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Preface

High-order methods have gained increasing attention in recent years. Their
theoretical development has reached a high level of sophistication, and at the
same time the range of applications has been broadening, including such di-
verse topics as global atmospheric modeling, aerodynamics, oceanography,
thermal convection, and theoretical chemistry. Specialized conferences on the
subject like the International Conference on Spectral Applications and High-
Order Methods (ICOSAHOM) have been launched to bring mathematicians,
engineers, and computer scientists together in order to stimulate further work
in the field and to prospect new areas: high-order time schemes, treatment
of singularities, complex geometries, mixed discretization techniques, domain
decomposition, and parallelism. These topics were once considered as the stum-
bling block of spectral methods. As time goes on, this is no longer true, and
high-order methods apply more and more to real-life engineering problems.

The monograph by Gottlieb and Orszag [163] and the book by Canuto et al.
[64] remain milestones in the subject. They are cited in almost every paper writ-
ten on the topic. Gottlieb and Orszag’s monograph was the first on the subject
and contains very little about applications. Moreover, it is silent on the topics
mentioned above. Most of the developments covered by Canuto et al. are de-
voted to simple geometries, but a last chapter entitled “Domain Decomposition
Methods” introduces extensions to more complex geometries. Recent achieve-
ments in the field of high-order methods have far-reaching consequences for
geometrically complex configurations. As these constitute the basic ingredients
of engineering design problems, they may be embodied in the formulation of
the problem itself and in the related algorithms.

This book is intended to be an advanced textbook on high-order methods
applied to incompressible fluid flow problems. Its intended audience includes
engineers, numerical analysts, computational scientists, and students with a

xxv



xxvi Preface

background in numerical methods and fluid mechanics. The text is not aimed at
mathematical proofs of convergence, but rather at practical applications and re-
sults achievable with large-scale computing capabilities. The goal is to show the
realm of feasibility of high-order methods: accuracy versus efficiency, tractable
problems, nonlinearities, complex geometrical configurations, and the influ-
ence of computer architectures. Moreover, as the previous texts cover much
of the spectral approaches either in Fourier or in Chebyshev space, we focus
in this book on high-order methods in physical space, namely, collocation and
spectral elements.

The introductory Chapter 1 presents the basic equations of incompressible
Newtonian flows, including natural convection through the Boussinesq approx-
imation. Several simplified models are derived on the basis of dimensional
analysis, which will be examined in further chapters in order to build the ap-
propriate algorithms. The chapter concludes with considerations on numerical
simulation.

Chapter 2 is devoted to the numerical solution of one-dimensional elliptic
problems. One recalls the variational weak formulation, because this leads
to physical interpretation. The framework of Galerkin methods is introduced
in the context of polynomial approximations. High-order methods are closely
associated with Gaussian quadrature rules, and the resulting algebraic equations
are intrinsically of large size and numerically ill-conditioned. Therefore, their
implementation requires preconditioning techniques.

Chapter 3 analyzes hyperbolic and parabolic problems in the same fashion
as elliptic problems in the preceding chapter. The first part of the chapter deals
with numerical schemes for the solution of nonlinear systems of ordinary differ-
ential equations. Steady-state advection and/or advection–diffusion problems
are treated in the second part, as well as evolutionary problems. Finally, the
Burgers equation is introduced as an example of a nonlinear model.

Chapter 4 generalizes the introductory concepts to multiple space dimen-
sions. The key element lies in a tensor-product formulation of the one-
dimensional space approximation that is at the heart of algorithmic develop-
ments. Elliptic, parabolic, and hyperbolic problems are systematically studied.
Multidimensional implementation issues are discussed in detail. This chapter
makes a thorough analysis of orthogonal collocation methods and spectral ele-
ment discretizations.

Chapter 5 deals with the velocity–pressure formulation of the steady Stokes
and Navier–Stokes equations. The key issue of compatible discretizations of
velocity and pressure is fully considered. The Babuška–Brezzi or inf–sup con-
dition is recalled for the right functional spaces, and a decoupling of the pressure
computation is presented in the Uzawa algorithm. The chapter ends with the
analysis of multidimensional Navier–Stokes problems.
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In Chapter 6, we treat the unsteady Stokes and Navier–Stokes equations
presenting the state-of-the-art splitting and projection methods. The arbitrary
Lagrangian–Eulerian method is also introduced to deal with free surface flows.
A new filtering technique is described that enables simulations at higher
Reynolds number values. The chapter ends with a few relevant applications.

Chapter 7 is devoted to the domain decomposition methods and adaptivity
techniques. Substructuring and overlapping Schwarz methods are introduced as
building blocks for efficient iterative solution of elliptic problems. Discretiza-
tion developments include the mortar element method and unstructured ap-
proaches based on high-order simplicial mesh elements.

Chapter 8 considers the issues of vectorization and parallelism through study
cases that include spectral element and collocation techniques.

The book may be used in two different ways for teaching purposes. The
first consists in using it at the undergraduate level as an introductory course in
high-order methods devoted to applied mathematics problems. Chapters 2, 3,
and 4 would present the material of space and time discretizations and related
algorithmic considerations. The second path builds upon the previous mate-
rial and covers the incompressible Navier–Stokes equations treated by spectral
element and collocation methods for direct numerical simulation. Each chap-
ter describes the theoretical and implementation considerations and illustrates
these by several examples of current applications. This second course is more
advanced and would require as prerequisites courses in scientific computing or
numerical methods and some knowledge of the basic concepts of incompress-
ible fluid mechanics.

The book has been written through an effort spread over several years.
Throughout the course of writing, we have benefited from fruitful discussions
with numerous researchers active in the field. These discussions allowed us to
synthesize some thoughts about high-order methods and their application to
physical and engineering problems. We are solely responsible for these points
of view and hope that they will be of use to the community at large.

Given the rapid expansion of the field, it is difficult to provide a complete bib-
liography. We have tried to be as comprehensive as possible, and we apologize
to authors whose work we may have overlooked.

We would like to thank David Gottlieb for his support and initiative in
encouraging this effort. We gratefully acknowledge the careful feedback and
constructive comments of our colleagues Mejdi Azaı̈ez, Robert Beauwens,
Cédric Chauvière, Emmanuel Leriche, Anthony T. Patera, Etienne Perchat,
Alfio Quarteroni, Einar Rønquist, Henry Tufo, and Olof Widlund. We would
like to thank Gail Pieper for her attention to detail in editing the manuscript.





1
Fluid Mechanics and Computation:

An Introduction

According to the Greek philosopher Heraclitus, who used to say “παντα
ρει . . . ,”1 daily life is concerned with the flow of ordinary fluids: water, air,
blood, and so forth, in very common situations like breathing, coffee drinking,
and hand washing.

Most flows are generated by nature (e.g., oceans, winds, rivers) and by
human industrial activity (e.g., planes, cars, materials processing, biomedical
engineering). There is a need to model fluid flow problems in order to improve
the basic understanding of these complex phenomena and to increase the design
quality of technological applications. With the advent of large and powerful
computational tools, modeling has become more and more a substitute for
direct experimentation. In some circumstances, experimentation may be too
expensive – particularly if it leads to the destruction of the facility – or even
impossible to perform, so that modeling is the only reasonable way to get
answers and to study a range of parameters for optimal design.

1.1 Viscous Fluid Flows

We know from experience that many flows are set into motion by shear forces,
and hence viscous effects play a vital role in fluids. In general, the viscos-
ity depends on the shear rate (roughly speaking, the velocity gradient), as is
explained by non-Newtonian theory. In this book, however, we will restrict
ourselves mainly to the case of viscous Newtonian incompressible fluids in
isothermal situations or under the influence of thermal convection as described
by the Boussinesq approximation.

1 Everything flows. . . .

1
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The conceptual framework through which the governing equations will be
derived is the axiomatic presentation based on the principles of the mechanics
of continuous media (see, e.g., Gurtin [179], Truesdell [385], Truesdell and
Toupin [387], and, more recently, Truesdell and Rajagopal [386]), although
the equations also can be obtained from the principles of statistical mechan-
ics (Cercignani [77]). This process will deliver the well-known Navier–Stokes
equations, a set of nonlinear partial differential equations (PDEs) subject to both
initial and boundary conditions.

A major parameter characterizing the flow features is given by the Reynolds
number, which is a nondimensional measure of the importance of inertial forces
relative to viscous forces. Starting from a zero value (creeping Stokes flow),
where the physics is straightforward because the model is basically linear,
the sweep to increasing values leads from laminar flow to the transition to
turbulence. Later stages are weak turbulence and fully developed turbulence;
correspondingly the Reynolds number goes up from a few hundred to sev-
eral million. In this latter situation, the physics becomes quite complicated,
even in simple geometrical configurations, because the flow structure is highly
nonlinear and time-dependent, and involves spatial scales spread over sev-
eral orders of magnitude. These circumstances render the use of computers
essential.

The advent of computers led to the emergence of numerical fluid mechan-
ics, also known as computational fluid dynamics (CFD). At the beginning, this
new discipline brought some hope that computation would open the door to
simulations of transient, three-dimensional (3D) flows in or around industrial
(complex) geometries at high Reynolds numbers. These flows correspond to
internal or external flows, respectively. Reality has disappointed the expecta-
tions of this naive picture. We will analyze the difficulties faced by compu-
tational scientists at the present time and will study carefully the advantages
(and drawbacks) of applying high-order methods to CFD. Despite spectacular
breakthroughs in software and hardware, the present tools are still insufficient
to cope with direct numerical simulation (DNS) at moderate (≈104–105) and
high (≈ 106–107) Reynolds numbers. Therefore, large-eddy simulation (LES),
where the gross structures of the flow are resolved spatially and temporally and
where small scales are modeled through a subgrid-scale approximation, consti-
tutes a viable compromise between the expensive DNS and the first- or second-
order moment closure models applied to the Reynolds-averaged Navier–Stokes
equations (RANS). Fortunately, even though it is more complicated to model,
LES retains the same computational complexity as the classical Navier–Stokes
equations.
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Before turning to mathematical models, we mention examples of flows
arising in nature and industrial processing. The following list is by no means
exhaustive:

• Creeping flows with thermal convection: plate tectonics, glass flow in a
furnace.

• Materials processing: crystal growth, mold filling, thermal convection in a
molten tin bath of a float glass process.

• Biofluid mechanics: blood flow in stenosed arteries (see, for example,
Tu et al. [388]) through artificial valves.

• Hydraulic machines: flow through a Francis runner.
• Turbulent flows with thermal convection: liquid-metal processing, planetary

sciences (Jupiter’s red spot; see, for example, Marcus [266]).

As examples of DNS, we mention the computation of a flow in a square duct
(e.g., Gavrilakis [150]), in a 3D parallelepipedic cavity (e.g., Deville et al. [98]),
and in a cubical cavity (e.g., Leriche and Gavrilakis [240]).

In this chapter, we review the general principles of fluid mechanics: mass
conservation (Section 1.2), momentum and angular momentum conservation
(Section 1.3), and the first and second principles of thermodynamics (Sections
1.4 and 1.5, respectively). Then, we discuss the fluid flow equations (Section
1.6) and the relevant dimensionless numbers characterizing the physical sit-
uations (Section 1.7). Section 1.8 presents the vorticity equations. In Section
1.9, we discuss simplified models that can be derived as limit cases of the
general equations when some dimensionless numbers go to extreme values.
The challenge raised by turbulence then is examined. Several turbulence models
are given, and large-eddy simulation is also summarized (Section 1.10). Because
these last problems lead to large-scale, computation-intensive applications, the
questions coming from scientific computing are evoked in a broad sense, that
is, in the context of software and hardware interactions (Section 1.11). In par-
ticular, parallel computing and second-generation languages are scrutinized.

1.2 Mass Conservation

The principle of mass conservation states: In a given deforming material vol-
ume (t), the mass M(t) is constant with respect to time t . Translated into
mathematical terms, this principle yields the relation

d

dt
M(t) = 0, (1.2.1)
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where the mass M(t) is expressed as

M(t) =
∫
(t)

ρ dV, (1.2.2)

with ρ the volumetric mass of the fluid. Generally speaking, the Reynolds
transport theorem is employed to evaluate the rate of change of volume integrals
of a material property, say f , when the volume is changing in time. Defining
the integral

I (t) =
∫
(t)

f (x, t) dV, (1.2.3)

where f is a function of position x and time, one obtains

d I

dt
=

∫
(t)

(
D f

Dt
+ f div v

)
dV . (1.2.4)

In Equation (1.2.4), the symbol D/Dt denotes the material time derivative

D

Dt
= ∂

∂t
+ v · ∇, (1.2.5)

and v is the velocity field in the Eulerian representation. Combining Equa-
tions (1.2.1), (1.2.2), and (1.2.4) gives∫

(t)

(
Dρ

Dt
+ ρ div v

)
dV = 0. (1.2.6)

The relationship is valid for any material volume inside the fluid. Consequently,
this equation holds only if the integrand vanishes everywhere in the fluid. This
gives rise to the local equation of mass conservation:

Dρ

Dt
+ ρ div v = 0, (1.2.7)

which can be rewritten as

∂ρ

∂t
+ div(ρ v) = 0. (1.2.8)

A fluid shows the property of incompressibility if ρ does not depend on the
pressure and temperature. For an incompressible fluid, ρ is a constant, and

Dρ

Dt
= 0, (1.2.9)
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which implies by (1.2.7) that

div v = 0. (1.2.10)

This is the incompressibility constraint, requiring that the velocity field be
solenoidal.

1.3 Momentum Equations

In this section, we review the generalization of Newton’s law for continuous
media, which brings into consideration also the equilibrium equation and the
angular momentum conservation law.

1.3.1 Linear Momentum

The principle of linear momentum conservation generalizes Newton’s law of
rational mechanics to continuous media: The time rate of change of the momen-
tum of a deforming material region embedded in (t) is equal to the sum of
the forces applied to that region. These forces can be decomposed into a body
force f and surface contact forces t. The former is a volume force (gravity, for
example), while the latter are exerted across the surface ∂(t) surrounding the
material. Mathematically, one obtains

d

dt

∫
(t)

ρ v dV =
∫
∂(t)

t d S +
∫
(t)

ρ f dV . (1.3.1)

The Cauchy principle implies that the density of contact forces represented
by the stress vector t depends on the oriented normal n to ∂(t) at x. More
precisely, there is a tensor field such that

t(x,n)=σ(x)n, (1.3.2)

where σ denotes the stress tensor. In indicial notation, (1.3.2) becomes

ti = σi j n j , (1.3.3)

with the assumption of the Einstein summation convention for repeated indices.
The stress component σi j gives the stress in the i th direction of the coordinate
system on a plane surface element with a normal that is positively oriented in
direction j .

With the help of the transport theorem (1.2.4), the mass conservation
property (1.2.8), the Cauchy principle (1.3.2), and the divergence theorem,
Equation (1.3.1) provides the equation of motion:

ρ
Dv
Dt
= divσ + ρ f. (1.3.4)
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1.3.2 Angular Momentum

The principle of angular momentum conservation states that the rate of change
of the angular momentum of a deforming material region inside (t) is equal
to the sum of the applied torques. After some algebra [387], omitted for the
sake of conciseness, we arrive at the symmetry condition of the stress tensor,

σ = σT , (1.3.5)

the superscript T indicating the transpose.

1.4 Energy Conservation

The general principle of energy conservation, also known as the first law of
thermodynamics, states that the rate of change of the total energy within a
deforming material region (t) is equal to the rate at which this energy is
received through heat and work transfer. One writes

d

dt

∫
(t)

ρ

[
1

2
v · v+U

]
dV =

∫
∂(t)

t · v d S +
∫
(t)

ρ f · v dV

+
∫
∂(t)

(−q · n) d S+
∫
(t)

ρr dV .

(1.4.1)

In (1.4.1), U is the internal energy per unit mass, q the heat flux, and r the heat
source per unit mass. This last term represents, for example, the heat supply (or
consumption) through chemical reactions in the fluid mass. Invoking again the
transport theorem, the mass conservation principle, the Cauchy principle, and
the divergence theorem, one can rewrite (1.4.1) as follows:

ρ
D

Dt

(
1

2
v2 +U

)
= div(σ · v)+ ρ f · v− div q+ ρ r. (1.4.2)

Subtraction of the equation of motion (1.3.4) multiplied by v from (1.4.2) yields
the relation for the rate of change of the internal energy

ρ
DU

Dt
= tr(σ∇v)+ ρ r − div q, (1.4.3)

where tr denotes the trace operator. In the right-hand side (r.h.s.) of (1.4.3), the
first term is the rate of mechanical energy dissipation.
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1.5 Thermodynamics and Constitutive Equations

The irreversibility of thermodynamic processes implies that the time rate of
change of the entropy inside the material region (t) is always bounded from
below by the heat supply. Designating by S the entropy per unit mass and by
T the absolute temperature, the second law of thermodynamics postulates

d

dt

∫
(t)

ρ S dV ≥
∫
(t)

ρ
r

T
dV −

∫
∂(t)

q · n
T

d. (1.5.1)

Again, the application of the Reynolds transport theorem, the mass conservation
principle, and the divergence theorem to (1.5.1) leads to the local form

ρ
DS
Dt
≥ ρ

r

T
− div

( q
T

)
. (1.5.2)

Combining (1.4.3) and (1.5.2) to eliminate r , one obtains the Clausius–Duhem
inequality

ρ
DS
Dt
≥ 1

T

(
ρ

DU

Dt
− tr(σ∇v)

)
+ 1

T 2
q∇T . (1.5.3)

This inequality, which has to be satisfied by viscous Newtonian fluids, needs
the introduction of the constitutive relations for the stress tensor and the heat
conduction flux. The constitutive equations relate the stress tensor σ to the
pressure p and to the rate-of-deformation tensor d, the symmetric part of the
velocity gradient tensor, defined by the expression

d := 1

2
[∇v+ (∇v)T ]. (1.5.4)

These general material constitutive relations must be independent of the frame
of reference used to describe position and time. For a Newtonian fluid, the
frame-indifferent stress tensor σ is given by

σ = (−p + λ tr d)I + 2µd, (1.5.5)

where λ is the bulk viscosity and µ is the dynamic shear viscosity. The quantity
tr d is the first invariant of the tensor d and is equal to div v. For an incompressible
fluid, tr d = 0; see (1.2.10).

The heat flux q in an isotropic heat-conducting medium obeys Fourier’s law,
which expresses a first-order approximation of q with respect to the temperature
gradient,

q = −k ∇T, (1.5.6)
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where k is the coefficient of thermal conductivity. From the Clausius–Duhem
inequality (1.5.3), the material coefficients in (1.5.5) and (1.5.6) satisfy the
classical inequalities

µ ≥ 0, 3λ+ 2µ ≥ 0, k ≥ 0. (1.5.7)

For an incompressible fluid where U =U (S, T ) and c= ∂U/∂T , the heat
capacity c is unique because the difference between heat capacities at constant
pressure and constant volume, cp and cv , respectively, vanishes [293]. With
the help of (1.5.5) and (1.5.6), the energy equation (1.4.3) is now

ρ c
DT

Dt
= div(k ∇T )+ ρ r +�, (1.5.8)

where � is the dissipation function defined by the relation

� = 2µd : d. (1.5.9)

The product d : d is the dyadic product di j di j . To obtain this last expression,
we used the identities

∇v = d+ w, (1.5.10)

with w the skew-symmetric rate of rotation tensor and

d : w ≡ 0. (1.5.11)

1.6 Fluid Flow Equations and Boundary Conditions

In this section, we present the incompressible Navier–Stokes equations, which
will be the major cornerstone of our mathematical model. To include ther-
mal effects, we describe the Boussinesq approximation where the fluid is still
considered as incompressible. The section ends with the initial and boundary
conditions in various cases.

1.6.1 Isothermal Incompressible Flow

A Newtonian incompressible fluid has the constitutive relation

σ = −pI+ 2µd. (1.6.1)

Substituting this equation into the momentum equation (1.3.4), one obtains

ρ
Dv
Dt
= −∇ p+∇ · {µ[∇v+ (∇v)T ]} + ρ f. (1.6.2)
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If the viscosity µ is constant in (1.6.2), one establishes the Navier–Stokes
equations for incompressible fluids,

ρ
Dv
Dt
= −∇ p + µ�v+ ρ f, (1.6.3)

which cannot be separated from the divergence-free condition

div v = 0. (1.6.4)

The symbol � represents the Laplacian operator (� = ∂2/∂x j∂x j ). This set of
nonlinear equations is to be solved subject to boundary and initial conditions
elaborated on later in this section.

1.6.2 Thermal Convection: The Boussinesq Approximation

If the thermal effects are such that the incompressibility assumption is no longer
valid, one must resort to the general Navier–Stokes equations for a compressible
fluid. However, in some nonisothermal problems such as materials processing
(glass flow, polymer or plastics processing), the fluid can still be considered
as incompressible. The coupling between fluid dynamics and temperature evo-
lution is made through the Boussinesq approximation. In this approximation,
the volumetric mass is taken as a constant everywhere in the momentum and
energy equations except in the body-force term. There, the volumetric mass
varies according to the following equation of state:

ρ = ρ0[1− α(T − T0)], (1.6.5)

where α is the volume expansion coefficient and ρ0 = ρ(T0) with T0 a reference
temperature. For natural convection, the body-force term f is equal to the gravity
acceleration g. The so-called Boussinesq equations are

div v = 0, (1.6.6)

ρ0
Dv
Dt
= −∇ p + µ�v+ ρ0 g[1− α(T − T0)], (1.6.7)

ρ0 c
DT

Dt
= div(k ∇T )+ ρ0r +�. (1.6.8)

The last term in the r.h.s. of (1.6.7) is the buoyancy force that drives the motion
by the temperature differences in the physical domain of the flow. In most
applications, the volume source term ρ0r in (1.6.8) does not appear, and we
will discard it in the sequel.
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1.6.3 Boundary and Initial Conditions

The transient Navier–Stokes equations (1.6.3) are of mixed type. In the clas-
sical sense, they are parabolic because of the ellipticity of the viscous terms.
However, for high-Reynolds-number flows, the nonlinear part of the material
time derivative dominates, emphasizing the hyperbolic character of the opera-
tor. Close to the walls, the viscosity effects remain important, and hyperbolic
and elliptic operators are of the same order of magnitude.

The continuum mechanics hypothesis implies that a viscous fluid sticks to
the wall. Therefore, one imposes the no-slip wall condition

v = vw, (1.6.9)

vw being the prescribed wall velocity. If the Reynolds number is high enough and
if one assumes that the viscous influence may be neglected near the boundaries,
the free-slip condition requires

v · n = vw ·n. (1.6.10)

An interesting class of fluid flow problems is concerned with free-surface flows,
where a viscous fluid is directly in contact with a relatively inviscid fluid such as
air. Some industrial examples are coating flows, extrusion, and crystal growth.
These problems are highly nonlinear, because the shape of the free surface,
where special conditions are to be applied, is also part of the solution itself.
Since the free surface is in mechanical equilibrium, we have, from (1.3.2),

tfluid + tgas = 0. (1.6.11)

The projection of this relation onto the normal (n) with respect to the viscous
fluid and tangent (τ ) unit vectors of the surface produces the free-surface
conditions (ngas = −n)

tfluid · n = tgas · n = −pgas, (1.6.12)

tfluid · τ = 0. (1.6.13)

If the surface tension γ is taken into account, (1.6.12) and (1.6.13) are modified
to be

tfluid · n = −pgas + γ 〈R−1〉, (1.6.14)

tfluid · τ = τ · ∇γ, (1.6.15)

where 〈R−1〉 represents the mean curvature of the surface. The r.h.s. of (1.6.15)
models the surface tension gradient, known as the Marangoni effect, induced
by temperature variations at the free surface [352].
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For the temperature equation (1.6.8), the general boundary condition is

q ·n = q0 ·n+ h(T − Te). (1.6.16)

In this last equation, q0 is a constant prescribed heat flux (for example, the
heat loss across the wall), h is a heat transfer coefficient, and Te is an exte-
rior reference temperature. The relation (1.6.16) may be rewritten as a Robin
condition

a T + b∇T ·n = d, (1.6.17)

with a, b, and d given constants.
The initial condition requires that the velocity field satisfy

v(x, t = 0) = v0(x), (1.6.18)

with

div v0 = 0, (1.6.19)

and the initial boundary conditions. The superscript indicates the time level.

1.7 Dimensional Analysis and Reduced Equations

From the physical or engineering point of view, it is always rewarding to write
down the dimensionless set of equations. The immediate payoff is insight into
the dominant phenomena and, consequently, the simplifications that the full
model can endure to embody them.

The cornerstone of dimensional analysis, the celebrated � theorem (see, for
example, Panton [293]), indicates by linear algebra arguments that the process of
nondimensionalization is not unique. We illustrate this point with the isothermal
incompressible Navier–Stokes equations (1.6.3). Let us choose the dimension-
less variables, denoted by primes, with the following basic scales: a reference
length L for space, an inertial time L/U , and a reference velocity U . The pres-
sure is scaled by the dynamic pressure ρU 2, and the body force by U 2/L . The
variables are now x′ = x/L , t ′ = Ut/L , v′ = v/U , p′ = (p − p0)/(ρU 2), and
f ′ = f L/U 2. Dropping the primes for ease of notation, we obtain

Dv
Dt
= −∇ p + (Re)−1 �v+ f. (1.7.1)

The Reynolds number Re by definition yields the ratio of inertia to viscous
forces,

Re := ρU L

µ
= U L

ν
, (1.7.2)
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where ν is the kinematic viscosity. We note that if f is equal to the gravity
acceleration g, then the amplitude ‖f ′‖ is equal to the reciprocal of the Froude
number Fr :

Fr := U 2

L ‖g‖ . (1.7.3)

For advection-dominated flows characterized by high Reynolds numbers,
the Navier–Stokes equations become a singular perturbation problem. The
boundary layers develop and drive the dynamics. Special analytical methods
have been designed to treat those problems (Bender and Orszag [30]). If we ig-
nore the influence of f in (1.7.1), the limit form of the Navier–Stokes equations
for Re→∞ is the Euler equation

Dv
Dt
= −∇ p. (1.7.4)

If we look for the other limit (i.e., Re→ 0), we observe that (1.7.1) fails to
produce the Stokes equations. The reasons for this failure are associated with
the choice of the time and pressure scales that emphasize the inertial terms. To
obtain the right model for a creeping flow, we must rely essentially on viscosity.
Defining t ′ := νt/L2 and p′ := (p − p0)/(µU/L), and dropping the primes as
before, we have for the dimensionless Navier–Stokes equations

∂v
∂t
+ Re (v · ∇v) = −∇ p +�v+ Re f. (1.7.5)

For Re→ 0, we recover the Stokes equations

∂v
∂t
= −∇ p +�v. (1.7.6)

The Euler equations (1.7.4) are nonlinear and hyperbolic, with an elliptic
term coming through the pressure gradient, while the Stokes relations (1.7.6)
are linear and parabolic. A typical example of a fluid flow modeled by the Stokes
equations is the flow of oil, whereas the Euler equations are used to study the
water flow in hydraulic machines (pumps, turbines).

We now proceed with the Boussinesq equations (1.6.6)–(1.6.8). Defining
again x′ := x/L , v′ := v/U , t ′ := tU/L , we introduce the quantities p′ :=
(p − ρ0 g · x)/(ρ0U 2) and T ′ := (T − T0)/δT . Here δT is the difference be-
tween two reference temperatures (δT = T1 − T0, say) and gives an order-of-
magnitude estimate of the thermal gradient. We notice that the reduced pressure
is modified by the presence of the hydrostatic pressure. Leaving out the primes,
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we obtain

div v = 0, (1.7.7)

Dv
Dt
= −∇ p + (Re)−1 �v− Ri

g
‖g‖T, (1.7.8)

DT

Dt
= (Pe)−1(�T + Br �). (1.7.9)

The dimensionless numbers in (1.7.8) and (1.7.9) are the Reynolds number, the
Richardson number

Ri := αg δT L/U 2, (1.7.10)

and the Péclet number

Pe := U L/κ, (1.7.11)

where κ := k/ρ0c is the thermal diffusivity and g = ‖g‖. We observe that Pe
is the analog of Re for the temperature equation, comparing convection with
thermal diffusion (conduction), while Ri compares the buoyant force with the
kinetic energy.

In the case of natural convection, the previous dimensional setting is a source
of difficulty because it is not obvious how to choose the reference velocity U .
The introduction of new nondimensional numbers will overcome this problem.
The Brinkman number Br is defined by the equation

Br := µU 2

k δT
(1.7.12)

and compares the heat produced by viscous dissipation with thermal conduction.
It usually has very low values (typically 10−3), with some noticeable exceptions
such as natural convection in the earth’s mantle. The Prandtl number

Pr := ν/κ = Pe/Re (1.7.13)

is a material characteristic. Its value ranges from 10−2–10−3 for a liquid metal
to a few hundred for molten glass; it is approximately 1 for air. The Grashof
number Gr represents the ratio of buoyant forces to viscosity effects:

Gr := αg L3 δT/ν2. (1.7.14)

The Rayleigh number

Ra := αg L3 δT/ν κ (1.7.15)
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is most used in transition problems because it compares the destabilizing buoy-
ant term to stabilizing viscous and conductive mechanisms. With Equations
(1.7.10) and (1.7.13)–(1.7.15), we have

Ra = Gr Pr , Ri = Gr/Re2. (1.7.16)

If we select the reference velocity with respect to the dominant physical
phenomenon, we are left with particular definitions of Re, Pe, and Ri and
specific forms of the dimensionless equations (1.7.8) and (1.7.9). We obtain for
a characteristic velocity based on the buoyancy term (Gray and Giorgini [165])

Uα = (αg δT L)1/2, Re =
(

Ra

Pr

)1/2

, Pe = (Ra Pr )1/2, Ri = 1;

(1.7.17)

for a viscous characteristic velocity (Chorin [78])

Uν = ν/L, Re = 1, Pe = Pr , Ri = Gr ; (1.7.18)

and for a thermal-diffusivity-based velocity (de Vahl Davis [93])

Uκ = κ/L, Re = (Pr )−1, Pe = 1, Ri = Ra Pr. (1.7.19)

From the dimensional analysis, we have some guidelines to help answer the
question: Which model should we use to investigate, say, the float glass process?
This process involves use of two furnaces. The first one melts the raw material,
which is basically sand and a few additional chemical products to help the
fusion. The second furnace is aligned with respect to the previous one in such a
way that the molten glass floats over a bath of molten tin. As the two fluids are
immiscible, glass remains on top of the tin, cools down, and forms a plate. In
the molten-glass furnace, where viscosity constitutes the main physical effect,
Equation (1.7.18) determines the flow dynamics with respect to the viscous time
scale ν/L2, which is of the order of a few hours and is in good agreement with
experimental data. Clearly, the nonlinear advection comes from the temperature
that is transported by the glass, an insulating material (at room temperature). On
the contrary, in the tin bath (Pr ≈ 10−2), heat conduction is of primary concern.
The choice of (1.7.19) yields the conduction time scale κ/L2. The nonlinearity
is now on the hydrodynamics side, where boundary-layer dynamics will govern
the flow.
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1.8 Vorticity Equation

The velocity–pressure (primitive variables) formulation in the isothermal in-
compressible case (1.6.3)–(1.6.4) is the most general one, especially in the
presence of free surfaces. One major drawback comes from the pressure cal-
culation, because the pressure is not provided by a prognostic equation as the
velocity is. The vorticity–velocity formulation is another possible choice to
circumvent this difficulty. Taking the curl of (1.6.3) and defining the vorticity
ω = ∇ × v, we can describe the vorticity dynamics by the relation

Dω

Dt
= ω · ∇v+ ν�ω, (1.8.1)

while the velocity field may be obtained from the Poisson equation

�v = −∇ × ω. (1.8.2)

The first term on the right-hand side of (1.8.1) has no counterpart in the classical
Navier–Stokes equations. It is a three-dimensional effect connected with the
extension or shortening of vortex filaments or with their angular deformation
induced by the local flow [23]. We recall that vorticity is produced at the wall
by viscosity and pressure-gradient effects, diffused away from the wall, and
then advected in the interior of the flow. To integrate (1.8.1)–(1.8.2), we apply
the kinematic boundary conditions on solid walls to the velocity v and (through
the vorticity definition) to ω. Two-dimensional calculations where the term
ω · ∇v is canceled in (1.8.1) were performed recently by Daube [90]. Three-
dimensional solutions were obtained by Gatski et al. [149].

Another way to look for solutions of (1.8.1) involves the use of the vector
(3D) potential Ψ or the (2D) scalar stream function ψ . The latter technique
has been widely used since the infancy of CFD because it avoids the pressure
computation. The 2D dimensionless form of the equations (1.8.1)–(1.8.2) is

Dω

Dt
= 1

Re
�ω, (1.8.3)

�ψ = −ω. (1.8.4)

The major difficulty of this formulation is in determining the appropriate vor-
ticity boundary conditions. The traditional approach (in finite differences, for
example) couples ωBC, where the subscript BC refers to boundary conditions,
with adjacent ψ-values at points close to the walls (Roache [328]). A weak
formulation in a finite-element treatment was proposed by Campion-Renson
and Crochet [61], where the normal derivative of ψ is the natural boundary
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condition for the ψ Poisson equation, while the normal derivative of ω is the
natural condition for the vorticity dynamics. In summary, because of the cou-
pling between ψ and ω, the modern view of imposing boundary conditions for
the two-dimensional vorticity–stream-function formulation involves the stream
function itself and its normal derivative ∂ψ/∂n.

The reader is referred to [166] for a complete review of the preceding topics.

1.9 Simplified Models

For the development and testing of numerical methods, it is often useful to
consider subsets of the full Navier–Stokes equations. For example, if we ne-
glect the pressure contribution and integrate (1.7.1) with an implicit Euler time
treatment of the viscous term and an explicit scheme for the nonlinear term
that will be transferred to the right-hand side, we obtain a Helmholtz equation,
which reads in its scalar version (with u replacing v)

λu−�u = f, (1.9.1)

with λ = (�t)−1 Re. If the Helmholtz parameter λ vanishes, we get a Poisson
equation of the same type as (1.8.4):

−�u = f. (1.9.2)

Finally, for a zero source in (1.9.2), we obtain the Laplace equation

�u = 0. (1.9.3)

These last three relations are elliptic and do not involve time explicitly. The
associated physics is stationary and linear, and a great deal of mathematical
literature supplies existence and uniqueness proofs together with appropriate
solution methods.

If we neglect the pressure contribution in (1.7.6), the one-dimensional ver-
sion is the parabolic relation

∂u

∂t
= �u, (1.9.4)

which is again a linear mixed initial–boundary-value problem.
The linearized Euler equation (1.7.4) with the pressure contribution dis-

carded yields a one-dimensional hyperbolic wave equation of the form

∂u

∂t
+ c

∂u

∂x
= 0, c > 0. (1.9.5)
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If we now incorporate viscous effects into (1.9.5), we get a linear advection–
diffusion equation

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
. (1.9.6)

Finally, the one-dimensional counterpart of the Navier–Stokes equation with
no pressure contribution consists of the nonlinear Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1.9.7)

the solution of which may be obtained in closed form.
All the simplified equations (1.9.3)–(1.9.7) represent part of the analytical

and numerical difficulties that must be considered in the design of Navier–
Stokes solvers. In the first chapters of this book, we will review the basic
numerical techniques to handle these reduced and more tractable problems
efficiently. Once those building blocks have been well established, we will turn
to the development of techniques directed to the difficulties encountered in
numerical fluid dynamics per se.

1.10 Turbulence and Challenges

Above a certain critical Reynolds number, flows enter a transition stage and
follow a route to chaos, weak turbulence, and, eventually, developed turbulence.
Turbulent flows are unsteady, rotational, dissipative, and highly random.

The critical Reynolds number typically ranges from a few hundred to a few
thousand. It depends very much on the geometry (internal or external flow,
complex shapes, etc.) and the surface conditions (smooth or rough). Turbulent
flows at Re ≈ 104 are within the realm of feasibility of present direct numer-
ical simulations. However, they involve discretizations of the order of several
million points and require approximately one thousand hours on a state-of-the-
art computer to perform a single calculation. Clearly, direct simulations for
Re � 104 are beyond the reach of most present supercomputers.

As an example, we consider the flow of a river in its estuary (Re ≈ 106). The
space scales are in the range from 100 m for the large vortex structures to 10−2

m for the small eddies where viscosity dissipates the mechanical energy into
heat. Using a uniform mesh (a bad idea in this case!) with �x = 10−2 m, we
are led to 104 grid points in each spatial direction in order to resolve all length
scales. The most pertinent dynamical time scale is of the order of one minute for
large eddies. If an explicit time-marching algorithm is designed, the Courant–
Friedrichs–Lewy (CFL) stability condition coming from the dynamics of the
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small-scale events imposes a time step of the order of the mesh size, typically
10−2 s. Consequently, 60/10−2 ≈ 104 steps will be needed to simulate one
revolution of a typical large vortex. This represents a total of 4× 1016 unknowns
(three velocities and one pressure per grid point and per time step). If we assume
that the program coding involves 100 floating-point operations per unknown, we
are left with the prospect of 4× 1018 operations. If we assume a computational
speed of 2 Gflops (gigaflops ≡ one billion floating-point operations per second),
we have to execute this program for about ten years, a decision that is not going
to elate our sponsors, not to mention the skyrocketing amount of the final
invoice.

The solution to this difficult challenge is twofold: (1) turbulence modeling
and large-eddy simulation, a software improvement by methodological means;
(2) computer architecture (i.e., hardware) redesign. We defer the examination of
the second solution until the next section and concentrate here on the exploration
of software and modeling issues.

Numericists tackle the computation of viscous turbulent flows from both
ends of the Reynolds-number spectrum. On the one hand, for moderate to high
Reynolds numbers, LES integrates unsteady filtered Navier–Stokes equations
(see, e.g., Ferziger [122]) in conjunction with a subgrid scale model based on the
hypothesis that unresolved small-scale motions have a universal homogeneous
behavior. Mean statistical quantities are then obtained from the database results
generated by LES. On the other hand, for very high Reynolds numbers aimed
at developed turbulence, one addresses the Reynolds-averaged Navier–Stokes
equations closed by a zero-, one-, or two-equation model (Tennekes and Lumley
[377] or Reynolds [324]).

The basic philosophy behind the RANS approach consists in decomposing all
quantities in terms of average or mean variables and fluctuations. The velocity
field is the sum of two quantities

v = v̄+ v′, (1.10.1)

where v̄ is the mean velocity and v′ the fluctuation around that mean. The mean
velocity field is usually defined as the time average over the interval T :

v̄ = 1

T

∫ t+ T
2

t− T
2

v(τ ) dτ. (1.10.2)

Applying the averaging procedure to (1.2.10) and (1.3.4), one obtains the
Reynolds-averaged Navier–Stokes equations

div v̄ = 0, (1.10.3)

ρ
D̄v̄
Dt
= div(σ̄ + R)+ ρ f̄, (1.10.4)
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where σ̄ denotes the Newtonian mean stress tensor and f̄ the mean body force.
The components of the symmetric Reynolds stress tensor given by

R = −ρv′ ⊗ v′ (1.10.5)

provide the turbulence contribution to the flow. The mean material time deriva-
tive involves the mean velocity field in the transport term:

D̄

Dt
= ∂

∂t
+ v̄ · ∇. (1.10.6)

A review by Launder [236] of Reynolds stress closure emphasizes the fact
that, in addition to Equations (1.10.3)–(1.10.4), six additional dynamical equa-
tions for R should be integrated. These equations involve new correlations that
are difficult to model (especially those including pressure–rate-of-deformation
tensor correlations) and to treat numerically, because these advection–diffusion-
type relations have stiff source or sink terms. Let us consider the classical tur-
bulence modeling, the so-called k–ε model, which handles only two additional
quantities: the kinetic turbulent energy k defined by the relationship

k = 1

2
vi
′vi
′, (1.10.7)

and the rate of energy dissipation,

ε = ν
∂vi
′

∂x j

∂vi
′

∂x j
. (1.10.8)

Following the line of reasoning of continuum mechanics, we can link the
Reynolds stress tensor to the mean velocity field by the constitutive relation

R = −2

3
ρkI+ 2µT d̄, (1.10.9)

where µT is the turbulent viscosity introduced by Boussinesq in 1877 [45].
We notice that this approach “by analogy” is not completely justified, however,
since turbulence is not a material characteristic but instead a flow property.

The zero-equation model, known also as the mixing-length theory (see
Schlichting [344]), defines µT as

µT = ρl2(IId̄)1/2, (1.10.10)

l = κn+, (1.10.11)

where IId̄ is the second invariant of d̄, κ the Karman parameter (κ = 0.4) and
n+ the normal wall distance

n+ = nv∗/ν, (1.10.12)
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with v∗ the friction velocity obtained from the mean wall shear stress. The
mixing-length concept applied to the turbulent boundary-layer profile in a plane
channel flow yields the universal logarithmic law

ū

v∗
= 1

κ
(ln n+ − lnβ), (1.10.13)

where β is a constant evaluated from experimental data and is equal to 0.1.
The one-equation k–l model gets a turbulent velocity scale from integration

of the k equation

ρ
D̄k

Dt
= div

[(
µ+ µT

σk

)
∇k

]
+ 2µT d̄ : d̄− ρ

k3/2

lε
, (1.10.14)

µT = ρl
√

k, (1.10.15)

lε = l/CD. (1.10.16)

In these equations, the empirical constants are set to σk = 1 and CD = 0.164.
Finally, the k–ε two-equation model implies a dynamical equation for the

rate of energy dissipation. The equations are

ρ
D̄k

Dt
= div

[(
µ+ µT

σk

)
∇k

]
+ 2µT d̄ : d̄− ρ

k3/2

lε
, (1.10.17)

ρ
D̄ε

Dt
= div

[(
µ+ µT

σε

)
∇ε

]
+ 2µT d̄ : d̄ Cε1

ε

k
− ρ Cε2

ε2

k
, (1.10.18)

µT = ρCµk2/ε. (1.10.19)

The numerical values of the empirical constants are chosen as

Cµ = 0.09, σε = 1.3, Cε1 = 1.35, Cε2 = 1.8. (1.10.20)

The linear model just described is well known to be defective in 3D com-
putations. For example, it cannot generate secondary flows in the cross sec-
tion of a square duct. A remedy is brought by the nonlinear k–ε model of
Speziale [364, 365], which takes more turbulence memory effects into account
by using a nonlinear constitutive equation. The generalization of (1.10.9) to
quadratic terms in the mean velocity gradients includes the presence of the
upper-convected derivative of d̄ as in the Oldroyd-B model in non-Newtonian
fluids [216].

From the numerical point of view, it is fairly easy in a finite-element method
to construct a mixed model as a combination of two classical models. Close to
the solid walls, where shear flows dominate, the k–l model is used, and further
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inside the computational domain, the k–ε model produces a full turbulence
description. This approach is known as the two-layer model.

Over the past decade, since the pioneering work of Yakhot and Orszag [416],
renormalization group (RNG) theory has paved the way to new developments
and generated extensive research to justify and complete the existing models.
The idea is to perform a recursive elimination of infinitesimal strips of small
scales (high frequencies) until the iteration converges to a fixed point at which
the model does not change anymore. This procedure brings up a new term (not
shown here) in Equation (1.10.18), which is definitely an emergence of the RNG.

With respect to LES, the goal is to deal with high-Reynolds-number unsteady
flows by using coarse meshes in which the contributions of small, subgrid-scale
modes are not resolved but are modeled. Large-scale quantities, designated by
a hat, are obtained by a filtering process. The application of the filter to the
function f yields the filtered quantity

f̂ (x, t) =
∫


f (ξ, t) G(x, ξ, t) dξ, (1.10.21)

where G is a filter function such as a Gaussian, a sharp Fourier cutoff, or the
automatic low-pass filter provided by a standard second-order-accurate finite-
difference or finite-volume technique. Assuming the filter commutes with dif-
ferentiation and applying the filter (1.10.21) to the Navier–Stokes equations
(1.6.3) and (1.6.4), one obtains the following relations:

div v̂ = 0, (1.10.22)

ρ
D̂v̂
Dt
= −∇ p̂ + µ�v̂+ ρ div τ̂ . (1.10.23)

In (1.10.23), the material time derivative D̂v̂/Dt is defined in an analogous
fashion to (1.10.6), with the filtered velocity replacing the mean velocity. The
subgrid-scale (SGS) stress tensor τ̂ picks up the small-scale effects and is given
by

τ̂i j = v̂iv j − ̂̂vi v̂ j . (1.10.24)

One of the most popular SGS models, due to Smagorinski [362], uses a
turbulent viscosity. It is given by the relation

τ̂ = −1

3
tr(τ̂ ) I+ 2µLESd̂, (1.10.25)

where d̂ is the filtered rate of deformation tensor and

µLES = ρ l2
S (IId̂)1/2, (1.10.26)
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in which lS is a characteristic length proportional to the filter width. More
technical details on modeling issues and related numerics, boundary conditions,
and engineering applications may be found in review papers (see, e.g., Piomelli
[312], Reynolds [325], or Rogallo and Moin [330]) and in books (see, e.g.,
Lesieur [243] and Sagaut [341]).

1.11 Numerical Simulation

In this closing section, we leave for a while the mathematical models and evalu-
ate the present status of CFD. Computational fluid dynamics is at the crossroads
of mathematics, numerical discretization methods, and computer science tech-
niques. We will discuss the interplay between hardware and software issues
and suggest some prospects for future development, although astrologers are
keener on this topic than ordinary scientists.

1.11.1 Hardware Issues

The landscape of computer hardware has evolved quite rapidly in the past
decade. Although major supercomputing centers were equipped with vector
mainframes (Cray, NEC, IBM, etc.), the workstation world experienced a tech-
nological revolution with the advent of RISC chips providing more computing
power at a lower price. This technological achievement has had an impressive
effect on parallel computer architectures, where several hundreds or thousands
of interconnected processors are assembled.

The interconnection can be realized in a nonuniform memory access (NUMA)
machine, in which the distributed memory is considered to be shared. Thus, the
memory allocation in an application is handled by the underlying system; the
user needs only to take care of the data exchange between the tasks running
on the different processors. The data exchange is treated by threads (a shared-
memory communication library) or even by automatic parallelization at the
compiler level (e.g., in Fortran 90). Unfortunately, the scalability of these ap-
proaches is often limited by the fine granularity of the tasks; hence, NUMA

machines have had no more than 128 processors, and scalability levels off
before full use of even those processors.

Another architecture is clusters of distributed-memory computational boxes,
each box of which can be a shared-memory multiprocessor (SMP) machine.
Such clusters require that the user handle the memory distribution and, thus,
dictate a message-passing library (MPI [171] has become a standard) that en-
ables passing messages over the communication network. Cluster architecture
include NUMA machines that, in most cases, show better performance when
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the messages are exchanged via MPI rather than by threading or automatic par-
allelization by the compiler. With the cluster concept the user can implement
algorithms with minimal communication loads that scale up to thousands of pro-
cessors. The efficiency of a single computational box depends on the number
of shared-memory processors per box, on the cycle period of the processor, on
the number of simultaneously active computational pipelines, on the memory
access subsystem, and on the size and speed of the caches. These are discussed
in detail in Chapter 8.

Price and adequacy of the hardware play an increasing role in the choice of
parallel computer architecture. A few years ago, vector machines dominated
the market, but they are now considered to be too expensive. Engineers develop
and optimize their programs on their own PCs or workstations, and they are
increasingly reluctant to adapt these programs to vector architectures. They are
more concerned with the decision either to program for NUMA machines, which
offer programming ease albeit with reduced flexibility and scalability, or to go
for a flexible, scalable, and portable distributed-memory concept at the expense
of an increased programming effort. The books by Hockney and Jesshope [209]
and Dowd and Severance [110] constitute an excellent introduction to parallel
machines.

Computer vendors expected to produce peak teraflops (1012 operations per
second) capability by the mid-nineties, and sustained teraflops by the turn of
the millennium. Indeed, this goal has been achieved. However, the market ex-
pectations, especially from industrial research groups, have shifted recently.
Today, commodity technology seems to be the way to go and aims at producing
installed peak gigaflops computers for costs ten to twenty times less than vector
supercomputers. We note that the achievement of sustained teraflops perfor-
mance will render the solution of Reynolds-averaged Navier–Stokes equations
over a complete aircraft affordable. According to Karniadakis and Orszag, how-
ever [220], direct numerical simulation of turbulent flow around an aircraft body
including the small structures will require an exaflop (1018 operations per sec-
ond) architecture. That we are still far from such a goal underscores the present
and future importance of turbulence models in industrial applications.

We could feel desperate about the computational speedup required. How-
ever, looking back over the history of computing since the late 1940s, we
observe a 106–107 increase in hardware efficiency. Table 1.11.1, which lists a
few landmark machines with the observed sustained computational speed on
CFD codes, summarizes the hardware developments over the past five decades.
Also worth mentioning is the ASCI (accelerated strategic computing initiative)
project that was launched by the U.S. Department of Energy to change the slope
in the speedup related to high-performance computing and promote teraflops
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Table 1.11.1. Hardware history.

Machine Year Processing speed

Mark I 1947 200 flops
IBM 701 1954 3000
IBM Stretch 1960 0.3 Mflops
CDC 6600 1964 2
CDC 7600 1969 5
Cray 1 1976 50
Cray 2 1985 150
Cray YMP 1988 225
Cray C90 1992 500–750
Intel Paragon 1992 30 Mflops/proc
Thinking Machine CM-5 1992 60
Cray T3D 1993 50
Cray T3E 1996 150
NEC SX-5 1998 8 Gflops/proc

machines with thousands of processors. Petaflops (1015 flops) machines are
expected by the end of the first decade of the millennium.

This spectacular improvement comes from technological breakthroughs.
From tubes to transistors, then to very large-scale integrated (VLSI) circuits, the
hardware designers went also from serial machines where instructions were per-
formed sequentially to vector computers where pipelining and vector registers
allowed array processing, achieving impressive speedups. We also mention the
remarkable size reduction in the machine packaging. For example, the Cray-2
processor was contained in a volume of about 30 cm3. In the mid-eighties, the
first parallel machines came in with the prospect of linear speedups with respect
to the number of processors. For some time, it seemed that commodity-based
parallel and clustered massively parallel processors (MPPs) like the Cray T3D
and SMP systems would replace vector machines. However, parallel machines
have proven difficult to program. This is due partly to current trends toward
a single-system image paradigm, which facilitates program porting and devel-
opment. Scalable parallel architectures beyond thousands of processors raise
fundamental questions in software design, programming languages, operating
systems, communications, and synchronization.

1.11.2 Software Issues

Parallel computing would be ideal if a compiler could extract parallelism from
existing serial or vector programs. This is unlikely to happen in the near future,
however, and some of the software burden will continue to be placed on the
shoulders of the developer.
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Most of the parallel codes for multiprocessors on distributed-memory archi-
tectures use message-passing libraries such as parallel virtual machine (PVM) or
the message-passing interface (MPI). These enable the use of standard (Fortran
or C) languages, with extensions, to explicitly control the parallel execution.

An emerging trend is to program in an entirely new language designed to
make parallelism easier. Fortran 90 is a step in that direction in that it incorpo-
rates many new intrinsic statements aimed at array manipulations. A version of
this language in the Fortran 90 context is HPF (high-performance Fortran); see,
for example, Loveman [248].

Because of the complexity of large 3D transient fluid flow simulations in
industrial applications, the need to obtain top computational performance from
highly parallel algorithms at run time is of primary concern. The use of high-
order methods such as preconditioned spectral collocation and spectral and mor-
tar elements calls for sophisticated data structures that are beyond the scope of
classical Fortran indexed arrays. Nonlinear data structures are especially needed
when adaptive algorithms are designed. In addition, advanced software engi-
neering concepts impose new programming criteria: software maintainability,
ease of generalization, error-free design, reusability, and modularity. These cri-
teria are met partially by Fortran 90: Machiels and Deville [252] describe a
spectral-element solver designed in Fortran 90 for the solution of an elliptic
equation. However, object-oriented concepts are finding increasing favor, in or-
der to provide the user with general and elaborate tools (see Dubois-Pèlerin et al.
[116, 115]). They are based essentially on data abstraction: data encapsulation,
class inheritance, and polymorphism.

Parallel operating systems are under development for Unix-based platforms,
as reported by Almasi and Gottlieb [4]. Some of them are in infancy and need
strong testing to deliver a user-friendly environment. It is important that such
operating systems embody dynamic scheduling mechanisms to balance the load
between processors during the program execution itself.

Up to now, we have considered hardware and software needs general to
a CFD practitioner using either high- or low-order techniques. With spectral
discretizations, software interfaces between geometric modeling in CAD sys-
tems and mesh generation are at present inadequate. Indeed, if the geometry
is described by high-order polynomials such as Bézier curves or nonuniform
rational B-splines (NURBS) with some specifications on slopes and curvatures,
there should be no loss of information going to the spectral representation. Here,
however, effective tools are lacking.

Another area where developments are urgently needed is in data postprocess-
ing. On parallel machines achieving tremendous processing speed (gigaflops
and beyond), raw data are produced in huge amounts. Storage may be done on
optical disks, even using compression algorithms such as wavelets (although,
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in some sense, spectral data are already compressed). From the viewpoint of
visualization, parallel processing of graphics is desirable. Also needed is a way
to handle spectral (highly accurate) results. Current graphics packages deal with
standard low-order approximations.

1.11.3 Algorithms

While hardware has been progressing at a rapid pace, algorithms have moved
along with the same impetus. In incompressible flows, the principal bottleneck
for large simulations resides in the solution of the algebraic system of linear
equations. As an example, let us suppose we want to solve the 3D Poisson
equation (1.9.2) on a cube of unit side with homogeneous Dirichlet boundary
conditions, using second-order centered finite differences giving rise to the
seven-point discretization molecule. We will employ N + 1 intervals of equal
length in each space direction. If we use the natural ordering of the unknowns,
the so-called lexicographic order (i.e., from left to right and from bottom to
top, and then plane by plane), the matrix system is indeed symmetric, positive
definite, and sparse and presents a bandwidth of N 2, typically the number of
nodes in a 2D plane of the mesh.

At the time of the Mark I machine (1947), the straightforward algorithm
was Gaussian elimination. According to Golub and Ortega [161], the operation
count for the banded LU factorization is O(N 7). Since the small memory space
prevented solving systems of sufficient size, the methodology went from direct
solver to iterative technique, with the intent of storing only the discrete values
in core.

The successive overrelaxation (SOR) method was born in 1954 with subop-
timal parameter (Young [419]). The operation count is directly proportional
to the number of degrees of freedom per iteration [O(8N 3)]. The number of
iterations depends strongly on the spectral radius of the iteration matrix. Here,
estimates yield O(N 2) iterations and a final operation count of O(8N 5). When
Young [420] proposed his optimal evaluation of the SOR parameter in the early
1960s, the operation count dropped to O(8N 4 log N ).

Considering the tensor product form of the matrix system, in 1964 Lynch
et al. [250] carried out a one-dimensional diagonalization procedure in each
space direction, leading to an improved count of O(2N 4) operations. Later,
in 1970, Buzbee et al. [59] took full advantage of the special structure of the
matrix to reduce it to tridiagonal form by cyclic reduction. The algorithm has a
complexity of O(8N 3 log N ) operations. Eventually, in 1977, Brandt [50] pro-
duced the optimal algorithm: the multigrid method that converges in O(60N 3)
operations. From that time on, parallel algorithms have been developed, with
the multigrid method taking the lead.
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Figure 1.11.1. Evolution of machines, algorithms, and their combination over the past
five decades for the solution of a three-dimensional Poisson equation.

The review written by McBrian and coauthors [271] summarizes the state
of the art in the early 1990s and points out that classical multigrid performs
poorly on MPPs because it is difficult to keep all processors busy when operating
on the coarse grids. Nevertheless, McBrian et al. propose a parallel supercon-
vergent multigrid technique where several grids (e.g., coexisting coarse grids
with the even points and odd points coming from the fine grid) are solved con-
currently and then assembled to give a more accurate fine-grid solution. The
operation count is O(30N 3(log N )/P), where the factor log N is incurred by
communication and P denotes the number of processors.

Let us now look at an instantiation of the previous example with an even
number of intervals, namely, N = 63, in such a way that the multigrid method
may be easily applied. Figure 1.11.1 shows three curves versus time over the
past five decades. The curve with the circles corresponds to running Gaussian
elimination on the best available computer at the moment. To solve the 633

problem on the Mark I of 1947 would have required a few centuries (6.5,
to be precise – not to mention the added wait due to system failure), while
today we get the answer in a few minutes. For the parallel machines, we have
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fixed the number of processors P equal to 32. The acceleration factor from
hardware improvement is of the order of 107. The second curve, with the squares,
results from running the best available algorithm on the Mark I machine. From
Gaussian elimination to multigrid, the computing time decreases from centuries
to twenty hours, a speedup factor of 106, showing that algorithmic creativity
has not fallen behind that of hardware designers. Finally, if we combine both
best machine and best algorithm, we obtain the curve with the triangles, which
shows an acceleration factor of 1013, an impressive figure indeed. The triangles
after 1977 correspond to the multigrid algorithm run on the best available
machine.

Of course, we have to remind ourselves, from time to time, that “the purpose
of computing is insight, not numbers,” as R. Hamming wrote [184], but this is
achieved only if our calculations are correct, that is, are accurate enough. For
a smooth exact solution made of the product of sines, for example, with the
previous discretization, the error in maximum norm is about 10−4. The ques-
tion is: How do we improve the accuracy? One approach is to use more grid
points by doubling, for example, the number of intervals in each space di-
rection. This approach is not in favor with practitioners, however, because it
is time-consuming. Another approach when dealing with structured grids –
and this numerical trick has been, unfortunately, practically forgotten – is the
extrapolation to the limit, or Richardson extrapolation. Combining the (second-
order) solution on a coarse and a fine grid, we can reach fourth-order accuracy.
Finally, we may attain the same level of precision by the use of higher-order
discretization methods.

1.11.4 Advantages of High-Order Methods

The most obvious choice for solving the 3D Poisson equation (1.9.2) with
a fourth-order accurate method is the five-point centered discrete formula for
second-order one-dimensional derivatives. However, the fact that the formula is
not diagonally dominant poses some difficulties for the convergence of iterative
solvers. Furthermore, because of the spatial extension of the discrete formula,
it cannot be used for grid points close to the boundaries. One has to degrade the
accuracy of the scheme locally by second-order formulae. This strategy was
acknowledged in the sixties, and in the mid-seventies fourth-order compact
(designed on three consecutive discrete points) schemes were proposed for the
Navier–Stokes equations (see Hirsh [204]). A 2D algorithm was proposed by
Shaanan and Ferziger in 1978 [354], and Mercier and Deville [274] extended
the algorithm to three dimensions in 1981. Using a fast one-dimensional diag-
onalization method, the cost of the algorithm is of the order of N 4.
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Spectral methods have been used since the late sixties and early seventies,
largely due to Gottlieb and Orszag [163]. For the spectral tau method (carried
out in spectral space), Haidvogel and Zang [181] applied the diagonalization
technique to 2D problems in 1979. The algorithm was extended by Haldenwang
et al. [182] in 1984 to 3D problems. The cost is proportional to O(12N 4)
operations, occurring mainly in the preprocessing stage of the one-dimensional
fast diagonalization methods.

As the mid-eighties proceeded toward computation in real space, collocation
schemes and spectral elements began to have a growing influence. Chebyshev
collocation involves matrices for second-order operators such as the Poisson
equation with a condition number of O(N 4). The idea of preconditioning was
proposed by Orszag [288] in 1980. The use of finite elements as preconditioners
was independently worked out by Canuto and Quarteroni [69] and Deville and
Mund [99] in 1985. This preconditioning technique is robust and efficient. It suf-
fices to state here that any algorithm available for the preceding finite-difference
formulation can still be applied. However, the convergence of iterative methods
is very sensitive to the condition number, and a deeper analysis must be carried
out. We defer this analysis until later in the book. If a multigrid technique is
used as the preconditioner, the 3D problem may be solved in O(N 4) operations.

Spectral (Chebyshev) elements also appeared in 1984, with the pioneering
work of Patera [297]. From the beginning, conjugate gradient (CG) methods
were suggested, since the system matrix is symmetric positive definite. It is
well known that CG converges slowly, and thus the preconditioning issue is of
vital importance. For one example, let us consider Legendre spectral elements
as proposed by Maday and Patera [261] in 1989. When preconditioned by the
diagonal, as is usually done, the system has a condition number O(E2

1 N 2),
where E1 is the number of spectral elements in a typical spatial direction and
E is the total number of spectral elements in the 3D problem. Most of the time,
E will be O(E3

1). Therefore, the number of iterations, which is proportional
to the square root of the condition number, will be O(E1 N ). This leads to
an overall operation count of O(E N 4 E1 N ) for the preconditioned conjugate
gradient (PCG), since the computational heart of CG is basically a matrix–vector
product involving E N 4 operations (because the tensor-product feature of the
spectral method will be fully exploited). Another approach extends the fast
diagonalization method to the spectral-element case when the elements are
rectilinear (see Couzy [83]). The price of inverting the Poisson equation is two
PCG iterations, leading to a computational cost of O(E N 4) operations.

Figure 1.11.2 displays, over two decades (from 1976 to 1996), the curve
obtained by the combination of best machine, best high-order method, and best
solution algorithm. We observe that going from fourth-order compact (1981)
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Figure 1.11.2. Time evolution of high-order methods for a 3D Poisson equation.

to spectral tau (1984) produces an increase of one order of magnitude in com-
puting time. However, the error converges spectrally; that is, it yields machine
accuracy. We have paid ten times more computing time, but we have gained
seven significant digits. The spectral-element method yields machine accu-
racy with E1 = 4 and N = 16, which amounts to 63 interior points per spatial
direction. The last three triangles in the figure show the computing time re-
quired by the spectral-element method with the CG preconditioned by the diag-
onal coefficients (1989) and then by the fast diagonalization technique (1995,
1996).

Of course, in engineering practice, we do not need full accuracy. Therefore,
the question is: If we want 10−3 accuracy, how many degrees of freedom do
we need, and what is the cost of the computation? For this example, the answer
is plotted in Figure 1.11.3. The number of points for the second-order method
(1977) is N = 55; for the fourth-order compact scheme (1981), N = 10. The
spectral tau method (1984) still needs N = 8, because at the beginning the
spatial convergence is algebraic. The method converges faster than the fourth-
order scheme, but not yet exponentially. Finally, for the spectral-element
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Figure 1.11.3. For a fixed accuracy, combination of best machine and algorithm using
the best high-order method.

method (1989–1996) with E = 64 as before, we need only N = 2, the same
accuracy as that provided by the quadratic finite-element method. In this case, it
should be better to decrease E1 and to increase N in order to converge spatially
more quickly. This is one of the advantages of the spectral-element method.
The acceleration factor is again striking: it reaches the value of 106 over twenty
years.

Extrapolating our observations on a simple linear elliptic problem to 3D
Navier–Stokes equations, we can deduce that the spectral convergence of the
high-order methods will help to get solutions where we can test the error levels
by looking, for example, at the spectra and to resolve the physics in a better
fashion. The disadvantages of spectral methods are well known: geometric sin-
gularities, solution singularities, algorithmic efficiency, time-marching schemes
with an accurate spatial discretization, and so forth. Later in the book, we will
present high-order methods to cope with such disadvantages. Specifically, we
will show that spectral methods designed in physical space (e.g., collocation
or spectral elements) are able to deal with complex geometries and complex
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boundary conditions and to treat singularities by mortar elements or domain
decomposition.

The use of high-order numerical techniques on massively parallel process-
ing machines opens the door to many large-scale applications in computa-
tional science and engineering. Possibilities include biomedical engineering
with heart flow simulation, a fascinating example of fluid–structure interaction;
non-Newtonian flows with 3D time-dependent simulations; oceanography and
meteorology; and heat-exchanger design. This activity will entail much feed-
back from numerical simulation to mathematical modeling. Again, without any
pretense of exhaustion, we list some topics: turbulence, non-Newtonian con-
stitutive relations, chemical processes, control, shape optimization, and inverse
problems.



2
Approximation Methods for Elliptic Problems

The first chapter gave an overview of basic principles of fluid mechanics. In
particular, it introduced the fundamental equations governing the motion of
fluid flows. In this chapter we deal with approximation methods allowing these
equations to be solved on a computer. We use a simple one-dimensional elliptic
model problem in order to introduce the basic concepts. This problem will
be carried throughout the chapter. Parabolic, hyperbolic, and multidimensional
problems are treated in Chapters 3 and 4, respectively.

In Section 2.1 we begin with the derivation of a boundary-value problem
(BVP) from a variational principle. Different types of boundary conditions are
presented, with particular attention to the choice of test functions. The exis-
tence conditions for a solution are discussed within the Lax–Milgram theorem.
Section 2.2 enlarges the scope to more general linear BVPs and introduces the
approximation framework of Galerkin and collocation methods. In Section 2.3
we present various finite-element approximations, some of which have connec-
tions with spectral methods. Sections 2.4 and 2.5 discuss the spectral-element
and the orthogonal collocation techniques, the two main forms of high-order
methods studied in this book. Section 2.6 deals with the error estimation in con-
nection with the various approximations introduced in the chapter. Section 2.7
is dedicated to some efficient solution techniques for the algebraic systems
entailed by high-order methods. Finally, Section 2.8 discusses a numerical
example.

In order to make the text reasonably self-contained, key mathematical no-
tions have been gathered in two appendices. Appendix A deals with some
fundamental concepts of functional analysis; Appendix B is devoted to orthog-
onal polynomials, Gaussian quadrature rules, and discrete transforms that play
a central role in spectral approximations. Readers unfamiliar with these topics
may first wish to review the material in the appendices. Further information

33



34 2. Approximation Methods for Elliptic Problems

can be found in the books by Kreyszig [228], Showalter [361], and Davis and
Rabinowitz [92].

The bibliography covering the topics of this chapter is quite large. We sin-
gle out the monographs of Axelsson and Barker [14], Carey and Oden [71],
Ciarlet [79], Johnson [214], Oden and Reddy [286], and Quarteroni and Valli
[319]. The book by Strang and Fix on finite-element techniques [369], although
almost thirty years old, remains among the most comprehensive in the field.
For information on weighted residual methods and spectral methods, interested
readers should consult Finlayson [123], Fletcher [133, 134], Villadsen and
Michelsen [400], Bernardi and Maday [38], Boyd [48], Canuto et al. [64],
Funaro [142, 144], Gottlieb and Orszag [163], and Mercier [273].

2.1 Variational Form of Boundary-Value Problems

The equations governing fluid flow phenomena that were presented in Chapter 1
are all local PDEs, that is, functional relationships between physical variables
(velocities, pressure, etc.) that must be satisfied at every point in a given domain.
A large category of numerical methods to solve these equations is not based on
the local form, but rather on an equivalent integral form known as the variational
formulation of the problem.

2.1.1 Variational Functionals

Variational methods have played a major part in physical sciences and engin-
eering since their introduction by Johann Bernoulli (1667–1748), who solved
(1696) the brachistochrone problem of determining the shape of the curve along
which a particle initially at rest falls under gravity with the smallest time of
descent. Other problems in physics and engineering can be stated in a similar
form: Determine a function u depending on k ∈ N

* variables and satisfying
given boundary conditions that minimizes (or, maybe, maximizes) a functional
J : V → R, where V is some set of admissible functions defined on the domain
of the problem. N

* and R are the sets of positive integers and real numbers,
respectively.

For convenience we consider a functional involving an element u depending
on a single variable x (see [14]):

V := {v ∈ C2[a, b]; v(a) = 0},
(2.1.1)

J (u) :=
∫ b

a
J (x, u(x), u′(x)) dx ∀u ∈ V .



2.1. Variational Form of Boundary-Value Problems 35

The integrand J (x, u, u′) is a real function defined on a ≤ x ≤ b and on
−∞ < u, u′ <∞, having continuous partial derivatives of order ≤ 2. This
function determines the physical meaning of J (u).

The set of admissible functions V in (2.1.1) includes all functions having
continuous second-order derivatives in the closed interval [a, b] and satisfying
a zero boundary condition at x = a. Clearly, V is a linear space in the sense
that for any two elements u, v ∈ V and for any constants α, β ∈ R, the element
w = αu + βv ∈ C2[a, b] and is such that w(a) = 0.

The problem consists in finding an element û ∈ V that minimizes (or
maximizes) J (u), perhaps locally in V . Since we are interested mainly in
physical problems, we will assume for the time being that the nature of these
problems warrants the existence of, for instance, a minimizing element, the
existence conditions being given later in the Lax–Milgram theorem. Then, in
an open neighborhood B of û of radius ε (see Sections A.1.2 and A.2.1),

B(û; ε) := {v ∈ V ; v = û + τη, η ∈ V ,‖η‖= 1, τ ∈ [0, ε)}, (2.1.2)

where the symbol ‖·‖ denotes some norm defined on the elements of V , one
has

J (û) = min
u

J (u), u ∈ B(û; ε). (2.1.3)

The definition (2.1.2) of a neighborhood of û separates directions, repre-
sented by the elements η with unit norm, from distance, measured by τ . There-
fore, by introducing a “test” element into J , one is able to probe the minimizing
condition (2.1.3) in a constructive way. Assuming (as mentioned previously)
the differentiability of J , one defines the mth-order directional derivative of J
at û in a given direction η by

J (m)(û; η) = lim
τ→0

dm

dτm
J (û + τη).

By expanding J (û + τη) into a Taylor series of τ one gets, up to order two,

J (û + τη) = J (û)+ τ J (1)(û; η)+ τ 2

2
J (2)(û; η)+ o(τ 2).

It turns out that, in order to minimize J , û must satisfy the condition

J (1)(û; η) = 0, ∀η ∈ V , ‖η‖ = 1. (2.1.4)

This is only a necessary condition, however. Nothing prevents the second-
order directional derivative J (2)(û; η) from taking a positive or negative sign,
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depending on η. If this is the case, û will simply ensure a stationary value of
J . If, on the contrary, J (2)(û; η) keeps a positive sign independently of η, then
û minimizes J (u) in a neighborhood the size of which depends on high-order
terms. If, additionally, it happens that high-order terms are absent, the functional
being quadratic, then û is the unique minimizer of J (u).

We turn back to the functional (2.1.1) and evaluate its first-order directional
derivative at u:

J (1)(u; η) =
∫ b

a

(
∂J
∂u

η + ∂J
∂u′

η′
)

dx .

By integrating the last term on the right-hand side by parts, one gets

J (1)(u; η) =
∫ b

a

(
∂J
∂u
− d

dx

(
∂J
∂u′

))
η dx + ∂J

∂u′
η

∣∣∣∣
x=b

. (2.1.5)

Since η belongs to V , the boundary contribution in (2.1.5) involves only a single
term at x = b. Applying the condition (2.1.4), one concludes that the element
û is compelled to satisfy the relationships

∂J
∂ û
− d

dx

(
∂J
∂ û′

)
= 0, a < x < b, (2.1.6)

∂J
∂ û′

∣∣∣∣
x=b

= 0. (2.1.7)

Equation (2.1.6) is the Euler–Lagrange (or local) equation associated to the
variational problem (2.1.1)–(2.1.3), while (2.1.7) is a boundary condition to be
satisfied by û, not included in the definition of the set of admissible functions.
Boundary conditions of this type are called natural, while those satisfied by the
elements of V are called essential boundary conditions.

Let us now be more specific and introduce as an example the model problem

V := {v ∈ C2[a, b]; v(a) = 0},
(2.1.8)

J (u) = 1

2

∫ b

a
(pu′2 + qu2 − 2 f u) dx ∀u ∈ V,

where p(x) ∈ C1[a, b], 0 < p0 ≤ p(x) ≤ p1 for a ≤ x ≤ b, and where q(x),
f (x) ∈ C[a, b], 0 ≤ q(x) ≤ q1 for a ≤ x ≤ b. One can verify that (2.1.8) is a
quadratic functional with Euler–Lagrange equation and boundary conditions

− d

dx

(
p

du

dx

)
+ qu = f , a < x < b,

(2.1.9)
u(a) = u′(b) = 0.

The boundary condition involving the derivative comes from (2.1.7).
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The problem (2.1.9) is the canonical form of a second-order self-adjoint
BVP that appears in various forms for the description of steady-state diffusion
processes: molecular diffusion (mass conservation and Fick’s law), thermal
conduction [energy conservation and Fourier’s law (1.5.6)], viscous flow [mo-
mentum conservation and constitutive Newtonian equations (1.5.4)–(1.5.5)],
and the like. The diffusion term has a strictly positive coefficient p(x) for both
physical and mathematical reasons. The functional J (u) in this example is a
measure of the energy stored in the system. For convenience we will henceforth
denote by L the differential operator in the left-hand side of (2.1.9). With the
hypotheses on p(x), q(x), and the source term f (x), a solution û ∈ V to (2.1.9)
exists that is unique.

Following the earlier path, we introduce a test element v = û + τη, η ∈ V ,
into J (u), and we obtain

J (û + τη) = J (û) + τ

∫ b

a

(
p

dû

dx

dη

dx
+ qûη − f η

)
dx

+ τ 2

2

∫ b

a
(pη′2 + qη2) dx ∀η ∈ V .

From this relationship we can draw two conclusions. First, J (u) reaches a
stationary value at û ∈ V if∫ b

a

(
p

dû

dx

dη

dx
+ qûη

)
dx =

∫ b

a
f η dx, ∀η ∈ V . (2.1.10)

Second, since J (2)(u; η) > 0 ∀η ∈ V , ‖η‖= 1, û is indeed the unique minimizer
of (2.1.8) in V .

At this point we introduce some convenient notation:

(u, v) :=
∫ b

a
u(x)v(x) dx, u, v ∈ V, (2.1.11)

A(u, v) :=
∫ b

a
(pu′v′ + quv) dx, u, v ∈ V, (2.1.12)

F(v) :=
∫ b

a
f v dx, v ∈ V . (2.1.13)

The quantity (·, ·) is the inner product of elements in V . With the hypotheses
on p(x) and q(x), the mapping A : V × V → R is a symmetric bilinear form
[i.e., A(u, v) = A(v, u), and A is linear with respect to both u and v] that
satisfies the axioms (A.4.1)–(A.4.4) for an inner product, and F : V → R is
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a linear functional on the set of test functions V . The bilinear form A(u, v)
is the energy inner product associated with L. For notational convenience and
in accordance with the conventions stated in Appendix A (see the Remark in
Section A.4.2), we will also denote this inner product by (u, v)L and the induced
energy norm by ‖u‖L:

(u, v)L := A(u, v), (2.1.14)

‖u‖L := (u, u)1/2
L = A1/2(u, u). (2.1.15)

Introducing (2.1.12) and (2.1.13) into (2.1.8) and (2.1.10) gives

J (u) = 1

2
A(u, u)− F(u) ∀u ∈ V, (2.1.16)

and

J (û) = min
u∈V

J (u), (2.1.17)

the stationary value J (û) being attained at û, the solution to the following
problem: Find û ∈ V such that

A(û, v) = F(v) ∀v∈ V . (2.1.18)

Setting u = û + w in the right-hand side of (2.1.16) and taking (2.1.18) into ac-
count after expansion of the bilinear form A, we get another useful relationship
that clearly shows the characterization of û as the unique element minimizing
J :

J (u) = J (û)+ 1

2
A(u − û, u − û) ∀u ∈ V . (2.1.19)

Finally, proceeding backwards with an integration by parts in (2.1.12) and
transferring anew all derivatives upon u, which poses no problem here because
p(x) ∈ C1[a, b], we conclude that the solution to the Euler–Lagrange equation
and boundary conditions (2.1.9) is û ∈ V such that

(Lû − f, v) = 0 ∀v ∈ V . (2.1.20)

In the literature, the differential equation (2.1.9) is often called the strong (or
classical) formulation of the problem, while (2.1.18) is its weak (or variational)
formulation. We will meet (2.1.20) on several occasions later on, since this
relationship is at the heart of the weighted-residual methods. The two integral
relationships (2.1.18) and (2.1.20) correspond to the well-known principle of
virtual work in classical mechanics (see, for example, [370]). Both are corner-
stones of numerical fluid mechanics.
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2.1.2 Boundary Conditions

So far we have met two types of homogeneous boundary conditions: Dirichlet
conditions, specifying values of the unknown function, and Neumann condi-
tions, specifying its first derivative. While the former were included in the def-
inition of the set of test functions V , the latter appeared only in the differential
formulation of the problem. We clarify this difference further and examine the
cases of inhomogeneous boundary conditions and mixed boundary conditions.

As seen in the preceding section, the weak formulation of a BVP may be
viewed as the result of multiplying the differential equation by a test function,
followed by integration by parts. For the diffusion process (2.1.9) and a test
function v(x) ∈ V , where V is defined in (2.1.8), one gets the Green’s formula

(Lu(x), v(x)) = −p(x)
du(x)

dx
v(x)

∣∣∣∣x=b

x=a

+A(u, v). (2.1.21)

The structure of the boundary term in (2.1.21) shows that u and du/dx play
quite different roles in the boundary conditions, u being absent.1 All constraints
on u, whether homogeneous or inhomogeneous, should therefore be included in
the definition of the set of admissible functions, whence their name “essential”
boundary conditions. This is not the case for the derivative du/dx [or of any
derivative u(k)(k = m, . . . , 2m − 1), with a differential operator of order 2m],
which is present in the boundary term and is therefore an integral part of the
computational process. Approximation techniques such as those developed later
in this chapter ensure that natural boundary conditions are automatically sat-
isfied in the limit, when the approximate solutions converge to the solution of
the problem.

Let us give an example involving inhomogeneous boundary conditions:

− d

dx

(
p

du

dx

)
+ qu = f , a < x < b,

(2.1.22)
u(a) = µa, u′(b) = µ′b,

with µa , µ′b ∈ R. Because of the constraint at x = a, this problem requires two
different sets of admissible functions. Let

Vµa := {v ∈ C2[a, b]; v(a) = µa},
V := {v ∈ C2[a, b]; v(a) = 0}

1 More generally, in the case of a differential operator of order 2m, any derivative u(k)

(k = 0, . . . ,m − 1) of the solution would be absent in the boundary term.
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denote sets of functions that satisfy the inhomogeneous and homogeneous
essential conditions, respectively. The weak formulation of (2.1.22) is: Find
û ∈ Vµa such that

A(û, v) = F(v)+ p(b)µ′bv(b) ∀v∈ V .

In this case, the solution to the problem is to be found inside Vµa , the set of
trial functions, which differs from V , the linear space of test functions that
handles the boundary term in (2.1.21). Incidentally, we remark that Vµa is not a
linear space, but rather a translation of a linear space. Also, the inhomogeneous
Neumann condition at x = b has introduced an additional term in the weak
formulation of the problem.

Boundary conditions may be neither Dirichlet nor Neumann, as is the case,
for instance, with the problem

− d

dx

(
p

du

dx

)
+ qu = f , a < x < b,

u′(a)− αu(a) = 0, u′(b)+ βu(b) = 0,

where α and β are real positive constants. Such mixed homogeneous boundary
conditions are called Robin conditions. Using the above analysis and eliminating
the derivatives at both end points, one verifies that the weak formulation of this
problem is: Find û ∈ V := {v ∈ C2[a, b]} such that

A(û, v)+ αp(a)û(a)v(a)+ βp(b)û(b)v(b) = F(v), ∀v∈ V . (2.1.23)

Here, the admissible functions are totally unconstrained. Trial and test functions
are chosen from the linear space of functions having continuous second-order
derivatives.

2.1.3 Sobolev Spaces and the Lax-Milgram Theorem

The reader has certainly noticed that, up to now, trial and test functions in the
variational problem (2.1.18) were selected in function spaces with elements
having fairly smooth properties. This approach was in accordance with the
hypotheses on p(x), q(x), and f (x) in (2.1.8) ensuring the existence of a
solution û ∈ D(L) with D(L) (= C2[a, b]) denoting the domain of L. There
are several reasons, however, why sets of admissible functions having less
regularity should be identified. The first reason lies in the problem itself. One
could be faced with a situation where some of the hypotheses in (2.1.8) would
not be fulfilled. For instance, p(x) might be only piecewise continuous, or the
forcing term f (x), instead of being continuous, might belong to L2(a, b), the
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space of square-integrable functions in (a, b). In the latter case, a solution to
the variational problem (2.1.18) still exists, but û �∈ D(L). The second reason
is that if one looks for an approximation of û in the weak sense, there are
no compelling reasons to introduce C2 regularity in the test elements, since
(2.1.18) involves first-order derivatives only.

Identifying appropriate spaces of admissible functions for a BVP is always a
delicate question. We use the problem (2.1.9) as an example to show the main
ideas that establish the numerical treatment on firm theoretical ground (see
Sections A.2, A.4, and A.5, as well as [14, 286]).

A proper choice of trial and test elements may be found in classes of functions
that are “larger” than D(L). Two basic principles preside over the enlargement.
All quadratures involved in the weak formulation should be well defined (i.e.,
should be finite), and every Cauchy sequence in the suitable norm [in our case,
the energy norm (2.1.15)] should converge toward an element belonging to
the same class of functions; that is, the set of functions should be complete.
The function spaces resulting from this completion process are called Sobolev
spaces [14, 3]. Examples of functions belonging to Sobolev spaces will be given
in Section 2.3 with the description of finite-element methods.

We introduce three important mappings V × V → R and V → R, where V
[≡ D(L)] is the linear space defined in (2.1.8):

(u, v)H 1 :=
∫ b

a
(u′v′ + uv) dx, u, v ∈ V, (2.1.24)

‖u‖H 1 := (u, u)1/2
H 1 =

{∫ b

a
(u′2 + u2) dx

}1/2

,

= (‖u′‖2 + ‖u‖2)1/2, u ∈ V, (2.1.25)

|u|H 1 :=
{∫ b

a
u′2 dx

}1/2

=‖u′‖, u ∈ V . (2.1.26)

The subscript H 1 will be clarified below. One can verify that (2.1.24) and
(2.1.25) satisfy the axioms for an inner product and of a norm, respectively. In
particular, ‖u‖H 1 = 0 implies that the L2 norms ‖u‖ = ‖u′‖ = 0, and there-
fore that u is identically equal to zero in (a, b). The applications (2.1.24) and
(2.1.25) are called the Sobolev inner product and the Sobolev norm of order one
on V .

The quantity |u|H 1 only partially satisfies the conditions of a norm, because,
in general, there may exist elements of V not identically equal to zero for which
|u|H 1 = 0. This quantity, known as the Sobolev seminorm of order one, will
also be used later.
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We need an inequality, due to Poincaré and Friedrichs, that sets a lower
bound to the L2 norm of a derivative (in the one-dimensional case) in terms of
the L2 norm of the function. A proof of this inequality is given in [14].

Lemma 2.1 (Poincaré–Friedrichs inequality)

(u′, u′) ≥ 2

(b − a)2
(u, u) ∀u ∈ W := {v ∈ C1[a, b]; v(a) · v(b) = 0}.

(2.1.27)

Using (2.1.27), one may establish the equivalence between the energy norm
and the Sobolev norm, that is, the existence of positive constants ρ and β such
that

ρ‖u‖2
H 1 ≤ ‖u‖2

L ≤ β‖u‖2
H 1 ∀u ∈ V . (2.1.28)

With the conditions imposed on the coefficients p(x) and q(x) in the model
problem (2.1.8) starting from (2.1.15), one gets

‖u‖2
L≥ p0

∫ b

a
u′2(x) dx ≥ ρ‖u‖2

H 1 (2.1.29)

and

‖u‖2
L≤ p1

∫ b

a
u′2dx + q1

∫ b

a
u2 dx ≤ β‖u‖2

H 1 , (2.1.30)

with the constants ρ := min(p0/2, p0/(b − a)2) and β := max(p1, q1). The
inequality (2.1.29) involving ρ is very important and is known as the coercivity
(or “ellipticity”) condition, while the inequality (2.1.30) involvingβ is called the
boundedness condition. We further remark that (2.1.29) implies A(u, u) ≥ 0
and also A(u, u) = 0⇔ u = 0, legitimizing the use of A(u, v) as an inner
product on V .

Coercivity plays a crucial role in the completion process of V. The argument
goes as follows. Suppose s := {uk}∞k=1 is a Cauchy sequence, in the energy
norm ‖·‖L, of functions belonging to V . Then, according to (A.1.9), one has

lim
k,l→∞

‖uk − ul‖L= 0. (2.1.31)

The coercivity condition (2.1.29) and the relationship (2.1.25) imply that, for
sequences satisfying (2.1.31), one has

lim
k,l→∞

‖uk − ul‖ = 0 and lim
k,l→∞

‖u′k − u′l‖ = 0.
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This result shows that the sequences s and s ′ := {u′k}∞k=1 are Cauchy sequences
in the L2 norm. Since C2[a, b] is not complete in the L2 norm, one concludes
that some Cauchy sequences s may not converge, in the energy norm ‖·‖L, to
an element of V . But since L2(a, b) is complete, for all Cauchy sequences in
‖·‖L there exist elements u and ũ in L2(a, b) that are limits of s and s ′ in the
L2 norm:

lim
k→∞
‖uk − u‖= 0 and lim

k→∞
‖u′k − ũ‖= 0. (2.1.32)

The element ũ obtained in this way is uniquely determined by u and is called
the generalized derivative of u in the sense of distributions (see the discussion
in Section A.5). The reason is that whenever u ∈ C1[a, b], ũ reduces to the
classical derivative u′, but for pathological functions like piecewise continuous
functions, ũ is a distribution.

Let V̂ denote the space of functions that can be obtained as limits of Cauchy
sequences in the energy norm ‖·‖L, of elements belonging to V defined in
(2.1.8). Obviously V̂ contains V as a proper dense subspace and is embedded
into L2(a, b), V ⊂ V̂ ⊂ L2(a, b). With the help of the foregoing one concludes
that V̂ is made of functions belonging to L2(a, b) with first-order derivatives
also in L2, such functions having C0 continuity in [a, b] (see [276]). With the
Sobolev inner product (2.1.24) and associated norm (2.1.25), V̂ is a Hilbert
space.

If V were unconstrained by an essential boundary condition, the resulting
Hilbert space V̂ would be the so-called Sobolev space H 1(a, b) [14]:

H 1(a, b) :=
{

u; u ∈ L2(a, b),
du

dx
∈ L2(a, b)

}
, (2.1.33)

where du/dx is a distributional derivative. However, because of the essential
boundary condition that is preserved in the completion process, V̂ is a subspace
of H 1(a, b):

V̂ := {u ∈ H 1(a, b); u(a) = 0}.

In the sequel, a special notation will be used for Sobolev spaces satisfying
homogeneous Dirichlet conditions on the boundary:

H 1
0 (a, b) := {u ∈ H 1(a, b); u(a) = u(b) = 0}. (2.1.34)

This Hilbert space is the closure in H 1(a, b) of the set of functions belonging to
C1(a, b) with compact support in (a, b). A definition of functions with compact
support is given in Section A.5.1.
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The Sobolev space H 1 is the relevant space of admissible functions for the
variational solution of second-order differential problems. It has less smooth-
ness than the original space C2[a, b], and this calls for some remarks. First
the reader should be convinced that the enlargement of the space of functions
does not affect those problems having a solution in D(L). However, by rec-
ognizing that the range of solutions is larger than C2[a, b] and by identifying
the appropriate function space, one is able to capture the set of solutions for
all problems (2.1.9) with f ∈ L2(a, b). Another and perhaps more important
consideration is that the enlargement to Sobolev spaces offers considerable
practical advantages, as we will see in the next sections, where we encounter
concrete examples of H 1 spaces. The overwhelming success of finite-element
methods rests essentially with the ease of generating subspaces of H 1 with the
simplest functions, namely, piecewise continuous polynomials.

Some of the numerical techniques developed in this book will require a
larger category of Sobolev spaces, called weighted Sobolev spaces. These
spaces may be obtained through the same completion process as above, except
for the inner product and associated norm. Without entering into details we
mention that if w(x), x ∈ (a, b), denotes a nonnegative, integrable function
over the interval (a, b) (i.e.,

∫ b
a w(x) dx <∞), satisfying all requirements for

a weighting function, the weighted Sobolev space H 1
w(a, b) is the completion

of an inner-product space such that

H 1
w(a, b) :=

{
u; u ∈ L2

w(a, b),
du

dx
∈ L2

w(a, b)

}
,

where L2
w(a, b) denotes the Hilbert space of weighted square-integrable func-

tions (see Example 2 in Section A.4.2).
Finally, we note that for differential problems of order 2k, the process of

identifying the proper set of admissible functions would be essentially the
same, yielding the Sobolev space H k

w (or H k
0,w, depending on the boundary

conditions):

H k
w(a, b) :=

{
u; for 0 ≤ # ≤ k,

d#u

dx#
∈ L2

w(a, b)

}
, (2.1.35)

and

H k
0,w := {

u ∈ H k
w(a, b); u( j)(a) = u( j)(b) = 0, 0 ≤ j ≤ (k − 1)

}
.

These spaces are endowed with an inner product (u, v)H k
w

and associated norms
‖u‖H k

w
and seminorms |u|H k

w
that are straightforward generalizations of the
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expressions (2.1.24)–(2.1.26):

(u, v)H k
w

:=
∫ b

a
w(x)

(
k∑

i=0

u(i)v(i)

)
dx, u, v ∈ H k

w,

‖u‖H k
w

:= (u, u)1/2
H k
w
, u ∈ H k

w, (2.1.36)

|u|H k
w

:=
{∫ b

a
w(x)u(k)2 dx

}1/2

, u ∈ H k
w.

The Sobolev spaces H k(a, b), for k ≥ 1, form a hierarchy of Hilbert spaces
with inclusion relationships. In the simple one-dimensional case, one has
H k(a, b) ⊂ H k−1(a, b) ⊂ · · · ⊂ H 0(a, b) ≡ L2(a, b). If u ∈ Ck[a, b], then
certainly u ∈ H k(a, b), and therefore Ck[a, b] ⊂ H k(a, b). Also, if u ∈
H k(a, b), it can be shown that u ∈ Ck−1[a, b], and hence that H k(a, b) ⊂
Ck−1[a, b]. All these inclusion relationships are continuous in the sense defined
in Section A.3.3 [see Equation (A.3.1) and Theorem A.3]. Such relationships
are called Sobolev embedding theorems in the literature (see [79, 286, 361]).
Let us stress that some of these inclusion relationships are strictly valid for
one-dimensional problems. We shall come back to this topic in Chapter 4.

Before leaving (temporarily) the topic of Sobolev spaces, we briefly extend
their definition to negative values of k. In particular, we want to introduce the
space H−1

w , which will be needed in forthcoming chapters. In a quite con-
sistent approach, negative exponents in this case refer to antiderivatives, and
H−1
w (a, b) denotes the space of functions having their integral in L2

w(a, b).
Without entering into the subtleties of the definition, which can be found in
the literature, we mention that negative Sobolev spaces H−k

w (a, b) are the duals
of H k

0,w−1 (a, b), or, more precisely, the spaces of continuous linear functionals

defined on H k
0,w−1 (a, b) (see [71]).

Having identified suitable spaces of functions for the variational formulation
of BVPs, we must answer one important question before setting the variational
method to work. This question deals with the existence of the solution itself. In
other words : What are the conditions to be satisfied by the various parameters
of a problem in order to ensure that it has a unique solution? The answer to this
question is given by the Lax–Milgram theorem:

Theorem 2.1 (Lax–Milgram) Let V denote a Hilbert space with norm ‖·‖V .
Consider A : V × V → R, a bilinear form, and F : V → R, a bounded linear
functional. Assume the existence of positive constants β, ρ such that

|A(u, v)| ≤ β‖u‖V ‖v‖V ∀u, v ∈ V, (2.1.37)

A(u, u) ≥ ρ‖u‖2
V ∀u ∈ V . (2.1.38)
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Then there exists a unique element û ∈ V such that

A(û, v) = F(v) ∀v ∈ V . (2.1.39)

Boundedness and coercivity were key elements to identify the Sobolev
spaces of admissible functions for the variational solution of the problem (2.1.9).
They are also of central importance for the existence and uniqueness of the so-
lution to the problem. It is easy to show that the equivalence (2.1.28) between
the Sobolev and energy norms of any element u ∈ V corresponds to the condi-
tions (2.1.37)–(2.1.38) of the Lax–Milgram theorem. Hence, all conditions are
met to ensure that the solution to (2.1.9) exists and is, indeed, unique.

2.2 An Approximation Framework

Let us summarize the results obtained so far. We have seen that, provided the
hypotheses of the Lax–Milgram theorem are fulfilled, the solution û to the BVP

Lu = f , x ∈ ,
(2.2.1)

Bu = 0, x ∈ ∂,

where L is a linear differential operator, B is a boundary operator, and  is an
open domain in R with boundary ∂, exists and is unique. This solution may
be characterized by one of the following requirements:

• J (û) = minu∈V J (u), where J (u) is the variational functional with associ-
ated Euler–Lagrange equation Lu = f [see (2.1.17)].

• Find û ∈ V such that A(û, v) = F(v)∀v ∈ V [see (2.1.18)].
• Find û ∈ D(L) such that (Lû − f, v) = 0∀v ∈ D(L).

Here V denotes the Hilbert space of admissible functions (a Sobolev space) with
inner product (·, ·)V and induced norm ‖·‖V ;A : V × V → R is a bilinear form
associated to the problem; and D(L), the domain of the differential operator
L, is a dense subspace of V . Usually, û is a distribution, that is, an element
of a space obtained by a completion process. In some cases it reduces to a
continuous function.

Clearly, the minimization procedure (2.1.17) is meaningful only for sym-
metric problems. Although we will keep the model problem (2.1.9) throughout
this chapter, we momentarily free ourselves from the existence of a (minimum
or maximum) variational principle. Consequently, we characterize the solution
û of the BVP (2.2.1) by (2.1.18) or by (2.1.20). We emphasize that these rela-
tionships are formally equivalent, that is, they are equivalent only if û ∈ D(L).
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If the solution does not belong to D(L) (because the right-hand side f does
not belong to the range of L), the approach (2.1.20) is more delicate. In that
case, one has to look for the closure of D(L). In conclusion, the variational (or
weak) formulation (2.1.18) is the most general formulation of BVPs, and it will
be used extensively in later chapters.

Once the space of admissible functions V has been identified and a unique
solution û is known to exist, the remaining task is the determination of û. Since
this problem is infinite-dimensional in nature, only approximations of û can
be found in general. There is a large collection of approximation schemes, de-
pending on a variety of options. Among the most important families of schemes
we have the Galerkin approximations, the collocation method, the method of
subdomains, and the method of least squares. All these schemes are more or
less based on the same principle. Let {VN }∞N=1 represent a family of finite-
dimensional subspaces of V with

lim
N→∞

inf
u∈VN

‖v − u‖V = 0 ∀v ∈ V, (2.2.2)

providing a dense coverage of V in the limit. Instead of looking for the solution
û ∈ V , one looks for an approximation uN ∈ VN . Each method has its own
features in selecting the space VN and (possibly) a numerical approximation to
the equations (2.1.18) or (2.1.20).

Because of their importance in the numerical solution of incompressible fluid
flows by high-order schemes, we will describe the Galerkin and collocation
methods in greater detail. For a description of other methods, the reader is
referred to the literature (see, for instance, [133, 400]).

2.2.1 Galerkin Approximations

All Galerkin approximations apply a projection technique. The differences be-
tween the approximations lie in the various possibilities of implementing the
projection.

Galerkin Method

Consider the weak form of the BVP (2.2.1): Find û ∈ V such that

A(û, v) = F(v) ∀v ∈ V,

where A : V × V → R is a bilinear form associated to the operator L by inte-
gration by parts, and F : V → R is a bounded linear functional. Given a family
{VN }∞N=1 of finite-dimensional subspaces of the Hilbert space V , the Galerkin
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method consists in finding uN ∈ VN such that

A(uN , v) = F(v) ∀v ∈ VN . (2.2.3)

Let {ψn(x)}Nn=0 denote a set of N + 1 linearly independent functions of V ,
forming a basis for VN . A potential candidate for û is

uN (x) :=
N∑

n=0

unψn(x) = ψT (x) · u, uN ∈ VN . (2.2.4)

In this relationship {un}Nn=0 is a set of coefficients to be determined. For brevity,
the basis functions and the coefficients have been assembled into column vectors
ψ(x) and u, and ψT (x) · u is their inner product, with the superscript denoting
the transpose. Introducing the expansion (2.2.4) into (2.2.3) and then taking the
inner product with all basis functions ψk (k = 0, . . . , N ) leads to an algebraic
system

Hu = M f , (2.2.5)

where H is an (N + 1)× (N + 1) matrix with elements

Hmn := A(ψn, ψm), 0 ≤ m, n ≤ N . (2.2.6)

For reasons that will be more transparent later, the right-hand side M f [where
M is another, yet undefined, (N + 1)× (N + 1) matrix operator] denotes the
(N + 1)-vector with components

(M f )m := F(ψm), 0 ≤ m ≤ N . (2.2.7)

An important issue of the computation is the method by which the algebraic
system (2.2.5) is solved in practice. Various techniques will be presented later
in Section 2.7. Here we solve (2.2.5) formally, assuming that H is nonsingular.
Entering (2.2.5) in (2.2.4), we get uN (x) ∈ VN , approximation of û(x):

uN (x) = ψT (x) · H−1 M f . (2.2.8)

For the Galerkin approximation scheme (2.2.3), one has the following
theorem:

Theorem 2.2 Provided the boundedness and coercivity assumptions of the
Lax–Milgram theorem are fulfilled, the problem (2.2.3) has a unique solution
(2.2.8) that satisfies the inequality

‖uN‖V ≤ C‖ f ‖, (2.2.9)
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where C > 0 is a constant that does not depend on N. One has, moreover,

‖uN − û‖V ≤ β

ρ
inf
v∈VN

‖û − v‖V . (2.2.10)

The fact that, for a given value of N , coercivity implies the existence and
uniqueness of uN (x) is easy to understand. The condition (2.1.38) means that
the matrix H is positive definite and hence, nonsingular. The inequality (2.2.9)
is very important and proves the stability of the Galerkin approximation. A
numerical scheme is stable if the norm of any approximate solution is bounded,
independently of the discretization parameter N . The theorem establishes also
that, as a consequence of (2.2.2), uN (x) converges to û(x), with increasing
dimensions of VN . Of the three conditions, stability, consistency, and conver-
gence, two are satisfied; hence, according to Lax’s equivalence theorem [327],
the third condition (in this case, consistency) is also verified.

The r.h.s. of (2.2.10) may be evaluated by making assumptions about the
smoothness of û and by using the interpolant of û in VN . This is at the root of
all error estimates in finite-element approximations.

In the particular case where VN ⊂ D(L), N <∞, the substitution of (2.2.4)
may also be based on the formally equivalent formulation (2.1.20) of the BVP.
The approximation problem is then: Find uN ∈ VN such that

(LuN − f, v) = 0 ∀v ∈ VN . (2.2.11)

This equation has a simple and straightforward interpretation. Except in unusual
circumstances, û �∈ VN . Therefore the introduction of any trial element uN in
the equation Lu = f leaves a residual

rN (x) := LuN (x)− f (x). (2.2.12)

According to (2.2.11), the solution is obtained when the residual (2.2.12) is
orthogonal to VN with respect to the inner product (·, ·). Hence, the method is
known in the engineering literature as the method of weighted residuals [123].

Remark 2.1 When the bilinear form is symmetric, A(u, v) = A(v, u), and
an approximate solution may be obtained by using the variational principle
(2.1.16)–(2.1.17) as well. The finite-dimensional problem then becomes: Find
uN ∈ VN such that

J (uN ) = min
u∈VN

J (u) = min
u∈VN

{
1

2
A(u, u)− F(u)

}
. (2.2.13)
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This is known as the Ritz method. Putting the expansion (2.2.4) into (2.2.13) and
then minimizing J over VN leads to the same algebraic system as the Galerkin
method (2.2.5)–(2.2.7). The interest of this formulation lies in the geometrical
interpretation. Using (2.1.19) one may write also

A(uN − û, uN − û) = min
v∈VN

A(v − û, v − û), (2.2.14)

which shows that of all elements belonging to VN , uN (x) is at the shortest
distance in energy norm from û(x). Subtraction of (2.2.3) from (2.1.18) shows
indeed that uN (x) is the orthogonal projection of û(x) onto VN in the energy
inner product (·, ·)L.

Petrov–Galerkin Methods

We will meet circumstances in forthcoming chapters where, for a given prob-
lem, the Galerkin approximation (2.2.3) offers poor numerical performance,
although the problem satisfies the coercivity and boundedness requirements.
A classical example is the advection-dominated diffusion equation where, in
the absence of precautions, spurious oscillations (wiggles) may develop in the
numerical solution. This example will be analyzed more closely in Chapter 3.
A remedy to these wiggles is provided by Petrov–Galerkin methods.

We introduce two families of finite-dimensional subspaces of V , {VN }∞N=1

and {WN }∞N=1, satisfying the property (2.2.2). A Petrov–Galerkin method is
applied when the approximation of (2.2.1) is as follows: Find uN ∈ VN such
that

A(uN , w) = F(w) ∀w ∈ WN . (2.2.15)

For example, let VN := {ψk(x)}Nk=0 and WN := {θk(x)}Nk=0 denote two dif-
ferent subspaces of V . The problem (2.2.15) reduces to a linear system (2.2.5)
with a matrix H having elements

Hmn := A(ψn, θm), 0 ≤ m, n ≤ N , (2.2.16)

and with r.h.s. components

(M f )m := F(θm), 0 ≤ m ≤ N . (2.2.17)

The existence and convergence properties of uN (x), the solution to the Petrov–
Galerkin approximation (2.2.15), are governed by the same assumptions as
those of Theorem 2.2.
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Generalized Galerkin Method

So far we have assumed that the quadratures inA andF were performed exactly.
We will develop families of numerical methods where these quadratures are
performed numerically. Our interest in this book will be focused on high-order
Gaussian quadrature schemes. In this case, a Galerkin approximation of the
variational problem (2.1.18) will be written as follows: Find uN ∈ VN such that

AN (uN , v) = FN (v) ∀v ∈ VN , (2.2.18)

where AN and FN are approximations of A and F derived from Gaussian
quadrature rules, defined on VN × VN and VN , respectively. This procedure,
called the generalized Galerkin method by Quarteroni and Valli [319], is at the
heart of the spectral-element method (SEM) that we introduce in Section 2.4.

In this particular case, we have a stability and convergence result contained
in the following theorem.

Theorem 2.3 Assume that the bilinear form A : V × V → R satisfies the
boundedness and coercivity conditions of Theorem 2.1. Suppose further that
these conditions are fulfilled when A and F are replaced by AN and FN . Then,
for a continuous f , there exists a unique solution uN ∈ VN to (2.2.18) that
satisfies the inequality

‖uN‖V ≤ C‖IN f ‖L2 , (2.2.19)

where IN f is the interpolation of f at the Gaussian quadrature nodes. More-
over, if û is the solution of (2.1.18), one has the error bound

‖û − uN‖V ≤ C

ρN

[
inf
v∈VN

(
‖û − v‖V + sup

z∈VN
z �=0

A(v, z)−AN (v, z)

‖z‖V

)

+ sup
z∈VN
z �=0

F(z)− FN (z)

‖z‖V

]
, (2.2.20)

where ρN is the ellipticity constant of the discrete bilinear form AN .

2.2.2 Collocation Approximation

Consider again the BVP (2.2.1) with Dirichlet conditions. We introduce an
ordered set of nodes {xi }Ni=0 including the boundaries. Let VN represent a
finite-dimensional subspace of V spanned by the basis functions {ψn(x)}Nn=0. We
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assume that these basis functions have preliminarily been bi-orthonormalized
with respect to the set of pointwise interpolation functionals at the elements of
{xi }Ni=0 (see Davis [91]) so that

ψk(xl) = δkl , 0 ≤ k, l ≤ N , (2.2.21)

where δkl denotes the Kronecker symbol (1 for k = l and 0 otherwise). Every
function uN (x) ∈ VN therefore has an expansion (2.2.4) in terms of the basis
functions ψk where the coefficients are local values of the unknown,

uN (x) =
N∑

k=0

uN (xk)ψk(x). (2.2.22)

We define the collocation approximation of û as the element uN ∈ VN such
that

LuN (xi ) = f (xi ) ∀xi ∈ , (2.2.23)

BuN (xi ) = 0 ∀xi ∈ ∂. (2.2.24)

The differential equation is satisfied at the interior nodes, while the boundary
conditions are enforced at the end points. Putting the trial function (2.2.22)
into (2.2.1) and imposing the relationships (2.2.23), (2.2.24) gives an algebraic
system

LC u = f , (2.2.25)

where LC is the collocation matrix and the vectors u and f are made of the
nodal values of the unknown and of the right-hand side of (2.2.1).

In the case of Dirichlet boundary conditions at both end points, the matrix
LC has elements

LC,mn = Lψn(xm), 1 ≤ m, n ≤ N − 1. (2.2.26)

At first glance, a comparison between (2.2.6) and (2.2.26) would suggest
that the Galerkin and collocation approximations have little in common. In
addition, although we do not yet have an expression of the matrix M in a
Galerkin approximation, in the collocation case (2.2.26) this matrix, if any,
must be equal to the identity matrix. Despite these apparent differences, we will
show in Sections 2.4 and 2.5 that the two approximations have something in
common.

Before leaving this section we remark that the right-hand side of (2.2.22) is
a (Lagrangian) interpolation formula on the ordered set of nodes {xi }Ni=0. For
simplicity, we henceforth will use the notation IN to represent an interpolation
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operator from V onto VN . Accordingly, Equation (2.2.22) might also be written
uN (x) = IN u(x), where u(x) ∈ V in this case is the unknown.

2.3 Finite-Element Methods

So far, the approximation principles have not referred to any particular choice
of trial and test functions {ψn(x)}Nn=0. Finite elements are such a choice of
considerable practical importance, because they enable the implementation of
Galerkin approximations with great programming and computation efficiency.
We describe their main features on the problem (2.1.9), emphasizing those
aspects that will be used in later chapters. Further details may be found in [79,
71, 370]. Multidimensional problems will be treated in Chapter 4, essentially
in a tensorized approach.

In any finite-element method (FEM) one starts with a partition of the inte-
gration domain into intervals (or elements). Let �E denote a partition of (a, b)
with E elements:

�E : a = x0 < x1 < x2 < · · · < xE−1 < xE = b. (2.3.1)

In the sequel we will refer to these nodes as the primary nodes, or element
boundary nodes. Here and throughout the text we use an index e to denote
quantities related to the element e. In general, all elements e := {x ; xe−1 <

x < xe}, 1 ≤ e ≤ E , might have different sizes he = xe − xe−1. For simplicity,
however, we will assume in this section that the partition is homogeneous with
a mesh size equal to h = (b − a)/E .

For the sake of convenience, we let ̂ := {ξ | − 1 ≤ ξ ≤ 1} denote the parent
(or reference) element, onto which each e may be mapped by using the affine
transformation

ξ = 2x − (xe−1 + xe)

h
, 1 ≤ e ≤ E, (2.3.2)

with inverse

x = 1− ξ

2
xe−1 + 1+ ξ

2
xe, 1 ≤ e ≤ E . (2.3.3)

We denote by Pp(̂) (p = 1, . . .), the linear space of polynomials of degree p
on the parent element ̂, with p + 1 degrees of freedom.

The analysis of a FEM starts at the local level of the parent element, where a
set of polynomial basis functions is introduced. These functions are the building
blocks that, when pieced together on �E , element by element, form the global
basis {ψn(x)}Nn=0 of VN , the elements of which are used as trial functions in
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the expansion (2.2.4). The epithet “global,” in this context, refers to the entire
domain of integration, as opposed to “local,” which applies to the element level.
Thus, each member of the basis of VN is a patchwork of local functions mapped
from the parent element onto each interval e of �E . The dimension of the
basis (i.e., the number of degrees of freedom), N , is related to E and to the
polynomial degree p by N = Ep + 1.

We examine two different finite-element approximations, known as the h-
and p-versions of the FEM, as an example of implementation of Galerkin ap-
proximations. In each case we indicate the main steps that, starting from the
parent element ̂, lead to the algebraic system (2.2.5).

2.3.1 The h-Version of Finite Elements

We start our analysis with a description of the h-version of the FEM.

Global Mesh and Set of Basis Functions

Every FEM of degree p is characterized by an expansion of the elements of
Pp(̂), in terms of p + 1 basic polynomial functions {πi (ξ )}pi=0 and their asso-
ciated coefficients {&i }pi=0:

wp(ξ ) :=
p∑

i=0

&iπi (ξ ), ξ ∈ ̂, wp ∈ Pp. (2.3.4)

The canonical form of wp would correspond to {πi (ξ ) = ξ i }pi=0. This turns
out, in fact, to be a bad choice, for stability reasons. Most of the time, the
expansion (2.3.4) is derived from Lagrangian or Hermitian interpolation theory,
where the parameters {&i }pi=0 are nodal values or nodal derivatives of a function.

As a first example, consider an elemental grid on ̂ with p + 1 distinct
nodes, 'p+1 := {ξ0, ξ1, . . . , ξp}. The Lagrangian interpolation polynomial at
'p+1 of any smooth function f (ξ ) on [−1, 1] is Ip f ∈ Pp with

Ip f (ξ ) :=
p∑

i=0

f (ξi )πi (ξ ), ξ ∈ ̂, (2.3.5)

and

πi (ξ ) =
∏
j �=i

ξ − ξ j

ξi − ξ j
, 0 ≤ i, j ≤ p. (2.3.6)

The polynomials {πi (ξ )}pi=0 form the Lagrangian interpolation basis on the
parent element, satisfying the bi-orthonormality relationships (2.2.21) with the
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nodal values on 'p+1. The location of the nodes {ξi }pi=0 on ̂ is arbitrary.
However, to comply with the C0 continuity constraint on the trial functions
derived in Section 2.1.3, the end points of ̂ must be included into 'p+1. In
this case, continuity is automatically ensured by the existence of a nodal value at
each mesh point in �E , and the resulting basis functions belong to the Sobolev
space H 1(a, b). This finite element is the simplest element belonging to the
family of tensorized Lagrangian finite elements of degree p in d-dimensional
space (here, d = 1), which in Ciarlet’s taxonomy [79] are denoted by Qp. The
Q1 element uses the polynomial basis

π0(ξ ) = 1− ξ

2
and π1(ξ ) = 1+ ξ

2
, (2.3.7)

while the Q2 element uses

π0(ξ ) = ξ (ξ − 1)

2
, π1(ξ ) = 1− ξ 2, π2(ξ ) = ξ (ξ + 1)

2
. (2.3.8)

Another important example is the cubic Hermite finite element, where the
functionals in the expansion are the nodal values and first-order derivatives of
the function at the end points of ̂. Given a smooth function f (ξ ) on [−1,+1],
one writes its cubic Hermite interpolation I H

3 f (ξ ) as

I H
3 f (ξ ) :=

∑
i=0,1

∑
j=±1

f (i)(ξ j )πi, j (ξ ), (2.3.9)

with ξ±1 := ±1 and the basis functions

π0, j (ξ ) = 1

4
(1+ jξ )(−ξ 2 + jξ + 2),

π1, j (ξ ) = (−1) j

4
(1+ jξ )2( jξ − 1). (2.3.10)

The expansion (2.3.9) provides enhanced smoothness compared with (2.3.5),
since continuity is ensured for I H

3 f and its first-order derivative. This finite-
element, denoted P3 in Ciarlet’s nomenclature, belongs to the Sobolev space
H 2(a, b).

Having chosen a Lagrangian polynomial expansion (2.3.4) on ̂, one may
construct the set of global basis functions {ψn(x)}Nn=0. Using (2.3.3) to map the
elemental grid 'p+1 onto each interval of �E gives the global finite-element
grid {xn}Nn=0, made of primary and secondary nodes. The primary nodes are the
mesh points {xe}Ee=0 belonging to �E , while the secondary nodes {xe+i/p}p−1

i=1

are the images of the inner nodes of'p+1 onto each elemente. In our example
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Figure 2.3.1. Piecewise linear and quadratic (p = 1, 2) finite elements.

the global grid contains a total ofN = Ep + 1 mesh points, with E + 1 primary
nodes and p − 1 secondary nodes per element. Then, (2.3.2) is used to map the
p + 1 Lagrangian interpolation polynomials (2.3.6) onto each finite element as
well. Clearly, since every image of an interpolation polynomial is located in one
element only, the global basis functions ψn(x) have essentially local support:
those corresponding to a secondary node vanish identically outside the element
containing the node, whereas those corresponding to a primary node extend
over the adjacent intervals and vanish identically elsewhere.

Figure 2.3.1 displays two sets of Lagrangian finite-element basis functions
with piecewise linear and quadratic polynomials (p = 1, 2). They are typical
examples of functions belonging to a Sobolev space H 1. The linear elements
have no secondary nodes, while the quadratic elements have one secondary
node per element.

In Chapter 4 we will introduce the concept of (multidimensional) isopara-
metric elements. At this stage we emphasize that such elements are character-
ized by polynomial expansions (2.3.5) where both the unknown and the element
boundaries are represented by the same expansions. As an example, the poly-
nomial functions (2.3.8) are the ingredients of the second-order isoparametric
finite-element transformation where, in two space dimensions, part of an ele-
ment boundary is described by

(x, y)= (x, y)eπ0(ξ )+ (x, y)e+1/2π1(ξ )+ (x, y)e+1π2(ξ ), −1 ≤ ξ ≤ 1,

(x, y)e+k/2 (k = 0, 1, 2) denoting points located on the boundary.

Stiffness and Mass Matrices

With the global finite-element basis {ψn(x)}Nn=0 now unambiguously defined
and

VN := span{ψ0, ψ1 . . . , ψN }, N = Ep,
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any trial function uN ∈ VN may be decomposed as (2.2.4). We emphasize again
that the parameters un in this case are nodal values on the finite-element grid
because of the choice of Lagrangian bases (2.3.6). Hence, (2.2.4) may be used as
a finite-element interpolation formula. Let u(x) denote any function belonging
to H 1(a, b); its finite-element interpolation IN u into VN is thus given by

IN u(x) :=
N∑

n=0

u(xn)ψn(x). (2.3.11)

Going back to the Galerkin method, one can now evaluate the matrices H and
M in (2.2.5) with more detail. The local character of the basis functions renders
the task of evaluating these quantities easy and systematic. All calculations
may be performed on ̂ by using the polynomial basis (2.3.6) and then may
be translated onto all finite elements with a scaling factor to compensate for
the affine transformation (2.3.2). To illustrate the method by an example, we
perform the computations in the case of the linear Lagrangian element Q1,
assuming the coefficient p(x) in (2.1.9) to be constant in the integration domain
and equal to p. Furthermore, we set q(x) = 0.

