variables.

(a) For a > 0, express P[|X,| > a, |X,| > a] in terms of the Q function.
(b) Find P[X? + X? > 24%].

Hint Transform to polar coordinates. Or use the results of Problem 3.4.

(c) Sketch the regions in the (x;, x,) plane corresponding to the events con-
sidered in (a) and (b).

(d) Use (a)—(c) to obtain an alternative derivation of the bound Q(x) < %e’xz/ 2
for x > 0 (i.e., the bound in Problem 3.3(a)).

3.9.2 Hypothesis testing basics

Figure 3.23 Set-up for
Problem 3.6.

Problem 3.6 The received signal in a digital communication system is
given by

s(t)+n(t) 1 sent,
n(t) 0 sent,

0 ={

where n is AWGN with PSD ¢? = N,/2 and s(7) is as shown below. The
received signal is passed through a filter, and the output is sampled to yield
a decision statistic. An ML decision rule is employed based on the decision
statistic. The set-up is shown in Figure 3.23.

s(t)

¢ 7< ML decision| _
0 2 4 = hi rule
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(a) For h(r) = s(—1), find the error probability as a function of E,/N, if
t,=1.

(b) Can the error probability in (a) be improved by choosing the sampling
time ¢, differently?

(c) Now find the error probability as a function of E,,/N, for h(t) = I 5 and
the best possible choice of sampling time.

(d) Finally, comment on whether you can improve the performance in (c) by
using a linear combination of two samples as a decision statistic, rather
than just using one sample.

Problem 3.7 Find and sketch the decision regions for a binary hypothesis
testing problem with observation Z, where the hypotheses are equally likely,
and the conditional distributions are given by

H,: Z is uniform over [—2, 2],

H,: Z is Gaussian with mean 0 and variance 1.

Problem 3.8 The receiver in a binary communication system employs a
decision statistic Z which behaves as follows:

Z = N if O is sent,

Z =4+ N if 1 is sent,

where N is modeled as Laplacian with density

Lot
PN(X)ZEG , —00<X<o00.
Note Parts (a) and (b) can be done independently.

(a) Find and sketch, as a function of z, the log likelihood ratio

p(z[1)
p(z|0)’

where p(z|i) denotes the conditional density of Z given that i is sent
(i=0,1).

(b) Find P,;, the conditional error probability given that 1 is sent, for the
decision rule

K(z) =logL(z) = log

0, z<1
6 — 9 9
2 { Lz=1
(c) Is the rule in (b) the MPE rule for any choice of prior probabilities? If
so, specify the prior probability 7, = P[0 sent] for which it is the MPE
rule. If not, say why not.

Problem 3.9 The output of the receiver in an optical on—off keyed system
is a photon count Y, where Y is a Poisson random variable with mean m, if
1 is sent, and mean m,, if O is sent (assume m, > m,). Assume that 0 and 1
are equally likely to be sent.
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(a) Find the form of the ML rule. Simplify as much as possible, and explicitly
specify it for m;, = 100, m, = 10.
(b) Find expressions for the conditional error probabilities P,

eli»

i=0,1 for
the ML rule, and give numerical values for m, = 100, m, = 10.

Problem 3.10 Consider hypothesis testing based on the decision statistic Y,
where Y ~ N(1,4) under H, and Y ~ N(—1, 1) under H,.

(a) Show that the optimal (ML or MPE) decision rule is equivalent to com-
paring a function of the form ay? + by with a threshold.

(b) Specify the rule explicitly (i.e., specify a, b and the threshold) for the
MPE rule when 7, =1/3.

3.9.3 Receiver design and performance analysis for the AWGN channel

Figure 3.24 Signal
constellations for Problem
3.12.

Problem 3.11 Let p,(t) = I}y ;)(¢) denote a rectangular pulse of unit duration.
Consider two 4-ary signal sets as follows:

Signal set A: s,(t) = p,(t—1),i=0,1,2,3.

Signal set B: sy(1) = p\(t) + pi(1=3), 5,(t) = pi(t = 1) + py (1 = 2), 5,(1) =
pi(D)+pi(t=2), s3(t) = p (1 — 1)+ py (1 =3).

(a) Find signal space representations for each signal set with respect to the
orthonormal basis {p,(t—1i),i=0, 1,2, 3}.

(b) Find union bounds on the average error probabilities for both signal sets
as a function of E,/N,. At high SNR, what is the penalty in dB for using
signal set B?

(c) Find an exact expression for the average error probability for signal set
B as a function of E,/N,,.

Problem 3.12 Three 8-ary signal constellations are shown in Figure 3.24.

(a) Express R and dr(ji)n in terms of dgi)n so that all three constellations have
the same E,.

(b) For a given E, /N,,, which constellation do you expect to have the smallest
bit error probability over a high SNR AWGN channel?

(c) For each constellation, determine whether you can label signal points
using three bits so that the label for nearest neighbors differs by at most

8-PSK
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Figure 3.25 Constellation for
Problem 3.13.

3.9 Problems

one bit. If so, find such a labeling. If not, say why not and find some
“good” labeling.

(d) For the labelings found in part (c), compute nearest neighbors approxima-
tions for the average bit error probability as a function of E, /N, for each
constellation. Evaluate these approximations for E, /N, = 15 dB.

Problem 3.13 Consider the signal constellation shown in Figure 3.25, which
consists of two QPSK constellations of different radii, offset from each other
by /4. The constellation is to be used to communicate over a passband
AWGN channel.

(a) Carefully redraw the constellation (roughly to scale, to the extent possible)
for r =1 and R = +/2. Sketch the ML decision regions.

(b) Forr=1and R= V2, find an intelligent union bound for the conditional
error probability, given that a signal point from the inner circle is sent,
as a function of E;/N,,.

(c) How would you choose the parameters r and R so as to optimize the
power efficiency of the constellation (at high SNR)?

Problem 3.14 (Exact symbol error probabilities for rectangular con-
stellations) Assuming each symbol is equally likely, derive the following
expressions for the average error probability for 4-PAM and 16-QAM:

3 4E, .
P, = EQ v | symbol error probability for 4-PAM  (3.90)
0

4E, 9 L [4E, .
P.=30|.—|—-0 —— |, symbol error probability
5N, 4 5N,
0 0 for 16-QAM. (3.91)

o
-
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Figure 3.26 Figure for
Problem 3.15.

Demodulation

(Assume 4-PAM with equally spaced levels symmetric about the origin, and
rectangular 16-QAM equivalent to two 4-PAM constellations independently
modulating the I and Q components.)

Problem 3.15 (Symbol error probability for PSK) In this problem, we
derive an expression for the symbol error probability for M-ary PSK that
requires numerical evaluation of a single integral over a finite interval. Figure
3.26 shows the decision boundaries corresponding to a point in a PSK constel-
lation. A two-dimensional noise vector originating from the signal point must
reach beyond the boundaries to cause an error. A direct approach to evaluating
error probability requires integration of the two-dimensional Gaussian density
over an infinite region. We avoid this by switching to polar coordinates, with
the noise vector having radius L and angle 6 as shown.

(a) Owing to symmetry, the error probability equals twice the probability
of the noise vector crossing the top decision boundary. Argue that this
happens if L > d(6) for some 6 € (0, m — 7/ M).

(b) Show that the probability of error is given by

P = 2/”7% PIL > d(0)|0]p(6) dé.
0

(c) Use Problem 3.4 to show that P[L > d] = e_%, that L is independent of
0, and that 6 is uniform over [0, 277].

(d) Show that d(6) = (Rsin7/M)/(sin(0+ 7/ M)).

(e) Conclude that the error probability is given by

R2sin2 T

sin” %
M

—
— _f 2(725m2(3+ ) do.

(f) Use the change of variable ¢ = 7 — (6 + /M) (or alternatively, realize
that 6 + 77/M (mod 27r) is also uniform over [0, 277]) to conclude that

Eb lobz Msin?

1 T R~mM T3
e [ LT
m Jo aw Jo

symbol error probability for M-ary PSK.

Decision boundary

Noise vector
(length L)

Origin R Signal point

Decision boundary
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Figure 3.27 Constellation for
Problem 3.16.

° °
° °
/
d;
d

Figure 3.28 QPSK with
erasures.

3.9 Problems

Problem 3.16 The signal constellation shown in Figure 3.27 is obtained by
moving the outer corner points in rectangular 16-QAM to the I and Q axes.

(a) Sketch the ML decision regions.
(b) Is the constellation more or less power efficient than rectangular 16-
QAM?

Problem 3.17 A 16-ary signal constellation consists of four signals with
coordinates (£ — 1, + — 1), four others with coordinates (£3, +3), and two
each having coordinates (%3, 0), (£5, 0), (0, £3), and (0, £5), respectively.

(a) Sketch the signal constellation and indicate the ML decision regions.

(b) Find an intelligent union bound on the average symbol error probability
as a function of E,/N,.

(c) Find the nearest neighbors approximation to the average symbol error
probability as a function of E,/N,.

(d) Find the nearest neighbors approximation to the average symbol error
probability for 16-QAM as a function of E,/N,.

(e) Comparing (c) and (d) (i.e., comparing the performance at high SNR),
which signal set is more power efficient?

Problem 3.18 (adapted from [13]) A QPSK demodulator is designed to put
out an erasure when the decision is ambivalent. Thus, the decision regions are
modified as shown in Figure 3.28, where the crosshatched region corresponds
to an erasure. Set « =d,/d, where 0 < a < 1.

(a) Use the intelligent union bound to find approximations to the probability
p of symbol error and the probability g of symbol erasure in terms of
E,/N, and a.

(b) Find exact expressions for p and ¢ as functions of E, /N, and «.

(c) Using the approximations in (a), find an approximate value for o such
that g = 2p for E, /N, =4 dB.
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Figure 3.29 Signal
constellation with unequal
error protection (Problem
3.19).

Demodulation

(0,0) (1,0)
o o

o o
(0,1 (1, 1)

Remark The motivation for (c) is that a typical error-correcting code can
correct twice as many erasures as errors.

Problem 3.19 Consider the constant modulus constellation shown in
Figure 3.29 where 6 < /4. Each symbol is labeled by two bits (b, b,),
as shown. Assume that the constellation is used over a complex base-
band AWGN channel with noise power spectral density (PSD) N,/2 in
each dimension. Let (lA)], 132) denote the maximum likelihood (ML) estimates
of (b, b,).

(a) Find P,, = P[b, # b,] and P., = P[b, # b,] as a function of E,/N,, where
E, denotes the signal energy.

(b) Assume now that the transmitter is being heard by two receivers, R1 and
R2, and that R2 is twice as far away from the transmitter as R1. Assume
that the received signal energy falls off as 1/r*, where r is the distance
from the transmitter, and that the noise PSD for both receivers is identical.
Suppose that R1 can demodulate both bits b1 and b2 with error probability
at least as good as 1072, i.e., so that max{P,,(R1), P,,(R1)} = 1073
Design the signal constellation (i.e., specify ) so that R2 can demodulate
at least one of the bits with the same error probability, i.e., such that
min{P,,(R2), P,,(R2)} = 1073.

Remark You have designed an unequal error protection scheme in which
the receiver that sees a poorer channel can still extract part of the information
sent.

Problem 3.20 (Demodulation with amplitude mismatch) Consider a 4-
PAM system using the constellation points {#1, £3}. The receiver has an
accurate estimate of its noise level. An automatic gain control (AGC) circuit
is supposed to scale the decision statistics so that the noiseless constellation
points are in {£1, £3}. The ML decision boundaries are set according to this
nominal scaling.

(a) Suppose that the AGC scaling is faulty, and the actual noiseless signal
points are at {+0.9, £2.7}. Sketch the points and the mismatched decision
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regions. Find an intelligent union bound for the symbol error probability
in terms of the Q function and E,/N,.

(b) Repeat (a), assuming that faulty AGC scaling puts the noiseless signal
points at {£1.1, £3.3}.

(c) The AGC circuits try to maintain a constant output power as the input
power varies, and can be viewed as imposing a scale factor on the
input inversely proportional to the square root of the input power.
In (a), does the AGC circuit overestimate or underestimate the input
power?

Problem 3.21 (Demodulation with phase mismatch) Consider a BPSK
system in which the receiver’s estimate of the carrier phase is off by 6.

(a) Sketch the I and Q components of the decision statistic, showing the
noiseless signal points and the decision region.

(b) Derive the BER as a function of 6 and E, /N, (assume that 6 < 77/2).

(c) Assuming now that 6 is a random variable taking values uniformly
in [—m/4, w/4], numerically compute the BER averaged over 6, and
plot it as a function of E,/N,. Plot the BER without phase mis-
match as well, and estimate the dB degradation due to the phase
mismatch.

Problem 3.22 (Soft decisions for BPSK) Consider a BPSK system in which
0 and 1 are equally likely to be sent, with O mapped to +1 and 1 to —1 as
usual.

(a) Show that the LLR is conditionally Gaussian given the transmitted bit,
and that the conditional distribution is scale-invariant, depending only on
the SNR.

(b) If the BER for hard decisions is 10%, specify the conditional distribution
of the LLR, given that O is sent.

Problem 3.23 (Soft decisions for PAM) Consider a 4-PAM constellation in
which the signal levels at the receiver have been scaled to £1, 3. The system
is operating at E, /N, of 6dB. Bits b,, b, € {0, 1} are mapped to the symbols
using Gray coding. Assume that (b,, b,) = (0, 0) for symbol —3, and (1, 0)
for symbol +3.

(a) Sketch the constellation, along with the bitmaps. Indicate the ML hard
decision boundaries.

(b) Find the posterior symbol probability P[—3|y] as a function of the noisy
observation y. Plot it as a function of y.

Hint The noise variance can be inferred from the signal levels and SNR.

(c) Find P[b, = 1|y] and P[b, = 1]y], and plot each as a function of y.
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Figure 3.30 Gray coded 8-PSK
constellation for Problem 3.24.

Demodulation

(d) Display the results of part (c) in terms of LLRs.

Plb, =0y]
Plby = 1]y’

Plb, = 0y
LLR,(y) = log —2— -1
20 =log 5 )y

Plot the LLRs as a function of y, saturating the values as £50.

(e) Try other values of E,/N, (e.g., 0dB, 10dB). Comment on any trends
you notice. How do the LLRs vary as a function of distance from the
noiseless signal points? How do they vary as you change E,/N,?

(f) Simulate the system over multiple symbols at E, /N, such that the BER is
about 5%. Plot the histograms of the LLRs for each of the two bits, and
comment on whether they look Gaussian. What happens as you increase
or decrease E,/N,?

LLR,(y) =log

Problem 3.24 (Soft decisions for PSK) Consider the Gray coded 8-PSK
constellation shown in Figure 3.30, labeled with bits (b,, b,, b;). The received
samples are ISI-free, with the noise contribution modeled as discrete-time
WGN with variance 0.1 per dimension. The system operates at an E,/N,
of 8dB.

(a) Use the nearest neighbors approximation to estimate the BER for hard
decisions.

(b) For a received sample y = 2e , find the hard decisions on the bits.

(c) Find the LLRs for each of the three bits for the received sample in (b).

(d) Now, simulate the system over multiple symbols at E, /N, such that the
BER for hard decisions is approximately 5%. Plot the histograms of the
LLRs of each of the three bits, and comment on their shapes. What
happens as you increase or decrease E,/N,?

—j2m/3

Problem 3.25 (Exact performance analysis for M-ary orthogo-
nal signaling) Consider an M-ary orthogonal equal-energy signal set
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{si,i=1,...,M} with (s;,5;) = E;0;;, for 1 <, j < M. Condition on s,
being sent, so that the received signal y = s, + n, where n is WGN with PSD
02 = N,/2. The ML decision rule in this case is given by

Oy (v) = arg max Z;,
where Z, = (y,s,),i=1,..., M. Let Z=(Z,,...,Z,)".

(a) Show that {Z;} are (conditionally) independent, with Z, ~ N(E,, 0°E,)
and Z; ~ N(0, 0*E,).

(b) Show that the conditional probability of correct reception (given s, sent)
is given by

Py = PZ, =mlax Z=PZ =22,,Z,>2;,...,Z,>Zy]
o 1 2
= D(x)M! ——e ™2 dx, (3.93)
~/—oo[ ] N2
where

2E,

m = .
Ny

Hint Scale the {Z;} so that they have unit variance (this does not change the outcome
of the decision, since they all have the same variance). Condition on the value of Z;.

(c) Show that the conditional probability of error (given s, sent) is given by

P

e|l

= P[Z, <max Z,]=1—P[Z, =max Z]

- [ :[cp(x)]M*2 B(x—m)——c " dx. (3.94)

1
V2w
Hint One approach is to use (3.93) and integrate by parts. Alternatively, decompose
the event of getting an error {Z, < max Z;} into M — 1 disjoint events and evaluate
their probabilities. Note that events such as Z; = Z; for i # j have zero probability.

Remark The probabilities (3.93) and (3.94) sum up to one, but (3.94) is
better for numerical evaluation when the error probability is small.

(d) Compute and plot the probability of error (log scale) versus E, /N, (dB),
for M =4, 8, 16,32. Comment on what happens with increasing M.

Problem 3.26 (M-ary orthogonal signaling performance as M — o) We
wish to derive the result that

lim P(correct) = w > In2, (3.95)
Jim P(correct) = 0. B 2. )

No
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(a) Show that

® 2E, log, M 1
P(correct) = / D|x+ b 08 e V% dx.
~oo N V2

Hint Use Problem 3.25(b).

(b) Show that, for any x,

M—1

. 2E, log, M 0 £ <In2,
1 D _— = Yo
s [ (H N, I Bom,

Hint Use L’Hdpital’s rule on the log of the expression whose limit is to be evaluated.

(c) Substitute (b) into the integral in (a) to infer the desired result.

Problem 3.27 (Preview of Rayleigh fading) We shall show in Chapter 8
that constructive and destructive interference between multiple paths in wire-
less systems lead to large fluctuations in received amplitude, modeled as a
Rayleigh random variable A (see Problem 3.4). The energy per bit is there-
fore proportional to A%, Thus, using Problem 3.4(c), we can model E, as an
exponential random variable with mean E,, where E, is the average energy
per bit.

(a) Show that the BER for BPSK over a Rayleigh fading channel is given by

1
1 -2
p=1 1_<1+&) |
2 E,

How does the BER decay with E, /N, at high SNR?

Hint Compute E [Q (, /2E,/ NO)] using the distribution of E, /N,. Integrate by parts
to evaluate.

(b) Plot BER versus E, /N, for BPSK over the AWGN and Rayleigh fading
channels (BER on log scale, E/N, in dB). Note that E, = E, for the
AWGN channel. At BER of 10~*, what is the degradation in dB due to
Rayleigh fading?

Problem 3.28 (ML decision rule for multiuser systems) Consider 2-user
BPSK signaling in AWGN, with received signal

y = bu, +bu, +n, (3.96)

where u, = (=1, =1)7, u, = (2, 1)7, b,, b, take values £1 with equal prob-
ability, and n is AWGN of variance o per dimension.
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(a) Draw the decision regions in the (y,,y,) plane for making joint ML
decisions for b,, b,, and specify the decision if y = (2.5, 1)7.

Hint Think of this as M-ary signaling in WGN, with M = 4.

(b) Find an intelligent union bound on the conditional error probability, con-
ditioned on b, = +1, b, = +1, for the joint ML rule (an error occurs if
either of the bits are wrong). Repeat for b, = +1, b, = —1.

(c) Find the average error probability P, that the joint ML rule makes an
error in b,.

Hint Use the results of part (b).

(d) If the second user were not transmitting (remove the term b,u, from
(3.96)), sketch the ML decision region for b, in the (y,,y,) plane and
evaluate the error probability P;", for b,, where the superscript “su”
denotes ““single user.”

(e) Find the rates of exponential decay as o> — 0 for the error probabilitibg:s

in (c) and (d). That is, find a, b > 0 such that P, ; = e o2 and Pl =e 7.

Remark The ratio a/b is the asymptotic efficiency (of the joint ML decision
rule) for user 1. It measures the fractional degradation in the exponential rate
of decay (as SNR increases) of error probability for user 1 due to the presence
of user 2.

(f) Redo parts (d) and (e) for user 2.

3.9.4 Link budget analysis

Problem 3.29 You are given an AWGN channel of bandwidth 3 MHz.
Assume that implementation constraints dictate an excess bandwidth of 50%.
Find the achievable bit rate, the E, /N, required for a BER of 1078, and the
receiver sensitivity (assuming a receiver noise figure of 7 dB) for the following
modulation schemes, assuming that the bit-to-symbol map is optimized to
minimize the BER whenever possible:

(a) QPSK;

(b) 8-PSK;

(c) 64QAM;

(d) Coherent 16-ary orthogonal signaling.

Remark Use nearest neighbors approximations for the BER.



150 Demodulation

Problem 3.30 Consider the setting of Example 3.7.1.

(a) For all parameters remaining the same, find the range and bit rate when
using a 64QAM constellation.

(b) Suppose now that the channel model is changed from AWGN to Rayleigh
fading (see Problem 3.27). Find the receiver sensitivity required for QPSK
at BER of 107%. What is the range, assuming all other parameters are as
in Example 3.7.1?

3.9.5 Some mathematical derivations

Problem 3.31 (Properties of covariance matrices) Let C denote the
covariance matrix of a random vector X of dimension m. Let {A;,i =
1,...,m} denote its eigenvalues, and let {v,,i=1,..., m} denote the cor-
responding eigenvectors, chosen to form an orthonormal basis for R (let us
take it for granted that this can always be done). That is, we have Cv;, = A,v;,
and v/v; =§,;.

(a) Show that C is nonnegative definite. That is, for any vector a, we have
a’Ca>0.

Hint Show that you can write a” Ca = E[Y?] for some random variable Y.

(b) Show that any eigenvalue A, > 0.
(c) Show that C can be written in terms of its eigenvectors as follows:

C=> Avv]. (3.97)
i=1

Hint The matrix equality A = B is equivalent to saying that Ax = Bx for any vector
x. We use this to show that the two sides of (3.97) are equal. For any vector X, consider
its expansion x = Y_ x;v; with respect to the basis {v;}. Now, show that applying the
matrices on each silde of (3.97) gives the same result.

The expression (3.97) is called the spectral factorization of C, with the eigenvalues
{A;} playing the role of a discrete spectrum. The advantage of this view is that, as
shown in the succeeding parts of this problem, algebraic operations on the eigenvalues,
such as taking their inverse or square root, correspond to analogous operations on the
matrix C.

(d) Show that, for C invertible, the inverse is given by

m 1
c'=> xViViT- (3.98)
i=1 "

Hint Check this by directly multiplying the right-hand sides of (3.97) and (3.98),
and using the orthonormality of the eigenvectors.

(e) Show that the matrix

A=Y/ avT (3.99)
i=1
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can be thought of as a square root of C, in that A> = C. We denote this
as C1.

(f) Suppose now that C is not invertible. Show that there is a nonzero vector
a such that the entire probability mass of X lies along the (m — 1)-
dimensional plane a” (X —m) = 0. That is, the m-dimensional joint density
of X does not exist.

Hint If C is not invertible, then there is a nonzero a such that Ca = 0. Now left
multiply by a’” and write out C as an expectation.

Remark In this case, it is possible to write one of the components of X
as a linear combination of the others, and work in a lower-dimensional space
for computing probabilities involving X. Note that this result does not require
Gaussianity.

Problem 3.32 (Derivation of joint Gaussian density) We wish to derive
the density of a real-valued Gaussian random vector X = (X, ..., X,,)" ~
N(0, C), starting from the assumption that any linear combination of the
elements of X is a Gaussian random variable. This can then be translated by
m to get any desired mean vector. To this end, we employ the characteristic
function of X, defined as

d)x(w) — E[eijX] — E[ej(wlX1+~~+w,,,X,,,)] — f eijpr(X) dx, (3100)

as a multidimensional Fourier transform of X. The density pyx(x) is therefore
given by a multidimensional inverse Fourier transform,

py(X) = / e X o (W) dw. (3.101)

2m)"

(a) Show that the characteristic function of a standard Gaussian random
variable Z ~ N(0, 1) is given by ¢, (w) = e/,

(b) Set Y = w!X. Show that ¥ ~ N(0, v?), where v* = w/ Cw.

(c) Use (a) and (b) to show that

1

by (W) =e 2V O, (3.102)

(d) To obtain the density using the integral in (3.101), make the change of
variable u = C2w. Show that you get

1
@ c|!

1
T 2 LT
ju' C Xg—zuWu du,

px(x) =

where |A| denotes the determinant of a matrix A.

