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Preface

The purpose of this book is to describe recent developments in solving eigen-
value problems, in particular with respect to the QR and QZ algorithms as
well as structured matrices.

Outline

Mathematically speaking, the eigenvalues of a square matrix A are the roots
of its characteristic polynomial det(A−λI). An invariant subspace is a linear
subspace that stays invariant under the action of A. In realistic applications,
it usually takes a long process of simplifications, linearizations and discretiza-
tions before one comes up with the problem of computing the eigenvalues of
a matrix. In some cases, the eigenvalues have an intrinsic meaning, e.g., for
the expected long-time behavior of a dynamical system; in others they are
just meaningless intermediate values of a computational method. The same
applies to invariant subspaces, which for example can describe sets of initial
states for which a dynamical system produces exponentially decaying states.

Computing eigenvalues has a long history, dating back to at least 1846
when Jacobi [172] wrote his famous paper on solving symmetric eigenvalue
problems. Detailed historical accounts of this subject can be found in two
papers by Golub and van der Vorst [140, 327].

Chapter 1 of this book is concerned with the QR algorithm, which was
introduced by Francis [128] and Kublanovskaya [206] in 1961–1962, partly
based on earlier work by Rutishauser [278]. The QR algorithm is a general-
purpose, numerically backward stable method for computing all eigenvalues of
a non-symmetric matrix. It has undergone only a few modification during the
following 40 years, see [348] for a complete overview of the practical QR algo-
rithm as it is currently implemented in LAPACK [10, 17]. An award-winning
improvement was made in 2002 when Braman, Byers, and Mathias [62] pre-
sented their aggressive early deflation strategy. The combination of this de-
flation strategy with a tiny-bulge multishift QR algorithm [61, 208] leads to
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a variant of the QR algorithm, which can, for sufficiently large matrices, re-
quire less than 10% of the computing time needed by the current LAPACK
implementation. Similar techniques can also be used to significantly improve
the performance of the post-processing step necessary to compute invariant
subspaces from the output of the QR algorithm. Besides these algorithmic im-
provements, Chapter 1 summarizes well-known and also some recent material
related to the perturbation analysis of eigenvalues and invariant subspaces;
local and global convergence properties of the QR algorithm; and the failure
of the large-bulge multishift QR algorithm in finite-precision arithmetic.

The subject of Chapter 2 is the QZ algorithm, a popular method for com-
puting the generalized eigenvalues of a matrix pair (A,B), i.e., the roots of
the bivariate polynomial det(βA−αB). The QZ algorithm was developed by
Moler and Stewart [248] in 1973. Its probably most notable modification has
been the high-performance pipelined QZ algorithm developed by Dackland
and K̊agström [96]. One topic of Chapter 2 is the use of Householder matrices
within the QZ algorithm. The wooly role of infinite eigenvalues is investigated
and a tiny-bulge multishift QZ algorithm with aggressive early deflation in
the spirit of [61, 208] is described. Numerical experiments illustrate the per-
formance improvements to be gained from these recent developments.

This book is not so much about solving large-scale eigenvalue problems.
The practically important aspect of parallelization is completely omitted; we
refer to the ScaLAPACK users’ guide [49]. Also, methods for computing a few
eigenvalues of a large matrix, such as Arnoldi, Lanczos or Jacobi-Davidson
methods, are only partially covered. In Chapter 3, we focus on a descendant
of the Arnoldi method, the recently introduced Krylov-Schur algorithm by
Stewart [307]. Later on, in Chapter 4, it is explained how this algorithm can
be adapted to some structured eigenvalue problems in a considerably simple
manner. Another subject of Chapter 3 is the balancing of sparse matrices for
eigenvalue computations [91].

In many cases, the eigenvalue problem under consideration is known to
be structured. Preserving this structure can help preserve induced eigenvalue
symmetries in finite-precision arithmetic and may improve the accuracy and
efficiency of an eigenvalue computation. Chapter 4 provides an overview of
some of the recent developments in the area of structured eigenvalue prob-
lems. Particular attention is paid to the concept of structured condition num-
bers for eigenvalues and invariant subspaces. A detailed treatment of the-
ory, algorithms and applications is given for product, Hamiltonian and skew-
Hamiltonian eigenvalue problems, while other structures (skew-symmetric,
persymmetric, orthogonal, palindromic) are only briefly discussed.

Appendix B contains an incomplete list of publicly available software for
solving general and structured eigenvalue problems. A more complete and
regularly updated list can be found at http://www.cs.umu.se/∼kressner/
book.php, the web page of this book.
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Prerequisites

Readers of this text need to be familiar with the basic concepts from nu-
merical analysis and linear algebra. Those are covered by any of the text
books [103, 141, 304, 305, 354]. Concepts from systems and control theory
are occasionally used; either because an algorithm for computing eigenvalues
is better understood in a control theoretic setting or such an algorithm can
be used for the analysis and design of linear control systems. Knowledge of
systems and control theory is not assumed, everything that is needed can be
picked up from Appendix A, which contains a brief introduction to this area.
Nevertheless, for getting a more complete picture, it might be wise to com-
plement the reading with a state space oriented book on control theory. The
monographs [148, 265, 285, 329, 368] are particularly suited for this purpose
with respect to content and style of presentation.
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Sun, Paul Van Dooren, Krešimir Veselić, David Watkins, and many others for
helpful and illuminating discussions. The work on this book was supported
by the DFG Research Center Matheon “Mathematics for key technologies”
in Berlin.

Berlin, Daniel Kressner
April 2005



Contents

1 The QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Standard Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Spectral Projectors and Separation . . . . . . . . . . . . . . . . . . 4
1.2.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Eigenvalue Clusters and Invariant Subspaces . . . . . . . . . . 10
1.2.4 Global Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 The Basic QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Local Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Hessenberg Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Implicit Shifted QR Iteration . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.5 The Overall Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.6 Failure of Global Converge . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Isolating Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.3 Merits of Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Block Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.1 Compact WY Representation . . . . . . . . . . . . . . . . . . . . . . . 40
1.5.2 Block Hessenberg Reduction . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.3 Multishifts and Bulge Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.4 Connection to Pole Placement . . . . . . . . . . . . . . . . . . . . . . 45
1.5.5 Tightly Coupled Tiny Bulges . . . . . . . . . . . . . . . . . . . . . . . 48

1.6 Advanced Deflation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.7 Computation of Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . 57

1.7.1 Swapping Two Diagonal Blocks . . . . . . . . . . . . . . . . . . . . . 58
1.7.2 Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.7.3 Block Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.8 Case Study: Solution of an Optimal Control Problem . . . . . . . . 63



XII Contents

2 The QZ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.1 The Generalized Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . 68
2.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.1 Spectral Projectors and Dif . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2.2 Local Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.3 Global Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3 The Basic QZ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.3.1 Hessenberg-Triangular Form . . . . . . . . . . . . . . . . . . . . . . . . 76
2.3.2 Implicit Shifted QZ Iteration. . . . . . . . . . . . . . . . . . . . . . . . 79
2.3.3 On the Use of Householder Matrices . . . . . . . . . . . . . . . . . 82
2.3.4 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.5 The Overall Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.4 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.4.1 Isolating Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.4.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.5 Block Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.5.1 Reduction to Hessenberg-Triangular Form . . . . . . . . . . . . 94
2.5.2 Multishifts and Bulge Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.5.3 Deflation of Infinite Eigenvalues Revisited . . . . . . . . . . . . 101
2.5.4 Tightly Coupled Tiny Bulge Pairs . . . . . . . . . . . . . . . . . . . 102

2.6 Aggressive Early Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.7 Computation of Deflating Subspaces . . . . . . . . . . . . . . . . . . . . . . . 108

3 The Krylov-Schur Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1 Basic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.1.1 Krylov Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.1.2 The Arnoldi Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2 Restarting and the Krylov-Schur Algorithm . . . . . . . . . . . . . . . . . 119
3.2.1 Restarting an Arnoldi Decomposition . . . . . . . . . . . . . . . . 120
3.2.2 The Krylov Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.2.3 Restarting a Krylov Decomposition . . . . . . . . . . . . . . . . . . 122
3.2.4 Deflating a Krylov Decomposition . . . . . . . . . . . . . . . . . . . 124

3.3 Balancing Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.3.1 Irreducible Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.3.2 Krylov-Based Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 Structured Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.1.1 Structured Condition Number . . . . . . . . . . . . . . . . . . . . . . 133
4.1.2 Structured Backward Error . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.1.3 Algorithms and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2 Products of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.1 Structured Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.2.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2.3 The Periodic QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 155



Contents XIII

4.2.4 Computation of Invariant Subspaces . . . . . . . . . . . . . . . . . 163
4.2.5 The Periodic Krylov-Schur Algorithm . . . . . . . . . . . . . . . . 165
4.2.6 Further Notes and References . . . . . . . . . . . . . . . . . . . . . . . 174

4.3 Skew-Hamiltonian and Hamiltonian Matrices . . . . . . . . . . . . . . . 175
4.3.1 Elementary Orthogonal Symplectic Matrices . . . . . . . . . . 176
4.3.2 The Symplectic QR Decomposition . . . . . . . . . . . . . . . . . . 177
4.3.3 An Orthogonal Symplectic WY-like Representation . . . . 179
4.3.4 Block Symplectic QR Decomposition . . . . . . . . . . . . . . . . . 180

4.4 Skew-Hamiltonian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.4.1 Structured Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.4.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.4.3 A QR-Based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.4.4 Computation of Invariant Subspaces . . . . . . . . . . . . . . . . . 189
4.4.5 SHIRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.4.6 Other Algorithms and Extensions . . . . . . . . . . . . . . . . . . . 191

4.5 Hamiltonian matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.5.1 Structured Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.5.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.5.3 An Explicit Hamiltonian QR Algorithm . . . . . . . . . . . . . . 194
4.5.4 Reordering a Hamiltonian Schur Decomposition . . . . . . . 195
4.5.5 Algorithms Based on H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.5.6 Computation of Invariant Subspaces Based on H2 . . . . . 199
4.5.7 Symplectic Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.5.8 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.5.9 Other Algorithms and Extensions . . . . . . . . . . . . . . . . . . . 208

4.6 A Bouquet of Other Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.6.1 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.6.2 Skew-symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.6.3 Persymmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.6.4 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.6.5 Palindromic Matrix Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A Background in Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
A.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

A.1.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
A.1.2 Controllability and Observability . . . . . . . . . . . . . . . . . . . . 218
A.1.3 Pole Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A.2 Balanced Truncation Model Reduction . . . . . . . . . . . . . . . . . . . . . 219
A.3 Linear-Quadratic Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.4 Distance Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.4.1 Distance to Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
A.4.2 Distance to Uncontrollability . . . . . . . . . . . . . . . . . . . . . . . 222



XIV Contents

B Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
B.1 Computational Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
B.2 Flop Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
B.3 Software for Standard and Generalized Eigenvalue Problems . . 226
B.4 Software for Structured Eigenvalue Problems . . . . . . . . . . . . . . . . 228

B.4.1 Product Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . 228
B.4.2 Hamiltonian and Skew-Hamiltonian Eigenvalue

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
B.4.3 Other Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253



1

The QR Algorithm

Z’n eigenwaarde? Heeft ie een minderwaardigheitscomplex?
—Paul Smit [290]

Warning: SCHUR did not converge at index = 4.

—Matlab’s response to

schur([ 0 90 0 300; ...

-4e+9 0 -300 0; ...

0 -300 0 4e+9; ...

0 0 -90 0 ])

The QR algorithm is a numerically backward stable method for computing
eigenvalues and invariant subspaces of a real or complex matrix. Being devel-
oped by Francis [128] and Kublanovskaya [206] in the beginning of the 1960’s,
the QR algorithm has withstood the test of time and is still the method of
choice for small- to medium-sized nonsymmetric matrices. Of course, it has
undergone significant improvements since then but the principles remain the
same. The purpose of this chapter is to provide an overview of all the ingredi-
ents that make the QR algorithm work so well and recent research directions
in this area.

Dipping right into the subject, the organization of this chapter is as fol-
lows. Section 1.1 is used to introduce the standard eigenvalue problem and the
associated notions of invariant subspaces and (real) Schur decompositions. In
Section 1.2, we summarize and slightly extend existing perturbation results
for eigenvalues and invariant subspaces. The very basic, explicit shifted QR
iteration is introduced in the beginning of Section 1.3. In the subsequent
subsection, Section 1.3.1, known results on the convergence of the QR iter-
ation are summarized and illustrated. The other subsections are concerned
with important implementation details such as preliminary reduction to Hes-
senberg form, implicit shifting and deflation, which eventually leads to the
implicit shifted QR algorithm as it is in use nowadays, see Algorithm 3. In
Section 1.3.6, the above-quoted example, for which the QR algorithm fails to
converge in a reasonable number of iterations, is explained in more detail. In
Section 1.4, we recall balancing and its merits on subsequent eigenvalue com-
putations. Block algorithms, aiming at high performance, are the subject of
Section 1.5. First, in Sections 1.5.1 and 1.5.2, the standard block algorithm for
reducing a general matrix to Hessenberg form, (implicitly) based on compact
WY representations, is described. Deriving a block QR algorithm is a more
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subtle issue. In Sections 1.5.3 and 1.5.4, we show the limitations of an approach
solely based on increasing the size of bulges chased in the course of a QR iter-
ation. These limitations are avoided if a large number of shifts is distributed
over a tightly coupled chain of tiny bulges, yielding the tiny-bulge multishift
QR algorithm described in Section 1.5.5. Further performance improvements
can be obtained by applying a recently developed so called aggressive early
deflation strategy, which is the subject of Section 1.6. To complete the picture,
Section 1.7 is concerned with the computation of selected invariant subspaces
from a real Schur decomposition. Finally, in Section 1.8, we demonstrate the
relevance of recent improvements of the QR algorithm for practical applica-
tions by solving a certain linear-quadratic optimal control problem.

Most of the material presented in this chapter is of preparatory value for
subsequent chapters but it may also serve as an overview of recent develop-
ments related to the QR algorithm.

1.1 The Standard Eigenvalue Problem

The eigenvalues of a matrix A ∈ R
n×n are the roots of its characteristic

polynomial det(A − λI). The set of all eigenvalues will be denoted by λ(A).
A nonzero vector x ∈ C

n is called an (right) eigenvector of A if it satisfies
Ax = λx for some eigenvalue λ ∈ λ(A). A nonzero vector y ∈ C

n is called
a left eigenvector if it satisfies yHA = λyH . Spaces spanned by eigenvectors
remain invariant under multiplication by A, in the sense that

span{Ax} = span{λx} ⊆ span{x}.

This concept generalizes to higher-dimensional spaces. A subspace X ⊂ C
n

with AX ⊂ X is called a (right) invariant subspace of A. Correspondingly,
YHA ⊆ YH characterizes a left invariant subspace Y. If the columns of X
form a basis for an invariant subspace X , then there exists a unique matrix
A11 satisfying AX = XA11. The matrix A11 is called the representation of A
with respect to X. It follows that λ(A11) ⊆ λ(A) is independent of the choice
of basis for X . A nontrivial example is an invariant subspace belonging to a
complex conjugate pair of eigenvalues.

Example 1.1. Let λ = λ1 + iλ2 with λ1 ∈ R, λ2 ∈ R\{0} be a complex eigen-
value of A ∈ R

n×n. If x = x1 + ix2 is an eigenvector belonging to λ with
x1, x2 ∈ R

n, then we find that

Ax1 = λ1x1 − λ2x2, Ax2 = λ2x1 + λ1x2.

Note that x1, x2 are linearly independent, since otherwise the two above re-
lations imply λ2 = 0. This shows that span{x1, x2} is a two-dimensional
invariant subspace of A admitting the representation

A
[
x1, x2

]
=
[
x1, x2

] [ λ1 λ2

−λ2 λ1

]
.

♦
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Now, let the columns of the matrices X and X⊥ form orthonormal bases for an
invariant subspace X and its orthogonal complement X⊥, respectively. Then
U = [X,X⊥] is a unitary matrix and

UHAU =
[

A11 A12

0 A22

]
, λ(A) = λ(A11) ∪ λ(A22). (1.1)

Such a block triangular decomposition is called block Schur decomposition and
the matrix

[
A11
0

A12
A22

]
is a block Schur form of A. Subsequent application of

this decomposition to the blocks A11 and A22 leads to a triangular decom-
position, called Schur decomposition. Unfortunately, this decomposition will
be complex unless all eigenvalues of A are real. A real alternative is provided
by the following well-known theorem, which goes back to Murnaghan and
Wintner [252]. It can be proven by successively combining the block decom-
position (1.1) with Example 1.1.

Theorem 1.2 (Real Schur decomposition). Let A ∈ R
n×n, then there

exists an orthogonal matrix Q so that QT AQ = T with T in real Schur form:

T =

⎡
⎢⎢⎢⎢⎣

T11 T12 · · · T1m

0 T22
. . .

...
...

. . . . . . Tm−1,m

0 · · · 0 Tmm

⎤
⎥⎥⎥⎥⎦ ,

where all diagonal blocks of T are of order one or two. Scalar blocks con-
tain the real eigenvalues and two-by-two blocks contain the complex conjugate
eigenvalue pairs of A.

The whole purpose of the QR algorithm is to compute such a Schur de-
composition. Once it has been computed, the eigenvalues of A can be easily
obtained from the diagonal blocks of T . Also, the leading k columns of Q span
a k-dimensional invariant subspace of A provided that the (k + 1, k) entry of
T is zero. The representation of A with respect to this basis is given by the
leading principal k × k submatrix of T . Bases for other invariant subspaces
can be obtained by reordering the diagonal blocks of T , see Section 1.7.

1.2 Perturbation Analysis

Any numerical method for computing the eigenvalues of a general matrix
A ∈ R

n×n is affected by rounding errors, which are a consequence of working
in finite-precision arithmetic. Another, sometimes less important, source of er-
rors are truncation errors caused by the fact that any eigenvalue computation
is necessarily based on iterations. The best we can hope for is that our favorite
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algorithm computes the exact eigenvalues and invariant subspaces of a per-
turbed matrix A + E where ‖E‖2 ≤ ε‖A‖2 and ε is not much larger than the
unit roundoff u. Such an algorithm is called numerically backward stable and
the matrix E is called the backward error. Fortunately, almost all algorithms
discussed in this book are backward stable. Hence, we can always measure
the quality of our results by bounding the effects of small backward errors on
the computed quantities. This is commonly called perturbation analysis and
this section briefly reviews the perturbation analysis for the standard eigen-
value problem. More details can be found, e.g., in the book by Stewart and
Sun [308], and a comprehensive report by Sun [317].

1.2.1 Spectral Projectors and Separation

Two quantities play a prominent role in perturbation bounds for eigenvalues
and invariant subspaces, the spectral projector P and the separation of two
matrices A11 and A22, sep(A11, A22).

Suppose we have a block Schur decomposition

UHAU =
[

A11 A12

0 A22

]
. (1.2)

The spectral projector belonging to the eigenvalues of A11 ∈ C
k×k is defined

as

P = U

[
Ik R
0 0

]
UH , (1.3)

where R satisfies the matrix equation

A11R−RA22 = A12. (1.4)

If we partition U = [X,X⊥] with X ∈ C
n×k then P is an oblique projection

onto the invariant subspace X = range(X). Equation (1.4) is called a Sylvester
equation and our working assumption will be that it is uniquely solvable.

Lemma 1.3 ([308, Thm. V.1.3]). The Sylvester equation (1.4) has a unique
solution R if and only if A11 and A22 have no eigenvalues in common, i.e.,
λ(A11) ∩ λ(A22) = ∅.

Proof. Consider the linear operator T : C
k×(n−k) → C

k×(n−k) defined by

T : R �→ A11R−RA22.

We will make use of the fact that equation (1.4) is uniquely solvable if and
only if kernel(T) = {0}.

Suppose that λ is a common eigenvalue of A11 and A22. Let v and w be
corresponding left and right eigenvectors of A11 and A22, respectively. Then
the nonzero matrix vwH satisfies T(vwH) = 0.
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Conversely, assume there is a matrix R ∈ kernel(T)\{0}. Consider a sin-
gular value decomposition R = V1

[
Σ
0

0
0

]
V H

2 , where Σ ∈ C
l×l is nonsingular

and V1, V2 are unitary. If we partition

V H
1 A11V1 =

[
X11 X12

X21 X22

]
, V H

2 A22V2 =
[

Y11 Y12

Y21 Y22

]
,

where X11, Y11 ∈ C
l×l, then T(R) = 0 implies that the blocks X21 and Y12

must vanish. Furthermore, Y11 = Σ−1X11Σ showing that the matrices A11

and A22 have the l ≥ 1 eigenvalues of X11 in common. 
�

Note that the eigenvalues of A11 = XHAX and A22 = XH
⊥ AX⊥ remain

invariant under a change of basis for X and X⊥, respectively. Hence, we may
formulate the unique solvability of the Sylvester equation (1.4) as an intrinsic
property of the invariant subspace X .

Definition 1.4. Let X be an invariant subspace of A, and let the columns of
X and X⊥ form orthonormal bases for X and X⊥, respectively. Then X is
called simple if

λ(XHAX) ∩ λ(XH
⊥ AX⊥) = ∅.

The spectral projector P defined in (1.3) has a number of useful properties.
Its first k columns span the right invariant subspace and its first k rows span
the left invariant subspace belonging to λ(A11). Conversely, if the columns of
X and Y form bases for the right and left invariant subspaces, then

P = X(Y HX)−1Y H . (1.5)

The norm of P can be expressed as

‖P‖2 =
√

1 + ‖R‖22, ‖P‖F =
√

k + ‖R‖2F . (1.6)

In the proof of Lemma 1.3 we have made use of a certain linear map, the
Sylvester operator

T : R �→ A11R−RA22. (1.7)

The separation of two matrices A11 and A22, sep(A11, A22), is defined as the
smallest singular value of T:

sep(A11, A22) := min
R �=0

‖T(R)‖F

‖R‖F
= min

R �=0

‖A11R−RA22‖F

‖R‖F
. (1.8)

If T is invertible then sep(A11, A22) = 1/‖T−1‖, where ‖ · ‖ is the norm
on the space of linear operators C

k×(n−k) → C
k×(n−k) that is induced by

the Frobenius norm on C
k×(n−k). Yet another formulation is obtained by

expressing T in terms of Kronecker products. The Kronecker product ‘⊗’ of
two matrices X ∈ C

k×l and Y ∈ C
m×n is the km× ln matrix
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X ⊗ Y :=

⎡
⎢⎢⎢⎣

x11Y x12Y · · · x1lY
x21Y x22Y · · · x2lY

...
...

...
xk1Y xk2Y · · · xklY

⎤
⎥⎥⎥⎦ .

The “vec” operator stacks the columns of a matrix Y ∈ C
m×n into one long

vector vec(Y ) ∈ C
mn in their natural order. The Kronecker product and the

vec operator have many useful properties, see [171, Chap. 4]. For our purpose
it is sufficient to know that

vec(T(R)) = KT · vec(R), (1.9)

where the (n− k)k × (n− k)k matrix KT is given by

KT = In−k ⊗A11 −AT
22 ⊗ Ik.

Note that AT
22 denotes the complex transpose of A22. Combining (1.8) with (1.9)

yields a direct formula for evaluating the separation:

sep(A11, A22) = σmin(KT) = σmin(I ⊗A11 −AT
22 ⊗ I), (1.10)

where σmin denotes the smallest singular value of a matrix. Note that the
singular values of the Sylvester operator T remain the same if the roles of A11

and A22 in the definition (1.7) are interchanged. In particular,

sep(A11, A22) = sep(A22, A11).

Separation and spectral projectors are not unrelated, for example a direct
consequence of (1.6) and the definition of sep is the inequality

‖P‖2 ≤

√
1 +

‖A12‖2F
sep2(A11, A22)

, (1.11)

see also [308].

1.2.2 Eigenvalues and Eigenvectors

An eigenvalue λ is called simple if λ is a simple root of the characteristic
polynomial det(λI −A). We will see that simple eigenvalues and eigenvectors
of A + E depend analytically on the entries of E in a neighborhood of E = 0.
This allows us to expand these quantities in power series in the entries of
E, leading to so called perturbation expansions. The respective first order
terms of these expansions are presented in the following theorem, perturbation
expansions of higher order can be found, e.g., in [26, 317].
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Theorem 1.5. Let λ be a simple eigenvalue of A ∈ R
n×n with normalized

right and left eigenvectors x and y, respectively. Let E ∈ B(0) be a perturbation
of A, where B(0) ⊂ C

n×n is a sufficiently small open neighborhood of the
origin. Then there exist analytic functions fλ : B(0) → C and fx : B(0) → C

n

so that λ = fλ(0), x = fx(0), and λ̂ = fλ(E) is an eigenvalue of A + E with
eigenvector x̂ = fx(E). Moreover xH(x̂− x) = 0, and we have the expansions

λ̂ = λ +
1

yHx
yHEx +O(‖E‖2), (1.12)

x̂ = x−X⊥(XH
⊥ (A− λI)X⊥)−1XH

⊥ Ex +O(‖E‖2), (1.13)

where the columns of X⊥ form an orthonormal basis for span{x}⊥.

Proof. Let us define the analytic function

f(E, x̂, λ̂) =
[

(A + E)x̂− λ̂x̂
xH(x̂− x)

]
.

If this function vanishes then λ̂ is an eigenvalue of A+E with the eigenvector
x̂. The Jacobian of f with respect to (x̂, λ̂) at (0, x, λ) is given by

J =
∂f

∂(x̂, λ̂)

∣∣∣
(0,x,λ)

=
[

A− λI −x
xH 0

]
.

The fact that λ is simple implies that J is invertible with

J−1 =
[

X⊥(XH
⊥ (A− λI)X⊥)−1XH

⊥ x
−yH/(yHx) 0

]
.

Hence, the implicit function theorem (see, e.g., [196]) guarantees the existence
of functions fλ and fx on a sufficiently small open neighborhood of the origin,
with the properties stated in the theorem. 
�

Eigenvalues

By bounding the effects of E in the perturbation expansion (1.12) we get the
following perturbation bound for eigenvalues:

|λ̂− λ| = |yHEx|
|yHx| +O(‖E‖2)

≤ ‖E‖2
|yHx| +O(‖E‖2)

= ‖P‖2 ‖E‖2 +O(‖E‖2),

where P = (xyH)/(yHx) is the spectral projector belonging to λ, see (1.5).
Note that the utilized upper bound |yHEx| ≤ ‖E‖2 is attained by E = εyxH
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for any scalar ε. This shows that the absolute condition number for a simple
eigenvalue λ can be written as

c(λ) := lim
ε→0

1
ε

sup
‖E‖2≤ε

|λ̂− λ| = ‖P‖2. (1.14)

Note that the employed perturbation E = εyxH cannot be chosen to be
real unless the eigenvalue λ itself is real. But if A is real then it is reasonable to
expect the perturbation E to adhere to this realness and c(λ) might not be the
appropriate condition number if λ is complex. This fact has found surprisingly
little attention in standard text books on numerical linear algebra, which can
probably be attributed to the fact that restricting the set of perturbations to
be real can only have a limited influence on the condition number.

To see this, let us define the absolute condition number for a simple eigen-
value λ with respect to real perturbations as follows:

cR(λ) := lim
ε→0

1
ε

sup
‖E‖F ≤ε

E∈Rn×n

|λ̂− λ|. (1.15)

For real λ, we have already seen that one can choose a real rank-one pertur-
bation that attains the supremum in (1.15) with cR(λ) = c(λ) = ‖P‖2. For
complex λ, we clearly have cR(λ) ≤ c(λ) = ‖P‖2 but it is not clear how much
c(λ) can exceed cR(λ). The following theorem shows that the ratio cR(λ)/c(λ)
can be bounded from below by 1/

√
2.

Theorem 1.6 ([82]). Let λ ∈ C be a simple eigenvalue of A ∈ R
n×n with

normalized right and left eigenvectors x = xR + ixI and y = yR + iyI , respec-
tively, where xR, xI , yR, yI ∈ R

n. Then the condition number cR(λ) as defined
in (1.15) satisfies

cR(λ) =
1

|yHx|

√
1
2

+

√
1
4
(bT b− cT c)2 + (bT c)2,

where b = xR ⊗ yR + xI ⊗ yI and c = xI ⊗ yR − xR ⊗ yI . In particular, we
have the inequality

cR(λ) ≥ c(λ)/
√

2.

Proof. The perturbation expansion (1.12) readily implies
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cR(λ) = lim
ε→0

sup
{
|yHEx|/|yHx| : E ∈ R

n×n, ‖E‖F ≤ ε
}

= 1/|yHx| · sup
{
|yHEx| : E ∈ R

n×n, ‖E‖F = 1
}

= 1/|yHx| · sup
E∈Rn×n

‖E‖F =1

∥∥∥∥
[

yT
RExR + yT

I ExI

yT
RExI − yT

I ExR

]∥∥∥∥
2

= 1/|yHx| · sup
‖vec(E)‖2=1

E∈Rn×n

∥∥∥∥
[

(xR ⊗ yR)T vec(E) + (xI ⊗ yI)T vec(E)
(xI ⊗ yR)T vec(E)− (xR ⊗ yI)T vec(E)

]∥∥∥∥
2

= 1/|yHx| · sup
‖vec(E)‖2=1

E∈Rn×n

∥∥∥∥
[

(xR ⊗ yR + xI ⊗ yI)T

(xI ⊗ yR − xR ⊗ yI)T

]
vec(E)

∥∥∥∥
2

. (1.16)

This is a standard linear least-squares problem [48]; the maximum of the
second factor is given by the larger singular value of the n2 × 2 matrix

X =
[
xR ⊗ yR + xI ⊗ yI xI ⊗ yR − xR ⊗ yI

]
. (1.17)

A vector vec(E) attaining the supremum in (1.16) is a left singular vector
belonging to this singular value. The square of the larger singular value of X
is given by the larger root θ� of the polynomial

det(XT X − θI2) = θ2 − (bT b + cT c)θ + (bT b)(cT c)− (bT c)2.

Because the eigenvectors x and y are normalized, it can be shown by direct
calculation that bT b+ cT c = 1 and 1/4− (bT b)(cT c) = 1/4 · (bT b− cT c)2. This
implies

θ� =
1
2

+

√
1
4
(bT b− cT c)2 + (bT c)2,

which concludes the proof. 
�

For the matrix A =
[

0
−1

1
0

]
, we have cR(i) = cR(−i) = 1/

√
2 and c(i) =

c(−i) = 1, revealing that the bound cR(λ) ≥ c(λ)/
√

2 can actually be attained.
Note that it is the use of the Frobenius norm in the definition (1.15) of cR(λ)
that leads to the effect that cR(λ) may become less than the norm of A.
A general framework allowing the use of a broad class of norms has been
developed by Karow [186] based on the theory of spectral value sets and real
µ-functions. Using these results, it can be shown that the bound cR(λ) ≥
c(λ)/

√
2 remains true if the Frobenius norm in the definition (1.15) of cR(λ)

is replaced by the 2-norm [187].

Eigenvectors

Deriving condition numbers for eigenvectors is complicated by the fact that
an eigenvector x is not uniquely determined. Measuring the quality of an
approximate eigenvector x̂ using ‖x̂−x‖2 is thus only possible after a suitable
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normalization has been applied to x and x̂. An alternative is to use ∠(x, x̂),
the angle between the one-dimensional subspaces spanned by x and x̂, see
Figure 1.1.

x̂

x

x̂ − x

∠(x, x̂)

Fig. 1.1. Angle between two vectors.

Corollary 1.7. Under the assumptions of Theorem 1.5,

∠(x, x̂) ≤ ‖(XH
⊥ (A− λI)X⊥)−1‖2 ‖E‖2 +O(‖E‖2).

Proof. Using the fact that x is orthogonal to (x̂ − x) we have tan ∠(x, x̂) =
‖x̂− x‖2. Expanding arctan yields ∠(x, x̂) ≤ ‖x̂− x‖2 +O(‖x̂− x‖3), which
together with the perturbation expansion (1.13) concludes the proof. 
�

The absolute condition number for a simple eigenvector x can be defined
as

c(x) := lim
ε→0

1
ε

sup
‖E‖2≤ε

∠(x, x̂).

If we set A22 = XH
⊥ AX⊥ then Corollary 1.7 combined with (1.10) implies

c(x) ≤ ‖(A22 − λI)−1‖2 = σ−1
min(A22 − λI) = (sep(λ,A22))−1. (1.18)

Considering perturbations of the form E = εX⊥uxH , where u is a left singular
vector belonging to the smallest singular value of A22 − λI, it can be shown
that the left and right sides of the inequality in (1.18) are actually equal.

1.2.3 Eigenvalue Clusters and Invariant Subspaces

Multiple eigenvalues do not have an expansion of the form (1.12), in fact they
may not even be Lipschitz continuous with respect to perturbations of A, as
demonstrated by the following example.
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Example 1.8 (Bai, Demmel, and McKenney [20]). Let

Aη =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0
. . . . . .

...
. . . 1

...
η 0 0

1/2

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ R

11×11.

For η = 0, the leading 10-by-10 block is a single Jordan block corresponding
to zero eigenvalues. For η �= 0, this eigenvalue bifurcates into the ten distinct
10th roots of η. E.g. for η = 10−10, these bifurcated eigenvalues have absolute
value η1/10 = 1/10 showing that they react very sensitively to perturbations
of A0.

On the other hand, if we do not treat the zero eigenvalues of A0 individually
but consider them as a whole cluster of eigenvalues, then the mean of this
cluster will be much less sensitive to perturbations. In particular, the mean
remains zero no matter which value η takes. ♦

The preceeding example reveals that it can sometimes be important to con-
sider the effect of perturbations on clusters instead of individual eigenvalues.
To see this for general matrices, let us consider a block Schur decomposition
of the form

UHAU =
[

A11 A12

0 A22

]
, A11 ∈ C

k×k, A22 ∈ C
(n−k)×(n−k) (1.19)

where the eigenvalues of A11 form the eigenvalue cluster of interest. If λ(A11)
only consists of values very close to each other, then the mean of the eigenval-
ues, λ(A11) = trA11/k, contains all relevant information. Furthermore, λ(A11)
does not suffer from ill-conditioning caused by ill-conditioned eigenvalues of
A11. What we need to investigate the sensitivity of λ(A11) is a generalization
of the perturbation expansions in Theorem 1.5 to invariant subspaces, see
also [313, 317].

Theorem 1.9. Let A have a block Schur decomposition of the form (1.19)
and partition U = [X,X⊥] so that X = range(X) is an invariant subspace
belonging to λ(A11). Let the columns of Y form an orthonormal basis for the
corresponding left invariant subspace. Assume X to be simple and let E ∈
B(0) be a perturbation of A, where B(0) ⊂ C

n×n is a sufficiently small open
neighborhood of the origin. Then there exist analytic functions fA11 : B(0) →
C

k×k and fX : B(0) → C
n×k so that A11 = fA11(0), X = fX(0), and the

columns of X̂ = fX(E) span an invariant subspace of A+E corresponding to
the representation Â11 = fA11(E). Moreover XH(X̂ − X) = 0, and we have
the expansions

Â11 = A11 + (Y HX)−1Y HEX +O(‖E‖2), (1.20)
X̂ = X −X⊥T−1(XH

⊥ EX) +O(‖E‖2), (1.21)
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with the Sylvester operator T : Q �→ A22Q−QA11.

Proof. The theorem is proven by a block version of the proof of Theorem 1.5.
In the following, we provide a sketch of the proof and refer the reader to [313]
for more details. If

f(E, X̂, Â11) =
[

(A + E)X̂ − X̂Â11

XH(X̂ −X)

]
= 0, (1.22)

then range(X̂) is an invariant subspace corresponding to the representation
Â11. The Jacobian of f with respect to (X̂, Â11) at (0, X,A11) can be expressed
as a linear matrix operator having the block representation

J =
∂f

∂(X̂, Â11)

∣∣∣
(0,X,A11)

=
[

T̃ −X
XH 0

]

with the matrix operator T̃ : Z �→ AZ − ZA11. The fact that X is simple
implies the invertibility of the Sylvester operator T and thus the invertibility
of J . In particular, it can be shown that

J−1 =
[

X⊥T−1XH
⊥ X

−(Y HX)−1Y H 0

]
.

As in the proof of Theorem 1.5, the implicit function theorem guarantees the
existence of functions fA11 and fX on a sufficiently small, open neighborhood
of the origin, with the properties stated in the theorem. 
�

We only remark that the implicit equation f = 0 in (1.22) can be used to
derive Newton and Newton-like methods for computing eigenvectors or invari-
ant subspaces, see, e.g., [102, 264]. Such methods are, however, not treated in
this book although they are implicitly present in the QR algorithm [305, p.
418].

Corollary 1.10. Under the assumptions of Theorem 1.9,∣∣∣λ(Â11)− λ(A11)
∣∣∣ ≤ 1

k‖P‖2 ‖E‖(1) +O(‖E‖2)
≤ ‖P‖2 ‖E‖2 +O(‖E‖2),

(1.23)

where P is the spectral projector belonging to λ(A11) and ‖ · ‖(1) denotes the
Schatten 1-norm [171] defined as the sum of the singular values.

Proof. The expansion (1.20) yields

‖Â11 −A11‖(1) = ‖(Y HX)−1Y HEX‖(1) +O(‖E‖2)
≤ ‖(Y HX)−1‖2 ‖E‖(1) +O(‖E‖2)
= ‖P‖2 ‖E‖(1) +O(‖E‖2),
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where we used (1.5). Combining this inequality with

| tr Â11 − trA11| ≤
∑∣∣∣λ(Â11 −A11)

∣∣∣ ≤ ‖Â11 −A11‖(1)

concludes the proof. 
�
Note that the two inequalities in (1.23) are, in first order, equalities for

E = εY XH . Hence, the absolute condition number for the eigenvalue mean λ̄
is given by

c(λ̄) := lim
ε→0

1
ε

sup
‖E‖2≤ε

∣∣∣λ(Â11)− λ(A11)
∣∣∣ = ‖P‖2,

which is identical to (1.14) except that the spectral projector P now belongs
to a whole cluster of eigenvalues.

In order to obtain condition numbers for invariant subspaces we require a
notion of angles or distances between two subspaces.

Definition 1.11. Let the columns of X and Y form orthonormal bases for the
k-dimensional subspaces X and Y, respectively, and let σ1 ≤ σ2 ≤ · · · ≤ σk

denote the singular values of XHY . Then the canonical angles between X and
Y are defined by

θi(X ,Y) := arccos σi, i = 1, . . . , k.

Furthermore, we set Θ(X ,Y) := diag(θ1(X ,Y), . . . , θk(X ,Y)).

This definition makes sense as the numbers θi remain invariant under an
orthonormal change of basis for X or Y, and ‖XHY ‖2 ≤ 1 with equality if and
only if X = Y. The largest canonical angle has the geometric characterization

θ1(X ,Y) = max
x∈X
x�=0

min
y∈Y
y �=0

∠(x, y), (1.24)

see also Figure 1.2.
It can be shown that any unitarily invariant norm ‖ · ‖γ on R

k×k defines
a unitarily invariant metric dγ on the space of k-dimensional subspaces via
dγ(X ,Y) = ‖ sin[Θ(X ,Y)]‖γ [308, Sec II.4]. The metric generated by the 2-
norm is called the gap metric and satisfies

d2(X ,Y) := ‖ sin[Θ(X ,Y)]‖2 = max
x∈X

‖x‖2=1

min
y∈Y

‖x− y‖2. (1.25)

In the case that one of the subspaces is spanned by a non-orthonormal
basis, the following lemma provides a useful tool for computing canonical
angles.

Lemma 1.12 ([308]). Let the k-dimensional linear subspaces X and Y be
spanned by the columns of [I, 0]H , and [I, QH ]H , respectively. If σ1 ≥ σ2 ≥
· · · ≥ σk denote the singular values of Q then

θi(X ,Y) = arctanσi, i = 1, . . . , k.
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θ1(X, Y)

X

Y

Fig. 1.2. Largest canonical angle between two subspaces.

Proof. The columns of [I, QH ]H(I + QHQ)−1/2 form an orthonormal ba-
sis for Y. Consider a singular value decomposition Q = UΣV H with Σ =
diag(σ1, . . . , σk) and σ1 ≥ σ2 ≥ · · · ≥ σk. By Definition 1.11,

cos[Θ(X ,Y)] = V H(I + QHQ)−1/2V = (I + Σ2)1/2

showing that

tan[Θ(X ,Y)] = (cos[Θ(X ,Y)])−1(I − cos2[Θ(X ,Y)])−1/2 = Σ,

which proves the desired result. 
�

We are now prepared to generalize Corollary 1.7 to invariant subspaces.

Corollary 1.13. Under the assumptions of Theorem 1.9,

‖Θ(X , X̂ )‖F ≤
‖E‖F

sep(A11, A22)
+O(‖E‖2), (1.26)

where X̂ = range(X̂).

Proof. W.l.o.g. we may assume X = [I, 0]T . Since XT (X̂−X) = 0 the matrix
X̂ must have the form [I, QH ]H for some Q ∈ C

(n−k)×k. Together with the
perturbation expansion (1.21) this implies

‖Q‖F = ‖X̂ −X‖F = ‖X⊥T−1(XH
⊥ EX)‖F +O(‖E‖2)

≤ ‖T−1‖ ‖E‖F +O(‖E‖2) = ‖E‖F / sep(A11, A22) +O(‖E‖2).

Inequality (1.26) is proven by applying Lemma 1.12 combined with the ex-
pansion arctan(z) = z +O(z3). 
�
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Once again, the derived bound (1.26) is approximately sharp. To see this,
let V be a matrix so that ‖V ‖F = 1 and ‖T−1(V )‖F = 1/ sep(A11, A22).
Plugging E = εX⊥V XH with ε > 0 into the perturbation expansion (1.21)
yields

‖Θ(X , X̂ )‖F = ‖X̂ −X‖F +O(‖X̂ −X‖3) = ε/ sep(A11, A22) +O(ε2).

Hence, we obtain the following absolute condition number for an invariant
subspace X :

c(X ) := lim
ε→0

1
ε

sup
‖E‖F ≤ε

‖Θ(X , X̂ )‖F =
1

sep(A11, A22)
,

see also [299, 301, 308].

On the computation of sep

The separation of two matrices A11 ∈ C
k×k and A22 ∈ C

(n−k)×(n−k),
sep(A11, A22), equals the smallest singular value of the the k(n−k)×k(n−k)
matrix KT = In−k ⊗ A11 − AT

22 ⊗ Ik. Computing this value using a singular
value decomposition of KT is costly in terms of memory and computational
time. A much cheaper estimate of sep can be obtained by applying a norm
estimator [164, Ch. 14] to K−1

T . This amounts to the solution of a few linear
equations KTx = c and KT

Tx = d for particularly chosen right hand sides c and
d or, equivalently, the solution of a few Sylvester equations A11X−XA22 = C
and AT

11X−XAT
22 = D. This approach becomes particularly attractive if A11

and A22 are already in (real) Schur form, see [22, 77, 176, 181].

1.2.4 Global Perturbation Bounds

All the perturbation results derived in the previous two sections are of a
local nature; the presence of O(‖E‖2) terms in the inequalities makes them
difficult to interpret for large perturbations. How large is large depends on
the matrix in question. Returning to Example 1.8, we see that already for
η = 2−10 ≈ 10−3 two eigenvalues of the matrix Aη equal λ = 0.5 despite the
fact that c(λ) = 1.

To avoid such effects, we must ensure that the perturbation lets no eigen-
value in the considered cluster coalesce with an eigenvalue outside the cluster.
We will see that this is guaranteed as long as the perturbation E satisfies the
bound

‖E‖F <
sep(A11, A22)

4‖P‖2
, (1.27)

where λ(A11) contains the eigenvalues of interest and P is the corresponding
spectral projector.

An approach taken by Stewart [301] and extended by Demmel [101], see
also [89], can be used to derive exact perturbation bounds which are valid
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if (1.27) holds. For this purpose, let the matrix A be close to block Schur form
in the sense that the block A21 in

A =
[

A11 A12

A21 A22

]
is considerably small. We look for an invertible matrix of the form W =[

I
−Q

0
I

]
such that

W−1

[
A11 A12

A21 A22

]
W =

[
A11 −A12Q A12

A21 + QA11 −A22Q−QA12Q A22 + QA12

]
is in block Schur form. This is equivalent to require Q to solve the quadratic
matrix equation

QA11 −A22Q−QA12Q = −A21. (1.28)

The existence of such a solution is guaranteed if A21 is not too large.

Lemma 1.14. If ‖A12‖F ‖A21‖F < sep2(A11, A22)/4 then there exists a solu-
tion Q of the quadratic matrix equation (1.28) with

‖Q‖F <
2‖A21‖F

sep(A11, A22)
. (1.29)

Proof. The result follows from a more general theorem by Stewart, see [299,
301] or [308, Thm. 2.11]. The proof is based on constructing an iteration

Q0 ← 0, Qi+1 ← T−1(A21 −QiA12Qi),

with the Sylvester operator T : Q �→ A22Q − QA11. It is shown that the
iterates satisfy a bound below the right hand side of (1.29) and converge to
a solution of (1.28). We will use a similar approach in Section 4.1.1 to derive
structured condition numbers for invariant subspaces. 
�

Having obtained a solution Q of (1.28), an orthonormal basis for an in-
variant subspace X̂ of A is given by

X̂ =
[

I
−Q

]
(I + QHQ)−1/2, (1.30)

and the representation of A with respect to X̂ is

Â11 = (I + QHQ)1/2(A11 −A12Q)(I + QHQ)−1/2. (1.31)

This leads to the following global version of Corollary 1.13.

Theorem 1.15. Let A have a block Schur decomposition of the form

UHAU = U

[
A11 A12

0 A22

]
, A11 ∈ R

k×k, A22 ∈ R
(n−k)×(n−k),
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and assume that the invariant subspace X spanned by the first k columns of U
is simple. Let E ∈ R

n×n be a perturbation satisfying (1.27). Then there exists
an invariant subspace X̂ of A + E so that

‖ tan[Θ(X , X̂ )]‖F < η :=
4‖E‖F

sep(A11, A22)− 4‖P‖2 ‖E‖F
, (1.32)

where P is the spectral projector for λ(A11). Moreover, there exists a repre-
sentation Â11 of A + E with respect to an orthonormal basis for X̂ so that

‖Â11 −A11‖F <
1−
√

1− η2√
1− η2

‖A11‖F +
η√

1− η2
‖A‖F .

Proof. This theorem is a slightly modified version of a result by Demmel [101,
Lemma 7.8]. It differs in the respect that Demmel provides an upper bound on
‖ tan[Θ(X , X̂ )]‖2 instead of ‖ tan[Θ(X , X̂ )]‖F . The following proof, however,
is almost identical to the proof in [101].

Note that we may assume w.l.o.g. that A is already in block Schur form and
thus U = I. First, we will show that the bound (1.27) implies the assumption
of Lemma 1.14 for a certain quadratic matrix equation. For this purpose, let
R denote the solution of the Sylvester equation A11R−RA22 = A12 and apply
the similarity transformation WR =

[
I
0

−R/‖P‖2
I/‖P‖2

]
to A + E:

W−1
R (A + E)WR =

[
A11 0
0 A22

]
+
[

F11 F12

F21 F22

]
.

As ‖[I,±R]‖2 = ‖P‖2, it can be directly seen that ‖F11‖F , ‖F12‖F , ‖F21‖F

and ‖F22‖F are bounded from above by ‖P‖2‖E‖F . From the definition of
sep it follows that

sep(A11 + F11, A22 + F22) ≥ sep(A11, A22)− ‖F11‖F − ‖F22‖F

≥ sep(A11, A22)− 2‖P‖2 ‖E‖F (1.33)
> 2‖P‖2 ‖E‖F ≥ 0,

where the strict inequality follows from (1.27). This implies

‖F12‖F ‖F21‖F ≤ (‖P‖2 ‖E‖F )2 < sep2(A11 + F11, A22 + F22)/4,

showing that the assumption of Lemma 1.14 is satisfied for the quadratic
matrix equation

Q(A11 + F11)− (A22 + F22)Q−QF12Q = −F21.

Consequently, there exists a solution Q satisfying

‖Q‖F <
2‖F21‖F

sep(A11 + F11, A22 + F22)
≤ 2‖P‖2 ‖E‖F

sep(A11, A22)− 2‖P‖2 ‖E‖F

≤ 4‖P‖2 ‖E‖F / sep(A11, A22) < 1.
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Thus, A+E has an invariant subspace spanned by the columns of the matrix
product WR

[
I

−Q

]
. If we replace Q by Q̃ = Q(‖P‖2 · I + RQ)−1 in the defini-

tions of X̂ and Â11 in (1.30) and (1.31), respectively, then the columns of X̂
form an orthonormal basis for an invariant subspace X̂ of A+E belonging to
the representation Â11. We have

‖Q̃‖F ≤ ‖Q‖F ‖(‖P‖2 · I + RQ)−1‖2
≤ ‖Q‖F /(‖P‖2 − ‖R‖2‖Q‖2) ≤ ‖Q‖F /(‖P‖2 − ‖R‖2‖Q‖F )

≤ 4‖E‖F

sep(A11, A22)− 4‖R‖2 ‖E‖F

<
4‖E‖F

sep(A11, A22)− 4‖P‖2 ‖E‖F
= η,

which combined with Lemma 1.12 proves (1.32).
To prove the second part of the theorem, let Q̃ = UΣV H be a singular

value decomposition [141] with Σ = diag(σ1, . . . , σk) and σ1 ≥ · · · ≥ σk.
Using (1.31), with Q replaced by Q̃, we obtain

V H(Â11−A11)V = (I−Σ2)1/2(V HA11V −V HA12UΣ)(I−Σ2)−1/2−V HA11V,

which shows

‖Â11 −A11‖F ≤
1−
√

1− σ2
1√

1− σ2
1

‖A11‖F +
σ1√

1− σ2
1

‖A12‖F .

Since σ1 ≤ η, this concludes the proof. 
�

Note that the preceeding proof, in particular (1.33), also reveals that the
eigenvalues of A11 and A22 do not coalesce under perturbations that sat-
isfy (1.27).

1.3 The Basic QR Algorithm

The QR iteration, introduced by Francis [128] and Kublanovskaya [206], gen-
erates a sequence of orthogonally similar matrices A0 ← A,A1, A2, . . . which,
under suitable conditions, converges to a nontrivial block Schur form of A. Its
name stems from the QR decomposition that is used in the course of an iter-
ation. The second ingredient of the QR iteration is a real-valued polynomial
pi, the so called shift polynomial, which must be chosen before each iteration.
The QR decomposition of this polynomial applied to the last iterate Ai−1

is used to determine the orthogonal similarity transformation that yields the
next iterate:

pi(Ai−1) = QiRi, (QR decomposition) (1.34a)
Ai ← QT

i Ai−1Qi. (1.34b)
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1.3.1 Local Convergence

In the following we summarize the convergence analysis by Watkins and El-
sner [359] of the QR iteration defined by (1.34). The ith iterate of this sequence
can be written as

Ai = Q̂T
i AQ̂i, Q̂i := Q1Q2 · · ·Qi.

We have already seen that the matrix Ai has block Schur form[
A

(i)
11 A

(i)
12

0 A
(i)
22

]
, A

(i)
11 ∈ R

k×k, A
(i)
11 ∈ R

(n−k)×(n−k), (1.35)

if and only if the first k columns of Q̂i span an invariant subspace of A.
Let us assume that this invariant subspace is simple. Then the perturbation
analysis developed in the previous section shows that Ai is close to block
Schur form (1.35) (i.e., its (2, 1) block is of small norm) if and only if the
space spanned by the first k columns of Q̂i is close to an invariant subspace.
Hence, we can check the convergence of the QR iteration to block Schur form
by investigating the behavior of the subspace sequence defined by

Si := span{Q̂ie1, Q̂ie2, . . . , Q̂iek}.

If we define S0 := span{e1, e2, . . . , ek} then

Si = pi(A)pi−1(A) · · · p1(A)S0. (1.36)

This relation can be rewritten in the more compact form Si = p̂i(A)S0, where
p̂i denotes the polynomial product pi · pi−1 · · · p1.

Theorem 1.16. Let A ∈ R
n×n have a block Schur decomposition

UHAU =
[

A11 A12

0 A22

]
, A11 ∈ R

k×k, A22 ∈ R
(n−k)×(n−k).

Assume that λ(A11) ∩ λ(A22) = ∅, and let X1 and X2 denote the simple in-
variant subspaces belonging to λ(A11) and λ(A22), respectively. Given a se-
quence of polynomials p1, p2, . . . , assume p̂i(A11) to be nonsingular for all
p̂i = pipi−1 · · · p1. Let S0 be any k-dimensional subspace satisfying S0∩X2 = ∅.
Then the gap, see (1.25), between the subspaces Si = p̂i(A)S0 and the invari-
ant subspace X1 can be bounded by

d2(Si,X1) ≤ C ‖p̂i(A11)−1‖2 ‖p̂i(A22)‖2, (1.37)

where

C =
(
‖P‖2 +

√
‖P‖22 − 1

) d2(S0,X1)√
1− d2(S0,X1)2

and P is the spectral projector belonging to λ(A11).
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Proof. This result is essentially Theorem 5.1 in [359], but our assumptions are
slightly weaker and the presented constant C is potentially smaller.

Let R denote the solution of the Sylvester equation A11R−RA22 = A12, let
WR =

[
I
0

−R/‖P‖2
I/‖P‖2

]
, and apply the similarity transformation UWR to p̂i(A):

(UWR)−1p̂i(A)(UWR) =
[

p̂i(A11) 0
0 p̂i(A22)

]
.

Using two basic results by Watkins and Elsner (Lemma 4.1 and Lemma 4.4
in [359]), it follows that

d2(Si,X1) ≤ κ2(WR)
d2(S0,X1)‖p̂i(A11)−1‖2 ‖p̂i(A22)‖2√

1− d2(S0,X1)2
,

where κ2(WR) = ‖WR‖2 ‖W−1
R ‖2. From ‖P‖22 = 1 + ‖R‖22 it can be directly

verified that
κ2(WR) = ‖P‖2 +

√
‖P‖22 − 1,

which concludes the proof. 
�

Let us remark that the subspace condition S0 ∩ X2 = ∅ in the preceeding
theorem is rather weak. Later on, we will assume that A is in upper Hessenberg
form and S0 = span{e1, e2, . . . , ek}. In this case, the subspace condition is
satisfied by any k for which the first k subdiagonal entries of A do not vanish.

Apart from a different choice of the initial subspace S0, the constant C in
the upper bound (1.37) cannot be influenced. Thus, in order to obtain (rapid)
convergence predicted by this bound we have to choose fortunate shift polyno-
mials that yield small values for ‖p̂i(A11)−1‖2 ‖p̂i(A22)‖2. We will distinguish
two choices, the stationary case pi ≡ p for some fixed polynomial p, and the
instationary case where the polynomials pi converge to some polynomial p�

with all roots in λ(A).

Stationary shifts

Choosing stationary shift polynomials includes the important special case
pi(x) = x, where the iteration (1.34) amounts to the unshifted QR iteration:

Ai−1 = QiRi, (QR decomposition)
Ai ← RiQi.

The following example demonstrates that the convergence of this iteration
can be rather slow, especially if the eigenvalues of A are not well separated.

Example 1.17. Consider the 10× 10 matrix A = XΛX−1, where

Λ = diag(4, 2, 0.9, 0.8, 0.7, 0.6, 0.59, 0.58, 0.1, 0.09)
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Fig. 1.3. Convergence pattern of the unshifted QR iteration.

and X is a random matrix with condition number κ2(X) = 103. We applied
80 unshifted QR iterations to A0 = A; the absolute values of the entries in Ai

for i = 0, 10, . . . , 80 are displayed in Figure 1.3. First, the eigenvalue cluster
{0.1, 0.09} converges in the bottom right corner, followed by the individual
eigenvalues 4 and 2 in the top left corner. The other eigenvalues converge
much slower. Only after i = 1909 iterations is the norm of the strictly lower
triangular part of Ai less than u ‖A‖2. The diagonal entries of Ai approximate
the diagonal entries of Λ in descending order. ♦

The observed phenomenon, that the convergence is driven by the sepa-
ration of eigenvalues, is well explained by the following corollary of Theo-
rem 1.16.

Corollary 1.18 ([359]). Let A ∈ R
n×n and let p be a polynomial. Assume

that there exists a partitioning λ(A) = Λ1 ∪ Λ2 such that

γ :=
max{|p(λ2)| : λ2 ∈ Λ2}
min{|p(λ1)| : λ1 ∈ Λ1}

< 1. (1.38)

Let X1 and X2 denote the simple invariant subspace belonging to Λ1 and Λ2,
respectively. Let S0 be any k-dimensional subspace satisfying S0 ∩ X2 = ∅.



22 1 The QR Algorithm

Then for any γ̂ > γ there exists a constant Ĉ not depending on S0 so that
the gap between the subspaces Si = p(A)iS0, i = 1, 2, . . . , and the invariant
subspace X1 can be bounded by

d2(Si,X1) ≤ Cγ̂i,

where

C = Ĉ
d2(S0,X1)√

1− d2(S0,X1)2
.

Proof. Since the assumptions of Theorem 1.16 are satisfied, there exists a
constant C̃ so that

d2(Si,X1) ≤ C̃‖p(A11)−i‖2 ‖p(A22)i‖2,≤ C̃(‖p(A11)−1‖2 ‖p(A22)‖2)i,

where λ(A11) = Λ1 and λ(A22) = Λ2. If ρ denotes the spectral radius of
a matrix then γ = ρ(p(A11)−1)ρ(p(A22)) and Lemma A.4 yields for any
γ̂ > γ the existence of induced matrix norms ‖ · ‖α and ‖ · ‖β so that
γ̂ = ‖p(A11)−1‖α ‖p(A22)‖β . The equivalence of norms on finite-dimensional
spaces concludes the proof. 
�

This corollary predicts only linear convergence for constant shift polyno-
mials, which in fact can be observed in Example 1.17. To achieve quadratic
convergence it is necessary to vary pi in each iteration, based on information
contained in Ai−1.

Instationary shifts

If the shifts, i.e., the roots of the shift polynomial in each QR iteration, are
simple eigenvalues of A, then – under the assumptions of Theorem 1.16 – one
iteration of the QR iteration (1.34) yields

A1 =

[
A

(1)
11 A

(1)
12

0 A
(1)
22

]
,

where the order of A
(1)
22 equals the degree of the shift polynomial p1. More-

over, the eigenvalues of A
(1)
22 coincide with the roots of p1 and consequently

p1(A
(1)
22 ) = 0. This suggests defining the shift polynomial pi as the characteris-

tic polynomial of A
(i−1)
22 , the bottom right m×m block of Ai−1 for some fixed

integer m < n. The roots of such a polynomial pi are called Francis shifts1.
With this choice, the shifted QR iteration reads as follows:

pi(λ) ← det(λIm −A
(i−1)
22 ), (1.39a)

pi(Ai−1) = QiRi, (QR decomposition) (1.39b)
Ai ← QT

i Ai−1Qi. (1.39c)
1 It is not known to us who coined the term “Francis shifts”. Uses of this term

can be found in [103, 305]. Some authors prefer the terms “Wilkinson shifts” or
“generalized Rayleigh quotient shifts”.
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Fig. 1.4. Convergence pattern of the shifted QR iteration with two Francis shifts.

Example 1.19. Let A be the 10 × 10 matrix defined in Example 1.17. We
applied 8 shifted QR iterations of the form (1.39) to A0 = A with m = 2;
the absolute values of the entries in Ai for i = 0, 1, . . . , 8 are displayed in
Figure 1.4. It can be observed that the 2×2 bottom right block, which contains
approximations to the eigenvalue cluster {0.59, 0.6}, converges rather quickly.
Already after six iterations all entries to the left of this block are of absolute
value less than u‖A‖2. Also, the rest of the matrix has made a lot of progress
towards convergence. Most notably the eighth diagonal entry of A8 matches
the leading 10 decimal digits of the eigenvalue 0.58. ♦

The rapid convergence of the bottom right 2 × 2 block exhibited in the
preceeding example can be explained by Corollary 1.20 below. Once the shifts
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have settled down they are almost stationary shifts to the rest of the matrix
explaining the (slower) convergence in this part.

Corollary 1.20 ([359]). Let A ∈ R
n×n and let p̂i = p1p2 · · · pi, where

the Francis shift polynomials pi are defined by the sequence (1.39). As-
sume that the corresponding subspace sequence Si = p̂i(A)S0 with S0 =
span{e1, . . . , en−m} converges to some invariant subspace X1 of A and that all
eigenvalues not belonging to X1 are simple. Then this convergence is quadratic.

Proof. The idea behind the proof is to show that for sufficiently small ε =
d2(Si−1,X1) the distance of the next iterate, d2(Si,X1), is proportional to ε2.
For this purpose, let Λ1 consist of the eigenvalues belonging to X1, and let
X2 be the invariant subspace belonging to the remaining eigenvalues Λ2 =
λ(A)\Λ1. For sufficiently small ε we may assume Si−1 ∩ X2 = {0}, as X1 and
X2 are distinct subspaces. The (i− 1)th iterate of (1.39) takes the form

Ai−1 = Q̂T
i−1AQ̂i−1 =

[
A

(i−1)
11 A

(i−1)
12

A
(i−1)
21 A

(i−1)
22

]
.

From d2(Si−1,X1) = ε, it follows that ‖A(i−1)
21 ‖2 ≤

√
2ε‖A‖2 [359, Lemma

6.1]. If c2 denotes the maximal absolute condition number for any eigenvalue
in Λ2 then for sufficiently small ε we obtain

max{|pi(λ2)| : λ2 ∈ Λ2} ≤Mε

with M = c2(2‖A‖2)m. Since

δ = min{|λ2 − λ1| : λ1 ∈ Λ1, λ2 ∈ Λ2} > 0,

we know that all roots of pi have a distance of at least δ/2 to the eigenvalues in
Λ1, provided that ε is chosen sufficiently small. Hence, the quantity γ defined
in (1.38) satisfies γ ≤ (2/δ)mMε. For ε < (δ/2)m/M we can now apply
Corollary 1.18 to the ith iteration of (1.39) and obtain some constant Ĉ so
that

d2(Si,X1) <
√

2ĈM(2/δ)m ε2

√
1− ε2

≤ 2ĈM(2/δ)mε2,

where the latter inequality holds for ε ≤ 1/
√

2. 
�

1.3.2 Hessenberg Form

A literal implementation of the shifted QR iteration (1.39) is prohibitely ex-
pensive; the explicit computation of pi(Ai−1) alone requires O(mn3) flops.
The purpose of this section is to reduce the cost of an overall iteration down
to O(mn2) flops. First, we recall the well-known result that shifted QR iter-
ations preserve matrices in unreduced Hessenberg form.
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Definition 1.21. A square matrix A is said to be in upper Hessenberg form
if all its entries below the first subdiagonal are zero. Moreover, such a matrix
is called unreduced2 if all its subdiagonal entries are nonzero.

If one of the subdiagonal entries of the Hessenberg matrix A happens to be
zero, one can partition

A =
[

A11 A12

0 A22

]
,

and consider the Hessenberg matrices A11 and A22 separately. This process is
called deflation and will be discussed in more detail in Section 1.3.4.

Lemma 1.22. Let A ∈ R
n×n be in unreduced Hessenberg form. Let f : C → C

be any function analytic on an open neighborhood of λ(A) with no zeros in
λ(A). If f(A) = QR is a QR decomposition then QHAQ is again in unreduced
Hessenberg form.

Proof. The proof is based on the fact that A is in unreduced Hessenberg form
if and only if the Krylov matrix

Kn(A, e1) =
[
e1 Ae1 · · · An−1e1

]
is an upper triangular, nonsingular matrix. Using the facts that A and f(A)
commute and R is invertible we obtain

Kn(QHAQ, e1) = QHKn(A,Qe1) = QHKn(A, f(A)R−1e1)
= QHf(A)Kn(A,R−1e1) = RKn(A,R−1e1)

=
1

r11
RKn(A, e1),

showing that Kn(QHAQ, e1) is upper triangular and nonsingular. 
�

Reduction to Hessenberg form

If the initial matrix A0 = A is in upper Hessenberg form then, subtract-
ing possible deflations, shifted QR iterations preserve this form. It remains
to show how the initial matrix can be reduced to Hessenberg form. This is
usually achieved by applying orthogonal similarity transformations based on
Householder matrices to the matrix A.

A Householder matrix is a symmetric matrix of the form

H(v, β) := I − βvvT , (1.40)

where v ∈ R
n and β ∈ R. It is assumed that either v = 0 or β = 2/vT v, which

ensures that H(v, β) is an orthogonal matrix. For a given vector x ∈ R
n and

2 Some authors use the term proper instead of unreduced. Strictly speaking, the
occasionally used term irreducible is misleading as a matrix in unreduced Hessen-
berg form may be reducible, see also Section 3.3.1.
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an integer j ≤ n we can always construct a Householder matrix which maps
the last n− j elements of x to zero by choosing

v =
[

0 0
0 In−j+1

]
x + sign(eT

j x)
∥∥∥∥
[

0 0
0 In−j+1

]
x

∥∥∥∥
2

ej (1.41)

and

β =
{

0 if v = 0,
2/vT v otherwise. (1.42)

Under this choice of v and β, we identify Hj(x) ≡ H(v, β). Note that the
multiplication of Hj(x) with a vector y has no effect on the first j−1 elements
of y.

