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Preface

The purpose of this book is to present a substantial collection of the most
efficient algorithms for calculating rigid-body dynamics, and to explain them
in enough detail that the reader can understand how they work, and how to
adapt them (or create new algorithms) to suit the reader’s needs. The collection
includes the following well-known algorithms: the recursive Newton-Euler algo-
rithm, the composite-rigid-body algorithm and the articulated-body algorithm.
It also includes algorithms for kinematic loops and floating bases. Each algo-
rithm is derived from first principles, and is presented both as a set of equations
and as a pseudocode program, the latter being designed for easy translation into
any suitable programming language.

This book also explains some of the mathematical techniques used to for-
mulate the equations of motion for a rigid-body system. In particular, it shows
how to express dynamics using six-dimensional (6D) vectors, and it explains the
recursive formulations that are the basis of the most efficient algorithms. Other
topics include: how to construct a computer model of a rigid-body system; ex-
ploiting sparsity in the inertia matrix; the concept of articulated-body inertia;
the sources of rounding error in dynamics calculations; and the dynamics of
physical contact and impact between rigid bodies.

Rigid-body dynamics has a tendency to become a sea of algebra. However,
this is largely the result of using 3D vectors, and it can be remedied by using a
6D vector notation instead. This book uses a notation based on spatial vectors,
in which the linear and angular aspects of rigid-body motion are combined into
a unified set of quantities and equations. The result is typically a four- to six-
fold reduction in the volume of algebra. The benefit is also felt in the computer
code: shorter, clearer programs that are easier to read, write and debug, but
are still just as efficient as code using standard 3D vectors.

This book is intended to be accessible to a wide audience, ranging from
senior undergraduates to researchers and professionals. Readers are assumed
to have some prior knowledge of rigid-body dynamics, such as might be obtained
from an introductory course on dynamics, or from reading the first few chapters
of an introductory text. However, no prior knowledge of 6D vectors is required,
as this topic is explained from the beginning in Chapter 2. This book does
also contain some advanced material, such as might be of interest to dynamics
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experts and scholars of 6D vectors. No software is distributed with this book,
but readers can obtain source code for most of the algorithms described here
from the author’s web site.

This text was originally intended to be a second edition of a book entitled
Robot Dynamics Algorithms, which was published back in 1987; but it quickly
became clear that there was enough new material to justify the writing of a
whole new book. Compared with its predecessor, the most notable new mate-
rials to be found here are: explicit pseudocode descriptions of the algorithms;
a chapter on how to model rigid-body systems; algorithms to exploit branch-
induced sparsity; an enlarged treatment of kinematic loops and floating-base
systems; planar vectors (the planar equivalent of spatial vectors); numerical
errors and model sensitivity; and guidance on how to implement spatial-vector
arithmetic.
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Chapter 1

Introduction

Rigid-body dynamics is an old subject that has been rejuvenated and trans-
formed by the computer. Today, we can find dynamics calculations in computer
games, in animation and virtual-reality software, in simulators, in motion con-
trol systems, and in a variety of engineering design and analysis tools. In every
case, a computer is calculating the forces, accelerations, and so on, associated
with the motion of a rigid-body approximation of a physical system.

The main purpose of this book is to present a collection of efficient algo-
rithms for performing various dynamics calculations on a computer. Each al-
gorithm is described in detail, so that the reader can understand how it works
and why it is efficient; and basic concepts are explained, such as recursive for-
mulation, branch-induced sparsity and articulated-body inertia.

Rigid-body dynamics is usually expressed using 3D vectors. However, the
subject of this book is dynamics algorithms, and this subject is better expressed
using 6D vectors. We therefore adopt a 6D notation based on spatial vectors,
which is explained in Chapter 2. Compared with 3D vectors, spatial notation
greatly reduces the volume of algebra, simplifies the tasks of describing and
explaining a dynamics algorithm, and simplifies the process of implementing an
algorithm on a computer.

This chapter provides a short introduction to the subject matter of this
book. It says a little about dynamics algorithms, a little about spatial vectors,
and it explains how the book is organized.

1.1 Dynamics Algorithms

The dynamics of a rigid-body system is described its equation of motion, which
specifies the relationship between the forces acting on the system and the ac-
celerations they produce. A dynamics algorithm is a procedure for calculating
the numeric values of quantities that are relevant to the dynamics. We will be
concerned mainly with algorithms for two particular calculations:
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forward dynamics: the calculation of the acceleration response of a given
rigid-body system to a given applied force; and

inverse dynamics: the calculation of the force that must be applied to a given
rigid-body system in order to produce a given acceleration response.

Forward dynamics is used mainly in simulation. Inverse dynamics has a variety
of uses, such as: motion control systems, trajectory planning, mechanical de-
sign, and as a component in a forward-dynamics calculation. In Chapter 9 we
will consider a third kind of calculation, called hybrid dynamics, in which some
of the acceleration and force variables are given and the task is to calculate the
rest.

The equation of motion for a rigid-body system can be written in the fol-
lowing canonical form:

τ = H(q) q̈ + C(q, q̇) . (1.1)

In this equation, q, q̇ and q̈ are vectors of position, velocity and acceleration
variables, respectively, and τ is a vector of applied forces. H is a matrix of
inertia terms, and is written H(q) to show that it is a function of q. C is a
vector of force terms that account for the Coriolis and centrifugal forces, gravity,
and any other forces acting on the system other than those in τ . It is written
C(q, q̇) to show that it depends on both q and q̇. Together, H and C are the
coefficients of the equation of motion, and τ and q̈ are the variables. Typically,
one of the variables is given and the other is unknown.

Although it is customary to write H(q) and C(q, q̇), it would be more accu-
rate to write H(model , q) and C(model , q, q̇), to indicate that both H and C

depend on the particular rigid-body system to which they apply. The symbol
model refers to a collection of data that describes a particular rigid-body system
in terms of its component parts: the number of bodies and joints, the manner
in which they are connected together, and the values of every parameter as-
sociated with each component (inertia parameters, geometric parameters, and
so on). We call this description a system model in order to distinguish it from
a mathematical model. The difference is this: a system model describes the
system itself, whereas a mathematical model describes some aspect of its be-
haviour. Equation 1.1 is a mathematical model. On a computer, model would
be a variable of type ‘system model’, and its value would be a data structure
containing the system model of a specific rigid-body system.

Let us encapsulate the forward and inverse dynamics calculations into a pair
of functions, FD and ID. These functions satisfy

q̈ = FD(model , q, q̇, τ ) (1.2)

and
τ = ID(model , q, q̇, q̈) . (1.3)

On comparing these equations with Eq. 1.1, it is obvious that FD and ID must
evaluate to H−1(τ −C) and Hq̈+C, respectively. However, the point of these
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equations is that they show clearly the inputs and outputs of each calculation.
In particular, they show that the system model is an input in both cases. Thus,
there is an expectation that the algorithms implementing FD and ID will work
for a class of rigid-body systems, and will use the data in the system model to
work out the dynamics of the particular rigid-body system described by that
model. We shall use the name model-based algorithm to refer to algorithms that
work like this.

The big advantage of this approach is that a single piece of computer code
can be written, tested, documented, and so on, to calculate the dynamics of any
rigid-body system in a broad class. The two main classes of interest are called
kinematic trees and closed-loop systems. Roughly speaking, a kinematic tree

is any rigid-body system that does not contain kinematic loops, and a closed-

loop system is any rigid-body system that is not a kinematic tree.1 Calculating
the dynamics of a kinematic tree is significantly easier than for a closed-loop
system.

Model-based algorithms can be classified according to their two main at-
tributes: what calculation they perform, and what class of system they apply
to. The main body of algorithms in this book consists of forward and inverse
dynamics algorithms for kinematic trees and closed-loop systems.

1.2 Spatial Vectors

A rigid body in 3D space has six degrees of motion freedom; yet we usually
express its dynamics using 3D vectors. Thus, to state the equation of motion
for a rigid body, we must actually state two vector equations:

f = m aC and nC = Iω̇ + ω × Iω . (1.4)

The first expresses the relationship between the force applied to the body and
the linear acceleration of its centre of mass. The second expresses the relation-
ship between the moment applied to the body, referred to its centre of mass,
and its angular acceleration.

In spatial vector notation, we use 6D vectors that combine the linear and
angular aspects of rigid-body motion. Thus, linear and angular acceleration are
combined to form a spatial acceleration vector, force and moment are combined
to form a spatial force vector, and so on. Using spatial notation, the equation
of motion for a rigid body can be written

f = Ia + v ×∗ Iv , (1.5)

where f is the spatial force acting on the body, v and a are the body’s spatial
velocity and acceleration, and I is the body’s spatial inertia tensor. The symbol
×∗ denotes a spatial vector cross product. One obvious feature of this equation

1A precise definition will be given in Chapter 4, including a definition of ‘kinematic loop.’
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is that there are some name clashes with Eq. 1.4. We can solve this problem
by placing hats above the spatial symbols (e.g. f̂).

Spatial notation offers many more simplifications than just the equation of
motion. For example, if two rigid bodies are joined together to form a single
rigid body, then the spatial inertia of the new body is given by the simple
formula

Inew = I1 + I2 ,

where I1 and I2 are the inertias of the two original bodies. This equation
replaces three in the 3D vector approach: one to compute the new mass, one to
compute the new centre of mass, and one to compute the new rotational inertia
about the new centre of mass. The overall effect of all these simplifications is
that spatial notation typically cuts the volume of algebra by at least a factor
of 4 compared with standard 3D vector notation. With the barrier of algebra
out of the way, the analyst is free to state a problem more succinctly, to solve
it in fewer steps, and to arrive at a more compact solution.

Another benefit of spatial vectors is that they simplify the process of writing
computer code. The resulting code is shorter, and is easier to read, write and
debug, but is no less efficient than software using 3D vectors. For example, some
programming languages will allow you to implement Eq. 1.5 with a statement
like

f = I*a + v.cross(I*v);

in which the type of each variable has been declared to the compiler. Thus, the
compiler knows that I and v denote a rigid-body inertia and a spatial motion
vector, respectively, so it can compile the expression I*v into code that calls
a routine in the spatial arithmetic library which is designed to perform this
particular multiplication efficiently.

1.3 Units and Notation

Angles are assumed to be measured in radians. Apart from that, the equa-
tions in this book are independent of the choice of units, and require only that
the chosen system of units be consistent. In the few places where units are
mentioned explicitly, SI units are used.

The mathematical notation generally follows ISO guidelines. Thus, variables
are set in italic; constants and functions are set in roman; and vectors and
matrices are set in bold italic. Vectors are denoted by lower-case letters,2 and
matrices by upper-case. A short list of symbols can be found on page 265, and
some symbols have entries in the index.

A few details are worth mentioning here. The symbols 0 and 1 denote the
zero and identity matrices, respectively, and 0 also denotes the zero vector. The
superscript −T denotes the transpose of the inverse, so A−T means (A−1)T. An

2The vector C in Eq. 1.1 is the only exception to this rule.
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expression like a× denotes an operator that maps b to a × b. If a quantity is
described as an array, then it is a numbered list of things. If λ is an array then
element i of λ is written λ(i). If a symbol has a leading superscript (e.g. Av)
then that superscript identifies a coordinate system. Coordinate systems can
also appear in subscripts. Spatial vectors are sometimes marked with a hat,
and coordinate vectors with an underline, as explained in Chapter 2.

1.4 Readers’ Guide

The contents of this book can be divided into three parts: preparation, main
algorithms and additional topics. The preparatory chapters are 2, 3 and 4;
and the main algorithms are are described in Chapters 5 to 8. Readers with
enough background may find they can skip straight to Chapter 5. Chapters
9 onwards assume a basic understanding of earlier material, but are otherwise
self-contained.

Chapter 2 describes spatial vector algebra from first principles; and Chapter
3 explains how to formulate and analyse the equations of motion for a rigid-
body system. These are the two most mathematical chapters, and they both
cover their subject matter in greater depth than the minimum required for the
algorithms that follow. Chapter 4 describes the various components of a system
model. Many of the quantities used in later chapters are defined here.

Chapters 5, 6 and 7 describe the three best known algorithms for kine-
matic trees: the recursive Newton-Euler algorithm for inverse dynamics, and the
composite-rigid-body and articulated-body algorithms for forward dynamics, in
that order. Chapter 5 also explains the concept of recursive formulation, which
is the reason for the efficiency of these algorithms. Chapter 8 then presents
several techniques for calculating the dynamics of closed-loop systems. These
four chapters are arranged approximately in order of increasing complexity (i.e.,
the algorithms get progressively more complicated).

Chapters 9, 10 and 11 then tackle a variety of extra topics. Chapter 9 consid-
ers several more algorithms, including hybrids of forward and inverse dynamics
and algorithms for floating-base systems. Chapter 10 considers the issues of
numerical accuracy and computational efficiency; and Chapter 11 examines the
dynamics of rigid-body systems that are subject to contacts and impacts.

Readers will find examples dotted unevenly throughout the text. In some
cases, they illustrate a concept that is covered in the main text. In other cases,
they describe ideas that are more easily explained in the form of an example.
Readers will also find that every major algorithm is presented both as a set of
equations and as a pseudocode program. In many cases, the two are side-by-
side. The pseudocode is intended to be self-explanatory and easy to translate
into real computer code.

Many people, including the author, find it helps to have some working source
code to hand when studying a new algorithm. No source code is distributed
with this book, on the grounds that such software becomes obsolete too quickly.
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Readers should instead look for this code on the Web. At the time of writing, the
author’s web site3 contained source code for most of the algorithms described
here, but readers may also be able to find useful software elsewhere.

1.5 Further Reading

A variety of books on rigid-body dynamics have been published in recent years,
although many are now out of print. The following are suitable introductory
texts: Amirouche (2006), Moon (1998), Shabana (2001) and Huston (1990).
The first three are formal teaching texts with copious examples and homework
exercises, while Huston’s book is more tutorial in nature. All are designed
to be accessible to undergraduates. More advanced texts include Stejskal and
Valášek (1996), Roberson and Schwertassek (1988) and Wittenburg (1977). For
a different perspective, try Coutinho (2001), which is aimed more at computer
games and virtual reality.

Much of the material in this book has its origins in the robotics commu-
nity. Other books on robot dynamics include Balafoutis and Patel (1991),
Lilly (1993), Yamane (2004) and the author’s earlier work, Featherstone (1987),
which has been superseded by the present volume. Sections and chapters on
dynamics can be found in Angeles (2003), Khalil and Dombre (2002), Siciliano
and Khatib (2008) and various other robotics books.

Readers with an interest in 6D vectors of various kinds may find the following
books and articles of interest: Ball (1900), Brand (1953), von Mises (1924a,b),
Murray et al. (1994) and Selig (1996). Also, the treatment of spatial vectors in
Featherstone (1987) is a little different from that presented here.

3The URL is (or was) http://users.rsise.anu.edu.au/~roy/spatial/. If that doesn’t
work, then try searching for ‘Roy Featherstone’.



Chapter 2

Spatial Vector Algebra

Spatial vectors are 6D vectors that combine the linear and angular aspects of
rigid-body motions and forces. They provide a compact notation for studying
rigid-body dynamics, in which a single spatial vector can do the work of two
3D vectors, and a single spatial equation replaces two (or sometimes more)
3D vector equations. Spatial vector notation allows us to develop equations of
motion quickly, and to express them succinctly in symbolic form. It also allows
us to derive dynamics algorithms quickly, and to express them in a compact
form that is easily converted into efficient computer code.

This chapter presents the spatial vector algebra from first principles up to
the equation of motion for a single rigid body. It also presents the planar vector
algebra, which is an adaptation of spatial vector algebra to rigid bodies that
move only in a 2D plane. Methods of implementing spatial vector arithmetic
are covered in Appendix A; and the use of spatial vectors to analyse general
rigid-body systems is covered in Chapter 3.

2.1 Mathematical Preliminaries

This section reviews briefly some of the mathematical concepts and notations
used in spatial vector algebra. More details can be found in books like Green-
wood (1988), Selig (1996) and many others.

Vectors and Vector Spaces: Linear algebra defines a vector as being an
element of a vector space; and different kinds of vector are elements of different
vector spaces. Four vector spaces occur frequently in this book, and have been
given special names:

R
n — coordinate vectors

E
n — Euclidean vectors

M
n — spatial motion vectors

F
n — spatial force vectors
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In each case, the superscript indicates the dimension. One more space that
occurs frequently is the space of m × n matrices, which is denoted R

m×n.

A coordinate vector is an n-tuple of real numbers, or, in matrix form, an n×1
matrix of real numbers (i.e., a column vector). Coordinate vectors typically
represent other vectors; and we use the term abstract vector to refer to the
vector being represented. Euclidean vectors have the special property that a
Euclidean inner product is defined on them. This product endows them with
the familiar properties of magnitude and direction. The 3D vectors used to
describe rigid-body dynamics are Euclidean vectors. Spatial vectors are not
Euclidean, but are instead the elements of a pair of vector spaces: one for
motion vectors and one for forces. Spatial motion vectors describe attributes of
rigid-body motion, such as velocity and acceleration, while spatial force vectors
describe force, impulse and momentum. The two spaces M

6 and F
6 are the

main topic of this chapter.

Hats and Underlines: When spatial vectors and 3D vectors appear to-
gether, we mark some spatial vectors with hats (e.g. v̂, f̂) in order to avoid
name clashes with 3D vectors having the same name. Likewise, we normally
make no distinction between coordinate vectors and the abstract vectors they
represent, but if a distinction is required then we underline the coordinate vec-
tor (e.g. v representing v). We use these notational devices only where they
are needed, and hardly ever outside this chapter.

The Dual of a Vector Space: Let V be a vector space. Its dual, denoted
V ∗, is a vector space having the same dimension as V , and having the property
that a scalar product is defined between it and V (i.e., the scalar product takes
one argument from each space). If u ∈ V ∗ and v ∈ V then this scalar product
can be written either u · v or v · u, the two expressions meaning the same.
Duality is a symmetrical relationship: if U = V ∗ then V = U∗.

The notion of duality is relevant to spatial vector algebra because the spaces
M

n and F
n are dual (i.e., each is the dual of the other). In particular, a scalar

product is defined between motion vectors and force vectors such that if m ∈ M
6

describes the velocity of a rigid body and f ∈ F
6 describes the force acting on

it, then m · f is the power delivered by the force.

The scalar product between a vector space and its dual is required to be
nondegenerate (also called nonsingular). A scalar product is nondegenerate if
it has the following property: for any v ∈ V , if v 6= 0 then there exists at least
one vector u ∈ V ∗ satisfying v · u 6= 0. This property is a sufficient condition
to guarantee the existence of a dual basis on V and V ∗.

Dual Bases: Suppose we have two vector spaces, U and V , such that U = V ∗.
Let D = {d1, . . . , dn} be a basis on U , and let E = {e1, . . . , en} be a basis on
V . If these bases satisfy the following condition, then they form a dual basis
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on U and V :

di · ej =

{

1 if i = j
0 otherwise.

This is known as the reciprocity condition. If D and E satisfy this condition,
then each is the reciprocal of the other. If one basis is given, then the other
is determined uniquely by the reciprocity condition. We can use the notation
D∗ to denote the reciprocal of D. Note that a dual basis consists of two sets of
basis vectors, and covers two vector spaces.

If U = E
n then it becomes possible to set V = U , so that D and E are bases

on the same vector space. It also becomes possible to find special cases of D
with the property D = E . Such bases are orthonormal. Thus, an orthonormal
basis is a special case of a dual basis in which U = V = E

n and D = E .

Dual Coordinates: A dual basis defines a dual coordinate system. We will
always use dual coordinates for representing spatial vectors; and we will mostly
use Plücker coordinates, which are a particularly convenient choice of dual
coordinate system. The special property of dual coordinates is that

u · v = uT v ,

where u and v are coordinate vectors representing u ∈ U and v ∈ V in the
dual coordinate system defined by D and E . An immediate corollary is that the
individual elements in u and v are given by

ui = ei · u and vi = di · v .

To perform a coordinate transformation from one dual coordinate system
to another, we need two transformation matrices: one to operate on u, and
one to operate on v. If X is the matrix that performs the desired coordinate
transformation on u, then the matrix that does the same job on v is denoted
X∗, and the two matrices are related by the equation

X∗ = X−T .

This relationship follows from the requirement that uTv = (Xu)T(X∗v) for
all u and v.

Operators a· and a×: It is possible to interpret expressions like a · b and
a × b as being the result of applying an operator, a· or a×, to the operand b.
Thus, a· is the operator that maps b to the scalar a · b, while a× maps b to
a × b. If a is a coordinate vector, then a· = aT, and a× is a square matrix.
Some properties of a× are listed in Tables 2.1 and 2.3. Table 2.3 also lists
properties of the operator a×∗, which is the dual of a×.
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Dyads and Dyadics: An expression of the form ab· is called a dyad. It
is a linear operator that maps vectors to vectors. In particular, the dyad a b·

will map the vector c to the vector a (b · c), which is a scalar multiple of a.
If a and b are coordinate vectors representing a and b, then the dyad ab· is
represented by the matrix abT, which has a rank of 1. In the most general
case, we can have a ∈ U , b ∈ V and c ∈ W , where there are no restrictions on
the choice of any of these vector spaces, except that a scalar product must be
defined between V and W . Such a dyad maps from W to U .

A dyadic (or dyadic tensor) is a general linear mapping of vectors. Any
dyadic can be expressed as a sum of r linearly independent dyads:

L =

r
∑

i=1

ai bi · ,

where ai ∈ U , bi ∈ V , and r ≤ min(m, n), where m = dim(U) and n = dim(V ).
(A set of dyads is linearly independent if the vectors ai are linearly independent
in U , and the vectors bi are linearly independent in V .) If ai and bi are
coordinate vectors, then L can be written

L =

r
∑

i=1

ai bT
i ,

which is an m × n matrix of rank r. If m = n = r then L is a 1 : 1 mapping,
and is invertible. Dyadics are used in connection with the spatial inertia tensor.

2.2 Spatial Velocity

Let us work out a formula for the spatial velocity of a rigid body. We start with
a rigid body, B, and choose a fixed point, O, which can be located anywhere
in space. (See Figure 2.1(a).) Given O, the velocity of B can be specified
by a pair of 3D vectors: the linear velocity, vO, of the body-fixed point that
currently coincides with O, and an angular velocity vector, ω. The body as a
whole can then be regarded as translating with a linear velocity of vO , while
simultaneously rotating with an angular velocity of ω about an axis passing
through O.

From this description, we can calculate the velocity of any other point in
the body using the formula

vP = vO + ω ×−−→
OP , (2.1)

where P is the point of interest, vP is the velocity of the body-fixed point

currently at P , and
−−→
OP gives the position of P relative to O. This equation

shows clearly that there are two contributions to vP : one due to the translation
of the whole body by vO, and one due to its rotation by ω about an axis passing



2.2. SPATIAL VELOCITY 11

x y

z

O

vO

ω B

(a)

O

dOx

dOy

dOz

dx

dy

dz

(b)

Figure 2.1: The velocity of a rigid body expressed in terms of ω and vO (a),
and the basis vectors for Plücker motion coordinates (b)

through O. Although each individual contribution depends on the position of
O, their sum does not (i.e., the dependencies cancel out), so that vP depends
only on the motion of B and the location of P . Note that P , vP and ω together
describe the same rigid-body motion as O, vO and ω.

We now introduce a Cartesian coordinate frame, Oxyz, with its origin at
O. This frame defines three mutually perpendicular directions, x, y and z, and
three directed lines, Ox, Oy and Oz, each passing through the point O. This
frame also defines an orthonormal basis, {i, j, k} ⊂ E

3, which we can use to
express ω and vO in terms of their Cartesian coordinates:

ω = ωxi + ωyj + ωzk

and

vO = vOxi + vOyj + vOzk .

Having resolved ω and vO into their coordinates, we can describe the velocity
of B as the sum of six elementary motions: a rotation of magnitude ωx about
the line Ox, a rotation of magnitude ωy about Oy, a rotation of magnitude ωz

about Oz, and translations of magnitudes vOx, vOy and vOz in the x, y and z
directions, respectively.

Our objective is to obtain a spatial velocity vector, v̂ ∈ M
6, that describes

the same motion as ω and vO. We can accomplish this by first defining a basis
on M

6, and then working out the coordinates of v̂ in that basis. The basis we
will use is

DO = {dOx, dOy, dOz , dx, dy, dz} ⊂ M
6 , (2.2)

which is illustrated in Figure 2.1(b). This is called a Plücker basis, and it
defines a Plücker coordinate system on M

6. The first three basis vectors, dOx,
dOy and dOz, are unit rotations about the lines Ox, Oy and Oz, respectively,
and the rest are unit translations in the x, y and z directions, respectively. On
comparing the definitions of these basis vectors with the six elementary motions
just described, it follows immediately that

v̂ = ωxdOx + ωydOy + ωzdOz + vOxdx + vOydy + vOzdz . (2.3)
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Thus, the Plücker coordinates of v̂ in DO are the Cartesian coordinates of ω

and vO in {i, j, k}. Each individual term on the right-hand side depends on
the position and orientation of Oxyz, but it can be shown that the expression as
a whole is invariant. (See Example 2.2.) The coordinate vector that represents
v̂ in DO coordinates can be written

v̂O =

















ωx

ωy

ωz

vOx

vOy

vOz

















=

[

ω

vO

]

, (2.4)

where the expression on the far right is a convenient compact notation in which
the 6D coordinate vector is expressed as the concatenation of the two 3D coor-
dinate vectors ω = [ ωx ωy ωz ]T and vO = [ vOx vOy vOz ]T.

Example 2.1 Equation 2.1 associates a vector vP with each point P in space.
It therefore defines a vector field—the velocity field of body B. We could have
written this equation in the form

V (P ) = vO + ω ×−−→
OP , (2.5)

where V denotes the vector field, and V (P ) is the vector associated by V with
the point P . Although O appears in the definition of V , the right-hand side is
invariant with respect to the location of O, and so the field itself is independent
of O. This connection between spatial vectors and vector fields can help one to
visualize what a spatial vector really is, and what a spatial-vector expression
really means. For example, suppose v̂1 and v̂2 are two spatial velocities, and V 1

and V 2 are the corresponding vector fields. If v̂sum = v̂1 + v̂2 then the vector
field that corresponds to v̂sum has the property Vsum(P ) = V 1(P ) + V 2(P ) for
all P .

Example 2.2 Let us investigate the invariance of Eq. 2.3 with respect to the
choice of origin. We can do this by defining v̂′ to be the spatial velocity obtained
by using the point P as origin, and showing that v̂

′ = v̂. The expression for v̂
′

is therefore

v̂′ = ωxdPx + ωydPy + ωzdPz + vPxdx + vPydy + vPzdz ,

and the task is to equate this expression with Eq. 2.3. To keep things simple,
we shall choose P to have the coordinates (r, 0, 0) relative to Oxyz, as shown in
Figure 2.2. In this case, the linear velocity coordinates are given by Eq. 2.1 as





vPx

vPy

vPz



 = vO + ω ×





r
0
0



 =





vOx

vOy + ωzr
vOz − ωyr



 ;
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O

dPy

dPz

−rdy
rdz

r

P

dPx

Figure 2.2: Expressing dPy and dPz at O

and the three basis vectors that depend on P are

dPx = dOx ,

dPy = dOy + rdz ,

dPz = dOz − rdy .

Combining these equations gives

v̂′ = ωxdOx + ωy(dOy + rdz) + ωz(dOz − rdy)

+ vOxdx + (vOy + ωzr)dy + (vOz − ωyr)dz ,

which can be seen to be equal to Eq. 2.3.
Returning to the three basis vectors, we have dPx = dOx because the two

lines Px and Ox are the same. To understand the expression for dPy, imagine
a rigid body that is rotating with unit angular velocity about Py, so that its
spatial velocity is dPy. The body-fixed point at O will then have a linear
velocity of magnitude r in the z direction, as shown in Figure 2.2; and so the
body’s velocity can be expressed as the sum of a unit angular velocity about the
line Oy and a linear velocity of magnitude r in the z direction (i.e., dOy +rdz).

1

Repeating this exercise with Pz yields the given expression for dPz.
The analysis presented here is easily extended to the case of a general loca-

tion for P , and a similar argument can be used to show that Eq. 2.3 is invariant
with respect to the orientation of Oxyz.

2.3 Spatial Force

Having obtained an expression for spatial velocity, let us now do the same for
spatial force. Given an arbitrary point, O, which can be located anywhere in
space, the most general force that can act on a rigid body B consists of a linear
force, f , acting along a line that passes through O, together with a couple, nO,

1Readers who are puzzled by this are encouraged to invent and solve their own Plücker
coordinate exercises. A degree of practice with these coordinates is helpful.
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B

O y

z f

nO

x (a)
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eOy

eOz

ex

ey

ez

O

(b)

Figure 2.3: The force acting on a rigid body expressed in terms of f and nO

(a), and the basis vectors for Plücker force coordinates (b)

which is equal to the total moment about O. (See Figure 2.3(a).) Once again,
we have a representation comprising one arbitrary point and two 3D vectors.
f has taken the place of ω, and nO has taken the place of vO.

Given O, nO and f , we can calculate the total moment about any other
point, P , using the formula

nP = nO + f ×−−→
OP . (2.6)

This equation is the force-vector analogue of Eq. 2.1, and it shares with that
equation the property that the right-hand side is independent of the location of
O. The three quantities P , nP and f together describe the same applied force
as O, nO and f .

We now introduce a Cartesian coordinate frame, Oxyz, with its origin at O,
and use it to define the orthonormal basis {i, j, k} ∈ E

3 so that nO and f can
be written in terms of their Cartesian coordinates:

nO = nOxi + nOyj + nOzk

and
f = fxi + fyj + fzk .

Having resolved nO and f into their components, we can describe the force
acting on B as the sum of six elementary forces: couples of magnitudes nOx,
nOy and nOz in the x, y and z directions, respectively, and linear forces of
magnitudes fx, fy and fz acting along the lines Ox, Oy and Oz, respectively.

This coordinate frame also defines the following Plücker basis on F
6:

EO = {ex, ey, ez , eOx, eOy , eOz} ⊂ F
6 , (2.7)

which is illustrated in Figure 2.3(b). The first three elements are unit couples
in the x, y and z directions, and the rest are unit linear forces acting along the
lines Ox, Oy and Oz. On comparing the definitions of these basis vectors with
the six elementary forces just described, it follows immediately that if f̂ ∈ F

6

is the spatial force vector representing the same force as O, nO and f , then

f̂ = nOxex + nOyey + nOzez + fxeOx + fyeOy + fzeOz . (2.8)
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Each individual term on the right-hand side of this equation depends on the
position and orientation of Oxyz, but the expression as a whole is invariant.

Thus, the value of f̂ does not depend at all on Oxyz, but only on the forces

acting on B. The coordinate vector representing f̂ in EO coordinates is

f̂
O

=

















nOx

nOy

nOz

fx

fy

fz

















=

[

nO

f

]

, (2.9)

where nO = [nOx nOy nOz]
T and f = [fx fy fz]

T.

2.4 Plücker Notation

Plücker coordinates date back to the 19th century, but the basis vectors are
new.2 They are the coordinates of choice for 6D vectors, partly because they
lend themselves to efficient computer implementation, but mainly because they
are the most convenient and easy to use.

The notations appearing in Eqs. 2.4 and 2.9 combine Plücker coordinates
with notations that are specific to velocity and force. In the case of velocity,
we have used two different symbols (v and ω) to represent linear and angular
velocity in 3D vector notation, and we have preserved these symbols in the list
of Plücker coordinates. The story is the same for forces: we have used different
symbols for the 3D linear force and moment vectors, and preserved their names
in the list of Plücker coordinates.

In general case, the coordinates would have the same name as the vector.
Thus, if m̂ and f̂ denote generic elements of M

6 and F
6, respectively, then their

Plücker coordinates would be

m̂O =

















mx

my

mz

mOx

mOy

mOz

















=

[

m

mO

]

and f̂
O

=

















fOx

fOy

fOz

fx

fy

fz

















=

[

f

f
O

]

.

We shall always list Plücker coordinates in angular-before-linear order; that
is, the three angular coordinates will always be listed first. However, readers
should be aware that it is perfectly acceptable to list the three linear coordinates
first, and they will encounter this alternative ordering in the literature. From a

2The coordinates appeared in Plücker (1866). The basis vectors appeared in the author’s
Ph.D. thesis, and again in Featherstone (1987), under the name ‘standard basis’. The notation
used here is different, but the concept is the same.
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mathematical point of view, it makes no difference which order the coordinates
are listed. However, from a computational point of view, it does matter because
the software is typically written to work with one particular order.

2.5 Line Vectors and Free Vectors

A line vector is a quantity that is characterized by a directed line and a mag-
nitude. A pure rotation of a rigid body is a line vector, and so is a linear force
acting on a rigid body. A free vector is a quantity that can be characterized by
a magnitude and a direction. Pure translations of a rigid body are free vectors,
and so are pure couples. A line vector can be specified by five numbers, and
a free vector by three. A line vector can also be specified by a free vector and
any one point on the line.

Let ŝ be any spatial vector, motion or force, and let s and sO be the two
3D coordinate vectors that supply the Plücker coordinates of ŝ. Here are some
basic facts about line vectors and free vectors.

• If s = 0 then ŝ is a free vector.

• If s · sO = 0 then ŝ is a line vector. The direction of the line is given by

s, and the line itself is the set of points P that satisfy
−−→
OP × s = sO .

• Any spatial vector can be expressed as the sum of a line vector and a
free vector. If the line vector must pass through a given point, then the
expression is unique.

• Any spatial vector, other than a free vector, can be expressed uniquely as
the sum of a line vector and a parallel free vector. The expression (for a
motion vector) is

[

s

sO − hs

]

+

[

0

hs

]

where h =
s · sO

s · s
. (2.10)

This last result implies that any spatial vector, other than a free vector, can be
described uniquely by a directed line, a linear magnitude and an angular mag-
nitude. Free vectors can also be described in this manner, but the description
is not unique, as only the direction of the line matters.

According to screw theory, the most general motion of a rigid body consists
of a rotation about a line in space together with a translation along it (i.e., a
helical or screwing motion). Such a motion is called a twist. Likewise, the most
general force that can act on a rigid body consists of a linear force acting along
a line in space, together with a couple acting about it (so the force and couple
are parallel). Such a force is called a wrench. In both cases, the line itself is
called the screw axis, and the ratio of the free-vector magnitude to the line-
vector magnitude is called the pitch. Pure free vectors are treated as twists and
wrenches of infinite pitch, and do not have a definite screw axis. The elements
of M

6 and F
6 can be regarded as twists and wrenches, respectively.
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Magnitude

Spatial vectors are not Euclidean, and therefore do not have magnitudes in the
Euclidean sense. However, there are four sets of spatial vectors for which a
meaningful magnitude can be defined: rotations, translations, linear forces and
couples (i.e., all the line vectors and free vectors in M

6 and F
6). Magnitudes are

only comparable within each set; so the magnitude of a rotation, for example,
can be compared with that of another rotation, but not with a translation or a
force.

A vector having unit magnitude can be called a unit vector. However, the
meaning of ‘unit magnitude’ does depend on the chosen system of units. For
example, a unit rotational velocity is one radian per chosen time unit, and a
unit translational velocity is one length unit per time unit. Thus, the Plücker
basis vectors, which are all unit vectors, depend not only on the position and
velocity of the coordinate frame, but also on the chosen system of units.

2.6 Scalar Product

A scalar product is defined on spatial vectors, in which one argument must
be a motion vector, the other must be a force vector, and the result is a scalar
representing energy, power or some similar quantity. Given m ∈ M

6 and f ∈ F
6,

the scalar product can be written either m ·f or f ·m, both meaning the same,
but the expressions m·m and f ·f are not defined (i.e., there is no inner product
on either M

6 or F
6). If f is the force acting on a rigid body, and m is the velocity

of that body, then m · f is the power delivered by f .

The scalar product creates a connection between M
6 and F

6 which is formally
known as a duality relationship: each space is the dual of the other. The prac-
tical consequences of this property for spatial vector algebra are as follows:

1. we use dual coordinates on M
6 and F

6;

2. force and motion vectors obey different coordinate transformation rules;
and

3. there are two cross-product operators: one for motion vectors and one for
forces (see §2.9).

A dual coordinate system on M
6 and F

6 is any coordinate system formed by
two bases, {d1, . . . , d6} ⊂ M

6 and {e1, . . . , e6} ⊂ F
6, in which the basis vectors

satisfy the condition

di · ej =

{

1 if i = j
0 otherwise.

(2.11)

From the definitions of DO and EO in Eqs. 2.2 and 2.7, it can be seen that these
bases form a dual coordinate system. (Treat dOx as d1, dOy as d2, and so on.)
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The most important property of a dual coordinate system is that if m and
f represent m ∈ M

6 and f ∈ F
6 in a dual coordinate system, then

m · f = mTf . (2.12)

An immediate consequence of this property is that we need different coordinate
transformation matrices for motions and forces. If the matrix X performs
a coordinate transformation on motion vectors, and X∗ performs the same
transformation on force vectors, then the two are related by

X∗ = X−T . (2.13)

This equation follows from the requirement that mTf = (Xm)T(X∗f) for all
m and f .

2.7 Using Spatial Vectors

Spatial vectors are a tool for expressing and analysing the dynamics of rigid
bodies and rigid-body systems. This section presents a list of rules for using
spatial vectors, which describe the connections between spatial vectors and the
physical phenomena they represent. The last few entries preview some rules for
quantities that we have not yet met: acceleration, momentum and inertia. The
list is not complete.

usage: The elements of M
6 describe aspects of rigid-body motion, such as:

velocity, acceleration, infinitesimal displacement, and directions of motion
freedom and constraint. The elements of F

6 describe the forces acting on
a rigid body, and quantities related to force such as: momentum, impulse,
and directions of force freedom and constraint.

uniqueness: There is a 1 : 1 mapping between the elements of M
6 and the set

of all possible motions of a rigid body. Likewise, there is a 1 : 1 mapping
between the elements of F

6 and the set of all possible forces acting on a
rigid body (i.e., the set of all wrenches).

relative velocity: If bodies B1 and B2 have velocities v1 and v2, respectively,
then the relative velocity of B2 with respect to B1 is vrel = v2 − v1.

rigid connection: If two bodies are connected together rigidly, then their ve-
locities are the same.

summation of forces: If forces f1 and f2 both act on the same rigid body,
then they are equivalent to a single force, ftot, given by ftot = f1 + f2.

action and reaction: If body B1 exerts a force of f on body B2, then B2

exerts a force of −f on B1 (Newton’s 3rd law).
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scalar product: If a force f acts on a rigid body having a velocity v, then
the power delivered by the force is f · v.

scaling: A force of αf acting on a body with velocity βv delivers αβ times as
much power as a force of f acting on a body with velocity v. A body
moving at a constant velocity of v makes the same movement in α units
of time as a body moving with velocity αv in one unit of time.

acceleration: Spatial acceleration is the rate of change of spatial velocity.
Spatial accelerations are true vectors, and follow the same summation
rule as velocities. For example, if vrel = v2 − v1 then arel = a2 − a1.

summation of inertias: If bodies B1 and B2 have inertias of I1 and I2, and
they are connected together to form a single composite rigid body, then
the inertia of the composite is I1 + I2.

momentum: If a rigid body has a spatial inertia of I and a velocity of v, then
its momentum is Iv.

equation of motion: The rate of change of a body’s momentum equals the
force acting on it; that is, f = d/dt(Iv). If we perform the differentiation,
then we get the formula f = Ia + v ×∗ Iv.

joint 1

s1

s2

sN

body 1
body 2base s3 body N

Figure 2.4: Kinematic chain

Example 2.3 Figure 2.4 shows a collection of rigid bodies joined together in
a chain, with one end joined to a fixed base. A system like this is typical of
an industrial robot arm, and is called a kinematic chain. There are a total of
N moving bodies and N joints in this system, and the bodies are connected
together such that joint i connects from body i − 1 to body i. (The base is
body 0.) We say that a joint connects ‘from’ one body ‘to’ another so that we
can define the velocity across the joint as being the velocity of the ‘to’ body
relative to the ‘from’ body. Thus, if vJi is the velocity across joint i, and vi is
the velocity of body i, then

vJi = vi − vi−1 . (2.14)
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We shall assume that each joint allows only a single degree of motion freedom,
so that vJi can be described as a scalar multiple of a single motion vector.
Specifically,

vJi = si q̇i , (2.15)

where si and q̇i are the axis vector and velocity variable for joint i. If joint
i is revolute, then si will be a unit rotation vector so that vJi will be a unit
rotational velocity when q̇i = 1. Likewise, if joint i is prismatic then si will be
a unit translation vector.

Let us work out the velocity of each body in the system. From Eqs. 2.14
and 2.15 we have

vi = vi−1 + si q̇i . (v0 = 0) (2.16)

This equation lets us calculate the velocity of each body in turn, starting at the
base and working out towards the free end of the chain. Another expression for
the velocity is

vi =

i
∑

j=1

sj q̇j . (2.17)

From a computational point of view, Eq. 2.16 is more efficient than Eq. 2.17
because it reuses the results of previous calculations. Yet another expression
for vi is

vi =
[

s1 s2 · · · si 0 · · · 0
]







q̇1

...
q̇N






= Ji q̇ . (2.18)

In this equation, Ji is a 6×N matrix called the body Jacobian for body i, and
q̇ is the joint-space velocity vector.

2.8 Coordinate Transforms

The coordinate transform from A to B coordinates for a motion vector is usually
written BXA, and the same transform for a force vector is BX∗

A. The two
are related by the equation BX∗

A = BX−T
A (cf. Eq. 2.13). In this section, we

shall develop the formulae for coordinate transforms between Plücker coordinate
systems.

Let A and B denote two Plücker coordinate systems. Each is defined by
the position and orientation of a Cartesian frame, and each frame also defines
a Cartesian coordinate system. For convenience, we shall use the same names
for all three entities; so frame A defines both Plücker coordinate system A and
Cartesian coordinate system A, and similarly for B. The formula for BXA

depends only on the position and orientation of frame B relative to frame A,
so it can be expressed as the product of two simpler transforms: one depending
on the relative position of frame B and the other on its relative orientation.
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Rotation

Let A and B be two Cartesian frames with a common origin at O. Given O, any
motion vector m̂ ∈ M

6 can be represented by two 3D vectors, m and mO, and
the Plücker coordinates of m̂ will be the Cartesian coordinates of m and mO.
Therefore, let Am̂, Am, AmO, Bm̂, Bm and BmO be the coordinate vectors
representing m̂, m and mO in A and B coordinates, respectively, and let E be
the 3 × 3 rotation matrix that transforms 3D vectors from A to B coordinates
(i.e., E = BEA). We now have

Bm̂ =

[

Bm
BmO

]

=

[

E Am

E AmO

]

=

[

E 0

0 E

]

Am̂ ,

so
BXA =

[

E 0

0 E

]

. (2.19)

The equivalent transform for a force vector is exactly the same:

BX∗

A = BX−T
A =

[

E 0

0 E

]

. (2.20)

Translation

Let O and P be two points in space, and let there be a Cartesian frame located
at each point, the two frames having the same orientation. Any motion vector
m̂ ∈ M

6 can be expressed at O by the 3D vectors m and mO , and at P by the

vectors m and mP , where mP = mO−−−→
OP ×m (as per Eq. 2.1). In both cases,

the Plücker coordinates of m̂ are the Cartesian coordinates of the appropriate
pair of 3D vectors, so we have

m̂P =

[

m

mP

]

=

[

m

mO − r × m

]

=

[

1 0

−r× 1

]

m̂O ,

where r =
−−→
OP . Therefore

PXO =

[

1 0

−r× 1

]

. (2.21)

The equivalent transform for a force vector is

PX∗

O = PX−T
O =

[

1 −r×
0 1

]

. (2.22)

An expression of the form a× (pronounced ‘a-cross’) denotes an operator
that maps b to a × b. If a is a 3D coordinate vector, then a× is the 3 × 3
matrix given by the formula





x
y
z



× =





0 −z y
z 0 −x
−y x 0



 . (2.23)
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a× = −a×T

(λ a)× = λ (a×) (λ is a scalar)

(a + b)× = a× + b×
(E a)× = E a×E−1 (E is orthonormal)

(a×) b = −(b×) a

(a × b)· = a· b× ((a × b)T = aTb×)

(a × b)× = a× b×− b× a×
(a × b)× = b aT − abT

a× b× = b aT − (a · b)13×3

Table 2.1: Properties of the Euclidean cross operator

This operator has several mathematical properties, which are listed in Table 2.1.
We shall interpret expressions of the form a × b × c as meaning (a×)(b×)c,
which is the same as a× (b×c). Any other interpretation requires parentheses.
Likewise, the expressions a + b × c and E a× mean a + (b × c) and E(a×),
respectively, and any other interpretation requires parentheses.

General Transforms

Let A and B be Cartesian frames with origins at O and P , respectively; let

r be the coordinate vector expressing
−−→
OP in A coordinates; and let E be the

rotation matrix that transforms 3D vectors from A to B coordinates. The
Plücker transform from A to B coordinates is then the product of a translation
by r and a rotation by E. The formula for a motion-vector transform is

BXA =

[

E 0

0 E

][

1 0

−r× 1

]

=

[

E 0

−E r× E

]

; (2.24)

the equivalent transform for a force vector is

BX∗

A =

[

E 0

0 E

][

1 −r×
0 1

]

=

[

E −E r×
0 E

]

; (2.25)

and the inverses of these two transforms are

AXB =

[

1 0

r× 1

][

ET 0

0 ET

]

=

[

ET 0

r×ET ET

]

(2.26)

and
AX∗

B =

[

1 r×
0 1

] [

ET 0

0 ET

]

=

[

ET r×ET

0 ET

]

. (2.27)

For comparison, the formula for the 4× 4 homogeneous coordinate transforma-
tion matrix from A to B (homogeneous) coordinates is

BTA =

[

E −Er

0 1

]

. (2.28)
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rx(θ) =





1 0 0
0 c s
0 −s c



 ry(θ) =





c 0 −s
0 1 0
s 0 c



 rz(θ) =





c s 0
−s c 0
0 0 1





( c = cos(θ) , s = sin(θ) )

rot(E) =

[

E 0

0 E

]

xlt(r) =

[

1 0

−r× 1

]

rotx(θ) = rot(rx(θ))

roty(θ) = rot(ry(θ))

rotz(θ) = rot(rz(θ))

Table 2.2: Functions for rotations and Plücker transforms

To facilitate the description of Plücker transforms, we will occasionally use the
functions listed in Table 2.2. In terms of these functions, Eq. 2.24 could have
been written BXA = rot(E) xlt(r), and so on.

Finally, note that we have adopted the following convention for describing
coordinate transforms: the formula for BXA (or for BEA) is associated with a
description of how you would have to move frame A so as to make it coincide
with frame B. For example, the expression ‘rotx(θ)’ reads like an abbreviated
version of the statement ‘rotate about the x axis by an amount θ’, and its value
is the coordinate transform BXA for the case where frame B is rotated relative
to frame A by an amount θ about their common x axis. Readers should bear
in mind that some authors use a different convention.

2.9 Spatial Cross Products

Let r ∈ E
3 be a Euclidean vector that is rotating with an angular velocity of ω,

but is not otherwise changing. The derivative of this vector is given by the well-
known formula ṙ = ω × r. In this context, ω× is acting like a differentiation
operator: it is mapping r to ṙ.

It turns out that this idea can be extended to spatial vectors, but we need to
have two operators: one for motions and one for forces. Therefore, let m̂ ∈ M

6

and f̂ ∈ F
6 be two spatial vectors that are moving with a velocity of v̂ ∈ M

6

(e.g. because they are fixed in a rigid body having that velocity), but are not
otherwise changing. We now define two new operators, × and ×∗, which are
required to satisfy the following equations:

˙̂m = v̂ × m̂ (2.29)

and
˙̂
f = v̂ ×∗ f̂ . (2.30)

The operator ×∗ can be regarded as the dual of ×. The relationship between
these two operators is similar to that between the coordinate transform matrices
X and X∗.
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dOx

dOy(t)

dOy(t+δt)

θ=δt

(a)

dOx

dOy(t)

dOy(t+δt)

δt
(b)

× dOx dOy dOz dx dy dz

dOx 0 dOz −dOy 0 dz −dy

dOy −dOz 0 dOx −dz 0 dx

dOz dOy −dOx 0 dy −dx 0

dx 0 dz −dy 0 0 0

dy −dz 0 dx 0 0 0

dz dy −dx 0 0 0 0

×
∗ ex ey ez eOx eOy eOz

dOx 0 ez −ey 0 eOz −eOy

dOy −ez 0 ex −eOz 0 eOx

dOz ey −ex 0 eOy −eOx 0

dx 0 0 0 0 ez −ey

dy 0 0 0 −ez 0 ex

dz 0 0 0 ey −ex 0

Figure 2.5: Spatial cross-product tables

These operators can be defined explicitly by means of the multiplication
tables shown in Figure 2.5. Each entry in these tables is the time derivative of
the basis vector listed on the top row, assuming it has a velocity equal to the
basis vector listed in the left-hand column. For example, Figure 2.5(a) shows
a coordinate frame that is moving with a velocity equal to dOx, which means
that it is rotating with unit angular velocity about the line Ox. Over a period
of δt time units, this motion has no effect on the line Ox, but it causes Oy to
rotate by δt radians in the y–z plane. So we have dOx(t + δt) = dOx(t), but
dOy(t + δt) = dOy(t) + δt dOz. The time derivatives are therefore

d

dt
dOx = lim

δt→0

dOx(t + δt) − dOx(t)

δt

= lim
δt→0

dOx(t) − dOx(t)

δt
= 0

and

d

dt
dOy = lim

δt→0

dOy(t + δt) − dOy(t)

δt

= lim
δt→0

dOy(t) + δt dOz − dOy(t)

δt
= dOz .

This accounts for the first two entries on the first line in the first table. Similarly,
Figure 2.5(b) shows a coordinate frame that is moving with a velocity equal to
dx, which means that it is translating with unit linear velocity in the x direction.
Over a period of δt time units, this motion has no effect on the line Ox, but
it causes Oy to shift by δt length units in the x direction. We therefore have
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v×∗ = −v×T

(λ v)× = λ (v×) (λ v)×∗ = λ (v×∗) (λ is a scalar)

(u + v)× = u× + v× (u + v)×∗ = u×∗ + v×∗

(Xv)× = X v×X−1 (Xv)×∗ = X∗ v×∗ (X∗)−1 (Plücker transform)

u × v = −v × u

(u × v)· = −v· u×∗ (u ×∗f)· = −f · u×
(u × v)× = u× v×− v× u× (u × v)×∗ = u×∗ v×∗ − v×∗ u×∗

Table 2.3: Properties of the spatial cross operators

dOx(t+ δt) = dOx(t), implying that ḋOx = 0, but dOy(t+ δt) = dOy(t)+ δt dz,

implying that ḋOy = dz. This accounts for the first two entries on the fourth
line in the first table. All other entries are calculated in a similar manner.

Using the tables in Figure 2.5, we can deduce that the 6 × 6 matrices rep-
resenting the operators v̂× and v̂×∗ in Plücker coordinates are

v̂O× =

[

ω

vO

]

× =

[

ω× 0

vO× ω×

]

(2.31)

and

v̂O×∗ =

[

ω

vO

]

×∗ =

[

ω× vO×
0 ω×

]

= −(v̂O×)T , (2.32)

and that the spatial cross products of two coordinate vectors are

[

ω

vO

]

×
[

m

mO

]

=

[

ω × m

ω × mO + vO × m

]

(2.33)

and
[

ω

vO

]

×∗

[

fO

f

]

=

[

ω × fO + vO × f

ω × f

]

. (2.34)

Various properties of these operators are listed in Table 2.3.

2.10 Differentiation

Vectors are differentiated in the same way as scalars. If v(x) is a differentiable
vector function of a scalar variable x, then its derivative is given by the formula

d

dx
v(x) = lim

δx→0

v(x + δx) − v(x)

δx
. (2.35)

This formula applies to all vectors. In particular, it applies both to abstract vec-
tors and to coordinate vectors. The derivative of a coordinate vector is therefore
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d
dx(u · v) = du

dx · v + u ·
dv
dx

d
dx(u·) = (du

dx )·

d
dx(u × v) = du

dx × v + u × dv
dx

d
dx(u×) = (du

dx )×
d
dx(u v·) = du

dx v· + u (dv
dx )·

d
dx(λ v) = dλ

dx v + λ dv
dx (λ scalar)

d
dx(L v) = dL

dx v + L dv
dx (L matrix or dyadic)

Table 2.4: Differentiation formulae for vector expressions

its componentwise derivative, as can be seen from the following equation:

d

dx







v1(x)
...

vn(x)






= lim

δx→0

1

δx







v1(x + δx) − v1(x)
...

vn(x + δx) − vn(x)






=







dv1

dx
...

dvn

dx






.

The formula also applies to matrices and dyadics. We will be concerned mostly
with time derivatives, which we will usually write using dot notation; that is,
dv/dt = v̇, dv̇/dt = v̈, and so on. The derivative of a vector is a vector of
the same kind; so the derivative of a motion vector is a motion vector, the
derivative of a force vector is a force vector, and so on. Differentiation formulae
for various vector expressions are shown in Table 2.4.

Differentiation in Moving Coordinates

The problem of differentiation in moving coordinates can be stated as follows:
given the coordinate vector that represents a vector v, find the coordinate vector
that represents v̇. If the basis vectors are constants, then the solution is simply
the componentwise derivative of the coordinate vector; otherwise, a formula is
required that takes into account the motion of the basis vectors.

Let A be the Plücker coordinate system associated with a Cartesian frame
that is moving with a spatial velocity of vA. Suppose we have two coordinate
vectors, Am and Af , which represent the spatial vectors m ∈ M

6 and f ∈ F
6,

respectively, and we wish to find the coordinate vectors that represent ṁ and
ḟ in A coordinates. These vectors are given by the formulae

A
(

dm

dt

)

=
dAm

dt
+ AvA × Am (2.36)

and
A
(

df

dt

)

=
dAf

dt
+ AvA ×∗ Af . (2.37)

The expressions on the left-hand sides denote the coordinate vectors represent-
ing ṁ and ḟ in A coordinates, and the expressions dAm/dt and dAf/dt denote
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the componentwise derivatives of Am and Af , respectively. AvA is the coordi-
nate vector representing vA in A coordinates. For comparison, the well-known
formula for the derivative of a 3D Euclidean vector in rotating coordinates,
expressed in the same notation, is

A
(

du

dt

)

=
dAu

dt
+ AωA × Au . (2.38)

In this equation, u ∈ E
3 is the vector being differentiated, and ωA is the angular

velocity of the coordinate frame.

Note: In formulating the dynamics algorithms that appear in subsequent chap-
ters, we generally avoid performing differentiation in moving coordinates by
formulating the algorithms in stationary coordinate systems that happen to
coincide with the moving ones at the current instant.

Dot and Ring Notation

It is slightly risky to mix dot notation with coordinate vectors because it is not
obvious whether a symbol like Aṁ means A(dm/dt) or d(Am)/dt. Nevertheless,
we shall take this risk, and make the following definitions: for any abstract
vector v, and any coordinate vector Av representing v in A coordinates,

Av̇ =
A
(

dv

dt

)

(2.39)

and

Av̊ =
dAv

dt
. (2.40)

With this notation, Eqs. 2.36 and 2.37 can be written

Aṁ = Am̊ + AvA × Am (2.41)

and
Aḟ = Af̊ + AvA ×∗ Af . (2.42)

Furthermore, if the identity of the coordinate system is clear from the context,
then we need not specify it explicitly. The equations can then be written

ṁ = m̊ + vA × m (2.43)

and

ḟ = f̊ + vA ×∗ f . (2.44)

The symbols m̊ and f̊ can be regarded as the apparent rates of change of m

and f as viewed by an observer having a velocity of vA.
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Example 2.4 Let A and B be two Cartesian frames having velocities of vA

and vB , respectively, and let BXA be the Plücker coordinate transform from A
to B coordinates. We can work out the time derivative of BXA using these four
equations, which follow from Eqs. 2.39 to 2.41:

Bṁ = BXA
Aṁ

Bm̊ =
d

dt
(BXA

Am) =

(

d

dt
BXA

)

Am + BXA
Am̊

Aṁ = Am̊ + AvA × Am
Bṁ = Bm̊ + BvB × Bm .

The derivation proceeds as follows:
(

d

dt
BXA

)

Am = Bm̊ − BXA
Am̊

= Bṁ − BvB × Bm − BXA(Aṁ − AvA × Am)

= Bṁ − BXA
Aṁ − BvB × BXA

Am + BXA
AvA × Am

= (BXA
AvA×− BvB× BXA) Am .

As this must be true for all Am, we have

d

dt
BXA = B(vA − vB)× BXA . (2.45)

2.11 Acceleration

We define the spatial acceleration of a rigid body to be the time derivative of
its spatial velocity. Thus, if a body has a spatial velocity of [ωT vT

O]T expressed
at O, then its spatial acceleration is

âO =
d

dt

[

ω

vO

]

= lim
δt→0

1

δt

[

ω(t + δt) − ω(t)
vO(t + δt) − vO(t)

]

=

[

ω̇

v̇O

]

. (2.46)

This definition may sound obvious, but it contains a surprise for those who are
already expert in the traditional method of describing rigid-body acceleration.
Consider the body shown in Figure 2.6, which is rotating at a constant angular
velocity about a fixed line in space. This body has a constant spatial velocity,
and must therefore have zero spatial acceleration; yet almost every point in the
body is travelling in a circular path, and is therefore accelerating. This paradox
is easily resolved. First, one must realise that spatial acceleration is a property
of the body as a whole, rather than a property of individual body-fixed points.
Second, one must realise that vO is not the velocity of one particular body-
fixed point, but a measure of the flow of points through O. Thus, v̇O is not
the acceleration of an individual point, but a measure of the rate of change of
flow. If the flow is constant, then v̇O will be zero even if each individual point
is accelerating.
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P

O

PO

ω

vO = ω    PO

Figure 2.6: Acceleration of a uniformly rotating body

r(t)

r(t+δt)

ω(t+δt)
O

O’

δt r(t).

Figure 2.7: Computing v̇O from r̈

Let us compare spatial acceleration with the traditional method of describing
acceleration. To this end, we introduce two more quantities: a second point,
O′, which is the body-fixed point that coincides with O at time t, and a vector,
r, which gives the position of O′ as a function of time. Thus, ṙ is the velocity of
O′ and r̈ is its acceleration. In the standard textbooks on classical mechanics,
the acceleration of a rigid body would be specified by the two 3D vectors ω̇ and
r̈; so let us examine how v̇O differs from r̈. From Eq. 2.46 we have

v̇O = lim
δt→0

vO(t + δt) − vO(t)

δt
.

Now, vO(t) = ṙ(t) because O′ coincides with O at time t, but vO(t + δt) is not
equal to ṙ(t+δt) because O′ has moved away from O by an amount δt ṙ(t) (see
Figure 2.7), so vO(t + δt) is given instead by

vO(t + δt) = ṙ(t + δt) − ω × δt ṙ(t) .

Combining these equations gives

v̇O = lim
δt→0

ṙ(t + δt) − ṙ(t) − ω × δt ṙ(t)

δt

= r̈ − ω × ṙ , (2.47)

which implies that

âO =

[

ω̇

r̈ − ω × ṙ

]

. (2.48)
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For comparison, we now define a new 6D vector,

â′

O =

[

ω̇

r̈

]

, (2.49)

which we shall call the classical acceleration of a rigid body, expressed at O. The
name reflects the fact that this vector is composed of the two 3D vectors that
are used in the classical description of rigid-body acceleration. Physically, the
classical acceleration is the apparent derivative of spatial velocity in a Plücker
coordinate system having its origin at O′, rather than O, meaning that the
coordinate frame has a pure linear velocity of ṙ. Thus, according to Eq. 2.43,
âO and â′

O are related by

âO = â
′

O +

[

0

ṙ

]

× v̂O , (2.50)

which is easily verified from Eqs. 2.48 and 2.49.
The big advantage of spatial acceleration is that it is a true vector, and it

obeys the same combination and coordinate transformation rules as velocity.
For example, if v̂1 and v̂2 denote the spatial velocities of bodies B1 and B2,
respectively, and v̂rel is the relative velocity of B2 with respect to B1, then we
already know that

v̂rel = v̂2 − v̂1 .

The equivalent formula for spatial accelerations is obtained immediately by
differentiating the velocity formula:

d

dt
v̂rel =

d

dt
v̂2 −

d

dt
v̂1 ⇒ ârel = â2 − â1 . (2.51)

Thus, spatial accelerations are composed simply by adding them together, just
like velocities. This compares favourably with the traditional formulae for com-
posing accelerations, which involve the use of Coriolis terms.

Example 2.5 Example 2.3 presented several formulae for the velocities of the
bodies in a kinematic chain. Let us now obtain the corresponding formulae for
their accelerations. First, we define aJi to be the acceleration across joint i
and ai to be the acceleration of body i; so aJi = v̇Ji and ai = v̇i. As spatial
accelerations are additive, we immediately have

aJi = ai − ai−1 , (2.52)

which is the time derivative of Eq. 2.14. Next, the derivative of Eq. 2.15 is

aJi = si q̈i + ṡi q̇i , (2.53)

where q̈i is the acceleration variable for joint i. Given that si represents a joint
motion axis that is fixed in body i (and also in body i − 1), we have

ṡi = vi × si . (2.54)
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Combining these three equations gives

ai = ai−1 + si q̈i + vi × si q̇i , (2.55)

which is the derivative of Eq. 2.16. Next, the derivative of Eq. 2.17 is

ai =

i
∑

j=1

sj q̈j + vj × sj q̇j

=

i
∑

j=1

sj q̈j +

i
∑

j=1

j−1
∑

k=1

sk × sj q̇j q̇k . (2.56)

Finally, the derivative of Eq. 2.18 is

ai = Ji q̈ + J̇i q̇ , (2.57)

where q̈ is the joint-space acceleration vector and J̇i = [ṡ1 ṡ2 · · · ṡi 0 · · · 0].

