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Preface 

A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter 
of a carbon nanotube is of nanometer size and the length of the nanotube can 
be more than lpm.  The nanotube diameter is much smaller in size than the 
most advanced semiconductor devices obtained so far. Thus the availability of 
carbon nanotubes may have a large impact on semiconductor physics because of 
its very small size and the special electronic properties that are unique to  carbon 
nanotubes. Because of the large variety of possible helical geometries known as 
chirality, carbon nanotubes provide a family of structures with different diam- 
eters and chiralities. One of the most significant physical properties of carbon 
nanotubes is their electronic structure which depends only on their geometry, 
and is unique to  solid state physics. Specifically, the electronic structure of a 
single-wall carbon nanotube is either metallic or semiconducting, depending on 
its diameter and chirality, and does not requiring any doping. Thus we can imag- 
ine that the smallest possible semiconductor devices are likely to be based on 
carbon nanotubes. Further, the energy gap of semiconducting carbon nanotubes 
can be varied continuously from 1 eV to 0 eV, by varying the nanotube diame- 
ter. Thus, in principle, i t  may be possible to specify the desired semiconducting 
properties using only carbon atoms with a specified geometric structure. 

The purpose of this book is t o  define the structure of carbon nanotubes 
as clearly as possible, starting from basic physics and chemistry. Since the 
uniqueness in the electronic structure comes directly from the uniqueness of the 
electronic structure of graphite, this volume provides background information 
about the structure and properties of graphite and related carbon materials. 
From our definition of the structure of carbon nanotubes, we can explain the 
electronic structure and phonon dispersion relations based on simple physical 
models, which the reader can follow with a pen and paper. Thus the contents 
of the book are rather theoretically oriented, and experimental results are used 
primarily to  provide evidence for the validity of the theory. This is actually the 
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way that the field of carbon nanotubes developed. At an early stage, the theory 
stimulated experiments in carbon nanotube physics, since obtaining sufficient 
quantities of pure carbon nanotubes has been difficult in practice. The early 
experiments were made through electron microscope observation. The direct 
evidence provided by electron microscopy for the existence of carbon nanotubes 
was sensational to many physicists and chemists, and because of this fascination, 
the field of carbon nanotubes has grown explosively, with many active research 
groups worldwide working independently or in collaborative research projects. 

In this book, using basic ideas of the lattice, electronic and phonon struc- 
tures, the physical properties are discussed in the terminology of carbon nan- 
otubes, which are characterized by the chiral index (n,rn). The chiral index 
(n, m) consists of a set of integers which specify each carbon nanotube uniquely. 
Since quantum effects are prominent in nanotube physics, the magnetic and 
transport quantum effects are very significant. Although progress in the field is 
still at an early stage, the book focuses on the basic principles behind the phys- 
ical properties. Another unique property of a carbon nanotube is its st,iffness, 
corresponding to the upper limit of the best carbon fibers, which are commonly 
used as a strong light-weight material. The special properties of carbon nan- 
otubes are explained in the various chapters in this book. 

Thus the physical properties of carbon nanotubes provide a new dimension 
for solid state physics, based on the great variety of possible geometries that are 
available for carbon nanotubes. In order to  expand this field into the future, 
many researchers in different fields of science should contribute to  this field. 
The authors hope that readers from any field of science can read this book 
without any special background requirements. This book is not intended to  be 
a collection of all activities on carbon nanotubes worldwide because this field 
is already so extensive, and is moving forward so rapidly at the present time. 
When this book was started three years ago, the present status of the field could 
not have been anticipated. Thus future progress is beyond our imagination. We 
hope that through this book, we will find many new friends in this field. So 
please enjoy the book and please communicate to the authors any comments 
you might have about this book. 

The authors would like to acknowledge many carbon nanotube researchers 
who have contributed to  the contents of the book. The authors also thank the 
New Energy Development Organization (NEDO) of the Japanese Ministry for 
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International Trade and Industry (MITI), Japan Society for the Promotion of 
Science (JSPS), and their generous support for international collaboration which 
made the writing of this book possible. The authors especially thank Ms. Junko 
Yamamoto and Ms. Laura Doughty for their help in preparing the indexes and 
figures of the book. 