The basic building block for the assembly of matrix H in this particular
case is a 2× 2 matrix originating from the differentiated term in A(u, v) on
the parent element ̂:

K̂ :=
{∫ 1

−1
π ′mπ

′
n dξ

}
m,n=1,2

=
(

1/2 −1/2
−1/2 1/2

)
, (2.3.12)

which is called the element stiffness matrix in the finite-element literature. Then,
taking into account the appropriate scaling factor on each element e, one gets
the local stiffness matrix K e:

K e := 2

h
K̂ , e = 1, . . . , E .

Finally, the matrix operator H results from the assembly of all local stiffness
matrices K e. Using an element-by-element process of fetching and summing
known as direct stiffness summation, one enters the individual contributions of
all primary and secondary nodes into the appropriate components of H .

To complete the assembly process, one implements the boundary conditions.
Following the previous discussion, this is straightforward in our particular ex-
ample: a homogeneous Dirichlet condition is enforced on the numerical solution
at the left, while at the right the variational principle provides the homogeneous
Neumann condition naturally (i.e., the condition is automatically included).
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In the particular case where p = 1 and q = 0 corresponding to the Laplace
equation, we get the matrix

K = 1

h


1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 . (2.3.13)

Other strategies for applying Dirichlet boundary conditions, which preserve
the symmetry of K, are described in Sections 4.3.2 and 4.5.2.

In the finite-element literature the matrix K , related to the component u′v′

in the variational functional (2.1.12), is called the (global) stiffness matrix (see,
for instance, [214]).

The right-hand side of (2.2.5) must now be evaluated taking into account
the fact that f (x) is an arbitrarily given function. Theoretically, all components
F(ψm), 0 ≤ m ≤ N , of (2.2.7) could be determined exactly (albeit numeri-
cally), at some computer expense. In practice, however, the computation is
never done in this way. To evaluate F(ψm), one replaces the forcing term f (x)
by its finite-element interpolation in VN given by (2.3.11). The components of
the load vector are thus approximated by

N∑
n=0

f (xn)
∫ b

a
ψm(x)ψn(x) dx, 0 ≤ m ≤ N . (2.3.14)

The local character of the global basis functions {ψm(x)}Nm=0 makes most of the
integrals in (2.3.14) identical to zero. Those that do not vanish are computed
on ̂.

One recognizes in (2.3.14) the components of a 2× 2 matrix M̂ analogous
to K̂ . This matrix is called the element mass matrix. It is equal to

M̂ :=
{∫ 1

−1
πmπn dξ

}
m,n=1,2

=
(

2/3 1/3
1/3 2/3

)
. (2.3.15)

Using the element mass matrix M̂ and appropriate scaling factors (in this case
h/2), one gets the local mass matrices Me. Currently, they are all equal to

Me := h

2
M̂, e = 1, . . . , E .

The building process ends with the (global) mass matrix M obtained from
the local mass matrices Me by the same assembly process used to build K ,
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and with the r.h.s. of (2.2.5) resulting from the application of M to f =
( f0, f1, . . . , fN )T , the vector of nodal values of f (x) on the finite-element
grid.

As a result, the algebraic system (2.2.5) produced by the finite-element
approximation of the problem with p = 1 and q = 0 is

Hu = M f , (2.3.16)

with H = K and with a mass matrix

M = h

2


0 0

1/3 4/3 1/3
. . .

. . .
. . .

1/3 4/3 1/3
1/3 2/3

 . (2.3.17)

When q(x) �= 0, the preceding procedure is still applicable. In this case,
the mass matrix M also enters into the composition of the left-hand side (l.h.s.)
matrix operator H . This is due to the uv component in the variational functional
(2.1.12). For constant coefficients p and q, one has

H = pK + q M, (2.3.18)

with K and M given by (2.3.13) and (2.3.17), respectively.
Finally, when the coefficients p(x) and q(x) in the problem (2.1.9) are non-

constant, the evaluation of the stiffness and mass matrices K and M is somewhat
different. In this case, p(x) and q(x) are replaced by their finite-element inter-
polation IN p(x) and IN q(x) in VN , using (2.3.11). The local matrices K e and
Me are then built from sets of elemental stiffness and mass matrices {K̂ #}2#=1

and {M̂#}2#=1 by a local assembly process. When Q1 Lagrangian elements are
used, each set has two members given by

K̂ # :=
{

K̂ #,mn =
∫ 1

−1
π#π

′
mπ
′
n dξ,

}
m,n=1,2

,

M̂# :=
{

M̂#,mn =
∫ 1

−1
π#πmπn dξ,

}
m,n=1,2

,

with the index # = 1, 2. Once these elements have been computed, K and M
are assembled element by element, with {K̂ #}2#=1, {M̂#}2#=1, and the appropriate
scaling factors and nodal values of p(x) and q(x) as weighting coefficients.
The assembly process gives an algebraic system (2.3.16) with a symmetric
matrix H .
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The generation of the finite-element equations (2.3.16) is easily automated,
irrespective of the polynomial degree. With the element Q1, the matrices, H
and M , are tridiagonal. In the case of Lagrangian elements of degree p these
matrices would have a band structure with a half bandwidth w equal to p.
We recall that the half bandwidth w(A) of a banded matrix A is defined as
the smallest integer such that ai j = 0 for all (i, j) satisfying |i − j | > w(A).
Since, most of the time, w(H )" N , where N is the number of unknowns, the
linear system (2.2.5) is sparse and may be solved by direct solution techniques.
For example, LU decomposition would give the solution at a computational
cost asymptotically proportional to Nw2(H ) floating-point operations (flops)
for the factorization stage, and proportional to Nw(H ) flops for the forward
and backward substitutions. Other solution techniques may be used as well. We
postpone further discussion of this topic to Section 2.7.

Having described the implementation technique of finite elements based on
interpolation, we need only clarify the title of this section. Finite elements are
said to be of h-type when the degree p of the interpolation formula is fixed
and when any change of discretization to enhance accuracy implies a mesh
refinement, that is, a reduction in h.

2.3.2 The p-Version of Finite Elements

In contrast with the preceding subsection, finite elements are said to be of p-
type when the partition �E with E + 1 mesh points (2.3.1) is fixed and any
change of discretization is introduced through a modification in the degree of
the polynomial space Pp. The degree may depend on the element e in �E ,
particularly if local refinements are imposed by the complexity of the problem.

FEMs of p-type are usually defined in terms of the Legendre polynomials
L j (ξ ) of degree j ( j = 2, . . . , p) (see, e.g., Szabó and Babuška [370]). The
polynomial expansion of degree p on ̂ corresponding to (2.3.4), is

wp(ξ ) := wp(−1)
1− ξ

2
+ wp(1)

1+ ξ

2
+

p∑
j=2

& jφ j (ξ ), ξ ∈ ̂, (2.3.19)

with

φ j (ξ ) :=
(

2 j − 1

2

)1/2 ∫ ξ

−1
L j−1(t) dt

= 1√
2(2 j − 1)

(L j (ξ )− L j−2(ξ )), 2 ≤ j ≤ p. (2.3.20)

The first two terms in the expansion (2.3.19) ensure C0 continuity of the trial
functions {ψn}Nn=0 on the integration domain. The p − 2 remaining terms with
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basis functions given by (2.3.20) are inner modes (also called bubble func-
tions),which vanish identically on the boundaries of ̂ [see Equation (B.1.17)].

The p- and h-versions of FEMs differ in one main aspect: the unknowns & j

in (2.3.19) are simply parameters (i.e., unspecified linear functionals), whereas
all functionals in the h-version are nodal values or derivatives, leading to phys-
ical interpretation of the solution. In compensation, finite-element approxi-
mations of p-type possess the interesting property of forming a hierarchical
structure in the sense that the expansion of polynomial degree p lies in the
expansion of polynomial degree p + 1, allowing for adaptive computations to
be made quite naturally.

The implementation procedure of the Galerkin method in the p-version of
the FEM follows the same pattern as that indicated in the h-version. For instance,
in the constant coefficient case, one ends up with an algebraic system

Hu = f , (2.3.21)

where H = pK + q M , K and M being sparse stiffness and mass matrices. The
r.h.s. of (2.3.21) results from a numerical integration of F(v) in (2.2.3), each
component of f corresponding to setting v to a particular trial function ψn(x)
(n = 0, . . . , N ), a building block of the piecewise polynomial space VN .

Figure 2.3.2 displays the (nonzero) structure of element stiffness matrix K̂
and mass matrix M̂ of a p-type FEM with p = 11. The ordering of the un-
knowns is (wp(−1), wp(+1), &2, . . . , &11)T . The analytical form of the bubble
functions (2.3.20) makes the stiffness matrix almost diagonal. Notice also that,
because of the hierarchical property of the p-type FEM, the element stiffness
and mass matrices corresponding to p = 10 can be obtained very simply from
those with p = 11, by dropping the last rows and last columns of K̂ and M̂ .

When the coefficients p and q in problem (2.1.9) are nonconstant, the pro-
cedure used for the h-type FEM to evaluate the components of the l.h.s. of
(2.3.21) is no longer applicable. In this case, the matrix constituents of H must

••••••••••••••
(a)

••••••••••• ••• • •• • •• • •• • •• • •• • •• • •• •• •
(b)

Figure 2.3.2. Structures of (a) element stiffness matrix K̂ and (b) element mass matrix
M̂ of a p-type FEM with p = 11.
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be computed element by element using a numerical quadrature

Hmn =
E∑

e=1

(∫
e

p(x)
dψm

dx

dψn

dx
dx +

∫
e

q(x)ψm(x)ψn(x) dx

)
, (2.3.22)

with 0 ≤ m, n ≤ N . Once these coefficients are known, the l.h.s. matrix H is
assembled as before. Most of the time, the element blocks are now full.

The vector of unknowns u, which comprises the nodal values at the grid
points of �E and the coefficients of the bubble modes in each finite element,
contains all the information needed to evaluate the approximate solution uN in
(a, b). Further details may be found in [370].

2.4 Spectral-Element Methods

Spectral-element methods (SEMs) form another family of approximation
schemes based on the Galerkin method. These methods, which were introduced
by Patera [297], have close connections with finite-element discretizations and
share specific features with both the h- and p-versions of the FEM. Common to
spectral elements and the h-version are a Lagrangian interpolation formula on
the parent element ̂ and the fact that the basis functions have local support.
With the p-version, spectral elements share the preferred use of high-degree
polynomials on a fixed (coarse) geometric mesh, in order to take advantage of
enhanced accuracy when solving smooth problems.

The specific character of SEMs consists in their close relationship with or-
thogonal polynomials and Gaussian quadrature. Orthogonality between basis
functions in the h- and p-versions of the FEM is uniquely due to nonoverlap-
ping local functions. This is where SEMs depart from the two other families;
orthogonality is related to both the topological nature (local extension) and the
analytical nature of the basis functions.

Two implementations have been proposed, based on Chebyshev [297] and
on Legendre [336] polynomials. In both cases Lagrangian interpolation is per-
formed on the related Gauss–Lobatto quadrature grid in order to ensure C0

continuity of the solution and to benefit from the associated numerical quadra-
ture schemes. Chebyshev polynomials were chosen because they offered the
possibility of using fast transform techniques. However, the quadratures needed
to evaluate the stiffness and mass matrices were performed analytically with-
out introduction of the associated Chebyshev weighting factor (

√
1− x2)−1.

Although the results for smooth problems were showing the expected exponen-
tial behavior in accuracy, the implementation with Chebyshev polynomials was
abandoned in favor of the more straightforward Legendre implementation. We
will therefore concentrate on the latter.



2.4. Spectral-Element Methods 63

We consider again a partition �E of (a, b) [see (2.3.1)]. However, as in the
p-version of the FEM, this partition will be frozen. Let 'N+1 = {ξ0, ξ1, . . . , ξN }
denote the ordered set of N + 1 Gauss–Lobatto–Legendre (GLL) quadrature
nodes on ̂ [see Section B.2, Equations (B.2.5) and (B.2.9)]. These nodes are
solutions to the equation

(1− ξ 2)L ′N (ξ ) = 0, ξ ∈ ̂, (2.4.1)

where L ′N is the derivative of the Legendre polynomial of degree N . The
Lagrange interpolation polynomial, of degree N , of any regular function u(ξ )
at the GLL quadrature nodes 'N+1 is

IN u(ξ ) =
N∑

j=0

u(ξ j )π j (ξ ), ξ ∈ ̂, (2.4.2)

with {π j (ξ )}Nj=0, the associated interpolation basis of degree N . One may show
that the elements of this basis are given by

π j (ξ ) = −1

N (N + 1)

(1− ξ 2)L ′N (ξ )

(ξ − ξ j )L N (ξ j )
, 0 ≤ j ≤ N , ξ ∈ ̂. (2.4.3)

Figure 2.4.1 shows an example of basis functions (2.4.3), corresponding to
N = 10. Only half of the basis is displayed.

Figure 2.4.1. An example of Legendre spectral-element basis functions (2.4.3) corre-
sponding to N = 10.
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The implementation of the Galerkin method (2.2.3) with spectral elements
is now similar to the h-version of the FEM. We come back to the model prob-
lem (2.1.9) with coefficients p(x), q(x), and with a partition�E of := (a, b).
The spectral element approximation ue

N (x) of degree N in e (e = 1, . . . , E),
mapped onto ̂, is written

ue
N (ξ ) =

N∑
j=0

ue
jπ j (ξ ), ξ ∈ ̂, (2.4.4)

where the coefficients {ue
j }Nj=0 are nodal values of the unknown ine. The local

matrices H e and Me (e = 1, . . . , E) have elements

H e
i j := 2

he

∫ 1

−1
pe dπi

dξ

dπ j

dξ
dξ + he

2

∫ 1

−1
qeπiπ j dξ, (2.4.5)

Me
i j := he

2

∫ 1

−1
πiπ j dξ, 0 ≤ i, j ≤ N , (2.4.6)

where pe and qe denote the (variable) coefficients of the differential equation
mapped frome onto the parent element. With the particular selection of nodes
'N+1 in ̂, one is tempted to apply Gaussian quadrature for the evaluation of the
matrix elements (2.4.5) and (2.4.6). This gives the local matrices with numerical
quadrature resulting from the application of (2.2.18). The components of these
matrices for the element e are

H e
N ,i j =

2

he

N∑
m=0

ρm pe
m D(1)

N ,mi D(1)
N ,mj +

he

2
ρi q

e
i δi j , (2.4.7)

Me
N ,i j =

he

2
ρiδi j , 0 ≤ i, j ≤ N . (2.4.8)

The coefficients {ρm}Nm=0 denote the GLL quadrature weights (B.2.9). The
r.h.s. of (2.4.7) uses the nodal values of pe and qe on the GLL grid, and the
differentiation matrix (B.3.51). The matrix elements

D(1)
N ,i j := dπ j

dξ

∣∣∣∣
ξ=ξi

=



L N (ξi )

L N (ξ j )

1

ξi − ξ j
, i �= j,

− (N + 1)N

4
, i = j = 0,

(N + 1)N

4
, i = j = N ,

0 otherwise

(2.4.9)

are the nodal values of the first derivative of the GLL interpolation polyno-
mials (2.4.3). Using the direct stiffness process mentioned in Section 2.3.1,
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••••••••••••••••••••••••••••••••••••
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(a)

••••••••••••••••
(b)

Figure 2.4.2. Global stiffness matrix (a) and mass matrix (b) structures of a spectral-
element approximation with three elements and N = 5.

one obtains the algebraic system governing the spectral-element solution
uN (x) := {ue

N (x)}Ee=1 [uN (x) ∈ C0()]:

Hu = M f . (2.4.10)

In this expression, the vectors u and f have N components (N = E N + 1),
with u := (u1

0, u1
1, . . . , uE

N−1, uE
N )T , and the same structure for f .

The stiffness and mass matrices of spectral elements and p-type finite ele-
ments are quite different in structure. While for p-type FEM K̂ is almost di-
agonal (in the constant coefficient case), for spectral elements this matrix is
full. On the other hand, due to the cardinality property of the Lagrangian basis
(2.4.3) on the GLL grid, for spectral elements the matrix M̂ is diagonal [see
Equation (2.4.8)]. This property, resulting from Gaussian integration, is an im-
portant feature from the computational point of view. Figure 2.4.2 displays the
structure of the global stiffness and mass matrices for a partition into three
spectral elements (i.e. E = 3) with N = 5.

Finally, in order to improve numerical accuracy one usually keeps the par-
tition �E fixed and increases the polynomial degree inside the elements e,
as is the case with p-type FEM. The polynomial degree may also be changed
from element to element, depending on the nature of the problem and the ac-
curacy requirements. However, in multidimensional problems, local solution
refinements are more difficult to implement, as discussed in later chapters.

Remark 2.2 Here we make an important remark about spectral-element meth-
ods. Assume the problem (2.1.9) with constant coefficients p and q is solved
on  = (−1, 1) using one Legendre spectral element of degree N . Let us de-
note by PN ,0(̂), the set of polynomials of degree N vanishing at x = −1.
Then the Galerkin approximation with numerical quadrature (2.2.18) is: Find
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uN ∈ PN ,0(̂) such that

AN (uN , vN ) = FN (vN ) ∀vN ∈ PN ,0(̂), (2.4.11)

with

AN (uN , vN ) :=
N∑

j=0

ρ j

(
p

duN

dx

dvN

dx
+ quNvN

)
(ξ j ), (2.4.12)

FN (vN ) :=
N∑

j=0

ρ j f (ξ j )vN (ξ j ). (2.4.13)

In (2.4.12) and (2.4.13) we deliberately avoid the expansion of uN and vN in
the basis functions π j . Since uN , vN ∈ PN (̂), the product u′Nv

′
N ∈ P2N−2(̂).

Consequently, the GLL quadrature of the derivative term in (2.4.12) is exact,
and one has

N∑
j=0

ρ j p

(
duN

dx

dvN

dx

)
(ξ j ) =

∫ 1

−1
p

duN

dx

dvN

dx
dx

= −
∫ 1

−1
p

d2uN

dx2
vN dx + pu′NvN (1). (2.4.14)

As the product u′′NvN ∈ P2N−2(̂), the argument about the GLL quadrature
may be repeated. It turns out that the Galerkin approximation (2.4.11) is equiv-
alent to the following problem: Find uN ∈ PN ,0(̂) such that

N∑
j=0

ρ jvN (ξ j )(LuN − f )(ξ j )+ pu′NvN (1) = 0 ∀vN ∈ PN ,0(̂). (2.4.15)

One concludes that the spectral-element solution ûN to (2.4.11) satisfies the
relationships

LuN (ξ j ) = f (ξ j ), 1 ≤ j ≤ N − 1, (2.4.16)

u′N (1)+ 1

p
ρN (LuN − f )(1) = 0. (2.4.17)

According to (2.4.16) the differential equation is identically verified at all in-
terior nodes of ̂, while the relationship (2.4.17) shows that the Neumann
condition at the right boundary is enforced only asymptotically, since ρ0 =
ρN ≡ 2/N (N + 1) [see Equation (B.2.9)]. The equations (2.4.16)–(2.4.17)
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are similar to the collocation equations (2.2.23)–(2.2.24). Thus, with a slight
reservation on the Neumann boundary condition, one may state that, in the case
of constant coefficients, a Legendre spectral-element solution is a particular
collocation solution of the problem.

The discussion has focused so far on Legendre spectral elements. Similar
conclusions may be drawn for SEMs based on Chebyshev polynomials. We turn
now to collocation calculations on Gaussian quadrature grids.

2.5 Orthogonal Collocation

We introduced the collocation approximation in Section 2.2.2 in very general
terms. Nothing was said about the actual choice of the collocation nodes. It
seems obvious from Remark 2.2 that a good choice of the collocation grid may
improve the approximation error of the numerical solution of a BVP.

Orthogonal collocation in the engineering literature refers to the family of
collocation methods with discretization grids associated to Gaussian quadrature
methods (see, for instance, [400]). For the purpose of illustration, we consider
again the problem (2.1.9) with space-dependent coefficients on the open ref-
erence interval  := (−1,+1). We first describe the orthogonal collocation
procedure on a single domain. The approach is then extended to multidomain
collocation, according to the technique introduced for the Navier–Stokes equa-
tions in higher space dimensions by Demaret and Deville [95].

2.5.1 Orthogonal Collocation in a Monodomain

In the single-domain case, the algorithm is simple. It starts with the selection of
a collocation grid and the construction of the associated polynomial functions
forming a bi-orthogonal Lagrangian interpolation basis. In order to get the
greatest possible choice, we introduce a function related to the Jacobi orthogonal
polynomial of degree N , Pα,β

N [see Equation (B.2.5)]:

χ
(α,β)
N (ξ ) := (1− ξ 2)

d

dξ
Pα,β

N (ξ ), ξ ∈ ̂. (2.5.1)

The Gauss–Lobatto–Jacobi (GLJ) quadrature nodes {ξ J
i }Ni=0 are the solutions to

χ
(α,β)
N (ξ ) = 0. (2.5.2)

Two particular cases are important: the Legendre polynomials L N (ξ ) already
met in the preceding section (corresponding to α = β = 0), and the Chebyshev
polynomials TN (ξ ) (corresponding to α = β = −1/2).
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Most of the time the GLJ quadrature nodes {ξ J
i }Ni=0 must be evaluated numer-

ically. Robust computation routines are quite common in the literature (see, for
instance, Press et al. [316] or Villadsen and Michelsen [400]). Fortunately, in
the Gauss–Lobatto–Chebyshev (GLC) case, the nodes {ξ c

i }Ni=0 are given explic-
itly by the expression (B.2.13). Whatever the choice of the Gaussian grid, a set
of bi-orthonormal Lagrangian interpolation functions {π J

i }Ni=0 can be built.
Let IN u(ξ ) ∈ PN denote the interpolation polynomial corresponding to the

grid defined by (2.5.2):

IN u(ξ ) :=
N∑

i=0

u
(
ξ J

i

)
π J

i (ξ ), ξ ∈ ̂. (2.5.3)

The basis functions π J
i (ξ ) are given by

π J
i (ξ ) = Ci

1− ξ 2

ξ − ξ J
i

d

dξ
Pα,β

N (ξ ), (2.5.4)

where Ci is the normalization constant such that

π J
i

(
ξ J

k

) = δik . (2.5.5)

With a little algebra and with the use of the Jacobi polynomials properties, one
gets

Ci = − 1

c̄i N (N + α + β + 1)

1

Pα,β

N

(
ξ J

i

) (2.5.6)

with

c̄i =


1/(β + 1), i = 0,
1, i ∈ [1, N − 1],
1/(α + 1), i = N .

(2.5.7)

For the particular cases of Legendre and Chebyshev polynomials, the constant
Ci is assigned to the classical values

Ci = − 1

N (N + 1)L N
(
ξ J

i

) (2.5.8)

and

Ci = (−1)i+1

c̄i N 2
, c̄0 = c̄N = 2, c̄i = 1, 1 ≤ i ≤ N − 1, (2.5.9)
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respectively. Notice that, in the Legendre case, the basis functions (2.5.4) are
equal to (2.4.3).

The orthogonal collocation algorithm is now straightforward. Applying
Equations (2.2.23)–(2.2.24) on the open domain  := (−1,+1) and its bound-
ary ∂, one gets to the following problem: Find uN (x) ∈ PN in the form (2.5.3)
such that

L (uN )
(
ξ J

i

) = f
(
ξ J

i

)
, ∀ξ J

i ∈ , (2.5.10)

B (uN )
(
ξ J

i

) = 0, ∀ξ J
i ∈ ∂. (2.5.11)

The ensuing algebraic system (2.2.25) is

L J
C u = f , (2.5.12)

where the vectors u and f contain the nodal values of the unknown and of
the r.h.s. The Jacobi collocation matrix L J

C has elements L J
C,mn = Lπ J

n (ξ J
m ),

involving the first and second derivatives of the basis functions at the Gaussian
nodes. Analytical expressions of these derivatives for the GLJ quadrature rule
are given in Section B.3.3 of Appendix B (see also [100]).

We emphasize that the linear system related to collocation calculations has
much less sparsity than do linear systems induced by low-order finite-element
calculations. In the one-dimensional case, the matrix L J

C is even full. In the
multidimensional case it is banded, but the bandwidth is very large. We stress
also that, although the differential equation (2.1.9) is self-adjoint, the linear
system (2.5.12) is nonsymmetric. This is because for two different basis func-
tions π J

m and π J
n , one usually has Lπ J

m (ξ J
n ) �= Lπ J

n (ξ J
m ). Finally, the matrix LC

becomes very ill-conditioned with increasing values of N , a concept that will
be defined more precisely later in this chapter and that has to do with the sensi-
tivity of the linear system solution to roundoff errors. These properties do not
prevent orthogonal collocation methods from giving extremely accurate solu-
tions to regular problems, however, as will be shown through some numerical
examples.

2.5.2 Orthogonal Collocation in a Multidomain

The preceding algorithm can be extended to multidomains. For simplicity, we
will limit ourselves to a two-domain approximation, and we will give the es-
sential features of the algorithm in the Chebyshev case.

Let − := (−1, 0) and + := (0, 1) denote the two subdomains of  :=
(−1,+1), where approximations of degree N , u−N (x) and u+N (x), to the solution
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of (2.1.9) are required. We denote by ± := − ∪+ and * := − ∩+,
respectively, the interior and interface of the two subdomains. Both subdomains
are mapped onto the reference element ̂ by using the mapping procedure
described in Section 2.3. One is naturally led to the analytical expansions

u±N (ξ ) =
N∑

j=0

u±j π
c
j (ξ ), ξ ∈ ̂, (2.5.13)

where ξ is the coordinate inside the reference element ̂ and

ξ =
{

2x + 1, x ∈ −,
2x − 1, x ∈ +. (2.5.14)

Let 'N+1 denote the ordered set of secondary nodes on ̂, in this case the
GLC quadrature nodes (B.2.13). A mapping of 'N+1 onto − and +, using
the inverse of (2.5.14), gives the set of secondary nodes {x−j }Nj=0 and {x+j }Nj=0.
The quantities u±j , 0 ≤ j ≤ N , are the nodal values of the trial elements u±N
on the secondary nodes. The functions π c

j (ξ ) are the Lagrangian interpolation
polynomials on the Chebyshev grid (B.3.20):

π c
j (ξ ) = (−1) j+1

c̄ j N 2

(1− ξ 2)T ′N (ξ )

ξ − ξ c
j

, 0 ≤ j ≤ N , ξ ∈ ̂, (2.5.15)

with the convention on c̄ j given by (2.5.9).
The orthogonal collocation algorithm is then straightforward. The key point

is matching the partial solutions at the interface *. One requires maximum
regularity of the approximation uN (x) = {u−N (x), u+N (x)}, which, as explained
earlier, belongs to H 1(). To get uN ∈ C1(), one must satisfy the constraints

dk

dξ k
(u−N )(1) = dk

dξ k
(u+N )(−1), k = 0, 1, (2.5.16)

called patching conditions.
This relationship assumes continuity of the diffusion coefficient p(x). If

p(x) is discontinuous at the inner boundary * with left and right values p− and
p+, then (2.5.16) should be replaced by a similar relationship for the quantity
p duN/dξ representing the local “flux” of the (physical) variable u:

p−
d

dξ
(u−N )(1) = p+

d

dξ
(u+N )(−1). (2.5.17)
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Let us add the constraints on the interface (2.5.16) [or (2.5.17)] into the
boundary conditions (2.2.24) of the problem. Orthogonal collocation on the
multidomain now is

L(u±N )(x±i ) = f (x±i ) ∀x±i ∈ ±, (2.5.18)

B(uN )(x±i
) = 0 ∀x±i ∈ ∂ ∪ *. (2.5.19)

It gives an algebraic system (2.2.25) with sparser structure than (2.5.12).

2.6 Error Estimation

How far is the approximate solution uN from û, the exact solution to the prob-
lem? An error estimate may be obtained by using the inequality (2.2.10). By
considering û I := IN û, the interpolant of û in VN given by (2.3.11), one can
get an upper bound of the approximation error in some V -norm in terms of the
interpolation error in the same norm, since

‖uN − û‖V ≤C min
u∈VN

‖u − û‖V ≤C‖û I − û‖V .

We first look at the h-version of the FEM, assuming again a homogeneous
partition of the domain with mesh size h and Lagrangian elementsQ1 for (2.1.9).
Refining the mesh, one expects the error in the Sobolev norm ‖uN − û‖H 1 to
go to zero as h → 0. However, the rate at which this result is achieved depends
essentially on the regularity properties of û, as indicated below.

Using a Fourier expansion of the interpolation error εI (x) := û I − û on a
particular mesh, one can show that if û(x) ∈ H 2(a, b), then the approximation
error in the Sobolev norm ‖·‖H 1 behaves like

‖uN − û‖H 1≤ Ch|û|H 2 , (2.6.1)

where C is a generic constant, independent of the discretization parameter, and
|·|H 2 denotes the Sobolev seminorm (2.1.36). Inequalities of the type (2.6.1)
are easy to establish, because they are a direct consequence of the minimization
property (2.2.14). One would like also to characterize the approximation in
the more natural L2 norm ‖·‖ defined by (A.4.8). No minimization property
exists in this norm, however. To derive an error bound, one uses an argument
due to Aubin and Nitsche, called Nitsche’s trick [285]. Its application with the
elements Q1 yields

‖uN − û‖≤ C̃h2|û|H 2 , (2.6.2)
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where C̃ denotes another generic constant. The latter expression gives the cor-
rect convergence order in the L2 error norm for linear finite elements. The
difference between the results (2.6.1) and (2.6.2) is due to the presence of the
first derivative in the Sobolev norm ‖·‖H 1 , which reduces the convergence order
by one.

If the preceding results are generalized to the elements Qk , the Lagrange in-
terpolation theory shows that for sufficiently smooth solutions (i.e. û ∈ H k+1),
the L2 error norm of the approximation behaves like

‖uN − û‖ ≤ Ĉhk+1|û|H k+1 . (2.6.3)

If û has only limited smoothness and belongs, for instance, to the Sobolev
space Hσ (σ > 0), while the finite-element basis is made of the Lagrangian set
Qk , a more general result applies in the L2 norm, depending on the values of σ
and k. One may show that (see [173, 174, 175])

‖uN − û‖ = O(hβ), with β = min
(
k + 1, σ + 1

2

)
, (2.6.4)

illustrating the claim made earlier about the influence of the regularity of û
upon the error decay rate.

Convergence is much faster in the p-version of the FEM and in the SEM,
especially with smooth problems. We mention only the spectral-element results
because of their importance in this book. Readers interested in the convergence
results for the p-version should consult Szabó and Babuška [370].

Canuto and Quarteroni [68] have proven that for the case of a single domain,
if one assumes that û belongs to a weighted Sobolev space Hσ

w with σ > 0,
then the approximation error in H 0

w-norm is bounded by

‖uN − û‖H 0
w
≤C N−σ‖û‖Hσ

w
, (2.6.5)

where N is the degree of the polynomial approximation, and C a generic con-
stant. The essential difference between (2.6.3) and (2.6.5) lies in the nature
of the exponents in the r.h.s. of these inequalities. For very smooth solutions
σ � 1, in the h-version the error decay rate is limited by the polynomial degree
k. In the SEM, however, the decay rate is much higher, being essentially gov-
erned by the regularity of the solution. The h-version of FEM is characterized
by an algebraic convergence of the numerical approximation, while spectral
elements lead to exponentially convergent solutions. This is the key issue that
makes spectral methods so attractive for regular problems.
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Unfortunately, real-life problems are often nonregular. Their approximation
by spectral elements becomes more challenging and poses some difficulties that
will be faced in later chapters.

2.7 Solution Techniques

Whatever the choice of the approximation technique, as the preceding sections
have shown, one ends up with an algebraic system to be solved. The choice
of a solution algorithm is influenced by a number of factors, of which the spa-
tial dimension is probably most important. Available options can be broadly
partitioned into two categories: direct methods, such as Gaussian factorization
with or without pivoting, that will yield the exact answer (assuming infinite-
precision arithmetic) in a finite number of operations, and iterative methods,
such as Jacobi or Gauss–Seidel relaxation, that generally do not exhibit a finite
termination property. In between these are the semiiterative methods, such as the
conjugate gradient (CG) and generalized minimum residual (GMRES) methods,
which are based on projection. In principle, these methods also have algebraic
work bounds, because they are guaranteed to converge in a finite number of
iterations, assuming exact arithmetic. However, these bounds are generally too
pessimistic, because the solution will usually converge to an acceptable preci-
sion long before the upper bound on the iteration count is reached, particularly
if an appropriate preconditioner is used.

The choice of iterative versus direct solution techniques is based primar-
ily on matrix sparsity and bandwidth considerations. Linear systems arising
from unstructured discretizations of PDEs are generally quite sparse (i.e., have
a bounded number of nonzeros per row, independent of the system size) and
have bandwidth that increases with spatial dimension. For instance, the classical
finite-difference five-point stencil for 2D second-order problems with lexico-
graphical ordering leads to matrices with at most five nonzero coefficients per
row. The LU factorization of this matrix generates O(N 3) nonzeros in the re-
sultant lower- and upper-triangular components, where N is the number of grid
points per space direction. The cost of the factorization is O(N 4), and the cost
for solving several problems with the same system is O(N 3) per r.h.s. In three
dimensions, the situation is worse. For a problem having N = N 3 degrees of
freedom, the matrix bandwidth resulting from the lexicographical ordering is
N 2. The number of nonzeros in the factors is thus O(N 5), which is prohibitive
for even moderate values of N . For sparse systems such as arise from low-order
discretizations, nested dissection orderings improve these results in two and
three dimensions to O(N 2 log N ) and O(N 4) storage, and O(N 3) and O(N 5)
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work, respectively [153]. Nevertheless, these are generally not applicable to
high-order methods where formation of the operator is prohibitive (see, how-
ever, [272]). In these cases, or for 3D problems in general, iterative methods
are usually faster.

Direct solution techniques, such as Gaussian elimination and its variants,
are well known today and can be found in many textbooks. For details on
these techniques we refer readers to the books by Golub and Van Loan [160],
Strang [367], Trefethen and Bau [384], or Press et al. [316]. Texts specifically
oriented to direct solution of sparse systems include those by George and Liu
[153], Pissanetsky [313], and Duff et al. [117]. Recent texts on general iterative
methods include works by Saad [339], and Axelsson [13].

We will start the discussion by introducing the concept of conditioning of a
matrix, which is central in many developments. This is followed by a discussion
of some iterative techniques that have gained great importance in recent times.

2.7.1 The Conditioning of a Matrix

Consider the algebraic system

Ax = b, (2.7.1)

where A ∈ R
N×N is a nonsingular matrix with elements {ai j }Ni, j=1. The effi-

ciency of several solution techniques depends crucially on the sensitivity of the
system to small perturbations, either to the operator A or to the r.h.s. b. If the
sensitivity is high (in some sense to be defined below), the algebraic system
will be called ill-conditioned, and several solution techniques will be quite in-
efficient. If, instead, the sensitivity is low, there will be far fewer problems in
general. To evaluate the sensitivity, one has to look more closely at the spectral
properties of the matrix A. First, we introduce the concept of matrix norm.

Matrix Norms and Spectral Radius

Section A.2 of Appendix A gives the basic axioms of a norm defined on a real
vector space such as R

N [see (A.2.1)–(A.2.3)]. Here, we want to associate a
norm to the operators acting on the elements of R

N (see also Section A.3.3).
Let ‖·‖ denote any vector norm on R

N . To a matrix M ∈ R
N×N we associate

the induced matrix norm, defined as

‖M‖ := max
x∈RN

x �=0

‖Mx‖
‖x‖ = max

x∈RN

‖x‖=1

‖Mx‖. (2.7.2)

The ratio ‖Mx‖/‖x‖ being insensitive to a stretching of x , the scalar ‖M‖ is
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simply the maximum amount by which a vector on the unit sphere in R
N (i.e.

the set of vectors x such that ‖x‖ = 1) can be stretched by the action of M .
From (2.7.2) one deduces immediately the very useful inequality

‖Mx‖ ≤ ‖M‖‖x‖. (2.7.3)

Furthermore, we define the spectral radius ρ(M) as the radius of the disk
centered at the origin of the complex plane containing all the eigenvalues of M .
One has

ρ(M) := max
i
|λi |, (2.7.4)

where λi is an eigenvalue (possibly complex) of M . Using the definitions (2.7.2)
and (2.7.4), we list some useful identities for matrix norms:

(i) For ‖x‖1 :=
N∑

i=1

|xi |, ‖M‖1 = max
i

N∑
j=1

|mi j |.

(ii) For ‖x‖∞ := max
i
|xi |, ‖M‖∞ = max

j

N∑
i=1

|mi j |.

(iii) For ‖x‖2 :=
(

N∑
i=1

|xi |2
)1/2

, ‖M‖2 =
√
ρ(MT M).

(iv) ρ(M) ≤ ‖M‖ for all ‖·‖.
(v) For any ε > 0, ∃‖·‖∗ such that ‖M‖∗ ≤ ρ(M)+ ε.

The first three identities give closed-form expressions for computing ‖M‖
in the three most convenient vector norms. If M is symmetric, then, from the
third identity, the Euclidean norm gives ‖M‖2 = ρ(M).

The equivalence of vector norms in R
N , stated in the following theorem,

allows us to relate one matrix norm to another.

Theorem 2.4 (Equivalence of norms) For any pair of vector norms ‖·‖ and
‖·‖∗ on R

N , there exist constants c and C, possibly dependent on N, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖ ∀x ∈ R
N .

This theorem, coupled with identities (iv), and (v) above, implies that ‖·‖∗ < 1
is a sufficient condition, and ρ(M) < 1 is a necessary and sufficient condition
for limk→∞‖Mk x‖ = 0, for arbitrary x and ‖·‖.
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We introduce an additional vector norm that we will need often. Recall that
a matrix A ∈ R

N×N is symmetric positive definite (SPD) if AT = A, and

∀u ∈ R
N , (u, Au) := uT · Au ≥ 0 with (u, Au) = 0 ⇔ u = 0.

(2.7.5)

Consider the bilinear expression (x, y)A defined by

(x, y)A := xT · Ay, x, y ∈ R
N . (2.7.6)

Using the definition (2.7.5) and the axioms (A.4.1)–(A.4.4), one can easily show
that (x, y)A is an inner product with associated norm ‖x‖A := (x, x)1/2

A . The
reader will recognize in (x, y)A and ‖x‖A, discrete analogs of the energy inner
product and energy norm (2.1.14) and (2.1.15). In the sequel we will denote the
quantities (x, y)A and ‖x‖A as the A-inner product of x and y and A-norm of
x , respectively.

The Condition Number

Let T ∈ R
N×N denote a (test) matrix such that A + εT is nonsingular for the

range of a perturbation parameter ε (with |ε| " 1). Let t ∈ R
N denote a test

vector. The perturbed linear system (2.7.1) is

(A + εT ) x(ε) = b + εt, (2.7.7)

where x(ε) = x + δ(ε). We want to evaluate the magnitude of the perturbation
effect, δ(ε), on the solution of the unperturbed problem. Introducing (2.7.1)
into (2.7.7), we can easily show that, because A + εT is nonsingular, to the
first order in ε, δ(ε) is given by

δ(ε) = εA−1 · (t − T x). (2.7.8)

Using any vector norm ‖·‖ and the induced matrix norm (2.7.2), we get

‖δ(ε)‖ ≤ ε‖A−1‖ · (‖t‖ + ‖T x‖), (2.7.9)

or, also with (2.7.1) and (2.7.3),

‖δ(ε)‖
‖x‖ ≤ ε‖A−1‖·‖A‖

( ‖t‖
‖b‖ +

‖T ‖
‖A‖

)
. (2.7.10)

The quantity

κ(A) := ‖A−1‖·‖A‖ (2.7.11)
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in the r.h.s. of (2.7.10) is known as the spectral condition number of A. Large
values of κ(A) allow small perturbations of A or b to have large effects on the
solution of the linear system, a mark of the ill-conditioning of A.

The definition (2.7.11) is quite inconvenient for evaluating κ(A). Fortunately,
as seen above, the Euclidean norm of a symmetric matrix A is ‖A‖2 = ρ(A),
withρ(A) the spectral radius of A. As a consequence, for symmetric matrices the
spectral condition number in the Euclidean norm is also given by the relationship

κ2(A) = |λM |/|λm |, (2.7.12)

where λM and λm are the algebraically largest and smallest eigenvalues of A,
respectively. For the nonsymmetric matrices that we will consider, the r.h.s. of
(2.7.12), though different from κ2, gives a convenient estimate of their condition.
Any mention of the spectral condition number in the sequel of the book will
automatically refer to the relationship (2.7.12).

The Conditioning of Spectral Schemes

Let us look at the conditioning problems raised by high-order (spectral or col-
location) schemes through an example, as this is a fundamental topic. For the
purpose of illustration we consider the eigenvalue problem

−d2u

dx2
= λu(x), x ∈ (0, 1), u(0) = u(1) = 0. (2.7.13)

The eigensolutions {λk, ζk(x)}∞k=1 are

λk = k2π2, ζk(x) = sin(kπx). (2.7.14)

Now consider the Q1 finite-element approximation of (2.7.13) on a uni-
formly spaced grid with N + 1 nodes {x j = jh}Nj=0, and with Nh = 1. As
shown in Section 2.3.1, the stiffness and mass matrices are equal to K =
1
h tridiag(−1, 2,−1) and M = h

6 tridiag(1, 4, 1). The generalized eigenvalue
problem

K z = λFE Mz (2.7.15)

has real positive solutions for λFE. Since the mass matrix M is symmetric posi-
tive definite (SPD) [see Equation (2.7.5)], we can use the Cholesky factorization
M = L LT to rewrite (2.7.15) as

(L−1 K L−T ) z̃ = λFE z̃, (2.7.16)
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where z̃ := LT z. Since L is invertible and K is SPD, we have

yT (L−1 K L−T )y = (L−T y)T K (L−T y) > 0 ∀y �= 0,

implying that L−1 K L−T is SPD, which establishes the property.
The problem (2.7.15) may be solved by recognizing that the associated eigen-

vectors are ζ
k
= {(ζ

k
) j := sin( jkπh)}N−1

j=1 . Inserting ζ
k

into the eigensystem
(2.7.15) yields

−1

h
{sin[( j − 1)kπh]− 2 sin( jkπh)+ sin[( j + 1)kπh]}

= λFE
k h

6
[sin(kπ ( j − 1)h)+ 4 sin(kπ jh)+ sin(kπ ( j + 1)h)]. (2.7.17)

With the help of trigonometric identities we deduce easily that, for 1 ≤ k ≤
N − 1,

λFE
k =

6

h2

1− cos(kπh)

2+ cos(kπh)
= k2π2

(
1+ k2π2h2

12
− · · ·

)
, (2.7.18)

where the second expression is derived from a Taylor expansion in powers of h.
From the result (2.7.18) we see that λFE

k approximates the smallest eigenvalues
of the continuous problem (2.7.14) to second order in the mesh size O(h2). In
particular,

λFE
1 ∼ π2 and λFE

N−1 ∼
12

h2
,

so that the Q1 finite-element matrix LFE := M−1 · K has a spectral condi-
tion number proportional to the square of the number of degrees of freedom:
κ(M−1 · K ) ∼ cN 2, with c = 12/π2.

At this point, we remark that when using Lagrangian bases in finite-element
calculations, one often can use mass lumping, in which one replaces the (global)
mass matrix M := {Mi j =

∫

ψiψ j dx} with the diagonal matrix M̃ :=

diag(
∫

ψi dx). This is equivalent to replacing the product of the separately

expanded functions u(x) :=∑
uiψi (x) and v(x) :=∑

v jψ j (x) with the ex-
pansion of the product u(x)v(x) :=∑

uiviψi (x). From the algebraic stand-
point, it is equivalent to replacing M with a diagonal matrix having the same
row sum, which must be preserved if the mass matrix is to integrate the basis
functions correctly and satisfy the condition∫

̂

ψi · 1 dx = ê i
T Mê = ê i

T M̃ê, (2.7.19)
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where ê i is the i th column of the identity and ê = (1, 1, . . . , 1)T . In the SEM,
M is diagonal by construction, since high-order pointwise quadrature is used
in evaluating all of the bilinear forms. Practical reasons for the use of mass
lumping will appear naturally in the later chapters.

By replacing M in (2.7.15) with the lumped mass matrix M̃ = hI (with
I ∈ R

N−1×N−1, the identity matrix), we have a system that is equivalent to the
standard second-order (centered) finite-difference approximation. The eigen-
value spectrum λFD

k is found by the same procedure to be

λFD
k =

2

h2
[1− cos(kπh)] = k2π2

(
1− k2π2h2

12
+ · · ·

)
, (2.7.20)

and the same conclusions hold with regard to the dependence on N of
κ(M̃−1 · K ).

For the spectral case based on Legendre or Chebyshev polynomials, the
problem is more complicated and no closed-form expression for the eigen-
values exists. Weideman and Trefethen [408] have shown that the first 2N/π

eigenvalues closely match the continuous spectrum. They note that, heuristi-
cally, the fraction of converged eigenvalues corresponds to the number of full
sinusoidal waves that can be accurately resolved on the grid. This is most readily
seen for the GLC points (the Legendre points are similar):

ξ c
j := cos

π j

N
, 0 ≤ j ≤ N

[see (B.2.13)]. As illustrated in Figure 2.7.1, these points correspond to the
projection onto [−1, 1] of the N + 1 points uniformly partitioning the unit
semicircle. Asymptotically, the minimum and maximum spacings on [0, 1] are

hmax ∼ π
N hmin ∼ π2

2N2

Figure 2.7.1. Distribution of Gauss–Lobatto–Chebyshev points on [−1, 1].
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Table 2.7.1. Eigenvalues of the SEM (E = 1) discretization matrix of a model
diffusion problem, as a function of polynomial degree N. The condition number

κ := λN−1/λ1 increases as O(N γ ).

N λSE
1 λSE

N−1 λSE
N−1/λ

SE
1 γ

4 9.862395e + 00 6.813760e + 01 6.908829e + 00 —
8 9.869604e + 00 5.872463e + 02 5.950049e + 01 3.11

16 9.869604e + 00 7.687161e + 03 7.788723e + 02 3.71
32 9.869604e + 00 1.136998e + 05 1.152020e + 04 3.89
64 9.869604e + 00 1.756206e + 06 1.779409e + 05 3.95

128 9.869604e + 00 2.763585e + 07 2.800097e + 06 3.98
256 9.869604e + 00 4.386215e + 08 4.444165e + 07 3.99

hmin ∼ π2/2N 2 and hmax ∼ π/N . The minimum fully resolved wavelength is
l∗ = 2hmax (Nyquist criterion). Equating sin(k∗πx) = sin(2πx/ l∗), one sees
that the maximum resolved wavenumber is k∗ = 2N/π .

Vandeven [398] has further established that, for 1 ≤ k ≤ αN with 0 ≤ α <

2/π , there exist constants C and ρ, with 0 < ρ < 1, depending only on α, such
that

|λk − k2π2| ≤ CρN 2/3
. (2.7.21)

Convergence for the lower 2N/π eigenvalues is thus nearly exponential. For
the largest eigenvalues, he established the following asymptotic behavior for
the Legendre–Galerkin method:

lim
N→∞

λSE
N−1 =

N 4

π2
, (2.7.22)

from which we conclude κ(LSE) = κ(M−1
SE KSE) ∼ (N/π )4. Table 2.7.1 gives

the minimum (λSE
1 ) and maximum (λSE

N−1) eigenvalues for the lumped-mass
Legendre–Galerkin method (corresponding to the SEM with E = 1). The largest
eigenvalue is seen to converge to N 4/π2. Also illustrated is the rapid conver-
gence of spectral methods for the lower eigenvalues. The first column reveals
that the smallest eigenvalue is approximated to at least seven significant digits
for N ≥ 8.

We summarize these results with plots of the spectra for the model problem
(2.7.13) resulting from several discretizations. The spectra for the two finite-
element cases (M and M̃) are shown on Figure 2.7.2(a), along with the exact and
fourth-degree spectral element spectra λSE

k . Notice that the eigenvalues of the
continuous problem are framed by the numerical results obtained with M and M̃
as predicted by (2.7.18) and (2.7.20). Actually, the mean value (λFE

k + λFD
k )/2
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Figure 2.7.2. Comparison of eigenvalues for second-order diffusion operator, −uxx =
λu, u(0) = u(1) = 0: (a) linear finite elements with tridiagonal (M) and lumped (M̃)
mass matrices, spectral elements with (E, N ) = (64, 4), and analytical spectrum; (b)
Legendre SEM with E = 1 and N ranging from 4 to 256. [Exact and FEM (M̃) curves are
also shown.]

is equal to λk up to an error O(h4). Notice also the close agreement between
the exact eigenvalues and the lower three-fifths of the λSE

k spectrum obtained
with 64 spectral elements of degree 4. This is even more evident in Figure
2.7.2(b), comparing on a logarithmic scale the exact eigenvalues with the
Legendre spectral-element ones evaluated on a single spectral element (E = 1)
with a number of nodes, N , ranging from 4 to 256.

2.7.2 Basic Iterative Methods

A basic iterative method for solving Ax = b is given by the Richardson fixed-
point iteration

xk+1 = xk + αP−1(b − Axk), k = 0, . . . , (2.7.23)

where P is an invertible matrix, α is an adjustable relaxation factor to ensure
convergence of the scheme, and k is the iteration index. The initial vector x0

is given. The matrix P is usually called the preconditioning matrix, or more
simply, the preconditioner. Eventually the solution to (2.7.23) has to be identical
to the solution to (2.7.1), which raises the question of convergence of the iterative
scheme and, more importantly, the rate of convergence, which is closely tied
to the condition number κ(P−1 A). The objective is to find matrices P as close
as possible to A in some sense, for which it is easy (and, hopefully, cheap) to
solve linear systems of the form Pz = r , with r some given vector.
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Classical examples of preconditioned Richardson iteration schemes are the
Jacobi (J) and Gauss-Seidel (GS) iteration algorithms. The preconditioner in
these cases is intimately related to A, since it is part of it. If A = L + D +U
is a matrix splitting in which L and U are strictly lower- and upper-triangular,
respectively, and D = diag(aii ), then the two choices P := D and P := L + D
(with α = 1, in both cases) yield

(J) xk+1 = D−1(b − (L +U )xk),

(GS) xk+1 = (L + D)−1 (b −U xk).

The J and GS iteration schemes are guaranteed to converge for diagonally
dominant systems. GS converges for SPD systems. J preconditioning has the
advantage of being symmetric, which is important for preconditioned CG iter-
ation introduced below. In addition, it vectorizes more readily, as discussed in
Chapter 8. The general observation for systems arising from elliptic PDEs is that
GS converges at about twice the rate of J iteration. For steady convection prob-
lems the improvement can be even more substantial if a “streamwise” ordering
can be found.

Convergence Results

The convergence rate of the general Richardson iteration can be analyzed by
subtracting the exact solution to (2.7.1) from both sides of (2.7.23). Since
b = Ax , we have

(xk+1 − x) = (xk − x)− αP−1(Axk − Ax). (2.7.24)

Defining the error at the kth iteration as ek := xk − x , we have

ek+1 = (I − αP−1 A) ek . (2.7.25)

Introducing any vector norm ‖·‖ and the induced matrix norm (2.7.2), we get

‖ek+1‖ ≤ ‖I − αP−1 A‖‖ek‖. (2.7.26)

If we assume x0 := 0, (always possible by redefining the problem as Ay = b −
Ax 0) we have ‖e0‖ = ‖x‖, and repeated application of the inequality (2.7.26)
gives

‖ek‖ ≤ ‖I − αP−1 A‖k‖x‖. (2.7.27)

We conclude that if ‖I − αP−1 A‖ < 1, then limk→∞ ‖ek‖ = 0. By the
equivalence of vector norms in R

N , if (2.7.27) converges for any vector norm,
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then it converges in every norm. Specifically, the Richardson iteration scheme
(2.7.23) will converge whenever the spectrum of G := I − αP−1 A lies within
the unit disk centered in the complex plane and the rate of convergence will
improve as ρ(G) decreases.

It is easy to show that with λm and λM the algebraic smallest and largest
eigenvalues of P−1 A, the optimal relaxation factor α and the associated spectral
radius ρ(G) are given by

α = 2

λm + λM
and ρ(G) = λM − λm

λM + λm
. (2.7.28)

The convergence rate of the iterative scheme (2.7.23) depends on the spectral
condition number κ . In view of the preceding results with the optimal relaxation
factor taken into account, the inequality (2.7.26) becomes

‖ek+1‖
‖ek‖ ≤

λM − λm

λM + λm
= κ − 1

κ + 1
. (2.7.29)

A level of machine accuracy equal to 10−14 (called spectral accuracy in this
book) may then theoretically be reached in IC iterations with

IC ≈ log ζ

log κ−1
κ+1

, where ζ = 10−14

‖e0‖ . (2.7.30)

The reader has certainly noticed that, with regard to the preconditioning
matrix P , no particular requirement was made, except for the following points:
(a) algebraic systems Pz = r should be easy to solve, (b) the preconditioner
P should be “close” to A, and (c) ideally, the eigenvalues of P−1 A should
be real. Point (b) is easily understood in view of the result (2.7.28). With P
close to A, there will be some clustering of the eigenvalues of G in the vicinity
of the origin in the complex plane, and quick convergence of the Richardson
scheme (2.7.23) toward the solution of (2.7.1) can be expected.

2.7.3 Preconditioning Schemes of High-Order Methods

The ill-conditioning that arises from high-order discretizations is a major con-
cern in their application. As noted in Section 2.7.1, κ(M−1 K ) scales as O(N 4)
for the SEM. The solution of linear systems in K is governed by κ(P−1 K ),
where P is the preconditioning matrix. For a single element (E = 1), Bernardi
and Maday [38] show that the unpreconditioned spectral-element stiffness



84 2. Approximation Methods for Elliptic Problems

matrix has κ(K ) = O(N 3). Maitre and Pourquier [265] prove that this prop-
erty continues to hold in d dimensions when the discretization is a tensor
product of the one-dimensional formulation. If P is taken to be the diagonal
of K , Maday and Muñoz [257] find a closed-form solution for the eigenval-
ues and eigenvectors that establishes κ(P−1 K ) = O(N 2). However, this the-
ory has not been extended to d > 1. Maitre and Pourquier [265] demonstrate
numerically that the improvement with diagonal preconditioning is less dra-
matic in higher space dimensions. They also prove for the p-type FEM that
κ(K ) = O(N 4(d−1)) and κ(P−1 K ) = O(N 2(d−1)) for the diagonally precondi-
tioned case. Because of the rapid growth of κ with N , it is important to have
more sophisticated preconditioning strategies. Here, we discuss some important
advances in the one-dimensional case for a single domain. Preconditioners for
general domains in d dimensions that build upon these ideas are presented in
Chapter 7.

Preconditioned iterative solutions of collocation calculations were intro-
duced by Morchoisne [280] and Orszag [288] at the end of the 1970s. Orszag
advocated the use of preconditioning as a convenient way to avoid the mem-
ory storage and arithmetic operation count entailed by the collocation equa-
tions. He suggested that, for model problems like the Laplace equation, the
preconditioning of Chebyshev collocation calculations with a standard finite
difference (FD) scheme on the same grid would result in a rapidly converging
algorithm. Indeed, he showed that, in the case of Fourier collocation of the
one-dimensional Laplace equation, the spectral condition number of L−1

FD LC is
κ = π2/4, yielding spectral accuracy in about 30 iterations. Here, LFD denotes
the matrix associated with the FD scheme on the collocation grid. From this re-
sult, he inferred an analogous property for Chebyshev collocation, the efficiency
of the algorithm being based on the sparsity of LFD (in contrast with the density
of LC ) and on the existence of a fast Fourier transform (FFT) for the evaluation
of the right-hand sides in the Richardson scheme (2.7.23). The conjecture for
the Chebyshev polynomials was proven some time later by Haldenwang et al.
[182].

Today’s interest in preconditioned iterative solutions of high-order methods
has another motivation. We have seen in Section 2.7.1 that the spectral con-
dition number κ of high-order methods (collocation, spectral elements) grows
as O(N 4). As a consequence, high-order calculations become increasingly ill
conditioned with mesh refinement, and machine accuracy may be completely
lost. Orszag’s conjecture on FD preconditioning of collocation calculations
was the start of an intense research activity for the identification of precon-
ditioners P of high-order methods with a spectral condition number κ(P−1 A)
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as insensitive as possible to the value of N , as the easiest remedy to save spectral
accuracy.

The numerical efficiency of Orszag’s FD preconditioning scheme was as-
sessed independently by Canuto and Quarteroni [69] and by Deville and Mund
[99, 100]. These authors extended the study to low-order finite element (FE)
preconditioning of collocation calculations on GLJ grids. They showed that FE

preconditioning was even better than FD preconditioning. In particular, with FE

preconditioning, the spectrum of the iteration operator L−1
FE LC for a broad class

of problems is located inside the unit circle in the complex plane. In that case,
the relaxation factor may be set to the (nonoptimal) value α = 1.

The Q1 FE preconditioning algorithm of Deville and Mund has been applied
to diffusion-type equations and systems of equations using either collocation
or spectral-element calculations (see, e.g., [104, 94, 95, 321, 73, 127, 282]).
As an introduction, we give the various steps of the algorithm as they apply
to the collocation solution of problem (2.1.9), for instance, on a GLJ grid with
polynomials of degree N :

• Step 1. Compute the collocation grid on  = (a, b), using the solution to
χ

(α,β)
N (x) = 0. See (2.5.1)–(2.5.2).

• Step 2. Assemble the collocation matrix L J
C associated to the problem

(2.5.10)–(2.5.11). We denote this problem symbolically as AC uN = f ,
where uN ∈ PN ,0() is a polynomial of degree N satisfying the homoge-
neous Dirichlet condition at x = a. On the collocation grid, assemble also
the Q1 FE matrix LFE associated to the following problem: Find wh ∈ VN ,0

such that ∫


(pw′hv
′
h + qwhvh − f vh)d = 0 ∀vh ∈ VN ,0, (2.7.31)

with the FE space VN ,0 ⊂ H 1() such that

VN ,0 := {vh ∈ C0() vh(a) = 0 ∀e ∈ , vh|e ∈ Q1}.

We denote the problem (2.7.31) symbolically as AFEwh = f . The matrix
LFE is used as the preconditioner P in the iterative scheme (2.7.23).

• Step 3. Evaluate a first guess, u0
h , such that AFEu0

h = f . Since u0
h is a Q1 FE,

it is piecewise linear on the GLJ grid.
• Step 4. Evaluate the spectral residual r0

N associated to u0
h . With IN the spectral

interpolation operator in PN (), we have for r0
N ∈ PN ()

r0
N := AC u0

N − f , with u0
N := IN u0

h . (2.7.32)
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• Step 5. Iterate till convergence:

uk+1
N = uk

N − α INA−1
FE

[
I 0
h

(
AC uk

N − f
)]
, k = 0, . . . , (2.7.33)

where I 0
h v is the Q1 FE interpolation of v ∈ PN ().

The last step in the preconditioning algorithm is a functional formulation
of the Richardson scheme (2.7.23). The presence of INA−1

FE I 0
h v (with v :=

AC uk
N − f ) in (2.7.33) shows that any correction to the approximate spectral

solution uk
N is provided by a FE calculation with the last residual as source term.

The reader will find more detail in [100, 66], including the iterative scheme
(2.7.33) for a problem with Neumann or Robin boundary conditions where
extra terms due to the boundary conditions contribute also to the residual.
Incidentally we note that the FD preconditioning of the GLJ collocation scheme
may be cast in the same framework as outlined here, the quadratures in (2.7.31)
being performed with the trapezoidal rule.

For advection-dominated diffusion problems, Funaro has shown that key in
obtaining spectral accuracy is the coupling of a preconditioning algorithm (FD in
this case) with collocation (or spectral elements) on a staggered grid [143, 144].
This strategy will be outlined in the next chapter.

2.7.4 Iterative Methods Based on Projection

Modern iterative methods such as conjugate gradients (CG) and the generalized
method of residuals (GMRES) generate approximate solutions to the N×N lin-
ear system Ax = b by computing the projection of x onto a low-dimensional
subspace Vk ⊂ R

N . In this regard, these methods have much in common with
the variational method introduced in the beginning of this chapter.

To illustrate the basic concepts, we begin with the case where A is SPD

and make use of the associated norm ‖·‖A and inner product (·, ·)A intro-
duced in (2.7.6). Let Vk denote both the matrix of linearly independent vectors
(v1, . . . , vk) ∈ R

N×k and the subset of R
N spanned by these vectors. Then the

following problems are equivalent: Find x k ∈ Vk such that

1. ‖x − x k‖A ≤ ‖x − v‖A ∀v ∈ Vk, (2.7.34)

2. vT · Ax k = vT · b ∀v ∈ Vk . (2.7.35)

3. x k = Vk(V T
k AVk)−1V T

k Ax (2.7.36)

4. x k is the A-orthogonal projection of x onto Vk .
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The first statement (2.7.34) corresponds to the minimization of the quadratic
form (x − v)T · A(x − v) with respect to v ∈ Vk , which is the standard vari-
ational formulation of the problem. This is useful for estimating convergence
rates as k, the dimension of the approximation space, is increased. The second
statement (2.7.35) indicates that the residual r k is orthogonal to Vk , or that the
error vector ek := x − x k is orthogonal to Vk in the A-inner product, since this
relationship is equivalent to vT · A(x − x k) = 0. This statement is most useful
for constructing the solution. Despite appearances, for conditioning and effi-
ciency reasons, the third form (2.7.36) is less useful for computing x k . However,
we will encounter this form in later chapters, so it is important to recognize its
equivalence to statement 4.

An interesting property of projection methods is that, in exact arithmetic, the
solution will be reached in at most N iterations, since VN ≡ R

N . In practice,
however, these methods typically generate an acceptable solution for k " N .
The higher the value of k, the closer x k will be to the solution of the problem x .
Again the connection may be established with the variational approach in the
continuous case: the statement (2.7.34) is the discrete analog of the property
(2.2.14), while the statement (2.7.35) corresponds to the Galerkin approxima-
tion (2.2.11).

To develop the projection technique (2.7.35), we postulate an A-orthogonal
(or A-conjugate) basis Wk := {w1, . . . , wk} for Vk , satisfying (w i , w j )A = 0,
i �= j , wherew i ∈ Vi , i = 1, . . . , k. Following the weighted-residual approach,
we express the approximation in terms of this basis as x k =

∑k
j=1 α jw j and

require (2.7.35) to hold for v = w i , i = 1, . . . , k, leading to the k × k linear
system

Ãα = b̃,

where α ∈ R
k is the vector of unknown basis coefficients, b̃i = wT

i · b =
(w i , x)A, and ãi j = wT

i · Aw j = (w i , w j )A. Because of the A-orthogonality
of the basis vectors, Ã ∈ R

k×k is diagonal. This implies that αi = b̃i/ãi i and
leads to the following closed form for x k :

x k =
k∑

i=1

αiw i =
k∑

i=1

wT
i · b

wT
i · Aw i

w i = x k−1 +
wT

k · b
wT

k · Awk

wk . (2.7.37)

The significance of (2.7.37) is that the basis coefficients αi are independent
of the basis vectors w j , j �= i , and x k can therefore be constructed recursively
as a sequence of approximations, as the final equality indicates. It is impor-
tant in practice to replace b in (2.7.37) by the residual, rk−1 := b − Ax k−1
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(= r k−2 − αk−1 Awk−1, k > 1), corresponding to a modified Gram–Schmidt
(MGS) procedure [339]. Because wT

k · Ax k−1 = 0, the two approaches are alge-
braically equivalent. However, loss of orthogonality in the w i ’s due to round-
off can compromise the stability of the classical Gram–Schmidt procedure
(2.7.37).

To generate the A-orthogonal basis Wk from Vk , one could use the following
Gram–Schmidt procedure (see Section A.4.7):

w1 := v1,

For j = 2, . . . , k,

w j := v j −
j−1∑
i=1

βi jw i , βi j := (w i , v j )A

(w i , w i )A

, (2.7.38)

End.

As a comparison with Equation (2.7.37) shows, the quantity
∑ j−1

i=1 βi jw i is the
A-projection of v j onto W j−1. Hence w i given by (2.7.38) is A-orthogonal to
the basis W j−1, that is, (w i , w j )A = 0, for 1 ≤ i < j . Again, from a stability
standpoint, it may be necessary to replace (2.7.38) by an equivalent MGS scheme,
or to employ reorthogonalization, where one makes a second pass through
(2.7.38) with v j := w′j , where w′j is the output of the first pass.

The convergence properties of x k in (2.7.37) are determined by the choice
of the approximation space Vk . Standard practice is to use the residual, setting
v j = r j−1. In the preconditioned case, one uses v j = P−1r j−1. Combining
(2.7.37) and (2.7.38) with the latter choice leads to the following basic projection
method.

Algorithm 2.1 (Basic projection scheme) Given an initial guess x0,

1. Compute r0 := b − Ax0,
2. For j = 1, 2, . . . until convergence Do:
3. v j := P−1r j−1,

4. w j := v j −
j−1∑
i=1

βi jw i , βi j := (wi , v j )A

(w i , w i )A

,

5. x j := x j−1 + α jw j , α j := (w j , e j−1)A

(w j , w j )A

,

6. r j := r j−1 − α j Aw j ,
7. EndDo.

Note that the inner product involving the error vector e j−1 := A−1r j−1 is
readily computable as wT

j · r j . This projection scheme calls for some remarks.
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First, by construction, x j is the best approximation to x in the A-norm.
However, by changing the above inner products to (·, ·)U for some SPD matrix
U , the statement (2.7.34) would hold in the U -norm. In particular, setting U =
AT A would yield the generalized conjugate residual (GCR) method suitable for
nonsymmetric systems and algebraically equivalent to GMRES [339], provided
it does not break down. In the nonsymmetric case, it is generally necessary to
use a more stable procedure for computingw j than the classical Gram–Schmidt
algorithm in step 4. Moreover, breakdown can occur if P−1 A is not positive
definite, since it is possible to have α j = 0 before convergence is reached. The
method will then stall because the linear independence of the subsequent v j ’s
is lost. GMRES avoids this by using a different choice for v j .

Second, we note that other choices for v j can lead to different approximation
spaces to be exploited within the same projection framework. For instance, when
solving parameter- or time-dependent problems, it is often useful to set Vk to
be the span of prior solutions [128]. We will consider this further in Section
4.7. Another possibility is to populate Vk with unit vectors, ê j , ordered in such
a way that the orthogonalized basis Wk is as sparse as possible [391]. This is
the basis for the parallel coarse grid solver considered in Section 8.5.4. An
important case where one may need to modify the definition of v j is if A has
a nontrivial nullspace – e.g., the constant mode in the case of a pure Neumann
problem, or the hydrostatic mode in the solution of a Stokes or Navier–Stokes
problem [see (5.1.4)]. In this case, one can set

v j = (I −�)P−1r j−1, (2.7.39)

where� is the L2 projector onto the nullspace of A. In the case where this is the
constant mode, this amounts to subtracting (êT P−1r j−1)ê from P−1r j−1, where
ê = (1, 1, . . . , 1)T . Note that r j−1 will be in the range of A provided that b is.
With the symmetry of �, (2.7.39) is thus equivalent to applying the symmetric
operator (I −�)T P−1(I −�) and is therefore a suitable preconditioner for
the CG method introduced below.

Finally, we note that for A and P SPD, with the choice v j = P−1r j−1, one
has

x j ∈ span{P−1b, P−1 AP−1b, . . . , (P−1 A) j−1 P−1b} := K j (P−1 A; P−1b),

whereK j is referred to as the Krylov subspace. Therefore, for every polynomial
P j−1 of degree j − 1 or less,

‖x − x j‖2
A ≤ ‖x − P j−1(P−1 A)P−1b‖2

A. (2.7.40)

Because x j is the (unique) minimizer of the expression on the right, any other
Krylov method, such as Richardson iteration, will require at least as many
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iterations to reach the same error. By substituting a specific polynomial for
P j−1 in (2.7.40) it is possible to obtain the error bound

‖x − x j‖2
A ≤ 2

(√
κ − 1√
κ + 1

) j

‖x‖2
A, (2.7.41)

where κ is the condition number of P−1 A [339]. This implies that O(m
√
κ)

iterations are required to reduce the error by m digits. Moreover, it is straight-
forward to show that, for i < j − 1 in step 4, one has βi j = 0, implying that
only the most recent search vector w j needs to be stored. One then obtains
the preconditioned CG (PCG) algorithm, consisting of two recurrences of fixed
length, independent of k. With some understanding of the genesis of projection
methods, we now turn to the classical forms of the PCG and GMRES algorithms
for linear systems [161, 339, 384].

Algorithm 2.2 (Preconditioned conjugate gradient) Starting with a guess
x 0, the standard PCG algorithm with P as preconditioner runs as follows:

1. Compute r 0 := b − Ax 0, z0 = P−1r 0, and w0 := z0,
2. For j = 0, 1, . . . until convergence Do:
3. α j := (r j , z j )/(Aw j , w j ),
4. x j+1 := x j + α jw j ,
5. r j+1 := r j − α j Aw j ,
6. z j+1 = P−1r j+1,
7. β j := (r j+1, z j+1)/(r j , z j ),
8. w j+1 := z j+1 + β jw j ,
9. EndDo.

The reader should notice a few differences between Algorithms 2.1 and 2.2.
There is some reshuffling of the indices that is easily explained. The main
differences lie in the calculation procedures for the coefficients α j and β j . The
CG algorithm exploits a number of the polynomial identities associated with
the elements of Krylov subspace to reduce the number of inner products to
just two, namely, (r j , z j ) and (w j , w j )A. As we will see in Chapter 8, this is
particularly important in parallel algorithms because inner products are a source
of global communication. Finally, the recursion in step 5 allows the residual to
be computed without an extra matrix–vector product.

For nonsymmetric matrices, the product xT · Ax no longer constitutes a
basis for a norm. The error minimization process must be recast in terms of
a different (computable) norm, with the AT A-norm being the most common
choice. Since Aek = b − Ax k , this is equivalent to the following minimization
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problem: Find x k ∈ Vk such that

‖b − Ax k‖2 ≤ ‖b − Av‖2 ∀v ∈ Vk, (2.7.42)

where ‖·‖2 denotes the Euclidean vector norm, and Vk is any approximation
subspace in R

N .
Several approaches can be used to solve (2.7.42). As noted above, Algorithm

2.1 with all norms changed from A to AT A yields the GCR algorithm. However,
efficient implementation of this scheme requires storage of both w i and Aw i ,
i = 1, . . . , k and, as noted earlier, GCR can break down. A significant advance
in the solution of nonsymmetric systems was the development of the GMRES

algorithm by Saad and Schultz [340]. To orthogonalize the Krylov subspaceKk ,
GMRES uses an Arnoldi process that cannot prematurely break down. Breakdown
(linear dependence of the Krylov vectors) at some step j < k implies that the
exact solution lies in K j , and this exact result will be computed by GMRES. In
addition to being robust, GMRES exploits several identities associated with the
Arnoldi process so that storage of only k vectors is required, roughly half as
many as with GCR. The preconditioned variant of GMRES admits either left or
right preconditioning, depending on how the basic linear system is multiplied
by P−1. The left-preconditioned GMRES algorithm applies to P−1 Ax = P−1b.
It reads as follows:

Algorithm 2.3 (Left-preconditioned GMRES) Starting with a guess x 0, per-
form the following set of operations:

1. Compute r 0 := P−1(b − Ax 0), β := ‖r 0‖2, and v1 := r 0/β,
2. For j = 1, . . . , k Do:
3. Compute w j+1 := P−1 Av j ,
4. For i = 1, . . . , j Do:
5. hi j := (w j+1, vi ),
6. w j+1 := w j+1 − hi jvi ,
7. EndDo.
8. Compute h j+1, j = ‖w j+1‖2 and v j+1 = w j+1/h j+1, j ,
9. EndDo.

10. Define Vk = [v1, . . . , vk], and H̄ k = {hi j }1≤i≤k+1,1≤ j≤k ,
11. Compute y

k
= argminy‖βe1 − H̄ k y‖2,

12. Compute x k = x 0 + Vk y
k
.

13. If satisfied Stop, else set x 0 := x k and go to 1.

As a brief comment on the GMRES algorithm, we mention that the Arnoldi
iteration (steps 2–9) produces an N × k matrix Vk , whose column vectors have
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unit norm and are mutually orthogonal, and a (k + 1)× k Hessenberg matrix
H̄ k , with the relationship

P−1 AVk = Vk+1 H̄ k = Vk Hk + wk+1eT
k , (2.7.43)

where ek denotes the last column of the k × k identity matrix. The matrix Hk

is obtained by deleting the last row of H̄ k . The nonzero elements of H̄ k , hi j

(i ≤ j) are the quantities (vi , Av j ). If A is symmetric, one shows easily in the
unpreconditioned case (P ≡ I ) that Hk is tridiagonal. Further details about this
algorithm can be found in the literature (see for instance [339, 384]).

2.8 A Numerical Example

To end this chapter, we discuss a numerical example illustrating the various
approximation methods and solution techniques covered so far. We consider
the model problem

−d2u

dx2
+ u(x) = f (x), x ∈ (−1,+1), (2.8.1)

with homogeneous Neumann and Dirichlet boundary conditions:

u′(−1) = u(1) = 0. (2.8.2)

The r.h.s. f (x) is such that the solution to (2.8.1)–(2.8.2) is the C∞ function

û(x) = (1− x)2(1+ x)2e2x . (2.8.3)

We solve the problem using (1) Lagrangian finite elements Q1 to Q3 with
a series of uniformly spaced meshes with decreasing sizes, (2) orthogonal col-
location on Legendre and Chebyshev grids with a set of increasing number
of mesh points on a monodomain, and (3) Legendre spectral elements with in-
creasing polynomial degrees, on one and two spectral elements. Approximation
errors are collected in Tables 2.8.1 to 2.8.3.

Table 2.8.1 displays the discrete L∞ norm and the Sobolev norm H 1 of
the error εN := û − uN for the Lagrangian finite-element solutions. Here, the
integer N denotes the number of elements covering (−1,+1). We define the
discrete L∞ error norm as

‖εN‖L∞ := max
j
|û(x j )− uN (x j )|,
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Table 2.8.1. Errors and convergence rates in discrete L∞ and Sobolev H 1 norms for
Lagrangian finite-element solutions of the model problem (2.8.1)–(2.8.3).

Q1 Q2 Q3

N ||ε||L∞ τ ||ε||L∞ τ ||ε||L∞ τ

2 5.4206e+ 00 7.2612e− 01 3.1590e− 01
4 1.4593e+ 00 1.89 1.4014e− 01 2.37 4.1900e− 02 2.91
8 3.9511e− 01 1.88 3.4639e− 02 2.02 3.9802e− 03 3.40

16 9.5218e− 02 2.05 5.9945e− 03 2.53 3.0864e− 04 3.69
32 2.4123e− 02 1.98 8.8254e− 04 2.76 2.1496e− 05 3.84
64 6.0483e− 03 2.00 1.1980e− 04 2.88 1.4182e− 06 3.92

128 1.6103e− 03 1.91 1.5558e− 05 2.94 9.0781e− 08 3.97
256 4.2553e− 04 1.92

||ε||H1 τ ||ε||H1 τ ||ε||H1 τ

2 2.7620e+ 00 5.3310e− 01 3.3613e− 01
4 9.1175e− 01 1.60 2.7263e− 01 0.97 8.8407e− 02 1.93
8 3.6444e− 01 1.32 9.9528e− 02 1.45 1.4163e− 02 2.64

16 1.7829e− 01 1.03 2.7604e− 02 1.85 1.8824e− 03 2.91
32 8.8750e− 02 1.01 7.0841e− 03 1.96 2.3602e− 04 3.00
64 4.3663e− 02 1.02 1.7798e− 03 1.99 2.8473e− 05 3.05

128 2.1121e− 02 1.05 4.4259e− 04 2.01 3.3173e− 06 3.10
256 9.8408e− 03 1.10

on a set of two thousand points regularly spaced on (−1,+1). The Sobolev norm
H 1, defined earlier, is given by the expression (2.1.25). The coefficient τ in the
table gives the (numerical) decay rate of the error norms. As the computation
shows, with the Qk Lagrangian elements, refinement of the mesh h := 2/N

Table 2.8.2. Errors in discrete L∞ and Sobolev H 1 norms for Legendre and
Chebyshev collocation solutions of the model problem (2.8.1)–(2.8.3).

Legendre Chebyshev

N ||ε||L∞ ||ε||H1 ||ε||L∞ ||ε||H1

3 1.1862e+ 00 9.2833e− 01 1.1862e+ 00 9.2833e− 01
5 5.3018e− 01 5.8048e− 01 3.2156e− 01 4.8465e− 01
7 3.1966e− 01 1.4657e− 01 1.5930e− 01 1.2073e− 01
9 3.2483e− 02 1.2415e− 02 1.3272e− 02 8.1218e− 03

11 1.1876e− 03 4.3144e− 04 4.2807e− 04 2.4142e− 04
13 2.2658e− 05 8.0416e− 06 7.4130e− 06 4.0075e− 06
15 2.6589e− 07 9.3119e− 08 8.0315e− 08 4.2316e− 08
17 2.1131e− 09 7.3364e− 10 5.9616e− 10 3.0872e− 10
19 1.2093e− 11 4.1772e− 12 3.2039e− 12 1.6512e− 12
21 3.2241e− 14 1.7744e− 13 2.7978e− 14 1.6230e− 13
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Table 2.8.3. Errors in discrete L∞ and Sobolev H 1 norms for Legendre
spectral-element solutions of the model problem (2.8.1)–(2.8.3).

E = 1 E = 2

N ||ε||L∞ ||ε||H1 ||ε||L∞ ||ε||H1

3 1.2875e+ 00 8.7541e− 01 8.7804e− 01 6.7196e− 01
5 5.2201e− 01 5.7598e− 01 6.1434e− 02 1.3346e− 01
7 4.0851e− 02 1.0081e− 01 1.4025e− 03 5.1214e− 03
9 1.8256e− 03 6.1033e− 03 1.4042e− 05 6.8562e− 05

11 4.1146e− 05 1.7287e− 04 7.4085e− 08 4.4877e− 07
13 5.5352e− 07 2.7920e− 06 2.3767e− 10 1.7179e− 09
15 4.9252e− 09 2.8966e− 08 1.9130e− 12 4.6979e− 12
17 3.5640e− 11 2.0872e− 10 2.3826e− 12 3.6834e− 12
19 8.1912e− 12 6.4643e− 12 2.8688e− 12 5.2330e− 12
21 7.1029e− 12 7.9077e− 12 3.3997e− 12 6.6890e− 12

decreases the errors in such a way that

‖εN‖L∞ ∝ hk+1 and ‖εN‖H 1 ∝ hk . (2.8.4)

The decay rate of the Sobolev H 1 error norm is one unit less than the rate
associated to the L∞ norm (or, also, to the L2 norm), because of the presence
of the first derivative in (2.1.25).

Table 2.8.2 gives the same error norms for Legendre and Chebyshev colloca-
tion calculations. Here, N denotes the polynomial degree of the approximation.
Obviously, with orthogonal collocation the error decrease is much faster than
with Lagrangian elements. In this particular case, spectral accuracy may be
reached with approximately 20 degrees of freedom. The results displayed in
the table have been obtained by using both a direct solution of the algebraic sys-
tem (2.2.25) and the FE (or FD) preconditioning technique introduced in Section
2.7.3.

Table 2.8.3 gives the error norms obtained with two different Legendre spec-
tral element calculations. Here, N denotes the number of GLL mesh points per
spectral element, while E is the number of spectral elements covering the do-
main. The reader should be cautious when interpretating the numerical results,
especially when making comparisons between the accuracies obtained with
different numbers of spectral elements. The calculation shows that with a given
number of degrees of freedom, the highest accuracy is reached with all degrees
of freedom concentrated on the smallest number of spectral elements.

The results reported in Table 2.8.3 were also obtained by using both Gaussian
elimination and the preconditioning techniques mentioned in this chapter. We
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Figure 2.8.1. The L2 error norms for theQ1 FE (�), Chebyshev collocation (�), and Leg-
endre spectral-element (�) solutions of the model problem (2.8.1)–(2.8.3), as a function
of the number of degrees of freedom, N .

emphasize that with only a few parameters, there is no ill-conditioning effect
to be expected on the algebraic system, and both calculations should indeed
give the same answer. In multidimensional calculations with large numbers of
degrees of freedom per space variable, this may no longer be the case.

The large difference in accuracy between Lagrangian finite elements and
high-order methods is also illustrated in Figure 2.8.1. This figure shows the
decay of the L2 error norms associated to the Q1 FE solution (�), the Chebyshev
collocation (�), and the Legendre spectral-element (monodomain) solutions
(�), as a function of N , the number of degrees of freedom. While the L2 error
convergence with Lagrangian finite elements is clearly algebraic [i.e. of type
O(N−#), with # fixed and depending on the FE degree], the convergence rates
of collocation and spectral-element solutions increase with increasing values
of N , until roundoff error is reached (see Section 2.6).

Figures 2.8.2 and 2.8.3 illustrate the properties of the (low-order) precondi-
tioning techniques introduced earlier in the chapter. Figure 2.8.2 displays the
spectral condition number of three matrix operators involved in the Legendre
collocation solution to (2.8.1)–(2.8.2) with Q1 FE preconditioning. Calcula-
tions have been made with increasing polynomial degree N . The curve labeled
(a) gives the spectral condition number of the collocation matrix κ(LC ). The
numerical computation illustrates the O(N 4) growth of this quantity, a property
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Figure 2.8.2. Spectral condition number of three matrix operators involved in a Legendre
collocation scheme with Q1 FE preconditioning: (a) κ(LFE), (b) κ(LC ), and (c) κ(L−1

FE ·
LC ). The parameter N is the polynomial degree of the approximation.

Figure 2.8.3. Decay of the L2 error norm for FD (�) and FE (�) preconditioned solutions of
a Chebyshev collocation calculation, as a function of the iteration index k. The problem
solved is (2.8.1)–(2.8.3): (a) calculations with the relaxation factor α = 1, and (b) with
α = αopt. The factors αopt are equal to 0.590617 (FD) and 1.16086 (FE).
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mentioned in Section 2.7 and resulting from the nonuniform spacing of the grid.
The curve labeled (b), corresponding to κ(LFE), where LFE denotes the Q1 FE

matrix built on the GLL collocation grid, exhibits similar asymptotic behavior,
for the same reasons. The last curve, labeled (c), shows κ(L−1

FE · LC ), the spectral
condition number of the preconditioned Richardson iterative process (2.7.23).
The main result here is that this quantity does not depend on N . Hence, with a
suitable relaxation coefficient α, the preconditioned iterative process (2.7.23)
will converge in almost the same number of iterations, whatever the value
of N .

Figure 2.8.3 shows the evolution of the L2 error norm during the FD (or FE)
preconditioning iterations. The relaxation factor α has been set equal to 1 [see
the curves labeled (a)] and to its optimal value αopt [curves labeled (b)], which
depends on the spectral properties of P−1 · LC (with P , the preconditioner),
according to (2.7.28). As the figure shows, with FD preconditioning and α = 1,
the error decays quite rapidly. However, since some eigenvalues of P−1 · LC

are located outside the unit circle in the complex plane, eventually the pre-
conditioning iterations must diverge. One may argue that the accuracy reached
before divergence is already quite good. This is purely related to the nature of
the problem solved. If the differential problem is changed, the divergence of the
iterative process may come much sooner. With α = αopt, the error decay with
FD preconditioning is slower, but the algorithm converges.

With the introduction of Q1 FE preconditioning, things are much simpler.
Even with α = 1, the eigenvalues of L−1

FE · LC are all located inside the unit
circle, and the preconditioning process converges anyway. Francken et al. [140]
have shown that this is related to the existence of the FE mass matrix that drives
the eigenvalues of P−1 · LC inside the unit circle of the complex plane. Setting
α = αopt makes the convergence only a little faster, as shown in the figure.



3
Parabolic and Hyperbolic Problems

In the preceding chapter we introduced some of the basic principles and algo-
rithms to solve second-order differential equations in the space variable. For
convenience and in order to ease comprehension, the number of space dimen-
sions was limited to one. In fact, most of the time real-life fluid flows are three-
dimensional, which makes the numerical treatment of these problems much
more sophisticated than explained in Chapter 2. Additionally, the flows may
be time-dependent. The subject of multidimensional problems will be covered
in Chapter 4. For the time being we stay within the sphere of one-dimensional
problems in space as we deal with time dependence.

3.1 Introduction

The reader will remember from Chapter 1 that time-dependent fluid flows are
governed by PDEs with the structure

∂•
∂t
= L • + f, (3.1.1)

where the bullet stands for the unknown velocity field,L is a (usually nonlinear)
partial differential operator, and f denotes some forcing term [see for instance
Equation (1.7.5)]. Time dependence in these problems obeys a first-order differ-
ential operator, which makes the time integration schemes different from those
outlined in Chapter 2 for space dependence. Section 3.2 introduces the nu-
merical schemes, as well as the basic concepts needed for their understanding.
Section 3.3 describes the splitting technique combining integration schemes
adapted to the underlying physics of the main components of the Navier–
Stokes equations. Section 3.4 focuses on the parabolic case, where dissipation
is the main characteristic. Section 3.5 deals with the hyperbolic case, in which,

98
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instead of dissipation, we have advection (i.e. transport) and conservation. In
these two cases we will adopt different numerical schemes, for reasons that
will be explained in detail. Sections 3.6 and 3.7 show how to deal with steady
and unsteady problems combining diffusive and advection processes. Section
3.8 is devoted to the Burgers equation, which introduces nonlinearity. Finally,
Sections 3.9 and 3.10 address advanced time discretizations that are tailored to
CFD applications.

3.2 Time Discretization Schemes

For convenience we will consider in this section a generic set of equations

du

dt
= f (t, u(t)), u(t0) = u0, t ∈ (t0, T ], (3.2.1)

where u(t) ∈ R
N is a vector in the Euclidean space, T is some (finite) value of

time, and (t0, T ] denotes the interval open at t0 and closed at T . In subsequent
chapters we will meet situations in which u(t) is the set of coefficients resulting
from a space discretization of the Navier–Stokes equations (1.6.3)–(1.6.4). In
that case the r.h.s. of (3.2.1) is usually a nonlinear function of u(t) when con-
vective terms are taken into account [see (1.7.5)]. For convenience we will also
assume that the differential system (3.2.1) has been reduced to its autonomous
form. This means that, on introducing an additional independent variable t�

satisfying the equation t� = t (or rather, dt�/dt = 1), the r.h.s. of (3.2.1) no
longer depends explicitly on t , and the differential problem becomes

du

dt
= f (u(t)), u(t0) = u0, t ∈ (t0, T ], (3.2.2)

where the new unknown vector u, in addition to the old one, includes the
variable t�.

Before considering solution methods for (3.2.2) in detail, we make a few
remarks about the underlying nature of f for problems arising in fluid flow ap-
plications. Significant insight can be gained by considering the model problem

du

dt
= Lu, (3.2.3)

where L is a linearized version of the differential operator in (3.1.1). The
operator L corresponds to the Jacobian of f , introduced below [see Equa-
tion (3.2.10)], and we assume that it may be diagonalized. If Z = (z1, . . . , zN )
is the matrix of eigenvectors of L and , = diag(λk) the corresponding set of
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eigenvalues, then (3.2.3) can be written as

dû

dt
= ,û ,

on making the substitutions û = Z−1u and, = Z−1L Z . Clearly, any numerical
scheme used to advance (3.2.2) must be able to treat ut = λu for all values of
λ = λk in practice. In fluid mechanics, the nature of these eigenvalues is fairly
well understood. Diffusion contributes a negative real component to λ, while
convection contributes a purely imaginary component. As we saw in Chapter 2,
the eigenvalues for the second-order elliptic operator that governs diffusion
scale as O(N 4) for spectral discretizations of degree N , while the eigenvalues
for the convection operator scale as O(N 2). Because of these differences, and
because the diffusive term is linear and symmetric while the convective term
is nonlinear and nonsymmetric, these terms frequently are treated in different
ways, giving rise to semiimplicit and operator-splitting time-stepping schemes.

In developing schemes for the solution of (3.2.2) we will momentarily ignore
the physical meaning of u(t), keeping in mind that there is a distribution of
eigenvalues in the left half of the complex plane, including the imaginary axis.
We will use various approaches known as the linear multistep, the predictor–
corrector, and the Runge–Kutta methods. The first and second approaches,
developed in Sections 3.2.1 and 3.2.2, are based on a formal integration of
(3.2.2), whereas the third approach, treated in Section 3.2.3, is based on the
mean-value theorem and a systematic use of Taylor expansions.

3.2.1 Linear Multistep Methods

Formally, the solution of the differential system (3.2.2) at time t is

u(t)− u0 =
∫ t

t0
f (u(s)) ds. (3.2.4)

Many algorithms used in actual computations are based on an approximation
of the r.h.s. of (3.2.4) such that if {t i }ki=1 is a given set of discrete time values,
one has ∫ t

t0
f (u(s)) ds ≈

k∑
i=1

wi f (u(t i )), t i ≤ t, (3.2.5)

where the quantities wi are quadrature weights. To distinguish the numeri-
cal solution to (3.2.2) from the exact solution u(t), we introduce the vector
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ũ(t) ∈ R
N resulting from the equation

ũ(t)− u0 =
k∑

i=1

wi f (ũ(t i )), t i ≤ t, (3.2.6)

where we assume that all quantities except ũ(t) are known. Such a scheme used
repetitively is called a discrete-variable method or a forward step method.

Suppose the time scale has been discretized with a constant step �t = h.1

The linear multistep methods are collectively characterized by the formula

Lk[ũ(t); h] := ũn+1 −
k∑

j=1

a j ũ
n+1− j − h

k∑
j=0

b j f n+1− j = 0, (3.2.7)

with the convention ũn+1− j := ũ(tn+1− j ), f n+1− j := f (ũn+1− j ), and k ≥ 1 the
number of steps. The coefficients a j and b j depend on the choice of the numer-
ical scheme, as we will see in various examples below. One easily recognizes
in (3.2.7) a more general form of (3.2.6). In the simple case in which k = 1, the
method is called a single-step method.

If the coefficient b0 = 0, the numerical scheme (3.2.7) is called explicit.
This means that, provided the set of values {ũn+1− j }kj=1 is known at time tn ,
the value of ũn+1 may be readily computed by using (3.2.7) and one carries the
time-marching process further to tn+1. The computation cost is one evaluation
of f , the r.h.s. of (3.2.2), per time step. If the coefficient b0 �= 0, the numerical
scheme is called implicit. To evaluate the vector ũn+1, one has to solve a set of
nonlinear equations at each time step:

ũn+1 − hb0 f (ũn+1) =
k∑

j=1

a j ũ
n+1− j + h

k∑
j=1

b j f n+1− j . (3.2.8)

In practice, one normally uses a Taylor expansion of f (ũn+1) centered at ũn

and limited to first order in ũn+1 − ũn:

f (ũn+1) ≈ f (ũn)+ J (ũn) (ũn+1 − ũn), (3.2.9)

where J ∈ R
N×N is the Jacobian matrix associated with the transformation in

the r.h.s. of (3.2.2), with elements

Ji j = ∂ fi

∂u j

∣∣∣∣
ũn

, i, j = 1, . . . ,N . (3.2.10)

1 For the sake of convenience, we denote the time step in Sections 3.2 and 3.3 by h, despite the
fact that this notation usually designates the spatial mesh.
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Introducing the expansion (3.2.9) into (3.2.8), one concludes that the unknown
at every time step results from the inversion of an N ×N linear system

(I − hb0 J )ũn+1 = qn, (3.2.11)

qn =
k∑

j=1
a j ũn+1− j + h

k∑
j=1

b j f n+1− j − hb0 J ũn, (3.2.12)

with I ∈ R
N×N the identity matrix.

Implicit multistep algorithms are therefore much more expensive in comput-
ing time than explicit multistep schemes. Quite generally, this is the price to pay
for increased stability, a concept that we will define below. Similar conclusions
will be reached later for Runge–Kutta integration schemes. In Section 3.2.2 we
will indicate another technique to solve the nonlinear problem (3.2.8) that is
cheaper than (3.2.11).

An important feature of multistep methods must be emphasized: these meth-
ods need starting procedures, since several numerical values are needed to
advance the time-marching process, while only the initial condition is given.
Usually, one uses a single-step or a Runge–Kutta method. Before we examine
concrete examples of linear multistep methods, we give a short review of some
essential theoretical concepts in the numerical analysis of ordinary differential
equation (ODE) solvers.

Main Theoretical Concepts

For the sake of convenience, let us momentarily consider the problem of one
nonlinear differential equation (3.2.2) with infinitely smooth solution u(t) ∈
C∞(0,∞). The introduction of u(t) into the l.h.s. of (3.2.7) followed by a
Taylor series expansion centered at tn+1 gives the local truncation error:

Lk[u(t)− ũ(t); h] = Lk[u(t); h] =
∞∑
j=0

C j
h j

j!
u( j),n+1, (3.2.13)

where u( j),n+1 denotes the j th derivative of u at tn+1. The constants C j depend
on the parameters ai and bi , and with a little algebra one obtains

C0 = 1−
k∑

i=1

ai , C j =
k∑

i=0

(−i) j−1(iai − bi ), j = 1, . . . ,∞. (3.2.14)

Three basic requirements for discrete-variable methods, which are linked
together by a theorem due to Lax, are those of consistency, convergence, and
stability (Theorem 3.1). Forward-step methods that satisfy any two of these three
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conditions automatically satisfy the third. Consistency compels the solution of
the initial-value problem (3.2.2) to satisfy the difference scheme (3.2.7) apart
from a small truncation error that should vanish with step size. In mathematical
terms, we have the following.

Definition 3.1 (Consistency) A k-step multistep method (3.2.7) is consistent
of order r if the local truncation error Lk[u(t); h] = O(hr+1), that is, if C0 =
C1 = · · · = Cr = 0 and Cr+1 �= 0.

In particular, a multistep method is said to be consistent if it is verified for
all polynomials of degree ≤ 1.

Convergence is a key concern. It guarantees that with mesh refinement, the
solution to the discrete-variable method (3.2.7) more and more closely follows
the true solution of the problem.

Definition 3.2 (Convergence) The forward-step method (3.2.7) applied to any
initial-value problem (3.2.2) with the r.h.s. satisfying a Lipschitz condition is
convergent if

lim
h→0

ũn = u(t), t = t0 + nh ∀t ∈ (t0, T ], (3.2.15)

and the starting values tend to the initial condition as h tends to zero:

lim
h→0

ũi = u0, i = 0, . . . , k − 1.

Finally, it is important to prevent truncation errors or roundoff errors from
destroying the solution by spurious amplification during the time-marching
process. This requirement leads to the concept of stability, mathematically
defined as follows.

Definition 3.3 (Stability) A multistep method (3.2.7) is stable iff for any dif-
ferential problem (3.2.2) satisfying a Lipschitz condition, there exists a time
step h0 and a positive constant K such that for any two neighboring numerical
solutions {ũn

1} and {ũn
2} of (3.2.7) with initial conditions u0

1 and u0
2, one has

∥∥ũn
1 − ũn

2

∥∥ ≤ K
∥∥u0

1 − u0
2

∥∥ ∀h, 0 < h ≤ h0. (3.2.16)

As this definition suggests, the stability property is strongly problem-
dependent. To eliminate this constraint, one introduces a convenient test problem
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for u ∈ R:

du

dt
= λu(t), u(t0) = 1, t ∈ (t0, T ], (3.2.17)

where λ is a complex constant. The relevance of this equation lies in the fact that
(as already mentioned)λmust be regarded as an eigenvalue of the Jacobian J . To
assess the stability properties of a forward-step method applied to a differential
system (3.2.2), the analysis performed on (3.2.17) must be carried on the whole
eigenspectrum of J , which might be spread over very large regions in the
complex plane, especially if the problem is stiff.

The three concepts consistency, convergence, and stability are then combined
in the Lax equivalence theorem (see [327, 244]).

Theorem 3.1 (Lax) For a well-posed initial-value problem and a consistent
discretization scheme, stability is the necessary and sufficient condition for
convergence.

Let us explore the consequences that are the most useful for practical pur-
poses. We start with the multistep scheme (3.2.8). This gives a kth-order ho-
mogeneous difference equation with constant coefficients for ũ ∈ R:

(1− b0λh)ũn+1 =
k∑

j=1

(a j + b jλh)ũn+1− j . (3.2.18)

For a given value of z := λh, this equation admits k polynomial solutions in
the complex ζ -plane, ũn

# = (ζ#)n (# = 1, . . . , k), such that

(1− b0z)ζ k
# −

k∑
j=1

(a j + b j z)ζ k− j
# = 0, ζ# = |ζ#|eiφ# , (3.2.19)

or

ρ(ζ#)− zσ (ζ#) = 0, 1 ≤ # ≤ k. (3.2.20)

The polynomials ρ(ζ ) := ζ k −∑k
j=1 a jζ

k− j and σ (ζ ) :=∑k
j=0 b jζ

k− j in
(3.2.20) are called the characteristic (or generating) polynomials of the multi-
step method.

Certainly, for eigenvalues λ in the left half complex plane [((λ) < 0], the
numerical solution of (3.2.17) using the linear multistep method (3.2.7) with
time step h must eventually go to zero. This requires that the k solutions ζ#, 1 ≤
# ≤ k, to Equation (3.2.20) satisfy the condition |ζ#| < 1. Ideally, this property
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should be verified for all ((λ) < 0. In practice, however, the property will be
verified only in a subdomain of the left half complex plane, the stability region
of the forward-step method, defined in somewhat broader terms.

Definition 3.4 (Stability region) The stability region of a forward step method
is the set of values of h (real, h > 0) and of λ for which any perturbation to
the solution introduced at any instant will not be amplified at later times.

In other words, the stability domain of a multistep scheme is defined as
the (open) set of values in the complex z-plane such that the elements on the
domain boundary correspond to |ζ | = 1. Examples of stability regions that will
be discussed below are given in Figures 3.2.1–3.2.3. Notice that if, for given
values of λ and h, the product z = λh lies outside the stability region of the
scheme, a homothetic transformation (for instance, a reduction of the mesh size)
may be determined to enforce stability. This is not always needed however, as
some forward-step methods have a stability region that includes the negative
complex half plane ((z) < 0. Such forward-step methods are called A-stable,
a concept due to Dahlquist [89, 151].

Definition 3.5 (A-stability) A forward-step method is A-stable if, applied to
the test equation (3.2.17) with ((λ) < 0, ∀h (real, h > 0), one has limn→∞
ỹ(nh) = 0.

A-stability is a convenient property in practice. When it is satisfied, one
need not worry about nonphysical growth in the solutions. However, A-stability
does not guarantee accuracy, especially for stiff problems, where the spread of
eigenvalues (often over several decades) may require significant reduction in
the time step in order to ensure |λh| ≈ 1.

We illustrate the concepts introduced so far with examples of linear multistep
methods that have gained widespread popularity in numerical computation.

Adams–Bashforth and Adams–Moulton Schemes

Our first example deals with the k-step Adams–Bashforth (ABk) and Adams–
Moulton (AMk) integration schemes, two families of explicit and implicit mul-
tistep methods built along the same principle with the use of Newton–Cotes
quadrature schemes.

We approximate f (u) in (3.2.4) by a Lagrange interpolation polynomial of
degree k − 1 at k consecutive mesh points. The ABk numerical scheme corre-
sponds to the case in which these interpolation points are located in the interval
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Table 3.2.1. Coefficients for the k-step Adams–Bashforth (ABk) schemes with k ≤ 6.
For a given k, b# = γ#/γ with 1 ≤ # ≤ k [see (3.2.7)]. The ABk schemes have

consistency order k.

k γ γ1 γ2 γ3 γ4 γ5 γ6

1 1 1
2 2 3 −1
3 12 23 −16 5
4 24 55 −59 37 −9
5 720 1901 −2774 2616 −1274 251
6 1440 4277 −7923 9982 −7298 2877 −475

[tn+1−k, tn]. Then the approximation is

f (u) ≈
k∑

#=1

f (un+1−#)π#(t), (3.2.21)

where the functions {π#(t)}k#=1 form the cardinal Lagrangian basis satisfying the
bi-orthogonality condition π#(tn+1−m) = δ#m , with 1 ≤ #,m ≤ k. One verifies
easily that the coefficients a# and b# (1 ≤ # ≤ k) in (3.2.7) are given by

a# = δ1# and hb# :=
∫ tn+1

tn

π#(t) dt. (3.2.22)

Numerical values of these coefficients for the ABk families with k ≤ 6 are
given in Table 3.2.1. Notice that, for a fixed k, the coefficients b# in (3.2.7)
are given by b# = γ#/γ . The single-step AB1 scheme is often referred to in the
literature as the explicit (or “forward”) Euler method (EM).

The AMk schemes are obtained by the same process on the interval [tn+1−k,

tn+1]. The integer k is still the number of steps, but, since Adams–Moulton
schemes are implicit, two single-step algorithms exist, corresponding to k = 0
and k = 1. The interpolation expansion for f (u) involves k + 1 polynomials
π# of degree k. One has an expansion (3.2.21) and associated coefficients a#
and b# given by (3.2.22), where # runs from 0 to k.

Table 3.2.2 displays the numerical values of the coefficients b# for the AMk
schemes with 0 ≤ k ≤ 5. Again the coefficients b# := γ#/γ . The two single-step
Adams–Moulton schemes are important in practice. They are usually known as
the implicit (or “backward”) Euler (IE) method, and as the trapezoidal rule, or
Crank–Nicolson (CN) method. We give their characteristic equations (3.2.20),
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Table 3.2.2. Coefficients for the k-step Adams–Moulton (AMk) schemes with k ≤ 5.
For a given k one has b# = γ#/γ with 0 ≤ # ≤ k [see (3.2.7)]. The AMk schemes have

consistency order k + 1.

k γ γ0 γ1 γ2 γ3 γ4 γ5

0 1 1
1 2 1 1
2 12 5 8 −1
3 24 9 19 −5 1
4 720 251 646 −264 106 −19
5 1440 475 1427 −798 482 −173 27

together with the characteristic equation of the explicit Euler method:

EM: ζ = 1+ z, (3.2.23)

IE: ζ = 1

1− z
, (3.2.24)

CN: ζ = 1+ z
2

1− z
2

. (3.2.25)

These expressions are rational approximations of exp(z) with z := λh, the exact
solution of (3.2.17) at t = h.

The consistency property of the ABk and AMk schemes may be verified easily.
Application of (3.2.13) with the coefficients borrowed from Tables 3.2.1 and
3.2.2 to infinitely smooth functions shows that the consistency orders are equal
respectively to k and k + 1. The stability regions for these methods (with k ≤ 4)
are shown in Figures 3.2.1 and 3.2.2.

The stability regions of the ABk schemes are located inside the closed curves
labeled (k). Increasing the value of k certainly improves the consistency order
but, at the same time, requires a refinement of h to deal with the eigenvalues
of J in ((λ) < 0 having the largest module. Particularly difficult to solve are
(pure) hyperbolic problems with eigenvalues on the imaginary axis. Among the
four ABk schemes displayed in Figure 3.2.1, the only one including part of the
imaginary axis in its stability region is AB3. The intersections of the stability
curve and the y-axis are located at y = ±0.72362.

Similar comments apply to the AMk schemes with k > 2. These implicit
schemes have larger stability regions than their Adams–Bashforth counterparts
that are also located inside a closed curve. To ensure stability of pure hyperbolic
problems, one has to take k = 4. The corresponding stability curve crosses the
imaginary axis at y = ±1.2118.
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�

�

Figure 3.2.1. Stability regions for ABk schemes with 1 ≤ k ≤ 4.

The IE and CN cases are somewhat different. The former scheme has its
stability curve located in the right half plane ((z) > 0, the stability region
lying outside the contour [and therefore including ((z) < 0], while the lat-
ter scheme has its stability curve superimposed on the imaginary axis. These
two implicit schemes are thus A-stable. Although the IE scheme has a lower
consistency order than does the CN scheme, it is better suited for the numeri-
cal solution of stiff problems, since limz→−∞(1− z)−1 = 0, while for the CN

�

�

Figure 3.2.2. Stability regions for AMk schemes with 0 ≤ k ≤ 4.
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scheme limz→−∞(1− z/2)−1(1+ z/2) = −1. A-stable numerical schemes ap-
proximating exp(z) and such that for z →−∞ the approximation tends to zero
are called L-stable.

To conclude this example, we remark that, according to a property shown by
Dahlquist [89], no A-stable linear multistep schemes exist with a consistency
order higher than 2.

Backward Differencing Schemes

Our next example considers a family of implicit methods, the k-step backward
differentiation formula (BDFk) based on a truncated Taylor expansion of the so-
lution. Assuming once again a constant time step h, we introduce the backward
difference operator ∇ such that

∇un := un − un−1. (3.2.26)

Let D denote the time differentiation operator D := d
dt . With the Taylor expan-

sion of an infinitely regular function f (t) around tn , it is easy to show that ∇
and D are connected through the formal relationship

h D = − log(1− ∇). (3.2.27)

Multiplying the differential system (3.2.2) by h and using (3.2.27) to eliminate
time differentiation, one gets, at time tn+1,

∞∑
#=1

1

#
∇#un+1 = h f (un+1), (3.2.28)

where, starting from (3.2.26), the high-order backward difference may be ob-
tained recursively by ∇#un = ∇(∇#−1un). Truncation of the l.h.s. of (3.2.28) at
order k and repeated application of (3.2.26) gives the BDFk scheme

ũn+1 =
k∑

j=1

a j ũ
n+1− j + hb0 f n+1. (3.2.29)

The coefficients b0 and {a#}k#=1 of (3.2.29) for values of k ≤ 6 are listed in
Table 3.2.3. The single-step BDF1 scheme is identical to the IE algorithm (3.2.24)
derived in the preceding section.

Introduction of the coefficients of Table 3.2.3 into the truncation error
(3.2.13) gives Lk[u(t); h] = O(hk+1), that is, a consistency order equal to k.
The stability curves of the four lowest BDFk schemes are shown on Figure 3.2.3.
The stability regions are located outside the contours labeled (k). Except for the
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Table 3.2.3. Coefficients for the k-step backward-difference (BDFk) schemes with
k ≤ 6. For a given k one has b0 = γ0/γ and a# = γ#/γ with 1 ≤ # ≤ k [see (3.2.29)].

The BDFk schemes have consistency order k.

k γ γ0 γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1
2 3 2 4 −1
3 11 6 18 −9 2
4 25 12 48 −36 16 −3
5 137 60 300 −300 200 −75 12
6 147 60 360 −450 400 −225 72 −10

two lowest schemes (with k = 1, 2), which are A-stable [and therefore have
their contours entirely in ((z) > 0], the higher-order stability curves steadily
penetrate into((z) < 0 with increasing values of k. This might give unstable nu-
merical solutions for problems having eigenvalues on or near the imaginary axis.

3.2.2 Predictor–Corrector Methods

We have seen that a standard approach of implicit linear multistep methods
consists of linearizing f (u(t)), the r.h.s. in (3.2.2), and solving the algebraic
system (3.2.11), where the matrix depends on the Jacobian J of the problem [see
Equation (3.2.10)]. Obviously, this is exact for linear systems of ODEs. However,

�

�

Figure 3.2.3. Stability regions for BDFk schemes with 1 ≤ k ≤ 4.
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nonlinearity of the problem might be such that a more rigorous approach to
(3.2.8) is needed. Predictor–corrector (PC) methods offer such an approach.

The main idea of PC methods consists in solving (3.2.8) iteratively to obtain
ũn+1. In what follows, the integer between square brackets in ũn+1

[s] refers to
these iterations. The scheme is written as

ũn+1
[s+1] =

k∑
j=1

a j ũ
n+1− j + hb0 f

(
ũn+1

[s]

)+ h
k∑

j=1

b j f n+1− j , (3.2.30)

with the iteration index s ≥ 0 and with ũn+1
[0] as a first guess. For the time being,

we abstain from referring to the iterative process with regard to the quantities
at instants before tn+1, since this is discussed below in some detail.

One would like the difference between two iterates δũn+1
[m] := ũn+1

[m+1] − ũn+1
[m]

to go quickly to zero so that, for some integer s = m − 1, one has ũn+1
[m] ≈ ũn+1,

the solution to (3.2.8). In order to minimize the computational work, the first
guess should be as close as possible to the solution of (3.2.8). A convenient
procedure consists in selecting an explicit linear multistep method [with, say,
k� steps and coefficients {a�i }k

�

i=1 and {b�i }k
�

i=1], of order as high as possible, to
predict a solution ũn+1

[0] , leaving to the iterative scheme (3.2.30) the task of
correcting this approximation to the value ũn+1

[m] (as close as possible to ũn+1).
Let P denote an application of the predictor. The iterative scheme (3.2.30)

shows that each correction iteration calls for an evaluation of the r.h.s. f (ũn+1
[s] ).

Let E denote such an evaluation, and let C denote an application of the corrector.
Two PC algorithms can then be conceived on the basis of a fixed number of
iterations m, according to whether the iterative process at some time step stops
with the correction C or with the evaluation E . In the former case the algorithm
symbolically is P(EC)m :

ũn+1
[0] =

k�∑
j=1

a�j ũ
n+1− j
[m] + h

k�∑
j=1

b�j f n+1− j
[m−1]

,

(3.2.31)

ũn+1
[s+1] =

k∑
j=1

a j ũ
n+1− j
[m] + hb0 f

(
ũn+1

[s]

)+ h
k∑

j=1

b j f n+1− j
[m−1]

,

whereas in the latter case it is P(EC)m E :

ũn+1
[0] =

k�∑
j=1

a�j ũ
n+1− j
[m] + h

k�∑
j=1

b�j f n+1− j
[m]

,

(3.2.32)

ũn+1
[s+1] =

k∑
j=1

a j ũ
n+1− j
[m] + hb0 f

(
ũn+1

[s]

)+ h
k∑

j=1

b j f n+1− j
[m]

.
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In these two schemes we tacitly assume that f n+1− j
[#]

:= f (ũn+1− j
[#] ) and that

0 ≤ s ≤ m − 1.
Two important questions are still pending: How does one select the value of m

in practice? Among the schemes (3.2.31) and (3.2.32), which is to be preferred?
Without entering into too much detail, let us mention that a convenient rule of
thumb sets m = p − p� + 1, where p and p� denote the convergence orders of
the corrector and predictor schemes, respectively. This is intuitively understood
as follows: every correction iteration improves the (initial) consistency order
of the numerical solution p� by one unit up to p. An additional iteration is
required, however, to reduce the error level to its minimum. With regard to the
second question, we emphasize that P(EC)m E methods are usually preferred
because of their better stability properties.

A simple example of the P(EC)m E algorithm combines the AB2 scheme
used as predictor with the AM2 scheme used as corrector. The equations (3.2.32)
thus are

ũn+1
[0] = ũn

[m] +
h

2

[
3 f n

[m]
− f n−1

[m]

]
,

(3.2.33)

ũn+1
[s+1] = ũn

[m] +
h

12

[
5 f

(
ũn+1

[s]

)+ 8 f n
[m]
− f n−1

[m]

]
,

with 0 ≤ s ≤ 1, since the optimal value of m for this PC method is equal to 2.
Figure 3.2.4 displays the stability regions of (3.2.33) with one and two correction

�

�

Figure 3.2.4. Stability regions for the P(EC)m E scheme (3.2.32) based on the AB2 and
AM2 methods. The figure displays the stability contours of the PC scheme with m = 1, 2,
as well as of the AB2 and AM2 schemes.
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iterations. Also shown, for the purpose of comparison, are the stability regions
of the basic AB2 and AM2 schemes. The P(EC)m E methods have larger stability
regions than the predictor scheme, though not as large as that of the corrector
scheme.

Our second example associates the AB4 and AM3 schemes both with order 4.
Since in this case p� = p, one correction iteration is enough (m = 1):

ũn+1
[0] = ũn

[1] +
h

24

[
55 f n

[1]
− 59 f n−1

[1]
+ 37 f n−2

[1]
− 9 f n−3

[1]

]
,

(3.2.34)

ũn+1
[1] = ũn

[1] +
h

24

[
9 f

(
ũn+1

[0]

)+ 19 f n
[1]
− 5 f n−1

[1]
+ f n−2

[1]

]
.

Again, the stability region of (3.2.34) is located between those of the AB4 and
AM3 algorithms. As is always the case with linear multistep methods, increasing
the order goes in parallel with shrinking stability regions, hence with more
drastic conditions on the time step.

3.2.3 Runge–Kutta Methods

Another approach for solving the differential system (3.2.2) uses the mean-
value theorem, which states the existence of a time value ξ , depending on the
solution, such that

u(t)− u0 = (t − t0) f
(
u(ξ )

)
, t0 < ξ < t. (3.2.35)

The r.h.s. of (3.2.35) is approximated by a linear combination of slopes at sev-
eral points in the interval (t0, t), in such a way that the Taylor expansion of the
numerical solution ũ(t) coincides as much as possible with the Taylor expansion
of u(t). This is the basic underlying principle of Runge–Kutta (RK) methods.
Let us immediately emphasize that RK methods, unlike the previous integra-
tion schemes, are all one-step algorithms. Thus, they raise no problems with
regard to initialization procedures and are often used as starting procedures for
multistep integration methods. As before, we will distinguish between explicit
and implicit RK methods according to whether the approximate solution ũ(t)
obtains without or with the solution of a set of (nonlinear) auxiliary equations.
Historically, explicit RK were introduced first and are probably the most widely
used RK methods. They are easy to implement and have nice convergence and
stability properties, as discussed hereafter. Implicit RK methods are more re-
cent and, up to now, have received little attention in CFD applications. For more
details on RK methods the reader should consult the books by Butcher [58] and
by Gear [151], as well as [105] and a recent paper by Gottlieb et al. [164] that
discusses strong stability-preserving high-order RK schemes.
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Explicit Runge–Kutta Schemes

Let �t = h denote the time step. The canonical form of an m-stage RK integra-
tion scheme is given by

ũn+1 = ũn +
m∑

j=1

w j K j , (3.2.36)

where the quantities K j ∈ R
N are determined through the relationships

K j = h f

(
ũn +

m∑
#=1

a j#K #

)
, 1 ≤ j ≤ m. (3.2.37)

The set of m(m + 1) coefficients {w j }mj=1 and {a j#}mj,#=1 defines a particular RK

scheme. A few examples that are important in practice will be given below. A
convenient notation due to Butcher [58] for the m-stage RK method uses the
coefficient matrix A and two vectors, c and w, with the following pattern:

c A
wT ≡

c1 a11 a12 . . . a1m

c2 a21 a22 . . . a2m
...

