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Preface

Interest in electrostatic lenses for the control of ion and (especially) electron
beams is of long standing and has grown considerably in the past few decades. In
addition, recent innovations in the production of low energy positrons have opened
a whole new field of research for which electrostatic lenses are required. This
book makes no attempt to be a comprehensive text on electron and ion optics, but
addresses the need for data on simple lenses consisting of two or three apertures or
cylinders, together with some more complex cylinder lenses which have interesting
properties. There are a number of quite detailed and extensive texts, of which two
recent books, by Hawkes and Kasper [1] and by Szilagyi [2], contain modern
treatments of the subject and are well worth consulting. The book by Harting and
Read [3] which has objectives similar to the present volume has, unfortunately,
been out of print for some years.

The book itself forms an introductory text on electrostatic optics and is
accompanied by a disk containing a program for the IBM personal computer. This
program, which is described in detail in chapter 6 and an appendix, will calculate
the focal and aberration properties of a range of lenses and will also allow the
study of the imaging behaviour between conjugate planes. Ray paths are traced in
the paraxial approximation. A graphical display (Hercules, CGA, EGA or VGA)
is required to run the program, and a maths coprocessor is very desirable. Only
non-relativistic energies are considered and the electrode geometries are all very
simple and easily manufactured.

The text bears some resemblance to courses I have given to first year
postgraduate students over a number of years. The LENSYS program, on the other
hand, is the result of a pressing need for lens data in a readily usable form for
research purposes, and includes a number of lenses which have been found to be
particularly useful for the control of electron and positron beams.

It is a pleasure to acknowledge the contribution made by two former research
students, Dr Roger Cook and Dr Tony Renau, to the development of the Bessel
function expansion method and its application to reveal hitherto unsuspected
interrelationships between the aberration coefficients. I am particularly indebted
to my colleague, Dr Susan Kay, who has worked with the LENSYS program from its

ix



x Preface

earliest manifestation as a number of separate routines. Her suggestions of material
to include or omit, and her assistance in developing a reasonably ‘user-friendly’
interface, have been invaluable.

The principal changes in this new edition are in chapters 3 and 5 though chapter 6
and the appendix have also been substantially revised to reflect the changes in the
LENSYS program itself. Chapter 3 now includes an account of the finite element
method for the solution of the potential problem as well as the boundary element,
finite difference and Bessel function expansion methods, which have all been
expanded. There is a particular emphasis on the FDM, particularly in the nine
point form, because it is the easiest of the methods for the reader to develop from
scratch. The full equations are derived and, with material in the appendix, allow
efficient, convergent programs to be written.

While LENSYS remains a DOS program, the rise in the Windows operating
system and the associated great increases in computer memory since the first
edition have been taken into account.

The LENSYS program has been expanded to include the calculation of the
coefficients of chromatic aberration and the Petzval integral. The solution of
the imaging problem has been extended and now, as well as the ability to find a
focusing voltage appropriate to a specified object/image pair, the image position
can be found for a specified set of potentials even if it lies outside the displayed
screen. Data calculated during the ray tracing process may now be saved to files
for further study and screen copies in colour may now be made via the Windows
clipboard.

D W O Heddle
6 July 2000



1 The optics of simple lenses

1.1 Analogies between particle and photon optics

The actions of lenses and mirrors in controlling beams of light are matters of
everyday experience and it may be helpful to look at some systems which have
similar behaviour in photon and particle optics. The simplest, shown in figure 1.1,
is the plane boundary separating two regions which differ in some property. In the
case of photon optics the important property is the refractive index.

Figure 1.1 (a) Refraction of light at a plane boundary between two
media having refractive indices n1 and n2; and (b) deviation of a beam
of charged particles at a plane boundary separating regions having
potentials V1 and V2.

The path of a ray of light incident non-normally onto the boundary is changed on
crossing the boundary, the directions in the two regions being related by Snell’s law.
The analogue in particle optics is a boundary separating two regions at different
electrostatic potentials. Here we consider a particle having a velocity v1 in the
first region and v2 in the second. These velocities are related to the potentials, V1

1



2 Electrostatic Lens Systems

and V2 in the two regions by

1
2mv2

1 + eV1 = 1
2mv2

2 + eV2 = 0 (1.1)

where e is the particle charge. This expression, which is fundamental to the simple
analysis of electrostatic lenses, defines the zero of potential as that for which the
particle is at rest. The potential changes abruptly at the boundary, but there is no
change parallel to the boundary and so no force parallel to the boundary acts on
the particle. The component of momentum parallel to the boundary is therefore
unchanged and we can write

mv1 sin α1 = mv2 sin α2 (1.2)

where α1 and α2 are the angles between the normal to the boundary and the
path of the particle in the two regions. From equations (1.1) and (1.2) we have
(sin α1)/(sin α2) = (V2/V1)

1/2 which is exactly Snell’s law with V 1/2 playing the
role of the refractive index.

That example was rather artificial, because abrupt changes of potential do not
occur in free space, but can be only approximated by the use of closely spaced grids.
Our second example is more realistic and demonstrates the focusing behaviour of
a lens consequent on curved boundaries. Figure 1.2(a) depicts two regions, having
refractive indices n1 and n2, separated by a spherical boundary of radius R. Rays
of light incident parallel to the axis, at small distances, h2 and h1, from the right
and left are refracted at the boundary in such a way that they cross the axis at
points labelled F1 and F2 respectively. These are the first and second focal points
of this simple lens and the distances measured from the boundary (and here we
assume that h � R so we can define the position of the boundary by the pole, O,
where the boundary cuts the axis) are called the first and second focal lengths and
denoted by f1 and f2 respectively. Remembering that h/R is very small, so the
sines and tangents of the angles can be approximated by the angles themselves,
we can write for the upper part of figure 1.2(a)

n1α1 = n2α2 α1 = h1/R α1 − α2 = h1/f2

and for the lower part

n1α4 = n2α3 α3 = h2/R α3 − α4 = h2/f1.

Eliminating the angles we find

1

f1
= (n1 − n2)

n1

1

R

1

f2
= (n2 − n1)

n2

1

R
. (1.3)

Taking the ratio of these two expressions we see that the ratio of the two
focal lengths is the negative of the ratio of the refractive indices. The sign is a
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(a)

Figure 1.2 (a) Refraction of light at a spherical boundary between two
media having refractive indices n1 and n2. The inset illustrates the sign
convention. The angles α1 and α2 are positive as are the angles between
the rays and the axis at the focal points. Since α3 and α4 are negative,
the angle at F1 is equal to α3 − α4. (b) Paths of charged particles in a
two cylinder lens. The paths become asymptotic to straight lines only
away from the central region of the lens. The values of the equipotential
surfaces, shown in section, are discussed in the text.

consequence of defining the focal lengths as distances measured from the boundary
and taking the pole to be the origin of Cartesian coordinates. The sign convention
for angles is that angles measured from the axis to the ray are positive if the rotation
is clockwise. These conventions lead to angles having the signs of their tangents,
with the two distances involved measured from the right angle. One consequence
of this choice is that the sign of the angle a ray makes with the axis is opposite to
that of dr

dz for that ray. For angles defined with respect to some other direction, such
as a radius (as in figure 1.2(a)) or a second ray (as in figure 1.3), clockwise rotation
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from the ray to the other direction defines the positive sense. In a number of the
figures we have indicated the direction in which angles are measured according to
these conventions.

Figure 1.2(b) illustrates an electrostatic analogue consisting of two coaxial
cylinders separated by half their common diameter for clarity and held at
potentials V1 and V2. No mathematical analysis should be needed to show that,
deep inside each cylinder, the potentials are very close to those of the electrodes,
but within a diameter or so of the centre of the system the potential changes
quite rapidly and we show a number of equipotentials to illustrate this. These are
symmetric about a flat, central, equipotential which has a value of (V2 + V1)/2 and
those to the left have values V1 + (V2 − V1)/2n where n = 2, . . . , 5. Notice that
the paths of the particles are curved and only away from the central region of the
lens do they become asymptotic to straight lines. We shall have more to say about
the curvature later, but for the moment we concentrate on the asymptotes. As in
figure 1.2(a), rays entering the system parallel to the axis from the right and left
are deviated towards the axis, crossing it at the first and second focal points, but
as the deviation is not abrupt in this case there is no physical reference point from
which to measure the focal lengths. Instead we consider the asymptotic paths and
measure the focal lengths from the intersections of the asymptotes to the incident
and emergent rays. These intersections define, for incident rays close to the axis,
the principal planes of the lens. We shall see later that, for non-paraxial rays,
the principal surfaces are actually curved; nonetheless the term ‘principal plane’
is universally employed. Notice that the actual paths are not perpendicular to the
equipotential surfaces and approach the asymptotes from the outside on the high
potential side of the lens. It would be possible to regard the equipotentials as
boundaries separating regions having some mean potential and to use Snell’s law
to follow the refraction, boundary by boundary, through the lens, but this would
be rather tedious and not very accurate. There are much better methods.

1.2 The cardinal points of a lens

The contrast between the ray paths in the photon and particle lenses of the previous
section was very marked. In the case of a photon lens of many elements, such
as is common in even quite simple cameras, the ray paths, while still made up of
straight line segments, may experience many changes of direction within the lens
and resemble somewhat the ray paths in the particle lens. The details of the paths
are of little importance as long as the asymptotic paths are well defined and the
appropriate planes of intersection known, because the imaging properties of both
sorts of lens can be completely described (in the paraxial approximation, at least)
by the positions of the focal points and the principal points, that is, the intersections
of the principal planes with the axis. These are four of the six cardinal points of
the lens and their use is illustrated in figure 1.3. The lens is specified in this figure
by these four points, and their separations and the distances from an arbitrary
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Figure 1.3 This diagram shows the focal and principal points of a lens
and illustrates a construction, using asymptotes to the principal rays, for
finding the position of the image of a given object. The anglesα1 and α2
are measured from the upper ray to the lower and have opposite signs.

reference plane, R, are indicated. If there is a plane of (mechanical) symmetry
in the lens, this plane is commonly used as reference and the distances from this
plane to the focal points are called the ‘mid-focal distances’ and usually denoted
by F1 and F2. The ambiguity of the same symbols being used for these distances
and for the focal points themselves is not usually a problem.

Chapter 5 will contain a discussion of the aberrations of particle lenses, but
until then we shall concentrate on the rather simpler situation of Gaussian imaging
appropriate to paraxial rays, and in the next section shall develop some important
interrelations. We have restricted the field of this book to lenses of axial symmetry,
and we shall consider only rays which lie in planes containing the optic axis, that
is, the meridional rays.

1.2.1 The construction of an image
We consider an object, OO′ of height r1 at a distance p from the first focal point,
u from the first principal point or P from the reference plane, and construct the
image II′ by drawing two principal rays from O′. The first is drawn parallel to the
axis to represent the initial asymptote and, from its intersection with the second
principal plane at K2, a line representing the asymptote to the emergent ray is
drawn to pass through the second focal point, F2. The second is drawn through
the first focal point to meet the first principal plane at K1 from where it continues
parallel to the axis. The intersection of these two rays defines the image point, I′.
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The image has a height r2 and is a distance q from the second focal point, v from
the second principal point or Q from the reference plane. With our Cartesian sign
convention p, P, f1, F1, u and r2 are all negative. The other distances are positive.
The angles α1 and α2 have opposite signs because the rotations from one ray to
the other are in different senses: we have chosen to mark α1 as the positive angle.

In order to find relationships among the various distances, we consider a number
of similar triangles. From triangles OF1O′ and H1F1K1 we see that r1/p = −r2/f1

and, from triangles IF2I′ and H2F2K2, r2/q = −r1/f2. Triangles H1F1K1 and
H2F2K2 are not similar and allow us to represent the angles as α1 = r2/f1 and
α2 = −(−r1/f2). The (transverse) magnification of the lens, M , is given by the
ratio r2/r1 and the angular magnification, Mα , by α2/α1 so we can write

M = −f1/p = −q/f2 and Mα = (−r1/r2)(f1/f2)

so
MMα = −f1/f2 = n1/n2 = (V1/V2)

1/2. (1.4)

This last relationship, between the magnification, angular magnification and the
ratio of the potentials in the object and image regions, is known as the law of
Helmholtz and Lagrange and is essentially a statement that the brightness of an
image cannot exceed that of the object.

Using the two expressions for the magnification we obtain pq = f1f2, which
is Newton’s relation, and if we substitute for u (=p + f1) and v (=q + f2) we
obtain f1/u + f2/v = 1. This is not often used (except in an approximate form
valid for thin lenses), but substitution for P (=p + F1) and Q (=q + F2) shows
that a graph of Q against P is a rectangular hyperbola with its centre at F1, F2.

This is frequently used to present data for lenses of two elements with the voltage
ratio as a parameter. Lines of constant magnification can be shown on the same
axes, leading to a very simple procedure for the choice of a (two element) lens to
meet a specification in terms of a voltage ratio and magnification. In the same way
that it is only the ratio of the potentials which governs the behaviour of a lens, so
the actual size of the lens does not matter and it is only the ratios P/D, F1/D

etc where D is some characteristic dimension of the lens, usually the diameter,
which are important. It is very common indeed to find focal lengths and other
distances represented with D as the unit of length. In this book we shall normally
write ‘F1’, for example, instead of ‘F1/D’ unless a specific point is to be made.
Figure 1.4 illustrates the general form of a family of P–Q curves showing both
branches of the hyperbolæ and also the real object-image region for a lens of two
closely spaced coaxial cylinders.

With our sign convention, the transverse and angular magnifications of a real
image are negative. It is, however, common usage to speak of magnifications as
though they were positive and to ignore the sign when using terms such as ‘larger’,
‘ smaller’, ‘increase’ etc. Except in critical situations we shall cite magnifications
in this fashion.
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Figure 1.4 (a) P –Q diagram for a lens. The upper left region
(P < 0, Q > 0) applies to the most common case of real objects
and images. In the other regions one or both are virtual. Notice that,
close to the origin, the P –Q relationship is virtually independent of the
voltage ratio. (b)P –Qdiagram for a two cylinder lens, with logarithmic
scales to simplify the presentation of data over a wide range of distances
and voltage ratios. Lines of constant magnification and of voltage ratio
are shown.
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Figure 1.5 Asymptotes to two principal rays, r1(z) and r2(z), and to
a general ray r(z) = −[r1(z) + (1/M)r2(z)].

It is easy to see that an object in the first principal plane will be imaged in the
second principal plane unchanged in size and the principal planes are sometimes
referred to as ‘planes of unit positive magnification’. Note that either the object or
the image must be virtual in this case. We shall see later that this property of the
principal planes has been exploited in particle optics.

1.2.2 The general ray
While the two principal rays shown in figure 1.3 offer a simple construction of the
position and size of an image, a ray from an axial object point to the corresponding
image point is often of greater interest. Provided that we restrict ourselves to
paraxial, Gaussian, imaging, any linear combination of two rays which themselves
satisfy the focusing condition will also satisfy that condition. Figure 1.5 illustrates
a construction to demonstrate this property using the asymptotes to the various rays.
Any independent pair of rays may be used as the basis, but it is convenient to choose
rays which are parallel to the axis in one region. We define the first ray, r1(z), as
that passing through the first focal point of the lens at an angle of +45◦. This ray
is therefore parallel to the axis in the image space and a distance f1 from the axis.
The second ray, r2(z), is parallel to the axis in the object space and a distance, −f1,
from the axis. It crosses the axis at the second focal point, with a slope f1/f2.

The general ray, r(z), is then represented by r(z) = ζ r1(z) + ξr2(z). The
object is a distance p from the first focal point, so at the object we have
r(z) = ζ(−p) + ξ(−f1) = 0, and we can therefore write ξ = ζ/M where M

is the lens magnification between these conjugates. At the image we write
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r(z) = ζ [f1 + q(f1/f2)/M] = 0 for all values of ζ because the term in the
square brackets is zero. The single parameter, ζ, is sufficient to define a particular
ray and we write

r(z) = ζ

(
r1(z) + 1

M
r2(z)

)
. (1.5)

Figure 1.5 illustrates the construction of the asymptotes to one such general ray.
We take ζ = −1, and draw the asymptote from the object point, O, until it reaches
the first principal plane, H1. Then, from the second principal plane, H2, at the same
radial distance, draw the emergent asymptote to the image point, I. The slope of
this asymptote is (−1/M)f1/f2 and, as M is known from the ratio of the first focal
length and the object distance, the position of the image point does not have to be
known beforehand. The values used for illustration in figure 1.5 are

f1 = −4 f2 = 8 p = −5 q = 6.4

giving
M = −0.8.

1.2.3 The nodal points
The two remaining cardinal points are the nodal points, N1 and N2. These are points
of unit positive angular magnification in the sense that a ray directed towards the
first emerges as though from the second with the same slope. All rays from a
point on the object must pass through the corresponding point on the image and
we show a particular linear combination of the two principal rays in figure 1.6.
We draw a ray for which the incident asymptote crosses the first principal plane at
some distance h from the axis. The emergent asymptote appears to come from a
point in the second principal plane at this same distance, h, from the axis. If these
asymptotes are parallel we have

r1 − h

p + f1
= r2 − h

q + f2

which leads to

h = r1

(f1 + f2

f2 − p

)
.

These asymptotes cross the axis at the nodal points which are clearly separated by
the same distance as the principal points. We leave it as an exercise for the reader
to show that these points are at distances f2 and f1 from the focal points F1 and
F2 respectively. Notice that if the refractive indices (potentials) on the two sides
of the lens are the same, i.e. f1 = −f2, then h = 0 and the asymptotes cross the
axis at the principal points which, for this case, coincide with the nodal points.
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Figure 1.6 Diagram to illustrate the action at the nodal points of a
lens.

1.3 Matrix representation of lens parameters

While the focal lengths and distances are the parameters most often presented, it is
possible to express the action of a lens by a two by two matrix which acts on some
initial ray asymptote for which the ray position, r , and slope, r ′, at some plane are
expressed as a column vector, to produce a modified asymptote at a second plane.(

r2

r ′
2

)
=

(
a11 a12

a21 a22

) (
r1

r ′
1

)
. (1.6)

The planes between which the matrix acts determine the values of the matrix
elements and some compromise is needed between simple expressions for the
elements and a convenient choice of planes. The significance of the individual
elements is clear from equation (1.6): a11 is the linear magnification between
the planes and a22 the angular magnification. The other elements relate the
radius at one plane and the slope at the other. The simplest matrix is one
which transfers the ray from the first principal plane to the second. In this case
the element a11 = 1 because the principal planes are planes of unit positive
magnification, and a22 = − f1

f2
from equation (1.4). r2 does not depend on r ′

1

so a12 = 0 and it is easy to show that a21 = − 1
f2

by considering an incident
asymptote parallel to the axis.

The positions of the principal planes of an electrostatic lens vary with the
potentials and it would be more convenient to work with a matrix operating between
planes which did not move in this way. We now develop the matrix which transfers
an incident asymptote at the reference plane to an emergent asymptote at the same
plane. Despite the change in radial position which may occur, this is usually
referred to as a bending matrix. We do this by operating on the incident column
vector with three matrices. The first transfers the ray from the reference plane to the
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Figure 1.7 Matrix elements for a lens of two coaxial cylinders
separated by 0.1 diameters. Note that all four matrix elements are
continuous as the potential ratio passes through a value of one.

first principal plane, the second is the matrix acting between the principal planes
and the third transfers the ray from the second principal plane to the reference
plane. (

r2

r ′
2

)
=

(
1 f2 − F2

0 1

) (
1 0

− 1
f2

− f1

f2

) (
1 F1 − f1

0 1

) (
r1

r ′
1

)

=
( F2

f2

F1F2−f1f2

f2

− 1
f2

−F1
f2

) (
r1

r ′
1

)
.

To use this matrix to study the formation of an image we first translate the ray
from the object to the reference plane, a distance −P , then use the lens matrix to
produce the emergent ray and finally transfer this ray a distance L. The product
of these three matrices gives the transfer matrix(

1 L

0 1

)( F2
f2

F1F2−f1f2

f2

− 1
f2

−F1
f2

)(
1 −P

0 1

)
=

( F2−L
f2

(F2−L)(F1−P)−f1f2

f2

− 1
f2

P−F1
f2

)
.

The condition for imaging is that the position of the ray in the exit plane does not
depend on the slope of the incident ray. This is equivalent to the element, a12, of
the transfer matrix being zero, which will be the case if L = Q. The element a11

is equal to the magnification of the lens between the conjugate planes, and a22 is
the angular magnification.
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The analysis of combinations of lenses is frequently simpler if the matrix
formulation is used, because the only calculation required is a sequence of matrix
multiplications. A further situation in which the matrix formulation has advantages
is the analysis of very weak two element lenses. This is because the matrix elements
vary smoothly as the potential ratio passes through one, in contrast to the focal
lengths and distances which become infinite for this value of the ratio. Figure 1.7
shows the matrix elements for a lens of two coaxial cylinders separated by a gap
of 0.1 diameters.



2 The motion of charged particles in an
electrostatic field

2.1 The equation of paraxial motion

Our concern is with axisymmetric lenses and so we use cylindrical polar
coordinates with the z-axis as the axis of symmetry of the lens system. Laplace’s
equation is

∂2V

∂z2
+ 1

r

∂

∂r

(
r
∂V

∂r

)
= 0 (2.1)

where V (r, z) is the potential. Because of the rotational symmetry an expansion
of the potential in even powers of r can be made

V (r, z) =
∞∑
n=0

An(z)r
2n.

The two terms of Laplace’s equation are

1

r

∂

∂r

(
r
∂V

∂r

)
=

∞∑
n=0

4n2An(z)r
2n−2

and
∂2V

∂z2
=

∞∑
n=0

A′′
n(z)r

2n

where primes (′) are used to denote differentiation with respect to z. The sum of
the coefficients of each power of r must be zero so we have a recurrence relation

An+1(z) = − A′′
n(z)

4(n + 1)2

giving the series expansion as

V (r, z) = A0(z) − A′′
0(z)r

2

22
+ A

(4)
0 (z)r4

22 · 42
+ · · · . (2.2)

13
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The axial potential, V (z), is just A0(z) and we can write the axial and radial
components of the electric field as

Ez = −∂V

∂z
= −V ′ Er = −∂V

∂r
= r

2
V ′′

where we omit the explicit reference to z and retain terms only to second order
because we are considering only paraxial rays. When we come to consider the
aberrations of particle lenses we shall have to make allowance for the higher order
terms.

The axial velocity is so much greater than the radial in these circumstances
that we can write 1

2m(dz/dt)2 + eV = 0 for the total energy of the particle. The
equation of radial motion is

m
d2r

dt2
= eEr = er

2
V ′′

writing e for the charge on the particle. The sign of the charge matters only insofar
as the potential must always have the opposite sign and we shall soon see that the
magnitude of the charge does not matter. To eliminate t from these expressions
we write

d2r

dt2
= dz

dt

d

dz

(dz

dt

dr

dz

)
giving (−2eV

m

)1/2 d

dz

[(−2eV

m

)1/2 dr

dz

]
= er

2m
V ′′

which reduces to
d2r

dz2
+ 1

2

V ′

V

dr

dz
= − r

4

V ′′

V
. (2.3)

This equation contains neither the charge of the particle nor its mass and it is
therefore valid for electrons, positrons and ions of either sign. The only constraint
is that the potential should have a sign opposite from that of the particle to ensure
a positive total energy.

In order to integrate this equation of motion we require very precise information
about the axial potential, because we need to determine the second derivative. An
alternative approach is to change the independent variable in such a way as to
remove this term. We introduce a reduced radius, R, defined by R = rV 1/4

where V must be read as |V | for positive particles. Successive differentiation of
this expression yields

dR

dz
= V 1/4 dr

dz
+ 1

4
V −3/4V ′r

d2R

dz2
= V 1/4

[d2r

dz2
+ 1

2

V ′

V

dr

dz
+ r

4

V ′′

V︸ ︷︷ ︸
= 0

−3r

16

(V ′

V

)2]
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where equation (2.3) shows that the grouped terms sum to zero, and we are left
with the very simple equation of motion

d2R

dz2
= − 3

16
R

(V ′

V

)2
(2.4)

which is known as the Picht equation [4].

2.2 Some general results

The independent variable in the Picht equation is the ratio of the axial potential
gradient to the potential itself and it will be convenient to define a new variable,
T (z) = (V ′(z)/V (z)), and to note that, because this appears squared the sign does
not matter.

Figure 2.1(a) shows the variation of the axial potential, the potential gradient
and the parameter T (z) for a lens having a gap equal to the radius with a potential
ratio of 1 : 16. Figure 2.1(b) shows the lens geometry and equipotentials at values
of 1

32 ,
1

16 ,
1
8 ,

1
4 ,

1
2 ,

3
4 ,

7
8 ,

15
16 and 31

32 of the overall potential difference. The
potential distribution was calculated by the nine point finite difference method of
section 3.5 and the two principal rays were traced in this lens by the routines of
the LENSYS2 program.

It is not difficult to show that all electrostatic lenses having uniform potential
regions to each side are converging and to obtain an approximate expression for
their focal lengths. We consider a ray incident parallel to the axis at a reduced
radius R1 and make the assumption that this reduced radius does not change in
passing through the lens. Naturally, r , the true radius, will change or there would
be no lens action, but the change in V will act in the opposite sense. A formal
integration of the Picht equation gives∫ ∞

−∞
R′′ dz = R′

2 − R′
1 = − 3

16
R1

∫ ∞

−∞
T 2 dz

though in practice the limits of integration can be very much narrower as a
consequence of the sharply peaked nature of T 2. R′

1 = 0 because the incident
ray is parallel to the axis and so R′

2 has the opposite sign to R1. Writing

R′
2 = r ′

2V
1/4

2 + r2

4
V

−3/4
2 V ′

2

and, noting that V ′
2 will be zero away from the lens proper and that V

1/4
2 is

intrinsically positive, we see that r ′
2 has the same sign as R′

2 and so for rays incident
above the axis the emergent ray moves towards the axis giving a convergent lens
action. Lenses for which the object and image positions lie in regions of uniform
potential are known as immersion lenses.
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T V'

z/D

V

(a)

(b)

Figure 2.1 (a) The variation of V (z), V ′(z) and their ratio, T (z) with
axial position z/D in a two cylinder lens having a gap to diameter ratio
of 0.5. Note that the maximum value of T occurs on the low potential
side of the lens. The ordinate scale applies to the axial potential. (b) Ray
paths for a voltage ratio of 1 : 16 in this lens showing that most of the
deviation of the particle paths occurs in the region where |T | is large.