Let us illustrate the use of Householder matrices for reducing a 5×5 matrix
A to Hessenberg form. First, if we apply H2(Ae1) from the left to the columns
of A then the trailing three entries in the first column of A get annihilated.
The first column remains unaffected if the same transformation is applied
from the right. This corresponds to the following diagram:

A ← H2(Ae1) ·A ·H2(Ae1) =

⎡
⎢⎢⎢⎢⎣

a â â â â
â â â â â

0̂ â â â â

0̂ â â â â

0̂ â â â â

⎤
⎥⎥⎥⎥⎦ .

Similar diagrams have been used by Wilkinson in his book [364] and by many
other authors later on. In such a diagram, a letter denotes a generic non-zero
entry and 0 denotes a zero entry. A hat is put on a letter to designate that
this entry is being modified during the current transformation. Consequently,
an entry denoted by 0̂ is being annihilated during the current transformation.

Continuing the reduction to Hessenberg form, we can annihilate the trail-
ing two entries of the second column in an analogous manner:

A ← H3(Ae2) ·A ·H3(Ae2) =

⎡
⎢⎢⎢⎢⎣

a a â â â
a a â â â
0 â â â â

0 0̂ â â â

0 0̂ â â â

⎤
⎥⎥⎥⎥⎦ .

Finally, the remaining nonzero (5, 3) element is addressed:

A ← H4(Ae3) ·A ·H4(Ae3) =

⎡
⎢⎢⎢⎢⎣

a a a â â
a a a â â
0 a a â â
0 0 â â â

0 0 0̂ â â

⎤
⎥⎥⎥⎥⎦ .

For general n, the corresponding procedure is given by Algorithm 1.
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Algorithm 1 Reduction to Hessenberg form
Input: A matrix A ∈ R

n×n.
Output: An orthogonal matrix Q ∈ R

n×n such that H = QT AQ is in upper
Hessenberg form. The matrix A is overwritten by H.

Q ← In

for j ← 1, . . . , n − 2 do
Q ← Q · Hj+1(Aej)
A ← Hj+1(Aej) · A · Hj+1(Aej)

end for

Several remarks regarding the actual implementation of Algorithm 1 are
in order:

1. The Householder matrix Hj+1(Aej) ≡ H(vj , βj) is represented by vj ∈ R
n

and βj ∈ R. Both quantities are computed by the LAPACK [10] routine
DLARFG, which is based on formulas (1.41) and (1.42).

2. The update A ← Hj+1(Aej) · A · Hj+1(Aej) is performed via two rank-
one updates by calling LAPACK’s DLARF. Only those parts of A that will
be modified by the update need to be involved. This is the submatrix
A(j +1 : n, j : n) for the left transformation, and A(1 : n, j +1 : n) for the
right transformation. Here, the colon notation A(i1 : i2, j1 : j2) is used to
designate the submatrix of A defined by rows i1 through i2 and columns
j1 through j2.

3. The leading j entries of each vector vj are zero and vj can be scaled so
that its (j + 1)th entry becomes one. Hence, there are only n − j − 1
nontrivial entries in vj , which exactly fit in the annihilated part of the jth
column of A. The n−2 scalars βj need to be stored in an extra workspace
array.

The LAPACK routine DGEHD2 is such an implementation of Algorithm 1 and
requires 10

3 n3 + O(n2) flops. It does not compute the orthogonal factor Q,
there is a separate routine called DORGHR, which accumulates Q in reversed
order and thus only needs to work on Q(j + 1 : n, j + 1 : n) instead of
Q(1 : n, j +1 : n) in each loop. If the unblocked version of DORGHR is used (see
Section 1.5.1 for a description of the blocked version) then the accumulation
of Q requires an additional amount of 4

3n3 flops.

1.3.3 Implicit Shifted QR Iteration

If the number of shifts in the shifted QR iteration (1.39) is limited to one
then each iteration requires the QR decomposition of an upper Hessenberg
matrix. This can be implemented in O(n2) flops, see, e.g., [141, Sec. 7.4.2].
A similar algorithm could be constructed to compute the QR decomposition
of pi(Ai−1) for shift polynomials pi of higher degree. However, this algorithm
would require an extra n×n workspace array, is difficult to implement in real
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arithmetic for complex conjugate shifts, and, even worse, does not guarantee
the preservation of Hessenberg forms in finite-precision arithmetic.

The implicit shifted QR iteration, also introduced by Francis [128], avoids
these difficulties by making use of the following well-known “uniqueness prop-
erty” of the Hessenberg reduction.

Theorem 1.23 (Implicit Q theorem). Let U = [u1, . . . , un] and V =
[v1, . . . , vn] be orthogonal matrices so that both matrices UT AU = G and
V T AV = H are in upper Hessenberg form and G is unreduced. If u1 = v1

then there exists a diagonal matrix D = diag(1,±1, . . . ,±1) so that V = UD
and H = DGD.

Now, assume that the last iterate of the shifted QR iteration Ai−1 is in
unreduced upper Hessenberg form and that no root of the shift polynomial
pi is an eigenvalue of Ai−1. Let x be the first column of pi(Ai−1). Further-
more, assume that Qi is an orthogonal matrix so that QT

i Ai−1Qi is in upper
Hessenberg form and that the first column of Qi is a multiple of x. Then,
Lemma 1.22 and Theorem 1.23 imply that QT

i pi(Ai−1) is upper triangular,
and thus Ai ← QT

i Ai−1Qi yields a suitable next iterate for the shifted QR
iteration.

Algorithm 2 constructs such a matrix Qi for the shifted QR iteration (1.39)
employing Francis shifts. It relies on the facts that the first column of the
Householder matrix H1(x) is a multiple of x and that the orthogonal matrix
Q returned by Algorithm 1 has the form Q = 1 ⊕ Q̃. Here, ‘⊕’ denotes the
direct sum (or block diagonal concatenation) of two matrices.

Algorithm 2 Implicit shifted QR iteration
Input: A matrix Ai−1 ∈ R

n×n with n ≥ 2 in unreduced upper Hessenberg
form, an integer m ∈ [2, n].

Output: An orthogonal matrix Qi ∈ R
n×n so that QT

i pi(Ai−1) is upper trian-
gular, where pi is the Francis shift polynomial of degree m. The matrix
Ai−1 is overwritten by Ai = QT

i Ai−1Qi.

1. Compute shifts σ1, . . . , σm as eigenvalues of Ai−1(n−m + 1 : n, n−m + 1 : n).
2. Set x = (Ai−1 − σ1In)(Ai−1 − σ2In) · · · (Ai−1 − σmIn)e1.
3. Update Ai−1 ← H1(x) · Ai−1 · H1(x).
4. Apply Algorithm 1 to compute an orthogonal matrix Q so that Ai−1 is reduced

to Hessenberg form.
5. Set Qi = H1(x) · Q.

The shifts σ1, . . . , σm in Algorithm 2 can be computed by an auxiliary
implementation of the QR algorithm which employs at most two Francis shifts,
see for example the LAPACK routine DLAHQR. The computation of two Francis
shifts, in turn, can be achieved by basic arithmetic operations, although the
actual implementation requires some care, see also Remark 1.26 below. The
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vector x is always real; it can be computed in real arithmetic by grouping
complex conjugate pairs of shifts and using A2

i−1 − 2Re(σj)Ai−1 + |σj |2In

instead of (Ai−1−σjIn)(Ai−1− σ̄jIn) for such pairs. Making full advantage of
the zero structure of x lets its computation require O(m3) flops. Alternatively,
Dubrulle and Golub [115] have developed an algorithm which computes a
multiple of x without explicitly determining the shifts. In Section 1.5.4, the
computation of x is connected to the so called pole placement problem.

Step 4 of Algorithm 2 should be based on a special-purpose implementation
of Algorithm 1, which exploits the zero structures of the matrix Ai−1 and
the involved Householder matrices Hj+1(Ai−1ej), see, e.g., [141, Alg. 7.5.1].
In this case, Step 4 requires (4m + 3)n2 + O(mn) flops for reducing Ai−1

and additionally the same amount of flops for post-multiplying the involved
Householder matrices to a given n× n matrix.

Let us illustrate Algorithm 2 for n = 6 and m = 2. First, the upper
Hessenberg matrix Ai−1 is overwritten by H1(x) · Ai−1 · H1(x), where x =
(Ai−1−σ1I)(Ai−1−σ2I)e1. Only the leading three elements of x are nonzero,
this implies that only the first three columns and rows of Ai−1 are affected:

Ai−1 ← H1(x) ·Ai−1 ·H1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

â â â â â â

b̂ b̂ b̂ â â â

b̂ b̂ b̂ â â â

b̂ b̂ b̂ a a a
0 0 0 a a a
0 0 0 0 a a

⎤
⎥⎥⎥⎥⎥⎥⎦ . (1.43)

The 3 × 3 submatrix Ai−1(2 : 4, 1 : 3), whose elements are labeled by b̂, is
called the bulge. The subsequent reduction to Hessenberg form can be seen as
chasing this bulge down to the bottom right corner along the first subdiagonal
of Ai−1. This point of view has been emphasized and extended to other QR-
like algorithms by Watkins and Elsner [358]. In the first step of Algorithm 1
applied to Ai−1, the nonzero elements introduced in the first column of Ai−1

are annihilated by the Householder matrix H2(Ai−1e1):

Ai−1 ← H2(Ai−1e1) ·Ai−1 ·H2(Ai−1e1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a â â â a a
â â â â â â

0̂ b̂ b̂ b̂ â â

0̂ b̂ b̂ b̂ â â

0 b̂ b̂ b̂ a a
0 0 0 0 a a

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Note that the bulge has moved one step downwards. The subsequent appli-
cation of H3(Ai−1e2), H4(Ai−1e3) and H5(Ai−1e4) pushes the bulge further
down to the bottom right corner and, finally, off the corner:
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Ai−1 ← H3(Ai−1e2) ·Ai−1 ·H3(Ai−1e2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a a â â â a
a a â â â a
0 â â â â â

0 0̂ b̂ b̂ b̂ â

0 0̂ b̂ b̂ b̂ â

0 0 b̂ b̂ b̂ a

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

Ai−1 ← H4(Ai−1e3) ·Ai−1 ·H4(Ai−1e3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a a a â â â
a a a â â â
0 a a â â â
0 0 â â â â

0 0 0̂ b̂ b̂ b̂

0 0 0̂ b̂ b̂ b̂

⎤
⎥⎥⎥⎥⎥⎥⎦ , (1.44)

Ai−1 ← H5(Ai−1e4) ·Ai−1 ·H5(Ai−1e4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a a a a â â
a a a a â â
0 a a a â â
0 0 a a â â
0 0 0 â â â

0 0 0 0̂ â â

⎤
⎥⎥⎥⎥⎥⎥⎦ .

1.3.4 Deflation

Setting a “small” subdiagonal element ak+1,k of a matrix A in upper Hessen-
berg form to zero makes it a block upper triangular matrix:

A =
[

A11 A12

0 A22

]
, A11 ∈ R

k×k, A22 ∈ R
(n−k)×(n−k).

This deflates the eigenvalue problem into the two smaller eigenvalue problems
associated with the diagonal blocks A11 and A22. A subdiagonal entry is
considered to be small if it satisfies

|ak+1,k| ≤ u ‖A‖F . (1.45)

This is justified by the fact that the reduction to Hessenberg form as well as
QR iterations introduce roundoff errors of order u ‖A‖F anyway.

A less generous deflation criterion compares the magnitude of |ak+1,k| with
the magnitudes of its diagonal neighbors:

|ak+1,k| ≤ u (|ak,k|+ |ak+1,k+1|). (1.46)

This criterion is used in the LAPACK routines DHSEQR and DLAHQR. If the
right hand side in inequality (1.45) happens to be zero, then ak,k or ak+1,k+1

can be replaced by a nonzero element in the same column or row, respectively.
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At first sight there is little justification for using the neighbor-wise defla-
tion criterion (1.46) in favor of the norm-wise criterion (1.45). There is no the-
ory saying that the QR algorithm generally produces more exact eigenvalues
if (1.46) is used although this effect can occasionally be observed. For graded
matrices, Stewart [306] provides some insight why the QR algorithm equipped
with the neighbor-wise deflation criterion (1.46) often computes small eigen-
values with high relative accuracy. An instance of such a graded matrix is
given in the following example.

Example 1.24. Let

A =

⎡
⎢⎢⎣

1 10−03 0 0
10−03 10−07 10−10 0

0 10−10 10−14 10−17

0 0 10−17 10−21

⎤
⎥⎥⎦ .

Tabulated below are the exact eigenvalues of A, the computed eigenvalues
using deflation criterion (1.45) and, in the last column, the computed eigen-
values using deflation criterion (1.46). In both cases, the implicit shifted QR
algorithm with two Francis shifts was used.

Exact eigenvalues Norm-wise deflation Neighbor-wise deflation
1.0000009999991000 1.0000009999991001 1.0000009999990999

−.8999991111128208 × 10−06 −.8999991111128212 × 10−06 −.8999991111128213 × 10−06

.2111111558732113 × 10−13 .2111111085047986 × 10−13 .2111111558732114 × 10−13

−.3736841266803067 × 10−20 0.0999999999999999 × 10−20 −.3736841266803068 × 10−20

It can be observed that the two eigenvalues of smallest magnitude are much
more accurately computed if the neighbor-wise deflation criterion is used. ♦

Although the deflation of zero subdiagonal elements is a must in order
to ensure convergence, it has been shown by Watkins [350] that even tiny
subdiagonal elements (as small as 10−70×‖A‖2 in double-precision arithmetic)
do not affect the convergence of the QR algorithm.

1.3.5 The Overall Algorithm

Glueing implicit QR iterations and deflation together yields Algorithm 3, the
QR algorithm for Hessenberg matrices.

Properly implemented, Algorithm 3 requires approximately (8 + 6/m)n3

flops for computing T under the assumptions that m � n and that on av-
erage four Francis shifts are necessary to let one eigenvalue converge at the
bottom right corner of H. If only the diagonal blocks of T (e.g., for comput-
ing eigenvalues) are required then the update of the inactive off-diagonal parts
H(i : l, l +1 : n) and H(1 : i− 1, i : l) can be omitted and the number of flops
reduces down to (16

3 + 4/m)n3. The accumulation of the orthogonal factor Q
requires another (8 + 6/m)n3 flops. These flop counts should not be accepted
at face value as the actual number of necessary shifts depends on the matrix
in question.
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Algorithm 3 Basic QR algorithm
Input: A matrix H ∈ R

n×n with n ≥ 2 in upper Hessenberg form, an integer
m ∈ [2, n].

Output: An orthogonal matrix Q ∈ R
n×n such that T = QT HQ is a block upper

triangular matrix with diagonal blocks of size at most two. The matrix
H is overwritten by T . Implicit shifted QR iterations with at most m
Francis shifts are used.

Q ← In

i ← 1, l ← n
for it ← 0, . . . , 30n do

% The active submatrix is H(i : l, i : l). Search for deflations.
k ← i
while (k < l) and (|hk+1,k| > u(|hk,k| + |hk+1,k+1|)) do

k ← k + 1
end while
if k < l then

% Deflation at position (k + 1, k) found.
hk+1,k ← 0
i ← k + 1
if i + 1 ≥ l then

% Block of size at most two has converged.
l ← i − 1, i ← 1
if l ≤ 2 then

% QR algorithm has converged.
Exit.

end if
end if

else
Apply implicit shifted QR iteration, Algorithm 2, with min{m, l − i + 1}
shifts to H(i : l, i : l). Let Q̃ denote the corresponding orthogonal matrix.
Update H(i : l, l + 1 : n) ← Q̃T H(i : l, l + 1 : n).
Update H(1 : i − 1, i : l) ← H(1 : i − 1, i : l)Q̃.
Update Q(1 : n, i : l) ← Q(1 : n, i : l)Q̃.

end if
end for
% The QR algorithm did not converge within 30n iterations.
Exit and error return.

Example 1.25. We applied Algorithm 3 to randomly generated n× n Hessen-
berg matrices with m ∈ {2, 4} and n ∈ [10, 50]. Figure 1.5 displays the ratios
between the actually required flops and the estimated (8 + 6/m)n3 flops for
computing T . Black curves correspond to matrices generated with the Mat-
lab [236] command hess(rand(n)) and gray curves to matrices generated
with triu(rand(n),-1). It can be seen that the QR algorithm requires sig-
nificantly more flops for the second class of matrices. Moreover, the underes-
timation of the actually needed flops increases from m = 2 (factor 1.1 . . . 1.5)
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Fig. 1.5. Ratio between observed and estimated flops for reducing a Hessenberg
matrix to a block upper triangular matrix using the QR algorithm (Algorithm 3).

to m = 4 (factor 1.2 . . . 1.7). The latter effect will be explained in more detail
in Sections 1.5.3 and 1.5.4. ♦

Remark 1.26. In order to obtain a real Schur form, the 2× 2 diagonal blocks
of the matrix T returned by Algorithm 3 must be post-processed. Blocks with
real eigenvalues need to be transformed to upper triangular form. Blocks with
pairs of complex conjugate eigenvalues need to be standardized so that they
take the form [

a b
−c a

]
, b, c > 0.

The eigenvalues of this matrix are simply given by a ± i
√

bc. Both trans-
formations can be achieved by Givens rotations using only basic arithmetic
operations. The actual implementation, however, requires some care in order
to maintain the backward stability of the QR algorithm. More details can be
found in recent work by Sima [286]. See also the LAPACK subroutine DLANV2.

♦

Algorithm 3 is implemented in LAPACK as the subroutine DHSEQR, which
uses only a small number of Francis shifts, typically m = 6. The auxiliary
subroutine DLAHQR employs two shifts; it is called within DHSEQR for computing
shifts or handling small deflated submatrices.

The QR algorithm is based on orthogonal transformations. This implies
that this algorithm, presuming that it converges, is numerically backward
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stable, i.e., the computed Schur form is an exact Schur form of a perturbed
matrix H + E, where ‖E‖2 ≤ O(u)‖H‖2, see [364]. Similar remarks apply to
Algorithm 1, the reduction to Hessenberg form, showing that the combination
of both algorithms is a backward stable method for computing the eigenvalues
of a general real matrix.

1.3.6 Failure of Global Converge

We have seen that the convergence of the QR algorithm is locally quadratic
under rather mild assumptions. The global convergence properties of the QR
algorithm are much less understood. Because of its relation to the Rayleigh
quotient iteration, the QR algorithm with one Francis shift applied to a sym-
metric matrix converges for almost every matrix [24, 261]. This statement,
however, does not hold for nonsymmetric matrices [25]. Nevertheless, there
are very few examples of practical relevance known, where the QR algorithm
does not converge within 30n iterations.

A classical example for a matrix, where the QR algorithm fails to converge,
is the n× n cyclic matrix

Cn =

⎡
⎢⎢⎢⎢⎣

0 1

1
. . .
. . . . . .

1 0

⎤
⎥⎥⎥⎥⎦ . (1.47)

This matrix stays invariant under shifted QR iterations that use m < n Fran-
cis shifts [233, 364]. The situation can be resolved by replacing the Francis shift
polynomial, after 10 and 20 shifted QR iterations have taken place without
effecting any deflation, by a so called exceptional shift polynomial. Martin, Pe-
ters, and Wilkinson [233] proposed the use of the exceptional shift polynomial

pe(x) = x2 − 3
2
βx + β2, β = |hl,l−1|+ |hl−1,l−2|,

where H(i : l, i : l) is the active submatrix, see Algorithm 3. Note that the
EISPACK [291] implementation of the QR algorithm (EISPACK routine HQR)
uses pe(x− hll) instead of pe(x).

Both exceptional shift strategies let the QR algorithm converge for the
matrix Cn in (1.47). Still, they can be defeated [23, 100]. One such example
is the matrix

H(η) =

⎡
⎢⎢⎣

0 1 0 0
1 0 η 0
0 −η 0 1
0 0 1 0

⎤
⎥⎥⎦ , 10−6 ≥ η ≥ 2× 10−14,

whose discovery is attributed to Demmel [100, pg. 2]. If the EISPACK sub-
routine HQR is applied to H(η) and no restriction is placed on the number of
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iterations, then more than 104 implicit shifted QR iterations are necessary
for the QR algorithm to converge. Day [100] gives a detailed analysis of cases
where HQR converges extremely slowly, including the matrix H(η) above. He
also proposed the following strategy, which recovers the quick convergence of
the QR algorithm for those cases: For m = 2, if the Francis shifts are real, use
the shift closest to hll twice instead of both Francis shifts. Note that a similar
shift strategy had already been proposed by Wilkinson [364, pg. 512].

Day’s strategy is implemented in the LAPACK subroutine DLAHQR. Yet, the
following example, which is quoted in the beginning of this chapter, demon-
strates that this strategy can also be defeated

Example 1.27. Consider the matrix

A =

⎡
⎢⎢⎣

0 90 0 300
−4× 109 0 −300 0

0 −300 0 4× 109

0 0 −90 0

⎤
⎥⎥⎦ .

The LAPACK subroutine DLAHQR, which is indirectly called by the Matlab
command schur, does not yield any deflation after 30 × 4 = 120 iterations.
More than 380 iterations are necessary until the first deflation occurs. The
quick convergence of the QR algorithm is recovered by balancing A (see next
section) before calling DLAHQR. Note, however, that this is not always a viable
option, e.g., if the user requires A to be exclusively transformed by orthogonal
matrices. ♦
An example of practical relevance where the current implementation of the
QR algorithm fails to converge can be found in [36]. Shift blurring is, especially
for large numbers of shifts, a significant source of slow convergence in finite-
precision arithmetic, see Section 1.5.3 below.

1.4 Balancing

Balancing is a preprocessing step, which can have positive effects on the ac-
curacy and performance of numerical methods for computing eigenvalues and
therefore has obtained early attention in the development of numerical lin-
ear algebra [257, 263]. Balancing usually consists of two stages. In the first
stage, the matrix is permuted in order to make it look closer to (block) upper
triangular form. The second stage consists of a diagonal similarity transfor-
mation (scaling), which aims at equilibrating the row and column norms of
the matrix.

1.4.1 Isolating Eigenvalues

In the first stage of the balancing algorithm by Parlett and Reinsch [263], a
permutation matrix P is constructed such that PT AP takes the form
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PT AP =

⎡
⎣A11 A12 A13

0 A22 A23

0 0 A33

⎤
⎦ =

⎡
⎢⎢⎣�0

0 0 �

⎤
⎥⎥⎦ , (1.48)

i.e., A11 ∈ R
(il−1)×(il−1) and A33 ∈ R

(n−ih)×(n−ih) are upper triangular matri-
ces. The obvious benefits are that the so called isolated eigenvalues contained
in these triangular matrices can be read off without any roundoff error and
that the order of the eigenvalue problem is reduced to ih− il +1. The remain-
ing middle block A22 is characterized by the property that each column and
row contains at least one nonzero off-diagonal element, which implies that no
further eigenvalues can be isolated.

The matrix P is composed of elementary permutation matrices

Pij = I − eie
T
i − eje

T
j + eie

T
j + eje

T
i . (1.49)

Such a matrix effects the swap of columns i and j if post-multiplied to a ma-
trix. Correspondingly, the pre-multiplication by Pij swaps rows i and j. Based
on these two properties, one can construct a simple algorithm for producing
a decomposition of the form (1.48), see Algorithm 4.

The computational work of Algorithm 4 is somewhat difficult to measure
in terms of flops, as it does not require any floating point operations. The
number of binary comparisons amounts toO((il+ih−n)n). Experience gained
by numerical experiments tells that performance benefits gained from the
order reduction of the eigenvalue problem greatly outweigh the execution time
needed by Algorithm 4.

1.4.2 Scaling

In the second stage, a diagonal matrix D is constructed so that B = D−1A22D
is nearly balanced. Here, A22 is the unreduced middle block in the block
triangular matrix (1.48). An m ×m matrix B is called balanced in a vector
norm ‖ · ‖ if its row and column norms are equal, i.e., ‖eT

j B‖ = ‖Bej‖ for
j = 1, . . . , m. Under the assumption that A22 is irreducible, Osborne [257]
showed that if B = D−1A22D is balanced in Euclidean norm, then B has
minimal Frobenius norm among all diagonal similarity transformations of A22.
Note that Algorithm 4 does not necessarily produce an irreducible matrix A22,
an algorithm that guarantees this property will be described in Section 3.3.1.

The iterative procedure proposed by Osborne for computing the scaling
matrix D is used in the balancing algorithm by Parlett and Reinsch [263].
Although this algorithm is capable to balance a matrix in any vector norm,
the LAPACK implementation DGEBAL uses the 1-norm because of efficiency
considerations. Grad [142] showed that this algorithm converges and yields a
matrix D that balances A22 in 1-norm, again under the assumption that A22

is irreducible. For more work on balancing, see [90, 91, 117, 156, 185, 289, 310].
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Algorithm 4 Permutation to block triangular form [263]

Input: A general matrix A ∈ R
n×n.

Output: A permutation matrix P such that P T AP is in block triangular
form (1.48) for some integers il, ih. The matrix A is overwritten by
P T AP .

il ← 1, ih ← n, swapped ← 1
P ← In

while (swapped = 1) do
swapped ← 0
% Search for row having zero off-diagonal elements in active
% submatrix A(il : ih, il : ih) and swap with ihth row.
i ← il
while (i ≤ ih) and (swapped = 0) do

if
ih∑

j=il
j �=i

|aij | = 0 then

A ← P T
i,ih

APi,ih , P ← PPi,ih

ih ← ih − 1, swapped ← 1
end if
i ← i + 1

end while
% Search for column having zero off-diagonal elements in active
% submatrix A(il : ih, il : ih) and swap with ilth column.
j ← il
while (j ≤ ih) and (swapped = 0) do

if
ih∑

i=il
i�=j

|aij | = 0 then

A ← P T
il,j

APil,j , P ← PPil,j

il ← il + 1, swapped ← 1
end if
j ← j + 1

end while
end while

Algorithm 5 is basically LAPACK’s implementation of the Parlett-Reinsch
algorithm. To avoid any roundoff errors in this algorithm, the scaling factor
β should be a power of the machine base (usually 2). In the LAPACK im-
plementation, β = 23 = 8 is used. If we apply this algorithm to the matrix
PT AP in block triangular form (1.48), then, from the discussion above, we
may conclude that the algorithm returns a nearly balanced matrix D−1A22D.
Algorithm 5 requires at most 4kn2 +O(n) flops, where k = O(1) denotes the
number of iterations until convergence.

Algorithm 5 restricts the diagonal entries of D to powers of β. This gen-
erally yields matrices that are only nearly balanced, as demonstrated by the
following example.
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Algorithm 5 Balancing [263]

Input: A matrix A ∈ R
n×n having the block triangular form (1.48) for integers

il, ih. A scaling factor β > 1.

Output: A diagonal matrix D̃ = Iil−1 ⊕ D ⊕ In−ih , with diagonal entries that
are powers of β, so that D−1A22D is nearly balanced in 1-norm. The
matrix A is overwritten by D̃−1AD̃.

D̃ ← In

converged ← 0
while (converged = 0) do

converged ← 1
for j ← il, . . . , ih do

c ←
ih∑

i=il
i�=j

|aij |, r ←
ih∑

k=il
k �=j

|ajk|, s ← c + r, scal ← 1

while (c < r/β) do
c ← cβ, r ← r/β, scal ← scal × β

end while
while c ≥ rβ do

c ← c/β, r ← rβ, scal ← scal/β
end while
% Scaling is only applied when it results in a non-negligible reduction of
% the column and row norms.
if (c + r) < 0.95 × s then

converged ← 0, d̃jj ← scal × d̃jj

A(:, j) ← scal × A(:, j), A(j, :) ← 1/scal × A(j, :)
end if

end for
end while

Example 1.28 ([91]). Consider the matrix

A =

⎡
⎢⎢⎣

0 1/2 0 0
2 0 1/2 0
0 2 0 1/2
0 0 2 0

⎤
⎥⎥⎦

This matrix can be balanced by the diagonal matrix D = diag(4, 2, 1, 1/2).
Algorithm 5 with β = 2, however, returns⎡

⎢⎢⎣
0 1 0 0
1 0 1/2 0
0 2 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

which is an unbalanced matrix. ♦
The two ingredients of balancing, Algorithms 4 and 5, are implemented

in the LAPACK routine DGEBAL. Note that the information contained in the
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permutation matrix P and the scaling matrix D̃ is stored in a vector “scal” of
length n as follows. If j ∈ [1, il−1]∪ [ih +1, n], then the permutation Pj,scal(j)

has been applied in the course of Algorithm 4. Otherwise, scal(j) contains d̃jj ,
the jth diagonal entry of the diagonal matrix D̃ returned by Algorithm 5.

The backward transformation (i.e., multiplication with (PD̃)−1) is needed
for post-processing computed eigenvectors or invariant subspaces; it is imple-
mented in the LAPACK routine DGEBAK.

1.4.3 Merits of Balancing

The following positive effects can be attributed to balancing.
First of all, often the norm of the matrix is decreased which equally de-

creases the norm of the backward error caused by subsequent orthogonal trans-
formations. Occasionally, however, the norm of the matrix returned by Algo-
rithm 5 is slightly increased. This increase is limited as the returned matrix
is nearly balanced in 1-norm, meaning that it is, up to a factor of

√
n, nearly

balanced in Euclidean norm.
Second, eigenvalues isolated by Algorithm 4 are read off without any

roundoff error. Also, eigenvalues of the scaled block D−1A22D are sometimes
more accurately computed, mainly due to the norm decrease. Some numerical
experiments illustrating this effect for matrices from the test matrix collec-
tion [16] can be found in [90, 91]. It should be emphasized that a norm decrease
does not necessarily lead to more accurate eigenvalues, in fact it has been re-
ported that balancing negatively influences the eigenvalue accuracy of certain
matrices with unusual scaling. A simple way to come up with such a situa-
tion is to reduce a matrix with random entries first to Hessenberg form and
balance afterwards [356].

Finally, balancing can have a positive impact on the computational time
needed by subsequent methods for computing eigenvalues. Not only the di-
mension of the eigenvalue problem is reduced to ih− il +1 but also the diago-
nal scaling of the unreduced block A22 may improve the convergence of these
methods. For example, balancing greatly improves the efficiency of the QR al-
gorithm applied to the matrix TOLS1090 from the test matrix collection [16],
see Section 1.5.5. An extreme case is given in Example 1.27 above, where the
QR algorithm converges for the balanced matrix but does not converge for
the unbalanced matrix within 30n iterations.

1.5 Block Algorithms

The bulge of the computational work of Algorithm 1, which reduces a matrix
to Hessenberg form, consists of calls to DLARF, a LAPACK routine for applying
Householder matrices based on level 2 BLAS operations. Each call to DLARF
performs only O(n2) floating point operations while moving O(n2) memory.
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Algorithms with such a high communication/computation ratio often perform
poorly on modern computers with a deep memory hierarchy, ranging from
large and slow to small and fast memory. An instructive discussion on this
matter can be found in Demmel’s book [103, Sec. 2.6].

The LAPACK routine for reduction to Hessenberg form (DGEHRD) attains
high efficiency by (implicitly) employing so called WY representations of prod-
ucts of Householder matrices. The application of such representations can
be formulated in terms of matrix-matrix multiplications leading to reduced
memory traffic, which in turn means better performance. For example, on an
average work station, computing the Hessenberg form of a 1000×1000 matrix
would require more than three times the time needed if no WY representations
were employed.

1.5.1 Compact WY Representation

The following theorem provides the basis for block algorithms for orthogonal
decompositions. It shows how to reorganize the application of a product of
Householder matrices so that level 3 BLAS can be facilitated.

Theorem 1.29 (Compact WY representation [282]). Let k ≤ n and
Q = Hj1(x1) ·Hj2(x2) · · ·Hjk

(xk) where Hji
(xi) are Householder matrices of

the form (1.40), and ji ∈ [1, n], xi ∈ R
2n. Then there exist an upper triangular

matrix T ∈ R
k×k and a matrix W ∈ R

n×k so that Q = In + WTW T .

Proof. The proof is by induction w.r.t. k. The case k = 0 is straightforward.
Let Q have a compact WY representation Q = WTWT . Consider for j = jk+1

the product
Q̃ := Q ·Hj(xj) = Q(I − βvvT ).

Then a compact WY representation for Q̃ is given by Q̃ = In+W̃ T̃ W̃T , where

T̃ =
[

T −βTWT v
0 −β

]
, W̃ =

[
W v

]
, (1.50)

concluding the proof. 
�
Often, ji = i, in which case a proper implementation of the construction

given in the proof of Theorem 1.29 requires k2n− 1
3k3+O(k2) flops, see also the

LAPACK routine DLARFT. Furthermore, an inspection of (1.50) reveals that
the upper k× k block of W is a unit lower triangular matrix. The application
of In + WTW T to an n × q matrix is implemented in the LAPACK routine
DLARFB. This routine facilitates the Level 3 BLAS operations DTRMM, DGEMM,
and requires about 4knq − k2q flops.

Remark 1.30. The representation In + WTW T is called compact WY rep-
resentation because it has a “non-compact” predecessor: In + WY T , where
Y = WTT [47]. The obvious disadvantage of using In + WY T is the extra
workspace necessary for storing the n× k matrix Y instead of the potentially
much smaller k × k matrix T . ♦
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As an immediate application of compact WY representations, we obtain
Algorithm 6, a block algorithm for the computation of the orthogonal factor
Q from Algorithm 1, reduction to Hessenberg form. The matrix Q is the
product of n− 2 Householder matrices: Q = H2(x1) ·H3(x2) · · ·Hn−1(xn−2).
For convenience only, we assume that n − 2 = N · nb for an integer N and a
given block size nb. In Algorithm 6, implemented as LAPACK routine DORGHR,

Algorithm 6 Block accumulation of Householder matrices
Input: Householder matrices H2(x1), H3(x2), . . . , Hn−1(xn−2). Integers N and

nb so that n − 2 = Nnb.
Output: An orthogonal matrix Q = H2(x1) · H3(x2) · · ·Hn−1(xn−2).

Q ← In

for p ← N, N − 1, . . . , 1 do
Set s = (p − 1)nb + 1.
Apply the construction given in the proof of Theorem 1.29 to compute the
compact WY representation

Hs+1(xs) · Hs+2(xs+1) · · ·Hs+nb(xs+nb−1) = In + WTW T .

Update Q(:, s : n) ← (In + WTW T )Q(:, s : n).
end for

1
2

n3

N
+

1
6

n3

N2
+O(n2)

flops are required to generate the compact WY representations, while

4
3
n3 +

3
2

n3

N
+

1
6

n3

N2
+O(n2)

flops are necessary to apply them to the matrix Q. On the other hand, the
unblocked algorithm, based on calls to DLARF, requires 4

3n3+O(n2) flops. This
shows that blocking is more expensive by roughly a factor of (1 + 3/(2N)),
as far as flop counts are concerned. The fraction of operations carried out by
Level 3 BLAS is attractively high; it tends to 100% when n is increasing while
n/N remains constant.

1.5.2 Block Hessenberg Reduction

Developing a block algorithm for reducing a matrix to Hessenberg form, Algo-
rithm 1, is complicated by dependencies between the individual Householder
matrices. To resolve these dependencies, Dongarra, Sorensen and Hammar-
ling [111] proposed to maintain a relationship of the form

A(k) = Ã(k) + WXT + Y WT , (1.51)
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Ã(k)(i, j) = 0

Ã(k)(i, j) = A(k)(i, j)

Ã(k)(i, j) = A(i, j)

Fig. 1.6. Structure of Ã(k) for k = 5, n = 15. The white and pale-gray parts contain
the reduced k-panel, consisting of elements of the matrix A(k). The dark-gray part
contains elements of the original matrix A.

where A(k) is the partly reduced matrix obtained after k loops of Algorithm 1
have been applied to A. The matrix Ã(k) is in the first k columns, the so
called k-panel, identical to A(k) but in the remaining columns identical to the
original matrix A, see also Figure 1.6. In this way, a large part of the updates
in Algorithm 1 can be delayed and performed later on, by means of two rank-k
updates using level 3 BLAS.

A more economic variant of this idea is implemented in the LAPACK
routine DGEHRD. Instead of (1.51), a relationship of the form

A(k) = (I + WTW T )T (Ã(k) + Y W̃T ) (1.52)

is maintained, where I + WTW T is the compact WY representation of the
first k Householder matrices employed in Algorithm 1. The matrix W̃ equals
W with the first k rows set to zero. Algorithm 1.52 produces (1.52) and is
implemented in the LAPACK routine DLAHRD. After this algorithm has been
applied, the matrix A(k) in (1.52) is computed using level 3 BLAS operations.
An analogous procedure is applied to columns k + 1, . . . , 2k of A(k), which
yields the matrix A(2k) having the first 2k columns reduced. Pursuing this
process further finally yields a complete Hessenberg form of A.

The described block algorithm for reduction to Hessenberg form as imple-
mented in the LAPACK routine DGEHRD requires

10
3

n3 + 3
n3

N
− n3

N2
+O(n2)

flops. This compares favorably with the 10
3 n3 + O(n2) flops needed by the

unblocked algorithm. Unfortunately, the fraction of operations carried out by
level 3 BLAS approaches only 70% when n is increasing while n/N remains
constant. Thus, it can be expected that the performance of DGEHRD is worse
than the performance of DORGHR, which has a level 3 fraction of approximately
100%. Indeed, this effect can be observed in practice, see Figure 1.7. Recent
work by Quintana-Ort́ı and van de Geijn [266] shows that the level 3 BLAS
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Algorithm 7 Panel reduction
Input: A matrix A ∈ R

n×n and an integer k ≤ n − 2.

Output: Matrices T ∈ R
k×k, W ∈ R

n×k and Y ∈ R
n×k yielding a representation

of the form (1.52). The matrix A is overwritten by Ã(k).

T ← [], W ← [], Y ← []
for j ← 1, . . . , k do

if j > 1 then
% Update jth column of A.
A(:, j) ← A(:, j) + Y W̃ (j, :)T

A(:, j) ← A(:, j) + WT T W T A(:, j)
end if
Compute jth Householder matrix Hj+1(A(:, j)) ≡ I − βvvT .
A(:, j) ← (I − βvvT )A(:, j)
x ← −βW T v
Y ← [Y, Y x − βAv]

T ←
[

T
0

Tx
−β

]
end for
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flo

ps
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DGEHRD

Fig. 1.7. Measured megaflops per second for DGEHRD and DORGHR applied to random
matrices of order 500, 550, . . . , 2000.

fraction can be increased to 80% by restricting the update of the jth columns
of A and Y in Algorithm 7 to the last n− j entries.

A two-stage approach to Hessenberg reduction, quite similar to the block
algorithms for Hessenberg-triangular reduction described in Section 2.5.1, has
already been suggested by Bischof and Van Loan [47]. However, this requires
roughly 60% more flops. It is thus questionable whether such an approach can
achieve higher performance than DGEHRD, see also the discussion in Lang’s
thesis [208, Sec. 2.4.3].
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1.5.3 Multishifts and Bulge Pairs

Early attempts to improve the performance of the QR algorithm focused on
using shift polynomials of high degree [17], leading to medium-order House-
holder matrices during the QR iteration and enabling the efficient use of WY
representations. This approach, however, has proved disappointing due to the
fact that the convergence of such a large-bulge multishift QR algorithm is
severely affected by roundoff errors [114, 350, 351]. To explain this phenom-
enom, Watkins [350, 351] has introduced the notion of bulge pairs, which is
in the following briefly described.

Assume that an implicit shifted QR iteration with m shifts, Algorithm 2,
is applied to an unreduced n × n Hessenberg matrix H with n > m. Let
x be a multiple of the first column of the shift polynomial p(H) = (H −
σ1I) · · · (H−σmI). The initial bulge pair is the matrix pair (B0, N), where N
is the (m + 1)× (m + 1) Jordan block belonging to the eigenvalue zero and

B0 = [x(1 : m + 1),H(1 : m + 1, 1 : m)] =

⎡
⎢⎢⎢⎢⎣

x1 h11 · · · h1m

x2 h21
. . .

...
...

. . . hmm

xm+1 0 hm+1,m

⎤
⎥⎥⎥⎥⎦ .

There is a surprisingly simple relationship between the shifts and the eigen-
values of this matrix pair.3

Theorem 1.31 ([351]). The shifts σ1, . . . , σm are the finite eigenvalues of
the initial bulge pair (B0, N).

During the course of a QR iteration, a bulge is created at the top left corner
of H and chased down to the bottom right corner along the first subdiagonal
of H, see page 29. Let H(j) denote the updated matrix H after the bulge has
been chased j−1 steps, i.e., j−1 loops of Algorithm 1 have been applied after
the update H ← H1(x) ·H ·H1(x). Then the bulge resides in the submatrix

Bj = H(j)(j + 1 : j + m + 1, j : j + m), (1.53)

which is exactly the submatrix designated by the entries b̂ in (1.43).

Theorem 1.32 ([351]). The shifts σ1, . . . , σm are the finite eigenvalues of
the jth bulge pair (Bj , N).

Note that the definition of the bulge Bj is only possible for j ≤ n −m − 1,
since otherwise (1.53) refers to entries outside of H(j). Such a situation is
displayed in (1.44). This issue can be resolved; by adding virtual rows and
columns to the matrix H(j), see [351], Theorem 1.32 can be extended to the
case j > n−m− 1.
3 For the definition of eigenvalues of matrix pairs, the reader is referred to Sec-

tion 2.1 in the next chapter.
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Theorem 1.32 shows how the shifts are propagated during the QR iteration.
In order to achieve quadratic convergence, which usually takes place at the
bottom right corner of H, it is essential that the information contained in
these shifts is properly propagated. However, several numerical experiments
conducted in [351] show that the finite eigenvalues of the bulge pairs (Bj , N)
become, as m increases, extremely sensitive to perturbations. Already for
m = 24, there are some pairs (Bj , N), whose finite eigenvalues are completely
swamped with roundoff errors and have no significant digit in common with
the intended shifts.

Although no exact relation between the quality of shifts in the bulge pairs
and the convergence of the QR algorithm in finite-precision arithmetic was
proven in [351], it is intuitively clear that this sensitivity may affect the per-
formance severely. Note that this does not necessarily imply that the QR
algorithm does not converge for very large m but the convergence is much
slower and must be attributed to linear convergence often taking place at the
top left corner of H.

1.5.4 Connection to Pole Placement

Although convincing numerical experiments for the described shift blurring
effects are provided in [351], there has been no explanation why bulge pencils
are getting so sensitive as m increases. In this section, we connect the com-
putation of x, the first column of the shift polynomial, to the pole placement
problem in systems and control theory, see Section A.1.3. This will result in
a semi-heuristic explanation for the sensitivity of the initial bulge pair.

Figure 1.8 illustrates this phenomenom for matrices generated with the
Matlab command triu(rand(300,1)). As m increases, deflations taking
place at the top left corner (signaling linear convergence) start dominating
deflations at the bottom right corner (signaling quadratic convergence). The
QR algorithm requires about 7.4×108 flops for m = 24, while it requires only
2.9× 108 flops for m = 2.

First, we note that the unreducedness of A implies

xm+1 =
m+1∏
i=1

ai+1,i �= 0.

Furthermore, it can be easily shown that neither the implicitly shifted QR
iteration nor the statement of Theorem 1.31 is affected if we replace x by a
nonzero scalar multiple thereof. Hence, we may assume without loss of general-
ity that x is normalized such that xm+1 = 1. By applying a simple equivalence
transformations to the initial bulge pair (B0, N), Theorem 1.31 shows that
the shifts σ1, . . . , σm are the eigenvalues of the matrix
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Fig. 1.8. Lower (red dots) and higher (blue dots) indices of the active submatrices
that have order larger than m during the implicit shifted QR iteration with m
Francis shifts.

C = H(1 : m, 1 : m)− hm+1,mx(1 : m)eT
m (1.54)

=

⎡
⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1,m−1 h1m − hm+1,mx1

h21 h22 . . . h2,m−1 h2m − hm+1,mx2

0 h32 . . . h3,m−1 h3m − hm+1,mx3

...
. . . . . .

...
...

0 . . . 0 hm,m−1 hmm − hm+1,mxm

⎤
⎥⎥⎥⎥⎥⎦ .

Next, consider the single-input control system

ż(t) = H(1 : m, 1 : m)T z(t)− (hm+1,mem)u(t) (1.55)

with state vector z(·) and input u(·). The linear state feedback u(t) = x(1 :
m)T z(t) yields the closed-loop matrix CT , where C is defined as in (1.54).
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Hence, the feedback vector x(1 : m) places the poles of the open loop sys-
tem (1.55) to σ1, . . . , σm. Since x(1 : m) is uniquely defined by this property,
we obtain the following connection:

Any pole placement algorithm for single-input systems is a suitable method
for computing a multiple of the first column of the shift polynomial;

and vice versa.

To some extent, this connection has already been used by Varga for designing
a multi-shift pole placement algorithm [334]. A not-so-serious application is
the expression of the QL iteration [116], a permuted version of the QR itera-
tion, in three lines of Matlab code, using functions of the Matlab Control
Toolbox [235]:

s = eig(H(1:m,1:m));
x = acker(H(n-m+1:n,n-m+1:n)’,H(n-m,n-m+1)*eye(m,1),s);
H = ctrbf(H, [zeros(1,n-m-1) 1 x]’, []);

An exceedingly more serious consequence is caused by the observation
that placing a large number of poles in a single-input problem is often very
ill-conditioned [157, 165] in the sense that the poles of the closed loop system
are very sensitive to perturbations in the input data. The nature of this ill-
conditioning was analyzed in detail by Mehrmann and Xu [243, 244]. Assume
that the input data of the pole placement problem (A = H(1 : m, 1 : m)T , b =
−hm+1,mem and σ1, . . . , σm) are perturbed by sufficiently small perturbations
�A, �b and �σ1, . . . ,�σm. Set

ε = max{‖[�A,�b]‖, |�σ1|, . . . , |�σm|},

and let f̂ be the feedback vector defined by the perturbed problem. Then,
it was shown in [244, Thm. 1.1] that the eigenvalues σ̂1, . . . , σ̂m of A + bf̂T

satisfy

|σ̂i − σi| ≤
(

1 + ‖G‖2‖G−1‖2
√

1 + ‖f̂‖2
)

ε +O(ε2), (1.56)

where G is the eigenvector matrix of the closed loop matrix CT = A + bfT ,
normalized such that all columns of G have unit norm. Although (1.56) is
only an upper bound, numerical experiments in [243, 244] suggest that (1.56)
catches the qualitative behavior of the maximal eigenvalue error rather well.

The presence of the condition number ‖G‖2‖G−1‖2 in (1.56) is particularly
worrisome. Often, this term grows rapidly with m, even exponential growth
can be proven for some cases [243, Ex. 1]. Indeed, such an effect can be
observed in the QR algorithm. For this purpose, we constructed the closed
loop matrix CT , as defined in (1.54), for a matrix A generated by the Matlab
command hess(rand(250)). Figure 1.9 displays the condition number of the
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Fig. 1.9. Condition number of the eigenvector matrix G of the closed loop matrix
CT .

corresponding eigenvector matrix G for m = 2, . . . , 15 Francis shifts, clearly
exhibiting exponential growth.

The described connection to the notoriously ill-conditioned pole placement
problem yields an explanation for the sensitivity of the initial bulge pair.
However, it does not explain the sensitivity of the bulge pairs (B1, N), (B2, N),
. . . . On the other hand, there is little hope that the shifts, once destroyed
because of the sensitivity of (B0, λN), recover during the bulge chasing process
although this event sometimes occurs in practice [351].

1.5.5 Tightly Coupled Tiny Bulges

The trouble with shift blurring has led researchers to develop variants of the
implicit shifted QR algorithm that still rely on a large number of simultaneous
shifts but chase several tiny bulges instead of one large bulge. This idea has
been proposed many times, see [61, 114, 161, 190, 208, 209, 349]. In this
section, we describe a slightly generalized variant of an approach proposed
independently by Braman, Byers, and Mathias [61] as well as by Lang [208].

In the following, m denotes the number of simultaneous shifts to be used
in each QR iteration and ns denotes the number of shifts contained in each
bulge. It is assumed that m is an integer multiple of ns. To avoid shift blurring
phenomena we use tiny values for ns, say ns ∈ [2, 6].

Our algorithm performs an implicit shifted QR iteration with m Francis
shifts to a Hessenberg matrix H and consists of three stages, which are de-
scribed in more detail below. First, a tightly coupled chain of m/ns bulges
is bulge-by-bulge introduced in the top left corner of H. Second, the whole
chain is chased down along the subdiagonal until the bottom bulge reaches
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the bottom right corner of H. Finally, all bulges are bulge-by-bulge chased off
this corner.

Introducing a chain of bulges

Given a set of m Francis shifts, we partition this set into subsets Σ1, Σ2, . . . ,
Σm/ns

. Each Σj contains ns shifts and is closed under complex conjugation.
We apply the implicit shifted QR iteration with the shifts contained in Σ1

and interrupt the bulge chasing process as soon as the bottom right corner
of the bulge touches the (ph − 1, ph) subdiagonal entry of H, where ph =
(m/ns)(ns +1)+1. Next, the bulge belonging to Σ2 is introduced and chased
so that its bottom right corner is at the (ph−ns− 2, ph−ns− 1) subdiagonal
entry. This process is continued until all m/ns bulges are stringed like pearls
on the subdiagonal of the submatrix H(1 : ph, 1 : ph), see Figure 1.10. Note

ph – 1 →

Fig. 1.10. Introducing a chain of m/ns = 4 tightly coupled bulges, each of which
contains ns = 3 shifts.

that only this submatrix (painted pale gray in Figure 1.10) must be updated
during the bulge chasing process. To update the remaining part of H (painted
dark gray), all employed orthogonal transformations are accumulated into a
ph × ph matrix U . This enables us to use matrix-matrix multiplications:

H(1 : ph, (ph + 1) : n) ← UT H(1 : ph, (ph + 1) : n).
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Chasing a chain of bulges

Suppose that a chain of bulges resides on the subdiagonal of the submatrix
H(pl : ph, pl : ph), where ph = pl + (ns + 1)m/ns. In the beginning, we
have pl = 1 and ph = (m/ns)(ns + 1) + 1 but we will now subsequently
increase these values by chasing the complete chain. To move the chain to the
submatrix H(pl + k : ph + k, pl + k : ph + k), each individual bulge is chased k
steps, as depicted in Figure 1.11. This is done in bottom-to-top order so that

Fig. 1.11. Chasing a chain of m/ns = 4 tightly coupled bulges.

no bulges will cross each other.
Again only a submatrix, namely H(pl : ph + k, pl : ph + k), must be

updated during the bulge chasing process. To update the rest of the matrix,
we accumulate all transformations in an orthogonal matrix U of order ((ns +
1)m/ns + k + 1) and use matrix-matrix multiplications:

H(pl : ph + k, (ph + 1) : n) ← UT H(pl : ph + k, (ph + 1) : n),
H(1 : pl − 1, pl : ph + k) ← H(1 : pl − 1, pl : ph + k)U.

Note that U has a particular block structure that can be exploited to increase
the efficiency of these multiplications:

U =

⎡
⎣1 0 0

0 U11 U12

0 U21 U22

⎤
⎦ =

⎡
⎢⎢⎣

1 0 0

0 �
0 �

⎤
⎥⎥⎦ , (1.57)
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Fig. 1.12. Structure of the transformation matrix U for chasing a chain of m/ns = 5
bulges, each of which contains ns = 4 shifts, k = 30 steps.

i.e., the matrices U12 ∈ R
l1×l1 and U21 ∈ R

l2×l2 , where l1 = (m/ns)(ns +1)−
ns and l2 = k+ns, are lower and upper triangular, respectively. There is even
more structure present, as illustrated in Figure 1.12. It is, however, difficult
to take advantage of this extra banded structure using level 3 BLAS [61].

The rare event of a zero subdiagonal entry between two consecutive bulges
during the bulge chasing process is called a “vigilant” deflation [349]. Such a
deflation causes a severe loss of information if bulges are chased from above
through this zero subdiagonal entry. This can be avoided by reintroducing the
bulges in the row in which the zero appears using essentially the same method
that has been used for introducing bulges [61]. Note that it is not necessary to
take care of vigilant deflations caused by small but not-too-tiny subdiagonal
entries [350], see also Section 1.3.4.

Getting rid off a chain of bulges

Once the bottom bulge of the chain has reached the bottom right corner of
H, the whole chain is bulge-by-bulge chased off this corner, similarly to the
introduction of bulges at the top left corner of H.

Numerical results

For the purpose of illustrating the efficiency gains to be expected from using
the described multishift QR algorithm with tightly coupled tiny bulges, let us
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consider a Fortran 77 implementation called MTTQR based on an implementa-
tion available from Byers’ web page4. Although this routine generally requires
more flops than a doubleshift QR algorithm, see [61], it is likely that these
extra costs are more than compensated by the fact that MTTQR facilitates Level
3 BLAS for a large part of the computation.

Note that the packing density of the bulges is getting higher as ns, the
number of shifts per bulge, increases. For example, a 16 × 16 principal sub-
matrix of H may either contain 10 shifts distributed over five 3× 3 bulges or
it may contain 12 shifts distributed over three 5 × 5 bulges. In either case,
essentially the same amount of operations is necessary to chase the chain of
bulges from top to bottom. Hence, if shift blurring does not cause problems,
using larger values for ns can improve the efficiency of MTTQR.

To verify these statements, we applied MTTQR to a subset of real n × n
matrices from the test matrix collection [16], see also Table 1.1. Note that
TOLSBAL is the matrix obtained after balancing has been applied to the
highly unbalanced matrix TOLS1090. For the parameters m (number of shifts

Matrix name n Description

OLM1000 1000 Olmstead model
TUB1000 1000 tubular reactor model
TOLS1090 1090 Tolosa matrix
TOLSBAL 1090 balanced Tolosa matrix
RDB1250 1250 reaction-diffusion Brusselator model, L = 0.5
RDB1250L 1250 reaction-diffusion Brusselator model, L = 1
BWM2000 2000 Brusselator wave model in chemical reaction
OLM2000 2000 Olmstead model
DW2048 2048 square dielectric waveguide
RDB2048 2048 reaction-diffusion Brusselator model, L = 0.5
RDB2048L 2048 reaction-diffusion Brusselator model, L = 1
PDE2961 2961 partial differential equation

Table 1.1. Subset of matrices from the test matrix collection [16].

in each iteration) and k (number of steps a chain of bulges is chased before off-
diagonal parts are updated), we followed the recommendations given in [61]:

m =

⎧⎨
⎩

60, if 1000 ≤ n < 2000,
120, if 2000 ≤ n < 2500,
156, if 2500 ≤ n < 3000,

and k = 3/2×m− 2.
From the cpu times displayed in Figure 1.13, we may conclude that MTTQR

with ns = 2 shifts per bulge requires considerably less time than the LAPACK
routine DHSEQR for all considered matrices except TOLSBAL and TUB1000.

4 http://www.math.ku.edu/∼byers/
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Fig. 1.13. Execution times for DHSEQR and MTTQR, the tiny-bulge multishift QR
algorithm with ns ∈ {2, 4, 6} shifts per bulge, applied to matrices from the test
matrix collection [16].

For TOLSBAL, MTTQR consumes 34% more time, which seems to be due to the
fact that the QR algorithm converges so quickly that the overhead in MTTQR
dominates any performance improvements gained by using matrix-matrix mul-
tiplications . For TUB1000, we obtain a performance improvement of only
1.5%, which is much less than for the other matrices, where this figure ranges
from 25% up to 69%.

Increasing ns from 2 to 4 often leads to some further speedups. A notable
exception is TOLS1090, where MTTQR requires 190% more time if ns = 4
instead of ns = 2 is used. We believe that this behavior can be attributed to
the poor balancing of this matrix, which seems to amplify shift blurring effects.
The highest improvements can be obtained for TUB1000 and BWM2000,
where MTTQR requires 27% less time if ns = 4 instead of ns = 2 is used.

1.6 Advanced Deflation Techniques

There have been few attempts to modify the deflation criteria described in
Section 1.3.4 in order to accelerate convergence of the QR algorithm, see
e.g. [4], and by far none of them has been such a success as the aggressive
early deflation strategy developed by Braman, Byers, and Mathias [62]. In the
following, this approach will be briefly described.
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Aggressive Early Deflation

To approach the idea of aggressive early deflation strategy, it is helpful to lift
the problem of deflation to a higher level of abstraction. Given a matrix H
in unreduced Hessenberg form, we look for a perturbation E so that, after
having H + E reduced back to Hessenberg form, the eigenvalue problem is
deflated into two or more smaller subproblems. Of course, backward stability
should not be sacrificed, thus the norm of the perturbation E must be of
order u ‖H‖F . In the classical deflation strategies described in Section 1.3.4,
the perturbation E is restricted to Hessenberg form. In this case, it is not
necessary to reduce H + E back to Hessenberg form and deflation is only
possible if some subdiagonal entry of H is sufficiently small. Removing this
restriction from E yields potentially for more deflations. The price to be paid
is the extra effort for reducing H + E. In order to avoid that these additional
expenses start dominating the computational time required by (multishift)
QR iterations, it is necessary to restrict the perturbations to that part of the
matrix where most deflations are expected to happen: in the bottom right
corner of H. More precisely, if we partition

H =

⎡
⎣

n−w−1 1 w

n−w−1 H11 H12 H13

1 H21 H22 H23

w 0 H32 H33

⎤
⎦, (1.58)

then we only consider perturbations in the so called w × (w + 1) deflation
window consisting of [H32,H33].

Hence, our goal is to construct a perturbation of the form

E =

⎡
⎣

n−w−1 1 w

n−w−1 0 0 0
1 0 0 0
w 0 E32 E33

⎤
⎦, (1.59)

so that the reduction of H + E to Hessenberg form results in a defla-
tion. The reduction of H + E requires only O(nw2) flops. To see this, let
Q1 = H1(H32 +E32) denote a Householder matrix as defined in (1.40). Then,
applying Algorithm 1 to Q1(H33 + E33)Q1 yields an orthogonal matrix Q2 so
that the matrix

H̃ = (In−w ⊕Q)T (H + E)(In−w ⊕Q),

with Q = Q1Q2, is in Hessenberg form. We call E a reducing perturbation if
some subdiagonal entry of H̃ is zero, implying that one or more eigenvalues
of H̃ are deflated. The following well-known lemma relates reducing pertur-
bations to the concept of controllability of matrix pairs, see Section A.1.2.
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Lemma 1.33. Let the matrices H and E have the form displayed in (1.58)
and (1.59), respectively. Then E is a reducing perturbation if and only if the
matrix pair (H33 + E33,H32 + E32) is not controllable.

Proof. Using the reduction given above, let Q be an orthogonal matrix so that
QT (H32 +E32) is a multiple of the first unit vector and QT (H33 +E33)Q is an
upper Hessenberg matrix. Theorem A.6 implies that (H33 + E33,H32 + E32)
is controllable if and only if the Krylov matrix

Kn(H33 + E33,H32 + E32) = QKn(QT (H33 + E33)Q, QT (H32 + E32))

has full rank. By direct computation, it can be shown that this condition is
equivalent to requiring the Hessenberg matrix QT (H33 + E33)Q to be unre-
duced and the vector QT (H32 + E32) to be nonzero. 
�

This shows that finding reducing perturbation amounts to finding (small)
perturbations that move an controllable system to an uncontrollable system. A
number of algorithms have been developed for this purpose, see Section A.4.2.
As the perturbations of interest are of very small norm, the heuristic algorithm
proposed in [62] (see also Section A.4.2) can be regarded as nearly optimal in
the context of the QR algorithm.

In this algorithm, first an orthogonal matrix U is constructed so that
T33 = UT H33U is in real Schur form. Then, we partition T33 =

[
T̃11
0

T̃12

T̃22

]
so that T̃22 is either a real eigenvalue or a 2 × 2 block containing a pair of
complex conjugate eigenvalues of T33. The vector UT H32 =

[
s̃1
s̃2

]
is corre-

spondingly partitioned. Then the matrices E32 = −U
[

0
s̃2

]
and E33 = 0 yield

a reducing perturbation E of the form (1.59). The Frobenius norm of E is
given by ‖s̃2‖2. We may only make use of this perturbation if ‖s̃2‖2 is of order
u ‖H‖F , otherwise the backward stability of the QR algorithm is sacrificed. A
more restrictive condition, in the spirit of the neighbor-wise deflation criterion
described in Section 1.3.4, is given by

‖s̃2‖∞ ≤ u
√
|det(T̃22)| (1.60)

A variety of other criteria can be found in [62].
If the current ordering of the matrix T33 in real Schur form fails to fulfill

the criterion (1.60), we may test other possible choices for T̃22 by reordering
a different real eigenvalue or complex conjugate pair of eigenvalues to the
bottom right corner of T33, see Section 1.7 below. If a reducing perturbation
satisfying (1.60) has been found, the described procedure is applied to the un-
perturbed part [s̃1, T̃11]. This process is repeated until no more such reducing
perturbation can be found. Eventually, an orthogonal matrix Q is constructed
so that
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(In−w ⊕Q)T H(In−w ⊕Q) =

⎡
⎢⎢⎣

n−w−1 1 w−d d

n−w−1 H11 H12 H̃13 H̃13

1 H21 H22 H̃23 H̃24

w−d 0 s1 T11 T12

d 0 s2 0 T22

⎤
⎥⎥⎦,

where T11, T22 are in real Schur form and the entries of the vector s2 satisfy
criteria of the form (1.60). Setting s2 to zero lets the d eigenvalues contained
in T22 deflate. The remaining unreduced submatrix can be cheaply returned
to Hessenberg form by reducing the (w− d)× (w− d + 1) submatrix [s1, T11]
as described above.

Aggressive early deflation is performed after each multishift QR iteration.
It must be combined with the conventional deflation strategy, since aggressive
early deflation may fail to detect small subdiagonal elements [61].

Numerical results

The advantage of aggressive early deflation is best illustrated by numerical
experiments. Some theoretical justification for the observation that this type
of deflation is much more effective than conventional deflation strategies can
be found in [62]. We repeated the numerical experiments from Section 1.5.5
by combining aggressive early deflation with the tiny-bulge multishift QR
algorithm described therein. Again, this algorithm has been implemented in a
Fortran 77 routine, called ATTQR. Our choice of parameters for ATTQR is based
on recommendations given in [62]. The number of shifts in each QR iteration
was set to

m =

⎧⎨
⎩

96, if 1000 ≤ n < 2000,
120, if 2000 ≤ n < 2500,
180, if 2500 ≤ n < 3000,

The number of steps a chain of bulges is chased before off-diagonal parts are
updated was chosen to be k = 3/2×m− 2. The size of the deflation window
was set to w = 3/2×m.

The cpu times displayed in Figure 1.14 show that the use of aggressive
early deflation results in substantial improvements. The gained savings of
computational time (for the case that ns = 2 shifts per bulge are used) range
from 14% for the TOLS1090 matrix up to 74% for the RDB2048 matrix. In-
creasing ns from 2 to 4 leads to some further speedups, except for TOLS1090
and OLM2000. For the other matrices, the gained savings range from 5% up to
24%.

Further Improvements

Having observed the success of aggressive early deflation, it is tempting to
ask whether one could use this deflation strategy to deflate eigenvalues at
other parts of the matrix. For example, if the shifts do not change very much
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Fig. 1.14. Execution times for ATTQR, the tiny-bulge multishift QR algorithm with
aggressive early deflation and ns ∈ {2, 4, 6} shifts per bulge, applied to matrices
from the test matrix collection [16].

during a number of QR iterations, then the convergence theory described in
Section 1.3.1 predicts some extra linear convergence. This linear convergence
does not necessarily manifest itself in deflations in the bottom right corner
of the matrix. In fact, the graphs in Figure 1.8 suggest that some deflations
may take place at the top left corner. Modifying aggressive early deflation to
take care of such deflations is simple; instead of considering the bottom right
w× (w +1) submatrix, one considers the top left (w +1)×w submatrix of H.
However, numerical experiments in [202] demonstrate that the extra speedups
gained from this approach are often rather negligible.

A more promising strategy is to search for deflations in the middle of the
matrix, which would eventually lead to a recursive QR algorithm. The merits
and difficulties of this idea have been investigated in detail by Braman [60].

1.7 Computation of Invariant Subspaces

Let us assume that our favorite variant of the QR algorithm has successfully
computed a real Schur decomposition of A:

QT AQ = T =

⎡
⎢⎢⎢⎢⎣

T11 T12 · · · T1m

0 T22
. . .

...
...

. . . . . . Tm−1,m

0 · · · 0 Tmm

⎤
⎥⎥⎥⎥⎦ , (1.61)
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where Tii ∈ R
ni×ni with ni = 1 if λ(Tii) ⊂ R and ni = 2 otherwise. For

each j ≤ m, the first k =
∑j

i=1 ni columns of Q form an orthonormal basis
for an invariant subspace belonging to the eigenvalues Λj = λ(T11) ∪ · · · ∪
λ(Tjj). Generally, it is not possible to guarantee a certain order of the diagonal
blocks in the real Schur form returned by the QR algorithm. Hence, we need
a post-processing step in order to obtain an invariant subspace belonging to
a selected cluster of eigenvalues Λs ⊂ λ(A), which is assumed to be closed
under complex conjugation. This section is about computing from a given
Schur decomposition (1.61) a reordered Schur decomposition of the form

(QQ̃)T A(QQ̃) = T̃ =

⎡
⎢⎢⎢⎢⎣

T̃11 T̃12 · · · T̃1m

0 T̃22
. . .

...
...