...
...

...
cm am1 am2 . . . amm

w1 w2 . . . wm

, (3.2.38)

where wT denotes the transpose of w. The components of c are related to the
elements of A and are equal to the row sums: ci =

∑
j ai j , 1 ≤ i ≤ m.

An m-stage RK method is called explicit (ERK) when the coefficient matrix
A is strictly lower triangular, that is, when ai j = 0, i ≤ j . In this case, the total
number of coefficients is reduced to m(m + 1)/2, and the relationship (3.2.37)
becomes

K j = h f

(
ũn +

j−1∑
#=1

a j#K #

)
, 1 ≤ j ≤ m, (3.2.39)

with a11 = 0. One easily verifies that the auxiliary vectors K j are evaluated one
at a time, at the expense of one call of the r.h.s. of (3.2.2) per auxiliary vector
and per time step (i.e., a total of m calls per time step). ERK integration schemes
are therefore more expensive in computation time than the ABk algorithms
introduced earlier. We will see below, through an example, that ERK schemes
have close links with PC methods.

The nonlinearity of RK methods [see (3.2.37)] makes it much more diffi-
cult to derive general relationships between the degrees of freedom of an ERK
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Table 3.2.4. Attainable order r (m) of an explicit
Runge–Kutta method as a function of the number

of stages (see [58]).

m r (m)

1 1
2 2
3 3
4 4
5 4
6 5
7 6
≥8 ≤m − 2

scheme and its convergence order r . This topic has been thoroughly studied
by Butcher, and we refer to [58] for further developments. Butcher’s main re-
sults are summarized in Table 3.2.4, presenting the maximum attainable order
of ERK methods as a function of the number of stages. A few comments are
appropriate.

Consistency in the sense of Definition 3.1 requires that

m∑
j=1

w j = 1. (3.2.40)

The matching of higher terms in the Taylor series of the true solution induces
further relationships between the elements of A and w. A characteristic feature
of ERK methods lies in the fact that, for a given convergence order, the number
of relationships is usually less than the number of degrees of freedom. Conse-
quently, one has for instance an infinity of two-stage ERK schemes of order 2, a
double infinity of three-stage schemes with order 3, and so forth. The optimum
is reached with the four-stage schemes of order 4. For m > 4, the complexity of
the true solution’s Taylor expansion becomes such that the number of degrees
of freedom is insufficient to ensure r = m.

Let us now look at a few concrete examples. The arrays (3.2.41) define two
classical two-stage ERK schemes of order two:

0 0 0
1 1 0

1/2 1/2
,

0 0 0
1/2 1/2 0

0 1
[ERK2a,b]. (3.2.41)

One can easily show that the ERK2a scheme (also known as “Euler–Cauchy”)
is equivalent to the P(EC)E scheme (3.2.32) developed on the basis of the
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EM scheme used as predictor, combined with CN as corrector. In practice, the
preference goes to ERK2b (also known as “improved tangent”) because of its
slightly lower truncation error (though not optimal) and because there is only
one call to f with the latter, instead of two with the former.

An important scheme in numerical computations is the four-stage ERK scheme
of order 4, called the classical RK scheme and given by

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

[ERK4]. (3.2.42)

A straightforward application of (3.2.41) and (3.2.42) to the test equation
(3.2.17) shows that the approximate solutions at tn+1 are given by

ũn+1 = Rp(z)ũn, z := λh, (3.2.43)

where Rp(z) (p = 2, 4) denotes polynomial approximations of the exponential
function exp(z) such that

| exp(z)− Rp(z)| = O(z p+1).

The stability regions for the schemes (3.2.41) and (3.2.42) are displayed in
Figure 3.2.5. The kidney shape of the ERK4 stability region is well known. The
curve cuts the imaginary axis at y = ±2.8283.

�

�

Figure 3.2.5. Stability regions for the Runge–Kutta schemes.
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Implicit Runge–Kutta Schemes

When the matrix A is full, the m-stage RK scheme is called implicit (IRK),
and, as was the case for implicit linear multistep methods, the solution of
(3.2.2) obtains at the expense of an algebraic system to be solved at each time
step. Let us deal with the test equation (3.2.17) first. With z := λh as before,
and with the set of auxiliary vectors K := (K1, K2, . . . , Km)T ∈ R

m , w :=
(w1, w2, . . . , wm)T ∈ R

m , and e := (1, 1, . . . , 1)T ∈ R
m , the equations (3.2.37)

are given by

(I − z A)K = zũne, (3.2.44)

with I ∈ R
m×m , the identity matrix. The solution (3.2.36) is given by

ũn+1 = [1+ zwT · (I − z A)−1e]ũn, (3.2.45)

where the quantity in brackets is now a rational approximation of exp(z).
For differential systems (3.2.2) where the unknown u ∈ R

N , the algorithm
gets more complicated, since each approximate slope K i/h ∈ R

N . This means
that the algebraic system solved at each time step has dimension mN . In an-
ticipation of Chapter 4,2 we introduce the tensor product of A and J , where J
is the Jacobian operator (3.2.10). The tensor product A ⊗ J is an mN × mN
matrix operator with components ai j Jk# such that

A ⊗ J :=


a11 J a12 J . . . a1m J
a21 J a22 J . . . a2m J

...
...

...
am1 J am2 J . . . amm J

. (3.2.46)

Then, it is easy to show that with K := (K 1, K 2, . . . , K m)T ∈ R
mN , and f̂ :=

( f , f , . . . , f )T ∈ R
mN the algebraic system (3.2.37) becomes

(I − h A ⊗ J )K = h f̂ (ũn). (3.2.47)

With Gaussian elimination the solution of (3.2.47) requires asymptotically
m3N 3/3 “add–multiplies,” a considerable amount of work because it is re-
peated at each time step. This is about m3 times as much as with any implicit
linear multistep method. Nevertheless, IRK schemes have drawn considerable
attention in recent years because their stability properties make them attractive
for stiff ODE systems. Butcher [57] showed that, for every value of m, there

2 The properties of such operators will be analyzed in Section 4.2.
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exists an m-stage IRK scheme of order 2m. Ehle [118] then demonstrated that
all these IRK schemes are A-stable, a meaningful result in view of the limitation
to order 2 for A-stable implicit linear multistep methods, as shown by Dahlquist
[89].

More significant in practice is the existence of A-stable IRK schemes with a
lower-triangular matrix A that has the same element along the main diagonal

(i.e., ai j = 0, i < j , and a j j = a ∀ j). In this case, the method is still implicit,
but the vectors K j may be obtained one at a time, and the size of the linear
system to be solved at each step is reduced by a factor m. The computational
work per time step becomes of the same order of magnitude as for an implicit
multistep method [i.e., O(N 3)] – actually a little higher, considering the fact
that m linear N ×N systems, which differ only by their right-hand sides, must
be solved per time step. Such RK schemes are called diagonally implicit (DIRK).
To this family belong the two-stage IRK schemes proposed by Rosenbrock [338]
and Crouzeix [87], with the arrays

1−√2/2 1−√2/2 0
1/2 −1/2+√2/2 1−√2/2

0 1
[Rosenbrock] (3.2.48)

and

1/2+√3/6 1/2+√3/6 0
1/2−√3/6 −√3/3 1/2+√3/6

1/2 1/2
[Crouzeix]. (3.2.49)

Application of the linear system (3.2.44) to these schemes gives two rational
approximations of the exponential function:

RR(z) = 1− (1−√2)z

[1− (1−√2/2)z]2
,

(3.2.50)

RC (z) = 6− 2
√

3z − (1+√3)z2

6− 2(3+√3)z + (2+√3)z2
.

With a Maclaurin series, it is easy to show that

|ez − RR(z)| = O(z3) and |ez − RC (z)| = O(z4). (3.2.51)

Both algorithms (3.2.48) and (3.2.49) are A-stable with stability contours in
( (λh) > 0. The consistency orders are 2 and 3 respectively; Rosenbrock’s
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lower order is compensated by the fact that this scheme is L-stable whereas
Crouzeix’s scheme is not, since RC (−∞) ≈ −0.732.

3.3 Splitting Methods

Up to now, we have examined various numerical schemes to integrate the dy-
namical systems (3.2.1) arising from high-order space discretization of the time-
dependent Navier–Stokes equations (1.6.3)–(1.6.4). Some of these schemes are
well suited for the integration of diffusion problems but, being implicit, are
rather costly for the treatment of (nonlinear) convection terms. Similarly, ex-
plicit schemes fitted for the integration of convection terms cannot be used for
viscous terms without very small time steps to ensure stability control of the
stiffness associated with the diffusion process.

In this section we examine splitting methods that allow implicit and explicit
schemes to be used simultaneously (i.e., in the same equation) to handle the
diffusion and convection terms separately. The procedure is analogous to the
alternating-direction implicit (ADI) algorithm of Peaceman and Rachford [303,
401, 402], although here the splitting does not affect the space variables (or
space and time variables), but rather the diffusion and advection contributions
to the Navier–Stokes equations. We start with a very simple example showing
the basic idea. This is followed by a more general setting of the problem that
allows any combination of implicit and explicit algorithms described in the
preceding section.

Assume the right-hand side of (3.2.2) is divided into two terms

du

dt
= f

(
u(t)

)+ νg
(
u(t)

)
, u(t0) = u0, t ∈ (t0, T ], (3.3.1)

where f (u(t)) ∈ R
N and νg(u(t)) ∈ R

N represent the (space) discretized con-
vection and diffusion terms, respectively, with ν = 1/Re. Integrating both sides
of (3.3.1) on (t0, t) gives

u(t)− u0 =
∫ t

t0
f
(
u(s)

)
ds +

∫ t

t0
νg

(
u(s)

)
ds. (3.3.2)

Then, for the reasons already mentioned, we select explicit and implicit linear
multistep methods with a constant time step h, to approximate the two quadra-
tures in (3.3.2). For instance, the selection of AB2/AM1 gives the second-order
Adams–Bashforth/Crank–Nicolson (ABCN) algorithm:

ũn+1 − ũn = 3

2
h f (ũn)− 1

2
h f (ũn−1)+ ν

2
[hg(ũn+1)+ hg(ũn)], (3.3.3)
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which has been used by several authors [297, 22, 11]. In practice, Equation
(3.3.3) is solved in two successive steps:

ũn+1/2 − ũn = 3

2
h f n − 1

2
h f n−1,

(3.3.4)

ũn+1 − ũn+1/2 = ν

2
(hgn+1 + hgn),

hence the names “splitting,” and “fractional step” for the method, which are
common in the literature (see also [417]). In (3.3.4), we have used our earlier
notation convention [ f n+ j := f (ũn+ j )] for both f and g.

The stability of (3.3.4) (though largely influenced by the convection term)
must be studied per se, as shown below. Readers should convince themselves
that there is more to splitting methods than a mere juxtaposition of explicit and
implicit integration schemes. Splitting techniques are tailored to avoid the fully
implicit solution of stiff systems resulting from the space discretization of the
Navier–Stokes equations, with widespread complex eigenspectra comprising
real negative eigenvalues due to the viscous contribution, and purely imaginary
eigenvalues due to convection.

A systematic study of implicit–explicit algorithms for ODE systems in the
context of spectral methods (and of their stability properties) can be found in
Ascher et al. [11]. As an example, these authors show that, in the subclass of all
second-order implicit–explicit schemes based on three successive time steps,
the rule

ũn+1/2 − ũn = 3
2 h f n − 1

2 h f n−1,
(3.3.5)

ũn+1 − ũn+1/2 = ν
(

9
16 hgn+1 + 3

8 hgn + 1
16 hgn−1

)
,

which they call the modified Adams–Bashforth/Crank–Nicolson (MABCN)
scheme, has the smallest truncation error. Strictly speaking, the implicit scheme
(3.3.5) is not Crank–Nicolson, but, except for an additional vector storage gn−1,
the numerical work is the same in (3.3.5) as in (3.3.4) with, in addition, a lower
truncation error.

The stability of a splitting algorithm used to solve (3.3.1) depends on the
spectral properties of the two components of the r.h.s. In other terms, the single
test equation (3.2.17) introduced previously should now be replaced by two test
equations, one for each component of the splitting. Thus, the stability of the
ABCN scheme is governed by

ζ 2 − ζ = z1

2
(3ζ − 1)+ νz2

2

(
ζ 2 + ζ

)
, (3.3.6)
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Figure 3.3.1. Stability regions for two second-order implicit–explicit schemes: (a) the
ABCN scheme and (b) the MABCN scheme. Both set of curves depend on a parameter µ,
with 0 ≤ µ ≤ 6 [see (3.3.7)].

with zi := λi h and |ζ | < 1. For clarity we lump the diffusion contribution in
(3.3.6) into a single parameter µ, and display in Figure 3.3.1(a) the stability
region for

ζ 2 − ζ + µ

2
(ζ 2 + ζ ) = z

2
(3ζ − 1) (3.3.7)

as a function of µ (0 ≤ µ ≤ 6). Notice that µ = 0 corresponds to the AB2
scheme. Figure 3.3.1(b) displays the stability region for the MABCN algorithm,
as a function of µ, with the same convention. Both calculations show that
an adequate treatment of the diffusion term (in particular, of its fast-decaying
components corresponding to large values ofµ) may enlarge the stability region
of the advection term.

Readers interested in other multistep implicit–explicit schemes or in other
presentations of the stability conditions of these schemes are referred to [11].

3.3.1 The Operator-Integration-Factor Splitting Method

The derivation of splitting schemes based on BDF and/or RK algorithms is a
little more complicated and must be done in a more general framework. For this
purpose, Maday et al. [262] introduced a method called operator-integration-
factor-splitting (OIFS). Our presentation closely follows their notation.

Assume the existence of an integration factorQt�
f (t) ∈ R

N×N related to f (u)
such that (3.3.1) may be cast into

d

dt

[
Qt�

f (t) · u(t)
] = Qt�

f (t) · νg
(
u(t)

)
, t ∈ (t0, T ]. (3.3.8)

The parameter t� in the integrating factor is an arbitrary fixed time (t� ≥ t). We
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impose furthermore

Qt�
f (t�) = I, (3.3.9)

where I ∈ R
N×N is the identity matrix. From (3.3.1) and (3.3.8), one can easily

show that the integration factor satisfies the differential system(
d

dt
Qt�

f (t)

)
· u(t) = −Qt�

f (t) · f
(
u(t)

)
. (3.3.10)

Let us now introduce an auxiliary variable v(t�,t)(s) ∈ R
N , the solution to the

following differential system on a shifted time axis s, with the origin set at
time t :

d

ds
v(t�,t)(s) = f

(
v(t�,t)(s)

)
, 0 < s < t� − t, (3.3.11)

and with initial condition

v(t�,t)(0) = u(t). (3.3.12)

Multiplying both sides of (3.3.11) by the integrating factor Qt�
f (t + s) (where t

is fixed) and using (3.3.10), one gets

d

ds

[
Qt�

f (t + s) · v(t�,t)(s)
] = 0. (3.3.13)

Then, with the initial condition (3.3.12) on the one hand, and the property (3.3.9)
on the other hand, it is easy to show that

Qt�
f (t) · u(t) = v(t�,t)(t� − t). (3.3.14)

The importance of the integration factor lies in the fact that it allows a splitting
of the basic problem (3.3.1) into two coupled differential problems (3.3.8) and
(3.3.11)–(3.3.12) where the diffusion and convection contributions have been
separated. Each of these problems may be solved with its own numerical scheme
(say, Sg for diffusion and S f for convection). As we will find out a little later,
the time-step limitations to ensure stability are very different in the two cases,
and with the decoupling provided by Qt�

f (t), the selection of different time steps
ht and hs becomes straightforward. What is perhaps less transparent from the
preceding analysis is that the integration factor never needs to be computed
explicitly. It enters only as a splitting tool for the basic components of the
problem, the evaluation of quantities such as Qt�

f (t) · u(t) being made with the
relationship (3.3.14).
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3.3.2 OIFS Example: The BDF3/RK4 Scheme

We illustrate the OIFS methodology with an example where for the advec-
tion component we choose the ERK4 (S f ) algorithm (see Section 3.2.3) while
for the diffusion component we choose the implicit BDF3 (Sg) scheme (see
Section 3.2.1).

We start with the integration of the diffusion problem (3.3.8) using a time
step ht , and we assume that the approximate solution is known up to time tn .
We first set t� = tn+1. Then, with the appropriate coefficients borrowed from
Table 3.2.3 and the property (3.3.9), the solution on the next time interval is
written

ũn+1 =
3∑

j=1

a j S f
(
Qtn+1

f (tn+1− j ) · ũn+1− j
)+ b0htνgn+1. (3.3.15)

Recall that the quantities Qtn+1

f (tn+1− j ) · ũn+1− j entered into this equation are
known as a result of the integration of the advection problem (3.3.11). The
symbol S f in the r.h.s. of (3.3.15) indicates this particular feature of the com-
putation.

Let us now turn to the advection problem

d

ds
v(tn+1,tn+1− j )(s) = f

(
v(tn+1,tn+1− j )(s)

)
, (3.3.16)

solved by the ERK4 algorithm on the shifted time axis s, with the origin set at
tn+1− j . The initial condition is

v(tn+1,tn+1− j )(0) = ũn+1− j . (3.3.17)

The numerical integration uses a step size hs such that ht = γ hs , where the
integer γ ≥ 1. Integration is carried over the interval (0,�s j ], with �s j :=
tn+1 − tn+1− j . As shown earlier by (3.3.14), one has

S f
(
Qtn+1

f (tn+1− j ) · ũn+1− j
) = v(tn+1,tn+1− j )(�s j ). (3.3.18)

Once the quantities (3.3.18) have been computed for all values of j , (3.3.15) is
solved with respect to ũn+1, and the integration process may be carried to the
next time step (tn+1, tn+2).

Figure 3.3.2 shows an example of OIFS integration grids. The upper grid
with time step ht is associated to the implicit computation (BDF3), while the
lower grids with time steps hs correspond to the explicit computations (ERK4)
carried to obtain the quantities (3.3.18). For each value of j , the figure shows
the corresponding integration range �s j .
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tn−2 tn−1 tn tn+1

✲✛hs

✛ ht

(j = 3)
(j = 2)
(j = 1)

Figure 3.3.2. An example of OIFS integration grids with time steps ht for the diffu-
sion component (BDF3) and hs for the advection component (ERK4). In this example
(ht = 5 hs).

With negative real eigenvalues for the diffusion problem (3.3.8), BDF3 in-
duces no stability restriction on ht . To minimize the computational work, one is
therefore tempted to use values of ht as large as possible. However, the time step
ht should not be so large that accuracy is lost by truncation errors. One should
also give preference to L-stable implicit schemes to ensure correct handling of
the fastest-decaying modes.

With regard to the convection problem (3.3.11)–(3.3.12) solved explicitly,
the eigenvalues are purely imaginary and, for spectral elements, scale as O(N 2).
Most of the time, the associated time step hs will be shorter and, as shown in
Figure 3.3.2, will be a fraction of ht .

Splitting methods based on integrating factors have been applied to incom-
pressible fluid flows by Maday et al. [262] and by Couzy [83]. Other high-order
splitting methods for incompressible Navier–Stokes calculations may be found
in Karniadakis et al. [219] and in Heinrichs [191, 194].

3.4 The Parabolic Case: Unsteady Diffusion

At this point we reintroduce the physical meaning of the basic problem, and
we consider the application of space and time discretization schemes to model
problems of the form

∂u

∂t
= Lu + f , u(0, x) = u0, (3.4.1)

subject to boundary conditions appropriate for the operator L. As noted in the
preceding sections, the choice of a time-stepping scheme is primarily influenced
by the nature of L along with the relative cost of applying it and/or its inverse.
However, one must also pay attention to the nature of f if it is not smoothly
varying in time, for example, in the case of stochastically forced turbulence
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simulations [251, 253]. Here, we assume that f is smoothly varying in time, and
we focus on the role of L. If−L is linear and positive definite (i.e., has positive
eigenvalues), the operator ∂

∂t − L is parabolic, and we can expect solutions to
the homogeneous problem associated to (3.4.1) to decay in time.

An example of a parabolic problem commonly encountered in fluid mechan-
ics and heat transfer is the time-dependent diffusion (or heat) equation (1.9.4),
given a more general form by

∂u

∂t
= ∂

∂x

(
ν
∂u

∂x

)
+ f, u(t, 0) = u(t, 1) = 0, u(0, x) = u0(x).

(3.4.2)

We have encountered the steady-state version of this equation in (2.7.13). Equa-
tion (3.4.2) describes, for example, the time-varying temperature distribution in
a rod with localized heat source f (t, x), the temperature being fixed to zero at
each end of the rod. It corresponds also to spatially developed unsteady viscous
flow between walls having no-slip conditions. Neumann boundary conditions
would correspond to a zero-heat-flux (perfectly insulated) condition in the ther-
mal example and to a zero-stress (or symmetry) condition in the flow example.
Unlike the steady-state case, this problem is well posed even if both ends of the
domain have Neumann boundary conditions.

For ν constant and f time-invariant, the analytical solution to (3.4.2) is

u(t, x) =
∞∑

k=1

[(
û0

k − û∞k
)

eλk t + û∞k
]

sin(πkx), (3.4.3)

with λk = −νk2π2 being the eigenvalues of the operator L with Dirichlet
boundary conditions. The coefficients û0

k and û∞k in (3.4.3) are the Fourier
coefficients

ûk
0 := 2

∫ 1

0
u0(x) sin(πkx) dx, û∞k := 2

νk2π2

∫ 1

0
f (x) sin(πkx) dx .

As the expansion (3.4.3) shows, the solution to (3.4.2) consists of two parts: a
steady-state part, u∞(x) :=∑

k û∞k sin(πkx), determined by the inhomogene-
ity f , and a transient part having components (û0

k − û∞k ) sin(πkx) that decay
as e−νk2π2t . High-wavenumber (large-k) components decay quite rapidly, leav-
ing after a short time only smooth low-wavenumber components active in the
transient. Note that a change in f at some time T > 0 would correspond to
establishing a new initial condition u(T, x) and a new value of u∞(x). In nu-
merical computations, roundoff error plays the role of time-dependent forcing,
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and, as a result, high-wavenumber transients are always present. The chosen
time-stepping scheme must be able to treat fast transients in a stable way, even
when the solution is smooth and therefore evolving slowly.

3.4.1 Spatial Discretization

Our numerical treatment of (3.4.2) begins with the spatial discretization, based
upon the equivalent weak form: Find u(t, x) ∈ V such that∫



∂u

∂t
v dx = −

∫


ν
∂u

∂x

∂v

∂x
dx +

∫


v f dx ∀v(x) ∈ V,

where V = H 1
0 () is the space of square-integrable functions satisfying the

homogeneous boundary conditions on ∂. If  is invariant with respect to t ,
the time derivative can be moved outside the first integral and, using the notation
introduced in (2.1.11)–(2.1.13), the problem becomes: Find u(t, x) ∈ V such
that

d

dt
(u, v) = −A (u, v)+ F (v) ∀v ∈ V .

Discretization proceeds by restricting the search space for u to a finite-
dimensional subspace, VN ⊂ V , having a basis {ψ1, . . . , ψN }. Letting

uN (t, x) :=
∑

j

u j (t)ψ j (x) (3.4.4)

be the approximation to u, and testing for each basis element, v = ψi , one gets

M
du

dt
= −K u + M f , (3.4.5)

where u := {u j (t)}Nj=1 is the vector of unknown coefficients, and f is the vec-
tor of coefficients representing the forcing term. We will assume the use of
Lagrangian bases hereafter, such that the unknown and forcing terms represent
nodal values. Here, K and M are the stiffness and mass matrices introduced in
Chapter 2:

Ki j := A(ψi , ψ j ), Mi j := (ψi , ψ j ), 1 ≤ i, j ≤ N . (3.4.6)

As in the case of the elliptic problem, several possible spaces and associated
bases may be considered in the formation of the semidiscrete system (3.4.5).
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3.4.2 Time Advancement

To introduce the mechanics of the time-stepping procedures, we consider the
two simple time advancement schemes introduced earlier: implicit Euler (IE)
and explicit Euler (EM). For the homogeneous problem (3.4.5), the IE scheme
is

M
un+1 − un

�t
= −K un+1,

or

Hun+1 = Mun, (3.4.7)

where the Helmholtz system, H := M +�t K , must be solved at each time
step. In the one-dimensional case, the bandwidth of H is usually small enough
(cf. Figures 2.3.2 and 2.4.2) that Cholesky factorization is the best approach,
particularly since the factorization cost is amortized over many solves. In more
than one space dimension, CG coupled with Jacobi preconditioning is usually
preferable, because H is typically strongly diagonally dominant and the iter-
ation converges quite rapidly. The iteration work can be further reduced by
computing only the change in the solution, �u := un+1 − un , by solving

H�u = Mun − Hun. (3.4.8)

This strategy avoids recomputation of components of un+1 contained in un and
yields an initial residual with norm scaling as O(�t), implying a substantial
reduction in iteration effort. Additional savings may be obtained by computing
the projection of un+1 onto several previous solutions, as discussed in Sections
2.7.4 and 4.7.1.

We note that the overall accuracy of the solution will depend on the accu-
racy of both the temporal and spatial discretizations. Higher-order variations
of (3.4.7) may be implemented with essentially the same computational com-
plexity. For example, the BDF2 scheme, which approximates the time derivative
Mdu/dt by the second-order difference

M
3un+1 − 4un + un−1

2�t
,

is implemented as

Hun+1 = 1

2�t
M(4un − un−1),

with H := K + 3
2�t M . Higher-order BDF schemes are similarly implemented

with a single solve in H per step.
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As noted in Section 3.2, the stability of a time-stepping scheme is related
to the eigenvalues of the Jacobian of the r.h.s. operator, which, in the case of
the linear problem (3.4.5), is given by J := −M−1 K . We have shown earlier
that, although J is nonsymmetric, its eigenvalues are real and negative [see
Equation (2.7.16)]. Therefore, any time-stepping scheme whose stability region
contains the entire negative real axis will be unconditionally stable. Crank–
Nicolson and BDFk are examples of schemes suitable for implicit treatment of
parabolic problems, as explained in Section 3.2.1.

The explicit counterpart (EM) to the implicit scheme (3.4.7) is

Mun+1 = (M −�t K ) un. (3.4.9)

In contrast to finite differences, explicit methods for weighted residual tech-
niques require a system solve because of the presence of the mass matrix on the
l.h.s. of (3.4.9). While the same arguments regarding the solution of the implicit
system (3.4.7) apply to (3.4.9), it is generally preferable to seek a formulation
that yields a diagonal mass matrix, thus obviating the need for a system solve
at every step. This explains the interest in the mass lumping scheme introduced
in Section 2.7.1.

For explicit schemes, one must determine the minimum (negative) eigen-
value of J in order to select a time step �t that is sufficiently small to ensure
stability. For Q1 finite elements on a uniformly spaced grid, we determined in
Chapter 2 closed forms for the spectrum λFE

k (without mass lumping) and λFD
k

(with mass lumping). Using the relationships (2.7.18) and (2.7.20), one deduces
easily that the minimum eigenvalues are equal to

λFE
N−1 ≈ −12νN 2 and λFD

N−1 ≈ −4νN 2. (3.4.10)

Then, from the stability diagram for the EM scheme (Figure 3.2.1), we require
λ�t ∈ (−2, 0). This implies that for the Lagrangian Q1 FE schemes without
and with mass lumping, time steps are limited for stability reasons to

�t ≤ 1

6νN 2
and �t ≤ 1

2νN 2
, (3.4.11)

respectively.
The analysis of the condition number of high-order schemes (collocation and

spectral-element) in Section 2.7.1 leads to two conclusions. First, when cou-
pling spectral methods with explicit schemes, stability dictates a very restrictive
limitation:

�t ≤ C
π2

νN 4
, (3.4.12)
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where C is an order-unity constant dependent on the particular time-stepping
scheme. Because of this severe constraint on time-step size, implicit methods
are generally preferred for time-dependent diffusion problems. This is more im-
portant for spectral methods than for low-order methods, owing to the different
[O(N 4) versus O(N 2)] growth rates of |λmin|.

The second conclusion is that high-order methods are able to correctly
capture roughly two-thirds of the spectrum, whereas linear finite elements
only resolve about one-third, implying a two-to-one resolution saving per
space dimension in the high-order case. From the spectral-element results with
(E, N ) = (64, 4) shown in Figure 2.7.2(a), it is also clear that, with E spec-
tral elements, one need not take an asymptotically large degree N to capture a
significant portion of the resolvable spectrum.

3.5 The Hyperbolic Case: Linear Convection

We now consider hyperbolic problems of the form (1.9.5):

∂u

∂t
+ c

∂u

∂x
= 0 on (a, b), u(0, x) = u0(x), (3.5.1)

subject to appropriate boundary conditions on ∂. This model problem corre-
sponds to the transport of a quantity u by a velocity field c(t, x). If c is constant,
then the solution is u(t, x) = u0(x − ct), corresponding to a simple translation
of the initial waveform u0(x) at speed c. The choice of boundary conditions
depends on c. If c > 0, the transport is from left to right, and Dirichlet bound-
ary conditions are needed on the left end of the domain. If c < 0, boundary
conditions are required on the right, with nothing specified on the left. It is
also often useful to consider periodic boundary conditions, u(t, a) = u(t, b),
which correspond to solving (3.5.1) on the infinite domain (−∞,∞) with ini-
tial conditions and convective velocity that are [a, b]-periodic. This has the
advantage of permitting long time integrations without having correspondingly
long computational domains.

The nature of the solutions to (3.5.1) can be more clearly understood by
considering the evolution of the energy, obtained by multiplying by u and
integrating over :∫



(
u
∂u

∂t
+ cu

∂u

∂x

)
dx = 1

2

d

dt

∫


u2 dx + 1

2

∫


c
∂u2

∂x
dx = 0.

The last term can be integrated by parts to obtain

d

dt

∫


u2 dx = cu2|a − cu2|b +
∫


u2 ∂c

∂x
dx .
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If c is constant, analogous to∇ · c = 0 in the multidimensional case [cf. (1.6.4)],
then only the boundary terms contribute to the growth or decay of energy,∫


u2 dx . If c > 0 and u(t, a) = 0, the mean energy decays for any u(t, b) �= 0,
implying that energy leaves the domain through the right-hand end point. For
periodic boundary conditions the mean energy is unchanged for all time. Unlike
the parabolic case, where the signal quickly smooths out, the signal in the
hyperbolic case persists for very long times (indefinitely if there is no diffusion),
increasing the importance of accurate spatial and temporal discretizations for
all resolved wavenumbers.

3.5.1 Spatial Discretization

As in the parabolic case, spatial discretization is based on the weak formulation:
Find u ∈ VN ,B such that

d

dt

∫


u(t, x)v(x) dx = −
∫


c(t, x)
∂u

∂x
v(x) dx ∀v ∈ WN ,0,

where VN ,B incudes functions satisfying inhomogeneous conditions on any
boundary where the characteristics are incoming, and WN ,0 includes functions
that vanish on those boundaries. Strictly speaking, if v is in H 1, u can be
discontinuous, since we can transfer the x-derivative from u onto v through
an integration by parts. Discontinuities may be present in the initial condition
or may arise from smooth initial conditions if c is varying (inviscid Burgers
equation). Here, we consider only solutions in H 1, in anticipation of adding
viscosity when we consider the combined advection–diffusion equation or the
full Navier–Stokes equations. For ease of notation, we also restrict our attention
to the case of homogeneous or periodic boundary conditions, and drop the B
and 0 subscripts on the subspaces.

We proceed with the Galerkin formulation, in which WN = VN . Letting
{ψ1, . . . , ψN } be a basis for VN , we define

Mi j :=
∫


ψiψ j dx, Ci j :=
∫


cψi
dψ j

dx
dx, 1 ≤ i, j ≤ N , (3.5.2)

yielding the semidiscretization of (3.5.1) for uN (t, x) given by (3.4.4):

M
du

dt
= −Cu. (3.5.3)

With the same partition�E of [a, b] as in Equation (2.3.1), the choice forψ j

of the Legendre–Lagrange interpolation basis π j (x) of Equation (2.4.3) gives
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the local spectral-element convective matrix

Ce
i j =

∫ +1

−1
cπi

dπ j

dξ
dξ, 1 ≤ i, j ≤ N . (3.5.4)

With GLL quadrature, the matrix becomes

Ce
N ,i j = ρi c

e
i D(1)

N ,i j , 0 ≤ i, j ≤ N , (3.5.5)

where the coefficients of the first Legendre collocation derivative D(1)
N are given

by Equation (2.4.9), and ce
i is the value of c evaluated at the point corresponding

to ξi in e.
One has the choice of treating (3.5.3) either implicitly or explicitly. Most

common is to use explicit methods, for the following reasons. First, the con-
vection problem is nonsymmetric, implying that GMRES or some other solver
appropriate for nonsymmetric problems must be employed. Second, since c
is often a function of u, an implicit method would further require a nonlinear
iteration such as Newton’s method. Finally, the time-step restriction for sta-
bility is �t = O(�x/c), generally less severe than the O(�x2/ν) restriction
encountered in the parabolic case.

3.5.2 Eigenvalues of the Discrete Problem and CFL Number

To examine the question of stability, we consider the problem (3.5.1) on the
interval + = (0, 1) with periodic boundary conditions and a constant velocity
c. As a preliminary remark, we note that the eigenvalue problem

c
du

dx
= λu, x ∈ +, u(0) = u(1), (3.5.6)

has the simple solution

λk = ι̂c2kπ, uk(x) = exp(ι̂2kπx), −∞ < k <∞, (3.5.7)

where ι̂ := √−1.
The stability properties of (3.5.3) are governed by the eigenvalue problem

Czk = λk Mzk . (3.5.8)

Integrating (3.5.2) by parts, one readily verifies under our assumptions that C
is skew-symmetric (C = −CT ), implying that its eigenvalues are purely imag-
inary. As in (2.7.15), the mass matrix can be split into M = L LT , and (3.5.8)
can be rewritten as a standard eigenvalue problem in the matrix L−1C L−T ,
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which is also skew-symmetric. Hence, the eigenvalues all lie along the imagi-
nary axis, implying that a scheme whose stability region encloses some portion
of the imaginary axis, such as AB3 or RK4 (see Figures 3.2.1 and 3.2.5), is
appropriate.

The maximum modulus of λk is of course dependent on the choice of basis.
For uniform linear finite elements on the interval +, one has

C = c

2



0 1 −1
−1 0 1

−1
. . .

. . .
. . .

. . . 1
1 −1 0

 .

Using the mass matrix (2.3.17) and making the substitution (z̃ k) j = eι̂2πkx j for
the eigenmodes, we find

λFE
k = ι̂

6c

�x

sin(2πk �x)

4+ 2 cos(2πk �x)
. (3.5.9)

If instead we assume a lumped mass matrix M̃ := �x I , we get the eigenspec-
trum related to the classical FD discretization

λFD
k = ι̂

c

�x
sin(2πk �x). (3.5.10)

Figure 3.5.1(a) shows the eigenvalue distribution of the continuous operator
(3.5.7), as well as the discrete (Q1) FE and FD expressions (3.5.9) and (3.5.10).
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Figure 3.5.1. Comparison of eigenvalues for periodic convection operator, ux = λu,
u(0) = u(1): (a) exact, Q1 linear finite elements with tridiagonal mass matix M (FE),
and Q1 linear finite elements with lumped mass matix M̃ (FD); (b) eigenvalues for
Legendre spectral element method with E = 1 and N ranging from 4 to 256.
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Computations have been made with E = 256. We note that the eigenvalues of
the FE approximation in this case are closer to the continuous eigenvalues than
are those of the FD approximation. This is in contrast to the parabolic case,
where both errors were of the same order of magnitude [see Figure 2.7.2(a)].
For high-order discretizations, the spectral radius of J := M−1C scales as
�x−1

min, as would be expected for a first-order operator. Figure 3.5.1(b) shows
the eigenvalue distribution for Legendre spectral elements with E = 1 and N
ranging from 4 to 256. As in the parabolic case, roughly two-thirds of the spec-
trum coincides with the analytic result, while the maximum moduli scale as
O(N 2) = O(�x−1

min) (see Figure 2.7.1).
Because the eigenvalues for the convection operator (3.5.4) scale with c/�x ,

the stability parameter can be expressed as the product

max
k
|λk �t | = S · CFL, (3.5.11)

where

CFL := max
c,�x

∣∣∣∣c�t

�x

∣∣∣∣ (3.5.12)

is the convective Courant–Friedrichs–Lewy number corresponding to the ratio
of two length scales (i.e., the distance a particle will travel in a given time step,
and the local grid spacing), and S is an order-unity coefficient that depends on
the discretization. For the FE and FD cases one finds from (3.5.9) and (3.5.10)
S = √3 and S = 1, respectively. Computed numerical values of S for the SEM

are plotted as a function of N in Figure 3.5.2(a). S ranges from unity for N = 1
to ≈ 1.52 for N = 2–3 and gradually settles in the range 1.2→ 1.16 for N =
16→ 256.

One can use the CFL number and scaling parameter S in conjunction with the
stability diagrams introduced in Section 3.2 to determine a stability criterion
for a given space–time discretization pair. For example, from Figure 3.2.1, we
see that the stability diagram for AB3 cuts the imaginary axis at ±0.72362,
implying that one must ensure that the CFL (3.5.12) is such that

S · CFL ≤ 0.72362 (3.5.13)

to have a stable time integration.
The importance of satisfying (3.5.13) is illustrated in the example of

Figure 3.5.2, in which unit-speed convection of a Gaussian pulse, u0 := e−ζ
2
,

ζ := 15(x − 0.5), is simulated on the periodic domain [0, 1] using 256 lin-
ear finite elements with mass lumping [(E, N ) = (256, 1)]. The solution is
advanced by AB3 with (b) CFL= 0.72 and (c) CFL= 0.770. The initial pulse
(bottom) moves to the right, leaves the domain at x = 1, and reenters at x = 0.
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Figure 3.5.2. (a) Scale factors S for spectral-element discretizations. The other parts
show SEM/AB3 solutions to ut + ux = 0, u(0, t) = u(1, t) with (b) (E, N )= (256, 1),
CFL= 0.72; (c) (E, N )= (256, 1), CFL= 0.77; (d) (E, N )= (82, 3), CFL= 0.72362/1.5.
The vertical axis in (b)–(d) is t + u/15.

For this case, S = 1, and the solution with CFL= 0.720 is consequently sta-
ble. The pulse convects indefinitely (with error increasing linearly with t).
However, for CFL= 0.77, instabilities appear at time t ≈ 1, shortly after which
the solution exhibits explosive growth (not shown). The unstable mode con-
sists of “2�x waves” – the most oscillatory waves that can be represented
on the grid, and those associated with the maximum (in modulus) eigen-
value. Similar behavior is shown in (d) for a spectral element calculation
with (E, N ) = (82, 3) and CFL= 0.72362/1.5. Decreasing CFL to 0.72362/1.52
yields a stable computation. Note that the time-step choice �t = 0.72�x for
the (E, N ) = (256, 1) discretization is sufficient not only for stability, but also
for accuracy. The temporal error is O(�t3) and thus dominated by the spatial
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error, which is O(�x2) for this case. Reducing �t does not further improve the
accuracy.

3.5.3 Example of Temporal and Spatial Accuracy

We illustrate the convergence properties of combined AB3–spectral-element dis-
cretizations by considering periodic convection on (0, 1). The initial condition,
illustrated in Figure 3.5.3, is given by

u0(x) = e−ζ
2 + 0.2 cos(8πx),

where ζ := 15(x − 0.5). The maximum relative error

|ε|max := maxxi ,tn |u(xi , tn)− uN (xi , tn)|
maxxi |u(xi , t0)| (3.5.14)

is computed over the interval t ∈ (0, 10], and the results are given in Table 3.5.1.
The number of grid points, N := E N , ranges from 16 to 256, with polynomial
degree ranging from N = 1 to 32.

The dashed entries in Table 3.5.1 correspond to |ε|max > 1010, implying that
the discretization failed to satisfy the CFL condition (3.5.13). The first column
shows that linear finite elements (N = 1) are inadequate for this problem, as
they exhibit order-unity error, even at a resolution of N = 256. From Figure
3.5.3, it is clear that this failure is a result of accumulated dispersion errors, not
of an inability to resolve the signal. We note that dispersion errors prompt phase
errors, which can be determined by Fourier analysis. In the case of linear finite
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Figure 3.5.3. Initial condition (left) and final solution (right) for (E, N ) = (256, 1)
results of Table 3.5.1.
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Table 3.5.1. Relative error (3.5.14) at time t = 10, hyperbolic problem.

Relative error

N �t N = 1 N = 2 N = 4 N = 8 N = 16 N = 32

64 .0100000 6.87e− 1 — — — — —
.0050000 7.88e− 1 1.56e− 1 1.43e− 1 — — —
.0025000 8.09e− 1 1.29e− 1 3.19e− 2 2.91e− 2 — —
.0012500 8.13e− 1 1.41e− 1 1.27e− 2 4.58e− 3 4.11e− 3 —
.0006250 8.13e− 1 1.42e− 1 1.22e− 2 1.08e− 3 5.43e− 4 5.22e− 4
.0003125 8.14e− 1 1.43e− 1 1.23e− 2 8.27e− 4 8.90e− 5 6.55e− 5

128 .0100000 — — — — — —
.0050000 6.05e− 1 — — — — —
.0025000 6.51e− 1 3.17e− 2 2.89e− 2 — — —
.0012500 6.59e− 1 1.42e− 2 4.16e− 3 4.10e− 3 — —
.0006250 6.60e− 1 1.54e− 2 6.14e− 4 5.22e− 4 5.22e− 4 —
.0003125 6.60e− 1 1.56e− 2 2.00e− 4 6.58e− 5 6.55e− 5 6.55e− 5

256 .0100000 — — — — — —
.0050000 — — — — — —
.0025000 2.88e− 1 — — — — —
.0012500 3.01e− 1 4.66e− 3 4.10e− 3 — — —
.0006250 3.03e− 1 1.51e− 3 5.26e− 4 5.22e− 4 — —
.0003125 3.03e− 1 1.71e− 3 7.02e− 5 6.55e− 5 6.55e− 5 —

elements, the dispersion errors are lagging phase errors. By contrast, higher-
order schemes preserve the signal for much longer times. The error decreases by
several orders of magnitude in the last row of each case (N ), indicating spectral
convergence with increasing N , until a minimum error of 6.55e− 5 is reached,
where O(�t3) errors dominate. In the cases that are spatially well resolved (e.g.,
N = 8, N = 128), each twofold reduction in �t yields an eightfold reduction
in error, reflecting the O(�t3) behavior of AB3.

A potential drawback of high-order schemes is that, for a given resolution
N , they require smaller time steps for stability. However, this effect is mitigated
by the accuracy gains with N that allow one to reduce N . For example, for an
error tolerance of 0.5 percent, attainable only with �t ≤ 0.00125, we see in
Table 3.5.1 that the case (N = 256, N = 2) is less than a factor of two below the
critical CFL condition, as indicated by the dashed entry directly above. By the
same reasoning, the corresponding (N = 128, N = 4) and (N = 64, N = 8)
cases are more than a factor of two below their critical CFL values for the same
�t . Moreover, the fourfold reduction in grid points achieved by increasing N
from 2 to 8 while decreasing E from 128 to 8 translates into a factor-of-64
reduction in grid points for 3D problems, with a concomitant reduction in work
as discussed further in Chapter 4. For long-time integrations, we conclude that
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moderately high-order spatial discretizations can provide significant savings
without undue temporal stability constraints.

3.5.4 Inflow–Outflow Boundary Conditions

The weighted residual implementation of inflow–outflow boundary conditions
follows as in the Dirichlet–Neumann case for the elliptic problem. Wherever u
is being convected into the domain [e.g., at a if c(a) > 0 and/or at b if c(b) < 0],
the elements of the trial (test) space must be constrained to satisfy the essential
(homogeneous) boundary condition; otherwise, they are unconstrained. It is
also possible to impose inhomogeneous boundary conditions weakly (see, e.g.,
[319]). As noted earlier, if c > 0, energy leaves the system through the right
boundary as the signal is convected out of the domain. We can expect therefore
that at least some of the eigenvalues of J = M−1C will have a negative real
part (C is no longer skew-symmetric). The continuous problem, however, has
no eigenvalues. We discuss the consequences of this further in Section 3.7.

3.6 Steady Advection–Diffusion Problems

This chapter is devoted principally to time-dependent (hyperbolic and parabolic)
problems in one space dimension. This section will be an exception, however,
since, strictly speaking, the steady advection–diffusion problem

Lu := −ν d2u

dx2
+ c

du

dx
= f in := (−1, 1),

(3.6.1)
Bu := u(−1) = u(1) = 0

is elliptic. Nevertheless, for high Reynolds numbers (i.e., vanishing diffusion),
hyperbolic features of the problem, such as boundary layers, cannot be ignored.
Equation (3.6.1) is said to be singularly perturbed, because the limiting case
ν → 0 is not equivalent to the situation ν = 0 [30, 368]. The latter case has
only one boundary condition, while (3.6.1) has two.

In the numerical examples introduced in this section, we will systematically
take c = f = 1. In that case one can show that the analytical solution to (3.6.1)
is

u(x) = (x + 1)− 2
e(x−1)/ν − e−2/ν

1− e−2/ν
. (3.6.2)

With ν → 0, the solution corresponds to the hyperbolic result (u = x + 1)
throughout most of the domain. The singular perturbation is manifested as a
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boundary layer of thickness O(ν) in which the steady-state solution changes by
O(1) in the interval [1− ν, 1]. This rapid change creates significant numerical
difficulties and calls for special treatment, the subject of this section.

3.6.1 Spectral Elements and Bubble Stabilization

We start with the standard Galerkin formulation of the problem (3.6.1). Defining
the functionals

A(u, v) :=
∫ 1

−1
(νu′v′ + cu′v) dx, u, v ∈ H 1

0 (),

(3.6.3)

F(v) :=
∫ 1

−1
f v dx, v ∈ H 1

0 (),

where H 1
0 () is the Sobolev space defined by (2.1.34), Equation (3.6.1) can be

recast in the equivalent weak formulation: Find u ∈ H 1
0 () such that

A(u, v) = F(v) ∀v ∈ H 1
0 (). (3.6.4)

The discretization procedure for (3.6.4) consists then in choosing a finite-
dimensional trial and test space, VN ⊂ H 1

0 (), with suitable basis functions
{ψi }Ni=1. In the Legendre spectral (or spectral-element) method, one takes

VN := PN ∩ H 1
0 (),

where PN is the space of polynomials of degree less than or equal to N . Nor-
mally, the basis is chosen to be the set of Lagrangian interpolants on the GLL grid
πi (x) ∈ PN [see Equation (2.4.3)]. In addition, the integrals associated with the
inner products in (3.6.3)–(3.6.4) are replaced by numerical quadratures, denoted
as (·, ·)N , on the N + 1 GLL nodes.

Numerical results for the Legendre SEM (E = 1) applied to the model prob-
lem with c = f = 1 are assembled in Table 3.6.1, giving the maximum point-
wise error,

|ε|max,N := maxi |ui − u(ξi )|
maxi |u(ξi )| , (3.6.5)

for several values of N and ν. Here, {u(ξi )} is the exact solution (3.6.2) evaluated
at the GLL points, while {ui } is the set of local values obtained from the spectral
element. Exponential convergence is reached when the solution is smooth with
respect to the grid spacing (ν = 1 and diffusion is still important). However,
the error becomes large for smaller values of ν, particularly for N even. Canuto
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Table 3.6.1. Spectral collocation, no stabilization.

|ε|max,N

N ν = 1 ν = 0.1 ν = 0.01 ν = 0.001

3 6.148e− 03 5.620e− 01 9.577e− 01 9.958e− 01

4 3.476e− 04 3.937e− 01 8.039e+ 00 8.573e+ 01

5 2.298e− 05 1.458e− 01 7.159e− 01 7.958e− 01

6 1.403e− 06 6.652e− 02 3.154e+ 00 3.626e+ 01

7 7.166e− 08 2.398e− 02 5.962e− 01 7.391e− 01

8 3.609e− 09 8.771e− 03 1.569e+ 00 2.009e+ 01

9 1.536e− 10 3.124e− 03 4.859e− 01 7.099e− 01

10 6.472e− 12 1.128e− 03 8.599e− 01 1.272e+ 01

11 2.400e− 13 3.736e− 04 3.748e− 01 6.886e− 01

[62] noted that for N even, the spectral approximation to (3.6.4) is unbounded
as ν → 0. We can see that this must be true for any Galerkin scheme. Since
the basis functions vanish on the boundaries, a simple integration by parts in
(3.5.2) reveals that Ci j = −C ji , implying that C is skew-symmetric and has
pure imaginary eigenvalues. However, if N is even, then the number of unknown
coefficients (N − 1) is odd, and C must have at least one zero eigenvalue. In
the limit ν → 0, K + C is therefore singular.

This problem of instability (i.e., solution blowup with a vanishing parameter)
is not unique to spectral methods. The same problem occurs for centered finite-
difference (FD) approaches and classical h-type finite elements (FEs). A well-
known cure in the case of FDs is to employ upwind differencing, which has the
effect of adding artificial viscosity to the problem. For FEs, upwind stabilization
methods have been developed by Brooks and Hughes [55], who introduced
the streamline-upwind Petrov–Galerkin (SUPG) method, and by Johnson and
Saranen [215], who introduced the streamline diffusion method. These are
based on the Petrov–Galerkin method discussed in Chapter 2, in which the bases
for the test space have an upwind bias. Somewhat later, Brezzi and coworkers
[52, 19] developed a stabilization procedure in which the standard FE trial and
test spaces are augmented with bubble functions that vanish on the boundary
of each element. These local degrees of freedom are eliminated via static
condensation so that the global system size remains unchanged. Under certain
conditions it can be shown that the bubble stabilization technique is identical
to a SUPG formulation [319].

Several stabilization techniques for advection-dominated diffusion prob-
lems and Navier–Stokes equations have been developed in the framework of
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high-order methods such as the use of bubble functions for spectral methods,
introduced by Canuto and coworkers [63, 65, 67, 70, 317] and the use of (up-
wind) staggered grids for collocation methods. The latter will be examined in
Section 3.6.2.

Bubble stabilization techniques look for solutions in an augmented space
W := VN ⊕ BN , where VN is the standard spectral approximation space and BN

is a space of bubble functions spanned by {bi }Ni=1. The individual bubble func-
tions satisfy bi ∈ H 1

0 (i ), bi (x) = 0 for x �∈ i , where i := (ξi−1, ξi ). The
generalized Galerkin formulation then reads: Find uN ∈ VN , u B ∈ BN such that

A(uN , vN )+A(uB, vN ) = F(vN ) ∀vN ∈ VN ,
(3.6.6)

A(uN , vB)+A(uB, vB) = F(vB) ∀vB ∈ BN .

Since VN and B are discrete subspaces, we can cast this into matrix form as(
AN N AN B

AB N AB B

)(
uN

uB

)
=

(
f

N
f

B

)
, (3.6.7)

where

(AN N )i j := A(πi , π j ), (AN B)i j := A(πi , b j ),

(AB N )i j := A(bi , π j ), (AB B)i j := A(bi , b j ),

( fN )i := (πi , fN ), ( fB)i := (bi , fN ),

with 1 ≤ i, j ≤ N . The element fN ∈ VN is the spectral interpolant of f (x).
The complete solution is given by

u(x) =
N∑

i=0

uN ,iπi (x)+
N∑

i=1

uB,i bi (x).

In general, one is interested only in the component in VN , represented by the
nodal values uN ,i , and the coefficients uB,i are not computed.

The precise definition of the bubble function bi varies from one implemen-
tation to the next and can be regarded as a free parameter in the formulation.
In the residual-free bubble (RFB) formulation presented by Canuto et al. [70],
it is suggested to let bi satisfy the differential equation

−νb′′i + c̄i b
′
i = f̄ i ini ,

(3.6.8)
bi (ξi−1) = bi (ξi ) = 0,

where the coefficients and data are approximated oni by piecewise constants,
c̄i and f̄ i , respectively. The potential of such an approach is realized in the case
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Table 3.6.2. Spectral collocation, RFB with exact integrals.

|ε|max,N

N ν = 1 ν = 0.1 ν = 0.01 ν = 0.001

3 3.814e− 04 1.260e− 01 3.164e− 01 3.406e− 01
4 1.092e− 05 4.289e− 02 1.418e− 01 1.643e− 01
5 9.922e− 07 2.082e− 02 2.325e− 01 2.811e− 01
6 8.027e− 08 9.852e− 03 1.239e− 01 1.698e− 01
7 5.254e− 09 4.030e− 03 1.770e− 01 2.576e− 01
8 3.094e− 10 1.525e− 03 9.725e− 02 1.711e− 01
9 1.467e− 11 5.533e− 04 1.272e− 01 2.425e− 01

10 6.598e− 13 2.119e− 04 6.866e− 02 1.699e− 01
11 4.051e− 14 7.140e− 05 8.461e− 02 2.300e− 01

where VN is taken to be the standard FE space of piecewise linear functions on
each i , and c = f = 1. In this case, the analytical solution is contained in
W , and the nodal values resulting from solving (3.6.7) are exact (to machine
precision) regardless of the boundary-layer resolution.

In the spectral-element formulation the bubble-stabilized result is no longer
exact, since the analytic solution cannot be represented as a combination of the
polynomial interpolant and the bubble functions defined by (3.6.8). However,
as Table 3.6.2 shows, the solution is improved over the unstabilized spectral
collocation scheme of Table 3.6.1, particularly for small values of ν, and expo-
nential convergence is still attained in the well-resolved cases. This latter point
results from the fact that the bubble formulation will always be superior to the
standard spectral method because it is derived from an enlarged approximation
space. The results of Table 3.6.2 were computed by replacing the upper left
block in (3.6.7) with

(AN N )i j := AN (πi , π j )

and retaining exact integrals for the other terms. For practical computations,
Canuto and coworkers use static condensation to explicitly eliminate the bubble
coefficients from (3.6.7), taking advantage of the fact that the block AB B is
diagonal. The key to the efficiency of their approach in higher space dimensions
is the use of approximations that reduce the off-diagonal blocks to banded
matrices without compromising spectral accuracy.

3.6.2 Collocation and Staggered Grids

Let us now examine orthogonal collocation solutions of the problem (3.6.1). As
outlined in Section 2.5, we must first select a collocation grid with the help of the
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Gauss–Lobatto–Jacobi (GLJ) grid-generating function χ
(α,β)
N (x) (B.2.5). Here,

we focus on Gauss–Legendre and Gauss–Chebyshev collocation calculations.
In the Legendre case, any trial element ûN (x) with N + 1 degrees of freedom

is written as

ûN (x) :=
N∑

j=0

u(ξ j )π j (x), x ∈ ̂ := [−1,+1], (3.6.9)

where the basis functions π j (x) are given by (2.4.3). In the Chebyshev case the
basis functions are denoted π c

j (x) and are given by (2.5.15).
According to (2.5.10)–(2.5.11), Legendre collocation produces the equations

N∑
j=0

[−νπ ′′j (ξk)+ cπ ′j (ξk)] = 1 ∀ξk ∈ ,
(3.6.10)

u(−1) = u(+1) = 0,

with {ξ j }Nj=0, the set of collocation nodes. The equations (3.6.10) lead to an
algebraic system (2.5.12). As mentioned earlier, the collocation derivatives that
appear in (3.6.10) are explicitly given in Section B.3.3 of Appendix B. Similar
equations apply, of course, in the Chebyshev case.

Figure 3.6.1 displays the numerical results obtained on the model problem
with c = f = 1. The left part of the figure (a) shows the Legendre colloca-
tion solution (3.6.10) for ν = 0.005, with N = 9 (�), while the right part (b)
shows the Chebyshev collocation results when ν = 0.001 and N = 25 (�). The
reader should notice that, although the last mesh space in the GLL partition has
roughly the size of the boundary layer (i.e.,≈ 0.224), the approximate solution

(a) (b)

Figure 3.6.1. Collocation solutions of advection-dominated diffusion problems on
(a) Legendre and (b) Chebyshev grids.
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Table 3.6.3. Orthogonal collocation on Gaussian and staggered grids.

ν = 0.1 ν = 0.001

N GLL SL GLC SC

3 2.728e− 01 4.928e− 02 1.321e+ 00 2.983e− 01

4 9.207e− 02 1.692e− 02 3.603e+ 01 1.830e− 01

5 2.322e− 02 6.506e− 03 1.077e+ 00 1.944e− 01

6 5.677e− 03 2.891e− 03 1.436e+ 01 1.672e− 01

7 1.376e− 03 7.258e− 04 9.989e− 01 1.739e− 01

8 3.173e− 04 1.725e− 04 7.614e+ 00 1.609e− 01

9 6.544e− 05 4.157e− 05 9.436e− 01 1.645e− 01

10 1.298e− 05 8.457e− 06 4.633e+ 00 1.567e− 01

11 2.451e− 06 1.668e− 06 8.891e− 01 1.585e− 01

31 4.976e− 15 1.394e− 14 2.253e− 01 8.207e− 02

is very poor, with a maximum pointwise error |ε|max,N = 0.4859. With very
small values of ν, collocation on the GLC grid gives a solution exhibiting large
oscillations (|ε|max,N = 0.3813).

Table 3.6.3 gives |ε|max,N for ν = 0.1 and ν = 0.001 as a function of N , for
Legendre and Chebyshev collocation, respectively. In the first case, diffusion is
still important (ν = 0.1) and the errors on the GLL grid decrease toward round-
off, while in the second case, advection dominates (ν = 0.001) and one recog-
nizes the same problem of instability as those identified above with spectral-
element calculations, such as larger errors with even values of N and an error
blowup with ν → 0.

This problem has led to a stream of efforts to develop stabilization tech-
niques based on staggered grids. Funaro [143, 144] has shown that the use
of a suitable staggered grid for collocation, combined with a shift operator
from the staggered to the GLL grid, restores the efficiency of FD precondition-
ing, even in the presence of strong advection terms. For the time being, we
deal with the generation of the staggered grid; the Funaro FD preconditioning
technique will be described in Chapter 4, since it is a truly multidimensional
algorithm.

The generation of the staggered grid starts from the recognition that, for
a simple diffusion operator such as LD := −d2/dx2, the GLL collocation (or
spectral element) grid points defined by (2.4.1) are also solutions to the poly-
nomial equation

LDχ
(0,0)
N (x) = 0, (3.6.11)
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where χ
(0,0)
N is defined by (2.5.1). Adapting this characterization of the grid

points to the advection–diffusion operator LAD := −νd2/dx2 + cd/dx and
using the fundamental property (B.1.11) of the Legendre polynomial L N (x),

− d

dx
[(1− x2)L ′N (x)] = N (N + 1)L N (x),

one finds that the inner collocation nodes (or inner spectral-element nodes) in
the reference domain ̂, solutions to LADχ

(0,0)
N (x) = 0, satisfy the polynomial

equation

νL ′N (x)− cL N (x) = 0. (3.6.12)

Obviously, for a purely diffusive problem one recovers the GLL grid with the
inner nodes {ξ#}N−1

#=1 , the solutions to L ′N (x) = 0. For an advection-dominated
problem with c/ν � 1, the boundary nodes remain unchanged, while the inner
collocation nodes tend toward N − 1 (out of the N ) of the Gauss–Legendre
quadrature nodes {ζi }Ni=1 [the roots of L N (x)], with the ordering relation-
ship · · · < ζi < ξi < ζi+1 < · · ·. A first-order expansion of τi , the solution to
(3.6.12) in the vicinity of ξi , gives

τi ≈ ξi − c

ν

1− ξ 2
i

N (N + 1)
, (3.6.13)

showing that the collocation (or spectral-element) nodes are moved in the op-
posite direction to the local advection motion. This explains why the resulting
collocation grid is usually called the “upwind” grid. Notice that the displace-
ment increases with c/ν and is more important at the center of the domain
than close to the boundary. In practice, of course, c/ν is space-dependent, and
(3.6.12) has to be solved in the vicinity of every GLL node using, for instance, a
few iterations of the Newton–Raphson algorithm starting from, say, (ξi + ζi )/2
(when c > 0) or (ξi + ζi+1)/2 (when c < 0).

An example is given in Figure 3.6.2, where the upper part shows the GLL and
the staggered grid (the bullets) for the operator LAD := −ν d2/dx2 + xd/dx
(with ν = 10−2 and N = 10), while the lower part displays the Gauss–Legendre

Figure 3.6.2. An example of a staggered grid (bullets) for the advection–diffusion prob-
lem−νd2/dx2 + xd/dx on ̂ (with ν = 10−2 and N = 10). The upper and lower parts
of the figure display the GLL and Gauss–Legendre grids, respectively.
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grid. Notice that for x > 0 the nodes are moved to the left, while for x < 0,
they are moved to the right, as emphasized earlier.

A similar analysis for the collocation and preconditioning of advection-
dominated diffusion problems on Chebyshev grids has been performed by
Pinelli et al. [308, 311]. Although in this case the GLC mesh points [the solution
to χ

(−1/2,−1/2)
N (x) = 0] do not satisfy the polynomial equation LDχ

(−1/2,−1/2)
N

(x) = 0, the authors use some heuristic arguments to show that the optimal
choice for the inner staggered mesh points {τi }N−1

i=1 coincides with the roots of
the polynomial equation

νT ′N (x)− cTN (x) = 0. (3.6.14)

It comes as no surprise that the conclusions with regard to the displacement
of the mesh points are the same as in the Legendre case. FD preconditioning on
the (upwind) staggered grid is then straightforward; it will be explained later.

Figure 3.6.1 displays also the numerical results obtained with collocation on
the staggered grids. On the left, for ν = 0.005 and N = 9, with collocation on
the Legendre staggered grid ( � ) one readily captures the essential features of the
analytical solution (|ε|max,N = 0.07751). The improvement is more significant
on the right (b). Instead of the large oscillations resulting from collocation on
the GLC grid, the staggered Chebyshev grid gives a very accurate solution in the
convection region. However, in the very sharp transition from the convection
region to the boundary layer (due to the very small ν), there is an “overshoot” in
the numerical solution, and |ε|max,N = 0.1144, not very much lower than with
orthogonal collocation (|ε|max,N = 0.3813). An L2 error in this case would give
significantly different results.

Similar conclusions may be drawn from the data in Table 3.6.3 for the
staggered Legendre (SL) and staggered Chebyshev (SC) grids. The improvement
increases with decreasing values of ν. However, for ν → 0 the convergence of
the errors with N is far from being exponential.

3.7 Unsteady Advection–Diffusion Problems

We now consider the unsteady advection–diffusion problem

∂u

∂t
+ c

∂u

∂x
= ∂

∂x

(
ν
∂u

∂x

)
+ f , u(0, x) = u0, (3.7.1)

subject to appropriate boundary conditions. If f , ν, and c are time-independent,
u will evolve to the solution of the steady-state problem considered in the
preceding section, and all the issues regarding (spatial) stability in that case
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must also apply to (3.7.1). Generally, if one is interested only in the steady-
state solution, then it is more efficient to attack (3.6.1) directly rather than
marching (3.7.1) forward in time. However, when time-dependent solutions are
sought, the linear systems to be solved can be simplified through the use of
various operator splitting techniques discussed earlier in this chapter.

3.7.1 Spatial Discretization

Spatial discretization proceeds as in the previous unsteady cases. Following
the Galerkin projection procedure, we multiply (3.7.1) by a test function v ∈
V ⊂ H 1

0 , integrate over , and require that u be such that equality holds for
all v ∈ V . Substituting (3.4.4) and testing with v = ψi (x) for i = 1, . . . , N , we
get the evolution equation for the basis coefficients u := {u j }Nj=1:

M
du

dt
= −K u − Cu + M f , (3.7.2)

where M and K are defined as in (3.4.6) and C is given by (3.5.2).
The temporal stability properties of (3.7.2) are determined by the corre-

sponding eigenvalue problem

(K + C) zk = −λk Mzk . (3.7.3)

The eigenvalues will be either complex or negative real, depending on the
boundary conditions and discretization. We consider three possible boundary
conditions for (3.7.1)–(3.7.3):

(i) periodic: u( j)(t, 0) = u( j)(t, 1), j = 0, 1,
(ii) Dirichlet: u(t, 0) = u(t, 1) = 0

(iii) Dirichlet–Neumann: u(t, 0) = 0, ∂u
∂x

∣∣
x=1
= 0

The eigenvalues and eigenfunctions for the corresponding continuous problems
are

Case λk φk(x) u(x)

(i) 2πι̂k − 4νπ 2k2 e2πι̂kx

(ii) −1+ 4(νπk)2

4ν
ex/2ν sin(kπx) x − e(x−1)/ν − e−1/ν

1− e−1/ν

(iii) −1+ (ν(2k + 1)π )2

4ν
ex/2ν sin( 2k+1

2 πx) x − νe(x−1)/ν

where ι̂ := √−1. Also shown is u(x), the solution to (3.6.1) when f = 1. Here
we have assumed that the velocity c = 1.
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We make several observations about the analytical solutions. In cases (ii)
and (iii), the eigenvalues are negative real, with limν→0 λk = −∞. These cases
are singularly perturbed, and the eigenfunctions are far from orthogonal. The
singular perturbation manifests itself as a boundary layer of thickness O(ν) in
which the steady-state solution changes by O(1) in the interval [1− ν, 1] in
case (ii), and (mildly) by O(ν) in case (iii). By contrast, in the periodic case the
eigenvalues are complex and bounded, and the eigenfunctions orthogonal, for
all ν. The difficulty in the advection–diffusion problem arises from the boundary
conditions, not from small values of ν per se. However, in situations where c is
varying, such as the Burgers equation (Section 3.8), one may encounter internal
layers that exhibit features similar to case (ii).

Figure 3.7.1 shows the eigenvalues for (3.7.3) discretized by spectral ele-
ments with (E, N ) = (1, 64). A few extreme negative values have been exclud-
ed from (b)–( f ) to permit a reasonable scaling of the real axis. Figure 3.7.1(a)
shows the spectrum for the pure convection problem with inflow–outflow (im-
plemented as Dirichlet–Neumann) boundary conditions to be essentially imag-
inary, with a negative real component about one-fourth the magnitude. This
spectrum has no continuous analogue. The eigenvalues for the periodic case
are shown in (b), along with the values for the continuous problem. As in the
isolated convection and diffusion problems, roughly two-thirds of the spectrum
is accurately captured by the discretization.

Figure 3.7.1(c)–( f ) show the Neumann and Dirichlet cases for ν = 0.1 and
ν = 0.001. The ν = 0.1 spectra are essentially negative real, with a small imag-
inary part arising for the Dirichlet case. By contrast, the ν = 0.001 spectra have
strong imaginary components, apparently having little in common with their
continuous counterparts. Real spectra can be obtained by increasing the spatial
resolution, but this is typically too costly to be practical.

Reddy and Trefethen [323] have studied the continuous and analytical spectra
and note that spectral analysis in the cases of small diffusion is of limited
practical value, because of the nonorthogonality of the eigenfunctions. They
note that it would require very large coefficients of alternating signs to expand
an order-unity function in terms of the eigenbasis and that the result would
be lost because of roundoff in the exponentially large terms. For example, if
ν = 0.001, one would need over 200 digits of precision to use the eigenfunctions
effectively as a basis. Reddy and Trefethen [323] suggest that the discrete
systems give a reasonable representation of the pseudospectra, defined roughly
as the surface in the complex λ-plane where ‖(λI − L)−1‖ is large. In the
normal case, this surface is limited to small regions near the eigenvalues. In the
advection–diffusion case, it is more extensive and incorporates the part of the
complex plane mapped by the discrete eigenvalues in Figure 3.7.1.
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Figure 3.7.1. Spectra for spectral-element discretization of the advection–diffusion
problem with (E, N ) = (1, 64). A few isolated negative eigenvalues are off the scale in
(b)–( f ).
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3.7.2 Temporal Discretization

The choice of time-stepping scheme is decidedly influenced by the eigenvalue
analysis of the preceding section. The presence of the large negative eigenval-
ues induces one to use a semiimplicit, or split, formulation based on implicit
treatment of the diffusion term and explicit treatment of the convective term.
This has the advantage of removing the stiffness while retaining a symmet-
ric positive definite system to be solved. A typical formulation is the MABCN

scheme (3.3.5)

1

�t
M(un+1 − un) = −K (α0un+1 + α1un + α2un−1)

−C
(

3
2 un − 1

2 un−1
)− M

(
3
2 f n − 1

2 f n−1
)
. (3.7.4)

For αi = ( 1
2 ,

1
2 , 0) one obtains the standard ABCN scheme, while for αi =

( 9
16 ,

6
16 ,

1
16 ) one obtains the optimally accurate modified scheme. At each step,

one must solve the system(
1

�t
M + α0 K

)
un+1 = gn+1, (3.7.5)

where gn+1 accounts for all terms in (3.7.4) known at time levels tn and tn−1.
The system (3.7.5) is SPD and diagonally dominant, so Jacobi preconditioned
CG is an appropriate solution approach, as noted in (3.4.7)–(3.4.8).

3.7.3 Outflow Conditions and Filter-Based Stabilization

To illustrate the effects of boundary layers on the solution, we consider the
example of a convecting Gaussian pulse, u0 = e−ζ

2
, ζ := 15(x − 0.5), on the

unit interval [0, 1], with c = 1, ν = 0.001, f = 0, and u(t, 0) = 0. Figure 3.7.2
shows the results of using a Neumann condition, ux (t, 1) = 0, in (a) versus the
disastrous consequences of using the Dirichlet condition, u(t, 1) = 0. In the
former case, the signal simply convects out of the domain, while in the latter,
the solution breaks down as the pulse tries to match the Dirichlet condition at
outflow. The breakdown is more contained in the linear FEM case (b) than in
the spectral-element case (c), which suffers from oscillations several elements
upstream. However, the FEM result suffers from dispersion errors at earlier
times, as noted by undershoots in the signal. Part (d) shows SEM results when
a filtering procedure (described below) is applied at each step. The boundary-
layer breakdown is confined to the last element, and the solution does not suffer
from early dispersion errors.
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Figure 3.7.2. Advection–diffusion results.

Filtering is an alternative means of stabilizing spectral methods that has
found widespread use in hyperbolic applications [106, 245, 254]. The results
in Figure 3.7.2(d) were obtained by solving (3.7.5) at each step, followed by a
filtering procedure

un+1 ←− Fαun+1,

developed in [130]. The filter Fα is defined as follows. Let Im be the operator
that interpolates u onto the m + 1 GLL points ξm

i , and let �N−1 := IN IN−1 be
a projector from PN to PN−1. Then

Fα := α�N−1 + (1− α)I.

Because the nodal basis points ξ N
i interlace ξ N−1

i , this filter will dampen any
oscillations arising from the most oscillatory mode. Note thatα = 1 corresponds
to a full projection onto PN−1, effectively yielding a sharp cutoff in modal space,
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whereas 0 < α < 1 yields a smoother decay. Navier–Stokes applications of the
filter are discussed in Chapter 6.

3.8 The Burgers Equation

As a last example in this chapter on parabolic and hyperbolic equations we deal
with the one-dimensional Burgers equation (1.9.7), an unsteady advection–
diffusion equation in which the convective term is nonlinear. This equation
often serves as a benchmark for numerical methods, for two reasons: it has
much in common with the Navier–Stokes equations, as a quick comparison with
(1.7.5) reveals, and exact solutions (in space and time) can be obtained with
the Cole–Hopf transformation for a variety of initial and boundary conditions
(see [81]). The Burgers equation with homogeneous Dirichlet conditions on the
reference domain is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
in := (−1, 1),

(3.8.1)
u(t,−1) = u(t,+1) = 0.

With the initial condition

u(0, x) = u0(x) := − sin(πx), (3.8.2)

the analytical solution of (3.8.1) obtained by Cole and compiled by Benton and
Platzmann is (see [31])

u(t, x) = 4πν

∑∞
n=1 nane−νn2π2t sin(nπx)

a0 + 2
∑∞

n=1 nane−νn2π2t cos(nπx)
. (3.8.3)

In this expression, the coefficients an are given by

an = (−1)n In(1/2πν),

where In(z) denotes the modified Bessel function of first kind and order n.
Unfortunately, the numerical evaluation of (3.8.3) is quite hard, especially at
small values of t and of ν. The reason is that, for large values of z, In(z) behaves
asymptotically as ez(2π z)−1/2, independently of the value of n.

3.8.1 Space and Time Discretization

As the Burgers equation is the first nonlinear case we have confronted, it de-
serves some closer analysis about space and time discretization. Here, we will
consider only two cases, both of which have been extensively treated in the
literature: the orthogonal collocation method and the spectral-element method.
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Orthogonal Collocation

Orthogonal collocation requires that the residuals vanish at the collocation
points. Resorting to the methodology described in Section 2.5.1, we first define
a polynomial approximation of the solution based on the GLJ points {ξ J

i }Ni=0:

uN (t, x) :=
N∑

i=0

ui (t)π
J
i (x), x ∈ ̂. (3.8.4)

In this expansion, the basis functionsπ J
i (x) are given by (2.5.4); these functions

are such that uN (t, ξ J
k ) = uk(t). Then, applying Equation (2.5.10), we get a set

of semidiscrete equations

dui (t)

dt
+ ui (t)

∂uN

∂x
(t, ξ J

i ) = ν
∂2uN

∂x2
(t, ξ J

i ), 1 ≤ i ≤ N − 1, (3.8.5)

with the boundary conditions u0(t) = uN (t) = 0. Typically, we end up with a
set of (coupled) nonlinear ODEs, and the system has the form (3.3.1).

Splitting techniques are most appropriate. The standard choice is to use an
explicit scheme for the nonlinear term, avoiding a Newton linearization and
the inversion of a large nonsymmetric system, and an implicit scheme for the
viscous term, avoiding the severe stability restriction �t ∝ N−4. A common
practice for about a decade has been to use AB2 for the advection part and CN

for the viscous part.
The evaluation of the nonlinearity is straightforward. Suppose we know all

the un
i . We apply the matrix derivative to compute the first-order term. The

computation of the nonlinear term is then simply the local multiplication of the
nodal value times its first-order derivative.

Spectral-Element Method

Let us now focus on the spectral-element discretization of the Burgers equa-
tion, especially with regard to the nonlinear term. We deal with a Legendre
spectral-element approximation on one element (E = 1). Within the general-
ized Galerkin framework introduced in Section 2.2.1, the weak form of the
problem is as follows: Find an approximation uN (t, x) ∈ PN ∩ H 1

0 (̂),

uN (t, x) :=
N∑

i=0

ui (t)πi (x), (3.8.6)

such that

d

dt
(uN , vN )N +

(
uN

∂uN

∂x
, vN

)
N

=
(
ν
∂2uN

∂x2
, vN

)
N

(3.8.7)
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∀vN (x) ∈ PN
⋂

H 1
0 (̂). The GLL Lagrangian basis {πi (x)}Ni=0 is given by

(2.4.3).
Again, the temporal term involves the mass matrix M , while the viscous term

involves the stiffness matrix K . Let us look at the nonlinear term in the l.h.s.
of (3.8.7). Unlike the methods for compressible fluid flows, where integration
by parts is carried out to generate (conservation of) fluxes, the incompressible
approach leaves this term unchanged. In the particular case where vN (x) =
πi (x), the inner product Ci := (uN u′N ,x , πi )N , with u′N ,x denoting the partial
derivative of uN with respect to x , becomes

Ci =
N∑

m=0

ρm

(
N∑

k=0

N∑
#=0

uku#πk(ξm)
dπ#
dx

(ξm)

)
πi (ξm). (3.8.8)

Using the bi-orthogonality properties of the basis functions, we can reduce this
expression to

Ci =
N∑
#=0

Ci#u# :=
N∑
#=0

ρi ui D(1)
N ,i#u#. (3.8.9)

where D(1)
N is the first-order Legendre derivative (2.4.9). In matrix form, Equa-

tion (3.8.7) is

M
du

dt
+ K u + C(u)u = 0, (3.8.10)

where C(u) is the symbolic notation to express the nonlinear discrete operator
with components Ci# := ρi ui D(1)

N ,i# acting on the vector of unknowns u ∈ R
N .

We observe that the spectral-element calculation of the nonlinear term is of
collocation type, since the matrix element Ci# is the local value of the unknown
times the derivative matrix. The nonlinearity generates a quadratic expression.
If one wants to avoid explicit time integration schemes for stability reasons,
a Newton linearization may be carried out on the discrete equations. In spec-
tral methods, we prefer to compute the Fréchet derivative of the operator (see
Section A.3.5) and discretize in space and time afterwards.

3.8.2 Numerical Results

Here, we are interested in the advection-dominated case with very small values
of the viscosity. Such low values of ν lead to a rapid variation of the solution
that goes from the initial trigonometric profile to a (time-decaying) sawtooth
profile with a thin internal layer located at the origin that must be resolved if
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Figure 3.8.1. Solution to Burgers equation on [−1, 0] using the Legendre spectral
method, (E, N ) = (1, 64), with AB3CN.

accurate numerical solutions are to be obtained. The (exact) solution exhibits
two particular features:

• A sudden increase of the slope | ∂u
∂x (t, 0)| versus time until this parameter

reaches a maximum, and then decreases.
• A shift of xmax, the abscissa of umax, versus time from x = ±0.5 initially,

toward x = 0, and then, after some time, back again (see Figure 3.8.1).

Basdevant et al. [22] have studied numerical solutions to (3.8.1)–(3.8.2) for
the case ν = 10−2/π by a variety of combinations of discretizations in space
(e.g., Fourier–Galerkin, Fourier pseudospectral, Chebyshev tau, Chebyshev
collocation, spectral element, finite difference) and time (e.g., IE, ABCN, RK3).
The results obtained by these authors are summarized in Table 3.8.1. The table
gives the numerical values of the maximum slope at the origin, | ∂u

∂x (t, 0)|max,

and the time tmax at which this maximum occurs for the various algorithms used
in the study, as well as the reference value taken from [31].

The authors conclude that, if one treats the full domain (−1,+1), the sharp
sawtooth profile at the center of the domain requires many grid points (or
expansion functions) to resolve the internal layer. However, a well-chosen co-
ordinate transformation may alleviate this difficulty. Also, the spectral schemes
perform poorly with a time step�t = 10−2/π , even with large values of N/M ,
where N is the number of degrees of freedom and M is the length of the fast
Fourier transform. Shortening the time step improves the numerical results,
however.

If the equation is solved on half the domain, the accumulation of mesh
points near the boundary (in this case, x = 0), characteristic of Chebyshev or
Legendre spectral methods, improves the attainable precision. For instance,
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Table 3.8.1. Maximum absolute value of the slope at the origin and time tmax at which
this maximum value occurs for all the numerical algorithms and for the analytical

solution. N is the number of degrees of freedom, and M the length of the fast
Fourier transform (see [22]).

Method  | ∂u
∂x |max π tmax N/M �t · π

Fourier–Galerkin (−1, 1) 151.942 1.6035 682/1024 5.0e− 4
142.665 1.60 682/1024 1.0e− 2
148.975 1.603 170/256 5.0e− 4
142.313 1.60 170/256 1.0e− 2

Fourier (−1, 1) 142.606 1.60 256/256 1.0e− 2
pseudospectral 144.237 1.60 128/128 1.0e− 2

ABCN collocation + (−1, 1) 145.877 1.60 512 5.0e− 3
coordinate transf. (−1, 1) 152.123 1.60 64 1.0e− 2

Spectral element (−1, 1) 152.04 1.6033 16× 4 (1.0e− 2)/6

FD (−1, 1) 152.1 1.63 81 1.0e− 2

Chebyshev:
ABCN spectral (0, 1) 152.05 1.60 64 1/300
Rosenbrock spectral (0, 1) 151.998 1.60 64 1.0e− 2

(0, 1) 150.144 1.60 32 1.0e− 2
ABCN collocation (0, 1) 152.126 1.60 64 1.0e− 2

Analytical 152.00516 1.6037

the Rosenbrock (Chebyshev) spectral method with 64 degrees of freedom and
�t · π = 10−2 gives a relative error of 4.71× 10−5 on the maximum slope,
while the Fourier–Galerkin method with ten times as many mesh points and
a time step twenty times shorter gives a relative error of 4.16× 10−4 only.
Figure 3.8.1 shows numerical solutions to (3.8.1)–(3.8.2) on half the ̂ domain,
evaluated at various times before and after the maximum slope, with the spectral-
element ABCN method. The curves were obtained with 64 degrees of freedom
and a time step �t ≈ 10−3.

3.9 The OIFS Method and Subcycling

The OIFS method introduced in Section 3.3.1 organizes the combination of any
two time integration methods for the linear and nonlinear terms. Here, we will
again treat the Burgers equation in the Legendre spectral-element framework,
and we will interpret the OIFS method as a subcycling technique.

Proceeding with the space discretization, we obtain the set of nonlinear ODEs
(3.8.10)

M
du

dt
+ K u + C(u)u = 0.
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For the Burgers equation (3.8.1), the corresponding Reynolds number is Re =
1/ν if one chooses as reference velocity and length scale U = L = 1. The
Reynolds number may be viewed as the ratio of two time scales relevant to the
physics, namely, the diffusive time scale L2/ν over the inertial time scale L/U .
Therefore, at moderate and high Reynolds numbers, the dynamics of the physics
is driven essentially by inertia, but viscous effects play their role over longer
time intervals. From this interpretation, we may conclude that it would be wise to
integrate more often the part of the operator – namely, advection – that produces
the changes over the shorter scales. This is the idea of the so-called method of
subcycling. This method will implement the time integration in such a way that
γ subcycles of time step�s will be carried out on the explicit, cheap part of the
convection term, while the implicit, more computation-intensive, viscous part
is integrated less often, at every time step �t = γ �s. The stability condition
will gain from being applied to �s and not to �t . The OIFS method allows the
user to set up the subcycling technique in an efficient manner.

We begin by writing the basic equation (3.8.10) in terms of an integration
factor Qt∗

C (t) related to the nonlinear operator C(u):

d

dt

[
Qt∗

C (t) · Mu(t)
]=−Qt∗

C (t) · K u(t). (3.9.1)

A combination of (3.8.10) and (3.9.1) shows that the integrating factor obey the
equation

d

dt
Qt∗

C (t) · M = Qt∗
C (t) · C(u(t)), Qt∗

C (t∗) = I, (3.9.2)

where I is the identity matrix. As mentioned earlier, this relationship is not
used to evaluate the integrating factor Qt∗

C (t) explicitly. Only quantities such as
Qt∗

C (t) · Mu(t) are evaluated. Specifically, we solve a set of differential equa-
tions involving an auxiliary vector v(t�,t)(s) ∈ R

N , on a shifted time axis s with
the origin set at time t :

M
d

ds
v(t�,t)(s) = −C

(
v(t�,t)(s)

)
v(t�,t)(s), (3.9.3)

0 < s < t� − t . Initial conditions for (3.9.3) are given by (3.3.12):

v(t�,t)(0) = u(t).

Following the analysis made in Section 3.3.1, one can show that

Qt∗
C (t) · Mu(t) = Mv(t�,t)(t� − t). (3.9.4)
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Let us now apply the OIFS method based on BDF3/RK4 to solve the nonlinear
time-dependent problem (3.8.10). The computation involves two time scales:
�t , related to the viscous component, which is treated implicitly (BDF3), and
�s, related to the advective component, which needs to be handled explic-
itly. The time scales are selected so that �t = γ�s, where γ is an integer.
Obviously, the values of these parameters are strongly influenced by stability
conditions.

Assume that the approximate solution is known up to time tn on the time scale
of the (implicit) calculation (see Figure 3.3.2). Applying the BDF3 integration
scheme to (3.9.1) gives

Mun+1 =
3∑

j=1

a j SC
(
Qtn+1

C (tn+1− j ) · Mun+1− j
)− b0 �t K un+1, (3.9.5)

where the coefficients a j and b0 are taken from Table 3.2.3. We emphasize
that the first contribution to the r.h.s. of (3.9.5) results from the integration of
a set of nonlinear problems related to the advection term; hence the presence
of the symbol SC , referring to the explicit scheme (ERK4) used to solve these
equations.

The set of auxiliary advection equations and corresponding initial conditions
to evaluate Qtn+1

C (tn+1− j ) · Mun+1− j for some value of j is

M
d

ds
v(n+1,n+1− j)(s) = −C

(
v(n+1,n+1− j)(s)

)
v(n+1,n+1− j)(s) (3.9.6)

and

v(n+1,n+1− j)(0) = un+1− j . (3.9.7)

Integration of (3.9.6) on the interval (0,�s j ] along the shifted time axis with
origin set at tn+1− j and �s j := tn+1 − tn+1− j = jγ �s gives the parameters

Mũ j ≡ SC
(
Qtn+1

C (tn+1− j ) · Mun+1− j
) = Mv(n+1,n+1− j)(�s j ) (3.9.8)

needed to complete the implicit calculation (3.9.5). The expression on the left
in the last relationship, Mũ j , is defined only to simplify the notation. The most
important member is the last one, which is the final result in the (explicit)
integration process for the current value of j .

Once the auxiliary advection calculations have been performed for all values
of the integer j , and the results (3.9.8) have been put into (3.9.5) with the
appropriate BDF3 coefficients, the implicit calculation may be completed to
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determine un+1:

M

(
un+1 − 1

11
[18ũ1 − 9ũ2 + 2ũ3]

)
= −6�t

11
K un+1. (3.9.9)

The computation process then is carried to the next time interval (tn+1, tn+2).
We emphasize that, in ease of implementation, γ = 1 is the best solution.

We will prove in Chapter 4 that the subcycling method (γ > 1) is in effect
equivalent to the method of characteristics. Subcycling is expensive, however,
in function evaluations.

3.10 Taylor–Galerkin Time Integration

The Taylor–Galerkin method was introduced by Donea [107] for pure advection
problems. Instead of going the classical way, namely, first carrying out the
space discretization and then applying a time integration scheme to the set
of ODEs, Donea reverses the process. The Taylor–Galerkin approach may be
considered as a time integration technique where the solution is first expanded
in a Taylor series in time up to the third-order term and then all time derivatives
(if possible) are replaced by space derivatives through the repeated use of the
hyperbolic equation. Eventually, the resulting equation is approximated by a
standard Galerkin discretization method.

In this section, we consider the Burgers equation (3.8.1), and the Galerkin ap-
proximation will be based on Legendre spectral elements. The Taylor–Galerkin
method was first proposed in this setting by Timmermans et al. [380]. We expand
the solution at (tn, x) in a Taylor series including the third-order term:

u(tn+1, x) = u(tn, x) + �t
∂u

∂t
(tn, x)+ (�t)2

2

∂2u

∂t2
(tn, x)

+ (�t)3

6

∂3u

∂t3
(tn, x)+ O((�t)4). (3.10.1)

However, for the sake of simplicity, we will restrict ourselves in the following
development to the second-order term; the reader is referred to Donea and
Quartapelle [109] for the full treatment. From the Taylor series, we obtain

un+1 − un

�t
= ∂u

∂t
(tn, x)+ �t

2

∂2u

∂t2
(tn, x). (3.10.2)

Let us replace in (3.10.2) the first-order time derivative by the expression coming
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from the Burgers equation (3.8.1), while the second-order time derivative is
evaluated as

∂2u

∂t2
(tn, x) = ∂

∂t

(
−u

∂u

∂x
+ ν

∂2u

∂x2

)
(tn, x). (3.10.3)

Expanding the r.h.s. of (3.10.3) and approximating each of the time deriva-
tives by (un+1 − un)/�t , in order to avoid the presence of third-order space
derivatives (that would have required C2 continuity in the Galerkin method),
gives

∂2u

∂t2
(tn, x) = − 1

�t

∂

∂x
[u(un+1 − un)]+ ν

∂2

∂x2

un+1 − un

�t
, (3.10.4)

with u in the r.h.s. of (3.10.4) taken as u(tn, x). With all the terms collected,
the relation (3.10.2) becomes[
1− 1

2
�t

(
−∂u

∂x
− u

∂

∂x
+ ν

∂2

∂x2

)]
un+1 − un

�t
= −u

∂u

∂x
+ ν

∂2u

∂x2
. (3.10.5)

If the time derivative in Equation (3.10.3) is computed backward as ∂u/∂t =
(un − un−1)/�t , the method generated by the combination of (3.10.2) and
(3.10.3) is completely explicit in time. Applying the space discretization to
Equation (3.10.5), we are led to the Taylor–Galerkin SEM.

3.10.1 Nonlinear Pure Advection

Going back to the continuous problem (3.8.1) with a vanishing viscosity, and
more specifically to Equation (3.10.2), we can now express the second-order
time derivative as

∂2u

∂t2
(tn, x) = −∂u

∂t

∂u

∂x
− u

∂

∂x

(
∂u

∂t

)
= −∂u

∂t

∂u

∂x
+ u

∂

∂x

(
u
∂u

∂x

)
. (3.10.6)

Introducing (3.10.6) in (3.10.2), we obtain

un+1 − un

�t
= −

(
u + �t

2

∂u

∂t

)
∂u

∂x
+ �t

2
u
∂

∂x

(
u
∂u

∂x

)
. (3.10.7)

The time derivative in the r.h.s. can be approximated by a forward formula,
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leading to an implicit scheme

u + �t

2

∂u

∂t
= un + �t

2

(
un+1 − un

�t
+ O(�t)

)

= un+1 + un

2
+ O(�t2)

= un+ 1
2 + O(�t2), (3.10.8)

or by a backward formula, leading to an explicit scheme

u + �t

2

∂u

∂t
= un + �t

2

(
un − un−1

�t
+ O(�t)

)
= 3un − un−1

2
+ O(�t2). (3.10.9)

The second approach is favored inasmuch as it keeps the convection step fully
explicit. We recognize that with this last relation, the approximation of the
first term on the r.h.s. of Equation (3.10.7) would yield an AB2 scheme. By
applying the space discretization, we derive the second-order accurate explicit
Euler Taylor–Galerkin method.

The appearance of the second-order term in (3.10.7) slows the evaluation
of the nonlinearity. To avoid this computational burden, we resort to a two-
step Taylor–Galerkin scheme. The Taylor series (3.10.1) with a time-centered
approximation is

u(tn+1, x) = u(tn, x)+�t
∂u

∂t

(
tn+ 1

2 , x
)+ O((�t)3), (3.10.10)

where the time derivative is now

∂u

∂t

(
tn+ 1

2 , x
) = ∂u

∂t
(tn, x)+ �t

2

∂2u

∂t2
(tn, x). (3.10.11)

Using the two last relations, one easily gets the following two-step scheme:

un+ 1
2 = un − �t

2

(
un ∂un

∂x

)
,

(3.10.12)

un+1 = un −�t

(
un+ 1

2
∂un+ 1

2

∂x

)
.
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3.10.2 Taylor–Galerkin and OIFS Methods

Because of viscous stability restrictions, one must resort to implicit time integra-
tion for the viscous term in the set of nonlinear differential equations (3.8.10).
In this framework, the OIFS technique helps to design an elegant and efficient
scheme within which an implicit BDFk scheme handles the linear term while the
explicit Taylor–Galerkin scheme (3.10.12) deals with the nonlinear term. Both
schemes must be of the same order of accuracy. Since we have chosen to trun-
cate the Taylor series after the second-order term, we apply BDF2 to Equation
(3.9.1), giving

Mun+1 =
2∑

j=1

a j SC
(
Qtn+1

C (tn+1− j ) · Mun+1− j
)− b0 �t K un+1. (3.10.13)

As before, the terms involving the integrating factor in the r.h.s. of (3.10.13) are
obtained from the solution of a set of nonlinear initial-value problems coping
with the advection term only:

M
d

ds
v(n+1,n+1− j)(s) = −C

(
v(n+1,n+1− j)(s)

)
v(n+1,n+1− j)(s), (3.10.14)

with j = 1, 2 and an initial condition

v(n+1,n+1− j)(0) = un+1− j . (3.10.15)

Integration of the problems (3.10.14)–(3.10.15) on the interval (0,�s j ] along
the shifted time axis using the two-step scheme (3.10.12) gives the quantities

SC
(
Qtn+1

C (tn+1− j ) · Mun+1− j
) = Mv(n+1,n+1− j)(�s j ), (3.10.16)

to be entered in (3.10.13), for j = 1, 2. Here again one has an additional degree
of freedom in the choice of γ , the ratio of time steps in the implicit and explicit
parts of the computation. A value of γ should be selected that not only ensures
stability of the algorithm but also minimizes the computer work.

The two-step Taylor–Galerkin time integration technique has been applied in
the OIFS framework to the Burgers equation by Timmermans et al. [380]. In their
calculations, a one-dimensional Gaussian hill is traveling with a unit constant
velocity and spreads isotropically with a viscosity ν = 1/200. The authors show
that the Taylor–Galerkin scheme achieves second-order accuracy in time and is
faster than fully implicit time integration. Taylor–Galerkin schemes therefore
seem very well suited for nonlinear and multidimensional problems.



4
Multidimensional Problems

Chapters 2 and 3 introduced several variational methods for one-dimensional
problems. In this chapter, these techniques are extended to d space dimensions,
where d = 2 or 3. We initially consider the case where the domain can be ex-
pressed as a tensor product of one-dimensional intervals; that is, it is a rectangle
in R

2 or a box in R
3. We then consider the more general case where the domain

is an image of the parent element, ̂ = [−1, 1]d , obtained via a smooth invert-
ible mapping. Fully complex geometries can be handled via mapping coupled
with domain decomposition, which is introduced here and considered further
in Chapter 7.

4.1 Introduction

We begin in Section 4.2 with a review of tensor products, which are cen-
tral to the efficiency of high-order methods. Tensor-product forms are used to
develop spectral operators for elliptic problems in regular parallelepipeds in
Section 4.3, and extended to deformed hexahedra in Section 4.4. Multidomain
SEMs are introduced in Section 4.5, and collocation methods are treated in Sec-
tion 4.6. Parabolic and hyperbolic problems are considered in Sections 4.7 and
4.8, respectively, and the combination of these is treated in the discussion of
advection–diffusion problems in Section 4.9. Further reading and advanced
topics are addressed in Section 4.10.

4.2 Tensor Products

In this section we introduce a number of basic properties of matrices based on
tensor-product forms. Such matrices frequently arise in the numerical solution
of PDEs. Their importance for the development of fast Poisson solvers was

162
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recognized in an early paper by Lynch et al. [250]. In 1980, Orszag [288] pointed
out that tensor-product forms were the foundation for efficient implementation
of spectral methods.

The relevance of tensor-product matrices to multidimensional discretiza-
tions is illustrated by considering a tensor-product polynomial on the reference
domain, (x, y) ∈ ̂ := [−1, 1]2:

u(x, y) =
M∑

i=0

N∑
j=0

ui jπM,i (x)πN , j (y). (4.2.1)

Here, πM,i (πN , j ) is the Lagrangian interpolant of degree M (N ) based on Leg-
endre polynomials introduced in (2.4.3). Consequently, the basis coefficients,
ui j , are also nodal values of u on the tensor product of Gauss–Lobatto–Legendre
(GLL) quadrature points, as shown in Figure 4.2.1. Useful vector representations
of the coefficients are denoted by

u := (u1, u2, . . . , ul , . . . , uN )T := (u00, u10, . . . , ui j , . . . , uM N )T , (4.2.2)

where N = (M + 1)(N + 1) is the number of basis coefficients, and the map-
ping l = 1+ i + (M + 1) j translates to standard vector form the two-index

u00 u10 u20 u30 u40

u01 u11 u21 u31 u41

u02 u12 u22 u32 u42

u03 u13 u23 u33 u43

u04 u14 u24 u34 u44

1
−1

−1

1

Figure 4.2.1. Clockwise from upper left: GLL nodal point distribution on ̂ for M =
N = 4, and Lagrangian basis functions for M = N = 10: π10π2, π2π9, and π3π4.
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coefficient representation, with the leading index advancing more rapidly. This
is referred to as the natural, or lexicographical, ordering and is used throughout
this text.

The tensor-product form (4.2.1) allows significant simplifications in the
application of linear operators to u. For example, suppose wpq is to repre-
sent the x-derivative of u at the GLL points, (ξM,p, ξN ,q ), p, q ∈ {0, . . . , M} ×
{0, . . . , N }:

wpq := ∂u

∂x
(ξM,p, ξN ,q ) =

M∑
i=0

N∑
j=0

ui jπ
′
M,i (ξM,p)πN , j (ξN ,q )

=
M∑

i=0

uiqπ
′
M,i (ξM,p). (4.2.3)

Expressed as a matrix–vector product, (4.2.3) reads

w = Dx u :=


D̂x

D̂x

. . .

D̂x




u00

u10
...

uM N

. (4.2.4)

Here, D̂x is the one-dimensional derivative matrix (2.4.9) associated with the
M + 1 GLL points on the reference interval [−1, 1] and is applied to each row,
(u0 j , u1 j , . . . , uM j )

T , j = 0, . . . , N , in the computational grid of Figure 4.2.1.
To compute derivatives with respect to y, one applies the corresponding matrix
D̂y to each column. This latter case does not yield a simple block-diagonal
matrix, because of the ordering of the coefficients in u. Nonetheless, Dx and
Dy are conveniently expressed as Dx = I ⊗ D̂x and Dy = D̂y ⊗ I , where ⊗
indicates the tensor (or Kronecker) product, which we now introduce.

Let A and B be k × l and m × n matrices, respectively, and consider the
km × ln matrix C, given in block form as

C :=


a11 B a12 B . . . a1l B
a21 B a22 B . . . a2l B

...
...

...
ak1 B ak2 B . . . akl B

. (4.2.5)

C is said to be the tensor (or Kronecker) product of A and B, denoted as

C = A ⊗ B. (4.2.6)
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From the definition (4.2.5) one can easily verify that an entry ci j (1 ≤ i ≤
km, 1 ≤ j ≤ ln) in C is equal to

ci j = apqbrs,

where the index pairs (pq) and (rs) satisfy the relationships

i = r + (p − 1)m, j = s + (q − 1)n.

We will occasionally also refer to ci j as cr p,sq .
Using the standard definition of matrix multiplication, one may show that

(A ⊗ B)(F ⊗ G) = (AF ⊗ BG) (4.2.7)

for rectangular matrices A, B, F , and G appropriately dimensioned so that the
products AF and BG are well defined. It follows that if A and B are square
invertible matrices of orders m and n, respectively, then

(A−1 ⊗ B−1)(A ⊗ B) = I ⊗ I, (4.2.8)

where I denotes the identity matrix of appropriate order. Thus, the inverse of
A ⊗ B is A−1 ⊗ B−1.

Suppose A and B are diagonalizable square matrices of order m and n,
respectively, with similarity transformations

A = S,S−1, B = TMT−1, (4.2.9)

where the columns of the matrices S and T are the eigenvectors of A and B, and
the entries in the diagonal matrices , and M are the respective eigenvalues.
Then

(S−1 ⊗ T−1)(A ⊗ B)(S ⊗ T ) = ,⊗M.

Note that the tensor product of two diagonal matrices is also diagonal. Thus the
diagonalization of C in (4.2.6) may be obtained from the diagonalization of the
two much smaller systems, A and B.

The following form frequently arises in FD discretization of 2D BVPs:

C = A ⊗ I + I ⊗ B

(e.g., when A and B represent one-dimensional difference operators). Here
the inverse is not so easily obtained as in (4.2.8). However, if A and B are
diagonalizable as in (4.2.9), then the diagonalization of C is

C = (S ⊗ T )(,⊗ I + I ⊗M) (S−1 ⊗ T−1), (4.2.10)
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from which it follows that

C−1 = (S ⊗ T ) (,⊗ I + I ⊗M)−1 (S−1 ⊗ T−1). (4.2.11)

Note that ,⊗ I + I ⊗M is diagonal and therefore trivially inverted.
Weighted residual techniques frequently give rise to systems of a more gen-

eral form, for example,

C = My ⊗ Kx + Ky ⊗ Mx , (4.2.12)

where K∗ and M∗ are the one-dimensional stiffness and mass matrices asso-
ciated with their respective spatial directions. Here the appropriate similarity
transformation comes from a generalized eigenvalue problem of the form

K∗ si = λi M∗ si .

If K∗ is symmetric and M∗ is symmetric positive definite, then there exists
a complete set of eigenvectors that are orthonormal with respect to the M∗
inner product, that is, sT

i M∗ sj = δi j . If , = diag(λi ) is the diagonal matrix
of eigenvalues and S = (s1, . . . , sN ) the corresponding matrix of eigenvectors,
then the following similarity transformation holds:

ST K∗S = ,, ST M∗S = I. (4.2.13)

Suppose there exist matrices ,x and Sx such that (4.2.13) is satisfied for Kx

and Mx , and similarly for the y-operators. Then the inverse of C (4.2.12) is
given by

C−1 = (Sy ⊗ Sx ) (I ⊗,x +,y ⊗ I )−1
(
ST

y ⊗ ST
x

)
. (4.2.14)

The preceding tensor-product factorizations readily extend to more dimen-
sions. Rather than presenting the general form, we merely illustrate the proce-
dure by giving the result for the 3D case. As we will demonstrate in the next
section, weighted residual techniques for 3D BVPs frequently give rise to system
matrices of the form

C = Mz ⊗ My ⊗ Kx + Mz ⊗ Ky ⊗ Mx + Kz ⊗ My ⊗ Mx .

If one assumes that similarity transforms of the form (4.2.13) exist for each
(K∗, M∗) pair, then C−1 is given by

C−1 = (Sz ⊗ Sy ⊗ Sx )D−1
(
ST

z ⊗ ST
y ⊗ ST

x

)
, (4.2.15)
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where

D = I ⊗ I ⊗,x + I ⊗,y ⊗ I +,z ⊗ I ⊗ I

is the diagonal matrix containing the eigenvalues of the one-dimensional
operators.

The forms (4.2.11) and (4.2.15) are referred to as fast diagonalization
methods, because they permit inversion of an N d × N d matrix in only O(N d+1)
operations (as the next section will show). They were proposed for the solution
of FD problems in [250] and are often used in the solution of global spectral
methods. [For Fourier and Chebyshev methods, the work complexity can be
reduced to O(N d log N ) through the use of fast-transform methods that allow
the one-dimensional operators S∗ and ST

∗ to be applied in O(N log N ) opera-
tions.] Although strictly applicable only to constant-coefficient problems, the
fast diagonalization method has also been shown to be effective as an approx-
imate local solver for domain-decomposition-based preconditioners [83, 129]
(see Section 7.2).

Operator Evaluation

The preceding section illustrates several useful properties of matrices based on
tensor-product forms. Essential for operator evaluation in numerical solution
of PDEs is the fact that matrix–vector products of the form v = (A ⊗ B)u can
be evaluated in an order of magnitude fewer operations than would be possible
in the general case.

Suppose for ease of exposition that A and B are square matrices of order n
and m, respectively, and that u is an mn-component vector with entries denoted
by a double subscript, ui j , i = 1, . . . ,m, j = 1, . . . , n. We associate a natural
ordering of these entries with the ı̂ th component of u: u ı̂ = ui j iff ı̂ = i +
m( j − 1). With this convention, the product is

vi j =
n∑

l=1

m∑
k=1

a jlbikukl i = 1, . . . ,m, j = 1, . . . , n. (4.2.16)

If A and B are full matrices, then C = A ⊗ B is full, and computation of Cu by
straightforward matrix–vector multiplication nominally requires nm(2nm − 1)
operations, or O(n4) if m = n. (We define an operation as either floating-point
addition or multiplication.) In practice, however, the matrix C is never explicitly
formed; one evaluates only the action of C on a vector. The usual approach is
to exploit the relationship (4.2.7) and the associativity of matrix multiplication
to rewrite Cu as

Cu = (A ⊗ I )(I ⊗ B)u. (4.2.17)
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One then computes w = (I ⊗ B)u:

wi j =
m∑

k=1

bikuk j , i = 1, . . . ,m, j = 1, . . . , n, (4.2.18)

followed by v = (A ⊗ I )w:

vi j =
n∑

l=1

a jlwil , i = 1, . . . ,m, j = 1, . . . , n,

=
n∑

l=1

wila
T
l j , i = 1, . . . ,m, j = 1, . . . , n. (4.2.19)

The total work is only 2nm(n + m − 1), or O(n3) if n = m.
The 3D case follows similarly and yields even greater reduction in the

number of operations. Consider the tensor product of three full n × n
matrices, C = Az ⊗ Ay ⊗ Ax . If formed explicitly, C will contain n6 nonzeros,
and the matrix–vector product v = Cu will require 2n6 operations. However, if
C is factored as C = (Az ⊗ I ⊗ I )(I ⊗ Ay ⊗ I )(I ⊗ I ⊗ Ax ) and the matrix–
vector product is evaluated as above for the 2D case, the total cost is only
3× 2n4 operations. In general, the rule for a matrix operator resulting from a
discretization with n mesh points per space dimension, in d space dimensions
(full coupling in each spatial direction), is that it should be possible to evaluate
the action of an operator in only O(nd+1) operations.

We are now in a position to establish an important result for multidimensional
problems: Tensor-product-based high-order methods become increasingly ef-
fective as the spatial dimension d increases. Consider an example where the
number of points required to resolve a function in d space dimensions to a given
accuracy is N d for a high-order method and N̂ d for a low-order scheme with
σ := N/N̂ < 1. For explicit methods and for implicit schemes with iterative
solvers, the leading-order cost is associated with operator evaluation, which
scales as ch N d+1 in the high-order case and cl N̂ d in the low-order case. The
work ratio is thus

work(high-order method)

work(low-order method)
= ch

cl
Nσ d .

Clearly, any high-order advantage for d = 1 is further increased as d is increased
from 1 to 3. We will see in Section 4.4 that ch/cl ≈ 1; we have already seen in
Table 3.5.1 that σ can be significantly less than unity.

It is important to note that, if we view the entries of u as a matrix U with
{U }i j := ui j , then the forms (4.2.18)–(4.2.19) can be recast as matrix–matrix
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products

(A ⊗ B)u = BU AT . (4.2.20)

A similar form exists for the 3D case. Because of their low memory–bandwidth
requirements and high degree of parallelism, optimized matrix–matrix prod-
uct routines are available that are extremely fast on modern cache-based and
pipelined architectures. This feature is particularly significant for 3D appli-
cations, where typically more than 90% of the operation count is expended
on evaluating forms similar to (4.2.20). We consider these performance and
implementation issues in detail in Chapter 8.

4.3 Elliptic Problems

In this section, we consider the extension of the one-dimensional elliptic
problem (2.1.9) to d dimensions. The most general form of the problem is
given by

−
d∑

i=1

d∑
j=1

∂

∂xi

(
pi j (x)

∂u

∂x j

)
+ q(x) u(x) = f (x) in , (4.3.1)

subject to Neumann, Dirichlet, or mixed (Robin) boundary conditions on the
boundary ∂. In analogy to the one-dimensional case, this problem will be
elliptic if the d × d coefficient matrix pi j (x) is symmetric positive definite
(SPD) and q(x) ≥ 0 for all x := (x1, . . . , xd ) ∈ . Presently, we will consider a
more restricted class of problems where the coefficient matrix is simply block-
diagonal with pi j = δi j p(x), which corresponds to an isotropic medium. In this
case, the elliptic problem can be expressed in compact vector notation as

−∇ · [p(x)∇u(x)] + q(x) u(x) = f (x) in . (4.3.2)

The more general formulation (4.3.1) will resurface in the study of (4.3.2) in
transformed coordinates. [Between these two cases, one has also the case of an
anisotropic medium, with pi j = δi j pi (x).] Unless otherwise specified, we will
assume that homogeneous boundary conditions of the Neumann or Dirichlet
type are imposed:

u = 0 on ∂D, ∇u · n = 0 on ∂N ,

where n is the outward-pointing normal on the boundary ∂ := ∂D ∪ ∂N .
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4.3.1 Weak Formulation and Sobolev Spaces

The weak formulation of (4.3.2) is given by the following: Find u ∈ V0 such
that

A(u, v) = F(v) ∀v∈ V0, (4.3.3)

where the space of admissible functions is given by

V0 := {v ∈ H 1(); v = 0 on ∂D}.
Here, the definitions of A and F introduced in (2.1.11)–(2.1.13) must be mod-
ified to reflect the fact that  is no longer one-dimensional and that we need to
differentiate with respect to more than one spatial variable. Let

(u, v) :=
∫


u(x)v(x) dx, (4.3.4)

A(u, v) :=
∫


[p(x)∇u · ∇v + q(x)uv] dx, (4.3.5)

F(v) :=
∫


f (x)v(x) dx. (4.3.6)

Similarly, H 1() is the d-dimensional extension of the Sobolev space H 1(a, b)
defined by (2.1.33).

Discretization of (4.3.3) proceeds much as in the one-dimensional case:
suitable finite-dimensional test and trial spaces are chosen along with appro-
priate bases, and the bilinear forms (4.3.4)–(4.3.6) are evaluated for each test-
and trial-basis pair. We will generally consider two finite-dimensional approx-
imation spaces, VN ⊂ H 1() and VN ,0 ⊂ VN , with the latter simply being the
subset that satisfies the homogeneous boundary conditions on ∂D . In the
d-dimensional case there is a broad range of options in selecting VN . For exam-
ple, the linear basis span {1, x} can be extended to two dimensions by consider-
ing the strictly linear basis span {1, x, y} or the tensor product of the linear basis
given by span {1, x, y, xy}.We will primarily consider the tensor-product case,
because of the computational efficiencies alluded to in the preceding section.
In addition, as is common in practice, we will restrict ourselves to the case
where the polynomial degree is the same in each spatial dimension. Thus, if
{ψn(xi )}Nn=0 is the chosen one-dimensional basis for PN (x), we will assume that
VN = span⊗d

i=1 {ψn(xi )}Nn=0.
With this choice of approximation space, the discrete counterpart to (4.3.3)

is as follows: Find u ∈ VN ,0 such that

A(u, v) := F(v) ∀v ∈ VN ,0. (4.3.7)
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Before dealing with specific examples of multidimensional elliptic problems,
we briefly revisit the definition of Sobolev spaces given in Section 2.1.3, in order
to stress the changes brought by higher space dimensions.

Let α := (α1, . . . , αd ) denote a multiindex of nonnegative integers with
|α| := α1 + · · · + αd , w(x) denote a weight function, and

Dαu := ∂ |α|u
∂xα1

1 . . . ∂xαd
d

represent a distributional derivative of u(x) ∈ L2
w(). By definition, the

d-dimensional extension of H k
w(a, b) given by (2.1.35) is

H k
w() := {

u ∈ L2
w(); for |α| ≤ k, Dαu ∈ L2

w()
}
.

H k
w() is a Hilbert space with respect to the Sobolev inner product

(u, v)k :=
∑
|α|≤k

∫


w(x)Dαu(x)Dαv(x) dx (4.3.8)

and induced norm

‖u‖H k
w() :=

(∑
α≤k

‖Dαu‖2
L2
w()

)1/2

. (4.3.9)

The closure in H k
w() of functions belonging to Ck() with compact support

in  is the Sobolev space

H k
0,w() :=

{
u ∈ H k

w(); for 0 ≤ # ≤ k − 1,
∂#u

∂n#
= 0 on ∂

}
,

where the normal derivatives ∂#u/∂n# must be interpreted in the distributional
sense.

H k
w() and H k

0,w() are the relevant Hilbert spaces for multidimensional
problems into which finite-dimensional subspaces provide trial and test func-
tions for FE approximations. Embedding properties such as those introduced
in Section 2.1.3 also exist for Sobolev spaces in multidimensional problems.
In particular, one can show that for  ⊂ R

d (d = 2, 3), one has H k() ⊂
Ck−2(̄) with k ≥ 2 [14, 64]. Whereas in one dimension all elements of H 1 are
continuous functions, this is not the case for d > 1.

All differential problems analyzed in this chapter involve a single (unknown)
field to be approximated in one of the Sobolev spaces defined so far. However,
in forthcoming chapters, the differential problems to be tackled will involve
vector fields for which still other spaces of functions should be introduced.
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Let again  ∈ R
d denote a bounded open domain in d-dimensional space

and consider the vector v with components v# (# = 1, . . . , d) depending on all
space variables. With the same spirit as before, we introduce the Sobolev space
H k
w()d of vector functions,

H k
w()d := {

v; v# ∈ H k
w(), # = 1, . . . , d

}
. (4.3.10)

Quite naturally, in order to belong to H k
w()d , a vector v should have all its

components inside the Sobolev space H k
w(). It is then easy to show that H k

w()d

is a Hilbert space with respect to the inner product

(u, v)k :=
d∑

#=1

∑
|α|≤k

∫


w(x)Dαu#(x)Dαv#(x) dx (4.3.11)

and induced norm

‖u‖H k
w()d :=

(
d∑

#=1

∑
|α|≤k

‖Dαu#‖2
L2
w()

)1/2

, (4.3.12)

which are straightforward extensions to the vector case of the same quantities
(4.3.8) and (4.3.9) for scalar functions.

The definition of the Sobolev space H k
0,w()d that generalizes to vectors the

Sobolev space of functions with compact support for scalars follows exactly
the same pattern, and we have quite simply

H k
0,w()d := {

v; v# ∈ H k
0,w(), # = 1, . . . , d

}
. (4.3.13)

Having specified all the spaces of functions needed in this book, we proceed
with the treatment of some examples.

