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Preface

This book covers the physics of high-power laser interaction with plasmas,
a subject related to both fundamental physics and the applied sciences.
The book covers high-power laser irradiation, from low-laser intensity
IL � 109 W/cm2 up to extremely high intensities IL � 1020 W/cm2, and for
laser pulse duration between �L � 10 nanoseconds to as short as �L � 10
femtoseconds. The plasma medium varies from low densities (dilute gases)
to very high densities (highly-compressed solid state). The relevant tempera-
tures can change over many orders of magnitude, and electric and magnetic
fields can reach enormously high values.

The interaction of high-power lasers with matter should be of interest
to people from different branches of science who may be unfamiliar with
plasma science. Therefore, the relevant basic plasma physics is developed
and explained in detail. Three basic approaches to plasma physics are
considered, namely the two fluids model, the Boltzmann–Vlasov equations
and the particle simulation method.

This book is not a summary of research results, but rather it is a
pedagogical presentation where the basic physics issues are addressed and
simple models are used wherever appropriate. The material covered could
serve as a good foundation on which the undergraduate as well as the
graduate student can build an understanding of the past and present research
in this field. For the experienced researcher, I hope that this book is a
comprehensive and useful presentation of laser–plasma interaction.

The book describes the laser absorption and propagation by a plasma
medium, the electron transport phenomenon and the analysis of the relevant
plasma waves. The physics of the electric and magnetic fields in a laser-
induced plasma medium is comprehensively described. The subjects of
laser-induced shock waves, rarefaction waves, heat waves and the related
hydrodynamic instabilities (Rayleigh–Taylor, Richtmyer–Meshkov and
Kelvin–Helmholtz) are developed and discussed. The very important subject
of applications was purposely omitted as it merits a volume of its own.
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A prerequisite in plasma physics is to know and master both systems of
units: the m.k.s., known as the SI (International System) units, and the c.g.s.–
Gaussian units. Furthermore, one of the most useful physical quantities is the
laser intensity (energy flux) IL, which is usually given in mixed units (Watts/
cm2). Although most of the time the c.g.s.–Gaussian units are chosen, both
systems of units are used, in addition to the practical units such as electron-
volt (eV) for energy or temperature.

I would like to thank my colleagues from the plasma physics department
at Soreq in Yavne, Israel, and from the Institute of Nuclear Fusion at the
Polytechnic University in Madrid, Spain, for the fruitful discussions which
were very inspiring, stimulating and useful. I am grateful to D. Fisher for
his critical reading of the manuscript and to Y. Paiss for the valuable
discussions regarding the first chapter of this book. I greatly acknowledge
the help from A. Borowitz, E. Dekel and M. Fraenkel for their help with
the technical problems in preparing the manuscript. My thanks are also
extended to R. Naem for the preparation of the figures. Last, but not
least, my deep appreciation to my wife Yaffa for her encouragement to
write the book and to bear with me to its successful completion.
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Chapter 1

High Power Lasers, from Nanoseconds

to Femtoseconds

This chapter is an introduction to high power lasers and it is intended to
present the principles and the parameters of such systems. Lasers (acronym
of light amplification by stimulated emission of radiation) are devices that
generate or amplify electromagnetic radiation, ranging from the long
infrared region up through the visible region and extending to the ultraviolet
and recently even to the x-ray region (Ross 1968, Sargent et al. 1974, Svelto
1976, Thyagarajan and Ghatak 1981, Siegman 1986, Elton 1990, Diels
and Rudolph 1996 and Robieux 2000). The 1964 Nobel Prize for physics
was shared between Charles Townes, Nikolai Basov and Alexander
Prokhorov for their fundamental work in the 1950s that led to the construc-
tion of the laser.

Maiman demonstrated the first laser in 1960; the lasing medium was
a ruby crystal, pumped by xenon flash discharge, and the pulse duration
was between 1ms and 1 ms (Maiman 1960). In 1961 Hellwarth invented the
concept of Q switching and put it into practice with a ruby laser by using a
Kerr cell shutter. Hellwarth reported (Hellwarth 1961) a pulse duration of
about 10 nanoseconds (1 nanosecond¼ 1 ns¼ 10�9 s).

The first active mode locking was achieved in 1964 for a helium–neon
laser yielding a laser with pulse duration above 1 ns. The mode locking
was achieved by modulating the index of refraction acoustically at the
period that the light travels (a round trip) in the cavity (Hargrove et al.
1964). Using a saturable absorber, the idea of passive mode locking was
suggested (Mocker and Collins 1965), and in 1966 a neodymium glass laser
pulse shorter than a nanosecond was first obtained (DeMaria et al. 1966).
Today pulses of the order of 10 picosecond (1 picosecond¼ 1 ps¼ 10�12 s)
duration are common in many laboratories around the world. In the past
decade 10 femtosecond (1 femtosecond¼ 1 fs¼ 10�15 s) pulses were achieved
from a Ti–sapphire laser (Zhou et al. 1994, Glezer 1997). The chirped pulse

amplification technique (used in microwave devices for many years) was
first suggested for the lasers in 1985 (Strickland and Mourou 1985) in
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order to amplify short laser pulses. In this scheme the femtosecond laser pulse
is first stretched in time (chirped in frequency), then amplified and finally
recompressed (Perry and Mourou 1994, Gibbon and Forster 1996, Backus
et al. 1997). An interesting brief review of how the development of laser
pulse duration, from nanosecond to femtosecond, has changed many fields
of science and technology is given by Bloembergen (Bloembergen 1999).

1.1 Basics

Although it is assumed that the reader is familiar with the basics of laser
physics, it is inconceivable not to mention the Einstein coefficients. In 1917
Einstein postulated that an atom in an excited level (2) could decay to lower
energetic level (1) either spontaneously or by stimulated emission. In order to
prove this statement, Einstein studied a system of atoms at a temperature T
in thermal equilibrium with electromagnetic radiation (Einstein 1917).

Let n1 and n2 represent the number of atoms per unit volume of levels 1
and 2 having energies E1 and E2 respectively. Regarding these two levels, an
atom can emit or absorb a photon with an energy h� (! ¼ 2��), given by

�h! ¼ E2 � E1: ð1:1Þ
h is the Plank constant and �h ¼ h=2�.

The spectral distribution of the photons in thermal equilibrium is given
by black body radiation, as suggested by Planck’s law,

Upð!Þ ¼
�
�h!3

�2c3

��
exp

�
�h!

kBT

�
� 1

��1

ð1:2Þ

where c is the speed of light, kB is Boltzmann’s constant and Upð!Þ d! is
the radiation energy per unit volume within the frequency interval
[!; !þ d!]. Upð!Þ is in J � s/m3 in m.k.s. (note that Upð�Þ ¼ 2�Upð!Þ
since Upð�Þ d� ¼ Upð!Þ d!).

The populations of the upper level 2 and the lower level 1 obey the
following rate equations:

dn2
dt

¼ �An2 � B21Upð!Þn2 þ B12Upð!Þn1 ¼ 0

dn1
dt

¼ þAn2 þ B21Upð!Þn2 � B12Upð!Þn1 ¼ 0:

ð1:3Þ

The quantities A (in s�1), B12 and B21 [in m3/(J � s2)] are known as Einstein
coefficients, and in thermal equilibrium the populations are constant, imply-
ing dn1=dt ¼ 0, dn2=dt ¼ 0. An2 is the rate of spontaneous emission of
photons from the upper level, B21n2Upð!Þ is the rate of stimulated emission
from the upper level to the lower level, and B12n1Upð!Þ is the rate of
stimulated absorption from the lower level to the upper level.
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In thermal equilibrium the levels 1 and 2 are related by the Boltzmann

distribution

n2
n1

¼ g2
g1

exp

�
� �hðE2 � E1Þ

kBT

�
ð1:4Þ

where g1 and g2 are the degeneracy of the atomic levels 1 and 2 accordingly.
Equations (1.1)–(1.4) yield

B12

�
g1
g2

�
¼ B21 � B;

A

B
¼ �h!3

�2c3
;

A

BUpð!Þ
¼ exp

�
�h!

kBT

�
� 1: ð1:5Þ

From the last equation of (1.5) and the rate equations (1.3), one can see
that for �h!� kBT the number of stimulated emissions is much larger
than the number of spontaneous emissions, while for �h!� kBT the
number of spontaneous emissions exceeds the number of stimulated
emissions. For example, for typical light sources the temperature is less
than T � 3000K, implying kBT=�h < 4� 1014 s�1, and for the optical
spectrum ! � 4� 1015 s�1; therefore, the emission in the optical spectrum
from usual light sources is incoherent (i.e. it is due mainly to spontaneous
emissions, A=ðBUpÞ � e10).

The Einstein coefficients can also be understood by analysing the rate
equations (1.3). A�1 and ðBUpÞ�1 have dimensions of time; therefore, one
can define the spontaneous emission lifetime �sp (of the excited level, denoted
above by 2) and the induced emission lifetime �i of the excited level by

�sp ¼ 1

A
; �i ¼

1

BUp

;
1

�
¼ 1

�sp
þ 1

�i
: ð1:6Þ

The physical quantity 1=� is the transition probability per unit time for the
excited state under consideration.

It is important to note that the ratio A=B given in the first two relations
of (1.5) is correct not only in thermal equilibrium but is valid in general. A
and B are describing atomic physics, and atomic physics does not depend
on temperature. The ratio between the probabilities of induced transitions
and spontaneous transitions as given by (1.5) is independent of the particular
case for which it was calculated.

Einstein’s genius idea, as described above, shows how dynamic physical
quantities, such as ‘lifetimes’, transport coefficients, etc., can be related from
analysing a system in thermodynamic equilibrium.

In the above analysis only one laser frequency was considered, the
resonant frequency, with the energy difference between the two levels
(E2 � E1). In general, the atom transition from the exited level to the lower
level (from level 2 to level 1) can be induced by radiation over a range of
frequencies around the resonant frequency. The probability of the
interaction is a function of frequency. Therefore, the laser beam is not a
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delta function in frequency (i.e. one single frequency) but a function gð!Þ,
known as the line shape function, normalized by

ð
gð!Þ d! ¼ 1: ð1:7Þ

The change in the total number of stimulated emissions per unit time per unit
volume is changed according to the following (using (1.5) and (1.6)):

B21Upð!Þn2 ) n2

ð
B21Upð!Þgð!Þ d! ¼ �2c3n2

�h�sp

ð
Upð!Þgð!Þ d!

!3
: ð1:8Þ

The natural line shape is given by a Lorentzian profile

gnð!Þ ¼
2�sp
�

�
1

1þ 4�2spð!� !0Þ2
�
; ð�!ÞFWHM ¼ 1

�sp
ð1:9Þ

where �sp is the natural lifetime of the excited state, !0 ¼ ðE2 � E1Þ=�h is the
centre frequency, the normalization (1.7) is satisfied for !0�sp � 1, and the
natural full width at half maximum of gð!Þ is ð�!ÞFWHM ¼ ð�spÞ�1.

The line shape changes because of collisions. In a solid, the interaction
of the atom with the lattice causes line broadening. In a gas, the collisions
are between the atoms; in plasma, there are collisions between ions (not
fully ionized) and other ions or electrons. For example, in a gas medium,
random collisions occur and an atom sees an electromagnetic field that
changes its phase at each collision. If the average time between two colli-
sions is �c, the line shape broadening due to collisions is also of a Lorentzian

profile

gcð!Þ ¼
�c
�

�
1

1þ ð!� !0Þ2�2c

�

ð�!ÞFWHM ¼ 2

�c
¼ 1

P4�3R2

�
�MkBT

16

�1=2
:

ð1:10Þ

The normalization condition (1.7) is satisfied for !0�c � 1. The right-hand
side of the second equation is satisfied for an ideal gas with a temperature
T and pressure P, and this medium contains atoms of mass M and radius
R. For the general case this expression is considerably more complicated.

The Doppler effect also changes the line shape, since resonance absorp-
tion at !0 is possible even for a non-resonant frequency !, if the atommoving
with a velocity v satisfies

!½1� ðv=cÞ� ¼ !0 ð1:11Þ

where c is the speed of light.
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The Doppler broadening produces a Gaussian profile, given by

gDð!Þ ¼
1

!0

�
Mc2

2�kBT

�1=2
exp

�
� Mc2

2kBT

�
ð!� !0Þ2

!2
0

��

ð�!ÞFWHM ¼ 2!0

�
2kBT ln 2

Mc2

�
:

ð1:12Þ

Equations (1.9), (1.10) and (1.12) consider the broadening produced by
different mechanisms separately. In general, all mechanisms may be present
simultaneously. In this case the line shape is a convolution of the different
line shapes.

The various spectral line-broadening mechanisms are also classified as
homogeneous and inhomogeneous. If the spectrum of each atom is
broadened in the same way, like the natural and the collisional broadening,
then it is considered as homogeneous broadening. On the other hand, if local
inhomogeneities, as in Doppler broadening or inhomogeneities in a laser
medium (for example, the inhomogeneity in a solid crystal lattice), produce
the broadening then it is considered as inhomogeneous broadening. If the
effects which cause the inhomogeneous broadening are occurring at
random then the broadened line has a Gaussian shape. On the other hand,
in homogeneous broadening there is a Lorentzian profile. The propagation,
in the x direction, of a monochromatic electromagnetic beam in a medium
is described to a good approximation by the following equation for the
energy flux Ið!Þ (dimension of energy/area second)

dIð!Þ
dx

¼ ðG� �ÞIð!Þ; G ¼ �2c2~nnðn2 � n1Þgð!Þ
!2�sp

ð1:13Þ

where ~nn is the refractive index of the medium, so that c=~nn is the phase velocity
of the electromagnetic field in this medium. G is the gain for a system with
population inversion satisfying n2 > n1, and � is the dissipation (losses) due
mainly to collisions. In order to achieve a population inversion it is required
to pump energy into the laser medium. However, pumping is necessary but
not sufficient. In thermal equilibrium the Boltzmann distribution does
not permit population inversion, independent of the power of the pump.
Therefore, population inversion is required ‘to violate’ thermodynamic
equilibrium. For example, this is possible for three (or more) atomic levels
where the pumping excites atoms from level 1 (ground level) to level 2,
which is energetically higher than some level 3. In this case it might be
possible to achieve a population inversion between levels 3 and 2.

There are various ways to insert energy into the laser medium. For
example, a solid state laser can be pumped with flash lamps or with other
laser devices such as a laser diode. A gas laser can receive its energy from
various electrical discharges and also from different particle beams. One of
the important issues for a large laser system is the quality and the uniformity
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of the energy input, and for some applications the overall efficiency of the
laser pumping is crucial (e.g. for the use of inertial confining fusion in an
energy reactor).

Assuming that n1 � n2 is independent of Ið!Þ, i.e. the laser intensity is
not very large, and G and � do not change with x, then the solution of
(1.13) is

Ið!; xÞ ¼ Ið!; 0Þ exp½ðG� �Þx�: ð1:14Þ

If the medium is in thermal equilibrium, i.e. n1 > n2, there are fewer atoms in
the excited level than in the lower level (see (1.4)), then the energy of the
radiation beam decreases exponentially as it propagates through the
medium. On the other hand, if there are more atoms in the excited level
than in the lower level, n2 > n1 (population inversion), and also G > �,
then the intensity of the radiation increases exponentially. This is the effect
of light amplification.

In the oscillator, the medium is placed between twomirrors. Defining the
energy reflectivity of the mirrors by R1 and R2 and the medium length by L,
then the laser oscillation begins if the following relation is satisfied:

R1R2 exp½2LðG� �Þ� 	 1: ð1:15Þ

In comparison with other radiation sources the laser is characterized by the
following properties: the laser is monochromatic, coherent in time and in
space, is directional and has a high brightness.

The laser is monochromatic since the amplification is done for frequen-
cies satisfying equation (1.1). Moreover, the two mirrors form a resonant
cavity, causing the natural line-width (of the spontaneous transition 2 to 1)
to be narrowed by many orders of magnitude.

The spatial coherence of the laser is defined by the phase change of the
electric field (and magnetic field) of two separated points in space. If the
phase difference of two points separated at a distance L is constant in
time, then these two points are coherent. The maximum value of L, denoted
by Lcoh, is the laser coherent length.

The temporal coherence is defined by the phase change of the electric
field (and magnetic field) in time at a point in space. If the phase of this
point is equal at time t and at time tþ � for all times t, then this point is
coherent during the time � . The maximum value of � , denoted by �coh, is
the temporal coherence of the laser.

In general, the spatial coherence and the temporal coherence are
independent concepts. The above definitions are only qualitative. For a more
accurate definition of coherence, one has to analyse the appropriate correlation
functions: hFðr; tþ �ÞFðr; tÞi for temporal coherence and hFðrþ L; tÞFðr; tÞi
for spatial coherence, where F denotes the laser electric or magnetic field.

The small divergence of the laser beam is due to the fact that only a
propagating wave along the cavity direction can be sustained. However,
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due to diffraction from a finite aperture there is always a beam divergence.
For a perfect spatial coherent wave, with a wavelength � and a beam
diameter D, the diffraction limited divergence �d is given by

�d ¼
��

D
ð1:16Þ

where � is a numerical coefficient of order 1. For example, � ¼ 1:22 for a
plane wave beam with a constant intensity over its circular cross section.

Last but not least, the laser is a very bright light source. The brightness,
defined as the power emitted per unit surface area per unit solid angle, of the
laser is usually many orders of magnitude brighter than any conventional
sources.

There are two classes of high power lasers: solid state lasers (Nakai et al.
1995) and gas lasers (Key et al. 1995). The term solid state laser is usually used
for the lasers having an insulating crystal or a glass as their medium. These
lasers use impurity ions as their active medium. The neodymium doped
glass (Nd:glass) lasers are the most popular type of solid state laser. Neody-
mium lasers can oscillate on several lines; the strongest and therefore the
most commonly used have a wavelength of � ¼ 1:06mm.

At present there are five different laser media which are of interest to
high power laser interactions: the neodymium glass with a wavelength
� ¼ 1:06 mm, the CO2 with � ¼ 10:6 mm, the iodine (I2) with � ¼ 1:3 mm,
KrF with � ¼ 0:249 mm and titanium sapphire with � ¼ 0:8 mm. In the follow-
ing section the glass laser (Holzrichter 1980) is schematically discussed.

1.2 A Stroll through a Glass Laser System

The laser–target interaction system consists of oscillator, amplifiers, propa-
gation and isolator devices, a target system and diagnostics. The purpose
of this system is to deposit energy in an appropriate time interval on various
targets. The laser input to the target must be well controlled, repeatable and
predictable, in order to study the laser–target interaction physics or to oper-
ate laser-induced plasma devices. To investigate the laser–target interaction
the ‘target response’ parameters such as plasma density and temperature,
x-ray productions, nuclear reaction yields, particle accelerations, shock
waves, heat waves, etc. are measured.

The components of the laser system are:

1. The oscillator creates the laser pulse with output energy of about 10�3–
10�1 J. The output energy of the oscillator is kept small in order to
control the laser pulses.

2. The telescope system magnifies the laser beam radius emerging from the
oscillator and projects it into the amplifiers.

A Stroll through a Glass Laser System 7



3. The amplifiers amplify the oscillator pulse to energies in the domain of
10–105 J. Thus the amplifier gains are in the range of 104–108. In
order to obtain maximum energy one requires about 10 amplifiers in a
series. The diameter of the amplifiers increases from about 1 cm to
about 50 cm, in order to avoid glass damage, while increasing the
energy in the beam. Using state of the art technology and design, mega-
joule lasers are now under construction in the USA and France.

4. The isolating elements prevent target reflections returning and damaging
the oscillator. These isolators also prevent the amplifiers from self-
oscillating off the target (i.e. precluding an undesired resonance between
the target and one of the optical surfaces). With a gain of 104–108 even
the smallest reflection from the target through the amplifiers can totally
damage the oscillator and many other small optical components at the
beginning of the laser line. To avoid destruction, isolation is a necessity.

5. The mirror and focusing lens system directs the laser light along the line
into the target.

6. The target.
7. Last but not least, the diagnostics that analyse the laser beam and mea-

sure the parameters of the laser–target interaction.

To comprehend and get a feeling for such laser systems the relevant orders of
magnitude are summarized in table 1.1.

In order to build a laser system, it is necessary to understand the physical
constraints and the performance of the individual components.

1.2.1 The oscillator

The oscillator must generate the desired pulse shape in space and in time with
the appropriate bandwidth.

Consider a volume (V) of the laser medium that has a constant gain for
frequencies � ���=2. The number of electromagnetic modes N in the laser

Table 1.1. Orders of magnitude for an Nd:glass laser.

Laser on target energy 10–105 J

Laser pulse duration 10�10–10�8 s (0.1–10 ns)

Laser medium pumping time 10�6–10�3 s

Capacitor charging time 1–102 s

Beam diameters 5–50 cm

Laser energy fluency (limited by breakdown thresholds

and self-focusing)

1–20 J/cm2

Typical beam intensities (before focusing on the target) 109–1010 W/cm2

Beam (peak) electric field (before focusing on the target) 106–3� 106 V/cm

Beam (peak) magnetic field (before focusing on the target) 3000–9000Gauss
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medium is

N

V
¼ 8��2��

c3
ð1:17Þ

where c is the velocity of light. The number of possible modes available for a
laser with wavelength � ¼ 1 mm is obtained from (1.17) using the typical
values of � ¼ 3� 1014 s�1, �� ¼ 3� 1010 s�1, yielding N=V ¼ 2:5� 109

modes/cm3. For an oscillator with a rod of 10 cm long and 1 cm diameter,
the number of free space modes are N ¼ 2:5� 1010. The purpose of the
oscillator is to select only a few modes for amplification and propagation.

The mirrors are added around the gain medium to form a ‘cavity’ in
order to limit the spatial direction of the oscillation and to obtain standing
waves in the cavity. Due to the mirrors, stable electric field modes occur
only at frequency intervals �� ¼ nðc=2LÞ, where n ¼ 1, 2, 3, . . . , and L is
the cavity length of the oscillator. Furthermore, an aperture is added in
order to obtain the lowest transverse mode (called TEM00) which is Gaussian
in its spatial profile.

Finally, a stationary mode is obtained in the oscillator when the desired
field builds up relative to all transient modes. This is obtained with the help of
a time-variable loss element. By modulating the loss element at a rate equal to
the round trip cavity time 2L=c, the build-up of the pulses that cycle through
the oscillator are forced to follow the periodicity of the time-dependent loss.
Modes that are very close in frequency are ‘locked’ together and therefore
this is called ‘mode-locking’.

Another technique that allows the generation of high-power laser is
called ‘Q switching’. An electro-optical shutter (e.g. a Pockels cell or a Kerr

cell which change their index of refraction when a suitable voltage is applied)
is opened in a short time compared with the build-up time of the laser pulse,
after the cavity has gained energy in excess of the losses. This technique is
called ‘Q switching’ since it switches the cavity Q factor (the ratio of stored
energy in a volume to the dissipated energy in that volume, during a round
trip of the photons in the cavity) from a high to a low value so that the accu-
mulated energy in the cavity is released in a short time.

The oscillator pulse, Q switched or mode locked, can be coherently
amplified through a set of amplifiers to very high energies (as given in
table 1.1). In addition, the oscillator pulse can be shaped in time in order
to achieve the desired time-dependent profile (Jackel et al. 1982).

1.2.2 The amplifiers

Amplifiers increase the beam radiance from the oscillator to the level
required for target experimentation or for suitable application. They operate
on the principle that their medium has been pumped and a population
inversion was created before the oscillator output enters the medium of the
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amplifier. The medium gain should have a good optical quality in order to get
phase uniformity and gain uniformity.

The Nd:glass laser is based on the lasing properties of neodymium in an
amorphous glass host. The concentration of the Nd ion in the glass is about
2%. The Nd:glass is excited by photons from broadband xenon flash-lamps.
The energy storage time of this medium is long, about 300 ms, thus allowing
the use of electrical pulse discharge technology (flash lamps). The pumping is
done from the periphery of the medium and the Nd population that can be
excited is limited by the radiance of the xenon flash lamps. The efficiency
of the conversion of energy from flash lamps to stored energy and finally
to laser energy is about 1–2%, thus making it a low-efficiency conversion
device. However, new technology pumping with diode lasers increases this
efficiency up to about 40%.

1.2.3 Spatial filters

Spatial filters are needed in order to ‘clean’ the laser beam front from the
diverging modes caused by the inhomogeneity of the optical system. In a
laser chain of amplifiers the diameters of the laser beams are increasing
through the line, and therefore imaging elements, such as ‘astronomical
telescopes’, are required to control the divergence and the diameter of the
laser beam. When an aperture is added to the focus between two lenses,
the system behaves as a spatial filter relay. In constructing the filter, one
has to avoid the creation of plasma in a pinhole. This is usually achieved
by inserting the aperture into a vacuum system.

1.2.4 Isolators

Optical isolators act as ‘diodes’, allowing the laser light to pass only in one
direction. The isolators are used to prevent back-reflected light from destroy-
ing the ‘source’ from which the laser originally came. The main optical
isolators are based on either the Faraday effect or the Pockels effect. In the
Faraday rotation system, the polarization plane of the laser is rotated by
an amount proportional to the magnetic field applied along the direction
of propagation. For example, linear polarized light can be rotated 458 with
respect to the magnetic field so that the back-reflected light will be perpendi-
cular to the original beam and therefore rejected by a polarizer.

1.2.5 Diagnostics

The laser beam diagnostics should provide a complete description of the laser
input on target in order to define the initial conditions in laser–plasma inter-
action. Measurements are made to determine the oscillator pulse-shape in
space and time, its intensity and output energy. The amplifier performance
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is known by measuring the input and output energies and beam profiles.
Finally, the laser incident on target is diagnosed by directly imaging a frac-
tion of the incoming beam and analysing it spatially and temporally. The
input energy on target, the pulse shape and the existence of pre-pulses are
checked routinely. Besides the laser beam diagnostics, a comprehensive set
of spectrometers, optical and x-ray streak cameras, charge particle collectors,
etc. is used to measure the laser–target interaction.

1.3 Highlights of the Femtosecond Laser

Usually a ‘femtosecond laser’ is a laser with a pulse duration less than 1 ps,
and a state of the art laser can be as short as a few femtoseconds
(1 fs¼ 10�15 s). What is so exciting about these ‘femtosecond’ lasers? First,
their short duration; second the extremely high power achieved today,
about petawatt (¼ 1015 W); and last but not least is the fact that a terawatt
(1012 W) laser can be a tabletop system and available also to small labora-
tories. By focusing these lasers, power flux densities up to 1020 W/cm2 were
attained.

The first constraint on the femtosecond lasermedium is the requirement of
a large bandwidth, ��L. Since ��L�L � 1 (the uncertainty principle), one
requires a laser wavelength bandwidth of ��L � 18nm (1nm¼ 10�9 m) for a
laser with �L ¼ 0:8 mm to have a pulse duration �L � 100 fs ð�L � �2L=ðc��LÞÞ.
Since the temporal and spectral behaviour of the electromagnetic fields are
related through the Fourier transform, the laser bandwidth ��L and the
laser pulse duration �L are related by

��L�L 	 K : ð1:18Þ
The equality in (1.18) is known as ‘bandwidth limited’ or ‘Fourier limited’
and is satisfied for pulses without frequency modulation (such as chirping).
K is a numerical constant depending on the field pulse shape, for example
(Diels and Rudolph 1996)

Gaussian pulse: E / exp½�1:385ðt=�LÞ2� K ¼ 0:44

Lorentzian pulse: E / ½1þ 1:656ðt=�LÞ2��1 K ¼ 0:14

sech-pulse: E / sech½1:763ðt=�LÞ� K ¼ 0:32:

ð1:19Þ

One of the most practical media for very short laser pulses is the Ti–sapphire
crystal. The spectrum emission of this crystal is very broad with a maximum at
about 800nm. Taking the optics of the cavity into account, a Ti–sapphire
oscillator output can achieve a wavelength band [at full width half maximum
(FWHM)] of about 25nm. The Ti–sapphire crystal can produce ‘spontaneous’
mode locking without using a saturable absorber (Spence et al. 1991). The
nonlinear index of refraction ~nn2 (note that ~nn and ~nn0 are dimensionless while
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~nn2 is in cm2/W) causes self-focusing with the increasing of the laser irradiance
IL (dimensions of power/area):

~nn ¼ ~nn0 þ ~nn2IL: ð1:20Þ

This effect, together with a suitable aperture, increases the round trip gain
when the laser is focused to pass through the aperture in the resonator. In
order to obtain the very short pulses it is also necessary to compensate for
the dispersion of the group velocity. The Ti–sapphire femtosecond oscillators
are today available in many laboratories around the world.

The dramatic increase in power of the femtosecond laser pulses became
possible (Strickland and Mourou 1985) thanks to the chirped pulse amplifica-

tion (CPA) technique (developed more than 40 years ago for radar devices).
In a chirped pulse the frequency of the electromagnetic wave varies with time.
The time-dependence of the laser electric field E can be described by

EðtÞ ¼ 1
2 fEenvðtÞ exp½i’ðtÞ� expði!LtÞ þ c:c:g ð1:21Þ

where Eenv is the field envelope, c.c. is the complex conjugate,
!L ¼ 2��L ¼ 2�c=�L is the angular frequency at the peak of the laser
pulse, and ’ðtÞ is the time-dependent phase so that the time-dependent
laser frequency ! is

!ðtÞ ¼ !L þ d’ðtÞ
dt

� !L þ f ðtÞ: ð1:22Þ

If f ðtÞ 6¼ constant, then the laser pulse is frequency modulated, or in other
words it is chirped. For example, consider a Gaussian pulse with a linear
chirp, i.e. f ðtÞ ¼ at, then the laser electric field is given by

EðtÞ ¼ E0 exp

�
�ð1þ iaÞ

�
t

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p

�L

�2�
ð1:23Þ

and the product of �L with the bandwidth is

��L�L ¼ 2 ln 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
: ð1:24Þ

Without chirp (a ¼ 0), the bandwidth times the pulse duration is equal to the
Fourier limited value, 2 ln 2=� ¼ 0:44 (see (1.19)), while with chirping this
value is increased by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
.

In the CPA scheme, the output femtosecond laser pulse from the
oscillator is first stretched in time (chirped in frequency), then amplified
and finally recompressed (see figure 1.1).

Before the oscillator output is injected into the amplifier it is stretched in
time by a factor 
104. The pulse duration is increased in order to avoid
damage to the crystal and to the optics, and to avoid nonlinear distortions
to the spatial and temporal beam profile (maximum 10GW/cm2). The
intensity dependent index of refraction, equation (1.20), creates a nonlinear
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phase retardation given by the B integral

B ¼ 2�

�

ðL
z¼0

~nn2ILðzÞ dz ð1:25Þ

where ILðzÞ is the peak value of ILðz; tÞ and L is the propagation length of the
beam. The nonlinear index of refraction for sapphire is ~nn2 � 2:5� 10�16 cm2/
W. For B > 1, this nonlinear phase retardation causes wave-front distortion
and filamentation that can damage the amplifiers’ medium.

A frequency-chirped pulse could be easily obtained by propagating it
through an optical fibre. However, the high-order phase terms introduced
by a fibre make it unsuitable for stretching and compressing a femtosecond
pulse. The stretching and the compression are obtained by using a pair of
gratings (or prisms). The grating pairs can be arranged to separate the
output pulse spectrum from the oscillator in such a way that the different
wavelengths follow different paths through the optical system. This enables
pulse compression by using the reverse procedure.

The sub-nanojoule output from the oscillator is stretched in time by a
factor of 104, and then its energy is amplified by a factor of 106 in a smaller
system and up to 1010 in the larger systems. After that the laser pulse duration
is recompressed to almost its initial value. In this way one can achieve a table-
top laser system with peak power >1012 W (terawatts¼TW) and for larger
systems (Wharton et al. 1998, Norreys et al. 1999 and Perry et al. 1999) a
peak power >1015 W (petawatts¼PW) was obtained. By focusing the
lasers, power flux densities up to 1020 W/cm2 were attained. These laser
systems have opened up many scientific fields and new technological possi-
bilities, and in particular it became possible to investigate a domain of
plasma physics not available before in the laboratory.

Figure 1.1. Principle of chirped pulse amplification.
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Chapter 2

Introduction to Plasma Physics for

Electrons and Ions

This chapter reviews the important features of a plasma medium and sets the
background for the next chapters. An introductory and popular book on
plasma physics is by Eliezer and Eliezer (2001). For more serious studies
of basic plasma physics, books by the following authors are recommended:
Ginzburg (1961), Spitzer (1962), Schmidt (1966), Shkarofsky et al. (1966),
Clemmow and Dougherty (1969), Krall and Trivelpiece (1973), Chen
(1974), Nicholson (1983), Kruer (1988), Tajima (1989), Stix (1992), Dendy
(1993), Ichimaru (1994), Goldston and Rutherford (1995), Hazeltine and
Waelbroeck (1998), Salzmann (1998) and Hora (2000).

2.1 Ionization

The word ion, in Greek ‘to go’, was introduced by the famous English
scientist Michael Faraday in 1830 to describe the state of an electrically
charged particle. Ionization is the process where a neutral atom becomes
an ion, or more generally, an atom that lost j (¼ 0, 1, 2, . . .) electrons
(denoted by Aj) is converted to an atom that lost j þ 1 electrons (Ajþ1). In
thermal dynamic equilibrium this process is described by

Aj $ Ajþ1 þ e�; j ¼ 0; 1; 2 . . . ð2:1Þ

�Nj ¼ ��Njþ1 ¼ ��Ne ð2:2Þ
where N is the number of particles per unit mass of the ions Aj , Ajþ1 and the
electrons accordingly and � is the appropriate variation on the number of par-
ticles. The thermodynamic state can be described by the free energy F (dimen-
sion energy/mass). The variables of F are the plasma temperatureT , the specific
volume V and the number of particles N. V is related to the density � by

V ¼ 1

�
: ð2:3Þ
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In a thermal dynamic equilibrium the free energy FðT ;V ;NÞ is minimized:

FðT ;V ;NÞ ¼ �
X
j

NjkBT ln
eQj

Nj

�NekBT ln
eQe

Ne

ð2:4Þ

�F ¼
X
j

�F

�Nj

�Njþ
�F

�Ne

�Ne ¼ 0: ð2:5Þ

kB is the Boltzmann constant and Qj and Qe are the partition functions for the
ions and electrons appropriately, defined by

Q ¼
X
i

exp

�
� "i
kBT

�
ð2:6Þ

where "i are the energy eigenstates of the Hamiltonian describing the plasma
system. Solving equations (2.2), (2.4) and (2.5) yields

Njþ1Ne

Nj

¼
Qjþ1Qe

Qj

; j ¼ 0; 1; 2 . . . ð2:7Þ

implying the famous Saha equations

njþ1ne

nj
¼

2Ujþ1

Uj

�
2�mekBT

h2

�3=2
exp

�
�
Ij ��Ij

kBT

�
; j ¼ 1; 2; . . . ; ðZ � 1Þ

ð2:8Þ

where n ¼ N=V , i.e. njþ1 and nj are the densities of the ( j þ 1)th and jth
ionization state and ne is the electron density, Ujþ1 and Uj are the internal
parts of the ionic partition function, me is the electron mass and h is Planck’s
constant, Ij is the ionization energy of the ground state and Ij ¼ "jþ1;0 � "j;0.
�Ij is the reduction of the ionization potential due to local electrostatic fields
in the plasma. The density of the ionization states nj includes all possible
excited states, whose partial densities njm satisfy

nj ¼
X
m

njm: ð2:9Þ

The sum over m extends over all bound levels for which "jm < Ij ��Ij.
Equation (2.8) is subject to the following constraints:

nt ¼
XZ
j¼0

nj ð2:10Þ

ne ¼
XZ
j¼0

jnj ¼ Zint ð2:11Þ

where nt is the total ion number density, Z is the atomic number and Zi is the
average degree of ionization.
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The ionization energy I of a partial ionized atom can be estimated by the
‘hydrogen-like’ model

IðeVÞ � 13:6ðZi þ 1Þ2

n2
ð2:12Þ

where n is the principal quantum number of the outermost bound electron
(see table 2.1).

The Saha equations are satisfied for plasma in local thermodynamic

equilibrium (LTE). LTE is characterized by the fact that the dynamic proper-
ties of the plasma particles, such as electron and ion velocities, population
partition among the excited atomic states and ionization state densities,
follow Boltzmann distributions

njm / exp

�
�
"jm
kBT

�
ð2:13Þ

where "jm is the level energy above the ground state.
In contrast to complete thermodynamic equilibrium, in LTE the radia-

tion may escape from the plasma; therefore the radiation is not necessarily in
equilibrium with the plasma particles. More generally, in this case all laws of
thermodynamic equilibrium are valid except Planck’s radiation law. LTE
may also be valid when there are temperature gradients in the plasma, i.e.
rT 6¼ 0, in which case complete thermodynamic equilibrium cannot occur.

LTE is valid mainly for high-density plasmas, where the frequent
collisions between electrons and ions or between the electrons themselves

Table 2.1. A few examples of the approximation (2.12) in comparison with the exact

results (Cowan 1981). The last column is the absolute difference between the

approximation and the exact result divided by the exact result (in %). H is

hydrogen, He is helium, Li is lithium, etc.

Zi n

Equation (2.12)

(eV)

Cowan (1981)

(eV)

Accuracy

(%)

Z ¼ 13, Al H-like 12 1 2298 2304 0.26

Z ¼ 13, Al He-like 11 1 1958 2086 6

Z ¼ 13, Al Li-like 10 2 411 442 7

Z ¼ 13, Al Be-like 9 2 340 399 14.8

Z ¼ 26, Fe H-like 25 1 9194 9277.7 0.9

Z ¼ 26, Fe He-like 24 1 8500 8828 3.7

Z ¼ 26, Fe Li-like 23 2 1958 2045 4.2

Z ¼ 26, Fe Be-like 22 2 1799 1950 7.7

Z ¼ 26, Fe B-like 21 2 1646 1799 8.5

Z ¼ 26, Fe C-like 20 2 1499 1689 11.2

Z ¼ 26, Fe Ar-like 8 3 122.4 233.6 47.6
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produce equilibrium. For this to happen it is necessary that the electron and
ion densities must be high enough for collisional processes to be more impor-
tant than the dissipative radiative processes.

As a simple example of the Saha equation (2.8) consider the case j ¼ 0
in (2.1), i.e. the first ionization of a neutral atom. Denoting the degree of
ionization in this case by Z1,

Z1 ¼
ne
n0

¼ n1
n0

ð2:14Þ

the Saha equation (2.8) can be written as (Zeldovich and Raizer 1966)

Z2
1

1� Z1

� 2

n0

�
2�mekBT

h2

�3=2
exp

�
� I

kBT

�
: ð2:15Þ

For I=ðkBTÞ � 1, one getsZ1 � 1; that is, most of the atoms are neutral and
only a few have been ionized. Moreover, in this case n0 is proportional to the
density �, and therefore equation (2.15) yields

Z1 /
1ffiffiffi
�

p exp

�
� I

2kBT

�
ð2:16Þ

implying that the degree of ionization increases very rapidly with increasing
temperature and increases slowly with decreasing density. The first ionization
energy, I , for the majority of atoms and molecules varies between 7 and 15 eV
(an exception is the alkali metals, which have a lower I). For example, the
ionization of an oxygen atom, an oxygen molecule, a nitrogen atom and a
nitrogen molecule are accordingly: IO ¼ 13:6 eV, IO2

¼ 12:1 eV, IN ¼ 13:6 eV
and IN2

¼ 12:1 eV. For air at standard density (�0 ¼ 1:29� 10�3 g/cm3), the
Saha equation yields ne=n0 � 0:24 for T � 20 000K, ne=n0 � 1:5 for
T � 50 000K and ne=n0 � 5:0 for T � 250 000K.

The Saha equations, which are valid only in LTE, were derived using
general thermodynamic consideration without considering the dynamics
of ionization. However, if LTE is not satisfied then one has to write in
general a complete set of rate equations for all ions and their respective
quantum levels, taking into account all possible collision processes causing
ionization and recombination (opposite of ionization). In this case one has
to know the different cross sections and collision frequencies for the relevant
processes.

2.2 Cross Section, Mean Free Path and Collision Frequency

The cross section is one of the most important concepts of basic physics. A
simple explanation of this concept is now described. Consider a beam of
particles a, such as electrons, ions or photons, with a flux of Fa particles
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per unit area per unit time (the dimension of Fa is in cm�2 s�1 in c.g.s.). These
particles collide with the particles of a medium b of density nb (in cm�3). The
beam flux crossing a thickness dl of the medium, containing nb dl particles
per unit area, is attenuated by an amount dFa, that is proportional to F
and n dl,

dFa ¼ ��abFanb dl: ð2:17Þ

The proportionality factor �ab has the dimension of area and is called the
cross section for the collision between a and b. From the geometrical picture
of this collision one can see that �ab is the effective area of one collision.

The integration of (2.17) for constant �ab and nb yields

FaðlÞ ¼ Fað0Þ expð�nb�ablÞ ð2:18Þ

where Fa(0) is the incident flux and l is the thickness of the medium b that a has
traversed. Equation (2.18) is not always correct since �ab can be effectively a
function of the distance l and therefore the integration of (2.17) is not as
simple as above. This usually happens when the particles lose energy during
collisions, and in general the cross section is a function of the energy.

The physical quantity �a (in cm�1), defined as the absorption coefficient,
is given by

�a ¼
X
b

nb�ab ¼
1

la
ð2:19Þ

where the sum is over all species of the medium. The reciprocal of �a,
sometimes defined as the attenuation, is the mean free path la. If (2.18) is
not correct then it is necessary to define the absorption coefficient and
the mean free path in a more sophisticated way (for example, by making
appropriate averages with respect to the energy of the projectile).

The cross section is not only a function of energy but it may also depend
on the direction in which the particles are scattered. When �abðE; �; �Þ is a
function of the centre of mass energy E of the colliding particles and the
direction in spherical coordinates ð�; �Þ of the scattered particle, one has to
define the differential scattering cross section, d2�ab=ðdE d�Þ, where d� is
the infinitesimal solid angle in the direction ð�; �Þ. In this case, equation
(2.17) for the flux change of the particles due to collisions dFa is replaced by

dFa [into d� in direction ð�; �Þ; in energy interval dE]

¼
�
d2�ab
dE d�

dE d�

�
Fanb dl ð2:20Þ

and the total cross section �ab is

�ab ¼
ðð

dE d�
d2�ab
dE d�

: ð2:21Þ
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The cross section for elastic scattering between an electron (not very energetic)
and a neutral atom (or molecule) in a gas, �e0, can be described in good
approximation by the effective area of the atom (or the molecule). Denoting
by R0 the radius of the neutral particle, the cross section is

�e0 � �R2
0: ð2:22Þ

For most atoms and molecules in a gas, �e0 is in the range 10�16–10�15 cm2.
Themean free path, i.e. the average length between two collisions of a particle
(electron, ion, photon, etc.) with the background particles, was introduced by
Clausius as early as 1858. The concept of the mean free path is useful for
irreversible processes and is also important for problems where ordinary
thermodynamics is not applicable. As one can see from (2.19), the informa-
tion obtained from the mean free path is equivalent to the information
contained in the appropriate total cross section.

The collision frequency �ab between a particle a with a velocity va and the
background is defined as the number of collisions per second of the particle
under consideration (sometimes called the test particle) with the background
particles b:

�ab ¼ nb�abva ¼
va
lab
: ð2:23Þ

�ab is also the probability per unit time for the collision to occur.
For the air density, n0 � 3� 1019 cm�3, the mean free path of an

electron at room temperature (ve � 6:7� 106 cm/s) is about 3 mm (for a
cross section of 10�16 cm2) and its collision frequency is about 2� 1010 s�1.

In ionized plasma the Coulomb forces dominate the trajectory of the
charged particles. The famous Rutherford differential scattering cross section

describes the collision between an electron and an ion (with a charge Ze)
possessing an infinite mass, as described in figure 2.1.

This cross section is given by

d�ei
d�

¼
�
1

4

��
Ze2

mev
2

�2 1

sin4ð�=2Þ
ð2:24Þ

Figure 2.1. Orbit of an electron colliding with a positive ion of charge Ze. b is the impact

parameter, lca is the closest approach for b ¼ 0 and � is the scattering angle.
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where me and v are the mass and the velocity of the electron accordingly, � is
the scattering angle and d� is the differential solid angle. In spherical
coordinates with an azimuthal symmetry, d� is related to the scattering
angle � by

d� ¼ 2� sin � d�: ð2:25Þ

The impact parameter b, defined asymptotically before the Coulomb interac-
tion is effective, is related to the scattering angle � by

b tan
�

2
¼ Ze2

mev
2
: ð2:26Þ

Although equations (2.24)–(2.26) are given for an electron–ion collision in
the laboratory system of reference, these equations are also valid for the colli-
sion of any two charged particles with masses m1 and m2 and charges q1 and
q2 appropriately. For this general collision the following changes are to be
done in the above equations to be valid in the centre of mass:

(a) �Ze2 is replaced by q1q2.
(b) The electron mass is replaced by the reduced mass mr defined by

1

mr

¼ 1

m1

þ 1

m2

: ð2:27Þ

(c) v is the relative velocity between the colliding particles.
(d) The scattering angle � is given in the centre of mass of the colliding

particles.

The (total) cross section �ei is defined by

�ei ¼
ð
d�

d�ei
d�

¼ �

2

�
Ze2

mev
2

�2 ð�
0
d�

sin �

sin4ð�=2Þ
: ð2:28Þ

The above integral diverges at � ¼ 0, or equivalently (using equation (2.26))
for b ! 1. However, the very distant interactions are screened by the
surrounding charged particles so that there is an effective bmax instead of
b ! 1. In general bmax is taken as the Debye length (section 2.4).

In calculating the collision frequency in (2.23) for electron–ion
collisions, one has to take into account the velocity distribution of the
particles, i.e. �abva has to be replaced by h�abvai, an average over all possible
velocities. For ions at rest and electrons in LTE (for Ti ¼ 0 and an electron
temperature Te), the electron velocity distribution f (v) is given by the
Maxwell distribution,

f ðvÞ ¼ 1

ð ffiffiffi
�

p
vTÞ3

exp

�
� v2

v2T

�
;

ð1
0

dv
4�v2

ð ffiffiffi
�

p
vTÞ3

exp

�
� v2

v2T

�
¼ 1: ð2:29Þ
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The distribution is isotropic, f ðvÞ has the dimension (cm/s)�3 and the thermal
velocity ðvTÞ is defined by

v2T ¼ 2kBT

me

: ð2:30Þ

The �abva in (2.23) is replaced by

�abva ! h�abvai �
ð1
0
�abvf ðvÞ4�v2 dv

¼ 4�

�3=2v3T

ðbmax

bmin

exp

�
� v2

v2T

�
�abðvÞv3 dv: ð2:31Þ

For Coulomb interaction, e.g. using the Rutherford scattering (2.28), the
above integral diverges logarithmically at b ¼ 0. �eiðvÞ is proportional to
1=v4 and therefore one also has an integral over dv=v (integrating by parts,
or just equating the exponent to 1 for very small v). Using the screening
effect as discussed above, b ¼ 1 is replaced by bmax and b ¼ 0 is replaced
by bmin equal to the closest approach lca (see figure 2.1), defined by

Ze2

lca
¼ kBTe: ð2:32Þ

In the plasma literature one can find that if the electron de Broglie wavelength

ldB is larger than the closest approach one has to take bmin ¼ ldB:

ldB ¼ �h

mevT
¼ �h

ð2mekBTeÞ1=2
: ð2:33Þ

However, in this case the entire classical approach is not appropriate
(Lifshitz and Pitaevskii 1981) and one has to calculate the cross section
correctly according to quantum mechanics (Landau and Lifshitz 1965).
Therefore for the classical approximation lmin is always given by (2.32).

A simple order of magnitude estimate for the electron ion collision
frequency can be obtained by taking the cross section

�ei � �l2ca / T �2
e : ð2:34Þ

The proportionality is derived from (2.32). Using this equation together with
equations (2.23) and (2.30), one gets an estimate for the electron ion collision
frequency

�ei �
ffiffiffi
2

p
�Z2e4niffiffiffiffiffiffi

me
p ðkBTeÞ3=2

: ð2:35Þ

A more accurate calculation (see section 9.3) yields

�ei ¼
4ð2�Þ1=2Z2e4ni ln�

3
ffiffiffiffiffiffi
me

p ðkBTeÞ3=2
� 2:9� 10�6 Z

2niðcm�3Þ ln�
½TeðeVÞ�3=2

½s�1� ð2:36Þ
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� ¼ bmax

bmin

: ð2:37Þ

In the right-hand side of (2.36), ni is the ion density in cm�3 and Te(eV) is the
electron temperature in electronvolt (eV).

2.3 Transport Coefficients

2.3.1 Electrical conductivity

TheDrude model is used to get a simple estimate on the electrical conductivity
of a plasma gas. The same formalism is a good approximation for solids
(Ashcroft and Mermin 1976). The definition of the electrical conductivity
is given by

je ¼ �neeve ¼ �EE ð2:38Þ

where ve is the electron velocity, je is the electric current, ne is the electron
density and �E is the electric conductivity. The relation between the electric
current and the electric field is known as Ohm’s law. Due to the local electric
field E, assumed constant (d.c.) in this model, an electron is accelerated
between any two collisions with the background particles. Newton’s law
yields

dve
dt

¼ � eE

me

: ð2:39Þ

It is assumed that the collisions are instantaneous and suddenly alter the
electron velocity. In this picture the electrons are bumping from particle to
particle. Denoting by t the time that passed since the last collision of the
electron, the solution of (2.39) is vðt¼0Þ � eEt=me. Since in this model an
electron emerges from a collision in a random direction, vðt¼0Þ does not
contribute to the average velocity. Therefore, assuming that the average
time between collisions is the relaxation time 	 , the velocity in (2.38) is

ve ¼ � eE	

me

; 	 ¼ 1

�ei
: ð2:40Þ

An electron in the plasma collides with the ions, the other electrons and if the
plasma is not fully ionized it collides also with the neutral atoms. In equation
(2.40) it is assumed that this frequency is dominated by electron–ion
collisions. Substituting the velocity from (2.40) into (2.38) one gets the
electrical conductivity

�E ¼ nee
2

me�ei
ð2:41Þ
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where �E is in s�1 in c.g.s. units, (�m)�1 in m.k.s. (standard units) and the
relation between the units is: 1 (�m)�1 ¼ 9� 109 s�1. Using equation
(2.36), in (2.41) the electrical conductivity can be written as

�EðeiÞ ¼ 2:7� 1017Z

�
Te

keV

�3=2
½s�1� ð2:42Þ

where the electron temperature is in keV. It is worthwhile to compare this
numerical result (equation (2.42)) with the conductivity of a very good
conductor such as copper, �EðcopperÞ ¼ 5:5� 1017 s�1.

For comparison between plasma (known as a good conductor) and a gas
(known as a very bad conductor), it is interesting to calculate the d.c. electrical
conductivity of air. The first question is how many free electrons are in
air at standard conditions. Using the Saha equation (2.16) one gets
ne � expð�I=ð2TðeVÞÞÞ; I � 15 eV and the room temperature is T � 1=40 eV,
therefore the exponential factor is exp(�300), implying practically a zero
ne. However, due to cosmic radiation the number of induced electrons is of
the order � 1

2(statcoulomb)/(year cm3)� 30 electrons/(cm3 s) (this number
changes for different locations on Earth). These free electrons are attached
to the air molecules; taking a lifetime of about 10ns for these electrons, one
gets a steady state number of free electrons about ne � 3� 10�7 cm�3.
Using this electron density, the electron cross section for colliding with a
neutral molecule (2.22), and using the collision frequency (2.23), in (2.41)
one gets �EðairÞ � 3� 10�9 s�1, a number that is about 26 orders of magni-
tude smaller than the electrical conductivity of copper.

2.3.2 Thermal conductivity

Consider a medium in which the temperature is not uniform, i.e. T is a func-
tion of space T ¼ T(r). The tendency to reach equilibrium requires a flow of
heat from the region of higher temperature to that of lower temperature.
Defining qH as the energy crossing a unit area per unit time in the direction
orthogonal to this area, the heat flux (in erg/(cm2 s)) can be defined by

qH ¼ �
rT : ð2:43Þ

The value of 
 can be easily estimated in a simple model. We assume that the
temperature is a function of x, the particles have an average energy "ðxÞ, a
density n and a velocity v. This simplification does not affect the calculations
since 
 does not depend on the model that is calculated. The flux of the
particles in the þx direction, normal to the y–z plane, is 1

6 ðnvÞ (the factor 1
6

can be understood by considering three dimensions x–y–z and each dimen-
sion has two directions). The heat flux qHðxÞ in the direction of þx is

qH ¼ 1

6
ðnvÞ½"ðx� lÞ � "ðxþ lÞ� � � 1

3
nvl

@"

@x
¼ � 1

3
nvl

@"

@T

@T

@x
ð2:44Þ
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where l is the mean free path discussed in the previous section. Since the
energy derivative with respect to the temperature is the heat capacity (at
constant volume for a process that the density is constant), one gets

qH ¼ � 1

3
nvlcV

@T

@x
: ð2:45Þ

l is the mean free path of the particles that are transporting the heat (for
example, the molecules in a gas and the electrons in a plasma), cV is the
heat capacity per particle at constant volume, and assuming that v equals
the thermal velocity vT, one gets


 ¼ 1

3
ncVlvT ¼ necVev

2
T

3�ei
/ T

5=2
e ½erg=ðcm 	 s 	KÞ�: ð2:46Þ

The second equality was obtained using (2.23). For the last proportionality
it was assumed that the electrons are transporting the heat, �ei � Te

�3=2,
v2T � Te, and taking for the plasma under consideration a constant cV.

It is worth mentioning that the heat transport in a gas is done by the gas
molecules; and in this case (to a first approximation) the cross section is
temperature-independent, the collision frequency is proportional to the
temperature square root, and therefore


ðgasÞ / T1=2 ð2:47Þ

where T is the gas temperature.
Comparing the electrical conductivity �E, equation (2.41), with the

thermal conductivity 
 (2.46) and using the ideal gas equation of state
(Eliezer et al. 1986), cV ¼ 3

2 kB and (2.30) we get theWiedemann and Franz law




�E
¼ 3

2

�
kB
e

�2
T : ð2:48Þ

2.3.3 Diffusion

In equilibrium the electrons are distributed uniformly throughout the plasma
so that ne is independent of position. Suppose that a disturbance causes the
electron density to depend on position ne(r). In this case the electrons will
move in such a way as to restore equilibrium. This motion is described by
the diffusion equation

@ne
@t

¼ r 	 ðDrneÞ ð2:49Þ

where D is the diffusion coefficient, defined by the relation

jn ¼ �Drn: ð2:50Þ

jn ¼ nv is the particle current density.
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The diffusion coefficient can be calculated using the simple model used
above (to calculate the thermal conductivity coefficient). The density is a func-
tion of one space dimension, nðxÞ, and the particle flux in the þx direction is

jn ¼ 1

6
½vTneðx� lÞ � vTneðxþ lÞ� � � 1

3
vTl

@ne
@x

: ð2:51Þ

The right-hand side of the equation was obtained by the first-order Taylor
expansion. From this equation the diffusion coefficient is

D ¼ 1

3
vTl /

T
5=2
e

ne
½cm2=s�: ð2:52Þ

In the presence of a magnetic field in a fully ionized plasma the diffusion coef-
ficient in a direction perpendicular to the magnetic field, D?, is a function of
the magnetic field. In this case, for a steady-state plasma the Ohm law (2.38)
(in c.g.s. units) is generalized to

j ¼ �E

�
Eþ v� B

c

�
ð2:53Þ

where c is the speed of light. The magnetic force (force/volume) J� B=c is
balanced by the pressure gradient (force/volume) rP

j� B

c
¼ rP: ð2:54Þ

The plasma velocity in the perpendicular direction to the magnetic field is
obtained by taking the cross-product of the generalized Ohm’s law with
the magnetic field [(2.53)�B] and using (2.54) for an ideal gas pressure
with constant temperature, rP ¼ kBTrn. The derived perpendicular
velocity v? is

v? ¼ cE� B

B2
� c2kBT

�EB
2
rn � vdrift þ vdiffusion: ð2:55Þ

Therefore, the diffusion coefficient D? is (�nvdiffusion=rn)

D? ¼ c2nkBT

�EB
2

½cm2=s�: ð2:56Þ

This value for D? is known as the classical diffusion. However, it appeared in
many experiments that the 1/B2 scaling law of D? is not satisfied and instead
a 1=B dependence was derived (Bohm et al 1949). Bohm, Burhop and
Massey, who were using an arc discharge in the presence of a magnetic
field for uranium isotope separation, first noted this anomalous diffusion in
1946. Bohm suggested the semi-empirical formula

D? ¼ ckBTe

16eB
� DB ½cm2=s�: ð2:57Þ
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The diffusion following this law is called the Bohm diffusion. Note that DB,
unlikeD?, does not depend on the density. It was found that (2.57) is satisfied
in a surprisingly large number of experiments.

2.3.4 Viscosity

The pressure is in general a tensor Pij , the first index designating the orienta-
tion of the plane and the second index the component of the force exerted
across this plane. In Cartesian coordinates, i or j is equal to x, y, z. Viscosity
arises when adjacent fluid elements flowing with different velocities exchange
momentum. The tensor Pij is given by

Pij ¼ P�ij þ �vivj � �

�
@vi
@xj

þ
@vj
@xi

� 2

3

X3
k¼1

@vk
@xk

�ij

�
� &

X3
k¼1

@vk
@xk

�ij: ð2:58Þ

The Navier–Stokes equation of ordinary fluid dynamics can be written in the
form (Landau and Lifshitz 1987)

@ð�viÞ
@t

¼ �
X3
k¼1

@Pik

@xk
: ð2:59Þ

In general the coefficients of viscosity � (the first coefficient) and � (the second
coefficient) are positive numbers that are functions of temperature and density.
P is the scalar pressure given by the equation of state (Eliezer et al. 1986)

P ¼ Pð�;TÞ ð2:60Þ
where � is the density of the plasma fluid. For an incompressible fluid the diver-
gence of the velocity vanishes,r 	 v ¼ 0, and the second coefficient of viscosity
� does not contribute to the pressure tensor. In many plasma systems the
effects of viscosity are negligible since the first two terms in (2.58) are much
larger than the viscous terms. However, we shall estimate the coefficients of
viscosity � in a simple model, as described above for the coefficients of diffu-
sion and conductivity. We take an x dependence only and a flow velocity
v ¼ ð0; 0; vzÞ, so that the only off-diagonal tensor element of the pressure is

Pxz ¼ �� @vz
@x

: ð2:61Þ

Pxz, known as the stress, is the mean increase of the momentum flux in the z
direction transported by the fluid particles per unit time and per unit area in
the x direction (the y–z plane). In this model Pxz is defined by

Pxz ¼ 1
6 ðnvTÞm½vzðx� lÞ � vzðxþ lÞ� ð2:62Þ

where m is the mass of the particle fluid under consideration. A first-order
Taylor expansion of vz yields

Pxz ¼ �
�
1

3
nmvTl

�
@vz
@x

� �� @vz
@x

: ð2:63Þ
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In the calculation of the transport coefficients derived above, the coefficient
factors are not to be taken too seriously. However, the scaling laws with the
mass m, the mean free path l, the density n and the average velocity (denoted
by vT) of the particles under consideration give a reasonable approach for the
behaviour of the transport coefficients: �E, 
, D and �.

2.4 Radiation Conductivity

In high-power laser interaction with plasma medium, x-ray radiation is
produced (Gauthier 1989, Kauffman 1991, More 1991). Laser-produced
plasmas achieved the highest brightness of x-ray source in the laboratory.
The x-rays are produced by the different electron transitions, shown
schematically in figure 2.2. In this figure three classes of transitions are
described: bound–bound (bb), bound–free (bf ) and free–free (ff ).

2.4.1 Bound–bound (bb) transitions

A photon is emitted when an electron jumps from a higher to a lower
energetic quantum state of the ion, or a photon is absorbed when an electron
is excited to a higher energetic state. The emission is in the form of a line and
is denoted by LE (line emission) in figure 2.2, while the absorption in this case

Figure 2.2. Electron transitions in an ion (or atom) associated with radiation emission or

absorption. The notation is B¼ bremsstrahlung, IB¼ inverse bremsstrahlung, RR¼ ra-

diative recombination, PE¼ photoelectric effect (known also as photoionization),

LE¼ line emission and LA¼ line absorption.
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is denoted by LA (line absorption). This can be described by

LE (line emission): i1 ! i2 þ ,
LA (line absorption):  þ i2 ! i1,

where i states for an ion, 1 and 2 describe the quantum numbers of the ion
states, and  is the photon.

It should be noted that for high-Z atoms there are many possible
configurations of LE so that this fact together with line broadening (e.g.
Doppler) changes the discrete line emission with an effective energy band
(Bauche et al. 1988).

2.4.2 Bound–free (bf ) transitions

A photon is emitted when a free electron is caught by an ion, known as the
radiative recombination (RR) process, while in the inverse process the
absorption of a photon is associated with the release of a bound electron.
This later process is the famous photoelectric effect (PE), known also as
photoionization. These processes can be described by

RR (radiative recombination): e� þ i1 ! i2 þ ,
PE (photoelectric effect):  þ i2 ! i1 þ e�,

where e� denotes a free electron, i1 and i2 are different charge ion states and 
is the photon.

2.4.3 Free–free (ff ) transitions

In the bremsstrahlung effect a free electron collides with an ion and emits a
photon, while in the inverse process a photon is absorbed. This last transition
plays a major role in laser absorption by plasma. These processes can be
described by

B (bremsstrahlung): e� þ i ! e� þ iþ ,
IB (inverse bremsstrahlung): e� þ iþ  ! iþ e�.

2.4.4 Energy transport

The production of x-rays is a superposition of lines and continuous energies
according to the above processes. The derived spectrum depends on the
medium characteristics such as atomic number Z, degree of ionization,
density and temperature. Most of the x-rays are produced in the domain
of high electron density, as the probability of the above processes is propor-
tional to the square of the plasma density. Since shorter laser wavelengths
penetrate with higher electron density, the x-ray conversion efficiency
increases with the decrease of the laser wavelength.
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Detailed studies of the conversion of laser light into x-rays were
performed for a wide parameter range of laser intensity, wavelength and
pulse duration for targets of various atomic numbers. The x-ray generation
efficiency (x-ray energy/absorbed laser energy) for soft x-rays, between 0.1 to
1 keV of energy, reaches the high value of 80% for a gold target irradiated
with a 263 nm laser pulse of the order of 1 ns duration.

Since for high-Zmaterials a significant part of the laser energy is converted
into x-rays, the transport of these x-rays plays an important role in these plasma
media. In this section the transport of energy by radiation is analysed. The
radiation can be treated classically by electromagnetic fields or quantum
mechanically by the description of particles called photons. The equation of
radiative transfer can be generally stated as the conservation of a physical quan-
tity X (such as the number of photons or the energy density) with a given
frequency � and direction � in an arbitrary volume V bounded by a closed
surface �. Schematically this statement can be written in the following way:

change of Xð�;�Þ ¼ Xðflow out of volume V via surface �Þ

þ Xðabsorption in the volume VÞ

þ Xðscattering ‘out’ from ð�;�Þ to ð�0;�0Þ within VÞ

þ Xðscattering ‘in’ from ð�0;�0Þ to ð�;�Þ within VÞ:
ð2:64Þ

There are many ways to formulate quantitatively this statement of radiation
transport (Zeldovich and Raizer 1966, Pomraning 1973, Mihalas and Mihalas
1984, Minguez 1993). We shall follow the simplest approach given by
Zeldovich and Raizer. For this purpose we introduce a variety of quantities
usually used to describe the radiation energy transport.

The wavelength � or the frequency � (at which the electromagnetic fields
oscillate) characterizes the radiation that can also be considered as photon
particles with energy E� and momentum p�. �, �, p� and E� are related by
the Planck constant h and the speed of light c:

� ¼ c

�
; E� ¼ h�; p� ¼

h�

c
: ð2:65Þ

The distribution function of the photon particles f ([cm�3 s]), where f is a
function of the photon frequency �, the photon position r and direction �
at a time t, is described by

f ð�; r;�; tÞ d� d3r d� ¼ number of photons with frequency � at ðr; tÞ ð2:66Þ
The speed of light in the plasma medium is equal to c=nR, where nR is the
index of refraction for photons with a frequency � and is given by

nR ¼
�
1�

�2pe

�2

�1=2
ð2:67Þ
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where �pe is the electron oscillation frequency in the plasma. In the domain of
the critical density, where the incident laser beam is reflected because it
cannot penetrate into higher densities, one has for a laser with photon
energy �1 eV and an x-ray photon �100 eV a refractive index nR � 0:99995.
Therefore, it is conceivable to assume that in the domain of the critical
density and lower densities the x-ray photons move with the speed of
light in vacuum. Hence, one can define the spectral radiation intensity I�
[erg/cm2] as the radiation energy per frequency between � and � þ d�,
crossing a unit area per unit time in the direction �, within the solid angle
d�, by

I�ðr;�; tÞ d� d� ¼ h�cf ðr;�; tÞ d� d�; I

�
erg

cm2 	 s

�
¼

ð
I�ðr;�; tÞ d�:

ð2:68Þ

The radiation field is defined either by f or by I� (both scalar quantities). Two
more useful functions are defined in order to describe the radiation transport,
the spectral energy density scalar U� [erg 	 s/cm3] and the spectral energy flux

vector S� [erg 	 s/cm2]

U�ðr; tÞ ¼
1

c

ð
I� d�; U½erg=cm3� ¼

ð1
0
U�ðr; tÞ d�

S�ðr; tÞ ¼
ð
I�� d�; S½erg=cm3� ¼

ð1
0
S� r; tð Þ d�;

ð
d� ¼ 4�

ð2:69Þ

where � is the unit vector in the direction of the photon motion.
In a state of thermodynamic equilibrium, the number of photons in a unit

volume emitted per unit time by the medium in the interval (d�, d�) is equal
to the number of absorbed photons in the same interval. The equilibrium
radiation field is isotropic and depends only on frequency and the medium
temperature T . In this case the Planck functions are given for the spectral

radiation intensity I�p [erg/cm2] and the spectral energy density scalar U�p

[erg 	 s/cm3]:

I�p ¼
cU�p

4�

U�p ¼
�
8�h�3

c3

��
exp

�
h�

kBT

�
� 1

��1

Up½erg=cm3� ¼
ð1
0
U�p d� ¼

�
4�SB
c

�
T4

�SB ¼ 2�5k4B
15h3c2

¼ 5:6705� 10�5 ½ergı̈=ðcm2 	 s 	 deg4Þ�

ð2:70Þ
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where �SB is the Stefan–Boltzmann constant. The Planck functionU�p, which
describes the energy distribution for radiative equilibrium, has a maximum at
a photon energy h�max ¼ 2:822kBT . The isotropic equilibrium radiation
implies that the spectral energy flux vector S� is zero. However, it is possible
to define the one-sided spectral energy flux S�p, by integrating I�p cos � (see
(2.69) and (2.70)) over a hemisphere, where � is the angle between � and
the flux vector direction:

S�p �
ð2�
0

d�

ð�=2
0

d� sin �ðI�p cos �Þ ¼ �I�p ¼
cU�p

4

Sp½erg=ðcm2 	 sÞ� ¼
ð1
0
S�p d� ¼ �SBT

4:

ð2:71Þ

Before writing the transport equation, a few more variables have to be
defined. The emissivity j� (erg/cm3) describes the spontaneous emission of
the medium, and it depends on the medium atoms, the degree of ionization
and the temperature, but it is independent of the existence of radiation.
The spontaneous emission is defined by

j� d� d� ¼ [energy/(volume� time)] of spontaneous emission: ð2:72Þ

In order to calculate the total emission of the medium one has to add the
induced emission, given by

j�

�
c2I�
2h�3

�
d� d� ¼ [energy/(volume� time)] of induced emission: ð2:73Þ

The term in the brackets is the number of photons in the same phase space
cell as the emitted photon (with a definite polarization). The total emission
is given by the sum of (2.72) and (2.73).

A transport equation in the form of (2.64) requires the knowledge of
absorption and scattering. This can be written in the form


�I� d� d� ¼ [energy/(volume� time)] absorbed or scattered

by the medium


� ¼
1

l�
¼

X
j

nj��j

ð2:74Þ

where 
� (cm
�1) is the opacity (occasionally in the literature, the value


�=� (cm
2/g) where � ¼ density is defined as the opacity), the appropriate

mean free path is l� (cm), nj (cm
�3) is the density of particles of type j and

��j is the appropriate cross section for absorption or scattering of the
processes under consideration, as described in figure 2.2. For example
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(More 1991), the inverse bremsstrahlung cross-section is given by

�IBff �ð Þ ¼
�
28��

3
ffiffiffi
3

p
�
ðnea3BÞ

�
IH
kBT

�1=2�IH
h�

�3
Z2

i a
2
B

� � 2�e2
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ffi 1

137:036

aB � h2

4�e2me

ffi 0:529� 10�8 cm

IH � e2

2aB
ffi 13:6 eV

ð2:75Þ

where Zi is the effective ion charge. For h� ¼ kBT ¼ 100 eV and
ne ¼ 1020 cm�3 one gets a cross section of 4:34� 10�25Z2

i (cm
2).

For a hydrogen-like atom the photoelectric cross-section is given by
(Zeldovich and Raizer 1966)

�PEbf ð�Þ ¼

�
64�4emeZ

4
i

3
ffiffiffi
3

p
h6cn5
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1
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� 7:9� 10�18
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�3
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0

for h� > In

for h� < In

8><
>:

ð2:76Þ

where In � IH=n
2 and n is the quantum level of the electron.

Finally, combining equations (2.72), (2.73) and (2.74) with ‘the change’
(in an equation like (2.64)) given by the total derivative of the intensity with
respect to time, one gets the transport equation

1

c

�
@I�
@t

þ c� 	 rI�

�
¼ j�

�
1þ c2I�

2h�3

�
� 
�I�: ð2:77Þ

Since the value of j� does not depend on the character of the radiation, but
is a property of the medium under consideration, one can estimate this
quantity in a thermal equilibrium system. In thermal equilibrium the ratio
of the spontaneous emission to the absorption is a universal function of
the frequency and temperature and is given by (see section 1.1)

j�

�

¼ 2h�3

c2
exp

�
� h�

kBT

�
¼ I�p

�
1� exp

�
� h�

kBT

��

j� ¼ 
0�I�p


0� � 
�

�
1� exp

�
� h�

kBT

��
:

ð2:78Þ

Equation (2.78), known as Kirchhoff’s law, is based on the general law of
detailed balance between emission and absorption of a physical process,
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where T is the temperature of the medium. For this equation to be valid, it is
not mandatory for the radiation to be in equilibrium with the matter, but it is
required that a local temperature can be defined for the atoms and ions of the
medium.

Substituting (2.70) into (2.78), one finds that the right-hand side of
(2.77) equals j� � 
�f1� exp½�h�=ðkBTÞ�gI�. Using again the relations
(2.78), the transport equation (2.77) can be rewritten as

@I�
c @t

þ � 	 rI� ¼ 
0�ðI�p � I�Þ: ð2:79Þ

Integrating this equation over the solid angle and using the relations (2.69)
and (2.71), one gets another equivalent form of the transport equation

@U�

@t
þr 	 S� ¼ c
0�ðU�p �U�Þ: ð2:80Þ

This transport equation describes the radiation energy conservation of a
frequency �. In order to use this equation the matter of the medium
should be in local thermodynamic equilibrium (LTE).

2.5 Debye Length

In plasma the Coulomb interaction range is reduced due to the screening

effect. In order to calculate the screening scale length, called the Debye
length and denoted by �D, imagine a charge Ze at rest at the origin of the
coordinates surrounded by plasma electrons. The vector position from
the ion is given by r. The plasma system is neutral, i.e. one can look at
the ions as a neutralizing background for the plasma electrons having a
temperature Te.

The equation of motion of the electron fluid in this case is given by

neeEþrPe ¼ 0 ð2:81Þ

where E is the electric field and Pe the electronic pressure. Assuming an ideal
gas equation of state

Pe ¼ nekBTe ð2:82Þ

with a constant electron temperature, Te, and defining the electrostatic
potential ’, E ¼ �r’, one gets from the electron equation of motion (2.81)

neer’ ¼ kBTerne ð2:83Þ

the following electron distribution

ne ¼ n0e exp

�
e’

kBTe

�
ð2:84Þ
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where n0e is initial uniform density of the electrons. The electron potential ’
is obtained by solving the Poisson equation (in c.g.s. units):

r2’ ¼ �4�Ze�ðrÞ þ 4�eðne � n0eÞ ð2:85Þ

where �(r) is the Dirac function and it takes care that for r ! 0, ’! Ze=r.
Substituting (2.84) into (2.85) and expanding the exponential for

e’=ðkBTeÞ � 1, one gets the differential equation�
r2 � 1

�2De

�
’þ 4�Ze �ðrÞ ¼ 0 ð2:86Þ

where the electron Debye length �De is

�De ¼
�

kBTe

4�e2n0e

�1=2
� 743

�
TeðeVÞ

n0eðcm�3Þ

�1=2
: ð2:87Þ

The solution of equation (2.86) is

’ ¼ Ze

r
exp

�
� r

�De

�
: ð2:88Þ

This solution shows that the screening effect, namely the Coulomb interac-
tion 1=r law of the electrostatic potential, is changed according to equation
(2.88), implying that the effective infinite range of the Coulomb interaction
is shortened to a distance of the order of �De.

At this stage let us compare the characteristic lengths of a plasma
medium with the Debye length �De. In discussing the binary collisions
between charged particles, the closest approach was introduced, i.e. (2.32).
For an ion with a charge Z ¼ 1 one has

lcaðcmÞ � 1:44� 10�7

TðeVÞ : ð2:89Þ

The cross section for close collisions between charged particles is of the order
of �l2ca; therefore the mean free path l, equation (2.19), is of the order of

lðcmÞ ¼ 1

n�
¼ 1

n�l2ca
� 4:89� 1012

TðeVÞ2

nðcm�3Þ
: ð2:90Þ

Taking the scale of length as the average distance between charged particles,
a0 ¼ n�1=3, we get

�De

a0
� 0:29

�
lca
a0

��1=2

� 0:50

�
l

a0

�1=4
: ð2:91Þ

For example, for a laser plasma interaction with n ¼ 1021 cm�3, T ¼ 100 eV,
one gets a0 ¼ 10:0� 10�8 cm, �D=a0 ¼ 2:37, lca=a0 ¼ 0:014 and l=a0 ¼ 490,
so that in this case l > �D > a0 > lca.
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Another scale length is introduced by the gyro motion of charged
particles in the presence of a magnetic field B. The electron gyroradius re,
known as the Larmor radius, is given by

re ¼
mevec

eB
� 2:38

TeðeVÞ1=2

BðgaussÞ ½cm�: ð2:92Þ

The evaluation of the right-hand side of (2.92) was done with ve equal to the
thermal velocity. In the above numerical example, the gyroradius re is of the
order of the mean free path l for a magnetic field of about 0.5megagauss
(MG), a value achieved easily in laser plasma interactions. For re to be
equal to the Debye length, a magnetic field of 100MG is needed.

Assume that, in a plasma with dimension L large in comparison to �De,
a local charge fluctuation is created or an external potential is introduced.
In this case the created electric fields are shielded for a distance smaller
than L. However, within dimensions of the order of �De the plasma is not
neutral and the electric forces do not vanish there, although the plasma is
neutral on the large scale, L � �De. This situation is described by saying
that the plasma is quasineutral.

The Debye shielding is effective only if the number of electrons in the
cloud surrounding the ion is large enough. If on average there are only one
or two electrons in a sphere with a radius �De, known as a Debye sphere,
then the Debye shielding is not a statistically valid concept. Therefore,
defining the number of electrons, NDe, in a sphere with a radius �De by

NDe ¼ 4
3�ne�

3
De ð2:93Þ

the effective Debye shielding requires NDe � 1. NDe is usually called the
plasma parameter.

For example, in a typical plasma created in laser solid interaction with
an electron temperature of 1 keV and an electron density of 1021 cm�3, one
has �De ¼ 7:5� 10�8 cm and NDe ¼ 170. Note that the typical laser wave-
length �L, of the order of 1 mm, is about 103 larger than �De.