. . . . . . T̃m−1,m

0 · · · 0 T̃mm

⎤
⎥⎥⎥⎥⎦ , (1.62)

where Λs = λ(T̃11) ∪ · · ·λ(T̃jj) for some 1 ≤ j ≤ m.
In the following two subsections we describe the reordering method by Bai

and Demmel [18], which is currently implemented in LAPACK. The third sub-
section describes a more efficient method for eigenvalue reordering, inspired
by the tiny-bulge multishift QR algorithm discussed in Section 1.5.5.

1.7.1 Swapping Two Diagonal Blocks

The building block for reordering a given Schur decomposition is the compu-
tation of an orthogonal matrix Q so that

QT

[
A11 A12

0 A22

]
Q =

[
Ã11 Ã12

0 Ã22

]
,

λ(A11) = λ(Ã22),
λ(A22) = λ(Ã11),

(1.63)

where A11 ∈ R
n1×n1 , A22 ∈ R

n2×n2 and n1, n2 ∈ {1, 2}. This procedure is
usually called swapping of A11 and A22. One should not take this name too
literally; it is usually not the case that Ã22 is equal to A11 or that Ã11 is equal
to A22.

Stewart [303] has described an iterative algorithm for producing such a
swapping. It first performs an arbitrary QR iteration on

[
A11
0

A12
A22

]
to destroy

the reducedness of this matrix. Afterwards, one or more QR iterations with
the eigenvalues of A11 as shifts are applied, which is likely to quickly converge
to a decomposition of the form (1.63). However, numerical examples reported
in [18, 110] demonstrate that this algorithm occasionally fails to converge or it
produces a block triangular matrix that does not correspond to the intended
swapping.

Based on earlier work by other authors [87, 110, 255, 275], Bai and Dem-
mel [18] developed a direct swapping algorithm. Assuming that λ(A11) ∩
λ(A22) = ∅, it first computes the solution of the Sylvester equation
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A11X −XA22 = γA12, (1.64)

where γ ∈ (0, 1] is a scaling factor to prevent from possible overflow in X.
This yields the following block diagonal decomposition:[

A11 A12

0 A22

]
=
[

In1 −X
0 γIn2

] [
A11 0
0 A22

] [
In1 X/γ
0 In2/γ

]
.

By a QR decomposition, an orthogonal matrix Q is constructed so that

QT

[
−X
γIn2

]
=
[

R
0

]
, R ∈ R

n2×n2 .

Partition Q =
[

Q11
Q21

Q12
Q22

]
so that Q12 ∈ R

n1×n1 , then Q12 is invertible and

QT

[
A11 A12

0 A22

]
Q =

[
� R

QT
12 0

] [
A11 0
0 A22

] [
0 Q−T

12

R−1 �

]

=
[

RA22R
−1 �

0 QT
12A11Q

−T
12

]
.

Thus, Q produces the desired swapping.
Let the solution of the Sylvester equation (1.64) be obtained by applying

Gaussian elimination with complete pivoting to the Kronecker product for-
mulation of (1.64). Then, in finite-precision arithmetic, the computed factor
Q̂ satisfies

Q̂T

[
A11 A12

0 A22

]
Q̂ =

[
Â11 Â12

Â21 Â22

]
,

where

‖Â21‖F ≤
ρu (‖A11‖F + ‖A22‖F )‖A12‖F

[1 + σmin(X)] sep(A11, A22)

and ρ is a small constant of order O(1) [18]. Hence, a small separation may
lead to an error matrix Â21 that cannot be set to zero without sacrificing
numerical backward stability. Numerical experiments show that this upper
bound is very pessimistic and a small value of sep(A11, A22) only very rarely
implies instability. In the LAPACK routine DLAEXC, an implementation of the
described swapping procedure, the swapping is performed tentatively. If any
element in the (2, 1) block entry of QT

[
A11
0

A12
A22

]
Q exceeds every element of

20uAij in magnitude, then the swapping is rejected. It was argued in [18]
that such a rejection may only happen if the eigenvalues of A11 and A22 are
so close that they are numerically indistinguishable.

Bojanczyk and Van Dooren [53] have developed and analyzed an alter-
native approach to swapping which, instead of solving the Sylvester equa-
tion 1.64, relies on the eigenvectors of A.
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1.7.2 Reordering

Having the direct swapping algorithm on hand, we can use a bubble sort pro-
cedure to reorder a selected set of eigenvalues to the top left corner of a given
real Schur form, see Algorithm 8. This algorithm is implemented in the LA-

Algorithm 8 Reordering a real Schur decomposition
Input: A matrix T ∈ R

n×n in real Schur form (1.61) with m diagonal blocks,
an orthogonal matrix Q ∈ R

n×n and a simple eigenvalue cluster Λs ⊂
λ(T ), closed under complex conjugation.

Output: A matrix T̃ ∈ R
n×n in real Schur form and an orthogonal matrix Q̃ ∈

R
n×n so that T̃ = Q̃T TQ̃. For some integer j, the set Λs is the union

of eigenvalues belonging to the j upper-left-most diagonal blocks of T̃ .
The matrices T and Q are overwritten by T̃ and QQ̃, respectively.

j ← 0
for i ← 1, . . . , m do

if λ(Tii) ⊂ Λs then
j ← j + 1, select(j) ← i

end if
end for
top ← 0
for l ← 1, . . . , j do

for i ← select(l), select(l) − 1, . . . , top + 1 do
Swap Ti−1,i−1 and Tii by an orthogonal similarity transformation and apply
this transformation to the rest of the columns and rows of T , and the columns
of Q.

end for
top ← top + 1

end for

PACK routine DTRSEN, which also provides (estimates of) condition numbers
for the eigenvalue cluster Λs and the corresponding invariant subspace. If Λs

contains k eigenvalues, then Algorithm 8 requires O(kn2) flops. The exact
computational cost depends on the distribution of selected eigenvalues over
the block diagonal of T .

1.7.3 Block Algorithm

Each outer loop of Algorithm 8 performs only O(select(l) ·n) flops while mov-
ing O(select(l) · n) memory. Even worse, when updating the rows of T in the
inner loop, this memory is accessed in a row-by-row fashion. The poor mem-
ory reference pattern of Algorithm 8 can be improved using a block algorithm
similar to the tiny-bulge multishift QR algorithm, see Section 1.5.5. The basic
idea of the block reordering algorithm is best explained by an example.
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(a) (b)

(c) (d)

Fig. 1.15.

Let us consider a 16×16 upper triangular matrix T having the eigenvalues
at diagonal positions 2, 6, 12, 13, 15 and 16 selected, see Figure 1.15 (a). We
activate the eigenvalues in the ev = 4 upper-left-most positions (2, 6, 12, 13),
those are the gray disks in Figure 1.15 (b). The active eigenvalues will be
reordered to the top in a window-by-window fashion. The first window of
order w = 6 contains the bottom active eigenvalue in its bottom right corner.
This is the light gray area in Figure 1.15 (b). The eigenvalues at positions 12
and 13 are reordered to the top of the window, i.e., positions 8 and 9. The
corresponding orthogonal transformations are saved and applied afterwards to
the rest of the matrix, this will be discussed in more detail below. The next 6×6
window contains active eigenvalues at positions 6, 8 and 9, see Figure 1.15 (c).
Again, these eigenvalues are reordered to the top of the window. The last
window contains all active eigenvalues, which reach their final positions after
having been reordered within this window. This process is repeated with the
next bunch of at most ev disordered eigenvalues, which in our example are
the eigenvalues sitting at positions 15 and 16
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We abstain from giving a formal description of the block reordering algo-
rithm, which would be rather technical. Note, however, that the determination
of the correct window positions is more complicated in the presence of 2×2 di-
agonal blocks. For more details, the reader is referred to the report [203] along
with the accompanying Fortran 77 implementation BLKORD of the delineated
block reordering algorithm. BLKORD achieves high performance by delaying all
orthogonal transformations outside the window, in which the active eigenval-
ues are reordered. After the reordering within a window has been completed,
the transformations are applied to the rest of the matrix, painted dark gray
in Figure 1.15. In order to maintain locality of the memory reference pattern,
all rows are updated in stripes of nb columns. It there are sufficiently many
transformations, it will be more efficient to accumulate the transformations
into a w × w orthogonal matrix U and use matrix-matrix multiplications to
update the rest of the matrix. Assuming that all eigenvalues in the window
are real, this matrix U has the following block structure:

U =
[

U11 U12

U21 U22

]
=

⎡
⎣ �
�

⎤
⎦ , (1.65)

i.e., the submatrices U12 ∈ R
(w−mw)×(w−mw) and U21 ∈ R

mw×mw are lower
and upper triangular, respectively, where mw denotes the number of active
eigenvalues in the window. If there are pairs of complex conjugate eigenvalues
then the submatrices of U have only banded structure, which is more difficult
to exploit using level 3 BLAS operations.

Numerical Experiments

For the purpose of demonstrating the performance improvements to be ex-
pected from using the described block algorithm, we applied BLKORD to an
upper triangular matrix T ∈ R

n×n, n ∈ {500, 1000, 1500}, generated by the
LAPACK routine DLATME such that all eigenvalues have moderate condition
numbers. The portion of selected eigenvalues was d ∈ {5%, 25%, 50%}. To
demonstrate that the performance improvements are to some extent indepen-
dent of the distribution of eigenvalues over the diagonal of T , we considered
two different distributions. In the “random” distribution, each eigenvalue is
selected with probability d. In the “bottom” distribution, the selected eigen-
values are located in the dn× dn bottom right submatrix of T .

The parameter ev, the number of active eigenvalues in each block reorder-
ing step of BLKORD, was chosen to be the optimal value in {24, 32, 48, 64, 80}.
Note that the timings obtained with the (possibly suboptimal) value ev = 48
differ at most by 10% from the timings obtained with the optimal value for
the matrices under consideration. The window size w was set to 5/2× ev for
no particular good reason, except that this choice matches the window size in
the tiny-bulge multishift QR algorithm rather well. The employed orthogonal
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transformations were accumulated in a matrix U whenever more than half
of the active eigenvalues were located in the lower half of the window. The
potential block triangular structure (1.65) of U was not exploited.

Update of T Update of T + Q
n sel. distr. DTRSEN BLKORD DTRSEN BLKORD

500 5% random 0.19 0.05 0.25 0.08
500 5% bottom 0.24 0.07 0.34 0.13
500 25% random 0.55 0.16 0.75 0.26
500 25% bottom 0.86 0.29 1.24 0.50
500 50% random 0.51 0.20 0.76 0.34
500 50% bottom 1.06 0.38 1.54 0.63

1000 5% random 2.23 0.34 2.87 0.62
1000 5% bottom 2.98 0.50 4.03 0.88
1000 25% random 6.51 0.95 8.40 1.71
1000 25% bottom 11.65 1.94 15.83 3.39
1000 50% random 7.60 1.31 10.08 2.34
1000 50% bottom 15.56 2.53 21.23 4.49

1500 5% random 7.92 1.00 9.46 1.77
1500 5% bottom 11.36 1.61 14.21 2.91
1500 25% random 25.02 3.01 30.53 5.42
1500 25% bottom 45.12 6.09 56.64 11.04
1500 50% random 28.11 4.02 35.93 7.38
1500 50% bottom 60.47 7.98 75.79 14.64

Table 1.2. Performance results in seconds for unblocked (DTRSEN) and blocked
(BLKORD) reordering of an n × n matrix in Schur form.

Table 1.2 demonstrates that BLKORD performs much better than the LA-
PACK routine DTRSEN; often it requires less than 25% of the time needed by
DTRSEN. To test the numerical reliability of BLKORD, we measured the orthog-
onality of Q, ‖QT Q− I‖F , as well as the residual ‖QT TQ− T̃‖F /‖T‖F and
found all values satisfactorily close to u.

1.8 Case Study: Solution of an Optimal Control Problem

In this concluding section, we apply the described algorithms to the optimal
control problem for second-order models using Laub’s Schur method [211], see
also [134, 212]. In this type of control problems, the dynamical system consists
of a state equation given by a second-order differential equation

Mz̈(t) + Lż(t) + Kz(t) = Su(t), z(0) = z0, ż(0) = z1, (1.66)
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and an associated output equation

y(t) = Nz(t) + P ż(t), (1.67)

where z(t) ∈ R
	, y(t) ∈ R

p, u(t) ∈ R
m, M,L,K ∈ R

	×	, S ∈ R
	×m, and

N,P ∈ R
p×	. Often, M and K are symmetric where M is positive definite, K

is positive semidefinite, and L is the sum of a symmetric positive semidefinite
and a skew-symmetric matrix. Usually, M is called the mass matrix, L is the
Rayleigh matrix representing damping (the symmetric part) and gyroscopic
(the skew-symmetric part) forces, and K is the stiffness matrix. Second-order
models are often used to model mechanical systems such as large flexible space
structures.

Assuming that M is invertible, a first-order description of (1.66)–(1.67)
can be obtained by introducing the state vector

x(t) =
[

z(t)
ż(t)

]
,

which yields a system of the form

ẋ(t) =
[

0 I
−M−1K −M−1L

]
x(t) +

[
0

M−1S

]
u(t), x(0) = x0, (1.68a)

y(t) =
[
N P

]
x(t), (1.68b)

where x0 = [zT
0 , zT

1 ]T . This is a standard linear continuous-time system of the
form (A.1).

Now, consider the linear quadratic-optimal control problem:

Minimize J(u(·)) =
1
2

∫ ∞

0

(
y(t)T y(t) + u(t)T u(t)

)
dt subject to (1.68).

Under some mild assumptions, the solution of this problem is given by a linear
feedback law of the form u(t) = −[0, (M−1S)T ]X�x(t), see Section A.3. The
feedback matrix X� can be obtained from the invariant subspace belonging to
the 2l eigenvalues with negative real part of the 4l× 4l Hamiltonian5 matrix:

H =

⎡
⎢⎢⎣

0 I 0 0
−M−1K −M−1L 0 −(M−1S)(M−1S)T

−NT N −NT P 0 (M−1K)T

−PT N PT P −I (M−1L)T

⎤
⎥⎥⎦ . (1.69)

To compute this so called stable invariant subspace we can proceed in three
steps [211]:

1. Compute an orthogonal matrix Q1 so that QT
1 HQ1 has Hessenberg form.

5 For more on Hamiltonian matrices, the reader is referred to Section 4.5.
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2. Apply the QR algorithm to compute an orthogonal matrix Q2 so that

T = (Q1Q2)T H(Q1Q2)

has real Schur form.
3. Reorder the diagonal blocks of T by an orthogonal transformation Q3

so that the first 2l diagonal blocks of QT
3 TQ3 contain eigenvalues having

negative real part.

The stable invariant subspace is spanned by the first 2l columns of the or-
thogonal matrix U = Q1Q2Q3. In the previous sections, we have described
and developed various algorithms to improve the performance of Steps 2 and
3. The following example illustrates these improvements.

Example 1.34 ([158, 1, 204]). Let us consider a model of a string consisting
of coupled springs, dashpots, and masses as shown in Figure 1.16. The inputs
are two forces, one acting on the left end of the string, the other one on the
right end. For this problem, the matrices in (1.68) are

2

d

m m m

d

k k

m

f f1

Fig. 1.16. Coupled springs experiment (k ∼ κ, m ∼ µ, d ∼ δ).

M = µI	, L = δI	, N = P = I	,

K = κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

. . . . . . . . . . . .
0 0 . . . −1 2 −1
0 0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
...

...
...

...
0 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for some parameters δ, κ, µ ∈ R. We have chosen � = 500, δ = 4, κ = 1 and
µ = 4 for the numerical experiments.

Three different combinations of algorithms were used to perform the
three steps listed above. The first combination uses solely LAPACK routines:
DGEHRD and DORGHR for Step 1, DHSEQR for Step 2, DTRSEN for Step 3. The sec-
ond combination replaces DHSEQR by the tiny-bulge multishift QR algorithm
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(ATTQR) with ns = 2 shifts per bulge and aggressive early deflation, see Sec-
tions 1.5.5 and 1.6. The third combination uses ATTQR with ns = 6, described
in Section 1.5.5, and the block reordering routine BLKORD, see Section 1.7.3.
All routine parameters had the same values as in the numerical experiments
of Sections 1.6 and 1.7.3.

LAPACK State of the Art 1 State of the Art  2
0

1

2

3

4

5

6

7

8

9

10

11
Hessenberg reduction
QR algorithm
eigenvalue reordering

9.80 min

DTRSEN

DHSEQR

DGEHRD+
DORGHR

4.01 min

DTRSEN

ATTQR
ns = 2

DGEHRD+
DORGHR

2.83 min
BLKORD→

ATTQR
ns = 6

DGEHRD+
DORGHR

Fig. 1.17. Performance results (in minutes) for the three combinations of algo-
rithms described in Example 1.34.

The obtained performance results are displayed in Figure 1.17. It can be
seen that the second combination requires 59% less computational time than
LAPACK. The third combination is even faster; it outperforms the first one
by 71% and the second one by 29.4%. It is a remarkable fact that the portion
of computational time needed by the Hessenberg reduction step increases from
11% to 38%.
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The QZ Algorithm

There was a young fellow from Trinity
Who tried

√∞
But the number of digits
Gave him such figets

That he gave up Math for Divinity
—George Gamow (quoted in [248])

The QZ algorithm is a numerically backward stable method for computing
generalized eigenvalues and deflating subspaces of regular matrix pairs. It
goes back to Moler and Stewart in 1973 [248] and has undergone only a few
modifications during the next 25 years, notably through works by Ward [345,
346], Kaufman [189], Dackland and K̊agström [96].

The QZ algorithm applied to a matrix pair (A,B) is formally equivalent
to applying the QR algorithm to AB−1 and B−1A at the same time, provided
that B is nonsingular. In finite-precision arithmetic, however, the inversion of
the potentially ill-conditioned matrix B may lead to a severe loss of accuracy
in the computed eigenvalues and should therefore be avoided. This is the
major source of justification for the importance of the QZ algorithm.

This chapter is organized as follows. In Section 2.1, we briefly recall the
definition of generalized eigenvalues and deflating subspaces as well as their
relation to the generalized Schur decomposition. A more detailed treatment of
this subject can be found in, e.g., [308]. Existing perturbation results for gen-
eralized eigenvalues and deflating subspaces are summarized in Section 2.2.
The explicit shifted QZ iteration, which forms the basis of the QZ algorithm,
is introduced in the beginning of Section 2.3. The remainder of that section
is concerned with the three ingredients that make the implicit shifted QZ
algorithm work: reduction to Hessenberg-triangular form, bulge chasing, de-
flation of finite and infinite eigenvalues. Particular emphasis is placed on the
use of Householder matrices in the bulge chasing process, see Section 2.3.3.
Balancing matrix pairs, the subject of Section 2.4, is a subtle issue. We de-
scribe two known approaches to balancing and demonstrate their fallibilities.
In Section 2.5.1, block algorithms for reducing a matrix pair to Hessenberg-
triangular form are investigated, largely based on an algorithm by Dackland
and K̊agström [96]. Sections 2.5.2 and 2.5.3 deal with the transmission of shifts
during an implicit shifted QZ iteration and the behavior of infinite eigenval-
ues. In Sections 2.5.4 and 2.6, we adapt techniques described in the previous
chapter to obtain a tiny-bulge multishift QZ algorithm with aggressive early
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deflation. Finally, Section 2.7 is concerned with the computation of selected
deflating subspaces from a generalized Schur decomposition.

2.1 The Generalized Eigenvalue Problem

The (generalized) eigenvalues of a matrix pair (A,B) ∈ R
n×n × R

n×n are
the roots (α, β) of the bivariate polynomial det(βA − αB). Throughout the
whole chapter we assume that this polynomial is not identically zero, in which
case the corresponding matrix pair is called regular. The set of all eigenvalues
(α, β) is denoted by λ(A,B). By introducing the equivalence classes

〈α, β〉 = {(τα, τβ) : τ ∈ C\{0}}

we identify eigenvalues which only differ by a common multiple.
If B is nonsingular then (α, β) is a generalized eigenvalue of (A,B) if

and only if α/β is an eigenvalue of AB−1. Hence, in principal we can compute
generalized eigenvalues by applying the QR algorithm to the explicitly formed
matrix AB−1. As explained in the introduction, the drawback of such an
approach is that an ill-conditioned B would unnecessarily spoil the accuracy
of the computed eigenvalues. Nevertheless, this connection should be kept in
mind; it relates much of the material presented in this chapter to the previous
chapter.

A nonzero vector x ∈ C
n is called a (right generalized) eigenvector of (A,B)

if βAx = αBx for some (α, β) ∈ λ(A,B). Correspondingly, a nonzero vector
z ∈ C

n satisfying βzHA = αzHB is called a left (generalized) eigenvector.
Note that Ax and Bx lie in the same direction if x is an eigenvector. A
generalization of this idea suggests to call a k-dimensional subspace X a (right)
deflating subspace of (A,B) if AX and BX are contained in a subspace Y
of dimension k. The regularity of (A,B) implies that such a subspace Y is
uniquely defined; we call Y a left deflating subspace and (X ,Y) a pair of
deflating subspaces. It is important to remark that Y, despite its name, is
generally not spanned by left eigenvectors. If the columns of X and Y form
bases for X and Y, respectively, then there exists a uniquely defined matrix
pair (A11, B11) satisfying

AX = Y A11, BX = Y B11.

This matrix pair is called the representation of (A,B) with respect to (X,Y ).
For brevity, we will make use of the conventions (A,B)X ≡ (AX,BX) and
Y (A11, B11) ≡ (Y A11, Y B11). The following example shows how deflating
subspaces belonging to complex conjugate pairs of eigenvalues can be con-
structed.

Example 2.1. Let (α, β) = (α1 + iα2, β) with α1 ∈ R and α2, β ∈ R\{0} be an
eigenvalue of the regular matrix pair (A,B) ∈ R

n×n×R
n×n. If x = x1 +ix2 is

an eigenvector belonging to (α, β) with x1, x2 ∈ R
n, then βAx = αBx implies
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βAx1 = α1Bx1 − α2Bx2, βAx2 = α2Bx1 + α1Bx2.

The linear independence of x1, x2 as well as the linear independence of

y1 =
1
β

Bx1, y2 =
1
β

Bx2

follow from α2 �= 0 and β �= 0. Hence, (span{x1, x2}, span{y1, y2}) is a pair of
two-dimensional deflating subspaces with the real representation

(A,B)
[
x1, x2

]
=
[
y1, y2

] ([ α1 α2

−α2 α1

]
,

[
β 0
0 β

])
.

♦

Not surprisingly, deflating subspaces admit the deflation of a generalized
eigenvalue problem into two smaller subproblems, just as invariant subspaces
can be used to deflate standard eigenvalue problems. Let (X ,Y) be a pair
of deflating subspaces and let the columns of X,X⊥, Y, Y⊥ form orthonormal
bases for X ,X⊥,Y,Y⊥, respectively. Then U = [Y, Y⊥] and V = [X,X⊥] are
unitary matrices with

UH (A,B)V =
([

A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
(2.1)

and λ(A,B) = λ(A11, B11)∪ λ(A22, B22). This decomposition is called a gen-
eralized block Schur decomposition of the matrix pair (A,B). We say that any
matrix pair with the block triangular structure displayed in (2.1) is in gener-
alized block Schur form. A block triangular matrix pair can be subsequently
reduced to a triangular matrix pair, giving rise to the so called generalized
Schur decomposition. This decomposition will be complex unless every eigen-
value belongs to some class 〈α, β〉 with α, β ∈ R. However, similar to the real
Schur decomposition of a single matrix, realness can be preserved by allowing
two-by-two diagonal blocks in one of the matrices.

Theorem 2.2 (Generalized real Schur decomposition [300]). Consider
a matrix pair (A,B) ∈ R

n×n × R
n×n. Then there exist orthogonal matrices

Q and Z so that QT (A,B)Z = (S, T ), where S is in real Schur form (see
Theorem 1.2) while T is upper triangular.

The purpose of the QZ algorithm is to compute such a generalized real Schur
decomposition. This provides almost everything needed to solve the general-
ized eigenvalue problem. Eigenvalues can be easily computed from the diago-
nal blocks of T and S, and the leading k columns of Z and Q span pairs of
deflating subspaces under the assumption that the (k + 1, k) entry of T van-
ishes. A reordering of the diagonal blocks of S and T can be used to compute
other deflating subspaces, see Section 2.7.
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2.2 Perturbation Analysis

In this section we investigate the influence of a perturbation (E,F ) on the
generalized eigenvalues and deflating subspaces of (A,B). The exposition is
briefer than for the standard eigenvalue problem as many of the results can
be derived by techniques similar to those used in Section 2.2.

2.2.1 Spectral Projectors and Dif

Spectral projectors and the separation of two matrices have played an impor-
tant role in deriving perturbation results for the standard eigenvalue problem.
In the following, we define similar quantities playing this role for the gener-
alized eigenvalue problem. Throughout this section we consider a generalized
block Schur decomposition of the form

UH (A,B)V =
([

A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
(2.2)

We partition the unitary matrices as U = [Y, Y⊥] and V = [X,X⊥] so that
(X ,Y) = (span(X), span(Y )) is a pair of deflating subspaces corresponding
to the representation (A11, B11) ∈ C

k×k × C
k×k.

The right and left spectral projectors Pr and Pl belonging to λ(A11, B11)
are defined as

Pr = V

[
Ik Rr

0 0

]
V H , Pl = U

[
Ik −Rl

0 0

]
UH , (2.3)

where the matrix pair (Rr, Rl) satisfies the following system of matrix equa-
tions

A11Rr −RlA22 = −A12,
B11Rr −RlB22 = −B12.

(2.4)

This system is called a generalized Sylvester equation and the corresponding
generalized Sylvester operator is the linear matrix operator

Tu : (Rr, Rl) → (A11Rr −RlA22, B11Rr −RlB22). (2.5)

The invertibility of Tu is necessary and sufficient for the system of matrix
equations (2.4) to be uniquely solvable.

Lemma 2.3 ([300]). Let (A11, B11) and (A22, B22) be regular matrix pairs
and let Tu be defined as in (2.5). Then Tu is invertible if and only if

λ(A11, B11) ∩ λ(A22, B22) = ∅.

Since the eigenvalues of (A11, B11) = Y H(A,B)X and (A22, B22) =
Y H
⊥ (A,B)X⊥ do not depend on a particular choice of bases for X and Y,

the invertibility of Tu may be assigned as an intrinsic property of deflating
subspaces.
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Definition 2.4. Let (X ,Y) be a pair of deflating subspaces for the regular
matrix pair (A,B), and let the columns of X,X⊥, Y, Y⊥ form orthonormal
bases for X ,X⊥,Y,Y⊥, respectively. Then (X ,Y) is called simple if

λ(Y HAX,Y HBX) ∩ λ(Y H
⊥ AX⊥, Y H

⊥ BX⊥) = ∅.

The separation of two matrix pairs (A11, B11) and (A22, B22) is defined as
the smallest singular value of Tu:

difu[(A11, B11), (A22, B22)] := min
(Rr,Rl)
�=(0,0)

‖Tu(Rr, Rl)‖F

‖(Rr, Rl)‖F
, (2.6)

where we let ‖(Rr, Rl)‖F =
∥∥∥[Rr

Rl

]∥∥∥
F

. While the ordering of arguments

does not play a role for the separation of two matrices (sep(A11, A22) =
sep(A22, A11)), it generally affects the separation of two matrix pairs. We
therefore introduce the quantity

dif l[(A11, B11), (A22, B22)] := difu[(A22, B22), (A11, B11)].

The associated generalized Sylvester operator is given by

Tl : (Qr, Ql) → (A22Qr −QlA11, B22Qr −QlB11). (2.7)

The following example reveals that difl and difu can differ significantly.

Example 2.5. Let A11 =
[

105

0
0

10−5

]
, A22 = 1, B11 =

[
105

0
105

10−5

]
and B22 = 0.

Then

difu[(A11, B11), (A22, B22)] =

∥∥∥∥∥
[

A11 −I2

B11 0

]−1
∥∥∥∥∥

2

= 1010,

while

dif l[(A11, B11), (A22, B22)] =

∥∥∥∥∥
[
−I2 AT

11

0 BT
11

]−1
∥∥∥∥∥

2

=
√

2× 105.

♦
Using a Kronecker product formulation, the matrix operator Tu can be

represented as

vec(Tu(Rr, Rl)) = KTu

[
vec (Rr)
vec (Rl)

]
,

with the 2k(n− k)× 2k(n− k) matrix

KTu
=
[

In−k ⊗A11 −AT
22 ⊗ Ik

In−k ⊗B11 −BT
22 ⊗ Ik

]
.

The definition of difu implies

difu[(A11, B11), (A22, B22)] = σmin(KTu
).
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2.2.2 Local Perturbation Bounds

The perturbation theory for generalized eigenvalue problems is comprehen-
sively treated in Chapter VI of the book by Stewart and Sun [308], largely
based on works by Stewart [300, 302]. For recent developments in this area the
reader is referred to the comprehensive report by Sun [317] and the references
therein.

We start with the perturbation expansion of a generalized eigenvalue.

Theorem 2.6 ([223, 317]). Let the regular matrix pair (A,B) have a sim-
ple eigenvalue (α, β) with right and left eigenvectors x and z, respectively,
normalized such that zHAx = α and zHBx = β. Let (E,F ) ∈ B(0) be a per-
turbation of (A,B), where B(0) ⊂ C

n×n × C
n×n is a sufficiently small open

neighborhood of the origin. Then there exist analytic functions fα : B(0) → C,
fβ : B(0) → C so that (α, β) = (fα(0), fβ(0)) and (α̂, β̂) := (fα(E), fβ(F )) is
a generalized eigenvalue of the perturbed matrix pair (A+E,B+F ). Moreover,

α̂ = α + zHEx + O(‖(E,F )‖2),
β̂ = β + zHFx + O(‖(E,F )‖2). (2.8)

The eigenvalue (α, β) is a representative of the class 〈α, β〉, which can be
interpreted as a one-dimensional subspace spanned by the vector [α, β]. This
suggests using one of the metrics for vector subspaces discussed on page 13 in
order to obtain a meaningful measure of the distance between two generalized
eigenvalues (α, β) and (α̂, β̂). In particular, the gap metric in the 2-norm yields
the following distance measure [302].

Definition 2.7. The chordal distance between 〈α, β〉 and 〈α̂, β̂〉 is defined as

χ(〈α, β〉, 〈α̂, β̂〉) :=
|αβ̂ − βα̂|√

|α|2 + |β|2
√
|α̂|2 + |β̂|2

.

Inserting (2.8) into this definition we obtain, after some algebraic manipula-
tions, the perturbation bound

χ(〈α, β〉, 〈α̂, β̂〉) ≤ ‖x‖2 ‖z‖2√
|α|2 + |β|2

‖(E,F )‖2 + O(‖(E,F )‖2).

The following theorem is a variation of a result by Sun [315] on the per-
turbation expansion for pairs of deflating subspaces.

Theorem 2.8. Let the regular matrix pair (A,B) have a generalized block
Schur decomposition of the form (2.2) and partition U = [Y, Y⊥], V =
[X,X⊥], so that (X ,Y) = (span(X), span(Y )) is a pair of deflating subspaces.
Assume that (X ,Y) is simple and let (E,F ) ∈ B(0) be a perturbation of
(A,B), where B(0) ⊂ C

n×n × C
n×n is a sufficiently small open neighborhood

of the origin. Then there exists an analytic function
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f(X,Y ) : B(0) → C
n×k × C

n×k

so that (X,Y ) = f(X,Y )(0), and the columns of (X̂, Ŷ ) = f(X,Y )(E,F ) span
a pair of deflating subspaces of (A + E,B + F ). Moreover, XH(X̂ − X) =
Y H(Ŷ − Y ) = 0, and we have the expansion

(X̂, Ŷ ) = (X,Y ) + (X⊥Qr, Y⊥Q�
l ) +O(‖[E,F ]‖2) (2.9)

with (Qr, Ql) = T−1
l (Y H

⊥ EX,Y H
⊥ FX) and the generalized Sylvester operator

Tl as in (2.7).

Proof. We can apply essentially the same technique that has been used to
derive local perturbation bounds for the standard eigenvalue problem, in par-
ticular in the proof of Theorem 1.9. If

f(E,F, X̂, Ŷ , Â11, B̂11) :=

⎡
⎢⎢⎣

AX̂ − Ŷ Â11

BX̂ − Ŷ B̂11

XH(X̂ −X)
Y H(Ŷ − Y )

⎤
⎥⎥⎦ = 0,

then (span(X̂), span(Ŷ )) is a pair of deflating subspaces belonging to λ(Â11,
B̂11). The Jacobian of f with respect to (X̂, Ŷ , Â11, B̂11) at (0, 0, X, Y,A11, B11)
is a linear matrix operator having the block representation

J =
∂f

∂(X̂, Ŷ , Â11, B̂11)

∣∣
(0,0,X,Y,A11,B11)

=

⎡
⎢⎢⎣ T̃

−Y 0
0 −Y

XH 0 0 0
0 Y H 0 0

⎤
⎥⎥⎦

with the linear matrix operator T̃ : (Zr, Zl) :→ (AZr −ZlA11, BZr −ZlB11).
Since (X ,Y) is simple, the generalized Sylvester operator Tl is invertible which
in turn implies the invertibility of J . The latter conclusion is shown by veri-
fying that J−1 ◦ J = J ◦ J−1 is the identity map for

J−1 =

⎡
⎢⎢⎣ S

X 0
0 Y

C11 C12 A11 −A11

C21 C22 B11 −B11

⎤
⎥⎥⎦ ,

where

S : (S1, S2) �→ (X⊥Qr, Y⊥Q�
l ), (Qr, Ql) = T−1

l (Y H
⊥ S1, Y

H
⊥ S2).

The expressions for the blocks Cij are given by

(C11, C12) = (T�
l )

−1(A12, 0) · Y H
⊥ − (0, Y H),

(C21, C22) = (T�
l )

−1(B12, 0) · Y H
⊥ − (Y H , 0),
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with the generalized Sylvester operator

T�
l : (Qr, Ql) → (QrA22 + QlB22,−A11Qr −B11Ql),

which is, under the given assumption, invertible. The proof is concluded by
applying the implicit function theorem. 
�

Although the proof of Theorem 2.8 also provides perturbation expansions
for the representation of (A+E,B+F ) with respect to (X̂, Ŷ ), it is difficult to
interpret these expansions. See [182] for a discussion on meaningful condition
numbers for clusters of generalized eigenvalues.

Corollary 2.9. Under the assumptions of Theorem 2.8, let

(X̂ , Ŷ) = (span(X̂), span(Ŷ )).

Then

‖Θ(X , X̂ )‖F ≤ c(X ,Y) ‖(E,F )‖F + O(‖(E,F )‖2), (2.10a)
‖Θ(Y, Ŷ)‖F ≤ c(X ,Y) ‖(E,F )‖F + O(‖(E,F )‖2), (2.10b)

where c(X ,Y) = 1/dif l[(A11, B11), (A22, B22)].

Proof. The proof of this result is virtually identical to the proof of Corol-
lary 1.13, which shows a similar bound for a perturbed invariant subspace.


�

It may happen that X and Y are not equally sensitive to perturbations.
In this case, Corollary 2.9 overestimates the sensitivity of one of the deflating
subspaces, see Example 2.10 below. Separating the influence of the operator
Tl on X and Y resolves this difficulty. Let

c−1
r (X ) := min

Qr �=0

‖Tl(Qr, 0)‖F

‖Qr‖F
, c−1

l (Y) := min
Ql �=0

‖Tl(0, Ql)‖F

‖Ql‖F
, (2.11)

then we can replace c(X ,Y) by the potentially smaller numbers cr(X ) and
cl(Y) in (2.10a) and (2.10b), respectively [315, 317].

Example 2.10 ([317, Ex. 4.2.10]). Let the regular matrix pair (A,B) ∈ R
4×4×

R
4×4 be in generalized block Schur form with

A11 = 10−5 × I2, B11 =
[

10−4 0
10−4 10−4

]
, A22 = B22 = I2.

For the pair of deflating subspaces (X ,Y) = (span([I, 0]T ), span([I, 0]T )) we
obtain

c(X ,Y) ≈ 2.67× 104, cr(X ) = 1.89, cl(Y) = 2.67× 104,

showing that c(X ,Y) severely overestimates the sensitivity of the deflating
subspace X alone. ♦
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Another point to emphasize is that the derived perturbation bounds may
suffer from the fact that the perturbation matrices E and F are equally
weighted. This is hard to justify if the norms of E and F differ significantly. For
example, if E and F are backward error matrices produced by a backward sta-
ble algorithm (such as the QZ algorithm) then typically ‖E‖F is proportional
to ‖A‖F while ‖F‖F is proportional to ‖B‖F . To balance the effects of per-
turbations, Sun [317] recommends to introduce weighting factors γA, γB > 0
and to replace ‖(E,F )‖F by ‖(E/γA, F/γB)‖F in the considerations above.

On the computation of dif

K̊agström and Poromaa [182, 183] have developed methods for estimating
dif l and difr, which are in the spirit of estimators for the separation of two
matrices and only require the solution of a few generalized Sylvester equations.
Based on contributions of these authors such an estimator is implemented in
the LAPACK routine DTGSEN. This routine greatly benefits from the fact
that all involved coefficient matrices are in or close to triangular form, see
also [93, 177, 184] for more details on the efficient solution of such generalized
Sylvester equations.

No such estimator has been developed for the individual condition num-
bers cr(X ) and cl(Y) defined in (2.11), which is rather surprising in the light of
Example 2.10. Also, weighting the perturbation matrices E and F differently,
as discussed above, has received little attention in currently implemented es-
timators.

2.2.3 Global Perturbation Bounds

Similar to Section 1.2.4, it is possible to derive global perturbation bounds for
the generalized eigenvalue problem which are valid as long as the generalized
eigenvalues belonging to the perturbed pair of deflating subspaces (X̂ , Ŷ) do
not coalesce with other generalized eigenvalues of (A + E,B + F ). Demmel
and K̊agström [105] showed that this coalescence does not take place if

x :=
difmin ‖(E,F )‖F√

‖Pr‖22 + ‖Pl‖22 + 2max{‖Pr‖2, ‖Pl‖2}
< 1 (2.12)

where difmin := min{difu[(A11, B11), (A22, B22)],dif l[(A11, B11), (A22, B22)]}
and Pr, Pl are the right and left spectral projectors belonging to λ(A11, B11).

The generalized version of Theorem 1.15 reads as follows.

Theorem 2.11 ([105, Lemma 6]). Let (A,B) have a generalized block Schur
decomposition of the form (2.2) and assume that the pair of deflating subspaces
(X ,Y) spanned by the first k columns of V and U , respectively, is simple. If
(E,F ) is a perturbation that satisfies inequality (2.12) then there exists a pair
of deflating subspaces (X̂ , Ŷ) of (A + E,B + F ) so that
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‖ tan[Θ(X , X̂ )]‖2 <
x

‖Pr‖2 − x
√
‖Pr‖22 − 1

,

‖ tan[Θ(Y, Ŷ)]‖2 <
x

‖Pl‖2 − x
√
‖Pl‖22 − 1

.

2.3 The Basic QZ Algorithm

We now turn to the QZ algorithm by Moler and Stewart [248], which aims
to compute a (real) generalized Schur decomposition of a matrix pair (A,B).
For simplifying the description of this algorithm, let us temporarily assume
that B is invertible. We will later on, in Sections 2.3.4 and 2.5.3, discuss how
to deal with a singular matrix B.

The fundamental ingredient of the QZ algorithm is a fairly straight gener-
alization of the QR iteration, the so called QZ iteration [248]. It generates a
sequence of orthogonally equivalent matrix pairs (A0, B0) ← (A,B), (A1, B1),
(A2, B2), . . . , which, under suitable conditions, converges to a generalized
block Schur form of (A,B). The QZ iteration relies on a fortunate choice of
shift polynomials pi and reads as follows:

pi(Ai−1B
−1
i−1) = QiRi, (QR decomposition) (2.13a)

B̃i ← QT
i Bi−1, (2.13b)

B̃i = BiZi, (RQ decomposition) (2.13c)
Ai ← QT

i Ai−1Zi. (2.13d)

It is easy to verify that this iteration is formally equivalent to applying a
QR iteration to Ai−1B

−1
i−1 (yielding the orthogonal matrix Qi) as well as

to B−1
i−1Ai−1 (yielding the orthogonal matrix Zi). The advantage of the QZ

iteration over the QR iteration is that the explicit inversion of the possibly
ill-conditioned matrix B is avoided in the formation of Q and Z. If the QZ
iteration converges, it produces the block Schur form of a slightly perturbed
matrix pair (A + E,B + F ), where ‖E‖F and ‖F‖F are of order u ‖A‖F and
u ‖B‖F , respectively, which implies numerical backward stability.

The intimate relation between QZ and QR iterations answers many the-
oretical questions such as the convergence of the QZ iteration. For example,
Corollary 1.20 implies under rather mild assumptions quadratic convergence
of (2.13) if the employed shifts are the eigenvalues of the bottom right m×m
submatrix of Ai−1B

−1
i−1, a choice which is sometimes called generalized Francis

shifts. It should be mentioned, however, that a direct proof of convergence of
the QZ iteration has its own advantages and leads to a quantitatively better
description of the convergence behavior, see [360].

2.3.1 Hessenberg-Triangular Form

A matrix pair (A,B) is said to be in (unreduced) Hessenberg-triangular form
if A is an (unreduced) upper Hessenberg matrix and B is a (nonsingular)
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upper triangular matrix. By direct computation, it can be seen that a matrix
pair (A,B) with nonsingular upper triangular B is in unreduced Hessenberg-
triangular form if and only if AB−1 is in unreduced Hessenberg form. Thus,
Lemma 1.22 applied to Ai−1B

−1
i−1 and B−1

i−1Ai−1 implies that the QZ itera-
tion (2.13) preserves unreduced Hessenberg-triangular forms.

In the following, we show how the initial matrix pair (A,B) of the QZ it-
eration can be reduced to Hessenberg-triangular form. This amounts to com-
puting orthogonal matrices Q and Z so that

QT (A,B)Z =
([

��
�

��

]
,

[
�

��

])
.

The first part, reducing B to upper triangular form, is easy. Simply let B =
QR be a QR decomposition, then

(A,B) ← QT (A,B) =
([ ]

,

[
�

��

])
.

The more difficult part consists of reducing A to upper Hessenberg form while
retaining the upper triangular form of B. Reducing the columns of A by
applying a Householder matrix is clearly not an option as it would completely
destroy the structure of B. Therefore, we need orthogonal transformations
that act on smaller parts of a matrix. Householder matrices of tiny order are
a viable option but a simpler alternative is provided by Givens rotations.

An n× n Givens rotation matrix has the form

Gij(θ) =

⎡
⎢⎢⎢⎢⎣

Ii−1

cos θ sin θ
Ij−i−1

− sin θ cos θ
In−j

⎤
⎥⎥⎥⎥⎦ , (2.14)

for i < j and some angle θ ∈ [−π/2, π/2). The angle can always be chosen
so that the jth component of Gij(θ)x is zero for a fixed vector x ∈ R

n.
In this case, we identify Gij(θ) ≡ Gij(x). For i > j, we use the notation
Gij(θ) ≡ Gij(x) to identify the Givens rotation which maps the ith component
of Gij(θ)T x to zero. Givens rotation matrices are clearly orthogonal and they
act only on two rows or columns when applied to a matrix from the left or
right, respectively. DLARTG is the LAPACK routine for constructing and DROT
is the BLAS for applying a Givens rotation.

In the following, we illustrate how Givens rotations can be used to reduce
the first column of the matrix A from bottom to top for n = 4. First, G34(Ae1)
is applied from the left. This annihilates the (4, 1) element of A but introduces
a nonzero (4, 3) element of B:

(A,B) ← G34(Ae1) · (A,B) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a a a a
a a a a
â â â â

0̂ â â â

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b b b b
0 b b b

0 0 b̂ b̂

0 0 b̂ b̂

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .
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This nonzero element is immediately annihilated by applying G43(eT
4 B) from

the right:

(A,B) ← (A,B) ·G43(eT
4 B) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a a â â
a a â â
a a â â
0 a â â

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b b b̂ b̂

0 b b̂ b̂

0 0 b̂ b̂

0 0 0̂ b̂

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

A similar process is used to annihilate the (3, 1) element of A:

(A,B) ← G23(Ae1) · (A,B) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a a a a
â â â â

0̂ â â â
0 a a a

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b b b b

0 b̂ b̂ b̂

0 b̂ b̂ b̂
0 0 0 b

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ,

(A,B) ← (A,B) ·G32(eT
3 B) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

a â â a
a â â a
0 â â a
0 â â a

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b b̂ b̂ b

0 b̂ b̂ b

0 0̂ b̂ b
0 0 0 b

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

We can apply an analogous procedure to the second column of A, reducing
(A,B) to the desired form.

Generalizing the described procedure to larger n yields Algorithm 9. This

Algorithm 9 Reduction to Hessenberg-triangular form [248]
Input: A general matrix A ∈ R

n×n and an upper triangular matrix B ∈ R
n×n.

Output: Orthogonal matrices Q, Z ∈ R
n×n. The matrices A and B are overwrit-

ten with the upper Hessenberg matrix QT AZ and the upper triangular
matrix QT BZ, respectively.

Q ← In, Z ← In

for j ← 1, . . . , n − 2 do
for i ← n − 1, n − 2, . . . , j + 1 do

G ← Gi,i+1(Aej)
A ← GA, B ← GB, Q ← QGT

G ← Gi+1,i(e
T
i+1B)

A ← AG, B ← BG, Z ← ZGT

end for
end for

algorithm, implemented in the LAPACK routine DGGHRD, requires 8n3+O(n2)
flops for reducing A and B. The accumulation of the orthogonal factors Q and
Z adds another 3n3+O(n2) flops for each factor. The preliminary reduction of
B to triangular form takes 2/3 ·n3+O(n2) flops plus 2n3+O(n2) for updating
A and 4/3·n3+O(n2) flops for computing the corresponding orthogonal factor.
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2.3.2 Implicit Shifted QZ Iteration

By the implicit Q theorem, see Theorem 1.23, a QR iteration applied to a
matrix Ai−1B

−1
i−1 in unreduced Hessenberg form is equivalent to reducing the

matrix
H1(x) ·Ai−1B

−1
i−1 ·H1(x),

to Hessenberg form, where x = pi(Ai−1B
−1
i−1) e1 denotes the first column of the

selected shift polynomial and H1(x) is the Householder matrix that maps x to
a scalar multiple of e1. Recall that an important premise is that the orthogonal
factor Q used for the Hessenberg reduction takes the form Q = 1⊕ Q̃.

It follows that a QZ iteration applied to a matrix pair (Ai−1, Bi−1) in
unreduced Hessenberg-triangular form is equivalent to reducing the matrix
pair

(Ãi−1, B̃i−1) := H1(x) · (Ai−1, Bi−1)

to Hessenberg-triangular form, provided that this reduction is carefully im-
plemented. A careful implementation returns a left orthogonal factor Q of the
form Q = 1⊕ Q̃. This can be achieved by employing an RQ instead of a QR
decomposition for the preliminary reduction of B̃i−1 to triangular form.

Alternatively, one can use a sequence of Givens rotations to map x, the
first column of the shift polynomial, to a multiple of e1 and propagate this
sequence through Bi−1. Let us illustrate this idea for n = 6 and m = 2. First,
a sequence of two Givens rotations G23(θ1), G12(θ2) is constructed so that
G12(θ1) ·G23(θ2) · x is mapped to a scalar multiple of e1, where

x = (Ai−1B
−1
i−1 − σ1I)(Ai−1B

−1
i−1 − σ2I)e1

and it is assumed that the set of shifts {σ1, σ2} is closed under complex con-
jugation. This sequence is applied from the left to (Ai−1, Bi−1),

(Ai−1, Bi−1) ← G12(θ1) ·G23(θ2) · (Ai−1, Bi−1),

which corresponds to the following Wilkinson diagram:⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

â â â â â â
â â â â â â
â â â â â â
0 0 a a a a
0 0 0 a a a
0 0 0 0 a a

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

b̂ b̂ b̂ b̂ b̂ b̂

b̂ b̂ b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂ b̂
0 0 0 b b b
0 0 0 0 b b
0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Secondly, a sequence of two Givens rotations G32(θ4), G21(θ3) is constructed
so that the matrix Bi−1 in

(Ai−1, Bi−1) ← (Ai−1, Bi−1) ·G32(θ4) ·G21(θ3)

is reduced to upper triangular form. This corresponds to the following dia-
gram:
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⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

â â â a a a

b̂a b̂a b̂a a a a

b̂a b̂a b̂a a a a

b̂a b̂a b̂a a a a
0 0 0 a a a
0 0 0 0 a a

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

b̂ b̂ b̂ b b b

0̂ b̂b b̂b b b b

0 0̂ b̂b b b b
0 0 0 b b b
0 0 0 0 b b
0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.15)

We have used the symbols ba and bb to designate elements of the so called
bulge pair, see Section 2.5.2 below. Finally, the matrix pair (Ai−1, Bi−1) is
returned to Hessenberg-triangular form using Algorithm 9. Overall, we obtain
Algorithm 10 for performing an implicit shifted QZ iteration.

Algorithm 10 Implicit shifted QZ iteration
Input: A matrix pair (Ai−1, Bi−1) ∈ R

n×n × R
n×n with n ≥ 2 in unreduced

Hessenberg-triangular form, an integer m ∈ [2, n].
Output: Orthogonal matrices Qi, Zi ∈ R

n×n such that

(Ai, Bi) = QT
i (Ai−1, Bi−1) Zi

is a suitable next iterate of the QZ iteration (2.13), where the employed
shifts are the eigenvalues of the bottom right m × m submatrix of
Ai−1B

−1
i−1. The matrix pair (Ai−1, Bi−1) is overwritten by (Ai, Bi).

1. Compute (α1, β1), . . . , (αm, βm) as generalized eigenvalues of the matrix pair

(Ai−1(n − m + 1 : n, n − m + 1 : n), Bi−1(n − m + 1 : n, n − m + 1 : n)).

2. Set x = (β1Ai−1B
−1
i−1 − α1In) · · · (βmAi−1B

−1
i−1 − αmIn)e1.

3. Construct a sequence of Givens rotations

Q̃ = G12(θ1) · · ·Gm−1,m(θm−1) · Gm,m+1(θm)

such that Q̃x is a scalar multiple of e1.
4. Update (Ai−1, Bi−1) ← Q̃ (Ai−1, Bi−1).
5. Construct a sequence of Givens rotations

Z̃ = Gm+1,m(θm+m) · Gm,m−1(θm+m−1) · · ·G21(θm+1)

such that Bi−1Z̃ is upper triangular.
6. Update (Ai−1, Bi−1) ← (Ai−1, Bi−1) Z̃.
7. Apply Algorithm 9 to compute orthogonal matrices Q and Z so that

(Ai−1, Bi−1) ← QT (Ai−1, Bi−1) Z is reduced to Hessenberg-triangular form.
8. Set Qi = Q̃T Q, Zi = Z̃Z.

The remarks concerning the implementation of the implicit shifted QR
iteration, Algorithm 2, apply likewise to Algorithm 10. In particular, Step 7
should be based on a special-purpose implementation of Algorithm 9, which
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exploits the zero structure of the matrix Ai−1. In this case, Step 7 requires
about 12mn2 flops for updating Ai−1 and Bi−1. About 6mn2 flops are ad-
ditionally needed for updating each of the orthogonal factors Q and Z. The
costs for the other steps of Algorithm 10 are negligible provided that m� n.

Let us illustrate Algorithm 10 for n = 6 and m = 2. After Step 6 the
matrix pair (Ai−1, Bi−1) takes the form displayed in (2.15), and the bulge
pair resides in rows 2, . . . , 4 and columns 1, . . . , 3. The subsequent reduction
to Hessenberg-triangular form can be seen as chasing this bulge pair down to
the bottom right corner along the first subdiagonals of Ai−1 and Bi−1. As
for the QR iteration, this point of view has been emphasized by Watkins and
Elsner [360]. Applying the first outer loop of Algorithm 9 to the matrix pair
(Ai−1, Bi−1) amounts to moving the bulge pair one step downwards:

(Ai−1, Bi−1) ←

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

a â â â a a
â â â â â â

0̂ b̂a b̂a b̂a â â

0̂ b̂a b̂a b̂a â â

0 b̂a b̂a b̂a a a
0 0 0 0 a a

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

b b̂ b̂ b̂ b b

0 b̂ b̂ b̂ b̂ b̂

0 0̂ b̂b b̂b b̂ b̂

0 0 0̂ b̂b b̂ b̂
0 0 0 0 b b
0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Each further execution of an outer loop of Algorithm 9 pushes the bulge pair
further downwards until it vanishes at the bottom right corner:

(Ai−1, Bi−1) ←

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

a a â â â a
a a â â â a
0 â â â â â

0 0̂ b̂a b̂a b̂a â

0 0̂ b̂a b̂a b̂a â

0 0 b̂a b̂a b̂a a

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b b b̂ b̂ b̂ b

0 b b̂ b̂ b̂ b

0 0 b̂ b̂ b̂ b̂

0 0 0̂ b̂b b̂b b̂

0 0 0 0̂ b̂b b̂
0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(Ai−1, Bi−1) ←

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

a a a â â â
a a a â â â
0 a a â â â
0 0 â â â â

0 0 0̂ b̂a b̂a b̂a

0 0 0̂ b̂a b̂a b̂a

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b b b b̂ b̂ b̂

0 b b b̂ b̂ b̂

0 0 b b̂ b̂ b̂

0 0 0 b̂ b̂ b̂

0 0 0 0̂ b̂b b̂b

0 0 0 0 0̂ b̂b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.16)

(Ai−1, Bi−1) ←

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

a a a a â â
a a a a â â
0 a a a â â
0 0 a a â â
0 0 0 â â â

0 0 0 0̂ â â

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b b b b b̂ b̂

0 b b b b̂ b̂

0 0 b b b̂ b̂

0 0 0 b b̂ b̂

0 0 0 0 b̂ b̂

0 0 0 0 0̂ b̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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2.3.3 On the Use of Householder Matrices

Early attempts

Algorithm 10 differs in one aspect significantly from the originally proposed
implicit QZ iteration, described for the case m = 2 in [248]. Moler and Stew-
art suggest to use transformations based on Householder matrices instead of
Givens rotations to move bulge pairs downwards. Their idea is well explained
by a 5× 5 example:

(A,B) =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a a a a a
ba ba ba a a
ba ba ba a a
ba ba ba a a
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b b b b
0 bb bb b b
0 0 bb b b
0 0 0 b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . (2.17)

First, a Householder matrix is applied from the left to annihilate elements
(3, 1) and (4, 1) of A:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a a a a a
â â â â â

0̂ â â â â

0̂ â â â â
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b b b b

0 b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . (2.18)

Next, a Householder matrix is applied from the right to annihilate the newly
introduced nonzero elements (4, 2) and (4, 3) of B:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a â â â a
a â â â a
0 â â â a
0 â â â a
0 â â â a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b̂ b̂ b̂ b

0 b̂ b̂ b̂ b

0 b̂ b̂ b̂ b

0 0̂ 0̂ b̂ b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ ,

and, finally, a Householder matrix (or Givens rotation) from the right is used
to annihilate the (3, 2) element of B:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a â â a a
a â â a a

0 b̂a b̂a ba a

0 b̂a b̂a ba a

0 b̂a b̂a ba a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b̂ b̂ b b

0 b̂ b̂ b b

0 0̂ b̂b bb b
0 0 0 bb b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . (2.19)

Using this type of transformation, Algorithm 10 requires about 28n2 flops
instead of 24n2 flops for reducing A and B. The cost for accumulating the or-
thogonal transformations grows from 24n2 to 28n2 flops as well. Nevertheless,
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this combination is used in the EISPACK implementation QZIT of the QZ
algorithm. Later on, Ward [345] proposed to use single shift iterations if both
shifts are real. The resulting combination shift QZ algorithm partly avoids the
increase of flops observed above.

Opposite Householder matrices

A computationally less expensive alternative has been proposed by Watkins
and Elsner [360]. It is based on the following lemma, which shows how a
Householder matrix applied from the right can be used to annihilate several
entries in one column.

Lemma 2.12. Let B ∈ R
n×n be an invertible matrix, then the first column

of B ·H1(B−1e1) is a scalar multiple of e1.

Proof. We have H1(B−1e1) · (B−1e1) = γe1 for some nonzero scalar γ, which
implies B ·H1(B−1e1)e1 = 1/γ · e1. 
�

Normally, a Householder matrix that is used for annihilating several entries
in one column is applied from the left, which tempts us to call H1(B−1e1) an
opposite Householder matrix. Some authors have raised fears that the use
of these opposite Householder matrices could spoil the numerical backward
stability in the presence of an ill-conditioned matrix B, see, e.g., [96, pg. 444].
The error analysis given below shows that such fears are unfounded. First, we
provide an example, demonstrating that although an ill-conditioned B may
severely affect the data representing H1(B−1e1), it has almost no effect on
the purpose of H1(B−1e1), which is the introduction of zero entries.

Example 2.13. Consider the matrix

B =
[

0 1
10−15 0

]
,

Let us assume that our favorite method for solving Bx = e1 delivers the
computed solution x̂ = [ 1/10, 1 ]T . This corresponds to a pleasantly small
residual ‖Bx̂− e1‖2 = 10−16, but the forward error ‖x− x̂‖2 = 10−1 is rather
large due to the potential ill-conditioning of B. Then

v̂ =
[√

1 + 1/100 + 1/10
1

]
, β̂ =

2
v̂T v̂

satisfy (I − β̂v̂v̂T )x̂ = −
√

1 + 1/100e1. The (2, 1) entry of B(I − β̂v̂v̂T ) is
approximately given by 10−16, i.e., the heavily perturbed Householder matrix
H1(x̂) has satisfactorily met its goal. ♦

A brief error analysis explains the phenomena observed in the preceeding
example. For this purpose, assume that x̂ is the exact solution of a perturbed
system, i.e.,
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(A + E)x̂ = e1, ‖E‖2 ≤ cA‖A‖2. (2.20)

It can be expected that the constant cA is not much larger than the unit
roundoff u if x̂ is computed by a numerically backward stable method. Con-
sider the Householder matrix H1(x̂) ≡ I − β̃ṽṽT with ṽ ∈ R

n and β̃ ∈ R,
implying (I − β̃ṽṽT )x̂ = γ̃e1 for some scalar γ̃. The computation of the quan-
tities ṽ and β̃ defining H1(x̂) is subject to roundoff errors. Using the standard
algorithm [141], the computed quantities v̂, β̂ satisfy

‖v̂ − ṽ‖2 ≤ cv ≈ 4nu, |β̂ − β̃| ≤ cβ ≈ nu,

see [164, p. 365]. It follows that

‖A(I − β̂v̂v̂T )e1 − 1/γ̂ · e1‖2 ≤ ‖A(I − β̃ṽṽT )e1 − 1/γ̂ · e1‖2
+ (cβ + 2cv)‖A‖2 +O(u2)

≤ (cA + cβ + 2cv)‖A‖2 +O(u2).

(2.21)

This shows that if x̂ is computed by a backward stable method, then the last
n− 1 elements in the first column of A(I − β̂v̂v̂T ) can be safely set to zero.

For demonstrating how opposite Householder matrices can be used for
chasing bulge pairs, let us reconsider the 5 × 5 example displayed in (2.17).
Again, a Householder matrix is applied from the left to annihilate elements
(3, 1) and (4, 1) of A, leading to the Wilkinson diagram displayed in (2.18).
The submatrix B22 = B(2 : 4, 2 : 4) is invertible, since B itself is assumed
to be invertible. Next, the opposite Householder matrix H1(B−1

22 e1) is applied
from the right to columns 2, . . . , 4 of A and B, which yields

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a â â â a
a â â â a

0 b̂a b̂a b̂a a

0 b̂a b̂a b̂a a

0 b̂a b̂a b̂a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b̂ b̂ b̂ b

0 b̂ b̂ b̂ b

0 0̂ b̂b b̂b b

0 0̂ b̂b b̂b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . (2.22)

Note that – in contrast to (2.19) – there remains an additional nonzero (4, 3)
element in B, which, however, does not hinder subsequent bulge chasing steps.
For general m and n, the implicit shifted QZ iteration based on (opposite)
Householder matrices is given by Algorithm 11.

If m � n, a proper implementation of Algorithm 11 requires about
2(4m+3)n2 flops for updating A and B. Moreover, about (4m+3)n2 flops are
required for updating each of the orthogonal factors Q and Z. This algorithm
is implemented for m = 2 in the LAPACK routine DHGEQZ. A curiosity of this
routine is that it still uses Ward’s combination shift strategy despite the fact
that two single shift QZ iterations based on Givens rotations require roughly
9% more flops than one double shift iteration based on Householder matrices.

It remains to discuss the method for solving the linear system of equations
in order to determine an opposite Householder matrix. The obvious choice
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Algorithm 11 = Algorithm 10 based on Householder matrices

Input and Output: See Algorithm 10.

Apply Steps 1 and 2 of Algorithm 10.
(Ai−1, Bi−1) ← H1(x) · (Ai−1, Bi−1)
Qi−1 ← H1(x), Zi−1 ← H1(B

−1
i−1e1)

(Ai−1, Bi−1) ← (Ai−1, Bi−1) Zi−1

for j ← 1, . . . , n − 1 do
Q̃ ← Hj+1(Ai−1ej)
(Ai−1, Bi−1) ← Q̃ · (Ai−1, Bi−1)
Qi−1 ← Qi−1Q̃
Z̃ ← Hj+1(B

−1
i−1ej+1)

(Ai−1, Bi−1) ← (Ai−1, Bi−1) Z̃
Zi−1 ← Zi−1Z̃

end for

is Gaussian elimination with partial pivoting [141]. Note, however, that the
constant cA, which bounds the backward error in (2.20), can be proportional
to 2n if this method is used [164], which in turn sacrifices the numerical
backward stability of the QZ algorithm. The famous Wilkinson matrix [364,
p. 212] is such an “admittedly highly artificial” example. Examples of practical
relevance have been discovered by Wright [367] and Foster [127].

The role of RQ decompositions

Iterative refinement or Gaussian elimination with complete pivoting represent
alternatives that avoid the described numerical instability implied by the use
of Gaussian elimination with partial pivoting. In this section, we favor RQ
decompositions for constructing opposite Householder matrices.

Let B = RQ be an RQ decomposition, i.e., the matrix R ∈ R
n×n is upper

triangular and Q ∈ R
n×n is orthogonal. If B is invertible, then QT e1 is a scalar

multiple of B−1e1 implying that H1(QT e1) is an opposite Householder matrix.
Even if B is singular, it can be shown that the first column of B ·H1(QT e1)
is mapped to a multiple of e1:

B ·H1(QT e1) = R(Q ·H1(QT e1)) =
[

r11 R12

0 R22

] [
q̃11 0
0 Q̃22

]
(2.23a)

=
[

r11q̃11 R12Q̃22

0 R22Q̃22

]
. (2.23b)

The RQ decomposition enjoys a favorable backward error analysis, the con-
stant cA in (2.20) can be bounded by roughly n2u, see, e.g., [164, Thm. 18.4].

Another advantage of using RQ decompositions is that they can be easily
updated if multiplied by a Householder matrix from the left, see, e.g., [48].
Algorithm 12, which performs such an update, requires O(n2) flops instead of
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Algorithm 12 Update of an RQ decomposition
Input: An upper triangular matrix R ∈ R

n×n, an orthogonal matrix Q ∈
R

n×n, a Householder matrix I − βvvT .

Output: An upper triangular matrix R̃ and an orthogonal matrix Q̃ so that
(I −βvvT )RQ = R̃Q̃. The matrices R and Q are overwritten by R̃ and
Q̃, respectively.

1. Construct a sequence of Givens rotations

Q1 = G21(θ1) · G32(θ2) · · ·Gn,n−1(θn−1)

such that QT
1 v = γen for some γ ∈ R.

2. Update R ← RQ1 and Q ← QT
1 Q. % R is in upper Hessenberg form.

3. Update R ← R − βγveT
n . % R is still in upper Hessenberg form.

4. Construct a sequence of Givens rotations

Q2 = Gn−1,n(θ2n−2) · · ·G23(θn+1) · G12(θn)

such that RQ2 is upper triangular.
5. Update R ← RQ2 and Q ← QT

2 Q.

O(n3) flops that are needed for computing an RQ decomposition from scratch.
This decrease of flops may not be relevant in the context of Algorithm 11. The
number of shifts per implicit QZ iteration must be kept tiny in order to avoid
the shift blurring phenomena observed in Section 1.5.3. This implies that the
cost for determining opposite Householder matrices can be expected to be
negligible anyway. Nevertheless, Algorithm 12 has useful applications in other
parts of the QZ algorithm, see Sections 2.5.1 and 2.6.

2.3.4 Deflation

Setting a “small” subdiagonal element ak+1,k of a matrix pair (A,B) in upper
Hessenberg-triangular form reduces A to a block upper triangular matrix:

(A,B) =
([

A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
, A11, B11 ∈ R

k×k.