Hint We have ¢x(w) = e """ and du = |C% [dw.
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(¢) Now, set C~2x =z, with py(x) = f(z). Show that

o R AN BT
7)= — [ e 2" " du = _/eﬂ”me*%/z du. ).
=Gy i méﬂ(zw ;

(f) Using (a) to evaluate f(z) in (e), show that

1 I i
—— e ?
||z (2m)*%

z

f(2) =

Now substitute C2x =z to get the density py(X).
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Synchronization and noncoherent
communication

In Chapter 3, we established a framework for demodulation over AWGN
channels under the assumption that the receiver knows and can reproduce the
noiseless received signal for each possible transmitted signal. These provide
“templates” against which we can compare the noisy received signal (using
correlation), and thereby make inferences about the likelihood of each possible
transmitted signal. Before the receiver can arrive at these templates, however,
it must estimate unknown parameters such as the amplitude, frequency and
phase shifts induced by the channel. We discuss synchronization techniques
for obtaining such estimates in this chapter. Alternatively, the receiver might
fold in implicit estimation of these parameters, or average over the possible
values taken by these parameters, in the design of the demodulator. Non-
coherent demodulation, discussed in detail in this chapter, is an example of
such an approach to dealing with unknown channel phase. Noncoherent com-
munication is employed when carrier synchronization is not available (e.g.,
because of considerations of implementation cost or complexity, or because
the channel induces a difficult-to-track time-varying phase, as for wireless
mobile channels). Noncoherent processing is also an important component
of many synchronization algorithms (e.g., for timing synchronization, which
often takes place prior to carrier synchronization).

Since there are many variations in individual (and typically proprietary)
implementations of synchronization and demodulation algorithms, the focus
here is on developing basic principles, and on providing some simple exam-
ples of how these principles might be applied. Good transceiver designs are
often based on a sound understanding of such principles, together with a
willingness to make approximations guided by intuition, driven by implemen-
tation constraints, and verified by simulations.

The framework for demodulation developed in Chapter 3 exploited signal
space techniques to project the continuous-time signal to a finite-dimensional
vector space, and then applied detection theory to characterize optimal
receivers. We now wish to apply a similar strategy for the more general prob-
lem of parameter estimation, where the parameter may be continuous-valued,
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e.g., an unknown delay, phase or amplitude. The resulting framework also
enables us to recover, as a special case, the results derived earlier for optimal
detection for M-ary signaling in AWGN, since this problem can be interpreted
as that of estimating an M-valued parameter. The model for the received
signal is

(1) = 54() + n(0), (4.1)

where 6 € A indexes the set of possible noiseless received signals, and n(7)
is WGN with PSD o2 = N,/2 per dimension. Note that this description cap-
tures both real-valued and complex-valued WGN; for the latter, the real part
n, and the imaginary part ng each has PSD N,/2, so that the sum n, + jn;
has PSD N,. The parameter § may be vector-valued (e.g., when we wish
to obtain joint estimates of the amplitude, delay and phase). We develop
a framework for optimal parameter estimation that applies to both real-
valued and complex-valued signals. We then apply this framework to some
canonical problems of synchronization, and to the problem of noncoherent
communication.

Map of this chapter We begin by providing a qualitative discussion of the
issues facing the receiver designer in Section 4.1, with a focus on the prob-
lem of synchronization, which involves estimation and tracking of parameters
such as delay, phase, and frequency. We then summarize some basic con-
cepts of parameter estimation in Section 4.2. Estimation of a parameter 6
using an observation Y requires knowledge of the conditional density of Y,
conditioned on each possible value of 6. In the context of receiver design, the
observation is actually a continuous-time analog signal. Thus, an important
result is the establishment of the concept of (conditional) density for such
signals. To this end, we develop the concept of a likelihood function, which
is an appropriately defined likelihood ratio playing the role of density for
a signal corrupted by AWGN. We then apply this to receiver design in the
subsequent sections. Section 4.3 discusses application of parameter estima-
tion to some canonical synchronization problems. Section 4.4 derives optimal
noncoherent receivers using the framework of composite hypothesis testing,
where we choose between multiple hypotheses (i.e., the possible transmitted
signals) when there are some unknown “nuisance” parameters in the statis-
tical relationship between the observation and the hypotheses. In the case
of noncoherent communication, the unknown parameter is the carrier phase.
Classical examples of modulation formats amenable to noncoherent demod-
ulation, including orthogonal modulation and differential PSK (DPSK), are
discussed. Finally, Section 4.5 is devoted to techniques for analyzing the
performance of noncoherent systems. An important tool is the concept of
proper complex Gaussianity, discussed in Section 4.5.1. Binary noncoherent
communication is analyzed in Section 4.5.2; in addition to exact analysis
for orthogonal modulation, we also develop geometric insight analogous to
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the signal space concepts developed for coherent communication in Chapter
3. These concepts provide the building block for the rest of Section 4.5,
which discusses M-ary orthogonal signaling, DPSK, and block differential
demodulation.

4.1 Receiver design requirements

Figure 4.1 Block diagram of
key transceiver blocks for
synchronization and

In this section, we discuss the synchronization tasks underlying a typical
receiver design. For concreteness, the discussion is set in the context of linear
modulation over a passband channel. Some key transceiver blocks are shown
in Figure 4.1.

The transmitted complex baseband signal is given by

u(t) = Y bln]gr (t—nT),

and is upconverted to passband using a local oscillator (LO) at carrier fre-
quency f.. Both the local oscillator and the sampling clock are often integer
or rational multiples of the natural frequency fy, of a crystal oscillator, and
can be generated using a phase locked loop, as shown in Figure 4.2. Detailed
description of the operation of a PLL does not fall within our agenda (of
developing optimal estimators) in this chapter, but we briefly interpret the
PLL as an ML estimator in Example 4.3.3.

Effect of delay The passband signal u,(r) = Re (u(r)el*™") goes through

demodulation. the channel. For simplicity, we consider a nondispersive channel which causes
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Figure 4.2 Generation of LOs
and clocks from a crystal
oscillator reference using a PLL.

Divide by N counter

only amplitude scaling and delay (dispersive channels are considered in the
next chapter). Thus, the passband received signal is given by

¥p(t) = Auy(t — 1) +n, (1),

where A is an unknown amplitude, 7 is an unknown delay, and n, is passband
noise. Let us consider the effect of the delay 7 in complex baseband. We can
write the passband signal as

uy(t — 7) = Re (u(t — 7)e?™("7) =Re (u(t — 7)e?e™) ,

where the phase 6 = —27f.7 mod 2 is very sensitive to the delay 7, since
the carrier frequency f, is typically very large. We can therefore safely model
0 as uniformly distributed over [0, 27r], and read off the complex baseband
representation of Au,(t— ) with respect to f, as Au(z— 7)el’, where 7, 6 are
unknown parameters.

Effect of LO offset The passband received signal y, is downconverted to
complex baseband using a local oscillator, again typically synthesized from
a crystal oscillator using a PLL. Crystal oscillators typically have tolerances
of the order of 10-100 parts per million (ppm), so that the frequency of the
local oscillator at the receiver typically differs from that of the transmitter.
Assuming that the frequency of the receiver’s LO is f, — Af, the output
y of the downconverter is the complex baseband representation of y, with
respect to f, —Af. We therefore obtain the following complex baseband
model including unknown delay, frequency offset, and phase.

Complex baseband model prior to synchronization

y(t) = Aeu(t — 7)™ + n(z)
4.2)
= APAHO S bn)grx (t —nT — 1) +n(t),

where n is complex WGN.
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Sampling In many modern receiver architectures, the operations on the
downconverted complex baseband signal are made using DSP, which can,
in principle, implement any desired operation on the original analog signal
with arbitrarily high fidelity, as long as the sampling rate is high enough
and the analog-to-digital converter has high enough precision. The sam-
pling rate is usually chosen to be an integer multiple of the symbol rate;
this is referred to as fractionally spaced sampling. For signaling with mod-
erate excess bandwidth (less than 100%), the signal bandwidth is at most
2/T, hence sampling at rate 2/T preserves all the information in the analog
received signal. Recall from Chapter 2, however, that reconstruction of an
analog signal from its sample requires complicated interpolation using sinc
functions, when sampling at the minimum rate required to avoid aliasing.
Such interpolation can be simplified (or even eliminated) by sampling even
faster, so that sampling at four or eight times the symbol rate is not uncom-
mon in modern receiver implementations. For example, consider the problem
of timing synchronization for Nyquist signaling over an ideal communica-
tion channel. When working with the original analog signal, our task is to
choose sampling points spaced by 7 which have no ISI. If we sample at
rate 8/T, we have eight symbol-spaced substreams, at least one of which
is within at most 7/8 of the best sampling instant. In this case, we may be
willing to live with the performance loss incurred by sampling slightly away
from the optimum point, and simply choose the best among the eight sub-
streams. On the other hand, if we sample at rate 2/7, then there are only two
symbol-spaced substreams, and the worst-case offset of 7/2 yields too high a
performance degradation. In this case, we need to interpolate the samples in
order to generate a T-spaced stream of samples that we can use for symbol
decisions.

The two major synchronization blocks shown in Figure 4.1 are timing
synchronization and carrier synchronization.

Timing synchronization The first important task of the timing synchro-
nization block is to estimate the delay 7 in (4.2). If the symbols {b[n]} are
stationary, then the delay 7 can only be estimated modulo 7, since shifts in
the symbol stream are undistinguishable from each other. Thus, to estimate
the absolute value of 7, we typically require a subset of the symbols {b[n]} to
be known, so that we can match what we receive against the expected signal
corresponding to these known symbols. These training symbols are usually
provided in a preamble at the beginning of the transmission. This part of
timing synchronization usually occurs before carrier synchronization.

We have already observed in (4.2) the consequences of the offset between
the transmitter and receiver LOs. A similar observation also applies to the
nominal symbol rate at the transmitter and receiver. That is, the symbol time T
in the model (4.2) corresponds to the symbol rate clock at the transmitter. The
(fractionally spaced) sampler at the receiver operates at (14 6)m/T, where 6
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is of the order of 10-100 ppm (and can be positive or negative), and where m
is a positive integer. The relative timing of the T-spaced “ticks” generated by
the transmitter and receiver clocks therefore drifts apart significantly over a
period of tens of thousands of symbols. If the number of transmitted symbols is
significantly smaller than this, which is the case for some packetized systems,
then this drift can be ignored. However, when a large number of symbols
are sent, the timing synchronization block must track the drift in symbol
timing. Training symbols are no longer available at this point, hence the
algorithms must either operate in decision-directed mode, with the decisions
from the demodulator being fed back to the synchronization block, or they
must be blind, or insensitive to the specific values of the symbols transmitted.
Blind algorithms are generally derived by averaging over all possible values
of the transmitted symbols, but often turn out to have a form similar to
decision-directed algorithms, with hard decisions replaced by soft decisions.
See Example 4.2.2 for a simple instance of this observation.

Carrier synchronization This corresponds to estimation of Af and 6 in
(4.2). These estimates would then be used to undo the rotations induced by
the frequency and phase offsets before coherent demodulation. Initial esti-
mates of the frequency and phase offset are often obtained using a training
sequence, with subsequent tracking in decision-directed mode. Another clas-
sical approach is first to remove the data modulation by nonlinear operations
(e.g., squaring for BPSK modulation), and then to use a PLL for carrier
frequency and phase acquisition.

As evident from the preceding discussion, synchronization typically
involves two stages: obtaining an initial estimate of the unknown parameters
(often using a block of known training symbols sent as a preamble at the
beginning of transmission), and then tracking these parameters as they vary
slowly over time (typically after the training phase, so that the {b[n]} are
unknown). For packetized communication systems, which are increasingly
common in both wireless and wireline communication, the variations of the
synchronization parameters over a packet are often negligible, and the track-
ing phase can often be eliminated. The estimation framework developed in
this chapter consists of choosing parameter values that optimize an appropri-
ately chosen cost function. Typically, initial estimates from a synchronization
algorithm can be viewed as directly optimizing the cost function, while feed-
back loops for subsequent parameter tracking can be interpreted as using the
derivative of the cost function to drive recursive updates of the estimate.
Many classical synchronization algorithms, originally obtained using intuitive
reasoning, can be interpreted as approximations to optimal estimators derived
in this fashion. More importantly, the optimal estimation framework in this
chapter gives us a systematic method to approach new receiver design sce-
narios, with the understanding that creative approximations may be needed
when computation of optimal estimators is too difficult.
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We discuss some canonical estimation problems in Section 4.3, after dis-
cussing basic concepts in parameter estimation in Section 4.2.

4.2 Parameter estimation basics

We begin by outlining a basic framework for parameter estimation. Given an

observation Y, we wish to estimate a parameter 6. The relation between Y

and 6 is statistical: we know p(y|#), the conditional density of Y given 6.
The maximum likelihood estimate (MLE) of 6 is given by

Oy (v) = arg max p(y|6) = arg max logp(y6), (4.3)

where it is sometimes more convenient to maximize a monotonic increasing
function, such as the logarithm, of p(y|0).

If prior information about the parameter is available, that is, if the den-
sity p(6) is known, then it is possible to apply Bayesian estimation, wherein
we optimize the value of an appropriate cost function, averaged using the
joint distribution of ¥ and . It turns out that the key to such minimiza-
tion is the a posteriori density of 6 (i.e., the conditional density of ©
given Y)

p(y|0)p(0)
p(y)

For our purpose, we only define the maximum a posteriori probability (MAP)
estimator, which maximizes the posterior density (4.4) over 6. The denomina-
tor of (4.4) does not depend on 6, and can therefore be dropped. Furthermore,
we can maximize any monotonic increasing function, such as the logarithm,
of the cost function. We therefore obtain several equivalent forms of the MAP
rule, as follows:

p(0ly) = (4.4)

Buiap(y) = arg max p(6]y) = arg max p(y|6)p(6)
o 0
4.5)
=arg max logp(y|6) + logp(0).
o

Example 4.2.1 (Density conditioned on amplitude) As an example
of the kinds of conditional densities used in parameter estimation, con-
sider a single received sample in a linearly modulated BPSK system, of
the form:

Y=Ab+N, (4.6)

where A is an amplitude, b is a BPSK symbol taking values +1 with
equal probability, and N ~ N(0, ?) is noise. If b is known (e.g., because
it is part of a training sequence), then, conditioned on A = a, the received
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sample Y is Gaussian: ¥ ~ N(a, 0?) for b= +1, and Y ~ N(—a, o?) for
b= —1. That is,

_0=a? _ o+a?
Glab=+D)=""  pOlab=—1)= 2
pya, = = N N = — = .

2mo? NV 2mo

However, if b is not known, then we must average over the possible values
it can take in order to compute the conditional density p(y|a). For b = +1
with equal probability, we obtain

p(yla) = P[b=+1]p(y|la,b=+1)+ P[b =+ —1]p(yla, b= —1)

4.7

_-a? _ +a? _2
le 2?2 le 22 _a ayy e 22
=¢ 272 cosh (—) _—

= 4+ = .
2 2ma? 220 o2/ Nao

(4.8)

We can now maximize (4.6) or (4.8) over a to obtain an ML estimate,
depending on whether the transmitted symbol is known or not. Of course,
amplitude estimation based on a single symbol is unreliable at typical
SNRs, hence we use the results of this example as a building block for
developing an amplitude estimator for a block of symbols.

Example 4.2.2 (ML amplitude estimation using multiple symbols)
Consider a linearly modulated system in which the samples at the receive
filter output are given by

Y[k]=A blk]+Nk], k=1,...,K, (4.9)

where A is an unknown amplitude, b[k] are transmitted symbols tak-
ing values +1, and N[k] are ii.d. N(0,o?) noise samples. We wish
to find an ML estimate for the amplitude A, using the vector observa-
tion Y = (¥[1],..., Y[K])T. The vector of K symbols is denoted by b =
(b[1],..., B[K])T. We consider two cases separately: first, when the sym-
bols {b[k]} are part of a known training sequence, and second, when the
symbols {b[k]} are unknown, and modeled as i.i.d., taking values 1 with
equal probability.

Case 1 (Training-based estimation) The ML estimate is given by

K
Ay =arg max log p(y|A, b) =arg max Y _log p(Y[k]|A, b[k]),
A A k=1
where the logarithm of the joint density decomposes into a sum of the
logarithms of the marginals because of the conditional independence of
the Y[k], given A and b. Substituting from (4.6), we can show that (see
Problem 4.1)
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S ¥ [K]b[A]. (4.10)

k=1

A 1

ML=
That is, the ML estimate is obtained by correlating the received samples
against the training sequence, which is an intuitively pleasing result. The
generalization to complex-valued symbols is straightforward, and is left
as an exercise.

Case 2 (Blind estimation) “Blind” estimation refers to estimation with-
out the use of a training sequence. In this case, we model the {b[k]}
as i.i.d., taking values 1 with equal probability. Conditioned on A, the
{Y[k]} are independent, with marginals given by (4.7). The ML estimate
is therefore given by

A

K
Ay = arg maxlog p(y|A) = arg max ) _log p(Y [k]|A).
A A

k=1

Substituting from (4.8) and setting the derivative of the cost function with
respect to A to zero, we can show that (see Problem 4.1) the ML estimate
Ay = a satisfies the transcendental equation

<aY[k]

o?

K
4= 3" Y[k]tanh ) _ 1 3" Y[k]b[k], (4.11)
Ko K5
where the analogy with correlation in the training-based estimator (4.10)
is evident, interpreting b[k] = tanh((aY[k])/0?) as a “soft” estimate of the
symbol b[k], k =1,..., K. How would the preceding estimators need to
be modified if we wished to implement the MAP rule, assuming that the

prior distribution of A is N(0, 03)?

We see that the key ingredient of parameter estimation is the conditional
density of the observation, given the parameter. To apply this framework
to a continuous-time observation as in (4.1), therefore, we must be able to
define a conditional “density” for the infinite-dimensional observation y(t),
conditioned on 6. To do this, let us first reexamine the notion of density for
scalar random variables more closely.

Example 4.2.3 (There are many ways to define a density) Consider
the Gaussian random variable Y ~ N(6, %), where 0 is an unknown
parameter. The conditional density of Y, given 0, is given by

1 (y—90)°
exp | — .
V2mo? P 207
The conditional probability that Y takes values in a subset A of real
numbers is given by

p(y10) =
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P(Y € Al0) =/Ap(y|o) dy. (4.12)

For any arbitrary function g(y) satisfying the property that g(y) > 0 wher-
ever p(y) > 0, we may rewrite the above probability as

p(y10)
Pyed)= [ B2 g0dy = [ LOIO) a()dy.  (413)
A q(y) A
An example of such a function g(y) is a Gaussian N(0, o%) density,

given by

()= ——— ik
= €X — .
q\y = P 202

In this case, we obtain

L(y|6) = %l)e) = exp <$ (yH— %2» :

Comparing (4.12) and (4.13), we observe the following. The probability of
an infinitesimal interval (y, y+dy) is given by the product of the density
and the size of the interval. Thus, p(y|6) is the (conditional) probability
density of Y when the measure of the size of an infinitesimal interval
(v, y+dy) is its length dy. However, if we redefine the measure of the
interval size as g(y)dy (this measure now depends on the location of the
interval as well as its length), then the (conditional) density of Y with
respect to this new measure of length is L(y|6). The two notions of density
are equivalent, since the probability of the infinitesimal interval is the same
in both cases. In this particular example, the new density L(y|f) can be
interpreted as a likelihood ratio, since p(y|0) and g(y) are both probability
densities.

Suppose, now, that we wish to estimate the parameter 6 based on Y. Noting
that g(y) does not depend on 6, dividing p(y|6) by g(y) does not affect the
MLE for 6 based on Y: check that éML(y) =y in both cases. In general,
we can choose to define the density p(y|#) with respect to any convenient
measure, to get a form that is easy to manipulate. This is the idea we use
to define the notion of a density for a continuous-time signal in WGN: we
define the density as the likelihood function of a hypothesis corresponding to
the model (4.1), with respect to a dummy hypothesis that is independent of
the signal s,(7).

4.2.1 Likelihood function of a signal in AWGN

Let H, be the hypothesis corresponding to the signal model of (4.1), dropping
the subscript 6 for convenience:

H, :y(t) = s(t) +n(r), (4.14)
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where n(f) is WGN and s(¢) has finite energy. Define a noise-only dummy
hypothesis as follows:

H, :y(t) = n(r). (4.15)

We now use signal space concepts in order to compute the likelihood ratio
for the hypothesis testing problem H, versus H,. Define

Z=y.9) (4.16)
as the component of the received signal along the signal s. Let
s(2)
yH(n) = y(1) = (v 5) RE

denote the component of y orthogonal to the signal space spanned by s. Since
Z and y* provide a complete description of the received signal y, it suffices to
compute the likelihood ratio for the pair (Z, y*(¢)). We can now argue as in
Chapter 3. First, note that y= = n*, where n*(t) = n(t) — (n, s)s(t) /||s||* is
the noise component orthogonal to the signal space. Thus, y* is unaffected by
s. Second, nt is independent of the noise component in Z, since components
of WGN in orthogonal directions are uncorrelated and jointly Gaussian, and
hence independent. This implies that Z and y* are conditionally independent,
conditioned on each hypothesis, and that y* is identically distributed under
each hypothesis. Thus, it is irrelevant to the decision and does not appear in
the likelihood ratio. We can interpret this informally as follows: when taking
the ratio of the conditional densities of (Z, y*(#)) under the two hypotheses,
the conditional density of y*(¢) cancels out. We therefore obtain L(y) = L(z).
The random variable Z is conditionally Gaussian under each hypothesis, and
its mean and variance can be computed in the usual fashion. The problem has
now reduced to computing the likelihood ratio for the scalar random variable
Z under the following two hypotheses:

H,:Z ~ N(||s||, a?|Is| ).
H,:Z~ NO, a?||s|]?).

Taking the ratio of the densities yields
1 2 2\2 1 2
1@ =exp (o (1P = QIIP?/2)) =exp (o (e~ 112 ).

Expressing the result in terms of y, using (4.16), we obtain the following
result.

Likelihood function for a signal in real AWGN

L0l =exp 5 (0090~ I51772)). @17)

where we have made the dependence on s explicit in the notation for the
likelihood function. If s(#) = s,(¢), the likelihood function may be denoted

by L(y[6).
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We can now immediately extend this result to complex baseband signals,
by applying (4.17) to a real passband signal, and then translating the results
to complex baseband. To this end, consider the hypotheses

H, 3, (1) = 5, (1) + (1),
H, -y, (1) = ny (1),

where y, is the passband received signal, s, is the noiseless passband signal,
and n,, is passband WGN. The equivalent model in complex baseband is

H, : y(1) = s(1) +n(1),
H, : y(1) = n(1),

where s is the complex envelope of s, and n is complex WGN. The likelihood
functions computed in passband and complex baseband must be the same,
since the information in the two domains is identical. Thus,

L0k) = exp (o (O3~ 7))

We can now replace the passband inner products by the equivalent com-
putations in complex baseband, noting that (y,,s,) = Re((y,s)) and that
[s,[> = Is||*. We therefore obtain the following generalization of (4.17) to
complex-valued signals in complex AWGN, which we can state as a theorem.

Theorem 4.2.1 (Likelihood function for a signal in complex AWGN) For
a signal s(t) corrupted by complex AWGN n(t), modeled as

y(1) = (1) +n(1),

the likelihood function (i.e., the likelihood ratio with respect to a noise-only
dummy hypothesis) is given by

L) = exp o (Re((rs) = [11/2) ). @.18)

We can use (4.18) for both complex-valued and real-valued received signals
from now on, since the prior formula (4.17) for real-valued received signals
reduces to a special case of (4.18).

Discrete-time likelihood functions The preceding formulas also hold for
the analogous scenario of discrete-time signals in AWGN. Consider the signal
model

y[k] = s[k] + n[k], (4.19)

where Re(n[k]), Im(n[k]) are i.i.d. N(0, o) random variables for all k. We
say that n[k] is complex WGN with variance o = N,/2 per dimension,
and discuss this model in more detail in Section 4.5.1 in the context of
performance analysis. For now, however, it is easy to show that a formula
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entirely analogous to (4.18) holds for this model (taking the likelihood ratio
with respect to a noise-only hypothesis) as follows:

L) =exp 5 (Rel(y.9) = [8IF/2) ). (420

wherey = (y[1],...,y[K])T ands=(s[1], . . ., s[K])T are the received vector
and the signal vector, respectively.

In the next two sections, we apply the results of this section to derive
receiver design principles for synchronization and noncoherent communica-
tion. Before doing that, however, let us use the framework of parameter
estimation to quickly rederive the optimal receiver structures in Chapter 3 as
follows.

Example 4.2.4 (M-ary signaling in AWGN revisited) The problem of
testing among M hypotheses of the form

H :y(t)=s()+n(t), i=1,....M

is a special case of parameter estimation, where the parameter takes one
of M possible values. For a complex baseband received signal y, the
conditional density, or likelihood function, of y follows from setting s(f) =
5;(¢) in (4.18):

L) =exp (o (Re (15~ s72)).

The ML decision rule can now be interpreted as the MLE of an M-valued
parameter, and is given by

2ML()’) = arg max L(y|H;) = arg max Re (s s = ls;117/2,

thus recovering our earlier result on the optimality of a bank of correlators.