2.12 Momentum

Figure 2.8 shows a moving rigid body whose centre of mass coincides with the
fixed point C at the current instant. This body has a spatial velocity of v̂,
which is expressed at C by the two 3D vectors ω and vC . If the body has a
mass of m, and a rotational inertia of ĪC about its centre of mass, then its
momentum is described by the two 3D vectors h = m vC and hC = ĪC ω,
where h specifies the magnitude and direction of the body’s linear momentum,
and hC specifies the body’s intrinsic angular momentum. Linear momentum is
actually a line vector (like linear force), and its line of action passes through
the body’s centre of mass. The body’s moment of momentum about any given
point, O, is the sum of its intrinsic angular momentum and the moment of its
linear momentum about the given point:

hO = hC +
−−→
OC × h , (2.58)

O

C
mass:  m

ω

vC

h = m vC

OC = c
rotational
inertia:  IC

 hC = IC ω

Figure 2.8: Spatial momentum
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which is essentially the same formula as Eq. 2.6.

Let ĥ denote the spatial momentum of this rigid body, and let ĥC and ĥO

be the coordinate vectors that represent ĥ in Plücker coordinate systems with
origins at C and O, respectively. These coordinate vectors are given by

ĥC =

[

hC

h

]

=

[

ĪC ω

m vC

]

(2.59)

and

ĥO =

[

hO

h

]

=

[

ĪC ω +
−−→
OC × m vC

m vC

]

=

[

1
−−→
OC×

0 1

]

ĥC . (2.60)

As spatial momentum vectors are elements of F
6, they have the same algebraic

properties as other spatial force vectors. In particular, they transform according
to the formula Bĥ = BX∗

A
Aĥ, and a scalar product is defined between momenta

and elements of M
6. The kinetic energy of the body in Figure 2.8 is 1

2 ĥ · v̂.

2.13 Inertia

The spatial inertia tensor of a rigid body defines the relationship between its
velocity and momentum. Spatial inertia is therefore a mapping from M

6 to F
6.

If a rigid body has a spatial velocity of v and a spatial inertia of I, then its
momentum is given by the formula

h = I v . (2.61)

If h and v are coordinate vectors, then I is a 6 × 6 matrix.

Let IO and IC be the matrices representing the spatial inertia of a given rigid
body in Plücker coordinate systems having origins at O and C, respectively,
where O is an arbitrary point and C coincides with the body’s centre of mass.
From Eq. 2.59 we have

hC =

[

ĪC 0

0 m1

]

vC ,

which implies that

IC =

[

ĪC 0

0 m1

]

. (2.62)

The inertia matrix will take this special form whenever the origin coincides with
the centre of mass. From Eq. 2.60 we have

hO =

[

1 c×
0 1

]

IC vC

=

[

1 c×
0 1

]

IC

[

1 0

c×T 1

]

vO ,
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where c =
−−→
OC , which implies that

IO =

[

ĪC + m c× c×T m c×
m c×T m1

]

. (2.63)

This is the general form of the inertia matrix in Plücker coordinates. The
quantity ĪC + m c× c×T is the rotational inertia of the rigid body about O.
As ĪC is a symmetric matrix, it follows that both IC and IO are symmetric.
Furthermore, if m > 0 and ĪC is positive definite, then both IC and IO are
positive definite.

Dyadic Representation of Inertia

An expression of the form fg·, where f , g ∈ F
6, is a dyad that maps motion

vectors to force vectors. Specifically, it maps a motion vector m ∈ M
6 to

the force vector f (g · m), which is a scalar multiple of f . This dyad can be
represented in dual coordinates by a 6×6 matrix of the form f gT, where f and g

are the coordinate vectors representing f and g in the chosen coordinate system.
If f = g then the dyad is said to be symmetric, and its matrix representation
is also symmetric.

Spatial inertia is a symmetric dyadic tensor that maps from M
6 to F

6. It
can therefore be expressed as the sum of six symmetric dyads as follows:

I =
6
∑

i=1

gi gi · (gi ∈ F
6) . (2.64)

Furthermore, a body’s spatial inertia is a quantity that is fixed in the body: it
does not vary except as a function of the body’s motion. It is therefore possible
to express I as a sum of dyads in which the individual vectors gi are all fixed
in the body to which they refer. Given this expression, we can calculate the
time derivative of a spatial inertia as follows:

d

dt
I =

6
∑

i=1

( ġi gi· + gi ġi·)

=

6
∑

i=1

(v ×∗ gi) gi· +

6
∑

i=1

gi (v ×∗ gi)·

= v×∗

6
∑

i=1

gi gi· −
(

6
∑

i=1

gi gi·

)

v×

= v×∗I − I v× , (2.65)

where v is the body’s velocity. In obtaining this result, we have used Eq. 2.30
and formulae from Tables 2.3 and 2.4.
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dyad coordinate transform
mapping e.g. form formula type

M
n 7→ M

n v× mf ·

BXA (· · · ) AXB similarity

F
n 7→ F

n v×∗ f m·

BX∗

A (· · · ) AX∗

B similarity

M
n 7→ F

n I f f ·

BX∗

A (· · · ) AXB congruence

F
n 7→ M

n Φ mm·

BXA (· · · ) AX∗

B congruence

Table 2.5: Properties of dyadics

Another property that can be deduced from Eq. 2.64 is the coordinate trans-
formation rule for spatial inertias. Let AI and BI be the matrices representing
a given spatial inertia in A and B coordinates, respectively. We therefore have

AI =

6
∑

i=1

Agi
AgT

i and BI =

6
∑

i=1

Bgi
BgT

i ,

where Agi and Bgi are the coordinate vectors representing gi in A and B coor-
dinates, respectively. Now, Bgi = BX∗

A
Agi, so we have

BI =

6
∑

i=1

BX∗

A
Agi

AgT
i (BX∗

A)T

= BX∗

A
AI AXB . (2.66)

Spatial Dyadics

Spatial inertia is a mapping from M
6 to F

6; but there are three more mappings
we can define involving these two spaces, making a total of four kinds of spatial
dyadic tensor. Some of their basic properties are listed in Table 2.5. The
symbol Φ in the examples column denotes an inverse inertia (i.e., Φ = I−1).
The column marked ‘dyad form’ shows the pattern of motion and force vectors
in the dyads for each kind of tensor. If we think of a dyadic as mapping from
the ‘From’ space to the ‘To’ space, then the first vector in the dyad must be
an element of the ‘To’ space, and the second vector must be an element in the
space that is dual to the ‘From’ space. The coordinate transformation formulae
are each labelled as either a similarity transform or a congruence transform. A
similarity transform preserves properties such as rank and eigenvalues, but not
symmetry or positive definiteness. A congruence transform preserves properties
like rank, symmetry and positive definiteness, but not eigenvalues.

Properties of Spatial Inertia

We have already covered coordinate transforms (Eq. 2.66), the time derivative
(Eq. 2.65), the general form of a spatial inertia in Plücker coordinates (Eq. 2.63)
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and the fact that inertia maps velocity to momentum (Eq. 2.61). Here are a
few more properties.

• Ten parameters are required to define a spatial rigid-body inertia. More
general kinds of inertia, such as the articulated-body inertias in Chap-
ter 7, require up to 21 parameters, which is the maximum number of
independent values in a symmetric 6 × 6 matrix.

• The inertia of a rigid body that is composed of multiple parts is the sum
of the inertias of its parts.

• The kinetic energy of rigid body having a spatial velocity of v and a
spatial inertia of I is

T =
1

2
v · I v . (2.67)

2.14 Equation of Motion

The spatial equation of motion for a rigid body states that the net force acting
on the body equals its rate of change of momentum:

f =
d

dt
(Iv) = Ia + (v×∗I − Iv×) v

= Ia + v×∗Iv . (2.68)

We will often write the equation of motion in the form of an inhomogeneous
linear equation

f = Ia + p , (2.69)

in which I and p are the coefficients and f and a are the variables. In typical
use, the coefficients are assumed to be known, and one or both of the variables
are unknown. p is called the bias force, and it is simply the value that f must
take in order to produce zero acceleration. If f is the net force acting on the
body, then p = v×∗Iv.

The f in Eq. 2.68 is always the net force acting on the body, but Eq. 2.69
affords the possibility to transfer some known components of the net force from
f to p. For example, suppose the net force, fnet, is the sum of an unknown
force, fu, and a known gravitational force, fg . Equation 2.68 would then be

fnet = Ia + v×∗Iv ;

but we have the option of choosing fu as the left-hand quantity in Eq. 2.69, in
which case the equation would be

fu = Ia + p ,

and p would be defined as

p = v×∗Iv − fg .
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Example 2.6 The traditional 3D equations of motion can be recovered from
Eq. 2.68 by expanding the spatial quantities into their 3D components. To keep
the equations simple, we place the origin at the centre of mass. Equation 2.68
then expands to

[

nC

f

]

=

[

ĪC 0

0 m1

] [

ω̇

c̈ − ω × vC

]

+

[

ω× vC×
0 ω×

][

ĪC 0

0 m1

][

ω

vC

]

=

[

ĪC ω̇

m c̈ − m ω × vC

]

+

[

ω × ĪC ω + m vC × vC

m ω × vC

]

=

[

ĪC ω̇ + ω × ĪC ω

m c̈

]

.

(We have used Eq. 2.48 to express the body’s spatial acceleration in terms of
ω̇, c̈ and vC (= ċ).) Thus, we have recovered Newton’s equation for the motion
of the centre of mass,

f = m c̈ , (2.70)

and also Euler’s equation for the rotational motion of the body about its centre
of mass,

nC = ĪC ω̇ + ω × ĪC ω . (2.71)

2.15 Inverse Inertia

It is sometimes useful to write the equation of motion in the form

a = Φf + b , (2.72)

where Φ is the body’s inverse inertia and b is its bias acceleration, which is the
acceleration that the body would have if f = 0. If this equation is the inverse
of Eq. 2.69, then Φ = I−1 and b = −Φp. The advantage of Eq. 2.72 over
Eq. 2.69 is that it can be applied to a constrained rigid body.

Inverse inertia is a symmetric dyadic tensor that maps from F
6 to M

6. Some
of its properties are already listed in Table 2.5. Another useful property is that
the range of an inverse inertia is the subspace of M

6 within which the body it
applies to is free to move. This, in turn, implies that the rank of an inverse
inertia equals the degree of motion freedom of the body to which it applies.
Thus, if the body has fewer than six degrees of freedom, then Φ will be singular,
but I will not exist. The formulae for the inverse inertia of an unconstrained
rigid body, expressed in Plücker coordinates at C (the centre of mass) and O
(a general point) are

ΦC =

[

Ī
−1
C 0

0 1
m1

]

(2.73)

and

ΦO =

[

Ī
−1
C Ī

−1
C c×T

c× Ī
−1
C

1
m1 + c× Ī

−1
C c×T

]

. (2.74)
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These are just the inverses of Eqs. 2.62 and 2.63.

2.16 Planar Vectors

If a rigid body is constrained to move parallel to a given plane, then it be-
comes, in effect, a ‘planar’ rigid body. If every body in a rigid-body system is
constrained to move parallel to the same plane, then it is a planar rigid-body
system. Many practical rigid-body systems are planar.

Spatial vectors can easily describe the motions of planar rigid bodies, since
planar motion is a subset of spatial motion. However, it can be advantageous to
define a stripped-down version of spatial vector algebra specifically for planar
rigid bodies—a planar vector algebra. A planar rigid body has three degrees of
motion freedom, so planar vectors are elements of the vector spaces M

3 and F
3.

The easiest way to derive planar vector algebra is to start with spatial vector
algebra and restrict it to the x–y plane. Essentially, this means removing the
first, second and sixth basis vectors and their corresponding coordinates. Thus:

dOx

dOy

dOz

dx

dy







⇒
dO

dx

dy

dz

ex

ey

ez

eOx

eOy







⇒
e

eOx

eOy

eOz

ωx

ωy

ωz

vOx

vOy







⇒
ω
vOx

vOy

vOz

nOx

nOy

nOz

fx

fy







⇒
nO

fx

fy

fz

Note that we have removed the z subscript from the angular basis vectors and
coordinates.

The planar versions of the spatial cross operator, coordinate transform and
inertia matrix can all be obtained by extracting the appropriate 3×3 submatrix
from the 6×6 matrix. For example, the planar cross operator matrix is obtained
as follows:

[

ω

vO

]

× =

[

ω× 0

vO× ω×

]

=

















0 −ωz ωy 0 0 0
ωz 0 −ωx 0 0 0
−ωy ωx 0 0 0 0

0 −vOz vOy 0 −ωz ωy

vOz 0 −vOx ωz 0 −ωx

−vOy vOx 0 −ωy ωx 0

















,

so




ω
vOx

vOy



× =





0 0 0
vOy 0 −ω
−vOx ω 0



 (2.75)

and




ω
vOx

vOy



×





m
mOx

mOy



 =





0
vOy m − ω mOy

ω mOx − vOx m



 . (2.76)
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In like manner, we can deduce that the formula for a planar coordinate trans-
formation matrix corresponding to a shift of origin from (0, 0) to (x, y), followed
by a rotation of the coordinate frame about its new origin by an angle of θ, is

X =





1 0 0
0 c s
0 −s c









1 0 0
−y 1 0
x 0 1



 =





1 0 0
sx − cy c s
cx + sy −s c



 , (2.77)

where c = cos(θ) and s = sin(θ). Note that planar vectors inherit the properties
v×∗ = −(v×)T and X∗ = X−T from their spatial-vector counterparts. And
finally, the formula for the inertia matrix of a planar rigid body is

I =





IC + m (c2
x + c2

y) −m cy m cx

−m cy m 0
m cx 0 m



 =





IO −m cy m cx

−m cy m 0
m cx 0 m



 , (2.78)

where m is the mass, cx and cy are the coordinates of the centre of mass, and
IC and IO are the rotational inertias of the body about its centre of mass and
coordinate origin, respectively. A total of four parameters are needed to define
a planar rigid-body inertia.

2.17 Further Reading

Spatial vectors resemble the twists and wrenches of screw theory, the real-
number motors and the elements of the Lie algebra se(3) and its dual, se∗(3).
Screw theory was developed in the 19th century, and predates the modern con-
cept of a vector. The main work on screw theory is Ball (1900), but more
modern treatments can be found in Angeles (2003), Hunt (1978) and Selig
(1996). Motors come in two varieties: 6D vectors over the field of real numbers
and 3D vectors over the ring of dual numbers. The former are described in von
Mises (1924a,b) and the latter in Brand (1953). The main difference between
spatial vectors and motors is that all motors reside in a single vector space. In
this respect, the spatial vectors in Featherstone (1987) closely resemble motor
algebra. Formally, a Lie algebra is the tangent space to a Lie group at the
identity. The spaces M

6 and M
3 correspond to the Lie algebras se(3) and se(2),

and F
6 and F

3 correspond to their duals, se∗(3) and se∗(2). se(3) and se(2)
are the algebras associated with the special Euclidean groups SE(3) and SE(2),
which are the sets of every possible displacement of a rigid body in a 3D or
2D Euclidean space. Lie algebras are covered in Murray et al. (1994) and Selig
(1996). Other articles that may be of interest include Jain (1991); Park et al.
(1995); Plücker (1866); Rodriguez et al. (1991); Woo and Freudenstein (1970).
There are many more, of course—the literature on 6D vectors of various kinds
is quite extensive.



Chapter 3

Dynamics of Rigid Body

Systems

The purpose of a dynamics algorithm is to evaluate numerically an equation of
motion; but, before we can evaluate it, we must first know what that equation
is. This chapter introduces the equations of motion for a general rigid-body
system, and presents a variety of methods for constructing them from simpler
equations. These methods form the basis for various algorithms that appear in
later chapters. However, the focus of this chapter is mainly on the mathematics
of rigid-body dynamics, rather than on particular algorithms.

A rigid-body system is a collection of rigid bodies that may be connected
together by joints, and that may be acted upon by various forces. The effect of
a joint is to impose a motion constraint on the two bodies it connects: relative
motions are allowed in some directions but not in others. To be more precise,
the effect of a joint is to introduce a constraint force into the system. This force
has the special property that we do not know its value, but we do know what
effect it has on the system—it takes whatever value it needs to take in order
that the resulting motion complies with the motion constraint. A large part of
this chapter is concerned with methods for describing motion constraints, and
for applying them to rigid-body equations of motion.

Sections 3.1 and 3.2 provide a high-level introduction to the subject: Sec-
tion 3.1 presents the equations of motion in their various standard forms, and
Section 3.2 explains how they are constructed from equations describing the
subsystems, individual rigid bodies and motion constraints. The next three
sections cover the topic of motion constraint in more detail: Section 3.3 shows
how to express them as vector subspaces; Section 3.4 presents a standard clas-
sification of the kinds of constraint that can arise in a rigid-body system; and
Section 3.5 presents a detailed model of joint constraints. (We define a joint to
be any kinematic constraint on the relative motion of two bodies.) Finally, Sec-
tions 3.6 and 3.7 show how to obtain explicit equations of motion for individual
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rigid bodies, and for collections of rigid bodies, that are connected together by
joints. These last two sections illustrate the use of spatial vectors in formulating
equations of motion.

3.1 Equations of Motion

The equation of motion for a general rigid-body system can usually be written
in the following canonical form:

H(q) q̈ + C(q, q̇) = τ . (3.1)

In this equation, q, q̇ and q̈ are vectors of generalized position, velocity and
acceleration variables, respectively, and τ is a vector of generalized forces. H is
the generalized inertia matrix, and it is written H(q) to show that it depends
on q. Likewise, C is the generalized bias force, and it is written C(q, q̇) to show
that it depends on both q and q̇. Once these dependencies are understood, the
shorter symbols H and C are used. The bias force is simply the value of τ

that will produce zero acceleration. It accounts for the Coriolis and centrifugal
forces, gravity, and any other forces acting on the system other than those in
τ . Together, H and C are the coefficients of the equation of motion, and τ

and q̈ are the variables. In addition to its role in the equation of motion, H

has another important property: the kinetic energy of the system is

T =
1

2
q̇TH q̇ . (3.2)

Every quantity in Eq. 3.1 is either a coordinate vector or a matrix. It is useful
to consider, at least briefly, what kinds of object these quantities represent. To
this end, we let the symbols M

n and F
n denote the spaces of n-dimensional

motion and force vectors, respectively, where n is the degree of freedom of the
system described by Eq. 3.1. We can now say that q̇ and q̈ represent elements
of M

n, whereas τ and C represent elements of F
n, and H is a mapping from

M
n to F

n. However, q does not represent a vector, but instead represents a
point in the system’s configuration space, which is an n-dimensional manifold.

By definition, a set of generalized force variables cannot be chosen at ran-
dom, but must be chosen so that τ Tq̇ is the power delivered by τ to the system.
This implies that a system of generalized coordinates on M

n and F
n is actually

a system of dual coordinates. This, in turn, implies that generalized motion
and force vectors share many of the algebraic properties of spatial vectors, as
described in Chapter 2. The one big exception is that a cross-product operator
is not defined on generalized motions and forces.

Strictly speaking, H and C do not depend only on q and q̇, but also on the
rigid-body system itself. Thus, it would be more accurate to write H(model , q)
and C(model , q, q̇), where the symbol model refers to a collection of data that
describes a particular rigid-body system in terms of its component parts: the
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number of bodies and joints, the manner in which they are connected together,
the values of the bodies’ inertia parameters, and so on. We call this kind of
description a system model, and it is the subject of Chapter 4. For now, it is
enough to know that such a model exists, and that quantities like H and C

depend on it.
Our eventual aim is to be able to calculate the numeric values of one or

more of the quantities appearing in Eq. 3.1. In particular, we have an interest
in the following two calculations: forward dynamics, which is the calculation of
q̈ given τ , and inverse dynamics, which is the calculation of τ given q̈. We can
express these calculations succinctly as follows:

q̈ = FD(model , q, q̇, τ ) (3.3)

and

τ = ID(model , q, q̇, q̈) , (3.4)

where FD and ID are functions denoting the forward and inverse dynamics
calculations, respectively. On comparing these equations with Eq. 3.1, it is
clear that FD and ID must evaluate to H−1(τ −C) and Hq̈ +C, respectively.
However, the algorithms that implement them need not necessarily work by
calculating C or H or H−1. Thus, the useful property of Eqs. 3.3 and 3.4 is
that they show clearly the inputs and outputs of each calculation, but do not
imply any particular method of calculation.

Equation 3.1 assumes that the position variables are the integrals of the
velocity variables. This is not always the case. For example, if the system
contains nonholonomic constraints (see §3.4) then it will have more position
variables than velocity variables. Alternatively, certain kinds of motion are
better described by a redundant set of position variables, which again leads to
there being more position variables than velocity variables. Even if the number
of position and velocity variables is the same, it may occasionally be useful for
the latter to be something other than the derivatives of the former. Whatever
the reason, we can adapt Eq. 3.1 simply by replacing q̇ with an alternative
vector of velocity variables, α, to get

H(q) α̇ + C(q, α) = τ . (3.5)

A corresponding modification is then made to Eqs. 3.3 and 3.4. For simulation
purposes, we still need to know the value of q̇, so that it can be integrated to
obtain q. Equation 3.5 must therefore be supplemented with an equation to
calculate q̇ from q and α. This equation can be written

q̇ = Q(q) α , (3.6)

where Q is a matrix that depends on q and the system model. Alternatively,
it can be written

q̇ = qdfn(model , q, α) , (3.7)
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where qdfn denotes the calculation of q̇ from q and α. Equation 3.6 reveals
the mathematical structure of the relationship between q, q̇ and α by showing
that q̇ depends linearly on α; while Eq. 3.7 shows the inputs and outputs of
the calculation without implying any particular calculation method.

Still on the subject of simulation, most simulators expect to be given a set of
first-order differential equations. We can accommodate this by defining a state
variable, x = [qT αT]T, and expressing the forward dynamics in state-space
form:

ẋ =

[

q̇

α̇

]

=

[

Qα

H−1(τ − C)

]

. (3.8)

If FDx denotes the state-space forward dynamics calculation function, then

ẋ = FDx(model , x, τ ) =

[

qdfn(model , q, α)
FD(model , q, α, τ )

]

. (3.9)

In subsequent sections and chapters, we will work mostly with systems that
can be described by Eq. 3.1, rather than the more general systems described by
Eq. 3.5. This is because most of the results we shall obtain for the simpler kind
of system can be adapted in a straightforward manner to the more general kind.
Most dynamics algorithms are indifferent to the distinction between Eqs. 3.1
and 3.5, except at the level of programming details.

Finally, there is one last possibility to mention. It is sometimes impractical
or undesirable to identify and work with an explicit set of independent velocity
variables. In this case, one still uses Eq. 3.1 or 3.5 as the equation of motion;
but now q̇ and q̈ (or α and α̇) are subject to a set of motion constraints, and
so the equation of motion must be supplemented with a second equation to
describe these constraints. This topic is covered in the next section.

3.2 Constructing Equations of Motion

The equations of motion for a rigid-body system are obtained as the end result
of a sequence of mathematical operations. The starting point is a collection of
equations of motion for individual rigid bodies and/or subsystems; and the two
main operations that we perform on them are:

• collecting equations together to form the equation of a bigger subsystem,
and

• applying additional motion constraints.

By performing these operations in a particular order, we define a particular
procedure for obtaining the desired equation of motion, hence also a particular
algorithm (or class of algorithms) for a computer to calculate the numeric value
of that equation. Some of the most common procedures are as follows.

1. Collect all of the bodies (i.e., collect their equations into a single equation),
and then apply all of the constraints.
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2. Obtain the equation of motion for the spanning tree, and then apply all
remaining constraints.

3. Starting with a single body or subsystem do: add one more body or sub-
system; apply constraints pertaining to that body or subsystem; repeat.

4. Combine subsystems in pairs; apply constraints separately within each
subsystem; repeat.

Method 1 is typical of many simple dynamics algorithms. It is easy to un-
derstand, but it produces large, sparse matrices. Algorithms that take this
approach must use sparse matrix techniques, or they will be too slow com-
pared with other algorithms. An example of this method appears in Section
3.7. Method 2 is standard for closed-loop systems, and is covered in detail in
Chapter 8. The spanning tree of a closed-loop system is defined in Chapter 4 to
be a kinematic tree that accounts for all of the bodies in the original system but
only a subset of the motion constraints. The point of method 2 is that there are
very efficient algorithms available for calculating the dynamics of the spanning
tree. Method 3 is approximately how the articulated-body algorithm works,
except that it uses articulated-body equations instead of complete equations of
motion. This algorithm is described in Chapter 7. Finally, method 4 is used by
divide-and-conquer algorithms (Featherstone, 1999a,b). Algorithms that work
like this are suitable for implementation on parallel computers.

Collecting Equations of Motion

Suppose we have a set of N rigid-body subsystems, such that system i has the
equation of motion Hiq̈i +Ci = τi. If we wish to treat them as a single system,
then the equation of motion for that system is
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τ1

τ2

...
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. (3.10)

Note that a single rigid body is also a rigid-body subsystem. Thus, we could
have started with a set of N rigid bodies, or even an arbitrary mixture of
individual bodies and other systems. If subsystem i happens to be a single
rigid body, then we can use its spatial equation of motion, Iiai + pi = fi, in
place of the generalized-coordinates equation of motion (i.e., we use Ii in place
of Hi, etc.). The reason why this works is because spatial motion and force
vectors are special cases of generalized motion and force vectors; that is, M

6 and
F

6 are special cases of M
n and F

n, and Plücker coordinates on M
6 and F

6 are a
special case of generalized coordinates on M

n and F
n. Thus, we can mix spatial

velocities freely with generalized velocities, and similarly for accelerations and
forces.
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Motion Constraints

Motion constraints are algebraic constraints on the motion variables of a system.
They can be expressed in two different ways, as follows:

position velocity acceleration

implicit: φ(q) = 0 Kq̇ = 0 Kq̈ = k

explicit: q = γ(y) q̇ = Gẏ q̈ = Gÿ + g

(3.11)

where

K =
∂φ

∂q
, k = −K̇q̇ , G =

∂γ

∂y
and g = Ġẏ .

(These are not the most general equations. The general case is covered in §3.4.)
If φ and γ both describe the same constraint, then

φ ◦ γ = 0 , KG = 0 and Kg = k . (3.12)

Motion constraints are caused by constraint forces. If an unconstrained (or
less constrained) rigid-body system has the equation of motion

Hq̈ + C = τ , (3.13)

and this system is to be subjected to a motion constraint, then the equation of
motion for the constrained system is

Hq̈ + C = τ + τc , (3.14)

where τc is the constraint force. This force is unknown, but it has one important
property that allows us either to calculate its value, or to eliminate it from the
equation, as desired:

The constraint force delivers zero power along every direction of
velocity freedom that is compatible with the motion constraints.
(Jourdain’s principle of virtual power.)

In effect, this statement says that τc must satisfy τc · q̇ = 0, not just for one
value of q̇, but for every value that is allowed by the constraint. If the system
is subject to an implicit motion constraint, then it can be shown that τc takes
the form

τc = KTλ , (3.15)

where λ is a vector of unknown force variables; and if the system is subject to
an explicit motion constraint, then τc has the property

GTτc = 0 . (3.16)

These equations are easily verified. If τc = KTλ then τc · q̇ = λTKq̇, and this
expression will be zero for every q̇ satisfying Kq̇ = 0. Likewise, if q̇ = Gẏ then
q̇ · τc = ẏTGTτc, and this expression will be zero for all ẏ if GTτc = 0. The
elements of λ can be regarded as a set of Lagrange multipliers.
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Applying Implicit Motion Constraints

To apply an implicit motion constraint to a rigid-body system, we simply substi-
tute Eq. 3.15 into Eq. 3.14, and combine the result with the implicit acceleration
constraint equation in Eq. 3.11. The result is

[

H KT

K 0

] [

q̈

−λ

]

=

[

τ − C

k

]

. (3.17)

This is a set of n + nc equations in n + nc unknowns, where n = dim(q̈) is
the degree of freedom of the unconstrained system and nc = dim(λ) = dim(φ)
is the number of constraints imposed upon it. It can be shown that the rank
of the coefficient matrix is n + nic, where nic = rank(K) is the number of
independent constraints imposed on the system. Thus, if nic = nc then the
coefficient matrix is nonsingular, and Eq. 3.17 can be solved for both q̈ and λ.
However, if nic < nc then it is still possible to solve Eq. 3.17 for q̈, but there
will be nc − nic degrees of indeterminacy in λ. A system in which nic < nc is
said to be overconstrained. Ideally, we would always have nic = nc, but it is
not always possible to guarantee this in practice.

Applying Explicit Motion Constraints

To apply an explicit motion constraint to a rigid-body system, we combine
Eq. 3.14 with Eq. 3.16 and the explicit acceleration constraint equation in
Eq. 3.11. The resulting equation is





H −1 0

−1 0 G

0 GT 0









q̈

τc

ÿ



 =





τ − C

−g

0



 . (3.18)

Applying one step of Gaussian elimination to this equation produces





H −1 0

0 H−1 G

0 GT 0









q̈

τc

ÿ



 =





τ − C

H−1(τ − C) − g

0



 ,

from which we can extract
[

H−1 G

GT 0

][

τc

ÿ

]

=

[

H−1(τ − C) − g

0

]

; (3.19)

and applying Gaussian elimination to this equation produces

[

H−1 G

0 −GTHG

][

τc

ÿ

]

=

[

H−1(τ − C) − g

−GT(τ − C − Hg)

]

,

from which we get
GTHGÿ = GT(τ − C − Hg) . (3.20)
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Finally, if we make the substitution u = GTτ , where u is a new set of gener-
alized forces, then we get

HG ÿ + CG = u , (3.21)

where

HG = GTHG and CG = GT(C + Hg) .

Thus, we have obtained a new equation of motion for the constrained system
that has the same algebraic form as the equation of motion for the unconstrained
system in Eq. 3.13.

A few remarks are in order at this point. First, Eq. 3.19 can be regarded
as the dual of Eq. 3.17 in the sense that the motion and force variables have
changed places. However, 3.17 is more useful than 3.19 in practice. Second,
Eq. 3.20 can be obtained directly from Eq. 3.14 by first premultiplying it by GT,
which eliminates τc, and then substituting for q̈ using the explicit acceleration
constraint in Eq. 3.11. This method is sometimes called the projection method

on the grounds that the first step amounts to a projection of the equation of
motion onto the range space of GT. Third, HG inherits from H the properties
of symmetry and positive definiteness. It also has the property that the kinetic
energy of the constrained system is

T =
1

2
ẏTHG ẏ . (3.22)

Finally, we can show that u · ẏ is the power delivered to the constrained system
as follows:

u · ẏ = (GTτ )Tẏ = τTGẏ = τ · q̇ . (3.23)

Thus, u does indeed satisfy the definition of a vector of generalized forces.

3.3 Vector Subspaces

Vector subspaces are the natural mathematical tool for describing and analysing
kinematic constraints because they capture the essential aspects of a constraint.
For example, the system in Eq. 3.13 is free to move in M

n because q̇ is an
element of M

n and it is unconstrained. However, the system in Eq. 3.14 is
constrained to move only in the subspace S ⊂ M

n. If the constraint has been
described implicitly, then S = null(K); and if it has been described explicitly,
then S = range(G). If K1 and K2 both describe the same constraint, then
the one thing they must have in common is that null(K1) = null(K2) = S.
Likewise, if G1 and G2 describe the same constraint, then the one thing they
must have in common is that range(G1) = range(G2) = S. Thus, it is the
subspace S, rather than any one particular matrix, that captures the essence
of the constraint. This section therefore reviews some basic material on vector
subspaces and how they can be used.
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Basics

A subspace of a vector space is a subset that is also a vector space. Thus, a
subspace is any subset that is closed with respect to the operations of addition
and scalar multiplication. Let V be a vector space, and let Y = {y1, y2, . . .}
be any subset of V . The quantity span(Y ) is the set of all linear combina-
tions of the elements of Y , and is therefore a subspace. It follows that any
subset that satisfies Y = span(Y ) is a subspace. If S is a subspace of V , and
Y = {y1, y2, . . .} is a basis on S, then S = span(Y ) and dim(S) = |Y | (i.e.,
the dimension of S equals the number of elements in Y ). A zero-dimensional
subspace is a set containing only the zero vector. Given that a subspace is itself
a vector space, it follows that a subspace may have subspaces, and so on.

There is no special symbol for ‘is a subspace of’. Instead, we use the symbol
for a subset. Thus, we write Y ⊆ V to indicate that Y is a subset of V , and
S ⊆ V to indicate that S is a subspace. One must read the surrounding text
to discover which meaning is intended. The expression S ⊂ V indicates that S
is a proper subspace of V , which implies that dim(S) < dim(V ).

Suppose that S ⊆ V , and that dim(S) = m and dim(V ) = n. It follows
that m must lie in the range 0 ≤ m ≤ n. If m = 0 then S = {0}; and if
m = n then S = V ; but if m takes any other value, then there are infinitely
many subspaces having that dimension. The number of parameters required to
identify uniquely an m-dimensional subspace of an n-dimensional vector space
is m(n − m).

Matrix Representation

The simplest way to represent a subspace is as the range or null space of a
matrix. We will mostly use the former. Let S be an m-dimensional subspace
of the n-dimensional vector space V , and let S = {s1, . . . , sm} be a basis on
S. Any vector v ∈ S can then be expressed in the form v =

∑m
i=1 si αi,

where αi are the coordinates of v in S. If si are themselves coordinate vectors,
expressed in a basis on V , then they can be assembled into an n × m matrix,
S = [s1 · · · sm], which has the property that range(S) = S. v can then be
expressed in the form v = Sα, where α = [α1 · · · αm]T.

The matrix S defines both a subspace and a basis. In fact, of the mn num-
bers contained in S, we can say that m(n − m) define the subspace and m2

define the basis. If S ′ = {s′
1, . . . , s

′
m} is another basis on S, then the matrix

S′ = [s′
1 · · · s′

m] defines the same subspace as S, but a different basis. In this
case, S′ can be expressed in the form S′ = SA, where A is the coordinate trans-
form from S ′ to S coordinates. (The elements of A satisfy s′

j =
∑m

i=1 si Aij .)
Thus, any matrix SA, where A is invertible, describes the same subspace as S.

Decomposition of Vectors

One of the most basic operations that can be performed on a vector is to
decompose it into its components in two subspaces. Given a vector v ∈ V and
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subspaces S1, S2 ⊆ V , the idea is to express v in the form v = v1 + v2, where
v1 ∈ S1 and v2 ∈ S2. This decomposition is possible if v ∈ span(S1 ∪ S2),
and it is unique if S1 ∩ S2 = {0} (i.e., S1 and S2 have no nonzero element in
common). If we want the decomposition to be both possible and unique for any
v, then S1 and S2 must satisfy

S1 ∩ S2 = {0} and dim(S1) + dim(S2) = dim(V ) . (3.24)

(These conditions imply span(S1 ∪S2) = V .) If S1 and S2 satisfy Eq. 3.24 then
we can say that V is the direct sum of S1 and S2, which is written

V = S1 ⊕ S2 . (3.25)

This equation is simply a short-hand way of saying that any element of V can
be decomposed uniquely into the sum of an element of S1 and an element of
S2. Essentially, Eqs. 3.24 and 3.25 say the same thing.

Let us now perform the decomposition. We are given a vector v ∈ V and
two matrices S1 and S2 representing subspaces that satisfy Eq. 3.25; and the
task is to find α1 and α2 that satisfy

v = S1 α1 + S2 α2 = [S1 S2]

[

α1

α2

]

. (3.26)

This problem can be solved using the following result: if S1 ⊕ S2 = V then
[S1 S2] defines a basis on V , and is therefore a nonsingular matrix. Given that
[S1 S2]

−1 exists, the solution to Eq. 3.26 is simply

[

α1

α2

]

= [S1 S2]
−1v . (3.27)

This formula extends in the obvious way to the task of decomposing a vector
into components in more than two subspaces.

Orthogonal Complements

If two Euclidean vectors, u and v, satisfy the equation u · v = 0, then they
are said to be orthogonal. If Y1 and Y2 are subsets of E

n, and every element
of Y1 is orthogonal to every element of Y2, then the two subsets are said to be
orthogonal, which is written Y1 ⊥ Y2. The set of all vectors that are orthogonal
to a given subset, Y ⊆ E

n, is called its orthogonal complement, and is written
Y ⊥. An orthogonal complement is always a subspace. Some basic properties
of orthogonal subsets are listed in Table 3.1.

This form of orthogonality is based on the Euclidean inner product, and
is therefore applicable only to Euclidean vectors. However, it is possible to
define other forms of orthogonality, which are based on other scalar products.
In particular, if u ∈ U and v ∈ V , where U = V ∗, then a scalar product is
defined between u and v, and it is possible to say that if u · v = 0 then they
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Subsets: Subspaces:

Y1 ⊥ Y2 ⇒ Y2 ⊥ Y1 dim(S) + dim(S⊥) = dim(U)

Y1 ⊥ Y2 ⇒ span(Y1) ⊥ Y2 S1 ⊥ S2 ⇔ ST
1 S2 = 0

Y1 ⊥ Y2 ∧ Z ⊆ Y1 ⇒ Z ⊥ Y2 S1 ⊕ S⊥
2 = U ⇔ (ST

1 S2)
−1 exists

Y1 ⊥ Y2 ⇒ Y1 ⊆ Y ⊥
2 S1 ⊕ S⊥

2 = U ⇔ S⊥
1 ⊕ S2 = V

Y ⊥ = (span(Y ))⊥ Euclidean Subspaces:

(Y ⊥)⊥ = span(Y ) S ⊕ S⊥ = E
n

Table 3.1: Properties of orthogonal subsets. In the general case, S, S1, Y, Y1 ⊆ U
and S2, Y2 ⊆ V where U = V ∗. In the Euclidean case, S, . . . , Y2 ⊆ E

n

are orthogonal. By extension, if Y1 and Y2 are subsets of U and V , respectively,
and every element of Y1 is orthogonal to every element of Y2, then Y1 ⊥ Y2.
Likewise, the set of all elements of V that are orthogonal to Y ⊆ U is the
orthogonal complement of Y .

Observe that the Euclidean and dual forms of orthogonality have differ-
ent and incompatible mathematical properties. In particular, the relationship
Y1 ⊥ Y2 can only be true in the Euclidean sense if Y1 and Y2 are subsets of the
same vector space, and it can only be true in the dual sense if they are subsets
of different vector spaces.1 Orthogonal complements have gained a degree of
notoriety in the robotics literature, owing to the mistaken practice of treating
6D vectors as if they were Euclidean, and using the Euclidean form of orthog-
onal complement instead of the dual form. The matter is discussed in Duffy
(1990). Some authors have sought to distance themselves from this mistake
by using alternative names like ‘natural orthogonal complement’ or ‘reciprocal
complement’ for the dual form of the orthogonal complement.

Orthogonal complements play the following role in rigid-body dynamics: if
a system is initially free to move in M

n, and a motion constraint restricts the
motion to a subspace S ⊆ M

n, then the constraint force that imposes this
constraint on the system is an element of S⊥ ⊆ F

n.

Example 3.1 Suppose we have been given a motion subspace, S ⊆ M
6, and a

spatial inertia, I : M
6 7→ F

6, which is positive definite. With these quantities,
we can define two subspaces, Ta = IS and Tc = S⊥, which have the property
Ta ⊕ Tc = F

6. (The expression IS is the image of S under the mapping I ,
i.e., the set {Is | s ∈ S}.) We can prove this property as follows. According
to Eq. 3.24, we must show that dim(Ta) + dim(Tc) = 6, and that Ta ∩ Tc does
not contain a nonzero element. The first part is easy: dim(Ta) = dim(S) and
dim(Tc) = 6 − dim(S). To prove the second part, we suppose that t 6= 0 ∈
(Ta ∩Tc) and prove a contradiction: if t ∈ Ta then there exists a nonzero s ∈ S
such that t = Is; but if t ∈ Tc then sTt = 0, implying sTIs = 0; but this is

1One way around this is to declare that a Euclidean vector space is self-dual.
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impossible because I is positive definite.
Having established that Ta⊕Tc = F

6, we can decompose any f ∈ F
6 uniquely

into components fa ∈ Ta and fc ∈ Tc. Given any matrix S spanning S, we can
obtain fa and fc as follows:

STf = STfa + STfc = STfa ,

but fa = ISα for some α, so

STf = STISα ,

which implies
α = (STIS)−1STf ,

hence
fa = IS(STIS)−1STf . (3.28)

fc then follows simply from fc = f−fa. The expression in Eq. 3.28 clearly must
be independent of the particular choice of S. We can prove this by replacing
each instance of S in this equation with SA, where A is any invertible matrix
of the correct size, and showing that the ‘A’s cancel out.

The physical interpretation of this decomposition is as follows. If I is the
inertia of a rigid body that is constrained to move in the subspace S, and f

is a force applied to that body, then fa is the component of f that causes
acceleration, and fc is the component that is opposed by the constraint force
(i.e., the constraint force will be −fc). If the body is at rest, and is not subject
to any forces other than f and the motion constraint force, then its acceleration
will be

a = I−1fa = S(STIS)−1STf .

The expression S(STIS)−1ST is the apparent inverse inertia of the constrained
rigid body (cf. Eq. 3.54).

3.4 Classification of Constraints

Kinematic constraints can be classified according to the nature of the constraint
they impose on a rigid-body system. In every case, the constraint is described
by an algebraic equation in the motion variables of the system, but the form of
the equation varies. A standard classification hierarchy is shown in Figure 3.1.

The first distinction is made between equality and inequality constraints.
The former arise from permanent physical contact between pairs of rigid bodies;
and the latter arise when bodies are free both to make contact and to separate.
Inequality constraints can be used to describe phenomena such as collision,
bouncing and loss of contact. They are the subject of Chapter 11, and will not
be considered further here.

The next distinction is between holonomic and nonholonomic constraints.
The former are constraints on the position variables, and arise typically from
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kinematic
constraints

inequalityequality

nonholonomic

scleronomic

holonomic

rheonomic

φ(...)=0

φ(q1,...,qn,t)=0

φ(...)   0

φ(q1,...,qn)=0

φ(q1,...,qn,q1,...,qn,t)=0. .

Figure 3.1: Classification of kinematic constraints

sliding contact. The latter are constraints on the velocity variables, and arise
typically from rolling contact. A nonholonomic constraint function, φnh, is
linear in the velocity variables, and can therefore be expressed in the form

φnh(q, q̇, t) = φ0
nh +

n
∑

i=1

φi
nh q̇i , (3.29)

where the coefficients φi
nh are functions of the position variables and time only.

For comparison, the time derivative of a holonomic constraint function, φh, is

d

dt
φh(q, t) =

∂φh

∂t
+

n
∑

i=1

∂φh

∂qi
q̇i , (3.30)

which has the same algebraic form. Thus, at the velocity and acceleration levels,
there is no difference between holonomic and nonholonomic constraints. The big
difference between these two equations is that Eq. 3.29 is nonintegrable; that is,
φnh is not the derivative of any function, or else it would simply be a holonomic
constraint expressed via its derivative.2 The consequence of this property is
that a system containing nonholonomic constraints has more positional degrees
of freedom than velocity degrees of freedom, and therefore needs more position
variables than velocity variables. If a rigid-body system contains at least one
nonholonomic constraint, then it is called a nonholonomic system; otherwise,
it is called a holonomic system. Thus, Eq. 3.1 can describe only a holonomic
system, but Eq. 3.5 can describe both holonomic and nonholonomic systems.

The final distinction is between a scleronomic constraint, which is a function
of the position variables only, and a rheonomic constraint, which is a function

2Given that a constraint equation holds at all times, rather than only at a single instant,
the two equations φ̇ = 0 and φ = 0 describe the same constraint.
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B1

B2

B1

B2

l1 l2

l3

(a) (b) (c) (d)

Figure 3.2: Examples of kinematic constraints

also of time. Scleronomic constraints arise from sliding contact between a sur-
face fixed in one body and a surface fixed in another. They are both the simplest
and the most common kind of constraint in a typical mechanical system. Rheo-
nomic constraints can be regarded as scleronomic constraints in which one or
more sliding freedoms have been forced to vary as a prescribed function of time.
The role of rheonomic constraints is to introduce kinematic excitations into a
system; that is, prescribed motions.

Some examples of kinematic constraints are shown in Figure 3.2. Diagrams
(a) and (b) show a cylindrical joint and a prismatic joint, respectively. Both are
scleronomic constraints. The cylindrical joint allows body B2 to slide and rotate
relative to B1, whereas the prismatic joint allows only a relative sliding motion.
Thus, the cylindrical joint allows two degrees of motion freedom, while the
prismatic joint allows only one. If we were to make one of the cylindrical joint’s
freedoms a prescribed function of time, then it would become a one-degree-of-
freedom rheonomic constraint. If we were to do the same to the prismatic joint,
then it would become a zero-degree-of-freedom rheonomic constraint (which is
actually quite useful).

A kinematic constraint is nearly always a relationship between two bodies.
However, it is possible to devise constraints that involve more than two bodies,
and that cannot be reduced to a set of two-body constraints. An example is
shown in Figure 3.2(c). This diagram shows a 2-D rigid-body system in which
three identical circular bodies are constrained to lie within the perimeter of a
massless, zero-diameter, inelastic string. Assuming the string stays taut, the
three bodies are free to move in any way that satisfies the equation l1 + l2 +
l3 + 2πr = p, where p and r are the perimeter of the string and the radius of a
body, respectively.

Figure 3.2(d) shows a sphere resting on a planar surface. If this sphere is
constrained to roll without slipping, then it has three degrees of instantaneous
motion freedom: it can roll in two directions, and it can spin about the contact
point. However, by a suitable sequence of manoeuvres, it is possible for the
sphere to arrive at any point on the plane, with any orientation. It therefore
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has five degrees of position freedom. This is the characteristic feature of a
nonholonomic constraint. If the sphere were free to slide, then it would be a
scleronomic constraint.

It is clear from the shapes of the bodies in Figure 3.2(a) and (b) that they
cannot be pulled apart; but there is nothing that physically prevents the string
in 3.2(c) from going slack, or the sphere in 3.2(d) from losing contact with
the plane. If we know enough about the forces that will be acting on these
systems to be sure that such an event will not occur, then it is possible to model
these constraints as equality constraints; otherwise, they must be modelled as
inequality constraints.

3.5 Joint Constraints

We define a joint to be a kinematic constraint between two bodies. Thus, a joint
can impose anywhere from zero to six constraints on the relative velocity of a
pair of rigid bodies. We call the two bodies the predecessor and the successor,
and we say that the joint connects from the predecessor to the successor. The
joint velocity, vJ, is then defined to be the velocity of the successor relative to
the predecessor:

vJ = vs − vp , (3.31)

where vp and vs are the velocities of the predecessor and successor bodies,
respectively. The general form of the joint constraint is

vJ = S(q, t) q̇ + σ(q, t) , (3.32)

where S is the joint’s motion subspace matrix, σ is the bias velocity, q and
q̇ are the joint’s position and velocity variables, and t is time. If the position
variables are not the integrals of the velocity variables, then one must use a
different symbol either for q̇ or for q. The bias velocity is the value that vJ

takes when q̇ = 0, and it has a nonzero value only if the joint depends explicitly
on time (i.e., if it is a rheonomic or time-dependent nonholonomic constraint).
If the joint does not depend on time, then Eq. 3.32 simplifies to

vJ = S(q) q̇ . (3.33)

The effect of Eq. 3.32 is to confine the velocity vJ −σ to the subspace S ⊆ M
6.

If the joint allows nf degrees of relative motion freedom, then dim(S) = nf

and S is a 6 × nf matrix.3 The number of constraints imposed by the joint is
nc = 6 − nf , and the constraint force must lie in the nc-dimensional subspace
S⊥ ⊆ F

6.

3If nf = 0 then S is a 6×0 matrix. Such quantities follow the basic rules of matrix algebra,
plus one extra rule: the product of an m × 0 matrix with a 0 × n matrix is an m × n matrix
of zeros. Thus, the product of the 6 × 0 matrix S with the 0× 1 vector q̇ is a 6× 1 vector of
zeros.
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Let fJ be the force transmitted across the joint. We define this to be the
force transmitted from the predecessor to the successor; so the force acting on
the successor is fJ and the force acting on the predecessor is −fJ. This force
can be regarded as the sum of an active force and a constraint force. The former
comes from actuators, springs, dampers, or any other force element acting at
the joint (or between the two bodies), and the latter is the force that imposes
the motion constraint. At this point, we have a choice. The constraint force
must be an element of the subspace S⊥, but there are two ways to handle the
active force: it can be treated either as a known spatial force, or as a generalized
force mapped onto a subspace of F

6. We shall choose the latter here.

Let T and Ta be the constraint and active force subspaces, respectively. By
definition, T = S⊥, but Ta can be any subspace that satisfies T ⊕ Ta = F

6. We
can now express fJ in the form

fJ = Taτ + Tλ , (3.34)

where Taτ is the active force, Tλ is the constraint force, Ta and T satisfy

T T
a S = 1 (3.35)

and

T TS = 0 , (3.36)

τ is the generalized force vector corresponding to q̇, and λ is a vector of con-
straint force variables. Given the properties of Ta and T , we can immediately
deduce that

STfJ = τ (3.37)

and

T TvJ = T Tσ . (3.38)

Equation 3.37 is the formula for obtaining the generalized force at a joint from
the spatial force transmitted across it; and Eq. 3.38 is the implicit form of the
velocity constraint equation.

The justification for Eq. 3.35 is as follows. The total power delivered by the
joint is fJ · vJ, but this comes from two independent power sources: σ and τ .
The power attributable to σ is fJ · σ, so the power attributable to τ must be
fJ · Sq̇. Now, this second power must also be equal to τ · q̇ because they are
the generalized force and velocity vectors at the joint, so we have the following
power balance equation:

τ · q̇ = fJ · Sq̇ = τTT T
a S q̇ ; (3.39)

but this equation must be true for all τ and q̇, so we must have T T
a S = 1.
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The joint’s acceleration constraint equations are obtained directly from
Eqs. 3.32 and 3.38 by differentiation. The derivative of Eq. 3.32 is

aJ = Sq̈ + Ṡq̇ + σ̇

= Sq̈ + (S̊ + vs × S)q̇ + (σ̊ + vs × σ)

= Sq̈ + S̊q̇ + σ̊ + vs × (Sq̇ + σ)

= Sq̈ + cJ + vs × vJ , (3.40)

where S̊ and σ̊ are the apparent derivatives of S and σ in a coordinate system
that is moving with the successor body, and

cJ = S̊q̇ + σ̊ . (3.41)

(Actually, cJ = v̊J.) If S and σ are functions of q and t, as shown in Eq. 3.32,

then the general formulae for S̊ and σ̊ are

S̊ =
∂S

∂t
+

np
∑

i=1

∂S

∂qi
q̇i (3.42)

and

σ̊ =
∂σ

∂t
+

np
∑

i=1

∂σ

∂qi
q̇i , (3.43)

where np is the number of joint position variables.
Before moving on, readers should bear in mind that the relatively compli-

cated equations above apply to a general case that is almost never needed in
practice. This is partly because most common joint types have the property
that S̊ = 0 and σ = 0 (implying cJ = 0), and partly because on the rare occa-
sions when one encounters an explicit time dependency in a joint (i.e., a joint
for which σ 6= 0), it is almost always possible to implement the time-dependent
term via the hybrid dynamics algorithms of Chapter 9 rather than using σ.

Finally, the implicit acceleration constraint equation can be obtained either
by differentiating Eq. 3.38 or by multiplying Eq. 3.40 by T T. Both give the
same result, but the latter is easier:

T TaJ = T T(Sq̈ + cJ + vs × vJ)

= T T(cJ + vs × vJ) . (3.44)

Example 3.2 Let us examine how to define an active force subspace. Figure
3.3 shows a system comprising a moving body, B, that is connected to a fixed
base via a revolute joint, and a motor, M , that drives this joint via a pinion and
gear wheel. The x and y axes of a coordinate frame are also shown, the z axis
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Figure 3.3: Defining an active force subspace

being aligned with the joint’s rotation axis. Expressed in these coordinates, the
joint’s motion and constraint-force subspace matrices are

S =

















0
0
1
0
0
0

















and T =

















1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

















.

Strictly speaking, these are not the only possible values for S and T , since any
two matrices that span the correct subspaces would do.

The active force is transmitted to B at the point where the two gears touch,
and it is a linear force of magnitude f in the y direction. The coordinates of
the contact point are (−r, 0, 0), where r is the radius of the gear wheel, so the
Plücker coordinates of the active spatial force are f = [0 0 −rf 0 f 0]T.
Now, τ is just a scalar in this example, so if f = Taτ then Ta is just a scalar
multiple of f . From Eq. 3.35 we have that Ta must satisfy T T

a S = 1, so the
solution is simply

Ta = f/(fTS) =

















0
0
1
0

−1/r
0

















.

Observe that both Ta and range(Ta) depend on r. This dependency has no
effect on the equation of motion, but it does affect the value of the constraint
force. Physically, the constraint force comes from the joint’s bearings. Thus, if
the task is to simulate the motion of the system, then r is irrelevant; but if the
task is to select appropriate bearings for the joint, then the value of r must be
taken into account.
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Figure 3.4: A constrained rigid body

3.6 Dynamics of a Constrained Rigid Body

Consider the rigid body shown in Figure 3.4. This body is connected to a fixed
base by a joint having a motion subspace of S ⊆ M

6. The joint imposes nc

constraints on the motion of the body, leaving it with nf degrees of motion
freedom, where nf = dim(S) and nc = 6 − nf = dim(S⊥). Three forces act on
this body: an applied force, f , a constraint force, fc, and a gravity force, fg ,
which is not shown. The equation of motion for this body is therefore

f + fc + fg = Ia + v ×∗ Iv ,

where I , a and v are the body’s inertia, acceleration and velocity, respectively.
We are not particularly interested in the individual terms fg and v ×∗ Iv, so
we collect them into a single bias-force term, p = v ×∗ Iv − fg . The equation
of motion for the constrained rigid body is then

f + fc = Ia + p , (3.45)

subject to the constraints

v ∈ S and fc ∈ S⊥ . (3.46)

We seek a solution to this system of equations in which the acceleration is given
as a function of the applied force. Note that fc is an unknown quantity, and
must be evaluated and/or eliminated as part of the solution process.

Method 1

Let us introduce a 6 × nf matrix, S, that spans the subspace S. With this
matrix, the constraint equations in Eq. 3.46 can be written in the form

v = S q̇ (3.47)

and

STfc = 0 ; (3.48)
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and the acceleration constraint is

a = S q̈ + Ṡ q̇ , (3.49)

where q̇ and q̈ are vectors of joint velocity and acceleration variables, respec-
tively. Equation 3.48 implies that we can eliminate fc from Eq. 3.45 by multi-
plying both sides by ST, giving

STf = ST(I a + p) . (3.50)

Substituting Eq. 3.49 into this equation produces

STf = ST(I (S q̈ + Ṡ q̇) + p) ,

which can be solved for q̈ as follows:

q̈ = (STIS)−1ST(f − I Ṡ q̇ − p) . (3.51)

The expression STIS is an nf × nf symmetric, positive-definite matrix, and is
therefore guaranteed to be invertible. Having found an expression for q̈, the
final step is to substitute Eq. 3.51 back into Eq. 3.49, giving

a = S (STIS)−1ST(f − I Ṡ q̇ − p) + Ṡ q̇ . (3.52)

This equation can be written in the form

a = Φf + b , (3.53)

where
Φ = S (STIS)−1ST (3.54)

and
b = Ṡ q̇ − Φ(I Ṡ q̇ + p) . (3.55)

Φ is the constrained body’s apparent inverse inertia, and b is its bias acceler-
ation, which is the acceleration it would have if f = 0. The apparent inverse
inertia describes how the acceleration would change in response to a change
in the applied force. It is a symmetric, positive-semidefinite matrix with the
following properties: range(Φ) = S, null(Φ) = S⊥ and rank(Φ) = nf .

Method 2

Another way to solve the system of equations in Eqs. 3.45 and 3.46 is to in-
troduce a 6 × nc matrix, T , that spans S⊥. With this matrix, the constraint
equations can be written in the form

T Tv = 0 (3.56)

and
fc = T λ , (3.57)
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where λ is a vector of constraint force variables, and the acceleration constraint
is

T Ta + Ṫ Tv = 0 . (3.58)

Substituting Eq. 3.57 into Eq. 3.45 gives

f + T λ = I a + p . (3.59)

Equations 3.58 and 3.59 can then be combined into a single equation,

[

I T

T T 0

][

a

−λ

]

=

[

f − p

−ṪTv

]

, (3.60)

which can be solved for a and λ. The coefficient matrix in this equation is
symmetric and nonsingular, but not positive definite.

Method 3

A third possibility is to derive an equation of motion expressed in generalized
coordinates. The vectors q̇ and q̈ can be used as the generalized velocity and
acceleration variables of the constrained rigid body, so Eq. 3.51 already gives
the generalized acceleration as a function of the applied spatial force, f . Let
τ denote the generalized force acting on the body. For τ to be equivalent to
f , both forces must deliver the same power for any velocity in S. The power
delivered by τ is τTq̇, and that delivered by f is fTv, so we have

τTq̇ = fTv = fTS q̇ ;

but this equation must hold for all q̇, so

τ = STf . (3.61)

Substituting this equation into Eq. 3.51 gives

q̈ = (STIS)−1(τ − ST(I Ṡ q̇ + p)) ,

which is the equation of motion for the constrained rigid body, expressed in
generalized coordinates. It can be written in the standard form

H q̈ + C = τ , (3.62)

where
H = STIS (3.63)

is the generalized inertia matrix and

C = ST(I Ṡ q̇ + p) (3.64)

is the generalized bias force.
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Equation 3.61 implies a small loss of information in going from f to τ .
Infinitely many different values of f map to the same value of τ , and therefore
produce the same acceleration, but each produces a different value of fc. If
only τ is known, then it is possible to work out the value of the sum f +
fc, but not the values of the individual vectors. If the objective is motion
simulation, then the lost information is irrelevant; but if the objective is to
design a mechanical system, then the lost information is relevant to tasks like
calculating the dynamic load forces on the joint bearings.

3.7 Dynamics of a Multibody System

We conclude this chapter by developing an equation of motion for a system con-
taining multiple bodies and joints. This analysis shows the connection between
the joint-related material in Sections 3.5 and 3.6 and the generalized constraints
in Section 3.2, by showing how the latter can be constructed from the former.

Suppose we have a rigid-body system containing the following elements: a
fixed base, which we regard as body number zero; NB mobile rigid bodies, which
are numbered 1 to NB; and NJ joints, which are numbered 1 to NJ . For each
joint j, we define p(j) and s(j) to be the body numbers of the predecessor and
successor bodies of that joint. This set of 2NJ numbers defines the connectiv-

ity of the system. For the analysis to follow, we make no restrictions on the
connectivity.

In formulating the equation of motion, we shall follow Method 2 in Section
3.6, but with extra steps where necessary because of the greater complexity of
the current system.

Step 1: Body Equations of Motion

We assume that the only forces acting on body i are the force of gravity, fgi,
and forces from the joints that are connected to it. The equation of motion for
body i can then be written

fi = Ii ai + pi ,

where fi is the sum of the joint forces acting on body i, and pi = vi×∗Iivi−fgi

is the bias force. The equations for all NB bodies can be assembled into a single
equation,











f1

f2
...

fNB











=











I1 0 · · · 0

0 I2 · · · 0
...

...
. . .

...
0 0 · · · INB





















a1

a2

...
aNB











+











p1

p2
...

pNB











. (3.65)

We can express this equation more compactly as

f = I a + p , (3.66)
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where f , a and p are 6NB-dimensional vectors, and I is a 6NB × 6NB block-
diagonal matrix. For completeness, we also define v = [vT

1 vT
2 · · · vT

NB
]T, where

vi is the velocity of body i, as this vector will be needed in the joint constraint
equation.

Step 2: Joint Motion from Body Motion

The vector a in Eq. 3.66 is a vector of body accelerations; but the constraints
imposed by the joints are expressed in terms of joint velocities and accelerations.
Therefore, we need a formula to express joint motion in terms of body motion.
Let vJj and aJj denote the velocity and acceleration, respectively, across joint
j; and let vJ and aJ be the 6NJ-dimensional vectors formed by concatenating
vJ1 · · ·vJNJ

and aJ1 · · ·aJNJ
, respectively. By definition, vJj and aJj are the

velocity and acceleration of the joint’s successor body relative to its predecessor;
so

vJj = vs(j) − vp(j)

and
aJj = as(j) − ap(j) .

These equations can be collected together and expressed as follows:

vJ =







vJ1

...
vJNJ






=







vs(1) − vp(1)

...
vs(NJ ) − vp(NJ)






= P Tv (3.67)

and

aJ =







aJ1

...
aJNJ






=







as(1) − ap(1)

...
as(NJ) − ap(NJ )






= P Ta , (3.68)

where

Pij =







16×6 if i = s(j)
−16×6 if i = p(j)
06×6 otherwise.

(3.69)

P is therefore a 6NB × 6NJ matrix, which is organized as an NB × NJ block
matrix of 6× 6 blocks, and it maps the vectors of collected body velocities and
accelerations (v and a) to the vectors of collected joint velocities and acceler-
ations (vJ and aJ). Each row4 in P corresponds to a body, and each column
to a joint. (Observe that we are using i as a body-number index and j as a
joint-number index.) Each column contains at most two nonzero blocks: a 1 in
the row corresponding to the joint’s successor body and a −1 in the row cor-
responding to its predecessor. If a joint connects between two moving bodies,
then it will have exactly two nonzero blocks in its column, as just described.

4Strictly speaking, we mean block row, and similarly for columns.
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However, if it connects to or from the fixed base (body 0), then its column will
contain only one nonzero block: a 1 or −1, as appropriate, in the row for the
moving body it connects to/from. Each row i will contain a 1 for each joint
that has body i as its successor, and a −1 for each joint that has body i as its
predecessor.