4.3.2 A Constant-Coefficient Case

To illustrate the use of the tensor-product bases, we consider an example on
the rectangular geometry  := [0, L1]× [0, L2] in R

2. We map each physical
coordinate x := (x, y) := (x1, x2) onto respective reference coordinates r :=
(r, s) = (r1, r2) ∈ [−1, 1]2 via the affine transformation xi = (Li/2)(ri + 1). A
typical function u(x) ∈ VN has the representation

u(x) =
N∑

i=0

N∑
j=0

ui jψi (r )ψ j (s), (4.3.14)
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with x(r) implied by the coordinate transformation. Note that differentiation
with respect to, say, x , is expressed in the reference coordinates as

∂u

∂x
=

N∑
i=0

N∑
j=0

ui j

2

L1

ψ ′i (r )ψ j (s), (4.3.15)

where the prime denotes differentiation with respect to the argument.
The 2D mass matrix is derived by simply evaluating (u, v) for all u, v ∈ VN :

(u, v) =
∫


vu dV =
∑

ı̂ ̂

∑
i j

v ı̂ ̂

(∫


ψ ı̂ψ̂ψiψ j dx
)

ui j (4.3.16)

= vT Mu,

where v = v ı̂ ̂ and u = ui j are the vectors of basis coefficients. Associating a

natural ordering of the basis coefficients, k̂ = 1+ ı̂ + (N + 1)̂ , k = 1+ i +
(N + 1) j , we give the entries of the mass matrix by

M
k̂k
=

∫ 1

−1

∫ 1

−1
ψi (r )ψ ı̂ (r )ψ j (s)ψ̂ (s)

L1

2
dr

L2

2
ds

= L1L2

4

(∫ 1

−1
ψ ı̂ (r )ψi (r ) dr

)(∫ 1

−1
ψ̂ (s)ψ j (s) ds

)
= L1L2

4
M̂ ı̂i M̂ ̂ j ,

or, equivalently,

M = L1L2

4
M̂ ⊗ M̂ . (4.3.17)

Here, M̂ is the mass matrix associated with the one-dimensional reference
domain ̂ = [−1, 1]. From the above considerations, it is quite apparent that
the tensor-product-based mass matrix in R

3 will be

M = L1L2L3

8
M̂ ⊗ M̂ ⊗ M̂

for the regular parallelepiped  = [0, L1]× [0, L2]× [0, L3].
Notice that if M̂ is full, then M is full, comprising (N + 1)2d nonzero entries

in the d-dimensional case. Nonetheless, because of the tensor-product form, it
is possible to compute the action of M (or M−1) on a vector in only O(N d+1)
operations, as shown in the preceding section. If the one-dimensional mass
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matrix is diagonal, however, its d-dimensional counterpart will also be diagonal,
and application of M (or M−1) to a vector requires only O(N d ) operations.

The availability of a diagonal mass matrix is a particularly useful feature in
time-stepping schemes that require frequent application of M−1 or in solution
of more complex problems, such as the unsteady Stokes problem, in which the
mass matrix plays an integral role. Clearly, M̂ will be diagonal if the basis func-
tions are orthogonal with respect to the inner product (4.3.4). One possibility
is to choose {ψi }Ni=0 to be a set of orthogonal functions such as Legendre poly-
nomials. However, these will not automatically satisfy the essential boundary
conditions associated with V , and an additional constraint would be required in
order to discretize the BVP (4.3.3). As an alternative to the fully orthogonal ba-
sis, one can use localized Lagrangian interpolants coupled with mass lumping,
in which the mass matrix is replaced by a diagonal matrix with an identical row
sum. This is achieved by the SEM in a more formal setting.

The SEM is defined not only by its choice of Lagrangian basis functions,
ψi := πi (2.4.3), but also by the associated quadrature rule or inner-product
definition. In this case, the inner product (·,·) of Equation (4.3.4) is approximated
by the discrete inner product (·,·)N given by Gauss–Lobatto quadrature (see
Appendix B) in each spatial direction. For a single coordinate direction and
with {ξ0, ξ1, . . . , ξN } and {ρ0, ρ1, . . . , ρN } denoting respectively the quadrature
nodes and weights, one has

∫ 1

−1
g(r ) dr ≈

N∑
k=0

ρk g(ξk). (4.3.18)

Each inner product in the SEM is computed by first evaluating the integrand,
then substituting quadrature (4.3.18) for integration. Thus, entries in M̂ become

M̂i j :=
N∑

k=0

ρkπi (ξk)π j (ξk).

However, because the basis is Lagrangian [i.e., πi (ξ j ) = δi j , where δi j is the
Kronecker delta], it is clear that M̂ = diag(ρi ).

The stiffness matrix K is derived in a similar manner. We begin with the case
where p(x) and q(x) are constant, leading to a particularly simple form that is
amenable to both fast evaluation and fast inversion.

In R
2, the energy inner product is

A(u, v) =
∫


(
p
∂v

∂x

∂u

∂x
+ p

∂v

∂y

∂u

∂y
+ qvu

)
dx.
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Using the expansions (4.3.14)–(4.3.15) for u and v, we calculate the first term
on the right:∫



p
∂v

∂x

∂u

∂x
dx =

∑
ı̂ ̂

∑
i j

v ı̂ ̂ p
L2

L1

(∫ 1

−1
ψ̂ψ j ds

)(∫ 1

−1
ψ ′ı̂ψ

′
i dr

)
ui j

=
∑

ı̂ ̂

∑
i j

v ı̂ ̂ p
L2

L1
M̂ ̂ j K̂ ı̂ i ui j ,

where K̂ is the one-dimensional stiffness matrix on [−1, 1]. Using tensor no-
tation as in (4.3.17) gives∫



p
∂v

∂x

∂u

∂x
dx = p

L2

L1
vT (M̂ ⊗ K̂ )u. (4.3.19)

Numerical quadrature can be applied also for the evaluation of K̂ :

K̂ i j =
N∑

k=0

ρkψ
′
i (ξk)ψ ′j (ξk). (4.3.20)

Contrary to the mass matrix, in this case the result is exact, because the (N + 1)-
point Gauss–Lobatto quadrature rule is exact for all polynomials of degree
2N − 1 or less, and ψ ′iψ

′
j is of degree 2N − 2.

Combining (4.3.19) with a similar expression for the y-derivatives and with
the mass matrix derived above yields

A(u, v) = vT

(
p

L2

L1
(M̂⊗ K̂ ) + p

L1

L2
(K̂⊗ M̂) + q

L1L2

4
(M̂⊗ M̂)

)
u

(4.3.21)

and

F(v)= L1L2

4
vT (M̂ ⊗ M̂) f . (4.3.22)

The second expression results from the insertion of the interpolant of f (x) into
(4.3.6).

Equations (4.3.17)–(4.3.22) describe the essential mechanics for evaluating
the bilinear forms (4.3.4)–(4.3.6) for any element pair u, v ∈ VN . The discrete
Helmholtz operator

H̄ := p

[
L2

L1
(M̂ ⊗ K̂ ) + L1

L2
(K̂ ⊗ M̂)

]
+ q

L1L2

4
(M̂ ⊗ M̂) (4.3.23)
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is referred to as the Neumann operator, because it is the system governing
the homogeneous Neumann problem. It is symmetric positive definite unless
q = 0, in which case it has a one-dimensional nullspace corresponding to the
constant mode.

If u and v are to satisfy the essential boundary condition, that is, u(x) =
v(x) = 0 on ∂D , then the additional boundary constraints must be applied be-
fore the weighted residual problem (4.3.3) can be properly formulated. For
Lagrangian bases, this simply entails formulating the problem in terms of
restricted index ranges on ı̂ , ̂ , i , and j when formulating the problem in
terms of v ı̂ ̂ and ui j . The final solution is then obtained by extending the basis
coefficient set by zero for those coefficients corresponding to homogeneous
Dirichlet boundary values. Formally, we can write the restricted coefficient set
as ũ = Ru and the extended, or prolongated, solution as u = RT ũ. Here R is an
N × (N + 1)d restriction operator comprising N ≤ (N + 1)d columns of the
N ×N identity matrix with columns of zeros interspersed at locations corre-
sponding to nodal points on ∂D . Generally, R will also have a tensor-product
form, R = R1 ⊗ · · · ⊗ Rd . Note that R is never explicitly formed, since only
the action of R is required. This is readily implemented through the use of an
index set pointing to the Dirichlet nodes on ∂D .

Applying (4.3.3) leads then to the linear system for u:

Hũ = RM f ,
(4.3.24)

u = RT ũ,

with

H := R H̄ RT (4.3.25)

and M the mass matrix defined by (4.3.17). The careful implementation of
the boundary conditions outlined above implies that the restricted Helmholtz
operator H is symmetric positive definite, and (4.3.24) can consequently be
solved using PCG (see Section 2.8).

If u is to satisfy inhomogeneous Dirichlet boundary conditions, the solution
can be split into u := uh + ub, where uh satisfies homogeneous boundary con-
ditions on ∂ and ub is any function in VN that satisfies ub = u on ∂. In this
case, a symmetric system analogous to (4.3.24) results:

Hũ h = RM f − R H̄u b,
(4.3.26)

u = RT ũ h + u b.
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Since H has a form similar to (4.2.12), its forward and inverse action can
be evaluated in O(N 3) operations. The inversion can be effected using the
fast diagonalization method (4.2.15) once the generalized eigenvalue problem
associated with each one-dimensional operator pair, (Ri K̂ RT

i , Ri M̂ RT
i ), i =

1, . . . , d, has been solved in a preprocessing step. We emphasize, however,
that the fast diagonalization method breaks down under all but the simplest of
geometry deformations or if either p(x) or q(x) cannot be cast in tensor-product
form [see (4.4.8)]. In these more complex cases, it is nonetheless possible to
exploit the fast diagonalization method as a preconditioner, as demonstrated in
[83, 129].

4.3.3 The Variable-Coefficient Case

To develop the system matrices for the case of variable p(x), we require evalu-
ation of integrals of the form

Ax (u, v) :=
∫ 1

−1

∫ 1

−1
p(r, s)

∂v

∂r

∂u

∂r
dr ds, (4.3.27)

which constitutes a single term in the energy inner product A(u, v). To generate
the discrete operators, we insert the expansions (4.3.14)–(4.3.15) for u, v, and
p into (4.3.27):

Ax (u, v) =
∑

i j

∑
ı̂ ̂

vi j

∑
mn

pmn

(∫ 1

−1
ψ ′iψ

′
ı̂ψm dr

)(∫ 1

−1
ψ jψ̂ψn ds

)
u ı̂ ̂ .

(4.3.28)

If left in this form, the cross term pmn destroys the tensor-product form and
leads to unacceptable fill in the stiffness matrix.

The SEM avoids this difficulty through the use of a high-order quadrature rule
coupled with Lagrangian basis functions based on the GLL points ξi . Employing
the basis functions ψi = πi (r ) described in Chapter 2, we approximate the first
integral on the right in (4.3.28) by

N∑
k=0

π ′i (ξk)π ′ı̂ (ξk)πm(ξk)ρk = π ′i (ξm)π ′ı̂ (ξm)ρm = D̂mi D̂m ı̂ρm, (4.3.29)

where D̂mi := π ′i (ξm). The second integral in (4.3.28) is approximated by

N∑
k=0

π j (ξk)π̂ (ξk)πn(ξk)ρk = δ jnδ̂nρn. (4.3.30)
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Let P := diag(pm̂) and W := diag(wm̂) be the diagonal matrices having entries
pm̂ := pmn and wm̂ := pmnρmρn , respectively, where m̂ = 1+ m + (N + 1)n
corresponds to the natural ordering of the nodes. W can be expressed in terms
of tensor-product forms in M̂ = diag(ρi ),

W = P(M̂ ⊗ M̂), (4.3.31)

and the integral expression (4.3.28) recast in terms of W ,

Ax (u, v) = vT (I ⊗ D̂T )W (I ⊗ D̂)u.

From this we can conclude that the spectral-element stiffness matrix for (4.3.2)
with variable p(x) and q = 0 is of the form

K̄ = (I ⊗ D̂T )W (I ⊗ D̂) + (D̂T ⊗ I )W (D̂ ⊗ I ). (4.3.32)

As in (4.3.25), Dirichlet boundary conditions are imposed by restricting the
index set of the trial (u) and test (v) functions to arrive at an invertible system
K := RK̄ RT .

The presence of the matrix P (which is generally not in tensor form) in
(4.3.31) spoils the overall tensor-product form of (4.3.32), and therefore the
fast diagonalization method cannot be used to invert K . However, because the
cost of applying the diagonal matrix W to a vector is only O(N d ), the leading-
order complexity of forward application of K is governed by the differentiation
associated with the matrices D̂ and D̂T and is only O(N d+1). Note that if W
were full rather than diagonal, the cost of applying K would be O(N 2d ). It
is precisely the use of the diagonal mass matrix M̂ [i.e., the approximations
(4.3.29)–(4.3.30)] that leads to a favorable complexity estimate in the variable-
coefficient case and that is central to the utility of high-order methods in complex
geometries.

4.4 Deformed Geometries

We now consider the case where  may be deformed, as illustrated in Figure
4.4.1. After suitable transformations to the computational domain ̂, the pre-
ceding methodology developed for the variable-coefficient case can be readily
extended to develop a compact formulation of the stiffness matrix in the case
of deformed geometries. To highlight the many symmetries in the problem, we
derive the result for the case d = 3.
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Figure 4.4.1. Sketch of coordinate transformation from physical domain  to compu-
tational domain ̂.

Assume that there exists an invertible map x(r) from the physical deformed
domain (x) to the reference domain ̂(r) := [−1, 1]d for which the Jacobian

J (r) = det


∂x1

∂r1

. . .
∂x1

∂rd
...

...
∂xd

∂r1

. . .
∂xd

∂rd


is nonvanishing and therefore of the same sign everywhere on ̂. (Specifically,
all vertex angles should be bounded away from 0 and π .) Without loss of
generality, assume also that the Jacobian is positive, implying that an element
volume in the transformed coordinates is positive.

Assuming q = 0 for simplicity, the energy inner product (4.3.5) is

A(u, v) =
∫


p(x)∇v · ∇u dx,=
d∑

k=1

∫


p
∂u

∂xk

∂v

∂xk

dx. (4.4.1)

Going from  to ̂, partial derivatives of u are evaluated according to the
chain rule:

∂u

∂xk

=
d∑

i=1

∂u

∂ri

∂ri

∂xk

, k = 1, . . . , d.
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Combining with a similar expression for v leads to

A(u, v) =
d∑

k=1

∫
̂

p

(
d∑

i=1

∂v

∂ri

∂ri

∂xk

)(
d∑

j=1

∂u

∂r j

∂r j

∂xk

)
J (r) dr

=
d∑

i=1

d∑
j=1

∫
̂

p
∂v

∂ri

(
d∑

k=1

∂ri

∂xk

∂r j

∂xk

J (r)

)
∂u

∂r j

dr, (4.4.2)

where, in the last equation, the geometric factors associated with the metrics,
∂ri/∂xk , and the Jacobian have been assembled within a set of functions

Gi j (r) :=
d∑

k=1

∂ri

∂xk

∂r j

∂xk

J (r), 1 ≤ i, j ≤ d. (4.4.3)

We see that (4.4.2) has a form similar to (4.3.27). As in that case, it is
evaluated by using numerical quadrature on the tensor product of the Gauss–
Lobatto grid points, ⊗d

i=1'
i
N+1, yielding

A(u, v) =
d∑

i=1

d∑
j=1

∑
klm

[
∂v

∂ri

pGi j

∂u

∂r j

]
(ξk ,ξl ,ξm )

ρkρlρm . (4.4.4)

The coefficient p, geometric terms Gi j , and quadrature weights ρ∗ can
all be conveniently combined into a set of d2 diagonal matrices, Gi j , i, j ∈
{1, . . . , d}2. Let

(Gi j ) k̂ k̂
:= [pGi j ](ξk ,ξl ,ξm )ρkρlρm, (4.4.5)

with k̂ := 1+ k + (N + 1)l + (N + 1)2m, k, l,m ∈ {0, . . . , N }3, defining a
natural ordering of the quadrature points. Note that multiplication of u by each
Gi j simply involves pointwise multiplication (collocation) of the nodal values
uklm with the terms on the right of (4.4.5), while the derivatives in (4.4.4) are
evaluated, for example, as

∂u

∂r1

∣∣∣∣
klm

=
N∑

p=0

D̂kpu plm, k, l,m ∈ {0, . . . , N }3

= (I ⊗ I ⊗ D̂)u.

Defining

D1 := (I ⊗ I ⊗ D̂), D2 := (I ⊗ D̂ ⊗ I ), D3 := (D̂ ⊗ I ⊗ I ), (4.4.6)
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we can combine the derivative operators with the geometric factors (4.4.5) to
yield a final compact form for the energy inner product (4.4.2):

A(u, v) = vT

D1

D2

D3

TG11 G12 G13

G21 G22 G23

G31 G32 G33

D1

D2

D3

 u

= vT DT G Du. (4.4.7)

Since Gi j = G ji , only six of the geometric factors need to be computed. The
leading-order storage requirement for the factored stiffness matrix is thus only
6(N + 1)3, compared with (N + 1)6 for the full matrix.

The work required for a matrix–vector product is similarly reduced. In ap-
plying K̄ := DT G D to a vector u, one begins with d tensor-product-based
derivative evaluations, û j := D j u, followed by multiplication with the geomet-
ric factors, ũi :=∑

j Gi j û j , followed finally with a sum across the transposed
derivative operators, K̄ u =∑

i DT
i ũi , for a total operation count of 12(N +

1)4 + 15(N + 1)3. This is a significant improvement over the 2(N + 1)6 cost
incurred if the stiffness matrix is computed and stored explicitly.

If the physical domain is an L1 × L2 × L3 rectangular parallelepiped of
arbitrary orientation, the metrics and Jacobian simply become constants with
Gi j ≡ 0, i �= j . If, in addition, p is constant or has tensor-product form,
p(ξi , ξ j , ξk) = p1(ξi )p2(ξ j )p3(ξk), then K̄ simplifies to

K̄ = W (I ⊗ I ⊗ K̃ 1 + I ⊗ K̃ 2 ⊗ I + K̃ 3 ⊗ I ⊗ I ), (4.4.8)

with W := (L1L2L3/8)(P3 M̂ ⊗ P2 M̂ ⊗ P1 M̂), K̃ i := 4
L2

i
(Pi M̂)−1 D̂T Pi M̂ D̂,

and Pi := diag(pi (ξ j ))N
j=0. Matrix–vector product evaluation using (4.4.8) re-

quires half as many operations as using (4.4.7).
The extension of the mass matrix to the deformed geometry case is a straight-

forward application of quadrature and leads (in R
3) to the diagonal form

Mı̂ ı̂ = J (ξi , ξ j , ξk)ρiρ jρk, ı̂ := 1+ i + (N + 1) j + (N + 1)2k. (4.4.9)

If q(x) is nonzero in (4.3.1), the corresponding Helmholtz operator is created
by augmenting the stiffness matrix K̄ as

H̄ := K̄ + QM, (4.4.10)

where Q is the diagonal matrix corresponding to nodal values q(x(ξi , ξ j , ξk)).
Although the presence of the variable q and Jacobian degrades the accuracy
of the quadrature somewhat, the fact that it is high-order tends to diminish



182 4. Multidimensional Problems

the severity of this “variational crime” [369] (see, however, Figure 4.4.5). The
possibility of using higher-order integration rules to overcome this difficulty
was investigated by Maday and Rønquist [264], who concluded that, for the
added cost, it was better to recover the accuracy by simply increasing N .

It is often convenient for preconditioning purposes to have a closed form for
the diagonal of K̄ . To illustrate the basic steps for its derivation, we introduce
the unit vector ê i jk , which is 1 at the point (ξi , ξ j , ξk) and 0 at all other points

in ̂. The desired diagonal elements of K̄ are given by

di jk = êT
i jk K̄ ê i jk =

d∑
l=1

d∑
m=1

(Dlê i jk)T Glm Dmê i jk (4.4.11)

for i, j, k ∈ {0, . . . , N }3. For m = 1, a single element of the rightmost term in
(4.4.11) is

êT
pqr D1ê i jk := êT

pqr (I ⊗ I ⊗ D̂) ê i jk = D̂ piδq jδrk,

where D̂ pi is an element of the one-dimensional derivative matrix D̂, and δq j

and δrk are the usual Kronecker delta functions. From (2.4.9), the diagonal of
D̂ is zero in all but the first and last columns; that is, for the interior points
i = 1, . . . , N − 1 the derivative of each πi (ξ ) vanishes at ξi . Therefore, for
i = 1, . . . , N − 1,

êT
pqr D1êi jk = (1− δpi )D̂ piδq jδrk . (4.4.12)

Recalling that the (diagonal) matrices in G represent a simple pointwise
scaling, we see from (4.4.12) that the off-diagonal blocks Glm , l �= m, will
make no contribution to (4.4.11) for points in the domain interior. For instance,
with l = 2 and m = 1, we have for i = 1, . . . , N − 1

(D2ê i jk)T G21 D1ê i jk =
(N ,N ,N )∑

p,q,r
=(0,0,0)

(δpi D̂q jδrk)(G21)pqr [(1− δpi )D̂ piδq jδrk],

which vanishes because δpi (1− δpi ) ≡ 0. Continuing in this fashion, one con-
cludes that

di jk :=
N∑

p=0

[
D̂2

pi (G11)pjk + D̂2
pj (G22)i pk + D̂2

pk(G33)i j p

]
(4.4.13)

correctly determines the diagonal of K̄ (4.4.7) for all points in the interior of
̂, that is, for i, j, k ∈ {1, . . . , N − 1}3.
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Additional terms are required for the surface values (where the diagonal of
D̂ is nonvanishing). Following a similar approach, and exploiting the symmetry
of G, one finds that the correct updates will be generated by augmenting the
surface values in (4.4.13) according to

di jk := di jk + D̂ii D̂ j j (G12)i jk + D̂ii D̂kk(G13)i jk,

i = 0, N , j = 0, . . . , N , k = 0, . . . , N , (4.4.14)

for the r = ±1 surfaces, with analogous corrections on the s = ±1 and t = ±1
surfaces.

4.4.1 Generation of Geometric Deformation

The functions Gi j (r) defined by (4.4.3) collect all the information about the
deformed geometry and must be analyzed case by case. Common practice
regarding domain mappings relies usually on the use of isoparametric mappings
in which the geometry, x, is represented in terms of the same polynomial basis
used for the solution and data:

x(r, s, t) =
N∑

i=0

N∑
j=0

N∑
k=0

xi jkπi (r )π j (s)πk(t). (4.4.15)

To accurately evaluate the integrand in (4.4.1), one must find a set of values xi jk

that will yield a smooth distribution of x(r) in the interior of ̂ and that will
satisfy boundary conditions xi jk |∂̂ = x̃(ξi , ξ j , ξk)|

∂̂
, where x̃ is the prescribed

surface geometry.
A useful mapping from ̂ to  is provided by a blending technique derived

by Gordon and Hall [162], which is based on the Boolean sum of interpolation
operators. Let Ir , Is , and It denote the one-dimensional Lagrange interpolation
operators such that Ir∗ f (r) is linear in the r∗-direction and coincides with f at
r∗ = ±1. Introducing the Boolean sum Iri ⊕ Ir j of any pair of operators Iri , Ir j

(i �= j),

Iri ⊕ Ir j := Iri + Ir j − Iri Ir j ,

one can show that the relationships

x(r) = (Ir ⊕ Is)x̃(r) (in R
2), (4.4.16)

x(r) = (Ir ⊕ Is ⊕ It )x̃(r) (in R
3) (4.4.17)

provide an approximation of x̃(r) that coincides with this function along the
continuous set of boundary points.
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The most striking property of (4.4.16)–(4.4.17) lies in the fact that no other
information is needed to construct x than the boundary values, which are re-
produced exactly. This fulfills precisely the task set earlier: extend, inside the
domains  and ̂, the correspondence between these domains set by their
boundaries.

It is convenient to implement the Gordon–Hall procedure as a sequence
of approximations, each incorporating boundary information of successively
higher dimension, 0, . . . , d − 1. Using the identity Ir∗ Ir∗ = Ir∗ , we can express
this sequence in the 2D case as

(Ir ⊕ Is)x̃(r, s) = Ir Is x̃+ Ir (x̃− Ir Is x̃)+ Is(x̃− Ir Is x̃).

The first term on the right is the bilinear interpolant of the vertex values,
x̃(±1,±1). Noting that x̃− Ir Is x̃ vanishes at the vertices, we see that the sec-
ond term incorporates the s-edge variation as a linear interpolant in r , and the
third incorporates the r -edge variation as a linear interpolant in s.

A 3D application of the Gordon–Hall procedure is illustrated in Figure
4.4.2. We assume that x̃(r) is expressed in the usual form (4.4.15), with interior

X Y

Z

vvijk =
∑
ı̂̂k̂

π1
ı̂ (ξ

N
i )π1

̂ (ξ
N
j )π1

k̂
(ξNk )x̃
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e

eijk = vijk +
∑
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∑
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∑
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∑
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Figure 4.4.2. Application of the Gordon–Hall algorithm in R
3. Subscripts i , j , and k

range from 0 to N . Summations involving ı̂ , ̂ , and k̂ range from 0 to 1, accounting for
contributions from opposing faces in each of the three coordinate directions.
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coefficients to be determined. The first transformation (v) defines a mapping on
̂ that incorporates the vertex information only–the function v = Ir Is It x̃ coin-
cides with the prescribed data at the element vertices and uses trilinear interpo-
lation elsewhere. The second transformation (e) adds to the vertex function any
edge deformation induced by the perturbation (x̃− v). The final transformation
(f) extends the edge–vertex map by the face perturbation (x̃− e). One can stop
at any point in the sequence and set x equal to v, e, or f, with each approximation
incorporating more information than the preceding one. For example, if one has
only wire-frame information about the mesh, then e provides an interpolant onto
the faces and into the interior of . Or (as is frequently the case), if data are
specified on only one face, one can employ all the available vertex and edge
data and limit the sums in the f-computation to range only over the specified
face(s).

Other interpolation schemes are possible. For example, one may solve
Laplace’s equation on ̂ for each component xi , i = 1, . . . , d:

∂2xi

∂r2
+ ∂2xi

∂s2
= 0 in [−1, 1]2, xi |∂̂ = x̃i |∂̂ , (4.4.18)

which can easily be done by using (4.3.26) in conjunction with (4.2.14).
Whichever interpolation procedure is employed, it is necessary first to de-

termine a distribution of nodal points on each of the 2d faces constituting ∂.
Common practice in two dimensions is to use an arclength-preserving distribu-
tion or a projection onto the chord that joins the vertices of the given edge. In
R

3 the edge distribution alone may be sufficient to bootstrap the mesh genera-
tion in the absence of face data. For the Gordon–Hall method, the approxima-
tion e provides a reasonable interpolation of edge data onto the faces and into
the interior. For the Laplacian method, one can simply use the 2D algorithm
(4.4.18) to determine the surface node distribution on each of the six faces,
followed by an extension of the data into the volume by solving the 3D Laplace
equation.

Once x is obtained, the values of the metrics, ∂xi/∂r j , are readily com-
puted with the differentiation matrices D j (4.4.6). The Jacobian and the inverse
metrics are computed pointwise, with the latter satisfying (in R

2)
∂x1

∂r1

∂x1

∂r2

∂x2

∂r1

∂x2

∂r2


ξp,ξq


∂r1

∂x1

∂r1

∂x2

∂r2

∂x1

∂r2

∂x2


ξp,ξq

≡
(

1 0
0 1

)

for each p, q ∈ {0, . . . , N }2. A similar identity holds in three dimensions.
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4.4.2 Surface Integrals and Robin Boundary Conditions

Robin boundary conditions commonly arise in heat transfer problems where the
energy flux on the domain boundary is proportional to the temperature differ-
ence between the surface and a given external value [see (1.6.17)]. In the multi-
dimensional case, the pointwise boundary terms applied in the one-dimensional
example (2.1.23) must be extended to boundary integrals. Let u satisfy

−∇ · [p(x)∇u(x)] = f (x), x ∈ , (4.4.19)

∇u · n̂ = 0 on ∂N , (4.4.20)

∇u · n̂+ αu = β on ∂R . (4.4.21)

Following the standard approach, we multiply (4.4.19) by a test function v, and
integrate over  to obtain∫



p∇v · ∇u dV −
∫
∂

vp∇u · n̂ d S =
∫


v f dV . (4.4.22)

Using the boundary conditions (4.4.20)–(4.4.21) and making the substitution
∇u · n̂ = β − αu on ∂R , we obtain the weak formulation of this problem:
Find u ∈ V such that∫



p∇v · ∇u dV +
∫
∂R

vpαu d S =
∫


v f dV +
∫
∂R

vpβ d S ∀v ∈ V .

(4.4.23)

Spectral-element discretization of (4.4.23) proceeds as before, with La-
grangian bases representing u, v, and f . The surface integrals in (4.4.23) are
treated via numerical quadrature. Since only a small number of the test func-
tions v are nonzero on ∂R , the resultant system will be largely unchanged
from the homogeneous Neumann system (4.4.10).

The procedure is illustrated for the domain shown in Figure 4.4.3. Here,
∂R is the image in physical coordinates of ∂̂R := (r, s, 1). For the (N +
1)2 equations associated with nodes xR

i j (where the superscript denotes the
restriction to ∂R), one adds to the corresponding diagonal entries of K̄ the
coefficients J̃ R

i jρiρ jαpR
i j and to the r.h.s. the terms J̃ R

i jρiρ jβpR
i j , where pR

i j =
p(xR

i j ) and J̃ R
i j is the Jacobian associated with the surface integral over ∂R .

The surface Jacobian is determined by noting that an infinitesimal displace-
ment dr on ∂̂R gives rise to a corresponding displacement

εr := ∂x
∂r

dr =
(
∂x

∂r
,
∂y

∂r
,
∂z

∂r

)T

dr
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εs
εr

xR
ij

∂ΩR

Figure 4.4.3. Description of surface geometry in R
3.

on ∂R , while an orthogonal displacement ds yields εs = ∂x
∂s ds. It is clear from

Figure 4.4.3 that an infinitesimal area on the physical surface is given by

d A = ‖εr × εs‖ =
∥∥∥∥∂x
∂r
× ∂x

∂s

∥∥∥∥ dr ds,

where ‖·‖ denotes the standard Euclidean norm. Thus, the surface Jacobian at
a point xR

i j is

J̃ R
i j :=

∥∥∥∥∥ ∂x
∂r

∣∣∣∣R

i j

× ∂x
∂s

∣∣∣∣R

i j

∥∥∥∥∥ .
The associated unit normal in physical space is

n̂i j := 1

J̃ R
i j

(
∂x
∂r

∣∣∣∣R

i j

× ∂x
∂s

∣∣∣∣R

i j

)
.

Deformed-Geometry Example: Hamel Flow

To illustrate the effects of mesh distortion, we consider an exact solution to the
steady Stokes equations presented in Chapter 5. For a 2D divergent channel,
illustrated in Figure 4.4.4, Hamel [183] gives the exact solution

u = Qx

x2 + y2

(
x2 − y2

x2 + y2
− cos(2α)

)
× 1

sin(2α)− 2α cos(2α)
,

v = Qy

x2 + y2

(
x2 − y2

x2 + y2
− cos(2α)

)
× 1

sin(2α)− 2α cos(2α)
,

p = p0 − 2µQ

x2 + y2

x2 − y2

x2 + y2

1

sin(2α)− 2α cos(2α)
,
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Bulging decomposition 29 × 29 d.o.f. eq.

Wedging decomposition 29 × 29 d.o.f. eq.

D
LS 1 3

7 4

D
LS 1 3

7 4

Figure 4.4.4. Computational domains for Hamel flow.

where (u, v) is the velocity vector, p is the pressure, Q is the flow rate, 2α is
the total included angle of the aperture, and p0 is a constant reference pressure.

Schneidesch and Deville [345] consider the computational domains shown
in Figure 4.4.4. The bottom of the domain coincides with the x-axis, where a
symmetry condition ( ∂u

∂y = 0, v = 0) is applied. The exact solution is applied on
the left (inlet) and right (outlet) boundaries. The velocity is zero along the top
wall, which is inclined at an angle of α = 5◦ with respect to the horizontal. The
domains are partitioned into four subdomains by a sinusoidal interface in either
bulging or wedging configurations, as illustrated in Figure 4.4.4. The parameter
D specifies the ratio of the amplitude of the sinusoid to the subdomain height at
the inlet. The maximum pointwise velocity error in each of the subdomains is
shown in Figure 4.4.5 as D is varied from 0.0 to 0.4. The most striking feature
of these results is the four-orders-of-magnitude reduction in accuracy as D is
increased from 0 to 0.05, which is attributed to the error incurred in evaluating
expressions of the form (4.4.2) with quadrature. Despite the significant differ-
ence in errors, all the cases exhibit exponential convergence as the polynomial
degree is increased from N = 6 (13× 13 case) to N = 14 (29× 29 case).

4.5 Spectral-Element Discretizations

The methodology presented in the preceding section suffices for moderate ge-
ometric deformation. However, more complex geometries or widely disparate
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Figure 4.4.5. Influence of mesh distortion D on convergence for Hamel flow example
(from [345]).
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✲
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s

Ω̂

Figure 4.5.1. Example of spectral-element discretization in R
2, showing GLL nodal lines

for (E, N ) = (3, 4).

resolution requirements call for greater flexibility in the nodal point distribution.
Such flexibility has been the hallmark of FEMs from their inception. To combine
the high-order convergence rates and fast operator evaluation properties of spec-
tral methods with the geometric flexibility of FEs, Patera [297] developed the
SEM for simulation of incompressible flows. The original implementation was
based on Chebyshev collocation within each element. Subsequently, Maday
and Patera [261] developed a Galerkin formulation based on GLL quadrature,
which is described here.

The SEM is based on a decomposition of the global domain, ̄ =  ∪ ∂,
into E nonoverlapping subdomains (or elements), e, e = 1, . . . , E . As illus-
trated in Figure 4.5.1, the intersection of the closure of any two subdomains is
void, a vertex, an entire edge, or an entire face (in R

3). (Nonconforming dis-
cretizations that relax this condition are treated in Chapter 7.) Each subdomain
is a deformed quadrilateral in R

2 or deformed parallelepiped in R
3 under a map-

ping xe(r) ∈ e =⇒ r ∈ ̂, with well-defined inverse re(x) ∈ ̂ =⇒ x ∈ e,
and thereby admits the use of the tensor-product bases introduced in Section
4.3. Generally, the subdomain geometry will be represented by an isoparametric
mapping similar to Equation (4.4.15).

The underlying approximation space in the SEM is VN := PN ,E ∩ H 1, where
PN ,E is the space of piecewise continuous functions that map to polynomials
in the reference domain,

PN ,E () := {v(xe(r))|e ∈ PN (r1)⊗ · · · ⊗ PN (rd ), e = 1, . . . , E}.
(4.5.1)
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Here, PN (r ) is the space of all polynomials of degree less than or equal to N
in the argument. For efficiency reasons noted previously, and to permit trivial
enforcement of interelement continuity, the basis within each element is taken to
be a tensor product of Lagrangian interpolants. Thus, for 2D problems, function
representation takes the form

u(x)|e =
N∑

i=0

N∑
j=0

ue
i jπi (r )π j (s), r, s ∈ [−1, 1]2. (4.5.2)

Here, ue
i j represents nodal values for element e; πi (r ) and π j (s) are the

Lagrangian interpolant basis functions based on the GLL points, as introduced
in (2.4.3); and x is an isoparametric mapping of the local geometry,

x(r, s)|e :=
N∑

i=0

N∑
j=0

xe
i jπi (r )π j (s), r, s ∈ [−1, 1]2.

Within the framework of multielement discretizations, the preceding discrete
operators for the scalar product, the bilinear form, and the source term are
defined by

(u, v)N :=
E∑

e=1

∫
e

u(x)v(x) dx,

AN (u, v) :=
E∑

e=1

∫
e

(p(x)∇u · ∇v + q(x)uv) dx, (4.5.3)

FN (v) :=
E∑

e=1

∫
e

f (x)v(x) dx.

In the SEM, quadrature is substituted for the integrals, resulting in local forms
similar to the single-domain case introduced in Sections 4.3–4.4. The Dirichlet
problem (4.3.3) becomes the following: Find u ∈ VN ,0 such that

AN (u, v) := FN (v) ∀v ∈ VN ,0, (4.5.4)

where VN ,0 := {v ∈ VN : v|∂D
= 0}, and ∂D is the subset of ∂ on which

homogeneous Dirichlet boundary conditions are enforced.

4.5.1 Continuity and Direct Stiffness Summation

To construct VN := PN ,E ∩ H 1, we restrict the space PN ,E (4.5.1) to admit
only functions that are continuous across element interfaces. One of the major
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advantages of the Lagrangian basis (4.5.2) is that function continuity is enforced
by simply equating coincident nodal values, that is,

xe
i j = xê

ı̂ ̂ =⇒ ue
i j = uê

ı̂ ̂ . (4.5.5)

If N̄ is the number of distinct nodes in , then (4.5.5) represents (N + 1)d E −
N̄ constraints on the choice of local nodal values, ue

i j .
It is convenient for notational purposes to cast the constraint (4.5.5) in matrix

form. Let u ∈ R
N̄ denote the vector of nodal values associated with a global

numbering of the distinct nodes in all of , as illustrated in Figure 4.5.2. Let
ue ∈ R

(N+1)d
denote the vector of local basis coefficients associated with e:

ue := (
ue

00, ue
10, . . . , ue

N N

)T
, e = 1, . . . , E,

(a) (b)

(c)

QuL u

Ω Ω1 Ω2
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Figure 4.5.2. Example of spectral-element mesh for (E, N ) = (2, 2): (a) global values
are mapped to (b) local values by (c) the operation uL = Qu.
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and let uL be the collection of these local vectors:

uL :=



u1

u2

...
ue

...
uE


=



u1
0,0

u1
1,0
...

u1
N ,N

u2
0,0
...

uE
N ,N


.

If u is to be continuous, then there exists a Boolean connectivity matrix Q that
maps u to uL , ensuring that (4.5.5) is satisfied, as illustrated in Figure 4.5.2.
The operation

uL = Qu (4.5.6)

is referred to as a scatter from the global (u) to the local (uL ) vector. For
example, in Figure 4.5.2 the global value u3 is copied to local coefficients u1

2,0

and u2
0,0 as a result of the two unit entries in the third column of Q.

Note that for every global vector u there is a corresponding local vector, uL ,
given by (4.5.6). The converse is not true, because Q is not invertible. However,
we will frequently employ the closely related gather operation

v = QT uL (4.5.7)

and denote the ouput (v) with a different notation from the input (uL ). Whereas
the action of Q is to copy entries of u to uL , the action of QT is to sum entries
from corresponding nodes. This is clear from Figure 4.5.2, where it can be
seen that QT will have multiple 1s on several rows, implying, for example, that
v3 = u1

2,0 + u2
0,0.

In practice, the matrix Q is never constructed. Rather, the actions of Q and
QT are implemented via indirect addressing, as illustrated by the pseudocode
in Figure 4.5.3. For the example of Figure 4.5.2, the local-to-global mapping
array, global index(), would contain {1 2 3 4 5 6 7 8 9} for element 1, and
{3 10 11 6 12 13 9 14 15} for element 2.

For high-order methods, it is natural to store data in terms of local coef-
ficients ue

i j , as this readily allows evaluation of derivatives, integrals, and so
forth without having to first map data from global to local coordinates. This is
particularly true in parallel, where such mappings imply interprocessor commu-
nication. Consequently, a gather typically is followed immediately by a scatter
back to local form. We denote the combined gather–scatter operation by

-′ := Q QT (4.5.8)
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Procedure uL = Qu Procedure v = QT uL

do e = 1, . . . , E : v = 0
do j = 0, . . . , N : do e = 1, . . . , E :
do i = 0, . . . , N : do j = 0, . . . , N :

ı̂ = global index(i, j, e) do i = 0, . . . , N :
ue

i j = u ı̂ ı̂ = global index(i, j, e)
enddo v ı̂ = v ı̂ + ue

i j

enddo

Figure 4.5.3. Pseudocode for serial implementation of Q and QT in R
2.

and refer to application of -′ as direct stiffness summation. Direct stiffness
summation is a noninvertible, local-to-local transformation that amounts to
summing shared interface variables and redistributing them to their original
locations, leaving interior nodes unchanged. Parallel implementations of -′

are discussed in Section 8.5.

4.5.2 Spectral–Element Operators

To develop the spectral-element stiffness and mass matrices, we extend the
notion of local and global vector representations introduced in the preceding
section to system matrices.

For a single domain e, we identify with the bilinear form AN the integral∫
e

p∇v · ∇u dx = (ve)T K eue, (4.5.9)

where K e is the local stiffness matrix, evaluated by using quadrature to yield
a form similar to (4.4.7) or (4.4.8) according to whether e is deformed or
not. We further define the unassembled stiffness matrix as the block-diagonal
collection of local stiffness matrices

KL :=


K 1

K 2

. . .

K E

 .

Clearly we can extend the bilinear form (4.5.9) to the whole domain via∫


p∇v · ∇u dx =
E∑

e=1

(ve)T K eue

= vT
L KLuL .
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However, this holds only for continuous u and v, implying that there exist
vectors u and v such that uL = Qu and vL = Qv. Consequently,

∀v, u ∈ VN ,

∫


p∇v · ∇u dx = vT QT KL Qu . (4.5.10)

The N̄ × N̄ matrix K̄ := QT KL Q is referred to as the assembled Neumann
operator, since the approximation space has yet to be restricted for enforcement
of essential, or Dirichlet, boundary conditions on ∂D . K̄ has a one-dimensional
nullspace associated with the constant vector ê := (1, 1, . . . , 1)T .

The derivation of the spectral-element mass matrix is similar to (4.5.9)–
(4.5.10), resulting in the following expression for the bilinear form (v, u):

∀v, u ∈ VN ,

∫


vu dx = vT QT ML Qu, (4.5.11)

where ML is the block-diagonal matrix comprising local mass matrices Me, e =
1, . . . , E . The local mass matrices are evaluated by using quadrature, yielding
diagonal forms similar to (4.3.17) or (4.4.9). The assembled mass matrix M̄ :=
QT ML Q is thus also diagonal. Note that, because f ∈ L2, the inner product
associated with the linear functional FN (v) differs slightly from (4.5.11):

∀v ∈ VN, f ∈ PN ,E ,

∫


v f dx = vT QT ML f
L
.

Here, f has been replaced by its local interpolant, which may be discontinuous
across element boundaries.

Dirichlet boundary conditions can be enforced as in (4.3.24)–(4.3.26) by in-
troducing a Boolean restriction matrix R, which enumerates all but the Dirichlet
nodes, to yield an invertible stiffness matrix K := RT QT KL Q R. Alternatively,
one can use a mask array to restrict nodal values on ∂D to zero. The mask
can be applied in either global or local form, as illustrated in Figure 4.5.4.
The global form amounts to pre- and postmultiplying K̄ by a diagonal matrix,
to yield K :=MQT KL QM. The local form amounts to restricting u ∈ VN

to VN ,0 := VN ∩ H 1
0 by multiplying Qu by a mask array ML , and yields the

stiffness matrix K = QTML KLML Q. Both masks are essentially the iden-
tity matrix, save that diagonal entries corresponding to nodes on ∂D are set
to zero, and both forms yield the same stiffness matrix. Although the local
form is more useful in practice (one simply sets appropriate boundary values
to zero in each element), the global form is conceptually convenient because
the details of the boundary conditions are decoupled from the structure of the
assembled Neumann operator, which can be quite complex, particularly in the
nonconforming case (see Section 7.3).
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∂ΩD1

∂ΩD2

Figure 4.5.4. Global (left) and local (right) mask arrays. Open circles imply (M) ı̂ =
(ML )e

i j = 0. Solid circles imply (M) ı̂ = (ML )e
i j = 1.

Strictly speaking, the masked form of K is still not invertible, since it has
a nontrivial nullspace associated with values on ∂D . However, for itera-
tive solution techniques, in which solutions are constructed as linear combi-
nations of other vectors, the nullspace is not a problem provided that all of
the underlying basis vectors (search directions) vanish on ∂D , that is, that
all vectors are masked. Note that the masks are projectors (i.e., M =M2)
and that the local mask commutes with direct stiffness summation, that is,
ML Q QT = Q QTML .

In practice, ML is constructed by initializing a local array to unity, m̃L = ê;
zeroing each entry in m̃e, e = 1, . . . , E, on any face where Dirichlet conditions
are applied; performing “direct-stiffness multiply,” m̃L := -∗m̃L ; and setting
ML = diag(m̃e

i j ). The application of -∗, which is defined by replacing sum-
mation in Procedure QT with multiplication, ensures that all vertices common
to a Dirichlet surface are masked, even if an element is otherwise interior to
 or has only Neumann boundaries. The upper-right-corner vertex in Figure
4.5.4 is one such example.

4.5.3 Inhomogeneous Dirichlet Problems

We illustrate implementation of inhomogeneous boundary conditions by
considering the Helmholtz problem

−�u + qu = f in ,
(4.5.12)

u = g on ∂D, ∇u · n̂ = 0 on ∂N ,

with q > 0 a constant. The weighted residual formulation of (4.5.12) reads as
follows: Find u in H 1

b such that∫


(∇v · ∇u + vqu) dV =
∫


v f dV ∀v in H 1
0 , (4.5.13)
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where H 1
b is the space of functions in H 1 satisfying the inhomogeneous bound-

ary conditions on ∂D , and H 1
0 is the space satisfying homogeneous boundary

conditions.
Using superposition, we first symmetrize (4.5.13) by decomposing the solu-

tion into u = u0 + ub, where ub is any known function in H 1
b , and moving the

inhomogeneous boundary term to the r.h.s. The new unknown, u0, is therefore in
H 1

0 , implying that the trial and test spaces coincide. Application of the spectral-
element operators introduced in the preceding section leads to the symmetric
positive-semidefinite linear system

MQT HL QMu 0 = MQT (ML f
L
− HLub,L ),

(4.5.14)
HL := KL + q ML .

This system is solvable because the r.h.s. lies in the range of the symmetric
matrix on the left. Note that the matrix MQT appearing on the right arises
from the requirement v ∈ H 1

0 . However, QM does not appear on the right,
because neither ub nor f vanishes on ∂D , and continuity is assumed for ub

and not required for f . We stress that ub must be continuous in order for the final
result u := u0 + ub to be so. Any inexpensive projection step can be employed
to guarantee this. For example, ub := M−1-′MLub,L yields a weighted average
of the interface values.

The form (4.5.14) is convenient for analysis, because it clearly reveals the
symmetric form of H . However, the following local form is often used in
practice: Find u 0,L ∈ R(ML Q) such that

ML-
′HLu 0,L =ML-

′(ML f
L
− HLub,L ). (4.5.15)

Equation (4.5.15) is obtained by multiplying (4.5.14) by Q and using the equiv-
alence properties of M and ML . The advantage of the local form is that data
are immediately ready for application of tensor-product operators without the
need for additional scatter operations, which require data communication on
parallel computers. Also, combining the gather and scatter (Q QT ) into a single
operation (-′) reduces communication overhead (see Section 8.5).

4.5.4 Iterative Solution Techniques

Because the underlying system is symmetric positive (semi)definite, PCG can
be used to solve (4.5.14). To work with the local form (4.5.15), we modify
Algorithm 2.2 as follows.

Algorithm 4.1 (Preconditioned conjugate gradient) Starting with x L = 0,
r L =ML-

′(ML f − HLub,L ),
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1. Compute zL = P−1
L r L , wL = zL , ρ1 = r T

LWzL .
2. For j = 0, 1, . . . until convergence Do:
3. q

L
=ML-

′HLwL

4. α = ρ1/w
T
LWq

L
,

5. x L = x L + αwL ,
6. r L = r L − αq

L
,

7. zL = P−1
L r L ,

8. ρ0 = ρ1, ρ1 = r T
LWzL , β = ρ1/ρ0,

9. wL = zL + βwL ,
10. EndDo.
11. uL = x L + ub,L .

Here, the matrix–vector product q = Hw has been cast into its constituent com-
ponents of local Neumann operator (HL ), direct-stiffness summation (-′), and
mask (ML ). In addition, the inner products have been weighted by a diagonal
scaling matrix W to account for multiply represented nodal values arising from
the local storage format. We define as the multiplicity

m̂L := -′êL , (4.5.16)

where êL is the unit vector equal to one at each (local) gridpoint. W is the
inverse of the multiplicity,

W = diag

(
1

m̂L ,i

)
. (4.5.17)

Note that, with unpreconditioned iterative methods, no special effort is re-
quired to enforce the restriction of u0,L (:= x L ) to R(ML Q) when solving
(4.5.15), as it is a natural consequence of the Krylov subspace approximation,
x L ∈ Kk(ML-

′HL , bL ), where bL :=ML-
′(ML f

L
− HLu0,L ). However, in

the preconditioned case, one must ensure that the solution satisfies the homo-
geneous boundary conditions and is continuous. This is straightforward in the
case of diagonal preconditioning. If d̃ L = diag(de

i j ) and mL = diag(me
i j ) are

the diagonals of the unassembled stiffness and mass matrices, KL (4.4.13)–
(4.4.14) and ML , respectively, then wL = -′(d̃ L + qmL ) contains the diagonal
of the assembled Neumann operator H̄ , and P−1

L = diag(1/we
i j ) is the desired

diagonal preconditioner in local form.

4.5.5 Two-Dimensional Examples

As in the single-domain case, the matrices in (4.5.15) are not explicitly con-
structed. Instead, the action of the operators is effected via procedural calls. One
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simply needs to construct the necessary pointwise or tensor-product operators
that are to be applied to nodal entries in each subdomain. Implementation of
(4.5.15) thus requires four basic steps:

• identification and development of local tensor-product-based operators in
KL and ML (as in Section 4.3),

• identification of interelement continuity requirements, and development of
the operators Q, QT , and -′ (Figure 4.5.3),

• application of boundary conditions via ML , and
• development of a preconditioner for the linear system (4.5.15).

We illustrate these points through the following examples.

Example 1
Consider solving (4.5.12) in the square domain, [0, 1]2, having a unit-diameter
disk cut out of the lower left corner, as depicted in Figure 4.5.5. Let ∂D :=
∂D1

∪ ∂D2
, ∂N := ∂ \ ∂D ,

f =
{

0 x ≥ y,
1 x < y,

and g =
{

1 on ∂D1
,

2 on ∂D2
.

Using the numbering in Figure 4.5.5, we define the following arrays for N = 2:

X

Y

u2
2,0

u2
2,1

u2
2,2

u2
1,0

u2
1,1

u2
1,2

u2
0,0

u2
0,1

u2
0,2

u1
0,2

u1
1,2

u1
2,2

u1
0,1

u1
1,1

u1
2,1

u1
0,0 u1

1,0 u1
2,0

X

Y Ω1

Ω2

∂ΩD1

∂ΩD2

u10

u11

u12

u13

u14

u15

u7

u8

u9

u4

u5

u6

u1 u2 u3

Figure 4.5.5. Global (left) and local (right) node numbering for spectral-element exam-
ple with (E, N ) = (2, 2). Dirichlet boundary segments are ∂D1 at r = 0.5 and ∂D2

at y = 1.
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e = 1 e = 2

i j glob M1
i j m̂1

i j ue
b,i j f e

i j glob M2
i j m̂2

i j ue
b,i j f e

i j

00 1 0 1 1 0 13 0 1 1 1
10 2 1 1 0 0 10 0 1 1 1
20 3 1 1 0 0 7 0 2 1 1
01 4 0 1 1 0 14 1 1 0 1
11 5 1 1 0 0 11 1 1 0 1
21 6 1 1 0 0 8 1 2 0 1
02 7 0 2 1 0 15 0 1 2 1
12 8 1 2 0 0 12 0 1 2 1
22 9 0 2 2 0 9 0 2 2 1

Here, glob corresponds to the global index arrays of Figure 4.5.3, Me
i j corre-

sponds to the mask, and m̂e
i j is the multiplicity (4.5.16). Note that f is allowed

to be multivalued along y = x in order to obtain a good approximation to (v, f ).

Example 2
The preceding example can be readily extended to allow q(x) to vary by replac-
ing q in (4.5.14) with qe

i j at each nodal point, collocated with the entries in the
diagonal mass matrix, ML . Robin boundary conditions can be implemented in
a similar manner. For example, suppose we have

∇u · n+ αu = β(x) on ∂R (4.5.18)

and homogeneous conditions elsewhere. To derive the weighted residual for-
mulation for this new problem, consider the effect of integration by parts on
−v�u: ∫



−v�u dV =
∫


∇v · ∇u dV −
∫
∂

v∇u · n d S

=
∫


∇v · ∇u dV −
∫
∂R

v(β − αu) d S.

The second expression follows from (4.5.18), coupled with the constraints
v|∂D

= 0,∇u · n|∂N
= 0. With the nonvanishing boundary term, the weighted

residual formulation of modified system thus reads as follows: Find u in H 1
0

such that∫


(∇v · ∇u+ vqu) dV +
∫
∂R

vαu d S =
∫


v f dV +
∫
∂R

vβ d S ∀ v in H 1
0 .

Note that inhomogeneous Neumann conditions are included in this framework
by simply taking α = 0.
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Since equation generation results from successively choosing Lagrangian
basis elements for v, most of the boundary integral terms vanish. Only those
equations corresponding to nodes on ∂R differ from the homogeneous case.
If ∂R corresponds, say, to the right edge of the domain in Figure 4.5.5 (x =
1, 0 ≤ y ≤ 1), one would update the diagonal entries of KL + q ML and the
r.h.s. entries corresponding to e = 1, i = N , and j = 0, . . . , N . For example,
for N = 2, the terms to be added to each are

e, i, j diagHL
R.h.s.

1, 2, 0 1
2ρ0α

1
2ρ0β0

1, 2, 1 1
2ρ1α

1
2ρ1β1

1, 2, 2 1
2ρ2α

1
2ρ2β2

whereρ j denotes a GLL quadrature weight,β j denotes the value ofβ at the nodal

point x1
2 j , and the factor of 1

2 corresponds to the surface Jacobian associated
with the transformation of ∂R to the reference interval [−1, 1].

Example 3
The results of diagonal preconditioning for the Helmholtz problem (4.5.12) are
illustrated in Figure 4.5.6, which shows the CG iteration counts for a 10−10 resid-
ual reduction when a random forcing f is applied to the the domain depicted
on the right. The mesh parameter γ is a measure of the range of scales in the
solution. The left value in each table entry corresponds to the unpreconditioned
case, while the right value is the Jacobi preconditioned result. We see that for
q = 0 (Poisson’s equation), the diagonal scaling is useful in eliminating the ex-
treme mesh dependencies but, as we might anticipate, does little to improve the
balanced result (γ ≈ 0.5). As q increases, the relative improvement increases
but does not become significant until q > 103.

γ
U. P. U. P. U. P. U. P.

q = 0 q = 101 q = 103 q = 105

.9 5 142 89 138 85

Iteration count

96 63 77 16

.75 89 83 86 75 47 36 52 7

.50 74 71 72 68 38 30 48 7

.25 89 79 87 77 54 39 69 9

.05 117 88 116 87 84 58 131 20
γ 1−γ

Figure 4.5.6. Diagonal preconditioning results for (E, N ) = (3, 8).
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4.6 Collocation Discretizations

We now turn to collocation discretizations to solve multidimensional elliptic
problems. Again, our purpose is to explain the different steps leading to the
implementation of the algorithm. Systematic use of tensor products makes it
easy to write the equations in compact form for 3D problems. For the sake of
simplicity we will, however, restrict ourselves to the case d = 2. We start with
the collocation solution of diffusion problems on mono- and multidomains.
Next, we deal with advection-dominated diffusion problems.

4.6.1 The Diffusion Case

Consider the BVP on the rectangular monodomain  := (0, L1)× (0, L2) ⊂
R

2 :

Lu := −∇ · (p∇u)+ qu = f in ,
(4.6.1)

Bu = 0 on ∂,

where the coefficients p > 0 and q ≥ 0 may be space-dependent. However, for
the time being we assume these quantities are constants. Also, we deal with
homogeneous Dirichlet boundary conditions. Neumann boundary conditions
are treated later on.

We first map the physical domain  onto the reference domain ̂ :=
[−1,+1]2 using an affine transformation between the physical coordinates of
the problem, (x, y) ∈ , and the reference coordinates (r, s) ∈ ̂. Then, ac-
cording to the orthogonal collocation methodology described in Section 2.5,
we select a collocation grid related to a Gauss–Lobatto–Jacobi (GLJ) quadrature
rule with M + 1 nodes in r , and N + 1 nodes in s. Let G(α,β)

M N denote the tensor
product of these one-dimensional GLJ quadrature grids,

G(α,β)
M N := G(α,β)

r,M ⊗ G(α,β)
s,N , (4.6.2)

where G(α,β)
r,M and G(α,β)

s,N are the ordered sets of solutions to Equation (2.5.2)
in r and s. As already mentioned, the two most important choices in practice
are the GLC (Chebyshev) and GLL (Legendre) grids with α = β = −1/2 and
α = β = 0, respectively.

Any approximate solution to (4.6.1) then is

û(x) =
M∑

i=0

N∑
j=0

ui jπ
J
M,i (r )π J

N , j (s), (r, s) ∈ ̂, (4.6.3)
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where the interpolation basis functions π J
M,i (π J

N , j ) of degree M (N ) are defined
by Equations (2.5.4)–(2.5.9). The collocation solution û results from (2.5.10)–
(2.5.11):

Lû
(
ξ J

i j

) = f
(
ξ J

i j

) ∀ξ J
i j ∈ G(α,β)

M N ∩ ̂,
(4.6.4)

û
(
ξ J

i j

) = 0 ∀ξ J
i j ∈ G(α,β)

M N ∩ ∂̂,

with ξ J
i j := (ξ J

M,i , ξ
J
N , j ).

One verifies easily that, because of the normalization property (2.5.5) of the
basis functionsπ J

M,i andπ J
N , j , the second-order derivatives of the approximation

(4.6.3) at the collocation nodes are equal to

∂2û

∂x2

(
ξ J

k#

) = (
2

L1

)2 M∑
i=0

ui#
d2π J

M,i

dr2

(
ξ J

M,k

)
, (4.6.5)

∂2û

∂y2

(
ξ J

k#

) = (
2

L2

)2 N∑
j=0

ukj

d2π J
N , j

ds2

(
ξ J

N ,#

)
, (4.6.6)

with 0 ≤ k ≤ M and 0 ≤ # ≤ N . For simplicity we will now assume that the
polynomial degree is equal to N in both space directions, denoted (r1, r2). We
also drop the reference to N in the basis functions and the GLJ quadrature nodes.

With homogeneous Dirichlet boundary conditions everywhere along ∂,
one can easily show, using the tensor-product notation, that the collocation
equations (4.6.4) lead to the algebraic system LC u = f , with a matrix

LC = −p

[(
2

L1

)2 (
I2 ⊗ D(2)

1

)+ (
2

L2

)2 (
D(2)

2 ⊗ I1
)]+ q(I2 ⊗ I1).

(4.6.7)

Here, Is, D(2)
s ∈ R

N×N , s = 1, 2, denote the identity matrices in r1 (= r ) and
r2 (= s), and the one-dimensional second-order derivative matrices whose
elements [

D(2)
s

]
k#

:= d2π J
#

dr2
s

(
ξ J

k

)
(4.6.8)

may be evaluated by using the relationships (B.3.45)–(B.3.50) The components
of the vectors of unknowns u and forcing terms f are set in lexicographical
ordering.

Multiplying both sides of the collocation system LC u = f by L1L2/4 gives
a new system LC u = L1L2 f /4, where we incorporate the constant factor into
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the collocation matrix:

LC = −p

[
L2

L1

(
I2 ⊗ D(2)

1

)+ L1

L2

(
D(2)

2 ⊗ I1
)]+ q

L1L2

4
(I2 ⊗ I1). (4.6.9)

The reader should notice the similarity between the operators (4.6.9) and
(4.3.23) (except for a minus sign), although the latter corresponds to the weak
formulation of a problem with homogeneous Neumann boundary conditions.
The weak formulation introduces local mass and stiffness matrices (M̂ and K̂ )
where collocation imposes identity and second-order derivative matrices.

In Chapter 2, using integration by parts, we concluded that Legendre spectral
elements for a Dirichlet problem were equivalent to the Legendre collocation
(see Remark 2.2). This is exactly what we have here, provided each row in the
operator (4.6.9) (and the corresponding component of the r.h.s.) is multiplied
by the appropriate scaling factor equal to the GLJ quadrature weight associated
to the collocation node ξ J

k#. Remembering that the mass matrix for Legendre
spectral elements is diagonal, that integration by parts leading to the stiffness
matrix elements may be run backwards (thus introducing a minus sign), and
finally that the quadratures are evaluated exactly using GLL quadrature, we
conclude that the two methods are indeed the same for Dirichlet boundary
conditions.

Figure 4.6.1(a) shows the topological structure of the collocation matrix LC

for the problem (4.6.1) with homogeneous Dirichlet conditions on the whole

••••••••••••••••••••••••••••••••••••

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •••••••••••••••••••••••••••••••••••••

• • • •• • • •• • • •• • • •• • • •• • • •

•••••• ••••••••••••••••••••••••••••••••••••

• • •• • •• • •• • •• • •• • •

• •• •• •• •• •• • ••••••••••••••••••••••••••••••••••••

• •• •• •• •• •• •

• • •• • •• • •• • •• • •• • • ••••••••••••••••••••••••••••••••••••

••••••

• • • •• • • •• • • •• • • •• • • •• • • • ••••••••••••••••••••••••••••••••••••

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

(a)

••••••••••••••••

••••••••••••••••••••••••••••••••

••••••••••••••••

•••••••••••••••• ••••••••••••••••

••••••••••••••••

•••••••••••••••• ••••••••••••••••

••••••••••••••••

•••••••••••••••• ••••••••••••••••

••••••••••••••••

•••••••••••••••• ••••••••••••••••

••••••••••••••••

(b)

Figure 4.6.1. (a) Topological structure of the collocation matrix LC for the elliptic
problem (4.6.1). In this example N = 7. (b) Topological structure of the Q1 Lagrangian
FE matrix L P for the same problem on the same grid.
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boundary. In this example, N = 7. The diagonal blocks correspond to the op-
erator I2 ⊗ D(2)

1 , while off-diagonals are the elements of D(2)
2 ⊗ I1. The matrix

has a sparse structure, but long-range coupling between the unknowns gives a
large bandwidth. Obviously, other unknown ordering schemes might be chosen.
But in that case the structure shown in the figure is lost, and the bandwidth is
almost the same.

At this stage we notice that for diffusion problems with a factorizable space-
dependent diffusion coefficient [i.e., p = p1(r1) p2(r2)], the collocation matrix
LC has a compact algebraic structure, similar to (4.6.9). We leave to the reader
(as an exercise) the task of showing that, with the definitions of the matrix
operators P̂s , P̂ ′s , and D̂s (s = 1, 2) given by

P̂s := diag
(

ps
(
ξ J

0

)
, . . . , ps

(
ξ J

N

))
,

P̂ ′s := diag
(

p′s
(
ξ J

0

)
, . . . , p′s

(
ξ J

N

))
, (4.6.10)

D̂s := P̂ ′s · D(1)
s + P̂s · D(2)

s ,

the collocation matrix LC in this case is

LC = −
[

L2

L1
(P̂2 ⊗ D̂1)+ L1

L2
(D̂2 ⊗ P̂1)

]
+ q

L1L2

4
(I2 ⊗ I1). (4.6.11)

The operator D(1)
s in (4.6.10) is, with simplified notation, the first-order deriva-

tive matrix of the GLJ basis functions on the Gaussian grids D J (1)
N , given in

Appendix B [see (B.3.41)–(B.3.44)]. We remark also that D(2)
s = [D(1)

s ]2.
With factorizable p, the topological structure of the collocation matrix

(4.6.11) is the same as before. This is true also for more general functions
p(r1, r2). In this case, however, no compact algebraic relationship such as (4.6.9)
or (4.6.11), with the associated potential savings in matrix construction, will
exist.

Iterative techniques are fundamental in solving the algebraic system LC u =
f related to collocation discretizations. We have seen in preceding chapters that
the spectral condition number κ of algebraic systems related to high-order meth-
ods grows like O(N 4), where N is the number of unknowns in a single space
dimension. To avoid any loss of accuracy resulting from the ill-conditioning
of LC , one evaluates u iteratively using a low-order (FD or FE) preconditioning
scheme as outlined in Section 2.7.3.

We denote by L P the matrix related to a low-order approximation (FD or
FE) of the basic problem (4.6.1) that is built on the same GLJ grid. With lexi-
cographical ordering of the unknowns L P may be cast in compact form. The
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associated low-order FE problem is

L̃ P u = L1L2

4
M1 ⊗ M2 f , (4.6.12)

with

L̃ P = p

[
L2

L1
(M2 ⊗ K1)+ L1

L2
(K2 ⊗ M1)

]
+ q

L1L2

4
(M2 ⊗ M1). (4.6.13)

It turns out that

L P =
(

L1L2

4
M1 ⊗ M2

)−1

· L̃ P , (4.6.14)

where, in the FE case, the sets (K1, M1) and (K2, M2) refer to the one-
dimensional tridiagonal stiffness and mass matrices of Q1 Lagrangian FEs with
N1 and N2 elements in the corresponding directions. The topological structure
of L P for the example is shown in Figure 4.6.1(b). In the FD case the mass
matrices Ms are diagonal, and L P has the familiar five-point stencil structure
of the 2D Laplacian operator.

The matrix L P can be used as a preconditioner of LC . For instance, the
preconditioned Richardson iteration scheme (2.7.23) is

L P u(k+1) = L P u(k) − αk
(
LC u(k) − f

)
, k = 0, 1, . . . , (4.6.15)

where αk is a relaxation factor needed to ensure convergence of the iterative
algorithm, which may depend on the iteration index. As outlined in Section 2.7.3
using a functional formulation, the calculation starts with the determination of
an initial (FE or FD) approximation u(0) such that L P u(0) = f . Most of the time
the subsequent iterative process (4.6.15) runs on a correction δu(k) such that
u(k+1) = u(k) + δu(k), with

L Pδu(k) = −αk
(
LC u(k) − f

)
, k = 0, 1, . . . . (4.6.16)

This iterative process runs till a convergence criterion is satisfied. The con-
vergence rate depends on the spectral radius of the operator I − αk L−1

P · LC ,
as outlined in Section 2.7.2. We emphasize that the algebraic system (4.6.16)
itself may be solved by using direct or iterative solution techniques. Whereas
Deville and Mund [100] essentially used direct solution techniques, many au-
thors have implemented standard iterative techniques. For instance, Canuto
and Pietra [66] applied ADI techniques to solve two- and three-dimensional
elliptic problems by Chebyshev collocation in mono- and multidomains, and
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(a) (b)

Figure 4.6.2. Spectrum of I − L−1
P · LC for Q1 FE preconditioning of two diffusion

operators Lu := −∇ · (p∇u)+ u, with Dirichlet conditions on the reference square ̂,
and collocation on the Chebyshev grid with N = 16: (a) p = 1, and (b) p = 1+ 10 x2 y2.

Quarteroni and Zampieri [321] used the minimum residual (MR) and bi-CGSTAB

iterative methods.
Figures 4.6.2, 4.6.3, and 4.6.4 display a few examples of eigenspectra of

the operator I − L−1
P · LC for 2D diffusion problems with Dirichlet conditions,

including problems with variable coefficients p. Figures 4.6.2 and 4.6.3 are
related to FE preconditioning, whereas Figure 4.6.4 is related to FD precondi-
tioning. In Figure 4.6.2, the preconditioner is the Q1 FE operator associated to

�

�

Figure 4.6.3. Spectrum of I − L−1
P · LC forQ1 FE preconditioning ofLu := −∇ · [(1+

x2 y2)∇u]+ u, with Dirichlet conditions on the reference square ̂, and collocation on
the Chebyshev grid with N = 16. In this case, the preconditioner L P results from the FE
approximation of Lu := −�u + u.
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(a)

(c)

(b)

(d)

Figure 4.6.4. Spectrum of the operator I − L−1
P · LC for FD preconditioning of Lu :=

−∇ · (p∇u)+ u, with Dirichlet conditions on the reference square ̂, and collocation
on the Chebyshev grid with N = 16: (a) p = 1, (b) p = 1+ x2 y2, (c) p = 1+ 10 x2 y2,
and (d) p = 1+ x2 y2, the preconditioner L P being such that L P u is the FD approxima-
tion of Lu := −�u + u.

the basic problem on the same Gaussian grid. The complex eigenvalues are lo-
cated well inside the unit circle, an indication that fast convergence of (4.6.16)
should be obtained with the relaxation factor αk = 1, even for the (nonfactor-
izable) diffusion coefficient p = 1+ x2 y2 – an indication of the robustness of
the algorithm.

This robustness is even clearer in Figure 4.6.3, where L P is theQ1 FE operator
associated to an auxiliary problem that differs from the basic one. Again, the
eigenvalues are located inside the unit circle, and the algorithm should converge,
even with αk = 1, though at a slower pace. Finally, Figure 4.6.4 shows that with
FD preconditioning, the (real) spectrum occupies a domain larger than the unit
interval and that the algorithm cannot converge without a relaxation factor
αk �= 1.

These numerical results on the eigenvalues of L−1
P · LC , as well as those pub-

lished by Quarteroni and Zampieri [321] and Zampieri [421], for a long time re-
ceived no theoretical proof. However, in recent years Parter and Rothman [294]
and Kim and Parter [224, 225] have obtained some first results for the FE

and FD preconditioning of Legendre and Chebyshev collocation approxima-
tions to diffusion–advection problems. Their work gives some bounds to the
eigenspectrum of L−1

P · LC , depending on the properties of the preconditioner.
Nevertheless, these encouraging results, the theoretical foundation of the (FE

and FD) preconditioning of spectral calculations in the general case remains
largely an open question.

Figure 4.6.5 shows the convergence histories in L∞ norm for the Chebyshev
collocation solution of a 2D diffusion problem on the reference square ̂ :=
[−1,+1]2, with Dirichlet boundary conditions:

−∇ · [(1+ x2 y2)∇u(x, y)]+ u(x, y) = f , (x, y) ∈ ̂, (4.6.17)
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(a) (b)

Figure 4.6.5. Convergence histories for the Chebyshev collocation solution of (4.6.17)
with N = 17: (a) the preconditioner results from the FE (�) or FD (�) approximation
of (4.6.17), (b) the preconditioner results from the FE or FD approximations of Lu :=
−�u + u.

where the r.h.s. f (x, y) is such that the solution to the problem is u(x, y) =
(1− x2)(1− y2) exp(x + y). The Chebyshev expansion uses Nx = Ny = 17,
and both preconditioning techniques (� for FE and � for FD) are applied. Figure
4.6.5(a) corresponds to the case where the preconditioner is the FE (or FD)
approximation of the problem on the same grid; Figure 4.6.5(b) shows the
results when the preconditioner results from the FE (or FD) approximation of
the auxiliary expression (−�u + u) on the same grid.

One should notice that, in the regular case (a), although there is a sharp error
drop with FD preconditioning and α = 1, the computation ultimately diverges.
The choice of α with FD preconditioning is even more important in case (b). In
comparison, FE preconditioning is more robust, although in case (b) an adequate
choice ofαmay decrease the iteration number till convergence by almost a factor
of two. We note that all of these results can be further accelerated by using a
projection-based iteration, such as the GMRES method discused in Section 2.8.

Inhomogeneous Neumann Boundary Conditions

Let us now look at the case of Neumann boundary conditions and consider the
problem (4.6.1) with inhomogeneous conditions Bu(x), which split into

u(x) = g(x) ∀x ∈ ∂D,
(4.6.18)

−p
∂u

∂n
(x) = h(x) ∀x ∈ ∂N ,
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with ∂ = ∂D ∪ ∂N . We assume that boundary conditions of the same type
apply on whole sides of. The symbol ∂/∂n denotes the outer normal derivative
at the boundary. Furthermore, we suppose that Dirichlet conditions are enforced
on those vertices of  that belong to the closure of ∂D .

With regard to the collocation equations on the (N + 1)× (N + 1) GLJ grid,
we have as before

Lû
(
ξ J

i j

) = f
(
ξ J

i j

) ∀ξ J
i j ∈ G(α,β)

N ∩ ̂,
û
(
ξ J

i j

) = g
(
ξ J

i j

) ∀ξ J
i j ∈ G(α,β)

N ∩ ∂̂D, (4.6.19)

−p
∂ û

∂n

(
ξ J

i j

) = h
(
ξ J

i j

) ∀ξ J
i j ∈ G(α,β)

N ∩ ∂̂N .

A difficulty arises at corners that are common to Neumann sides, because en-
forcing the values of the two normal derivatives at these points would lead to
an overdetermined linear system. As we will see below, this difficulty may be
overcome by using the FE–FD preconditioning scheme.

We have learned in Section 2.1 that, in the variational formulation of BVPs,
Neumann conditions are satisfied “naturally,” whereas Dirichlet conditions have
to be included in the space of test functions. The variational formulation of
Equation (4.6.1) with boundary conditions (4.6.18) is as follows: Find u(x) ∈
H 1

g := {v ∈ H 1()|v(x) = g(x)∀x ∈ ∂D} such that∫


(p∇u · ∇v + quv) dx =
∫


f v dx−
∫
∂N

hv d S (4.6.20)

for all v(x) ∈ H 1(), where the second term in the r.h.s. includes the inho-
mogeneous condition on the (outer) normal derivative of the solution. After
discretization, the problem (4.6.20) becomes: Find u(x) ∈ VN ,g such that, for
all v in VN ⊂ H 1(),∫



(p∇u · ∇v + quv) dx =
∫


f v dx−
∫
∂N

hv d S, (4.6.21)

where VN and VN ,g are piecewise polynomial spaces, and the elements of
VN ,g ⊂ H 1

g satisfy the inhomogeneous Dirichlet boundary conditions on ∂D .
In the variational formulation (4.6.21), the boundary condition on the normal

derivative at ∂N is reached asymptotically with increasing dimension of the
space of trial functions VN ,g . This means that, during the preconditioning pro-
cess, the constraint (4.6.19) on ∂N is not satisfied exactly. One has therefore
to include an additional residual for the boundary condition on ∂N .
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The functional formulation of the Q1 FE preconditioning scheme introduced
in Section 2.7.3 must therefore be adapted. The main steps of the algorithm
(i.e., steps 3 to 5) become:

• Step 3. Evaluate a first guess u0
h such that AFEu0

h = f , where the operator
AFE relates to the variational functional (4.6.21); that is: Find u0

h(x) ∈ VN ,g

such that, for all v in VN ⊂ H 1()∫


(
p∇u0

h · ∇v + qu0
hv

)
dx =

∫


f v dx−
∫
∂N

hv d S,

• Step 4. Evaluate the spectral residuals r0
N and r0

N ,B associated with the in-
terior nodes and the boundary nodes on ∂N , respectively:

r0
N := Lu0

N − f , r0
N ,B := p

∂u0
N

∂n
+ h. (4.6.22)

The element u0
N := IN u0

h is the spectral interpolation of the FE solution u0
h

in PN ().
• Step 5. Iterate till convergence:

uk+1
N = uk

N − α INA−1
FE

[
I 0
h

(
Luk

N − f
)
, J 0

h

(
p
∂uk

N

∂n
+ h

)]
. (4.6.23)

In this relationship, I 0
h and J 0

h are two FE interpolation operators, inside 

and along ∂N respectively. The operator I 0
h is the two-dimensional Q1 FE

interpolation operator, obtained by tensor product of the one-dimensional FE

interpolation operator defined in Chapter 2 (see Section 2.2.2). The operator
J 0

h interpolates linearly the values of the residual r0
N ,B on the boundary nodes

along ∂N . On a vertex belonging to ∂D , the nodal value of r0
N ,B is set

equal to zero. The two entries inside the brackets are the source terms in Equa-
tion (4.6.21) during the iteration process. Both terms should become vanishingly
small as k increases to infinity.

An important result due to Canuto and Pietra [66] is that the Neumann
boundary conditions are enforced asymptotically (i.e., with k →∞) at the
boundary nodes along a Neumann side when its vertices belong to ∂D . When
∂N contains several sides having a common vertex, the asymptotic error on the
Neumann boundary condition is globally small. This is because the boundary
residual is orthogonal to the trace of all Q1 test functions, with respect to
numerical quadrature along ∂N .
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Table 4.6.1. Relative errors in the maximum norm of a problem with the exact solution
u(x, y) = sin 2πx sinπy, for several combinations of boundary conditions (see [66]).

Relative error

DDDD NDDD NDND NNDD NNNN
Nx × Ny (q = 0) (q = 0) (q = 0) (q = 0) (q = 1)

8× 8 0.30e− 01 0.10e+ 00 0.97e− 01 0.30e+ 00 0.26e+ 00
16× 16 0.23e− 06 0.54e− 05 0.53e− 05 0.84e− 05 0.76e− 05
32× 32 0.27e− 14 0.54e− 12 0.15e− 11 0.23e− 11 0.12e− 11

These conclusions are illustrated in Table 4.6.1, taken from [66]. The table
gives some numerical results for the problem (4.6.1) with boundary conditions
(4.6.18), on the reference domain ̂. Computations have been made with Q1

FE and Chebyshev collocation, on the Laplace and Helmholtz equations (i.e.,
p = 1 and q = 0, 1) with exact solution u(x, y) = sin 2πx sinπy. The table
gives the relative errors in maximum norm for some combinations of boundary
conditions. The convergence is clearly exponential for every combination of
boundary conditions. The errors show slightly larger values, however, in the
cases where the Neumann conditions apply on sides having a common vertex
(see, for instance, NNDD).

The Multidomain Approach

The handling of Neumann boundary conditions introduced in the previous sec-
tion may be used to implement a multidomain collocation solution of the prob-
lem. We consider again Equation (4.6.1) with variable coefficients, but for
simplicity we will assume that u(x) = 0 on ∂. The aim is to introduce a par-
titioning of  domain into four nonoverlapping subdomains k (1 ≤ k ≤ 4)
as suggested in Figure 4.6.6(b), and to apply a collocation approximation on
each subdomains. The difficulty is to piece the subdomain approximations
together.

There is some freedom in the choice of the GLJ grids at the subdomain level,
but adjacent approximations must have the same polynomial degree along their
common border. Here again, we assume that the polynomial degree is equal to
N in both space directions and in all subdomains. Therefore, letG(α,β)

N ,k denote the
(N + 1)× (N + 1) GLJ collocation grid mapped from ̂ onto the subdomain
k , and G(α,β)

N =⋃
k G

(α,β)
N ,k . With these conditions, an approximate solution û

belongs to the polynomial space

PN () := {
v ∈ C0

0 (̄)|v|k ∈PN (k), k = 1 . . . , 4
}
.
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Figure 4.6.6. (a) The quadrangular integration domain  and (b) its partition into four
nonoverlapping subdomains k .

and the collocation equations become

Lûk(x) = f (x) ∀x ∈ G(α,β)
N ,k ∩k,

ûk(x) = ûl(x) ∀x ∈ G(α,β)
N ,k ∩ G(α,β)

N ,l , (4.6.24)

p
∂ ûk

∂n(k)
(x) = −p

∂ ûl

∂n(l)
(x) ∀x ∈ G(α,β)

N ,k ∩ G(α,β)
N ,l ,

with k, l = 1, . . . , 4. The outer normal derivative to the subdomain k at a
boundary node x is denoted n(k). We face again the difficulty that two interface
conditions apply at a common corner [see Figure 4.6.6(a)], which cannot be
enforced at the same time. Just as with the Neumann boundary condition, this
difficulty can be eased using the FE preconditioning algorithm.

We go back to the basic equation and remark that multiplying (4.6.1) by a
test function v(x) ∈ C1

0 () and integrating over each subdomain gives∫
k

(p∇u · ∇v + quv) dx =
∫
k

f v dx+
∫
*k

p
∂u

∂n
v d S, (4.6.25)

where*k denotes the internal boundary ofk shown in Figure 4.6.6(b). Adding
all separate contributions, one gets∫



(p∇u · ∇v + quv − f v) dx =
∫
*x

[
p
∂u

∂y

]
v d S +

∫
*y

[
p
∂u

∂x

]
v d S.

(4.6.26)

In this relationship, *x and *y are the subdomain internal boundaries as indi-
cated on Figure 4.6.6(a), which is a simple rearrangement of the set {*k}. The
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quantities between brackets refer to the jumps in p ∂u
∂y and p ∂u

∂x across *x and
*y , which should in fact vanish identically, as can be shown rigorously. The
collocation equations (4.6.24) precisely deal with such a constraint.

The reasoning made about the Neumann boundary conditions may be re-
peated. A Q1 FE approximation uh ∈ H 1

0 () of the problem does not satisfy the
variational interface condition∫

*x

[
p
∂uh

∂y

]
v d S +

∫
*y

[
p
∂uh

∂x

]
v d S = 0 ∀v ∈ H 1

0. (4.6.27)

It would do so in the limit of a mesh size h := (hx , hy) going to zero. With a
nonzero mesh, interface residuals exist along *x and *y that must be handled
by the collocation process.

The functional formulation of the FE preconditioned collocation scheme
in the multidomain approach results from still another modification of the
algorithm introduced in Section 2.7.3. Steps 3 to 5 of the algorithm become

• Step 3. Evaluate a first guess u0
h such that AFEu0

h = f , where the operator
AFE relates to the following problem: Find u0

h(x) ∈ VN ,0 such that, for all v
in VN ,0 ⊂ H 1

0 (),∫


(
p∇u0

h · ∇v + qu0
hv

)
dx =

∫


f v dx.

• Step 4. Evaluate the spectral residuals r0
N on the interior nodes in the subdo-

mains k , and the residuals r0
N ,y , r0

N ,x associated with the interior boundary
nodes along *x and *y , respectively:

r0
N := Lu0

N − f , r0
N ,z :=

[
p
∂u0

N

∂z

]
(z = x, y). (4.6.28)

The element u0
N := IN u0 is the spectral interpolation of the FE solution u0

h

in PN ().
• Step 5. Iterate till convergence:

uk+1
N = uk

N − α INA−1
FE

[
I 0
h rk

N , J 0
x r k

N ,y, J 0
y r k

N ,x

]
. (4.6.29)

The interpolation operators J 0
x and J 0

y in (4.6.29) are quite similar to J 0
h de-

fined above. Here also it is possible to show that, asymptotically for k increasing
to infinity, the partial differential equation is satisfied at all interior nodes, and
the jumps in p ∂u

∂n across the interfaces are orthogonal to the trace of all Q1 finite
elements along *x and *y . Canuto and Pietra discuss some other techniques for
imposing the matching of the four spectral solutions at the interfaces.
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(a) (b)

Figure 4.6.7. Two topological structures of LC , the orthogonal collocation matrix on
a 2× 2 multidomain, depending on the ordering of the unknowns (see text). In this
example, the polynomial expansion in each subdomain has N = 5.

Figure 4.6.7 displays two different topological structures of the collocation
matrix LC resulting from (4.6.24) on a 2× 2 multidomain, depending on the
ordering of the unknowns. The polynomial expansion in each subdomain has
N = 5. In Fig. 4.6.7(a) the nodes are partitioned in two sets  and *, where
 comprises the internal nodes in the subdomains k (k = 1, . . . , 4), and *,
the nodes belonging to the (inner) boundaries. Lexicographical order applies
in each subdomain, and the subdomains are described from left to right and
bottom to top. In Figure 4.6.7(b) lexicographical order applies again in each
subdomain, this time including the nodes on the inner boundaries. The sweeping
of the subdomains is the same. However, the reader should understand that the
topological structure of LC has no influence upon the inversion of the algebraic
system, because this is done using FE–FD preconditioning. It is given here for
the purpose of illustration.

Table 4.6.2, taken from [66], compares numerical results for different prob-
lems, obtained using Chebyshev collocation on monodomains and multido-
mains. The multidomain approach preserves the spectral accuracy. However,
for a given number of degrees of freedom, the relative error in maximum norm
is lower when collocation is used on a monodomain rather than on a mul-
tidomain. The multidomain collocation approach described in this section is
particularly useful for complicated geometries that may be assembled from
quadrangular domains. For a thorough discussion of the topic, the reader should
consult [66].
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Table 4.6.2. Accuracy of the spectral-domain decomposition method: relative errors
in the case of uniformly structured solutions of (4.6.1) (see [66]).

Relative error

u(x, y) = u(x, y) = u(x, y) =
Solution sin 2πx sinπy cos 2πx sinπy cos 2πx cosπy

4 dom. (4× 4) 0.14e+ 00 0.54e+ 00 0.62e+ 00
1 dom. (8× 8) 0.24e− 01 0.33e− 01 0.35e− 01
4 dom. (8× 8) 0.13e− 03 0.11e− 02 0.12e− 02
1 dom. (16× 16) 0.23e− 06 0.10e− 06 0.11e− 06
4 dom. (16× 16) 0.27e− 11 0.43e− 10 0.49e− 10
1 dom. (32× 32) 0.46e− 14 0.32e− 14 0.38e− 14

4.6.2 The Advection–Diffusion Case

To complete this section on collocation discretizations in multidimensional
problems, we revisit the steady advection–diffusion problem already studied
in Section 3.6, and we consider the BVP with homogeneous Dirichlet boundary
conditions

LADu(x) := −∇ · (ν∇u)+ c · ∇u = f (x), x ∈ ,
(4.6.30)

u(x) = 0, x ∈ ∂,

on the rectangular monodomain  := (0, L1)× (0, L2) ⊂ R
2. The coefficients

in the differential equations may be space-dependent. Physically, the vector
c := (cx , cy)T is the transport velocity of the quantity u(x). Many important
situations in pratice correspond to cases where diffusion is negligible compared
to advection (i.e., ν " |c| ). Here, we consider the constant-diffusion-coefficient
case. We also assume that the domain  has been mapped onto the reference
domain ̂, and we describe the algorithm on ̂.

Several attempts have been made to use the FE–FD preconditioning scheme,
described above, for advection–diffusion problems [101, 143, 282]. As men-
tioned in Chapter 3, the most successful algorithm has been proposed by
Funaro [143], who suggested collocating Equation (4.6.30) on a staggered grid
rather than on the standard GLL grid. A similar approach was used a little later
by Pinelli et al. for the Chebyshev collocation case [311].

The generation of the staggered grid in the one-dimensional case has been
explained in Section 3.6.2. It is based on the property that, since in the pure
diffusion case with operator LD the GLL grid points are solutions to the poly-
nomial equation LDχ

(0,0)
N = 0, in the advection–diffusion case one might look
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for an auxiliary grid, a polynomial solution to

LADχ
(0,0)
N := −ν d2χ

(0,0)
N

dx2
+ c

dχ (0,0)
N

dx
= 0. (4.6.31)

Taking some basic properties of the Legendre polynomials into account,
(4.6.31) reduces to

−νL ′N (x)+ cL N (x) = 0. (4.6.32)

In two space dimensions, the generation of the staggered grid (also called the
upwind grid) is based on the same principle. Here, the 2D equation LADχ

(0,0)
N

(x, y) = 0, with

χ
(0,0)
N (x, y) := (1− x2)(1− y2)L ′N (x)L ′N (y), (4.6.33)

leads to two different relationships for the determination of the shifted node in
the vicinity of (ξi , ξ j ) ∈ G(0,0)

N :

−ν [
2− ξ 2

i − ξ 2
j

]
L ′N (x)+ cx (ξi , ξ j )(1− ξ 2

j )L N (x) = 0,

−ν [
2− ξ 2

i − ξ 2
j

]
L ′N (y)+ cy(ξi , ξ j )(1− ξ 2

i )L N (y) = 0. (4.6.34)

These equations are easily solved by using a few steps of a secant method, and
the solution (θi j , τi j ), with 1 ≤ i, j ≤ N − 1 satisfies the inequalities

ζi < θi j < ζi+1, ζ j < τi j < ζ j+1,

where {ζ } designates the set of Gauss–Legendre (GL) quadrature nodes. Again,
for a vanishing diffusion coefficient, the upwind grid gets close to the GL grid,
whereas for a pure diffusion problem one recovers the classical GLL grid. The
staggered grid G(0,0)

s,N is usually rather unstructured, as shown on Figure 4.6.8
for a model problem. To simplify the notation we will drop the superscript on
both grids, its absence implying the grid is based on Legendre polynomials.

Funaro’s FD preconditioning scheme uses both the GN and Gs,N grids. As
previously, let LC denote the collocation operator on GN . Although in the
advection–diffusion case calculations are performed on the upwind grid Gs,N ,
the solution approximation uN ∈ PN () uses the values of the unknowns on
the regular grid GN . An interpolation is then needed to switch from GN to
Gs,N . We denote by SN the associated matrix operator. As shown by Funaro,
one reduces the computation cost entailed by the interpolation in 2D, with a
simplified interpolation technique, to O(N 3) instead of O(N 4) for a regular
interpolation scheme. For a polynomial function rN (x, y) ∈ PN () defined on
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(a) (b)

Figure 4.6.8. (a) The Gauss–Lobatto–Legendre grid with Nx = Ny = 8, and (b) the
corresponding upwind grid for the problem − 1

100 �u + x ∂u
∂x − y ∂u

∂y = f .

GN , the approximate value on the shifted node (θi j , τi j ) is given by a Taylor
series expansion limited to order 2:

rN (θi j , τi j ) ≈
2∑

k+#=0

(θi j − ξi )k

k!

(τi j − ξ j )#

#!
(rN )(k,#)

x,y (ξi , ξ j ). (4.6.35)

In practice however, the evaluation of rN (θi j , τi j ) uses a simplified Lagrange
interpolation built on the coordinate lines crossing at (ξi , ξ j ). It is given by

rN (θi j , τi j ) =
N∑
#=0

rN (ξ#, ξ j )π#(θi j )+
N∑
#=0

rN (ξi , ξ#)π#(τi j )− rN (ξi , ξ j ),

(4.6.36)

where the functions π# are the basic Lagrange interpolation polynomials on
the GLL grid. The multiplication cost of the operator SN built on (4.6.36) by a
vector is O(N 3), and in the limit of pure diffusion problems, SN tends to the
identity operator.

A further important item to be dealt with is the preconditioning matrix L P .
Funaro’s preconditioning scheme is such that in the limit of purely diffusive
problems, the operator is built upon the classical five-point FD stencil on an
irregular grid. The construction procedure for L P ≡ LFD is based on the prop-
erty that the truncation error associated with second-order finite differencing
vanishes for a quadratic function. For instance, with the operator LD given by
(4.6.1), the biquadratic polynomial π2(x, y) ∈ P2() uniquely defined by the
set of values {u(ξi+m, ξ j+n)} (with −1 ≤ m, n ≤ 1) at the nodes surrounding
the internal node (ξi , ξ j ) ∈ GN is such that the #�-component of the vector LFDu
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is equal to

LFDu|#� = LDπ2(x, y)|(ξi ,ξ j ), 1 ≤ i, j ≤ N − 1. (4.6.37)

One assumes lexicographic ordering of the coefficients in u, and therefore the
index #� = ( j − 1)(N − 1)+ i , with 1 ≤ #� ≤ (N − 1)2. Boundary conditions
are enforced as usual in FD methods. By extension, and, taking into account
previous remarks, the preconditioning operator in the advection–diffusion case,
LFD, is such that

LFDu|#� = LADπ2(x, y)|(θi j ,τi j ), 1 ≤ i, j ≤ N − 1. (4.6.38)

where LAD is given in (4.6.30). The equation (4.6.38) leads to a nine-point
stencil, the elements of which can be found in [143]. One verifies easily that
for |c| = 0, the five-point diffusion stencil is recovered.

Finally, the last item is the iterative scheme used to obtain the preconditioned
collocation solution of the problem. Instead of the Richardson scheme (2.7.23),
the preconditioning algorithm due to Funaro uses an iterative scheme derived
from the DuFort–Frankel method described in Birkhoff and Lynch [44]:

u(k+1) = 2σ1

1+ 2σ1σ2

[
−L−1

FD

(
LC u(k) − f

)+ 2σ2u(k)
]
+ 1− 2σ1σ2

1+ 2σ1σ2
u(k−1),

(4.6.39)

with k = 1, 2, . . . . Every step of the iterative process involves three succes-
sive approximations, the algorithm being started with a guess u(0)= u(1). The
coefficients σ1 and σ2 depend on the eigenvalues of the iteration operator:
σ1 = (λMλm)1/2 and σ2 = (λM + λm)/4, λm and λM being respectively the min-
imum and maximum eigenvalues of L−1

FD · LC . Strategies for the evaluation of
these parameters can be found in the references.

The preconditioning-algorithm collocation solutions of advection–diffusion
problems on a staggered grid may be summarized into a few steps.

• Step 1. Build the staggered collocation grid Gs,N .
• Step 2. Assemble the collocation and the FD preconditioning matrices LC

and LFD. The collocation matrix is built on GN . The FD matrix LFD results
from the enforcement of (4.6.38) at every internal node belonging to Gs,N .

• Step 3. Assemble the shifting matrix SN from GN to Gs,N .
• Step 4. Evaluate a first guess u(0) such that LFDu(0) = SN f , and set u(1) =

u(0).

Successively, for k ≥ 1 till convergence:
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• Step 5. Compute LC u(k), and evaluate the spectral residual on the staggered
grid, r (k) := SN (LC u(k) − f ). If ‖r (k)‖ ≤ 10−n (n given), then stop. If not,
go to step 6.

• Step 6. Solve LFDv = r (k), and update the solution uN (x, y) according to
(4.6.39), that is,

u(k+1) = 2σ1

1+ 2σ1σ2

(−v + 2σ2u(k)
)+ 1− 2σ1σ2

1+ 2σ1σ2
u(k−1),

and go to step 5;

In step 4, f contains the values of the r.h.s. of (4.6.30) at the nodes of the
GLL grid in lexicographic ordering. We avoid detailing the selection of σ1 and
σ2. Approximate evaluations of λm and λM (hence of σ1 and σ2) are indicated
in [144].

Numerical results discussed in [143] show that the eigenspectrum of L−1
FD ·

LC is complex and located outside the unit circle. Spectral accuracy is reached
in about 30 iterations, and, most important, evaluation of the residuals on the
upwind grid eliminates the high-frequency oscillations polluting solutions ob-
tained by collocation on the GLL grid. Pinelli et al. use almost the same algorithm
(except for the Richardson scheme instead of the DuFort–Frankel) and get to the
same conclusions [309, 310]. As a last comment we mention that the precondi-
tioning algorithm discussed in [144] applies to a broader class of second-order
BVPs than the problem (4.6.30) described here.

4.7 Parabolic Problems

We consider the solution of parabolic problems of the form

∂u

∂t
= ∇ · (p∇u)+ f in × (0, T ),

(4.7.1)
u(x, t) = g(x, t) on ∂, u(x, 0) = u0(x),

which is a model for the unsteady heat equation with spatially varying conduc-
tivity, p(x) > 0, and also constitutes one component of the momentum equation
in viscous fluid flow. Initially, we consider g ≡ 0. Multiplying (4.7.1) by a test
function v and integrating by parts, we arrive at the equivalent weak form: Find
u ∈ H 1

0 such that

d

dt

∫


v(x)u(x, t) dx = −
∫


p∇v · ∇u dx+
∫


v f dx ∀v ∈ H 1
0 . (4.7.2)
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Here, the time derivative has been moved outside the first integral under the
assumption that  is time-invariant. The moving-domain case is treated in
Section 6.7.

Spatial discretization proceeds as in the elliptic case. We restrict the search
for u to a finite-dimensional subspace VN ,0 ⊂ H 1

0 , representing u as

u(x, t) =
N∑

j=1

u j (t)ψ j (x),

where {ψ1, . . . , ψN } is a basis for VN ,0, and u j (t) are unknown coefficients.
We then insist that (4.7.2) hold for every v = ψi , i = 1, . . . ,N , leading to the
system of ODEs

d

dt
Mu = −K u + M f , u(0) = u0, (4.7.3)

where K and M are the stiffness and mass matrices introduced in Section 4.3,
and f (x) has been replaced by its interpolant,

∑
j f jψ j .

As in the one-dimensional case considered in Section 3.4, several options are
available for temporal discretization of (4.7.3), with an important distinction
between the class of purely explicit methods, which have limited time-step
sizes, and implicit methods, which require a system solve at each time step.
It follows from the eigenvalue analyses (2.7.21)–(2.7.22) and (4.2.10) that,
for tensor-product discretizations based on N th-order collocation or Galerkin
formulations, the spectral radius of M−1 K scales as N 4, implying that the
time step would need to scale as �t = O(N−4) to ensure a stable explicit
formulation. Consequently, (4.7.3) is usually solved implicitly unless other
terms in the governing problem mandate the use of a small time step.

Typical implicit formulations would be Crank–Nicolson or BDF2, with the
latter given by

M

(
3un+1 − 4un + un−1

2�t

)
= −K un+1 + M f n.

This scheme is unconditionally stable and requires repeated solution of
Helmholtz systems of the form

Hun+1 = rn+1, H :=MQT

(
KL + 3

2�t
ML

)
QM. (4.7.4)

Here, rn+1 accounts for all the terms known prior to time tn+1,M is the mask ar-
ray enforcing homogeneous boundary conditions, Q is the connectivity matrix,
and the subscript L denotes the unassembled stiffness and mass matrices.
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In multiple space dimensions, it is generally too expensive in storage and
operation count to solve (4.7.4) by direct factorization. Fortunately, the
Helmholtz operator is typically diagonally dominant, and therefore Jacobi (di-
agonally) preconditioned Krylov methods converge quite rapidly. In particular,
if a Galerkin scheme is used, then H is SPD and PCG is most effective. If (4.7.4)
is recast into local form, the full system with inhomogeneous boundary condi-
tions is

ML-
′HLun+1

0,L = rn+1
L , (4.7.5)

rn+1
L :=ML-

′
(

ML

[
1

2�t
ML

(
4un

L − un−1
L

)+ f n+1
L

]
− HLun+1

b,L

)
,

with the boundary-data splitting un+1
L := un+1

0,L + un+1
b,L , where

un+1
b,L := (I −ML )gn+1

L
+MLun

L . (4.7.6)

Equation (4.7.5) can be solved by using conjugate gradients (Algorithm 4.1).
Note that the mask multiplying 4un

L − un−1
L is superfluous if ML is diagonal,

because ML commutes with -′ML and is idempotent. Also, the construction
of un+1

b,L (4.7.6) implies that un+1
0,L satisfies homogeneous boundary conditions

and, in the interior, accounts only for the change in the solution from time tn to
tn+1. If the solution is smoothly varying in time, this can significantly reduce
the work for an iterative solver, because the initial residual ‖rn+1

L ‖may be quite
small.

4.7.1 Time-Dependent Projection

Further improvements in the initial guess can be obtained by computing the pro-
jection of the solution onto the space of previous solutions, as suggested in [128].
Algorithm 4.2 (below) is a straightforward extension of Algorithm 2.1, with ele-
ments of the approximation space based on prior solutions, rather than elements
of a Krylov subspace. It builds an H -orthonormal basis {ũ1, . . . , ũl} satisfy-
ing ũT

i Hũ j = δi j , with U := span {ũ1, . . . , ũl} = span {un−l+1
0 , . . . , un

0}. Here
l ≤ L is the number of prior solutions saved, and L is an upper bound determined
from storage considerations. When this bound is exceeded, the approximation
space is restarted with the most recent solution as the first entry. On the first pass
(l = 0), there is no space to project onto, and the procedure simply generates
a single element in U . Because ũ is H -orthogonal to U to within tolerance ε,
the Gram–Schmidt procedure in step 5 constitutes a reorthogonalization of ũ,
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and stability is thus assured. The entire procedure requires only two additional
matrix–vector products per time step. For ease of notation, we have reverted
to the global vector representation and dropped the L subscripts. However,
for local-storage implementations, all inner products must be effected with the
multiplicity weighting, as in Algorithm 4.1.

Algorithm 4.2 (Time-dependent projection scheme) Given a r.h.s. rn+1, and
initially l = 0, set

1. ū =∑l
i=1 αi ũ i , αi = ũT

i rn+1,
2. r̃ = rn+1 − Hū,
3. solve Hũ = r̃ to tolerance ε,
4. un+1

0 = ũ + ū,
5. If l = L then

l = 1
ũ l = un+1

0 /‖un+1
0 ‖H ,

Else
l = l + 1
ũ l = ũ −∑l−1

i=1 βi ũ i , βi = ũT
i Hũ,

s = (ũT
l Hũ l −

∑l−1
i=1 β

2
i )

1
2 ,

ũ l = ũ l/s,
EndIf.

The table on the left in Figure 4.7.1 shows the results when Algorithm 4.2
is applied to (4.7.1) with g = 0 and f is a revolving Gaussian pulse:

f = e−2r̃2
, r̃2 := 1

100
[(x − x̃)2 + (y − ỹ)2],

x̃ := 0.5+ 0.25 cos t,

ỹ := 0.5+ 0.25 sin t.

Three values of conductivity are considered, with the final case (p = 103) ef-
fectively corresponding to a Poisson equation to be solved at each step, sim-
ilar to the pressure Poisson equation encountered in Chapter 6 [see (6.3.1)
and (6.5.14)]. The table shows the average iteration counts over the inter-
val t ∈ [0, 2π ] with (left) and without (right) projection. In these examples,
L = 20. In each case, the projection approach provides a net reduction in iter-
ation count, with more substantial reductions being obtained for smaller time
steps. We note that for p ≤ 100 and tol ≥ 10−6, each twofold reduction in�t is
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W. W.O. W. W.O. W. W.O.
p

10−3

tol
∆t = π/25 π/50 π/100

10−3 4 4 2 3 1 3
10−6 9 10 5 8 2 6
10−9 14 15 9 12 4 9

100 10−3 31 41 14 33 7 23
10−6 91 103 51 87 25 69
10−9 128 134 94 123 52 111

103 10−3 33 45 17 38 8 30
10−6 101 113 66 107 36 102
10−9 136 142 111 138 78 135

u(x, π), p = 10−3

Figure 4.7.1. Jacobi–PCG iteration counts with and without projection for an unsteady
conduction problem in the unit square with (E, N ) = (16, 8).

accompanied by roughly a twofold reduction in iteration count, implying that
the number of iterations required to integrate over the interval t ∈ [0, 2π] is
conserved by the projection method, independent of �t . In these examples, the
benefits are less significant when the iteration tolerance is tightened. This is in
contrast to results given in [128]. There, and in [124], the projection method was
seen to yield a two- to fourfold reduction in iteration count for the (consistent)
pressure Poisson problem (6.3.1), preconditioned by domain decomposition
methods.

4.7.2 Other Diffusion Systems

We consider the variational formulation of the parabolic problem

∂ui

∂t
= ∂

∂x j
µ

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i = 1, . . . , d, (4.7.7)

where, following standard indicial notation, summation over the repeated index
j is implied. The system (4.7.7) is a model for the viscous contribution to the
Navier–Stokes equations when the viscosityµ is spatially varying [see (1.6.2)].
In the constant-viscosity case, the second term on the right drops out as a result
of the divergence-free constraint (1.2.10). Examples where variable viscosity
is important are problems with large temperature gradients or in large-eddy
simulations that use subgrid-scale models to account for local contributions to
the Reynolds stress term (1.10.26).
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Following the standard weighted-residual approach, we multiply (4.7.7) by
test functions vi and integrate over . After integration by parts we obtain

∂

∂t

∫


vi ui dx = −
∫


∂vi

∂x j
µ
∂ui

∂x j
dx−

∫


∂vi

∂x j
µ
∂u j

∂xi
dx. (4.7.8)

The corresponding system matrices are generated after the usual choice of
approximation spaces and bases, leading to the following system of ODEs for
the velocity components (in R

2):

[
M 0
0 M

]
d

dt

(
u1

u2

)

= −
([

K 0
0 K

]
+

[
DT

x µ̃Dx DT
y µ̃Dx

DT
x µ̃Dy DT

y µ̃Dy

])(
u1

u2

)
, (4.7.9)

where K := DT
x µ̃Dx + DT

y µ̃Dy is the standard stiffness matrix, M is the mass
matrix, µ̃ := µM is the diagonally scaled mass matrix, and Dx and Dy are the
standard derivative operators.

The difficulty introduced by variable viscosity is that u1 and u2 are now
coupled by the full matrix on the r.h.s. of (4.7.9). A stable decoupling of this
operator can be effected by moving diag (2K ) to the l.h.s. and using one of the
semiimplicit splittings of Section 3.3, the simplest example being the Euler-
implicit–Euler-explicit splitting

2K + 1

�t
M 0

0 2K + 1

�t
M

(
u1

u2

)n+1

= 1

�t

([
M 0
0 M

]
+

[
DT

y µ̃Dy −DT
y µ̃Dx

−DT
x µ̃Dy DT

x µ̃Dx

])(
u1

u2

)n

, (4.7.10)

although higher-order splittings are also possible. This system requires only
solution of the block-diagonal system on the left and can be shown to be uncon-
ditionally stable in R

2 and R
3 by a straightforward Rayleigh-quotient analysis.

Note that if one moves only K to the left, rather than 2K , stability is not
obtained.
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4.8 Hyperbolic Problems

We consider the multidimensional extension of the scalar transport problem
(3.5.1),

∂u

∂t
+ c · ∇u = f , u = ub on ∂in. (4.8.1)

Here, c is a convecting field, and ∂in ⊂ ∂ is the inflow boundary, where
c · n < 0, with n corresponding to the outward pointing normal on ∂. The
weak formulation of this problem reads as follows: Find u ∈ H 1

b such that∫


v

(
∂u

∂t
+ c · ∇u

)
dV =

∫


v f dV ∀v ∈ H 1
0 , (4.8.2)

where H 1
b (H 1

0 ) is the space of all functions in H 1 satisfying the inflow (ho-
mogeneous) boundary conditions on ∂in. As noted in Chapter 3, we do not
strictly need both u and v in H 1. However, we assume that this holds, in antici-
pation of adding viscosity when we later consider the advection–diffusion and
Navier–Stokes equations.

Discretization of (4.8.2) proceeds in the usual way by restricting the trial
and test spaces to a finite-dimensional subspace VN , representing u in terms of
a suitable basis {ψ j }N1 for VN , and testing against every function in this basis,
from which we arrive at the linear system

M
du

dt
= −Cu + M f . (4.8.3)

Here M is the usual mass matrix, and u the vector of unknown basis coefficients.
The only new element in this equation is the convective operator Ci j := ∫


ψi c ·

∇ψ j dV .
Spectral-element construction of C proceeds by evaluating∫

e

vc · ∇u dV (4.8.4)

element by element. We begin with the single-element case, dropping the su-
perscript e for conciseness. Note that if x(r) is the mapping from ̂ to ,
then

c · ∇u :=
d∑

i=1

ci
∂u

∂xi
=

d∑
i=1

ci

d∑
j=1

∂u

∂r j

∂r j

∂xi
=

d∑
j=1

(
d∑

i=1

ci
∂r j

∂xi

)
∂u

∂r j
.
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Defining c̃ j :=∑d
i=1 ci ∂r j/∂xi , j = 1, . . . , d , we have

c · ∇u :=
d∑

j=1

c̃ j
∂u

∂r j
,

and the convective operator for a single element is thus

C = M
d∑

j=1

c̃ j D j , (4.8.5)

where the mass matrix arises from the integration in (4.8.4). This is the multidi-
mensional analogue of (3.5.5). When the form (4.8.5) is used, the computation
of Cu requires only d tensor-product evaluations (D j u) in the reference do-
main, rather than d2 as would be required if each physical space component of
∇u were computed individually. For example, for a single element in R

2, the
product we = Ceue is

we
i j = ρiρ j J e

i j

(
c̃e

r,i j u
e
r,i j + c̃e

s,i j u
e
s,i j

)
, (4.8.6)

where ue
r := Dr ue = (I ⊗ D̂)ue and ue

s := Dsue = (D̂ ⊗ I )ue. The multi-
domain extension of (4.8.6) is

wL = -′CLuL ,

assuming that the trial and test functions are continuous.
The form c · ∇u is the so-called convective form of the transport operator.

Other forms, equivalent in the continuous case, include the conservation and
skew-symmetric forms. From the identity

∇ · (cu) = u∇ · c+ c · ∇u (4.8.7)

we have, assuming ∇ · c = 0, the conservation form: ∇ · (cu) = c · ∇u. Multi-
plying by a test function v and then integrating by parts yields∫



v∇ · (cu) dV = −
∫


uc · ∇v dV +
∫
∂

vuc · n d S. (4.8.8)

In situations where the surface integral on the right is vanishing, such as closed
or periodic domains, we have

(v, c · ∇u) = −(c · ∇v, u), (4.8.9)
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implying that the convection operator is skew-symmetric. The significance of
this is that

∫
u2 dV is conserved (assuming f ≡ 0), since (u, c · ∇u) = 0, as

can be seen by setting v = u in (4.8.9).
In the discrete case, it is possible to explicitly enforce skew-symmetry by

defining

Css := 1

2

d∑
i=1

(
Mci Di − DT

i ci M
)
.

The second term (the conservation form) is evaluated elementwise as

we = Ce
c ue

= DT
1

(
c̃e

1 Meue
)+ DT

2

(
c̃e

2 Meue
)

=
N∑

p=0

D̂ pi
(
c̃e

1,pj J e
pjρpρ j u

e
pj

)+ N∑
q=0

D̂q j
(
c̃e

2,iq J e
iqρiρque

iq

)
.

The advantage of Css is that, since Css = −CT
ss by construction, its eigenvalues

are purely imaginary, even if ∇ · c �= 0, and no dissipation will result from
the spatial discretization. Symmetric time-stepping schemes such as Crank–
Nicolson will preserve this property, and any consistent time-stepping scheme
will preserve it in the limit�t −→ 0. Rønquist [331] demonstrated the potential
advantages of the skew-symmetric form in Navier–Stokes simulations within
closed domains. However, recent results by Wilhelm and Kleiser [412] have
shown the potential for spurious instabilities in studies of Tollmien–Schlichting
wave growth when using the skew-symmetric form in high-Reynolds-number
applications. Moreover, the skew-symmetric form is more expensive and strictly
applies only when the surface integral in (4.8.8) vanishes. If the surface inte-
gral in (4.8.8) is nonvanishing (e.g., due to outflow conditions), energy is not
conserved in the continuous system, implying that there are eigenvalues with
nontrivial real parts. One would consequently not expect the discrete operator
to be skew-symmetric either.

To avoid implicit solution of the nonsymmetric system (M +�t C), one
commonly advances (4.8.3) with explicit time-stepping schemes. AB3 and RK4
are appropriate choices, as their stability regions enclose a significant portion
of the imaginary axis (see Figures 3.2.1 and 3.2.5). The CFL stability criterion
can be determined by choosing �t such that

max


�t

( |c̃1|
�r1

, . . . ,
|c̃d |
�rd

)
≤ (λh)∗

S(N )
,

where �ri and c̃i respectively refer to the local grid spacing and velocity in the
i th direction in the reference domain [−1, 1]d , (λh)∗ is the maximum stable
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value in the λh plane (Figures 3.2.1 and 3.2.5), and S(N ) is the scaling factor
given in Figure 3.5.2. Time advancement of (4.8.3) with, say, AB3 would be
expressed in local form as

un+1
L = un

L −ML M−1
L -′

(
2∑

q=0

γq+1

γ
Cn−q

L un−q
L

)
. (4.8.10)

Here, ML is the local diagonal mask matrix, which is taken to be the identity
everywhere except on ∂e ∩ ∂in. The superscript on Cn−q

L refers to the time
level in the case where c is a function of time. The AB3 coefficients γ and γq

are given in Table 3.2.1.

A Two-Dimensional Example

We present a spectral-element example using the convective form coupled with
AB3 time stepping (4.8.10). The problem is the convecting-cone problem first
considered by Gottlieb and Orszag [163]. The convecting field is a plane rota-
tion, c = (y − 0.5, 0.5− x), on  = [0, 1]2. The initial condition is a cone of
unit height with a base radius of 0.1 and center at (0, .25). Periodic boundary
conditions are applied in each direction. They are imposed by simply matching
global node numbers on opposite sides of the domain; everything else carries
through by the action of -′ (see Figure 4.5.3).

Figure 4.8.1 shows the initial condition and the results for three different
discretizations: (E, N ) = (162, 2), (82, 4), and (42, 8), all having essentially the

Initial condition

X
 Y

E1 = 8, N = 4

X
 Y

E1 = 16, N = 2

X
 Y

E1 = 4, N = 8

X
 Y

Figure 4.8.1. Convected-cone problem on a 32× 32 grid comprising E2
1 elements of

order N .
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same 32× 32 resolution. The time step, �t = π/1000, is the same in all cases
and sufficiently small that spatial errors dominate. We observe in Figure 4.8.1
considerable dispersion for the lower-order cases after just a single revolution.
The dispersion is significantly diminished for the moderately high-order case
of N = 8, despite the fact that the solution is not smooth. The minima for the
three respective cases are −0.1419, −0.1127, and −0.0371, and the maxima
are 0.7693, 0.7413, and 0.8652. The results with RK4 are essentially identical.

4.9 Unsteady Advection–Diffusion Problems

This section introduces time-stepping schemes that are specific to mixed-physics
problems in multiple space dimensions. In particular, we introduce the multidi-
mensional extension of the operator-integration factor splitting (OIFS) scheme
of Maday et al. [262]. This OIFS technique is also interpreted as a subcycling
method where the advective part is integrated more often than the diffusive
part because the time scale of advection is shorter and imposes more stringent
stability conditions. We consider the multidimensional extension of the scalar
transport problem (3.7.1),

∂u

∂t
+ c · ∇u = ν �u, u = 0 on ∂, (4.9.1)

where c is the given advection field. The weak formulation of this problem is
as follows: Find u ∈ H 1

0 such that∫


v

(
∂u

∂t
+ c · ∇u

)
dV = −ν

∫


∇u∇v dV ∀v ∈ H 1
0 . (4.9.2)

The discretization of Equation (4.9.2) produces the linear system for the basis
coefficients:

M
du

dt
= −Cu − K u. (4.9.3)

Recalling (3.9.1), one can write Equation (4.9.3) in terms of an integration
factor Qt∗

C (t):

d

dt

[
Qt∗

C (t)Mu
] = Qt∗

C (t)(−K u), (4.9.4)

which is defined here by

d

dt
Qt∗

C (t)M = Qt∗
C (t)C, Qt∗

C (t∗) = I. (4.9.5)
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Applying the BDFk scheme (3.2.29) to (4.9.4), one obtains

Mun+1 −
k∑

j=1

a j SC
(
Qtn+1

C (tn+1− j )Mun+1− j
) = −b0 �t K un+1 (4.9.6)

The evaluation of the terms involving the operator integration factor, which is
never constructed explicitly, is performed by using the relationship

SC
(
Qtn+1

C (tn+1− j )Mun+1− j
) = Mũn+1

j , j = 1, . . . , k, (4.9.7)

where the unknowns ũn+1
j are computed by integration of the initial-value

problem

M
d

ds
ũ j (s) = −Cũ j (s), tn+1− j ≤ s ≤ tn+1, (4.9.8)

with initial conditions ũ j (t
n+1− j ) = un+1− j . This last problem is solved with a

time step �s = �t/η. The integer η represents the number of subcycles where
explicit cheap evaluations of the advection term are computed.