For plasmas where the ion temperature, Ti, is not zero the ions also
contribute to the Debye shielding. The ion fluid equation of motion, similar
to equation (2.81), is

ZeniE�rPi ¼ 0 ð2:94Þ

and the ion pressure, Pi, is given by the ideal gas equation of state

Pi ¼ nikBTi: ð2:95Þ

Similarly, to the derivation of (2.84) for the ion distribution; one gets

ni ¼ ni0 exp

�
� Ze’

kBTi

�
: ð2:96Þ
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The initial uniform ion density ni0 is related to the electron undisturbed
density ne0 by

ne0 ¼ Zni0: ð2:97Þ

Instead of (2.86), the Poisson equation (2.85) yields the equation�
r2 � 1

�2De

� 1

�2Di

�
’þ 4�Ze�ðrÞ ¼ 0 ð2:98Þ

where Ze’=ðkBTeÞ � 1 has been assumed and the ion Debye length is
defined by

�Di ¼
�

kBTi

4�e2ni0

�1=2
: ð2:99Þ

In the solution of the Poisson equation (2.88) one has to substitute �De with
�D defined by

1

�2D
¼ 1

�2De

þ 1

�2Di

: ð2:100Þ

2.6 Plasma Oscillations and Electron Plasma Waves

In this section the equations describing the plasma oscillations and the
electron plasma waves are derived from a set of very simple equations,
based on the hydrodynamic theory without a magnetic field in the plasma.
The plasma is assumed to be cold, that is, the plasma temperature is zero,
and therefore the thermal velocities of the electrons and the ions vanish. In
hydrodynamic theory this means that no pressure forces exist in the
plasma. Also, as is usually done with the simplest models, it is assumed
that the ions are a stationary background of charge which neutralizes the
unperturbed plasma at each point. In this case a perturbation is applied in
space only to the electrons and due to this disturbance an electric field is
created in the plasma. The question is how the electrons move in this case.

Although the mathematics of this model are quite simple, the solution
illustrates a general behaviour of the plasma. For this problem the following
Maxwell equation is of interest (in c.g.s.):

r 	 E ¼ 4��e ð2:101Þ

where �e is the electric charge density related to the local current density
je, given in (2.38). The equation of charge conservation is given by (see
appendix A)

r 	 je þ
@�e
@t

¼ 0: ð2:102Þ
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Substituting into (2.102) the density current from (2.38), taking the time
derivative of this equation and using (2.101), one gets the following equation
for �e:

@2�e
@t2

þ
�
4�e2ne
me

�
�e ¼ 0: ð2:103Þ

The quantity in the brackets of (2.103) has the dimensions of the square of an
angular frequency known as the plasma frequency !pe:

!pe ¼
�
4�e2ne
me

�1=2
� 5:64� 104

ffiffiffiffiffi
ne

p ðrad=sÞ ð2:104Þ

where the electron density ne is given in cm�3. This result can be easily under-
stood in one dimension by considering a slab of plasma. A perturbation is set
up to displace the electrons through a small distance x in a direction normal
to the slab, while the positive ions are fixed and at rest (i.e. assuming an
infinite mass for the positive ions). This translation of the electrons induces
an effective surface charge density þneex on the faces of the original slab
and�neex on the faces of the shifted electrons. The charge separation creates
a uniform electric field equal to 4�enex that applies a restoring force on each
electron. Newton’s law of motion gives a simple harmonic motion of the
electrons at the plasma frequency. From this picture one can conclude that
the mechanism of plasma oscillations is an expression of the plasma to
preserve its electrical neutrality.

Equation (2.103) does not describe a wave, that is, the oscillations do
not propagate. In order to get a wave the plasma should have a nonzero
temperature. We shall analyse the case where the electrons have a tempera-
ture Te and the ions are at rest, i.e. Ti ¼ 0. The two hydrodynamic equations
in this case are the mass conservation

@ne
@t

þr 	 ðneveÞ ¼ 0 ð2:105Þ

and the momentum conservation

mene

�
@ve
@t

þ ðve 	 rÞve
�
¼ �eneE�rPe ð2:106Þ

where ne and ve are the electron density and velocity respectively, �e and me

are the appropriate charge and mass of the electron, E is the electric field in
the plasma and Pe is the electronic pressure. The relation between the
pressure and the temperature is known as the equation of state. The ideal
gas equation of state for the electrons in the plasma is

Pe ¼ nekBTe: ð2:107Þ
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Moreover, an isentropic (constant entropy) equation for the ideal gas is
assumed with constant specific heats and a constant number of electrons

Pe ¼ Cne ð2:108Þ

where C is a function of the entropy and is constant for the isentropic
process. The adiabatic exponent  is defined by

 ¼ cP
cV

¼ gþ 2

g
ð2:109Þ

where cP and cV are the specific heats at constant pressure and volume respec-
tively and g is the number of degrees of freedom. In one dimension  ¼ 3
(g ¼ 1) while in three dimensions  ¼ 5=3 (g ¼ 3) for free moving particles.
From (2.107) and (2.108) one gets

rPe ¼ Pe

�
rne
ne

�
¼ kBTerne: ð2:110Þ

Equations (2.106), (2.107) and (2.110) are to be solved together with the
Maxwell equation

r 	 E ¼ 4�eðni � neÞ: ð2:111Þ

These equations are nonlinear and therefore it is not easy to get a solution in
the general case. However, if all the amplitudes of oscillations are small and
higher-order terms of the amplitude factors can be neglected, then the equa-
tions can be easily solved by the procedure of linearization. We denote the
equilibrium part by a subscript 0 and the oscillating amplitudes by the
subscript 1:

ne ¼ ne0 þ ne1; ve ¼ ve0 þ ve1; E ¼ E0 þ E1: ð2:112Þ

The equilibrium conditions for the simple model discussed here is

ne0 ¼ ni ¼ const:; ve0 ¼ 0; E0 ¼ 0;
@

@t
fne0; ve0;E0g ¼ 0: ð2:113Þ

As already mentioned, the linearization approach requires (ne1=ne0Þ2 �
ðne1=ne0Þ, ðve1 	 rÞve1 � @ve1=@t, etc., therefore reducing equations (2.105),
(2.106), (2.110) and (2.111) to

@ne1
@t

þ ne0r 	 ve1 ¼ 0

me

@ve1
@t

¼ �eE1 � kBTerne1;

r 	 E1 ¼ �4�ene1:

ð2:114Þ

For further simplicity a one-dimension model is assumed so that all variables
are functions of time t and space x, and the adiabatic exponent is  ¼ 3.
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Substituting a monochromatic wave solution with a frequency ! and a wave

number k ¼ 2�=� where � is the wavelength

ne1 ¼ n exp½iðkx� !tÞ�

ve1 ¼ v exp½iðkx� !tÞ�

E1 ¼ E exp½iðkx� !tÞ�

ð2:115Þ

into (2.114), a set of linear algebraic equations is obtained

!n� ne0kv ¼ 0

�i!mevþ eE þ 3ikkBTen ¼ 0

ikE þ 4�en ¼ 0:

ð2:116Þ

The solution of (2.116) is the following dispersion relation for the electron
plasma wave, known also as a plasmon:

!2 ¼ !2
p þ 3k2v2th: ð2:117Þ

The thermal velocity vth in the one-dimension model is

vth ¼

ffiffiffiffiffiffiffiffiffiffi
kBTe

me

s
: ð2:118Þ

The two velocities related to the wave, the phase velocity v� and the group
velocity vg (the velocity that energy is transferred), defined by

v� ¼ !

k
; vg ¼

d!

dk
ð2:119Þ

are connected to the thermal velocity by the dispersion relation (2.117)

vgv� ¼ 6v2th: ð2:120Þ

Laser light can interact directly with the plasma particles and also with the
plasma waves (Kruer 1988, Liu and Tripathi 1995). The plasma waves may
be of an electromagnetic nature, i.e. transverse waves, or of an electrostatic
or acoustic nature, i.e. longitudinal waves, like the one described above (the
plasmon).

In the presence of magnetic fields a large zoo of plasma waves are possible
(Stix 1992).

In a plasma state of equilibrium it is important to know what happens if
one of the plasma parameters is slightly disturbed. If the disturbance grows,
the plasma is unstable, while if the small disturbance decays and disappears,
the plasma is in a stable equilibrium. Plasma instabilities are classified in two
large categories: macroinstabilities are associated with a departure from
equilibrium of a large part of the plasma system, and microinstabilities are
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associated with small disturbances in the velocity of the plasma particles,
which can increase and cause the plasma to be unstable.

It is worth mentioning some of the colourful descriptive names given
to plasma wave instabilities: sausage, kink, banana, firehose, flute, inter-
change, two-stream, tearing, loss-cone, mirror, ion-acoustic, Brillouin,
Raman, parametric, two-plasmon, Rayleigh–Taylor, Richtmyer–Meshkov,
Kelvin–Helmholtz, etc. We shall encounter some of these instabilities (in
bold letters) in the following chapters.

Every wave has its own dispersion relation, namely a relation between
the wave number k and the frequency ! described by some function
Fð!; kÞ ¼ 0. Denoting the plasma wave amplitude for any parameter (such
as density, temperature, electric field, magnetic field, pressure, etc.) by  ,
one can write

 / exp½iðkx� !tÞ�: ð2:121Þ

There are two ways to analyse the different domains of the dispersion relation
in !–k space:

(a) The wave instability in time at a given x. The solution of the disper-
sion relation Fð!; kÞ ¼ 0 may yield a complex frequency ! ¼ !R þ i!I, where
!R and !I are the real and imaginary values of !. If !2 < 0 then !I 6¼ 0, and
from (2.121) one gets

 / expð!ItÞ: ð2:122Þ

For t ! 1 the amplitude  goes to infinity for !I > 0, namely the domain in
!–k space where !I > 0 is unstable, and if the wave is ‘allowed’ to be there by
the dispersion relation then we get an instability.

The nonzero imaginary part of the frequency, !I, plays an important
role in the physical phenomenon of collisionless damping, known also as
Landau damping. This effect describes the damping of a plasma wave as it
propagates away from its point of origination, even though there are no
binary collisions in the plasma.

(b) If instead we want to know how a disturbance develops in space for
a fixed frequency, then one must solve Fð!; kÞ ¼ 0 for k in terms of !.
A complex k ¼ kR þ ikI implies

 / expð�kIxÞ ð2:123Þ

and for a very large plasma system with kI < 0 the amplitude  goes to
infinity for x ! 1, and an instability arises.

2.7 The Dielectric Function

In this section it is shown that the plasma medium can also be described as a
dielectric medium with a scalar function ". In the general case " is a tensor.
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The Maxwell equations are summarized in Appendix A. The plasma is
described there as a vacuum with electromagnetic sources, given by the
electric charge density �e and electric current density Je. In Gaussian units
the two Maxwell equations that include the sources are

r 	 E ¼ 4��e; r 	 B ¼ 1

c

@E

@t
þ 4�

c
Je: ð2:124Þ

These equations are equivalent to the following two equations of a dielectric
medium:

r 	 "Eð Þ ¼ 0; r 	 B ¼ 1

c

@ "Eð Þ
@t

: ð2:125Þ

The other two Maxwell equations are identical in vacuum and in a dielectric
medium. For simplicity we shall prove the equivalence of equations (2.124)
and (2.125) for the following sources:

�e ¼ �ene þ qn0; Je ¼ �eneve: ð2:126Þ

Equations (2.126) assume that the ions are stationary and serve as a charge-
neutralizing background (i.e. qn0 ¼ constant) to the electron motion. More-
over, we assume a monochromatic electromagnetic field

Eðr; tÞ ¼ EðrÞ expð�i!tÞ; Bðr; tÞ ¼ BðrÞ expð�i!tÞ: ð2:127Þ

The electron velocity ve in the electric current is calculated from Newton’s
law:

@ve
@t

þ �eve ¼ � e

me

EðrÞ expð�i!tÞ ð2:128Þ

where �e is the electron collision frequency, for example the electron–ion
collision frequency. The solution of (2.128) for constant �e is

veðr; tÞ ¼
�ieEðr; tÞ
með!þ i�eÞ

: ð2:129Þ

Substituting this solution into the electric current density (2.126), one gets

Jeðr; tÞ ¼ �EEðr; tÞ; �E ¼
i!2

pe

4�ð!þ i�eÞ
ð2:130Þ

where �E is the (complex) electrical conductivity and !pe is the plasma
angular frequency as defined in (2.104). Substituting Je and using
@=@t ¼ �i! (note that this relation is correct only for linear equations)
into the second equation of (2.124), one gets the second equation of
(2.125) if the dielectric function of the plasma medium is defined by

" ¼ 1�
!2
pe

!ð!þ i�Þ ¼ 1þ i4��E
!

: ð2:131Þ
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The proof of the equivalence of the first equation of (2.124) and (2.125) is
given as

r 	 ð"EÞ ¼ r 	 Eþr 	 ½ð"� 1ÞE� ¼ 4��e þr 	 ½ð"� 1ÞE�

¼ 4��e �
4�e2

!ð!þ i�eÞme

r 	 neEð Þ ¼ 4��e �
4�

i!
r 	 �eneveð Þ

¼ 4��e �
4�

i!
r 	 Je ¼ � 4�

i!

�
@�e
@t

þr 	 Je
�

¼ 0: ð2:132Þ

In the third equality, equation (2.131) and !2
pe / ne were used; the fourth

equality was obtained with the help of equation (2.129); the next equality
uses the current density definition; and the last step is the continuity
equation.

In summary, we have seen that a plasma can be described as a dielectric
medium with a dielectric function, as given in equation (2.131) (for the
electromagnetic sources of (2.126)).

Assuming a spatial dependence expðik 	 rÞ for the electric and magnetic
fields, one gets from Maxwell equations the following dispersion relation for
the electromagnetic field:

k2 ¼ !2"

c2
, !2 ¼ !2

pe þ k2c2: ð2:133Þ

In this case, the index of refraction for the electromagnetic wave propagating
in the plasma medium is given by

~nn ¼
ffiffiffi
"

p
¼ ~nnR þ i~nnI: ð2:134Þ

2.8 The Laser-induced Plasma Medium

The purpose of this section is to define some of the nomenclature used in the
following chapters and to get some orders of magnitude for the plasma systems
to be discussed. In this book we consider high-power laser irradiation, from
IL � 109 W/cm2 up to IL � 1020 W/cm2, with laser pulse duration between
	L � 10ns and as short as 	L � 10 fs. Practically, up to about IL�

2
L �

1016 (W=cm2)mm2 has been experimentally achieved with the long laser
pulse duration ð	L � 1 nsÞ, while values as high as IL�

2
L � 1020 (W/cm2)mm2

have been achieved with the so-called femtosecond lasers (	L between 10
and 500 fs).

The maximum electric (Emax) and magnetic (Bmax) fields of the laser in
vacuum are related to the laser irradiance IL (in Gaussian units) by

IL ¼ cE2
max

8�
¼ cB2

max

8�
ð2:135Þ
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and in practical units one has

Emax

��
V

cm

��
ffi 2:75� 109

�
IL

1016 W=cm2

�1=2

Bmax½Gauss� ffi 9:2� 106
�

IL

1016 W=cm2

�1=2
:

ð2:136Þ

For the long laser pulses a corona is created, while the laser–plasma system is
described schematically in figure 2.3. This figure is relevant for the long laser
pulses (typically �1 ns). As an order of magnitude for low and high densities
in figure 2.3, the following values can give an indication about the plasma
systems: absorption domain: density <0.01 g/cm3, temperature �1000 eV (in
energy units); transport domain: density between �0.01 g/cm3 and the solid
target density �0, temperature �30 eV to 1000 eV; compression domain:
density � �0 up to 10�0, temperature �1 eV to 30 eV.

The laser propagates up to the critical density nc, about 10
21 cm�3 for a

laser with a wavelength of 1 mm. Note that the critical density is inversely
proportional to the square of the laser wavelength

nc½cm�3� ¼ 1:1� 1021
�
1 mm
�L

�2
: ð2:137Þ

Figure 2.3. A schematic description of laser–plasma interaction.
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The plasma system from the critical density outwards (towards the laser
irradiation) is defined as the corona. The electrons in the corona absorb
the laser. The absorbed energy is transported from the critical density to
the area where the plasma is created, defined as the ablation surface in
figure 2.3. The blow-off velocity of the plasma (towards the laser) is about
equal to the sound speed cT (at constant temperature) at the critical density

ublow-off½cm=s� � cT ¼
�
ZkBTe

mi

�1=2
� 3� 107

��
Z

A

�1=2� Te

keV

�1=2�
ð2:138Þ

and the size of the corona is about few times cT	L. Therefore, for the femto-
second laser pulses the corona is extremely small, and practically it does not
exist. In this case the laser is absorbed in the skin depth � of the solid target

� ¼ c

!p

� 1:68� 10�6

�
1023 cm�3

ne

�1=2
½cm�: ð2:139Þ

For high laser irradiance, IL�
2
L > 1014 (W/cm2) mm2, two (or more) types

of electrons are produced: the ‘cold’ electrons, with a temperature Te of
the order of 1 keV; and the ‘hot’ electrons, with a typical temperature
TH > 10 keV. Occasionally the situation is more complicated since a local
thermodynamic equilibrium for the electrons cannot be defined for the two
species of electrons (‘cold’ and ‘hot’). The ‘cold’ electrons carry energy
away from the point of absorption by the diffusion process (thermal conduc-
tion). The ‘hot’ electrons deposit their energy ahead of the thermal conduction

front induced by the ‘cold’ electrons, causing ‘hot’ electron preheating. For
IL�

2
L > 1014 (W/cm2) mm2 the transport of energy inside the undisturbed

target seems to be inhibited in comparison with the classical diffusion
process.

There are a few kinds of pressure in laser produced plasma. First, the
light pressure PL caused by the direct laser radiation

PL ¼ IL
c
ð1þ RÞ � 3:3Mbar

�
IL

1016 W=cm
2

�
ð1þ RÞ ð2:140Þ

where R is the laser reflectivity (0 < R < 1) and c is the speed of light. One
can see that for very high laser irradiance, of the order of 3� 1018 W/cm2,
one can get a radiation pressure of 1Gbar, an extremely high pressure.
One of the effects of PL is to steepen the density gradient near the critical
density.

The second kind of pressure in the corona is the thermal pressure of
plasma particles: the ‘cold’ electron pressure Pe, the ‘hot’ electron pressure

PH and the ion pressure Pi, associated with the different temperatures Te,
TH and Ti accordingly. The two electron temperatures are obtained if the
electrons in the corona have two distinct velocity distributions. To a good
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approximation, the ideal gas equations of state may be used, namely

Pe ¼ nekBTe � 1:6Mbar

�
ne

1021 cm�3

��
Te

keV

�

PH ¼ nHkBTH

Pi ¼ nikBTi:

ð2:141Þ

The third kind of pressure is the ablation pressure Pa associated with the
flow of heated plasma from the solid target. The ablation pressure drives a
shock wave into the solid target and causes it to compress. The inhibition of
energy transport and the creation of ‘hot’ electrons reduce the value of the
ablation pressure. A very important feature related to the ablation pressure
is related to hydrodynamic instability. Since the ablation pressure acts by
a lower density (hot plasma) on a higher density (cold plasma), the
Rayleigh–Taylor instability occurs.

Between the critical and the ablation surfaces the plasma might be
strongly coupled. In ideal plasma, like in the corona, the Coulomb inter-
actions are weak in comparison with the thermal energy. Defining the ratio
between the Coulomb and thermal energies by �,

� ¼ Coulomb interaction energy

Thermal interaction energy

)
�
� > 1 for strongly coupled plasmas

� < 1 for ideal plasmas

�
: ð2:142Þ

It is convenient to use the mean spacing between particles by the radius of the
sphere that each particle occupies:

ak ¼
�

3

4�nk

�1=3
; k ¼ e or i: ð2:143Þ

The strongly coupled parameters, �ii for ions (with a charge Ze), �ee for elec-
trons and �ei for the electron–ion coupling, can be defined by

�ii ¼
Z2e2

aikBTi

; �ee ¼
e2

aekBTe

; �ei ¼
Ze2

aekBTe

: ð2:144Þ

In ideal plasma, unlike in strongly coupled plasma, a large number of
particles participate in the screening, namely many particles are in the
Debye sphere. In a strongly coupled plasma the electrons are degenerate
(like in a solid) so that the Fermi–Dirac distribution describes the electrons,
while the ideal electrons in plasma are described by theMaxwell distribution.
A good review of strongly coupled plasma can be found in More (1986).

Last but not least, for very high laser irradiances relativistic effects might
become important. In the relativistic regime, the relativistic factor  is related
to the quiver energy Eq and the quiver velocity vq of the electrons (in the
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electromagnetic field of the laser) by

Eq ¼ mec
2 ¼ ½ðmevqÞ2c2 þm2

ec
4�1=2

vq ¼
eEL

me!L

!L ¼ 2��L
c

:

ð2:145Þ

Using (2.135) we get

 ¼
�
1þ IL�

2
L

�0

�1=2
�

�
1þ IL�

2
L

1:4� 1018 ðW=cm2Þ mm2

�1=2

�0 ¼
�
�

2

�
m2

ec
5

e2
½erg=s�:

ð2:146Þ

Therefore, the relativistic effects for the electrons are important for
IL�

2
L > 1018 (W/cm2) mm2.
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Chapter 3

The Three Approaches to Plasma Physics

There are three basic approaches to plasma physics: the hydrodynamic theory,
the kinematic theory and the particle theory. The particle theory approach is
using the equations of motion for the individual plasma particles, and with
the help of particle simulation codes and appropriate averages the plasma
physics is analysed. The kinematic theory is based on a set of equations
for the distribution functions of the plasma particles, together with Maxwell
equations. In the hydrodynamic model the conservation laws of mass,
momentum and energy are coupled to Maxwell equations. In addition, for
a fluid model, a local thermodynamic equilibrium is assumed and the knowl-
edge of the equations of state (relations between pressure, temperature,
energy, entropy, etc.) is mandatory for solving the problem.

3.1 Fluid Equations

3.1.1 Mass conservation

We define �(r, t) as the mass density and u(r, t) its velocity for a mass element
positioned at r at time t. Denoting the differential volume and surface vector
by dV and dA accordingly, the mass conservation can be written in an
integral form by

@

@t

ð
�
� dV þ

þ
S
�u � dA ¼ 0: ð3:1Þ

The first term, the change of mass in a volume �, is balanced by the mass flow
across surface S enclosing the volume � (the second term). Using Gauss’
theorem, one gets for equation (3.1)

@

@t

ð
�
� dV þ

ð
�
r � ð�uÞ dV ¼ 0: ð3:2Þ
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Since the last relation is true for any arbitrary volume �, one obtains the
following equation (known also as the equation of continuity) which describes
the conservation of mass:

@�

@t
þr � ð�uÞ ¼ 0: ð3:3Þ

3.1.2 Momentum conservation

It is convenient to consider the frame of reference of a moving volume whose
surface encloses a constant amount of fluid. This fluid mass � dV , called a
‘fluid particle’, has a vector velocity u. D/Dt describes the change in time
(total derivative) of a moving fluid volume and is related to the partial time
derivative by

D

Dt
¼ @

@t
þ u � r: ð3:4Þ

Denoting the surface forces by a tensor f, with dimension of (force/area), and
the volume forces by a vector F, with dimensions of (force/volume), one can
write Newton’s second law asð

�
�
Du

Dt
dV ¼

þ
S
f � dAþ

ð
�
FdV : ð3:5Þ

Neglecting viscosity, the tensor f is given by

fij ¼ �P�ij ð3:6Þ
where P is the pressure and i; j ¼ 1; 2; 3 denotes three orthogonal directions
in space, e.g. x–y–z directions. The first term on the right-hand side of (3.5)
can be transformed into a volume integral by using Gauss’ theorem

þ
S

X3
j¼1

fij dAj ¼ �
þ
S
P dAi ¼�

ð
�

@P

@xi
dV : ð3:7Þ

Using this relation in (3.5), one getsð
�
�
Du

Dt
dV ¼ �

ð
�
rPdV þ

ð
�
FdV : ð3:8Þ

Since the last equation is satisfied for any arbitrary volume �, the following
differential equation is valid:

�
Du

Dt
¼ �rPþ F: ð3:9Þ

Using (3.4) the momentum conservation equation is derived in the form
suggested by Euler:

�
@u

@t
þ �ðu � rÞu ¼ �rPþ F: ð3:10Þ
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The volume forces F are acting on the fluid and differ from one problem to
another. For example, the electromagnetic force due to the motion of free
charges is equal to (in m.k.s. units)

F ¼ �eEþ J� B ð3:11Þ

where E and B are the electric and magnetic fields respectively, J is the sum of
the current flow due to the transport of charges and �e is the electric charge
density. In a similar way, the polarization force, the magnetization force, the
gravitational force or any other force acting on the volume elements can be
taken into account.

3.1.3 Energy conservation

The energy conservation (units of [energy/second]) in the frame of reference
of the moving fluid element is

ð
�
�
Dðu2=2Þ

Dt
dV þ

ð
�
�
D"

Dt
dV ¼ Qext þQH þWF þWf: ð3:12Þ

The first term and the second term on the left-hand side of the equation are
the rate of change of the kinetic energy and the internal energy accordingly. "
is the energy of the fluid per unit mass (energy/mass). The increase of the fluid
particle energy (left-hand side of the equation) is balanced by the external
energy sources Qext, the heat conduction QH, the work per unit time done
by the volume forces WF, and the surface forces Wf. The rate of work
done by the surface forces is obtained by integrating u � f over the surface
of the fluid particle. Neglecting viscosity, one gets

Wf ¼
þ
S
u � f � dA ¼ �

þ
S
Pu � dA ¼ �

ð
�
r � ðPuÞ dV : ð3:13Þ

Again, Gauss’ theorem was applied in the last equality. The rate of work
done by the volume forces is

WF ¼
ð
�
F � u dV : ð3:14Þ

The energy entering the fluid particle per unit time by heat conduction is

QH ¼
ð
�
qH dV ¼ �

ð
�
r � ð�rTÞ dV : ð3:15Þ

The rate at which external energy enters the fluid particle depends on the
system under consideration. In particular for the electric (Ohm) deposition
of energy

Qext ¼
ð
�
qext dV ¼

ð
�
E � JdV : ð3:16Þ
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Substituting (3.13)–(3.16) into (3.12), one gets

�
D

Dt
ð"þ 1

2 u
2Þ þ r � ðPuÞ

¼ F � u�r � ð�rTÞ þ E � J
�

energy

volume� second

�
: ð3:17Þ

Using (3.4), the first term on the left-hand side of (3.17) is

�
D

Dt
ð"þ 1

2 u
2Þ ¼ �

@

@t
ð"þ 1

2 u
2Þ þ �u � rð"þ 1

2 u
2Þ

¼ @

@t
ð�"þ 1

2 �u
2Þ � ð"þ 1

2 u
2Þ @�
@t

þr � ½�uð"þ 1
2 u

2Þ�

� ð"þ 1
2 u

2Þr � ð�uÞ

¼ @

@t
½�ð"þ 1

2 u
2Þ� þ r � ½�uð"þ 1

2 u
2Þ�: ð3:18Þ

The mass conservation (3.3) was used to obtain the last relation. Substituting
(3.18) into (3.17), the differential equation that describes the energy conser-
vation is derived in its known form:

@

@t
½�ð"þ 1

2 u
2Þ� þ r � ½�uð"þ 1

2 u
2Þ þ Pu� ¼ F � u�r � ð�rTÞ þ E � J: ð3:19Þ

The differential equations describing a fluid system are: mass conservation

(3.3), momentum conservation (3.10) and the energy conservation (3.19). For
these equations one has to define initial conditions and boundary values.
Moreover, it is necessary to know the relations between �–P–T–", known
as the equations of state. Furthermore, the knowledge of the transport
coefficients such as � is required. Last but not least, for a plasma system
the fluid equations are coupled to the Maxwell equations (given in Appendix
A) since the volume forces F and also the pressure may be a function of the
electromagnetic fields. For the external energy deposition we took the Ohmic
heating term, E � J; however, for a laser plasma system this source of energy
might need a ‘special treatment’.

The fluid equations for the laser-induced plasma system are given below.
We consider the general case where the electron temperature Te is not equal
to the ion temperature Ti. The ideal equations of state are taken separately
for the ion fluid and the electron fluid, i.e.

Pe ¼ nekBTe; Pi ¼ nikBTi

Ee ¼ 3
2 nekBTe; Ei ¼ 3

2 nikBTi

ð3:20Þ

where me, mi and ve, vi are the masses and the velocities of the electron and
the ion accordingly, and nj and Ej ( j ¼ e or i) are the particle and the energy
densities. The fluid equations (3.3), (3.10) and (3.19) for the electrons and the
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ions are obtained by using the definitions of the densities �j ¼ mjnj and
"j ¼ Ej=�j for j ¼ e or i for the ideal equations of state.

Moreover, the following assumptions are used in deriving the two fluid
energy equations:

(a) The electron fluid is coupled to the ion fluid through the electron–ion
collisions described by the term �(Te � Ti).

(b) The volume force is given only by the electric field in the plasma E.
(c) As usually happens the external source term (energy/(volume � time)),

denoted by qL, contributes only to the electron fluid, i.e. the electrons
absorb the laser energy.

(d) Since the ion is much heavier than the electron only the electrons do the
heat transport.

(e) Ideal gas equations of state were taken for both fluids (see (3.20)).

The two temperature fluid equations are

@ne
@t

þr � ðneveÞ ¼ 0;
@ni
@t

þr � ðniviÞ ¼ 0 ð3:21Þ

mene

�
@ve
@t

þ ðve � rÞve
�

¼ �rPe � eneE

mini

�
@vi
@t

þ ðvi � rÞvi
�

¼ �rPi þ ZeniE

ð3:22Þ

@

@t

�
ne

�
3

2
kBTe þ

mev
2
e

2

��
þr �

�
neve

�
5

2
kBTe þ

mev
2
e

2

��

¼ qL � �ðTe � TiÞ � eneE � ve �r � ð�rTeÞ

@

@t

�
ni

�
3

2
kBTi þ

miv
2
i

2

��
þr �

�
nivi

�
5

2
kBTi þ

miv
2
i

2

��

¼ �ðT e � TiÞ þ eniE � vi:

ð3:23Þ

Equations (3.21) describe the mass conservation, (3.22) the momentum
conservation and (3.23) the energy conservation. It is worth mentioning
that both m.k.s. and c.g.s. units can be used (in a consistent way) in equations
(3.23). If a magnetic field is introduced, e.g. in the momentum equation,
then E ! Eþ v� B in m.k.s. and E ! Eþ v� B=c in c.g.s. units. The
fluid equations are coupled to the electromagnetic Maxwell equations.

3.2 Eulerian and Lagrangian Coordinates

The fluid equation variables (velocity, pressure, energy, entropy, etc.),
described by functions of space coordinates and time, are called the Eulerian
coordinates. In contrast to the Eulerian coordinates, which determine the
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fluid variables at a given point in space for all times, the Lagrangian

coordinates describe in time the fluid variables of a given fluid particle.
Mathematically the time derivative in Lagrangian coordinates is equal to the
total derivative D/Dt, which is related to the usual Eulerian time derivative
@=@t by equation (3.4) (r is the usual Eulerian space derivative). The
Lagrangian coordinates are useful in general for problems with plane, cylind-
rical or spherical symmetry. The fluid particle is described either by its position
at time t ¼ 0 or by the total mass from the first particle to the particle under
consideration. In a one-dimensional plane geometry with Eulerian coordinates

(x; t), the Lagrangian coordinate a or m is defined by

m � �0a ¼
ðx
x1

� dx;
@

@x
¼ �

@

@m
¼ �

�0

@

@a
: ð3:24Þ

The following notation is used here: u is the fluid velocity, � is the density
related to the specific volume V ¼ 1=�, m is the mass of a column of fluid
of unit cross-section in plane geometry and P is the pressure. The first fluid
particle is located at x1 and the fluid particle under consideration is located
at x. The initial density is defined by �0 ¼ �ðx; t ¼ 0Þ. For the following
Eulerian mass and momentum conservation (Newton second law) the
appropriate Lagrangian equations are given:

Eulerian:
@�

@t
þ @

@x
ð�uÞ ¼ 0;

@u

@t
þ u

@u

@x
¼ � 1

�

@P

@x

Lagrangian:
@V

@t
¼ @u

@m
;

@u

@t
¼ � @P

@m
:

ð3:25Þ

Note that in one dimension with a planar geometry, m has the dimensions of
(mass/area). The x coordinate does not enter explicitly in the Lagrangian
equations and therefore the Eulerian position x of the particle is obtained
from the Lagrangian solution Vðm; tÞ:

xðm; tÞ ¼
ðm
0
Vðm; tÞ dmþ x1: ð3:26Þ

We end this section with a set of equations (a model) in a Lagrangian
coordinate describing the laser–plasma interactions with two temperatures,
the electron temperature Te and the ion temperature Ti, where Te 6¼ Ti.
The density of the fluid is � ¼ nimi (since neme � nimi) and its velocity is u.
The two temperatures (Te;Ti), the two appropriate pressures (Pe;Pi) and
their associated energies (Ee;Ei) (energy/mass) are related by the equations
of state, e.g. (3.20). In this model we have one equation for the mass
conservation, one equation for the momentum conservation and two
energy equations, one for electrons and one for ions. The electrons absorb
the laser energy and they also transport the heat energy. The two physical
quantities describing these phenomena are the IL and the heat energy flux
Ie, both with dimension of (energy/(area � time)). There is a coupling
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energy term between the ions and the electrons proportional to Te � Ti. The
fluid equations of this model, in Lagrangian coordinates, are

@V

@t
� @u

@m
¼ 0

@u

@t
þ @ðPe þ PiÞ

@m
¼ 0

@Ee

@t
þ Pe

@u

@m
¼ @IL
@m

� @Ie
@m

� gðTe � TiÞ

@Ei

@t
þ Pi

@u

@m
¼ gðTe � TiÞ:

ð3:27Þ

The dimensions of the above equations are: (energy/(mass � second)) for the
energy equations, (length/second2) for the momentum equation and
(length3/(mass � second)) for the continuity equation. The energy equations
in (3.23) have the dimension of (energy/(volume � second)) and therefore
have to be divided by the density � in order to obtain the energy equations
in (3.27). For example, the values of the electron ion energy coupling in
(3.23) and (3.27) are related by g ¼ �=�.

We end this section with a generalization of equations (3.25) for
problems with plane, cylindrical or spherical symmetry. One fluid is assumed
where the body forces, heat conduction and energy sources are absent. In
the following equations, r denotes the spatial coordinate: r ¼ x for plane
symmetry, r2 ¼ x2 þ y2 for cylindrical symmetry, and r2 ¼ x2 þ y2 þ z2 for
the spherical symmetry, and u ¼ @r=@t.

Eulerian:
@�

@t
þ u

@�

@r
þ �

rk�1

@ðrk�1uÞ
@r

¼ 0;
@u

@t
þ u

@u

@r
þ 1

�

@P

@�
¼ 0

Lagrangian:
@V

@t
� @ðrk�1uÞ

@m
¼ 0;

@u

@t
þ rk�1 @P

@m
¼ 0:

ð3:28Þ

Equations (3.28) describe the mass conservation and the momentum
conservation for the following cases: k ¼ 1 for plane symmetry; k ¼ 2 for
cylindrical symmetry; and k ¼ 3 for spherical symmetry.

The energy equation for the above fluid is

Eulerian:
@E

@t
þ u

@E

@r
þ P

�rk�1

@ðrk�1uÞ
@r

¼ 0

Lagrangian:
@E

@t
þ P

@V

@t
¼ 0

ð3:29Þ

and as usual, the knowledge of the equations of state P ¼ PðE; �Þ is needed in
order to solve the problem.
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3.3 ‘Femtosecond’ Laser Pulses

The word ‘femtosecond’ stands for very short laser pulse duration or, more
accurately, the laser–target interaction is during a time so short that the
hydrodynamics are not important. For example, for a 50 fs laser pulse the
plasma motion is about �r � cs�t � 106 (cm/s) � 5� 10�14 (s) ¼ 5A, which
is much smaller than the laser penetration (skin) depth � � c=!p � 100A
(where 1A¼ 10�8 cm). cs and c are the speed of sound and the speed of
light accordingly and !p is the plasma frequency for a solid density. It is
conceivable to assume in this case that during the laser–target interaction
the solid target density does not change and the flow velocity is negligible.
Therefore, during this short time the system is described mainly by the
energy equations.

In a metal irradiated by fs-laser pulse the temperature Te of the
electrons in the conduction band and the temperature Ti of the ion lattice
(i.e. of the phonons) can differ by orders of magnitude. The reason for this
effect is that the electrons absorb the laser energy and the relaxation time
for electron–ion collision is much larger than the laser pulse duration. This
happens because the heat capacity of electrons is significantly smaller than
the heat capacity of the lattice. In the following we assume that Te and Ti

are well defined. If the laser spot (x–y direction on the target) dimension
is much larger than the energy deposition (z direction) depth, then one
has a one-dimensional problem and the energy equation (3.19) for the
electrons and the ions are (Anisimov et al. 1974)

CeðTeÞ
@Te

@t
¼ @

@z

�
�ðTeÞ

@Te

@z

�
�UðTe;TiÞ þQðz; tÞ

CiðTiÞ
@Ti

@t
¼ UðTe;TiÞ:

ð3:30Þ

The dimension of these equations in c.g.s. units is (erg/(cm3 s)). Ce and Ci are
the electron and ion heat capacities (dimension (erg/(cm3 K))), � is the
electron heat conductivity (dimension (erg/(cm s))), U is the energy transfer
rate from electrons to ions and can also be written as

U ¼ �ðTe � TiÞ ð3:31Þ

and Q is the laser energy deposition rate that can be approximated by

Qðz; tÞ ¼ AILðtÞ
2

�
exp

�
� 2z

�

�
ð3:32Þ

where AIL is the absorbed laser irradiance (dimension erg/(cm2 s)), A is the
absorption coefficient and � is the skin depth.
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Ce and Ci are derived from knowledge of the equations of state (Eliezer
et al. 1986):

CeðlowÞ ¼
�2nek

2
BTe

2EF

for kBTe � EF

CeðhighÞ ¼ 1:5kBne for kBTe � EF

ð3:33Þ

where EF is the Fermi energy (equals about 11.7 eV for aluminium), kB is the
Boltzmann constant and ne is electron density (equals about 1:8� 1023 cm�3

for solid aluminium). Ci can be approximated by the Dulong–Petit law

Ci ¼ 3kBni ð3:34Þ

where the ion density satisfies ni ¼ ne=Z, and Z is the number of ionized
electrons, including the number of electrons in the conduction band (Z ¼ 3
for aluminium).

In order to calculate U and � as functions of Te and Ti, one has to
take into account the electron–phonon interactions, as explained in
section 5.7.

3.4 Boltzmann–Vlasov Equations

The fluid theory given in previous sections, which is considered to be the
simplest description of a plasma system, is a good approximation for many
phenomena in laser–plasma interaction. However, the fluid model is not
always adequate. All the variables (including the fluid velocity) in the fluid
equations are functions of time and position, and each species in an LTE
plasma has a Maxwellian distribution of the velocities everywhere. Physical
quantities such as temperature and pressure can be defined only in local
thermal equilibrium (LTE). Systems that are not in LTE cannot be described
by fluid equations. For example, in a laser plasma corona LTE is not always
satisfied, and in this case the fluid model is not suitable.

3.4.1 Liouville’s theorem

For a very large number of interacting particles, as in a plasma system, a
statistical description is required. In this case the starting point is the phase

space of the particles: qk, pk, k ¼ 1, . . . ,K , where the qk are the coordinates
for all the degrees of freedom and the pk are the corresponding momenta. N
identical particles with s degrees of freedom for each one satisfy K ¼ sN.
The fundamental physical quantity is the probability density Fðqk; pk; tÞ,
where F dq1; . . . ; dqK dp1; . . . ; dpK is the probability of finding the system at
time t in the phase space domain ðq1; q1 þ dq1Þ; ðp1; p1 þ dp1Þ; . . . ;
ðqK ; qK þ dqKÞ; ðpK ; pK þ dpKÞ. By analogy with the continuity equation in
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the fluid theory, the conservation equation for the probability density is

@F

@t
þ

XK
k¼1

@ðFqk;tÞ
@qk

þ
XK
k¼1

@ðFpk;tÞ
@pk

¼ 0 ð3:35Þ

where qk;t and pk;t are the time derivative of qk and pk accordingly. The
system is described by a Hamiltonian Hðqk; pk; tÞ, satisfying the following
equations of motion:

qk;t ¼
@H

@pk
; pk;t ¼ � @H

@qk
: ð3:36Þ

From these equations one gets @qk;t=@qk ¼ �@pk;t=@pk (¼ @2H=@pk @qk).
Using this result in (3.35), the Liouville theorem is obtained:

@F

@t
þ

XK
k¼1

qk;t
@F

@qk
þ
XK
k¼1

pk;t
@F

@pk
� DF

Dt
¼ 0 ð3:37Þ

where D/Dt is the time derivative in the frame of the appropriate phase space
element (i.e. movingwith the phase space element). From theLiouville theorem
one can conclude that F is invariant (i.e. F ¼ constant) on a phase space
trajectory of the system. From this theorem the basic assumption of statistical
mechanics is justified, namely that equal volumes of phase space have equal a
priori probability. However, for non-LTE processes a general solution is
equivalent to solving the equations of motion for all the particles (i.e. solving
(3.36)), a task that is usually impossible (and if possible it is useless) for an
extremely large number of particles, e.g. of the order of Avogadro’s number
(	1023). In this case approximations of the Liouville equation are required.

3.4.2 Vlasov equation

For identical particles the phase space of a single particle is considered
instead of the phase space of all the particles. We use the Cartesian co-
ordinates ½x ¼ ðx; y; zÞ; v ¼ ðvx; vy; vzÞ�, where x and v are respectively the
position and the velocity of a particle. A function f ðx; v; tÞ is defined
to replace the probability density of the whole phase space F . In this
approach, f d3x d3v is equal to the number of particles in the domain
½ðx; xþ dxÞ; ðv; vþ dvÞ�. For the electron and ion particles in the plasma,
two (or more, if there are many species of ions) distribution functions fj,
for j ¼ e or i, are defined to describe the electrons and the ions accordingly.
In analogy with the Liouville theorem (3.37) the distribution functions fj
satisfy the equations

@fj
@t

þ ðv � rÞ fj þ ða � rVÞ fj ¼ 0 ð3:38Þ

r ¼
�
@

@x
;
@

@y
;
@

@z

�
� @

@x
; rV ¼

�
@

@vx
;
@

@vy
;
@

@vz

�
� @

@v
ð3:39Þ
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where v is the velocity and a is the acceleration. For an electromagnetic field
the equations of motion are (in c.g.s.)

v ¼ dx

dt
; a ¼ dv

dt
¼ q

m

�
Eþ v� B

c

�
ð3:40Þ

where q and m are the charge and mass of e or i. Equations (3.38) coupled to
Maxwell equations are known as the Vlasov equations. The statistical content
of the Vlasov equations is expressed by assuming that fj is a smooth function
(i.e. differentiable) describing an average quantity over a phase space volume
d3x d3v containing a large number of particles. The electromagnetic fields, E
and B, are also ‘local’ smooth averaged quantities. In this picture fj is
regarded as a density of a continuous ‘fluid’ in phase space. The force
acting on any plasma particle, describing the effect of all the other particles,
is assumed to be a continuous and slowly varying function of space. This is a
good approximation only if the collective effect is larger than the ‘direct’
collisions with nearby particles; therefore, the Vlasov equations are consid-
ered to be ‘collisionless’. If the ‘direct’ collisions are important then the
Vlasov equations (3.38) are replaced by the Boltzmann equations.

3.4.3 Boltzmann equation

Taking short-range collisions into account, equations (3.38) are replaced by

@fj
@t

þ ðv � rÞfj þ ða � rVÞfj ¼
�
@fj
@t

�
c

: ð3:41Þ

The collisions are described formally by the term (@fj=@t)c. One of the
simplest models for the collision term, known as the BGK (Bhatnagar,
Gross and Krook 1956) model, is given by

�
@fj
@t

�
c

¼
X
k

�jkð fj � fjkÞ ð3:42Þ

where fj is assumed to be a Maxwellian distribution in velocity space and �jk
is an empirical collision frequency taken as a constant in the simplest model.
��jk fjk represents the rate of loss of particles in the phase space under
consideration described by fj, while �jk fj is the rate of gain. �jk is proportional
to the particle density nk, therefore �jk ¼ Cjknk and Cjk ¼ Ckj.

The BGK model is appropriate for collisions between charged and
neutral particles. However, this model is not a good approximation for
collisions between charged particles (the Coulomb interactions) since the
collisions are not predominantly binary. In the Coulomb interactions,
the cumulative effect of many small collisions between particles at large
distances is more important than a nearby binary collision. The major
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contribution to ð@fj=@tÞc comes from electron and ion collisions within the
Debye sphere (radius �D) and not from the collision of nearby particles (at
the distance n

�1=3
j ), for plasmas where �D � n

�1=3
j . Suppressing the subscript

j of the distribution function, the following Fokker–Planck collision term is
appropriate (see section 9.4):

�
@f

@t

�
c

¼
X3
i¼1

@

@vi

�
�Fi f þ

1

2

X3
k¼1

@

@vk
ðDik f Þ

�
ð3:43Þ

where Fi and Dik are the friction and diffusion ‘coefficients’ respectively. The
subscripts i and k denote the x–y–z components in Cartesian coordinates. In
general, these ‘coefficients’ are not only functions of (x; v; t) but also of f
itself. For simplicity it can be assumed that

Fi ¼ ��ðvi � uiÞ; Dik ¼ D�ik ð3:44Þ

where u is the local drift velocity, D is the diffusion coefficient and � is a
constant describing the effective collision frequency.

3.4.4 The moment equations

In this section we suppress the subscript j on the distribution fj ; however, it is
understood that the following equations and relations are obtained for each
species of the plasma particles (e.g. electrons and ions). The moment hQi is
defined by

hQi ¼
ð
QðvÞf ðx; v; tÞ d3v ð3:45Þ

where the distribution function f ðx; v; tÞ is given by the Boltzmann equation,
which we rewrite in the following way (equations (3.40) and (3.41)):

@f

@t
þ v � @f

@x
þ q

m

�
Eþ v� B

c

�
� @f
@v

¼
�
@f

@t

�
c

: ð3:46Þ

For example, for Q ¼ 1, v and v2, the moments correspond to the
macroscopic quantities of density, momentum and energy respectively. For
Q ¼ equation (3.46), the zero moment, one has to average the equation
over the velocity in order to obtain the continuity equation (mass conserva-
tion). The integral over d3v of the first term of (3.46) gives @n=@t. The integral
of the second term gives the space derivative of the integral of vf . One can see
that the integral of the third term vanishes after integration by parts and
using the property that f goes to zero as v tends to infinity. Last but not
least, the integral of ð@f =@tÞc vanishes since the collisions do not change
the number of particles. This last statement is not correct if there is ionization
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or some other process, e.g. fusion, such that the collision can change the
number of particles of the species under consideration. Thus, the zero
moment of the Boltzmann equation yields the following continuity equation
(mass conservation):

@n

@t
þ @

@x
� ðnuÞ ¼ 0 ð3:47Þ

where n is the particle density and u is the average velocity defined by

n ¼
ð
f ðx; v; tÞ d3v; nu ¼

ð
vf ðx; v; tÞ d3v : ð3:48Þ

Taking the first moment of the Boltzmann equation (3.46), one gets the
momentum equation. The first term gives

ð
d3vv

@f

@t
¼ @

@t
ðnuÞ: ð3:49Þ

The integral of the second term yields

ð
d3vvv � @f

@x
¼ @

@x
�
ð
d3vvvf � @

@x
�
ð
d3vðv� uþ uÞðv� uþ uÞf
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�
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@x
�
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d3vuuf

� @

@x
� �
m
þ @
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� nuu ð3:50Þ

where � (with components �jk) is the pressure tensor, and we have used
(3.48) to calculate the ðv� uÞf integral. The integral of the third term
gives, after integrating by parts,

ð
d3vv

q

m

�
Eþ u� B

c

�
� @f
@v

¼ � nq

m

�
Eþ u� B

c

�
: ð3:51Þ

Using the following procedure:

(a) assuming the pressure to be isotropic, �jk ¼ P�jk,
(b) defining

ð
d3vv

�
@f

@t

�
c

¼
�
@ðnuÞ
@t

�
c

ð3:52Þ

(c) collecting (3.49)–(3.52),
(d) using the continuity equation, and
(e) introducing the subscripts e and i for electrons and ions,
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the following momentum conservation equations are derived (a generaliza-
tion of the momentum equations (3.22)):
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@ue
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ð3:53Þ
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where Ze is the ion charge and �e the electron charge. The last equation of
(3.53) represents the conservation of the momentum exchange by collisions
between electrons and ions. The momentum equations for electrons and
ions can be combined together to yield an equation for one species by
using the following relations:

U ¼ nimiui þ nemeue

nimi þ neme

[centre of mass velocity]

� ¼ nimi þ neme ffi nimi [mass density]

J ¼ eðZniui � neueÞ [current density]

�e ¼ eðZni � neÞ [charge density]:

ð3:54Þ

In a similar way as above, by taking the moment of Q ¼ v2 times the
Boltzmann equation (3.46), the following energy equation is derived:

@

@t
ðnhv2iÞ þ @

@x
� ðnhv2viÞ � 2nq

m
E � u ¼

�
@

@t
ðnhv2iÞ

�
c

ð3:55Þ

where hv2i and hv2vi are defined in (3.45) for Q ¼ v2 and Q ¼ v2v
respectively.

In taking the moment of Q ¼ vk times the Boltzmann equation (3.46), a
vkþ1 term is introduced. For k ¼ 0 the mean velocity appears (a k ¼ 1 term),
for k ¼ 1 the pressure tensor (a k ¼ 2 term) is introduced, for k ¼ 2 a tensor
of rank 3 appears (i.e. a k ¼ 3 term) describing the energy flow, etc. There-
fore, the moment equations are an infinite set of equations and a truncation
is required in order to solve these equations. For example, by using the
equations of motion, defining the pressure and assuming an isotropic
process, then the energy equation is no longer required and the moment
equations are truncated in such a way that the mass and momentum fluid
equations are practically derived. If the diffusion and the heat transport
are important, then the moment equations have to be truncated after the
energy equation is considered. In this case a knowledge of the transport
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coefficients is necessary besides the full equations of state. However, the
equations of state are well defined only in local thermodynamic equilibrium,
so if LTE is not satisfied other ideas of truncation are required.

3.5 Particle Simulations

The particle theory approach uses the equations of motion for the individual
plasma particles, and with the help of particle simulation codes (some known
as ‘particle in cell’ (PIC) codes) the plasma physics is analysed. In this
approach the plasma is described by electrons and ions moving under the
influence of the electric and magnetic fields due to their own charge, and
of the laser fields (Dawson 1962, Hockney and Eastwood 1981, Adam
1982, Birdsall and Langdon 1985, Evans 1986, Kruer 1988, Pert 1989).
The equations of motion for the particles are

drj
dt

¼ vj

dðvjÞ
dt

¼
qj

mj

�
Eþ

vj � B

c

�

�Maxwell equations, where

�e ¼
X
j

qj�ðrj � rÞ

J ¼
X
j

qjvj�ðrj � �Þ

ð3:56Þ

where qj, mj, rj, vj are respectively the charge, mass, position and velocity for
a particle denoted by index j. c is the speed of light, � is the Dirac delta
function, and E, B, �e and J are the electric field, the magnetic field, the
charge density and the electric current respectively.

Defining the positions and velocities of the particles at a given time, the
electric charge and current are determined on a spatial grid. Using these
electric charges and currents in the Maxwell equations, the self-consistent
electric and magnetic fields are calculated. The electric and magnetic fields
are inserted into Lorentz’s equation of motion (the first two equations of
(3.56)) to calculate the new positions and velocities of the particles, where
they are used to calculate the electric charge and current, and so on. The
basic cycle of a particle code is described schematically by

frj ; vjg ! ð�e; JÞ ! ðE;BÞ ! frj; vjg ! etc: ð3:57Þ

The time step of this procedure should be small enough in order to resolve
the shortest time scale in the problem. This time scale, �t, in many cases is

Particle Simulations 61



determined by the plasma frequency

�t � 2�

!p

¼
�
�me

e2n

�1=2
ð3:58Þ

where e and me are the charge and the mass of the electron accordingly and n
is the particle density.

The spatial grid �x should be small enough to resolve the collective
behaviour of the plasma. This scale length is of the order of the electron
Debye length �De rather than the smaller-scale length determined by direct
particle collisions. The large-angle collisions can be ignored in collisionless
plasmas, i.e. when the number of particles in a Debye sphere is much
larger than one. If the plasma is not collisionless then the particle simulation
approach is not realistic since it is extremely difficult to use a grid with a
dimension smaller than the spacing between the particles.

For practical reasons, computer simulation of plasma using particle codes
is limited to 	106 particles ¼ NC (equal also to the number of cells). In a real
plasma there are N ¼ nV particles, where n is the particle density and V the
plasma volume. For some typical laboratory laser–plasma systems one has
n � 1020 cm�3 and V � 10�5 cm3, implyingN � 1015. Therefore, each simula-
tion particle represents a large number of real electrons and ions. In the above
example the simulation mass and charge of ‘a particle’ is 109 times that of an
electron (or an ion). However, in the simulation it is necessary to keep the
mass-to-charge ratio of the ‘electron particle’ equal to e=me (and similarly
for the ions), although the mass of each electron can be equal to 109me.
Moreover, the plasma frequency in the simulation must be equal to the real
plasma frequency. Therefore, from equation (3.58), if the charge and mass
of the ‘electron’ is 109e and 109me accordingly, then the electron density in
the simulation is 10�9ne. In a particle in cell (PIC) simulation,

qe ¼
�
N

NC

�
e; me ¼

�
N

NC

�
me; ne ¼

�
N

NC

��1

ne: ð3:59Þ

Let us consider now a one-dimensional problem. In this case the particles are
surfaces of charge in the y–z plane (sheets) and the ions are positioned at a
grid defined by xk ¼ k�x ðk ¼ 1; 2; 3; . . .Þ.

For the one-dimensional problem,Maxwell equations are reduced to the
Poisson equation

@E

@x
¼ 4��e: ð3:60Þ

The grid spacing�x is chosen to be uniform and the indices k, j and n denote
the cell, the particle and the order of the numerical time step respectively. The
finite-difference approach to the Poisson equation (3.60) gives

En
kþ1=2 ¼ En

k�1=2 þ 4��nk�x; En
k ¼ 1

2 ðE
n
kþ1=2 þ En

k�1=2Þ: ð3:61Þ
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The second equation of (3.61) gives the electric field on the grid points. The
electric field Ej at the particle position xj and the electric charge density �k at
the grid position xk (¼ k�x) are given by interpolation with a shape function
�k(xj):

En
j ¼

X
k

En
k�kðxnj Þ; �nk ¼

X
k

nee�kðxnj Þ: ð3:62Þ

Two shape functions that are popular in these simulations are the ‘nearest
grid point’ model

�kðxjÞ ¼
�
1

0

if jxj � xkj < �x=2

otherwise
ð3:63Þ

and the ‘cloud in cell’ model

�kðxjÞ ¼
�
1� jxj � xkj=�x

0

if jxj � xkj=�x < 1

otherwise:
ð3:64Þ

The position and velocity of the particles are advanced in time by using
Newton’s law (3.56):

v
nþ1=2
j ¼ v

n�1=2
j þ

eEn
j �t

me

; xnþ1
j ¼ xnj þ v

nþ1=2
j �t: ð3:65Þ

The numerical equations (3.61), (3.62), (3.63) (or (3.64)) and (3.65) are
started by defining the grid and by giving the particles a random Gaussian
velocity distribution (or an average zero velocity with a mean squared
velocity equal to the thermal velocity). The numerical stability of these
equations requires a time step �t < 2=!p, while a reasonable time accuracy
for the plasma wave motion implies !p�t < 0:2. The high-frequency spatial
modes cannot be distinguished because of the finite grid spacing, i.e. the
Fourier components (of xj) kj and kj þ 2�=�x are identical (aliasing). There-
fore, it is necessary to damp the high-frequency spatial modes. This is done
by Landau damping kj�De > 0:2 and choosing a grid spacing �x < �De.

Table 3.1. The dimensionality and the appropriate variables for the particle simulations.

Dimension

Particle

position

Particle

velocity Electric field Magnetic field Notes

3D r ¼ ðx; y; zÞ v ¼ ðvx; vy; vzÞ E ¼ ðEx;Ey;EzÞ B ¼ ðBx;By;BzÞ –

2.5D r ¼ ðx; y; 0Þ v ¼ ðvx; vy; vzÞ E ¼ ðEx;Ey;EzÞ B ¼ ðBx;By;BzÞ @=@z ¼ 0

2D r ¼ ðx; y; 0Þ v ¼ ðvx; vy; 0Þ E ¼ ðEx;Ey; 0Þ B ¼ ðBx;By;BzÞ @=@z ¼ 0

1.5D r ¼ ðx; 0; 0Þ v ¼ ðvx; vy; 0Þ E ¼ ðEx;Ey; 0Þ B ¼ ð0; 0;BzÞ @=@z ¼ 0;

@=@y ¼ 0

1D r ¼ ðx; 0; 0Þ v ¼ ðvx; 0; 0Þ E ¼ ðEx; 0; 0Þ B ¼ ð0; 0; 0Þ @=@z ¼ 0;

@=@y ¼ 0
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The general problem described by equations (3.56) is three-dimensional;
however, since the computer programs in this case are very large and
complex, simpler systems with lower dimensionality are used, as described
in table 3.1.

The step time for solving these numerical equations is very small
(	10�15 s) and therefore the particle theory simulation can be done only
for periods of time much shorter than the typical laser plasma lifetime.
Moreover, this approach is suitable only for plasmas where the ratio between
the plasma dimension (L) and the Debye length (�De) is not very large.
Nevertheless, it turns out that the particle computer simulation of plasma
is a very useful and enlightening tool to study and understand nonlinear
plasma effects.
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Chapter 4

The Ponderomotive Force

For normal laser light incidence on plasma the ponderomotive force fp per
unit volume is given by (the proof of this equation is given at the end of
section 4.1 and in section 4.2)

fp ¼ �
!2
p

16�!2
L

rE2
s ¼ �

!2
p

8�!2
L

rhE2i ð4:1Þ

where !2
p ¼ 4�nee

2=me is the plasma frequency, !L is the angular laser
frequency, Es is the space-dependent electric field of E, given by

E ¼ EsðrÞ cos!Lt ð4:2Þ
and the time average over one laser oscillating period (i.e. over one wave-
length) is denoted by h i. The ponderomotive force is a nonlinear force

where a high-frequency electromagnetic laser field induces a slow time
scale force. This force is involved in many physical phenomena, such as:

(a) momentum transfer to the target (Hora 1969,Arad et al. 1980,Hora 1981);
(b) self-focusing and filamentation of the laser beam (Kaw et al. 1973, Max

1976);
(c) plasma profiles density changes such as the formation of cavitons and

solitons (Morales and Lee 1977, Mulser and van Kessel 1977, Evely
and Morales 1978);

(d) parametric instabilities (Chen 1977);
(e) second harmonic generation (Jackel et al. 1981);
(f ) magnetic field generation (Stamper and Tidman 1973, Lehner 1994,

Horovitz et al. 1997, Horovitz et al. 1998).

4.1 The Landau–Lifshitz Ponderomotive Force

More than 150 years ago the ponderomotive force, fKelv, was introduced by
Kelvin in order to describe the force applied by a static electric field E on a
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dielectric medium with a polarization p:

fKelv ¼ ðp � rÞE: ð4:3Þ

One hundred and twenty years ago Helmholtz (Helmholtz 1881) used
thermodynamics to obtain the ponderomotive force, fHelm, exerted on a
dielectric material with permittivity " and density �:

fHelm ¼ �E2r"
8�

þr
�
�E2

8�

@"

@�

�
: ð4:4Þ

Equations (4.3) and (4.4) are given in c.g.s. units. At the turn of the last
century it was realized that these two equations are wrong (Pavlov 1979,
Kentwell and Jones 1987). Landau and Lifshitz (Landau and Lifshitz
1975) achieved the correct expression only in the 1950s. For a homogeneous
medium, without free electric charges and current (J ¼ 0; �e ¼ 0) with time-
independent dielectric function " and magnetic permeability �, the two
Maxwell equations relevant for this discussion are

r� E ¼ ��

c

@H

@t
; r�H ¼ "

c

@E

@t
: ð4:5Þ

Using these Maxwell equations, Landau and Lifshitz calculated the force per
unit volume f from the derivative of the stress tensor �jk:

fj ¼
X3
k¼1

@�jk
@xk

� 1

4�c

@ðE�HÞj
@t

j and k ¼ ðx; y; zÞ: ð4:6Þ

The last term on the right-hand side of (4.6) is the rate of change of the
electromagnetic field momentum per unit volume. This term is subtracted
from the derivative of the stress tensor since �jk includes the momentum
of both the medium and the electromagnetic field, while f is the force
per unit volume on the medium only. The stress tensor for the above
medium is

�jk ¼ �P0ð�;TÞ�jk þ �Ejk þ �Hjk

�Ejk ¼ �E2

8�

�
"� �

�
@"

@�

�
T
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�jk þ

"EjEk

4�

�Hjk ¼ �H2

8�

�
�� �

�
@�

@�

�
T

�
�jk þ

�HjHk

4�

ð4:7Þ

where P0ð�;TÞ is the pressure as a function of density � and temperature T
that exists in the medium in the absence of the electromagnetic fields (E;H).
Substituting equations (4.7) into equation (4.6) and using the Maxwell
equations (4.5), one gets the total force acting on the medium f per unit
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volume:

f ¼ �rP0 þ fp

fp ¼ �E2r"
8�
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@ðE�HÞ
@t

ð4:8Þ

where fp is the correct (Landau and Lifshitz) ponderomotive force acting on
the medium defined above.

Assuming a dielectric medium with � ¼ 1, relevant for plasma physics,
and an " as in a plasma without collisions,

" ¼ 1�
!2
p

!2
L

¼ 1� �ðrÞ
�c

ð4:9Þ

then � @"=@� ¼ ��=�c ¼ "� 1 and equation (4.8) yields the ponderomotive
force given in equation (4.1). In general, for a dielectric medium satisfying

" ¼ �þ �� ð4:10Þ

one gets that the first term on the right-hand side of (4.8) is equal to
ð"� �ÞrðE2=8�Þ. The second term on the right-hand side of (4.8) vanishes
for � ¼ 1. Regarding the third term on the right-hand side of (4.8), we
assume an electric field given by (4.2), and using the Maxwell equation
(4.5) the magnetic field is

H ¼ �
�

c

�!L

�
ðr � EsÞ sin!Lt � Hs sin!Lt: ð4:11Þ

Thus, the third term on the right-hand side of (4.8) is zero because its time
average over a laser period time scale is proportional to

�
@

@t
ðcos!Lt sin!LtÞ

�
¼ !Lð�hsin2 !Lti þ hcos2 !LtiÞ ¼ 0 ð4:12Þ

where the relations hsin2 !Lti ¼ hcos2 !Lti ¼ 1
2 have been used. Therefore, in

a dielectric medium satisfying equations (4.9) or (4.10), the ponderomotive
force is

fp ¼ �
!2
p

!2
L

�
rE2

s

16�

�
for " given by (4.9)

fp ¼ ð"� �Þ
�
rE2

s

16�

�
for " given by (4.10).

ð4:13Þ
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4.2 The Single-Particle Approach to Ponderomotive
Force in Plasma

The ponderomotive force per unit volume is related to the gradient of the
radiation pressure PL. If the laser propagates in vacuum with irradiance IL
and hits a sharp boundary, then the radiation pressure is

PL ¼ IL
c
ð1þ RÞ ð4:14Þ

where R is the reflection from the boundary. However, for a laser in inhomo-
geneous plasma this relation is meaningless, since the electromagnetic field in
the plasma cannot be determined only from knowledge of IL, and therefore the
light pressure is not known. In this case, knowledge of the electromagnetic
fields in the plasma is required in order to calculate the radiation pressure,
related directly to the ponderomotive force per unit volume.

In this section we calculate the ponderomotive force, analysing the
motion of a single particle in a given electromagnetic field in the plasma
(Schmidt 1966, Chen 1974). Assuming a monochromatic electric field as in
(4.2) and a plasma with a magnetic permeability � ¼ 1, we have (see
(4.11)) in c.g.s. units (H ¼ B, etc.)

Eðr; tÞ ¼ EsðrÞ cos!t

Bðr; tÞ ¼ BsðrÞ sin!t ¼ � c

!
r� EsðrÞ sin!t:

ð4:15Þ

The electromagnetic angular frequency ! in the plasma medium, as derived
from the dispersion relation, can differ from the laser frequency !L in
vacuum. The equation of motion (Lorentz equation) for an electron
moving in these fields is

me

dv

dt
¼ �e

�
Es cos!tþ

v

c
� Bs sin!t

�
; v ¼ dr

dt
: ð4:16Þ

For non-relativistic electrons the v� B=c term is smaller than the E term;
therefore, to first order (v ¼ v1, r ¼ r1), the electron oscillates in the direction
of Es and in this case one has to solve

me

dv1
dt

þ eEsðr0Þ cos!t ¼ 0; v1 ¼
dr1
dt
: ð4:17Þ

The solution of these equations is

v1 ¼ � eEsðr0Þ sin!t
me!

; r1 ¼
eEsðr0Þ cos!t

me!
2

: ð4:18Þ

To second order one has to consider

v ¼ v1 þ v2; Es ¼ Esðr0Þ þ ðr1 � rÞEsðr ¼ r0Þ; Bs ¼ Bsðr0Þ: ð4:19Þ
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Substituting (4.17) and (4.19) into (4.16), we get the second order equation:

me

dv2
dt

¼ �e

�
ðr1 � rÞEsðr0Þ cos!tþ

v1 � Bsðr0Þ sin!t
c

�
: ð4:20Þ

The nonlinear force FNL acting on an electron is given by substituting (4.18)
and (4.15) into (4.20) and averaging over time (note that hsin2 !ti ¼
hcos2 !ti ¼ 1

2 and hsin!t cos!ti ¼ 0):

FNL ¼ me

�
dv2
dt

�
¼ � e2

2me!
2
½ðEs � rÞEs þ Es � ðr � EsÞ�: ð4:21Þ

The first term on the right-hand side of (4.21) is the force which causes the
electron to move in a linear trajectory, while the second term on the right-
hand side is the E� B force acting on the electron and distorts the linear
motion into a figure 8 trajectory. Using the identity

Es � ðr � EsÞ ¼ ðrEsÞ � Es � ðEs � rÞEs ¼ 1
2r � E2

s � ðEs � rÞEs ð4:22Þ

in (4.21) and multiplying with the electron density ne to get the ponderomotive
force per unit volume, the following equation is obtained:

fp ¼ neFNL ¼ � nee
2

4me!
2
rE

2
s ¼ �

!2
p

16�!2
rE

2
s : ð4:23Þ

This equation is identical to (4.1).
From equation (4.23) one can see that the ratio of the ponderomotive force

exerted on the ions, fpi, to that applied on the electrons, fpe � fp, is equal to
fpi=fpe ¼ me=mi, where mi is the ion mass; therefore, the ponderomotive force
on the ions is negligible. However, the ponderomotive force exerted on the
electrons is transmitted to the ions by the electric fields in the plasma. Due to
the force described in (4.23) the electrons are separated from the ions, and
an electric charge separation is created in the plasma which induces an extra
electric field Ecs between the ion and the electrons, so that

fe ¼ fp � eneEcs; fi ¼ qiniEcs; qini ¼ ene ) fe þ fi ¼ fp ð4:24Þ
where fe and fi are the forces (due to the above interactions) applied on the
electron and ion fluids accordingly, and the last equation in (4.24) is due to
the charge neutrality of the plasma, which is correct on a scale length
larger than the above charge separation length (or in any case larger than
the Debye length).

4.3 The Effect of Ponderomotive Force on Wave Dispersion

4.3.1 The electron wave dispersion

The dispersion relation for electron plasma waves was derived in chapter 2
(section 2.6) without taking into account the ponderomotive force. We
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shall repeat that derivation with an added ponderomotive force. It is
assumed that:

(a) the problem is one-dimensional;
(b) the ions are immobile;
(c) the ponderomotive force in (4.23) is denoted by f ; and
(d) the charge separation electric field is E.

The electron is assumed to be an ideal gas where the oscillations are
adiabatic, so that the electron pressure Pe and the electron density ne are
related through the following equations of state:

Pen
�3
e ¼ const:; Pe ¼ nekBTe: ð4:25Þ

The electron continuity and momentum equations are

@ne
@t

þ @ðnevÞ
@x

¼ 0; mene

�
@v

@t
þ v

@v

@x

�
¼ � @Pe

@x
� eneE þ ne f ð4:26Þ

and the appropriate Maxwell equations are reduced to the following Gauss
equation (sometimes referred to as Poisson’s equation):

@E

@x
¼ �4�eðne � n0Þ: ð4:27Þ

From equation (4.25) the pressure derivative is calculated,
@Pe=@x ¼ 3ðPe=neÞ@ne=@x ¼ 3kBTe@ne=@x. Equations (4.26) and (4.27) are
solved by using the linearization procedure about the steady state ne ¼ n0,
v0 ¼ 0, E0 ¼ 0. Assuming first-order variations of the form ne ¼ n0 þ n1,
v ¼ v1 and E ¼ E1, where

n1

v1

E1

9>=
>; / exp½iðkx� !tÞ� ð4:28Þ

the following first-order equations are derived:

�i!n1 þ in0kv1 ¼ 0

ði3kBTek� f Þn1 � imen0!v1 þ en0E1 ¼ 0

4�en1 þ ikE1 ¼ 0:

ð4:29Þ

Note that for a constant density n0, one has f ¼ 0 (since in this caserE2
s ¼ 0);

therefore, the ponderomotive force in this notation is (ne � n0)f . A solution
for (n1, v1, E1) is possible only if the determinant of the coefficients of
equations (4.29) vanishes, i.e.

�i!

3ikBTek� f

4�e

in0k

�imen0!

0

0

en0

ik

�������

�������
¼ 0: ð4:30Þ
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Equation (4.30) gives the dispersion relation for the electron wave (known
also as plasmon)

!2 ¼ !2
p þ

3kBTek
2

me

þ ifk

me

: ð4:31Þ

The last term on the right-hand side of (4.31) gives the ponderomotive force
contribution to the wave dispersion. Due to this term !2 is complex, so that
wave growth, fed by the imposed ponderomotive force, is possible. In the
limit of zero Te, or when the ponderomotive force dominates the plasma
pressure, the real ð!R) and the imaginary ð!I) parts of ! are

!R ¼
�
!2
p þ

f 2k2

4m2
e!

2
p

�1=2
; !I ¼

fk

2me!R

: ð4:32Þ

It is interesting that even for Te ¼ 0 wave propagation occurs, unlike in the
case without ponderomotive force. The phase velocity (v�) and the group
velocity (vg) for a zero electron temperature are given by

v� ¼ !

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
p

k2
þ if

mek

s
; vg ¼

@!

@k
¼ if

2me

�
!2
p þ

ifk

me

��1=2

: ð4:33Þ

In the usual case of no imposed ponderomotive force, the group velocity
vanishes for a zero electron temperature and wave propagation ceases.

4.3.2 The ion wave dispersion

Next we consider ion waves. In this case we are looking for a solution that the
electrons and the ions oscillate together with an angular frequency !. The
system is specified by the electron continuity and momentum equations,
the ion continuity and momentum equations, the Poisson equation, and an
isothermal (Te ¼ const:) electron equation of state:

@ne
@t

þ @ðneveÞ
@x

¼ 0

me

dve
dt

¼ 0 ¼ � @Pe

@x
� eneE þ ne f

@ni
@t

þ @ðniviÞ
@x

¼ 0

mi

@vi
@t

¼ eZE

@E

@x
¼ 4�eðZni � neÞ

Pe ¼ nekBTe; Te ¼ const:

ð4:34Þ
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where mi and Z are the ion mass and charge accordingly and quasineutrality
ni0 ¼ Zne0 is assumed. Electron inertia has been neglected in the electron
momentum equation and ion pressure has been ignored in the ion momen-
tum equation. The linearization approximation is

ne ¼ ne0 þ ne1

ni ¼ ni0 þ ni1

ve ¼ ve1; vi ¼ vi1; E ¼ E1:

ð4:35Þ

We are looking for a wave where the electrons and ions have a common
angular frequency of oscillations, i.e. the perturbations behave like

ne1

ni1

ve1

vi1

E1

9>>>>>>=
>>>>>>;

/ exp½iðkx� !t�: ð4:36Þ

Substituting (4.35) and (4.36) into (4.34), one gets the following set of
equations, written in matrix form:

�i! ine0k 0 0 0

�ikkBTe þ f 0 0 0 �ene0

0 0 �i! ini0k 0

0 0 0 �i!mi �eZ

4�e 0 �4�eZ 0 ik

0
BBBBBB@

1
CCCCCCA

ne1

ve1

ni1

vi1

E1

0
BBBBBB@

1
CCCCCCA

¼

0

0

0

0

0

0
BBBBBB@

1
CCCCCCA
: ð4:37Þ

A solution is possible only if the determinant of the matrix in (4.37) is zero,
implying the following dispersion relation:

!2 ¼
�
Z

mi

�
ðkBTek

2 þ ikf Þ

1� ðkBTek
2 þ ikf Þ

4�e2ne0

0
B@

1
CA �

�
Z

mi

�
ðkBTek

2 þ ikf Þ: ð4:38Þ

The approximate equality in (4.38) is obtained for

ðkBTek
2 þ ikf Þ

4�e2ne0
¼ v2Tek

2 þ ikfme

!2
pe

� 1: ð4:39Þ

If the ponderomotive pressure is much smaller than the thermal electron
pressure, then the ratio of (4.39) is about ½ðvTe=	Þ=
pe�2 � ½
ion=
pe�2 � 1.
v2Te � kBTe=me, 	 ¼ 2�=k is the wavelength of the ion wave, 
ion is of the
order of the oscillation frequency of the ion wave under consideration and

pe ¼ !pe=2� is the electron plasma oscillation frequency, which is of the

72 The Ponderomotive Force



order of the electron wave frequency. Since the ion wave frequency is much
smaller than the electron wave frequency the above approximation is
justified.

For f ¼ 0 the approximated equation (4.38) gives the standard disper-
sion relation for an ion wave, while for Te ¼ 0 the real and imaginary part
of ! are

!R ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Zj fkj
2mi

s
; !I ¼

Zfk

2mi!R

: ð4:40Þ

Here too, ion waves (also called acoustic waves) can propagate even for a
zero temperature, unlike in the case without the ponderomotive force.

Considering the imaginary parts of the dispersion relations of equations
(4.32) and (4.40), one can see that the dependence of the perturbations
ðne1; ni1; ve1; vi1;E1Þ � expð�i!tÞ ¼ expð!ItÞ implies that the growth of both
electron waves and ion waves occurs for !I > 0. From these equations one
gets that !I > 0 corresponds to waves with k > 0, !R > 0, i.e. propagating
out of the plasma (towards the laser beam). In this case the inward propagating
(k < 0) waves are damped and therefore do not build up out of any initially
present noise.

In the examples given in this section, the wave growth can occur only at
times and domains where the imposed ponderomotive force exists. In these
cases the wave energy is taken from the electromagnetic wave energy through
the work done by the ponderomotive force. This may limit or dampen the
ponderomotive force.

With the invention of very high power lasers, in particular the femto-
second lasers, the radiation pressure, as expressed by the ponderomotive
force, plays an important role not only in astrophysics but also in laboratory
plasmas.
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Chapter 5

Laser Absorption and Propagation

in Plasma

5.1 Collisional Absorption (Inverse Bremsstrahlung)

The radiation emitted by a charged particle during the collision with another
particle is customarily called bremsstrahlung (in German ‘braking radiation’)
because it was first detected when high-energy electrons were stopped in a
thick metallic target. Inverse bremsstrahlung is the process in which an electron
absorbs a photon while colliding with an ion or with another electron. A rigor-
ous calculation of the inverse bremsstrahlung absorption can be made by using
the kinetic theory (e.g. theVlasov equation) to take into account the distribution
function of the electrons and the positions of the ions (Dawson 1968). In this
case the absorption coefficient depends on the correlation function of the ions.