We saw in section 1.2.1 that the second focal length of a lens can be written
as −r1/α2. We identify α2 with r ′

2 and write

1

f2
= − r ′

2

r1
= −R′

2

R1

(V1

V2

)1/4
= 3

16

(V1

V2

)1/4
∫ ∞

−∞

(V ′

V

)2
dz. (2.5)
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Figure 2.2 Paths of the ray r(z) (· · · · · ·) and the reduced ray R(z)
(——) in the vicinity of the nodal points. The reduced ray is bounded
by the asymptotes and the curvature of its path is always towards the
axis. The slopes of the asymptotes to the ray, r(z), are equal, while
those of the reduced ray depend on the potential ratio. The radial scales
have been chosen to make the incident asymptotes coincide.

If we were to trace a ray incident parallel to the axis, but from the other side, we
would obtain

1

f1
= − r ′

1

r2
= −R′

1

R2

(V2

V1

)1/4
= 3

16

(V2

V1

)1/4
∫ −∞

∞

(V ′

V

)2
dz (2.6)

and would find, for the ratio of the focal lengths,(f1

f2

)
= −

(V1

V2

)1/2
= −n1

n2
.

The ratio is negative because the integrals in equations (2.5) and (2.6) have opposite
signs and the result is what we expect from our previous general discussion.

An alternative expression is sometimes quoted

1

f2
= 1

8V 1/2
2

∫ ∞

−∞

V ′2

V 3/2
dz

but the derivation of this expression is valid only if V ′′ does not change sign and
this is never true unless the potential is constrained by grids.

2.2.1 The nodal and principal points
We consider an incident ray having its asymptote directed towards the first nodal
point as illustrated in figure 2.2. By a suitable choice of vertical scale the same
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line can be used to represent the asymptotes of both the ray itself and the reduced
ray. The Picht equation shows that R′′ ∝ −R and so the path of the reduced ray
is always curved towards the axis. The reduced ray therefore crosses the axis to
the left of the first nodal point; the curvature then reverses and the ray approaches
its emergent asymptote from below. This asymptote passes through the second
nodal point which must lie to the left of the point at which the ray crossed the
axis. Note that both the ‘real’ ray, shown by the dotted line, and the reduced ray
cross the axis at the same point. While the slope of the real asymptotes are equal,
those of the reduced asymptotes are in the ratio of the one fourth power of the
potential ratio. As figure 2.2 shows, the actual ray path is not bounded by the
asymptotes. In chapter 1 we saw that the separation of the nodal points is equal to
that of the principal points and our result, above, shows that the principal points
of an electrostatic immersion lens are crossed, in the sense that H2 is further to the
low potential side of the lens than H1. This is just the way in which the principal
planes were represented in figure 1.3.

2.2.2 Relativistic effects
The independence of the paths of charged particles in electrostatic fields from the
charge to mass ratio is only true for velocities sufficiently small that the mass of the
particle remains essentially equal to the rest mass. Certainly the lenses discussed
in chapter 6 and illustrated in the program would not be suitable for use with high
potentials, but it is perhaps worth noting here the ways in which relativistic effects
can be taken into account. Writing the momentum of a particle as

p = m0v(1 − β2)1/2 (2.7)

and the kinetic energy as

E = m0c
2((1 − β2)−1/2 − 1) (2.8)

the velocity can be expressed in terms of the momentum (using equation (2.7))
and substituted into equation (2.8) to give

m0c
2 + E = c

√
m2

0c
2 + p2

which can be rearranged to give an explicit expression for the momentum in terms
of the kinetic energy. Recalling that this is just equal to the negative of the charge
multiplied by the potential (the zero being taken as usual for the particle to be at
rest), we finally express the momentum in terms of the accelerating potential, V .

p2 = 2m0E
(

1 + E

2m0c2

)
= −2m0eV

(
1 − eV

2m0c2

)
= −2m0eVrel
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where

Vrel = V

(
1 − eV

2m0c2

)
= V (1 + ε)

= V (1 + 0.9785 × 10−6V ) for electrons

is known as the relativistically corrected acceleration potential. Note that the
product eV is always negative, and therefore ε is a positive quantity.

The equations of motion can be analysed in terms of this corrected potential
and the Picht equation retains much the same form. The reduced radius, R, is now
defined by R = rV

1/4
rel = rV 1/4(1 + ε)1/4 and the equation itself becomes

R′′ + 3

16
R

(V ′

V

)2
× K(ε) = 0

where

K(ε) = 1 + 4
3ε + 4

3ε
2

(1 + ε)2
.



3 The determination of the axial potential

In order to trace the path of a particle through a lens, we have to integrate the
equation of motion and it is convenient and simple to work in terms of the Picht
equation. We need to know the function T (z) to find the focal properties and
we shall see later that we also need to know the axial derivative, T ′(z), if we
wish to obtain information on the aberrations. The first stage in the calculation
is the determination of the axial potential, from which, with its derivative, we
construct T (z). We shall consider ways of generating the potential distribution for
lenses with more than two electrodes later, but in the first instance we concentrate
our attention on lenses having only two electrodes. If the electrode potentials
are V1 and V2, we can express the axial potential in one of the forms

V (z) = 1
2 (V1 + V2) + 1

2 (V2 − V1)+(z)

= V1 + (V2 − V1),(z)

where +(z) and ,(z) are functions which range between ∓1 and between 0 and 1
respectively as z → ∓∞.

There are various methods of calculating these functions. There is an exact
solution for the case of two coaxial cylinders at different potentials, but with no
gap between them. This is an unrealistic situation, but it has been used as an aid
to the normalization of other expressions.

The general form can be approximated by a number of analytic expressions
chosen more for their mathematical tractability than their connection with the
basic physics of the problem. Such an approach has a long history, but with
the amount of computing power readily available nowadays, there is little point
in using this sort of method though we give a brief account in the next section.
Results of much greater accuracy can be obtained by approximations based on the
laws of electrostatics. In later sections we consider three such approaches: the
direct application of Coulomb’s law, numerical solutions of Laplace’s equation
on discrete networks of points and the analytical solution of Laplace’s equation
subject to boundary conditions which closely approximate the true situation.

20
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3.1 Analytic expressions

An exact analytic solution of Laplace’s equation can be found for the axisymmetric
case, where the potential, V (z, r), can be written as a constant term plus the
product of separate functions, Z(z) and R(r) of the axial and radial coordinates.
If we differentiate this product and substitute into Laplace’s equation we obtain an
equation in which the terms in z and in r may each be set equal to some parameter
which we write as −k2.

1

R

(
d2R

dr2
+ 1

r

dR

dr

)
= − 1

Z

d2Z

dz2
= −k2.

The differential equations for the two functions are then

d2Z

dz2
− k2Z = 0

d2R

d(kr)2
+ 1

kr

dR

d(kr)
+ R = 0.

The solution for Z(z) is straightforward:

Z(z) = Akekz + Bke−kz

while that for R(r) requires some consideration of the context. The equation is
Bessel’s equation of zero order for which the formal solution would be

R(kr) = C1J0(kr) + C2N0(kr)

where J0 and N0 are Bessel functions of zero order and of the first and second kind
respectively. The latter become infinite for zero argument and cannot therefore
give a physically real description of the potential on the axis, so C2 = 0 and the
overall solution for the potential becomes

V (z, r) = (Akekz + Bke−kz)J0(kr) + V0 (3.1)

where we have incorporated the coefficient C1 into Ak and Bk and V0 is a constant
potential determined by the boundary conditions. Notice that the zero order Bessel
function of the first kind can be expressed as

J0(r) =
∞∑
i=0

(−1)i(r/2)2i

(i!)2
= 1 − r2

4
+ r4

64
− r6

2304
+ · · ·

which is exactly the form given in equation (2.2) by the Taylor expansion. The
general solution for a particular lens geometry will consist of a sum of such
terms with, perhaps, a constant representing the potential of an electrode.
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If k is a real number then, in equation (3.1), Ak must be set to zero for positive
values of kz and Bk must be zero for negative values. In section 3.6 we shall use
these distinct forms, but for a general case we have to assume that k = jκ and is an
imaginary number. Using the modified Bessel function, In(x) = j−nJn(jx), and
expanding the exponentials of equation (3.1) we write

V (z, r) = (
Gκ cos(κz) + Fκ sin(κz)

)
I0(κr) + V0.

This is a solution of Laplace’s equation for an axially symmetric field and for a
specific value of κ . To find the general solution we must integrate over all possible
values of κ .

V (z, r) =
∫ ∞

−∞

(
Gκ cos(κz) + Fκ sin(κz)

)
I0(κr) dκ + V0.

We consider the case of two coaxial cylinders of radius R separated by an
infinitesimal gap and take the following values of the potentials to define the
boundary conditions:

for z < 0 V (z, R) = V1

for z = 0 V (0, r) = (V1 + V2)/2

for z > 0 V (z, R) = V2.

The second of these conditions both determines the value of V0 and requires that
Gκ should be zero to remove the cosine term.

V (z, r) =
∫ ∞

−∞
Fκ sin(κz)I0(κr) dκ + V1 + V2

2
. (3.2)

Application of the first and third boundary conditions allows us to show, after an
application of Fourier’s integral theorem, that the coefficient Fk can be expressed
as

(V2 − V1)

2πκI0(κR)

and if we substitute this into equation (3.2), rearrange the terms and note that the
integrand is an even function, we find that the potential can be written as

V (z, r) = V1 + V2

2
+ V2 − V1

2

2

π

∫ ∞

0

sin(κz)

κ

I0(κr)

I0(κR)
dκ (3.3)

which reduces to the correct boundary values for r = R as∫ ∞

0

sin(κz)

κ
dκ = −π

2
, 0,

π

2
for z < 0, 0, > 0.
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This expression is not amenable to evaluation except by numerical methods and
there is only one reason for continuing the analysis.

3.1.1 Approximations
It was pointed out by Gray in 1939 [5] that the axial potential function for the two
cylinder zero gap lens can be represented approximately by the function

+(z) = tanh
ωz

R
(3.4)

which has the correct asymptotic behaviour. The precise shape is governed by the
parameter ω. If we differentiate this expression we have

d+

dz
= ω

R
sech2 ωz

R
= ω

R
at z = 0.

From equation (3.3) we can extract the true shape of the axial potential as

+(z) = 2

πR

∫ ∞

0

sin(κz)

κ

dκ

I0(κ)
(3.5)

and we can equate the differential of this at z = 0 to ω/R to find

ω = 2

π

∫ ∞

0

dκ

I0(κ)
. (3.6)

Cylinders with no gap between them are somewhat impracticable, but this
approximate form for +(z) does give a reasonable guide to the behaviour of the
lens with a small gap. Writing γ for the potential ratio V1/V2, the parameter, T (z),
of the Picht equation can be expressed as

T = 2ω(1 − γ ) exp 2ωz

(1 + exp 2ωz)(γ + exp 2ωz)
(3.7)

which has a maximum value,

Tm = −2ω
(γ 1/2 − 1

γ 1/2 + 1

)
at zm = (1/4ω) ln γ . Analysis using this approximate potential function usually
continues by replacing equation (3.7) by one of two expressions having a similar
shape:

T = Tm

1 + ((z − zm)/a)2
(3.8)

or
T = Tm sech((z − zm)/a) (3.9)
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Figure 3.1 The differences between the potential functions, +, of
equations (3.4) (•) and (3.10) (©) and the true axial potential for a two
cylinder lens having a gap of D/10.

where a is found by equating the area under the curves of equations (3.7), (3.8)
and (3.9). The focal lengths and distances can then be expressed as rather
complicated functions of γ , a, ω and zm.

For the more practical case of cylinders separated by a small, but not
infinitesimal, gap, g, the function

+ = 1

ω′g/R
ln

(cosh(ωz/R + ω′g/2R)

cosh(ωz/R − ω′g/2R)

)
(3.10)

has often been used. Ifω′ = ω this reduces to tanh ωz/R asg → 0. The expression
for T (z) is more complex and the approximation becomes progressively poorer
as g increases. Some improvement may be made by modifying the value of ω′

to take account of the smaller value of the slope of the potential at z = 0, and a
value of 1.67 has been used, but this is not really a good model for a wide gap
lens. It was in any case common practice to use equations (3.8) or (3.9) for actual
calculations. Figure 3.1 shows the differences between the values of + given by
these two approximations and the true axial potential for a two cylinder lens with
a gap of D/10.



The determination of the axial potential 25

Some of the other approximate forms which have been suggested are:

, = 1 − 1

π
arccot

( z

a

)
, =

(
1 + z/a

1 + |z/a|
)

+ = 1

a

∫ z

0
exp(−π(z/a)2) dz

where the value of a depends on the length of the gap, g. There is little point in
giving further discussion of this type of approximation.

3.1.2 The value of ω
Values for ω were first calculated some 60 years ago [5] by three rather different
methods which gave values of 1.318, 1.32 and 1.315. These values have appeared
in many textbooks since then, including the first edition of the present work,
frequently without specific attribution.

A value of 1.326 227 5, obtained by a numerical integration of equation (3.6),
was quoted by Verster in 1963 [6], but this seems to have passed unnoticed and has
not been cited in a textbook. This omission might suggest that there were doubts
about the accuracy of this value and a recalculation would seem appropriate.

It is now quite practicable to evaluate the integral with much higher precision
and accuracy, and we have used a standard series representation of I0(κ) [7] to
determine values of the integrand from 0 to 50 at intervals of 0.001. We have then
used three quadrature expressions, each at intervals of 0.01, 0.002 and 0.001, to
calculate the integral. While there are differences beyond the 11th decimal place
all the results are consistent with a value of ω = 1.326 227 505 1 in complete
agreement with Verster, but with three more significant figures. This confirmation
of Verster’s value underlines the question of why an older, approximate, value was
still being cited 25 years later [1, 2].

The numerical methods described in this chapter cannot calculate the field for
a true zero gap lens, but values can be found for progressively smaller gaps and
may be extrapolated to zero.

While it is no surprise that the Bessel function expansion method of section 3.6
gives an excellent agreement, two other methods have been applied to the problem
and also agree well with our calculated value.

The finite difference method of section 3.5 lends itself to a simple type of
extrapolation in which both the size of the gap and the density of the finite lattice
are extrapolated together. With a cylinder radius, R1, in terms of the lattice spacing,
the smallest value of the gap to diameter ratio which can be modelled is 1/R1.
Figure 3.2 shows values of the field at the centre of the gap as a function of 1/R2

1 ,
which is proportional to the lattice density. A linear fit to these data extrapolates
to 1.326 227 506 with a standard deviation of 5 in the last figure. This is a very
satisfactory agreement. Similar agreement has been found by Read [8] using a
special version of the CPO2D program which uses the boundary element method
of section 3.2.
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Figure 3.2 Values of the field at the centre of a two cylinder lens of
radius R1. Extrapolation to the zero value of 1/R2

1 implies zero gap
length and also infinite lattice density.

3.2 The boundary element method

The solution of Laplace’s equation requires the conditions to be known over a
boundary which completely encloses the space. Almost without exception this
calls for some approximation of the conditions in the gaps between the electrodes.
The boundary element method, also known as the charge density method, does
not have this constraint. It is in principle a very simple method: any electrode
may be replaced by a system of charges at the electrode surface provided that
the potentials they produce are everywhere the same as those produced by the
electrode. In particular, the potential of the electrode itself must be reproduced by
the charge distribution. The formal way to express this is

Vk = 1

4πε0

n∑
j=1

∫
Sj

σj (rj ) dSj
|rj − rk| (3.11)

where Vk is the potential at a position rk due to charges qj = σj dSj at positions rj
on each of n electrodes. In the present context of round lenses with axial symmetry,
the problem reduces to the summation of the potentials at a point due to rings
of charge on all the electrodes. The geometry of this situation is illustrated in
figure 3.3 in which the potential at the ring of radius ri due to the charge on the
ring of radius rj is to be found. In terms of the distances shown in this diagram
the denominator of equation (3.11) is

l = [r2
i + r2

j − 2rirj cos(αi − αj ) + (zi − zj )
2]1/2.
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Figure 3.3 Diagram to indicate the coordinates appropriate to the
calculation of the potential of a point due to a ring of charge.

The absolute values of the angles are arbitrary because of the axial symmetry so,
for convenience, let αi = π which allows us to simplify this expression as

l = [(ri + rj )
2 − 4rirj sin2(αj/2) + (zi − zj )

2]1/2

=
{

[(ri + rj )
2 + (zi − zj )

2]
(

1 − 4rirj sin2(αj/2

(ri + rj )2 + (zi − zj )2

)}1/2
.

The total charge on the ring, Qj , can be written in terms of a line density,
λj = Qj/2πrj , and each term in the summation of equation (3.11) becomes

1

4πε0

∫ 2π

0

λj rj dαj
l

= 1

πε0

λj rj

[(ri + rj )2 + (zi − zj )2]1/2

×
∫ π/2

0

(
1 − 4rirj sin2(αj/2)

(ri + rj )2 + (zi + zj )2

)−1/2
d(αj/2).

The integral is just K(τ), the complete elliptic integral of the first kind,

∫ π/2

0
(1 − τ 2 sin2 β)−1/2 dβ
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with

τ 2 = 4rirj
(ri + rj )2 + (zi − zj )2

and so in terms of τ and Qj the potential at a point i can be written as

Vi =
n∑

j=1

Qj

4π2ε0

τ√
rirj

K(τ). (3.12)

The practicability of solving this set of equations depends on a sensible choice of
‘ring’elements and the distribution of charge between them. The charge density on
the surface of an electrode is directly proportional to the electric field normal to the
surface and a preliminary estimate of this field may be made in other ways, such as
by the finite difference method. The charge density near the edge of an electrode
will be high and change rapidly so small rings are needed here: conversely, deep
inside a cylindrical electrode the charge density will be small and a substantial
length of the cylinder may be used as a single ‘ring’. This choice of elements is
probably the factor which most severely limits the overall accuracy of the method.
The most direct way of solving the problem is to treat equation (3.12) as a matrix
equation relating the column vectors Vi and Qj with the individual elements being
functions of the positions of the two rings involved, but other methods have been
used [9].

The use of discrete rings of charge leads to a non-uniformity of potential on
the electrode surfaces. In place of a constant potential, the potential will vary
in a ‘saw-tooth’ fashion with discontinuities at the edges of the ring elements.
This effect can be minimized by making the charges on each element the same.
An alternative approach would be to use a continuous charge distribution with a
surface charge density described analytically.

Even though the only boundary conditions which need to be applied are those on
the electrode surfaces, the effects of field penetration from charges on the surface of
the vacuum system enclosing the electrodes should be assessed and the electrodes
designed to minimize such effects.

Once the charge distribution consistent with the required electrode potentials
has been found, the axial potential distribution follows readily, since the elliptic
integrals are then just equal to 1. The gradient of the axial potential can also
be expressed in closed form and the function T (z) of the Picht equation follows
immediately.

When properly optimized, the boundary element method is capable of very
high accuracy. There are commercial programs available which use the boundary
element method and, in some cases, a limited, trial version is available for download
from the Web†.

† The CPO program written by RB Consultants Ltd can be downloaded from
cpo.ph.man.ac.uk and the Optics program written by Dr Li Wang can be downloaded from
www.jps.net/liwang/download.htm.
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Figure 3.4 The right hand half of a two cylinder lens showing a
pattern of triangular elements, suitable for analysis by the finite element
method. Note that the sizes of the elements are far from constant.

3.3 The finite element method

Instead of treating the space within a system of electrodes as continuous, we may
establish a set of discrete points at which we determine the potential by some
means. The finite elements of this method are, usually, triangles and it is the
potentials at the vertices of these triangles which we seek to determine.

Figure 3.4 shows a system of triangular elements appropriate to the solution of
the potential distribution in a two cylinder lens with thick walls. We consider the
walls to be thick compared to the length of the gap for two reasons. For purposes of
calculation it is necessary to specify the potential at all boundaries, and at the outer
edge of the gap a linear variation with position is usually a good approximation
and one which can be tested. In addition, for practical purposes, the thick walls
reduce the effect of field penetration from, for example, the walls of the vacuum
chamber. This factor is important whatever method is used for the calculation.

Only half of the lens system is shown in figure 3.4 as the system is symmetric
about the mid-plane. If we are representing a lens with potentials 1 and 0 on the
left hand and right hand electrodes, we should set the potential at all points on the
mid-plane to be 0.5 and at points at the outer edge of the gap to fall linearly from
0.5 to 0.

The axial potential gradient has a maximum value at the centre of the lens
and is also large close to the inner end of the cylinder because of the 90◦ change
of the boundary equipotential. In both regions we should use elements of small
size though elsewhere, particularly deep inside the cylinder, they may be much
larger.
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Figure 3.5 A representative element of the network illustrated in
figure 3.4.

The physical principle behind the finite element method is that the potential
distribution will be such that the potential energy of the electrostatic field is a
minimum and so we need to express this potential energy in terms of the potentials
at the vertices of each and all of the triangular elements.

3.3.1 The basic equations
We consider a typical element in figure 3.5 where we have shown both Cartesian
and axisymmetric cylindrical coordinates. We shall use the latter for the lens
example. We assume that the potential varies linearly with position and write

V1 = V (z1, r1) = a + bz1 + cr1 etc (3.13)

where the coefficients can be expressed in terms of the coordinates of the vertices
and their potentials.

a = [V1(z2r3 − z3r2) + V2(z3r1 − z1r3) + V3(z1r2 − z2r1)]/2S

b = [V1(r2 − r3) + V2(r3 − r1) + V3(r1 − r2)]/2S

c = [V1(z3 − z2) + V2(z1 − z3) + V3(z2 − z1)]/2S

S = [z1(r2 − r3) + z2(r3 − r1) + z3(r1 − r2)]/2

(3.14)

where S is the area of the triangle.
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The potential energy of the electrostatic field is

W =
∫∫ [(∂V

∂r

)2
+

(∂V

∂z

)2]ε0

2
2πr dr dz. (3.15)

The condition for minimum potential energy is that

∂W

∂V1
= ∂W

∂V2
= · · · = ∂W

∂Vk

= · · · = ∂W

∂VN

= 0. (3.16)

For a single element, ∂V
∂r

= c and ∂V
∂z

= b so the associated potential energy
can be written as

BW = ε0

2

(
b2 + c2

)
2πr dr dz

= πrε0S
(
b2 + c2

)
.

From figure 3.4 it is clear that any given node is common to a number of triangular
elements and the potential at that node affects the potential energy of all of these.
We should, therefore, write each term of equation (3.16) in the form

∂W

∂Vk

= ∂

∂Vk

( k+n∑
j=k+1

BWj

)
= 0 (3.17)

where there are n elements having node k in common. We may move the
differential operator inside the summation and write for a representative element

∂(BW)

∂Vj

= πrε0
[
b(rj+1 − rj+2) + c(zj+2 − zj+1)

]
.

The radial coordinate r in this equation has come from the volume element in
equation (3.15) and should be assigned the value at the centroid of the triangle,
that is the average of the values at the vertices. If we substitute for b and c using
equation (3.14) this expression reduces to the sum of the potentials at the three
nodes multiplied by coefficients which involve the coordinates of these nodes and
which can be calculated once for all. Equation (3.17) can then be written as

∂W

∂Vk

=
k+n∑
m=k

gmVm = 0.

This is one of a set ofN equations which are usually solved by matrix methods. The
solution is the set of free node potentials from which equipotential plots, such as
that shown in figure 3.6, may be generated. Remember that all the nodes, including
those at the boundaries, must be considered in evaluating these equations.

The finite element method is of limited accuracy for electrostatic lenses as the
linear interpolations used in equation (3.13) militate against the determination
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Figure 3.6 Equipotentials for the electrode and finite element system
shown in figure 3.4. Notice that the equipotentials are not quite smooth;
this is the result of using the linear potential variation of equation (3.13)
within each triangular element.

of the accurate axial potentials and gradients required for ray tracing and the
calculation of aberrations. It is a much more useful tool for the analysis of magnetic
field problems and has been extensively used in this area.

Commercial programs based on the method exist, and the data of figures 3.4
and 3.6 were obtained using Student’s QuickField 4.1† which is a limited version of
a very powerful program. We noted earlier the need to vary the size of the elements
such that, in regions of high field strength, the elements were small. QuickField
allows the user to determine the sizes during the problem definition phase, but
other programs, such as FlexPDE‡ will generate an optimal set of elements from
the boundary conditions.

3.4 The finite difference method: relaxation

One of the simplest methods for calculating the potential distribution in a
bounded region is to treat the space not as continuous, but as a regu-
lar lattice of discrete points. We can then replace the differential form of
Laplace’s equation by difference equations. We shall analyse systems of the

† This program, a development of one called ELCUT, can be downloaded from
www.tor.ru/quickfield.
‡ FlexPDE lite can be downloaded from www.pdesolutions.com.
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Figure 3.7 Lattice of points spaced by a distance h on which the
potential may be relaxed using groups of five points (•).

cylindrical symmetry appropriate to electrostatic lenses later, but first con-
sider a simpler case which allows us to illustrate some general features.

3.4.1 A two dimensional example
Laplace’s equation in rectangular Cartesian coordinates is

∂2V

∂x2
+ ∂2V

∂y2
= 0. (3.18)

We can represent this space by a rectangular array of points separated by distancesh
in both x and y directions as shown in figure 3.7, and identify five points each
marked by the symbol •. The point at the centre of this group is at (x, y). We
can express the potential at the four outer points using a Taylor expansion of the
potential at the centre point and its derivatives at that point.

V (x − h, y) = V (x, y) − h
∂V

∂x
+ 1

2
h2 ∂

2V

∂x2

− 1

6
h3 ∂

3V

∂x3
+ 1

24
h4 ∂

4V

∂x4
− · · ·

V (x + h, y) = V (x, y) + h
∂V

∂x
+ 1

2
h2 ∂

2V

∂x2

+ 1

6
h3 ∂

3V

∂x3
+ 1

24
h4 ∂

4V

∂x4
+ · · ·



34 Electrostatic Lens Systems

with two similar expressions, but involving y-derivatives, for V (x, y − h)

and V (x, y + h). Adding all four equations we find

V (x − h, y) + V (x + h, y) + V (x, y − h)+V (x, y + h) − 4V (x, y)

= h2
(∂2V

∂x2
+ ∂2V

∂y2

)
ignoring higher order terms beginning with

+ 1

12
h4

(∂4V

∂x4
+ ∂4V

∂y4

)
.