4.3 Parameter estimation for synchronization

We now discuss several canonical examples of parameter estimation in
AWGN, beginning with phase estimation. The model (4.2) includes the effect
of frequency offset between the local oscillators at the transmitter and receiver.
Such a phase offset is of the order of 10-100 ppm, relative to the carrier
frequency. In addition, certain channels, such as the wireless mobile channel,
can induce a Doppler shift in the signal of the order of vf./c , where v is the
relative velocity between the transmitter and receiver, and c is the speed of
light. For a velocity of 200 km/hr, the ratio v/c of the Doppler shift to the
carrier frequency is about 0.2 ppm. On the other hand, typical baseband signal
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bandwidths are about 1-10% of the carrier frequency. Thus, the time vari-
ations of the modulated signal are typically much faster than those induced
by the frequency offsets due to LO mismatch and Doppler. Consider, for
example, a linearly modulated system, in which the signal bandwidth is of
the order of the symbol rate 1/7. Thus, for a frequency shift Af which is
small compared with the signal bandwidth, the change in phase 27Af T over
a symbol interval T is small. Thus, the phase can often be taken to be con-
stant over multiple symbol intervals. This can be exploited for both explicit
phase estimation, as in the following example, and for implicit phase esti-
mation in noncoherent and differentially coherent reception, as discussed in
Section 4.4.

Example 4.3.1 (ML phase estimation) Consider a noisy signal with
unknown phase, modeled in complex baseband as

y(t) = s()e' 4 n(1), 4.21)

where 6 is an unknown phase, s is a known complex-valued signal, and n
is complex WGN with PSD N,,. To find the ML estimate of 0, we write
down the likelihood function of y conditioned on 6, replacing s with se/’
in (4.18) to get

L01) =exp (5 (Re (se) = IseIF/2) ). (822
Setting (y, s) = |Z|e® = Z,+jZ,, we have
(v, 5"y =7 = 7|0,
so that
Re ((y, se!)) = |Z|cos(¢p — 0).

Further, ||se||> = ||s||>. The conditional likelihood function, therefore,
can be rewritten as

Lo10) =exp (s (Zieos@ -0~ [F/2)). @23)

The ML estimate of 6 is obtained by maximizing the exponent in (4.23),
which corresponds to
1 Zs

O = ¢ = arg({y, 5)) = tan™ =

C

Note that this is also the MAP estimate if the prior distribution of 6 is
uniform over [0, 277]. The ML phase estimate, therefore, equals the phase of
the complex inner product between the received signal y and the template
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Figure 4.3 Maximum likelihood  signal s. The implementation of the phase estimate, starting from the passband
phase estimation: the complex  received signal Y, i8 shown in Figure 4.3. The four real-valued correlations

baseband operations in
Example 4.3.1 are implemented
after downconverting the

involved in computing the complex inner product (y,s) are implemented
using matched filters.

passband received signal.

Example 4.3.2 (ML delay estimation) Let us now consider the problem
of estimating delay in the presence of an unknown phase (recall that timing
synchronization is typically done prior to carrier synchronization). The
received signal is given by

y(t) = As(t — 7)e +n(1), (4.24)

where n is complex WGN with PSD A,, with unknown vector
parameter I" = (7, A, 6). We can now apply (4.18), replacing s(¢) by
sp(2) = As(t — 7)€/, to obtain

1
1010 =exp (5 Re ()~ llF/2))
Defining the filter matched to s as sye(f) = s*(—t), we obtain
(vsry = Ae " [ (1) (1 = mydr =A [ y(O)sye(r —

:Ae_jg(y * Sye) (7).

Note also that, assuming a large enough observation interval, the signal
energy does not depend on the delay, so that ||s-||? = A?||s||?. Thus, we obtain

LOI) =exp (s (Re(Ae™ (w50 (9) = A512)).

The MLE of the vector parameter I" is now given by

T () = arg max L(y|D).
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This is equivalent to maximizing the cost function
J(1, A, 0) = Re (Ae ™ (y* syp) (1)) — A?||5]]*/2 (4.25)

over 7, A, and 6. Since our primary objective is to maximize over 7, let
us first eliminate the dependence on A and 6. We first maximize over
0 for 7, A fixed, proceeding exactly as in Example 4.3.1. We can write
(v * syp)(T) = Z(7) = | Z(7)|e’*?, and realize that

Re (Ae™(y#syp) (1)) = A|Z(7)| cos (¢(7) — ).

Thus, the maximizing value of 6 = ¢ (7). Substituting into (4.25), we get
a cost function which is now a function of only two arguments:

(7, A) =max J(1, A, 0) = A|(y#sye) (7)] — A% [s][*/2.

For any fixed value of A, the preceding is maximized by maximizing
|(y * spp) (7)]. We can conclude, therefore, that the ML estimate of the
delay is

Ty, = arg nTlax |y * syp) (7). (4.26)

That is, the ML delay estimate corresponds to the intuitively pleasing
strategy of picking the peak of the magnitude of the matched filter output
in complex baseband. As shown in Figure 4.4, this requires noncoherent
processing, with building blocks similar to those used for phase estimation.

We have implicitly assumed in Examples 4.3.1 and 4.3.2 that the data
sequence {b[n]} is known. This data-aided approach can be realized either
by using a training sequence, or in decision-directed mode, assuming that the
symbol decisions fed to the synchronization algorithms are reliable enough.
An alternative nondata-aided (NDA) approach, illustrated in the blind ampli-
tude estimator in Example 4.2.2 is to average over the unknown symbols,
typically assuming that they are i.i.d., drawn equiprobably from a fixed con-
stellation. The resulting receiver structure in Case 2 of Example 4.2.2 is

Low pass
filter

Squarer

J2 cos 27f, t

. ML delay
ﬁ\ Pick estimate
the A
L/ 7] peak ™

Low pass
filter

Squarer

1

- J2sin 2xf t
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actually quite typical of NDA estimators, which have a structure similar to the
data-aided, or decision-directed setting, except that “soft” rather than “hard”
decisions are fed back.

Finally, we consider tracking time variations in a synchronization parameter
once we are close enough to the true value. For example, we may wish to
update a delay estimate to track the offset between the clocks of the transmitter
and the receiver, or to update the carrier frequency or phase to track a wireless
mobile channel. Most tracking loops are based on the following basic idea.
Consider a cost function J(6), typically proportional to the log likelihood
function, to be maximized over a parameter 6. The tracking algorithm consists
of a feedback loop that performs “steepest ascent,” perturbing the parameter
so as to go in the direction in which the cost function is increasing:

a0 _ 40)

a Tae

The success of this strategy of following the derivative depends on our being
close enough to the global maximum so that the cost function is locally
concave.

We now illustrate this ML tracking framework by deriving the classical PLL
structure for tracking carrier phase. Similar interpretations can also be given to
commonly used feedback structures such as the Costas loop for phase tracking,
and the delay locked loop for delay tracking, and are explored in the problems.

lo—i- (4.27)

Example 4.3.3 (ML interpretation of phase locked loop) Consider a
noisy unmodulated sinusoid with complex envelope

y(1) =’ +n(n), (4.28)

where 0 is the phase to be tracked (its dependence on ¢ has been suppressed
from the notation), and n(¢) is complex WGN. Writing down the likelihood
function over an observation interval of length 7, we have

L010) =ex (5 (Retne )= 2)).
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so that the cost function to be maximized is
. TO
J(6) = Re(y, el0) = / (y.(£) cos 0(£) + y,() sin 6(7)) dt.
0

Applying the steepest ascent (4.27), we obtain

T,

% —a /0 ' (—yc(t) sinf(r) + y,(r)cos 9(r)> dr.  (4.29)
Since 1/27 df/dt equals the frequency, we can implement steepest ascent
by applying the right-hand side of (4.29) to a voltage controlled oscillator.
Furthermore, this expression can be recognized to be the real part of the
complex inner product between y(¢) and v(¢) = — sin 6+ jcos 6= je!’. The
corresponding passband signals are y,(#) and v,(f) = —sin(2mf.t + @)
Recognizing that Re(y, v) = (y,,s,), we can rewrite the right-hand side
of (4.29) as a passband inner product to get:

dao
dr
In both (4.29) and (4.30), the integral can be replaced by a low pass filter

for continuous tracking. Doing this for (4.30) gives us the well-known
structure of a passband PLL, as shown in Figure 4.5.

—a /0 K ¥, (1) sin(27f,t +6) dr. (4.30)

Further examples of amplitude, phase, and delay estimation, including block-
based estimators, as well as classical structures such as the Costas loop for
phase tracking in linearly modulated systems, are explored in the problems.

4.4 Noncoherent communication

We have shown that the frequency offsets due to LO mismatch at the trans-
mitter and receiver, and the Doppler induced by relative mobility between the
transmitter and receiver, are typically small compared with the bandwidth of
the transmitted signal. Noncoherent communication exploits this observation
to eliminate the necessity for carrier synchronization, modeling the phase
over the duration of a demodulation interval as unknown, but constant. The
mathematical model for a noncoherent system is as follows.

Model for M-ary noncoherent communication The complex baseband
received signal under the ith hypothesis is as follows:

H :y(H)=s,(0)e +n(t), i=1,..., M, (4.31)

where 6 is an unknown phase, and n is complex AWGN with PSD ¢ = N, /2
per dimension.
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Before deriving the receiver structure in this setting, we need some back-
ground on composite hypothesis testing, or hypothesis testing with one or
more unknown parameters.

4.4.1 Composite hypothesis testing

As in a standard detection theory framework, we have an observation Y taking
values in I', and M hypotheses H,,..., H,,. However, the conditional density
of the observation given the hypothesis is not known, but is parameterized
by an unknown parameter. That is, we know the conditional density p(y|i, 0)
of the observation Y given H; and an unknown parameter 6 taking values in
A. The unknown parameter € may not have the same interpretation under all
hypotheses, in which case the set A may actually depend on i. However, we
do not introduce this complication into the notation, since it is not required
for our intended application of these concepts to noncoherent demodulation
(where the unknown parameter for each hypothesis is the carrier phase).

Generalized likelihood ratio test (GLRT) approach This corresponds to
joint ML estimation of the hypothesis (treated as an M-valued parameter) and
0, so that

(i.9)(y) =arg  max_ p(yli,6).
1<i<M,0 € A

This can be interpreted as maximizing first with respect to 6, for each i,
getting

0,(y) = arg max p(yli, )
9E A

then plugging into the conditional density p(y|i, 6) to get the “generalized
density,”

4,(5) = p(yli, 6,()) = max p(yli, 6)

(note that g; is not a true density, in that it does not integrate to one). The
GLRT decision rule can be then expressed as

doirr(y) = arg max g;(y).
This is of similar form to the ML decision rule for simple hypothesis testing,

hence the term GLRT.

Bayesian approach If p(6|i), the conditional density of 6 given H,, is
known, then the unknown parameter 6 can be integrated out, yielding a
simple hypothesis testing problem that we know how to solve. That is, we
can compute the conditional density of Y given H, as follows:

pOli) = /A p(li, O)p(6li) de.
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4.4.2 Optimal noncoherent demodulation

We now apply the GLRT and Bayesian approaches to derive receiver struc-
tures for noncoherent communication. For simplicity, we consider equal-
energy signaling.

Equal energy M-ary noncoherent communication: receiver structure
The model is as in (4.31) with equal signal energies under all hypotheses,
[|s;||* = E,. From (4.22), we find that

LGOI, 6) = exp (%nz,w cos(6— ) — ||s,-||2/2]> L @)

where Z; = (y, s;) is the result of complex correlation with s;, and ¢, =
arg(Z;).

Applying the GLRT approach, we note that the preceding is maximized at
0 = ¢, to get the generalized density

) = exp (51121~ £,21)

where we have used the equal energy assumption. Maximizing over i, we get
the GLRT rule

2 2
dgirr(y) = arg max |Z;| = arg max Z, . +Z,
I<i<M I<i<M

Figure 4.6 Computation of the
noncoherent decision statistic where Z; . =Re(Z;) and Z; , =1Im(Z)).

for a coml?"fx baseband signal Figure 4.6 shows the computation of the noncoherent decision statistic
5 The optimal noncoherent |Z)? = |{y, s)|* for a signal s. The noncoherent receiver chooses the maximum
receiver employs a bank of .
among the outputs of a bank of such processors, for s=s;,, i=1,..., M.
such processors, one for each : ' i
of M signals, and picks the Now, let us apply the Bayesian approach, modeling the unknown phase
maximum of M noncoherent under each hypothesis as a random variable uniformly distributed over [0, 277].
decision statistics. We can now average out 0 in (4.32) as follows:
1 21
LOi) = — / L(yli, 6) dé. (4.33)
2w Jo
t=0

Low pass
filter
Passband Noncoherent
received 2 cos 2xf, t decision
signal statistic

Low pass
filter

-2 sin 2rf, t
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It is now useful to introduce the following modified Bessel function of the
first kind, of order zero:

1 2w )
I(x) = — / SEIAT) (4.34)
2w Jo
Noting that the integrand is a periodic function of 8, we note that
1 27
IO(X) — _/ excos((?—d)) dG,
21 Jo
for any fixed phase offset ¢. Using (4.32) and (4.33), we obtain
. _ Ll |Z;]
L(yli)y=¢ 27 I, o) (4.35)

For equal-energy signaling, the first term above is independent of i. Noting
that /;(x) is increasing in |x|, we obtain the following ML decision rule
(which is also MPE for equal priors) by maximizing (4.35) over i:

Oy (y) = arg IIPI_?/‘W 1Z],

which is the same receiver structure that we derived using the GLRT rule. The
equivalence of the GLRT and Bayesian rules is a consequence of the specific
models that we use; in general, the two approaches can lead to different
receivers.

4.4.3 Differential modulation and demodulation

A drawback of noncoherent communication is the inability to encode infor-
mation in the signal phase, since the channel produces an unknown phase
shift that would destroy such information. However, if this unknown phase
can be modeled as approximately constant over more than one symbol, then
we can get around this problem by encoding information in the phase dif-
ferences between successive symbols. This enables recovery of the encoded
information even if the absolute phase is unknown. This method is known as
differential phase shift keying (DPSK), and is robust against unknown channel
amplitude as well as phase. We have already introduced this concept in Section
2.7, and are now able to discuss it in greater depth as an instance of noncoher-
ent communication, where the signal of interest now spans several symbols.

In principle, differential modulation can also be employed with QAM
alphabets, by encoding information in amplitude and phase transitions, assum-
ing that the channel is roughly constant over several symbols, but there are
technical issues with both encoding (unrestricted amplitude transitions may
lead to poor performance) and decoding (handling an unknown amplitude is
trickier) that are still a subject of research. We therefore restrict attention to
DPSK here.

We explain the ideas in the context of the following discrete-time model,
in which the nth sample at the receiver is given by

yln] = h[n]b[n] + w[n], (4.36)
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where {b[n]} is the sequence of complex-valued transmitted symbols, {A[n]}
is the effective channel gain seen by the nth symbol, and {w[n]} is discrete-
time complex AWGN with variance o> = N,/2 per dimension. The sequence
{y[n]} would typically be generated by downconversion of a continuous-time
passband signal, followed by baseband filtering, and sampling at the symbol
rate. We have assumed that there is no ISI.

Suppose that the complex-valued channel gains h[n] = A[n]ell"l are
unknown. This could occur, for example, as a result of inherent channel time
variations (e.g., in a wireless mobile environment), or of imperfect carrier
phase recovery (e.g., due to free running local oscillators at the receiver). If the
{h[n]} can vary arbitrarily, then there is no hope of recovering the information
encoded in {b[n]}. However, now suppose that h[n] ~ h[n —1] (i.e., the rate
of variation of the channel gain is slower than the symbol rate). Consider the
vector of two successive received samples, given by y[n] = (y[n—1], y[n])".
Setting h[n] = h[n— 1] = h, we have

(%{%”) =" (b[Z[;]l])+(w[£[;]l]>

= hb[n—1] ( b[n]/;[n it ) + (w[;’[;]l] ) . (437)

The point of the above manipulations is that we can now think of h =
hb[n— 1] as an unknown gain, and treat (1, b[n]/b[n—1])T as a signal to be
demodulated noncoherently. The problem now reduces to one of noncoherent
demodulation for M-ary signaling: the set of signals is given by s, =
(1, a[n])T, where M is the number of possible values of a[n] = b[n]/b[n—1].
That is, we can rewrite (4.37) as

y[n] = hs,p, + win], (4.38)

where y[n] = (y[n— 1], y[n])" and w[n] = (w[n — 1], w[xn])”. In DPSK, we
choose a[n] € A from a standard PSK alphabet, and set b[n] = b[n — 1]a[n]
(the initial condition can be set arbitrarily, say, as b[0] = 1). Thus, the trans-
mitted symbols {b[n]} are also drawn from a PSK constellation. The infor-
mation bits are mapped to a[n] in standard fashion, and then are recovered
via noncoherent demodulation based on the model (4.38).

Example 4.4.1 (Binary DPSK) Suppose that we wish to transmit a
sequence {a[n]} of +1 bits. Instead of sending these directly over the
channel, we send the +1 sequence b[n], defined by b[n] = a[n]b[n —1].
Thus, we are encoding information in the phase transitions of successive
symbols drawn from a BPSK constellation: b[n] = b[n — 1] (no phase
transition) if a[n] = 1, and b[n] = —b[n — 1] (phase transition of ) if
a[n] = —1. The signaling set s, a[n] = £11is (1,1)" and (1, —1), which
corresponds to equal-energy, binary, orthogonal signaling.
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For the DPSK model (4.38), the noncoherent decision rule for equal-
energy signaling becomes

a[n] = arg max [(y[n]s,)[". (4.39)
For binary DPSK, this reduces to taking the sign of
[y, 8.0 =1y, s_)1F = Dlnl+yln =117 = yla] = y[n — 1]
= 2Re(y[n]y*[n —1]).
That is, we have
pinary[n] = sign[Re(y[n]y*[n —1])]. (4.40)

That is, we take the phase difference between the two samples, and check
whether it falls into the right half plane or the left half plane.

For M-ary DPSK, a similar rule is easily derived by examining the
decision statistics in (4.39) in more detail:

[(y[n]. s,)° = [y[n— 1]+ y[n]a*[n]*
= y[n— 117 + [y[n]l*|a[n]* + 2Re(y[n]y*[n — 1]a*[n])
= y[n— 117+ [y[n]]* + 2Re(3[n]y*[n — 1]a*[n]),
where we have used |a[n]| = 1 for PSK signaling. Since only the last term

depends on a, the decision rule can be simplified to

pp-gry[n] = arg max Re(y[n]y*[n—1]a*). (4.41)
a€A
This corresponds to taking the phase difference between two successive
received samples, and mapping it to the closest constellation point in the
PSK alphabet from which a[n] is drawn.

4.5 Performance of noncoherent communication

Performance analysis for noncoherent receivers is typically more complicated
than for coherent receivers, since we need to handle complex-valued decision
statistics going through nonlinear operations. As a motivating example, con-
sider noncoherent detection for equal-energy, binary signaling, with complex
baseband received signal under hypothesis H;, i =0, 1, given by

H; : y(1) = 5,(1)e"” + (1),

where 6 is an unknown phase shift induced by the channel. For equal priors,
and assuming that € is uniformly distributed over [0, 27|, the MPE rule has
been shown to be

Sype(v) = arg max[{y, s;)]-
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We are interested in evaluating the error probability for this decision rule. As
usual, we condition on one of the hypotheses, say H,, so that y = s,/ +n.
The conditional error probability is then given by

Pe|0 = P(|1Z,| > |Z,||H,)),
where Z; = (y, 5;), i =0, 1. Conditioned on H,,, we obtain

Zy = (50e) + 1, 50) = Is0]|*e!” + (1, 5,).
Z, = <Soejt9 +n,s) = (5, 51>ej6 +(n, sy).

Each of the preceding statistics contains a complex-valued noise contribution
obtained by correlating complex WGN with a (possibly complex) signal. Since
our prior experience has been with real random variables, before proceeding
further, we devote the next section to developing a machinery for handling
complex-valued random variables generated in this fashion.

4.5.1 Proper complex Gaussianity

For real-valued signals, performance analysis in a Gaussian setting is made
particularly easy by the fact that (joint) Gaussianity is preserved under lin-
ear transformations, and that probabilities are completely characterized by
means and covariances. For complex AWGN models, joint Gaussianity is
preserved for the real and imaginary parts under operations such as filtering,
sampling, and correlation, and probabilities can be computed by keeping track
of the covariance of the real part, the covariance of the imaginary part, and
the crosscovariance of the real and imaginary parts. However, we describe
below a simpler and more elegant approach based purely on complex-valued
covariances. This approach works when the complex-valued random pro-
cesses involved are proper complex Gaussian (to be defined shortly), as is
the case for the random processes of interest to us, which are obtained from
complex WGN through linear transformations.

Definition 4.5.1 (Covariance and pseudocovariance for complex-valued
random vectors) Let U denote an m x 1 complex-valued random vector, and
V an n x 1 complex-valued random vector, defined on a common probability
space. The m x n covariance matrix is defined as

Cyv = E[(U-E[U])(V - E[V])"] = E[UV"] - E[U](E[V])".
The m x n pseudocovariance matrix is defined as
Cyy = E[(U—-E[U])(V-E[V])'] = E[UV'] - E[U)(E[V])".

Note that covariance and pseudocovariance are the same for real random
vectors.
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Definition 4.5.2 (Complex Gaussian random vector) The n x 1 complex
random vector X = X_ +jX, is Gaussian if the real random vectors X, and
X, are Gaussian, and X, X, are jointly Gaussian.

To characterize probabilities involving an n x 1 complex Gaussian random
vector X, one general approach is to use the statistics of a real random vector
formed by concatenating the real and imaginary parts of X into a single 2n x 1
random vector

Since X, is a Gaussian random vector, it can be described completely in terms
of its 2n x 1 mean vector, and its 2n X 2n covariance matrix, given by

C, C,
C — C Ccs ,
' (C &8 >
where C ., = cov(X,, X,), C = cov(X,, X|) and C = cov(X,, X,) = CL.
The preceding approach is cumbersome, requiring us to keep track of three

n X n covariance matrices, and can be simplified if X satisfies some special
properties.

Definition 4.5.3 (Proper complex random vector) The complex random
vector X = X_ +jX, is proper if its pseudocovariance matrix, given by

C, =E[(X-E[X])(X-E[X])]=0. (4.42)
In terms of the real covariance matrices defined above, X is proper if

C.=C, ad C,=-C,=-CL. (4.43)

cs

We now state a very important result: a proper complex Gaussian random
vector is characterized completely by its mean vector and covariance matrix.

Characterizing a proper complex Gaussian random vector Suppose that
the complex random vector X = X_ +jX is proper (i.e., it has zero pseudoco-
variance) and Gaussian (i.e., X,, X, are jointly Gaussian real random vectors).
In this case, X is completely characterized by its mean vector my = E[X] and
its complex covariance matrix

Cy = E[(X—E[X)(X - E[X])"] =2C, +2iC,.. ~ (444)

The probability density function of X is given by

(x) 1

X)= ————
PR = ndet(Cy)
We denote the distribution of X as CN(my, Cy).

exp (—(x—mX)HC;(l(x—mX)). (4.45)
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Remark 4.5.1 (Loss of generality due to insisting on properness) In
general,

CX = Ccc + Css +J(C§c - Ccs)'

Thus, knowledge of Cy is not enough to infer knowledge of C,., C, and
C,., which are needed, in general, to characterize an n-dimensional complex
Gaussian random vector in terms of a 2n-dimensional real Gaussian random
vector X,. However, under the properness condition (4.43), Cy contains all
the information needed to infer C,,, C, and C,,, which is why Cy (together

ce? SS?

with the mean) provides a complete statistical characterization of X.

sc?

Remark 4.5.2 (Proper complex Gaussian density) The form of the density
(4.45) is similar to that of a real Gaussian random vector, but the constants
are a little different, because the density integrates to one over complex
n-dimensional space. As with real Gaussian random vectors, we can infer
from the form of the density (4.45) that two jointly proper complex Gaussian
random variables are independent if their complex covariance vanishes.

Proposition 4.5.1 (Scalar proper complex Gaussian random variable) If
X = X_+]jX, is a scalar complex Gaussian random variable, then its covari-
ance Cy must be real and nonnegative, and its real and imaginary parts, X,
and X,, are i.i.d. N(O, Cy/2).

Proof of Proposition 4.5.1 The covariance matrices C,., C, and C,, are
now scalars. Using (4.44), the condition C,, = —C[. implies that Cy, = 0. Since
X, X, are jointly Gaussian, their uncorrelatedness implies their independence.
It remains to note that Cy =2C_, = 2C to complete the proof. U

SS?

Remark 4.5.3 (Functions of a scalar proper complex Gaussian random
variable) Proposition 4.5.1 and Problem 3.4 imply that for scalar proper
complex Gaussian X, the magnitude |X| is Rayleigh, the phase arg(X) is
uniform over [0, 27] (and independent of the magnitude), the magnitude
squared | X|? is exponential with mean Cy, and the magnitude |m + X|, where
m is a complex constant, is Rician.