Here we consider a simple model where the plasma is infinite and
homogeneous, the ions are infinitely heavy (i.e. their motion is neglected)
and no static magnetic or electric fields interfere. Since the electromagnetic
waves have a phase velocity much higher than the thermal velocity of the
electrons it is justifiable to neglect their thermal motion. Thus the equation
of motion for the electrons is

dv

dt
¼ � eE

me

� v

�c
ð5:1Þ

where�e,me and v are the electron charge, mass and velocity, respectively, E
is the electric field and �c is the effective time between electron–ion collisions
(we neglect here the electron–electron collisions). ��1

c is equal to the electron–
ion collision frequency �ei, which in general depends on ion density ni, the
degree of the plasma ionization, Zi, and the electron temperature, Te (Spitzer
1962), and is given by (see sections 2.2 and 9.3)

�c ¼ ��1
ei ¼ 3

4

ðkBTeÞ3=2m1=2
e

ð2�Þ1=2Z2
i e

4ni ln�
ffi 3:44� 105

TeðeVÞ3=2

Z2
i ni ln�

½s�; � � �D
lmin

ð5:2Þ
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where �D is the Debye length and lmin is the minimum impact parameter,
defined by the classical distance of closest approach between an electron
and an ion lca (see section 2.2).

In order to get the dispersion relation in the simple plasma model, one
has to solve equation (5.1), together with the Maxwell equations in free
space containing the electric charge and the electric current:

r� E ¼ � 1

c

@B

@t
ð5:3Þ

r � B ¼ 1

c

@E

@t
� 4�enev

c
ð5:4Þ

r � E ¼ �4�ene ð5:5Þ

r � B ¼ 0: ð5:6Þ

The above equations are given in Gaussian units. Since the above model is
described by charges and currents imbedded in free space, there is no distinc-
tion between the magnetic field strength H and the magnetic induction B;
H ¼ B and also the electric field strength E equals the electric induction
(displacement) D; E ¼ D.

Solving equations (5.1) and (5.3)–(5.6) for a monochromatic wave
(constant !) with a frequency !L, propagating in a homogeneous medium
(i.e. the wave number k is constant), one can substitute in these equations

Eðr; tÞ

Bðr; tÞ

vðr; tÞ

8>><
>>:

9>>=
>>;

¼

E

B

v

8>><
>>:

9>>=
>>;

exp iðk � r� !LtÞ: ð5:7Þ

The following set of algebraic equations are obtained

i!Lv ¼
eE

me

þ �eiv ð5:8Þ

ik� E ¼ 1

c
i!LB ð5:9Þ

ik� B ¼ � 1

c
i!LE� 4�

c
neev ð5:10Þ

ik � E ¼ �4�nee ð5:11Þ

ik � B ¼ 0: ð5:12Þ

Multiplying equation (5.9) by ‘�k’ and using equations (5.8)–(5.12), one gets

ðk � EÞk�
�
k2 � !2

L

c2
þ

!2
p!

2
L

c2ð!L þ i�eiÞ

�
E ¼ 0 ð5:13Þ

Collisional Absorption (Inverse Bremsstrahlung) 75



where the electron plasma frequency !p is defined by

!2
p ¼ 4�e2ne

me

: ð5:14Þ

For transverse waves (E orthogonal to k) k � E ¼ 0, equation (5.13) yields the
dispersion relation

k2 ¼ !2
L

c2
�

!2
p!L

c2ð!L þ i�eiÞ
: ð5:15Þ

For longitudinal waves (E parallel to k) k� E ¼ 0, equation (5.13) yields the
dispersion relation

!2 þ i�ei! ¼ !2
p: ð5:16Þ

Since the transverse waves couple directly to the laser field in vacuum we shall
now consider only the dispersion relation (5.15). For �ei much smaller than
!L, typical of the plasma in the corona, a first-order Taylor expansion (in
�ei=!) of equation (5.15) is permitted, yielding

k2 ffi !2
L

c2

�
1�

!2
p

!2
L

þ
i�ei!

2
p

!3
L

�
: ð5:17Þ

Solving this equation for k, by expanding the square root of the right-hand
side of (5.17) for �ei=!L � 1 and !2

L � !2
p � ð�ei=!LÞ!2

p, one gets

k ffi 	!L

c

�
1�

!2
p

!2
L

�1=2�
1þ i

�
�ei
2!L

��
!2
p

!2
L

�
1

1� !2
p=!

2
L

�
: ð5:18Þ

The spatial damping rate of the laser energy by inverse bremsstrahlung, �ib, is
given by twice the imaginary part of k:

�ib ¼ 2 Im k ¼
�
�ei
c

��
!2
p

!2
L

��
1�

!2
p

!2
L

��1=2

: ð5:19Þ

Using equation (5.2) and the definition of the critical density nc,

nc ¼
me!

2
L

4�e2
ffi 1:1� 1021

�
1 mm
�2L

�
cm�3 ð5:20Þ

one gets for equation (5.19)

�ib ¼ �eiðncÞ
c

�
ne
nc

�2�
1� ne

nc

��1=2

/ Zin
2
e

T
3=2
e

�
1� ne

nc

��1=2

ð5:21Þ

where �eiðnc) is the collision frequency evaluated at the critical density and
�L ¼ 2�c=!L is the laser wavelength in vacuum.
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The change in laser intensity I , passing through a slab of plasma in the z
direction, is given by

dI

dz
¼ ��ibI : ð5:22Þ

For a slab of plasma of length L, the absorption coefficient �abs is given by

�abs ¼
Iin � Iout

Iin
¼ 1� exp

�
�
ðL
0
�ib dz

�
ð5:23Þ

where Iin and Iout (I is proportional to the square of the electric field ampli-
tude) are the incoming and the outgoing laser intensities respectively. For
weak absorption, �ibL � 1 and therefore �abs ffi �ibL, while for strong
absorption �abs ! 1.

For inhomogeneous plasma the solution of (5.22) is more complicated
since �ib is a function of ne, Te and ln� which may all depend on position.
In general the problem is even more difficult since all these quantities
might depend also on time. For long laser pulse duration (pulse duration
of the order of 1 ns or more) with intermediate intensities (smaller than
1014 W/cm2), it is conceivable to assume that Te and ln� are constant and
the dominant spatial dependence comes from ne.

Solving (5.22) for a linear density profile (Ginzburg 1961)

ne ¼ nc

�
1� z

L

�
0 
 z 
 L ð5:24Þ

and using equation (5.21), where the laser propagates from ne ¼ 0 to ne ¼ nc
and back to ne ¼ 0, the absorption coefficient is given by solving the integral
of (5.23):

�abs ¼ 1� exp

�
� 32

15

�eiðncÞL
c

�
: ð5:25Þ

In this equation the collision frequency is evaluated at the critical density.
Similarly, solving (5.22) for an exponential profile (Kruer 1988)

ne ¼ nc expð�z=LÞ ð5:26Þ
the absorption coefficient is

�abs ¼ 1� exp

�
� 8

3

�eiðncÞL
c

�
: ð5:27Þ

The dependence of �ib on ne=nc in equation (5.21) shows that a significant
fraction of the inverse bremsstrahlung absorption is from the region near
the critical density, ne=nc � 1. If for some reason the exponential density
profile becomes steeper at the critical surface, for example due to the
action of the high radiation pressure obtained at high laser intensity, then
one can describe this situation by the density profile

ne ¼ �nc expð�z=LÞ � < 1 ð5:28Þ

Collisional Absorption (Inverse Bremsstrahlung) 77



then the factor 8
3 in equation (5.27) is changed to 4

3 ½1� ð1þ �=2Þð1� �Þ1=2�.
For �=0.5 the factor 8

3 is changed to 0.15, reducing significantly the inverse
bremsstrahlung absorption.

At high laser intensities, e.g. I > 1015 W/cm2, the large electric field of
the laser will distort the thermal distribution of the electrons, thus changing
the electron–ion collision frequency, �ei. In this case it has been shown (Rand
1964, Silin 1965, Osborn 1972, Brysk 1975, Schlessinger and Wright 1979,
Langdon 1980) that the spatial damping rate, �ib, depends on the laser
intensity, I . Therefore, in this domain of intensities the collision absorption
is known as nonlinear bremsstrahlung.

The electron oscillatory velocity in the laser electromagnetic field EL is
given by

vE ¼ eEL

me!L

ð5:29Þ

and for laser intensities at which the energy of oscillation of the electrons in
the electric field is comparable with their thermal energy, the electron mean
square thermal velocity, v2Te, is effectively changed to

v2eff ¼ v2Te þ v2E: ð5:30Þ

Since the spatial damping rate of the laser energy by inverse bremsstrahlung,
�ib in equation (5.21), scales as T

�3=2
e / ½ðv2effÞ1=2��3, at high laser intensities

�ib is replaced by

�ib ! �ib

½1þ ðv2E=v2TeÞ�
3=2

/ 1

E3
L

/ 1

I
3=2
L

ð5:31Þ

Figure 5.1. The domain of experimental data of laser absorption by solid targets with a low

atomic number. The laser is irradiated perpendicular to the target.
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for vE=vTe > 1, and one obtains (a Taylor expansion of the denominator of
(5.31))

�ib ! �ib
1þ 3

2 ðv2E=v2TeÞ
ð5:32Þ

for vE=vTe < 1.
The experimental absorption coefficient for a solid with a low atomic

number Z (e.g. aluminium) versus the incident laser intensity IL is given in
figure 5.1. One can see the different behaviour between the long pulse dura-
tion (of the order of 1 ns) for different laser wavelength (1 mm, 1

2 mm, 1
3 mm,

1
4mm) and short laser pulses (of about 100 fs) with a wavelength of 0.8 mm.

5.2 The Electromagnetic Wave Equation in a Plasma Medium

In the previous section we considered the propagation of the electromagnetic
field in a homogeneous medium. In the following sections the laser absorption
in inhomogeneous plasmas are analysed. For this purpose the electromagnetic
wave equations have to be written and solved. From knowledge of the electro-
magnetic fields entering and exiting the plasmamedium the absorption is easily
calculated (Ginzburg 1961, Kruer 1988).

The electromagnetic wave equations are now developed for a plasma
medium where the ions are stationary and serve only as a charge-neutralizing
background to the electron motion. This is justified since the laser angular
frequency !L (larger than or equal to the electron plasma frequency !pe)
and the electron plasma frequency !pe are much larger than the ion plasma
frequency !pi, !L � !pe � !pi.

The wave equations for the electromagnetic fields are first derived.
Gaussian units are used. In this chapter we consider a monochromatic elec-
tric field Eðr; tÞ and magnetic field Bðr; tÞ defined by

Eðr; tÞ ¼ EðrÞ expð�i!tÞ; Bðr; tÞ ¼ BðrÞ expð�i!tÞ: ð5:33Þ

The electric current Je in the plasma

Je ¼ �eneve ð5:34Þ

is calculated from the electron momentum fluid equation by neglecting the
second-order terms [(ve �rÞve and ve � B], i.e. by the linear Newton’s law
for the electron motion

@ve
@t

¼ � e

me

EðrÞ expð�i!tÞ: ð5:35Þ

Integrating this equation and substituting into (5.34), one gets

Jeðr; tÞ ¼
ie2neðrÞEðrÞ expð�i!tÞ

me!
� �EEðr; tÞ ð5:36Þ
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where the electrical conductivity coefficient �E (a tensor in the general case) is

�E ¼
i!2

pe

4�!
: ð5:37Þ

Substituting Je from (5.36) into Maxwell equations and using @=@t ¼ �i!
yields

r� EðrÞ ¼ � 1

c

@B

@t
¼ i!BðrÞ

c
ð5:38Þ

r � BðrÞ ¼ 1

c

@E

@t
þ 4�Je

c
¼ �i!"EðrÞ

c
ð5:39Þ

where " is the dielectric function of the plasma equal to

" ¼ 1�
!2
pe

!2
¼ 1� neðrÞ

nec
ð5:40Þ

where nec is the critical density (ffi1:1� 1021 cm�3=�L mm
2, where �L is the

laser wavelength in vacuum). Taking r� equation (5.38) and using (5.39),
one gets the wave equation for the electric field in the plasma medium

r2
EðrÞ þ

�
!2"

c2

�
EðrÞ � r½r � EðrÞ� ¼ 0: ð5:41Þ

In a similar way, taking r� equation (5.39) and using (5.38) the wave

equation for the magnetic field in the plasma medium is obtained:

r2
BðrÞ þ

�
!2"

c2

�
BðrÞ þ

�
r"
"

�
� ½r � BðrÞ� ¼ 0: ð5:42Þ

For a homogeneous plasma (i.e. ne ¼ const.) one has a constant " (equation
(5.40)) and therefore r" ¼ 0 and r � E ¼ 0. The last relation is obtained
from the Maxwell equation

r � E ¼ 4�ðne � ni0Þ ¼ 0 ð5:43Þ

since the constant electron density equals the ion background density in
order to keep charge neutrality of the medium. Therefore, for homogeneous
plasmas the wave equations for E and B are identical:�

r2 þ !2"

c2

�
EðrÞ ¼ 0;

�
r2 þ !2"

c2

�
BðrÞ ¼ 0: ð5:44Þ

The solutions of these equations are

Eðr; tÞ ¼ E0 exp½iðk � r� !tÞ�; Bðr; tÞ ¼ B0 exp½iðk � r� !tÞ� ð5:45Þ

where the wave vector k is defined by

k2 ¼ !2"

c2
¼ 1

c2
ð!2 � !2

peÞ: ð5:46Þ
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These solutions for E and B were assumed in the previous section (equation
(5.7)). k is imaginary for !=!pe < 1, i.e. for nec=ne < 1. In this case the electric
andmagnetic fields decay exponentially. Therefore, the electromagnetic wave
cannot propagate into a plasma medium with a density larger than the criti-
cal density.

5.3 Slowly Varying Density—the WKB Approximation

We consider an electromagnetic wave normally incident onto a plasma
medium, containing from z ¼ 0 to infinity. It is assumed that the physical
quantities depend only on one space coordinate z, namely neðzÞ, "ðz;!Þ
and EðrÞ ¼ EðzÞ. Since in Cartesian coordinates

r2
EðzÞ � r½r � EðzÞ� ¼

�
d2Ex

dz2
;
d2Ey

dz2
; 0

�
ð5:47Þ

the wave equation (5.41) for the electric field EðzÞ is

d2

dz2
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Similarly, since

r"� ½r � BðzÞ� ¼
�
� d"

dz

dBx

dz
;� d"

dz

dBx

dz
; 0

�
ð5:49Þ

the wave equation (5.42) for the magnetic field BðzÞ is
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"

d"

dz

d

dz
þ !2"

c2
0

0 0
d2

dz2
þ !2"

c2

0
BBBBBBBB@

1
CCCCCCCCA

BxðzÞ
ByðzÞ
BzðzÞ

0
BB@

1
CCA ¼

0

0

0

0
BB@

1
CCA:

ð5:50Þ

Equations (5.48) and (5.50) are solved for an orthogonal incidence of a
linearly polarized laser, as described in figure 5.2. The direction of the electric
field is chosen along the x-axis, E ¼ ðExðzÞ � EðzÞ; 0; 0Þ, the magnetic field
oscillates along the y-axis, B ¼ ð0;BðzÞ; 0Þ, while these fields propagate in
the z direction, k ¼ ð0; 0; kÞ. Equations (5.48) reduce to

d2E

dz2
þ !2"

c2
E ¼ 0: ð5:51Þ
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In the WKB (Wentzel, Kramers and Brillouin, who used this approximation
to solve the Schrödinger equation) approximation one looks for a solution of
the form

EðzÞ ¼ E0ðzÞ exp
�
i!

c

ðz
 ð	Þ d	

�
ð5:52Þ

where E0 and  are slowly-varying functions of z. In this approximation the
local wave number kðzÞ in the plasma is defined by

kðzÞ ¼ ! ðzÞ
c

: ð5:53Þ

Substituting the solution (5.52) into the wave equation (5.51) gives the
differential equation

d2E0

dz2
þ
�
i!

c

�
2 

dE0

dz
þ E0

d 

dz

��
þ
�
!2E0

c2
ð"�  2Þ

�
¼ 0: ð5:54Þ

In the WKB approximation the second derivative is negligible, i.e. one takes
d2E0=dz

2 ¼ 0. Moreover, this approximation requires that the zeroth-order
derivatives vanish and the first-order derivative terms vanish. That is, the
last equation is reduced to

"�  2 ¼ 0; 2 
dE0

dz
þ E0

d 

dz
¼ 0: ð5:55Þ

The solution of (5.55) is

 ¼
ffiffiffi
"

p
; E0ðzÞ ¼

const:ffiffiffiffi
 

p ¼ const:

"1=4
: ð5:56Þ

The plasma–vacuum interface is taken at z ¼ 0. Substituting (5.56) into
(5.52) and denoting the electric field in vacuum by EL, one gets the WKB
solution for the electric field in the plasma medium

EðzÞ ¼ EL

"1=4
exp

�
i!

c

ðz ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ð!; 	Þ

p
d	

�
: ð5:57Þ

Figure 5.2. Linearly polarized electromagnetic wave normally incident onto a plasma

medium.
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Thus, the amplitude of the electric field in the plasma is (using (5.40))

E0ðzÞ �
EL

"1=4
¼ EL

ð1� ðneðzÞ=necÞÞ1=4
: ð5:58Þ

From the last equation it is evident that the amplitude increases at higher
electron density.

For the WKB approximation to be valid one requires that the second
derivative of the amplitude is much smaller than the first derivatives

d2E0

dz2
� !E0

c

d 

dz
¼ E0

dkðzÞ
dz

;
d2E0

dz2
� ! 

c

dE0

dz
¼ kðzÞ dE0ðzÞ

dz
: ð5:59Þ

Adding the two equations of (5.59) and integrating, one obtains the following
necessary condition for the WKB solution to be valid:

dE0

dz
� kðzÞE0ðzÞ ¼

! E0

c
: ð5:60Þ

Substituting (5.58) into (5.60), one gets the WKB approximation require-
ment that the plasma density should vary slowly with the coordinate

dne
dz

� 8�nec
�ðzÞ

�
1� neðzÞ

nec

�
¼ 8�nec"ð!; zÞ

�ðzÞ : ð5:61Þ

We shall now solve the magnetic field in the WKB approximation. In this
case the laser magnetic field is in the y direction, and therefore the wave
equation for the magnetic field is given by the y component of equation
(5.50). However, it is not necessary to solve this equation since the magnetic
field is easily derived by using equation (5.38):

BðzÞ ¼ � ic

!

dEðzÞ
dz

¼
�
E0ðzÞ � ic

!

dE0ðzÞ
dz

�
exp

�
i!

c

ðz
d	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ð!; 	Þ

p �
: ð5:62Þ

Using the WKB validity condition, as given by equation (5.60), one can
neglect the second term in (5.62). Now using E0ðzÞ and  ðzÞ from (5.56)
and (5.58), we get the solution for the magnetic field in the plasma medium

BðzÞ ¼ EL"
1=4 exp

�
i!

c

ðz
d	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ð!; 	Þ

p �
: ð5:63Þ

From equations (5.57), (5.58) and (5.63) one can see that while the electric field
increases at higher electron densities the magnetic field decreases accordingly.

The WKB approximation is not valid at the critical surface (where
" ¼ 0, k ¼ 0 and � ¼ 1). In laser–plasma interaction the critical surface
plays a very important role; part of the laser beam is absorbed there and
the other part is reflected from this surface. Therefore, the WKB solution
is mainly of pedagogical importance rather than of practical use. In the
next section we discuss an analytic solution (Ginzburg 1961) relevant also
in the region of the critical density.
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5.4 Linear Varying Density—the Airy Functions

In this section we choose the same geometry as given in the previous section
and described in figure 5.2. The plasma–vacuum interface is as before at
z ¼ 0, but the plasma density profile is given by

neðzÞ ¼ nec
z

L
: ð5:64Þ

Using this density profile with equation (5.40) into the electric field wave
equation (5.51), one gets (Ginzburg 1961, Landau and Lifshitz 1975)

d2EðzÞ
dz2

þ !2

c2

�
1� z

L

�
EðzÞ ¼ 0: ð5:65Þ

Changing now the variable z with the dimensionless quantity defined by

	 ¼
�
!2

c2L

�1=3

ðz� LÞ ð5:66Þ

one obtains

d2Eð	Þ
d	2

� 	Eð	Þ ¼ 0: ð5:67Þ

This equation is known as the Stokes differential equation. The solution to
this differential equation is given by the Airy functions Ai(	) and Bi(	)
(Abramowitz and Stegun 1964):

Eð	Þ ¼ aAið	Þ þ bBið	Þ: ð5:68Þ

The coefficients a and b are determined by matching the solution at the
plasma boundaries. The functions Ai, derivative of Ai and Bi, are given in
figure 5.3. From equations (5.64) and (5.66) one gets that at 	 ¼ 0 the density
is equal to the critical density, and 	 ¼ �ð!L=cÞ2=3 is the vacuum–plasma
interface. The electron density is thus given by

vacuum: neðz < 0Þ ¼ ne

�
	 
 �

�
!L

c

�2=3�
¼ 0

plasma: neðz � 0Þ ¼ ne

�
	 > �

�
!L

c

�2=3�
> 0

critical surface: neðz ¼ LÞ ¼ neð	 ¼ 0Þ ¼ nec:

ð5:69Þ

The electromagnetic wave cannot propagate for ne > nec, or equivalently for
	 > 0. Since the Airy function Bi diverges for 	 ! 1 one has to exclude the
Bi solution, namely b ¼ 0 in equation (5.68). Therefore, the electric field in
the plasma is given by the Airy function Ai(	).

84 Laser Absorption and Propagation in Plasma



It is assumed that the dimension of the plasma L, from the vacuum to
the critical surface, is large in comparison with the electromagnetic
wavelength �L. On the other hand, L is of the order of the product of the
laser time duration �L and the expansion (towards the vacuum) plasma

Figure 5.3. The Airy functions Ai, its derivative and Bi.
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velocity uexp:

L � c

!
¼ �L

2�
; �LðpsÞ � 1:6

�
�L
mm

��
107 cm=s

uexp

�
: ð5:70Þ

From this relation one can see that the approximation of this section is not
relevant for the femtosecond lasers.

The plasma vacuum interface is at j	j ¼ ð!L=cÞ2=3 � 1 (see (5.70));
therefore, we can use the asymptotic expansion (Abramowitz and Stegun
1964) of the Airy function Ai(z) for j	j � 1:

Aið�	Þ ¼ 1ffiffiffi
�

p
	1=4

cos

�
2

3
	3=2 � �

4

�
ð5:71Þ

in order to describe the electric field near the plasma–vacuum interface.
Therefore, the electric field at z ¼ 0, from the plasma side, can be
approximated by the expression

Eðz ¼ 0; plasmaÞ ¼ affiffiffi
�

p
�

c

!L

�1=6
cos

�
2!c

3L
� �

4

�

¼ a

2
ffiffiffi
�

p
�

c

!L

�1=6

�
�
exp

�
i

�
2!c

3L
� �

4

��
þ exp

�
�i

�
2!c

3L
� �

4

���
: ð5:72Þ

Looking from the vacuum side, one has at z ¼ 0 the incident laser field EL

and a reflected wave given by EL expði
Þ:

Eðz ¼ 0; vacuumÞ ¼ EL½1þ expði
Þ�: ð5:73Þ

The requirement that the solution is continuous at the plasma–vacuum
interface (i.e. equating equations (5.72) and (5.73)) yields

a ¼ 2
ffiffiffi
�

p �
!L

c

�1=6
EL exp

�
� i

�
2!L

3c
� �

4

��


 ¼ 4!L

3c
� �

2
¼ 4

3
½�	ðz ¼ 0Þ�3=2 � �

2
:

ð5:74Þ

Substituting b ¼ 0 and a from (5.74) into (5.68), one gets the solution for the
electric field in the plasma:

Eð	Þ ¼ 2
ffiffiffi
�

p �
!L

c

�1=6
EL exp

�
� i

�
2!L

3c
� �

4

��
Aið	Þ: ð5:75Þ

Ai(	) has a maximum at 	 ¼ �1 (see figure 5.3); therefore, the ratio between
the maximum value of the electric field in the plasma and the laser electric
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field in vacuum is ����Emax

EL

���� � 1:90

�
!L

c

�1=6
: ð5:76Þ

For example, for a laser-produced plasma with a dimension L ¼ 100 mm and
a laser wavelength of �L ¼ 1mm, one gets (using (5.70)) Emax=EL ffi 5:57.

The solution for the magnetic field is easily derived by using (5.38),

BðzÞ ¼ � ic

!

@EðzÞ
@z

ð5:77Þ

the solution for E as given by (5.75), and the relation (5.66),

Bð	Þ ¼ �i2
ffiffiffi
�

p �
c

!L

�1=6
EL exp

�
� i

�
2!L

3c
� �

4

��
dAið	Þ
d	

: ð5:78Þ

It is interesting to point out that when E is maximum, B is zero. At the critical
surface, 	 ¼ 0, one has (EL ¼ BL in Gaussian units)����Eðcritical surface)EL

���� ffi 1:26

�
!L

c

�1=6
����Bðcritical surface)EL

���� ffi 0:92

�
!L

c

��1=6

:

ð5:79Þ

Note that the energy conservation (as expressed by the Poynting theorem, see
Appendix A) does not require the conservation of E� B.

So far we have discussed in this section the propagation of the electro-
magnetic field without absorption. For absorption to occur, a damping of
energy is required. This is possible only if the equations of wave propagation
include collision processes, such as particle–particle and/or wave–particle.
Taking into account electron–ion collisions, the dielectric function is

" ¼ 1�
!2
pe

!ð!þ i�eiÞ
¼ 1� z

L½1þ ið�ei=!Þ�
ð5:80Þ

where a linear density profile is assumed for the second equality in this
equation. For a wave propagating in the z direction with an electric field in
the x direction, EðzÞ, one has to solve the wave equation (5.51) with the
dielectric function of (5.80). Assuming in this equation that the electron–
ion collision frequency is a constant equal to its value at the critical surface,
i.e. �ei ¼ �eiðnecÞ ¼ �c, equation (5.51) then takes the form

d2EðzÞ
dz2

þ !2

c2

�
1� z

L½1þ ð�c=!Þ�

�
EðzÞ ¼ 0: ð5:81Þ

Change of variables

	 ¼
�

!2

c2L½1þ ið�c=!Þ�

�1=3�
z� L

�
1þ i

�c
!

��
ð5:82Þ
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yields the Stokes equation (5.67) for a complex variable. Note that for �c ¼ 0
the change of variables is identical to that of equation (5.66). The solution to
the differential equation is, as before, Eð	; plasmaÞ ¼ aEið	Þ and

Eðz ¼ 0; vacuumÞ ¼ EL½1þ expði
Þ� ¼ Ein þ Eout


 ¼ 4

3

�
!L

c

�
1þ i

�c
!

��
� �

2
� 
R þ i
I

ð5:83Þ

where Ein ¼ EL is the incoming electric field and Eout is the outgoing electric
field from the plasma. Since 
 is complex we not only get a phase shift (as
before, in (5.74)), but also a damping of the wave determined by the imaginary
value of 
 (
I ¼ 4�cL=3c). The absorbed fraction fa of the input laser energy is

fa ¼
jEinj2 � jEoutj2

jEinj2
¼ E2

L � E2
L expð�2
IÞ
E2
L

: ð5:84Þ

Using the value of 
I, one gets the absorption coefficient

fa ¼ 1� exp

�
� 8�cL

3c

�
: ð5:85Þ

In comparing this result with the one obtained in (5.25) (both cases with the
same density profile), one can see that the absolute value of the coefficient in
the exponent of equation (5.85) is larger than the one in (5.25) by a factor of
5/4, implying a larger absorption coefficient. This can be understood since in
that deriving the last equation we assumed a constant collision frequency
larger than or equal to the real collision frequency. The larger the collision
frequency the larger is the absorption coefficient.

5.5 Obliquely Incident Linearly Polarized Laser

Without any loss of generality we choose the coordinates in such a way that
the laser propagates in the y–z plane, i.e. the wave vector k is in this plane.
The vacuum–plasma interface is chosen at z ¼ 0 and the electromagnetic
wave is obliquely incident at an angle �0 to the normality of this surface.

The electron density neðzÞ is assumed to be linear as in the previous
section. � is the angle between the electron density gradient and the wave
vector k. The electric field is in the x direction for s-polarization and in the
y–z plane for the p-polarization (see figure 5.4). Therefore, the components
of the electromagnetic fields are

the wave vector: k ¼ ½0; ky ¼ ð!=cÞ sin �; kz ¼ ð!=cÞ cos ��

s-polarization: E ¼ ½Exðy; zÞ; 0; 0�;B ¼ ½0;Byðy; zÞBzðy; zÞ�

p-polarization: E ¼ ½0;Eyðy; zÞ;Ezðy; zÞ�;B ¼ ½Bxðy; zÞ; 0; 0�:

ð5:86Þ
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The dispersion relation (5.46) is

!2 ¼ !2
pe þ ðk2y þ k2zÞc2: ð5:87Þ

Sincewe have only a z-dependence in the electron density, one has a constant ky:

ky ¼
!

c
sin �0 ð5:88Þ

while kz is a function of z. The relation (5.88) can be seen as the photon
momentum (¼ hk, h is Planck’s constant) conservation in the y direction.

The reflection of the laser occurs at the surface where kz ¼ 0, i.e. where
� ¼ 908. Using the linear density relation (5.64) and equations (5.40), (5.87)
and (5.88), one gets

neðkz ¼ 0Þ ¼ nec cos
2 �0; nec ¼

me!
2

4�e2

!peðkz ¼ 0Þ ¼ ! cos �0

zðkz ¼ 0Þ ¼ L cos2 �0

"ðkz ¼ 0Þ ¼ sin2 �0:

ð5:89Þ

Solving the wave equations for the electromagnetic fields, one finds that there
is no sharp cut-off as might appear from the geometrical optics (figure 5.4),
but an exponential decay of the field amplitudes for z > L cos2 �0.

Figure 5.4. A linearly polarized laser propagating in the y–z plane.
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5.5.1 s-polarization

In this case the electric field is in the x direction and the wave equation for the
x-component of the electric field, ExðzÞ, is

@2Ex

@y2
þ @2Ex

@z2
þ !2"ðzÞ

c2
Ex ¼ 0: ð5:90Þ

The electric field is a function of z and the phase exp½iðkyyþ kzzÞ�. Since kzz is
a function of z it can be included in the amplitude and using (5.88) the electric
field can be written in the form

Ex ¼ EðzÞ exp
�
i!y sin �0

c

�
: ð5:91Þ

Substituting (5.91) into (5.90) and using " ¼ 1� z=L yields

d2EðzÞ
dz2

þ !2

c2

�
1� z

L
� sin2 �0

�
EðzÞ ¼ 0: ð5:92Þ

Changing the variable z to 	 defined by

	 ¼
�
!2

c2L

�1=3
ðz� L cos2 �0Þ ð5:93Þ

one gets the Stokes differential equation (5.67) with the solution (5.75).
We shall now calculate the absorption of the s-polarized laser with

oblique incidence. The dielectric function given in equation (5.80) is taken,
but unlike in the previous section the electron–ion collision frequency is
not a constant. For the linear electron density profile the electron–ion
collision frequency is

�ei ¼ �c
ne
nec

¼ �c
z

L
: ð5:94Þ

The dispersion relation (5.87) can be written as

k2z ¼
!2

c2
½"ðzÞ � sin2 �0�: ð5:95Þ

Using (5.80) and (5.94), one gets

kz ¼
!

c

�
cos2 �0 �

z

L½1þ ið�cz=!LÞ�

�1=2
� kR þ ikI: ð5:96Þ

We shall assume that �ei=!� 1 and use the WKB approximation to calcu-
late the absorption coefficient defined by (5.84). Using equation (5.57), where

ffiffiffi
"

p
¼ ckz

!
ð5:97Þ
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one gets

jEðzÞj2 / exp

�
�2

ðz
kIð	Þ d	

�
: ð5:98Þ

Expanding (5.96) for �c=!� 1, and taking the integral in (5.98) twice from 0
to L cos2 �0 (the ‘turning’ surface where the laser is reflected), i.e. from the
plasma–vacuum boundary to the ‘turning’ surface and back to the
plasma–vacuum boundary, one gets

jEoutðz ¼ 0Þj2

jEinðz ¼ 0Þj2
¼ exp

4!

c
Im

ðL cos2 �0

0
d	

��
cos2 �0 �

	

L

�
þ i

�c
!

	2

L2

�1=2( )
ð5:99Þ

where Im stands for the imaginary part. Doing the integral and taking the
imaginary part, one gets for the absorption coefficient

fa ¼ 1� jEoutj2

jEinj2
¼ 1� exp

�
� 32�cL cos5 �0

15c

�
: ð5:100Þ

This result for �0 ¼ 0 is identical to the one obtained in equation (5.25) for
the same electron density profile. Equation (5.100) is frequently used in the
literature in order to understand the experimental results for the inverse
bremsstrahlung absorption in laser–plasma interactions.

5.6 p-Polarization: the Resonance Absorption

Laser light might be absorbed by resonance absorption in the plasma. The
solution of Maxwell’s equations show (Denisov 1957, Ginsburg 1961,
Friedberg et al. 1972, Speziale and Catto 1977) that p-polarized light incident
on a steeply rising plasma density at an angle different from zero from
normal incidence has a singularity in the magnitude of the oscillating electric
field in the plasma. This electric field resonantly drives an electron plasma
wave (see next chapter). The damping of this wave is possible either by colli-
sion or collisionless processes, so that resonance absorption is effective even
when the electron–ion collision frequency, �ei, is very small. The resonance
absorption is larger than the inverse bremsstrahlung for the following
variables: high plasma temperatures, i.e. high laser intensities; longer laser
wavelength, i.e. lower values of nc; and short plasma scale length, L. For
high laser intensities, e.g. IL�

2
L > 1015 (W/cm2) mm2, at the right laser polar-

ization (p-polarization) and angle of incidence, up to about 50% absorption
may occur by resonance absorption. The main feature of the resonant
absorption is the creation of hot electrons, since only a minority of the
plasma electrons acquires most of the absorbed energy in contrast to collision
absorption (inverse bremsstrahlung), which heats all of the electrons.
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For the p-polarization obliquely incident laser it is convenient to solve the
equation for the magnetic field, which is in the x direction. Similar to the
arguments leading to equation (5.91), the magnetic field can be presented by

Bx ¼ BðzÞ exp
�
i!y sin �0

c

�
: ð5:101Þ

Substituting (5.101) into the wave equation (5.50) for the magnetic field, one
has to solve the differential equation

d2BðzÞ
dz2

� 1

"

d"

dz

dBðzÞ
dz

þ !2

c2
ð"� sin2 �0ÞBðzÞ ¼ 0: ð5:102Þ

Using " from (5.80) for �ei ¼ 0, equation (5.102) can be rewritten as

d2BðzÞ
dz2

þ 1

ðz� LÞ
dBðzÞ
dz

�
�
!2

Lc2

�
½ðz� LÞ þ L sin2 �0�BðzÞ ¼ 0: ð5:103Þ

Substituting

	 ¼
�
!2

Lc2

�1=3
ðz� LÞ; � ¼

�
!L

c

�1=3
sin �0 ¼

�
2�L

�L

�1=3
sin �0 ð5:104Þ

equation (5.103) takes the form

d2B

d	2
� 1

	

dB

d	
� ð	 þ �2Þ ¼ 0: ð5:105Þ

Note that � and 	 are dimensionless. The differential equation (5.105)
depends on a single parameter � . This equation is singular at 	 ¼ 0, i.e. at
the critical surface. Near the critical surface, where 	 � �2, one has the
equation

d2B

d	2
� 1

	

dB

d	
� �2 ¼ 0: ð5:106Þ

The solution of this differential equation is (one can easily check the solution
by direct substitution into (5.106))

Bð	Þ ¼ B0ð1þ 1
2 �

2	2 ln 	Þ ð5:107Þ

where B0 is a constant. The magnetic field Bxðy; zÞ is thus given near the
critical surface from (5.101), (5.104) and (5.107):

Bxðz ! L; yÞ ¼ B0 1þ �2

2

�
!2

Lc2

�2=3
ðz� LÞ2

�
1

3
ln

�
!2

Lc2

�
þ lnðz� LÞ

�( )

� exp

�
i!y sin �0

c

�
: ð5:108Þ
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The electric field in the critical surface region is calculated by using equation
(5.39) (note that @=@x ¼ 0 in our choice of coordinates):

Eðz ! L; yÞ ¼ icL

!ðL� zÞr � B ¼ icL

!ðL� zÞ

�
0;
@Bxðy; zÞ

@z
;
@Bxðy; zÞ

@y

�

)
�
0; lnðz� LÞ; 1

ðL� zÞ

�
: ð5:109Þ

While the magnetic field goes to a constant the electric field has a singularity,
i.e. a resonance, at the critical surface. This singularity disappears by includ-
ing a small damping of the wave, i.e. including collisions (electron–ion or
Landau electron–wave). The collisions introduce an imaginary part in the
dielectric function " (see (5.80) that moves the singularity off the z axis. A
schematic solution for the electric field is given in figure 5.5.

Figure 5.5. A schematic solution for the electric field in the p-polarization case.
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The existence of the singularity in the electric field at the critical surface
can be recognized immediately by considering the followingMaxwell equation
in the dielectric plasma medium:

0 ¼ r � ð"EÞ ¼ "r � Eþ ðr"Þ � E: ð5:110Þ

Therefore, for " ¼ "ðzÞ one has

r � E ¼ � 1

"

@"

@z
Ez: ð5:111Þ

The resonance is only for the p-polarization where the electric field in the z
direction does not vanish, but the dielectric function can vanish there
(" ¼ 0 at ! ¼ !pe). When the p-polarized laser is reflected (when � ¼ 908)
the electric field has a component parallel to the density gradient. This
field causes charge separation as the electron oscillates along the gradient.
The electron density wave variations (�n) due to this effect are given by

�n � r � E ¼ � 1

"

@"

@z
Ez ð5:112Þ

where r � E from (5.111) was substituted into (5.112). One can see that for a
plasma frequency equal to the laser frequency (where " vanishes) one has a
resonance in the plasma wave. Therefore, the electron plasma wave is excited
resonantly at the critical density for the p-polarized laser radiation.

Let us check the consistency of this analysis with the solution of the
electric field near the critical surface (equation (5.109)). From this equation
one gets

Eðz ! LÞ � 1

ðz� LÞ

�ne � r � Eðz ! LÞ � 1

ðz� LÞ2
� Eðz ! LÞ
"ðz ! LÞ

ð5:113Þ

as predicted in the above picture by equation (5.111). Therefore, the charge
separation near the critical surface oscillates with the plasma frequency and
excites the plasma wave resonantly.

No laser absorption is possible without damping. The dissipation of the
laser energy is possible by electron–ion or electron–wave collisions, or any
other mechanism that makes the dielectric function complex. The absorbed
energy flux Iabs [dimension of energy/(area time)] can also be presented as

Iabs ¼
ð
�eff

�
E2

8�

�
dz ð5:114Þ

where �eff is the effective collision frequency and the integral is along the
electromagnetic ray path. The fraction fa of the absorbed energy is therefore
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given by

fa ¼
Iabs
IL

¼

ð
�effE

2 dz

cE2
L

: ð5:115Þ

For the linear density profile and a p-polarized laser it has been calculated
(Ginzburg 1961, Pert 1978) that the laser absorption is

fa ffi 36�2
½Aið�Þ�3

jdAið�Þ=dð�Þj ð5:116Þ

where Ai is the Airy function and � is defined in equation (5.104). fa vanishes
at t ¼ 0, goes to zero for � � 2, and has a maximum value at about � � 0.8
with a maximum absorption of about 50%, i.e.

fað� � 0:8Þ ffi 0:5: ð5:117Þ

It has been shown (Forslund et al. 1975) that for ions at rest the absorption is
practically unchanged up to electron temperatures of 100 keV.

Substituting for � ¼ 0.8 in equation (5.104) yields sin �0 ¼ 0:42�L=L.
For a plasma dimension L � �L, the resonant absorption is confined to
a light incident almost perpendicular (�0 � 08). However, for large laser
irradiances IL > 1016 W/cm2, the ponderomotive force steepens the plasma
density and in this case L � �L is possible. Also for small laser pulse dura-
tion, �L < 20 ps, the plasma dimension is smaller than the laser wavelength
in vacuum. These small plasma dimensions have peak resonance absorption
at about 258 (see figure 5.6). The high electric field near the critical surface in
these cases can accelerate electrons to energies much higher than the plasma
temperature.

Figure 5.6. Schematic absorption fraction for a p-polarized laser in comparison with an

s-polarized laser for a given laser intensity.
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5.7 Femtosecond Laser Pulses

For this class of lasers the solid target is heated faster than the time scale for
hydrodynamic expansion. The plasma medium in this case has a density
equal to its initial solid density during the laser pulse duration. The typical
laser pulse duration is of the order of �L  100 fs. During this time the
laser is absorbed and heats the target along a skin depth � � 200 Å, a
value much larger than the surface expansion 10 Å. For a laser spot
much larger than the skin depth one can assume a one-dimensional problem.

We assume that the laser is radiated in the z direction and is normally
incident on a solid target (positioned in the x–y plane) at z ¼ 0. The wave
equation of the electric field for a linearly polarized monochromatic wave
at normal incidence is (see (5.51))

@2EðzÞ
@z2

þ "ð!; zÞ!2EðzÞ
c2

¼ 0: ð5:118Þ

This equation is also known as the Helmholtz equation (Milchberg and Free-
man 1989). "ð!; zÞ is the dielectric permittivity of the target related to the
electrical conductivity �E by (see section 2.7)

" ¼ 1þ i4��E
!

: ð5:119Þ

For a constant " and a vanishing electric field at infinity, the solution of
equation (5.118) is

EðzÞ ¼ Eð0Þ exp
�
� z

�

�
ð5:120Þ

where EðzÞ is the electric field transmitted into the solid target. Denoting by
Ei and Er the incident and reflected electric field accordingly, one can write

Ei ¼ Eð0Þ exp½iðkz� !tÞ�; Er ¼
ffiffiffiffi
R

p
Eð0Þ exp½ið�kz� !tÞ� ð5:121Þ

where R is the reflection coefficient. The absorption coefficient A is given by
(Landau and Lifshitz 1975, Born and Wolf 1980)

A ¼ 1� R; R ¼
���� 1�

ffiffiffi
"

p

1þ ffiffiffi
"

p
����
2

¼ ðnR � 1Þ2 þ n2I

ðnR þ 1Þ2 þ n2I
ð5:122Þ

where the complex index of refraction is defined asffiffiffi
"

p
¼ nR þ inI: ð5:123Þ

Substituting the solution (5.120) into (5.118) yields the skin depth �:

� ¼ iffiffiffi
"

p c

!
: ð5:124Þ
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Substituting for the dielectric function (see section 2.7),

" ¼ 1�
!2
pe

!ð!þ i�Þ ð5:125Þ

where !pe is the plasma frequency and � is the electron effective collision
frequency (e.g. � ¼ �ei), one gets (More et al. 1988)

� ¼ c

!pe

�
1þ ið�=!Þ

1� ð!2=!2
peÞ � ið�!=!2

peÞ

�1=2

� c

!pe

�
1þ i

�

!

�1=2
for !pe � !: ð5:126Þ

In our plasma medium (solid target) !pe � ! and therefore the last approx-
imation is justified. The skin depth is therefore given by

� ¼

c

!pe

for
�

!
� 1 and

!

!pe

� 1

c

!pe

�
�

2!

�1=2
for

�

!
� 1 and

!

!pe

� 1:

8>>><
>>>:

ð5:127Þ

For the last stage the following algebraic relation was used:

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ ib

p
¼ 1ffiffiffi

2
p ða2 þ b2Þ1=4

�
�
1þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

�1=2
þ i

�
1� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

�1=2" #
: ð5:128Þ

Using the dielectric function from (5.125) into the absorption coefficient A in
(5.122), one gets

A ¼

2�

!pe

for
�

!
� 1 and

!

!pe

� 1

2�

!pe

ffiffiffi
!

�

r
for

�

!
� 1 and

!

!pe

� 1:

8>>><
>>>:

ð5:129Þ

For the above analysis it was assumed that the dielectric function " is a constant
in space and time.However, in general this is a very crude approximation, since
during the (time-dependent) laser pulse duration, the dielectric function " is not
constant due to the change of electron and ion temperatures as well as possible
change of the electron number density. The electron collision frequency � and
the electrical conductivity �E are functions ofTe,Ti and ne, which are functions
of space and time. In this case the following approach is more suitable.

The Joule heating gives the laser power deposition into the target per
unit volume:

Qðz; tÞ ¼ 1
2Ref�Eðz; tÞgjEj2: ð5:130Þ
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Note that �Eð!; zÞ and "ð!; zÞ vary with time t on a time scale much longer
than 2�=!. Both �E and " depend on z and t through Teðz; tÞ and Tiðz; tÞ,
while Q and EðzÞ also depend on t via the laser pulse temporal intensity
profile, ILðtÞ. A good approximation for the intensity profile is

IL � I0 sin
2

�
�t

2�L

�
for 0 
 t 
 2�L

IL � 0 for t 
 0; t � 2�L

ð5:131Þ

where �L is the FWHMpulse duration. The absorption coefficientAmeasured
at a given location ðx; yÞ on the target surface ðz ¼ 0Þ is averaged over the
temporal pulse profile:

A ¼

ð2�L
0

dt

ð1
0
Qðz; tÞ dz

ð2�L
0

ILðtÞ dt
: ð5:132Þ

In order to calculate the absorption coefficient A in (5.132) one has to use the
heat deposition Qðz; tÞ given in (5.130), which requires knowledge of the
electric field E and electric conductivity �E inside the target.

Since the interaction of the femtosecond laser has a solid state of
matter during the laser pulse duration, a knowledge of quantum solid state

physics is required (Ziman 1960, Ashcroft and Mermin 1976, Gantmakher
and Levinson 1987, Peierls 2001). In the following we shall outline the
ingredients and some approximated formulas for the calculation of the
absorption of femtosecond lasers by solid targets. The dielectric permittivity
", or equivalently the electrical conductivity �E (equation (5.119)), contains
the contribution from both the inter-band and intra-band absorption
mechanism:

�E ¼ �bb þ �D: ð5:133Þ

The subscript bb and D stand for inter-band (band–band transition) absorp-
tion and intra-band absorption, known as the Drude contribution (the
inverse bremsstrahlung absorption) given by

�D ¼ nee
2

meff

�
� þ i!

�2 þ !2

�
: ð5:134Þ

Regarding the band–band transitions there are two distinct possibilities. One
transition can occur between the Bloch-electron bands (between the lower
(e.g. first band) and the upper (e.g. second band) one-electron bands in the
first Brillouin zone), as in aluminium metal (Ashcroft and Sturm 1971).
The other possibility is the transition between the occupied atomic states
and the Fermi surface. The bb transitions will not be further discussed
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here, although they can contribute significantly to the absorption of femto-
second lasers (Fisher et al. 2001).

The electric conductivity in equation (5.134) is a function of the electron
collision frequency �, which in our case is the total momentum relaxation
rate for electrons in the solid. This collision frequency has two contributions,

� ¼ �e-phðTe;TiÞ þ �e-eðTeÞ ð5:135Þ

where �e-ph and �e-e are the electron momentum relaxation rates due to
electron–phonon and electron–electron collisions, respectively. Since � is a
function of Te and Ti it is necessary to solve the energy equations (as given
in section 3.3):

CeðTeÞ
@Te

@t
¼ @

@z

�
�ðTeÞ

@Te

@z

�
�UðTe;TiÞ þQðz; tÞ

CiðTiÞ
@Ti

@t
¼ UðTe;TiÞ

ð5:136Þ

where Ce and Ci are the electron and ion heat capacities at constant volume
(dimension [erg/(cm3 K)]), � is the electron heat conductivity (dimension
[erg/(cm s)]) and U is the energy transfer rate from electrons to ions and
can also be written by

U ¼ ðTe � TiÞ: ð5:137Þ

To calculate �,U and �E as functions of Te and Ti, knowledge of the phonon
spectrum (i.e. the dispersion relation) and the electron–phonon interaction
matrix element is required (Kaganov et al. 1957).

The phonon spectrum !phðqÞ for longitudinal phonons, where q is the
phonon wave vector, can be approximated by (Dederichs et al. 1981)

!phðqÞ ¼ qs for q 
 qb

!phðqÞ ¼ qbs for q � qb
ð5:138Þ

where s is the longitudinal sound velocity (e.g. s ¼ 6:4� 105 cm/s for
aluminium) and qb is a parameter determined by fitting the d.c. electrical
conductivity data.

Since electron–phonon scattering in metals occurs primarily via a single
longitudinal phonon absorption or emission (by an electron), the following
matrix element squared is assumed (Gantmakher and Levinson 1987):

jMðk ! k
0 	 qÞj2 ¼

�hw2
0q

2V�s
�k0�k;�q for q 
 qb

�hw2
0qb

2V�s
�k0�k;�q for q � qb

8>>><
>>>:

ð5:139Þ
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where w0 is the deformation potential constant, � and V are the medium
density and volume and �hq is the quasi-momentum of the absorbed (or
emitted) phonon as the electron wave vector has changed from k to k

0.
The � in (5.139) takes care of the momentum conservation in these processes.
The transition probability is given by

Wðk ! k
0 	 qÞ ¼ 2�

�h
jMðk ! k

0 	 qÞj2ðNq þ 1
2 	 1

2Þ�ðEk � Ek0 � �h!phðqÞÞ

ð5:140Þ

where Ek ¼ EF þ �h2fkFðjkj � jkFjÞ=2meffg and the � describes the energy
conservation. Nq is the population of longitudinal phonon mode in the
first Brillouin zone with the reduced momentum qred ¼ q� K, where K is a
corresponding vector of the reciprocal lattice. q may lie outside the first
Brillouin zone (Umklapp process) but qb is inside the first Brillouin zone.
Nq is the Bose–Einstein distribution function given by

Nq ¼
�
exp

�
�h!phðqredÞ

kBTi

�
� 1

��1

: ð5:141Þ

The rate of electron–phonon (i.e. electron–ion) energy exchange U is
calculated by the method described by Kaganov et al. (Kaganov et al. 1957,
Allen 1987, Fisher et al. 2001):

U ¼ 1

ð2�Þ3
ð �

dNq

dt

�
�h!q4�q

2 dq: ð5:142Þ

Using the phonon dispersion relation (5.138) and the matrix element (5.139),
we get equation (5.143). Note that UðTe ¼ TiÞ ¼ 0 as required from physical
consideration. For aluminium with ion temperatures larger than 300K equa-
tion (5.143) yields a  value in the domain (3.7–3.9)� 1018 erg/(cm3 sK). This
value is in very good agreement with Wang and Downer (Wang and Downer
1992) and is by a factor of 1.5–3 larger than the empirical values of Eidman
et al. (Eidman et al. 2000):

U ¼ ðTe � TiÞ

¼ sw2
0m

2
eff

4�3�h2�

�

�
�hs

kBTe

��5 ðð�hqbs=kBTeÞ

0

x4 dx

ex � 1
�
�

�hs

kBTi

��5 ðð�hqbs=kBTiÞ

0

x4 dx

ex � 1

þ q3b
2
ð4k2F � q2bÞ

��
exp

�
�hqbs

kBTe

�
� 1

��1

�
�
exp

�
�hqbs

kBTi

�
� 1

��1�

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð5:143Þ

100 Laser Absorption and Propagation in Plasma



The electron heat conductivity is given by

�ðTe;TiÞ �
Ce

3�

�
v2F þ 3kBTe

me

�
ð5:144Þ

where vF ¼ �hkF=meff is the Fermi velocity, meff is the effective mass of the
electron in the solid and �h ¼ 2�h, where h is the Planck constant. The
Fermi momentum kF is related to the Fermi energy EF ¼ ð�hkFÞ2=2me,
where me is the (free) electron mass. � is given by (5.135) and it has two
contributions, one from the electron–electron collisions and the second
from the electron–phonon collisions defined by

�e-ph ¼
X
k0

Wðk ! k
0 	 qÞ

�
ðk� k

0Þ � k
k2

��
1� f ðk0;TeÞ
1� f ðk;TeÞ

�
: ð5:145Þ

f ðk;TeÞ, the Fermi–Dirac distribution, describes the electron population

f ðk;TeÞ ¼
�
exp

�
Ek � �ðTeÞ

kBTe

�
þ 1

��1

ð5:146Þ

where � is the free electron chemical potential. One can see from (5.145) that
� is the electron momentum relaxation rate due to collisions with phonons.
For temperatures higher than the Fermi temperature the �e-ph has to be
changed to the plasma frequency collisions �ei (see section 2.2).

We do not give here a detailed calculation of �e-ph, but point out that
for temperature lower than the Fermi temperature the electron–phonon colli-
sion frequency is independent of Te and the following approximation is valid:

�e-ph � B1T i for Ti 
 TF ¼ EF

kB
ð5:147Þ

where B1 is a constant. If solid–liquid phase transition takes place then the
approximation (5.147) is valid for Te ¼ Ti < Tm (Tm is the melting tempera-
ture) and for TF > Te ¼ Ti > Tm, and �e-ph is expected to have a jump at Tm.
However, on the femtosecond time scale Te is not equal to Ti and it is
conceivable that the solid–liquid transition time is longer than the laser
pulse duration, so that in this case equation (5.147) might be a good approx-
imation. For Te > TF this dependence on Ti is no longer satisfied. However,
in this domain �e-ph is significantly smaller than the momentum relaxation
rate in electron–electron collisions �e-e, given by

�e-e �

EF

�h

�
Te

TF

�2
� B2T

2
e for Te < TF

EF

�h

�
Te

TF

��3=2

for Te > TF:

8>>>><
>>>>:

ð5:148Þ

In the second approximation of (5.148) the logarithmic factor in Te was
ignored. The values of w0 and qb in the above equations are determined by
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fitting the d.c. electrical conductivity with the experimental data (Zinovev
1996) as a function of temperature. Using (5.134), (5.147) and (5.148), one
has to fit the following expression in order to obtain the values of w0 and qb:

�Eðd:c:Þ � �Eð! ¼ 0Þ ¼ nee
2

meff�

�ðT e ¼ Ti ¼ T < TmÞ ¼ B1T þ B2T
2:

ð5:149Þ

For example, for aluminium with an electron effective mass meff ¼ 1:20me

one gets w0 ¼ 5.16 eV and qb ¼ 4:77� 107 cm�1. Figure 5.7 shows the
calculated values of the collision frequency �ðTe;TiÞ as a function of the
electron temperature for several values of ion temperatures.

In order to solve the energy equations (5.136) one has to know also the
electron and ion heat capacities at constant volume Ce and Ci. Ce can be
approximated by

CeðlowÞ ¼
�2nek

2
BTe

2EF

for kBTe � EF

CeðhighÞ ¼ 1:5kBne for kBTe � EF

Ce ¼
CeðlowÞCeðhighÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CeðlowÞ2 þ CeðhighÞ2
q for kBTe � EF:

ð5:150Þ

Figure 5.7. Calculated collision frequency �ðTe;TiÞ for several values of ion temperature Ti.
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The ion heat capacity at constant volume is given by

Ci ¼
�
@Ei

@Ti

�
V

�
�
3kBni for Ti � 300K

T3
i for Ti � 300K

Ei ¼
X

phonon modes

ðqmax

0

dq 4�q2�h!ðqÞ

ð2�Þ3
�
exp

�
�h!ðqÞ
kBTi

�
� 1

� ð5:151Þ

where Ei is the phonon energy per unit volume and plasma neutrality requires
ne ¼ Zni, where Z is the degree of ionization (including the electrons in the
conduction band). Last input to the energy equations (5.136) is the electron
heat conductivity, given by

�ðTe;TiÞ �
Ce

3�

�
v2F þ 3kBTe

me

�
ð5:152Þ

where vF ¼ �hkF=meff is the Fermi velocity.
The characteristic time scale for electron momentum relaxation �ke is

�ke ¼
1

�ðTe;TiÞ
: ð5:153Þ

Figure 5.8. Absorption of a 50 fs titanium–sapphire laser (�L ¼ 0:800 mm), doubled in

frequency (�L ¼ 0:4 mm), by an aluminium target (Fisher et al. 2001).
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For aluminium at room temperature this characteristic time scale is domi-
nated by electron–phonon collisions and equals �k ¼ 8 fs, while at the
Fermi temperature (TF ¼ 0:135� 106 K) the electron–electron collisions
dominate and �k ¼ 0:1 fs.

The characteristic times of electron energy relaxation (cooling) �Ee, and
ion (i.e. lattice) energy relaxation (heating) �Ei, are defined by

�Ee ¼
CeðTe � TiÞ

U
¼ Ce


; �Ei ¼

Ci


: ð5:154Þ

For aluminium the electron energy relaxation time increases from
�EeðTe ¼ 300KÞ � 100 fs to �EeðTe ¼ TFÞ � 10 ps mainly due to the increase
in Ce(Te), while �EiðTe > 300KÞ � 6 ps since both Ci and  are nearly
constant in Te and Ti at room temperature and above.

We end this chapter with figure 5.8, showing the detailed results of the
above calculations for a titanium–sapphire laser (�L ¼ 50 fs, �L ¼ 0:800 mm)
interacting with an aluminium target. The experimental data for a doubled
frequency (�L ¼ 0:4 mm) indicate the domain where the above approximations
are relevant.
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Chapter 6

Waves in Laser-Produced Plasma

6.1 Foreword to Parametric Instabilities

The dispersion relation for electron plasma waves is developed in section 2.6.
Some changes in the dispersion relation of electron and ion waves due to
ponderomotive force are given in section 4.3. In this chapter we discuss
mainly the parametric instabilities in laser–plasma interactions.

All material substances, including plasma, interact nonlinearly with
high-power lasers leading to parametric instabilities. A parametric instability

is defined in general by the nonlinear phenomenon where a periodic variation
in the medium induces growing oscillations at a different frequency. In solids,
liquids and gases these instabilities arise due to the nonlinear polarizability of
the material. In a plasma medium the nonlinear effects are caused by such
terms as v� B, v �rv, r � ðnvÞ, ponderomotive forces, changes of mass due
to relativistic velocities, velocity-dependent collision frequency, etc. These
terms can cause a large amplitude wave, called the pump wave, which
provides the driving force to excite other wave modes in the plasma.

In the absence of a pump wave and a magnetic field, three modes of
propagation are possible in plasma:

(a) electromagnetic wave;
(b) electron wave, known as plasmon or Langmuir wave (sometimes denoted

by ‘high frequency electrostatic plasma wave’); and
(c) ion wave, also called acoustic wave (sometimes denoted by ‘low frequency

electrostatic ion-acoustic wave’).

Neglecting the ponderomotive forces, the dispersion relations of these waves
are

electromagnetic wave: !2 ¼ !2
pe þ c2k2 ð6:1Þ

electron wave ¼ plasmon: !2 ¼ !2
pe þ 3k2v2e ð6:2Þ
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ion wave ¼ acoustic wave: ! ¼ kcs ¼ k

�
ZkBTe

mi

�1=2
ð6:3Þ

where ! and k are the wave frequency and wave number respectively and
!pe ¼ ð4�e2ne=meÞ1=2 is the electron plasma frequency. me and mi are the
electron and ion mass respectively, Z is the degree of ionization, c is the
speed of light and cs is the sound velocity, Te, ve and ne are the electron
temperature, velocity and density respectively, and kB is the Boltzmann
constant. Te much larger than the ion temperature is assumed. Equations
(6.1) and (6.2) were derived in sections 2.7 and 2.6 respectively, while
equation (6.3) is developed in section 6.6 of this chapter (the soliton section).

A high-power laser wave (denoted by the incoming ‘photon’), serving as
a pump, can induce the following parametric instabilities in plasma:

Wave�wave interaction

photon ! photonþ acoustic ðstimulated Brillouin scattering ¼ SBSÞ

photon ! photonþ plasmon ðstimulated Raman scattering ¼ SRSÞ

photon ! acousticþ plasmon ðdecay instabilityÞ

photon ! plasmonþ plasmon ðtwo-plasmon instabilityÞ

Wave�particle interaction

photonþ particle ! photonþ particle ðstimulated Compton scatteringÞ

photonþ particle ! plasmonþ particle ðstimulated Compton scatteringÞ

photonþ particle ! acousticþ particle ðstimulated Compton scatteringÞ
ð6:4Þ

In (6.4) ‘photon’, ‘acoustic’ and ‘plasmon’ mean electromagnetic, ion and
electron waves respectively. The energy and momentum conservation in the
wave–wave interaction is described by

!0 ¼ !1 þ !2; k0 ¼ k1 þ k2 ð6:5Þ

where !0 and k0 are the frequency and wave number of the pumping laser
field that decays into two waves (!1, k1) and (!2, k2). Using these conserva-
tion laws and the dispersion relations (6.1), (6.2) and (6.3), the wave–wave
interactions are induced in the following domain:

1. A laser pump with frequency near the plasma frequency, !0 � !pe, may
decay into a plasmon and an ion wave, resulting in absorption of the
laser. This effect happens near the critical surface since !0 � !pe implies
ne � nec, where nec is the critical density.

2. A laser pump with frequency !0 > 2!pe may decay into a photon and a
plasmon (SRS), leading to laser scattering, including backscattering.
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This instability reduces the laser absorption. !0 > 2!pe implies that this
instability occurs at ne <

1
4 nec.

3. A laser pump with frequency !0 > !pe may decay into a photon and an
acoustic wave (SBS), resulting in backscattering and thus reduced laser

Figure 6.1—continues.
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absorption. SBS contains a low-energy ion wave that takes only a small
fraction of the laser energy, while the rest of the energy can be scattered
out of the plasma. !0 > !pe implies that this instability occurs at ne < nec.

4. A laser pump with frequency !0 ¼ 2!pe may decay into two plasmons,
inducing laser absorption. This phenomenon happens at an electron
density ne ¼ 1

4 nec.

A schematic description of the conservation laws given in equations (6.5) are
given in figure 6.1 (Hughes 1980), taking into account the dispersion relations
(6.1), (6.2) and (6.3) for (a) decay instability, (b) stimulated Raman instability
and (c) stimulated Brillouin instability. The wave is described by a point
vector on the appropriate dispersion relation line in the !-k space and
equations (6.5) are satisfied by adding the vectors according to the decay
under consideration.

The possible absorption mechanisms and the domain of wave–wave
interactions are summarized in figure 6.2 along a density profile typical of
laser–plasma interaction.

Parametric instabilities in plasma have been studied for the past 40
years. Since the first analytic analysis (Dubois and Goldman 1965, Silin

Figure 6.1. Schematic description in the !-k space of the conservation laws given in

equations (6.5), taking into account the dispersion relations (6.1), (6.2) and (6.3) for

(a) decay instability, (b) stimulated Raman instability and (c) stimulated Brillouin

instability.
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1965a), general treatment of the parametric instabilities were developed
(Nishikawa 1968, Rosenbluth 1972, Chen 1974, Dawson and Lin 1974,
Kaw et al. 1976, Hughes 1980, Cairns 1983, Kruer 1988) and the experi-
mental status summarized (Baldis et al. 1991). Since the 1960s at almost
every conference on high-power laser–plasma interactions, the subject of
parametric instabilities has been on the agenda.

In section 6.2 the forced harmonic oscillator is summarized in an
elementary introduction (Crawford 1968) to the general formalism of
parametric instabilities. As is demonstrated in this section, energy cannot
be absorbed by a wave without the existence of damping. In non-relativistic
plasma the electromagnetic wave suffers only collisional damping. However,
the electron and ion waves experience in addition to collision the collisionless
damping due to wave particle interactions. In order to clarify this physically
important phenomenon, discovered by Landau (Landau 1946), a physical
picture of Landau damping (Stix 1992, Kruer 1988) is given in section 6.3.
In section 6.4 the formalism of the parametric decay instability is given
and in section 6.5 the stimulated Brillouin scattering is developed. We end
this chapter with section 6.6, where the soliton equation is obtained for ion
plasma waves.

Figure 6.2. Possible absorption mechanisms and the domain of wave–wave interactions

along the density profile.
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6.2 The Forced Harmonic Oscillator

In this section the harmonic motion of a point mass oscillating in the x direc-
tion is summarized (Crawford 1968). This is instructive for understanding the
more complex problem of parametric instabilities. The displacement from
equilibrium is denoted by xðtÞ. The forces acting on the mass m are:

(a) The return force, �m!2
0xðtÞ, due to a spring constant K ¼ m!2

0.
(b) A frictional drag force, �m�ðd=dtÞx, where � is the damping constant

per unit mass (� has the dimension of s�1).
(c) An external force FðtÞ.

First, the special case where F ¼ 0 is considered. The equation describing the
motion for the displacement from equilibrium x1ðtÞ is

d2x1
dt2

þ �
dx1
dt

þ !2
0x1 ¼ 0: ð6:6Þ

The solution of (6.6)with the initial conditions x1ð0Þ and v1ð0Þ ¼ ðd=dtÞx1ð0Þ is

x1ðtÞ ¼ exp

�
� �t

2

��
x1ð0Þ cos!1tþ

�
v1ð0Þ þ 0:5�x1ð0Þ

!1

�
sin!1t

�

!2
1 ¼ !2

0 � 1
4�

2:

ð6:7Þ

The oscillations are weakly damped if 1
2� � !0. The oscillations are critically

damped if 1
2� � !0, in this case !1 ! 0, cos!1t ! 1 and ð1=!Þ sin!1t ! t. If

1
2� > !0 the oscillations are over-damped, !1 ¼ �ij!1j and
cos!1t ! cosh!1t, sin!1t ! sinh!1t.

Next, the forced oscillation is introduced by taking FðtÞ ¼ F0 cos!t.
This case is representative for functions that can be described by Fourier
transform. Therefore, the equation of motion in this case is given by

d2x

dt2
þ �

dx

dt
þ !2

0x ¼
�
F0

m

�
cos!t: ð6:8Þ

The steady-state solution of this equation describes the motion of the
oscillator after the harmonic driving force has been applied for a very long
time compared with the free oscillation mean decay time �f ¼ 1=�. In this
case the harmonic oscillations are at frequency !. The steady-state solution
of equation (6.8) is

xs ¼ Xab sin!tþ Xel cos!t

Xab ¼
�
F0

m

��
�!

ð!2
0 � !2Þ2 þ �2!2

�

Xel ¼
�
F0

m

��
!2
0 � !2

ð!2
0 � !2Þ2 þ �2!2

�
:

ð6:9Þ
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It is important to point out that Xabð� ¼ 0Þ ¼ 0. One can see that Xab is the
amplitude of power absorption. On the other hand, Xel does not contribute
to the power absorption (see equation (6.10)) but contributes only to the
energy of the system; thus it describes an elastic amplitude.

The time-averaged input power Pð!Þ into the oscillator is

Pð!Þ ¼
�
FðtÞ dx

dt

�
¼ 1

2
F0!Xab

¼
�

F2
0

2m�

�
�2!2

ð!2
0 � !2Þ2 þ �2!2

ð6:10Þ

where h i denotes time average, and hcos2 !ti ¼ 1
2, hcos!t sin!ti ¼ 0 was

used. We emphasize again that P ¼ 0 if � ¼ 0.
The frequencies !ð� 1

2Þ, where the power decreases to half its value, are

!ð� 1
2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ �2

4

r
� �

2
: ð6:11Þ

The frequency interval between the two half-power points, �!res ¼
!ðþ 1

2Þ � !ð� 1
2Þ is defined as the ‘full-frequency width at half maximum’

and equals �. Therefore, one has the following very important relation
between the resonance ‘full-width’ for forced oscillations and the mean
decay time for free oscillations �f :

�!res�f ¼ 1; �!res ¼ �; �f ¼
1

�
: ð6:12Þ

It is important to note that even for a system with many degrees of freedom
the resonant width and the free decay time for each mode satisfy equation
(6.12), assuming that the resonances are well separated, i.e. they do not
overlap.

The time-averaged stored energy Wð!Þ is given by

Wð!Þ ¼ 1

2
m

��
dx

dt

�2�
þ 1

2
m!2

0hx2i ¼
1

4
mð!2

0 þ !2ÞðX2
ab þ X2

elÞ

¼
�
F2
0

4m

�
ð!2

0 þ !2Þ
ð!2

0 � !2Þ2 þ �2!2
: ð6:13Þ

The general solution of equation (6.8) is

xðtÞ ¼ x1ðtÞ þ xsðtÞ

¼ exp

�
� �t

2

�
ðX1 sin!1tþ X2 cos!1tÞ þ Xab sin!tþ Xel cos!t ð6:14Þ

where X1 and X2 are arbitrary constants fixed by the initial conditions of
displacement and velocity. Taking xð0Þ ¼ 0, and vð0Þ ¼ 0 the solution
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(6.14) can be rewritten

xðtÞ ¼ Xab

�
sin!t� exp

�
� �t

2

�
sin!1t

�

þ Xel

�
cos!t� exp

�
� �t

2

�
cos!1t

�
: ð6:15Þ

Two special solutions are of interest, one at the eigenvalue frequency,

xðt; ! ¼ !1Þ ¼
�
1� exp

�
� �t

2

��
xsðtÞ ð6:16Þ

(note that for t � 1=� one gets the steady-state solution as given above) and
the second, more important, is the resonance solution (for � ¼ 0)

xðt; ! ¼ !0Þ ¼
�

F0

2m!0

�
t sin!0t: ð6:17Þ

In the resonant case the amplitude of oscillations is unbounded as t ! 1
because the oscillator continuously absorbs energy from periodic external
force. This system is in resonance with the external force.

6.3 Landau Damping

Landau damping is discussed in almost every book on plasma physics.
However, in most of the literature this collisionless damping appears in an
abstract mathematical formalism. An electron or ion wave can be damped
without collisions. Since this phenomenon is not a mathematical trick, but
has a concrete physical reality, it is also important to explain it in a physical
picture supported by mathematics. We shall follow a picture suggested by
Stix (Kruer 1988, Stix 1992).

In the simplest one-dimensional model, the motion of the particles
(electrons or ions) in an electric field are described by Newton’s law:

d2x

dt2
¼ dv

dt
¼ qE

m
sinðkx� !tÞ ð6:18Þ

where x is the coordinate of the particle, q and m are the charge and mass of
the particle, and E, k and ! are the amplitude, the wave number and the
angular frequency of the electric field. Equation (6.18) is nonlinear and
very complex.

Following the previous section it seems that without damping it is
impossible to damp energy into (or out) of the particles. This statement is
correct only for one particle, or for a system of particles whose velocity
distribution is constant. However, by considering a non-constant velocity
distribution of the particles, one can divide the particles into two groups:
one with velocity v significantly different from the wave phase velocity
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!=k, and the second with a velocity in the range of the electric field phase
velocity, v � !=k. For v very different from !=k, equation (6.18) implies
that these particles oscillate without any gain or loss of energy. However,
particles with a velocity v � !=k feel a nearly constant electric field and
therefore can be accelerated or decelerated. If the velocity distribution of
the particles is not constant in the surrounding v � !=k, then the wave can
exchange energy with the particles.