Equation (3.18) shows that the right hand side of this equation is zero. The potential
at any point on the lattice can therefore be written as the mean of the potentials at
the four nearest neighbour points. In order to apply this result to a real problem,
fixed values of potential must be assigned to all the points on a boundary enclosing
a region of our two dimensional space. For the non-boundary points it is sometimes
possible to guess approximate potentials, but unless the array is quite large it is
usually enough to set all the other potentials to zero. We then move systematically
over the space replacing the potential at each point by the appropriate average. It is
usual to start at a place on the boundary where regions at different potentials meet.
As an example, suppose that the potentials at points (x, 10) and (0, y) are fixed
at potential 1 and those at (0, x) and (10, y) are fixed at zero, x and y taking all
values from 1 to 9; the potentials at the corners are set to 0.5, 1, 0.5, 0 in sequence,
defining a square boundary. We would then begin by writing

V (1, 1) = 1
4 [V (0, 1) + V (2, 1) + V (1, 0) + V (1, 2)]

= 1
4 [1 + 0 + 0 + 0] = 0.25

then increase x to the end of the row and then move up one row, return to the left
and so on. A single passage across the array is not going to give us the solution
and we must repeat the whole cycle many times until the changes from one cycle
to the next are sufficiently small. This process of repeated iteration is known as
relaxation. Notice the change in notation here: distances are expressed in units
of h.

3.4.1.1 Improving the speed and precision. The relaxation method outlined
above will always give a solution, but the precision will depend on the scale
of the array of points and the time taken to converge to an adequate degree will
increase as the square of the number of points. This conflict between speed and
precision can be resolved to some extent by first relaxing a rather coarse array
and then inserting additional points between the array points, interpolating to find
starting potentials for these new points and then continuing the relaxation process.
However, a much greater increase in speed can be obtained by a procedure known
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Figure 3.8 The approach of the potential on the diagonal of a square
lattice (51×51 points) to the final value. (a) The difference between the
potential after n cycles of iteration and the final potential, illustrating
the exponential approach. The upper curve and those of figure 3.8(b)
are the result of five point iteration; the lower curve is the result
of nine point iteration, discussed later. (b) The potential after n
cycles of iteration with acceleration parameters of (from the right)
1.0, 1.4, 1.8, 1.85, 1.90.
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as ‘successive over-relaxation’. The basis for this is that each time we calculate
the potential at some point, we move it towards its final value, but by only a small
amount, and indeed by an amount which is progressively smaller. Over-relaxation
involves replacing the potential at a point not by the simple mean of that at its four
neighbours but, recognizing that next time around it will be changed even more,
we make a bigger change immediately. We write

V (x, y) = g

4
(V (x − 1, y) + V (x + 1, y) + V (x, y − 1) + V (x, y + 1))

− (g − 1)V (x, y)†

where V (x, y)† is the value of V (x, y) from the preceding iteration and g is called
the acceleration parameter. As an example of the increased speed that can be
obtained by appropriate choice of acceleration parameter, we show in figure 3.8
the behaviour of a square array similar to that of figure 3.7, but with 51 points on a
side. We know from symmetry that the potential of all the points on the diagonal
with x = y will become 0.5 eventually and so the sum of the potentials for the 49
points with 0 < x = y < 50 will be 24.5. Figure 3.8(a) shows the exponential
approach to this final value for no acceleration, and figure 3.8(b) shows, on linear
scales, the sum potential for a number of values of g. With no acceleration the
sum reaches a value within 0.0001 of 24.5 only after more than 3000 cycles of
iteration, while for g = 1.90 this condition is reached after 95 cycles. Notice
that the final value is reached, in this case, from above. The effect of increasing g

from 1 to larger values resembles very much the effect of reducing the damping
of a resonant circuit and, if g is increased too much, the system becomes unstable
and will oscillate for g � 2; it is the first signs of this which we see for g = 1.90.
The maximum safe value of g depends on the size of the array and also on its
shape. This example has only 2401 free points and would be regarded as a rather
small array. We commonly use arrays of up to some 500 000 points with aspect
ratios of six to 20 and have found no serious problems with values as high as 1.97.
The Pascal program RELAX51 used for this calculation is shown, in outline, on the
following page, and a compiled version, with certain refinements, is included on
the program disk.

3.4.1.2 Estimates of g. Expressions from which the value of the optimum value
of the acceleration parameter may be estimated are given by Press et al [7] and
figure 3.9 is based on these expressions. It is clear that only for very small arrays
will values less than 1.7 be needed.
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PROGRAM relax51;
VAR V:array[0..50,0..50] of double;

x,y,c:integer;
g,Vsum:double;

PROCEDURE average;
VAR x,y:integer;
BEGIN
for x:=1 to 49 do BEGIN
for y:=1 to 49 do BEGIN
V[x,y]:=g*(V[x+1,y]+V[x-1,y]+V[x,y+1]+V[x,y-1])/4

-(g-1)*V[x,y];
END;

END;
Vsum:=0;
for x:=1 to 49 do Vsum:=Vsum+V[x,x];
writeln(c:4,Vsum:16:5);

END;
BEGIN
REPEAT
REPEAT

clrscr;
gotoxy(16,6);
write(’ENTER a value for the acceleration parameter,

g: ’);
c:=wherex; writeln;
gotoxy(16,7);
write(’(1’,chr(243),’ g < 2), but g=0 terminates

the program’);
gotoxy(c,6);
readln(g);
IF g=0 THEN exit;

UNTIL (g >= 1) and (g < 2);
clrscr;
c:=1;
Vsum:=0;
for x:=1 to 50 do for y:=0 to 49 do V[x,y]:=0;
for x:=0 to 49 do V[x,50]:=1;
for y:=1 to 49 do V[0,y]:=1;
V[0,0]:=0.5;
V[50,50]:=0.5;
while abs(Vsum - 24.50) > 0.0001 do BEGIN

average;
c:=c+1;

END;
readln;

UNTIL g=0;
END.
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Figure 3.9 Estimates of the acceleration parameter, g, for arrays of
Y (R) × X(Z) points. The abscissa is the aspect ratio, X/Y , which
allows values for a wide range to be shown compactly.

3.4.2 Cylindrical symmetry
In cylindrical polar coordinates Laplace’s equation (2.1) is

∂2V

∂z2
+ ∂2V

∂r2
+ 1

r

∂V

∂r
= 0.

Consider a rectangular array of points separated by distances h with the polar axis
forming the lower boundary. We can write for the potential close to the point (z, r)

V (z, r + h) = V (z, r) + h
∂V

∂r

+ 1

2
h2 ∂

2V

∂r2
+ 1

6
h3 ∂

3V

∂r3
+ 1

24
h4 ∂4

∂r4
+ · · · (3.19a)

V (z + h, r) = V (z, r) + h
∂V

∂z

+ 1

2
h2 ∂

2V

∂z2
+ 1

6
h3 ∂

3V

∂z3
+ 1

24
h4 ∂4

∂z4
+ · · · (3.19b)

with similar expressions for the two other neighbouring points. Taking appropriate
sums and differences and ignoring terms of fourth order and above we can write
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V (z + h, r) + V (z − h, r) − 2V (z, r) = h2 ∂
2V

∂z2

V (z, r + h) + V (z, r − h) − 2V (z, r) = h2 ∂
2V

∂r2

h

2r

[
V (z, r + h) − V (z, r − h)

] = h2

r

∂V

∂r
.

The right hand sides of these three equations are, term by term, equal to h2 times
the terms of Laplace’s equation, and so the sum of the left hand sides must be zero.
We can therefore write

V (z, r) = 1
4

[
V (z + h, r) + V (z − h, r) + V (z, r + h) + V (z, r − h)

]
+ h

8r

[
V (z, r + h) − V (z, r − h)

]
=

[
V (z + h, r) + V (z − h, r) +

(
1 + h

2r

)
V (z, r + h)

+
(

1 − h

2r

)
V (z, r − h)

]/
4

where the latter version is better suited to computation as the r-dependent
coefficients can be calculated once for all.

These expressions cannot be applied to points on the axis, as the final term
would become infinite. For this case we have to consider six points: two axial
points, one to either side of the target point, and four points in a plane perpendicular
to the axis.

V (z, 0) = 1
6

[
V (z + h, 0) + V (z − h, 0) + 4V (z, h)

]
.

As in the two dimensional case, the convergence of the calculation can be made
significantly faster by over-relaxation.

V (z, r) = g

4

[
V (z + h, r) + V (z − h, r) +

(
1 + h

2r

)
V (z, r + h)

+ (
1 − h

2r

)
V (z, r − h)

]
− (g − 1)V (z, r)†

V (z, 0) = g

6
(V (z + h, 0) + V (z − h, 0) + 4V (z, 1)) − (g − 1)V (z, 0)†.

3.4.2.1 Boundary conditions. It is a straightforward matter to apply the
conditions at the electrode surfaces, but the gaps between electrodes can present
problems and there are other ‘boundaries of convenience’which can be introduced
to reduce the computational space and time requirements. Considerable reductions
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can be made by recognizing planes of symmetry in the problem. Figure 3.10
shows the electrodes of two aperture lenses, one with two apertures and the other
with three. The origin of coordinates is at the centre of the lens. In the case of
the two aperture lens, the symmetry is obvious and a suitable set of boundary
conditions would be V = 0 on the left hand electrode, V = 0.5 on the plane of
symmetry (a boundary of convenience) and a linear rise from 0 to 0.5 along the
line from a to b. It is easy to test the validity of this last condition by applying it at
a large radial distance and examining the change in potential distribution between
the aperture plates as a function of radial position: it is usually very good provided
that (D3 −D1)/A is greater than about two. Only the mesh in the region indicated
needs to be relaxed. The potential gradients towards the left hand end of this
region are quite low and the relaxation process will converge very slowly if it is
started at that end. It is far better to start the process in a region which will have
large potential gradients such as the junction between the mid-plane boundary and
the outer cylindrical surface as this will tend to drive the effects of the different
boundaries across the mesh. One might think of the method as a type of diffusion
process and, in a later section, we shall see that this is quite a realistic description.

For the three aperture lens it is necessary to find the potential distribution for two
cases. The first, asymmetric, case has potentials of 0, 0.5 and 1 on the left, centre
and right electrode respectively, and a potential of 0.5 can be assigned to the centre
plane leaving, again, only the hatched area to be analysed. The symmetric case,
with potentials 0, 0.5 and 0 on the three electrodes needs more thought because
the potential on the centre plane is not part of the fixed boundary conditions but
has to be found. This is not difficult. For 0 < r < D1/2 we write

V (0, r) = 1
4 [V (0, r − h) + V (0, r + h) + 2V (−h, r)]

+ h

8r
[V (0, r + h) − V (0, r − h)]

and on the axis
V (0, 0) = 1

3 [V (h, 0) + 2V (0, h)]

with appropriate modifications for acceleration.
If the electrode potentials are set at V1, V2 and V3, the axial potential can be

written as

V (z) = V1 + (V3 − V1)+a(z) + (2V2 − V1 − V3)+s(z)

where +a(z) and +s(z) are the axial potential functions found for the asymmetric
and symmetric cases respectively.

3.4.3 Target conditions
For the example of a square mesh considered in section 3.4.1, the values of the
potential on all the diagonal points were known from the symmetry, and testing
for convergence by examining the difference between the value after each iteration
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Figure 3.10 Aperture lenses of two and three elements showing the
important dimensions and the regions over which the potential must
be solved. The cylinders have to be bounded by a known potential at
their outer ends, but the length would normally be much greater than is
shown here, as is implied by the broken-line sections.

cycle and this known value was not a problem. Even in this situation, a simple test
may fail if the acceleration parameter is too large, because the overshoot illustrated
in figure 3.8(b) for g = 1.90 may, by chance, satisfy the condition on the rising
part. In general the true potential distribution is not known a priori and some
other method of testing for the convergence of the iterative procedure has to be
employed.

It is a fair assumption that eventually the potentials at all points will be as close
to the true values as the discrete nature of the analysis will allow. At some points
the potential will be too high and at others it will be too low, but after the next
cycle of iteration these specific values will change and may, indeed, alternate on
subsequent cycles. The magnitude of these changes will be some measure of the
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Figure 3.11 The dependence of |BV | on the iteration number for the
array of RELAX51 calculated using the five point method using single
and double precision arithmetic and with two values of the acceleration
parameter, g.

effect of the discrete nature of the process and will also depend on the acceleration
parameter. It is useful to examine their behaviour as it may be a guide to the
completion of the iterative process.

It would be impracticable to examine the changes at every point for a large
array, typical of lens systems, but we shall see later that all the lens parameters of
general interest can be deduced from the axial potential and changes in this can be
an adequate guide. We write δV (j) as the change in the potential at the j th (axial)
point, and form the sums

BV =
∑
j

δV (j) |BV | =
∑
j

|δV (j)|.

We expect the first sum to take either sign and to approach zero, but the second sum
is always positive and will decrease, tending to some finite value. This limiting
value will depend on the precision of the calculation and also, though this is only
apparent for quite large arrays, on the acceleration parameter, g.

Figure 3.11 illustrates the behaviour of |BV | for the array of RELAX51 where
the δV are summed along the diagonal and the iteration is continued for 2000 or
more steps. The results are shown for two values of g, 1.60 and 1.90, using single
and double precision arithmetic, and also for a sequence, shown by the broken
lines, in which g = 1.90 until |BV | < 10−8 from which point the lower value of
g is used.

There are a number of points of interest in this figure. The asymptotic values
for the single and double precision calculations do not depend significantly on the
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value of g. We shall see later that there is a much clearer dependence in the case of
large arrays. The approach to the asymptotes has a slope which depends only on
the value of g even in the case where most of the approach is made more rapidly,
using a larger initial value. This shows that much calculation time can be saved
by starting the iteration with a large, even excessive value. Again, this will be
discussed further in the context of lens geometries in the appendix. Finally, there
are glitches separated by 100 iterations in the approach of the g = 1.90 curve to
its asymptote and, at the point where the value of g is reduced, the value of |BV |
falls rapidly before adopting the slower decrease appropriate to the new value.

The demonstration program RELAXCYL.EXE on the disk uses this criterion and
displays both BV and |BV | at each step and halts when |BV | = 0.00001. Note
that the sign of BV alternates to some extent for large values of g. The glitches in
figure 3.11 mentioned above correspond to large negative values ofBV . The reader
may care to examine the dependence on g of the number of iteration cycles required
to reach the end point. A graph of log n against g emphasizes the importance of the
correct choice of value, while a graph of n against log(2 − g) is also interesting.
Both graphs show the effects of incipient oscillation for values above the optimum.

3.4.4 Precision and accuracy
The precision of the final result of a relaxation calculation depends on the size
of the array. With other factors being the same, the precision increases directly
with the number of points in the array. The accuracy is also affected, because the
contribution of the neglected higher order terms of the Taylor expansion becomes
smaller.

There are particular problems close to edges and corners of electrodes, where
the potential changes rapidly. It is possible to alleviate these if the mesh density
is increased locally in these regions by reducing h to a half or a quarter of its
value over the main system [10]. Unfortunately, it is just at the edges of electrodes
that the boundary conditions are not well known and increasing the mesh density
may give a false sense of accuracy when only the precision of the solution to a
somewhat different problem has been improved.

3.4.4.1 The limitations of the five point method. The accuracy of the five point
method may be estimated by noting that the potential at a given point differs
from the mean of that at the nearest neighbours by an amount proportional to h4

or N−2 where N is the number of mesh points. However this is not the absolute
accuracy, because these latter points do not have their ‘correct’values either so there
is a progressive change which will depend on N , leaving the absolute accuracy
proportional to N−1. It is very easy to exploit this dependence by solving the same
problem with different mesh spacing. We noted earlier that the speed of calculation
could be increased by repeated halvings of the mesh separation, and if the problem
is tackled in this way, the information needed to extrapolate to an infinite number
of points is available. In figure 3.12, values of the potential at five points on the axis
of a two cylinder lens calculated with mesh spacings of D/40, D/80 and D/160
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Figure 3.12 (a) The potential at five points on the axis of a cylindrical
lens calculated by the five point method on lattices having spacing of
D/40, D/80 and D/160 plotted against the reciprocal of the number
of lattice points, illustrating extrapolation to an infinite lattice density.
The five sets of data are shown with substantially suppressed zeros to
emphasize the variation in slope. The data for 0.9 and 1.4 diameters
are shown on ordinate scales magnified by 10 and 100 respectively.
(b) The dependence of the slope of the lines of (a) (identified by their
symbols), and similar plots, on axial position. The scale is magnified
by a factor of ten for the positive values.
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are plotted against the reciprocal of the number of mesh points. There is a clear
dependence on N−1 though the slope varies and even changes sign. While this
extrapolation can only be applied at the spacing of the coarsest mesh, the smooth
variation of the slope can itself be interpolated so that the values of the potential
at intermediate points can be corrected.

This position dependent slope implies that the five point method can never give
the true axial potential and it is only this extrapolation procedure which allows the
true potential to be found.

3.4.4.2 The nine point method. It is possible to increase the accuracy of the
calculation by considering not just the average of the potentials at four nearest
neighbours, but by taking account of four further points. This leads to relaxation
methods known as ‘nine point relaxation’ in distinction to the ‘five point relaxation’
we have discussed so far. If we consider the four points a distance ±2h from the
target point in the two dimensional array [11] we can write

V (x − 2, y) + V (x + 2, y) + V (x, y − 2) + V (x, y + 2) − 4V (x, y)

= 16h2
(∂2V

∂x2
+ ∂2V

∂y2

)
and this time the first neglected term is

+4

3
h4

(∂4V

∂x4
+ ∂4V

∂y4

)
which is 16 times as great as for the four nearest neighbour case. We can eliminate
this term, leaving the sixth order term as the first to be neglected, if we give the
nearest neighbour sum a weight of 16 and the ‘2h’ sum a weight of −1

60V (x, y) = 16[V (x − h, y) + V (x + h, y) + V (x, y − h) + V (x, y + h)]

− [V (x − 2h, y) + V (x + 2h, y) + V (x, y − 2h) + V (x, y + 2h)].

This choice of additional points leads to some problems close to boundary points
and it is more usual to use the points at the corners of a square to eliminate the
fourth order term. The expansion of the potential at these points to fourth order
requires 15 terms:

V (x + h, y + h) = V (x, y)

+ h
∂V

∂x
+ h

∂V

∂y
+ 1

2
h2 ∂

2V

∂x2
+ h2 ∂2V

∂x∂y
+ 1

2
h2 ∂

2V

∂y2
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6
h3 ∂
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∂x3
+ 1

2
h3 ∂3V

∂x2∂y
+ 1

2
h3 ∂3V

∂x∂y2
+ 1

6
h3 ∂

3V

∂y3

+ 1

24
h4 ∂

4V

∂x4
+ 1

6
h4 ∂4V

∂x3∂y
+ 1

4
h4 ∂4V

∂x2∂y2

+ 1

6
h4 ∂4V

∂x∂y3
+ 1

24
h4 ∂

4V

∂y4
. (3.20)
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We leave it as an exercise for the reader to show that the fourth order terms can
be removed by giving the nearest neighbour terms a weight of four and the corner
terms a weight of unity.

The lower of the two curves of figure 3.8(a) is the result of this form of the
nine point method. It reaches the target condition after 2577 cycles of iteration
compared with the 3094 cycles taken by the five point method. The total calculation
time is greater, however, being 0.35 m s per cycle compared with 0.7 m s per cycle
on a 450 MHz Pentium III machine.

3.5 The nine point method applied to cylindrical geometry

The increases in precision and, especially, accuracy of the nine point method are
so significant that a full derivation of the formulæ is appropriate.

In cylindrical polar coordinates, equation (3.20) becomes

V (z + h, r + h) = V (z, r) + h
∂V

∂z
+ h

∂V

∂r

+ 1

2
h2 ∂

2V

∂z2
+ h2 ∂2V

∂z∂r
+ 1

2
h2 ∂

2V

∂r2

+ 1

6
h3 ∂

3V

∂z3
+ 1

2
h3 ∂3V

∂z2∂r
+ 1

2
h3 ∂3V

∂z∂r2
+ 1

6
h3 ∂

3V

∂r3

+ 1

24
h4 ∂

4V

∂z4
+ 1

6
h4 ∂4V

∂z3∂r
+ 1

4
h4 ∂4V

∂z2∂r2

+ 1

6
h4 ∂4V

∂z∂r3
+ 1

24
h4 ∂

4V

∂r4
(3.21)

with three further expressions which differ from this only in the signs of the terms
involving the odd order differentials.

3.5.1 The nine point formula for a general point
Laplace’s equation relates only first and second derivatives and, if we are to improve
the calculations beyond those considered in section 3.4.2, we have to eliminate the
higher order derivatives from the eight expressions of equations (3.19) and (3.21).
By taking appropriate sums and differences of these expressions, we can write
explicit expressions for the higher order derivatives in terms of the potentials and
the lower order derivatives.
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h3 ∂
3V

∂r3
= 3

[
V (z, r + h) − V (z, r − h)

] − 6h
∂V

∂r

h4 ∂
4V

∂r4
= 12

[
V (z, r + h) + V (z, r − h)

] − 24V (z, r) − 12h2 ∂
2V

∂r2

h3 ∂3V

∂r∂z2
= 1

2

[
V (z + h, r + h) + V (z − h, r + h)

− (
V (z + h, r − h) + V (z − h, r − h)

)]
+ V (z, r − h) − V (z, r + h) (3.22)

h4 ∂4V

∂r2∂z2
= 4V (z, r) + V (z + h, r + h) + V (z − h, r + h)

+ V (z + h, r − h) + V (z − h, r − h)

− 2
(
V (z + h, r) + V (z − h, r) + V (z, r + 1) + V (z, r − h)

)
h4 ∂

4V

∂z4
= 12

(
V (z + h, r) + V (z − h, r)

) − 24V (z, r) − 12h2 ∂
2V

∂z2
.

We can find relations between these higher differentials by differentiating Laplace’s
equation once and twice with respect to r and twice with respect to z.

∂3V

∂r3
+ ∂3V

∂r∂z2
+ 1

r

∂2V

∂r2
− 1

r2

∂V

∂r
= 0

∂4V

∂r4
+ ∂4V

∂r2∂z2
+ 1

r

∂3V

∂r3
− 2

r2

∂2V

∂r2
+ 2

r3

∂V

∂r
= 0

∂4V

∂r2∂z2
+ ∂4V

∂z4
+ 1

r

∂3V

∂r∂z2
= 0.

Substitution of the five expressions (3.22) into these three equations leads to a
single equation for V (z, r) in terms of the potentials at the eight adjacent points.
The use of a computer algebra package, in our case DERIVE†, is very useful at
this stage.

60(8r2 + 3h2)V (z, r) = 6(16r2 + 7h2)(V (z + h, r) + V (z − h, r))

+ (96r2 + 48rh + 30h2 + 23h3/r)V (z, r + h)

+ (96r2 − 48rh + 30h2 − 23h3/r)V (z, r − h)

+ (24r2 + 12rh + 9h2 + 13h3/2r)(V (z − h, r + h) + V (z + h, r + h))

+ (24r2 − 12rh + 9h2 − 13h3/2r)(V (z − h, r − h) + V (z + h, r − h)).

(3.23a)
Again, this cannot be applied to points on the axis, but the calculation in terms of
the potentials at the five nearest points in the plane is straightforward.

† Soft Warehouse, Inc., 3660 Waialae Avenue, Suite 304, Honolulu, HI, USA.
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3.5.2 The nine point formula for an axial point
A Taylor expansion of the potential near the axis gives

V (z, h) = V (z, 0) − h2

4

∂2V

∂z2
+ h4

64

∂4V

∂z4
(3.24a)

and the potential at the adjacent axial points follows from equation (3.19b) with
r = 0 and the corresponding expression for V (z − h, 0).

V (z − h, 0) + V (z + h, 0) = 2V (z, 0) + h2 ∂
2V

∂z2
+ h4

12

∂4V

∂z4
. (3.24b)

The potentials at the remaining two points are found by writing equation (3.19b)
as V (z ± h, h), remembering that ∂2V /∂z2 has to be evaluated at these values
of z :

V (z − h, h) + V (z + h, h) = V (z − h, 0) + V (z + h, 0)

−
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− 13

96

∂4V

∂z4
. (3.24c)

The differential terms in equations (3.24a–c) can be eliminated by taking the
sum, weighted by multipliers of 34, five and seven, respectively, which gives the
following expression for the potential at a point on the axis.

58V (z, 0) = 34V (z, h) + 5(V (z − h, 0) + V (z + h, 0))

+ 7(V (z − h, h) + V (z + h, h)).
(3.23b)

Equations (3.23) were first derived by Durand [12], but a more recent,
and perhaps more accessible, derivation by Szilagyi [2], has a misprint in the
coefficients of the V (z, r ± h) terms. Kasper [13] quotes an expression as valid
for fields of various symmetries. However, for the axisymmetric case we are
considering, his expressions give the coefficient of the V (z, r +h) term as exactly
four times that of the V (z±h, r±h) terms which is only true in the limit of large r .
The correct expression has been found by Edwards [10], but is not given in his
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Figure 3.13 The fractional difference between the axial potential after
sufficient cycles of iteration to ensure convergence. The two data sets
are for 40 000 iterations with g = 1.80 and 10 000 iterations with
g = 1.97.

paper, but only in a separately published appendix with only the barest outline of
derivation.

3.5.3 The convergence of the potential in the lens geometry
The criterion that |BV | has reached some chosen value, or that it has reached its
asymptotic value, is often adequate for a ‘closed box’ situation, but is not good
enough in the context of lens design, where the values of the potential are not
known and the range of these is very large. In this situation we must recognize
that reaching the asymptotic value is only the beginning and subsequent cycles of
iteration are required to drive the correct values of the potential along the length
of the lens. The potential distribution has therefore to be tested for consistency
under continued iteration. If the iteration has converged completely, values of
the potential at each axial point will not have changed, to within the numerical
precision, after some further cycles.

The most sensitive way to examine this is to calculate the fractional difference
between the values

V1(z) − V2(z)

V2(z)

for all values of the axial position z, where V1 and V2 correspond to different
numbers of iterations. As an indication of the precision we can expect, figure 3.13
shows the comparison between two data sets after full convergence has been
obtained. There is a clear periodicity which shows that we are seeing differences in
the last significant digit of the double precision numbers we have used. The value
of the potential at z/D = 0 is 0.5 while at z/D = 9.9 it is 1.0 · · · × 10−21. Each
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Figure 3.14 The fractional difference between the axial potential after
10 000 cycles of iteration with g = 1.95 and at five intermediate stages.

of the 21 � marks the axial position where the number changes from 1.0 × 10−n

to 9.9 × 10−(n+1) and they echo the periodicity of the data. A histogram of these
data with bins of width 10−15 shows that 48% are in the zero bin with almost equal
numbers greater (26.3%) and less (25.7%) than zero.