Step 3: Body Forces from Joint Forces

Let fJj be the force transmitted across joint j, and let fJ be the 6NJ-dimensional
vector formed by concatenating the vectors fJ1 · · ·fJNJ

. By definition, fJj is
the force transmitted from body p(j) to body s(j) through joint j. If we were
to define the sets s−1(i) and p−1(i) to be the sets of all joints having body i
as their successor or predecessor, respectively, then the vector fi (which was
defined earlier to be the sum of all joint forces acting on body i) could be
expressed in the following manner:

fi =
∑

j∈s−1(i)

fJj −
∑

j∈p−1(i)

fJj .

However, on comparing this expression with the description of row i of P , it is
clear that we could also express fi as follows:

fi =

NJ
∑

j=1

PijfJj .

Therefore
f = PfJ . (3.70)

Step 4: Motion Constraints

Let Tj be the 6 × ncj matrix that spans the subspace S⊥
j , where Sj is the

motion subspace for joint j and ncj is the number of constraints it imposes.
The velocity constraint equation for joint j can then be written

T T
j vJj = 0 ,

and the acceleration constraint is

T T
j aJj + Ṫ T

j vJj = 0 .

Collecting together the acceleration constraints gives

T TaJ + Ṫ TvJ = 0 , (3.71)

where T is the 6NJ × nc block-diagonal matrix having Tj in its jth diagonal
block. nc is the total number of constraints imposed by the joints, and is given
by nc =

∑NJ

j=1 ncj . Combining Eq. 3.71 with Eqs. 3.67 and 3.68 yields the
following constraint on the body accelerations:

T TP Ta + Ṫ TP Tv = 0 . (3.72)



3.7. DYNAMICS OF A MULTIBODY SYSTEM 63

Step 5: Constraint Forces

fJj is the sum of an active force and a constraint force, and it can be expressed
in the form

fJj = Tajτj + Tjλj

(see Eq. 3.34). In this equation, Taj is the 6×nfj matrix that spans the active-
force subspace for joint j, τj is the nfj-dimensional vector of generalized forces
at joint j, λj is the ncj-dimensional vector of constraint-force variables, and
nfj = 6 − ncj is the number of motion freedoms allowed by joint j. Collecting
the equations for every joint, we have

fJ = Taτ + Tλ , (3.73)

where τ and λ are the vectors formed by concatenating τ1 · · · τNJ
and λ1 · · ·λNJ

,
respectively, and Ta is the block-diagonal matrix having Taj on its jth diagonal
block.

Step 6: Final Equation

Substituting Eqs. 3.70 and 3.73 into 3.66 produces the following equation of
motion:

P (Taτ + Tλ) = I a + p ;

and combining this with Eq. 3.72 produces

[

I P T

T TP T 0

] [

a

−λ

]

=

[

P Taτ − p

−Ṫ TP Tv

]

. (3.74)

This is the equation of motion for the original rigid-body system. The two
unknowns are a and λ, and the equation can be solved uniquely for a. If
the coefficient matrix is nonsingular, then λ is also unique. On comparing
the equations here with those in Section 3.2, it can be seen that T TP T and
−Ṫ TP Tv here are equivalent to K and k in Eq. 3.11, that I , a and p here are
equivalent to H, q̈ and C in Eq. 3.14, that P Taτ and P Tλ are equivalent to
τ and τc in Eq. 3.14, and that Eq. 3.74 as a whole is equivalent to Eq. 3.17.

Discussion

Equation 3.74 is a viable basis for a dynamics algorithm, but there are several
details that would need to be resolved in the process of designing the algorithm.
For example, the velocity and acceleration variables are clearly the Plücker
coordinates of the velocity and acceleration vectors of the individual bodies,
but in what coordinate system? No mention has been made of the position
variables, or of how to calculate I , T , Taτ or Ṫ Tv. Another issue is how to
solve Eq. 3.74. The coefficient matrix is large, but it is also sparse, and using a
sparse factorization procedure would greatly improve the efficiency. However, if
the constraints in Eq. 3.72 are not all linearly independent, then the coefficient
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matrix will be singular, in which case it will be necessary to use a solution
procedure that works with singular matrices. Finally, there is the problem
of constraint stabilization: as Eq. 3.72 specifies the motion constraints at the
acceleration level, it is possible for errors to accumulate in the position and
velocity constraints, due to numerical rounding and truncation errors during
simulation. This problem is discussed in Section 8.3.



Chapter 4

Modelling Rigid Body

Systems

A rigid-body system is an assembly of component parts. Those components
include rigid bodies, joints and various force elements. The joints are responsible
for the kinematic constraints in the system, so we interpret the term ‘joint’
broadly to mean any possible kinematic relationship between a pair of rigid
bodies. In this chapter, we look at ways of describing a rigid-body system
in terms of its component parts. In particular, we seek to describe systems
consisting solely of bodies and joints. Such a description can be called a system

model, on the grounds that it describes the system itself, rather than some
aspect of its behaviour.

The role of the system model can be understood as follows. Suppose we
wish to calculate the dynamics of a given rigid-body system on a computer.
There are basically two ways to proceed:

1. work out the symbolic equations of motion of the given system, and trans-
late these equations into computer code; or

2. construct a system model describing the given system, and supply it as
an argument to either

(a) a model-based dynamics calculation routine, or

(b) a model-based automatic equation (and code) generator.

The second approach is preferable, partly because it is much easier to construct
and modify a system model than to work out manually the equations of motion,
and partly because a model-based routine can be thoroughly debugged and
optimized in anticipation of being used a large number of times. The dynamics
algorithms in this book are model-based, and expect to be given a system model
along the lines described in this chapter. Approach 2(b) is considered in Section
10.4.
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Figure 4.1: Connectivity graphs of two rigid-body systems

4.1 Connectivity

A system model must contain the following data: a description of the component
parts, and a description of how they are connected together. The latter is
referred to as the system’s topology, or connectivity, and it can be expressed in
the form of a connectivity graph having the following properties:

1. The nodes represent bodies.

2. The arcs represent joints.

3. Exactly one node represents a fixed body, which is known as the base. All
other nodes represent moving bodies.

4. The graph is undirected.

5. The graph is connected (i.e., a path exists between any two nodes).

The term ‘moving body’ includes any body that is capable of moving, whether
or not it actually moves. Thus, a body that has been immobilized by kinematic
constraints would count as a moving body. From here on, the term and ‘graph’
should be taken to mean ‘undirected graph’, unless indicated otherwise.

Some examples of connectivity graphs are shown in Figure 4.1. The first
is a simple planar mechanism called a crank-slider linkage. It consists of three
moving bodies (B1 to B3), a fixed base, three revolute joints (J1 to J3) and one
prismatic joint (J4). Rotation of body B1 (the crank) causes B3 to slide back
and forth relative to the base. In the connectivity graph, each node represents
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one body, and each arc one joint. It is usually necessary to label at least some
of the nodes and arcs, so that the correspondence between the graph and the
original mechanism is clear. In addition, it is sometimes useful to make the base
node stand out from the others, for easy visual identification. We accomplish
this by marking the base node with a white dot. Note that the bodies in a
mechanism are usually called links.

The second example is a satellite in orbit. The satellite itself consists of
two moving bodies and one joint. However, we cannot construct a connectivity
graph directly from this two-body system, as rule 3 requires that one node must
represent a fixed base. We therefore add a third body—in this case, the planet
below—to serve as a fixed base. Having added a third body, rule 5 requires
that we also add a second joint, in order to connect the planet to one of the
other two bodies. As there is no physical connection between the satellite and
the planet, we use a special joint that allows six degrees of motion freedom—a
6-DoF joint. This joint imposes no kinematic constraints, and therefore has no
physical effect on the system. Its role is to define additional joint variables, so
that the position and velocity variables for the system as a whole can be drawn
from the position and velocity variables of the joints it contains. In this case,
the satellite has a total of 6 + ns degrees of freedom, where ns is the degree of
freedom allowed by the joint on the satellite. We therefore need a total of 6+ns

velocity variables, and that is exactly the number defined by the two joints.
A body that is connected to a fixed base via a 6-DoF joint is called a floating

base. In this example, the satellite’s body was chosen as the floating base, but
we could have chosen the dish instead.

4.1.1 Kinematic Trees and Loops

A graph is a topological tree if there exists exactly one path between any two
nodes in the graph. If the connectivity graph of a rigid-body system is a topolog-
ical tree, then we call the system itself a kinematic tree. The satellite in Figure
4.1 is a kinematic tree, but the crank-slider linkage is not. Kinematic trees have
special properties that make it easy to calculate their dynamics efficiently.

Let G be any connectivity graph. A spanning tree of G, denoted Gt, is a
subgraph of G containing all of the nodes in G, together with any subset of the
arcs in G such that Gt is a topological tree. Every connectivity graph has at
least one spanning tree. If G itself is a tree, then Gt = G; otherwise, Gt is a
proper subgraph of G and is not unique. Figure 4.2 shows some examples of
spanning trees.

A topological tree with n nodes has n− 1 arcs. Therefore, if G contains nn

nodes and na arcs, then Gt will contain nn nodes and nn − 1 arcs, implying
that there will be na −nn + 1 arcs that are in G but not in Gt. These non-tree
arcs are called chords. Although the number of chords in G is fixed, the set of
arcs that happen to be chords will vary with the choice of Gt. This variation
is illustrated in Figure 4.2. (We distinguish chords from tree arcs by drawing
them with dashed lines.)
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Figure 4.2: Spanning trees, chords and cycles

A cycle is a closed path in a graph. There are no cycles in a tree, so every
cycle in a graph must traverse at least one chord. We are particularly interested
in those cycles that traverse exactly one chord. There is always exactly one such
cycle for each chord in the graph, but its route depends on the choice of spanning
tree. For example, the graph in Figure 4.2 has two chords and three cycles. For
any choice of spanning tree, two of these cycles are one-chord cycles, and the
third (which is not shown) traverses both chords. The path of a one-chord
cycle consists of the one chord it traverses, together with the unique path in
the spanning tree between the two nodes connected by the chord.

Each cycle in a connectivity graph defines a kinematic loop. However, we are
not interested in them all, but only in the independent kinematic loops. This
is the minimal set of loops that must be taken into account when formulating
the equations of motion. The importance of the one-chord cycles is that they
identify the set of independent kinematic loops. If we describe a rigid-body
system as having n kinematic loops, then what we really mean is that it has n
independent kinematic loops.

Consider a rigid-body system comprising a fixed base, NB moving bodies
and NJ joints, the latter including any 6-DoF joints that were added to ensure
that the connectivity graph was connected. Let G be the connectivity graph of
this system, and let Gt be a spanning tree of G. Both graphs will contain NB +1
nodes. However, G will contain NJ arcs, whereas Gt will contain only NB , so
the number of chords in the system is NJ − NB . The number of independent
kinematic loops in the system, NL, equals the number of chords in G, and is
therefore given by the formula

NL = NJ − NB . (4.1)
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Applying this formula to the crank-slider linkage in Figure 4.1 reveals that it
has one kinematic loop.

If a system has kinematic loops, then it is called a closed-loop system, oth-
erwise it is a kinematic tree. The joints associated with the chords are known
as loop joints, or loop-closing joints, and those that are part of the spanning
tree are tree joints. A rigid-body system therefore has NB tree joints and NL

loop joints.

4.1.2 Numbering

Bodies and joints can be identified in various ways, but the most convenient
way is to number them. We shall use a numbering scheme that is well suited to
describing and implementing dynamics algorithms. According to this scheme,
the bodies are numbered from 0 to NB, the joints from 1 to NJ , and the numbers
are assigned according to the following rules.

1. Choose a spanning tree, Gt.

2. Assign the number 0 to the node representing the fixed base, and define
this node to be the root node of Gt.

3. Number the remaining nodes from 1 to NB in any order such that each
node has a higher number than its parent in Gt.

4. Number the arcs in Gt from 1 to NB such that arc i connects between
node i and its parent.

5. Number all remaining arcs from NB + 1 to NJ in any order.

6. Each body gets the same number as its node, and each joint gets the same
number as its arc.

This scheme is called regular numbering. If these rules are applied to an un-
branched kinematic tree (a tree in which no node has more than one child),
then the bodies and joints are numbered consecutively from the base, as shown
in Figure 4.3. In all other cases, the numbering is not unique. For example,
Figure 4.4 shows every possible numbering of the crank-slider linkage in Figure
4.1. These eight possibilities arise from four possible spanning trees. Two trees
are unbranched, and therefore have only one numbering. These two appear in
the top left and bottom right graphs in the figure. The other two are branched
at the root node, and they have three numberings each.

4.1.3 Joint Polarity

Each joint connects between two bodies. We identify one of these bodies as the
joint’s predecessor, and the other as the joint’s successor. The joint itself is said
to connect from its predecessor to its successor. The purpose of this terminology
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Figure 4.4: Every possible numbering of the crank-slider linkage in Figure 4.1

is twofold: to define the relationship between joint and body variables, and to
specify which way round the joint is connected in the system. For example, the
velocity across a joint is defined to be the velocity of the successor relative to
the predecessor, and the force transmitted across a joint is defined to be the
force transmitted from the predecessor to the successor.

The identification of which way round a joint is connected between two bod-
ies is called its polarity. We can identify the polarity of a joint in a connectivity
graph by placing an arrow on the arc such that it points from the predecessor to
the successor. Examples of this are shown in Figures 4.5 and 4.6. As a matter
of convenience, we adopt the following convention on the polarity of tree joints:
the normal polarity for a tree joint is to connect from the parent to the child.
All tree joints are assumed to have this polarity unless indicated otherwise.

Some joints are physically symmetrical, meaning that the motion of the
successor relative to the predecessor is qualitatively the same as the motion of
the predecessor relative to the successor. Joints that do not have this property
are asymmetrical. Switching the polarity of a symmetrical joint does not make
a material difference to a rigid-body system, but switching the polarity of an
asymmetrical joint does. For example, if two bodies are connected by a ball-
and-socket joint, which is symmetrical, then it does not really matter which
body has the ball and which the socket—if we were to switch them round, then
the motion would still be the same. In contrast, if the two bodies are connected
by a rack-and-pinion joint, which is asymmetrical, then it does matter which
body has the rack and which the pinion. Thus, the polarity of an asymmetrical
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Figure 4.5: Joint predecessor and successor arrays
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Figure 4.6: Predecessor, successor and parent arrays

joint is determined by the physical system, but the polarity of a symmetrical
joint is not, leaving us free to choose its polarity in the system model.

4.1.4 Representation

There are many ways to represent a connectivity graph in a computer. One
of the simplest is to record the joint predecessor and successor body numbers
in a pair of arrays, p and s, such that p(i) and s(i) are the predecessor and
successor body numbers, respectively, of joint i. This method is illustrated in
Figure 4.5, which reproduces two of the connectivity graphs from Figure 4.4,
adding arrows to show the polarity of each joint.

Together, p and s provide a complete description of a connectivity graph,
from which other useful quantities can be calculated. The first of these is the
parent array, λ, which identifies the parent of each body in the spanning tree:
λ(i) is the parent of body i. According to rules 3 and 4 of the numbering
scheme, tree joint i connects between bodies i and λ(i), and λ(i) < i, so

λ(i) = min(p(i), s(i)) . (1 ≤ i ≤ NB) (4.2)

The parent arrays for the two graphs in Figure 4.5 are λ = [0, 1, 2] and λ =
[0, 0, 1]; and a larger example is shown in Figure 4.6.

If a tree joint satisfies s(i) = i, then it connects from the parent to the child,
and is said to be in the forward direction in the tree. Otherwise, it connects from
the child to the parent, and is said to be in the reverse direction. The tree joints
in Figure 4.5 are all in the forward direction. (The arrows point away from the
root.) The tree joints in Figure 4.6 are also all in the forward direction, except
for joint 4. The tree-joint numbers and forward-pointing arrows have been
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omitted from this diagram: the former because they can be deduced from the
numbering scheme, and the latter because we regard ‘forward’ as the standard
direction for a tree joint.

Three more quantities provide useful information about the connectivity of
a kinematic tree: for any body i except the base, κ(i) is the set of all tree
joints on the path between body i and the base; and for any body i, including
the base, µ(i) is the set of children of body i, and ν(i) is the set of bodies in
the subtree starting at body i. They are called the support, child and subtree
sets, respectively. (A tree joint is said to support a body if it lies on the path
between that body and the base.) ν(i) can also be regarded as the set of all
bodies supported by joint i. For the spanning tree in Figure 4.6, the support,
child and subtree sets are as follows:

κ(1) = {1} µ(0) = {1, 4} ν(0) = {0, 1, 2, . . . , 8}
κ(2) = {1, 2} µ(1) = {2, 3} ν(1) = {1, 2, 3, 5}
κ(3) = {1, 3} µ(2) = {} ν(2) = {2}
...

...
...

κ(8) = {4, 8} µ(8) = {} ν(8) = {8}
κ, λ, µ and ν obviously have a lot of simple properties that follow from

their definitions. For example, µ(i) ⊆ ν(i), j∈κ(i) ⇒ i∈ν(j), and so on. One
not-so-obvious property that turns out to be quite useful is the identity

NB
∑

i=1

∑

j∈κ(i)

( · · · ) =

NB
∑

j=1

∑

i∈ν(j)

( · · · ) . (4.3)

The left-hand side is a summation over all i, j pairs in which joint j supports
body i, but the right-hand side is also a summation over all i, j pairs in which
joint j supports body i, and so the two are the same.

Example 4.1 The role of λ in dynamics algorithms is illustrated by the fol-
lowing simple example. Suppose we wish to calculate the velocity of every body
in a rigid-body system, given the velocities across the tree joints. Let vi and
vJi be the velocity of body i and the velocity across joint i, respectively, the
latter being the velocity of the child relative to the parent (i.e., the joints are in
the forward direction). Now, the velocity of body i can be defined recursively
as the sum of its parent’s velocity and the velocity across the joint connecting
it to its parent; so the formula for calculating the body velocities is

vi = vλ(i) + vJi . (v0 = 0)

The algorithm for calculating these velocities is therefore

v0 = 0

for i = 1 to NB do

vi = vλ(i) + vJi

end
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The property λ(i) < i ensures that vλ(i) is always calculated before it is used.
Another way to express the body velocities is

vi =
∑

j∈κ(i)

vJj . (4.4)

Example 4.2 Example 2.3 introduced a matrix called the body Jacobian,
which gives the spatial velocity of an individual body as a function of the joint
velocity variables. If Ji is the body Jacobian for body i, then

vi = Ji q̇ .

Equation 2.18 gave a formula for Ji that is valid for the special case of an
unbranched kinematic chain, so let us now obtain the general formula. Let the
velocity across joint j be Sj q̇j , and let εij be defined as follows:

εij =

{

1 if j ∈ κ(i)
0 otherwise.

(4.5)

So εij is nonzero if joint j supports body i. The velocity of body i can now be
expressed as follows:

vi =
∑

j∈κ(i)

Sj q̇j =

NB
∑

j=1

εijSj q̇j =
[

εi1S1 · · · εiNB
SNB

]







q̇1
...

q̇NB






.

Thus, the general formula for the body Jacobian is

Ji =
[

εi1S1 εi2S2 · · · εiNB
SNB

]

. (4.6)

4.2 Geometry

If two bodies are connected by a joint, then their relative motion is constrained.
A complete description of the constraint requires knowledge of two things: the
motion allowed by the joint, and the location of the joint relative to each body.
The former is described by a joint model. The latter is described by the system’s
geometry.

A geometric model of a rigid-body system is a description of where the
connections are. In particular, it is a description of the relative position of each
joint on each rigid body. Figure 4.7 shows a geometric model for a rigid-body
system comprising a fixed base, B0, three moving bodies, B1 to B3, three tree
joints, J1 to J3, and one loop joint, J4. The dashed lines in this figure indicate
only the connectivity of each joint, not its exact physical location.

Each moving body has a coordinate frame embedded in it, which defines
a local coordinate system for that body. These frames are labelled F1 to F3,
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Figure 4.7: Geometric model of a rigid-body system

and the coordinate systems they define are known as body coordinates, or link

coordinates. There is also a frame F0, embedded in the base, which defines an
absolute, reference, or base coordinate system for the whole rigid-body system.
The position of body Bi is defined as the position of Fi relative to F0, and it
can be represented by the coordinate transform iX0.

The figure also shows several frames with names of the form Fi,j where i
refers to a body and j to a joint. These frames identify where the joints are
located on each body. Each tree joint i connects from frame Fλ(i),i to frame
Fi (or vice versa if the joint is in the reverse direction), and each loop joint i
connects from Fp(i),i to Fs(i),i. There are therefore NB + 2NL locating frames
in total: one for each tree joint and two for each loop joint. The position of
frame Fi,j relative to Fi is given by the transform i,jXi, which is a constant.
These transforms, or a set of data from which they can be calculated, define
the geometric model of a rigid-body system.

For convenience, we define an array of tree transforms, XT, such that
XT(i) = λ(i),iXλ(i). These are the locating transforms for the tree joints, and
this array provides a complete description of the geometry of the spanning tree.
We also define the arrays XP and XS, each indexed from 1 to NL, such that
XP(i−NB) = p(i),iXp(i) and XS(i−NB) = s(i),iXs(i) for each loop joint i. These
are the locating transforms for the loop joints.

Finally, each joint defines a joint transform, XJi, which is a function of the
joint’s position variables. These transforms are discussed in Section 4.4. As
shown in the figure, XJi is equal to iXλ(i),i if i is a tree joint, and s(i),iXp(i),i if
i is a loop joint.
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Example 4.3 Suppose we wish to calculate the position of each body in a
kinematic tree; that is, we wish to calculate iX0 for each body. The algorithm
to accomplish this is

for i = 1 to NB do

XJ = jcalc(jtype(i), qi)
iXλ(i) = XJ XT(i)
if λ(i) 6= 0 then

iX0 = iXλ(i)
λ(i)X0

end

end

In this code fragment, XJ is a local variable, jtype(i) is a data structure de-
scribing joint i, and jcalc is a function that calculates a joint transform from a
joint description and a vector of joint position variables. jtype(i) and jcalc are
covered in Section 4.4.

4.3 Denavit-Hartenberg Parameters

In general, six parameters are needed to specify the position of one coordinate
frame relative to another. However, for certain kinds of rigid-body system,
it is possible to locate the body coordinate frames in such a way that fewer
parameters are needed. One such method, originally described by Denavit and
Hartenberg (Denavit and Hartenberg, 1955), needs only four parameters per
joint. It exploits the fact that some of the most common joint types can be
characterized by a line in space, and that only four parameters are needed to
locate a line.

Figure 4.8 shows how the Denavit-Hartenberg (DH) method is applied to
an unbranched kinematic tree representing a robot arm or similar device. The
important geometrical features of this system are:

• a base coordinate frame,

• n joint axes, and

• an end-effector coordinate frame, which is embedded in the final link.

The end-effector frame is needed for the correct execution of positioning com-
mands by the robot, but is not needed for dynamics calculations. The DH
coordinate frames are placed according to the following rules.

1. Axes z0 and zn+1 are aligned with the z axes of the base and end-effector
coordinate frames, respectively.

2. Axes z1 to zn are aligned with the n joint axes such that zi is aligned
with the axis of joint i. (If joint i happens to be prismatic, then zi can
be any axis with the correct direction; but it is sensible to choose an axis
that intersects with zi−1.)
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Figure 4.8: Denavit-Hartenberg Coordinate Frames and Parameters
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3. Axis xi is the common perpendicular between zi and zi+1, directed from
zi to zi+1. If zi and zi+1 intersect, then there is a 180◦ ambiguity in
the direction of xi. If zi and zi+1 are parallel, then the location of the
common perpendicular is indeterminate, and it is reasonable to choose
one that intersects with xi−1.

4. The body coordinate frame Fi is defined by the axes xi, yi and zi, where
yi is derived from xi and zi to make a right-handed coordinate frame.

Having placed the coordinate frames, their relative locations are described by
the following DH parameters :

di the distance from xi−1 to xi measured along zi.

θi the angle from xi−1 to xi measured about zi.

ai the distance from zi−1 to zi measured along xi−1. The definition of xi−1

implies ai ≥ 0.

αi the angle from zi−1 to zi measured about xi−1.

All of the parameters ai and αi are constants, but some of the parameters di

and θi serve as joint variables. Specifically, if joint i is revolute, then θi is its
joint variable; if joint i is prismatic, then di is its joint variable; if joint i is
cylindrical, then both θi and di are joint variables; and if joint i is a screw joint
with a pitch of hi, then θi is the joint variable, and the distance from xi−1 to
xi is defined to be di + hi θi. If every joint is revolute, then the DH parameters
define the following geometric model for the unbranched tree in Figure 4.8:

i = 1 : XT(1) = xlt([a1 0 d1]
T) rotx(α1) rotz(θ0) xlt([0 0 d0]

T)

i > 1 : XT(i) = xlt([ai 0 di]
T) rotx(αi)

(See Table 2.2 for definitions of of the translation and rotation functions. Also,
see §A.4 in the appendix for screw transforms.)

It requires a total of 4n+6 DH parameters to describe a system with n joints,
of which at least n will be joint variables rather than parameters. However, the
last four parameters serve only to locate the end-effector frame, and can be
omitted if this information is not needed. Up to five more parameters can be
omitted if the base frame can be chosen to be aligned with z1.

In its basic form, the Denavit-Hartenberg method is applicable to any rigid-
body system in which every joint can be characterized by a joint axis and the
topology is either an unbranched kinematic tree or a single closed kinematic
loop. However, the method can be adapted to a broader class of systems, as
described in Khalil and Dombre (2002). DH parameters are described in various
textbooks, such as Angeles (2003) and Craig (2005). The notational details tend
to vary from one author to the next, especially the numbering of xi, ai and αi.
The notation used here follows the Springer Handbook of Robotics (Siciliano
and Khatib, 2008).
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Figure 4.9: Geometrical interpretation of some joint position variables

4.4 Joint Models

A joint can be regarded as a motion constraint between two Cartesian frames—
one embedded in the joint’s successor body and the other in its predecessor. We
shall call these frames Fs and Fp, respectively. The purpose of a joint model is
to provide the information required to calculate the motion of Fs relative to Fp

as a function of the joint variables.
The kind of motion allowed by a joint depends on its joint type. For exam-

ple, a revolute joint allows pure rotation about a single axis, whereas a spherical
joint allows arbitrary rotation about a specific point. We therefore need one
joint model for each type of joint. The contents of a joint model are a collec-
tion of data and formulae for calculating specific quantities, such as: the joint
transform (sXp), the joint velocity (vJ) the joint’s motion subspace (S), and so
on. Formulae for several common joint types are shown in Table 4.1, and the
geometries of some of these joints are shown in Figure 4.9.

Let us examine one model in more detail. The first entry in Table 4.1
describes a revolute joint that allows Fs to rotate relative to Fp about their
common z axis, and defines the joint variable to be the angle of rotation. The
two columns marked E and r describe the rotational and translational compo-
nents of the joint transform, and the transform itself is given by the equation
sXp = rot(E) xlt(r). (See Table 2.2 for the definitions of rot, xlt and rz.) Ob-
serve that Fs coincides with Fp when the joint variable (q1) is zero. We apply
this convention as far as possible to all joint models. Another convention we
apply to all joint models is that S, T , and related quantities, are expressed in
Fs coordinates. In the case of a revolute joint this does not really matter, since
sS = pS, but it does matter for other joints.

In a well-designed dynamics simulator, there would likely be a joint model

library, containing one model for each type of joint supported by the software.
A system model would then contain a joint type descriptor for each joint in the
system. We shall use the expression jtype(i) to denote the joint type descrip-
tor of joint i. In the simplest case, a joint type descriptor is just a type code
identifying a particular model in the library. For example, the type code ‘R’
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Joint Type Joint Transform (sXp) Motion Constraint Force
E r Subsp. (S) Subspace (T )

Revolute
(hinge joint)

rz(q1)





0
0
0





2

6

6

6

6

6

6

4

0
0
1
0
0
0

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

7

7

7

7

7

7

5

Prismatic
(sliding joint)

13×3





0
0
q1





2

6

6

6

6

6

6

4

0
0
0
0
0
1

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

7

7

7

5

Helical
(screw joint)
with pitch h

rz(q1)





0
0

h q1





2

6

6

6

6

6

6

4

0
0
1
0
0
h

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

1 0 0 0 0
0 1 0 0 0
0 0 0 0 −h

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

7

7

7

7

7

7

5

Cylindrical rz(q1)





0
0
q2





2

6

6

6

6

6

6

4

0 0
0 0
1 0
0 0
0 0
0 1

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

7

7

7

7

7

7

5

Planar
(see Fig. 4.9)

rz(q1)





c1q2 − s1q3

s1q2 + c1q3

0





2

6

6

6

6

6

6

4

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

3

7

7

7

7

7

7

5

Spherical
(ball & socket)

[

see
Eq. 4.12

]





0
0
0





2

6

6

6

6

6

6

4

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

3

7

7

7

7

7

7

5

6-DoF Joint
(free motion)

[

see
Eq. 4.12

]

E−1





q5

q6

q7



 16×6

Notes: c1 = cos(q1), s1 = sin(q1), and sXp = rot(E) xlt(r) (see Table 2.2).

Table 4.1: Joint Model Formulae
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could identify a revolute joint and ‘P’ a prismatic one. However, some joints are
characterized by both a type and a set of parameters. For example, a helical
joint is characterized both by the fact that it is helical and a parameter that
specifies the pitch of the helix. Each individual helical joint in a rigid-body
system can have a different pitch; so parameters like this are a property of indi-
vidual joints, rather than the joint model. To accommodate joint parameters,
we define a joint type descriptor to be a data structure containing both a type
code and the set of parameter values (if any) required for a joint of that type.

Joint Model Calculation Routine

Subsequent chapters describe several dynamics algorithms, all of which make
use of joint model data. To keep the algorithm descriptions simple, we assume
the existence of a single function, called jcalc, that calculates all requested
joint-related data in a single call. A specimen call to this function looks like
this:

[XJ, S, vJ, cJ] = jcalc(type, q, α) (explicit joint constraint)

[δ, T ] = jcalc(type, sXp) (implicit joint constraint)

[q̇] = jcalc(type, q, α) (for qdfn (Eq. 3.7))

In each case, the expression on the left is a list of requested return values, and
the argument type refers to a joint type descriptor (e.g. jtype(i)). The use of
jcalc to calculate implicit joint constraints is covered in Chapter 8, and its use
to calculate q̇ is covered later in this chapter. In the algorithm listings, we
generally assume that α = q̇, and use q̇ in place of α in the argument lists. If a
joint depends explicitly on time, then time must be added as a final argument
in the list. Note that vJ, cJ, S and T are all expressed in Fs coordinates.
Expressions for vJ and cJ are given in Section 3.5.

Example 4.4 Example 4.3 showed how to calculate the coordinate transform
iX0 for each body in a kinematic tree. We now extend this example to calculate
both iX0 and 0vi (the velocity of body i expressed in base coordinates). The
algorithm to accomplish this is

0v0 = 0

for i = 1 to NB do

[XJ, vJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)
if λ(i) 6= 0 then

iX0 = iXλ(i)
λ(i)X0

end
0vi = 0vλ(i) + 0XivJ

end
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This code fragment contains a new feature: it calculates iX0, but then uses 0Xi

to transform vJ. The explanation for this practice can be found in Appendix
A, where it is shown how to calculate X−1v directly from X and v without
having to calculate X−1 first. It is also possible to calculate X∗f and (X∗)−1f

directly from X and f without having to calculate X∗ or (X∗)−1 first. We
exploit this fact in several dynamics algorithm listings.

Example 4.5 A peculiar feature of both the planar joint and the 6-DoF joint
in Table 4.1 is that the translational joint variables express the translation in
Fs coordinates rather than Fp coordinates. The reason for doing this is to

make the motion subspace matrix a simple constant, so that S̊ = 0, cJ = 0,
and the simple form of S allows various optimizations to be applied to the
dynamics algorithms. However, there is potentially a big disadvantage in this
arrangement: if the successor body is far distant from the predecessor, and
starts to spin, then the spinning will cause large rates of change in the position
variables. (Just think of a tumbling satellite or aircraft.) One way to get the
best of both worlds is to use a set of position variables in which the translations
are expressed in Fp coordinates, together with a set of velocity variables in
which the linear velocity is expressed in Fs coordinates.

Let pq1,
pq2 and pq3 be a set of position variables for a planar joint, such

that pq2 and pq3 are translations in the x and y directions of Fp; and let sq1,
sq2

and sq3 be a second set of position variables for the same planar joint, such that
sq2 and sq3 are translations in the x and y directions of Fs. This second set of
variables is the set used in Table 4.1 and shown in Figure 4.9. The relationship
between these two sets is





pq1
pq2
pq3



 =





1 0 0
0 c1 −s1

0 s1 c1









sq1
sq2
sq3



 .

We wish to use pqi as the position variables, but sq̇i as the velocity variables.
To cater for this, we need a formula to calculate the derivatives of the position
variables from the position and velocity variables. Such a formula is obtained
by differentiating the above equation, to get





q̇1

q̇2

q̇3



 =





1 0 0
−q3 c1 −s1

q2 s1 c1









α1

α2

α3



 ,

where we have dropped the superscript p from pqi and pq̇i, and substituted αi

for sq̇i. This is the calculation that jcalc must perform if it is called upon to
calculate q̇ from q and α for this particular model of the planar joint.

Example 4.6 Let us construct a joint model for the rack-and-pinion joint
shown in Figure 4.10. This joint allows a pinion that is part of the succes-
sor body to roll along a rack that is part of the predecessor body. The rack
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Figure 4.10: Rack-and-pinion joint

is parallel to the x axis of Fp, and the pinion is centred on the z axis of Fs.
The pinion has a radius of r, which is a parameter of the joint model. The
joint allows only a single degree of motion freedom, so there is only one joint
variable, denoted q1, and it is chosen to be the rotation angle of the pinion.

If Fp and Fs coincide when q1 = 0, then the transform from Fp to Fs consists
of a translation by rq1 in the x direction followed by a rotation of q1 about the
z axis. The joint transform is therefore

XJ = sXp =

[

E 0

0 E

][

1 0

−p× 1

]

,

where

E = rz(q1) =





c1 s1 0
−s1 c1 0
0 0 1



 and p =





rq1

0
0



 .

The next step is to find formulae for vJ and S. We begin by expressing the joint
velocity as a function of the joint’s position and velocity variables. Relative to
Fp, the pinion is rotating with an angular velocity of ω = [0 0 q̇1]

T about an axis
passing through p, and it is translating with a linear velocity of ṗ = [rq̇1 0 0]T.
This equates to a spatial velocity, expressed in Fp coordinates, of

pvJ =

[

ω

p × ω

]

+

[

0

ṗ

]

=























0
0
q̇1









rq1

0
0



×





0
0
q̇1























+

















0
0
0

rq̇1

0
0

















=

















0
0
q̇1

rq̇1

−rq1q̇1

0

















.

As there is only a single joint variable, the motion subspace matrix is given by
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the formula S = vJ/q̇1. Therefore

vJ = sXp
pv =

















0
0
q̇1

rc1q̇1

−rs1q̇1

0

















and S =
vJ

q̇1
=

















0
0
1

rc1

−rs1

0

















.

Finally, as S is not a constant, we need a formula for the velocity-product term
cJ. This is given by

cJ = S̊ q̇1 =
∂S

∂q1
q̇2
1 =

















0
0
0

−rs1q̇
2
1

−rc1q̇
2
1

0

















.

(See Eq. 3.42 for S̊.) Observe that the rack-and-pinion joint simplifies to a
revolute joint if r = 0.

Polarity Reversal

As explained in Section 4.1.4, a joint in a kinematic tree is said to be in the
forward direction if the predecessor is the parent of the successor, and in the
reverse direction otherwise. If a joint is symmetrical, then its polarity can be
chosen at the time the system model is being defined so that it is in the forward
direction; but if it is asymmetrical, then its polarity is determined by the rigid-
body system being modelled. Thus, it is not possible to guarantee that every
tree joint is in the forward direction.

The simplest way to deal with a reverse-direction joint is to convert it to
a forward-direction joint. We can do this as follows. First, add a boolean
variable to the joint descriptor data structure that takes the value true if the
joint is a tree joint in the reverse direction, and takes the value false otherwise.
Given this extra piece of information, jcalc can be modified to simulate a joint
of the opposite polarity whenever this boolean variable is true. In effect, jcalc
reverses the roles of the predecessor and successor. To accomplish this task, jcalc
merely has to modify some of the calculated values before they are returned.
For example, instead of returning the matrix sXp that has been calculated
according to the formula for the given joint type, it returns the inverse of this
matrix; and, instead of returning the calculated value of vJ, it returns −pXsvJ.
A complete set of modified return values is shown in Table 4.2. The advantage
of this approach is that it allows the dynamics algorithms to assume that all
tree joints are in the forward direction. This, in turn, makes the algorithms
simpler and easier to implement.
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normal simulating
return value opposite polarity

sXp
pXs

S −pXsS

T −pXsT

vJ −pXsvJ

cJ −pXscJ

q̇ q̇

Table 4.2: How jcalc simulates an opposite-polarity joint

4.5 Spherical Motion

There are many ways to represent a general 3D rotation (e.g. see Rooney, 1977),
but the two main choices are Euler angles and Euler parameters. The latter are
also known as unit quaternions. Euler angles have the advantage that the posi-
tion variables are a set of three independent angles, and the velocity variables
are their derivatives. This makes them relatively easy to implement. Their dis-
advantage is that they suffer from singularities: as the orientation approaches a
singularity, the representation becomes increasingly ill-conditioned, and even-
tually breaks down altogether. The main advantage of Euler parameters is that
they are free of singularities; but their disadvantage is that they are a set of
four non-independent position variables, which implies that the velocity vari-
ables cannot be the derivatives of the position variables. Software that uses
Euler parameters must be written to allow the number of position variables to
be different from the number of velocity variables.

Euler Angles

We use the term ‘Euler angles’ in both a broad sense and a narrow sense. In
the broad sense, it refers to any method for representing a general rotation by
means of a sequence of three rotations about specified coordinate axes. In the
narrow sense, it refers to the special case in which the first and third rotations
take place about the z axis, and the second rotation takes place about either
the x axis or the y axis.

Every version of Euler angles suffers from singularities. They occur whenever
the first and third axes are aligned. If the first and third rotations use the same
coordinate axis, then the singularities occur when the second angle is either 0◦

or 180◦; otherwise, they occur when the second angle is ±90◦. In the vicinity of
a singularity, small changes in the rotation being represented can induce large
changes in the first and third angles. A joint model based on Euler angles is
not valid at a singularity.

Let us construct a spherical joint model using yaw, pitch and roll angles.
These are a sequence of rotations about the z, y and x axes, in that order.
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Thus, the correct orientation of Fs relative to Fp is obtained by first placing Fs

coincident with Fp, then rotating it about its z axis by an amount q1 (yaw),
then rotating it about its y axis by an amount q2 (pitch), and then rotating it
about its x axis by an amount q3 (roll). The formula for E is therefore

E = rx(q3) ry(q2) rz(q1)

=





1 0 0
0 c3 s3

0 −s3 c3









c2 0 −s2

0 1 0
s2 0 c2









c1 s1 0
−s1 c1 0
0 0 1





=





c1c2 s1c2 −s2

c1s2s3 − s1c3 s1s2s3 + c1c3 c2s3

c1s2c3 + s1s3 s1s2c3 − c1s3 c2c3



 . (4.7)

The formula for S can be obtained by expressing the joint velocity as a function
of q̇, and using S = ∂vJ/∂q̇. We shall skip the details, and just present the
final result:

S =

















−s2 0 1
c2s3 c3 0
c2c3 −s3 0
0 0 0
0 0 0
0 0 0

















. (4.8)

The columns of S contain the coordinates in Fs of the axes about which the
rotations take place: the first column is the z axis of Fp; the second is where
the y axis was after the first rotation; and the third is where the x axis was
after the first two rotations. As S is not a constant, we also need a formula for
cJ. This is given by

cJ = S̊ q̇ =

















−c2q̇2 0 0
−s2s3q̇2 + c2c3q̇3 −s3q̇3 0
−s2c3q̇2 − c2s3q̇3 −c3q̇3 0

0 0 0
0 0 0
0 0 0





















q̇1

q̇2

q̇3





=

















−c2q̇1q̇2

−s2s3q̇1q̇2 + c2c3q̇1q̇3 − s3q̇2q̇3

−s2c3q̇1q̇2 − c2s3q̇1q̇3 − c3q̇2q̇3

0
0
0

















. (4.9)

Equations 4.7 and 4.8 replace the formulae for E and S in Table 4.1, but the
formula for T remains unchanged. This is therefore an example of a joint model
in which S varies while T remains constant. Such a thing is possible because
range(S) is a constant, and T is required only to satisfy range(T ) = range(S)⊥.
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Euler Parameters

A general rotation can also be described by means of a unit vector and an
angle. The unit vector specifies the axis of rotation, and the angle specifies the
magnitude. Euler parameters are closely related to this representation. If u

and θ are the unit vector and angle, then the Euler parameters describing the
same rotation are

p0 = cos(θ/2)
p1 = sin(θ/2)ux

p2 = sin(θ/2)uy

p3 = sin(θ/2)uz .

(4.10)

They are not independent, but must satisfy the equation

p2
0 + p2

1 + p2
2 + p2

3 = 1 . (4.11)

A spherical joint must have three independent velocity variables. There-
fore, if we wish to use the four non-independent Euler parameters as position
variables, then the velocity variables cannot be the derivatives of the position
variables. The best choice for the velocity variables is to use the Cartesian
coordinates in Fs of the joint’s angular velocity vector, ω. This choice results
in S taking the simple, constant value shown in Table 4.1. We therefore need
only a formula for E and a formula for the derivatives of the position variables.
These are

E = 2





p2
0 + p2

1 − 1/2 p1p2 + p0p3 p1p3 − p0p2

p1p2 − p0p3 p2
0 + p2

2 − 1/2 p2p3 + p0p1

p1p3 + p0p2 p2p3 − p0p1 p2
0 + p2

3 − 1/2



 (4.12)

and








ṗ0

ṗ1

ṗ2

ṗ3









=
1

2









−p1 −p2 −p3

p0 −p3 p2

p3 p0 −p1

−p2 p1 p0













ωx

ωy

ωz



 . (4.13)

A spherical joint model based on these equations is numerically superior to one
based on Eqs. 4.7, 4.8 and 4.9. However, it does place a burden on the sur-
rounding software of having to cope with a joint model in which the number
of position variables differs from the number of velocity variables. Three more
complications are: the values of the position variables must be obtained by in-
tegrating Eq. 4.13 rather than directly integrating the velocity variables; a zero
rotation is defined by a nonzero set of Euler parameters; and it is necessary to
renormalize Euler parameters frequently during the integration process. (Trun-
cation errors during integration cause the parameters to fail to satisfy Eq. 4.11
exactly, and this causes a linear scaling error affecting the whole subtree sup-
ported by the joint. Ideally, they should be renormalized after every integration
step.)
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data for a extra data for a
kinematic tree closed-loop system

NB NL

λ(1) · · · λ(NB) p(NB + 1) · · · p(NB + NL)

jtype(1) · · · jtype(NB) s(NB + 1) · · · s(NB + NL)

XT(1) · · · XT(NB) jtype(NB + 1) · · · jtype(NB + NL)

I1 · · · INB
XP(1) · · · XP(NL)

XS(1) · · · XS(NL)

Table 4.3: Complete system model

4.6 A Complete System Model

Table 4.3 presents a complete system model for a rigid-body system. For a
kinematic tree, the required data are: NB, the parent array, an array of joint
type descriptors, the tree transform array, and an array of rigid-body inertias.
The inertias are expressed in body coordinates, in which they are constants.
For a closed-loop system, the required extra data are: NL and, for each loop
joint, the predecessor and successor body numbers, the joint type descriptor,
and the predecessor and successor transforms.

In the simplest case, a software package might cater for a restricted set of
joint types, such as revolute and prismatic joints only. In this case, jtype(i)
could simply be a numeric type code, and it would be practical to hard-wire
the appropriate values for XJ, vJ and S directly into the source code for jcalc,
or even directly into the source code of a dynamics algorithm. Another simpli-
fication concerns access into vectors of joint variables, such as q and q̇. In the
general case, qi is a subvector of q, and its location within q depends on the
sizes of all of the preceding subvectors. Thus, the code that accesses and up-
dates qi should have an array of offsets, one per joint, indicating which element
of q is the first element of qi. However, if every joint has exactly one degree
of freedom, as is the case for revolute and prismatic joints, then qi is simply
element i of q.

If the objective is to develop a general-purpose software package, then it
makes more sense to create a library of joint models, and have jcalc access
this library. One particularly useful kind of joint is a user-defined joint. This
facility could be provided by making the library extensible. Alternatively, one
could simply require that one of the ‘parameters’ of a user-defined joint is the
address of a user-supplied jcalc for that joint, and the built-in jcalc could be
programmed to pass control to the user-supplied function.





Chapter 5

Inverse Dynamics

Inverse dynamics is the problem of finding the forces required to produce a given
acceleration in a rigid-body system. Inverse dynamics calculations are used in
motion control systems, trajectory design and optimization (e.g. for robots and
animated figures), in mechanical design, and as a component in some forward
dynamics algorithms. This last application is covered in Chapter 6. The inverse
dynamics calculation can be summarized by the equation

τ = ID(model , q, q̇, q̈) ,

where q, q̇, q̈ and τ are vectors of generalized position, velocity, acceleration
and force variables, respectively, and model is a system model of a particular
rigid-body system.

This chapter presents an algorithm to calculate the inverse dynamics of a
kinematic tree. An algorithm for closed-loop systems appears in Chapter 8. The
inverse dynamics of a kinematic tree is particularly easy to calculate, which is
why we start with this problem. The algorithm is called the recursive Newton-

Euler algorithm, and it is the simplest, most efficient algorithm for the job.
It has a computational complexity of O(n), which means that the amount of
calculation grows linearly with the number of bodies, or joint variables, in the
tree. The algorithm is presented first in its basic form; then the implementation
details are added; and then the spatial-vector version is compared with the
original 3D vector version. This chapter also covers the topic of algorithm
complexity, and explains why recursive algorithms are so efficient.

5.1 Algorithm Complexity

We define the computational cost of an algorithm to be its operations count—
the number of arithmetic operations performed in the course of executing the
algorithm. If an algorithm involves real-number arithmetic, like a dynamics
algorithm, then it is customary to count only the floating-point operations.
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Thus, integer operations, like those required to calculate an array index or
increment a loop variable, get ignored.

The computational complexity of an algorithm is a measure of how the cost
scales with the size of the problem. We use ‘big O’ notation to specify this
quantity. If an algorithm is described as having O(np) complexity, where n is
the size of the problem, then the cost grows in proportion to np as n → ∞. To
be more precise, an algorithm is said to have O(f(n)) complexity if there exist
positive constants Cmin , Cmax and nmin such that the computational cost is at
least Cminf(n), but no more than Cmaxf(n), for all n > nmin .

The expression O(f(n)) can be interpreted as the set of all functions that
grow in proportion to f(n) as n → ∞. Thus, a statement like “Algorithm
X is O(f(n))” means that the cost of X , expressed as a function of n, is an
element of the set O(f(n)). An expression like O(f(n)) = O(g(n)) is then
a set equality, and implies g(n) ∈ O(f(n)) and vice versa. When quoting
complexities, we select the simplest function in the set to serve as the argument
to O. For example, if the exact cost of an algorithm is given by the polynomial
a0 + a1n + · · · + apn

p, then the simplest function that grows in proportion to
this polynomial is np, and so we quote the complexity as O(np). In general,
only the fastest-growing component of f matters. If f converges to a constant
then we say that f is O(1).

An algorithm’s complexity figure depends on how we measure the size of
the problem. For example, the complexity of matrix inversion is said to be
O(n3) because the cost of inverting an n × n matrix grows in proportion to n3

as n → ∞. This figure relies on n being the dimension of the matrix. If n were
instead the number of elements in the matrix, then the complexity figure would
be O(n1.5). More generally, if m and n are two different measures of problem
size, and m = g(n), then O(f(m)) = O(f(g(n))).

For a dynamics algorithm, the size of the problem is the size of the rigid-
body system. If the system is a kinematic tree, then there are two reasonable
measures of system size: the number of bodies, NB, or the number of degrees
of freedom, n. If every joint in the tree has at least one degree of freedom, then
these two numbers satisfy NB ≤ n ≤ 6NB , which implies that

O(Np
B) = O(np) . (5.1)

There is therefore no need to distinguish between NB and n when quoting
complexities.

5.2 Recurrence Relations

Modern dynamics algorithms are recursive, and they are orders of magnitude
faster than their non-recursive predecessors. They are called recursive because
they make use of recurrence relations to calculate sequences of intermediate
results. It is the use of recurrence relations that accounts for their efficiency;
so let us take a moment to examine how these recurrence relations work.
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A recurrence relation is a formula that defines the next element in a sequence
in terms of previous elements. This formula, together with a set of initial values,
provides a recursive definition of the sequence. For example, the sequence of
Fibonacci numbers, 0, 1, 1, 2, 3, 5, 8, 13, . . . , is defined recursively by the
recurrence relation Fi = Fi−1 + Fi−2 and the initial values F0 = 0 and F1 = 1.
In a rigid-body system, if the bodies are numbered according to the rules in
Section 4.1.2, then the sequence of body velocities, v0, v1, v2, . . . , is defined
recursively by the recurrence relation vi = vλ(i) +Siq̇i and a given initial value
for v0.

Let us examine the task of calculating body velocities, both with and with-
out the use of recurrence relations. To keep things simple, let us assume that
the system is an unbranched kinematic tree with 1-DoF joints. This means that
λ(i) = i− 1, and that the velocity across joint i is the product of the joint axis
vector, si, with the scalar joint velocity variable q̇i. The recurrence relation for
body velocities is then

vi = vi−1 + si q̇i , (5.2)

with the initial condition v0 = 0; and the non-recursive formula for body
velocities is

vi =
i
∑

j=1

sj q̇j . (5.3)

Let m and a denote the cost of a scalar-vector multiplication and a vector
addition, respectively. The cost of one application of Eq. 5.2 is then m + a,
and the cost of Eq. 5.3 is i m + (i − 1)a. The cost of calculating the first n
body velocities via Eq. 5.2 is therefore n(m + a), and the cost via Eq. 5.3 is
1
2 (n(n + 1)m + n(n− 1)a). Thus, the use of Eq. 5.2 results in an efficient O(n)
calculation, while Eq. 5.3 leads to an inefficient O(n2) calculation.

The source of the inefficiency is not hard to see. If we perform the task
using Eq. 5.3, then we end up calculating

v1 = s1 q̇1

v2 = s1 q̇1 + s2 q̇2

...
vn = s1 q̇1 + s2 q̇2 + · · · + sn q̇n .

The product s1 q̇1 is calculated n times over, when it only needed to be cal-
culated once. Likewise, the product s2 q̇2 is calculated n − 1 times, the sum
s1 q̇1 +s2 q̇2 is calculated n−1 times, and so on. Recurrence relations therefore
offer a systematic way to avoid unnecessary repetition in calculating sequences
of related quantities, and this is the secret of their efficiency.

The computational advantage of recurrence relations can be even greater
when the calculation is more complicated. For example, the recurrence relation
for body accelerations in the unbranched chain is

ai = ai−1 + si q̈i + vi × si q̇i , (5.4)
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which is just the time-derivative of Eq. 5.2, and the non-recursive formula is

ai =

i
∑

j=1

sj q̈j +

i
∑

j=1

j−1
∑

k=1

(sk q̇k) × (sj q̇j) . (5.5)

(In both cases, we have assumed that ṡi = vi × si.) Calculating the accelera-
tions via Eq. 5.4 is an O(n) computation; but doing it via Eq. 5.5 is an O(n3)
computation.

Equations 5.3 and 5.5 express the body velocities and accelerations directly
in terms of their elementary constituents—joint axis vectors and joint velocity
and acceleration variables. Equations like this are said to be in closed form.
The equation of motion of a rigid-body system, expressed in closed form, is

τi =

n
∑

j=1

Hij q̈i +

n
∑

j=1

n
∑

k=1

Cijk q̇j q̇k + gi , (5.6)

where Hij are the elements of the generalized inertia matrix, Cijk are the co-
efficients of the centrifugal and Coriolis forces, and gi are the gravity terms.
Early, non-recursive algorithms calculated the dynamics via equations like this,
and their computational complexities were typically O(n4). Recursive algo-
rithms are far more efficient, and they have computational complexities as low
as O(n). When the recursive Newton-Euler algorithm first appeared, it was
found to be about a hundred times faster than its non-recursive predecessor,
the Uicker/Kahn algorithm, for a 6-DoF robot arm (Hollerbach, 1980). Prior to
the invention of efficient recursive algorithms, closed-form equations were the
standard way of expressing and evaluating equations of motion.

5.3 The Recursive Newton-Euler Algorithm

The inverse dynamics of a general kinematic tree can be calculated in three
steps as follows:

1. Calculate the velocity and acceleration of each body in the tree.

2. Calculate the forces required to produce these accelerations.

3. Calculate the forces transmitted across the joints from the forces acting
on the bodies.

These are the steps of the recursive Newton-Euler algorithm. Let us now work
out the equations for each step, assuming that the tree is modelled by the
quantities λ(i), µ(i), Si and Ii, as explained in Chapter 4.
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body i

body λ(i)

body j

body k

body l

µ(i)={ j,k,l}
fi

fi
x fj

joint i fl

fk

parent

children

Figure 5.1: Forces acting on body i

Step 1: Let vi and ai be the velocity and acceleration of body i. The velocity
of any body in a kinematic tree can be defined recursively as the sum of the
velocity of its parent and the velocity across the joint connecting it to its parent.
Thus,

vi = vλ(i) + Si q̇i . (v0 = 0) (5.7)

(Initial values are shown in brackets.) The recurrence relation for accelerations
is obtained by differentiating this equation, resulting in

ai = aλ(i) + Si q̈i + Ṡi q̇i . (a0 = 0) (5.8)

Successive iterations of these two formulae, with i ranging from 1 to NB , will
calculate the velocity and acceleration of every body in the tree.

Step 2: Let fB

i be the net force acting on body i. This force is related to the
acceleration of body i by the equation of motion

fB

i = Ii ai + vi ×∗ Ii vi . (5.9)

Step 3: Referring to Figure 5.1, let fi be the force transmitted from body λ(i)
to body i across joint i, and let fx

i be the external force (if any) acting on body
i. External forces can model a variety of environmental influences: force fields,
physical contacts, and so on. They are regarded as inputs to the algorithm;
that is, their values are assumed to be known. The net force on body i is then

fB

i = fi + fx
i −

∑

j∈µ(i)

fj ,

which can be rearranged to give a recurrence relation for the joint forces:

fi = fB

i − fx
i +

∑

j∈µ(i)

fj . (5.10)



94 CHAPTER 5. INVERSE DYNAMICS

Successive iterations of this formula, with i ranging from NB down to 1, will
calculate the spatial force across every joint in the tree. No initial values are
required for this formula, as µ(i) is the empty set for any body with no children.

Having computed the spatial force across each joint, it remains only to
calculate the generalized forces at the joints, which are given by

τi = ST
i fi (5.11)

(cf. Eq. 3.37). Equations 5.7 to 5.11 describe the recursive Newton Euler algo-
rithm in its simplest form.

External forces can be used to model a variety of environmental influences,
including gravitational forces. However, a uniform gravitational field can be
modelled more efficiently as a fictitious acceleration of the base. To do this,
we simply replace the initial value for Eq. 5.8 with a0 = −ag, where ag is the
gravitational acceleration vector. If this trick is used, then the calculated values
of ai and fB

i are no longer the true acceleration and net force for body i, but
are offset by the gravitational acceleration and force vectors, respectively. (The
gravitational force on body i is Ii ag .)

Algorithm Features

Equations 5.7 and 5.8 involve a propagation of data from the root to the
leaves; Eq. 5.10 involves a propagation of data from the leaves to the root;
and Eqs. 5.9 and 5.11 describe calculations that are local to each body. The
recursive Newton-Euler algorithm is therefore a two-pass algorithm: it makes
an outward pass through the tree, during which the velocities and accelerations
are calculated, and then an inward pass, during which the joint forces are cal-
culated. The calculation of body forces can be assigned to either the first or
the second pass. The former is generally the better choice.

This algorithm calculates more that just τi. Other quantities, like vi and fi,
can sometimes be useful. For example, one of the tasks of a machine designer is
to select joint bearings of sufficient strength to withstand the dynamic reaction
forces during operation. These forces can be calculated from fi.

By setting some inputs to zero, one can calculate specific components of the
dynamics. For example, if the external force and joint velocity and accelera-
tion terms are set to zero, but the fictitious base acceleration is retained, then
the algorithm calculates only the gravity compensation terms—the terms that
statically balance the force of gravity. Such terms are used in robot control
systems. Alternatively, if we set gravity, acceleration and external force terms
all to zero, but keep the joint velocities, then the algorithm calculates only the
Coriolis and centrifugal terms. If efficiency is a concern, then a stripped-down
version of the algorithm can be used to perform these specialized calculations.
For example, if the objective is to calculate the gravity-compensation terms
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only, then the algorithm simplifies to

fi = −Ii ag +
∑

j∈µ(i)

fj (5.12)

τi = ST
i fi . (5.13)

To calculate the actual gravity terms, replace −Ii ag with Ii ag .

Equations in Body Coordinates

Equations 5.7 to 5.11 express the algorithm without reference to any particular
coordinate system. In practice, the algorithm works best if the calculations
pertaining to body i are performed in body i coordinates (as defined in §4.2).
This is the body-coordinates (or link-coordinates) version of the algorithm.

Let us transform the equations of the recursive Newton-Euler algorithm
into body coordinates. The quantities vi, ai, Si, Ii, fi and fB

i are now all
considered to be expressed in body i coordinates. Note that the system model
already supplies Si and Ii in these coordinates. Expressed in body coordinates,
Eqs. 5.7 and 5.8 become

vi = iXλ(i) vλ(i) + Si q̇i (v0 = 0) (5.14)

and

ai = iXλ(i) aλ(i) + Si q̈i + S̊i q̇i + vi × Si q̇i . (a0 = −ag) (5.15)

Compared with the original equations, the following changes have been made: a
coordinate transform has been inserted to transform vλ(i) and aλ(i) from body

λ(i) coordinates to body i coordinates; and the matrix Ṡi has been replaced

with S̊i+vi×Si, where S̊i is the apparent derivative of Si in body coordinates.
We have also taken the opportunity to replace the original initial acceleration
value with a0 = −ag to simulate the effect of gravity.

The joint calculation routine, jcalc, is able to supply the quantities Si,
vJi = Si q̇i and cJi = S̊i q̇i, all in body i coordinates. We therefore modify
Eqs. 5.14 and 5.15 as follows, in order to exploit the available data:

vJi = Si q̇i (5.16)

cJi = S̊i q̇i (5.17)

vi = iXλ(i) vλ(i) + vJi (v0 = 0) (5.18)

ai = iXλ(i) aλ(i) + Si q̈i + cJi + vi × vJi . (a0 = −ag) (5.19)

Equations 5.9 and 5.11 remain unchanged in the body-coordinates version,
but Eq. 5.10 becomes

fi = fB

i − iX∗

0 fx
i +

∑

j∈µ(i)

iX∗

j fj . (5.20)
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Basic Equations:

v0 = 0

a0 = −ag

vi = vλ(i) + Si q̇i

ai = aλ(i) + Si q̈i + Ṡi q̇i

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − fx
i +

∑

j∈µ(i) fj

τi = ST
i fi

Equations in Body Coordinates:

v0 = 0

a0 = −ag

vJi = Si q̇i

cJi = S̊i q̇i

vi = iXλ(i) vλ(i) + vJi

ai = iXλ(i) aλ(i) + Si q̈i + cJi + vi × vJi

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − iX∗

0 fx
i +

∑

j∈µ(i)
iX∗

j fj

τi = ST
i fi

Algorithm:

v0 = 0

a0 = −ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] =
jcalc(jtype(i), qi, q̇i)

iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ai = iXλ(i) aλ(i) + Si q̈i

+ cJ + vi × vJ

fi = Ii ai + vi ×∗ Ii vi − iX∗

0 fx
i

end

for i = NB to 1 do

τi = ST
i fi

if λ(i) 6= 0 then

fλ(i) = fλ(i) + λ(i)X∗

i fi

end

end

Table 5.1: The recursive Newton-Euler equations and algorithm

In this equation, we have assumed that the external forces emanate from outside
the system, and have therefore assumed that they are expressed in absolute (i.e.,
body 0) coordinates. Equations 5.16 to 5.20, together with 5.9 and 5.11, are
the equations of the body-coordinates version of the recursive Newton-Euler
algorithm.

Algorithm Details

Table 5.1 shows the pseudocode for the body-coordinates version of the algo-
rithm, together with the equations for both the basic version and the body-
coordinates version. Bear in mind that the symbols vi, ai, etc. in the body-
coordinates version are expressed in body coordinates, whereas the same sym-
bols in the basic version represent either abstract vectors or coordinate vectors
in an unspecified common coordinate system.

The two-pass structure of the algorithm is evident from the two for loops in
the pseudocode. The symbols XJ, vJ and cJ are local variables that take new
values on each iteration of the first loop. If the tree contains joints for which
the velocity variables are not the derivatives of the position variables, then
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simply replace the symbols q̇i and q̈i with αi and α̇i, respectively. Likewise,
if the tree contains any joints that depend explicitly on time, then jcalc will
automatically calculate vJ and cJ using Eqs. 3.32 and 3.41 instead of 5.16 and
5.17; and the only change in the pseudocode is to pass the current time as a
fourth argument to jcalc. The only place where iX0 is used is to transform the
external forces from base to body coordinates. If there are no external forces,
then the if statement that calculates these transforms can be omitted.