This deflates the generalized eigenvalue problem into the two smaller gener-
alized eigenvalue problems associated with the matrix pairs (A11, B11) and
(A22, B22). A numerically backward stable criterion for considering a subdi-
agonal entry to be small is given by

|ak+1,k| ≤ u ‖A‖F . (2.24)

All known public implementations of the QZ algorithm employ this deflation
criterion.1 A variation of Example 1.24 can be used to show that the neighbor-
1 A possible exception is the single-shift complex QZ algorithm implemented in

Matlab before Matlab’s eig function was based on LAPACK, see [247].
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wise criterion
|ak+1,k| ≤ u (|ak,k|+ |ak+1,k+1|) (2.25)

may produce more accurately computed generalized eigenvalues in the pres-
ence of graded matrix pairs. It is therefore advisable to use (2.25) instead
of (2.24) for deflating generalized eigenvalue problems.

Deflation of infinite eigenvalues

If the kth diagonal entry of the matrix B in a matrix pair (A,B) in upper
Hessenberg-triangular form happens to be zero, then there is at least one
infinite eigenvalue, i.e., a generalized eigenvalue of the form (α, 0) with α �= 0.
This infinite eigenvalue can be deflated at the top left corner of the matrix
pair using a procedure described in [248]. Let us illustrate this procedure for
n = 5 and k = 3:

(A,B) =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a a a a a
a a a a a
0 a a a a
0 0 a a a
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b b b b
0 b b b b
0 0 0 b b
0 0 0 b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

First, a Givens rotation is applied to columns 2 and 3 in order to annihilate
the (2, 2) element of B:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a â â a a
a â â a a
0 â â a a
0 â â a a
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b̂ b̂ b b

0 0̂ b̂ b b
0 0 0 b b
0 0 0 b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

Secondly, a Givens rotation acting on rows 3 and 4 is used to annihilate the
newly introduced nonzero (4, 2) entry of A:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a a a a a
a a a a a
0 â â â â

0 0̂ â â â
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b b b b b
0 0 b b b

0 0 0 b̂ b̂

0 0 0 b̂ b̂
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

Similarly, a zero entry is introduced in the first diagonal entry of B:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

â â a a a
â â a a a
â â a a a
0 0 a a a
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0 b̂ b b b
0 0 b b b
0 0 0 b b
0 0 0 b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ ,
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(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

a a a a a
â â â â â

0̂ â â â â
0 0 a a a
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0 b b b b

0 0 b̂ b̂ b̂

0 0 b̂ b̂ b̂
0 0 0 b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

Finally, a Givens rotation acting on rows 1 and 2 can be used to deflate the
infinite eigenvalue at top:

(A,B) ←

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

â â â â â

0̂ â â â â
0 a a a a
0 0 a a a
0 0 0 a a

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0 b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂
0 0 b b b
0 0 0 b b
0 0 0 0 b

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

If k, the initial position of the zero diagonal element, is larger than n/2 it
is less expensive to deflate the infinite eigenvalue at the bottom right corner.
This can be achieved by a similar procedure [248]. Some applications, such as
the semi-discretized Stokes equation [311], lead to matrix pairs having 50%
or more infinite eigenvalues. For such matrix pairs, the performance of the
QZ algorithm can be considerably improved by using blocked algorithms for
deflating infinite eigenvalues, see [180].

Later on, in Section 2.5.3, we will see that it is not necessary to deflate
infinite eigenvalues if k ∈ [m + 1, n−m]. Otherwise, if k ∈ [1,m] ∪ [n−m +
1, n], a zero and even a small value for bkk can have a negative effect on the
convergence of the QZ iteration [189, 353]. It is thus advisable to set bkk to
zero and deflate an infinite eigenvalue if bkk is sufficiently small. For testing
smallness of bkk we may, similar to (2.24)–(2.25), either use the norm-wise
criterion

|bkk| ≤ u ‖B‖F ,

as implemented in the LAPACK routine DHGEQZ, or the more restrictive
neighbor-wise criterion

|bkk| ≤ u (|bk−1,k|+ |bk,k+1|).

Note, however, that no matter which criterion is used, the QZ algorithm
may utterly fail to correctly identify infinite eigenvalues in finite-precision
arithmetic, especially if the index of the matrix pair, see [133], is larger than
one [248]. The limerick quoted in the beginning of this chapter alludes to this
effect.

Example 2.14. Consider the matrix pair

(A,B) = QT

⎛
⎝
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦
⎞
⎠Z,
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where Q and Z are orthogonal matrices generated by the Matlab code
rand(’state’,13); [Q,R] = qr(rand(n)); [Z,R] = qr(rand(n));.
The Matlab function qz, which calls the LAPACK implementation of the
QZ algorithm, applied to the matrix pair (A,B) returns an upper triangu-
lar matrix pair (S, T ) with diagonal elements (1.00 + 2.43 × 10−8i,−0.50 −
0.87i,−0.50 + 0.87i) and (3.72× 10−6, 3.72× 10−6, 3.72× 10−6), respectively.

♦
The matrix pair in the preceeding example has index 3 and the diagonal

elements of the matrix T , which should all be zero in exact arithmetic, are
perturbed to entries of order 3

√
u. As a rule of thumb, if a matrix pair (A,B)

has index k then at least some of the infinite eigenvalues are likely to show up
as entries of order k

√
u ‖B‖2 on the diagonal of T [210, 250]. In extreme cases,

even otherwise well-conditioned eigenvalues can be affected by perturbations
from these defective infinite eigenvalues, e.g., they may coalesce or appear
in clusters of eigenvalues corresponding to computed infinite as well as finite
eigenvalues. Unfortunately, many applications, such as multibody systems and
electrical circuits, lead to matrix pairs with index at least two, see, e.g., [63,
150, 267]. For all these applications, the QZ algorithm is of limited use for
identifying infinite eigenvalues.

In principle, the only reliable and robust way to identify infinite eigenvalues
is to apply a preprocessing step with a staircase-type algorithm, such as GUP-
TRI [106, 107]. In some cases, infinite eigenvalues can be cheaply and reliably
deflated by exploiting the structure of A and B, see, e.g. [15, 234, 311, 321].

2.3.5 The Overall Algorithm

Glueing implicit QZ iterations and deflation together yields Algorithm 13, the
QZ algorithm for Hessenberg-triangular matrix pairs.

As for the QR algorithm, the computational cost of this algorithm depends
on the matrix pair in question. Assuming that on average four shifts are
necessary to let one eigenvalue converge, Algorithm 13 needs about twice the
number of flops required by the basic QR algorithm applied to an n×n matrix.

Remark 2.15. Similar to the QR algorithm, see Remark 1.26, post-processing
must be applied in order to guarantee that Algorithm 13 returns a real gener-
alized Schur form. Based on work by Van Loan [330, 331, 248], the LAPACK
routine DLAGV2 transforms the 2× 2 diagonal blocks of the matrix pair (S, T )
returned by Algorithm 13 to the form([

sii si,i+1

0 si+1,i+1

]
,

[
tii ti,i+1

0 ti+1,i+1

])
,

in the case of real eigenvalues, or to the form([
sii si,i+1

0 si+1,i+1

]
,

[
tii 0
0 ti+1,i+1

])
, tii ≥ ti+1,i+1 > 0, ,
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Algorithm 13 Basic QZ algorithm
Input: A matrix pair (A, B) ∈ R

n×n × R
n×n with n ≥ 2 in Hessenberg-

triangular form, an integer m ∈ [2, n].
Output: Orthogonal matrices Q, Z ∈ R

n×n such that the matrix pair (S, T ) =
QT (A, B) Z is in generalized real Schur form. The matrices A and B
are overwritten by S and T , respectively. Implicit shifted QZ iterations
with at most m generalized Francis shifts are used.

Q ← In, Z ← In, i ← 1, l ← n
for it ← 0, . . . , 30n do

% The active matrix pair is (A(i : l, i : l), B(i : l, i : l)).
% Search for deflations in B.
k ← i, tol ← 0
while (k < l) and (|bkk| > u |bk,k+1| + tol) do

k ← k + 1, tol ← u |bk−1,k|
end while
if |bll| > u |bl−1,l| then

k ← k + 1
end if
if k ≤ l then

% Deflation of infinite eigenvalue at position (k, k) found.
bkk ← 0
Deflate infinite eigenvalue as described in Section 2.3.4.

end if
% Search for deflations in A.
k ← i
while (k < l) and (|ak+1,k| > u (|ak,k| + |ak+1,k+1|)) do

k ← k + 1
end while
if k < l then

% Deflation at position (k + 1, k) found.
ak+1,k ← 0, i ← k + 1
if i + 1 ≥ l then

% Block of size at most two has converged.
l ← i − 1, i ← 1
if l ≤ 2 then

% QZ algorithm has converged.
Exit.

end if
end if

else
Apply Algorithm 11 with min{m, l−i+1} shifts to (A(i : l, i : l), B(i : l, i : l)).
Let Q̃, Z̃ denote the returned orthogonal transformation matrices.
(A(i : l, l + 1 : n), B(i : l, l + 1 : n)) ← Q̃T (A(i : l, l + 1 : n), B(i : l, l + 1 : n))
(A(1 : i − 1, i : l), B(1 : i − 1, i : l)) ← (A(1 : i − 1, i : l), B(1 : i − 1, i : l)) Z̃.
Q(1 : n, i : l) ← Q(1 : n, i : l)Q̃, Z(1 : n, i : l) ← Z(1 : n, i : l)Z̃.

end if
end for
% The QZ algorithm did not converge within 30n iterations.
Exit and error return.
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in the case of complex eigenvalues. ♦

Algorithm 13 is implemented in LAPACK as subroutine DHGEQZ, which
uses either a complex conjugate pair of shifts or a single real shift. The aux-
iliary subroutine DLAG2 is used to compute eigenvalues of 2 × 2 generalized
eigenvalue problems in a stable fashion. Algorithm 13 inherits the (rare) possi-
bility of global convergence failures from the QR algorithm. Exceptional shift
strategies similar to those described in Section 1.3.6, have been developed for
the QZ algorithm and are partly incorporated in DHGEQZ.

2.4 Balancing

Balancing a matrix pair is a preprocessing step which can have positive effects
on the accuracy and efficiency of subsequent methods for computing general-
ized eigenvalues and deflating subspaces [218, 346]. As in the matrix case, see
Section 1.4, balancing consists of two stages. In the first stage, the matrix pair
is permuted in order to make it look closer to a (block) upper triangular ma-
trix pair. The second stage consists of a diagonal equivalence transformation
(scaling), which aims at reducing the sensitivity of the generalized eigenvalues.

2.4.1 Isolating Eigenvalues

In the first stage of the balancing algorithm by Ward [346], permutation ma-
trices PR and PC are constructed so that PT

R (A,B)PC takes the form

PT
R (A,B)PC =

⎛
⎝
⎡
⎣A11 A12 A13

0 A22 A23

0 0 A33

⎤
⎦
⎡
⎣B11 B12 B13

0 B22 B23

0 0 B33

⎤
⎦
⎞
⎠ , (2.26)

where A11, B11 ∈ R
(il−1)×(il−1) and A33, B33 ∈ R

(n−ih)×(n−ih) are upper tri-
angular matrices. The isolated generalized eigenvalues contained in the corre-
sponding triangular matrix pairs can be read off without any roundoff error.
Consequently, the order of the generalized eigenvalue problem is reduced to
ih−il +1. The remaining matrix pair (A22, B22) in the middle is characterized
by the property that each column and row of |A22|+|B22| contains at least two
nonzero entries. (Here, |X| denotes the matrix that is obtained by replacing
the entries of a matrix X by their absolute values.) Elementary permutation
matrices can be used to produce the decomposition (2.26) in a similar fashion
as in Algorithm 4.

2.4.2 Scaling

In the second stage, an equivalence transformation involving diagonal matrices
DR and DC is applied to the unreduced matrix pair (A22, B22) in (2.26). For
convenience, let us assume (A,B) = (A22, B22).
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Ward [346] proposed to choose nonsingular diagonal matrices DR and DC

so that the nonzero elements of DRADC and DRBDC are as nearly equal
in magnitude as possible. This problem can be formulated as a linear least-
squares problem:∑

aij �=0

(log |aij |2 + ρi + γj)2 +
∑

bij �=0

(log |bij |2 + ρi + γj)2 = min, (2.27)

where ρi and γj denote the logarithms of the (positive) diagonal entries of
DR and DC , respectively. By applying a conjugate gradient method, the min-
imization problem (2.27) can be iteratively and approximately solved within
O(n2) flops, see [346] for more details.

This balancing strategy together with the permutation algorithm outlined
above is implemented in the LAPACK routine DGGBAL. The information con-
tained in the permutation matrices PR, PC and the scaling matrices DR, DC

is stored in two vectors “lscal” and “rscal” of length n in the same way as in
the routine DGEBAL, see Page 38.

Ward’s algorithm must be applied with care. In fact, it is simple to con-
struct examples where a balancing strategy based on (2.27) severely deterio-
rates the eigenvalue sensitivities.

Example 2.16. Consider the matrix pair

(A,B) =

⎛
⎝
⎡
⎣ 1 10−15 1

10−15 2 1
1 1 3

⎤
⎦ ,

⎡
⎣ 3 10−15 1

10−15 2 4
1 4 1

⎤
⎦
⎞
⎠ .

The LAPACK routine DGGBAL applied to this matrix pair produces the bal-
anced pair

DR(A,B)DC =

⎛
⎝
⎡
⎣ 106 10−9 10

10−9 2× 106 10
10 10 3× 10−4

⎤
⎦ ,

⎡
⎣ 3× 106 10−9 10

10−9 2× 106 40
10 40 10−4

⎤
⎦
⎞
⎠ .

Let (α̂i, β̂i) and (α̌i, β̌i) denote the generalized eigenvalues computed by the
QZ algorithm applied to the matrix pairs (A,B) and DR(A,B)DC , respec-
tively. The following table displays the chordal distances between these com-
puted eigenvalues and the exact eigenvalues (αi, βi) of (A,B).

αi/βi χ(〈α̂i, β̂i〉, 〈αi, βi〉) χ(〈α̌i, β̌i〉, 〈αi, βi〉)
0.60644158364840 1.7× 10−17 3.1× 10−8

−0.41974660144673 7.2× 10−17 1.7× 10−7

0.26785047234378 7.5× 10−17 2.6× 10−8

It can be observed that balancing has led to a dramatic loss of accuracy for
all eigenvalues. ♦
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Lemonnier and Van Dooren [218] recently proposed a balancing strategy
for matrix pairs which is closer in spirit to the Parlett-Reinsch algorithm for
balancing matrices, see also Algorithm 5. It produces diagonal matrices DR

and DC so that every row of DR[A,B] and every column of
[

A
B

]
DC has 2-

norm nearly equal to one. Note that, since A and B are real matrices, this
condition equals the condition that the 2-norm of every row and every column
of the complex matrix DR(A + iB)DC is nearly equal to one. This is a well-
studied problem in linear algebra, which amounts, if the 2-norm is replaced by
the 1-norm, to the line sum scaling problem, see [254, 274] and the references
therein.

The algorithm proposed in [218] first computes a diagonal matrix DR

so that every row of DR[A,B] has 2-norm equal to one and performs the
update (A,B) ← DR(A,B). Next, it computes a diagonal matrix DC so that
every column of

[
A
B

]
DC has 2-norm equal to one and performs the update

(A,B) ← (A,B)DC . This procedure is repeatedly applied until convergence
occurs. For the numerical experiments reported in [218], convergence occurs
quickly (typically after two or three iterations) if the diagonal entries of DR

and DC are rounded to powers of two. The experiments also suggest that
this algorithm is capable to yield substantial improvements to the accuracy
of computed eigenvalues. However, the following example reveals that there
is still some potential for further improvements, see also [231].

Example 2.17. Consider the matrices

A = 10−6 ×

⎡
⎣1 2 0

2 2 2
0 1 1

⎤
⎦ , D = diag(2−17, 1, 1).

The eigenvalues of A are {−10−6, 10−6, 4 × 10−6}. If the algorithm by
Lemonnier and Van Dooren [218] is applied to the matrix pair (Ã, I3) :=
(D−1AD, I3), then the returned diagonal scaling matrices are given by DR =
DC = I3, i.e., no action is taken. The eigenvalues computed by the QZ algo-
rithm applied to (Ã, I3) are perturbed by relative errors of order 10−11. On the
other hand, if the Parlett-Reinsch algorithm is applied to Ã, then the original
matrix A is recovered and the QZ algorithm applied to (A, I3) computes all
eigenvalues to full accuracy. ♦

2.5 Block Algorithms

For a long time, developing block algorithms for the ingredients of the QZ
algorithm had been an underappreciated aspect. In the following, we outline
some rather recent developments in the area.
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2.5.1 Reduction to Hessenberg-Triangular Form

The reduction to Hessenberg-triangular form as implemented in Algorithm 9
is solely based on Givens rotations. This is necessary to avoid excessive fill-in
in the triangular B factor. Unfortunately, it also implies that Algorithm 9
performs poorly for larger matrix pencils on modern computer architectures.
Dackland and K̊agström [96] proposed an alternative by approaching the
Hessenberg-triangular form in two stages. In Stage 1, the matrix A is re-
duced to block upper Hessenberg form using a fairly straightforward block
version of Algorithm 9. Stage 2 consists of chasing the unwanted subdiagonal
elements to the bottom right corner of the matrix A. Similar ideas have been
used for reducing a general matrix to Hessenberg form or a symmetric matrix
to tridiagonal form [47, 46, 208].

Stage 1

For describing the reduction to block Hessenberg-triangular form it helps to
partition A and B into blocks Aij and Bij of block size nb. The implicit
assumption that n is an integer multiple nb is for notational convenience only.
Let us illustrate the block partitioning for n = 6nb:⎛

⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 0 B66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ .

We assume B to be upper triangular, which implies that each of its diagonal
blocks Bii is also upper triangular. Our goal is to reduce the matrix pair
(A,B) to block upper Hessenberg form⎛

⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

0 A32 A33 A34 A35 A36

0 0 A43 A44 A45 A46

0 0 0 A54 A55 A56

0 0 0 0 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 0 B66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where all subdiagonal blocks Ai+1,i and all diagonal blocks Bii are upper
triangular.

For this purpose, we first apply an orthogonal transformation to p ≥ 2
bottom blocks of the first block column of A in order to annihilate the last p−1
blocks. For example if p = 3, this amounts to computing a QR decomposition⎡

⎣A41

A51

A61

⎤
⎦ = GR = (I + V TV T )

⎡
⎣ Â41

0
0

⎤
⎦ ,
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where I + V TV T with T ∈ R
nb×nb , V ∈ R

pnb×nb is the compact WY repre-
sentation of the orthogonal factor G. Applying (I +V TV T )T to the last three
rows of A and B yields⎛

⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

Â41 Â42 Â43 Â44 Â45 Â46

0̂ Â52 Â53 Â54 Â55 Â56

0̂ Â62 Â63 Â64 Â65 Â66

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B22 B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 B̂44 B̂45 B̂46

0 0 0 B̂54 B̂55 B̂56

0 0 0 B̂64 B̂65 B̂66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ .

One possibility to annihilate the fill-in in the matrix B consists of computing
a complete RQ decomposition⎡

⎣B44 B45 B46

B54 B55 B56

B64 B65 B66

⎤
⎦ = R̃G̃, (2.28)

where R is upper triangular and G̃ is orthogonal. A disadvantage of this ap-
proach is that one cannot use a slim compact WY representation for applying
the factor G̃ afterwards, which becomes rather expensive for larger p. One can
avoid this disadvantage by using a technique similar to opposite Householder
matrices. Let

G̃T

⎡
⎣ Inb

0
0

⎤
⎦ = Ǧ

⎡
⎣ G̃1

0
0

⎤
⎦

be a QR decomposition of the first block column of G̃T . Then the orthogonal
factor Ǧ has a compact WY representation Ǧ = I + V̌ Ť V̌ T for some Ť ∈
R

nb×nb , V̌ ∈ R
p·nb×nb . Applying I + V̌ Ť V̌ T to the last three columns of A

and B from the right produces the form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 Â14 Â15 Â16

A21 A22 A23 Â24 Â25 Â26

A31 A32 A33 Â34 Â35 Â36

A41 A42 A43 Â44 Â45 Â46

0 A52 A53 Â54 Â55 Â56

0 A62 A63 Â64 Â65 Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B̂14 B̂15 B̂16

0 B22 B23 B̂24 B̂25 B̂26

0 0 B33 B̂34 B̂35 B̂36

0 0 0 B̂44 B̂45 B̂46

0 0 0 0̂ B̂55 B̂56

0 0 0 0̂ B̂65 B̂66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where B̂44 is an upper triangular matrix. In the presence of roundoff errors
the norm of the newly created zero blocks in B is of order u ‖R̃‖F . These facts
can be proven along the line of argument used in Section 2.3.2.

The blocks A31 and A41 are annihilated in a similar fashion:
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⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

Â21 Â22 Â23 Â24 Â25 Â26

0̂ Â32 Â33 Â34 Â35 Â36

0̂ Â42 Â43 Â44 Â45 Â46

0 A52 A53 A54 A55 A56

0 A62 A63 A64 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16

0 B̂22 B̂23 B̂24 B̂25 B̂26

0 B̂32 B̂33 B̂34 B̂35 B̂36

0 B̂42 B̂43 B̂44 B̂45 B̂46

0 0 0 0 B55 B56

0 0 0 0 B65 B66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 Â22 Â23 Â24 A25 A26

0 Â32 Â33 Â34 A35 A36

0 Â42 Â43 Â44 A45 A46

0 Â52 Â53 Â54 A55 A56

0 Â62 Â63 Â64 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B̂12 B̂13 B̂14 B15 B16

0 B̂22 B̂23 B̂24 B25 B26

0 0̂ B̂33 B̂34 B35 B36

0 0̂ B̂43 B̂44 B45 B46

0 0 0 0 B55 B56

0 0 0 0 B65 B66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The reduction of the second block column proceeds analogously. First, only
the blocks A62 and B65 are annihilated and second, the blocks A42, A52 and
B43, B53. Algorithm 14 describes the complete procedure schematically for
general n, nb, and p. A proper implementation of this algorithm should be

Algorithm 14 Reduction to block Hessenberg-triangular form
Input: A general matrix A ∈ R

n×n and an upper triangular matrix B ∈ R
n×n.

An integer nb being the block size and an integer p ≥ 2 being the
number of block rows/columns to be transformed in each step of the
algorithm.

Output: Orthogonal matrices Q, Z ∈ R
n×n. The matrices A and B are over-

written with the block upper Hessenberg matrix QT AZ and the upper
triangular matrix QT BZ, respectively.

Q ← In, Z ← In

l ← n − nb − [(n − 2nb − 1) mod ((p − 1)nb)]
for j ← 1, nb + 1, 2nb + 1 . . . , n − 3nb + 1 do

for i ← l, l − (p − 1)nb, l − 2(p − 1)nb, . . . , j + nb do
m ← min{n − i + 1, pnb}
Compute QR decomposition A(i : i + m − 1, j : j + k − 1) = GR.
(A(i : i+m−1, :), B(i : i+m−1, :)) ← GT (A(i : i+m−1, :), B(i : i+m−1, :))
Q:,i:i+m−1 ← Q:,i:i+m−1G
Compute RQ decomposition B(i : i + m − 1, i : i + m − 1) = R̃G̃.
Compute QR decomposition G̃T

1:nb,: = ǦŘ.
(A(:, i : i+m−1), B(:, i : i+m−1)) ← (A(:, i : i+m−1), B(:, i : i+m−1)) Ǧ
Z(:, i : i + m − 1) ← Z(:, i : i + m − 1)Ǧ

end for
l ← l + k
if nb + l > n then

l ← l − (p − 1)nb

end if
end for
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Alg. 14 w/o compt. of Q and Z with compt. of Q and Z
n nb p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8

500 8 0.15 0.10 0.09 0.09 0.26 0.16 0.15 0.14
500 16 0.11 0.08 0.08 0.09 0.19 0.13 0.12 0.13
500 32 0.09 0.07 0.08 0.09 0.14 0.11 0.11 0.12
500 64 0.07 0.07 0.07 0.08 0.11 0.09 0.10 0.11

1000 8 1.39 0.84 0.75 0.71 2.27 1.39 1.21 1.15
1000 16 0.99 0.65 0.62 0.68 1.69 1.07 1.00 1.07
1000 32 0.77 0.58 0.57 0.63 1.28 0.92 0.88 0.93
1000 64 0.69 0.55 0.54 0.67 1.10 0.83 0.82 0.92
1000 128 0.59 0.54 0.56 0.74 0.90 0.76 0.77 0.95

2000 8 14.35 8.64 7.56 7.20 22.46 13.53 11.85 11.28
2000 16 9.45 6.08 5.72 5.70 16.18 10.21 9.21 9.16
2000 32 7.09 4.93 4.55 4.80 13.33 8.34 7.58 7.88
2000 64 6.39 4.42 4.30 5.01 11.71 7.52 6.97 7.61
2000 128 5.68 4.55 4.46 6.13 9.52 7.08 6.70 7.52

Table 2.1. Performance results in minutes for the reduction of a matrix pencil to
block Hessenberg form using Algorithm 14.

based on compact WY representations as explained above.
Table 2.1 contains timings that have been obtained from a Fortran im-

plementation of Algorithm 14 applied to random matrix pairs. It does not
include the preliminary reduction of B to triangular form. The most remark-
able conclusion we can draw from these figures is that larger p often have a
positive effect on the performance of Algorithm 14, with greater benefit for
moderate block sizes nb. This is particularly useful considering the fact that
the computational cost of the second stage grows with nb.

Algorithm 14 is almost identical with the original algorithm proposed by
Dackland and K̊agström [96, Sec. 2.3]. The only difference is that the latter
algorithm directly uses the RQ decomposition (2.28) for annihilating blocks
in B, which makes it computationally more expensive for p > 2.

In some cases, the structure of a matrix pair admits a much cheaper re-
duction to block Hessenberg-triangular form.

Example 2.18. Consider the following matrix pair of block Hankel matrices

(A,B) =

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

H1 H2 · · · HN

H2 H3 · · · HN+1

...
...

. . .
...

HN HN+1 · · · H2N−1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

H0 H1 · · · HN−1

H1 H2 · · · HN

...
...

. . .
...

HN−1 HN · · · H2N−2

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ ,

where H0,H1, . . . , H2N−1 ∈ R
nb×nb . Such matrix pairs play a role in algo-

rithms for reconstructing polygonal shapes from moments, see [137]. Also,
B−1A is the companion matrix of a matrix polynomial [136].
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The matrix pair (A,B) can be reduced to block Hessenberg-triangular form
by applying a QR decomposition to the matrix B augmented by the last nb

columns of A. Then the resulting upper trapezoidal factor R ∈ R
Nnb×(N+1)nb

contains in its first Nnb columns the upper triangular matrix QT B and in
its last Nnb columns the block upper Hessenberg matrix QT A, where Q ∈
R

Nnb×Nnb is the orthogonal factor obtained from the QR decomposition. ♦

Stage 2

In Stage 2, the unwanted nb − 1 subdiagonals of the matrix A in block Hes-
senberg form are annihilated while the triangular structure of B is preserved.
The basic algorithm that applies here is a variant of the QZ iteration, Al-
gorithm 13, with the major difference that bulges are chased along the nbth
instead of the first subdiagonal. Let us illustrate the first few steps for nb = 3
and n = 8: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
0 a a a a a a a
0 0 a a a a a a
0 0 0 a a a a a
0 0 0 0 a a a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b b b b b b b b
0 b b b b b b b
0 0 b b b b b b
0 0 0 b b b b b
0 0 0 0 b b b b
0 0 0 0 0 b b b
0 0 0 0 0 0 b b
0 0 0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

First, a Householder matrix of order 3 is constructed, which, when applied to
rows 2, . . . , 4, annihilates elements (3, 1) and (4, 1) of A:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a a a a a a
â â â â â â â â

0̂ â â â â â â â

0̂ â â â â â â â
0 a a a a a a a
0 0 a a a a a a
0 0 0 a a a a a
0 0 0 0 a a a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b b b b b b b b

0 b̂ b̂ b̂ b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂ b̂ b̂ b̂

0 b̂ b̂ b̂ b̂ b̂ b̂ b̂
0 0 0 0 b b b b
0 0 0 0 0 b b b
0 0 0 0 0 0 b b
0 0 0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The introduced nonzero at positions (3, 2) and (4, 2) in B are annihilated by
an opposite Householder matrix acting on columns 2, . . . , 4:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a â â â a a a a
a â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 â â â a a a a
0 0 0 0 a a a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b b̂ b̂ b̂ b b b b

0 b̂ b̂ b̂ b b b b

0 0̂ b̂ b̂ b b b b

0 0̂ b̂ b̂ b b b b
0 0 0 0 b b b b
0 0 0 0 0 b b b
0 0 0 0 0 0 b b
0 0 0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The bulge resides on the third subdiagonal of A in rows 5, . . . , 7 and columns
2, . . . , 4. It is chased by a Householder matrix applied to rows 5, . . . , 7, followed
by an opposite Householder matrix applied to columns 2, . . . , 4 in order to
annihilate the unwanted nonzeros in B:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a a a a a a
a a a a a a a a
0 a a a a a a a
0 a a a a a a a
0 â â â â â â â

0 0̂ â â â â â â

0 0̂ â â â â â â
0 0 0 0 a a a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b b b b b b b b
0 b b b b b b b
0 0 b b b b b b
0 0 b b b b b b

0 0 0 0 b̂ b̂ b̂ b̂

0 0 0 0 b̂ b̂ b̂ b̂

0 0 0 0 b̂ b̂ b̂ b̂
0 0 0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a a â â â a
a a a a â â â a
0 a a a â â â a
0 a a a â â â a
0 a a a â â â a
0 0 a a â â â a
0 0 a a â â â a
0 0 0 0 â â â a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b b b b b̂ b̂ b̂ b

0 b b b b̂ b̂ b̂ b

0 0 b b b̂ b̂ b̂ b

0 0 b b b̂ b̂ b̂ b

0 0 0 0 b̂ b̂ b̂ b

0 0 0 0 0̂ b̂ b̂ b

0 0 0 0 0̂ b̂ b̂ b
0 0 0 0 0 0 0 b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This process is repeatedly applied to annihilate the unwanted subdiagonal en-
tries in columns 2, . . . , 7 of A. The original algorithm proposed by Dackland
and K̊agström [96] is based on Givens rotations instead of (opposite) House-
holder matrices. High efficiency is attained by delaying the update of parts
which are far off from the diagonal. Extensive numerical experiments in [96]
demonstrate that this algorithm combined with Stage 1 outperforms the LA-
PACK routine DGGHRD by a factor 2–3. The use of (opposite) Householder
matrices results in some further albeit minor speedup [202].

2.5.2 Multishifts and Bulge Pairs

In Sections 2.3.2 and 2.3.3, we have seen that an implicit shifted QZ iteration
can be interpreted as chasing a pair of bulges from the top left corner to the
bottom right corner of a matrix pair [360]. Analogous to the QR iteration,
see Section 1.5.3, Watkins [353] has shown that the indented shifts of a QZ
iteration are the finite eigenvalues of these bulge pairs.

To explain this in more detail, suppose that an implicit shifted QZ iteration
with m shifts, Algorithm 11, is applied to a matrix pair (H, T ) ∈ Rn×n×R

n×n,
where n > m. Here, we assume that H is an unreduced Hessenberg matrix
and that T is an upper triangular matrix. We do not assume that the complete
matrix T is nonsingular; it is sufficient to require the submatrix used for the
shift computation (T (n−m+1 : n, n−m+1 : n)) and the submatrix involved
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in the introduction of the bulge pair (T (1 : m, 1 : m)) to be nonsingular. Let
x be a multiple of the first column of the shift polynomial

p(HT−1) = (β1HT−1 − α1I) · · · (βmHT−1 − αmI).

Note that only the nonsingularity of the mth leading principal submatrix of
T is required for the proper definition of x [360].

The initial bulge pair is the matrix pair
(
B

(H)
0 , B

(T )
0

)
, where

B
(H)
0 = [x(1 : m + 1),H(1 : m + 1, 1 : m)] =

⎡
⎢⎢⎢⎢⎣

x1 h11 · · · h1m

x2 h21
. . .

...
...

. . . hmm

xm+1 0 hm+1,m

⎤
⎥⎥⎥⎥⎦ ,

B
(T )
0 = [0, T (1 : m + 1 : 1 : m)] =

⎡
⎢⎢⎢⎢⎣

0 t11 · · · t1m

0 0
. . .

...
...

. . . tmm

0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

Theorem 2.19 ([353]). If the mth leading principal submatrix of T is non-
singular then the shifts (α1, β1), . . . , (αm, βm) are the finite eigenvalues of the
initial bulge pair

(
B

(H)
0 , B

(T )
0

)
provided that β1 �= 0, . . . , βm �= 0.

Analogous to Section 1.5.4, the computation of x can be related to the pole
assignment problem for linear descriptor systems [97].

During the course of a QZ iteration, a bulge pair is created at the top
left corners of (H, T ) and chased down to the bottom right corners along the
first subdiagonals. Let

(
H(j), T (j)

)
denote the updated matrix pair (H, T )

obtained after the bulge pair has been chased (j − 1) steps. Then, the jth
bulge pair

(
B

(H)
j , B

(T )
j

)
is given by the submatrices

B
(H)
j = H(j)(j + 1 : j + m + 1, j : j + m),

B
(T )
j = T (j)(j + 1 : j + m + 1, j : j + m),

which correspond to the submatrices designated by the entries b̂a and b̂b

in (2.22).

Theorem 2.20 ([353]). If the mth leading principal submatrix of T is non-
singular, then the shifts (α1, β1), . . . , (αm, βm) are the finite eigenvalues of the
jth bulge pair

(
B

(H)
j , B

(T )
j

)
provided that β1 �= 0, . . . , βm �= 0.

Theorem 2.20 shows how the shifts are propagated during an implicit shifted
QZ iteration. Of course, QZ iterations are not immune to the shift blurring
effects described in Sections 1.5.3 and 1.5.4. Only modest values for m, say
m ≤ 6, can be used without losing quadratic convergence in finite-precision
arithmetic.
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2.5.3 Deflation of Infinite Eigenvalues Revisited

Once again, it should be emphasized that Theorem 2.20 only requires the
assumptions that the intended shifts are finite and that the mth leading prin-
cipal submatrix of T is nonsingular. Zero diagonal entries in other parts of
T do not affect the information contained in the bulge pairs and do conse-
quently not affect the convergence of the QZ iteration. What happens to such
a zero diagonal entry if a bulge pair passes through it? This question has been
addressed by Ward [344, 345] for m ≤ 2, and by Watkins for general m [353].
The answer is that the zero diagonal entry moves m positions upwards along
the diagonal.

To see this for Algorithm 11, the QZ iteration based on (opposite) House-
holder matrices, let us partition the (m + 1) × (m + 2) submatrices of H(j)

and T (j), which contain the jth bulge pair in the leading m + 1 columns, as
follows:

H(j)(j + 1 : j + m + 1, j : j + m + 1) =

⎡
⎣

1 m 1

1 A11 A12 A13

m−1 A21 A22 A23

1 A31 A32 A33

⎤
⎦,

T (j)(j + 1 : j + m + 1, j : j + m + 1) =

⎡
⎣

1 m 1

1 0 B12 B13

m−1 0 B22 B23

1 0 0 0

⎤
⎦.

Here, the (j +m+1)th diagonal entry of T (j) is zero and we are interested in
proving that this zero hops to the first entry of B12 after the bulge has been
chased downwards.

The following assertions hold. The unreducedness of H implies that A31,
the tip of the bulge, must be nonzero [353]. The m×m matrix

[
B12
B22

]
must be

nonsingular, otherwise the jth bulge pair contains less than m finite eigenval-
ues, which contradicts Theorem 2.20.

If the bulge pair is chased downwards, then first a Householder matrix
I − βvvT is constructed such that the vector

[
AT

11, A
T
21, A

T
31

]T is mapped to a

multiple of the unit vector. Let us partition v =
[
vT
1 , vT

2 , vT
3

]T , where v1, v3 ∈
R and v2 ∈ R

m−1. Then A31 �= 0 implies v1 �= 0, v2 �= 0 and β �= 0, see (1.41)–
(1.42). Applying the Householder matrix I−βvvT from the left to T (j)(j +1 :
j + m + 1, j : j + m + 1) yields the following matrix:⎡

⎣0 B̃12 B̃13

0 B̃22 B̃23

0 B̃32 B̃33

⎤
⎦ =

⎡
⎣0 B12 − v1w

T B13 − v1z
T

0 B22 − v2w
T B23 − v2z

T

0 −v3w
T −v3z

T

⎤
⎦ ,

where wT = β(v1B12 + vT
2 B22) and zT = β(v1B13 + vT

2 B23). Note that the
matrix

[
B̃22

B̃32

]
must be invertible. Otherwise, there exists a vector

[
a
b

]
�= 0 so
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that
[
B̃T

22, B̃
T
32

] [
a
b

]
= 0, which implies

BT
22a− (vT

2 a + v3b)︸ ︷︷ ︸
=:γ

w = 0 ⇒ BT
22(a− βγv2)− (βγv1)BT

12 = 0.

Thus, either γ = 0 implying that a �= 0 and BT
22a = 0, or γ �= 0 implying that

BT
12 = 1/(βγv1) ·BT

22(a− βγv2). In both cases, there is a contradiction to the
assertion that

[
B12
B22

]
is a nonsingular matrix.

In the next step of the bulge chasing process, an opposite Householder
matrix is constructed such that the first column of the (m + 1) × (m + 1)
matrix

B̃ =

⎡
⎣ B̃12 B̃13

B̃22 B̃23

B̃32 B̃33

⎤
⎦

is mapped to a multiple of the first unit vector. If we apply an RQ decom-
position to B̃, then the first column of the R-factor is zero due to the facts
that B̃ is a singular matrix and that the last m rows of B̃ have full rank [48].
Hence, the opposite Householder matrix maps the first column of B̃ to zero,
see (2.23). This proves the desired result that the zero entry which initially
resides at the (j + m + 1)th diagonal position of T (j) hops to the (j + 1)th
position.

In principle, this result implies that we could just let the infinite eigenval-
ues be pushed upwards by QZ iterations and deflate them at top left corner
of the matrix pair. In practice, such an approach makes it more difficult to
keep track of identified infinite eigenvalues in finite-precision arithmetic, in
particular for matrix pairs of higher index.

2.5.4 Tightly Coupled Tiny Bulge Pairs

As for the QR algorithm, shift blurring effects in the QZ algorithm can be
avoided by using a tightly coupled chain of tiny bulge pairs instead of one large
bulge during a QZ iteration. Such an approach has been developed in [180]
based on preliminary results in [3]. For the purpose of describing this approach,
let m denote the number of simultaneous shifts to be used in each QZ iteration
and let ns denote the number of shifts contained in each bulge pair. It is
assumed that m is an integer multiple of ns. We assume ns to be tiny, e.g.,
ns ∈ [2, 6].

Introducing a chain of bulge pairs

The tiny-bulge multishift QZ algorithm begins with introducing m/ns bulge
pairs in the top left corner of the matrix pair (H, T ) in Hessenberg-triangular
form. Every bulge pair contains a set of ns shifts. For a proper propagation
of shifts, it is necessary that the ((m/ns)(ns + 1) − 1)th leading principal
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submatrix of T is nonsingular. The first bulge pair is introduced by applying
an implicit QZ iteration with ns shifts and interrupting the bulge chasing
process as soon as the bottom right corner of the bulge in H touches the
(ph−1, ph) subdiagonal entry of H, where ph = (m/ns)(ns +1)+1. The next
bulge pair is chased until the bottom right corner of the bulge in H touches
the (ph − ns − 2, ph − ns − 1) subdiagonal entry. This process is continued
until all m/ns bulge pairs are introduced, see Figure 2.1. Note that only

Fig. 2.1. Introducing a chain of m/ns = 4 tightly coupled bulge pairs, each of
which contains ns = 3 shifts.

the submatrices painted pale gray in Figure 2.1 must be updated during the
bulge chasing process. To update the remaining parts (painted dark gray),
all orthogonal transformations from the left are accumulated into a ph × ph

matrix U and applied in terms of matrix-matrix multiplications:

H(1 : ph, (ph + 1) : n) ← UT H(1 : ph, (ph + 1) : n),
T (1 : ph, (ph + 1) : n) ← UT T (1 : ph, (ph + 1) : n).

Chasing a chain of bulge pairs

In each step of the tiny-bulge multishift QZ algorithm, the chain of bulge pairs,
which resides in columns/rows pl : ph of (H, T ), is chased k steps downwards.
This is done in a bulge-by-bulge and bottom-to-top fashion, as described in
Section 1.5.5. One such step is illustrated in Figure 2.2. Again, only the prin-
cipal submatrices painted pale gray in Figure 2.2 must be updated during
the bulge chasing process. All transformations from the left and from the
right are accumulated in orthogonal matrices U and V , respectively. Then,
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Fig. 2.2. Chasing a chain of m/ns = 4 tightly coupled bulge pairs.

matrix-matrix multiplications can be used to update the rest of the matrix
pair (painted dark gray in Figure 2.2):

H(pl : ph + k, (ph + 1) : n) ← UT H(pl : ph + k, (ph + 1) : n),
T (pl : ph + k, (ph + 1) : n) ← UT T (pl : ph + k, (ph + 1) : n),

H(1 : pl − 1, pl : ph + k) ← H(1 : pl − 1, pl : ph + k)V.

T (1 : pl − 1, pl : ph + k) ← T (1 : pl − 1, pl : ph + k)V.

Note that both matrices, U and V , have the following block structure:

⎡
⎢⎢⎣

1 l2 l1

1 1 0 0

l1 0 �
l2 0 �

⎤
⎥⎥⎦,

where l1 = (m/ns)(ns + 1) − ns and l2 = k + ns. Exploiting this structure
can have a positive effect on the efficiency of matrix-matrix multiplications
involving U or V .

As for the tiny-bulge multishift QR algorithm, we have to be aware of
vigilant deflations, i.e., zero or tiny subdiagonal elements in H. In order to
preserve the information contained in the bulge pairs, the chain of bulge pairs
must be reintroduced in the row in which the zero appears. Fortunately, we
have not to be wary of zero or tiny subdiagonal elements in T , since the bulge
pairs are properly passed through infinite eigenvalues, see Section 2.5.3.
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Getting rid off a chain of bulge pairs

Once the bottom bulge pair of the chain has reached the bottom right corners
of the matrix pair, the whole chain is bulge-by-bulge chased off this corner,
similarly to the introduction of bulge pairs.

Numerical results

To illustrate the achievable efficiency improvements, the described tiny-bulge
multishift QZ algorithm has been implemented in a Fortran 77 routine
called MTTQZ. We applied MTTQZ to randomly generated matrix pairs of order
400, 450, . . . , 1800. The matrix pairs were obtained by reducing full matrix
pairs, with entries uniformly distributed in the interval [0, 1], to Hessenberg-
triangular form. The parameters m (number of shifts in each iteration) and k
(number of steps a chain of bulge pairs is chased before off-diagonal parts are
updated) were set to

m =
{

48, if n < 1000,
60, if 1000 ≤ n < 2000,

and k = 3/2 ·m−2. For comparison, we applied the LAPACK routine DHGEQZ
and the routine KDHGEQZ, an implementation of the pipelined QZ algorithm
by Dackland and K̊agström [96]. In the latter routine, we used the block size
nb = 48 which was found to be nearly optimal. The obtained cpu times relative
to the cpu time needed by DHGEQZ are displayed in Figure 2.3. It can be seen
that MTTQZ requires up to 80% less cpu time than DHGEQZ for sufficiently large
matrix pairs. The improvement upon KDHGEQZ is much less significant. In fact,
KDHGEQZ outperforms MTTQZ for matrix pairs of order smaller than 500.

2.6 Aggressive Early Deflation

Aggressive early deflation, see Section 1.6, can be adapted to the QZ algorithm
in a considerably straightforward manner [3, 180]. Consider a matrix pair
(A,B) in Hessenberg-triangular form, partitioned as follows:

A =

⎡
⎣

n−w−1 1 w

n−w−1 A11 A12 A13

1 A21 A22 A23

w 0 A32 A33

⎤
⎦, B =

⎡
⎣

n−w−1 1 w

n−w−1 B11 B12 B13

1 0 B22 B23

w 0 0 B33

⎤
⎦.

Our goal is to construct a correspondingly partitioned perturbation of the
form

E =

⎡
⎣0 0 0

0 0 0
0 E32 0

⎤
⎦ (2.29)
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Fig. 2.3. Performance of the tiny-bulge multishift QZ algorithm (MTTQZ) relative
to the LAPACK routine DHGEQZ.

so that the reduction of (A + E,B) to Hessenberg-triangular form results in
a deflation, in which case E is called a reducing perturbation.

This can be achieved by computing (reordered) generalized Schur decom-
positions of the matrix pair (A33, B33). First, orthogonal matrices U, V are
constructed so that (S33, T33) = UT (A33, B33)V is in real generalized Schur
form. Then, we partition

(S33, T33) =
([

S̃11 S̃12

0 S̃22

]
,

[
T̃11 T̃12

0 T̃22

])
,

so that (S̃22, T̃22) is either a real generalized eigenvalue or a 2 × 2 ma-
trix pair containing a complex conjugate pair of generalized eigenvalues.
The vector UT A32 =

[
s̃1
s̃2

]
is correspondingly partitioned. Then the matrix

E32 = −U
[

0
s̃2

]
corresponds to a reducing perturbation E of the form (2.29).

The Frobenius norm of E is given by ‖s̃2‖2. We make use of this perturbation
if s̃2 satisfies

‖s̃2‖∞ ≤
√
|det(S̃22)|. (2.30)

This choice preserves the backward stability of the QZ algorithm. A variety of
other criteria can be developed in accordance to the criteria presented in [62].

If the current ordering of the matrix pair (S33, T33) fails to fulfill the cri-
terion (2.30), we may test other possible choices for (S̃22, T̃22) by reordering
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the generalized Schur form, see Section 2.7. If it happens, however, that a re-
ducing perturbation satisfying (2.30) has been found, the described procedure
is repeatedly applied to the unperturbed part consisting of s̃1 and (S̃11, T̃11).
Eventually, orthogonal matrices Q and Z are constructed so that

(In−w ⊕Q)T A(In−w ⊕ Z) =

⎡
⎢⎢⎣

n−w−1 1 w−d d

n−w−1 A11 A12 Ã13 Ã13

1 A21 A22 Ã23 Ã24

w−d 0 s1 S11 S12

d 0 s2 0 S22

⎤
⎥⎥⎦,

(In−w ⊕Q)T B(In−w ⊕ Z) =

⎡
⎢⎢⎣

n−w−1 1 w−d d

n−w−1 B11 B12 B̃13 B̃13

1 0 B22 B̃23 B̃24

w−d 0 0 T11 T12

d 0 0 0 T22

⎤
⎥⎥⎦,

where (S11, T11), (S22, T22) are in real generalized Schur form and the entries
of the vector s2 satisfy criteria of the form (1.60). Setting s2 to zero amounts
to deflating the d generalized eigenvalues contained in (S22, T22). The remain-
ing unreduced matrix pair can be cheaply returned to Hessenberg-triangular
form as follows. First, the Householder matrix H1(s1) = I − βvvT is applied
from the left to [s1, S11] and T11. Next, the matrix T11 − βTvvT is reduced
to triangular form using Algorithm 12 (update of RQ decomposition). The
matrix S11 is updated with the transformations resulting from Algorithm 12.
Finally, applying Algorithm 9, reduction to Hessenberg-triangular form, to
the updated matrix pair (S11, T11) returns the whole matrix pair (A,B) to
Hessenberg-triangular form.

Aggressive early deflation is performed after each multishift QZ iteration.
It must be combined with the conventional deflation strategy described in
Section 2.3.4.

Numerical results

Aggressive early deflation combined with the tiny-bulge multishift QZ algo-
rithm has been implemented in a Fortran 77 routine called ATTQZ. We have
applied ATTQZ to the random matrix pairs used for the numerical results pre-
sented in Section 2.5.4. Also, the employed routine parameters were identical
to those used in Section 2.5.4. The size of the deflation window was chosen
to be w = 3m/2, where m denotes the number of simultaneous shifts used in
each iteration.

We have also combined the pipelined QZ algorithm [96] with aggressive
early deflation and called this routine ADHGEQZ. Here, the number of simul-
taneous shifts is at most two. Our observation was that the performance of
this method is very sensitive to the size of the deflation window. We therefore
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Fig. 2.4. Performance of the tiny-bulge multishift QZ algorithm with aggressive
early deflation (ATTQZ) relative to the LAPACK routine DHGEQZ.

selected an “optimal” window size from the set {10, 20, 30, 40, 50} for each
matrix pair.

The cpu times displayed in Figure 2.4 show that the use of aggressive early
deflation leads to substantial improvements not only in comparison with the
LAPACK routine DHGEQZ but also in comparison with the routine MTTQZ, see
Figure 2.3. Also, aggressive early deflation has a greater effect on the per-
formance of the tiny-bulge multishift QZ algorithm than on the performance
of the pipelined QZ algorithm. Numerical experiments involving practically
relevant test matrix pairs essentially confirm these findings although the pic-
ture is less incisive due to the fact that some applications, especially from
mechanics, lead to very badly scaled matrix pairs [180].

2.7 Computation of Deflating Subspaces

Suppose our favorite variant of the QZ algorithm has successfully computed
a real generalized Schur decomposition of QT (A,B)Z = (S, T ) with

(S, T ) =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

S11 S12 · · · S1m

0 S22
. . .

...
...

. . . . . . Sm−1,m

0 · · · 0 Smm

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

T11 T12 · · · T1m

0 T22
. . .

...
...

. . . . . . Tm−1,m

0 · · · 0 Tmm

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ (2.31)
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where Sii, Tii ∈ R
ni×ni with ni = 1 if λ(Sii, Tii) ⊂ R and ni = 2 otherwise.

For each j ≤ m, the first k =
∑j

i=1 ni columns of Q and Z form orthonormal
bases for left and right deflating subspaces belonging to the eigenvalues Λj =
λ(S11, T11) ∪ · · · ∪ λ(Sjj , Tjj).

As for the QR algorithm, it is generally impossible to guarantee a certain
order of the diagonal blocks in the generalized Schur form returned by the
QZ algorithm. Post-processing must be applied to obtain deflating subspaces
belonging to a specific cluster of eigenvalues Λs ⊂ λ(A,B) closed under com-
plex conjugation. From a given decomposition (1.61) a reordered generalized
Schur decomposition is computed such that (QQ̃)T (A,B)(ZZ̃) = (S̃, T̃ ) with

(S̃, T̃ ) =

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

S̃11 S̃12 · · · S̃1m

0 S̃22
. . .

...
...

. . . . . . S̃m−1,m

0 · · · 0 S̃mm

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

T̃11 T̃12 · · · T̃1m

0 T̃22
. . .

...
...

. . . . . . T̃m−1,m

0 · · · 0 T̃mm

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ , (2.32)

where Λs = λ(S̃11, T̃11) ∪ · · ·λ(S̃jj , T̃jj) for some 1 ≤ j ≤ m.
Van Dooren [328], K̊agström [179], as well as K̊agström and Poromaa [182]

have developed algorithms that achieve such a reordering. The building block
of these algorithms is the computation of orthogonal matrices Q and Z such
that

QT

([
A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
Z =

([
Ã11 Ã12

0 Ã22

]
,

[
B̃11 B̃12

0 B̃22

])
(2.33)

and
λ(A11, B11) = λ(Ã22, B̃22), λ(A22, B22) = λ(Ã11, B̃11),

where A11, B11 ∈ R
n1×n1 and B22, A22 ∈ R

n2×n2 with n1, n2 ∈ {1, 2}.
The algorithm proposed in [328] for performing the swapping (2.33) is in

the spirit of Stewart’s algorithm for reordering standard Schur forms [303]
and employs QZ iterations with perfect shifts. It also inherits the limitations
of Stewart’s approach, i.e., failure of convergence or convergence to a block
triangular matrix pair that does not correspond to the intended swapping. The
algorithm proposed in [179, 182], which will be described in the following, is
in the spirit of the work by Bai and Demmel [18] and employs generalized
Sylvester equations.

Assuming that λ(A11, B11)∩λ(A22, B22) = ∅, we first compute the solution
of the generalized Sylvester equation

A11X − Y A22 = γA12,
B11X − Y B22 = γB12,

(2.34)

where γ ∈ (0, 1] is a scaling factor to prevent overflow in X and Y . This yields
the following block diagonal decompositions:



110 2 The QZ Algorithm[
A11 A12

0 A22

]
=
[

In1 −Y
0 γIn2

] [
A11 0
0 A22

] [
In1 X/γ
0 In2/γ

]
,[

B11 B12

0 B22

]
=
[

In1 −Y
0 γIn2

] [
B11 0
0 B22

] [
In1 X/γ
0 In2/γ

]
.

By QR decompositions, orthogonal matrices Q and Z are constructed such
that

QT

[
−Y
γIn2

]
=
[

RY

0

]
, ZT

[
−X
γIn2

]
=
[

RX

0

]
,

with upper triangular matrices RX , RY ∈ R
n2×n2 . If we partition Q =[

Q11
Q21

Q12
Q22

]
and Z =

[
Z11
Z21

Z12
Z22

]
so that Q12, Z12 ∈ R

n1×n1 then both Q12

and Z12 are invertible. Moreover,

QT

[
A11 A12

0 A22

]
Z =

[
� RY

QT
12 0

] [
A11 0
0 A22

] [
0 Z−T

12

R−1
X �

]

=
[

RY A22R
−1
X �

0 QT
12A11Z

−T
12

]
,

QT

[
B11 B12

0 B22

]
Z =

[
� RY

QT
12 0

] [
B11 0
0 B22

] [
0 Z−T

12

R−1
X �

]

=
[

RY B22R
−1
X �

0 QT
12B11Z

−T
12

]
.

Hence, the matrices Q and Z produce the desired swapping (2.33).
To consider the finite-precision aspects of the described procedure, let

X̂ and Ŷ denote the computed solutions of the generalized Sylvester equa-
tion (2.34). Then

Q̂T

([
A11 A12

0 A22

]
,

[
B11 B12

0 B22

])
Ẑ =

([
Â11 Â12

Â21 Â22

]
,

[
B̂11 B̂12

B̂21 B̂22

])
,

where

‖Â21‖2 ≤
‖A11X − Y A22 − γA12‖F

(1 + σmin(X))1/2(1 + σmin(Y ))1/2
,

‖B̂21‖2 ≤
‖B11X − Y B22 − γB12‖F

(1 + σmin(X))1/2(1 + σmin(Y ))1/2
,

see [179]. Let us assume that X̂ and Ŷ have been obtained from a backward
stable solver for linear systems applied to the Kronecker product formulation
of (2.34), see also Section 2.2.1. Then the residuals ‖A11X − Y A22 − γA12‖F

and ‖B11X − BA22 − γB12‖F can be approximately bounded by u(‖A‖F +
‖B‖F )(‖X‖2 + ‖Y ‖2 + γ). A sufficiently large value for difu[(A11, B11), (A22,
B22)] yields moderate norms for X and Y which in turn implies that Â21 and
B̂21 can be safely set to zero. A small value for difu may lead to error matrices
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Â21, B̂21 that cannot be set to zero without sacrificing numerical backward
stability. Numerical experiments reported in [182, 183] demonstrate that this
effect rarely occurs in practice. In the LAPACK routine DTGEX2, an imple-
mentation of the described swapping procedure, the swapping is performed
tentatively and is rejected if any of the entries in Â21 or B̂21 is too large.

Along the lines of Algorithm 8, the LAPACK routine DTGEXC applies
DTGEX2 in a bubble sort fashion to compute a reordered generalized Schur
decomposition of the form (2.32). A block variant of DTGEXC can be derived
using the same techniques as in Section 1.7.3, see also [203].



3

The Krylov-Schur Algorithm

So far, all discussed algorithms for computing eigenvalues and invariant sub-
spaces are based on orthogonal transformations of the matrix, making them
suitable only for small to medium-sized eigenvalue problems. Nevertheless,
these algorithms play an important role in methods designed for the eigenvalue
computation of large and possibly sparse matrices, such as Arnoldi, Lanczos
or Jacobi-Davidson methods; see, e.g., the eigenvalue templates book [19] for
a comprehensive overview.

In this short chapter, we focus on a descendant of the Arnoldi method, the
recently introduced Krylov-Schur algorithm by Stewart [307]. This algorithm
belongs to the class of Krylov subspace methods. It generates a sequence of
subspaces containing approximations to a desired subset of eigenvectors and
eigenvalues of a matrix A. These approximations are extracted by applying
the QR algorithm to the projection of A onto the subspaces. If the approxima-
tions are not accurate enough then a reordering of the Schur decomposition
computed in the previous step can be used to restart the whole process. We
have chosen this algorithm mainly because of its close relationship to the other
algorithms described in this book. Furthermore, as will be explained in the
next chapter, the Krylov-Schur algorithm admits a rather simple extension to
some structured eigenvalue problems such as product and (skew-)Hamiltonian
eigenvalue problems.

This chapter is organized as follows. In the next section below, we in-
troduce the notions of Krylov subspaces as well as their relation to Arnoldi
decompositions and the Arnoldi method. Section 3.2 is concerned with some
two important ingedients aiming to make the Arnoldi method more efficient
and more reliable: restarts and deflations. Finally in Section 3.3, we discuss
balancing strategies for sparse matrices.
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3.1 Basic Tools

The purpose of this section is to briefly summarize some well-known material
related to Krylov subspaces, Arnoldi decompositions and the Arnoldi method.
A more comprehensive treatment of this subject can be found, e.g., in Saad’s
book [281].

3.1.1 Krylov Subspaces

First, let us define a Krylov subspace and recall some of its elementary prop-
erties.

Definition 3.1. Let A ∈ R
n×n and u ∈ R

n with u �= 0, then

Kk(A, u) =
[
u, Au, A2u, . . . , Ak−1u

]
is called the kth Krylov matrix associated with A and u. The corresponding
subspace

Kk(A, u) = span{u,Au,A2u, . . . , Ak−1u}
is called the kth Krylov subspace associated with A and u.

Lemma 3.2. Let A ∈ R
n×n and u ∈ R

n with u �= 0, then

1. Kk(A, u) = {p(A)u | p is a polynomial of degree at most k − 1},
2. Kk(A, u) ⊆ Kk+1(A, u),
3. AKk(A, u) ⊆ Kk+1(A, u),
4. Kl(A, u) = Kl+1(A, u) implies Kl(A, u) = Kk(A, u) for all k ≥ l.

The last part of Lemma 3.2 covers an exceptional situation. The relation
Kl+1(A, u) = Kl(A, u) also implies, because of AKl(A, u) ⊆ Kl+1(A, u), that
Kl(A, u) is an invariant subspace of A. If, for example, A is an upper Hessen-
berg matrix and u = e1, then the smallest l for which Kl(A, u) = Kl+1(A, u)
may happen is either l = n, if A is unreduced, or the smallest l for which the
(l + 1, l) subdiagonal entry of A is zero.

Although hitting an exact invariant subspace by Krylov subspaces of order
lower than n is a rare event, it is often true that already Krylov subspaces of
low order contain good approximations to eigenvectors or invariant subspace
belonging to extremal eigenvalues.

Example 3.3 ([305, Ex. 4.3.1]). Let A = diag(1, 0.95, 0.952, . . . , ) and let u be
a random vector of length n. The solid black line in Figure 3.1 shows the
tangent of the angle between e1, the eigenvector belonging to the dominant
eigenvalue 1, and Kk(A, u) for k = 1, . . . , 25. The dash-dotted line shows
the tangent of the largest canonical angle between span{e1, e2}, the invariant
subspace belonging to {1, 0.95}, and Kk(A, u), while the dotted line shows
the corresponding figures for span{e1, e2, e3}. In contrast, the tangents of the
angle between e1 and the vectors Ak−1u, which are generated by the power
method, are displayed by the gray curve. ♦
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Fig. 3.1. Approximations of eigenvectors and invariant subspaces by Krylov sub-
spaces.

The approximation properties of Krylov subspaces are a well-studied but
not completely understood subject of research, which in its full generality
goes beyond the scope of this treatment. Only exemplarily, we provide one
of the simplest results in this area for symmetric matrices. A more detailed
discussion can be found in Parlett’s book [261] and the references therein.

Theorem 3.4 ([305, Thm. 4.3.8]). Let A ∈ R
n×n be symmetric and let

x1, . . . , xn be an orthonormal set of eigenvectors belonging to the eigenvalues
λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn. Let η = (λ1 − λ2)/(λ2 − λn), then

tan θ1(x1,Kk(A, u)) ≤ tan ∠(x1, u)

(1 + 2
√

η + η2)k−1 + (1 + 2
√

η + η2)1−k
. (3.1)

For large k, the bound (3.1) simplifies to

tan θ1(x1,Kk(A, u)) � tan ∠(x1, u)

(1 + 2
√

η + η2)k−1
.

In other words, adding a vector to the Krylov subspace reduces the angle
between x1 and Kk(A, u) by a factor of (1+2

√
η + η2). Furthermore, not only

the eigenvector x1 is approximated; there are similar bounds for eigenvectors
belonging to smaller eigenvalues. For example, let η2 = (λ2 − λ3)/(λ3 − λn),
then

tan θ1(x2,Kk(A, u)) ≤ λn − λ1

λ2 − λ1

tan ∠(x2, u)
(1 + 2

√
η2 + η2

2)k−2 + (1 + 2
√

η2 + η2
2)2−k

.
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The convergence theory for nonsymmetric matrices is complicated by the facts
that the geometry of eigenvectors or invariant subspaces is more involved and
there may not be a complete set of eigenvectors. Existing results indicate that,
under suitable conditions, Krylov subspaces tend to approximate eigenvectors
belonging to eigenvalues at the boundary of the convex hull of the spectrum,
see e.g. [279]. For more recent work in this area, see [27, 28].

3.1.2 The Arnoldi Method

An explicit Krylov basis of the form

Kk(A, u) =
[
u, Au, A2u, . . . , Ak−1u

]
is not suitable for numerical computations. As k increases, the vectors Aku al-
most always converge to an eigenvector belonging to the dominant eigenvalue.
This implies that the columns of Kk(A, u) become more and more linearly
dependent. Often, the condition number of the matrix Kk(A, u) grows expo-
nentially with k. Hence, a large part of the information contained in Kk(A, u)
is getting corrupted by roundoff errors.

The Arnoldi Decomposition

To avoid the described effects, one should choose a basis of a better nature, for
example an orthonormal basis. However, explicitly orthogonalizing the column
vectors of Kk(A, u) is no remedy; once constructed, the basis Kk(A, u) has
already suffered loss of information in finite-precision arithmetic. To avoid
this, we need a way to implicitly construct an orthonormal basis for Kk(A, u).
The Arnoldi method provides such a way and the following theorem provides
its basic idea. Recall that a Hessenberg matrix is said to be unreduced if all
its subdiagonal entries are nonzero, see also Definition 1.21.

Theorem 3.5. Let the columns of

Uk+1 =
[
u1, u2, . . . , uk+1

]
∈ R

n×(k+1)

form an orthonormal basis for Kk+1(A, u1). Then there exists a (k + 1) × k
unreduced upper Hessenberg matrix Ĥk so that

AUk = Uk+1Ĥk. (3.2)

Conversely, a matrix Uk+1 with orthonormal columns satisfies a relation of
the form (3.2) only if the columns of Uk+1 form a basis for Kk+1(A, u1).

Proof. This statement is well known, see e.g. [305, Thm. 5.1.1]. The follow-
ing proof is provided as it reveals some useful relationships between Krylov
matrices, QR and Arnoldi decompositions.

Let us partition
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[
Kk(A, u1), Aku1

]
=
[
Uk, uk+1

] [Rk rk+1

0 rk+1,k+1,

]
,

then UkRk is a QR decomposition of Kk(A, u1). Setting Sk = R−1
k , we obtain

AUk = AKk(A, u1)Sk = Kk+1(A, u1)
[

0
Sk

]

= Uk+1Rk+1

[
0
Sk

]
= Uk+1Ĥk,

where

Ĥk = Rk+1

[
0
Sk

]
.

The (k + 1) × k matrix Ĥk is obviously in upper Hessenberg form. Ĥk is
unreduced because Rk+1 is invertible and the ith subdiagonal entry of Ĥk is
given by ri+1,i+1sii = ri+1,i+1/rii.

This proves one direction of the theorem, for the other direction let us
assume that there exists a matrix Uk+1 with orthonormal columns so that (3.2)
with an unreduced Hessenberg matrix Ĥk is satisfied. For k = 1, we have
Au1 = h11u1 + h21u2. The fact that h21 does not vanish implies that the
vector u2 is a linear combination of u1 and Au1. Therefore, the columns of
[u1, u2] form an orthonormal basis for K2(A, u1). For general k, we proceed by
induction over k; let the columns Uk form an orthonormal basis for Kk(A, u1).
Partition

Ĥk =
[

Ĥk−1 hk

0 hk+1,k

]
,

then (3.2) implies that

Auk = Ukhk + hk+1,kuk+1.

Again, hk+1,k �= 0 implies that uk+1, as a linear combination of Auk and the
columns of Uk, is an element of Kk+1(A, uk). Hence, the columns of Uk+1 form
an orthonormal basis for Kk+1(A, u1). 
�

This theorem justifies the following definition.

Definition 3.6. Let the columns of Uk+1 = [Uk, uk+1] ∈ R
n×(k+1) form an

orthonormal basis. If there exists an (unreduced) Hessenberg matrix Ĥk ∈
R

(k+1)×k so that
AUk = Uk+1Ĥk, (3.3)

then (3.3) is called an (unreduced) Arnoldi decomposition of order k.