Proposition 4.5.2 (Preservation of properness and Gaussianity under lin-
ear transformations) If X is proper, so is Y = AX+b, where A, b are
arbitrary complex matrices. If X is proper Gaussian, so is Y = AX+Db. The
mean and covariance of X and Y are related as follows:

m, =Am,+b, C,=AC,A". (4.46)

Proof of Proposition 4.5.2 To check the properness of Y, we compute
E [(AX+b—E[AX+b])(AX+b—E[AX+b])"]
= AE[X-E[X)(X-E[X])"]A" =0
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by the properness of X. The expressions for mean and covariance follow from
similar computations. To check the Gaussianity of Y, note that any linear
combination of real and imaginary components of Y can be expressed as a
linear combination of real and imaginary components of X, which is Gaussian
by the Gaussianity of X. |

We can now extend the definition of properness to random processes.

Definition 4.5.4 (Proper complex random process) A random process
X(1) = X (1) +jX(?) is proper if any set of samples forms a proper complex
random vector. Since the sampling times and number of samples are arbitrary,
X is proper if

E[(X(1)) = E[X(z))]) (X(1,) - E[X(1,)])] =0

for all times, t,, t,. Equivalently, X is proper if

Cx x. (1, 1) =Cx x (1, 1,) and Cy yx (t;,1,) =—Cx yx (t,,1;) (4.47)
forall t,t,.

Definition 4.5.5 (Proper complex Gaussian random processes) A random
process X is proper complex Gaussian if any set of samples is a proper
complex Gaussian random vector. Since a proper complex Gaussian random
vector is completely characterized by its mean vector and covariance matrix, a
proper complex Gaussian random process X is completely characterized by its
mean function my(t) = E[X(¢)] and its autocovariance function Cy(t,,1,) =
E[X(2,)X*(t,)] (Which can be used to compute mean and covariance for an
arbitrary set of samples).

Proposition 4.5.3 (Complex WGN is proper) Complex WGN n(t) is a zero
mean, proper complex Gaussian random process with autocorrelation and
autocovariance functions given by

C,(t, 1) = R,(t;,1,) = E[n(t))n"(t,)]
= 20%8(t,—1,).
Proof of Proposition 4.5.3 We have n(¢) = n(t) +jn,(t), where n_, n, are
i.i.d. zero mean real WGN, so that
C,(t,)=C,(t,t,) = o?8(t, —1,) and Cyon (11, 1,) =0,

which satisfies the definition of properness in (4.47). Since n is zero mean, all
that remains to specify its statistics completely is its autocovariance function.
We compute this as

C,(t1. 1) = R, (11, 1) = E[n(1,)n"(1;)] = E[(n (1)) +jn,(1))) (n.(1;) — jny(2,))]
=R, (t,,,)+R, (1), 1,) = 20°8(1, — 1),
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where cross terms such as E[n.(z,)n,(f,)] = 0 because of the independence,
and hence uncorrelatedness, of n, and n,. U

Notation Since the autocovariance and autocorrelation functions for complex WGN
depend only on the time difference 7 = t, —1,, it is often convenient to denote them
as functions of one variable, as follows:

C,(1)=R,(7) =E[n(t+7n)n*(1)] = 20%58(7).

Proposition 4.5.4 (Complex WGN through a correlator) Ler n(f) =
n.(t) +jn,(t) denote complex WGN, and let s(t) = s.(t) +js,(t) denote a
finite-energy complex-valued signal. Let

Z=(n,s)= / n(r)s*(£)de

denote the result of correlating n against s. Denoting Z =Z.+jZ, (Z., Z,
real), we have the following equivalent statements:

(a) Z is zero mean, proper complex Gaussian with variance 20?||s||%.
(b) Z., Z, are i.i.d. N0, o*||s||*) real random variables.

Proof of Proposition 4.5.4 (The “proper” way) The proof is now simple,
since the hard work has already been done in developing the machinery
of proper Gaussianity. Since n is zero mean, proper complex Gaussian, so
is Z, since it is obtained via a linear transformation from . It remains to
characterize the covariance of Z, given by

C, =E[(n, s)(n, s)*] =EU n(t)s*(t)dt/ n*(u)s(u)du]
_ / / E[n(t)n* (u)]s* (1)s(u)drdu
_ / / 20281 — u)s* (1) s(u)drdu

- 202/ Is(5)[2dr = 202 |s]]2.

The equivalence of (a) and (b) follows from Proposition 4.5.1, since Z is a
scalar proper complex Gaussian random variable. U

Proof of Proposition 4.5.4 (Without invoking properness) We can also
infer these results, using only what we know about real WGN. We provide
this alternative proof to illustrate that the computations get somewhat messy
(and do not scale well when we would like to consider the outputs of multiple
complex correlators), compared with the prior proof exploiting properness.
First, recall that for real WGN (n, for example), if u, and u, are two finite-
energy real-valued signals, then (n,, u,) and (n., u,) are jointly Gaussian
with covariance

cov((ng, uy), (ng, uy)) = 0'2<M1, Uy). (4.48)

Setting u, = u, = u, specialize to the result that Var({n., u)) = o?||u||>. The
preceding results also hold if n_ is replaced by n,. Now, note that
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Zc: <nc’sc>+<ns7ss> Zs= <ns’sc>_<nc’ss>‘

Since n., n, are independent Gaussian random processes, the two terms in
the equation for Z_ above are independent Gaussian random variables. Using
(4.48) to compute the variances of these terms, and then adding these variances
up, we obtain

var(Z,) = var((n,. s.)) +var((n, 5,)) = 0 |Is. || + o?[[s,|* = o7 Is][*.
A similar computation yields the same result for Var(Z,). Finally, the covari-
ance of Z_ and Z, is given by
cov(Z,, Z,) = cov({ng, s.) + (ng, 55), (Ng, Sy — (Ng, Sg))
= cov({ne, 5¢), (g, 5c)) +cov({ng, 5,), (ng; 5:))
—cov((ne, 5c), (e, 5)) —cov((ny, 55), (ne, 55))
=0+0%(s,,5.) —*(s.,5)—0=0,

where we have used (4.48), and the fact that the contribution of cross terms
involving n_ and n, is zero because of their independence. U

Remark 4.5.4 (Complex WGN through multiple correlators) Using the
same arguments as in the proof of Proposition 4.5.4, we can characterize the
joint distribution of complex WGN through multiple correlators. Specifically,
for finite-energy signals s,(¢) and s,(¢), it is left as an exercise to show that
(n,s,) and {n, s,) are jointly proper complex Gaussian with covariance

cov((n, s,), (n, s,)) =20%(s,, 5,). (4.49)

4.5.2 Performance of binary noncoherent communication

We now return to noncoherent detection for equal-energy, equiprobable,
binary signaling, with the complex baseband received signal under hypothesis
H;,,i=0,1, given by

H, : y(1) = s5,(t)e" 4+ n(1).

We assume that the phase shift 6 induced by the channel is uniformly dis-
tributed over [0, 27r]. Under these conditions, the MPE rule has been shown
to be as follows:
O (¥) = arg max [y, 5;)].

We denote the signal energies by E, = ||s;||> = ||s,||*, and define the complex
correlation coefficient p = ((sq, 51))/(|[solllIs1]]), so that (so,s,) = pE, =
(515 50) ™. '

Conditioned on H,, the received signal y = s,/ + n. The conditional error
probability is then given by

Pe\o = P(1Z,| > |Z,||H,)),
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where Z; = (y, 5;), i =0, 1 are given by

Zy = (508" +1n,50) = E@’ +(n, 55),
Zy = (50" +n,5) = pEe’ +(n,s,).

Conditioned on H, and 6 (we soon show that the conditional error probability
does not depend on 6), Z = (Z,, Z,)7 is proper complex Gaussian, because n
is proper complex Gaussian. Using Proposition 4.5.4 and Remark 4.5.4, we
find that the covariance matrix for Z is

1 *
C, =20, (p pl ) (4.50)
and the mean vector is
m, = E.o" (;) @.51)

In general, developing an expression for the exact error probability involves
the painful process of integration over contours in the complex plane, and
does not give insight into how, for example, the error probability varies with
SNR. We therefore restrict ourselves here to broader observations on the
dependence of the error probability on system parameters, including high
SNR asymptotics. We do, however, derive the exact error probability for
the special case of orthogonal signaling (p = 0). We state these results as
propositions, discuss their implications, and then provide proofs (in the case
of Proposition 4.5.5 below, we only sketch the proof, providing a reference
for the details).

Proposition 4.5.5 (Dependence on |p| and SNR) The error probability
depends only on |p| and E,/N,, and its high SNR asymptotics are given by

P, (noncoh) ~ exp <_2£1\570(1 — |p|)) , ;;\;O — 0. (4.52)
Remark 4.5.5 (Contrast with coherent demodulation) For coherent detec-
tion, we know that the error probability is given by Q(||s, — 50|| / 2¢). Noting
that ||s, — s,||> = 2E,(1 — Re(p)) for equal-energy signals, and setting o =
N,/2, we have P,(coh) = Q(\/E,(1 —Re(p))/N,). Using Q(x) ~ e~/ for
large x, the high SNR asymptotics for coherent detection of equal-energy
signaling are given by

ES
2N,

P.(coh) ~ exp (— (1- Re(p))> , £ — o0. (4.53)

2N,

Proposition 4.5.6 (Error probability for orthogonal signaling) For non-
coherent demodulation of equal-energy orthogonal signals (p =0), the error
probability is given by

1 E,
P, = —exp (—ﬁ) Binary equal-energy, noncoherent signaling.
0

c 2
(4.54)
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Remark 4.5.6 (Orthogonal signaling with coherent and noncoherent
detection) Comparing (4.52) and (4.53), we see that the high SNR
asymptotics with orthogonal signaling are the same for both coherent and
noncoherent demodulation. However, there are hidden costs associated with
noncoherent demodulation. First, if coherent detection were possible, then
we could design the signals such that Re(p) < 0 (e.g., p = —1 for antipodal
signaling) in order to obtain better performance than with orthogonal signal-
ing. Second, orthogonal signaling with coherent demodulation requires only
that Re(p) = 0, while orthogonal signaling with noncoherent demodulation
requires that |p| = 0. As shown in Chapter 2, this implies that noncoherent
orthogonal signaling requires twice as many degrees of freedom than coherent
signaling. For example, orthogonal FSK requires a tone spacing of 1/T for
noncoherent demodulation, and only 1/2T for coherent demodulation, where
T is the symbol interval.

We now proceed with the proofs.

Proof of Proposition 4.5.5 We condition on H, and 6, and our starting
points are (4.50) and (4.51).

First, we show that the performance depends only on |p|. Suppose that
p = |ple. We can now rotate one of the signals such that the correlation coef-
ficient becomes positive. Specifically, set §,(f) = s,(¢)e ¢, and replace Z, by
Z, = (y, 5,). The decision rule depends only on |Z,|, i =0, 1, and |Z,| =|Z,|,
so that the outcome, and hence performance, of the decision rule is unchanged.
Conditioned on H, and 6, the statistics of Z = (Z,, Z,)" are as in (4.50) and
(4.51), except that p is now replaced by p = ({50, 5,))/(IS 111151 1)) = |pl-

A related point worth noting is that the performance is independent of 0;
that is, from the point of performance analysis, we may set 8 = 0. To see this,
replace Z; by Z,e7; this does not change |Z;|, and hence it does not change
the decision. Now, write

Zie_je = (8, 8;) + <”e_j0’ 5;)

and note that the statistics of the proper Gaussian random process ne ¥ are
the same as those of n (check that the mean and autocovariance functions are
unchanged).

Thus, we can replace p by |p| and 6 = 0 in (4.50) and (4.51). Furthermore,
let us normalize Z, and Z, to obtain the scale-invariant U; = Z; / oJE,,
i =0, 1. The conditional mean and covariance matrix (conditioned on 0 being
sent) for the proper complex Gaussian vector U = (U, U,;)" is now given by

“‘”:\/g(n;) C”:2<|;1)| “1)')' (459

Since the decision based on comparing |Uy| and |U,| is identical to those
provided by the original decision rule, and the conditional distribution of these
decision statistics depends on |p| and E,/N, alone, so does the conditional
error probability (and hence also the unconditional error probability).
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noncoherent demodulation.
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We now sketch a plausibility argument for the high SNR asymptotics given
in (4.52). The noncoherent rule may be viewed as comparing the magnitudes
of the projections of the received signal onto the one-dimensional complex
subspaces S, and S, spanned by s, and s,, respectively (each subspace has
two real dimensions). High SNR asymptotics are determined by the most
likely way to make an error. If s, is sent, then the most likely way for the
noise to induce a wrong decision is to move the signal a distance d along the
two-dimensional plane defined by the minimum angle between the subspaces
S, and S}, as shown in Figure 4.7.

The angle between two complex signals is given by

Re({(u, v))

[ullI[ol]
To determine the minimum angle between S, and §,, we need to maximize
cos 6 for u(t) = asy(¢) and v(r) = Bs,(¢), where @, B are scalars. It is easy
to see that the answer is cos 6, = |p|: this corresponds to rotating one of
the signals so that the inner product becomes nonnegative (u(f) = s,(¢) and
v(t) = s5,(f)e’® works, where ¢ = arg(p)). We therefore find that the minimum
angle is given by

cosf =

cos B, = |pl. (4.56)

min

The minimum distance that the noise needs to move the signal is seen from

Figure 4.7 to be
0 .
d — : min .
Isllsin ()

.2 Gmin 1 —cos Hmin 1— |p|
Sin — | = = s
2 2 2

Since

we obtain
2 Es
d”=—(1—lp). (4.57)
This yields the high SNR asymptotics
d d?
P ~ - ~ — N 5 b
()~ (50)

which yields the desired result (4.52) upon substituting from (4.57). Ll

S, Subspace spanned by s;

Minimum angle between the subspaces:
COS Oppin = | /’|

=110l Sin(hpin/2)

So

S, subspace spanned by sy
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Proof of Proposition 4.5.6 'We now consider the special case of orthogonal
signaling, for which p = 0. Let us use the equivalent scaled decision statistics
U, and U, as defined in the proof of Proposition 4.5.5, conditioning on H,
and setting 6 = 0 without loss of generality, as before. Setting p = 0 in (4.55),
we obtain my = m(1, 0)7, and Cy = 21, where m = \/E, /2. Since U, and U,
are uncorrelated, they are independent. Since U, is a scalar proper complex
Gaussian random variable, its real and imaginary parts are independent, with
Uy ~ N(m, 1) and U,, ~ N(0, 1). Similarly, U,. ~ N(0, 1) and U, ~ N(0, 1)
are independent Gaussian random variables. This implies that R, = |U,| is
Rician (see Problem 3.4) with pdf

m? 4+ r?

2

Pr,(r) = rexp (— )Io(mr) r=0

and R, = |U,| is Rayleigh with pdf

r2
Pr,(r) = rexp ) r>0,
where we have dropped the conditioning on H, in the notation. The conditional
error probability is given by

P

&

0= PRy > RolHy] = [ PIR, > r|Ry = rlp,(ar.

Noting that P[R, > r|R, = r] = P[R, > r] = e "/, we obtain

o0 2 2. 2
Py = [) exp (—%) rexp (_m ;—r ) I,(mr) dr. (4.58)

We can now massage the integrand above into the form of a new Rician
density, multiplied by a constant factor. Since the density must integrate to
one, the constant Eacjtor is our final answer. The general form of the Rician
density is r/vzefaz%lo(%). Comparing this with the terms involving r in
(4.58), we obtain r? = r?/2v? and mr = ar/v?, which gives v* = 1/2 and
a=m/2. It is left as an exercise to complete the proof by showing that the
integral evaluates to 1/2exp(—m?/4). Substituting m = \/E,/o2, we obtain

the desired formula (4.54). U

4.5.3 Performance of M-ary noncoherent orthogonal signaling

An important class of noncoherent systems is M-ary orthogonal signaling.
We have shown in Chapter 3 that coherent orthogonal signaling attains funda-
mental limits of power efficiency as M — co. We now show that this property
holds for noncoherent orthogonal signaling as well. We consider equal-energy
M -ary orthogonal signaling with symbol energy E, = E, log, M.
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Figure 4.8 Symbol error
probabilities for M-ary
orthogonal signaling with
noncoherent demodulation.

Synchronization and noncoherent communication

Exact error probability As shown in Problem 4.8, this is given by the

expression
M-1 k+1
M—1) (=1) k E,
P = — <. 4.59
e Z( k ) K+ 1 exP( k+1N0) (459

k=1

Union bound For equal-energy orthogonal signaling with symbol energy
E,, Proposition 4.5.6 provides a formula for the pairwise error probability.
We therefore obtain the following union bound:

p <M1 E, (4.60)
€X — . .
e =T P\ Ty

Note that the union bound coincides with the first term in the summation
(4.59) for the exact error probability.

As for coherent orthogonal signaling in Chapter 2, we can take the limit
of the union bound as M — oo to infer that P, — 0 if E, /N, is larger than a
threshold. However, as before, the threshold obtained from the union bound
is off by 3 dB. As we show in Problem 4.9, the threshold for reliable commu-
nication for M-ary noncoherent orthogonal signaling is actually E, /N, > In2
(—1.6 dB). That is, coherent and noncoherent M-ary orthogonal signaling
achieve the same asymptotically optimal power efficiency as M gets large.

Figure 4.8 shows the probability of symbol error as a function of E,/N,
for several values of M. As for coherent demodulation (see Figure 3.20), we
see that the performance for the values of M considered is quite far from the
asymptotic limit of —1.6 dB.
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4.5.4 Performance of DPSK

Exact analysis of the performance of M-ary DPSK suffers from the same
complication as the exact analysis of noncoherent demodulation of correlated
signals. However, an exact result is available for the special case of binary
DPSK, as follows.

Proposition 4.5.7 (Performance of binary DPSK) For an AWGN channel
with unknown phase, the error probability for demodulation of binary DPSK
over a two-symbol window is given by

1 E, .
P,=—exp| —— Binary DPSK. (4.61)
2 N,

Proof of Proposition 4.5.7 Demodulation of binary DPSK over two sym-
bols corresponds to noncoherent demodulation of binary, equal-energy,
orthogonal signaling using the signals s,; = (1,1)” and s_, = (1, —1)" in
(4.38), so that the error probability is given by the formula 1/2 exp(—E,/2N,).
The result follows upon noting that E, = 2E,, since the signal s, spans two
bit intervals, a = +1. ]

Remark 4.5.7 (Comparison of binary DPSK and coherent BPSK) The
error probability for coherent BPSK, which is given by Q./(2E,/N,) ~
exp(—E,/N,). Comparing with (4.61), note that the high SNR asymptotics
are not degraded due to differential demodulation in this case.

For M-ary DPSK, Proposition 4.5.5 implies that the high SNR asymptotics for
the pairwise error probabilities are given by exp(—E,/2N,(1 — |p|)), where
p is the pairwise correlation coefficient between signals drawn from the
set {s,,ae A}, and E, = 2E, log, M. The worst-case value of p dominates
the high SNR asymptotics. For example, if a[n] are drawn from a QPSK
constellation {+1, £}, the largest value of |p| can be obtained by correlating
the signals (1, 1)7 and (1, j)7, which yields |p| = 1/+/2. We therefore find
that the high SNR asymptotics for DQPSK, demodulated over two successive
symbols, are given by

P,(DQPSK) ~ exp (—%(2 - ﬁ)) .

Comparing with the error probability for coherent QPSK, which is given by
0./(2E,/N,) = exp(—E,/N,), we note that there is a degradation of 2.3 dB
(1010g,(2 — +/2) = —2.3). It can be checked using similar methods that the
degradation relative to coherent demodulation gets worse with the size of the
constellation.
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4.5.5 Block noncoherent demodulation

Now that we have developed some insight into the performance of non-
coherent communication, we can introduce some more advanced techniques
in noncoherent and differential demodulation. If the channel is well approxi-
mated as constant over more than two symbols, the performance degra-
dation of M-ary DPSK relative to coherent M-PSK can be alleviated by
demodulating over a larger block of symbols. Specifically, suppose that

h[nl|=h[n—1]=---=h[n— L+ 1] = h, where L > 2. Then we can group L
received samples together, constructing a vector y = (y[n — L+ 1],...,y[n]),
and obtain

y=hs, +w,

where w is the vector of noise samples, h= hb[n — L + 1] is unknown,
a=(a[n—L+2],...,a[n])T is the set of information symbols affecting the
block of received samples, and, for DPSK,

s, = (I,a[n—L+2],a[n—L+2]a[n—L+3],...,a[n])".

We can now make a joint decision on a by maximizing the noncoherent
decision statistics |y, s,)|* over all possible values of a.

Remark 4.5.8 (Approaching coherent performance with large block
lengths) It can be shown that, for an M-ary PSK constellation, as L —
oo, the high SNR asymptotics for the error probability of block differential
demodulation approach that of coherent demodulation. For binary DPSK,
however, there is no point in increasing the block size beyond L = 2,
since the high SNR asymptotics are already as good as those for coherent
demodulation.

Remark 4.5.9 (Complexity considerations) For block demodulation of
M-ary DPSK, the number of candidate vectors a is M*~!, so that the com-
plexity of direct block differential demodulation grows exponentially with
the block length. Contrast this with coherent, symbol-by-symbol, demodu-
lation, for which the complexity of demodulating a block of symbols is
linear. However, near-optimal, linear-complexity, techniques for block dif-
ferential demodulation are available. The idea is to quantize the unknown
phase corresponding to the effective channel gain h into Q hypothe-
ses, to perform symbol-by-symbol coherent demodulation over the block
for each hypothesized phase, and to choose the best of the Q candi-
date sequences a, ..., a, thus generated by picking the maximum among
the noncoherent decision statistics [(y,s, )|, i =1,..., 0. The complex-
ity is larger than that of coherent demodulation by a fixed factor Q,
rather than the exponential complexity of brute force block differential
demodulation.
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Figure 4.9 Symbol error
probabilities for block
noncoherent demodulation of
differential QPSK, compared
with the performance of
“absolute” modulation (or
coherent QPSK).
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Figure 4.9 shows the effect of block length on block noncoherent demodula-
tion of differential QPSK. Note the large performance improvement in going
from a block length of 7' =2 (standard differential demodulation) to T =5; as
we increase the block length further, the performance improves more slowly,
and eventually approaches that of coherent QPSK or “absolute” modulation.

For further reading on synchronization, we suggest the books by Mengali and
D’Andrea [20], Meyr and Ascheid [21], and Meyr, Moenclaey, and Fechtel
[22], and the references therein. We recommend the book by Poor [19] for
a systematic treatment of estimation theory, including bounds on achievable
performance such as the Cramer—Rao lower bound. An important classical
reference, which includes a detailed analysis of the nonlinear dynamics of
the PLL, is the text by Viterbi [11]. References related to synchronization for
spread spectrum modulation formats are given in Chapter 8. The material on
signal space concepts for noncoherent communication is drawn from the paper
by Warrier and Madhow [23]. An earlier paper by Divsalar and Simon [24]
was the first to point out that block noncoherent demodulation could approach
the performance of coherent systems. For detailed analysis of noncoherent
communication with correlated signals, we refer to Appendix B of the book by
Proakis [3]. Finally, extensive tabulation of the properties of special functions
such as Bessel functions can be found in Abramowitz and Stegun [25] and
Gradshteyn e al. [26].
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Problem 4.1 (Amplitude estimation) Fill in the details for the amplitude
estimates in Example 4.2.2 by deriving (4.10) and (4.11).

Problem 4.2 (NDA amplitude and phase estimation for sampled QPSK
system) The matched filter outputs in a linearly modulated system are mod-
eled as

Z[k] = Ae’b[k] + N[k], k=1,...,K,

where A > 0, 0 € [0, 277] are unknown, b[k] are i.i.d. QPSK symbols taking
values equiprobably in £1, 4=, and N[k] are i.i.d. complex WGN samples
with variance o per dimension.

(a) Find the likelihood function of z[k] given A and 0, using the discrete-time
likelihood function (4.20). Show that it can be written as a sum of two
hyperbolic cosines.

(b) Use the result of (a) to write down the log likelihood function for
z[1], ..., z[K], given A and 6.

(c) Show that the likelihood function is unchanged when 6 is replaced by
0+ /2. Conclude that the phase 6 can only be estimated modulo 77/2 in
NDA mode, so that we can restrict attention to 6 € [0, 7/2), without loss
of generality.

(d) Show that

E[|z[k][*] = A* +20°.
Use this to motivate an ad hoc estimator for A based on averaging |z[k]|*.

(e) Maximize the likelihood function in (c) numerically over A and 6 for
K =4, with

Z[1]=—=0.140.9/, z[2]=1.240.2j, z[3]=0.3—1.1j, z[4]= —0.8+0.4;
and 02 =0.1.

Hint Use (c) to restrict attention to 6 € [0, 7/2). You can try an iterative approach in
which you fix the value of one parameter, and maximize numerically over the other,
and continue until the estimates “settle.” The amplitude estimator in (d) can provide
a good starting point.