In implementing Eq. 5.20, we have transformed it from a calculation using
µ(i) to a calculation using λ(i). A literal translation of Eq. 5.20 into pseudocode
looks like this:

for i = NB to 1 do

fi = fB

i − iX∗

0 fx
i

for each j in µ(i) do

fi = fi + iX∗

j fj

end

end

However, the same calculation can be performed in a different order, but with
the same end result, by the code fragment

for i = 1 to NB do

fi = fB

i − iX∗

0 fx
i

end

for i = NB to 1 do

if λ(i) 6= 0 then

fλ(i) = fλ(i) + λ(i)X∗

i fi

end

end

In merging this code fragment with the rest of the algorithm, the body of the
first loop becomes the last line in the body of the first loop in the algorithm.

5.4 The Original Version

The recursive Newton-Euler algorithm was first described in a paper by Luh
et al. (1980a), which was republished in Brady et al. (1982). This original
algorithm was formulated using 3D vectors, and appears superficially to be quite
different from the one described in Section 5.3. However, the two algorithms
are actually almost the same, the only significant difference being that one uses
spatial accelerations while the other uses classical accelerations (see §2.11).

Table 5.2 shows a special case of the original algorithm in which the joints
are all revolute. One of the drawbacks of using 3D vectors to express rigid-
body dynamics is that the equations are sensitive to joint type. The algorithm
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Original Equations:

ωi = iEi−1 ωi−1 + z q̇i

vi = iEi−1 (vi−1 + ωi−1 × i−1ri)

ω̇i = iEi−1 ω̇i−1 + z q̈i + (iEi−1 ωi−1) × z q̇i

v̇i = iEi−1(v̇i−1 + ω̇i−1 × i−1ri + ωi−1 × ωi−1 × i−1ri)

Fi = mi (v̇i + ω̇i × ci + ωi × ωi × ci)

Ni = Icm
i ω̇i + ωi × Icm

i ωi

fi = Fi + iEi+1 fi+1

ni = Ni + ci × Fi + iEi+1ni+1 + iri+1 × iEi+1 fi+1

τi = zTni

Symbols:

ωi, ω̇i angular velocity and acceleration of body i
vi, v̇i linear velocity and acceleration of the origin of Fi

(body i coordinate frame)
Fi, Ni net force and moment on body i, expressed at its

centre of mass
fi, ni force and moment exerted on body i through joint i
mi, ci, Icm

i mass, centre of mass, and rotational inertia about
centre of mass for body i in Fi coordinates

iEi−1 3 × 3 orthogonal rotation matrix transforming from
Fi−1 to Fi coordinates

i−1ri position of origin of Fi relative to Fi−1, expressed in
Fi−1 coordinates

q̇i, q̈i, τi joint i velocity, acceleration and force variables
z direction of joint i axis in Fi coordinates

Correspondence with version in Table 5.1:

v̂i =

[

ωi

vi

]

âi =

[

ω̇i

v̇i − ωi × vi

]

f̂B

i =

[

Ni + ci × Fi

Fi

]

f̂i =

[

ni

fi

]

iXi−1 =

[ iEi−1 0

−iEi−1
i−1ri× iEi−1

]

Îi =

[

Icm
i − mi ci× ci× mi ci×

−mi ci× mi 1

]

Si =

[

z

0

]

z =





0
0
1



 λ(i) = i − 1 µ(i) = {i + 1}

Table 5.2: The original recursive Newton-Euler equations
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described in Luh et al. (1980a) was formulated for both revolute and prismatic
joints, and it is full of equations of the form

variable =

{

one expression if joint is revolute
another expression if joint is prismatic.

The choice of 3D vector symbols in this table is a compromise between the
notation used in this book and that used in other books that list this algorithm.
The equations in this table are written for an unbranched kinematic tree, in
line with how this algorithm is described elsewhere, but it is a simple matter
to modify them to work on a branched tree.

Table 5.2 also shows the correspondence between the 3D vectors in the
original algorithm and the spatial vectors in the algorithm shown in Table 5.1.
There are only two places where the 3D vectors do not match the corresponding
3D component of a spatial vector: linear acceleration and net body moment.
The latter is a trivial difference that is immediately rectified when Ni is used to
calculate ni. It is caused by Ni being calculated at the centre of mass instead
of at the body coordinate system’s origin. The former is a non-trivial difference,
as it affects the quantities propagated from one body to the next.1

One interesting feature of the original algorithm is that the linear velocity is
never used in any subsequent expression, and therefore need not be calculated.
This is a special property that arises from using classical accelerations. If the
velocity calculation is omitted, then this algorithm is slightly more efficient than
the spatial version. However, the difference is only a few percent, and is easily
dwarfed by other efficiency-related matters, such as the choice of programming
language, the computer hardware, and so on.

5.5 Additional Notes

The algorithm presented in Luh et al. (1980a) is the one that we usually re-
gard as the recursive Newton-Euler algorithm. However, the idea of combining
the Newton-Euler equations of motion with a recursive evaluation strategy pre-
dates this algorithm by a few years. In particular, one can see early forms of
recursive Newton-Euler algorithms in Stepanenko and Vukobratovic (1976) and
Orin et al. (1979). The algorithm has since been refined and optimized, and a
few of these optimizations are covered in Chapter 10. Two of the fastest pub-
lished versions can be found in He and Goldenberg (1989) and Balafoutis et al.
(1988), the latter also appearing in Balafoutis and Patel (1991). At the time of

1According to Section 2.11, classical acceleration is the apparent derivative of spatial
velocity in a coordinate system having a pure linear velocity equal to the velocity of the
body-fixed point at the origin. In light of this, one can interpret the difference between the
two algorithms as follows: the algorithm in Table 5.1 expresses the equations in stationary
coordinate systems that coincide with the body coordinate frames at the current instant;
whereas the algorithm in Table 5.2 expresses the equations in non-rotating coordinate systems
that coincide with the body coordinate frames at the current instant, and that have the same
linear velocities as the origins of the body coordinate frames.
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its invention, Lagrangian dynamics was more popular than Newton-Euler; and
this prompted Hollerbach to devise a recursive Lagrangian algorithm, and to
compare the computational complexities of various recursive and nonrecursive
algorithms (Hollerbach, 1980). This is the work that contrasted the O(n4) com-
plexity of the nonrecursive approach, as typified by the Uicker/Kahn algorithm
(Kahn and Roth, 1971), with the O(n) complexity of the recursive algorithms.

The impetus for this kind of research within the robotics community at
that time was to develop an inverse dynamics algorithm that would be fast
enough for use in real-time control of robot motion. An early example of this
can be found in Luh et al. (1980b), although the operational-space formulation
eventually became more popular (Khatib, 1987). The relatively slow speed of
computers at the time led some researchers to investigate parallel-computer
implementations (Lathrop, 1985), while others investigated symbolic optimiza-
tion techniques (Murray and Neuman, 1984; Neuman and Murray, 1987). One
interesting new direction is the development of efficient algorithms to calculate
the partial derivative of inverse dynamics with respect to a design parameter.
An example of this can be found in Fang and Pollard (2003).



Chapter 6

Forward Dynamics —

Inertia Matrix Methods

Forward dynamics is the problem of finding the acceleration of a rigid-body
system in response to given applied forces. It is used mainly for simulation;
and it is sometimes called ‘direct dynamics’, or simply ‘dynamics’. In this
chapter and the next, we examine the forward dynamics of kinematic trees.
The dynamics of closed-loop systems is covered in Chapter 8.

There are two main approaches to solving the forward dynamics problem
for a kinematic tree:

1. form an equation of motion for the whole system, and solve it for the
acceleration variables; or

2. propagate constraints from one body to the next in such a way that the
accelerations can be calculated one joint at a time.

We examine the first approach in this chapter, and the second in Chapter 7.
The first approach involves calculating the elements of an n × n joint-space
inertia matrix, and then factorizing this matrix in order to solve a set of n
linear equations for the acceleration variables. Such algorithms have O(n3)
complexity in the worst case, and are sometimes referred to collectively as O(n3)
algorithms. However, it would be more accurate to describe them as O(nd2)
algorithms, where d is the depth of the tree. The second approach involves
making a fixed number of passes through the tree, each pass performing a fixed
number of calculations per body. Algorithms that take this approach have
O(n) complexity, and are therefore the best choice for systems containing a
large number of bodies. However, the O(nd2) algorithms can match or slightly
exceed the speed of the O(n) algorithms on trees with only a few bodies, or that
are branched enough to have a small depth. The O(nd2) algorithms are also
an important component in closed-loop dynamics algorithms. The efficiency
trade-off between these two approaches is discussed in Chapter 10.
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This chapter commences with some basic material on how to solve the for-
ward dynamics problem using the joint-space inertia matrix. Then Section 6.2
presents the composite-rigid-body algorithm, which is the fastest algorithm for
calculating this matrix; and Section 6.3 presents a second derivation that re-
flects how the algorithm was originally discovered and described. The next two
sections describe the phenomenon of branch-induced sparsity, and present two
factorization algorithms to exploit it. This sparsity is the reason why the cost
of calculating the joint-space inertia matrix is only O(nd), and the cost of fac-
torizing it only O(nd2). Finally, Section 6.6 presents some background material
on the forward dynamics problem.

6.1 The Joint-Space Inertia Matrix

The equation of motion for a kinematic tree can be expressed in matrix form
as

τ = H(q) q̈ + C(q, q̇, fx) , (6.1)

where q, q̇, q̈ and τ are vectors of joint position, velocity, acceleration and force
variables, fx is a vector of external forces (if any), H is the joint-space inertia

matrix, and C is the joint-space bias force. H and C are the coefficients of the
equation of motion, while τ and q̈ are the variables. This equation shows H

as a function of q, and C as a function of q, q̇ and fx. Once these functional
dependencies are understood, they are usually omitted. The most useful piece
of information they convey is the fact that H depends only on the position
variables. If the system is at rest, and there are no forces acting on it other
than τ , then C = 0 and the equation of motion simplifies to τ = Hq̈.

In the forward dynamics problem, τ is given, and the task is to calculate
q̈. The methods described in this chapter solve the problem by the following
procedure:

1. calculate C,

2. calculate H ,

3. solve Hq̈ = τ − C for q̈.

These three steps have computational complexities of O(n), O(nd) and O(nd2),
respectively, where d is the depth of the tree. Given that d is bounded by d ≤ n,
the worst-case complexities for steps 2 and 3 are O(n2) and O(n3). At the other
extreme, if d is subject to a fixed upper limit (which can happen in practice)
then the complexity of all three steps is O(n). As explained below, step 1 can
be accomplished easily by an inverse dynamics algorithm, so this chapter is
concerned mostly with steps 2 and 3.

H is a symmetric, positive-definite, n × n matrix that is organised into an
NB × NB array of submatrices. (Recall that NB = NJ for a tree.) If ni is the
degree of freedom of joint i, then Hij is the ni × nj submatrix of H occupying

block-row i and block-column j. If pi =
∑i

k=1 nk then block-row i consists of
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rows pi−1 + 1 to pi inclusive, and block-column j consists of columns pj−1 + 1
to pj inclusive. Physically, Hij relates the acceleration at joint j to the force at
joint i. If every joint in the tree has only one degree of freedom, then n = NB ,
and Hij is the 1 × 1 matrix on row i and column j of H .

Suppose we have an inverse dynamics calculation function, ID, like the one
described in Chapter 5. This function performs the calculation

τ = ID(model , q, q̇, q̈, fx) .

On comparing this expression with Eq. 6.1, it follows immediately that

C = ID(model , q, q̇,0, fx) (6.2)

and

Hq̈ = ID(model , q, q̇, q̈, fx) − C . (6.3)

Thus, the value of C can be obtained with a single call to ID, and the product
of H with any desired vector is the difference between two calls to ID. Let
us define a differential inverse dynamics function, IDδ, which calculates the
change in joint force corresponding to a change in desired acceleration. This
function is given by

IDδ(model , q, q̈) = ID(model , q, q̇, q̈, fx) − ID(model , q, q̇,0, fx) . (6.4)

With this function, we can calculate column α of H as follows:

Hδα = IDδ(model , q̇, δα) ,

where δα is an n-dimensional coordinate vector having a 1 in its αth element
and zeros elsewhere. By repeating this calculation with α taking every value
from 1 to n, we can calculate the whole of H one column at a time. This idea
is the basis of methods 1 and 2 described in Walker and Orin (1982).

There is a great deal of cancellation of terms on the right-hand side of
Eq. 6.4. In particular, every term depending on either q̇ or fx cancels out,
which is why these vectors have been omitted from the argument list of IDδ.
It is therefore possible to formulate a greatly simplified version of the recur-
sive Newton-Euler algorithm specifically to calculate IDδ . The equations and
pseudocode for this algorithm are shown in Table 6.1. The pseudocode omits
the calculation of Si and iXλ(i) because they are assumed to be available as a
by-product of calculating C.

The algorithm in Table 6.1 has the advantage of being simple and straight-
forward. However, it is not the most efficient way to calculate H. The fastest
algorithm for that job is the composite-rigid-body algorithm, which is the sub-
ject of the next section.
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Equations:

ai = iXλ(i) aλ(i) + Si q̈i (a0 = 0)

fi = Ii ai +
∑

j∈µ(i)

iX∗

j fj

τi = ST
i fi

Algorithm:

a0 = 0

for i = 1 to NB do

ai = iXλ(i) aλ(i) + Si q̈i

fi = Ii ai

end

for i = NB to 1 do

τi = ST
i fi

if λ(i) 6= 0 then

fλ(i) = fλ(i) + λ(i)X∗

i fi

end

end

Table 6.1: Equations and algorithm to calculate τ = Hq̈

6.2 The Composite-Rigid-Body Algorithm

The kinetic energy of a kinematic tree is the sum of the kinetic energies of its
bodies. Thus,

T =
1

2

NB
∑

k=1

vT
k Ik vk . (6.5)

The velocity of body k is given by

vk =
∑

i∈κ(k)

Si q̇i , (6.6)

where κ(k) is the set of joints that support body k; that is, the set of joints on
the path between body k and the base. (See §4.1.4 for descriptions of κ(i), ν(i)
and µ(i).) Substituting Eq. 6.6 into 6.5 gives

T =
1

2

NB
∑

k=1

∑

i∈κ(k)

∑

j∈κ(k)

q̇T
i ST

i Ik Sj q̇j . (6.7)

Now, this equation is a sum over all i, j, k triples in which both joint i and joint
j support body k. It can therefore be rearranged into

T =
1

2

NB
∑

i=1

NB
∑

j=1

∑

k∈ν(i)∩ν(j)

q̇T
i ST

i Ik Sj q̇j , (6.8)

in which ν(i) ∩ ν(j) is the intersection of the set of bodies supported by joint
i and the set of bodies supported by joint j. Equation 6.8 is therefore a sum
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over all i, j, k triples in which body k is supported both by joint i and by joint
j, which is the same sum as in Eq. 6.7. The value of ν(i) ∩ ν(j) is given by

ν(i) ∩ ν(j) =







ν(i) if i ∈ ν(j)
ν(j) if j ∈ ν(i)
∅ otherwise

(6.9)

where ∅ denotes the empty set.
Now, one of the properties of the joint-space inertia matrix is that the kinetic

energy of the tree is given by the expression

T =
1

2
q̇THq̇ =

1

2

NB
∑

i=1

NB
∑

j=1

q̇T
i Hij q̇j . (6.10)

On comparing this equation with Eq. 6.8, it can be seen that

Hij =
∑

k∈ν(i)∩ν(j)

ST
i Ik Sj . (6.11)

Let us now introduce a new quantity, Ic
i , which is the inertia of the subtree

rooted at body i, treated as a single composite rigid body. (This is where the
algorithm gets its name.) Ic

i is given by

Ic
i =

∑

j∈ν(i)

Ij ; (6.12)

and it can be computed recursively using the formula

Ic
i = Ii +

∑

j∈µ(i)

Ic
j . (6.13)

Combining Eqs. 6.11, 6.12 and 6.9 produces the following formula for the joint-
space inertia matrix:

Hij =







ST
i Ic

i Sj if i ∈ ν(j)

ST
i Ic

j Sj if j ∈ ν(i)
0 otherwise.

(6.14)

Equations 6.13 and 6.14 are the basic equations of the composite-rigid-body
algorithm for a general kinematic tree. For the special case of an unbranched
tree, these equations simplify to

Ic
i = Ii + Ic

i+1 (6.15)

and
Hij = ST

i Ic
max(i,j) Sj . (6.16)
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Equations in Body Coordinates

Equation 6.13 can be expressed in body coordinates as

Ic
i = Ii +

∑

j∈µ(i)

iX∗

j Ic
j

jXi . (6.17)

In principle, Eq. 6.14 can be expressed in body coordinates as

Hij =







ST
i Ic

i
iXj Sj if i ∈ ν(j)

ST
i

iX∗

j Ic
j Sj if j ∈ ν(i)

0 otherwise.

(6.18)

However, to devise an efficient calculation scheme for this equation, it is neces-
sary to define a new quantity, jFi, which is the value of Ic

i Si expressed in body
j coordinates; that is, jFi = jX∗

i Ic
i Si. To calculate H, we need one instance

of jFi for every i, j pair satisfying j ∈ κ(i). They can be calculated recursively
using the formula

λ(j)Fi = λ(j)X∗

j
jFi , (iFi = Ic

i Si) (6.19)

with i taking every value in the range 1 to NB , while j progresses (separately
for each i) through the values i, λ(i), λ(λ(i)), and so on, back to the base. The
joint-space inertia matrix is then given by

Hij =







jF T
i Sj if i ∈ ν(j)

HT
ji if j ∈ ν(i)

0 otherwise.

(6.20)

Equations 6.17, 6.19 and 6.20 are the equations of the composite rigid body
algorithm in body coordinates.

Algorithm Details

Table 6.2 shows the pseudocode for the body-coordinates version of the algo-
rithm, together with both the basic equations and the equations for the body-
coordinates algorithm. Bear in mind that the symbols Ii, Ic

i and Si in the basic
version represent either abstract tensors or tensors expressed in an unspecified
common coordinate system, whereas the same symbols in the body-coordinates
equations represent quantities that are expressed in the coordinate system of
body i. The pseudocode does not include code to calculate Si or iXλ(i) because
these quantities are assumed to be available as a by-product of applying the
recursive Newton-Euler algorithm to calculate C in Eq. 6.1.

In implementing Eq. 6.17, we have transformed it from a calculation using
µ(i) to a calculation using λ(i). A literal translation of Eq. 6.17 into pseudocode
looks like this:
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Basic Equations:

Ic
i = Ii +

∑

j∈µ(i)

Ic
j

Hij =







ST
i Ic

i Sj if i ∈ ν(j)

ST
i Ic

j Sj if j ∈ ν(i)
0 otherwise

Equations for Body-Coordinates
Algorithm:

Ic
i = Ii +

∑

j∈µ(i)

iX∗

j Ic
j

jXi

λ(j)Fi = λ(j)X∗

j
jFi (iFi = Ic

i Si)

Hij =







jF T
i Sj if i ∈ ν(j)

HT
ji if j ∈ ν(i)

0 otherwise

Algorithm:

H = 0

for i = 1 to NB do

Ic
i = Ii

end

for i = NB to 1 do

if λ(i) 6= 0 then

Ic
λ(i) = Ic

λ(i) + λ(i)X∗

i Ic
i

iXλ(i)

end

F = Ic
i Si

Hii = ST
i F

j = i
while λ(j) 6= 0 do

F = λ(j)X∗

j F

j = λ(j)

Hij = F TSj

Hji = HT
ij

end

end

Table 6.2: The composite rigid body equations and algorithm

for i = NB to 1 do

Ic
i = Ii

for each j in µ(i) do

Ic
i = Ic

i + iX∗

j Ic
j

jXi

end

end

However, the same calculation can be performed in a different order, but with
the same end result, using the following code fragment (cf. the implementation
of Eq. 5.20 in §5.3):

for i = 1 to NB do

Ic
i = Ii

end

for i = NB to 1 do

if λ(i) 6= 0 then

Ic
λ(i) = Ic

λ(i) + λ(i)X∗

i Ic
i

iXλ(i)

end

end

The algorithm starts with two preparatory steps: setting H to zero and
setting each Ic

i to Ii. The first step is included to remind the reader that
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body acceleration

joint force

sα

0

Ii
c sα

sα

joint i Ij
c sα   ( j   ν(i))

0

Figure 6.1: Kinematic tree undergoing an acceleration of q̈ = δα

the rest of the code will initialize only the nonzero submatrices in H . This
step may or may not be necessary, depending on how H is to be used. The
main loop then implements the calculations for Eqs. 6.17, 6.19 and 6.20. F is
a local variable that is initially set to Ic

i Si (and therefore equal to iFi in the
equations). The while loop transforms this variable successively through the
coordinate systems of every body j on the path from body i to the base (i.e.,
every j ∈ κ(i)), as it calculates the submatrices Hij and Hji. Note that setting
Hji will only be necessary if the upper triangle is to be accessed.

If d is the depth of the kinematic tree, then the while loop will never
execute more than d − 1 times for any value of i. It therefore follows that the
computational cost of the composite-rigid-body algorithm cannot be more than
O(nd), and that the number of nonzero elements in H is at most O(nd). A
detailed cost analysis appears in Section 10.3.2.

6.3 A Physical Interpretation

This section presents an alternative derivation of the composite-rigid-body al-
gorithm that is closer to the original version, the purpose being to show some
of the physical insights that played a role in the discovery of this algorithm.

As mentioned earlier, if the kinematic tree is at rest, and there are no forces
acting on it other than τ , then the equation of motion simplifies to τ = Hq̈.
If we set q̈ = δα under these conditions, then τ will be the αth column of
H. Figure 6.1 shows what is happening in the tree when q̈ = δα. The αth

variable in q̈ must belong to a joint. We therefore identify the joint that owns
this variable, and call it joint i. Likewise, we identify the column in Si that
corresponds to the αth variable, and call it sα. (sα is a spatial motion vector.)
The motion of the tree can now be stated as follows: the acceleration across joint
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i is sα, and the acceleration across every other joint is zero. As a consequence,
the acceleration of every body in the subtree supported by joint i is sα, and
every other body has an acceleration of zero. In other words,

aj =

{

sα if j ∈ ν(i)
0 otherwise.

(6.21)

Let fB

j and fj be the net force on body j and the total force transmitted
across joint j, respectively. As there are no velocity terms, f B

j is given by

fB

j = Ij aj =

{

Ij sα if j ∈ ν(i)
0 otherwise.

(6.22)

Now, joint j is the only connection between the subtree ν(j) and the rest of the
system. As there are no forces acting on the bodies other than those transmitted
across the joints, it follows that fj must be the net force acting on subtree ν(j).
However, the net force on a subtree is also the sum of the net forces on the
bodies in the subtree, so we have

fj =
∑

k∈ν(j)

fB

k . (6.23)

Combining these two equations gives

fj =







∑

k∈ν(j) Ik sα if j ∈ ν(i)
∑

k∈ν(i) Ik sα if j ∈ κ(i)

0 otherwise,

which simplifies to

fj =







Ic
j sα if j ∈ ν(i)

Ic
i sα if j ∈ κ(i)
0 otherwise

(6.24)

in view of Eq. 6.12. Finally, the joint force variables are given by

τj = ST
j fj =







ST
j Ic

j sα if j ∈ ν(i)

ST
j Ic

i sα if j ∈ κ(i)
0 otherwise.

(6.25)

These are the subvectors of column α of H .
The second case in Eq. 6.24 reveals the two key facts that led to the discovery

of the composite-rigid-body algorithm: that fi is the product of a joint motion
vector with a composite-rigid-body inertia, and that fj = fi for all j ∈ κ(i)
(the dark-grey joints in Figure 6.1). The algorithm therefore consists of:

1. calculating the composite-rigid-body inertias via Eq. 6.17;

2. calculating fi = Ic
i sα in body i coordinates;
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= nonzero submatrix
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Figure 6.2: Examples of branch-induced sparsity

3. transforming fi to the coordinate system of each body in κ(i); and

4. calculating the elements of H in the portion of column α above the main
diagonal, and copying them to the portion of row α below the main diag-
onal, the two being the same because of symmetry.

The only difference between this algorithm and the one in Section 6.2 is that
the latter processes the columns in blocks, rather than individually, one block
being all of the columns pertaining to a single joint. If joint i has ni degrees
of freedom, then the quantity iFi in Eq. 6.19 is simply a 6 × ni matrix whose
columns are the forces fi = Ic

i sα for each α belonging to joint i.

6.4 Branch-Induced Sparsity

Equation 6.14 implies that some elements of H will automatically be zero sim-
ply because of the connectivity. According to this equation, Hij will be zero
whenever i is neither an ancestor of j, nor a descendant, nor equal to j. This
can happen only if i and j are on different branches of the tree, so we call it
branch-induced sparsity.

Figure 6.2 shows some simple connectivity graphs and the sparsity patterns
they produce. Example (a) shows an extreme case in which every body is
connected directly to the base, resulting in the greatest possible amount of
branch-induced sparsity. In this case, every off-diagonal submatrix is zero.
More generally, H will always be block diagonal (or a symmetric permutation
thereof) if the base has more than one child. Example (b) shows the opposite
extreme: the tree has no branches, and so there is no branch-induced sparsity.
Example (c) shows a more typical sparsity pattern; and examples (d) and (e)
illustrate the effect of the numbering scheme: two different numberings of the
same graph produce matrices that are symmetric permutations of each other.
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Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL

and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff
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LTL factorization:

for k = n to 1 do

Hkk =
√

Hkk

i = λ(k)
while i 6= 0 do

Hki = Hki/Hkk

i = λ(i)
end

i = λ(k)
while i 6= 0 do

j = i
while j 6= 0 do

Hij = Hij − Hki Hkj

j = λ(j)
end

i = λ(i)
end

end

LTDL factorization:

for k = n to 1 do

i = λ(k)
while i 6= 0 do

a = Hki/Hkk

j = i
while j 6= 0 do

Hij = Hij − a Hkj

j = λ(j)
end

Hki = a
i = λ(i)

end

end

Table 6.3: LTL and LTDL factorization algorithms

et al., 1986). One immediate consequence is that the sparsity pattern of H

is preserved in the resulting factors, which are therefore also sparse. Figure
6.3 illustrates this effect, showing both the original pattern and the pattern
in the resulting triangular factors. This sparsity can be exploited during back-
substitution. A second consequence of the no-fill-in property is that the branch-
induced zeros can be ignored completely during the factorization process.

6.5 Sparse Factorization Algorithms

Table 6.3 presents the pseudocode for the sparse LTL and LTDL factorization
algorithms. These algorithms expect to be given two inputs: an n × n matrix
H and an n-element integer array λ. H is expected to be symmetric and
positive definite, and the elements of λ are expected to satisfy 0 ≤ λ(i) <
i. In addition, H is expected to have the following sparsity pattern, which
is optimally exploited by the algorithms: On each row k of H, the nonzero

elements below the main diagonal appear only in columns λ(k), λ(λ(k)), and

so on. This rule identifies the set of elements that the algorithms will treat as
being nonzero. All other elements are assumed to be zero, and are ignored. If
λ(k) = k − 1 for all k, then the algorithms treat every element as nonzero, in
which case they perform a dense-matrix LTL or LTDL factorization.

Figure 6.4 shows how the algorithms work. They both operate in situ on the
given matrix, and never access any element above the main diagonal. The LTL
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Figure 6.4: Illustration of the factorization process

algorithm computes L and returns it in the lower triangle of H. The LTDL

algorithm computes D and L, returns D on the main diagonal, and returns the
off-diagonal elements of L below it. This works because the algorithm computes
a unit lower-triangular matrix, so its diagonal elements are known to have the
value 1, and therefore do not need to be returned.

Each algorithm has an outer loop that visits each row in turn, working from
n back to 1. At any stage in the factorization process, rows k + 1 to n are
finished, and contain rows k + 1 to n of the returned factors. Rows 1 to k can
be divided into three areas, as shown in the diagram. Area 1 consists of just
the element Hkk; area 2 consists of elements 1 to k − 1 of row k; and area 3
consists of the triangular region from rows 1 to k − 1. A different calculation
takes place in each area, as shown in the figure. The pseudocode for the LTL

factorization performs the area-2 and area-3 calculations in two separate loops;
but the pseudocode for the LTDL factorization interleaves these calculations
in such a way that it never needs to remember more than one H ′

ki value at any
point. The current remembered value is stored in the local variable a.

The inner loops are designed to iterate only over the values λ(k), λ(λ(k)),
and so on. This is where the sparsity is exploited. In effect, the algorithms
know where the zeros are, and simply skip over them. Figure 6.4 illustrates the
cost reduction by showing the first three steps in the factorization of the matrix
H from Figure 6.3. At k = 7, the algorithms perform two lots of the area-2
calculation and three lots of the area-3 calculation; and similarly at k = 6 and
k = 5. This is far fewer than the number of calculations that would have been
necessary if there had been no zeros.
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for i = 1 to n do

λ′(i) = i − 1
end

map(0) = 0
for i = 1 to NB do

map(i) = map(i − 1) + ni

end

for i = 1 to NB do

λ′(map(i − 1) + 1) = map(λ(i))
end

0
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6

0

1

2

3

4

5

6 7

8

Table 6.4: Algorithm for calculating the expanded parent array, and illustration
of the expanded connectivity graph

Expanding the Parent Array

The parent array for a kinematic tree contains NB elements, but the factoriza-
tion algorithms require an array with n elements. If n = NB then no action is
required. Otherwise, an expanded parent array must be constructed for use in
the factorization process.

Table 6.4 presents an algorithm to do this, and an illustration of what the
algorithm does. Essentially, we start with the original connectivity graph, and
replace each multi-freedom joint with a chain of single-freedom joints. This
produces an expanded graph in which every arc represents a single joint variable.
This new graph is renumbered so that arc i represents the ith variable in q̈; and
the expanded parent array is computed from this graph. The illustration shows
the original and expanded connectivity graphs for a kinematic tree in which
joint 2 has three degrees of freedom, but every other joint has only one. Arc 2
is therefore replaced by a chain of three arcs, and the new tree is renumbered so
that each arc number equals the index of its variable in q̈. As the variables for
joint 2 occupy the second, third and fourth places in q̈, the new arcs must be
numbered 2, 3 and 4. The parent array for the original graph is (0, 1, 1, 2, 2, 3);
and the parent array for the expanded graph is (0, 1, 2, 3, 1, 4, 4, 5).

The algorithm in Table 6.4 calculates an expanded parent array, λ′, directly
from the original. The first step is to initialize λ′ to the array (0, 1, 2, . . . , n−1).
This is a clever trick that correctly initializes n − NB of the elements in λ′,
leaving only NB elements to be computed from λ. The second loop constructs a
mapping array such that map(i) =

∑i
j=1 nj , where nj is the degree of freedom

of joint j. (The variables of joint i appear in q̈ at locations map(i − 1) + 1 to
map(i) inclusive.) The third loop performs two mappings rolled into one: the
value stored in λ(i) is converted to map(λ(i)), which is the correct value to be
inserted into λ′; and this value is inserted into λ′ at location map(i − 1) + 1,
which is the correct place to put it. For the example shown in the table, the
mapping array is (0, 1, 4, 5, 6, 7, 8) (indexed from zero); the two entries in λ′
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y = Lx

for i = n to 1 do

yi = Lii xi

j = λ(i)
while j 6= 0 do

yi = yi + Lij xj

j = λ(j)
end

end

x = L−1x

for i = 1 to n do

j = λ(i)
while j 6= 0 do

xi = xi − Lij xj

j = λ(j)
end

xi = xi/Lii

end

y = LTx

for i = 1 to n do

yi = Lii xi

j = λ(i)
while j 6= 0 do

yj = yj + Lij xi

j = λ(j)
end

end

x = L−Tx

for i = n to 1 do

xi = xi/Lii

j = λ(i)
while j 6= 0 do

xj = xj − Lij xi

j = λ(j)
end

end

y = Hx

for i = 1 to n do

yi = Hii xi

end

for i = n to 1 do

j = λ(i)
while j 6= 0 do

yi = yi + Hij xj

yj = yj + Hij xi

j = λ(j)
end

end

Table 6.5: Multiplication and back-substitution algorithms

that are correctly initialized in the first loop are λ′(3) and λ′(4); the elements
λ(1) · · ·λ(3) are mapped unaltered to λ′(1), λ′(2) and λ′(5); and λ(4) · · ·λ(6)
are incremented by 2 and mapped to λ′(6) · · ·λ′(8).

Having computed the expanded parent array once, it should be stored in
the system model for future use by the factorization algorithms.

Back-Substitution

The sparsity pattern in H appears also in L; so it is possible to exploit the
sparsity in L using the same techniques as for H . Table 6.5 presents algorithms
to calculate the quantities Lx, LTx, L−1x and L−Tx for a general vector x,
given only λ, L and x. Back-substitution makes use of L−1x and L−Tx. The
table also presents an algorithm to calculate Hx. In every case, the sparsity is
exploited by having the inner loop iterate over only the nonzero elements of L

or H . The algorithms assume that L is a general lower-triangular factor, such
as that produced by the LTL factorization. To modify them to work with a
unit lower-triangular factor, simply replace Lii with 1.

The algorithms that calculate Lx LTx and Hx place the result in a sep-
arate vector, y, and leave x unaltered. The Lx algorithm allows y to be the
same vector as x, in which case it works in situ; but the other two require
y 6= x. The algorithms that calculate L−1x and L−Tx both work in situ.
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LTL LTDL

factorization n
√

+ D1d + D2(m + a) D1d + D2(m + a)
back-substitution 2nd + 2D1(m + a) nd + 2D1(m + a)

Lx, LTx nm + D1(m + a) D1(m + a)

L−1x, L−Tx nd + D1(m + a) D1(m + a)
Hx nm + 2D1(m + a)

Table 6.6: Computational cost of sparse algorithms

To implement y = L−1x or y = L−Tx, simply copy x to y and apply the
algorithm to y.

Computational Cost

Table 6.6 presents computational cost figures for each algorithm. The symbols
m, a, d and

√
denote the cost of a floating-point multiplication, addition,

division and square-root calculation, respectively. The quantities D1 and D2

depend on the sparsity pattern in H, and are given by

D1 =

n
∑

k=1

(dk − 1) (6.26)

and

D2 =
n
∑

k=1

dk(dk − 1)

2
, (6.27)

where dk is the number of joints on the path between body k and the base (i.e.,
dk = |κ(k)|), and can be regarded as the depth of body k in the tree. The
expressions dk − 1 and dk(dk − 1)/2 count the number of times that area-2 and
area-3 calculations are performed during the processing of row k; so D1 and
D2 count the total number of area-2 and area-3 calculations, respectively. D1

is also the total number of nonzero elements below the main diagonal. Thus,
the number of nonzero elements in H is n+2D1. If there is no branch-induced
sparsity, then D1 and D2 take their maximum possible values, which are

D1 = (n2 − n)/2 and D2 = (n3 − n)/6 . (6.28)

Plugging these values into the formulae in Table 6.6 produces cost figures that
are identical to those of the standard Cholesky and LDLT factorization algo-
rithms. If d denotes the depth of the tree, defined as the depth of the deepest
body, then D1 and D2 are bounded by

D1 ≤ n(d − 1) and D2 ≤ nd(d − 1)/2 . (6.29)

These bounds show that the factorization process is at worst O(nd2).
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6.6 Additional Notes

One of the earliest examples of a dynamics algorithm is due to Uicker (1965,
1967). It combined the 4× 4 matrix representation of kinematics developed by
Denavit and Hartenberg (1955) with a 4 × 4 pseudoinertia matrix, and used
Lagrangian techniques to obtain the equation of motion for a closed-loop mech-
anism. At about the same time, Hooker and Margulies (1965) used vectorial
(Newton-Euler) dynamics and augmented bodies to obtain the equations of
motion for a free-floating kinematic tree representing a satellite. By the mid
1970s, there were already several computer programs available to calculate the
forward dynamics of various kinds of rigid-body system; and an excellent review
of these early works can be found in Paul (1975). One early idea that proved
to be particularly successful is the sparse-matrix formulation used in the pro-
gram ADAMS (Orlandea et al., 1977). The earliest textbook on computational
rigid-body dynamics appeared at this time (Wittenburg, 1977). It presented
a detailed method for constructing computer-oriented models of general rigid-
body systems, and for calculating their dynamics.

The composite-rigid-body algorithm first appeared as method 3 in Walker
and Orin (1982). It provided a new method for calculating the joint-space
inertia matrix of a kinematic tree, which was substantially faster than previ-
ous methods. More efficient versions of this algorithm, and some variations
on the basic idea, appeared subsequently in Featherstone (1984, 1987); Bal-
afoutis and Patel (1989, 1991); Lilly and Orin (1991); Lilly (1993); McMillan
and Orin (1998). However, the phenomenon of branch-induced sparsity was not
recognized until Featherstone (2005).

The first example of a propagation method for forward dynamics appeared
in Vereshchagin (1974). In this paper, the dynamics was formulated using
Gauss’ principle of least constraint, and the resulting minimization solved via
dynamic programming. The algorithm in this paper is practically the same as
the articulated-body algorithm, but its significance was not recognized until
after the articulated-body algorithm had been published. The next example
of a propagation algorithm appeared in Armstrong (1979), followed by the
preliminary version of the articulated-body algorithm in Featherstone (1983),
and then the complete version in Featherstone (1984, 1987). More efficient
versions then appeared in Brandl et al. (1988); McMillan and Orin (1995);
McMillan et al. (1995). A few other algorithms have turned out to be practically
the same as the articulated-body algorithm; for example, the forward dynamics
algorithm of Rodriguez et al. (Rodriguez, 1987; Rodriguez et al., 1991) and the
O(n) algorithm in Rosenthal (1990).

Superficially, it would seem that the inertia-matrix methods and propaga-
tion methods are very different. However, two interesting connections have been
found. Drawing on Kalman filter theory, Rodriguez et al. present two factoriza-
tions of the joint-space inertia matrix: one implies the recursive Newton-Euler
algorithm, while the other has an inverse that implies the articulated-body al-
gorithm (Rodriguez, 1987; Rodriguez et al., 1991). The other connection was
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found by Ascher et al. (1997). Starting with an equation similar in form to
Eq. 3.18, they show that the joint-space inertia matrix can be obtained by ap-
plying Gaussian elimination to one permutation of the coefficient matrix, while
the articulated-body algorithm arises from applying Gaussian elimination to
another permutation of this matrix.

Strictly speaking, inertia-matrix and propagation methods are only two out
of three possible strategies for calculating the forward dynamics of a kinematic
tree. The third possibility is to assemble the equations of motion of the indi-
vidual bodies, together with the equations of constraint, to form a single large
matrix equation (as shown in Chapter 3, for example). This strategy is very
useful for closed-loop systems, but it is not competitive with inertia-matrix and
propagation methods when applied to kinematic trees. An example of this class
of algorithm can be found in Baraff (1996).



Chapter 7

Forward Dynamics —

Propagation Methods

The forward dynamics problem presents us with two sets of unknowns: the
joint accelerations and the joint constraint forces. It is usually not possible
to solve for any of these unknowns locally at any one body; but it is possible
to formulate equations that they must satisfy. Propagation methods work by
calculating the coefficients of such equations locally, and propagating them to
neighbouring bodies, until we eventually reach a point where we can solve the
dynamics locally at one particular body. Having the solution at this one body, it
becomes possible to solve the dynamics at neighbouring bodies, and so on, until
the whole problem is solved. In principle, the process is akin to solving a linear
equation by first triangularizing the coefficient matrix, and then solving it by
back-substitution. Indeed, some propagation algorithms have been formulated
via this analogy (e.g. see Ascher et al., 1997; Rosenthal, 1990; Saha, 1997).
Propagation algorithms are more complicated than inertia-matrix algorithms,
but they have a computational complexity of O(NB), which is the theoretical
minimum for solving the forward dynamics problem.

The articulated-body algorithm is the prime example of a propagation algo-
rithm, and it is the fastest for calculating the forward dynamics of a kinematic
tree. Most of this chapter is devoted to a description of this algorithm and its
attendant concepts, like articulated-body inertia. The final two sections take a
broader view of the subject, and present some of the techniques and equations
that form the basis of other algorithms.

7.1 Articulated-Body Inertia

Articulated-body inertia is the inertia that a body appears to have when it is
part of a rigid-body system. Consider the rigid body B shown in diagram (a)
of Figure 7.1. The relationship between the applied force, f , and the resulting
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f = Ia + p f = IA a + pA
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Figure 7.1: Comparing a rigid body (a) with an articulated body (b)

acceleration, a, is given by the body’s equation of motion:

f = Ia + p . (7.1)

The coefficients I and p in this equation are the rigid-body inertia and bias
force, respectively, of body B. Now consider the two-body system shown in
diagram (b), in which a second body, B′, has been connected to B via a joint.
The effect of this second body is to alter the acceleration response of B, so that
the relationship between f and a is now given by

f = IA a + pA . (7.2)

This is an articulated-body equation of motion. It has the same algebraic form as
Eq. 7.1, but different coefficients. The quantities IA and pA in this equation are
the articulated-body inertia and bias force of body B in the two-body system
comprising B, B′ and the connecting joint.

An equation like 7.2 describes the acceleration response of a single rigid
body, taking into account the dynamic effects of a specific set of other bodies
and joints. We call this body a handle, and we call the system containing it an
articulated body. Thus, the handle is the body to which IA and pA refer; and
the articulated body is the rigid-body system, or subsystem, whose dynamic
effects are included in IA and pA. In Figure 7.1(b), the handle is body B and
the articulated body is the whole two-body system.

Basic Properties

Articulated-body inertias share the following properties with rigid-body iner-
tias: they are symmetric, positive-definite matrices; they are mappings from
M

6 to F
6; and they obey the same coordinate transformation rule. However,

articulated-body inertias are mappings from acceleration to force, not velocity
to momentum, so expressions like IAv and 1

2vTIAv, where v denotes a velocity,
do not make sense. An articulated body may consist of just a single rigid body,
in which case the articulated-body and rigid-body inertias and bias forces are
the same. This provides a starting point for recursive calculation methods.
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Figure 7.2: Addition of articulated-body inertias and bias forces

Articulated-body inertias depend only on the inertias of the member bodies
and the constraints imposed by the member joints. Thus, they are functions of
the joint position variables, but not the velocity variables or the various force
terms. In this respect, they resemble generalized inertia matrices. The velocity
terms, external force terms (other than f), and so on, appear only in the bias
forces. In 3D space, 21 parameters are required to define a general articulated-
body inertia, compared with only 10 for a rigid-body inertia. In 2D space, 6
parameters are required to define a general articulated-body inertia, compared
with only 4 for a rigid-body inertia. Note that 21 and 6 are the numbers
of independent values in a symmetric 6 × 6 and 3 × 3 matrix, respectively.
In general, the apparent mass of an articulated-body inertia varies with the
direction of applied force, and it does not have a centre of apparent mass. (See
Example 7.1.)

Addition

Addition is defined on articulated-body inertias, and the physical interpretation
of this operation is illustrated in Figure 7.2. This figure shows two articulated
bodies, A1 and A2, that are being joined to form a single articulated body, A.
The connection is made by gluing bodies B1 and B2 together to form a new
body, B. If the symbols IA

i , pA
i , IA and pA denote the articulated-body inertias

and bias forces for Bi in Ai and B in A, respectively, then IA = IA
1 + IA

2 and
pA = pA

1 + pA
2 .

Inverse Inertia

Equation 7.2 assumes the handle has six degrees of freedom. If this is not the
case, then the more general equation

a = ΦAf + bA (7.3)
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must be used instead. In this equation, ΦA and bA are the handle’s articulated-
body inverse inertia and bias acceleration, respectively (cf. Eq. 2.72). An equa-
tion in this form always exists. If the handle has six degrees of freedom, then
ΦA = (IA)−1 and bA = −ΦA pA. Otherwise, ΦA is singular, and its rank equals
the handle’s degree of motion freedom. Articulated-body inverse inertias are
symmetric, positive-semidefinite matrices, and they transform like rigid-body
inverse inertias.

Multiple Handles

It is possible for an articulated body to have more than one handle. If we
number the handles from 1 to h, and define the vectors fi and ai to be the
force and acceleration associated with handle i, then Eq. 7.3 generalizes to











a1

a2

...
ah











=











ΦA
1 ΦA

12 · · · ΦA
1h

ΦA
21 ΦA

2 · · · ΦA
2h

...
...

. . .
...

ΦA
h1 ΦA

h2 · · · ΦA
h





















f1

f2
...

fh











+











bA
1

bA
2
...

bA
h











. (7.4)

In this equation, ΦA
i and bA

i are the articulated-body inverse inertia and bias
acceleration for handle i, and ΦA

ij is the cross-coupling term that describes the
acceleration caused at handle i by the application of a force to handle j. The
coefficient matrix is symmetric and positive-semidefinite, and its rank equals
the total number of independent degrees of motion freedom possessed by the
set of handles. If the rank is 6h then Eq. 7.4 can be inverted to obtain a
multi-handle equivalent of Eq. 7.2.

O

z

y
x

Figure 7.3: An articulated body

Example 7.1 Figure 7.3 shows an articulated body consisting of a box with
a slot, and a cylinder that fits inside the slot. The cylinder has two degrees
of freedom relative to the box: it can rotate about the x axis, and it can
translate in the y direction. The contact between the two bodies is assumed to
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be frictionless. Both bodies have their centres of mass at the origin. The box
has a mass of m1 and a rotational inertia about its centre of mass of I1 (i.e.,
its rotational inertia matrix is I1 times the identity matrix); and the cylinder
has a mass of m2 and a rotational inertia of I2.

Let us treat the box as the handle, and calculate its articulated-body inertia.
If we apply a force to the box along either the x or the z axis, then the two
bodies will move as one, and the resulting acceleration will be 1/(m1 + m2)
times the magnitude of the applied force; but if we apply a force along the y
axis, then only the box will move, and the resulting acceleration will be 1/m1

times the magnitude of the applied force. Likewise, if a pure couple is applied
to the box about either the y or the z axes, then the two bodies will rotate as
one, and the apparent inertia will be I1 + I2; but a pure couple about the x
axis will cause only the box to rotate, and the apparent inertia will be I1. The
complete articulated-body inertia matrix is therefore

IA =

















I1 0 0 0 0 0
0 I1 + I2 0 0 0 0
0 0 I1 + I2 0 0 0
0 0 0 m1 + m2 0 0
0 0 0 0 m1 0
0 0 0 0 0 m1 + m2

















.

Observe that the apparent mass varies with direction: the box appears to have
more mass in the x and z directions than in the y direction.

In this particular example, the handle exhibits a centre of apparent mass,
which is located at the origin. Any pure force applied to the handle along a
line passing through this point causes a pure linear acceleration of the handle.
Such a point does not exist in general.

7.2 Calculating Articulated-Body Inertias

There are two basic strategies for calculating articulated-body inertias: projec-
tion and assembly. In the projection method, the equation of motion for the
whole articulated body is projected onto the motion space of the handle (or
handles). In the assembly method, an articulated body is assembled step-by-
step from its component parts, and a sequence of articulated-body inertias are
computed along the way. The projection method is commonly used to calcu-
late operational-space inertias, which are used in robot control systems (Khatib,
1987, 1995); and the assembly method is used in O(n) dynamics algorithms.

7.2.1 The Projection Method

An articulated body is a rigid-body system. It therefore has an equation of
motion that can be expressed in generalized coordinates as

Hq̈ + C = τ , (7.5)



124 CHAPTER 7. PROPAGATION METHODS

where C accounts for every force acting on the system except the force acting
on the handle. Let v, a and f denote the spatial velocity and acceleration of
the handle, and the spatial force acting on it. If J is the Jacobian that maps
q̇ to v according to v = Jq̇, then it defines the following relationships between
f and τ , and between a and q̈:

τ = JTf (7.6)

and

a = Jq̈ + J̇ q̇ . (7.7)

Combining these equations gives

a = JH−1(JTf − C) + J̇ q̇

= ΦAf + bA , (7.8)

where

ΦA = JH−1JT (7.9)

and

bA = J̇ q̇ − JH−1C . (7.10)

These are the general equations for an articulated-body inverse inertia and bias
acceleration. They apply to any articulated body, and they are independent
of the choice of generalized coordinates. If the handle has a full six degrees of
motion freedom, then ΦA is invertible, and we can define

f = IAa + pA , (7.11)

where

IA = (JH−1JT)−1 (7.12)

and

pA = −IA bA . (7.13)

Many of the basic properties of articulated-body inertias can be deduced
from Eq. 7.12. For example, given that H is symmetric and positive-definite, it
follows that IA must also be symmetric and positive-definite; and it is obvious
that IA does not depend on velocity or force terms. Some basic properties of
ΦA that follow from Eq. 7.9 are:

rank(ΦA) = rank(J) ,

range(ΦA) = range(J ) , (7.14)

null(ΦA) = null(JT) .
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A1 A2

A

B1 B2

S

fJ

f1 a1 f2 a2
f a

B1

Figure 7.4: Construction of a larger articulated body from two smaller ones

Multiple Handles

The projection method is easily extended to articulated bodies with more than
one handle. Suppose there are h handles, and let ai, fi and Ji be the acceler-
ation, force and Jacobian pertaining to handle i. If we redefine the quantities
a, f and J to be

a =







a1

...
ah






, f =







f1
...

fh






and J =







J1

...
Jh






,

then Eqs. 7.6 to 7.14 immediately apply to the multiple-handle case.

7.2.2 The Assembly Method

In the assembly method, we regard a given articulated body as an assembly
of smaller articulated bodies; and we calculate its inertia and bias force from
those of its component parts. Thus, the assembly method is suitable for use in
recursive algorithms. In principle, the assembly method is general. However,
we shall consider here only the special case in which every articulated body
is a floating kinematic tree—a kinematic tree with no connection to a fixed
base. This is the case that is needed for the articulated-body algorithm. The
special properties of this case are: that every articulated body has one handle;
that every handle has a full six degrees of freedom; and that every assembly
operation consists of connecting one handle to another via a single joint. More
general cases are covered in Sections 7.4 and 7.5.

Figure 7.4 shows a pair of articulated bodies, A1 and A2, in the process
of being assembled into a larger articulated body, A. The assembly operation
consists of connecting the two handles, B1 and B2, with a joint. Prior to the
assembly, the articulated-body equations for B1 and B2 are

f1 = IA
1 a1 + pA

1 (7.15)

and
f2 = IA

2 a2 + pA
2 . (7.16)
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After the assembly, B1 serves as the handle for the new articulated body, and
its equation is

f = IA a1 + pA . (7.17)

The objective is to express IA and pA in terms of IA
1 , IA

2 , pA
1 , pA

2 and the
motion constraint imposed by the new joint.

When the assembly is made, the new joint introduces a new force, fJ, which
is the total force transmitted through the joint from B1 to B2. The relationships
between the force variables are therefore

f1 = f − fJ ,

f2 = fJ .

The value of fJ is unknown, but it imposes the motion constraint

a2 − a1 = Sq̈ + c ,

and it satisfies

STfJ = τ .

In these equations, q̈ and τ are the joint’s acceleration and force variables,
respectively, S is the joint’s motion subspace matrix, and c = Ṡq̇ (or Ṡq̇ + σ̇

if the joint depends on time). q̈ is unknown, but τ , S and c are given. By
combining these equations with Eq. 7.16, we can calculate q̈ as follows:

τ = STf2

= ST(IA
2 a2 + pA

2 )

= ST(IA
2 (a1 + c + Sq̈) + pA

2 ) ,

so

q̈ = (STIA
2 S)−1 (τ − ST(IA

2 (a1 + c) + pA
2 )) . (7.18)

The matrix STIA
2 S is positive definite, and therefore invertible. Having solved

for q̈, we can now construct an equation relating f to a1 as follows:

f = f1 + f2

= IA
1 a1 + IA

2 a2 + pA
1 + pA

2

= IA
1 a1 + IA

2 (a1 + c + Sq̈) + pA
1 + pA

2

= IA
1 a1 + IA

2 (a1 + c + S (STIA
2 S)−1 (τ − ST(IA

2 (a1 + c) + pA
2 )))

+ pA
1 + pA

2 .

This equation has the same form as Eq. 7.17, and yields the following formulae
for IA and pA:

IA = IA
1 + IA

2 − IA
2 S (STIA

2 S)−1 STIA
2 (7.19)
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and

pA = pA
1 + pA

2 + IA
2 c + IA

2 S (STIA
2 S)−1 (τ − ST(IA

2 c + pA
2 )) . (7.20)

With these formulae, we can compute the articulated-body inertia and bias
force for any handle in any articulated body, provided only that the articulated
body is a floating kinematic tree.

Assembling Subtrees

The three articulated bodies in Figure 7.4 were labelled A1, A2 and A merely
for identification purposes, with no particular significance in the numbers 1 and
2. In practice, we would typically define a set of articulated bodies, A1 · · ·ANB

,
such that Ai contained all of the bodies in the subtree rooted at body i, with
body i serving as the handle (e.g. see Figure 7.5). In this circumstance, the
most useful assembly formulae are the ones that tell how to calculate IA

i and
pA

i from the inertias and bias forces pertaining to the children of body i; that
is, the quantities IA

j and pA
j for all j ∈ µ(i). Without repeating the algebra,

these formulae are
IA

i = Ii +
∑

j∈µ(i)

Ia
j (7.21)

and
pA

i = pi +
∑

j∈µ(i)

pa
j , (7.22)

where Ii and pi are the rigid-body inertia and bias force for body i, and

Ia
j = IA

j − IA
j Sj (ST

j IA
j Sj)

−1 ST
j IA

j (7.23)

and
pa

j = pA
j + Ia

j cj + IA
j Sj (ST

j IA
j Sj)

−1 (τj − ST
j pA

j ) . (7.24)

Essentially, these equations are obtained by applying Eqs. 7.19 and 7.20 once
for each child of body i. On each application, A1 consists of body i plus every
child subtree that has already been processed, and A2 is the next child subtree
to be added.

The quantities Ia
j and pa

j are the result of propagating IA
j and pA

j across
joint j. They can be regarded as the apparent inertia and bias force of a massless
handle that is connected to body j through joint j. In this case, the formulae in
Eqs. 7.21 and 7.22 have the effect of gluing all of these massless handles to body
i (see Figure 7.2). Ia

j and pa
j have one more interesting property: they express

the force across a joint as a function of the parent body’s acceleration, whereas
IA

j and pA
j express this same force as a function of the child’s acceleration:

fj = IA
j aj + pA

j

= Ia
j aλ(j) + pa

j . (7.25)
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B1

B2

B3

= A3

A1

A2
S1

B1

f1

a1

(a) (b)

Figure 7.5: Aspects of the articulated-body algorithm: (a) defining the articu-
lated bodies, and (b) solving for the acceleration of joint 1

Ia
j plays two roles in improving the efficiency of propagation calculations.

First, it allows the two terms involving c in Eq. 7.20 to be collected into a single
term, as shown in Eq. 7.24. Second, it has the property Ia

j Sj = 0. Depending
on the value of Sj , this property implies that one or more rows and columns
of Ia

j will be zero. For example, if Sj = [0 0 1 0 0 0]T (i.e., joint j is revolute),
then row and column 3 of Ia

j will be zero. This fact can be exploited to achieve
a modest reduction in the cost of calculating articulated-body inertias.

7.3 The Articulated-Body Algorithm

Suppose we have a kinematic tree containing NB rigid bodies. We can define
a set of articulated bodies, A1 · · ·ANB

, such that Ai contains all of the bodies
and joints in the subtree rooted at body i. A simple example is shown in Figure
7.5(a). Observe that body i (Bi) is in Ai but joint i is not. We define Bi to be
the handle of Ai; and define IA

i and pA
i to be the articulated-body inertia and

bias force for Bi in Ai.
Consider the motion of B1, as shown in Figure 7.5(b). If f1 is the force

transmitted across joint 1, then the equation of motion for B1 is

f1 = IA
1 a1 + pA

1 . (7.26)

Now, joint 1 constrains the acceleration of B1 to satisfy

a1 = a0 + c1 + S1 q̈1 , (7.27)

where a0 is the known acceleration of the base, and c1 = Ṡ1q̇1. The joint also
constrains the transmitted force to satisfy

ST
1 f1 = τ1 . (7.28)
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From these three equations we get

ST
1 (IA

1 (a0 + c1 + S1 q̈1) + pA
1 ) = τ1 ,

which can be solved for q̈1, giving

q̈1 = (ST
1 IA

1 S1)
−1(τ1 − ST

1 IA
1 (a0 + c1) − ST

1 pA
1 )) . (7.29)

Consider what we have just achieved. Simply knowing IA
1 and pA

1 has
allowed us to calculate q̈1 directly, without needing to know the values of any
of the other acceleration variables. This is possible because Eq. 7.26 already
accounts for the dynamic effect of every body in A1 on the acceleration response
of B1. Having calculated q̈1, it can be substituted into Eq. 7.27 to give the
spatial acceleration of B1. This, in turn, allows us to repeat the process with
the children of B1, and so on. In the general case, if the acceleration of body
λ(i) is known, then the acceleration of body i and joint i can be calculated as
follows:

q̈i = (ST
i IA

i Si)
−1(τi − ST

i IA
i (aλ(i) + ci) − ST

i pA
i )) (7.30)

and

ai = aλ(i) + ci + Si q̈i . (7.31)

Therefore, if the articulated-body inertias and bias forces are known, then the
forward dynamics of the kinematic tree can be calculated using these two equa-
tions, with i ranging from 1 to NB.

Algorithm

The articulated-body algorithm calculates the forward dynamics of a kinematic
tree in O(NB) arithmetic operations, in exactly the manner outlined above. It
makes three passes over the tree, as follows: an outward pass (root to leaves) to
calculate velocity and bias terms; an inward pass to calculate articulated-body
inertias and bias forces; and a second outward pass to calculate the accelera-
tions.

Pass 1 The job of the first pass is to calculate the velocity-product acceler-
ations, ci, and the rigid-body bias forces, pi, for use in later passes. Both are
functions of the body velocities, vi, so it is necessary to calculate these as well.
The equations of the first pass are:

vJi = Si q̇i , (7.32)

cJi = S̊i q̇i , (7.33)

vi = vλ(i) + vJi , (v0 = 0) (7.34)

ci = cJi + vi × vJi , (7.35)

pi = vi ×∗ Ii vi − fx
i . (7.36)
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They are similar to the equations of the first pass in the recursive Newton-Euler
algorithm, as shown in Table 5.1. The vectors vJi and cJi will have values of
Siq̇i + σi and S̊iq̇i + σ̊i, respectively, if joint i depends explicitly on time (see
§3.5); but the calculation details are handled by jcalc (§4.4). fx

i is the external
force, if any, acting on body i.

Pass 2 The next step is to calculate the articulated-body inertias and bias
forces, IA

i and pA
i . This is done using the assembly formulae in Eqs. 7.21 to

7.24, which are reproduced below.

IA
i = Ii +

∑

j∈µ(i) Ia
j (7.37)

pA
i = pi +

∑

j∈µ(i) pa
j , (7.38)

Ia
j = IA

j − IA
j Sj(S

T
j IA

j Sj)
−1ST

j IA
j (7.39)

pa
j = pA

j + Ia
j cj + IA

j Sj(S
T
j IA

j Sj)
−1(τj − ST

j pA
j ) . (7.40)

These calculations are performed for each value of i from NB down to 1. This
implies that Ia

j and pa
j are not calculated for every j, but only for those values

that satisfy λ(j) 6= 0. If body i has no children then IA
i = Ii and pA

i = pi.

Pass 3 The third pass calculates the accelerations using Eqs. 7.30 and 7.31,
which we repeat here as

q̈i = (ST
i IA

i Si)
−1(τi − ST

i IA
i (aλ(i) + ci) − ST

i pA
i )) (7.41)

ai = aλ(i) + ci + Si q̈i . (a0 = −ag) (7.42)

By initializing the base acceleration to −ag , rather than 0, we can simulate
the effect of a uniform gravitational field with a fictitious upward acceleration.
This is more efficient than treating gravity as an external force.

Common Subexpressions

Equations 7.39 to 7.42 contain a number of common subexpressions, which can
be eliminated by defining the following intermediate results:

Ui = IA
i Si , (7.43)

Di = ST
i Ui , (7.44)

ui = τi − ST
i pA

i , (7.45)

a′
i = aλ(i) + ci . (7.46)

In terms of these quantities, Eqs. 7.39 to 7.42 simplify to

Ia
j = IA

j − Uj D−1
j UT

j , (7.47)

pa
j = pA

j + Ia
j cj + Uj D−1

j uj , (7.48)

q̈i = D−1
i (ui − UT

i a′
i) , (7.49)

ai = a′
i + Si q̈i . (a0 = −ag) (7.50)
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Equations in Body Coordinates

The articulated-body algorithm works best in body coordinates. To convert the
above equations to body coordinates, simply define each quantity that pertains
to body i as being expressed in body i coordinates, and insert coordinate trans-
forms where they are needed. The resulting equations are shown in Table 7.1.

Algorithm Details

The pseudocode for the articulated-body algorithm is shown in Table 7.1. It is
organized into three passes, with one for loop for each pass. The quantities XJ,
vJ and cJ are local variables in the first pass; Ia and pa are local variables in
the second pass; and a′ is a local variable in the third pass. If the tree contains
joints that depend explicitly on time, then add time as a fourth argument to
jcalc. If the tree contains joints for which the velocity variables are not the
derivatives of the position variables, then replace the symbols q̇i and q̈i with
αi and α̇i. If there are no external forces, then the calculation of iX0 is not
necessary. The pseudocode assumes that as soon as a transform X has been
calculated, the transforms X∗, X−1 and (X∗)−1 are immediately available for
use. The functions that make this possible are described in Appendix A.

Equations 7.37 and 7.38 have been transformed from calculations using µ(i)
to calculations using λ(i). As a result, IA

i and pA
i are initialized to Ii and

pi at the bottom of the first for loop, and the remainder of the calculation is
performed inside the if statement in the second for loop (cf. the implementation
of Eq. 5.20 in §5.3).