Equation (6.18) is solved using the iteration method, by expanding the
solutions for xðtÞ about a position x0 and a free streaming velocity v0 ð� !=kÞ:

xðtÞ ¼ x0 þ v0tþ x1ðtÞ þ x2ðtÞ; vðtÞ ¼ dx

dt
¼ v0 þ v1 þ v2: ð6:19Þ

The zeroth-order solution of (6.18) is obtained by taking E ¼ 0:

xðt;E ¼ 0Þ ¼ x0 þ v0t: ð6:20Þ
Substituting (6.20) into (6.18), one obtains the first-order contributions v1
and x1:

v1 ¼
qE

m�
½cosðkx0 � �tÞ � cos kx0�

x1 ¼ � qE

m�2
½sinðkx0 � �tÞ � sin kx0 þ �t cos kx0�

� � !� kv0

ð6:21Þ

where the initial conditions v1ð0Þ ¼ 0 and x1ð0Þ ¼ 0 were chosen. Substitut-
ing x ¼ x0 þ v0tþ x1 into the right-hand side of equation (6.18), one gets
ðd=dtÞv1 þ ðd=dtÞv2 on the left-hand side of this equation. Using v1 and x1
from (6.21) yields

dv2
dt

¼ qE

m
fsin½ðkx0 � �tÞ þ kx1� � sinðkx0 � �tÞg

¼ 2qE

m

�
cos

�
kx0 � �tþ kx1

2

�
sin

�
kx1
2

��

� qE

m
fkx1 cosðkx0 � �tÞg

¼ kq2E2

m2�2
cosðkx0 � �tÞ½sinðkx0 � �tÞ � sinðkx0Þ þ �t cos kx0�: ð6:22Þ

Now the formulae are available to calculate the rate of change of the particle
energy, PðtÞ. Denoting by h ix0 the average over the initial positions and
assuming that the particles are initially at random (i.e. hcos kx0ix0 ¼
hsin kx0ix0 ¼ 0, hcos2 kx0ix0 ¼ 1

2, etc.), one gets for Pðt; v0Þ:

Pðt; v0Þ ¼
�

d

dt

�
1

2
mv2

��
x0

¼ m

��
v0

dv2
dt

�
x0

þ
�
v1

dv1
dt

�
x0

�
: ð6:23Þ
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The term hv0v1ix0 ¼ 0, while terms with a higher order than E2 were
neglected. Substituting (6.21) and (6.22) into (6.23) and averaging over the
initial positions of the particles, one gets

Pðt; v0Þ ¼
q2E2

2m

�
sin�t

�
þ kv0

�
sin�t

�2
� t cos�t

�

��

¼ q2E2

2m

�
sin�t

�
� @

@�

�
sin�t

�

��
: ð6:24Þ

We are interested in the vicinity of !� kv0 ¼ � � 0, therefore the main
contribution to the power given above is achieved for very large times.
Therefore, it seems justifiable to take the limit t ! 1 (Kruer 1988) in
equation (6.24). Using in (6.24) the following representation for the Dirac
delta function:

�ð�Þ ¼ 1

�
lim
t!1

sin�t

�
ð6:25Þ

and the identity

�ð�Þ ¼ �ð!� kv0Þ ¼
1

jkj �
�
v0 �

!

k

�
ð6:26Þ

one gets

Pðv0Þ ¼
�q2E2

2mjkj
@

@v0

�
v0�

�
v0 �

!

k

��
: ð6:27Þ

The last step is to average over the initial velocity distribution of the particles
f ðv0Þ, in order to obtain the desired energy rate exchange between the wave
and the particles:

hPðv0Þiv0 ¼
ðþ1

�1
dv0 f ðv0ÞPðv0Þ ¼ � �q2E2

2mjkj

�
!

k

��
@f ðv0Þ
@v0

�
ðv0 ¼!=kÞ

: ð6:28Þ

Note that hPðv0Þiv0 is the average power given to the particles. For positive
values the particles gain energy, while for negative values the particles lose
energy, and all this without collisions between the particles. From this
result one can see that the collisionless energy exchange between the wave
and the particles occurs for particles having a velocity almost equal to the
wave phase velocity. Particles with v0 < !=k (but in the vicinity of !=k)
gain energy from the wave, while particles with v0 > !=k (but in the vicinity
of !=kÞ lose energy to the wave. If f ðv0Þ decreases with increasing velocity,
i.e. the slope of f ðv0Þ is negative at !=k, then the wave loses energy to the
particles. If f ðv0Þ increases with increasing velocity, i.e. the slope of f ðv0Þ is
positive at !=k, then the wave gains energy from the particles.
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The power density balance (energy given by the wave¼ energy taken by
the particles) between the wave and the particles can be written by

nhPðv0Þiv0 ¼ � d

dt

�
E2

8�

�
¼ ��EME2

4�
ð6:29Þ

where n is the particle density, E / cosð!tÞ, and �EM (the wave damping
constant) is the imaginary part of !. Using (6.28) and (6.29), one gets

�EM

!
¼
�!2

pe

2nek
2

��
@f ðv0Þ
@v0

�
v0 ¼!=k

�
: ð6:30Þ

In the last equation an electron wave is assumed, where !pe is the electron
plasma frequency and n ¼ ne is the electron density. Landau has derived
equation (6.30) by using the Vlasov equation (see section 3.4). Using a
Maxwellian distribution for the electrons, f ðvÞ � expð�v2=2v2eÞ, where
mv2e ¼ kBTe (Te ¼ the electron temperature), equation (6.30) yields

�EM

!
¼ �

ffiffiffi
�

8

r
!2
pe!

k2jkjv3e
exp

�
� !2

2k2v2e

�
: ð6:31Þ

6.4 Parametric Decay Instability

The energy-momentum conservation of an electromagnetic wave decaying
into a plasma wave is described schematically in figure 6.1(a). This decay is
called the parametric decay instability. This instability is described in a
formalism (Nishikawa 1968) of two harmonic oscillators with damping
(see section 6.1), where the electromagnetic wave times the ‘other oscillator’
are acting as a driving force. The electromagnetic wave is the pump, whereA0

and !0 denote its amplitude and frequency:

A0 ¼ E0 cos!0t ¼
E0

2
½expði!0tÞ þ expð�i!0tÞ�: ð6:32Þ

The electron and ion density fluctuation amplitudes are A1 and A2; their
appropriate frequencies are !1 and !2 and !1 > !2. More explicitly, the
equations of motion describing the electron wave (denoted by index 1) and
the ion wave (denoted by index 2) are

d2A1

dt2
þ �1

dA1

dt
þ !2

1A1 ¼ c1A2A0

d2A2

dt2
þ �2

dA2

dt
þ !2

2A2 ¼ c2A1A0:

ð6:33Þ

The coefficients �j ( j ¼ 1 or 2) describe the collision plus collisionless
(Landau) damping, !j ( j ¼ 1 or 2) are the eigenvalue of equations (6.33)
with the neglect of damping and coupling (c1 ¼ c2 ¼ 0), and it is assumed
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that the pump amplitude A0 is unaffected by the decay waves 1 and 2. These
nonlinear equations are transformed to algebraic equations by Fourier
transform:

Að!Þ ¼ 1

2�

ð
dt expði!tÞAðtÞ: ð6:34Þ

Note that in the case of nonlinear equations it is not permitted to make the
substitution ð@=@tÞ ! �i!. For example, using (6.32) and (6.34) one gets

1

2�

ð
dt A0ðtÞ expði!tÞA2ðtÞ

¼ E0

4�

ð
dt½expði!0tÞ þ expð�i!0tÞ� expði!tÞA2ðtÞ

¼ E0

2
½A2ð!þ !0Þ þ A2ð!� !0Þ�: ð6:35Þ

Assuming constant damping rates, the Fourier transform of equations (6.33)
yields the following algebraic equations:

D1ð!ÞA1ð!Þ þ
c1E0

2
½A2ð!þ !0Þ þ A2ð!� !0Þ� ¼ 0

D2ð!� !0ÞA2ð!� !0Þ þ
c2E0

2
½A1ð!Þ þ A1ð!� 2!0Þ� ¼ 0

D2ð!þ !0ÞA2ð!þ !0Þ þ
c2E0

2
½A1ð!Þ þ A1ð!þ 2!0Þ� ¼ 0

ð6:36Þ

where Djð!Þ is defined by

Djð!Þ ¼ !2 � !2
j þ i!�j for j ¼ 1; 2: ð6:37Þ

In the first equation of (6.36) one can see that mode 1 at a frequency !½A1ð!Þ�
couples with mode 2 ½A2� at !þ !0 and !� !0, as demonstrated in (6.35).
Therefore, in order to obtain A2ð!þ !0Þ and A2ð!� !0Þ, one has to take
a Fourier transform like (6.35) for modes 1 at frequencies !, !þ 2!0 and
!� 2!0, leading to the second and third equations of (6.36). Assuming
that mode 1 is resonant only near !, one can neglect A1ð!þ 2!0Þ and
A1ð!� 2!0Þ in equations (6.36), yielding three algebraic equations with
three unknowns A1ð!Þ, A2ð!� !0Þ and A2ð!þ !0Þ, written in matrix form:

D1ð!Þ c1E0=2 c1E0=2

c2E0=2 D2ð!� !0Þ 0

c2E0=2 0 D2ð!þ !0Þ

0
B@

1
CA

A1ð!Þ
A2ð!� !0Þ
A2ð!þ !0Þ

0
B@

1
CA ¼

0

0

0

0
B@

1
CA: ð6:38Þ

A solution is obtained only if the determinant of the coefficients vanish. Since
A1 describes the electron wave, where !0 � ! � !1, one can neglect the
parametric decay instability for the off-resonance amplitude A2ð!þ !0Þ. In
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this case the zero determinant of the coefficients of (6.38) yields

D1ð!ÞD2ð!� !0Þ �
c1c2E

2
0

4

� �4!1!2

�
!� !1 þ i

�1

2

��
!� !0 þ !2 þ i

�2

2

�
� c1c2E

2
0

4
¼ 0 ð6:39Þ

where the following relations have been used: !0 � ! � !2, !þ !1 � 2!1 and
�1! � �1!1. Defining the real and complex parts of! by!R and� respectively,

! ¼ !R þ i�: ð6:40Þ

Equation (6.39) yields two equations (the first by equating the real part to
zero and the second by equating the imaginary part to zero):

ð!R � !1Þð!R � !1 � �Þ þ �E2
0 ¼ ð�þ 1

2�1Þð�þ 1
2�2Þ

!R ¼ !1 þ
ð�þ 1

2�1Þ�
2�þ 1

2�1 þ 1
2�2

� � !0 � !1 � !2

� � c1c2
4!1!2

:

ð6:41Þ

Substituting the second equation of (6.41) into the first one we get

E2
0 ¼ 1

�

�
ð�þ 1

2�1Þð�þ 1
2�2Þ

�
1þ �2

ð2�þ 1
2�1 þ 1

2�2Þ2
��
: ð6:42Þ

Note that E2
0=ð8�Þ is the (time-averaged) laser field energy density, i.e. the

pump energy density in our case. For E0 defined in (6.32) the laser
irradiance IL (erg cm�2 s�1) is cE2

0=ð8�Þ. The pump energy can be invested
into the electron and ion waves only if the damping � is positive, � 	 0.
The threshold pumping, i.e. the threshold laser field E0;th, is obtained by
substituting � ¼ 0 in equation (6.42):

E2
0;th ¼

!1!2�1�2

c1c2

�
1þ 4�2

ð�1 þ �2Þ2
�
: ð6:43Þ

The threshold energy of the pump goes to zero when the damping (collisional
or Landau) of either the electron wave or the ion wave goes to zero. The
minimum pumping amplitude E0;min is obtained for the exact resonance
condition, i.e. � ¼ 0:

E2
0;min ¼ !1!2�1�2

c1c2
: ð6:44Þ
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The maximum growth rate �max of the parametric instability is given from
(6.42), by substituting in this equation �1 ¼ �2 ¼ 0 and � ¼ 0:

�max ¼
�

c1c2
4!1!2

�1=2
E0: ð6:45Þ

At this stage it is important to point out that the vanishing of the 3� 3 deter-
minant of (6.38) also has an imaginary eigenvalue

! ¼ i�: ð6:46Þ

In this case one of the modes has a zero frequency and the second mode has
the pump frequency !0. This instability is known as the oscillating two-stream
instability. This phenomenon acquired this name because the electrons (or
the ions) have a time-averaged particle distribution function with two
peaks, as in the two-stream instabilities. The following scenario can explain
this instability (Chen 1974) if the pump frequency is smaller than the plasma
frequency: an ion density fluctuation causes a charge separation, which
induces an electric field oscillating with the pump frequency. Even if the
pump is homogeneous in space, the induced electric field is not homogeneous
and thus applies a ponderomotive force on the electrons, which are moving
from the low-density to the high-density region. The created d.c. (low
frequency) electric field drags the ions and the ion density perturbation
grows. The density ripple does not propagate since Re! ¼ 0.

We now calculate the values of c1 and c2 in the above equations by
analysing the more (algebraic) simple oscillating two-stream instability.
Note that in Gaussian units the dimension of ½cj� is [s�1 ðcm=gÞ1=2]. Since
c1 and c2 are model-independent, we can choose the simplest relevant
model. In particular, the Poisson equation and the fluid equations for ions
and electrons are used; where the collision frequencies are neglected,
�1 ¼ �2 ¼ 0, the electron and ion temperatures also vanish, Te ¼ Ti ¼ 0,
and the degree of ionization is taken as Z ¼ 1.

The electron motion is described by a superposition of a high-frequency
motion and a low-frequency motion. The high-frequency motion is indepen-
dent of the ion motion, while the low-frequency motion describes electrons
and ions moving together in a quasi-neutral motion. The induced electric
field, as explained above, also has low- and high-frequency components.
The indices l and h are used for low- and high-frequency components,
while the index 0 is used for the pump component or the zeroth-order
approximation. The electric field E, the ion and electron densities ni and
ne, and the fluid ion and electron velocities vi and ve have the components

E ¼ E0 þ Eh þ El; ni ¼ n0 þ nl;

ne ¼ n0 þ nl þ nh; vi ¼ vl; ve ¼ v0 þ vl þ vh:
ð6:47Þ
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It is assumed that the space perturbation is oscillatory, of the form expðikxÞ,
and the equations are linearized, so that in the equations describing the
plasma one can use the Fourier transform result for linear equations:

@

@x
¼ ik: ð6:48Þ

The equations describing the plasma system under consideration are:

(a) The ion force (momentum) and continuity equations

@vl
@t

¼ eEl

mi

;
@nl
@t

þ n0
@vl
@x

¼ 0: ð6:49Þ

(b) The electron force (momentum) and continuity equation

@ve
@t

þ ve
@ve
@x

¼ � e

me

ðE0 þ Eh þ ElÞ;
@ne
@t

þ ne
@ve
@x

¼ 0: ð6:50Þ

(c) The Poisson equation

@E

@x
¼ �4�enh ) ikEh ¼ �4�enh: ð6:51Þ

Taking the time derivative of the continuity ion equation and using the force
equation, both of (6.49) and using (6.48), one gets

@2nl
@t2

¼ � iken0El

mi

: ð6:52Þ

Note that El is induced by the ponderomotive force, proportional to
rðE0 þ EhÞ2 � 2E0rEh. Therefore, El is determined by the knowledge of
Eh. Linearizing the electron force equation in (6.50) about the zeroth-order
electron velocity, and using a Poisson equation, one gets for the fast and
low frequency components

�i!0vh ¼
4�e2nh
ikme

; ik

�
eE0 cos!0t

i!0me

�
vh ¼ � eEl

me

: ð6:53Þ

From these last two equations one gets the low-frequency electric fieldEl, which
is substituted into (6.52) to get the ion (i.e. low-frequency) driven equation:

@2nl
@t2

¼ c2nhE0 cos!0t; c2 � � iek

mi

�
!2
pe

!2
0

�
� � iek

mi

: ð6:54Þ

Equation (6.54) describes how a high-frequency density ðnhÞ times the pump
drives a low-frequency ðnlÞ density with a coupling c2.

The electron continuity equation of (6.50), with the use of (6.48) and
(6.51), yields

@nh
@t

þ ikn0vh þ ikv0nl ¼ 0: ð6:55Þ
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Taking the time derivative of this equation, neglecting @nl=@t, and using

@v0
@t

¼ � eE0 cos!0t

me

;
@vh
@t

¼ � 4�e2nh
ikme

ð6:56Þ

one obtains the high-frequency (electron) wave equation driven by the low-
frequency (ion) density times the pump:

@2nh
@t2

þ !2
penh ¼ c1nlE0 cos!0t; c1 ¼

ike

me

: ð6:57Þ

Substituting c2 and c1 from (6.54) and (6.57) into (6.43), (6.44) and (6.45), we
get for the parametric decay instability the threshold and minimum pump
amplitudes, as well as the maximum possible growth of the instability:

E2
0;th ¼ memi!1!2�1�2

e2k2

�
1þ 4�2

ð�1 þ �2Þ2
�

E2
0;min ¼ memi!1!2�1�2

e2k2

�max ¼
�

1

memi!1!2

�1=2 ekE0

2

I0 ¼
cE2

0

8�

ð6:58Þ

where I0 is the pump (laser) energy flux (in erg s�1 cm�2).

6.5 Stimulated Brillouin Scattering

The general equations (6.33) can also be used to analyse the stimulated
Brillouin or Raman instabilities. However, in this section we are using a
different approach (Cairns 1983). The formalism of this section is sometimes
more easily generalized to inhomogeneous systems, and occasionally the
physics is more transparent. Neglecting damping and couplings, the solutions
of (6.33) amplitudes and the unaffected pump amplitude can be written as

Aj ¼ aj expði!jtÞ þ c:c: for j ¼ 1; 2; 3 ð6:59Þ

where aj are constants and c.c. denotes complex conjugate. It is assumed that
by the introduction of damping and couplings the amplitudes can still be
presented by (6.59) but with aj ( j ¼ 1; 2) functions of time, but the time
variation scale of these functions is small in comparison with the oscillation
frequency time. This implies that d2aj=dt

2 and � daj=dt ( j ¼ 1; 2) can be
neglected when substituting (6.59) into (6.33). The pump amplitude a0 is
not affected by the instability. In this approximation the following equations
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are derived from (6.33):

2!1

da1
dt

þ !1�1a1 ¼ �ic1a0a2; 2!2

da2
dt

þ !2�2a2 ¼ ic2a0a1: ð6:60Þ

First-order differential equations of the form of (6.60) are now directly
derived for the stimulated Brillouin scattering (Dawson and Lin 1974). The
following notation is used: E0 is the (laser) pump amplitude; E is the scattered
electromagnetic field moving in the opposite direction to the pump wave (i.e.
reflection out of the plasma); Te is the electron temperature, assumed to be
much larger than the ion temperature; nia is the ion density perturbation
associated with the acoustic wave; and n0 is the background plasma density.
Plasma charge neutrality requires that the electron density associated with
the acoustic wave nea equals the ion density perturbation, defined by

nea ¼ nai ¼ na cos kax ð6:61Þ
where ka is the wave number of the acoustic wave. The electron energy
density is kBTenei and a fraction nai=n0 (n0 is the background density) of
this energy is acquired by the ion acoustic wave. The (space average)
energy density conservation of the Brillouin process (i.e. photon wave!
photon waveþ ion acoustic wave) is

E2
0

8�
¼ E2

8�
þ 1

2
kBTena

�
na
n0

�
: ð6:62Þ

The momentum density � in the wave is related to the energy density of a
wave W by

� ¼
�
W

!

�
k: ð6:63Þ

The simplest proof of (6.63) is in the quantum picture, W ¼ �h!n, where
�h ¼ h=2� and h is the Planck constant, ! is the (angular) wave frequency
and n is the appropriate density. � ¼ �hkn, where k is the wave number
vector. The ratio of � to W gives (6.63). Therefore, the momentum density
conservation of the Brillouin process is�

E2
0

4�

��
k0

!0

�
¼

�
E2

4�

��
k

!

�
þ
�
kBTen

2
a

n0

��
ka

!a

�
: ð6:64Þ

Substituting (6.62) into (6.64), one gets

E2

4�

�
k0

!0

� k

!

�
¼ kBTen

2
a

n0

�
ka

!a

� k0

!0

�
: ð6:65Þ

Since ðk; !Þ describes a backscatter electromagnetic wave, and !a � !0, one
can use

k � �k0; ! � !0;
k

!
� k0
!0

¼ 1

c
;

ka
!a

¼ 1

va
¼

ffiffiffiffiffiffiffiffiffiffi
mi

kBTe

r
� 1

c
ð6:66Þ

Stimulated Brillouin Scattering 121



into (6.65) to obtain

E ¼
�
2�c

n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mikBTe

p �1=2
na ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n0micva

p na
n0

� �
: ð6:67Þ

From energy and momentum conservation the important result has been
obtained that an ion acoustic wave induces an electromagnetic field; this
field is proportional to the ion density wave amplitude. In order to
calculate the rate of growth of E as a function of nia (and vice versa), the
dynamical equations, i.e. Maxwell’s equations and the fluid (or Vlasov–
Boltzmann) plasma equations, must be used.

The electric wave equation, derived from Maxwell’s equations (see
Appendix A), is

r2
E� 1

c2
@2E

@t2
�rðr 
 EÞ ¼ 4�

c2
@J

@t
: ð6:68Þ

For the Brillouin instability the source current J is given by

J ¼ �eneave ¼ �evena cos kax ð6:69Þ

where (6.61) was used in the second equality. The zeroth-order equation for
the electron velocity ve, induced by the pump wave E0, is

@ve
@t

¼ � eE0

me

cosðk0x� !0tÞ: ð6:70Þ

Taking the solution of (6.70), i.e. ve ¼ �v0 sinðk0x� !0tÞ, v0 ¼ eE0=ðme!0Þ,
and inserting it into (6.69) yields a source current

J ¼ nae
2E0

2me!0

fsin½ðk0 þ kaÞx� !0t� þ sin½ðk0 � kaÞx� !0t�g: ð6:71Þ

The electromagnetic backscattered wave is described by the second term of
the source current, k0 � ka ¼ k � �k0; and therefore only the second term
is kept for further analysis. From (6.68), the back-reflected electromagnetic
wave equation is derived by using the second term of (6.71):

@

@t
sin½ðk0 � kaÞx� !0t� ¼ �!0 cos½ðk0 � kaÞx� !0t� � �!0 cosð�k0x� !tÞ

¼ �!0 cosðk0xþ !tÞ

ð@2=@x2ÞE ¼ �k2E, and the transversal property ðk 
 E ¼ 0) of the electro-
magnetic wave

@2E

@t2
þ k2c2E ¼

!2
penaE0

2n0
cosðk0xþ !0tÞ ð6:72Þ
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where !pe is the electron plasma frequency. For the resonant case,
kc ¼ ! ¼ !0, equation (6.72) has the solution (6.17):

E ¼ EðtÞ sinðk0xþ !0tÞ; EðtÞ ¼
!2
peE0t

4!0

�
na
n0

�
: ð6:73Þ

Taking the time derivative of the amplitude EðtÞ,

dEðtÞ
dt

¼
�

!2
pe

4!0n0

�
E0na ð6:74Þ

and substituting na=n0 from (6.67), one gets

dE

dt
¼

�
!2
peE0

4!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n0micva

p
�
E � �BrilE; EðtÞ ¼ expð�BriltÞ: ð6:75Þ

Using the values of the energy flux of the pump, I0 ¼ cE2
0=ð8�Þ, we get for the

growth rate of the backscattered wave amplitude, �Bril,

�Bril ¼
1ffiffiffi
2

p !2
pe

!0

ðn0mic
2vaÞ�1=2ðI0Þ1=2: ð6:76Þ

Generalizing (6.74) to include damping due to electron–ion collisions �EM,
one has the following equation for the backscattered wave amplitude:

dEðtÞ
dt

þ �EMEðtÞ ¼
!2
pe

4n0!0

E0na: ð6:77Þ

This equation has the structure generally developed in (6.60). �EM can be
related to the electron–ion collision frequency �ei, by assuming that the
coherent oscillations of the electrons are converted to thermal motion at
the rate of electron–ion collisions. The energy conservation rate in this
case implies the relation between �EM and �ei:

�EM

E2

8�
¼ �ei

�
1

2
neme

�
eE

me!

�2�
) �EM ¼ �ei

�
!2
pe

!2

�
: ð6:78Þ

A similar equation to (6.77) for dna=dt has to be developed in order to solve
the problem.

From equation (6.67) one has that dna=dt / dE=dt and from (6.75) that
dE=dt / E0E, thus implying the desired equation dna=dt / E0E. Substitut-
ing explicitly (6.75) into (6.67) gives

dna
dt

¼
!2
pe

8�!0micva
E0E: ð6:79Þ

Including collisional and Landau damping in this equation, one gets

dna
dt

þ �ana ¼
!2
pe

8�!0micva
E0E: ð6:80Þ
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This is the second equation with a structure as in (6.60). Using the relation-
ship dna=dt ¼ �Brilna and dE=dt ¼ �BrilE, the differential equations (6.77)
and (6.80) yield the algebraic equations:

�Bril þ �EM �
!2
peE0

4n0!0

�
!2
peE0

8�!0micva
�Bril þ �a

0
BBB@

1
CCCA

E

na

� �
¼

0

0

� �
: ð6:81Þ

A solution of these equations is possible only if the determinant of the
coefficients vanish, which implies

�Bril ¼
1

2

�
� ð�EM þ �aÞ �

�
ð�EM þ �aÞ2 þ

�
!4
peI0

!2
0n0mic

2va
� 4�EM�a

��1=2�

ð6:82Þ

where ð�EM�aÞ2 was neglected. The threshold for the pump irradiance I0 is
obtained by taking �Bril ¼ 0:

I0 	 I0;th ¼ 4�EM�a!
2
0n0mic

2va
!4
pe

: ð6:83Þ

For pump intensities large compared with threshold, (6.82) and (6.83) give

�BrilðI0 � I0;thÞ ¼
!2
pe

2!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

n0mic
2va

s
: ð6:84Þ

A similar formalism for stimulated Raman instability yields

�RamðI0 � I0;thÞ ¼
!2
pe

2!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

2n0mec
2vp

s

I0;th ¼
4�EM�p!

2
0n0mec

2vp

!4
pe

ð6:85Þ

where vp ¼ !p=kp; vp, !p and kp are the phase velocity, the angular frequency
and wave number of the plasmon (electron) wave respectively. �p is the
collisional and Landau damping for the plasmon wave.

6.6 A Soliton Wave

6.6.1 A historical note

J. Scott Russell, who made observations on water waves on the Edinburgh to
Glasgow canal, first realized the phenomenon of solitary wave in 1834. These
observations together with laboratory experiments, where solitary waves
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were generated by dropping a weight at one end of a shallow water channel,
were published (Russell 1844) in 1844 before the British Association for the
Advancement of Science. Russell suggested the following empirical formula
in order to explain the steady state velocity u of the solitary wave:

u2 ¼ gðhþ aÞ ð6:86Þ
where h is the height of the undisturbed water, a is the amplitude of the wave
(figure 6.3) and g is the gravitational acceleration constant. Equation (6.86)
was later deduced by Boussinesq in 1871 (Boussinesq 1871) and indepen-
dently by Rayleigh (Rayleigh 1876), by using the equations of motion for
an incompressible fluid and assuming a wavelength �D much greater than
the height h of the water in the channel. They also derived the displacement
(y� h) of the wave above the level h:

yðx; tÞ � h ¼ a sech2
�
ðx� utÞ

D

�
; D2 ¼ 4h2ðhþ aÞ

3a
: ð6:87Þ

In 1895 Korteweg and de Vries (KdV) developed (Korteweg and de Vries
1895) the equation

@y

@t
¼ 3

2

ffiffiffi
g

h

r ��
y� hþ 2�

3

�
@y

@x
þ �

3

@3y

@x3

�
ð6:88Þ

in order to describe the motion of weakly nonlinear long transversal waves.
In equation (6.88), � is a small arbitrary parameter and � is given by

� ¼ h3

3
� �sth

g�
ð6:89Þ

where �st is the surface tension and � is the density of the liquid. Equation
(6.87) is a solution of the KdV equation (6.88).

The modern development in the theory of the KdV equation starts with
the work of Fermi, Pasta and Ulam in 1955 (Fermi et al. 1955). They studied
a nonlinear discrete mass string, and to their surprise the thermalization of
the energy in such a nonlinear system could not be achieved. Kruskal and

Figure 6.3. A solitary wave moving with a steady velocity u. h is the height of the undis-

turbed water, a is the amplitude of the wave and g is the gravitational acceleration

constant, satisfying D � h � a.
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Zabusky (1965) solved this paradox by modelling the nonlinear spring with
the KdV equation, yielding (numerically) the soliton solution. The Fermi–
Pasta–Ulam problem suggests that a nonlinear interaction does not
necessarily cause the destruction of oscillations, causing randomization.
This type of phenomenon and the KdV equation have since been derived
in many physical problems, such as an ion acoustic wave in plasma (Washimi
and Taniuti 1966).

6.6.2 What is a soliton?

A soliton is a localized nonlinear wave of steady-state form. If it interacts
with other solitons, after the interaction these structures separate in such a
way that their original structure is preserved and their velocities are
unchanged. The positions of the solitons are slightly shifted from where
they would have been without the existence of the interaction. The solitons
are solitary waves but the solitary waves are not necessarily solitons (Eliezer
1985).

6.6.3 What is a solitary wave?

The solitary waves are a one-parameter family of shaped pulses, moving with
a velocity u proportional to the wave amplitude a, and their width D is
inversely proportional to the square root of the amplitude (see figure 6.3).
Therefore, the larger the amplitude the faster is their velocity and the
narrower is their width.

6.6.4 The wave equation

The wave equation in one space dimension is

1

u2
@2 

@t2
� @2 

@x2
¼ 0: ð6:90Þ

This equation describes the propagation of waves in homogeneous media
with a constant velocity u. In deriving this equation, one has to make three
main assumptions:

(a) There is no dissipation.
(b) The amplitude of oscillation  is small so that one can neglect nonlinear

terms.
(c) There is no dispersion, i.e. the velocity of the wave propagation does not

depend on the frequency of the wavelength.

If one does not assume the absence of dissipation, nonlinearity and disper-
sion, then the universal wave equation (6.90) is not applicable and each
medium has to be described by a different system of equations.
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If the initial value of  and its time derivative are given, i.e.  ðx; 0Þ and
ð@=@tÞ ðx; 0Þ are known, then the wave equation (6.90) is a well-defined
initial value problem. This equation, like any other linear differential equa-
tion, obeys the superposition principle. That is, if f ðx� utÞ and gðxþ utÞ
solve equation (6.90), then  ðx; tÞ ¼ f ðx� utÞ þ gðxþ utÞ is also a solution
of this equation. f ðx� utÞ and gðxþ utÞ represent waves of fixed shape,
travelling to the right and left respectively. The general solution  ¼ f þ g
describes two waves that can pass through each other without changing
their shape. In general, this superposition principle does not occur in physical
systems described by nonlinear differential equations. However, a number of
nonlinear differential equations have been discovered which allow waves to
pass through each other without changing their shapes and velocities. More-
over, some principle of superposition can be defined for these nonlinear
equations. These equations are called ‘solitary wave equations’, and the
KdV equation belongs to this class of equations.

Next we show that an ion plasma wave with a wavelength much larger
than the Debye length satisfies the KdV equation; thus a soliton solution
exits in laser–plasma interaction.

6.6.5 Ion plasma wave and the KdV equation

We consider the fluctuation in the ion density of two component plasma
(electrons and ions), i.e. the ion acoustic waves. This problem is described
by the following fluid-Poisson equations:

@ni
@t

þ @ðniviÞ
@x

¼ 0

nimi

dvi
dt

¼ ZeniE

neme

dve
dt

¼ � eneE � @ðnekBTeÞ
@x

� 0

@E

@x
¼ 4�eðZni � neÞ

ð6:91Þ

where ni is the ion density and vi their velocity, ne is the electron density and
ve the electron fluid velocity, mi and me are the ion mass and the electron
mass, and Z is the charge ionization of the ions. The electron pressure is
nekBTe. The electron temperature is much larger than the ion temperature,
and in this case for simplicity one can take a zero ion temperature, Ti ¼ 0.
In the third equation of (6.91), the right-hand side is taken as zero by neglect-
ing the inertia of the electrons relative to that of the ions. Since mi � Zme,
the inertia term (neme dve=dt) in the electron momentum equation can be
neglected when dve=dt � dvi=dt, i.e. when the high-frequency plasma oscilla-
tions are neglected. Since we are interested in the regime of density and
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velocity fluctuations near the ion plasma frequency, the above approxima-
tion is justified.

In solving equations (6.91) we introduce the dimensionless variables

	 ¼ x


D
; 
D ¼

�
kBTe

4�e2Zn0

�1=2
; � ¼ !pit

!pi ¼
�
4�n0Z

2e2

mi

�1=2
; v ¼ vi

!pi
D
; F ¼ e
DE

kBTe

N ¼ ni
n0
; Ne ¼

ne
Zn0

; � ¼ !

!pi

� ¼ k
D; k ¼ 2�




ð6:92Þ

where n0 and Zn0 are the ion and electron initial (undisturbed) densities
accordingly, and k is the wave number. The fluid-Poisson equations (6.91)
in these dimensionless variables are

@N

@�
þ @ðNvÞ

@	
¼ 0

@v

@�
þ v

@v

@	
� F ¼ 0

1

Ne

@Ne

@	
þ F ¼ 0

@F

@	
þNe �N ¼ 0:

ð6:93Þ

At this stage it is convenient to define the Fourier modes:

Ne ¼ 1þ �Ne exp½ið�	 � ��Þ�

N ¼ 1þ �N exp½ið�	 � ��Þ�

v ¼ �v exp½ið�	 � ��Þ�

F ¼ �F exp½ið�	 � ��Þ�:

ð6:94Þ

Substituting (6.94) into (6.93) and linearizing the equations (i.e. neglecting
powers of � greater than one), one gets

�i� 0 0 �1

0 �� � 0

0 0 �i� �1

1 �1 0 i�

0
BBB@

1
CCCA

�Ne

�N

�v

�F

0
BBB@

1
CCCA ¼

0

0

0

0

0
BBB@

1
CCCA: ð6:95Þ

128 Waves in Laser-Produced Plasma



A non-trivial solution of (6.95) requires the vanishing of the determinant of
the coefficients, yielding the dispersion relation

� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p for � � 1: � � �þ 1
2�

3; � � � � 
D


: ð6:96Þ

As can be seen from this dispersion relation, one has an ion wave with large
wavelength (in comparison with the Debye length) if � � 1. It is worth
mentioning that to the lowest order one has for the ion wave the dispersion
relation

� ¼ � ) !

k
¼

�
ZkBTe

mi

�1=2
¼ va ð6:97Þ

where va is the phase velocity. The dispersion relation given in equation
(6.97) was used in (6.66) for Z ¼ 1 and throughout the book for (the
linear) ion acoustic phase velocity.

The soliton solution is obtained by taking into account the nonlinear
dispersion relation (6.96). The phase term in the Fourier transform of equa-
tions (6.94) is

ið�	 � ��Þ ¼ i½�ð	 � �Þ þ 1
2�

3	�: ð6:98Þ

The term 1
2�

3	 is called the dispersive term. It is convenient to introduce new
variables that incorporate this effect:

� ¼ �ð	 � �Þ;  ¼ �3	: ð6:99Þ

We rewrite equations (6.93) in terms of these variables. For this purpose we
use

@

@	
¼ �

@

@�
þ �3 @

@
;

@

@�
¼ ��

@

@�
ð6:100Þ

so that the fluid-Poisson equations to be solved are

@N

@�
þ @ðNvÞ
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þ �2 @ðNvÞ
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� F ¼ 0
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þ �3 @F
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þNe �N ¼ 0:

ð6:101Þ
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Equations (6.101) are solved by the following perturbation series:

N ¼ 1þ �2N1 þ �4N2 þ 
 
 


Ne ¼ 1þ �2Ne1 þ �4Ne2 þ 
 
 


v ¼ �2v1 þ �4v2 þ 
 
 


F ¼ �3F1 þ �5F2 þ 
 
 
 :

ð6:102Þ

The leading terms of the expansion are evident from equations (6.101). The
�2 expansion of N and Ne is necessary in order to have a consistent pertur-
bation theory in the small parameter �. Equations (6.101) to lowest order in
� are (first and last equations to order �2 and second and third equations to
order �3)

� @N1

@�
þ @v1
@�

¼ 0

@v1
@�

� F1 ¼ 0

@Ne1

@�
þ F1 ¼ 0

N1 ¼ Ne1:

ð6:103Þ

The solution of these equations is

N1 ¼ Ne1 ¼ v1 ¼ �ð�; Þ; F1 ¼ � @�

@�
: ð6:104Þ

An arbitrary function of  was neglected by integrating the first equation of
(6.103). In the next order in �, equations (6.101) are (first and last equations
to order �4 and second and third equations to order �5)

� @N2

@�
þ @

@�
ðv2 þ �2Þ þ @�

@
¼ 0

� @v2
@�

þ �
@�

@�
� F2 ¼ 0

@Ne2

@�
þ @�

@
þ �F1 þ F2 ¼ 0

@F1

@�
�N2 þNe2 ¼ 0:

ð6:105Þ

Equations (6.105) are linearly combined (@=@� [last eq.]þ [second eq.]�
[first eq.]� [third eq.]¼ 0) and F1 is substituted by using (6.104) to yield
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an equation for �:

@�

@
þ �

@�

@�
þ 1

2

@3�

@�3
¼ 0: ð6:106Þ

This equation is the famous KdV equation describing a soliton. Equation
(6.106) admits a solution of a solitary wave that is a single pulse, which
retains its shape as it propagates with a velocity u� in ð�; Þ space. Thus we
are looking for a solution of the variable ð� � u�Þ, or equivalently in the
usual space ðx; tÞ the solution is a function of ðx� utÞ, where u is the speed
of the solitary wave. The following relations between the coordinates

� ¼ �	 � �� ¼ �
�1
D x� �!pit;  ¼ �3	 ¼ �3
�1

D x ð6:107Þ

imply
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�

u ¼
!pi
D

1� �2u�

K ¼ u

�!pi

:

8>>>>>><
>>>>>>:

ð6:108Þ

Looking now for a solution of equation (6.106) in the variable z,

z ¼ � � u� ð6:109Þ

one gets from (6.106)

�u�
@�

@z
þ �

@�

@z
þ 1

2

@3�

@z3
¼ 0: ð6:110Þ

This equation can be integrated to yield

u��� 1

2
�2 � 1

2

d2�

dz2
¼ 0 ð6:111Þ

where the constant of integration is assumed to vanish. Multiplying equation
(6.111) by d�=dz and integrating once more (again with a zero constant of
integration), one has

�
d�

dz

�2
¼ 2

3
�2ð3u� � �Þ: ð6:112Þ

The solution of this equation is

�ðzÞ ¼ 3u� sec h2
�� ffiffiffiffiffi

u�

2

r �
z

�
: ð6:113Þ
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One can verify the solution (6.113) by direct substitution into (6.111) by using
the identities

dðsec h zÞ
dz

¼ �ðsec h zÞðtanh zÞ; sec h2 zþ tanh2 z ¼ 1: ð6:114Þ

The solution � of (6.113) has a peak at z ¼ 0 with a maximum �max ¼ 3u�.
� vanishes at z ¼ �1, it moves with a velocity u� in (�; ) coordinates, and
it has a width of

ffiffiffiffiffiffiffiffiffiffi
2=u�

p
. This solution has only one parameter, u�, and has

the characteristic properties of a solitary wave, i.e. the larger the speed the
greater is the amplitude and the narrower is the width.

Recalling that � ¼ v1 ¼ N1 ¼ Ne1, we return to the dimensional variables
x� t. From (6.92), (6.102) and (6.113) one gets

ni � n0 ¼ �2n0N1 ¼ ð�nÞ sec h2
�
x� ut

D

�
; �n ¼ 3�2n0u

�: ð6:115Þ

Using (6.108) and (6.115) yields

u ¼
!pi
D

1� �2u�
¼

!pi
D
1� ð�n=3n0Þ

� !pi
D

�
1þ �n

3n0

�
: ð6:116Þ

Using the relations (6.108), the solution (6.113) and �n from (6.115), one gets
the width of the soliton wave D,

D ¼
ffiffiffiffiffi
2

u�

r
u

�!pi

¼ 
D
1� ð�n=3n0Þ

ffiffiffiffiffiffiffi
6n0
�n

r
� 
D

ffiffiffiffiffiffiffi
6n0
�n

r
: ð6:117Þ

The standard properties of a solitary wave can be seen from equations (6.116)
and (6.117):

(a) The width of the solitary wave D decreases with increasing �n.
(b) The velocity of the solitary wave u increases with increasing �n.

We end this section with a note on the KdV equation. Equation (6.106) is a
special case of the general KdV equation

@�

@t
þ ��

@�

@x
þ �

@3�

@x3
¼ 0 ð6:118Þ

where � and � are two coefficients. The solution of the KdV equation is

� ¼ �0 sec h
2½ðx� utÞ=D�

D ¼ 2

ffiffiffiffiffiffiffiffi
3�

�0�

s

u ¼ �0�

3
:

ð6:119Þ
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In our equation (6.106) the coefficients are � ¼ 1 and � ¼ 1
2, implying �0 ¼ 3u

and D ¼ ð2=uÞ1=2 (see equation (6.113)).
The soliton concept has also attracted interest and speculation in laser–

plasma interactions. In particular the solitary waves were associated with the
ponderomotive force. Cavity structures, measured experimentally near
the critical surface, were related to solitary waves. However, it seems that
the very interesting phenomena of the soliton have not yet been fully and
successfully investigated in laser–plasma interactions.
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Chapter 7

Laser-Induced Electric Fields in Plasma

7.1 High- and Low-Frequency Electric Fields

In laser–plasma interaction the electric field, or rather the various macro-
scopic electric fields, plays a major role in defining the properties of the
plasma system. First, the laser electric field, EL cos!Lt, is propagating into
the plasma, where part of it is reflected and the other part is absorbed. The
laser electric field amplitude and its frequency are given by

EL ðV=cmÞ ¼ 2:75� 109
�

IL

1016 W=cm2

�1=2

!L ðs�1Þ ¼ 2�c

�L
¼ 1:88� 1015

�
mm
�L

� ð7:1Þ

where IL is the laser energy flux and �L is the laser wavelength. !L sets the
scale for high-frequency phenomena and the period of one laser oscillation
ð2�=!LÞ is about 3.3 fs for a 1 mm laser wavelength.

The propagating and reflected electric fields in different plasma media
were calculated in chapter 5. The electric fields associated with the possible
waves in the plasma were calculated in chapter 6. Two classes of electric
fields were derived: the high-frequency one, of the order of the laser
frequency or the electron–plasma frequency, ! � !pe � 1015 s�1 (for
electron density �1021 cm�3), and the low-frequency electric field of the
order of the ion–plasma frequency ! � 1012 s�1. The appropriate time
scales are about 1 fs for the high-oscillation fields and about 1 ps for the
low-oscillation fields.

Another interesting case of a slowly-varying (in time) electric field is
the one induced by the ponderomotive force and developed in chapter 4.
This ‘d.c.’ (i.e. very slow varying in time) electric field E is in the direction
of the gradient of E2

L and the magnitude of this electric field (E) is of

134



the order

eneE �
�
!2
pe

!2
L

�
E2
L

16�rL

) E ðV=cmÞ � 1:0� 107
�

IL

1016 W=cm2

��
1021 cm�3

nec

��
100 mm

rL

�
ð7:2Þ

where ne is the electron density, nec is the electron critical density, rL is the
laser radius defined by IL � expð�r2=2r2LÞ, and it is assumed that
gradE2

L � E2
L=rL. As discussed in chapter 6, an electric field can also be

induced by the ponderomotive forces associated with the wave–wave
instabilities.

In general, the electric field in laser–plasma interactions is discussed in
the previous three chapters. In this chapter we shall add two cases of
slowly varying electric fields: in section 7.2 the electric field of an expanding
plasma into the vacuum is calculated and in section 7.3 an electric field in the
double layers is calculated. An example of charge particle acceleration due to
these electric fields is given in section 7.4.

7.2 Expansion of Plasma into the Vacuum

A laser-created plasma is expanding into the vacuum, towards the laser
irradiation (Gurevich et al. 1965, 1968, 1969, Crow et al. 1975, Anisimov
et al. 1979, Sigel 1979). When a laser irradiates a target, the electrons are
heated and they expand towards the vacuum. The ions follow the electrons
that expand towards the vacuum. In this section the hydrodynamic problem
of plasma expansion is calculated, by assuming that the electrons and the
ions are treated as separate fluids with different temperatures.

We assume the simplest one-dimensional problem with plane geometry.
For a laser spot on target 2rL ¼ D (rL, the laser radius, is defined in the previous
section), this approximation is valid as long as D � vit, where vi is the stream-
ing velocity of the ions and t is the expansion time. The continuity equation for
the ions and the momentum equations for the electrons and ions are

@ni
@t

þ @ðniviÞ
@x

¼ 0

@P

@x
þ eneE ¼ 0

mini

�
@vi
@t

þ vi
@vi
@x

�
¼ eZniE

ð7:3Þ

where E is the electric field in the expanding plasma, ni and ne are the ion and
electron densities accordingly, mi is the ion mass and Ze is the ion charge.
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Neglecting the ion temperature in comparison with the electron temperature
Te, the plasma pressure P is given by

P ¼ nekBTe: ð7:4Þ

In the electron momentum equation, the second equation of (7.3), the inertia
term of the electrons (me dve=dt, where ve is the electron fluid velocity) is
neglected. This is justified when adding the two inertia terms of the electrons
and the ions, since me � mi, and neglecting the high-frequency oscillations
(not relevant to this problem) one has dve=dt � dvi=dt. Assuming charge
neutrality ne ¼ Zni, adding the electron and ion momentum equations of
(7.3), one gets

@vi
@t

þ vi
@vi
@x

¼ � 1

mini

@P

@x
: ð7:5Þ

Using the definition of the sound velocity, ne ¼ Zni; and equation (7.4), one
gets

c2s ¼
1

mi

@P

@ni
¼ ZkBTe

mi

ð7:6Þ

where the electron temperature is assumed constant, a reasonable assump-
tion for the plasma corona under investigation. Implying the identity
@P=@x ¼ ð@P=@nÞð@n=@xÞ into the right-hand side of equation (7.5) and
using (7.6), we obtain

@vi
@t

þ vi
@vi
@x

þ c2s

�
1

ni

@ni
@x

�
¼ 0: ð7:7Þ

One has to solve (7.7) together with the continuity equation (first of equa-
tions (7.3)). For this purpose we define the dimensionless variables

� ¼ x

cst
; v ¼ vi

cs
; n ¼ ni

n0

@

@x
¼ 1

cst

@

@�
;

@

@t
¼ � �

t

@

@�

ð7:8Þ

where n0 is the background density. Substituting (7.8) into the first equation
of (7.3) and (7.7), we get

v� � 1

1 v� �

� �
d ln n=d�

dv=d�

� �
¼

0

0

� �
: ð7:9 Þ

The determinant of the 2� 2 matrix should vanish in order to get a nonzero
solution, yielding

v ¼ � þ 1 ) vi ¼
x

t
þ cs ð7:10Þ
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where we choose the positive x axis in the direction of the plasma expansion.
The density profile is obtained from one of the equations of (7.9) by using
(7.10):

ni ¼ n0 expð�� � 1Þ ð7:11Þ
where the boundary condition n ¼ n0 was taken for � ¼ �1. The plasma is
expanding in the þx direction with a velocity vi, but at the same time a
disturbance (a rarefaction wave—see chapter 10) moving with the speed of
sound cs in the �x direction is taking place. This rarefaction arrives at a
position x ¼ �cst at time t, or equivalently at � ¼ �1 in the dimensionless
variable. For this reason one has to choose ni ¼ n0 at � ¼ �1.

The electric field is obtained from the second equation of (7.3) by using
(7.6) and (7.11), yielding

E ¼ � kBTe

ene

@ne
@x

¼ � kBTe

ecst

@ ln n

@�
¼ kBTe

ecst
: ð7:12Þ

From (7.12) one can see that the electric field is uniform (i.e. constant) in
space: it goes to zero for t ! 1, but has a singularity at t ¼ 0. At t ¼ 0
this solution is not relevant. The self-similar solution developed above (i.e.
where the two variables x and t can be combined into one variable, x=t) is
not permitted at very small t, small compared with the time scale defining
the problem. In our case the time defining the laser–plasma interaction is
the laser pulse duration; therefore, the above self-similar solution is relevant
only for t � �L (the laser pulse duration). The electric field in the expanding
plasma corona as given by (7.12) is about 104 V/cm at t � 3�L, for a laser
pulse duration of about 1 ns and a typical electron temperature (in energy
units) of 1 keV (cs � 3� 107 cm/s for Te ¼ 1 keV).

Figure 7.1. Self-similar solution—the plasma expansion into vacuum. v and n are the

dimensionless ion velocity and density respectively and x ¼ �cst, where cs is the isothermal

speed of sound. � is the electric potential and Te is the electron temperature.
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The electric potential � is given by

� ¼ �
ð
E dx ¼ �

�
kBTe

e

�
x

cst
¼ � kBTe

e
� ð7:13Þ

where the boundary condition � ¼ 0 for � ¼ 0 was taken.
The self-similar solution, as developed in this section for v, n and

e�=kBTe, is given in figure 7.1.

7.3 Double Layers

In a static model, the double layer (DL) consists of two adjacent regions of
opposite electric charge, which induce a potential drop and an electric
field. The plasma within the DL is not locally neutral, but over the entire
DL region it maintains space charge neutrality (global neutrality). A charac-
teristic distance of the order of Debye length separates these layers of positive
and negative charges, although in many cases the distance may be many
times the Debye length. The potential jump across these layers is of the
order of magnitude of the electron thermal temperature (where both the
potential and the temperature are in energy units).

In high-power laser–plasma interaction, the electric fields inside the DL
are no longer static, and therefore the nomenclature ‘dynamic electric fields’
was introduced (Eliezer and Hora 1989). According to two-fluid simulations
(Lalousis 1983, Hora et al. 1984) these fields act deep inside plasmas and are
oscillating and damped.

The first research on DL was conducted by Langmuir (1929). A con-
dition for DL formation was given by Bohm (1949). Although DLs have
been studied since the early days of plasma physics, this phenomenon is
still a subject of active research. The DL phenomenon is a highly nonlinear
effect of great interest in basic plasma physics, as well as in many plasma
applications. DL solutions have been obtained theoretically by using the
Vlasov equation (Bernstein et al. 1957), by solving fluid models coupled by
the Poisson equation where space charge quasi-neutrality is not assumed
(Lalousis 1983, Lalousis and Hora 1983, Hora 2000), and by performing
computer simulations (Smith 1987).

Electrostatic DLs are now a well-known phenomenon in laboratory plas-
mas (Saeki et al. 1980, Hatakeyama et al. 1983, Chan et al. 1984, Hershkowitz
1985). The experiments have shown the existence of various types of DLs that
can arise under different plasma conditions, including both magnetized and
non-magnetized plasmas. Dynamic DLs in laser–plasma interactions were
also measured experimentally (Eliezer and Ludmirsky 1983, Ludmirsky et al.
1984).

A schematic potential �ðxÞ, defining an electric field EðxÞ and a space–
charge density �eðxÞ, are given in figure 7.2. The following three conditions
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must be fulfilled for the existence of a DL:

1. The potential drop �0 through the DL obeys the relation

�0 �
kBT

e
ð7:14 Þ

where T is the temperature of the coldest plasma bordering the layer, kB
is the Boltzmann constant and e is the electron charge.

2. Quasi-neutrality is locally violated in both space charge layers.
3. Global neutrality, i.e. zero net charge of the DL, is required.

The last constraint implies that the electric field is much stronger inside the
DL than outside. The DL potential divides the plasma particles into four
classes: free and trapped or reflected electrons and ions. The free electrons
and ions have a kinetic energy larger than the potential barrier, and therefore
they can move from one side of the DL to the other side. The particles with a
kinetic energy smaller than the potential barrier are reflected or trapped at
the DL borders and cannot move from one side of the DL to the other
side. The charge separation in the DL is maintained by flux continuity of
the free-streaming particles. The free particles are the streaming electrons
from � ¼ 0 towards � ¼ �0 and the ions are streaming in the opposite
direction. Outside the DL, trapped or reflected ions on the low-potential
side and trapped or reflected electrons on the high-potential end maintain
charge neutrality.

Figure 7.2. Schematic of the potential �, the electric field E and the charge density �e in a

static DL.
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In the next section it is shown how these DLs can accelerate electrons
and ions.

7.4 Charged Particle Acceleration

7.4.1 A static model

Laser-produced plasma experiments have shown that high-energy ions are
emitted and carry away a large fraction of the absorbed laser energy. X-ray
emission measurements at laser intensities IL�

2
L > 1014 Wmm2/cm2 (the laser

irradiance IL is measured in W/cm2 and the laser wavelength �L in mm)
have shown non-Maxwellian electron velocity distribution (Haines 1979,
Ahlstrom 1982). Two distinct electron temperatures, the so-called thermal
(or cold) and supra-thermal (or hot) temperatures, usually characterize this
distribution. These electron distributions are associated with the existence of
fast ions. We shall now describe a very simple model showing how DLs
accelerate ions.

A high-power laser irradiates a spherical pellet of radiusR. The fast elec-
trons emitted from the spherical plasma leave the sphere until an electrostatic
potential is set up to stop the outgoing electrons. The thermal electrons then
traverse this field (i.e. the DL), decelerate and accelerate back towards the
sphere. The same field will accelerate positive ions from the outer surface
of the plasma. The fast ions are field-extracted from the plasma and therefore
they can be used to measure the electric field and the potential of the DL
under consideration. For simplicity, monochromatic fast electrons and
protons (the ions) species are assumed. The protons, with a mass M, are
emitted from the DL with velocity v, so that

1
2Mv2 ¼ e� ð7:15Þ

where � is the DL potential drop. Assuming that the fast protons have a total
energy W and a total charge Q, one can write

W ¼ Q�: ð7:16Þ

The charge of the proton q present at any moment inside the DL (defined by
the potential drop � and charge separation d) is given by

q ¼ Qd

v�L
¼ Wd

�v�L
ð7:17Þ

where �L is the laser pulse duration. For the geometry under consideration,
the DL can be modelled by a capacitor with a capacity C:

C ¼ 4�R2

d
: ð7:18Þ
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The capacitor is charged with a charge greater than q (the momentary charge
of the protons inside the DL) and with a voltage equal to �; therefore

� >
q

C
¼ Wd2

4�R2�v�L
: ð7:19Þ

This relation implies that the electric field created by the charge separation
(i.e. the DL) is

E ¼ �

d
�

�
W

4�R2v�L

�1=2
: ð7:20Þ

The velocity of the ions is measured from the time of flight and the number of
ions is measured with charge collectors, and from these their energy is
deduced. Using a typical experiment where W ¼ 10 J, v ¼ 108 cm/s,
�L ¼ 1 ns, R ¼ 50 mm, one gets an electric field E > 5� 108 V/cm.

From this simple model we can conclude that the fast electrons transfer
their energy to the electrostatic field in order to create a DL, while the fast
ions take their energy from the electric field of the DL. This mechanism
can lead to very high electric fields, as is obtained above.

7.4.2 A dynamic model

DL solutions have been obtained theoretically by solving a two-fluid model
coupled by the Poisson equation, where space-charge quasi-neutrality is not
assumed. For example, in the simulation (Hora et al. 1984) of the interaction
between a plasma with a highly bent parabolic initial density profile of 25
wavelengths thickness and a neodymium glass laser radiation of 1017 W/cm2

intensity, the following results were achieved:

(a) a caviton (i.e. a minimum in the density) is created,
(b) the plasma is accelerated towards the vacuum with a velocity of about

108 cm/s,
(c) a dynamic (time-dependent) DL is created with a maximum electric field

about 109 V/cm and
(d) electrons were accelerated to energies �140 keV.

The following simple dynamical model has been suggested in order to explain
how dynamical DL accelerates electrons (Eliezer et al. 1995).

We assume that a DL is created at time t ¼ 0 during a very short time
interval, described by the Dirac delta function, �ðtÞ. The Poisson equation
gives

dE

dx
¼ �4�e½neðx; tÞ � niðx; tÞ� ¼ f ðxÞ�ðtÞ: ð7:21Þ
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Integrating this equation yields

E ¼ �ðtÞ
ð
f ðxÞ dx ¼ FðxÞ�ðtÞ: ð7:22Þ

For example, from a ‘quadrupole’ type (two DL in a sequence) of interaction
defined by a charge density

f ðxÞ ¼ K

�
2x

�4

�
1� 2x2

�2

��
exp

�
� x2

�2

�
ð7:23Þ

one gets a space-dependent electric field

FðxÞ ¼ K

�2

�
1þ 2x2

�2

�
exp

�
� x2

�2

�
: ð7:24Þ

The Newton equation for the electron

dv

dt
¼ � eE

m
¼ � e

m
FðxÞ�ðtÞ ð7:25Þ

has the solution

dx

dt
¼ vðtÞ ¼ � e

m
FðxÞ	ðtÞ þ v0 ¼ ðv1 � v0Þ	ðtÞ þ v0

	ðtÞ ¼
1 for t > 0

0 for t < 0

( ð7:26Þ

where v0 is the initial velocity and v1 the final velocity, after the acceleration.
If the electron is at the position x when the force is applied (at t ¼ 0 in this
example), then the final velocity is achieved according to the value of
�eFðxÞ=m.

The position of the electron is given by integrating (7.26):

xðtÞ ¼ v0tþ ðv1 � v0Þ	ðtÞt ð7:27Þ
where the identity �ðtÞt ¼ 0 was used.

Substituting (7.26) into (7.25), the electric field can be written

Eðx; tÞ ¼ FðxÞ�ðtÞ ¼ �m

e
ðv1 � v0Þ�ðtÞ: ð7:28Þ

The energy given to the particle by the electric field is given by using (7.26)
and (7.28):

�e

ð
Eðx; tÞ dx ¼ � e

ðþ1

�1
E½xðtÞ; t� dx

dt
dt

¼ mðv1 � v0Þ
ðþ1

�1
�ðtÞ½ðv1 � v0Þ	ðtÞ þ v0� dt

¼ 1
2mðv21 � v20Þ ð7:29Þ
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where in the last stage we have used the identityð
	ðtÞ�ðtÞ dt ¼ 1

2 ð7:30Þ

which can be easily proven by integrating by parts.
Equation (7.29) is the energy conservation, which shows that a particle

can be accelerated or decelerated by E, depending on the value of the electric
field at the particle position, at the time that the DL is created. It has been
shown that under the right configuration a charged particle can be acceler-
ated to high energies even when the electric field is changing very fast in time.

In summary, it has been demonstrated that a dynamic DL can accelerate
charged particles, as was suggested in astrophysics (Fälthammer 1987,
Alfvén 1988, Raadu 1989). The existence of DL in laser-produced plasma
in the outer corona was detected directly by the deflection of a probing
beam (Ehler 1975, Mendel and Olsen 1975) and by using Rogowski coils
(Eliezer and Ludmirsky 1983). Therefore, similar to DL in astrophysics,
the DL might play an important role in laser–plasma interactions.
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Chapter 8

Laser-Induced Magnetic Fields in Plasma

When a laser irradiates a medium, the laser magnetic field BL cos!Lt (together
with the associated electric field) is propagating into the plasma, part of it is
reflected and the other part is absorbed. The laser magnetic field amplitude
and its frequency are given by

BLðGaussÞ ¼ 9:2� 106
�

IL

1016 W=cm2

�1=2

!L ðs�1Þ ¼ 2�c

�L
¼ 1:88� 1015

�
mm
�L

� ð8:1Þ

where IL is the laser energy flux and �L is the laser wavelength. !L sets the
scale for high-frequency phenomena. The period of one laser oscillation
(2�=!L) is about 3.3 fs for a laser with a wavelength of 1 mm. The propagation
of electromagnetic field in plasma was calculated in chapter 5. There are also
high-frequency magnetic fields associated with the stimulated Brillouin and
Raman scattering discussed in chapter 6.

In this chapter we are interested only in the slowly-varying (on the time
scale of the laser pulse duration) magnetic fields, approximated as d.c.
magnetic fields. The generation of d.c. mega-Gauss magnetic fields in
laser-produced plasmas is well-documented (Stamper et al. 1971, Boyd and
Cooke 1988, Horovitz et al. 1998). In this chapter we discuss the mechanisms
proposed to explain the generation of the d.c. magnetic fields and some
theoretical consequences.

In section 8.1, the rn�rT toroidal magnetic field (Raven et al. 1978,
Bobin 1985, Stamper 1991) is derived. In section 8.2, the magneto-
hydrodynamic equations are derived (Braginskii 1965, Nicholson 1983,
Parks 1991). Using the generalized Ohm’s law together with theMaxwell equa-
tions, a generalized equation for the d.c.magnetic field is obtained. Inparticular
the magnetic Reynolds number is defined and the dynamo effect is described
(Briand et al. 1983, Dragila 1987). Section 8.3 describes the Faraday effect
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and the magnetic field created by the inverse Faraday effect (Steiger and
Woods 1972, Eliezer et al. 1992, Lehner 1994, 2000, Sheng and Meyer-ter-
Vehn 1996, Haines 2001). In section 8.4 we develop the dispersion relation
for waves in the presence of the d.c. magnetic field. In particular, ordinary,
extraordinary and Alfvén waves are analysed. We conclude this chapter
with section 8.5, showing the effect of resonance absorption in the presence
of the d.c. magnetic field (Woo et al. 1978, David and Pellat 1980).

8.1 The rn�rT Toroidal Magnetic Field

One can see from the Maxwell equation (in Gaussian units)

r� E ¼ � 1

c

@B

@t
ð8:2Þ

that a magnetic field is generated if the electric field E does not have a
vanishing curl, i.e. the electric field in the plasma is not derivable from a
potential. As discussed in the previous chapter, the electric field in the
plasma is required in order to keep quasi-neutrality on a large scale
(compared with the Debye length) during long periods of time (compared
with the inverse plasma frequency). From the electron momentum equation
(see section 3.1), on the long time scale it is justifiable to neglect the inertia of
the electrons, implying

0 ¼ �rPe � eneE: ð8:3Þ

This equation is equivalent to the assumption that the volume forces due to
the free electrical charges balance the electron pressure gradient. In equation
(8.3), the charge motion is neglected. Substituting the ideal gas equation of
state

Pe ¼ nekBTe ð8:4Þ

into equation (8.3), one gets the electric field E for equation (8.2), yielding

@B

@t
¼ ckB

ene
rTe �rne: ð8:5Þ

From this equation an estimate of the magnitude of the magnetic field B is
obtained by the substitution of

@

@t
� 1

�L
;

rne
ne

� 1

Ln

; rTe �
Te

LT

ð8:6Þ

into equation (8.5), implying

B ðMGaussÞ � 10

�
�L
1 ns

��
kBTe

1 keV

��
30 mm
Ln

��
30 mm
LT

�
ð8:7Þ
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where �L is the laser pulse duration or the characteristic loss time due to
ablation and diffusion.

Thus a magnetic field is generated from non-parallel density and
temperature gradients, as shown in figure 8.1. It turns out that this is the
dominant phenomenon for the generation of a toroidal magnetic field,
although there are other terms that contribute to the generation of d.c.
toroidal magnetic fields, as proven in the following section.

8.2 Magneto-Hydrodynamics and the Evolution of

the Magnetic Field

In this section the evolution equation of the magnetic field is developed. For
this purpose the plasma is described as a magnetic fluid and the equations
include the generalized Ohm’s law, together with Maxwell equations. The
following equations describe the mass conservation and the momentum
conservation for the ion and electron fluids (in Gaussian units):

@ni
@t

þr � ðniviÞ ¼ 0

@ne
@t

þr � ðneveÞ ¼ 0

mini
@vi
@t

þminiðvi � rÞvi ¼ �rPi þ Zeni

�
Eþ vi � B

c

�
þ Ri

mene
@ve
@t

þmeneðve � rÞve ¼ �rPe � ene

�
Eþ ve � B

c

�
þ Re

ð8:8Þ

wheremi,me and ni, ne are the ion and electron masses and densities, vi and ve
are the ion and electron fluid velocities, Pi and Pe are the appropriate
pressures, E and B are the electric and magnetic fields in the plasma

Figure 8.1. Magnetic field is generated from non-parallel density and temperature gradients.
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medium and c is the light velocity. ReðrÞ represents the change in electron
momentum at position r due to collisions with ions and RiðrÞ is the change
in ion momentum at r due to collisions with electrons. Therefore

Re ¼ �Ri: ð8:9Þ

We combine the ion and the electron equations to obtain the equations for
one fluid. This fluid is described by the mass density �ðrÞ, charge density
�eðrÞ, a centre of mass fluid flow u and an electrical current J, defined by

� ¼ mini þmene ffi mini

�e ¼ Zeni � ene

u ¼ 1

�
ðminivi þmeneveÞ

J ¼ Zenivi � eneve

ð8:10Þ

and a total pressure

P ¼ Pe þ Pi : ð8:11Þ

Multiplying the first equation of (8.8) by mi and the second equation by
me and adding, one gets the one-fluid continuity equation (i.e. the mass
conservation):

@�

@t
þr � ð�uÞ ¼ 0: ð8:12Þ

Multiplying the first equation of (8.8) by Ze and the second equation by �e
and adding, one gets the charge continuity, or the charge conservation law:

@�e
@t

þr � J ¼ 0: ð8:13Þ

It is assumed that ve, vi, @ne=@t and @ni=@t are small quantities and second-
order terms, such as ðv � rÞv, are neglected. Adding the third equation of
(8.8) with the fourth equation and using the definitions (8.10) and (8.11),
one gets the one-fluid force equation (or the momentum conservation):

�
@u

@t
¼ �rPþ �eEþ 1

c
J� B: ð8:14Þ

8.2.1 The generalized Ohm’s law

We assume charge neutrality

ne ¼ Zni ð8:15Þ
and neglect the second-order terms (in ve, vi, @ne=@t and @ni=@t) and
1=mi � 1=me. Adding the third equation of (8.8) multiplied by Ze=mi with
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the fourth equation multiplied by �e=me, and using the definitions (8.10),
one gets

@J

@t
¼ e

me

r
��

1þ Ti

ZTe

��1

P

�

þ Ze2�

memi

�
Eþ 1

c
u� B

�
� e

mec
J� Bþ e

me

Ri : ð8:16Þ

Algebraic relations such as the following were used in order to derive
equation (8.16):

e2ne
me

¼ e2Zni
me

¼ e2Z

memi

ðminiÞ ffi
e2Z

memi

ðmini þmeneÞ ¼
e2Z�

memi

ð8:17Þ

e2neve
mec

¼ e

mec
ðeneve � ZeniviÞ þ

Ze2nimivi

memic

ffi � e

mec
Jþ Ze2

memic
ðnimivi þ nemeveÞ ¼ � e

mec
Jþ Ze2

memic
�u ð8:18Þ

Ze

mi

Ri �
e

me

Re ¼
�
Ze

mi

þ e

me

�
Ri ffi

e

me

Ri ð8:19Þ

Pe

P
¼ nekBTe

nekBTe þ nikBTi

¼ ZniTe

ZniTe þ niTi

¼
�
1þ Ti

ZTe

��1

ð8:20Þ

where Ri in equation (8.16) is the change in the ion momentum due to
collisions with electrons. Therefore, one can expand Ri as a Taylor series
in the relative velocity between the ions and the electrons. Keeping only
the first term in the Taylor expansion, one gets

Ri ¼ C1ðvi � veÞ: ð8:21Þ
Using charge neutrality and the definition of the electric current, equations
(8.10) and (8.15), into equation (8.21) gives

Ri ¼ C2J: ð8:22Þ

Since the value of C2 does not depend on the general structure of equation
(8.16), one can consider this equation for the following special case: steady
state, no pressure (or temperature) gradients and without magnetic field.
Substituting (8.22) into (8.16) for this special case, one obtains

Ze�

mi

Eþ C2J ¼ 0: ð8:23Þ

Using now the simple Ohm’s law for this case (see section 2.3), where �E is the
electrical conductivity coefficient,

J ¼ �EE ð8:24Þ
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one gets the value of C2, implying

Ri ¼ C2J ¼ � Ze�

mi�E
J: ð8:25Þ

Substituting (8.25) into (8.16), we get the generalized Ohm’s law:
�
memi

Ze2�

�
@J

@t
¼

�
mi

Ze�

�
r
��

1þ Ti

ZTe

��1

P

�
þ Eþ

�
1

c

�
u� B

�
�

mi

Zec�

�
J� B�

�
1

�E

�
J: ð8:26Þ

The magneto-hydrodynamic equations are (8.12), (8.13), (8.14) and (8.26),
together with the following Maxwell equations:

r� E ¼ �
�
1

c

�
@B

@t
; r� B ¼

�
4�

c

�
Jþ

�
1

c

�
@E

@t
: ð8:27Þ

One therefore has 14 equations with 14 unknowns: �, �E, u, J, E and B. This
is correct only if the temperatures Te and Ti are known, otherwise the (elec-
tron and ion) energy conservation equations are also necessary. Moreover,
knowledge of the equations of state, Pe ¼ Peð�;TeÞ and Pi ¼ Pið�;TiÞ, is
necessary. For not very dense plasmas (�� �solid), the ideal gas equations
of state are suitable (such as those we have used in equation (8.20)).

In this chapter we are interested in calculating the steady-state magnetic
field. Therefore, the generalized Ohm’s law given in equation (8.26) is
assumed, together with the assumption @J=@t ¼ 0, yielding an electric field

E ¼
�

1

�E

�
J�

�
mi

Ze�

�
r
��

1þ Ti

ZTe

��1

P

�

�
�
1

c

�
u� Bþ

�
mi

Zec�

�
J� B: ð8:28Þ

From this equation we see that the electric field in the plasma has four
contributions:

1. The J� B term, which is the Hall effect.
2. u� B is the convective (plasma flow) term.
3. rP is the pressure gradient contribution.
4. The J=�E term is the (standard Ohm’s law) voltage drop on plasma-

active resistance.

Using for the electrical conductivity the value obtained in section 2.3 (Drude
model),

�E ¼ e2ne
me�ei

ð8:29Þ
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and substituting (8.28) into the first equation of (8.27), one gets for Ti � Te

@B

@t
¼ �mec�ei

e2
r�

�
J

ne

�

þ ckB
ene

rTe �rne þr� ðu� BÞ � 1

e
r�

�
J� B

ne

�
: ð8:30Þ

The first term in (8.30) may contribute a toroidal magnetic field, as described
in figure 8.2. The second term is the one given in the previous section and
described schematically in figure 8.1.

The current J is substituted into (8.30) from the second equation of
(8.27), and using the first equation of (8.27) one obtains a complex equation
for the magnetic field generated in laser–plasma interaction. We consider
now some special cases.

Case 1

It is assumed that the second and third terms of equation (8.30) are domi-
nant. Looking for a d.c. solution (@B=@t ¼ 0), one gets from equation (8.30):

c

ene
rPe þ u� B ¼ 0: ð8:31Þ

Taking r � 1=L and u � cs, where L is the scale length of the electron pres-
sure gradient and cs is the speed of sound, and using the ideal gas equation of
state for the electron pressure (equation (8.4)), one gets from equation (8.31):

B �
�

c

cs

�
ðkBTe=eÞ

L
� ðmic

2kBTeÞ1=2

eL

�
�
mi

mp

�1=2� Te

keV

�1=2� 30 mm
L

�
½MGauss� ð8:32Þ

where mi and mp are the ion and the proton masses respectively. For an
electron temperature of 1 keV and a pressure scale length of 30 mm one
gets a d.c. magnetic field of 1MG.

Figure 8.2. A toroidal magnetic field created by a return current.
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Case 2

It is now assumed that the first and third terms of equation (8.30) are
dominant.

Moreover, a constant electrical conductivity is taken so that equation
(8.30) can be rewritten as (after using equation (8.29))

@B

@t
¼ � c

�E
r� Jþr� ðu� BÞ: ð8:33Þ

Substituting into this equation the second equation of (8.27) with @E=@t ¼ 0,
one obtains the equation for the magnetic field:

@B

@t
¼ � c2

4��E
r� ðr � BÞ þ r � ðu� BÞ: ð8:34Þ

Using the identity

r� ðr � BÞ ¼ �r2
Bþrðr � BÞ ¼ �r2

B ð8:35Þ
(where theMaxwell equationr � B ¼ 0 is used), one gets from equation (8.34):

@B

@t
¼

�
c2

4��E

�
r2

Bþr� ðu� BÞ: ð8:36Þ

8.2.2 The magnetic Reynolds number

The first term on the right-hand side of (8.36) describes the diffusion of the
magnetic field, while the second term is the convection of the plasma fluid
moving with a velocity u (relative to a fixed observer, the laboratory frame
of reference). The ratio between the convective and the diffusion terms
defines the magnetic Reynolds number Rm:

Rm ¼
�

uB=L

ðc2BÞ=ð4��EL2Þ

�
¼ 4�

c2

�
�ELu

�
ð8:37Þ

where L is the macroscopic scale length and u is the characteristic flow
velocity. Note that Rm is dimensionless (in the Gaussian units used here
the electrical conductivity coefficient �E has dimensions of s�1). c2=ð4��EÞ
is equivalent to the kinematic viscosity in defining the Reynolds number
for a fluid flow (¼ inertial force/viscous force).

8.2.3 Magnetic Reynolds numbers Rm � 1

For Rm � 1 the convective term is negligible and equation (8.36) describes
the diffusion of the magnetic field

@B

@t
¼ �r2B; � � c2

4��E
: ð8:38Þ
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This equation is similar to the heat diffusion equation

@T

@t
¼ �r2T ð8:39Þ

where T is the temperature and � is the coefficient of heat conduction.
Similarly, in a viscous fluid flow the vorticity � satisfies a similar equation:

@�

@t
¼ �r2�; � � r� u ð8:40Þ

where � is the kinematic viscosity. Note that �, � and � have the dimension of
cm2/s in c.g.s. and m2/s in m.k.s.

We now analyse equation (8.38). Assuming at t ¼ 0 (initial condition) a
magnetic field Biðr; 0Þ in Cartesian coordinates (i ¼ x; y; z), then at t > 0 the
magnetic field is given by

Biðr; tÞ ¼
ð
d3r0Gðr� r

0; tÞBiðr0; 0Þ ð8:41Þ

where Gðr� r
0; tÞ is Green’s function:

Gðr� r
0; tÞ ¼ 1

ð4��tÞ3=2
exp

�
� ðr� r

0Þ2

4�t

�
: ð8:42Þ

This solution shows that the magnetic field at an initial position r
0 diffuses

in time with a Gaussian profile which has the width ð4�tÞ1=2, i.e. the width
increases with the square root of time. An estimate of the magnetic field
diffusion time is derived by taking r2 � 1=L2 in equation (8.38), yielding

@B

@t
� 	 �

L2
B: ð8:43Þ

The solution of this equation is

B ¼ B0 exp

�
	 t

�m

�
; �m ¼ L2

�
¼ 4��EL

2

c2
¼ RmL

u
: ð8:44Þ

The þ or � sign refer to ‘gain’ or ‘loss’ (with time) of the magnetic field.
For example, in a typical laser-produced plasma where diffusion is

dominant, one has L � 100 mm and u � 106 cm/s, implying a magnetic
Reynolds number Rm � 0:1 and a diffusion relaxation time �m � 1 ns.

8.2.4 Magnetic Reynolds numbers Rm 
 1

For Rm 
 1 the diffusion term is negligible and equation (8.36) describes the
convection of the magnetic field:

@B

@t
¼ r� ðu� BÞ: ð8:45Þ
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In this case it is important to notice that if initially there is a magnetic field in
the x–y plane, B ¼ ðBx;By;Bz ¼ 0Þ, then equation (8.45) implies that for
t > 0 a magnetic field perpendicular to the x–y plane is induced. For
example,

t ¼ 0 : B ¼ ðBx;By; 0Þ; u ¼ ð0; 0; uÞ

t > 0 :
@Bz

@t
¼
@ðuByÞ
@x

) Bzðt > 0Þ � tu

L
Byðt ¼ 0Þ:

ð8:46Þ

Assuming that in laser–plasma interactions ripples are created of the
order of L ¼ 10 mm and the plasma flow towards the laser is u ¼ 106 cm/s,
then at a time t � �L, where �L � 1 ns is the laser pulse duration, one gets
from (8.46)

Bzðt � �LÞ � Byðt ¼ 0Þ: ð8:47Þ

This phenomenon, where a magnetic field in the x–y plane develops into a
magnetic field in the z direction, is called the dynamo effect. Therefore, we
have seen that for a large magnetic Reynolds number the toroidal magnetic
field may develop into a large axial magnetic field. However, for this
phenomenon to happen fluctuations of small-scale L are necessary. Thus,
this effect is a random process.

In the next section we shall see how an axial magnetic field (by
definition, in the direction of the laser irradiation, or normal to the plane
target) can be created in a controllable way for any magnetic Reynolds
numbers.

8.3 Faraday and Inverse Faraday Effects

8.3.1 The Faraday effect

Michael Faraday discovered in 1845 that when plane-polarized light passed
through lead glass in the direction of a magnetic field, the plane of
polarization was rotated. The linear polarized electric field rotates when
propagating along the magnetic field in a dielectric or a plasma medium. A
linear polarized wave can be resolved into the sum of left- and right-circularly
polarized waves, and the rotation arises due to the difference in the index of
refraction between the two waves. The angle of rotation is proportional to
the magnitude of the magnetic field.

We now calculate the angle of rotation for a linearly polarized light
propagating in plasma or a dielectric media. Since there is an analogy
between a dielectric medium and plasma, the Faraday effect is developed
simultaneously for both media. The m.k.s. (SI) units are used in this
section.
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The equations of motion for the electrons in the presence of the
laser electric field EL and the d.c. magnetic field B are (the BL � v force,
where BL is the magnetic field of the laser that is negligible and therefore
neglected)

dielectric: me

d2r

dt2
þme!

2
0r ¼ �e

�
EL þ dr

dt
� B

�

plasma: me

d2r

dt2
¼ �e

�
EL þ dr

dt
� B

�
:

ð8:48Þ

me!
2
0r is the restoring force of the center of charge of the electrons ðqeÞ of one

atom in the dielectric medium. The dipole moment p of a single atom in the
presence of a d.c. electric fieldE can be approximated by p ¼ qe ’ q2eE=ðme!

2
0Þ.

The laser electric field is in the x–y plane and propagates in the z direction,
parallel to the d.c. magnetic field. Therefore, the electron motion is in the
x–y plane and the following notation can be used in Cartesian coordinates:

B ¼ ð0; 0;BÞ; E ¼ ðEx;Ey; 0Þ; r ¼ ðx; y; 0Þ

E	 ¼ Ex 	 iEy ¼ E0 exp½iðk	z� !tÞ�

Ex ¼ E0

2
fexp½iðkþz� !tÞ� þ exp½iðk�z� !tÞ�g

Ey ¼ �i
E0

2
fexp½iðkþz� !tÞ� � exp½iðk�z� !tÞ�g

r	 ¼ x	 iy ¼ r0 exp½iðk	z� !tÞ�

ð8:49Þ

where r0 and E0 are real and E	 describe circularly-polarized monochromatic
lasers. One defines Eþ as right-handed circular polarization (RHCP) and
E� as left-handed circular polarization (LHCP). Using the notation of
equations (8.49), one can write the solution of equations (8.48) in the
following form:

dielectric: r	 ¼ �ðe=meÞE	
!2
0 � ðeB=meÞ!� !2

plasma: r	 ¼ �ðe=meÞE	
�!c!� !2

ð8:50Þ

where the electron cyclotron frequency is defined by

!c ¼
eB

me

: ð8:51Þ

Using Maxwell equations, one obtains the following wave equations for the
two appropriate media (see Appendix A):
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dielectric: r2
E� 1

c2
@2E

@t2
� 	0

@2P

@t2
¼ 0; P ¼ �ener

plasma: r2
E� 1

c2
@2E

@t2
� 	0

@J

@t
¼ 0; J ¼ �ene

dr

dt

ð8:52Þ

where 	0 is the magnetic permeability in vacuum, P is the polarization of the
dielectric medium and J is the electric current in the plasma. Using equations
(8.49) and (8.50) in (8.52), the following dispersion relations are derived:

dielectric: k2	 ¼ !2

c2

�
1�

!2
pe

!2 � ðeB=meÞ!� !2
0

�
; !2

pe ¼
e2ne
"0me

plasma: k2	 ¼ !2

c2

�
1�

!2
pe

!2 � !c!

�
;

1

"0
¼ 	0c

2

ð8:53Þ

where !pe is the electron plasma frequency in the dielectric or the plasma
medium.