The subcycling method is equivalent to the method of characteristics (cf.
Quarteroni and Valli [319] and Ho et al. [206]), as the paper [262] on OIFS

indicates. This can be shown by switching from Eulerian spatial description to
Lagrangian material description. The equation (4.9.3) becomes

M
d

dt
u(X(x, t), t) = −b0 K u(X(x, t), t), (4.9.9)

where X(x, t) represents the Lagrangian spatial coordinates. The l.h.s. of (4.9.9)
corresponds now to the particular derivative, that is, the time derivative obtain-
ed by following a material point in the fluid. From continuum mechanics, we
know that

M
d

dt
u(X(x, t), t) =

(
M

d

dt
+ C

)
u(x, t), (4.9.10)

with u(x, t), the scalar field in Eulerian coordinates. Applying BDF3 to Equation
(4.9.9), we get

Mu(X(x, tn+1), tn+1)−
3∑

j=1

a j Mu(X(x, tn+1− j ), tn+1− j )

= −�t b0 K u(X(x, tn+1), tn+1). (4.9.11)
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In this relation, u(X(x, tn+1− j ), tn+1− j ) is the value of u at time tn+1− j at the
foot of the characteristic originating from x at time tn+1. By definition of the
characteristics, X(x, tn+1− j ) is computed by the backward problem

∂X(x, s)

∂s
= u(X(x, s), s), s ∈ [tn+1− j , tn+1), (4.9.12)

X(x, tn+1) = x. (4.9.13)

When the condition (4.9.13) is taken into account, Equation (4.9.11) simplifies
to

Mun+1 −
3∑

j=1

a j Mu(X(x, tn+1− j ), tn+1− j ) = −�t b0 K un+1. (4.9.14)

The solution of the characteristics problem (4.9.12)–(4.9.13) by an appropri-
ate time scheme like RK4 yields the values at the foot of the characteristics.
The final step to prove the equivalence between subcycling and the method of
characteristics is accomplished by the integration in time of Equation (4.9.10),∫ tn+1

tn+1− j

M
d

dt
u(X(x, t), t) dt

=
∫ tn+1

tn+1− j

(
M

d

dt
+ C

)
u(x, t) dt, j = 1, . . . , k,

which provides

Mu(X(x, tn+1− j ), tn+1− j ) = Mun+1− j−
∫ tn+1

tn+1− j

Cu(x, t) dt, j = 1, . . . , k.

(4.9.15)

By use of the definition (4.9.7), we set

Mu(X(x, tn+1− j ), tn+1− j ) = Q(tn+1,tn+1− j )
C Mu(tn+1− j ), (4.9.16)

and this establishes that Equation (4.9.6) is equivalent to Equation (4.9.14).

4.10 Further Reading

Treatment of multidimensional elliptic, parabolic, and nonlinear hyperbolic
equations by spectral methods is available in numerous texts. Theoretical treat-
ments are presented in the books by Bernardi and Maday [39], Funaro [142],
and Guo [177]. More applied approaches are presented in the books by Canuto



4.10. Further Reading 233

et al. [64], Funaro [144], and Trefethen [383]. Particular attention to spectral
methods in axisymmetric geometries may be found in the texts by Boyd [48],
Fornberg [137] and Bernardi et al. [34]. Recent advances in algorithms for hy-
perbolic problems, including weighted essentially nonoscillatory (WENO) and
discontinuous Galerkin (DG) schemes, are given comprehensive treatment in
Cockburn et al. [80].
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Steady Stokes and Navier–Stokes Equations

In this chapter, we tackle the main subject of the monograph, namely, the numer-
ical integration of the steady Navier–Stokes equations describing incompress-
ible fluid flows subject to body forces f in the velocity–pressure formulation. We
discard all description of high-order methods in the framework of the vorticity–
stream-function formulation, because this approach lacks generality in terms
of applications and ease of imposing various boundary conditions, especially
when interfaces between two nonmixing fluids or free surfaces are present. We
restrict ourselves here to the steady-state case, deferring the transient case to
the next chapter.

5.1 Steady Velocity–Pressure Formulation

In dimensionless form, the steady-state Navier–Stokes equations are given by
the following relationship [see Equations (1.7.1) and (1.2.5)]:

v ·∇v = −∇ p + (Re)−1�v+ f in , (5.1.1)

and the continuity equation

div v = 0 in , (5.1.2)

where  denotes an open subset of R
d , closed by the boundary ∂, which is

Lipschitz-continuous, d being the spatial dimension. This set of equations is
solved with appropriate boundary conditions. For the sake of simplicity, we will
consider only homogeneous Dirichlet boundary conditions, unless otherwise
explicitly stated. They are

v = 0 on ∂. (5.1.3)

234
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Other possible conditions are expressed by imposing contact forces (1.3.2) on
some part of the fluid boundary or its totality.

The steady Navier–Stokes equations are of advection–diffusion type, where-
as the steady Stokes equations are linear and elliptic. In contrast with compress-
ible fluid flows, where the pressure is given by the equation of state, incompress-
ible fluids do not share this advantage. The pressure is the physical variable that
responds to the continuity constraint (5.1.2), ensuring that the flow is incom-
pressible everywhere in the computational domain. With the condition (5.1.3),
the pressure in an incompressible fluid is known only up to a constant. There-
fore, a reference pressure level has to be chosen. This is achieved by imposing
a mean zero level over the domain:∫



p dV = 0 on . (5.1.4)

In Section 5.2, the steady-state Stokes equations are analyzed. The weak
formulation is first presented for the continuous case. The SEM is then de-
scribed with the various possible discretizations leading to optimal versions
free of spurious pressure modes. Legendre and Chebyshev collocation proce-
dures are analyzed for single and staggered grids. Section 5.3 elaborates on
the linear systems generated by the various discretization processes, and in-
spects their conditioning and the relevant algorithms to solve them efficiently
with possible preconditioners. The Poisson pressure solver and the associated
Green’s-function technique are described in Section 5.4. Section 5.5 introduces
divergence-free bases via the computation of a singular generalized Stokes
eigenvalue problem. The stabilization of the PN –PN approximation by the use
of bubble functions is introduced in Section 5.6. These bubble functions are
shown to bring to the discrete continuity equation an extra term that damps all
oscillatory behavior in the pressure field. The discretization of the steady Stokes
problem by hp methods is briefly discussed in Section 5.7. The steady Navier–
Stokes equations are then presented in Section 5.8. The weak formulation for
the continuous case is given. Some theoretical tools are introduced to allow
further analysis of the collocation technique applied to the full Navier–Stokes
equations. The question of convergence is, of course, of central importance.
Iterative techniques are used to solve the problem, and the Newton method
constitutes the natural algorithm to treat nonlinearities. In Section 5.9, a few
relevant applications from both the numerical and the fluid-mechanics point
of view are discussed. The chapter ends with Section 5.10, where further ref-
erences to the literature are made, and some engineering considerations are
raised in order to allow the reader to choose the best method for a specific
application.
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Readers interested in a detailed introduction to the numerical analysis of the
steady Stokes problem are referred to Bernardi and Maday [38, 39].

5.2 Stokes Equations

In this section, we treat the dimensionless linear steady Stokes problem (1.7.6)
and the associated divergence-free condition

∇ p −�v = f in , (5.2.1)

div v = 0 in , (5.2.2)

with the homogeneous velocity boundary conditions (5.1.3).
A fundamental question in the development of the weak formulation of the

Stokes problem is the appropriate choice of spaces for the velocity and pressure
approximations.

5.2.1 The Weak Formulation

Equations (5.2.1) and (5.2.2) may be cast in the weak form. For this purpose,
the functional spaces for the velocity and pressure are H 1

0 ()d and L2
0(),

respectively, with H 1
0 ()d denoting the Sobolev space of vector functions with

d components introduced in Section 4.3.1, satisfying homogeneous boundary
conditions, and

L2
0() :=

{
q ∈ L2()

∣∣∣∣ ∫


q(x) dx = 0

}
. (5.2.3)

In this equation, the subscript indicates that the average pressure is set to zero.
Then the weak form is as follows: Find v in H 1

0 ()d and p in L2
0() such

that ∫


∇v · ∇u dx−
∫


p div u dx =
∫


f · u dx ∀u ∈ H 1
0 ()d , (5.2.4)

−
∫


q div v dx = 0 ∀q ∈ L2
0(), (5.2.5)

where f is given in L2()d . In Equation (5.2.4), we recognize the terms corre-
sponding to a stationary value of the energy functional for an elliptic problem
plus the additional pressure term. In fact, the energy functional is modified
in such a way that the pressure plays the role of a Lagrange multiplier for
the continuity constraint [53, 71, 157, 176]. The total energy is given by the
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functional

J (u) = 1

2

∫


[∇u · ∇u− 2f · u] dx. (5.2.6)

To elaborate the Lagrange-multiplier formulation of the Stokes problem, one
introduces the Lagrangian functional

L(u, q) = J (u)−
∫


q div u dx. (5.2.7)

The classical minimization problem is now transformed into a saddle-point
problem such that we look for a solution derived from the inf–sup problem

inf
u∈H 1

0 ()d
sup

q∈L2
0()

∫


(
1

2
∇u · ∇u − f · u − q div u

)
dx. (5.2.8)

Equivalently, the solution (v, p) of the previous saddle-point problem satisfies
the inequalities

L(v, q)≤ L(v, p)≤ L(u, p) ∀u∈ H 1
0 ()d , ∀q ∈ L2

0(). (5.2.9)

The term saddle point comes from the geometrical features of the Lagrangian
functional, which is convex for the velocity minimization and concave for the
pressure maximization, therefore showing a saddle form with double curvature.

The solution of the saddle-point problem possesses adequate stability and
convergence properties if it complies with the well-known inf–sup condition,
also called the Brezzi–Babuška condition [18, 51]. To this end, let us define the
continuous bilinear forms A and B:

A : H 1
0 ()d × H 1

0 ()d → R, A(u, v) = (∇u,∇v), (5.2.10)

B : H 1
0 ()d × L2

0()→ R, B(v, q) = −(div v, q), (5.2.11)

where (·, ·) denotes the inner product in L2 space. With these bilinear forms,
the weak formulation (5.2.4)–(5.2.5) may be restated in the following abstract
form: Find (v, p) ∈ H 1

0 ()d × L2
0() such that

A(u, v)+ B(u, p) = F(u) ∀u ∈ H 1
0 ()d , (5.2.12)

B(v, q) = 0 ∀q ∈ L2
0(). (5.2.13)

With the norms defined in Section 4.3.1, we are now in a position to cite Brezzi’s
main result.
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Theorem 5.1 Under the assumptions

1. the continuous bilinear form A(·, ·) is coercive on H 1
0 ()d and satisfies an

ellipticity condition for α > 0, that is,

α‖u‖2
H 1

0 ()d ≤ A(u,u) ∀u ∈ H 1
0 ()d , (5.2.14)

2. the continuous bilinear form B(·, ·) verifies an inf–sup condition for a con-
stant β > 0, that is,

sup
u∈H 1

0 ()d

B(u, q)

‖u‖H 1
0 ()d

≥ β‖q‖L2
0() ∀q ∈ L2

0(), (5.2.15)

the problem (5.2.12)–(5.2.13) possesses a unique solution (v, p) with the fol-
lowing bounds:

‖v‖H 1
0 ()d ≤ 1

α
‖f‖H−1()d , (5.2.16)

‖p‖L2
0() ≤

1

β

(
1+ 1

α

)
‖f‖H−1()d . (5.2.17)

Related to the bilinear form (5.2.11), one introduces the operator B, corre-
sponding to the continuity constraint:

B: H 1
0 ()d → R, Bv = −div v. (5.2.18)

The image of B, denoted as Im B, coincides with L2
0().

5.2.2 The Spectral-Element Method

As usual in the SEM, the first step consists in subdividing the domain ̄ =
 ∪ ∂ into E nonoverlapping rectilinear elementse, e = 1, . . . , E , such that
the intersection between two or more adjacent elements produces a face, an edge,
or a vertex. Each element will involve a mesh constructed as a tensor product
of one-dimensional grids. Although each space direction may be discretized
independently of the others, without loss of generality we will consider only
meshes obtained with the same number of nodes in each direction, denoted by
N + 1, corresponding to the dimension of the space of N th-order polynomials.
To describe the discretization process accurately, we simplify the notations by
defining

X := H 1
0 ()d , Z := L2

0(). (5.2.19)



5.2. Stokes Equations 239

We define the approximate Stokes problem in its weak form: Find (vh, ph) ∈
(Xh, Zh) such that

A(uh, vh)+ B(uh, ph) = Fh(uh) ∀uh ∈ Xh, (5.2.20)

B(vh, qh) = 0 ∀qh ∈ Zh . (5.2.21)

where Xh and Zh are finite-dimensional polynomial subspaces Xh ⊂ X and
Zh ⊂ Z in which the velocities and pressure will be approximated, respectively.
Of course, in the sequel, the existence and uniqueness of the solution pair
(vh, ph) are of primary concern. In finite elements, the subscript h is related to
the typical mesh size, while in spectral elements, the parameter h refers to E ,
the number of elements and N , the polynomial degree.

The most obvious and simple choice for the velocity–pressure spectral-
element discretization consists in resorting to the same polynomial space for
both fields, namely, the so-called PN –PN method where the discrete spaces,
now denoted by X N and Z N , are defined as

X N = X ∩ P
d
N ,E , (5.2.22)

Z N = Z ∩ PN ,E , (5.2.23)

with

PN ,E = {φ|φ ∈ L2(); φ|e is a polynomial of degree ≤ N }, (5.2.24)

where the superscript d in (5.2.22) reflects the fact that elements of X N are
d-dimensional. On the 3D parent element ̂ := [−1, 1]3, for example, the ve-
locity field is approximated by

vN (ξ) =
N∑

i, j,k=0

vi, j,k π
v
i, j,k ∀ξ ∈ ̂ := [−1, 1]3, (5.2.25)

where the contracted sum extends over the three space dimensions in turn and
refers to the indices i, j, k of the Lagrange Gauss–Lobatto–Legendre (GLL)
grid nodes, and πv

i, j,k is the tensor product of elementary one-dimensional
interpolant bases as introduced in (2.4.3). The GLL grid will be denoted by
ΞN . Because the weak formulation is an integral form, quadrature rules are
employed. The Legendre spectral elements take advantage of the special rep-
resentation of the Lagrangian interpolants (5.2.25) and replace the continuous
integrals by GLL rules made of tensor products of one-dimensional numerical
quadratures. Consequently, the abstract problem (5.2.20)–(5.2.21) becomes:
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Find (vN , pN ) ∈ (X N , Z N ) such that

AN (uN , vN )+ BN (uN , pN ) = FN (uN ) ∀uN ∈ X N , (5.2.26)

BN (vN , qN ) = 0 ∀qN ∈ Z N . (5.2.27)

The bilinear forms appearing in (5.2.26)–(5.2.27) are given by the relationships

AN (uN , vN ) := (∇uN ,∇vN )N , (5.2.28)

BN (uN , qN ) := −(div uN , qN )N , (5.2.29)

where the discrete scalar product (·, ·)N is provided by the GLL quadrature rule.
For the 3D case, one has on the reference cube

( f, g)N :=
N∑

i, j,k=0

fi, j,k gi, j,k ρi, j,k, (5.2.30)

with ρi, j,k := ρiρ jρk , denoting the product of three GLL weights (B.2.9).
From FE theory, it is well known that elements of the same polynomial

degree for both primitive variables v and p suffer from the presence of spurious
pressure modes. For example, the Q1–Q1 discretization on an equally spaced
mesh triggers a pressure mode that, in two dimensions, is of the checkerboard
type [342]. In fact, this element does not satisfy the inf–sup condition. For the
PN –PN method, the same conclusion holds (Bernardi and Maday [38]). This
situation generates pressure solutions that satisfy the weak continuous relation

(∇ p,u) = 0 ∀u ∈ H 1
0 ()d . (5.2.31)

From a practical point of view, the spurious pressure modes do not affect the ve-
locity solution, although they do produce oscillatory pressure fields that should
be filtered to recover meaningful physical solutions. We defer the analysis of
these spurious pressure modes until Section 5.2.3, which is devoted to spectral
collocation approximation.

Staggered Spectral Elements

A consistent and better choice for spectral-element discretizations that elimi-
nates completely the spurious pressure modes relies on the idea of a staggered
grid. It is well known in the FD or finite-volume context that this approach
avoids the difficulties associated with collocated grids. By analogy with FE

theory, where it is common to use pressure interpolants with polynomials of
order one lower than for velocity, one might propose to work in PN –PN−1

spaces for the spectral-element discretization. Although this choice eliminates
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the spurious modes in the case of a single spectral element, one can prove that
it does not enforce the inf–sup condition for discretizations with several spec-
tral elements. Therefore, Maday and Patera [261] developed an element based
on PN –PN−2 spaces. The theory and its application to fluid flows were further
reported by Maday et al. [260, 256] and Rønquist [332].

The functional spaces are defined as

X N = X ∩ P
d
N ,E , (5.2.32)

Z N = Z ∩ PN−2,E . (5.2.33)

The discrete problem (5.2.20)–(5.2.21) is still valid in this abstract setting.
However, one must carefully consider the integration rules behind each term.
As the velocities are in PN , the Lagrange interpolants are based on the GLL

nodes, and the discrete scalar products in AN (·, ·) and (·, ·)N are of the form
(5.2.30). For the two remaining terms involving BN (·, ·), i.e. the pressure term
and the divergence-free condition, a Gauss–Legendre (GL) integration rule is
chosen (see Section B.2.2). On ̂, the 3D pressure Lagrange interpolant is
written as

pN (ζ) =
N−1∑

i, j,k=1

pi, j,k π
p

i, j,k(ζ) ∀ζ ∈ ̂, (5.2.34)

where the nodal values are attached to the GL grid denoted byZ N , andπ p
i, j,k(ζ) ∈

PN−2(ζ) is the tensor product of the one-dimensional GL Lagrangian inter-
polants of degree N − 2, that is,

π
p

l (ζ ) = L N−1(ζ )

(ζ − ζl)L ′N−1(ζl)
, l ∈ {i, j, k} ∀ ζ ∈ [−1, 1]. (5.2.35)

Consequently, the discrete GL scalar product is

( f, g)N ,GL =
N−1∑

i, j,k=1

fi, j,k gi, j,k ωi, j,k, (5.2.36)

where ωi, j,k := ωiω jωk is the product of the GL weights (B.2.7). The reader
should notice that we use a different notation for the weights from that used in
the appendices. This is dictated by the presence of two quadrature rules in the
weak formulation.

The PN –PN−2 Stokes problem becomes: Find (vN , pN ) ∈ (X N , Z N ) such
that

AN (uN , vN )+ BN ,GL(uN , pN ) = FN (uN ) ∀uN ∈ X N , (5.2.37)

BN ,GL(vN , qN ) = 0, ∀qN ∈ Z N , (5.2.38)
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Figure 5.2.1. Staggered spectral element for N = 6 (left) and N = 7 (right).

with the bilinear forms in (5.2.37)–(5.2.38) defined by the relations

AN (uN , vN ) := (∇uN ,∇vN )N , (5.2.39)

BN ,GL (vN , qN ) := −(div vN , qN )N ,GL, (5.2.40)

and the discrete scalar products given by (5.2.30) and (5.2.36), respectively.
Note that the GL rule integrates exactly the pressure term and the continuity
equation, as does the GLL rule for the other terms. Therefore, we can show
easily that

BN ,GL (uN , qN ) = B(uN , qN ) ∀uN ∈ X N , ∀ qN ∈ Z N . (5.2.41)

It is common to say the velocities in PN are conforming, while the pressures
are not. This means that the velocities are continuous along the element inter-
faces, while the pressure is not necessarily continuous. Figure 5.2.1 displays
for one spectral element the staggered grid with an odd number (left) and an
even number (right) of velocity nodes. The dashed lines represent the pressure
grid, and the solid lines the velocity mesh. We notice that the two grids are
intertwined and in the second example there is no pressure node in the central
strips of the element.

Collocative Spectral Elements

An alternative to the staggered-grid approach of the PN−PN−2 formulation
can also be derived. We will name this approach the collocative PN−PN−2

SEM. Taking into account the exactness of the GLL integration rule and the
property (5.2.41), one deduces from Equation (5.2.37) the following collocation
relation:

−�vN + ∇ pN = fN for x ∈ ΞN . (5.2.42)
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Following the proposition of Azaı̈ez and Coppoletta [17], we base the PN−2

discretization on the interior points of the GLL velocity mesh and thereby
avoid interpolation between meshes, which is usually needed for the PN –PN−2

method. One can choose as 2D test functions

qN (ζ) := π̂k,l(ζ) ∈ PN−2(ζ), 1 ≤ k, l ≤ N − 1, (5.2.43)

where π̂k,l(ζ) denotes the tensor product of one-dimensional Lagrangian inter-
polation polynomials associated with the zeros ξl (l = 1, . . . , N − 1) of L ′N :

π̂l(ζ ) = L ′N (ζ )

(ζ − ξl)L ′′N (ξl)
, 1 ≤ l ≤ N − 1. (5.2.44)

Inserting the previous qN in Equation (5.2.38) and fixing x = (ξi , ξ j ), one can
show [17] that div vN (x) is a linear combination of the values of div vN evaluated
at the four points (−1, ξ j ), (1, ξ j ), (ξi ,−1), (ξi , 1). This is the reason that the
PN –PN−2 method is not a full collocation method. Azaı̈ez and Coppoletta call
that method “quasi-collocation.”

We note that when the pressure nodes coincide with the interior velocities,
the abstract problem is again given by Equations (5.2.26)–(5.2.27) with GLL

quadratures. The pressures are interpolated by the π̂ -polynomials. Numerical
quadratures involving the pressure or the related test functions require extrap-
olation of these interpolants to the interface nodes (ξ0, ξN ).

It can be proven that the inf–sup condition yields

sup
uN∈X N

BN (uN , qN )

‖uN‖H 1
0 ()d

≥ C N (1−d)/2‖qN‖L2
0() ∀qN ∈ PN−2 ∩ L2

0().

(5.2.45)

The expression in front of ‖qN‖L2
0() is called the inf–sup constant. It is de-

noted as βN , and in this case we have βN :=C N (1−d)/2. As a consequence of
the inf–sup condition, one can prove the following theorem (see Maday et al.
[263]).

Theorem 5.2 Under the assumptions

1. N ≥ 2, with the pressure pN in Z N ,
2. the solution (v, p) of the weak continuous problem (5.2.12)–(5.2.13) is in

H s
0 ()d × H s−1() for an integer s ≥ 1 if d = 2, and s ≥ 3 if d = 3; and

the function f is in H t ()d for an integer t ≥ d/2,
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the problem (5.2.37)–(5.2.38) possesses a unique solution (vN , pN ) in X N ×
Z N with the following error bounds:

‖v− vN‖H 1
0 ()d ≤ C

[
N 1−s

(‖v‖H s
0 ()d + ‖p‖H s−1()

)+ N−t‖f‖H t ()d

]
,

(5.2.46)

‖p− pN‖L2() ≤ C1
[
N (d+1)/2−s

(‖v‖H s
0 ()d +‖p‖H s−1()

)
+ N

d−1
2 −t‖f‖H t ()d

]
, (5.2.47)

with C and C1 constants independent of N .

The last error estimate shows that the method is optimal for the velocity-
field convergence, while the factor N (d−1)/2 prevents optimality for the pressure.
However, the overall convergence is nearly optimal, and the method is highly
appealing because it constitutes a natural generalization of the finite-element
technique. Studies of the convergence properties of the PN –PN−2 formulation
in comparison with the PN –PN−1 formulation have been carried out by Shen
[355].

Recently, Bernardi and Maday [40] have proposed a new pressure space to
obtain an optimal inf–sup condition. The definition of Z N is now for a single
element (E = 1)

Z N = Z ∩ PλN , (5.2.48)

with λ < 1. The main result states that, for any real number λ, 0 < λ < 1,
there exists a positive constant β independent of N such that for any integer
N ≥ 2/(1− λ) and all qN in Z N , the inf–sup condition is

sup
uN∈X N

BN (uN , qN )

‖uN‖H 1
0 ()d

≥ β‖qN‖L2
0(). (5.2.49)

Furthermore, if Z N is chosen as

Z N = Z ∩ Pinf(λN ,N−2), (5.2.50)

with inf the function giving the minimum of its two arguments, the constant β
satisfies the inequality

β ≥ C(1− λ)(d−1)/2. (5.2.51)

The pressure error is given by

‖p− pN‖L2()≤C1
[
N 1−s

(‖v‖H s
0 ()d + λ1−s‖p‖H s−1()

)+ N
d−1

2 −t‖f‖H t ()d

]
.

(5.2.52)
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The velocity error estimate in Bernardi and Maday [40] is optimal but it is
measured in a divergence-free velocity space. As this is never achieved in a real
computation, the convergence of the PN –PλN approximation for the velocity
field is indeed affected by the choice of the λ-value.

In addition to the concept of spurious pressure modes, Vandeven [397] in-
troduced the weakly spurious pressure (WSP) modes. These modes constitute a
sequence such that

lim
N→∞

βN → 0. (5.2.53)

The existence of these WSP modes shows that the inf–sup condition, when it
depends on the polynomial degree N , goes to zero when N goes to infinity.
WSP modes will degrade the convergence rate of the iterative methods such as
the CG algorithm.

5.2.3 Collocation Methods on Single and Staggered Grids

Collocation methods are inspired by the knowledge and experience acquired
with the solution of elliptic problems (see Chapters 2 and 4). Specifically, these
methods require that the residuals obtained by replacing the continuous vari-
ables with their numerical approximations vanish on a set of well-chosen points,
the collocation nodes. Generally speaking, roots of any Jacobi polynomial are
candidates for collocation. Nevertheless, numerical practice relies heavily on
Chebyshev and Legendre-based collocation methods. We review them first in
the context of single-grid collocation [36].

Legendre Single-Grid Collocation

If one chooses the GLL points as collocation nodes, the one-grid collocation
technique can be viewed as the counterpart of the one-spectral-element approach
(E = 1) in the framework of the PN –PN method. It is based on velocity and
pressure approximations of the form (5.2.25). The spaces are defined by the
relationships

X N = X ∩ P
d
N (), (5.2.54)

Z N = Z ∩ PN (), (5.2.55)

where PN () is the set of polynomials of degree ≤ N with respect to each of
the independent variables. The abstract problem has the form (5.2.26)–(5.2.27),
with the bilinear forms (5.2.28), (5.2.29) and the discrete scalar product (5.2.30).

It is possible to arrive at the collocation formulation of the abstract problem
by using the exactness property of the GLL rule in conjunction with integration
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by parts. Omitting the details of such calculation, we restate the problem as
follows: Find vN ∈ P

d
N () and pN ∈ Z N such that

−�vN (x)+ ∇ pN (x) = fN (x) for x ∈ ΞN ∩, (5.2.56)

div vN (x) = 0 for x ∈ ΞN ∩ ̄, (5.2.57)

vN (x) = 0 for x ∈ ΞN ∩ ∂. (5.2.58)

As already mentioned, discretizations of velocity and pressure with inter-
polants of the same degree induce spurious pressure modes. These modes, say,
qN ∈ PN , constitute numerical artifacts and satisfy the weak formulation of
Equation (5.2.31), that is,

BN (uN , qN ) = −(div uN , qN )N = 0 ∀uN ∈ X N . (5.2.59)

The vector subspace generated by these functions qN will be denoted by YN ;
the corresponding discrete divergence operator is BN , the discrete counterpart
of B (5.2.18). The space Im X N obtained through the divergence operator is
the orthogonal subspace of YN in PN with respect to the L2() scalar product.
Note also that unlike the continuous problem, YN = ker BT

N is not reduced to
constant functions (BT is the gradient operator). Bernardi and Maday [38] show
the space YN of spurious modes to be of dimension 8 for 2D problems. With
the notation

Li, j = Li (x)L j (y), L ′i, j = L ′i (x)L ′j (y), (5.2.60)

YN can be identified as

YN =span{L0,0, L0,N , L N ,0, L N ,N , L ′N ,N , x L ′N ,N , yL ′N ,N , xyL ′N ,N }.

One can also show that this pressure kernel comes from compatibility condi-
tions between the discretized continuity constraint and the prescribed velocity
boundary conditions (see Labrosse [234]). To get rid of these parasitic modes
one eliminates, for example, the four corners of the computational box from the
pressure grid. Furthermore, one eliminates four other points, arbitrarily chosen
on ∂, that yield a nonvanishing determinant for the matrix formed by the
values of the four polynomials

L0,0, L0,N , L N ,0, L N ,N ,

calculated at these particular nodes. Doing so enforces the inf–sup condition:

sup
uN∈X N

BN (uN , qN )

‖uN‖H 1
0 ()d

≥ C N−1‖qN‖L2
0() ∀qN ∈ Z N , (5.2.61)
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where the space Z N is complementary to YN and is chosen to be such that

PN () = Z N ⊕ YN . (5.2.62)

In Equation (5.2.62), the symbol ⊕ denotes the direct sum of the two spaces
(Section A.4.5). This decomposition is unique, and the space Z N , called the
complement of YN , is constructed in such a way that

dim YN + dim Z N = dim PN (), YN ∩ Z N = {0}. (5.2.63)

For 3D applications, the space YN contains 12N + 4 spurious pressure modes
(see Bernardi et al. [41]), among which 12N − 4 are generated at the nodes
lying on the edges of  and the remaining ones are in the space

span{L0,0,0, L N ,0,0, L0,N ,0, L0,0,N , L N ,N ,0, L N ,0,N , L0,N ,N , L N ,N ,N }.
(5.2.64)

With the pressure space (5.2.62), one can prove the following convergence
results (see [41]).

Theorem 5.3 Under the assumptions

1. N ≥ 2, with the pressure pN in Z N ,
2. the solution (v, p) of the weak continuous problem (5.2.12)–(5.2.13) is in

H s
0 ()d × H s−1() for an integer s ≥ 1, and the function f is in H t ()d for

an integer t ≥ 2,

the problem (5.2.26)–(5.2.27) possesses a unique solution (vN , pN ) in X N ×
Z N with the following bounds for the errors:

‖v− vN‖H 1
0 ()d ≤ C

(
N 1−s‖v‖H s

0 ()d + N−t‖f‖H t ()d

)
, (5.2.65)

‖v− vN‖L2()d ≤ C1
(
N−s‖v‖H s

0 ()d + N−t‖f‖H t ()d

)
, (5.2.66)

‖p − pN‖L2
0() ≤ C2

[
N 2−s

(‖v‖H s
0 ()d + ‖p‖H s−1()

)+ N 1−t‖f‖H t ()d

]
,

(5.2.67)

with C,C1, and C2 constants independent of N .

Chebyshev Single-Grid Collocation

The Chebyshev collocation grid is obtained from the Gauss–Lobatto–
Chebyshev (GLC) nodes ζ c

i , i = 0, . . . , N , which are the roots of the equation

(1− ζ 2) T ′N = 0, ζ ∈ [−1, 1], (5.2.68)
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where T ′N is the derivative of the Chebyshev polynomial of first kind and of
degree N . Those collocation points (see Figure 2.7.1) form the grid ZN and are
written in closed form as

ζ c
i = cos

π i

N
, 0 ≤ i ≤ N . (5.2.69)

Each Chebyshev grid ZN in a d-dimensional problem is built up by a tensor
product of one-dimensional GLC grids:

ZN = ⊗ ζ c
Nxi
, i = 1, . . . , d. (5.2.70)

With the same choice for X N and Z N as in Equations (5.2.54)–(5.2.55), the
discrete problem may be presented as follows: Find vN ∈ P

d
N () and pN ∈ Z N

such that

−�vN (x)+ ∇ pN (x) = fN (x) ∀ x ∈ ZN ∩, (5.2.71)

div vN (x) = 0 ∀ x ∈ ZN ∩ ̄, (5.2.72)

vN (x) = 0 ∀ x ∈ ZN ∩ ∂. (5.2.73)

A variational statement of the Chebyshev collocation process may be ob-
tained if we generalize the saddle-point formulation according to Bernardi
et al. [35]. This is necessary to describe the Stokes problem within the abstract
setting of weighted Sobolev spaces employing the Chebyshev weight function
wd defined for a d-dimensional problem as the product of one-dimensional
Chebyshev weights in each (continuous) variable ζi :

wd (Z) =
d∏

i=1

wi (ζ ), Z ∈ ̂, (5.2.74)

wi (ζ ) = (1− ζ 2)−
1
2 , ζ ∈ [−1, 1]. (5.2.75)

Let us introduce the inner product based on the GLC integration rule for the
3D case:

( f, g)N ,C =
N∑

i, j,k=0

fi, j,k gi, j,k ω
c
i, j,k, (5.2.76)

with ωc
i, j,k := ωc

i ω
c
jω

c
k denoting the product of the corresponding GLC weights

(B.2.13). The discrete abstract problem becomes: Find (vN , pN ) ∈ (X N , Z N )
such that

AN ,C (vN ,uN )+ B1,N ,C (uN , pN ) = FN (uN )N ,C ∀uN ∈ X N , (5.2.77)

B2,N ,C (vN , qN ) = 0 ∀qN ∈ Z N . (5.2.78)
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The bilinear forms appearing in (5.2.77)–(5.2.78) are given by the relations

AN ,C (vN ,uN ) = (∇vN ,∇(uN wd )w−1
d

)
N ,C

, (5.2.79)

B1,N ,C (uN , qN ) = −(
div(uNw)w−1

d , qN
)

N ,C
, (5.2.80)

B2,N ,C(uN , qN ) = −(div uN , qN )N ,C . (5.2.81)

The spaces Yi,N ,C , i = 1, 2, of spurious modes are, as in the Legendre case,
of dimension 8 for 2D problems. They correspond to the definitions

Yi,N ,C = {qN ∈ PN ; ∀uN ∈ X N , Bi,N ,C (uN , qN ) = 0}. (5.2.82)

With the notation

Ti, j = Ti (x)Tj (y), T ′i, j = T ′i (x)T ′j (y), (5.2.83)

the space Y1,C,N is generated by

Y1,N ,C = span{T0,0, T0,N , TN ,0, TN ,N , T ′N ,N , xT ′N ,N , yT ′N ,N , xyT ′N ,N },
(5.2.84)

and the space Y2,N ,C by

Y2,N ,C = span{q∗N (x)q∗N (y), q∗N (x)TN (y), TN (x)q∗N (y), TN ,N ,

T ′N ,N , xT ′N ,N , yT ′N ,N , xyT ′N ,N }. (5.2.85)

In the previous relation, the polynomial q∗N is defined implicitly by the equa-
tion

∀ϕ ∈ PN (−1, 1), (q∗N , ϕ)N ,C =
∫ +1

−1
ϕ(ζ ) dζ (5.2.86)

and is the discrete orthogonal projection of w−1(ζ ) onto PN (−1, 1) for the
scalar product (5.2.76).

If one chooses the test functions for (5.2.81) in the supplementary space of
Y2,N ,C , an inf–sup condition results with a constant that is dependent on N but
that does not show up in the error bounds. For the bilinear form B1,N ,C , one can
prove that for every qN ∈ PN () orthogonal to Y1,C,N , there exists a constant
C independent of N such that

sup
uN∈X N

B1,N ,C (uN , qN )

‖uN‖H 1
C ()2

≥ C N−2‖qN‖L2
C (). (5.2.87)

Consequently, the next theorem provides the error estimates.
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Theorem 5.4 Under the assumptions

1. N ≥ 2, with the pressure pN in Z N the supplementary space of Y1,N ,C ∈
PN (),

2. the solution (v, p) of the weak continuous problem (5.2.12)–(5.2.13) is in
H s

0 ()d × H s−1() for an integer s ≥ 1, and the function f is in H t ()d for
an integer t ≥ 2,

the problem (5.2.77)–(5.2.78) possesses a unique solution (vN , pN ) in X N ×
Z N with the following bounds for the errors:

‖v− vN‖H 1
C ()d ≤ C

(
N 1−s‖v‖H s

C ()d + N−t‖f‖H t ()d

)
, (5.2.88)

‖p − pN‖L2
C () ≤ C1

[
N 3−s

(‖v‖H s
C ()d + ‖p‖H s−1()

)+ N 2−t‖f‖H t ()d

]
,

(5.2.89)

with C and C1 constants independent of N .

Legendre Staggered-Grid Collocation

In the same spirit as the FD staggered-mesh (MAC) method [185] and with the
goal of getting rid of the spurious pressure modes arising in the single-grid
collocation approach, Bernardi and Maday [37] proposed a staggered Legendre
scheme. This procedure may also be used with a Chebyshev discretization. As
usual in a staggered grid, the horizontal velocity components are attached to
the mid-nodes of the left and right faces of the computational cell, and the
vertical velocities are defined at the mid-nodes of the bottom and top faces. The
pressures are cell-centered. Therefore, the 2D grid on the reference square is
built up as follows (where, for the Legendre case, ' and ζ are the respective
GLL and GL grids):

Gu = 'Nx ⊗ ζNy , (5.2.90)

Gv = ζNx ⊗'Ny , (5.2.91)

G p = ζNx ⊗ ζNy . (5.2.92)

Figure 5.2.2 shows this grid for the case Nx = Ny = 7. The dots, the trian-
gles, and the stars are the respective nodes for the pressure and for the x- and
y-velocity components. Because of the staggered velocity nodes, the approxi-
mation spaces are defined by

X N ,u = X ∩ {PN (x)⊗ PN+1(y)}, (5.2.93)

X N ,v = X ∩ {PN+1(x)⊗ PN (y)}, (5.2.94)
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Figure 5.2.2. Legendre staggered collocation grid for Nx = Ny = 7.

and the pressures are in

Z N = Z ∩ PN−1(). (5.2.95)

We note that the spaces PN+1 involved in the definitions (5.2.93)–(5.2.94) are
needed to impose the homogeneous boundary conditions on the velocity field,
although the corresponding grids contain only N − 1 points.

The collocation process yields the following problem: Find vN ∈ X N =
(X N ,u × X N ,v) and pN ∈ Z N such that(

−�uN + ∂pN

∂x

)
(x) = fx (x) ∀ x ∈ Gu ∩, (5.2.96)(

−�vN + ∂pN

∂y

)
(x) = fy(x) ∀ x ∈ Gv ∩, (5.2.97)

div vN (x) = 0 ∀ x ∈ G p ∩. (5.2.98)

The 3D generalization of this collocation method is straightforward, with ob-
vious extensions such as

Gu = 'N ,x ⊗ ζN ,y ⊗ ζN ,z (5.2.99)

and

X N ,u = X ∩ {PN (x)⊗ PN+1(y)⊗ PN+1(z)}. (5.2.100)

To recast the above collocation problem into a variational formulation, one
uses the polynomial bases defined as follows:

gu
i, j = πi (x)(1− y2)π̃ j (y), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N , (5.2.101)

gvi, j = (1− x2)π̃i (x)πi (y), 1 ≤ i ≤ N , 1 ≤ j ≤ N − 1, (5.2.102)
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formed by the GLL Lagrangian interpolants πi ∈ PN (̂) given by (2.4.3) and
the GL Lagrangian interpolants π̃i ∈ PN−1(̂) given by

π̃i (ζ ) = L N (ζ )

(ζ − ζi )L ′N (ζi )
, 1 ≤ i ≤ N − 1. (5.2.103)

In addition, an appropriate factor ensures the satisfaction of the boundary con-
ditions.

Let us define the bilinear form for the 2D functions f and g:

(f, g)N =
N∑

i=0

N∑
j=1

fx (ξi , ζ j )gx (ξi , ζ j )ρiω j +
N∑

i=1

N∑
j=0

fy(ζi , ξ j )gy(ζi , ξ j )ωiρ j .

(5.2.104)

Multiplying through the momentum equations (5.2.96)–(5.2.97) by gu
i, jρiω j

and gvi, jωiρ j , respectively, summing these relations, and taking the exactness
of the GLL and GL integration formulae into account to perform integration by
parts, we arrive at the following abstract problem: Find vN ∈ X N and pN ∈ Z N

such that

AN (vN ,uN )+ BN (uN , pn) = F(g)N ∀uN ∈ X N , (5.2.105)

BN (vN , qN ) = 0 ∀ qN ∈ Z N , (5.2.106)

where the forms are

AN (vN ,uN ) =
(
∂vN

∂x
,
∂uN

∂x

)
N

+
(
∂vN

∂y
,
∂uN

∂y

)
N

, (5.2.107)

BN (uN , qN ) = −
N∑

i=1

N∑
j=1

div uN (ζi , ζ j ) qN (ζi , ζ j )ωiω j . (5.2.108)

One can prove that the discrete problem has no spurious pressure mode. Fur-
thermore, after lengthy developments [37], one can prove that the form AN

satisfies continuity and ellipticity properties. However, the ellipticity constant
is not independent of N and varies like C N−1. Likewise, the form BN is also
continuous and is characterized by the inf–sup condition

sup
uN∈X N

BN (uN , qN )

‖uN‖H 1()2
≥ C N−1/2‖qN‖L2() ∀ qN ∈ Z N . (5.2.109)

Because the ellipticity constant for AN is not bounded independently of N
and although the inf–sup constant, βN := C N−1/2, is better in this case than
in single-grid collocation, one obtains the following error estimates, which are
not optimal for either the velocities or the pressures.
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Theorem 5.5 Under the assumptions

1. N ≥ 2, with the pressure pN in Z N given by (5.2.95),
2. the solution (v, p) of the weak continuous problem with d = 2 (5.2.12)–

(5.2.13) is in H s
0 ()d × H s−1() for an integer s ≥ 1, and the function f is

in H t ()d for an integer t ≥ 2,

the problem (5.2.105)–(5.2.106) possesses a unique solution (vN , pN ) in X N ×
Z N with the following error bounds:

‖v− vN‖H 1()d + N−1/2‖p − pN‖L2()

≤ C
(
N 2−s

(‖v‖H s ()d + ‖p‖H s−1()
)+ N 2−t‖f‖H t ()d

)
,

with C a constant independent of N .

We note that in practical implementations, especially with collocation cal-
culations, the pressure is not in L2

0(). Instead, a reference pressure is fixed by
pinning a reference level at a well-chosen point. With iterative methods, one
can enforce p ∈ L2

0() through projection [see (5.1.4) and (2.7.40)].

5.3 Linear Systems, Algorithms, and Preconditioners

Having gathered the results available from numerical analysis, we are now
ready to consider the linear systems obtained from the various techniques, the
available solvers, the conditioning of the matrices, and the design of efficient
preconditioners.

5.3.1 Spectral-Element Methods and Uzawa Algorithm

In the classical staggered PN –PN−2 method [261, 332] the pressure gradients
when evaluated are interpolated on the velocity grid ΞN . In the collocative
formulation, where the internal GLL points constitute the pressure nodes, this
interpolation process is not needed, thereby reducing the operation count of the
method. The inf–sup constantβN , which is related to the pressure discretization,
is important because it has to be positive in order to obtain a generalized inverse
of the discrete velocity–pressure system. The pressure approximation is optimal
when βN is independent of N . If this is not the case, the pressure incurs a loss
of accuracy of order β−1

N . In addition, the number of iterations in the Uzawa
algorithm [9] will be proportional to β−1

N .
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Let us examine the matrix involved in the discrete form of the incompress-
ibility condition (5.2.38). For a single element in R

2 we find

(qN , div vN )N ,GL =
2∑

l=1

N−1∑
i, j=1

qN (ζi , ζ j )
∂vl,N

∂xl
(ζi , ζ j )ωiω j . (5.3.1)

The contribution from qN presents no difficulty, because qN is represented by
the Lagrangian interpolantsπ p

i (5.2.35). However, the velocity derivatives must
be interpolated from GLL to GL grids, giving rise to the following matrix form:

(qN , div vN )N ,GL = qT (D1 v1 + D2 v2), (5.3.2)

where v i , i = 1, . . . , d , constitute the discrete set of velocity components.
When dealing with rectilinear affine mappings, one defines the local deriva-
tive matrices as

D1 = L2

2
Ĩ ⊗ D̃, D2 = L1

2
D̃ ⊗ Ĩ , (5.3.3)

where the matrix Ĩ with the components

Ĩ i, j = ωiπ
v
j (ζi ) (5.3.4)

takes care of the weighted interpolation between the two grids, and

D̃i, j = ωi

dπv
j

dr

∣∣∣∣
ζi

(5.3.5)

is the weighted one-dimensional derivative matrix, interpolated on the GL grid.
It is left as an exercise for the reader to show that the pressure gradient matrix
coming from the discretization of the term BN ,GL(uN , pN ) in (5.2.37) yields
matrices that are the transpose of the matrices involved in the divergence oper-
ator.

Using test functions based on the Lagrangian polynomials of the velocity
approximation, the projection procedure of Equations (5.2.37)–(5.2.38) leads
to a symmetric, positive semidefinite system. Using p to denote the set of dis-
crete unknowns of the pressure, and K , DT , D, to denote the discrete Laplace,
gradient, and divergence operators, respectively, one finds

Kv i − DT
i p = M f

i
, i = 1, . . . , d, (5.3.6)

−
d∑

i=1

Div i = 0. (5.3.7)
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The r.h.s. f
i

corresponds to the discretization of the data f, and M is the
diagonal mass matrix. Because the underlying bilinear form AN is symmetric,
K is also symmetric. Furthermore, Di and DT

i are transposed matrices, as they
are adjoint operators in the continuous formulation, a property that is conserved
at the discrete level. The ellipticity property of AN implies that K is invertible.
We can therefore proceed with a block Gaussian elimination. From (5.3.6), the
velocity components are

v i = K−1 DT
i p + K−1 M f

i
, i = 1, . . . , d. (5.3.8)

Inserting this last expression in the continuity condition (5.3.7), one gets

d∑
i=1

Di K−1 DT
i p =

d∑
i=1

−Di K−1 M f
i
. (5.3.9)

Consequently, solving this last equation for the pressure, one computes the
velocity components from (5.3.6).

The key question now is how to solve (5.3.9). Let us denote the discrete
pressure operator, called the Uzawa operator, as

S =
d∑

i=1

Di K−1 DT
i . (5.3.10)

This matrix is symmetric positive semidefinite. Formally, the continuous coun-
terpart of the pressure operator is close to identity. Indeed, it corresponds to
the chain of differentiation (grad), two integrations (the inverse Laplacian), and
differentiation again (div). Hence, we expect that the condition number of S
will be close to unity.

This condition number may be analyzed by solving the generalized eigen-
value problem

Sωk = λk M̃ωk, k = 1, . . . , r, (5.3.11)

where M̃ is the diagonal pressure mass matrix, ωk is the set of generalized
pressure eigenvectors, and r is the rank of M̃ . Fortin [138] proved that the inf–
sup constant β appearing in (5.2.15) is related to the former problem by the
result

β = (λmin)1/2, (5.3.12)

where λmin denotes the minimum (nonvanishing) eigenvalue of the spectrum
{λk}, and the square root of the maximum eigenvalue yields the norm of the
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bilinear form B(·, ·). We note that the spurious pressure modes are the eigen-
vectors of the Uzawa matrix corresponding to the vanishing eigenvalues of this
operator.

In the discrete situation, however, S is no longer close to the identity matrix,
but to M̃ , the variational equivalent of the identity operator. This suggests that
M̃−1 is an efficient preconditioner of the CG technique. The elliptic character
of the bilinear forms involved in the problem motivates application of the pre-
conditioned conjugate gradient (PCG) method to the solution of the pressure
equation (5.3.9). The algorithm proceeds as in Algorithm 2.2. Here, the un-
known x is the pressure p. With p

0
given, the initial residual r 0 is computed

by the relation r 0 = Di K−1 M f
i
+ S p

0
. Note that the matrix A of the PCG is

now S. As can be seen, the inner iteration implies the evaluation of Sw. This
calculation can be carried out with the next stages,

y
i
= DT

i w, i = 1, . . . , d, (5.3.13)

K zi = y
i
, i = 1, . . . , d, (5.3.14)

S w =
d∑

i=1

Di z i . (5.3.15)

The intermediate step involves the solution of d elliptic equations, which can
be treated again by the PCG method or by direct solvers such as the fast diag-
onalization method [86]. We note that the residual r in the outer CG iteration
is the discrete divergence −Div i . Its norm can serve as a stopping criterion in
the iterations. Algorithm 2.2 in Section 2.7 and Equations (5.3.13)–(5.3.15)
together form the Uzawa algorithm [9].

The number of iterations required for PCG is proportional to the square root
of the condition number of the system matrix. Bernardi and Maday [38] and
Maday et al. [256] prove that the maximum eigenvalue λmax of M̃−1S is of
the order of unity, while the minimum eigenvalue λmin scales like β2

N . The βN

expression is the inf–sup constant given in (5.2.45), namely, N (1−d)/2. As a
consequence, the condition number of the pressure matrix is such that

κ(M̃−1S) ∼ β−2
N = N d−1. (5.3.16)

This theoretical estimate is numerically confirmed (see, for example, [355]). The
PCG method will converge in O(N

1
2 ) iterations for 2D problems and in O(N )

iterations for 3D ones. However, this asymptotic behavior does not match what
is observed when N is very low, a situation close to classical FE discretizations.
In this case, the inf–sup condition is independent of the characteristic spatial
resolution, h ∼ N−1, as long as the discrete spaces are compatible. Practical
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computations also indicate that the condition number (5.3.16) is too pessimistic
and that the Uzawa algorithm converges more rapidly.

5.3.2 Collocation Methods

Legendre single-grid collocation is easily implemented if the PN –PN method
is adopted. The number of velocity and pressure nodes is the same, a fact that
eases the coding. The spurious pressure modes are eliminated, for example, in
a postprocessing step, where the pressures are obtained on the right subspace
by an orthogonal projection (see Métivet [275]). The linear system associated
with this approach has basically the same form as the one coming from spectral-
element discretization. In the framework of Chebyshev collocation, Phillips and
Roberts [307] remove the spurious pressure modes by applying a singular value
decomposition (SVD) [367, 384] to the linear-algebraic pressure system.

For staggered mesh collocation, Le Quéré [237] discusses details of the
implementation for Chebyshev collocation. The tensor-product property of the
polynomial bases is thoroughly exploited to compute gradients or divergence
through one-dimensional derivatives in the required space directions.

We will concentrate on Chebyshev single-grid collocation because it has
been heavily practiced over the past decade. Orszag [288] and Morchoisne
[280] early recognized that the conditioning of Chebyshev collocation would
impede any direct solution of the system matrix generated by this method.
Therefore, a preconditioning technique is indispensable. Among various possi-
bilities, the FEM has provided a powerful and efficient tool. Demaret and Deville
[94] analyze different 2D elements, namely, the nine-node Lagrangian Q2–Q1

element, the Q1–Q0 element, and a stabilized Q1–Q1 element due to Brezzi
and Pitkäranta [54]. As usual, the vertices of the FE grid coincide with the GLC

nodes.
The Chebyshev collocation matrix system is

K cv i − Gc
i p = f

i
, i = 1, . . . , d, (5.3.17)

−
d∑

i=1

Dc
i v i = 0, (5.3.18)

where K c, Gc
i , and Dc

i are the discrete Chebyshev Laplace, gradient, and diver-
gence operators, respectively. From the variational equivalent of the collocation
problem, we know that K c is asymmetric; furthermore, the discrete gradient
and divergence operators are no longer transposes of each other because of the
Chebyshev weight influence in the integration by parts. We denote by Lc

S the full
Chebyshev Stokes matrix corresponding to Equations (5.3.17)–(5.3.18). The FE
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preconditioner produces the matrix L S in the l.h.s. for the Stokes operator, and
MS in the r.h.s.

If a Richardson iteration method is set up, the essential question is the conver-
gence of the method, which is governed by the spectral radius of the Richardson
iteration matrix RS defined by the equation

RS = I − αP−1 Lc
S. (5.3.19)

The spectral radius has to be less than one to ensure convergence. In this equa-
tion, α is a relaxation factor and P the preconditioning matrix defined as

P = (MS)−1 (L S). (5.3.20)

Even though P−1Lc
S is not a symmetric matrix, one customarily considers

κ(P−1Lc
S) = λmax/λmin as an indicator of its condition number, λmax and λmin

being the maximum and minimum eigenvalues of P−1Lc
S , respectively. Demaret

and Deville showed that κ(P−1Lc
S) is close to 2 when the Q2–Q1 element is

used with Dirichlet boundary conditions and approaches π2/4 with natural
boundary conditions. Consequently, the optimum value of α [see (2.7.28)] is
2/3. Using this preconditioner, Demaret and Deville [94] noticed the systematic
absence of spurious pressure modes in their numerous calculations. It seems that
the FE, which satisfies the Brezzi–Babuška condition, has no spurious pressure
mode and plays the role of an adequate filter for the collocation approximation.

For the Q1–Q0 preconditioner, the optimum value of α degrades to a value
close to 0.4. This behavior is due to the slower spatial convergence of the Q1–
Q0 FE pair, which possesses a pressure checkerboard mode to be filtered in the
iteration procedure. These results on the preconditioned pressure matrix have
been confirmed by the theoretical Fourier eigenspectrum analysis carried out
by Deville and Mund [102] applied to a semiperiodic Stokes problem with FE

preconditioning.
The stabilized Q1–Q1 element produces dismal performance, because in-

corporating the Laplace operator in the weak continuity equation with a multi-
plicative factor proportional to the square of the local dimension of the element
induces λmin to go to zero for increasing values of the discretization parameter
N . Therefore, this element is not recommended.

Besides quadrilateral elements, CFD practitioners use triangles because they
provide the user with more flexibility to handle complicated geometries.
Deville et al. [103] use the triangular counterpart of theQ2–Q1 element, namely,
the P2–P1 element. This last notation is used by Ciarlet [79] for triangles. In
order to reach a prescribed level of accuracy on a Stokes analytical problem,
the triangles need almost four times more iterations than do the quadrilateral
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elements. However, the extension to tetrahedra for 3D applications, replacing
the expensive triquadratic–trilinear parallelepipeds, might be more rewarding
in computational efficiency. This is still to be demonstrated.

5.4 Poisson Pressure Solver and Green’s-Function Technique

In compressible fluid flow problems, a state equation – that is, a prognostic
relation – is available to handle the pressure. For incompressible fluid flows, a
diagnostic equation has to be generated instead.

5.4.1 General Considerations

In the continuum, the diagnostic relationship is obtained by applying the di-
vergence operator to Equation (5.1.1) and taking the continuity requirement
(5.1.2) into account. This produces a Poisson equation for the pressure:

� p = div(−v · ∇v+ f) in . (5.4.1)

This second-order elliptic equation can be solved if we provide boundary con-
ditions. For that purpose, the most natural choice, guided by the inviscid Euler
case, consists of a Neumann condition that is itself derived from the Navier–
Stokes equations by use of the normal pressure gradient. If we denote by n the
unit vector normal to the boundary ∂, the condition reads

n · ∇ p = n · [−v · ∇v+ (Re)−1�v+ f ] on ∂. (5.4.2)

If the Reynolds number goes to infinity and if the homogeneous Dirichlet ve-
locity boundary condition (5.1.3) is imposed, the Neumann condition (5.4.2)
reduces to a homogeneous one (neglecting the body-force term),

n · ∇ p = 0 on ∂, (5.4.3)

which is consistent with the integration of the Euler equations.
Another possible choice of boundary condition for the pressure Poisson

equation (5.4.1) resorts to the tangential projection of the pressure gradient.
With τ the unit vector tangent to ∂, the pressure condition is

τ · ∇ p = τ · [−v · ∇v+ (Re)−1�v+ f ] on ∂. (5.4.4)

This condition is in fact a Dirichlet condition because the pressure can be inte-
grated along ∂. It is discussed by Gresho [167, 166]. This boundary condition
is no longer employed, however, because one can prove that Equations (5.4.1)
and (5.4.2) imply Equation (5.4.4).
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5.4.2 The Green’s-Function Method

For the steady Stokes problem, Equations (5.2.1)–(5.2.2) may be combined into

� p = div f in , (5.4.5)

with a nonhomogeneous Neumann boundary condition

n · ∇ p = n · (�v+ f) on ∂. (5.4.6)

We observe that because of this last boundary condition the velocity and pres-
sure are still coupled, leading to a full solve. In 3D problems this situation
is unacceptable because the (discrete) matrix problem may not fit into main
memory.

One way around this difficulty is to decouple the pressure and velocity
calculations by the Green’s-function method, also called the influence-matrix
technique, where the pressure is imposed as a Dirichlet condition in such a
way that the incompressibility constraint is satisfied everywhere, boundaries
included.

One knows from continuum considerations that the solution (v, p) of
Equation (5.2.1) satisfies at the same time, on the boundary ∂, the condi-
tion (5.4.6) and the incompressibility condition (5.2.2). In order to avoid the
use of the Neumann condition for the pressure problem, it is tempting to impose
a Dirichlet pressure condition expressing that the incompressibility constraint
holds at the boundary. Indeed, by solving Equation (5.2.1) with homogeneous
velocity boundary conditions and taking (5.4.5) into account with (5.2.2) on
∂, it is simple to conclude that

−� div v = 0 in . (5.4.7)

Therefore, the solution is such that div v = 0 everywhere in  and the pair
(v, p) is a solution of the Stokes problem (5.2.1). Unfortunately, the incom-
pressibility condition at the boundary is not directly applicable to the Poisson
pressure equation. The Green’s-function procedure helps to circumvent that
difficulty.

Let us first solve the pressure Poisson equation (5.4.5) with the boundary
condition

p = pb on ∂, (5.4.8)

with pb a function to be specified later. The associated velocity field result-
ing from the solution of Equation (5.2.1) with homogeneous velocity bound-
ary conditions and the previous incorrect pressure boundary field is not
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divergence-free. To achieve that goal, we use the Helmholtz–Weyl decom-
position [145]: any velocity field can be decomposed into a solenoidal part and
an irrotational part:

v = vS + vI , (5.4.9)

such that

div vS = 0, curl vI = 0. (5.4.10)

Because of these conditions, we may rewrite the decomposition, taking advan-
tage of vector identities, as

v = curlψ + ∇φ, (5.4.11)

where ψ and φ are the vector and scalar potentials, respectively. To fix the
reference level of this scalar potential, we assume that φ is vanishing on the
boundary. Applying the divergence operator to (5.4.11), one obtains the Poisson
problem

�φ = div v in  (5.4.12)

φ = 0 on ∂. (5.4.13)

Enforcing Equation (5.4.7) on the potential φ leads to the biharmonic rela-
tion

�2 φ = 0, (5.4.14)

where �2 = ��. This equation implies through (5.4.12), (5.2.1), and the
boundary condition (5.4.8) that

�2 φ = div(∇ p − f) = 0. (5.4.15)

Since div(∇ p − f) depends on pb, we may infer that if we construct pb in such
a way that the homogeneous Neumann condition

n · ∇φ = 0 on ∂ (5.4.16)

is satisfied, the biharmonic equation with both homogeneous Dirichlet and
Neumann conditions has a trivial solution, implying that div v = 0 over all the
domain.

Using the linear superposition principle, one can split the variables as fol-
lows:

p = p̂ + p0, v = v̂+ v0. (5.4.17)
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Each new variable will be the solution of a Poisson problem. First, one computes
the solution (v0, p0) of a problem with homogeneous pressure conditions

�p0 = div f in , (5.4.18)

p0 = 0 on ∂, (5.4.19)

and

∇ p0 −�v0 = f in , (5.4.20)

v0 = 0 on ∂. (5.4.21)

Then, the other parts (v̂, p̂) are obtained with inhomogeneous pressure condi-
tions through

� p̂(pb) = 0 in , (5.4.22)

p̂ = pb on ∂, (5.4.23)

and

∇ p̂(pb)−�v̂(pb) = 0 in , (5.4.24)

v̂(pb) = 0 on ∂. (5.4.25)

Let us recall Green’s formula: ∀v ∈ H 1() and q ∈ H 1()d ,∫


div q v dV +
∫


q · ∇v dV =
∫
∂

q · n v d S, (5.4.26)

where v in the last integral denotes the trace of v on the boundary ∂.
To impose the boundary condition (5.4.16) on φ, we use Green’s formula

(5.4.26), setting q = ∇φ. With Equations (5.4.22)–(5.4.23) and (5.4.12)–
(5.4.13), one obtains, for each boundary pressure function pb that is a “trial”
function belonging to the class of functions pb,∫

∂

n · ∇φ pb d S =
∫


�φ p̂ dV +
∫


∇φ · ∇ p̂ dV

=
∫


div v p̂ dV −
∫


φ� p̂ dV

=
∫


div v p̂(pb) dV . (5.4.27)

As the potential φ satisfies a homogeneous Neumann condition (5.4.16), the
pressure boundary function pb is the solution of the problem∫



div v(pb) p̂(pb) dV = 0. (5.4.28)
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Applying Green’s formula to Equation (5.4.28) and using the relationships
(5.4.24) and (5.4.17), one easily gets the weak formulation of the Green’s-
function technique: Find pb such that∫



∇v̂(pb)∇v̂(pb) dV = −
∫


∇v0∇v̂(pb) dV . (5.4.29)

This equation is represented by a positive definite, symmetric matrix, a candi-
date for a direct Cholesky solver or the CG method. However, Equation (5.4.29)
is not yet in an efficient computational form.

5.4.3 Implementation

We will explain the algorithmic implementation for a 2D problem. For that
purpose, let Ci (i = 1, . . . ,Nbc) denote the number of boundary nodes resulting
from the discretization and lying on ∂. The first step constructs the influence
matrix, denoted by Q, which converts the pressure information on ∂ in the
evaluation of div v at the same boundary points. If the problem is solved with
N and M spatial points in the x and y directions respectively, the matrix Q has
dimension Nbc = 2(N + M). If one discards the corners of the computational
box because div v = 0 is achieved there identically, thenNbc = 2(N + M − 2).
The Nbc pressure distributions used to set up the matrix Q are obtained by
solving Nbc problems (5.4.22) and (5.4.23) with unit pressure loads such that

p̂b(Ci ) = δ(x(Ci )), i = 1, . . . ,Nbc. (5.4.30)

The resulting velocity field v̂ is computed by Equations (5.4.24)–(5.4.25). The
influence matrix is built up by storing columnwise the values of [div v̂(Ci )]k .

Once the influence matrix has been evaluated, one solves Equations (5.4.18)–
(5.4.21). This computation allows one to obtain div v0 = d̄ at the boundary
points Ci . Indeed, we want div v = 0 at each boundary point Ci . Taking (5.4.17)
into account, we obtain

div v̂ = −div v0. (5.4.31)

The solution of the linear system

pb = −Q−1d̄ (5.4.32)

yields the pressure that must be enforced on the boundary to compute the
correct pressure field by Equations (5.4.5) and (5.4.8). The velocity is obtained
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by solving

∇ p −�v = f in , (5.4.33)

v = 0 on ∂. (5.4.34)

The extension of this algorithm to 3D applications is conceptually simple.
However, its implementation on a computer is memory-intensive. Indeed, if
N , M, and L are the numbers of points in the three space directions, one
has to solve O(2(N M + N L + M L)) Stokes problems, and the matrix Q has
dimension 2(N M + N L + M L).

For a FE presentation, we refer the reader to the paper by Glowinski and
Pironneau [158] or the book by Girault and Raviart [157]. For spectral meth-
ods, an algorithm has been proposed by Kleiser and Schumann [226] with a
Chebyshev approximation in one direction and Fourier series in the others; and
a generalization for 2D problems was presented by Le Quéré and Alziary de
Roquefort [238]. The use of this method for spectral-element calculations does
not present any difficulty, as it is a mere extension of the FE approach.

We comment here about the so-called Poisson equation obtained from
(5.3.10), where the stiffness matrix K is replaced by the diagonal mass ma-
trix M . The relationship reads

A = Di M−1 DT
i . (5.4.35)

We note that no pressure conditions are necessary, since the mass matrix imposes
the velocity boundary conditions. With respect to the Uzawa pressure operator,
the pseudo-Poisson approach avoids the solution of d Helmholtz equations and
can be considered as a preconditioning technique of the full Uzawa method.
We will return to this point in the next chapter when we analyze the pressure
computation in unsteady problems.

5.5 Divergence-Free Bases

Key to successfully integrating the Stokes equations is the modification of the
weak formulation through the use of a constrained Sobolev space, which we
denote Hdiv and define by the relation

Hdiv() = {
u ∈ H 1

0 ()d
∣∣div u = 0

}
. (5.5.1)

This new space is clearly a subspace of the usual Sobolev space. Choosing the
test functions in Hdiv, we may restate the weak formulation as follows: Find
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v ∈ Hdiv() such that

A(u, v) = F(u) ∀u ∈ Hdiv(), (5.5.2)

with the bilinear form A defined by the relation

A : Hdiv()× Hdiv()→ R, A(u, v) = (∇u,∇v). (5.5.3)

One can easily show that the abstract form (5.5.2) is equivalent to the one given
in Equations (5.2.12)–(5.2.13). See, for example, Girault and Raviart [157].

From this abstract form, it is simple to obtain a Galerkin approximation of
the following problem: Find vh ∈ Hdiv,h such that

A(uh, vh) = Fh(uh) ∀uh ∈ Hdiv,h, (5.5.4)

where Hdiv,h is a finite-dimensional subspace of Hdiv. Here again the notation h
may correspond to a finite or a spectral-element discretization. It is fairly easy
to prove that

‖v− vh‖ ≤ C inf
uh∈Hdiv,h

‖v− uh‖. (5.5.5)

Although the proposed method is simple to write down in its abstract set-
ting, a computer implementation is far from trivial. The essential task is the
elaboration of a basis function that is inherently divergence-free. In the spec-
tral frame, the first attempt was designed by Moser et al. [281] and further
analyzed by Pasquarelli et al. [296] and Pasquarelli [295]. However, this new
basis was proposed with trigonometric polynomials in two periodic directions
and Chebyshev polynomials in the remaining direction. The generalization to
the full nonhomogeneous 3D case is not simple. For this reason, Batcho and
Karniadakis [24] introduce a generalized Stokes operator and compute the set
of Stokes eigenfunctions in order to solve the Navier–Stokes equations.

The continuous Stokes problem (5.2.1) is generalized and reformulated as
the following self-adjoint eigenproblem:

∇ p − div[ρ(x)∇v]+ q(x)v = λv in , (5.5.6)

div v = 0 in , (5.5.7)

with the homogeneous boundary condition (5.1.3). The forcing term f has been
replaced by λv, and the viscous term contains a nonconstant coefficient. The
velocity field is sought in Hdiv. We note that the generalized Stokes problem
reduces to the standard Stokes eigensystem if ρ(x)= 1 and q(x)= 0.
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If one concentrates on the standard Stokes eigenproblem, the velocity field
may be approximated by a series expansion of Stokes eigenfunctions such that

v =
N∑

i=0

ai wi , (5.5.8)

each eigenfunction being the solution of the eigensystem

∇�−�wi = λi wi in , (5.5.9)

div wi = 0 in , (5.5.10)

wi = 0 on ∂. (5.5.11)

The eigenspectrum is built up in such a way that λ0 designates the smallest
eigenvalue. The scalar quantity � in Equation (5.5.9) enforces the incompress-
ibility constraint on each eigenfunction. The coefficients in the series (5.5.8)
are obtained as the scalar products

ai = (v,wi ) =
∫


v wi dx. (5.5.12)

Inserting Equation (5.5.9) in (5.5.12) and using the Green’s identity twice for
the integration by parts [the scalar �(x) is eliminated in this procedure] with
Equation (5.5.11) taken into account, one obtains

ai = − 1

λi

∫


�v wi dx. (5.5.13)

Using (5.5.9) again and integrating by parts twice, one writes the final result:

ai = 1

λ2
i

(
(wi ,�2v)−

∫
∂

�v · (n · ∇wi ) d S

)
. (5.5.14)

Inspection of this last equation shows that one can reach convergence rates
higher than O(1/λ2

i ) only if the boundary term vanishes, indicating that the
Laplacian of the velocity field must go to zero when one approaches the bound-
ary ∂. This is the case only for very peculiar situations, for example, in the
presence of periodic boundary conditions. Following Batcho and Karniadakis,
the rate of convergence is therefore O(1/λ2

i ). Since the spectrum scales as
λn = O(n2/d ) in R

d [82], the convergence rate for the Stokes eigenfunction
series is O(n−4/d ), showing quadratic convergence for 2D problems (d = 2).

To improve the convergence rate, Batcho and Karniadakis, following the
theory of Sturm–Liouville operators, propose to deal with a singular Stokes
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system. The convergence properties are enhanced through the use of a Laplacian
operator with variable coefficient vanishing at the boundaries, that is, if one has∫

∂

ρ(x)[∇ pv · (n · ∇wi )] d S = 0. (5.5.15)

For regular functions such that v ∈ C∞, the eigenfunctions converge exponen-
tially fast, whereas for nonsmooth functions the convergence rate is governed
by the highest derivative order p for which the condition (5.5.15) holds. The
eigenspectrum scales as an = O(λ−p

n ).
Singular systems with homogeneous Dirichlet eigenfunctions are designed

by adjusting the diagonal coefficient q(x) in (5.5.6) to alter the behavior of the
eigenfunctions when one approaches the boundaries. A possible choice consists
in selecting q(x) ∼ ρ̂−1(x) near ∂ so that the eigenfunctions are forced to go
to zero when ρ̂(x) vanishes. The scalar function ρ̂(x) is chosen to be positive
definite in the interior and subjected to homogeneous conditions. The singular
Stokes system then is written as follows:

∇ p − div[ρ(x)∇v]+ v
ρ̂(x)

= λv in , (5.5.16)

div v = 0 in , (5.5.17)

v = 0 on ∂. (5.5.18)

Batcho and Karniadakis report that the choice of q(x) = −4/ρ(x) yields
excellent results if the scalar ρ(x) is computed as the solution of a Poisson
problem with positive forcing C > 0, that is,

−�ρ(x) = C in , (5.5.19)

ρ(x) = 0 on ∂. (5.5.20)

For simple geometries such as the plane channel or the eddy-promoter domain,
ρ(x) is C∞, but for a backward-facing step or a grooved channel, ρ(x) is only
C1 because of the presence of corner singularities in the geometry (see Figure
5.5.1).

The algebraic problem associated with Equations (5.5.16)–(5.5.17) may be
cast in the following form:

Hv i − DT
i p = Mλv i , i = 1, . . . , d, in  (5.5.21)

−Div i = 0 in , (5.5.22)

where H is the discrete counterpart of the operator div[ρ(x)∇]+ q(x), DT
i

the discrete gradient, M the mass matrix, and Di the discrete divergence. All
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Figure 5.5.1. Countours of computed scalar function ρ(x) for the grooved channel
and eddy-promoter geometries. The spectral-element discretization is based on Nx =
Ny = 13.

discrete terms may be obtained through the PN –PN−2 method. The Uzawa
algorithm leads to the set of equations

Sp = Di H−1 Mλv i , (5.5.23)

Hv i = DT
i p + Mλv i , i = 1, . . . , d, (5.5.24)

where S is defined by the relation

S = Di H−1 DT
i . (5.5.25)

The iterative solution of Equations (5.5.23)–(5.5.24) for d = 2 is best computed
if this system is rewritten in the following way:(

H O
O H

)(
v1

v2

)
=

(
S11 + B S12

S21 S22 + B

)(
λv 1

λv2

)
, (5.5.26)

where the block matrices are given by

Si j = DT
i S−1 D j H−1 M, i, j = 1, 2. (5.5.27)

The matrix system is solved by an iterative procedure: either the inverse orthog-
onal method or the Lanczos–Uzawa algorithm. Full details are given in Batcho
and Karniadakis [24].
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5.6 Stabilization of the PN–PN Approximation
by Bubble Functions

Spurious pressure modes can be prevented by using bubble functions. The idea
was introduced first in the FE context by Crouzeix and Raviart [88] and Arnold
et al. [8]. The trick consists in adding a supplementary space to the standard
FE space where the discretized velocities are sought. The extra bases and test
functions are spanned by local functions having their support in one element,
the so-called bubble functions. This technique was extended to spectral dis-
cretizations by Canuto and Van Kemenade [65].

For the sake of simplicity, we present the method for one spectral ele-
ment covering the reference domain  = (−1, 1)d . The space of discrete velo-
cities is

X N = H 1
0 ()d ∩ P

d
N , (5.6.1)

while the pressure space is

Z N = L2
0() ∩ PN . (5.6.2)

Covering ̂ := [−1, 1]d with a GLL grid, one obtains a decomposition into C
cells or FEs, the vertices of which are neighbors, so as to build up quadrilateral
cells in two dimensions and bricks in three dimensions. Typically, the cell Ci, j in
a 2D problem is built up on the four grid points ξi, j , ξi+1, j , ξi, j+1, and ξi+1, j+1.
This grid will be denoted by Gh . On each of the C elements, one defines a
bubble function bC vanishing on ∂C and outside C . Such a function may result,
for example, as the tensor product of d parabolas, vanishing at the end points
of the parent element and taking the value unity at the origin. The space of
bubble functions is denoted by Bd

N . The augmented space for discrete velocities
is defined by the relation

Xb
N = X N ⊕ Bd

N . (5.6.3)

The approximate problem is now the following: Find (wN , pN ) ∈ (Xb
N , Z N )

such that

A
(
ub

N ,wN
)+ B

(
ub

N , pN
) = FN

(
ub

N

) ∀ub
N ∈ Xb

N , (5.6.4)

B(wN , qN ) = 0 ∀qN ∈ Z N , (5.6.5)

with the definitions

A(uN , vN ) = (∇uN ,∇vN ), (5.6.6)

B(uN , qN ) = −(div uN , qN ). (5.6.7)
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Decomposing wN as wN = vN + vb ∈ Xb
N , one can write the previous problem

in a split form: Find vN ∈ X N , vb ∈ Bd
N , pN ∈ Z N such that

A(uN , vN )+A(uN , vb)+ B(uN , pN ) = FN (uN ) ∀uN ∈ X N , (5.6.8)

A(ub, vN )+A(ub, vb)+ B(ub, pN ) = FN (ub) ∀ub ∈ Bd
N , (5.6.9)

B(vN , qN )+ B(vb, qN ) = 0 ∀qN ∈ Z N . (5.6.10)

Let us now look at the interaction of the bubbles with the global polynomial
functions. To this end, as a first step, we choose uN as uh , the FE linear inter-
polation of the high-order polynomial at the nodes of Gh . This is applied to the
second term on the l.h.s. of (5.6.8); similarly, qN is replaced by qh in the second
term of (5.6.10). Through this localization procedure, we obtain

(∇vb,∇uh) =
∑

C∈Gh

(∇vb,∇uh)C = −
∑

C∈Gh

(vb,�uh)C = 0, (5.6.11)

since vb = 0 on ∂C and �uh is identically zero on C . The notation (·, ·)C

indicates the usual L2 inner product on the element C .
In the second step, we introduce the projection operator Jh from C0(̄)

functions into the space of piecewise constant function on the cells of Gh . The
easiest way to implement this is to approximate a function f in the cell C by
its constant value f (C) evaluated at the cell barycenter. Applying this operator
Jh to every term in Equations (5.6.8)–(5.6.10), where bubbles interact with the
global polynomial or with its piecewise linear interpolant, leads to the modified
Galerkin method: Find vN ∈ X N , vb ∈ Bd

N and pN ∈ Z N such that

A(uN , vN )+ B(uN , pN ) = FN (uN ) ∀uN ∈ X N , (5.6.12)

−(Jh(�vN ),ub)+A(ub, vb)+ (Jh(∇ pN ),ub) = (JhfN ,ub) ∀ub ∈ Bd
N ,

(5.6.13)

B(vN , qN )− (vb, Jh(∇qh)) = 0 ∀qN ∈ Z N . (5.6.14)

From Eq. (5.6.13), we extract the bubble component vb as follows. Let

vb =
∑

C∈Gh

vC bC , (5.6.15)

where vC is the (unknown) vector weighting factor in the element C . Introducing
the residual

rN := −�vN + ∇ pN − fN (5.6.16)
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and the test function ub = bC successively in all cells, we readily obtain

vC = − (bC , 1)C

(∇bC ,∇bC )C
(JhrN )|C ∀C ∈ Gh, (5.6.17)

where, as mentioned above, (JhrN )|C denotes the value of the projection of the
residual at the barycenter of cell C . Inserting (5.6.15) in the l.h.s. of (5.6.14)
and taking (5.6.17) into account, we get

−(vb, Jh(∇qh)) =
∑

C∈Gh

(bC , 1)2
C

(∇bC ,∇bC )C

1

|C | (JhrN , Jh(∇qh))C . (5.6.18)

In this relation, |C | represents a measure of the element C, namely, its area.
Therefore, the problem (5.6.12)–(5.6.14) reduces to the following: Find vN ∈
X N and pN ∈ Z N such that

A(uN , vN )+B(uN , pN ) = FN (uN ) ∀uN ∈ X N , (5.6.19)

B(vN , qN )+
∑

C∈Gh

τC (JhrN , Jh(∇(qh))C = 0 ∀qN ∈ Z N . (5.6.20)

The modified Galerkin method introduces into the continuity equation a
stabilizing term to damp the oscillatory pressure modes. The choice of τC is
crucial to render the method efficient. This stabilization parameter, defined by
the relation

τC = (bC , 1)2
C

(∇bC ,∇bC )C

1

|C | , (5.6.21)

depends on the cell size and the chosen bubble. Referring to Canuto and Van
Kemenade [65] for details, we estimate τC by the formula

τC = hC

2|v|C f (ReC ) =


C ′h2
C

8ν , 0 ≤ ReC ≤ 1,

hC
2|v|C , ReC > 1,

(5.6.22)

where hC is a typical mesh size, |v|C the magnitude of the velocity field (like
the Euclidian norm at the cell center), ν the kinematic viscosity, C ′ a constant
(typically 1/3), and ReC the cell Reynolds number.

In [70], Canuto et al. generalize the previous method to gain flexibility in
the computation of the stabilization parameter. The bubble is still defined as
in (5.6.15). Choosing again ub = bC and inserting this expression and (5.6.15)
into Equation (5.6.13), one obtains with the residual (5.6.16) the relation

A(bC , vC )+ (rC , bC ) = 0, (5.6.23)
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where rC = JhrN |C . The variational statement (5.6.23) corresponds to the
strong problem

−�vC = rC , (5.6.24)

to be solved in each C . As the residual rC is constant over each C , we may set

vC = rCϕC . (5.6.25)

Using this relation as the basis for vC and diagonalizing the 2× 2 matrix cor-
responding to ϕC as ϕC = diag(ϕC , ϕC ), we can solve the following problem
for ϕC :

−�ϕC = 1, ϕC ∈ H 1
0 (C), (5.6.26)

for every C . By the same steps as before, we evaluate the expression anal-
ogous to Equation (5.6.18). The variational problem is still of the form (5.6.19)–
(5.6.20), but the cell stabilization parameter is now

τC = 1

|C |
∫

C
ϕC dV . (5.6.27)

In [70], all the details are provided to solve Equation (5.6.26) on the parent
element and to compute the parameter τC .

5.7 hp-Methods for Stokes Problems

For completeness, we introduce in this section the hp-method, which has been
in use since the early eighties. The d-dimensional bases for the approximated
fields are obtained as tensor products of one-dimensional polynomials of de-
gree p as in Equation (2.3.20). This strategy is used for meshes composed of
quadrilaterals and hexahedra. The book by Szabó and Babuška [370] lists all
possible combinations and presents them in the form of hierarchical bases, by
associating the shape functions with the topological objects of the FE, namely,
the vertex modes, the edge modes, and the interior nodes (the bubble func-
tions). We observe that the p-methodology is of spectral type, the approximation
space being PN (p = N ). It is common practice for classical fluid-mechanics
problems to resort to a PN –PN−2 or p–(p − 2) discretization for velocity and
pressure, respectively (see, for example, Oden et al. [287] and Warichet and
Legat [407]).

In the frame of a mixed FE approach, Jensen and Zhang [212] show that the
error on vN is still of spectral convergence. We have the following estimate.
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Theorem 5.6 Under the assumptions

1. N ≥ 2,
2. the solution (v, p) of the weak continuous problem (5.2.12)–(5.2.13) is in

H s
0 ()d × H s−1() with s the smoothness of the exact solution,

the problem (5.2.37)–(5.2.38) possesses a unique solution (vN , pN ) in X N ×
Z N with the following error bound:

‖v− vN‖H 1
0 ()d ≤ Chmin(N ,s) N−s‖v‖H s+1

0 ()d , (5.7.1)

with the constant C independent of N .

High-order interpolation bases were developed for triangles and tetrahedra
in [370]. Recently, however, Sherwin and Karniadakis [358, 359, 221] used
modal expansions with these elements (see Chapter 7) in a splitting formulation
of the unsteady Navier–Stokes equations. This numerical approximation brings
more flexibility in coping with difficult geometrical problems. Specifically, the
elements allow local h-refinements where FEs are subdivided into smaller pieces
and local p-enrichments through the use of bubble functions. Schwab [348, 349]
has covered many theoretical issues related to the use of p and hp methods.
In [349], the Stokes problem is revisited and the results are compatible with
the previous theorem. Recently, Schwab and Suri [350] analyzed thoroughly
mixed hp-methods for parallelograms and triangles. They show that exponential
convergence for both the velocity and the pressure can be achieved for geometric
meshes that combine quadrilaterals and triangles and use graded refinement near
singularities.

5.8 Steady Navier–Stokes Equations

We now consider the steady dimensionless Navier–Stokes equations in a form
that reduces to the Stokes equations when the Reynolds number vanishes (1.7.5):

Re (v · ∇v) = −∇ p +�v+ f in , (5.8.1)

div v = 0 in , (5.8.2)

with the homogeneous velocity boundary conditions (5.1.3). One notices that
the Navier–Stokes problem becomes stiffer when Re increases. Some algo-
rithms exploit the fact that for low or moderate Reynolds number, the l.h.s. of
(5.8.1) is a perturbation of the former Stokes problem. At higher Re-values,
however, another approach must be undertaken. Indeed, when Re reaches higher



274 5. Steady Stokes and Navier–Stokes Equations

values, the physics may change drastically. Experiments show that one may
switch from steady-state solutions to time-dependent ones. In this case, the dy-
namics, and therefore the temporal behavior of the Navier–Stokes equations,
becomes essential.

To be able to treat nonlinear operators like the Navier–Stokes equations from
the abstract point of view, we introduce the Fréchet derivative (see Appendix A
for the definition), denoted by DNS(v, p) to indicate that it operates with respect
to velocity and pressure. One has

DNS = Re [(·) · ∇v+ v · ∇(·)]+ ∇(·)−�(·). (5.8.3)

The symbol (·) represents a dummy variable, either the velocity or the pressure,
made clear by context.

5.8.1 Weak Formulation

With the same Hilbert spaces introduced in Section 5.2, the previous problem
may be restated in its weak form: Find v in H 1

0 ()d and p in L2
0() such that

A(u, v)+ Re C(v; v,u)+ B(u, p) = F(u) ∀u ∈ H 1
0 ()d , (5.8.4)

B(v, q) = 0 ∀q ∈ L2
0(), (5.8.5)

where the continuous formsA andB have been defined by (5.2.10) and (5.2.11).
The new term in (5.8.4) corresponds to the trilinear form associated with the
nonlinear term. Its definition is given by the relation

C : H 1
0 ()d × H 1

0 ()d × H 1
0 ()d → R,

(5.8.6)

C(v; w,u) =
∫


[(v · ∇)w] u dV =
(
v j
∂wi

∂x j
, ui

)
.

We note that no integration by parts is performed on the nonlinear term. This
approach contrasts with the practice in compressible flows, where the integra-
tion by parts provides momentum fluxes, which are more easily treated in the
presence of shocks in the flow.

The abstract problem (5.8.4)–(5.8.5) is an instantiation of a more general
problem: Find x = (v, p) in X = H 1

0 ()d × L2
0() such that

F(x, Re) := x+ T G(x, Re) = 0, (5.8.7)

where T is a linear operator and G is a C∞ mapping. The linear operator acts
on the body force f and produces the solution

T f = x (5.8.8)
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of a Stokes problem with homogeneous Dirichlet velocity conditions

A(v,u)+ B(u, p) = F(u) ∀u ∈ H 1
0 ()d , (5.8.9)

B(v, q) = 0 ∀q ∈ L2
0(). (5.8.10)

The C∞ mapping is defined by the relation

G(x, Re) := Re (v · ∇v− Re−1f). (5.8.11)

Notice that the mapping G does not depend on the pressure p. With the relations
(5.8.8), (5.8.11), the Navier–Stokes problem (5.8.7) has the pair x as a solution.
Inspection of the expression (5.8.3) for DNS shows that through (5.8.7), it yields
the relation

DNS = Dx F = 1+ T (DxG). (5.8.12)

The numerical solution of the Navier–Stokes equations requires a finite-
dimensional approach. We will present the collocation approximation, which
was thoroughly analyzed by Bernardi et al. [36].

5.8.2 Collocation Approximation of the Navier–Stokes Equations

Nonsingular solutions of the Navier–Stokes equations can be obtained only if the
Fréchet derivative DNS exists or, to be more precise, if the Fréchet derivative of
the map F with respect to x is an isomorphism of X (i.e., a bijective mapping that
preserves distances; see Appendix A). This is achieved if the Fréchet derivative
is bounded from below. Therefore, there exists a constant C > 0 such that
∀y ∈ X

‖(Dx F )y‖X = ‖y+ T (DxG)y‖X ≥ C‖y‖X . (5.8.13)

In practical terms, satisfaction of this last inequality requires working at small
or moderate Reynolds numbers. However, our numerical computations have
shown that collocation or even spectral-element methods are robust in this
respect, that is, yield converged solutions for Reynolds numbers where other
standard numerical techniques such as finite elements or finite volumes fail
completely. One can consequently obtain numerical results that are nonsingular
solutions of the (discrete) Navier–Stokes equations but that are meaningless
from the physics standpoint, since the steady-state assumption is physically
implausible.

Suppose that G is a C2 map from X × R+ into the dual space of H 1
0 ()d ,

with a bounded second-order derivative D2G. Assume furthermore that T is
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a compact operator. One can prove that the discretization error is bounded as
follows:

‖x(Re)− xN (Re)‖X ≤C(‖x(Re)−�N x(Re)‖X +‖(T − TN )G(x, Re)‖X ),

(5.8.14)

where C > 0 is independent of both Re and N . Equation (5.8.14) shows that
the spatial discretization error is bounded by the interpolation error and by the
quality of the approximation TN of the linear operator T . This last consider-
ation is linked to what has been analyzed under the heading of Stokes equa-
tions. Nonetheless, when dealing with the discrete Navier–Stokes equations
within a Legendre or Chebyshev collocation procedure on a single grid, the ab-
stract problem becomes: Find xN = (vN , pN ) in X N = [H 1

0 ()d ∩ P
d
N ()]×

[L2
0() ∩ PN ()] such that

FN (xN , Re) := xN + TN G N (xN , Re) = 0, (5.8.15)

where TN will obviously result from the Stokes problem approximation and
G N is the discretization of Equation (5.8.11). This term does not raise any
special hardship because we are in the collocation framework, especially if the
nonlinear term has been written under conservative form.

The theorems proved by Bernardi et al. [36] generalize the previous Theorems
5.3 and 5.4 for Legendre and Chebyshev collocation, respectively, of the Stokes
problem provided that the discrete Fréchet derivative DxN FN = 1+ TN (DG N )
is an isomorphism of X N . In the corresponding appropriate norms, one obtains
the following theorem, with the convention α = 0 for the Legendre case and
α = −1/2 for the Chebyshev case:

Theorem 5.7 Under the assumptions

1. N is large enough,
2. the solution (v, p) of the weak continuous problem (5.8.4)–(5.8.5) is in

H s
0 ()d × H s−1() for an integer s ≥ 1, and the function f is in H t ()d for

an integer t ≥ 2,

the problem (5.8.15) possesses a solution (vN , pN ) in X N with the following
error bounds:

‖v− vN‖H 1()d ≤ c1(v)N 1−s + c2(f)N 1+2α−t , (5.8.16)

‖p − pN‖L2() ≤ c3(v, p)N 3−s + c2(f)N 3+2α−t (5.8.17)

with c1(v), c3(v, p), c2(f) constants independent of N .
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The constants ci , i = 1, 3, involved in this theorem depend upon the velocity
and pressure fields. It is indeed difficult to get better estimates for the nonlinear
problem, because the advection effects play the role of a source term. This point
of view will directly affect the solution algorithms.

5.8.3 Solution Algorithms: Iterative and Newton Methods

A nonlinear operator is best treated by iterative techniques, with the question of
convergence being one of the key issues. The simplest algorithm consists of the
so-called incremental loading based on the structure of Equation (5.8.1). Using
the upper index k to denote the iteration counter and dropping the lower index
related to the discretization for the sake of simplicity, we can state the iterative
method as follows: Find xk+1 := (vk+1, pk+1) ∈ X such that ∀(u, q) ∈ X

A(u, vk+1)+ B(u, pk+1) = −Re C(vk ; vk,u)+ (f,u), (5.8.18)

B(vk+1, q) = 0. (5.8.19)

First, one solves the Stokes problem obtained by setting Re = 0 in Equation
(5.8.18); then, the Navier–Stokes problem is handled by increasing Re incre-
mentally, using the last solution computed at the previous Re-value as the initial
guess of the new iteration. As mentioned previously, this iterative process is
robust. The source of stiffness is the nonlinearity in the r.h.s., making it diverge
at moderate Reynolds numbers. This stiffness depends not only on Re itself,
but also on the geometrical complexity of the application at hand. The con-
vergence of this method is evidently related to the quality of the Stokes solver
and its preconditioner, the increment value, and to the presence of bifurcation
points in the solution family of the abstract problem (5.8.15). Because it is an
explicit method in which the nonlinearity is generated at the old iterate level, it
is less stable than other techniques, implying some implicitness of the operator.
Therefore, if we want to cope with high Reynolds numbers and still use the plain
Navier–Stokes equations with no turbulence modeling, it is better to resort to
more sophisticated algorithms.

The Newton method applied to the discrete collocation Navier–Stokes prob-
lem (5.8.15) requires solving the relation

DNS(xk, Re)(xk+1 − xk) = −F(xk, Re), (5.8.20)

where we recognize a generalization of the classical Newton algorithm. The
Newton method is quadratically convergent, meaning that the error, defined as
the difference between xk and the exact solution x, at iteration k is bounded



278 5. Steady Stokes and Navier–Stokes Equations

from above by the square of the error at the preceding iteration. This quadratic
convergence is spectacular: it doubles the number of significant figures at each
iteration, once the iterative process has hooked a solution branch.

In some numerical procedures, one does not want to reconstruct (at non-
negligible expense) the operator DNS(xk, Re) at each iteration. Therefore,
one freezes it as DNS(x0, Re), obtaining the numerical algorithm known as
the Picard iterative method, which converges only linearly. Let us apply the
Newton method (5.8.20) to the weak formulation (5.8.4)–(5.8.5). One writes
the following: Find xk+1 ∈ X such that ∀(u, q) ∈ X

A(u, vk+1) + Re [C(vk+1; vk,u)+ C(vk ; vk+1,u)]+ B(u, pk+1)

= −Re C(vk ; vk,u)+ F(u), (5.8.21)

B(vk+1, q) = 0. (5.8.22)

From the assumptions on the map G, one can show that the Fréchet derivative
is Lipschitz continuous, thereby inducing the quadratic convergence of the
Newton method. In order to converge, the Newton method needs an initial
guess x0 close to the solution. Using Picard iterations at the beginning of the
algorithm may help to bring the sequence of iterates closer to the convergence
domain of the Newton method.

5.9 Applications

In this section, we illustrate our subject by describing a few relevant problems.
Some of them will be more related to numerical considerations and algorithms;
the others will exemplify fluid-mechanics applications.

5.9.1 Stokes Problems

Square-Cavity Problem

The problem of choosing the proper spectral solution method for the Stokes
equations was thoroughly examined by Schumack et al. [347]. They considered
the use of staggered versus nonstaggered grid, weak formulation versus collo-
cation, and velocity–pressure discretizations of the same order or with pressure
approximations of lower order than that for the velocity bases. Ten different
formulations were set up and compared on three test problems. Among these
problems was the well-known driven-cavity problem.

This problem is solved on the reference square [−1, 1]2; the velocity bound-
ary conditions are homogeneous on the three fixed lower walls, while the top lid
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is sliding at a unit horizontal velocity component. The problem is ill posed be-
cause the boundary conditions at the upper corners drive the velocity field to be
singular and make the divergence of the velocity field blow up to infinite values.
As a consequence, the pressure is singular and also goes to infinite values. This
effect is clearly demonstrated when one refines meshes where the computed
solutions are affected more and more by the presence of these singularities.

There are several ways to cope with singular problems. Schumack et al.
subtracted the singularity using a singular solution provided in Batchelor [23].
From their numerical results, we can draw the following conclusions:

1. Collocation is, practically speaking, as good as the SEM as far as spatial
accuracy for the velocity field is concerned. Collocation is easier to pro-
gram but has less flexibility and less generality for dealing with complicated
geometries and 3D problems.

2. The use of a pressure approximation of order two less than that for the
velocity helps to avoid the spurious pressure modes. The pressure nodes
defined on the interior velocity nodes constitute the best choice. This proce-
dure needs no interpolation between grids and provides both efficiency and
accurate quadratures.

3. The removal of singularities improves the convergence by two or three orders
of magnitude (see Figure 5.9.1). The special treatment of corner singularities

Pressure

Velocity

Velocity

Pressure

N + 1

R
M

S
 e

rr
or

Figure 5.9.1. Square-cavity problem: velocity and pressure error with and without spe-
cial treatment for top-corner singularities. Crosses indicate special treatment; circles
indicate no special treatment.
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(a) (b)

Figure 5.9.2. Creeping flow in a wedge [331]. Velocity boundary conditions are no
slip on the sides and unit horizontal velocity on the top. The E = 30, N = 8 spectral-
element discretization is shown in (a), and the sequence of decaying eddies, in the form
of streamlines, in (b). The vortex strength decays by a factor of roughly 400 from one
eddy to the next.

is, moreover, preferable to a domain decomposition that attempts to resolve
them by using smaller domains near the corners.

Flow in a Wedge

Let us now turn to the Stokes flow in a wedge. This problem was solved by
Rønquist [332] using the SEM. As the top lid moves at unit velocity (Figure 5.9.2),
a series of Moffatt eddies [277] is generated. These eddies are stacked from top
to bottom in an infinite cascade to the tip. The wedge shown has an aperture
angle of 28.5◦. The asymptotic ratio of successive eddy intensities is 405. With
the discretization shown in the figure, one obtains four eddies. The ratio of the
strength of two successive eddies is from top to bottom 386, 406, and 411.

Grooved Channel

Batcho and Karniadakis [24] have shown that the standard Stokes eigenfunc-
tions, when used to compute high-Reynolds-number flows, fail to produce
good accuracy. We will concentrate here on the singular Stokes eigenproblem.
Figure 5.9.3 displays for the grooved-channel problem of Figure 5.5.1 the
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(a) (b)

(c) (d)

(e)

(g) (h)

(i) (j)

(f)

Figure 5.9.3. Grooved-channel flow: velocity-vector plots of the first four singular
Stokes eigenfunctions. In each spectral element, Nx = Ny = 13. The first, second, third,
and fourth eigenfunctions are shown in (a)–(d), respectively. In (e)–( j) are given the
velocity-vector plots of eigenfunctions 10, 20, 30, 40, 50, and 60, respectively.

velocity-vector plots of the first four leading eigenfunctions and selected higher
eigenmodes. The discretization is based on N = 13 and ‖ρ(x)‖∞ = 1.5. The
level of the discrete divergence for these eigenmodes is∼10−2 to∼10−3. If one
compares the solution obtained by the divergence-free basis with 100 eigen-
functions to the solution obtained by the standard SEM, the Stokes eigenproblem
yields an L2 error on the velocity of order 10−3, whereas the singular Stokes
problem loses one order of magnitude at a level of order 10−2.
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Stabilization by Bubble Functions

The stabilization of the PN−PN method by bubble functions is very efficient.
Canuto and Van Kemenade [65] compute the Stokes flow in the regularized
driven-cavity problem (0 ≤ x, y ≤ 1), where the prescribed velocity profile on
the top lid is given by u(x, 1) = 16x2(1− x)2. Even with a coarse discretization
like Nx = Ny = 8, the bubble-stabilized spectral method is able to reproduce
two digits of the “exact” solution obtained with Nx = Ny = 28. Furthermore,
the computed pressure field is very smooth and does not show any oscillations
due to lack of resolution.

Wannier–Stokes Flow

The Wannier–Stokes flow, a 2D Stokes flow in a semiinfinite plane, is set into
motion by a horizontal wall, coinciding with the horizontal axis, moving with
constant velocity U in its own plane. A fixed cylinder of radius R is located
with its center at a distance d above the wall. Figure 5.9.4 gives a sketch of
the geometry of the problem. Wannier [404] derived an analytical solution in

Domain decomposition

Cross section y =  0.25
Cross section y =  0.5
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Figure 5.9.4. Wannier–Stokes flow: domain decomposition (top) and corresponding
mesh with N = 9 in each subdomain (bottom).
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the framework of lubrication theory. The Wannier–Stokes solution allows for
a reliable study of the errors induced by nonrectangular geometries. The exact
solution for the velocity components is

u = U − 2(A+ Fy)

K1

(
(s+ y)+ K1

K2
(s− y)

)
− B

K1

(
(s+ 2y)− 2y(s+ y)2

K2

)
− C

K2

(
(s − 2y)− 2y(s − y)2

K2

)
− F ln

(
K1

K2

)
, (5.9.1)

v = −2x(A + Fy)

K1 K2
(K2 − K1)− 2Bxy(s + y)

K 2
1

− 2Cxy(s − y)

K 2
2

, (5.9.2)

where

A = − Ud

ln(*)
, B = 2U (d + s)

ln(*)
, C = 2U (d − s)

ln(*)
, F = U

ln(*)
,

* = d + s

d − s
, K1 = x2 + (s + y)2, K2 = x2 + (s − y)2, s2 = d2 − R2.

We choose d = 2R,U = 1. As the wall movement induces the fluid to be
pushed through the gap between the wall and the cylinder, Schneidesch and
Deville [345] decompose the geometry into 26 subdomains, with some refine-
ment near the cylinder. A typical mesh is shown in Figure 5.9.4 for a Chebyshev
collocation with Nx = Ny = 9. Essential boundary conditions are imposed at
the boundaries of the computational domain from the exact solution (5.9.1)–
(5.9.2). The velocity components, pressure, and vorticity fields are shown from
top to bottom in Figure 5.9.5. We observe the smoothness of the various quan-
tities and, especially, that of the pressure. Even though C1 continuity is not
enforced by the method, inspection of this figure shows that the collocation
method produces smooth results if a certain degree of regularity exists in the
approximated solution. Figure 5.9.6 provides the pressure distribution com-
puted at different horizontal cross sections in the geometry (see Figure 5.9.4
for the definition of these cross sections). Even with a coarse mesh, acceptable
results are obtained. These results demonstrate the powerful capabilities of the
spectral discretization.

5.9.2 Navier–Stokes Problems

Kovasznay Flow

Kovasznay [227] gives an analytical steady-state solution to the Navier–Stokes
equations that is similar to the 2D flow field behind a periodic array of
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(d)

(c)

(b)

(a)

Figure 5.9.5. Isolines for the Wannier–Stokes flow of the velocity components (a, b),
pressure (c), and vorticity (d).

Horizontal cross sections at
y = 0.125 LS and y = 0.25 LS

Wannier–Stokes flow

Discretization 5 × 5 d.o.f.
9 × 9 d.o.f.
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Figure 5.9.6. Evolution of the pressure along horizontal lines located under the cylinder.
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Figure 5.9.7. Kovasznay flow: spectral-element convergence (a) and streamlines (b) for
Re = 40.

cylinders,

ux = 1 − eλx cos 2πy,

v = λ

2π
eλx sin 2πy,

λ := Re

2
−

√
Re2

4
+ 4π2,

where Re is the Reynolds number based on mean flow velocity and separation
between vortices. Because this solution incorporates nonlinear effects (unlike
Poiseuille flow), it is a good test for full Navier–Stokes solution algorithms.
The results here are computed by marching to a steady state, but could equally
well be computed using a steady-state solver. Figure 5.9.7(a) shows exponential
convergence for Re = 40 using the PN−PN−2 SEM with E = 8 elements and
N varying from 4 to 15. Periodic boundary conditions are applied in the y-
direction, and the exact solution is prescribed on the left and right boundaries.
Streamlines for this case are shown in Figure 5.9.7(b). The domain is  =
[−0.5, 1.0]× [−0.5, 1.5].

Grooved Channel

We compare the divergence-free basis method [24], applied to the grooved-
channel flow at Re = 100, with the SEM. In this case, the singular Stokes eigen-
functions yield a fairly consistent decay of the L2 error norm with respect to the
Stokes eigenfunctions, which give more erratic behavior when the dimension
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(a)

(b)

y
y

Figure 5.9.8. Vertical velocity profile for the grooved channel at Re = 100: (a) x = 1.3;
(b) x = 3.1.

of the system increases. Figure 5.9.8 compares the three possible approaches:
SEM, Stokes, and singular Stokes Galerkin projections. The locations x = 1.3
and 3.1 are at the core of the recirculation zone in the groove region. If we take
the spectral-element computation as reference, the singular Stokes eigensystem
is able to resolve the SEM velocity solution better than the Stokes system. This
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Insulated  walls

Air

Cylinder

Th

TmTc

Figure 5.9.9. The cooled-hot-cylinder problem: geometry.

shows that the method is robust and capable of reproducing complicated profiles
with low-dimensional expansions.

Cooled Hot Cylinder

We consider the natural convection of air in a complicated cavity depicted in
Figure 5.9.9. The center of the hot cylinder of radius R is placed on the vertical
axis of symmetry of the cavity at a distance from the bottom wall equal to the
diameter. The overall dimensions of the cavity are 12R × 8R. The cylinder is hot
at temperature Th , while the vertical walls are set at two different temperatures Tc

and Tm such that Tc < Tm < Th . All other boundaries are adiabatic. The fluid is
set into motion by heat exchange from the hot cylinder in the middle of the cavity.
Convective cells appear on each side of the cylinder as the fluid is cooled by the
vertical walls. The problem is not symmetric with respect to the vertical axis
of symmetry, because of the temperature difference between the two vertical
walls. The Navier–Stokes equations and the temperature equation are coupled
via the Boussinesq approximation (see Chapter 1). The computed temperature
field is obtained for a Rayleigh number of 500,000. Eighteen subdomains with
an 11× 11 Chebyshev discretization are used. The isotherms in Figure 5.9.10
reveal a strong gradient on the southwest side of the cylinder, indicating the

Figure 5.9.10. The cooled-hot-cylinder problem: isothermal lines (see [346]).
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sharp temperature variation in the bottom left corner of the cavity. We observe
also a hot plume rising from the cylinder to about two-thirds of the domain
height.

5.10 Complements and Engineering Considerations

A Chebyshev collocation method was designed by Ku et al. [231] with the aim of
enforcing the continuity condition everywhere in the domain, on the boundaries
as well as in the interior. The method generates a Poisson pressure equation that
satisfies the velocity boundary conditions and the incompressibility constraint
on the boundaries.

Because we resolved to focus on primitive variables, we have not consid-
ered in this chapter the vorticity–stream-function approach. However, numerous
studies have been devoted to that topic and to the biharmonic stream-function
problem where vorticity as a variable is eliminated. We refer to Chapter 5 of
the book by Bernardi and Maday [38] for fourth-order problems.

Heinrichs [189] discusses the splitting procedure for the biharmonic problem
in a system of two equations involving the Laplacian. The Chebyshev collo-
cation method is used. The vorticity is expressed in the polynomial space PN ,
while the stream function is discretized in PN+2 in order to automatically satisfy
the Dirichlet boundary conditions. Finite differences are applied to precondi-
tion the linear systems, which are solved with a multigrid method. Excellent
results are produced on analytical solutions.

Owens and Phillips [291] reformulate the Stokes equations in terms of stream
function and Airy stress function. This formulation is ideal for mass and momen-
tum conservation. With these new variables, one has to solve biharmonic equa-
tions. The boundary conditions are generated by means of a least-squares for-
mulation. A domain decomposition based on Chebyshev collocation is worked
out and applied to the planar stick–slip problem. Good results are obtained.

Instead of the classical velocity–pressure formulation, another possible
choice is based on the three-field approach, namely the velocity–pressure–stress
formulation. This is used often in rheology, where constitutive relationships are
dealing with viscoelastic fluids. The constitutive relation for an incompressible
fluid may be written as

σ = −pI+ τ , (5.10.1)

where τ is called the extra-stress tensor by rheologists and the shear stress
tensor by fluid mechanicists. The Navier–Stokes equations become

ρ
Dv
Dt
= −∇ p + div τ + ρf. (5.10.2)
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Reducing (5.10.2) to the steady Stokes problem of a viscous, Newtonian, in-
compressible fluid, we obtain the velocity–pressure–stress formulation

∇ p − div τ = ρf, (5.10.3)

div v = 0, (5.10.4)

τ = 2µd, (5.10.5)

where the rate of deformation tensor d is defined by Equation (1.5.4). Gerritsma
and Phillips [155] show that the spectral element approximation of the three-
field formulation (v, p, τ ) is compatible if the functional spaces for one element
are chosen as PN , PN−2, PN . This means that the velocity–pressure fields sat-
isfy the same compatibility condition as before, while the stress components
are in the same space as the velocity. However, when the discussion of the
discretization is extended to the case of several spectral elements, one has to
recognize that the stress components are in L2(). Consequently, we require
that the discrete space for τ N contain the discrete space for the velocity gra-
dient. Gerritsma and Phillips [156] propose that this may be achieved by a
discontinuous approximation of τ between the elements.

The three-field approach is very appealing as a generic methodology to treat
all cases of viscous incompressible fluids. Indeed, the tensor τ may represent
the Newtonian constitutive equation or any viscoelastic fluid. Furthermore, this
tensor may take the turbulence phenomena into account by incorporating the
Reynolds stress tensor (1.10.9) or the LES subgrid scale tensor (1.10.25). More
generally, the velocity–pressure–stress formulation is ideal for properly treating
the interaction between the flow of a viscous incompressible fluid and a solid
wall. The unknowns expressed by the stress components are the appropriate
ones for the interface conditions.

From the implementation point of view, all methods are not equivalent. Col-
location preconditioned by FEs is probably a good choice when a FE code is
available. Our experience shows that symbolic manipulation packages are also
a useful route to quick development of a computing tool. However, extend-
ing collocation to domain decomposition requires the treatment of patching
conditions, as will be explained in Chapter 7, and this procedure reduces the
robustness of the algorithms. The SEM does not suffer this lack of robustness.
Since it is a generalization of the FEM, it can cope with complicated geometries,
nonlinearities, and nonconstant coefficients. It is probably the best choice from
a numerical and fluid-mechanics point of view.

A final comment is due with respect to the accuracy attained with spectral
methods. A reference benchmark solution was produced in the eighties by de
Vahl Davis [93] for a thermal convection problem in a square cavity filled with
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air (Pr = 0.71). The Navier–Stokes and energy equations (1.6.6)–(1.6.8) are
integrated by using the Boussinesq approximation. No-slip boundary condi-
tions are applied to all boundaries. The cavity horizontal walls are insulated
while given differential temperatures are prescribed on the vertical walls. The
benchmark solution is obtained by extrapolating to the limit second-order FD

results obtained on successively refined grids from 21× 21 to 81× 81 points.
Excellent agreement, to three decimal places, is obtained by Chebyshev col-
location [96] with two to three times fewer points in each space direction. In
particular, for a nonlinear problem in a simple geometry, high-order methods,
compared with FD or FE schemes, save at least an order of magnitude in the
number of degrees of freedom, while maintaining the same accuracy.



6
Unsteady Stokes and Navier–Stokes Equations

The physics involved in fluid flow phenomena is three-dimensional in essence
and, for most cases in nature or in technology transient with a complex temporal
behavior. Consequently, stable and accurate (in space and time) algorithms are
required in order to investigate and analyze these complicated situations.

6.1 Unsteady Velocity–Pressure Formulation

Let us consider the numerical integration of the Navier–Stokes equations de-
scribing transient incompressible fluid flows in primitive variables subject to
body forces f. In dimensionless form, where the characteristic time is the inertial
flow time L/U and the reference pressure the dynamic pressure, the Navier–
Stokes equations are given by the following relationship [see Equation (1.7.1)]:

Dv
Dt
= −∇ p+ (Re)−1 �v+ f in  for t ≥ 0, (6.1.1)

and the continuity equation

div v = 0 in  for t ≥ 0. (6.1.2)

This set of equations is solved with appropriate initial and boundary conditions.
As in the preceding chapter, we will consider only homogeneous Dirichlet
boundary conditions, unless otherwise explicitly stated. They are

v = 0 on ∂ for t ≥ 0. (6.1.3)

Initial conditions will provide an incompressible velocity field at the beginning
of the time integration. With the superscript 0 for this initial field, we have

291
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according to Equations (1.6.18)–(1.6.19)

v(x, t = 0) = v0(x) in  (6.1.4)

div v0 = 0 in . (6.1.5)

We will assume that the time integration is carried out over a finite time interval
(0, T ).

In the transient Navier–Stokes equations, the nonlinear advective terms ac-
count for some of the difficulties in the mathematical analysis of their solutions
and in the numerical integration process, because they generate bifurcations
(qualitative change of the solutions in the phase space), transition, and, even-
tually, turbulence. The existence and uniqueness proofs for the solutions of
the Navier–Stokes equations have been investigated by physicists, fluid dy-
namicists, and mathematicians since the early nineteenth century, when those
equations were derived. The books by Galdi [145, 146, 147, 148] and Témam
[375, 376] summarize the state of the art in this domain and also introduce the
reader to challenging open questions. Indeed, although some results are well
established, the advent of the theory of dynamical systems and chaos (notions
of strange attractors and extreme sensitivity to the initial conditions) at the end
of the twentieth century has changed considerably the issues raised by such
analysis (see Bergé et al. [32]).

The problem defined by (6.1.1)–(6.1.5) is well posed. However, integrat-
ing transient 3D problems in the velocity–pressure formulation constitutes a
formidable computational task. Therefore, a pressure Poisson equation is pro-
duced by applying the divergence operator to Equation (6.1.1) and taking the
continuity requirement (6.1.2) into account. The pressure Poisson equation is
given by

�p = div

(
−Dv

Dt
+ f

)
in  for t ≥ 0, (6.1.6)

with the boundary condition

n · ∇ p = n ·
(
−Dv

Dt
+ (Re)−1 �v+ f

)
on ∂. (6.1.7)

The reference pressure level is imposed by the relation∫


p dV = 0 on . (6.1.8)

For Re = ∞ and for the homogeneous Dirichlet velocity boundary condi-
tion (6.1.3), the Neumann condition (6.1.7) reduces to a homogeneous one
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(neglecting the body-force term):

n · ∇ p = 0 on ∂. (6.1.9)

This is the pressure boundary condition for an inviscid fluid flow.
In Section 6.2, the unsteady Stokes equations are analyzed. The weak for-

mulation is first presented for the continuous case. We apply the SEM for space
discretization, and we propose various possible time schemes. The key issue
of splitting errors induced by the velocity–pressure-decoupled computation is
addressed in Section 6.3. Section 6.4 presents the weak continuous formulation
of the Navier–Stokes equations. Then, the nonlinear advective term is treated,
and various time discretization methods are given, including extrapolation and
operator-integration-factor splitting techniques (OIFS). Section 6.5 analyzes an-
other possible way to implement the velocity–pressure decoupling through the
projection method applied to the continuous equations. The stabilization of
unsteady flows by a filtering technique is described in Section 6.6. The direct
simulation of free-surface flows is a difficult nonlinear problem. It is presented
in Section 6.7 with the method of arbitrary Lagrangian–Eulerian formulation,
which enables the treatment of moving domains. We close in Section 6.8 with
some unsteady applications. Suggestions for further reading and engineering
considerations are given in Section 6.9.

6.2 Unsteady Stokes Equations

In this section, we treat the dimensionless linear unsteady Stokes problem
(1.7.6) and the associated divergence-free condition

∂v
∂t
+ ∇ p −�v = f in  for t ≥ 0, (6.2.1)

div v = 0 in , (6.2.2)

with the homogeneous velocity boundary conditions (6.1.3) and an initial
divergence-free velocity field v0.

We will deal with the weak formulation of the unsteady Stokes continuous
problem, because this provides a variational approach to be discretized in space
and time.

6.2.1 The Weak Formulation

Equations (6.2.1) and (6.2.2) are cast in the weak form. For this purpose, the
functional spaces for the velocity and pressure are H 1

0 ()d and L2
0(), as
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they were defined in Section 5.2.1. They will be designated here by X and
Z , respectively. Based on the bilinear forms A and B given by (5.2.10) and
(5.2.11), respectively, the weak form is as follows: Find (v(t), p(t)) ∈ X × Z
such that for almost every t ∈ (0, T )

d

dt
(v(t),u)+A(v(t),u)+ B(u, p(t)) = F(t,u) ∀u ∈ X, (6.2.3)

B(v(t), q) = 0 ∀q ∈ Z , (6.2.4)

v(0) = v0. (6.2.5)

The expression “almost every t” rules out the occurrence of wild temporal
behavior, for example, a step function in the velocity field, which is always
detrimental in that it produces a numerical transient state with no physical
meaning.