Figure 3.14 shows the situation before convergence. The values of the fractional
difference are so large that we cannot use the linear display of figure 3.13. The
logarithmic display we have to use loses the negative data, but the progress of
convergence along the axis is quite clear. After 20% of the final number of iterations
the axial potential is nowhere correct; after 30% it has converged to z/D ≈ 1.2;
but it is only after some 55% that there is full convergence. In the calculations
used in the preparation of the potential data file, LPOTS.DAT, for LENSYS2.EXE the
tests for convergence were of this type, but were automated, as described in the
Appendix, and were made at rather closer intervals.

3.5.4 Comparisons of the five and nine point methods
The advances in personal computer technology since the first edition have reduced
the importance of the extrapolation procedure of section 3.4.4.1 and it is now
practicable to apply the finite difference method to significantly larger arrays and
to realize the advantage in accuracy of the nine point relaxation method. For the
calculation of the potentials and fields used in the LENSYS2.EXE program we have
used arrays of up to 240 by 2400 and 160 by 3200 points. The details of these
calculations are discussed in the appendix, but it will be useful to compare some
aspects of the five and nine point methods here.

To illustrate the similar precision of the two methods, we show in figure 3.15 the
iteration of a cylindrical array system with 80 radial points and 1600 axial points
for 8000 cycles. The iterations were started with g = 1.95 which was reduced to
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Figure 3.15 The variation of |BV | for a cylinder lens lattice having 80
radial and 1600 axial points calculated by both the five point (the upper
curve) and nine point methods. The approach of the axial potential to
its final value is indicated by the © curve and was determined by an
extension of the procedure mentioned in section 3.5.3 and described in
the appendix.

1.80 when |BV | fell below 10−12. Both sets of data approach the same limiting
value, 7.0 × 10−15 with standard deviations of 6.5 × 10−16. The iteration times
on a 120 MHz Pentium computer were 0.19 and 0.28 s per cycle for the 1000 and
822 cycles taken to reach the abrupt ‘step’ similar to that noted in the discussion
of figure 3.11. The progress of the convergence of the axial potential is shown
for the nine point case. There is little point in continuing the convergence test
beyond z = 9D because the potential is distorted by the zero potential ‘end cap’
at z = 10D.

The difference in accuracy is illustrated in figure 3.16. This compares the axial
potential found after adequate convergence of both calculations. The figure is a
comparison of the fractional difference between the potentials determined by the
two methods, both with g = 1.80.

V9(z) − V5(z)

V9(z)

where the notation should be transparent.
We know that the five point method does not converge to the correct potential

and we shall see later that the nine point method does converge correctly in a
certain sense, so the differences shown in this figure indicate the scale of the error
in the five point method as applied to a lens geometry. The information in this
figure is similar to that in figure 3.12.
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Figure 3.16 The fractional difference between the axial potentials
of the lens of figure 3.15 calculated by the five point and nine point
methods.

The finite difference method is one of the easiest to program, provided that the
geometry is simple; curved surfaces need to be approximated by chords. It can
be much more accurate than practical lens systems justify, giving very good focal
and aberration data for both cylinder and aperture lenses. There are commercial
programs available. The best known of these is SIMION†, which we have used to
prepare figures 1.2(b), 4.3 and 5.6, but they all use the five point method which as
we have seen has limitations which may be significant.

3.6 Bessel function expansions

We saw in section 3.1 that the potential in an axisymmetric situation could be
expressed as

V (z, r) = (Akekz + Bke−kz)J0(kr) + V0. (3.1)

The general solution for a particular lens geometry will consist of a sum of such
terms and, in contrast to the treatment of section 3.1, we choose to treat positive and
negative values of kz explicitly. Figure 3.17 shows the geometry of a lens formed
by two coaxial cylinders of equal diameter, D, separated by an axial distance, g,
and having potentials V1 and V2. We show the walls of the cylinder to be of finite
thickness as we shall later use a result from a finite difference calculation to resolve
a problem inherent in this method. Three regions are indicated, in each of which
we can write a specific expression for the potential. In regions I and III, within the

† A demonstration version of SIMION can be downloaded from
www.srv.net/∼klack/simion.html.
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Figure 3.17 Schematic diagram of a two cylinder lens showing the
dimensions and identifying the regions to which different expressions
for the potential apply. The origin of the coordinates is at the centre of
the system.

cylinders, only one of the terms of equation (3.1) has physical meaning; the other
would become infinite as |z| → ∞.

VI (z, r) = V1 +
∞∑
n=1

An exp(knz)J0(knr) (3.25a)

VII (z, r) = V1 + V2

2
+

(V2 − V1

g

)
z

+
∞∑
n=1

[Bn exp(−knz) + B ′
n exp(knz)]J0(knr) (3.25b)

VIII (z, r) = V2 +
∞∑
n=1

Cn exp(−knz)J0(knr). (3.25c)

In order to find the coefficients, we must consider the conditions at the various
boundaries. At the inner surfaces of the cylinders the potentials are V1 and V2 so,
unless An = Cn = 0, the Bessel functions must all vanish for r = D/2. The
possible values of knD/2 are therefore the roots, j0,n, of J0 = 0 and will be found
in tables of Bessel functions [14]. This restriction on the values of kn means that
in region II the potential at r = D/2 varies linearly with z. This is not correct,
but it is not a bad approximation for small values of g/D and allowances can be
made. Symmetry allows us to write

An = −Cn and Bn = −B ′
n



54 Electrostatic Lens Systems

and from the continuity of potential at the boundary between regions I and II we
have

An exp(−kng/2) = Bn[exp(kng/2) − exp(−kng/2)]

which allows us to express the potentials in all three regions in terms of the single
set of coefficients Bn.

VI (z, r) =V1 +
∞∑
n=1

Bn[exp(kng) − 1] exp(knz)J0(knr)

VII (z, r) =V1 + V2

2
+

(V2 − V1

g

)
z

+
∞∑
n=1

Bn[exp(−knz) − exp(knz)]J0(knr)

VIII (z, r) =V2 −
∞∑
n=1

Bn[exp(kng) − 1] exp(−knz)J0(knr).

The continuity of potential across the boundary between regions I and II implies
that the radial component of the field is continuous across this boundary, but we
have not used the constraint that the axial component of the field must also be
continuous across this boundary,

∞∑
n=1

Bnkn exp(kng/2)J0(knr) = V2 − V1

2g
for all r � D/2.

It is not easy to apply this constraint directly, but another approach allows all theBn

to be determined.

3.6.1 The variational principle
It is a general feature of any physical system that it will adjust itself to a condition of
minimum potential energy. We may therefore test the suitability of any expression
for the potential by examining the energy stored in the associated field. The
energy density of an electrostatic field can be written as 1

2ε0E
2. If we write the

total energy of the field as the integral of the sums of the squares of the axial and
radial differentials of the potentials we can determine the coefficients by equating
the differentials of this integral with respect to Bn to zero. The expression for the
energy, W , contains three terms, one for each of the regions, but we need only
evaluate one and a half of these because of the symmetry about the central plane.

W = πε0

{ −g/2∫
−∞

D/2∫
0

[(∂VI

∂z

)2
+

(∂VI

∂r

)2]
r dr dz

+
0∫

−g/2

D/2∫
0

[(∂VII

∂z

)2
+

(∂VII

∂r

)2]
r dr dz

}
.
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The evaluation of these integrals is considerably simplified by the orthogonality
of the Bessel functions.

Applying the condition ∂W/∂Bn = 0 gives

Bn = (V2 − V1)
exp(−kng/2)

(g/2)k2
nDJ1(knD/2)

where J1(knD/2) is the Bessel function of order one evaluated at the zeros of J0.
The properties of the field do not depend on the scale of the system and it

is convenient to express all the dimensions in terms of the diameter, D, of the
cylinders.

G = g/D Z = z/D R = 2r/D

with
Kn = knD/2

Values of Kn and the corresponding values of J1(Kn) to ten decimal places can
be found in tables [14] for 1 � n � 150. Writing Qn = 1/2K2

nJ1(Kn) we have
Bn = (V2 − V1)Qn exp(−KnG)/G. The exponential terms involve (±2Z ± G)

so we write

a1n = exp[Kn(2Z + G)] and a2n = exp[Kn(2Z − G)]

and express the potentials as

VI (Z,R) = V1 + V2 − V1

G

∞∑
n=1

QnJ0(KnR)(a1n − a2n) (3.26a)

VII (Z,R) = V1 + V2

2
+ V2 − V1

G
Z

+ V2 − V1

G

∞∑
n=1

QnJ0(KnR)(1/a1n − a2n)

(3.26b)

VIII (Z,R) = V2 − V2 − V1

G

∞∑
n=1

QnJ0(KnR)(1/a2n − 1/a1n). (3.26c)

Successive terms of the summations converge quite rapidly except close to
the boundaries between the regions, and at axial distances greater than some 1 1

2
diameters only the first term makes any significant contribution. The axial potential
then approaches that of the electrode as e−2K0Z where K0 = 2.4048. As G → 0
the exponential terms approach 2KnG exp(−2KnZ), the (2KnG) cancels and the
expressions reduce to

2
∞∑
n=1

exp(−2Kn|Z|)
KnJ1(Kn)

J0(KnR).
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Figure 3.18 The potential in the gap between two cylinders at
potentials 0 and 1. The full curve shows the ‘cubic’ result of Bonjour
[15] and the points show the results of nine point relaxation with a
lattice spacing of D/320. The straight line is a least squares fit to these
data and its significance is discussed in the text.

3.6.2 The problem of the non-linear potential in the gap
For small gaps the departure of the true potential between the cylinders at r = D/2
from a linear dependence on z is not really serious, but nonetheless it is possible
to make a correction in one of two ways. Instead of writing the second term of
equation (3.25b) as (V2 − V1/g)z a third order term can be added [15], and the
variational calculation repeated with the slightly more complicated expression

(V2 − V1)

[(
1 − a

2

)
z

g
+ 2a

(
z

g

)3]
.

For a zero gap lens, a = 1, and decreases quite slowly, being about 0.75
for g = D/2. This is too simple to represent the true situation except, perhaps, for
cylinders with extremely thin walls. Thick walled cylinders are more practicable
and have the further virtues of shielding the cylindrical space from charged surfaces
outside the lens system, but within the vacuum chamber.

The true variation of the potential at r = D/2 may be found using the finite
difference method to relax the potential not only within the cylindrical surface,
but outwards to a greater radius within the gap as discussed in section 3.4.2.1
in the context of aperture lenses. Figure 3.18 illustrates this variation for a
gap, g = D/10. The cubic form is clearly a poorer representation than the simple
linear variation and the true shape requires higher order terms to describe it. It
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Figure 3.19 The fractional difference between the axial potential
calculated using the Bessel function expansion and that calculated
using nine point relaxation. Six values of the gap scaling factor, from
1.089 960 to 1.089 970 were used, the topmost curve corresponding to
the smallest value.

would be quite difficult to repeat the variational calculation with fifth and seventh
order terms but the straight line of slope 9.135 provides a guide to improving the
approximation. Instead of using the true value of the gap in the expressions for
the potential, we can multiply the this by a scaling factor slightly larger than one
such that the axial potential agrees with that calculated by the nine point relaxation
method to a high degree of accuracy except close to the actual gap.

We show in figure 3.19 the fractional difference between the potential calculated
using a range of scaling factors, and that calculated by the nine point relaxation
method for a lens represented by arrays 160×3200 for the cylinder and 160×160
for the gap between the cylinders. Interpolation between these values of gap scaling
factor suggests that a value of 1.089 662 will give quite excellent agreement for
z/D > 1 and very good agreement close to the gap. The greatest fractional
difference is 3.4 × 10−6 at D/4.

In addition to providing a value for the gap scaling factor for a nominal gap of
D/10, figure 3.19 shows that the nine point method gives an accurate description
of the axial potential. The agreement extends over the whole volume of the lens
cylinder as is shown in figure 3.20. Contours of constant fractional difference show
that, out to a radius of D/4, the agreement is better than 10−5. The disagreement
for smaller values of z/D is due to the approximation used in the Bessel expansion
calculation.

3.6.3 Calculation of the potential
A Pascal function which calculates the potential at the point (Z,R) using
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Figure 3.20 The fractional difference between the potential
calculated using the Bessel function expansion and that calculated using
nine point relaxation with a gap scaling factor of 1.089 662. The space
is divided by the contours of zero value into region in which the value
of the fractional difference is positive or negative. The other contours
correspond to values of ±10−6, 10−5 and 10−4.

equations (3.26) is shown on the following page. It uses a further function BessJ0(x)

which can be taken directly from an example in Numerical Recipes [7]. The values
are appropriate for cylinder potentials of zero and unity and for a nominal gap of
D/10. The main program must supply values for K[n], the nth zero of the Bessel
function of order zero, and Q[n]. Both of these can be determined from values in
tables [14].

At each position the potential, V , is calculated by summing terms dV [c] until
the absolute value of a term is less than some limiting value (taken here as 10−8)
or the number of terms exceeds 150, when a rounding-off procedure is applied to
estimate the sum to infinity.

The series converges rather slowly close to the boundaries between the regions.
If it has not converged after 150 terms, we need to invoke the round-off procedure.
By considering the continuity of the gradient at the boundary between regions I
and II, it is easy to show that

∞∑
n=1

1

KnJn

≡
∞∑
n=1

1

k[n]j [n]
= 0.5

but the sum to 150 terms is, at 0.471 15 · · ·, significantly different from this. The
sums to odd and even numbers of terms differ from the true sum by amounts which
alternate in sign and decrease progressively. A simple average introduces some
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FUNCTION BesselPot(R,Z:double):double;
CONST
Gap=0.109362;

VAR
Limit,Z1,Z2,V0:double;
C:integer;
S:ARRAY[0..156] of double;
dV:ARRAY[0..150] of double;

PROCEDURE RoundOff(C:integer);
BEGIN

S[C+3]:=((S[C]*S[C-2]-SQR(S[C-1]))/(S[C]-2*S[C-1]
+S[C-2]));

END;
BEGIN

Limit:=0.00000001;
Z1:=2*Z + Gap; Z2:=2*Z - Gap;
C:=1; S[0]:=0; dV[0]:=1;
WHILE ABS(dV[C-1]) > LIMIT DO
BEGIN

IF Z > Gap/2 THEN BEGIN
dV[C]:=Q[C]*BessJ0(K[C]*R)*(exp(-K[C]*Z1)

-exp(-K[C]*Z2))/Gap;
V0:=1; END

ELSE IF Z < -Gap/2 THEN BEGIN
dV[C]:=Q[C]*BessJ0(K[C]*R)*(exp(K[C]*Z1)

-exp(K[C]*Z2))/Gap;
V0:=0; END

ELSE BEGIN
dV[C]:=Q[C]*BessJ0(K[C]*Z)*(exp(-K[C]*Z1)

-exp(K[C]*Z2))/Gap;
V0:=0.5+Z/Gap; END;

S[C]:=S[C-1]+dV[C]; V:=V0+S[C];
IF C < 150 THEN C:=C+1

ELSE BEGIN
RoundOff(148);
RoundOff(149);
RoundOff(150);
RoundOff(153);
V:=V0+S[156];
dV[149]:=0;

END;
END;
BesselPot:=V;

END;
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bias as a result of this progressive decrease, but a mean of three successive terms
is really very good. The round-off procedure used in this program is much more
powerful than is really necessary and could probably be applied safely to estimate
the sum to infinity after only the first 30 or so terms had been calculated. It is used
to extrapolate from the sums to 146 to 150 terms by using

S[C + 3] = S[C] × S[C − 2] − S2[C − 1]

S[C] − 2S[C − 1] + S[C − 2]

with C = 148, 149 and 150 to generate pseudosums, S[151], S[152] and S[153]
which are then averaged again to give a final pseudosum, S[156], which is within
10−10 of 0.50 for the exact boundary case. Away from the boundaries, the series
converge quite quickly: 20 terms being enough by |z/D| = 0.15.

The Bessel function expansion is by far the fastest method for calculating the
potential in a two cylinder lens. On a 450 MHz Pentium III machine, the potential
can be evaluated for a lattice of 160 radial and 3200 axial points in a quarter of a
minute. The nine point finite difference method requires about half an hour!



4 The optics of simple lens systems

4.1 Aperture lenses

One might almost say that aperture lenses are the ‘traditional’ particle lens. A
great variety of detailed shapes and proportions have been used which makes it
difficult to prepare tables of focal data for general application. In the context of
low energy beams there is no need for smoothly rounded electrodes: simple thin
discs with circular holes can be used and, provided that there is some agreement
about the spacing of the discs, it should be possible to make systems of two or
three apertures which behave in a predictable fashion. Figure 3.10 shows the
important dimensions of such systems. For the purposes of scaling, it is usual to
express all the dimensions in terms of the diameter,D1, of the apertures themselves.
The significance of the outer diameter of the discs, D3, was discussed earlier in
the context of establishing a simple boundary condition to use in the relaxation
calculation, but it has a further, practical, significance in that the lens system does
not exist in a vacuum, but rather in a vacuum system which has walls which will
either be of metal and therefore have some definite potential, or of an insulating
material and have a rather indefinite potential. In both cases it is important that
this should not influence the potential distribution within the lens and it is as well
to ensure that (D3 − D1)/A > 3.

A similar argument requires that the first and last apertures be mounted on
cylinders to guarantee uniform potentials in the object and image spaces, and
the diameter, D2, of these cylinders will affect the potential distribution and,
therefore, to some extent the focusing properties. Figure 4.1 shows the axial
potential distribution in a two aperture lens with A = D1/2 and a number of
values of D2/D1. Near the centre of the lens the distributions are very similar, but
with increasing distance from the centre the potential tends towards the simple
exponential decay characteristic of the dominant term in the Bessel function
expansion, V (z, 0) ∝ exp(−k0z/

1
2D2). Most of the calculations were made with

the length of the D2-cylinder great enough that the potential fell smoothly, but
one example is included of a cylinder of length 4D1, and therefore only 4D2/3, to
illustrate the way in which the end-plate can influence the potential distribution.

61
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Figure 4.1 Axial potential distributions for two aperture lenses having
A = D1/2. Values of the ratio D2/D1 are shown on the diagram. The
potentials all have the value 0.5 at the lens centre, but fall with increasing
axial distance, z, as exp(−4.8096(z/D2)). The potentials approach
these asymptotes from above except in the case of the cylinder lens. Is
there a value of D2/D1 for which the potential falls exponentially for
all z?

The different potential distributions away from the apertures themselves affect
the properties of the lens as illustrated in figure 4.2. This shows the first focal
length, f1, mid-focal distance, F1, and spherical aberration coefficient, Cs0 , for
a voltage ratio, V2/V1 = 10, as functions of the ratio D2/D1, and includes the
case of the cylinder lens of the same spacing, which one might consider to be
a rather extreme aperture lens having D2/D1 = 1. The overall effect on the
focal properties is not large, but the lower aberration of the cylinder lens is quite
noticeable. Changes of a similar scale result if the separation of the apertures is
doubled, but whereas this is a fairly obvious effect, the effect of changes in D2 is
a little more subtle. The thickness of the aperture discs also plays a part, but not
on the same scale. The data presented in the LENSYS program are for D2/D1 = 3
which represents a compromise between reduced dependence at large values of
the ratio and sheer physical size of the electrodes.

4.1.1 Three-aperture lenses
As is the case with all lenses with three elements, the principal function is the
decoupling of the focal properties of the lens, in particular the behaviour between
conjugates, from the ratio of the potentials of the image and object spaces. Data
for this sort of application are generally presented in the form of plots of the
ratio V2/V1 against V3/V1. These plots are usually called ‘focal loci’ or ‘zoom
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Figure 4.2 Focal lengths (©), mid-focal distances (•) and spherical
aberration coefficients (�) for two aperture lenses having A = D1/2
and V2/V1 = 10.

curves’ and lenses used in this fashion are referred to as ‘zoom lenses’, but the
behaviour is more restricted than the use of this term in light optics would imply.
We shall return to this topic in section 4.6.1.

4.1.1.1 The Einzel lens. Nowadays this term is understood to refer to a three
element lens operated symmetrically, with V3 = V1 and with V2 taking any
appropriate value. Historically the Einzel, or unipotential, lens signified a system
with V2 held at the potential of the cathode. The major advantage of this is that
the focal properties, depending as they do on voltage ratios, are the same for all
values of V1 = V3. The disadvantage is that the aberrations of this lens are greater
than those of the symmetric lens with V2 > V1,3.

The potential distribution in an Einzel lens is different in character from that
shown for the two cylinder lens in figure 2.1(b) and we illustrate this in figure 4.3.
Apart from the bowing out of the equipotentials which occurs for any aperture lens,
the potential close to the centre forms a saddle where the potential rises (say) in
the r-direction and falls in the ±z-direction. This general form will apply to any
three aperture lens for which V2 is outside the range spanned by V1 and V3. One
of the equipotentials crosses the axis at the centre and it is simple to show that the
angle between this equipotential (the value of which will depend on the thickness
of the aperture plates) and the axis is ±54.7◦. Expanding the axial potential as

V (z, 0) = V0(z, 0) + zV ′
0(z, 0) + 1

2z
2V ′′

0 (z, 0) + · · ·
and substituting this into equation (2.2) gives

V (z, r) = V0(z, 0) + zV ′
0(z, 0) + 1

2z
2V ′′

0 (z, 0) − 1
4 r

2V ′′
0 (z, 0) + · · · .
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Figure 4.3 Equipotentials in an Einzel lens. Near the centre of the
lens the equipotentials are at 0.300, 0.294 and 0.288 of the potential
difference between the outer and centre electrodes. Close to the axis
the equipotentials are hyperbolæ, and at the centre they form a pair of
straight lines which cross the axis at angles of ±54.7◦.

V ′
0(z, 0) = 0 at the saddle point and V (z, r) = V0(z, 0) along the equipotential,

so the equation of the equipotential close to the saddle point is 1
2z

2 = 1
4 r

2 from
which the result for the angle follows immediately.

4.2 Cylinder lenses

Cylinder lenses offer a number of advantages over aperture lenses of the same
inner diameter. For a given voltage ratio they are a little stronger and have smaller
aberration coefficients, but there are two quite important mechanical advantages
as well. They are easy to make and to mount: it is easier to turn cylinders on a
lathe than to punch clean-edged holes in metal sheet. It is also simple to make
lens systems with rather small inter-electrode gaps. This is an important factor in
keeping the potential distribution in the gap at the inner surface of the electrodes
close to that assumed in the calculation of the entire potential distribution and also
ensures good screening from any stray electric fields around the lens structure.

The potential and field distributions in a system of several coaxial cylinders
can be found quite adequately by the superposition of those for contiguous pairs,
provided that the gaps between the cylinders are small (say, �> 0.2 D) and the
cylinders themselves are rather longer than the gaps. In practice it is common
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to use cylindrical elements no shorter than D/2 (gap centre to gap centre) with
gaps of D/10. This allows lens systems having a large number of cylinders
to be designed and analysed, procedures which would be much more difficult
with aperture electrodes. If the gaps were large, it would be necessary to solve
each geometry with appropriate symmetric and antisymmetric potentials on all
electrodes, as in the case of the three aperture lens.

4.3 The calculation of ray paths

There are no purely analytic solutions to this problem, only various procedures
for the numerical integration of the path starting from a known position and slope
at some point. The choice of method depends on the extent and quality of the
data. If only the axial potential is known, then integration of the Picht equation
can be done, and there is one procedure which is particularly well suited to this.
On the other hand, if the potential and its derivatives are known quite accurately
throughout the space, a direct application of the laws of simple dynamics will
give good results. If the potential is known everywhere, but to limited accuracy,
various standard procedures are available. However, care should be taken to
distinguish between the precision of the integration procedure and the accuracy of
the trajectory. Ray tracing in the correct potential will give results which show
the effects of aberrations, while integration of the Picht equation will give only the
paraxial, Gaussian, behaviour though corrections can be applied and aberration
coefficients calculated even in this case.

4.3.1 Ray tracing in a known potential
If the potential is not known really well throughout the space, the best approach is
to use some standard expression for the integration of the differential equations,
but if it and its derivatives are well known an analysis by direct application of the
laws of dynamics using expansions of the coordinates and velocities about each
point will give good results [16].

4.3.1.1 Integration of the equation of motion. Taking the time, t , to be the
independent variable we write the coordinates as

z(t) = z0 + t
(dz

dt

)
0
+ t2

2

(d2z

dt2

)
0
+ t3

6

(d3z

dt3

)
0
+ · · · (4.1)

with a similar expression for r(t), where z(t) and r(t) are the axial and radial
positions of a particle, having initial coordinates denoted by the ‘0’subscripts, after
a short time interval t . The components of the velocity follow from differentiation
of these equations

dz(t)

dt
=

(dz

dt

)
0
+ t

(d2z

dt2

)
0
+ t2

2

(d3z

dt3

)
0
. (4.2)
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The accelerations are given by(d2z

dt2

)
0

= e

m

∂V (z, r)

∂z

and the third time-derivatives of the coordinates are therefore(d3z

dt3

)
0

= e

m

(∂2V

∂z2

)
0

(dz

dt

)
0
+ e

m

( ∂2V

∂z∂r

)
0

(dz

dt

)
0
.

Substituting these expressions into equations (4.1) and (4.2), and introducing a
‘reduced time’ τ = t

√
2e/m to avoid the ‘ e

m
’ which occurs in nearly every term,

we construct the following recurrence relationships.

z(t) = z0 + τ
( dz

dτ

)
0
+ τ 2

4

(∂V

∂z

)
0

+ τ 3

12

[(∂2V

∂z2

)
0

( dz

dτ

)
0
+

( ∂2V

∂z∂r

)
0

( dr

dτ

)
0

]
dz(t)

dτ
=

( dz

dτ

)
0
+ τ

2

(∂V

∂z

)
0

+ τ 2

4

[(∂2V

∂z2

)
0

( dz

dτ

)
0
+

( ∂2V

∂z∂r

)
0

( dr

dτ

)
0

]
with two similar expressions for the radial coordinate and velocity.

Only expressions for the potential which can be evaluated and differentiated
analytically at any point, such as those expressed in terms of Bessel functions
or elliptic integrals, are likely to be good enough to yield accurate values for
the second derivative required for this type of analysis. The calculations are
surprisingly simple and we illustrate this using the potential in the gap region
of a two cylinder lens developed in section 3.3.6 (equation (3.26b))

VII (Z,R) = V1 + V2

2
+ V2 − V1

G
Z + V2 − V1

G

∞∑
n=1

QnJ0(KnR)(1/a1n − a2n).