7.4 Alternative Assembly Formulae

Section 7.3 describes the standard version of the articulated-body algorithm,
which is based on the assembly formulae in Section 7.2.2. However, there are
other formulae that could be used instead. This section presents a systematic
procedure for deriving alternative assembly formulae, which give rise to alterna-
tive versions of the articulated-body algorithm. In most cases, the alternatives
are more complicated and less efficient than the standard algorithm. However,
they can solve a larger class of problems.

In Section 7.2.2 we solved the following problem: given the five equations

f1 = IA
1 a1 + pA

1 , (7.51)

f2 = IA
2 a2 + pA

2 , (7.52)

f = f1 + f2 , (7.53)

a2 = a1 + c + S q̈ (7.54)

and
STf2 = τ , (7.55)
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Equations (in body coordinates):

Pass 1

v0 = 0

vJi = Si q̇i

cJi = S̊i q̇i

vi = iXλ(i) vλ(i) + vJi

ci = cJi + vi × vJi

pi = vi ×∗ Ii vi − iX∗

0 fx
i

Pass 2

IA
i = Ii +

∑

j∈µ(i)

iX∗

j Ia
j

jXi

pA
i = pi +

∑

j∈µ(i)

iX∗

j pa
j

Ui = IA
i Si

Di = ST
i Ui

ui = τi − ST
i pA

i

Ia
i = IA

i − Ui D−1
i UT

i

pa
i = pA

i + Ia
i ci + Ui D−1

i ui

Pass 3

a0 = −ag

a′
i = iXλ(i) aλ(i) + ci

q̈i = D−1
i (ui − UT

i a′
i)

ai = a′
i + Si q̈i

Algorithm:

v0 = 0

for i = 1 to NB do

[XJ, Si, vJ, cJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ci = cJ + vi × vJ

IA
i = Ii

pA
i = vi ×∗ Ii vi − iX∗

0 fx
i

end

for i = NB to 1 do

Ui = IA
i Si

Di = ST
i Ui

ui = τi − ST
i pA

i

if λ(i) 6= 0 then

Ia = IA
i − Ui D−1

i UT
i

pa = pA
i + Iaci + Ui D−1

i ui

IA
λ(i) = IA

λ(i) + λ(i)X∗

i Ia iXλ(i)

pA
λ(i) = pA

λ(i) + λ(i)X∗

i pa

end

end

a0 = −ag

for i = 1 to NB do

a′ = iXλ(i) aλ(i) + ci

q̈i = D−1
i (ui − UT

i a′)

ai = a′ + Si q̈i

end

Table 7.1: The articulated body equations and algorithm
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find expressions for the coefficients IA and pA in the target equation

f = IA a1 + pA . (7.56)

By following a few simple rules, the five given equations can be assembled into
the following composite equation:













1 −1 −1 0 0

0 1 0 0 0

0 0 1 −IA
2 0

0 0 0 1 −S

0 0 ST 0 0

























f

f1

f2

a2

q̈













=













0

pA
1

pA
2

c

τ













+













0

IA
1

0

1

0













a1 .

The rules for constructing this equation are:

1. the right-hand unknown in the target equation (a1) becomes right-hand
unknown in the composite equation;

2. the left-hand unknown in the target equation (f ) becomes the top entry
in the composite vector of unknowns;

3. the unknown vector with a dimension other than six (q̈) becomes the
bottom entry in the composite vector of unknowns;

4. the given equation with a dimension other than six (STf2 = τ ) occupies
the bottom row in the composite equation; and

5. the remaining equations and unknowns are inserted in any order that
results in the 5× 5 composite matrix being as close as possible to upper-
triangular form.

Having constructed this equation, the original problem can be solved using a
process of Gaussian elimination and back-substitution. Once the coefficient
matrix has been brought into upper-triangular form, we immediately have an
equation expressing q̈ as a function of a1; and the process of back-substitution
eventually yields an equation giving f as a function of a1. At this point,
the coefficient of a1 is the desired expression for IA, and the remaining terms
provide the desired expression for pA.

The process is illustrated in Table 7.2 under the heading ‘Standard Formu-
lae’. At the end of the Gaussian elimination stage, the fifth row reads

STIA
2 Sq̈ = τ − STpA

2 − STIA
2 c − STIA

2 a1 ,

which implies

q̈ = (STIA
2 S)−1(τ − STpA

2 − STIA
2 c − STIA

2 a1)

(cf. Eq. 7.18). Having found q̈ in terms of a1, back-substitution allows us to
express a2 in terms of a1, and so on, until eventually we get an expression for
f in terms of a1, from which the formulae for IA and pA can be extracted.
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Standard Formulae obtain f = IAa1 + pA using IA
i , pA

i and S
2

6

6

6

6

4

1 −1 −1 0 0

0 1 0 0 0

0 0 1 −IA
2 0

0 0 0 1 −S

0 0 ST
0 0
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4

f

f
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=
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6

4

0

pA
1
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2

c

τ

3

7

7

7

7

5

+

2

6

6

6
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4

0
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1

0
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(continued on next page)

Table 7.2: Alternative assembly formulae
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Table 7.2: Alternative assembly formulae
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The point of this exercise is that it makes the solution process systematic,
so that it can be applied to a different set of given equations. There are two
obvious changes we can try:

1. replace Eqs. 7.51, 7.52 and 7.56 with their inverses; that is, a1 = ΦA
1 f1 +

bA
1 , a2 = ΦA

2 f2 + bA
2 and a1 = ΦAf + bA; and

2. replace Eqs. 7.54 and 7.55 with the equations of the equivalent implicit
joint constraint, which are T Ta2 = T T(a1 + c) and f2 = Taτ + T λ.

Table 7.2 shows two of the alternative formulae that can be produced by this
method: variant 1 is the result of making both changes; and variant 2 is the
result of making only the second change. Each can be used as the basis for an
alternative formulation of the articulated-body algorithm.1

Observe that this process gives rise to some potentially useful matrix iden-
tities. For example, the variant formula for IA must be equal to the standard
formula, and both must equal the inverse of the formula for ΦA. Similar com-
ments apply to pA and bA.

Any formula that uses inertias, rather than inverse inertias, is restricted by
the requirement that the inertias must exist. Thus, the standard formulae, and
those of variant 2, are only applicable if both handles have a full six degrees
of freedom. In contrast, the formulae of variant 1 require only that the matrix
T T(ΦA

1 + ΦA
2 )T have full rank. Physically, this is equivalent to requiring that

the joint does not impose a redundant constraint; that is, it does not duplicate
a constraint that was already there. A sufficient condition for the application of
variant 1 is that at least one of the two handles have a full six degrees of freedom.
Thus, an algorithm based on variant 1 would be able to calculate articulated-
body inverse inertias for bodies in any kinematic tree, and a few closed-loop
systems, whereas the standard algorithm is limited to floating kinematic trees.

7.5 Multiple Handles

So far, we have applied the assembly method only to articulated bodies having
one handle each. This is sufficient for assembling kinematic trees. However, if
we wish to assemble general rigid-body systems, or if we want greater flexibility
in the order of assembly, then we must be able to assemble articulated bodies
having more than one handle. As an example of what can be accomplished,
Featherstone (1999a,b) describes a divide-and-conquer algorithm to assemble
both kinematic trees and closed-loop systems in a manner that allows their dy-
namics to be calculated in O(log(NB)) time on a parallel computer with O(NB)
processors. Therefore, let us now develop an assembly formula for articulated
bodies with multiple handles.

1Neither variant calculates q̈ as a by-product; but this quantity can be calculated from
a1 and a2 using the formula q̈ = T T

a (a2 − a1 − c). An algorithm based on variant 1 will
be more efficient if the active joint force, Taτ , is replaced by an equivalent pair of external
forces which contribute to the bias accelerations of the individual rigid bodies.



7.5. MULTIPLE HANDLES 137
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Figure 7.6: Assembly of articulated bodies with multiple handles

Figure 7.6 shows two articulated bodies, called A12 and A34, which are to
be assembled to form a larger articulated body called A. Body A12 contains
two handles, numbered 1 and 2, while A34 contains handles 3 and 4. The idea
is to assemble these bodies by connecting a joint between handles 2 and 3. The
assembly operation is deemed to consume these two handles, leaving articulated
body A with only handles 1 and 4. We shall assume that at least one of handles
2 and 3 has six degrees of freedom. The equations of motion for A12 and A34

before the assembly operation are

[

a1

a2

]

=

[

Φ1 Φ12

Φ21 Φ2

] [

f1

f2

]

+

[

b1

b2

]

(7.57)

and
[

a3

a4

]

=

[

Φ3 Φ34

Φ43 Φ4

][

f3

f4

]

+

[

b3

b4

]

; (7.58)

and the equation of motion for A after the assembly operation is

[

a1

a4

]

=

[

ΦA
1 ΦA

14

ΦA
41 ΦA

4

] [

f1

f4

]

+

[

bA
1

bA
4

]

. (7.59)

(Observe that we have simplified the notation by omitting the superscripts
from the coefficients of Eqs. 7.57 and 7.58.) We are using inverse inertias here
because it is possible—and indeed quite likely—that the two handles within
an articulated body do not have a full 12 degrees of motion freedom between
them, even if they do have 6 degrees of freedom individually. In the absence of
full motion freedom, the coefficient matrices in these equations will be singular.
However, our assumption that at least one of the two handles 2 and 3 has six
degrees of freedom on its own implies that at least one of the two matrices Φ2

and Φ3 is positive definite. This, in turn, implies that the sum Φ2 + Φ3 is
positive definite.
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When the assembly is made, the joint will impose the following motion
constraint on handles 2 and 3:

T T(a3 − a2) = T Tc , (7.60)

where c = Ṡq̇, and it will also impose the force constraint

f3 = Tλ = −f2 . (7.61)

In formulating Eq. 7.61, we have assumed that any active force at the joint has
already been accounted for in the bias accelerations of Eqs. 7.57 and 7.58. In
other words, the active joint force, Taτ , has been replaced by a pair of equal and
opposite external forces, Taτ acting on handle 3 and −Taτ acting on handle
2, and that the effects of these two forces on the motion of A12 and A34 have
already been included in the vectors b1 · · · b4.

The objective is to express the coefficients of Eq. 7.59 in terms of the coef-
ficients of Eqs. 7.57, 7.58, 7.60 and 7.61. The first step in the solution process
is to substitute for a3 and a2 in Eq. 7.60, giving

T T(Φ3f3 + Φ34f4 + b3 − Φ21f1 − Φ2f2 − b2) = T Tc .

The next step is to substitute for f3 and f2 in this equation, using Eq. 7.61,
and collect terms in λ, which gives

T T(Φ2 + Φ3)T λ = T T(Φ21f1 − Φ34f4 + c − b3 + b2) .

Given that Φ2 + Φ3 is positive definite, the coefficient of λ is guaranteed to be
nonsingular, and so we may solve for λ as follows:

λ = Y −1T T(Φ21f1 − Φ34f4 + β) , (7.62)

where
Y = T T(Φ2 + Φ3)T

and
β = c − b3 + b2 .

The final step is to substitute for f2 and f3 in the expressions for a1 and a4

(drawn from Eqs. 7.57 and 7.58), using both Eq. 7.61 and Eq. 7.62. This gives

a1 = Φ1f1 − Φ12TY −1T T(Φ21f1 − Φ34f4 + β) + b1

a4 = Φ4f4 + Φ43TY −1T T(Φ21f1 − Φ34f4 + β) + b4 .

These two equations express a1 and a4 as functions of f1 and f4 only, and
are therefore the component parts of Eq. 7.59. Thus, the formulae for the
coefficients of Eq. 7.59 are

ΦA
1 = Φ1 − Φ12WΦ21

ΦA
4 = Φ4 − Φ43WΦ34

ΦA
14 = Φ12WΦ34 = (ΦA

41)
T

bA
1 = b1 − Φ12Wβ

bA
4 = b4 + Φ43Wβ

(7.63)

where W = TY −1T T.
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Generalizations

To generalize the number of handles, we replace the four individual handles with
four handle sets. Set 1 contains every handle in A12 that will not be connected
to a joint during assembly; set 2 contains every handle that will; and so on.
Each handle in set 2 will be connected to one handle in set 3 via one joint;
so sets 2 and 3 must contain the same number of handles. To permit multiple
joints to be connected to the same body, we allow a body to have more than one
handle. In this context, a handle should no longer be regarded as a body, but
as a location on a body. Any kinematic tree can be obtained by a sequence of
assembly operations involving one joint per assembly (i.e., sets 2 and 3 contain
one handle each). However, the construction of closed-loop systems requires
multi-joint assemblies.

Having defined these sets, the next step is to define a1, f2, Φ34, and so on, to
be composite vectors and matrices containing every relevant vector and matrix
for their sets. For example, if set 1 contains handles 1a, 1b, 1c, . . . , having
accelerations of a1a, a1b, . . . , then a1 is the composite vector [aT

1a aT
1b · · · ]T.

Note that T will be a block-diagonal matrix composed of the constraint-force
subspace matrices of the individual joints.

Given these composite vectors and matrices, the derivation of Eq. 7.63 pro-
ceeds in the same manner as shown in Eqs. 7.57 to 7.62, except that it may
no longer be possible to assume that Y is invertible. Featherstone (1999b) ex-
plains what to do if Y is singular. It also explains how to incorporate constraint
stabilization terms (see §8.3) into the assembly formula.





Chapter 8

Closed Loop Systems

This chapter covers the forward and inverse dynamics of rigid-body systems
containing kinematic loops. The presence of kinematic loops brings a new level
of complexity to the dynamics problem: new formulations are required; new
problems arise; the systems exhibit new behaviours; and the inverse dynamics
problem, in particular, changes its nature in the presence of kinematic loops.
There are two main strategies for formulating the equations of motion for a
closed-loop system: They are:

1. start with a set of unconstrained bodies, and apply all of the joint con-
straints simultaneously; or

2. start with a spanning tree of the system, and apply the loop-closure con-
straints.

A third possibility, which will not be considered here, is to use the assembly
method described in Section 7.5. Method 1 results in large, sparse matrix
equations, and is considered briefly in Section 8.13. Method 2 is the best choice
for typical closed-loop systems, and is the main topic of this chapter. Some of
the special properties of closed-loop systems are discussed in Section 8.10; the
use of a loop-closure function is covered in Section 8.11; and inverse dynamics
is covered in Section 8.12.

8.1 Equations of Motion

The equations of motion for general rigid-body systems, including closed-loop
systems, were introduced in Chapter 3. In this section, we derive the equation
of motion for a closed-loop system from that of its spanning tree. The procedure
can be summarized as follows.

1. Formulate the equation of motion for a spanning tree of the closed-loop
system.
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2. Add terms to this equation representing the forces exerted on the tree by
the loop joints.

3. Formulate a kinematic equation describing the motion constraints im-
posed on the tree by the loop joints.

4. Combine these two equations.

If the spanning tree has n degrees of freedom, and the loop joints impose nc con-
straints on the tree, then this procedure results in a system of n + nc equations
in n + nc unknowns.

Consider a rigid-body system containing NB bodies, NJ joints and NL =
NJ − NB kinematic loops. We assume that a spanning tree has been chosen,
and that the bodies and joints have been numbered accordingly. The number
of tree-joint variables, n, and the number of loop-closure constraints, nc, are
given by the formulae

n =

NB
∑

i=1

ni and nc =

NJ
∑

k=NB+1

nc
k , (8.1)

where ni is the number of freedoms allowed by tree joint i, and nc
k is the number

of constraints imposed by loop joint k. Observe that we are using the index
variables i and k to range over tree-joint numbers and loop-joint numbers,
respectively. More generally, we use the following index-variable convention in
connection with kinematic loops: i and j range over tree-joint and/or body
numbers (1 to NB); l ranges over loop numbers (1 to NL); and k identifies the
loop joint that closes loop number l. With our standard numbering scheme, k
and l are related by k = l + NB, and k therefore ranges from NB + 1 to NJ .
From here on, wherever k and l appear together, it should be assumed that
k = l + NB .

The equation of motion for the spanning tree can be written

Hq̈ + C = τ , (8.2)

where q̈ and τ are vectors of tree-joint acceleration and force variables, respec-
tively. Now, the only difference between the closed-loop system and its spanning
tree is that the former contains the loop joints and the latter does not. There-
fore, the equation of motion for the closed-loop system can be obtained from
Eq. 8.2 by adding terms that account for the forces exerted on the tree by the
loop joints. Thus, the equation of motion for the closed-loop system can be
written

Hq̈ + C = τ + τ c + τ a , (8.3)

where τ c and τ a account for the constraint forces and active forces, respec-
tively, produced by the loop joints. Active forces arise from springs, dampers,
actuators, and the like, acting at the loop joints. If there are no such forces
acting at a particular joint, then that joint is said to be passive; and if all of
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the loop joints are passive, then τ a = 0. In this case, the dynamics calculation
software can be simplified by omitting the code required to calculate τ a.

τ a is assumed to be known; but τ c is unknown, and it can be expressed
as a function of nc unknown constraint force variables (as in Eq. 8.5). Thus,
Eq. 8.3 is a system of n equations in n + nc unknowns, and therefore needs
to be supplemented with another nc equations before it can be solved. These
equations come from the kinematic constraints.

The loop joints impose a set of kinematic constraints on the tree, which can
be collected into a single matrix equation of the form

Kq̈ = k , (8.4)

where K is an nc × n matrix. We say that this equation expresses the con-
straints at the acceleration level, on the grounds that it has been differentiated a
sufficient number of times for the acceleration variables to appear. Expressions
for K and k are derived in Section 8.2.

As τ c is the force that imposes these constraints on the tree, it follows that
τ c can be expressed in the form

τ c = KTλ , (8.5)

where λ is a vector of nc unknown constraint force variables. This step is
covered in Section 8.4. (See also Eq. 3.15.)

Equations 8.3, 8.4 and 8.5 can now be assembled into a single matrix equa-
tion, being the complete equation of motion for the closed-loop system:

[

H KT

K 0

] [

q̈

−λ

]

=

[

τ − C + τ a

k

]

. (8.6)

This is a system of n+nc equations in n+nc unknowns. The coefficient matrix
is symmetric, but not positive definite. If this matrix has full rank, then the
equation can be solved for both q̈ and λ. If it does not have full rank, then
some elements of λ will be indeterminate, but the equation can still be solved
for q̈. The rank of the coefficient matrix is n + rank(K).

8.2 Loop Constraint Equations

Let us now formulate the coefficients of the loop constraint equation, Eq. 8.4.
We start with the velocity across loop joint k, which is denoted vJk. This
velocity is given by the equation

vJk = vs(k) − vp(k) , (8.7)

where p(k) and s(k) are the predecessor and successor bodies, respectively, of
joint k. In the general case, joint k will impose a constraint of the form

T T
k vJk = T T

k σk ,
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where Tk and σk denote the constraint-force subspace and bias velocity, respec-
tively, of joint k. (See Eq. 3.38.) However, for the sake of simplicity, we will
assume that σk = 0 for all loop joints, so that the constraint equation simplifies
to

T T
k vJk = 0 . (8.8)

Combining Eqs. 8.7 and 8.8 gives a velocity constraint equation,

T T
k (vs(k) − vp(k)) = 0 , (8.9)

which can be differentiated to obtain an acceleration constraint equation:

T T
k (as(k) − ap(k)) + Ṫ T

k (vs(k) − vp(k)) = 0 . (8.10)

The velocity of any body in a kinematic tree can be expressed in terms of q̇

by an equation of the form
vi = Jiq̇ , (8.11)

where vi is the velocity of body i, and Ji is the Jacobian of body i. (See
Example 4.2.) Ji is given by the equation

Ji =
[

εi1S1 εi2S2 · · · εiNB
SNB

]

, (8.12)

where εij takes the value 1 at every joint j that supports body i (i.e., the joint
lies on the path between the body and the base), and zero otherwise. Expressed
as an equation,

εij =

{

1 if j ∈ κ(i)
0 otherwise.

Likewise, the acceleration of any body in a kinematic tree can be expressed in
terms of q̈ by the derivative of Eq. 8.11:

ai = Jiq̈ + J̇iq̇

= Jiq̈ + a
vp
i . (8.13)

a
vp
i is the ‘velocity-product’ acceleration of body i, which is the acceleration it

would have if all the tree-joint acceleration variables were zero. It is available
as one of the by-products of calculating C. (See Section 8.6.)

Combining Eqs. 8.10 and 8.13 gives

T T
k (Js(k) − Jp(k)) q̈ + T T

k (avp
s(k) − a

vp
p(k)) + Ṫ T

k (vs(k) − vp(k)) = 0 ,

which we can simplify to

T T
k (Js(k) − Jp(k)) q̈ = kl (8.14)

by defining
kl = −T T

k (avp
s(k) − a

vp
p(k)) − Ṫ T

k (vs(k) − vp(k)) . (8.15)
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Equation 8.14 is the acceleration constraint imposed on the spanning tree by
loop joint k, and there is one such equation for each kinematic loop. Collecting
these equations together, we get







T T
NB+1 (Js(NB+1) − Jp(NB+1))

...

T T
NJ

(Js(NJ ) − Jp(NJ ))






q̈ =







k1

...
kNL






. (8.16)

On comparing this equation with Eq. 8.4, it can be seen that

K =







T T
NB+1 (Js(NB+1) − Jp(NB+1))

...

T T
NJ

(Js(NJ ) − Jp(NJ ))






and k =







k1

...
kNL






. (8.17)

The expression Js(k) −Jp(k) defines a loop Jacobian—a matrix that maps q̇

to the velocity across a loop-closing joint. The loop Jacobian for loop l, denoted
JLl, can be defined as follows:

JLl = Js(k) − Jp(k)

=
[

εl1S1 εl2S2 · · · εlNB
SNB

]

(8.18)

where εlj = εs(k)j −εp(k)j . These numbers identify the tree joints that take part
in each loop. If we define the root of loop l to be the highest-numbered body
that is a common ancestor of both p(k) and s(k), then the set of tree joints that
take part in loop l is the union of two subsets: those that connect the root to
p(k), and those that connect the root to s(k). The value of εlj is −1 for each
joint in the first subset, +1 for each joint in the second, and zero for all other
joints. Using Eq. 8.18, we can formulate an alternative expression for K, which
is the expression used to calculate it:

K =







K11 · · · K1NB

...
...

KNL1 · · · KNLNB






(8.19)

where

Klj = εljT
T
k Sj . (8.20)

8.3 Constraint Stabilization

Equation 8.16 is theoretically correct, but is not stable during numerical inte-
gration. The problem is this: in principle, Eq. 8.16 behaves like a differential
equation of the form

ë = 0 ,
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where e denotes a loop-closure position error; but in practice it behaves like

ë = noise ,

where noise is a small-magnitude signal representing numerical errors, such as
the truncation errors in the numerical integration process. Thus, the use of
Eq. 8.16 will ensure that the acceleration errors are kept small, but there is
nothing to stop an unbounded accumulation of position and velocity errors.
The problem can be solved by adding a stabilization term, kstab, to Eq. 8.4
(and therefore also to Eq. 8.6), so that it now reads

Kq̈ = k + kstab . (8.21)

The purpose of kstab is to modify the behaviour of the constraint equation under
numerical integration, so that it now behaves like an equation of the form

ë + 2α ė + β2e = noise ,

where α > 0 and β 6= 0. This method is due to Baumgarte, and is sometimes
called Baumgarte stabilization (Baumgarte, 1972). The stabilization constants
are usually chosen according to

α = β = 1/Tstab ,

where Tstab is the desired time constant for the decay of position and velocity
errors. To achieve this effect, kstab is defined as follows:

kstab = −2α







T T
NB+1vJNB+1

...

T T
NJ

vJNJ






− β2







δ1

...
δNL






(8.22)

where
δl = jcalc( jtype(k), s(k),kXp(k),k) . (8.23)

δl is a measure of the degree to which the position of the spanning tree violates
the constraint imposed by loop joint k. It is a quantity of the form δl = T T

k dl,
where dl is a spatial vector measuring the position error around loop l. This
vector depends only on the joint type and the transform that locates the joint’s
successor frame relative to its predecessor frame. The latter is given by

s(k),kXp(k),k = s(k),kXs(k)
s(k)Xp(k)

p(k)Xp(k),k

= XS(l) s(k)Xp(k) XP(l)−1, (8.24)

where XP and XS are the arrays of loop-joint predecessor and successor frame
transforms stored in the system model. (See §4.2.)

One problem with Baumgarte stabilization is that there is no hard-and-fast
rule for selecting Tstab. A reasonable strategy is to ask how many snapshots
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per second of the moving system you would need in order not to miss anything
important, and choose a value of Tstab that is similar to, or a little shorter than,
the period between snapshots. For example, if the system is a large industrial
robot, then Tstab = 1 is too large, Tstab = 0.1 is reasonable, and Tstab = 0.01 is
a bit small, but still reasonable. If Tstab is chosen too small, then the differential
equations become unnecessarily stiff. The exact value of Tstab is not critical—
changing it by a factor of 2 makes only a small difference.

There is a temptation to choose Tstab as small as possible, so that position
and velocity errors will decay as quickly as possible, in the belief that this will
maximize the accuracy of the simulation. This is a bad strategy. The purpose
of constraint stabilization is to achieve stability, not accuracy. If the simulation
is not accurate enough, then the best way to improve it is to use a better
integration method and/or a shorter integration time step.

Calculating δ

Let sXp be the coordinate transform from the predecessor frame to the successor
frame of a loop joint, as determined by the position variables of the spanning
tree. In general, this transform will not comply exactly with the motion con-
straint imposed by the loop joint. Therefore, let us factorize this matrix as
follows:

sXp = Xerr XJ , (8.25)

where XJ complies exactly with the joint constraint, and Xerr represents the
constraint error, which is assumed to be small. This factorization must be
solved symbolically, using knowledge of the type of motion allowed by the joint,
in order to obtain expressions for the elements of Xerr in terms of sXp. These
expressions will be different for each joint type. Given that Xerr represents a
small displacement, there exists a motion vector, d ∈ M

6, that satisfies

1− d× ' Xerr . (8.26)

This vector is (approximately) the displacement from where the successor frame
ought to be to where it actually is. Having obtained d, δ is then given by

δ = T Td . (8.27)

Formulae for δ for various common joint types are shown in Table 8.1. Note
that a zero-DoF joint can serve as a universal loop joint, since any closed-loop
system can be modified, by adding massless bodies and zero-DoF joints, in such
a way that every loop-closing joint is a zero-DoF joint.

Example 8.1 The formula in Table 8.1 for the cylindrical joint can be obtained
as follows. By combining Eqs. 8.25 and 8.26, and choosing expressions for
XJ and d that are appropriate for a cylindrical joint, we get the following
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Zero DoF Revolute Prismatic Cylindrical

1

2

















X23 − X32

X31 − X13

X12 − X21

X53 − X62

X61 − X43

X42 − X51





























X23

−X13

X53

−X43

X41X21 + X42X22

























1
2 (X23 − X32)
1
2 (X31 − X13)
1
2 (X12 − X21)

X53

−X43





















X23

−X13

X53

−X43









Spherical





X51X31 + X52X32 + X53X33

X61X11 + X62X12 + X63X13

X41X21 + X42X22 + X43X23





Table 8.1: Formulae for δ = jcalc(type , X)

approximate equation:

sXp '

















1 0 −d2 0 0 0
0 1 d1 0 0 0
d2 −d1 1 0 0 0
0 0 −d5 1 0 −d2

0 0 d4 0 1 d1

d5 −d4 0 d2 −d1 1

































c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 z 0 c s 0
−z 0 0 −s c 0
0 0 0 0 0 1

















,

where c = cos(θ), s = sin(θ), and θ and z are the angular and linear displace-
ments of the cylindrical joint (i.e., the joint position variables). Observe that
we have set d3 = d6 = 0 as they are the coordinates of d in the directions of
motion freedom of the joint. If we perform the multiplication, and examine
the result, then we find that d1 = (sXp)23, d2 = −(sXp)13, and so on. Finally,
δ = [d1 d2 d4 d5]

T.

8.4 Loop Joint Forces

Let fk denote the force transmitted across loop joint k in the closed-loop system.
The effect of joint k on the spanning tree is therefore to exert a force of fk on
body s(k) and a force of −fk on body p(k). Now, if a spatial force of f is
applied to body i in a kinematic tree, then it has the same effect on the tree as
a joint-space force of τ , where

τ = JT
i f .

Therefore, the effect of joint k on the spanning tree is equivalent to a joint-space
force of

τ = (JT
s(k) − JT

p(k))fk = JT
Ll fk .
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Let us decompose fk into the sum of an active force, fa
k , and a constraint

force, f c
k , and consider their effects separately. If τ a represents the net effect

on the spanning tree of all the active forces at the loop joints, then τ a is given
by

τ a =

NL
∑

l=1

JT
Ll fa

k . (8.28)

Likewise, if τ c represents the net effect of all the constraint forces at the loop
joints, then τ c is given by

τ c =

NL
∑

l=1

JT
Ll f c

k . (8.29)

However, the constraint force at joint k can also be expressed in the form

f c
k = Tk λk , (8.30)

where λk is a vector of nc
k unknown constraint force variables (cf. Eq. 3.34), so

τ c can also be expressed as

τ c =

NL
∑

l=1

JT
Ll Tk λk . (8.31)

On comparing this equation with the definition of K in Eq. 8.17, it can be seen
that

τ c = KTλ (8.32)

where

λ =
[

λT
NB+1 · · · λT

NJ

]T
. (8.33)

As mentioned earlier, the active forces are assumed to be known. The best
way to incorporate τ a into the equation of motion is to modify the algorithm
for calculating C so that it calculates C − τ a instead. A suitable algorithm is
presented in Section 8.6.

8.5 Solving the Equations of Motion

Having formulated every term in the equations of motion, the next step is to
solve them for the tree-joint accelerations. To recap, the equation of motion for
the spanning tree, subject to the loop-closure forces, is

Hq̈ + C = τ + KTλ + τ a ; (8.34)

the loop-closure constraint equation is

Kq̈ = k + kstab ; (8.35)
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and the two can be combined into a single composite equation,
[

H KT

K 0

] [

q̈

−λ

]

=

[

τ − C + τ a

k + kstab

]

. (8.36)

In these equations, H is an n×n symmetric, positive-definite matrix, while K

is a general nc ×n matrix that may be rank-deficient. The coefficient matrix in
Eq. 8.36 is therefore symmetric, and it has dimensions of (n + nc) × (n + nc);
but it is not positive definite, and it has a rank of n + r, where r = rank(K),
so it will be singular whenever r < nc.

If r = nc, then both q̈ and λ are uniquely determined by Eq. 8.36. However,
if r < nc, then nc − r of the constraints imposed on the spanning tree by the
loop joints are linearly dependent on the other r constraints. As a result, some
elements of λ will be indeterminate, but q̈ is still uniquely determined by the
equation. Another problem that can arise if r < nc is that Eq. 8.35 can be
slightly inconsistent; that is, k + kstab can lie slightly outside range(K). This
problem is caused by numerical errors in the calculation of K, k and kstab,
and by inexact satisfaction of the loop-closure constraints for positions and
velocities. When Eq. 8.35 is slightly inconsistent, it is acceptable to solve it in
a least-squares sense.

There are various ways to solve the above equations for q̈. Let us now ex-
amine some of them. In particular, let us consider the following three methods:

1. solve Eq. 8.36 directly;

2. solve Eq. 8.36 for λ, and use the result to obtain q̈; or

3. solve Eq. 8.35 to express q̈ in terms of a vector of independent acceleration
variables, and then solve Eq. 8.34.

Method 1: Solve Eq. 8.36 Directly

If the coefficient matrix in Eq. 8.36 is nonsingular, then this equation can be
solved directly by a general-purpose linear equation solver, or a solver designed
for symmetric, indefinite matrices. This is the simplest solution method, but
not the most efficient. It is therefore appropriate whenever human effort is
more important than computational efficiency. The coefficient matrix will be
nonsingular if r = nc, or if nc − r linearly-dependent rows are pruned out
of Eq. 8.35 before it is incorporated into Eq. 8.36. The latter is practical if
one happens to know in advance which rows to remove. This pruning tactic
amounts to reducing nc until nc = r. Pruning can also be used in conjunction
with methods 2 and 3.

Method 2: Solve for λ First

By subtracting KH−1 times the first row from the second row in Eq. 8.36, we
get an equation for λ of the form

A λ = b , (8.37)
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where
A = KH−1KT (8.38)

and
b = k + kstab − KH−1(τ − C + τ a) . (8.39)

The coefficient matrix, A, is symmetric and positive-semidefinite. Its size is
nc × nc, and its rank is r. If r = nc then A is invertible, and Eq. 8.37 has the
unique solution

λ = A−1b . (8.40)

If r < nc then A is singular, and Eq. 8.37 has an infinity of solutions. In this
case, the general form of the solution is

λ = A+ b + (1 − A+A)z , (8.41)

where A+ is the pseudoinverse of A, z is an arbitrary vector, and the operator
1−A+A projects vectors onto the null space of A. If Eq. 8.37 is consistent, then
Eq. 8.41 describes a family of exact solutions; otherwise, it describes a family
of least-squares solutions. Equation 8.37 is consistent if and only if Eq. 8.35 is
consistent.

Having obtained a value for λ, the final step is to substitute it into Eq. 8.34,
and solve the resulting equation for q̈. Note that z has no effect on q̈, because

KT(1− A+A) = 0 .

One is therefore free to choose any convenient value for z, such as z = 0.
The following procedure will calculate q̈ in an efficient manner. It uses the

LTL factorization and back-substitution algorithms described in Section 6.5,
and therefore exploits any branch-induced sparsity that may be present in H.
It can easily be modified to use the LTDL factorization instead.

1. Factorize H into H = LTL.

2. Calculate τ ′ = τ − C + τ a.

3. Using back-substitution, calculate Y = L−TKT and z = L−Tτ ′.

4. Calculate A = Y TY and b = k + kstab − Y Tz.

5. Solve Aλ = b for λ by any appropriate method.

6. Solve Hq̈ = τ ′ + KTλ for q̈ using the factors from step 1.

Method 3: Solve Eq. 8.35 First

Suppose we have been given a general linear equation, Ax = b, in which A is
an m × n matrix of rank r, and b ∈ range(A) (i.e., the equation is consistent).
The task is to solve it for x. If r = n then there will be only a single solution,
which is given by the formula x = A+b. If r < n then there will be an infinite
number of solutions, which are given by the formula x = Cy + d. In this
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equation, y is an (n − r)-dimensional vector of unknowns, d is any one vector
satisfying Ad = b, and C is a full-rank matrix having the property AC = 0.
Each solution has a unique corresponding value of y, and vice versa (i.e., there
is a 1 : 1 correspondence between the two).

Let us apply this formula to Eq. 8.35. This equation has an nc×n coefficient
matrix of rank r. If r = n then the equation has a unique solution, which is
q̈ = K+(k + kstab); but if r < n then there are infinitely many solutions, all
given by the formula

q̈ = G ÿ + g . (8.42)

In this equation, G is an n × (n − r) full-rank matrix having the property

KG = 0 , (8.43)

ÿ is an (n− r)-dimensional vector of independent acceleration variables, and g

is any one vector satisfying

Kg = k + kstab . (8.44)

Typically, ÿ is chosen to be a subset of the elements of q̈. It can therefore be
thought of as a vector of independent joint acceleration variables for the closed-
loop system. An algorithm for calculating G and g is presented in Section
8.8.

We now have an equation that expresses q̈ as a function of the unknown
vector ÿ. The next step is therefore to find an expression for ÿ. Premultiplying
Eq. 8.34 by GT causes λ to be eliminated, resulting in

GTH q̈ = GT(τ − C + τ a) ;

and substituting Eq. 8.42 into this equation produces

GTHGÿ = GT(τ − C + τ a − Hg) (8.45)

(cf. Eq. 3.20). This equation can be regarded as the equation of motion for
the closed-loop system, expressed in terms of the independent joint accelera-
tion variables in ÿ. The matrix GTHG is symmetric and positive-definite, so
Eq. 8.45 can be solved immediately for ÿ, giving

ÿ = (GTHG)−1GT(τ − C + τ a − Hg) . (8.46)

8.6 Algorithm for C − τ a

The best strategy for dealing with τ a is to choose the spanning tree such that
every loop joint is passive. In this case, f a

k = 0 for every loop joint, and so
τ a = 0. The next best strategy is to modify the code for calculating C so that
it calculates C − τ a instead.
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Original Equations:

vi = vλ(i) + Si q̇i (v0 = 0)

ai = aλ(i) + Si q̈i + Ṡi q̇i (a0 = −ag)

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − fx
i +

∑

j∈µ(i)

fj

τi = ST
i fi

Modified Equations:

vi = vλ(i) + Si q̇i (v0 = 0)

a
vp
i = a

vp
λ(i) + Ṡi q̇i (avp

0 = −ag)

fB

i = Ii a
vp
i + vi ×∗ Ii vi

fi = fB

i − fx
i −

NJ
∑

k=NB+1

eikfa
k +

∑

j∈µ(i)

fj

where eik =







+1 if i = s(k)
−1 if i = p(k)
0 otherwise

C ′

i = ST
i fi

Table 8.2: Equations for calculating C − τ a

Table 8.2 shows the basic equations of the recursive Newton-Euler algorithm,
as they appear in Table 5.1, alongside the equations for calculating C−τ a. On
comparing the originals with the modified equations, the following differences
can be seen.

1. The term Si q̈i has been dropped, as the acceleration variables are set to
zero for calculating C.

2. The variable names ai and τi have been changed to a
vp
i and C′

i (where
C′ = C − τ a). This is a purely cosmetic change.1

3. A new term has been added to the joint force calculation, which subtracts
the active loop-joint forces at the same point where the general external
forces are subtracted.

From the perspective of the spanning tree, the active loop-joint forces are indeed
external forces, since they come from something that is not a part of the tree,
and that is exactly how they are treated. The coefficients eik ensure that fa

k

gets subtracted only from fs(k), and that −fa
k gets subtracted from fp(k).

Table 8.3 shows the pseudocode for an algorithm to calculate C − τ a ac-
cording to the equations in Table 8.2. The calculations are performed in body
coordinates. The first and third loops in this algorithm closely resemble the
corresponding code in Table 5.1, but the second loop is new. The last line in
loop 1 initializes each vector fi to the expression f B

i −fx
i . The purpose of loop

2 is then to subtract the term
∑NJ

k=NB+1 eikfa
k from each fi before loop 3 starts

to use them.
The second line in loop 2 uses jcalc to calculate T a

k , which is placed in the
local variable T a. There is an assumption here that T a

k is a constant, so that

1Strictly speaking a
vp
i in these equations has the value J̇iq̇−ag , rather than J̇iq̇ as defined

in Eq. 8.13, but the constant offset ag cancels out in the subtraction in Eq. 8.15.
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v0 = 0

a0 = −ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

a
vp
i = iXλ(i) a

vp
λ(i) + cJ + vi × vJ

fi = Ii a
vp
i + vi ×∗ Ii vi − iX∗

0 fx
i

end

..

.

..

.

for l = 1 to NL do

k = l + NB

[T a] = jcalc(jtype(k))

fa = XS(l)
T T a τk

fs(k) = fs(k) − fa

fp(k) = fp(k) + p(k)X∗

0
0X∗

s(k) fa

end

for i = NB to 1 do

C′

i = ST
i fi

if λ(i) 6= 0 then

fi = fi + λ(i)X∗

i fi

end

end

Table 8.3: Algorithm to calculate C − τ a

jcalc only needs to know the type specifier for joint k in order to work out the
correct value. If we did not make this assumption, then it would be necessary
to work out the transform from the predecessor frame to the successor frame
of joint k, so that it can be supplied as an argument to jcalc.

The expression T aτk gives fa
k in the successor-frame coordinates of joint

k, which are the coordinates in which T a is supplied. The third line in loop 2
calculates fa

k in successor-frame coordinates, transforms it to body s(k) coor-
dinates, and stores the result in the local variable fa. The next two lines then
subtract this quantity from fs(k) and add it to fp(k). Observe that fa must be
transformed from s(k) to p(k) coordinates before the addition is carried out.

8.7 Algorithm for K and k

Table 8.4 shows the pseudocode for an algorithm to calculate K via Eqs. 8.19
and 8.20, k via Eq. 8.15, and kstab via Eqs. 8.22 and 8.23. These calculations
involve combining vectors and matrices that were originally obtained in various
different coordinate systems. It is therefore necessary to apply coordinate trans-
forms to at least some of these quantities before they can be combined. The
strategy used in this algorithm is to transform everything to base coordinates
and combine them there. This is the simplest strategy, but not necessarily the
best.

The local variables Xp and Xs contain the Plücker transforms from base
coordinates to the predecessor and successor frames, respectively, of loop joint
k; so Xp = p(k),kX0 and Xs = s(k),kX0. The expression Xs X−1

p is therefore the
transform from the joint’s predecessor frame to its successor frame, which is the
argument to jcalc in Eq. 8.23. The call to jcalc requests both the loop position



8.7. ALGORITHM FOR K AND K 155

K = 0

for l = 1 to NL do

k = l + NB

Xp = XP(l) p(k)X0

Xs = XS(l) s(k)X0

vp = 0Xp(k) vp(k)

vs = 0Xs(k) vs(k)

ap = 0Xp(k) a
vp
p(k)

as = 0Xs(k) a
vp
s(k)

[δ, T ] = jcalc(jtype(k), Xs X−1
p )

T = XT
s T

kstab = 2α T T(vs − vp) + β2 δ

..

.

..

.

kl = −T T(as − ap + vs × vp) − kstab

i = p(k)
j = s(k)
while i 6= j do

if i > j then

Kli = −TT 0Xi Si

i = λ(i)
else

Klj = T T 0Xj Sj

j = λ(j)
end

end

end

Table 8.4: Algorithm to calculate K, k and kstab

error, δ, and the constraint-force subspace matrix, T , for loop joint k. The
line immediately after this call transforms T from successor-frame coordinates
to base coordinates; but no transform is applied to δ because it represents a
quantity of the form T Td, where d ∈ M

6 is an infinitesimal displacement.
This algorithm assumes that T̊ = 0 and σ = σ̇ = 0 for every loop joint.

Without this assumption, jcalc would need more arguments, and would be asked
to return more quantities. The assumption T̊ = 0 implies Ṫ = vs ×∗ T , which
allows us to simplify the right-hand side of Eq. 8.15 as follows:

kl = −TT
k (avp

s(k) − a
vp
p(k)) − Ṫ T

k (vs(k) − vp(k))

= −TT
k (avp

s(k) − a
vp
p(k)) − (vs(k) ×∗ Tk)T(vs(k) − vp(k))

= −TT
k (avp

s(k) − a
vp
p(k)) + T T

k vs(k) × (vs(k) − vp(k))

= −TT
k (avp

s(k) − a
vp
p(k) + vs(k) × vp(k)) . (8.47)

This is the expression used in the algorithm.
K is calculated by first initializing the whole matrix to zero, and then

calculating the nonzero submatrices. For each loop l, the submatrix Kli is
nonzero for every tree joint i that lies on the path of the loop. These quantities
are calculated in a while loop that employs two loop variables, i and j. These
variables are initially set to p(k) and s(k), respectively, and then stepped back
toward the base in an order that guarantees they meet at the nearest common
ancestor of p(k) and s(k). At this point, every joint on the path of loop l is
accounted for, and we have i = j, which is the termination condition for the
loop.

The algorithm presented in Table 8.4 potentially involves some duplication
of calculations. For example, if joint i participates in more than one loop, then
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Si will be transformed to base coordinates more than once. Likewise, if body i
is the successor or predecessor of more than one loop joint, then vi and a

vp
i will

be transformed to base coordinates more than once, and the relevant transform
(Xp or Xs) will be calculated more than once. This kind of duplication has
a relatively small impact on the overall efficiency. Nevertheless, if maximum
speed is required, then the code can be rewritten to avoid such duplications.

The Rounding-Error Problem

The algorithm’s use of base coordinates achieves two things: it keeps the algo-
rithm simple, and it minimizes the number of transformation matrices that are
needed. However, there is a price to be paid: most floating-point calculations
involve rounding errors, and some of these errors are sensitive to the distance
between the frame in which the calculations are performed and the locations of
the objects to which those calculations apply. Therefore, if the base coordinate
frame is far away from the kinematic loop, then there will be a loss of precision
in the calculations. This phenomenon is not a problem for most rigid-body
systems; but it can be a problem for a floating-base system if it travels a great
distance from its fixed-base origin. (Think of an aircraft, or a spacecraft.) In
this case, a simple remedy is to perform the calculations for K, k and kstab in
floating-base coordinates instead of fixed-base coordinates.

8.8 Algorithm for G and g

This section shows how to solve a linear equation of the form

K x = k (8.48)

to yield a solution of the form

x = Gy + g . (8.49)

The method is applicable to the task of solving Eq. 8.35 to get Eq. 8.42. In
Equations 8.48 and 8.49, K is an m × n matrix of rank r, k ∈ range(K) (so
Eq. 8.48 is consistent), G is an n × (n − r) full-rank matrix, and Eq. 8.49
produces every possible solution to Eq. 8.48. In fact, Eq. 8.49 defines a 1 : 1
mapping between y and the set of solutions to Eq. 8.48. If r = n then Eq. 8.49
simplifies to x = g, and g is unique. If r < n then G and g are not unique,
and we seek any one pair of values that solves the problem.

Given that rank(K) = r, it follows that K must contain an r × r invertible
submatrix. Therefore, there exists a permutation of K in which the elements
of this submatrix occupy the top left corner. We may therefore write

K = Q1

[

K11 K12

K21 K22

]

Q2 ,
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in which K11 is an r × r invertible matrix, and Q1 and Q2 are permutation
matrices. Extending this permutation to the whole of Eq. 8.48 gives

Q1

[

K11 K12

K21 K22

] [

x1

x2

]

= Q1

[

k1

k2

]

, (8.50)

where
[

x1

x2

]

= Q2 x and Q1

[

k1

k2

]

= k .

Again, given that rank(K) = r and that Eq. 8.48 is consistent, it follows that
the bottom row in Eq. 8.50 is a linear multiple of the top row; so there must
exist a matrix Y such that K21 = Y K11, K22 = Y K12 and k2 = Y k1. We
can therefore rewrite Eq. 8.50 as

Q1

[

K11 K12

Y K11 Y K12

][

x1

x2

]

= Q1

[

k1

Y k1

]

.

By inspection, we can see that one possible solution to this equation is
[

x1

x2

]

=

[

−K−1
11 K12

1

]

x2 +

[

K−1
11 k1

0

]

.

We may therefore conclude that one solution to the original problem is

G = QT
2

[

−K−1
11 K12

1

]

and g = QT
2

[

K−1
11 k1

0

]

. (8.51)

This particular solution equates y with x2, which means that y is a subset of
the elements of x.

The expressions in Eq. 8.51 can be calculated using a standard Gaussian
elimination algorithm, or an LU factorization, with the following modifications.

1. Complete pivoting must be used, with both row and column swaps. A
record must be kept of the column swaps, as this data determines the
value of Q2.

2. If r has not been supplied as an argument, then a rank test is needed to
detect when the last of the independent rows has been processed.

3. The factorization process terminates once it has processed the last inde-
pendent row. At this stage, the top-left r×r submatrix of K contains the
upper-triangular matrix U , where LU = K11; the top-right r × (n − r)
submatrix contains L−1K12; and the top r rows of k contain L−1k1.
Back-substitution on the top r rows therefore yields K−1

11 K12 and K−1
11 k1.

Various features can be added to this basic algorithm. For example, a mask can
be supplied that identifies which columns of K correspond to joint variables that
do not participate in any kinematic loop. These columns contain only zeros,
and are therefore left unaltered by the factorization process. Another possibility
is to allow the user to specify his own choice of independent variables. This
eliminates the need for complete pivoting, so that partial pivoting can be used
instead.
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Figure 8.1: Loop clusters and the sparsity patterns of K and G

8.9 Exploiting Sparsity in K and G

It is clearly the case that both K and G may contain many zeros. For example,
Eq. 8.20 implies that each submatrix Klj of K will be zero for every l and j
such that εlj = 0; and Eq. 8.51 implies that G contains at least (n−r)(n−r−1)
zeros, this being the number of zeros in an (n − r) × (n − r) identity matrix.
However, a large proportion of all the sparsity in these two matrices can be
attributed to a single fact, which is the subject of this section: they are both
block-diagonal.

To reveal the block-diagonal structure, we must first organize the kinematic
loops into a set of minimal loop clusters. A loop cluster is any set of loops
with the property that no loop within the cluster is coupled to any loop outside
it; and a minimal loop cluster is one that cannot be divided into two smaller
clusters. A coupling exists between two kinematic loops if they have a joint in
common. Given a set of minimal loop clusters, it is possible to devise a regular
numbering of the spanning tree with the following property: the tree joints
within each cluster are numbered consecutively. It is this numbering scheme
that reveals the block-diagonal structure of K and G.

An example is presented in Figure 8.1. This figure shows the connectivity
graph of a closed-loop system containing four kinematic loops. They are num-
bered 1 to 4, and are closed by loop joints 21 to 24, respectively. (Loop numbers
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are not shown in the diagram.) Loop 1 is coupled to loop 2, but there is no
other coupling in the system. We can therefore identify three minimal clusters
as follows: cluster 1 contains loops 1 and 2; cluster 2 contains loop 3 only; and
cluster 3 contains loop 4 only. Having identified these three clusters, we can
devise a regular numbering in which the tree joints are numbered consecutively
within each cluster. In this example, the joints in cluster 1 are numbered 3 to
7, those in cluster 2 are numbered 10 to 12, and those in cluster 3 are numbered
19 and 20. The remaining tree joints do not lie on the path of any kinematic
loop, and therefore do not belong to any cluster. They can be numbered in any
manner that is consistent with the rules of regular numbering.

With this numbering scheme, K adopts an irregular block-diagonal struc-
ture with gaps: there is one block per cluster; blocks are generally rectangular;
each block can be a different size and shape to the others; and there can be
horizontal gaps of varying sizes between the blocks. These gaps are caused by
the tree joints that do not belong to any cluster. This pattern of sparsity in
K allows G to adopt an irregular block-diagonal structure without gaps: each
block Ki in K gives rise to a block Gi in G; and each gap in K gives rise to an
identity-matrix block in G. For easy identification, the joints in the connectiv-
ity graph have been divided into six sets, labelled a to f , and the same division
is shown against the columns of K and the rows of G.

Block-diagonal sparsity can be exploited in the calculation of KH−1KT

and GTHG, and in the calculation of G from K. In particular, G can be
calculated from K one block at a time: as x = Gi y + gi is the solution to
Ki x = ki, each Gi and gi can be calculated directly from Ki and ki using the
algorithm in Section 8.8.

8.10 Some Properties of Closed-Loop Systems

Closed-loop systems exhibit a greater variety of properties and behaviours than
kinematic trees, which can pose new difficulties for dynamics algorithms. This
section looks at some of the special properties of closed-loop systems that are
relevant to dynamics.

Mobility: Mobility is the degree of motion freedom of a rigid-body system.
The mobility of a kinematic tree is simply n; but the mobility of a closed-loop
system is given by the general formula

mobility = n − r . (8.52)

If y is a vector of independent coordinates for a rigid-body system, then the
dimension of y is n − r. Systems with the property r = nc are said to be
properly constrained. For such a system, the mobility can be expressed by the
formula

mobility = ntot − 6NL , (8.53)
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Figure 8.2: Examples of variable mobility (a) and configuration ambiguity (b)

where ntot is the sum of the joint freedoms of all the joints in the system,
not just the tree joints. This formula applies to rigid-body systems in a 3D
Euclidean space. The equivalent formula in a 2D space is

mobility = ntot − 3NL . (8.54)

Variable Mobility: The mobility of a kinematic tree is fixed; but the mo-
bility of a closed-loop system depends on r, and r can vary with configuration.
An example of variable mobility is shown in Figure 8.2(a). As long as the angle
θ is nonzero, the mechanism has a mobility of 1; but if θ = 0 then the two
arms are able to move independently, and the mobility is 2. Furthermore, at
the configuration shown in the middle diagram, which is the boundary between
these two motion regimes, the mechanism has an instantaneous mobility of 3.
In terms of n and r, we have n = 5 throughout, but r = 4 in the left-hand
diagram, r = 3 in the right-hand diagram, and r = 2 in the middle diagram.

Configuration Ambiguity: If q and y are vectors of independent position
variables for a kinematic tree and a closed-loop system, respectively, then q

always identifies a unique configuration of the tree, but y does not necessarily
identify a unique configuration of the closed-loop system. A simple example is
shown in Figure 8.2(b): knowing the value of the independent variable, θ, is
not enough to determine uniquely the configuration of the system. There are
two ways to solve this problem:

1. use q instead of y, where q is the position vector of the spanning tree, or

2. supply a function that maps each value of y to a unique value of q.
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The first option is the one used in previous sections, while the second is the
subject of Section 8.11. For the system shown in Figure 8.2(b), option 2 is
applicable if we know in advance that one of the two configurations cannot be
reached. Otherwise, we must either try a different independent variable, or else
resort to option 1.

Overconstraint: A closed-loop system is said to be overconstrained if r < nc.
Such systems have nc − r redundant constraints, which means there will be
nc − r indeterminate constraint forces in the equations of motion. They also
have excess mobility relative to a properly constrained system, as the mobility
formula can be written

mobility = ntot − 6NL + (nc − r) . (8.55)

Overconstrained systems are actually very common. For example, any system
containing planar kinematic loops will be overconstrained. The planar loop
shown in Figure 8.2(b) contains four revolute joints, so the numbers for this
system are n = 3 and nc = 5; but the mobility is 1, which means r = 2.

The dynamics of overconstrained systems is harder to calculate than that of
properly constrained systems. For this reason, it is useful to convert the former
to the latter wherever possible. The conversion is achieved by replacing the
original loop joints with joints that impose fewer constraints, so that the value
of nc is reduced. For example, if the loop-closing revolute joint in a planar
kinematic loop is replaced with a sphere-in-cylinder joint, which imposes only
two constraints, then nc will be reduced from 5 to 2, which means nc = r.

8.11 Loop Closure Functions

Let q be the vector of position variables for the spanning tree of a given closed-
loop system, and let y be a vector of independent position variables for the
same system. y will typically be a subset of the elements of q, but this is not
necessary. We assume that y defines q uniquely. For this assumption to hold,
it may be necessary to place restrictions on the value of y. We therefore define
a set C ⊆ R

(n−r) of acceptable values for y, and assume y ∈ C. Given these
assumptions, there exists a function, γ, that satisfies

q = γ(y) (8.56)

for all y ∈ C. (Cf. Eq. 3.11.) Differentiating this equation gives

q̇ = G ẏ , (8.57)

where

G =
∂γ

∂y
, (8.58)
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and differentiating it a second time gives

q̈ = G ÿ + g , (8.59)

where

g = Ġ ẏ . (8.60)

Equation 8.59 has the same form as Eq. 8.42, and the two equations are identical
when the loop-closure errors are zero.

We now have a new method for obtaining G and g, in which they are calcu-
lated from a vector of independent variables. This method can be summarized
as follows.

1. Define y, and identify C.

2. Find an expression for the function γ that maps y uniquely to q, given
y ∈ C.

3. Differentiate this expression symbolically to obtain expressions for G and
g.

4. Write code to evaluate these expressions.

This method is less general that the one described in Section 8.5, mainly because
step 2 is not always possible. It is also less convenient, since it requires the user
to supply expressions (or code) for G and g in addition to the system model.
Nevertheless, it is applicable to a wide variety of practical closed-loop systems,
and the calculation of G and g by this method can be much cheaper than using
the algorithms in Sections 8.7 and 8.8.

Another advantage of this method is that loop-closure errors cannot occur.
This is because we do not integrate q̈ to get q̇ and q, but instead integrate ÿ to
get ẏ and y. This way, the vectors q and q̇ are calculated from y and ẏ using
Eqs. 8.56 and 8.57, which means that their values automatically satisfy the loop
constraints. There is therefore no need for constraint stabilization terms.

A Worked Example

Figure 8.3 shows a rigid-body system containing four bodies, five joints and one
kinematic loop. The system is a planar mechanism, and its mobility is 2. Bodies
B1 and B4 form a two-link arm, while B2 and B3 are the cylinder and piston,
respectively, of a linear actuator. Joint 3 is prismatic, and the rest are revolute.
Joints 1, 2, 3 and 5 participate in the kinematic loop, with joint 5 being the loop
joint. The vector of tree-joint variables is therefore q = [q1 q2 q3 q4]

T, where
q3 is a distance and the rest are angles. In this example, we choose q1 and q4

to be the independent variables; that is, we define the vector of independent
variables, y = [y1 y2]

T, such that y1 = q1 and y2 = q4. The main task is then
to express q2 and q3 as functions of y1.
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Figure 8.3: Formulating γ, G and g for a simple closed-loop system
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The geometry of the kinematic loop is very simple: just a triangle. It is
therefore possible to use standard trigonometric formulae to express q2 and q3

(labelled θ2 and d on the triangle) as functions of y1. To make the mapping
unique, we impose the constraint d > 0, and we use the four-quadrant version
of the arctangent function (the one that takes two arguments) to calculate θ2.
If l1 = l2 then we require θ1 6= 0. In this case, C must exclude all vectors y

having y1 = 0. When a kinematic loop has an explicit solution formula, like
this one, then it is said to have a closed-form solution.

Figure 8.3 also presents explicit formulae for γ, G and g. It can be seen
that G is block-diagonal, having a 3 × 1 block and a 1 × 1 block. Note that
the equations in this figure are all scalar equations, in contrast to the vector
and matrix equations in Sections 8.7 and 8.8. It is therefore much cheaper to
calculate G and g via the equations presented here.

In summary, this method places an additional burden on the user of having
to supply code to calculate γ, G and g, but offers in return a potentially
large improvement in the efficiency of this part of the dynamics calculation.
This method is appropriate for systems containing kinematic loops with simple,
closed-form solutions, such as might be found on excavator arms, large industrial
robots, parallel robots and Stuart-Gough platforms (flight simulators).

8.12 Inverse Dynamics

Inverse dynamics is the problem of calculating the forces required to produce
a given acceleration. In a kinematic tree, there is a 1 : 1 relationship between
τ and q̈, and the calculation of τ from q̈ is straightforward. In a closed-loop
system, the given value of q̈ must comply with the loop-closure constraints, and
there are infinitely many values of τ that produce the same acceleration. The
nature of the inverse dynamics problem is therefore significantly altered by the
presence of kinematic loops.

Let us now formulate the inverse dynamics equations for a closed-loop sys-
tem. We start with the equation of motion for the spanning tree, which is

τ = Hq̈ + C − τ a − KTλ . (8.61)

In this equation, τ is the vector of unknown forces acting at the tree joints.
Any known forces, such as those due to springs and dampers, are assumed to
be included in C. It is also assumed that there are no unknown active forces
at the loop joints. Thus, if τ a appears at all, then it is composed entirely of
known forces.

Equation 8.61 contains two unknowns, τ and λ. As we are only interested
in τ , the next step is to eliminate λ. This is done by multiplying the equation
by GT, which gives

GTτ = GT(Hq̈ + C − τ a) .
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This equation can be written

GTτ = GTτID , (8.62)

where τID is the force calculated by applying an inverse dynamics function to
the spanning tree; that is,

τID = Hq̈ + C − τ a

= ID(q, q̇, q̈) .

In this context, ID(q, q̇, q̈) is the output of the algorithm described in Section
8.6 with the joint acceleration terms put back in. Bear in mind that q, q̇ and
q̈ must all comply with the loop-closure constraints.

Equation 8.62 is the basic inverse dynamics equation for a closed-loop sys-
tem. As GT is an (n − r) × n matrix, this equation imposes n − r constraints
on an n-dimensional vector of unknowns, leaving r freedoms of choice. In other
words, there are ∞r different values of τ that produce the same acceleration.
If we want a unique solution to the problem, then we must either impose more
constraints or apply an optimality criterion.

Actuator Forces

A typical use for inverse dynamics is to calculate a vector of actuator forces
to produce a given acceleration. Now, not every joint will be powered by an
actuator, so let us define p and u to be the number of actuated freedoms in the
tree, and the p-dimensional vector of actuator force values, respectively. u and
τ are then related by the equation

τ = Q

[

u

0

]

,

where Q is an n × n permutation matrix. This equation simply says that the
elements of τ are a permutation of the p elements of u and n − p zeros. The
zero-valued elements of τ are those that belong to the unactuated degrees of
freedom. Let us also define the two matrices Gu and G0, which contain the
rows of G corresponding to actuated and unactuated freedoms, respectively.
These matrices are related to G by the equation

G = Q

[

Gu

G0

]

.

From these definitions, it follows that

GTτ =
[

GT
u GT

0

]

QT Q

[

u

0

]

=
[

GT
u GT

0

]

[

u

0

]

= GT
u u ;

and substituting this result into Eq. 8.62 gives

GT
u u = GTτID , (8.63)
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which is the inverse dynamics equation for actuator forces. In solving this
equation, there are three cases to consider.

1. rank(Gu) < n− r. In this case, the system is underactuated : it has more
motion freedoms than the actuators can control.

2. p > rank(Gu). In this case, the system is redundantly actuated : infinitely
many different values of u will produce the same acceleration.

3. p = rank(Gu) = n − r. In this case, the system is properly actuated :
Gu is invertible, and there is a unique solution to Eq. 8.63 given by
u = G−T

u GTτID.

Cases 1 and 2 are not mutually exclusive.

Example 8.2 Consider the assignment of actuators to the mechanism shown in
Figure 8.3. This mechanism has two degrees of freedom, and therefore requires
two actuators. Gu will therefore be a 2 × 2 matrix containing two rows of G;
and these rows must be chosen so that Gu is invertible. Given the formula for
G shown in the figure, it follows that Gu must contain row 4 of G and any one
of the other three rows. This means that an actuator must be present at joint
4, and at any one of the other three joints. (As this mechanism is so simple,
this result could have been obtained by inspection.)