Before time-discretizing the former abstract problem, we can proceed with
the space discretization investigated in Chapter 5. For ease of development in the
sequel, we will use the PN –PN−2 SEM, although collocation could also be used.
With the definitions of the discrete spaces given by Equations (5.2.32)–(5.2.33),
the approximate abstract problem becomes the following: Find (vN (t), pN (t)) ∈
X N × Z N such that for almost every t ∈ (0, T )

d

dt
(vN (t),uN ) + A(vN (t),uN )+B(uN , pN (t)) = FN (t,uN ) ∀uN ∈ X N ,

(6.2.6)

B(vN (t), q) = 0 ∀qN ∈ Z N , (6.2.7)

vN (0) = v0
N . (6.2.8)

With the same matrix notation as in Sections 4.7 and 5.3, and the Einstein
summation convention over repeated indices, the semidiscrete problem is

M
dv i

dt
+ Kv i − DT

i p = M f
i
, i = 1, d, (6.2.9)

−Div i = 0, (6.2.10)

v i (0) = v0
i . (6.2.11)

It produces a set of ordinary differential equations.
For the time discretization, we may resort to any of the time-marching

schemes presented in Chapter 3. From this plentiful choice, we have selected
a few algorithms with the intent of achieving high-order (greater than two)
time accuracy. Indeed, as was noted in the introductory chapter, more and
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more industrial applications consider 3D transient calculations by DNS or LES

methodologies. In order to derive and extract meaningful statistics from these
large databases, accurate time integration is clearly needed.

Explicit time-marching schemes applied to the viscous term are subjected
to stability restrictions on the time step �t , imposing �t ≤ (Re C)/N 4 [see
Equation (3.4.12)]. For moderate values of the Reynolds number, this condition
may be stringent, and it is customary to rely on implicit backward differentiation
formulas of order k (BDFk). When (3.2.29) is applied to (6.2.9), one gets the
following, with the superscript indicating the time level:

M
(
βkv

n+1
i + βk−1v

n
i + · · · + β0v

n+1−k
i

)
= �t

(−Kvn+1
i + DT

i pn+1 + M f n+1
i

)
, i = 1, . . . , d, (6.2.12)

where the coefficients βk are obtained by the relationships

βk = 1

b0
, βk− j = −a j

b0
, j = 1, . . . , k. (6.2.13)

The coefficients b0 and a j are those of the BDFk formula given in Equation
(3.2.29) with the corresponding numerical values given in Table 3.2.3. We note
that the number of implicit relations to be solved remains constant on increasing
order of the BDF. Hence, the computational cost increases only very moderately
with the order.

6.2.2 Uzawa Algorithm

We begin by redefining the source term Mf n+1 to include all explicit contribu-
tions coming from the l.h.s. of the BDFk (6.2.12) for vn+1

i . The discrete problem
thus is as follows: Solve for vn+1

i and pn+1

Hvn+1
i − DT

i pn+1 = M f n+1
i

, i = 1, . . . , d, (6.2.14)

−Div
n+1
i = 0, (6.2.15)

v i (0) = v0
i . (6.2.16)

In the relation (6.2.14), the matrix H is obtained as

H = βk

�t
M + K . (6.2.17)

The Uzawa algorithm consists in carrying through the block Gaussian
elimination on the system (6.2.14)–(6.2.15) [256]. From (6.2.14), the velocity
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components are

vn+1
i = H−1 DT

i pn+1 + H−1 M f n+1
i

, i = 1, . . . , d. (6.2.18)

Applying the continuity constraint (6.2.15) to the previous relationship, one
obtains the pressure equation

S�t pn+1 = −Di H−1 M f n+1
i

, (6.2.19)

with

S�t = Di H−1 DT
i . (6.2.20)

The discrete pressure operator S�t is time-dependent (hence the subscript �t),
as opposed to the steady Stokes operator (5.3.10). Once the pressure is known,
one can compute the velocity field by solving Helmholtz problems:

Hvn+1
i = DT

i pn+1 + M f n+1
i

, i = 1, . . . , d. (6.2.21)

6.2.3 Splitting and Decoupling Algorithms

For the unsteady Stokes operator, the Uzawa algorithm is known to converge
slowly at large computational expense. Therefore, much effort has been devoted
to decoupling the pressure from the velocity-field calculation. This induces a
time error called the splitting error, which should be of the same order as the
global time scheme and also of the order of each element of the split marching
procedure. The simplest, most popular decoupling method is the fractional-step
method due to Chorin [78] and Témam [374]. It has a first-order time error,
which can be improved to second order by the pressure correction algorithm (see
Van Kan [396]). Initially, most of these projection methods were applied to the
continuous equations and analyzed only with respect to the time discretization
technique, thereby ignoring the influence of space discretization. The analyses
require an additional boundary condition for the pressure computation, and this
topic was the subject of research and intense discussion during the eighties.
The Neumann pressure boundary condition has to be time-approximated at
the same order as the decoupling error (see Orszag et al. [289], Karniadakis
et al. [219]). This is no trivial task and calls for careful analysis. These splitting
methods exhibit error layers near the walls of the computational domain, where
the accuracy is reduced. The layers have a thickness that is O(

√
ν �t). Inside

a layer, the pressure error may be of the order of unity, and the divergence of
the velocity field may also be of the order of unity or even worse.
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In this section, we examine the decoupling error of various methods resulting
from the space and time discretization of the Stokes equations. Since the velocity
boundary conditions are incorporated in the discrete operators, no additional
pressure boundary condition is needed. The analysis reported here has been
inspired by the illuminating papers of Perot [305, 306] and the thesis of Couzy
[83]. We use the shorthand notation H for the block-diagonal matrix containing
d blocks, H , on the diagonal, and D for the matrix composed of the relevant
derivative matrices given by Equation (5.3.3) to build up the discrete divergence
operator. In matrix form, the equations (6.2.14) and (6.2.15) yield(

H −DT

−D 0

)(
vn+1

pn+1

)
=

(
Mf n+1

0

)
. (6.2.22)

We will use block LU factorization to carry out the splitting-error study. We
generalize the previous matrix formulation by introducing an arbitrary matrix
Q. We obtain(

H −HQDT

−D 0

)(
vn+1

pn+1

)
=

(
Mf n+1

0

)
+

(
rn+1

0

)
. (6.2.23)

The term rn+1 is a residual accounting for the difference between (6.2.22) and
(6.2.23); it will be discarded in the LU decomposition. We will take full advan-
tage, however, of the presence of the matrix Q, which will give us flexibility in
choosing the projection method (defined later). The solution of the block LU
decomposition of (6.2.23) is a two-step procedure:(

H 0
−D −DQDT

)(
v∗

pn+1

)
=

(
Mf n+1

0

)
(6.2.24)

and (
I −QDT

0 I

)(
vn+1

pn+1

)
=

(
v∗

pn+1

)
. (6.2.25)

The intermediate velocity v∗ is not divergence-free. The second step (6.2.25) is
the projection of the non-divergence-free v∗ onto the divergence-free velocity
vn+1. This is the origin of the so-called projection method. The system (6.2.24)–
(6.2.25) covers a large class of projection techniques depending on the choice
of Q.

If we set

Q = H−1, (6.2.26)
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we get the preceding Uzawa algorithm, and no decoupling error is introduced,
because the two-step projection is formally equivalent to the original system
(6.2.22). If we choose

Q = �t

βk
M−1, (6.2.27)

we obtain the fractional-step method, although this name is also given to the
space-continuous splitting (Section 6.5). With the latter choice, the residual is

rn+1 := (HQ− I)DT pn+1 = �t

βk
KM−1DT pn+1 = O(�t). (6.2.28)

From the definition (6.2.17) we can see that the velocity in Equation (6.2.14) is
multiplied by (�t)−1, and the local time error of the fractional-step method is
therefore of second order, thereby producing a globally first-order time-accurate
scheme. Furthermore, the decoupling error does not vanish when the problem
reaches a steady-state solution. As we mentioned earlier, the numerical methods
in fluid mechanics aim at 3D transient computations by DNS or LES to obtain the
correct temporal dynamics. A first-order time-accurate scheme is insufficient in
that respect; second-order accuracy is the minimum required; and in the spectral
computations, higher-order accuracy in time should ideally be achieved to avoid
spoiling the spatial accuracy by a poor time-marching scheme.

A better, second-order approximation of H−1 is obtained by incorporating
the next term in the Taylor series of H−1:

Q = �t

βk
M−1 −

(
�t

βk

)2

M−1KM−1. (6.2.29)

The second-order decoupling error is evaluated from the relation

rn+1 =
(
�t

βk

)2

(KM−1)2DT pn+1 = O(�t2). (6.2.30)

As noted by Couzy [83], this method does not work efficiently, because (6.2.29)
is positive definite only for small values of �t .

Increasing the accuracy to third order, we get

Q = �t

βk
M−1 −

(
�t

βk

)2

M−1KM−1 +
(
�t

βk

)3

(KM−1)2M−1. (6.2.31)

This matrix is always positive definite and produces the decoupling error

rn+1 =
(
�t

βk

)3

(KM−1)3DT pn+1 = O(�t3). (6.2.32)

This method will be called P3.
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Up to now, all splitting schemes have nonvanishing errors for steady-state so-
lutions. These may be detrimental, because converged solutions might depend
on the time step used and change with it. To escape from this dismal perfor-
mance and remove the decoupling error for steady problems, we can modify
the fractional-step method as follows:

(
H −HQDT

−D 0

)(
vn+1

pn+1 − pn

)
=

(
Mf n+1 + DT pn

0

)
+

(
rn+1

0

)
.

(6.2.33)

The block LU factorization of (6.2.33) with the matrix Q given by (6.2.27)
leads to the pressure correction (PC) method, which is a second-order scheme,
as proven by Van Kan [396]. The decoupling error is obtained by the relationship

rn+1 := (HQ− I)DT (pn+1 − pn)

= �t

βk
KM−1DT (pn+1 − pn) = O(�t2). (6.2.34)

We notice that this decoupling error vanishes for a steady solution because, in
this case, pn+1 − pn = 0. The same trick based on adding DT pn to the r.h.s.
of Equation (6.2.22) and computing a correction term for the pressure can be
applied to the P3 scheme. One obtains the P3 PC scheme with a fourth-order
decoupling error, namely,(

�t

βk

)3

(KM−1)3DT (pn+1 − pn) = O(�t4), (6.2.35)

which will also vanish for steady solutions.
Following the same strategy, we could derive high-order (fifth, sixth) projec-

tion methods. Nonetheless, the practical interest is limited. Indeed, the global
time accuracy of the split scheme will be min(k, l), where k is the order of the
BDF algorithm and l the error order of the decoupling. In increasing the accu-
racy, the BDF scheme will bring much of the improvement. Finally, we note that
the projection scheme will provide a divergence-free velocity at each time step,
implying that even if the initial condition is not divergence-free, the solution
will be after the first step.

The LU factorization recommended by Perot [305] can be approximated by
the use of inexact factorization. Typically, the matrix H−1 is approximated by
replacing Q by Q1 in the L block and by Q2 in the U block. New factorization
schemes are produced by the various available choices for Q1 and Q2. The
Yosida method proposed by Quarteroni et al. [318] sets Q1 = (�t/βk)M−1
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and Q2 = H−1. The two-step process becomes(
H 0
−D −DQ1DT

)(
v∗

pn+1

)
=

(
Mf n+1

0

)
(6.2.36)

and (
I −Q2DT

0 I

)(
vn+1

pn+1

)
=

(
v∗

pn+1

)
. (6.2.37)

The full matrix is now (
H −DT

−D D(Q2 −Q1)DT

)
. (6.2.38)

We notice that the inexact factorization produces a perturbation term in the
incompressibility constraint, which may be viewed as a quasicompressible reg-
ularization. In (6.2.36), the matrix DQ1DT = (�t/βk) DM−1DT computing
the pressure is the pressure pseudo-Laplacian matrix, which will be used in the
next section for preconditioning purposes. The perturbation term in (6.2.38)
yields

−D(Q1 −Q2)DT = −D
(
�t

βk
M−1

)[
I−

(
I+ �t

βk
M−1K

)−1]
DT

= −
(
�t

βk
M−1

)2

DYDT , (6.2.39)

where the matrix Y is given by

Y =
(
βk

�t
M

)[
I−

(
I+ �t

βk
M−1K

)−1]
. (6.2.40)

The Yosida matrix corresponds to the Yosida regularization of the Laplace
operator K. We emphasize that this method has been tested successfully with
FEs, but not in the spectral-element context.

6.3 Pressure Preconditioning

The matrix S�t in Equation (6.2.20) is full, and Equation (6.2.19) requires an
iterative approach as in the steady Stokes case. However, whereas the steady
pressure matrix S was preconditioned by the inverse of the pressure mass matrix
M̃ (5.3.11), this is no longer true for S�t . For large time steps, H tends to the
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limit K , and M̃−1S�t is well conditioned. For small time steps with �t → 0,
the pressure matrix S�t goes to the pseudo-Laplacian matrix A [see (5.4.35) in
the steady case], defined by

A = Di M−1 DT
i . (6.3.1)

We note that the matrix A arises in the splitting equation (6.2.24) when
Q is given by Equation (6.2.27). Here, M−1 is defined on the GLL grid and
enforces the velocity boundary conditions. The matrix A corresponds to the
discrete consistent Poisson pressure solver resulting from the spectral-element
discretization of the unsteady Stokes problem (6.2.1)–(6.2.2) treated by an
explicit algorithm. The conditioning of the system is as bad as the one for a
Laplace equation. A preconditioner for S�t that works for small and large time
steps is given by

P−1 = M̃
−1 + βk

�t
A−1, (6.3.2)

where M̃ is the diagonal pressure mass matrix. For both cases, the product
P−1S�t is close to identity, as shown by Cahouet and Chabard [60]. The diffi-
culty with this preconditioner is that because A itself is ill conditioned, it too
needs to be preconditioned to obtain the fast convergence of the iterative method
used to solve for A.

Rønquist [333] points out that the pressure Poisson operator (6.3.1) is more
difficult to solve than the classical Laplace equation because the first one is in
L2 and the second one in H 1. For this reason, Rønquist proposes to solve for
the pressure in two different subspaces. The first set of equations computes the
constant level of the pressure in each element by building up a global coarse
approximation (subscript c). The second subspace represents the local pressure
variation with respect to the previous piecewise constant frame (subscript f for
fine). Using the notation of Chapter 5, we decompose the pressure space into
two disjoint parts Zc and Z N ,E defined as

Zc = L2
0() ∩ P0,E (), (6.3.3)

Z N ,E = L2
0() ∩ PN−2,E (), (6.3.4)

such that the full pressure results from

p = J p
c
+ p

f
∈ Z N = Zc ⊕ Z N ,E . (6.3.5)

Here, p
c

accounts for the coarse pressure and p
f

for the local variation. The
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operator J maps (by interpolation) the local pressure level onto the space Z N .
Combining Equation (6.2.19) with (6.3.5), we write

S�t (J p
c
+ p

f
) = −Di H−1 M f n+1

i
. (6.3.6)

Multiplying (6.3.6) by the transpose J T , we obtain for p
c

p
c
= (J T S�t J )−1 J T

(− Di H−1 M f n+1
i
− S�t p

f

)
. (6.3.7)

The definition Sc = J T S�t J yields the coarse-grid operator, and J p
c

is the
projection (in the S-norm) of p onto R(J ). Substituting (6.3.7) in (6.3.6), we
arrive at the following expression for p

f
:(

I − S�t J S−1
c J T

)
S�t p

f
= −(

I − S�t J S−1
c J T

)
Di H−1 M f n+1

i
. (6.3.8)

The fine-grid operator S f given by

S f =
(
I − S�t J S−1

c J T
)
S�t (6.3.9)

allows us to rewrite Equations (6.3.7) and (6.3.8) as

Sc p
c
= J T

(−Di H−1 M f n+1
i
− S�t p

f

)
, (6.3.10)

S f p
f
= −(

I − S�t J S−1
c J T

)
Di H−1 M f n+1

i
. (6.3.11)

The former scheme is referred to as deflation, by analogy with the standard de-
flation technique used in root finding [284]. The coarse-grid equation (6.3.10)
involves E unknowns. The moderate size of this system leads to the choice
of a direct solver. On the contrary, an iterative method such as precondi-
tioned conjugate gradients is preferable for tackling the fine-grid problem
(6.3.11).

An efficient preconditioner corresponds to the elemental local matrix S�t ,
where homogeneous Dirichlet boundary conditions are imposed through H−1

on all boundaries and interfaces. A major advantage of this procedure comes
from the fact that the preconditioner is such that

ker(block(S�t )) = ker(S f ) (6.3.12)

and is completely decoupled per element. This is a characteristic feature
amenable to parallel processing. In practical computations, however, it is diffi-
cult to build block(S�t ). To overcome this drawback, one uses instead M̃

−1 +
(βk/�t) block(A)−1, which is spectrally close according to Equation (6.3.2).
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Fischer and Rønquist [132] use a FE preconditioner to solve for the ma-
trix block(A). Couzy and Deville [85] suggest using the fast diagonalization
method to compute block(A)−1. They also introduce a two-stage precondition-
ing technique in which the first stage preconditions the operator S�t by (6.3.2)
and the second stage applies the same technique to A as has been applied to
S�t . In other words, the evaluation of Equation (6.3.2) will require the solution
of systems like Aq = r.h.s. This equation is written as A(Jq

c
+ q

f
) = r.h.s.

Coarse-grid (Ac) and fine-grid (A f ) operators are introduced with definitions
similar to Sc and S f , leading to two algebraic systems. Again, the matrix A f

will be preconditioned by block(A).
In Couzy [83], the homogeneous Dirichlet boundary conditions of the local

preconditioner are replaced by Neumann velocity conditions at the element
interfaces. These help to partially circumvent the L2-specific feature of the
pressure operator. In the same spirit, Fischer [127] uses the additive Schwarz
method, which will be described in full detail in the next chapter. There, the
interelement coupling is improved by using overlapping subdomains in con-
junction with a continuous piecewise-linear approximation for the coarse-grid
problem.

6.4 Unsteady Navier–Stokes Equations

If we refer to the diffusive time L2/ν and normalize the pressure with respect
to the viscous stress µU/L , the dimensionless Navier–Stokes equations take
the form

∂v
∂t
+ Re (v · ∇v) = −∇ p + �v+ f in  for t ≥ 0, (6.4.1)

together with the mass conservation equation (6.1.2), the homogeneous boun-
dary conditions, and an initial incompressible velocity field. With respect to the
Stokes equations (6.2.1), the nonlinear term multiplied by the Reynolds number
brings all the stiffness to the problem. This advective nonlinearity not only will
complicate the physics of the fluid flow but also will add to the difficulties of
the numerical simulation.

6.4.1 Weak Formulation

With the same spaces as those defined earlier in Sections 5.2 and 6.2, the weak
form of the Navier–Stokes equations is: Find (v(t), p(t)) ∈ X × Z such that for
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almost every t ∈ (0, T )

d

dt
(v(t),u)+A(v(t),u)+ B(u, p(t))

= −Re C(v(t); v(t),u)+ F(t,u) ∀u ∈ X, (6.4.2)

B(v(t), q) = 0 ∀q ∈ Z , (6.4.3)

v(0) = v0, (6.4.4)

where C has been defined in Chapter 5 [see Equation (5.8.6)].
The system resulting from the discretization of the problem (6.4.2) is non-

linear and nonsymmetric. A common practice consists in using an explicit
treatment of the advection term to avoid the use of sophisticated linearization
procedures like the Newton method combined with nonsymmetric iterative
solvers like GMRES [340]. The explicit time advancement for the nonlinear
term avoids the linearization and reduces the computational burden to the so-
lution of a Stokes problem with a given source term. As a penalty for that
practice, however, a stability condition on the maximum allowed time step
emerges.

6.4.2 Advection Treatment

Different choices are possible for the advection operator. Three forms can be
written:

v · ∇v (convective form), (6.4.5)

∇ · vv (conservative form), (6.4.6)

1

2
(v · ∇v+ ∇ · vv) (skew-symmetric form). (6.4.7)

These three forms are equivalent for the continuous equations (with homo-
geneous Dirichlet boundary conditions only) because of the incompressibility
condition. However, this is no longer true for the discrete operators. Couzy [83]
showed numerically the clear superiority of the skew-symmetric form with
respect to the conservative and convective forms, and this observation was con-
firmed by Rønquist [334]. The reason for this optimal performance is that the
eigenvalues of the discrete skew-symmetric operator lie on the imaginary axis
of the complex plane. Both other forms have real parts. Recently, however,
Wilhelm and Kleiser [412] noticed an unstable behavior in Navier–Stokes sim-
ulations, depending on the formulation of the advection operator. The numerical
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scheme is stable for the convective form and unstable for both other forms. They
demonstrated that this instability comes from the staggered-grid discretization.
Although the continuity constraint is enforced at the GL pressure points, the
divergence errors may still grow exponentially elsewhere in the computational
domain, especially at the GLL velocity points.

The Galerkin method applied to the convective form chooses the test func-
tions in the same polynomial bases as the velocity approximation. According to
the SEM, the discretization process for the reference element ̂with a superscript
e gives

Ceve = ρlρmρn

N∑
q=0

(
ve

1,lmn De
lqve

qmn + ve
2,lmn De

mqve
lqn

+ ve
3,lmn De

nqve
lmq

)
, l,m, n ∈ [0, N ]. (6.4.8)

Let V e
1 = diag(ve

1,ı̂ ) be the diagonal matrix having entries ve
1,ı̂ := ve

1,lmn such
that ı̂ = 1+ l + (N + 1)m + (N + 1)2n is the index map that defines a natural
ordering for the tensor product of the GLL quadrature points. Analogous def-
initions hold for V e

2 and V e
3 . We note from (6.4.8) that the evaluation of the

nonlinear term involves only pointwise multiplication (or collocation) of the
nodal values of the velocity components with the spatial derivatives of ve. If we
define for an Le

x × Le
y × Le

z element e

De
1 := (I ⊗ I ⊗ D̂)

2

Le
x

, De
2 := (I ⊗ D̂ ⊗ I )

2

Le
y

, De
3 := (D̂ ⊗ I ⊗ I )

2

Le
z

,

for the derivative operators and

Me := Le
x Le

y Le
z

8
M̂ ⊗ M̂ ⊗ M̂ (6.4.9)

for the mass matrix, the nonlinear term evaluation may be cast in the tensor-
product form

Ceve = Me
(
V e

1 De
1 + V e

2 De
2 + V e

3 De
3

)
ve. (6.4.10)

The full product Cv is obtained by the direct stiffness summation (4.5.8) of all
elemental contributions:

Cv = -′ Ceve. (6.4.11)
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The semidiscrete Navier–Stokes problem becomes

M
dv i

dt
+ Re Cv i + Kv i − DT

i p = M f
i
, i = 1, . . . , d, (6.4.12)

−Div i = 0. (6.4.13)

v i (0) = v0
i . (6.4.14)

In order to avoid the iterative solution of a nonsymmetric, nonlinear system
that occurs when the advection terms are treated implicitly, the only remain-
ing choice is to treat them explicitly. The family of Adams–Bashforth (AB)
schemes uses a multistep procedure. The k-step method is of global order
k. The advection operator being nondissipative, its stability region should
embrace the largest possible portion of the imaginary axis. As was shown in
Figure 3.2.1, the AB method of order two (AB2) has no intersection of its sta-
bility region with the imaginary axis. This is not the case for the AB3 method,
however. We select this scheme to compute Cv. The splitting method with an
implicit treatment of the viscous term (as before) and an explicit scheme for
advection leads, for example, to the choice BDF1/AB3 for (6.4.12)–(6.4.13).
Assuming for the sequel that the index i will always be in [1, d], we obtain(

M

�t
+ K

)
vn+1

i − DT
i pn+1

= M

�t
vn

i + M f n+1
i
− Re

(
23
12 Cvn

i − 4
3 Cvn−1

i + 5
12 Cvn−2

i

)
, (6.4.15)

−Div
n+1
i = 0. (6.4.16)

The local error analysis shows that this scheme is O(�t2), providing a global
error of order one. To achieve higher-order accuracy in time is no trivial task.
The combination BDF2/AB3 may be written as(

3M

2�t
+ K

)
vn+1

i − DT
i pn+1

= M

�t

(
2vn

i − 1
2v

n−1
i

)+ M f n+1
i
− 2 Re

(
23
12 Cvn

i − 4
3 Cvn−1

i + 5
12 Cvn−2

i

)
,

(6.4.17)

−Div
n+1
i = 0. (6.4.18)

The global error is still of order �t [83] and is due to time splitting between
explicit advective and implicit diffusive parts of the Navier–Stokes equations.

Another simple method, used by Karniadakis et al. [219], consists in extrap-
olating the nonlinear terms. More precisely, a BDFk (here BDF3) is applied to



6.4. Unsteady Navier–Stokes Equations 307

both linear and nonlinear terms:(
11

6�t
M + K

)
vn+1

i − DT
i pn+1 = M

�t

(
3vn

i − 3
2v

n−1
i + 1

3v
n−2
i

)
+M f n+1

i
− Re Cvn+1

i , (6.4.19)

−Div
n+1
i = 0. (6.4.20)

To cope with the nonlinear term at the new time level and avoid solving an
implicit relation, one uses an extrapolation scheme (EX3) to determine C vn+1

i :

C vn+1
i = 3Cvn

i − 3Cvn−1
i + Cvn−2

i + O(�t3). (6.4.21)

Combining (6.4.19) with (6.4.21) gives(
11

6�t
M + K

)
vn+1

i − DT
i pn+1

= M

�t

(
3vn

i − 3
2v

n−1
i + 1

3v
n−2
i

)+M f n+1
i
− Re

(
3Cvn

i − 3Cvn−1
i + Cvn−2

i

)
.

(6.4.22)

For this scheme, there is no time-splitting error. Furthermore, it is easy to show
that the BDF3/EX3 scheme provides global third-order accuracy.

As indicated in Chapter 3, operator-integration-factor splitting (OIFS) tech-
niques help to produce efficient and more stable numerical schemes. The basic
idea is to separate the linear viscous term from the nonlinear advection contri-
butions to the flow. The latter constitute the essential part of the dynamics for
increasing Reynolds numbers. The Reynolds number is interpreted here as the
ratio of the viscous diffusive time to the inertial time of the flow. OIFS techniques
are tailored to quickly advance the time integration of the advection term using
an explicit scheme, while solving less often for the implicit Stokes operator,
which imposes incompressibility. The method was applied to the Navier–Stokes
equations by Maday et al. [262], Couzy [84], and Timmermans [379]. With the
spectral-element discretization, Equation (6.4.12) is written in terms of an in-
tegration factor Qt∗

C (t):

d

dt

[
Qt∗

C (t)Mv
] = Qt∗

C (t)(−Kv+ DT p +Mf), (6.4.23)

which is defined here by

d

dt

[
Qt∗

C (t)M
] = ReQt∗

C (t)C(v), Qt∗
C (t∗) = I. (6.4.24)
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Applying BDFk to Equation (6.4.23), one obtains [see Equation (3.3.15)]

Mβkvn+1 +
k∑

j=1

βk− j SC
(
Qtn+1

C (tn+1− j ) Mvn+1− j
)

= �t(−Kvn+1+DT pn+1 +Mf n+1). (6.4.25)

The terms involving the operator integration factor, which is never constructed
explicitly, are evaluated using the relationship

SC
(
Qtn+1

C (tn+1− j )Mvn+1− j
) =Mṽn+1

j , j = 1, . . . , k, (6.4.26)

where the unknowns ṽn+1
j are computed by integration of the initial-value

problem

M
d

ds
ṽ j (s) = −Re C(ṽ j (s))ṽ j (s), tn+1− j ≤ s ≤ tn+1, (6.4.27)

with initial conditions ṽ j (t
n+1− j ) = vn+1− j . This last problem is solved with a

time step�s = �t/γ . The integer γ represents the number of subcycles where
explicit cheap evaluations of the nonlinear terms are computed.

Because stability is at stake, we choose the fourth-order RK scheme, since it
embraces a large portion of the imaginary axis of the complex plane (as shown
in Figure 3.2.5) and does not require initial data as a multistep method as AB3
would. For the Stokes operator, we use a BDFk scheme. Therefore, an OIFS

BDF3/RK4 scheme (see Section 3.3.2) for the Navier–Stokes equations is(
11

6�t
M+K

)
vn+1 − DT pn+1 = M

�t

(
3ṽn+1

1 − 3
2 ṽn+1

2 + 1
3 ṽn+1

3

)+Mf n+1,

(6.4.28)

−Dvn+1 = 0. (6.4.29)

The RK4 scheme is applied to (6.4.27), which is solved in turn

• on the interval [tn, tn+1], ṽn
1 = vn , to compute ṽn+1

1 ,
• on the interval [tn−1, tn+1], ṽn−1

2 = vn−1, to compute ṽn+1
2 , and

• on the interval [tn−2, tn+1], ṽn−2
3 = vn−2, to compute ṽn+1

3 .

For�t = γ�s, we require 24γ evaluations of the nonlinear term. Typically, one
chooses �s such that the CFL condition based on this time step is less than one.
This is more expensive than the extrapolation method. However, the stability of
the algorithm is better, and the final decision in choosing between extrapolation
and OIFS should be based on accuracy and stability considerations. We point out
here that OIFS induces a nonvanishing splitting error for steady-state problems.
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6.5 Projection Methods

The linear algebra problem we face if we discretize the full 3D, transient Navier–
Stokes equations in space and time is so immense that, inevitably, we come to
the conclusion that some velocity–pressure decoupling procedure has to be
designed. This may be carried out first in the continuum framework, thereby
avoiding all subsequent considerations of compatibility between discrete spaces
like the inf–sup condition. However, the pressure boundary conditions have to
be handled in the right fashion in order to keep the time discretization error
consistent with each piece of the split scheme. The methods presented in this
section have been analyzed and thoroughly discussed by Orszag et al. [289],
Tomboulides et al. [382], and Karniadakis et al. [219]. Projection methods
aim at the decoupled computation of the velocity and pressure fields. Most
of the algorithms compute first a tentative or intermediate velocity that is not
divergence-free. This field is then projected on the subspace of solenoidal vector
functions.

Let us write the Navier–Stokes equations (6.4.1), (6.1.2) as

∂v
∂t
= −∇ p + L(v)+ N (v)+ f, (6.5.1)

D := div v = 0, (6.5.2)

where the linear term L(v) is given by

L(v) = �v = ∇ div v− ∇ × (∇ × v) (6.5.3)

and the advection term is given by

N (v) = −(Re)v · ∇v (6.5.4)

Here, the nonlinear term is expressed by its convective form, but it might also
be chosen among the various other forms (6.4.6)–(6.4.7). Time integration of
Equation (6.5.1) between tn and tn+1 gives

vn+1 − vn = −
∫ tn+1

tn

∇ p dt +
∫ tn+1

tn

L(v) dt +
∫ tn+1

tn

N (v) dt +
∫ tn+1

tn

f dt.

(6.5.5)

Commuting the space and time operators acting on the pressure, we write∫ tn+1

tn

∇ p dt = ∇
∫ tn+1

tn

p dt = �t ∇ pn+1, (6.5.6)

so that the pressure pn+1 ensures the incompressibility of the velocity field at
the new time level. The new-time-level pressure indicates that this value may



310 6. Unsteady Stokes and Navier–Stokes Equations

be obtained, for example, over the time step �t by a quadrature method such
as the (right-hand) rectangular rule. The remaining integrals in (6.5.5) are dealt
with by an ABk scheme for the advective term and a BDFk scheme for the linear
term. Following this approach for the Navier–Stokes equations, we get

βkvn+1 +
k∑

j=1

βk− j vn+1− j

= �t

(
−∇ p̄n+1 +

k∑
j=1

b j N (vn+1− j )+ L(vn+1)+ f n+1

)
, (6.5.7)

where the coefficients β j are given by Equation (6.2.13) and the b j are the
standard coefficients of the AB scheme, Equation (3.2.22).

6.5.1 Fractional-Step Method

The fractional-step method is a splitting technique (as introduced in Chapter 3)
that decouples the nonlinear, divergence-free, and viscous terms in the Navier–
Stokes equations into separate subproblems. It requires solution of the pressure
Poisson equation (6.1.6) with the Neumann boundary condition (6.1.7). For-
mally, since the pressure field has to enforce continuity at the new time level,
the former boundary condition must be expressed at tn+1. This couples velocity
and pressure. To avoid this link, which would need some (costly) iterations, we
proceed in three steps to split the computation.

The first step evaluates an intermediate field by the ABk scheme

v̂ = −
k∑

j=1

βk− j vn+1− j +�t

[
k∑

j=1

b j N (vn+1− j )+ f n+1

]
(6.5.8)

The second step renders the velocity field incompressible by adding the pressure
gradient

ˆ̂v = v̂−�t ∇ pn+1. (6.5.9)

The third and final step is the viscous step:

βkvn+1 = ˆ̂v+�t L(vn+1). (6.5.10)

For more generality, we will assume that the flow satisfies inhomogeneous boun-
dary conditions

vn+1 = g on ∂. (6.5.11)
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The splitting scheme is built on two further hypotheses: First, the velocity
field ˆ̂v satisfies the incompressibility condition, and therefore

div ˆ̂v = 0. (6.5.12)

Second, we assume that the same field ˆ̂v satisfies the inhomogeneous Dirichlet
condition in the normal direction n to the boundary:

ˆ̂v · n = g · n . (6.5.13)

The resulting Poisson equation becomes

� p = div

(
v̂
�t

)
, (6.5.14)

with the boundary condition obtained from (6.5.9),

�t ∇ pn+1 · n = −(g− v̂) · n on ∂. (6.5.15)

This scheme is prone to time-splitting errors, because the Poisson pressure
equation is solved with the incorrect boundary condition (6.5.15). If we assume
furthermore that the wall is fixed and impermeable, the boundary condition
reduces to �t ∇ pn+1 · n = 0, which is appropriate for an inviscid fluid but far
away from physical reality for a viscous flow. This way of solving the pressure
may lead to errors of O(1). The splitting error induces a boundary layer for the
numerical divergence.

Let us estimate the boundary-layer thickness. Applying the divergence to
Equation (6.5.7) and recalling the notation introduced in Equation (6.5.2) for
the divergence of the velocity field, we obtain

βkDn+1 +
k∑

j=1

βk− j Dn+1− j

= �t

[
−�pn+1 + div

(
k∑

j=1

b j N (vn+1− j )+ L(vn+1)+ f n+1

)]
. (6.5.16)

Combination of the three steps (6.5.8)–(6.5.10) shows that the pressure equation
takes all explicit terms into account, while at the new time level the divergence
equation is

βkDn+1 −�t �Dn+1 = 0. (6.5.17)

We may conclude that there exists a numerical boundary layer of thickness
l = O(

√
�t) or, in dimensional form, l = O(

√
ν�t). One can show that the
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velocity error at the wall is proportional to l2, that is, to �t . If the pressure
computation is failing by an error O(1) at the wall, the velocity is still of first
order in time. If now the pressure computation is of first order in time, the
velocity will be of second order.

If we again assume that the boundary is fixed and impermeable, the boundary
condition (6.1.7) reduces to

n · ∇ p = n · (�v+ f) on ∂. (6.5.18)

Decomposing as in (5.4.9) the velocity field into an irrotational part vI and a
solenoidal part vS such that

∇ × vI = 0, (6.5.19)

div vS = 0, (6.5.20)

we can rewrite the pressure boundary condition as

n · ∇ p = n · [∇ div vI − ∇ × (∇ × vS)+ f] on ∂. (6.5.21)

If we impose the condition that vI vanishes in an incompressible flow, the
pressure boundary condition becomes

n · ∇ p = n · [−∇ × (∇ × v)+ f] on ∂. (6.5.22)

Following Karniadakis et al. [219], we combine Equation (6.5.15) with the
previous condition (6.5.22) and approximate the r.h.s. by an ABk scheme to
obtain

n · ∇ pn+1 = −n ·
(

1

�t
(g− v̂)+

k∑
j=1

b j∇ × (∇ × vn+1− j )− f n+1

)
on ∂.

(6.5.23)

The usual practice is to use a PN –PN approximation for velocity and
pressure, thereby specifying the same discretization for every step of the split-
ting scheme with the same solver and preconditioner. This approach eases the
programming effort dramatically. We note that each time step requires only four
elliptic solves.

In summary, the algorithm proceeds as follows:

• Compute the intermediate velocity v̂ by (6.5.8).
• Solve for the pressure (6.5.14) with boundary condition (6.5.23), and add

the pressure gradient to the velocity v̂, obtaining (6.5.9).
• Solve the Helmholtz equations (6.5.10) to produce the final velocity at time

tn+1.
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A deep and careful analysis of the Stokes solver associated with the previous
algorithm was carried out by Leriche and Labrosse [242] for Chebyshev col-
location. They showed by computing the eigenvalue spectra that the boundary
condition (6.5.22) keeping the rotational part of the velocity field does preserve
the elliptic character of the Stokes problem. The explicit time treatment of the
rotational boundary term by first- and second-order time schemes leads to stable
schemes with the viscous term being implicitly integrated. For higher- (third-
and fourth-) order schemes, we recover a time-step restriction of O(N−4).

6.5.2 Pressure Correction Method

The pressure correction method is basically a predictor–corrector procedure be-
tween the velocity and the pressure fields. The idea resides in the incorporation
of the old-time-level pressure gradient to integrate the momentum equations.
The resulting velocity field is obviously not divergence-free. In a correction
step, a pressure correction that is the difference between the new- and the old-
time-level pressures is computed and added to the preceding velocity to enforce
the continuity constraint. The pressure correction was first introduced in the FD

framework by Goda [159]. Unlike the splitting scheme, this pressure correction
scheme yields a divergence-free field at the end of the time step.

The pressure correction scheme advances in two steps. First, we compute an
intermediate velocity field v̂ by

βk v̂+
k∑

j=1

βk− j vn+1− j = �t

(
−∇ pn +

k∑
j=1

b j N (vn+1− j )+ L(v̂)+ f n+1

)
,

(6.5.24)

with the old time-level pressure pn . Then, defining the pressure correction
δp = pn+1 − pn and subtracting (6.5.24) from (6.5.7), we obtain

βk(vn+1 − v̂) = �t {−∇δp + [L(vn+1)− L(v̂)]}. (6.5.25)

Applying the divergence to this relation and assuming that the linear operators
commute (this might be not the case for the discrete operators), we obtain a
Poisson equation for the pressure correction:

�δp = div

(
βk v̂
�t
− L(v̂)

)
. (6.5.26)

The final velocity is given by

vn+1 = v̂− �t

βk
∇δp. (6.5.27)
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The integration of the momentum equation (6.5.24) is performed with the
boundary condition v̂ = g. If we take this velocity condition into account, the
pressure correction boundary condition comes from (6.5.27) as n · ∇δp = 0.
This condition does not allow much change in the boundary layer and therefore
does not ensure the correct dynamics in that location.

Timmermans et al. [379, 381] overcame the disadvantages of the previous
method by the following modifications. The first step still integrates (6.5.24)
with the boundary condition v̂ = g = vn+1. The second step computes a scalar
correction field q (replacing δp; note that q is not the pressure). The relationship
for q is generated by the application of the divergence to

vn+1 = v̂− �t

βk
∇q. (6.5.28)

Imposing the incompressibility constraint at time tn+1, we obtain

� q = div

(
βk v̂
�t

)
. (6.5.29)

The gradient of the correction is added through Equation (6.5.28). If we
compare Equation (6.5.28) with Equation (5.4.9), we see that the gradient of
the correction corresponds to the irrotational part of the velocity. Consequently,
Equation (6.5.25), which is still valid, can be written with the help of (6.5.28)
and (5.4.9) as

∇q = ∇(pn+1 − pn)− ∇ div vn+1 + ∇ × ∇vn+1 + ∇ div v̂− ∇ × ∇v̂.
(6.5.30)

From this expression, the final pressure field is calculated as

pn+1 = pn + q − div v̂. (6.5.31)

The last term of the r.h.s. of Equation (6.5.31) contributes to the pressure adap-
tation in the boundary layer.

The OIFS method is applied to the Navier–Stokes equations in order to de-
couple the advection problem from the viscous part, which will include the
pressure gradient at the previous time level. So far, only the BDF2 scheme has
been applied to the implicit Stokes operator.

The algorithm evolves by successive steps:

• Solve the initial-value problem (6.4.27) by a three-step explicit Taylor–
Galerkin method, which is a generalization of the two-step method intro-
duced in Section 3.10. This scheme does not suffer from the weak instability
suffered by the two-step scheme.
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• Solve the OIFS version of Equation (6.5.24) via a BDF2 method, and obtain
v̂.

• Solve the Poisson Equation (6.5.26) for the pressure correction.
• Use Equation (6.5.27) to compute the final incompressible velocity field.
• Update the pressure by Equation (6.5.31).

Timmermans et al. [381] showed that the correction method is second-order
accurate in time for the velocity computation. The performance of the algo-
rithm for the pressure is not as good, however. The pressure time accuracy is
between first and second order, depending on the geometrical complexity of the
problem.

Heinrichs [192, 194] proposed a third-order pressure correction scheme
for the Stokes problem that can be extended to the Navier–Stokes equations.
Equation (6.5.24) is computed with a BDF3/AB3 scheme by setting k = 3, and
the pressure gradient ∇ pn is replaced by ∇ p̄n+1, where the pressure p̄n+1 is
obtained by second-order time extrapolation:

p̄n+1 = 2pn − pn−1. (6.5.32)

The pressure correction is now defined by δp = pn+1 − p̄n+1 and results from
the Poisson equation (6.5.26). The new velocity is given by (6.5.27).

6.6 Stabilizing Unsteady Flows

In Chapters 3, 4, and 5 we have discussed the use of stabilization techniques
based on bubble functions and shifted grids to control spurious oscillations in
convection-dominated problems and in the Stokes problem. Another approach
to stabilization is based on the idea of filtering. This technique has been widely
used in high-order applications to hyperbolic problems [106, 254] and, more
recently, in spectral simulations of incompressible flows [47, 130]. The basic
idea is to suppress at the end of each time step any spurious modes that may
pollute an otherwise accurate solution.

In [130], a stabilizing filter was developed for unsteady incompressible sim-
ulations based on the PN –PN−2 SEM (5.2.32)–(5.2.33). Using any of the tech-
niques developed earlier in the chapter [e.g., (6.2.33)], one begins by computing
an intermediate solution, (ṽ, pn+1), to the unsteady Stokes problem

H ṽ− DT pn+1 =M fn, D ṽ = 0, (6.6.1)

where fn represents the contribution of the nonlinear terms. The resultant
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velocity field is then filtered to generate the solution at time tn+1,

vn+1 = Fα ṽ. (6.6.2)

The advantage of filter-based stabilization is that one can use all of the tech-
nology developed for the symmetric unsteady Stokes problem (6.6.1) without
change to either discretization or solver.

For reasons of efficiency, it is desirable that the action of the filter be local,
yet preserve interelement continuity. In [130], these conditions are met by
the following construction. For any integer N let πN , j represent the set of
Lagrangian interpolation polynomials associated to the GLL quadrature rule
with N + 1 nodes {ξN ,k} given by (B.2.9). Here, we slightly modify the no-
tation to indicate the polynomial degree (N ), because we are going to use GLL

schemes with different orders. Let I M
N denote the (M + 1)× (N + 1) matrix

operator with components(
I M

N

)
i j = πN , j (ξM,i ), 0 ≤ i ≤ M, 0 ≤ j ≤ N . (6.6.3)

Consider, in the same spirit, the (N + 1)× (N + 1) matrix operator

�N−1 = I N
N−1 I N−1

N , (6.6.4)

where the elements of the matrix product are defined by (6.6.3).
Any polynomial uN ∈ PN (̂) may be uniquely decomposed into

uN (x) =
N∑

k=0

uk πN ,k(x), uk = uN (ξN ,k).

Therefore, the vector�N−1u with u := (u0, . . . , uN )T gives the nodal values on
the {ξN ,k} grid of the polynomial IN−1uN , where IN−1 denotes the Lagrangian
interpolation operator of degree N − 1 on {ξN−1,k}. This interpolation automat-
ically eliminates some high-frequency contribution as discussed below; hence
the filtering process. One may view �N−1 as a pseudoprojector, in that in any
case �2

N−1 �= �N−1. The one-dimensional filter is a combination of the pseu-
doprojector (6.6.4) with the identity matrix, that is,

F̂α := α�N−1 + (1− α)I N
N . (6.6.5)

In higher space dimensions, one simply uses the tensor-product form within
each element, Fe

α := F̂α ⊗ · · · ⊗ F̂α . The free parameter α determines the
strength of the filter, with α = 1 corresponding to a full pseudoprojection
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onto PN−1. The choice 0.05 < α < 0.30 typically yields a smoother result [see
Figure 6.8.2(c, d)]. The interpolation-based procedure ensures that interelement
continuity is preserved, and because the interpolation error ‖ṽ−�N−1ṽ‖ tends
to zero exponentially fast as N →∞, spectral convergence is not compromised.

Heuristically, because the points {ξN ,i } interlace {ξN−1,i }, the pseudopro-
jector tends to suppress high-frequency oscillations. To quantify this, consider
v(ξ ) := u(ξ )− IN−1u(ξ ) for u(ξ ) ∈ PN (̂). Because v(ξ ) ∈ PN and v(ξN−1,i )
= 0 (i = 0, . . . , N − 1), it follows that

v(ξ ) = ũN (1− ξ 2)L ′N−1(ξ ) = ûN [L N (ξ )− L N−2(ξ )] =: ûNφN (ξ ),

where ũN and ûN are constants. Part of this relationship may be explained taking
into account the properties (B.1.11) and (B.1.20) of Legendre polynomials.
Here, φN is an element in the basis

φ0 =
1− ξ

2
, φ1 =

1+ ξ

2
, φk = Lk − Lk−2, k ≥ 2, (6.6.6)

which has been used by several authors (e.g., [355, 47]), and which has been pre-
sented in Section 2.3.2 devoted to the p-version of finite elements; ûN is the as-
sociated basis coefficient. One can change from (6.6.6) to the usual Lagrangian
basis by recognizing that, for any u ∈ PN ,

ui := u(ξN ,i ) =
N∑

k=0

ûkφk(ξN ,i ), i = 1, . . . , N . (6.6.7)

Hence, setting (Z )ik := φk(ξN ,i ), one has u = Zû as the one-dimensional trans-
formation from wave (or modal) space to physical (or nodal) space.

As suggested by Boyd [47], the basis (6.6.6) can be used to construct an
arbitrary filter that scales each ûk , k = 2, . . . , N . With - = diag(σk), with
σ0 = σ1 = 1, and with σk as the desired reduction at each wavenumber k ≥ 2,
the general filter is given by F̂- := Z-Z−1. With the linear combination
(6.6.5), F̂α acts to scale ûN by 1− α, leaving the other coefficients unchanged.

The stabilizing role of the filter can be understood by considering its ap-
plication to the one-dimensional unsteady advection–diffusion problem (1.9.6)
with c = 1 and the addition of a forcing term f ,

ut + ux = νuxx + f , u(0) = u(1) = 0. (6.6.8)

If we assume that f is time-independent, u eventually evolves to the solution of
the steady-state problem (3.6.1), which has well-known stability problems as
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ν → 0 (e.g., see [62]). Discretizing (6.6.8) by the SEM in space and AB3CN

in time, and then coupling with the filter, we have

Hũ = HRun − C
(

23
12 un − 16

12 un−1 + 5
12 un−2

)+ M f , un+1 = Fα ũ,

(6.6.9)

where H = (ν/2)K + (1/�t)M and HR = −(ν/2)K + (1/�t)M are discrete
Helmholtz operators and C is the convection operator.

Equation (6.6.9) can be viewed as a fixed-point iteration with a solution
satisfying

[
νK + C + H

(
F−1
α − I

)]
u∞ = M f . (6.6.10)

For any Galerkin formulation, C is skew-symmetric and therefore singular
if the number of variables is odd (the spurious mode in the single spectral
element case being L N − L0). On the other hand, the eigenvalues of F−1

α − I
are {0, 0, . . . , 0, α

1−α } [the nonzero eigenmode being φN (x) := L N (x)−
L N−2(x)]. The stabilizing term H (F−1

α − I ) controls the growth of the compo-
nent involving L N and prevents (6.6.10) from blowing up as ν → 0.

As noted above, one can easily suppress more elements in this basis in order
to construct smoother filters, as suggested, for example, in [46, 399]. However,
experiences in [130] and asymptotic analysis [ν → 0 in (6.6.10)] indicate that
a slight suppression of just the N th mode is sufficient to stabilize the PN –PN−2

method at moderate to high Reynolds numbers.

6.7 Arbitrary Lagrangian–Eulerian Formulation
and Free-Surface Flows

Most of the time, fluid mechanics problems are expressed by using the Eulerian
formulation, whereas solid mechanics problems rely on the Lagrangian formu-
lation. However, in some cases, such as free-surface flows or fluid–structure
interaction, neither of these approaches is completely adequate because of their
intrinsic limitations.

In the Eulerian (or spatial) formulation, the reference system is fixed in
space. The numerical methods use elements also fixed in space. If the boundary
of the fluid domain deforms (as often occurs in materials-processing systems)
and does not coincide with an element side or face, the application of the
boundary conditions at the right location becomes difficult and needs some
local interpolation on the geometry and on the conditions themselves.
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In the Lagrangian (or material) formulation, the reference system is attached
to material points of the fluid (or, more generally, of the continuous medium).
Within the discretization method, the elements deform with the material and
can be excessively distorted. If the aspect ratio of the elements reaches values
preventing good spatial convergence, some reconstruction technique is called
for to regenerate a suitable mesh.

6.7.1 ALE Formulation

The arbitrary Lagrangian–Eulerian (ALE) formulation attempts to combine the
advantages of both techniques and to avoid the drawbacks of each of them. The
reference system is not fixed a priori in space or attached to the material. It may
be considered as a computational reference system, which can be chosen quite
arbitrarily. The method was first proposed in the FD context by the Los Alamos
group (Hirt et al. [205], Pracht [315]). In the eighties, the method was applied
within the FE community (Hughes et al. [211], Donea et al. [108], Ramaswamy
and Kawahara [322]). More recently, Ho and Patera [207, 208] brought the ALE

technique into the spectral-element frame. Before we discuss the discretization,
we will first extend the concept of material time derivative in an arbitrary frame
of reference and then present the variational formulation of the free-surface
problem.

The material derivative describes the time evolution of variables attached to
material points followed in their motion. As was already mentioned, it is inter-
esting to track the evolution of variables or quantities at points characterized by
a proper velocity field w(x, t) different from the velocity v(x, t) of the material
particles. Typically, in a practical computation, w will be the mesh velocity. Let
us denote by δ/δt the time derivative when a fictitious particle moving with the
velocity w(x, t) is followed; this derivative will be called the ALE derivative. It
suffices to replace D/Dt and v by δ/δt and w, respectively, in the definition of
the material derivative (1.2.5) to obtain for the function f

δ f

δt
= ∂ f

∂t
+ w · ∇ f. (6.7.1)

If w = 0, the mesh is fixed, and we recover the Eulerian description where
δ/δt is the classical partial derivative with respect to time. If w = v, we obtain
the Lagrangian description, and δ/δt is the particle or substantial derivative.
Finally, if w �= v �= 0, the mesh moves with its own velocity, and the time
derivative takes that information into account. Following Truesdell and Toupin
[387], the associated Reynolds transport theorem for the time change of a
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volume integral is

δ

δt

∫
(t)

f dV =
∫
(t)

(
δ f

δt
+ f div w

)
dV =

∫
(t)

(
∂ f

∂t
+ div( f w)

)
dV .

(6.7.2)

The interpretation of the last equality needs some development and comment.
Indeed, according to Truesdell and Toupin, one can use the divergence theorem
to write

δ

δt

∫
(t)

f dV =
∫


∂ f

∂t
dV +

∫
∂

f (w · n) d S. (6.7.3)

Here, the first term of the right-hand side acts on the spatial volume , which
at time t corresponds to the configuration of the material volume (t). The
notation δ/δt reminds us that the volume of integration is material with respect
to the velocity w.

At this stage, let us introduce the relative velocity c of the continuous media
with respect to the motion of the reference frame defined by w such that

v = c+ w. (6.7.4)

We are able to determine the relation between the two time derivatives D/Dt
and δ/δt . We obtain

D f

Dt
= δ f

δt
+ c · ∇ f. (6.7.5)

The kinematics of volume integrals defined on the same material volume but
with respect to different reference frames produce the relation

d

dt

∫
(t)

f dV = δ

δt

∫
(t)

f dV +
∫
∂(t)

f (c · n) d S. (6.7.6)

6.7.2 Free-Surface Conditions

A free surface [see Equation (1.6.11)] is a special case of an interface. When two
immiscible fluids are in contact, an interface is created that, for 3D problems, is
a general surface whose geometry may be quite complicated. Since the interface
is in mechanical equilibrium, the interface condition imposes that the vector
sum of the contact forces of the two fluids with respective subscripts I and II
vanishes:

tI + tII = 0. (6.7.7)

With the definition (1.3.2) and because nI = −nII, we have

σInI = σIInI. (6.7.8)
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In this relation the stress tensor σ defines the rheological behavior of the fluids.
At an interface, both of them are viscous Newtonian.

When a free surface is present, one of the fluids (II) is assumed to be air,
considered as an inviscid fluid. Recall the constitutive relation for a viscous
Newtonian incompressible fluid (1.6.1) for I, at a free surface with the normal
unit vector n pointing out of the viscous fluid. The interface condition is

(−pII+ 2µdI)n = −pIIn. (6.7.9)

The free-surface conditions for a 2D problem are obtained by projection
of the previous relation on the normal n and on the tangent vector τ to the
surface:

−pI + 2µ(dIn) · n = −pII, (6.7.10)

2µ(dIn) · τ = 0. (6.7.11)

If, furthermore, surface tension effects play an important role, as they do in
coating flows for example, a generalization of the Laplace relation gives

−pI + 2µ(dIn) · n = −pII − γ
(
R−1

1 + R−1
2

)
, (6.7.12)

where in this section,γ denotes the surface tension coefficient, and R1 and R2 are
the principal radii of curvature of the surface. The quantity between parentheses
multiplying the surface tension coefficient is equal to 2', with ' denoting the
mean curvature of the surface, in this section. The sign of ' depends on the
concavity (−) or the convexity (+) of the surface. More elaborate formulae are
given by Ericksen in an appendix to Truesdell and Toupin’s presentation.

The relevant dimensionless number when surface tension effects are impor-
tant is the Weber number

W e := γ

ρLU 2
, (6.7.13)

which compares the surface tension force with inertia.
In the past decade, the surface tension effects on fluid flow have been incor-

porated in the continuum model itself. The developments are due to Brackbill
et al. [49] and Lafaurie et al. [235]. The state of the art of the DNS of free-surface
flows is reviewed by Scardovelli and Zaleski [343]. The capillary force acting
on a free surface is modeled by an additional term in the Navier–Stokes equa-
tions (1.6.3), expressed by 2'γ δSn, where δS is a Dirac delta function applied
only on the surface S. The mean curvature is obtained as the divergence of the
normal,

2' = −∇S · n, (6.7.14)
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with ∇S being the gradient operator restricted to the surface. This approach
leads to the definition of the capillary tensor

Γ = −γ (I− n⊗ n) δS (6.7.15)

such that

2'γ δSn = −div Γ. (6.7.16)

If a conservative form of the momentum equations is needed, then this last
expression of the surface tension effects may be easily incorporated. This way
of dealing with the free surface opens the door to the level-set approach, which
is recognized as a powerful alternative to existing methods (see the book by
Sethian [353]).

We note that if the 2D free surface may be explicitly represented by the
relation

F(x, y, t) = y − f (x, t) = 0, (6.7.17)

then the components of n may be written as

nx = 1

(1+ f ′2)1/2
and ny = − f

′

(1+ f ′2)1/2
, (6.7.18)

with f
′

denoting the partial derivative of f with respect to x . The use of
(6.7.17) requires that the free surface be represented by a uniform function.
For example, this excludes the case of a breaking wave on a slanted beach,
where the free-surface is obviously multiform. For transient free-surface flows,
some algorithms take advantage of the kinematical constraint expressing that
the free surface remains a material surface containing the same fluid particles
as time elapses. Using (6.7.17), we get

d F

dt
= 0, i.e.

∂ f

∂t
+ u

∂ f

∂x
= v. (6.7.19)

6.7.3 Variational Formulation of Free-Surface Flows

The variational formulation is built up by the use of the linear momentum con-
servation law, Equation (1.3.1), recast in the ALE frame. Indeed, if we proceed
as usual, then (as in Section 6.4) we will run into trouble because the appro-
priate functional spaces will be defined on (t), a time-dependent domain, and
the time derivative will involve the spatial frame of reference. The technical
difficulty comes from the fact that the test functions cannot be chosen invari-
able with respect to time, because they should vanish on the moving part of the
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boundary, where essential conditions are applied. Therefore, we define them
also in the ALE frame for full consistency of the method. The test functions u
for the velocity field are independent of time in the reference system, and we
can infer that in the current configuration they satisfy the relation

δu
δt
= 0. (6.7.20)

Let us denote by u a scalar test function obeying the condition (6.7.20). The
Reynolds transport theorem (6.7.2) allows us to write successively∫

(t)
u

[
δ f

δt
+ f div w

]
dV

=
∫
(t)

(
δ(u f )

δt
+ u f div w

)
dV = δ

δt

∫
(t)

u f dV . (6.7.21)

We may generalize the previous relation by replacing the function f by vector
fields like the velocity v and the test function u by its vector counterpart u.

The weak ALE formulation of the transient Navier–Stokes equations for free-
surface flows is obtained through the following steps. The integral form of the
momentum equation is given by the use of Equations (6.7.6) and (1.3.2) and of
the divergence theorem as

d

dt

∫
(t)

ρv dV = δ

δt

∫
(t)

ρv dV +
∫
(t)

ρ div(vc) dV

=
∫
(t)

(divσ + ρf) dV . (6.7.22)

The functional space for the velocity is a subset of H 1
0 ((t))d , where the

test functions satisfy (6.7.20). For the pressure, the test function q will be
in L2((t)), since the reference pressure level will be imposed by the normal
free-surface condition. Multiplying under each integral by the test functions
and taking the Reynolds theorem (6.7.21) in its vector form into account and
(6.7.4), we have for the weak form: Find (v(t), p(t)) ∈ H 1

0 ((t))d × L2((t))
such that for almost every t ∈ (0, T )

δ

δt

∫
(t)

u · v dV +
∫
(t)

u · div(vv− vw)

=
∫
(t)

(
f · u+ p

ρ
div u− 2 ν d · ∇u

)
dV +

∫
∂S (t)

γ

ρ
2'n · u d S

∀u ∈ H 1
0 ((t))d , (6.7.23)

−
∫
(t)

q div v dV = 0 ∀q ∈ L2((t)). (6.7.24)
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In the above relations, ∂S(t) denotes the free surface. Upon integration of this
term by parts, one obtains an expression involving the contact angles of the
free surface with solid walls. We could also deal with gradients of the surface
tension coefficient as they appear in the Marangoni effect.

The free surface is obviously a material surface. We require there that the
normal mesh velocity be that of the interface:

w · n = v · n. (6.7.25)

That kinematical condition does not require anything of the tangential mesh
velocity. However, imposition of the condition

w · τ = 0 (6.7.26)

turns out to be computationally interesting because it minimizes the mesh
deformation. On solid fixed walls, the mesh velocity is set to

w = 0. (6.7.27)

Several approaches are possible for computing the mesh velocity inside the
domain. Ho and Patera [207, 208] proposed to solve an elliptic problem of the
form

Ew = 0, (6.7.28)

where the operator E comes from an elasticity or a Stokes problem. More
specifically, the steady equilibrium equations for linear infinitesimal elasticity
are given by

divσE + ρ f = 0. (6.7.29)

The constitutive relationship for the stress tensor implies the deformation tensor
ε, which is expressed in terms of the displacement gradient tensor

σE = λ tr ε I+ 2µ ε, (6.7.30)

ε = 1

2
[∇u+ (∇u)T ], (6.7.31)

where the vector u represents the displacement, the material parameters λ andµ
being the Lamé coefficients. Setting f = 0 and replacing the displacement u by
the velocity w in the elasticity problem, we are led to the solution of (6.7.28). We
note that the elasticity solution in fact depends on only one material parameter,
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since the Lamé coefficients can be rewritten by using Young’s modulus E and
the Poisson coefficient ν:

µ = E

2(1+ ν)
, λ = ν E

(1+ ν)(1− 2 ν)
, (6.7.32)

where 0 ≤ ν < 1/2. For the incompressible elastic case (ν = 0.5), the coeffi-
cient λ goes to infinity. Nevertheless, we can introduce the deviatoric part of
the infinitesimal strain tensor

εD = ε− 1

3
tr ε. (6.7.33)

The stress tensor becomes

σE = σD + p I, (6.7.34)

with the corresponding definitions

p = (3λ+ 2µ) div u, (6.7.35)

σD = 2µε. (6.7.36)

The scalar field is the pressure that corresponds to the incompressible char-
acter of the material. We observe that this incompressible elastic problem is
related to the Stokes incompressible flow. For that reason it is better to use
steady Stokes solvers, since, in their deformation, spectral elements have to
conserve their volume.

When the mesh velocity has been obtained, we can next evaluate the mesh
movement by integrating the equation

dx
dt
= w, (6.7.37)

where x is the position of the mesh points. Other strategies are also possible. For
example, Formaggia and Nobile [136] worked directly on x, solving a diffusion
equation or a harmonic extension problem.

6.7.4 Space and Time Discretization

The spatial discretization of the free-surface problem is based on the PN –PN−2

SEM. We will capitalize on former developments and skip all unnecessary de-
tails. The semidiscrete equations derived from Equations (6.7.23)–(6.7.24) are

d

dt
(Mv) = Cv−Kv+ DT p + F, (6.7.38)

−Dv = 0. (6.7.39)

Note that we have come back to the classical notation for the time derivative.
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The convective term Cv corresponds to the nonlinear term incorporating the
mesh velocity. The source term F is composed of the body force and the surface-
tension contribution. All other quantities are standard. The nodal mesh coordi-
nates are updated by using the mesh velocity

d

dt
x = w. (6.7.40)

The viscous part and pressure are computed implicitly; all other variables
are evaluated explicitly. For example, if we resort to a BDF2/AB3 scheme as in
(6.4.17), Equation (6.7.38) becomes

β2 Mn+1vn+1 + β1 Mnvn + β0 Mn−1vn−1

= �t

(
3∑

j=1

b j (Cv)n+1− j −Kn+1vn+1 + DT,n+1 pn+1 + F n+1

)
. (6.7.41)

All quantities at the new time level n + 1 are computed in the updated geometry
(hence the time superscript for the matrices); the other variables are evaluated
in the previous geometrical configurations. The time integration of Equation
(6.7.40) may be performed by any stable scheme proposed in Chapter 3 (e.g.,
the AB2 scheme).

6.8 Unsteady Applications

In this section, we consider successively three applications that demonstrate
the spectral-element capabilities. The first application is a free-surface problem
related to materials processing, namely, the extrusion of a 3D die. Although
the solution is steady-state, the free-surface methodology relies on transient
calculations. We start from a given geometrically simple initial condition, and,
through a time marching procedure, we obtain the final configuration enforcing
the free-surface boundary conditions.

The second and third problems are transient cases. The vortex-sheet roll-up
offers a rich and complex physics; it is a perfect example of the help brought
by the filtering process in achieving higher-Reynolds-number flows. The last
application computes unsteady blood flow through an arteriovenous graft.

6.8.1 Extrusion from a Die

Rønquist [335] considered the time evolution to steady-state conditions for
a material being extruded from a square die. Applying symmetry conditions,
one needs to examine only a quarter of the die. The problem is characterized
by the Reynolds and Weber numbers Re = 20 and W e = 2. The reference
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(a) (b)

Figure 6.8.1. Free-surface die problem (due to Rønquist [335]).

length L is the die cross-section height, and the velocity U is based on the
inlet profile. The boundary conditions specify the inlet profile, no-slip wall
conditions inside the extruder, free-surface conditions along the product sides
outside the extruder, and outflow (stress-free) conditions at the exit. Symmetry
conditions are imposed on symmetry planes.

The computational domain comprises E = 33 spectral elements with N = 5
for each of them. The initial mesh is displayed in Figure 6.8.1(a), where the
right half of the mesh corresponds to the extruder interior, and the left half to
the product. The steady-state configuration is displayed in (b), which shows the
final free surface of the product when the stresses have relaxed. As is well known
from low-Reynolds-number flows with surface tension, the product swells away
from the corners of the die exit and contracts near the corner. The product also
changes its shape from a square cross section at the die exit to a circular one at
the outlet section of the computational domain.

6.8.2 Vortex-Sheet Roll-Up

The vortex-sheet roll-up problem has been studied by a number of authors as a
means of testing the stability of numerical methods on underresolved grids (e.g.,
[25, 56]). Doubly periodic boundary conditions are applied on  := [0, 1]2,
with initial conditions

u =
{

tanh[ρ(y − 0.25)] for y ≤ 0.5,
tanh[ρ(0.75− y)] for y > 0.5,

v = 0.05 sin(2πx).

The perturbed vortex sheets of initial thickness ρ are continuously stretched
until the thickness is well below the grid resolution. Ideally, the sheets should
break up and dissipate, allowing the calculation to continue the advection and
diffusion of the remaining vortex structures.

Figure 6.8.2 shows several spectral-element results for the shear-layer roll-
up and illustrates the effectiveness of the stabilizing filter described in Section
6.6. Each case consists of a 16× 16 array of elements, save for (e), which is
32× 32. The time step size is �t = 0.002 in all cases, corresponding to CFL
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numbers in the range of 1 to 5. Without filtering, the SEM fails to simulate this
difficult problem at any reasonable resolution.

Figure 6.8.2(a) shows the results just prior to blowup for the unfiltered case
with N = 16, which corresponds to an N ×N grid with N = 256. Resolutions

Figure 6.8.2. Vorticity contours for different (E, N ) pairings: (a–d ) thick shear layer,
ρ = 30, Re = 105, contours from−70 to 70 by 140/15; (e–f ) thin shear layer, ρ = 100,
Re = 40,000, contours from −36 to 36 by 72/13 (cf. Figure 3c in [56]).



6.9. Further Reading and Engineering Considerations 329

of N = 8 (N = 128) and N = 32 (N = 512) yield similar results. Filtering with
α = 0.3 yields a dramatic improvement for N = 256 (b) and N = 128 (d).
Although full projection (α= 1) is also stable, it is clear by comparing (c) and
(d) that partial filtering (α < 1) is preferable. Finally, (e) and ( f ) correspond to
the difficult thin-shear-layer case of ρ= 100, Re= 40,000 [56]. The spurious
vortices observed in (e) are eliminated in ( f ) by increasing the order to N = 16
and reducing the element array to 8× 8. Since the resolution is effectively the
same in each case (N = 256), there is a significant advantage to using higher
order for this particular application.

6.8.3 Unsteady Flow in Arteriovenous Grafts

Figure 6.8.3 shows spectral-element simulations of flow in an arteriovenous
graft model, as studied in [247]. The simulations permit the study of stress
distributions in the vein wall downstream of the graft, where disease forma-
tion occurs. The geometry in (a) consists of a graft of inlet diameter D con-
nected to a vein of diameter 0.625D. In the experimental–numerical compar-
isons shown, steady Poiseuille profiles are specified at the graft and vein inlets
(left), with respective volume flow rates Q and Q/9. The Reynolds number is
Re := 4Q/νπD. Steady-state centerplane velocity distributions at Re= 1060
are shown in (b) for (E, N ) = (3840, 5), along with experimentally measured
profiles from [10]. At higher Reynolds numbers, the flow transitions to an
unsteady state, as illustrated in (c) by a snapshot of the vorticity contours at
Re = 1820. The experimental and numerical mean velocity and urms profiles
are shown for Re = 1820 in (d) and (e), respectively. The spectral-element
simulations at Re = 1820 were computed with N = 9, and all the calculations
employed the filter of Section 6.6 with α = 0.05.

6.9 Further Reading and Engineering Considerations

Free-surface flows for inviscid, incompressible fluid were investigated by
Robertson and Sherwin [329] using hp-spectral elements with the ALE formu-
lation. The influence of the mesh construction (symmetric or asymmetric) was
analyzed. Robertson and Sherwin showed that the asymmetric mesh induces nu-
merical instabilities by generating spurious eigenmodes. Some remedies were
proposed. One of them consists in adding a diffusive term with a viscosity
coefficient that is compatible with the hp-accuracy of the spectral-element dis-
cretization.

A PN –PN−2 Chebyshev collocation based on GLC nodes for the velocity
and on the interior velocity nodes for the pressure was proposed by Heinrichs
[191] to integrate the unsteady Stokes problem. The splitting technique uses
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Figure 6.8.3. Flow in an arteriovenous graft model.

the pressure correction method. The solution is computed by spectral multigrid
techniques preconditioned by finite differences.

The divergence-free basis of eigenfunctions computed from the singular
Stokes operator by Batcho and Karniadakis [24] was used in the bifurcation
study for the eddy-promoter geometry of Figure 5.5.1 and was fully reported in
the paper by Bangia et al. [20]. The Galerkin approximation generates a non-
linear system of ordinary differential equations (ODEs) by the use of solenoidal
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test functions. Obviously, the pressure term is removed. Available packages
for ODEs are applied for the time evolution. The dynamics of the flow shows a
Hopf bifurcation from steady to oscillatory flow at a Reynolds number of 350. A
second frequency appears at Re ≈ 890. The multiple frequency dynamics com-
plicates the flow behavior by bringing a substantial increase in the spatial and
temporal scales. It turns out that the divergence-free basis compares favorably
with the proper orthogonal decomposition (POD) of Lumley [249, 33].

The hp-SEM has also been used in biomedical flow. Sherwin et al. [360]
analyzed the blood flow in a fully 45◦ distal end-to-side anastomosis. The bypass
vessel is out of the plane of symmetry of the host vessel. This situation creates
a nonplanar 3D flow. The computed results were compared with magnetic
resonance imaging data.

A moving SEM was designed to compute the dynamics inside a journal
bearing [180, 246]. The staggered SEM is used with a preconditioned Uzawa
method. The time integration is made by a first-order backward Euler scheme.
The bearing movement is integrated by the equation of motion, which couples
the acceleration of the position vector of the center of the journal to the applied
load and the force exerted by the viscous fluid on the journal.

The projection–diffusion (PRDI) method is a fractional-step method involv-
ing two stages. Let us introduce in the frame of the Stokes problem the accel-
eration vector

a = ∂v
∂t
−�v. (6.9.1)

The first step solves the problem

a+ ∇ p = 0 in, (6.9.2)

div a = 0 in, (6.9.3)

n · a = n ·
(
∂v
∂t
−�v

)
on ∂. (6.9.4)

The second is a diffusive viscous step:

∂v
∂t
−�v = a in, (6.9.5)

v = g on, (6.9.6)

where g is the prescribed velocity boundary condition.
The first step is a Darcy-type problem, which was analyzed by Azaı̈ez

et al. [16, 15] in the framework of variational spectral discretizations. The
Darcy problem involves conditions on normal fluxes through some parts of the
boundary.
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One of the interesting characteristics of the method is that the decoupling is
independent of the time scheme [see Equation (6.9.2)]. Leriche and Labrosse
[242] carried out the full study of the temporal behavior of the PRDI decoupling,
which gave the expected time accuracy for the analyzed time schemes. However,
the PRDI method is close to the usual fractional-step method, which should be
chosen for the more general boundary conditions that are tractable. The time-
dependent calculations performed by Azaı̈ez et al. [15] confirm the analysis of
Leriche and Labrosse.

With the view of integrating the LES equations (1.10.23)–(1.10.26),
Karamanos and Sherwin [217] generalize the splitting scheme of Karniadakis
et al. [219] by decomposing the variable viscosity into two pieces. The first one
is independent of time and treated implicitly; the second one is instantaneous,
temporally and spatially varying, and treated explicitly. The stability analysis is
performed on a one-dimensional diffusion equation and leads to a mild stability
condition.

Finally, we mention the Chebyshev collocation element method based on a
fractional-step method and the enforcement of the incompressibility constraint
everywhere, up to the walls. This method was performed by Ku, Hirsh, Taylor
and colleagues and reported in a series of papers that appeared over a decade
[231, 232, 233, 230]. The Poisson solver incorporates the boundary continuity
equation, and the matrix solver enforces C1 continuity across interfaces.

Many CFD practitioners compare the computational efficiency of their al-
gorithms and Navier–Stokes solvers using the amount of CPU time spent per
degree of freedom (the number of degrees of freedom is the number of grid
nodes multiplied by the numbers of variables) and per time step. This exercise
is always difficult, because it implies rescaling those values to get a figure for
the computer that is considered as the standard tool at the time of comparison.
Furthermore, this kind of procedure will conclude to the detriment of spectral
methods. Since they are global methods, each computational node is coupled
to more neighbors than in standard finite-difference, finite-volume, or finite-
element methods and therefore imply more computational work per grid point.
A sensible and fair rule consists in fixing a priori the level of accuracy (5%,
say, for engineering purposes) required to achieve a long-term and meaningful
integration. We will have to specify the spatial and time accuracy of the nu-
merical method in order to meet such a requirement. In real computations, the
user should give the numerical error bar of the simulation in order to promote
better and long-lasting results (see [218]). We consider that this will bring an
enormous improvement in assessing fluid-flow computational results.



7
Domain Decomposition

Domain decomposition for numerical solution of PDEs has been an active area
of research, with a well-organized international conference series held annu-
ally since 1987. The area encompasses preconditioning of linear systems, dis-
cretizations, and solution of hybrid systems (e.g., coupled Navier–Stokes and
Euler problems). We consider the first two of these in the context of high-order
methods.

7.1 Introduction

Domain decomposition (DD) alleviates the solution complexity associated with
the full problem in a complicated geometry. Broadly, the aim of DD consists in
formulating independent problems in separate subdomains whose union consti-
tutes the whole. The decomposition of the domain may be motivated by differing
physics within different subdomains, by the availability of fast solvers for each
subdomain, by the desire to partition the computational effort across separate
processors, or by the inherent heterogeneity of the discretization. We discuss
in Section 7.2 preconditioning methods such as substructuring, Schwarz over-
lapping, and multigrid techniques. Section 7.3 describes the mortar element
method, which encompasses both functional and geometrical nonconforming
discretizations; suggestions for implementation are given. Section 7.4 reviews
the coupling between finite and spectral elements, provides some theoretical
considerations about adaptivity near geometrical singularities, and considers
for the 2D case hp-spectral triangular elements, which open the way for the
coupling between quadrilaterals and triangles.

333
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7.2 Preconditioning Methods

Domain-decomposition preconditioning has gained much attention over the past
decade, both in theory and in practice. The underlying strategy is to precondition
the linear system arising from the discretization of a PDE in by solving smaller
local problems in subdomainss ofwith ̄ =⋃

̄s . Variations arise in how
the local solutions are recombined, whether one uses exact or inexact solves for
the local problems, and whether one includes a global coarse-grid problem or
not. Fortunately, the strategy is robust enough to tolerate many shortcuts to facil-
itate a given implementation. While much of the renewed interest in domain de-
composition resulted from the desire to increase parallelism, the method has also
proven to be an effective serial preconditioning strategy. General references on
this topic include the books by Smith et al. [363] and Quarteroni and Valli [320].

Section 7.2.1 presents a technique known as substructuring, in which subdo-
main interior degrees of freedom are eliminated by direct means, and the remain-
ing interface variables are computed either directly or iteratively. Section 7.2.2
describes overlapping methods, and Section 7.2.3 reviews multigrid methods
for spectral elements.

7.2.1 Substructuring and the Steklov–Poincaré Operator

In this subsection, we treat a very simple elliptic problem in order to introduce
a few concepts based on the continuous representation of the substructuring
method and the associated Steklov–Poincaré operator. We then show how these
concepts translate in a discrete spectral-element representation.

At this stage it is important to specify the notation used with regard to
topology. As was the case in previous chapters,  is a bounded open domain in
R

d . All superscripts refer to a subdomain, a finite or spectral element, depending
on the context. Closed domains (or subdomains) are indicated by a bar (e.g.,
̄). In Section 7.3 on the mortar element method there is a need to associate
two superscripts to the subdomain boundaries ∂e,s : the first one (e) refers
to an element, while, conventionally, the second one (s) refers to a particular
edge (d = 2) or face (d = 3) inside the element. Finally, there is also a need
to specifically denote interior boundaries or interfaces between subdomains.
These are designated by *.

The Continuous Presentation

Suppose we want to solve the Poisson equation

−� u = f in , u = 0 on ∂. (7.2.1)
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Ω1 Ω2 ∂Ω

Γ

Figure 7.2.1. Subdomain decomposition of a bounded domain  ⊂ R
2.

The DD method begins with a subdivision of  into S subdomains s, s =
1, . . . , S. For the sake of simplicity, we initially will restrict ourselves to the case
of two nonoverlapping adjacent subdomains s, s = 1, 2 (see Figure 7.2.1).

At the interface * two unit normal vectors ns on ∂s are pointing outward.
However, as n1 = −n2, we will refer to n1 as n. The one-domain problem
(7.2.1) is reformulated as the multidomain form (s = 1, 2) with us the solution
in domain s. Assuming f ∈ L2, we have

−�us = fs ins, (7.2.2)

us = 0 on ∂s ∩ ∂, (7.2.3)

u1= u2 on*, (7.2.4)

∂u1

∂n
= ∂u2

∂n
on*, (7.2.5)

where ∂/∂n is the normal derivative. We remark that if f were only in H−1,
there could be a nontrivial jump in the normal derivative on *, and (7.2.5)
would need to be modified accordingly. The conditions (7.2.4)–(7.2.5) express
the C1 continuity matching conditions. If u were the temperature, these con-
ditions would impose continuity across the interface of the temperature field
and of the heat flux. In fact, the DD method engenders local independent sub-
problems, which can be solved with a direct or an iterative procedure. The
global solution is obtained by combining the local solutions at the interface
through an iterative process. This method will depend strongly on the interface
equation, which originates from the interface problem defined by the so-called
Steklov–Poincaré operator (see Quarteroni and Valli for full details [320]).
Let us call v the unknown value of u on *. We solve two Dirichlet problems
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with s = 1, 2:

−�ws = fs in s, (7.2.6)

ws = 0 on ∂s ∩ ∂, (7.2.7)

ws = v on *. (7.2.8)

Because these problems are linear, we can obtain the full solution

ws = wL ,s + wP,s, (7.2.9)

from the following problems:

−�wL ,s = 0 in s, (7.2.10)

wL ,s = 0 on ∂s ∩ ∂, (7.2.11)

wL ,s = v on *, (7.2.12)

and

−�wP,s = fs in s, (7.2.13)

wP,s = 0 on ∂s ∩ ∂, (7.2.14)

wP,s = 0 on *. (7.2.15)

The solutions wL ,s result from a Laplace operator and are called the harmonic
extension of v in s , while the solutions wP,s are obtained from a Poisson
equation satisfying homogeneous boundary conditions. The solution ws given
by the problem (7.2.6)–(7.2.8) will be equal to us of the problem (7.2.2)–(7.2.5)
iff

∂w1

∂n
= ∂w2

∂n
on *. (7.2.16)

We can now write the equation for the unknown value v on *:

Sv = θ on *, (7.2.17)

with the definitions

θ = ∂wP,2

∂n
− ∂wP,1

∂n
(7.2.18)

and the Steklov–Poincaré operator

Sv := ∂wL ,1

∂n
− ∂wL ,2

∂n
. (7.2.19)
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We note that the Steklov–Poincaré operator is built on the jump of the normal
derivatives at the interface. Of course, this equation will be handled by a weak
formulation, as are other elliptic equations. As soon as we know the solution v,
the problems (7.2.10)–(7.2.12) can be solved independently and in parallel, as
the interface condition is given.

The Discrete Presentation

Let us decompose the full domain of Figure 7.2.1 in two spectral elements
coinciding with the two subdomains. The unknowns generated by the weak
form of the problem (7.2.1) are collected by gathering first the interior vari-
ables of the two elements and then the interface variables. In matrix form, we
obtain  K11 0 K1*

0 K22 K2*

K*1 K*2 K**

 u1

u2

u*

 =
 f

1
f

2
f
*

. (7.2.20)

The notation is defined as follows. The matrix Kss is the stiffness matrix of
subdomain s and concerns the internal nodes only. The matrix Ks* represents
the coupling between the unknowns of subdomain s and the interface, whereas
K** gives the coupling of the interface variables with themselves. The block
diagonal matrices are SPD; one can show that Ks* = K T

*s . If we eliminate the
unknowns related to the interior nodes, we obtain the system

SN u* = θ*, (7.2.21)

with

θ* := f
*
− K*1 K−1

11 f
1
− K*2 K−1

22 f
2

(7.2.22)

and

SN := K** − K*1 K−1
11 K1* − K*2 K−1

22 K2*. (7.2.23)

The matrix SN is the Schur complement system. It is the spectral-element
realization of the Steklov–Poincaré operator S introduced in (7.2.19). Once
(7.2.23) is solved, the interior variables may be computed from

Kssus = −Ks*u* + f
s
. (7.2.24)

Suppose now we have four subdomains s, s = 1, . . . , 4, lined up like a
sandwich, with three interfaces *12, *23, and *34, where *i j is the interface
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between the subdomains i and  j . It is left as an exercise for the reader to
show that the Schur complement problem becomesS11 S12

S21 S22 S23

S32 S33


u*12

u*23

u*34

 =
 f

*12

f
*23

f
*34

 (7.2.25)

with obvious definitions of Si j resulting from the generalization of Equation
(7.2.23). The block Schur complement (7.2.25) has a sparse structure much
like a typical FD or FE matrix and can be solved directly or iteratively. The off-
diagonal blocks represent the interface–interface interactions that arise from
the elimination of the interior degrees of freedom.

When the Schur matrices are explicitly computed, the present method, where
all interior variables are eliminated and their contribution reported on the in-
terfaces, is referred to as substructuring, or static condensation. It has been
employed in engineering applications for some time, especially in solid me-
chanics problems, and was first used in the spectral-element context by Patera
[298].

Couzy and Deville [86] study the preconditioning of the Schur complement
matrix (7.2.25). Two preconditioners are examined. The first one is the inverse of
the diagonal of (7.2.25), and the second is the block-diagonal matrix that has as
entries the inverses of the diagonal blocks of (7.2.25). This latter (block-Jacobi)
method yields a condition number of the preconditioned system practically in-
dependent of N and gives good performance on Stokes test cases. It is pos-
sible to extend the block-Jacobi preconditioner by applying the overlapping
Schwarz techniques introduced in the next section to the interface variables.
This approach has been studied by a number of researchers, including Rønquist
[334, 335], Pavarino and Widlund [301], Pavarino and Warburton [300], and
Casarin [73, 72, 74]. A related approach that also addresses the Stokes Schur-
complement system is the balancing Neumann–Neumann method developed
by Pavarino and Widlund [302].

7.2.2 Overlapping Schwarz Procedures

The overlapping Schwarz approach to DD differs from the substructuring
method in that the domain-to-domain information exchange is effected through
regions of overlap, rather than through transmission conditions at the interface.
We will take as our example the Poisson equation (7.2.1) in R

2. However, the
method readily extends to more general equations and higher space dimensions.
See [363, 320] for more details.
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Ω1

Γ1

✛δ

Ω2Γ2

✲ ✲

Figure 7.2.2. Domain  decomposed into overlapping domains 1 and 2 having
boundaries ∂1 and ∂2.

To motivate the development, we begin with a brief discussion of the classical
Schwarz alternating method. Assume that  is partitioned into the regions
1 and 2, with respective interior boundaries *s := ∂s\(∂ ∩ ∂s) and
characteristic overlap width δ, as depicted in Figure 7.2.2. The Schwarz iteration
alternately solves the Poisson equation in each subdomain, using the most recent
solution in one domain to provide boundary conditions for the other. That is,
setting u0 = 0, we find for k > 0

−�uk+ 1
2 = f in 1, uk+ 1

2 = uk on ̄\1,

−�uk+1 = f in 2, uk+1 = uk+ 1
2 on ̄\2.

(7.2.26)

Note that the imposition of the solution on ̄\s provides both the boundary
condition on ∂s and the extension of the solution from s to ̄. Subtracting
(7.2.1) from (7.2.26) yields the equation for the error ek := uk − u:

−�ek+ 1
2 = 0 in 1, ek+ 1

2 = ek on ̄\1,

−�ek+1 = 0 in 2, ek+1 = ek+ 1
2 on ̄\2.

(7.2.27)

Convergence follows from the maximum principle. For each iteration, |ek+ 1
2 |

has its maximum on *1 and decays to zero on ∂. Increased separation δ

between *2 and *1 leads to a decrease in max*2 |ek+ 1
2 |, which in turn bounds

|ek+1|, and therefore to an increase in the rate of convergence. This is illustrated
explicitly by the one-dimensional example of Figure 7.2.3. Starting with a
uniform error of ‖e0‖∞, the error at the end of each substep is [from (7.2.27)]
given by the straight line segments shown. A simple geometric argument reveals

‖ek‖∞ =
(

1− δ/2

1+ δ/2

)2k

‖e0‖∞, (7.2.28)

from which the advantage of increased overlap is evident.
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e0
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1
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e
3
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e1

e2

δ

Γ2 Γ1-1 1

Figure 7.2.3. Error behavior for the one-dimensional alternating Schwarz method on
 = (−1, 1) with overlap δ = 0.25 with respect to x = 0.

Notice that the convergence result (7.2.28) depends only on the Green’s
functions (7.2.27) and the geometry of the overlap. This is typical of Schwarz
methods and has the desirable consequence that the convergence rate does not
depend on mesh discretization parameters such as h or N .

Discrete Formulation

We derive the algebraic formulation of (7.2.26) by discretizing (7.2.1) with a
Galerkin formulation. Let V0 be the Q1 Lagrangian FE functions spanned by
ψ(x) := (ψ1(x), . . . , ψN (x))T , built upon a given triangulation of  and van-
ishing on ∂. Let V s

0 ⊂ V0, s = 1, 2, comprise the subset of these functions
that vanish on ̄\s . Denote by Is the index set associated with each sub-
domain such that j ∈ Is ⇐⇒ ψ j ∈ V s

0 , and assume for convenience that the
ψ j ’s are ordered with elements in I1\ I2 first, I1 ∩ I2 second, and I2\ I1 last.
In other words, one considers those elements that do not vanish on 1 first,
then those that do not vanish on 1 ∩2, and finally those that do not vanish
on 2.

The weak formulation of (7.2.1) is: Find u ∈ V0 such that∫


∇v · ∇u dV =
∫


v f dV ∀ v ∈ V0. (7.2.29)

Inserting the basis for V0 gives rise to the N ×N system

K u = M f , Ki j :=
∫


∇ψi · ∇ψ j dV , Mi j :=
∫


ψiψ j dV,

where u ∈ R
N is the vector of unknown basis coefficients and f has been

replaced by its Lagrangian interpolant.
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Now consider the following subproblems for s = 1, 2:

us := δus + ub
s , (7.2.30)

δus ∈ V s
0 :

∫
s

∇vs · ∇δus dV =
∫
s

vs f dV −
∫
s

∇vs · ∇ub
s dV

∀ vs ∈ V s
0 .

Here, us has been split into δus , satisfying homogeneous Dirichlet bound-
ary conditions on ∂s , and ub

s ∈ V0, satisfying ub
s = us on *s . Setting (ub

1 :=
uk, ub

2 := uk+ 1
2 ) and (uk+ 1

2 := u1, uk+1 := u2), we recover (7.2.26).
To cast the alternating Schwarz method into matrix form, we observe that,

since vs ∈ V s
0 vanishes outside s , the domain of integration in (7.2.30) can be

changed to. Moreover, for any v s ∈ R
Ns , we can define vs := ψT RT

s v s ∈ V s
0 ,

where RT
s is the prolongation matrix given in the current example by

RT
1 := (

ê1, . . . , êN1

)
, RT

2 := (
êN−N2+1, . . . , êN

)
.

Here, ê j denotes the j th column of the N ×N identity matrix, and Ns denotes
the cardinality of Is . Rs is referred to as the restriction matrix.

Substituting vT
s Rsψ andψT RT

s δus into (7.2.30) for vs and δus , respectively,
we have the equations for the basis coefficients:

us = ub
s + RT

s δus,

Rs K RT
s δus = Rs

(
M f − K ub

s

)
.

Setting (ub
1 := uk, ub

2 := uk+ 1
2 ), (uk+ 1

2 := u1, uk+1 := u2), and defining Ks :=
Rs K RT

s , we arrive at the matrix form of (7.2.26):

uk+ 1
2 = uk + RT

1 K−1
1 R1(M f − K uk), (7.2.31)

uk+1 = uk+ 1
2 + RT

2 K−1
2 R2

(
M f − K uk+ 1

2
)
. (7.2.32)

As illustrated in Figure 7.2.4, K1 corresponds to a leading principal submatrix
of K , while K2 corresponds to a trailing principal submatrix (because of the
particular vertex ordering chosen for this example).

Combining (7.2.31)–(7.2.32) with M f = K u yields the fixed-point iteration
for the multiplicative Schwarz procedure,

uk+1 = uk + P1(u − uk)+ P2(u − uk)− P2 P1(u − uk)

= u + (I − P2)(I − P1)(uk − u), (7.2.33)
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K1

K2

Figure 7.2.4. Overlapping subdomain operators Ks = RT
s K Rs corresponding to prin-

cipal submatrices of K .

where Ps := RT
s K−1

s Rs K . Recall from (2.7.36) that Ps is a projector in the
K -norm onto R(RT

s ). Each iterate is thus equal to the solution plus successive
projections of the current error onto R⊥(RT

s ), the orthogonal complement of
R(RT

s ).

Schwarz Preconditioners

It is clear that the fixed-point iteration (7.2.33) corresponds to the Richardson
scheme (2.7.23) applied to the preconditioned operator

P−1 K := P2 + P1 − P2 P1.

This algorithm is significantly improved by being embedded in a Krylov-based
projection procedure such as GMRES. Recall that the preconditioning step in each
iteration of Algorithm 2.3 calls for the solution of a system of the form Pz = r ,
where P ≈ K . Schwarz preconditioning simply involves applying one round of
(7.2.31)–(7.2.32) to the problem K z = r , with initial guess z = 0. Generalized
to S subdomains, this gives the following:

z0 := 0

do s = 1, S
(7.2.34)

zs := zs−1 + RT
s K−1

s Rs(r − K zs−1)

enddo

In practice, the intermediate vectors zs are replaced by z, which is simply
overwritten. Also, restriction and prolongation are effected through the use of
the index sets Is , rather than by explicitly forming Rs and RT

s . In contrast to
the Schur-complement (substructuring) approach, where the local solves must
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be exact, one can approximate the operators K−1
s and K in (7.2.34), because

here DD plays only the role of a preconditioner, rather than a reformulation of
the problem. One can, for instance, solve the subproblems on grids different
from the originating grid, in which case RT

s becomes an interpolation operator.
It is nonetheless necessary that P−1 have full rank, implying, for example, that
the total number of degrees of freedom in the subdomain problems must at least
equal the number of degrees of freedom in the original problem.

The scheme (7.2.34) is a polynomial in the projectors Ps , with an error
propagator of the form

(I − PS) · · · (I − P2)(I − P1).

This algorithm is consequently referred to as multiplicative Schwarz precon-
ditioning. As it stands, it lacks parallelism because the intermediate residual
must be recomputed for each subdomain. However, because Ps Ps ′ = 0 when-
evers ∩s ′ = ∅, parallelism can be recovered through the use of a multicolor
ordering of the subdomains, as noted by Dryja and Widlund [112].

To further increase parallelism, Dryja and Widlund [111] developed the
additive Schwarz preconditioner, which is based upon the simplest possible
polynomial in the projectors, namely,

P−1
AS K := P1 + P2 + · · · + PS. (7.2.35)

The additive Schwarz preconditioning step takes the simple form

z := P−1
AS r =

S∑
s=1

RT
s K−1

s Rsr .

Since PAS is symmetric positive definite, PCG is the iterative method of choice.
[The multiplicative algorithm can also be symmetrized by repeating (7.2.34) in
reverse order.] Note that additive Schwarz is a generalization of block-Jacobi
preconditioning (with blocks as illustrated in Figure 7.2.4), while multiplica-
tive Schwarz is a generalization of block Gauss–Seidel. Although multiplica-
tive Schwarz generally converges in fewer iterations (see, e.g., [363]), additive
Schwarz is quite popular because it is fully parallel and because it does not
require reevaluation of any part of the residual. This latter point is of particular
importance for high-order methods where formation of the stiffness matrix is
impractical.

A Brief Analysis

Since the number of iterations for PCG scales as
√
κ(P−1 K ), it is important

that the condition number κ be bounded independent of problem size. For the
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additive Schwarz method, the upper bound is determined by using the projection
properties of Ps . From a basic property of the spectral radius (see Section 2.7),
(7.2.35), and the triangle inequality, one has

λmax := ρ ≤ ∥∥P−1
AS K

∥∥
K
≤ ‖P1‖K + ‖P2‖K + · · · + ‖PS‖K = S.

The final equality follows from the identity ‖Ps‖K = 1 for any projector Ps .
Recognizing that Ps + Ps ′ is also a projector whenever s ∩s ′ = ∅, we can
improve this estimate to λmax ≤ C, where C is the minimum number of colors
required to color each subdomain so that no two domains of the same color
overlap. For regular partitions, C is bounded independent of S.

The lower bound is more difficult to determine. A key point is that for any
u ∈ V0, it should be possible to bound the minimum energy of the decomposition
of u by the energy of u. Let C2

0 be the smallest constant such that, ∀ u ∈ V0,

µ(u) := min
us∈V s

0
u=∑

s us

S∑
s=1

∫
s

∇us · ∇us dV ≤ C2
0

∫


∇u · ∇u dV = C2
0 (u, u)K .

(7.2.36)

It is a straightforward algebraic argument to show that (u, u)P = µ(u) (see
[363, 339]), from which it follows immediately that

1

C2
0

= λmin := min
u∈RN

(u, u )K

(u, u )P
.

The constant C2
0 is estimated from FE theory by using the inequality (7.2.36). The

key to reducing C2
0 is to increase the domain overlap, which allows elements of

the decomposition u =∑
s us to decay smoothly to zero in the overlap region,

thus lowering µ(u).

Two-Level Preconditioners

If there are many subdomains, it is generally necessary to augment DD-based
preconditioners with a coarse-grid space to efficiently eliminate low-wave-
number components in the residual. Widlund [410] argues that, without such a
space, information propagation is limited by subdomain-to-subdomain interac-
tions, and the condition number of the Schwarz algorithms must grow at least
as fast as (L/H )2, where H is the characteristic diameter of the subdomains
and L the characteristic diameter of , resulting in an iteration count that is
dependent on problem size.

Addition of a coarse-grid operator amounts to constructing a new approxi-
mation to (7.2.1) using a space V c

0 = span{ψc
1 (x), . . . , ψc

nc
(x)}, where the basis
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functions are based on a relatively coarse triangulation of . One then forms
the system

K0u0 = M0 f
0
, (K0)i j :=

∫


∇ψc
i · ∇ψc

j dV , (M0)i j :=
∫


ψc
i ψ

c
j dV .

In addition, a prolongation operator, RT
0 , is needed to interpolate the coarse-grid

solution back to the original fine mesh. The preconditioner then is

P−1
AS :=

S∑
s=0

RT
s K−1

s Rs,

with a similar change for the multiplicative case.
There is considerable flexibility in building the coarse-grid operator. For

instance, the interpolation and solution bases need not be the same. The key
consideration is that the coarse mesh spacing should be proportional to (or finer
than) the diameters of the subdomains.

With the addition of a coarse-grid approximation, the condition number for
the additive Schwarz algorithm satisfies

κ
(
P−1

AS K
) ≤ C

(
1 + max

i

Hi

δi

)
, (7.2.37)

where Hi is the local coarse-mesh size, and δi is the subdomain overlap in
the vicinity of the associated coarse-mesh element. The estimate (7.2.37) is
independent of the number of subdomains and holds in either two or three
dimensions (see [363]).

7.2.3 Schwarz Preconditioners for High-Order Methods

To develop the overlapping Schwarz method for SEMs, we start with the ele-
mentse and extend these by an amount δ in each direction to create overlapping
subdomains ̃e. This approach provides a well-defined coarse-grid space in the
form of the underlying spectral-element mesh and allows the local subdomain
solves to be element-oriented. To precondition the spectral-element Laplacian
K , Pahl [292] suggests using local operators K̃ e built on linear FEs triangu-
lated at the GLL points, as this allows for δ < H while ensuring that the basis
functions ψ ∈ V e

0 vanish outside ̃e, a key assumption in the Schwarz theory.
Using the spectral equivalence between the FEM and SEM bases (see Section 2.7),
Casarin [72] proves that this approach does achieve the bound (7.2.37), pro-
vided that the preconditioner is coupled with a coarse-grid space and that the
spectral elements are shape-regular. He also proves a similar bound if one uses
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∂Ω̃e

❄

Figure 7.2.5. Overlapping Schwarz degrees of freedom (closed circles) for fine and
coarse subproblems with E = 9 subdomains. The local system (left) is built on the Gauss
points, using a tensor product of linear FE functions. The global coarse-grid problem
(right) is based on linear triangles, with homogenous Dirichlet boundary conditions
along the outflow boundary on the left.

the spectral-element basis with degrees of freedom restricted to nodes interior
to ̃e.

A similar approach was employed by Fischer and coworkers [127, 129]
to precondition the consistent (L2) Poisson operator, A := DM−1DT , which
governs the pressure in the PN –PN−2 spectral-element formulation when the
pressure-correction scheme (6.2.33) is used to advance the incompressible
Navier–Stokes equations. The local and coarse-grid operators are based on
FE approximations to the standard (H 1) Laplacian K . Numerical evidence in
[127] indicates that K is spectrally equivalent to A.

Fischer et al. [129] construct the local operators K̃ e from a tensor product
of one-dimensional FEs based on the pressure (Gauss) nodes, as illustrated in
Figure 7.2.5. This construction allows the use of the fast diagonalization method
(FDM) (4.2.15) to solve the local problems, which is particularly important in the
3D case. For deformed elements, the tensor-product Laplacian is approximated
by using one-dimensional operators based on the average separation of the
sides in each direction, as suggested in [83]. Additional geometric flexibility
is obtained by excluding, during restriction and prolongation, nodes in any
element not sharing a full face withe, such as those denoted by the open circles
in Figure 7.2.5 (left). This strategy allows an arbitrary number of elements to
be connected at the spectral-element vertices without affecting the local tensor-
product topology, which is critical to the FDM. We remark that subdomain data
exchanges can be effected by using the routines that implement -′ (4.5.8) (see
Section 8.5.2).
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Table 7.2.1. Performance of the additive Schwarz algorithm.

FDM No = 0 No = 1 No = 3 K0 = 0 Deflation

E Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

93 67 4.4 121 10 64 5.9 49 5.6 169 19 126 17
372 114 37 203 74 106 43 73 39 364 193 216 125

1488 166 225 303 470 158 274 107 242 802 1798 327 845

The coarse-grid operator, K0, is based on linear elements with Dirichlet
boundary conditions applied at the outflow boundary, as depicted in Figure
7.2.5. The coarse-grid prolongation, RT

0 , employs bilinear tensor-product in-
terpolation to map the coarse-grid solution to the Gauss points, which is both
memory-efficient and fast. Ensuring a correct implementation of the restric-
tion operator R0 requires some care, however. Since RT

0 copies vertex values
to each element, R0 must sum contributions from neighboring elements onto
the coarse-grid vertex values. This issue is particularly subtle in the H 1 case
if the residual is stored in its local form. In this case, r L contains redundantly
stored interface values that must be premultiplied by the inverse multiplicity
W (4.5.17) to allow for the multiple copies generated by RT

0 .
Table 7.2.1 contrasts the performance of the additive Schwarz preconditioner

with the deflation-based scheme (6.3.10)–(6.3.11) when PCG is used to compute
the pressure on the first step of impulsively started flow past a cylinder at ReD =
5000. Three spectral-element discretizations are considered, with E = 93, 372,
and 1488 (see Figure 7.2.6), and N = 7 in all cases. The residual reduction is
10−5, and CPU times (in seconds) are for an SGI Onyx 2 workstation.

Two local discretizations are considered for the additive Schwarz case. The
first, denoted FDM, employs the tensor-product discretization of Figure 7.2.5.

93

1488

372

10-6

10-5

10-4

10-3
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100

200 40 60 80 100 120 140 160

(a) (b)

Figure 7.2.6. (a) Convergence histories for N0 = 1 case of Table 7.1 with E = 93, 372,
and 1488. (b) Contours of pfinal − p25 for E = 1488.
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The second, denoted No, employs an unstructured triangulation of the Gauss
points, as described in [127]. No indicates the number of rows of FEs attached to
e to form the overlap region ̃e, with No = 0 corresponding to block-Jacobi
augmented with a coarse-grid solve. As expected, increasing the overlap from
0 to 3 reduces the iteration count. Nevertheless, the FDM scheme with minimal
overlap (corresponding to No = 1) is faster because of the efficiency of the
tensor-product solves. (This effect is even more dramatic in R

3, where other
approaches are not competitive.) The deflation scheme requires two products in
A per iteration, which increases its solution time. The importance of the coarse
grid is illustrated by the K0 = 0 column, which shows a five- to eightfold
increase in iteration count for the No = 3 case when the coarse-grid solver is
excluded.

Unfortunately, the iteration counts in Table 7.2.1 are not bounded with re-
spect to the mesh refinement E . While the initial convergence rate is identical
for all resolutions, the performance begins to degrade after about 20 iterations
for the higher-resolution cases, as seen in Figure 7.2.6(a). In [127], the cause
of this is traced to the high-aspect-ratio elements in the domain, which violate
the shape-regularity assumptions in the Schwarz theory. Of the 158 iterations
required to compute the solution in the No = 1, E = 1488 case, the last 133 are
used to eliminate the mode shown in Figure 7.2.6(b). It is clear that this mode
is a by-product of the high-aspect-ratio elements in the far field and has nothing
to do with the physics of the problem. Possible remedies are discussed in [127]
and include either increasing the overlap of the high-aspect-ratio elements or
eliminating them completely by using nonconforming elements, as described in
Section 7.3. In addition, one can also consider using a finer coarse-grid space.

7.2.4 Spectral-Element Multigrid

Suppose that K is an N ×N SPD system arising from discretization of an
elliptic problem such as (7.2.1), and consider Richardson iteration for solving
K u = f , with an SPD preconditioner B and initial guess ûi :

u0 = ûi , (7.2.38)

ul = ul−1 + B−1( f − K ul−1), l = 1, . . . ,m. (7.2.39)

The equation for the corresponding error, em := u − um , is

em = em−1 − B−1 K em−1 = (I − B−1 K )em−1 = (I − B−1 K )me0.

Let {zk}be the set of B-orthonormal eigenvectors satisfying K zk = λk Bzk , with
B scaled so that 0 < λ1 ≤ λ2 ≤ · · · ≤ λN := 1. If em =∑

k êm
k zk , it follows
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that

êm
k = (1− λk)mê0

k, 1 ≤ k ≤ N . (7.2.40)

Because of the scaling of B, the high-wavenumber (λk → 1) error components
are damped quickly, while the low-wavenumber components are reduced less.
The idea behind multigrid is to use the smoothing step (7.2.38)–(7.2.39) to
reduce the error in the upper part of the spectrum, followed by a coarse-grid
correction to reduce the error in the lower part.

Now, consider a coarse grid with p degrees of freedom. If the p ×N matrix
R is a restriction operator mapping the fine to the coarse grid, then the coarse-
grid correction for a two-level scheme is computed as

δu = RT K−1
c R( f − K um)

(7.2.41)
ũ = um + δu.

As in the Schwarz case, RT is the prolongation operator, which is usually taken
to be the interpolant from the coarse to the fine mesh. If Kc := R K RT , the
corresponding error,

ẽ = (
I − RT K−1

c R K
)

em,

is the K -orthogonal projection of em onto R⊥(R) [see (2.7.36)]. If the range of
R is the span of the p first eigenvectors of B−1 K , R(R) = span{z1, . . . , z p},
then the error spectrum after (7.2.41) is

ˆ̃ek =
{

0, 1 ≤ k ≤ p,
(1− λk)m ê0

k, p < k ≤ n,
(7.2.42)

and, because of the orthogonality of the zk’s, ‖ẽ‖K ≤ (1− λp+1)m‖e0‖K .
Usually, the coarse-grid space is not perfectly coincident with the low-

wavenumber eigenfunctions, and the errors introduced by the coarse-grid cor-
rection must be corrected by further fine-grid smoothing, that is, repeating
(7.2.38)–(7.2.39), setting u0 := ũ on each successive round. In addition, it is
possible to implement the coarse grid correction (7.2.41) as a smooth–correct–
smooth sequence on another grid pair, which can be recursively nested, giving
rise to the classic multigrid V- or W-cycles.

Figure 7.2.7 illustrates the V-cycle. At the coarsest grid level the linear
system is usually solved by a direct method, because the number of unknowns
is small. Assuming (7.2.42) does hold, the nominal error reduction per V-cycle
would be ρ2m := (1− λp+1)2m . The quantity ρ is referred to as the multigrid
convergence factor.



350 7. Domain Decomposition
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Figure 7.2.7. Multigrid V-cycle with md and mu smoothings on the downward and
upward sweeps, respectively.

In FD applications, (7.2.39) is usually based upon Gauss–Seidel relaxation.
However, in spectral methods, the matrix elements are not explicitly available,
and it is necessary to consider alternatives. In [337, 331], Rønquist and Patera
implement multigrid for the SEM using Jacobi smoothing. They choose

B := σ diag(Kii ), σ := max
x∈RN , x �=0

xT K x

xT diag(Kii ) x
,

with Kii given by (4.4.13)–(4.4.14) and σ computed in a preprocessing step
using a simple power iteration. The coarse-to-fine mapping is effected by the
interpolation operator

(RT )i j = π Ñ
j

(
ξ N

i

)
, (7.2.43)

where Ñ < N (corresponding to p < N ) is the order of the coarse approx-
imation in one space dimension. In the multidimensional multielement case,
(7.2.43) is applied to the residual in a tensor-product form on an element-
by-element basis. In addition, the coarse-grid stiffness matrix Kc is based
upon a discretization of (7.2.1) with a polynomial of degree Ñ , rather than
through the explicit construction RK RT . In one dimension the two forms
are identical. In higher dimensions, this identity ceases to hold because of
the approximate quadrature (4.3.18) used for M̂ in, for example, the form
K e = M̂ ⊗ K̂ + K̂ ⊗ M̂ .

Maday and Muñoz [257, 258, 283] analyze this algorithm for the one- and
two-dimensional cases with Ñ = N/2. In one dimension with a single element,
E = 1, they establish that (7.2.42) holds with λp+1 ≈ 1/4 and p + 1 = Ñ . For
E > 1, (7.2.42) ceases to hold. Following the theoretical framework of Bank
and Douglas [21], they show however that the convergence factor ρ ∼ 0.75 still
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holds, independent of E and N , provided m ≤ 3. These results are confirmed
by the numerical experiments of Rønquist and Patera [337, 331, 259].

In two dimensions, the results are no longer independent of N . Instead,
one has ρ ∼ 1− C/N , where C is a constant. To improve upon this, Rønquist
and Patera suggest replacing the Richardson iteration (7.2.39) with Chebyshev
iteration, which is also considered by Zang et al. [422]. The idea is to scale the
iterates in the smoother by using

ul = ul−1 + αl B−1( f − K ul−1), l = 1, . . . ,m, (7.2.44)

so that the error polynomial (7.2.40) becomes

êm
k = pm(λk)ê0

k, pm(λ) =
m∏

l=1

(1− αlλ). (7.2.45)

One chooses the coefficients αl to minimize

max
λp+1≤λ≤1

|pm(λ)|. (7.2.46)

The solution to (7.2.46) is well known (e.g., [44]) and is given by

pm(λ) =
Tm

(
1− 2 λ−1

λp+1−1

)
Tm

(
1− 2 −1

λp+1−1

) , (7.2.47)

where Tm is the Chebyshev polynomial of degree m (Section B.1.3). Once an
estimate of λp+1 is available, one can find the coefficients αl by equating pm(λ)
in (7.2.45) and (7.2.47) at m different values of λ. This acceleration improves
the convergence rate to ρ ∼ 1− 2(C/N )

1
2 .

As we can see, the Chebyshev procedure requires an estimate of λp+1, which
may be difficult to obtain in a general geometry application. An alternative sug-
gested by many authors is to employ full projection (e.g., CG) in the smoothing
steps, attacking the error over the entire interval [λ1, λn]. In this case, Canuto
et al. [64] suggest setting the number of smoothings to zero on the downward
leg of the V-cycle, since the low-wavenumber components will be damped by
the subsequent coarse-grid correction anyway. Working up from coarse to fine,
the projection scheme will effectively reduce the remaining high-wavenumber
components.

It is also possible to incorporate projection at the highest level of the
V-cycle iteration by seeking the best fit in span{û0, û1, . . .} (see Figure 7.2.7).
In this case, a single V-cycle will act as a preconditioner in an outer CG or GMRES

iteration. If projection is also used in the inner sequence, the outer basis will
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not be a strict Krylov subspace in powers of P−1 K , because P will be chang-
ing from one iteration to the next. Because the polynomial dependencies of CG

and GMRES will be compromised, it is probably best in this case to explicitly
orthogonalize the outer basis by using a method similar to Algorithm 2.1 of
Section 2.7.4, or to employ the flexible variant of GMRES [339].

Finally, given the spectral equivalence discussed in Section 2.7.3, the smoot-
her B may also be derived from other discretizations. In early work on spectral
multigrid, Zang et al. [422, 423] used incomplete factorizations of FD operators
for B. A similar approach has been pursued by Heinrichs, who uses FD operators
to precondition a number of spectral applications [188, 189, 190]. In an earlier
work [187], Heinrichs also points out the advantages of line GS smoothing in
spectral applications because of the high aspect ratio of the grid spacing near
the borders.

7.3 The Mortar Element Method

The use of the conforming spectral elements presented so far frequently induces
the propagation of strips or layers of densely packed elements throughout the
mesh when refinement is needed close to solid objects in the computational
domain, in boundary layers, or in the vicinity of geometrical singularities (e.g.,
reentrant corners), as shown in Figure 7.3.1. Such an arrangement incurs the
penalty of obtaining elements with bad aspect ratios where they are unnecessary
and of burdening the solver with an undue number of elements, particularly in
far-field domains of external flow problems.

A cure for this difficulty is to relax the interface matching condition to allow
for nonpropagating refinement. As illustrated in Figure 7.3.2, localized refine-
ment can be achieved by varying the polynomial degree from one element to

(a) (b)

Figure 7.3.1. Close-up of mesh near a blowing or suction slot (a) reveals how propagating
(conforming) refinement leads to undesirable (unnecessary, high-aspect-ratio) elements
in the far field (b).
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N1 N2
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Figure 7.3.2. Functionally (a) and geometrically (b) varying refinement.

the next and/or by allowing multiple elements to share a single edge of an ad-
jacent element. Such strategies improve the geometrical flexibility of the spec-
tral discretization, allow for mesh adaptivity, and help to circumvent the loss
of accuracy near singularities. The nonpropagating refinement can be accom-
plished either with conforming (interpolatory) bases or with nonconforming
bases in which matching conditions are imposed through the use of L2 projec-
tion operators defined on the mortar comprising the spectral-element interfaces.
To illustrate the key points, we consider the free-vertex variant of the mortar
spectral element (MSE) method in detail and illustrate how the conforming
and constrained-vertex refinement strategies can be implemented in a similar
framework.

The MSE method relaxes the H 1 continuity requirements of the conforming
spectral-element method by considering each element individually and achiev-
ing matching or patching conditions through a variational process. The mortars
play the role of binding the bricks of the spectral construction. Through the use
of mortars, one can also couple domains discretized by spectral elements with
others treated by finite elements. However, we will forgo that possibility and
concentrate on nonconforming spectral methods.

The basic concept of the mortar element method can be sketched as follows.
As in the conforming case, the entire domain  is subdivided into E nonover-
lapping subdomains e, e = 1, . . . , E , such that ̄ =⋃E

e=1 ̄
e. The skeleton

of the domain decomposition comprises all interfaces between subdomains and
is also decomposed into mortars. These mortars are one-dimensional geomet-
rical entities for 2D problems and surfaces for 3D problems. We require the
mortars to coincide with a complete edge or face of one of the subdomains. The
choice of mortars is not unique, as will be shown later in this section. Since
full decoupling between subdomains is one of the goals, the choice of the local
discretizations is left totally arbitrary.

A key issue is related to the choice of the discrete space for the mortar
functions. In principle, we should ensure weak continuity between all subdo-
mains; to this end, we impose the condition that the L2 projection of the jump
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Figure 7.3.3. Example of nonconforming domain and mortar decomposition in R
2.

across the interface vanishes. Early variants also required continuity wherever
two spectral-element vertices (or edges in three dimensions) coincided. This
approach was introduced in the theses by Mavriplis [267] and Anagnostou
[5] for application to the Navier–Stokes equations. Numerical analysis results
were presented in DD-methods conferences and by Bernardi, Maday, Patera, and
coworkers [255, 6, 42, 43]. A more recent approach developed by Ben Belgacem
and Maday [27, 28] relaxes the vertex matching condition. This simplifies the
implementation for complex geometries and reduces the communication re-
quirements in parallel computations.

To facilitate the presentation of the subject, we will restrict ourselves to 2D
problems. Let us consider a rectangular domain divided into four subdomains,
as shown in Figure 7.3.3. In each subdomain, the edges are designated by
∂e,s, s = 1, . . . , 4. For convenience, we attribute systematically s = 1, . . . , 4
to the top, right, bottom, and left edges, respectively, when visited clockwise.
For any 1 ≤ e < f ≤ E , let *e f denote the subdomain interface obtained by
*e f = ̄e ∩ ̄ f . In a nonconforming domain decomposition, since edges of
subdomains and interfaces need not coincide, an edge may comprise several
interfaces. The skeleton* is defined by* =⋃

1≤e< f≤E *
e f and corresponds to

the complete interface. The skeleton itself is decomposed into disjoint mortars,
which will be denoted by γm, m = 1, . . . , M . By definition, a mortar is required
to correspond to a complete edge of one of the subdomains. The intersection of
the mortars is the empty space. To each mortar, we associate a unique index m
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and an associated pair e(m), s(m) such that the mortar γm coincides with the
edge ∂e(m),s(m) of e(m).

The geometrical mortars are the support of mortar functions chosen as poly-
nomials of degree Ne(m). The space of mortar functions ϕ for homogeneous
Dirichlet conditions is defined by the relation

MN =
{
ϕ ∈ L2(*); ϕ =

M⋃
m=1

ϕm, ϕm = ϕ
∣∣
γm
∈ PNe(m) (γm), ϕ

∣∣
∂
= 0

}
.