The five differential expressions can be written as

∂V

∂Z
= (V2 − V1)

G
− 2(V2 − V1)

G

∞∑
n=1

QnKnJ0(KnR)(1/a1n + a2n)

∂V

∂R
= −2(V2 − V1)

G

∞∑
n=1

QnKnJ1(KnR)(1/a1n − a2n)

∂2V

∂Z2
= 4(V2 − V1)

G

∞∑
n=1

QnK
2
nJ0(KnR)(1/a1n − a2n)

∂2V

∂R2
= − 2

R

∂V

∂R
− ∂2V

∂Z2

∂2V

∂Z∂R
= 4(V2 − V1)

G

∞∑
n=1

QnK
2
nJ1(KnR)(1/a1n − a2n).
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Very similar expressions apply in the outer regions, the principal differences arising
from the different exponents.

Simple modifications of the BesselPot function of section 3.6.3 may be used
to calculate these differentials. A Pascal procedure for the calculation of the J1

Bessel function required for the R-derivatives is given in [7].
The accuracy of the ray integration depends on the interval in reduced time, Bτ ,

which is related to the step length, Bl, by Bτ = Bl/V 1/2 and it is important to
choose a suitable value. Too short an interval will waste computer time, but the
optimum interval will depend on the strength of the field and so it needs to be
adjusted dynamically. The accuracy of the calculations is open to a simple test:
the difference in potential between the initial and final points of each step should
be equal to the difference in the squares of the velocities of the particle multiplied
by m/2e. If the fractional difference found after a step is greater than some chosen
value, then the step should be recalculated with Bτ halved. If the difference
exceeds some smaller criterion, Bτ may be doubled for the next step.

4.3.1.2 Runge–Kutta methods. Unless we have a good enough potential we
cannot make proper use of terms beyond the first order of the Taylor expansion
of equation (4.1) and need to find some other way to make allowance for the
higher order terms. The Runge–Kutta methods are based on the replacement of
these terms by first order expansions at nearby points. Figure 4.4 illustrates the
steps required to apply these methods. The function describing some aspect of
the trajectory is represented by a curve starting at the point A, (xn, yn), and we
wish to find the y-coordinate at C, for which xn+h = xn + h. We can write
this as yn+1 = yn + k where k is h times some mean gradient. The very first
approximation would be to write k = k1 = hy ′(xn, yn) where the gradient of the
function is evaluated at the point A(xn, yn). This would take us to the point D1

and is plainly not a good approximation.
However, common sense and the mean value theorem tell us that at some point

along the curve the tangent is parallel to the chord AC joining the initial and the
true final points. The next stage of approximation is therefore to evaluate k at the
mid-point, B1, of the chord AD1 and write k = k2 = hy ′(xn + h

2 , yn + k1
2 ), which

will take us to the point D2. This is a significantly better approximation and the
errors are of order h3: it is therefore referred to as the second order Runge–Kutta
method. It is worth making two further steps of this sort, because the gain in
precision outweighs the complexity of the calculation, but beyond that point one
should really question whether the potential function is good enough to justify the
effort. The four successive values for k can be summarized as

k1 = hy ′(xn, yn)
k2 = hy ′(xn + h/2, yn + k1/2)

k3 = hy ′(xn + h/2, yn + k2/2)

k4 = hy ′(xn + h, yn + k3)

at A

at B1

at B2

at D3.
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Figure 4.4 A schematic illustration of the steps in the fourth order
Runge–Kutta method. AC represents the real trajectory and AD1 is the
tangent to the trajectory at A. The gradient of the function at B1 is used
to find D2, the second approximation to C, then the gradients at B2 and
D3 are evaluated and a weighted sum of the four gradients is then a
good approximation to that of the chord AC.

These expressions have a nice symmetry and we write

k = k1

6
+ k2

3
+ k3

3
+ k4

6
where the weights given to the ki have been chosen such that the third and fourth
order terms in the Taylor expansions cancel and the errors are now of order h5

giving the fourth order Runge–Kutta method.
To apply this to the tracing of ray paths, we write the axial, zn, and radial, rn,

positions and the corresponding velocities, un and vn respectively, in terms of the
reduced time, τ , as before (i.e. un = dz

dτ etc) and apply the recurrence relations to
all four variables.

zn+1 = zn + j rn+1 = rn + k un+1 = un + l vn+1 = vn + m

where j, k, l and m are the appropriate weighted sums. The individual
approximations are

j1 = hun

j2 = h

(
un + l1

2

)

j3 = h

(
un + l2

2

)
j4 = h(un + l3)

l1 = −hEz(zn, rn)/2

l2 = −hEz

(
zn + l1

2
, rn + j1

2

)
/2

l3 = −hEz

(
zn + l2

2
, rn + j2

2

)
/2

l4 = −hEz

(
zn + l3, rn + j3

)
/2
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with a similar set for the radial motion. h is an interval of reduced time, and Ez

and Er are the axial and radial components of the electric field strength which must
be found at all the indicated points by numerical differentiation of the potential.

4.3.2 Integration of the Picht equation
The Picht equation describes the evolution of a reduced radius defined by R(z) =
r(z)V 1/4(z, 0) as a function of z. It involves the axial potential, V (z, 0) and its
first derivative and contains only the second derivative of R(z). There is a standard
procedure for the integration of such equations which is faster than fourth order
Runge–Kutta with the same step size and is effectively of higher order. We write
the Picht equation as

d2R(z)

dz2
= −T ∗(z)R(z)

where

T ∗(z) = 3

16

(V ′(z, 0)

V (z, 0)

)2
.

T ∗(z) = 3
16T (z)2 where T (z) was introduced in chapter 2. Some authors use T (z)

where we useT ∗(z), but it is necessary to distinguish the two symbols becauseT (z)

itself will appear in expressions for the aberration coefficients. For compactness
we shall omit the explicit references to z in R and T ∗ in what follows.

We shall integrate the equation using equal steps, h, in z and so write for the
values of R at adjacent steps

Rn±1 = Rn ± hR′
n + h2

2
R′′

n ± h3

6
R′′′

n + h4

24
R(4)

n ± · · ·

and rearrange this to obtain

Rn+1 − 2Rn + Rn−1

h2
= R′′

n + h2

12
R(4)

n + · · · .

R′′
n = −(T ∗R)n and the fourth differential of Rn can be written in terms of the

second differential of (T ∗R)n as

R(4)
n = d2(−T ∗R)n

dz2

= − (T ∗R)n+1 − 2(T ∗R)n + (T ∗R)n−1

h2

using an exactly similar expansion of T ∗R, but neglecting the fourth order term in
the expansion, giving

Rn+1 − 2Rn + Rn−1

h2
= −(T ∗R)n

− h2

12

[(T ∗R)n+1 − 2(T ∗R)n + (T ∗R)n−1]

h2
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and, rearranging this equation, we finally have

Rn+1 = 2Rn − Rn−1 − h2

12 [(T ∗R)n−1 + 10(T ∗R)n]

[1 + h2

12T
∗
n+1]

(4.3)

This equation is known as Numerov’s algorithm† and it is very effective within
its limitations. Two values of R(z) are required to start the process, but this is not
a problem if the starting point is in a field free region. If this is not the case, some
other method has to be used to start the process, and a Runge–Kutta method would
normally be used. The step size has to be chosen carefully as there is no easy way
to adjust it dynamically, since the particle velocity is not calculated at any stage.
This means that a step size suitable for the worst part of the trajectory has to be
used throughout.

4.3.2.1 The Runge–Kutta method applied to the Picht equation. As usual, the
Runge–Kutta method requires parameters to be calculated in the middle of the
integration steps. If the values of T ∗ are known at intervals (h/2) the Runge–
Kutta method must use a step size of h while the Numerov method can use the
smaller step giving it a 16-fold advantage in precision. The expressions for the
reduced radius R and its gradient R′ are

Rn+1 = Rn − Rn

h2

6

(
T ∗
n + 2T ∗

n+1/2 − h2

4
T ∗
n T

∗
n+1/2

)

+ R′
n

(
1 − h2

6
T ∗
n+1/2

)

R′
n+1 = −Rn

h

6

(
T ∗
n + 4T ∗

n+1/2 − h2

2
T ∗
n T

∗
n+1/2

)

+ R′
n

(
1 − h2

3
T ∗
n+1/2

)
− h

6
T ∗
n+1Rn+1.

Notice that it is necessary to calculate Rn+1 before R′
n+1.

4.4 Real and asymptotic cardinal points

Particle lenses differ from those for light in having no abrupt boundaries between
regions of different refractive index, so there is no clear cut point at which the
lens begins or ends. Though the ray paths are asymptotically straight, away from
the lens, a particle emerging from the lens field may cross the axis before this
asymptotic region is reached. If the particle had approached the lens parallel to
the axis, this crossing point will be a focal point and the mid-focal distance will

† It is also known as the Manning–Millman and the Fox–Goodwin methods.
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be well defined, but how should the focal length be defined? In chapter 1 the focal
length was defined as the distance of the focal point from a principal plane which
was itself defined by the intersection of asymptotes. This is not appropriate to the
present case and we must define a real principal plane in terms of the incident
asymptote and a tangent to the ray path at the focal point. These real cardinal
points are of limited use in the analysis of lens behaviour because for an object not
at infinity the image will be formed beyond the focal point and therefore closer to
the asymptotic region, if not fully in it. Fortunately, the distinction is necessary
only for lenses which are stronger than are commonly used except, perhaps, for
microscope objectives.

4.4.1 The determination of the cardinal points by ray tracing
If the path of a ray starting some three to four diameters from the lens is traced,
using any of the methods outlined in section 3 the position of the focal point can
be found by noting the values of z for which the radius, r , or reduced radius, R,
changes sign and interpolating to find the position of the crossing point. This will
be the true focal point, but, unless the lens is very strong indeed, it will be very close
to the asymptotic focal point. If the ray path has not crossed the axis by the end of
the integration, the focal point can be located by extrapolating the last few points
calculated. The corresponding principal point is found from the slope of either the
tangent to the path at the focal point or of the asymptote. With a good potential
the effects of spherical aberration can be seen by changing the off-axis distance of
the incident ray, and the spherical aberration coefficient can be determined. If the
trace is done by integrating the Picht equation, it is not necessary to convert back
to real radius as both r and R are zero at the crossing point and the asymptote is
only reached in a region of constant potential. Nonetheless, it is interesting and
instructive to make the conversion as the approach to the asymptotes has a rather
different appearance.

4.5 Windows and pupils

While it is the paths of individual rays which are calculated, measurements are
made with beams of particles and these have finite lateral and angular extent.
These beams must be defined by suitable apertures, and in figure 4.5 we illustrate
some of the terms and parameters involved. The beam is defined by two apertures,
called conventionally the window and the pupil. The window is regarded as the
object on which the lens acts to produce an image and the distinction is sometimes
made between the object window and the image window. The pupil, or angle stop,
defines the range of angles which may enter the lens from any point in the window.
Naturally the lens produces an image of the pupil also, and the position and size
of the image pupil are important parameters of an optical system. In figure 4.5 the
lens is represented as a thin lens with coincident principal planes purely to avoid
complexity in the diagram. The lateral dimensions are grossly exaggerated. The
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Figure 4.5 Diagram to illustrate the formation of the image of an
entrance, or object, window W0, by a bundle of rays limited by an
entrance pupil, P0. The semi-angular divergence of the bundle of rays
is specified by the pencil angle, θ0, and the maximum inclination of
the central ray of the bundle to the axis in the plane of the entrance
pupil is the beam angle, α0. The lens forms images of the object-side
window and pupil, and the lower diagram shows the special case where
the object-side pupil is at the first focal point, giving an image pupil at
infinity and zero beam angle on the image side.

upper part of the diagram shows the paths of a number of rays from the bottom of
the object window and a point within it which pass through the object pupil at its
upper and lower edges and also through the centre of the pupil. In the image space
the rays from each point in the object window cross at the corresponding point in
the image window and those rays which passed through particular points of the
object pupil pass through the corresponding parts of the image pupil. Two sets of
angles are indicated: α and θ . α is known as the beam angle and is the symbol
used for the angle between the principal rays in the construction of figure 1.3. It
is the angle subtended at the centre of the pupil by the radius of the window and is
therefore the angle at which the central ray from the edge of the window crosses
the axis in the plane of the pupil. θ is the pencil angle, describing the angular
spread of a pencil of rays from a point in the window, and is the angle subtended at
the centre of the window by the radius of the pupil. Suffices distinguish the object
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and image space values of these angles. If the radii of the window and pupil are
written as rw and rp respectively and the distance between them is l then the angles
can be expressed as

α = rw

l
θ = rp

l
.

The lower part of figure 4.5 shows a special case. The object pupil is at the first
focal point of the lens and is therefore imaged at infinity. The image side beam
angle is now zero and the total angular divergence of the beam, which can be
written as (|α| + |θ |), is a minimum.

4.5.1 The energy-add lens
If a real image of a window is formed at the first principal plane of a lens, the
emergent rays appear to come from a virtual image of the same size at the second
principal plane. These rays may be focused to give a final, real image. The
simplest practical system consists of four cylinders. The central two cylinders
form the energy-add lens proper, and exploit the fact that the positions of the
principal planes of a two cylinder lens do not change much over a fairly wide
range of voltage ratios. The lens formed by the first two cylinders produces the
image at the first principal plane of this central lens, and that formed by the last
two cylinders gives the final image. The voltage ratios V2/V1 and V4/V3 are
held constant, but the ratio V3/V2 is changed, adding energy e(V3 − V2) to the
particle. This apparently simple method of maintaining the position of the final
image over a range of overall voltage ratio, V4/V1, has major drawbacks for all
but the crudest applications. While the imaging of the entrance window may be
quite well controlled, there is no control over the position and size of the pupil
image formed by the first lens. The action of the second and third lenses will only
make matters worse, most probably leading to excessive beam angles at the final
image. The presence of an intermediate image is also likely to cause increased
aberrations. The simple multi-element lenses described in the next section are
much better behaved.

4.6 Multi-element lenses

4.6.1 Zoom lenses
A lens having two elements allows a conjugate focus condition to be met in just two
ways, with an accelerating or a decelerating voltage ratio. The addition of a third
element allows the condition to be met over a wide range of overall voltage ratios
by a suitable choice of the potential of the third, centre, electrode. The focal locus
for one such lens is shown in figure 4.6. The magnification of the lens can only be
controlled in the most general fashion by, for example, selecting the lengths of the
cylinders to give particular values at a limited number (three, at the most) of points
on the locus. In order to make a true zoom lens, one in which the magnification for
a given pair of conjugates can be controlled independently of the overall voltage
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Figure 4.6 Focal locus for a three cylinder lens having elements of
length 3.0, 0.75 and 2.5 diameters. The variation of the magnification
and of the spherical aberration round the locus are also shown. A •
identifies corresponding points on the three loci.

ratio, a fourth element is necessary. It is difficult to obtain much flexibility with
aperture lenses because the electrodes have to be comparatively close together
but, with cylindrical electrodes, the distance between the two outer electrodes,
which determine the overall voltage ratio, can be usefully large. The two central
electrodes must have potentials which combine in some way to satisfy the focus
condition, but this can be done in many ways and one might consider the two
potentials to have some average magnitude (though not a simple arithmetic mean)
and also a ‘centre of action’ which can be moved to the left or right by changing
their ratio. Figure 4.7 illustrates this for two four cylinder lenses with symmetric
conjugates separated by six diameters and with their central two elements of
length D in one case and D/2 in the other. This figure shows the magnifications
which may be obtained for an overall voltage ratio of unity. The lens with the
longer central elements offers a range of magnifications from 0.67 to 1.5 while the
other will only cover from 0.87 to 1.15. Notice that the extreme magnifications
are obtained with both centre electrodes at higher potentials than the outer ones
and not, as one might have expected, with one of the centre elements at the outer
potential. It is left to the reader to investigate (using the LENSYS program) other
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Figure 4.7 The potentials of the two centre elements of four cylinder
lenses of total length six diameters required to give a range of
magnifications. The upper curves relate to a lens with centre elements
each of length one diameter, and the lower curves to one with lengths
of 0.5 diameter. The potentials of the first and fourth elements are each
equal to 1.

possible pairs of values giving the same magnifications and to deduce why they
are not good combinations.

The greater range of magnification obtained with the longer central elements
raises the question of further increase. However, just extending the lengths of
these two elements will not help a great deal. A much better approach is to place
a fifth electrode in the middle of the system, and for the moment one can think of
this merely as a ‘spacer’ keeping the two magnification-controlling electrodes a
good distance apart! Before discussing this way of obtaining zoom behaviour on
a par with that obtainable with quite modest cameras, it will be helpful to examine
a somewhat specialized five element cylinder lens.

4.6.2 The afocal lens
We consider in this section a combination of two lenses which has an interesting
and useful property. Figure 4.8 shows the optics of this combination schematically
and illustrates the construction, using principal rays, of the image of an object to
the left of the first lens of the pair. The essential point of the lens combination is
that the second focal point of the first (left hand) lens coincides with the first focal
point of the second (right hand) lens. This means that the first principal ray, drawn
from the top of the object parallel to the axis, passes through this common focal
point and emerges from the second lens again parallel to the axis. The immediate
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Figure 4.8 The construction of the image of a given object by two
lenses having a common focal point in the region between them.

consequence of this is that, wherever the object may be, the image will have the
same size: in other words, the magnification of the lens combination does not
depend on the position of the object. The second principal ray is drawn through
the first focal point of the left hand lens, emerges from that lens parallel to the axis
and is then deviated to emerge from the right hand lens as though from the second
focal point of that lens.

The focal lengths and the object and image distances are indicated on the figure
and we use Newton’s relation to examine their relationship. The first lens would
produce an intermediate image I of O a distance q from the common focal point
such that q = f1f2/p wherep is the distance of the object from the first focal point
of the left hand lens. This image lies beyond the first focal point of the second
lens and is imaged by that lens as I ′, a distance q ′ from the second focal point of
this lens such that q ′ = f ′

1f
′
2/q. In terms of the position of the original object

q ′ = (f ′
1f

′
2/f1f2)p. If the two lenses are identical then we have the interesting

result that q ′ = p and the final image is the same distance from the second focal
point of the right hand lens as the object is from the first focal point of the left
hand lens. The fact that rays entering parallel to the axis emerge parallel to the
axis means that the lens system has no focal points—it is afocal or telescopic.

Remembering that F1 is a negative quantity, the distance between the object
and the final image is 2(F2 − F1), and this must be held constant, independent of
the overall voltage ratio, if the special property of this lens is to be maintained.
The values of F1 and of F2 will change, of course, and if the difference is not to
change, each lens must consist of three electrodes. The last element of the left
hand lens and the first element of the right hand lens are at the same potential
(otherwise there would be further lens action in the middle of the system) so the
entire lens consists of five elements. Because the two lenses are identical
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V2

V1
= V4

V3
and

V3

V1
= V5

V3

and therefore
V3

V1
=

(V5

V1

)1/2
.

The magnification of the lens can be calculated from the figure and isM = f ′
1/f2 =

f1/f2 for identical lenses. The angular magnification is given by

Mα = α′

α
=

( h

f ′
2

)/( h

f1

)
= f1

f ′
2

= f1

f2
= M.

The magnification, angular magnification and the overall voltage ratio are related
by the law of Helmholtz and Lagrange

MMα

(V5

V1

)1/2
= 1 so M = Mα =

(V5

V1

)−1/4
.

Apart from the trivial case of a lens which is electrically and mechanically
symmetric, this is the only lens for which the magnification can be calculated
without any knowledge of the potential distribution; it depends only on the identity
of the two component lenses.

An important application of this lens is in the production of a well defined
particle beam. The images of an object side window and pupil will have the same
axial separation and be magnified by the same factor, so if the object side apertures
are of equal diameter, the particle beam will be bounded by a cylindrical surface
in a region of the image space though no apertures are present there, reducing the
chance of unwanted collisions of the beam with the metalwork. The beam angle
and the pencil angle will be equal in this situation.

4.6.3 The zoom afocal lens
If we remove the constraint on the two component lenses of figure 4.8, but maintain
the same distance between conjugates, the lens system will not, in general, remain
afocal. It does then, however, have the desirable property of the zoom lens. The
magnification is controlled by the relative strengths of the first and second lenses
in just the same way as is done by the two centre electrodes of a four cylinder lens.
For the moment we keep the potential of the centre electrode at the geometric mean
of those of the first and fifth electrodes and show in figure 4.9 (by broken curves)
the values of the potentials of the second and fourth electrodes required to give
a range of magnifications. The particular lens geometry consists of two lenses,
each of three cylinders having lengths of 1.25, 0.5 and 1.25 diameters joined end
to end to give a five element lens with a centre element 2.5 diameters long and a
total length of six diameters, the same as the two four cylinder lenses shown in
figure 4.7. The very substantial increase in the range of magnifications is apparent.
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Figure 4.9 The electrode potentials required to give a range of
magnifications for a five cylinder lens of total length six diameters
with V5 = V1 = 1. Two sets of data are shown: the broken curves are
for the case of V3 = 1, and the solid curves are for V3 adjusted to give
a pupil magnification equal to the window magnification.

Only four elements are necessary for a lens to have a zoom capability over
a range of voltage ratios, and the present lens has, therefore, an extra element
which might be used to control another parameter of the lens. There is more than
one possibility, but in the present context the control of a second conjugate pair
would allow the lens to be again afocal. The effect of adjusting the potential of
the centre electrode (with compensating adjustments of those of the second and
fourth) is illustrated in figure 4.10 for this same six diameter length lens. The
potentials have been adjusted to give a window magnification of −1 and the figure
shows the magnification of a pupil located D/2 to the right of the window as a
function of the voltage ratio V3/V1 for a number of values of the overall voltage
ratio, V5/V1. The points marked • correspond to V3/V1 = √

V5/V1. Notice that,
for both accelerating and retarding lenses, V3 has to be increased to make the pupil
magnification equal that of the window and so make the lens afocal. For an overall
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Figure 4.10 The pupil magnification of a five cylinder lens as a
function of the potential of the centre element for various values of
the overall voltage ratio, V5/V1. The lens is operated to give a window
magnification of −1 and the object pupil is at a distance D/2 from the
object window.

voltage ratio of unity, the potentials of the three centre electrodes are shown also
in figure 4.9 (by full curves) for this zoom afocal configuration.



5 Aberrations

So far we have considered only the focusing of paraxial rays of charged particles
homogeneous in energy. The true situation is more complex and we should
consider rays which are non-paraxial and particles which have a small spread
in energy. Particle lenses are subject to the same optical aberrations as photon
lenses and the effects can be much worse because it is not possible to use materials
of different dispersion to reduce chromatic aberration or to grind surfaces of special
forms to reduce spherical and other aberrations.

5.1 Spherical aberration

The handling of particle beams is usually an axis-centred problem so spherical
aberration is normally much more serious than the off-axis aberrations, such as
coma, astigmatism and distortion. We shall therefore consider only rays which
cross the axis at some point. Figure 5.1 is a schematic diagram showing the
emergent asymptote corresponding to a ray incident from an axial object point.
For meridional rays, the relationship of the radial positions and slopes of the rays at
the first and second focal planes of the lens can be expressed, following Verster [6]
as
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Figure 5.1 Definition of the ray parameters for the description of the
meridional aberration coefficients.

remembering that f1 is negative†. The coefficients, mij and qij , are dimensionless
and also negative. The terms of fifth order are not often used, but are included
here as we shall later show how some of them may be deduced from fairly simple
ray traces.

The coefficient of spherical aberration for a lens operated with magnification
M , Cs(M), is defined by

Br = −MCs(M)α3
o

where αo = −r ′
1. From figure 5.1 we can write r1 = −pr ′

1, and Br = r2 + qr ′
2

for the distance off-axis at which the ray crosses the Gaussian image plane. The
object and image distances can be written in terms of the focal lengths and the
magnification as p = −f1/M and q = −Mf2. Substitution of these expressions
into equation (5.1), ignoring the fifth order terms, gives the following relationship
between the coefficient of spherical aberration and the meridional coefficients:

Cs(M) = −m13f2 − (m14 + m23)
f1

M
− (m15 + m24)

(f1

M

)2
/f2

− (m16 + m25)
(f1

M

)3
/f 2

2 − m26

(f1

M

)4
/f 3

2 . (5.2)

Each term of equation (5.2) has a positive value so no cancellation is possible. Cs

has the dimensions of Br , but it is a common convention to express both in terms
of the diameter of the lens, and all the values presented in this book and in the
LENSYS program are strictly of Cs/D. Equation (5.2) shows that Cs(M) could be
expressed as a fourth order polynomial in the object distance, p = −f1/M , but it
is more usual to write it in terms of the magnification, M ,

Cs(M) = Cs0 + Cs1/M + Cs2/M
2 + Cs3/M

3 + Cs4/M
4 (5.3)

where the Csi are properties of the lens itself.

† A number of the equations in this chapter differ from their counterparts in other texts as
a consequence of our Cartesian sign convention.
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There are certain well established relationships between some of the eight
meridional aberration coefficients

m14 = 3m23 + 1.5 m15 = m24 m25 = 3m16 + 1.5 (5.4)

and so the five spherical aberration coefficients are

Cs0 = −m13f2

Cs1 = −(m14 + m23)f1 = −(4m23 + 1.5)f1

Cs2 = −(m15 + m24)f
2
1 /f2 = −2m24f

2
1 /f2

Cs3 = −(m16 + m25)f
3
1 /f

2
2 = −(4m16 + 1.5)f 3

1 /f
2
2

Cs4 = −m26f
4
1 /f

3
2 .

(5.5)

If the object is at infinity, r ′
1 = 0 and the magnification is therefore zero. It is

then necessary to use equation (5.1b) directly. Including the relevant fifth order
term, q26(r1/f2)

5, we have

Br = r2 = −m26f1

( r1

f2

)3
− q26f1

( r1

f2

)5
.

The third order term can be written as

Br = Cs4

( r1

f1

)3
. (5.6)

5.1.1 The axial displacement
The aberrated ray crosses the axis a distance Bl before the Gaussian image point
where

Bl = −Br

r ′
2

= −MCs

α3
o

αi

= − M

Mα
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2
o
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2
o

f2

f1
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2
i

(f2

f1

)3
(5.7)

and where αi = −r ′
2 is the beam angle in the image space.