Finally the authors wish to  say to readers: “Welcome to Carbon Nanotube 
Physics.” 

R. Saito, Tokyo 
M .S. Dresselhaus, Cambridge, Massachusetts 

G.  Dresselhaus, Cambridge, Massachusetts 
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CHAPTER 1. 

Carbon Materials 

Carbon materials are found in variety forms such as graphite, di- 
amond, carbon fibers, fullerenes, and carbon nanotubes. The reason 
why carbon assumes many structural forms is that a carbon atom 
can form several distinct types of valence bonds, where the chemi- 
cal bonds refer to  the hybridization of orbitals by physicists. This 
chapter introduces the history of carbon materials and describes the 
atomic nature of carbon. 

1.1 History 

We provide here a brief review of the history of carbon fibers, which are the 
macroscopic analog of carbon nanotubes. The early history of carbon fibers was 
stimulated by needs for materia.ls with special properties, both in the l g t h  cen- 
tury and more recently after World War 11. The first carbon fiber was prepared 
by Thomas A.  Edison to provide a filament for an early model of an electric 
light bulb. Specially selected Japanese Kyoto bamboo filaments were used to  
wind a spiral coil that was then pyrolyzed to  produce a coiled carbon resistor, 
which could be heated ohmically to  provide a satisfactory filament for use in an 
early model of an incandescent light bulb [l]. Following this initial pioneering 
work by Edison, further research on carbon filaments proceeded more slowly, 
since carbon filaments were soon replaced by a more sturdy tungsten filament in 
the electric light bulb. Nevertheless research on carbon fibers and filaments pro- 
ceeded steadily over a long time frame, through the work of Schutzenberger and 
Schiitzenberger (1890) [2], Pelabon [3], and others. Their efforts were mostly 
directed toward the study of vapor grown carbon filaments, showing filament 
growth from the thermal decomposition of hydrocarbons. 

The second applications-driven stimulus to  carbon fiber research came in 
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2 CHAPTER 1. CARBON MATERIALS 

the 1950’s from the needs of the space and aircraft industry for strong, stiff 
light-weight fibers that could be used for building lightweight composite materi- 
als with superior mechanical properties. This stimulation led to great advances 
in the preparation of continuous carbon fibers based on polymer precursors, 
including rayon, polyacrylonitrile (PAN) and later mesophase pitch. The late 
1950’s and 1960’s was a period of intense activity at the Union Carbide Corpo- 
ration, the Aerospace Corporation and many other laboratories worldwide. This 
stimulation also led to the growth of a carbon whisker [4], which has become a 
benchmark for the discussion of the mechanical and elastic properties of carbon 
fibers. The growth of carbon whiskers was also inspired by the successful growth 
of single crystal whisker filaments at that time for many metals such as iron, 
non-metals such as Si, and oxides such as Alz03, and by theoretical studies [5],  
showing superior mechanical properties for whisker structures [6]. Parallel efforts 
to  develop new bulk synthetic carbon materials with properties approaching sin- 
gle crystal graphite led to  the development of highly oriented pyrolytic graphite 
(HOPG) in 1962 by Ubbelohde and co-workers [7,8], and HOPG has since been 
used as one of the benchmarks for the characterization of carbon fibers. 

While intense effort continued toward perfecting synthetic filamentary car- 
bon materials] and great progress was indeed made in the early ~ O ’ S ,  it was 
soon realized that long term effort would be needed to  reduce fiber defects and 
to enhance structures resistive to crack propagation. New research directions 
were introduced because of the difficulty in improving the structure and mi- 
crostructure of polymer-based carbon fibers for high strength and high modulus 
applications, and in developing graphitizable carbons for ultra-high modulus 
fibers. Because of the desire to synthesize more crystalline filamentous carbons 
under more controlled conditions, synthesis of carbon fibers by a catalytic chem- 
ical vapor deposition (CVD) process proceeded, laying the scientific basis for the 
mechanism and thermodynamics for the vapor phase growth of carbon fibers in 
the 1960’s and early 197O’s.[9] In parallel to these scientific studies, other research 
studies focused on control of the process for the synthesis of vapor grown car- 
bon fibers,[l0]-[13] leading to current commercialization of vapor grown carbon 
fibers in the 1990’s for various applications. Concurrently, polymer-based car- 
bon fiber research has continued worldwide, mostly in industry, with emphasis on 
greater control of processing steps to achieve carbon fibers with ever-increasing 
modulus and strength, fibers with special characteristics, while decreasing costs 
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Fig, 1.1: High resolution 
TEM micrograph showing car- 
bon nanotubes with diameters 