(7.3.1)

These mortar functions satisfy the essential boundary conditions of the problem;
they are, however, not continuous. The spectral-element functional space is
PNe (

e), e = 1, . . . , E . One can define a trace operator on this space having as
its image the space PNe(m) (γm) of polynomials with degree ≤Ne on ∂e(m),s(m).
Mortars and spectral elements are linked by matching conditions across the
interfaces.

Let VE denote the discrete space of functions

VE =
{
vE := (

vN1 , . . . , vNE

)
; vNe ∈ PNe (

e) ; mortar conditions
}
. (7.3.2)

We emphasize that vE denotes the set of E polynomial functions in several
space dimensions, with various polynomial degrees.

The mortar conditions are given as follows: For 1 ≤ s ≤ 4 and e ∈
{1, . . . , E}, ∃ϕ ∈MN such that:

Mortar Condition 1.

vNe |∂e,s = ϕm |∂e,s for (e, s) = (e(m), s(m)). (7.3.3)

Mortar Condition 2.∫
∂e,s

(
vNe − ϕ

)
ψ dτ = 0 ∀ψ ∈ PNe−2(∂e,s) otherwise. (7.3.4)

The first condition imposes that the test and basis functions of the monitoring
subdomain e(m) coincide with the mortar function ϕm on the geometrical
mortar. The second integral condition (7.3.4) enforces weak continuity across
the interface *e(m) f . In contrast to earlier constrained-vertex variants [267, 5,
43], the mortar conditions do not explicitly enforce continuity at coincident
spectral-element vertices unless they belong to the essential boundaries; only
the Ne − 2 interior edge points are constrained by the test-function space, while
the vertices are allowed to float. The degrees of freedom along a mortared
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Figure 7.3.4. Example of geometrically conforming domain decomposition in R
2.

edge are thus Ne(m) + 1 mortar coefficients and the two vertex coefficients on
the dependent side. The integral matching allows for the computation of the
interface nodes on the dependent domain and realizes the L2 projection of the
mortar values onto the interface.

We illustrate these concepts by a few examples. We begin with the simple
case depicted in Figure 7.3.4, where a rectangular domain is split into two
rectangular subdomains, 1 and 2, discretized by polynomials of degree N1

and N2, respectively. The decomposition is geometrically conforming. The
interface *12 may produce two mortars: γ1 = ∂1,2 with (e(1), s(1)) = (1, 2),
or γ1 = ∂2,4 with (e(1), s(1)) = (2, 4). Let ũ1 and ũ2 denote the restrictions
of u1(x) and u2(x) to *12, respectively. We assume without loss of generality
that γ1 := ∂1,2, implying that ũ1 ≡ ϕ1 (Mortar Condition 1). The dependent
variable is thus ũ2, to be determined by the integral constraint∫

*12
[ũ2(s)− ϕ(s)]ψ(s) ds = 0 ∀ψ ∈ PN2−2(*12) (7.3.5)

(Mortar Condition 2). A matrix formulation of the integral constraint will be
given after the introduction of elliptic problems in the next subsection. However,
we note that a particularly simple form for ũ2 results for the case N1 ≤ N2:

ũ2(s) = ũ1(s) + αL N2
(s) + βL N2−1(s). (7.3.6)

The coefficients α and β can be expressed in terms of ũ2
0 and ũ2

N2
by evaluating

(7.3.6) at the vertices. We also note that the case N1 ≤ N2 corresponds to a
(variable-resolution) conforming case if vertex matching is imposed.

A second example is the nonconforming geometry of Figure 7.3.5. The three
subdomains with discretizations N1, N2, N3, respectively, are said to be func-
tionally conforming if the SEM is built so that u2|

*12 ≡ u1|
*12 and u3|

*13 ≡ u1|
*13 ;
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Figure 7.3.5. Example of nonconforming domain decomposition in R
2.

otherwise they are nonconforming. Possible choices for mortars include γm ∈
{*12, *13, *23} and γm ∈ {*12 ∪ *13, *23}.

7.3.1 Elliptic Problems

We are now ready to apply the discretization (7.3.2) to the continuous elliptic
problem given by Equation (4.3.2) with Dirichlet boundary conditions. We will
follow closely the line of reasoning drawn in Section 4.5, where conforming
elements were introduced. For nonconforming (i.e. discontinuous) spectral el-
ement discretizations, the discrete operators for the scalar product, the bilinear
form, and the source term are now defined as

(uE , vE )nc :=
E∑

e=1

∫
e

uNe (x)vNe (x) dx, (7.3.7)

Anc(uE , vE ) :=
E∑

e=1

∫
e

(
p(x)∇uNe · ∇vNe + q(x)uNevNe

)
dx, (7.3.8)

Fnc(vE ) :=
E∑

e=1

∫
e

fNe (x)vNe (x) dx, (7.3.9)

with quadratures over replaced by a sum of quadratures over all nonconform-
ing elements. The discrete problem becomes: Find uE ∈ VE such that

Anc(uE , vE ) := Fnc(vE ) ∀vE ∈ VE . (7.3.10)

For error estimates, we introduce the broken norm

‖vE‖H 1∗ () =
(

E∑
e=1

∥∥vNe

∥∥2
H 1(e)

) 1
2

, (7.3.11)
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which corresponds to the rms of the elemental norms. Estimates bound the error
by a term involving the approximation error per element and a consistency term
resulting from the jumps of normal derivatives across the interfaces. Mortar
Condition 2 (7.3.4) permits computing a bound of this consistency error. If we
assume that p(x) = 1, q(x) = 0 in Equation (4.3.2) and if the source data f are
such that fNe ∈ H te (e) with te > 1, the final result for a 2D Poisson equation
is given as

‖u − uE‖H 1∗ () ≤ C
E∑

e=1

N 1−se‖u‖H se (e) + N−te‖ f ‖H te (e). (7.3.12)

The real number se indicates the regularity of the exact solution u in the sub-
domain e. From the error estimate (7.3.12), where the constant C is not a
function of the local discretization, we conclude that the convergence of the
nonconforming method depends essentially on the local regularity of the so-
lution. Ben Belgacem and Maday [27] extend the previous methods to 3D
problems and prove similar (almost optimal) results.

7.3.2 Implementation

The MSE formulation is implemented in the framework introduced in Section
4.5.2, in which matrix–vector products are effected through the action of con-
nectivity matrices Q and QT , and of the block-diagonal matrix KL comprising
local stiffness matrices. The local stiffness matrices are unchanged from the
forms given in Chapter 4. Imposition of the mortar constraints on the local
degrees of freedom requires changes only to the connectivity matrices. The ob-
jective is to identify with Q a set of relationships between the global degrees of
freedom, u, and the local degrees of freedom, uL , such that u(x) automatically
satisfies the integral matching constraint (7.3.4). The methodology is illustrated
by considering several nonconforming cases.

We begin with the simple two-element problem of Figure 4.5.2, with N1 =
N2 = N = 2; here, however, we use the nonconforming discretization (7.3.10).
In this case, the number of global degrees of freedom is increased from 15 to
17, to allow for the two additional vertex values that are allowed to float. This
connectivity matrix is illustrated in Figure 7.3.6, in which the entries of the
global vector u are denoted by their corresponding local notation. Q is no
longer a Boolean matrix as it was in Figure 4.5.2. The five column vectors
a, . . . , e reflect the influence of the global (mortar) degrees of freedom (here,
u1

2,0, u1
2,1, u1

2,2, u2
0,0, and u2

0,2) upon the dependent variables (here, u2
0,1). By

construction, a0= b0= c0= e0= 0, d0= 1, a2= b2= c2= d2= 0, and e2= 1,
so that the obvious identities hold.
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Figure 7.3.6. Nonconforming connectivity matrix for (E, N ) = (2, 2) spectral-element
configuration of Figure 4.5.3.

To simplify the notation for Q, we reorder the local and global vectors with
the interface nodes last. Because the bases are Lagrangian, the interior and
interface degrees of freedom decouple, leading to the form(

uL , interior

uL , interface

)
=

[
I

Q̃

]
︸ ︷︷ ︸

Q

(
u interior

u interface

)
, (7.3.13)

where I is the identity and Q̃ is the connectivity matrix for the interface vari-
ables. In addition, because elements of the global vector u in Figure 7.3.6 are
identified with their local counterparts, the interface relationship can be further
reduced to (

uL ,i

uL ,d

)
=

[
I

Qm

]
︸ ︷︷ ︸

Q̃

u interface,

where Qm reflects the required relationship between the independent (mor-
tar) variables uL ,i and dependent variables uL ,d . Implementation of the MSE

formulation thus consists of (i) identifying the independent variables (the true
degrees of freedom in the PDE approximation) and dependent variables
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(determined from Mortar Condition 2), and (ii) effecting the action of Qm

and QT
m through subroutine calls.

The matrix Qm deserves careful inspection. In the two-element case of Figure
7.3.4, with, say, γ1 := ∂1,2, the dependent variable ũ2 is determined by the
integral constraint (7.3.5). To simplify the quadrature, we build the test function
ψ on the polynomial basis

π̂i (r ) := L ′N2
(r )

L ′′N2

(
ξ

N2
i

)(
r − ξ

N2
i

) ∈ PN2−2, (7.3.14)

satisfying π̂i (ξ
N2
j ) = δi j at the interior GLL points ξ N2

i , i ∈ [1, N2 − 1].
Let us evaluate the first integral in (7.3.5). Substituting (7.3.14) for ψ and

applying GLL quadrature, we obtain

∫
*12

ũ2ψ ds =
N2∑

k=0

ρ
N2
k ũ2

(
ξ

N2
k

)
ψ
(
ξ

N2
k

) = N2∑
k=0

ρ
N2
k

N2∑
j=0

ũ2
jπ j

(
ξ

N2
k

)
π̂i

(
ξ

N2
k

)
=

N2∑
j=0

ρ
N2
j ũ2

j π̂i
(
ξ

N2
j

)
for i ∈ [1, N2 − 1]. (7.3.15)

The other integral is evaluated similarly, except that we must use a higher-order
quadrature rule if N1 > N2 + 1. Setting N := max(N1, N2) leads to

∫
*12

ϕψ ds =
N∑

k=0

ρN
k ϕ

(
ξ N

k

)
ψ
(
ξ N

k

)
=

N1∑
j=0

ϕ j

N∑
k=0

ρN
k π

N1
j

(
ξ N

k

)
π̂i

(
ξ N

k

)
, i ∈ [1, N2 − 1]. (7.3.16)

One may use (7.3.15)–(7.3.16) to recast the mortar constraint (7.3.5) in
matrix notation:

B ũ2 = Pϕ. (7.3.17)

The matrix B has a special structure. Because π̂i (ξ
N2
j ) = δi j for i ∈ [1,

N2 − 1], the interior part is diagonal. The first and last columns are full, but
they are concerned only with degrees of freedom (namely, ũ2

0 and ũ2
N2

); they
are not driven by the matching condition. We observe also that the matrix P is
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full. The projection can be written in closed form as

ũ2
1...

ũ2
N2−1

 = B−1
int


p1,0 . . . p1N1

−b1,0 −b1,N2

...
. . .

...
...

...
pN2−1,0 . . . pN2−1,N1

−bN2−1,0 −bN2−1,N2


︸ ︷︷ ︸

Qm


ũ1

0...
ũ1

N1

ũ2
0

ũ2
N2

,

with

pi j :=
N∑

k=0

ρN
k π

N1
j

(
ξ N

k

)
π̂i

(
ξ N

k

)
, bi j := ρ

N2
i π̂i

(
ξ

N2
j

)
, (7.3.18)

and Bint := diag(ρN2
i ), i ∈ [1, N2 − 1].

Other variable resolution schemes can be cast within the same framework.
If vertex matching is enforced in addition to the integral constraint (e.g., as in
[5, 267]), then ũ2

0 and ũ2
N2

are no longer degrees of freedom. The continuity con-
dition is given by ũ2 = Qmũ1, with Qm := B−1 P , where P and B are given by
(7.3.18) augmented with first and last rows b0, j = p0, j = δ0 j and bN2, j = δN2 j ,
pN2, j = δN1 j , respectively. If full continuity is enforced (i.e., the conforming
case considered in [334]), then ũ1 ≡ ũ2, implying that the global variables
must be identified with the local edge having fewer degrees of freedom. For
N1 > N2, the connectivity relationship is thus ũ1 = Qmũ2, with matrix entries
(Qm)i j := π

N2
j (ξ N1

i ), corresponding to the interpolant of ũ2(y) evaluated at the
nodes of element 1.

As a second example, we consider the three-element geometry of Figure
7.3.7. Here, the integral constraint must be applied in physical coordinates to

Ω1

Ω2

Ω3

N1 N2

N3

Γ12

Γ13

Γ23

γ1

γ2Ω1

Ω2

Ω3

N1 N2

N3

Γ12

Γ13

Γ23

γ1

γ2

γ3

Figure 7.3.7. Mortar decompositions in a geometrically nonconforming case.
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take account of the relative position and size of the interfaces. In addition,
the long interface, ∂1,2, can be decomposed into either one or two mor-
tars, depending on which side is chosen to represent the global degrees of
freedom.

We begin with the two-mortar case for the vertical interface shown on the
left in Figure 7.3.7. Let ũe denote the restriction of ue(x) to ∂1,2, e = 1, 2, or 3.
The degrees of freedom are ũ2 and ũ3, plus the vertex values of ũ1. Evaluation
of the integrals required for the L2 projection yields∫

∂1,2
ũ1ψ ds = Bũ1

∫
*1,e

ũeψ ds = P1,eũe, e = 2, 3 .

If we let |·| denote the length of a segment, the matrix elements are

Bi j := |∂
1,2|

2

N1∑
k=0

ρ
N1
k π̂

N1
i

(
ξ

N1
k

) N1∑
j=0

π
N1
j

(
ξ

N1
k

)
,

P1,e
i j := |*

1,e|
2

N∑
k=0

ρN
k π̂

N1
i

(
ζ e

k

)
π Ne

j

(
ξ N

k

)
, N := max(N1, Ne),

with local coordinate transformations

ζ 2
k := (

ξ N
k + 1

) |∂2,4|
|∂1,2| − 1, ζ 3

k := (
ξ N

k + 1
) |∂3,4|
|∂1,2| − 1+ 2

|∂2,4|
|∂1,2| .

(7.3.19)

The dependent side is computed as ũ1
int = B−1

int (P1,2ũ2 + P1,3ũ3 + Bvũ1
v),

where the subscripts int and v refer to interior and vertex coefficients for
ũ1. If vertex matching is imposed, one simply computes ũ1 = B−1 P1,2ũ2 +
B−1 P1,3ũ3, with the first and last rows of B and P1,e modified accordingly.
Here the situation is further complicated by the fact that ũ2

N2
and ũ3

0 are no
longer independent degrees of freedom, since they must also match.

The single-mortar case on the right in Figure 7.3.7 is implemented in a similar
way. Since the degrees of freedom are associated with ũ1, Mortar Condition 2
for e = 2 and 3 amounts to∫

*1e

(ũe − ũ1)ψ ds = 0 ∀ψ ∈PNe−2 .
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Applying quadrature in each case with the basis (7.3.14) for ψ yields

∫
*1e

ũeψ ds =
Ne∑

k=0

ρ
Ne
k

Ne∑
j=0

π̂
Ne
i

(
ξ

Ne
k

)
π

Ne
j

(
ξ

Ne
k

)
ũe

j

=
{
ρ

Ne
i ũe

i , i = 1, . . . , Ne − 1,∑Ne
j=0 ρ

Ne
j π̂

Ne
i

(
ξ

Ne
j

)
ũe

j , i = 0, Ne,
(7.3.20)

∫
*1e

ũ1ψ ds =
N∑

k=0

ρN
k

N1∑
j=0

π̂
Ne
i

(
ξ N

k

)
π

N1
j

(
ζ e

k

)
ũ1

j , (7.3.21)

where N := max(N1, Ne) and ζ e
k is given by (7.3.19). In this case, one obtains

separate relationships for each of ũ2 and ũ3 by equating (7.3.20) and (7.3.21).
Since there are fewer independent degrees of freedom (ũ1) than dependent ones
(ũ2 and ũ3), this configuration also lends itself to a (conforming) interpolation-
based scheme, provided also that N1 ≤ min(N2, N3). The coefficients for ũ2

and ũ3 in this case would be computed as

ũe
i =

N1∑
j=0

π
N1
j

(
ζ e

i

)
ũ1

j . (7.3.22)

with N set equal to Ne in the definition (7.3.19).
Before leaving this subsection on implementations, we note that all of the

preceding techniques carry through to the 3D case. A practical restriction in the
geometrically nonconforming situation is that the refined interface should be
a tensor-product decomposition of its parent. This allows the matrix operators
(Qm , B, P , etc.) to be expressed as tensor products of their one-dimensional
counterparts, so that their application requires only O(N 3) operations. Details
of 3D implementations can be found in [114, 229].

7.3.3 Steady Stokes Problems

Let us now enlarge to the nonconforming case the PN –PN−2 spectral-element
discretization of the Stokes problem (5.2.20)–(5.2.21). Here, the discrete space
of functions is V d

E , a d-dimensional extension to vector fields of the discrete
space VE defined by (7.3.2):

V d
E =

{
vE := (

vN1 , . . . , vNE

)
; vNe ∈ P

d
NE

(e); mortar conditions
}
.

(7.3.23)
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Again we emphasize that vE denotes the set of E (polynomial) vector functions
in d space dimensions with different polynomial degrees per element. With
regard to the pressure, a space Z E is built from Z ∈ L2

0() such that

Z E =
{
qE ∈ Z ; qE |e := qNe ∈ PNe−2(e), e = 1, . . . , E

}
. (7.3.24)

The weak formulation (5.2.20)–(5.2.21) of the Stokes problem in the frame-
work of nonconforming elements may now be stated: Find (vE , pE ) ∈ (V d

E , Z E )
such that ∀(uE , qE ) ∈ (V d

E , Z E )

Anc(uE , vE )+ Bnc,GL(uE , pE ) = Fnc(uE ), (7.3.25)

Bnc,GL(vE , qE ) = 0. (7.3.26)

The bilinear forms appearing in (7.3.25)–(7.3.26) are given by the relationships

Anc(uE , vE ) =
E∑

e=1

(∇uNe ,∇vNe

)
Ne
, (7.3.27)

Bnc,GL(uE , qE ) = −
E∑

e=1

(
div uNe , qNe

)
Ne
, (7.3.28)

where the discrete scalar products in (7.3.27)–(7.3.28) are provided by the
local GLL and GL rules, respectively. The mortar conditions apply to the d
components of v. The pressure being discontinuous in the PN –PN−2 context,
the use of mortars does not require matching conditions for this variable. This
is one of the benefits of this formulation.

Let us define the multiindex of polynomial degrees by ε = (N1, . . . , NE ).
The inf–sup constant of the nonconforming approach βε is obtained by evalu-
ating the relation

βε = inf
qE∈Z E

sup
uE∈V d

E

Bnc,GL(uE , qE )

‖uE‖H 1∗ ()d‖qE‖L2
0()

. (7.3.29)

Ben Belgacem et al. [26] proved that the discrete Stokes problem (7.3.25)–
(7.3.26) is well posed. They obtained inf–sup conditions for a fixed-domain
decomposition made of rectangles or parallelepipeds and for a hierarchical
decomposition such as that in Figure 7.3.2.

Theorem 7.1 If we assume that ∀e ∈ {1, . . . , E}
1. Ne ≥ 2, with the pressure pE in Z E ,
2. the solution (v, p)|e of the weak continuous problem (5.2.12)–(5.2.13) is

in H se (e)d × H se−1(e) with se ≥ 1, and the function fNe is in H te (e)d

with te > 1,
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then the problem (7.3.25)–(7.3.26) possesses a unique solution (vE , pE ) in
V d

E × Z E with the following error bounds:

‖v− vE‖H 1∗ ()d + βε‖p − pE‖L2()

≤ C1

(
1+ 1

βε

) N∑
e=1

N 1−se
e

(‖v‖H se (e)d + ‖p‖H se−1(e)
)

+C2

N∑
e=1

N−te
e ‖f‖H te (e)d , (7.3.30)

with C1 and C2 constants independent of ε.

The mortar inf–sup constant is bounded from below so that

βε ≥ C(DD) inf
1≤e≤E

βNe . (7.3.31)

The “constant” C(DD) depends on the domain decomposition itself, that is, the
subdomain partitioning, going exponentially fast to zero with the refinement
level. In practical calculations, however, the quad- or octtree is not very deep and
C does not reach alarming values. For a fixed decomposition, C(DD) becomes
a true constant, again bringing optimal results for nonconforming subdomains.

Solvers for Stokes and Navier–Stokes rely on iterative methods like CG.
Substructuring preconditioners taking advantage of the decoupling between
interior unknowns and interface variables [see Equation (7.3.13)] are in order.
This kind of algorithm was investigated for 2D elliptic problems by Achdou
et al. [2], who proved that the condition number of the preconditioned matrix
is bounded by max1≤e≤E (1+ log Ne)2.

7.3.4 Applications

We demonstrate the flexibility of adaptive refinement schemes with a few ex-
amples.

Flow Around an Impeller

The first example, due to Anagnostou [5], consists of a rotating impeller of
length L/2 centered at the origin inside a square domain,  := [−L/2, L/2]2.
The Reynolds number, based on the rotation rate ω and kinematic viscosity
ν, is defined as Re = ωL2/ν. The impeller has an aspect ratio of 5. Figure
7.3.8(a) shows the domain decomposed into two conforming meshes, joined
by a circular interface that permits the inner domain to rotate relative to the
outer domain. The mortar defined on this interface provides a mechanism to
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(a) (b)

Figure 7.3.8. Rotating-impeller problem.

impose the L2 projection so as to achieve the desired continuity. Figure 7.3.8(b)
shows the results at Re = 1000 after six impeller revolutions, at which point
the solution has reached a steady periodic state.

Resonator Cavity Flow

Our second example, due to Kruse [229], shows the benefits of using nonprop-
agating refinement when simulating external flow problems. The 2D domain
shown in Figure 7.3.9 consists of a flat plate over the interval x ∈ [−12, 42], with
unit-width slots centered at x = 0, 10, and 20. The slots are connect to 9× 4.5
chambers (resonators). Flow enters and exits the bottom of the chambers ac-
cording to a time-oscillatory parabolic profile, v = A sin(2π f t) (1− x̃2), where
x̃ is the local coordinate within each chamber such that the velocity vanishes at
the left and right walls, A = 0.05, and f = 0.2. A Blasius profile is specified at

(a) (b)

Figure 7.3.9. Close-up of vorticity contours near a blowing or suction slot (a) for the
resonator problem with nonpropagating mesh refinement [cf. Figure 7.3.1(a)]. The far-
field view (b) reveals the absence of high-aspect-ratio elements that can degrade iterative
solver performance.
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x = −12 with unit velocity and δ99 = 1. The Reynolds number based on inflow
velocity and boundary-layer thickness is Re = 200.

The discretization is based on polynomial degree N = 7 in all elements
and is conforming; nodal values along the daughter interfaces are computed
as the interpolant of the solution along the parent edge. Figure 7.3.9 shows
the computed vorticity at the same instant as in Figure 7.3.1. Clearly, both
meshes obtain the same-quality solution. However, the present case, in addition
to having fewer elements, requires five to ten times fewer pressure iterations
because of the absence of the high-aspect-ratio elements that cause the iteration
performance in the structured case to degrade.

Clearance-Gap Glow

Clearance-gap flow occurs at the tip of a blade in Kaplan hydraulic machines.
This flow is highly turbulent and decreases dramatically the efficiency of the
machine. Therefore, one must understand the physics of the phenomenon. The
fluid near the blade tip is strongly accelerated in the gap and generates a vortical
structure. A simpler situation to investigate is the internal flow in a channel par-
tially obstructed by a blade. Figure 7.3.10 shows the computational domain and
the boundary conditions. The geometrical parameters are the channel height
H = 1; the channel length L = 30; the blade thickness l = 0.2; the gap clear-
ance h = 0.1; the distance between the inlet section and the blade, Li = 4.0;
and the distance between the blade and the outflow section, Lo = 25.8. The
Reynolds number of the simulation, based on the maximum velocity and the
channel height, is equal to 288. Mortar elements have been used to obtain a bet-
ter pressure field near the tip corners. A reference solution was computed with
a polynomial order N = 6 in every element. The mortar elements are located
around the blade tip as shown in Figure 7.3.11. The same polynomial degree
applies to the elements recorded by the same letter according to the Table 7.3.1,
which shows the various combinations used in these mortared elements.

Stress-free

h

l

y

x

No-slip

Axis of symmetry

H

No-slip

LoLi

Inlet 
profile

Blade

Figure 7.3.10. Clearance-gap problem: geometry and boundary conditions.
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Figure 7.3.11. Clearance-gap problem: polynomial degree distribution in the mortar
elements around the blade.

We will inspect the isocontour lines of the pressure field as a sensitive indi-
cator of numerical instabilities. The reference case is case A in Figure 7.3.12.
As soon as we increase the polynomial order by two units between adjacent
elements as in case B, the pressure field displays wiggles around the blade tip.
In case C, where the distribution is symmetric, the highest degree used is 8.
Inspection of the corresponding plot leads to the conclusion that this degree is
not yet high enough to remove all spurious oscillations. The final case, D, in-
creases the polynomial order to 9 under the blade itself. The pressure field is
smoother, and the isobars are almost vertical under the blade, indicating that
the flow under the blade is Poiseuille-like. This may be considered as the best
solution from the physical point of view.

7.4 Adaptivity and Singularity Treatment

In the case of spectral quadrilateral and hexahedral elements, adaptivity is
achieved through the use of mortar elements. The mortar method allows the
coupling without much difficulty between spectral- and finite-element

Table 7.3.1. Polynomial degrees in the mortared elements of Figure 7.3.11.

Case a b c d e

A 6 6 6 6 6
B 8 10 10 10 8
C 7 8 8 8 7
D 7 8 9 8 7
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Figure 7.3.12. Clearance-gap problem: isobars.

discretizations. (This coupling will be addressed briefly in the next subsec-
tion.) However, the presence of singularities either in the geometry or in the
function itself and its first derivatives, for example, affects the rate of con-
vergence, which decreases to low order. To circumvent this difficulty, special
treatments are possible and will be explained further.

During the 1990s, triangular and tetrahedral elements were developed. They
will also be described in this section, because they bring much flexibility to cope
with complicated geometries and, therefore, complex computational grids. Fur-
thermore, the hierarchical property of the bases is well suited to local adaptivity.

7.4.1 Coupling between Finite and Spectral Elements

Coupling between finite and spectral elements was analyzed by Ben Belgacem
and Maday [29] for the approximation of 3D second-order elliptic problems with
a nonconforming domain decomposition. As an example, a Poisson equation



370 7. Domain Decomposition

is considered with Dirichlet homogeneous boundary conditions. Two matching
procedures may be proposed. The FE matching corresponds to the case where
the interface spectral-element values are obtained by a projection of the FE

values. The symmetric case is the spectral-element matching where the interface
FE values are produced via a projection of the spectral-element values. Ben
Belgacem and Maday prove that the discretization error is bounded from above
by three contributions: the quadrature error, the best approximation error, and
the consistency error. This last contribution is in fact optimal for both matchings.
From the practical point of view, it is most valuable to balance the spectral- and
finite-element discretizations in such a way that the error is almost uniform over
the complete domain.

7.4.2 Singularity Treatment

For 2D problems, most of the singularities are corner singularities. Let us sup-
pose that the corner lies at the origin of the axes. The first side of the corner
is located along the positive x-axis, and the other side makes an angle απ ,
0 < α < 2, in the counterclockwise direction to the first. Working with polar
coordinates (r, θ ) in the vicinity of the corner, one obtains the asymptotic form
of the solution,

u(r, θ ) ∼ Crβg(θ )h(r, θ ), (7.4.1)

where C is a constant, g(θ ) a smooth function, and h(r, θ ) a smooth cutoff
function. For a fixed spectral-element decomposition with polynomial degree
N in each element, the error decreases like

‖uN (r, θ )− u(r, θ )‖H 1() ≤ C ′ N−2β−ε, (7.4.2)

where C ′ is a positive constant independent of N and ε a positive number.
The exponent β depends both on the equation and on the angle α. Most of
the problems are such that β = 1/α, and the convergence rate is consequently
between first and second order.

The method of auxiliary mapping was examined in the spectral-element
context by Pathria and Karniadakis [299]. With the Schwarz–Christoffel con-
formal mapping used in complex variables, it is possible to send the domain
containing the corner to a semicircle where the corner and the resulting sin-
gularities have been removed. Denoting by z the usual complex variable in
polar form, the mapping z = ξα allows one to write the solution in terms of
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ξ = ζ exp(iϕ):

u(ζ, ϕ) =
∞∑

p=0

ap ζ
p sin(pϕ). (7.4.3)

This mapping may be used in conjunction with a domain decomposition proce-
dure as presented in Section 7.2. Impressive spectral rates of convergence are
recovered with this special treatment of the singularity.

Several elliptic models from Laplace to Helmholtz equations are examined
in [299]. If this auxiliary mapping is not yet sufficient to weaken the singularity,
a better rate of convergence can be obtained by augmenting the spectral-element
basis with a few (one or two) singular basis functions. Augmentation has to be
done after the mapping.

Extension of the asymptotic solution around 2D corners to the case of 3D
corners or edges is lacking. Consequently, the only way to avoid the difficulty
is to use a graded mesh with h-refinement; that is, we keep the polynomial
degree constant, and we refine the size of the spectral elements through the 2D
or 3D corner point. This strategy was adopted by Gerdes and Schötzau [154] in
the hp-FEM context and used by Wilhelm [411] with the SEM. The refinement
is characterized by a reduction factor σ < 1. One proceeds recursively, going
to the corner and creating layers of elements such that the size ratio for each
pair of adjacent elements is σ ∈ (0, 1). The case σ = 0.5 is represented in
Figure 7.3.2(b). In Wilhelm’s thesis, the refinement operates quite well and
yields excellent results for the flow of a Newtonian fluid over a forward-facing
step at moderate Reynolds numbers around 300.

7.4.3 Triangular and Tetrahedral Elements

The first attempts at using triangular elements were carried out in the early
nineties by Funaro [141] and Mavriplis and Van Rosendale [270]. The design of
spectral methods on triangles and 3D geometrical objects like prisms, pyramids,
and tetrahedra started with the seminal paper of Dubiner [113]. The book by
Karniadakis and Sherwin [221] provides a complete view of the developments
of the past decade for spectral/hp methods. Schwab [348, 349] describes the
mathematical foundations of the p and hp FEM and in [349] focuses on fluid
flow problems. Here, we will give only a short presentation of this new field,
referring the reader to the cited books for full details.

We wish to keep the nice qualities of SEMs, namely, orthogonality, conver-
gence, and computational efficiency. This last aspect was achieved through the
tensor product of the bases and the sum factorization algorithm (see Chapter 4).
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Figure 7.4.1. The reference square and triangle.

To work on the triangle of Figure 7.4.1 defined as the region

T 2 = {(r, s); −1 ≤ r, s, r + s ≤ 0}, (7.4.4)

we need to specify the following mapping, which sends the reference square
onto the triangle:

r = (1+ x)(1− y)

2
− 1,

s = y,
(7.4.5)

and the inverse transformation

x = 2
1+ r

1− s
− 1,

y = s.
(7.4.6)

It is a simple exercise to check that the vertical lines in the reference square
become a bundle of rays emanating from the vertex (−1, 1) of the triangle.
From (7.4.6), the ray coordinate at (r = −1, s = 1) is multivalued. However,
one can show that the behavior of x is bounded. This singularity comes from the
fact that through the mapping, the top edge of the reference square degenerates
into a single point. The 3D extension of the theory to construct tetrahedra from
hexahedra requires three successive applications of mappings like Equation
(7.4.5).

Modal Bases

Taking advantage of the orthogonality property of the Jacobi polynomials
Pα,β

n [see Section B.1.1, Equation (B.1.6)], Dubiner [113] proposed the
approximation

uN (x) =
N∑

m=0

N−m∑
n=0

umnψmn(r (x), s(x)), (7.4.7)
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where the basis functions are given by

ψmn(r, s) = P0,0
m

(
2

1+ r

1− s
− 1

)
(1− s)m P2m+1,0

n (s). (7.4.8)

This is a modal basis like that in the Galerkin framework (Section 2.2), and
we cannot interpret the coefficients umn directly as nodal values. Moreover, the
above relation is a polynomial in (r, s), since the factor (1− s)m combined with
the first factor P0,0

m (2(1+ r )/(1− s)− 1) yields a polynomial of mth order in
r, s. By definition, P0,0

m is the Legendre polynomial Lm . The second polynomial
P2m+1,0

n is introduced to maintain the orthogonality of the triangular basis. This
property can be proven by evaluating∫ +1

−1

∫ −s

−1
ψmn(r ′, s ′)ψkl(r

′, s ′) dr ′ ds ′ (7.4.9)

and transforming this integral on the reference square (x, y). The Jacobian of
the mapping is (1− y)/2.

The two-dimensional integral can be written as the product of two one-
dimensional integrals. The first integral involves standard Legendre polynomi-
als and is nonvanishing only when m �= k. The second integral becomes∫ +1

−1
P2m+1,0

n P2k+1,0
l (1− y)m+k 1− y

2
dy. (7.4.10)

For m = k, (7.4.10) is zero when n �= l. This is because the factor (1− y)m+k+1

is the weight function for this integral.
The basis (7.4.7) may be cast as the product of two polynomials in the (x, y)

coordinates

ψmn(r, s) = ψ1
m(x)ψ2

mn(y), (7.4.11)

with the definitions

ψ1
m(x) = P0,0

m (x) = Lm(x), ψ2
mn(y) = (1− y)m P2m+1,0

n (y). (7.4.12)

The superscripts in (7.4.12) refer to the space direction. The factorization of the
two-dimensional function as the product of two one-dimensional polynomials
is called a warped product by Dubiner and may be considered merely as a
generalized tensor product.

Keeping in mind that we want to use a weak formulation of the problem that
necessitates C0 continuity between elements, we note that this last property is
not easily handled by the basis (7.4.11). Furthermore, the nice shapes (mostly
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diagonal) of the resulting matrices that were displayed in Figure 2.3.2 are lost
on account of the constraints imposed by this continuity. To overcome the
difficulty, as in the classical hp-method, Dubiner splits the modes into interior
modes, which will be bubble functions, and boundary modes, which will be
decomposed into vertex and edge modes. The vertex modes are approximated
by Lagrangian linear shape functions, which will automatically enforce this
C0 continuity. The edge modes will be nonzero along one edge and will be
vanishing at all other vertices and edges. Recalling the linear shape functions
given by Equation (2.3.7), we have the following basis:

• Bubble modes (2 ≤ m; 1 ≤ n,m < M ; m + n < N ):

ψmn = π0(x)π1(x)P1,1
m−2(x)πm

0 (y)π1(y)P2m−1,1
n−1 (y). (7.4.13)

• Edge modes (2 ≤ m; 1 ≤ n,m < M ; m + n < N ):

ψ
side(s=−1)
m0 = π0(x)π1(x)P1,1

m−2(x)πm
0 (y),

ψ
side(r+s=0)
1n = π1(x)π0(y)π1(y)P1,1

n−1(y), (7.4.14)

ψ
side(r=−1)
1n = π0(x)π0(y)π1(y)P1,1

n−1(y),

• Vertex modes:

ψ00(r = s = −1) = π0(x)π0(y),

ψ10(r = 1, s = −1) = π1(x)π0(y), (7.4.15)

ψ11(r = −1, s = 1) = π1(y).

The C0 continuity in the discretization imposes N =M . The presence of the
linear polynomials in the bubbles, namely, the product π0(x)π1(x), ensures that
they vanish on the triangle boundaries. The values ofα, β used in the given basis
are fixed in such a way that they achieve as much orthogonality as possible in
the setup of the mass and stiffness matrices. This point is elaborated by Sherwin
and Karniadakis [358].

In [359], Sherwin and Karniadakis investigate the tetrahedral bases; in [357],
they investigate the 2D and 3D bases using area and volume coordinates, respec-
tively. A unified description of high-order hp elements for hybrid 2D meshes
composed of triangles and quadrilaterals is proposed by Warburton et al. [406].

Owens [290] has shown that a basis of the mentioned form can be derived
from the eigenfunctions of a singular Sturm–Liouville problem solved on the
triangle. These polynomials are orthogonal with a unit weight on this triangle.
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Integration

Integration on the triangle is transferred via the mapping (7.4.6) to the rectangle.
We obtain for the integration of u∫

T 2
u(r, s) dr ds =

∫ 1

−1

∫ 1

−1
u(x, y)J dx dy, (7.4.16)

where J = (1− y)/2. We can still perform the quadrature of the integral of the
r.h.s. by a Gauss–Legendre (GL) rule. Nonetheless, in this case, a more general
quadrature rule helps to take the Jacobian into account automatically. This
Gauss–Jacobi quadrature rule, introduced by Michelsen and Villadsen [400],
was also used by Karniadakis and Sherwin [221]. The factor (1− x)α(1+ x)β

is incorporated in the integrand:

∫ 1

−1
(1− x)α(1+ x)βu(x) dx =

N∑
k=0

wα,βu
(
ζ
α,β

k

)
, (7.4.17)

wherewα,β and ζ α,βk are the weights and zeros corresponding to the choice of the
indices α, β. For α = β = 0, one recovers the well-known GL rule. Therefore,
choosing α = 1, β = 0, we include the Jacobian in the quadrature weights.

A last choice remains to be made: the quadrature nodes. On the triangle, al-
though the vertex (r = −1, s = 1) presents no complication for integration, one
is wise to avoid its use in differentiation procedures. A Gauss–Radau quadrature
in the s-direction with s = −1 included solves the problem; a GLL rule in the
r -direction is a standard option.

Differentiation

Differentiation can be carried out in the modal (spectral) or the physical space.
The transformation tool is the matrix built with columns, where the coefficients
are the discrete values of the spectral polynomialsψmn at the quadrature points.
Assuming that we can go back and forth between spectral and physical space,
we prefer to perform the computation of the derivative operators in physical
space. On the triangular spectral element, the approximation can be written

u(r, s) =
∑
i, j

ui, jπi (x)π1,0
j (y), (7.4.18)

where πi (x) are given by Equation (2.4.3) and π
1,0
j (y) denotes the Lagrange

interpolant based on the zeros of the (1, 0) Jacobi polynomial and the end
points y = ±1. The partial derivative with respect to the first variable at the
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m, n quadrature point gives

∂u(rm, sn)

∂r
=

∑
i, j

ui, j
2

1− sn

∂πi (xm)

∂x
π

1,0
j (yn)

=
∑

i

ui,n
2

1− sn

∂πi (xm)

∂x
. (7.4.19)

Besides the factor 2/(1− sn), the last expression involves the derivative matrix
defined by Equation (2.4.9). From this observation, we conclude that the op-
eration cost to compute a derivative is the same as in the SEM. The condition
numbers for the first-order derivative and the weak Laplacian scale as O(N 2)
and O(N 4), respectively, as in the spectral-element case. Preconditioning is
required to keep the computational cost reasonable.

One penalty for using triangular spectral elements is that the mass ma-
trix is no longer diagonal, even for the interior modes (see Karniadakis and
Sherwin [221]), imposing a system solution even for time-explicit problems.
This difficulty has aroused much research in the spectral community. Wingate
and Boyd [414] and Taylor et al. [372, 373] have attempted to obtain a diagonal
mass matrix. However, the main motivation for undertaking this research was
the design of Lagrange polynomial bases on the triangle and the tetrahedron.

Nodal Bases

Nodal bases offer the potential of a diagonal mass matrix, and so are of interest in
time-dependent problems where inversion of such operators is repeatedly called
for. Stability has been established for two sets of high-order interpolation points
on triangles that have recently received much attention. These are the Fekete
points, studied by Taylor et al. [373], and the electrostatic points, developed by
Hesthaven [201].

The functional space of approximation on the triangle is given by

PN = span{xm yn; m, n ≥ 0, m + n ≤ N }. (7.4.20)

This space corresponds, for two space variables, to a triangular truncation of
Pascal’s triangle. Let us choose a basis πi = ψmn, i = 1, . . . , N , with i rep-
resenting a unique pair (m, n) for the above space, and construct the general-
ized Vandermonde matrix V (x1, x2, . . . , xN ) defined at the points {xi ∈ , i =
1, . . . , N }. The matrix V has as coefficients the values Vi j = π j (xi ). The Fekete
collocation points computed by Taylor et al. [373] are those that maximize the
determinant of V . We note that Fekete points are independent of the choice for
the basis π . For quadrilaterals, the Gauss–Lobatto nodes are Fekete points. For
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triangles, the Fekete points are distributed along the edges as Gauss–Lobatto
points of the polynomial of degree N . This property allows covering the 2D
domain by triangles and quadrilaterals that are naturally conforming.

Another set of collocation points has been derived by Hesthaven [201]
using an analogy between the zeros of Jacobi polynomials and the solution
of an electrostatics problem. In this case, the collocation points correspond
to the steady-state position of charges that minimizes the electrostatic energy.
Extension to three-dimensional tetrahedral elements has been carried out by
Hesthaven and Teng [203]. When these nodal bases are used to integrate advec-
tion problems or advection–diffusion problems, it has been proved that these
spectral approximations produce energy-stable schemes [202, 203].

7.4.4 Error Estimates and Adaptivity

Two main streams have been used to deal with a posteriori error estimation. The
first one works in spectral space and inspects the decay of the coefficient spectra.
The second one operates in physical space and relies on residuals evaluation.

Spectral Error Estimator

Mavriplis [268, 269] and Henderson [196, 195] use an error estimate that is the
sum of two contributions, namely, the truncation error and the quadrature error.
Typically, if the numerical approximation to the spectral element e is written as

ue
N (r ) =

N∑
n=0

ae
n Ln(r ), (7.4.21)

where Ln is the Legendre polynomial of degree n and the ae
n’s are the spectral

coefficients, we have

εest =
(

a2
N

1
2 (2N + 1)

+
∫ ∞

N+1

[a(n)]2

1
2 (2n + 1)

dn

)1/2

. (7.4.22)

The function a(n) is constructed as a least-squares best fit of the last four points
of the spectrum with an exponential decay a(n) = C exp(−αn). The decay rate
α indicates insufficient resolution if α < 1 and good resolution if α > 1. The
refinement process uses the decay rate to decide whether it increases the number
of elements and decreases accordingly the polynomial degree, or whether it has
to move elements and reconstruct the grid. For that last purpose, Henderson
[196] introduces the concept of a voxel database on geometric considerations.
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Physical Error Indicators

Valenciano and Owens [394, 393] propose an adaptive modification strategy
relying on h and p refinements. One of the ingredients of the numerical method
uses the broken norm of the mortar elements [see Equation (7.3.11)]. In case of
the steady Stokes problem, the error indicator is made of three terms: the ele-
mental residual of the Stokes operator, the elemental residual of the divergence
of the velocity field, and the jumps of the stress tensor across the interfaces.
Both for spectral and for physical error estimates, the adaptivity strategies are
described with full details in the references already given.

7.5 Further Reading

In order to obtain the collocation points inside the triangle, Heinrichs [193]
proposes the solution of a Poisson equation by mapping the problem written
on a sector of the unit disk onto a rectangle where Chebyshev collocation is
applied. The singularity induced by the corner at the origin is removed by
auxiliary mapping as proposed by Pathria and Karniadakis [299]. Numerical
tests achieve spectral accuracy.

Henderson and Karniadakis [197, 198] have used mortar elements to com-
pute the flow in complicated geometries such as the turbulent cylinder wake
at Re = 1000 and the turbulent flow over riblets at Re = 3280. The spatial
discretization has a homogeneous Fourier expansion in the crosswise direction.
The simulation provides detailed results for mean-flow data and turbulence
statistics. Hsu and Mavriplis [210] consider adaptive spectral elements for the
driven-cavity problem. For convection-dominated flows, Rønquist [334] notes
that special care is required when using mortar elements with variable polyno-
mial degree from one domain to the next.

Warburton et al. [405] compute the 2D solution of the Neavier–Stokes equa-
tions on unstructured nodal triangles. The collocation points used in the simu-
lation are Fekete points and the set derived by the electrostatics analogy. The
Kovasznay flow, the shear-layer roll-up, and the flow behind a circular cylinder
at Re = 100 are solved. The numerical results achieve spectral accuracy as
expected and compare well with the presented hp and spectral-element results.



8
Vector and Parallel Implementations

The speed of a particular CFD code is the result of algorithm, hardware, and
implementation. As discussed in Chapter 1, advances have proceeded on both
algorithmic and architectural fronts. The theory and development of algorithms
for high-order weighted residual techniques are the focus of the rest of this
book. Here we consider their implementation and performance in serial and
parallel architectures.

8.1 Introduction

Modern supercomputers employ multiple processors to work toward a common
goal. The speed of such a computer, measured in millions of floating-point
operations per second (Mflops), is expressed by the relationship

SP = η P S1,

where S1 is the speed of a single processor, P is the number of processors,
and η is the parallel efficiency. Somewhat surprisingly, the main challenge in
achieving peak performance stems from the difficulty in increasing S1, rather
than in increasing η [168]. Fortunately, for locally structured, globally unstruc-
tured high-order methods, the operator evaluations that form the central kernel
in most explicit or iteration-based implicit implementations can be naturally
partitioned into separate serial and parallel components that can be optimized
independently. For example, as shown in Section 4.5.2, spectral-element eval-
uation of the Poisson operator consists of local matrix–vector products

ṽe = K eue, e = 1, . . . , E, (8.1.1)

379
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followed by direct-stiffness summation,

vL = Q QT ṽL . (8.1.2)

Good performance depends on (local) vectorization of (8.1.1) and efficient
(interprocessor) communication for (8.1.2).

We begin with an overview of basic strategies for improving serial perfor-
mance (S1) (Section 8.2), followed by strategies specific to high-order methods
(Section 8.3). We then introduce parallel architectures and performance (Sec-
tion 8.4) and parallel algorithms for weighted residual methods (Section 8.5).
Applications are presented in Section 8.6.

8.2 Serial Architectures

High-performance computers have clearly benefited over the past several
decades from ever increasing clock cycle rates, which have roughly doubled
every eighteen months, in accordance with Moore’s law [278, 279]. In addi-
tion, features once found only on vector supercomputers, such as pipelined and
multiple functional units (load, add, multiply, etc.), are becoming common in
widely used reduced-instruction-set computer (RISC) architectures. These al-
low CPUs to produce one or more results per clock cycle, leading to higher
performance potential.

Unfortunately, the peak performance of modern processors is rarely realized
in practice. There are two basic reasons for this situation. The first arises from
difficulties in scheduling operations to keep the pipelines full. The second, and
more serious, results from the fact that improvements in memory access rates
are not keeping pace with CPU cycle times, making it ever more difficult to
keep the CPUs from being data-starved [200]. The following points should be
considered when developing code for modern architectures:

• reducing vector dependences,
• eliminating loop clutter,
• increasing data reuse,
• using unit-stride data accesses.

The first pair of these addresses the issue of pipelining; the second pair focuses
on memory subsystem performance. Although this list is by no means complete,
these few basic concepts can easily affect performance by an order of magnitude.



8.2. Serial Architectures 381

as+1

bs+1

cs c2 c1

Figure 8.2.1. Pipelined execution of ci = ai + bi for an s-stage pipe. Result c1 is ready
as as+1 and bs+1 enter the pipe.

8.2.1 Pipelining

Floating-point operations such as addition or multiplication typically require
s= 2–5 stages to produce a single result, with each stage requiring one clock
cycle. As illustrated in Figure 8.2.1, pipelined functional units allow s operations
to be in progress simultaneously, yielding one result per clock cycle. In order
to realize this potential s-fold increase in performance, the operands entering
the pipe must not depend on partially completed results still in the pipe. Such
dependencies arise, for example, in the the backward substitution phase of a
tridiagonal solve:

do i = n − 1 , 1 ,−1
x(i)= (b(i)− u(i)*x(i + 1))/d(i)

enddo

Here, the evaluation of x(i) must wait until the result x(i + 1) is complete.
More subtle examples arise from ambiguous references, such as the follow-

ing:

(1) do i = 1 , n (2) do i = 1 , n
x(i + k)= c*x(i)+ a(i) x(ind(i))= x(ind(i))+ a(i)

enddo enddo

In (1) the loop cannot be scheduled for pipelining unless the sign of k is known
at compile time. The same is true of (2), because ind(i) can potentially point
to a dependent address. Because they can inhibit pipelining, such constructs
should be avoided whenever possible.

Other operations to be avoided in computation-intensive loops are subroutine
calls, function evaluations, nested loops, if statements, and I/O – all of which
can lead to ambiguous execution paths and can inhibit vectorization. In addi-
tion, unnecessary divides can significantly reduce performance on some RISC

architectures.
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8.2.2 Memory, Bandwidth, and Caches

By adhering to basic vectorization principles, one should be able to achieve
a significant fraction of peak performance provided there are enough data to
keep the processor busy. This caveat is significant because microprocessor and
memory speeds are on divergent paths, with the former doubling every 18
months and the latter doubling only every 120 months [200].

To address this situation, manufacturers have developed architectures featur-
ing hierarchies of data caches, that is, small amounts of fast memory between
the processor and main memory. Most RISC processors today feature at least a
level-one (L1) cache that, under ideal conditions, can provide data fast enough
to keep the pipelines full. Some also feature larger L2 caches (and L3, and
so on) that are somewhat slower than L1 but still faster than main memory.
Typically, data can be delivered at speed to the CPU only if it is already in L1
as a result of an earlier call. Data not in L1 must be loaded from a higher-level
cache or main memory, then passed to the CPU. This process, known as a cache
miss, can take tens of clock cycles and severely degrade performance.

The following loops measure the time required to add a constant to a vector
and are designed to illustrate some basic features of cache behavior:

call c add(a, c, n) subroutine c add(a, c, n)
tstart =time() real a(n)
do l = 1 , loop do i = 1 , n

call c add(a, c, n) a(i) = a(i)+ c
enddo enddo
flops = n*loop/(time()−tstart) end

The clock overhead is amortized by multiple calls to the c add routine, and a
single call to c add outside the timing loop avoids timing the initial load of a
into cache. Results of this test on a Sun Ultra-SPARC 30 are indicated by the
unit-stride curve in Figure 8.2.2, which shows the speed S1 in Mflops for 64-bit
arithmetic. These results are typical of cached-based architectures. There is a
rapid performance rise as n increases from 1 to 100, due to amortization of
the subroutine call and loop overhead costs. A drop in performance beginning
at n = 2048 indicates that the size of L1 is 16 Kbyte. As n exceeds 2048, the
leading entries, a1, a2, . . . , are pushed out of L1 by entries at the tail of a.
For n ≥ 4096, no leading entry of a is in L1 by the time of the next c add
call, and, because each a(i) must be transferred back into L1, performance is
limited by the bandwidth between L2 and L1. This behavior is repeated for
n > 128,000 (indicating that the size of L2 is 1 Mbyte), where performance
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Figure 8.2.2. In-cache performance for a = a + b.

is limited by the speed of main memory. Note that the performance difference
for the cached versus noncached data is a factor of six. If two vectors had been
added, rather than a vector and a scalar, out-of-cache performance would drop
further, because of the increase in memory traffic.

The preceding example illustrates the importance of reusing data once it
is brought into cache. Another important design principle is to use unit-stride
data accesses, that is, to operate on consecutive entries in memory. There are
several reasons why this is a good idea, the principal one being that the com-
puter retrieves an entire cache line when loading data into L1 (L2, L3, . . . ).
A cache line is typically 128 to 256 bits long and contains adjacent entries in
memory. For example, a load containing a1 at the beginning of a 256-bit cache
line will automatically load a2–a4, thus guaranteeing they will be in cache on
any immediate succeeding reference. The effect of nonunit-stride referencing
is illustrated by the stride-4 curve in Figure 8.2.2, which was obtained by re-
placing the do loop in the c add procedure above by do i= 1, 4*n, 4. In this
case, L1 has a 128-bit cache line, while L2 has a 256-bit line. As expected, the
performance for intermediate (large) n drops by a factor of two (four), since
only one out of two (four) values retrieved from main memory is actually used,
while for small n the performance is unchanged from the unit-stride case. As
long as data are in cache, good performance is attained. From the ratio of peak
to bandwidth-limited performance one can conclude that a single noncached
memory reference requires roughly 20–30 clock cycles on this particular com-
puter. (In this example the effective cache size is also reduced because of the
addressing strategy used to map data to cache. This effect would change under
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different strategies and with the number of vector operands being loaded. For
reasonable performance, however, the subtleties of cache-mapping strategies
are not of first-order concern. We refer to [110, 200] for more detail.)

The unit-stride issue most commonly arises when working with arrays. Con-
sider the following simple loops for matrix addition:

(1) do i = 1 , n (2) do j = 1 , n
do j = 1 , n do i = 1 , n

a(i, j ) = a(i, j )+ b(i, j ) a(i, j ) = a(i, j )+ b(i, j )
enddo enddo
enddo enddo

The preferred order of the loops depends on the programming language. In
case (1), one accesses a11, followed by a12, and so on, whereas in case (2), a11

is followed by a21. Fortran uses column major ordering of arrays (see Figure
8.3.1), which implies that element a21 is adjacent to a11, and so on. In this case,
(2) will execute several times faster than (1) when out-of-cache conditions are
encountered. C, on the other hand, uses row major ordering, implying that a12

is adjacent to a11, and so on. Consequently, (1) should be used. Note that many
modern compilers will actually reverse the loop order of this simple example.
However, slight complications in the code usually defeat the compiler’s analysis,
so it is important to implement the correct ordering directly.

The issues discussed in this section are referred to in the high-performance
literature as locality of reference. In the case of caches, it is data reuse that is
important. In the case of cache lines, it is unit stride that one should strive for.
These principles are important for other reasons (TLB misses, banked memories,
etc.) that are considered in detail in [110, 200].

8.3 Tensor-Product Operator Evaluation

Efficient operator evaluation for high-order methods rests on the vectorization
and data locality principles of the preceding sections. As an illustration, we
consider evaluation of the spectral-element Laplacian. For each element, e =
1, . . . , E , in R

d , we have

ve =
d∑

j=1

d∑
i=1

DT
i Ge

i j D j u
e, (8.3.1)

where the Ge
i j ’s are the diagonal matrices of order (N + 1)d introduced in

(4.4.7). We begin with the tensor-product forms (Di u, etc.) that account for
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the leading-order work complexity of O(N d+1). We then address the geometric
terms involving Ge

i j , which have complexity O(N d ).

8.3.1 Tensor-Product Evaluation

The majority of the work in (8.3.1) is associated with application of the deriva-
tives D j and their transposes. In R

3, a typical form is

D1ue := (I ⊗ I ⊗ D̂)ue =
N∑

p=0

D̂ipue
pjk .

We noted in (4.2.20) that the 2D tensor-product evaluation, v = (A ⊗ B)u, can
be implemented as the matrix–matrix product sequence V = BU AT . In view
of data locality this sequence will perform well on any architecture. A similar
transformation can be made for the 3D case by understanding how data are
arranged in memory.

Consider the Fortran declaration for the vector uL := {ue}Ee=1,

real u(0:N,0:N,0:N,1:E)

which implies that elements of ue = ue(i, j, k) are arranged with consecutive
entries advancing with the leading (i) index, as indicated in Figure 8.3.1(a). We
can reference ue(i, j, k) in whatever way is convenient for a given operation.
For example, to compute u = u + v, we can simply write

ntot = E*(N+1)**3

do i=0,ntot-1

u(i,0,0,1) = u(i,0,0,1) + v(i,0,0,1)

enddo

which avoids (short) nested loops and ensures unit-stride access. Figure 8.3.1
shows other interpretations of the memory layout for ue (with the superscript
omitted). In (b), ue is viewed as an n × n2 matrix; in (c), as a sequence of n × n
matrices; and in (d), as an n2 × n matrix.

The matrix interpretations of u allow tensor-product evaluations to be recast
as matrix–matrix products. An example is illustrated by the following routine,
which computes the gradient of ue, (∂u/∂r, ∂u/∂s, ∂u/∂t):

subroutine local grad(ur,us,ut,u,N,e,D,Dt)

c Output: ur,us,ut Input:u,N,e,D,Dt
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Figure 8.3.1. Interpretations of 3D data array as (a) consecutive elements in memory;
(b) an n × n2 matrix (n := N + 1); (c) a sequence of n n × n matrices; and (d) an
n2 × n matrix.

real ur(0:N,0:N,0:N),us(0:N,0:N,0:N),ut(0:N,0:N,0:N)

real u (0:N,0:N,0:N,1)

real D (0:N,0:N),Dt(0:N,0:N)

c

m1 = N+1

m2 = m1*m1

c

call mxm(D ,m1,u(0,0,0,e),m1,ur,m2)
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do k=0,N

call mxm(u(0,0,k,e),m1,Dt,m1,us(0,0,k))

enddo

call mxm(u(0,0,0,e),m2,Dt,m1,ut,m1)

c

return

end

Here, D is assumed to be the one-dimensional derivative matrix D̂ [see (2.4.9)],
Dt its transpose, and mxm a matrix–matrix product routine described below.
The first mxm call computes (I ⊗ I ⊗ D̂)u = D̂U , treating u as the n × n2

matrix of Figure 8.3.1(b). The second computes (I ⊗ D̂ ⊗ I )u, treating u as
the sequence of n × n matrices in Figure 8.3.1(c). The third call computes
(D̂ ⊗ I ⊗ I )u = U D̂T , treating u as the n2 × n matrix of Figure 8.3.1(d). A
similar sequence can be called for any desired tensor-product evaluation, such
as interpolation, integration, or high-order differentiation. The advantage of
recasting tensor-product forms as matrix–matrix products is that the majority
of flops (>90% for typical 3D applications) is thereby concentrated into a single
routine that can be highly optimized.

The mxm routine is designed to compute the product of (contiguously packed)
matrices A and B, of sizes n1 × n2 and n2 × n3, respectively. A Fortran imple-
mentation of mxm is given below:

subroutine mxm(A,n1,B,n2,C,n3)

real A(n1,n2),B(n2,n3),C(n1,n3)

c

do i=1,n1*n3

C(i,1)=0.

enddo

c

do j=1,n3

do k=1,n2

tmp=B(k,j)

do i=1,n1

C(i,j)=C(i,j)+A(i,k)*tmp

enddo

enddo

enddo

c

return

end
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This routine requires 2n1n2n3 operations and only (n1 + n3)n2 reads from mem-
ory, giving it a ratio of roughly 2(n1n3)/(n1 + n3) flops per data access. Because
of this favorable ratio, multiplication of sufficiently large matrices can attain a
significant fraction of peak performance, even on computers with severe mem-
ory bandwidth limitations.

Computer vendors and scientists have expended considerable effort on opti-
mizing matrix–matrix products because of their widespread utility and impor-
tance to key performance benchmarks. Specific attention has been given to
the BLAS3 routine dgemm (double-precision general matrix×matrix), which
is more general than the mxm routine above. It supports the operation C =
C + AB, will work with transposes, and does not require the array dimensions
to match the matrix sizes. A dgemm-based implementation of mxmwould read as
follows:

subroutine mxm(a,n1,b,n2,c,n3)

real a(n1,n2),b(n2,n3),c(n1,n3)

c

one = 1.

zero = 0.

call dgemm( ’N’,’N’,n1,n3,n2,one,A,n1,B,n2,zero,C,n1)

c

return

end

A detailed example of performance tuning for dgemm can be found in [409].
While dgemm usually outperforms the triply nested loop in the mxm routine

above, it is typically optimized only for large matrices important to the LINPACK

benchmark. For multidomain spectral methods, one is often interested in small
matrices. The following pair of routines illustrates an approach that has proven
to be a good compromise between portability and high performance [390]:

Subroutine mxm(a,n1,b,n2,c,n3)

real a(n1,n2),b(n2,n3),c(n1,n3)

if (n2.eq.1) then

call mxm1(a,n1,b,n2,c,n3)

elseif (n2.eq.2) then

call mxm2(a,n1,b,n2,c,n3)

:

elseif (n2.eq.24) then

call mxm24(a,n1,b,n2,c,n3)

else
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one = 1.

zero = 0.

call dgemm( ’N’,’N’,n1,n3,n2,one,A,n1,B,n2,zero,C,n1)

endif

return

end

Subroutine mxm8(a,n1,b,n2,c,n3)

real a(n1,8),b(8,n3),c(n1,n3)

do j=1,n3

do i=1,n1

c(i,j) = a(i,1)*b(1,j)

$ + a(i,2)*b(2,j)

$ + a(i,3)*b(3,j)

$ + a(i,4)*b(4,j)

$ + a(i,5)*b(5,j)

$ + a(i,6)*b(6,j)

$ + a(i,7)*b(7,j)

$ + a(i,8)*b(8,j)

enddo

enddo

return

end

The main routine, mxm, has a branch that calls one of 25 different routines:
mxmn2, n2 = 1, . . . , 24, or dgemm. The if-statement overhead is minimal (less
than 2% for n2 = 8). The routines mxmn2 have the inner-product (n2) dimension
completely unrolled into a single statement, as the second routine illustrates for
n2 = 8. (Note that the inner-product dimension always corresponds to N + 1 in
spectral applications. See Figure 8.3.1.) The advantage of this approach is that
there are now only two loops rather than three, with a short nested loop being
eliminated in favor of one with more work per iteration. In addition, because
the dimension n2 is known prior to compilation, the compiler can hardcode
address increments into memory read instructions.

Because mxm dominates the operation count, a small amount of testing to find
an optimal variant is usually warranted when setting up simulations on a new
platform. An example is presented in [390] for simulations on the Intel ASCI Red
machine at Sandia National Laboratories. Careful analysis of a Navier–Stokes
spectral-element code for N = 15 identified the specific calling patterns to mxm

shown in Table 8.3.1. Performance was measured for several dgemm-based
implementations of mxm (denoted lkm, ghm, and csm), the unrolled variant
described above (denoted f2), and a similar unrolled version with the outer
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Table 8.3.1. mxm performance on ASCI Red.

Dimension Noncached Mflops

n1 n2 n3 lkm ghm csm f3 f2

14 2 14 23 20 25 41 43

2 14 2 29 23 21 77 68
16 14 16 100 113 114 130 119
16 14 196 107 95 95 89 110

256 14 16 85 100 100 105 67

14 16 14 78 74 74 106 99
16 16 16 82 138 83 105 102
16 16 256 113 147 93 97 118

196 16 14 91 192 147 122 105
256 16 16 90 105 148 111 69

loops interchanged (denoted f3). The results show that no single version was
fastest for all cases encountered in a given simulation. For production runs,
a customized branching utility was used to select the fastest mxm variant as a
function of the input arguments. With this approach, the program sustained 361
Gflops on 4096 333-MHz Pentium Pro processors – in excess of one-quarter of
peak for this particular configuration.

8.3.2 Other Operations

Although tensor-product evaluations account for >90% of the operations in
spectral methods, they typically account for a smaller fraction of time because
of their high efficiency. Consequently, it is also important to address the im-
plementation of other frequently called kernels. The following loop exploits
the data locality issues discussed in Section 8.2 to evaluate the matrix–vector
products ve = K eue (4.4.7):

c body of Procedure Ku()

do e=1,E

call local grad(ur,us,ut,u,N,e,D,Dt)

do i=1,nrst

vr(i) = G(1,i,e)*ur(i) + G(2,i,e)*us(i) + G(3,i,e)*ut(i)

vs(i) = G(2,i,e)*ur(i) + G(4,i,e)*us(i) + G(5,i,e)*ut(i)

vt(i) = G(3,i,e)*ur(i) + G(5,i,e)*us(i) + G(6,i,e)*ut(i)

enddo

call local gradt(v,vr,vs,vt,N,e,D,Dt)

enddo
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Here, it is assumed that nrst := (N + 1)3 and that local gradt effects the
transpose of local grad. For moderate values of N , the work arrays ur,
us, . . . , vt will stay in L2 for the duration of the outer loop. Note that the
geometric array G places the greatest burden on memory bandwidth because
each entry is used at most twice. By combining the evaluation of vr, vs, and vt
into a single loop, the symmetric components of G are reused and thus brought
into cache only once.

Other routines that merit careful inspection in Navier–Stokes implementa-
tions are the pressure operator, the advection operator, and any solve forming
a local component of a preconditioner. If one is using the OIFS-based advection
scheme of Section 4.9, the number of advection evaluations per step can be
of the same order as the number of viscous and pressure operator evaluations,
particularly if the temporal order is high.

8.4 Parallel Programming

Parallel computers provide a means for combining P individual processors to
work in concert on a common task. A fundamental question early in the devel-
opment of parallel computing was whether these should work in lockstep, each
executing the same instruction on different data, corresponding to the single-
instruction, multiple-data (SIMD) model, or whether each processor should
be allowed to operate asynchronously, following its own instruction set, cor-
responding to the complementary multiple-instruction, multiple-data (MIMD)
model [135]. Examples of the SIMD model include the very early ILLIAC-IV
and the Thinking Machines CM-2. Although these machines were well suited to
scientific computing, economics have favored the development of MIMD archi-
tectures based on commodity components. Examples include tightly coupled
networks of high-performance microprocessors capable of running indepen-
dently, networks of workstations, and networks of PCs.

Another central issue in the choice of architecture and programming model
is whether the memory should be shared or distributed among the processors.
In the shared-memory model, each processor has access to all the data (at
nonuniform rates). In the distributed-memory model, each processor has direct
(fast) access to its own local data only. Data from other processors must be
obtained by extraordinary means. Such means can (in principle) be provided
by the operating system, implementing a shared-memory programming model
on a distributed-memory architecture, or by a user program that explicitly ex-
changes data packets, or messages, between processors. We will consider this
distributed-memory message-passing programming model, following the ap-
proaches detailed in Solving Problems on Concurrent Processors by Fox et al.
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[139], Concurrent Scientific Computing by van de Velde [395], and Using MPI
by Gropp et al. [171].

The most commonly used programming model for numerical solution of
PDEs on MIMD architectures is the single-program, multiple-data (SPMD) model
in which each processor independently executes a copy of the same program
on distinct subsets of data [186]. Coordinated data exchanges (messages) en-
force a loose synchronization among the processors, thus emulating the SIMD

programming model while preserving the flexibility of the MIMD approach.
The SPMD model is predicated on each processor having a private (or local)

address space, implying that a given variable or array entry can have different
values on different processors. Data transfers between address spaces (pro-
cessors) are made through subroutine calls such as send(), used to send the
contents of a variable or array to another processor, and recv(), used to direct
incoming data to a specific variable or array location. One advantage of mes-
sage passing is that synchronization is implicit in the message transfer; data
are sent only when ready. In addition, because it is based on subroutine calls,
it does not require language extensions and is therefore portable. This latter
attribute is enhanced by the fact that there exists a well-developed standard in-
terface, called the Message Passing Interface (MPI), that has found broad support
among computer vendors and in the research community [171]. Other widely
used message-passing libraries include PVM [152] and NXlib [366].

To provide a framework for assessing parallel performance and making soft-
ware design decisions, we assume a model architecture consisting of a network
of P processor/memory units (referred to as processors, or nodes) numbered
from 0 to P − 1, as illustrated in Figure 8.4.1. The detailed topology of the net-
work is not important in most domain decomposition applications, so we do not
characterize it further at this point. We simply assume that data can be sent from
one node to another, without interrupting processing on intermediate nodes. This

P0/M0 P1/M1 P2/M2 P3/M3 P4/M4

P5/M5 P6/M6 P7/M7 P8/M8 P9/M9

Figure 8.4.1. Network of P = 10 distributed processor/memory units.
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model architecture encompasses loosely coupled networks of commodity com-
ponents, shared-memory multiprocessors, and tightly coupled multicomputers
consisting of thousands of nodes.

8.4.1 Communication Characteristics

This section introduces communication primitives and performance character-
istics that are typical of distributed-memory programming models. While we do
not wish to overemphasize low-level primitives, which distract from the higher-
level objective of solving PDEs, it is important from a design standpoint to have
some understanding of basic interprocessor interactions and their associated
costs.

The basic elements of any message-passing implementation are exemplified
by the following MPI calls:

call mpi comm rank(mpi comm world,MYID ,ierr)

call mpi comm size(mpi comm world,NPROCS,ierr)

call mpi send(X,n,mpi byte,id,mtag,mpi comm world,ierr)

call mpi recv(Y,n,mpi byte,id,mtag,mpi comm world,stat,ierr)

The first of these tells the calling processor its node identification (MYID := p).
The second tells the number of processors participating in the current simulation
(NPROCS := P). The third sends the contents of the vector X to processor id∈
{0, . . . , P − 1}. In this case, the amount of data is n bytes, as denoted by the
second and third arguments, and the data are identified with an integer tag
(mtag) that allows the receiving processor to distinguish this message from
others that it might receive. The fourth command receives incoming data from
node id having tag mtag and places it in Y. Here, n is an upper bound on the
expected number of bytes received. Also, the discriminator pair (id,mtag) can
be loosened through the use of MPI’s designated variables, mpi any source

and mpi any tag. The mpi comm world argument is a handle that allows MPI

to distinguish between calls made by the user’s program and those made by
library routines that might potentially send messages with the same integer
tags. The ierr argument is an error condition that normally returns zero.

To estimate the costs of message passing, we assume, to leading order, a
linear model of the form

tc(m) = (α + βm) ta, (8.4.1)

where m is the length of the message, in 64-bit words, and ta is the time
required for a characteristic arithmetic operation (e.g., add or multiply). The
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Message size m (64-bit words)

tc (s)

Figure 8.4.2. Measured communication times from ping-pong test for three distributed-
memory computers.

constants α and β represent the nondimensional message startup cost (latency)
and asymptotic transfer rate (inverse bandwidth), respectively, in the absence
of other network traffic. This model assumes that the communication time
is independent of the node addresses, which will be true if the network has
sufficient connectivity and/or the size of the messages is sufficiently small,
both of which tend to occur in most DD applications.

The values of α and β are important in making software design decisions and
in assessing the parallel potential of a given algorithm–computer coupling. They
are derived from the round-trip communication time, 2tc(m), which is measured
by a ping-pong test in which one processor sends a message of length m to
another and then waits for a reply. Times for repeated cycles of this exchange
are averaged to yield a graph of tc(m) versus m, as shown in Figure 8.4.2. The
performance is relatively flat until m ≈ 20–200. The left asymptote of this
graph is used to deduce αta , while the right asymptote yields βta . Figure 8.4.3
shows measured values of α and β on a variety of platforms over the past
decades, using a characteristic timescale (ta) based on average performance for
optimized noncached matrix–matrix products of order 10 and 16, which typify
the computation in spectral-element applications. While the downward trend
indicates significant improvement in the absolute times, we see from the ratios
of the curves that the relative communication costs have exhibited less change.
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Figure 8.4.3. Performance parameter trends in distributed-memory computing. The
straight line follows Moore’s law.

Despite a couple of anomalies, the general trend has been toward increased
latency, growing from α ∼ 100 to 4000, while the bandwidth term has stayed
roughly in the range of β ∼ 1− 10.

As Figures 8.4.2 and 8.4.3 indicate, message-startup costs can be significant.
Consequently, it is important to consider algorithm designs that use a few long
messages rather than numerous short messages wherever possible. The ratio

m2 := α/β

provides a convenient demarkation between short and long messages (measured
in 64-bit words). Any message of length m = m2 has a communication time
of just twice the startup cost αta . Messages shorter than m2 are thus short,
or latency-dominated, with a cost scaling as α. Messages longer than m2 are
bandwidth-limited, with costs scaling as βm.

Typical values of m2 are illustrated by the ratios of the αta and βta curves
in Figure 8.4.3. We can see that messages can be as long as 100 to 1500 words
before a twofold increase in communication cost will be realized. In the long-
message limit, one also needs to be concerned about the possibility of network
contention if many processors are sending at once.
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8.4.2 Vector Reductions

We examine vector reductions to illustrate an approach to the SPMD model that
separates high-level objectives from detailed low-level source code and to illus-
trate the underlying costs associated with this commonly used operation. Vector
reductions (also known as collective operations) take a (distributed) vector as
input and return a scalar. Examples include s =∑

i xi , α = pT r , and ‖u‖∞.
They may also be grouped together to return more than one scalar, for example,
(α, β) = (u, v)Tw, which in light of the preceding discussion can be expected
to have the same communication overhead as an isolated vector reduction. Be-
cause of their global nature and frequent appearance in scientific applications,
vector reductions are a common source of communication overhead in parallel
codes.

The Fortran procedure below illustrates an MPI implementation of s =∑
i x i ,

where the vector x is distributed across P processors:

real*8 function glsum(x,n)

real*8 x(n),s

include ’mpif.h’

s = 0.

do i=1,n

s = s + x(i)

enddo

call mpi allreduce(s,glsum,1,

$ mpi double precision,mpi sum,mpi comm world,ierr)

return

end

According to the SPMD model, the contents of x are different on each pro-
cessor, and the vector length n may also be different. The processor distribution
can be viewed as providing an implicit index (p) such that x :=⋃P−1

p=0 x (p),

x (p) ∈ R
n(p)

. The first part of the code is the standard loop for computing the
sum s(p) =∑

i x (p)
i . The mpi allreduce call invokes the sum s =∑

p s(p)

across all processors and returns the result in glsum. Thus, all processors have
the same global sum value at the end of the call. The third argument determines
the length of the vector to be summed across processors. In this case, there is
only one input (s) and output (glsum). The fourth argument tells MPI the size
and type of data being transmitted, and the fifth determines which reduction
operation to perform. The integers beginning with mpi are passed as part of
the include ’mpif.h’ statement.
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Although the MPI call requires several arguments supplemental to the task
of summing the elements of a vector, the use of the glsum function masks
the details of how the vector reduction is implemented. Elsewhere in the code,
it is sufficient simply to call an appropriate routine (such as glsum) written
independently, wherever a vector reduction is encountered. The following code
fragment illustrates this approach:

dmax = 0.

do i=1,n

d=u(i)-v(i)

w(i) = w(i) + d

dmax = max(dmax,abs(d))

enddo

dmax = glmax(dmax,1)

The loop simultaneously computes w = w + (u − v) and ‖u − v‖∞ and is
typical of those found in many serial codes. The only change required to extend
the code to parallel in the SPMD model is the addition of the glmax call, which
would be implemented in the same fashion as the glsum routine above.

The communication cost of a vector reduction depends on the actual
all reduce implementation, which is most frequently cast as a fan-in–fan-
out on a binary tree. Figure 8.4.4(a) illustrates a fan-in summation to node 0 on
a one-dimensional network. Arrows indicate (contention-free) data movement.
Upon arrival at each destination, data are summed with the existing partial
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Figure 8.4.4. (a) First three stages of a contention-free binary-tree fan-in for vector
reduction on a one-dimensional network. (b) Recursive doubling (butterfly) exchange
for four-processor network.
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result, which is then sent in the next phase. The number of communication cy-
cles to produce the final result on node 0 is log2 P . An additional log2 P cycles
are required to spread the result to all processors, accomplished by reversing the
tree traversal. The cost of all reduce on an m-tuple is thus 2(α + βm) log2 P .

For short messages, m < m2 (the most common case being m = 1), network
contention is generally not an issue. Hence it is worthwhile to consider the
recursive doubling scheme of Figure 8.4.4(b), which requires only log2 P cycles
to yield the correct result on each processor. If P = 2D , a recursive doubling
implementation of the all reduce operation is given by

Procedure All Reduce Sum(v,w, m)
do l = 1 to D

send v(1 : m) to mod (p + 2l−1, P)
recv w(1 : m) from mod (P + p − 2l−1, P)
v(1 : m) := v(1 : m)+ w(1 : m)

enddo

The case of general P requires two additional send–recv pairs (see [395]).
We make a final important comment regarding send–recv commands. On

some architectures, the procedure All Reduce Sum will deadlock, particularly
for large values of m. The reason is that the send–recv construct above implicitly
assumes that the system software provides a buffer (on an unspecified node)
for the outbound contents of v. For example, the statement “send v(1 : m)”
to q is a blocking send, meaning that control is returned to the calling routine
once the contents of v are safely stored and v can be safely reused. If no system
buffer has sufficient space for v, then processing must stall until a corresponding
“recv” is issued. However, if the receiving processor is also trying to send a large
buffer, then deadlock will occur. To avoid deadlock, MPI provides a nonblocking
receive, mpi irecv, that allows one to specify a buffer for incoming data and
that returns control to the calling routine before the receive request is fulfilled.
The mpi wait command allows one to pause at a later point for fulfillment of
the mpi irecv. The modified pseudocode is as follows:

Procedure All Reduce Sum(v,w, m)
do l = 1 to D

msg= irecv w(1 : m) from mod (P + p − 2l−1, P)
send v(1 : m) to mod (p + 2l−1, P)
wait (msg)
v(1 : m) := v(1 : m)+ w(1 : m)

enddo
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For portability, we strongly recommend the nonblocking irecv approach in
developing communication utilities. However, for ease of exposition, we will
generally present the simpler send–recv variant of the algorithms.

8.5 Parallel Multidomain Methods

In this section, we develop data distribution, communication, and domain de-
composition strategies for an SPMD implementation of high-order weighted
residual methods.

8.5.1 Data Distribution and Operator Evaluation

The natural data distribution for high-order weighted residual methods is based
on an elemental decomposition in which one partitions the domain  into
P subdomains p, to be distributed to processors p = 0, . . . , P − 1, with
each subdomain comprising E (p) elements. Nodal values on subdomain in-
terface boundaries, ∂p\∂, are stored redundantly on each processor q for
which ̄q ∩ ̄p �= 0. This approach is consistent with the element-based stor-
age scheme, which lends itself naturally to element-by-element matrix–vector
product evaluation.

Element-based data distribution allows loops without interelement depen-
dencies to execute with P-fold concurrency. In the SPMD model, the element
identifiers (e) are usually reassigned on each processor so that local loop in-
dices range from 1 to E (p), as illustrated in Figure 8.5.1. The figure shows
a five-element mesh partitioned into two subdomains with elements locally
renumbered to {1, 2, 3} on node 0 and to {1, 2} on node 1. Because of the pri-
vate address space, the loop index bound E (p) can be simply designated E on
each processor. (For clarity, we therefore designate the number of elements in
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Figure 8.5.1. Decomposition of five-element mesh into two subdomains.
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the global domain as Eg .) A typical element-based loop in an SPMD imple-
mentation thus is

do e = 1 to E
ṽe= K eue

enddo

where, for example, K eue is implemented as in the body of Procedure Ku()
introduced in Section 8.3.2. Note that because of the reassignment of variables
(performed in a preprocessing step) the above loop is identical to its serial
counterpart. Provided the contents of all arrays involved are mapped according
to the same distribution, this approach will always work. In addition, all vector–
vector operations, such as u = u + v, also remain unchanged from their serial
counterparts.

Vector reductions, such as uT v, will need to be modified to effect the neces-
sary communication, as outlined in Section 8.4.2. In addition, when element-
based storage is used (in serial or parallel), the inner products need to be
weighted so that redundantly stored values are not counted twice. If we

i jk is the
inverse of the multiplicity [Equation (4.5.17)], then the inner product α = uT v

is computed as

α(p) =
n∑

i=1

(uL )i (vL )i (wL )i , α =
P−1∑
p=0

α(p), (8.5.1)

where n = (N + 1)d E is the number of (local) grid points on processor p. Note
that if contiguous storage is used, then (8.5.1) can be coded in a form similar to
glsum given in Section 8.4.2. Note also that the multiplicity is not required when
computing the continuous inner product, (u, v) = uT

L MLvL because the local
Gauss–Lobatto quadrature weights take proper account of contributions from
each element. The proposed routine for computing the algebraically weighted
inner product (8.5.1) would equally serve to compute uT

L MLvL by simply pass-
ing the diagonal matrix ML as the weight rather than the inverse multiplicitywL .

Steps requiring interprocessor exchanges, such as direct stiffness summation,
and those involving global information, such as mesh input and solution output,
typically need global references. These can be provided by establishing local-
to-global and global-to-local integer mappings during problem setup. In the
example of Figure 8.5.1 one might have arrays

loc to glob el(:, 0) = {1, 4, 5},
loc to glob el(:, 1) = {2, 3},

glob to loc el(:) = {1, 1, 2, 2, 3},
glob to loc proc(:) = {0, 1, 1, 0, 0},
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where loc to glob el(e, p) holds the global element number associated with
the eth element on processor p, glob to loc el(eg) holds the local element
number associated with element eg , and glob to loc proc(eg) holds the pro-
cessor number to which eg ∈ {1, . . . , Eg} is mapped. Typically, these arrays
are established during domain partitioning, which is the subject of Section
8.5.3.

We make a few comments regarding practical implementations of these
methods. The first is that the code should be written so that the number of
processors may be selected at run time. Provided that all array declarations scale
as the number of elements per processor (E) and not as Eg , the simulation size
should be able to increase linearly with the number of processors.

A related issue is how the mesh should be read from a file. Should one pro-
cessor read the mesh and parcel out data to the others, or should each processor
open the file and read only its portion of the mesh? On most systems, it is possi-
ble to have all processors open the same file for reading (not writing) provided
P <˜ 100. However, congestion can result for larger values of P , and it is more
efficient to have just one or a few nodes read the mesh and distribute appro-
priate sections to the other processors. Fortunately, for high-order methods the
number of mesh elements is relatively small, and congestion at the input stage
is encountered only for large problems.

Similarly, for output, the most universally applicable approach is to have
node 0 open a file and have every processor pass data to it for writing. Although
parallel I/O is becoming more established, particularly with the development
of MPI-2 [172], most machines will not support P processors simultaneously
writing to the file system. To allow the flexibility of using parallel I/O for large
P , one can generalize the “pass to node 0” scheme so that P ′ " P nodes write
to P ′ independent files, each handling the I/O for subgroups. For this reason,
the I/O routines should support an unstructured file format with tags for each
element, so that the order of the file contents is immaterial. This allows the P ′

output files simply to be concatenated at a later time for postprocessing without
having to sort the data.

8.5.2 Direct Stiffness Summation

The principal communication utility in parallel weighted residual implementa-
tions is the gather–scatter operation, or direct stiffness summation,-′ := Q QT .
As noted in Section 4.5.1,-′ involves the summation of two or more local nodal
values corresponding to the same global degree of freedom. As illustrated in
Figure 8.5.2(a), nodal values on conforming element interfaces have a unique
representation on the physical grid but are replicated two or more times in
the element-based storage format in order that local matrix–vector products



402 8. Vector and Parallel Implementations

(a)

(b) (c)

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

Interface ✲ Interface✛

Interface
✻

Interface

❄

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

� � � � � �

� � � � � ��

� �

�

❄

✻

❄

✻
+

❄

✻

❄

✻
+

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

✛ ✲

✛ ✲

+

✛ ✲

✛ ✲

+

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

�

�

�

�

+
✒✠ ✌

✠ ✌✒

�

❘

❘

�

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

�

�

�

�

✛ ✲

✛ ✲

+

✛ ✲

✛ ✲

+

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

� � � � � �

� � � � � ��

� �

�

�

�

�

�

❄

✻

❄

✻
+

❄

✻
+

Figure 8.5.2. Direct stiffness communication patterns: (a) physical grid for (E, N ) =
(4, 4) in d = 2 space dimensions; (b) edge–vertex exchange algorithm requiring three
messages per element (processor); (c) synchronized edge–edge exchange algorithm
requiring d messages per element.
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ṽe = K eue may be evaluated independently. Figure 8.5.2(b) and (c) illustrate
two common approaches to implementing -′ in parallel.

The first approach, illustrated in Figure 8.5.2(b), consists of separate edge
exchanges of N words, followed by corner exchanges of one word each. In
three dimensions, the edge exchange is preceded by a face exchange. Because
individual edge, vertex, and face exchanges are all short (m " m2), it is impor-
tant to collect data destined for a given processor into a single longer message
to reduce the latency costs. Given that a single element in R

3 typically has 26
neighboring elements, the number of messages may still be quite large. For
example, in the case of one element per processor with N 2 " m2, the cost of
-′ will be roughly 26αta .

The second approach, suggested in [131], is based on the d-directional ex-
change of edge (face) data illustrated in Figure 8.5.2(c). By synchronizing the
edge exchanges, the vertex values that are shared by 2d processors are correctly
updated without the need for expensive individual messages. This algorithm
is efficient for tensor-product (globally structured) arrays of elements because
it requires only 2d message cycles (two per spatial direction) – far less than
the 3d − 1 of the vertex-edge algorithm. For a structured array of elements
with E = P and N 2 " m2 the direct stiffness summation cost would be only
6αta . Couzy [83] found the d-directional exchange superior to the edge-vertex
approach on the Cray T3D, but found no significant advantage on the Intel
Paragon, which had relatively fast communication.

The directional exchange approach breaks down wherever the elements are
not topologically aligned in a tensor-product array (e.g., in the five-element
mesh of Figure 8.5.1). To overcome this difficulty, Fischer and Patera [131]
suggested a two-phase strategy that uses the d-directional exchange to update
the majority of the nodes, followed by a vertex-combine operation to update
the remaining Nspec “special” nodes not correctly treated in the first phase. In
the original implementation, the special-node combine was implemented as
an all reduce on an Nspec-tuple. To reduce costs when P > 128, Fischer
[125] developed a generalized combine based on the crystal router concept of
Fox et al. [139]. This procedure begins by subdividing the processor group
{0, . . . , P − 1} into two consecutively ordered subgroups, each comprising
P ′ = P/2 processors. If a nodal value resident on processor p is shared by
any processor in the complementary subgroup, that value is added to a list to
be sent to processor q = p ± P ′, where the sign is chosen such that q is in
the complementary subgroup. If the node in question is also resident on q,
the incoming value from p is summed to the current value on q . Otherwise, it
is stored on q and labeled “resident on q .” (Intermediate storage is therefore
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required on q.) Since the procedure is symmetric, reciprocal action is taken in the
complementary subgroup (i.e., q sends to p). The process recurs log2 P times
by dividing each subgroup into new complementary pairs and repeating the
exchange within each subgroup. Because each stage requires P/2 bidirectional
exchanges (one send from each processor), the generalized combine can poten-
tially suffer network contention. However, because data cross subgroup bound-
aries only where needed, the messages are much shorter than required for the
all reduce.

The potential of this approach was demonstrated in [125] for a spectral-
element problem with (E, N , d) = (512, 9, 3). Out of 375,000 grid points,
15,000 were located on the “wire frame” comprising the spectral element edges.
For a P = 512 processor implementation, the synchronized exchange of faces
correctly treated all but Nspec = 2000 of the vertices. Treating these with the
generalized combine required only log2 P exchanges of less than 100 words
each and required significantly less time than the all reduce approach, which
required 2 log2 P exchanges of length Nspec.

Although potentially efficient, the implementation of the directional-
exchange approach to -′ can be quite tedious, error-prone, and inflexible in the
face of new discretizations. A more general and straightforward approach to-′

developed by Tufo [389] has proven successful in a number of high-order appli-
cations (see [119, 390]). Here, the geometry of the problem is discarded, and-′

is viewed simply as an unstructured operation on a vector of data represented as
the application of the Boolean matrix Q QT to a set of reals (as in Figure 4.5.3).
The code is implemented as a standalone utility with a simple interface requir-
ing two calls, handle=gs init(global index,n), and ierr=gs op(u,op,handle),
where global index() associates the n := (N + 1)d E (p) values of uL on node p
with their global counterparts, and op denotes the reduction operation (e.g.,+,
∗, max) to be performed on shared elements of uL .

Suppose, for example, that one has the global orderings shown in Figure
8.5.3. If 1 were assigned to node 0 and 2 to node 1, then each processor
would call gs init with the respective lists:

node 0: global index={1 2 3 4 5 6 7 8 9}
node 1: global index={3 10 11 6 12 13 9 14 15}

The initialization phase sorts the lists, finds commonalities, and establishes the
number and list of processors sharing each node. This is readily effected by using
a bin sort in which the dynamic range (1 to 15 in the present case) is partitioned
into bins B p, p = 0, . . . , P − 1. Each processor p partitions its global index
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Figure 8.5.3. (a) Global numbering and (b) partition onto two processors.

array among the bins and sends the contents of Bq to processor q, where they
are sorted with data received from other processors and then returned to the
originating processor with the requisite pointers. The execution (gs op) phase
uses indirect addressing to extract shared elements from uL ({u3, u6, u9}on node
0 and {u1, u4, u7} on node 1 in the present example) and combines these by using
pairwise and/or tree exchanges, depending on the number of processors sharing
a given vertex. Elements of uL interior to an element are not touched during
the update. To reduce communication, those that are shared within a processor
are summed locally and then exchanged with other processors, if necessary.

Because it separates the geometry and PDE aspects of the problem from
the communication and computer science issues, this “geometry-free” ap-
proach to implementing -′ greatly simplifies parallel code development. It has
proven quite successful in terascale spectral-element applications [124] and in
tetrahedra-based computations [119]. It also has advantages in nonconforming
methods where a geometric interpretation is not straightforward.

For example, in the interpolation-based case illustrated in Figure 8.5.4, QT
m

is effectively factored into Q̂T J T , where Q̂T is the Boolean matrix accumulat-
ing the sum to the global unknowns (center), and J is a block-diagonal matrix
comprising the local interpolation operators Jee′ , which map the global degrees
of freedom onto element faces. Application of J and J T is fully concurrent,
whereas Q̂ Q̂T can be implemented, for example, by using gs op [390]. In the
gs op implementation, one simply lists the five highlighted vertices as corre-
sponding to the same degrees of freedom (e.g., global index={1 2 3 4 5 . . .}).
The entries of Jee′ are determined by the geometry on the shared interface (see
Section 7.3).

Finally, we note that much of the difficulty and communication overhead
associated with -′ is directly attributable to the need for vertex and edge
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Figure 8.5.4. Schematic of QT
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interface variables.

updates. To alleviate this situation, Ben Belgacem and Maday [28] developed
an interface condition that requires only face–face exchanges between elements
and thus greatly reduces the connectivity requirements. This method appears
to be particularly attractive in the context of nonconforming discretizations
in R

3.

8.5.3 Domain Partitioning

When partitioning the domain for distributed processing, one must consider the
issues of load balance, that is, having a uniform distribution of work across pro-
cessors, and of communication, which is generally proportional to the number
of vertices on the boundaries of the processors subdomains. Although difficult
to solve exactly, this optimization problem has a fairly broad minimum, so that
heuristics-based approaches are successful. Of these, we mention three: the
greedy algorithm, recursive coordinate bisection, and recursive spectral bisec-
tion. Each of these algorithms itself can be parallelized [413], a fact that may
be important for large problems, or for problems that require adaptive mesh
refinement [75, 356].

The greedy algorithm [121] is the simplest. Starting with any element, neigh-
boring elements are added until E/P have been included; one then proceeds to
a new seed element, and the process is repeated. Accumulation and seed heuris-
tics can be added to yield reasonable subdomains. The recursive coordinate bi-
section method successively partitions subdomains along the longest axis (e.g.,
computed from the moment of inertia, which is readily computed in parallel).
Element aspect-ratio effects can be mitigated by rescaling the coordinates so
that the average aspect ratio is unity [356].
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Recursive spectral bisection [314] successively orders elements within a
subdomain according to their rank in the Fiedler vector – the vector associated
with the second smallest eigenvalue of the dual graph Laplacian matrix. For a
mesh containing E elements, the dual graph Laplacian G is an E × E matrix
with Gii equal to the number elements adjacent to i , Gi j = −1 for each ad-
jacent element pair (i ,  j ), and zeros elsewhere. The lowest eigenpairs can
be readily found by modifying the CG algorithm as discussed in [160]. Mesh
elements associated with the E/2 lowest Fiedler-vector entries are grouped into
one subdomain, and the rest are put into the other. The process is repeated on
each subdomain until P subdomains have been established. For example, for a
one-dimensional array of consecutively ordered elements, G would correspond
to the classic FD Laplacian with 2 along the main diagonal (save for the first and
last entries, which would be 1), and−1 along the first upper and lower diagonals.
The first eigenvector is the constant mode, and the second (the Fiedler vector)
is the slowly varying wave, cos[π i/(E + 1)], i = 1, . . . , E . The midpoint of
this wave corresponds to the dissection point that partitions the elements into
two groups.

Several software packages are available to implement domain partitioning
strategies, including Metis [222], Chaco [199], Jostle [403], and WGPP [178].
They offer many optimizations, including variable weighting, a feature that can
be important if the work per element is not uniform.

8.5.4 Coarse-Grid Solves

An important consideration in developing scalable solvers for elliptic problems
is parallelization of the coarse-grid solve. As noted in Section 7.2.3, this can
be important for the convergence of iterative methods, particularly for the pres-
sure computation, which is less well conditioned than the Helmholtz problems
associated with implicit treatment of the viscous terms.

The coarse-grid problem, K0x = b, typically has O(E) ≈ P degrees of free-
dom, which makes it a relatively small parallel problem. Because K−1

0 is com-
pletely full, however, the solution x is dependent on every element of b, implying
that an all-to-all communication is required because both b and x are distributed
vectors. Moreover, the coarse-grid problem is solved on every iteration, mak-
ing a fast solution scheme imperative. Numerous articles have considered this
problem in detail, including [169, 125, 120, 126, 391].

The simplest approach to the coarse-grid problem is to gather a copy of b
onto each processor by using a concatenate variant of all reduce and then to
compute x redundantly on each processor. An optimal implementation would
require (α log2 P + βn)ta time for communication and O(n log n) or O(n

4
3 )
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operations, assuming a nested-dissection ordering in R
2 or R

3, respectively.
Note that the work does not decrease with increasing P and that the communi-
cation increases with P . Moreover, if n ≈ P , then the work actually increases
with P . As a result, the redundant solution approach is limited to approximately
P < 64. For P > 64, a significant improvement can be obtained by explicitly
computing K−1

0 in a preprocessing step and storing rows corresponding to local
degrees of freedom on each processor [170, 125]. The solution is computed
by gathering b onto each processor and computing xi = r T

i b, where r i is the
i th row of K−1

0 . The communication cost is identical to the redundant-solve
approach. However, the work is O(n2/P): significant concurrency has been
obtained.

To reduce the communication and work still further, Farhat and Chen [120],
Fischer [126], and Tufo and Fischer [391] developed coarse-grid solvers based
on projection. The solution is cast as the readily parallelized product x = X X T b,
where the columns of X are constructed so that X T K0 X = I [see (2.7.36)].
Farhat and Chen based X on Krylov spaces generated during initial calls to
their PCG solution of the coarse-grid problem. They found that accumulating≈
n/4 columns of X suffices to give an accurate projection without need for further
PCG iterations.

A different approach was taken by Fischer and Tufo, who used projection
onto a set of carefully ordered unit vectors to develop a quasi-sparse factor-
ization of K−1

0 . They showed that, if K0 is a sparse SPD matrix arising from a
d-dimensional mesh, it is possible to find (via nested dissection) a factorization
K−1

0 = X X T , where X has O(n(2d−1)/d ) nonzeros, such that the parallel work
to compute x = X X T b is O(n(2d−1)/d/P). Moreover, the communication cost
is only O(n(d−1)/d log2 P). Examples in [391] show that this algorithm sub-
stantially outperforms the redundant solve and distributed K−1

0 approaches for
large values of P and n.

8.6 Applications

We turn now to a number of applications that illustrate the combined potential
of high-order methods and high-performance computing.

8.6.1 Hairpin Vortices

Since the early work of Theodorsen [378], hairpin vortices have been recognized
as important dynamical structures in both transitional and turbulent boundary
layers. Recently, a number of numerical and experimental studies have sought
to understand the dynamics of multiple interacting hairpins (see [424] for a
list of references). Among these, Acalar and Smith [1] undertook extensive
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Figure 8.6.1. (a) Computational domain showing inlet velocity profile, flat plate, hemi-
sphere, and isolated hairpin vortex. For clarity, the vortex has been reflected about the
symmetry plane. (b) Strouhal number versus Reynolds number for the E = 1021 and
E = 1535 meshes.

visualization studies of the growth and topology of hairpin-vortex chains in-
duced by a hemispherical roughness element. Spectral-element simulations by
Tufo et al. [392] presented detailed observations of hairpin-vortex evolution
in the same configuration, using the computational domain shown in Figure
8.6.1(a), which consists of a unit-radius hemisphere centered at the origin, a
Blasius inlet profile at x = −10, and a Neumann outflow condition at x = 30.
Computational grids comprise either E = 1021 or 1535 elements, of order
N = 4 to 15, depending on the Reynolds number. Scaling is based on the rough-
ness height k and velocity Uk that would be observed at height k in the absence
of the roughness element, giving rise to two independent parameters, namely,
the Reynolds number Rek := kUk/ν and the nondimensional boundary layer
thickness δ := δ99/k. At sufficiently high Reynolds numbers, the steady inflow
boundary layer destabilizes, leading to periodic shedding of hairpin vortices at
nondimensional frequencies St := f k/Uk , as shown in Figure 8.6.1(b). Figure
8.6.2 shows a typical chain of of hairpin vortices at Rek = 922, visualized by
using the λ2 criterion of Jeong and Hussain [213]. Stationary horseshoe vortices
are visible upstream of the roughness element.

To study the scalability of the SEM, Tufo and Fischer [390] used an octree
refinement of the E = 1021 mesh to obtain an (E, N ) = (8168, 15) mesh with
27.8 million velocity points, which was run on up to 4096 processors on the Intel
ASCI Red machine at Sandia National Laboratories. Each node of ASCI Red is a
dual-processor 333-MHz Pentium Pro, giving a peak theoretical performance of
666 Mflops/node. The results of this study, summarized in Table 8.6.1, reveal
nearly linear speedup as P is increased from 512 to 2048. In addition, the
importance of fast matrix–matrix routines is clearly evident. The Std. column
represents the use of a single (optimized) variant of dgemm, and the Perf. column
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Figure 8.6.2. Profile (top) and planform (bottom) views of hairpin and secondary vortices
generated in a boundary layer by a hemispherical roughness element for Rek = 922. The
spectral-element parameters are (E, N ) = (1021, 11).

represents the use of the best possible option in each of the configurations
presented in Table 8.3.1. The coarse grid for this problem has 10,142 distributed
degrees of freedom. The X X T -based coarse-grid solver accounts for 1.0% of
the total time in the worst-case scenario of 2048 nodes in dual-processor mode.

8.6.2 Driven Cavity

The DNS of the lid-driven cubic cavity flow was extensively investigated by
Leriche and Gavrilakis [239, 240]. The basic algorithm is a Chebyshev collo-
cation method with a direct solver based on the fast diagonalization method
(4.2.15) [250, 181].

Table 8.6.1. ASCI Red Performance (Gflops):
E = 8168, N = 15.

Std. mxm Perf. mxm

P Single Dual Single Dual

512 47 67 65 94
1024 93 135 132 191
2048 183 267 257 361
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Figure 8.6.3. Three-dimensional driven cavity at Re = 5000 (due to Leriche [239]).

Figure 8.6.3 shows the problem definition. The flow field is contained within
a cavity enclosure and is driven by imposing a velocity on the top wall. On the
remaining five sides no-slip conditions are assumed. The top surface moves
with a velocity component that is a high-degree polynomial to smooth out the
edge singularities, still approximating the unit profile as closely as possible.
The parallel version of the code is based on the parallel implementation of the
BLAS routines developed by Nec Inc.

Table 8.6.2 gives the parallel performance of the code for a 1293 mesh as a
function of the number of processors on a Nec-SX4: the speedup factors, the
Gflops sustained, and the CPU time in seconds per time step [241]. The degree
of vectorization is 99%. The execution speed on 16 processors on a Nec-SX4 is
0.7 µs per collocation point per time step. For comparison, Table 8.6.3 shows

Table 8.6.2. Parallel performance of the code with the final mesh 1293, in
terms of the speedup factors, the Gflops sustained, and the CPU time in
seconds per time step, as a function of the number of processors on a

Nec-SX4. The CPU time is the sum of the CPU time spent on each
processor, divided by the number of processors.

Processors Speedup Gflops CPU (s/�t)

1 1.00 1.937 18.955
2 1.97 3.803 9.653
4 3.85 7.452 4.926
8 7.36 14.249 2.577

10 9.22 17.852 2.057
12 10.70 20.723 1.772
16 13.40 25.962 1.415
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Table 8.6.3. Parallel performance of the real
matrix–matrix multiplication of the NEC library

(ASL/SX R13.1) in terms of the speedup factors and the
Gflops sustained, as a function of the number of

processors on a Nec-SX4. The matrix order is 5000.

Processors Speedup Gflops

2 2.00 3.99
4 4.00 7.99
8 7.99 15.96

16 15.93 31.82

the speedup and the sustained Gflops for the parallel real matrix–matrix mul-
tiplication of the NEC library (ASL/SX R13.1) as a function of the number
of processors. The results are similar up to 8 processors. For 16 processors,
the parallel matrix–matrix multiplication continues to exhibit perfect linear
scaling with the number of processors, whereas the performance of the parallel
Chebyshev code slows because of the small size of submatrices on each proces-
sor, which leads to communication between processors being more important
than the local work on a single processor.

At Re ≥ 104, the DNS of the cubical cavity flow shows both transient and
steady-in-the-mean states that possess long time scales requiring long inte-
gration times. A large fraction of the total kinetic energy and dissipation is
concentrated in the near-lid mean flow. The flow over most of the domain is
laminar, with distinct wall-jet profiles found near three of the walls. The high-
momentum fluid near the lid transmits its energy into a downflowing nonparallel
wall jet, which separates ahead of the bottom wall. From the collision of this
separated layer against the bottom wall, two wall jets emerge. This process
is clearly illustrated in right part of Figure 8.6.3, where isosurfaces of the u
velocity component are shown near the the lid and the bottom of the cavity,
while isosurfaces of the v velocity components are shown near the two vertical
lateral walls. In this process the energy lost to turbulence by the impingement
is partly recovered by the emerging wall jets.

8.6.3 Backward-Facing Step

Spectral-element calculations of the 3D flow over a backward-facing step were
undertaken by Couzy [83]. The geometry is given in Figure 8.6.4. This geometry
corresponds to the experimental setup of Armaly et al. [7]. The length of the
channel behind the step is 19, which is long enough at the Reynolds number
considered (Re = 343) to accommodate a fully developed velocity profile at
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Figure 8.6.4. Geometry of the backward-facing step with a 1 : 1.94 expansion ratio.
For the Reynolds number considered here, two recirculation zones are of interest. Their
locations are indicated in the symmetry plane.

the exit. The Reynolds number is defined with a reference velocity based on
the average inlet velocity, and the reference length is twice the inlet channel
height. Figure 8.6.5 shows the mesh, which comprises 128 spectral elements.
The numerical results will be presented for two polynomial degrees, namely,
N = 9 and N = 11. They produce almost coincident results, showing the good
resolution of both discretizations. As soon as all spurious numerical transients
associated with the start of the computation are over, a third-order projection
scheme (6.2.31) is used together with a subcycling method based on RK4.

The length of the recirculation zone behind the step increases linearly with
the Reynolds number, as is seen in Figure 8.6.6, and agrees well with the
experimental data and the DNS results of Kim and Moin [223]. A 3D flow
develops with a growing boundary layer along the side wall, interacting with
the recirculation zone.

In Figures 8.6.7 and 8.6.8, the streamwise velocity component is shown at
various locations. Note that the origin of the axes is now at the bottom of the
step. In particular, the observation line at x = 3.22, y = 0.75 shows the vertical
recirculation at the side wall.

Figure 8.6.9 indicates clearly that 3D effects are not limited to the boundary
layer. Moreover, the spanwise velocity component also changes sign near the

Figure 8.6.5. Spectral-element distribution. True aspect ratio.
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side wall. A test for spatial convergence is obtained by increasing the polynomial
degree from N = 9 to N = 11. No noticeable change can be observed.

8.7 Further Reading

Parallel-performance analysis of high-order multidomain methods can be found
in Fischer and Patera [131], Fischer [125], and Evangelinos et al. [119]. For
analyses of global spectral methods, see for example Pelz [304] and Wray and
Rogallo [415]. For a discussion of object-oriented spectral-element implemen-
tations, see the papers by Dubois-Pèlerin and coworkers [116, 114, 115].

A significant challenge in parallel PDE solution that has not been addressed
in this chapter is the issue of dynamic load balancing in the presence of adaptive
refinement. For low-order FEs there have been many significant efforts in this
area. The works of Shephard et al. [356], Castaños and Savage [76], and the ref-
erences therein give an overview of the fundamental issues. Parallel adaptivity
has also been addressed in the high-order context by Henderson [195].



Appendix A
Preliminary Mathematical Concepts

This appendix deals with a few mathematical concepts pervading the book,
which are related to spaces of functions and systematically use the language of
geometry.

A.1 Metric Spaces

A metric space is the simplest mathematical structure where the evaluation of
some “distance” between mathematical objects is made possible.

A.1.1 Definition

Let X denote a nonempty set of elements x, y, z, . . . , the nature of which is
unspecified, and let d : X × X → R denote a real-valued mapping such that
for every couple (x, y) ∈ X × X one has

d(x, y) = d(y, x), (A.1.1)

d(x, y) = 0⇐⇒ x = y, (A.1.2)

d(x, y) ≤ d(x, z) + d(z, y). (A.1.3)

It is easy to show that these properties imply that d(x, y) is finite and nonnega-
tive. The pair (X, d) is a metric space, and d(x, y) is a measure of the distance
between the elements x and y. For obvious reasons, the axiom (A.1.3) is known
as the triangle inequality.

A metric space (S, d̂) is a subspace of (X, d) if S is a subset of X and if the
metric d̂ is a restriction of d to the elements of S:

d̂ := d|S×S. (A.1.4)

417
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The distance d̂ is the metric induced by d, and most of the time one represents
the subspace by (S, d).

Examples of Metric Spaces

Example 1: Space R
n

For any two elements of R
n , x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn), the distance

d(x, y) may be measured by

d(x, y) := [(ξ1 − η1)2 + · · · + (ξn − ηn)2]1/2. (A.1.5)

For n = 2, the expression (A.1.5) is the Euclidean metric of plane geometry.

A more abstract example, useful for understanding some of the subtleties of
the theory, is the following.

Example 2: Discrete metric space
Let X denote any collection of elements. The distance d(x, y) between two
elements x, y ∈ X is defined by

d(x, x) := 0, d(x, y) := 1 if x �= y. (A.1.6)

The relation (A.1.6) satisfies the axioms (A.1.1)–(A.1.3). Therefore (X, d) is a
metric space, usually called the discrete metric space.

As the latter example shows, a metric space is not necessarily a vector space.

A.1.2 Open Set, Closed Set, Neighborhood

Given a metric space (X, d) and an element x ∈ X , one defines the open ball
B(x ; r ) and the closed ball B̄(x ; r ) of center x and radius r as, respectively,

B(x ; r ) := {y ∈ X | d(x, y) < r}, (A.1.7)

B̄(x ; r ) := {y ∈ X | d(x, y) ≤ r}. (A.1.8)

Let (S, d) denote a subspace of (X, d). The set S is said to be open if it
includes a ball about each of its elements. The set is said to be closed if its
complement SC (:= X − S) is open.

Examples taken from geometry usually suggest that subsets of metric spaces
are either open or closed. The reader must be aware that this is not so in general.
Applying the definitions to the discrete metric space given in Example 2, one
verifies easily that for this particular case, all subsets are both open and closed.
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In limiting processes one often uses the concept of ε-neighborhood. An ε-
neighborhood of x ∈ X is an open ball of radius ε. By extension, a neighborhood
of x ∈ X is any subset containing an ε-neighborhood of x .

A.1.3 Cauchy Sequence, Limit Points, Dense Sets

Let (X, d) denote a metric space. A sequence {xn}∞n=1 of elements of X is a
Cauchy sequence if, for every ε > 0, there is an index N = N (ε) such that

d(xm − xn) < ε ∀m, n > N . (A.1.9)

Assume S is a subset of X . Any element x ∈ X , not necessarily in S, is
called a limit point (or an accumulation point) of S if every ε-neighborhood of
x contains at least one element y ∈ S distinct from x . The set comprising the
points of S and the limit points of S is called the closure of S and is denoted
by S̄.

Let (X, d) be a metric space and S a subset of X . The subset S is said to
be dense in X if its closure S̄ is identical to X , that is if S̄ = X . A metric
space (X, d) is said to be separable if X has a countable subset (i.e., a subset
where the elements may be put in a one-to-one correspondence with the natural
numbers) that is dense in X .

A.1.4 Mapping, Domain, Range, Continuity

Let (X, dX ) and (Y, dY ) denote two metric spaces and M be a subset of X . A
mapping T from M into Y is an operation that associates with each x ∈ M a
unique y ∈ Y . One usually writes y = T x . The element y is the image of x
with respect to the mapping. The subset M is the domain D(T ) of T , and the
set of elements R(T ) ⊆ Y such that

R(T ) := {y ∈ Y ; y = T x, x ∈ D(T )}

is called the range of T .
The set of all elements x ∈ D(T ) such that T x = y0 for a given y0 is called

the inverse image of y0.
A mapping T is called a surjection if R(T ) covers the whole metric space,

that is, if R(T ) = Y . It is called an injection if different elements in D(T )
have different images: x1 �= x2 ⇒ T x1 �= T x2. Finally, a mapping that is both
surjective and injective is called a bijection.

If T is a bijection of M ⊂ X into Y , then there exists an inverse mapping T−1

such that for any y ∈ Y , a unique element x ∈ M exists such that T−1 y = x .
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Let T : X → Y denote a mapping of X onto Y . The mapping is said to be
continuous at the element x0 ∈ X if for every ε > 0 there exists a δ > 0 such
that

dY (T x, T x0) < ε ∀ x ∈ X with dX (x, x0) < δ.

A mapping T is continuous if it is continuous at every point in the domain
D(T ). The following important theorem relates continuous mappings to open
(or closed) sets.

Theorem A.1 (Continuous mapping) A mapping T of a metric space X onto
a metric space Y is continuous if and only if the inverse image of any open
(closed) subset of Y is an open (closed) subset of X.

A.1.5 Convergence, Completeness, Completion Process

Consider S := {xn}∞n=1, a sequence of elements of X . Clearly, S is a subset of X .
A sequence S is said to be convergent if there exists a (unique) element x ∈ X
that is a limit point of S.

Every convergent sequence in a metric space (X, d) is a Cauchy sequence,
but the converse is not true. Metric spaces in which every Cauchy sequence is
a convergent sequence are said to be complete. If this condition is not fulfilled,
the metric space is incomplete.

Completeness is the most desirable property of spaces of functions, because
it warrants the existence of solutions obtained by using limiting processes. A
fundamental theorem of functional analysis states that every incomplete metric
space can be completed.

Theorem A.2 (Completion process) Let X := (X, d) be an incomplete metric
space. There exists a complete metric space X̂ := (X̂ , d̂) having a subspace V
that is dense in X̂ and such that V and X may be related by a one-to-one
transformation T preserving the metric, in other words, such that

d̂(T x, T y) = d(x, y), x, y ∈ X, T x, T y ∈ X̂ .

The space X̂ is unique except for the transformation T .

Most of the time, the subspace V is identified with the incomplete space X
itself, and X̂ is the closure of X . The construction process for X̂ is the following.
One identifies the set of all equivalent Cauchy sequences in X . Two Cauchy
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sequences {xn}∞n=1 and {x ′n}∞n=1 are equivalent ({xn} ∼ {x ′n}), or belong to the
same equivalence class x̂ , if

lim
n→∞ d(xn, x ′n) = 0.

The set X̂ is made of all equivalence classes x̂ , ŷ, ẑ, . . . , and one defines the
distance d̂ between x̂ and ŷ by

d̂(x̂, ŷ) := lim
n→∞ d(xn, yn), (A.1.10)

where the Cauchy sequences {xn} and {yn} are representatives of their equiv-
alence classes. One may easily show that the limit in (A.1.10) is independent
of the selection of the representatives and that d̂ satisfies the axioms (A.1.1)–
(A.1.3) (see [228]).

A.2 Normed Spaces

The real interest for equation solution lies in real (or complex) abstract vector
spaces where linear combinations of elements (e.g. functions, or distributions)
from a given set also belong to it. Normed spaces and inner-product spaces
are mathematical structures that allow the generalization of concepts such as
“length,” “distance,” and “angle” in abstract vector spaces. We begin with the
concepts of length and distance.

A.2.1 Definition

Let X denote a real vector space. A norm on X is a nonnegative real function
‖·‖: X → R such that for any x ∈ X one has

‖cx‖ = |c|‖x‖, (A.2.1)

‖x + y‖ ≤ ‖x‖ + ‖y‖, (A.2.2)

‖x‖ = 0 ⇐⇒ x = O, (A.2.3)

where O is the null vector of X .
In some cases only the properties (A.2.1) and (A.2.2) are satisfied. If there

exist elements x �= O such that ‖x‖ = 0, then the application X → R is called
a seminorm. A seminorm is usually denoted by |·|.

A normed space is a vector space equipped with a norm. The norm of a
vector is a measure of its “length.” For any two vectors x, y ∈ X , therefore,

d(x, y) :=‖x − y‖ (A.2.4)



422 Appendix A. Preliminary Mathematical Concepts

is a measure of their distance. Normed spaces are metric spaces with a metric
induced by the norm as shown by (A.2.4), the property (A.2.2) being another ex-
pression of the triangle inequality (A.1.3). As a consequence, all concepts such
as Cauchy sequences, limit points, and dense subsets introduced in Section A.1
for metric spaces are readily transposable to normed spaces.

Before giving two examples of normed spaces, we point out that different
normed spaces may be built on the same vector space, depending on the norm.

Examples of Normed Spaces

Example 1: Space R
n

Let x = (ξ1, . . . , ξn) ∈ R
n and p ≥ 1. The expression

‖x‖ := (|ξ1|p + · · · + |ξn|p)1/p, (A.2.5)

satisfies the axioms (A.2.1)–(A.2.3) and therefore defines a norm over R
n ,

called the p-norm. The case p = 2 is important in practice and corresponds to
the familiar Euclidean (or square) norm. The property (A.2.2) applied to the
p-norm (A.2.5) is also known as Minkowski’s inequality:(

n∑
i=1

|ξi + ηi |p
)1/p

≤
(

n∑
i=1

|ξi |p
)1/p

+
(

n∑
i=1

|ηi |p
)1/p

.