For parallel input M = 0 so M4Cs = Cs4 and, using αi = r1/f2,

Bl =
(f2

f1

)3
Cs4α

2
i = f2

f1
Cs4

( r1

f1

)2
. (5.8)

If we wish to include the fifth order term without excessive algebra, we can write

r ′
2 = −r2/Bl = −r1/(f2 + Bl)
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Figure 5.2 Aberrated rays in the region of the disc of minimum
confusion.

giving

r2 = r1Bl

f2 + Bl

from which we find the following working expression:

G(Bl) =
(f2

f1

) Bl

f2 + Bl
= −m26

( r1

f2

)2
− q26

( r1

f2

)4
(5.9)

which we shall use later.

5.1.2 The disc of minimum confusion
If the object is a point source of particles, the ‘image’ in the Gaussian plane will
be a round spot with a radius determined by the pencil angle and the aberration
coefficients of the lens. Rays which have passed close to the limits of the entrance
pupil will contribute to the outer parts of this spot, having crossed the axis somewhat
closer to the lens. Between the Gaussian plane and the point on the axis where
these marginal rays are focused, there will be some rays which cross the axis going
upwards and some going downwards, with the former being more steeply inclined,
and the spot formed by the envelope of all the rays will have a minimum radius
somewhere between these points. This spot is known as ‘the disc of minimum
confusion’.

Figure 5.2 shows the marginal ray and a general ray which intersect a distance h
from the axis; the axial position of the intersection is a distance l from the Gaussian
focus, G. We can express h in two ways

h = αg(zg − l) = αm(zm − l)

Aα3
g − lαg = Aα3

m − lαm
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so
l = A(α2

m + αmαg + α2
g)

and
h = −A(α2

mαg + αmα
2
g)

where A = Cs4

(
f2/f1

)3
by equation (5.8), and is negative. We find the minimum

value of h by differentiation

dh

dαg

= −A(α2
m + 2αmαg) = 0 if αg = −αm

2

and this leads to the radius of the disc of minimum confusion as

hmin = A
α3
m

4

and its position as

l = 3

4
Aα2

m.

The radius is a quarter of that of the Gaussian plane spot and it is three quarters of
the way from the Gaussian image to the most aberrated image point.

5.2 Chromatic aberration

Figure 5.3 illustrates the passage of two pairs of rays through a lens system ignoring
the effects of spherical aberration. One ray of each pair has the correct energy to
form an image at I. The other has a slightly higher energy. We consider first the
pair of rays which start from a point on the axis. The ‘correct’ ray crosses the axis
at the image, but the higher energy ray crosses the axis a distance δl beyond this
and, at the image plane, is a distance δr above the axis. These distances are related
by the angle, αi in the image space and can be referred to the corresponding angle
at the object using the Helmholtz–Lagrange relation.

δr = αiδl = Mααoδl = 1

M

(Vo

Vi

) 1
2
αoδl.

A coefficient of chromatic aberration, Cc, has historically been defined by
δr = −MCcαo

δV
Vo

and we may, therefore, express this coefficient in terms of
either observable by

Cc = 1

Mαo

δr

(δV/Vo)
(5.10a)

= 1

M2

(Vo

Vi

) 1
2 δl

(δV/Vo)
. (5.10b)
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Figure 5.3 Two pairs of rays traced to illustrate chromatic aberration.
The lower ray of each pair has the correct energy to form an image at I
and the other rays, which have a slightly higher energy, cross the image
plane at points which are displaced from the true image points.

The second of these equations illustrates the non-dependence of the aberration
coefficient on the angle αo.

This coefficient is properly referred to as the coefficient of axial chromatic
aberration to distinguish it from the effect illustrated by the other pair of rays in
figure 5.3 which are launched parallel to the axis from a point above the axis. The
‘correct’ ray crosses the image plane and defines the magnification of the lens.
The higher energy ray crosses the image plane closer to the axis, with a lower
magnification. This effect is described as chromatic aberration of magnification
and the coefficient, CD , which quantifies the effect is sometimes referred to as
the coefficient of lateral chromatic aberration. It is defined in terms of the radial
change, δrI , in the ray at the image plane by the following equations.

δrI = −MCDro

(
δV

Vo

)

CD = −1

Mro

δr

(δV/Vo)
(5.11)

where ro is the initial off-axis distance of the ray and, for the case of the general
ray, r2(z), which crosses the axis at an angle of 45◦, is equal to f1.

This aberration is an off-axis effect and we discuss, in the next section, the
off-axis effects due to the angle dependent behaviour.
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Figure 5.4 Definition of the ray parameters for the description of the
off-axis aberrations of a lens.

5.3 Off-axis aberrations

Figure 5.4 is similar to figure 5.1, but indicates the asymptotes to a ray from an
object point, a distance r0 from the axis, which crosses the first focal plane at
a radial distance r1. The path of the ray is still in a plane containing the axis;
we shall not be considering skew rays. Using equations (5.1) again, we write
the position of the ray at the image plane as the sum of the geometric, Gaussian,
distance, Mr0, and an aberration term which can be written as the sum of terms
involving r3

0 , r
2
0 r1, r0r

2
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1 .
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The terms in r3
0 describe the distortion of the image, because they imply a

magnification which depends on the position of the point in the object but not on the
lens aperture. From equation (5.5) we see that Cs0 and Cs1 describe this aberration.
The terms in r2

0 r1 describe the combined effects of astigmatism and curvature of
field and those in r0r

2
1 describe coma. The terms in r3

1 describe spherical aberration
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and transform to the form of equation (5.2) on writing r1 = − f1

M
αo. If r0 = r1,

which implies M = 0, only the term in m26, equivalent to Cs4 , remains and
equation (5.6) is recovered. Notice that m26 appears only in the coefficient of r3

1 .
While the terms in r2

0 r1 determine the curvature of field for a specific
magnification—and the curvature is usually dominated by the effect of
astigmatism—there is a limiting value which obtains even in the absence of
astigmatism. This minimum curvature is expressed by the Petzval integral, which is
never zero for a particle lens. The integral can only be zero if there are contributions
from divergent lens elements and, as we saw in chapter 2, immersion lenses, with
which we are exclusively concerned, are always convergent. It is a property of
the given lens and depends only on the potential distribution and not on the choice
of conjugates. It is, therefore, most readily calculated along with the basic lens
parameters.

5.4 Interrelations of the spherical aberration coefficients

By considering a lens to be ‘thin’ in the sense that R does not change over the
distance for whichT is significant, it is possible to factor a term out of the aberration
integral and hence develop simple relationships between the mij coefficients [17].
It has been demonstrated [16] that these remain reasonably valid even when the
‘thin’ approximation does not appear to be appropriate. The relationships are
of the form m2j /m1j = σ where the value of the ratio has been determined
empirically as σ = (V2/V1)

1/4 for a two cylinder lens. Taken in conjunction with
the well established relationships between three pairs of mij (equation (5.4)) and
ignoring the added ‘1.5’ terms, which is a reasonable approximation except for
very strong lenses, there appears to be a pattern of interrelations between all the
mij coefficients,

mi6 � σmi5/3 � σ 2mi4/3 � σ 3mi3 m2j � σm1j .

With these factors, equation (5.2) becomes

Cs(M) = − m13f2

[
1 + 4

σ

M

f1

f2
+ 6

( σ

M

)2(f1

f2

)2

+ 4
( σ

M

)3(f1

f2

)3
+

( σ

M

)4(f1

f2

)4]
. (5.12)

If σ is indeed (V2/V1)
1/4, then σ 2 = −f2/f1 so σf1/f2 = −1/σ and, writing Cs0

for −m13f2, we can express the spherical aberration coefficient for a given
magnification as

Cs(M) = Cs0

(
1 − 1

σM

)4

. (5.13)
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Figure 5.5 Diagram to illustrate the curved principal surfaces.

A careful study of more complex lenses shows that this is indeed rather
approximate, but another result based on the same relationships does seem to
have a wider validity. We define a function, Y , by

Y = Cs0

(−σf1

f2

)4
+ Cs1

(−σf1

f2

)3
+ Cs2

(−σf1

f2

)2
+ Cs3

(−σf1

f2

)
+ Cs4

(5.14)
and substitute for the Csi the appropriate terms of equation (5.12), giving

Y = Cs0

(−σf1

f2

)4
(1 − 4 + 6 − 4 + 1) = 0.

If we write Y+ to represent the sum of the first, third and fifth terms of
equation (5.14) and Y− to represent the sum of the second and fourth (which
is usually negative), then the ratio Y++Y−

Y+−Y−
will be a fair measure of the accuracy of

the statement Y = 0. For a wide range of lenses (and the reader is invited to test
this using LENSYS) this ratio is less than 0.01 and usually much less.

5.4.1 The principal surfaces
We noted in chapter 1 that the principal ‘planes’were not in fact flat and we are now
in a position to examine their true form. Figure 5.5 shows the principal surfaces as
defined by the intersection of the object and image asymptotes of rays incident at a
radial distance, r , parallel to the axis. We can express the distance from the second
Gaussian focal point to the projection of the intersection on to the axis, H2(r), as

F2 − H2(r) = −(r2 + r)/r ′
2
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using equations (5.1)

F2 − H2(r) = f2 + (f1m26 + f2m16)
( r

f2

)2

and writing σ 2 = −f2/f1

F2 − H2(r) = f2

[
1 + m13σ

2(σ − 1)
( r

f2

)2]
.

A similar analysis gives, for the first principal surface,

F1 − H1(r) = −(r1 + r)/r ′
1

= f1 + (f1m23 + f2m13)
( r

f1

)2

= f1

[
1 − m13σ(σ − 1)

( r

f1

)2]
.

Note that m13 is negative and σ > 1 for an accelerating lens, so both principal
surfaces are concave towards the high potential side of the lens.

5.5 The determination of aberration coefficients

If the potential distribution throughout the lens is known with sufficient accuracy,
rays will follow their correct paths and, if they are not paraxial, will show the effects
of the lens aberrations. In principle, then, all that is needed is careful ray tracing
to find the intercept of the ray at the Gaussian image plane. This raises the first
problem: where is the Gaussian image plane? It is necessary to trace more than
one ray and extrapolate to zero αo or r1 as appropriate and it is tempting to use the
axial displacement directly. If only the axial potential is known, then calculations
must be based on the effect of the terms omitted from the axial equation of motion.

5.5.1 Direct ray tracing
Figure 5.6 shows rays traced in an accelerating and a decelerating lens.
The much greater effect of spherical aberration in the retarding lens is apparent.
To illustrate a procedure for the determination of the aberration coefficients
appropriate to parallel input rays we shall analyse some data obtained with the
‘student’ version of the CPO-2D program.

For the purposes of the present analysis, the important parameters of the
trajectory are those indicated in figure 5.7. The position of the focal point, F2,
is not known a priori and we cannot, therefore, determine r2 directly, but,from
measurements made at the reference plane, the program provides values for the
axial position, zi , at which a ray launched parallel to the axis at a radial distance
r1 crosses the axis and the slope, r ′

2, of the ray at that point. From these values
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Figure 5.6 Rays traced in a two cylinder lens having voltage ratios
of (a) 1 : 10, and (b) 10 : 1. The aberrations of the retarding lens are so
great that the outermost ray of (a) would strike the inner surface of the
electrode well before the end of the diagram.
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Figure 5.7 The path of an aberrated ray which crosses the Gaussian
plane at a distance r2 having crossed the axis at a position zi a distance
Bl before.

we can determine the focal parameters f2 and F2, and the aberration coefficients
m16, m26, q16 and q26. If we trace rays in a second lens, having the reciprocal
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Figure 5.8 Data plots used to determine the spherical aberration
coefficients of the lenses shown in figure 5.6. The curves represent
r ′

2 = − r1
f2

+m16(
r1
f2
)3 +q16(

r1
f2
)5 and G(Bl) = m26(

r1
f2
)2 +q26(

r1
f2
)4.

The solid data points refer to the accelerating lens and the open data
points to the decelerating lens.

voltage ratio, we also find f1, F1, m13, m23, q11 and q21.
The first step is to find F2 by writing zi = F2 + Bl, where Bl is negative

and is given by equation (5.8). A graph of zi against r2
1 is almost a straight line

and a quadratic fit will give a very good value for F2. We next plot r ′
2 against r1

and fit an expression in odd powers of r1. From equation (5.1a) the coefficient
of the first term is −1/f2 and those of the other terms will give the aberration
coefficients. It is a little neater to repeat this with r1/f2 as the abscissa and we
show such a plot in figure 5.8. Now that we have a value for f2 it is possible to
use equation (5.9), remembering that the ratio f2/f1 = −(V2/V1)

1/2, to find the
remaining coefficients. In figure 5.8 we show the results for both the accelerating
(1:10) and decelerating (10 :1) lenses. The values of the coefficients are found to
be

1 : 10

m16 = −6.41

m26 = −12.1

q16 = −100

q26 = −134

10 : 1

−2.27

−1.42

−10.8

−10.6

Figure 5.9 shows values of the chromatic aberration coefficient, Cc, determined
by measuring the image plane ‘miss distance’, δrI , for a ray launched with an
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1/M

C
c

Figure 5.9 The coefficient of chromatic aberration for a two cylinder
lens with a voltage ratio of 1 : 10. The data can be represented by
Cc(M) = 0.834 − 1.005/M + 0.314/M2.

energy 2% greater than nominal in a two cylinder lens with a potential ratio of
1 : 10. The coefficients of a power law fit to the data agree very well with values
calculated directly using expressions which we develop later.

5.5.2 Perturbation of the paraxial solution
We can modify the equation of motion to take account of terms omitted in our
earlier analysis or to allow for a spread in energy and, provided that the effects are
small, we can write the solution to the modified equations as the simple sum of the
paraxial solution and an additional term. The details of the calculation depend on
the problem and are expanded in the next two sections.

5.5.2.1 Spherical aberration. In chapter 2, the higher order terms in the
expansion of the axial potential were ignored as was the contribution made to the
total energy of the particle by its radial velocity. These simplifications led to the
paraxial equation of motion, equation (2.3), and then to the Picht equation, (2.4).
In order to describe the non-paraxial behaviour, it is necessary to replace these
terms. The equation of radial motion becomes

m
d2r

dt2
= eEr = e

[ r
2
V ′′ − r3

16
V (4)

]
and the total energy of the particle has to be written as

1

2
m

[(dz

dt

)2
+

(dr

dt

)2]
+ e

[
V − r2

2
V ′′

]
= 0.
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The equation of motion is then

d2r

dz2
+ 1

2

V ′

V

dr

dz
+ r

4

V ′′

V
=

[ 1

32

V (4)

V
− 1

16

(V ′′

V

)2]
r3

+ 1

8

(V ′′′

V
− V ′′V ′

V 2

)
r2r ′ − 1

4

V ′′

V
rr ′2 − 1

2

V ′

V
r ′3. (5.15)

To solve this equation, we write r = rp +ra where rp is the solution to the equation
of paraxial motion and ra is a small perturbation representing the aberration due
to the use of better approximations to the real potential. ra is small enough that
only first order terms need to be retained. Each term of the left hand side of
equation (5.15) splits into one containing rp and one containing ra . Those in rp
sum to zero, because they are just the terms of the paraxial equation. The terms
on the right hand side involve the third power of r and so only the rp part survives,
giving an equation for the perturbation, ra ,

d2ra

dz2
+ 1

2

V ′

V

dra
dz

+ ra

4

V ′′

V
=

[ 1

32

V (4)

V
− 1

16

(V ′′

V

)2]
r3
p

+ 1

8

(V ′′′

V
− V ′′V ′

V 2

)
r2
pr

′
p − 1

4

V ′′

V
rpr

′2
p − 1

2

V ′

V
r ′3
p . (5.16)

Solutions of the homogeneous equation, obtained by setting the right hand side
of equation (5.16) equal to zero, are known: they are just the general solutions
of the Gaussian ray equation discussed in chapter 1. We can therefore write the
perturbation as ζ(z)r1(z) + ξ(z)r2(z) where we stress the variability of ζ and ξ ,
reflecting the non-zero right hand side. The problem reduces to the calculation
of ξ(zi) where zi is the position of the Gaussian image. After a lot of algebra,
two integrations by parts and transformation of the radial variable to the reduced
radius, R = rV 1/4, the coefficient of spherical aberration can be written as

Cs(M) = 1

64V 1/2
0

∫ ∞

−∞

R4

V 1/2

[(
3T 4 + 5T ′2 − 11

2
T 2T ′) + 4T T ′R

′

R

]
dz

(5.17)
where V0 is the potential at the lower limit of integration†. In this equation, R(z)

corresponds to the ray which passes through the axial object point with unit slope.
Every variable, bar one, in this equation will have been determined in the course
of calculating the paraxial image position. The missing variable is T ′ and it is a
trivial matter to find this. We noted earlier that the sign of T is not important to the
calculation of the paraxial focus as it appears as T 2 in the Picht equation, but the
presence of T ′ here shows that it does matter for the calculation of the aberrations.

† The use of the reduced radius has transformed a term in (V/V0)
1/2 into (1/V0V )1/2.

Almost always, the potentials will be expressed in terms of V0.
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Figure 5.10 The integrands of the aberration integrals of equa-
tion (5.17) for three aperture and Afocal8 lenses.

Though the limits of integration are marked as ±∞, in practice a much shorter
interval will suffice.

Figure 5.10 shows the integrand of equation (5.17) for the cases of a three
aperture lens, used asymmetrically, and a five cylinder lens used in the afocal
mode. The range of axial position over which the integrand is significantly greater
than zero is appreciably less than the distance between the conjugate points. For a
two element lens, we might expect the integrand to show two maxima, one where
R is large and the other where R′ is large. In the three element lens, especially with
aperture electrodes, two of the four possible maxima run into each other, but the
cylinder lens shows two maxima associated with each gap. The ray paths shown
in this figure represent the true radius, r(z).

The ratio of the reduced and true radii has the same value at any point for all
trajectories, so we can write R(z) = R1(z) + 1

M
R2(z) and expand the radial terms
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Figure 5.11 The integrands of the integrals analogous to equa-
tion (5.17) for the five spherical aberration coefficients for a two aper-
ture lens. The curves can readily be associated with particular coeffi-
cients as these are markedly different in magnitude.

as
R4 = R4

1 + 4R3
1R2/M + 6R2

1R
2
2/M

2 + 4R1R
3
2/M

3 + R4
2/M

4

and similarly for R3R′. This allows us to separate the integral of equation (5.17)
into the sum of five integrals, one for each of the Csi . Each integral is written as
the product of terms involving the T -parameters,

c1 = 1

V 1/2

[
3T 4 + 5T ′2 − 11

2
T 2T ′

]

c2 = 4T T ′

V 1/2

which, being functions of only the electrode geometry and potentials, are the same
for all applications of the lens, and terms specific to each coefficient

I0 = c1R
4
1 + c2R

3
1R

′
1

I1 = c14R3
1R2 + c2(3R

2
1R2R

′
1 + R3

1R
′
2

I2 = c16R2
1R

2
2 + c2(3R1R

2
2R

′
1 + 3R2

1R2R
′
2)

I3 = c14R1R
3
2 + c2(R

3
2R

′
1 + 3R1R

2
2R

′
2)

I4 = c1R
4
2 + c2R

3
2R

′
2.

(5.18)

r1 and r2 are asymptotic to ±f1, which is not known a priori so the focal
properties must be calculated using arbitrary horizontal asymptotes (usually 1) and
then scaled to provide the values required for the aberration calculation. However,
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to calculate the coefficient Cs(M) between conjugates, the ray R(z) can be used
with no further scaling. Figure 5.11† shows the integrands used to calculate the
five Csi . The individual curves can easily be associated with particular coefficients
and for this lens they are, from the top, Cs2 , Cs0 , Cs4 , Cs3 , Cs1 .

5.5.2.2 The Petzval integral. The Petzval sum describes the curvature of the
image surface in the absence of astigmatism. In photon optics, where one has sharp
boundaries separating regions of different refractive index, the radius of curvature
can be expressed in terms of the radii of the boundaries and the refractive indices
and, using equations (1.3) to introduce the focal lengths of each boundary, reduces
to 1/rp = ∑

(1/njfj ). The surface is a paraboloid of revolution and is concave
towards the lens elements if

∑
(1/njfj ) is positive.

This will be the case for a single lens, but it is quite possible for the Petzval
sum to be zero for discrete lens combinations. Indeed there is a well known
photographic lens, the Petzval lens, which has a slight telephoto action as it consists
of a convergent element followed by a divergent element. Notice that the details
of the ray path make no contribution to the sum.

For charged particle optics we have the Petzval integral, a direct analogue, in
which the square root of the axial potential has the rôle of the refractive index and
T ′ accounts for the bending of the rays. The full expression is

P tz = 1

8

∫ ∞

−∞

(Vo

V

)1/2
T ′ dz. (5.19)

Some examples of the integrand are shown in the appendix and, though the changes
of sign are apparent, the integral as a whole is never negative.

5.5.2.3 Chromatic aberration. In this case, the perturbing factor can be
expressed as a constant change in the potential, and we can write the equation
of motion as

d2r

dz2
+ 1

2

V ′

(V + δV )

dr

dz
+ r

4

V ′′

(V + δV )
= 0

and, as δV is small in comparison with V , we can multiply top and bottom by
V − δV to give

d2r

dz2
+ 1

2

V ′

V

dr

dz
+ r

4

V ′′

V
= δV

[1

2

V ′

V 2

dr

dz
+ 1

r

V ′′

V 2

]
.

We continue, as before, by writing r = rp+rc where rc is a change in the trajectory,
small enough that the product rcδV can be neglected.

d2rc

dz2
+ 1

2

V ′

V

drc
dz

+ rc

4

V ′′

V
= δV

[1

2

V ′

V 2

drp
dz

+ rp

4

V ′′

V 2

]
.

† Figures 5.10 and 5.11 have been prepared with a version of LENSYS modified to print larger
dots.
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We again write the perturbation as ζ(z)r1(z) + ξ(z)r2(z) where r1 and r2 are the
general solutions of the ray equation. In this case we are interested in the values
of both ζ(zi) and ξ(zi)

Using the expressions for the chromatic aberration coefficients (equations (5.10)
and (5.11)) and then changing the radial variable to the reduced radius we find

Cc = 1

V
1/2

0

∫ ∞

−∞

3

8

V ′2

V 5/2
r2 dz

= 1

V
1/2

0

∫ ∞

−∞

3

8

V ′2

V 2
R2 dz

= 1

V
1/2

0

∫ ∞

−∞

3

8
T 2R2 dz (5.20)

and

CD = 1

V
1/2

0 f1

∫ ∞

−∞

3

8

V ′2

V 5/2
r2r dz

= 1

V
1/2

0 f1

∫ ∞

−∞

3

8

V ′2

V 2
R2R dz

= 1

V
1/2

0 f1

∫ ∞

−∞

3

8
T 2R2R dz. (5.21)

We have also substituted T for the ratio of the potential gradient to the potential.
In these expressions R(z) is the ray which passes through the axial object

point with unit slope and we can expand it in terms of the general solutions by
R(z) = R1(z)+(1/M)R2(z). This enables us to find the magnification dependence
of the chromatic aberration coefficients. As in the case of spherical aberration,
these coefficients have to be calculated using arbitrarily normalized representations
of r1 and r2 and then scaled by multiplying by f 2

1 . Only in the calculation ofCc(M)

is this scaling not necessary, because R(z) is the correctly normalized reduced ray.

Cc = 1

V
1/2

0

∫ ∞

−∞

3

8
T 2

(
R2

1 + 2

M
R1R2 + 1

M2
R2

2

)
dz

= Cc0 + Cc1/M + Cc2/M
2 (5.22)

CD = 1

V
1/2

0 f1

∫ ∞

−∞

3

8
T 2

(
R1R2 + 1

M
R2

2

)
dz

= CD0 + CD1/M. (5.23)

It follows from these equations that CD0 = Cc1/2f1 and CD1 = −Cc2/f 1. Note
that both Cc1 and CD1 are negative quantities.
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5.6 The aberrations of retarding lenses

5.6.1 Spherical aberration
The equations (5.1) which describe the ray position and slope at the second focal
plane in terms of the values of these parameters at the first may be inverted
algebraically to describe the effect of reversing the direction of the rays

r ′
1 = − r2

f1
+ m26r

′3
2 + m25r

′2
2
r2

f1
+ m24r

′
2

( r2

f1

)2
+ m23

( r2

f1

)3
+ · · ·

r1

f2
= −r ′

2 − m16r
′3
2 − m15r

′2
2
r2

f1
− m14r

′
2

( r2

f1

)2
− m13

( r2

f1

)3
+ · · ·

(5.24)

or equations (5.1) may be written in terms of the coefficients of the lens having
the reciprocal voltage ratio

r ′
2 = − r1

f ∗
2

+ m∗
13r

′3
1 + m∗

14r
′2
1

r1

f ∗
2

+ m∗
15r

′
1

( r1

f ∗
2

)2
+ m∗

16

( r1

f ∗
2

)3
+ · · ·

− r2

f ∗
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= r ′
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23r
′3
1 + m∗

24r
′2
1

r1

f ∗
2

+ m∗
25r

′
1

( r1

f ∗
2

)2
+ m∗

26

( r1

f ∗
2

)3
+ · · ·

(5.25)
where the asterisks (∗) denote the coefficients and focal lengths of the reversed
lens. A term by term comparison of equations (5.24) and (5.25) shows that each
coefficient for the reversed lens is the same as one for the forward lens, with an
obvious symmetry

m∗
13 = m26 m∗

14 = m25 m∗
15 = m24 m∗

16 = m23

and also f ∗
1 = −f2. Notice that as we have not specified which lens is the

accelerating one, this set of equations can be read either way.
Using equation (5.5) we can develop the relation between the coefficients of

spherical aberration:
Cs0 = −m13f2

so
C∗

s0
= −m∗

13f
∗
2 = −m26f

∗
2

substituting Cs4 = −m26(f
4
1 /f

3
2 ) gives

C∗
s0

= Cs4f
∗
2 (f

3
2 /f

4
1 )

= −Cs4(f2/f1)
3 as f ∗

2 = −f1

= Cs4(Vn/V1)
3/2

whereVn is the potential of the last electrode and the ratio is that for the unasterisked

direction. It is easy to show, by similar arguments, that C∗
s1

= Cs3

(Vn

V1

)3/2
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and C∗
s2

= Cs2

(Vn

V1

)3/2
. Knowing that the reverse magnification M∗ = 1/M

we can write equation (5.3) for the reversed direction as

C∗
s (M

∗) =
(Vn

V1

)3/2[
Cs4 + Cs3/M

∗ + Cs2/M
∗2 + Cs1/M

∗3 + Cs0/M
∗4

]
=

(Vn

V1

)3/2[
Cs4 + MCs3 + M2Cs2 + M3Cs1 + M4Cs0

]
= M4

(Vn

V1

)3/2[
Cs4/M

4 + Cs3/M
3 + Cs2/M

2 + Cs1/M + Cs0

]
= M4

(Vn

V1

)3/2
Cs(M). (5.26)

In the case of the afocal five cylinder lens discussed in chapter 4, the magnification
is given simply by Maf = (V5/V1)

−1/4, so the ratio of the spherical aberration
coefficients in the forward and reverse directions is (V5/V1)

1/2.