Problem 4.3 (Costas loop for phase tracking in linearly modulated
systems) Consider the complex baseband received signal

¥(1) = Y blklp(t — k)" + n(s).

k=1
where {b[k]} are drawn from a complex-valued constellation and 6 is an
unknown phase. For data-aided systems, we assume that the symbol sequence
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b = {b[k]} is known. For nondata-aided systems, we assume that the symbols
{b[k]} are i.i.d., selected equiprobably from the constellation. Let z(¢) =
(y* pyp)(?) denote the output, at time 7, of the matched filter with impulse

response pyr(t) = p*(—1).

(a)
(b)
(©

(d)

()

Show that the likelihood function conditioned on 6 and b depends on the
received signal only through the sampled matched filter outputs {z(k7)}.
For known symbol sequence b, find the ML estimate of 6. It should depend
on y only through the sampled matched filter outputs {z[k] = z(kT)}.
For tracking slowly varying 6 in data-aided mode, assume that b is known,
and define the log likelihood function cost function

Ji(6) =log L(z[k]|6, b),

where L(z[k]|6,b) is proportional to the conditional density of z[k] =
z(kT), given 6 (and the known symbol sequence b). Show that

3,(0) _

0 a Im (b*[k]z[k]e ")),

where a is a constant.

Suppose, now, that we wish to operate in decision-directed mode. Spe-
cialize to BPSK signaling (i.e., b[k] € {—1, +1}). Show that the optimum
coherent decision on b[k], assume ideal phase tracking, is

b[k] = sign (Re(z[k]e ™))

Assuming that this bit estimate is correct, substitute b[k] in place of b[k]
into the result of (c). Show that a discrete-time ascent algorithm of the
form

9J,(6)

Blk+1]= 6K+ b1

0=0[k]

reduces to
Ok + 1] = 0[k] + « sign (Re(z[k]e *[k])) Im(z[k]e*[]),

where a > 0 is a parameter that governs the reaction time of the tracking
algorithm. The block diagram for the algorithm is shown in Figure 4.10.
Now, consider nondata-aided estimation for i.i.d. BPSK symbols taking
values 1 equiprobably. Find the log likelihood function averaged over b:

log L(y|6) =log E[L(y|6,b)],

where the expectation is over the symbol sequence b. Assume that p is
square root Nyquist at rate 1/7 if needed.
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Complex baseband
received signal —

y(t)

Symbol matched filter

Real part —>

Symbol rate | 2]
p*(-t) sampler

Figure 4.10 Discrete-time
decision-directed Costas loop
for BPSK modulation.

Imaginary
part

exp(—jolkl) Look-up /R
table

Hint Use techniques similar to those used to derive the NDA amplitude estimate in
Example 4.2.2.

(f) Find an expression for a block-based ML estimate of 6 using the NDA
likelihood function in (d). Again, this should depend on y only through
{z[k]}.

(g) Derive a tracking algorithm as in part (d), but this time within NDA
mode. That is, use the cost function

Ji(6) = log L(z[k]|6)

where L(z[k]|6) is obtained by averaging over all possible values of the
BPSK symbols. Show that the tracker can be implemented as in the block
diagram in Figure 4.10 by replacing the hard decision by a hyperbolic
tangent with appropriately scaled argument.

(h) Show that the tracker in (g) is approximated by the decision-directed
tracker in (d) by using the high SNR approximation tanh x ~ sign(x). Can
you think of a low SNR approximation?

Remark The low SNR approximation mentioned in (h) corresponds to what
is generally known as a Costas loop. In this problem, we use the term for a
broad class of phase trackers with similar structure.

Problem 4.4 (Frequency offset estimation using training sequence)
Consider a linear modulated system with no ISI and perfect timing recovery,
but with unknown frequency offset Af and phase offset . The symbol rate
samples are modeled as

y[k] = b[k]C™THO L N[K], k=1,...,K,

where T is the symbol time, and N[k] is discrete-time complex WGN with
variance o = N,/2 per dimension. Define I' = 27wAfT as the normalized
frequency offset. We wish to obtain ML estimates of I" and 6, based on the
observation y = (y[1],..., y[K])T. Assume that the complex symbols {b[k]}
are part of a known training sequence.
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(a) Find the log likelihood function conditioned on I" and 6, simplifying as
much as possible.

(b) Fixing I', maximize the log likelihood function over 6. Substitute the
maximizing value of 6 to derive a cost function J(I') to be maximized
over I'.

(c) Discuss approximate computation of the ML estimate for I' using a
discrete Fourier transform (DFT).

Problem 4.5 (Example of one-shot timing estimation) The received signal
in a real baseband system is given by

y(#) = p(t—1)+n(2),

where p(t) = Ij ;;(#), 7 is an unknown delay taking values in [0, 1], and n is
real-valued WGN with PSD ¢ = N, /2. The received signal is passed through
a filter matched to p to obtain z(¢) = (y * pyr)(2), where py(¢) = p(—1), but
the ML estimation algorithm only has access to the samples at times 0, 1/2, 1.

(a) Specify the distribution of the sample vector z = (z(0), z(1/2), z(1))7,
conditioned on 7€ [0, 1].

Hint Consider the cases 7 < 1/2 and 7 > 1/2 separately.

(b) Compute the ML estimate of 7 if z= (0.7, 0.8, —0.1)7, assuming that
02> =0.1. How does your answer change if o> =0.01?

Problem 4.6 (Block-based timing estimation for a linearly modulated
signal) Consider the timing estimation problem in Example 4.3.2 for a
linearly modulated signal. That is, the received signal y is given by

y(t) = As(t — 7)e’ + n(1),

for
s() = Y. b{kp(t — kT),
k=1

where 7 is to be estimated, A, 6 are “nuisance” parameters which we eliminate
by estimating (for fixed 7) and substituting into the cost function, as in
Example 4.3.2, and n is complex WGN. Assume that {b[k],k=1,..., K}
are part of a known training sequence.

(a) Specializing the result in Example 4.3.2, show that the ML estimate of
the delay 7 can be implemented using the output z(¢) = (y* pyg)(?) of a
filter with impulse response py(f) = p*(—¢) matched to the modulating
pulse p.

(b) Now, suppose that we only have access to the matched filter outputs
sampled at twice the symbol rate, at sample times £7/2. Discuss how you
might try to approximate the delay estimate in (a), which has access to
the matched filter outputs at all times.
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Problem 4.7 Consider an on—off keyed system in which the receiver
makes its decision based on a single complex number y, as follows:

y=hA+n, 1 sent,
y=n, 0 sent,

where A > 0, h is a random channel gain modeled as a zero mean, proper
complex Gaussian random variable with E[|A|?] = 1, and 7 is zero mean,
proper complex Gaussian noise with variance o> = N,/2 per dimension.

(a) Assume that & is unknown to the receiver, but that the receiver knows
its distribution (given above). Show that the ML decision rule based on
y is equivalent to comparing |y|> with a threshold. Find the value of the
threshold in terms of the system parameters.

(b) Find the conditional probability of error, as a function of the average
E, /N, (averaged over all possible realizations of %), given that O is sent.

(c) Assume now that the channel gain is known to the receiver. What is the
ML decision if y=1+j, h=j, A=3/2, and o> = 0.01 for the coherent
receiver?

Problem 4.8 (Exact performance analysis for M-ary, equal-energy, non-
coherent orthogonal signaling) Consider an M-ary orthogonal equal-
energy signal set {s;,,i=1,..., M} with (s,-,sj) = ESSij, for 1 <i,j<M.
Condition on s, being sent, so that the received signal y = s,e/’ 4+ n, where
n is complex WGN with variance o> = N,/2 per dimension, and 6 is an

arbitrary unknown phase shift. The noncoherent decision rule is given by
1) = Z.
ne(y) =arg max |Z],

where we consider the normalized, scale-invariant decision statistics Z; =

(0, s)/(oVE), i=1,...,M. Let Z=(Z,, ...,Z,)", and denote the
magnitudes by R, =1|Z,|, i=1,..., M.

(a) Show that the normalized decision statistics {Z;} are (condition-
ally) independent, with Z, ~ CN(me?,2) and Z, ~ CN(0,?2), where
m=JQE/Ny).

(b) Conclude that, conditioned on s, sent, the magnitudes R
Rayleigh distribution (see Problem 3.4) satisfying

i#1, obey a

i

o

PR, <rl=1—-e"7, r=0.
(c) Show that, conditioned on s, sent, R, = |Z,]| is Rician (see Problem 3.4)
with conditional density
m2 + r2
2

P (1) = rexp (— )10 (mr) 0.
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(d) Show that the conditional probability of correct reception (given s, sent),
which also equals the unconditional probability of correct reception by
symmetry, is given by

P.=P, = P[R1=ml_ax R|H\|=P[R, <R,R; <R,,....Ry <R,|H|]
) 2 M—1
:.é (1-e*7) P (1) dr (4.62)
o0 2\ M—1 2 2
= (l—e’%) rexp (_m +r )Io(mr) dr
0 2
— [2E
(m= B

(e) Show that the error probability is given by

) M—1 2 2
Pe=1—PC:[ |:1—<1—ef) :|rexp(—m ;—r )Io(mr) dr.
0

Using a binomial expansion within the integrand, conclude that

M—1
g:}j(M;1>m,

k=1

where

m2+r2

A= (=1 /w re 't exp (— ) I,(mr) dr. (4.63)
0

(f) Now, massage the integrand into the form of a Rician density as we did when
computing the error probability for binary orthogonal signaling. Use this to
evaluate A, and obtain the following final expression for error probability

M—1 k+1
M—1Y\ (=1) k E
P=3 B2
e ( k ) k+1 ﬁp(k+1M)

k=1

Check that this specializes to the expression for binary orthogonal
signaling by setting M = 2.

Problem 4.9 (Asymptotic performance of M-ary noncoherent orthogonal
signaling) In the setting of Problem 4.8, we wish to derive the result that

1, 2>In2,
lim P, = I, (4.64)
M—o0 0, VE <1n2.

Set

2E, 2E, log, M
m = = _—,
NO NO

as in Problem 4.8.
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(a) In (4.8), use a change of variables U = R, — m to show that the probability
of correct reception is given by

00 (utm)? M-l
PC=/ (l—e 2 ) p(u|l) du.
0

(b) Show that, for any u > 0,

(utm)? M=1 O’ % < 1n2’
lim (1 —e 2 ) = EU
M—rco 1, 2 >1In2.

No

Hint Use L’Hopital’s rule on the log of the expression whose limit is to be evaluated.

(c) Show that, by a suitable change of coordinates, we can write

R, =4 (m+V1)Z+V22’

where V|, V, are i.i.d. N(0, 1) random variables. Use this to show that, as
m — oo, U =R, — m converges to a random variable whose distribution
does not depend on M (an intuitive argument rather than a rigorous proof
is expected). What is the limiting distribution? (The specific form of
the density is actually not required in the subsequent proof, which only
uses the fact that there is some limiting distribution that does not depend
on M.)

(d) Assume now that we can interchange limit and integral as we let M — oo,
so that

o0

u I)lz M_l
lim P,= [ lim (1—e‘ Ea ) lim p(ul1)du.

M— oo 0 M—o

Now use (b) and (c) to infer the desired result.

Problem 4.10 (Noncoherent orthogonal signaling over a Rayleigh fading
channel) Binary orthogonal signaling over a Rayleigh fading channel can
be modeled using the following hypothesis testing problem:

H, : y(t)=As,(0)e’ +n(r), 0<t<T,

Hy: y(t) = Asy()e? +n(r), 0<t<T,
where (s;,5,) =0, ||sy|]*> = |Iso||* = E,, n is complex AWGN with PSD
02 = N,/2 per dimension. Conditioned on either hypothesis, the amplitude
A > 0 is Rayleigh with E[A%] =1, 6 is uniformly distributed over [0, 277],
and A, 6 are independent of each other and of the noise n. Equivalently,

h = Ae’ ~ CN(0, 1) is a proper complex Gaussian random variable. Define
the complex-valued correlation decision statistics Z; = (y, 5;), i =0, 1.

(a) Show that the MPE decision rule is the noncoherent detector given by

i =arg max{|Z,], |Z,|}.
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(b) Find the error probability as a function of E, /N, by first conditioning on
A and using Proposition 4.5.6, and then removing the conditioning.

(c) Now, find the error probability directly using the following reasoning.
Condition throughout on H,. Show that Z, and Z, are independent com-
plex Gaussian random variables with i.i.d. real and imaginary parts. Infer
that |Z,|* and |Z,|* are independent exponential random variables (see
Problem 3.4), and use this fact to derive directly the error probability
conditioned on H,, (without conditioning on A or 6).

(d) Plot the error probability on a log scale as a function of E, /N, in dB for
the range 0-20 dB. Compare with the results for the AWGN channel (i.e.,
for A =1), and note the heavy penalty due to Rayleigh fading.

Problem 4.11 (Soft decisions with noncoherent demodulation) Consider
noncoherent binary on—off keying over a Rayleigh fading channel, where the
receiver decision statistic is modeled as:

Y=h+N, 1 sent,
Y=N, 0 sent,

where h is zero mean complex Gaussian with E[|h|*] =3, N is zero mean
complex Gaussian with E[|[N|?] =1, and k, N are independent. The receiver
does not know the actual value of h, although it knows the distributions
above. Find the posterior probability P[1 sent|Y = 1 — 2], assuming the prior
probability P[1 sent] = 1/3.

Problem 4.12 (A toy model illustrating channel uncertainty and diversity)
Consider binary, equiprobable signaling over a scalar channel in which the
(real-valued) received sample is given by

y=hb+n, (4.65)

where b e {—1,+1} is the transmitted symbol, n ~ N(0, 1), and the channel
gain & is a random variable taking one of two values, as follows:

Plh=1]=- P[h=2]=§. (4.66)

(a) Find the probability of error, in terms of the Q function with positive
arguments, for the decision rule b= sign(y). Express your answer in terms
of E,/N,, where E, denotes the average received energy per bit (averaged
over channel realizations).

(b) True or False The decision rule in (a) is the minimum probability of
error (MPE) rule. Justify your answer.

Now, suppose that we have two-channel diversity, with two received
samples given by
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v =hb+n, ¥, = hyb+n,, (4.67)

where b is equally likely to be £1, n, and n, are independent and
identically distributed (i.i.d.) N(0, o), and h, and h, are i.i.d., each with
distribution given by (4.66).

(c) Find the probability of error, in terms of the Q function with positive
arguments, for the decision rule b= sign(y, + y,).

(d) True or False The decision rule in (b) is the MPE rule for the model
(4.67), assuming that the receiver does not know 4, h,, but knows their
joint distribution. Justify your answer.

Problem 4.13 (Preview of diversity for wireless channels) The perform-
ance degradation due to Rayleigh fading encountered in Problem 4.10 can be
alleviated by the use of diversity, in which we see multiple Rayleigh fading
channels (ideally independent), so that the probability of all channels having
small amplitudes is small. We explore diversity in greater depth in Chapter
8, but this problem provides a quick preview. Consider, as in Problem 4.10,
binary orthogonal signaling, except that we now have access to two copies of
the noisy transmitted signal over independent Rayleigh fading channels. The
resulting hypothesis testing problem can be written as follows:

Hy: oy () =hisi () +n,(1), y,(8) = hys (1) +ny(1), 0<t<T,
Hy: v (1) = hyso(t) + (1), 3,(1) = hyso(1) +ny(1),  0<t<T,

where (s;, so) =0, ||s,|*> = ||so]|* = Ey» hy, h, are i.i.d. CN(0, 1/2) (normal-
izing so that the net average received energy per bit is still E,), and n is
complex AWGN with PSD o? = N,/2 per dimension.

(a) Assuming that h, and h, are known (i.e., coherent reception) to the
receiver, find the ML decision rule based on y, and y,.

(b) Find an expression for the error probability (averaged over the distribution
of h, and h,) for the decision rule in (a). Evaluate this expression for
E,/N, = 15dB, either analytically or by simulation.

(c) Assuming now that the channel gains are unknown (i.e., noncoherent
reception), find the ML decision rule based on y, and y,.

(d) Find an expression for the error probability (averaged over the distribution
of h, and h,) for the decision rule in (c). Evaluate this expression for
E,/N, = 15 dB, either analytically or by simulation.
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Channel equalization

In this chapter, we develop channel equalization techniques for handling the
intersymbol interference (ISI) incurred by a linearly modulated signal that
goes through a dispersive channel. The principles behind these techniques
also apply to dealing with interference from other users, which, depending on
the application, may be referred to as co-channel interference, multiple-access
interference, multiuser interference, or crosstalk. Indeed, we revisit some of
these techniques in Chapter 8 when we briefly discuss multiuser detection.
More generally, there is great commonality between receiver techniques for
efficiently accounting for memory, whether it is introduced by nature, as
considered in this chapter, or by design, as in the channel coding schemes
considered in Chapter 7. Thus, the optimum receiver for ISI channels (in
which the received signal is a convolution of the transmitted signal with the
channel impulse response) uses the same Viterbi algorithm as the optimum
receiver for convolutional codes (in which the encoded data are a convolution
of the information stream with the code “impulse response”) in Chapter 7.

The techniques developed in this chapter apply to single-carrier systems
in which data are sent using linear modulation. An alternative technique for
handling dispersive channels, discussed in Chapter 8, is the use of multi-
carrier modulation, or orthogonal frequency division multiplexing (OFDM).
Roughly speaking, OFDM, or multicarrier modulation, transforms a system
with memory into a memoryless system in the frequency domain, by decom-
posing the channel into parallel narrowband subchannels, each of which sees
a scalar channel gain.

Map of this chapter After introducing the channel model in Section 5.1,
we discuss the choice of receiver front end in Section 5.2. We then briefly
discuss the visualization of the effect of ISI using eye diagrams in Section 5.3.
This is followed by a derivation of maximum likelihood sequence estimation
(MLSE) for optimum equalization in Section 5.4. We introduce the Viterbi
algorithm for efficient implementation of MLSE. Since the complexity of
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MLSE is exponential in the channel memory, suboptimal equalizers with
lower complexity are often used in practice. Section 5.5 describes a geometric
model for design of such equalizers. The model is then used to design linear
equalizers in Section 5.6, and decision feedback equalizers in Section 5.7.
Techniques for evaluating the performance of these suboptimum equalizers
are also discussed. Finally, Section 5.8 discusses the more complicated prob-
lem of estimating the performance of MLSE. The idea is to use the union
bounds introduced in Chapter 3 for estimating the performance of M-ary
signaling in AWGN, except that M can now be very large, since it equals the
number of possible symbol sequences that could be sent. We therefore dis-
cuss “intelligent” union bounds to prune out unnecessary terms, as well as a
transfer function bound for summing such bounds over infinitely many terms.
Similar arguments are also used in performance analysis of ML decoding of
coded systems (see Chapter 7).

5.1 The channel model

Figure 5.1 Linear modulation
over a dispersive channel.

Consider the complex baseband model for linear modulation over a dispersive
channel, as depicted in Figure 5.1.
The signal sent over the channel is given by

w(t)= Y blnlgrx(t—nT),

where gry(?) is the impulse response of the transmit filter, and {b[n]} is the
symbol sequence, transmitted at rate 1/7. The channel is modeled as a filter
with impulse response gq(t), followed by AWGN. Thus, the received signal
is given by

¥ = 3 [nlp(i—nT) + (). (5.1)

n=—o00

where

p(1) = (8rx *8c) (1)
is the impulse response of the cascade of the transmit and channel filters, and
n(t) is complex WGN with PSD o? = N, /2 per dimension. The task of the

channel equalizer is to extract the transmitted sequence b = {b[n]} from the
received signal y(r).

Transmitted symbols

{b,} Transmit filter Channel filter Received signal
Rate 1/T grit) gclt) - q% i

n(t)
White Gaussian noise
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Running example As a running example through this chapter, we con-
sider the setting shown in Figure 5.2. The symbol rate is 1/2 (i.e., one
symbol every two time units). The transmit pulse grx () = Ijy 5(?) is an
ideal rectangular pulse in the time domain, while the channel response
gc(t) =8(t—1)—1/26(t —2) corresponds to two discrete paths.

grx(t) gclt) pit)

1
1
12 L
t
0 > 0 TTo E -1/2‘01 2 3[4

-1/2

t

Figure 5.2 Transmit pulse gy (f), channel impulse response g (t), and overall pulse p(t) for the
running example. The symbol rate is 1/2 symbol per unit time.

5.2 Receiver front end

Most modern digital communication receivers are DSP-intensive. For example,
for RF communication, relatively sloppy analog filters are used in the passband
and at intermediate frequencies (for superheterodyne reception). The complex
baseband version of these passband filtering operations corresponds to passing
the complex envelope of the received signal through a sloppy analog complex
baseband filter, which is a cascade of the complex baseband versions of the
analog filters used in the receive chain. We would typically design this equiv-
alent analog baseband filter to have a roughly flat transfer function over the
band, say [—W/2, W/2], occupied by the transmitted signal. Thus, there is no
loss of information in the signal contribution to the output of the equivalent
complex baseband receive filter if it is sampled at a rate faster than W. Typi-
cally, the sampling rate is chosen to be an integer multiple of 1/7, the symbol
rate. This provides an information-lossless front end which yields a discrete-
time signal which we can now process in DSP. For example, we can imple-
ment the equivalent of a specific passband filtering operation on the passband
received signal using DSP operations on the discrete-time complex baseband
signal that implement the corresponding complex baseband filtering operations.

Now that we have assured ourselves that we can implement any analog
operation in DSP using samples at the output of a sloppy wideband filter,
let us now return to the analog complex baseband signal y(¢) and ask how
to process it optimally if we did not have to worry about implementation
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details. The answer is given by the following theorem, which characterizes
the optimal receiver front end.

Theorem 5.2.1 (Optimality of the matched filter) The optimal receive
filter is matched to the equivalent pulse p(t), and is specified in the time and
frequency domains as follows:

gR,opl(t) = pur(t) = p*(-1), (5.2)

GR,opt(.f) = PMF(f) = P*(f) '
In terms of a decision on the symbol sequence b, there is no loss of relevant
information by restricting attention to symbol rate samples of the matched
filter output, given by

dn) = 0 pe) (1) = [ ¥Opyp(nT 1) de = [ y(@Op* (1= nT) dr. (5.3)

Proof of Theorem 5.2.1 We can prove this result using either the hypoth-
esis testing framework of Chapter 3, or the broader parameter estimation
framework of Chapter 4. Deciding on the sequence b is equivalent to test-
ing between all possible hypothesized sequences b, with the hypothesis Hy,
corresponding to sequence b given by

Hy, 2 y(2) = 5,(1) +1(2),

where
5o(1) = Y blalp(t —nT)

is the noiseless received signal corresponding to transmitted sequence b. We
know from Theorem 3.4.3 that the ML rule is given by

[1soll”

2
The MPE rule is similar, except for an additive correction term accounting
for the priors. In both cases, the decision rule depends on the received signal
only through the term (y, s,,). The optimal front end, therefore, should capture
enough information to be able to compute this inner product for all possible
sequences b.

We can also use the more general framework of the likelihood function
derived in Theorem 4.2.1 to infer the same result. For y = s, + n, the likelihood
function (conditioned on b) is given by

Oy () = arg lbnax Re((y, sp)) —

2
LO10) =exp (5 [Re(r )~ 5100)

We have sufficient information for deciding on b if we can compute the pre-
ceding likelihood function for any sequence b, and the observation-dependent
part of this computation is the inner product (y, s,).
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Figure 5.3 Typical
implementation of optimal
front end.

5.3 Eye diagrams

5.3 Eye diagrams

Equivalent to analog matched filter with symbol rate sampling

—— e — —

| rate m/T rate ’I/T:
Complex baseband ! Wideband Discrete-time <
recelve(c:)mgnal | analog filter matched filter [

y |

Synchronization
channel estimation

Let us now consider the structure of this inner product in more detail.
(v ) = (0, S blalp(t=nD)) = X0 [n] [ y(1)p*(1=nT) di = 3 b [n]zln],

where {z[n]} are as in (5.3). Generation of {z[n]} by sampling the outputs
of the matched filter (5.2) at the symbol rate follows immediately from the
definition of the matched filter. U

While the matched filter is an analog filter, as discussed earlier, it can be
implemented in discrete time using samples at the output of a wideband
analog filter. A typical implementation is shown in Figure 5.3. The matched
filter is implemented in discrete time after estimating the effective discrete-
time channel (typically using a sequence of known training symbols) from
the input to the transmit filter to the output of the sampler after the analog
filter.

For the suboptimal equalization techniques that we discuss, it is not nec-
essary to implement the matched filter. Rather, the sampled outputs of the
analog filter can be processed directly by an adaptive digital filter that is
determined by the specific equalization algorithm employed.

An intuitive sense of the effect of ISI can be obtained using eye diagrams.
Consider the noiseless signal r(¢t) = )", b[n]x(t — nT), where {b[n]} is the
transmitted symbol sequence. The waveform x(¢) is the effective symbol
waveform: for an eye diagram at the input to the receive filter, it is the
cascade of the transmit and channel filters; for an eye diagram at the output
of the receive filter, it is the cascade of the transmit, channel, and receive
filters. The effect of ISI seen by different symbols is different, depending on
how the contributions due to neighboring symbols add up. The eye diagram
superimposes the ISI patterns seen by different symbols into one plot, thus
enabling us to see the variation between the best-case and worst-case effects
of ISI. One way to generate such a plot is to generate {b[n]} randomly, and
then superimpose the waveforms {r(t —kT), k =0, £1, £2,...}, plotting the
superposition over a basic interval of length chosen to be an integer multiple
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Eye diagram Eye diagram

Amplitude

Amplitude

Figure 5.4 Eye diagrams for
raised cosine pulse with 50%
excess bandwidth for (a) an
ideal channel and (b) a highly
dispersive channel.