Example 2: Space C[a, b]
To every element x ∈ C[a, b] where C[a, b] is the set of continuous real func-
tions in [a, b], we associate the real quantity

‖x‖ := max
t∈[a,b]

|x(t)|. (A.2.6)

C[a, b] is a vector space because any combination of continuous functions is
continuous. The quantity (A.2.6) is called the maximum norm, and C[a, b] is a
normed space. One verifies easily that the expression

‖x‖ :=
(∫ b

a
x2(t) dt

)1/2

, (A.2.7)

called the L2 norm, also satisfies the axioms for a norm and therefore leads to
another normed space.

A.2.2 Banach Spaces

Normed spaces in which every Cauchy sequence has a limit are complete.
Complete normed spaces are called Banach spaces. Since normed spaces are
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also metric spaces, incomplete normed spaces may be completed by using the
completion process described in Section A.1.5 with the metric (A.2.4).

One may show that the vector space C[a, b] with the maximum norm (A.2.6)
is complete, whereas Cauchy sequences of elements of C[a, b] in the metric
induced by (A.2.7) may tend toward discontinuous functions.

A.3 Linear Operators and Functionals in Normed Spaces

In Section A.1.4, we introduced mappings between metric spaces. When map-
pings apply between vector spaces, they are called operators. Linear operators
form an important class of mappings, for which we give a few basic results.

A.3.1 Linear Operator, Domain, Range, Nullspace

Let (X, ‖·‖X ) and (Y, ‖·‖Y ) denote two real normed spaces. A linear operator
is a mapping T : D(T )→ R(T ) between subspaces of X and Y that satisfies
the following property:

T (αx1 + βx2) = αT x1 + βT x2 ∀x1, x2 ∈ D(T ) ⊆ X,

where α and β are any real quantities. The element y = T x is called the image
of x by T .

The domainD(T ) of T is the set of elements x ∈ X belonging to X on which
the operator T acts. The image of D(T ) is called the range R(T ) ⊆ Y of T .

The nullspace (or kernel) N (T ) ⊆ X of T is the set of elements x ∈ X such
that T x = O .

The domain, range, and nullspace of a linear operator T are vector spaces.
Furthermore, one may show that if the domain D(T ) is finite-dimensional with
dimD(T ) = n, then dimR(T ) ≤ n.

A linear operator is called a surjection if R(T ) covers the whole space Y . It
is called an injection if distinct elements in D(T ) have distinct images in R(T )
(one-to-one correspondence). In this case, it is easy to show that the nullspace
N (T ) reduces to the zero element. Injective operators are especially important
in that they possess an inverse. Operators that are both injections and surjections
are called bijections.

A.3.2 The Inverse Operator

Let (X, ‖·‖X ) and (Y, ‖·‖Y ) denote two real normed spaces with T , a mapping
between X and Y with domain D(T ) and range R(T ). The inverse operator
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T−1, if it exists, is the mapping T−1 : R(T )→ D(T ) such that

T−1T x = x ∀x ∈ D(T ), or T T−1 y = y ∀y ∈ R(T ).

The inverse of a linear operator T exists and is unique iff its nullspace N (T )
reduces to the zero element. Furthermore, in the finite-dimensional case, for the
inverse to exist, the condition dimD(T ) = dimR(T ) must be satisfied.

Linear algebra offers a simple example to illustrate these properties.

Example: Matrices

Let A = [ai, j ] denote an m × n real matrix that maps D(A) = R
n onto R(A) ⊆

R
m : 

y1

y2
...

ym

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn




x1

x2
...

xn

.
The range R(A) is the column space of A, and the nullspace N (A) is the
subspace of R

n the elements of which are solution of the system Ax = 0.
A basic result of linear algebra states that the dimensions of R(A) and N (A)

are equal respectively to r and n − r , where r ≤ min(m, n), the rank of A, is
the number of nonzero pivots in the Gaussian elimination process applied to
Ax . The inverse operator A−1 exists iff m = n and the rank r is equal to n
(see [367]).

A.3.3 Bounded Operators, Compact Operators

Assume (X, ‖·‖X ) and (Y, ‖·‖Y ) are two real normed spaces. A linear operator
T : D(T )→ Y is said to be bounded if there exists a real constant C > 0 such
that for any element x ∈ D(T ) ⊆ X one has

‖T x‖ ≤ C ‖x‖ ∀x ∈ D(T ). (A.3.1)

By definition the smallest constant satisfying (A.3.1) is the norm ‖T ‖ of the
operator T . Using a suitable transformation, one may show that

‖T ‖ = sup
x ∈ D(T )
‖x‖=1

‖T x‖. (A.3.2)

One easily verifies that ‖T ‖ given by (A.3.2) satisfies the axioms (A.2.1)–
(A.2.3).
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Following Theorem A.1, an operator T : D(T ) ⊆ X → Y , not necessarily
linear, between normed spaces is continuous at x0 ∈ D(T ) if the inverse image
of an ε-neighborhood of Tx0 is an ε-neighborhood of x0. The operator T is
continuous in D(T ) if it is continuous at every x ∈ D(T ). For linear operators,
one has the following important theorem that links continuity and boundedness.

Theorem A.3 (Continuity and boundedness) Let T : D(T ) ⊆ X → Y be a
linear operator between normed spaces. Then

1. T is continuous if and only if T is bounded.
2. If T is continuous at a single point, it is continuous.

A linear operator T : X → Y between normed spaces is compact if for
every bounded sequence {xn ∈ X, n = 1, 2, . . .}, the corresponding image
{Txn ∈ Y, n = 1, 2, . . .} has a convergent subsequence {Txnk ∈ Y, k = 1,
2, . . .}. In finite-dimensional normed spaces, every linear operator is compact.

A.3.4 Bounded Linear Functionals, Dual Spaces

Linear functionals are a special category of linear operators that map normed
spaces onto the real axis R or into the complex plane IC , depending on the scalar
field associated to the vector space.

A linear functional l : X → R is said to be bounded if there exists a constant
C > 0 such that

|l(x)| ≤ C ‖x‖ ∀x ∈ X. (A.3.3)

As a consequence of Theorem A.3, a bounded linear functional is continuous.
Since every combination of bounded linear functionals is also a bounded

linear functional, the set of bounded linear functionals on a normed space is
itself a vector space. This space is called the dual space of X and is denoted by
X ′. Endowed with the norm defined by (A.3.2), the dual space X ′ is a Banach
space. The mapping from X ′ × X into R defined by

〈l, x〉 = l(x)

is known as the duality pairing between the spaces X and X ′.

A.3.5 The Fréchet Derivative of an Operator

Let X and Y be two normed linear spaces. Let T be an operator from X into
Y . This operator is said to be Fréchet differentiable at a point u if there exists
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a continuous linear operator L(u) : X → Y such that

T (u + w)− T (u) = Lw + ε(u, w), (A.3.4)

where

lim
w∈X
‖w‖→0

‖ε(u, w)‖Y

‖w‖X
= 0. (A.3.5)

If both relations hold, the linear operator L is unique; it is called the Fréchet
derivative of T at point u and is denoted as T ′(u).

Examples of Fréchet Derivatives

Example 1
Consider the nonlinear function

T (u) = �u − un,

where n ≥ 2, n ∈ N, and � is the Laplacian operator. If u ∈ C2(), then
�u ∈ C0(). We choose the range R(T ) as Y = {y; y ∈ C0(), ‖y‖Y =
supx∈ |y(x)|}. Then Equation (A.3.4) yields

T (u + w)− T (u) = �w − nwun−1 −
(

n(n − 1)

2
w2un−2 + · · ·

)
.

We set

ε(u, w) = −
(

n(n − 1)

2
w2un−2 + · · ·

)
.

It is easy to show that ‖ε(u, w)‖Y /‖w‖X goes to zero when ‖w‖X → 0. One
therefore concludes that

T ′ = �− nun−1,

or

T ′(u, w) = �w − nun−1w.

Example 2
Consider now the nonlinear Burgers equation

T (u) = ∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, (A.3.6)
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with u ∈ C2(). Following the same steps, we obtain

T (u + w)− T (u) = ∂w

∂t
+ u

∂w

∂x
+ w

∂u

∂x
− ν

∂2w

∂x2
+ w

∂w

∂x
.

In this case, the term ε(u, w) is w ∂w/∂x . Choosing again Y as the space
defined in the previous example and assuming that supx∈ |∂y/∂x | is bounded,
we check that ||ε||Y /||w||X goes to zero. The Fréchet derivative of the Burgers
operator is consequently

T ′(u) = ∂

∂t
(·)+

(
∂u

∂x

)
(·)+ u

∂

∂x
(·)− ν

∂2

∂x2
(·), (A.3.7)

where the symbol (·) denotes the variable of the problem at hand.

A.4 Inner-Product Spaces

Normed spaces are unsuitable for defining the “orientation” of an element in
a vector space with regard to a given reference element. This is precisely the
purpose of inner-product spaces, defined as follows.

A.4.1 Definition

Given a real vector space X , an inner product on X is a real-valued mapping
(·, ·) : X × X → R such that, for any elements x, y, z ∈ X and any real number
c, the following properties hold:

(x + y, z) = (x, z) + (y, z), (A.4.1)

(cx, y) = c (x, y), (A.4.2)

(x, y) = (y, x), (A.4.3)

(x, x) ≥ 0, and (x, x) = 0 ⇔ x = O. (A.4.4)

A real inner-product space (also called a pre-Hilbert space) is a real vector
space equipped with an inner product. Inner-product spaces may be endowed
with a metric, because from the inner product (·, ·) one induces a nonnegative
quantity

‖x‖ := (x, x)1/2 (A.4.5)

that satisfies the axioms (A.2.1)–(A.2.3) for a norm. The distance between two
elements x, y ∈ X is then given by

d(x, y) := (x − y, x − y)1/2.
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This shows that inner-product spaces are also normed spaces and metric spaces.
The converse, however, is not true. Given a real-valued function ‖·‖ satisfying
the axioms of a norm, most of the time there is no associated inner product (·, ·).

Examples of Inner-Product Spaces

Example 1: Space R
n

The n-dimensional Euclidean space R
n is an inner-product space where the inner

product (also called scalar or dot product) of two vectors x = (ξ1, . . . , ξn) and
y = (η1, . . . , ηn) is defined by the symmetric bilinear form

(x, y) := ξ1 η1 + · · · + ξn ηn.

One easily verifies that all axioms (A.4.1)–(A.4.4) are satisfied.

Example 2: Space C[a, b]
The space of continuous real functions C[a, b], with the inner product

(x, y) :=
∫ b

a
x(t) y(t) dt, (A.4.6)

is an inner-product space with induced norm identical to (A.2.7).

A.4.2 Hilbert Spaces

Cauchy sequences and convergent sequences in inner-product spaces have the
same definition as in normed spaces, except that one uses the norm (A.4.5)
induced by the inner product instead of (A.1.9).

Inner-product spaces in which every Cauchy sequence has a limit in the
space are complete. Complete inner-product spaces are called Hilbert spaces.
Hilbert spaces are especially important in the numerical approximation of PDEs.

Examples of Hilbert Spaces

Example 1: Space L2(a, b)
The space C[a, b] of continuous real functions in [a, b] equipped with the inner
product (A.4.6) and induced norm is an incomplete inner-product space, be-
cause, as mentioned earlier, Cauchy sequences in the metric associated to (A.2.7)
may converge toward discontinuous functions. Completing this inner-product
space yields the Hilbert space of (classes of) Lebesgue-square-integrable func-
tions L2(a, b):

L2(a, b) := {v; (a, b) → R, v defined a.e., ‖v‖ < ∞}, (A.4.7)
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with

‖v‖ :=
(∫ b

a
|v(t)|2 dt

)1/2

. (A.4.8)

A function v ∈ L2(a, b) is said to be defined almost everywhere (a.e.) in
the interval [a, b] if it is continuous except at a finite or infinite countable set
of points in [a, b], where its value is (usually) unspecified. Such a function,
though not integrable in the Riemann sense, has a Lebesgue integral. Elements
v1, v2 ∈ L2(a, b) are said to belong to the same class if v1 − v2 is equal to zero
a.e., in which case the Lebesgue integral

∫ a
a (v1 − v2)2 dt = 0. Discontinuous

piecewise functions are a simple example of functions defined a.e.

Example 2: Space L2
w (a, b)

Letw(x) denote a nonnegative and integrable function in the interval (a, b). This
function may be used as a weight function in the definition of an inner product.
Consider, for instance, the bilinear form (·, ·) : C[a, b]× C[a, b]→ R:

(x, y) :=
∫ b

a
w(t) x(t) y(t) dt, (A.4.9)

which verifies all the axioms (A.4.1)–(A.4.4). From (A.4.9), C[a, b] is a
(weighted) inner-product space with associated norm equal to

‖x‖ :=
(∫ b

a
w(t) |x(t)|2 dt

)1/2

∀x ∈ C[a, b]. (A.4.10)

The completion of this inner-product space yields the Hilbert space of Lebesgue-
weighted-square-integrable functions L2

w(a, b).

Remark . Inner products and norms on Hilbert spaces will include the Hilbert
space in a subscript. For instance, the extensions of (A.4.9) and (A.4.10) to
L2
w(a, b) are denoted (x, y)L2

w(a,b) and ‖x‖L2
w(a,b), respectively.

Whenever the subscript is absent, we assume that the underlying vector space
is either a generic inner-product space or the Hilbert space L2.

A.4.3 Cauchy–Schwarz Inequality

Let x, y denote two arbitrary elements of an inner-product space (or Hilbert
space) X with inner product (·, ·) and induced norm ‖·‖. For every real constant
c, one has ‖x + cy‖ ≥ 0. This condition entails the fundamental inequality

|(x, y)| ≤ ‖x‖ ‖y‖, (A.4.11)
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which is known as the Cauchy–Schwarz inequality. The equality in (A.4.11)
holds iff the two vectors x, y are linearly dependent.

Further important relationships involving the vector norm may be obtained
by using the Cauchy–Schwarz inequality, among them the triangle inequality
(A.2.2), the parallelogram equality

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2), (A.4.12)

and the polarization equality

(x, y) = 1

4
(‖x + y‖2−‖x − y‖2). (A.4.13)

The relation (A.4.12) is often used to check whether a given norm has a related
inner product.

A.4.4 The Riesz Representation

The definitions and basic properties of linear operators and functionals have
been given in Section A.3.1, in the context of normed spaces. Since inner-
product (or Hilbert) spaces are also normed spaces, the results given in Sec-
tion A.3.1 apply to Hilbert spaces as well.

Let X denote a Hilbert space with inner product (·, ·) and associated norm
‖·‖. An important example of bounded linear functional is given by the inner
product. Consider a fixed element x0 ∈ X . The application l : X → R given by

l(x) := (x0, x) ∀x ∈ X (A.4.14)

is a linear functional. By application of the Cauchy–Schwarz inequality
(A.4.11), one has

|l(x)| ≤ ‖x0‖ ‖x‖, (A.4.15)

showing that l is bounded with a norm equal to ‖x0‖ [see (A.3.2)].
The following fundamental theorem states that the dual space X ′ can be

identified with X .

Theorem A.4 (Riesz representation) Given a bounded linear functional l∗ :
X → R on a Hilbert space X, there exists a unique element x̂ ∈ X depending
on l∗ such that

l∗(y) := (x̂, y) ∀y ∈ X (A.4.16)

with, in addition, ‖l∗‖ = ‖x̂‖.
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The element x̂ is known as the Riesz representation of the functional l∗.

A.4.5 Orthogonality, Orthogonal Projection

Assume X is an inner-product space (not necessarily complete) with inner
product (·, ·) and induced norm ‖·‖, and let V and W denote subspaces of X .

Two vectors x, y ∈ X are orthogonal if their inner product (x, y) = 0. This
property is sometimes denoted by x ⊥ y. Further, the vector x is orthogonal to
V (x ⊥ V ) if for all v ∈ V one has (x, v) = 0. Finally, V and W are orthogonal
subspaces of X if for all v ∈ V and all w ∈ W the property (v,w) = 0 holds.

For a given vector x ∈ X , the set x⊥ := {y ∈ X ; (x, y) = 0} of all elements
of X orthogonal to x forms a subspace called the orthogonal complement of
x . Since the inner product is a bounded linear functional [see (A.4.15)] and
the element {0} is a closed subset of R, from Theorem A.1 we see that x⊥ is a
closed subspace of X .

One defines the orthogonal complement of subspace V in a similar way, as
the set of elements V⊥ := {x ∈ X ; x ⊥ V }. The subspace V⊥ is closed for the
same reasons as above.

With these definitions, the essential “geometric” properties of Hilbert spaces
are contained in the following theorem.

Theorem A.5 (Orthogonal projection) Let V denote a closed subspace of a
Hilbert space X, and x ∈ X an arbitrary vector. There exists a unique element
v̂ ∈ V such that

‖x − v̂‖= inf
v∈V
‖x − v‖, (A.4.17)

‖x − v̂‖ ∈ V⊥. (A.4.18)

The vector v̂ is the orthogonal projection of x ∈ X onto V .

The operator PV associating to any x ∈ X an element v̂ ∈ V is, according
to (A.4.17), the orthogonal projection operator of X onto V . It is characterized
by the idempotence property

P2
V = PV . (A.4.19)

The Hilbert space X may then be decomposed into the direct sum of the closed
subspace V and its orthogonal complement V⊥:

X = V ⊕ V⊥. (A.4.20)
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For every x ∈ X , elements v and w exist such that

x = v+w, v ∈ V , w ∈ V⊥. (A.4.21)

A.4.6 Separable Hilbert Spaces, Basis

An orthogonal set V ⊂ X in an inner-product space X is a collection of elements
{vα}α∈I depending on an index α such that for any two values of the index, one
has

(vµ, vν) =
{

0, µ �= ν,

γν, µ = ν.
(A.4.22)

If, moreover, γν = 1 for all values of ν, then V is an orthonormal set.
An orthogonal set V ⊂ X in the inner-product space X is said to be total if

the closure of the vector space spanned by the elements of V is dense in X :

span V = X. (A.4.23)

Particularly simple and important in practice are the countable sets that are
closely related to separable Hilbert spaces (see Section A.1.3), as stated by the
following theorem.

Theorem A.6 (Separable Hilbert spaces) Let X denote a Hilbert space. Then:

1. If X is separable, every orthogonal set in X is countable.
2. If X contains a countable orthogonal set that is total in X, then X is

separable.

In every separable Hilbert space X , there exists a total orthogonal set V that is
countable. In the simplest case, V = {vi }ni=1 has a finite number n of elements.
Then, as a consequence of (A.4.23), any vector x ∈ X may be decomposed into
a unique combination of the elements of V :

x =
n∑

k=1

µk vk, (A.4.24)

where the coefficientsµl may be obtained by taking the inner product of (A.4.24)
with vl , yieldingµl = (x, vl)/γl . The elements of V form a basis for the Hilbert
space X , which has dimension n.

The case where V , the total orthogonal set of the Hilbert space X , is countable
and infinite is a little more delicate. Given an infinite countable set of elements,
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W ={wi }∞i=1, it is always possible to extract an infinite countable subsequence
{wik }∞k=1. What really matters is the relation (A.4.23). Therefore, to form a basis
for X , any infinite countable set of elements {vi }∞i=1 must be complete, that is,
must ensure the existence for each x ∈ X of a unique expansion

x =
∞∑

k=1

µk vk . (A.4.25)

A.4.7 Gram–Schmidt Orthonormalization Process

Because it is more convenient to work with an orthonormal basis rather than with
an arbitrary basis of vectors, one needs an algorithm to transform a given basis
into a basis satisfying (A.4.22) with γν = 1 for all values of ν. This algorithm
is known as the Gram–Schmidt orthonormalization process.

Suppose {xi }ni=1 is a given set of n linearly independent vectors forming
a basis of Xn , an n-dimensional inner-product (or Hilbert) space with inner
product (·, ·) and associated norm ‖·‖. This basis may be transformed into an
orthonormal basis {ei }ni=1, by using the following computational scheme:

• Step 1. e1 := x1/‖x1‖.
• Step 2. Assume the vectors e1, . . . , ek to be known. Set

yk+1 := xk+1 −
k∑

i=0

(xk+1, ei ) ei .

• Step 3. The vector ek+1 is given by

ek+1 := yk+1/‖yk+1‖.

Apply steps 2 and 3 repeatedly until k = n. The Gram–Schmidt process is then
completed, and one may verify that {ei }ni=1 forms an orthonormal set.

The adaptation of the Gram–Schmidt algorithm to weighted inner-product
spaces is straightforward.

Example: Orthogonal Polynomials

Let L2
w() denote the Hilbert space of Lebesgue-weighted-square-integrable

functions on := (−1,+1). The inner product is given by (A.4.9), wherew(x)
is a nonnegative integrable function over . The elementary polynomials {xk ,
k = 0, 1, . . .} are linearly independent, and one may show that they form a basis
for L2

w(). These polynomials, however, do not form a w-orthonormal set. For
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w(x) = 1 for instance, one has

(x p, xq ) =
{

2
p+q+1 , p + q even,

0 otherwise.

Applying the Gram–Schmidt algorithm with weight w yields the family of
orthonormal polynomials inwith respect tow. Two important families are the
Legendre polynomials corresponding to the weightw(x) = 1 and the Chebyshev
polynomials corresponding to w(x) = (1− x2)−1/2 (see Appendix B).

A.5 Distributions

The theory of partial differential equations has made significant progress with
the understanding that the solutions of the equations of physics are distributions
(or generalized functions), not classical functions. The concept of distribution is
so natural in physics (where one deals with charged particles, localized forces,
dipoles, multipoles, etc.) that Dirac and Heaviside used it well before its formal
definition by Schwartz [351]. Since then, the theory of distributions has been
considerably extended. For obvious reasons we will only deal with elementary
concepts of distributions in the field of real numbers for one-dimensional prob-
lems, and focus on their basic properties. All definitions and properties given
in the next subsections may be extended to the multidimensional case and to
distributions in the complex field. Readers interested in a thorough discussion
of these topics related to the solution of partial differential equations should
consult Richtmyer [326], Oden and Reddy [286], or Showalter [361].

A.5.1 Definitions

As the definition of distributions involves a vector space of test functions with
a particular concept of convergence, we first deal with that concept.

Test Functions

Let C∞0 (R) denote the set of infinitely differentiable functions having compact
support in R. The support of a function ϕ(x) on R (usually denoted supp ϕ)
is the closure of the set of points I ⊂ R on which ϕ(x) �= 0. Any element
ϕ(x) ∈ C∞0 (R) must therefore identically vanish outside a bounded interval on
the real axis.

Consider a sequence of elements {ϕn(x)}∞n=1 ∈ C∞0 (R). We say that this
sequence converges to ϕ(x) ∈ C∞0 (R) if the following conditions are met:
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• the supports of {ϕn(x)}∞n=1 and ϕ(x) are all contained in a fixed compact set
K ⊂ R;

• the derivatives of any order r , ϕ(r )
n (x) converge uniformly to ϕ(r )(x) as n

tends to infinity.

This stringent convergence condition is sometimes called the D-convergence
condition. The set C∞0 (R) with the D-convergence condition is usually denoted
D(R) and called the class of test functions.

Example of Test Functions

A classical example of a function belonging to D(R) is

ϕ(x) =
{

0, |x | ≥ 1,
exp

(− 1
1−x2

)
, −1 < x < 1.

(A.5.1)

This function has a finite support |x | ≤ 1, is infinitely differentiable in R, and
vanishes identically together with its derivatives of every order at |x | = 1. The
reader will easily verify that any (finite) translation and homothetic transfor-
mation of the real axis on (A.5.1) produces another test function

φ(x) = ϕ

(
x − a

λ

)
, (A.5.2)

with nonzero values in the interval a − λ < x < a + λ.

Distribution

Let q denote a linear functional, and 〈q, φ〉 represent the value of q when applied
to the function φ(x).

Any linear functional q that is defined on all elements ϕ(x) ∈ C∞0 (R) and
satisfies a continuity condition with regard to the D-convergence,

ϕn(x)
D→ ϕ(x) =⇒ 〈q, ϕn(x)〉 → 〈q, ϕ(x)〉, (A.5.3)

is a Schwartz distribution. In (A.5.3), the infinite sequence {ϕn}∞n=1 converges
to ϕ in the sense defined above.

Obviously, any linear combination of distributions is itself a distribution.
Therefore, the set of distributions based on D(R) is a linear space. The space
of continuous linear functionals on D(R) is called the dual space of D(R) and
is denoted D′(R).

The value of a functional q ∈ D′(R) applied to ϕ ∈ D(R) is 〈q, ϕ〉 where
the symbol 〈·, ·〉 may now be interpreted as a duality pairing, that is, a bilinear
map of D′(R)×D(R) into R.
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The dual spaceD′(R) is endowed with the so-called weak∗ topology, accord-
ing to which an infinite set of functionals {qn}∞n=1 ∈ D′(R) is said to converge
distributionally to q ∈ D′(R) if

∀ϕ(x) ∈ D(R), 〈qn, ϕ(x)〉 → 〈q, ϕ(x)〉. (A.5.4)

Examples of Distributions

Example 1
Consider a function f (x) ∈ C(R) such as, for instance, the function shown on
Figure A.5.1(a). Clearly, the linear functional

∫ +∞
−∞ f (x)ϕ(x) dx with ϕ(x) ∈

D(R) satisfies the requirement (A.5.3); for we have

lim
n→∞

∫ +∞
−∞

f (ϕn − ϕ) dx ≤ lim
n→∞ sup

x∈K
|ϕn − ϕ|

∫
K

f dx = 0, (A.5.5)

because of the uniform convergence of the sequence of test functions to ϕ(x) ∈
D(R). In this relationship, K ⊂ R is the compact set containing the support of
the test functions. Thus, the linear functional

∫ +∞
−∞ f (x)ϕ(x) dx is a distribution

on D(R). For the sake of convenience one often denotes this distribution by f .
However, we emphasize that by definition, the distribution is the linear mapping
〈 f, ·〉 of D(R) into R given by

f (x) : C∞0 (R)→ R: ϕ(x)→ 〈 f, ϕ〉 :=
∫ +∞
−∞

f (x)ϕ(x) dx . (A.5.6)

The reader should notice a particular feature of the function displayed on the
figure: it is piecewise continuous with undefined first derivative at a finite num-
ber of points on the real axis. Functions of this type are at the heart of the FE

theory (see [369, 79, 370]).

(a) (b)

Figure A.5.1. Two examples of distributions: (a) a piecewise linear function; (b) the
Heaviside step function.
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This example shows that continuous functions defined pointwise may also
be viewed as distributions. Actually, the two standpoints (i.e. pointwise defined
functions and linear functionals) are equivalent according to the following the-
orem [326].

Theorem A.7 A continuous function f (x), defined for −∞ < x < +∞, is
completely determined if the value of the integral

∫ +∞
−∞ f (x)ϕ(x) dx is known for

every continuous function ϕ(x) that vanishes outside a finite interval, different
intervals being allowed for different functions ϕ(x).

Finally, we emphasize that no problems arise with the behavior of f (x) at
infinity, since by definition the support of ϕ is bounded.

Example 2
Figure A.5.1(b) shows the Heaviside step function

H (x) :=


0, x < 0,
1/2, x = 0,
+1, x > 0,

(A.5.7)

which is discontinuous at x = 0. This function is locally Riemann-integrable,
that is, ∫ b

a
|H (x)| dx (A.5.8)

exists for any compact interval [a, b]. Using again the argument (A.5.5), one
easily verifies that the Heaviside step function also generates a distribution.

Incidentally we remark that the value of the step function at x = 0 has
no influence whatsoever on the distribution 〈H, ·〉, since x = 0 is an isolated
point. We then conclude that two locally integrable functions f1(x) and f2(x)
that differ on a (countable) set of isolated points generate the same distribution

〈 f1, ϕ〉 = 〈 f2, ϕ〉 ∀ϕ ∈ D(R). (A.5.9)

The functions f1(x) and f2(x) are said to be equal almost everywhere. Distri-
butions generated by locally integrable functions are said to be regular. Distri-
butions that are not regular are called singular distributions.

Example 3
We come back to Figure A.5.1(a) and go one step further by considering an
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infinite sequence of distributions {〈 fn, ·〉}∞n=1, where the integer n is indicated
on the figure, and

fn(x) =


0, |x | ≥ 1/2n,
4n2x + 2n, −1/2n < x ≤ 0,
−4n2x + 2n, 0 ≤ x < 1/2n.

(A.5.10)

As h := 1/n becomes small, one gets

∀ϕ(x) ∈ D(R) :
∫ +∞
−∞

fn(x)ϕ(x) dx = ϕ(0)+ O(h2), (A.5.11)

and

lim
n→∞〈 fn, ϕ〉 = ϕ(0). (A.5.12)

The result of the limiting process is another distribution, since the continuity
condition (A.5.3) is satisfied for all ϕ(x) ∈ D(R). This distribution is the Dirac
distribution 〈δ, ·〉, often (improperly) called the Dirac “function” δ(x) in the
literature:

∀ϕ ∈ D(R): 〈δ, ϕ〉 :=
∫ +∞
−∞

δ(x)ϕ(x) dx = ϕ(0). (A.5.13)

The δ(x) notation is misleading. Unlike for the functions fn(x), there is no
pointwise definition for δ(x), and the relation (A.5.13) must be regarded as the
definition of the distribution 〈δ, ·〉.

One may easily show that no locally integrable function f (x) exists such
that

∫ −∞
−∞ f (x)ϕ(x) dx = ϕ(0). Hence, the Dirac distribution is a singular dis-

tribution.

A.5.2 Basic Properties of Distributions

We make a short review of some elementary properties of distributions.

Translation and Change in Scale

Let f (x) denote a locally integrable function generating the distribution 〈 f, ·〉,
and α �= 0 a given real number. The translation of f (x) by a finite value a
generates a new distribution, and one has

〈 f (x − a), ϕ(x)〉 = 〈 f (x), ϕ(x + a)〉 ∀ϕ(x) ∈ D(R). (A.5.14)
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Similarly, the change in scale by α into f (x) generates a distribution such
that

〈 f (αx), ϕ(x)〉 = 1

|α|
〈

f (x), ϕ

(
x

α

)〉
∀ϕ(x) ∈ D(R). (A.5.15)

Multiplication by a Continuous Function

Consider any distribution 〈 f, ·〉 on D(R) and a continuous function g(x).
One has

〈g f, ϕ〉 = 〈 f, g ϕ〉 ∀ϕ(x) ∈ D(R). (A.5.16)

So, if g ∈ C∞(R), then gϕ ∈ D(R) and the product g f is a distribution. If
g �∈ C∞(R), then gϕ is not necessarily a test function and a close examination
must be performed, case by case. In general, even though taken separately 〈 f, ·〉
and 〈g, ·〉 are distributions, their product is not necessarily a distribution. For
instance, the product of the Dirac distributions δ2(x) = δ(x)δ(x) is not defined.

Derivatives of Distributions

Assume that the function f (x) has a first derivative f ′(x) that is a locally inte-
grable function. We have seen with Example 2 that f ′(x) generates a distribution
〈 f ′, ·〉. Using integration by parts and the properties of the test functions, one
gets the relationship

〈 f ′, ϕ〉 = −〈 f, ϕ′〉 ∀ϕ(x) ∈ D(R). (A.5.17)

The value of the distribution 〈 f ′, ·〉 applied to ϕ(x) ∈ D(R) is related to the
value of the distribution 〈 f, ·〉 applied to ϕ′(x) ∈ D(R).

Because, for any convergent sequence of test functions {ϕn(x)}∞n=1 ∈ D(R)
one has

ϕn(x)
D→ ϕ(x) =⇒ ϕ′n(x)

D→ ϕ′(x), (A.5.18)

one may use (A.5.17) as a definition for the derivative of any distribution 〈 f, ·〉.
The quantity 〈 f ′, ·〉 defined by (A.5.17) is then known as the distributional
derivative of 〈 f, ·〉. This procedure is very useful for generalizing the concept
of derivative to functions having no ordinary derivative.

Successive applications of integration by parts and convergence arguments
analogous to (A.5.18) allow the introduction of higher distributional derivatives.
For instance, the derivative of order k (k > 0) of any distribution 〈 f, ·〉, denoted
〈 f (k), ·〉, again is defined by

〈 f (k), ϕ〉 := (−1)k 〈 f, ϕ(k)〉 ∀ϕ(x) ∈ D(R). (A.5.19)
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To end, we illustrate the concept of distributional derivative, going back to
the examples introduced above.

Examples of Distributional Derivatives

Example 4
We first evaluate the distributional derivative of the functional 〈 fn, ·〉with point-
wise definition given by (A.5.10). Applying the definition (A.5.17), one gets

〈 f ′n, ϕ〉 =
∫ 0

−1/2n
fn(x)ϕ′(x) dx +

∫ 1/2n

0
fn(x)ϕ′(x) dx, (A.5.20)

or, with the help of integration by parts,

〈 f ′n, ϕ〉 =
∫ 1/2n

−1/2n
f ′n(x)ϕ(x) dx . (A.5.21)

The functions fn(x) being continuous everywhere (although with only left and
right derivatives at some isolated points), the distributional derivative in this
case is identical to the ordinary derivative almost everywhere:

f ′n(x) =


0, |x | > 1/2n,
4n2, −1/2n < x < 0,
−4n2, 0 < x < 1/2n.

(A.5.22)

The absence of the (ordinary) first derivative f ′n(x) at some isolated points is of
no concern for the evaluation of functionals.

Example 5
A more interesting example comes with the discontinuous Heaviside step func-
tion. Its distributional derivative 〈H ′, ·〉 again may be defined using (A.5.17).
One gets

〈H ′, ϕ〉 = −
∫ ∞

0
ϕ′(x) dx = ϕ(0) ∀ϕ(x) ∈ D(R), (A.5.23)

showing that functional 〈H ′, ·〉 is the Dirac distribution 〈δ, ·〉.

Example 6
Finally, one may define the first derivative of the functional 〈δ, ·〉. This distri-
bution denoted 〈δ′, ·〉 is equal to

〈δ′, ϕ〉 := −〈δ, ϕ′〉 = −ϕ′(0) ∀ϕ(x) ∈ D(R). (A.5.24)
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The reader should observe that the same distribution obtains as for the limit
case of the functionals 〈 f ′n, ·〉 given by (A.5.22). Using a Maclaurin expansion
of ϕ(x), it is easy to show that for all ϕ(x) ∈ D(R)

〈 f ′n, ϕ〉 =
∫ 1/2n

−1/2n
f ′n(x)ϕ(x) dx ≈ −ϕ′(0)− 1

48n2
ϕ′′′(0). (A.5.25)

As a conclusion and to summarize this short review on distributions, let us
stress that their main interest is for an unambiguous definition of the derivatives,
of any order, of functions that may lack derivatives in the ordinary sense.



Appendix B
Orthogonal Polynomials and Discrete

Transforms

In Section A.4.2 of Appendix A, we introduced the Hilbert space of Lebesgue-
weighted-square-integrable functions L2

w. Unless otherwise stated, this space
will be the framework of most developments made here. To conform with our
notation, we will designate continuous inner products and norms in L2

w by
(·, ·)L2

w
and ‖·‖L2

w
, but the discrete inner products and norms introduced in this

appendix will be designated by (·, ·)N and ‖·‖N , respectively.

B.1 Systems of Orthogonal Polynomials

Let  denote the open reference interval (−1,+1), with closure ̂. Let also
w denote any nonnegative integrable weight function in ̂. The sequence of
polynomial functions {pk}∞k=0, where the degree of pk is equal to k, forms a
system of orthogonal polynomials with respect to w if

(pk, pl)L2
w() :=

∫ 1

−1
w(x) pk(x) pl(x) dx = γk δkl , (B.1.1)

where δkl denotes the Kronecker symbol and γk :=‖pk‖2
L2
w() depends on the

polynomial degree.
For convenience, the corresponding orthonormal sequence will be labeled

{p∗k }∞k=0, with

p∗k (x) := γ−1/2
k pk(x).

Systems of orthogonal polynomials have the following properties, details
and proofs of which can be found in the literature (see, for instance, [92]).

442
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Property B.1 Let {pk}∞k=0 denote the family of orthogonal polynomials in
̂ with respect to the weight function w. The zeros of the polynomial pk are
real, simple, and located in .

The fact that orthogonal polynomials possess real zeros is crucial for Gaus-
sian quadrature rules (see Section B.2).

Property B.2 (Three-term recursion formula) Let {pk}∞k=0 be the family of
orthogonal polynomials in ̂ with respect to the weight function w. There
exists a three-term recursion relationship between the elements of the family
such that pk+1 is related to its predecessors pk and pk−1 by the expression

pk+1(x)= (ak + bk x) pk(x)− ck pk−1(x), k ≥ 1, (B.1.2)

where the coefficients ak , bk , and ck depend on the degree k and on the orthogonal
family.

Starting from p0(x) and p1(x), (B.1.2) allows a determination of the poly-
nomials pk(x) in increasing order.

Property B.3 (Christoffel–Darboux relation) Let {p∗k }∞k=0 be the set of ortho-
normal polynomials in ̂ with respect to the weight function w. Assume the
coefficient of xn in p∗n to be equal to s∗n . Then one has the following expression:

n∑
k=0

p∗k (x) p∗k (y)= sn

sn+1

p∗n+1(x) p∗n(y)− p∗n(x)p∗n+1(y)

x − y
, (B.1.3)

known as the Christoffel–Darboux relation.

Finally, one has the following property.

Property B.4 Let {pk}∞k=0 denote the family of orthogonal polynomials with
respect to the weight function w. One can easily show that the infinite set
{ d

dx pk}∞k=0 is also a family of orthogonal polynomials.

The interest in orthogonal polynomials in numerical methods for PDEs orig-
inates from two reasons: a theoretical one and a practical one. The theoretical
reason is that, as a consequence of the Weierstrass approximation theorem
(see [142, 326, 418]), the infinite sequence of polynomials {p∗k }∞k=0 is complete
and forms a basis of L2

w(). The practical reason lies in the fact that polynomials
are easy to generate and easy to use.
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Although, in principle, series expansions could be carried with any orthogo-
nal system, in actual computations only those orthogonal systems are used that
ensure the fastest convergence in the approximation of smooth functions. Such
convergence, called spectral convergence, is obtained with orthogonal systems
of functions related to singular Sturm–Liouville problems.

B.1.1 Eigensolutions of Sturm–Liouville Problems

A Sturm–Liouville problem is an eigenvalue problem of the form

−[p(x) u′(x)]′ + q(x) u(x)= λw(x)u(x), x ∈ , (B.1.4)

with suitable boundary conditions. In (B.1.4), w(x) is a nonnegative integrable
weight function, and p(x) and q(x) are real-valued functions satisfying the
following requirements: p is differentiable and positive in  and continuous at
x = ±1, whereas q is continuous, nonnegative, and bounded in  (see [326]).
When these conditions are satisfied, the Sturm–Liouville problem is regular. If,
additionally, p vanishes at one boundary at least, the Sturm–Liouville problem
is singular.

Singular Sturm–Liouville problems occupy a key position in spectral meth-
ods. Gottlieb and Orszag have shown that, if any infinitely smooth function u
is expanded in series of eigensolutions of a singular problem (B.1.4), then the
coefficients of the expansion decay faster than algebraically in k (see [163]).
This property is known as spectral accuracy. Most of the time, only a small
number of terms are needed to approximate u with high precision. Singular
Sturm–Liouville eigensolutions are the only functions that satisfy this property.
Spectral accuracy cannot be reached with eigensolutions of regular problems
unless the smooth function to be approximated satisfies additional constraints
at the boundary.

Focusing on polynomials, one can show that the only polynomial eigen-
solutions of a singular Sturm–Liouville problem are the Jacobi polynomials
P (α,β)

n (x) of degree n (n = 0, 1, . . .), that depend on two real parameters α and
β (with the constraint α, β > −1) and that satisfy the differential problem

− d

dx

(
(1− x2)w(α,β) d

dx
Pα,β

n (x)

)
= λ(α,β)

n w(α,β) Pα,β
n (x). (B.1.5)

The weight function w(α,β) and the eigenvalues λ(α,β)
n are given by

w(α,β) = (1− x)α(1+ x)β,
(B.1.6)

λ(α,β)
n = n(n + α + β + 1).
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The eigensolutions of (B.1.5) are defined up to a normalization constant. Setting
the normalization constant to a value such that

Pα,β
n (1) :=

(
n + α

n

)
= *(n + α + 1)

*(n + 1)*(α + 1)
, (B.1.7)

one may show that the Jacobi polynomials Pα,β
n (x) satisfy a relationship known

as Rodrigues’s formula:

Pα,β
n (x)= (−1)n

2nn!
(1− x)−α(1+ x)−β

dn

dxn
[(1− x)n+α(1+ x)n+β]. (B.1.8)

Explicitly, P (α,β)
n (x) has the following expansion:

Pα,β
n (x) = 2−n

n∑
k=0

(
n + α

k

)(
n + β

n − k

)
(x − 1)n−k(x + 1)k . (B.1.9)

Multiplying both sides of (B.1.5) by Pα,β
m (x) (with m �= n), integrating over

the interval , and taking (B.1.1) into account, one gets∫ 1

−1
(1− x2)w(α,β) d Pα,β

n

dx

d Pα,β
m

dx
dx = 0, (B.1.10)

which is nothing else than Property B.4.
By carefully selecting the values of the parametersα and β, one obtains well-

known families of orthogonal polynomials such as the Legendre polynomials
Lk(x) (with α = β = 0), the Chebyshev polynomials of the first kind Tk(x)
(with α = β = −1/2), or the Chebyshev polynomials of the second kind Uk(x)
(with α = β = 1/2). Since spectral methods rely almost exclusively on Cheby-
shev polynomials of the first kind and on Legendre polynomials, our analysis
will deal with these functions only, and we summarize their main properties
in Sections B.1.2 and B.1.3. For further details, the reader should refer to the
literature on orthogonal polynomials, in particular the books by Askey [12] and
Szegö [371]. We will adhere to the common usage in calling Tk(x) simply the
“Chebyshev polynomials.”

B.1.2 The Legendre Polynomials

The Legendre polynomial of degree k, Lk(x), is the eigensolution of the differ-
ential problem (B.1.5) where α and β have been set to zero:

− d

dx

(
(1− x2)

d

dx
Lk(x)

)
= k(k + 1) Lk(x), k = 0, 1, . . . . (B.1.11)
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The set of Legendre polynomials form an orthogonal family with respect to
the weight function w(x) = 1, and one has∫ 1

−1
Lk(x) Ll(x) dx = γk δkl , (B.1.12)

where the normalization constant γk is equal to

γk :=
∫ 1

−1
L2

k(x) dx = 2

2k + 1
. (B.1.13)

The elements of the orthonormal family {L∗k (x)}∞k=0 are therefore related to the
standard polynomials by

L∗k (x) :=
(

2k + 1

2

)1/2

Lk(x). (B.1.14)

No compact analytic expression exists for the Legendre polynomial Lk(x).
To evaluate a polynomial explicitly, one may use either Rodrigues’s formula
(B.1.8) or the expansion (B.1.9), with the appropriate values of the parameters
α and β. However, by far, the most efficient method to determine the Legendre
polynomials is the three-term recursion relationship (B.1.2) which, in this case,
is written as

L0(x) = 1 and L1(x) = x,

(k + 1) Lk+1(x) = (2k + 1) x Lk(x)− k Lk−1(x), k ≥ 1.
(B.1.15)

Further useful properties of the Legendre polynomial Lk(x) are the fol-
lowing:

|Lk(x)| ≤ 1, −1 ≤ x ≤ 1, (B.1.16)

Lk(±1)= (±1)k, (B.1.17)

|L ′k(x)| ≤ 1

2
k(k + 1), −1 ≤ x ≤ 1, (B.1.18)

L ′k(±1)= 1

2
(±1)k+1k(k + 1). (B.1.19)

Finally, we mention an important relationship between Legendre polynomi-
als and their derivatives:

(2k + 1) Lk(x)= L ′k+1(x)− L ′k−1(x), k ≥ 1, (B.1.20)

with L0 = L ′1. This relationship is at the basis of the Legendre polynomial
expansion of derivatives of functions (see Section B.3.3). The proof of (B.1.20)
is obtained from the integral version of this relationship and may be found in
Bernardi and Maday (see Chapter 1, Lemma 3.8, of [38]) .
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B.1.3 The Chebyshev Polynomials

The Chebyshev polynomial of degree k, Tk(x), is given explicitly in terms of
trigonometric functions by

Tk(x)= cos kθ, x = cos θ. (B.1.21)

One easily verifies that Tk(x) is indeed a polynomial function of x and that it
satisfies the differential equation

− d

dx

(√
1− x2

d

dx
Tk(x)

)
= k2

√
1− x2

Tk(x). (B.1.22)

The set of Chebyshev polynomials {Tk(x)}∞k=0 forms an orthogonal family
with respect to the weight function w(x) = (1− x2)−1/2, and one has∫ 1

−1

Tk(x) Tl(x)√
1− x2

dx = γk δkl , (B.1.23)

where the constant γk is equal to ckπ/2, with

ck =
{

2 if k = 0,
1 if k ≥ 1.

(B.1.24)

The relationships (B.1.23) and (B.1.24) give the elements of the orthonormal
family {T ∗k (x)}∞k=0 with

T ∗k (x)=
(

2

π ck

)1/2

Tk(x). (B.1.25)

The Chebyshev polynomials Tk(x) obey the three-term recursion relation

T0(x) = 1 and T1(x)= x,

Tk+1(x) = 2 x Tk(x)− Tk−1(x), k ≥ 1,
(B.1.26)

used to evaluate the polynomials explicitly.
Some further useful properties of the polynomial Tk(x) are as follows:

dTk(x)

dx
= k Uk−1(x), (B.1.27)

|Tk(x)| ≤ 1, −1 ≤ x ≤ 1, (B.1.28)

Tk(±1) = (±1)k, (B.1.29)

|T ′k (x)| ≤ k2, −1 ≤ x ≤ 1, (B.1.30)

T ′k (±1) = (±1)k+1k2, (B.1.31)

where Uk(x) is the Chebyshev polynomial of second kind and degree k.
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Finally, the relationship between the Chebyshev polynomials and their deri-
vatives, analogous to (B.1.20), is

2 Tk(x)= 1

k + 1
T ′k+1(x)− 1

k − 1
T ′k−1(x), k ≥ 1. (B.1.32)

B.2 Gaussian-Type Quadratures

We limit ourselves to the case of a bounded interval, and we assume that this
interval has been mapped onto the reference interval ̂.

B.2.1 Fundamental Theorems

Let w(x) denote a nonnegative integrable weight function in ̂ to which cor-
responds a family of orthogonal polynomials {pk(x)}∞k=0. Then we have the
following theorem.

Theorem B.5 (Gauss integration) Let {ξk}Nk=0 denote the N + 1 zeros of the
polynomial pN+1(x) belonging to the orthogonal family, located in the open
interval (−1, 1) with ξ0 < · · · < ξN . One can find N + 1 positive constants
ρ0, . . . , ρN such that the following relationship holds for all polynomials
through degree 2N + 1:∫ 1

−1
w(x) f (x) dx =

N∑
k=0

ρk f (ξk) ∀ f (x) ∈ P2N+1. (B.2.1)

For polynomials with degree larger than 2N + 1, or nonpolynomial functions
in L2

w(), the r.h.s. of Equation (B.2.1), known as the Gauss–Jacobi integration
scheme with N + 1 nodes, yields an approximate value of

∫ 1
−1 w(x) f (x) dx

with an error, the leading term of which is proportional to the derivative of order
2N + 2, f (2N+2)(ξ ), with −1 < ξ < 1. The quantities {ξk}Nk=0 and {ρk}Nk=0 are
known as the Gauss integration nodes and weights, respectively.

In some circumstances, it may be desirable to have one or both end points
included among the quadrature knots. With one end point included (e.g. x =
−1), one has the following theorem.

Theorem B.6 (Gauss–Radau integration) Let {ξk}Nk=0 denote the zeros of
q(x) = pN+1(x)+ a pN (x) with −1 = ξ0 < · · · < ξN . The parameter a is
chosen such that

a= − pN+1(−1)/pN (−1).
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In this case, one can find N + 1 positive constants ρ0, . . . , ρN such that

∫ 1

−1
w(x) f (x) dx =

N∑
k=0

ρk f (ξk) ∀ f (x) ∈ P2N . (B.2.2)

Arbitrarily putting a quadrature node at x = −1 represents a constraint. As a
consequence, one unit is lost in the degree of the polynomials that are integrated
exactly by the Gauss–Radau scheme with N + 1 nodes. If, instead of choosing
the left end point, one had imposed a quadrature node at x = 1, the value of the
parameter a would have changed, but the conclusions would have remained the
same.

Finally, with the two end points included among the N + 1 quadrature nodes,
one has the following theorem.

Theorem B.7 (Gauss–Lobatto integration) Let {ξk}Nk=0 denote the zeros of
q(x) = pN+1(x)+ a pN (x)+ b pN−1(x) with −1 = ξ0 < · · · < ξN = 1. The
parameters a and b are chosen such that q(−1) = q(1) = 0. Then one can
find N + 1 positive constants ρ0, . . . , ρN such that

∫ 1

−1
w(x) f (x) dx =

N∑
k=0

ρk f (ξk) ∀ f (x) ∈ P2N−1. (B.2.3)

With quadrature nodes at both end points, two units are lost in the degree of
the polynomials that are integrated exactly. The Gauss–Lobatto scheme with
N + 1 nodes has an error term proportional to f (2N )(ξ ), −1 < ξ < 1, which
vanishes for all polynomials through degree 2N − 1. On the other hand, the
inclusion of the end points in the quadrature nodes makes the Gauss–Lobatto
rule extremely useful in spectral methods, as the end points will take care of
the boundary conditions in a BVP.

Few computationally useful results about the zeros of orthogonal polynomi-
als exist, except of course that they are real, as stated in Property B.1. However,
for Jacobi polynomials with parameters α and β restricted to−1/2 ≤ α ≤ 1/2
and −1/2 ≤ β ≤ 1/2, the following estimation about the location of the zeros
of pN may be found in [371]:

−1 ≤ −cos

(
k + α+β−1

2

N + α+β+1
2

π

)
≤ ξ

(N )
k ≤ −cos

(
k

N + α+β+1
2

π

)
≤ 1, (B.2.4)
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with pN (ξ (N )
k ) = 0, 1 ≤ k ≤ N . The result (B.2.4) explains why, for large val-

ues of N , the zeros of pN have a tendency to accumulate at the end points of .
Expanding the cosine function, one can easily show that the distance between
two consecutive zeros is proportional to 1/N 2 near the end points, whereas it
is proportional to 1/N in the middle of the interval. While concentrating more
nodes near the end points is generally regarded as favorable from the computa-
tional point of view (for an accurate description of boundary layers, etc.), it has
also a drawback, namely, the increase of the condition number of the algebraic
system to be solved.

Finally, we note that with the Jacobi orthogonal family, a more convenient
characterization of Gauss–Lobatto quadrature nodes exists, which is given by
the following theorem.

Theorem B.8 (Gauss–Lobatto–Jacobi quadrature nodes) The quadrature
nodes of the Gauss–Lobatto–Jacobi (GLJ) integration rule with N + 1 points
are solutions of the algebraic equation

χ
(α,β)
N (x) := (1− x2)

d

dx
Pα,β

N (x)= 0. (B.2.5)

Analytic expressions for the quadrature weights in terms of the quadrature
nodes can be found, for instance, in [92]. Below, we summarize the basic pa-
rameters for the two most important families of quadrature schemes for spectral
methods, corresponding to Legendre and Chebyshev polynomials.

B.2.2 Gaussian Rules Based on Legendre Polynomials

In the Legendre case, the weight function is w(x) = 1. Given any function
u ∈ L2(), one has the approximate quadrature schemes∫ 1

−1
u(x) dx ≈

N∑
k=0

ρk u(ξk) (B.2.6)

with the following parameters:

Gauss–Legendre (GL) integration scheme:

ξk : zeros of L N+1(x), 0 ≤ k ≤ N ,
(B.2.7)

ρk = 2(
1− ξ 2

k

)
[L ′N+1(ξk)]2

, 0 ≤ k ≤ N .
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Gauss–Radau–Legendre (GRL) integration scheme:

ξk : zeros of L N (x)+ L N+1(x), 0 ≤ k ≤ N ,

ρ0 = 2

(N + 1)2
,

(B.2.8)

ρk = 1

(N + 1)2

1− ξk

[L N (ξk)]2
, 1 ≤ k ≤ N .

Gauss–Lobatto–Legendre (GLL) integration scheme:

ξk : ξ0 = −1, ξN = 1, zeros of L ′N (x), 1 ≤ k ≤ N − 1,
(B.2.9)

ρk = 2

N (N + 1)

1

[L N (ξk)]2
, 0 ≤ k ≤ N .

B.2.3 Gaussian Rules Based on Chebyshev Polynomials

In the Chebyshev case, the weight function w(x) = (1− x2)−1/2. Given any
function u ∈ L2

w(), one has the approximate quadrature schemes

∫ 1

−1

u(x)√
1− x2

dx ≈
N∑

k=0

ρc
k u

(
ξ c

k

)
, (B.2.10)

with the following parameters:

Gauss–Chebyshev (GC) integration scheme:

ξ c
k = cos

(2k + 1)π

2N + 2
, 0 ≤ k ≤ N ,

(B.2.11)
ρc

k =
π

N + 1
, 0 ≤ k ≤ N .

Gauss–Radau–Chebyshev (GRC) integration scheme:

ξ c
k = −cos

2πk

2N + 1
, 0 ≤ k ≤ N ,

ρc
0 =

π

2N + 1
, (B.2.12)

ρc
k =

2π

2N + 1
, 1 ≤ k ≤ N .
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Gauss–Lobatto–Chebyshev (GLC) integration scheme:

ξ c
k = cos

πk

N
, 0 ≤ k ≤ N ,

ρc
k =

π

2N
, k = 0, N , (B.2.13)

ρc
k =

π

N
, 1 ≤ k ≤ N − 1.

B.2.4 Discrete Inner Products and Norms

The use of Gaussian quadrature rules as a convenient numerical approximation
of definite integrals leads to the replacement of the (conventional) inner products
and norms in spaces of functions by discrete inner products and norms.

Let u, v denote any two elements in L2
w(); their inner product and norm

are given respectively by (A.4.9) and (A.4.10):

(u, v)L2
w() :=

∫ 1

−1
w(x) u(x) v(x) dx, u, v ∈ L2

w(),

‖u‖L2
w() :=

(∫ 1

−1
w(x) u2(x) dx

)1/2

, u ∈ L2
w().

Discretizing both right-hand sides with a Gaussian quadrature with N + 1 nodes
yields the following quantities:

(u, v)N :=
N∑

k=0

ρk u(ξk) v(ξk), u, v ∈ L2
w(), (B.2.14)

‖u‖N :=
(

N∑
k=0

ρk u2(ξk)

)1/2

, u ∈ L2
w(). (B.2.15)

One easily verifies that, given the positivity of the coefficients ρk , the quantities
(B.2.14) and (B.2.15) satisfy all the axioms for an inner product and norm and
may therefore be considered as such in their own right (see Sections A.2.1
and A.4.1). The quantities related to a Gaussian quadrature are the discrete
inner product (·, ·)N and the discrete norm ‖·‖N defined on L2

w().

Remark B.1 Applying one of Theorems B.5–B.7, depending on the underlying
Gaussian quadrature, gives the following exact results for polynomial functions:

(u, v)L2
w()= (u, v)N ∀ u(x), v(x)∈P2N+ε, (B.2.16)
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with ε = 1, 0,−1 corresponding to Gauss (G), Gauss–Radau (GR) and Gauss–
Lobatto (GL) quadratures. Furthermore, one has

‖u‖L2
w()=‖u‖N ,

{∀ u(x)∈PN (G and GR),
∀ u(x)∈PN−1 (GL).

(B.2.17)

Remark B.2 Denoting by γ
(N )
k := ‖pk‖N the discrete norm associated to a

Gaussian quadrature with N + 1 nodes of the orthogonal polynomial pk , one
may show that

(pk, pl)N = γ (N )
k δkl , 0 ≤ k, l ≤ N . (B.2.18)

In other words, orthogonal polynomials with respect to the L2
w inner product

remain orthogonal with respect to (·, ·)N . Further evaluation of the quantities
γ

(N )
k gives, for the Legendre polynomials,

γ
(N )
k :=

N∑
j=0

ρ j L2
k(ξ j )= 2

2k + 1
, 0 ≤ k ≤ N − 1,

(B.2.19)

γ
(N )
N :=

N∑
j=0

ρ j L2
N (ξ j )=


2

2N + 1
(G and GR),

2

N
(GL),

and, for the Chebyshev polynomials,

γ
(N )
k :=

N∑
j=0

ρc
j T 2

k

(
ξ c

j

)= ck
π

2
, c0 = 2, ck = 1, 1 ≤ k ≤ N − 1,

(B.2.20)

γ
(N )
N :=

N∑
j=0

ρc
j T 2

N

(
ξ c

j

)=

π

2
(G and GR),

π (GL).

In accordance with (B.2.17), all discrete norms γ (N )
k are exact, except γ (N )

N for
the Gauss–Lobatto quadrature scheme.

Remark B.3 For the Gauss–Lobatto integration scheme where the discrete
norm ‖pN‖N is only approximate, one may show that the norms ‖·‖L2

w() and
‖·‖N are uniformly equivalent, which means that constants C1 and C2 exist,
independent of N , such that

C1 ‖u‖L2
w()≤‖u‖N ≤C2 ‖u‖L2

w() ∀u ∈PN . (B.2.21)
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Using the results (B.2.19) and (B.2.20), one easily verifies that the constants
C1 and C2 are equal to 1 and

√
3 for the Legendre polynomials and equal to

1 and
√

2 for the Chebyshev polynomials. This result is due to Canuto and
Quarteroni [68]. Inequalities such as (B.2.21) are used in the error analysis of
spectral methods.

B.3 Spectral Approximation and Interpolation

Having recalled the main properties of orthogonal polynomials and Gaussian
quadrature, we may now summarize the essentials on spectral approximation
and interpolation of functions.

B.3.1 Preliminaries

Consider the family of orthogonal polynomials {pk}∞k=0 with respect to the
weight function w(x), as a basis for L2

w(). Because of the completeness prop-
erty, any function u ∈ L2

w() may be decomposed into a formal series

u(x) :=
∞∑

k=0

ûk pk(x), (B.3.1)

where the coefficients ûk are defined uniquely. For the sake of convenience we
denote the r.h.s. of (B.3.1) by Su(x).

Multiplying both sides of (B.3.1) by w(x) pm(x), integrating over , and
applying the orthogonality relationship (B.1.1), one gets

ûm = 1

γm

∫ 1

−1
w(x)u(x) pm(x) dx, m = 0, . . . , (B.3.2)

with γm :=‖pm‖2
L2
w(). The series (B.3.1) is the spectral expansion of u with

respect to the orthogonal family {pk}∞k=0.
By squaring (B.3.1) and integrating, one gets

‖u(x)‖2
L2
w()=

∞∑
k=0

‖pk‖2
L2
w() û2

k, (B.3.3)

a property known as Parseval’s identity.
Two fundamental questions arise: What is the nature of the relation between

the function u(x) and its spectral expansion Su(x); and what is, for a converging
series, the decay rate of the coefficients ûk as a function of k, that is, the
rate of convergence? We immediately deal with the first question, using the
concepts developed in Appendix A. The second question will be answered in
Section B.3.4.
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Let PN u represent the formal series (B.3.1) truncated at the degree N :

PN u(x)=
N∑

k=0

ûk pk(x), u ∈ L2
w(). (B.3.4)

Completeness of the polynomial basis in L2
w() implies that for any u ∈ L2

w(),
the expansion (B.3.1) converges to u in the mean, namely,

lim
N→∞

‖u − PN u‖L2
w()= 0. (B.3.5)

Locally, however, Su(x) may differ from u(x). One may show that, at any
abscissa where u is discontinuous, one has

Su(x)= 1

2
[u(x−)+ u(x+)], (B.3.6)

provided that u has bounded variations. The quantities in the r.h.s. of (B.3.6)
are the left and right limits of u at the discontinuity. This property is a classical
property of Fourier series for periodic functions [64].

B.3.2 Discrete Spectral Transforms

Let SN denote the linear space spanned by the elements {pk}Nk=0.
1 One can show

that the element PN u ∈ SN is the best approximation of u(x) ∈ L2
w() in SN

in the norm ‖·‖L2
w(), or, in other words, that among all elements � ∈ SN , PN u

has the shortest distance to u ∈ L2
w() in the norm ‖·‖L2

w():

inf
�∈SN

‖u −�‖L2
w()=‖u − PN u‖L2

w(), u ∈ L2
w(). (B.3.7)

Another characterization of PN u is that, from (B.1.1), this element is the
orthogonal projection of u onto SN , with respect to the inner product (·, ·)L2

w().
The idempotence property of projectors (A.4.19) is satisfied, and for any u ∈
L2
w() one has

(u − PN u, p)L2
w() = 0 ∀ p ∈ SN . (B.3.8)

Let IN u ∈ SN be the Lagrange interpolation polynomial of u(x) ∈ L2
w()

at the N + 1 nodes of one of the Gaussian quadrature rules associated to the
weight function w:

IN u(x) :=
N∑

k=0

ũk pk(x), u ∈ L2
w(). (B.3.9)

1 SN is, in fact, identical to PN except for the basis.
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The coefficients ũk in the expansion (B.3.9) are determined by the interpolation
conditions

(IN u)(ξk) = u(ξk), 0 ≤ k ≤ N , (B.3.10)

where {ξk}Nk=0 are the Gaussian quadrature nodes. For trivial reasons, one also
has

(u, v)N = (IN u, v)N ∀ v ∈ L2
w(). (B.3.11)

Using (B.3.10), (B.3.11), and the orthogonality property (B.2.18), one can easily
show that the nodal values of {u(ξl)}Nl=0 and the discrete coefficients ũk are
related by

u(ξk)=
N∑
#=0

ũ# p#(ξk), u ∈ L2
w(), (B.3.12)

and

ũk = 1

γ
(N )
k

N∑
j=0

ρ j u(ξ j ) pk(ξ j ), u ∈ L2
w(). (B.3.13)

The expansions (B.3.12) and (B.3.13) are known as the inverse discrete spectral
transform (IDST) and the discrete spectral transform (DST) of u, respectively.

Combining (B.3.9) and (B.3.13) yields the canonical form of the interpola-
tion function

IN u(x)=
N∑

j=0

u(ξ j )ψ j (x), (B.3.14)

where the basis elements ψ j (x), explicitly given by

ψ j (x) := ρ j

N∑
#=0

1
γ

(N )
#

p#(ξ j ) p#(x), 0 ≤ j ≤ N , (B.3.15)

satisfy the bi-orthogonality property

ψ j (ξk) = δ jk, 0 ≤ j, k ≤ N . (B.3.16)

Using χ
(α,β)
N (x), generating function of the GLJ nodes {ξ J

j }Nj=0 defined by
(B.2.5), the interpolation polynomial on the GLJ grid takes the form (B.3.14)
with basis elements

ψ J
j (x) = C j

1− x2

x − ξ J
j

d

dx
Pα,β

N (x). (B.3.17)
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The constant C j is a normalization constant such that the condition (B.3.16) is
satisfied. An elementary calculation based on the differential equation (B.1.5)
satisfied by the Jacobi polynomials gives

C j = − 1

c̄ jλ
(α,β)
N

1

Pα,β

N

(
ξ J

j

) , (B.3.18)

where λ
(α,β)
N := N (N + α + β + 1) is the eigenvalue (B.1.6) of the Sturm–

Liouville problem corresponding to N , and

c̄ j =


1/(β + 1), j = 0,
1, 1 ≤ j ≤ N − 1,
1/(α + 1), j = N .

(B.3.19)

In particular, for the Legendre (α = β = 0) and Chebyshev (α = β = −1/2)
interpolation expansions of degree N on the Gauss–Lobatto quadrature grid,
the canonical basis elements {ψ J

j (x)}Nj=0 are given by

ψ j (x)= − 1

N (N + 1)

1

L N (ξ j )

(1− x2) L ′N (x)

x − ξ j
(Legendre),

ψc
j (x) = (−1) j+1

c̄ j N 2

(1− x2) T ′N (x)

x − ξ c
j

(Chebyshev),

(B.3.20)

with c̄0 = c̄N = 2 and c̄ j = 1 for 1 ≤ j ≤ N − 1.
The reader should notice that (for similar reasons to those for PN ), IN u is the

orthogonal projection of u onto SN with respect to the discrete inner product
(·, ·)N . One has I 2

N = IN , and the property (B.3.11) may be cast into

(u − IN u, v)N = 0 ∀ v ∈ SN . (B.3.21)

Introducing the spectral expansion (B.3.1) in the r.h.s. of (B.3.13) yields

ũk = 1

γ
(N )
k

∞∑
#=0

û#

(
N∑

j=0

ρ j p#(ξ j ) pk(ξ j )

)
. (B.3.22)

Taking into account the result (B.2.16) for the Gauss–Lobatto quadrature of
polynomials up to the degree 2N − 1, one gets

ũk = ûk + 1

γ
(N )
k

∞∑
#=2N−k

û# (pk, p#)N . (B.3.23)

Finally, multiplication of (B.3.23) by pk , followed by summation, gives the
important relationship

IN u(x)= PN u(x)+ RN u(x), (B.3.24)
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where RN u ∈ SN is given by

RN u =
N∑

k=0

(
1

γ
(N )
k

∞∑
#=2N−k

û# (pk, p#)N

)
pk . (B.3.25)

This quantity is known as the aliasing error due to interpolation. Clearly, RN u
is a low-order contribution to the error, since it involves polynomials of degree
less than or equal to N . However, it depends exclusively on the high-order terms
of the spectral expansion of u (i.e. the terms with # > N ). In L2

w() norm, the
interpolation error u − IN u is written as

‖u − IN u‖2
L2
w() = ‖u − PN u‖2

L2
w()+‖RN u‖2

L2
w(). (B.3.26)

This expression shows that, for any element u ∈ L2
w(), the error norm

‖u− IN u‖L2
w() is an upper bound of the truncation error ‖u − PN u‖L2

w() and
that the faster the coefficients ûk decay with respect to k, the closer the inter-
polation error gets to the truncation error.

In the case of GLC integration, one can show that the aliasing contribution
has a simple form

ũk = ûk +
∞∑

m=1

(û2m N+k + û2m N−k), 0 ≤ k ≤ N . (B.3.27)

B.3.3 Approximate Evaluation of Derivatives

The most delicate (and most important) point in any approximate method for
partial differential equations lies in the treatment of derivative terms of the
unknown. We first show on finite Legendre and Chebyshev expansions that the
problem of evaluating derivatives of functions may be tackled from different
points of view. Then, using results established in the previous sections, we
indicate a very convenient technique to evaluate the first and second derivatives
of functions, based on interpolation polynomials on Gaussian quadrature grids.
Compact expressions for these collocation derivatives are given in the general
framework of Jacobi polynomials (see also [100]).

Finite Legendre and Chebyshev Expansions

Assume, for the sake of simplicity, that u is an infinitely smooth function having
a uniformly convergent Legendre expansion

u =
∞∑

k=0

ûk Lk(x), u ∈C∞(), (B.3.28)
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where the ûk’s are given by (B.3.2) and decay exponentially in k. The successive
derivatives of u are infinitely smooth and therefore may also be expanded into
Legendre series. For instance, u′ is equal to

u′ =
∞∑

k=0

û(1)
k Lk(x), (B.3.29)

where the coefficients û(1)
k are evaluated by using the same process as ûk . The

r.h.s. of (B.3.29) is the spectral derivative of u.
Taking the derivative of the expansion (B.3.28) term by term and using

(B.1.20), one gets a relationship between the coefficients uk and û(1)
k , which is

written as

û(1)
k = (2k + 1)

∞∑
p=k+1
p+k odd

û p, k = 0, . . . , (B.3.30)

showing that low-order modes of the derivative depend on the high-order modes
of the function.

Now, let PN u denote the orthogonal L2() projection of u onto SN :

PN u=
N∑

k=0

ûk Lk(x). (B.3.31)

Its derivative (PN u)′ belongs to PN−1. On the other hand, projecting u′ orthog-
onally into SN−1 gives

PN−1u′ =
N−1∑
k=0

û(1)
k Lk(x). (B.3.32)

In light of the relation (B.3.30) it is easily seen that, in the most general case,

(PN u)′ �= PN−1u′. (B.3.33)

The difference, (PN u)′ − PN−1u′, decays exponentially as a function of N
for infinitely smooth functions. For less smooth functions, however, one may
show that the error ‖u′ − PN−1u′‖L2() is smaller than ‖u′ − (PN u)′‖L2() (see
Section B.3.4). The derivative (PN u)′ is known as the Legendre Galerkin deriva-
tive of u. Its evaluation rests essentially upon the knowledge of the Legendre
coefficients of u. Once the calculation has been performed for the first deriva-
tive, it can readily be extended to higher derivatives.
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Another, more practical way exists to evaluate the first derivative of a smooth
function u, starting from its projection IN u onto SN with respect to the discrete
inner product (·, ·)N associated to a Gaussian quadrature rule:

DN u= (IN u)′ . (B.3.34)

The derivative DN u is called the (Legendre) collocation derivative of u. Before
we examine this derivation process in more detail, we perform the same finite-
expansion analysis with Chebyshev polynomials.

Once again, assume u is an infinitely smooth function expanded in Chebyshev
series,

u=
∞∑

k=0

ûk Tk(x), u ∈C∞(). (B.3.35)

The spectral expansion of its first derivative is

u′ =
∞∑

k=0

û(1)
k Tk(x), (B.3.36)

where, as before, the spectral coefficients û(1)
k are related to those of u. With the

help of (B.1.32), one gets

û(1)
k =

2

ck

∞∑
p=k+1
p+k odd

p û p, (B.3.37)

for which similar conclusions hold as for (B.3.30).
Chebyshev Galerkin and Chebyshev collocation derivatives are defined in

the same way as they are for Legendre expansions. For instance the Chebyshev
Galerkin derivative writes

(PN u)′ =
N∑

k=0

ûk
d

dx
Tk(x). (B.3.38)

The Gauss–Lobatto–Jacobi Collocation Derivatives

We go back to the collocation derivative DN u of a smooth function. Two dif-
ferent techniques can be used to evaluate the collocation derivatives from the
values of u on the quadrature nodes. The first technique uses the discrete spec-
tral coefficients ũk obtained from the nodal values by (B.3.13). This is followed
by (B.3.30), which gives the discrete spectral coefficients of the derivative.
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The second technique only rests upon the nodal values of u. From the canon-
ical expansion (B.3.14) of the interpolation polynomial on the GLJ grid, one gets
for the first two derivatives

(IN u)(#)(x)=
N∑

i=0

u
(
ξ J

i

) d#

dx#
ψ J

j (x), # = 1, 2. (B.3.39)

The collocation derivatives at the quadrature nodes {ξ J
k }Nk=0 can then be obtained

very simply from the derivatives of the basis functions (B.3.17)–(B.3.19) at these
nodes. To get the #th collocation derivative on the GLJ grid, one multiplies the
vector u := {u(ξ J

0 ), u(ξ J
1 ), . . . , u(ξ J

N )}T of nodal values by the matrix D J (#)
N :

(IN u)(#)
(
ξ J

k

)= N∑
i=0

D J (#)
N ,ki u

(
ξ J

i

)
, # = 1, 2, (B.3.40)

with

D J (#)
N =

{
D J (#)

N ,ki := d#

dx#
ψ J

i

(
ξ J

k

)}N

k,i=0

, # = 1, 2.

Straightforward calculations on (B.3.17)–(B.3.19) give the first derivatives
of the interpolation basis functions ψ J

j (x) on the GLJ grid, which are the com-

ponents of D J (1)
N . One gets

dψ J
i (x)

dx

∣∣∣∣
ξ J

k

= c̄k

c̄i

1

ξ J
k − ξ J

i

Pα,β

N

(
ξ J

k

)
Pα,β

N

(
ξ J

i

) , ξ J
k �= ξ J

i , 0 ≤ i, k ≤ N ,

(B.3.41)

dψ J
i (x)

dx

∣∣∣∣
ξ J

i

= −1

2

β − α − (α + β)ξ J
i

1− ξ J2
i

, 1 ≤ i ≤ N − 1, (B.3.42)

dψ J
0 (x)

dx

∣∣∣∣
−1

= −1

2

λ
(α,β)
N − α

β + 2
, (B.3.43)

dψ J
N (x)

dx

∣∣∣∣
1

= 1

2

λ
(α,β)
N − β

α + 2
, (B.3.44)

Similarly, the values of the second derivatives of the basis functions on the
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GLJ grid are

d2ψ J
i (x)

dx2

∣∣∣∣
ξ J

k

= − 1

c̄i

(
β −α− (α+β)ξ J

k

)(
ξ J

k − ξ J
i

)+ 2
(
1− ξ J2

k

)(
ξ J

k − ξ J
i

)2 (
1− ξ J2

k

) Pα,β

N

(
ξ J

k

)
Pα,β

N

(
ξ J

i

) ,
ξ J

k �= ξ J
i , 0 ≤ i ≤ N , 1 ≤ k ≤ N − 1, (B.3.45)

d2ψ J
i (x)

dx2

∣∣∣∣
ξ J

i

= − 1

3
(
1− ξ J2

i

) (
λ

(α,β)
N − 2(α + β)

−[
β − α − (α + β)ξ J

i

]β − α − (α + β + 4)ξ J
i

1− ξ J2
i

)
,

1 ≤ i ≤ N − 1, (B.3.46)

d2ψ J
i (x)

dx2

∣∣∣∣
−1

= −1

2

c̄0

c̄i

(
4(

1+ ξ J
i

)2 −
2

β + 2

λ
(α,β)
N − α

1+ ξ J
i

)
Pα,β

N (−1)

Pα,β

N

(
ξ J

i

) ,
1 ≤ i ≤ N , (B.3.47)

d2ψ J
i (x)

dx2

∣∣∣∣
1

= −1

2

c̄N

c̄i

(
4(

1− ξ J
i

)2 −
2

α + 2

λ
(α,β)
N − β

1− ξ J
i

)
Pα,β

N (1)

Pα,β

N

(
ξ J

i

) ,
0 ≤ i ≤ N − 1, (B.3.48)

d2ψ J
0 (x)

dx2

∣∣∣∣
−1

= 1

4

(
λ

(α,β)
N − 2α

)(
λ

(α,β)
N − (α + β + 2)

)
(β + 2)(β + 3)

, (B.3.49)

d2ψ J
N (x)

dx2

∣∣∣∣
1

= 1

4

(
λ

(α,β)
N − 2β

)(
λ

(α,β)
N − (α + β + 2)

)
(α + 2)(α + 3)

, (B.3.50)

First-Order Legendre and Chebyshev Collocation Derivatives

On the widely used GLL and GLC quadrature grids, the elements of the differ-
entiation matrices D(1)

N and Dc(1)
N are given by

D(1)
N ,ki =



L N (ξk)

L N (ξi )

1

ξk − ξi
, k �= i,

− N (N + 1)

4
, k= i = 0,

N (N + 1)

4
, k= i = N ,

0 otherwise

(B.3.51)
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and

Dc(1)
N ,ki :=



c̄k

c̄i

(−1)k+i

ξ c
k − ξ c

i

, k �= i,

2N 2 + 1

6
, k= i = 0,

− 2N 2 + 1

6
, k= i = N ,

−ξ c
i

2
(
1− ξ c2

i

) , 1 ≤ k = i ≤ N − 1.

(B.3.52)

In the case of finite Legendre expansions we emphasize that the faster eval-
uation of the collocation derivative (of the two choices mentioned above) is ob-
tained by using the matrix multiplication alternative [O(N 2) operations]. This
is not always the best solution, however. Indeed, for Chebyshev expansions it
is computationally more efficient (on a scalar computer) to evaluate collocation
derivatives in the transformed space. This is because GLC quadrature nodes are
evenly distributed in θ = arccos x on [0, π ] [see Equation (B.2.13)]. There-
fore, the inverse and direct transforms (B.3.12) and (B.3.13) can be evaluated
in O(5N log2 N ) arithmetic operations using the FFT. This is done as follows:
starting from the nodal values of u, the DST (B.3.13) produces the spectral coef-
ficients ũk . Then we use (B.3.37) to determine the ũ(1)

k , and finally, going back
to physical space, the IDST (B.3.12) gives the nodal values of the collocation
derivative Dc

N u.
Most of the time, instead of using (B.3.37) to obtain the discrete spectral

coefficients of the derivative, one uses a numerically stable recurrence relation
in decreasing order:

ckû(1)
k = û(1)

k+2+ 2(k + 1)ûk+1, 0 ≤ k ≤ N − 1, (B.3.53)

with ck given by (B.1.24). The recurrence is started with û(1)
N ≡ 0. Efficient

Fortran routines for the evaluation of the Chebyshev FFT can be found in the liter-
ature, namely in the studies by Canuto et al. [64] and Deville and Labrosse [97].

As a final remark, we notice that the elements of the second-order differenti-
ation matrices D(2)

N and Dc(2)
N can be calculated from the expressions (B.3.45)–

(B.3.50). They can also be evaluated numerically by multiplying the first-order
differentiation matrices D(1)

N [given by (B.3.51)] and Dc(1)
N [given by (B.3.52)],

by themselves.
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B.3.4 Estimates for Truncation and Interpolation Errors

To conclude this review of discrete transforms, we go back to the question raised
in Section B.3, about the decay rate of the coefficients of (B.3.1). We summarize
the most important results for truncation and interpolation errors in Legendre
and Chebyshev expansions, without proof. We also show their implications in
practice. Details and proofs may be found in the literature, in particular in [64]
and in [142]. We start by dealing with truncation errors; interpolation errors
come next.

A fundamental result for truncation errors is the following: For any element
u ∈ L2

w() having a weighted-square-integrable mth derivative in the standard
interval, the truncated spectral expansion PN u :=∑N

k=0 ûk pk converges as

‖u − PN u‖L2
w()≤C N−m‖u‖H m

w (). (B.3.54)

The polynomials pk are either the Legendre polynomials (w = 1) or the
Chebyshev polynomials [w = (1− x2)−1/2], C is a generic constant indepen-
dent of N , and ‖u‖H m

w () denotes the Sobolev norm2 H m
w () of u:

‖u‖H m
w () :=

(
m∑

i=0

∫ 1

−1
w(x)

(
u(i)

)2
dx

)1/2

, u ∈ H m
w (). (B.3.55)

The result (B.3.54) shows that functions belonging to H m
w () have spectral

coefficients ûk with asymptotic decay rates of at least O(k−m). For infinitely
smooth functions, clearly the convergence of PN is faster than algebraic.

Another important result involves derivatives of the truncation error. One
may show that for u ∈ H m

w () the truncation error in the Sobolev norm Hl
w

satisfies the inequality

‖u − PN u‖Hl
w()≤C N−1/2 N 2l−m‖u‖H m

w (). (B.3.56)

This implies, in particular, that if u belongs to H m
w (), then obviously u′ ∈

H m−1
w (), and because of (B.3.54),

‖u′ − PN u′‖L2
w() ≈ C N 1−m . (B.3.57)

On the other hand, because of (B.3.56) and the definition of the Sobolev norm,
we find

‖u′ − (PN u)′‖L2
w() ≈ C N 3/2−m . (B.3.58)

2 Sobolev spaces are treated in Section 2.1.3.
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This result shows that the Galerkin derivative (PN u)′ has a slightly lower conver-
gence rate than the orthogonal projection of u′. Furthermore, if the smoothness
of u is such that it belongs to H 1

w() [but not to H 2
w()], then clearly PN u

converges to u but (PN u)′ does not converge to u′.
Similar results occur for the interpolation error u − IN u. In L2 norm, the

result corresponding to (B.3.54) is written as

‖u − IN u‖L2() ≤ C N 1/2 N−m‖u‖H m (), (B.3.59)

whereas in the Sobolev norm H m(), one may show that

‖u − IN u‖Hl () ≤ C N 1/2 N 2l−m‖u‖H m (). (B.3.60)
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[114] Y. Dubois-Pèlerin, V. Van Kemenade, and M.O. Deville. An object-oriented tool-
box for spectral element analysis. J. Sci. Comput., 14:1–29, 1999.



Bibliography 473
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[370] B. Szabó and I. Babuška. Finite Element Analysis. Wiley, New York, 1991.
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[397] H. Vandeven. Compatibilité des espaces discrets pour l’approximation spectrale
du problème de Stokes périodique–non périodique. Model. Math. Anal. Numer.,
23:649–688, 1989.

[398] H. Vandeven. On the eigenvalues of second-order spectral differentiation opera-
tors. Comput. Methods Appl. Mech. Engrg., 80:313–318, 1990.

[399] H. Vandeven. Family of spectral filters for discontinous problems. J. Sci. Comput.,
6:159–192, 1991.

[400] J. Villadsen and M.L. Michelsen. Solution of Differential Equation Models by
Polynomial Approximation. Prentice-Hall, Englewood Cliffs, NJ, 1978.

[401] E.L. Wachspress. Iterative Solution of Elliptic Systems and Applications to
the Neutron Diffusion Equations of Reactor Physics. Prentice-Hall, Englewood
Cliffs, NJ, 1966.

[402] E.L. Wachspress. The ADI Model Problem. E.L. Wachspress, Windsor, CA, 1995.
[403] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning

for adaptive unstructured meshes. J. Parallel Dist. Comput., 47:102–108, 1997.
(Originally published as Univ. Greenwich Tech. Rep. 97/IM/20.)

[404] G.H. Wannier. A contribution to the hydrodynamics of lubrication. Quart. Appl.
Math., 8:1–32, 1950.

[405] T.C. Warburton, L.F. Pavarino, and J.S. Hesthaven. A pseudo-spectral scheme for
the incompressible Navier–Stokes equations using unstructured nodal elements.
J. Comput. Phys., 164:1–21, 2000.

[406] T.C. Warburton, S.J. Sherwin, and G.E Karniadakis. Basis functions for triangular
and quadrilateral high-order elements. SIAM J. Sci. Comput., 20:1671–1695,
1999.



Bibliography 487

[407] V. Warichet and V. Legat. Adaptive hp–finite element viscoelastic flow calcula-
tions. Comput. Methods Appl. Mech. Engrg., 136:93–110, 1996.

[408] J.A.C. Weideman and L.N. Trefethen. The eigenvalues of second-order spectral
differentiation matrices. SIAM J. Numer. Anal., 25:1279–1298, 1988.

[409] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software.
In Proceedings of the ACM/IEEE SC98 Conference on High Performance
Networking and Computing, IEEE Computer Society, Orlando, FL, 1998,
http://www.cs.utk.edu/rwhaley/ATL/INDEX.HTM.

[410] O.B. Widlund. Iterative substructuring methods: Algorithms and theory for
elliptic problems in the plane. In R. Glowinski, G.H. Golub, G. Meurant, and
J. Périaux, editors, First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, pages 113–128. SIAM, 1988.

[411] D. Wilhelm. Numerical Investigation of Three-Dimensional Separation in a
Forward-Facing Step Flow Using Spectral Element Method. PhD thesis, Swiss
Federal Institute of Technology, Zürich, 2000.
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Bernoulli, 34
bilinear form, 37, 46, 47, 49, 51, 79, 170, 175,

191, 194, 195, 237, 238, 240, 252, 357,
364

block-Jacobi preconditioner, 338, 343, 348
blocking send, 398
Boolean sum, 183

489
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boundary condition
Dirichlet, 39, 43, 51, 52, 57, 92, 125, 129
essential, 36, 40, 43, 195, 323
homogeneous, 39, 126, 137, 176
inflow/outflow, 137, 147
inhomogeneous, 39, 176, 196, 200, 209,

222, 310
natural, 36, 39
Neumann, 125
periodic, 130
Robin, 40, 169, 186, 200
variational, 34

boundary value problem
effect of collocation grid on, 67
variational, 34
weak form, 47
with Dirichlet conditions, 51

boundedness condition, 42
Boussinesq approximation, 1, 8, 9
Boussinesq equations, 9, 12
brachistochrone problem, 34
Brinkman number, 13
broken norm, 357, 378
bubble functions, 61, 269, 282, 374

definition of, 269
interaction with polynomial functions, 270
interior nodes, 272
residual-free, 140
stabilization with, 139, 140, 282
with finite elements, 273

bulk viscosity, 7
buoyancy force, 9
Burgers equation, 17, 151, 426

and time derivative, 159
spectral element discretization of, 152, 155
with Taylor–Galerkin time integration, 158,

161
Bézier curve, 25

cache, 382–384, 391
capillary tensor, 322
Cauchy principle, 5
Cauchy sequence, 420, 422, 428

and coercivity condition, 42
convergence of, 41, 43, 420
definition, 419

Cauchy–Schwarz inequality, 429, 430
CFL condition, 17, 131, 133, 135, 136, 228

scaling parameter, 133
chaos, 17
characteristic length, 22
characteristic polynomial, 104
characteristics, 231, 232
Chebyshev polynomials, 447, 451, 453

fast transforms with, 62
preconditioning, 84
spectral case, 79

Cholesky factorization, 77
Clausius–Duhem inequality, 7, 8
clearance gap flow, 367
coarse-grid operator, 302, 344–348, 407,

410
coefficient of thermal conductivity, 8
coercivity condition, 42, 46, 48, 51
collocation

approximation, 275
Chebyshev, 248, 257, 283, 288, 290, 313,

410
Chebyshev finite element, 332
Chebyshev single-grid, 247
derivative, 131, 153, 460, 462
discretization, 202
equations, 203, 210, 213
Legendre single-grid, 245
motivation for, 245
multidomain, 212, 214, 215
one-dimensional, 69
orthogonal, 67, 69, 70, 94, 202
points in triangle, 376–378
preconditioned, 258, 289
single-grid, 252
spectral element compared with, 279
spurious pressure modes eliminated with,

257
staggered Legendre, 250

collocative spectral element, 242
column-major ordering, 384
commodity technology, 5, 23, 24, 391, 393
complete set, 41
compression algorithm, 25
computational fluid dynamics (CFD)

hardware history and solution speed, 23
high-order methods with, 2
present status, 22

condition number, 29, 77, 78, 80, 83–85, 90,
95, 97, 205

for triangular elements, 376
with additive Schwarz, 345
with block-Jacobi, 338

conditioning, 74, 257
cone problem, 229
conforming case, 353, 356, 361
conjugate gradient method, 201

lowest eigenpairs found with, 407
preconditioned, 29, 90, 256, 302
relationship with variational method, 86
semiiterative methods, 73
spectral element implementation, 197

connectivity matrix, 193, 221, 358
conservation

form, 227, 228
momentum, 288

consistency error, 358, 370
consistency property, 102, 104, 107
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constitutive equations
for stress tensor and heat conduction flux, 7
Newtonian, 37

contact angles, 324
contact forces, 5, 235
convection operator, 100, 132, 133, 228, 318
convergence

algebraic, 72, 73
and compliance with inf-sup condition,

237
and maximum principle, 339
consistency and stability, 104
dependence on Green’s functions, 340
effect of singularities on, 369
enhancement with Laplacian operator, 266
exponential, 72, 80, 273
for nonsmooth functions, 267
for single-grid collocation, 247
initial, 348
of Navier–Stokes problem, 277
of nonconforming method, 358
of sequence, 420
property, 206
spectral, 444
test for spatial, 416
with coarse-grid solve, 344–346, 348, 407
with collocation method, 235
with generalization of finite element

method, 244
with iterative techniques, 277
with Newton method, 278
with Richardson method, 258
with special treatment of singularity, 371

corner singularity, 370
Courant–Friedrichs–Lewy (CFL) condition, 17,

133
Crank–Nicolson (CN) method, 106, 108, 128,

221, 228
creeping flow, 2, 12
Crouzeix DIRK scheme, 118, 119
crystal router, 403
cubic Hermite element, 55

deflation, 302, 347, 348
deformation tensor, 324
deformed geometry, 178
derivative operator, 181, 225
developed turbulence, 18
dgemm, 388, 389, 410
diagonal preconditioning, 198, 201
diagonalization method, 26, 28–30, 256, 303

fast, 167, 177, 178, 410
differentiation matrix, 64, 461, 463
dimensional analysis

guidelines for model selection, 14
Pi theorem, 11

dimensionless numbers, 11–13, 16

direct numerical simulation (DNS)
limits of, 2
of turbulent flow, 23
with low Reynolds number, 17

direct stiffness summation, 57, 65, 194, 196,
400, 401, 403

geometry-free approach, 405
direction derivative, 35
Dirichlet boundary condition, 39, 43, 51, 52,

57, 92
inhomogeneous, 176, 196, 210

discrete transform, 33, 456
discrete variable method

basic requirements for, 102
convergence with, 103
forward step method, 101

dispersion error, 135, 149, 230
dissipation

hyperbolic, 129
parabolic, 124

dissipation function, 8
distributed memory, 391, 393
distribution, 43, 46, 434
divergence theorem, 5–7
driven cavity, 410
DuFort–Frankel method, 219
dyadic product, 8
dynamic pressure, 11

eddy-promoter domain, 267, 330
edge mode, 374
eigenvalue

hyperbolic problem, 107, 129, 131, 139
in fluid mechanics, 100
model problem, 100
of skew-symmetric operator, 228
parabolic problem, 125
preconditioned collocation, 208
pseudo-spectra, 147
Sturm–Liouville, 444
tensor-product form, 165–167
unsteady advection-diffusion, 145–147

Einstein summation convention, 5
elasticity problem, 324
electrostatic points, 376–378
element mass matrix, 58
element stiffness matrix, 57, 61
elliptic problem, 33, 162

d-dimensional, 169
ellipticity condition, 42
ellipticity constant, 51
energy functional, 236
energy inner product, 38, 76, 174, 177, 179,

181
energy norm, 38, 41–43, 46, 50, 76
error estimation, 49, 71, 377, 464
Euclidean norm, 75, 77
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Euler equations, 12, 259
Euler splitting, 225
Euler–Lagrange equation, 36, 38, 46
Eulerian representation, 4, 318
explicit Euler method (EM), 107, 127
explicit scheme

produced with backward formula, 160
spectral methods coupled with, 128
stability control of, 119
time step selection for, 128

exponential convergence, 80, 273, 285
external flow, 2, 17

fan-in/fan-out, 397
fast diagonalization method

and Chebyshev collocation, 410
as preconditioner, 177, 346
for domain decomposition preconditioners,

167
for inverse action, 177
for solution of global spectral methods, 167
limitations of, 177, 178

Fekete points, 376, 378
Fick’s law, 37
Fiedler vector, 407
filter

for stabilizing spectral methods, 150, 328
for stabilizing unsteady flow, 293, 315
higher Reynolds number flows with, 326
with high Reynolds numbers, 21
with moderate to high Reynolds numbers,

18
fine-grid operator, 302, 303
finite difference

as a filter, 21
boundary conditions determined by, 15
centered, 26, 79
five-point stencil, 73
preconditioning, 84, 143
upwind, 139
vs. weighted residuals, 128

finite element
as preconditioner, 345, 346
automation of equation generation, 60
cubic Hermite, 55
ease of subspace generation with, 44
error estimates in approximations, 49
Galerkin approximations implemented with,

53
h-type, 60
h-version, 54
in Sobolev space, 55
interpolation, 57–59
Lagrangian, 92, 95
Lagrangian basis functions, 56
linear, 72, 129, 132, 135
linear systems induced by, 69

mixed model, 20
p- vs. h-version, 61
p-version, 60
partition of integration domain, 53
preconditioning, 29, 85
quadratic, 31
second-order isoparametric, 56
structure compared with spectral element,

65
tensorized Lagrangian, 55
vs. spectral element, 62
weak formulation, 15

finite volume, 21
flow, external, 2, 17
fluid flow equations, 8
forward step method

applied to initial value problem, 103
discrete variable method, 101
stability region of, 105

Fourier’s law, 37
fractional step method, 296, 298, 299
free surface, 10, 15, 293, 318, 320–327
Froude number, 12
Fréchet derivative, 153, 274–276, 278,

425–427

Galerkin approximation, 330
finite elements with, 53, 54
numerical performance poor, 50
of variational problem, 51
principle of, 47
projection method with, 47
stability of, 49
theorem for, 48
with quadrature, 65

Galerkin method
and spectral elements, 62
detailed description of, 47
discontinuous, 233
generalized, 51
implementation, 61
implementation with spectral elements, 64
matrix evaluation with, 57
modified, 270, 271
Petrov, 50
vs. Ritz method, 50

gather-scatter operation, 193, 401
Gauss–Chebyshev, 142
Gauss–Jacobi quadrature, 375
Gauss–Legendre quadrature, 144
Gauss–Lobatto quadrature, 62
Gauss–Lobatto–Chebyshev (GLC) quadrature,

68, 70
Gauss–Lobatto–Chebyshev points, 79
Gauss–Lobatto–Jacobi grid, 85
Gauss–Lobatto–Jacobi quadrature, 131, 142,

152
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Gauss–Lobatto–Legendre quadrature, 163, 190
Gauss–Seidel iteration, 73, 82
Gaussian elimination, 117

comparison with multigrid, 27
variants detailed, 74

Gaussian factorization, 73
Gaussian quadrature rule, 51, 448, 460
generalized conjugate residual (GCR) method,

89, 91
generalized derivative, 43
generalized Galerkin method, 51
generalized method of residuals (GMRES), 73,

86, 89, 91, 342, 352
geometric factor, 180, 181
glass flow, 3, 9, 13, 14
Gordon–Hall method, 183–185
Gram–Schmidt orthogonalization, 222, 434

classical, 89
definition, 433
modified, 88

Grashof number, 13
greedy algorithm, 406
Green’s function, 260, 262, 263, 340
grooved channel flow, 267, 280, 285

h-version of finite elements
description, 54
error decay rate, 72
vs. Galerkin method with spectral elements,

64
vs. p-version, 61
vs. spectral elements, 62
with homogeneous domain partition, 71

hairpin vortices, 408
Hamel flow, 187
hardware, 22, 23
heat capacity, 8
heat flux, 6, 7, 11, 125
Helmholtz equation, 16, 264
Helmholtz operator, 175, 176, 181, 222
Hermitian interpolation, 54
Hessenberg matrix, 92
hierarchical structure, 61, 382
high-order methods

boundary value problems, 33
conditioning, 77
limitations, 2
on massively parallel computers, 32
orthogonal collocation, 67
preconditioning, 84
sophisticated data structures needed with, 25
spectral convergence of, 31
spectral elements, 62
stabilization, 140
time evolution of, 29
vs. Lagrangian finite elements, 95
vs. linear finite elements, 129

Hilbert space, 43, 45, 46, 428–433
hp method, 235, 272, 273
hydrostatic pressure, 13
hyperbolic problems, 107, 129, 233

implementation
decomposition strategies for SPMD,

399
for 2D problem, 263
for 3D problem, 264
for Chebyshev collocation, 257
for complex geometry, 354
in spectral frame, 265
iteration-based implicit, 379
Navier–Stokes, 391
of algorithms for high-order weighted

residual methods, 379
of frequently called kernels, 390
of object-oriented spectral element, 416
of parallel BLAS, 411
of reduce operation, 397
weighted residual, 401
with collocation, 253, 289

implicit Euler (IE) method, 108, 127
implicit scheme

A-stable, 108, 124
Crank–Nicolson scheme similar to, 120
explicit counterpart to, 128
for viscous term, 152
leading order cost, 168
produced with forward formula, 160
stability regions of, 107

incompressibility constraint, 5, 260, 266, 288,
300, 314, 332

incompressible fluid, 124
bottleneck for simulation, 26
heat capacity in, 8
Navier–Stokes equations for, 9
Newtonian, 8
stress tensor in, 7
volumic mass as constant in, 4

incremental loading, 277
indirect addressing, 193, 405
inertial forces, 2
inertial time, 11, 156
inexact factorization, 299, 300
inf–sup problem, 237
inf–sup constant, 364, 365
influence matrix technique, 260, 263
initial conditions, 292, 299, 308, 326, 327
inner product

A, 76, 87
discrete, 452, 460
energy, 38, 50, 76
of elements in V , 37
of spaces, 44
Sobolev, 41, 43–44
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inner product (contd.)
space, 427, 429–433
with basis functions, 48

internal energy, 6
internal flow, 2, 17
interpolation error, 71, 317
interpolation operator, 52, 85, 183, 211, 214,

343, 350
inviscid fluid, 10
irrotational field, 261
isoparametric element, 56
isoparametric mapping, 183, 190, 191
iteration matrix, 258
iterative method

approximation of solutions with, 86
finite termination property lacking in, 73
for three-dimensional problems, 74
general, 74
Richardson fixed point iteration, 81

Jacobi iterative scheme, 82
Jacobian, 180
Jacobian matrix, 101
Jacobian, surface, 186, 187, 201

k–ε model, 19–21
k–l model, 20
kinematic viscosity, 12
kinematical constraint, 322
Kovasznay flow, 283, 378
Kronecker delta function, 182
Kronecker product, 164
Kronecker symbol, 52
Krylov method, 89
Krylov subspace, 89–91, 408

L-stable method, 109, 119, 124
Lagrange multiplier, 236
Lagrangian formulation, 319
Lagrangian interpolation, 54, 56, 62, 67, 68,

70, 455
Lagrangian polynomial, 55
laminar flow, 2
Laplace equation, 16, 58, 84, 185
Laplace relation, 321
large eddy simulation (LES), 2, 17, 224
latency, 394, 395, 403
Lax equivalence theorem, 49, 104
Lax–Milgram theorem, 33, 45, 48
Legendre polynomials, 60, 63, 445, 450, 453,

464
lexicographical ordering, 26, 73, 164, 203,

205, 219, 220
linear momentum conservation, 5
linear multistep method

A-stable schemes, 109

examples, 105
explicit, 111
formula for, 101
implicit, 110
numerical solution with, 104
stability of, 113
vs. IRK schemes, 117

low-order preconditioning, 205
LU decomposition, 26, 60

Marangoni effect, 324
mask array, 195, 221
mass conservation

local equation, 4
principle, 3

mass lumping, 78, 128, 132, 133, 174
mass matrix

diagonal, 174, 255, 264, 376
diagonal pressure, 255, 256
element, 58
finite element, 61, 97
global, 58, 78
integration of basis function with, 78
local, 58
lumped, 79, 128, 132, 133, 174
two dimensional, 173
with triangular spectral elements, 376

matching condition, 335, 352–355, 364
material time derivative, 4, 10, 19
matrix bandwidth, 69, 73, 205
matrix norm, 74, 75
matrix-matrix product
dgemm, 388
code, 387
importance for speedup, 409
in NEC library, 412
optimized for benchmarks, 388
performance, 394
tensor-product evaluation recast as, 169, 385

mesh velocity, 319, 324, 326
message passing, 391, 392

costs, 393
implementation, 393, 396

Message Passing Interface (MPI), 22, 23, 25,
392, 393, 396, 398, 401

method of characteristics, 231, 232
metric space, 417, 418
metrics, 180, 181, 185
mixing length theory, 19, 20
modified Adams–Bashforth/Crank–Nicolson

(MABCN) method, 120
modified Galerkin method, 270, 271
Moore’s law, 380
mortar conditions, 355, 364
mortar spectral element (MSE), 25, 353
multidomain collocation, 67, 212, 214, 215
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multigrid method, 288, 330
as preconditioner, 29
comparison with Gaussian elimination, 28
convergence factor, 349
introduction of, 26
on parallel computers, 27
spectral element, 348

multiplicity, 198, 223, 400
multistep

consistent, 103
cost of implicit, 102
examples of linear, 105
implicit linear, 117
linear, 101, 104, 119
stable, 103
starting procedures needed with, 102

natural boundary conditions, 39
natural convection, 9, 13
natural ordering, 167, 173, 180, 305
Navier–Stokes equations

choice of discrete space for mortar
functions, 354

diffusion and advection contributions, 119
fractional-step scheme with, 346
on unstructured nodal triangles, 378
space discretization, 99
splitting with, 120, 124
stabilization, 140
vs. Burgers equation, 151

Navier–Stokes equations
as singular perturbation problem, 12
derivation of, 2
dimensionless, 12
for compressible fluids, 9
for incompressible fluids, 9
for moderate to high Reynolds numbers, 18
for very high Reynolds numbers, 18
fourth-order compact schemes for, 28
isothermal incompressible, 11
Reynolds averaged, 2, 18, 23
steady-state, 234
subsets used for testing numerical methods,

16
three dimensional, 31
transient, 10
unsteady, 291
vs. Burgers equation, 17

Neumann boundary condition
enforced asymptotically, 66
homogeneous, 39, 57
inhomogeneous, 40, 200, 209

Neumann operator
assembled, 195, 198
definition, 176

Newton method, 235, 277, 278

Newton–Cotes quadrature scheme, 105
Newtonian fluid, 7
Nitsche’s trick, 71
no-slip wall condition, 10
non-Newtonian fluid, 20, 32
nonconforming

3D case, 363
convergence, 358
discretization, 358
domain decomposition, 354, 369
elements, 357, 364
implementation, 358
spectral elements, 353, 357
steady Stokes case, 363

nonlinear term, 152, 153, 161, 274, 276
nonlinear term evaluation, 305
nonuniform rational B-splines (NURBS), 25
norm

A-norm, 89
L2, 43, 72, 95, 97
bounded solution of, 49
broken, 357, 378
conditions of, 41
decay rate of, 93
energy, 38, 41–43, 50, 76
energy vs. Sobolev, 42, 46
equivalence of, 82, 453
error, 94
Euclidean, 77
matrix, 74, 75
maximum, 422
notation of, 35
on vector space, 421
semi-, 421
Sobolev, 41
vector, 76

normal pressure gradient, 259
null space, 176, 195, 196, 423
NUMA, 22, 23

object-oriented concepts, 25
Oldroyd-B model, 20
one-equation model, 20
Operator-Integration-Factor Splitting (OIFS)

method, 121, 123, 155–157, 161, 230
operator–splitting scheme, 100
orthogonal collocation method, 67, 69, 70, 94
orthogonal polynomial, 62, 433, 442

three-term recursion, 443
overlapping Schwarz method, 338, 345

p-version of finite elements, 61, 62, 72
parabolic problems, 220, 224
parallel computation

effects of hardware cost, 23
high-order methods, 25, 32
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parallel computation (contd.)
improvements in, 28
introduction of parallel machines, 24
message passing libraries, 25
multigrid method, 26
new languages for, 25
programming difficulty, 24
RISC chip revolution, 22

parallel processing
visualization needs, 26
with MPPs, 24

Parallel Virtual Machine (PVM), 25, 392
parent element, 53, 162, 239, 269, 272
Parseval’s identity, 454
Petrov–Galerkin method, 50
Picard iterative method, 278
pipelined execution, 381
plane channel, 267
plastics processing, 9
Poincaré–Friedrichs inequality, 42
Poisson equation

3D, 26, 28
collocation schemes for, 29
continuous presentation, 334
diagonal scaling with, 201
for pressure, 259
from simplified Helmholtz equation, 16
inversion of, 29
mapping with, 378
overlapping Schwarz approach with, 338
pressure, 223, 292, 301, 310, 311
pressure correction, 315
pseudo, 264
Schwarz iteration with, 339
velocity field obtained from, 15
with Dirichlet homogeneous boundary

conditions, 370
with pressure boundary condition, 260

polymer processing, 9
Prandtl number, 13
preconditioner

diagonal, 198
fast diagonalization method, 177
finite difference, 84–86, 207–209, 215
finite element, 29, 85, 95, 208, 209,

213–215, 345, 346
for Chebyshev collocation, 257
for pressure matrix, 258
for Uzawa method, 264
Funaro’s finite difference, 217
of conjugate gradient method, 256
of linear systems, 288
of Schur complement, 338
with collocation, 289

preconditioning
diagonal, 201, 222
domain decomposition, 334

low order, 205
Schwarz, 342, 343
two-stage, 303

preconditioning matrix, 81, 83, 218
predictor-corrector (PC) method, 111, 112, 313
pressure condition, inhomogeneous, 262
pressure correction, 296, 299, 313–315, 329
pressure gradient, normal, 259
pressure method, 293, 296
pressure modes

weakly spurious, 245
pressure modes, spurious, 240, 241, 245–247,

250, 252, 256–258, 279
pressure operator, 296, 303
primitive variables, 15, 240, 291
principle of thermodynamics, 6, 7
projection, 223, 224, 254, 257, 270, 286, 342,

408, 413
in Schwarz method, 344
method, 297, 299
onto previous solutions, 222
orthogonal, 50, 87, 249, 349, 431, 432, 455,

457
projection-diffusion method, 331
prolongation, 176, 341, 342, 345–347, 349
pseudo–Laplacian matrix, 300, 301
pseudo–Poisson equation, 264
pseudo–spectra, 147
Prandtl number, 13

quadrature rule
Gauss–Lobatto–Jacobi, 69
Gaussian, 33, 51, 448, 460

rate of deformation tensor, 7, 21, 289
rate of rotation tensor, 8
Rayleigh number, 13
recursive bisection, 406
reduced equations, 16
reduced instruction set computer (RISC), 22,

380
reduced instruction set computer (RISC), 381,

382
reference pressure level, 235, 253, 292,

323
relaxation factor, 81, 83, 85, 97, 206, 208, 258
renormalization group (RNG), 21
residual-free bubbles, 140
restriction operator, 176, 186, 198, 342, 346,

349
Reynolds number

and computational grids, 409
and recirculation zone, 413
and LES, 2, 21
based on inflow velocity, 367
based on rotation rate, 365
choice of numerical scheme, 18
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convergence with collocation, 275
critical, 17
definition of, 11
dimensionless, 13
divergence of solutions, 277
effects when high, 10
high, 137
in advection-dominated flows, 12
in fully developed turbulence, 2
influence of nonlinear advection, 307
ratio of two time scales, 156
stability conditions with, 295
with filtering, 326

Reynolds transport theorem, 4, 7
Reynolds–averaged Navier–Stokes (RANS),

18, 23
Richardson extrapolation, 28
Richardson iteration, 258, 348, 351
Richardson iterative scheme

as Krylov method, 89
convergence rate, 82, 83
evaluation of right-hand sides in, 84
fixed point, 81
preconditioned, 82, 86, 97, 206

Richardson number, 13
Ritz method, 50
Robin boundary condition, 40, 86, 186

implementation, 200
in heat transfer, 186
mixed, 169

robustness of algorithm, 208
Rosenbrock DIRK scheme, 118
row-major ordering, 384
Runge–Kutta (RK) method, 113, 308

diagonally implicit (DIRK), 118
explicit (ERK), 114–116, 123, 157
implicit (IRK), 117, 118
nonlinear essence of, 114
splitting schemes with, 121

saddle-point problem, 237
Schur complement, 337, 338, 342
Schwarz method

additive, 343, 345
alternating, 339, 341
multiplicative, 341, 343
overlapping, 338, 345

Schwarz preconditioner
additive, 343, 347
multiplicative, 343

semi-discrete problem, 126, 294
semi-implicit scheme, 100, 149
seminorm, 421

Sobolev, 41
shared-memory model, 391
shared-memory multiprocessor, 22, 393
shear flows, 20

shear viscosity, 7
similarity transform, 165, 166
single domain, 67, 194
single-step method, 102

AB1, 106
BDF1, 109
numerical scheme of, 101
with AM method, 106

singular basis function, 371
singular perturbation, 138, 147
skew-symmetric form, 227, 228, 304
smoothing step, 351
SMP machine, 22, 24, 393
Sobolev inner product, 41, 43
Sobolev norm, 41, 464
Sobolev seminorm, 41
Sobolev space, 43, 138

H1, 44, 56
constrained, 264
definition, 41, 171
embedding properties, 171
in d-dimension, 170
negative, 45
notation, 43
weighted, 44

software engineering, 25
solenoidal field, 261
spectral accuracy, 444
spectral approximation, 33, 62, 139, 140
spectral collocation, 25
spectral condition number, 77, 83–85, 95, 205
spectral convergence, 444
spectral derivative, 459
spectral element

2D, 229
accuracy, 30
and AB3, 135
approximation space, 190
collocative, 242
convergence, 31
discretization of Burgers equation, 152
flexibility of, 190
for solving elliptic equation, 25
grid points, 143
inner nodes, 144
inner-product definition, 174
Lagrangian basis functions with, 177
Laplacian, 384
Legendre, 29, 138
mass matrix, 195
Navier–Stokes, 389
nodes, 144
nonconforming, 353, 357
numerical values of S, 133
object-oriented, 416
operators, 194
preconditioned, 30
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spectral element (contd.)
resolvable spectrum, 129
scalability, 409
scaling, 124
staggered, 240, 242, 331
steps, 238
stiffness matrix, 178, 181
vs. linear finite element, 149

spectral element method
basis functions, 63
convergence, 72
free vertex variant, 353
Legendre, 65, 67
mass lumping with, 79
mortar, 353
Schwarz preconditioners for, 345

spectral radius, 75, 77, 83, 133, 206, 221, 258
splitting error, 293, 296, 297, 308, 311
splitting technique, 98
SPMD, 392, 399, 400
spurious pressure modes, 240, 241, 245–247,

250, 252, 256–258, 279
stability

CFL condition, 133
with explicit time-marching schemes, 295

stability condition, 49, 156, 157, 228, 230, 304
stability property, 102, 103

governed by eigenproblem, 146
governed by eigenvalue problem, 131
of P(EC)m E methods, 112
of IRK schemes, 117
problem dependency of, 103

stability region
of A-stable scheme, 110
of IRK schemes, 118
Adams–Bashforth, 107
Adams–Moulton, 107
definition, 105
for BDFk, 110
Runge–Kutta, 113
splitting schemes (ABCN), 120

stabilization
bubble function, 139, 140, 269, 282
by upwind grids, 140, 144, 145, 216, 217,

220
filter-based, 316, 328
upwind, 139

stabilizing term, 271, 318
staggered grid, 86, 240, 242, 250, 278, 305

example, 144
for Chebyshev case, 216
generation of, 143
Legendre, 145
orthogonal collocation solutions of, 141
stabilization techniques based on, 143
upwind grid, 217
with advection-diffusion, 219

staggered spectral element, 240, 242
Steklov–Poincaré operator, 334–337
stiff system, 19, 105, 109, 120, 149
stiffness matrix

coarse-grid, 350
derivation, 174
element, 57, 61
evaluation of, 59
global, 58, 65
in deformed geometry, 178
local, 57, 194, 358
masks applied to, 195
orthogonality in, 374
quadratures for evaluation, 62
spectral element, 178, 181, 194
storage requirement, 181
structure of, 65
unacceptable fill in, 177
unassembled, 194
viscous term with, 153

stiffness summation, 65
Stokes equations, 12, 264, 273, 276, 278,

288
stream function, 15, 16
streamline-upwind Petrov–Galerkin (SUPG)

method, 139
stress tensor, 5–7, 19, 21
stress vector, 5
strong formulation, 38
Sturm–Liouville problem, 444
subcycling, 155, 156, 230–232, 413
subdomain, 47, 69

load balancing with, 406
motivation for choosing, 333
nonconforming, 365
with high-order methods, 399
with recursive bisection, 406

subgrid-scale approximation, 2
subgrid-scale stress tensor, 21
substructuring, 333, 334, 338, 342
successive overrelaxation (SOR) method, 26
surface Jacobian, 186, 187, 201
symmetric positive definite (SPD) matrix, 76,

77, 149

Taylor–Galerkin method
explicit, 160, 161
three-step explicit, 314
time integration, 158
two-step, 161
with spectral elements, 158, 159

tensor field, 5
tensor product, 26, 29, 117, 164, 305

diagonalization, 165
domain, 162
evaluation, 167, 385
factorization, 166
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generalized, 373
grids, 180, 202
in 2D case, 170
in 3D case, 168
interpolation, 211
inverse, 165
matrix, 163
of 1D finite elements, 346
of 1D operators, 363
of GLL quadrature, 163
of Lagragian interpolants, 191
polynomial, 163
symmetric use of, 202

test function, 33, 38–40, 146, 171, 186, 210,
211, 213, 220, 225, 227, 434, 435, 439

thermal conduction, 13, 14
thermal convection, 1, 3
thermal diffusivity, 13, 14
thermodynamics

first law, 6
second law, 7

third-order pressure correction scheme, 315
three-field approach, 288, 289
trace operator, 6
transport operator, 227
trapezoidal rule, 106
trial function, 54, 55, 57, 61
triangle inequality, 344, 417
triangular element, 371
trilinear form, 274
turbulence

as flow property, 19
fully developed, 2
memory effects, 20
models in industrial applications, 23
simulation important for large-scale

applications, 32
stages, 2, 17
two-layer model of, 21
with varying Reynolds number, 18

turbulent viscosity, 19, 21

unit-stride data access, 380, 383
unrolling, 389
unstable mode, 134
upwind grid, 140, 144, 217, 218, 220
Uzawa algorithm, 253, 256, 257, 268, 295,

296, 331
Uzawa operator, 255, 264

variational crime, 182
variational formulation, 38
variational functional, 58, 59
variational method, 34

for multidimensional problems, 162
variational principle, 33, 46, 49, 57
vector potential, 15

vector reduction, 396
velocity-pressure formulation, 15
vertex modes, 374
viscosity

artificial, 139
bulk, 7
effects, 10
for modeling creeping flow, 12
kinematic, 12
shear, 7
small values of, 153
turbulent, 19, 21
vanishing, 159
variable, 224, 225

viscous dissipation, 13, 17
viscous effects, 1, 17
viscous forces, 2, 11
volumetric mass, 9
vortex sheet roll-up, 326, 327
vorticity, 283
vorticity equation, 15
vorticity-stream function formulation, 16

Wannier–Stokes flow, 282, 284
warped product, 373
wave equation, 16
weak formulation, 15, 39–41, 170, 186, 226,

230
abstract form, 237
definition of, 236
in parabolic case, 130
local mass and stiffness matrices with,

204
modified with constrained Sobolev space,

264
of Green’s function, 263
of Poisson equation, 340
of Steklov–Poincaré operator, 337
of Stokes problem, 364
quadrature rules with, 239
recasting with, 138
vs. collocation, 278

weakly spurious pressure (WSP) modes,
245

Weber number, 321
weighted residual, 379, 399
weighted residual method, 34, 49, 87, 128,

137, 196, 200, 225
parallel implementation, 399

weighted Sobolev spaces, 44, 248
WENO scheme, 233
wiggles, 50, 368
wire-frame information, 185

Yosida method, 299

zero-equation model, 19