By a suitable partition of Ĥk, we can rewrite (3.3) as

AUk = [ Uk, uk+1 ]
[

Hk

hk+1,keT
k

]
= UkHk + hk+1,kuk+1e

T
k . (3.4)
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This shows that Uk satisfies the “invariant subspace relation” AUk = UkHk

except for a rank-one perturbation.
We have seen that Uk may contain good approximations to eigenvectors

and invariant subspaces. These approximations and the associated eigenvalues
can be obtained from the Ritz vectors and Ritz values defined below, which
amounts to the so called Rayleigh-Ritz method.

Definition 3.7. Let A ∈ R
n×n and let the columns of Uk ∈ R

n×k be ortho-
normal. The k × k matrix Hk = UT

k AUk is called the Rayleigh quotient, an
eigenvalue λ of Hk is called a Ritz value, and if w is an eigenvector of Hk

belonging to λ, then Ukw is called a Ritz vector belonging to λ.

Given an Arnoldi decomposition of the form (3.4), Ritz values and vectors
correspond to exact eigenvalues and eigenvectors of the perturbed matrix

A− hk+1,kuk+1u
T
k .

Assuming fairly well-conditioned eigenvalues and eigenvectors, the perturba-
tion analysis of the standard eigenvalue problem, see Section 1.2, shows that
a small value of ‖hk+1,kuk+1u

T
k ‖2 = |hk+1,k| implies that all Ritz values and

vectors are close to some eigenvalues and vectors of A. Note that an individual
Ritz vector Ukw belonging to a Ritz value λ with ‖w‖2 = 1 may correspond
to a backward error much smaller than |hk+1,k|:(

A− (hk+1,kwk)uk+1(Ukw)T
)
(Ukw) = λ(Ukw),

where wk denotes the kth component of w. It can be shown that if the
angle between a simple eigenvector x and Kk(A, u1) converges to zero,
then there exists at least one Ritz vector Ukw so that the backward error
‖(hk+1,kwk)uk+1(Ukw)T ‖2 = |hk+1,kwk| converges to zero, see [305, Sec.
4.4.2].

The Basic Algorithm

The Arnoldi decomposition (3.2) almost immediately leads to an algorithm
for its computation, see Algorithm 15. Several remarks concerning the imple-
mentation of this algorithm are necessary:

1. Algorithm 15 can be implemented such that exactly one n × n matrix-
vector multiplication is needed per step. The computational cost of Al-
gorithm 15 is dominated by these matrix-vector multiplications as long
as k � n, making it competitive with the power method in this respect.
However, the need for storing the n × (k + 1) matrix Uk+1 makes Al-
gorithm 15 more expensive than the power method in terms of memory
requirements.

2. The algorithm breaks down as soon as it encounters hj+1,j = 0. In this
case, the columns Uj span an invariant subspace and the eigenvalues of
Hj are exact eigenvalues of A. If those are not the desired eigenvalues, one
can restart the iteration with a random, unit vector orthogonal to Uj .
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Algorithm 15 Arnoldi method
Input: A matrix A ∈ R

n×n, a starting vector u1 ∈ R
n with ‖u1‖2 = 1, and an

integer k ≤ n.

Output: A matrix Uk+1 = [u1, . . . , uk+1] ∈ R
n×(k+1) with orthonormal columns

and an upper Hessenberg matrix Ĥk ∈ R
(k+1)×k, defining an Arnoldi

decomposition (3.2) of kth order.

Ĥ0 ← []
for j ← 1, 2, . . . , k do

hj ← UT
j Auj

v ← Auj − Ujhj

hj+1,j ← ‖v‖2

uj+1 ← v/hj+1,j

Ĥj ←
[

Ĥj−1 hj

0 hj+1,j

]
end for

3. The algorithm can be seen as an implicit implementation of the Gram-
Schmidt orthonormalization process. As such, it inherits the numerical
instabilities of Gram-Schmidt, i.e., the orthogonality of the columns of
Uk can be severely affected in the presence of roundoff errors, see [48,
261]. This can be avoided by reorthogonalizing the computed vector uk+1

against the columns of Uk if it is not sufficiently orthogonal, see [98, 261].
Another stable alternative is based on Householder matrices [341].

4. If not the extremal eigenvalues but eigenvalues close to a given value σ
are desired, then Algorithm 15 will more quickly yield approximations
to these eigenvalues if A is (implicitly) replaced by (A − σI)−1. This
amounts to the so called shift-and-invert Arnoldi method and requires the
solution of a linear system (A− σI)y = uk in each iteration. An overview
of algorithms for solving such linear systems, involving large and sparse
matrices, can be found in [21]. Detailed analyses on how accurately these
linear systems must be solved in order to achieve a certain level of accuracy
in the eigenvalues can be found in [288, 287] and the references therein.
One of the most important observations is that the accuracy of the linear
system solvers can be considerably relaxed as soon as the eigenvalues of
interest start converging.

3.2 Restarting and the Krylov-Schur Algorithm

One of the drawbacks of Algorithm 15 is its need for saving the n × (k + 1)
matrix Uk+1. Depending on the speed of convergence, this matrix may exceed
the available memory long before the desired eigenvalues are sufficiently well
approximated by some Ritz values. Also, the cost for computing the Ritz
values of the k × k matrix Hk grows cubically with k.
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3.2.1 Restarting an Arnoldi Decomposition

A way out of this dilemma has been suggested by Saad [280] based on earlier
work by Manteuffel [232] for the iterative solution of linear systems. Given an
Arnoldi decomposition of order m,

AUm = [ Um, um+1 ]
[

Hm

hm+1,meT
m

]
, (3.5)

Saad proposed to choose a so called filter polynomial ψ, based on information
contained in λ(Hm), and to restart the Arnoldi method with the new starting
vector ũ1 = ψ(A)u1/‖ψ(A)u1‖2. If the roots of ψ approximate eigenvalues of
A, this has the effect that components of u1 in the direction of eigenvectors
belonging to these eigenvalues are damped. If we decompose λ(Hm) = Ωw ∪
Ωu, where the sets Ωw and Ωu contain Ritz values approximating “wanted”
and “unwanted” eigenvalues, respectively, then a reasonable choice for ψ is

ψ(z) =
∏

λ∈Ωu

(z − λ).

The overview paper [295] summarizes other reasonable choices for ψ including
those based on Chebyshev polynomials.

The described technique is commonly called explicit restarting and can
be implemented so that no extra matrix-vector multiplications are required.
A drawback of explicit restarting is that only information associated with
the Ritz values is exploited; any other information contained in the Arnoldi
decomposition is discarded. Sorensen [294] developed an implicit restarting
technique, which is capable to preserve some of the information contained in
Km(A, u1) as well. Implicit restarting transforms and truncates an Arnoldi
decomposition (3.5) of order m to an unreduced Arnoldi decomposition of
order k < m,

AŨk = [ Ũk, ũk+1 ]
[

H̃k

h̃k+1,keT
k

]
, (3.6)

so that the columns of Uk form an orthonormal basis for the Krylov sub-
space Kk(A,ψ(A)u1). Note that this is essentially the same decomposition
that would have been produced by explicit restarting followed by k steps of
the Arnoldi method. Implicit restarting can be accomplished via the appli-
cation of m − k implicit shifted QR iterations to Hm, where the shifts are
the zeros of the (m − k)-degree filter polynomial ψ. For more details, the
reader is referred to [294] and to the documentation of the software package
ARPACK [216], which provides a Fortran 77 implementation of the implic-
itly restarted Arnoldi algorithm. Moreover, ARPACK facilitates similar tech-
niques, developed by Lehoucq and Sorensen [215], for locking converged and
wanted Ritz values as well as purging converged but unwanted Ritz values.
In effect, the corresponding Ritz vectors are decoupled from the active part
of the computation.
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3.2.2 The Krylov Decomposition

Stewart [307] argued that the implicitly restarted Arnoldi algorithm may suffer
from the forward instability of implicit QR iterations. This forward instabil-
ity, explained in detail by Parlett and Le [262], is well demonstrated by the
following example.

Example 3.8 ([262, Ex.2.1]). Consider an Arnoldi decomposition

A[e1, . . . , e6] = [e1, . . . , e6]H6 + h7,6e7e
T
6

having the Hessenberg factor

H6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

6683.3333 14899.672 0 0 0 0
14899.672 33336.632 34.640987 0 0 0

0 34.640987 20.028014 11.832164 0 0
0 0 11.832164 20.001858 10.141851 0
0 0 0 10.141851 20.002287 7.5592896
0 0 0 0 7.5592896 20.002859

⎤
⎥⎥⎥⎥⎥⎥⎦ .

One eigenvalue of H6 is λ = 40000.0003739678. Assume that one wants to
remove this Ritz value from the Arnoldi decomposition. This corresponds to
the application of an implicit QR iteration with the shift λ, which theoretically
leads to a deflated eigenvalue at the bottom right corner of H6. In finite-
precision arithmetic, however, the transformed matrix Ĥ6 = fl(QT H6Q) (fl(·)
denotes the value of the argument obtained in finite-precision arithmic) is far
from having this property, its last subdiagonal entry is given by ≈ −226.21.

Moreover, the implicitly restarted Arnoldi algorithm with filter polynomial
ψ(z) = (z−λ) yields a truncated basis Ũ5 given by the first five columns of the
matrix [e1, . . . , e6]Q. Theoretically, the Ritz vector x belonging to λ should
have no components in the space spanned by the columns of Ũ5, i.e.,

θ1(span(x), span(Ũ5)⊥) = 0

Again, this relationship is violated in finite precision arithmetic, the computed
matrix Û5 satisfies

θ1(span(x), span(Û5)⊥) ≈ 0.0024.

Hence, the forward instability of the QR iteration causes components of the
unwanted Ritz vector x to persist in the computation. ♦

It should be emphasized that the described effect does not limit the at-
tainable accuracy of eigenvalues computed by the implicitly restarted Arnoldi
algorithm, but it may have an effect on the convergence. Moreover, as locking
and purging use similar techniques, great care must be taken to implement
these operations in a numerically reliable fashion.

An elegant solution to all these difficulties was proposed by Stewart [307].
It consists of relaxing the definition of an Arnoldi decomposition and using the
eigenvalue reordering techniques described in Section 1.7 for the restarting,
locking and purging operations. The relaxed definition reads as follows.
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Definition 3.9. Let the columns of Uk+1 = [Uk, uk+1] ∈ R
n×(k+1) form an

orthonormal basis. A Krylov decomposition of order k has the form

AUk = UkBk + uk+1b
T
k+1, (3.7)

or equivalently

AUk = Uk+1B̂k, with B̂k =
[

Bk

bT
k+1

]
.

Note that there is no restriction on the matrix B̂k unlike in the Arnoldi de-
composition, where this factor is required to be an upper Hessenberg matrix.
Nevertheless, any Krylov decomposition is equivalent to an Arnoldi decompo-
sition in the following sense.

Lemma 3.10 ([307]). Let AUk = Uk+1B̂k be a Krylov decomposition of
order k. Then there exists an Arnoldi decomposition AŨk = Ũk+1Ĥk of order
k so that span(Uk+1) = span(Ũk+1).

Proof. The following proof provides a construction for computing an Arnoldi
decomposition corresponding to a given Krylov decomposition.

Partition B̂k =
[

Bk

bT
k+1

]
, let F denote the flip matrix and set Z =

F ·H1(Fbk+1), which yields bT
k+1ZF = hk+1,keT

k (recall that H1(·) designates
a Householder matrix, see Section 1.3.2). Use Algorithm 1 to construct an or-
thogonal matrix Q so that QT (ZT BT

k Z)T Q is in upper Hessenberg form. This
implies that the matrix Hk = (ZQF )T Bk(ZQF ) is also in upper Hessenberg
form. Since Q takes the form 1⊕Q̃, we still have bT

k+1(ZQF ) = hk+1,keT
k . Set-

ting Ũk = Uk(ZQF ) and Ũk+1 = [Ũk, uk+1] reveals span(Ũk+1) = span(Uk+1)
and

AŨk = Ũk+1

[
Hk

hk+1,keT
k

]
,

which concludes the proof. 
�

Particularly useful are Krylov decompositions having the factor Bk in real
Schur form. Such a decomposition will be called Krylov-Schur decomposition.

3.2.3 Restarting a Krylov Decomposition

Given a Krylov decomposition of order m,

AUm = Um+1

[
Bm

bT
m+1

]
, (3.8)

implicit restarting proceeds as follows. First, we apply Hessenberg reduction
and the QR algorithm to compute an orthogonal matrix Q1 so that Tm =
QT

1 BmQ1 has real Schur form. As already described in Section 3.2.1, the
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eigenvalues of Tm are decomposed in a subset Ωw containing k < m “wanted”
Ritz values and a subset Ωu containing m − k “unwanted” Ritz values. To
preserve realness, we assume that Ωw as well as Ωu are closed under complex
conjugation. Secondly, the Ritz values contained in Ωw are reordered to the
top of Tm. This yields another orthogonal matrix Q2 so that

AUmQ1Q2 = [UmQ1Q2, um+1]

⎡
⎣Tw �

0 Tu

bT
w �

⎤
⎦ , λ(Tw) = Ωw, λ(Tu) = Ωu.

Finally, this Krylov-Schur decomposition is truncated, i.e., if we let Ũk contain
the first k < m columns of UmQ1Q2 and set ũk+1 = um+1, then we get the
following Krylov decomposition of order k:

AŨk = [Ũk, ũk+1]
[

Tw

bT
w

]
. (3.9)

Krylov decomposition of order m Krylov-Schur decomposition

A× = × A× = ×

Reordered Krylov-Schur decomposition Truncated Krylov decomposition

A× = × A× = ×

Fig. 3.2. Restarting a Krylov decomposition.

The described process is depicted in Figure 3.2. It can be shown that
the transition from the extended Krylov decomposition (3.8) to the re-
duced Krylov decomposition (3.9) is formally equivalent to an implicit restart
of the corresponding Arnoldi decomposition with filter polynomial ψ(z) =∏
λ∈λ(Tu)

(z − λ), see [307].
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After being truncated, the Krylov decomposition is again expanded to a
decomposition of order m using Algorithm 16. The remarks concerning the

Algorithm 16 Expanding a Krylov decomposition

Input: A Krylov decomposition of order k: AUk = Uk+1B̂k. An integer m > k.

Output: A Krylov decomposition of order m: AUm = Um+1B̂m.

for j ← k + 1, 2, . . . , m do
hj ← UT

j Auj

v ← Auj − Ujhj

hj+1,j ← ‖v‖2

uj+1 ← v/hj+1,j

B̂j ←
[

B̂j−1 hj

0 hj+1,j

]
end for

proper implementation of the Arnoldi method, Algorithm 15, apply likewise
to Algorithm 16. The returned factor B̂m has the following structure:

B̂m =

⎡
⎢⎢⎢⎢⎣

k m−k

k

m−k

� �

��
�

��
1 �

⎤
⎥⎥⎥⎥⎦.

If restarting is repeatedly applied to this Krylov decomposition of order m,
then the first step consists of reducing the upper m ×m part of B̂m to Hes-
senberg form. Note that this reduction can be restricted to the left upper
(k + 1)× (k + 1) part by applying Algorithm 1 to the matrix F · B̂m(k + 1 :
k + 1)T · F , where once again F denotes the flip matrix, similar to the con-
struction used in the proof of Lemma 3.10.

3.2.4 Deflating a Krylov Decomposition

The process of restarting and expanding Krylov decompositions is repeated
until convergence occurs. In ARPACK [216, Sec. 4.6], a Ritz value λ of an order
m Arnoldi decomposition (3.5) is regarded as converged if the associated Ritz
vector Umw (‖w‖2 = 1) satisfies

‖A(Umw)− λ(Umw)‖2 = |hm+1,meT
mw| ≤ max{u ‖Hm‖F , tol× |λ|}, (3.10)

where tol is a chosen user tolerance. A direct extension of this criterion to
an order m Krylov decomposition (3.8) is given by

‖A(Umw)− λ(Umw)‖2 = |bT
m+1w| ≤ max{u ‖Bm‖F , tol× |λ|}. (3.11)
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Both criteria guarantee a small backward error for λ, since λ is an eigenvalue
of the slightly perturbed matrix (A + E) with E = −(bT

m+1w)um+1(Umw)T .
Similarly, a matrix Qd containing an orthonormal basis for the space spanned
by d Ritz vectors Umw1, . . . , Umwd is regarded as converged to a basis of an
invariant subspace if it satisfies

‖AQd −Qd(QT
d AQd)‖F = ‖bT

m+1Qd‖2
≤ max{u ‖Bm‖F , tol× ‖QT

d AQd‖F ‖}.
(3.12)

It should be noted that the individual convergence of the Ritz vectors Umw1,
. . . , Umwd does not necessarily imply (nearby) convergence of the orthonormal
basis Qd, at least as long as the corresponding eigenvalues are not particularly
well conditioned.

If a Ritz value λ ∈ R has converged to a wanted eigenvalue and the cor-
responding Ritz vector is Umw, then the components of this vector should
no longer participate in the subsequent search for other eigenvectors. This
is the aim of deflation, which proceeds as follows [307]. Given a Krylov de-
composition of order m, the factor Bm is reduced to a reordered Schur form
B̃m =

[
λ
0

�
B̃m−1

]
. The Krylov decomposition is partitioned as

A[ũ1, Ũm−1] = [ũ1, Ũm]

⎡
⎣ λ �

0 B̃m−1

b̃1 b̃T
m−1

⎤
⎦ ,

where it is assumed that |b̃1| = |bT
m+1w| satisfies inequality (3.11), i.e., the

Ritz value λ can be regarded as converged and b̃1 can be safely set to zero.
Although newly produced vectors in the Krylov basis must still be orthogonal-
ized against ũ1, the restarting algorithm can be restricted to the subdecompo-
sition AŨm−1 = Ũm

[
B̃m−1

b̃T
m−1

]
for the remainder of the computation. This fact

can be exploited to improve the performance of the Krylov-Schur algorithm
to some extent.

The Krylov-Schur algorithm also gives rise to a more restrictive conver-
gence criterion based on Schur vectors instead of Ritz vectors. Assume that
d < m Ritz values have been deflated in a Krylov decomposition of order m:

A[Qd, Um−d] = [Qd, Um−d+1]

⎡
⎣Td �

0 Bm−d

0 bT
m−d

⎤
⎦ , (3.13)

where Td ∈ R
d×d is a quasi-upper triangular matrix containing the already

deflated Ritz values. To deflate another Ritz value, Bm−d is reduced to real
Schur form:

A[Qd, ũ1, Ũm−d−1] = [Qd, ũ1, Ũm−d]

⎡
⎢⎢⎣

Td � �
0 λ �

0 0 B̃m−d−1

0 b̃1 b̃T
m−d−1

⎤
⎥⎥⎦ . (3.14)
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The Ritz value λ ∈ R is regarded as converged if the scalar b̃1 satisfies:

|b̃1| ≤ max{u ‖Bm−d‖F , tol× |λ|} (3.15)

Let Q̃ be an orthogonal matrix such that Q̃T
[

Td

0
�
λ

]
Q̃ =

[
λ
0

�
T̃d

]
, then v =

[Qd, ũ1]Q̃e1 is a Ritz vector belonging to λ, which satisfies

‖Av − λv‖2 = |[0, b̃1]Q̃e1| ≤ |b̃1|.

Thus, the Ritz value λ has also converged in the sense of (3.11). If the selected
Ritz value λ does not satisfy (3.15), we may test any other real Ritz value
of B̃m−d−1 by reordering the Schur form

[
λ
0

�
B̃m−d−1

]
in (3.14). It has been

pointed out by Byers [81] that this deflation strategy, originally suggested by
Stewart [307], can be considered as a variant of the aggressive early deflation
strategy described in Section 1.6.

So far, we have only considered the deflation of real eigenvalues. A complex
conjugate pair of eigenvalues can be deflated in a similar fashion, by reordering
the corresponding two-by-two block to the top left corner of Bm−d.

Using the more restrictive criterion (3.15) instead of (3.11) has the ad-
vantage that the orthonormal basis spanned by the deflated Ritz vectors
nearly satisfies the convergence criterion (3.12). To see this, assume that the
d locked Ritz values in (3.13) have been deflated based upon a criterion of
the form (3.15). Then there exists a vector b̃d ∈ R

d, where each component
satisfies an inequality of type (3.15), so that ‖AQd −QdTd‖F = ‖b̃d‖2. Thus,

‖AQd −QdTd‖F ≤
√

d max{u, tol} · ‖A‖F .

Both algorithms, the implicitly restarted Arnoldi algorithm and the de-
scribed Krylov-Schur algorithm, have their pros and cons. While the former
algorithm can perform restarts with an arbitrarily chosen filter polynomial,
the latter algorithm is a more reliable machinery for performing deflations
and particular types of restarts. Of course, both algorithms can be combined,
e.g., by using Arnoldi for restarts and Krylov-Schur for deflations.

3.3 Balancing Sparse Matrices

In Section 1.4, we have described a two-stage algorithm for balancing general,
dense matrices, which can have positive effects on the accuracy and efficiency
of subsequent eigenvalue computations. Unfortunately, these algorithms are
not suitable for balancing large and sparse matrices, especially if the entries of
the matrix under consideration are only implicitly given, e.g., via the action
of the matrix on a vector. To resolve this issue, Chen and Demmel [91] have
developed a two-stage balancing algorithm, particularly suited for large and
sparse matrices, and with similar positive effects.
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3.3.1 Irreducible Forms

The first stage of the balancing algorithm consists of reducing a sparse matrix
to irreducible form. A matrix A ∈ R

n×n is called reducible if there exists a
permutation matrix P ∈ R

n×n so that

PT AP =
[

A11 A12

0 A22

]
, (3.16)

where A11 and A22 are square matrices of order not less than one. If no such
permutation exists, then A is called irreducible. The matrices A11 and A22

can be further reduced until A is permuted to block upper triangular form
with irreducible diagonal blocks:

PT AP =

⎡
⎢⎢⎢⎢⎣

A1 � · · · �

0 A2
. . .

...
...

. . . . . . �
0 · · · 0 Ar

⎤
⎥⎥⎥⎥⎦ , Ai ∈ R

ni×ni , ni ≥ 1. (3.17)

Constructing this final irreducible form (a pre-stage of the so called Frobenius
normal form [44]) is equivalent to finding the strongly connected components
of the incidence graph of A and numbering them in their topological order.
To explain this in more detail, let us briefly introduce the necessary graph
theoretic tools [193, 339].

Definition 3.11. The incidence graph of a matrix A ∈ R
n×n, denoted by

GA(V,E), is a directed graph with vertex and edge sets

V = {v1, . . . , vn}, E = {(vi, vj) : aij �= 0},

respectively.

Definition 3.12. A directed graph is called strongly connected if for any pair
of vertices v and w there are paths from v to w as well as from w to v. The
strongly connected components of a directed graph are its maximal strongly
connected subgraphs.

It is one of the fundamental relations between matrices and graphs that the
strongly connected components of the incidence graph of a matrix in irre-
ducible form (3.17) are the subgraphs belonging to the vertex sets of the
diagonal blocks, i.e.,

Vi = {vki−1+1, . . . , vki
}, i = 1, . . . , r, ki =

i∑
j=1

nj ,

see e.g. [193]. Moreover, there is no edge from any vertex in Vj to any vertex
in Vi if i < j. This relation, denoted by Vi � Vj , defines a partial order on the
set of strongly connected components, the so called topological order.
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We can use these connections to graph theory to reduce a given matrix
A ∈ R

n×n to irreducible form. First, Tarjan’s algorithm [319] is applied to
the incidence graph GA(V,E) of A in order to find the r strongly connected
components of GA(V,E). These components can be written as

Vi = {vlki−1+1 , . . . , vlki
}, i = 1, . . . , r, ki =

i∑
j=1

nj ,

for some integers l1, . . . , ln ∈ [1, n] and integers n1, . . . , nr satisfying
∑

ni = n.
W.l.o.g., we may assume Vi � Vj for i < j. Next, consider a permutation p
which maps lj to j for j ∈ [1, n]. Then, the corresponding permutation matrix
P = [pij ] with pij = 1 if and only if i = p(j) produces a matrix PT AP having
irreducible form.

For numerical experiments comparing the benefits and cost of this ap-
proach with the permutation algorithm for dense matrices, Algorithm 4,
see [91]. Permuting a matrix A to irreducible form has complexity O(n+nz),
where nz denotes the number of nonzeros in A. It was observed in [91] that
Algorithm 4 requires more computational time if the density nz/n2 is less
than a certain ratio γ. The exact value of γ depends on the sparsity pattern
and the implementation, but a typical observation was γ ≈ 1/2. Note that a
matrix can only be permuted if its entries are explicitly accessible.

3.3.2 Krylov-Based Balancing

Algorithm 5, the Parlett-Reinsch algorithm for balancing a general matrix,
requires the calculation of row and column norms, implying that matrix entries
must be given explicitly. This requirement is sometimes not satisfied, a large
and sparse matrix might only be defined through its action on a vector. For
these cases, only balancing algorithms which are solely based on a few matrix-
vector multiplications, and possibly matrix-transpose-vector multiplications,
can be used. Such algorithms were developed in [91], leading to the so called
Krylov-based balancing, although it should be mentioned that none of the
proposed algorithms exploits a complete Krylov subspace.

One such algorithm, KrylovAtz, is built on the following fact.

Lemma 3.13. Let A ∈ R
n×n be an irreducible matrix with non-negative en-

tries and spectral radius ρ(A). Let x and y be the normalized right and left Per-
ron vectors of A, i.e., Ax = ρ(A)x and AT y = ρ(A)y with ‖x‖2 = ‖y‖2 = 1.
If

D = diag(
√

x1/y1,
√

x2/y2, . . . ,
√

xn/yn), (3.18)

then ‖D−1AD‖2 = ρ(A).

Proof. See, e.g., [91]. 
�
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The scaling employed in Lemma 3.13 achieves minimal 2-norm among
all equivalence transformations of A as ‖X−1AX‖2 ≥ ρ(A) for any nonsin-
gular matrix X. Also, the right and left Perron vectors of D−1AD equal
D−1x = Dy, thus the condition number of the spectral radius becomes
minimal. If A contains negative entries, then we can apply Lemma 3.13 to
|A| := [|aij |]ni,j=1 to construct a (possibly suboptimal) diagonal scaling matrix
D. It was observed in [91] that this choice of scaling improves the accuracy of
the computed eigenvalues for almost all considered examples. Nevertheless, it
is not clear how to predict the potential gain in accuracy.

It remains to compute the Perron vectors x and y of |A|. In principle, one
could apply the power method to |A| and |AT | to approximate these vectors.
However, if A is not explicitly defined then also the action of |A| and |AT | on
a vector must be approximated by matrix-vector products which only involve
the original matrix A and its transpose. A statistically motivated procedure
based on products with a random vector z, where the entries zi equal 1 or
−1 with probability 1/2, was presented in [91]. It makes use of the fact that
multiplying A by z approximates one step of the power method applied to |A|
with starting vector [1, 1, . . . , 1]T , see Algorithm 17.

Algorithm 17 KrylovAtz

Input: An irreducible matrix A ∈ R
n×n.

Output: A diagonal matrix D so that D−1AD is nearly balanced in the sense
of Lemma 3.13.

D ← In

for k = 1, 2, . . . do
z ← vector of length n with random ±1 entries
p ← D−1(A(Dz)), r ← D(AT (D−1z))
for i = 1, . . . , n do

if (pi �= 0) AND (ri �= 0) then
dii ← dii ·

√|pi|/|ri|
end if

end for
end for

Remark 3.14. Based on the experimental results presented in [91] it was pro-
posed to replace the conditions pi �= 0 ri �= 0 in the inner loop of Algorithm 17
by |pi| > δ‖A‖F and |ri| > δ‖A‖F for some δ > 0. Although there is little
theoretical justification for adding such a cutoff value δ it turns out that the
choice δ = 10−8 often results in smaller norms for the scaled matrices. ♦

Algorithm 17 can be applied to the diagonal blocks of an irreducible
form (3.17). If this form is not available, Algorithm 17 can be applied to
the complete matrix A with less theoretical justification but often to an equal
norm-reducing effect. For numerical experiments, see [91, 36].
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Chen and Demmel [91] also proposed a one-sided variant of Algorithm 17,
called KrylovAz, which does not require matrix-vector-multiplications in-
volving AT . Note, however, that the observed numerical results of KrylovAz
are in some cases significantly worse than those of KrylovAtz.



4

Structured Eigenvalue Problems

This chapter is concerned with computing eigenvalues and invariant subspaces
of a structured matrix. In the scope of this book, an n × n matrix A is con-
sidered to be structured if its n2 entries depend on less than n2 parameters.

Diagonal, upper triangular, sparse matrices belong to the more ubiquitous
structures in (numerical) linear algebra. However, these structures will be of
less interest in this chapter; none of them induces any particular eigenvalue
properties. Instead, we focus on block cyclic, Hamiltonian, orthogonal, sym-
plectic and similar structures, which all induce a distinctive and practically
relevant symmetry in the spectrum of the matrix.

For example, consider a Hamiltonian matrix

H =
[

A G
Q −AT

]
, G = GT , Q = QT , (4.1)

where A,G and Q are real square matrices of the same dimension. If λ is an
eigenvalue of H then also −λ, λ̄,−λ̄ are eigenvalues of H. In other words, λ(H)
is symmetric with respect to the real and the imaginary axis. If one attempts
to compute the eigenvalues of H by one of the methods from the previous
chapters, such as the QR or the Krylov-Schur algorithm, then the computed
eigenvalues will lose the symmetry with respect to the imaginary axis due to
the influence of roundoff errors. This makes it difficult to identify eigenvalues
of H that have negative or zero real part. However, a proper identification
of these eigenvalues is often crucial in applications. For example, deciding
whether a certain Hamiltonian matrix has purely imaginary eigenvalues is
the most critical step in algorithms for computing the stability radius of a
matrix [79, 167] or the H∞ norm of a linear time-invariant system [59, 65].

Preserving the structure of a matrix helps preserve such eigenvalue sym-
metries. Other important aspects are accuracy and efficiency.

So far, we have considered methods that are numerically backward stable,
i.e., the computed eigenvalues are the exact eigenvalues of a slightly perturbed
matrix A + E. The concept of strong backward stability extends this concept
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by requiring the perturbed matrix A + E to have the same structure as the
original matrix A [66]. It follows that a strongly backward stable method
preserves induced eigenvalue symmetries. But, even better, since the set of
admissible perturbations is now restricted to those that preserve the structure
of A, the worst-case effect of E on the eigenvalue accuracy may be much
smaller than the worst-case effect of general, unstructured perturbations. This
question can be answered by structured condition numbers, which are the
subject of Section 4.1.1. If the structured condition number of an eigenvalue
is significantly smaller than the standard condition number then a strongly
backward stable eigenvalue solver is likely to attain much higher accuracy
for this eigenvalue than a general-purpose method. It must be said, however,
that there is often no or only a slight difference between the standard and
structured eigenvalue condition numbers.

Checking whether an eigenvalue/eigenvector pair has been computed in a
backward stable manner simply amounts to checking the norm of the resid-
ual, a fact that has been used to develop meaningful stopping criteria for
Krylov subspace methods. Depending on the structure under consideration,
checking strong backward stability can be much more complicated; this issue
is discussed in Section 4.1.2.

The presence of structure in a matrix gives rise to the hope that its eigen-
values and invariant subspaces can be computed more efficiently. This is ex-
plained in more detail in Section 4.1.3. It turns out that the actually attainable
reduction in computational time is rather modest for some of the structures
considered in this chapter.

Starting from Section 4.2, this chapter aims to provide an overview on the-
ory, algorithms and applications for a number of popular matrix structures.
Close attention is paid to product and (skew-)Hamiltonian eigenvalue prob-
lems. This choice is clearly biased towards the author’s research but it can
also be attributed to the fact that these structures admit structured Schur de-
compositions, which makes them more accessible than many others. Finally,
Section 4.6 summarizes existing results for some other classes of matrices in-
cluding symmetric, skew-symmetric, persymmetric and orthogonal matrices.
Moreover, we consider palindromic matrix pairs to exemplify that some of the
techniques developed in this chapter can be extended to generalized eigenvalue
problems.

4.1 General Concepts

The diversity of structures is too high to provide a general framework that
covers all aspects of structured eigenvalue problems. The aim of this section
is to present those concepts that admit a rather general presentation, such as
the notions of structured condition number and structured backward error.1

1 If one considers only Lie algebras, Jordan algebras and automorphism groups as-
sociated with bilinear and sesquilinear forms then Mackey, Mackey, and Tisseur
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4.1.1 Structured Condition Number

The condition numbers c(λ) and c(X ) introduced in Section 1.2 provide first-
order bounds on the worst-case effect of a perturbation E on an eigenvalue λ
and an invariant subspace X of a matrix A. These measures are most appro-
priate if the only information available on E is that its norm is below a certain
perturbation threshold ε. In the context of structured eigenvalue problems,
however, there is often more information available. If, for example, λ and X
have been computed by a strongly backward stable method it is reasonable to
assume that A + E has the same structure as A. Under such circumstances,
c(λ) and c(X ) may severely overestimate the actual worst-case effect of E.
To obtain a more appropriate measure one can resort to structured condition
numbers, which aim to provide first-order bounds on the worst-case effect of all
perturbations E which additionally preserve the structure of A. An extreme
example is provided by

A =

⎡
⎢⎢⎣

0 −1 2 0
1 0 0 2
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ , X = span

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (4.2)

While c(X ) =∞, we will see that the structured condition number is given by
cM(X ) = 1/2, if the set of admissible perturbations is restricted to matrices
of the form E =

[
E11
E21

E12
E22

]
with Eij =

[
βij

−γij

γij

βij

]
for parameters βij , γij ∈ R.

Eigenvalues

Theorem 1.5 shows that a simple eigenvalue λ depends analytically on the
entries of the matrix A in a sufficiently small open neighborhood B(A). To be
more specific, there exists a uniquely defined analytic function fλ : B(A) → C

so that λ = fλ(A) and λ̂ = fλ(A + E) is an eigenvalue of A + E for every
A + E ∈ B(A). Moreover, one has the expansion

λ̂ = λ +
1

|yHx|y
HEx +O(‖E‖2), (4.3)

where x and y are right and left eigenvectors belonging to λ normalized such
that ‖x‖2 = ‖y‖2 = 1. This expansion forms the basis for our further consid-
erations.

In analogy to (1.14) we establish the following notion of a structured con-
dition number with respect to a structure described by a set M⊆ C

n×n.

[228, 229, 230] have shown that many more aspects admit such a unified treat-
ment.
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Definition 4.1. Let λ be a simple eigenvalue of a matrix A ∈ C
n×n and let

λ̂ = fλ(A + E) denote the corresponding eigenvalue of the perturbed matrix
A+E with A+E ∈M for some M⊆ C

n×n and ‖E‖ sufficiently small. Then
the absolute structured condition number for λ with respect to M is defined
as

cM(λ) := lim
ε→0

1
ε

sup
{
|λ̂− λ| : A + E ∈M, ‖E‖ ≤ ε

}
, (4.4)

where ‖ · ‖ denotes some matrix norm.

Remark 4.2. To obtain computable expressions for cM(λ) it is often conve-
nient to use the Frobenius norm in the definition (4.4) of cM(λ). Such a choice
will be denoted by cMF (λ). To compare structured and unstructured condition
numbers, the matrix 2-norm is usually preferred, which will be denoted by
cM2 (λ). ♦

As the supremum in (4.4) is taken over the subset M instead of the whole
matrix space C

n×n, we immediately have the relation cM2 (λ) ≤ c(λ). Much of
the work on structured condition numbers is concerned with the question by
how far can cM2 (λ) fall below c(λ).

The expansion (4.3) can be employed to obtain the alternative expression

cM(λ) =
1

|yHx| lim
ε→0

1
ε

sup
{
|yHEx| : A + E ∈M, ‖E‖ ≤ ε

}
. (4.5)

Linear structures

Depending on the nature ofM and the employed matrix norm, the supremum
in (4.5) might be very difficult to compute. It was shown by Higham and
Higham [163] that this task simplifies considerably if we assume M to be a
linear matrix subspace of either R

n×n or C
n×n. One consequence is that the

supremum is always attained at the boundary, i.e.,

cM(λ) =
1

|yHx| lim
ε→0

1
ε

sup
{
|yHEx| : A + E ∈M, ‖E‖ = ε

}
=

1
|yHx| sup

{
|yHEx| : E ∈M, ‖E‖ = 1

}
. (4.6)

Another important consequence is that this formula leads to a computable
expression for cMF (λ). To see this, let us introduce the notion of pattern matri-
ces [99, 162, 163, 323]. AsM is a linear matrix space, there is an n2×m matrix
M such that for every E ∈M there exists a uniquely defined parameter vector
p with

vec(E) = Mp, ‖E‖F = ‖p‖2. (4.7)

In other words, the columns of M form an orthonormal basis for the linear
space spanned by all vec(E) with E ∈ M. Any such matrix M is called a
pattern matrix for M. Together with (4.6), the relationships (4.7) yield
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cMF (λ) =
1

|yHx| sup
{
|(x̄⊗ y)HMp| : ‖p‖2 = 1, p ∈ K

m,
}

, (4.8)

where K ∈ {R, C} and x̄ denotes the complex conjugate of x.
When K = C is a complex matrix space the supremum in (4.8) is taken

over all p ∈ C
m and consequently

cMF (λ) =
1

|yHx| ‖(x̄⊗ y)HM‖2. (4.9)

Also, if M is real and λ is a real eigenvalue, we have cMF (λ) = ‖(x ⊗
y)T M‖2/|yT x| since x, y can be chosen to be real and the supremum in (4.8)
is taken over all p ∈ R

m.

Example 4.3. Consider the setM≡ Hamil of all 2n×2n Hamiltonian matrices
of the form (4.1). It is considerably simple to find a pattern matrix MHamil

satisfying the conditions in (4.7). One suitable choice is given by

MHamil =
[

P2 ⊗ In 0
0 P2 ⊗ In

]⎡⎢⎢⎣
1√
2
In2 0 0
0 Msymm 0
0 0 Msymm

− 1√
2
Pvec 0 0

⎤
⎥⎥⎦ ,

where P2 is a perfect shuffle matrix of dimension 2n (see Section 4.2.3) and
Msymm ∈ R

n2×n(n+1)/2 is a pattern matrix for symmetric matrices. The
n2 × n2 matrix Pvec is the vec-permutation matrix [160], characterized by
the property Pvec · vec(A) = vec(AT ) for all n × n matrices A. For example,
for n = 2 we can take

Msymm =

⎡
⎢⎢⎣

1 0 0
0 1/

√
2 0

0 1/
√

2 0
0 0 1

⎤
⎥⎥⎦ , Pvec =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

If λ is a real eigenvalue of a Hamiltonian matrix H with normalized right
and left eigenvectors x and y, the structured condition number of λ is given by
cHamil
F (λ) = ‖(x⊗y)T MHamil‖2/|yT x|. However, as we will see in Section 4.5.2,

it is not necessary to compute this expression; there is no difference between
the structured and unstructured condition numbers for real eigenvalues of
Hamiltonian matrices. ♦

Some complications arise if K = R but λ is a complex eigenvalue or M
is a complex matrix. In this case, the supremum in (4.8) is also taken over
all p ∈ R

m but (x̄ ⊗ y)HM may be a complex vector. In a similar way as in
Section 1.2.2 for the standard eigenvalue condition number we can show

1√
2|yHx|

‖(x̄⊗ y)HM‖2 ≤ cMF (λ) ≤ 1
|yHx| ‖(x̄⊗ y)HM‖2, (4.10)
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see also [146], [277]. To obtain an exact expression for cMF (λ), let us consider
the relation

|(x̄⊗ y)HMp|2 =
∣∣Re

(
(x̄⊗ y)HM

)
p
∣∣2 +

∣∣ Im ((x̄⊗ y)HM
)
p
∣∣2,

which together with (4.8) implies

cMF (λ) =
1

|yHx|

∥∥∥∥
[

Re
(
(x̄⊗ y)HM

)
Im
(
(x̄⊗ y)HM

) ]∥∥∥∥
2

. (4.11)

For a real pattern matrix M , this formula can be rewritten as

cMF (λ) =
1

|yHx| ‖[xR ⊗ yR + xI ⊗ yI , xR ⊗ yI − xI ⊗ yR]T M‖2, (4.12)

where x = xR + ıxI and y = yR + ıyI with xR, xI , yR, yI ∈ R
n.

Remark 4.4. It is important to remark that although we have obtained read-
ily computable expressions for structured eigenvalue condition numbers, these
formulas tell little about the relationship between unstructured and structured
condition numbers. This question must be addressed for each structure indi-
vidually [146, 163, 188, 256, 277, 323].

♦

Nonlinear structures

The task of finding structured eigenvalue condition numbers for nonlinearly
structured matrices can be reduced to the linear case if M is known to be
a smooth manifold, see, e.g., [214] for an introduction to manifolds. Given a
smooth manifold M, any element A + E ∈ M can be approximated in first
order by A+ Ẽ with a suitably chosen Ẽ in the tangent space of M at A. The
proof of the following theorem is built on this fact.

Theorem 4.5 ([188]). Let λ be a simple eigenvalue of the n × n matrix
A ∈ M, where M is a smooth real or complex manifold. Then the structured
condition number for λ with respect to M is given by

cM(λ) =
1

|yHx| sup
{
|yHEx| : E ∈ TAM, ‖E‖ = 1

}
= cTAM(λ), (4.13)

where TAM is the tangent space of M at A.

This result shows that the structured condition number of λ with respect
to M boils down to the structured condition number of λ with respect to
the linear matrix space TAM. Hence, we can apply the results from the pre-
vious paragraph to obtain computable expressions for cMF (λ). However, as
demonstrated by the following example, it can generally not be expected that
the construction of the corresponding pattern matrix M is as simply as in
Example 4.3.
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Example 4.6. Let M be the smooth manifold of all 2n× 2n symplectic matri-
ces,

M≡ symp = {S : ST JS = J}, J =
[

0 In

−In 0

]
.

The tangent space at S ∈M is given by

TSM = {SH : JH = −HT J} = {SH : H is Hamiltonian}.

If MHamil denotes the pattern matrix for Hamiltonian matrices constructed
in Example 4.3 then a pattern matrix Msymp for TSM can be obtained from
a QR decomposition

(I ⊗ S)MHamil = MsympR,

where Msymp ∈ R
4n2×(3n2+n) satisfies MT

sympMsymp = I and R is an upper
triangular matrix. By Theorem 4.5, the structured conditon number of a real
eigenvalue λ of S is consequently given by csymp

F (λ) = ‖(x⊗y)T Msymp‖2/|yT x|.
Although the described procedure admits the direct calculation of struc-

tured eigenvalue condition numbers for symplectic matrices, it should be em-
phasized that it requires the QR decomposition of a 4n2 × (3n2 + n) matrix,
which takes O(n6) flops and is thus computationally rather expensive.

For a comprehensive treatment of symplectic eigenvalue problems, covering
theory, algorithms, and applications, the reader is referred to the book by
Faßbender [122]. ♦

Pseudospectra

The pseudospectrum of an n × n matrix A for a perturbation level ε ≥ 0 is
defined by

Λε(A) := {λ ∈ C : ∃E ∈ C
n×n, ‖E‖2 ≤ ε, λ ∈ λ(A + E)}. (4.14)

Pseudospectra can be used to characterize the behavior of eigenvalues under
finite perturbations, see the recent book by Trefethen and Embree [326] for
a comprehensive overview. If all eigenvalues of A are simple then Λε(A) con-
verges for ε → 0 to discs of radius c(λ) · ε centered around each eigenvalue
λ ∈ λ(A) [186]. This shows that a simple eigenvalue is equally sensitive in any
direction of the complex plane with respect to unstructured perturbations.

The same cannot be said about structured perturbations. For example,
if we restrict the perturbation E in (4.14) to be real then the corresponding
real pseudospectrum converges to ellipses around the eigenvalues [186]. Thus,
the eigenvalues can be much less sensitive in some directions of the complex
plane. Structured condition numbers, which provide a measure on the most
sensitive direction, are not capable to capture such delicacies.

Example 4.7. The unstructured and real pseudospectra of
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A =

⎡
⎣ 2 1 2
−1 2 2
0 0 0

⎤
⎦ . (4.15)

are displayed in Figures 4.1 and 4.2, respectively. While the unstructured

ε = 0.6 ε = 0.4 ε = 0.2

Fig. 4.1. Unstructured pseudospectra of the matrix A in (4.15) for different per-
turbation levels ε.

ε = 0.6 ε = 0.4 ε = 0.2

Fig. 4.2. Real pseudospectra of the matrix A in (4.15) for different perturbation
levels ε.

pseudospectrum approaches discs for smaller ε, it can be seen that the real
pseudospectra approaches a line, which can be regarded as a degenerate ellipse,
for the zero eigenvalue. ♦

Although structured pseudospectra draw a much clearer picture of the be-
havior of eigenvalues under structured perturbation, it should be mentioned
that they are rather complicated and costly to compute, depending on the
structure under consideration. More on structured pseudospectra with appli-
cations in systems and control theory can be found in the monographs by
Karow [186] and Hinrichsen and Pritchard [168].
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Invariant Subspaces

As for eigenvalues, a suitable approach to derive the structured condition
number for a simple invariant subspace X is to consider some kind of pertur-
bation expansion for X . Theorem 1.9 shows that an orthonormal basis X of
X changes analytically under perturbations of the matrix A in a sufficiently
small open neighborhood B(A). To recall this result, let the columns of X⊥
form an orthonormal basis for X⊥ and consider the corresponding block Schur
decomposition

[X,X⊥]HA[X,X⊥] =
[

A11 A12

0 A22

]
. (4.16)

Then there exists an analytic function fX : B(A) → C
n×k so that X = fX(A)

and the columns of X̂ = fX(A + E) span an invariant subspace X̂ of A + E.
Moreover, XH(X̂ −X) = 0 and

X̂ = X −X⊥T−1(XH
⊥ EX) +O(‖E‖2F ), (4.17)

with the Sylvester operator T : R �→ A22R−RA11.

Definition 4.8. Let X be a simple invariant subspace of a matrix A ∈ C
n×n

and let X̂ denote the corresponding invariant subspace of the perturbed matrix
A + E with A + E ∈ M for some M ⊆ C

n×n and ‖E‖F sufficiently small.
Then the structured condition number for X with respect to M is defined as

cM(X ) := lim
ε→0

sup

{
‖Θ(X , X̂ )‖F

ε
: A + E ∈M, ‖E‖F ≤ ε

}
, (4.18)

where Θ(X , X̂ ) is the matrix of canonical angles, see Definition 1.11.

Structured condition numbers for eigenvectors and invariant subspaces
have been studied in [83, 163, 169, 195, 200, 317]. The (structured) perturba-
tion analysis of quadratic matrix equations is a closely related area, which is
comprehensively treated in the book by Konstantinov, Gu, Mehrmann, and
Petkov [194], see also [318].

For the sake of simplification, we assume for the rest of this section that
M is a linear matrix space. Along the lines of the proof of Corollary 1.13, the
expansion (4.17) implies

cM(X ) = lim
ε→0

1
ε

sup
{
‖T−1(XH

⊥ EX)‖F : A + E ∈M, ‖E‖F ≤ ε
}

= lim
ε→0

1
ε

sup
{
‖T−1(XH

⊥ EX)‖F : A + E ∈M, ‖E‖F = ε
}

= sup
{
‖T−1(XH

⊥ EX)‖F : E ∈M, ‖E‖F = 1
}

. (4.19)
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A pattern matrix approach

Since M is assumed to be linear, we can again use the pattern matrix ap-
proach to develop computable expressions for cM(X ). Let M be a pattern
matrix of M in the sense of (4.7). Moreover, we require the Kronecker prod-
uct representation of the Sylvester operator T : R �→ A22R−RA11 associated
with a block Schur decomposition (4.16),

KT = In−k ⊗A11 −AT
22 ⊗ Ik,

see Section 1.2.1. Then

vec(T−1(XH
⊥ EX)) = K−1

T (XT ⊗XH
⊥ ) vec(E) = K−1

T (XT ⊗XH
⊥ )Mp,

which together with (4.19) yields the formula

cM(X ) = sup
‖p‖2=1

‖K−1
T (XT ⊗XH

⊥ )Mp‖2 = ‖K−1
T (XT ⊗XH

⊥ )M‖2, (4.20)

provided that either p is complex or p, M and X are real.

An orthogonal decomposition approach

Remark 4.4 applies likewise to structured condition numbers for invariant
subspaces; although (4.20) yields a directly computable formula for cM(X ), it
tells little about the relationship between cM(X ) and the standard condition
number c(X ).

A sometimes more instructive approach has been introduced in [83] based
on previous work on structured condition numbers for invariant subspaces of
Hamiltonian matrices [85, 195]. The expression (4.19) reveals that cM(X ) is
the norm of the operator T−1 restricted to the linear matrix space

N := {XH
⊥ EX : E ∈M}.

Now, let L := T−1N denote the preimage of N under T. Then

cM(X ) = ‖T−1
s ‖,

where Ts is the restriction of T to L → N , i.e., Ts := T
∣∣
L→N , and ‖·‖ denotes

the operator norm induced by the Frobenius norm. The operator Ts can be
considered as the part of T that acts on the linear matrix spaces induced by
M.

For many of the structures considered in this chapter, we additionally have
the property that the operator T� : Q �→ AH

22Q−QAH
11 satisfies T� : N → L.

Note that T� is the Sylvester operator dual to T:

〈T(R), Q〉 = 〈R,T�(Q)〉,
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with the matrix inner product 〈X,Y 〉 = tr(Y HX). This implies T : L⊥ → N⊥,
where ⊥ denotes the orthogonal complement w.r.t. the matrix inner product.
Hence, T decomposes orthogonally into Ts and Tu := T

∣∣
L⊥→N⊥ and we have

c(X ) = max{‖T−1
s ‖, ‖T−1

u ‖}. (4.21)

This shows that comparing c(X ) with cM(X ) is equivalent to comparing
‖T−1

u ‖ with ‖T−1
s ‖.

Example 4.9. Consider the embedding of a complex matrix B + iC, with
B,C ∈ R

n×n, into a real 2n× 2n matrix of the form

A =
[

B C
−C B

]
.

Let the columns of Y + iZ and Y⊥ + iZ⊥, where Y,Z ∈ R
n×k and Y⊥, Z⊥ ∈

R
n×(n−k), form orthonormal bases for an invariant subspace of B + iC and

its orthogonal complement, respectively. Then the columns of X =
[

Y
−Z

Z
Y

]
and X⊥ =

[
Y⊥

−Z⊥
Z⊥
Y⊥

]
form orthonormal bases for an invariant subspace X of

A and X⊥, respectively. This corresponds to the block Schur decomposition

[X,X⊥]T A[X,X⊥] =:
[

A11 A12

0 A22

]
=

⎡
⎢⎢⎣

B11 C11 B12 C12

−C11 B11 −C12 B12

0 0 B22 C22

0 0 −C22 B22

⎤
⎥⎥⎦

with the associated Sylvester operator T : R �→ A22R−RA11.
If we consider only perturbations having the same structure as A then

M =
{[

F
−G

G
F

]}
and

N := XT
⊥MX =

{[
F21 G21

−G21 F21

]}
, N⊥ =

{[
F21 G21

G21 −F21

]}
.

Moreover, we have T : N → N and T� : N → N . The restricted operator
Ts := T

∣∣
N→N becomes singular only if B11 + iC11 and B22 + iC22 have

eigenvalues in common, while Tu := T
∣∣
N⊥→N⊥ becomes singular if B11+iC11

and B22 − iC22 have eigenvalues in common. Thus, there are situations in
which the unstructured condition number c(X ) = max{‖T−1

s ‖, ‖T−1
u ‖} can

be significantly larger than the structured condition number cM(X ) = ‖T−1
s ‖,

e.g., if iγ is nearly an eigenvalue of B11+iC11 while −iγ is nearly an eigenvalue
of B22 + iC22 for some γ ∈ R. ♦

The introductionary example (4.2) is a special case of Example 4.9, where
the unstructured condition number is infinite due to the purely imaginary
eigenvalue pair ±i. The results above suggest that the structured condition
number is finite and given by
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cM(X ) = inf
|β|2+|γ|2=1

{∥∥∥∥
[

0 1
−1 0

] [
β γ
−γ β

]
−
[

β γ
−γ β

] [
0 −1
1 0

]∥∥∥∥
F

}−1

=
1
2
.

However, all our arguments so far rest on the perturbation expansion (4.17),
which requires the invariant subspace to be simple; a condition that is not sat-
isfied by (4.2). This restriction is removed in the following section by adapting
the global perturbation analysis for invariant subspaces developed by Stew-
art [301], see also Section 1.2.4.

Global perturbation bounds

As in Section 1.2.4, we consider the perturbed block Schur decomposition

[X,X⊥]H(A + E)[X,X⊥] =
[

A11 + E11 A12 + E12

E21 A22 + E22

]
=:
[

Â11 Â12

E21 Â22

]
. (4.22)

In order to obtain a formula for X̂, a basis for the perturbed invariant subspace
X̂ near X , we look for an invertible matrix of the form W =

[
I

−R
0
I

]
so that

W−1

[
Â11 Â12

E21 Â22

]
W =

[
Â11 − Â12R Â12

E21 + RÂ11 − Â22R−RÂ12R Â22 + RÂ12

]
is in block upper triangular form. This implies that R is a solution of the
quadratic matrix equation

Â22R−RÂ11 + RÂ12R = E21. (4.23)

The following theorem gives conditions for the existence of such a solution if
the perturbation E is known to be contained in a linear matrix space M.

Theorem 4.10. Consider a perturbed block Schur decomposition (4.22) and
let T̂ : R �→ Â22R − RÂ11. Set N = {E21 : E ∈ M} and assume that there
exists a linear matrix space L, having the same dimension as N , such that
T̂ : L → N and RÂ12R ∈ N for all R ∈ L. Moreover, assume T̂s := T̂

∣∣
L→N

to be invertible.
If ‖Â12‖F ‖Â21‖F < 1/(2‖T̂−1

s ‖)2 then there exists a solution R ∈ L of
the quadratic matrix equation (4.23) with

‖R‖F < 2‖T̂−1
s ‖ ‖E21‖F .

Proof. The result can be proven by constructing an iteration

R0 ← 0, Ri+1 ← T̂−1
s (E21 −RiÂ12Ri),

which is well-defined because Ri ∈ L implies RiÂ12Qi ∈ N . This approach is
identical to the approach taken in the proof of Lemma 1.14, which was based
on techniques developed in [299, 301, 308]. In fact, it can be shown in precisely
the same way as in [308, Thm. 2.11] that all iterates Ri satisfy a bound of the
form ‖Ri‖F ≤ 2‖T̂−1

s ‖ ‖E21‖F − δ for some δ > 0 and converge to a solution
of (4.23). 
�



4.1 General Concepts 143

Having obtained a solution R of (4.23), a basis for an invariant subspace
X̂ of A + E is given by X̂ =

[
I

−R

]
. Together with Lemma 1.12, this leads to

the following global structured perturbation result for invariant subspaces.

Corollary 4.11. Under the assumptions of Theorem 4.10 there exists an in-
variant subspace X̂ of A + E so that

‖ tan Θ(X , X̂ )‖F < 2‖T̂−1
s ‖ ‖E21‖F . (4.24)

The quantity ‖T̂−1
s ‖ in the bound (4.24) can be related to ‖T−1

s ‖, the norm
of the inverse of the unperturbed Sylvester operator, by using the following
lemma.

Lemma 4.12. Given a perturbed block Schur decomposition of the form (4.22),
let T : R �→ A22R−RA11 and T̂ : R �→ Â22R−RÂ11. Set N = {E21 : E ∈M}
and assume that there exists a linear matrix space L, having the same dimen-
sion as N , such that T : L → N and T̂ : L → N . If T̂s := T̂

∣∣
L→N is

invertible and satisfies

‖T̂−1
s ‖ <

1
‖E11‖F + ‖E22‖F

, (4.25)

then Ts := T
∣∣
L→N is invertible and satisfies

‖T−1
s ‖ ≤ ‖T̂−1

s ‖
1− ‖T̂−1

s ‖(‖E11‖F + ‖E22‖F )
. (4.26)

Proof. Let � : R �→ E22R − RE11, then � : L → N and Ts = T̂s − �.
Considering T̂−1

s ◦ �, the composition of T̂−1
s and �, the inequality (4.25)

implies

‖T̂−1
s ◦ �‖ ≤ ‖T̂−1

s ‖ ‖�‖ ≤ ‖T̂−1
s ‖(‖E11‖F + ‖E22‖F ) < 1.

Thus, the Neumann series

∞∑
i=0

(T̂−1
s ◦Ts)i ◦ T̂−1

s

converges to T−1
s , which also proves (4.26). ♦

Combining Corollary 4.11 with Lemma 4.12 shows

‖ tan Θ(X , X̂ )‖F ≤ α
‖T−1

s ‖ ‖E‖F

1−
√

2‖T−1
s ‖ ‖E‖F

= α‖T−1
s ‖ ‖E‖F +O(‖E‖2F ).

with α = 2. The presence of the factor α = 2 in this bound is artificial; a
slight modification of the proof of Theorem 4.10 shows that α can be made
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arbitrarily close to one under the assumption that the perturbation E is suf-
ficiently small. This shows that cM(X ), the structured condition number of
X , is bounded from above by ‖T−1

s ‖, even if the operator T itself is not in-
vertible. Whether ‖T−1

s ‖ coincides with the condition number in the case of a
singular T depends on the uniqueness of the matrix space L in Theorem 4.10,
see [83] for more details.

Example 4.13 (Continuation of Example 4.9). If

λ(B11 + iC11) ∩ λ(B22 + iC22) = ∅

but
λ(B11 + iC11) ∩ λ(B22 − iC22) �= ∅

then L = N is the unique choice which yields T : L → N and an invert-
ible Ts = T

∣∣
L→N . Thus, cM(X ) = ‖T−1

s ‖ = 1/ sep(B11 + iC11, B22 + iC22)
also holds for singular T. This verifies cM(X ) = 1/2 for the introductionary
example (4.2). ♦

4.1.2 Structured Backward Error

Having computed an eigenvalue λ̂ and an eigenvector x̂ with ‖x̂‖2 = 1 of a
matrix A, it is natural to ask whether the result of this computation corre-
sponds to an exact eigenvalue/eigenvector pair of a slightly perturbed matrix
A+E. The answer to this question can be used to assess the numerical back-
ward stability of the employed algorithm. Mathematically, the backward error
is defined by

η(λ̂, x̂) = min{‖E‖F : (A + E)x̂ = λ̂x̂, E ∈ C
n×n}.

It turns out that this quantity simplifies to the norm of the residual, η(λ̂, x̂) =
‖Ax̂− λ̂x̂‖2 [141]. If the eigenvector x̂ is not available or not of interest, it is
more appropriate to consider the backward error for λ̂ alone,

η(λ̂) = min{‖E‖2 : det(A + E − λ̂I) = 0, E ∈ C
n×n}. (4.27)

By the famous Schmidt-Mirsky theorem, we have η(λ̂) = σmin(A− λ̂I).
The structured backward error for a matrix A ∈ M with respect to a set

M⊆ C
n×n is similarly defined as

ηM(λ̂, x̂) = inf{‖E‖F : (A + E)x̂ = λ̂x̂, E ∈M}. (4.28)

Evaluating ηM(λ̂, x̂) can be used to assess the strong numerical backward
stability of the numerical method that has been used to obtain λ̂ and x̂. Once
again, the pattern matrix approach yields a computable expression for (4.28),
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provided that M is a linear matrix space of C
n×n [163, 323]. Let M ∈ C

n2×m

denote a pattern matrix for M. Then

(λ̂I −A)x̂− Ex̂ = r − (x̂T ⊗ In) vec(E) = r − (x̂T ⊗ I)Mp,

where r = (A − λ̂)x̂. Thus, (4.28) is equivalent to the linear least-squares
problem

ηM(λ̂, x̂) = inf{‖p‖2 : (x̂T ⊗ In)Mp = r, p ∈ C
m},

which can be solved, e.g., by applying a singular value decomposition to the
matrix (x̂T ⊗I)M [48]. WhenM is a linear matrix space of R

n×n and λ̂, x̂ are
real then p will be automatically real. Complications arise for the combination
real M but complex λ̂, in which case the real and imaginary parts of the
constraint (A + E)x̂ = λ̂x̂ in (4.28) must be considered separately [323].

Remark 4.4 applies likewise to the structured backward error; the fact that
ηM(λ̂, x̂) is computable tells nothing about its relationship to η(λ̂, x̂). This
question must be addressed for each structure individually, see, e.g., [314].
Moreover, only in exceptional cases is it possible to derive results on the
structured backward error of nonlinearly structured eigenvalue problems, see,
e.g., [169, 316].

A structured backward error ηM(λ̂) for the eigenvalue alone can be de-
fined similarly as in (4.27). However, even for linear structures it is difficult
to evaluate ηM(λ̂), which is closely related to the concept of structured sin-
gular values [186, 168]. For some structures, however, such as symmetric and
Toeplitz matrices [276, 277], it can be shown that ηM(λ̂) = η(λ̂).

4.1.3 Algorithms and Efficiency

Structure-preserving algorithms have the potential to solve eigenvalue prob-
lems in a more accurate and more efficient way than general-purpose algo-
rithms. An ideal algorithm tailored to the matrix structure would

• be strongly backward stable in the sense of Bunch [66], i.e., the computed
eigenvalues and invariant subspaces are the exact eigenvalues and invariant
subspaces of matrix with the same structure;

• be reliable, i.e., capable to solve all eigenvalue problems in the considered
matrix class; and

• require an equal amount of (or even less) computational work than a com-
petitive general-purpose method.

For some structures – including block cyclic, skew-Hamiltonian and symmetric
matrices – such an ideal method is well established, while for others it still
remains an open problem to design a method that meets all three requirements
satisfactorily.

The fact that a structured matrix depends on less than n2 parameters gives
rise to the hope that an algorithm taking advantage of the structure requires



146 4 Structured Eigenvalue Problems

substantially less effort than a general-purpose algorithm. For example, the
QR algorithm applied to a symmetric matrix requires roughly 10% of the
flops required by the same algorithm applied to a general matrix [141]. For
other structures, such as Hamiltonian matrices, the difference may be less
significant, see Section 4.5.8. Moreover, in view of recent progress made in
improving the performance of the QR algorithm it may require considerable
implementation efforts to turn this reduction of flops into an actual reduction
of computational time.

The convergence of the Krylov-Schur algorithm and other iterative meth-
ods strongly depends on the properties of the matrix A and the subset of eigen-
values to be computed, which makes the computational cost rather difficult
to predict. For methods based on Krylov subspaces, each iteration requires a
matrix-vector multiplication. Linear structures almost always admit the more
efficient computation of these matrix-vector multiplications, to a varying de-
gree of extent. Some structured matrices, such as skew-Hamiltonian and block
cyclic matrices, induce some structure in the Krylov subspace making it pos-
sible to reduce the computational effort even further.

4.2 Products of Matrices

In this section, we consider the problem of computing eigenvalues and invari-
ant subspaces of a matrix product

ΠA = A(p)A(p−1) · · ·A(1), (4.29)

where A(1), . . . , A(p) are n × n matrices. At first sight, such an eigenvalue
problem does not match the definition of a structured eigenvalue problem
stated in the beginning of this chapter; ΠA is an n × n matrix but depends
on the pn2 entries defining its p factors A(1), . . . , A(p). However, any product
eigenvalue problem can be equivalently seen as an pn×pn eigenvalue problem
with block cyclic structure. This section is much about using this connection
to address several tasks related to (4.29) in a convenient manner.

Probably the best known example for (4.29) is the singular value decom-
position of a square matrix A [141]. It is a basic linear algebra fact that the
eigenvalues of AT A or AAT are the squared singular values of A. Product
eigenvalue problems involving up to six factors appear in various areas of sys-
tems and control theory, such as model reduction of linear time-invariant (de-
scriptor) systems [12, 249, 312, 325], linear-quadratic optimal control [29, 32],
and H∞ control [33, 165], see also Appendix A. Other applications, where
the number of factors can be arbitrarily large, include queueing network mod-
els [57, 309], as well as computational methods for analyzing bifurcations
and computing Floquet multipliers of ordinary and partial differential equa-
tions [121, 224, 225]. Product eigenvalue problems are used to address a num-
ber of computational tasks related to periodic discrete-time systems, see [338]
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and the references therein. By applying appropriate sampling and discretiza-
tion techniques, many physical and chemical processes exhibiting seasonal or
periodic behavior can be described by such systems [246]. An interesting ex-
ample for a periodic discrete-time system, describing a model for the dynamics
of nitrogen absorption, distribution, and translocation in citrus trees, can be
found in [64]. To obtain the eigenvalues of this system, an eigenvalue problem
consisting of 365 factors has to be solved. On the theoretical side, the product
eigenvalue problem provides a powerful unifying concept for addressing other
structured eigenvalue problems [357].

4.2.1 Structured Decompositions

The following decomposition plays the same central role for the product eigen-
value problem (4.29) that the Schur decomposition plays for the standard
eigenvalue problem or the generalized Schur decomposition for the general-
ized eigenvalue problem.