Let us suppose that joints 3 and 4 are actuated, which means that Gu =
[

u2 0
0 1

]

. The inverse dynamics formula for this system will then be

u = G−T
u GT τID

=

[

u2 0
0 1

]−1 [
1 u1 u2 0
0 0 0 1

]

τID

=

[

1/u2 u1/u2 1 0
0 0 0 1

]

τID ,

where
τID = ID(γ(y), Gẏ, Gÿ + g) .

Note that u is not a vector of generalized forces for this system, since the
expression uTẏ does not equal the power delivered by u. This discrepancy is
caused by the fact that q̇1 is the first element in ẏ, but τ3 is the first element
in u. If you want u to be the generalized force vector, then the elements of u

must be the same subset of τ as ẏ is of q̇.

8.13 Sparse Matrix Method

Every algorithm we have studied so far works by applying a set of loop-closure
constraints to a spanning tree. An alternative strategy is to dispense with the
spanning tree, and work directly with the individual bodies and joints in the
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system. This approach produces equations with large, sparse matrices; and
any algorithm based on these equations must exploit the sparsity in order to
be competitive. Such algorithms tend to be less efficient than those based on
spanning trees, but they can be more efficient under special circumstances, as
we shall see below.

The equation of motion for a collection of NB rigid bodies, subject to the
motion constraints imposed by a set of NJ joints, is given by

[

I P T

T TP T 0

][

a

−λ

]

=

[

P T aτ − v ×∗ Iv + fx

−Ṫ TP Tv

]

. (8.64)

This equation is derived in Section 3.7. v, a and fx are vectors of body ve-
locities, accelerations and external forces, respectively; λ is the vector of joint
constraint-force variables; T aτ is the vector of active forces transmitted across
the joints; P T is the matrix that maps from body to joint velocities (i.e., P Tv

is the vector of joint velocities); and I and T are composite matrices of body
inertias and joint constraint-force subspaces, respectively. a and λ are the un-
knowns; and the size of the coefficient matrix is 6NB + nc

tot square, where nc
tot

is the total number of constraints imposed by the joints.
Our chief interest lies in the sparsity pattern of the coefficient matrix, so let

us examine its constituents. I and T are both block-diagonal, being defined by

I = diag(I1, . . . , INB
) and T = diag(T1, . . . , TNJ

) .

P is also sparse, but not block-diagonal. It is defined by

P ij =







16×6 if i = s(j)
−16×6 if i = p(j)
06×6 otherwise.

P is therefore a 6NB × 6NJ matrix, organized as an NB × NJ matrix of 6 × 6
blocks. It has two nonzero blocks in every column, except those columns for
joints connecting directly to the base, which have only one nonzero block. From
these definitions, it follows that the coefficient matrix contains NB nonzero
blocks on the main diagonal, and up to 4NJ nonzero off-diagonal blocks. The
exact positions of the latter are determined by the connectivity.

Equation 8.64 is typical of the kind of equation that a sparse matrix arith-
metic software library is designed to solve, and the use of such a library is
probably the best way to proceed. A sparse matrix library would typically
provide the following facilities:

• a function to analyse the sparsity pattern of a matrix, as a preprocessing
step, in order to work out the best factorization order and which zero-
valued elements get filled in with nonzero values during the course of the
factorization;

• a data structure for compact storage of all the nonzero values in the matrix
and all the zero-valued entries that will get altered during factorization;
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• a function to perform a factorization in the order determined in the pre-
processing step; and

• a function to perform back-substitution using the resulting factors.

If an n × n matrix contains only O(n) nonzero elements, then it is some-
times possible to factorize the matrix in only O(n) arithmetic operations. An
O(n) factorization of Eq. 8.64 is always possible if the system is a kinematic
tree.2 However, there are also many closed-loop systems for which an O(n)
factorization is possible, including some that cannot be solved in O(n) by any
algorithm using a spanning tree. In such cases, the sparse-matrix algorithm
will out-perform spanning-tree algorithms for a sufficiently large n.

Figure 8.4 shows an example of a closed-loop system having O(n) dynamics
by the sparse matrix method. The connectivity graph is of a kind that is
sometimes called a ladder. It can be extended indefinitely by adding more
nodes to the right. The figure also shows the sparsity pattern of a symmetric
permutation of the coefficient matrix. This permutation has been chosen so
that the resulting matrix has a fixed bandwidth—every nonzero block appears
on the main diagonal, or on one of the three nearest diagonals either side. A
matrix with this property can always be factorized in O(n) operations.

To explain the permutation, the nodes in the graph have been numbered in
the same order as they appear in the matrix, and the joints have been given
number pairs reflecting their connectivity: joint ij is the one that connects
from body i to body j. Row 1 in the permuted matrix is the row in the original
matrix that contained I1 (with body numbers as shown in the graph); row 2
is the row that contained I2; row 3, which is labelled 12, is the row in the
original matrix containing the row in T TP T pertaining to joint 12; and so on.
Observe that each row labelled with a body number contains a nonzero block on
the main diagonal, and that each row labelled with a number pair ij contains
nonzero blocks only in columns i and j.

If we were to apply a spanning-tree algorithm to this system, then we would
encounter the following problem: whatever spanning tree we choose, there will
always be O(n2) nonzero elements in the joint-space inertia matrix, H, and so
it will be impossible to calculate the dynamics in only O(n) operations.

Finally, the following details should be mentioned. First, if this algorithm
is to be used in a dynamics simulator, then constraint stabilization is required.
The necessary extra terms have not been included in Eq. 8.64. Second, we have
assumed that the coefficient matrix has full rank; that is, we have assumed that
the closed-loop system is properly constrained. If the matrix is singular, then
the sparse factorization may not work.

2This is the basis of Baraff’s algorithm (Baraff, 1996).
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Figure 8.4: Sparsity pattern arising from a ladder-like connectivity graph





Chapter 9

Hybrid Dynamics and

Other Topics

This chapter covers the following topics: hybrid dynamics, floating bases, gears
and dynamic equivalence. Hybrid dynamics is a generalization of forward and
inverse dynamics in which the forces are known at some joints, the accelerations
at the rest, and the task is to calculate the unknown forces and accelerations.
In effect, one is performing forward dynamics at some joints and inverse dy-
namics at the rest. A floating-base system is one in which the base is a moving
body. Such systems can be modelled as fixed-base systems by installing a 6-
DoF joint between the fixed base and the body representing the floating base.
However, floating-base systems are an important class of rigid-body systems,
and merit special treatment. Sections 9.1 to 9.5 present several algorithms for
hybrid dynamics and floating bases. Gears impose constraints between joint
variables. They therefore resemble kinematic loops, and Section 9.6 shows how
gear constraints can be incorporated into a rigid-body system using a technique
that was developed in Chapter 8 for kinematic loops. Two different rigid-body
systems are dynamically equivalent if they have the same equation of motion.
Section 9.7 explores this concept, and presents a method for modifying the in-
ertia parameters of a rigid-body system without altering its equation of motion.

9.1 Hybrid Dynamics

For each joint i, there is a force variable, τi, and an acceleration variable,
q̈i. In the forward-dynamics problem, we are given τi for every joint, and the
task is to calculate the accelerations. In the inverse-dynamics problem, we are
given q̈i for every joint, and the task is to calculate the forces. In the hybrid-
dynamics problem, we are given either τi or q̈i at each joint, and the task is
to calculate the unknown accelerations and forces. In effect, hybrid dynamics
is like performing forward dynamics at some of the joints and inverse dynamics
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at the rest. The hybrid-dynamics problem therefore includes both the forward-
dynamics problem and the inverse-dynamics problem as special cases.

Hybrid dynamics is used to introduce prescribed motions into a rigid-body
system. For example, it will let you study the dynamics of a mechanical linkage
or transmission under prescribed motion conditions at the input, or the motion
of a compound pendulum in response to a given kinematic excitation, or the
tumbling behaviour of an animated character in mid air. It can also be used to
help design trajectories for underactuated systems; for example, a sequence of
limb movements for an animated character to leap, perform a somersault, and
land on its feet.

Another use is to simplify a simulation by removing unimportant and/or
high-frequency dynamics. For example, the motions of a robot’s joints are typ-
ically controlled by high-gain feedback control systems. These control systems
continually compare the actual motion of a joint with the commanded motion,
and adjust the force output from the actuator so as to bring the difference
quickly to zero. In a simulation of a complete robot, the simulator must calcu-
late the dynamics of the actuators and control systems as well as the mechanical
parts. However, if a particular control system can be regarded as perfect, mean-
ing that the actual motions of the joints it controls are practically equal to the
commanded motions, then it is possible to dispense with this control system
and its actuators, and simply prescribe the motions of the affected joints. If
the removed components were responsible for the highest-frequency dynamics
in the original system, then the simulator can now use a longer integration time
step. An example of this technique can be found in Hu et al. (2005).

Equations

Let us define fd to be the set of ‘forward-dynamics joints’; that is, the set of
joints for which the forces are known and the accelerations unknown. Any joint
that is not a member of fd is therefore an ‘inverse-dynamics joint’, for which
the acceleration is known and the force unknown. Let us also define Q to
be the permutation matrix that reorders the elements of q̈ and τ so that the
forward-dynamics variables come first. Thus,

Q q̈ =

[

q̈1

q̈2

]

and Q τ =

[

τ1

τ2

]

,

where q̈1 and τ1 contain the acceleration and force variables pertaining to
the forward-dynamics joints, and q̈2 and τ2 contain the acceleration and force
variables pertaining to the inverse-dynamics joints. The equation of motion for
a kinematic tree can now be written

[

H11 H12

H21 H22

][

q̈1

q̈2

]

=

[

τ1

τ2

]

−
[

C1

C2

]

, (9.1)

where
[

H11 H12

H21 H22

]

= Q H QT and

[

C1

C2

]

= Q C .
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Equation 9.1 is just a permutation of the standard equation of motion, Hq̈ =
τ − C (e.g. see Eq. 6.1). The two unknowns in this equation are q̈1 and τ2. If
we bring them together on the left-hand side, then we get

[

H11 0

H21 −1

] [

q̈1

τ2

]

=

[

τ1

0

]

−
[

C′

1

C′

2

]

, (9.2)

where
[

C′

1

C′

2

]

=

[

C1 + H12q̈2

C2 + H22q̈2

]

= Q C ′ .

This is the basic equation for hybrid dynamics. Physically, C ′ is the force
required to impart zero acceleration to each forward-dynamics joint and the
given acceleration to each inverse-dynamics joint. Thus, C ′ can be calculated
by an inverse-dynamics function as follows:

C ′ = ID(q, q̇, QT

[

0

q̈2

]

) . (9.3)

Example 9.1 Equation 9.2 hides q̈2 within C ′. If we want to keep q̈2 visible,
then the equation can be written

[

H11 0

H21 −1

][

q̈1

τ2

]

=

[

1 −H12

0 −H22

] [

τ1

q̈2

]

−
[

C1

C2

]

. (9.4)

Multiplying this equation by the inverse of the left-hand coefficient matrix pro-
duces Eq. 10 in Jain and Rodriguez (1993).

Algorithms

Equation 9.2 can be solved in four steps as follows.

1. Calculate C′ using Eq. 9.3.

2. Calculate H11 as described below.

3. Solve H11q̈1 = τ1 − C ′

1 for q̈1.

4. Calculate τ2 via τ = C′ + IDδ(Q
T

[

q̈1

0

]

).

The symbol IDδ in step 4 denotes the differential inverse-dynamics function
described in Table 6.1, which multiplies its argument by H. Thus, the equation
in step 4 evaluates to

τ = C ′ + QT

[

H11q̈1

H21q̈1

]

.

The simplest way to accomplish step 2 is to calculate H via the composite
rigid body algorithm (§6.2) and extract the submatrix H11. However, if greater
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H = 0

for each i in ν(fd ) do

Ic
i = Ii

end

for i = NB to 1 do

if λ(i) ∈ ν(fd ) then

Ic
λ(i) = Ic

λ(i) + λ(i)X∗

i Ic
i

iXλ(i)

end

if i ∈ fd then

F = Ic
i Si

Hii = ST
i F

..

.

..

.

j = i
while λ(j) ∈ ν(fd ) do

F = λ(j)X∗

j F

j = λ(j)
if j ∈ fd then

Hij = F TSj

Hji = HT
ij

end

end

end

end

Table 9.1: Modified composite rigid body algorithm for calculating H11

efficiency is required, then it is possible to modify the algorithm so that it only
performs the minimum amount of calculation necessary to obtain H11. This
modified algorithm is shown in Table 9.1. One new quantity appears in this
algorithm: ν(fd ), which is the set of bodies that are supported by at least one
forward-dynamics joint. It is defined by the formula

ν(fd ) =
⋃

i∈fd

ν(i) , (9.5)

and it can be calculated from fd and λ as follows:1

ν(fd ) = fd

for i = 1 to NB do

if λ(i) ∈ ν(fd ) then

ν(fd ) = ν(fd ) ∪ {i}
end

end

The cost of calculating ν(fd ) is small enough that it would be practical for
a hybrid dynamics routine to calculate it each time the routine was called.
However, as ν(fd ) depends only on fd and λ, its value would not normally
change during the course of a single simulation run; so it would also be possible
to calculate it just once at the beginning of the run, and store it for later use.

On comparing the modified algorithm with the original, in Table 6.2, it can
be seen that they both have the same structure, but the modified algorithm
performs only a subset of the calculations. For example, I c

i is calculated only

1In this code fragment, ‘ν(fd)’ should be regarded as the name of a variable. In a practical
implementation, ν(fd) could be represented by an array of NB + 1 Boolean values, the array
being indexed from 0 to NB , such that each element is either true or false according to whether
its index is or is not an element of ν(fd).
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inverse
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1
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4

λ = [0,1,1,2,2,3,3]

λ’ = [0,0,0,1,1]5 6 7
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H11

H

original graph modified graph

H11

Calculation of λ′

map(0) = 0
j = 1
for i = 1 to n do

if i ∈ fd then

map(i) = j
λ′(j) = map(λ(i))
j = j + 1

else

map(i) = map(λ(i))
end

end

Figure 9.1: Branch-induced sparsity in H11

for those values of i satisfying i ∈ ν(fd ), and Hij is calculated only for those
values of i and j satisfying i, j ∈ fd .

Moving on to step 3, H11 is a symmetric, positive-definite matrix, so the
equation in step 3 could be solved using any standard linear-equation solver
for such matrices. However, as shown in Figure 9.1, H11 inherits a portion
of whatever branch-induced sparsity is present in H. We therefore have the
opportunity to exploit this sparsity by using one of the algorithms described in
Section 6.5.

The prerequisite for exploiting the sparsity in H11 is to obtain a modified
parent array, λ′, that describes the sparsity pattern in this matrix. Figure 9.1
shows how this can be done. Starting with the connectivity graph of the original
system, a modified graph is constructed by merging every pair of nodes that
are connected by an inverse-dynamics joint. Once this is done, the remaining
nodes must be renumbered, as there are now fewer of them. In the example
shown in the figure, joints 1 and 2 are inverse-dynamics joints, so nodes 1 and
2 are merged with node 0, and nodes 3 to 7 are renumbered 1 to 5.

Figure 9.1 also shows an algorithm for calculating λ′ from λ and fd . As a
by-product, this algorithm also calculates the node-number mapping from the
original to the modified graph: map(i) is the new number for original node i.
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To follow this algorithm, it helps to know that i is counting node numbers in
the original graph, while j is counting node numbers in the modified graph.
Bear in mind that if any of the joints in the modified graph have more than
one degree of freedom then λ′ will have to be expanded, as explained in Section
6.5, before it can be used.

9.2 Articulated-Body Hybrid Dynamics

The articulated-body algorithm is easily adapted to perform hybrid dynamics:
one simply modifies the algorithm so that it uses the normal articulated-body
equations (as described in §7.3) at each forward-dynamics joint, and the equa-
tions developed below at each inverse-dynamics joint. The two sets of equations
are shown side-by-side in Table 9.2, and the pseudocode is shown in Table 9.3.
The latter is adapted from the code in Table 7.1.

Let fi be the spatial force transmitted across joint i. fi is related to the
acceleration of body i by the equation

fi = IA
i ai + pA

i ; (9.6)

and it is related to the acceleration of body λ(i) by the equation

fi = Ia
i aλ(i) + pa

i . (9.7)

(See Eq. 7.25.) Furthermore, aλ(i) is related to ai by

ai = aλ(i) + Ṡi q̇i + Si q̈i . (9.8)

In the articulated-body algorithm, the main step is the calculation of Ia
i and

pa
i from IA

i and pA
i . If joint i is a forward-dynamics joint, then the immediate

problem is that q̈i is unknown, so the first step is to find an expression for q̈i.
However, no such difficulty exists for an inverse-dynamics joint. Substituting
Eq. 9.8 into Eq. 9.6 gives

fi = IA
i (aλ(i) + Ṡi q̇i + Si q̈i) + pA

i ;

and comparing this equation with Eq. 9.7 reveals that

Ia
i = IA

i (9.9)

and
pa

i = pA
i + IA

i (Ṡi q̇i + Si q̈i) . (9.10)

These two equations take the place of Eqs. 7.39 and 7.40 in Pass 2. Apart from
this, only two other changes can be seen in the inverse-dynamics equations in
Table 9.2: the term Siq̈i has been added to ci (which means that a′

i no longer
appears in Pass 3), and a new equation has been added to Pass 3 to calculate
τi via τi = ST

i fi and Eq. 9.6. (We could have used Eq. 9.7 instead.)
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Forward Dynamics (i ∈ fd ):

Pass 1

vJi = Si q̇i

vi = iXλ(i) vλ(i) + vJi (v0 = 0)

cJi = S̊i q̇i

ci = cJi + vi × vJi

pi = vi ×∗ Ii vi − iX∗

0 fx
i

Inverse Dynamics (i /∈ fd):

Pass 1

vJi = Si q̇i

vi = iXλ(i) vλ(i) + vJi (v0 = 0)

cJi = S̊i q̇i

ci = cJi + vi × vJi + Si q̈i

pi = vi ×∗ Ii vi − iX∗

0 fx
i

Pass 2

IA
i = Ii +

∑

j∈µ(i)

iX∗

j Ia
j

jXi

pA
i = pi +

∑

j∈µ(i)

iX∗

j pa
j

Ui = IA
i Si

Di = ST
i Ui

ui = τi − ST
i pA

i

Ia
i = IA

i − Ui D−1
i UT

i

pa
i = pA

i + Ia
i ci + Ui D−1

i ui

Pass 2

IA
i = Ii +

∑

j∈µ(i)

iX∗

j Ia
j

jXi

pA
i = pi +

∑

j∈µ(i)

iX∗

j pa
j

Ia
i = IA

i

pa
i = pA

i + Ia
i ci

Pass 3

a′
i = iXλ(i) aλ(i) + ci (a0 = −ag)

q̈i = D−1
i (ui − UT

i a′
i)

ai = a′
i + Si q̈i

Pass 3

ai = iXλ(i) aλ(i) + ci (a0 = −ag)

τi = ST
i (IA

i ai + pA
i )

Table 9.2: Articulated-body hybrid dynamics equations
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v0 = 0

for i = 1 to NB do

[XJ, Si, vJ, cJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

if i ∈ fd then

ci = cJ + vi × vJ

else

ci = cJ + vi × vJ + Si q̈i

end

IA
i = Ii

pA
i = vi ×∗ Ii vi − iX∗

0 fx
i

end

for i = NB to 1 do

if i ∈ fd then

Ui = IA
i Si

Di = ST
i Ui

ui = τi − ST
i pA

i

if λ(i) 6= 0 then

Ia = IA
i − Ui D−1

i UT
i

IA
λ(i) = IA

λ(i) + λ(i)X∗

i Ia iXλ(i)

pa = pA
i + Iaci + Ui D−1

i ui

pA
λ(i) = pA

λ(i) + λ(i)X∗

i pa

end

else

if λ(i) 6= 0 then

Ia = IA
i

IA
λ(i) = IA

λ(i) + λ(i)X∗

i Ia iXλ(i)

pa = pA
i + Iaci

pA
λ(i) = pA

λ(i) + λ(i)X∗

i pa

end

end

end

..

.

..

.

a0 = −ag

for i = 1 to NB do

if i ∈ fd then

a′ = iXλ(i) aλ(i) + ci

q̈i = D−1
i (ui − UT

i a′)

ai = a′ + Si q̈i

else

ai = iXλ(i) aλ(i) + ci

τi = ST
i (IA

i ai + pA
i )

end

end

Table 9.3: Articulated-body hybrid dynamics algorithm
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9.3 Floating Bases

A floating-base rigid-body system is one in which the base body (body 0) is
free to move, rather than being fixed in space. Any floating-base system can be
converted into an equivalent fixed-base system by making the following changes:

1. Add 1 to all the body and joint numbers, so that the floating base is now
body 1, and the lowest-numbered joint is joint 2.

2. Add a fixed base to the system, and a new 6-DoF joint connected between
the fixed and floating bases; the former being the new body 0, and the
latter the new joint 1.

3. As a consequence of step 2, add 1 to NB and NJ , and add 6 to n.

Having made these changes, the floating-base system’s dynamics can be anal-
ysed and calculated by any of the techniques and algorithms designed for fixed-
base systems. Nevertheless, floating-base systems are an important special case,
and they do merit special treatment.

Let us develop the equations of motion for a floating-base kinematic tree.
The quickest approach is to start with the equation of motion for the equivalent
fixed-base system. This equation can be written

[

H11 H1∗

H∗1 H∗∗

][

q̈1

q̈∗

]

+

[

C1

C∗

]

=

[

τ1

τ∗

]

, (9.11)

where the subscripts 1 and ∗ refer to joint 1 and ‘all other joints’, respectively.
This equation is already the correct equation of motion for a floating-base
system—it just needs to be massaged into more appropriate notation, which
is what we shall now do.

The special property of joint 1 is that is has six degrees of freedom. Its
motion-subspace matrix, S1, must therefore be a 6 × 6 full-rank matrix. In
fact, S1 could be any 6 × 6 full-rank matrix, as two different choices of S1

amount only to two different choices of velocity variables, rather than to any
fundamental change in the equation. We therefore choose the most convenient
value, which is the identity matrix. In particular, we choose S1 to be the
identity matrix in floating-base coordinates.2

Having specified S1 = 16×6, several other quantities now take on special
values. Starting with q̇1, q̈1 and τ1, we have

v1 = S1 q̇1

= 16×6 q̇1

= q̇1 ,

a1 = Ṡ1 q̇1 + S1 q̈1

= v1 × S1 q̇1 + S1 q̈1

= v1 × v1 + 16×6 q̈1

= q̈1

and τ1 = ST
1 f1

= 16×6 f1

= f1 .

2That is, 1S1 = 16×6; but in any other coordinate system we have iS1 = iX116×6, which

is not the identity matrix. As S1 is fixed in body 1, we have S̊1 = 0 and Ṡ1 = v1 × S1.
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So q̇1, q̈1 and τ1 contain the Plücker coordinates of the spatial vectors v1, a1

and f1. Next, we observe that f1 and fx
1 have essentially the same meaning,

since they are both external forces acting on the floating base; so the total
external force is actually given by the sum f1 + fx

1 . In the equations below, f1

(and therefore also τ1) has been set to zero; but we always have the freedom to
choose how to apportion the external force between fx

1 and f1.
As C is the generalized bias force, it follows that C1 is the value that τ1

would have to take in order to produce zero joint acceleration at the floating
base, assuming that all the other joint accelerations are zero. Given that q̈1 =
a1 and τ1 = f1, this means that C1 is also the spatial bias force for the
composite rigid body comprising the whole floating-base system. We shall use
the symbol pc

1 to denote this quantity. Finally, from the definition of Hij in
Eq. 6.14, we have

H1i = ST
1 Ic

i Si = Ic
i Si and H11 = ST

1 Ic
1 S1 = Ic

1 .

Taking these changes into account, Eq. 9.11 can be written

[

Ic
1 H1∗

H∗1 H∗∗

] [

a1

q̈∗

]

+

[

pc
1

C∗

]

=

[

0

τ∗

]

.

Let us now revert to the original floating-base system, and adjust the nota-
tion accordingly. First, NB , NJ and n revert to their original values, and the
bodies and joints revert to their original numbers. The symbols a1, pc

1, Ic
1 , and

so on, therefore become a0, pc
0, Ic

0 , and so on. Furthermore, as the 6-DoF joint
1 no longer exists, the symbols H∗∗, C∗, q̈∗ and τ∗ all simplify to H, C, q̈

and τ , respectively. We replace H1∗ with a new symbol, F , which is defined as
follows:

F =
[

F1 F2 · · · FNB

]

(9.12)

where
Fi = Ic

i Si .

F is a 6×n matrix whose columns are the spatial forces required at the floating
base to support unit accelerations about each joint variable (cf. §6.3). With
these changes, the equation of motion for a floating-base system now reads

[

Ic
0 F

F T H

] [

a0

q̈

]

+

[

pc
0

C

]

=

[

0

τ

]

. (9.13)

This is a system of n + 6 equations in n + 6 unknowns, reflecting the fact that
the floating-base system has n + 6 degrees of motion freedom. Note that a
complete description of this system’s acceleration requires the two vectors a0

and q̈. Likewise, a complete description of the velocity requires v0 and q̇, and a
complete description of the position requires the quantities 0Xref and q, where
0Xref is the Plücker transform from an inertial reference frame to floating-base
coordinates.
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Example 9.2 Starting with Eq. 9.13, suppose we subtract F T(Ic
0)−1 times the

first row from the second. The resulting equation is

[

Ic
0 F

0 H − F T(Ic
0)−1F

][

a0

q̈

]

+

[

pc
0

C − F T(Ic
0)−1pc

0

]

=

[

0

τ

]

.

Extracting the bottom row, we have

Hfl q̈ + Cfl = τ , (9.14)

where
Hfl = H − F T(Ic

0)−1F (9.15)

and
Cfl = C − F T(Ic

0)−1pc
0 . (9.16)

Equation 9.14 is interesting because it presents us with a direct relationship be-
tween q̈ and τ , and the coefficients Hfl and Cfl can be regarded as floating-base
analogues to the coefficients of the standard equation of motion. However, this
equation is not necessarily a good choice for computational purposes because
the subtraction of F T(Ic

0)−1F from H in Eq. 9.15 erases any branch-induced
sparsity that may have been present in H. Thus, Hfl is a dense matrix; and
it is perfectly possible for Hfl to have more nonzero elements than H, despite
being smaller.

9.4 Floating-Base Forward Dynamics

If software is available to calculate fixed-base dynamics, and this software
supports 6-DoF joints, then it can be used to calculate floating-base dynam-
ics. Alternatively, if dedicated floating-base software is required, then both
the articulated-body algorithm and the composite-rigid-body algorithm can be
adapted to the task.

Table 9.4 shows the pseudocode for a floating-base articulated-body algo-
rithm. On comparing this algorithm with the one in Table 7.1, the following
differences can be seen: v0 is now an input; pass 2 has been extended to calcu-
late IA

0 and pA
0 ; a0 is calculated from the equation

IA
0 a0 + pA

0 = 0 ; (9.17)

and gravitational acceleration is added to a0 right at the end. This implemen-
tation expects the vectors fx

i and ag to be supplied in floating-base coordinates,
rather than reference coordinates, so that it does not need to know the value
of 0Xref . The symbols 0fx

i and 0ag are used accordingly. Note that 0ag is not
a constant, but will vary as the floating base rotates. (0ag = 0Xref

refag.)
The effect of a uniform gravitational field on a free-floating rigid-body sys-

tem is to modify the acceleration of every body in the system by the same
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for i = 1 to NB do

[XJ, Si, vJ, cJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ci = cJ + vi × vJ

IA
i = Ii

pA
i = vi ×∗ Ii vi − iX∗

0
0fx

i

end

IA
0 = I0

pA
0 = v0 ×∗ I0 v0 − 0fx

0

for i = NB to 1 do

Ui = IA
i Si

Di = ST
i Ui

..

.

..

.

ui = τi − ST
i pA

i

Ia = IA
i − Ui D−1

i UT
i

pa = pA
i + Iaci + Ui D−1

i ui

IA
λ(i) = IA

λ(i) + λ(i)X∗

i Ia iXλ(i)

pA
λ(i) = pA

λ(i) + λ(i)X∗

i pa

end

a0 = −(IA
0 )−1 pA

0

for i = 1 to NB do

a′ = iXλ(i) aλ(i) + ci

q̈i = D−1
i (ui − UT

i a′)

ai = a′ + Si q̈i

end

a0 = a0 + 0ag

Table 9.4: Floating-base articulated-body dynamics algorithm

amount. Thus, the relative accelerations of any two bodies are independent of
gravity. The algorithm in Table 9.4 exploits this fact by calculating the motion
of the system in the absence of a gravitational field, and then adding ag to a0

right at the end. If you want this algorithm to return the accelerations of other
bodies in the system, then ag must also be added to these accelerations before
they are returned.

Table 9.5 presents floating-base versions of the recursive Newton-Euler and
composite-rigid-body algorithms. Together, they calculate the coefficients of
Eq. 9.13, so that it can be solved for a0 and q̈. Note that the coefficient matrix
in this equation has the same branch-induced sparsity pattern as the matrix in
Eq. 9.11, so it can be factorized using the algorithms of Section 6.5.

On comparing the modified Newton-Euler algorithm with the original in
Table 5.1, the following differences can be seen: v0 is now an input; the term
Siq̈i has been removed from the expression for ai, which is duly renamed a

vp
i ,

as it accounts for only the velocity-product acceleration terms; pass 2 has been
extended to calculate f0; and a line has been added to set pc

0 = f0. Once
again, the vectors ag and fx

i are supplied in floating-base coordinates, so that
the value of 0Xref is not needed, and the symbols 0ag and 0fx

i have been used
in the psuedocode accordingly. Setting a

vp
0 = −ag at the beginning causes

gravitational force terms to appear in C and pc
0, which ultimately has the

effect of causing the correct gravitational acceleration term to appear in a0

when Eq. 9.13 is solved.

On comparing the modified composite-rigid-body algorithm with the orig-
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Calculate C and pc
0:

a
vp
0 = −0ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

a
vp
i = iXλ(i) a

vp
λ(i) + cJ + vi × vJ

fi = Ii a
vp
i + vi ×∗ Ii vi − iX∗

0
0fx

i

end

f0 = I0 a
vp
0 + v0 ×∗ I0 v0 − 0fx

0

for i = NB to 1 do

Ci = ST
i fi

fλ(i) = fλ(i) + λ(i)X∗

i fi

end

pc
0 = f0

Calculate H , F and Ic
0 :

H = 0

for i = 0 to NB do

Ic
i = Ii

end

for i = NB to 1 do

Ic
λ(i) = Ic

λ(i) + λ(i)X∗

i Ic
i

iXλ(i)

Fi = Ic
i Si

Hii = ST
i Fi

j = i
while λ(j) 6= 0 do

Fi = λ(j)X∗

j Fi

j = λ(j)

Hij = F T
i Sj

Hji = HT
ij

end

Fi = 0X∗

j Fi

end

Table 9.5: Floating-base versions of the recursive Newton-Euler and composite-
rigid-body algorithms

inal in Table 6.2, the following differences can be seen: the calculation of I c
i

has been extended to include Ic
0 ; the old local variable F (which must not be

confused with the new 6 × n matrix F in Eq. 9.12) has been replaced by the
variables Fi, which are the block columns of F appearing in Eq. 9.12; and
a line has been added after the while loop to transform each Fi to floating-
base coordinates. (Each Fi is initially expressed in body i coordinates, and is
progressively transformed to floating-base coordinates.)

The algorithms in these tables are not the only ways to solve the problem.
Examples of some alternative approaches can be found in Hooker and Margulies
(1965); Hooker (1970); Roberson and Schwertassek (1988); Wittenburg (1977).

9.5 Floating-Base Inverse Dynamics

The inverse-dynamics problem for a floating-base system is really a hybrid-
dynamics problem: the joint accelerations are known, but the base acceleration
is not. Therefore, it would be possible to solve this problem using one of the
general hybrid-dynamics algorithms in Sections 9.1 and 9.2. Alternatively, we
could design a special-purpose algorithm, which would solve the problem more
efficiently. This section presents one such algorithm.

Let fi be the spatial force that is exerted on body i by its parent. In the
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case of body 0, we have f0 = 0 because this body does not have a parent. In
all other cases, fi is the force transmitted across joint i. In any kinematic tree,
fi supports the motion of all the bodies in the set ν(i), so we have

fi =
∑

j∈ν(i)

(Ij aj + vj ×∗ Ij vj − fx
j ) . (9.18)

Our objective is to solve this equation for a0. To accomplish this, we first
express ai in the form

ai = a0 + ar
i ,

where ar
i is the relative acceleration of body i, and then substitute this expres-

sion into Eq. 9.18. The result is

fi =
(

∑

j∈ν(i)

Ij

)

a0 +
∑

j∈ν(i)

(Ij ar
j + vj ×∗ Ij vj − fx

j ) . (9.19)

The coefficient of a0 in this equation is the composite-rigid-body inertia Ic
i . If

we treat the rest of the right-hand side as a bias force, then we have

fi = Ic
i a0 + pc

i , (9.20)

where
pc

i =
∑

j∈ν(i)

(Ij ar
j + vj ×∗ Ij vj − fx

j ) . (9.21)

pc
i is the force that would be required to support the motion of all the bodies

in ν(i) if a0 happened to be zero. It can be calculated recursively using the
equation

pc
i = pi +

∑

j∈µ(i)

pc
j (9.22)

where
pi = Ii ar

i + vi ×∗ Ii vi − fx
i . (9.23)

When i = 0, Eq. 9.20 can be solved directly for a0, giving

a0 = −(Ic
0)−1 pc

0 . (9.24)

Once a0 is known, the joint forces can be calculated using

τi = ST
i fi = ST

i (Ic
i a0 + pc

i ) . (9.25)

Table 9.6 presents the equations and pseudocode for an algorithm based on
Eqs. 9.22 to 9.25 and the usual equations for body velocities, body accelera-
tions and composite-rigid-body inertias. The equations are expressed in body
coordinates, and include coordinate transforms where necessary. In line with
the other floating-base algorithms, this one expects ag and fx

i to be supplied
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Pass 1

ar
0 = −0ag

vJi = Si q̇i

vi = iXλ(i) vλ(i) + vJi

ci = S̊i q̇i + vi × vJi

ar
i = iXλ(i) aλ(i) + ci + Si q̈i

pi = Ii ar
i + vi ×∗ Ii vi − iX∗

0
0fx

i

Pass 2

Ic
i = Ii +

∑

j∈µ(i)

iX∗

j Ic
j

jXi

pc
i = pi +

∑

j∈µ(i)

iX∗

j pc
j

Pass 3

0a0 = −(Ic
0)−1 pc

0

ia0 = iXλ(i)
λ(i)a0

τi = ST
i (Ic

i
ia0 + pc

i )

ar
0 = −0ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] = jcalc(jtype(i), qi, q̇i)
iXλ(i) = XJ XT(i)

if λ(i) 6= 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ar
i = iXλ(i) ar

λ(i) + cJ + vi × vJ + Si q̈i

Ic
i = Ii

pc
i = Ii ar

i + vi ×∗ Ii vi − iX∗

0
0fx

i

end

Ic
0 = I0

pc
0 = I0 ar

0 + v0 ×∗ I0 v0 − 0fx
0

for i = NB to 1 do

Ic
λ(i) = Ic

λ(i) + λ(i)X∗

i Ic
i

iXλ(i)

pc
λ(i) = pc

λ(i) + λ(i)X∗

i pc
i

end
0a0 = −(Ic

0)−1pc
0

for i = 1 to NB do
ia0 = iXλ(i)

λ(i)a0

τi = ST
i (Ic

i
ia0 + pc

i )
end

Table 9.6: Floating-base inverse dynamics equations and algorithm

in floating-base coordinates, and the symbols 0ag and 0fx
i have been used ac-

cordingly. This algorithm handles gravity by initializing ar
0 to −ag rather than

zero. This causes gravitational force terms to appear in pc
i , which in turn cause

the correct gravitational acceleration to appear in a0. Alternatively, one could
set ar

0 to zero at the beginning of pass 1, and then add ag to a0 at the end of
pass 3.

More on this topic, and on related topics, can be found in Dubowsky and
Papadopoulos (1993); Fang and Pollard (2003); Longman et al. (1987); Umetani
and Yoshida (1989); Vafa and Dubowsky (1990a,b); and many other papers.

Example 9.3 The total spatial momentum of a rigid-body system is the sum
of the momenta of its bodies. The momentum of a floating-base system is
therefore given by

momentum =

NB
∑

i=0

Ii vi .

In the absence of external forces, this quantity is conserved. It turns out that
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the momentum is also given by the expression Ic
0v0 + F q̇. We can prove this

as follows:

NB
∑

i=0

Ii vi =

NB
∑

i=0

Ii

(

v0 +
∑

j∈κ(i)

Sj q̇j

)

=

NB
∑

i=0

Ii v0 +

NB
∑

j=1

∑

i∈ν(j)

Ii Sj q̇j

= Ic
0 v0 +

NB
∑

j=1

Ic
j Sj q̇j = Ic

0 v0 + F q̇ .

(See Eq. 4.3 for summation over ν(j).) Using a similar argument, we can show
that the kinetic energy of a floating-base system is

T =
1

2

NB
∑

i=0

vT
i Ii vi =

1

2

[

vT
0 q̇T

]

[

Ic
0 F

F T H

][

v0

q̇

]

.

Example 9.4 In a fixed-base system, the acceleration of body i is given by
ai = Jiq̈ + J̇iq̇, where Ji is the Jacobian of body i. In a floating-base system,
this becomes

ai = Ji q̈ + J̇i q̇ + a0 .

However, from Eq. 9.13 we have

Ic
0 a0 + F q̈ + pc

0 = 0 .

Putting these two equations together, we get

ai = Ji q̈ + J̇i q̇ − (Ic
0)−1(F q̈ + pc

0)

= J
fl
i q̈ + J̇i q̇ − (Ic

0)−1pc
0 ,

where
J

fl
i = Ji − (Ic

0)−1F .

The quantity J
fl
i is, in effect, a floating-base Jacobian, since it describes the

linear dependency of ai on q̈ (cf. Umetani and Yoshida (1989)). This matrix
also relates changes in q̇ to changes in vi. For example, if an impulse within
the system causes q̇ to change by an amount δq̇, then the consequential change
in vi is

δvi = J
fl
i δq̇ .

9.6 Gears

Many mechanical systems contain gear pairs, or components that perform a
similar function. From a mathematical point of view, a gear pair is an algebraic
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Figure 9.2: A two-link robot arm driven by motors and gears

equation involving two joint variables. Typically, one variable is a constant
multiple of the other, but nonlinear relationships are also possible. Another
possibility is that more than two variables can be involved. For example, a
differential gear box usually has two outputs and either one or two inputs, and
therefore involves either three or four variables in total.

Gear constraints can be incorporated into a kinematic tree using the same
technique as was used in Section 8.11 for kinematic loops; namely, to choose a
vector of independent joint variables, y, and define a function, γ, that maps y

to q. Let us now study this technique with the aid of an example.
Figure 9.2 shows a simple two-link robot arm in which both joints are driven

by electric motors via gear pairs. This system contains the following parts: a
fixed base, an upper arm, a forearm, two motors, two large gear wheels and two
small gear wheels. Each motor consists of two parts: a stator and a rotor. The
two stators are fixed to the base and the upper arm, respectively, and the two
rotors are each fixed to a small gear wheel. The two large gear wheels are fixed
to the upper arm and forearm, respectively. The system therefore contains a
total of four moving bodies, defined as follows:

body 1: the upper arm, the first large gear wheel and the stator of the second
motor;

body 2: the first small gear wheel and the rotor of the first motor;

body 3: the forearm and the second large gear wheel;

body 4: the second small gear wheel and the rotor of the second motor.

Joints 1 and 3 are therefore the shoulder and elbow joints of the robot arm, while
joints 2 and 4 are the bearings inside the motors that allow the rotors to rotate
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relative to the stators. The two gear pairs impose the following constraints on
the joint variables:

q2 = ρ1 q1 and q4 = ρ2 q3 ,

where ρ1 and ρ2 are gear ratios. Figure 9.2 also shows the connectivity graph of
this system, and the gearing relationships between the joints. The arrows serve
only to indicate the direction in which the stated gear ratio applies. Thus, the
arrow labelled ρ1 points from joint 1 to joint 2 because q2 is ρ1 times q1.

To incorporate the gear constraints into the equation of motion, we first
define a vector of independent variables, y, and then define a function, γ, that
gives q as a function of y. Let us choose q1 and q3 to be the independent
variables. y is then the vector [y1 y2]

T, where y1 = q1 and y2 = q3. With this
choice of variables, γ is defined as follows:

γ(y) =









y1

ρ1 y1

y2

ρ2 y2









.

The next step is to derive the quantities G = ∂γ/∂y and g = Ġẏ from γ. For
our example, these quantities are

G =
∂γ

∂y
=









1 0
ρ1 0
0 1
0 ρ2









and g = Ġ ẏ = 0 .

(g would only ever be nonzero if there were a nonlinear gear pair in the system.)
Finally, the equation of motion for the kinematic tree, taking into account the
gear constraints, is

GTH Gÿ + GT(C + Hg) = GTτ , (9.26)

where H and C are the coefficients of the equation of motion in the absence
of gear constraints. (See Eq. 8.45.) As the motors exert their torques about
joints 2 and 4, elements τ2 and τ4 of τ will contain the motor torques, while
τ1 = τ3 = 0. The inverse dynamics of a geared kinematic tree can be computed
using the method described in Section 8.12.

G will usually be a very sparse matrix. In fact, it will typically contain
only one nonzero element per row, and many of those elements will be ones.
It is therefore recommended to exploit this sparsity. By way of example, if we
treat G and H as dense matrices, then the cost of calculating GTHG for a
4 × 2 matrix G is 44 multiplications and 33 additions. In contrast, if we use
the actual values of G and H for the above example, then the cost is a mere
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5 multiplications and 3 additions, as shown below. Obviously, the savings will
be even greater with larger matrices.

GTH G =

[

1 ρ1 0 0
0 0 1 ρ2

]









H11 0 H13 H14

0 H22 0 0
H13 0 H33 0
H14 0 0 H44

















1 0
ρ1 0
0 1
0 ρ2









=

[

H11 + ρ2
1 H22 H13 + ρ2 H14

H13 + ρ2 H14 H33 + ρ2
2 H44

]

. (9.27)

Example 9.5 In a typical robot mechanism, the rotors of the electric motors
are much smaller than the other parts of the mechanism, and therefore account
for only a small fraction of the total mass. However, they also reach much higher
speeds than the bodies they are driving, and can therefore exert a substantial
influence on the overall dynamics of the system.

The method presented in this section is the correct way to account for the
dynamic effects of rotors, but there is also a quick-and-dirty method that is
popular in robotics. According to this method, we dispense with the rotors
and the gearboxes, and model the actuator as a fictitious electric motor that
develops ρ times the torque of the real motor, runs at 1/ρ times the speed,
and has ρ2 times the rotor inertia of the real motor, where ρ is the step-down
gear ratio. These inertias, which are scalar constants, are simply added to the
diagonal elements of H . In particular, if Irot

i is the scaled rotor inertia for the
motor that is driving joint i, then Irot

i is added to Hii. For this to work, joint
i must be a 1-DoF joint, so that Hii is a 1 × 1 matrix.

This method captures the largest inertial effects of the rotors, but it ignores
the smaller inertial effects and all of the gyroscopic effects. A clue as to why
this method works can be seen in Eq. 9.27. If the rotors are small, then H22,
H14 and H44 will be small compared with H11, H13 and H33, but ρ1 and ρ2 will
be moderately large. (Gear ratios of 100 : 1 are fairly typical.) The two rotors
will therefore have their biggest effect on the two diagonal elements, where they
get multiplied by the squares of the gear ratios.

The quick-and-dirty method also works with the articulated-body algorithm.
In this case, we modify Eq. 7.44 to read

Di = ST
i Ui + Irot

i . (9.28)

Again, joint i must be a 1-DoF joint, so that Di is a 1 × 1 matrix.

9.7 Dynamic Equivalence

It is perfectly possible for two different rigid-body systems to have the same
equation of motion. We shall describe such systems as dynamically equivalent.
An important special case occurs when the two systems differ only in their in-
ertia parameters. An immediate consequence of this kind of equivalence is that
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Figure 9.3: A two-body floating rigid-body system

the inertia parameters of a rigid-body system cannot be identified from mea-
surements of its dynamic behaviour: one must instead identify an observable
subset, which are called the base inertia parameters (Khalil and Dombre, 2002).
Another consequence, which is the topic of this section, is that the inertia pa-
rameters of a system model can be adjusted without altering its behaviour. If
the adjustments result in fewer parameters having nonzero values, then the cost
of computing the dynamics can be reduced.

Consider the rigid-body system shown in Figure 9.3. It consists of two bod-
ies, B1 and B2, having inertias of I1 and I2, respectively, which are connected
by a joint having a motion subspace of S. A spatial force f acts on B1, and a
generalized force τ acts at the joint. The equation of motion for this system is

[

I1 + XT
J I2 XJ XT

J I2 S

STI2 XJ STI2 S

] [

a1

q̈

]

+

[

Cf

Cτ

]

=

[

f

τ

]

, (9.29)

where
[

Cf

Cτ

]

=

[

v1 ×∗ I1 v1 + XT
J (I2 Ṡ q̇ + v2 ×∗ I2 v2)

ST(I2 Ṡ q̇ + v2 ×∗ I2 v2)

]

and v2 = XJv1 + Sq̇. Except for notational differences, this equation is just
an application of Eq. 9.13 to a two-body system. In formulating this equation,
we have chosen the joint’s predecessor and successor frames to serve as link
coordinate frames, so that 2X1 = XJ.

We now modify this system by adding a spatial inertia of I∆ to I1 and
subtracting I∆ from I2. If we want this modification not to alter the coefficients
of Eq. 9.29, then I∆ must meet the following conditions:3

I∆S ≡ 0 , I∆ ≡ XT
J I∆XJ and STv1×∗ I∆v1 ≡ 0 . (9.30)

These conditions must be met at every joint position, and for every v1 ∈ M
6.

It therefore follows that the conditions depend only on the joint type, and that
suitable values for I∆ can be found without knowing anything about the system
other than the joint type.

3To obtain this set of conditions, it is necessary to assume that the joint’s motion subspace,
range(S), is a constant in either B1 or B2 coordinates. This assumption does not hold for all
joint types.
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Joint type I∆

revolute

2

6

6

6

6

6

6

4

I 0 0 0 −mcz 0
0 I 0 mcz 0 0
0 0 0 0 0 0
0 mcz 0 m 0 0

−mcz 0 0 0 m 0
0 0 0 0 0 m

3

7

7

7

7

7

7

5

prismatic

2

6

6

6

6

6

6

4

Ixx Ixy Ixz 0 0 0
Ixy Iyy Iyz 0 0 0
Ixz Iyz Izz 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7

7

7

7

7

7

5

=

[

Ī 0

0 0

]

spherical

2

6

6

6

6

6

6

4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m

3

7

7

7

7

7

7

5

=

[

0 0

0 m1

]

Table 9.7: Values of I∆ that do not alter the equation of motion

Table 9.7 shows the values of I∆ that meet the conditions in Eq. 9.30 for
some joint types. Let us examine the physical interpretation of these results.
In the case of a spherical joint, I∆ is the inertia of a particle of mass m located
at the joint’s rotation centre. This result says you can add particles of masses
m and −m to B1 and B2, respectively, both located at the rotation centre, and
because these two particles always coincide, they cancel each other exactly. In
the case of a revolute joint, I∆ is the inertia of a pair of particles at different
positions on the joint axis (which is the z axis). m and cz are the total mass and
mass centre of the pair, and I depends on the distance between them. Again,
because the particles are located on the rotation axis, if we add them to B1

and add their negatives to B2 then they always coincide, and therefore always
cancel. In the case of a prismatic joint, I∆ is a disembodied pure rotational
inertia. Such inertias are translationally invariant; so, if we add I∆ to B1 and
subtract it from B2, then the two will always cancel so long as B2 never rotates
relative to B1.

Clearly, the subtraction of a sufficiently massive particle from B2 will result
in a negative mass, and the subtraction of a sufficiently large pure rotational in-
ertia will result in a negative rotational inertia. It is therefore possible for B2 to
end up with a rigid-body inertia that is not physically realizable. Nevertheless,
the equation of motion for the modified system is identical to the original.

If B1 and B2 are part of a larger rigid-body system, then the above results
still apply—replacing a two-body subsystem with a dynamically equivalent sub-
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system does not alter the equation of motion for the system as a whole.

Simplification of Rigid-Body systems

The results in Table 9.7 allow a dynamics simulator to simplify the inertia
parameters of any given rigid-body system by adding and subtracting values
of I∆ that are designed to zero as many of the inertia parameters as possible.
The procedure is as follows:

for i = NB to 1 do

I∆ = best match(jtype(i), Ii)
Ii = Ii − I∆

if λ(i) 6= 0 then

Iλ(i) = Iλ(i) + I∆

end

end

The function best match first looks in a table of I∆ formulae to find an entry
for the joint type jtype(i). If no entry is found, then it returns the value 06×6.
However, if a formula is found, then it returns the value of I∆ that maximizes
the number of zero-valued inertia parameters in the expression Ii − I∆. For
example, if joint i is spherical, then the returned value of I∆ has the same mass
as Ii, so that the mass of Ii − I∆ is zero.

The point of this procedure is that it produces a predictable pattern of
zero-valued parameters, which can be exploited by writing code for each special
case.4 Assuming that most joints are revolute, this technique can cut the cost
of the recursive Newton-Euler algorithm by about 15%, but it is less effective
on forward dynamics algorithms.

It is possible for a dynamics algorithm to fail on the modified system when
it would have succeeded on the original. For example, if an algorithm uses the
inverses of the rigid-body inertias, then it will only work if those inverses exist.
If the modifications have brought the mass of body i to zero, then its modified
inertia will be singular.

More on this topic, and related topics, can be found in Gautier and Khalil
(1990); Khalil and Kleinfinger (1987); Khalil and Dombre (2002).

Augmented Bodies

The above technique resembles a much older technique called augmented bodies.
They both involve inertia parameters, and they both have the same objective:
cost reduction. However, the augmented-body technique relies on a rewriting
of the equations of motion that collects inertia parameters into constant subex-
pressions, which can be computed in advance. These precomputed values can
be regarded as the inertia parameters of a collection of augmented bodies.

4A better strategy is to use the symbolic simplification technique described in §10.4.
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Starting with a kinematic tree, augmented body i is obtained by adding one
particle to rigid body i for each joint attached to that body. The locations of
these particles depend on the joints, but each has a mass equal to the mass
of the subtree that is connected to body i via that joint. In a variant form of
augmented body, a particle is added only for each joint in µ(i). The former
tends to be used with floating-base systems, and the latter with fixed-base
systems. More on this topic can be found in Balafoutis et al. (1988); Balafoutis
and Patel (1989, 1991); Hooker and Margulies (1965); Hooker (1970); Roberson
and Schwertassek (1988); Wittenburg (1977).





Chapter 10

Accuracy and Efficiency

In theory, the algorithms presented in this book are all exact. However, the
presence of round-off errors in the calculations ensures that the results are
rarely so. Other sources of error include the use of numerical integration, and
the differences in behaviour between a rigid-body system and the physical sys-
tem it represents. Section 10.1 examines these various sources of error, paying
particular attention to the sources of round-off error in dynamics calculations
and ways to avoid them.

If the acceleration of a rigid-body system changes greatly in response to a
tiny change in the applied forces, then it is said to be sensitive. If you want
to know the acceleration of such a system accurately, then the forces must be
known even more accurately. It turns out that many kinematic trees have this
property, and the phenomenon is examined in Section 10.2.

Section 10.3 explores the topic of efficiency. It explains how the efficiency of
a dynamics algorithm is measured; and it presents tables and graphs comparing
the efficiencies of several versions of the three main algorithms for kinematic
trees. The efficiency of the composite-rigid-body algorithm is examined in de-
tail, partly to show how an operations-count formula is obtained, and partly
because the efficiency of this particular algorithm varies greatly with the amount
of branching in the tree. This section also shows that the true asymptotic com-
plexity of the composite-rigid-body algorithm is O(nd), where d is the depth
of the connectivity tree, and that the true complexity of the so-called O(n3)
algorithm is O(nd2).

One of the disadvantages of model-based algorithms is that they have to
cater for the general case. As such, they perform many calculations that are
indeed necessary in the general case, but are frequently not necessary for some
particular system model. One solution to this problem is the automatic gener-
ation of customized dynamics routines—stripped-down versions of the general
algorithm that perform only those calculations that are necessary for a specific
given system model. Section 10.4 presents a brief description of a technique for
doing this, which is called symbolic simplification.
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10.1 Sources of Error

Dynamics calculations are subject to three kinds of error: round-off error, which
is the result of using finite-precision floating-point arithmetic; truncation error,
which is the result of approximating an infinite series by a finite number of
terms; and modelling error, which refers to the discrepancy between the be-
haviour of the mathematical model and the behaviour of the physical system
it represents. Each kind of error is distinct from the others, so let us examine
them separately.

Round-off Error

Round-off errors occur during most floating-point operations, but they are usu-
ally tiny. Large errors can arise if two large-magnitude numbers are added or
subtracted, producing a small-magnitude result, and especially if this happens
several times during the course of a calculation. The simplest defence against
round-off error is to use double-precision floating-point arithmetic for all calcu-
lations, but this will not solve every problem.

Large round-off errors can arise during dynamics calculations for a variety
of reasons. Some of the more likely ones are:

1. using a far-away coordinate system;

2. large velocities;

3. large inertia ratios; and

4. nearly singular loop-closure constraints.

A coordinate system is far away from a rigid body if the distance between
the origin and the centre of mass is many times the body’s radius of gyration.
Ideally, this distance should be no more than about one or two radii of gyration.
This effect is the reason why dynamics algorithms are more accurate when
they are implemented in body coordinates rather than absolute coordinates.
The large-velocity problem arises in systems with large mean velocities, like
spacecraft, in which the relative velocities of the component parts are small
compared with their absolute velocities. This problem can be solved by using
an inertial reference frame with a velocity close to the mean linear velocity of
the system. Large differences in inertia arise from relatively small differences
in scale. For example, if two solid spheres are made of the same substance,
and one is 10 times larger than the other, then the larger sphere will have 1000
times the mass of the smaller one, and 100,000 times the rotational inertia.

Let us examine in more detail how some of these round-off errors arise.
Figure 10.1 shows a planar rigid body having a centre of mass at the point C,

which is located relative to the origin by the vector c =
−−→
OC = [cx cy]

T. We shall
use planar vectors in this example, to keep the matrices small, but the round-off
problems are essentially the same for planar and spatial vectors. This body has
unit mass, and it has unit rotational inertia about C, so its radius of gyration
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Figure 10.1: Calculating the acceleration of a planar rigid body

is 1. Expressed in C coordinates, the velocity of this body is vC = [1 0 0]T,
and it is subject to an applied force of fC = [1 −1 1]T. The former is a unit
rotation about C, and the latter is a pure force having a magnitude of

√
2 and

a line of action passing through the point (0.5, 0.5) relative to C. Expressed in
O coordinates, the equation of motion for this body is

IO aO = fO − vO ×∗ IO vO , (10.1)

where

vO =





1
cy

−cx



 , vO×∗ =





0 cx cy

0 0 −1
0 1 0



 , fO =





1 + cx + cy

−1
1





and

IO =





1 + c2
x + c2

y −cy cx

−cy 1 0
cx 0 1



 .

The exact solution to this equation is

aO =





1
cy − 1
1 − cx



 .

Suppose we set cx = 100 and cy = 10, and ask the computer to evaluate aO

using IEEE double-precision floating-point arithmetic, which is accurate to one
part in 1016. The computer will do this by solving the linear equation





10101 −10 100
−10 1 0
100 0 1



aO =





111
−1
1



 ,

and the calculated value will differ from the exact value by about one part in
1012. Thus, four significant figures of accuracy have been lost. The reason
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Figure 10.2: Round-off error in the value of aO, measured at C, versus |c|

for this loss is that the coefficient matrix is highly ill-conditioned, having a
condition number of 1.02 × 108. To give an idea of how the round-off error
varies with |c|, Figure 10.2 plots ‖aC − CXOaO‖∞ against |c|, where aC is the
exact value and aO the computed value. It can be seen that the round-off error
is approximately constant when |c| < 1 (i.e., when |c| is less than the radius of
gyration), and grows approximately in proportion to |c|2 when |c| > 1.

In this example, the linear velocity of the body’s centre of mass was zero
(vCx = vCy = 0). If instead the body were to have a large linear velocity, then
there could be substantial round-off error in calculating the right-hand side of
Eq. 10.1, even if |c| is relatively small.

Round-off Error in Dynamics Algorithms

Round-off error is known to increase with body count, and to increase more
quickly with some algorithms than with others. The three main algorithms for
kinematic trees are known to remain accurate, even when there are thousands of
bodies in the system; and it is also known that the articulated-body algorithm
is more accurate than the composite-rigid-body algorithm. However, the round-
off behaviour of many other algorithms is not known. Two relevant articles on
this subject are Ascher et al. (1997) and Featherstone (1999b).

Truncation Error

Truncation errors are the result of using finite approximations to infinite series,
continuous curves, continuous functions and the like. In rigid-body dynamics,
the main source of truncation error is the numerical integration process, which
is only an approximation to exact mathematical integration. By its nature,
the management of truncation error involves a compromise between efficiency
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and accuracy: a better approximation will reduce the error, but will be more
expensive to calculate. The management of integration error involves making
an appropriate choice of integration method and time step.

If one plots the acceleration variables of a simulated rigid-body system
against time, then it will often be the case that the resulting graph contains
large spikes: brief periods when the accelerations are much higher than at other
times. Under these circumstances, it may be beneficial to use an integration
method that automatically adapts its step size to maintain a prescribed accu-
racy. Such methods take big steps when not much is happening, and tiny steps
when the accelerations are high. This strategy can lead to an improvement in
the overall efficiency of a simulation run by reducing the total number of times
that the dynamics has to be calculated.

Modelling Error

Modelling errors are those that cause the behaviour of the mathematical model
to differ from the behaviour of the physical system. If the mathematical model
is a rigid-body system, then the main sources of modelling error are:

• the rigid-body assumption,

• the ideal-joint assumption (exact kinematic constraints),

• unmodelled dynamics, and

• inaccuracies in model parameters.

In reality, there is no such thing as a truly rigid body, and real joints suffer
from imperfections such as friction, compliance and play. Unmodelled dynam-
ics refers to aspects of the physical system that have been ignored in formulating
the model. For example, one might choose to ignore the dynamics of the chain
in a chain-and-sprocket drive, or one might be forced, by lack of data, to ig-
nore temperature-related or position-dependent variations in the friction at an
important joint bearing. Most model parameters refer either to geometry or to
inertia. The geometric parameters of a mechanical system are usually known
to a reasonable accuracy, but the inertia parameters may be less accurate, or
even unknown. If the system can be dismantled, then one can measure the
inertias of the individual parts; otherwise, one can use parameter-identification
techniques, such as those described in Khalil and Dombre (2002).

10.2 The Sensitivity Problem

Some rigid-body systems can be extremely sensitive to small changes in applied
forces, or small changes in model parameters. Sensitivity to geometric param-
eters is only to be expected in closed-loop systems having special geometries,
or general geometries that are close to being special. However, the problem is
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75

x

y

Figure 10.3: A 6-link planar mechanism in a zigzag configuration

broader than this, and, in particular, it is a problem that affects kinematic trees
as well as closed-loop systems.

To illustrate the problem, consider the 6-link planar robot mechanism shown
in Figure 10.3. Each link has unit length, unit mass, a centre of mass half way
along its length, and a rotational inertia about its centre of mass of 1/12. The
joints are revolute, and the joint angles alternate between +75◦ and −75◦, as
shown. The robot is initially at rest, and there are no forces acting on it other
than the joint forces. The equation of motion is therefore

τ = Hq̈ .

Suppose we wish to impart a desired acceleration of q̈d = [1 1 1 1 1 1]T to
this robot. The exact force required to do this is

τd = Hq̈d =

















126.4936 · · ·
97.4663 · · ·
69.9762 · · ·
43.7998 · · ·
21.9371 · · ·
6.1646 · · ·

















.

If we apply exactly this force to the robot, then we will get exactly the desired
acceleration. Now suppose that the robot’s actuators are slightly imperfect,
such that the forces they actually apply are equal to the commanded forces
rounded to three significant figures. The force that will actually be applied to
the robot is then

τa =

















126
97.5
70.0
43.8
21.9
6.16

















,
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and the robot’s response to this force will be

q̈a = H−1τa =

















0.6952
1.3654
1.3808
0.5894
0.9057
1.0705

















.

Observe that some of the accelerations are as much as 40% off their correct
values, despite the applied forces all being accurate to better than 0.5%. In
effect, the mechanism has amplified the error by more than a factor of 80.

This problem has been studied in Featherstone (2004), where the condition
number of H is used as an indication of the underlying sensitivity of the mech-
anism. This paper shows that the condition number can grow in proportion
to the fourth power of the number of bodies, and that the worst-case condi-
tion number for a chain of identical links, like the mechanism in Figure 10.3,
is approximately 4N4

B. The worst-case condition number for the 6-link robot
is therefore approximately 5184, although the actual condition number of H

in the above example is 725; and the worst case for a 10-link robot is 40,000.
Numbers like this indicate that one should be cautious of simulating long chains
of rigid bodies, and skeptical of the accuracy of the results.

This paper also investigates branched kinematic trees, and it shows that
sensitivity increases with the depth of the tree, other things being kept equal.
Thus, a branched kinematic tree will usually have a lower condition number than
an unbranched tree made from the same set of bodies. The obvious implication
is that one should choose a minimum-depth spanning tree for a closed-loop
mechanism.