15 1 -0.5 0 0.5 1 1.5

(a) Open eye (b) Closed eye

of T. The eye diagram for BPSK using a raised cosine pulse with 50% excess
bandwidth is shown in Figure 5.4(a), where the interval chosen is of length
3T. Note that, in every symbol interval, there is a sampling time at which we
can clearly distinguish between symbol value of +1 and —1, for all possible
ISI realizations. This desirable situation is termed an “open” eye. In contrast,
Figure 5.4(b) shows the eye diagram when the raised cosine pulse is passed
through a channel 6(r) —0.66(r — 0.57) +0.76(t — 1.5T). Now there is no
longer a sampling point where we can clearly distinguish the value 41 from
the value —1 for all possible ISI realizations. That is, the eye is “closed,” and
simple symbol-by-symbol decisions based on samples at appropriately chosen
times do not provide reliable performance. However, sophisticated channel
equalization schemes such as the ones we discuss in this chapter can provide
reliable performance even when the eye is closed.

5.4 Maximum likelihood sequence estimation

We develop a method for ML estimation of the entire sequence b = {b[n]}
based on the received signal model (5.1). Theorem 5.2.1 tells us that the opti-
mal front end is the filter matched to the cascade of the transmit and channel
filters. We use the notation in Theorem 5.2.1 and its proof in the following.
We wish to maximize L(y|b) over all possible sequences b. Equivalently,
we wish to maximize
[ 2
>
where the dependence on the MF outputs {z[n]} has been suppressed from the
notation. To see the computational infeasibility of a brute force approach to
this problem, suppose that N symbols, each drawn from an M-ary alphabet,

A(b) =Re(y. 5,) -

(5.4)
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are sent. Then there are M" possible sequences b that must be considered
in the maximization, a number that quickly blows up for any reasonable
sequence length (e.g., direct ML estimation for 1000 QPSK symbols incurs
a complexity of 4!°°), We must therefore understand the structure of the
preceding cost function in more detail, in order to develop efficient algorithms
to maximize it. In particular, we would like to develop a form for the cost
function that we can compute simply by adding terms as we increment the
symbol time index n. We shall soon see that such a form is key to developing
an efficient maximization algorithm.

It is easy to show that the first term in (5.4) has the desired additive form.
From the proof of Theorem 5.2.1, we know that

Re(y, s,) = >_Re(b*[n]z[n]). (5.5)

To simplify the term involving ||s,||?, it is convenient to introduce the
sampled autocorrelation sequence of the pulse p as follows:

him) = [ p()p*(r=mT) dr = (p pye) (mT), (5.6)
The sequence {h[m]} is conjugate symmetric:
Hl=m] = " [m]. (5.7)
This is proved as follows:
W=m] = [ p()p*(t+mT) di
= [ pu=mT)p () du
= ([ p"(u=mDyp(u) au) =[]

where we have used the change of variables u = r+mT.

Running example For our running example, it is easy to see from Figure
5.1 that p(¢) only has nontrivial overlap with p(t —nT) for n =0, £1. In
particular, we can compute that h[0] = 3/2, h[l] = h[—1] = —1/2, and
h[n] =0 for |n| > 1.

We can now write

|lsylI> = (3 blnlp(r —nT), 3~ blm]p(t — mT))
= Y. S blnlb*[m] [ p(e=nT)p* (e = mT) de (5.8)
=Y "> b[n]b*[m]h[m —n].

n m
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This does not have the desired additive form, since, for each value of n, we
must consider all possible values of m in the inner summation. To remedy
this, rewrite the preceding as

lIsoll* = Zlb[n [01+>_ > bln]b*[m]h[m —n]

+> " b[n]b*[m]h[m — n].
Interchanging the roles of m and n in the last summation, we obtain
[lsy]* = A[0] Zlb 17 +22 2 [bln] m—n|+b*[n]b[m]h[n —ml]].

Using (5.7), we can rewrite the above as follows:

[lsy > = £[0] 3 [bln][* + 37 3~ 2Re(b*[n]b[m]hln — m]). (5.9)

n m<n

Substituting (5.5) and (5.9) into (5.4), the cost function to be maximized
becomes

A = Z{%QWWMD—%?MMF
—Re (b*[n] > b[m]h[n— m]) } . (5.10)

Notice that the preceding cost function is additive in »n, and that the term to
be added at the nth step is a function of the “current” symbol b[n] and the
“past” symbols {b[m], m < n}.

In practice, the memory needed to compute the term that needs to be added
at step n is truncated using the following finite memory condition:

h[n]=0, |n|>L. (5.11)

(For our running example, we have shown that L = 1.)

Under the condition (5.11), we can rewrite (5.10) as
hlo n—1
%Ua[n“2 Re[b*[n] > blm]h[n—m]]}.

A®) = X (Re(5[nlz{n]) -
’ e (5.12)

Thus, to compute the term at time n for a candidate sequence b, we need to
keep track of the current symbol b[n] and a state consisting of the past L
symbols: s[n] = (b[n—L],..., b[n — 1]). This term is written as

A, (bn], s[n]) = A, (s[n] = s[n+1]) = Re(b*[n]z[n]) — @Ib[n]l2

—Re( Z b[m ]) , (5.13)

m=n—L

where the two alternative notations reflect two useful interpretations for the
metric: it is a function of the current symbol b[n] and the current state s[n],
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or it is a function of the transition between the current state s[n] and the next
state sfn+1]=(b[n+1—L], ..., b[n]). The cost function can therefore be
written in the following additive form:

A(b) = Z A, (b[n], s[n]) = Z A, (s[n] = s[n+1]). (5.14)

If b[n] are drawn from an M-ary alphabet, the number of possible states at any
time n is ML. We can now define a trellis which consists of the set of states
as we step through n: the set of states at n and n+ 1 are connected by edges.
The label for an edge, or branch, between s[n] = a and s[n+ 1] = b is simply
the “branch metric” A,(a — b). Note that, even when the states at either end
of a branch are specified, the metric value depends on n through the matched
filter output z[n]. A particular candidate sequence b = {b[n],n=1,2,...}
corresponds to a unique path through the trellis. The running sum up to time
k of the metrics is defined as

k k
Ayd) = S A, bln). s[n) = YA, 6] > s[a+ 1), (5.15)

We can update the running sum for any given sequence as we proceed through
the trellis, since the metric at time n depends only on the states s[n] and s[n+ 1].

Branch metric for running example For our running example in Figure
5.1, suppose that we employ BPSK modulation, with b[n]e{—1,+1}.
The number of states is given by Mt = 2! = 2. The state at time n is
s[n] = b[n —1]. The branch metric in going from state s[n] = b[n — 1] to
state s[n+ 1] = b[n] is given by specializing (5.13), to obtain

A, (bln], s[n]) = A, (s[n] = s[n+1])
h[0]

= Re(b[nfe[n]) — —= |6[n]|* — Re[b*[n]b[n — 1]A[1]].

Since {b[k]} are real-valued, we see that only y[n] = Re(z[n]) (i.e. the I
component of the samples) affects the preceding metric. Furthermore, since
|b[n]]* = 1, the second term in the preceding equation does not depend
on b[n] (since |b[n]|* = 1), and can be dropped from the branch metric.
(This simplification applies more generally to PSK alphabets, but not to
constellations with amplitude variations, such as 16-QAM.) We therefore
obtain the modified metric

m, (b[n], s[n]) = m,(s[n] — s[n+1])

= b[n]y[n]+ %b[n]b[n —1]

= b[n] (y[n] + %b[n— 1]) . (5.16)
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Figure 5.5 First few trellis
branches for the running
example.
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Suppose now that we know that 5[0] = +1, and that the first few samples
at the output of the matched filter are given by y[0] = —1, y[1] =2,
y[2] = =2, and y[3] = 1.5. We can now use (5.16) to compute the branch
metrics for the trellis. Figure 5.4 shows the corresponding trellis, with the
branches labeled by the corresponding metrics. Note that, since we know
that s[1] = b[0] = 41, we do not need the value of y[0]. The first branch
metric we need is

my(s[1] — s[2]) = b[1]y[1] + %b[O]b[ll-

We compute this for 5[0] = 41 and for b[1] = £1. After this, we compute
the branch metrics

m,(s[n] = s[n+1]) = b[n]y[n]— %b[n]b[n —1]

= bln)oln] — b= 1)

for b[n]==+1 and b[n+1]==x1forn=1,2,3.

Consider now a bit sequence b[0] = +1, b[1] = +1, b[2] = +1. From Figure
5.5, this has an accumulated metric of 1.5 —2.5 = —1. Compare it with the
sequence b[0] =+1, b[1] = —1, b[2] = +1. This has an accumulated metric of
—1.5—1.5 = —3. Both sequences start from the same state s[1] = b[0] = +1
and end in the same state s[3] = b[2] = +1. Thus, for each possible value of
b[3], we add the same branch metric m;(s[3] — s[4]) to the accumulated met-
ric. Since the first sequence had a better accumulated metric coming into state
s[3], it continues to have a better accumulated metric for each possible value of
state s[4]. This means that the second sequence cannot be part of the ML solu-
tion, since we can construct another sequence that has a better accumulated
metric. Hence we can discard the second sequence from further consideration.

The preceding logic can be applied at any state. Two sequences meeting
at a state s[n] have a common starting state s[1] = »[0] = +1 and a common
ending state s[n] over the time 1, ..., n. By the same reasoning as above, the
sequence that has a worse accumulated metric at state s[n] can be discarded
from further consideration, since it cannot be part of the ML solution. Thus,
at any given state, we only need to keep track of the sequence that has the

s[11=b[0] s[2]=b[1] s[3]=bl[2] sl[4]=>bI3]
2.5 /_'_‘1\ -15 C‘I\ 2
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Figure 5.6 Example
application of the Viterbi
algorithm. Survivors are shown
in bold.
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s[11=b[0]1 s[2]=b[1] s[3]1=bl2] sl[4]=>bI3]

25 4 3

best accumulated metric up to that state. This sequence is called the survivor
at state s[n]. Figure 5.6 shows this pruning procedure in action for the trellis
in Figure 5.5, with the survivors at each state shown in bold. In the figure,
the number labeling each state is the accumulated metric for the survivor at
that state. We can now make the following observations:

e At each time, there are two survivors, since there are two states. We cannot
compare across survivors ending at different states; a survivor with a poorer
metric now could make up for it in the future. We do not know whether or
not that happens until the survivors merge, at which point we can directly
compare the accumulated metrics and choose the best.

e Based on the given information, we know that the ML solution will be an
extension of the two survivors at any given state. Thus, if the survivors
have merged in the past, then we know that the ML solution must contain
this merged segment. Specifically, the two survivors at s[4] have actually
merged at s[3]. Thus, we know that the ML sequence must contain this
merged segment, which implies that b[1] = +1, b[2] = —1 are the ML
decisions for b[1] and b[2], respectively.

e Just as we have forced the starting state to be s[1] = b[0] = +1 to ensure
a common starting point for all paths through the trellis, we can also force
the ending state to be a predetermined state by specifying the final bit that
is sent. For example, if we send a hundred bits b[0], ..., b[99], we can
specify b[0] = b[99] = +1 to ensure that all sequences have a common
start and end state. The ML solution is then the survivor at state s[100] =
b[99] = +1.

In the above discussion, we have invoked the principle of optimality to
derive the Viterbi algorithm for efficient implementation of MLSE, in the
context of our running example. Let us now state this principle formally, and
in greater generality.

Principle of optimality Consider two sequences specified up to time k,
b={b[1],...,b[k]} and ¢ ={c[1], ..., c[k]}. Suppose that the state at time
k is the same for both sequences; that is, s[k] = (b[k—L],...,blk—1]) =
(c[k—L],...,c[k—1]). If ¢ has a smaller running sum than b up to time
k, then it cannot be the ML sequence, and can be eliminated from further



210

Branch
metrics

Survivor
ats’

A
Accumulated d
metric of survivor

Add step

Channel equalization

A+a
A+b
A+c
A+d \Q Pick the largest among
Accumulated c A+w, B+x, C+y, D+z
metrics going into z to determine survivor at
next set of states from s’ state s
D
Accumulated Compare step
metrics of
survivors

Figure 5.7 The add and
compare steps in the Viterbi
algorithm.

consideration. This follows from the following reasoning. Sequence ¢ is worse
than b up to time k. As we proceed further along the trellis, for any possible
state s[k + 1], the term A, (s[k] — s[k+ 1]) is the same for both sequences, so
that the running sum for any extension of the sequence ¢ will remain worse
than that of the corresponding extension for sequence b.

Since any two sequences meeting at a state can be directly compared,
we can define the surviving sequence, or survivor, at state s[n] = a as the
sequence entering the state with the largest running sum. By the principle of
optimality, no other sequences entering state s[n] need be considered further
for the purpose of MLSE. Since there are S = M’ possible states at any given
time, we need to maintain a list of S survivors at each time. Given S survivors
at time n, we extend each survivor in M possible ways, corresponding to the
M possible values for b[n], and update the corresponding running sums by
adding A(s[n] — s[n+1]). At time n+ 1, for each possible state s[n+ 1] = b,
we pick the sequence entering the state with the largest running sum, thus
obtaining a new set of S survivors. If the first and last L symbols of the
transmitted sequence are known, the start and end states are fixed, and the
ML sequence is the only survivor at the end of this process. This is the Viterbi
algorithm, which we state more formally below.

Viterbi algorithm Assume that the starting state of the encoder s[1] is
known. Now, all sequences through the trellis meeting at state s[n] can be
directly compared, using the principle of optimality between times O and n,
and all sequences except the one with the best running sum can be discarded.
If the trellis has S = M* states at any given time (the algorithm also applies
to time-varying trellises where the number of states can depend on time),
we have exactly S surviving sequences, or survivors, at any given time. We
need to keep track of only these S sequences (i.e., the sequence of states
through the trellis, or equivalently, the input sequence, that they correspond
to) up to the current time. We apply this principle successively at times
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n=1,2,3,.... Consider the S survivors at time k. Let F(s') denote the set
of possible values of the next state s[k + 1], given that the current state is
s[k] = s’. For an M-ary alphabet, there are M possible values of s[k+ 1] =
(b, bk —1],...,b[k — L+ 1]) given that s[k] = (b[k—1],...,b[k—L+
1], b[k — L)) is fixed. Denote the running sum of metrics up to time k for the
survivor at s[k] =s" by A*(1:k,s"). We now extend the survivors by one
more time step as follows:

Add step: for each state s', extend the survivor at s” in all admissible ways,
and add the corresponding branch metric to the current running sum to get

A(:k+1,8 = 5)=A" 1k, )+ M55 —5), seF(s).

Compare step: after the “add” step, each possible state s[k+ 1] = s has a
number of candidate sequences coming into it, corresponding to different
possible values of the prior state. We compare the metrics for these candidates
and choose the best as the survivor at s[k + 1] = 5. Denote by P(s) the set of
possible values of s[k] = s’, given that s[k + 1] = 5. For an M-ary alphabet,
P(s) has M elements. We can now update the metric of the survivor at
s[k+ 1] = s as follows:
A*(1:k+1,5) = max Ay(l:k+ 1,5 — )
s € P(s)

and store the maximizing s’ for each s[k 4 1] = s (when we wish to minimize
the metric, the maximization above is replaced by minimization).

At the end of the add and compare steps, we have extended the set of
S survivors by one more time step. If the information sequence is chosen
such that the terminating state is fixed, then we simply pick the survivor with
the best metric at the terminal state as the ML sequence. The complexity of
this algorithm is O(S) per time step; that is, it is exponential in the channel
memory, but linear in the (typically much larger) number of transmitted
symbols. Contrast this with brute force ML estimation, which is exponential
in the number of transmitted symbols.

The Viterbi algorithm is often simplified further in practical implemen-
tations. For true MLSE, we must wait until the terminal state to make bit
decisions, which can be cumbersome in terms of both decoding delay and
memory (we need to keep track of S surviving information sequences) for
long information sequences. However, we can take advantage of the fact
that the survivors at time k typically have merged at some point in the past,
and make hard decisions on the bits corresponding to this common section
with the confidence that this section must be part of the ML solution. For
example, in Figure 5.4, the two survivors at time 4 have merged prior to
s[2], which means we can make the decision that IA)ML[l] = +1. In practice,
we may impose a hard constraint on the decoding delay d and say that, if
the Viterbi algorithm is at time step k, then we must make decisions on all
information bits prior to time step k — d. If the survivors at time k have not
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merged by time step k — d, therefore, we must employ heuristic rules for
making bit decisions: for example, we may make decisions prior to k — d
corresponding to the survivor with the best metric at time k. Alternatively,
some form of majority logic, or weighted majority logic, may be used to
combine the information contained in all survivors at time k.

5.4.1 Alternative MLSE formulation

The preceding MLSE formulation derived the cost function directly from
the continuous-time model (5.1) of a signal depending on b, plus WGN.
An alternative approach is to derive the cost function from a discrete-time
WGN model. We briefly outline this approach here. Start with the matched
filter outputs {z[n]}, which consist of a discrete-time signal depending on
the transmitted sequence b, plus discrete-time colored noise. This noise is
obtained by passing continuous-time WGN through the matched filter p*(—?),
and sampling at the symbol rate. Knowing the matched filter impulse response,
we know the noise correlation, and we can pass it through a discrete-time
whitening filter to obtain discrete-time WGN. The whitening filter would
also change the signal component, but the overall discrete-time system can
be represented as the symbol sequence passed through a discrete-time filter
(the cascade of the transmit filter, channel filter, receive filter, sampler, and
whitening filter), plus discrete-time WGN. The received sequence v = {v[k]}
is therefore given by

vlk] = X_:f[n]b[k —n]+ 1, (5.17)

where {7,} is discrete-time WGN with variance o per dimension, f = {f[n]}
is the overall discrete-time channel impulse response, and b = {b[n]} is the
transmitted symbol sequence. We have assumed that f[n] =0 for n <0
(causality) and n > L (finite memory): the causality follows from an appro-
priate choice of the whitening filter. The details of this whitened matched
filter approach are developed for the running example in Problem 5.7.

The MLSE for the discrete-time WGN model (5.17) is obtained simply by
minimizing the distance between the received sequence v and the noiseless
signal s, = {s(k,b)}, where the kth component of the signal is given by
s(k,b) = Y"1_, fln]b[k — n]. Thus, the cost function to be minimized is

g(b) =3 [v[k] —s(k, b)|* = ZI — > flnlblk —n]|*.

n=0
As before, the contribution at time k is a function of the current symbol b[k]
and the state s[k] = (b[k— L], . . ., b[k — 1]) consisting of the L past symbols,
and can be written as

T, (b[k], s[k]) = T(s[k] — s[k+1]) = |v[k] - Zf[n —n]?. (5.18)
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Thus, the MLSE is defined as

by, = arg l{nin > I(slk] — s[k+1]).
k

The principles of optimality and the Viterbi algorithm apply as before, except
that maximization is replaced by minimization.

5.5 Geometric model for suboptimal equalizer design

The optimum MLSE receiver has complexity O(M*) per demodulated sym-
bol, where M is the alphabet size and L is the channel memory. This may
be excessive for large constellations or large channel memory. We now con-
sider suboptimal equalization strategies whose complexity scales linearly with
the channel memory. The schemes we describe are amenable to adaptive
implementation, and do not require an optimal front end. While they can be
developed in continuous time, we describe these equalization strategies in
discrete time, which is almost invariably the setting in which they are imple-
mented. Specifically, assume that the received signal is passed through an
arbitrary receive filter gry (¢), and being sampled at a rate 1/7, = m/T, where
m is a positive integer: m = 1 corresponds to symbol spaced sampling, while
m > 1 corresponds to fractionally spaced sampling. The received signal is, as
before, given by

y(t) = 3_bln]p(t —nT) +n(1).
The output of the sampler is a discrete-time sequence {7[k]}, where

k] = (v % grx) (KT +6),

where 0 is a sampling offset. To understand the structure of {r{k]}, consider
the signal and noise contributions to it separately. The signal contribution is
best characterized by considering the response, at the output of the sampler, to
a single symbol, say b[0]. This is given by the discrete-time impulse response

flkl= (p*grx)(kT,+0), k=...,—-1,0,1,2,...

The next symbol sees the same response, shifted by the symbol interval 7,
which corresponds to m samples, and so on. The noise sequence at the output
of the sampler is given by

wlk] = (% grx) (KT +9).

If n is complex WGN, the noise at the receive filter output, w(t) = (n* ggx)(2),
is zero mean, proper complex, Gaussian random process with autocorrela-
tion/covariance function

20'2[ Zrx (D) &rx (t —T)dt = 20 (grx * gr mr) (7),
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where gp v (f) = gix(—1). (derivation left to the reader). Thus, the sampled
noise sequence {w[k] = w(kT,+ )} is zero mean, proper complex Gaussian,
with autocovariance function

Culk) = cov(w, o w,) =207 [ g(Dgix 1 —KT)dr.  (5.19)

In the following, we discuss equalization schemes which operate on a block of
received samples for each symbol decision. The formula (5.19) can be used to
determine the covariance matrix for the noise contribution to any such block of
samples. Note that noise correlation depends on the autocorrelation function of
&rx (1) evaluated at integer multiples of the sample spacing.

Running example Consider our running example of Figure 5.2, and
consider a receive filter gy (7) = I} ;). Note that this receive filter in this
example is not matched to either the transmit filter or to the cascade of
the transmit filter and the channel. The symbol interval 7 = 2, and we
choose a sampling interval T, = I; that is, we sample twice as fast as
the symbol rate. Note that the impulse response of the receive filter is
of shorter duration than that of the transmit filter, which means that it
has a higher bandwidth than the transmit filter. While we have chosen
timelimited waveforms in the running example for convenience, this is
consistent with the discussion in Section 5.2, in which a wideband filter
followed by sampling, typically at a rate faster than the symbol rate,
is employed to discretize the observation with no (or minimal) loss of
information. The received samples are given by

k
k= e ()= [ y(0ar

The sampled response to the symbol b[0] can be shown to be

1 1
5’_5’0"")' (5.20)
The sampled response to successive symbols is shifted by two samples,
since there are two samples per symbol. This defines the signal contribution
to the output. To define the noise contribution, note that the autocovariance

function of the complex Gaussian noise samples is given by

(...,0,1,

C,[k] =2028,,.

That is, the noise samples are complex WGN. Suppose, now, that we wish
to make a decision on the symbol b[n] based on a block of five samples
r[n], chosen such that b[n] makes a strong contribution to the block. The
model for such a block can be written as




215 5.5 Geometric model for suboptimal equalizer design

1 0 0
i I 0
r(n]=b[n—1] 0 |Hb[n] I oln+11| 0 |+w,=Ub[n]+w[n],
0 -1 1
0 0 .
(5.21)
where w[n] is discrete-time WGN,
b[n—1]
b[n] = b[n] (5.22)
b[n+1]

is the block of symbols making a nonzero contribution to the block of
samples, and

c
I
o O Oovl—vI-

(5.23)

|
O RI=N= = O
RI— —= O O O

is a matrix whose columns equal the responses corresponding to the sym-
bols contributing to r[xr]. The middle column corresponds to the desired
symbol b[n], while the other columns correspond to the interfering sym-
bols b[n — 1] and b[n+ 1]. The columns are acyclic shifts of the basic
discrete impulse response to a single symbol, with the entries shifting
down by one symbol interval (two samples in this case) as the symbol
index is incremented. We use r[n] to decide on b[n] (using methods to be
discussed shortly). For a decision on the next symbol, b[n+ 1], we simply
shift the window of samples to the right by a symbol interval (i.e., by two
samples), to obtain a vector r[n+ 1]. Now b[n + 1] becomes the desired
symbol, and b[n] and b, , the interfering symbols, but the basic model
remains the same. Note that the blocks of samples used for successive
symbol decisions overlap, in general.

Geometric model We are now ready to discuss a general model for finite-
complexity, suboptimal equalizers. A block of L received samples r[n] is used
to decide on b[n], with successive blocks shifted with respect to each other
by the symbol interval (m samples). The model for the received vector is

r(n] =U b[n]+w[n], (5.24)

where b[n] = (b[n—k,],...,b[n—1],b[n],b[n+1],...,b[n+k,])T is the
K x 1 vector of symbols making nonzero contributions to r[n], with K =
k,+k,+ 1. The L x K matrix U has as its columns the responses, or “sig-
nal vectors,” corresponding to the individual symbols. All of these column
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vectors are acyclic shifts of the basic discrete-time impulse response to
a single symbol, given by the samples of gy * gc * grx- We denote the
signal vector corresponding to symbol b[n+i] as u,, —k; <i < k,. The
noise vector w[n] is zero mean, proper complex Gaussian with covariance
matrix C,,.