The appropriate indices of refraction for the RHCP and LHCP are

n	 ¼ ck	
!
: ð8:54Þ

At z ¼ 0 one has a linearly polarized laser, given by

Exðz ¼ 0Þ ¼ E0 cos!t ¼
E0

2
½expði!tÞ þ expð�i!tÞ�; Eyðz ¼ 0Þ ¼ 0:

ð8:55Þ
In order to obtain the values of E	 at z ¼ l we define

’ðzÞ ¼ 1
2 ½zðkþ þ k�Þ� � !t; 
ðzÞ ¼ 1

2 ½zðkþ � k�Þ�: ð8:56Þ

Using the identity

k	 ¼ 1
2 ðkþ þ k�Þ 	 1

2 ðkþ � k�Þ ð8:57Þ

together with equations (8.49) and (8.56), one obtains the electric field (at
z ¼ l), after propagating along the d.c. magnetic field a distance l:

E	ðz ¼ lÞ ¼ E0 exp½i’ðlÞ� exp½	i
ðlÞ�

Ex ¼ E0 exp½i’ðlÞ� cos 
ðlÞ

Ey ¼ E0 exp½i’ðlÞ� sin 
ðlÞ:

ð8:58Þ

From these equations one can see that ’ is a phase of the amplitude and 
 is
the angle of rotation. At z ¼ 0 the angle 
 is zero (i.e. by definition of the
linearly polarized light Ey ¼ 0). From the definition of 
 in (8.56) one gets
at z ¼ l:


ðlÞ ¼ l

2
ðkþ � k�Þ: ð8:59Þ
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The values of k	 are obtained from the dispersion relation (8.53). For
constant electron density ne and magnetic field B, and neglecting B2 terms
(i.e. !c=!� 1), one gets

dielectric: 
 ¼ VlH; H ¼ B=	0

V ¼
�

	0e

2nmec

�
!2!2

pe

ð!2 � !2
0Þ

2
; n ¼ 1

2 ðnþ þ n�Þ ð8:60Þ

plasma: 
 ¼ l

�
eB

mec

��
!2
pe

!2

�
� 3:4

�
B

Tesla

��
l

100 mm

��
!2
pe

!2

�
degrees:

For the dielectric medium case the coefficient V is called the Verdet constant.
For the plasma medium, one can see that close to the critical density

(!pe � !) the angle of rotation is 3.48 per Tesla for a laser propagating
along l ¼ 100 mm. Equation (8.60) is valid if ne ¼ constant and B is small
(we neglected B2) on the scale defined by

!c � ! ) B

Bc

� 1; Bc �
me!

e
� 1:07� 108

�L ðmmÞ Gauss: ð8:61Þ

For most experiments in laser–plasma interactions the constraint (8.61) is
satisfied. However, the electron density is not constant in these experiments.
For a non-constant electron density the angle 
 in equation (8.59) ismodified to


 ¼ 1

2

ðl
0
dzðkþ � k�Þ: ð8:62Þ

Using the dispersion relation (8.53) in the plasma medium for !c � !, one
can use the approximations

kþ � k� ¼ k2þ � k2�
kþ þ k�

�
ð!pe=!Þ2ð1þ !c=!Þ � ð!pe=!Þ2ð1� !c=!Þ

2ð!=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð!pe=!Þ2

q

¼
�

eBc

me!
2

��
ne
nec

��
1�

�
ne
nec

���1=2

ð8:63Þ

where nec is the electron critical density and ! is the angular frequency of
the laser (‘probe’) beam:

! ¼ 2�c

�p
: ð8:64Þ

Substituting (8.63) into (8.62), one obtains the angle of rotation (in practical
units) for a plasma medium:


ðdegÞ ¼ 3:02

�
�p
mm

�2 ðl
0

�
dz

mm

��
ne

1021 cm�3

��
B

MGauss

��
1� ne

nec

��1=2

:

ð8:65Þ
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The Faraday effect is used in laser–plasma interactions to measure the
magnetic field (Raven et al. 1978, Horovitz et al. 1997). For this purpose it
is also necessary to know the electron density. At the critical density there
is a singularity in equation (8.65), but this is not a problem since the laser
cannot propagate along a critical density. Using this equation, megagauss
(d.c.) magnetic fields were measured in laser–plasma interactions.

8.3.2 The inverse Faraday effect

The inverse Faraday effect is the phenomenon where a magnetic field is created
in a medium due to the rotation of the electromagnetic field. In particular, a
circularly-polarized laser can induce a magnetic field in the plasma. The
magnetic field arises because the electrons quiver with the oscillating electric
field of the incoming laser light, and if the laser is circularly polarized then
the electrons describe a circularmotion.Thenet effect of this is a circular current
on the edge of the plasma, which generates the magnetic field (see figure 8.3).

A simple (order of magnitude) calculation for the magnetic field created
by the inverse Faraday effect in cold plasma is now developed. The motion of
the electrons in an applied electric field is, according to linearized law,

@v

@t
¼ � e

me

E ð8:66Þ

where v is the electron velocity andE is the applied electric field in the plasma, as
a result of the absorbed laser energy. The ions are considered immobile. The elec-
tric field is incident in the z direction and is circularly polarized in the x–y plane:

E ¼ E0

�
x̂xþ iŷyffiffiffi

2
p

�
exp½�ið!t� kzÞ� ð8:67Þ

where x̂x and ŷy are unit vectors in the x and y directions respectively.

Figure 8.3. A schematic presentation of the inverse Faraday effect.
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Substituting (8.67) into (8.66), one gets the solution for the electron
(fluid) velocity:

v ¼ v0

�
�ix̂xþ ŷyffiffiffi

2
p

�
exp½�ið!t� kzÞ�; v0 ¼

eE0

me!
: ð8:68Þ

The electrons also satisfy the continuity equation

@ne
@t

¼ �r � ðnevÞ: ð8:69Þ

The density is assumed to consist of a background (n0) and perturbed (n1)
components

ne ¼ n0 þ n1; n0 
 n1 ð8:70Þ

where n0 does not depend on time and n1 � expð�i!tÞ. Since r � v ¼ 0, the
continuity equation (8.69) yields

i!n1 ¼ v � ðrn0Þ: ð8:71Þ

The electric current, which in this approximation is a second-order perturbed
value, is obtained by using (8.68) and (8.71):

J ¼ �ehn1vi ¼
�
ie

!
ðv � rn0Þv

�
¼ e3E2

0

2me!
3
rn0 � ẑz ð8:72Þ

where h i is a time average over the fast oscillations and ẑz is the unit vector in
the z direction. Note that the wave number vector k of the electromagnetic
field is parallel to ẑz. From equation (8.72) one can see that the electric
current J has a contribution from the density gradient in the x–y plane
(mainly from the edge of the plasma) and it points in the toroidal direction.
This current produces an axial magnetic field (i.e. in the z direction)
according to Maxwell’s equation (we are using again Gaussian units):

r� B ¼ 4�

c
J: ð8:73Þ

Substituting (8.72) into (8.73) yields the following order of magnitude
estimate:

B ¼ Bẑz;
B

Bc

¼
�
!2
pe

2!2

��
eE0

me!c

�2
; Bc �

me!c

e
¼ 1:07� 108

�ðmmÞ Gauss:

ð8:74Þ

Assuming that all of the laser energy is absorbed,

IL ¼ c
E2
0

8�
ð8:75Þ
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where IL is the laser peak intensity (power/area). In this case the axial
magnetic field given in (8.74) can be written, in practical units, as

Bz ðGaussÞ ¼ 6:0� 104
�

ne
nec

��
�L
mm

��
IL

1014 W=cm2

�
ð8:76Þ

where �L is the laser wavelength and nec is the critical density.
Using ponderomotive forces (Lehner 1994), it was suggested that the

induced magnetic field is not linear with IL, as given by the classical inverse
Faraday effect (equations (8.74) or (8.76)), but B is proportional to the
square root of IL. Moreover, the constant of proportionality is significantly
larger than in the classical approach. In this formalism the electric current
is a first-order effect rather than a second-order perturbation value. In the
non-relativistic domain the axial magnetic field, as developed by Lehner,
can be written as

B ¼ Bc

�
!pe

!

��
eE0

me!c

�
� 6:5� 105

�
ne
nec

�1=2� IL

1014 W=cm2

�1=2
: ð8:77Þ

This formula fits some experiments (Horovitz et al. 1998) in the domain of
IL � 1010 W/cm2 to 1013 W/cm2. However, for � 1014 W/cm2 the experimen-
tal values are larger than those estimated by equation (8.77).

8.3.3 Angular momentum considerations

In a circularly-polarized laser beam the spins of the photons are aligned (each
photon has a spin �h ¼ h=ð2�Þ, where h is the Planck constant), so that the
laser beam has an angular momentum. Denoting the number density of
the photons by n�, and the angular momentum density parallel to the z
axis for a laser beam moving in the z direction by Lz (Eliezer et al. 1992,
Haines 2001), one has

Lz ¼ n��h: ð8:78Þ

Every photon has an energy h� (! ¼ 2��); therefore, the laser pulse energy
density W in the plasma medium is

W ¼ n��h! ¼ jEj2

8�
¼ I

c
ð8:79Þ

where I is the intensity of the electromagnetic field in the plasma. From (8.78)
and (8.79) one can write for photons moving in the z direction:

I ¼ n��h!c ¼ Lz!c: ð8:80Þ

This relation is globally correct for a uniform distribution of photons, or
equivalently it is locally correct at any domain in space. For an axisymmetric
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beam of a circularly polarized laser defined by

I ¼
IðrÞ; r < r0

0; r  0

�
ð8:81Þ

one can write (Haines 2001)

Lz ¼ � r

2!c

�
@I

@z

�
: ð8:82Þ

One can easily check the validity of this equation by integrating it from r ¼ 0
to r ¼ r0, where r0 is the edge of the laser beam:

ðr0
0

dr 2�rLz ¼ � 2�

!c

��
r2IðrÞ
2

�r¼ r0

r¼0

�
ðr0
0

IðrÞr dr
	

¼ 2�

!c

ðr0
0

IðrÞr dr: ð8:83Þ

This is derived by using the laser beam profile defined by (8.81) and
integrating by parts. Equation (8.83) shows that equation (8.80) is locally
correct, thus justifying the classical equation (8.82).

Using cylindrical coordinates ðr; 
; zÞ, the angular momentum con-
servation equation for the electrons can be written by

dLz ðelectronsÞ
dt

þ dLz ðphotonsÞ
dt

¼


r�

X
F
�
z
: ð8:84Þ

The angular momentum of the absorbed photons is transferred to the
electrons. The rate of change of the electron angular momentum is

dLz ðelectronsÞ
dt

¼ nemer
dv

dt

þ �einemerv
 ð8:85Þ

where v
 is the toroidal electron velocity,mev
 is the linear momentum of one
electron in the 
 direction and rmev
 is the angular momentum of one
electron in the z direction. The second term in the right-hand side of the
last equation is due to electron–ion collisions, where �ei is the collision
frequency.

The rate of change in the photon angular momentum is obtained using
equation (8.82). The electromagnetic intensity I is equal to the laser absorp-
tion coefficient fa times the laser intensity IL. One can also write

dI

dt
� cI

l
ð8:86Þ

where l is the axial distance that the laser is absorbed by the fraction fa.
Therefore, one can approximate the second term of the left-hand side of
equation (8.84) by

dLz ðphotonsÞ
dt

¼ far

2l!

�
@IL
@r

�
: ð8:87Þ
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The torque ðr�
P

FÞz applied on the electrons is



r�

X
F
�
z
¼ �ener

�
E
 þ

1

c
ðvzBr � vrBzÞ

�
ð8:88Þ

where E
 is the toroidal electric field induced by the toroidal electron motion
in such a way as to oppose the generation of the axial magnetic field.
The electron velocity, electric field and magnetic field components are
accordingly: v ¼ ðvr; v
; vzÞ, E ¼ ðEr;E
;EzÞ, B ¼ ðBr;B
;BzÞ. Substituting
equations (8.85), (8.87) and (8.88) into (8.84), one gets the angular momen-
tum conservation in the z direction (Haines 2001):

nemer

�
dv

dt

�
¼ �enerE
 �

far

2l!

�
@IL
@r

�

� ener

c
ðvzBr � vrBzÞ � nemer�eiv
 : ð8:89Þ

Assuming a steady state, dv
=dt ¼ 0 and, neglecting the last two terms on the
right-hand side of equation (8.89), the following simplified equation is
obtained:

E
 � � fa
ene!l

�
@IL
@r

�
: ð8:90Þ

Using now the Faraday–Maxwell equation (in cylindrical coordinates),

@Bz

@t
¼ � c

r

@

@r
ðrE
Þ ð8:91Þ

and assuming a parabolic laser profile beam,

IL ¼ I0

�
1� r2

r20

�
for r � r0 and zero otherwise ð8:92Þ

one gets from (8.90), (8.91) and (8.92) the following solution for the axial
magnetic field:

Bz ¼
4c

!ler20

ð
faI0
ne

dt: ð8:93Þ

It is worth noting that this equation does not have a singularity at ne ¼ 0
since fa ¼ 0 in this case.

As one can see from this calculation of the inverse Faraday effect, the
axial magnetic field apparently looks in complete disagreement with the
previously derived equation (8.76). In particular, in (8.76) the magnetic
field is proportional to the electron density, while in (8.93) B is inversely
proportional to ne. However, one has to be careful because the absorption
coefficient fa may be proportional to n2e . In section 5.1 we derived the inverse
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bremsstrahlung absorption coefficient:

fa
l
� �ib ¼ �eiðnecÞ

c

�
ne
nec

�2 �
1� ne

nec

��1=2

: ð8:94Þ

In summary of this section, we have derived two apparently different equations
((8.76) and (8.93)) for the axial magnetic field induced by the inverse Faraday
effect (see also (8.77)). So far there are not enough experiments of the inverse
Faraday effect in order to check the different theories. Furthermore, it seems
that the theory of this phenomenon and the relevant numerical simulations
have not yet been performed comprehensively in order to clarify this subject.

8.4 Waves in the Presence of the Steady-State Magnetic Field

In the previous sections of this chapter we have seen that non-negligible
steady-state magnetic fields are created in laser–plasma interaction. These
magnetic fields can be present only in configurations that do not possess
an exact spherical symmetry. No magnetic field can exist in a spherical

symmetry. However, most of the experiments done so far in laser–plasma
interaction have a planar or cylindrical geometry rather than a spherical
one. Even for the large laser systems with a ‘perfect’ spherical laser irradiance
of spherical shells (with the purpose of achieving inertial confinement fusion),
local spherical symmetry breaking can be induced by hydrodynamic
instabilities. Therefore, large local magnetic fields might be created even in
these cases. It seems that steady-state magnetic fields are always associated
with laser–plasma interactions. In this section we analyse the dispersion
relation for some plasma waves in the presence of a d.c. magnetic field.

8.4.1 Ordinary and Extraordinary Waves

We analyse now the behaviour of an electromagnetic wave that propagates
in uniform and magnetized plasma. A constant magnetic field B0 in the z
direction is present in the plasma medium considered here. For simplicity,
a cold plasma is considered, i.e. Te ¼ 0. Since the electromagnetic waves
have a high frequency, one can ignore the ion motion. The electromagnetic
wave is described by the Maxwell equations, where the electric current is
calculated from the electron momentum equation. Denoting the electro-
magnetic fields by E and B, the linearized equations to be solved are
(Gaussian units are used here)

r� E ¼ � 1

c

@B

@t
; r� B ¼ 1

c

@E

@t
þ 4�

c
J

J ¼ �enev; mene
@v

@t
¼ �eneE� ene

c
v� B0

ð8:95Þ
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where v is the electron (fluid) velocity, and �e, me and ne are the charge, the
mass and the density of the electrons respectively. Equations (8.95) are 12
equations with 12 unknowns: E, B, v and J; so one has the same number
of unknowns as equations (caution should be exercised not to add, during
the algebra manipulations, new equations for these unknowns).

We now analyse waves that propagate perpendicularly to B0. Since B0 is
parallel to ẑz (the unit vector in the z direction), the wave vector k is chosen in
the x direction in Cartesian coordinates. In this case one has two possibilities:

(a) E parallel to B0, which is called ordinary wave, and
(b) B parallel to B0, which is called extraordinary wave.

B0 ¼ ð0; 0;B0Þ; k ¼ ð0; 0; kÞ
ordinary wave: E ¼ ð0; 0;EÞ; B ¼ ð0;B; 0Þ

extraordinary wave: E ¼ ðEx;Ey; 0Þ; B ¼ ð0; 0;BÞ:
ð8:96Þ

For an ordinary wave (defined also as O-mode) the electric field, in the z
direction, induces an electron velocity in the z direction; therefore, the
v� B0 term in the last of equations (8.95) vanishes. Therefore, equations
(8.95) are identical to those obtained in the unmagnetized plasma (see section
2.7), where the following dispersion relation was obtained:

!2 ¼ !2
pe þ k2c2 ð8:97Þ

where !pe is the electron plasma frequency. This dispersion relation describes
an electromagnetic wave that propagates in the plasma as if there is not a
d.c. magnetic field (B0). This may be the reason that it acquired the name
of ordinary wave.

For extraordinary wave (defined also as X-mode) the electric field is
perpendicular to B0, and therefore the electric field induces an electron
velocity in the x–y plane. As a result the force v� B0 introduces another velo-
city term in this plane. Since in this case there is no velocity component in the
z direction, one can write v ¼ ðvx; vy; 0Þ. Assuming a uniform plasma, the
following substitution can be made in the linear equations (8.95):

r ) ik;
@

@t
) �i!: ð8:98Þ

(c) Using the geometry defined by (8.96) and the Fourier transform as
expressed (for the linear equations) in (8.98), one gets from (8.95) the
following five algebraic equations with five unknowns ðvx; vy;Ex;Ey;BÞ:

� i!mevx ¼ �eEx �
eB0

c
vy; �i!mevy ¼ �eEy þ

eB0

c
vx;

ikEy ¼
i!

c
B; �ikB ¼ � 4�ene

c
vy �

i!

c
Ey;

0 ¼ � 4�ene
c

vx �
i!

c
Ex:

ð8:99Þ
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Using the definitions of the plasma frequency !pe and the cyclotron
frequency !ce,

!2
pe ¼

4�e2ne
me

; !2
ce ¼

eB0

mec
ð8:100Þ

we rewrite equations (8.99) in matrix form:

1 i� 0 0 i

�i� 1 0 i 0

0 0 1 �A 0

0 �iC �A 1 0

�iC 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

ð!me=eÞvx
ð!me=eÞvy

B

Ey

Ex

0
BBBBBBBB@

1
CCCCCCCCA

¼

0

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA ð8:101Þ

� � ð!ce=!Þ; A � ðkc=!Þ; C � ð!2
pe=!

2
ceÞ:

Note that all the variables have the same dimensional form (Gaussian units),
so that all the elements of the matrix are dimensionless. In order to get a non-
zero solution for the variables, it is necessary that the determinant of the
matrix in (8.101) is zero. The vanishing determinant gives the following
dispersion relation for the extraordinary electromagnetic wave:

n2 ¼ k2c2

!2
¼ 1�

�
!2
pe

!2

��
!2 � !2

pe

!2 � !2
uh

�
ð8:102Þ

where n is the index of refraction and !uh is called the upper hybrid frequency,
given by

!2
uh ¼ !2

pe þ !2
ce: ð8:103Þ

It is worth mentioning that the extraordinary wave is a superposition of a trans-
verse wave (electromagnetic), k ¼ ðkx; 0; 0Þ, E ¼ ð0;Ey; 0Þ, B ¼ ð0; 0;BÞ, and a
longitudinal wave, k ¼ ðkx; 0; 0Þ,E ¼ ðEx; 0; 0Þ. Solving forEx andEy, one gets
that at a given point in space the vector E rotates as a function of time
ðEx � exp½iðkx� !tÞ� and Ey � exp½iðkx� !tÞ�Þ, and since Ex and Ey are
not equal one gets an elliptical rotation of the electric field.

Analysing the dispersion relation (8.102), one can see that the index of
refraction can attain zero values, called cutoff, and infinite values, called
resonance. Since the phase velocity of the wave is

v� ¼ c

n
¼ !

k
ð8:104Þ

one defines

cutoff: n ¼ 0; k ¼ 0 ) v�ðk ¼ 0Þ ¼ 1

resonance: n ¼ 1; k ¼ 	1 ) v�ðk ¼ 	1Þ ¼ 0:
ð8:105Þ
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From the dispersion relation, equation (8.102), the resonances for the X-mode
(the extraordinary wave) are at

X-mode resonances : ! ¼ 0; ! ¼ !uh ð8:106Þ
and the cutoffs are the solution of the following quadratic equation:

!4 � ð!2
pe þ !2

uhÞ!2 þ !4
pe ¼ 0: ð8:107Þ

Denoting the two solutions of this quadratic equation by !L and !R, and
using (8.103), one gets

!	 ¼ 	!ce

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
pe þ 1

4!
2
ce

q
; !þ � !R; !� � !L: ð8:108Þ

The notations R and L are used because these solutions describe right- and
left-handed circular polarization. The right-hand rotation of the electric
field is defined by the ‘right-hand rule’. If the thumb is along k then the
fingers of the right hand are in the direction of the rotation of the electric
field for the R-wave. In the L-wave, E rotates in the opposite direction.

A schematic presentation of the dispersion relation ! ¼ !ðkÞ for extra-
ordinary (X-mode) and ordinary (O-mode) waves, according to equations
(8.102) and (8.97) respectively, is given in figure 8.4.

8.4.2 Electromagnetic waves propagating parallel to B0

In this case the following geometry is considered in Cartesian coordinates:

B0 ¼ ð0; 0;B0Þ; k ¼ ð0; 0; kÞ; E ¼ ðEx;Ey; 0Þ

B ¼ ðBx;By; 0Þ; v ¼ ðvx; vy; 0Þ
ð8:109Þ

Figure 8.4. A schematic presentation of the dispersion relation ! ¼ !ðkÞ for extraordinary
(X-mode) and ordinary (O-mode) waves.
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Linearization and Fourier transform of equations (8.95) yields

ik� E� i!

c
B ¼ 0

ik� Bþ i!

c
Eþ 4�ene

c
v ¼ 0

�i!mevþ eEþ e

c
v� B0 ¼ 0:

ð8:110Þ

Writing this equation explicitly, for the configuration defined in (8.109), in
matrix form we obtain

1 i� 0 0 i 0

i� 1 0 0 0 i

0 0 1 0 0 A

0 0 0 1 �A 0

�iK 0 0 �A 1 0

0 �iK A 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ðme!=eÞvx
ðme!=eÞvy

Bx

By

Ex

Ey

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

0

0

0

0

0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð8:111Þ

� � !ce

!
; A � kc

!
; K �

!2
pe

!2
:

The dispersion relations are obtained by setting the determinant of this
matrix equal to zero:

n2	 ¼ k2c2

!2
	

¼ 1�
!2
pe=!

2

1� !ce=!
ð8:112Þ

whereþ and� denote right (R) and left (L) circular polarization, and nþ and
n� are the indices of refraction for R and L waves propagating parallel to B0

respectively. See equations (8.53) and (8.54).
From this dispersion relation we see that there is one resonance at

! ¼ !ce, and this is satisfied only for the R-wave. The cutoffs are derived
by equating k to zero in (8.112), implying the same results as those of the
X-mode in equation (8.108).

Figure 8.5 shows the schematic dispersion relation ! ¼ !ðkÞ of an
electromagnetic wave propagating parallel to B0 for two cases: (a)
!L < !pe < !ce, (b) !pe > !L > !ce. As can be seen from these figures,
there are two R-mode branches (as in the X-mode, figure 8.4) but only
one L-mode, where ! > !L is satisfied. The low-frequency branch of the
R-wave is also known as the electron–cyclotron wave.

The dispersion relation (8.112) shows that the index of refraction for the
right-hand and left-hand polarization are not equal, as already derived in
section 8.3 (equations (8.53) and (8.54)). Moreover, the index of refraction
is complex (i.e. n2 < 0; !2 < 0) in the domain !ce < ! < !R for the R-wave
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and in the region 0 < ! < !L for the L-wave. Appropriate waves with these
frequencies cannot propagate along B0 in plasma.

The plasma and cyclotron frequencies can be expressed in practical units
for typical laser-induced magnetic fields and densities:

!ce ½rad=s� ¼
eB0

mec
¼ 1:76� 1013

�
B0

MGauss

�

!pe ½rad=s� ¼
�
4�e2ne
me

�1=2
¼ 5:64� 1014

�
ne

1020 cm�3

�1=2
:

ð8:113Þ

Figure 8.5. Schematic dispersion relation ! ¼ !ðkÞ for an electromagnetic wave propa-

gating parallel to B0: (a) !L < !pe < !ce, (b) !pe > !L > !ce.
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Therefore, for figure 8.5(a) to be relevant for laser–plasma interactions, one
requires

!ce > !pe )
�

B0

MGauss

�
> 32:0

�
ne

1020 cm�3

�1=2
ð8:114Þ

while for figure 8.5(b) it is necessary that the opposite inequality is satisfied,
which in general is more realistic for laser–plasma interactions.

Last but not least, from figure 8.5 at high frequencies (for typical laser
intensities and B0, one usually has ! > !ce), one can see that the phase
velocity !=k is larger for an R-wave than for an L-wave. If a plane wave
(i.e. linearly polarized) is propagating along B0, then this wave can be
described as a linear combination of an R-wave and an L-wave. These
waves (R and L) propagate with different phase velocity; therefore, the
plane of polarization of the wave rotates as it travels along B0. This is the
Faraday effect, as explained in section 8.3.

8.4.3 Alfvén waves

So far, in this section, the ion motion was ignored. Now we combine the ion
motion with the electromagnetic equations (Maxwell equations). If an elec-
tromagnetic wave propagates along the d.c. magnetic field, i.e. the wave
vector k is parallel to the magnetic field in the plasma B0, one gets the
famous Alfvén waves.

The following configuration is considered in Cartesian coordinates:

k ¼ ð0; 0; kÞ; B0 ¼ ð0; 0;B0Þ; E ¼ ðE; 0; 0Þ

B ¼ ð0;B; 0Þ; ve ¼ ðvex; vey; 0Þ; vi ¼ ðvix; viy; 0Þ
ð8:115Þ

where ve and vi are the electron and ion velocities, and E and B are the elec-
tromagnetic fields propagating in the plasma. It is assumed that the plasma is
neutral and cold (Z is the ion charge):

ne ¼ Zni ¼ n0; Te ¼ Ti ¼ 0 ð8:116Þ

where ne and ni are the electron and ion densities, and T are appropriate
temperatures. Moreover, it is assumed that the electron inertia can be
neglected in the momentum equation. In this case the relevant linearized
Fourier transform fluid equations, together with Maxwell’s equations, are

0 ¼ �eE� ðe=cÞve � B0

�i!mivi ¼ ZeEþ ðZe=cÞvie � B0

ik� E ¼ ði!=cÞB

ik� B ¼ �ði!=cÞEþ ð4�=cÞn0ðvi � veÞ

ð8:117Þ
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wheremi is the ion mass. Using similar algebra as before, one gets from these
equations the Alfvén dispersion relation

!2 ¼ k2v2A
1þ ðv2A=c2Þ

vA ¼
�

B2
0

4�n0mi

�1=2
� 2:18� 107

�
mp

mi

��
B0

MGauss

��
1020 cm�3

ni

�1=2 � cm
s

�

ð8:118Þ

where vA is the Alfvén wave velocity and mp is the proton mass. In deriving
this dispersion relation one must also assume that ! < !ci, where the ion
cyclotron frequency is given by

!ci ¼
ZeB0

mic
� 9:58� 109

�
Zmp

mi

��
B0

MGauss

�
: ð8:119Þ

The condition ! < !ci is nonrealistic for typical laser–plasma interactions.
Moreover, using equation (8.118), one gets a time scale (�2�=!) larger
by many orders of magnitude than any high-power laser pulse duration.
Therefore, it seems that the Alfvén waves do not play any important role
in laser–plasma interactions.

8.5 Resonance Absorption in a Magnetized Plasma

Resonance absorption was considered in section 5.6. In this section we analyse
how the absorption is modified due to the presence of a steady-state (d.c.)
magnetic field. As in the previous section, we consider the electron momentum
equation together with Maxwell equations for cold plasma. In this case one is
interested in the effects of the density gradient, where the electric and magnetic
fields in the plasma can be written for a monochromatic wave:

Eðr; tÞ ¼ EðrÞ expð�i!tÞ; Bðr; tÞ ¼ BðrÞ expð�i!tÞ: ð8:120Þ

Therefore, one cannot use the relation r ! ik when taking the Fourier
transform of the linear equations. However, the substitution @=@t ! �i!
is permitted for the class of solutions given by (8.120). The linearized equa-
tions to be solved are

r� EðrÞ ¼ i!

c
BðrÞ

r � BðrÞ ¼ � i!

c
EðrÞ � 4�ene

c
v

�i!v ¼ � e

me

�
EðrÞ þ 1

c
v� B0ðrÞ

�
ð8:121Þ
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where v is the average velocity of the electrons, and the d.c. magnetic field is
taken parallel to the z axis but is not necessarily a constant in space. The third
of these equations can be written in matrix form as

vx

vy

vz

0
B@

1
CA ¼

�i!� !ce� 0

!ce� �i!� 0

0 0 �i=!

0
B@

1
CA

ðe=meÞEx

ðe=meÞEy

ðe=meÞEz

0
B@

1
CA

� � 1

!2 � !2
ce

ð8:122Þ

where the electron cyclotron frequency is defined in (8.100). Substituting v

from (8.122) into the second equation of (8.121), one gets

r� BðrÞ ¼ � i!

c
e � EðrÞ ð8:123Þ

where this equation defines the dielectric tensor e, given by

e ¼

!2 � !2
uh

!2 � !2
ce

i!2
pe

ð!2 � !2
ceÞ

0

�i!2
pe!ce

!ð!2 � !2
ceÞ

!2 � !2
uh

!2 � !2
ce

0

0 0 1�
!2
pe

!2

0
BBBBBBB@

1
CCCCCCCA

ð8:124Þ

where the plasma frequency is given in (8.100) and the upper hybrid
frequency !uh is defined in (8.103). Note that the elements of the dielectric
tensor are dimensionless.

In order to get the electromagnetic field, one has to solve equation
(8.123) and the first equation of (8.121). The equation for the electric
field E is derived by taking r�[first equation of (8.121)] and using (8.123),
yielding

r2
EðrÞ þ !2

c2
e � EðrÞ ¼ 0 ð8:125Þ

where the tensor e is given in (8.124). In deriving this equation it was assumed
that r � E ¼ 0, i.e. the plasma is neutral.

For the equation of the magnetic field B(r) it is convenient to use the
inverse matrix e�1 of the dielectric tensor e. The inverse matrix is defined by

e�1 � e ¼ e � e�1 ¼ 1 ð8:126Þ
where 1 is the unit matrix

1 ¼
1 0 0

0 1 0

0 0 1

0
@

1
A: ð8:127Þ

170 Laser-Induced Magnetic Fields in Plasma



Using the tensor e�1, equation (8.123) can be rewritten by

e�1 � r � B ¼ � i!

c
E: ð8:128Þ

Using equations (8.124) and (8.126), one gets the inverse tensor of e (David
and Pellat 1980):

e�1 ¼
"�1
e �i 0

i "�1
e 0

0 0 "�1
0

0
BB@

1
CCA

"e ¼
��

1�
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pe

!2

�2
� !2

ce

!2

��
1� !2

uh

!2

��1
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1�
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!2

�2

 ¼
!2
pe!ce

!3

��
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!2

�2
� !2

ce
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��1
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ð8:129Þ

One can define "0 and "e as the square of the ordinary and extraordinary
index of refraction respectively (see previous section).

The wave equation for the magnetic field B is derived by taking
r� (8.128) and using the first equation of (8.121), together with theMaxwell
equation r � B ¼ 0, implying

r� ðe�1 � r � BÞ � !2

c2
B ¼ 0: ð8:130Þ

For the extraordinary mode the electric field E is perpendicular to the d.c.
magnetic field B0. Choosing B0 to be in the z direction, the plane of the laser
incidence is x–y, then the following configuration is defined (a p-polarization):

B0 ¼ ð0; 0;B0Þ; k ¼ ðk cos 
; k sin 
; 0Þ

E ¼ ðEx;Ey; 0Þ; B ¼ ð0; 0;BzÞ:
ð8:131Þ

In this configuration the equation for Bz (the extraordinary mode) is derived
from equation (8.130):

r2Bz þ
�
�r"e

"e
þ i"ec

�
� rBz þ k2"eBz ¼ 0; c � x̂x

@

@y
� ŷy

@

@x
:

ð8:132Þ
For an ordinary wave the electric field E is parallel to the d.c. magnetic field
B0 (chosen in the z direction) and equation (8.125) in this case is

r2Ez þ k2"0Ez ¼ 0: ð8:133Þ
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The ordinary wave, i.e. the s-polarization wave in our case, is not modified by
an external magnetic field B0ẑz, and this wave does not drive the resonance
absorption mechanism.

The p-polarization wave described above describes an extraordinary wave
and can drive the resonance absorption mechanism (see section 5.5). It is
convenient to describe this case by the equation of the magnetic field (equation
(8.132)). From this equation one gets a resonance for Bz, due to "e ¼ 0, at

resonance: !2 ¼ !2
uh: ð8:134Þ

This resonance is responsible for the excitation of an electrostatic wave that is the
origin of the resonant absorption phenomenon. Two other singularities of equa-
tion (8.132), where "e is zero and  becomes infinite, are derived from solving

1�
!2
pe

!2
¼ 	!ce

!
: ð8:135Þ

However, Bz is regular at these points and these two singularities describe the
turning points of the WKB solution (see section 5.4).

It is assumed that the laser is incident at x ¼ �L, in the x–y plane with a
positive x component (the domain x < �L is vacuum and x > �L is plasma),
and that the incident p-polarized wave is obliquely incident at an angle 
0
with the density gradient. For a constant (in space and time) external
magnetic field and a linear density profile, described by

ne
nec

¼
0 for x < �L

1þ ðx=LÞ for x > �L

� 	
) "0 ¼

1 for x < �L

�ðx=LÞ for x > �L

�

ð8:136Þ
equation (8.132) takes the form (David and Pellat 1980)
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� � �
� 1

� þ �

�
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þ
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�
� � � �2 þ �

� � �
� �

� þ �

�
B ¼ 0: ð8:137Þ

The following change of variables is used in equation (8.132) in order to get
equation (8.137):

Bz ¼ BðxÞ expðiky sin 
0Þ

� ¼ x

�
k2

L

�1=3

� ¼ ðkLÞ1=3 sin 
0

� ¼ ðkLÞ2=3
�
!ce

!

�
:

ð8:138Þ
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Moreover, equation (8.137) is derived only for !ce=!� 1 (i.e. we neglect
ð!ce=!Þ2 and higher-order terms), an assumption satisfied in most laser–
plasma experiments.

As we have seen in chapter 5, without a dissipation mechanism such as
electron ion–collisions or Landau damping, all of the laser light is reflected
(or transferred, if the plasma density is smaller than the critical density
everywhere) out of the plasma (i.e. no absorption). In order to obtain a
laser absorption one requires an effective collision frequency �eff. If the
mechanism of the damping of electrostatic waves is known then it is possible
to include � implicitly in the dielectric constant, e.g. changing equation
(8.136) to

"0 ¼
1 for x < �l

�ðx=LÞ þ ið�eff=!Þ for x > �L:

�
ð8:139Þ

However, it turns out that in most cases the collision frequency determines
the magnetic (or electric) field strength at resonance and its spatial structure
there, but does not modify the qualitative values of the absorption coefficient.
The amplitude ratio square between the outgoing and incoming wave (at
x ¼ �L in our above example) gives the reflection coefficient R (1� R is
the absorption coefficient). This value does not depend on �eff as long as it
is not zero. In this case equation (8.137) is solved numerically by integrating

Figure 8.6. Absorption of p-polarized laser at oblique incidence in magnetized plasma. �

and � are defined in equation (8.138). The dots are experimental points (Horovitz et al.

1998) of � and �. The measured absorption at these points fits within 10% of the theoretical

values given in this figure.
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it along a path in the complex plane (of �), where the singularities are avoided
by taking a ‘detour’ from the x axis (i.e. the real � axis). The solution for the
laser absorption, as given in figure 8.6 (Woo et al. 1978, David and Pellat
1980), shows that a p-polarized laser at oblique incidence in magnetized
plasma can be almost 100% absorbed.

It turns out that the laser absorption depends only on two parameters, �
and �, defined in equation (8.138). � is related to the density gradient (scaling
as L) and to the incidence angle 
0, while � is related both to the density
gradient and the magnetic field. It is interesting to point out that even at
normal incidence (
0 ¼ 0), the absorption can be as high as 50% for
� � 0:5. Using practical units for laser–plasma interactions, one can write

� � 0:148

��
�L
1 mm

��
L

10 mm

�2�1=3� B0

MGauss

�
ð8:140Þ

so that � � 0:5 for a magnetic field �3MG and a density scale length
�10 mm, values measured experimentally in many plasmas created by lasers.
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Chapter 9

Thermal Conduction and Heat Waves

9.1 The Scenario

Thermal conduction or, in more general terms, the energy transport in laser-
produced plasma, is related to basic plasma physics in a wide range of
parameters, such as density and temperature. This subject is of great interest
because it plays a very important role in major applications, such as inertial
confinement fusion (ICF), the production of x-ray sources and x-ray lasers.
For example, the acceleration of shell targets for ICF relies not only on the
energy absorbed by the plasma, but also on the efficient coupling between
this energy and the solid shell. In section 9.2 we calculate this efficiency in
a simple model.

A high intensity laser radiation (>1011 W/cm2), with pulse duration �L
larger than 100 ps, is incident on a solid target. Plasma is created instanta-
neously (on a time scale shorter than �L by many orders of magnitude); it
is heated to a high temperature and this plasma expands into the vacuum
to create a low-density corona. Once the plasma corona is created, the
laser radiation no longer reaches the solid since it cannot penetrate beyond
the critical surface, with an electron density nec ¼ 1021(�L=mm)�2 cm�3,
where �L is the laser wavelength. At the critical surface, part of the laser
beam is absorbed and the other part is reflected into the corona. We have
seen in chapter 5 that most of the absorption is done in the domain near
the critical surface. Moreover, as has been shown in chapter 6, waves are
created in the plasma-corona.

Figure 9.1 describes schematically the temperature and the electron
density in laser-produced plasma. The temperature has a maximum in the
region of the critical surface, where most of the laser energy is absorbed.
The temperature decreases sharply towards the cold solid, and to a good
approximation it is constant throughout the corona. The density is
decreasing towards the vacuum and, for laser radiation intensities larger
than about 1015 W/cm2, there is a steep density gradient at the critical
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surface. The density and pressure rise towards the solid surface and the
pressure (ablation pressure) reaches a maximum at the ablation surface,
where plasma is created and the flow velocity is zero.

The energy absorbed at the critical surface domain is transported
beyond the critical surface towards the solid target, either by (x-ray)
radiation or by electron thermal conduction (figure 9.1). Most of the
electrons in the plasma have a Maxwellian velocity distribution, with a
temperature usually denoted by Tc (c stands for ‘cold’, which can be of
the order of kBTc � 1 keV). For high laser intensities IL, satisfying

Figure 9.1. Schematic diagram of the temperature and density profile in a laser-induced

plasma. A scenario is given for plasma particle streams, currents, heat flow, laser and

laser-induced x-ray propagation, a possible double layer formation and the creation of

axial and toroidal magnetic fields.
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IL�
2
L > 1014 (W=cm2)mm2, the electron velocity distribution may be described

by two (or more) Maxwellian distributions with a second temperature Th,
much larger than Tc. In this case the fast electrons with a temperature Th,
which are created in the critical surface domain, transport part of their
energy into the solid, causing preheating of the target. This is easily understood
since the electron mean free path �e (for 908 deflection in multiple Coulomb
collisions with ions, see section 9.3) is proportional to the square electron
temperature,

�eðcmÞ ¼ 5:71� 104
T2
e

Zne ln�
ð9:1Þ

where Te, in degrees Kelvin, stands for the electron (cold or hot) temperature,
Z is the charge of the ion, ne is the electron density and ln� is the Coulomb
logarithmic factor. For example, for Te ¼ 107 K � 1 keV, Z ¼ 10, ln� ¼ 10
and ne ¼ 1020 cm�3, one gets �e � 5:7 mm. When Th=Tc � 10, the energy of
the hot electrons is deposited 100 times deeper into the target than the
energy deposited by the cold electrons. Furthermore, if the cold electron
mean free path is smaller than the temperature density gradient, then
the thermal conduction is diffusive (see section 9.4) and the heat flux q

(erg/(s�cm2)) is given by (see section 2.3)

q ¼ � 1
3�evenekBrTe ¼ �rTe ð9:2Þ

where ve is the electron velocity and kB is Boltzmann’s constant. Substituting
(9.1) into (9.2), one gets the classical result of Spitzer and Härm, denoted by
SH theory (see section 9.5) for the conductivity �:

�ðerg � s�1 � cm�1 �K�1Þ ¼ 1:77� 10�6 T
5=2
e

Z ln�
: ð9:3Þ

The heat flow is possible due to the distortion of the Maxwellian velocity
distribution. For example, in one dimension the Gaussian form of the
electron velocity distribution is changed in such a way that more electrons
have a suitable velocity and energy to carry heat to the cold region. This
effect creates an electric field E. In order to keep charge neutrality, an electric
current �EE (�E is the electrical conductivity coefficient), called ‘return
current’, is created from the cold target towards the critical surface (see
figure 9.1). The electrons in the return current have low energy. The thermal
flux of electrons, from the critical surface towards the ablation surface, has
a higher energy than the electrons in the return current, so the target is
heated.

The temperature gradient between the critical surface and the ablation
surface induces a thermoelectric effect. This phenomenon reduces the classical
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heat flow according to the relation

J ¼ �EE� �rT ; q ¼ �E� �rT ð9:4Þ

where J is the total electrical current, and the coefficients �, �, �E and �
are not independent (Onsager relations in irreversible thermodynamics).
Assuming only a net heat flow transport, J ¼ 0, one gets from (9.4):

q ¼ ��
�
1� ��

�E�

�
rTe ð9:5Þ

where a reduction factor due to the thermoelectric effect shows up, which
may reduce the heat transport by a factor of about 2.

Furthermore, the heat transport of the cold electrons for very steep
temperature gradients does not satisfy the diffusion approach. The SH
theory is valid only if the electron velocity distribution function f is
slightly perturbed from its equilibrium distribution ( f0 is the Maxwell
distribution), namely f ¼ f0 þ f1 where f0 � f1. The validity of the diffusion
approximation (SH model) depends strongly on the ratio �e=LT, where �e is
the electron mean free path (see (9.1)) and LT is the temperature density
scale length:

LT ¼ T

ðdT=dxÞ : ð9:6Þ

The diffusion approximation is valid for �e � LT. It has been shown (Gray
and Kilkenny 1980) that the diffusion approximation is valid only for
�e=LT < 10�2. For �e=LT > 10�2 the energy transport is significantly
reduced, and it is necessary to introduce an inhibition factor f in order to
get agreement with experiments. The inhibition factor f is defined as the
ratio between the actual heating flux q and the free streaming flux qf, the
maximum possible flux, defined by

qf ¼ nekBTe

�
kBTe

me

�1=2
: ð9:7Þ

The free streaming is the heat flow carried by the electrons if they stream
freely at their thermal velocity along the temperature gradient. For high
laser irradiance, IL > 1015 W/cm2, where �e=LT � 1, the agreement with
experiments are obtained when using an electron thermal flux

q ¼ f qf � 0:03qf ð9:8Þ

instead of the diffusion flux given by (9.2) (see, for example, Rosen 1984).
As we have seen in chapter 8, magnetic fields of the order of few

megagauss are easily created in the corona of laser-produced plasma (see
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figure 9.1). Magnetic fields significantly affect the electron transport if

!ce�e > 1; !ce ¼
eB

mec
ð9:9Þ

where �e is the angular scattering time of the electron and !ce is the Larmor
angular frequency. Assuming that the main contribution to �e is from
electron–ion collisions, then (see section 2.2)

�e½s� � �ei ¼ 3:44� 10�16

��
10

Z

��
1022 cm�3

ne

��
10

ln�

��
Te

100 eV

�3=2�
ð9:10Þ

and using

!ce½s�1� ¼ 1:76� 1013
�

B

MGauss

�
ð9:11Þ

one gets in practical units

!ce�e ¼ 6:05� 10�3

�
10

Z

��
1022 cm�3

ne

��
10

ln�

��
Te

100 eV

�3=2� B

MGauss

�
:

ð9:12Þ

The megagauss magnetic fields were measured in the corona, where the
electron density is much smaller than 1022 cm�3 and the temperature can
be much larger than 100 eV. In this case !ce�e can be larger than one, and
therefore in the corona the electron transport in a magnetized plasma
might be relevant. However, in the more important domain of the energy
transport, between the critical surface and the ablation surface, !ce�e is in
general smaller than one even if the large magnetic field penetrates from
the corona into the solid. Thus the electron transport between the critical
surface and the ablation surface seems not to be affected significantly by
the magnetic field. We shall not further discuss in this chapter the transport
in magnetized plasma.

Electron transport also plays an important role in spreading the
absorbed laser energy uniformly around the solid target. It is well known
that a high-laser-intensity beam does not have a uniform spatial distribution,
and even for the same laser system the spatial intensity distribution
changes from shot to shot. Therefore, a major difficulty in high-intensity
laser–plasma experiments is the non-uniformity of the laser beams. This
can cause irreproducible and uncontrollable experiments, and therefore is
difficult to analyse and use in various applications (such as ICF). However,
after a corona with a dimension much larger than the laser wavelength has
been formed, the energy transport in the lateral direction (in the plasma)
can redistribute the energy uniformly around the solid surface. Electron
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conduction reduces the temperature within ‘hot spots’ and thus decreases the
possible creation of hot and narrow filaments in the plasma.

Regarding the scenario in the corona, it is interesting to point out the
possible existence of a double layer (DL) (see figure 9.1). The creation of
hot electrons, also known as suprathermal electrons (see section 9.6), with a
temperature higher by a factor of 10 or more than the cold temperature (the
thermal electrons) may be associated with the formation of this DL in the
expanding corona. The fastest particles, electrons and ions, in the low-density
region lead the expansion of the plasma. The electric field in the expanding DL
accelerates the ions and causes the fast electrons to turn back into the target.
Such DLs were observed experimentally (Eliezer and Ludmirsky 1983) and
suggested theoretically by the prediction of ‘rarefaction shock waves’ for
Th=Tc > 9:9 (Bezzerides et al. 1978, Wickens et al. 1978, Diebold et al.
1987). A rarefaction shock occurs (Zeldovich and Raizer 1966) when the
following unusual condition is satisfied: d2P=dV2 < 0, V ¼ 1=�, � ¼ mini in
a plasma and P is the pressure. In this case P is composed of two components:
P ¼ nckBTh þ nhkBTh, where nh and nc are the electron densities of the hot
and cold plasmas respectively.

Electron transport in plasmas has been a major issue since the beginning
of modern plasma physics (Spitzer and Härm 1953, Rosenbluth et al. 1957,
Spitzer 1962, Braginskii 1965, Trubnikov 1965, Hinton and Hezeltine 1976,
Stacey 1980, Nicholson 1983, Horton 1989, Hazeltine and Meiss 1992). The
electron transport phenomena in laser-produced plasma have been exten-
sively discussed in the literature (Haines 1980, 1989, Key 1980, 1983, 1991,
Bobin 1985, Shvarts 1986, Galeev and Natanzon 1991, Yamanaka 1991,
Bell 1995). In this chapter we discuss electron transport phenomena relevant
to laser-produced plasma.

9.2 The Rocket Model

We now consider a planar steady-state ablation from a target, as shown
schematically in figure 9.1. In this section it is assumed that the fluxes of
mass, momentum and energy are constant and the equation of state of an
ideal gas is used:

flux of mass ¼ �u

flux of momentum ¼ Pþ �u2

flux of energy ¼ �

��1
Puþ 1

2
�u3 þ qþ I

ð9:13Þ

where u is the plasma flow velocity, � is the density, P is the pressure, q is the
electron heat flux, I is the absorbed laser energy flux (erg s�1 cm�2) and � is
the ratio of the heat capacity at constant pressure (CP) to heat capacity at
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constant volume CV. The following ideal gas equations of state are also
available:

internal energy: " ¼ CVT ¼
�

1

� � 1

�
P

�

enthalpy: h ¼ CPT ¼
�

�

� � 1

�
P

�

� ¼ CP

CV

¼ gþ 2

g

isothermal (T ¼ const:Þ speed sound: cT ¼
ffiffiffiffi
P

�

s

isentropic (S ¼ const:Þ speed sound: cS ¼
ffiffiffiffiffiffi
�P

�

s

ð9:14Þ

where g is the number of degrees of freedom of one particle. For a mono-
atomic gas g ¼ 3 and � ¼ 5

3. For electrons in the plasma � ¼ 5
3, so that

�=ð� � 1Þ ¼ 5
2.

We now write six equations describing the flux conservation for mass,
momentum and energy, according to (9.13), at the critical surface and at
the ablation surface:

at the critical surface:

�cuc ¼ �u � _mm

�cu
2
c þ Pc ¼ �u2 þ P

_mm

��
5

2

�
Pc

�c
þ
�
1

2

�
u2c

�
þ qout ¼ _mm

��
5

2

�
P

�
þ
�
1

2

�
u2
�
þ qin þ I

qout ¼ �u3c ¼ _mmu2c ðfree streaming plasmaÞ

ð9:15Þ

at the ablation surface:

_mm ¼ �u ¼ const: ð‘source’ of plasmaÞ

Pa ¼ �u2 þ P ðablation pressureÞ

_mm

��
5

2

�
P

�
þ
�
1

2

�
u2
�
þ qin ¼ 0

where the quantities with the index c denote the variables at the critical
surface from the corona side, while those without the index c denote the
values between the corona and the ablation surface. Note that at the ablation
surface u ¼ 0 and P ¼ Pa. Since in the corona the temperature is constant to
a good approximation, it is conceivable that the plasma expands with the
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isothermal speed of sound in the corona cT given by

uc ¼ cT ¼
ffiffiffiffi
P

�

s
: ð9:16Þ

Using this relation together with the first two relations of (9.15) and the value
of the ablation pressure (the sixth relation of (9.15)), one gets

Pa ¼ 2 _mmcT: ð9:17Þ

The third, the fourth and the last of equations (9.15) yield

I ¼ 4 _mmc2T: ð9:18Þ

Using now the rocket equation for a one-dimensional plane geometry,

mðtÞ dvðtÞ
dt

¼ Pa: ð9:19Þ

The mass mðtÞ (g/cm2) is accelerated to a velocity vðtÞ at a time t by an
ablation pressure Pa. The accelerated mass is defined by

mðtÞ ¼ m0 �
ðt
0

�
dm

dt

�
dt ¼ m0 � _mmt ð9:20Þ

where it is assumed that the rate of plasma production is constant, i.e.
dm=dt ¼ constant and m0 is the initial mass. Substituting (9.17) and (9.20)
into (9.19),

ðm0 � _mmtÞ dv
dt

¼ 2 _mmcT ð9:21Þ

and integrating, the plasma rocket equation is obtained:

vðtÞ ¼ 2cT ln

�
m0

mðtÞ

�
: ð9:22Þ

The hydrodynamic efficiency 	h is defined by

	h ¼
1
2mðtÞvðtÞ2

I�
ð9:23Þ

where � � �L is the absorption time of the laser energy which is of the order
of the laser pulse duration �L, I is the (time) average absorbed laser flux and
I � � is the absorbed energy (erg/cm2). Using equations (9.18), (9.20) and
(9.22) into (9.23), one gets the hydrodynamic efficiency:

	h ¼ XðlnXÞ2

2ð1� XÞ ; X � mð�Þ
m0

: ð9:24Þ

Note that for X ¼ 0:3 the hydrodynamic efficiency is 30%, while for X ¼ 0:9
the efficiency drops to 5%.
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We now generalize the above analysis in order to estimate the ablation
pressure necessary to accelerate a thin spherical shell to high velocities. The
initial mass of this shell can be written as

m0 ¼ �0�R0 ð9:25Þ

where �0 and �R0 are the initial density and shell thickness accordingly. If
during the acceleration period � , of the order of the laser pulse duration,
the shell radius R is much larger than its thickness�R, then for each segment
of the shell one can use the plane geometry formulas, as derived above. Using
(9.25) together with (9.17), (9.18), (9.23) and (9.24), the ablation pressure is

Pa ¼
�
X

	h

��
R0

4cT�

��
�R0

R0

�
½�0vð�Þ2� ð9:26Þ

where vð�Þ is the final (maximum) velocity of the accelerated shell, cT (the
isothermal sound velocity in the corona) is the exhaust velocity of the
plasma causing the acceleration and R0=�R0 is called the aspect ratio,
limited (the maximum value) by hydrodynamic instabilities. From this
equation one can see that for a given final shell velocity the required ablation
pressure is inversely proportional to the hydrodynamic efficiency, and the
larger the aspect ratio the less ablation pressure is needed. As an example,
relevant to ICF, assuming X=	h � 0:5, R0=ð4cT�Þ � 1, R0=ð�R0Þ ¼ 10,
�0 ¼ 0:2 g/cm3, one requires an ablation pressure of Pa � 100Mbar in
order to achieve a shell velocity of v � 108 cm/s.

9.3 Relaxation Rates

In analysing a test particle, denoted by an index 1, moving with velocity v1
and interacting with a background plasma composed of particles, labelled
2, there are four relaxation rates � of interest: the momentum loss or slowing
down, the energy loss and two relaxation times related to transverse and
parallel diffusion. In this section we only discuss the momentum loss and
energy loss relaxation rates.

The relevant interactions discussed here are the Coulomb interaction
between two charged particles (charges q1 and q2), described by the
Rutherford cross section �12 (see section 2.2). As in section 2.2, the impact
parameter is denoted by b, v is the relative velocity between the colliding
two particles (with indices 1 and 2), and the reduced mass is defined by

mr ¼
m1m2

m1 þm2

ð9:27Þ

CM and L label the centre of mass and the laboratory coordinates
accordingly and 
 is the scattering angle in the collision (see figure 9.2).
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Conservation of momentum and energy of the Coulomb collision yields
the scattering angle in the centre of mass (CM) system (in c.g.s. units):

tan

�

CM
2

�
¼ jq1q2j

mrv
2b

ð9:28Þ

and the scattering angle of particle 1 in the laboratory frame is given by

cot 
L ¼ cot 
CM þm1

m2

�
1

sin 
CM

�
: ð9:29Þ

Figure 9.2. (a) Laboratory and (b) centre of mass (CM) frames of reference. In (a) the orbit

is shown for a charged particle with mass m1 scattered by a charged particle (with opposite

charge) with mass m2, positioned at O.

184 Thermal Conduction and Heat Waves



Since the collisions of interest are between the pairs electron–electron (ee),
electron–ion (ei), ion–electron (ie) and ion–ion (ii), the following special
cases are of interest:

m1 � m2: 
L � 
CM

m1 ¼ m2: 
L � 
CM
2

m1 � m2: 
L � m2

m1

sin 
CM:

ð9:30Þ

All particles of type 1 incident into a ring between b and bþ db are scattered
into angles 
CM and 
CM þ d
CM in the CM frame of reference (or into angles

L and 
L þ d
L in the laboratory frame of reference). Therefore, the impact
parameter b is related to the differential cross section d�12 by

d�12ð
CMÞ ¼ �12ð
CMÞ d� ¼ �12ð
CMÞ2� sin 
CM d
CM ¼ 2�b db ð9:31Þ

where � is the solid angle and �ð
CMÞ is the Rutherford cross section (using
(9.28)):

�ð
CMÞ ¼ b db

sin 
CM d
CM
¼

ðq1q2
Þ2

½2mrv
2 sin2ð
CM=2Þ�2

: ð9:32Þ

Since the angle of deflection increases with the decrease of the impact para-
meter (see (9.28)), the cross section that a particle is scattered at any angle
larger than 908 is given by the impact parameter for 
 ¼ 908:

�12ð
CM 	 908Þ ¼ �bð908Þ2 ¼ �q21q
2
2

m2
rv

4
ð9:33Þ

where equation (9.28) has been used.
Equation (9.33) gives the cross section for a scattering angle larger than

or equal to 908 in one collision. Now we calculate small-angle scattering that
adds up to a large angle, say 908 deflection. We denote the small-angle
scattering in the centre of mass frame by 
 ð
� 1Þ. From equation (9.28),


 ¼ 2jq1q2j
mrv

2b
: ð9:34Þ

The mean square deflection of a particle (called the test particle) that goes
along a distance L in a plasma with a density of particles n2 (here we calculate
the deflection caused by particles of type 2) is


2CM ¼
X


2 ¼ n2L

ð
max


min


2�12ð
Þ2� sin 
 d


¼ 18�n2Lq
2
1q

2
2

m2
rv

4

ðbmax

bmin

db

b
¼ 18�n2Lq

2
1q

2
2 ln�

m2
rv

4
ð9:35Þ
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where the Coulomb cutoff coefficient is defined by the ratio of Debye length
to the distance of closest approach (see section 2.2):

� ¼ bmax

bmin

¼
�

3

2
ffiffiffi
�

p
��

1

q1q
2
2

��
ðkBTÞ3

n2

�1=2
: ð9:36Þ

The following relation has been used between the relative velocity v and the
temperature T :

1
2mrv

2 ¼ 3
2 kBT : ð9:37Þ

The mean free path for large angle deflection, L90, is obtained from (9.35) by
substituting there 
2CM ¼ 1, yielding the cross section �90 for a large-angle
scattering due to many small-angle deflections,

L90 ¼
m2

rv
4

18�q21q
2
2n2 ln�

¼ ðkBTÞ2

2�q21q
2
2n2 ln�

�90 ¼
1

n2L90

¼ 18�q21q
2
2 ln�

m2
rv

4
¼ 2�q21q

2
2 ln�

ðkBTÞ2

ð9:38Þ

where (9.37) has been used. Note that the first of equations (9.38) is the equa-
tion given in (9.1) (q1 ¼ �e, q2 ¼ Z and Zn2 ¼ ne).

It is important to note that the probability (which is proportional to the
cross section) of a large-angle scattering due to a single collision (in most
plasmas) is significantly smaller than the probability of a large deflection
caused by many small-angle scatterings:

�90
�ð
CM 	 908Þ ¼ 8 ln�: ð9:39Þ

Equation (9.39) is derived from equations (9.33) and (9.38). The factor of
8 ln� is in the domain of 10–102 for most plasma systems discussed in this
book. This fact is very important in analysing collision phenomena in
plasmas.

The time required for large-angle deflection, in the CM system, is
obtained from (9.38) and (9.37):

�90 ¼
L90

v
¼

�
3

ffiffiffi
3

p

8�

� ffiffiffiffiffiffi
mr

p ðkBTÞ3=2

q21q
2
2n2 ln�

: ð9:40Þ

We are interested in the large-angle deflection times in the laboratory frame
of reference. Therefore, from equation (9.30), one gets that if m2 	 m1 then
the deflection in the laboratory system is comparable with that in the CM
system, so that the calculated value of L90 in the CM system is the same
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as in the laboratory system. Therefore, one can use the above formulae
for e–e, e–i and i–i collisions. However, for i–e collisions (the test particle
is the ion which is scattered by electrons) it follows from equation (9.30)
that 
L 
 ðme=miÞ
CM, i.e. since me=mi is about 1/2000 (for the hydrogen
plasma) the test particle (the ion) must travel a 2000 times larger distance
in order to undergo a large deflection in the laboratory frame. For
the identical particle collisions the reduced mass is half the particle
mass, and a factor of 2 was introduced since 
L � 1

2 
CM (see equation
(9.30)).

From the above formalism (equation (9.40)) the following collision
times for large-angle scattering, or equivalently themomentum loss relaxation

times � , are obtained (we drop the subscript 90), as seen in the laboratory
frame of reference (note that the first particle in the superscript is the test

particle):

�ee ¼
�
3

ffiffiffi
6

p

8

� ffiffiffiffiffiffi
me

p ðkBTÞ3=2

�e4ne ln�

� 1:07� 10�11

�
1020 cm�3

ne

��
10

ln�

��
Te

1 keV

�3=2
½s�

� ii ¼
�
3

ffiffiffi
6

p

8

� ffiffiffiffiffi
mi

p ðkBTÞ3=2

�Z4e4ni ln�

� ei ¼
�
3

ffiffiffi
3

p

8

� ffiffiffiffiffiffi
me

p ðkBTÞ3=2

�Z4e4ni ln�

� ie �
�
mi

me

�
�ei:

ð9:41Þ

Assuming a neutral plasma, ne ¼ Zni and the same temperature, one can
get from the last equation the following order of the large-angle deflection
collision times:

�ee : � ei : � ii : � ie � 1 :
1

Z
ffiffiffi
2

p :
1

Z3

�
mi

me

�1=2
:

1

Z3
ffiffiffi
2

p
�
mi

me

�
: ð9:42Þ

The large-angle scattering collision time calculated here is an approximation
of the momentum loss of the test particle. If a particle has an initial momen-
tum in some direction, after scattering to a large angle the momentum in the
initial direction is lost.

We now estimate the time required for a test particle to lose its
energy. From momentum and energy conservation during a collision, a
test particle 1, with energy E1, is releasing energy �E1 in the laboratory
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frame according to the equation

�E1

E1

¼ 4m1m2

ðm1 þm2Þ2
sin2

�

CM
2

�
: ð9:43Þ

The energy lost in multiple-scattering small-angle collisions can be calculated
by substituting 
CM ¼ 908 in the last equation, yielding

�E1

E1

¼ 2m1m2

ðm1 þm2Þ2
: ð9:44Þ

Therefore, in 908 collisions between identical particles, half of the initial
energy is transferred by the test particle to the background particles.
However, for electron–ion scattering only the fraction me=mi of the initial
energy of the test particle is transferred during 908 deflection. Denoting by
�E the energy relaxation time, i.e. the time that �E1=E1 � 1, one gets from
equations (9.41), (9.42) and (9.44) (for ne ¼ Zni),

�eeE � � ee

� iiE � � ii � 1

Z3

�
mi

me

�1=2
� ee

� eiE � 1

Z

�
mi

me

�
�ee

� ieE �
�
mi

me

�
� ie �

�
mi

me

�2
�ei

�ee : � eeE : � iiE : � eiE � 1 : 1 :
1

Z3

�
mi

me

�1=2
:
1

Z

�
mi

me

�
:

ð9:45Þ

To conclude this analysis, it is important to note that the collision frequency
�12 for momentum loss and the collision frequency �12E for the energy loss,
where 1 denotes the test particle and 2 the background particles, are related
to the relaxation times calculated above by

�12 ¼ 1

�12
; �12E ¼ 1

�12E
: ð9:46Þ

The last of equations (9.45) show that electrons equilibrate, i.e. reach an
equilibrium distribution (e.g. a Maxwell distribution of velocities), on a
shorter time scale than the ions do by a factor of Z3ðme=miÞ1=2. Moreover,
the electrons reach equilibrium with the ions on a time scale longer by a
factor ð1=ZÞðmi=meÞ than the electrons equilibrate with themselves. For
example, in a typical corona of laser-produced plasma with an electron
density 1020 cm�3, an ion charge Z ¼ 10, mi=me � 4� 104 and an electron
temperature 1 keV, ln� � 10, one gets from equations (9.41) and (9.45)
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that we can define an electron temperature after 
10 ps from the start of the
laser–target interaction, an ion temperature after 
2 ps (note that for a
hydrogen plasma this relaxation time changes to 
200 ps) and that the elec-
tron temperature is equal to the ion temperature after 40 ns. Thus, for most
high-intensity laser pulses (0.1 ns to 10 ns) there is no equilibrium between the
electrons and the ions in the corona. It is worth mentioning that for a solid
state density plasma, ne � 1023, produced for example by a very short pulse
duration (
100 fs), the above time scales are reduced by a factor of 1000
(assuming the same temperature). In this case the electrons will reach an
equilibrium distribution with a temperature of 1 keV in about 10 fs.

The multiple small-angle scattering of the plasma introduces the
Coulomb logarithm ln�, a factor included in the transport coefficients as
well. ln� ¼ bmax=bmin results from integration over the scattering angles 
,
between large angles resulting from a small impact parameter bmin and
small angles resulting from a large impact parameter bmax. The value of
bmax is taken as the Debye shielding scale and is a function of electron
velocity (i.e. temperature) and density. If the electrons move in a strong
magnetic field, where the Larmor radius is smaller than the Debye length,
then the Larmor radius should replace the value of bmax. However, this is
seldom required in the laser-produced plasma. Last but not least, in dense
and cold plasma the values of bmax and bmin are comparable and ln� may
become negative, an unphysical result. This can happen when a large-angle
deflection is more probable than the small-angle scattering. Such a plasma
medium is the strongly-coupled plasma, where the electric potential energy
is larger than the kinetic energy. In this case a value of ln� ¼ 2 is taken
for practical calculations.

In conclusion, for plasmas where the small-angle scatterings are domi-
nant, the Coulomb scattering of the plasma particles has a randomizing
effect on the particle motion. Therefore, in this case, the electron drift
motion may be described by diffusion or in the more general case by the
Fokker–Planck equation.

9.4 The Fokker–Planck Equation

The electron energy transport can be described by the Boltzmann equation
(see section 3.4):

@f

@t
þ v � @f

@r
þ eE

me

� @f
@v

¼
�
@f

@t

�
coll

ð9:47Þ

where f ¼ f ðr; v; tÞ is the electron density in phase space, r� v space, r is the
space coordinate and v is the particle velocity. E is the electrical field in the
plasma and the magnetic field is neglected in (9.47). ð@f =@tÞcoll is the collision
term describing the scattering of electrons (by electrons and ions), as
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described in the previous section. Assuming that the small-angle collisions
are dominant, one can use the Fokker–Planck equation for the collision
term.

The Fokker–Planck equation is derived in general by assuming a
Markov process. If a measurable physical quantity develops in time in such
a way that its ‘future value’ depends only on its ‘present value’, then the
phenomenon describing this physical quantity is called a Markov process.
In such a process the physical quantity changes in a random way. Let us
take a physical variable X with measured values Xn, Xn�1, . . . , X1, X0 at
times tn > tn�1 > � � � > t1 > t0 respectively. The probability P to measure
the value Xn, where the previous values were Xn�1, . . . , X1, X0, in a
Markov process is given by

PðXnjXn�1; . . . ;X1;X0Þ ¼ PðXnjXn�1Þ: ð9:48Þ

This equation describes the fact that the value Xn, measured at time tn,
depends only on its value Xn�1 as measured at time tn�1. A trivial example
for a Markov process is the flipping of a coin. Then the number Xn of heads
after n flips depends only on the number of heads Xn�1 after n� 1 flips, and
not on all the history.

In analysing a continuous Markov process the situation is more com-
plicated. If the physical phenomenon is described by a continuous function,
then the existence of the derivatives contradicts the definition of the Markov
process. For example, in this case Xnþ1 depends not only on Xn but also
on the derivative ðdXn=dtÞ ¼ ðXn � Xn�1Þ=�t, etc. Therefore, a Markov
process may describe a continuous physical phenomenon only as an approx-
imation. For example, in a Brownian motion the particle velocity undergoes
a rapid variation due to each molecular collision, followed by a low-rate
change due to the friction force. On a time scale of one collision the scattering
is not Markovian. However, on a time scale of many collisions the Markov
process is a very good approximation.

In plasma, due to the long-range Coulomb forces there are many
small-angle scatterings causing large deflections (see previous section). The
distribution function f ðv; tÞ is changing slowly on a time scale t describing
one (small-angle) collision. The Markov process may describe the changes
on a time scale �t, due to many small-angle collisions. In this case it is
required that t � �t; however, �t is small enough to define the variations
and the derivatives of the physical quantities.

According to equation (9.48) for a Markov process the distribution
function f ðv; tÞ is determined from the knowledge of f ðv� w; tÞ, where
w ¼ �v is the change in velocity in the time interval �t due to multiple
small-angle collisions. It is assumed here that the distribution function in
phase-space can be written f ðr; v; tÞ ¼ n0 f ðv; tÞ, where the spatial depen-
dence is given by the constant n0 (dimension cm�3). The probability that a
particle changes its velocity from v to vþ w is given by Pðv;wÞ. If only
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collisions are responsible to the change in f ðv; tÞ, then one can write

f ðv; tÞ ¼
ð
Pðv� w;wÞf ðv� w; t��tÞ d3w

� f ðv; tÞ
ð
Pðv;wÞ d3w��t

@f ðv; tÞ
@t

ð
Pðv;wÞ d3w

�
ðX

i

wi

@

@vi
½Pðv;wÞf ðv; tÞ�d3w

þ 1

2

ðX
i; j

wiwj

@2

@vi @vj
½Pðv;wÞ f ðv; tÞ� ð9:49Þ

where a Taylor expansion has been made to second order, a good approxi-
mation for w small and�t small. The indices i and j are the vector components
in an orthogonal frame of reference. The integral of the probability function
is one: ð

Pðv;wÞ d3w ¼ 1 ð9:50Þ

and the rate of change of the first moment hwi (dimension cm/s2) and the
second moments hwwi (dimension cm2/s3) of w are

hwii ¼
1

�t

ð
Pðv;wÞwi d

3w

hwiwji ¼
1

�t

ð
Pðv;wÞwiwj d

3w:

ð9:51Þ

Substituting (9.50) and (9.51) into (9.49), one gets the Fokker–Planck

equation�
@f

@t

�
coll

¼ �
X
i

@

@vi
½hwiif ðv; tÞ� þ

1

2

X
i; j

@2

@vi @vj
½hwiwjif ðv; tÞ�: ð9:52Þ

The first term on the right-hand side describes a ‘drift’, while the second term
is the diffusion in the velocity space. In uniform plasma in thermal equili-
brium the drift term ‘pushes’ the electrons to a zero velocity, but the electrons
do not accumulate there because the diffusion term ‘pushes’ them away from
the zero velocity.

The Fokker–Planck equation (9.52) can also be viewed as a continuity
equation in the velocity space, with a density f ðvÞ and a current JðvÞ:�

@f

@t

�
coll

þ @

@v
� Jv ¼ 0; Jv ¼ hwif � 1

2

@

@v
� ½hwwif �: ð9:53Þ

As in the previous section, the test particles are denoted by index 1 and
the background particles acquire index 2. The probability per unit time

The Fokker–Planck Equation 191



(P d3v=�t) in equations (9.51) that a test particle, moving with relative
velocity v1 � v2 relative to a background particle (moving with velocity v2),
is scattered by the background particles, with a density f2 d

3v, into the
solid angle d� is given by

Pðv1; v2Þ d3v2
�t

¼ f2ðr2; v2; tÞ�12ðv;�Þvd3v2 d�; v � jv1 � v2j ð9:54Þ

where �12 is the Rutherford cross section given in the CM frame by (9.32).
The approximation f ðr; v; tÞ ¼ nðrÞf ðv; tÞ is used, where nðrÞ is the spatial
density. nðrÞ is omitted in the following analysis, since it cancels out in the
Fokker–Planck equation (9.52). Note that the dimension of f ðr; v; tÞ is
(cm�6 s3), while the dimension of f ðv; tÞ is (cm�3 s3).

Substituting (9.54) into (9.51), one has to calculate the averages

hw1i ¼
ð
d3v2

ð
d�w1v�ðv;�Þf2ðv2Þ

hw1w1i ¼
ð
d3v2

ð
d�w1w1v�ðv;�Þf2ðv2Þ

w1 ¼ v
0
1 � v1ðin lab: frameÞ ¼ m2

m1 þm2

ðv0 � vÞ � m2

m1 þm2

w ð9:55Þ

v ¼ v1 � v2

v
0 ¼ v

0
1 � v

0
2

�
ðin CM frameÞ

v ¼ jvj ¼ jv0j

where primes denote the velocity value after the collision. The third equation
of (9.55) is derived from the relation between the particle velocity in the
laboratory frame and the particle velocity in the CM frame:

v1ðlabÞ ¼ vcm þ
�

m2

m1 þm2

�
v

v
0
1ðlabÞ ¼ vcm þ

�
m2

m1 þm2

�
v
0

v2ðlabÞ ¼ vcm �
�

m1

m1 þm2

�
v

v
0
2ðlabÞ ¼ vcm �

�
m1

m1 þm2

�
v
0

ð9:56Þ

where vcm is the velocity of the centre of mass. The last equation of (9.55)
is obtained by using in the centre of mass energy conservation ð 12m1v

2
1 þ

1
2m2v

2
2 ¼ 1

2m1v
02
1 þ 1

2m2v
02
2 Þ and momentum conservation (m1v1 þm2v2 ¼ 0;

m1v
0
1 þm2v

0
2 ¼ 0).
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The change (in one collision) of the relative velocity w in the CM frame in
Cartesian coordinates, where the z axis is chosen parallel to v, is (see figure 9.2)

wz ¼ �2v sin2
�



2

�

wx ¼ 2v sin

�



2

�
cos

�



2

�
cos�

wy ¼ 2v sin

�



2

�
cos

�



2

�
sin�

d� ¼ sin 
 d
 d�:

ð9:57Þ

Using (9.57) and the Rutherford cross section (9.32) in equations (9.55), one
gets

hw1i ¼ ��12

�
1þm1

m2

�ð
d3v2 f2ðv2Þ

v1 � v2

jv1 � v2j3

�12 �
4�q21q

2
2 ln�

m2
1

:

ð9:58Þ

In obtaining this result the integral on d� has been done. Thus, integrals with
wx and wy yield zero (for the choice of reference in (9.57)), while with wz one
has (using (9.34) and (9.36))
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�



2

� ¼ 2�

ð
d
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�



2

� ¼ 2�

ð
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2
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�
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2

��
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� 2�

�
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2

��
max


min

¼ 2� ln

�

max


min

�
¼ 2� ln�: ð9:59Þ

Equation (9.58) can be written in a more convenient form by introducing the
Rosenbluth potential HðvÞ, which satisfies a Poisson equation in the velocity
space:

H2ðv1Þ ¼
�
1þm1

m2

�ð
d3v2

f2ðv2Þ
jv1 � v2j

r2
vH2ðv1Þ ¼ �4�

�
1þm1

m2

�
f2ðv1Þ

hw1i ¼ �12

@H2ðv1Þ
@v1

:

ð9:60Þ
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Using the differentiation laws,

@2jv1 � v2j
@v1i @v1j

¼ @

@v1i

�
v1j

jv1 � v2j

�
¼

ij
jv1 � v2j

�
v1iv1j

jv1 � v2j3
ð9:61Þ

and neglecting the integral terms not containing d
=
 (considered to be
small), one gets (i and j are the three components of an orthogonal frame
of reference)

G2ðv1Þ ¼
ð
d3v2 f ðv2Þjv1 � v2j

r4
VG2ðv1Þ ¼ �8�f2ðv1Þ

hw1iw1ji ¼ �12

@2G2

@v1i @v2j
:

ð9:62Þ

Substituting (9.60) and (9.62) into (9.52), one gets the Fokker–Planck
equation

�
@f�ðr; v; tÞ

@t

�
coll

¼
X
�

���

�
�
X3
i¼1

@

@vi

�
f�ðv; tÞ

@H�
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2

X3
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@2

@vi @vj

�
f�ðv; tÞ

@2G�

@vi @vj

��
ð9:63Þ

where f� is the distribution of the �-th species of particles and the sum � on
the right-hand side of (9.63) is over the collisions with the background
particles (for the test particle �). The Rosenbluth potentials in (9.63) are
defined according to (9.60) and (9.62):

H�ðvÞ ¼
�
1þm�

m�

�ð
d3u

f�ðuÞ
jv� uj ; G�ðvÞ ¼

ð
d3ujv� uj f�ðuÞ ð9:64Þ

and the coupling constants ��� are given in the approximation of equation
(9.58) by

��� ¼ 4�q21q
2
2n� ln�

m2
�

: ð9:65Þ

The density of the � particles n� has been included in (9.65) (in comparison
with (9.58)) since the left-hand side of (9.63) describes the full distribution in
phase space. This is necessary in order to substitute (9.63) (together with
(9.64) and (9.65)) into the Boltzmann equation (9.47). The Boltzmann
equation with the collisional term given in (9.63) is occasionally called the
Fokker–Planck equation.
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9.5 The Spitzer–Härm Conductivity

Knowledge of the time development of a fully ionized plasma due to collisions
requires the simultaneous solution of the collisions of electrons with electrons,
electrons with ions, ions with electrons and ions with ions. The general solution
of these nonlinear integral-differential equations is not an easy task and can be
done only with large computer resources. It is therefore very useful to look for
simpler but approximate solutions that enable us to generate simple models
of transport. The analytical models are very useful to comprehend the
complicated phenomena of heat transfer in laser–plasma interaction.

For a distribution function depending on one space–one velocity
coordinates x and v, and on the angle 
 between the velocity and the spatial
coordinate, f ¼ f ðx; v; cos 
; tÞ, the Fokker–Planck equation (9.63) can also
be written as (Shkarofsky et al. 1966)�

@f

@t

�
coll

¼ 1

v

@

@v

�
v2
�
Djj
2

@f

@v
þ Cf

��
þ D?
2v2 sin 


@

@


�
sin 


@f

@


�
ð9:66Þ

where C (dimension (s�1)), Djj (dimension (cm s�2)) and D? (dimension
(cm2 s�3)) are the coefficients of slowing down, diffusion in velocity space
and diffusion in angular space respectively. These coefficients depend on
the distribution function of the plasma electrons and ions. The angular
diffusion term is dominated by electron–ion collisions, while the velocity
diffusion term and the slowing down are more affected by electron–electron
collisions. Therefore, for plasma with ion charge Z, the second term on the
right-hand side of equation (9.66) is about Z times larger than the first
term on the right-hand side of this equation (see equation (9.42), where the
collision frequencies are proportional as ��1

ee :��1
ei ¼ 1 :Z).

If a plasma has a temperature gradient scale LT much larger than the
electron mean free path �e, �e � LT (�e and LT are defined in (9.1) and
(9.6)) and the distribution function has a weak angular dependence, then
the electron distribution function can be expressed by the first two terms in
a cos 
 perturbation expansion

f ðx; v; 
; tÞ ¼ f0ðx; v; tÞ þ f1ðx; v; tÞ cos 
 ð9:67Þ

where f0 and f1 are the isotropic and the anisotropic components respectively.
Since the large electron–ion collision frequency tends to maintain the
distribution function almost isotropically, it is possible to neglect the
higher-order terms in cos 
 in the expansion (9.67).