10.3 Efficiency

To compare the efficiencies of different algorithms, it is necessary to have a
common measure of efficiency. In the case of dynamics algorithms, the most
widely used measure is the floating-point operations count. This count is usually
broken down into two subtotals: the number of multiplications and divisions,
which are collectively referred to as multiplications, and the number of additions
and subtractions, which are collectively referred to as additions. Furthermore,
the subtotals are expressed as functions of a parameter that measures some
aspect of the size of the rigid-body system, such as the number of bodies or the
number of joint variables.

Some examples of operation-count formulae are shown in Table 10.1. The
symbols m and a stand for multiplication and addition, respectively, and n is
the number of joint variables. To obtain figures like this, it is necessary to agree
on a standard set of rigid-body systems, one for each value of n, so that every
algorithm is applied to the same set of systems. The most widely used standard
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Algorithm Cost Source

RNEA (93n − 108)m + (81n − 100)a 3
RNEA (93n − 69)m + (81n− 66)a 1, 3
RNEA (130n − 68)m + (101n− 56)a 6
RNEA (150n − 48)m + (131n− 48)a 8
CRBA (10n2 + 22n − 32)m + (6n2 + 37n− 43)a 7, 14
CRBA (10n2 + 31n − 41)m + (6n2 + 40n− 46)a 6
CRBA (10n2 + 41n − 51)m + (6n2 + 52n− 58)a 9, 10
CRBA (11n2 + 11n − 42)m + ( 11

2 n2 + 65
2 n − 54)a 2, 4

CRBA (12n2 + 56n − 27)m + (7n2 + 67n− 53)a 12
F&S ( 1

6n3 + 3
2n2 − 2

3n)m + ( 1
6n3 + n2 − 7

6n)a 13
ABA (224n − 259)m + (205n− 248)a 11
ABA (250n − 222)m + (220n− 198)a 5
ABA (300n − 267)m + (279n− 259)a 6

Abbreviations
RNEA recursive Newton-Euler algorithm
CRBA composite-rigid-body algorithm
F&S factorize and solve equation of motion Hq̈ = τ − C

ABA articulated-body algorithm

Sources
1 Balafoutis et al. (1988), Algorithm 3 in Table II
2 Balafoutis and Patel (1989), Algorithm I in Table II
3 Balafoutis and Patel (1991), Algorithm 5.7 in Tables 5.1 and 5.2
4 Balafoutis and Patel (1991), Algorithm 6.2 in Table 6.2
5 Brandl et al. (1988)
6 Featherstone (1987), Table 8-6
7 Featherstone (2005), Eq. 20 with D0a = n − 1, D1a = (n2 − n)/2

and D0b = D1b = 0
8 Hollerbach (1980), Newton-Euler method in Table I
9 Lilly and Orin (1991), method IV in Table 7

10 Lilly (1993), method IV in Table 3.7
11 McMillan et al. (1995), Table II (fixed base)
12 Walker and Orin (1982), method 3
13 Table 6.6 with Eq. 6.28
14 Eq. 10.3

Table 10.1: Operation counts for several published dynamics algorithms
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Figure 10.4: Operation counts versus n for various dynamics algorithms

is the set of unbranched kinematic chains in which all the joints are revolute,
and all the bodies have general inertia and geometric parameters. For easy
reference, let us call this set GU (general unbranched), and call its members
GU(1), GU(2), and so on. GU(n) is then the unbranched chain with n joint
variables, and therefore also n joints and n moving bodies (i.e., NJ = NB = n).

Given that the joints in GU are revolute, it is understood that one sine and
one cosine calculation are required for each joint. As these calculations are the
same for all algorithms that need them, they are omitted from the operation
counts. The algorithms that need them are the recursive Newton-Euler and
articulated-body algorithms.

To give a visual impression of the relative efficiencies of the algorithms, Fig-
ure 10.4 shows the total operation count for the best version of each algorithm,
plotted against n. It also plots the three component parts of the O(n3) algo-
rithm, so that their relative contributions can be gauged. Strictly speaking, the
curves in these graphs are only correct if the cost of performing an addition
is the same as the cost of performing a multiplication. However, in practice
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it makes little difference whether one costs an addition as one multiplication,
0.5 multiplications or 0.25 multiplications: apart from the vertical scales, the
graphs look almost the same.

According to these graphs, the O(n3) algorithm is slightly faster than the
articulated-body algorithm for n ≤ 8, and has risen to about 1.6 times the
cost of the articulated-body algorithm by the time n = 18. The second graph
shows that the cost of the composite-rigid-body algorithm (which is O(n2)) is
the dominant term in the O(n3) algorithm from n = 8 until well past n = 30.
(The F&S curve crosses the CRBA curve at approximately n = 45.) It also
shows that the cost of factorizing and solving the equation of motion is actually
the smallest term when n ≤ 18. The contribution of the n3 component to the
total cost is therefore relatively insignificant at small values of n.

10.3.1 Optimization

The figures quoted in Table 10.1 are the result of extensive optimizations, which
are aimed at showing each algorithm in its best possible light. The most im-
portant of these optimizations are as follows.1

1. Use Denavit-Hartenberg coordinate frames. (See Figure 4.8.) This en-
ables optimizations 2 and 3.

2. Exploit the fact that Si = [0 0 1 0 0 0]T in link coordinates.

3. Implement link-to-link coordinate transformations as a sequence of two
axial-screw transforms.

An axial-screw transform is a combination of a rotation about and translation
along a single coordinate axis. Such transforms are particularly cheap to apply,
and formulae and costings are presented in Section A.4. A transformation from
one Denavit-Hartenberg coordinate frame to another can be accomplished by
two axial-screw transforms: one about the x axis, and one about the z axis.
The former is a constant, while the latter includes the joint variable.

To see how these optimizations are applied, let us calculate the operation-
count formula for the composite-rigid-body algorithm. Table 10.2 reproduces
the pseudocode of this algorithm (from Table 6.2), together with some annota-
tions. The symbols ra, rx and vx represent the cost of adding two rigid-body
inertias, transforming a rigid-body inertia and transforming a vector, respec-
tively. We shall work out these costs in a moment.

The first step is to identify which lines contain floating-point calculations.
Assignment and transpose operations do not count as calculations, so there are
no floating-point calculations on Lines 1, 3 or 16. Using optimization 2, the

1One more optimization that ought to be mentioned, although it does not apply to the set
GU , is to use planar vectors for calculating the dynamics of planar rigid-body systems. This
is particularly beneficial for the articulated-body algorithm, as the number of independent
parameters in an articulated-body inertia shrinks from 21 to 6.
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Algorithm:

1 H = 0

2 for i = 1 to NB do

3 Ic
i = Ii

4 end

5 for i = NB to 1 do

6 if λ(i) 6= 0 then

7 Ic
λ(i) = Ic

λ(i) + λ(i)X∗

i Ic
i

iXλ(i)

8 end

9 F = Ic
i Si

10 Hii = ST
i F

11 j = i
12 while λ(j) 6= 0 do

13 F = λ(j)X∗

j F

14 j = λ(j)

15 Hij = F TSj

16 Hji = HT
ij

17 end

18 end

Annotations:

loop 1

loop 2

operations: ra + rx

F = column 3 of Ic
i

Hii = element 3 of F

loop 3

operations: vx

Hij = element 3 of F

Table 10.2: Calculations performed by the composite-rigid-body algorithm

multiplication Ic
i Si on line 9 simplifies to extracting column 3 from Ic

i , which
does not require any calculation. Likewise, the multiplications ST

i F and F TSj

on lines 10 and 15 both simplify to extracting element 3 from F , which does
not require any calculation. Thus, there are only two lines where floating-point
calculations do occur: line 7, which performs the operations ra and rx, and line
13, which performs the operation vx.

If this algorithm is applied to the mechanism GU(n), then the body of loop
2 will be executed n times. The condition λ(i) 6= 0 will be true for every value
of i except i = 1, so line 7 will be executed a total of n − 1 times. On each
iteration of loop 2, the body of loop 3 will be executed i − 1 times (because
λ(j) = j − 1); so line 13 will be executed a total of

∑n
i=1(i − 1) times, which

works out as n(n − 1)/2 times. The cost formula for the composite-rigid-body
algorithm is therefore

cost = (n − 1)(ra + rx) +
n(n − 1)

2
vx . (10.2)

The next step is to express ra, rx and vx in terms of m and a. If rigid-body
inertias are stored in compact form, as explained in Section A.3, then the cost
of summing two inertias is ten floating-point additions; so ra = 10a. To obtain
the lowest operation counts for rx and vx, we use optimizations 1 and 3. From
the figures in Section A.4, the cost of a single axial-screw transform of a spatial
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vector is 10m+6a, but vx requires two, so vx = 20m+12a. The basic cost of an
axial-screw transform of a rigid-body inertia is 16m+15a, to which 2m+3a must
be added each time the angle changes. However, we can shave 1m off this figure
by precomputing the products of the masses with the distance parameters of
the screw transforms, since they are all constants. This results in a cost figure
of 2(15m + 15a) + 2m + 3a = 32m + 33a for rx. Substituting these costs into
Eq. 10.2 gives

cost = (10n2 + 22n − 32)m + (6n2 + 37n− 43)a . (10.3)

This formula is as far as we will take the optimization process, but there are
further improvements in efficiency that could be made. For example, modest
reductions in the costs of both ra and rx can be achieved by modifying the
inertia parameters as described in Section 9.7. Another cost saving can be
obtained by observing that only element 3 of F is needed to calculate Hij , so
the last execution of line 13 in each invocation of loop 3 could be replaced by a
simpler calculation that only calculates element 3 of the transformed vector.

Even this is not yet the last word in efficiency. However, it is not really
worthwhile to implement such fiddly optimizations manually. A better strategy
is to get the computer to do the optimization for you, and that is the subject
of Section 10.4.

10.3.2 Branches

One of the problems with using GU as the benchmark set of rigid-body systems
is that it does not contain any branched trees, and therefore does not allow the
effect of branches to be seen. It turns out that branches have very little effect
on the recursive Newton-Euler and articulated-body algorithms, but they can
greatly reduce the cost of the composite-rigid-body algorithm, as well as the
cost of factorizing and solving the equation of motion. In both cases, the cost
savings are caused by branch-induced sparsity in the joint-space inertia matrix.
(See §6.4.)

It therefore follows that the cost formulae in Table 10.1 and the curves in
Figure 10.4 present the O(n3) algorithm in an unduly pessimistic light, by stat-
ing only its worst-case performance. Indeed, even the name ‘O(n3) algorithm’
is misleading, since the true complexity of this algorithm is O(nd2), where d is
the depth of the connectivity tree. If there are no branches, then d = n; but if
there are branches, then d can be much smaller than n; and if d is subject to a
fixed upper limit, then the complexity of this algorithm is only O(n).

Let us recalculate the cost formula for the composite-rigid-body algorithm,
assuming that it is being applied to a general kinematic tree with n revolute
joints, and that the joint axes satisfy Si = [0 0 1 0 0 0]T in link coordinates.
Referring back to Table 10.2, it is still the case that lines 7 and 13 are the only
two that perform floating-point calculations, but the number of times these
lines get executed has changed. In the case of line 7, the expression λ(i) 6= 0
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is false for every body i that is a child of body 0; that is, for every i satisfying
i ∈ µ(0). Line 7 is therefore executed n − |µ(0)| times. In the case of line 13,
loop 3 iterates over every ancestor of body i, starting with body i itself, and
terminating on the ancestor nearest the root (which is the ancestor satisfying
j ∈ µ(0)). The body of loop 3 is therefore executed |κ(i)| − 1 times on each
iteration of loop 2; and so line 13 is executed a total of

∑n
i=1(|κ(i)| − 1) times.

Let us define the quantities D0 and D1 as follows:

D0 = n − |µ(0)| (10.4)

and

D1 =

n
∑

i=1

(|κ(i)| − 1) . (10.5)

The cost of the composite-rigid-body algorithm can then be expressed as

cost = D0(ra + rx) + D1vx . (10.6)

Furthermore, as |µ(0)| is bounded by 1 ≤ |µ(0)| ≤ n, and |κ(i)| by 1 ≤ |κ(i)| ≤ i,
it follows that D0 and D1 are bounded by

0 ≤ D0 ≤ n − 1 (10.7)

and
0 ≤ D1 ≤ n(n − 1)/2 . (10.8)

Both quantities reach their lower limit in a system where every body is con-
nected directly to the base. In such a system, H is diagonal and constant, and
the cost of calculating it is zero. At the other extreme, both quantities reach
their upper limit in an unbranched kinematic tree. In this case, Eq. 10.6 is
identical to Eq. 10.2. If d is the depth of the connectivity tree, then |κ(i)| is
also bounded by |κ(i)| ≤ d, which implies

0 ≤ D1 ≤ n(d − 1) . (10.9)

Thus, the true complexity of the composite-rigid-body algorithm is actually
O(nd), and the expression O(n2) only applies in the worst case. If we combine
this with the O(nd2) complexity of the factorization algorithms in Section 6.5,
then the complete forward-dynamics algorithm has a complexity of O(nd2).

Let us now express the cost formula in Eq. 10.6 in terms of m and a. At
this point, a new complication arises: only one child per nonterminal body
can benefit from the cost savings afforded by Denavit-Hartenberg coordinate
frames. We therefore rewrite Eq. 10.6 as follows:

cost = D0ra + Ddh
0 rx

dh + Dg
0rx

g + Ddh
1 vx

dh + Dg
1vx

g , (10.10)

where the superscripts dh and g refer to Denavit-Hartenberg and general coor-
dinate transforms, respectively. So rx

dh is the cost of calculating λ(i)X∗

i Ic
i

iXλ(i)
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when iXλ(i) is a Denavit-Hartenberg transform (two axial screws); vx
g is the cost

of calculating λ(j)X∗

j F when λ(j)X∗

j is a general coordinate transform; Dg
0 is

the number of times that rx
g is performed; and so on. Note that Ddh

0 +Dg
0 = D0

and Ddh
1 + Dg

1 = D1.
To obtain expressions for the various D quantities, we introduce two new

sets: πdh and πg . πdh is the set of all bodies i such that λ(i) 6= 0 and iXλ(i)

is a Denavit-Hartenberg transform; and πg is the set of all bodies i such that
λ(i) 6= 0 and iXλ(i) is a general transform. Thus, πdh ∪ πg is the set of all
bodies that are not children of the root node (i.e., not elements of µ(0)), and
|πdh ∪ πg | = n − |µ(0)| = D0. Given these sets, we can define the D quantities
as follows:

Ddh
0 = |πdh| , Ddh

1 =
∑

i∈πdh

|ν(i)| ,

Dg
0 = |πg | , Dg

1 =
∑

i∈πg

|ν(i)| .
(10.11)

The expressions for Ddh
1 and Dg

1 are obtained as follows. When we first evalu-
ated D1, we asked the question ‘How many times is loop 3 executed?’ Another
approach would be to ask how many times λ(j)X∗

j is used, for each possible
value of j. The answer to this question is that if λ(j) = 0 then this transform
is never used; otherwise, it is used once for each body in ν(j), which means it
is used |ν(j)| times. The expressions in Eq. 10.11 are simply the sums of these
usage counts.

The final step is to express ra, rx
dh, etc., in terms of m and a. From Sections

A.3 and A.4, these expressions are: ra = 10a, rx
dh = 32m+33a, rx

g = 47m+48a

(three axial screws), vx
dh = 20m+12a and vx

g = 24m+18a. Substituting these
expressions into Eq. 10.10 gives

cost = Ddh
0 (32m + 43a) + Dg

0(47m + 58a) +

Ddh
1 (20m + 12a) + Dg

1(24m + 18a) . (10.12)

This is the cost of the composite-rigid-body algorithm when it is applied to a
general kinematic tree in which all the joints are revolute. On an unbranched
tree, we have Ddh

0 = n − 1, Ddh
1 = n(n − 1)/2 and Dg

0 = Dg
1 = 0, which makes

Eq. 10.12 the same as Eq. 10.3. More on this subject, including a cost formula
for floating-base kinematic trees, can be found in Featherstone (2005).

To give an idea of how big a difference branches can make, Figure 10.5
reproduces the cost curves from Figure 10.4 for the articulated-body and O(n3)
algorithms, the latter now labelled O(nd2), and it adds one new curve: the
cost of applying the O(nd2) algorithm to a binary tree. This curve is almost
identical to the curve for the articulated-body algorithm, and very different
from the curve for the O(nd2) algorithm applied to an unbranched chain. The
reason for this is that d is O(log(n)) on a binary tree, so the complexity of the
O(nd2) algorithm is only O(n log(n)2) on the binary tree, which is very close
to being O(n).
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Figure 10.5: Effect of branches on the cost of the O(nd2) algorithm

10.4 Symbolic Simplification

The advantage of model-based dynamics software is that each algorithm can be
implemented once, and the resulting code will work on any rigid-body system
that is supplied to it as an argument. The disadvantage is that the code must
cater for every possibility that is allowed by the system model, and cannot
take short cuts that depend on prior knowledge of the system. In particular,
many of the parameters in a typical system will be zero, and the model-based
software will spend much time calculating terms that are bound to evaluate to
zero because one of their factors is a zero-valued model parameter.

The alternative is to write custom code that is designed to work only on a
single rigid-body system, or a narrow class of similar rigid-body systems. Such
code can exploit prior knowledge of joint types, geometric and inertia parameter
values, and so on, with the end result that fewer arithmetic operations are
required to perform the calculation, as compared with a model-based coding of
the same algorithm.

The manual construction of custom code is not practical, except for the
simplest of rigid-body systems; but the automatic construction of such code is
entirely practical, and the procedure for doing so is called symbolic simplifica-

tion. Figure 10.6 illustrates the process. In the first stage, an algorithm and a
system model are fed to a symbolic executer. This is a program that applies
the algorithm to the data, but, instead of actually performing the numerical
calculations, it merely records them, and outputs the record as a data file. The
contents of this file are a list of assignment statements detailing the floating-
point calculations that the given algorithm would have performed on the given
model if it had been executed for real. This file also identifies the input and
output variables.

In the second stage, the assignment-statement file is passed to a symbolic
simplifier program. This program reads the file, applies a few basic simplifica-
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Figure 10.6: The symbolic simplification process

tion rules, and outputs the result in the form of computer source code expressed
in a suitable programming language. The most important simplifications are
as follows:

• Remove any assignment statement that calculates a quantity that is never
used. (Being output counts as being used.)

• Remove assignment statements of the form a = b, where a is not an
output variable, and b is either a constant or a variable, and replace all
subsequent instances of a with b.

• Perform some basic algebraic simplifications, such as: x·0 → 0, x·1 → x,
x + 0 → x, and so on.

• Evaluate constant expressions.

These rules must be applied exhaustively, as the application of one rule can
create new opportunities for the application of another. They must also be
cheap, as there can easily be tens of thousands of assignments in the list.

Table 10.3 presents an example of how the process works. In this example,
v is an input variable, τout is an output variable, and I and s are quantities
defined in the system model. The algorithm specifies how to calculate τout

from v. If we were to implement this algorithm directly, then it would require
one 3 × 3 × 1 matrix multiplication, one 3D vector cross product and one 3D
vector dot product. This adds up to a total of 29 floating-point arithmetic
operations, which can be seen in the assignment-statement file. The symbolic
executer deals only with scalars, so it expands vector operations into their
scalar equivalents. It also processes only one vector operation at a time, so it
introduces temporary variables as required. Apart from that, the only other
thing it does is to substitute model parameters with their actual values.

Using only the simplifications listed above, the simplifier is able to cut the
total operations count from 29 down to 5. If the simplifier had used a more
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calculation specified
in the algorithm

p = v × I v

τout = p · s

data supplied in the
model

I =





1.5 0 0
0 1.6 0
0 0 1.7



 , s =





0
0
1





contents of the
assignment-statement
file

tmp001 = 1.5 * v(1) + 0 * v(2) + 0 * v(3)

tmp002 = 0 * v(1) + 1.6 * v(2) + 0 * v(3)

tmp003 = 0 * v(1) + 0 * v(2) + 1.7 * v(3)

p(1) = v(2) * tmp003 - v(3) * tmp002

p(2) = v(3) * tmp001 - v(1) * tmp003

p(3) = v(1) * tmp002 - v(2) * tmp001

tau_out = p(1) * 0 + p(2) * 0 + p(3) * 1

contents of the
source-code file

tmp001 = 1.5 * v(1)

tmp002 = 1.6 * v(2)

p(3) = v(1) * tmp002 - v(2) * tmp001

tau_out = p(3)

Table 10.3: Symbolic simplification example

complex and sophisticated set of rules, then it might have found the optimal
solution, which is τout = 0.1v1v2, but the process would have required much
more CPU time. Even so, the simple rule set is enough to find 90% of the
possible cost savings. In this example, the simplifier cut the cost by almost a
factor of 6. In practice, this factor is highly sensitive to the number of zeros in
the system model. Factors as high as 10 have been reported in the literature
(Wittenburg and Wolz, 1985); but factors close to 1 are also possible.

Several variations are possible on the above scheme. For example, a set of
predefined algorithms can be built into the symbolic executer, so that the user
only has to supply the system model. This makes the software easier to use, and
easier to implement, but it removes the user’s freedom to supply an algorithm of
his own. Another variation is that the symbolic executer and simplifier could be
two parts of the same program, rather than two separate programs. In this case,
the assignment-statement file would not exist, although an equivalent internal
data structure would still be required. Another possibility is to allow the model
to define only some of the parameter values. The undefined parameters would
then be treated as unknown quantities to be supplied at run time. This feature
allows the creation of custom code that caters for a set of rigid-body systems,
each differing from the others only in the values of specific parameters.

One potential disadvantage of symbolic simplification is that it reduces vec-
tor operations to scalar operations. On a computer with vector-arithmetic hard-
ware, the resulting code may make poor use of the available processing power,



212 CHAPTER 10. ACCURACY AND EFFICIENCY

and could end up slower than the original vector-oriented code. Another pos-
sible disadvantage is that the size of the customized code grows linearly with
the operations count (because it is just a list of assignment statements). For
a sufficiently complicated rigid-body system, the custom code will be too large
to fit in the computer’s instruction cache. When this happens, the computer is
forced to fetch instructions from main memory, which is a much slower process.
The net effect is that execution speed goes down because the CPU is repeatedly
having to wait for the next batch of instructions.

Several programs have been written that implement this technique, or some-
thing similar, and two have become commercially available: SD/FAST and
Autolev.2 More on the subject of automatic generation and simplification of
dynamics equations can be found in Murray and Neuman (1984); Neuman and
Murray (1987); Wittenburg and Wolz (1985).

2At the time of writing, further information on these two programs could be found at
http://www.autolev.com and http://www.sdfast.com.



Chapter 11

Contact and Impact

When two rigid bodies come into contact, they become subject to a contact

constraint which says that the two bodies are not allowed to penetrate. If
φ is a measure of the signed distance between them, meaning that φ < 0 if
they overlap, then the contact constraint is given by the inequality φ ≥ 0.
The forces that impose this constraint are similarly one-sided: they can act to
prevent penetration, but not to prevent separation—they can repel, but not
attract. If two bodies meet with velocities that are not consistent with the
contact constraint between them, then an impulse is generated that causes a
step change in their velocities. We call this event an impact.

The first four sections in this chapter develop the equations of motion for
rigid-body systems containing point contacts. Then Section 11.5 examines ways
of solving these equations, and Section 11.6 looks at some of the geometric
aspects of the problem, including how to represent line and surface contacts
in terms of point contacts. Section 11.7 develops the impulsive equations of
motion for rigid-body systems, and the equations of impact between two bodies.
Finally, Section 11.8 presents the alternative to rigid-body contact and impact
dynamics, which is to incorporate compliance into the contacting surfaces.

11.1 Single Point Contact

Consider the rigid-body system shown in Figure 11.1. It contains a single rigid
body, B, which is making contact with a fixed surface at a single point, C. The
body has a velocity of v and an acceleration of a; and it is subject to both an
applied force of f and a contact force of fc. The contact is characterized by a
contact normal vector, n ∈ F

6, which is a unit force acting along the line of the
contact normal. We define n to point out of the surface so that positive scalar
multiples of n will repel the body from the surface. The contact is assumed to
be frictionless; and the body is assumed to be subject only to finite forces (i.e.,
no impulses) during and immediately before and after the current instant. The
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Figure 11.1: A rigid body making contact with a fixed surface at a single point

two unknowns in this system are fc and a, and the problem is to find them.
Let C ′ denote the point on the body’s surface that coincides with C at the

current instant. The fixed surface exerts a constraint force of fc on the body,
which acts to prevent C ′ from penetrating into the surface. As the contact is
frictionless, this force must act along the contact normal, and must therefore be
a scalar multiple of n. We therefore introduce a new scalar variable, λ, which
is the unknown contact force magnitude. Thus,

fc = n λ . (11.1)

As fc can act only to repel the body, λ must satisfy the constraint λ ≥ 0.
We now introduce a second scalar variable, ζ, to denote the contact separa-

tion velocity, which is defined as the normal component of the linear velocity
of C ′. It is given by the expression

ζ = n · v . (11.2)

The correctness of this equation can be verified by placing a coordinate frame
with its origin at C and its z axis along the normal: the Plücker coordinates of
n will then be [0 0 0 0 0 1]T, so n · v = vCz, which is the z coordinate of the
linear velocity of C ′.

It can be shown that ζ = 0 at the current instant. This implies that the
given values of n and v must satisfy n · v = 0. The argument proceeds as
follows: if the body is subject only to finite forces, then its acceleration must
be finite; so, if ζ < 0 at the current instant, then the body will penetrate the
surface in the immediate future; and if ζ > 0 then the body has penetrated the
surface in the immediate past; but penetration is not allowed at any time, so
ζ = 0. A corollary to this argument is that ζ 6= 0 implies an impulse.

We are also interested in the contact separation acceleration, which is the
derivative of ζ. This quantity is given by

ζ̇ =
d

dt
(n · v) = n · a + ṅ · v , (11.3)

and its value at the current instant is unknown. The term ṅ · v (or the vector
ṅ) is assumed to be known, since it is a function of the position and velocity
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of B and the shapes of the contacting surfaces. Having established that ζ = 0,
it can be seen that ζ̇ cannot be negative, since that would lead to penetration,
so it must satisfy the constraint ζ̇ ≥ 0.

The exact behaviour of the contact constraint can now be stated as follows:
either the contact breaks at the current instant, or it persists. If it breaks,
then the separation acceleration must be strictly positive, and the contact force
must be zero (because contact is being lost). If it persists, then the separation
acceleration must be zero. To summarize, we have

ζ̇ > 0 and λ = 0 if the contact breaks, and

ζ̇ = 0 and λ ≥ 0 if the contact persists.

This same behaviour is described succinctly by the constraint equation

ζ̇ ≥ 0 , λ ≥ 0 , ζ̇ λ = 0 . (11.4)

The next step is to express ζ̇ as a function of λ. This is where the dynamics
of the body come into play. The equation of motion for B is

Ia + v ×∗Iv = f + nλ , (11.5)

where f accounts for every force acting on the body other than the contact
force. Expressing a as a function of λ, we have

a = I−1(nλ + f − v ×∗Iv) . (11.6)

Substituting this expression into Eq. 11.3 gives

ζ̇ = n · I−1(nλ + f − v ×∗Iv) + ṅ · v

= Mλ + d , (11.7)

where
M = n · I−1n (11.8)

and
d = n · I−1(f − v ×∗Iv) + ṅ · v . (11.9)

Equations 11.4 and 11.7 can now be solved by inspection for ζ̇ and λ, the
solution being

ζ̇ = d and λ = 0 if d ≥ 0

ζ̇ = 0 and λ = −d/M if d < 0 .
(11.10)

(Note that M is strictly positive because I is positive definite.) Having solved
for λ, the values of fc and a follow from Eqs. 11.1 and 11.6, and the problem is
solved. Observe that d is a linear function of f , but λ is only a piecewise-linear
function of d. Thus, the acceleration of B is not a linear function of the applied
force, but only a piecewise-linear function. In this respect, contact dynamics
differs fundamentally from the dynamics of systems with equality constraints.
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Figure 11.2: A rigid body making multiple point contacts with a fixed surface

11.2 Multiple Point Contacts

We now extend the analysis in Section 11.1 to the case of a single rigid body
making multiple frictionless point contacts with a fixed surface. An example
of such a system is shown in Figure 11.2. Let there be nc contacts in total,
numbered from 1 to nc; and let contact i be characterized by a contact point,
Ci, and a contact normal vector, ni, as defined in Section 11.1. We also define
C ′

i to be the body-fixed point that coincides with Ci at the current instant.
The fixed surface can exert a constraint force on the body through each

contact. The force exerted through contact i is niλi, where λi is the unknown
contact force magnitude, and this force acts to prevent C ′

i from penetrating
into the surface. As the contact force can act only to repel C ′

i , it must be a
positive multiple of ni; so λi must satisfy the constraint λi ≥ 0. If fc is the
total constraint force acting on the body, then

fc =

nc
∑

i=1

ni λi , (11.11)

which replaces Eq. 11.1.
Let ζi denote the separation velocity at contact i. This quantity is the

component of the linear velocity of C ′
i in the direction of ni, and is therefore

given by
ζi = ni · v . (11.12)

Observe that each contact has its own separation velocity, even though there
is only a single moving body in the system. Using the same argument as in
Section 11.1, we can show that every separation velocity must be zero at the
current instant. This implies that the body’s velocity must satisfy the following
set of equations:

ni · v = 0 (i = 1, . . . , nc) .

If the contact normals span the whole of F
6 then the only solution will be v = 0.

However, this does not necessarily mean that the body cannot move, since it
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may be able to accelerate away from (and therefore break) one or more of the
contacts.

The separation acceleration at contact i is the derivative of the separation
velocity, and is therefore given by

ζ̇i =
d

dt
(ni · v) = ni · a + ṅi · v , (11.13)

which replaces Eq. 11.3. Given that ζi = 0, the value of ζ̇i cannot be negative,
since that would lead to penetration locally at contact i, so we have ζ̇i ≥ 0.

The exact behaviour of this set of contacts can now be stated as follows: at
the current instant, each contact either breaks or it persists. If contact i breaks,
then ζ̇i > 0 and λi = 0, otherwise ζ̇i = 0 and λi ≥ 0. Thus, we have

ζ̇i ≥ 0 , λi ≥ 0 , ζ̇i λi = 0 (i = 1, . . . , nc) , (11.14)

which replaces Eq. 11.4. At the outset, we do not know which contacts will
break and which will persist. Finding this out is part of the solution process.

At this point, let us introduce three new quantities, N , λ and ζ, which are
defined as follows:

N =
[

n1 n2 · · · nnc

]

, λ =











λ1

λ2

...
λnc











and ζ =











ζ1

ζ2

...
ζnc











. (11.15)

N is therefore a 6 × nc matrix, and the other two are nc-element vectors. In
terms of these quantities, Eqs. 11.11, 11.13 and 11.14 can be written

fc = Nλ , (11.16)

ζ̇ = NTa + ṄTv (11.17)

and
ζ̇ ≥ 0 , λ ≥ 0 , ζ̇Tλ = 0 . (11.18)

An expression of the form a ≥ b, where a and b are vectors, means that ai ≥ bi

for every value of the index i. The constraint ζ̇Tλ = 0, in combination with
the other two constraints in Eq. 11.18, implies that ζ̇i λi = 0 for every i.

Continuing with the analysis, the equation of motion for body B is

Ia + v ×∗Iv = f + Nλ ,

which can be rearranged to express a as a function of λ:

a = I−1(Nλ + f − v ×∗Iv) . (11.19)

Substituting this expression into Eq. 11.17 gives

ζ̇ = Mλ + d , (11.20)
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Figure 11.3: Example of a contact system with no solution

where
M = NTI−1N (11.21)

and
d = NTI−1(f − v ×∗Iv) + ṄTv . (11.22)

The acceleration of B can now be found by first solving Eqs. 11.18 and 11.20
for λ, and then calculating a from Eq. 11.19. However, unlike Eqs. 11.4 and
11.7, which could be solved by inspection, the solution of Eqs. 11.18 and 11.20
requires a special algorithm. This topic is discussed in Section 11.5, but a few
remarks are in order here.

1. If d ≥ 0 then one possible solution is λ = 0.

2. If M is positive-definite then there is exactly one solution; otherwise,
there could be one solution, no solution, or infinitely many solutions.

3. If there are multiple solutions for λ then they all produce the same value
for a.

It can be seen from Eq. 11.21 that M is symmetric and positive-semidefinite;
but it will only be positive-definite if the contact normal vectors are linearly
independent. Thus, the possibility that there might be no solution, or that there
might be more than one solution for λ, can only arise if the contact normals
are linearly dependent.

Example 11.1 The possibility that there might be no solution to Eqs. 11.18
and 11.20 implies that there exist circumstances in which no value of λ can pre-
vent a violation of the contact constraints. A 2D example of this phenomenon
is shown in Figure 11.3. This figure shows a disc sliding in a slot. To the left
of the line L, the slot’s walls are straight, and the width of the slot equals the
diameter of the disc. The disc therefore makes two point contacts with the slot,
with contact normals n1 and n2 as shown. These vectors satisfy n2 = −n1, and
are therefore linearly dependent. To the right of L, the slot walls are circular
arcs that curve inward, making the slot narrower. Thus, the disc’s centre point,
D, can lie on or to the left of L, but it cannot pass to the right of L because
the slot is too narrow.
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Consider the situation that arises when D lies on L: the disc cannot proceed
any further to the right, but the two contact normals are pointing straight up
and down, and are therefore incapable of affecting the horizontal motion of
the disc. If a force is applied to the disc that pushes it to the right, then we
have a paradoxical situation in which rightward motion must not occur, but the
contact forces cannot prevent it. If this situation arises in a simulation, then
the practical solution is to allow D to move slightly to the right of L, so that
the two contact normals change direction and become able to resist any further
motion to the right.

If D reaches L with a linear velocity of v, as shown, then an impulse is
required to arrest the motion of the disc. Again, the simulator must allow D to
pass slightly beyond L before this impulse can be applied. In both cases, the
simulator must tolerate a small amount of penetration between the disc and
the slot.

Given that n2 = −n1, it can be shown that M takes the form
[

m −m
−m m

]

,
where m is a positive scalar. It therefore follows (from Eq. 11.20) that

ζ̇1 + ζ̇2 = d1 + d2 .

If a solution exists, then it must satisfy ζ̇1 + ζ̇2 ≥ 0; so the condition for there
to be no solution is d1 + d2 < 0.

11.3 A Rigid-Body System with Contacts

Let us now consider the case of a general rigid-body system with multiple
frictionless point contacts. The big difference between this and the previous
case is that the equation of motion for a general rigid-body system is expressed
in joint space.1 Thus, the equation of motion for this system will take the form

Hq̈ + C = τ + τc , (11.23)

where τc is a joint-space force expressing the total contact force, and q̈ will
be subject to motion constraints from the contacts. It is therefore necessary
to translate the individual contact force and acceleration expressions into joint
space before they can be combined with the equation of motion.

Another difference is that the contacts can now take place between different
pairs of bodies, so it becomes necessary to identify which bodies take part in
each contact. To aid in this identification, we use the terms predecessor and
successor to refer to the two bodies that take part in a given contact. A contact
force is defined to be a force transmitted from the predecessor to the successor;
and a separation acceleration is defined to be an acceleration of the successor
relative to the predecessor. If this convention were applied to Figures 11.1 and
11.2, then body B would be identified as the successor. Note that contacts can

1Strictly speaking, we mean the space of independent joint variables, since the system may
contain kinematic loops.
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now take place between a pair of moving bodies as well as between a moving
body and the fixed base.

Let there be nc contacts in total, numbered from 1 to nc; and let pc and sc
be two arrays of integers such that pc(i) and sc(i) are the body numbers of the
predecessor and successor bodies involved in contact i. Each contact is further
characterized by a contact point, Ci, which lies on the surface of the predecessor;
a second point, C ′

i , which coincides with Ci at the current instant but is fixed
in the successor; and a normal vector, ni, which is a unit spatial force acting
along the line of the contact normal. ni is directed from the predecessor to the
successor, so that positive scalar multiples of ni act to repel the two bodies
locally at contact i.

Given that the contacts are frictionless, any contact force that is present at
contact i must be a scalar multiple of ni. Furthermore, as the force must be
repelling in nature, it must be a positive scalar multiple of ni. We therefore
introduce the variable λi to denote the unknown contact force magnitude at
contact i, and note that it must satisfy the constraint λi ≥ 0.

The force at contact i is transmitted from body pc(i) to body sc(i). It is
therefore equivalent to a force of niλi acting on body sc(i) and a force of −niλi

acting on body pc(i). To convert this pair of forces into an equivalent joint-
space force, we make use of the general formula τ = JT

i f , where f is a spatial
force applied to body i, τ is the equivalent joint-space force, and Ji is the body
Jacobian for body i. If τci denotes the joint-space force due to contact i, then
this formula gives us

τci = (JT
sc(i) − JT

pc(i)) ni λi . (11.24)

At this point, we introduce a new quantity, ti, defined as follows:

ti = (JT
sc(i) − JT

pc(i)) ni . (11.25)

It can be regarded as the contact normal vector for contact i, expressed in joint
space. Substituting Eq. 11.25 into Eq. 11.24 gives

τci = ti λi .

The joint-space force expressing the total contact force (i.e., the combined effect
of all the contact forces) can now be written

τc =

nc
∑

i=1

ti λi , (11.26)

which replaces Eq. 11.11.
Let ζi denote the separation velocity at contact i. As both bodies may have

nonzero velocities, we define the separation velocity to be the normal component
of the relative linear velocity of C ′

i with respect to Ci. Thus,

ζi = ni · (vsc(i) − vpc(i)) , (11.27)
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which is a generalization of Eq. 11.12. To express ζi as a function of the joint-
space velocity, q̇, we use the general formula vi = Ji q̇, where vi and Ji are
the velocity and body Jacobian for body i. Applying this formula to Eq. 11.27
gives

ζi = ni · (Jsc(i) − Jpc(i)) q̇ .

However, on comparing this equation with the definition of ti in Eq. 11.25, it
can be seen that

ζi = tTi q̇ . (11.28)

This is the joint-space equivalent of Eq. 11.12.
Having obtained an expression for the separation velocity, the separation

acceleration is just the derivative of this expression, which is

ζ̇i =
d

dt
(tT

i q̇) = tTi q̈ + ṫT
i q̇ . (11.29)

This equation replaces Eq. 11.13. Employing the same argument as in previous
sections, it can be shown that ζi = 0 at the current instant, which implies
ζ̇i ≥ 0. The term ṫT

i q̇ can be calculated from the expression

ṫTi q̇ = ni · (avp
sc(i) − a

vp
pc(i)) + ṅi · (vsc(i) − vpc(i)) , (11.30)

where a
vp
i is the velocity-product acceleration of body i, which is equal to J̇i q̇.

At this point, we introduce the vectors λ and ζ, as defined in Eq. 11.15,
and a new n × nc matrix, T , which is defined as follows:

T =
[

t1 t2 · · · tnc

]

. (11.31)

In terms of these quantities, Eqs. 11.26 and 11.29 can be written

τc = T λ (11.32)

and
ζ̇ = T Tq̈ + Ṫ Tq̇ , (11.33)

which replace Eqs. 11.16 and 11.17. However, the constraints on λ and ζ̇ are
still correctly described by Eq. 11.18.

The final step is to formulate an equation expressing ζ̇ as a function of λ.
Substituting Eq. 11.32 into Eq. 11.23, and rearranging to bring q̈ over to the
left-hand side, gives

q̈ = H−1(T λ + τ − C) ;

and substituting this expression into Eq. 11.33 gives

ζ̇ = Mλ + d , (11.34)

where
M = T TH−1 T (11.35)
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State 1 State 2a State 2b State 3

v

v
v

φ > 0 φ = 0 φ = 0 φ = 0

φ̇ unconstrained φ̇ < 0 φ̇ > 0 φ̇ = 0

φ̈ unconstrained impulse φ̈ unconstrained φ̈ ≥ 0

Figure 11.4: The possible states of φ(q) ≥ 0

and
d = T TH−1(τ − C) + Ṫ Tq̇ . (11.36)

Equations 11.35 and 11.36 replace 11.21 and 11.22, but Eq. 11.34 is essentially
the same as Eq. 11.20. In fact, the only difference between these two equations
is that the rank of M in Eq. 11.20 is limited to 6 by Eq. 11.21, whereas the
rank of M in Eq. 11.34 is potentially unlimited. The solution procedure is
exactly the same as in Section 11.2: solve Eq. 11.34 subject to Eq. 11.18 using
the methods described in Section 11.5.

11.4 Inequality Constraints

Let B1 and B2 be two bodies in a general rigid-body system; and let S1 and S2

be two surfaces, or surface patches, such that S1 is fixed in B1 and S2 is fixed
in B2. A contact constraint between these two surfaces is a constraint that
says they are not allowed to penetrate. Suppose we have a function, φ(q), with
the property that φ(q) is greater than, equal to, or less than zero, according to
whether S1 and S2 are apart, touching, or penetrating each other, respectively,
at configuration q. For example, φ(q) could be a measure of the separation
distance when S1 and S2 are apart, and the negative of the penetration distance
when they are penetrating each other. Given a function with this property, the
contact constraint can be expressed by the equation

φ(q) ≥ 0 . (11.37)

A constraint equation of this form is called an inequality constraint, or, alter-
natively, a unilateral constraint. The latter name refers to the one-sided nature
of the constraint: if the two surfaces are touching, then motion in one direction
is allowed, but motion in the opposite direction is not.

An inequality constraint can have different effects on a rigid-body system,
depending on the values of q and q̇. To understand these effects, we identify
four states, as shown in Figure 11.4, and consider each in turn.
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State 1 is characterized by φ(q) > 0, and therefore applies at every config-
uration q satisfying φ(q) > 0. In this state, the surfaces are separated by a
distance greater than zero; so there is no contact, no constraint on the velocity
or acceleration of the system, and no contact force. An inequality constraint in
this state has no effect on the instantaneous dynamics of the system, and can
be regarded as inactive.

State 2a is characterized by φ = 0 and φ̇ < 0. (φ̇ is a function of both q and
q̇.) This state arises at the moment of collision between the two surfaces, and it
causes an impulse to be exerted between the two colliding bodies. Immediately
after this impulse, the system will either be in state 2b or state 3, depending
on whether the collision is elastic (bounce) or plastic (no bounce). State 2a
lasts only for a single instant, but it causes a step change in the velocity of the
system, which must be calculated using impulsive dynamics equations.

State 2b is characterized by φ = 0 and φ̇ > 0. In this state, the surfaces
are touching, but they are flying apart with a positive separation velocity. This
state can occur only in the immediate aftermath of an impulse, or at the moment
of a geometric loss of contact (see §11.6). It lasts only for a single instant,
because the constraint will transition to state 1 immediately after the current
instant. State 2b has no effect on the instantaneous dynamics of the system,
and can be treated like state 1.

State 3 is characterized by φ = 0 and φ̇ = 0, and is the state associated
with prolonged contact. In this state, the two surfaces are in contact, and their
separation velocity is zero. The separation acceleration is therefore constrained
to be non-negative, and a constraint force (which is the contact force) will act
to impose this constraint on the system. To be more specific, one of two things
can happen at the current instant: either the two surfaces accelerate away from
each other (φ̈ > 0), or they remain in contact (φ̈ = 0). In the former case, the
inequality constraint will transition to state 1 immediately after the current
instant, and the contact force will be zero. In the latter case, the constraint
will remain in state 3, and a contact force will act to prevent φ̈ < 0.

It follows from this description that Sections 11.1 to 11.3 have all been con-
cerned with the analysis of inequality constraints in state 3. Another connection
is revealed when we differentiate φ(q):

φ̇ = tTq̇ (11.38)

and

φ̈ = tTq̈ + ṫTq̇ , (11.39)

where

tT =
∂φ

∂q
. (11.40)

On comparing these equations with Eqs. 11.28 and 11.29, it can be seen that
ζi and ζ̇i correspond to φ̇i and φ̈i for an appropriate choice of function φi(q).
Likewise, ti in Eq. 11.25 corresponds to (∂φi/∂q)T.
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11.5 Solving Contact Equations

According to Section 11.3, the equation of motion for a rigid-body system sub-
ject to point-contact constraints is

Hq̈ + C = τ + Tλ , (11.41)

where λ is a solution to the problem

ζ̇ = Mλ + d , ζ̇ ≥ 0 , λ ≥ 0 , ζ̇Tλ = 0 . (11.42)

The equations developed in Sections 11.1 and 11.2 are just special cases of these
equations in which Eq. 11.41 is replaced by the equation of motion for a single
rigid body.

Equations like 11.41 have been covered in earlier chapters, but 11.42 is new.
In fact, the set of equations and inequalities in Eq. 11.42 define a standard
problem in mathematics known as a linear complementarity problem (LCP).
The mathematics of this problem, and several algorithms for solving it, can be
found in Cottle et al. (1992) and Cottle and Dantzig (1968); and an algorithm
for the special case when M is positive definite can be found in Featherstone
(1987).

In contact-dynamics applications, M will always be a symmetric, positive-
semidefinite matrix, and it will be positive definite if the columns of T (i.e., the
contact normal vectors) are linearly independent. The LCP for a symmetric,
positive-semidefinite matrix has the following special properties:

1. If M is positive definite then there will be exactly one solution; otherwise
there may be no solution, one solution, or infinitely many solutions.

2. If a solution exists, then the values of Tλ and ζ̇ are unique (i.e., if multiple
solutions exist, then they differ only in the value of λ, and the differences
lie in the null space of T ).

3. The LCP in Eq. 11.42 is equivalent to the following quadratic program:2

minimize 1
2λTMλ + λTd

subject to λ ≥ 0 .
(11.43)

Both Eq. 11.42 and Eq. 11.43 have the same solutions, but 11.43 has the advan-
tage that software to solve quadratic programs is more widely available than
software to solve LCPs. Two more formulations are mentioned in Lötstedt
(1982). One of them is

minimize 1
2 (q̈ − H−1(τ − C))TH(q̈ − H−1(τ − C))

subject to T Tq̈ + Ṫ Tq̇ ≥ 0 .
(11.44)

2The contents of Eq. 11.42 are the Kuhn-Tucker conditions for the solution of Eq. 11.43.
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1. Integrate forward in time, treating active contacts as equality constraints,
and ignoring all other contacts.

2. As the integration proceeds, monitor the system for two kinds of event:
geometric events (contact gains and losses) and negative contact forces.

3. If one or more such events are detected during the most recent integration
step, then interpolate the system back to the moment of the earliest event.

4. If the event is a contact gain (e.g. a collision), then apply impulsive dynamics
as described in Section 11.7, and identify the new set of current contacts and
the new set of active contacts.

5. If the event is a geometric contact loss, then remove the lost contacts from
the sets of current and active contacts.

6. If the event is a negative contact force, then formulate and solve either
Eq. 11.42 or 11.43 and identify the new sets of current and active contacts.

7. Go to step 1.

Table 11.1: General procedure for contact dynamics simulation

This, too, is a quadratic program, but minimizing over the variable q̈ instead
of λ. This formulation will produce a unique solution, if one exists, and it
may have a computational advantage if nc > n, but recovering λ from q̈ is not
straightforward. Equation 11.44 can be regarded as a generalization of Gauss’
principle of least constraint, making it applicable to rigid-body systems with
inequality constraints.

If there are many contacts, then the computational cost of solving Eq. 11.42
or 11.43 will be relatively large compared with the cost of imposing an equivalent
set of equality constraints using the techniques of Chapter 8. It is therefore
desirable to minimize the number of times that Eq. 11.42 or 11.43 is solved. A
procedure to accomplish this is shown in Table 11.1.

According to this procedure, the simulator maintains a set of current con-
tacts and a set of active contacts, the latter being a subset of the former. The
set of current contacts contains every contact that is currently in state 3, as
defined in Figure 11.4, and that also satisfies ζ̇i = 0 (i.e., φ̈i = 0) for the appro-
priate index i. If a current contact is found to satisfy ζ̇i > 0, then it is deemed
to have broken at the current instant, and is removed from the set.

The set of active contacts is a set whose contact normals form a basis on
range(T ), and which contains every contact having a strictly positive contact
force; that is, every contact for which λi > 0. If we treat the active contacts
as equality constraints, then the following statement is true: for as long as the
contact force variables remain non-negative, there is no change in the state of
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contact. Thus, it is possible to get away with solving Eq. 11.42 or 11.43 only
when a negative λi is detected on an active contact, or when a collision occurs.
A negative λi will always cause a change in the set of active contacts, but not
necessarily a change in the set of current contacts.

Most algorithms for solving LCPs and quadratic programs return a basic

solution to the problem, which is a solution having the smallest possible number
of nonzero variables. A basic solution to Eq. 11.42 or 11.43 has the property
that the contact normals associated with the positive contact force variables
are linearly independent. Given a basic solution to Eq. 11.42 or 11.43, the new
current-contact set will be the set of contacts satisfying ζ̇i = 0, and the new
active-contact set will be the set of contacts satisfying λi > 0. On rare occasions,
this set will be insufficient to form a basis, and will need to be supplemented
with contacts satisfying ζ̇i = λi = 0.

Interpolating an Integration Time Step

The idea that an integration time step can be interpolated needs some expla-
nation. Suppose we wish to integrate the differential equation ẏ = f(y, t) from
t0 to t1, where t1 = t0 +h and h is the integration step size. Many methods for
numerical integration work by fitting a polynomial to ẏ over the interval [t0, t1],
and adding the integral of this polynomial to y(t0). In effect, these methods all
have the general form

ẏ(t) = p(t) , t0 ≤ t ≤ t1

y1 = y0 +
∫ t1

t0
p(t) dt

(11.45)

where y0 = y(t0), y1 = y(t1), and p(t) is a polynomial. The degree of p is one
less than the order of the method. It therefore follows that we can calculate
y(t) for any intermediate value of t using the formula

y(t) = y0 +

∫ t

t0

p(t) dt . (11.46)

To give a concrete example, Euler’s integration method works by approximating
ẏ with a constant over the integration time step. The formula for this method
is

k = f(y0, t0)

y1 = y0 + hk ,
(11.47)

which implies that p(t) = k. The interpolating polynomial is therefore

y(t) = y0 + (t − t0)k . (11.48)

Let δ = (t− t0)/h be an interpolating variable that varies from 0 to 1 as t varies
from t0 to t1. Written in terms of δ, the interpolating polynomial for Euler’s
method is

y(δ) = y0 + hkδ . (11.49)
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Turning to a more complicated example, the formula for (one version of) Heun’s
integration method (Gear, 1971) is

k1 = f(y0, t0)

k2 = f(y0 + 2
3hk1, t0 + 2

3h)

y1 = y0 + h( 1
4k1 + 3

4k2) .

(11.50)

This method approximates ẏ with a linear polynomial having the value k1 at t0
and k2 at t0 + 2

3h. The interpolating polynomial for this method will therefore
be quadratic, and is given by the formula

y(δ) = y0 + h((δ − 3
4δ2)k1 + 3

4δ2k2) . (11.51)

Formulae such as this allow a dynamics simulator to calculate the values of
the state variables at any intermediate moment within a completed integration
time step, and therefore also to shorten the most recent time step by any desired
amount.

11.6 Contact Geometry

A contact dynamics simulator involves both dynamics calculations and geomet-
rical calculations. So far, we have said almost nothing about the latter. In this
section, we examine some of the geometrical aspects of contact dynamics: the
representation of shape, geometric events (contact gains and losses), and edge
and surface contact.

Shape

The most commonly used computer representation of shape is the polyhedron.
A large body of technical knowledge exists, and a large body of software for
creating, editing and displaying polyhedra, and for performing efficient collision
detection. Unfortunately, polyhedra are not well suited to dynamics. Some
examples of the kind of problem that can arise are shown in Figure 11.5. The
left-hand diagrams compare a true sphere with a polyhedral approximation to
a sphere (drawn as a polygon) rolling down a slope. Whereas the sphere rolls
smoothly, the polyhedron makes a succession of impacts with the slope as each

Figure 11.5: Some problems with polyhedral approximations
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new vertex strikes the surface. How are these impacts to be handled? If they are
treated as plastic collisions, then there is a loss of energy at every impact; but
if they are treated as elastic collisions, then the polyhedron starts to bounce.

The problem is caused by the flat faces and straight edges of the polyhedron,
which allow it to alternate between point, edge and surface contact as the
motion proceeds. The cure is to distort the polyhedron by making the faces
and edges curve outward, so that the resulting shape is strictly convex. Ideally,
this distorted polyhedron should closely resemble a perfect sphere. However,
even if it were not perfectly spherical, it would still be able to roll without
causing a succession of impacts.

Another example is shown in the right-hand diagrams of Figure 11.5: a
rectangular block sliding down a concave slope. If the slope is replaced by a
polyhedral approximation, then the block will experience an impact each time
one of its vertices reaches an edge in the slope. This time, the problem is caused
by the sharp concave edges in the slope, and the cure is to round them.

Both of these examples are manifestations of a single underlying problem.
Suppose p denotes a point on the surface of a body, and n(p) is the surface
normal at that point. On a curved surface, n varies continuously with p, and
this variation finds its way into the equations of motion via the quantity ṅ.
The basic difficulty with using polyhedra to approximate curved surfaces in a
dynamics simulation is that n(p) for a polyhedron is piecewise constant, and
therefore fails to model dn/dp in the original curved surface.

Geometric Events

We define a geometric event to be a step change in the state of contact that is
caused by the motions of the bodies. There are basically two kinds of geometric
event: contact gain and contact loss. A collision is a special case of a contact-
gain event in which the two participating bodies were not previously in contact.
Examples of these events are shown in Figure 11.6. In general, a contact-gain
event will cause an impulse, and a contact-loss event will cause a reduction in
the set of current contacts (as defined in Section 11.5).

Suppose we use the term ‘dynamic contact loss’ to refer to the kind of con-
tact loss studied in earlier sections. The difference between a dynamic contact
loss and a geometric contact loss, as shown in Figure 11.6, is that the former
happens when two surfaces accelerate away from each other because of the

collision contact gain contact loss

Figure 11.6: Geometric events
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forces acting on the system, whereas the latter happens when there is a step
change in the separation velocity because a vertex has run off the edge of a face,
or one edge has run off the end of another. A geometric contact-loss event can-
not be detected by solving equations of motion, but must instead be detected
geometrically.

The detection of collisions and contact gains between moving bodies has
the potential to be a very expensive computation. This is because accurate
geometric models of realistic physical objects can contain hundreds, thousands,
or even tens of thousands of geometric primitives. Fortunately, many efficient
algorithms have been proposed for these and related geometric calculations,
and the interested reader is referred to Bobrow (1989); Gilbert et al. (1988);
Gottschalk et al. (1996); Jimenez et al. (2001); Mirtich (1998).

Line and Surface Contact

If a contact extends along a line, or over a surface, then it is mathematically
equivalent to an infinite number of point contacts: one for each point on the
line or surface. Thus, a line or surface contact could be described by an infinite
set of point contacts. However, this set typically contains many more contacts
than the minimum required to model the original state of contact. One can
obtain a minimal contact set by exhaustively applying the following rule:

If a point contact has a normal vector that is positively dependent3

on other normals in the set, then it does not contribute to the con-
tact constraint, and can be removed.

Figure 11.7 shows some examples of line and surface contacts. Diagram
(a) shows a line contact between a straight edge on one body and a planar
surface on another. In this case, the line contact can be modelled by a pair of
point contacts: one at each end of the line. Diagram (b) shows a line contact
between a straight edge and a ruled surface. The latter is formed by the equation
z = x tan(y), where the z axis points up and the y axis lies on the line of contact.
In this example, the curvature of the ruled surface makes every contact normal
point in a different direction. Furthermore, none of the normal vectors in the
point-contact set are positively dependent on other normals, so the minimal
contact set for this example contains one contact for each point on the line.

Diagram (c) shows a surface contact between two planar surfaces, in which
the convex hull of the contact area is a polygon. (A convex hull is the smallest
convex shape containing a given shape.) In this case, the convex hull is the
pentagon shown in grey. A surface contact like this can be modelled by a finite
set of point contacts: one at each vertex of the polygon. Diagram (d) also
shows a surface contact between two planar surfaces, but the contact area is a
circular disc. The convex hull is therefore also a circular disc. In this example,

3A vector v is said to be positively dependent on a set of vectors {v1,v2, · · · } if it can be
expressed in the form v = a1v1 + a2v2 + · · · , where all of the scalars ai are non-negative.
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(a)

(c)

(b)

(d)

Figure 11.7: Examples of line and surface contacts

every normal vector in the interior of the disc is positively dependent on a
pair of normals on the boundary, but no normal on the boundary is positively
dependent on other normals in the set. Thus, the minimal contact set for this
example consists of every point on the boundary circle.

Observe that examples (a) and (c) in Figure 11.7 cover every possible line
and surface contact between two polyhedra; so any state of contact between two
polyhedra can always be expressed by a finite set of point contacts. In examples
(b) and (d), an infinite number of point contacts are required to express the
contact constraint exactly, but an approximation to any desired accuracy can
be obtained using only a finite number of points.

11.7 Impulsive Dynamics

Impulse is the time-integral of force. If a force f (t) is applied to a rigid body
over a period from t0 to t1, then the body receives an impulse, ι, given by

ι =

∫ t1

t0

f(t) dt . (11.52)

The effect of this impulse is to alter the momentum of the body as follows:

ι =

∫ t1

t0

f(t) dt =

∫ t1

t0

dh

dt
dt = h(t1) − h(t0) , (11.53)

where f = dh/dt is the body’s equation of motion, and h is its momentum
(h = Iv). Thus, the impulse received by a rigid body over a given time interval
equals its net change in momentum over that interval.
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If two hard bodies collide, then they exert a large contact force on each other
for a short period of time. If we increase their hardness to infinity, so that they
become rigid, then the contact force diverges to infinity and the period converges
to zero, but the impulse remains finite. Thus, for rigid-body dynamics, we are
interested in a special kind of impulse that is the limit as δt → 0 of a force f/δt
applied over a period of duration δt:

ι = lim
δt→0

∫ t+δt

t

f(t)

δt
dt . (11.54)

The rest of this section is concerned with impulses of this kind. Their basic
properties are as follows: they are force vectors (i.e., they are elements of F

6);
they arise from collisions (or contact gains) between rigid bodies; and they cause
step changes in rigid-body velocities.

Let us now derive the impulsive equation of motion for a rigid body. Let ι

be an impulse applied to a body having an inertia of I and a velocity of v, and
let ∆v be the step change in velocity caused by ι. The relationship between
∆v and ι is obtained as follows:

∆v = lim
δt→0

v(t + δt) − v(t)

= lim
δt→0

∫ t+δt

t

a(t) dt

= lim
δt→0

∫ t+δt

t

I−1(
f

δt
− v ×∗Iv) dt

= lim
δt→0

I−1(t)

∫ t+δt

t

f

δt
dt − lim

δt→0

∫ t+δt

t

I−1v×∗Iv dt

= I−1ι ,

so
ι = I ∆v . (11.55)

On the third line, the body’s equation of motion (Ia + v ×∗Iv = f/δt) is used
to express its acceleration in terms of the applied force f/δt. On the fourth
line, I−1 can be taken outside the integral because I varies only with position,
which is a continuous function of time, so I−1(t + δt) → I−1(t) as δt → 0. The
second limit on the fourth line evaluates to zero because the integrand remains
finite as δt → 0.

Using the same argument, we can show that the impulsive equation of mo-
tion for the handle of an articulated body is

ι = IA∆v , (11.56)

where IA is the handle’s articulated-body inertia. Likewise, the impulsive equa-
tion of motion for a general rigid-body system is

u = H ∆q̇ , (11.57)
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B1

B2
n

v1v2

C

Figure 11.8: Two-body collision

where u is a joint-space (or generalized) impulse and ∆q̇ is the step change in
the joint (or generalized) velocity vector. If u is caused by a collision between
body i and a body external to the system, such that body i receives an impulse
of ι from the external body, causing a step change of ∆vi in its velocity, then
u, ι, ∆q̇ and ∆vi are related by

u = JT
i ι (11.58)

and
∆vi = Ji ∆q̇ , (11.59)

where Ji is the body Jacobian for body i.

Caution: Equations 11.56, 11.57 and 11.58 are mathematically correct, but
they do not necessarily offer an accurate prediction of the impulsive behaviour of
a real multibody system. This is because real impacts involve physical processes
that are not modelled by the rigid-body assumption, such as the propagation
of compression waves through solids and across joint bearings.

Two-Body Collisions

Figure 11.8 shows two rigid bodies, B1 and B2, that collide at a single point C.
Their velocities before the impact are v1 and v2, and their velocities afterwards
are v1 + ∆v1 and v2 + ∆v2. We assume initially that there is no friction at
the contact. This implies that the impulse transmitted from B1 to B2 can be
expressed in the form nλ, where n is the contact normal and λ ≥ 0 is the
impulse magnitude. The impulsive equations of motion for the two bodies are
therefore

∆v1 = −I−1
1 nλ (11.60)

and
∆v2 = I−1

2 nλ . (11.61)

Let ζ and ∆ζ denote the separation velocity at C before the impact, and the
step change in separation velocity caused by the impulse, respectively. They
are given by the equations

ζ = n · (v2 − v1) (11.62)
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and

∆ζ = n · (∆v2 − ∆v1) . (11.63)

These scalars must satisfy ζ ≤ 0 and ζ + ∆ζ ≥ 0. We need one more equation
to solve the problem. This is supplied by the coefficient of restitution, e, which
is a number between 0 and 1 that expresses the ratio of the separation velocities
before and after the impact. Specifically,

e =
ζ + ∆ζ

−ζ
,

which implies

∆ζ = −(1 + e)ζ . (11.64)

Substituting Eqs. 11.62 and 11.63 into Eq. 11.64 gives

n · (∆v2 − ∆v1) = −(1 + e) n · (v2 − v1) ,

and substituting Eqs. 11.60 and 11.61 into this equation gives

λ =
−(1 + e) n · (v2 − v1)

n · (I−1
1 + I−1

2 ) n
, (11.65)

which solves the problem.