5.6 Linear equalization

Linear equalization corresponds to correlating r[n] with a vector ¢ to produce
a decision statistic Z[n] = (r[n], ¢) = ¢fr[n]. This decision statistic is then
employed to generate either hard or soft decisions for b[n]. Rewriting r[n] as

r[n] = b[nJu,+ > bln+ilu,+w[n], (5.25)
0

we obtain the correlator output as

Z[n] = ¢"r[n] = b[n](c"uy) + > b[n+i](c"u;) + " wn]. (5.26)
i£0

To make a reliable decision on b[n] based on Z[n], we must choose ¢ such
that the term ¢”u, is significantly larger than the “residual ISI” terms ¢/u,,
i # 0. We must also keep in mind the effects of the noise term ¢/ w[n], which
is zero mean proper Gaussian with covariance ¢”Cc.

The correlator ¢ can also be implemented as a discrete-time filter, whose
outputs are sampled at the symbol rate to obtain the desired decision statistics
{Z[n]}. Such an architecture is depicted in Figure 5.8.

Zero-forcing (ZF) equalizer The ZF equalizer addresses the preceding
considerations by insisting that the ISI at the correlator output be set to zero.
While doing this, we must constrain the desired term ¢ u, so that it is not
driven to zero. Thus, the ZF solution, if it exists, satisfies

CHllO =1, (5.27)
Figure 5.8 A typical and
architecture for implementing
a linear equalizer. c’u, =0, foralli##O0. (5.28)
rate m/T rate 1/T

Complex baseband i K <. —_bv— Symbol
D_ : Wldeba_nd Linear equalizer Symbol by symbol
received signal analog filter decisions estimates

y(t)

Filter with coefficients computed
adaptively or with explicit channel estimates
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Figure 5.9 The geometry of
zero-forcing equalization.

5.6 Linear equalization

To obtain an expression for the ZF correlator, it is convenient to write (5.27)
and (5.28) in matrix form:

cHUz(O,...,O,1,07---ao):eT’

where the nonzero entry on the right-hand side corresponds to the column with
the desired signal vector. It is more convenient to work with the conjugate
transpose of the preceding equation:

Ufc=e. 5.29
(5.29)

The solution to the preceding equation may not be unique (e.g., if the dimen-
sion L is larger than the number of signal vectors, as in the example consid-
ered earlier). Uniqueness is enforced by seeking a minimum norm solution
to (5.29). To minimize ||c||* subject to (5.29), we realize that any compo-
nent orthogonal to the subspace spanned by the signal vectors {u,} must be
set to zero, so that we may insist that ¢ is a linear combination of the u,,
given by

¢ =DUa,

where the K x 1 vector a contains the coefficients of the linear combination.
Substituting in (5.29), we obtain

U’Ua=e.
We can now solve to obtain a = (U7U)"'e, which yields

¢, = U(UMU) e. (5.30)

Geometric view of the zero-forcing equalizer A linear correlator ¢ must
lie in the signal space spanned by the vectors {u;}, since any component of ¢
orthogonal to this space only contributes noise to the correlator output. This
signal space can be viewed as in Figure 5.9, which shows the desired vector
u,, and the interference subspace S; spanned by the interference vectors
{u,, i # 0}. If there were no interference, then the best strategy is to point ¢
along u, to gather as much energy as possible from the desired vector: this
is the matched filter receiver. However, if we wish to force the ISI to zero,

Orthogonal | L ________ up
projection Py ug

Desired signal

Interference
subspace
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we must choose ¢ orthogonal to the interference subspace S;. The correlator
vector ¢ that maximizes the contribution of the desired signal, while being
orthogonal to the interference subspace, is simply (any scaled version of) the
projection P;iu, of u, orthogonal to S;. The ZF solution exists if and only if
this projection is nonzero, which is the case if and only if the desired vector
u, is linearly independent of the interfering vectors. A rule of thumb for
the existence of the ZF solution, therefore, is that the number of available
dimensions L is greater than the number of interference vectors K — 1.

How does the preceding geometric view relate to the algebraic specification
(5.27), (5.28) of the ZF solution? Consider a correlator ¢ which is a scalar
multiple of the projection of u, orthogonal to the interference subspace,
¢ = aP;fu,. By definition, this satisfies the zero ISI condition (5.28). The
contribution of the desired signal at the output of the correlator is given by

(e, uy) = a<P1L“0’ uy) = a||PIL“o||2-

To obtain the normalization {c, u,) = 1, we set
1
[[Piu,| >

Thus, the smaller the orthogonal projection Piu,, the larger the scale factor a
required to obtain the normalization (5.27) for the contribution of the desired
signal to the correlator output. As the scale factor increases, so does the noise
at the correlator output: the variance v* (per dimension) of the output noise
is given by

oA =

0_2

U%FZOJHCHZ:O—ZO‘ZHPILHOHZZW' (5.31)
The corresponding noise variance for matched filter reception (which is opti-
mal if there is no ISI) is
> o’
N TP

(5.32)

Thus, when we fix the desired signal contribution to the correlator output as
in (5.27), the output noise variance for the ZF solution is larger than that of
the matched filter receiver. The factor by which the noise variance increases
is called the noise enhancement factor, and is given by

Ve _ P

v Pl
The noise enhancement factor is the price we pay for knocking out the ISI,
and is often expressed in dB. Since there is no ISI at the output of the ZF
equalizer, we obtain a scalar observation corrupted by Gaussian noise, so
that performance is completely determined by SNR. Fixing the desired signal
contribution at the output, the SNR scales inversely with the noise variance.
Thus, the noise enhancement factor (5.33) is the factor by which the SNR must
be increased for a system employing the ZF equalizer to combat ISI, in order to

(5.33)
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maintain the same performance as matched filter reception in a system with
no ISL

Running example Going back to our running example, we see that L =5
and K = 3, so that the ZF solution is likely to exist. Applying (5.30) to
the example, we obtain

cZFzé(S,S,S,—l,Z)T. (5.34)
The output of the ZF equalizer for the example is therefore given by
Z[n] = ezpr[n] = b[n] + Nln],
where N[n]~ CN(0, 2v*), where 2v* = ¢fL.C ¢ = 207%||cye||* = 2.507.
For BPSK transmission b[n] € {—1, 1}, our decision rule is
b[n] = sign(Re(Z[n])).
Since Re(N[n]) ~ N(0, v?), the error probability is given by

o)

Using scaling arguments as in Chapter 3, we know that this can be written
as Q(y/aE,/N,) for some constant a. We can now solve for a by noting
that v = 50%/4 = 5N, /8, and that the received energy per bit is E, =

[|p||> = 3/2. Setting
1 JaE,
v\ N,

yields a = 16/15. Contrast this with a = 2 for ISI-free BPSK. The loss
of 10log,,2/16/15 =2.73 dB can be interpreted as “noise enhancement”
due to the ZF solution.

In the preceding, we have enforced the constraint that the ZF equalizer must
operate on a finite block of samples for each symbol. If this restriction is lifted
(i.e., if each symbol decision can involve an arbitrary number of samples),
then it is convenient to express the ZF solution in z-transform notation. For
fractionally spaced sampling at rate m/T, think of the samples as m parallel
symbol-spaced streams. The response to a single symbol for stream i is
denoted as {h,[n]}, 1 <i < m, and has z-transform H,(z) =), h;[n]z™". In
our example, we may set

1 1
H@=1-3" H(@)=7

A linear ZF equalizer can then be characterized as a set of parallel filters
with z-transforms {G,(z)} such that, in the absence of noise, the sum of the
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parallel filter outputs reconstructs the original symbol stream up to a decision
delay d, as follows:

Z H(2)G\(z) =27 (5.35)

The coefficients of the filters {G,(z)} are time-reversed, subsampled versions
of the corresponding correlator operating on the fractionally spaced data.
Thus, the ZF correlator (5.34) in our example corresponds to the following
pair of parallel filters:

1 1
G,(z) = g(—l +5z7Y,  G,(2)= §(2+51_1 +5277),

so that
H,(2)G,(2) + Hy(2)G,(2) = 7L

For fractionally spaced equalization, it is known that finite-length {G,(z)}
satisfying (5.35) exist, as long as the parallel channel z-transforms {H,(z)}
do not have common zeros (although finite-length ZF solutions exist under
milder conditions as well). On the other hand, for symbol-spaced samples,
there is only one discrete-time channel, so that the ZF equalizer must take
the form (z7¢)/(H,(z)). This has infinite length for a finite impulse response
(FIR) channel H,(z), so that perfect ZF equalization using a finite-length
equalizer is not possible for symbol-spaced sampling. This is one reason why
fractionally spaced sampling is often preferred in practice, especially when the
receive filter is suboptimal. Fractionally spaced sampling is also less sensitive
to timing offsets. This is illustrated by Problem 5.8, which computes the ZF
solution for the running example when the sampling times are shifted by a
fraction of the symbol.

Even though perfect ZF equalization is not possible for symbol-spaced
sampling using a finite window of samples, it can be realized approximately
by choosing which of the ISI vectors to null out, and being reconciled to
having residual ISI due to the other ISI vectors at the correlator output. In
this case, we can compute the ZF solution as in (5.30), except that the matrix
U contains as its columns the desired signal vector and the ISI vectors to be
nulled out (the columns corresponding to the other ISI vectors are deleted).

Linear MMSE equalizer The design of the ZF equalizer ignores the effect
of noise at the equalizer output. An alternative to this is the linear minimum
mean squared error (MMSE) criterion, which trades off the effect of noise
and ISI at the equalizer output. The mean squared error (MSE) at the output
of a linear equalizer c is defined as

MSE = J(c) = E[|c"r[n] — b[n] ], (5.36)

where the expectation is taken over the symbol stream {b[n]}. The MMSE
correlator is given by

CMMSE = Ri]p’ (5.37)
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where
R =E[r[n](r[n])"], p=E[b*[n]r[n]]. (5.38)

The MMSE criterion is useful in many settings, not just equalization, and the
preceding solution holds in great generality.

Direct Proof by differentiation For simplicity, consider real-valued r[n]
and c first. The function J(c) is quadratic in ¢, so a global minimum exists,
and can be found by setting the gradient with respect to ¢ to zero, as follows:

Ve J(e) = V. E[(e"r[n] — b[n])*]
E[V, (¢"r[n] = b[n])*] = E[2(c"x[n] — b[n])r[n]]
= 2(Rc—p).

In addition to characterizing the optimal solution, the gradient can also be
employed for descent algorithms for iterative computation of the optimal
solution. For complex-valued r[n] and c, there is a slight subtlety in computing
the gradient. Letting ¢ = ¢, + jc,, where ¢, and ¢ are the real and imaginary
parts of ¢, respectively, note that the gradient to be used for descent is actually

Ve I+ Ve J.

While the preceding characterization treats the function J as a function of two
independent real vector variables ¢, and ¢, a more compact characterization
in the complex domain is obtained by interpreting it as a function of the
independent complex vector variables ¢ and ¢*. Since

. N .
c=c,+je, ¢ =c,—je,
we can show, using the chain rule, that

Ve J =V J+ V. J,
Ve J=jVeJ—j Ve,

so that
Ve J+j Ve J =2V J. (5.39)

Thus, the right gradient to use for descent is V. J. To compute this, rewrite
the cost function as

J = E[((¢")"x[n] = b[n]) (x[n]" e — b*[n])],
so that
Ve J = E[r[n]((r[n])"c— b*[n])] = Re —p. (5.40)

Setting the gradient to zero proves the result. U
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Alternative Proof using the orthogonality principle We do not prove the
orthogonality principle here, but state a form of it convenient for our purpose.
Suppose that we wish to find the best linear approximation for a complex
random variable Y in terms of a sequence of complex random variables {X;}.
Thus, the approximation must be of the form }, a,;X;, where {a;} are complex
scalars to be chosen to minimize the MSE:

E |:|Y—ZaiXi|2i| )

The preceding can be viewed as minimizing a distance in a space of random
variables, in which the inner product is defined as
(U, V) =E[UV*].

This satisfies all the usual properties of an inner product: {(aU, bV) =
ab*(U,V), and (U, U) =0 if and only if U =0 (where equalities are to
be interpreted as holding with probability one). The orthogonality principle
holds for very general inner product spaces, and states that, for the optimal
approximation, the approximation error is orthogonal to every element of the
approximating space. Specifically, defining the error as

e=Y-> aX,

we must have

(X;,e) =0 for all i. (5.41)
Applying it to our setting, we have Y = b[n], X, are the components of r[n],
and

e =cr[n]—b[n].
In this setting, the orthogonality principle can be compactly stated as
0= E[r[n]e*] = E[r[n]((r[n])" e~ b*[n])] = Re —p.

This completes the proof. U
Let us now give an explicit formula for the MMSE correlator in terms of

the model (5.24). Assuming that the symbols {b[n]} are uncorrelated, with
E[b[n]b*[m]] = 025,,,, (5.37) and (5.38) specialize to

b “nm>
cymse = R™'p, where R=0,UU" +C =0y > uul +C,, p=o;u,
J
(5.42)

While the ultimate performance measure for any equalizer is the error proba-
bility, a useful performance measure for the linear equalizer is the signal-to-
interference ratio (SIR) at the equalizer output, given by

apl{c. u)|?

SIR = .
oy 20 I{c, u_/'>|2 + ¢fCye

(5.43)
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Two important properties of the MMSE equalizer are as follows:

e The MMSE equalizer maximizes the SIR (5.43) among all linear equalizers.
Since scaling the correlator does not change the SIR, any scaled multiple
of the MMSE equalizer also maximizes the SIR.

® In the limit of vanishing noise, the MMSE equalizer specializes to the ZF
equalizer.

These, and other properties, are explored in Problem 5.9.

5.6.1 Adaptive implementations

Directly computing the expression (5.42) for the MMSE correlator requires
knowledge of the matrix of signal vectors U, which in turn requires an explicit
channel estimate. This approach requires the use of the specific model (5.24)
for the received vectors {r[n]}, along with an explicit channel estimate for
computing the matrix U. An alternative, and more general, approach begins
with the observation that the MSE cost function (5.36) and the solution (5.38)
are based on expectations involving only the received vectors {r[n]} and
the symbol sequence {b[n]}. At the receiver, we know the received vectors
{r[n]}, and, if we have a known training sequence, we know {b[n]}. Thus,
we can compute estimates of (5.36) and (5.38) simply by replacing statistical
expectation by empirical averages. This approach does not rely on a detailed
model for the received vectors {r[n]}, and is therefore quite general.

In the following, we derive the least squares (LS) and recursive least squares
(RLS) implementations of the MMSE correlator by replacing the statistical
expectations involved in the expression (5.38) by suitable empirical averages.
An alternate approach is to employ a gradient descent on the MSE cost
function: by replacing the gradient, which involves a statistical expectation,
by its instantaneous empirical realization, we obtain the least mean squares
(LMS) algorithm.

Training and decision-directed modes It is assumed that the symbol
sequence {b[n]} is known in the fraining phase of the adaptive algorithm.
Once a correlator has been computed based on the training sequence, it can
be used for making symbol decisions. These symbol decisions can then be
used to further update the correlator, if necessary, in decision-directed mode,
by replacing {b[n]} by its estimates.

Least squares algorithm The LS implementation replaces the statistical
expectations in (5.38) by empirical averages computed over a block of N
received vectors, as follows:

—1

bD

o>

B (5.44)

I
z|—- R
=

Lir[n)(e[n)?, b= X, b [nr(n],

=b
Il

=
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where we would typically require an initial training sequence for {b[n]} to
compute p. Just as (5.38) is the solution that minimizes the MSE (5.36), the
LS solution (5.44) is the solution that minimizes the empirical MSE

n 1Y
Empirical MSE = J(c) = N > | [n] — b[n]|?, (5.45)
n=1

obtained by replacing the expectation in (5.36) by an empirical average. Note
that the normalization factors of 1/N in (5.44) and (5.45) are included to
reinforce the concept of an empirical average, but can be omitted without
affecting the final result, since scaling a cost function does not change the
optimizing solution.

Recursive least squares algorithm While the preceding empirical aver-
ages (or sums, if the normalizing factors of 1/N are omitted) are computed
over a block of N received vectors, another approach is to sum over terms
corresponding to all available received vectors {r[n]} (i.e., to use a poten-
tially infinite number of received vectors) for computing the empirical MSE
to be optimized, ensuring convergence of the cost function by putting in
an exponential forget factor. This approach allows continual updating of the
correlator, which is useful when we wish to adapt to a time-varying channel.
The cost function evolves over time as follows:

k

Jo(e) = Y A" [n] — b[n] |, (5.46)

n=0
where 0 < A < 1 is an exponential forget factor, and c¢[k], the solution that
minimizes the cost function jk (c), computed based on all received vectors
{r[n], n < k}. In direct analogy with (5.38) and (5.44), we can write down
the following formula for ¢[k]:

clk] = (R[A]) Bkl

R[K] = Y- A"r[n](x[n])",  Blk] =3 A*"b*[n]r[n].

n=0 n=0

(5.47)

At first sight, the RLS solution appears to be computationally inefficient,
requiring a matrix inversion at every iteration, in contrast to the LS solution
(5.44), which only requires one matrix inversion for the entire block of
received vectors considered. However, the preceding computations can be
simplified significantly by exploiting the special relationship between the
sequence of matrices ﬁ[k] to be inverted. Specifically, we have

R[k] = AR[k — 1]+ r[k](r[K])", (5.48)

which says that the new matrix equals another matrix, plus an outer product.
We can now invoke the matrix inversion lemma (see Problem 5.18 for a
proof), which handles exactly this scenario.
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Matrix inversion Lemma If A is an m x m invertible conjugate symmetric
matrix, and X is an m X 1 vector, then

xx1
14+ xHx’
That is, if the matrix A is updated by adding the outer product of x, then
the inverse is updated by the scaled outer product of X = A~!x. Thus, the
computation of the inverse of the new matrix reduces to the simple operations
of calculation of X and its outer product.

The matrices ﬁ[k] involved in the RLS algorithms are conjugate symmetric,
and (5.48) is precisely the setting addressed by the matrix inversion lemma,
with A = AR[k — 1] and x = r[k]. It is convenient to define

P[k] = (R[k])~". (5.50)

(A+XXH)_1 =A"'—

where X =A"'x. (5.49)

Applying (5.49) to (5.48), we obtain, upon simplification, the following recur-
sive formula for the required inverse:

_ F[k] (F[&])" .
Pkl=A""|Plk—1]— ———C ], h k] =Pk —1]r[k].
4] ( k=10 5 e ) - Where kI = Pk — 1]
(5.51)
The vector p[k] in (5.47) is easy to compute recursively, since
plk] = Ap[k — 1]+ b*[k]r[]. (5.52)
We can now compute the correlator at the kth iteration as
c[k] = P[k]p[k]. (5.53)

Further algebraic manipulations of (5.53) based on (5.51) and (5.52) yield the
following recursion for the correlator sequence {c[k]}:

_ e*[k]r[k]
c[k] =cl[k— 1]+m, (5.54)
where
e[k] = b[K] — (c[k — 1])"r[K] (5.55)

is the instantaneous error in tracking the desired sequence {b[k]}.
Least mean squares algorithm When deriving (5.38), we showed that the
gradient of the cost function is given by

Ve J(€) = E[r[n]((r[n])"ec —b*[n])] = Re —p.

One approach to optimizing the cost function J(c), therefore, is to employ
gradient descent:

clk]=clk—1]—pu V. J(c[k—1])
=clk—1]-E [r[n] ((r[n])”c[k —1]- b*[n])] ,
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where the parameter u can be adapted as a function of k. The LMS algo-
rithm is a stochastic gradient algorithm obtained by dropping the statis-
tical expectation above, using the instantaneous value of the term being
averaged: at iteration k, the generic terms r[n], b[n] are replaced by their
current values r[k], b[k]. We can therefore write an iteration of the LMS
algorithm as

c[k] = e[k — 1] — pr[k] ((c[k]) e[k — 1] = b*[k]) = e[k — 1]+ pe*[k]r[K],
(5.56)

where e[k] is the instantaneous error (5.55) and u is a constant that determines
the speed of adaptation. Too high a value of w leads to instability, while too
small a value leads to very slow adaptation (which may be inadequate for
tracking channel time variations).

The variant of LMS that is most commonly used in practice is the normal-
ized LMS (NLMS) algorithm. To derive this algorithm, suppose that we scale
the received vectors {r[k]} by a factor of A (which means that the power of
the received signal scales by A?). Since ¢r[k] must track b[k], this implies
that ¢ must be scaled by a factor of 1/A, making c¢”r[k], and hence e[k],
scale-invariant. From (5.56), we see that the update to c[k — 1] scales by wA:
for this to have the desired 1/A scaling, the constant u must scale as 1/A.
That is, the adaptation constant must scale inversely as the received power.
The NLMS algorithm implements this as follows:

c[k] = c[k—1]+ %e*[k]r[k], (5.57)
where P[k] is adaptively updated to scale with the power of the received
signal, while u is chosen to be a scale-invariant constant (typically 0 < u < 1).
A common choice for P[k] is the instantaneous power P[k] = (r[k])?r[k]+a,
where @ > 0 is a small constant providing a lower bound for P[k]. Another
choice is an exponentially weighted average of (r[k])7r[k].

Our goal here was to provide a sketch of the key ideas underlying some
common adaptive algorithms. Problem 5.15 contains further exploration of
these algorithms. However, there is a huge body of knowledge regarding both
the theory and implementation of these algorithms and their variants, that is
beyond the scope of this book.

5.6.2 Performance analysis

The output (5.26) of a linear equalizer ¢ can be rewritten as
Z[n] = Ayb[n]+>_ Ab[n+i]l+ W[n],
i£0
where A, = {(c¢,u,) is the amplitude of the desired symbol, A; = {c,u,),
i # 0 are the amplitudes of the terms corresponding to the residual ISI at the
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correlator output, and W[n] is zero mean Gaussian noise with variance
v? = ¢?||e||> per dimension. If there is no residual ISI (i.e., A; =0 for i #
0), as for a ZF equalizer, then error probability computation is straightfor-
ward. However, the residual ISI is nonzero for both MMSE equalization and
imperfect ZF equalization. We illustrate the methodology for computing the
probability of error in such situations for a BPSK ({p[k]} i.i.d., £1 with
equal probability), real baseband system. Generalizations to complex-valued
constellations are straightforward. The exact error probability computation
involves conditioning on, and then averaging out, the ISI, which is compu-
tationally complex if the number of ISI terms is large. A useful Gaussian
approximation, which is easy to compute, involves approximating the residual
ISI as a Gaussian random variable.

BPSK system The bit estimate is given by
b[n] = sign(Z[n])
and the error probability is given by
P, = P[b[n] # b[n]].
By symmetry, we can condition on b[n] = +1, getting
P, = P[Z[n] > 0]|b[n] = +1].

Computation of this probability involves averaging over the distribution of
both the noise and the ISI. For the exact error probability, we condition further
on the ISI bits b, = {b,,;, i # 0}.

Pyy, = P[Z[n] > 0[b[n] = +1,b,]
P[W[n] > —(Ag+3_Ab[n+i])]

0
0 (Ao +2 iz Aibln+ l])

v

We can now average over b, to obtain the average error probability:
Pe = E[Pe\b,]'

The complexity of computing the exact error probability as above is exponen-
tial in the number of ISI bits: if there are K ISI bits, then b, takes 2X different
values with equal probability under our model. An alternative approach, which
is accurate when there are a moderately large number of residual ISI terms,
each of which takes small values, is to apply the central limit theorem to
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approximate the residual ISI as a Gaussian random variable. The variance of
this Gaussian random variable is given by

vy =var [ Y Ab[n+i] | =Y A
i#0 i#0
We therefore get the approximate model
Z[n] = Ayb[n]+ N(O, v; +v?).
The corresponding approximation to the error probability is
Ay
P.~ Q| —— ] =0(VSIR),
NS
recognizing that the SIR is given by

SIR — A(z) — |<c’ "10>|2

vi+v Yol w)+o?el]

5.7 Decision feedback equalization

Figure 5.10 A typical
architecture for implementing
a decision feedback equalizer.

Linear equalizers suppress ISI by projecting the received signal in a direction
orthogonal to the interference space: the ZF equalizer does this exactly, the
MMSE equalizer does this approximately, taking into account the noise—ISI
tradeoff. The resulting noise enhancement can be substantial, if the desired
signal vector component orthogonal to the interference subspace is small. The
DFE, depicted in Figure 5.10, alleviates this problem by using feedback from
prior decisions to cancel the interference due to the past symbols, and linearly
suppressing only the ISI due to future symbols. Since fewer ISI vectors are
being suppressed, the noise enhancement is reduced. The price of this is
error propagation: an error in a prior decision can cause errors in the current
decision via the decision feedback.