The isotropic component is assumed to be equal to the equilibrium
Maxwellian distribution fM:

f0 ¼ fM ¼ ne

ð�Þ3=2v3T
exp

�
� v2

v2T

�
; f 1 � fM; vT �

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

me

s
: ð9:68Þ
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The Boltzmann equation with the Fokker–Planck collision term has an
analytic solution for the Lorenz plasma, i.e. ions with large Z, where f1, the
electric field E, @fM=@x and @fM=@t are small quantities (i.e. second-order
terms or higher are neglected). Moreover, it is assumed that @fM=@t ¼ 0
and @f1=@t ¼ 0. In the Fokker–Planck equation (9.66) only the second
term on the right-hand side contributes to a Lorenz plasma. Therefore,
within those approximations, the Boltzmann equation (9.47) simplifies to

v
@fM
@x

þ eE

me

@fM
@v

¼ � A

v3
f1

A � vD? ¼ 8�Znee
4 ln�

me

¼ v3T
�ei

¼ v4T
�e

ð9:69Þ

where �ei is given in equation (9.41) and the electron mean free path �e equals
L90 (for e–i collisions) in equation (9.40).

An additional equation is needed for the electric field E. Assuming
charge neutrality in the plasma, which means that there is no electric current
along the density gradient, gives the equation

J ¼ 4�e

3

ð1
0
f1v

3 dv ¼ 0: ð9:70Þ

This model, the Lorentz model, is described mathematically by equations
(9.68), (9.69) and (9.70). Substituting (9.68) into (9.69) and using

1

ne

@ne
@x

¼ 1

Ln

;
1

T

@T

@x
¼ 1

LT

ð9:71Þ

one gets

f1 ¼ � v3

A

�
v

Ln

� 3v

2LT

þ v3

v2TLT

� 2eEv

mev
2
T

�
fM: ð9:72Þ

Substituting f1 from (9.72) into (9.70) and usingð1
0

dv v2kþ1 exp

�
� v2

2v2T

�
¼ k!

2
ð2v2TÞkþ1; k ¼ 0; 1; 2; 3; . . . ð9:73Þ

one gets an expression for the electric field (that cancels the current induced
by the temperature gradient, see (9.4)):

2eE

mev
2
T

¼ eE

kBT
¼

�
1

Ln

þ 5

2LT

�
: ð9:74Þ

This electric field is inserted into (9.72) to give the anisotropic electron
distribution function f1:

f1 ¼
ne

ð�Þ3=2ALTv
3
T

�
4v4 � v6

v2T

�
exp

�
� v2

v2T

�
: ð9:75Þ
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The heat flow is calculated by integrating in the velocity space the drifting
electron distribution. The number (per cm3) of drifting electrons with
velocities between zero and v is given by 4

3�v
3f1, and each electron carries

an energy 1
2mev

2. Therefore, the heat flux q is given by

q ¼ 2�me

3

ð1
0
f1v

5 dv ¼ mene

3ð�Þ1=2ALTv
3
T

ð1
0

dv

�
4v9 � v11

v2T

�
exp

�
� v2

v2T

�
: ð9:76Þ

After integrating (9.76) the heat flux is

q ¼ �
�

4ffiffiffi
�

p
�
menev

7
T

ALT

¼ �
�
12ffiffiffi
�

p
�
�evTnekB

dT

dx
ð9:77Þ

where A was taken from equation (9.69), the relation between vT and T is
given in (9.68) and LT was substituted from (9.71). The heat flux in this
equation is the Lorentz limit of the Spitzer–Härm conductivity. The classical
Spitzer–Härm conductivity has been analytically derived in agreement, up to
a constant, with the coefficient � in (9.2). Substituting the free-streaming flux
from (9.7) into the flux (9.77), one gets

q /
�
�e
LT

�
qf ð9:78Þ

and for �e=LT � 1 this is a reasonable result.
For �e=LT > 1 (even for �e=LT > 0:1 using the above numerical

coefficients) the diffusion flux q is becoming larger than the free-streaming
flux, which is absurd. In typical high-power laser-produced plasmas, between
the critical surface and the ablation surface, the criterion �e=LT � 1 is not
satisfied. Therefore, the heat transport between the critical surface and the
ablation surface cannot be described by the diffusion approximation, or by
approximating the collision term in the Boltzmann equation by the
Fokker–Planck equation. Another approach is needed in laser–plasma
interactions in order to calculate how the energy is transported into the
target. For this purpose the heat inhibition factor was introduced.

Another way to come to the same conclusion is to analyse f1=fM. Using
equations (9.75), (9.68) and (9.69), this ratio is

f1
fM

¼
�
�e
LT

��
v

vT

�4�
4�

�
v

vT

�2�
: ð9:79Þ

This equation shows that f1=fM increases with �e=LT and is equal to one for
some value of the electron velocity v. However, the Spitzer–Härm approxi-
mation is valid only for f1=fM � 1. Between the ablation surface and the
critical surface, LT is chosen positive (i.e. dT=dx > 0); therefore, the positive
x axis is pointing towards the laser radiation source (i.e. towards the vacuum)
(see figure 9.1). The differential heat flux qðvÞ, which is is proportional to

The Spitzer–Härm Conductivity 197



f1v
5 (the integrand in (9.76)), is positive (flow towards the vacuum) if f1 > 0

and negative when f1 < 0. Since f1=fM < 0 for v > 2vT ( fM is always
positive), all electrons with a velocity higher than 2vT are transporting heat
inside the target, while those electrons with v < 2vT are carrying energy
from the ablation surface towards the corona. The reverse flow at low
velocities is caused by the electric field and it is referred to in the literature
as the ‘return current’. The return current carries an equal but opposite current
to that transported by the high-velocity electrons heating the target. This
phenomenon ensures quasi-neutrality. The total heat flow is negative (see
(9.77)); therefore, a net energy is transported into the target, so that the heat
is predominantly carried by electrons with velocities between 2vT and 3vT.

The total distribution function (9.67) can be written

f ¼ fM þ f1 cos 
 ¼ fM

�
1þ

�
f1
fM

�
vx
v

�
: ð9:80Þ

For particles moving into the target, vx=v ¼ 1, and therefore f becomes
negative (an impossible situation) at f1=fM < �1. Analysing equation
(9.79), one gets the unphysical situation, negative f , even for apparently a
large temperature scale length such as LT=�e ¼ 150 if v=vT � 2:65, a non-
negligible region of energy transport into the target. It turns out that
LT=�e > 103 is required for the Spitzer–Härm approximation to be valid.
Between the corona and the ablation surface this constraint is not usually
satisfied. The steep temperature gradient in laser-produced plasmas requires,
in general, a different formalism in order to explain the energy transport.

If there is a steep temperature gradient the electrons which have a long
mean free path modify the local distribution function. This phenomenon is
called non-local transport, since a large domain affects the heat transport.
Because of the difficult problems of heat transport, between the corona
and the ablation surface, a phenomenological approach is taken by using
an effective inhibition factor in front of the free-streaming flow of electrons
(see equation (9.8)).

In the next section a short discussion is given on the existence of hot elec-
trons. In this case the physical phenomena are explained by two temperatures
(or more), which in turn are derived from two (or more) Maxwellian electron
distribution functions.

9.6 Hot Electrons

In laser-produced plasma the energy is absorbed by the electrons. When these
electrons collide with the ions they are decelerated and emit x-ray radiation
due to the bremsstrahlung effect. The logarithm of the energy spectrum of an
x-ray when plotted as a function of the photon energy is a straight line if the
electron distribution is Maxwellian. From the slope of this line the electron
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temperature is deduced. This phenomenon is explained in the following
paragraphs.

If there are two species of electrons then attempts are made to
describe the electrons by two temperatures. Two temperatures imply two
Maxwellian electron distributions, and the logarithm of the energy spectrum
of x-ray when plotted as a function of the photon energy is described by a
‘broken line’. From the slopes of the two lines the two temperatures can be
deduced. It has been found experimentally that at laser intensities larger
than 1015 W/cm2, the x-ray emission from the laser-irradiated targets have
an energy spectrum induced by a double Maxwellian electron distribution
(Haines 1980).

The acceleration aðtÞ of an electron while colliding with an ion, with
charge Ze at a distance r, is given by the Coulomb force (c.g.s. units):

aðtÞ ¼ Ze2

merðtÞ2
: ð9:81Þ

Classical electrodynamics shows that the accelerated electron radiates a
power P:

PðtÞ ¼ 2e2a2

3c3
¼

�
2Z2e6

3m2
ec

3

�
1

r4
ð9:82Þ

where c is the speed of light and equation (9.81) has been used. Integrating
over r and multiplying by the density numbers of the electron and the ion
gives the total density power Qb (erg/cm3 s), emitted by bremsstrahlung:

Qb ¼
2Z2e6neni
3c3m2

e

ð1
rmin

4�r2 dr

r4
¼ 8�Z2e6neni

3c3m2
ermin

: ð9:83Þ

At rmin the classical approximation is no longer valid, since the uncertainty
principle does not permit localization of the electron to a zero volume. As
occasionally done in plasma physics, one takes the de Broglie scale length
for rmin and relates the electron velocity to the temperature

rmin ¼ �h

mev
; v ¼

ffiffiffiffiffiffiffiffiffi
kBT

me

s
: ð9:84Þ

Substituting (9.84) into (9.83), the total power emitted per unit volume by the
electrons, due to bremsstrahlung, is

Qb ¼
�
16�2Z2e6nenik

1=2
B

3c3hm
3=2
e

�
T

1=2
e : ð9:85Þ

In order to measure the electron temperature, a knowledge of the photon
energy spectrum is required, rather than the total density power given in
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this equation. For this purpose we analyse the energy " emitted by one
electron during the time it interacts with one ion. Equation (9.82) yields

" ¼
ðþ1

�1
P dt ¼ 2e2

3c3

ðþ1

�1
aðtÞ2 dt �

ð1
0
P� d� ð9:86Þ

where P� is the radiated energy per unit frequency emitted (by one electron
passing an ion) with a frequency �. In classical mechanics the electron
trajectory and its acceleration are calculated for the electron passing
an ion, assuming that the energy loss of the electron is neglected (this approx-
imation is correct for weak radiation). In a Coulomb interaction between two
charges q1 and q2 with a reduced mass mr, the trajectory rðtÞ and the
acceleration aðtÞ are conveniently given as a function of a parameter �, the
impact parameter b and the relative velocity v (see figure 9.2(a)):

t ¼ 1

2

�
�þ �3

3

��
m2

rb
3v3

q21q
2
2

�
; r ¼ 1

2
ð1þ �2Þ

�
mrb

2v2

jq1q2j

�

cos’ � � 1� �2

1þ �2
; sin’ � 2�

1þ �2

a? ¼ d2

dt2
ðr sin’Þ ¼

�
q1q2
mrbv

2

�3�v2
b

�
8�

ð1þ �2Þ3

ajj ¼
d2

dt2
ðr cos’Þ ¼ �

�
q1q2
mrbv

2

�3�v2
b

�
4ð1� �2Þ
ð1þ �2Þ3

a2 ¼ a2? þ a2jj:

ð9:87Þ

The solution aðtÞ is substituted into (9.86) so that " is calculated exactly
(Miyamoto 1980). Here an estimate is given (Zeldovich and Raizer 1966,
Haines 1980), which is correct within a constant of about 2, and the exact
solution is quoted at the end of this calculation.

The time of interaction between the electron and the ion is of the
order � � b=v. The dominant frequency in the Fourier transport is
2�� � 1=� � v=b (the dominant Fourier transport frequency usually satisfies
!� � 1, where ! ¼ 2��). Therefore, we can use these relations and (9.81) to
obtain

� ¼ v

2�b
; d� ¼ � v db

2�b2
ð9:88Þ

" ¼
�
2e2a2

3c3

�
� ¼

�
2Z2e6

3c3m2
e

�
1

b3v
: ð9:89Þ

The electron with energy " undergoes ni�ðbÞv collisions per unit time with
ions in the impact parameter range b to bþ db, where the cross section is
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�eiðbÞ ¼ 2�b db. Therefore, the energy radiated per unit time by an electron is

dE

dt
¼

ð1
bmin

"niv2�b db ¼ 4�Z2e6ni
3m2

ec
3

ð1
bmin

db

b2
¼ 8�2Z2e6ni

3m2
ec
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ð�max

0
d�

dE
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¼
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0
q� d�

q� �
8�2Z2e6ni
3m2

ec
3v

h�max ¼ 1
2mev

2

ð9:90Þ

where (9.88) is used and the photon energy (h�) cannot be larger than the
kinetic energy of the electron. The power radiated per unit volume by the
electrons is obtained by using (9.90):

Qb �
ð
d�Q� ¼

ð
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ð1 ffiffiffiffiffiffiffiffiffiffiffi
2h�=me

p q�ne fMðvÞ4�v2 dv
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v2T ¼ 2kBTe

me
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8

ffiffiffi
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3
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�3=2Z2e6nine
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3=2
e c3ðkBTeÞ1=2

exp

�
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kBTe

�
:

ð9:91Þ

An exact calculation yields 4=
ffiffiffi
3

p
� 2:3 times Q� of equation (9.91). The

integral of (9.91) gives (9.85).
From equation (9.91) it is evident that a plot of ln½dQb=dðh�Þ� versus h�

yields a straight line, and from the slope it is easy to deduce the electron
temperature. If the electron velocity distribution can be described not by
one Maxwellian (as in the proof of (9.91)), but as a superposition of two
Maxwellian distributions with two temperatures, then the integral of (9.91)
yields

Q� /
nc

T
1=2
c

exp

�
� h�

kBTc

�
þ nh

T
1=2
h

exp

�
� h�

kBTh

�
ð9:92Þ

where nc and nh are the spatial densities of the cold and hot electron species,
while Tc and Th are their respective temperatures. Such a spectrum was
measured (Haines 1980) for neodymium laser pulses of the order of 1 ns
and with intensity larger than 1015 W/cm2 (see figure 9.3).

Energy transfer from electron plasma waves, nonlinear wave phenomena
and resonance absorption can create the hot electrons. It appears that the
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dominant source of hot electrons is resonance absorption. It was found
experimentally that the following scaling laws are satisfied for the hot electron
temperature Th:

ThðkeVÞ ¼ 10

�
IL�

2
L

1015 W � cm�2 mm2

�0:30�0:05

for IL�
2
L 	 1015 W � cm�2 mm2

ThðkeVÞ ¼ 10

�
IL�

2
L

1015 W � cm�2 mm2

�2=3
for IL�

2
L � 1015 W � cm�2 mm2:

ð9:93Þ
It is important to mention that with the femtosecond lasers, MeV electrons
(and ions) have been measured for IL > 1019 W/cm2.

We conclude this section by showing that a very strange phenomenon
can occur in thermodynamics for plasma with two temperatures. For a
cold ion (Ti ¼ 0) the ideal equation of state is

P ¼ nhkBTh þ nckBTc: ð9:94Þ

For Th=Tc > 10 one can obtain a (plasma) fluid which can satisfy�
@2P

@V2

�
S

< 0; V ¼ 1

�
¼ 1

mini
ð9:95Þ

where S is the entropy. A normal fluid cannot satisfy equation (9.95).
However, two phase mixtures such as liquid and vapour can obey this
equation. If (9.95) is satisfied then an unusual wave, called rarefaction
shock wave, can exist (Zeldovich and Raizer 1966). As we shall see in the
next chapter, in a shock wave the medium is compressed, while in a
rarefaction wave the density of the medium is reduced. From this point of

Figure 9.3. A typical x-ray spectrum induced by two electron temperatures.
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view the rarefaction shock wave behaves like a rarefaction wave. However,
while in a rarefaction wave the entropy S is conserved, in a shock wave the
entropy increases, and in the rarefaction wave the entropy is decreasing: an
unstable process.

In the following, we write the fluid equations for the plasma expanding
into vacuum, where the plasma has two components of electrons (Bezzerides
et al. 1978, Wickens et al. 1978). The continuity and the momentum
equation for the ions moving without collisions in the electrostatic potential
� are

@ni
@t

þ @

@x
ðniviÞ ¼ 0; mi

�
@vi
@t

þ vi
@vi
@x

�
¼ �Ze

@�

@x
: ð9:96Þ

Neglecting the inertial term in both electronic fluids, the pressure of the hot
and cold electrons are balanced by the potential force

enc
@�

@x
� kBTc

@nc
@x

¼ 0 ) nc ¼ nc0 exp

�
e�

kBTc

�

enh
@�

@x
� kBTh

@nh
@x

¼ 0 ) nh ¼ nh0 exp

�
e�

kBTh

�
:

ð9:97Þ

The temperatures Tc and Th are assumed constants. Equations (9.96) and
(9.97) are solved, together with the requirement of charge neutrality:

Zni ¼ nc þ nh: ð9:98Þ

Using (9.94), (9.97) and (9.98), one can write the second equation of (9.96) in
the following ways:
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ðnh=kBThÞ þ ðnc=kBTcÞ

�
:

ð9:99Þ

We now look for a self-similar solution, like the one obtained in section 7.2, in
analysing the plasma expansion into vacuum. The variables nc, nh, ni, vi and
� are functions of only one variable �:

� ¼ x

t
;

@

@x
¼ 1

t

@

@�
;

@

@t
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t

@

@�
: ð9:100Þ

Using these relations in the two equations of (9.96), where the second
equation is taken from (9.99), one gets

�
vi � � ni

c2s=ni vi � �

��
dni=d�

dvi=d�

�
¼

�
0

0

�
: ð9:101Þ
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Equations (9.101) have a solution only if the determinant of the matrix
vanishes, implying

vi ¼ csð�Þ þ �: ð9:102Þ

Substituting this relation into one of the equations of (9.101), one gets

ni
dvi
d�

þ csð�Þ
dni
d�

¼ 0: ð9:103Þ

Using (9.97) and (9.98), with the boundary condition � ¼ 0, v ¼ 0 and
cs ¼ c0 in the undisturbed plasma, one obtains after integrating (9.103) the
following solution:
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ðnc0=TcÞ þ ðnh0=ThÞ
:

ð9:104Þ

From (9.102) and (9.104) the solution of the potential �ð�Þ is obtained,
implying for Th=Tc > 10 a jump in the potential as shown schematically in
figure 9.1 (the double layer).

The jump in the potential and the rarefaction shock wave are
obtained if

d2P

dV2
¼ n3im

3
i c

2
s

�
2þ dc2s

d�

�
� 0: ð9:105Þ

Using (9.97) and (9.99) in this inequality, we get

2þ dc2s
d�

� 0 ) 2�2 þ �ð6�� 1� �2Þ þ 2�2 � 0
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ð9:106Þ

This equation has a real solution for � only if

ð6�� 1� �2Þ2 � 16�2 	 0 ) � � Th

T c

	 5þ
ffiffiffiffiffi
24

p
� 9:9: ð9:107Þ
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In this domain of parameters the function �ð�Þ is not well defined, i.e. � has
three values for the same �, therefore the jump of � (the singularity) is settled
in this domain and a rarefaction wave is obtained.

Hot electrons is a peculiar and interesting phenomenon associated
with high-power laser-produced plasmas. Sometimes this phenomenon is
disturbing, like the preheating of solid targets for applications of shock
waves, and sometimes it is a desirable effect, like in the creation of sources
of high-energy x-rays.

9.7 Heat Waves

The local absorption of the laser energy is associated with the creation of a
temperature gradient and a thermal flux to transport the absorbed energy.
With the temperature gradient there are also pressure gradients that set the
plasma into a ‘fluid’ motion. In most laser-produced plasmas the hydro-
dynamic energy transport substantially exceeds the heat conduction.
However, in the interaction of very short laser pulses (of the order of 1 ps
or less) with matter, the hydrodynamic motion does not have time to
develop, and therefore in these cases the heat transport is dominant. Elec-
trons or x-rays may serve as heat carriers (Ditmire et al. 1996, Fraenkel
et al. 2000). For nonlinear transport coefficients, like the electron conduc-
tivity discussed in section 9.5, we expect that the energy transport is caused
by a heat wave. Heat waves may also play an important role in inertial
confinement fusion during the ignition process. In this section we shall
formally show the solution for a one-dimensional geometry heat wave
(Zeldovich and Raizer 1966, Krokhin 1971).

Let us consider the energy conservation equation:

�CV

@T

@t
¼ �r � ðqH � IÞ; qH ¼ ��rT ; � ¼ BTn; r � I � W

ð9:108Þ

where � is the density (g/cm3), T is the temperature in Kelvin, I is the
absorbed laser flux [erg/(time � cm2)], qH is the heat flux [erg/(time � cm2)], �
is the coefficient of thermal conductivity [erg/(cm � s �K)], W is the power
density deposited by the laser [erg/(s � cm3)],CV is the specific heat at constant
volume [erg/(g �K)], and B and n are constants. In one space dimension,
chosen as x, and assuming a constant density � (a reasonable assumption
for short laser pulse duration) and a constant CV, equation (9.108) takes
the form

@T

@t
¼ @

@x

�
�
@T

@x

�
þ w; � ¼ �

�CV

; w ¼ W

�CV

: ð9:109Þ
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The coefficient� is called the thermal diffusivity (cm2/s) and can be expressed as

� ¼ aTn ð9:110Þ

where a is a constant.
If n ¼ 0, i.e. a constant thermal diffusivity, then equation (9.109) is

the simple diffusion equation. Assuming that the laser energy is deposited
at x ¼ 0 (e.g. all the energy is deposited at the critical surface located at
x ¼ 0) and at time t ¼ 0 (i.e. a very short pulse duration), then

@T

@t
¼ a

�
@2T

@x2

�
þ w; w ¼ T0LðxÞðtÞ; Tðx; 0Þ ¼ T0LðxÞ ð9:111Þ

where ðxÞ and ðtÞ are the Dirac delta functionðL=2
�L=2

ðxÞ dx ¼ 1;

ð�=2
��=2

ðtÞ dt ¼ 1 ð9:112Þ

and L is a scale length factor for the energy deposition and � is the laser pulse
duration. The solution of equation (9.111) is

Tðx; tÞ ¼ T0L

ð4�atÞ1=2
exp

�
� x2

4at

�
: ð9:113Þ

Equation (9.113) is the solution of the linear heat transport equation (9.111).
The nonlinear heat transport equation is

@T

@t
¼ a

@

@x

�
Tn @T

@x

�
þ w: ð9:114Þ

For example, for electrons in plasma one can use equation (9.2) (proven in
section 2.3), together with the CV value of 3

2 kB per particle, to get

� ¼ 1
3�evenekB

CV ¼ 3
2 kB

�
ne
�

�
9>=
>; ) � ¼ �

�CV

¼ 2

9
�eve / T5=2 ð9:115Þ

where we have used equation (9.1), the electron mean free path �e � T2, and
the thermal speed of the electron ve � T1=2. Therefore, for the nonlinear
electron heat transport in the plasma, n ¼ 5

2 in equation (9.114). In com-
parison, for radiation (x-rays) transport in a multiply-ionized plasma the
power of T in this equation is in the domain 
4.5–5.5.

In some cases, like in a solid medium, CV depends on temperature
(CV=particle equals 3kB/2 only for an ideal gas with three degrees of free-
dom). In this case equation (9.114) is not satisfied. When the specific heat
is a function of the temperature, one can write for the energy E (erg/g),

E ¼ �Tk ) T ¼
�
E

�

�1=k

; CV ¼
�
@E

@T

�
V

¼ �kTk�1 ð9:116Þ

206 Thermal Conduction and Heat Waves



where � is a constant (it can be a function of density �, but V ¼ 1=� is
constant). In metals (see section 5.7), the electronic contribution to the
equation of state is described by k ¼ 2 to a good approximation (Eliezer
et al. 1986). The coefficient � is given by the equation of state of the
medium under consideration. Substituting (9.116) into (9.108) and using

@T

@t
¼

�
@E

@T

��1 @E

@t
¼ 1

CV

@E

@t
ð9:117Þ

one gets the equation for the energy/mass E:

@E

@t
¼ A

@

@t

�
EN @E

@x

�
þW ; A � B

�k�ðnþ1Þ=k ; N � n� kþ 1

k
:

ð9:118Þ

Equations (9.114) and (9.118) are identical from the mathematical point of
view. If CV is temperature-independent one has to solve equation (9.114),
while if CV depends on temperature then (9.118) has to be solved.

We now obtain an analytic solution (Zeldovich and Raizer 1966) of
equation (9.114). The energy is deposited instantaneously at t ¼ 0, at a
plane positioned at x ¼ 0. For t > 0 the heat propagates away from the
x ¼ 0 plane. The energy conservation is obtained by integrating equation
(9.114) in space (

Ð
dx from �1 to þ1) and in time (

Ð
dt from 0 to t). The

first term on the right-hand side of the space integral of (9.114) vanishes,
because Tðx ¼ �1Þ ¼ 0 and Tðx ¼ þ1Þ ¼ 0. Therefore, the energy con-
servation implies the following equation:

ðþ1

�1
Tðx; tÞ dx ¼ 1

�CV

ð
IðtÞ dt ¼ "

�CV

� Q ð9:119Þ

where " (erg/cm2) is the deposited laser energy per unit area. The energy
conservation (9.119) is satisfied, together with the heat conduction equation
(9.114) for t > 0:

@T

@t
¼ a

@

@x

�
Tn @T

@x

�
: ð9:120Þ

The energy deposition of the laser is instantaneous if the laser pulse duration
is � , if we are analysing times t much larger than � (t � �). In this case
the problem is defined only by two parameters: a ½cm2=ðKn � sÞ� and Q
(K � cm), where K is Kelvin. There is only one way to describe the dimensions
of temperature T and position x:

ðxÞ ¼ ðaQntÞ1=ðnþ2Þ; ðTÞ ¼
�
Q2

at

�1=ðnþ2Þ
: ð9:121Þ

Heat Waves 207



Therefore, the measurable solution Tðx; tÞ cannot be a function of two
variables x and t, but only of one dimensionless variable � that can be
constructed from a, Q, x and t,

� ¼ x

ðaQntÞ1=ðnþ2Þ ð9:122Þ

and a coefficient which has the dimension of T . The general solution of
equation (9.120) can be presented as

Tðx; tÞ ¼
�
Q2

at

�1=ðnþ2Þ
f ð�Þ: ð9:123Þ

Substituting (9.123) into (9.120) and using (9.121) in order to take the
derivatives

@f

@t
¼ �

�
1

nþ 2

��
�

t

�
df

d�
;

@f

@x
¼

�
1

aQnt

�1=ðnþ2Þ df

d�
ð9:124Þ

one gets the ordinary differential equation for f ð�Þ:

ðnþ 2Þ d

d�

�
f n

df

d�

�
þ �

df

d�
þ f ¼ 0: ð9:125Þ

This equation has to be solved subject to the boundary conditions

f ð� ¼ 1Þ ¼ 0;
df

d�
ð� ¼ 0Þ ¼ 0: ð9:126Þ

These boundary values are derived from Tðx ¼ �1Þ ¼ 0 and
Tðx ¼ þ1Þ ¼ 0, which are equivalent to Tðx ¼ þ1Þ ¼ 0 and
@T=@xðx ¼ 0Þ ¼ 0. The second relation is the manifestation of the mirror
symmetry ðx $ �xÞ about the plane x ¼ 0.

A solution of equation (9.125) with the boundary condition (9.126) is

f ð�Þ ¼

�
n�20

2ðnþ 2Þ

�1=n�
1�

�
�

�0

�2�1=n
for � < �0

0 for � > �0:

8><
>: ð9:127Þ

The constant �0 is obtained by using the energy conservation (9.119),
yielding

ðþ�0

��0
f ð�Þ d� ¼ 1 ) �0 ¼

�
ðnþ 2Þ

n2n�1�n=2

�1=ðnþ2Þ��ð1=2þ 1=nÞ
�ð1=nÞ

�n=ðnþ2Þ

ð9:128Þ
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where � is the gamma function. Defining xfðtÞ as the front coordinate of the
heat wave and T0ðtÞ as the temperature at x ¼ 0, the temperature Tðx; tÞ
from (9.123) is given from (9.127) and (9.122):

Tðx; tÞ ¼ T0ðtÞ
�
1� x2

xfðtÞ2
�1=n

xfðtÞ ¼ �0ðaQntÞ1=ðnþ2Þ

T0ðtÞ ¼
�

n�20
2ðnþ 2Þ

�1=n�Q2

at

�1=ðnþ2Þ
:

ð9:129Þ

A typical temperature T as a function of x at a given time t is shown in
figure 9.4.

The speed of propagation uhw of the heat wave is defined by

uhw ¼ dxf
dt

¼
�

�0
nþ 2

�
ðaQnÞ1=ðnþ2Þt�½ðnþ1Þ=ðnþ2Þ�: ð9:130Þ

From equations (9.129) and (9.130), it appears that at t ¼ 0 both the
temperature and the heat wave velocity are singular (! 1). However, as
was previously explained, the self-similar solution derived here is relevant
only for times t � � , where � is the laser pulse duration. Therefore, it
might be convenient to write the solutions for T0 and u in the form

T0ðtÞ
T0ð�Þ

¼
�
�

t

�1=ðnþ2Þ

uhwðtÞ
uhwð�Þ

¼
�
�

t

�ðnþ1Þ=ðnþ2Þ

9>>>>=
>>>>;

for t � �: ð9:131Þ

In figure 9.4 the heat wave temperature space profile (at a time t), the flux
and the cooling and heating domains are shown. Using the solution
(9.129), one gets

Tðx; tÞ ¼ T0ðtÞ
�
1� x2

x2f

�1=n

qHðx; tÞ ¼ �BTn dT

dx
¼

�
2BTnþ1

0

x2f

��
1� x2

x2f

�1=n
x

�CV

@T

@t
¼ � @qH

@x
¼

�
2BTnþ1

0

x2f

��
1� x2

x2f

��½ðn�1Þ=n���2þ n

n

�
x2

x2f
� 1

�
:

ð9:132Þ

The heat flux qH increases linearly, to a good approximation, from x ¼ 0 to
almost the front of the wave and drops very fast to zero at x ¼ xf. From the
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last of equations (9.132), one notes that for x=xf < ½n=ðnþ 2Þ�1=2 the
medium is cooled (i.e. the temperature decreases with time), while for
x=xf > ½n=ðnþ 2Þ�1=2 the medium is heated. At x=xf ¼ 1 there is a singularity
in the increase (in time) in temperature. However, the energy conservation
(
Ð
T dx ¼ constant) is not violated, as required by this formalism. The

main hot region is cooled almost uniformly and only the domain with the
edge of the wave is heated very fast. The temperature near the wave front

Figure 9.4. A schematic solution for a nonlinear heat wave.
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can be described by the following approximation:

Tðx; tÞ ¼ T0

�
1� x2

x2f

�1=n
� T02

1=n

�
1� x

xf

�1=n

for
x

xf
� 1: ð9:133Þ

In laser–plasma interactions with very short laser pulses, the heat wave
induced by the transport of x-rays may become more important than the
heat wave created by electron transport (Ditmire et al. 1996, Fraenkel et al.
2000). We now give a short summary of the heat conduction by photons in a
medium of thermal equilibrium between the electrons and the radiation.

The radiation heat flux is given by (see section 2.4)

qR ¼ ��Rc

3
rUp ¼ ��RrT

Up ¼ 4�SBT
4

c

�R ¼ 16�SBT
3�R

3

�R ¼ ATj for � ¼ const:

ð9:134Þ

where T is the temperature of the electrons and the radiation; they are equal
in thermal equilibrium. Up is the radiation energy density (erg/cm3), c is the
speed of light, �SB is the Stefan–Boltzmann constant, � is the medium density
and A and j are positive constants. �R is the radiation mean free path (the
Rosseland mean free path) and for the equilibrium condition it is necessary
that �R is smaller than the dimension of the medium. If the plasma is multiply
ionized then j is in the domain of 1.5–2.5 (in �R given in equation (9.134)). In
a fully ionized plasma the absorption and emission of the photons is by
bremsstrahlung (i.e. electron–photon interaction in the presence of the
ions) and in this case j ¼ 7

2 (Zeldovich and Raizer 1966):

�RðbremsstrahlungÞ ¼ 4:8� 1024
T7=2

Z2nine
½cm�: ð9:135Þ

Z is the charge of the ions, and ni and ne are the ion and electron densities
respectively. For example, Z ¼ 1, Zni ¼ ne ¼ 5� 1022 (appropriate for a
femtosecond laser interacting with a deuterium plasma with solid density)
and a temperature of 105 (about 10 eV), one gets a mean free path of
about 6.1 mm.

The (Rosseland) mean free path for hydrogen-like plasma with a charge
Z is given by

�RðH-likeÞ � 8:7� 106
T2

Z2ni
½cm�: ð9:136Þ

In this case a comparison between the electron thermal conductivity
(Spitzer–Härm conductivity �e—see sections 9.1 and 9.5) and the radiation
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conductivity yields (Ditmire et al. 1996)

�R
�e

� 5� 1018
�
kBT

eV

�5=2�cm�3

ne

�
: ð9:137Þ

This relation implies that for a solid state density plasma ne ¼ Zni ¼
1023 cm�3, the radiation transport is more important than the electron heat
transport for kBT > 100 eV.
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Chapter 10

Shock Waves and Rarefaction Waves

10.1 A Perspective

The science of high pressure (Eliezer et al. 1986, Eliezer and Ricci 1991) is
studied experimentally in the laboratory by using static and dynamic techniques.
In static experiments the sample is squeezed between pistons or anvils. The
conditions in these static experiments are limited by the strength of the construc-
tion materials. In the dynamic exdepends periments shock waves are created.
Since the passage time of the shock is short in comparison with the disassembly
time of the shocked sample, one can do shock wave research for any pressure
that can be supplied by a driver, assuming that a proper diagnostic is available.
In the scientific literature, the following shock-wave generators are discussed: a
variety of guns (such as rail guns and a two-stage light–gas gun) that accelerate a
foil to collide with a target, exploding foils, magnetic compression, chemical
explosives, nuclear explosions and high-power lasers. The conventional high
explosive and gun drivers can achieve pressures up to a few megabars.

The dimension of pressure is given by the scale defined by the pressure
of one atmosphere at standard conditions� bar¼ 10

6
dyne/cm

2 (in c.g.s.
units)¼ 10

5
Pascal (in m.k.s. units, Pascal¼N/m2).

In 1974 the first direct observation of a laser-driven shock wave was
reported (van Kessel and Sigel 1974). A planar solid hydrogen target
(taken from a liquid-helium-cooled cryostat and inserted into an evacuated
interaction chamber) was irradiated with a 10 J, 5 ns, Nd laser (1.06 mm
wavelength) and the spatial development of the laser-driven shock wave
was measured using high-speed photography. The estimated pressure in
this pioneer experiment was 2Mbar.

Twenty years after the first published experiment, the Nova laser from
Livermore laboratories in the USA created a pressure of 750� 200Mbar
(Cauble et al. 1994). This was achieved in a collision between two gold
foils, where the flyer (Au foil) was accelerated by a high-intensity x-ray
flux created by the laser–plasma interaction.
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The science of high pressure is usually analysed in a medium that has
been compressed by a one-dimensional shock wave. For a one-dimensional
shock wave traversing a known medium (density and temperature are
known before the shock wave passes through), the density, pressure and
energy of the shocked material are uniquely determined from the conserva-
tion of mass, momentum and energy, and the measurement of the shock
and particle flow velocities.

The starting points in analysing the one-dimensional shock waves are
the conservation laws of mass, momentum and energy in a fluid flow:

@�

@t
¼ � @

@x
ð�uÞ

@

@t
ð�uÞ ¼ � @

@x
ðPþ �u2Þ

@

@t

�
�E þ 1

2
�u2

�
¼ � @

@x

�
�Euþ Puþ 1

2
�u3

�
:

ð10:1Þ

The usual notation is used, where x–t is space–time, � is the density, u is the
flow velocity, P is the pressure and E is the internal energy per unit mass. In
the previous chapter (section 9.7), in the discussion of heat waves, the fluid
flow was neglected in favour of the heat flow. In this chapter we analyse a
medium dominated by its flow and the disturbances that propagate with
a speed of the order of the velocity of sound. In this case (unlike in
section 9.7), the time of interest is in the domain where the heat wave
velocity uhw is much smaller than the sound velocity cs. Furthermore, the
laser pulse duration is not negligible. Therefore, to a good approximation
one may assume that during the laser pulse duration a constant flux (the
laser absorbed flux I) is supplied by the laser to the fluid at the boundary
x ¼ 0:

I ¼ ��
�
@T

@x

�
x¼0

¼ �cV�aT
n

�
@T

@x

�
x¼0

¼ const:; I � cV�aT
nþ1
0

xf

ð10:2Þ

where a is a constant, cV is the heat capacity at constant volume and � is the
density of the medium. xf is the front position of the heat wave (see section
9.7) and T0 is the temperature at the origin (x ¼ 0), i.e. how far the heat wave
front is from the origin x ¼ 0 and how much the temperature increases there
during the laser pulse duration.

The heat wave equation (energy conservation) can be approximated by

�cV
@T

@t
� �cV

T0

t
� I

xf
: ð10:3Þ
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Solving equations (10.2) and (10.3) yields the order of magnitude solutions:

T0 �
�

I

�cV

�2=ðnþ2Þ
a�1=ðnþ2Þt1=ðnþ2Þ

xf �
�

I

�cV

�n=ðnþ2Þ
a1=ðnþ2Þt ðnþ1Þ=ðnþ2Þ:

ð10:4Þ

These scaling laws can be derived by dimensional analysis. The problem
under consideration is defined by two parameters: [I=ð� � cV)] with dimension
[cm �K/s] and the diffusivity of the medium � ¼ aT n, defined by the co-
efficient a with dimension [cm2=ðKn � sÞ]. Therefore, the solution xf scales
as ½I=ð� � cVÞ��½a��½t�� ¼ ½cm�, yielding

�
cm �K

s

��� cm2

Kn � s

��
s� ¼ cm1

) �þ 2� ¼ 1; �� n� ¼ 0; ��� � þ � ¼ 0

) � ¼ n

nþ 2
; � ¼ 1

nþ 2
; � ¼ nþ 1

nþ 2

) xf �
�

I

�cV

�n=ðnþ2Þ
a1=ðnþ2Þt ðnþ1Þ=ðnþ2Þ: ð10:5Þ

A similar procedure gives T0 ¼ ½I=ð� � cVÞ��½a��½t��, with � ¼ 2=ðnþ 2Þ,
� ¼ �1=ðnþ 2Þ and � ¼ 1=ðnþ 2Þ. This procedure justifies equations (10.4)
as an order of magnitude solution, and implies that the exact solution is
given by this equation up to a dimensionless constant, usually of the order 1.

According to equations (10.4), the heat wave velocity uhw and the sound
velocity cs have a time dependence

uhw ¼ dxf
dt

/ t�1=ðnþ2Þ; cs / T
1=2
0 / t1=½2ðnþ2Þ�: ð10:6Þ

From these equations one can see that the heat wave speed decreases with
time, while the acoustic wave increases with time, so that the acoustic distur-
bance overtakes the thermal wave (see figure 10.1). An exact calculation of
this problem (Babuel-Peyrissac et al. 1969) shows that for solid deuterium,
with a density 0.2 g/cm3, and for an absorbed laser flux of 1015 W/cm2, the
sound wave overtakes the heat wave at 10 ps. From the above scaling laws
it is evident that this time decreases for higher densities and lower absorbed
laser intensity. Moreover, the inhibited thermal transport, as discussed in
section 9.6, also reduces the time of heat-wave dominance. Therefore, in
laser interaction with a solid target, the hydrodynamics effects predominate
over the heat wave for laser pulse duration larger than 100 ps.
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In sections 10.2 and 10.3 the sound wave and the rarefaction wave
equations are given. The shock wave is discussed in sections 10.4 and 10.5.
Section 10.6 analyses the constraints of a laser-induced shock wave for
application in high-pressure physics. In sections 10.7 and 10.8 two possible
applications of laser-induced shock waves and rarefaction waves are
discussed.

In this chapter we consider only waves in one dimension with planar
symmetry. In this case the variables describing the wave phenomena are func-
tions only of the displacement x and the time t. The pressure P, the density �
and the flow velocity u are, in general, functions of x and t.

10.2 Sound Waves

The physics of sound waves (Courant and Friedrichs 1976) is described by
the motion of the fluid and the changes of density of the medium, caused
by a pressure change. For an equilibrium pressure P0 and density �0, the

Figure 10.1. (a) Propagation of a heat wave during the laser pulse duration, where the

laser absorbed flux is deposited at x ¼ 0. (b) The positions of the heat wave front and

the acoustic wave disturbance.
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changes in pressure �P and density �� due to the existence of a sound wave
are extremely small:

� ¼ �0 þ��;
��

�0
� 1

P ¼ P0 þ�P;
�P

P0

� 1:

ð10:7Þ

It is now assumed that the undisturbed flow velocity is zero and the flow
speed caused by the pressure disturbance is �u, so that

u ¼ u0 þ�u; u0 ¼ 0;
�u

cs
� 1 ð10:8Þ

where cs is the speed of sound. Using the small perturbations of (10.7) and
(10.8), and neglecting second-order quantities in ��, �P and u, the mass
and momentum equations of (10.1) can be written in the form

@ð��Þ
@t

¼ ��0
@u

@x
; �0

@u

@t
¼ � @P

@x
: ð10:9Þ

The motion in a sound wave is isentropic, SðxÞ ¼ const., therefore the
change in the pressure is given by

�P ¼
�
@P

@�

�
S

�� � c2s��: ð10:10Þ

Differentiating the first equation of (10.9) with respect to time and the second
equation with respect to space, adding the equations and using (10.10), one
gets the wave equation

@2ð��Þ
@t2

� c2s
@2ð��Þ
@x2

¼ 0: ð10:11Þ

From this equation it is evident that cs is the velocity of the �� disturbance,
which is defined as the velocity of the sound wave. The pressure change �P
and the flow velocity u satisfy a similar wave equation. Equation (10.11) has
two families of solutions f and g:

��

�P

�u

9>=
>; � f ðx� cstÞ and gðxþ cstÞ ð10:12Þ

where the speed of sound is

cs ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@P

@�

�
S

s
: ð10:13Þ

The disturbances f ðx� cstÞ are moving in the positive x direction, while
gðxþ cstÞ propagates in the negative x direction.
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For a plasma satisfying an ideal equation of state, where the electron
density ne ¼ Zni, Z is the ion charge and ni is the ion density, and
Te ¼ Ti ¼ T are the electron and ion temperatures, the pressure is given by

P ¼ nekBTe þ nikBTi ¼ niðZ þ 1ÞkBT ¼ �

mi

ðZ þ 1ÞkBT ð10:14Þ

where mi is the ion mass. An adiabatic process is described by

P ¼ P0

�
�

�0

��
; � ¼ CP

CV

ð10:15Þ

where CP and CV are the heat capacities at constant pressure and constant
volume accordingly, and in a fully ionized plasma � ¼ 5

3. The speed of
sound for the ideal gas is

cs ¼
�
�P

�

�1=2
¼

�
�ðZ þ 1ÞkBT

mi

�1=2
: ð10:16Þ

If the undisturbed gas is not stationary, then the flow stream carries the
waves. A transformation from the coordinates moving with the flow (velocity
u in the þx direction) to the laboratory coordinates means that the sound
wave is travelling with a velocity uþ cs in the þx direction and u� cs in
the �x direction. The curves in the x–t plane in the direction of propagation
of small disturbances are called characteristic curves. For isentropic flow
there are two families of characteristics described by

Cþ:
dx

dt
¼ uþ cs; C�:

dx

dt
¼ u� cs ð10:17Þ

so that the physical quantities P and � do not change along these stream lines.
There is also a characteristic curve C0, where dx=dt ¼ u, not discussed here.
The C� characteristics are curved lines in the x–t plane because u and cs are,
in general, functions of x and t.

The equations of state describe any thermodynamic variable as a func-
tion of two other variables (assuming that the number of particles do not
change). For example, the density � ¼ �ðP;SÞ is a function of the pressure
P and entropy S; therefore, for S ¼ const. one gets

� ¼ �ðPÞ; @�

@t
¼

�
@�

@P

�
S

@P

@t
¼ 1

c2s

@P

@t
;

@�

@x
¼ 1

c2s

@P

@x
: ð10:18Þ

Using these relations into the mass conservation and the momentum
conservation given in (10.1), we get

1

�cs

@P

@t
þ u

�cs

@P

@x
þ cs

@u

@x
¼ 0;

@u

@t
þ u

@u

@x
þ 1

�

@P

@x
¼ 0: ð10:19Þ
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Adding and subtracting these two relations yields�
@u

@t
þ ðuþ csÞ

@u

@x

�
þ 1

�cs

�
@P

@t
þ ðuþ csÞ

@P

@x

�
¼ 0

�
@u

@t
þ ðu� csÞ

@u

@x

�
� 1

�cs

�
@P

@t
þ ðu� csÞ

@P

@x

�
¼ 0:

ð10:20Þ

The brackets [ ] in these equations are derivatives along the characteristics
C�. In order to comprehend this statement, we define a curve x ¼ yðtÞ.
The derivative of a function Fðx; tÞ along the curve yðtÞ is given by�

dF

dt

�
y

¼ @F

@t
þ @F

@x

dx

dt
¼ @F

@t
þ y 0 @F

@x

dF ¼
ð �

dF

dt

�
y

dt; x ¼ yðtÞ; y 0 � dx

dt
:

ð10:21Þ

For example, for the derivative of F along x ¼ constant one has y 0 ¼ 0,
along a stream line y 0 ¼ u, along the characteristic Cþ we have y 0 ¼ uþ cs,
etc. Therefore, equations (10.20) and (10.21) can be rewritten as

dJþ � duþ 1

�cs
dP ¼ 0 along Cþ

�
dx

dt
¼ uþ cs

�

dJ� � du� 1

�cs
dP ¼ 0 along C�

�
dx

dt
¼ u� cs

�
:

ð10:22Þ

These equations describe an isentropic flow in one dimension with planar
symmetry. dJ� are total differentials and can be integrated:

Jþ ¼ uþ
ð
dP

�cs
¼ uþ

ð
cs d�

�
; J� ¼ u�

ð
dP

�cs
¼ u�

ð
cs d�

�
ð10:23Þ

for the second relation on the right-hand side of these equations (10.10) has
been used. Jþ and J� are called Riemann invariants and are occasionally used
to solve numerically the flow equations for (and only for) an isentropic
process, since Jþ and J� are constants along the characteristics Cþ and C�
respectively. For a non-isentropic flow the density and the speed of sound
are functions of two variables, dJþ and dJ� are not total differentials, and
therefore Jþ and J� have no physical (or mathematical) meaning.

10.3 Rarefaction Waves

We now analyse the case where the pressure is suddenly dropped in an
isentropic process, e.g. after the high-power laser is switched off and the
ablation pressure drops. Another interesting case is after the laser-induced
high-pressure wave has reached the back of a target and at the interface
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with the vacuum there is a sudden drop in pressure. In these cases, if one
follows the variation in time for a given fluid element, one gets

D�

Dt
< 0;

DP

Dt
< 0;

D

Dt
� @

@t
þ u

@

@x
: ð10:24Þ

We consider the behaviour of a gas caused by a receding piston (figure 10.2a)
in order to visualize the phenomenon of a rarefaction wave. In this figure the
piston is moving in the�x direction so that the gas is continually rarefied as it
flows (in the �x direction). The disturbance, called a rarefaction wave, is
moving forward, in the þx direction. One can consider the rarefaction
wave to be represented by a sequence of jumps d�, dP, du, etc., so that we
can use the Riemann invariant in order to solve the problem. The forward
rarefaction wave moves into an undisturbed material defined by pressure
P0, density �0, flow u0 and the speed of sound cs0 . Using (10.23) we get

u� u0 ¼
ðP
P0

dP

�cs
¼

ð�
�0

cs d�

�
rarefaction moving in þx direction

u� u0 ¼ �
ðP
P0

dP

�cs
¼ �

ð�
�0

cs d�

�
rarefaction moving in �x direction:

ð10:25Þ
As an example we calculate some physical quantities for a rarefaction wave in
an ideal gas. Since in a rarefaction wave the entropy is constant, one has the

Figure 10.2. A forward moving rarefaction wave. The propagation velocity of the

rarefaction wave at each point is uþ cs.
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following relation between the pressure, the density and the speed of sound
(see equations (10.15) and (10.16)):

P

P0

¼
�
�

�0

��
;

cs
cs0

¼
�
�

�0

�ð��1Þ=2
: ð10:26Þ

Substituting (10.26) into (10.25) and doing the integral, one gets

u� u0 ¼
ð�
�0

cs d�

�
¼
ðcs
cs0

2 dcs
ð� � 1Þ ¼

2

ð� � 1Þ ðcs � cs0Þ

) cs ¼ cs0 þ 1
2 ð� � 1Þðu� u0Þ: ð10:27Þ

In this example the piston is moving in the�x direction and at the gas–piston
interface, and the gas velocity is the same as the piston velocity which has a
negative value. The absolute value of the negative gas flow velocity is limited
since the speed of sound is positive, i.e.

cs0 þ 1
2ð� � 1Þðu� u0Þ � 0 )

2cs0
ð� � 1Þ � �uþ u0 � �u ¼ juj: ð10:28Þ

From equation (10.27) it is evident that the speed of sound is decreased since
u is negative. This implies, according to equations (10.26), that the density
and the pressure are decreasing, as expressed mathematically in (10.24)
and shown schematically in figure 10.2(b).

10.4 Shock Waves

The development of singularities, in the form of shock waves, in a wave
profile due to the nonlinear nature of the conservation equations (10.1) has
already been discussed by B. Riemann, W. J. M. Rankine and H. Hugoniot
in the second half of the 19th century (1860–1890).

A shock wave is created in a medium that suffers a sudden impact (e.g. a
collision between an accelerated foil and a target) or in a medium that
releases large amounts of energy in a short period of time (e.g. high
explosives). When a pulsed high-power laser interacts with matter, very
hot plasma is created. This plasma exerts a high pressure on the surrounding
material, leading to the formation of an intense shock wave, moving into the
interior of the target. The momentum of the out-flowing plasma balances
the momentum imparted to the compressed medium behind the shock
front. The thermal pressure together with the momentum of the ablated
material drives the shock wave.

It is convenient to analyse a shock wave by inspecting a gas compressed
by a piston, moving into it with a constant velocity u. The medium has
initially (the undisturbed medium) a density �0 and a pressure P0, and it is
at rest, u0 ¼ 0. A shock wave starts moving into the material with a velocity
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denoted by us. Behind the shock front, the medium is compressed to a density
�1 and a pressure P1. The gas flow velocity, denoted by up and usually called
the particle velocity, in the compressed region is equal to the piston velocity,
u ¼ up. This case is schematically illustrated in figure 10.3. The initial mass
before it is compressed, �0Aust (A is the cross-sectional area of the tube),
equals the mass after compression, �1Aðus � uptÞ, implying the mass
conservation law:

�0us ¼ �1ðus � upÞ: ð10:29Þ

The momentum of the gas put into motion, ð�0AustÞup, equals the impulse
due to the pressure forces, ðP1 � P0ÞAt, yielding the momentum conserva-
tion law (or Newton’s second law):

�0usup ¼ P1 � P0: ð10:30Þ

Figure 10.3. Shock wave created by the motion of a piston (the velocities are in the labora-

tory frame of reference). The subscript one denotes the unknown downstream variables,

while the upstream variables (known initial condition) have a subscript zero.
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The increase of internal energy E (energy/mass) and of kinetic energy per
unit mass due to the piston-induced motion is ð�0AustÞðE1 � E0 þ u2p=2Þ.
This increase in energy is supplied by the piston work, thus the energy
conservation implies

�0usðE1 � E0 þ 1
2 u

2
pÞ ¼ P1up: ð10:31Þ

In the shock wave frame of reference, the undisturbed gas flows into the
shock discontinuity with a velocity v0 ¼ �us and leaves this discontinuity
with a velocity v1 ¼ �ðus � upÞ:

v0 ¼ �us; v1 ¼ �ðus � upÞ: ð10:32Þ

Substituting (10.32) into (10.29), (10.30) and (10.31), one gets the conservation
laws of mass, momentum and energy, as seen from the shock-wave-front
frame of reference:

shock wave frame

�1v1 ¼ �0v0

P1 þ �1v
2
1 ¼ P0 þ �0v

2
0

E1 þ
P1

�1
þ v21

2
¼ E0 þ

P0

�0
þ v20

2
:

8>>>>><
>>>>>:

ð10:33Þ

These equations can be obtained more rigorously from the fluid equation
(10.1) by integrating these equations over the shock wave layer. Assuming
that the thickness of the shock wave front tends to zero, then for
two points x0 and x1 lying on both sides of the shock discontinuity, one
can write

lim
x1!x0

ðx1
x0

@

@t
½� � ��dx ¼ 0; lim

x1!x0

ðx1
x0

@

@x
½� � �� dx ¼ ½� � ��x1 � ½� � ��x0 ð10:34Þ

where ½� � �� represent the different terms of equations (10.1). The procedure
described in (10.34) yields the jump conditions in the shock wave frame of
reference, as given by equations (10.33).

The jump conditions in the laboratory frame of reference are given in
(10.29), (10.30) and (10.31) for a fluid initially at rest. In the more general
case, the material is set in motion before the arrival of the shock wave (for
example, by another shock wave). If the initial flow velocity is u0 6¼ 0, then
the conservation laws (mass, momentum and energy) in the laboratory
frame of reference (see figure 10.3) can be written

laboratory frame

�0ðus � u0Þ ¼ �1ðus � upÞ

�0ðus � u0Þðup � u0Þ ¼ P1 � P0

�0ðus � u0ÞðE1 � E0 þ 1
2 u

2
p � 1

2 u
2
0Þ ¼ P1up � P0u0:

8>>><
>>>:

ð10:35Þ
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Equations (10.34) or (10.35) are occasionally called the Rankine–Hugoniot
relations. The Hugoniot relations are used to determine the state of the
compressed solid behind the shock front. Assuming that the initial state is
well defined and the quantities E0, u0, P0 and �0 are known, one has five
unknowns E1, up, P1, �1 and us with three equations (10.35). Usually the
shock-wave velocity is measured experimentally, and if the equation of
state is known (in this case one has four equations), E ¼ EðP; �Þ, then the
quantities of the compressed state can be calculated. If the equation of
state is not known, then one has to measure experimentally two quantities
of the shocked material, for example us and up, in order to solve the problem.

From the first two equations of (10.33) and using (10.32), the following
general relations can be written:

v0
v1

¼ �1
�0

� V0

V1

; V � 1

�

v0 ¼ V0

�
P1 � P0

V0 � V1

�1=2
¼ jusj

v1 ¼ V1

�
P1 � P0

V0 � V1

�1=2

v0 � v1 ¼ ½ðP1 � P0ÞðV0 � V1Þ�1=2 ¼ jupj:

ð10:36Þ

Substituting v0 and v1 from these relations into the third relation of (10.33),
one gets

E1ðV1;P1Þ � E0ðV0;P0Þ ¼ 1
2 ðP1 þ P0ÞðV0 � V1Þ: ð10:37Þ

The thermodynamic relation EðV ;PÞ is the equation of state of the material
under consideration, and assuming knowledge of this function, then equa-
tion (10.37), yields a graph (the notation of P1 is changed to PH and V1 is V):

PH ¼ PHðV ;V0;P0Þ: ð10:38Þ

This curve is known in literature as the Hugoniot curve. The Hugoniot curve,
shown schematically in figure 10.4(a), is a two-parameter (V0;P0Þ family of
curves, so that for each initial condition (V0;P0) there is a different curve.
The Hugoniot curve is not a thermodynamic function, it does not show
the pressure–volume (or density) trajectory of a shock wave development,
but it is a plot of all possible final shocked (compressed) states for a
given initial state (V0;P0). For example, the Hugoniot curve is different
from the isentropic curves of the pressure PSðV ;SÞ, which describe the
thermodynamic trajectory of pressure–volume (or density) for any given
entropy S. In figure 10.4(a) two isentropes and one isotherm are also plotted
schematically. It is interesting to note that for a given final pressure the
compression is higher for an isentrope relative to the Hugoniot, and the
isothermal compression is the highest.
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It is useful to consider the shock wave relations for an ideal gas with
constant specific heats. In this case the equations of state are

E ¼ CVT ¼ PV

� � 1
; S ¼ CV lnðPV �Þ ð10:39Þ

where � is defined in (10.15). Substituting (10.39) into (10.37), the Hugoniot
curve for an ideal gas equation of state is obtained:

P1

P0

¼ ð� þ 1ÞV0 � ð� � 1ÞV1

ð� þ 1ÞV1 � ð� � 1ÞV0

: ð10:40Þ

From this equation it follows that the compression ratio �1=�0 ¼ V0=V1

cannot increase above a certain value determined by �. The pressure in the
shocked ideal gas tends to infinity for the maximum possible compression,

Figure 10.4. (a) The Hugoniot P–V curve, denoted byH, an isentrope S0 and an isotherm,

denoted by T, both starting like the Hugoniot at V0, and an isentrope S2 starting at the

final shock pressure P1. (b) The Hugoniot P–up curve. RW is the release wave (rarefaction

wave), while RH is the reflected Hugoniot.
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given by

P1

P0

! 1 )
�
�1
�0

�
max

¼
�
V0

V1

�
max

¼ � þ 1

� � 1
: ð10:41Þ

For example, the maximum compression caused by a planar shock wave in a
medium with � ¼ 5

3 is 4�0.
Using equation (10.16), for the speed of sound cs, and equation (10.40),

both for the ideal equation of state fluid, one obtains from (10.36):

M2
0 �

�
us
cs0

�2

¼
�
v0
cs0

�2

¼ 1

2�

�
ð� � 1Þ þ ð� þ 1ÞP1

P0

�
> 1

M2
1 �

�
v1
cs1

�2

¼ 1

2�

�
ð� � 1Þ þ ð� þ 1ÞP0

P1

�
< 1:

ð10:42Þ

The ratio M of the flow velocity to the sound velocity is known as the Mach

number. In the limit of a weak shock wave, defined by P1 � P0, one has
M1 � M0 � 1. However, equations (10.42) yield in general M1 < 1 and
M0 > 1. The meaning of these relations is that in the shock frame of refer-
ence, the fluid flows into the shock front at a supersonic velocity (M0 > 1)
and flows out at a subsonic velocity (M1 < 1). In the laboratory frame of
reference, one has the well-known result that the shock wave propagates at
a supersonic speed (with respect to the undisturbed medium), and at a
subsonic speed with respect to the compressed material behind the shock.
Although this phenomenon has been proven here for an ideal gas equation
of state, this result is true for any medium, independent of the equation of
state (Landau and Lifshitz 1987).

In a shock wave the entropy always increases. For example, in an ideal
gas, equations (10.39) and (10.40) give the increase in entropy during a shock
wave process:

S1 � S0 ¼ Cv ln

�
P1V

�
1

P0V
�
0

�

¼
�

P0V0

ð� � 1ÞT0

�
ln

��
P1

P0

��
ð� � 1ÞðP1=P0Þ þ ð� þ 1Þ
ð� þ 1ÞðP1=P0Þ þ ð� � 1Þ

���
> 0:

ð10:43Þ

The increase in entropy indicates that a shock wave is not a reversible
process, but a dissipative phenomenon. The entropy jump of a medium
compressed by shock wave increases with the strength of the shock wave
(defined by the ratio P1=P0). The larger P1=P0, the larger is S1 � S0 ¼ �S.
The value of �S is determined by the conservation laws (mass, momentum
and energy) and by the equation of state. However, the mechanism of this
change is described by viscosity and thermal conductivity (Zeldovich and
Raizer 1966), not discussed in this book.
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So far we have discussed a one-dimensional, steady-state shock wave
passing through a gas or a fluid medium, with a thermal equilibrium ahead
of and behind the shock wave front. When a shock wave is created in a
solid material, one has to take into account the elastic–plastic properties of
the target (Asay and Shahinpoor 1993). For shock waves with a pressure
larger than 20 kbar, all the material strength properties are negligible and
the solid target may be considered a liquid. Since we are interested in high
pressures, larger than 20 kbar, the fluid jump equations (10.33) and (10.35)
are relevant.

It was found experimentally (McQueen 1991) that for many solid
materials, initially at rest, the following linear relation between the shock
velocity us and the particle velocity up is valid to a very good approximation:

us ¼ c0 þ �up ð10:44Þ

where c0 and � are constants. c0 is the bulk sound speed at standard con-
ditions. In table 10.1 the experimental values of c0 and � are given (Steinberg
1996) for some elements that fit equation (10.44). �0 is the initial density of
the elements (with an atomic number Z). Equation (10.44) is occasionally
called the (Hugoniot) equation of state.

Table 10.1. The experimental fit to us ¼ c0 þ �up on the Hugoniot curve. us is the shock

wave velocity, up is the particle flow velocity and �0 is the initial density of

the element with an atomic number Z.

Element Z �0 (g/cm
3) c0 (cm/ms) �

Li Lithium 3 0.534 0.477 1.066

Be Beryllium (S200) 4 1.85 0.800 1.124

Mg Magnesium 12 1.78 0.452 1.242

Al Aluminium (6061-T6) 13 2.703 0.524 1.40

V Vanadium 23 6.10 0.5077 1.201

Ni Nickel 28 8.90 0.465 1.445

Cu Copper 29 8.93 0.394 1.489

Zn Zinc 30 7.139 0.303 1.55

Nb Niobium 41 8.59 0.444 1.207

Mo Molybdenum 42 10.2 0.5143 1.255

Ag Silver 47 10.49 0.327 1.55

Cd Cadmium 48 8.639 0.248 1.64

Sn Tin 50 7.287 0.259 1.49

Ta Tantalum 73 16.69 0.341 1.2

W Tungsten 74 19.3 0.403 1.237

Pt Platinum 78 21.44 0.364 1.54

Au Gold 79 19.3 0.308 1.56

Th Thorium 90 11.7 0.213 1.278

U Uranium 92 19.05 0.248 1.53
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It is convenient to describe the Hugoniot curve in the pressure–particle
speed space, P� up. In particular, for the (10.44) equation of state, the
Hugoniot is a parabola in this space (see figure 10.4(b)). When the shock
wave reaches the back surface of the solid target, the free surface starts
moving (into the vacuum or the surrounding atmosphere) with a velocity
uFS and a release wave, in the form of a rarefaction wave, is backscattered
into the medium. Note that if the target is positioned in vacuum, then the
pressure of the back surface (denoted in the literature as the free surface) is
zero, a boundary value fixed by the vacuum. If an atmosphere surrounds
the target, then a shock wave will run into this atmosphere. In our analysis
we do not consider this effect and take P ¼ 0 at the free surface. This
approximation is justified for analysing the high-pressure shocked targets
that are considered here.

If the target A is bounded by another solid target B (see figure 10.5(a)),
then a shock wave passes from A into B and a wave is backscattered (into A).
The impedances Z ¼ �0us of A and B are responsible for the character of this
reflected wave. If ZA > ZB then a rarefaction wave is backscattered (into A),
while in the ZA < ZB case a shock wave is backscattered at the interface
between A and B. Note that in both cases a shock wave goes through (into
medium B). These possibilities are shown schematically in figure 10.4(b).
The main laser beam creates a shock wave. The Hugoniot of A is denoted
by H, and point A describes the pressure and particle flow velocity of the
shock wave ( just) before reaching the interface between the targets. If
ZA > ZB then the lower impedance line (the line P ¼ Zup) meets the rarefac-
tion wave (RW) curve at point B, while point C describes the caseZA < ZB (a
higher impedance) where at the interface a shock wave is backscattered. The
final pressure and final flow velocity ( just) after the wave passes the interface
is determined by point C for the higher impedance (ZB > ZA) and by point B
for the lower impedance (ZB < ZA). This latter case is shown in detail in
figure 10.5(b).

If the impedances of A and B are not very different, impedance matching,
then to a very good approximation the RW curve in figure 10.5(b) and
RH�RW curve in figure 10.4 are the mirror reflection (with respect to the
vertical line at u1 ¼ constant) of the Hugoniot H curve. In this case, from
figure 10.5(b), one has

Z � �0us

P1 ¼ ZAu1 ¼ �0AusAu1

usA ¼ c0A þ �Au1

P2 ¼ ZBu2

tan � ¼ u2 � u1
P1 � P2

¼ u1
P1

) P2

P1

¼ 2ZB

ZA þ ZB

� 2�0Bc0B
�0Ac0A þ �0Bc0B

ð10:45Þ
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where the last approximate equality is for weak shock waves. A similar result
is obtained in the case with higher impedance (ZB > ZA).

In figure 10.5(c) a schematic setup of an impedance-matching experi-
ment is given. When a shock wave reaches the interface with the vacuum
(or the surrounding atmosphere), it irradiates according to the temperature
of the shock wave heated medium. Note that it is a very difficult task to calcu-
late the temperature of the shocked medium from the measurement of this
irradiation. If the shock wave temperature is high (about a few thousand

Figure 10.5. (a) A laser induces a shock wave into target A with impedance smaller than

target B. A rarefaction wave (RW) is reflected at the interface A–B. (b) The Hugoniot

curves HA and HB for shock waves in A and B. The reflected rarefaction wave (RW) is

also shown. (c) A schematic setup for an impedance-matching experiment.
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K), then the self-illumination may be large enough to be detected by a streak
camera (or other appropriate optical collecting device with a fast information
recording). If the detecting devices are not sensitive to the self-illumination
then the measurement of a reflected (diagnostic) laser may be more useful,
since the reflection changes significantly with the arrival of the shock wave.
The shock wave velocities in A and B are directly measured in this way by
recording the signal of shock breakthrough from the base of A, and from
the external surfaces of the stepped targets. The time t1 that the shock
wave travels through a distance d1 in A, and the time t2 that the shock
wave travels through a distance d2 in B, yields the appropriate shock veloci-
ties in both targets. Since the initial densities are known, the impedances of A
and B are directly measured. The equation of state of A is known and the
Hugoniot of A is plotted. Using equations (10.45), P1 is known (from the
measurement of usA) and P2 is directly calculated from the measurements
of both impedances. In this way, the difficult task of measuring two para-
meters in the unknown (equation of state) material B is avoided.

As has been shown, it is quite straightforward to measure the shock-
wave velocity (assuming that the shock wave is steady, one-dimensional
and the measurement device is very accurate). It is also possible to measure
indirectly the particle flow velocity by measuring the free-surface velocity.
Accurate optical devices, called VISAR (velocity interferometer system for
any reflector) and ORVIS (optically recording velocity interferometer
system) (practically, very fast recording ‘radar’ devices in the optical
spectrum), have been developed to measure accurately the free-surface
velocity. After the shock wave reaches the back surface of the target, a release
wave with the characteristics of a rarefaction wave is backscattered into the
target. Since this isentrope is almost the mirror image of the Hugoniot (see
figure 10.4(b); the ‘mirror’ is at u1= constant), one gets

u1 ¼ 1
2 uFS: ð10:46Þ

Therefore, the measurement of us and uFS determines all the parameters in
the compressed medium (assuming the initial state is accurately known).

The highest laser-induced pressures, 	108–109 atm, have been obtained
during the collision of a target with an accelerating foil. This acceleration was
achieved by laser-produced plasma, or by x-rays from a cavity produced by
laser–plasma interactions. It is therefore now shown how the pressure is
calculated in a planar collision between a flyer and a target.

The flyer has a known (i.e. measured experimentally) initial velocity
before impact, uf. The initial state before collision is for the target (B),
up ¼ 0 and P ¼ 0, while for the flyer (A), up = uf and P ¼ 0. Upon
impact, a shock wave moves forward into B, and another shock wave goes
into the flyer in the opposite direction. The pressure and the particle velocity
are continuous at the target–flyer interface. Therefore, the particle velocity
of the target changes from zero to u, while the particle velocity in the flyer
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changes from uf to u. Moreover, the pressure in the flyer plate A equals the
pressure in the target plate B, and if the equations of state are known and
given by (10.44), and the second equation of (10.35) is used to calculate
the pressure, one gets

PH ¼ �0Buðc0B þ �BuÞ ¼ �0Aðuf � uÞ½c0A þ �Aðuf � uÞ�: ð10:47Þ

This is a quadratic equation in u, with the following solution:

u ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

a � �0A�A � �0B�B

b � �ðc0A�0A þ c0B�0B þ 2�0A�AufÞ

c � ðc0A�0A þ �0A�AufÞuf:

ð10:48Þ

Once the flow velocity is known, it is substituted into (10.47) to derive
the pressure. If the equation of state of the target is not known, then it is
necessary to measure the shock-wave velocity usB as explained above. In
this case, the pressure equality in the flyer and the target yields

PH ¼ �0BusBu ¼ �0A½c0A þ �Aðuf � uÞ�ðuf � uÞ: ð10:49Þ

Note that in this equation usB is known. The solution of this equation is

u ¼ uf þ w�
�
w2 þ

�
�0B

�0A�A

�
usBuf

�1=2

w � 1

2�A

�
c0A þ �0BusB

�0A

�
:

ð10:50Þ

In these types of experiment it is occasionally convenient to measure the free-
surface velocity of the target and to also study the dynamic strength of
materials, as explained in section 10.8.

We end this section with a short comment on shock-wave stability. One
can see from (10.26) that different disturbances of density travel with differ-
ent velocities, so that the larger the density � the faster the wave travels.
Therefore, an initial profile �ðx; 0Þ becomes distorted with time. This is
true not only for the density but also for the pressure Pðx; 0Þ, for the flow
velocity uðx; 0Þ, etc. In this way a smooth function of these parameters will
steepen in time due to the nonlinear effect of the wave propagation (higher
amplitudes move faster). Therefore, a compression wave is steepened into
a shock wave because in most solids the sound velocity is an increasing
function of the pressure. In the laboratory frame of reference, the speed of
a disturbance is the sum of the flow velocity and the sound velocity
ðcs þ uÞ. Therefore, a higher-pressure disturbance will catch up with the
lower-pressure disturbance, causing a sharpening profile of the wave. In
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reality there are also dissipative mechanisms such as viscosity and thermal
transport. Therefore, the sharpening profile mechanism can only increase
until the dissipative forces become significant, and they begin to cancel out
the effect of increasing sound speed with pressure. When the sum of these
opposing mechanisms cancels out, the wave profile no longer changes in
time and it becomes a steady shock wave.

The dissipative phenomena are nonlinear functions of the strain rate
(strain is the relative distortion of a solid 	dl=l and the strain rate is
the time derivative of the strain). Therefore, for very fast laser-induced
phenomena, the rise-time of a shock wave is very small and it can be
significantly less than 1 ns.

As already stated above, a disturbance moves at the speed cs þ u in a
compression wave. Therefore, a disturbance behind the shock front cannot
be slower than the shock velocity, because in this case it will not be able to
catch the wave front, and the shock would decay (i.e. the shock is unstable
to small disturbances behind it). Similarly, a small compressive disturbance
ahead of the shock must move slower than the shock front in order not to
create another shock wave. Thus the conditions for a stable shock wave
can be summarized as

dcs
dP

> 0; cs þ up � us; us > cs0 : ð10:51Þ

The first of these equations states that the speed of sound increases with
increasing pressure. The second equation describes the fact that the shock
wave is subsonic (Mach number smaller than one) with respect to the
shocked medium. The last equation of (10.51) is the well-known phenom-
enon that a shock wave is supersonic (Mach number larger than one) with
respect to the unshocked medium. Using equations (10.13) and (10.36),

cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@P

@�

�
S

s
¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
@P

@V

�
S

s
; us ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 � P0

V0 � V1

s
ð10:52Þ

one gets from the last of equations (10.51) the following shock stability
criterion:

P1 � P0

V0 � V1

> �
�
@P

@V

�
S;0

: ð10:53Þ

This inequality states that the slope of the Rayleigh line (figure 10.4(a)) is larger
than the slope of the isentrope at the initial state. Similarly, one can show that
the second of equations (10.51) yields the criterion that the Hugoniot at the
final state (denoted by 1) must be steeper than the Rayleigh line:

P1 � P0

V0 � V1


 �
�
dP

dV

�
H;1

: ð10:54Þ
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It is important to point out that these criteria are not always satisfied. For
example, the speed of sound of fused silica decreases with pressure in a
domain of low pressures, so that in this case the shock wave is not stable.
Moreover, in the regime of phase transitions (solid–solid due to change in
symmetry or solid–liquid), the shock wave can split into two or more
shock waves. However, in these cases the stability criteria can be satisfied
for each individual shock wave.

10.5 Shock Waves in the Presence of Magnetic Fields

Megagauss magnetic fields are easily achieved in laser plasma interactions
(see chapter 8). These large magnetic fields, which are created in the
corona, have a large pressure:

PBðMbarÞ � 0:04½BðMgaussÞ�2: ð10:55Þ

The magnetic fields do not penetrate into the solid on the time scale of the
shock-wave transient. Since we are mainly interested in the high pressures
(	Mbar) achieved in the solid target, it appears that the high magnetic
fields in the corona do not play any important role. However, if shock
waves are created in the corona, or between the critical surface and the abla-
tion surface, then the magnetic pressure, the thermal pressure and the shock-
wave pressure might be comparable:

� � PT

PB

� 4

�
ne

1020 cm�3

��
Te

keV

��
MGauss

B

�2

: ð10:56Þ

For small magnetic fields, � � 1, the magnetic fields are not important.
However, for � � 1 or smaller, a state that is possible to achieve with a
few megagauss magnetic field, the creation of a shock wave requires the
analysis of shock waves in the presence of a magnetic field.

Since the magnetic field has in general a direction not parallel to the
shock-wave velocity, it is necessary to consider the directions normal and
parallel to the shock-wave front (the discontinuity). In the following the
shock-wave (front) frame of reference is used. The normal components to
the shock front are denoted by a subscript ‘n’, while the tangential compo-
nents (i.e. the components parallel to the shock-wave surface) have the
subscript ‘t’. As in the previous section, the variables before the shock
(upstream) and after the shock (downstream) get the subscript 0 and 1
respectively. In this case one has the following jump equations (across the
shock-wave discontinuity):

(a) mass conservation;
(b) momentum conservation normal and parallel to the shock front;
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(c) energy conservation; and
(d) continuity (over the shock front) of the normal magnetic induction field

Bn and of the parallel electric field Et.

We use the magneto-hydrodynamic equations (in Gaussian units) to derive
conservation laws in the form

@

@t
½X� þ r � � ¼ 0

lim
V!0

ððð
V

@

@t
½X � ¼ 0 )

ððð
V
r � � dV ¼ �

ðð
A
� � n dA ¼ 0

) ð�0 � �1Þ � n � ½� � n� ¼ 0

ð10:57Þ

where V is a volume containing the shock wave singularity, A is the area
enclosing the volume V (Gauss divergence theorem) and n is a unit vector
perpendicular to the area under consideration. The area A is taken as a
small box surrounding the shock front, where the thickness of the box
tends to zero (therefore V goes to zero). In this case only the two faces
with directions n and �n, on either side of the shock front, contribute to
the integral. �0 and �1 are the values of � on either side of the shock surface
(the discontinuity). The end result of the class of equations (10.57) is the jump
conditions across the shock wave front.

The Maxwell equation, which describes the fact that there are no
magnetic poles, gives immediately a jump condition:

r � B ¼ 0 ) ðB0 � B1Þ � n ¼ 0 ) B0n ¼ B1n: ð10:58Þ

Another Maxwell equation, together with the zero Lorentz force
ðEþ v B=c ¼ 0Þ, yields

@B

@t
¼ �cr E ¼ r ðv BÞ ¼ r � ðBv� vBÞ ¼ 0

) ½ðBv� vBÞ � n� ¼ 0 ) ½Btvn � vtBn� ¼ 0

) B0tv0n � v0tB0n ¼ B1tv1n � v1tB1n

ð10:59Þ

a new jump condition. This equation is the continuity of the tangential
component of the electric field (note that E ¼ B v=c in the present
approximation).