.. . . . less than 10 nm [14-171. 

of the commercial products. 
As research on vapor grown carbon fibers on the micrometer scale proceeded, 

the growth of very small diameter filaments, such as shown in Fig. 1.1, was 
occasionally observed and reported [14,15], but no detailed systematic studies 
of such thin filaments were carried out. In studies of filamentous carbon fibers, 
the growth of the initial hollow tube and the subsequent thickening process were 
reported.[l6,17] An example of a very thin vapor grown tubules (< 100 A) is 
shown in the bright field TEM image of Fig. 1.1 [14-171. 

Reports of such thin filaments inspired Kubo [18] to  ask whether there was 
a minimum dimension for such filaments. Early work [14,15] on vapor grown 
carbon fibers, obtained by thickening filaments such as the fiber denoted by 
VGCF (vapor grown carbon fiber) in Fig. 1.1, showed very sharp lattice fringe 
images for the inner-most cylinders corresponding to a vapor grown carbon fiber 
(diameter < 100 A). Whereas the outermost layers of the fiber have properties 
associated with vapor grown carbon fibers, there may be a continuum of behavior 
of the tree rings as a function of diameter, with the innermost tree rings perhaps 
behaving like carbon nanotubes. 

Direct stimulus to study carbon filaments of very small diameters more sys- 
tematically [19] came from the discovery of fullerenes by Kroto and Smalley 
[20]. In December 1990 at a carbon-carbon composites workshop, papers were 
given on the status of fullerene research by Smalley [21], the discovery of a new 
synthesis method for the efficient production of fullerenes by Huffman [22], and 
a review of carbon fiber research by M.S. Dresselhaus [23]. Discussions at  the 
workshop stimulated Smalley to speculate about the existence of carbon nan- 
otubes of dimensions comparable to (360. These conjectures were later followed 
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Fig. 1.2: The observation by 
TEM of multi-wall coaxial nan- 
otubes with various inner and 
outer diameters, dj and do ,  and 
numbers of cylindrical shells N :  
reported by Iijima using TEM: 
(a) N = 5 .  du=67A, (b) N = 2,  
d0=55A, and (c) N = 7 ,  di=23A, 
du=65k [19]. 

up in August 1991 by an oral presentation at a fullerene workshop in Philadelphia 
by Dresselhaus [24] on the symmetry proposed for carbon nanotubes capped at 
either end by fullerene hemispheres, with suggestions on how zone folding could 
be used to  examine the electron and phonon dispersion relations of such struc- 
tures. However, the real breakthrou~h on carbon nanotube research came with 
Iijima’s report of experimental observation of carbon nanotubes using transmis- 
sion electron microscopy (see Fig. 1.2) [19). It was  this work which bridged the 
gap between experimental observation and the theoretical framework of carbon 
nanotuhes in relation to fullerenes and as theoretical examples of 1D systems. 
Since the pioneering work of Iijima [19], the study of carbon nanotubes has 
progressed rapidly. 

1.2 Hybridization in A Carbon Atom 

Carbon-based materials, clusters, and molecules are unique in many ways. One 
distinction relates to the many possible configurations of the electronic states of 
a carbon atom, which is known as the hybridization of atomic orbitals. In this 
section we introduce the hybridization in a carbon atom and consider the family 
of carbon materials. 