Theorem 4.14 (Periodic Schur decomposition [52, 159]). Let A(1),
. . . , A(p) ∈ R

n×n, then there exist orthogonal matrices Q(1), . . . , Q(p) ∈ R
n×n

such that
T (p) = Q(1)T A(p)Q(p),

T (p−1) = Q(p)T A(p−1)Q(p−1),
...

T (1) = Q(2)T A(1)Q(1),

(4.30)

where T (p) has real Schur form and T (1), . . . , T (p−1) are upper triangular ma-
trices.

The periodic Schur decomposition (4.30) can be written in the more compact
form

T (l) = Q(l+1)T A(l)Q(l), l = 1, . . . , p,

if we identify Q(p+1) with Q(1). More generally spoken, we will make use of
the following convention:

Throughout the entire section we identify �(l) with �(l−1 mod p)+1,
where � can be replaced by any symbol.

There is also a complex version of the periodic Schur decomposition (4.30),
i.e., there are unitary matrices Q(1), . . . , Q(p) so that the matrices

T (l) = Q(l+1)HA(l)Q(l), l = 1, . . . , p, (4.31)

are upper triangular. This implies a Schur decomposition for ΠA:

Q(1)HΠAQ(1) = T (p)T (p−l) · · ·T (1) =
[
�
]

. (4.32)
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Hence, if t
(l)
ii denotes the ith diagonal element of T (l), then the n eigenval-

ues of ΠA are given by the n products t
(p)
ii t

(p−1)
ii · · · t(1)ii , i = 1, . . . , n. By a

suitable reordering of the periodic Schur decomposition, see [147, 159] and
Section 4.2.4, we can let the eigenvalues of ΠA appear in any desirable order
on the diagonals of T (l).

The Schur decomposition (4.32) also implies that the first k columns of
Q(1) span an invariant subspace of ΠA. More generally, it can be shown that
if we consider all cyclic permutations

Π
(l)
A = A(p+l−1)A(p+l−2) · · ·A(l), l = 1, . . . , p, (4.33)

then the first k columns of Q(l) span an invariant subspace of Π
(l)
A for each l ∈

[1, p]. These invariant subspaces can be related to certain invariant subspaces
of the block cyclic matrix

A =

⎡
⎢⎢⎢⎢⎣

0 A(p)

A(1) . . .
. . . . . .

A(p−1) 0

⎤
⎥⎥⎥⎥⎦ . (4.34)

To see this, let us partition

Q(l) =
[ k n−k

X(l), X
(l)
⊥
]
, T (l) =

[ k n−k

k A
(l)
11 A

(l)
12

n−k 0 A
(l)
22

]
.

By setting

X = X(1) ⊕X(2) ⊕ · · · ⊕X(p), X⊥ = X
(1)
⊥ ⊕X

(2)
⊥ ⊕ · · · ⊕X

(p)
⊥ , (4.35)

and

Aij =

⎡
⎢⎢⎢⎢⎢⎣

0 A
(p)
ij

A
(1)
ij

. . .

. . . . . .
A

(p−1)
ij 0

⎤
⎥⎥⎥⎥⎥⎦ , (4.36)

we obtain a block Schur decomposition for A:

A[X,X⊥] = [X,X⊥]
[
A11 A12

0 A22

]
. (4.37)

In particular, X = span (X) is an invariant subspace of A belonging to the
eigenvalues of the block cyclic matrix A11. Not every invariant subspace of A
admits a block cyclic representation but in the context of product eigenvalue
problems it is sufficient to consider this type of subspace.
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Definition 4.15 ([222]). Let X be a (pk)-dimensional (left) invariant sub-
space of a block cyclic matrix A ∈ R

pn×pn. If there exist matrices X(1), X(2),
. . . , X(p) ∈ R

n×k so that

X = span(X(1) ⊕X(2) ⊕ · · · ⊕X(p)),

then X is a so called (right) periodic invariant subspace of A.

By direct computation, it can be seen that every periodic invariant subspace
admits a block cyclic representation. For k = 1, this yields the following well-
known relationship between the eigenvalues of ΠA and A.

Corollary 4.16. Let λ be an eigenvalue of the matrix product ΠA having the
form (4.29). Then λ1/p, ωλ1/p, . . . , ωp−1λ1/p, where ω is the pth primitive root
of unity, are eigenvalues of the block cyclic matrix A having the form (4.34).

Proof. By the (complex) periodic Schur decomposition and the construction
given above, there exists an invariant subspace ofA block Schur decomposition
of the form (4.37) with

A11 =

⎡
⎢⎢⎢⎢⎢⎣

0 t
(p)
11

t
(1)
11

. . .

. . . . . .
t
(p−1)
11 0

⎤
⎥⎥⎥⎥⎥⎦ , λ = t

(p)
11 t

(p−1)
11 · · · t(1)11 .

The result follows by observing Ap
11 = λIp. 
�

Bhatia [45, Sec. VIII.5] calls a p-tuple of the form {α, ωα, . . . , ωk−1α} a
p-Carrollian tuple in honor of the writer and mathematician Lewis Carroll.
As any periodic invariant admits a block cyclic representation it does also
belong to eigenvalues that form a set of p-Carrollian tuples.

4.2.2 Perturbation Analysis

Benner, Mehrmann and Xu [43] as well as Lin and Sun [221] analyzed the
effect of perturbations in the factors of a product eigenvalue problem (4.29).
In this section, we show how these perturbation results can be derived via a
different approach; by treating the product eigenvalue problem as a structured
eigenvalue problem involving the block cyclic matrix A.

As in the perturbation analysis for standard eigenvalue problems, see Sec-
tion 1.2, we start with a block Schur decomposition

A[X,X⊥] = [X,X⊥]
[
A11 A12

0 A22

]
. (4.38)

As we will only consider periodic invariant subspaces, we can assume some
extra structure: X and X⊥ have block diagonal form (4.35); A11 ∈ C

pk×pk,
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A12 ∈ C
pk×p(n−k) and A22 ∈ C

p(n−k)×p(n−k) are block cyclic matrices of the
form (4.36).

The Sylvester operator associated with (4.38) has a number of useful prop-
erties that are summarized in the following lemma.

Lemma 4.17. Let T : C
pk×p(n−k) → C

pk×p(n−k) be the Sylvester operator
defined by T : R �→ A11R−RA22, where A11 and A22 are block cyclic matrices
of the form (4.36). Then the following statements hold:

1. Let Z(j), j = 0, . . . , p− 1, be the matrix subspaces

Z(j) :=
{
Cj

k

(
Z(1) ⊕ Z(2) ⊕ · · · ⊕ Z(p)

)
: Z(l) ∈ C

pk×p(n−k)
}

, (4.39)

where

Ck =

⎡
⎢⎢⎢⎢⎣

0 Ik

Ik
. . .
. . . . . .

Ik 0

⎤
⎥⎥⎥⎥⎦ .

Then

TZ(0) ⊆ Z(1), . . . , TZ(p−2) ⊆ Z(p−1), TZ(p−1) ⊆ Z(0). (4.40)

2. T is invertible if and only if λ(A11) ∩ λ(A22) = ∅, which is equivalent to
the condition λ

(
A

(p)
11 A

(p−1)
11 · · ·A(1)

11

)
∩ λ
(
A

(p)
22 A

(p−1)
22 · · ·A(1)

22

)
= ∅.

3. If T is invertible, then

Z(0) = T−1Z(1), . . . , Z(p−2) = T−1Z(p−1), Z(p−1) = T−1Z(0).

Proof. 1. A matrix R is an element of Z(j) if and only if there exist block
diagonal matrices R1, R2 ∈ Z(0) so that R = Cj

kR1 = R2Cj
n−k. We have

A11R =
(
A

(p)
11 ⊕A

(1)
11 ⊕ · · ·A

(p−1)
11

)
Cj+1

k R1

∈
(
A

(p)
11 ⊕A

(1)
11 ⊕ · · ·A

(p−1)
11

)
Z(j+1) ⊆ Z(j+1)

and

RA22 = R2Cj+1
n−k

(
A

(1)
22 ⊕A

(2)
22 ⊕ · · ·A

(p)
22

)
∈ Z(j+1)

(
A

(1)
22 ⊕A

(2)
22 ⊕ · · ·A

(p)
22

)
⊆ Z(j+1),

where, using Cp
k = I and Cp

n−k = I, the subspace Z(p) can be identified
with Z(0). This shows TZ(j) ⊆ Z(j+1).

2. This statement follows from Lemma 1.3 and

λ ∈ λ(Aii) ⇔ λp ∈ λ
(
A

(p)
ii A

(p−1)
ii · · ·A(1)

ii

)
, i ∈ {1, 2}.
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3. The fact that {Z(0),Z(1), . . . ,Z(p−1)} forms an orthogonal basis for the
matrix space C

pk×p(n−k) with respect to the inner product 〈A,B〉 =
tr(BHA) implies for invertible T that the set inclusions (4.40) become

TZ(0) = Z(1), . . . , TZ(p−2) = Z(p−1), TZ(p−1) = Z(0),

which concludes the proof.

�

If T is invertible then the left invariant subspace belonging to the eigen-
values of A11 is given by

Y = span
(
[X,X⊥] · [I,T−1A12]H

)
.

The third part of Lemma 4.17 shows T−1A12 ∈ Z(0), i.e., this matrix is block
diagonal. Hence, Y is a left periodic invariant subspace.

Invariant Subspaces

Another consequence of Lemma 4.17 is that the Sylvester operator T decom-
poses orthogonally with respect to the structure. If we let M ≡ cyc denote
the set of all pn× pn block cyclic matrices and

L := Z(0), N := Z(1) = {XT
⊥EX : E ∈ cyc},

then the second part of Lemma 4.17 implies T : L → N and T : L⊥ →
N⊥. By the results in Section 4.1.1, the structured condition number for
the invariant subspace X spanned by the columns of the matrix X in (4.38)
satisfies ccyc(X ) = ‖T−1

s ‖ with Ts := T
∣∣
L→N . Moreover, we have for the

unstructured condition number

c(X ) = max{‖T−1
s ‖, ‖T−1

u ‖}

with Tu := T
∣∣
L⊥→N⊥ .

The following example demonstrates that the quantities ccyc(X ) and c(X )
may differ significantly.

Example 4.18. Let p = 2, A11 =
[

0
1

0
0

]
and A22 =

[
0
D

C
0

]
, where

C =
[

105 105

0 10−5

]
, D =

[
10−5 0

0 105

]
.

Then the structured condition number is given by

ccyc(X ) =

∥∥∥∥∥
[

C −I2

0 D

]−1
∥∥∥∥∥

2

=
√

2× 105,
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while the unstructured condition number is much higher,

c(X ) = max

{
ccyc(X),

∥∥∥∥∥
[

D −I2

0 C

]−1
∥∥∥∥∥

2

}
= 1010.

♦

The quantity ccyc(X ) measures the overall conditioning of X , which can be
written as the direct sum of the subspaces X (1) = span

(
X(1)

)
, . . . , X (p) =

span
(
X(p)

)
. Since X (1) is an invariant subspace of the matrix product ΠA it

might be of interest to measure the individual conditioning of X (1). In this
case, the appropriate structured condition number is given by

ccyc(1)(X ) := sup{‖ET
1 T−1

A (E21)‖F : E21 ∈ N , ‖E21‖F = 1},

where E1 consists of the first (n− k) columns of the identity matrix Ip(n−k),
see also [221]. In a similar fashion, one can derive condition numbers for the
individual subspaces X (2), . . . ,X (p).

On the computation of ccyc(X )

Computing the structured condition number ccyc(X ) is equivalent to com-
puting the norm of the inverse of the Sylvester operator Ts : L → N with
Ts : R �→ A22R−RA11. If we let

R = (R(1) ⊕ · · · ⊕R(p)),
Ts(R) = Cn−k(R(1) ⊕ · · · ⊕R(p)),

where Cn−k is defined as in Lemma 4.17, then

A
(p)
22 R(p) −R(1)A

(p)
11 = R(p),

A
(1)
22 R(1) −R(2)A

(1)
11 = R(1),

...
A

(p−1)
22 R(p−1) −R(p)A

(p−1)
11 = R(p−1).

(4.41)

The system of matrix equations (4.41) is called a periodic Sylvester equation.
It is equivalent to the linear system of equations

KTs

⎡
⎢⎢⎢⎣

vec(R(1))
...

vec(R(p−1))
vec(R(p))

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

vec(R(1))
...

vec(R(p−1))
vec(R(p))

⎤
⎥⎥⎥⎦ , (4.42)

where KTs
can be written as the sum of a block diagonal and a block cyclic

matrix:



4.2 Products of Matrices 153

KTs
=

⎡
⎢⎢⎢⎢⎣

Ik ⊗A
(1)
22 −A

(1)
11 ⊗ In−k

. . . . . .
Ik ⊗A

(p−1)
22 −A

(p−1)
11 ⊗ In−k

−A
(p)
11 ⊗ In−k Ik ⊗A

(p)
22

⎤
⎥⎥⎥⎥⎦ .

Thus ‖K−1
Ts
‖2 = ccyc(X ), which can be estimated by applying a norm es-

timator [164, Ch. 14] to K−1
Ts

. This amounts to the solution of a few linear
equations KTs

q1 = r1 and KT
Ts

q2 = r2 for particularly chosen right hand sides
r1 and r2 or, equivalently, the solution of a few periodic Sylvester equations.
Efficient methods for solving (4.41) and periodic matrix equations of similar
type can be found in [86, 297, 335].

Eigenvalues

We have seen that to any eigenvalue λ of the product eigenvalue problem (4.29)
there exists a p-dimensional periodic invariant subspace X belonging to the
eigenvalues λ1/k, ωλ1/k, . . . , ωk−1λ1/k of A, where ω is the pth primitive
root of unity. Now, we can choose vectors x(1), . . . , x(p) ∈ C

n with ‖x(1)‖2 =
· · · = ‖x(p)‖2 = 1 so that the columns of X = x(1) ⊕ · · · ⊕ x(p) form an
orthonormal basis for X . Similarly, there exist vectors y(1), . . . , y(p) ∈ C

n,
‖y(1)‖2 = · · · = ‖y(p)‖2 = 1, so that Y = span(Y ) with Y = y(1) ⊕ · · · ⊕ y(p)

is a left periodic invariant subspace belonging to the same set of eigenvalues.
The invariant subspace X has the representation

AX = XA11, A11 =

⎡
⎢⎢⎢⎢⎣

0 α(p)

α(1) . . .
. . . . . .

α(p−1) 0

⎤
⎥⎥⎥⎥⎦ ,

for some scalars α(1), . . . , α(p). We assume that λ is a simple eigenvalue which
implies that X is a simple invariant subspace. Consider a block cyclic pertur-
bation

E =

⎡
⎢⎢⎢⎢⎣

0 E(p)

E(1) . . .
. . . . . .

E(p−1) 0

⎤
⎥⎥⎥⎥⎦ ,

then the perturbation expansion (1.20) in Theorem 1.9 proves the existence
of a matrix Â11 which satisfies

Â11 = A11 + (Y HX)−1Y HEX +O(‖E‖2), (4.43)
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where the eigenvalues of Â11 are eigenvalues of A + E . Since A11 and
(Y HX)−1Y HEX are block cyclic matrices, the matrix Â11 can also be as-
sumed to be block cyclic.

The expression (4.43) can be rewritten in terms of the entries α̂(l) of Â11:

α̂(l) = α(l) +
1

y(l+1)Hx(l)
y(l+1)HE(l)x(l) +O(‖E‖2), l = 1, . . . , p.

The structured condition number for each individual α(l) is thus given by
ccyc
2 (α(l)) = ccyc

F (α(l)) = 1/|y(l+1)Hx(l)|. If we measure the change of all quan-
tities using

�α :=
( p∑

l=1

|α̂(l) − α(l)|2
)1/2

= ‖Â11 −A11‖F ,

then

�α = ‖(Y HX)−1Y HEX‖F +O(‖E‖2) ≤ ‖(Y HX)−1‖2 ‖E‖F +O(‖E‖2).

For the block cyclic perturbations E = εY C1XH (the matrix C1 is defined in
Lemma 4.17), this inequality is attained in first order. Hence, the structured
condition number for α = [α1, . . . , αp] satisfies

ccyc
F (α) := lim

ε→0

1
ε

sup{�α : E ∈ cyc, ‖E‖F ≤ ε}

= ‖(Y HX)−1‖2 = max{ccyc(α(1)), . . . , ccyc(α(p))}.

Note that ccyc(α) coincides with the standard condition number for the eigen-
value mean of A11, see Section 1.2.3.

These results can be used to bound the distance between the eigenvalues
λ =

∏
α(l) and λ̂ =

∏
α̂(l) of the matrix products ΠA = A(p)A(p−1) · · ·A(1)

and
ΠÂ =

(
A(p) + E(p)

)(
A(p−1) + E(p−1)

)
· · ·
(
A(1) + E(1)

)
,

respectively. We obtain

|λ̂− λ| =
∣∣∣ p∏

l=1

[(α̂(l) − α(l)) + α(l)]−
p∏

l=1

α(l)
∣∣∣

=
∣∣∣ p∑

l=1

[
(α̂(l) − α(l))

∏
k �=l

α(k)
]∣∣∣+O(‖E‖2)

≤
p∑

l=1

[
|α̂(l) − α(l)|

∏
k �=l

|α(k)|
]

+O(‖E‖2)

≤
p∑

l=1

[
ccyc
2 (α(l)) ‖E(l)‖2

∏
k �=l

|α(k)|
]

+O(‖E‖2).
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4.2.3 The Periodic QR Algorithm

To solve the product eigenvalue problem, one could in principal apply a
general-purpose eigenvalue solver to the explicitely formed matrix product
ΠA. For the sake of numerical stability, however, it is important to take the
fact that ΠA is a matrix product into account and develop numerical meth-
ods that work directly on the factors A(1), . . . , A(p). This well-appreciated
principle has driven the development of many reliable algorithms for solving
instances of the product eigenvalue problem, such as the Golub-Reinsch al-
gorithm for the singular value decomposition [138] or the QZ algorithm for
the generalized eigenvalue problem. Both methods have in common that they
are numerically backward stable with respect to the factors, i.e., the com-
puted eigenvalues and invariant subspaces correspond to a matrix product
with slightly perturbed factors.

A method that meets this goal for the matrix product

ΠA = A(p)A(p−1) · · ·A(1), (4.44)

is the periodic QR algorithm [52, 159, 331]. By a computing a periodic Schur
decomposition, it achieves a small factor-wise backward error, i.e., the com-
puted eigenvalues are the exact eigenvalues of

(A(p) + E(p))(A(p−1) + E(p−1)) · · · (A(1) + E(1)). (4.45)

where each ‖E(l)‖F is of order u ‖A(l)‖F . The periodic QR algorithm was
developed independently in the beginning of the 1990’s by Bojanczyk, Golub,
and Van Dooren [52], and Hench and Laub [159]. Already in 1975, Van
Loan [331] published an algorithm for the case p = 2 comprising the main
ideas behind the periodic QR algorithm. Van Loan’s paper is based on his
PhD thesis [330], which is a valuable source of information, particularly in
providing important details concerning the reliable implementation of the pe-
riodic QR algorithm.

Although the periodic QR algorithm was to some extent connected to the
standard QR algorithm in the works mentioned above, it has been introduced
as an independent algorithm. In the following, we show that the periodic QR
algorithm naturally arises from the standard QR algorithm by considering
a shuffled version of the block cyclic matrix A associated with (4.44), see
also [199].

The Perfect Shuffle

The perfect shuffle is a permutation that can be used to turn a block structured
matrix into a structured block matrix. This is a common trick in (numerical)
linear algebra; it has been used, e.g., to construct algorithms for block Toeplitz
matrices [132]. The block structure of our interest is a block cyclic matrix of
the form
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A =

⎡
⎢⎢⎢⎢⎣

0 A(p)

A(1) . . .
. . . . . .

A(p−1) 0

⎤
⎥⎥⎥⎥⎦ . (4.46)

The perfect shuffle permutation can be obtained as follows. Let

z = [ z(1), z(2), . . . , z(p) ],

where z(l) is a row vector of length n. Imagine that each z(l) represents a
deck of n cards. A perfect shuffle stacks exactly one card from each deck,
rotationally until all decks are exhausted. The row vector that corresponds to
the shuffled deck is given by

z̃ = [ z
(1)
1 , z

(2)
1 , . . . , z

(p)
1 , z

(1)
2 , . . . , z

(p)
2 , . . . , z(1)

n , . . . , z(p)
n ].

There exists a unique permutation matrix Pp ∈ R
pn×pn such that z̃ = zPp

(for notational convenience we will drop the subscript and simply write P in
the following). Applying this permutation to the block cyclic matrix A turns
it into an n× n block matrix with cyclic p× p blocks:

Ã := PTAP =

⎡
⎢⎣A11 · · · A1n

...
...

An1 · · · Ann

⎤
⎥⎦ , Aij :=

⎡
⎢⎢⎢⎢⎢⎣

0 a
(p)
ij

a
(1)
ij

. . .

. . . . . .
a
(p−1)
ij 0

⎤
⎥⎥⎥⎥⎥⎦ . (4.47)

Any matrix of the form (4.47) will be called a cyclic block matrix. Similarly,
applying P to a block diagonal matrix D yields an n × n block matrix D̃ =
PTDP with diagonal p× p matrices as entries. We refer to any matrix of the
latter form as a diagonal block matrix. The following straightforward lemma
reveals a useful relation between cyclic and diagonal block matrices.

Lemma 4.19. Let Ã be a cyclic block matrix and let D̃1, D̃2 be diagonal block
matrices. Then D̃1ÃD̃2 is again a cyclic block matrix.

The perfect shuffle version of the periodic Schur form

Using the perfect shuffle, the periodic Schur decomposition can be interpreted
as a structured Schur decomposition for cyclic block matrices, see also Fig-
ure 4.3.

Corollary 4.20. Let Ã ∈ R
pn×pn be a cyclic block matrix of the form (4.47).

Then there exists an orthogonal diagonal block matrix Q̃ so that Q̃T ÃQ̃ is a
block upper triangular matrix with p× p and 2p× 2p diagonal blocks.
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Proof. The result is obtained by applying Theorem 4.14 to the n×n coefficient
matrices A(1), . . . , A(p) of the block cyclic matrix A = PT ÃP and setting

Q̃ = PT (Q(1) ⊕Q(2) ⊕ · · · ⊕Q(p))P,

where P is the perfect shuffle matrix. 
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 c11 0 0 c12 0 0 c13 0 0 c14

a11 0 0 a12 0 0 a13 0 0 a14 0 0
0 b11 0 0 b12 0 0 b13 0 0 b14 0
0 0 0 0 0 c22 0 0 c23 0 0 c24

0 0 0 a22 0 0 a23 0 0 a24 0 0
0 0 0 0 b22 0 0 b23 0 0 b24 0
0 0 0 0 0 c32 0 0 c33 0 0 c34

0 0 0 0 0 0 a33 0 0 a34 0 0
0 0 0 0 0 0 0 b33 0 0 b34 0
0 0 0 0 0 0 0 0 0 0 0 c44

0 0 0 0 0 0 0 0 0 a44 0 0
0 0 0 0 0 0 0 0 0 0 b44 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c11 c12 c13 c14

0 c22 c23 c24

0 c32 c33 c34

0 0 0 c44

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎤
⎥⎥⎥⎦

periodic Schur form of a matrix product

block Schur form of corresponding cyclic block matrix

Fig. 4.3. Relation between periodic Schur form and block Schur form of a cyclic
block matrix.

Reduction to periodic Hessenberg form

We have seen that reducing a general matrix A ∈ R
n×n to Hessenberg form is

a preliminary step in the QR algorithm in order to reduce its computational
complexity. Algorithm 1 is the basic algorithm for such a reduction based on
Householder matrices. Let us recall that a Householder matrix which maps
the last n− j elements of a vector x ∈ R

n to zero is given by

Hj(x) = I − βvj(x)vj(x)T ,

where

vj(x) =
[

0 0
0 In−j+1

]
x + sign(eT

j x)
∥∥∥∥
[

0 0
0 In−j+1

]
x

∥∥∥∥
2

ej

and

β =
{

0 if vj(x) = 0,
2/(vj(x)T vj(x)) otherwise.

The following theorem shows that Algorithm 1 preserves cyclic block struc-
tures.
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Theorem 4.21. If Algorithm 1 is applied to a cyclic block matrix Ã ∈ R
np×np

then an orthogonal diagonal block matrix Q̃ and a cyclic block matrix Q̃T ÃQ̃
in upper Hessenberg form are returned.

Proof. Assume that after (j − 1) loops of Algorithm 1 the matrix Ã has been
overwritten by a cyclic block matrix. Then,

Ãej = y ⊗ el′ , y =
[

a
(l)
1k , a

(l)
2k , . . . , a

(l)
nk

]T
, (4.48)

where l′ = j mod p + 1, l = (j − 1) mod p + 1 and k = (j − l)/p + 1. Since

vj+1(Ãej) = vj+1(y ⊗ el′) =
{

l < p : vk(y)⊗ el′ ,
l = p : vk+1(y)⊗ el′ ,

it follows that Hj+1(Ãej) is a diagonal block matrix. Thus, Lemma 4.19 shows
that the j-th loop of Algorithm 1 preserves the cyclic block form of Ã. The
statement about Q̃ is a consequence of the group property of orthogonal di-
agonal block matrices. 
�

Hence, Algorithm 1 applied to Ã only operates on the entries a
(l)
ij ; it

should thus be possible to reformulate this algorithm in terms of opera-
tions on the factors A(1), . . . , A(p). In the following, we will derive such a
reformulation. First note that the proof of Theorem 4.21 also shows that
Ã ← Hj+1(Ãej)T ÃHj+1(Ãej) is equivalent to the updates{

l < p : A(l+1) ← A(l+1) ·Hk(A(l)ek), A(l) ← Hk(A(l)ek)T ·A(l),
l = p : A(1) ← A(1) ·Hk+1(A(p)ek), A(p) ← Hk+1(A(p)ek)T ·A(p),

where the quantities k and l are defined as in (4.48). Furthermore, if we set

Q̃ = PT diag(Q(1), Q(2), . . . , Q(p))P,

then Q̃ ← Q̃Hj+1(Ãej) equals Q(l+1) ← Q(l+1)Hk(A(l)ek) for l < p and
Q(1) ← Q(1)Hk+1(A(p)ek) for l = p. Altogether, we can rewrite Algorithm 1
as shown in Algorithm 18.

Note that this algorithm corresponds to the algorithm for reduction to
periodic Hessenberg form described in [52]. It requires roughly p times the
flops required by Algorithm 1, reduction to standard Hessenberg form, applied
to an n×n matrix. Let us emphasize again that Algorithm 18 performs exactly
the same operations as Algorithm 1 applied to Ã. Hence, also in the presence
of roundoff errors both algorithms produce the same result, an entity that is
commonly called numerical equivalence.

Example 4.22. If p = 2 and A(1) = A(2)T then Algorithm 1 reduces the sym-
metric matrix Ã to tridiagonal form. On the other hand, Algorithm 18 returns
Q(2)T A(1)Q(1) in bidiagonal form. Hence, as a special case we obtain that
bidiagonal reduction (see, e.g, [305, Alg. 3.2]) applied to A(1) is numerically
equivalent to tridiagonal reduction applied to Ã. A similar observation has
been made by Paige [259]. ♦
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Algorithm 18 Reduction to periodic Hessenberg form

Input: Matrices A(1), . . . , A(p) ∈ R
n×n.

Output: Orthogonal matrices Q(1), . . . , Q(p) such that H(l) = Q(l+1)T A(l)Q(l) is
upper triangular for l = 1, . . . , p − 1 and H(p) = Q(1)T A(p)Q(p) is in
upper Hessenberg form. Each matrix A(l) is overwritten by H(l).

Q(1) ← In, Q(2) ← In, . . . , Q(p) ← In

for k ← 1, . . . , n − 1 do
for l ← 1, . . . , p − 1 do

Q(l+1) ← Q(l+1) · Hk(A(l)ek)
A(l+1) ← A(l+1) · Hk(A(l)ek)
A(l) ← Hk(A(l)ek)A(l)

end for
Q(1) ← Q(1) · Hk+1(A

(p)ek)
A(1) ← A(1) · Hk+1(A

(p)ek)
A(p) ← Hk+1(A

(p)ek) · A(p)

end for

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 c11 0 0 c12 0 0 c13 0 0 c14

a11 0 0 a12 0 0 a13 0 0 a14 0 0
0 b11 0 0 b12 0 0 b13 0 0 b14 0
0 0 c21 0 0 c22 0 0 c23 0 0 c24

0 0 0 a22 0 0 a23 0 0 a24 0 0
0 0 0 0 b22 0 0 b23 0 0 b24 0
0 0 0 0 0 c32 0 0 c33 0 0 c34

0 0 0 0 0 0 a33 0 0 a34 0 0
0 0 0 0 0 0 0 b33 0 0 b34 0
0 0 0 0 0 0 0 0 c43 0 0 c44

0 0 0 0 0 0 0 0 0 a44 0 0
0 0 0 0 0 0 0 0 0 0 b44 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c11 c12 c13 c14

c21 c22 c23 c24

0 c32 c33 c34

0 0 c43 c44

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎤
⎥⎥⎥⎦

periodic Hessenberg form of a matrix product

Hessenberg form of corresponding cyclic block matrix

Fig. 4.4. Relation between periodic Hessenberg form and Hessenberg form of a
cyclic block matrix.

Periodic QR Iteration

A QR iteration applied to a general Hessenberg matrix A as described in
Algorithm 2 first performs an update of the form

A ← H1(x) ·A ·H1(x),

where x is the first column of the shift polynomial belonging to m Francis
shifts. This introduces a bulge in the top left corner of A. The second step
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of a QR iteration consists of restoring the Hessenberg form of A using Algo-
rithm 1. The following theorem shows that QR iterations preserve cyclic block
structures if m is wisely chosen.

Theorem 4.23. If Algorithm 2 is applied to a cyclic block matrix Ã ∈ R
np×np

in Hessenberg form and the number of Francis shifts is an integer multiple of
p, say m = pt, then the structure of Ã is preserved and an orthogonal diagonal
block matrix Q̃ is returned.

Proof. The bottom right m×m submatrix of Ã is a cyclic block matrix. Thus,
the Francis shifts form a p-Carrollian tuple and can be partitioned into groups
{σ(1)

i , . . . , σ
(p)
i }, i = 1, . . . , t, where each group contains the pth roots of some

γi ∈ C. Using the fact that ΠA = A(p)A(p−1) · · ·A(1) is the upper left n × n
block of the block diagonal matrix (P ÃPT )p we obtain

x =
t∏

i=1

p∏
l=1

(Ã − σ
(l)
i Inp)e1 =

t∏
i=1

(
Ãp −

p∏
l=1

σ
(l)
i Inp

)
e1

= PT ·
t∏

i=1

(
(P ÃPT )p − γiInp

)
Pe1 =

(
t∏

i=1

(ΠA − γiIn)e1

)
⊗ e1.

Thus, H1(x) is a block diagonal matrix, which together with Theorem 4.21
concludes the proof. 
�

The subdiagonal entries of a cyclic block Ã in Hessenberg form consist
of the diagonal entries of the triangular matrices A(1), . . . , A(p−1) and the
subdiagonal entries of the Hessenberg matrix A(p). Hence, Ã is unreduced
if and only if all the triangular factors are nonsingular and the Hessenberg
factor is unreduced. Similar to Hessenberg reduction the proof of Theorem 4.23
gives a way to rewrite Algorithm 2, the standard QR iteration, in terms of
operations on the factors A(1), . . . , A(p), see Algorithm 19.

Note that Algorithm 19 is a “Householder version” of the periodic QR
iteration with t shifts described in [52]. It requires roughly p times the flops
required by Algorithm 2 applied to an n× n matrix with t shifts.

Example 4.24. This is a continuation of Example 4.22. If A(1) and A(2) =
A(1)T satisfy the assumptions of Algorithm 19 then A(1) is a bidiagonal matrix
with nonzero diagonal and supdiagonal elements. Algorithm 2 applied to the
tridiagonal matrix Ã performs an implicit shifted symmetric QR iteration,
while Algorithm 19 performs a bidiagonal QR iteration [138]. This shows that
both QR iterations are numerically equivalent. ♦

Deflation

A deflation occurs when one of the subdiagonal entries of Ã becomes suffi-
ciently small. The usual criterion is to declare a subdiagonal entry negligible
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Algorithm 19 Periodic QR iteration

Input: Nonsingular upper triangular matrices A(1), . . . , A(p−1) ∈ R
n×n and a

matrix A(p) ∈ R
n×n in unreduced upper Hessenberg form, an integer

t ∈ [2, n].

Output: Orthogonal matrices Q(1), . . . , Q(p) such that Q(l+1)T A(l)Q(l), l =
1, . . . , p, are the factors of the cyclic block matrix that would have
been obtained after one QR iteration with m = pt Francis shifts has
been applied to Ã. Each matrix A(l) is overwritten by Q(l+1)T A(l)Q(l).

1. Compute {γ1, . . . , γt} as the eigenvalues of ΠA(n − t + 1 : n, n − t + 1 : n).
2. Set x = (ΠA − γ1In)(ΠA − γ2In) · · · (ΠA − γtIn)e1.
3. Update A(1) ← A(1) · H1(x), A(p) ← H1(x) · A(p).
4. Apply Algorithm 18 to compute orthogonal matrices Q(1), . . . , Q(p) so that

A(1) ← Q(2)T A(1)Q(1), . . . , A(p−1) ← Q(p)T A(p−1)Q(p−1) are upper triangular
and A(p) ← Q(1)T A(p)Q(p) is in Hessenberg form.

5. Update Q(1) ← H1(x) · Q(1).

if it is small compared to the neighboring diagonal elements, see Section 1.3.4.
However, this is not a very meaningful choice for matrices with zero diagonal
elements like Ã. Considering the action of the Householder matrices in the
course of a QR iteration it is advisable to base the criterion on the two closest
nonzero elements in the same row and column. Suitable generic criteria for Ã
are thus given by

|a(p)
j+1,j | ≤ u(|a(p)

j,j |+ |a
(p)
j+1,j+1|), (4.49)

|a(l)
jj | ≤ u(|a(l)

j−1,j |+ |a
(l)
j,j+1|), l = 1, . . . , p− 1, (4.50)

where an entry on the right hand side of (4.50) is replaced by zero if the index
is out of range. Note that inequality (4.50) may only be satisfied if the 2-norm
condition number of A(l) is at least 1/(2u).

Situation (4.49) is easily handled, setting a
(p)
j+1,j zero makes Ã block upper

triangular,

Ã =
[
Ã11 Ã12

0 Ã22

]
,

where Ã11 ∈ R
jp×jp and Ã22 ∈ R

(j−1)p×(j−1)p are cyclic block matrices.
In contrast, situation (4.50) yields a deflation into two smaller eigenvalue

problems which do not carry the structure of Ã. For illustration, consider the
case p = 3, n = 4 and a

(1)
22 = 0 displayed in Figure 4.5. Fortunately, there is an

easy way to force deflations at a
(3)
21 and a

(3)
32 so that afterwards the deflation

stemming from a
(1)
22 resides in a deflated p× p cyclic matrix and can thus be

ignored. Applying an implicit shifted QR step with p zero shifts introduces the
zero a

(3)
21 element. An RQ step is a QR step implicitly applied to (FT ÃF )T ,

where F is the flip matrix. Hence, an implicitly shifted RQ step with p zero



162 4 Structured Eigenvalue Problems

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a
(3)
11 0 0 a

(3)
12 0 0 a

(3)
13 0 0 a

(3)
14

a
(1)
11 0 0 a

(1)
12 0 0 a

(1)
13 0 0 a

(1)
14 0 0

0 a
(2)
11 0 0 a

(2)
12 0 0 a

(2)
13 0 0 a

(2)
14 0

0 0 a
(3)
21 0 0 a

(3)
22 0 0 a

(3)
23 0 0 a

(3)
24

0 0 0 0 0 0 a
(1)
23 0 0 a

(1)
24 0 0

0 0 0 0 a
(2)
22 0 0 a

(2)
23 0 0 a

(2)
24 0

0 0 0 0 0 a
(3)
32 0 0 a

(3)
33 0 0 a

(3)
34

0 0 0 0 0 0 a
(1)
33 0 0 a

(1)
34 0 0

0 0 0 0 0 0 0 a
(2)
33 0 0 a

(2)
34 0

0 0 0 0 0 0 0 0 a
(3)
43 0 0 a

(3)
44

0 0 0 0 0 0 0 0 0 a
(1)
44 0 0

0 0 0 0 0 0 0 0 0 0 a
(2)
44 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4.5. Structure-destroying deflation of a cyclic block matrix.

shifts preserves the structure of Ã and gives the zero a
(3)
32 element. It can be

shown that this procedure is numerically equivalent to the deflation procedure
presented in [52], which is displayed in Algorithm 20. A notable difference is

Algorithm 20 Deflation of singular triangular factors

Input: Upper triangular matrices A(1), . . . , A(p−1) ∈ R
n×n and a matrix A(p) ∈

R
n×n in upper Hessenberg form, an integer t ∈ [2, n]. Integers l and j

with 1 ≤ l ≤ p − 1 and a
(l)
jj = 0.

Output: Orthogonal matrices Q(1), . . . , Q(p) such that A(l) ← Q(l+1)T A(l)Q(l),
l = 1, . . . , p, is again in Hessenberg-triangular form with aj,j−1 = 0 (if
j > 1) and aj+1,j = 0 (if j < n).

Q(1) ← In, Q(2) ← In, . . . , Q(p) ← In

% Annihilate first j−1 subdiagonal entries of A(p) and propagate Givens rotations.
for l̃ ← p, 1, 2, . . . , p − 1 do

for i ← 1, . . . , j − 1 do

Gi ← Gi,i+1(A
(l̃)ei)

A(l̃) ← GiA
(l̃), A(l̃+1) ← A(l̃+1)GT

i , Q(l̃+1) ← Q(l̃+1)GT
i

end for
end for
% Annihilate last n−j subdiagonal entries of A(p) and propagate Givens rotations.
for l̃ ← p, p − 1, p − 2, . . . , 1 do

for i ← n − 1, n − 2, . . . , j do

Gi ← Gi+1,i(e
T
i+1A

(l̃))

A(l̃) ← A(l̃)Gi, A(l̃−1) ← GT
i A(l̃−1), Q(l̃) ← Q(l̃)Gi

end for
end for
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that the deflation criteria suggested in [52] are based on the norms of the
factors A(l) instead of the magnitudes of nearby entries.

Summary

We have shown that reduction to Hessenberg form as well as QR iterations
preserve cyclic block structures. If the factors A(1), . . . , A(p−1) are sufficiently
well conditioned then the complete QR algorithm is structure-preserving. Oth-
erwise, a special deflation technique, which is not part of the standard QR
algorithm, must be used. Overall, this yields an algorithm for solving block
cyclic eigenvalue problems (or, equivalently, product eigenvalue problems),
which is ideal in the sense of Section 4.1.3.

4.2.4 Computation of Invariant Subspaces

Let us assume that the periodic QR algorithm has computed a (real) periodic
Schur decomposition

T (l) = Q(l+1)T A(l)Q(l), l = 1, . . . , p,

where T (p) has real Schur form and T (1), . . . , T (p−1) are upper triangu-
lar matrices. If the (k + 1, k) subdiagonal entry of T (p) is zero, then the
first k columns of Q(1) span an invariant subspace of the matrix product
ΠA = A(p)A(p−1) · · ·A(p−1) belonging to the eigenvalues of its leading k × k
principal submatrix. To obtain invariant subspaces belonging to other eigen-
values, it is necessary to reorder the periodic Schur decomposition.

As this can be done in a bubble-sort fashion as for standard Schur de-
compositions, see Section 1.7, it is sufficient to develop a swapping algorithm
for the periodic Schur decomposition. That is, the computation of orthogonal
matrices Q(1), . . . , Q(p) such that

Q(l+1)T

[
A

(l)
11 A

(l)
12

0 A
(l)
22

]
Q(l) =

[
B

(l)
11 B

(l)
12

0 B
(l)
22

]
, l = 1, . . . , p, (4.51)

where A
(l)
11 , B

(l)
22 ∈ R

n1×n1 , A
(l)
22 , B

(l)
11 ∈ R

n2×n2 , n1, n2 ∈ {1, 2}, and

λ(A(p)
11 A

(p−1)
11 · · ·A(1)

11 ) = λ(B(p)
22 B

(p−1)
22 · · ·B(1)

22 ),
λ(A(p)

22 A
(p−1)
22 · · ·A(1)

22 ) = λ(B(p)
11 B

(p−1)
11 · · ·B(1)

11 ).

Not surprisingly, swapping blocks in a periodic Schur decomposition can be
related to swapping blocks in a standard Schur decomposition. If we partition

Q(l) =
[ n2 n1

n1 Q
(l)
11 Q

(l)
12

n2 Q
(l)
21 Q

(l)
22

]
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and set

Q =

[
Q

(1)
11 ⊕ · · · ⊕Q

(p)
11 Q

(1)
12 ⊕ · · · ⊕Q

(p)
12

Q
(1)
21 ⊕ · · · ⊕Q

(p)
21 Q

(1)
22 ⊕ · · · ⊕Q

(p)
22

]
, (4.52)

then (4.51) is equivalent to

QT

[
A11 A12

0 A22

]
Q =

[
B11 B12

0 B22

]
, (4.53)

where Aij and Bij are the block cyclic matrices associated with A
(l)
ij and B

(l)
ij ,

respectively, see also (4.36).
In principal, the orthogonal factor Q in (4.53) can be constructed as de-

scribed in Section 1.7.1. Assuming that λ(A11) ∩ λ(A22) = ∅, the solution of
the Sylvester equation

A11X − XA22 = γA12 (4.54)

for some scaling factor γ ≤ 1 is computed. Now, Q can be determined from a
QR decomposition

QT

[
−X

γIpn2

]
=
[
R
0

]
.

Since Lemma 4.17 implies that X is a block diagonal matrix, the factor Q can
always be chosen so that it has the form (4.52).

The finite-precision properties of this algorithm are as follows. Let Q̂(1),
. . . , Q̂(p) denote the computed orthogonal factors, then the exact swapping
relation (4.51) is perturbed to

Q̂(l+1)T

[
A

(l)
11 A

(l)
12

0 A
(l)
22

]
Q̂(l) =

[
B̂

(l)
11 B̂

(l)
12

B̂
(l)
21 B̂

(l)
22

]
, l = 1, . . . , p.

Let us assume that the Sylvester equation (4.54) is solved by applying
Gaussian elimination with complete pivoting to its Kronecker product for-
mulation, see also (4.42). Then from the discussion in Section 1.7.1 it can be
expected that the subdiagonal blocks B̂

(l)
21 almost always satisfy

‖B̂(l)
21 ‖F ≤ c(l)u(‖A11‖F + ‖A12‖F + ‖A22‖F ) (4.55)

for some modest numbers c(l) ≥ 1. By a preliminary scaling, we may assume
(‖A(l)

11‖F + ‖A(l)
12‖F + ‖A(l)

22‖F ) = γ for some constant γ independent of l. In
this case, the bound (4.55) implies ‖B̂(l)

21 ‖F ≤
√

pc(l)uγ. Note that for p = 2,
the described procedure is very similar to swapping algorithms for generalized
Schur forms, see Section 2.7.

There is much more to be said about reordering periodic Schur decom-
positions; the recent work by Granat and K̊agström [147] turns the outlined
procedure into an efficient and reliable algorithm.
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4.2.5 The Periodic Krylov-Schur Algorithm

The periodic QR algorithm is suitable only for matrix products of modest
dimension, say n ≤ 3000. To handle larger product eigenvalue problems with
possibly sparse factors, it is necessary to resort to methods based on matrix-
vector multiplications, such as the Krylov-Schur algorithm described in Chap-
ter 3. Applying this algorithm blindly to a matrix product

ΠA = A(p)A(p−1) · · ·A(1),

would unnecessarily spoil the accuracy of eigenvalues, especially for those of
small magnitude. To avoid this effect, this section explains how the Krylov-
Schur algorithm can be adapted to yield a numerically backward stable
method for product eigenvalue problems [201].

Periodic Arnoldi Decompositions

From the described relationships between product eigenvalue problems and
block cyclic matrices we have seen that any structure-preserving method for
computing p-Carrollian eigenvalue tuples and periodic invariant subspaces of
a pn × pn block cyclic matrix A is a suitable method for solving the corre-
sponding product eigenvalue problem.

In the following, we will develop such a structure-preserving method based
on the Krylov subspace

Kk(A, u1) = span{u1,Au1,A2u1, . . . ,Ak−1u1}

for some starting vector u1 ∈ R
pn. As we are interested in approximating

periodic invariant subspaces, which are spanned by block diagonal matri-
ces, it is reasonable to require that Kk(A, u1) itself admits a block diag-
onal basis. Indeed, it will be shown that if a starting vector of the form
u1 = [u(1)T

1 , 0, . . . , 0]T , with u
(1)
1 ∈ R

n, is used, then one can construct, by a
minor modification of the standard Arnoldi method, Algorithm 15, a decom-
position of the following type:

A (U (1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k ) = (U (1)

k+1 ⊕ U
(2)
k · · · ⊕ U

(p)
k ) Ĥk. (4.56)

Here, all matrices U
(1)
k+1 = [u(1)

1 , . . . , u
(1)
k+1] and U

(l)
k = [u(l)

1 , . . . , u
(l)
k ], l =

2, . . . , p, are assumed to have orthonormal columns. Moreover, the factor Ĥk

in (4.56) takes the form

Ĥk =

⎡
⎢⎢⎢⎢⎢⎣

0 Ĥ
(p)
k

H
(1)
k

. . .

. . . . . .
H

(p−1)
k 0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

��
�

� . . .

�

⎤
⎥⎥⎥⎥⎥⎥⎦ , (4.57)
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i.e., H
(1)
k , . . . , H

(p−1)
k ∈ R

k×k are upper triangular matrices while the matrix

Ĥ
(p)
k =

[
H

(p)
k

hk+1,keT
k

]
∈ R

(k+1)×k has (rectangular) upper Hessenberg form.

Any decomposition of the form (4.56)–(4.57) will be called periodic Arnoldi
decomposition of order k. Similar decompositions have played a role in Krylov
subspace methods for solving linear systems with block cyclic matrices, see [55,
56, 57, 120, 130]. For p = 1 the periodic Arnoldi decomposition is nothing but
a standard Arnoldi decomposition.

Lemma 4.25. Consider a kth-order periodic Arnoldi decomposition of the
form (4.56)–(4.57) and assume that the upper triangular matrices H

(1)
k , . . . ,

H
(p−1)
k are invertible and that Ĥ

(p)
k is in unreduced Hessenberg form. Then the

columns of (U (1)
k+1⊕U

(2)
k · · ·⊕U

(p)
k ) form a basis for Kpk+1(A, [u(1)T

1 , 0, . . . , 0]T ).

Proof. Permuting the (k + 1)th row of Ĥk to the bottom row and applying
a perfect shuffle permutation to the other rows and columns turns Ĥk into
a Hessenberg matrix, whose subdiagonal entries are composed of the diag-
onal entries of H

(1)
k , . . . , H

(p−1)
k and the subdiagonal entries of Ĥ

(p)
k . This

permutation turns (4.56) into a standard (although particularly structured)
Arnoldi decomposition. Moreover, the made assumptions guarantee that the
constructed Hessenberg matrix is unreduced. Together with Theorem 3.5,
this proves the desired result. Note that this proof also shows that any peri-
odic Arnoldi decomposition can be transformed into an equivalent standard
Arnoldi decomposition. 
�

Algorithm 21 produces a periodic Arnoldi decomposition. It is formally
and numerically equivalent to the standard Arnoldi method applied to the
block cyclic matrix A with starting vector u1 = [u(1)T

1 , 0, . . . , 0]T , with the
notable difference that the columns of the produced Krylov basis are sorted
in a particular order. The remarks concerning the implementation of Algo-
rithm 15 apply likewise to Algorithm 21. Some additional remarks:

1. Algorithm 21 can be implemented such that in each outer loop ex-
actly p matrix-vector multiplications, involving each of the matrices
A(1), . . . , A(p), are needed. It can be expected that the computational cost
of Algorithm 21 is dominated by these matrix-vector multiplications mak-
ing it comparable to the cost of the standard Arnoldi method applied to
the matrix product ΠA = A(p)A(p−1) · · ·A(1). (Note that this statement
is only true under the assumption that the matrices A(1), . . . , A(p) are
subsequently applied to a vector whenever the standard Arnoldi method
requests a matrix-vector product. If the matrix product or parts of it can
be condensed in a cheap manner, the computational cost of the standard
Arnoldi method may be considerably lower.)

2. A major drawback of using Algorithm 21 in comparison to the stan-
dard Arnoldi method applied to ΠA is the increase of memory require-
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Algorithm 21 Periodic Arnoldi method

Input: Matrices A(1), . . . , A(p) ∈ R
n×n, a starting vector u

(1)
1 ∈ R

n with

‖u(1)
1 ‖2 = 1, and an integer k ≤ n.

Output: Matrices U
(1)
k+1 ∈ R

n×(k+1), U
(2)
k , . . . , U

(p)
k ∈ R

n×k having orthonormal

columns, upper triangular matrices H
(1)
k , . . . , H

(p−1)
k ∈ R

k×k and an

upper Hessenberg matrix Ĥ
(p)
k ∈ R

(k+1)×k, defining a kth order periodic
Arnoldi decomposition (4.56)–(4.57).

H
(1)
0 ← [], . . . , H

(p−1)
0 ← [], Ĥ

(p)
0 ← []

for j ← 1, 2, . . . , k do
for l ← 1, 2, . . . , p − 1 do

h
(l)
j ← U

(l+1)H
j−1 A(l)u

(l)
j

v ← A(l)u
(l)
j − U

(l+1)
j−1 h

(l)
j

h
(l)
jj ← ‖v‖2

u
(l+1)
j ← v/h

(l)
jj

H
(l)
j ←

[
H

(l)
j−1 h

(l)
j

0 h
(l)
jj

]
end for
h

(p)
j ← U

(1)H
j A(p)u

(p)
j

v ← A(p)u
(p)
j − U

(1)
j h

(p)
j

h
(p)
j+1,j ← ‖v‖2

u
(1)
j+1 ← v/h

(p)
j+1,j

Ĥ
(p)
j ←

[
Ĥ

(p)
j−1 h

(p)
j

0 h
(p)
j+1,j

]
end for

ments by roughly a factor of p due to the need for storing each basis
U

(1)
k+1, U

(2)
k , . . . , U

(p)
k instead of only one n× (k + 1) basis.

3. Algorithm 21 breaks down as soon as it encounters h
(l)
jj = 0, for 1 ≤ l ≤

p − 1, or h
(p)
j+1,j = 0. In both cases, an exact periodic invariant subspace

has been found and can be deflated. The first case, which can only happen
if one of the matrices A(1), . . . , A(p−1) is (nearly) singular, requires some
attention in order not to destroy the structure of the periodic Arnoldi
decomposition, see [201].

Let us emphasize again that Algorithm 21 is equivalent to the standard
Arnoldi method. This implies that many results on the Arnoldi method, for
instance on its convergence, carry over to Algorithm 21. Moreover, the usual
methods for computing Ritz values, vectors and bases, can be applied to ex-
tract approximations to eigenvalues and invariant subspaces from the Krylov
subspace basis produced by this algorithm.
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Periodic Krylov Decompositions

We have seen in Chapter 3 that the applicability of the standard Arnoldi
method can be considerably enhanced by employing techniques for restart-
ing and deflating Arnoldi decompositions. In the following, we adapt these
techniques by employing an adapted notion of Krylov decompositions.

Definition 4.26. Let A be a block cyclic matrix of the form (4.34). The de-
composition

A (U (1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k ) = (U (1)

k+1 ⊕ U
(2)
k · · · ⊕ U

(p)
k ) B̂k, (4.58)

is called a periodic Krylov decomposition of order k if all matrices U
(1)
k+1 =

[u(1)
1 , . . . , u

(1)
k+1] and U

(l)
k = [u(l)

1 , . . . , u
(l)
k ], l = 2, . . . , p, have orthonormal

columns and if the factor B̂k takes the form

B̂k =

⎡
⎢⎢⎢⎢⎢⎣

0 B̂
(p)
k

B
(1)
k

. . .

. . . . . .
B

(p−1)
k 0

⎤
⎥⎥⎥⎥⎥⎦ (4.59)

for some matrices B
(1)
k , . . . , B

(p−1)
k ∈ R

k×k and B̂
(p)
k =

[
B

(p)
k

b
(p)T
k

]
∈ R

(k+1)×k.

We have seen that any Krylov decomposition is actually equivalent to an
Arnoldi decomposition, see Lemma 3.10. The following lemma is an extension
of this fact to periodic decompositions.

Lemma 4.27. Let

A (U (1)
k ⊕ U

(2)
k · · · ⊕ U

(p)
k ) = (U (1)

k+1 ⊕ U
(2)
k · · · ⊕ U

(p)
k ) B̂k

be a periodic Krylov decomposition. Then there exists a periodic Arnoldi de-
composition

A (Ũ (1)
k ⊕ Ũ

(2)
k · · · ⊕ Ũ

(p)
k ) = (Ũ (1)

k+1 ⊕ Ũ
(2)
k · · · ⊕ Ũ

(p)
k ) Ĥk (4.60)

so that span(Ũ (1)
k+1) = span(U (1)

k+1) and span(Ũ (l)
k ) = span(U (l)

k ) for l =
1, . . . , p.

Proof. First, let us partition

B̂
(p)
k+1 =

[
B

(p)
k

b
(p)T
k+1

]
, B

(p)
k ∈ C

k×k, b
(p)
k+1 ∈ C

k,

and construct an orthogonal matrix Q0, e.g. a Householder matrix, such that
QT

0 b
(p)
k+1 = hk+1,kek for some hk+1,k ∈ R. Next, we apply Algorithm 22, a

row-oriented version of Algorithm 18, to the matrices
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Algorithm 22 Row-oriented reduction to periodic Hessenberg form

Input: Matrices B(1), . . . , B(p) ∈ R
k×k.

Output: Orthogonal matrices Q(1), . . . , Q(p) such that H(l) = Q(l+1)T B(l)Q(l) is
upper triangular for l = 1, . . . , p − 1 and H(p) = Q(1)T B(p)Q(p) is in
upper Hessenberg form. Each matrix B(l) is overwritten by H(l).

Remark: Ȟj(x) denotes a Householder matrix which maps the leading j − 1
entries of a vector x ∈ R

k to zero without affecting its trailing k − j
entries.

Q(1) ← Ik, . . . , Q(p) ← Ik

for j ← k, k − 1, . . . , 2 do
for l ← p − 1, p − 2, . . . , 1 do

x ← B(l)T ej

B(l) ← B(l) · Ȟj(x)
B(l−1) ← Ȟj(x) · B(l−1)

Q(l) ← Q(l) · Ȟj(x)
end for
x ← B(p)T ej

B(p) ← B(l) · Ȟj−1(x)
B(p−1) ← Ȟj−1(x) · B(p−1)

Q(p) ← Q(p) · Ȟj−1(x)
end for

B
(p)
k Q0, QT

0 B
(p−1)
k , B

(p−2)
k , . . . , B

(1)
k .

It is simple to check that the orthogonal factor Q(p) returned by this algorithm
satisfies eT

k Q(p) = eT
k . This implies that setting

Ũ
(1)
k = U

(1)
k Q(1), . . . , Ũ

(p−1)
k = U

(p−1)
k Q(p−1), Ũ

(p)
k = U

(p)
k Q0Q

(p),

and Ũ
(1)
k+1 = [Ũ (1)

k , u
(1)
k+1] yields a periodic Arnoldi decomposition (4.60), where

the factor Ĥk takes the form (4.57) with the coefficient matrices

Ĥ
(1)
k = (Q(2) ⊕ 1)T B̂

(1)
k Q0Q

(1),

H
(2)
k = Q(3)T B̂

(2)
k Q(2), . . . , H

(p−1)
k = Q(p)T B̂

(p−1)
k Q(p−1).

H
(p)
k = (Q0Q

(1))T B̂
(p)
k Q(p),

having Hessenberg-triangular form, which completes the proof. 
�

In analogy to the notation used in Chapter 3, a decomposition of the
form (4.58)–(4.59) is called a periodic Krylov-Schur decomposition if all coef-
ficient matrices B

(1)
k , . . . , B

(p)
k are upper triangular.

Implicit Restarting

Given a periodic Krylov decomposition of order m,
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A (U (1)
m ⊕ U (2)

m ⊕ · · · ⊕ U (p)
m ) = (U (1)

m+1 ⊕ U (2)
m ⊕ · · · ⊕ U (p)

m ) B̂m, (4.61)

where B̂m is a block cyclic matrix of the form (4.59), implicit restarting pro-
ceeds as follows. First, orthogonal matrices Q

(1)
1 , . . . , Q

(p)
1 ∈ R

m×m are con-
structed such that T

(l)
m = Q

(l+1)T
1 H

(l)
m Q

(l)
1 is a periodic Schur decomposition.

The eigenvalues of the product

ΠT = T (p)
m T (p−1)

m · · ·T (1)
m

correspond to the m Carrollian tuples of Ritz values of the Krylov decompo-
sition (4.61). Some of these eigenvalues may be of interest and approximate
desired eigenvalues of ΠA, but some may not. Therefore, the next step of
implicit restarting consists of reordering the k < m wanted eigenvalues to the
top left corner of the block triangular matrix ΠT , using reliable reordering
methods as described in Section 4.2.4 and [147]. This yields another set of
orthogonal matrices Q

(1)
2 , . . . , Q

(p)
2 ∈ R

m×m so that

A (U (1)
m Q

(1)
1 Q

(1)
2 ⊕ U (2)

m Q
(2)
1 Q

(2)
2 ⊕ · · · ⊕ U (p)

m Q
(p)
1 Q

(p)
2 )

= ([U (1)
m Q

(1)
1 Q

(1)
2 , u

(1)
m+1]⊕ U (2)

m Q
(2)
1 Q

(2)
2 ⊕ · · · ⊕ U (p)

m Q
(p)
1 Q

(p)
2 ) T̂m,

where T̂m is a block cyclic matrix of the form (4.59). The coefficients of T̂m

are given by T
(l)
m =

[
T (l)

w
0

�
T (l)

u

]
, l = 1, . . . , p− 1, and

T̂ (p)
m =

⎡
⎢⎣ T

(p)
w �

0 T
(p)
u

b
(p)T
w �

⎤
⎥⎦ .

Here, the k × k product T
(p)
w T

(p−1)
w · · ·T (1)

w contains the wanted eigenvalues
of ΠT while the (m − k) × (m − k) product T

(p)
u T

(p−1)
u · · ·T (1)

u contains the
unwanted eigenvalues. Note that these products correspond to the block cyclic
matrices

Tw =

⎡
⎢⎢⎢⎢⎢⎣

0 T
(p)
w

T
(1)
w

. . .

. . . . . .
T

(p−1)
w 0

⎤
⎥⎥⎥⎥⎥⎦ , Tu =

⎡
⎢⎢⎢⎢⎢⎣

0 T
(p)
u

T
(1)
u

. . .

. . . . . .
T

(p−1)
u 0

⎤
⎥⎥⎥⎥⎥⎦ . (4.62)

Finally, the constructed periodic Krylov-Schur decomposition is truncated.
By letting Ũ

(l)
k contain the first k columns of U

(l)
m Q

(l)
1 Q

(l)
2 , l = 1, . . . , p, and

setting ũ
(1)
k+1 = u

(1)
m+1, we obtain the following Krylov-Schur decomposition of

order k:

A (Ũ (1)
k ⊕ Ũ

(2)
k ⊕ · · · ⊕ Ũ

(p)
k ) = ([Ũ (1)

k , ũ
(1)
k+1]⊕ Ũ

(2)
k ⊕ · · · ⊕ Ũ

(p)
k ) T̂w,
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(a) p. Krylov decomp. of order m (b) p. Krylov-Schur decomp.

A× = × A× = ×

(c) reordered p. Krylov-Schur decomp. (d) truncated p. Krylov decomp.

A× = × A× = ×

Fig. 4.6. Restarting a periodic Krylov decomposition.

where T̂w is almost identical to Tw in (4.62), with the only difference that the

k×k coefficient matrix T
(p)
w is replaced by the (k+1)×k matrix T̂

(p)
w =

[
T (p)

w

b(p)T
w

]
.

The described procedure of reduction to periodic Krylov-Schur decomposi-
tion, reordering and truncation is depicted in Figure 4.6. Note that the Krylov
subspace corresponding to the truncated decomposition is the same subspace
that would have been obtained if implicit restarting with the filter polynomial

ψ(z) =
∏

λ∈λ(Tu)

(z − λ),

see Section 3.2.1, had been applied to the standard Arnoldi decomposition
corresponding to (4.61).

Deflation

After a periodic Krylov decomposition has been truncated to order k, it can
again be expanded to a decomposition of order m by applying a variant of
the periodic Arnoldi method, Algorithm 21. This process of truncation and
expansion is repeated until convergence occurs. To decide on convergence,
we suggest the criterion (3.12), which has been used in Section 3.2.4 for de-
flating invariant subspaces from standard Krylov decompositions. In order to
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preserve the structure of periodic Krylov decompositions, we only deflate peri-
odic invariant subspaces that belong to a p-Carrollian tuple of Ritz values. The
deflation procedure is analogous to the procedure described in Section 3.2.4,
see also [201].

Numerical Examples

To illustrate the numerical differences between the standard and periodic
Krylov-Schur algorithms, let us consider the following simple example:

A(1) = A(2) = A(3) = diag(1, 10−1, 10−2, 10−3, . . . , 10−50). (4.63)
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Fig. 4.7. Approximation errors of the 7 largest eigenvalues for the standard (left
plot) and the periodic (right plot) Krylov-Schur algorithm applied to the product
A(3)A(2)A(1) defined in (4.63).

Figure 4.7 displays the approximation error

min{|λi − σj | : σj is a Ritz value} (4.64)

for each of the 7 largest eigenvalues 1, 10−3, . . . , 10−18 versus the number of
(periodic) Arnoldi steps. It can be seen that these errors stagnate at a value
above 10−20 for the Krylov-Schur algorithm, while the periodic Krylov-Schur
algorithm is capable to compute much more accurate approximations to the
smaller eigenvalues (which correspond to the lower error curves). All com-
putations in this and the following numerical example have been performed
using Matlab implementations of the (periodic) Krylov-Schur algorithm.

Model reduction

The periodic Krylov-Schur algorithm could also be a useful tool in model
reduction, see Section A.2. Some popular model reduction techniques, such as
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balanced truncation, require the computation of the Hankel singular values,
which are the singular values of a product RST for square matrices R and
S. The underlying LTI system is reduced by maintaining only these parts
that belong to non-negligible Hankel singular values. For this purpose, it is
important to identify these values correctly.
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Fig. 4.8. Approximation errors of the 10 largest eigenvalues for the standard (left
plot) and the periodic (right plot) Krylov-Schur algorithm applied to the matrix
product Π corresponding to a discretized clamped beam model.

Computing the Hankel singular values is equivalent to computing the pos-
itive square roots of the eigenvalues of the matrix product Π = SRT RST .
In the following, we consider a practical example to compare the standard
Krylov-Schur algorithm with the periodic Krylov-Schur algorithm applied to
Π. For this purpose, we have used the discretized model of a clamped beam
as described in [13, 88]. The corresponding matrices R and S as well as pre-
computed Hankel singular values can be obtained from the model reduction
benchmark collection [88]. Figure 4.8 displays the eigenvalue approximation
errors, see (4.64), for the 10 largest eigenvalue of Π:

{5.7·106, 4.7·106, 7.4·104, 7.1·104, 2.0·103, 1.9·103, 1.1·102, 13, 9.7}

(only the leading two significant digits are displayed). A restart was ap-
plied after 17 Arnoldi steps, truncating the (periodic) Arnoldi decomposition
to a (periodic) Krylov-Schur decomposition which maintains the 12 largest
Ritz values. The errors in the eigenvalue approximations produced by the
Krylov-Schur algorithm stagnate at a level above 10−10. Again, the periodic
Krylov-Schur algorithm produces more accurate approximations; the lower
error curves in the right plot of Figure 4.8 correspond to the smaller eigenval-
ues.
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4.2.6 Further Notes and References

The product eigenvalue problem can be generalized in many different direc-
tions. One generalization is to consider the computation of periodic deflating
subspaces and generalized eigenvalues of the block cyclic /diagonal matrix
pair (A,B), where B is given by B = B(1) ⊕ · · · ⊕B(p) for some B(l) ∈ R

n×n,
see [52, 159]. If B is invertible, this corresponds to the computation of eigen-
values and invariant subspaces of the general matrix product

A(p)[B(p)]−1A(p−1)[B(p−1)]−1 · · ·A(1)[B(1)]−1. (4.65)

Perturbation analyses for this type of generalized product eigenvalue problems
can be found in [43, 221]. The approach developed in Section 4.2.2 can be gen-
eralized to this situation without any difficulties using structured perturbation
results for deflating subspaces [83].