The mass conservation is directly derived in the usual form:

@�

@t
þr � ð�vÞ ¼ 0 ) ½�v � n� ¼ 0 ) �0v0n ¼ �1v1n: ð10:60Þ
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The momentum jump conditions (two equations) are obtained from the
following combined momentum and Maxwell equations:

�
dv

dt
¼ �rPþ 1

c
J B

r B ¼ 4�

c
J

) �
dv

dt
¼ �rPþ 1

4�
ð� 1

2rB2 þ B � rBÞ:

ð10:61Þ

The following identities, derived by using (10.58) and (10.60),

r � ð�vvÞ ¼ �v � rv� v
@�

@t
¼ �

dv

dt
� @

@t
ð�vÞ; r � ðBBÞ ¼ B � rB ð10:62Þ

are used in (10.61) in order to derive the momentum equation in the
following form (it is more convenient to use these identities in this new
equation in order to derive (10.61)):
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@t
ð�vÞ þ r �

�
�vv� 1

4�
BBþ I

�
Pþ B2

8�

��
¼ 0 ð10:63Þ

where vv and BB are tensors of the second rank (i.e. matrices with com-
ponents vivj, BiBj , i; j ¼ 1; 2; 3 in Cartesian coordinates), and I is the unit
matrix (with components 	i j ¼ 1 for i ¼ j and zero for i 6¼ j, so that
r � ðI Þ ¼ r Þ. This equation is in the desired form of (10.57), yielding
the momentum jump conditions:��

�vv� 1

4�
BB

�
� n
�
þ
��

Pþ B2

8�

�
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�
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�
�v2n þ Pþ B2

t

8�

�
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BtBn
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�
¼ 0:

8>>>><
>>>>:

ð10:64Þ

The two relations were obtained for the normal and tangential components
(the jump condition for Bn has been used in the first relation).

The last equation to be obtained is the energy relation. In section 3.1
(equation 3.19), the following energy conservation is derived:

@

@t

�
�

�
"þ 1

2
v2
��

þr �
�
�v

�
"þ P

�
þ 1

2
v2
��

� E � J ¼ 0 ð10:65Þ

where the transport term and the external forces are neglected. The problem
now is to write the Joule heating term in a format required by a conservation
law (like the first two terms of (10.65)). Using E and J from equations (10.59)
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and (10.61). the Joule heating term can be written in the following way:

�E � J ¼ 1

4�
½ðv BÞ � r  B�

¼ 1

4�
½B � ðv � rÞB� v � ðB � rÞB�: ð10:66Þ

Using (10.59) (multiplied by B) and vector algebra, the following identity is
derived:

d

dt

�
B2

2

�
¼ B2r � v� BðB � rÞv
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@t

�
B2

2

�
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�
: ð10:67Þ

Using the identity (10.67) in (10.66), we can write

�E � J ¼ @

@t

�
B2

8�

�
þ 1

4�
r � ½B2

v� ðB � vÞB�: ð10:68Þ

We confirm this identity by an alternative derivation. The energy con-
servation of the electromagnetic field in a medium is (see Appendix A,
equations (A.10) and (A.14), in Gaussian units)
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E B

�
¼ �J � E ð10:69Þ

where the D � E ¼ "E2 (" is the dielectric coefficient) is neglected. This
equation together with

Eþ v B

c
¼ 0; ðB vÞ  B ¼ B2

v� ðB � vÞB ð10:70Þ

yields equation (10.68).
Substituting (10.68) into (10.65) gives the energy equation in the desired

form for the jump condition across the shock wave:
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In summary, the jump equations derived above are: (10.58), (10.59), (10.60),
(10.64) and (10.71). The shock-wave surface is at an angle � relative to the
magnetic induction B, i.e. the shock front propagates with an angle � relative
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to the magnetic induction B. The variables before the shock and after the
shock in the shock-wave frame of reference are

upstream: �0;P0;E0; v0n; v0t;B0n ¼ B cos �;B0t ¼ B sin �

downstream: �1;P1;E1; v1n; v1t;B1n;B1t

ð10:72Þ

where � ¼ 1=V is the density, P is the pressure, E is the internal energy
connected to the entropy and the density by the thermodynamic relation

dE ¼ T dS � P dV ð10:73Þ

and v is the medium velocity in the shock-wave frame of reference. As
shown above, one has the following six jump conditions (Thompson 1962,
Shkarofsky et al. 1966):
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4��1v1n

ð5Þ B0n ¼ B1n

ð6Þ v0nB0t � v0tB0n ¼ v1nB1t � v1tB1n:

ð10:74Þ

The first equation is the mass conservation, the second and third equations
are the momentum conservation and the fourth equation is the energy
conservation. The fifth equation is the continuity of the normal component
of B, while the last equation is the continuity of the tangential component
of the electric field (note that E ¼ B v=c). Assuming that the initial
conditions are known, one has in (10.74) six equations with seven unknowns
(see the downstream variables of (10.72)). Therefore, it is necessary to
measure one parameter. For example, if the plasma satisfies the ideal gas
equation of state, then a measurement of the temperature behind the shock
wave gives the pressure.

10.6 The Study of High-Pressure Physics

The problems with laser-induced shock waves are the small size of the targets
(	100 mm), the short laser pulse duration (	1 ns), the poor spatial uniformity
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of a coherent electromagnetic pulse (the laser), and therefore the non-
uniformity of the created pressure. All these difficulties have been addressed
in the literature and the subject of laser-induced shock wave research has
been developed significantly. The critical problems are summarized below
and their possible solutions are discussed.

(a) The planarity (one-dimensional) of the shock wave regardless of the
laser irradiance non-uniformity.

(b) Steady shock wave during the diagnostic measurements in spite of the
laser short-pulse duration.

(c) Well-known initial conditions of the shocked medium. This is required
to control (i.e. to avoid) the fast electron and x-ray preheating.

(d) Good accuracy (	1%) of the measurements.

The planarity of the shock wave is achieved by using optical smoothing
techniques (Lehmberg and Obenschain 1983, Kato et al. 1984, Skupsky
et al. 1989, Koenig et al. 1994, Batani et al. 1996). With these devices the
laser is deposited in the target uniformly, within 	2% of energy deposition.
For example (Lehmberg and Obenschain 1983), one technique denoted as
‘induced spatial incoherence’ (ISI) consists of breaking each laser beam
into a large number of beamlets by reflecting the beam off a large number
of echelons. The size of each beamlet is chosen in such a way that its diffrac-
tion-limited spot size is about the target diameter. All of the beamlets are
independently focused and overlapped on the target. Another technique
(Kato et al. 1984) divides the beam into many elements that have a
random phase shift. This is achieved by passing the laser beam through a
phase plate with a randomly phase-shifted mask.

The focal spot of the laser beam on target has to be much larger than
the target thickness in order to achieve a one-dimensional steady-state
shock wave. In figure 10.6 one can see a schematic profile of a planar
target with thickness d, irradiated by a laser with a focal spot area ¼ �R2

L.
A lateral rarefaction wave enters the shocked area and reduces the pressure
and density of the shocked area. This effect distorts the one-dimensional
character of the wave, since the shock front is bent in such a way that for
very large distances (�d ) the shock-wave front becomes spherical. The
rarefaction wave propagates toward the symmetry axis with the speed of
sound cs (in the shock-compressed area), which is larger than the shock-
wave velocity us. Therefore, the good (i.e. undisturbed by the rarefaction
wave) one-dimensional shock area ¼ �R2

g is limited by

Rg ¼ RL �
�
d

us

�
cs ¼ RL � d tan � 
 RL � d; A � �R2

L � 10d2 ð10:75Þ

where d=us is the time that the shock wave reaches the back surface. There-
fore, in order to have a one-dimensional shock wave one requires that
Rg � d, implying an RL � 2d at least, so that the laser focal spot area
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A � 10d2. This constraint implies very large laser focal spots for thick
targets.

The second constraint requires a steady shock wave, i.e. the shock
velocity has to be constant as it traverses the target. In figure 10.7 one can
see a schematic x–t (space–time) diagram of a laser-induced shock wave.
A rarefaction wave (RW), initiated at a time �t � 
L (the laser pulse dura-
tion) after the end of the laser pulse, follows a shock wave (SW) into the
target. It is necessary that the rarefaction wave does not overtake the
shock wave at position x ¼ d (the back surface) during the measurement
of the shock-wave velocity, implying 
L > d=us. For strong shocks, the
shock velocity is of the order of the square root of the pressure (see (10.36)
or (10.52)), therefore


L >
d

us
/ dffiffiffiffi

P
p : ð10:76Þ

Hot electrons can appear during the laser–plasma interaction (see section
9.6), causing preheating of the target. This preheats the target before the
shock wave arrives, therefore ‘spoiling’ the initial conditions for the high-
pressure experiment. Since it is not easy to measure accurately the tempera-
ture of the target due to this preheating, it is necessary to avoid preheating.
By using shorter wavelengths (0.5 mm or less), the fast electron preheat is
significantly reduced. It is therefore required that the target thickness d is
larger than the hot electron mean free path �e. Using the scaling law for

Figure 10.6. A planar target profile irradiated by a laser (the target thickness is d ). The

one-dimensional spot area ¼ �R2
g (g for ‘good’) in comparison with the laser irradiation

area ¼ �R2
L. RW and SW stand for rarefaction wave and shock wave respectively.
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the hot electron temperature Th (see equation (9.94)), one has

d � �e / T2
h / ðIL�LÞ0:6: ð10:77Þ

Taking into account all of the constraints given by the relations (10.75),
(10.76) and (10.77), and using the experimental scaling law

P / I0:8L ð10:78Þ

one gets the scaling of the laser energy WL

WL ¼ ILA
L / I2:4L / P3: ð10:79Þ

Figure 10.7. (a) x–t (space–time) diagram of a laser-induced shock wave. A rarefaction

(RW), initiated after the end of the laser pulse, follows a shock wave (SW) into the

target. After the shock wave reaches the back surface a rarefaction is reflected. A spall

may be created at the intersection of the two rarefaction waves. (b) Typical free-surface

velocity when a spall is created.
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Therefore, in order to increase the one-dimensional shock-wave pressure
by a factor two, it is necessary to increase the laser energy by an order of
magnitude.

A more elegant and efficient way to overcome this problem is to
accelerate a thin foil. The foil absorbs the laser, plasma is created (ablation)
and the foil is accelerated as in a rocket. In this way, the flyer stores kinetic
energy from the laser during the laser pulse duration (the acceleration time)
and delivers it, in a shorter time during the collision with a target, in the
form of thermal energy. The flyer is effectively shielding the target so that
the target initial conditions are not changed by fast electrons or by laser-
produced x-rays. For these reasons the laser-driven flyer can achieve much
higher pressures on impact than the directly-laser-induced shock wave
(Fabbro et al. 1986, Cauble et al. 1994).

The accuracy of measurements in the study of laser-induced high-pressure
physics require diagnostics with a time resolution better than 100 ps, and
occasionally better than 1 ps, and a spatial resolution of the order of few
microns. The accurate measurements of shock-wave speed and particle-flow
velocity are usually obtained with optical devices, including streak camera
(Veeser et al. 1979, Cottet et al. 1985, Ng et al. 1987, Evans et al. 1996) and
velocity interferometers (Moshe et al. 1996, Celliers et al. 1998).

10.7 Studies of Equations of State

The phenomena of shock-wave propagation through condensed matter
are strongly related to the physics of the equations of state (Altshuler
1965, Eliezer et al. 1986, Eliezer and Ricci 1991, Bushman et al. 1993, Eliezer
et al. 2002). Atoms in a solid state are attracted to each other at large
distances and repel each other at short distances. At zero temperature and
zero pressure the equilibrium is obtained at a specific volume V0c, reached
at the minimum of the (potential) energy. The atoms can be separated to a
large distance by supplying the binding energy (also known as the cohesion
energy) of the order of a few eV/atom, while compressing a condensed matter
requires energy to overcome the repulsive forces.

Small pressures, of the order of 102 atm, can compress a gas to a few
times its initial density. However, the compression of a metal by only 10%
requires an external pressure (static or shock wave) of the order of
105 atm. This is evident from the values of the compressibility at standard
conditions 	10�6 atm�1, where � is defined by

�S ¼ � 1

V

�
@V

@P

�
S

: ð10:80Þ

Note that the bulk modulus BS is the inverse of the compressibility,
BS ¼ 1=�S.
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The P–V diagram in figure 10.8(a) describes the Hugoniot curve PHðVÞ
for the initial conditions V0, T0 and P0 ¼ 0. Note that the atmospheric
pressure is negligibly small in comparison with the shock-wave pressures
under consideration, so that P0 ¼ 0 or 1 atm are equivalent initial conditions
for shock-wave experiments in solids. The difference in figure 10.8(a) at any
particular value ofV between the cold pressure Pc and the Hugoniot pressure
PH, is equal to the thermal pressure PT that is caused by the shock wave.

Figure 10.8. (a) The cold pressure Pc, the Hugoniot pressure PH and the isentrope Ps. The

initial conditions for PH and Ps are V0 ¼ 1=�0, P0 ¼ 0 and T0 (room temperature). (b) A

schematic presentation is given for the cold energy Ec and pressure Pc. The cohesion energy

Ecoh and the minimum pressure Pm, both at T ¼ 0, are also shown. For Pc > 0 the solid is

compressed, while for Pc < 0 a tension is applied on the medium.
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Since PT is positive, the cold pressure at room temperature is negative,
PcðV0Þ < 0. In this figure the isentrope PS that passes through the beginning
of the Hugoniot is also shown, so that the mutual positions of PH, PS and Pc

are illustrated.
The pressure and the internal energy of a material can be divided into

two contributions:

(a) The temperature-independent term caused by the interaction forces
between the atoms of the material. The appropriate pressure Pc and
energy Ec are defined as ‘cold pressure’ and ‘cold energy’ respectively.

(b) The thermal term is usually divided into two parts: one part describes
the motion of the atoms in the lattice, while the second part is due to
the electron thermal motion.

Pa and Ea denote the thermal lattice pressure and energy respectively, and the
appropriate electron contributions are Pe and Ee. Therefore, the equation of
state is usually written in the following form:

PðV ;TÞ ¼ PcðVÞ þ PTðV ;TÞ

PTðV ;TÞ ¼ PaðV;TÞ þ PeðV ;TÞ

EðV ;TÞ ¼ EcðVÞ þ ETðV ;TÞ

ETðV ;TÞ ¼ EaðV;TÞ þ EeðV ;TÞ:

ð10:81Þ

The thermodynamic relation relates the cold pressure and energy:

EcðVÞ ¼ �
ðV
V0c

PcðVÞ dV : ð10:82Þ

As usual, the potential energy is fixed up to a constant, and this constant has
been chosen in such a way that EcðV0cÞ ¼ 0. Note that PcðV0cÞ ¼ 0 is the
definition of V0c. It has been found that to a good approximation, near the
Hugoniot curve, the lattice thermal energy and pressure are related through
the Gruneisen equation of state, and the energy is described by the Debye
solid-state theory:

Ea ¼ CVðT � T0Þ þ E0; PaðV ;TÞ ¼ �aðVÞ
V

Ea ð10:83Þ

where �a is the Gruneisen coefficient (assumed to be a function of V), CV is
the lattice specific heat at constant volume, T0 is the initial temperature in the
shock wave experiment, usually the room temperature, and E0 is the internal
energy at T0, defined by

E0 ¼
ðT0

0
CVðTÞ dT : ð10:84Þ
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At room temperature and for slightly lower and higher temperatures, the
specific heat CV has the Dulong–Petit value

CV ¼ 3R

hAi

�
erg

g � deg

�

R ¼ 8:314 107
�

erg

mol � deg

�

hAi ¼ average atomic weight

�
g

mol

�
:

ð10:85Þ

For example, hAi for aluminium and copper is 27 and 63.55 respectively.
Assuming for the electron thermal part an equation of state similar to

the Gruneisen equation of state for the lattice, one has

Pe ¼
�e
V

Ee: ð10:86Þ

To the first approximation, the thermal electron energy is taken from the free
electron model,

Ee ¼ 1
2�T

2 ð10:87Þ

and � is related to the specific volume V by the thermodynamic relation,
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�
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� P: ð10:88Þ

Substituting (10.86) and (10.87) into (10.88) yields

@�

@V
¼ �e�

V
) � ¼ �e exp

�ðV
V0

�e dV

V

�

� ¼ �0

�
V

V0

�1=2

for �e ¼ 0:5:

ð10:89Þ

The value of �e ¼ 0:5 is a good approximation for many metals up to shock-
wave data of a few megabars pressure.

Combining equations (10.81), (10.82), (10.83), (10.86) and (10.89), one
gets

P ¼ Pc þ
�a
V

½CVðT � T0Þ þ E0� þ
1

4

�
�0
V0

��
V0

V

�1=2

T2

E ¼ �
ðV

Pc dVþCVðT � T0Þ þ E0 þ
�0
2

�
V

V0

�1=2

T2:

ð10:90Þ
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The cold pressure can be described by a polynomial in ðV0c=VÞ1=3 in such a
way that it fits the experimental values of the bulk modulus, the derivative of
the bulk modulus at zero pressure, the cohesion energy and the Thomas–
Fermi model (or modified models) at very high compressions.

Although the equations of state described in equations (10.90) have 10
parameters, they do not describe phase transitions, such as solid to solid
with different symmetry or melting and evaporation. In order to describe
these phenomena, many more parameters based on theoretical models and
experimental data are required.

As explained in section 10.4, in a shock-wave experiment one can
measure the shock-wave velocity (us) and the particle velocity (up). It has
also been attempted to measure the temperature associated with a shock
wave; however, the experimental data so far are not very accurate.

The shock-wave velocity is directly measured in a stepped target
(velocity¼measured step length/measured time difference) using an optical
streak camera. The particle velocity is more difficult to measure, and up is
deduced, for example, from impedance-matching experiments (see section
10.4) or by the optical measuring of the free-surface (i.e. back surface)
velocity. The measured equation of state is given in the form of the linear
us–up equation (10.44). The velocity measurements should have an accuracy
of about 1%, in order to give good accuracy (	10%) in other variables such
as pressure, energy, etc. It is important to point out that the linear us–up
relation (equation (10.44) and table 10.1), is not always correct for all solid
elements.

Sometimes a higher polynomial in up is necessary to fit the experimental
data. For example (Steinberg 1996),

hafnium: usðcm=msÞ ¼ 0:298þ 1:448up � 3:852

�
up

us

�
up þ 7:0

�
up

us

�2

up

lead: usðcm=msÞ ¼ 0:2006þ 1:429up þ 0:8506

�
up

us

�
up � 1:64

�
up

us

�2

up

titanium: usðcm=msÞ ¼ 0:502þ 1:536up � 5:138

�
up

us

�
up þ 10:82

�
up

us

�2

up:

ð10:91Þ

In the following part of this section, it is shown how one can study the
thermodynamic equations of state in the neighbourhood of the Hugoniot
from the measurements of the shock velocity and the particle velocity. For
simplicity, the further discussion assumes the linear us–up relation (equation
(10.44)), valid for many metals.

It is convenient to define the parameter � related to the compression
�=�0, in such a way that � ¼ 0 for no compression and � ¼ 1 for an
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infinite �=�0:

� � 1� V

V0

¼ 1� �0
�
: ð10:92Þ

Using equations (10.36) and (10.44), the particle velocity and the shock
velocity can be presented in the following way:

up

us
¼ V0 � V

V0

¼ �

us ¼ c0 þ �up

9>=
>; )

up ¼ �c0
1� ��

us ¼
c0

1� ��

:

8>><
>>:

ð10:93Þ

Substituting these results into the Hugoniot pressure, one gets PH as a
function of V (or �), the experimentally measured quantities c0 and �, and
the initial condition V0:

PH ¼ �0usup ¼ �c20

V0ð1� ��Þ2
¼ c20ðV0 � VÞ

½V0 � �ðV0 � VÞ�2
: ð10:94Þ

It is interesting to point out that from this equation the maximum possible
compression is obtained for an infinite PH, implying

�max

�0
¼ �

�� 1
: ð10:95Þ

For example (see table 10.1), � of aluminium equals 1.4, implying that in a
shock wave the compression �=�0 is smaller than 2.5.

The derivative of this pressure with respect to the specific volume V is

P0
H �

�
dP

dV

�
H

¼ dPH

dV
¼ �

�
c0
V0

�2 1þ ��

ð1� ��Þ3

¼ �c20

�
V0 þ �ðV0 � VÞ
½V0 � �ðV0 � VÞ�3

�
: ð10:96Þ

Using this relation, the bulk modulus on the Hugoniot, BH, is obtained:

BH ¼ �V

�
dP

dV

�
H

ð10:97Þ

and its derivative with respect to the pressure can also be derived:�
dBH

dP

�
H

¼
�
dBH

dV

�
H

�
dV

dP

�
H

¼ �
��

dP

dV

�
H

þ V

�
d2P

dV2

�
H

�
1

ðdP=dVÞH

¼ �
�
1þ Vðd2P=dV2ÞH

ðdP=dVÞH

�
: ð10:98Þ
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Experimentally one measures the bulk modulus at constant entropy and
its derivative at V ¼ V0, P ¼ P0 ¼ 0 (the shock wave initial condition).
For the Hugoniot pressure and the isentrope PS starting at V ¼ V0,
P ¼ P0 ¼ 0, the following relations are valid:�

dPH

dV

�
P0;V0

¼
�
dPS

dV

�
P0;V0

;

�
d2PH

dV2

�
P0;V0

¼
�
d2PS

dV2

�
P0;V0

: ð10:99Þ

From equations (10.96), (10.97), (10.98) and (10.99), the following important
relations are derived:

BHðP0;V0Þ ¼ BSðP0;V0Þ ¼
c20
V0

¼ �0c
2
0

B0
HðP0;V0Þ ¼ B0

SðP0;V0Þ ¼ 4�� 1:

ð10:100Þ

From shock-wave data (equation of state), one knows c0 and � and therefore
the bulk modulus and its pressure derivative. The last two physical
quantities, BS and dBS=dP ¼ B0

S, are very important in calculating the cold
pressure Pc and energy Ec. BS, of the order of 1Mbar, can also be measured
in static experiments thanks to the technological advances in reaching high
pressures (up to a few megabars). However, it is difficult to measure B0

S in
static experiments to a good accuracy since this quantity measures the
curvature of the P–V curve. On the other hand, the shock-wave experiments
in this domain of pressure are easily and accurately performed.

We now calculate the speed of sound:

cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@P

@�

�
S

s
¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
@P

@V

�
S

s
� V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� dPSðVÞ

dV

r
: ð10:101Þ

For this purpose one needs the isentrope pressure curve PSðVÞ, which can be
calculated from the knowledge of the Hugoniot pressure PHðVÞ using the
(ion) Gruneisen equation of state. In order to do so, the electron thermal
contribution Pe should be neglected. For most of the solid materials,
Pe � Pa for pressures less than a few hundred kilobars. For example, we
demonstrate this for aluminium at a shock-wave pressure of 580 kbar. At
this Hugoniot point, the compression is 1.40 and the temperature is
1480K. Using the following experimental data at standard conditions

aluminium: V �1
0 ¼ �0 ¼ 2:70 ½g=cm3�

CV ¼ 8:96 106 ½erg=ðg � degÞ�

BS ¼ 1:36 1012 ½dyne=cm2� ¼ 1:36Mbar

E0 ¼ 107 ½erg=g�
�a ¼ 2:09

�0 ¼ 500 ½erg=ðg � deg2Þ�

ð10:102Þ
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we get from the equations of state (10.90):

aluminium:
V0

V
¼ �

�0
¼ 1:40; TH ¼ 1480K; PH ¼ 580 kbar

) Pc ¼ 495:6 kbar; Pa ¼ 83:5 kbar; Pe ¼ 0:9 kbar:

ð10:103Þ

From this example one can see that even in a shock wave with 580 kbar of
pressure in aluminium, the electronic thermal part contributes about
0.15% to the total pressure. Therefore, in the following analysis the
electronic thermal part is neglected.

The Gruneisen equation of state (see (10.83)) can be written in the form

PðV ;EÞ ¼ PcðVÞ þ �aðVÞ
V

½E � EcðVÞ�: ð10:104Þ

Substituting P ¼ PH in this equation and subtracting it from P, one gets

P� PH ¼ �a
V

ðE � EHÞ: ð10:105Þ

For P ¼ PS, the derivative of (10.105) yields (after using dES=dV ¼ �PS)

PS ¼ � dEH

dV
þ ðPH � PSÞ

d

dV

�
V

�a

�
þ V

�a

�
dPH

dV
� dPS

dV

�
: ð10:106Þ

Taking the derivative of the Hugoniot energy relation (10.37) gives

dEH

dV
¼

�
V0 � V

2

�
dPH

dV
�
�
P0 þ PH

2

�
: ð10:107Þ

Substituting (10.107) into (10.106) yields

dPS

dV
¼

�
1� �a

2V
ðV0 � VÞ

�
dPH

dV
þ �a
2V

ðP0 þ PHÞ

þ �a
V

ðPH � PSÞ
d

dV

�
V

�a

�
� PS

�
�a
V

�
: ð10:108Þ

Using equations (10.101) and (10.108) and defining the sound speed on the
Hugoniot points, i.e. cH is equal to cS for PS ¼ PH, one gets

c2H ¼
�
�aV

2

�
PH þ

��
�aV

2

�
ðV0 � VÞ � V2

�
dPH

dV

c2S ¼ c2H þ �aVðPS � PHÞ
�
1þ d

dV

�
V

�a

��
:

ð10:109Þ

In the second equation of (10.109), the speed of sound cS is along the
release isentrope off the Hugoniot (i.e. an isentrope starting after the
shock-wave point with pressure PH). See curve S2 in figure 10.4(a). It was
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found experimentally that the Gruneisen coefficient satisfies the relation

�aðVÞ
V

¼ �0
V0

¼ const: ð10:110Þ

Using this relation in (10.109) yields the approximate relation

c2S � c2H þ �0

�
V2

V0

�
ðPS � PHÞ: ð10:111Þ

Substituting into (10.109) the equations (10.93), (10.94) and (10.96), one gets
the sound speed on the Hugoniot points as a function of measured quantities,
� ¼ up=us, c0 and �:

cH ¼ c0
1� �

ð1� ��Þ3=2

ffiffiffiffiffiffiffi
�0�

2

r
ð1þ �� � �0��

2Þ1=2: ð10:112Þ

From equation (10.111), or more accurately from (10.109), the Gruneisen
parameter may be determined if the Hugoniot pressure and the speed of
sound are measured experimentally. By placing a transparent material
coupled to the target under consideration, the rarefaction overtakes the
shock wave and reduces significantly the shock pressure. By measuring this
phenomenon, the change in light radiance caused by the decrease in the
shock pressure, the speed of sound in the shocked material can be measured.

10.8 Studies of Dynamic Strength of Materials

Spall is a dynamic fracture of materials, extensively studied in ballistic
research (Rosenberg et al. 1983, Bushman et al. 1993). The term spall, as
used in shock wave research, is defined as planar separation of material,
parallel to the wave front as a result of dynamic tension perpendicular to
this plane. The reflection of a shock-wave pulse from the rear surface (the
free surface) of a target causes the appearance of a rarefaction wave into
the target. Tension (i.e. negative pressure) is induced within the target by
the crossing of two opposite rarefaction waves, one coming from the front
surface due to the fall of the input pressure and the second due to reflection
of the shock wave from the back surface (see figure 10.7(a)). If the magnitude
and duration of this tension are sufficient then internal rupture, called spall,
occurs. In this section we point out that this type of research can also be done
with laser beams (Gilath et al. 1988, Eliezer et al. 1990, Boustie and Cottet
1991, Fortov et al. 1991, De Resseguier and Cottet 1995, Eliaz et al. 2000,
Moshe et al. 2000).

Spall in ductile materials is controlled by localized plastic deformation
around small voids that grow and coalesce to form the spall plane. In
very fast phenomena and very high tension, as in high-power pulsed laser
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interaction with a target, new voids are created due to fluctuations and also
contribute to the spall formation. Spall in brittle materials takes place by
dynamic crack propagation without large-scale plastic deformation. In this
section we do not describe the physics of dynamic failure (Grady 1988,
Dekel et al. 1998).

In figure 10.9 a cross section with a spall of an aluminium (6061) target,
100 mm thick, is shown. A laser-created shock wave in the aluminium target
induced the spall. This typical metallurgical cross section was taken after the
experiment was finished. The strain " that has been formed at the spall area is
defined by

"ð1DÞ ¼ �l

l
; "ð3DÞ ¼ �V

V
¼ ���

�
ð10:113Þ

where �l is the difference between the final and original lengths of the target
in one dimension and l is the original length, while in three dimensions the
strain is defined by the relative change in the volume. From the cross section
of figure 10.9 one can measure directly the dynamic strain. One of the
important parameters, for the different models describing the spall creation,
is the strain rate

_"" ¼ d"

dt
: ð10:114Þ

High-power short-pulse lasers have been used to create strain rates as high as
5 108 s�1. When the shock wave reaches the back surface of the solid target,
bounded by the vacuum (or the atmosphere), the free surface develops a
velocity uFSðtÞ. This velocity is given by the sum of the particle flow velocity
up and the rarefaction wave velocity Ur. The material velocity increase Ur is
given by the Riemann integral along an isentrope from some point on the

Figure 10.9. Cross section in an Al 6061 target after the spall creation.
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Hugoniot (pressure PH) to zero pressure (see equations (10.25) and (10.101)):

uFS ¼ up þUr; Ur ¼
ðPH

0

dP

�cs
¼
ð�
�0

cs d�

�
¼
ðVðP¼0Þ

VðPHÞ

�
� dPS

dV

�1=2

dV :

ð10:115Þ

The derivative dPS=dV is given in equation (10.108), so that knowledge of PS

gives the value of Ur. Layers of the target adjacent to the free surface go into
motion under the influence of the shock-wave transition from V0, P0 ¼ 0 to
V, PH, and subsequent isentropic expansion in the reflected rarefaction wave
from PH,V to P0 ¼ 0, V2 (see figure 10.4(a)), whereV2 > V0. Although these
two processes are not the same, it turns out that for up � us one has, to a very
good approximation,

up � Ur ) uFS � 2up: ð10:116Þ

It was found experimentally, for many materials, that this relation is very
good (within 1%) up to shock-wave pressures of about 1Mbar. Therefore,
from the free-surface velocity measurements, one can calculate the particle
flow velocity of the shock-wave compressed material. This free-surface
velocity, together with the experimental measurement of the shock-wave
velocity, might serve as the two necessary quantities, out of five (PH,
V ¼ 1=�, EH, us, up), to fix a point on the Hugoniot.

A typical free-surface velocity measurement, in the case of the creation
of a spall, is given in figure 10.7(b). umax (related to up in the above discussion)
in this figure is the maximum free-surface velocity. At later times the free-
surface velocity decreases to umin until a second shock arrives from the
spall, ‘the new free surface’. When a rarefaction wave reaches the internal
rupture of the target (the spall) a shock wave is reflected towards the free
surface, causing an increase in the free-surface velocity. These reverberation
phenomena are repeated until the free surface reaches an asymptotic
constant velocity. The spall strength �, i.e. the negative pressure (tension)
that a spall occurs, can be calculated using the Riemann invariants

uðP ¼ 0; u ¼ uminÞ � umin ¼ u00 �
ð0
�

dP

�cs

uðP ¼ 0; u ¼ umaxÞ � umax ¼ u00 þ
ð0
�

dP

�cs

9>>>>=
>>>>;

) �u � umax � umin ¼ 2

ð0
�

dP

�cs
:

ð10:117Þ

Assuming that the negative pressure is not too large, then to a good
approximation � ¼ �0 and cs ¼ c0, implying that the spall strength is

� ¼ � �0c0ðumax � uminÞ
2

� �spall: ð10:118Þ
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The minimum (i.e. the maximum absolute value) possible � is given by the
equation of state, as shown in figure 10.8 by the value Pm.

The strain " and the strain rate d"=dt can be approximated by

" ¼
up

c0
; _"" ¼ d"

dt
¼ 1

2c0

duFS
dt

� 1

2c0

�u

�t
ð10:119Þ

where�t is the time difference (see figure 10.7(b)) between the time measure-
ments of umax and umin. The experimental data of spall as a function of the
strain rate are summarized in figure 10.10 for aluminium targets. Up to
about a strain rate of 106 s�1, the strain creation methods are gun drivers
of plates or high explosives, while the higher strain rates are achieved with
high-power pulsed laser drivers. The minimum pressure, in the pressure-
specific volume curve, gives the equation of state theoretical spall strength.
As already mentioned above, in reality the theoretical value of spall is not
achieved due to material defects. However, for extremely high strain rates,
the theoretical values from the equations of state are expected, since the
material defects do not have enough time to ‘combine’ and induce a spall,
so that the inter-atomic forces dominate the strength of the material in this
case. As can be seen from the isotherms of aluminium in figure 10.11,
calculated with a semi-empirical wide range equation of state, the spall
strength also depends on the temperature of the shocked target.

Figure 10.10. Experimental values of spall strength spall as a function of the strain rate for

aluminium.�Pm is the maximum theoretical value of the spall strength (see figure 10.8(b)).
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Last, but not least, from the free-surface measurements the shock-wave
pressure is known if the equation of state is available (equation (10.44)):

PH ¼ �0usup � �0

�
c0 þ �

umax

2

�
umax

2
: ð10:120Þ

From the analysis in this chapter, one can see that the high-power laser
devices are successfully ‘joining’ the club of high-pressure physics.

Figure 10.11. Isotherm of aluminium, calculated with a semi-empirical wide range

equations of state.
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Chapter 11

Hydrodynamic Instabilities

11.1 Background

The Rayleigh–Taylor (RT) instability occurs if a heavy fluid is supported by a
light fluid in a gravitational field (Rayleigh 1883). Equivalently, one gets RT
instability when a light fluid pushes and accelerates a heavy fluid (Taylor
1950) (see figure 11.1). In general, theRT instability occurswhenever a pressure
gradient opposes a density gradient (rP is in an opposite direction to r�).

The hydrodynamic instabilities, and in particular the RT instability,
have been reviewed in the literature (Chandrasekhar 1961, Drazin and
Reid 1981, Kull 1991). Reviews on RT instabilities in laser–plasma inter-
actions, with an emphasis on inertial confinement fusion (ICF), are also
available (Bodner 1991, Gamaly 1993, Hoffman 1995).

A sinusoidal wave, with amplitude �, on the surface between the two RT
unstable fluids will grow exponentially:

� ¼ �0 exp �0tð Þ; �0 ¼
ffiffiffiffiffiffiffiffiffi
Aka

p
; A � �H � �L

�H þ �L
; k ¼ 2�

�
ð11:1Þ

where � is the wavelength of the sinusoidal wave, a is the acceleration of the
two fluids (or a ¼ g in the gravitational field, without acceleration), �H and
�L are the densities of the heavier and the lighter fluids and A is the
Atwood number. �0 is the classical value obtained by Rayleigh, more than
a hundred years ago, for two fluids in contact in the gravitational field
(a ¼ g in (11.1)).

For example, when a high-power laser interacts with a thin foil, plasma
is created and accelerates the foil. In this case one has a low-density medium
(the plasma) accelerating a high-density medium (the solid target); therefore,
the acceleration is subject to RT instabilities. For a typical high-power laser
acceleration of the order of 1015 cm/s2 and a wavelength of the order of
the foil thickness �100 mm, one gets �0 � 109 s�1, implying that the classical
e-folding time is 1=�0 � 1 ns.
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Another very important example is the acceleration of thin shells, subject
to RT instabilities, in ICF. The use of shells in ICF, in comparison with solid
spheres, has reduced significantly the peak laser power (and energy) required
to ignite a target of a given mass. The following order of magnitude calcula-
tions demonstrate the importance of RT instabilities in ICF. The ablation
pressure Pa, that accelerates the shell, is a function of the irradiating laser
intensity I , which scales like Pa � I2=3. For a shell with an initial radius R0

and thickness �R0, the implosion velocity vf scales as v2f � Pa(R0=�R0).
The resulting stagnation pressure is Pf � Pa(R0=�R0)G, where G is a radial
convergence factor of the order of 100. The minimum energy for ignition
scales as 1=P2

f . The ablation pressure for ICF pellets, expected to be about
Pa � 30Mbar, has to increase to about Pf � 100Gbar, i.e. by a factor of
3000, implying an aspect ratio R0=�R0 � 30. The larger the aspect ratio the
higher the implosion pressure (Pf), implying a smaller laser energy (�1=P2

f ).
However, the magnitude of R0=�R0 is limited by RT instabilities.

Since the beginning of the ICF programme, the RT instability has been a
subject of uncertainties and controversies. Some scientists believe that an initial
aspect ratioR0=�R0 as high as 100 is ‘safe’ againstRT instabilities,while others

Figure 11.1. Rayleigh–Taylor (RT) instability in the presence of gravitation g (down) or

acceleration a (up). The upper fluid density �H is larger than the lower fluid density �L.

(a) A normal mode is shown. (b) Characteristic flow patterns in the evolution of RT

instability: (1) a bubble formation penetrating the heavy fluid, (2) a spike entering a

medium with very low density, (3) a spike formation with vortex motion, (4) intermixing

between the fluids.
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were predicting that even an aspect ratio of 4 is going to ‘destroy’ the shell
(before the desired high compression is achieved) by RT instabilities. The
aspect ratio is a very important parameter for ICF since thicker pellets require
a higher laser intensity to achieve the desired high pressure, and very high
laser intensity could drive unacceptable plasma instabilities (see chapter 6).
In addition, thicker shells require a larger amount of laser energy.

The RT instability can cause a disturbance to grow from extremely small
amplitude to a level that can disrupt the flow completely. In the above
examples it can break the accelerated foil or the shell before it reaches the
desired final velocity.

The initial disturbance, called the ‘seed’, arises from limitations to
fabricate a perfect plane (for foil acceleration) or a perfect spherical shell
for ICF. Small perturbations caused by the roughness of the material
structures, or by machining marks during the preparation of the target, are
sources of instability seeds. Furthermore, the pattern of the laser intensity
on the target can imprint a disturbance on an initially perfect smooth
target. Since these types of disturbance are facts of reality, one has to calcu-
late the constraints on the target smoothness and on the laser uniformity
from the hydrodynamic instability theory.

Any initial perturbation can be described as an infinite series (e.g. a
Fourier series) of normal modes (with wavelength � ¼ L=j, j ¼ 1; 2; 3; . . .).
Any given mode is not growing to infinity by the RT instability, but is
expected to saturate at a finite amplitude (��=2). On their route to satura-
tion, perturbations with wavelength greater than the fluid thickness would
destroy the flow (break the foil or the shell).

The shorter wavelength modes reach saturation before the longer
wavelength modes (see equation (11.1), �0 � ða=�Þ1=2). After the shorter
wavelength modes stop growing, they transfer their acquired energy to the
longer wavelength disturbances, and the small disturbances are converted
into larger structures. It turns out that these structures have the topology
of bubbles and spikes. The lighter fluid penetrates the heavier fluid in the
form of bubbles, and spikes of the heavier fluid enter the lighter fluid.
Characteristic flow patterns in the evolution of RT instability are shown in
figure 11.1(b), where a bubble formation penetrating the heavy fluid is
shown together with possible spikes entering the lighter medium. A
schematic spike formation with vortex motion and late intermixing between
the fluids are also shown in this figure.

The saturation mechanism can be understood (Shvarts et al. 1995) by
the existence of a nonlinear drag force:

Fd � ��dSu2: ð11:2Þ

The ambient fluid for bubbles is the heavy liquid and the ambient fluid for
spikes is the light fluid; therefore, �d ¼ �H for bubbles and �d ¼ �L for
spikes. S is the area and u the velocity of the bubbles or the spikes. Equating
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the drag force with the buoyancy force for a disturbance with volume V ,

Fb � �H � �Lð ÞaV ð11:3Þ

one gets

u �
ffiffiffiffiffiffi
a�

p
; amplitude � u2

2a
¼ �

2
: ð11:4Þ

In order to get a feeling of the size of RT instability according to equation
(11.1), we consider the shell uniformity requirement in ICF. According to
this equation the shorter wavelengths have higher growth rates; therefore,
one has to consider the shortest wavelength that will destroy the shell,
about � � 3�R0. The shell is first accelerated, then it expands at a constant
velocity and finally it decelerates during the compression stages. The RT
instabilities occur during the acceleration and during the deceleration
phases, since in both cases rP is in an opposite direction to r�. In this
example we are interested in the RT instability during the acceleration
phase. As an order of magnitude estimate, one can assume that the shell
acceleration is constant until the shell is at a distance R0=2 from the
centre, R0=2 � 1

2 at
2. Using this relation and � � 3�R0, the growth of an

initial amplitude �0 for Atwood number �1 is, according to equation (11.1),

�

�0
¼ exp

ffiffiffiffiffiffiffiffiffiffi
2R0

�R0

s

� ¼ �R0

2
� 50 mm )

�0 � 3:6� 10�9 cm for
R0

�R0

¼ 100

�0 � 2:2� 10�6 cm for
R0

�R0

¼ 30:

8>>><
>>>:

ð11:5Þ

Taking into account the pellet fabrication and the laser initial imprint on the
shell surface, it seems that such initial smoothness is technologically
impossible. Therefore, there must be some mechanism that reduces the RT
instabilities significantly or all ICF schemes would fail.

Following the Landau–Lifshitz analysis (Landau and Lifshitz 1987) of a
chemical burn front of a weak deflagration, it was suggested (Bodner 1974,
Takabe et al. 1985) that the plasma ablation stabilizes the RT instability.
The ablated material flows away from the target interface, creating the
low-density corona that accelerates the target. The pressure increase from
the target towards the corona gives the acceleration force. The ablation
flow through the unstable region and the smoothing of temperature
perturbations by the radiation flux can act to reduce the growth rate in the
RT instability at the ablation surface. The ablation stabilization is explained
by the fact that the disturbance is convected away from the interface before it
grows. According to this stabilization, the growth rate of the RT instability is
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effectively reduced to

� ¼ �
ffiffiffiffiffi
ka

p
� �kua; ua ¼

1

�max

dm

dt

� �
; � � 0:9; � � 3 ð11:6Þ

where �max is the peak density at the interface and dm/dt is the mass (per unit
area) ablation rate. The ratio between the ua term and the classical RT term for
ICF plasmas is about 25% only, therefore this stabilization is not sufficient.

In analysing the RT instability it is required to consider the evolution of
multimode perturbation. In spherical geometry the perturbation wave
number is given by the angular momentum number l:

l ¼ 2�R

�
: ð11:7Þ

The growth rate for each mode is �l ¼ ðal=R0Þ1=2 and using the approxima-
tion at2 �R0, one gets

�l t �
ffiffi
l

p
: ð11:8Þ

The nonlinear evolution of the RT instability, starting with a multimode
initial perturbation (Gardner et al. 1988, Haan 1989, Dahlburg et al. 1995,
Shvarts et al. 1995, Oron et al. 1998), was comprehensively studied using
numerical simulations in two and three dimensions.

Other hydrodynamic instabilities of importance in laser–target inter-
action are the Richtmyer–Meshkov (RM) instability and the Kelvin–
Helmholtz (KH) instability. The RM instability (Richtmyer 1960, Meshkov
1969) occurs when a shock wave passes through a corrugated interface
between two fluids of different densities (see figure 11.2). This phenomenon
is a limiting case of the RT instability, where the shock wave imparts an
impulsive acceleration to the interface, so that the acceleration acts on the
fluid during an infinitesimally short duration. As in the RT case under
unstable conditions, small perturbations on the interface can grow into
bubbles of light fluid penetrating the heavy fluid and spikes of heavy fluid
entering into the light fluid.

The KH instability (Kelvin 1910, Chandrasekhar 1961, Brown and
Roshko 1974, Melrose 1986) occurs when two fluids in contact have different
flow velocities (in the direction parallel to the interface) across the interface.
The classical example is the generation of water waves by wind blowing over
the surface of the water. The gradient in the parallel velocity, referred to in
the literature as ‘velocity shear’, can be unstable and produce vortices and
turbulence, creating a mixing zone between the fluids. The KH instability
can develop along the interface of ‘climbing’ bubbles and ‘declining’ spikes
at the late stage of RT instability, when the shear velocity is large. A shear
velocity is also generated in RM instability if the shock wave is crossing
the interface not in a normal direction to the interface between the fluids.
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Figure 11.2. A presentation of the Richtmyer–Meshkov instability. A shock wave passes

through a perturbed interface between two fluids, from the light to the heavy fluid.

(a) Before the shock crosses the interface, (b) after the shock crosses the interface and

(c) converging and diverging shocks at the shock wave surfaces.
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In the following sections the RT, RM and KH instabilities are analysed.
The RT instability is discussed in greater detail (the next four sections) than
the other instabilities.

11.2 Rayleigh–Taylor Instability, Linear Analysis

The hydrodynamic equations describing the motion under consideration are
the following mass and the momentum conservation equations:

@�

@t
þr � �vð Þ ¼ 0; �

@v

@t
þ �ðv � rÞv ¼ �rPþ �g ð11:9Þ

where � is the fluid density, v is the flow velocity, P is the pressure and �g is
the external force acting on the fluid (if there is an acceleration, then a ¼ �g).
The Cartesian coordinates with unit vectors x̂x, ŷy and ẑz are used, and the
gravitational field (or the acceleration) is perpendicular to the interface
between the fluids

g ¼ �gẑz: ð11:10Þ

The instability is investigated here in the linear approximation (Chandra-
sekhar 1961, Hoffman 1995):

� ¼ �0 þ �1; �0 � �1

v ¼ v0 þ v1; v0 � v1

P ¼ P0 þ P1; P0 � P1:

ð11:11Þ

The variables with subscript 1 describe how a small perturbation grows in
time. If the amplitude of the perturbation never returns to its initial value,
then it is said that the flow is unstable with respect to the initial perturbation.
Substituting (11.11) into equations (11.9), and neglecting higher orders than
one (see section 2.5), yields the following equations to the zeroth order and
the first order respectively:

@�0
@t

þr � �0v0ð Þ ¼ 0; �0
@v0
@t

þ �0ðv0 � rÞv0 ¼ �rP0 þ �0g ð11:12Þ

@�1
@t

þr � �0v1 þ �1v0ð Þ ¼ 0

�1
@v0
@t

þ �0
@v1
@t

þ �0 ðv1 � rÞv0 þ ðv0 � rÞv1½ � þ �1ðv0 � rÞv0 ¼ �rP1 þ �1g

ð11:13Þ

For the analysis of RT instability it is assumed that v0 ¼ 0, so that the
equations (11.13) for the perturbations are simplified to

@�1
@t

þr � �0v1ð Þ ¼ 0; �0
@v1
@t

þrP1 � �1g ¼ 0 : ð11:14Þ
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For an incompressible fluid the speed of sound equals infinity, so that
communications by sound signal are instantaneous. Therefore, it is assumed
that an incompressible flow is a reasonable assumption for flow velocities
much smaller than the local speed of sound. In Lagrangian coordinates
(see section 3.2) the density in this case does not change with time:

d�

dt
¼ @�

@t
þ v � r� ¼ 0: ð11:15Þ

Using the linearization procedure in this equation, together with the first of
equations (11.14), one gets the following two equations:

r � v1 ¼ 0 ð11:16Þ

@�1
@t

þ v1 � r�0 ¼ 0: ð11:17Þ

Instead of equations (11.14) we have to solve for the incompressible fluid the
second equation of (11.14), together with equations (11.16) and (11.17). In
our problem �0 is constant in both fluids, and therefore the initial density
changes only in the z direction, normal to the interface between the two
fluids. This implies that @�0=@x ¼ 0, @�0=@y ¼ 0 and only at the interface
@�0=@z 6¼ 0. Writing these equations explicitly in Cartesian coordinates,
one gets

�0
@v1x
@t

þ @P1

@x
¼ 0

�0
@v1y
@t

þ @P1

@y
¼ 0

�0
@v1z
@t

þ @P1

@z
þ �1g ¼ 0

@�1
@t

þ v1z
@�0
@z

¼ 0

@v1x
@x

þ
@v1y
@y

þ @v1z
@z

¼ 0

ð11:18Þ

We have five equations with five unknowns, v1x, v1y, v1z, P1 and �1. It is
convenient to solve these equations after a Fourier transform in x–y, or
equivalently the disturbance is analysed by its normal modes, with solutions
depending on x, y and t in the following way:

v1 x; y; z; tð Þ ¼ uðzÞ
P1 x; y; z; tð Þ ¼ �PðzÞ
�1 x; y; z; tð Þ ¼ ��ðzÞ

9>=
>;� expðikxxþ ikyyþ �tÞ ð11:19Þ
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where kx, ky and � are constants. Substituting (11.19) into equations (11.18)
gives

��0ux þ ikx�P ¼ 0

��0uy þ iky�P ¼ 0

��0uz þ
@�P

@z
þ g�� ¼ 0

uz
d�0
dz

þ ��� ¼ 0

ikxux þ ikyuy þ
@uz
@z

¼ 0:

ð11:20Þ

Multiplying the first equation by ikx, the second equation by iky, adding these
two new equations and solving with the last equation, one gets

�PðzÞ ¼ �
�
��0
k2

�
duz
dz

ð11:21Þ

where k is defined by

k2 ¼ k2x þ k2y: ð11:22Þ

Substituting ��ðzÞ from the fourth equation of (11.20), together with �PðzÞ
from (11.21) into the third equation of (11.20), one gets the following
equation for uz:

d

dz

�
�0

duz
dz

�
�
�
k2�0 �

�
k2g

�2

�
d�0
dz

�
uz ¼ 0: ð11:23Þ

If the fluid is confined between two rigid planes at þzB and �zB, then the
boundary conditions are

uzð	zBÞ ¼ 0;

�
duz
dz

�
	 zB

¼ 0: ð11:24Þ

We take in our following analysis zB ! 1. Equation (11.23) is an eigenvalue
equation, with uz the eigenfunction and the term in [� � �] is the eigenvalue.
Therefore, � is fixed for any given values of �0ðzÞ, k and g.

The interface is the surface z ¼ 0, and the density is assumed constant
anywhere except between the fluids at z ¼ 0. Therefore, for z 6¼ 0, equation
(11.23) is given by

z 6¼ 0:
@2uzðzÞ
@z2

� k2uzðzÞ ¼ 0 ð11:25Þ

and its general solution is

z 6¼ 0: uzðzÞ ¼ � expðkzÞ þ � expð�kzÞ: ð11:26Þ
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Since uz vanishes at the boundary, and the velocity is continuous at the
interface (otherwise an infinite acceleration is needed for the fluid to cross
the interface), one has the solution

uzðzÞ ¼
�
w expðþkzÞ for z < 0

w expð�kzÞ for z > 0:
ð11:27Þ

Equation (11.23) is now integrated across the interface from �" toþ", where
" is an infinitesimal element of z. Using (11.27) and denoting the density of
the fluid above and below the interface by �up and �down accordingly (the
direction up and down is determined by the direction of g), the integral givesðþ"

�"

d

dz

�
�0
@uz
@z

�
dz�

ðþ"
�"

k2�0uz dzþ
ðþ"
�"

gk2uz
�2

d�0
dz

dz ¼ 0

lim
"!0

ðþ"
�"

d

dz
FðzÞ dz ¼ lim

"!0
½Fðþ"Þ � Fð�"Þ� � �0F ;

lim
"!0

ðþ"
�"

GðzÞ dz ¼0; GðzÞ continuous at z ¼ 0

) kw

�
�ð�up þ �downÞ þ

gk

�2
ð�up � �downÞ

�
¼ 0:

ð11:28Þ

The first integral gives the first term, the second integral vanishes and the
third integral gives the second term. Using the solution of the last equation
for the instability parameter � and equation (11.19), the following result is
obtained:

�2 ¼ Akg

A �
�up � �down
�up þ �down

vzðx; y; z; tÞ ¼
w exp½iðkxxþ kyyÞ� expðþkzÞ expð�tÞ for z < 0

w exp½iðkxxþ kyyÞ� expð�kzÞ expð�tÞ for z > 0:

( ð11:29Þ

The dimensionless parameter A is called the Atwood number. If �up > �down,
then A is positive and therefore � is a real number. In this case the pertur-
bation grows exponentially and the interface is unstable. On the other
hand, if �up < �down, then A is negative and therefore � is an imaginary
number, causing the interface and the physical quantities (e.g. pressure, vz)
to oscillate with a frequency of ðjAjkgÞ1=2. From the solutions (11.19)
(see in particular (11.29)), one has that the physical variables oscillate in
the x–y plane with a wavelength �, related to the wave number k by

� ¼ 2�

k
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
ð11:30Þ

and the time dependence is given by exp(�t).
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11.3 Ablation-Surface Instability

The ablation-surface instability occurs when a laser is accelerating a solid foil
or shell. In this case a high-pressure low-density plasma region is created
from the ablated material that accelerates the foil, due to the expanding
plasma (the rocket effect). During the acceleration the foil is subject to
Rayleigh–Taylor instabilities since a low-density medium accelerates a
high-density medium (for the high accelerations obtained here, the gravita-
tion is not relevant).

Because energy is deposited at the interface between the foil (with a
density �foil) and the adjacent plasma (with a density �pl), a velocity dis-
continuity is permitted at the interface together with the density jump. It is
assumed that there is a sharp density jump, so that the density is described
by a 	 function:

�0ðzÞ ¼ �pl	ð�zÞ þ �foil	ðzÞ; 	ðzÞ ¼
�
1 for z > 0

0 for z < 0:
ð11:31Þ

In the foil reference frame of coordinates (the foil is at rest in this frame), the
ablatedmaterial moves in the�ẑz direction (ẑz is a unit vector in the z direction)
with velocity vpl:

v0 ¼ �vpl	ð�zÞẑz ¼
��vplẑz for z < 0

0 for z > 0:
ð11:32Þ

The second equations of (11.12) and (11.13), without the gravitational term,
can be combined in the following way:

�0

�
@v1
@t

þ v1 � rv0 þ v0 � rv1

�
¼ �1
�0

rP0 �rP1: ð11:33Þ

These three equations, together with the last two equations of (11.20) (the
incompressibility assumption), are the five equations with the five unknowns
to be solved. Substituting (11.19) into these equations leads, in a similar way
that equation (11.23) was obtained, to the following equation for the velocity
uzðzÞ:

@

@z

�
�0
@uz
@z

�
� k2�0v0z

�

@uz
@z

�
�
k2�0 �

ak2

�2
@�0
@z

þ k2�0
�

@v0z
@z

�
uz ¼ 0 ð11:34Þ

where the acceleration a is defined by

a � �
�
1

�0

�
@P0

@z
: ð11:35Þ

Equation (11.34) is now integrated across the interface from �" toþ", where
" is an infinitesimal element of z. The density and the initial velocity are
described by a 	 function, and the derivative of these terms gives the Dirac
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� function since

d	ðzÞ
dz

¼ �ðzÞ: ð11:36Þ

The integral of the Dirac function over the segment, including the zero of the
argument, is equal to one, while the integral of regular functions and the 	
function from �" to þ", where "! 0, is equal to zero. Therefore, the
integrals of the second and third terms of (11.34) vanish, the integrals of
the first and fourth terms (using (11.27)) are similar to the integrals of
(11.28), and only the integral of the fifth term in (11.34) is new and is
equal toðþ"

�"

k2�0uz
�

@v0z
@z

dz ¼ k2w

�

ðþ"
�"
�0
@v0z
@z

dz ¼ k2w

�

��
�pl þ �foil

2

�
vpl

�
: ð11:37Þ

At the last step we have used the symmetry of � ð�ðzÞ ¼ �ð�zÞÞ and the
identity ðþ"

�"
	ðzÞ�ðzÞ dz ¼ 1

2
ð11:38Þ

that can be easily verified from integrating by parts.
Therefore, the integral of (11.34) over the interface yields (using (11.38)

and the integrals in (11.28))

kw

�
ð�foil þ �plÞ �

ak

�2
ð�foil � �plÞ þ

k

2�
ð�foil þ �plÞvpl

�
¼ 0: ð11:39Þ

Simplifying this equation gives

�2 þ
�
kvpl

2

�
� � akA ¼ 0; A �

�foil � �pl
�foil þ �pl

: ð11:40Þ

The solution of this quadratic equation is

� ¼ �
kvpl

4
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kvpl

4

�2
þ Aka

s

vpl 
 4

ffiffiffiffiffiffi
Aa

k

r
) � �

ffiffiffiffiffiffiffiffiffi
Aka

p
�
kvpl

4
þ � � � :

ð11:41Þ

From this result one can see that the ablation reduces (compare with
equation (11.29) for g ¼ a) the growth rate of the RT instability.

In deriving equation (11.41), many simplifying assumptions have been
made. For example, the incompressibility assumption, the spatial extent
and the density gradient of the plasma were neglected, the plasma heating
was not taken into account, etc.

It is interesting to point out that a detailed numerical simulation of the
ablation instability, taking all the above-mentioned effects into account
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(Takabe et al. 1985) gives a fit described by equation (11.6). In comparison
between this fit and equation (11.41): there are two main differences the
constant 1

4 is changed to about 3 and ua is changed to vpl ððAÞ1=2 � 0:9 is a
good approximation for the plasma–solid interface). While vpl is the
plasma velocity far from the ablation surface, the ua represents the mass
ablation rate per unit area divided by the density of the ablation surface.
Since vpl � ua, the numerical fit (11.6) and equation (11.41) seem not to be
inconsistent. There is, however, a difference between the numerical fit
(11.6) and equation (11.41), since in the above value of � the approximation
kvpl=4 
 ðAkaÞ1=2 has been made, while the numerical fit does not require
this perturbation. Therefore, in analysing equation (11.6) it is permitted to
introduce a cutoff wavenumber kc, defined by

�ðkcÞ ¼ 0 ) kc ¼
�
�

�

�2� a

u2a

�
; �c �

2�

kc
: ð11:42Þ

Equation (11.6) shows that for wavelength � < �c (i.e. k > kc) the ablation is
stable, and only the wavelengths higher than �c contribute to the ablation RT
instability.

11.4 The Magnetic Field Effect

In high-power laser–plasma interactions very strong magnetic fields are
created (see chapter 8). Megagauss magnetic fields (d.c.) were measured for
moderate laser intensities. In this section it is shown that the magnetic field
parallel to the accelerated interface between two fluids, where the heavier
fluid is above the lighter fluid, stabilizes the RT instability.

The acceleration is assumed to be in the z direction, the interface
between the fluids are in the x–y plane z ¼ 0 and the fluids are incompressible
plasmas with zero resistivity (¼ 1/electrical conductivity¼ 1=
E). The linear-
ization procedure, as in equation (11.11), is used in this analysis with a
magnetic field (Gaussian units are used):

B ¼ B0 þ B1; B0 ¼ const:;
jB1j
jB0j


 1: ð11:43Þ

The momentum equation is (see equations (3.10) and (3.11), where the
electric field E is neglected relative to the B field)

�
@v

@t
¼ �rPþ 1

c
ðJ� BÞ ð11:44Þ

where v is the fluid velocity, � and P are density and pressure respectively, J is
the electric current and c is the speed of light. Using the Maxwell equation,

J ¼
�

c

4�

�
r� B: ð11:45Þ
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The linearized momentum equation can be written

�0
@v

@t
¼ �rP1 �

B0

4�
� ðr � B1Þ � g�1ẑz: ð11:46Þ

This equation has to be solved, together with the following linearized
Maxwell equation for zero resistivity (see equation (8.33), with 1=
E ¼ 0):

@B

@t
¼ �cr� E ¼ r� ðv� B0Þ ð11:47Þ

the mass conservation and the incompressibility requirement (equations
(11.16) and (11.17)). In these approximations, the zero divergence of the
magnetic field

r � B1 ¼ 0 ð11:48Þ

is not an independent equation, since it is derived from equation (11.47).
In this problem there are eight independent equations, (11.46), (11.47),

(11.16) and (11.17), with eight unknowns, �1, P1, v and B1. We shall write
explicitly these equations for two cases:

1. The initial magnetic field is perpendicular (vertical) to the interface
between the fluids, B0 ¼ B0ẑz.

2. The initial magnetic field is parallel (horizontal) to the interface between
the fluids, B0 ¼ B0x̂x:

B0 ¼ B0ẑz: �0
@vx
@t

¼ � @P1

@x
þ B0

4�

�
@B1x

@z
� @B1z

@x

�

�0
@vy
@t

¼ � @P1

@y
þ B0

4�

�
@B1y

@z
� @B1z

@y

�

�0
@vz
@t

¼ � @P1

@z
� g�1

@B1

@t
¼ B0

@v

@z
; r � v ¼ 0;

@�1
@t

þ vz
@�0
@z

¼ 0

ð11:49Þ

B0 ¼ B0x̂x: �0
@vx
@t

¼ � @P1

@x

�0
@vy
@t

¼ � @P1

@y
þ B0

4�

�
@B1y

@x
� @B1x

@y

�

�0
@vz
@t

¼ � @P1

@z
þ B0

4�

�
@B1z

@x
� @B1x

@z

�
� g�1

@B1

@t
¼ B0

@v

@x
; r � v ¼ 0;

@�1
@t

þ vz
@�0
@z

¼ 0:

ð11:50Þ
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As in the previous two sections, the following x–y–t dependence of the
variables is assumed:

v ¼ uðzÞ
B1 ¼ �BðzÞ
P1 ¼ �PðzÞ
�1 ¼ ��ðzÞ

9>>>>=
>>>>;

� expðikx þ iky þ �tÞ: ð11:51Þ

Substituting (11.51) into equations (11.49) and (11.50) yields, after algebraic
manipulations, the following differential equations for the two cases under
consideration:

B ¼ B0ẑz:�
d

dz

�
�0

d

dz

�
� B2

0

4��2

�
d2

dz2
� k2

�
d2

dz2

�
uzðzÞ ¼

�
�0k

2 � gk2

�2

�
d�0
dz

��
uzðzÞ:

ð11:52Þ

B ¼ B0x̂x:�
d

dz

�
�0

d

dz

�
þ B2

0k
2
x

4��2

�
d2

dz2
� k2

��
uzðzÞ ¼

�
�0k

2 � gk2

�2

�
d�0
dz

��
uzðzÞ:

ð11:53Þ

In laser–plasma interaction the horizontal magnetic field might play an
important role in stabilizing the RT instabilities. In particular, if the large
d.c. magnetic field (e.g. the vector product of the density gradient and the
temperature gradient; see chapter 8), created in the corona, penetrates
into the ablation surface then the ablation surface instability is significantly
modified. Therefore, only equation (11.53) is further analysed in the follow-
ing part of this section.

For kx ¼ 0, equation (11.53) is identical to equation (11.23), where no
magnetic field is applied. Therefore, the disturbances that are independent
of the coordinate along the direction of B0 (perpendicular to g) are not
affected by the existence of the magnetic field. In this case, B0 does not
contribute to the development of the RT instability. In other words, the
magnetic field in the x direction, which can stabilize the RT instabilities
for wavelengths shorter than a critical value �c, does not stabilize any RT
instability that develops along the y direction.

For kx 6¼ 0. the RT instabilities in the hydromagnetic problem (equation
(11.53)) are not identical to the RT instabilities in the hydrodynamic problem
(equation (11.23)). We solve equation (11.53) for two uniform fluids
separated at the surface z ¼ 0, with a density distribution given by

�ðzÞ ¼ �up	ðzÞ þ �down	ð�zÞ: ð11:54Þ
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At the horizontal boundary z ¼ 0, the following continuity conditions must
be satisfied:

lim
"!0

fuzðþ"Þ ¼ uzð�"Þg

lim
"!0

fBzðþ"Þ ¼ Bzð�"Þg:
ð11:55Þ

The second equation follows from the first equation (or vice versa) by the use
of (11.51) in the fourth equation of (11.50). The physical meaning of the first
equation (11.55) is that there is not an infinite acceleration when a fluid
element crosses the interface, while the second equation describes the fact
that monopoles do not exist (r � B ¼ 0). Using the solution (11.27), which
is also valid in this problem, one gets by integrating equation (11.53) along
the interface (similar to the integrals in the previous two sections):

�2 ¼ gk

�
�up � �down
�up þ �down

� B2
0k

2
x

2�ð�up þ �downÞgk

�
: ð11:56Þ

The angle � between the k vector and the initial magnetic field (x axis), and
the wavelength of a sinusoidal disturbance (a normal mode), are defined by

cos� ¼ kx
k

¼ kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ; � ¼ 2�

k : ð11:57Þ

The stable modes, �2 < 0, are therefore satisfying

� <
B2
0 cos

2 �

g��
� �c; �� � �up � �down : ð11:58Þ

For example, in laser plasma acceleration with g � 1015 cm/s2, magnetic
fields of the order of 10MG, �� � 1 g/cm3 and cos� � 0:5, one gets stable
modes for wavelengths smaller than 0.05 cm, a non-negligible dimension
for high-intensity laser–plasma interactions.

It is interesting to see that if cos�! 0, then the hydromagnetic result
(11.56) goes to the hydrodynamic result (11.29).

We end this section by pointing out that surface tension 
st (dimension
erg/cm2 ¼ dyne/cm) also stabilizes the RT instability (Chandrasekhar 1961).
The hydrodynamic instability in this case gives a similar result to equation
(11.56) with the substitution


st !
B2
0 cos

2 �

2�k
; �2 ¼ gk

�
�up � �down
�up þ �down

� k2
st
gð�up þ �downÞ

�
: ð11:59Þ

11.5 Bubbles from Rayleigh–Taylor Instability

It has been shown in section 11.2 that the amplitude of a sinusoidal per-
turbation increases exponentially with time in the RT instability. When the
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amplitude becomes of the order of the wavelength (>0:1�), then higher
harmonics of the original perturbation appear in the disturbance. The inter-
action between the different modes results in the formation of bubbles, with
the light fluid penetrating into the heavy fluid and spikes of heavy fluid falling
into the light fluid. The full-time development of the RT instability has been
discussed in the literature (Davies and Taylor 1950, Layzer 1955). In this
section the asymptotic steady state of the bubble motion is considered
(Hoffman 1995) using the potential flow theory.

For an incompressible irrotational fluid the flow velocity vðr; tÞ satisfies
the following equations:

r � v ¼ 0; r� v ¼ 0 ð11:60Þ
Using these equations and the identity r� ðr’Þ ¼ 0, one can define a
velocity potential � which obeys the Laplace equation:

r2’ ¼ 0: ð11:61Þ
The Cartesian coordinates are chosen in such a way that the bubble moves in
the z direction and the vector k (kx ¼ k, ky ¼ 0) is chosen in the x direction so
that the y direction can be neglected. The bubble surface motion is analysed
in the bubble centre of mass coordinates, where the Laplace equation takes
the form

@2’

@x2
þ @2’

@z2
¼ 0: ð11:62Þ

The following boundary conditions are appropriate for this problem:

vx

�
x ¼ 	�

2

�
¼ 0; vzðz ¼ þ1Þ ¼ �u : ð11:63Þ

The first equation describes an array of identical moving bubbles with a
period of � ¼ 2�=k, or equivalently one bubble with a radius � moving
between two parallel frictionless walls at x ¼ 	�=2. The second boundary
condition is equivalent to the motion of a bubble with an asymptotic
constant velocity u, or equivalently in the frame of reference of the bubble
the flow is moving at z ¼ infinity with a velocity �u.

The solution of equation (11.62), subject to the boundary conditions
(11.63), is

’ðx; zÞ ¼ �zu� �

2�

X1
n¼1

�
an
n

�
exp

�
� 2�nz

�

�
cos

�
2�nx

�

�

vx ¼ @’

@x
; vy ¼

@’

@y
:

ð11:64Þ

It is convenient at this stage to introduce the concept of streamlines (Courant
and Friedrichs 1948, Landau and Lifshitz 1987). The tangent to a streamline
at any point on this line gives the direction of the velocity at that point as
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determined by the differential equations dx=vx ¼ dy=vy ¼ dz=vz. In steady
flow the streamlines are constant in time and coincide with the trajectories
of the fluid particles. In this case a particle trajectory is given by a constant
value of the stream function  , associated with the velocity potential by

@ 

@x
¼ @’

@z
;

@ 

@z
¼ � @’

@x
: ð11:65Þ

The stream function that satisfies equations (11.64) and (11.65) is given by

 ðx; zÞ ¼ �xu� �

2�

X1
n¼1

�
an
n

�
exp

�
� 2�nz

�

�
sin

�
2�nx

�

�
: ð11:66Þ

At z ¼ þ1 the stream function equals �xu. Since in this model all the
bubbles are identical, it is convenient to choose a trajectory

 ðx; zÞ ¼ 0: ð11:67Þ
Substituting (11.67) into (11.66) yields the equation that describes the surface
of a bubble:

1 ¼ �

2�xu

X1
n¼1

�
an
n

�
exp

�
� 2�nz

�

�
sin

�
2�nx

�

�
: ð11:68Þ

This equation has been solved (Davies and Taylor 1950) by using only the
first term in the potential and in the streaming functions, i.e. an 6¼ 0 only
for n ¼ 1. Under this assumption the fluid flow velocity is

vx ¼ a1 exp

�
� 2�z

�

�
sin

�
2�x

�

�

vz ¼ �uþ a1 exp

�
� 2�z

�

�
cos

�
2�x

�

� ð11:69Þ

and the surface of the bubble is described by

a1 exp

�
� 2�z

�

�
sin

�
2�x

�

�
¼ 2�xu

�
: ð11:70Þ

Choosing the coordinates in such a way that for x ¼ 0 the peak of the bubble
is at z ¼ 0, then one has to solve equations (11.69) and (11.70) for

a1 ¼ u ð11:71Þ
in order to find the asymptotic velocity u.

For a steady flow ð@v=@t ¼ 0), like the case under consideration, the
momentum equation yields the famous Bernoulli law along a streamline:

1

2
v2 þ P

�
þ gz ¼ const: ð11:72Þ

In the present model it is assumed that the Atwood number A � 1, i.e. the
upper fluid has a density much larger than the lower fluid. Therefore, it is
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conceivable to assume a constant pressure within the lower density bubble at
its border with the heavy fluid. On the other hand, the high-density fluid is in
equilibrium with the bubble, and combining this with the assumption of
constant density (incompressible fluid), one can rewrite Bernoulli’s equation:

0 ¼ 1
2 ðv

2
x þ v2yÞ þ gz ð11:73Þ

where the constant has been taken at zero since the peak at z ¼ 0 of the
bubble is a stagnation point with vx ¼ vy ¼ 0. Substituting (11.69) and
(11.71), into (11.73) one gets

1þ exp

�
� 4�z

�

�
� 2 exp

�
� 2�z

�

�
cos

�
2�x

�

�
þ 2gz

u2
¼ 0: ð11:74Þ

One has to solve the momentum equation, as expressed in equation (11.74),
together with the bubble surface equation (11.70) (with a1 ¼ u), yielding the
following equation for x:

�2 tan � � 2� sin2 � þ tan � sin2 � þ
�
g�

�u2

�
tan � sin2 � ln

�
sin �

�

�
¼ 0

� � 2�x

�
:

ð11:75Þ

Except for � ¼ 0 (i.e. x ¼ 0), this equation has only one solution for a given
value of g�=u2. In order to get the more general solution for all points on
the bubble surface, one has to take into account the full expansions (or
more terms) of equations (11.64) and (11.68). However, u can be obtained
to a good approximation by solving equation (11.75) in the neighbourhood
of x ¼ 0 for different values of g, � and u. For this purpose this equation is
expanded in a series of �, yielding the following equation to the lowest relevant
order (�5):

�5
�
1� g�

6�u2

�
¼ 0 ð11:76Þ

with the following solution, for the asymptotic velocity of the bubble:

u ¼
ffiffiffiffiffiffi
g�

6�

r
� 0:2304

ffiffiffiffiffiffi
g�

p
: ð11:77Þ

As explained in section 11.1, equations (11.2), (11.3) and (11.4), this result is
consistent with balancing the buoyancy force and the drag force acting on a
rising bubble.

11.6 Richtmyer–Meshkov Instability

The Richtmyer–Meshkov (RM) instability is named after Robert D.
Richtmyer, who suggested and also developed the theory of the instability,

272 Hydrodynamic Instabilities



and E. E. Meshkov, who proved experimentally the existence of this insta-
bility. The RM instability describes the behaviour of the interface between
two fluids or gases, traversed by a shock wave. This interface is unstable
when the shock wave crosses from the lighter to the heavier media and it is
also unstable when the shock wave passes in the opposite direction. A
schematic presentation of RM instability is given in figure 11.2. The shock
wave imparts an impulsive acceleration to the interface, and as a result an
interface disturbance grows initially linearly with time, it saturates, and it
can develop into bubbles and spikes like in the RT instability.

We analyse two incompressible fluids with a disturbance of the interface
given by

zðx; tÞ ¼ �ðtÞ expðikxÞ; k� 
 1 ð11:78Þ

where the real part of the right-hand side (i.e. cos kx) is taken to describe the
real z values. If the system is accelerated in the z direction with an accelera-
tion gðtÞ, then the amplitude of the interface disturbance satisfies the
equation:

d2�ðtÞ
dt2

¼ kgðtÞA�ðtÞ; A �
�up � �down
�up þ �down

: ð11:79Þ

This equation is easily obtained from equations (11.29) in the two-dimensional
space x–z. The fluid flow velocity solution derived in (11.29) satisfies

@2vz
@t2

¼ �2vz; �2 ¼ kgA ð11:80Þ

and therefore, if the displacement �ðtÞ is defined by

@�

@t
¼ vz ð11:81Þ

then equation (11.80) implies the validity of equation (11.79).
Denoting byU the increment of the velocity of an instantaneous impulse

at t ¼ 0,

gðtÞ ¼ U �ðtÞ )
ð
gðtÞ dt ¼ U ð11:82Þ

where �ðtÞ is the Dirac delta function, then equation (11.79) can be integrated
to give

before impulse ðt < 0Þ: � ¼ �0;
d�

dt
¼ 0

immediately after impulse: � ¼ �0;
d�

dt
¼ kUA�0:

ð11:83Þ

As can be seen from this equation, after the impulse the amplitude � grows at
a constant rate.
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One of the basic assumptions for the correctness of (11.79) is that the
medium is incompressible. For an impulsive acceleration, such as induced
by a shock wave, this assumption is no longer valid and equation (11.79)
cannot be used.

Following Richtmyer, we analyse the interface between two fluids (or
gases) when a shock wave passes across a disturbed interface from the less
dense to a denser medium. As described in figure 11.2, before and after the
impulse, a planar shock wave passes a corrugated interface that causes the
transmitted and the reflected shocks to also have corrugated surfaces.
Before the arrival of the shock the medium is assumed to be at rest. Further-
more, the shock pressure behind the incident shock is assumed constant. In
table 11.1 the notation is summarized for the fluid variables, described in
figure 11.2. The notation of table 11.1 is given for weak shock waves, where

�V

Vj


 1; j ¼ 1; 2;
�P

Pj


 1; j ¼ 1; 2 ð11:84Þ

and terms of the second order and higher in �P and �V are neglected. The
fluid velocities are given in the frame of reference of the moving interface
(after the shock wave has crossed the interface). In this system the mean
position of the interface is z ¼ 0, and the coordinates of the surfaces (1)
between the fluids (the interface), (2) the transmitted shock wave and (3)
the reflected shock wave are

interface: z ¼ �0ðtÞ expðikxÞ

transmitted shock: z ¼ �w1tþ �1ðtÞ expðikxÞ

reflected shock: z ¼ w2tþ �2ðtÞ expðikxÞ

ð11:85Þ

where w1 and w2 are the shock wave velocities in the interface frame of
reference.

Table 11.1. The notation for the variables described in figure 11.2, in the case of weak

shock waves: velocity v ¼ ðvx; vzÞ, specific volume V ¼ 1=� where � is the

fluid density, and pressure P. Note that P1 ¼ P2.

The variable Region 0

(heavy

fluid)

Region 1

(heavy fluid)

Region 2

(light fluid)

Region 3

(light fluid)

Velocity

vxðx; z; tÞ
0 u1;xðz; tÞ expðikxÞ u1;xðz; tÞ expðikxÞ

Velocity

vzðx; z; tÞ
u0 > 0 u1;zðz; tÞ expðikxÞ u1;zðz; tÞ expðikxÞ u3 < 0

Specific volume

Vðx; z; tÞ ¼ 1=�

V0 V1 þ �Vðz; tÞ expðikxÞ V2 þ �Vðz; tÞ expðikxÞ V3

Pressure Pðx; z; tÞ P0 P1 þ �Pðz; tÞ expðikxÞ P2 þ �Pðz; tÞ expðikxÞ P3
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Since we are using the linear theory, one can take exp(ikx) and
�i exp(ikx) for cos kx and sin kx respectively. In general, complex functions
are used with the meaning that at the last step the real values should be taken.

11.6.1 The differential equation for the pressure in regions 1 and 2

This analysis is a first-order perturbation theory with the small variables as
given by (11.84) and also u1;z 
 w1 and w2, and �jk (for j ¼ 0; 1; 2)
 1.
For a weak shock wave (Zeldovich and Raizer 1966), the first-order perturba-
tion theory gives the following relation between the pressure increase �P and
the specific volume change �V (note that the notation of table 11.1 is used):

�Pðz; tÞ ¼
�
@P

@V

�
S

�Vðz; tÞ ¼ �
�
c21
V2

1

�
�Vðz; tÞ ð11:86Þ

where c1 is the speed of sound in the undisturbed medium of region 1 (the
heavy fluid). This equation can be considered as the equation of state in
our approximation.