5.6.2 Fifth order effects
In the preceding section, we ignored the fifth order terms of equation (5.1) because,
in the reverse direction, the coefficients, q∗

ij are not so simply related to those for
the forward direction as are the third order coefficients. These can be evaluated in
a similar way and are:

q∗
21 = q16 + 3m2

16 − m15m26

q∗
22 = q15 + m15(5m16 − m25) − 2m14m26

q∗
23 = q14 + 2m14(2m16 − m25) + 2m2

15 − 3m13m26 − m15m24

q∗
24 = q133m13(m16 − m25) + m14(3m15 − 2m24) − m15m23

q∗
25 = q12 + m13(2m15 − 3m24) + m2

14 − 2m14m23

q∗
26 = q11 + m13(m14 − 3m23)

q∗
11 = q26 + 3m16m26 − m25m26

q∗
12 = q25 + 3m15m26 + 2m16m25 − 2m24m26 − m2

25

q∗
13 = q24 + 3m14m26 + 2m15m25 + m16m24 − 3m23m26 − 3m24m25

q∗
14 = q23 + 3m13m26 + 2m14m25 + m15m24 − 4m23m25 − 2m2

24

q∗
15 = q22 + 2m13m25 + m14m24 − 5m23m24

q∗
16 = q21 + m13m24 − 3m2

23

where the mij coefficients are those for the forward direction.

5.6.2.1 Spherical aberration of the afocal lens. While the magnification of an
afocal lens does not depend on the position of the object, the coefficient of spherical
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Figure 5.12 The path of a ray which leaves the axis a distance, d, to
the left of the first focal plane of an afocal lens and crosses the image
plane at a distance dr below the axis as a consequence of spherical
aberration.

aberration does so depend. In figure 5.12 we show a schematic path for a ray which
originates at a point, O, on the axis a distance, d, to the left of the first focal plane
of the system. There are three focal planes to consider. The first crosses the axis
at F1, the first focal point of the first lens of the pair which constitutes the afocal
combination. The second is at the second focal point, F2, of this lens and the first
focal point, F∗

1, of the second lens. The third focal plane is at the second focal
point, F∗

2, of the second lens. The afocal lens produces an image of the object at a
point at this same distance, d , to the left of this third focal plane.

Spherical aberration causes the ray to cross the image plane at a distance, dr ,
from the axis where dr = −MCsr

′3
0 . We can use equation (5.1) to follow the path

of the ray from the point where it crosses the first focal plane at a distance r0 from
the axis, to to the point at which it crosses the third focal plane at a distance r2 from
the axis. The starting point is to note that r0 = −dr ′

0 and then to use equation (5.1)
to express the ray parameters, r1 and r ′

1, at the central focal plane in terms of r0

and r ′
0. These are third order expressions. Equation (5.1) can then be used again

to express the ray parameters r2 and r ′
2 at the third focal plane in terms of r1 and r′

1
and so, by substitution, in terms of r0 and r ′

0. Note that all the mij coefficients are
the same for the two parts of the lens. These expressions are of ninth order and
an algebra package was used to calculate them. Terms above the third order were
then neglected and the spherical aberration written as

dr = −MCsr
′3
0 = r2 − dr ′

2.

Substitution into this equation leads to a quite tidy expression for the aberration
of the afocal lens.
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Figure 5.13 Values of the spherical aberration, −MCs , for afocal
lenses operated with objects a distance dL to the right of the symmetric
position. Details of the data points and the curves are discussed in the
text.
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f2

)4[
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(f2

f1

)3]
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( d
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)3[
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(f2

f1

)2]
+

( d

f2

)2[
Cs2

(
1 − f2

f1

)]
−

( d

f2

)[
Cs3 − Cs1

]
+ Cs4 − Cs0

(f1

f2

)
. (5.27)

Figure 5.13 shows values of −MCs calculated using equation (5.27) for afocal
lenses of total length 8 D and overall voltage ratios of 1, 4, 9, 16 and 25 and
their reciprocals together with values obtained using the Movable Afocal routines
of LENSYS. The abscissæ are the values of dL used in these routines and are related
to the displacement, d , of equation (5.27) by d = dL − (2.0 + F1). The broken
curve passes through the first focal points and helps to show that the minimum
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Figure 5.14 The aberration integrals for an afocal lens having a
voltage ratio, V5/V1 = 16 with the object at the symmetric position,
at a distance 0.38 to the left, where −MCs has a minimum value and
at 0.63 to the left, at the first focal point. The curves are displaced
vertically for clarity.

aberration occurs for positions between this focal point and the symmetric position.
This figure shows that, for accelerating lenses, it is better to place the object to the
left of the symmetric position. This has a further advantage in that, with a longer
cylinder at potential V1, it is possible to insert an angle stop, or entrance pupil,
with little disturbance to the potential distribution near the first gap.

Minimum values of −MCs occur when the perturbing action is divided roughly
equally between the two component lenses. This is illustrated in figure 5.14 for
an afocal lens of overall voltage ratio V5/V1 = 16 with objects at the symmetric
position, at the first focal point and at an intermediate position.

5.6.3 Chromatic aberration
If we consider our earlier expressions to describe accelerating lenses we can obtain
results for the corresponding decelerating lenses by reversing the direction of the
rays. Inspection of equation (5.22) shows that Cc0 and Cc2 must be interchanged
as r1 and r2 are redefined so C∗

c0
becomes identified with the term in 1/M2. The

magnitudes of all three coefficients are changed by a factor (Vn/V1) because
f ∗

1 = f2 and by a further factor (Vn/V1)
1/2 because of the V 1/2

0 term. We therefore
have C∗

ci
= Cc(2−i)

(Vn/V1)
3/2 where i = 0, 1, 2.

It is easy to show, using an analysis similar to that of equation (5.26), that

C∗
c (M

∗) = M2
(Vn

V1

)3/2
Cc(M).
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The position is a little more complicated for the coefficient of lateral chromatic
aberration, as CD1 is associated with the r2

2 term in the integral for Cc and so C∗
D1

must be associated with the r2
1 in the integral for C∗

c . The magnitude ratios are
just (Vn/V1), because f1 (f ∗

2 ) appears only once. The result, however, is just as
simple,

C∗
D0

= CD0(Vn/V1) C∗
D1

= CD1(Vn/V1)

though this leads to a rather strange result for C∗
D(M

∗)

C∗
D(m

∗) = M
(Vn

V1

)
(CD1 − CD0/M).

5.6.4 Figures of merit
The geometric aberrations of a lens system for a given application may be reduced
by the correct choice of the number and structure of the electrodes. The application
will usually specify the potential ratio of the image and object spaces, the separation
of the object and image, the magnification to be used and the maximum acceptable
pencil angle of the beam in one or other of the spaces. The desirable parameter
will be a minimum size of aberration disc. The diameter of the lens system might
be restricted, but it is frequently a free parameter. We can write the radius of the
aberration disc as

Br

D
= MCs(M)r ′3

1

where we express the coefficient in units of D. The value of the diameter also
appears in the actual length, L, of the system, in terms of lens parameters, as

L

D
= Q − P

D
= F2 + q − F1 − p = F2 − F1 − Mf2 + f1/M (5.28)

and so we can write

Br = LMCs(M)

F2 − F1 − Mf2 + f1/M
r ′3

1 . (5.29)

It would plainly be difficult to examine all possible lenses to find that which gave
the smallest value of Br , but, by making two reasonable approximations, it is easy
to find a good criterion to point us towards a suitable lens.

The first approximation is to use equation (5.13) to express the spherical
aberration coefficient in terms of the magnification and overall voltage ratio. The
second is to equate the arithmetic mean of the mid-focal distances to the geometric
mean of the focal lengths†. The denominator of equation (5.29) becomes

2(−f1f2)
1/2 − Mf2 + f1/M = −Mf2(1 − 1/σM)2

† This result can be shown to be true for lenses weak enough that Y = 0, where Y is defined
by equation (5.14).
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and so
Br = −LCs0(1 − 1/σM)2r ′3

1 /f2

which can be separated into

Br = −gL(1 − 1/σM)2r ′3
1

g = Cs0/f2 = −m13

where g contains all the lens dependent information and none of the specification
and is therefore it is a suitable figure of merit for the inter-comparison of lenses.
For the type of problem considered here, where the overall voltage ratio forms part
of the specification, it will almost certainly be the case that a lens of three or more
elements will have an appreciably smaller value of g than any two element lens.
Once the lens geometry and inner voltage ratios have been selected, the choice of
lens diameter follows from equation (5.28) where the focal properties are in units
of D.

For the case of rays focused from infinity, for which the magnification is zero,
this analysis fails because the distance between conjugates is infinite. However, the
appropriate specification in this case is more likely to be in terms of the distance
of the image from the lens itself, probably specified as L = F2, the mid-focal
distance. The radius of the aberration disc is given by equation (5.6) and the figure
of merit is just Cs4/f

3
1 = −m26(f1/f2), though, as the ratio of focal lengths is

implicit in the specification of the voltage ratio, −m26 is itself suitable.
If the specification allows for an adjustable magnification, the quantity to be

optimized becomes the product MCs , which, again using equation (5.13) can be
written as

MCs(M) = MCs0(1 − 1/σM)4.

We may differentiate this to find an optimum value of M = −3/σ , which gives
for the minimum radius spot in the Gaussian image plane

Br = −9.48(Cs0/σ)r
′3
1 = 2.37Cs1r

′3
1

and suggests that m23 would be a better figure of merit with this looser constraint.



6 The LENSYS program

6.1 The programs on the disk

The disk which accompanies this book contains a number of files for use on an
IBM or compatible personal computer. There are two versions of the LENSYS

program, one, LENSYS2.EXE, compiled in real mode and the other, LENSYSP.EXE,
in protected mode. The difference between the two compilations is that LENSYS2

runs in the lowest 640kB memory of the computer and is therefore suitable for a
basic PC, while LENSYSP will use memory above this region and will normally
be the version of choice. The program source is exactly the same for the two
compilations.
The files are arranged in three subdirectories:

PROTECT REALMODE RELAX
DPMI16BI.OVL LENSYS2.EXE RELAX51A.EXE

LENSYSP.EXE LENSYS2.ICO RELAX51A.ICO

LENSYSP.ICO LPOTS.DAT RELAX51P.EXE

LPOTS.DAT RELAX51P.ICO

RTM.EXE RELAXCYL.EXE

RELAXCYL.ICO

The file LPOTS.DAT, which is loaded automatically by LENSYS, contains data
from which the potentials and potential gradients are calculated. The files
DPMI16BI.OVL and RTM.EXE are required to run any protected mode program.
The RELAX subdirectory contains the auxiliary programs which are discussed in
section 6.7.

The programs have been written to run under MSDOS, and will run as DOS
programs under Windows 98. The various icon (.ICO) files are provided so that
Windows shortcuts may be generated for all the programs and placed, if desired,
on the desktop. LENSYS2.EXE itself requires some 400kB of memory and, if this is
not available, the program will stop with a message that there has been a memory
overflow error. This might occur on a basic PC if several TSR programs have
been installed, but is unlikely to occur on a modern machine. If memory is not a
limitation, then LENSYSP.EXE is the better choice.

105
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A graphics screen is necessary: VGA is best, but EGA is acceptable and, though
the program will use a CGA screen, the resolution is only just adequate, especially
for text messages and data tables. The Hercules monochrome graphics screen is
usually very clear, but the lack of colour is not a trivial loss. The one place where
the program behaves differently on a monochrome screen is in the menus, in which
the selected item appears in inverse video rather than in a different colour. All the
graphics routines are specific to the programs and do not use any of the facilities
of Windows.

6.1.1 Loading and running the programs
None of the programs should be run from the floppy disk, because any data file
they may write is put into the directory from where they are run. All the files in
the REALMODE or PROTECTED subdirectory should be copied to a dedicated
subdirectory on the computer hard disk. LENSYS will only look in its own directory
for the LPOTS.DAT data file and the protected mode support files

In DOS mode the program is started by typing the filename at the DOS prompt.
In Windows mode it can be started using the RUN command, double clicking on
the filename in Windows Explorer or on the shortcut icon if the user has prepared
one. It presents a screen with brief details of the program. If it does not find a
maths coprocessor in the computer, it writes a message to the screen telling you
that it would run much faster with one, but it continues nevertheless. Once this
introductory screen has been displayed, it reads the data file and will then make no
further use of the program on the disk. After the data file has been loaded, you are
invited to ‘Press ENTER to continue’. This starts the program and shows a screen
which will provide the communication channel.

6.2 The screen display

The lower three quarters of the screen is the graphics window. This will show
schematic representations of the lens being studied and the rays traced during
the analysis of the lens. The breadth of this window is equivalent to eight lens
diameters. The upper portion of the screen forms two text windows. The wider
one, to the right, is called the data window and is for the display of lens data and
the results of the calculations, while that to the left is called the message window
and shows the menus, together with other prompts and messages in the course
of the program. It is usually of a different colour from the data window. The
manual input of lens parameters (potentials, lengths etc) is normally made to the
data window, but sometimes to the message window.

6.2.1 The menu system
All choices are made via a system of menus, each offering between two and five
options. The opening menu describes itself as ‘Main Menu’ and invites a choice
between
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Set Options
Lens Data
Imaging

Exit to DOS

with the top entry displayed in a different colour (inverse video on a monochrome
screen) to signify that it is the ‘selected’ item. The selection may be changed
by the UP- and DOWN-arrow keys and, as the motion rolls over, the quickest way to
select the bottom item is to use the UP key once. Pressing the ENTER key makes the
choice. Choosing ‘Exit to DOS’ is the normal exit route from the program. If it
is chosen, the program does not request verification, but exits immediately with a
simple closing message leaving the display in a 25 line text mode. The program
does not remain in memory and has to be reloaded if required again.

6.3 The Set Options option

Choosing ‘Set Options’ takes you to an ‘Option Menu’ which offers the choice of

Show V-axial
Show Cs

Show both
Show neither

Save all

This choice enables the display of the selected data in addition to the ray diagrams.
After making the choice, you are returned to the main menu. The axial potential
and the integrands of the spherical aberration integrals will be written to files if
they are selected to be shown. The ‘Save all’ option saves, in addition to these,
the integrands of the chromatic aberration integrals and the Petzval integral, and,
though these are not displayed, they can be examined with a suitable graphics
program.

6.4 The Lens Data option

Choosing ‘Lens Data’ takes you to another menu ‘Select a Lens’ which offers the
choice of

2-Aperture A=D/2
2-Aperture A=D

3-Aperture A=D/2
2-Cylinder G=D/10
3-Cylinder G=D/10

This section allows you to find the focal properties of a lens. The geometries
of the first four lenses are predefined, but if you choose the three cylinder lens
you are asked, in the message window, for the length of the second element, in
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units of the diameter, and this should not exceed 3. If you enter too large a value,
the invitation is repeated. No sign is expected, three places of decimals will be
accepted, but the length will be rounded down to the next multiple of 0.0125.
The program then draws a schematic of the lens in the graphics window and asks
for the voltage ratios, V2/V1 and V3/V1 (if appropriate). These are entered in the
message window. Up to three decimal places are accepted here. All voltage values
presented in the data window are on the basis that V1 = 1 and so Vn represents
Vn/V1. The chosen values of the electrode potentials are written in the graphics
window, above the schematic electrodes. The message window will tell you that
the program is calculating the trajectories and the aberrations of the lens† and
two rays will be drawn in the graphics window. These are the usual principal
rays, drawn from the left and from the right, parallel to the axis. The focal points
are marked and labelled as are the principal points. The axial potential and the
five spherical aberration integrands will also be shown if they were selected from
the Options Menu. The data window shows three columns of data. The first
column displays values of the focal lengths, mid-focal distances and the positions
of the principal points, the second column values of the five spherical aberration
coefficients, Csi and the Petzval sum, and the last column shows values of the five
chromatic aberration coefficients, Cci and CD1 .

When the calculation and display are complete, the message window shows a
further menu headed ‘Continue?’

Swap Cs/Mij coeff
New Potentials

New Lens
Print/Save

Main Menu

We shall discuss ‘Print/Save’ later. The first choice, ‘Swap Cs/Mij coeff’ changes
the display in the right hand section of the data window to show the eight mij

coefficients and the four elements of the bending matrix described in chapter 1.
A repeated choice restores the original display. The effect of choosing ‘New
Potentials’ is obvious. The ‘New Lens’ option leaves you in the ‘Lens Data’ part
of the program by returning you to ‘Select a Lens’. If you wish to examine the
properties of a lens between conjugates it is necessary to choose ‘Main Menu’ and
then ‘Imaging’ from that menu.

6.4.1 Error conditions
There are a number of input parameter values which the program will not reject
immediately, but it will discover that they are not sensible and will halt with an
appropriate message and wait for ENTER to be pressed. A very simple error is to
input V2 = 1 for a two element lens which gives no lens action at all. Another
input leading to error conditions is an excessively high voltage ratio. There are a
number of tests for these. If the emergent ray has the wrong sign of slope it has

† The speed of a modern PC is such that these messages may not be seen.
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probably crossed the axis twice. If the ray crosses the axis between the outermost
electrodes, the focal length will not be a very useful parameter and it would be
misleading to display the results in the data window.

It is possible to input a zero or negative value for a potential. This would be
nonsense in the case of the final electrode and the program will reject the negative
sign, but it may be acceptable for the centre electrode of the three aperture lens
or a cylinder lens having a very short centre element. As an example, the three
aperture lens having V3 = 1 will accept values down to −0.8 for V2. A zero value
gives the condition for the classic Einzel lens.

6.5 The Imaging option

This opens with a further menu, ‘Select Lens Type’, and you have to choose
between

Aperture lenses
Cylinder lenses
Special lenses

The details of the lens specifications and the positions of the conjugate points have
to be entered in a slightly different fashion for the two lens types. These differences
will be explained later. The program traces a ray starting from the axial object
point at the left of the graphics window and with a slope of 1, but the subsequent
action depends on a further choice which you be asked to make by a menu headed
‘Solve the Lens’.

Adjust Potentials
Find the Image

6.5.1 Types of solution

6.5.1.1 Automatic adjustment. If you choose the automatic adjustment of a
potential, the potential of one electrode will be adjusted, in a series of steps, until
the ray crosses the axis at the image point you have specified. Each ray is deleted
as the next ray is being drawn. In the case of lenses with two or three elements
the potential of the second electrode is adjusted, but if there are more than three
electrodes you are asked, by a message, to indicate which one. You may not
choose the first or the last electrode. After the program has made an automatic
adjustment it draws two further rays. These both start from an object point above
the axis and one has a slope of zero and the other a slope of −1. These rays
will cross at the image plane and indicate the magnification. The data window
shows the lens specification (a little differently in the various cases), the electrode
potentials, updated at each iteration step, and the magnification and the spherical
and chromatic aberration coefficients.
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For any lens geometry, more than one set of electrode potentials will satisfy
the conjugate focus condition. It is possible to persuade the program to pick
one combination rather than another by choosing a suitable starting point for the
potential which is to be varied. For example, even a two element lens has two
possible voltage ratios, one accelerating and the other decelerating, and if V2 is
initially set to 0.1 the program should find the retarding solution. However, if this
requires a potential of less than 0.01 it will fail, with a message ‘This is unlikely to
converge. ENTER continues’. A three element lens started with V3 = V2 = V1 = 1
will converge to the solution with V2 > 1. There is a general tendency built into
the program to look for the higher potential solutions because these are usually the
ones with smaller aberrations.

6.5.1.2 Error conditions. If the automatic routine cannot find a value which
allows the ray to pass through the axial image point, it will issue a message to that
effect and wait for ENTER to be pressed. This will sometimes happen because it is
looking in the wrong region. For example, it might be trying very small values
and meeting the �< 0.01 constraint while a much larger value may be valid. This
condition can usually be caught by noting the way in which the variable potential
changes after each iteration. This may not be possible with the speeds at which
modern PCs operate, though there are ways, discussed in the appendix, by which
this factor may be circumvented.

A more common cause for failure is that the overall voltage ratio is too high.
If the potential of the variable electrode is observed to be varying around, or near
to, the geometric mean of the neighbouring potentials, this can be taken as a sign
that that region of the lens is too strong and new fixed potentials should be tried. It
is often worthwhile to try some values close to these critical ones, using the ‘Find
the Image’ option, to assess the nature of the change that is required.

6.5.1.3 Find the image. If you choose to find the image, only a single ray is
drawn and the program will find the position of the image point appropriate to the
potentials you have chosen and will draw a vertical line through that point. The
image may lie beyond the right hand end of the screen, but the position is noted in
the data window. The aberration coefficients and the magnification are calculated
and shown in the data window.

You are then asked if you wish to draw another ray. If so, you are asked for the
starting position and slope of the ray and it is then drawn and the ‘Another Ray?’
question repeated. None of these rays are deleted until you exit by declining the
invitation. This mode allows a particular set of rays to be drawn for a lens for which
the automatic adjustment has already provided values of the electrode potentials.
It might, for example, be used to find the position of the image of a second aperture,
an entrance pupil say, which can be simulated by the intersection of a ray parallel
to the axis and some distance above it with the original ray.

In this mode saving the data files will only save the first, image finding ray.
Other rays can only be recorded by a screen print.
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At the end of the lens solution routines the message window shows the same
‘Continue?’ menu as in the Lens Data case, but now the choice of ‘New Lens’
returns you to the ‘Select Lens Type’ menu.

6.5.2 Aperture lenses
A menu offers you the choice of the three aperture lenses already seen in the Lens
Data option. A message asks for values of the object and image distances, P and
Q, with a constraint that the total distance from object to image should not exceed
eight diameters. Despite the sign convention requiring P to be negative, only
the magnitude should be entered as the program can only handle real objects and
images and there can, therefore, be no ambiguity. The values appear in the data
window. A schematic diagram of the lens is drawn in the graphics window, with
the object at the left hand edge of the window, and the centre of the lens a distance
P to the right. A vertical line is drawn across the axis a further distance Q beyond
the lens centre. You are then asked for the electrode potentials which are written in
the data window replacing ‘?’ prompts. Next the ‘Solve the Lens’ menu appears
and the subsequent behaviour is as we have already discussed.

6.5.3 Cylinder lenses
A menu, ‘Select a Lens’, offers a choice of various cylinder lenses

2-5 Cylinder
Afocal6
Afocal8

Varimag6
Varimag8

The last four of these will be discussed later. Choosing the first option leads to yet
another menu, ‘How many cylinders’, and thence to the particular multi-cylinder
lens you require.

In contrast to the aperture lenses, for which only a limited set of spacings are
available in this program, the cylinder lenses may use a range of lengths of cylinder
and it is rather simpler to specify the object and image positions in terms of these
lengths. This is particularly the case for a lens with cylinder lengths of (say)
2, 1, 2 and 3 diameters where the choice of reference plane might be a matter for
argument. The program, therefore, expects the object to be at the left hand end of
the first cylinder and the image at the right hand end of the last cylinder, though it
will extend the last cylinder to the right hand edge of the screen in the schematic
diagram, marking the image plane with a transverse line as before. Having chosen
the number of cylinders, you are asked for their lengths (which will be rounded
down to the next multiple of D/80) and their potentials, which may be specified to
three decimal places. The values of the lengths are taken to include a half share of
the inter-cylinder gap ofD/10 and the total length must not exceed eight diameters.
As a trivial example, a lens with L1 = 2.00, L2 = 1.00 and L3 = 3.00, for which
the reference plane is unambiguously in the middle of the second element, would
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have P = 2.50 and Q = 3.50. The ‘Solve the Lens’ menu then appears and the
subsequent behaviour is as we have already discussed. Lenses with three cylinders
are widely used to satisfy the simple condition of maintaining a conjugate pair of
points for a range of overall voltage ratios. An example was shown in figure 4.6.

The length of the centre element affects the behaviour of both the magnification
and the spherical aberration, though not to a great degree. The addition of a fourth
cylinder allows for better control of the magnification, but a fifth cylinder opens
the possibility of controlling not just the magnification, but also the spherical
aberration of the lens system.

6.5.3.1 The aberration behaviour of the five cylinder lens. The conjugate focus
condition for a lens having the potentials of the third and fifth electrodes fixed may
be achieved with each of the intermediate potentials at a high or low value compared
with their neighbours. The four possible combinations lead to significantly
different coefficients of spherical aberration for all values of the magnification.
This is illustrated in figure 6.1 for a five cylinder lens having V5 = V3 = V1 = 1.
For all values of the magnification, the spherical aberration coefficient is least
for V2/V1 > 1 and V4/V3 > 1.

6.5.4 The Afocal and Varimag lenses
These lenses each have five cylinder elements with lengths

for the “6”

L1 = 1.25

L2 = 0.50

L3 = 2.50

L4 = 0.50

L5 = 1.25

and the “8” lenses

1.50

1.00

3.00

1.00

1.50.

6.5.4.1 The Afocal lens. The afocal lens was discussed in chapter 4 and the only
input required is the value of the overall voltage ratio. The program automatically
sets V3 = V

1/2
5 and adjusts the other potentials maintaining V4/V3 = V2/V1. The

data window reflects the changes in the potentials and, after convergence, shows
the magnification and the spherical aberration coefficient. The program operates
only in the regime with V2 and V4 both at the higher of their two possible values.
The shorter lens has much smaller aberrations, but the end elements are rather
short. Placing a real angle stop within the electrode would therefore affect the
potential distribution to a certain extent.

The behaviour of a non-symmetric afocal lens of total length 8 D is discussed
later in section 6.5.5.1.