If P denotes the perfect shuffle matrix, then reduction to Hessenberg-
triangular form as described in Algorithm 9 does not preserve the cyclic /
diagonal block structure of (Ã, B̃) := PT (A,B)P as this algorithm employs
Givens rotations acting on consecutive rows and columns. A remedy is to use
(opposite) Householder matrices of order p or Givens rotations acting on pairs
of rows or columns having distance p. Then, reducing (Ã, B̃) to Hessenberg-
triangular form preserves its cyclic/diagonal block structure and is numerically
equivalent to the algorithms described in [52, 159, 331] for reducing (4.65).
Along the lines of the proof of Theorem 4.23, it can be shown that QZ itera-
tions based on Householder matrices, see Algorithm 11, preserve the structure
of (Ã, B̃). Taking Hessenberg-triangular reduction and QZ iterations together
yields the periodic QZ algorithm described in [52, 159].

Even more general products of the form

[A(p)]s
(p)

[A(p−1)]s
(p−1) · · · [A(1)]s

(1)
, s(1), . . . , s(p) ∈ {1,−1}.

can be found in [32, 43, 139]. Such products can be related to block cyclic/
diagonal matrix pairs by introducing identities at appropriate places [43].

Another generalization of the product eigenvalue problem is to allow
varying dimensions, i.e., A(l) ∈ R

n(l)×n(l+1)
for some integers n(1), . . . , n(p).

Varga [336] has developed a finite algorithm reducing this problem to an
equivalent product eigenvalue problem involving p square factors of order
n = min{n(1), . . . , n(p)}.

The classification of (generalized) product eigenvalue problems with re-
spect to similarity and equivalence transformations is well-understood in the
field of representation theory, see, e.g., [112, 253]. Very readable introduc-
tions to this area can be found in papers by Sergeichuk [283, 284]. GUPTRI-
like algorithms for (generalized) product eigenvalue problems are described
in [284, 337]. For some preliminary work on balancing, see [197].
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4.3 Skew-Hamiltonian and Hamiltonian Matrices

This and the following two sections are devoted to two classes of structured
matrices, skew-Hamiltonian and Hamiltonian matrices. A skew-Hamiltonian
matrix has the form

W =
[

A G
Q AT

]
, G = −GT , Q = −QT , (4.66)

while a Hamiltonian matrix reads as

H =
[

A G
Q −AT

]
, G = GT , Q = QT , (4.67)

where A,G and Q are real n × n matrices. A number of applications from
control theory and related areas lead to eigenvalue problems involving such
matrices; with a stronger emphasis on Hamiltonian matrices:

• stability radius and H∞ norm computation [79, 59, 135], see also Sec-
tion A.4.1;

• linear quadratic optimal control problems and the solution of continuous-
time algebraic Riccati equations [29, 240, 285], see also Section A.3;

• the solution of anti-symmetric Riccati equations [298];
• H∞ control [33];
• passivity preserving model reduction [12, 296];
• quadratic eigenvalue problems [242, 324];
• computation of pseudospectra [75] and the distance to uncontrollabil-

ity [149, 74], see also Section A.4.2.

An ubiquitous matrix when dealing with skew-Hamiltonian and Hamil-
tonian eigenvalue problems is the skew-symmetric matrix

J2n =
[

0 In

−In 0

]
. (4.68)

In the following we will drop the subscript whenever the dimension of J2n

is clear from its context. By straightforward algebraic manipulation one can
show that a Hamiltonian matrix H is equivalently defined by the property
HJ = (HJ)T . Likewise, a matrix W is skew-Hamiltonian if and only if WJ =
−(WJ)T . Any matrix S ∈ R

2n×2n satisfying ST JS = SJST = J is called
symplectic, and since

(S−1HS)J = S−1HJS−T = S−1JT HT S−T = [(S−1HS)J ]T ,

we see that symplectic similarity transformations preserve Hamiltonian struc-
tures. There are relevant cases, however, where both H and S−1HS are Hamil-
tonian but S is not a symplectic matrix [129]. In a similar fashion the same
can be shown for skew-Hamiltonian matrices.

The remainder of this section is concerned with subsidiary material related
to skew-Hamiltonian and Hamiltonian eigenvalue problems. In a first reading,
it might be wise to go directly to page 181 (for skew-Hamiltonian matrices)
or to page 191 (for Hamiltonian matrices).
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4.3.1 Elementary Orthogonal Symplectic Matrices

From a numerical point of view it is desirable that a symplectic matrix U ∈
R

2n×2n to be used in a transformation algorithm is also orthogonal. Such a
matrix is called orthogonal symplectic. Two types of elementary orthogonal
matrices belong to this class. These are 2n × 2n Givens rotation matrices of
the type

Gj,n+j(θ) =

⎡
⎢⎢⎢⎢⎣

Ij−1

cos θ sin θ
In−1

− sin θ cos θ
In−j

⎤
⎥⎥⎥⎥⎦ , 1 ≤ j ≤ n,

for some angle θ ∈ [−π/2, π/2) and the direct sum of two identical n × n
Householder matrices

(Hj ⊕Hj)(v, β) =
[

In − βvvT

In − βvvT

]
,

see also page 25.
A simple combination of these transformations can be used to map an

arbitrary vector x ∈ R
2n into the linear space

Ej = span{e1, . . . , ej , en+1, . . . , en+j−1},

where ei is the ith unit vector of length 2n. Such mappings form the backbone
of virtually all structure-preserving algorithms based on orthogonal symplectic
transformations. They can be constructed using Algorithm 23, where it should
be noted that the elements 1, . . . , j − 1 and n + 1, . . . , n + j − 1 of the vector
x remain unaffected.

Algorithm 23 Construction of elementary orthogonal symplectic matrices
Input: A vector x ∈ R

2n and an index j ≤ n.
Output: Vectors v, w ∈ R

n and β, γ, θ ∈ R so that

[(Hj ⊕ Hj)(v, β) · Gj,n+j(θ) · (Hj ⊕ Hj)(w, γ)]T x ∈ Ej .

1. Determine v ∈ R
n and β ∈ R such that the last n − j elements of x ← (Hj ⊕

Hj)(v, β)x are zero.
2. Determine θ ∈ [−π/2, π/2) such that the (n + j)th element of x ← Gj,n+j(θ)x

is zero.
3. Determine w ∈ R

n and γ ∈ R such that the (j + 1)th to the nth elements of
x ← (Hj ⊕ Hj)(w, γ)x are zero.
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Fig. 4.9. The three steps of Algorithm 23 for n = 4 and j = 2.

The three steps of Algorithm 23 are illustrated in Figure 4.9. Orthogonal
symplectic matrices of the form

Ej(x) ≡ Ej(v, w, β, γ, θ)
:= (Hj ⊕Hj)(v, β) ·Gj,n+j(θ) · (Hj ⊕Hj)(w, γ), (4.69)

as computed by Algorithm 23 and with 1 ≤ j ≤ n, will be called elementary.

Remark 4.28. Let F =
[

0
In

In

0

]
, then

[F · Ej(Fx) · F ]T x ∈ span{e1, . . . , ej−1, en+1, . . . , en+j}.

For the sake of brevity we set En+j(x) := F ·Ej(Fx) ·F , whenever 1 ≤ j ≤ n.
♦

The following lemma shows that every orthogonal symplectic matrix can be
factorized into elementary matrices.

Lemma 4.29 ([362, 67]). Every orthogonal symplectic matrix U ∈ R
2n×2n

has the block structure

U =
[

U1 U2

−U2 U1

]
, U1, U2 ∈ R

n×n,

and can be written as the product of at most n elementary orthogonal sym-
plectic matrices.

4.3.2 The Symplectic QR Decomposition

As a first application of elementary orthogonal symplectic matrices we show
how to decompose a general matrix into the product of an orthogonal sym-
plectic and a block triangular matrix.
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Lemma 4.30 ([67, 362]). Let A ∈ R
2m×n with m ≥ n, then there exists an

orthogonal symplectic matrix Q ∈ R
2m×2m so that A = QR and

R =
[

R11

R21

]
, R11 =

[
�
0

]
, R21 =

[
0...0�

0

]
, (4.70)

that is, the matrix R11 ∈ R
m×n is upper triangular and R21 ∈ R

m×n is strictly
upper triangular. If m = n and the matrix A contains the first n columns of
a 2n× 2n symplectic matrix, then R21 is zero.

A decomposition of the form (4.70) is called a symplectic QR decomposition,
it is useful for computing and refining invariant subspaces of Hamiltonian
matrices, see Section 4.5.4 below. Other applications include the symplec-
tic integration of Hamiltonian systems [217, 293]. Algorithm 24 proves the
first part of Lemma 4.30 by construction. This algorithm, implemented in the

Algorithm 24 Symplectic QR decomposition
Input: A general matrix A ∈ R

2m×n with m ≥ n.
Output: An orthogonal symplectic matrix Q ∈ R

2m×2m; A is overwritten with
R = QT A having the form (4.70).

Q ← I2m.
for j ← 1, . . . , n do

x ← Aej

Apply Algorithm 23 to compute Ej(x).
A ← Ej(x)T A, Q ← Q Ej(x)

end for

HAPACK [37] routine DGESQR, requires 8(mn2−n3/3)+O(n2) flops for com-
puting the matrix R, and additionally 16

3 n3 + 16m2n− 16mn2 +O(n2) flops
for accumulating the orthogonal symplectic factor Q in reversed order.

The finite-precision properties of Algorithm 24 are as follows. Similarly
as for the standard QR decomposition [141] one can show that there exists
an orthogonal symplectic matrix V which transforms the computed block
upper triangular matrix R̂ to a matrix near A, i.e., V R̂ = A + E, where
‖E‖2 = O(u)‖A‖2. Moreover, the computed factor Q̂ is almost orthogonal
in the sense that ‖Q̂T Q̂ − I‖2 = O(u), and it has the block representation
Q̂ =

[
Q̂1

−Q̂2

Q̂2

Q̂1

]
. This implies, together with the following lemma, that Q̂ is

close to an orthogonal symplectic matrix.

Lemma 4.31. Let Q̂ =
[

Q1
−Q2

Q2
Q1

]
be invertible with Q1, Q2 ∈ R

n×n. Then
there exist an orthogonal symplectic matrix Q and a symmetric matrix H such
that Q̂ = QH and

‖Q̂T Q̂− I‖2
‖Q̂‖2 + 1

≤ ‖Q̂−Q‖2 ≤ ‖Q̂T Q̂− I‖2. (4.71)
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Proof. This lemma is shown by proving that Q̂ has an orthogonal symplectic
singular value decomposition (SVD), i.e., there exist orthogonal symplectic
matrices U and V so that Q̂ = U(D ⊕D)V T , where D is a diagonal matrix.
By the symplectic URV decomposition, see [42] or Section 4.5.5, there are
orthogonal symplectic matrices Ũ and Ṽ so that

Q̂ = Ũ

[
R11 R12

0 −RT
22

]
Ṽ T =: R,

where R11 ∈ R
n×n is upper triangular and R22 ∈ R

n×n has upper Hessenberg
form. From JQ̂JT = Q̂, it follows that

JRJT = JUT Q̂V JT = UT JQ̂JT V = UT Q̂V = R.

Thus, R has the same block structure as Q̂, which implies R11 = −RT
22 and

R12 = 0. Now let R11 = U1DV T
1 be an SVD, then the existence of an orthogo-

nal symplectic SVD is shown by setting U = Ũ(U1⊕U1) and V = Ṽ (V1⊕V1).
The first part of the lemma follows from setting Q = UV T and H =

V DV T . Inequality (4.71) is a well-known result, see, e.g., [164, p.389]. 
�

4.3.3 An Orthogonal Symplectic WY-like Representation

We have seen that the LAPACK routine for reducing a matrix to Hessenberg
form attains high efficiency by (implicitly) employing compact WY repre-
sentations of the involved orthogonal transformations, see Section 1.5. The
following theorem describes a variant of this representation, suitable for ele-
mentary orthogonal symplectic matrices as defined in (4.69).

Theorem 4.32 ([198]). Let k ≤ n and Q = Ej1(x1) · Ej2(x2) · · ·Ejk
(xk),

where the elementary matrices Eji
(xi) are defined as in (4.69) with ji ∈ [1, n]

and xi ∈ R
2n. Then there exist matrices R ∈ R

3k×k, S ∈ R
k×3k, T ∈ R

3k×3k

and W ∈ R
n×3k so that

Q =
[

In + WTW T WRSW T

−WRSW T In + WTW T

]
. (4.72)

Furthermore, these matrices can be partitioned as

R =

⎡
⎣R1

R2

R3

⎤
⎦ , S =

[
S1 S2 S3

]
, T =

⎡
⎣T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦ ,

where all matrices Ri, Sl, Til ∈ R
k×k are upper triangular, and

W =
[
W1 W2 W3

]
,

where W1,W2,W3 ∈ R
n×k and W2 contains in its ith column eji

, the jith
column of the n× n identity matrix.
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The HAPACK routine DLAEST can be used to construct WY-like representa-
tions of the form (4.72) and requires (4k− 2)kn + 19

3 k3 +O(k2) flops. Taking
care of the generic structures present in R, S, T and W , the routine DLAESB
applies the WY-like representation (4.72) to a 2n× q matrix, which requires
16k(n − k)q + O(kq) flops. This routine attains high efficiency by making
exclusive use of calls to level 3 BLAS.

4.3.4 Block Symplectic QR Decomposition

Using the results of the previous section we can now easily derive a block ori-
ented version of Algorithm 24 for computing the symplectic QR decomposition
of a general 2m× n matrix A.

Let us partition A into block columns

A =
[
A1 A2 . . . AN

]
,

For convenience only, we will assume that each Ai has nb columns so that n =
Nnb. The following block algorithm for the symplectic QR decomposition goes
hand in hand with block algorithms for the standard QR decomposition [47].
The idea is as follows. At the beginning of step p (1 ≤ p ≤ N) the matrix A
has been overwritten with

Qj−1 · · ·Q1A =

⎡
⎢⎢⎣
(p−1)nb nb q

(p−1)nb R11 R12 R13

r 0 R22 R23

(p−1)nb R31 R32 R33

r 0 R42 R43

⎤
⎥⎥⎦,

where q = n−pnb and r = m−(p−1)nb. The symplectic QR decomposition of[
R22
R42

]
is then computed and the resulting orthogonal symplectic factor applied

to
[

R23
R43

]
. Algorithm 25 is a formal description of this procedure.

In this algorithm, implemented in the HAPACK routine DGESQB,

6(2mn2 − n3)/N + 29n3/(3N2) +O(n2)

flops are required to generate the WY-like representations while

8(mn2 − n3/3)− (8mn2 − 19n3)/N − 49n3/(3N2) +O(n2)

flops are necessary to apply them to the matrix A. On the other hand, Algo-
rithm 24 requires 8(mn2− n3/3) +O(n2) flops to QT A. Hence, Algorithm 25
is more expensive by roughly a factor of (1 + 2.5/N), at least when flops are
concerned. Basically the same observation holds for the computation of the
orthogonal symplectic factor Q. In an efficient implementation, of course, Q
would be accumulated in reversed order. See the HAPACK routines DOSGSB
and DOSGSQ for more details.



4.4 Skew-Hamiltonian Matrices 181

Algorithm 25 Symplectic QR decomposition (blocked version)

Input: A matrix A ∈ R
2m×n with m ≥ n and n = N · nb.

Output: An orthogonal symplectic matrix Q ∈ R
2m×2m; A is overwritten with

QT A having the form (4.70). In contrast to Algorithm 24 a block ori-
ented method is used.

Q ← I2m

for p ← 1, . . . , N do
Set s = (p − 1)nb + 1.
Apply Algorithm 24 and the construction given in the proof of Theorem 4.32 to
compute the WY-like representation (4.72) of an orthogonal symplectic matrix
Qp so that

QT
p

[
A(s : m, s : s + nb − 1)

A(m + s : 2m, s : s + nb − 1)

]
has the form (4.70).

Update
[

A(s:m,s+nb:n)
A(m+s:2m,s+nb:n)

]
← QT

p

[
A(s:m,s+nb:n)

A(m+s:2m,s+nb:n)

]
.

Update [Q(:,s:m) Q(:,m+s:2m)] ← [Q(:,s:m) Q(:,m+s:2m)] Qp.
end for

4.4 Skew-Hamiltonian Matrices

Imposing skew-Hamiltonian structure on a matrix W has a number of con-
sequences for the eigenvalues and eigenvectors of W ; one is that every eigen-
value has even algebraic multiplicity and hence appears at least twice. An
easy way to access all these spectral properties is to observe that for any
skew-Hamiltonian matrix W there exists a symplectic matrix S so that

S−1WS =
[

W11 0
0 WT

11

]
. (4.73)

This decomposition – among others – will be described in the following sub-
section.

4.4.1 Structured Decompositions

By constructing a sequence of elementary orthogonal symplectic transforma-
tion matrices we obtain the following structured Hessenberg-like decomposi-
tion for skew-Hamiltonian matrices.

Theorem 4.33 (PVL decomposition [333]). Let W ∈ R
2n×2n be skew-

Hamiltonian. Then there exists an orthogonal symplectic matrix U so that
UT WU has Paige/Van Loan (PVL) form, i.e.,

UT WU =
[

W11 W12

0 WT
11

]
=

⎡
⎣��

��

⎤
⎦ , (4.74)

where W11 ∈ R
n×n is an upper Hessenberg matrix.
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The PVL decomposition (4.74) is a consequence of Algorithm 26. Let us illus-

Algorithm 26 PVL decomposition of skew-Hamiltonian matrix
Input: A skew-Hamiltonian matrix W ∈ R

2n×2n.
Output: An orthogonal symplectic matrix U ∈ R

2n×2n; W is overwritten with
UT WU having PVL form (4.74).

U ← I2n

for j ← 1, . . . , n − 1 do
x ← Wej

Apply Algorithm 23 to compute Ej+1(x).
W ← Ej+1(x)T WEj+1(x), U ← UEj+1(x)

end for

trate its idea for n = 4. First, E2(We1) is used to annihilate entries 3, . . . , 8
in the first column of W :

W ← E2(We1)T WE2(We1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a â â â 0 ĝ ĝ ĝ
â â â â ĝ 0 ĝ ĝ

0̂ â â â ĝ ĝ 0 ĝ

0̂ â â â ĝ ĝ ĝ 0
0 0̂ 0̂ 0̂ a â 0̂ 0̂
0̂ 0 q̂ q̂ â â â â

0̂ q̂ 0 q̂ â â â â

0̂ q̂ q̂ 0 â â â â

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Columns two and three are reduced by applying E3(We2) and E4(We3) con-
secutively:

W ← E3(We2)T WE3(We2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a â â 0 g ĝ ĝ
a a â â g 0 ĝ ĝ
0 â â â ĝ ĝ 0 ĝ

0 0̂ â â ĝ ĝ ĝ 0
0 0 0 0 a a 0 0
0 0 0̂ 0̂ a a â 0̂
0 0̂ 0 q̂ â â â â

0 0̂ q̂ 0 â â â â

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W ← E4(We3)T WE4(We3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a â 0 g g ĝ
a a a â g 0 g ĝ
0 a a â g g 0 ĝ
0 0 â â ĝ ĝ ĝ 0
0 0 0 0 a a 0 0
0 0 0 0 a a a 0̂
0 0 0 0̂ a a a â

0 0 0̂ 0 â â â â

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Algorithm 26 is implemented in the HAPACK routine DSHPVL; it requires
40
3 n3 + O(n2) flops for reducing W and additionally 16

3 n3 + O(n2) flops for
computing the orthogonal symplectic factor U . The HAPACK routine DSHPVB
employs a blocked version of Algorithm 26 based on the WY-like representa-
tion described in Section 4.3.3.

An immediate consequence of the PVL decomposition (4.74) is that every
eigenvalue of W has even algebraic multiplicity. The same is true for the
geometric multiplicities. To see this we need to eliminate the skew-symmetric
off-diagonal block W12, for which we can use solutions of the following singular
Sylvester equation.

Proposition 4.34. The Sylvester equation

W11P − PWT
11 = −W12 (4.75)

is solvable for all skew-symmetric matrices W12 ∈ R
n×n if and only if

W11 ∈ R
n×n is nonderogatory, i.e., every eigenvalue of W11 has geometric

multiplicity one. In this case, any solution P of (4.75) is real and symmetric.

Proof. The first part of the proposition can be found in [133, 125]. Although
the second part is not explicitly stated in [125], it follows from the results
obtained in [125]. For the sake of completeness we provide the complete proof.

W.l.o.g., we may assume that W11 is in real Jordan canonical form. Par-
tition (4.75) into[
J1 0
0 J2

] [
P11 P12

P21 P22

]
−
[

P11 P12

P21 P22

] [
JT

1 0
0 JT

2

]
=
[

B11 B12

−BT
12 B22

]
, (4.76)

where J2 ∈ R
m×m is a single real Jordan block. The Sylvester equation

J1P12 − P12J
T
2 = B12

is solvable for all right hand sides B12 if and only if λ(J1)∩λ(J2) = ∅. In this
case, the solution is unique and as PT

21 satisfies the same equation, it follows
that P21 = PT

12. The m×m matrix P22 satisfies

J2P22 − P22J
T
2 = B22 (4.77)

If J2 is a scalar then every P22 ∈ R is a solution of (4.77). If J2 =
[

α
−β

β
α

]
with β �= 0 is a two-by-two matrix corresponding to a complex conjugate pair
of eigenvalues then (4.77) can be written as[

α β
−β α

]
P22 − P22

[
α −β
β α

]
=
[

0 γ
−γ 0

]
.

Since β �= 0, any solution to this equation has the form

P22 =
[

δ η
η δ − γ/β

]
,
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for arbitrary η, δ ∈ R. If J2 is a general m ×m Jordan block then a solution
of (4.77) can be obtained by combining the above results with backward sub-
stitution. It remains to prove that any solution P22 of (4.77) is symmetric. For
this purpose decompose P22 = X + Y , where X is the symmetric part and Y
is the skew-symmetric part of P22. Then Y must satisfy J2Y −Y JT

2 = 0. If F
denotes the flip matrix, i.e., F has ones on its anti-diagonal and zeros every-
where else, then this equation implies that Y F commutes with J2, because of
(FJ2F )T = J2. By a well-known result from linear algebra (see, e.g., [170])
the only matrices that commute with Jordan blocks corresponding to a single
real eigenvalue are upper triangular Toeplitz matrices meaning that Y is a
Hankel matrix. However, the only skew-symmetric Hankel matrix is Y = 0.
Similarly, if J2 corresponds to a complex conjugate pair of eigenvalues, let F2

be the matrix that is zero except its antidiagonal blocks which are two-by-two
identity matrices. Then J2(Y F2) − (Y F2)J̃2 = 0, where J̃2 is identical with
J2 besides that its two-by-two diagonal blocks are transposed. Along the lines
of the proof for the scalar case it can be shown that Y F2 is a block upper
triangular Toeplitz matrix with symmetric two-by-two diagonal blocks. Thus
Y is a skew-symmetric block Hankel matrix with symmetric blocks. Again,
the only matrix satisfying these constraints is Y = 0.

Thus, we have shown that all solutions of (4.76) have the property that
P22 is symmetric and P21 = PT

12, given the assumption that λ(J1) ∩ λ(J2) =
∅ holds. If this condition fails then there exists no solution. The proof is
completed by applying an induction argument to P11. 
�

We now use this proposition to block-diagonalize a skew-Hamiltonian ma-
trix in PVL form (4.74) assuming that W11 is nonderogatory. For this purpose
let R be a solution of (4.75), then the symmetry of R implies that

[
I
0

R
I

]
is

symplectic. Applying the corresponding symplectic similarity transformation
yields the transformed matrix[

I R
0 I

]−1 [
W11 W12

0 WT
11

] [
I R
0 I

]
=
[

W11 0
0 WT

11

]
. (4.78)

This also shows that if x is a right eigenvector belonging to an eigenvalue λ
of W then Jx̄ is a left eigenvector belonging λ.

Note that there is a lot of freedom in the choice of R as equation (4.75)
admits infinitely many solutions. From a numerical point of view the matrix
R should be chosen so that its norm is as small as possible. The same question
arises in the context of structured condition numbers and will be discussed in
Section 4.4.2 below.

It should be stressed that assuming W11 to be nonderogatory is not neces-
sary and thus, the even geometric multiplicity of eigenvalues also holds in
the general case. In fact, Faßbender, Mackey, Mackey and Xu [125] have
shown that any skew-Hamiltonian matrix can be reduced to block diagonal
form (4.78) using symplectic similarity transformations. The proof, however,
is much more involved than the derivation given above.
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Another way to go from a skew-Hamiltonian matrix W in PVL form (4.74)
to a more condensed form is to reduce W11 further to real Schur form. This can
be achieved by constructing an orthogonal matrix Q1 so that T = QT

1 W11Q1

is in real Schur form, see Theorem 1.2. Setting Ũ = U(Q1 ⊕Q1), we obtain a
skew-Hamiltonian (real) Schur decomposition of W :

ŨT WŨ =
[

T G̃
0 TT

]
, (4.79)

where G̃ = QT
1 W12Q1 is again skew-symmetric.

4.4.2 Perturbation Analysis

In this section we investigate the change of eigenvalues and certain invari-
ant subspaces of a skew-Hamiltonian matrix W under a sufficiently small,
skew-Hamiltonian perturbation E. Requiring the perturbation to be struc-
tured as well may have a strong positive impact on the sensitivity of the
skew-Hamiltonian eigenvalue problem; this is demonstrated by the following
example.

Example 4.35. Consider the parameter-dependent matrix

W (ε1, ε2) =

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
ε1 ε2 1 0
−ε2 0 0 2

⎤
⎥⎥⎦ .

The vector e1 = [1, 0, 0, 0]T is an eigenvector of W (0, 0) associated with the
eigenvalue λ = 1. No matter how small ε1 > 0 is, any eigenvector of W (ε1, 0)
belonging to λ has the completely different form [0, 0, α, 0]T for some α �= 0.
On the other hand, W (0, ε2) has an eigenvector [1, 0, 0, ε2]T rather close to e1.
The fundamental difference between W (ε1, 0) and W (0, ε2) is that the latter
is a skew-Hamiltonian matrix while the former is not. ♦

Eigenvalues

We now turn to the structured perturbation analysis for eigenvalues of skew-
Hamiltonian matrices. As λ is necessarily a multiple eigenvalue we cannot
apply the techniques from Section 4.1.1, which rely on perturbation expansions
of eigenvalues. Instead, we must consider the eigenvalue cluster containing all
copies of λ and apply the corresponding expansion, see Theorem 1.9.

Assuming that λ has algebraic multiplicity two, there exist two linearly
independent eigenvectors x1 and x2 belonging to λ. Let [x1, x2] = XR be a
QR decomposition with unitary X ∈ C

2n×2 and upper triangular R ∈ C
2×2,

then
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WX = W [x1, x2]R−1 = [x1, x2]A11R
−1 = [x1, x2]R−1A11 = XA11,

where A11 = diag(λ, λ). An analogous relation holds for the two eigenvectors
x̂1, x̂2 belonging to the eigenvalue λ̂ of the perturbed matrix W + E. As
the spectral norm of Â11 − A11 is given by |λ̂ − λ|, the expansion (1.20) in
Theorem 1.9 implies

|λ̂− λ| = ‖(XT JX)−1XT JEX‖2 +O(‖E‖2)
≤ ‖(XT JX)−1‖2 +O(‖E‖2), (4.80)

where we also used the fact that the columns of JX̄ span the two-dimensional
left invariant subspace belonging to λ. (Note that X̄ denotes the complex
conjugate of X.) This yields the following structured perturbation result for
eigenvalues of skew-Hamiltonian matrices.

Corollary 4.36. Let W,E ∈ R
2n×2n be skew-Hamiltonian matrices. Assume

that λ is an eigenvalue of W having multiplicity two. Then there exists an
eigenvalue λ̂ of W + E so that

|λ̂− λ| ≤ ‖P‖2 ‖E‖2 +O(‖E‖2), (4.81)

where P is the spectral projector belonging to the eigenvalue cluster {λ, λ}.

In order to prove that ‖P‖2 is the appropriate structured condition num-
ber we have to show that there exists a skew-Hamiltonian perturbation E
such that inequality (4.80) is approximately attained. For real λ we may
assume X ∈ R

2n×2 and make use of the skew-Hamiltonian perturbation
E = εJT

2nXJ2X
T . This implies that the structured condition number for an

eigenvalue λ ∈ R of a skew-Hamiltonian matrix satisfies

csHam
2 (λ) := lim

ε→0

1
ε

sup{|λ̂− λ| : ‖E‖2 ≤ ε, E is skew-Hamiltonian} = ‖P‖2.

There is a simple expression for computing ‖P‖2 from the eigenvectors
belonging to λ.

Lemma 4.37. Under the assumptions of Corollary 4.36,

‖P‖2 =
1

|xT
1 Jx2|

√
‖x1‖22 ‖x2‖22 − |xH

1 x2|2,

where x1, x2 ∈ C
2n are two linearly independent eigenvectors belonging to λ.

Proof. See [38]. 
�

Structured backward errors and condition numbers for eigenvalues of skew-
Hamiltonian matrices with additional structure can be found in [323].
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Invariant Subspaces

Invariant subspaces of skew-Hamiltonian matrices of interest in applications
are usually isotropic.

Definition 4.38. A subspace X ⊆ R
2n is called isotropic if X ⊥ J2nX . A

maximal isotropic subspace is called Lagrangian.

Since xT Jx = 0 for an arbitrary vector x, any eigenvector of W spans an
isotropic invariant subspace. Also the first k ≤ n columns of the matrix Ũ in
a skew-Hamiltonian Schur decomposition (4.79) share this property. Roughly
speaking, an invariant subspace X of W is isotropic if X is spanned by the
first k ≤ n columns of a symplectic matrix.

The following lemma investigates the relationship between isotropic invari-
ant subspaces and skew-Hamiltonian Schur decompositions in more detail.

Lemma 4.39. Let W ∈ R
2n×2n be a skew-Hamiltonian matrix and let X ∈

R
2n×k (k ≤ n) have orthonormal columns. Then the columns of X span an

isotropic invariant subspace of W if and only if there exists an orthogonal
symplectic matrix U = [X,Z, JT X,JT Z] with some Z ∈ R

2n×(n−k) so that

UT WU =

⎡
⎢⎢⎣

k n−k k n−k

k A11 A12 G11 G12

n−k 0 A22 −GT
12 G22

k 0 0 AT
11 0

n−k 0 Q22 AT
12 AT

22

⎤
⎥⎥⎦. (4.82)

Proof. Assume that the columns of X span an isotropic subspace. Then the
symplectic QR decomposition can be used to construct an orthogonal sym-
plectic matrix U = [X,Z, JT X,JT Z]. Moreover, if the columns of X span
an invariant subspace then [Z, JT X,JT Z]T WX = 0, completing the proof
of (4.82). The other direction is straightforward. 
�

Necessarily, an isotropic invariant subspace X is not simple implying
c(X ) = ∞, i.e., X is arbitrarily ill-conditioned under general perturbations.
This fact is illustrated in Example 4.35. In [200], it is shown that this effect
does not occur under skew-Hamiltonian perturbations, provided that X is
semi-simple.

Definition 4.40. Let the columns of X ∈ R
2n×k form an orthogonal basis

for an isotropic invariant subspace X of a skew-Hamiltonian matrix W . Fur-
thermore, choose Z ∈ R

2n×(n−k) so that U = [X,Z, JT X,JT Z] is orthogonal
symplectic and UT WU has the form (4.82). Then X is called semi-simple if
λ(A11) ∩ λ

([
A22
Q22

G22

AT
22

])
= ∅ and A11 is nonderogatory, i.e., each eigenvalue

of A11 has geometric multiplicity one.
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For simplicity, let us restrict ourselves to an n-dimensional isotropic in-
variant subspace X = span(X) with X ∈ R

2n×n. The corresponding block
Schur decomposition takes the form

[X,JX]T W [X,JX] =
[

W11 W12

0 WT
11

]
,

and the associated Sylvester operator is given by

T : R �→ WT
11R−RW11.

Assuming X to be semi-simple yields a nonderogatory W11. By Proposi-
tion 4.34, this implies that any R which yields a skew-symmetric T(R) is
necessarily a symmetric matrix.

In the following, we attempt to apply the structured perturbation tech-
nique for invariant subspaces developed in Section 4.1.1. IfM≡ sHam denotes
the set of 2n× 2n skew-Hamiltonian matrices then

N = {(JX)T EJX : E ∈ sHam} = skew,

i.e., N consists of the set of all n×n skew-symmetric matrices. Note that skew
has dimension n(n−1)/2 while symm, the set of n×n symmetric matrices, has
dimension n(n + 1)/2. Thus there is some freedom in the choice of an n(n−
1)/2-dimensional matrix space L ⊂ symm. By the results of Section 4.1.1, any
such L yields a restricted operator Ts = T

∣∣
L→N with

csHam(X ) ≤ ‖T−1
s ‖.

The set L which yields the lowest bound on csHam(X ) is given by

L =
{
R� : E21 ∈ skew, ‖R�‖F = min{‖R‖F : T(R) = E21}

}
(4.83)

Under this choice of L, it can actually be shown that csHam(X ) = ‖T−1
s ‖ [200].

The derivation of structured condition numbers for lower-dimensional
isotropic invariant subspaces is technically more complicated but follows a
similar methodology [200]. For eigenvectors, we have the following result.

Lemma 4.41. Let x ∈ R
n with ‖x‖2 = 1 be an eigenvector of a skew-

Hamiltonian matrix W belonging to an eigenvalue λ ∈ R of algebraic mul-
tiplicity two. Consider a block Schur decomposition of the form (4.82) with
A11 = λ and X = x. Then csHam = σ−1

min(Wλ) with

Wλ =
[

A22 − λI G22 −GT
12

Q22 AT
22 − λI AT

12

]
.
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4.4.3 A QR-Based Algorithm

In Section 4.4.1 we used a constructive approach to prove the skew-Hamiltonian
Schur decomposition

UT WU =
[

T G̃
0 TT

]
, (4.84)

where U is orthogonal symplectic and T has real Schur form. Algorithm 27
summarizes this construction. This algorithm is implemented in the HAPACK

Algorithm 27 Skew-Hamiltonian Schur decomposition
Input: A skew-Hamiltonian matrix W ∈ R

2n×2n.
Output: An orthogonal symplectic matrix U ∈ R

2n×2n; W is overwritten with
UT WU having skew-Hamiltonian Schur form (4.84).

1. Apply Algorithm 26 to compute an orthogonal symplectic matrix U such
that W ← UT WU has PVL form.

2. Apply the QR algorithm to the (1, 1) block W11 of W to compute an
orthogonal matrix V such that V T W11V has real Schur form.

3. Update W ← (V ⊕ V )T W (Q ⊕ Q), U ← U(V ⊕ V ).

routine DSHES; it requires roughly 62
3 n3 flops if only the eigenvalues are de-

sired, and 136
3 n3 flops if the skew-Hamiltonian Schur form and the orthogonal

symplectic factor U are computed. Note that these numbers are based on the
flop estimates for the QR algorithm with two Francis shifts listed on page 31.
This compares favorably with the QR algorithm applied to the whole matrix
W , which takes 256

3 n3 and 640
3 n3 flops, respectively.

The finite-precision properties of Algorithm 27 are as follows. Similarly as
for the QR algorithm [364, 322] one can show that there exists an orthogonal
symplectic matrix Z which transforms the computed skew-Hamiltonian Schur
form Ŵ =

[
T̂
0

Ĝ
T̂ T

]
to a skew-Hamiltonian matrix near to W , i.e., ZŴZT =

W + E, where E is skew-Hamiltonian, ‖E‖2 = O(u)‖W‖2 and u denotes
the unit roundoff. Moreover, the computed factor Û is almost orthogonal
in the sense that ‖ÛT Û − I‖2 = O(u), and it has the block representation
Û =

[
Û1

−Û2

Û2

Û1

]
. This implies that Û is close to an orthogonal symplectic

matrix, see Lemma 4.31. To summarize, Algorithm 27 is a strongly backward
stable method for computing eigenvalues of skew-Hamiltonian matrices.

4.4.4 Computation of Invariant Subspaces

Once a skew-Hamiltonian Schur decomposition (4.84) has been computed, the
eigenvalues can be easily obtained from the diagonal blocks of T . Furthermore,
if the (k+1, k) entry of T is zero, then the first k columns of U span an isotropic
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invariant subspace X of W belonging to the eigenvalues of T (1 : k, 1 : k).
Isotropic invariant subspaces belonging to other eigenvalues can be obtained
by swapping the diagonal blocks of T as described in Section 1.7.

4.4.5 SHIRA

Shira [242] is a structure-preserving variant of the implicitly restarted
Arnoldi algorithm suitable for computing a few eigenvalues and the associated
isotropic invariant subspaces of a large and possibly sparse skew-Hamiltonian
matrix W . It is based on the following fact.

Lemma 4.42 ([242]). Let W ∈ R
2n×2n be a skew-Hamiltonian matrix and

let u1 ∈ R
2n. Then any Krylov subspace Kk(W,u1) is isotropic.

Proof. For arbitrary integers i and j we have (W i)T JW j = JW i+j , which is
a skew-symmetric matrix since W i+j is skew-Hamiltonian. Thus

Kk(W,u1)T JKk(W,u1) = 0,

with the Krylov matrix Kk(W,u1), which implies that Kk(W,u1) is isotropic.

�

Let us now consider an unreduced Arnoldi decomposition (see Section 3.1.2)
of order k < n:

WUk = [ Uk, uk+1 ]
[

Hk

hk+1,keT
k

]
. (4.85)

Lemma 4.42 implies that the columns of [Uk+1, JUk+1] form an orthonormal
basis. Roundoff errors will cloud the situation, as usual. It is thus necessary to
modify the Arnoldi method, Algorithm 15, so that a newly produced vector
v = Auj is orthogonalized not only against all previously generated vectors
contained in Uj , but also against the columns of JUj .

In the generic case, every eigenvalue λ of W has two linearly independent
eigenvectors x1, x2 satisfying xT

1 Jx2 = 0. An isotropic Krylov subspace can
only contain approximations to one eigenvector belonging to λ. Consequently,
the eigenvalues do not appear in duplicate in the Hessenberg factor Hk. Note
that (4.85) can be considered as a truncated PVL decomposition:

[ Uk, JUk ]T W [ Uk, JUk ] =
[

Hk UT
k WJUk

0 HT
k

]
=

⎡
⎢⎢⎣��

�
��

����

0

0

���
��

⎤
⎥⎥⎦ .

Shira inherits the restarting and deflation strategies from the implicitly
restarted Arnoldi method, making it very simple to implement. For example,
only a few changes to the source code of Arpack are necessary to enforce
isotropy of the Krylov subspace. Numerical experiments in [14, 242] show
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that such an implementation of Shira is usually more efficient than Arpack
for computing a few eigenvalues of a skew-Hamiltonian matrix due to the fact
that Arpack often computes duplicate eigenvalues. Of course, one can also use
Krylov-Schur algorithms for restarting and deflation. Again, the isotropy of
Krylov subspaces must be enforced while expanding a Krylov decomposition.

There is another advantage to be gained from enforcing isotropic Krylov
subspaces. Assume that the first d Ritz values of the mth order Krylov de-
composition

W [Qd, Um−d] = [Qd, Um−d+1]

⎡
⎣Td �

0 Bm−d

0 bT
m−d

⎤
⎦ ,

have been deflated based upon a criterion of the form (3.15). Then the
Frobenius norm of the residual Rd = WQd − QdTd can be bounded by√

d max{u, tol} ‖W‖F . Since QT
d (JQd) = 0, it follows that Qd is the ex-

act isotropic invariant subspace of the slightly perturbed skew-Hamiltonian
matrix

Ŵ = W −RdQ
T
d + J(RdQ

T
d )T J(I −QdQ

T
d ),

see also [323].

4.4.6 Other Algorithms and Extensions

Similarly as the Hessenberg form of a general matrix can be computed by
Gauss transformations [141, Sec. 7.4.7] it has been shown by Stefanovski and
Trenčevski [298] how non-orthogonal symplectic transformations can be used
to compute the PVL form of a skew-Hamiltonian matrix. An unsymmetric
Lanczos process for skew-Hamiltonian matrices has been proposed in [355].

A matrix pair (A,B) is called skew-Hamiltonian if BJAT = AJBT .
Skew-Hamiltonian matrix pairs have the same spectral properties as skew-
Hamiltonian matrices and can be addressed by a suitable generalization of
the PVL decomposition [205].

4.5 Hamiltonian matrices

One of the most remarkable properties of a Hamiltonian matrix

H =
[

A G
Q −AT

]
, G = GT , Q = QT ,

is that its eigenvalues always occur in pairs {λ,−λ}, if λ ∈ R∪ıR, or in quadru-
ples {λ,−λ, λ̄,−λ̄}, if λ ∈ C\(R ∪ ıR). The preservation of these pairings in
finite-precision arithmetic is a major benefit from using structure-preserving
algorithms for computing the eigenvalues of H.

We will only briefly touch the difficulties that arise when H has eigenval-
ues on the imaginary axis. Although this case is well-analyzed with respect
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to structured decompositions, see [269, 270, 271, 219, 220, 129] and the refer-
ences given therein, it is still an open research problem to define appropriate
structured condition numbers and design satisfactory algorithms for this case.

4.5.1 Structured Decompositions

A major difficulty in developing computational methods for the Hamiltonian
eigenvalue problem is that there is so far no O(n3) method for computing a
useful structured Hessenberg-like form known. Although a slight modification
of Algorithm 26 can be used to construct an orthogonal symplectic matrix U
so that

UT HU =
[

Ã G̃

Q̃ −ÃT

]
=

⎡
⎣��
���

⎤
⎦ ,

i.e., Ã has upper Hessenberg form and Q̃ is a diagonal matrix, this Hamiltonian
PVL decomposition [260] is of limited use. The Hamiltonian QR algorithm,
see Section 4.5.3 below, only preserves this form if the (2, 1) block can be writ-
ten as Q = γeneT

n for some γ ∈ R. In this case, UT HU is called a Hamiltonian
Hessenberg form. Byers [76] derived a simple method for reducing H to such
a form under the assumption that one of the off-diagonal blocks G or Q in H
has tiny rank, i.e., rank 1, 2 or at most 3.

The general case, however, remains elusive. That it might be difficult to
find a simple method is indicated by a result in [8], which shows that the first
column x of an orthogonal symplectic matrix U that reduces H to Hamiltonian
Hessenberg form has to satisfy the nonlinear equations

xT JH2i−1x = 0, i = 1, . . . , n.

This result can even be extended to non-orthogonal symplectic transforma-
tions [268].

A Schur-like form for Hamiltonian matrices is given by the following the-
orem [260, 220].

Theorem 4.43. Let H be a Hamiltonian matrix and assume that all eigen-
values of H that are on the imaginary axis have even algebraic multiplicity.
Then there exists an orthogonal symplectic matrix U so that UT HU is in
Hamiltonian Schur form, i.e.,

UT HU =
[

T G̃
0 −TT

]
, (4.86)

where T ∈ R
n×n has real Schur form.
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4.5.2 Perturbation Analysis

An extensive perturbation analysis of (block) Hamiltonian Schur forms for the
case that H has no purely imaginary eigenvalues has been presented in [195].
The analysis used therein is based on the technique of splitting operators and
Lyapunov majorants. The approach used in this section is somewhat simpler;
it is based on the techniques developed in Section 4.1.1.

Eigenvalues

Let λ be a simple eigenvalue of a Hamiltonian matrix H with normalized right
and left eigenvectors x and y, respectively. Equation (4.6) yields

cHam
2 (λ) =

1
|yHx| sup

{
|yHEx| : E ∈ Ham, ‖E‖2 = 1

}
where Ham denotes the set of 2n×2n Hamiltonian matrices. If λ is real we may
assume x and y to be real and can construct a Householder matrix V which
maps x to Jy. Then E = JV is a Hamiltonian matrix that satisfies ‖E‖2 = 1
and |yT Ex| = |yT y| = 1. Hence, cHam

2 (λ) = c(λ). The same argument can be
used to show this equality for a purely imaginary λ [188].

If λ is neither real nor purely imaginary then the structured and unstruc-
tured eigenvalue condition numbers may differ. Still, one can show

1√
2
c(λ) ≤ cHam

2 (λ) ≤ c(λ),

see [188, 277].

Invariant Subspaces

Let the columns of X ∈ R
2n×k span a simple isotropic invariant subspace X

of H. By the symplectic QR decomposition there exists a matrix Y ∈ R
2n×k

so that U = [X,Y, JX, JY ] is an orthogonal symplectic matrix. Moreover, we
have the block Hamiltonian Schur form

UT HU =

⎡
⎢⎢⎣

k n−k k n−k

k A11 A12 G11 G12

n−k 0 A22 GT
12 G22

k 0 0 −AT
11 0

n−k 0 Q22 −AT
12 −AT

22

⎤
⎥⎥⎦,

see also Lemma 4.39. The associated Sylvester operator is given by

T :

⎡
⎣R1

R2

R3

⎤
⎦ �→

⎡
⎣A22 GT

12 G22

0 −AT
11 0

Q22 −AT
12 −AT

22

⎤
⎦
⎡
⎣R1

R2

R3

⎤
⎦−

⎡
⎣R1

R2

R3

⎤
⎦A11.
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If we let

L =

⎧⎨
⎩
⎡
⎣R1

R2

R3

⎤
⎦ : R1, R3 ∈ R

(n−k)×k, R2 ∈ R
k×k, R2 ∈ sym

⎫⎬
⎭

then {[Y, JX, JY ]T HX : H ∈ Ham} = L and T : L → L. Hence, the
structured condition number for X is given by

cHam(X ) = ‖T−1
s ‖.

where Ts = T
∣∣
L→L.

Obviously, cHam(X ) coincides with the unstructured condition number
c(X ) if X is one-dimensional, i.e., X is spanned by a real eigenvector. A less
trivial observation is that the same holds if X is the stable invariant subspace,
i.e., the n-dimensional subspace belonging to all eigenvalues in the open left
half plane. To see this, first note that in this case L = symm and

cHam(X ) = sup
S �=0

S∈symm

‖AT
11S + SA11‖F

‖S‖F
= 1
/

inf
R �=0

R∈symm

‖A11R + RAT
11‖F

‖R‖F
,

where λ(A11) ⊂ C
−. Using a result by Byers and Nash [85], we have

inf
R �=0

R∈symm

‖A11R + RAT
11‖F

‖R‖F
= inf

R �=0

‖A11R + RAT
11‖F

‖R‖F
,

which indeed shows cHam(X ) = c(X ) for stable invariant subspaces.

4.5.3 An Explicit Hamiltonian QR Algorithm

Byers’ Hamiltonian QR algorithm [76, 352] is a strongly backward stable
method for computing the Hamiltonian Schur form of a Hamiltonian matrix
H with no purely imaginary eigenvalues. Its only obstacle is that there is no
implicit implementation of complexity less than O(n4) known, except for the
case when a Hamiltonian Hessenberg form exists [76, 78].

One iteration of the Hamiltonian QR algorithm computes the symplectic
QR decomposition of the first n columns of the symplectic matrix

M = [(H − σ1I)(H − σ2I)][(H + σ1I)(H + σ2I)]−1, (4.87)

where {σ1, σ2} is a pair of real or complex conjugate shifts. This yields an
orthogonal symplectic matrix U so that

UT M =

⎡
⎣�

�

⎤
⎦ . (4.88)
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The next iterate is obtained by updating H ← UT HU . Let us partition H as
follows:

H =

⎡
⎢⎢⎣

2 n−2 2 n−2

2 A11 A12 G11 G12

n−2 A21 A22 GT
12 G22

2 Q11 Q12 −AT
11 −AT

21

n−2 QT
12 Q22 −AT

12 −AT
22

⎤
⎥⎥⎦. (4.89)

In Section 1.3.1, we have seen that under rather mild assumptions and a
fortunate choice of shifts, it can be shown that the submatrices A21, Q11 and
Q12 converge to zero, i.e., H converges to a block Hamiltonian Schur form.
Choosing the shifts σ1, σ2 as the eigenvalues of the submatrix

[
A11
Q11

G11

−AT
11

]
that

have positive real part results in quadratic convergence. If this submatrix
happens to have two imaginary eigenvalues, we suggest to choose the one
eigenvalue with positive real part twice, and if there are four purely imaginary
eigenvalues, then one should perhaps resort to ad hoc shifts.

If the norms of the blocks A21, Q11 and Q12 become less than u ‖H‖F , then
we may safely regard them as zero and apply the iteration to the submatrix[

A22
Q22

G22

−AT
22

]
. Eventually, this yields a Hamiltonian Schur form of H. Note

that the Hamiltonian QR algorithm is not guaranteed to converge if H has
eigenvalues on the imaginary axis. Still, one can observe convergence to a block
Hamiltonian Schur form, where the unreduced block

[
A22
Q22

G22

−AT
22

]
contains all

eigenvalues on the imaginary axis.

Remark 4.44. One can avoid the explicit computation of the potentially ill-
conditioned matrix M in (4.87) by the following product QR decomposition
approach. First, an orthogonal matrix Qr is computed so that (H +σ1I)(H +
σ2I)QT

r has the block triangular structure displayed in (4.88). This can be
achieved by a minor modification of the standard RQ decomposition [42].
Secondly, the orthogonal symplectic matrix U is computed from the symplectic
QR decomposition of the first n columns of (H − σ1I)(H − σ2I)QT

r . ♦

4.5.4 Reordering a Hamiltonian Schur Decomposition

If the Hamiltonian QR algorithm has successfully computed a Hamiltonian
Schur decomposition,

UT HU =
[

T G̃
0 −TT

]
(4.90)

then the first n columns of the orthogonal symplectic matrix U span an
isotropic subspace belonging to the eigenvalues of T . Many applications re-
quire the stable invariant subspace, for this purpose the Schur decomposi-
tion (4.90) must be reordered so that T contains all eigenvalues with negative
real part.
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One way to achieve this is as follows. If there is a block in T which contains
a real positive eigenvalue or a pair of complex conjugate eigenvalues with
positive real part, then this block is swapped to the bottom right diagonal
block Tmm of T using the reordering algorithm described in Section 1.7.2.
Now, let Gmm denote the corresponding block in G̃; it remains to find an
orthogonal symplectic matrix Umm so that

UT
mm

[
Tmm Gmm

0 −TT
mm

]
Umm =

[
T̃mm G̃mm

0 −T̃T
mm

]
(4.91)

and the eigenvalues of T̃mm have negative real part. If X is the solution of
the Lyapunov equation TmmX − XTT

mm = Gmm, then X is symmetric and
consequently the columns of [−X, I]T span an isotropic subspace. Thus, there
exists a symplectic QR decomposition[

−X
I

]
= Umm

[
R
0

]
.

By direct computation, it can be seen that Umm is an orthogonal symplectic
matrix which produces a reordering of the form (4.91). As for the swapping
algorithm described in Section 1.7.1 it may happen that in some pathological
cases, the norm of the (2, 1) block in the reordered matrix is larger than
O(u)‖H‖F . In this case, the swap must be rejected in order to guarantee
the strong backward stability of the algorithm. A different kind of reordering
algorithm, which is based on Hamiltonian QR iterations with perfect shifts,
can be found in [76].

Conclusively, we have a method for computing eigenvalues and selected in-
variant subspaces of Hamiltonian matrices. This method is strongly backward
stable and reliable, as long as there are no eigenvalues on the imaginary axis.
However, as mentioned in the beginning of this section, in general it requires
O(n4) flops, making it unattractive for decently large problems.

4.5.5 Algorithms Based on H2

One of the first O(n3) structure-preserving methods for the Hamiltonian
eigenvalue problem was developed by Van Loan [333]. It is based on the fact
that H2 is a skew-Hamiltonian matrix, because

(H2J)T = (HJ)T HT = HJHT = −H(HJ)T = −H2J.

Thus, one can apply Algorithm 27 to H2 and take the positive and negative
square roots of the computed eigenvalues, which gives the eigenvalues of H.
An implicit version of this algorithm, called square-reduced method (SQRED),
has been implemented in [31]. The main advantage of this approach is that the
eigenvalue symmetries of H are fully recovered in finite-precision arithmetic.
Also, the computational cost is low when compared to the QR algorithm. The
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disadvantage of Van Loan’s method is that a loss of accuracy up to half the
number of significant digits of the computed eigenvalues of H is possible. An
error analysis in [333] shows that for an eigenvalue λ of H the computed λ̂
satisfies

|λ̂− λ| � c(λ) min{u‖H‖22/|λ|,
√

u‖H‖2}.

This indicates that particularly eigenvalues with |λ| � ‖H‖2 are affected by
the

√
u-effect. Note that a similar effect occurs when one attempts to compute

the singular values of a general matrix A from the eigenvalues of AT A, see
e.g. [305, Sec. 3.3.2].

An algorithm that is based on the same idea but achieves numerical back-
ward stability by completely avoiding the squaring of H was developed by
Benner, Mehrmann and Xu [42]. First, orthogonal symplectic matrices U and
V are computed to reduce H to a so called symplectic URV form:

UT HV =
[

R11 R12

R21 R22

]
=

⎡
⎣�

��

⎤
⎦ , (4.92)

i.e., the matrix R21 ∈ R
n×n is zero, R11 ∈ R

n×n is upper triangular and
R22 ∈ R

n×n is lower Hessenberg. A simple calculation reveals

UT H2U =
[
−R11R

T
22 R11R

T
12 −R12R

T
11

0 −R22R
T
11

]
,

showing that the eigenvalues of H are the square roots of the eigenvalues of
the upper Hessenberg matrix −R11R

T
22. In a second step, the periodic QR

algorithm, see Section 4.2.3, is applied to compute the eigenvalues of this
matrix product in a numerically backward stable manner. The positive and
negative square roots of these eigenvalues are the eigenvalues of H. Moreover,
this yields orthogonal n × n matrices Q1 and Q2 so that U ← U(Q2 ⊕ Q2)
and V ← V (Q1 ⊕Q1) reduce H to the same form as displayed in (4.92) but
with the additional benefit that RT

22 is in real Schur form.
Algorithm 28 can be used to compute a symplectic URV decomposi-

tion (4.92). This algorithm is implemented in the HAPACK routines DGESUV
and DOSGSU; it requires 80

3 n3 +O(n2) floating point operations (flops) to re-
duce H and additionally 16

3 n3+O(n2) flops to compute each of the orthogonal
symplectic factors U and V . Note that this algorithm does not assume H to
be a Hamiltonian matrix, but even if H is Hamiltonian, this structure will
be destroyed. The HAPACK routine DGESUB employs a blocked version of
Algorithm 28 based on the WY-like representation described in Section 4.3.3.

Let us illustrate the first two loops of Algorithm 28 for the reduction of an
8×8 matrix H =

[
A
Q

G
B

]
. First, the elementary orthogonal symplectic matrix

E1(He1) is applied from the left to annihilate the entries (2 : 8, 1) of H:
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Algorithm 28 Symplectic URV decomposition
Input: A matrix H ∈ R

2n×2n.
Output: Orthogonal symplectic matrices U, V ∈ R

2n×2n; H is overwritten with
UT HV having the form (4.92).

U ← I2n, V ← I2n.
for j ← 1, 2, . . . , n do

Set x ← Hej .
Apply Algorithm 23 to compute Ej(x).
Update H ← Ej(x)T H, U ← UEj(x).
if j < n then

Set y ← HT en+j .
Apply Algorithm 23 to compute Ej+1(y).
Update H ← HEn+j+1(y), V ← V En+j+1(y).

end if
end for

H ← E1(He1)T H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â â â â ĝ ĝ ĝ ĝ

0̂ â â â ĝ ĝ ĝ ĝ

0̂ â â â ĝ ĝ ĝ ĝ

0̂ â â â ĝ ĝ ĝ ĝ

0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂

0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂

0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂

0̂ q̂ q̂ q̂ b̂ b̂ b̂ b̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The entries (5, 2 : 4) and (5, 7 : 8) are annihilated by applying E6(HT e5) from
the right:

H ← HE6(HT e5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a â â â g ĝ ĝ ĝ
0 â â â g ĝ ĝ ĝ
0 â â â g ĝ ĝ ĝ
0 â â â g ĝ ĝ ĝ

0 0̂ 0̂ 0̂ b b̂ 0̂ 0̂
0 q̂ q̂ q̂ b b̂ b̂ b̂

0 q̂ q̂ q̂ b b̂ b̂ b̂

0 q̂ q̂ q̂ b b̂ b̂ b̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Secondly, the second/sixth rows and columns are reduced by applying E2(He2)
and E7(HT e6) consecutively:
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H ← E2(He2)T H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a a a g g g g
0 â â â ĝ ĝ ĝ ĝ

0 0̂ â â ĝ ĝ ĝ ĝ

0 0̂ â â ĝ ĝ ĝ ĝ
0 0 0 0 b b 0 0
0 0̂ q̂ q̂ b̂ b̂ b̂ b̂

0 0̂ q̂ q̂ b̂ b̂ b̂ b̂

0 0̂ q̂ q̂ b̂ b̂ b̂ b̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H ← HE7(HT e6) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a a â â g g ĝ ĝ
0 a â â g g ĝ ĝ
0 0 â â g g ĝ ĝ
0 0 â â g g ĝ ĝ
0 0 0 0 b b 0 0
0 0 0̂ 0̂ b b b̂ 0̂
0 0 q̂ q̂ b b b̂ b̂

0 0 q̂ q̂ b b b̂ b̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The whole procedure, symplectic URV decomposition and periodic QR
algorithm, is a numerically backward stable method for computing the eigen-
values of a Hamiltonian matrix H. It preserves the eigenvalue symmetries of
H in finite-precision arithmetic and requires less computational effort than
the QR algorithm. As the periodic QR algorithm inherits the reliability of
the standard QR algorithm, this method can be regarded as highly reliable.
Its only drawback is that it does not take full advantage of the structure of
H. Furthermore, it is not yet clear whether the method is strongly backward
stable or not.

4.5.6 Computation of Invariant Subspaces Based on H2

Note that the approach explained in the previous section only provides the
eigenvalues of a Hamiltonian matrix. Invariant subspaces can be obtained by
employing the following relationship between the eigenvalues and invariant
subspaces of a matrix and an appropriate embedding of this matrix.

Theorem 4.45 ([41]). Let A ∈ R
n×n and define B =

[
0
A

A
0

]
. Then λ(B) =

λ(A) ∪ (−λ(A)); it is assumed that λ(A) ∩ ıR = ∅. If the columns of the
matrix [QT

1 , QT
2 ]T span an invariant subspace of B belonging to eigenvalues

in the open right half plane, then the columns of Q1 − Q2 span an invariant
subspace of A belonging to eigenvalues in the open left half plane.

An orthogonal basis for the subspace spanned by the columns of Q1 −
Q2 can be obtained, e.g., from a rank-revealing QR decomposition [141] of
Q1 − Q2. For general matrices it is of course not advisable to use the above
result in order to compute invariant subspaces of the matrix A as it would
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unnecessarily double the dimension of the problem. But if A is a Hamiltonian
matrix then the results from the previous section can be used to compute
invariant subspaces of the extended matrix B which in turn yield invariant
subspaces of A.

To see this, let H ∈ R
2n×2n be Hamiltonian with λ(H) ∩ ıR = ∅. Then

we apply Algorithm 28 and the periodic QR algorithm to H. From this we
obtain orthogonal symplectic matrices U =

[
U11
−U12

U12
U22

]
and V =

[
V11
−V12

V12
V22

]
such that

R := UT HV =
[

R11 R12

0 R22

]

where R11 is upper triangular and RT
22 is in real Schur form.

Then

B :=
[

UT 0
0 V T

] [
0 H
H 0

] [
U 0
0 V

]
=
[

0 R
(JRJ)T 0

]
=

⎡
⎢⎢⎣

0 0 R11 R12

0 0 0 R22

−RT
22 RT

12 0 0
0 −RT

11 0 0

⎤
⎥⎥⎦ .

Swapping the middle block rows/columns of B corresponds to PT BP with a
certain permutation matrix P , which transforms B to block upper triangular
form.

Now let W =
[

W11
W21

W12
W22

]
be orthogonal such that

WT

[
0 R11

−RT
22 0

]
W =

[
T11 T12

0 T22

]
=: T (4.93)

is quasi upper triangular with all eigenvalues of T11 ∈ R
n×n and −T22 ∈

R
n×n located in the open right half plane. Note that this is possible as the

eigenvalues of
[

0
−RT

22

R11
0

]
are exactly those of H, and λ(H)∩ ıR = ∅. Hence,

B̃ :=
[

WT 0
0 WT

]
PT BP

[
W 0
0 W

]
=

⎡
⎢⎢⎣

T11 T12 C11 C12

0 T22 CT
12 C22

0 0 −TT
11 0

0 0 −TT
12 −TT

22

⎤
⎥⎥⎦ . (4.94)

This implies that the first n columns of
[

U
0

0
V

]
P
[

W
0

0
W

]
span an invariant

subspace of
[

0
H

H
0

]
belonging to the eigenvalues of T11. Thus, as a corollary

of Theorem 4.45 we obtain that the columns of[
U11W11 − V11W21

−U12W11 + V12W21

]
(4.95)

span the invariant subspace of H associated with all stable eigenvalues, i.e., the
n eigenvalues in the open left half plane. Computing the matrix W in (4.93)
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can be implemented efficiently using the underlying structure; for details
see [41]. The number of flops needed by the overall algorithm is approxi-
mately 60% of the number of flops the standard QR algorithm would require
to compute the invariant subspace under consideration [41]. The HAPACK
routine DHASUB is based on the described algorithm. It should be emphasized
that this algorithm might encounter numerical difficulties if H has eigenval-
ues close to the imaginary axis, i.e., it is not guaranteed to be backward stable
for such cases. Recently, Chu, Liu, and Mehrmann [92] refined the symplectic
URV approach further and presented a strongly backward stable algorithm,
again under the assumption that H has no eigenvalues on the imaginary axis.

The described procedure admits several extensions, also implemented in
DHASUB. First, assume that not the invariant subspace belonging to all sta-
ble eigenvalues but the invariant subspace belonging to k < n selected stable
eigenvalues is to be computed. This can be achieved by reordering the corre-
sponding eigenvalues in the quasi-upper triangular matrix product R11R

T
22 to

the top left corner, see [202], and restricting all computations to the first k
columns of the matrix in (4.95). By setting k = 1, eigenvectors for specified
real eigenvalues can be computed. Complex eigenvectors cannot be computed
directly, but with k = 2 and choosing a pair of conjugate complex eigenval-
ues, eigenvectors can be obtained from the 2-dimensional basis of the cor-
responding invariant subspace. Second, invariant subspaces of H belonging
to eigenvalues in the open right half plane can be computed by a variant of
Theorem 4.45 saying that the columns of Q1 + Q2 span such an invariant
subspace. Finally, if the Hamiltonian matrix H has eigenvalues on or close to
the imaginary axis then the numerical rank of the matrix in (4.95) is likely to
be less than n. In this case, it is preferable to reorder the eigenvalues of the
4n×4n matrix B̃ in (4.94) such that all eigenvalues in the upper 2n×2n block
are in the open right half plane. This can be achieved, e.g., by the reorder-
ing described in Section 4.5.4. It is thus possible to determine an orthogonal
symplectic matrix Z such that

ZT B̃Z =

⎡
⎢⎢⎣

T11 T̃12 C11 C̃12

0 T̃22 C̃T
12 C̃22

0 0 −TT
11 0

0 0 −T̃T
12 −T̃T

22

⎤
⎥⎥⎦ ,

where B̃ is the matrix defined in (4.94) and all the eigenvalues of T̃22 lie in
the open right half plane. Now define

Q̃ :=
[

Q̃11 Q̃12

Q̃21 Q̃22

]
:=
[

U 0
0 V

]
P

[
W 0
0 W

]
Z, (4.96)

then by construction the columns of the matrix [Q̃T
11, Q̃

T
21]

T span the invari-
ant subspace for

[
0
H

H
0

]
associated with all eigenvalues in the open right

half plane. Again by an application of Theorem 4.45, we obtain the invariant
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subspace of H associated with all stable eigenvalues using a rank-revealing
QR decomposition of Q̃11 − Q̃21.

4.5.7 Symplectic Balancing

We have seen in Section 1.4.3 that balancing can be a beneficial pre-processing
step for computing eigenvalues of general matrices. Of course, standard bal-
ancing can be applied to a Hamiltonian matrix H as well; this, however,
would destroy the structure of H and prevent the subsequent use of structure-
preserving methods. Therefore, Benner [30] has developed a special-purpose
balancing algorithm that is based on symplectic similarity transformations
and thus preserves the structure of H. As general balancing, it consists of two
stages, which are described in the following

Isolating Eigenvalues

The first stage consists of permuting H in order to isolate eigenvalues. It is
tempting to require the applied permutations to be symplectic. This leads
to rather complicated block triangular forms, see [30, Eq. (3.10)], indicating
that the group of symplectic permutation matrices is too restrictive to obtain
useful classifications for PT HP . Instead, we propose to broaden the range
of similarity transformations to P̃T HP̃ , where P̃ = DP is symplectic, D =
diag{±1, . . . ,±1} and P is a permutation matrix. These symplectic generalized
permutation matrices clearly form a group, which can be generated by the
following two classes of elementary matrices:

P
(d)
ij = Pij ⊕ Pij , (4.97)

where 1 ≤ i < j ≤ n, Pij ∈ R
n×n defined as in (1.49), and

P
(s)
i = I2n −

[
ei ei+n

] [ eT
i

eT
i+n

]
+
[
ei −ei+n

] [ eT
i+n

eT
i

]
, (4.98)

where 1 ≤ i < n. If H is post-multiplied by P
(d)
ij then columns i ↔ j and

columns (n + i) ↔ (n + j) of H are swapped. A post-multiplication by P
(s)
i

swaps columns i ↔ (n + i) and scales the ith column by −1. Analogous
statements hold for the rows of H if this matrix is pre-multiplied by P

(d)
ij or

P
(s)
i .