The DFE employs a feedforward correlator cg: to suppress the ISI due
to future symbols. This can be computed based on either the ZF or MMSE
criteria: the corresponding DFE is called the ZF-DFE or MMSE-DFE, respec-
tively. To compute this correlator, we simply ignore ISI from the past symbols
(assuming that they will be canceled perfectly by decision feedback), and

rate m/T rate 1/T

Complex baseband| Wideband )< Feedforward \JQ_, Symbol-by-symbol | Symbol
received signal analog filter filter decisions estimates

y(t)

Feedback filter
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work with the following reduced model including only the ISI from future
symbols:
r) = bnluy,+ > bln+ jlu;+w[n]. (5.58)
j>0
The corresponding matrix of signal vectors, containing {u;, j > 0} is denoted
by U;. The ZF and MMSE solutions for ¢z can be computed simply by
replacing U by U, in (5.30) and (5.42), respectively.

Running example For the model (5.21), (5.22), (5.23) corresponding to
our running example, we have

(5.59)

RI-—- 0 O O

Now that ¢ is specified, let us consider its output:

cier[n] = blnleftug + 1 > bln+ jlefu; + efewln]p + Y b[n—jlcfru_;.
Jj>0 j>0

(5.60)

By optimizing cg for the reduced model (5.58), we have suppressed the

contribution of the term within { } above, but the set of terms on the extreme

right-hand side, which corresponds to the ISI due to past symbols at the output

of the feedforward correlator, can be large. Decision feedback is used to

cancel these terms. Setting ¢gp[j] = —cfu_ j»J > 0, the DFE decision statistic
is given by
Zpgeln] = egpr[n] + 3 epp[16[n — j]. (5.61)
Jj>0
Note that

Zppe[n] = b[n]c{fpuo + {Z b[n +j]c]{:IFuj + C;’:’FWM}

Jj>0
+2_(bln = j1 = bln = jhegu_;,
j=0
so that the contribution of the past symbols is perfectly canceled if the
feedback is correct.
Setting U, as the matrix with the past ISI vectors {u_j,u_,,...} as
columns, we can write the feedback filter taps in more concise fashion as

¢ = —¢: U, (5.62)

where we define ¢z = (egp[K,], - . ., crp[1])”, Where K, are the number of
past symbols being fed back.
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Running example We compute the ZF-DFE, so as to avoid dependence
on the noise variance. The feedforward filter is given by

-1
e = Uy (UFU) e
Using (5.59), we obtain
1
Cpp = E(O, 10, 5, —1, 2)T

Since there is only one past ISI vector, we obtain a single feedback tap

5

H

= — U = —,

Crs CrrUp 13

since
1 1
U =(=,—=,0,0,0)7.
P (2 2 )

Unified notation for feedforward and feedback taps We can write (5.61)
in vector form by setting b, = (b[n —K_],...,b[n—1])" as the vector of
decisions on past symbols, and ¢ = (¢pp[K, ], - - -, ¢[1])7, to obtain

Zpee[n] = efer[n] +¢fpb, = cheF(n], (5.63)
where the extreme right-hand side corresponds to an interpretation of the DFE
output as the output of a single correlator

Crp
Cpre = (c ) >
FB

whose input is the concatenation of the received vector and the vector of past

decisions, given by
< (rln]
rinl = <f)[n] ) '

This interpretation is useful for adaptive implementation of the DFE; for
example, by replacing r[n] by r[n] in (5.44) to obtain an LS implementation
of the MMSE-DFE.

5.7.1 Performance analysis

Computing the exact error probability for the DFE is difficult because of
the error propagation it incurs. However, we can get a quick idea of its
performance based on the following observations about its behavior for typical
channels. When all the feedback symbols are correct, then the probability
of error equals that of the linear equalizer cg for the reduced model (5.58),
since the past ISI is perfectly canceled out. This error probability, P, g,
can be exactly computed or estimated using the techniques of Section 5.6.2.
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Starting from correct feedback, if an error does occur, then it initiates an
error propagation event. The error propagation event terminates when the
feedback again becomes correct (i.e., when there are Ly, consecutive correct
decisions, where Ly is the number of feedback taps). The number of symbols
for which an error propagation event lasts 7,, and the number of symbol
errors N, incurred during an error propagation event, are random variables
whose distributions are difficult to characterize. However, the number of
symbols between two successive error propagation events is much easier to
characterize. When the feedback is correct, if we model the effect of residual
IST and noise for the reduced model (5.58) as independent from symbol to
symbol (an excellent approximation in most cases), then symbol errors occur
independently. That is, the time 7, between error propagation events is well
modeled as a geometric random variable with parameter P, p:

P[Tc = k] = Pe,FF(l - Pe,FF)kil’

with mean E[T,] = 1/P, . We can now estimate the error probability of the
DFE as the average number of errors in an error propagation event, divided
by the average length of the error-free and error propagation periods:

E[N]

“DFE = BT+ E[T] ~ E[N]P, rr> (5.64)

noting that the average length of an error propagation event, E[7,] is typically
much shorter than the average length of an error-free period, E[7T,] ~ 1/P, .
The average number of errors E[N,] for an error propagation event can be
estimated by simulations in which we inject an error and let it propagate
(which is more efficient than directly simulating DFE performance, especially
for moderately high SNR).

The estimate (5.64) allows us to draw important qualitative conclusions
about DFE performance relative to the performance of a linear equalizer.
Since E[N,] is typically quite small, the decay of error probability with SNR
is governed by the term P, . Thus, the gain in performance of a DFE over
a linear equalizer can be quickly estimated by simply comparing the error
probability, for linear equalization, of the reduced system (5.58) with that for
the original system. In particular, comparing the ZF-DFE and the ZF linear
equalizer, the difference in noise enhancement for the reduced and original
systems is the dominant factor determining performance.

5.8 Performance analysis of MLSE

We now discuss performance analysis of MLSE. This is important not only
for understanding the impact of ISI, but the ideas presented here also apply
to analysis of the Viterbi algorithm in other settings, such as ML decoding of
convolutional codes.
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For concreteness, we consider the continuous-time system model
y(t) = Y blnlp(t —nT) +n(r), (5.65)

where n is WGN. We also restrict attention to real-valued signals and BPSK
modulation, so that b[n] € {—1, +1}.

Notation change To avoid carrying around complicated subscripts, we write
the noiseless received signal corresponding to the sequence b as s(b), dropping
the time index. This is the same signal denoted earlier by s:

s(b) =s, =) _b[n]p(t —nT), (5.66)
so that the received signal, conditioned on b being sent, is given by
y=s(b)+n.

Note that this model also applies to the whitened discrete-time model (5.17)
in Section 5.4.1, with s(b) = {>%_, f[n]b[k — n] : k integer}. The analysis
is based on the basic results for M-ary signaling in AWGN developed in
Chapter 3, which applies to both continuous-time and discrete-time systems.

Let A(b) denote the log likelihood function being optimized by the Viterbi
algorithm, and let L denote the channel memory. As before, the state at time
n is denoted by s[n] = (b[n—L], ..., b[n—1]). Let by, denote the MLSE
output. We want to estimate

P, (k) = P[byy [k] # b]].

the probability of error in the kth bit.

We first need the notion of an error sequence.

Definition 5.8.1 (Error sequence) The error sequence corresponding to an
estimate b and transmitted sequence b is defined as

b—b
=22 5.67
e=— (5.67)

so that

b=b+2e. (5.68)

For BPSK, the elements of e = {e[n]} take values in {0, —1, +1}. It is also
easy to verify the following consistency condition.

Consistency condition If e[n] # 0 (i.c., b, % b[n]), then e[n] = b[n].
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Definition 5.8.2 (Valid error sequence) An error sequence e is valid for a
transmitted sequence b if the consistency condition is satisfied for all elements
of the error sequence.

The probability that a given error sequence e is valid for a randomly selected
sequence b is

Ple is valid for b] =27, (5.69)

where w(e) denotes the weight of e (i.e., the number of nonzero elements
in e). This is because, for any nonzero element of e, say e[n] # 0, we have
P[b[n]=e[n]] = 1/2.

We can now derive a union bound for P,(k) by summing over all error
sequences that could cause an error in bit b[k]. The set of such sequences is
denoted by E, = {e: ¢[k] # 0}. Since there are too many such sequences, we
tighten it using an “intelligent” union bound which sums over an appropriate
subset of E,.

The exact error probability is given by summing over E, as follows:

P(k)y= Y P [b+2e — by e valid for b] P e valid for b]

e € E;

= ) P [A(b +2e) = arg max A(a)|e valid for b] 27,

e € E;

We can now bound this as we did for M-ary signaling by noting that

P[A(b+2e) = arg max A(a)|e valid for b]

IA

P[A(b+2e) > A(b)|e valid for b]. (5.70)

The probability on the right-hand side above is simply the pairwise error
probability for binary hypothesis testing between y = s(b+ 2e) + n versus
y = s(b) + n, which we know to be
(IIS(b+20)—S(b)II)
0 3 .
o

It is easy to see, from (5.66), that
s(b+2e) —s(b) = 2s(e),

so that the pairwise error probability becomes

P[A(b+2e) > A(b)|e valid for b] = Q (”S(e)”) . (5.71)
o
Combining (5.70) and (5.71), we obtain the union bound

P = 3 o) o, (572)

e €E; o

We now want to prune the terms in (5.72) to obtain an “intelligent union
bound.” To do this, consider Figure 5.11, which shows a simplified schematic



234 Channel equalization

m k n Transmitted sequence b

v (all-zero error sequence)

A
ML sequence b (error sequence e has nonzero entry at position k)

m k n Transmitted sequence b
(all-zero error sequence)

Simple error sequence &
(coincides with ML sequence between m and n,
and with transmitted sequence elsewhere)

Figure 5.11 Correct path and MLSE output as paths on the error sequence trellis. The correct path
corresponds to the all-zero error sequence. In the scenario depicted, the MLSE output makes an error
in bit b[k]. | also show the simple error sequence, which coincides with the MLSE output where it
diverges from the correct path around bit b[k], and coincides with the correct path elsewhere.

of the ML sequence b and the true sequence b as paths through a trellis.
Instead of considering a trellis corresponding to the symbol sequence (as in
the development of the Viterbi algorithm), it is now convenient to consider
a trellis in which a symbol sequence is represented by its error sequence
relative to the transmitted sequence. This trellis has 3 states at each time, and
the transmitted sequence corresponds to the all-zero path. Two paths in the
trellis merge when L successive symbols for the path are the same. Thus, a
path in our error sequence trellis merges with the all-zero path corresponding
to the transmitted sequence if there are L consecutive zeros in the error
sequence. In the figure, the ML sequence is in E,, and is shown to diverge
and remerge with the transmitted sequence in several segments. Consider
now the error sequence €, which coincides with the segment of the ML
sequence which diverges from the true sequence around the bit of interest,
b[k], and coincides with the true sequence otherwise. Such a sequence has the
property that, once it remerges with the all-zero path, it never diverges again.
We call such sequences simple error sequences, and characterize them as
follows.

Definition 5.8.3 (Simple error sequence) An error sequence e is simple
if there are no more than L — 1 zeros between any two successive nonzero
entries. The set of simple error sequences with e[k] # 0 is denoted by S,.

We now state and prove that the union bound (5.72) can be pruned to include
only simple error sequences.

Proposition 5.8.1 (Intelligent union bound using simple error sequences)
The probability of bit error is bounded as

P(k)< > 0 (—”sf:) ”) 27, (5.73)

(IS
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Proof Consider the scenario depicted in Figure 5.11. Since the ML sequence
and the true sequence have the same state at times m and n, by the principle
of optimality, the sum of the branch metrics between times m and n must be
strictly greater for the ML path. That is, denoting the sum of branch metrics

from m ton as A we have

A, (b) > A, . (b). (5.74)

m,n>

The sequence b corresponding to the simpler error sequence satisfies
Ayn(d) = A, ,(b) (5.75)

by construction, since it coincides with the ML sequence b from m to n.
Further, since b coincides with the true sequence b prior to m and after n,
we have, from (5.74) and (5.75)

A(b)—A(b) = A,, ,(b) — A, ,(b) > 0.

This shows that, for any ec E,, if b=b + 2e is the ML estimate, then there
exists € € S, such that

A(b+28) > A(b).
This implies that
P(k) = 32 er P [A(b+29) = arg max A(a)|e valid for b] 2-wie)
(3 k a
< Y. e 5, PIA(D+2¢) = A(b)e valid for b2,

which proves the desired result upon using (5.71). U

We now consider methods for computing (5.73). To this end, we first rec-
ognize that there is nothing special about the bit & whose error probability
we are computing. For any times k and /, an error sequence e in S, has a
one-to-one correspondence with a unique error sequence €’ in S; obtained by
time-shifting e by / — k. To enumerate the error sequences in S, efficiently,
therefore, we introduce the notion of error event.

Definition 5.8.4 (Error event) An error event is a simple error sequence
whose first nonzero entry is at a fixed time, say at 0. The set of error events
is denoted by €&.

For L =2, two examples of error events are
e, =(£1,0,0,0,...), e, =(£1,0,£1,0,%1,0,0,...).

On the other hand, e; = (£1,0,0,£1,0,0,...) is not an error event, since
it is not a simple error sequence for L = 2.

Note that e, can be time-shifted so as to line up its nonzero entry with bit
b[k], thus creating a simple error sequence in S,. On the other hand, e, can be
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time-shifted in three different ways, corresponding to its three nonzero entries,
to line up with bit b[k]; it can therefore generate three distinct members of S,.
In general, an error event of weight w(e) can generate w(e) distinct elements
in ;. Clearly, all members of S, can be generated in this fashion using error
events. We can therefore express the bound (5.73) in terms of error events as
follows:

[Is(e)l (e
P.(k) < eggg( - >w(e)2 ©, (5.76)

where the contribution of a given error event e is scaled by its weight, w(e)
corresponding to the number of simple error sequences in S, it represents.

High SNR asymptotics The high SNR asymptotics of the error probability
are determined by the term in the union bound that decays most slowly as
the SNR gets large. This corresponds to the smallest Q-function argument,
which is determined by

€ =min, e ¢ |[s(e)][*. (5.77)

Proceeding as in the development of the Viterbi algorithm, and specializing
to real signals, we have

||s(e)||2=2[h[0]e[ +2e[n Z h{n—m]e[m]] Z)\(s | — s[n+1]),
n m=n—L (578)

where s[n]=(e,_,,...,e[n—1]) is the state in the error sequence trellis, and
where the branch metric A is implicitly defined above. We can now use the
Viterbi algorithm on the error sequence trellis to compute €2, . We therefore
have the high SNR asymptotics

2
P~ _ e-min 2 O
e exp —20_ A g — L.

Compare this with the performance without ISI. This corresponds to the error
sequence e, = (£1,0,0,...), which gives

[Is(en)I|* = I|pl|* = A[0]. (5.79)

Asymptotic efficiency The asymptotic efficiency of MLSE, relative to a
system with no ISI, can be defined as the ratio of the error exponents of the
error probability in the two cases, given by

—log P,(MLSE) min, ¢, ||s(e)|]> e

_ _ — _min 5.80
n (,21210 —log P, (no ISI) I[s(e))]]* h[0] ( :
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Even for systems operating at low to moderate SNR, the preceding high
SNR asymptotics of MLSE shed some light on the structure of the memory
imposed by the channel, analogous to the concept of minimum distance in
understanding the structure of a signaling set.

Example 5.8.1 (Channels with unit memory) For L = 1, error events
must only have consecutive nonzero entries (no more than L — 1 zeros
between successive nonzero entries). For an error event of weight w, show

that
[Is(e)][7n = wh[0] = 2|A[1]](w — 1) = A[0] + (w — 1) (A[0] — 2| A[1])).
(5.81)
We infer from this, letting w get large, that
2|h[1]| < A[O]. (5.82)

Note that this is a stronger result than that which can be obtained by the
Cauchy—Schwartz inequality, which only implies that |k[1]]| < k[0]. We
also infer from (5.82) that the minimum in (5.81) is achieved for w = 1.
That is, €2,, = h[0], so that, from (5.80), we see that the asymptotic effi-
ciency n = 1. Thus, we have shown that, for L = 1, there is no asymptotic
penalty due to ISI as long as optimal detection is employed.

Computation of union bound Usually, the bound (5.76) is truncated after
a certain number of terms, exploiting the rapid decay of the Q function. The
error sequence trellis can be used to compute the energies ||s(e)||? using
(5.78). Next, we discuss an alternative approach, which leads to the transfer
function bound.

5.8.2 Transfer function bound

The transfer function bound includes all terms of the intelligent union bound,
rather than truncating it at a finite number of terms. There are two steps to
computing this bound: first, represent each error event as a path in a state
diagram, beginning and ending at the all-zero state; second, replace the Q
function by an upper bound which can be evaluated as a product of branch
gains as we traverse the state diagram. Specifically, we employ the upper

bound
)t )
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which yields

1 lse)1P o,
<3 g ( ) w(e)2” (5.83)

From (5.78), we see that ||s(e)||? can be computed as the sum of additive
metrics as we go from state to state in an error sequence trellis. Instead
of a trellis, we can consider a state diagram that starts from the all-zero
state, contains 3% — 1 nonzero states, and then ends at the all-zero state: an
error event is a specific path from the all-zero start state to the all-zero end
state. The idea now is to associate a branch gain with each state transition,
and to compute the net transfer function from the all-zero start state to
the all-zero end state, thus summing over all possible error events. By an
appropriate choice of the branch gains, we show that the bound (5.83) can
be computed as a function of such a transfer function. We illustrate this for
L =1 below.

Example 5.8.2 (Transfer function bound for L=1) For L=1, (5.78)
specializes to

lIs(e)|* = Z[h le*[n] +2h[1]e[n]e[n — 1]].
We can therefore rewrite (5.83) as

p <X Y w(e) []27 " exp (_h[o]ez[n]+2h[1]e[n]e[n — 1]>.

e = 2
2965 i 20

If it were not for the term w(e) inside the summation, the preceding
function could be written as the sum of products of branch gains in
the state transition diagram. To handle the offending term, we introduce
a dummy variable, and consider the following transfer function, which
can be computed as a sum of products of branch gains using a state
diagram:

T(X) = Ze . (e Hzf\e[n]\ exp (_ h[0]e*[n] +2h[1]e[n]e[n — 1])

202

_ Zeegl:[ (;)ewexp (_ h[o]ez[n]+22h(£12]e[n]e[n— 1]() . |
5.84

Differentiating (5.84) with respect to X, we see that (5.83) can be rewrit-
ten as

P 5 S Tl (5.85)
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We can now label the state diagram for L = 1 with branch gains specified
as in (5.84): the result is shown in Figure 5.12, with

-

a, =exp (——h[o];zzh“]> ,

a, = exp (——h[o]z;zzh[l]> .

A systematic way to compute the transfer function from the all-zero start
state A to the all-zero end state D is to solve simultaneous equations that
relate the transfer functions from the start state to all other states. For
example, any path from A to D is a path from A to B, plus the branch
BD, or a path from A to C, plus the branch CD. This gives

Typ (X) =T (X)bBD + TAC (X)bCD’

where by =1 and b, = 1 are the branch gains from B to D and C to D,
respectively. Similarly, we obtain

Ty (X) =Tpa (X)bAB +Tap (X)bBB + TAC (X)bCB’
TAC(X) = TAA(X)bAC + TAB(X)bBC + TAC(X)bCC'

Plugging in the branch gains from Figure 5.12, and the initial condition
T\, (X) =1, we obtain the simultaneous equations

TAD(X) =Typ (X) + TAC(X)’
Typ(X) = a()%—i_al%TAB(X)—i_aZ%TAC(X)’ (5.86)
Thc(X) = a0§ + a2§TAB(X) +a, %TAC(X)’

which can be solved to obtain that
ayX
1—1(a;+a)X

T(X) = TAD(X) =

(5.87)

Figure 5.12 State transition
diagram for L = 1.
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Substituting into (5.85), we obtain

1 h[0]
%ao 7 €Xp <_F)

P < = .
e — _l 2 2
[1-3(a;+a,)] [1_%(exp<_%>+exp(_%)>]

We can infer from (5.82) that the denominator is bounded away from
zero as o> — 0, so that the high SNR asymptotics of the transfer function
bound are given by exp(—(%[0])/(25?)). This is the same conclusion that
we arrived at earlier using the dominant term of the union bound.

The computation of the transfer function bound for L > 1 is entirely similar
to that for the preceding example, with the transfer function defined as

le[n]]
=X T1(3) el sn+ 1),

e€en
where

B(s[n] — s[n+1]) = exp (—

202

h[0]e*[n] +2¢[n] X"} h[n — m]e[m] ) |

The bound (5.85) applies in this general case as well, and the simultaneous
equations relating the transfer function from the all-zero start state to all other
states can be written down and solved as before. However, solving for 7(X)
as a function of X can be difficult for large L. An alternative strategy is to
approximate (5.85) numerically as
- lT(l +6)—T(1)
N T

where 6 > 0 is small. Simultaneous equations such as (5.86) can now be
solved numerically for X = 146 and X = 1, which is simpler than solving
algebraically for the function 7(X).

5.9 Numerical comparison of equalization techniques

To illustrate the performance of the equalization schemes discussed here, let
us consider a numerical example for a somewhat more elaborate channel
model than in our running example. Consider a rectangular transmit pulse
grx (1) = o 1(¢) and a channel impulse response given by gc(7) = 26(7 —
0.5) —36(t —2)/4+jé(tr —2.25). The impulse response of the cascade of
the transmit pulse and channel filter is denoted by p(¢) and is displayed in
Figure 5.13. Over this channel, we transmit Gray coded QPSK symbols taking
values b[n] € {1+ j,1—j, —1—j, —14j} at a rate of 1 symbol per unit time.
At the receiver front end, we use the optimal matched filter, gy« (t) = p*(—1).

It can be checked that the channel memory L = 2, so that MLSE requires
4% = 16 states. For a linear equalizer, suppose that we use an observation
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Figure 5.13 The received
pulse p(f) formed by the
cascade of the transmit and
channel filters.

Figure 5.14 Numerical
comparison of the
performance of various
equalizers.

5.9 Numerical comparison of equalization techniques
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interval that exactly spans the impulse response {/[n]} for the desired symbol:
this is of length 2L + 1 = 5. It can be seen that the ZF equalizer does not exist,
and that the LMMSE equalizer will have an error floor due to unsuppressed
ISI. The ZF-DFE and MMSE-DFE can be computed as described in the text:
the DFE has four feedback taps, corresponding to the four “past” ISI vectors.
A comparison of the performance of all of the equalizers, obtained by aver-
aging over multiple 500 symbol packets, is shown in Figure 5.14. Note that
MLSE performance is almost indistinguishable from ISI-free performance.
The MMSE-DFE is the best suboptimal equalizer, about 2dB away from

e
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10°%F QPSK

Probability of bit error (log scale)
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MLSE performance. The LMMSE performance exhibits an error floor, since
it does not have enough dimensions to suppress all of the ISI as the SNR gets
large. The ZF performance is particularly poor here: the linear ZF equalizer
does not exist, and the ZF-DFE performs more poorly than even the linear
MMSE equalizer over a wide range of SNR.

The treatment of MLSE in this chapter is based on some classic papers
that are still recommended reading. The MLSE formulation followed here
is that of Ungerboeck [27], while the alternative whitening-based approach
was proposed earlier by Forney [28]. Forney was also responsible for naming
and popularizing the Viterbi algorithm in his paper [29]. The sharpest known
performance bounds for MLSE (sharper than the ones developed here) are
in the paper by Verdu [30]. The geometric approach to finite-complexity
equalization, in which the ISI is expressed as interference vectors, is adapted
from the author’s own work on multiuser detection [31,32], based on the
analogy between intersymbol interference and multiuser interference. For
example, the formulation of the LMMSE equalizer is exactly analogous to the
MMSE interference suppression receiver described in [31]. It is worth noting
that a geometric approach was first suggested for infinite-length equalizers in
a classic two-part paper by Messerschmitt [33], which is still recommended
reading. A number of papers have addressed the problem of analyzing DFE
performance, the key difficulty in which lies in characterizing the phenomenon
of error propagation; see [34] and the references therein.

Discussions on the benefits of fractionally spaced equalization can be found
in [35]. Detailed discussion of adaptive algorithms for equalization is found
in the books by Haykin [36] and Honig and Messerschmitt [37].

While we discuss three broad classes of equalizers, linear, DFE, and
MLSE, many variations have been explored in the literature, and we mention
a few below. Hybrid equalizers employing MLSE with decision feedback can
be used to reduce complexity, as pointed out in [38]. The performance of the
DFE can be enhanced by running it in both directions and then arbitrating the
results [39]. For long, sparse, channels, the number of equalizer taps can be
constrained, but their location optimized [40]. A method for alleviating error
propagation in a DFE by using parallelism, and a high-rate error correction
code, is proposed in [41].

While the material in this chapter, and in the preceding references,
discusses broad principles of channel equalization, creative modifications are
required in order to apply these ideas to specific contexts such as wireless
channels (e.g., handling time variations due to mobility), magnetic record-
ing channels (e.g., handling runlength constraints), and optical communi-
cation channels (e.g., handling nonlin