6.5.4.2 The Varimag lens. These are very powerful lenses which allow the
magnification and the overall voltage ratio to be specified and a further parameter
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Figure 6.1 The spherical aberration, expressed as the product MCs , of a five cylinder
lens with V5 = V3 = V1 as a function of the magnification for values of V2 and V4 in the
following ranges:

Region

AB

BC

CD

DA

V2

> 1

> 1

< 1

< 1

V4

> 1

< 1

< 1

> 1.

to be adjusted. This may be either the magnification of an entrance pupil or
the spherical aberration coefficient of the lens. These are controlled, though not
independently, by the potential of the centre electrode. The program assumes that
there is an entrance pupil at a distance D/2 from the entrance window. You are
asked to supply values for V5, V3 and the target magnification. This will be a
negative quantity, but your input will be read and displayed in the initial data as
the modulus, |MagT|. The program first examines the range of magnifications
which can be achieved with these potential values, and may halt with a message
to the effect that the target magnification is outside the usable range. Otherwise
it adjusts V2 to satisfy the conjugate condition and then adjusts V4 to change the
magnification. Both V2 and V4 are constrained to take the higher of their possible
values.

These adjustments of V2 and V4 continue alternately until the window
magnification is close enough to the target value. At this point the data window,
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which has monitored the potentials and the window magnification throughout,
displays the target, window, pupil and longitudinal magnifications (MagT, MagW,
MagP & MagL) and the spherical aberration coefficient of the lens. A menu invites
a choice of

Modify V3
Continue

The first allows you to change V3 and the whole convergence procedure is repeated
while the second opens the usual ‘Continue?’ menu.

Increasing V3 from the ‘afocal’ value of V
1/2

5 will both decrease the pupil
magnification and reduce the spherical aberration. If the target magnification
is close to one of the limiting values with the initial value of V3, it is possible
that changing V3 might modify the limit sufficiently to cause the program to
fail to converge. If this happens, it will be necessary either to change the target
magnification or to accept a restriction on the value of V3.

In the case of the six diameter lens, the exit pupil can be seen, provided that the
longitudinal magnification is less than four. The reader will notice, if this lens is
operated with V5 = V3 = 1 and MagT= −1, that the pupil magnification is not
quite equal to −1. This is because the potential 1.25 diameters inside a cylinder
differs sufficiently from the potential of the electrode itself that the trajectories are
not quite straight. The effect is significant only at the 1% level and, for the eight
diameter lens, it is even smaller.

6.5.5 The special lenses
The ‘Special Lens’ menu has two choices:

Movable Afocal
Excitation Lens

6.5.5.1 The movable afocal lens. This is the same as the ‘Afocal8’lens of section
5.4.1, but with provision for moving the object point along the axis by an amount
dL, which may be positive or negative, but should not exceed 1 D. You are asked
for a value for dL and for the overall voltage ratio, V5. The program behaves
exactly as the ‘Afocal8’ program and then offers a choice

Change dL
Continue

‘Continue’ takes you to the ‘New Potentials’ etc menu and that choice returns you
to the lens, with the previously chosen value of dL, and allows you to set a new
value for V5. This procedure is slightly more clumsy than for the preset geometry
of ‘Afocal8’, but the two variables allow you to study the dependence of Cs on both
parameters. While the magnification of an afocal lens depends only on the overall
voltage ratio, the spherical aberration depends also on the location of the object
and image points within the lens. This behaviour was discussed in chapter 5.
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All the data for this lens are written to a file MOVFOCAL.DAT. Note that this
file may be added to if ‘Movable Afocal’ is chosen again during a single run of
LENSYS, but will be overwritten if the program is stopped and restarted.

6.5.5.2 The excitation lens. This is a five cylinder lens developed for one
purpose, to study the excitation of a gas target by a beam of electrons and the
subsequent radiative decay. The requirement is for a reasonably constant potential
in the observation region at the centre of the lens and some form of potential
barrier to restrict secondary electrons, formed at beam-forming apertures, from
entering this region. It is geometrically and electrically symmetric with V2 and
V4 operated, usually, at a lower potential than V3. An application of the lens to a
specific problem is discussed by Heddle and Kay [18].

You are asked for values of the potentials and to specify which one should
be varied. After solving the lens, the program draws two rays of slope ± 1
from an axial object point and displays the magnification, the spherical aberration
coefficient and the radius of the trajectory at the centre of the lens, rmid , in units
of the lens diameter.

6.6 The Print/Save option

The lens data, the ray paths and the axial potential and spherical aberration
integrands if selected, may be written to files. A simple pixel level dump of
the screen can be made to a suitable printer connected to the first parallel port
(LPT1) of the computer.

On selecting Print/Save from the ‘Continue?’ menu, a second menu, ‘Printer
Type’ invites a choice of

Save to Files
‘Laser’

‘Matrix’

The terms ‘Laser’ and ‘Matrix’ are meant to define respectively a 300 dpi laser
or inkjet printer and a nine pin dot matrix printer.

6.6.1 The Save to Files option
Choosing ‘Save to Files’will cause a counter to advance by one and the data for the
lens distances, potentials, aberration coefficients and magnifications to be written
to a file LENSnnn.DAT where nnn is the number of the lens. This is reset to zero
when LENSYS is restarted and incremented when each lens for which ‘Save to
Files’ is selected. The ray paths are saved to a similar file with extension .RAY. If
a choice has previously been made to show the axial potential or the aberration
integrand, then these will be written to files with extensions .POT and .ABR. If the
‘Save all’ choice has been made, then the integrands of the chromatic aberration
integrals will be written to a .CHR file and, in the ‘Lens data’ mode, the integrand
of the Petzval integral will be written to the .ABR file.
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z/D

Figure 6.2 The ray and aberration data for a two aperture lens plotted
using the .RAY and .ABR data saved from the same run as the screen
dump of figure 5.11.

If the choice of ‘Find the Image’ ray tracing has been made the .DAT file shows
the image position. Even if a second ray is traced, only the original ray will be
saved to the .RAY file, because further rays would overwrite the first one. It was
not practicable to use different ray variables as there is no limit to the number of
additional rays, for various launch positions and angles, which may be traced.

The saved .RAY, .ABR, .CHR and .POT files can be displayed and scaled by a
suitable graphics program and show much smoother variation than the screen
copies. Figure 6.2 shows the same data as figure 5.11 displayed using the ‘EasyPlot’
program†.

All the data files are properly normalized and numerical integration of the saved
data will give the same values as listed in the .DAT file.

A complete save of the data files for a ‘lens data’ run amounts to some 125 kB
and for an ‘imaging’ run to some 70 kB. On leaving the program, the exit screen
will remind you if you have saved any files. You should examine these before you
restart the program as they will be overwritten, or set to zero by fresh saves.

6.6.2 The printing options
The other choices from the ‘Printer Type’ menu lead to a ‘Which Region’ menu

† Cherwell Scientific Publishing Limited.
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Whole Screen
Data Window

Graphics Window
Continue

The ‘Continue’ option is offered in this menu, because a choice of ‘Save to Files’
for a lens for which this is not possible, would otherwise force you to an unwanted
‘Print’. This gives a safe exit.

The message window then clears and some information about the lens is
displayed there. The printing is done by reading each pixel and copying it as a black
dot unless it has the colour of the background. The DOS Graphics command is not
used and the quality of the printed output reflects that of the monitor, but with all
the colours lost. Figures 2.1(b), 5.10 and 5.11 were printed from a VGA monitor.
The program issues two Line Feed characters after printing, but no Form Feed
character. A VGA display printed to a laser printer retains the correct proportions
and is of such a size that two complete screens or seven data windows may be
printed on A4 paper.

If the printer is not connected, not turned on or has run out of paper a message
will be issued and the program will wait for ENTER to be pressed, at which point it
will return to the ‘Continue?’ menu.

This method of obtaining a printed image of the screen will only work if the
printer can interpret the codes of the PCL level III language, in the case of a
laser/inkjet printer, or of the Epson FX language in the case of a dot matrix printer.
Many modern laser/inkjet printers cannot do this as they rely on drivers built in to
the Windows system.

6.6.3 Printing under Windows
If the program is run under Windows, a copy of the screen can be saved to the
clipboard by pressing the PrintScreen key and can be pasted into the PAINT program
using Ctrl V. It can then be printed in colour to any Windows printer. This is not
very satisfactory, because the blue background, which is very suitable for visual
display, does not offer adequate contrast when printed. More sophisticated painting
programs are available which allow the colours to be changed and also allow the
screen to be captured and cropped. A white background is the most effective for
printing, but any white areas, such as text, should first be changed to (e.g.) black.

6.7 The auxiliary programs

These are included to illustrate the manner in which the potential distribution
approaches its final value. They also allow the oscillatory behaviour, which occurs
with large values of g, to be observed.

6.7.1 The RELAX51A.EXE and RELAX51P.EXE programs
These programs illustrate the solution of the two dimensional problem described
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in section 3.4.1 using the five point relaxation methods. The initial condition is
that the potential along the left hand side and the top of the 51 × 51 array is set to
1, while the rest of the array is set to zero except for the bottom left and top right
corners which are set to 0.5.

They differ in the order of scanning the array of points. RELAX51A follows the
sequence

for x:=1 to 49 do
for y:=1 to 49 do

while RELAX51P follows the sequence

for x:=1 to 49 do
for y:=49 downto 1 do

The effect of these sequences is to drive the potential distribution along the x = y

diagonal and perpendicular to that diagonal, respectively, which gives a more
symmetrical distribution along the diagonal at all stages.

In both cases the criterion for satisfactory completion of the iterative procedures
is more severe than that illustrated in figure 3.8. Instead of just requiring that
the sum of the potentials on the diagonal should be smaller in magnitude than
some value, these programs require the sum of the absolute differences between
the individual diagonal potentials and 0.5 to be below some level. In the original
program, it would be quite possible to satisfy the criterion while having a systematic
excess for x(= y) < 25 and a systematic deficit for x(= y) > 25. The different
scanning modes of these two programs allow the asymmetry in the axial potential
to be seen to develop in the ‘A’ version, while a symmetry is imposed by the ‘P’
scanning mode.

On running these programs you are asked for a value for the acceleration
parameter to be used, and the value of the sum of the potentials of the points
on the diagonal is displayed on the screen after each cycle of iteration. This sum
is also saved to a file identified by the value of the acceleration parameter.

The screen also displays an array of 51 × 51 small squares which are coloured
to represent the potentials at each point. The way in which the potentials change
with successive iterations can be seen and the effect of acceleration and, especially,
excessive acceleration is very clear.

6.7.2 The RELAXCYL.EXE program
This treats a similar problem in cylindrical coordinates, the two cylinder lens having
a narrow gap. The five point relaxation method is again used here and the criterion
for satisfactory completion is one which is appropriate for a demonstration, but is
not as safe as that used for accurate calculations. The change in the potential at each
point on the axis after each stage of iteration is determined and these values are
added algebraically to give a figure, BV , and then their moduli are added to give a
second figure, |BV |, which is never negative. This latter value decreases, though
not without limit, and the iteration is stopped when it becomes less than some
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value, which, in this example, is set as 0.000 01. Accurate methods of assessing
convergence are described in the appendix. The method used here corresponds
to the convergence of the axial potential to a few parts in 10−5, which is quite
adequate for the very coarse display of the potential used in this demonstration.

The lower part of the screen displays the iteration number, BV and |BV |.
Notice that these last are equal for small values of the acceleration parameter, but
BV changes sign to a greater or lesser degree as this parameter is increased.

The screen displays a representation of the electrode system with the potentials
at each point represented by coloured squares. In contrast to the square array
problem, potentials in adjacent regions differ by constant ratios, i.e. the colours
are chosen to represent the logarithm of the potential. The effect of too large a
value of the acceleration parameter is quite dramatic.



Appendix: Technical aspects of LENSYS

A.1 The programming language

The LENSYS2.EXE program is written mainly in Borland Pascal with some sections
in Assembly Language. The floating point variables are of type double and require
a maths coprocessor or its emulation: this latter is included in the code and will
be used automatically if needed.

A.2 Initialization

The program first looks for a maths coprocessor and, if it does not find one, writes
a message to the opening screen. It then loads the data file, stores the contents
in dynamic memory and waits for a response from the user. The type of graphics
adaptor is then examined and various scale and colour parameters are set in the
light of this. If a CGA adaptor is found, it is set to the four colour resolution of
320 by 200. This does not affect the effective resolution of the display seriously
and is preferred to the two colour 640 by 200 mode.

A.2.1 The effect of processor type on the speed of the program
When the program was first written, some ten years ago, typical processor clock
speeds were 10–25 MHz and the type of processor was significant. The clock
speeds in modern personal computers are some 20 times as fast and even the longest
calculations, such as the Varimag routines, are completed in under a second. This
is not an unalloyed gain, as there are occasions when it would be of interest to
observe the convergence process. There are various programs available which can
slow the effective clock speed† and so allow the successive traces to be observed.

† For example, SLOWDOWN.COM, which can be downloaded from
members.aol.com/bretjohn.
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A.3 Calculation of potentials

The file LPOTS.DAT contains values of the axial potential and potential gradient for
all the lens geometries at intervals of D/80, which is the step size used by the ray
tracing routines, from the centre to a distance 8 D into the lens. The potentials
were calculated at closer intervals to improve both the precision and the accuracy
of the data.

A.3.1 Aperture lenses
The potential distributions for the aperture lenses were calculated by the nine
point relaxation method of equation (3.23) using, in the notation of figure 3.10,
D1 = 160, D2 = 480 and D3 = 800 with a length from the centre of the lens to
one end cap of 2400 and half-gaps, A/2, of 40 or 80. By using a length of 5 D2

the effect of the end cap is completely unimportant in determining the potential at
8 D1 from the lens centre.

A.3.2 Cylinder lenses
The potential inside two closely spaced (D/10) cylinders is very well represented
by an expansion in terms of Bessel functions and the particular method described in
Section 3.6 was used in the original version of LENSYS. This required an estimate
of the gap length correction. This correction is now known to a much greater
accuracy, but only as a result of comparison with the very accurate results of the
nine point relaxation method [19] and so we have used these results directly in the
present version. The diameter of the cylinder was 320, the length, from centre to
end cap, 3200, and the gap half-width 16 all in units of the lattice spacing.

A.3.3 Details of the calculations
The space within the half-lens was represented by two arrays. The main, cylinder,
array had dimensions 241 × 2401 for the aperture lenses and 321 × 3201 for the
cylinder lens. The gap array had dimensions 160×41 or 81 for the aperture lenses
and 160 × 17 for the cylinder lens. The relaxation procedure is started, using
equation (3.23a) at the outermost point at the midplane and progresses row by
row down to the cylinder radius when the pattern changes to column by column
advancing axially to the closed end of the electrode. The axial potential is then
calculated using equation (3.23b).

Though the lens has a nominal gap of D/10, the finite spacing of the lattice of
points on which the potential is calculated leads to an effective gap of 0.09964,
some 0.3% less. This not a serious discrepancy.

The convergence of the iteration is assessed by an automated version of that
illustrated in figure 3.14. Values of the axial potential are recorded after some
number, n, cycles of iteration and are compared with values found after a further δn
cycles. The initial value of n is usually 1000 and that of δn 100. The test is
whether |((Vn(z, 0) − Vn+δn(z, 0))/Vn+δn(z, 0))| < 10−14 as z is advanced from
the midplane. At the point where this test fails, the values of n+ δn and (z−1)/D
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Figure A.1 The convergence of the iterative process. The left hand ordinate shows values
of |BV | for iterations started with g = 1.980 and, when |BV | < 10−12, continued with
values of (from the top) 1.973, 1.967, 1.960, 1.950, 1.900, 1.850, 1.800. The result
for iteration with g = 1.950 throughout is also shown. The right hand ordinate shows the
approach to convergence for the fastest choice of g : 1.980 initially and 1.973 later (+), and
for g = 1.950 in both modes. The full line interwoven with the © data is discussed in the
text.

are recorded, n is reset to n + δn and the iteration is continued until the test is
satisfied out to z/D > 9.5. There is no point in testing further as the potential is
affected by the end cap and, in the present application, values greater than z/D = 8
will not be used.

Figure 3.9 suggests that an acceleration parameter, g, somewhat greater than
1.97 should give optimum convergence and the results from a sequence of values
show that g = 1.972 is, indeed, best giving convergence after 4700 cycles of
iteration, though the minimum is not very sharp.

This value was obtained with a single acceleration parameter, but we have seen
earlier (figure 3.11, for example) that the initial approach to convergence may be
speeded up by using a significantly greater value until the magnitude of the changes
in the potential have decreased towards their final value. We show in figure A.1
the behaviour of |BV | obtained using g = 1.98 until |BV | has decreased to 10−12

and then smaller values. The different asymptotic values of |BV | are clearly
shown, covering a range of almost 1 : 10 for g = 1..800 − 1.973 which latter
value gives convergence after 2400 cycles. The progression of this convergence is
shown by the + symbols. Increasing the acceleration parameter to 1.974 increases
the number of cycles for convergence to 4900. This would overwrite the data for
g = 1.973 and is, therefore, not shown.
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The figure also shows, by � symbols, the convergence for g = 1.950 after
the initial over-acceleration. The interesting feature here is that convergence to
z/D ≈ 5.5 occurs very rapidly. This is always the case if the second value of g is
significantly smaller than the first. Even if g = 1.00 there is still this very rapid
convergence to z/D ≈ 5. Notice that this is faster than the initial convergence for
g = 1.973 which gives the fastest complete convergence. This step, for that is how
it appears with δn = 100, is associated with the even more rapid fall in |BV | when
the g-value changes. This very rapid convergence, assessed as it is by the values
of the axial potential, does not mean that the potential away from the axis has
reached its final value. A rough guide to the behaviour with excessive acceleration
can be found by running the RELAXCYL program. The advancing equipotentials
are clearly not of the same shape as for more reasonable acceleration, though the
final state does represent a complete convergence. It can be helpful to PAUSE the
program if the computer speed is too high.

The fall in |BV | obtained with a single value, 1.950, of the acceleration
parameter, and the associated approach to convergence (©) are also shown. The
full line which weaves through these points is a copy of the � data displaced to the
right by 6340 and shows that, after the initial rapid rise, the behaviour is controlled
by the final value of g. It is very similar to the g = 1.973 behaviour (+), but with
the abscissa stretched by a factor of seven.

The optimum number of cycles of iteration is determined by a balance between
the convergence criterion and the limiting value of |BV |. This is roughly inversely
proportional to 1/(2 − g). If the convergence criterion were relaxed to, say,
2 × 10−14, g = 1.974 would give convergence after 2300 cycles, a fairly trivial
gain, not justified by the loss of precision.

A.3.3.1 Multi-cylinder lenses. To determine the potential distribution in a multi-
cylinder lens, we write

Vi,i+1[z] = V [z + zi,i+1] and Ei,i+1[z] = E[z + zi,i+1]

where zi,i+1 represents the position of the gap between the ith and (i + 1)th
cylinders. We can then represent the axial potential and its gradient in terms of the
electrode potentials as

V [z] = V1 + (V2 − V1)V12[z]

+ (V3 − V2)V23[z]

+ (V4 − V3)V34[z]

+ (V5 − V4)V45[z]

E[z] =(V2 − V1)E12[z]

+(V3 − V2)E23[z]

+(V4 − V3)E34[z]

+(V5 − V4)E45[z]

and then calculate
T [z] = E[z]/V [z]

T 2[z] = 0.1875 ∗ T 2[z]
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where T 2 ≡ T ∗ of chapter 4, and

F [z] = V 1/4[z]

which is needed for conversion from real to reduced radii and vice versa.

A.4 Ray tracing for focal data

The screen has a width of 640 pixels and we set this equal to 8 D. We calculate
the ray paths at intervals of D/80 but display only every fourth point. As
the positions of the focal points are not known, we must trace the principal
rays starting from points a unit distance from the axis and directed parallel to
the axis. The reduced rays are traced in the forward and reverse directions
by integrating the Picht equation using Numerov’s algorithm (equation (4.3)).
This requires two initial values of the reduced radius to be known. These are
taken to be RF [0] = F [0] and RF [1] = F [1] for the forward direction, and
RB[639] = F [639] and RB[638] = F [638] for the reverse direction. RF

corresponds to r2 of equation (1.5) and figure 1.5 of chapter 1, and RB to r1.
Both pairs of values correspond to a real initial radius of one. Subsequent values
of RF [z] are calculated and, if z MOD 4 = 0, a point is plotted to the screen
at (z, RF [z]/F [z])with the ordinate suitably scaled to take account of the different
resolutions of the various graphics cards. IfRF [z+1]/RF [z] < 0 then the ray has
crossed the axis and the position of the first focal point is found by interpolation.
The position of the corresponding principal point is calculated from the slope of
the real ray, extrapolating back to a radius of 1. The focal length is then found by
subtraction. If the ray has not crossed the axis by the end of the calculation (i.e.
ifRF [639] is still positive), which will happen for weak lenses, the focal properties
are all found by extrapolation. Values for the reverse direction are determined in
exactly the same manner. The matrix elements are also calculated.

The coefficients of spherical aberration are calculated using equations
analogous to equation (5.17) with the integrands expressed by equation (5.18).
RF [z] and RB[z] are first scaled to give R1[z] = f1 ∗ RB[z] and R2[z] =
−f1 ∗ RF [z], and the integrals are evaluated using Simpson’s rule. Similar
calculations, using equations (5.19)–(5.22) give the Petzval integral and the various
coefficients of chromatic aberration. The Petzval integrands for the three lenses for
which the spherical aberration is illustrated in chapter 5 are shown in figure A.2.

There are certain conditions which will halt the program. If the slope of the
ray at the exit plane is zero, and if the ray has not crossed the axis, then there is
no lens action. If the ray crosses the axis between the lens centre and the outer
electrode, it is treated as being too strong to be useful. If the slope is positive at the
exit plane, then the ray must have crossed, or be about to cross, the axis a second
time, and the lens is unlikely to be useful.
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Figure A.2 The Petzval integrands for the three aperture lens (- - - -),
the Afocal8 lens (——) and the two aperture lens (– – –) illustrated in
figures 5.10 and 5.11.

A.4.1 Accuracy and consistency
The lens data are presented to 3 1

2 significant figures, though the last may not
always be too reliable. The calculation of the forward and reverse characteristics
are made independently and the ratio of the focal lengths provides a test of the
precision of the ray tracing routines. This ratio should equal the square root of
the overall voltage ratio. The determinant of the lens matrix should equal −f1/f2.
Further tests may be made by examining lenses which are reversals of each other,
for example 10 : 1 and 1 : 10, or 1 : 8 : 2 and 1 : 4 : 0.5 for a three element
lens. These tests can also examine the coefficients of spherical aberration, which
should be related by equation (5.26).

A.5 Solving the imaging problem

A.5.1 Finding the image
The two initial values of the reduced radius are taken to be R[0] = 0 and
R[1] = h ∗ F [1], where h = 1/80 is the lattice spacing, corresponding to a
slope of one for the real radius. The Picht equation is again integrated step by step
for the whole length of the system, and each fourth point is plotted, again as real
radius. The point where the ray crosses the axis is found in the same way as the
focal point and the magnification and the aberration coefficients are calculated as
explained later. No rays are traced beyond the limits of the screen and the image
point is found by extrapolation if necessary.
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Further rays may be traced with initial values R[0] = r × F [0] and R[1] =
(r + s) × F [1] where r and s are values of the initial radius and slope input in
response to the ‘Another ray?’ prompt.

A.5.2 Solving the lens
The same initial values of the reduced ray are used and traced for the length of
the system. The value of R[I ], where I represents the image plane, is noted and
the focusing voltage, Vf , is adjusted by an amount which depends on this miss
distance as

Vf = Vf + k × R[I ].

After the first trace, k can only be guessed and a value of 0.1 is taken in order that
the effect will be quite small. After this first correction, a suitable value for k can
be estimated, because R[I ] is then known for two values of Vf , and we write

k = (Vf − V
†
f )/(R†[I ] − R[I ])

where the † indicates the previous value.
The first change is deliberately made small, because even the sign of k is not

initially known. If R[I ] is positive, the lens is too weak and must be strengthened.
The correct value of Vf may have one of two values: ‘high’ or ‘low’, with the
‘high’ value generally offering better aberration behaviour. However, there are
occasions when the ‘low’ value is of interest. In this case, the appropriate change
in Vf is a reduction. The small initial change is a way of letting the program know
where the target value of Vf lies.

If the change in Vf leads to a value less than 0.01, it is replaced by a small
random value, greater than 0.01. The value is small to keep the search for Vf in
the ‘low’ region, and random so that the program does not immediately get stuck
in a loop. The target for satisfactory imaging is that |R[I ]| � 0.001.

When the correct value of Vf has been found, the coefficients of spherical and
chromatic aberration are calculated using equations (5.17) and (5.20). Two further
rays are then drawn from a point above the axis; one is initially parallel to the
axis, and the other has a slope of −1 in real space. These two rays cross again at
the image plane, and the magnification can be calculated from the final and initial
off-axis positions. The exact starting point is chosen to be such that the magnified
image lies within the length of the marker drawn perpendicular to the axis at the
image plane. This requires that the program knows the magnification before these
rays are drawn. The reader should have no difficulty in working out how this is
possible!

A.5.3 The afocal lens
This is handled in exactly the same way as any other lens. Though only V5 is
specified by the user, V3 = V

1/2
5 and the two focusing voltages are related by

V4 = V2 × V3. Only the higher values of the focusing voltages are considered.
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This is achieved by setting the lower limit for V2 not at 0.01, but at
√
V3, a value

for which the V1−V2−V3 lens is close to minimum power†.

A.5.4 The Varimag lens
Constraints are first applied to the possible values of V2 (�V

1/2
3 ) and V4

(�(V3 × V5)
1/2). V2 is set to its minimum value, and V4 is first set to the greater

of V3 and V5, and then adjusted to focus the lens. Under these conditions, the
magnification of the lens is close to the minimum value possible for the given
values of V3 and V5, because the V1−V2−V3 lens contributes minimally to the
total power. To find a value for the magnification close to the maximum possible
value, V4 is set to its minimum value andV2 set to the greater ofV1, V3 and adjusted
to focus the lens again.

If the target magnification lies outside these limits, the program halts with a
message that the maximum (or minimum) value has a certain value. This value
is given as some 5% less than the true maximum as a safeguard against later
problems if V3 is changed. If the target magnification is acceptable, then V4 is
set to a value found by interpolating between its values for the minimum and
maximum magnification, and V2 is adjusted to focus the lens. The magnification
is compared to the target value and V4 is re-adjusted. Cycles of focusing using
V2 and magnification adjustment using V4 continue until the target value is met
to within 0.1%. This is quite good enough for any practical purpose, but it is
noticeable that the dependence of magnification on the ratio V4/V2 is often quite
weak.

† The reader might like to examine the focal properties of three element lenses with the
centre element at potentials between those of the outer two.
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