Combinations of these matrices can be used to compute a symplectic gen-
eralized permutation matrix P̃ so that

P̃T HP̃ =

⎡
⎢⎢⎣

A11 A21 G11 G12

0 A22 GT
12 G22

0 0 −AT
11 0

0 Q22 −AT
21 −AT

22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
�
0

0 0 � 0

0

⎤
⎥⎥⎥⎥⎥⎦ , (4.99)
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where A11 ∈ R
il×il is an upper triangular matrix. The unreduced Hamiltonian

submatrix
[

A22
Q22

G22

AT
22

]
is characterized by the property that all columns have

at least one nonzero off-diagonal element. An algorithm that produces the
block triangular form (4.99) can be developed along the lines of Algorithm 4
for isolating eigenvalues of general matrices, see [30, 202] for more details.

Scaling

The second stage of symplectic balancing consists of finding a diagonal matrix
D so that

(D ⊕D−1)−1

[
A22 G22

Q22 −AT
22

]
(D ⊕D−1) =

[
D−1A22D D−1G22D

−1

DQ22D −(D−1A22D)T

]
is nearly balanced in 1-norm, i.e., the rows and columns of this matrix are
nearly equal in 1-norm.

An iterative procedure achieving this aim has been developed in [30], in
the spirit of the Parlett-Reinsch algorithm for equilibrating the row and col-
umn norms of a general matrix, see Algorithm 5. It converges if there is
no restriction on the diagonal entries of D and under the assumption that[

A22
Q22

G22

AT
22

]
is irreducible. Note that, strictly speaking, this assumption is not

satisfied by the submatrices of the block triangular form (4.99). A structure-
preserving block triangular form yielding irreducible Hamiltonian submatrices
has been presented in [36]. The construction of this form, however, requires
graph-theoretic tools that are more suitable for large and sparse matrices.

Algorithm 29 is basically HAPACK’s implementation of the symplectic
scaling procedure described in [30]. To avoid any roundoff error in this algo-
rithm, the scaling factor β should be a power of the machine base (usually 2).
By exploiting the fact that the 1-norm of the ith column {row} of H is equal
to the 1-norm of the (n + i)th row {column} for 1 ≤ i ≤ n, Algorithm 29
only needs to balance the first n rows and columns of H. It can thus be con-
cluded that it requires about half the number of operations required by the
Parlett-Reinsch algorithm applied to H.

Both ingredients of symplectic balancing, permuting and scaling, are im-
plemented in the HAPACK routine DHABAL. The information contained in the
generalized symplectic permutation matrix P̃ and the symplectic scaling ma-
trix D̃ is stored in a vector “scal” of length n as follows. If j ∈ [1, il − 1],
then the permutation P

(d)
j,scal(j) (if scal(j) ≤ n) or the symplectic generalized

permutation P
(d)
il,j

P
(s)
il

(if scal(j) > n) has been applied in the course of per-
muting H to the form (4.99). Otherwise, scal(j) contains d̃jj , the jth diagonal
entry of the diagonal matrix D̃ returned by Algorithm 29.

The backward transformation, i.e., multiplication with (PD̃)−1, is imple-
mented in the HAPACK routine DHABAK. A slight modification of the described
procedure can be used for balancing skew-Hamiltonian matrices, see [30].
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Algorithm 29 Symplectic Scaling

Input: A Hamiltonian matrix H =
[

A
Q

G
−AT

]
∈ R

2n×2n having the block tri-

angular form (4.99) for an integer il. A scaling factor β ∈ R.

Output: A symplectic diagonal matrix D̃ = Iil−1⊕D⊕Iil−1⊕D−1, with diagonal
entries that are powers of β, so that D−1HD is nearly balanced in 1-
norm. The matrix H is overwritten by D̃−1HD̃.

D̃ ← In

converged ← 0
while converged = 0 do

converged ← 1
for j ← il, . . . , n do

c ←
n∑

i=il
i�=j

(|aij | + |qij |), r ←
n∑

k=il
k �=j

(|ajk| + |gjk|), δq ← |qjj |, δg ← |gjj |

s ← c + r, scal ← 1
while ((r + δg/β)/β) ≥ ((c + δqβ)β) do

c ← cβ, r ← r/β, δq ← δqβ
2, δg ← δg/β2

scal ← scal × β
end while
while ((r + δgβ)β) ≤ ((c + δq/β)/β) do

c ← c/β, r ← rβ, δq ← δq/β2, δg ← δgβ2

scal ← scal/β
end while
% Balance if necessary.
if scal �= 1 then

converged ← 0, d̃jj ← scal × d̃jj , d̃n+j,n+j ← 1/scal × d̃n+j,n+j

A(:, j) ← scal × A(:, j), A(j, :) ← 1/scal × A(j, :)
G(:, j) ← 1/scal × G(:, j), G(j, :) ← 1/scal × G(j, :)
Q(:, j) ← scal × Q(:, j), Q(j, :) ← scal × Q(j, :)

end if
end for

end while

Symplectic balancing a (skew-)Hamiltonian matrix has essentially the same
positive effects as balancing a general matrix. Several numerical experiments
confirming this statement can be found in [30, 36].

4.5.8 Numerical Experiments

To give a flavor of the numerical behavior of the described algorithms for
computing eigenvalues and invariant subspaces of Hamiltonian matrices, we
applied them to data from the CAREX benchmark collection by Abels and
Benner [1]. This collection is an updated version of [39] and contains several
examples of continuous-time algebraic Riccati equations (CAREs) of the form

Q + AT X + XA−XGX = 0.
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Computing eigenvalues and invariant subspaces of the associated Hamiltonian
matrix H =

[
A
−Q

−G
−AT

]
plays a fundamental role in most algorithms for solv-

ing CAREs; see, e.g., Section A.3 and [29, 240, 285].

Accuracy of eigenvalues

For comparing the accuracy of the computed eigenvalues, we considered the
QR algorithm with balancing (QR), the square-reduced method with symplec-
tic balancing (SQRED), as well as the symplectic URV approach described in
Section 4.5.5 combined with symplectic balancing (DHAESU).

Table 4.1 gives an account on the eigenvalue accuracy for all Hamiltonian
matrices from the benchmark collection [1]. The following quantities are dis-
played:

fwd = max
i

|λ̂i − λi|
‖H‖2

, bwd = max
i

σmin(H − λ̂iI2n)
‖H‖2

,

where λ̂i denotes the computed approximation to the exact eigenvalue λi of
H. The quantity fwd can be considered as the maximal forward error while
bwd represents the maximal backward error of the computed eigenvalues. All
computations have been performed in Matlab 6.1, partly using the mex in-
terfaces mentioned in Section B.4.2. The “exact” eigenvalues λi have been
computed in variable precision arithmetic (64 decimal digits) as provided by
the Symbolic Math Toolbox in Matlab. Note, however, that this toolbox
failed to deliver “exact” eigenvalues for Examples 4.2 and 4.4, where it re-
turned with an error message.

In general, the structured perturbation analysis from Section 4.5.2 pre-
dicts that structure preservation will not lead to a higher accuracy in the
eigenvalues. Though not explained by this analysis, Examples 1.1 and 2.4 of
Table 4.1 show that the structure-preserving algorithms may return signifi-
cantly more accurate eigenvalues. The known possible loss of accuracy of the
square-reduced method can be observed in Examples 2.2 and 4.4. It is remark-
able that the square-reduced method displays its numerical backward insta-
bility only for Example 4.4, where the measured backward error 2.9 × 10−13

is significantly larger than the machine precision. A simple matrix leading to
an even larger backward error can be constructed by setting

H = UT

[
A 0
0 −AT

]
U, A = diag(1, 10−2, 10−4, 10−6, 10−8), (4.100)

where U is a random orthogonal symplectic matrix obtained from the symplec-
tic QR decomposition of a random matrix, see also [31]. The errors obtained
for this matrix are displayed in the last row of Table 4.1.
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Ex QR SQRED DHAESU

1.1 2.8×10−16 (1.0×10−08) 0.0 (0.0) 0.0 (0.0)
1.2 7.4×10−17 (6.9×10−18) 7.4×10−17 (6.9×10−18) 7.1×10−17 (1.0×10−16)
1.3 6.6×10−16 (1.3×10−15) 8.8×10−17 (1.9×10−16) 2.5×10−16 (4.2×10−16)
1.4 1.1×10−15 (1.1×10−15) 3.3×10−16 (2.3×10−16) 1.5×10−15 (1.4×10−15)
1.5 2.1×10−16 (2.5×10−15) 6.3×10−16 (1.8×10−15) 6.7×10−17 (8.0×10−16)
1.6 4.1×10−20 (9.6×10−20) 2.1×10−20 (2.9×10−19) 3.3×10−20 (6.8×10−21)
2.1 1.0×10−16 (1.5×10−17) 1.0×10−16 (1.5×10−17) 1.1×10−16 (6.0×10−17)
2.2 2.4×10−18 (1.3×10−17) 9.5×10−16 (9.6×10−14) 2.4×10−18 (5.9×10−18)
2.3 4.5×10−19 (9.8×10−19) 1.6×10−19 (6.5×10−20) 2.3×10−19 (8.0×10−20)
2.4 7.2×10−16 (3.3×10−11) 1.9×10−16 (6.4×10−10) 2.1×10−16 (2.0×10−16)
2.5 7.8×10−17 (2.4×10−09) 2.5×10−17 (1.6×10−09) 7.8×10−17 (1.9×10−09)
2.6 7.2×10−16 (8.7×10−16) 1.3×10−16 (5.4×10−17) 3.2×10−16 (2.2×10−16)
2.7 1.4×10−22 (7.0×10−22) 3.7×10−21 (2.7×10−20) 1.4×10−22 (9.4×10−22)
2.8 3.4×10−16 (5.2×10−16) 3.4×10−16 (3.3×10−16) 9.2×10−17 (6.3×10−17)
2.9 9.1×10−23 (1.8×10−23) 5.6×10−23 (1.3×10−20) 2.8×10−23 (5.4×10−23)
3.1 3.0×10−16 (7.4×10−16) 1.3×10−16 (8.4×10−16) 1.5×10−16 (6.1×10−16)
3.2 2.4×10−15 (2.4×10−15) 2.7×10−15 (2.7×10−15) 3.4×10−15 (3.4×10−15)
4.1 2.3×10−15 (2.4×10−15) 8.6×10−16 (9.2×10−16) 1.2×10−15 (1.3×10−15)
4.2 9.5×10−15 3.1×10−15 4.9×10−15

4.3 1.2×10−15 (8.4×10−15) 9.3×10−16 (7.6×10−15) 9.1×10−16 (1.7×10−15)
4.4 4.5×10−20 3.4×10−16 6.2×10−20

(4.100) 5.9×10−16 (1.3×10−16) 1.1×10−09 (1.1×10−09) 1.6×10−16 (1.3×10−16)

Table 4.1. Backward (and forward) errors of the eigenvalues computed by the QR
algorithm, the square-reduced method, and the HAPACK routine DHAESU.

Accuracy of invariant subspaces

To test the accuracy of the stable invariant subspaces computed by the HA-
PACK routine DHASUB, see Section 4.5.6, we repeated the experiment from
the previous section with this routine and measured the relative residual

res = ‖HX̂ − X̂(X̂T HX̂)‖F /‖H‖F ,

where the columns of X̂ form the computed orthonormal basis for the stable
invariant subspace. The parameter METH in DHASUB can be used to control
the choice of method for computing the stable invariant subspace. If METH =
’S’, an orthonormal basis for this subspace is obtained by applying a QR
decomposition to the 2n×n matrix in (4.95). If METH = ’L’, this basis is ob-
tained by applying a rank-revealing QR decomposition to the 2n× 2n matrix
Q̃11−Q̃21 from (4.95). The results in Table 4.2 suggest that METH = ’S’ often
behaves like a numerically backward stable method, except for Examples 2.4,
2.6, and 2.9, while the computationally more expensive choice METH = ’L’
seems to be numerically backward stable in general. Note that Example 4.4
represents a highly unbalanced Hamiltonian matrix, for which the QR algo-
rithm fails to converge [36]. Also, DHASUB encounters convergence problems,
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Ex 1.1 Ex 1.2 Ex 1.3 Ex 1.4 Ex 1.5 Ex 1.6 Ex 2.1

1.8 × 10−16 9.3 × 10−17 3.8 × 10−15 1.7 × 10−15 2.8 × 10−16 2.5 × 10−16 1.4 × 10−16

3.2 × 10−16 3.7 × 10−16 3.0 × 10−16 4.4 × 10−16 4.7 × 10−16 5.8 × 10−16 2.9 × 10−16

Ex 2.2 Ex 2.3 Ex 2.4 Ex 2.5 Ex 2.6 Ex 2.7 Ex 2.8

1.1 × 10−16 6.1 × 10−17 4.5 × 10−02 6.7 × 10−17 1.6 × 10−04 1.8 × 10−17 5.1 × 10−16

6.6 × 10−16 2.4 × 10−16 6.5 × 10−16 2.5 × 10−16 5.4 × 10−16 7.3 × 10−16 2.9 × 10−16

Ex 2.9 Ex 3.1 Ex 3.2 Ex 4.1 Ex 4.2 Ex 4.3 Ex 4.4

1.1 × 10−10 5.0 × 10−16 4.2 × 10−15 1.5 × 10−15 7.8 × 10−16 4.8 × 10−15 8.9 × 10−14

1.0 × 10−15 7.2 × 10−16 1.1 × 10−15 6.1 × 10−16 9.8 × 10−16 9.1 × 10−16 –

Table 4.2. Relative residuals of invariant subspaces computed by DHASUB with METH

= ’S’ (upper row) and METH = ’L’ (lower row).

which could only be avoided when symplectic balancing (BALANC = ’B’) was
combined with METH = ’S’. For all other examples, symplectic balancing had
no significant positive effect on the numerical behavior of DHASUB.

Computing Times

To compare the required computing times, we have considered the following
Fortran 77 implementations:

LAPACK – routines DGEHRD, DORGHR and DHSEQR for computing the eigen-
values via a Schur decomposition, followed by DTRSEN for reordering the
stable eigenvalues to the top;

HAPACK – routines DGESUB, DOSGSU and DHGPQR for computing the eigen-
values via a symplectic URV/periodic Schur decomposition, followed by
DHASUB for extracting the stable invariant subspace;

SQRED – routines DHASRD and DHAEVS from [31] for computing the eigenval-
ues via the square reduced method.

All parameters of the block algorithms implemented in LAPACK and HA-
PACK were set to their default values, i.e., the following values for the block-
size nb, the crossover point nx and the number of simultaneous shifts ns were
used:

DGEHRD DORGHR DHSEQR DGESUB DOSGSU DHGPQR
nb 32 32 – 16 16 –
nx 128 128 50 64 64 50
ns – – 6 – – 6

The obtained execution times are displayed in Figure 4.10. One may conclude
that if only eigenvalues are to be computed then both SQRED and HAPACK
require substantially less time than LAPACK. If, however, the stable invariant
subspace is of concern then HAPACK requires up to 60% more time than
LAPACK.
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Fig. 4.10. Computational times of SQRED and HAPACK for computing
eigenvalues and invariant subspaces of 2n × 2n Hamiltonian matrices (n =
200, 220, . . . , 1000), relative to the computational time of LAPACK.

4.5.9 Other Algorithms and Extensions

There is a vast number of algorithms for solving Hamiltonian eigenvalue prob-
lems available. Algorithms based on orthogonal transformations include the
Hamiltonian Jacobi algorithm [80, 70], its variants for Hamiltonian matrices
that have additional structure [124] and the multishift algorithm [5]. Algo-
rithms based on symplectic but non-orthogonal transformations include the
SR algorithm [72, 67, 240] and related methods [73, 268]. A completely dif-
ferent class of algorithms is based on the matrix sign function, see, e.g.,
[29, 240, 285] and the references therein. Newton-like methods directed to-
wards the computation or refinement of stable invariant subspaces for Hamil-
tonian matrices can be found in [2, 35, 151, 191, 207, 240, 241].

If H is Hamiltonian then H2 and (H − σI)−1(H + σI)−1 with σ ∈ R

are both skew-Hamiltonian. This makes it possible to use Shira, see Sec-
tion 4.4.5, as a symmetry-preserving (shift-and-invert) Arnoldi method for
Hamiltonian matrices, see [242, 202]. There are several variants of symplectic
Lanczos processes for Hamiltonian matrices available, see [34, 38, 126, 355].

One suitable generalization of a Hamiltonian matrix is a Hamiltonian/skew-
Hamiltonian matrix pair (H, W ), i.e., H is a Hamiltonian matrix while
W is a skew-Hamiltonian matrix. This matrix pair is equivalent to the
symmetric/skew-symmetric matrix pair (JH, JW ). Condensed and canonical
forms for such matrix pairs have been derived in [84, 237, 238, 320], a pertur-
bation analysis can be found in [58], while structure-preserving algorithms for
computing eigenvalues and deflating subspaces of (H, W ) have been developed
in [32, 239].

Another suitable generalization is to consider a matrix pair (A,B) to be
Hamiltonian if BJAT = −AJBT . A structured eigenvalue solver for this kind
of matrix pairs has been proposed in [42].
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4.6 A Bouquet of Other Structures

In this section, we peek into some other structures. The treatment is neces-
sarily rather incomplete; a detailed discussion of all the issues related to these
structures would give rise to one or more further books.

4.6.1 Symmetric Matrices

Probably the two most fundamental properties of a symmetric matrix A are
that every eigenvalue is real and every right eigenvector is also a left eigen-
vector belonging to the same eigenvalue. Both facts immediately follow from
the observation that a Schur decomposition of A always takes the form

QT AQ = diag(λ1, . . . , λn).

It is simple to show that the structured eigenvalue and invariant sub-
space condition numbers are equal to the corresponding unstructured condi-
tion numbers, i.e.,

csymm
2 (λ) = c(λ) = 1

and
csymm(X ) = c(X ) =

1
min{|µ− λ| : λ ∈ Λ1, µ ∈ Λ2}

,

where X is a simple invariant subspace belonging to an eigenvalue subset
Λ1 ⊂ λ(A), and Λ2 = λ(A)\Λ1. Moreover, the QR and the Arnoldi algorithm
automatically preserve symmetric matrices.

These facts should not lead to the wrong conclusion that the preservation
of symmetric matrices is not important. Algorithms tailored to symmetric ma-
trices (e.g., divide and conquer or Lanczos methods) take much less computa-
tional effort and sometimes achieve high relative accuracy in the eigenvalues
and – having the right representation of A at hand – even in the eigenvec-
tors. However, these topics are far beyond the scope of this book; we refer
to [94, 103, 113, 261] for introductions to this flourishing branch of eigenvalue
computation.

4.6.2 Skew-symmetric Matrices

Any eigenvalue of a skew-symmetric matrix A ∈ R
n×n is purely imaginary. If

n is odd then there is at least one zero eigenvalue. As for symmetric matrices,
any right eigenvector is also a left eigenvector belonging to the same eigenvalue
(this is true for any normal matrix). The real Schur form of A takes the form

QT AQ =
[

0 α1

−α1 0

]
⊕ · · · ⊕

[
0 αk

−αk 0

]
⊕ 0⊕ · · · ⊕ 0.

for some real scalars α1, . . . , αk �= 0.
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While the structured condition number for a nonzero eigenvalue always
satisfies cskew

2 (λ) = c(λ) = 1, we have for a simple zero eigenvalue cskew
2 (0) = 0

but c(0) = 1 [277]. Again, there is nothing to be gained for an invariant
subspace X ; it is simple to show cskew(X ) = c(X ).

Skew-symmetric matrices have received much less attention than sym-
metric matrices, probably due to the fact that skew-symmetry plays a less
important role in applications. Again, the QR and the Arnoldi algorithm au-
tomatically preserve skew-symmetric matrices. Variants of the QR algorithm
tailored to skew-symmetric matrices have been discussed in [178, 347]. Jacobi-
like algorithms for skew-symmetric matrices and other Lie algebras have been
developed and analyzed in [152, 154, 155, 192, 258, 273, 363].

4.6.3 Persymmetric Matrices

A real 2n × 2n matrix A is called persymmetric if it is symmetric about the
anti-diagonal. E.g., A takes the following form for n = 2:

A =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a13

a31 a12 a22 a12

a41 a31 a21 a11

⎤
⎥⎥⎦ .

If we additionally assume A to be symmetric then we can write

A =
[

A11 A12

AT
12 FAT

11F

]
,

where F denotes the n×n flip matrix. Note that A is also a centrosymmetric
matrix, i.e., A = FAF . A practically relevant example of such a matrix is the
Gramian of a set of frequency exponentials {e±iλkt}, which plays a role in the
control of mechanical and electric vibrations [272]. Employing the orthogonal
matrix U = 1√

2

[
I

−F
F
I

]
we have

UT AU =
[

A11 −A12F 0
0 FA11F + FA12

]
, (4.101)

where we used the symmetry of A11 and the persymmetry of A12. This is a
popular trick when dealing with centrosymmetric matrices [361]. (A similar
but technically slightly more complicated trick can be used if A has odd
dimension.) Thus,

λ(A) = λ(A11 −A12F ) ∪ λ(A11 + A12F ).

Perhaps more importantly, if these two eigenvalue sets are disjoint then any
eigenvector belonging to λ(A11 −A12F ) takes the form
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x = U

[
x̃
0

]
=
[

x̃
−Fx̃

]
for some x̃ ∈ R

n. This property of x is sometimes called center-skew-
symmetry. Analogously, any eigenvector belonging to λ(A11+A12F ) is center-
symmetric. While the structured and unstructured eigenvalue conditon num-
bers for symmetric persymmetric matrices are the same [188, 277], there can
be a significant difference in the invariant subspace condition numbers. With
respect to structured perturbations, the separation between λ(A11 − A12F )
and λ(A11 +A12F ), which can be arbitrarily small, does not play any role for
invariant subspaces belonging to eigenvalues from one of the two eigenvalue
sets [83]. It can thus be important to retain the symmetry structure of the
eigenvectors in finite-precision arithmetic. Krylov subspace methods achieve
this goal automatically if the starting vector is chosen to be center-symmetric
(or center-skew-symmetric). This property has been used by Voss [340] to
construct a structure-preserving Lanczos process. Efficient algorithms for per-
forming matrix-vector products with centrosymmetric matrices have been in-
vestigated in [123, 245, 251].

We now briefly consider a persymmetric and skew-symmetric matrix A,

A =
[

A11 A12

−AT
12 FAT

11F

]
.

Again, the orthogonal matrix U can be used to reduce A:

UT AU =
[

0 A11F + A12

FA11 −AT
12 0

]
.

Hence, the eigenvalues of A are the positive and negative square roots of the
eigenvalues of the matrix product (A11F + A12)(FA11 −AT

12), see also [272].
Structure-preserving Jacobi algorithms for symmetric persymmetric and

skew-symmetric persymmetric matrices have been recently developed by
Mackey, Mackey, and Dunlavy [226].

4.6.4 Orthogonal Matrices

All the eigenvalues of a real orthogonal matrix are on the unit circle. More-
over, as orthogonality implies normality, any right eigenvector is also a left
eigenvector belonging to the same eigenvalue.

The set of orthogonal matrices M ≡ orth = {A : AT A = I} forms a
smooth manifold, and the tangent space of M at A is given by

TAM = {AH : H = −HT } = {AH : H ∈ skew}.

By Theorem 4.5,

corth
2 (λ) = sup{|xHAHx| : H ∈ skew, ‖AH‖2 = 1}

= sup{|xHHx| : H ∈ skew, ‖H‖2 = 1}.
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If λ = ±1 then x can be chosen to be real which implies xT Hx = 0 for all x
and consequently corth

2 (λ) = 0, provided that λ is simple. If λ is complex, we
decompose x = xR+ıxI with real vectors xR, xI . The fact that x̄ is orthogonal
to x yields ‖xR‖2 = ‖xI‖2 = 1/

√
2 and xT

RxI = 0. Consequently, the two
nonzero singular values of the skew-symmetric matrix H = 2(xRxT

I − xIx
T
R)

are both one, and hence ‖H‖2 = 1. Moreover, |xHHx| = 4(‖xR‖22 ‖xI‖22) = 1,
which shows corth

2 (λ) ≥ 1 and hence corth
2 (λ) = 1. A more general perturbation

analysis of orthogonal and unitary eigenvalue problems, based on the Cayley
transform, can be found in [51].

Orthogonal eigenvalue problems have a number of applications in digital
signal processing, see [6, 7] for an overview.

Once again, the QR algorithm automatically preserves orthogonal matri-
ces. To make it work (efficiently), it is important to take the fact that the
underlying matrix is orthogonal into account. A careful choice of shifts can
lead to cubic convergence or even ensure global convergence [118, 342, 343].
Even better, an orthogonal (or unitary) Hessenberg matrix can be represented
by O(n) so called Schur parameters [143, 71]. This makes it possible to imple-
ment the QR algorithm very efficiently [144]; for an extension to unitary and
orthogonal matrix pairs, see [68]. Gragg and Reichel [145] proposed a divide
and conquer approach for unitary Hessenberg matrices based on the method-
ology of Cuppen’s [95] divide and conquer approach for symmetric tridiagonal
matrices. Krylov subspace methods for orthogonal and unitary matrices have
been developed and analyzed in [50, 69, 173, 174].

4.6.5 Palindromic Matrix Pairs

Finally, we consider palindromic matrix pairs (A,−AT ) with A ∈ C
2n×2n

to demonstrate how the concept of structured condition numbers can be
extended to deflating subspaces. Such matrix pairs arise from certain lin-
earizations of palindromic polynomials [166, 227]. The following result yields
a structured Schur form for palindromic matrix pairs.

Lemma 4.46 ([166]). Let A ∈ C
2n×2n, then there exists a unitary matrix

U ∈ C
2n×2n such that

UT AU =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 t1,2n

... . .. t2,2n−1 t2,2n

0 . .. . ..
...

t2n,1 t2n,2 · · · t2n,2n

⎤
⎥⎥⎥⎥⎦ =: T,

i.e., T is anti-triangular.

Note that UT denotes the complex transpose of U , i.e., UT AU is not similar
to A. Nevertheless, (T,−TT ) is equivalent to (A,−AT ) implying that the
generalized eigenvalues of (A,−AT ) are given by
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(t1,2n,−t2n,1), . . . , (tn,n+1,−tn+1,n), (tn+1,n,−tn,n+1), . . . , (t2n,1,−t1,2n).

It follows immediately that the eigenvalues have the following pairing: (α, β)
is an eigenvalue of (A,−AT ) if and only if (β, α) eigenvalue.

In the following, we consider the (right) deflating subspace X belonging
to the eigenvalues (tn+1,n,−tn,n+1), . . . , (t2n,1,−t1,2n). We assume X to be
simple which is equivalent to requiring that none of the eigenvalues has the
form (α, α) or (α,−α). Let the columns of X and X⊥ form orthonormal bases
for X and X⊥, respectively. Then Lemma 4.46 implies a structured generalized
block Schur decomposition of the form

[X⊥, X]T (A,−AT )[X,X⊥] =
([

A11 A12

0 A22

]
,−
[

AT
22 AT

12

0 AT
11

])
with A11, A22 ∈ C

n×n. Consider the associated generalized Sylvester operator

Tl : (Qr, Ql) �→ (A22Qr + QlA11, A
T
11Qr + QlA

T
22),

then the unstructured condition number for X is determined by ‖T−1
l ‖, see

Section 2.2.2.
Under structured perturbations it is more appropriate to restrict the op-

erator Tl to the sets

N =
{
XT (E,−ET )X : E ∈ C

2n×2n
}

=
{
(E21,−ET

21) : E21 ∈ C
n×n
}

and T−1
l N = N . Then, similar as in Section 4.1.1, it can be shown that the

structured condition number of X with respect to palindromic perturbations
is determined by ‖T−1

s ‖, where Ts := T
∣∣
N→N [83]. Moreover

N⊥ =
{
(E21, E

T
21) : E21 ∈ C

n×n
}

and hence T : N⊥ → N⊥, which implies

‖T−1‖ = max
{
‖T−1

s ‖, ‖T−1
u ‖
}

with Tu := T
∣∣
N⊥→N⊥ .

The expressions for ‖T−1
s ‖ and ‖T−1

u ‖ can be simplified by considering
the Sylvester-like operators

Ss : Q �→ A22Q + QT A11, Su : Q �→ A22Q−QT A11.

It is simple to show ‖T−1
s ‖ = ‖S−1

s ‖/
√

2 and ‖T−1
u ‖ = ‖S−1

u ‖/
√

2.

Example 4.47. For n = 1, we obtain

‖T−1
s ‖ =

1√
2|A22 + A11|

, ‖T−1
u ‖ ==

1√
2|A22 −A11|

.

Hence, if A22/A11 is close to one, the sensitivity of X with respect to un-
structured perturbations can be much larger than with respect to structured
perturbations. ♦
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The preceeding example suggests that if (A,−AT ) has eigenvalues close to
−1 it is important to preserve palindromic structures. There is currently no
variant of the QR or QZ algorithm known that fulfills this requirement. How-
ever, in [166] it is demonstrated how the Jacobi-like algorithm developed by
Mehl [239] for indefinite generalized Hermitian eigenvalue problems can be
adapted to palindromic eigenvalue problems.



A

Background in Control Theory

Who controls the past controls the future: who controls the
present controls the past. —George Orwell, “1984”

This chapter attempts to give a brief introduction to some concepts of sys-
tems and control theory. The presentation is restricted to subjects closely
related to this book; either because an algorithm for computing eigenvalues is
better understood in a control theoretic setting or such an algorithm can be
used for the analysis and design of control systems. Unless otherwise stated,
the material presented in this chapter has been compiled from the mono-
graphs [148, 265, 285, 329, 368], which should be consulted for proofs and
further details.

A.1 Basic Concepts

A continuous-time linear time-invariant (LTI) system can be described by a
set of matrix differential and algebraic equations

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (A.1a)
y(t) = Cx(t), (A.1b)

where x(t) ∈ R
n is the vector of states, u(t) ∈ R

m the vector of inputs (or
controls) and y(t) ∈ R

r the vector of outputs at time t ∈ [0,∞). The system is
described by the state matrix A ∈ R

n×n, the input (control) matrix B ∈ R
n×m,

and the output matrix C ∈ R
r×n. The two equations (A.1a) and (A.1b) are

referred to as state and output equation, respectively.
In practice, however, the dynamics of a process is described by physical

laws that rarely lead to LTI systems. The importance of such systems stems
from the fact that many computational tasks related to (A.1) are mathemat-
ically well understood and can be solved with reliable numerical algorithms.
Often, discretization and linearization techniques are used to construct LTI
systems.

Example A.1. Consider the one-dimensional heat equation on a thin wire:
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∂a(t, z)
∂t

=
∂a(t, z)

∂z2
, a(0, z) = a0(z), (A.2)

where a(t, z) denotes the temperature of the wire at time t ∈ [0,∞) and
location z ∈ Ω := [0, 1]. The function a0 : Ω → R is the initial tempera-
ture distribution. Heating or cooling the ends of the wire corresponds to the
boundary conditions

a(t, 0) = al(t), a(t, 1) = ar(t). (A.3)

Only the temperature am at the center of the wire is measured, i.e.,

am(t) = a(t, 1/2). (A.4)

Equations (A.2)–(A.4) constitute one of the simplest examples for the bound-
ary control of a partial differential equation. Let us now partition the wire
into N pieces of length h = 1/N and restrict the state variables to the inner
end points of these pieces,

x(t) =
[
a(t, h), a(t, 2h), . . . , a(t, (N − 1)h)

]T
.

The second derivative in (A.2) is discretized with the central difference quo-
tient,

∂a(t, z)
∂z2

≈ a(t, z − h)− 2a(t, z) + a(t, z + h)
h2

,

which yields the approximate state equation

ẋ(t) = Ax(t) + B

[
al(t)
ar(t)

]
, (A.5)

where

A =
1
h2

⎡
⎢⎢⎢⎢⎣
−2 1

1
. . . . . .
. . . . . . 1

1 −2

⎤
⎥⎥⎥⎥⎦ , B =

1
h2

[
e1 eN−1

]
. (A.6)

The approximate output equation is given by

am(t) ≈ y(t) = Cx(t), (A.7)

with C = eT
(N−1)/2, provided that N is odd. ♦

The tractability of LTI systems owns much to the fact that there is a
considerably simple formula describing the state for a given input.

Theorem A.2. Let the input vector u : [0,∞) → R
m be piecewise continuous.

Then the unique solution of the state equation (A.1a) is given by
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x(t) = Φ(u;x0; t) := eAtx0 +
∫ t

0

eA(t−τ)Bu(τ) dτ, (A.8)

where

eAt := In + At +
(At)2

2!
+

(At)3

3!
+ . . . .

Plugging (A.8) into the output equation (A.1b) gives

y(t) = CeAtx0 +
∫ t

0

CeA(t−s)Bu(s) ds, (A.9)

yielding an input-output map u(·) → y(·).

A.1.1 Stability

For the moment, let us consider the homogeneous system

ẋ(t) = Ax(t), x(0) = x0. (A.10)

Stability is concerned with the long-time behavior of the solution trajectory
x(·).

Definition A.3.

1. The system (A.10) is called asymptotically stable if for each x0 the solu-
tion x(t) satisfies lim

t→∞
x(t) = 0.

2. If for each x0 there exists a constant C > 0 so that ‖x(t)‖ ≤ C for all
t > 0 then the system is called stable.

3. In any other case, the system is called unstable.

Stability can be completely characterized in terms of the eigenvalues of
the state matrix A, which are commonly called the poles of the linear system.
This can be proven using the following connection between the spectral radius
and matrix norms.

Lemma A.4 ([164]). Let

ρ(A) := max{|λ| : λ is an eigenvalue of A}

denote the spectral radius of A.

1. The spectral radius is dominated by any induced matrix norm ‖ · ‖, i.e.,
ρ(A) ≤ ‖A‖.

2. For each ε > 0 and A ∈ R
n×n there exists a vector norm ‖ · ‖ on R

n so
that the induced matrix norm satisfies ‖A‖ ≤ ρ(A) + ε.

3. Moreover, there is an induced matrix norm satisfying ‖A‖ = ρ(A) if and
only if each eigenvalue λ of A with |λ| = ρ(A) has equal algebraic and
geometric multiplicities, i.e., λ is semi-simple.
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Applying this lemma to bound the norm of the solution eAtx0 yields the
following relations.

Theorem A.5.

1. The system (A.10) is asymptotically stable if and only if λ(A) ⊂ C
−, i.e.,

all eigenvalues of A have negative real part.
2. The system (A.10) is stable if and only if λ(A) ⊂ C

−∪ ıR and each purely
imaginary eigenvalue is semi-simple.

The definition of stability assumes that the initial condition x0 may take
any value in R

n. If we restrict the possible x0 to an invariant subspace U
of A then U is also an invariant subspace of eAt and thus x(t) ∈ U for all
t ≥ 0. Hence, in this case, the restriction of A restricted to U rather than A
itself truly reflects the stability of such systems. Let us now decompose R

n =
U−⊕U0⊕U+, where U−, U0 and U+ are the maximal invariant subspaces of
A associated with eigenvalues in C

−, ıR and C
+, respectively. Then x(t) → 0

if and only if x0 ∈ U− and ‖x(t)‖ ≤ C if and only if x0 ∈ U− ⊕ U0. This is
the motivation to call U− the asymptotically stable, U− ⊕ U0 the stable and
U+ the unstable subspace of (A.10).

A.1.2 Controllability and Observability

Let us now focus on the state equation

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (A.11)

Such a system is said to be controllable if for any initial state x0 ∈ R
n and

any prescribed final state xf ∈ R
n there exist a time tf and a control u(t) so

that the solution of (A.11) satisfies x(tf ) = xf . For linear systems it can be
assumed w.l.o.g. that xf = 0. Controllability can be completely characterized
in terms of algebraic criteria.

Theorem A.6. The following statements are equivalent:

1. the linear system (A.11) is controllable;
2. rank([B,AB, . . . , An−1B]) = n;
3. rank([A− λI,B]) = n, ∀λ ∈ λ(A).

If the system (A.11) is controllable, the matrix pair (A,B) is called control-
lable.

Remark A.7. For the single-input case (m = 1), the second condition in The-
orem A.6 shows that a linear system is controllable if and only if the Krylov
subspace Kn(A,B) equals R

n. This in turn implies the equivalent condition
that the Arnoldi method, Algorithm 15, with starting vector u1 = B does not
break down. ♦
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Similar to the notion of stable and unstable subspaces we can partition the
space R

n into a controllable subspace C and an uncontrollable subspace C⊥.
Any initial condition x0 ∈ C is characterized by the fact that there is a con-
trol u(t) that drives the solution of (A.11) to zero. For m = 1, the relation
Kn(A,B) = C reveals once again the close relationship between Krylov sub-
spaces and controllability, see also [54].

A matrix pair (C, A) (or an associated linear system) is called observable
if (AT , CT ) is controllable. Theorem A.6 applied to (AT , CT ) yields algebraic
criteria for detecting observability.

In some cases, controllability is too much to ask for. If the aim of control
is to stabilize a given system it is sufficient that states not belonging to the
asymptotically stable subspace U− of the homogeneous system ẋ(t) = Ax(t)
can be driven to zero, i.e., C ⊆ U0 ∪ U+. Any matrix pair (or linear system)
satisfying this requirement is called stabilizable. Correspondingly, a matrix
pair (C, A) (or an associated linear system) is called detectable if (AT , CT ) is
stabilizable.

A.1.3 Pole Placement

The control u(·) may be used to influence the behavior of a linear sys-
tem (A.11). Often, this control is based on information contained in the state
vector x(·). A particular choice is the linear state feedback

u(t) = −Kx(t), (A.12)

where K ∈ R
m×n is the so called feedback matrix. The corresponding closed-

loop system takes the form

ẋ(t) = (A−BK)x(t). (A.13)

We have already seen that the long-time behavior of a linear system is deter-
mined by its poles, i.e., the eigenvalues of its state matrix. It is thus desirable
to choose a feedback matrix K so that the eigenvalues of A−BK are moved
to a specified region in the complex plane. The following theorem shows that
the poles of a controllable system can be allocated to essentially any desired
places in the complex plane.

Theorem A.8. Let Σ denote a set of at most n numbers closed under complex
conjugation. For any such Σ, there exists a matrix K ∈ R

m×n so that λ(A−
BK) = Σ if and only if the matrix pair (A,B) is controllable.

In the presence of roundoff errors, pole assignment usually becomes a rather
delicate issue, see [329, Sec. 4.1] or the discussion in Section 1.5.4.

A.2 Balanced Truncation Model Reduction

Model reduction aims at approximating an LTI system (A.1) by a reduced LTI
system with a similar input-output-behavior but with a much smaller number
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ñ � n of states. In the following, we assume (A.1) to be asymptotically stable,
i.e., the state matrix A has only eigenvalues in the open left half plane.

Balanced truncation, which is among the most popular model reduction
techniques, is closely related to the two Lyapunov equations

AP + PAT = −BBT , AT Q + QA = −CT C, (A.14)

see, e.g., [11]. The solutions P and Q, which are unique and symmetric positive
definite, are called the controllability and observability Gramians, respectively.
One can also directly compute Cholesky factors R and S with P = ST S and
Q = RT R, see [153, 175].

Balanced truncation proceeds by computing a singular value decomposi-
tion

RST = UΣV T ,

where U, V are orthogonal matrices and Σ is a diagonal matrix,

Σ = diag(σ1, . . . , σn),

with the so called Hankel singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Next, the
state transformation matrix T = ST UΣ−1/2 is applied:

Ã = T−1AT, B̃ = T−1B, C̃ = CT.

The transformed system is balanced, i.e., the corresponding Gramians P̃ and
Q̃ are given by P̃ = Q̃ = Σ. This balanced system is reduced by maintaining
only these parts that belong to non-negligible Hankel singular values. If the
Hankel singular value σñ+1 is considered to be negligible then we partition

Ã =
[

Ã11 Ã12

Ã21 Ã22

]
, B̃ =

[
B̃1

B̃2

]
, C̃ =

[
C̃1 C̃2

]
,

with Ã11 ∈ R
ñ×ñ, B̃1 ∈ R

ñ×m and C̃1 ∈ R
r×ñ. This gives rise to the reduced

system

˙̃x(t) = Ã11x̃(t) + B̃1u(t), (A.15a)

y(t) = C̃1x̃(t). (A.15b)

It can be shown that the so called H∞ norm of the difference between the
reduced system (A.15) and the original system (A.1) can be bounded from
above by twice the sum of the neglected singular values, 2(σñ+1 + · · ·+ σn).

A.3 Linear-Quadratic Optimal Control

The linear-quadratic optimal control problem has the following form:
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Minimize J(u(·)) =
1
2

∫ ∞

0

(
y(t)T Qy(t) + u(t)T Ru(t)

)
dt subject to (A.1),

where Q ∈ R
n×n, R ∈ R

m×m are symmetric matrices, Q = MT M is positive
semidefinite and R is positive definite. Closely related is the continuous-time
algebraic Riccati equation (CARE)

CT QC + XA + AT X −XGX = 0, (A.16)

where G = BR−1BT .
If the matrix pair (A,B) is stabilizable and the matrix pair (A,MB) is

detectable, then there exists a unique optimal control u�(·) that minimizes
J(u(·)). This solution can be written as a linear state feedback

u�(t) = −R−1BT X�x(t),

where X� is the unique solution of CARE (A.16) that yields an asymptotically
stable closed-loop system

ẋ = (A−GX�)x(t).

Note that X� is symmetric and positive semidefinite.
Solutions of CARE (A.16) can be obtained from certain invariant sub-

spaces of the Hamiltonian matrix

H =
[

A G
−CT QC −AT

]
.

To see this, suppose X is a symmetric solution of (A.16). Then

H

[
In 0
−X In

]
=
[

In 0
−X In

] [
A−GX G

0 −(A−GX)T

]
.

Hence, the columns of
[
In,−XT

]T span an invariant subspace of H belonging
to the eigenvalues of A − GX. This implies that we can solve CAREs by
computing invariant subspaces of H. In particular, if we want the solution
that stabilizes the closed-loop system, we need the stable invariant subspace.
Suppose that a basis of this subspace is given by the columns of [XT

1 , XT
2 ]T

with X1, X2 ∈ R
n×n then, under the given assumptions, X1 is invertible

and X� = −X2X
−1
1 is the stabilizing solution of (A.16). It should be noted,

though, that often the CARE is a detour. In feedback control, the solution
of CARE can usually be avoided by working only with invariant subspaces,
see [33, 240].

A.4 Distance Problems

Measurement, roundoff, linearization and approximation errors introduce un-
certainties in the system matrices defining a linear system (A.1). In order to
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guarantee a certain qualitative behavior despite these errors it is of interest
to find the smallest perturbation under which a linear system loses a certain
desirable property.

A.4.1 Distance to Instability

Finding the norm of the smallest perturbation that makes an asymptotically
stable system ẋ(t) = Ax(t) unstable amounts to the computation of the sta-
bility radius of A, which is defined as

γ(A) := min{‖E‖2 : λ(A + E) ∩ ıR �= ∅}.

A bisection method for measuring γ(A) can be based on the following obser-
vation [79]: if α ≥ 0, then the Hamiltonian matrix

H(α) =
[

A −αIn

αIn −AT

]
has an eigenvalue on the imaginary axis if and only if α ≥ γ(A). This suggests
a simple bisection algorithm. Start with a lower bound β ≥ 0 and an upper
bound δ > γ(A) (an easy-to-compute upper bound is ‖A + AT ‖F /2 [332]).
Then in each step, set α := (β + δ)/2 and compute λ(H(α)). If there is an
eigenvalue on the imaginary axis, choose δ = α, otherwise, set β = α.

The correct decision whether H(α) has eigenvalues on the imaginary axis is
crucial for the success of the bisection method. Byers [79] has shown that if the
eigenvalues of H(α) are computed by a strongly backward stable method, then
the computed γ(A) will be within an O(u) ‖A‖2-distance of the exact stability
radius. The proof is based on the observation that −γ(A) is an eigenvalue of
the Hermitian matrix [

0 −AT + ıωI
−AT − ıωI 0

]
,

for some ω ∈ R, and an application of the Wielandt-Hoffmann theorem [141]
to this matrix.

A.4.2 Distance to Uncontrollability

The distance of an controllable matrix pair (A,B) to an uncontrollable one is
defined as

ρ(A,B) = min{‖[E,F ]‖2 : (A + E,B + F ) is uncontrollable}. (A.17)

The matrix pair (E,F ) = (0,−B) is an admissible perturbation, thus the
search space can be restricted to perturbations that satisfy ‖[E,F ]‖2 ≤ ‖B‖2,
implying that the minimum in (A.17) can actually be attained.

Eising [119] has shown how the multi-parameter optimization problem
(A.17) can be reduced to a complex one-parameter optimization problem.
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Theorem A.9. Let A ∈ C
n×n, B ∈ C

n×m and let µ∗ ∈ C be a minimizer
of f(µ) = σmin([A − µI, B]). Moreover, let u∗ and v∗ be the corresponding
left and right singular vectors. Then with [E,F ] = −f(µ�)u∗v

H
∗ we obtain a

perturbation that solves the minimization problem (A.17).

A number of algorithms for minimizing σmin([A−µI, B]) have been devel-
oped, see [149, 74] for some recent developments in this area, a more compre-
hensive list of references can be found in [62]. As far as we know, none of these
algorithms is capable to produce a reliable estimate of (A.17) within O(n3)
flops, making them unattractive for certain purposes, such as computing the
optimal reducing perturbation for aggressive early deflation, see Section 1.6.
Another dissatisfying aspect of Theorem A.9 is that the optimal perturbation
[E,F ] is generally complex even if the matrices A and B are real.

A cheap alternative has been proposed by Braman, Byers and Mathias [62],
which is particularly suitable for small ρ(A,B). In this case, the minimizer
µ� nearly makes the matrix A − µ�I singular. Hence, if the eigenvalues of
A are sufficiently well conditioned, then µ� will be close to an eigenvalue of
A. This suggests to restrict the search for minimizers of σmin([A − µI,B])
to λ(A). Assume that the eigenvalue λ� of A minimizes σmin([A − µI, B])
among all µ ∈ λ(A) and let y be a normalized left eigenvector belonging to
λ�. Then the left and right singular vectors u� and v� used in Theorem A.9
can be approximated by the vectors y and [0, b̃H ]H/‖b̃‖2, where b̃H = yHB.
The corresponding perturbation that makes (A,B) uncontrollable is given by
[E,F ] = −‖b̃‖2 [0, yb̃H ]. If A and B are real but λ� ∈ λ(A) is complex, we
can make use of the real perturbation [E,F ] = −[0, Y B̃], where B̃ = Y T B
and the columns of Y ∈ R

n×2 form an orthonormal basis for the invariant
subspace belonging to {λ�, λ̄�}.

This leads to a simple algorithm for computing an upper bound on ρ(A,B)
for real A and B. First, a real Schur decomposition of A = UTUT is computed.
Let us partition T =

[
T11
0

T12
T22

]
, where T22 is either a real eigenvalue or a 2×2

block containing a pair of complex conjugate eigenvalues, and correspondingly
UT B =

[
�
B̃

]
. Then ρ(A,B) ≤ ‖B̃‖2. To find the optimal upper bound that can

be obtained in this fashion, we must test any other possible T22 by reordering
other real eigenvalues or complex conjugate pairs of eigenvalues to the bottom
right corner of T . If standard reordering techniques as described in Section 1.7
are used, then the described algorithm requires O(n3) flops.
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Software

The history of reliable high quality software for numerical linear
algebra started with the book edited by Wilkinson and Reinsch,
the Handbook for Automatic Computation, Vol. 2, Linear
Algebra, published in 1971.
—Gene Golub and Henk A. van der Vorst [140]

B.1 Computational Environment

If not otherwise stated, we have used an IBM Power3 based SMP system for
performing the numerical experiments described in this book. The facilitated
computer system has four 375 Mhz Power3 Processors and 4 gigabytes of
memory. All performance measurements are based on Fortran 77 implemen-
tations utilizing BLAS [108, 109, 213] and standard LAPACK [10] routines.
We have used the BLAS kernels provided by IBM’s machine-specific opti-
mized Fortran library ESSL. All implementations were compiled with the XL
Fortran compiler using optimization level 3. Matrices were always stored in
an array with leading dimension slightly larger than the number of rows to
avoid unnecessary cache conflicts.

B.2 Flop Counts

We count the execution of an elementary operation +,−, ·, /,
√
· as one float-

ing point operation (flop) per execution if the arguments are real numbers.
This fairly reflects the amount of computational work required for +,− and ·;
on nowadays processors one execution of these functions usually requires one
clock cycle. The same cannot be said about / and

√
·; in our computing en-

vironment the division of two random numbers takes 2.1 and the square root
of a random number takes 8.3 clock cycles at an average. Consequently, one
should count these functions separately. To simplify counting we abstain from
doing so, in none of our considered algorithms do divisions and square roots
contribute significantly to the computational burden. We do not count oper-
ations on integer or boolean variables, except in cases where such operations
constitute a major part of the computational work.
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Task Inputs Flops

γ ← α + β α, β ∈ C 2
γ ← α − β α, β ∈ C 2
γ ← α · β α, β ∈ C 6
γ ← α · β α ∈ C, β ∈ R 2
γ ← α/β α, β ∈ C 9∗

γ ← α/β α ∈ C, β ∈ R 2

∗ Using Smith’s formula [292].

Table B.1. Flops of elementary functions with complex arguments.

BLAS Task Inputs Flops

DAXPY y← αx + y x, y ∈ R
n, α ∈ R 2n

DDOT α← xT y x, y ∈ R
n 2n − 1∗

DNRM2 α← ‖x‖2 x ∈ R
n 2n − 1∗

DROT [ x, y ]← [ x, y ]
[

c
s

−s
c

]
x, y ∈ R

n, c, s ∈ R 6n
DSCAL x← αx x ∈ R

n, α ∈ R n

ZAXPY y← αx + y x, y ∈ C
n, α ∈ C 8n

ZDOT α← xHy x, y ∈ C
n 8n − 2∗

ZNRM2 α← ‖x‖2 x ∈ C
n 8n − 2∗

ZROT [ x, y ]← [ x, y ]
[

c
s

−s̄
c

]
x, y ∈ R

n, c ∈ R, s ∈ C 18n
ZSCAL x← αx x ∈ C

n, α ∈ C 6n

∗ Depending on the implementation the flop count may be slightly
higher to avoid under-/overflow and subtractive cancellation.

Table B.2. Flops of level 1 basic linear algebra subroutines (BLAS).

B.3 Software for Standard and Generalized Eigenvalue
Problems

The state-of-the-art production code implementations of the QR and QZ al-
gorithms can be found in the LAPACK software library [10]. These implemen-
tations are doomed to get replaced by variants of the QR and QZ algorithms
that employ the multishift and aggressive early deflation strategies described
Chapters 1 and 2, see [104] for the prospective developments of LAPACK.
The Matlab functions eig, schur, and qz are all based on the correspond-
ing LAPACK routines.

Arpack [216] is among the most widely used software packages for com-
puting a few eigenvalues and eigenvectors of a large, possibly sparse ma-
trix (pair); it represents a comprehensive implementation of the implicitly
restarted Arnoldi algorithm described in Chapter 3. The Matlab function
eigs is based on Arpack.
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BLAS Task Inputs∗ Flops

DGEMV y← αAx + βy x ∈ R
n, y ∈ R

m 2mn + m + n
DGER A← A + αxyT x ∈ R

m, y ∈ R
n 2mn + n

DSYMV y← αSx + βy x ∈ R
n, y ∈ R

n 2n2 + 4n
DSYR S ← αS + xxT x ∈ R

n, α ∈ R n2 + 2n
DSYR2 S ← S + αxyT + αyxT x, y ∈ R

n 2n2 + 4n
DTRMV x← Tx x ∈ R

n n2

DTRMV x← Ux x ∈ R
n n2 − n

DTRSV x← T−1x x ∈ R
n n2

DTRSV x← U−1x x ∈ R
n n2 − n

ZGEMV y← αAx + βy x ∈ C
n, y ∈ C

m 8mn + 6(m + n)
ZGERC A← A + αxyH x ∈ C

m, y ∈ C
n 8mn + 6n

ZHEMV y← αHx + βy x ∈ C
n, y ∈ C

n 8n2 + 16n
ZHER H ← αH + xxH x ∈ C

n 4n2 + 5n
ZHER2 H ← H + αxyH + ᾱyxH x, y ∈ C

n 8n2 + 19n
ZTRMV x← Tx x ∈ C

n 4n2 + 2n
ZTRMV x← Ux x ∈ C

n 4n2 − 4n
ZTRSV x← T−1x x ∈ C

n 4n2 + 5n
ZTRSV x← U−1x x ∈ C

n 4n2 − 4n

∗ In all subroutines, A ∈ K
m×n, H ∈ C

n×n Hermitian, S ∈ R
n×n sym-

metric, T ∈ K
n×n upper triangular, U ∈ K

n×n unit upper triangular
and α, β ∈ K.

Table B.3. Flops of level 2 BLAS.

BLAS Task Inputs∗ Flops

DGEMM C ← αAB + βC A ∈ R
m×k, B ∈ R

k×n 2kmn + mn
DSYMM C ← αAB + βC A ∈ R

m×m, A = AT , B ∈ R
m×n 2m2n + 3mn

DTRMM C ← αTC m2n + mn
DTRMM C ← αUC m2n

∗ In all subroutines, C ∈ K
m×n, H ∈ C

n×n Hermitian, S ∈ R
n×n

symmetric, T ∈ K
m×m upper triangular, U ∈ K

m×m unit upper
triangular and α, β ∈ K.

Table B.4. Flops of selected level 3 BLAS.
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LAPACK Task Flops∗

DLARF Multiplies a Householder matrix (I − βvvT ) ∈ R
m×m 4mn

with a general m × n matrix.

DLARFG Generates v ∈ R
m, β ∈ R defining a Householder 3m

matrix H1(x) = I − βvvT for a given vector x ∈ R
m.

DLARFX Multiplies a Householder matrix (I − βvvT ) ∈ R
m×m 4mn − n

with a general m × n matrix. Inline code is used for
m < 11.

∗ Only high order terms are displayed.

Table B.5. Flops of a few LAPACK subroutines.

Arpack and LAPACK are both available online from Netlib (http://
www.netlib.org.

B.4 Software for Structured Eigenvalue Problems

In the following, we list a few software packages for structured eigenvalue
problems; a more comprehensive and up-to-date list can be obtained from the
web page of this book.

B.4.1 Product Eigenvalue Problems

There exist several implementations of the periodic QR and QZ algorithms for
solving real product eigenvalue problems [40, 197, 224]. An implementation of
the periodic QZ algorithm for complex periodic eigenvalue problems is avail-
able online from http:/www.math.tu-berlin.de/∼kressner/periodic/.

B.4.2 Hamiltonian and Skew-Hamiltonian Eigenvalue Problems

HAPACK [37] is a collection of Fortran 77 routines aimed at computing eigen-
values and invariant subspaces of skew-Hamiltonian or Hamiltonian matri-
ces. All routines satisfy the SLICOT [40] implementation and documentation
standards [366] and most routines come with test routines as well as exam-
ple input and output data. Also available are a couple of MEX files and
Matlab functions providing user-friendly access to the most important fea-
tures of HAPACK. In the following, we only give a brief summary of the
available routines. Interested users are referred to the HAPACK web page
http://www.tu-chemnitz.de/mathematik/hapack/ for further information.
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Driver routines

DHAESU Computes the eigenvalues and the symplectic URV/periodic Schur
decomposition of a Hamiltonian matrix.

DHASUB Computes stable and unstable invariant subspaces of a Hamiltonian
matrix from the output of DHAESU.

DSHES Computes the skew-Hamiltonian Schur decomposition of a skew-Hamiltonian
matrix.

DSHEVX Computes the eigenvalues and eigenvectors of a skew-Hamiltonian
matrix, with preliminary balancing of the matrix, and computes reciprocal
condition numbers for the eigenvalues and some eigenvectors.

Computational routines

DGESQB Symplectic QR decomposition of a general matrix. Blocked version.
DGESQR Symplectic QR decomposition of a general matrix. Unblocked version.
DGESUB Symplectic URV decomposition of a general matrix. Blocked version.
DGESUV Symplectic URV decomposition of a general matrix. Unblocked ver-

sion.
DHABAK Applies the inverse of a balancing transformation, computed by the

routines DHABAL or DSHBAL.
DHABAL Symplectic balancing of a Hamiltonian matrix.
DHAORD Reorders the (skew-)Hamiltonian Schur decomposition of a (skew-)

Hamiltonian matrix.
DHAPVB PVL decomposition of a Hamiltonian matrix. Blocked version.
DHAPVL PVL decomposition of a Hamiltonian matrix. Unblocked version.
DHGPQR Periodic Schur decomposition of a product of two matrices.
DOSGPV Generates the orthogonal symplectic matrix U from a PVL decom-

position determined by DHAPVL or DSHPVL.
DOSGSB Generates all or part of the orthogonal symplectic matrix Q from a

symplectic QR decomposition determined by DGESQB or DGESQR. Blocked
version.

DOSGSQ Generates all or part of the orthogonal symplectic matrix Q from
a symplectic QR decomposition determined by DGEQRB or DGEQRS. Un-
blocked version.

DOSGSU Generates the orthogonal symplectic matrices U and V from a sym-
plectic URV decomposition determined by DGESUB or DGESUV.

DOSMPV Applies the orthogonal symplectic matrix U from a PVL decomposi-
tion determined by DHAPVL or DSHPVL to a general matrix.

DOSMSB Applies all or part of the orthogonal symplectic matrix Q from a sym-
plectic QR decomposition determined by DGESQB or DGESQR to a general
matrix. Blocked version.

DOSMSQ Applies all or part of the orthogonal symplectic matrix Q from a sym-
plectic QR decomposition determined by DGESQB or DGESQR to a general
matrix. Unblocked version.
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DSHBAL Symplectic balancing of a skew-Hamiltonian matrix.
DSHEVC Eigenvectors of a skew-Hamiltonian matrix in skew-Hamiltonian Schur

form.
DSHPVB PVL reduction of a skew-Hamiltonian matrix. Blocked version.
DSHPVL PVL reduction of a skew-Hamiltonian matrix. Unblocked version.
DSHSNA Computes reciprocal condition numbers for the eigenvalues and some

eigenvectors of a skew-Hamiltonian matrix in skew-Hamiltonian Schur
form.

Matlab functions for Hamiltonian matrices

habalance.m Symplectic scaling to improve eigenvalue accuracy.
haconv.m Converts a Hamiltonian matrix between various data representa-

tions.
haeig.m Eigenvalues of a Hamiltonian matrix.
hapvl.m PVL decomposition of a Hamiltonian matrix.
haschord.m Reorders Schur form of a Hamiltonian matrix.
hastab.m Complete stable/unstable invariant subspaces of a Hamiltonian

matrix.
hasub.m Selected stable/unstable invariant subspaces of a Hamiltonian ma-

trix.
haurv.m Symplectic URV decomposition of a general matrix.
haurvps.m Symplectic URV/periodic Schur decomposition of a general ma-

trix.

Matlab functions for skew-Hamiltonian matrices

shbalance.m Symplectic scaling to improve eigenvalue accuracy.
shcondeig.m Structured condition numbers for eigenvalues and eigenvectors

of a skew-Hamiltonian matrix.
shconv.m Converts a skew-Hamiltonian matrix between various data repre-

sentations.
sheig.m Eigenvalues and eigenvectors of a skew-Hamiltonian matrix.
shpvl.m PVL decomposition of a skew-Hamiltonian matrix.
shschord.m Reorders Schur form of a skew-Hamiltonian matrix.
shschur.m Skew-Hamiltonian Schur form of a skew-Hamiltonian matrix.
shsep.m Structured condition number for an isotropic invariant subspace of

a skew-Hamiltonian matrix.

B.4.3 Other Structures

The ACM Collected Algorithms (CALGO) (http://www.netlib.org/toms)
is a repository of software associated with papers published in the Transactions
on Mathematical Software. It contains the following implementations related
to structured eigenvalue problems.
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530: Eigenvalues and eigenvectors of real skew-symmetric matrices [347].
730: Eigenvalues and eigenvectors of unitary matrices based on a divide and

conquer approach [9].
800: Eigenvalues of Hamiltonian matrices using the square-reduced method

[31].
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172. C. G. J. Jacobi. Über ein leichtes Verfahren die in der Theorie der
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diagonal block matrix 156
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to instability 222
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eigenvalue 2

condition number 8
generalized see generalized
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semi-simple 217
simple 6
structured condition number
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condition number 13, 154
global perturbation bound 16
perturbation expansion 11
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condition number 10
generalized 68
left 2
perturbation expansion 7
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flops 225

application of WY representation
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elementary functions 226
implicit shifted QR iteration 29
LAPACK 228
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QR algorithm 31
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eigenvalue condition number 193
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invariant subspace 195, 199
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matrix 175
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DHASUB 201
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and QR iteration 25
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implicit Q theorem 28
incidence graph 127
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representation 2
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stable 194
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matrix 127
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Krylov decomposition 122
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deflation 124–126
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periodic 168
restarting 122

Krylov matrix 25, 114
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Krylov subspace 114
convergence 115
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DTGEXC 111
DTGSEN 75
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linear system
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unstable 217

linear-quadratic optimal control 220
and QR algorithmq 63

Lyapunov equation 196, 220

matrix pair 68
controllable 218
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observable 219
regular 68
stabilizable 219

model reduction 219

nonderogatory matrix 183
numerical equivalence 158

orthogonal matrix 211
orthogonal symplectic

block representation 177
elementary matrix 176
WY representation 179

output equation 215
output matrix 215

palindromic matrix pair 212
panel 42

reduction 43
pattern matrix 134

for Hamiltonian matrix 135
for symplectic matrix 137

perfect shuffle 135, 155
periodic

Arnoldi decomposition 166
Arnoldi method 167
eigenvalue problem see product

eigenvalue problem
Hessenberg form 159, 169
invariant subspace 149

computation 163–164
Krylov decomposition 168

deflation 171
restarting 169

Krylov-Schur decomposition 169
QR algorithm 155–163
QZ algorithm 174

Schur form 147
Sylvester equation 152

permutation
elementary 36
perfect shuffle 156
symplectic generalized 202

Perron vector 128
persymmetric matrix 210
perturbation expansion

cluster of eigenvalues 11
eigenvalue 7
eigenvector 7
generalized eigenvalue 72
invariant subspace 11

pole placement 219
and QR iteration 45

poles 217
product eigenvalue problem 146

and centrosymmetric matrices 211
generalizations 174
perturbation analysis 149–154
software 228

pseudospectrum 137
PVL decomposition

Hamiltonian matrix 192
skew-Hamiltonian matrix 181

QR algorithm 32
Hamiltonian 194
periodic 155–163

QR iteration 18
and cyclic block matrices 160
and pole placement 45
convergence 19–24
failure of convergence 34–35
forward instability 121
implicit shifted 27–30
shifted 22
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QZ algorithm 90
combination shift 83

QZ iteration 76
based on Householder matrices 85
convergence 76
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Rayleigh
matrix 64
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Ritz value 118
Ritz vector 118
RQ decomposition update 86

Schur form
block 3
generalized 69
of a block cyclic matrix 149
of a cyclic block matrix 156
of a Hamiltonian matrix 192
of a skew-Hamiltonian matrix 185
of a skew-symmetric matrix 209
of a symmetric matrix 209
periodic 147
real 3
reordering 57–63

sep 5
computation 15, 152

shift blurring
in QR algorithm 45
in QZ algorithm 100

shifts
and shift polynomial 18
exceptional 34
Francis 22
generalized Francis 76
instationary 22
stationary 20
Wilkinson 35

SHIRA 190
singular value decomposition 18
skew-Hamiltonian

block diagonalization 184
block Schur decomposition 187
eigenvalue condition number 186
invariant subspace condition number

188
matrix 175
matrix pair 191
PVL decomposition 181
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skew-symmetric matrix 209
spectral projector 4

left 70
norm 5
right 70

spectral radius 217

square-reduced method 196
stability radius 222
state equation 215

solution of 216
state matrix 215
stiffness matrix 64
strongly connected component 127
structured backward error 144
structured condition number

Carrollian tuple 154
eigenvalue 133–137, 186, 193
invariant subspace 139–144, 188,

194
periodic invariant subspace 151

subspace
asymptotically stable 218
controllable 219
invariant see invariant subspace
isotropic 187
Lagrangian 187
stable 218
uncontrollable 219
unstable 218

SVD see singular value decomposition
swapping

in generalized Schur form 109
in periodic Schur form 163
in real Schur form 58

Sylvester equation 4
and swapping 58, 109
generalized 70
periodic 152
singular 183

Sylvester operator 5, 150
generalized 70
orthogonal decomposition 140

symmetric matrix 209
symplectic matrix 137, 175

pattern matrix 137
symplectic QR decomposition 177–179

block algorithm 181
symplectic URV decomposition 197
system see linear system

topological order 127

u see unit roundoff
unit roundoff 3
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