Friction

If we allow Coulomb friction at the contact, then the behaviour of the sys-
tem becomes more complicated. In general, we must consider the following
effects: tangential friction, torsional friction, tangential restitution, torsional
restitution, and whether or not the tangential and/or torsional sliding motion
is arrested before the end of the contact period. (Many of these complexities
are examined in Brach (1991).) Torsional effects refer to a friction couple that
opposes angular motion about the line of the contact normal. They arise be-
cause real bodies are not truly rigid, and local deformation of the contacting
surfaces cause the point contact to become an area contact. Torsional effects
are therefore more apparent with softer bodies than with harder ones. Even so,
torsional effects are typically of lesser magnitude than tangential effects, and
can often be ignored. Tangential and torsional restitution are caused by the
recovery of local elastic deformations of the contacting bodies in the tangential
and torsional directions, respectively. Some examples of these effects are shown
in Figure 11.9.

Let us conclude this section by examining a relatively simple example of
collision with friction. We shall assume that two bodies collide as shown in
Figure 11.8, and that there are no torsional effects, no tangential restitution,
and the tangential motion is arrested by the friction impulse. This example can
be solved by almost the same procedure as for the frictionless case.
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(a)

(b)

Figure 11.9: Examples of tangential restitution (a) and torsional restitution (b)

The first step is to realise that allowing a tangential friction component adds
two degrees of freedom to the collision impulse, so that it is now a function of
three unknown scalars instead of only one. At the same time, two constraints
are added to the system by the condition that the tangential component of the
relative velocity at C must be zero after the impact.

Let ι be the total impulse transmitted from B1 to B2. The equations of
motion for the two bodies are then

∆v1 = −I−1
1 ι (11.66)

and

∆v2 = I−1
2 ι . (11.67)

We can express the impulse in the form

ι = Nλ , (11.68)

where N = [nx ny nz] is a 6×3 matrix spanning the space of possible impulses,
and λ = [λx λy λz ]

T is a vector of unknown impulse coefficients. nz is the
contact normal vector, so nz and λz correspond to n and λ in the frictionless
case, while nx and ny lie in the tangent plane of the contact, and span the
space of possible friction impulses. All three vectors have lines of action passing
through C.

Let ζ = [ζx ζy ζz ]
T be a vector of linear velocity coordinates measuring the

relative linear velocity of the two bodies at C; and let ∆ζ = [∆ζx ∆ζy ∆ζz]
T

be the step change in ζ caused by the impulse. These vectors are given by

ζ = NT(v2 − v1) (11.69)

and

∆ζ = NT(∆v2 − ∆v1) . (11.70)
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The relationship between ζ and ∆ζ is given partly by the coefficient of restitu-
tion, which applies in the normal direction, and partly by the condition that the
tangential velocity be brought to zero. Basically, we have three scalar equations:

ζx + ∆ζx = 0 , ζy + ∆ζy = 0 and ζz + ∆ζz = −e ζz ,

which can be expressed as a matrix equation

∆ζ = −(1 + E)ζ (11.71)

where

E =





0 0 0
0 0 0
0 0 e



 .

To solve the problem, we simply substitute Eqs. 11.69 and 11.70 into 11.71,
giving

NT(∆v2 − ∆v1) = −(1 + E)NT(v2 − v1) ,

and then substitute Eqs. 11.66, 11.67 and 11.68 into this equation, giving

λ = −(NT(I−1
1 + I−1

2 )N )−1(1 + E)NT(v2 − v1) . (11.72)

11.8 Soft Contact

So far, we have studied only the phenomenon of contact between pairs of rigid
bodies. However, many physical systems contain mixtures of hard and soft
bodies, or hard bodies with soft surfaces, or bodies that are hard enough to be
considered rigid overall, but soft enough to experience significant local deforma-
tions during contact. In these cases, one must be able to model the dynamics of
contact between a rigid surface and a compliant one, or between two compliant
surfaces.

Another reason for being interested in compliant contact is that it can be
implemented more easily than rigid contact: there are no impulses at the mo-
ment of collision, so there is no need for impulsive dynamics calculations; and
contact loss can be determined from position and velocity data, so there is no
need to solve a linear complementarity problem. It is also easier to implement
Coulomb friction at a compliant contact. For these reasons, it may be more
sensible to use compliant contact in place of rigid contact, even in cases where
rigid contact is a better model of the physical system, if implementation effort
is an issue.

The main disadvantage of compliant contact is that it introduces high-
frequency dynamics into the system, due to the presence of stiff springs in
the compliant surfaces. If these dynamics require the integration routine to
take smaller steps, then the speed of simulation will be reduced.

This section presents a technique for modelling compliant contact, including
Coulomb friction, in which the compliant surface is modelled as a first-order
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Figure 11.10: Compliant contact model

dynamical system—a system containing springs and dampers, but no mass. In
such a system, an applied force causes a velocity, and an imposed velocity meets
with a reaction force. The big advantage of this technique is that it separates
the rigid-body dynamics from the contact dynamics: the contact forces can
be calculated from the position and velocity variables, and then supplied to
the rigid-body dynamics routine as a collection of known force inputs. It is
therefore possible to use any standard forward-dynamics algorithm with this
contact model, such as those described in Chapters 6, 7 and 8.

Contact Normal Force

Consider the one-dimensional rigid-body system shown in Figure 11.10. It
consists of a rigid body, B, and a massless surface patch, S, the latter being
connected to a fixed base by a spring and a damper. The variables z and
p denote the positions of S and B, respectively, and fc is the contact force
transmitted from S to B. If B and S are in contact, then p = z and fc ≥ 0;
otherwise, p > z and fc = 0. The spring has a stiffness of K, and it exerts a
force of −Kz on S. Likewise, the damper has a damping coefficient of D, and
it exerts a force of −Dż on S.

Now, S has no mass, so the net force acting on it must be zero. The three
forces that act on S are −Kz, −Dż and −fc, so we have

Kz + Dż + fc = 0 .

Rearranging this equation gives

ż = −(Kz + fc)/D , (11.73)

which is the equation of motion for S. Observe that this is a first-order differen-
tial equation: it involves z and ż, but not z̈. Observe, too, that the contact force
is linearly related to the velocity of S, not its acceleration. The two unknowns
in this equation are ż and fc, and the state variable is z.

Let us now calculate fc. If p > z then there is no contact, and fc = 0. If
p = z then we proceed as follows. If the contact is to persist, then we must
have ṗ = ż at the current instant. The contact force required to achieve this is

fc = −Kz − Dṗ .



11.8. SOFT CONTACT 237

If this expression is zero or positive, then it is the correct value for fc, and
the contact does indeed persist. However, if this expression turns out to be
negative, then the correct value for fc is zero, and we have ṗ > ż, which implies
that the contact is breaking. Assembling this argument into a single equation,
we have

fc =

{

0 if p > z
max(0,−Kz − Dṗ) if p = z .

(11.74)

Equations 11.74 and 11.73, together with the equation of motion for B (to
calculate p̈ from fc), define the dynamic behaviour of the system.

Extensions

This contact model is easily extended to more general cases. For example, to
model a compliant contact between two moving bodies, just redefine p to be
the relative position of the two bodies; and to model a contact between two
compliant surfaces, simply use one spring-damper pair and one state variable
(i.e., one z variable) for each surface. If the ratio K/D is the same for both
surfaces, then the two compliances can be lumped together.

It is possible to implement this model without using an explicit state vari-
able. This trick is made possible by the fact that Eq. 11.73 has a simple ana-
lytical solution when fc = 0. Thus, we have z = p whenever there is contact,
and z = z0e

−K(t−t0)/D at all other times, where t0 and z0 are the time at which
the most recent contact loss occurred and the value of z at that time, respec-
tively. This trick removes the need to integrate Eq. 11.73 numerically, which
may improve the efficiency of the simulation.

It is possible to incorporate nonlinear springs and dampers into this model.
The benefit of doing so is that a nonlinear spring-damper combination provides
a more accurate model of the physical behaviour of colliding solids (Marhefka
and Orin, 1999). Another possibility is to use a more general visco-elastic
element, such as a spring-damper pair in series with a spring. More complex
models may require additional state variables.

To apply this model to a point contact between two 3D bodies, we need two
quantities calculated from the shapes and positions of the bodies: the contact
normal vector, n, and the negative of the penetration depth. The latter gives us
the value of p. If the deformations are small, then it is reasonable to calculate
n from the undeformed shapes of the surfaces. ṗ is equivalent to ζ in earlier
sections, and can be calculated from an equation of the form ṗ = n · (vB −vS),
where vB and vS are the velocities of the contacting bodies. Likewise, fc is
equivalent to λ in earlier sections, and the spatial contact force transmitted to
body B is nfc. The accelerations of individual rigid bodies, or a complete rigid-
body system, can then be calculated directly from equations like 11.5, 11.19 or
11.23, given that the contact force magnitudes are already known.

If the contact point moves over the compliant surface, then the spring and
damper should follow the point. If it is desired to model the work done in moving
the locus of compression over the surface, then this work can be approximated
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Figure 11.11: Coulomb friction model

by a viscous friction term in the tangent plane. Alternatively, one could embed
an array of spring-damper pairs at fixed locations in the compliant surface, and
employ an interpolation scheme based on the location of the contact point.

Coulomb Friction

The surface in Figure 11.10 is compliant only in the normal direction. We now
add a tangential compliance, resulting in the system shown in Figure 11.11.
(To extend this model to 3D, we would have to add a second tangential com-
pliance.) This additional compliance can be used to implement a Coulomb
friction model in which the friction force is a function of only the position and
velocity variables. Thus, both the contact normal force and the friction force
can be computed ahead of the main rigid-body dynamics calculation, and can
be treated as known forces by the forward dynamics algorithm.

We introduce two new variables, x and v, which are the tangential counter-
parts of z and ṗ. x is the displacement in the tangent direction of the surface
patch from its equilibrium position; while v is the tangential velocity of the
point in B that is currently in contact with S (i.e., the tangential velocity of
the point C ′ as defined in Section 11.1). So v refers to a different point in B at
each instant. v is used to calculate the slip velocity at the contact.

The objective is to calculate both the contact normal force, fn, and the
tangent force, ft, which is the friction force. The first step is to calculate fn

using Eqs. 11.74 and 11.73. This gives us

fn =

{

0 if p > z
max(0,−Knz − Dn ṗ) if p = z

(11.75)

and

ż = −(Knz + fn)/Dn , (11.76)

where Kn and Dn are the spring and damper coefficients in the normal direction.
The next step is to formulate the equation of motion for S in the tangent
direction. Using the same argument as for Eq. 11.73, this equation is

ẋ = −(Ktx + ft)/Dt , (11.77)
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where Kt and Dt are the spring and damper coefficients in the tangent direction.
The next step is to work out what the tangent force would have to be in order
to prevent any slippage between B and S. The condition for there to be no
slippage is ẋ = v, and the force required to produce this value of ẋ is

fstick = −Ktx − Dtv . (11.78)

The rule for calculating the Coulomb friction force can now be stated as follows:

ft =







−µfn if fstick < −µfn

µfn if fstick > µfn

fstick otherwise,
(11.79)

where µ is the coefficient of friction. In words, ft is constrained to lie in the
friction cone, which means it must lie in the range −µfn to µfn. If there is a
force in this range that can prevent slippage between B and S, then that is the
value of ft; otherwise, ft lies on the nearest range boundary, and some slippage
does occur.

11.9 Further Reading

Contact and impact dynamics are large subjects, and this chapter has provided
little more than a brief introduction. From here, the logical next step would be
to read the books by Coutinho (Coutinho, 2001) and Brach (Brach, 1991). The
former covers both contact and impact dynamics, while the latter specializes in
impact. For an introduction to the literature, try the review articles by Gilardi
and Sharf (Gilardi and Sharf, 2002) and Stewart (Stewart, 2000). The latter is
more mathematical. Another item for the mathematically-minded is a compila-
tion of lecture notes edited by Pfeiffer and Glocker (Pfeiffer and Glocker, 2000).
The modelling of friction is another large subject that has barely been touched
in this chapter. More on this topic can be found in Armstrong-Hélouvry et al.
(1994); Dupont et al. (2002); Haessig and Friedland (1991). And finally, some
more relevant material can be found in Lötstedt (1981, 1982, 1984); Marhefka
and Orin (1999); Nakamura and Yamane (2000); Wittenburg (1977); Yamane
(2004).





Appendix A

Spatial Vector Arithmetic

This appendix presents two approaches to implementing spatial vector arith-
metic: one that emphasizes simplicity, and one that emphasizes efficiency. The
simple method is presented for both planar and spatial vectors, but the efficient
method only for spatial vectors. The simple method is appropriate whenever
human productivity is more important than computing efficiency. It assumes
the user has access to a general-purpose matrix arithmetic tool, like Matlab,1

and it exploits this tool by providing only those few spatial arithmetic functions
that are not standard matrix operations. The efficient method uses compact
data structures to store spatial quantities efficiently, and a variety of optimiza-
tions and efficiency tricks to cut the cost of performing spatial arithmetic.

A.1 Simple Planar Arithmetic

Almost all of the basic operations in planar vector arithmetic are standard ma-
trix operations. Thus, if one has access to a general-purpose matrix arithmetic
tool, like Matlab, then only a few extra functions are required, and these are
shown in Table A.1.

The function Xpln constructs a planar coordinate transformation matrix.
Referring to the diagram immediately below it, the two arguments r and θ
specify the position and orientation of coordinate frame B relative to frame
A; and the matrix returned by Xpln is the motion-vector transform from A
coordinates to B coordinates (i.e., X = BXA). This same convention is used in
all other transform-making functions: the arguments describe where the new
frame is relative to the current frame, and the function returns the motion-
vector coordinate transform from the current frame to the new one. To obtain
a force-vector transform, one can use the formula BX∗

A = (BXA)−T.
The functions crm and crf implement the planar cross operators. In both

cases, the argument is a planar vector, v = [ω vOx vOy ]T, specifying a velocity.

1Matlab is a registered trademark of The MathWorks, Inc.
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function X = Xpln(θ, r)
c = cos(θ)
s = sin(θ)

X =





1 0 0
s rx − c ry c s
c rx + s ry −s c





end

A

B

rx

ry

θ
X

function v× = crm(v)

v× =





0 0 0
vOy 0 −ω
−vOx ω 0





end

function v×∗ = crf(v)

v×∗ =





0 −vOy vOx

0 0 −ω
0 ω 0





end

function I = mcI(m, c, IC)

I =





IC + m(c2
x + c2

y) −m cy m cx

−m cy m 0
m cx 0 m





end

function v = XtoV(X)
version 1:

v =





X23

X31

−X21





version 2:

v =





X23

(X31 + X22X31 + X23X21)/2
(−X21 − X22X21 + X23X31)/2





end

Table A.1: Planar vector arithmetic functions

The expressions v× and v×∗ in these functions are the names of the output
variables. Strictly speaking, one does not really need both functions, since
crf(v) = − crm(v)T.

The function mcI constructs a rigid-body inertia matrix for a planar rigid
body. The arguments m, c = [cx cy]T and IC specify the body’s mass, the
position of its centre of mass, and its rotational inertia about the centre of
mass, respectively. This function would typically be used to initialize the inertia
matrices in a system-model data structure.

Finally, the function XtoV calculates a motion vector from a coordinate
transform in the following manner. Given any two coordinate frames, A and
B, there exists a velocity, u, with the property that if frame A travels at this
velocity for one time unit, then it will end up coincident with frame B. The
argument to XtoV is the transform from A to B coordinates, which contains all
the information needed to work out where frame B is relative to frame A; and
the computed vector, v, is an approximation to u that converges to the exact
value as the angle between A and B approaches zero. Thus, v is exactly equal
to u when X is a pure translation. Two versions of this function are given. The
first is simpler, but the second is more accurate, and has two special properties:
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(1) v is an invariant of X, i.e., v = Xv, and (2) v is a scalar multiple of u, and
the two are related by the formula u = v sin−1(X23)/X23. This function is used
to calculate position errors in kinematic constraint equations. Its main use in
dynamics is to calculate loop-closure position errors for use in loop constraint
stabilization (see §8.3).

A.2 Simple Spatial Arithmetic

Almost every operation in spatial vector arithmetic is a standard matrix oper-
ation. Thus, if one has access to a general-purpose matrix arithmetic tool, like
Matlab, then it can provide nearly all of the necessary operations. Only a few
extra functions are required, and these are shown in Table A.2.

The functions rotx, roty and rotz construct Plücker transform matrices for
rotations of the coordinate frame about the x, y and z axes, respectively. In
particular, X transforms a motion vector from A to B coordinates, where frame
B is rotated by an angle θ relative to frame A about their common x, y or z
axis, as appropriate. In general, the transform matrix for a force vector can be
obtained using the formula X∗ = X−T. However, for a pure rotation, it just so
happens that X∗ = X. The functions rx, ry and rz calculate the appropriate
3 × 3 rotation matrices using the formulae at the top of the table.

The function xlt constructs the Plücker transform matrix for a translation of
the coordinate frame by an amount r. The argument is a 3D vector specifying
the position of frame B relative to frame A, and the returned value is the
Plücker transform from A to B coordinates.

The functions crm and crf implement the spatial cross operators. In both
cases, the argument is a motion vector representing a spatial velocity. The
expressions v1:3 and v4:6 denote 3D vectors formed from the first three and last
three Plücker coordinates of v, respectively; the expressions v1:3× and v4:6×
are the 3× 3 cross-product matrices calculated from v1:3 and v4:6 according to
the formula at the top of the table; but the expressions v× and v×∗ in these
two functions are the names of the output variables.

The function mcI constructs a rigid-body inertia matrix. The arguments
specify the body’s mass, the position of its centre of mass, and its rotational
inertia about the centre of mass. c is a 3D vector, and IC is a 3 × 3 matrix.

Finally, the function XtoV calculates a motion vector from a coordinate
transform in the same way as the equivalent planar function. Given any two
coordinate frames, A and B, there exists a velocity, u, with the property that if
frame A were to travel at this velocity for one time unit, then it would end up
coincident with frame B. The argument to this function is the transform from A
to B coordinates, which contains all the information needed to work out where
frame B is relative to frame A; and the computed vector, v, is an approximation
to u that converges to the exact value as the angle between A and B approaches
zero. Thus, v is exactly equal to u when X is a pure translation. v is also an
invariant of X, so v = Xv = X−1v, but it is not a scalar multiple of u. This
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rx(θ) =





1 0 0
0 c s
0 −s c



 ry(θ) =





c 0 −s
0 1 0
s 0 c



 rz(θ) =





c s 0
−s c 0
0 0 1





v× =





0 −vz vy

vz 0 −vx

−vy vx 0





c = cos(θ)
s = sin(θ)

function X = rotx(θ)
E = rx(θ)

X =

[

E 03×3

03×3 E

]

end

function X = roty(θ)
E = ry(θ)

X =

[

E 03×3

03×3 E

]

end

function X = rotz(θ)
E = rz(θ)

X =

[

E 03×3

03×3 E

]

end

function X = xlt(r)

X =

[

13×3 03×3

−r× 13×3

]

end

function v× = crm(v)

v× =

[

v1:3× 03×3

v4:6× v1:3×

]

end

function v×∗ = crf(v)
v×∗ = − crm(v)T

end

function I = mcI(m, c, IC)

I =

[

IC − m c×c× m c×
−m c× m13×3

]

end

function v = XtoV(X)

v =
1

2

















X23 − X32

X31 − X13

X12 − X21

X53 − X62

X61 − X43

X42 − X51

















end

Table A.2: Spatial vector arithmetic functions and supporting 3D formulae
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Mathematical
Quantity Form Data Structure Size

motion
vector

[

ω

v

]

mv(ω, v) 6

force
vector

[

n

f

]

fv(n, f) 6

Plücker
transform

[

E 0

−E r× E

]

plx(E, r) 12

rigid-body
inertia

[

I h×
−h× m1

]

rbi(m, h, lt(I)) 10

artic.-body
inertia

[

I H

HT M

]

abi(lt(M), H , lt(I)) 21

Table A.3: Data structures for compact representation of spatial quantities

function is used to calculate position errors in kinematic constraint equations.
Its main use in dynamics is to calculate loop-closure position errors for use in
loop constraint stabilization (see §8.3).

A.3 Compact Representations

Most of the inefficiencies in the pure matrix implementation of spatial arith-
metic come from the use of general 6 × 6 matrices to represent Plücker trans-
forms, rigid-body inertias and articulated-body inertias. To give an extreme
example, the calculation of XTIX, where X is a Plücker transform and I is
a rigid-body inertia, would require 432 multiplications and 360 additions (two
6× 6× 6 matrix multiplications) if X and I are treated as general 6× 6 matri-
ces; but it is possible to perform this operation in only 52 multiplications and
56 additions if one exploits fully the special structure and properties of these
two matrices. This source of inefficiency can be eliminated by defining special
data structures to store these quantities, and special functions that implement
optimized versions of the operations of spatial arithmetic.

Table A.3 shows how this can be done. Expressions like mv(ω, v) are a
short-hand way of specifying the type and value of a data object. In the case
of mv(ω, v), the type is ‘motion vector’ and the value is a pair of 3D vectors.
On comparing this expression with the mathematical quantity it represents,
it can be seen that ω contains the first three Plücker coordinates of a spatial
motion vector, and v contains the rest. In the data structures for inertias,
the expression lt(· · · ) means ‘lower triangle of · · · ’. Thus, the data structure
rbi(m, h, lt(I)) contains the scalar m, the 3D vector h and the lower triangle
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of the 3× 3 matrix I , making a total of 1 + 3 + 6 = 10 numbers.
Strictly speaking, the data types mv and fv are no more compact than the

6D vectors they represent, which raises the question of why they are worth
having. The answer is type safety. By forcing the programmer to declare
each vector variable to be either a motion vector or a force vector, it becomes
possible for the compiler to detect a variety of incorrect expressions, like m+f ,
m · m, f × f , f = m, If and X∗m. With some programming languages, it
is possible to go even further, and have the compiler automatically select the
correct version of an operation from the types of its operands. An example is
shown in the following code fragment (in a fictitious programming language).

variable X : PluXfm;

variable f1, f2 : SpFvec;

variable I1, I2 : SpRBI;

X := plx(......);

f1 := fv(......);

I1 := rbi(......);

f2 := X.apply(f1);

I2 := X.apply(I1);

In this example, the first six lines declare five variables and initialize three of
them; and then the last two lines apply the Plücker transform described by X

to the force vector described by f1 and the rigid-body inertia described by I1.
The idea here is that the function apply exists in several different versions in
the software library—one for each kind of object that can be transformed—and
the compiler picks the right one for the type of argument. If the argument is
a force vector, then the compiler picks the version that calculates X∗f ; and if
the argument is a rigid-body inertia, then the compiler picks the version that
calculates X∗IX−1. By designing the software in this manner, it is possible to
relieve the programmer from having to remember the coordinate transformation
rule for each type of object.

Any well-designed spatial arithmetic package would also include a function
invApply, which would apply the inverse of the transform described by X. Thus,
if we were to add the lines

variable f3 : SpFvec;

f3 := X.invApply(f2);

to the above example, then f3 would be identical to f1 except for rounding
errors. This is more efficient than explicitly inverting X and applying the inverse.
Again, the compiler would pick the appropriate version of invApply according
to the type of object to be transformed.

Table A.4 lists most of the arithmetic operations that should be provided
in an efficient spatial arithmetic package, together with the formulae for im-
plementing them using compact data structures, and their computational cost
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Operation Formula Cost

α v̂ mv( αω, αv ) 6m

α f̂ fv( αn, αf ) 6m

α Î rbi( αm, αh, lt(αI) ) 10m

α IA abi( lt(αM ), αH , lt(αI) ) 21m

v̂1 + v̂2 mv( ω1 + ω2, v1 + v2 ) 6a

f̂1 + f̂2 fv( n1 + n2, f1 + f2 ) 6a

Î1 + Î2 rbi( m1 + m2, h1 + h2, lt(I1 + I2) ) 10a

IA
1 + IA

2 abi( lt(M1 + M2), H1 + H2, lt(I1 + I2) ) 21a

IA
1 + Î2 abi( lt(M1 + m21), H1 + h2×, lt(I1 + I2) ) 15a

v̂ · f̂ ω · n + v · f 6m + 5a

v̂1 × v̂2 mv( ω1×ω2, ω1×v2 + v1×ω2 ) 18m + 12a

v̂ ×∗ f̂ fv( ω×n + v×f , ω×f ) 18m + 12a

Î v̂ fv( Iω + h×v, mv − h×ω ) 24m + 18a

IAv̂ fv( Iω + Hv, Mv + HTω ) 36m + 30a

X1X2 plx( E1E2, r2 + ET
2 r1 ) 33m + 24a

X−1 plx( ET, −Er ) 9m + 6a

Xv̂ mv( Eω, E(v − r×ω) ) 24m + 18a

X−1v̂ mv( ETω, ETv + r×ETω ) 24m + 18a

X∗f̂ fv( E(n − r×f), Ef ) 24m + 18a

XTf̂ fv( ETn + r×ETf , ETf ) 24m + 18a

X∗ÎX−1 rbi( m, E(h − mr),

lt(E(I + r×h× + (h − mr)×r×)ET) )
52m + 56a

XTÎX
rbi( m, ETh + mr, lt(ETIE −

r×(ETh)×− (ETh + mr)×r×) )
52m + 56a

X∗IAX−1 abi( lt(EMET), E(H − r×M)ET,

lt(E(I − r×HT + (H − r×M)r×)ET) )
137m + 137a

XTIAX

abi( lt(M ′), H ′ + r×M ′,

lt(ETIE + r×H ′T − (H ′ + r×M ′)r×) )

where M ′ = ETME and H ′ = ETHE

137m + 137a

Table A.4: Spatial arithmetic operation formulae and cost figures
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figures. The symbols m and a in the cost column refer to floating-point multi-
plications and additions, respectively, with subtractions counted as additions.
To avoid name clashes, the symbols v̂, f̂ and Î denote spatial motion (velocity),
force and rigid-body inertia, respectively. The cost figures quoted here are for
optimized implementations of the calculations. Thus, a calculation like r×M ,
for example, is treated as the product of a skew-symmetric matrix with a sym-
metric one, which costs only 15m + 9a. Likewise, a calculation like EMET is
assumed to be implemented using the appropriate efficiency trick from Section
A.5, which costs only 28m+29a. The coordinate transform formulae that would
be used by X.apply(...) and X.invApply(...) are as follows:

X.apply(...) X.invApply(...)

Xv̂ X−1v̂

X∗f̂ XTf̂

X∗ÎX−1 XTÎX

X∗IAX−1 XTIAX

Bear in mind that the cost figures in this table are not the last word in efficiency.
In particular, significant further improvements can be obtained by using axial
screw transforms instead of general Plücker transforms, as explained in Section
A.4.

To see how the formulae and cost figures in Table A.4 are obtained, let us
examine the operation X∗ÎX−1 in detail. Expressed in terms of 6×6 matrices,
we have

X∗ÎX−1 =

[

E 0

0 E

] [

1 −r×
0 1

] [

I h×
−h× m1

] [

1 0

r× 1

] [

ET 0

0 ET

]

=

[

E 0

0 E

] [

I + r×h× h×− mr×
−h× m1

][

1 0

r× 1

] [

ET 0

0 ET

]

=

[

E 0

0 E

] [

I + r×h× y×
−h× m1

] [

1 0

r× 1

] [

ET 0

0 ET

]

=

[

E 0

0 E

] [

I + r×h× + y×r× y×
−h× + mr× m1

] [

ET 0

0 ET

]

=

[

E 0

0 E

] [

Z y×
−y× m1

][

ET 0

0 ET

]

=

[

EZET Ey×ET

−Ey×ET m1

]

=

[

EZET (Ey)×
−(Ey)× m1

]

,

where

y = h − mr and Z = I + r×h× + y×r× .
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This agrees completely with the formula in the table. To obtain the cost figure,
we proceed as follows:

quantity cost quantity cost

h − mr 3m + 3a lt(I + r×h× + y×r×) 12a

lt(r×h×) 6m + 3a Ey 9m + 6a

lt(y×r×) 6m + 3a EZET 28m + 29a

Total: 52m + 56a

(See Section A.5 for how to calculate EZET.)

A.4 Axial Screw Transforms

An axial screw transform is a combination of a rotation about and translation
along a single coordinate axis. We shall use the expressions scrx(θ, d), scry(θ, d)
and scrz(θ, d) to denote axial screw transforms about the x, y and z axes,
respectively, in which the angle of rotation is θ and the amount of translation
is d. Thus,

scrx(θ, d) = rotx(θ) xlt([d 0 0]T) = xlt([d 0 0]T) rotx(θ)

(because the rotation and translation commute), and so on. A compact data
structure describing an axial screw transform would contain the three basic
quantities c = cos(θ), s = sin(θ) and d, as well as the derived quantities s2,
cs, 2cs and 1 − 2s2, which are used to reduce the recurrent cost of rotating
matrices, as explained in Section A.5.

Axial screw transforms are useful because they can be performed efficiently.
Table A.5 shows the cost of applying an axial screw transform to various spatial
quantities. The quantity Ia has been included because of its relevance to the
articulated-body algorithm. It will be discussed later in this section. The total
cost has been divided into a recurring cost, which is the cost of applying the
transform, and a one-time cost, which is the cost of calculating the quantities
s2, cs, 2cs and 1 − 2s2 mentioned above. If the angle is a constant, then this

transformed computational cost screw
quantity recurring one-time axis

m, f 10m + 6a

I 16m + 15a 2m + 3a

IA 38m + 40a 2m + 3a

Ia 28m + 34a 2m + 3a z
Ia 32m + 28a 2m + 3a x, y

row and column 3 of Ia are zero

Table A.5: Computational costs of axial screw transforms
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calculation can be performed off-line, or at the start of program execution;
otherwise, it must be performed each time the rotation angle changes.

On comparing the costs in Table A.5 with those in Table A.4, it can be seen
that the cost of an axial screw transform varies from about 40% (for a vector) to
less than a third (for an inertia) of the cost of a general Plücker transform. Now,
a general Plücker transform can be achieved by three successive axial screws;
but the transform from one Denavit-Hartenberg coordinate frame to another
can be achieved using only two axial screws. (See Figure 4.8.) Therefore, a
significant cost saving can be achieved, relative to the cost figures in Table A.4,
by using a combination of Denavit-Hartenberg frames in the system model and
axial-screw transforms in the calculations.

Vectors

Written out in full, the expression for Xm, where X = scrz(θ, d), is
















c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0

−sd cd 0 c s 0
−cd −sd 0 −s c 0
0 0 0 0 0 1

































mx

my

mz

mOx

mOy

mOz
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cmx + smy

cmy − smx

mz

c(mOx + myd) + s(mOy − mxd)
c(mOy − mxd) − s(mOx + myd)

mOz

















.

The cost of this operation is clearly 10m+6a. It is easily shown that the cost of
calculating X∗f is also 10m+6a, and that the costs of screw transforms about
the other two axes are the same.

Rigid-Body Inertia

Axial screw transforms are applied to rigid-body inertias using the formulae in
Table A.4, but the cost of the calculation is reduced because of the special form
of E and r. The cost breakdown for the operation X∗ÎX−1 is

computational cost
operation recurring one-time

y = h − mr 1m + 1a

Z = I + r×h× + y×r× 3m + 5a

Ey 4m + 2a

EZET 8m + 7a 2m + 3a

Totals: 16m + 15a 2m + 3a

The calculation of EZET is accomplished using the appropriate efficiency trick
from Section A.5. The calculation of Z proceeds as follows: if r = [0 0 d]T,
then

lt(r×h× + y×r×) =





−(hz + yz)d · ·
0 −(hz + yz)d ·

hxd hyd 0



 .
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The cost of calculating this expression is 3m + 1a, and the cost of adding it to
lt(I) is 4a. If r = [d 0 0]T or [0 d 0]T then the details will be different, but the
cost will be the same.

Articulated-Body Inertias

Axial screw transforms are applied to articulated-body inertias using the for-
mulae in Table A.4, but the cost of the calculation is reduced because of the
special form of E and r. The cost breakdown for the operation X∗IAX−1 is

computational cost
operation recurring one-time

EMET 8m + 7a 2m + 3a

Y = H − r×M 5m + 6a

EYET 12m + 12a 2m

Z = I − r×HT + Y r× 5m + 8a

EZET 8m + 7a 2m + 3a

Totals: 38m + 40a 2m + 3a

(The cost breakdown and total cost of XTIAX are the same.) The three
rotations are performed using the appropriate efficiency tricks in Section A.5.
The 2m one-time cost for calculating EYET is subsumed in the 2m + 3a one-
time cost for the other two rotations. The cost figures for calculating Y and Z

can be understood as follows. If r = [0 0 d]T, then

r×M =





0 −d 0
d 0 0
0 0 0









M11 M12 M13

M21 M22 M23

M31 M32 M33



 =





−M21d −M22d −M23d
M11d M12d M13d

0 0 0





and

lt(−r×HT + Y r×) =





(H12 + Y12)d · ·
(Y22 − H11)d −(H21 + Y21)d ·

H32d −H31d 0



 .

The cost of calculating r×M is 5m (because M12 = M21); the cost of subtract-
ing it from H is 6a; the cost of calculating lt(−r×HT + Y r×) is 5m + 3a; and
the cost of adding it to lt(I) is 5a. If r = [d 0 0]T or [0 d 0]T then the details
will be different, but the costs will be the same.

Articulated-Body Inertias with Zero-Valued Rows and Columns

The single most expensive operation in the articulated-body algorithm is the
transformation of articulated-body inertias from one coordinate system to an-
other. However, the quantity that gets transformed is not a general articulated-
body inertia, but one of the form

Ia = IA − IAS(STIAS)−1STIA .
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This quantity has the following special property: if S is a 6 × d matrix having
6−d zero-valued rows, then all of the rows and columns of Ia corresponding to
the nonzero rows of S will be zero. For example, if S = [0 0 1 0 0 0]T (a revolute
joint) then row and column 3 of Ia will be zero, and if S = [03×2 13×3 03×1]

T

(a planar joint) then rows and columns 3, 4 and 5 of Ia will all be zero.

A significant improvement in the speed of the articulated-body algorithm
can be achieved by exploiting this special property of Ia. To create a customized
coordinate transformation procedure, one starts with the procedure for a general
articulated-body inertia, and makes whatever simplifications accrue from the
special form of Ia. Cost figures for two such customized transforms appear in
Table A.5, and a cost breakdown for each appears below. In both cases, row
and column 3 of Ia are zero. Note that scrz preserves the zeros in this row and
column, but scrx and scry do not. In typical use, Ia is transformed from one
Denavit-Hartenberg coordinate system to another by first applying scrz, and
then applying scrx to the result. The total cost of this procedure, including
the one-time cost for scrz only (because the x rotation angle is a constant), is
62m+65a. This is less than half the cost of the general transform in Table A.4,
and about 10% better than the figures reported in McMillan and Orin (1995).
More on this topic can be found in McMillan and Orin (1995).

z axis screw recurring
cost

EMET 8m + 7a

Y = H − r×M 5m + 6a

EYET 8m + 10a

Z = I − r×HT + Y r× 3m + 6a

EZET 4m + 5a

Total: 28m + 34a

x or y axis screw recurring
cost

M ′ = EMET 8m + 7a

H ′ = EHET 10m + 6a

Y = H ′ − r×M ′ 5m + 6a

I ′ = EIET 4m + 1a

I ′ − r×H ′T + Y r× 5m + 8a

Total: 32m + 28a

A.5 Some Efficiency Tricks

Product of Rotation Matrices

Any one row or column of a 3 × 3 rotation matrix is the vector product of the
other two. Thus, if F and G are two rotation matrices, and E = FG, then E

can be calculated in the following manner:





E11 E12

E21 E22

E31 E32



 =





F11 F12 F13

F21 F22 F23

F31 F32 F33









G11 G12

G21 G22

G31 G32



 ,





E13

E23

E33



 =





E11

E21

E31



×





E12

E22

E32



 .



A.5. SOME EFFICIENCY TRICKS 253

The total cost of this calculation is 24m + 15a, which amounts to a saving of
3m + 3a over standard matrix multiplication. More generally, the cost of the
calculation E = F1F2 · · ·FnG is (18m + 12a)n + 6m + 3a.

Rotation of a General Matrix

Consider the calculation B = EAET, where E is a rotation matrix and A is
a general 3 × 3 matrix. This calculation can be performed as two 3 × 3 × 3
multiplications, for a total cost of 54m + 36a. However, it is possible to reduce
this cost to 40m + 39a as follows. First, split A into three components:

A = L + D + v× ,

where

L =





A11 − A33 A12 0
A21 A22 − A33 0

A31 + A13 A32 + A23 0



 , D =





A33 0 0
0 A33 0
0 0 A33



 , v =





−A23

A13

0



 .

B can now be expressed as

B = E (L + D + v×) ET

= ELET + D + (Ev)× .

Defining Y = EL and Z = Y ET, we calculate




Y11 Y12

Y21 Y22

Y31 Y32



 =





E11 E12 E13

E21 E22 E23

E31 E32 E33









L11 L12

L21 L22

L31 L32



 ,





· Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33



 =





Y11 Y12

Y21 Y22

Y31 Y32





[

E11 E21 E31

E12 E22 E32

]

and
Z11 = L11 + L22 − Z22 − Z33 .

(This last equation exploits the invariance of the trace under rotation. Alterna-
tively, Z11 could have been calculated with the rest of Z at a cost of 2m + 1a.)
Finally, Ev is calculated by a 3× 2× 1 matrix multiplication between the left-
most two columns of E and the top two elements of v, and the quantities Z,
D and (Ev)× are summed. The total cost of this procedure is calculated as
follows:

quantity cost quantity cost

L 4a Z11 3a

Y 18m + 12a Ev 6m + 3a

Z 16m + 8a Z + D + (Ev)× 9a

Total: 40m + 39a

This is slightly more than the recurring cost of three successive rotations about
the coordinate axes.
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Rotation of a Symmetric Matrix

Now consider the calculation B = EAET, where E is a general 3× 3 rotation
matrix and A is a symmetric matrix. This calculation can be performed using
the exact same procedure as for a general matrix A, but with some simplifica-
tions allowed by the symmetry. Specifically, we only need to calculate the lower
triangle of B. As a consequence, there is no need to calculate Z12, Z13 or Z23;
and, as a further consequence, there is no need to calculate Y11 or Y12. Thus,
the calculations of Y and Z simplify to

[

Y21 Y22

Y31 Y32

]

=

[

E21 E22 E23

E31 E32 E33

]





L11 L12

L21 L22

L31 L32





and
[

Z21 Z22 ·
Z31 Z32 Z33

]

=

[

Y21 Y22

Y31 Y32

] [

E11 E21 E31

E12 E22 E32

]

,

with Z11 calculated as before. The total cost of this simplified procedure is:

quantity cost quantity cost

L 4a Z11 3a

Y 12m + 8a Ev 6m + 3a

Z 10m + 5a Z + D + (Ev)× 6a

Total: 28m + 29a

This is a substantial improvement on the cost of two 3 × 3 × 3 matrix multi-
plications, but it is not quite as fast as performing three successive rotations
about the coordinate axes.

Rotation of a General Matrix about a Coordinate Axis

Suppose we wish to calculate B = EAET, where E is rx(θ), ry(θ) or rz(θ),
and A is a general 3× 3 matrix. The formulae for these three rotations can be
written in the following manner.2

rx(θ) A rx(θ)T =





A11 cA12 + sA13 cA13 − sA12

cA21 + sA31 A22 + αx A23 + βx

cA31 − sA21 A32 + βx A33 − αx





ry(θ) A ry(θ)T =





A11 − αy cA12 − sA32 A13 + βy

cA21 − sA23 A22 cA23 + sA21

A31 + βy cA32 + sA12 A33 + αy





rz(θ) A rz(θ)T =





A11 + αz A12 + βz cA13 + sA23

A21 + βz A22 − αz cA23 − sA13

cA31 + sA32 cA32 − sA31 A33





2These formulae, and those in the next trick, are based on the work of McMillan (1994).
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where

αx = cs(A23 + A32) + s2(A33 − A22)

αy = cs(A31 + A13) + s2(A11 − A33)

αz = cs(A12 + A21) + s2(A22 − A11)

βx = cs(A33 − A22) − s2(A23 + A32)

βy = cs(A11 − A33) − s2(A31 + A13)

βz = cs(A22 − A11) − s2(A12 + A21)

s = sin(θ) and c = cos(θ) .

In all cases, the cost is the same, and is calculated as follows:

computational cost
quantity recurring one-time

cs, s2 2m

α, β 4m + 4a

rest of B 8m + 8a

Totals: 12m + 12a 2m

Observe that the total cost has been divided into a recurring cost and a one-
time cost. The idea here is that an axial-rotation data structure is defined,
which contains the values c, s, cs and s2, and all four quantities are available at
the time the rotation is performed. Thus, the one-time cost is the cost incurred
when the data structure is initialized or updated,3 and the recurring cost is
the cost incurred each time a rotation is performed. This tactic allows one to
exploit the fact that many rotation angles in dynamics calculations are known
constants, and that even where the rotation angle varies, the data structure will
often be used more than once between changes.

Rotation of a Symmetric Matrix about a Coordinate Axis

Now consider the calculation of B = EAET, where E is rx(θ), ry(θ) or rz(θ),
and A is a symmetric 3 × 3 matrix. The formulae for these rotations are
simplified versions of the formulae for rotating a general matrix, and can be
written as follows:

lt( rx(θ) A rx(θ)T) =





A11 · ·
cA21 + sA31 A22 + αx ·
cA31 − sA21 βx A33 − αx





3Strictly speaking, the cost of initializing this data structure should include the cost of
performing one sine and one cosine calculation. However, these trigonometric calculations
are normally excluded from the cost figures because they are assumed to be the same for all
methods.
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lt( ry(θ) A ry(θ)T) =





A11 − αy · ·
cA21 − sA23 A22 ·

βy cA32 + sA12 A33 + αy





lt( rz(θ) A rz(θ)T) =





A11 + αz · ·
βz A22 − αz ·

cA31 + sA32 cA32 − sA31 A33





where
αx = 2csA32 + s2(A33 − A22)

αy = 2csA31 + s2(A11 − A33)

αz = 2csA21 + s2(A22 − A11)

βx = cs(A33 − A22) + (1 − 2s2)A32

βy = cs(A11 − A33) + (1 − 2s2)A31

βz = cs(A22 − A11) + (1 − 2s2)A21 .

In all cases, the cost is the same, and is calculated as follows:

computational cost
quantity recurring one-time

cs, s2 2m

2cs, (1 − 2s2) 3a

α, β 4m + 3a

rest of B 4m + 4a

Totals: 8m + 7a 2m + 3a

Once again, the total cost has been divided into a recurring cost and a one-
time cost. The axial-rotation data structure is assumed to contain the values
c, s, cs, s2, 2cs and 1 − 2s2, all of which are available at the time the rotation
is performed. Thus, the one-time cost is incurred when the data structure is
initialized or updated, and the recurring cost is incurred each time a rotation
is performed.
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Symbols

The following list shows the basic associations between symbols and their mean-
ings in this book. The list is not comprehensive. Subscripts and superscripts
refine the basic meanings. For example, vJ = velocity across a joint; ag = grav-
itational acceleration; Ii = inertia of body i; and so on. Leading superscripts
denote coordinate systems. Many symbols have more than one meaning, and a
few meanings have more than one symbol.

×∗, X∗ dual (i.e., force-vector version of) cross-product operator (×) and co-
ordinate transform (X)

α, α̇ vectors of velocity and acceleration variables, especially as an alterna-
tive to q̇ and q̈

γ explicit motion constraint function (q = γ(y))

δ loop-closure position error; vector with one nonzero element

ζ, ζ̇ vectors of contact-separation velocity and acceleration variables

ι spatial impulse vector

λ(i), µ(i), κ(i), ν(i) parent of (λ), set of children of (µ), set of joints that
support (κ), and set of bodies in subtree starting at (ν) body i (§4.1.4)

λ vector of constraint force variables; vector of contact normal forces

σ spatial bias velocity in (e.g.) rheonomic constraint due to explicit de-
pendence on time

τ vector of joint-space or generalized force variables; active force variables
for a joint (τ = STfJ)

φ implicit motion constraint function (φ(q) = 0)

Φ spatial inverse inertia

ω 3D angular velocity vector

a spatial acceleration vector

b spatial bias acceleration (as in a = Φf + b)

c velocity-dependent spatial acceleration term; 3D vector locating centre
of mass

C joint-space or generalized bias force (as in τ = Hq̈ + C)

d, e (Plücker) basis vectors on motion (d) and force (e) spaces



266 SYMBOLS

E 3D rotation matrix

f 3D linear force; spatial force (sometimes f̂); general element of F
6

G, g coefficients of explicit motion constraint equation (q̇ = Gẏ, q̈ = Gÿ+g

where G = ∂γ/∂y (if γ defined), g = Ġẏ)

h spatial momentum vector; first moment of mass (h = mc)

H joint-space or generalized inertia

Ī 3D rotational inertia

I spatial inertia (IA, Ia: articulated-body, Ic: composite-rigid-body)

J , JL body (J) and loop (JL) Jacobian: v = Jq̇ and vJ = JLq̇, where v and
vJ are body and loop-joint velocities, respectively

K, k coefficients of implicit motion constraint equation (Kq̇ = 0, Kq̈ = k;
K = ∂φ/∂q, k = −K̇q̇)

m general spatial motion vector (any element of M
6)

M
n, F

n vector spaces of generalized (n=n), spatial (n=6) and planar (n=3)
motion (M) and force (F) vectors

N , n number of things (N) and variables (n); e.g., NB, NJ , NL, n: number
of bodies, joints, kinematic loops and degrees of motion freedom

n moment or couple; spatial contact normal

N collection of contact normals: N = [n1 n2 · · · ]
O, P points in space; origins of coordinate frames; names of coordinate sys-

tems having those origins

p(i), s(i) predecessor (p) and successor (s) bodies of joint i

p spatial bias force (as in f = Ia + p or f = IAa + pA)

P system-wide mapping between vectors pertaining to bodies and vectors
pertaining to joints (6NB × 6NJ matrix)

q, q̇, q̈ vectors of joint-space or generalized position, velocity and acceleration
variables; such variables for a single joint

r 3D position vector of a point (e.g. an origin or a point in a body)

S, T general vector subspaces; motion freedom (S) and constraint and active
force (T and Ta) subspaces

S, T matrices representing S and T ; (T only) collection of contact normals:
T = [t1 t2 · · · ]

t joint-space or generalized contact normal

u general vector; generalized force corresponding to ẏ; actuated subset
of τ ; generalized impulse

v general vector; 3D linear velocity; spatial velocity (sometimes v̂)

X coordinate transform matrix (jXi: transform from i to j coordinates;
XJ: joint transform; XT, XP and XS: see §4.2)

y, ẏ, ÿ independent variables in explicit constraint equations; independent
subset of variables q, q̇ and q̈ after application of constraint
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absolute coordinates, 74, 196
acceleration

bias (b), 36, 58
bias (bA), 122, 124, 136, 138
classical, 30, 97, 99
closed-form expression, 92
contact separation, 214, 217, 221
generalized (α̇), 41
generalized (q̈), 40, 43–45
generalized (ÿ), 44–46
gravitational (ag), 94, 181, 182, 185
joint (aJ), 30, 55, 61
joint (cJ), 55, 83, 85, 95
joint (q̈), 55, 58
joint-space, 31
of body in system, 30
relative, 184
spatial, 19, 28–31
summation of, 30
time-dependent (σ̊), 55
velocity-product (avp), 144, 153, 182
velocity-product (c), 126, 128, 131

algorithm complexity, 89–90
articulated body, 120

as rigid-body system, 123
box-cylinder example, 122
handle of, 120, 139
multiple handles, 122, 136–139
pairwise assembly, 125, 137

articulated-body algorithm, 128–131,
251

alternative versions, 131
divide and conquer, 136
equations and pseudocode, 132
floating base, 181

pseudocode, 182
hybrid dynamics, 176

pseudocode, 178
table of equations, 177

articulated-body inertia, 119–128
arithmetic, 247, 251
basic properties, 120
calculation of

assembly method, 125–128
assembly, multiple handles,

136–139
projection method, 123–125
systematic, 131–136
table of formulae, 134–135

Ia and pa, 127, 176
inverse, 121, 124, 137
multi-handle, 122, 137
properties of inverse, 124
summation of, 121

augmented body, 192
axial-screw transform, 204, 249–252

table of costs, 249

base coordinates, 74
basis, see also coordinate system

dual, 8, 17
on a subspace, 47
orthonormal, 9, 11, 14
Plücker, 11, 14, 24
planar, 37
reciprocity, 9, 17

Baumgarte stabilization, 145–147
block-diagonal structure of K and G,

158
body ↔ joint mapping (P ), 61, 167
body coordinate frame (Fi), 73
body coordinates, 74, 95, 106, 131
body Jacobian, see Jacobian
body position, 74, 75
branch-induced sparsity, 110–112, 151,

175, 206

Cartesian frame, 11, 14, 20, 73
child sets (µ), 72
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closed-loop system, 69, 141
configuration ambiguity, 160
mobility, 159
overconstraint, 161
properties of, 159–161

coefficient of restitution, 233
collision, 223, 228, 232
compliant contact, 235–239
composite-rigid-body algorithm,

104–108
alternative derivation, 108–110
floating base, 182

pseudocode, 183
hybrid dynamics, 173–176

pseudocode, 174
sparsity, 175

operations-count analysis, 204–208
pseudocode, 107

computational cost, see efficiency
condition number, 198, 201
configuration space, 40
connectivity, 66–72
connectivity graph, 66–72

expansion of, 114
for hybrid dynamics, 175
representation, 71–72
spanning tree, 67

constraint, see motion, force, inequality
contact constraint equation, 215, 217,

223
contact dynamics, 213–222, 236

having no solution, 218
simulation procedure, 225

contact normal, 213, 216, 220
joint space, 220

coordinate system
Cartesian, 11, 14
dual, 9, 17, 40
generalized, 40, 43, 59
homogeneous, 22
Plücker, 11, 15–16, 20, 43

coordinate transform, 9, 18
.apply(), 246, 248
.invApply(), 246, 248
homogeneous, 22
how to describe, 23, 241
Plücker, 20–23
planar, 38, 241
rotation, 21, 243

table of formulae, 23, 244
translation, 21, 243

couple, see force
cross product, 23–25, 243

as differential operator, 23
dual (×∗), 23, 25
operator form (a×), 9, 21, 25
operator form (a×∗), 25
planar, 37, 241
table of properties, 22, 25

decomposition of vectors, 47, 50
Denavit-Hartenberg (DH) parameters,

75–77
Denavit-Hartenberg coordinate frame,

75, 204, 207, 250
derivative

apparent, 27, 30, 55
componentwise, 26
of a coordinate transform, 28
of a Plücker basis vector, 23
of a vector, 25
of inertia, 33

differentiation, 25–27
dot notation (v̇), 26, 27
in moving coordinates, 26
ring notation (̊v), 27
table of formulae, 26

direct sum (⊕), 48
dyad, 10, 33
dyadic, 10, 33–34

table of properties, 34
dynamic equivalence, 189
dynamics algorithms, 1

model-based, 3, 65, 209

E
n, 7, 48

efficiency, 201–204
branched trees, 206–208
comparison between algorithms,

201–204
measure of, 201
optimization, 204–206
symbolic simplification, 209–212

efficiency tricks, 252–256
equation of motion

articulated-body, 120–122, 124, 176
closed form, 92
closed-loop inverse dynamics, 165
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closed-loop system, 142, 143, 150,
152

collection of, 43
constrained rigid body, 57–60, 215,

217
construction of, 42–46
contact dynamics, 215, 217, 221

solution of, 224–227
floating base, 180, 181
general, 2, 40–42, 44, 59, 102, 219
impulsive, 231
inconsistency in, 150
multiple bodies, 60
projected, 46, 124, 152
rigid body, 3, 19, 35–36
spanning tree, 142
state-space formulation, 42
two-body system, 190
with explicit constraints, 45
with gear constraints, 188
with implicit constraints, 45, 59, 63,

143, 150, 167
Euler angles, 84
Euler parameters, 86
Euler’s equation, 36
excess mobility, 161

F
3, 37, 38

F
6, 14, 17, 18, 23, 38, 43

F
n, 7, 40, 43, 49

factorization, see sparse matrix
FD(· · ·), 2, 41
FDx(· · ·), 42
first-order dynamical system, 235
fixed base, 66, 74
floating base, 67, 179
floating-base coordinates, 156, 179–182
floating-base forward dynamics, 181–183
floating-base inverse dynamics, 183–185

equations and pseudocode, 185
floating-base system, 156, 179–181
floating-point arithmetic, 197
floating-point operations count, 201

for published algorithms, 202
graph of, 203, 209

force
acting on body i, 93
action and reaction, 18
actuator, 165–166

angular (couple), 14
bias (C), 40, 59, 103, 152–154
bias (p), 35, 57
bias (pA), 120, 124, 127
bias (pc), 180, 184
constraint (fc), 57
constraint (λ), 44, 54, 59, 63,

150–151, 167
constraint (τc), 44
contact (fc), 214, 216
contact (λ), 217
contact (τc), 220
Coriolis and centrifugal, 40, 94
external (fx), 93, 153, 167
generalized (τ ), 40, 54, 59
generalized (u), 46
gravitational, 35, 40, 57
hybrid bias (C′), 173
joint (f

J
), 53, 62

joint (τ ), 54, 63
linear, 13
loop joint, 142, 148–149

active (τ a, fa), 148, 152–154
constraint (τ c, λ), 143, 149

moment about point, 14
soft contact, 236
spatial, 13–15
summation of, 18

force subspace matrix
active, 54, 56, 63, 153
constraint, 54, 56, 58, 62, 143, 155,

167
forward dynamics, 2, 41, 101, 117, 119
forward dynamics joint set (fd), 172
friction, 233, 238

coefficient of, 239

Gauss’ principle of least constraint, 225
gears, 55, 81, 186–189
geometric event, 228
geometry

contact, 227–230
system model, 73–74, 77

gravity, see force, acceleration
gravity compensation, 94

handle, see articulated body
hybrid dynamics, 171–176

ID(· · ·), 2, 41, 89, 103, 165, 173
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IDδ(· · ·), 103, 173
pseudocode, 104

impact, 213, 232
impulse, 214, 230
impulsive dynamics, 230–235
inequality constraint, 222–223

possible states of, 222
inertia

articulated-body, see

articulated-body inertia
composite-rigid-body, 105, 184
generalized, 40, 59
inverse, 36–37, 50, 58
joint-space, 102–103, 105
of geared electric motor, 189
planar, 38, 242
properties of, 34
rigid-body, 32, 35, 243, 250
rotational, 31, 33
spatial, 33–35

inertia parameters, 189–193
modification (I∆), 190

table of values, 191
simplification, 192

inverse dynamics, 2, 41, 89, 99, 164–166,
183–185

Jacobian
body, 20, 31, 73, 124, 144, 220, 232
floating-base, 186
loop, 145, 148

jcalc(· · ·), see joint calculation function
joint, 39, 53, 65

6-DoF, 67, 78, 179
cylindrical, 52, 78, 147, 148
helical (screw), 77, 78
planar, 78, 81
prismatic, 20, 52, 77, 78, 148, 191
rack and pinion, 81
revolute, 20, 55, 77, 78, 148, 191
sphere-in-cylinder, 161
spherical, 78, 84, 86, 148, 191
zero-DoF, 147, 148

joint axis vector, 20, 30, 91
joint bearings, 56, 94
joint calculation function, 80, 83, 146,

154
joint constraint, see motion constraint
joint location frame (Fi,j), 74

joint model, 78–80
table of formulae, 78, 148

joint model library, 78
joint parameter, 80, 82
joint polarity, 69

reversal of, 83
joint symmetry, 70, 83
joint transform (XJ), 74, 82, 147
joint type descriptor, 78, 83
joint variable, 20, 30, 53, 77, 81, 84, 86
joint-space inertia matrix, see inertia
Jourdain’s principle, 44
jtype(i), see joint type descriptor

kinematic chain, 19, 30, 69, 75, 91
kinematic constraint, see motion

constraint
kinematic loop, 68, 141

closed-form solution, 164
independent, 68
number of, 68

kinematic tree, 67
floating, 125
unbranched, see kinematic chain

kinetic energy, 32, 35, 40, 46, 104, 105,
186

Lagrange multiplier, 44
Lie algebra, 38
line contact, 229
linear complementarity problem (LCP),

224
link, 67
link coordinates, see body coordinates
loop closure function, see motion

constraint
loop constraint, see motion constraint
loop joint, 69, 142, 144, 146, 147

passive, 142
universal, 147

loop position error (δ), 146–148, 155

M
3, 37, 38

M
6, 11, 17, 18, 23, 38, 43

M
n, 7, 40, 43, 49

mass, 31
apparent, 121, 123

centre of, 121, 123
centre of, 31, 32, 36

minimal loop cluster, 158
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modelling error, 199
momentum

angular, 31
linear, 31
moment about point, 31
of floating-base system, 185
spatial, 19, 31–32

motion constraint, 44–46, 50–53
classification hierarchy, 51
explicit, 44–46, 161
holonomic, 50
implicit, 44, 45, 55, 62, 143
joint, 53–55
loop closure, 143–145, 154–156

pseudocode, 155
rounding-error problem, 156

loop closure function, 161–164
example, 162

nonholonomic, 50
rheonomic, 51
scleronomic, 51
stabilization of, 145–147
three-body, 52

motion subspace matrix, 50, 53, 56, 57,
83, 85, 179

motor algebra, 38
moving body, 66

Newton’s equation, 36
numerical integration, 198, 226

O(· · ·), 90
O(NB) = O(n), 90
O(nd2) vs. O(n3), 102, 116, 206
orthogonal complements, 48–49

table of properties, 49
overconstraint, 161

parent array (λ), 71
expansion of, 114
for hybrid dynamics, 175

planar vector, 37–38, 196, 241
arithmetic functions, 242

point contact, 213, 216
polyhedron, 227
power, 17, 19
power balance equation, 54, 59
predecessor, 53, 60, 69, 143, 148, 219
predecessor array (p), 71
predecessor array (pc), 220

predecessor frame, 78, 146, 154
predecessor transform array (XP), 74
prescribed motion, 172
prismatic, see joint
projection method, 46, 123–125
properly actuated system, 166
properly constrained system, 159, 161
pruning constraint equations, 150

qdfn(· · ·), 41
quadratic program, 224
quaternion, 84

R
n, 7

radius of gyration, 196
reciprocity condition, see basis
recurrence relations, 90–92
recursive formulation, 90
recursive Newton-Euler algorithm,

92–97
floating base, 182

pseudocode, 183
modified for loops, 153

pseudocode, 154
original version, 97–99
pseudocode, 96

redundantly actuated system, 166
reference coordinates, 74, 180
regular numbering, 69
removing high-frequency dynamics, 172
restitution

coefficient of, 233
tangential, 233, 234
torsional, 233, 234

revolute, see joint
rigid-body system, 39, 65

crank-slider linkage, 66
ladder, 168
satellite, 67

rot(E), 23
rotation, 84–86, 253–256
rotation matrix (E), 21, 85, 86, 252
rotx(θ), 23, 244
roty(θ), 23, 244
rotz(θ), 23, 244
round-off error, 196–198
rx(θ), 23, 244
ry(θ), 23, 244
rz(θ), 23, 244
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scalar product, 8, 17–19
nondegenerate, 8
operator form (a·), 9

screw axis, 16
screw theory, 16, 38
sensitivity, 199–201
soft contact, see compliant contact
solving Kq̈ = k to get q̈ = Gÿ + g, 152,

156–157
spanning tree, 43, 141–142

minimum-depth, 201
sparse matrix algorithms, 112–116

back-substitution, 115
Cholesky, 111
computational cost of, 116
LDLT, 111
LTDL, 112
LTL, 112, 151
multiplication, 115

sparse matrix method, 166–168
sparsity in K and G, 158–159
spatial vector, 3, 7, 40

force, 8, 18
magnitude, 17
motion, 8, 18
unit, 17
use of, 18–19

spatial vector arithmetic, 243–252
compact data structures, 245
simple functions, 244
table of operations, 247
type safety, 246

state space, 42
subtree sets (ν), 72, 174
successor, 53, 60, 69, 143, 148, 219
successor array (s), 71
successor array (sc), 220
successor frame, 78, 146, 154
successor transform array (XS), 74
support, 72
support sets (κ), 72
surface contact, 229
symbolic simplification, see efficiency
system model, 2, 41, 65, 87

tensor, see dyadic, inertia
topological tree, 67
topology, see connectivity
tree joint, 69

in forward direction, 71
in reverse direction, 71, 83

tree transform array (XT), 74, 77
truncation error, 198
twist, 16

underactuated system, 166
unilateral constraint, 222
units (measurement), 4

vector, 7
3D, 3, 8
abstract, 8
coordinate, 8
Euclidean, 8, 48
free, 16
line, 16
planar, see planar vector
spatial, see spatial vector

vector field, 12
vector space, 7

dual of, 8, 17
vector subspace, 46–50

active force, 54, 56
constraint force, 49, 54, 57
matrix representation, 47
motion, 46, 49, 53, 57

velocity
angular, 10
bias (σ), 53–55, 143
contact separation, 214, 216, 220
generalized (α), 41
generalized (q̇), 40
generalized (ẏ), 44
joint (α), 81
joint (q̇), 53
joint (vJ), 19, 53, 61, 80, 82, 95, 143
joint-space, 20
linear, 10
of body in system, 20, 72, 80
of point in body, 10
relative, 18
spatial, 10–13

wrench, 16

xlt(r), 23, 244
XtoV, 242, 243

zero-dimensional matrix, 53