The mass conservation, the first of equations (11.14), can be written as

@

@t

�
1

V1 þ �V

�
þ
�

1

V1 þ �V

�
r � vðx; z; tÞ ¼ 0

) V1

�
iku1;x þ

@u1;z
@z

�
¼ @ð�VÞ

@t
¼ �

�
V2

1

c21

�
@ð�PÞ
@t

ð11:87Þ

where at the last step equation (11.86) has been used.
The following two equations are obtained from the momentum con-

servation:�
1

V1 þ �V

�
@vðx; z; tÞ

@t
¼ �r½P1 þ �Pðz; tÞ expðikxÞ�

)

1

V1

@u1;z
@t

¼ � @ð�PÞ
@z

1

V1

@u1;x
@t

¼ �ik�P:

8>>><
>>>:

ð11:88Þ

From equations (11.87) (one equation) and (11.88) (two equations), the
following wave equation is derived for �Pðz; tÞ in region 1 (see figure 11.2),
and similarly the second wave equation is obtained in region 2 with the
substitution c1 ! c2:

@2

@t2
ð�PÞ � c21

�
@2

@z2
� k2

�
ð�PÞ ¼ 0

@2

@t2
ð�PÞ � c22

�
@2

@z2
� k2

�
ð�PÞ ¼ 0:

ð11:89Þ

Richtmyer–Meshkov Instability 275



11.6.2 The boundary conditions on the interface

In order to solve equations (11.89) in regions 1 and 2, the equations at the
boundaries of these domains have to be defined. Region 1 is defined between
the interface (between the fluids) and the transmitted shock surfaces, while
region 2 is between the interface and the reflected shock. The normal fluid
velocities from both regions are equal at the interface, and therefore one can
also write the acceleration continuity on the interface. Using the interface
equation (11.85) and the momentum equation (11.88), the following boundary
equations are derived by the requirement that the accelerations in the
z direction, @u1;z=@t and @u2;z=@t are continuous:

d2�0ðtÞ
dt2

¼
�
�V1

�
@ð�PÞ
@z

��
z¼�0�

V1

�
@ð�PÞ
@z

��
z¼�0

¼
�
V2

�
@ð�PÞ
@z

��
z¼þ0

:

ð11:90Þ

The second equation is the needed boundary (at the interface) for the partial
differential equation (11.89). The main objective of this problem is the study
of the RM instability, and for this purpose the first of equations (11.90) gives
the required information, i.e. the calculation of �0(t).

In order to complete this problem the boundary conditions at the shock-
wave surfaces are also needed.

11.6.3 The boundary conditions at the shock-wave surfaces

First, we use the Hugoniot relations (equations (10.36)) on the boundary of
regions 2 and 3, at the reflected shock wave. One has to note that the initial
conditions for the Hugoniot equations are those obtained at the final stage
after the crossing of the first shock wave. In other words, the reflected
shock enters a shocked medium. Moreover, area 3 has also been shocked
before the present analysis is considered. However, for this domain the
simple Hugoniot relations can be used, and P3 and V3 are easily calculated
from the initial conditions of region 4, as shown in figure 11.2(a).

Therefore, the first and the fourth equations of (10.36) on the boundary
of regions 2 and 3 can be written in the following way:

w2 þ _��2ðtÞ expðikxÞ � u1;zðw2t; tÞ expðikxÞ
V2 þ �Vðw2t; tÞ expðikxÞ

¼ w2 þ _��2ðtÞ expðikxÞ � u3
V3

w2 þ _��2ðtÞ expðikxÞ � u3
V3

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ �Pðw2t; tÞ expðikxÞ � P3

V3 � V2 � �Vðw2t; tÞ expðikxÞ

s
ð11:91Þ
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where the dot means time derivative and P2 = P1. The Hugoniot relations
in the form of equations (10.36) are correct only for the velocity compo-
nents perpendicular to the shock surface. Since the shock front is not a
plane, one has to multiply the fluid velocities in these equations with the
cosines of the angle between the velocity and the normal to the surface.
However, since the angles are first-order variables, these cosines differ
from unity by second-order quantities. Therefore, equations (11.91) are
correct only to first order in perturbation theory, and by expanding these
equations the following zeroth- and first-order equations are obtained
respectively:

w2

V2

¼ w2 � u3
V3

;
w2

V2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � P3

V3 � V2

s
ðnote:P 2 ¼ P1Þ ð11:92Þ

1

V2

�
d�2
dt

� u1;zðw2t; tÞ
�
� w2

V2
2

�Vðw2t; tÞ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � P3

V3 � V2

s �
�Pðw2t; tÞ
P2 � P3

þ �Vðw2t; tÞ
V3 � V2

�

1

V3

d�2
dt

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � P3

V3 � V2

s �
�Pðw2t; tÞ
P2 � P3

þ �Vðw2t; tÞ
V3 � V2

�
:

ð11:93Þ

Inspecting the zeroth-order equations (11.92), one can easily recognize the
Hugoniot jump conditions for planar one-dimensional waves. It turns out
that our problem to zeroth order can be described by planar waves. The
corrugation of the surfaces (interface and the shock waves) are described
in this analysis by the first-order terms. Using the property that the Hugoniot
pressure derivative with respect to the specific volume equals the isentrope
derivative at the initial point on the Hugoniot (equation (10.99)), the first-
order expansion of the Hugoniot pressure can be described by

�Pðw2t; tÞ � �P2ðtÞ ¼
�
d�P2

dV

�
V2

�V ¼
�
dPS

dV

�
V2

�V

¼ � c22�V

ðV2 þ �VÞ2
� c22�V

V2
2

ð11:94Þ

where PS is the isentropic pressure. Substituting this result into the second
equation of (11.93) yields the following boundary condition:

d�2ðtÞ
dt

¼ 1

2

�
V3V2

V3 � V2

��
c22 � w2

2

c22w2

�
�P2ðtÞ

�P2ðtÞ � �Pðz ¼ w2t; tÞ:
ð11:95Þ
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A similar procedure at the transmitted shock-wave surface yields a similar
boundary relation:

d�1ðtÞ
dt

¼ 1

2

�
V0V1

V0 � V1

��
c21 � w2

1

c21w1

�
�P1ðtÞ

�P1ðtÞ � �Pðz ¼ �w1t; tÞ:
ð11:96Þ

A second boundary value equation for the reflected shock-wave surface is
obtained by the use of the first equation of (11.93). Substituting into this equa-
tion the relation between �P and �V at the shock front (equation (11.94)), and
comparing the obtained value of d�2=dt with that derived in (11.95), gives

u1;zðw2t; tÞ ¼
1

2
V2

�
c22 þ w2

2

c22w2

�
�P2ðtÞ: ð11:97Þ

By multiplying both sides of this equation with the total derivative, and
describing the change in time of a moving fluid element on the shock surface,
one gets�
@

@t
þ w2

@

@z

�
u1;zðz ¼ w2t; tÞ ¼

1

2
V2

�
c22 þ w2

2

c22w2

��
@

@t
þ w2

@

@z

�
�Pðz ¼ w2t; tÞ:

ð11:98Þ

At this stage the mass and momentum equations (equations (11.87) and
(11.88)) are necessary. However, before using these equations one has to
calculate the x derivative of u1;x.

The component of the fluid velocity v, parallel to the shock surface, is
continuous across this surface. Therefore, one can write to the first order in
our perturbation theory (see figure 11.2(c)) (note u1;x ¼ u2;x and u1;z ¼ u2;z):

u1;xðw2t; tÞ expðikxÞ ¼ u3 tan�

tan� ¼ @z

@x
¼ @

@x
½w2tþ �2ðtÞ expðikxÞ� ¼ ik�2ðtÞ expðikxÞ

) ikw2u1;xðz ¼ w2t; tÞ ¼ �k2w2u3�2ðtÞ:

ð11:99Þ

Adding this result to equation (11.98) and using the following mass and
momentum equations for region 2 (similar to equations (11.87) and (11.88)):

@u1;z
@z

þ iku1;x ¼ �V2

c22

@�P

@t
; �ik�P ¼ 1

V2

@u1;x
@t

ð11:100Þ

one gets the following second boundary condition on the surface of the
reflected shock wave:�

3

2
w2 þ

c22
2w2

�
d

dt
ð�P2Þ ¼ ðw2

2 � c22Þ
@

@z
½�Pðz ¼ w2t; tÞ� þ

k2c22w2u3
V2

�2ðtÞ:

ð11:101Þ
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A similar second boundary condition is given for the transmitted shock-wave
surface:
�
3

2
w1 þ

c21
2w1

�
d

dt
ð�P1Þ ¼ � ðw2

1 � c21Þ
@

@z
½�Pðz ¼ �w1t; tÞ� þ

k2c21w1u0
V1

�1ðtÞ:

ð11:102Þ
The boundary conditions given in equations (11.101) and (11.102) describe
the change in time of the shock-wave pressures. The first term on the right-
hand side of these equations is the pressure gradient contribution behind
the shock. The second term on the right-hand side of these equations
describes the convergence or divergence of the shock-wave propagation
due to the corrugation of the shock surfaces (see figure 11.2(c)).

In this analysis of the RM instability, we have discussed only the linear
development of the flow using weak shock waves. The differential equations
(11.89) are subject to the boundary equations described by equations (11.90),
(11.95), (11.96), (11.101) and (11.102). It is evident that a proper solution
of this problem requires the help of a computer. However, the solution of the
complete nonlinear problem describing the full development of the RM
instability needs two- and three-dimensional sophisticated numerical analysis.

11.7 Kelvin–Helmholtz Instability

The Kelvin–Helmholtz (KH) instability occurs (Kelvin (1910), Helmholtz
(1881)) when two different layers of fluids are in relative motion, such as
the generation of water waves by wind blowing over the surface of the
water (see figure 11.3).

In laser–plasma interactions the KH instability may occur during the later
stages of RT and RM instabilities, during the motion of the bubbles and the
spikes. For example, the low-density bubbles move relative to the heavy
fluid background with appropriate conditions to create KH instabilities.

The motion of an incompressible, inviscid (no viscosity) fluid streaming
in the horizontal direction is now considered. The surface tension is neglected
in this analysis, although it is straightforward to include this stabilizing effect.
It is assumed that the streaming takes place in the x direction with a velocity
U, where U is an arbitrary function of z. The fluid is accelerated in the
z direction, or equivalently it moves in a potential described by the accelera-
tion g (in the �z direction). First-order perturbation is assumed with the
following notation (see equation (11.11)):

1. The flow velocity is vðx; y; z; tÞ þUðzÞx̂x, where the velocity components
of v ¼ ðvx; vy; vzÞ are first-order terms ðv0 ¼ 0 and v1 is denoted here by v).

2. The fluid density is �ðx; y; z; tÞ ¼ �0ðzÞ þ �1ðx; y; z; tÞ, where �1 is a first-
order term.
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3. The pressure is P ¼ P0 þ P1ðx; y; z; tÞ, with P1 a first-order term.

The momentum conservation, mass conservation and the incompressible
fluid assumption give five equations similar to those in (11.18). The following
equations are derived by substituting v by vþU in the conservation
equations (11.9) and using a similar first-order perturbation theory, as has
been done for example in section 11.2:

�0
@vx
@t

þ �0U
@vx
@x

þ �0vz
dU

dz
þ @P1

@x
¼ 0

�0
@vy
@t

þ �0U
@vy
@x

þ @P1

@y
¼ 0

�0
@vz
@t

þ �0U
@vz
@x

þ @P1

@z
þ g�1 ¼ 0

@�1
@t

þU
@�1
@x

þ vz
d�0
dz

¼ 0

@vx
@x

þ
@vy
@y

þ @vz
@z

¼ 0:

ð11:103Þ

We assume that the interface between the fluids is initially at z ¼ 0, the
disturbance �ðx; y; tÞ is in the z direction (also a first order perturbation
term) and it obeys the following equation:

@�

@t
þUðz ¼ �Þ @�

@x
¼ vzðz ¼ �Þ: ð11:104Þ

Figure 11.3. Two fluids A and B, with densities �A and �B, moving with different horizon-

tal velocities UA andUB. The interface between the two media develops a disturbance with

a wave number k ¼ 2�=�.
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This equation describes the velocity of the disturbance normal to the interface.
Analysing the disturbance by its normal modes, one can look for the following
solutions (note that here the time dependence is exp(i�t), while in (11.19) it is
exp(�t)):

vðx; y; z; tÞ ¼ uðzÞ
�1ðx; y; z; tÞ ¼ ��ðzÞ
P1ðx; y; z; tÞ ¼ �PðzÞ
�ðx; y; tÞ ¼ �0

9>>>>=
>>>>;

� exp½iðkxxþ kyyþ �tÞ�: ð11:105Þ

Substituting (11.105) into equations (11.103) and (11.104), one gets accordingly

i�0ð�þ kxUÞux þ �0

�
dU

dz

�
uz þ ikx�P ¼ 0

i�0ð�þ kxUÞuy þ iky�P ¼ 0

i�0ð�þ kxUÞuz þ
�
d�P

dz

�
þ g�� ¼ 0

ið�þ kxUÞ��þ uz

�
d�0
dz

�
¼ 0

iðkxxþ kyyÞ þ
�
duz
dz

�
¼ 0

ð11:106Þ

ið�þ kxU�Þ�0 ¼ u�; U� � Uðz ¼ �Þ; u� � uðz ¼ �Þ: ð11:107Þ

Similar to the algebra used to solve equations (11.20), the following differen-
tial equation is obtained for uzðzÞ by solving equations (11.106):

d

dz

��
�0ð�þ kxUÞ d

dz

�
�
�
�0kx

�
dU

dz

���
uzðzÞ

¼
�
k2�0ð�þ kxUÞ þ gk2

ð�þ kxUÞ

�
d�0
dz

��
uzðzÞ: ð11:108Þ

This differential equation is subject to boundary conditions such as that
given in (11.24). Furthermore, from equation (11.107) it follows that

uzðz ¼ � þ 0Þ
�þ kxUðz ¼ � þ 0Þ ¼

uzðz ¼ � � 0Þ
�þ kxUðz ¼ � � 0Þ ð11:109Þ

i.e. if one approaches the interface from below or from above, the same value
of �0 is obtained, or in other words, ifU is continuous at the interface then uz
is also continuous there; however, if U is discontinuous, then the normal
displacement on the interface at any point on the surface should be uniquely
defined.

At this stage the ‘jump’ condition on the interface between the fluids is
defined. For this purpose one has to integrate equation (11.108) across the
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interface from � � " to � þ " in the limit that " goes to zero. As in (11.28), we
define

lim
"!0

ð�þ "
�� "

d

dz
FðzÞ dz ¼ lim

"!0
½Fð� þ "Þ � Fð� � "Þ� � ��F

lim
"!0

ð�þ "
�� "

GðzÞ dz ¼ 0; GðzÞ continuous at z ¼ �

lim
"!0

ð�þ "
�� "

�ðz� �Þ dz ¼1:

ð11:110Þ

Integrating (11.108) and using (11.109) and (11.110), the following boundary
condition (or as occasionally it is called, ‘the jump’ equation) is satisfied at
the interface between the fluids:

��

�
�0ð�þ kxUÞ duz

dz
� �0kx

�
dU

dz

�
uz

�
¼ gk2

�
uz

�þ kxU

�
z¼ �

���0: ð11:111Þ

We calculate explicitly this equation for the following problem. Two uniform
fluids, separated at the surface z ¼ 0, have densities �A and �B (see figure
11.3). The upper fluid has a density �A smaller than the lower fluid �B, so
that in this case we do not analyse the RT instability. Regarding the stream-
ing, it is assumed that the upper fluid and the lower fluid stream have
constant velocities UA and UB respectively.

Equation (11.108) for constant �0 and U, i.e. anywhere except at the
interface between the fluids, reduces to

�
d2

dz2
� k2

�
uzðzÞ ¼ 0: ð11:112Þ

The general solution of this equation is a linear combination of exp(kz)
and exp(�kz). Taking into account that uz vanishes at 	1, and at z ¼ 0
equation (11.109) must be satisfied, one obtains the solution

uzðzÞ ¼
wð�þ kxUBÞ expðkzÞ for z < 0

wð�þ kxUAÞ expð�kzÞ for z > 0:

(
ð11:113Þ

Using (11.110), the jump relations relevant for this problem are

�0

�
�0ð�þ kxUÞ duz

dz

�
¼ kw½�Að�þ kxUAÞ2 þ �Bð�þ kxUBÞ2�

�0

�
�0kx

�
dU

dz

�
uz

�
¼ 0

gk2
�

uz
�þ kxU

�
�0ð�0Þ ¼ wgk2ð�A � �BÞ:

ð11:114Þ
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Substituting (11.114) into (11.111) yields the following quadratic equation
in �:

�2 þ 2kx
�A þ �B

ð�AUA þ �BUBÞ�

þ
�

k2x
�A þ �B

ð�AU2
A þ �BU

2
BÞ �

gk

�A þ �B
ð�B � �AÞ

�
ð11:115Þ

with the solutions

� ¼ � kx
�A þ �B

ð�AUA þ �BUBÞ 	
�
gkð�B � �AÞ
�A þ �B

� k2x�A�BðUB �UAÞ2

ð�A þ �BÞ2
�1=2

:

ð11:116Þ

If the perturbations are perpendicular to the streaming, then the flow is stable:

kx ¼ 0: � ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk

�
�B � �A
�B þ �A

�s
: ð11:117Þ

Since �B > �A, the solution of all perturbations behave like exp(i�t), � real,
and therefore no instability.

If the perturbations are in any direction other than normal to the
streaming, then instability occurs. Defining the angle 	 between the vector
k and the x axis, or more generally between the vectors U and k,

cos 	 ¼ kx
k

¼ k �U
kU

ð11:118Þ

then instability occurs if � in equation (11.116) is complex, so that exp(i�t)
increases exponentially. Instability exists when

kðUB �UAÞ2 cos2 	 > g

�
�2B � �2A
�B�A

�
ð11:119Þ

or equivalently the instability develops for any wave number k satisfying

k > kmin � g

�
�2B � �2A
�B�A

�
1

ðUB �UAÞ2 cos2 	
: ð11:120Þ

It is interesting to point out that the KH instability occurs for any finite value
of velocity jump across the interface, UB �UA, assuming that 	 is not 908.
The stability of any static configuration becomes KH, unstable in the
presence of a streaming difference (sharp gradient) across the interface of
two fluids.
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Appendix A

Maxwell Equations

It is here assumed that Maxwell equations are known and widely used, and
therefore we only quote the differential equations (Jackson 1975, Knoepfel
2000) for completeness and for the use of notation. Both familiar systems
of units, the m.k.s. (known as the SI units) and the c.g.s. (Gaussian units),
are summarized. A prerequisite in plasma physics is to know and master
both systems of units. For example, one of the most useful physical quantities
is the laser flux energy IL, which is usually given in mixed units [watt/cm2]. In
this book both systems of units are used in addition to the practical units,
such as electronvolt (eV) for energy or temperature.

A.1 SI (m.k.s.) Units (International System of Units)

Maxwell equations are

r� E ¼ � @B

@t
; r�H ¼ Jþ @D

@t

r �D ¼ �e; r � B ¼ 0:

ðA:1Þ

The terminology for the five vectors and the one scalar in these Maxwell
equations follow:

E is the electric field strength or electric intensity: units [Volt/m];
D is the electric flux density or electric induction or displacement: units

[Coulomb/m2];
H is the magnetic field strength or magnetic intensity: units [Ampere/m];
B is the magnetic flux density or magnetic induction: units [Tesla];
J is the the free current density: units [Ampere/m2]; and
�e is the free electric charge density: units [Coulomb/m3].

Equations (A.1) (or in their integral form) are sometimes referred to by the
names of the scientists who contributed a major part in the development of
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these laws of nature. The first equation,Faraday’s law; the second equation, the
Ampere–Maxwell law; the third equation isGauss’s law, sometimes referred to
as the Poisson equation; the fourth equation is the Gauss–Faraday law, which
implies the absence of magnetic monopoles. In these equations J and �e are
considered as the sources of the electromagnetic fields E, D, H and B. From
the above Maxwell equations the electric charge conservation follows:

@�e
@t

þr � J ¼ 0: ðA:2Þ

In a plasma with ions and electrons,

�e ¼ ene þ
X
k

qknk; J ¼ eneve þ
X
k

qknkvk: ðA:3Þ

The different species of the ions are denoted by the index k, the charges and
densities of the ions are qk and nk respectively, and vk is their average velocities.
e, ne and ve represent the charge, the density and the average velocity of the
electrons respectively.

The Lorentz law gives the electromagnetic force applied on a particle
with charge q:

F ¼ qðEþ v� BÞ: ðA:4Þ
In order to solve the Maxwell equations in a medium with sources, three
more equations are required. These equations, known as the constitutive
equations, are

D ¼ ~""E ¼ "0"E ¼ "0Eþ P ðA:5Þ
B ¼ ~��H ¼ �0�H ¼ �0ðHþMÞ ðA:6Þ

J ¼ �EE: ðA:7Þ

The last equation isOhm’s law. "0" is the dielectric constant (sometimes called
permittivity), "0 ¼ 8:8542� 10�12 [Farad/m], and is the dielectric constant in
vacuum. �0� is the magnetic permeability, �0 ¼ 4� 10�7 [Henry/m]. " and �
are characterized by the medium and in general they can be functions of time,
space, temperature, density, magnetic field, etc. For a non-isotropic medium
" and � become tensors, and the problem might be quite complicated. P and
M, known as the electric and magnetic polarization vectors respectively, are
two complementary convenient vectors to describe a medium.

The electromagnetic energy QEM in a volume � is given by

QEM ¼
ð
�
qEM dV ¼ 1

2

ð
�
ðE �DþH � BÞ dV ½Joules�: ðA:8Þ

The electromagnetic energy density qEM [Joules/m3] and the flux of the electro-
magnetic energy (the Poynting vector) IL in [Joules/(m2 s)] are defined by

qEM ¼ 1
2 ðE �DþH � BÞ; IL ¼ E�H: ðA:9Þ
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The following relation, also known as the Poynting theorem, gives the energy
conservation for the electromagnetic field for a medium with continuous
distribution of charge and current:

@qEM
@t

þr � IL ¼ �J � E: ðA:10Þ

This equation, derived from the Maxwell equations, is in the form of a
continuity equation or a conservation law. The right-hand side of this
equation is the total rate of doing work (per unit volume) by the electro-
magnetic fields. This term is easily understood by considering a particle with
charge e moving with a velocity v. The rate of doing work by the fields E

and B is ev � E. The magnetic field does not do work since B is perpendicular
to v. For a continuous charge distribution the ev � E changes into J � E.

A.2 Gaussian (c.g.s.) Units

The Maxwell equations are given below in Gaussian units. The following
conversion from SI to Gaussian units is made in writing the equations of
electromagnetism:

SI ! Gaussian

E ! E "0 ! 1=ð4�Þ

D ! D=ð4�Þ �0 ! 4�=c2

H ! cH=ð4�Þ �e ! �e

B ! B=c J ! J

ðA:11Þ

where c is the speed of light and the Maxwell equations are

r� E ¼ � 1

c

@B

@t
; r�H ¼ 4�

c
Jþ 1

c

@D

@t

r �D ¼ 4��e; r � B ¼ 0:

ðA:12Þ

The Lorentz force is

F ¼ q

�
Eþ v� B

c

�
: ðA:13Þ

The electromagnetic energydensity qEM and thePoynting vector IL are given by

qEM ¼ 1

8�
ðE �DþH � BÞ; IL ¼ c

4�
ðE�HÞ ðA:14Þ

and with these definitions the Poynting theorem is identical to (A.10).
A useful conversion table between the SI units and the Gaussian units

are given in table A.1.
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A.3 The Wave Equation

UsingMaxwell equations, (A.1) and (A.12), for constant " and �, one gets the
following wave equations for E and H:

SI units

r2
E� "�

c2
@2E

@t2
�rðr � EÞ ¼ �0�

@J

@t

r2
H� "�

c2
@2H

@t2
¼ r� J

ðA:15aÞ

Gaussian units

r2
E� "�

c2
@2E

@t2
�rðr � EÞ ¼ 4��

c2
@J

@t

r2
H� "�

c2
@2H

@t2
¼ 4�

c
r� J:

ðA:15bÞ

In deriving these equations the speed of light c was related to "0 and �0 by

c2 ¼ 1

"0�0
: ðA:16Þ

Note that " and � are dimensionless.

Table A.1. Conversion between the SI and Gaussian units for the physical quantities

related to the Maxwell equations.

Physical quantity SI units

Conversion factor (CF),

1 SI¼ (CF) Gaussian Gaussian units

Electric field, E Volt/m 10�4=3 statvolt/cm

Displacement, D Coulomb/m2 12� 105 statcoulomb/cm2

Magnetic intensity, H Ampere/m 4� 10�3 Oersted

Magnetic induction, B Tesla 104 Gauss

Charge, q Coulomb 3� 109 statcoulomb

Charge density, �e Coulomb/m3 3� 103 statcoulomb/cm3

Current density, J Ampere/m2 3� 105 statampere/cm2

Energy, Q Joule 107 erg

Energy flux, IL Watt/m2 103 erg/(cm2 s)

Energy density, qEM Joule/m3 10 erg/cm3

Permeability, ��0
(� dimensionless)

Henry/m 107=ð4�Þ –

Permittivity, ""0
(" dimensionless)

Farad/m 36� 109 –
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A.4 Vector and Scalar Potentials

In some problems it is convenient to introduce a vector potential A and a
scalar potential � defined by

Gaussian units SI units

B ¼ r� A B ¼ r� A

E ¼ �r�� 1

c

@A

@t
E ¼ �r�� @A

@t
:

ðA:17Þ

The first and the fourth of Maxwell’s equations (A.1) and (A.12) (i.e. the
homogeneous equations) are satisfied identically, so that the potentials
are determined by the other two (the inhomogeneous) equations. The
inhomogeneous wave equations take the form

Gaussian units SI units

r2
A� 1

c2
@2A

@t2
¼ � 4�J

c
r2

A� 1

c2
@2A

@t2
¼ ��0J

r2�� 1

c2
@2�

@t2
¼ �4��e r2�� 1

c2
@2�

@t2
¼ � �e

"0
:

ðA:18Þ

While the Maxwell equations are eight coupled first-order differential
equations relating the electric and the magnetic fields, the ‘potential equations’
are four second-order differential equations coupled via the electromagnetic
sources J and �e.

The electromagnetic potentials are arbitrary up to a gauge. For example,
one can change the potentials by the following transformation without
changing the electric and magnetic fields (Gaussian units):

A ! A
� ¼ Aþr�; � ! �� ¼ �� 1

c

@�

@t
ðA:19Þ

where � is an arbitrary function of space and time. The electromagnetic fields,
as defined by equations (A.17) (Gaussian units), are unchanged by the trans-
formation (A.19). The meaning of this transformation is that we can choose
the electromagnetic potentials A and � (without changing E and B) in such
a way that the following equation, called the Lorentz gauge, is satisfied:

Gaussian units SI units

r � Aþ 1

c

@�

@t
¼ 0 r � Aþ 1

c2
@�

@t
¼ 0:

ðA:20Þ

Another useful gauge is the Coulomb gauge (in Gaussian and SI units):

r � A ¼ 0: ðA:21Þ
In Coulomb gauge the scalar potential satisfies the Poisson equation:

r2� ¼ �4��e (Gaussian units); r2� ¼ � �e
"0

(SI units): ðA:22Þ
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The solution of (A.22) is (Gaussian units)

�ðr; tÞ ¼
ð
�eðr0; tÞ
jr� r0j d

3
r
0: ðA:23Þ

The gauge (A.21) is called ‘Coulomb gauge’ because this implies that the
solution for the scalar potential is the instantaneous Coulomb potential
due to electrical charges �e.
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Appendix B

Prefixes

The following prefixes are used throughout the book.

Prefix Symbol Factor Prefix Symbol Factor

zetta Z 1021 zepto z 10�21

exa E 1018 atto a 10�18

peta P 1015 femto f 10�15

tera T 1012 pico p 10�12

giga G 109 nano n 10�9

mega M 106 micro m 10�6

kilo k 103 milli m 10�3

hecto h 102 centi c 10�2

deca da 10 deci d 10�1
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Appendix C

Vectors and Matrices

This appendix summarizes vector relations (Huba 1998, Woan 2000), used
extensively in this book, and also few definitions related to matrix algebra
applied in some chapters. Moreover, this appendix defines the notations
for vectors and matrices used throughout the book.

C.1 Notation

scalars a; b; . . . ;A;B; . . .
vectors a; b; . . . ;A;B; . . .
unit vectors êe1; êe2; êe3; x̂x; ŷy; ẑz; . . .
vector components aj ð j ¼ 1; 2; 3Þ; . . .
matrices a; b; . . . ;A;B; . . . (similar notation for vectors and

matrices)
matrix components aij ði ¼ 1; . . . ;N; j ¼ 1; . . . ;MÞ matrix has N lines

and M columns
scalar product a � b
vector product a� b

gradient (operator) r
divergence r�
rotor or curl r�
Laplacian (operator) r2

C.2 Coordinate System

A volume element dV and a line element dL are given by

dV ¼ h1h2h3 dx1 dx2 dx3; ðdLÞ2 ¼
X3
i¼1

ðhi dxiÞ2: ðC:1Þ
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In order to get the line element or the volume element for the Cartesian,
cylindrical or spherical coordinate systems, one has to substitute hi
(i ¼ 1; 2; 3) and dxi (i ¼ 1; 2; 3) from table C.1.

C.3 The Operator r

In the following definitions of the gradient, the divergence, the curl and the
Laplacian, only the formulae for the general orthogonal coordinates are
given. For the Cartesian, the cylindrical and the spherical coordinates, one
has to substitute hi (i ¼ 1; 2; 3) and xi (i ¼ 1; 2; 3) from table C.1:

rs ¼ êe1

h1

�
@s

@x1

�
þ êe2

h2

�
@s

@x2

�
þ êe3

h3

�
@s

@x3

�
ðC:2Þ

Table C.1. Definition of a general orthogonal coordinate system and three examples:

Cartesian coordinates, cylindrical coordinates and spherical coordinates.

Coordinate

system Cartesian Cylindrical Spherical

Any

orthogonal

coordinates

Unit vectors x̂x; ŷy; ẑz q̂q; ûu; ẑz r̂r; ĥh; ẑz êe1; êe2; êe3
Point

coordinates

ðx; y; zÞ ð�; �; zÞ ðr; �; �Þ ðx1; x2; x3Þ

Metric

elements

h1 ¼ h2 ¼ 1;

h3 ¼ 1

h1 ¼ 1; h2 ¼ �;

h3 ¼ 1

h1 ¼ 1; h2 ¼ r;

h3 ¼ r sin �

ðh1; h2; h3Þ

Figure C.1. Definition of the Cartesian, cylindrical and spherical coordinates.

292 Vectors and Matrices



r � v ¼ 1

h1h2h3

�
@

@x1
ðv1h2h3Þ þ

@

@x1
ðv2h3h1Þ þ

@

@x1
ðv3h1h2Þ

�
ðC:3Þ

r � v ¼ 1

h1h2h3

êe1h1 êe2h2 êe3h3

@=@x1 @=@x2 @=@x3

h1v1 h2v2 h3v3

�������

�������
ðC:4Þ

r2s ¼ 1

h1h2h3

@

@x1

��
h2h3
h1

��
@s

@x1

��
þ @

@x2

��
h3h1
h2

��
@s

@x2

��

þ @

@x3

��
h1h2
h3

��
@s

@x3

��
ðC:5Þ

where s is a scalar and v is a vector defined by its three orthogonal compo-
nents v1, v2 and v3. j � � � j denotes the determinant.

C.4 Vector and r Identities

a � b ¼ b � a

a� b ¼ �b� a

a� ðb� cÞ ¼ ða � cÞb� ða � bÞc

ða� bÞ � ðc� dÞ ¼ ða � cÞðb � dÞ � ða � dÞðb � cÞ

ða� bÞ � ðc� dÞ ¼ ða� b � dÞc� ða� b � cÞd

ðC:6Þ

rðstÞ ¼ srtþ trs

r � ðsvÞ ¼ sr � vþ v � rs

r� ðsvÞ ¼ sr� vþ ðrsÞ � v

ðC:7Þ

rða � bÞ ¼ a� ðr � bÞ þ ða � rÞbþ b� ðr � aÞ þ ðb � rÞa

r � ða� bÞ ¼ b � ðr � aÞ � a � ðr � bÞ

r � ða� bÞ ¼ aðr � bÞ � bðr � aÞ þ ðb � rÞa� ða � rÞb

ðC:8Þ

r � ðrsÞ ¼ r2s

r� ðrsÞ ¼ 0

r � ðr � vÞ ¼ 0

r� ðr � vÞ ¼ rðr � vÞ � r2
v:

ðC:9Þ

Vector and r Identities 293



C.5 Integral Transformation

In equations (C.10) we use the notation: V ¼ volume, enclosed by a surface
S, where the surface element (vector) is dS ¼ n dS, n is the unit vector normal
to the surface and pointing outwards from the volume V :ð

V
dVðrf Þ ¼

ð
S
dSf

ð
V
dVðr � aÞ ¼

ð
S
dS � a

ð
V
dVðr � aÞ ¼

ð
S
dS� a

ð
V
dV ½r � ð frgÞ� ¼

ð
S
dS � ð frgÞ

ð
V
dVð fr2g� gr2f Þ ¼

ð
S
dS � ð frg� grf Þ:

ðC:10Þ

The second relation of (C.10) is called the Gauss divergence theorem, and the
fourth and fifth equations are known as Green’s first and second theorems.

In equation (C.11), S is an open surface encircled by the contour C,
which has a line element (vector) dL:ð

S
dS�rf ¼

þ
C
dLf

ð
S
dS � ðr � aÞ ¼

þ
C
dL � a

ð
S
ðdS�rÞ � a ¼

þ
C
dL� a

ð
S
dS � ðrf �rgÞ ¼

þ
C
f dg ¼ �

þ
C
g df :

ðC:11Þ

The second equation of (C.11) is known as Stoke’s theorem.

C.6 Matrices

The definition of matrix A, with elements aij, is given by

A ¼

a11 a12 : : : a1N

a21 a22 : : : a2N
: : : : : :
: : : : : :

aM1 aM2 : : : aMN

0
BBBB@

1
CCCCA ðC:12Þ
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where the matrix hasM rows (lines) and N columns, i.e.M �N matrix, also
denoted by (M;N).

The addition and multiplication of two matrices A and B are defined by

Aþ B ¼ C if aij þ bij ¼ cij ½MA ¼ MB;NA ¼ NB�

A � B ¼ C if
X
k

aikbkj ¼ cij ½NA ¼ MB�
ðC:13Þ

where aij , bij and cij, row number i and column number j, are all the elements
of the matrices A, B and C respectively. In order to add two matrices it is
necessary that their dimensions are equal, MA ¼ MB, NA ¼ NB. For multi-
plication it is necessary that the number of columns of the first matrix is
equal to the number of rows of the second matrix. In this case, the dimension
of C is ½MC;NC� ¼ ½MA;N� � ½N;NB� ¼ ½MA;NB�.

For example, if ðM;NÞ ¼ ð3; 3Þ for one matrix, and ðM;NÞ ¼ ð3; 1Þ for
the second matrix, then the matrix C is anM ¼ 3, N ¼ 1 matrix. By multiply-
ing the dimensions of the matrices one satisfies the rule ð3; 3Þ � ð3; 1Þ ¼ ð3; 1Þ.
Note that the ð3; 1Þ matrix is actually a three-dimensional vector. More
explicitly,

A ¼

a11 a12 a13

a21 a22 a23

a31 a23 a33

0
BB@

1
CCA

B ¼

b11

b21

b31

0
BB@

1
CCA

C ¼

a11b11 þ a12b21 þ a13b31

a21b11 þ a22b21 þ a23b31

a31b11 þ a32b21 þ a33b31

0
BB@

1
CCA:

ðC:14Þ

For squared matrices, i.e.M ¼ N, the trace (trA), the determinant (detA) and
the inverse matrix (A�1) are occasionally used in this book; therefore, these
quantities are now defined:

trA ¼
X
i

aii ðC:15Þ

detA ¼
X
i

ð�1Þiþ1ai1Mi1 ¼
X
i

ai1Ci1; Cij ¼ ð�1Þiþ jMij ðC:16Þ
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where Mij is the minor of element aij and Cij is the cofactor of the element aij.
Mij is the determinant of the matrix that is left, an ½N � 1;N � 1� matrix,
after deleting row number i and column number j of matrix A.

The inverse matrix is defined by A
�1:

A
�1

A ¼ AA
�1 ¼ 1; detA 6¼ 0 ðC:17Þ

where 1 is the unit matrix defined by: all diagonal elements (aii ¼ 1) are equal
to one and all off-diagonal elements vanish. Denoting the elements of A�1 by
A�1

ij , one has

A�1
ij ¼

Cji

det A
¼

ð�1Þiþ jMji

det A
ðC:18Þ

where Mji is the determinant of the matrix left after deleting row j and
column i of matrix A.

We end this appendix with an explicit example for a ½3; 3� matrix:

A ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BB@

1
CCA

trA ¼ a11 þ a22 þ a33 ðC:19Þ

detA ¼ a11a22a33 � a11a23a32 � a21a12a33 þ a21a13a32 þ a31a12a23 � a31a13a22

A
�1 ¼ 1

detA

a22a33 � a23a32 a13a32 � a12a33 a12a23 � a13a22

a23a31 � a21a33 a11a33 � a13a31 a13a21 � a11a23

a21a32 � a22a31 a12a31 � a11a32 a11a22 � a12a21

0
BB@

1
CCA:
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Appendix D

A Note on the Maxwell Distribution

In thermal equilibrium the distribution function f ðr; vÞ, where r and v are the
position and velocity coordinates of a particle, can be written

f ðr; vÞ ¼ f0 exp

�
� "

kBT

�
ðD:1Þ

where T is the temperature, kB is the Boltzmann constant, and " is the one-
particle energy equal to the kinetic energy K plus the potential energy V :

" ¼ K þ V ¼ 1
2mv2 þ V : ðD:2Þ

If the potential is a function only of the particle space-coordinate, then one
can write

f ðr; vÞ ¼ f ðrÞf ðvÞ ¼ nðrÞC exp

�
� mv2

2kBT

�
� nðrÞfMðvÞ ðD:3Þ

where nðrÞ is the number of particles per unit volume at position r, the
velocity distribution fM is called the Maxwell distribution, and it is convenient
to write it in the form

fMðvÞ ¼ C exp

�
� v2

v2T

�
; v2T � 2kBT

m
ðD:4Þ

and the following normalization is satisfied:

ð
dvfMðvÞ ¼ C

ð
dv exp

�
� v2

v2T

�
¼ 1

dv ¼

dv in 1 dimension

2�vdv in 2 dimensions

4�v2 dv in 3 dimensions.

8>><
>>:

ðD:5Þ
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Note that v2
T in the Maxwell distribution (equation (D.4)) is by definition

equal to 2kBT=m (so that (D.1) is satisfied).
In three dimensions (velocity-space), the normalization yields

C

ð1
0
exp

�
� v2

v2T

�
4�v2 dv ¼ 1 ) C ¼ 1

�3=2v3T
: ðD:6Þ

The moments of the velocity hvni are defined by

hvni �
ð
vnfM dv: ðD:7Þ

The following integrals are needed in order to calculate the moments defined
by equation (D.7):

I2n �
ð1
0
v2n exp

�
� v2

v2T

�
dv ¼ ð2n� 1Þ!! ffiffiffi

�
p

2nþ1
ðvTÞ2nþ1 n ¼ 0; 1; 2; . . .

I2nþ1 �
ð1
0
v2nþ1 exp

�
� v2

v2T

�
dv ¼ n!

2
ðvTÞ2nþ2 n ¼ 0; 1; 2; . . .

ð2n� 1Þ!! � 1 � 3 � 5 � � � � � ð2n� 1Þ; ð�1Þ!! ¼ 1; ð1Þ!! ¼ 1; etc:

n! � 1 � 2 � 3 � 4 � � � � � n:

ðD:8Þ

For example, in three dimensions

hvi ¼ 4�

�3=2v3T

ð1
0
v3 exp

�
� v2

v2T

�
dv ¼ 2vTffiffiffi

�
p

hv2i ¼ 4�

�3=2v3T

ð1
0
v4 exp

�
� v2

v2T

�
dv ¼ 3v2T

2
� 3kBT

m
:

ðD:9Þ

The second integral gives the well-known result

1
2mhv2i ¼ 3

2 kBT : ðD:10Þ

In one dimension,

fM ¼ 2ffiffiffi
�

p
vT

exp

�
� v2

v2T

�

hvi ¼ 2ffiffiffi
�

p
vT

ð1
0
v exp

�
� v2

v2T

�
dv ¼ vTffiffiffi

�
p

hv2i ¼ 2ffiffiffi
�

p
vT

ð1
0
v2 exp

�
� v2

v2T

�
dv ¼ v2T

2
� kBT

m

1
2mhv2i ¼ 1

2 kBT :

ðD:11Þ
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If averages are depending on ‘directions’, then in Cartesian and in spherical
coordinates (velocity-space):

dv ¼ dvx dvy dvz ¼ v2 sin � d� d’ dv: ðD:12Þ

For example, the first two moments of cos � (� is the angle between the
velocity vector v and the z axis) are

hcos �i ¼ 1

�3=2v3T

ð�
0
d� sin �

ð2�
0

d’

ð1
0

dv v2 exp

�
� v2

v2T

�
cos �

¼ 1

2

ð�
0
d� sin � cos � ¼ 0

hcos2 �i ¼ 1

�3=2v3T

ð�
0
d� sin �

ð2�
0

d’

ð1
0

dv v2 exp

�
� v2

v2T

�
cos2 �

¼ 1

2

ð�
0
d� sin � cos2 � ¼ 1

3
:

ðD:13Þ

Similarly

hv2xi ¼ hv2yi ¼ hv2zi ¼ 1
3 hv

2i: ðD:14Þ

The last result can also be obtained from symmetrical arguments (if the
medium is symmetric by interchange of any two axes x, y and z). The vn

moments and the moments of the last two equations are frequently used in
plasma transport phenomena (see section 2.3 and chapter 9).
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191

continuity of the normal magnetic induction

field 234, 237

continuity of the parallel electric field 234, 237
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cross section, differential 19

cross section, inverse bremsstrahlung 32
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cross section, Rutherford 19

cross section, total 18, 19, 20
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cutoff wavenumber 266
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damping 87, 88, 93, 94, 109, 110, 115, 120,
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collisional 109, 112, 124

collisionless (see Landau damping) 109

spatial 78

damping rate 116

damping rate, spatial 76

de Broglie scale length 199
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Debye length 20, 33, 34, 35, 36, 64, 69, 75,

127, 129, 138, 145, 186

Debye length, electron 62

Debye shielding 35, 189

Debye solid-state theory 243

Debye sphere 35, 45, 58, 62

decay instability 107, 108, 109

deflagration 257

degrees of freedom 38, 55, 111, 206

delta function, Dirac 4, 34, 61, 114, 141, 206,

264, 265, 273

density

background 121, 136

high frequency 119

low frequency 119

momentum 121

pump energy 117

steep 91

density fluctuation, electron 115

density fluctuation, ion 115

density jump 264

density profile, linear 77, 84, 87, 89, 90, 95

density ripple 118

derivative of the bulk modulus 245

derivatives along the characteristics 219

detailed balance 32

dielectric 40, 41, 42, 66, 67, 154, 156

dielectric coefficient 173, 236, 285

dielectric function 40, 41, 42, 80, 87, 90, 93,

94, 97

dielectric function, complex 94

dielectric permittivity 96, 98

dielectric tensor 170

diffraction limited 7

diffusion 24, 26, 60, 189, 191

anomalous 25

Bohm 26

classical 25

parallel 183

transverse 183

diffusion approximation 178, 197

diffusion coefficient 24, 25, 58

diffusion equation 24, 206

diffusion flux 197

diffusion in angular space 195

diffusion in velocity space 195

diffusion relaxation time 152

diffusivity 215
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1D 63

1.5D 63
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2.5D 63
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dimensional analysis 215

dispersion relation 39, 40, 42, 68, 69, 71, 72,

73, 75, 76, 89, 90, 99, 105, 106, 107, 108,

129, 155, 156, 162, 163, 164, 165, 166,

167, 169

dissipation 5, 94, 125, 129

dissipative forces 232

dissipative phenomenon 226

dissipative radiative processes 17

distribution, energy 31

distribution, isotropic 21

diverging shocks 259

Doppler effect 4

double layer (DL) 135, 138, 141, 143, 176, 180

downstream variables 222, 237

drag force 257, 272

drift velocity 58

driving force 105, 115

Drude model 22, 149

ductile materials 249

Dulong–Petit law 55

Dulong–Petit value 244

dynamo effect 144, 153

echelons 238

effective mass, electron 101

e-folding time 254

eigenfunction 262

eigenstate, energy 15

eigenstate, ion 27

eigenvalue 115

imaginary 118

eigenvalue equation 262

eigenvalue frequency 112

Einstein coefficients 2, 3

electrical conductivity 22, 23, 24, 41, 96, 97,

98, 99, 102, 149, 151, 266

electrical conductivity coefficient 80, 148, 177

electrical discharges 5

electric charge separation 69, 70

electric current 22, 41, 61, 79, 155, 158, 159,

162, 177, 196, 266

electric displacement 284

electric field

high-frequency 134

low-frequency 134

electric field phase 113

electric field strength 284

electric induction 284

electric polarization 285

electric potential 137, 138

electric potential energy 189

electromagnetic backscattered wave 122

electromagnetic energy density 285, 286

electromagnetic field momentum 66

electromagnetic field, high frequency 65

electromagnetic field, scattered 121

electromagnetic force 49, 285

electromagnetic modes 8, 9

electromagnetic sources 41, 42, 288

electromagnetic wave decaying 115

electromagnetic wave equation 122

electron, bound 16, 27, 28

electron conduction 179, 180

electron conductivity 205

electron cyclotron frequency 154, 170

electron cyclotron wave 166, 167

electron distribution function 195, 197

electron drift motion 189

electron effective mass 102

electron energy transport 189

electron fluid 33, 50, 51

electron fluid velocity 127, 136

electron inertia 72, 168

electron–ion scattering 188

electron oscillation frequency 30, 72, 73

electron–phonon interaction 55

electron–photon interaction 211

electron plasma frequency 106, 115, 123, 163

electron plasma frequency in the dielectric

155

electron (plasma) wave 71, 91, 94, 105, 106,

107, 109, 112, 115, 116, 117, 201

electron plasma wave (see also plasmon) 36,

39, 69

electron pressure 127, 150

electrons, degenerate 45

electron temperature 50, 52, 95, 102, 106, 118,

121, 127, 136, 137, 199, 201, 218

electron thermal conduction 176, 211

electron thermal motion 243

electron trajectory 200

electron transport 179

electron velocity distribution 20

electron velocity distribution function 178,

201

electrostatic plasma wave, high frequency 105

electrostatic potential 33, 34, 140, 203
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electrostatic wave 172, 173

elliptical rotation of the electric field 164

emissivity 31

energy

kinetic 189, 223, 241, 297

potential 297

thermal 241

energy band 28

energy conservation rate 123

energy deposition depth 54

energy equation, electron 54

energy equation, ion 54

energy exchange, electron–ion 100

energy exchange, electron–phonon 100

energy flow 60

energy flux 123, 287

energy loss 183, 188, 200

energy radiated per unit time by an electron

201

energy rate exchange 114

energy relaxation time 188

energy relaxation, electron 104

energy relaxation, ion 104

energy transfer rate 99

energy transport 179, 205

energy, internal 223

enthalpy 181

entropy 38, 203, 218, 220, 224, 226, 237, 247

entropy jump 226

equation, for magnetic field 151

equation of motion 33, 60, 61, 68, 74, 154

equation of state 24, 26, 33, 35, 37, 45, 47, 50,

51, 52, 53, 55, 57, 70, 149, 180, 207, 224,

225, 226, 228, 230, 231, 237, 241, 244,

245, 247, 248, 252, 275

equation of state, (semi-empirical) wide range

252, 253

equilibrium distribution 178, 189

Eulerian mass 52

Eulerian position 52

Eulerian space derivative 52

Eulerian time derivative 52

excited state 15

expanding plasma into the vacuum 135

exploding foils 213

exponential profile 77

external energy deposition 50

external force 110, 235, 260

external potential 35

extraordinary (electromagnetic) wave 145,

162, 163, 164, 165, 172

extraordinary mode 171

Faraday effect 10, 144, 153, 157, 168

Faraday–Maxwell equation 161

Faraday’s law 285

fast electron preheat 239

fast electrons 141, 177, 241

fast ions 140, 141

Fermi–Dirac distribution 45, 101

Fermi energy 55, 101

Fermi momentum 101

Fermi–Pasta–Ulam problem 126

Fermi surface 98

Fermi temperature 101, 104

Fermi velocity 101, 103

field envelope 12

filamentation 13, 65

filaments 180

finite-difference approach 62

first moment 191

first-order equations 70

first-order variations 70

flow patterns 256

fluctuation 127, 153, 250

fluid, electron 69, 146

fluid element 220

fluid equations 47, 50, 53, 55, 122, 203, 223

fluid equations of two temperatures 51

fluid equations, electron 118

fluid equations, ion 35, 118

fluid, ion 69, 146

fluid models 138

fluid particle 26, 48, 52

fluid-Poisson equations 127, 128, 129

fluids energy equations, two 51

fluid theory 55, 56

fluid variables 52

flux

absorbed laser 182

energy 180

heat 23, 177, 197, 205, 209

heat energy 52

laser energy 144

mass 180

momentum 26, 180

flux conservation

energy 181

mass 181

momentum 181

particle 17, 23, 25

flux continuity 139

flux of the electromagnetic energy 285

foil reference frame of coordinates 264

Fokker–Planck collision 58, 196
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Fokker–Planck equation 189, 190, 191, 192,

194, 195, 196, 197

force

frictional drag 110

inertial 151

periodic external 112

viscous 151

force per unit volume 66

forced harmonic oscillator 109

Fourier components 63

Fourier modes 128

Fourier transform 11, 110, 116, 119, 129, 163,

166, 168, 169, 261

Fourier transport 200

fracture, dynamic 249

frame of reference of the moving interface 274

free current density 284

free electric charge density 284

free electron model 244

free energy 14, 15

free-streaming flow of electrons 198

free streaming flux 178, 197

free streaming plasma 181

free streaming velocity 113

free surface 228, 251

free-surface velocity 230, 231, 240, 245, 251

frequency components, fast 119

frequency components, low 119

frequency electric fields, high 134

frequency electric fields, low 134

frequency modulation 11, 12

frequency, complex 40

full frequency width at half maximum 111

full width half maximum (FWHM) 4

fully ionized plasma 195, 218

fusion 59

gain 8, 10

gamma function 209

gauge 288

Gauss divergence theorem 234, 294

Gauss equation 70

Gauss–Faraday law 285

Gauss’s law 285

Gauss’ theorem 47, 49

Gaussian profile 5, 9, 152

Gaussian pulse 11

Gaussian shape 5

Gaussian velocity distribution 63

geometrical optics 89

geometry, cylindrical 162

geometry, plane 52, 135, 162, 182, 183

global neturality 138, 139

grating 13

gravitation 254, 255, 260, 264

gravitational force 49

Green’s first and second theorem 294

Green’s function 152

grid points 63

grid spacing 62, 63

ground state 15

group velocity 12, 39, 71

growth rate 118, 257, 258

growth rate of the backscattered wave

amplitude 123

Gruneisen coefficient 243, 249

Gruneisen equation of state 234, 244, 247, 248

Gruneisen parameter 249

gun drivers of plates 252

gyro motion 35

gyroradius, electron 35

Hall effect 149

Hamiltonian 15, 56

harmonic driving force 110

harmonic motion 37, 110

harmonic oscillations 110

heat capacities at constant volume, electron

102

heat capacities at constant volume, ion 102,

103

heat capacities, constant pressure 180, 218

heat capacities, constant volume 24, 180, 181,

218

heat capacity 24

heat capacity, electron 54, 99

heat capacity, lattice 54

heat carriers 205

heat conduction 53, 205

heat conduction coefficient 152

heat conduction by photons 211

heat conduction equation 207

heat conductivity, electron 99, 101, 103

heat deposition 98

heat diffusion equation 151

heat flow 23, 176, 178, 197, 198, 214

heat flux, differential 197

heat transfer 195

heat transport 24, 51, 60, 178, 198, 205

heat transport, electron 212

heat transport equation 206

heat wave 7, 175, 205, 211, 214, 216

heat wave equation 214

heat wave front 216

314 Index



heat wave temperature space profile 209

heat wave velocity 209, 214, 215

Helmholtz equation 96

high energy electrons 74

high energy ions 140

highest laser-induced pressure 230

high-frequency (electron) wave equation 120

high-frequency phenomena 144

high-Z atoms 28

homogeneous equations 288

homogeneous medium 66, 75, 77, 79, 80, 126

hot electrons 44, 45, 91, 177, 180, 198, 291,

202

hot electrons pressure 44

hot electron temperature 240

hot spots 180

Hugoniot 221, 225, 230, 232, 243, 245, 277

Hugoniot curve 224, 225, 228, 229, 242, 243

Hugoniot energy relation 248

Hugoniot equation of state 227

Hugoniot pressure 242, 246, 247, 249, 251

Hugoniot relations 224, 276, 277

hydrodynamic effects 215

hydrodynamic efficiency 182

hydrodynamic equations 37, 260

hydrodynamic expansion 96

hydrodynamic instabilities 45, 162, 183, 254,

256, 258, 269

hydrodynamic theory 36, 47

hydrogen-like atom 32

hydrogen-like model 16

ideal gas equation of state 145, 149, 150, 181,

218, 226

ignition 205, 255

impact parameter 19, 20, 75, 183, 185, 189,

200

impedance matching 228, 229, 245

implosion pressure 255

implosion velocity 255

imprint (a disturbance) 256

imprint, laser initial 257

impulsive acceleration 258, 273, 274

incoherence, spatial 238

incoherent 3

incompressibility assumption 265

incompressible fluid 26, 261, 270, 272, 273

incompressible plasma 266

index of refraction 29, 30, 153, 155, 164,

166

complex 96

extraordinary 171

nonlinear 11, 13, 42

ordinary 171

indices of refraction for right and left

polarization 166

induced transition 3

induced emission 31

induced emission lifetime 3

inertia of the electron 127, 145

inertial confinement fusion (ICF) 6, 162, 175,

179, 183, 205, 254, 256, 257, 258

inertial term 203

inhibited thermal transport 215

inhibition factor 178, 197, 198

inhomogeneous equations 288

inhomogeneous plasma 68, 79

inhomogeneous system 120

inhomogeneous wave equation 288

initial value problem 127

instability seeds 256

inter-atomic forces 252

inter-band absorption 98

interface equation 276

intermixing 255, 256

internal energy 49, 181, 237, 243

intra-band absorption 98

inverse Faraday effect 145, 157, 159, 161,

162

inverse matrix 170

inviscid (no viscosity) 279

ion frequency 79

ion (plasma) wave 73, 105, 106, 107, 108, 109,

112, 115, 117, 129

ion-acoustic instability 40

ion acoustic phase velocity 129

ion acoustic wave 122, 126, 127

ion cyclotron frequency 169

ion density fluctuation 118

ion density perturbation 121

ion density wave amplitude 122

ion fluid 50, 51

ion force (momentum) 119

ion lattice 54

ion local temperature 33

ion oscillation frequency 72, 73

ion pressure 44

ion temperature 52, 102, 106, 121, 127, 136,

218

ionization 14, 15, 17, 31, 58, 74, 103, 106, 118

ionization energy 16

ionization potential 15

ion-plasma frequency 134

irreversible process 19
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irreversible thermodynamics 178

irrotational fluid 270

isentrope (process) 38, 217, 219, 224, 225, 230,

242, 247, 250, 277

isentrope pressure 247

isentropic curves 224

isentropic expansion 251

isentropic flow 218, 219

isolator 7, 8, 10

isotherm 224, 252, 253

isothermal electron equation 71

isothermal speed of sound 137, 182, 183

isotropic 30, 31, 195

isotropic pressure 59

Joule heating 97, 235, 236

jump condition 223, 233, 234, 236, 237, 277,

281, 282

jump equations 227, 233

jump in the potential 204

KdV (Korteweg and De Vries) equation, 125,

126, 127, 131, 132

Kelvin–Helmholtz instability 40, 258, 260,

283

Kerr cell 1, 9

kinematic theory 47

kinematic viscosity 151, 152

kinetic energy of the electron 201

Kirchhoff’s law 32

laboratory coordinates 183

laboratory frame (of reference) 20, 183, 184,

187, 192, 222, 223, 226, 231

Lagrangian coordinates 261

Landau damping 40, 63, 93, 109, 115, 117,

123, 124, 173

Langmuir wave 105

Laplace equation 270

Laplacian 292

large angle deflection 186

large angle scattering 186

large deflection 187, 190

large-scale deflection 189

Larmor angular frequency 179

Larmor radius 35, 189

laser

CO2 7

gas 5, 7

helium-neon 1

iodine 7

KrF 7

megajoule 8

neodymium glass 1, 7, 10, 141

solid state 7

Ti–sapphire 1, 7

x-ray 175

laser diode 5, 10

laser divergence 6, 7

laser electric field amplitude 134

laser energy deposition 54

laser energy fluency 8

laser energy flux 134, 284

laser intensity profile 98

laser irradiance non-uniformity 238

laser pump 108

laser pump amplitude 121

laser radius 135

laser scattering 106

laser spot 135

laser uniformity 256

lateral rarefaction wave 238

lattice specific heat at constant volume 243

left-handed circular polarization (LHCP) 153,

154, 155

light amplification 6

line absorption 27, 28

line broadening 28

line emission 27, 28

line shape 5

line shape function 4

line shape, natural 4

line width, natural 6

linear analysis 260

linear differential equation 127

linear equations 119

linear momentum 160

linear polarized (laser) electric field 153, 155,

168

linear theory 275

linear trajectory 69

linearization procedure 38, 70, 72, 128, 166,

261, 266

linearized equations 119, 162

linearized Maxwell equation 267

linearized momentum equation 267

Liouville’s theorem 55, 56

longitudinal phonon mode 100

longitudinal sound velocity 99

longitudinal wave 39, 76, 164

Lorentz equation 61, 68

Lorentz force 286

Lorentz gauge 288

Lorentzian profile 4, 5
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Lorentzian pulse 11

Lorentz law 285

Lorenz plasma 196

low-frequency electric field 119

L-wave 168

Mach number 226, 232

macroinstabilities 39

macroscopic electric fields 134

macroscopic quantity 58

macroscopic scale length 151

magnetic compression 213

magnetic field

axial 153, 158, 159, 161, 162

diffusion of 151

external 172

steady-state (d.c.) 144, 150, 154, 155, 162,

163, 168, 169, 170, 171

toroidal 144, 145, 146, 150, 153, 176

magnetic field amplitude, laser 144

magnetic field diffusion time 152

magnetic field generation 65

magnetic fluid 146

magnetic flux density 284

magnetic monopoles (poles) 234, 285

magnetic permeability 155, 285

magnetic polarization 285

magnetic pressure 233

magnetic Reynolds number 144, 151, 152, 153

magnetized plasma 162,173, 174, 179

magneto-hydrodynamic equations 144, 149

magneto-hydrodynamics 146

Markov process 190

matrix element 99, 100

maximum possible compression 246

maximum possible growth of the instability

120

Maxwell distribution 20, 45,55, 57, 62, 176,

177, 178, 188, 198, 199, 297, 298

Maxwell equations 36, 38, 41, 42, 47, 50, 61,

66, 67, 70, 75, 80, 91, 94, 144, 145, 146,

149, 154, 158, 162, 168, 169, 171, 234,

235, 266, 284, 285, 286, 287, 288

Maxwellian distribution, equilibrium 195

Maxwellian double electron distribution 199

mean decay time 111

mean free path 17, 18, 19, 24, 31, 34, 35, 178,

186, 198, 211

mean free path, electron 177, 196, 206, 240

mean free path for hydrogen-like plasma 211

mean squared velocity 63

melting temperature 101

metallurgical cross section 250

metric elements 292

microinstabilities 39

mirror symmetry 208

mixing zone between the fluids 258

mode locking 1, 9

molecular collision 190

moment (definition) 60

moment equation 58, 60

moment equation, zero 59

moment of velocity 298

momentum, electron 147

momentum exchange 60

momentum, ion 147, 148

momentum jump conditions 235

momentum loss 183, 187, 188

momentum loss-relaxation time 187

momentum of the gas 222

momentum relaxation rate, electron 99, 101,

102,103

momentum transfer 65

monoatomic gas 181

monochromatic wave 75, 96, 169

monopoles 269

motion

high-frequency 118

low frequency 118

quasi-neutral 118

multimode perturbation 258

multiple Coulomb collisions 177

multiple scattering 188

multiple small-angle collisions 190

multiple small-angle scattering 189

Navier–Stokes equation 26

negative pressure (tension) 251

neutral plasma 187

neutralizing background 33

Newton equation for electrons 142

Newton’s law 22, 37, 41, 48, 52, 63, 79, 112,

222

non-isotropic medium 285

nonlinear differential equation 127

nonlinear dispersion relation 129

nonlinear drag force 256

nonlinear effect 138, 231

nonlinear equations 116

nonlinear evolution of the RT instability 258

nonlinear force 65, 69

nonlinear heat wave 210

nonlinear induced magnetic field 159

nonlinear interaction 126
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nonlinear integral-differential equations 195

nonlinear localized wave 126

nonlinear mass string (Fermi, Pasta and

Ulam) 125

nonlinear phenomenon 105

nonlinear plasma effects 64

nonlinear polarizability 105

nonlinear transport coefficients 205

nonlinear wave 125

nonlinear wave phenomena 201

non-local transport 198

non-Maxwellian electron velocity distribution

140

non-uniformity of the laser beam 179

normal mode 255, 256, 261

Nova laser 213

nuclear reaction 7

number of degrees of freedom 181

Ohm heating 50

Ohm’s law 22, 25, 148, 285

Ohm’s law, generalized 25, 144, 146, 147, 149

Onsager relations 178

opacity 31

optical fibre 13

optical smoothing techniques 238

optical spectrum 3

ordinary (O-mode) wave 145, 162, 163, 165,

172

orthogonal frame of reference 191, 194

ORVIS (optically recording velocity

interferometer system) 230

oscillating two-stream instability 118

oscillations

critically damped 110

forced 110, 111

high-frequency 127, 136

over-damped 110

weakly damped 110

oscillator 7, 8, 9, 13

oscillator, forced harmonic 110

oscillator, harmonic 115

out-flowing plasma 221

parabolic initial density profile 141

parabolic laser profile 161

parametric (decay) instability 40, 65, 106, 105,

108, 109, 110, 115, 116, 118, 120

particle, charge collector 11

particle flow velocity 214, 228, 230, 241, 250,

251

particles, free-streaming 139

particle in cell (PIC) 61, 62

particle simulation code 47

particle simulations 61, 62

particle theory 47, 61

partition function 15

pellet, spherical 140

permeability 68, 287

permittivity 66, 285, 287

phase 6

phase plate 238

phase shift 88

phase space 55, 56, 57, 190, 194

phase space trajectory 56

phase transition, solid–solid 233

phase transitions 245

phase velocity 5, 39, 71, 74, 112, 124, 129, 164,

168

phonon 54, 100

phonon dispersion relation 100

phonon energy 103

phonon spectrum 99

photoelectric effect 27, 28

photoionization 27, 28

photon distribution function 29

photon energy spectrum 199

photon momentum 89

photon wave 107, 108

planar collision 230

planar symmetry 216, 219

planar waves 277

planarity 238

Planck function 30, 31

Planck’s law 2, 16

plane-polarized light 153

plane wave 7, 168

plasma

ideal 45

neutral 139

slab of 37

strongly coupled 45, 189

two component 127

plasma frequency 106, 118, 128, 145, 164

plasma expansion into vacuum 137, 203

plasma fluid 26

plasma frequency 37, 54, 62, 65

plasma heating 265

plasma instabilities 256

plasma lifetime 64

plasma neutrality 103

plasma oscillation 36, 37

plasma parameter 35

plasma–vacuum boundary 91
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plasma–vacuum interface 82, 84, 85

plasma wave amplitude 40

plasmon 39, 71, 105, 106, 124

plastic deformation 249

Pockels cell 9

Pockels effect 10

Poisson equation 34, 36, 70, 71, 118, 119, 141,

193, 285

polarization force 49

polarization of the dielectric medium 155

polarization plane 10

polarization, p- 88, 91, 92, 93, 94, 95, 172,

173, 174

polarization, s- 88, 90, 95, 172

polarized electromagnetic field, linear 81, 82

polarized light, linear 10, 96

polarizer 10

ponderomotive force 65, 66, 67, 68, 69, 70, 71,

105, 118, 119, 134, 135, 133, 159

ponderomotive force, Landau–Lifshitz 65

ponderomotive pressure 72, 73

population inversion 6, 9

potential barrier 139

potential equations 288

potential force 203

potential jump 138

power density balance 115

power radiated by the electron 201

Poynting theorem 87, 286

Poynting vector 285, 286

preheating 44, 177, 205, 239

preheating, fast electron 238

preheating, x-ray 238

pre-pulse 11

pressure, ablation 45, 181, 182

pressure disturbance 217

pressure forces 222

pressure scale length 150

pressure tensor 26, 59, 60

probability density 55, 56

probability function 191

probability per unit time 19

propagation, electromagnetic field 74, 79, 87

pulse duration (FWHM) 98

pulse shape 8, 10, 11

pump (laser) energy flux 120

pump amplitude 120

pump frequency 118

pump wave 105, 121, 122

pumping laser 106

Q factor 9

Q switching 1

quadrupole 142

quantum mechanics 21

quantum solid state physics 98

quasi-momentum 100

quasi-neutrality 35, 72, 138, 139, 141, 145, 198

quiver velocity 45

radar 12, 230

radial convergence factor 255

radiation conductivity 27, 211, 212

radiation energy density 211

radiation energy transport 29

radiation field, equilibrium 30

radiation flux 257

radiation heat flux 211

radiation mean free path 211

radiation pressure 44, 68, 73, 77

radiation sources 6

radiation transport 29, 30, 212

radiative equilibrium 31

radiative recombination 27, 28

radiative transfer, equation of 29

rail guns 213

Raman instability 40

Raman scattering 144

random phase shift 238

random process 153

randomly phase-shifted mask 238

Rankine–Hugoniot relations 224

rarefaction shock wave 180, 202

rarefaction wave 137, 202, 204, 205, 213, 216,

219, 220, 225, 228, 229, 230, 238, 239,

240, 249

rarefaction wave velocity 250

rate equations 2, 3, 17

rate of change of the particle energy 113

rate of doing work 286

rate of gain 57

rate of growth 122

rate of plasma production 182

Rayleigh line 232

Rayleigh–Taylor (RT) instability 40, 45, 254,

255, 256, 257, 258, 260, 264, 265, 266,

268, 269, 270, 279, 282

recombination 17

reduced mass 20, 183, 187, 200

reduced momentum 100

reflected electric field 96

reflected electrons 139

reflected Hugoniot 225

reflected ions 139
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reflected light, back 10

reflected shock 259, 274, 276, 278

reflection coefficient 96, 173

reflection, laser 89

reflectivity, laser 44

refractive index 5

relative velocity 20, 148, 183, 186

relativistic factor 45

relaxation time 22, 54, 189

release isentrope 248

release wave 225, 228, 230

repulsive forces 241

resonance 93, 94, 111, 112, 164, 165, 166, 173

resonance absorption 4, 91, 95, 109, 201, 202

resonance absorption in a magnetic plasma

145, 169

resonance absorption mechanism 172

resonance condition 117

resonance solution 112

resonant frequency 3, 123

resonant width 111

restoring force 37

return current 177, 198

return force 110

reverberation 251

reversible process 226

Reynolds number 151

Richtmyer–Meshkov (RM) instability 40,

258, 259, 260, 272, 273, 279

Riemann integral 250

Riemann invariants 219, 220, 251

right-handed circular polarization (RHCP)

153, 154, 155

right-hand rule 165

rocket effect 264

rocket equation for plasma 182

rocket model 180

Rogowski coils 143

Rosenbluth potential 193, 194

Rosseland mean free path 211

Rutherford cross section 183, 185, 192, 193

R-wave, 168

Saha equation 15, 16, 17, 23

saturation 256

scalar potential 288, 289

scale length 35, 62, 150

scale length factor for the energy deposition

206

scaling law 27, 202, 215, 240

scattering 29, 31

backward 108

elastic 19

electron–phonon 99

forward 108

Rutherford 21

scattering angle 19, 20, 183, 184

scattering time of the electron 179

Schrödinger equation 82

screening 21, 33, 34, 45

screening scale length 33

sech-pulse 11

second harmonic generation 65

second moment 191

seed 256

self-focusing 11, 65

self-illumination 229, 330

self-oscillation 8

self-similar solution 137, 138, 203, 209

shape function 63

shell targets 175

shock discontinuity 223

shock frame of reference 226

shock front 222, 224, 237, 238, 277

shock stability criterion 232

shock surface (the discontinuity) 234, 236,

277

shock wave 7, 43, 45, 176, 202, 205, 213, 214,

216, 221, 222, 224, 225, 228, 230, 232,

233, 238, 240, 242, 243, 244, 245, 247,

248, 249, 251, 258, 259, 273, 274

shock wave convergence 279

shock wave divergence 279

shock wave frame of reference 223, 233, 237

shock wave front 227, 233

shock wave pressure 233, 279

shock wave singularity 234

shock wave stability 231

shock wave, steady-state 227

shock wave transient 233

shock wave velocity 224, 227, 230, 231, 232,

241, 245

shock wave, weak 226, 275, 279

single collision 186

single particle approach 68

singularities 172, 174, 221, 137, 157, 161, 205,

210

singularity, electric field 93, 94

skin depth 44, 54, 96, 97

slope of isentrope 232

small-angle collisions 185, 186, 188, 189, 190

solid–liquid phase transition 101

solitary wave 124, 125, 126, 131, 132, 133

solitary wave equation 127
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soliton 127, 131, 132, 133

soliton equation 109

soliton solution 126, 129

sound speed (velocity) 106, 136, 137, 150, 215,

217, 218, 219, 221, 231, 232, 233, 238,

247, 249, 261, 275

sound speed on the Hugoniot points 249

sound velocity 214, 217

sound wave 216, 217, 218

source current 122

source, (external) energy 49, 53

source, external 51

source of plasma 181

sources of the electromagnetic fields 285

space perturbation 119

spall 240, 249, 250, 251

spall strength 251

spall thickness 240

spatial filter 10

spatial grid 61, 62

spatial modes, high frequency 63

specific heat 38, 206, 244

specific heat at constant pressure 38

specific heat at constant volume 38, 205

spectral distribution 2

spectral energy density scalar 30

spectral energy flux vector 30, 31

spectral energy flux, one sided 31

spectral radiation intensity 30

spectrometer 11

spectrum emission 11

speed sound, isentropic 181

speed sound, isothermal 181

spherical geometry 258

spherical shell 162, 183, 256

spikes 256, 258, 270, 273, 279

spins of the photons 159

Spitzer–Härm approximation 197, 198

Spitzer–Härm conductivity 195, 197

Spitzer–Härm (SH) theory 177, 178

spontaneous emission 2, 3, 31, 32

spontaneous emission lifetime 3

spontaneous transition, 3, 6

spring constant 110

stagnation point 272

stagnation pressure 255

standing wave 9

static electric field 65

static model 138, 140

steady flow 271

steady shock wave 232, 238, 239

steady state 25, 70, 110, 126, 148, 161

steady-state solution 112

Stefan–Boltzmann constant 31, 211

stimulated Brillouin instability 106, 107, 108,

109, 144

stimulated Brillouin scattering 106, 120,

121

stimulated Compton scattering 106

stimulated emission 1, 2, 3, 4

stimulated Raman instabilities 106, 107, 108,

109, 120, 124

Stokes (differential) equation 84, 88, 90

Stokes theorem 294

strain 232, 250, 252

strain rate 232, 250, 252

streak camera 229, 241, 245

streak camera, optical 11

streak camera, x-ray 11

stream function 271

stream line 218, 219, 270, 271

streaming velocity 135

strength of material 231, 249

stress 26

stress tensor 66

stretcher 13

strongly coupled parameter 45

subsonic 232

subsonic velocity 226

superposition 118, 164

superposition principle 127

supersonic 232

supersonic speed 226

supra-thermal electrons 180

supra-thermal (hot) temperature 140

surface expansion 96

surface forces 48, 49

surface tension 125, 269, 279

symmetry 245

azimuthal 20

cylindrical 52, 53

plane 52, 53

spherical 52, 53, 162

symmetry breaking 162

telescope 7, 10

temperature density scale length 178

temperature scale length 198

tension 242, 249

test particle 183, 185, 187, 188, 191, 192

theoretical spall strength 252

thermal (cold) temperature 140

thermal conduction 44, 175, 177

thermal conductivity 23, 24, 177, 226

Index 321



thermal conductivity coefficient 25, 205

thermal diffusivity 205, 206

thermal distribution, electrons 78

thermal electron energy 244

thermal energy 78

thermal equilibrium 2, 3, 6, 14, 15, 30, 32, 191,

211, 227, 297

thermal flux 205

thermal flux of electrons 177

thermal lattice energy 243

thermal lattice pressure 243

thermal motion 123

thermal pressure 221, 233

thermal pressure, electron 72

thermal transport 232

thermal velocity 39, 63, 74, 178

thermal velocity, electron 78, 206

thermal wave 215

thermodynamic equilibrium 3, 5, 16

thermodynamic equilibrium, local (LTE) 16,

17, 20, 33, 47, 55, 61

thermodynamic equilibrium, non-local 55

thermodynamic function 224

thermodynamic relations 237, 243

thermodynamic state 14

thermodynamic trajectory 224

thermodynamics 66

thermodynamics for plasma with two

temperatures 202

thermoelectric effect 177, 178

threshold energy 117

threshold laser field 117

threshold pumping 117, 120, 124

time average 111

time average over the fast oscillations 158

time of flight 141

toroidal direction 158

toroidal electric field 161

toroidal electron motion 161

toroidal electron velocity 160

torque 161

total derivative 48, 52

total differentials 219

total distribution function 198

total electric current 178

trace 295

trajectory of the fluid particles 271

transition probability 3, 100

transition, band–band 98

transitions, bound–bound 27

transitions, bound–free 27, 28

transitions, free–free 27, 28

transmitted electric field 96

transmitted shock wave 259, 274, 276, 278,

279

transport coefficient 3, 22, 27, 50, 189

transport domain 43

transport, energy 28, 43, 44, 45, 175

transport equation 31, 32, 33

transport of x-rays 211

transport phenomena 299

transverse wave 39, 76, 164

truncation 60

turbulence 258

two Maxwellian distribution 201

two stream plasma wave instability, 40

two-fluid model 141

two-fluid simulations 138

two-parameter family of curves 224

two-plasmon instability 40, 106

two-stage light-gas gun 213

Umklapp process 100

uncertainty principle 199

unit matrix 170, 235

unit vectors 292

unmagnetized plasma 163

upper hybrid frequency 164, 170

upstream variables 222

vector potentials 288

velocity distribution 20, 112, 113, 114, 297

velocity fluctuations 128

velocity jump 283

velocity potential 270, 271

velocity shear 258

velocity space 57, 191, 193, 197

Verdet constant 156

VISAR (velocity interferometer system for

any reflector) 230

viscosity 26, 226, 232

viscosity, coefficient of 28

viscous fluid flow 152

Vlasov–Boltzmann equations 122

Vlasov equation 56, 57, 115, 138

volume force 48, 49, 50, 51, 145

vortex 255, 258

vortex motion 256

water wave 124

wave, damped 73

wave equation 126, 127, 275, 287, 154, 171

wave equation, electric field 80, 96

wave equation, electromagnetic (field) 79, 89, 90
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wave equation, magnetic field 80, 83, 92

wave front 210, 232

wave modes in plasma 105

wave–particle interaction 109

wave propagation 126, 231

wave–wave instability 135

wave–wave interaction 106, 108, 109

Wiedemann and Franz law 24

WKB approximation 81, 82, 83, 90

WKB solution 93, 172

WKB validity condition 83

X-mode 163, 165, 166

x-ray flux 213

x-ray production 7

x-ray production, efficiency 29

x-ray propagation 176

x-ray radiation 27

x-ray, soft 29

x-ray sources 175

zero frequency 118

zero resistivity 266, 267
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