Carbon is the sixth element of the periodic table and is listed at the top 
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of column IV. Each carbon atom has six electrons which occupy 1s2, 2 s 2 ,  and 
2p2 atomic orbitals.’ The ls2 orbital contains two strongly bound electrons, 
and they are called core electrons. Four electrons occupy the 2s22p2 orbitals, 
and these more weakly bound electrons are called valence electrons. In the 
crystalline phase the valence electrons give rise to 2 s ,  2p, ,  2p, ,  and 2pz orbitals 
which are important in forming covalent bonds in carbon materials. Since the 
energy difference between the upper 2 p  energy levels and the lower 2 s  level in 
carbon is small compared with the binding energy of the chemical bonds,+ the 
electronic wave functions for these four electrons can readily mix with each other, 
thereby changing the occupation of the 2 s  and three 2 p  atomic orbitals so as 
to enhance the binding energy of the C atom with its neighboring atoms. This 
mixing of 2s and 2 p  atomic orbitals is called hybridization, whereas the mixing 
of a single 2 s  electron with n = 1 , 2 , 3 t  2 p  electrons is called spn hybridization 

In carbon, three possibIe hybridizations occur: s p ,  sp2  and sp3; other group 
IV elements such as Si, Ge exhibit primarily sp3 hybridization. Carbon differs 
from Si and Ge insofar as carbon does not have inner atomic orbitals except 
for the spherical Is orbitals, and the absence of nearby inner orbitals facilitates 
hybridizations involving only valence s and p orbitals for carbon. The lack of s p  
and sp2 hybridization in Si and Ge might be related to  the absence of “organic 
materials” made of Sis and Ge. 

PI. 

1.2.1 sp H ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ :  A c e ~ ~ ~ e ~ e ,  H G C H  

In s p  hybridization, a linear combination of the 2s orbital and one of the 2 p  
orbitals of a carbon atom, for example 2ps,  is formed. From the two-electron 
orbitals of a carbon atom, two hybridized s p  orbitals, denoted by ] s p a )  and Ispa), 
are expressed by the linear combination of 12s) and 12p,) wavefunctions of the 

*The ground state of a free carbon atom is 3P (S = 1, L = 1) using the general notation for a 
two-electron mdtiplet. 
tIn the free carbon atom, the excited state, 232p3 which is denoted by 5S i s  4.18 eV above the 
ground state. 
$Because of the electron-hole duality, n = 4 and 5 are identical to IZ = 2 and 1, respectively. 
§It should be mentioned that the “organic chemistry” for Si is becoming an active field today. 
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Fig. 1.3: sp hybridization. + 3 The shading denotes the posi- 
hive amditude of the wavefunc- 

12s> + 12px> + IsPo> tion. 12s) + (2p,) is elongated in 
the positive direction of (upper 
panel), while that  of 12s) - 12p,) 
is elongated in the negative di- 

12s> - 12px> bpb> rection of 2 (lower panel). 

where Ci are coefficients. Using the ortho-normality conditions (spa (spa) = 
0, (sp,Isp,) = 1, and (SpbISpb) = 1, we obtain the relationship between the 
coefficients Ci : 

(1.2) 
c1c3+c2c4 = 0, c;+c; = 1, 
c3” + c4” = 1, c,z+c: = 1.  

The last equation is given by the fact that the sum of 12s) components in Ispa) 
and Ispb), is unity. The solution of (1.2) is C1 = C2 = C, = 1/./2 and C4 = 
- 1 / d  so that 

In Fig. 1.3 we show a schematic view of the directed valence of the Ispa) 
(upper panel) and Jspb) (lower panel) orbitals. The shading denotes a positive 
amplitude of the wavefunction. The wavefunction of 12s) + 12p,) is elongated in 
the positive direction of 2, while that of (2s) - (2p,) is elongated in the negative 
direction of x. Thus when nearest-neighbor atoms are in the direction of x axis, 
the overlap of Ispa) with the wavefunction at x > 0 becomes large compared with 
the original (2p,)  function, which gives rise to a higher binding energy. If we 
select 12py) for 12p,), the wavefunction shows a directed valence in the direction 
of y axis. 

It is only when an asymmetric shape of the wavefunction (see Fig. 1.3) is 
desired for forming a chemical bond that a mixing of 2p orbitals with 2s orbitals 
occurs. The mixing of only 2p orbitals with each other gives rise to  the rotation 
of 2p orbitals, since the 2p,, 2p, and 2pz orbitals behave like a vector, (2, y, z ) .  

A wavefunction C,12p,)+Cy)2py)+C,)2pt), where C i  + C i  + C,” = 1, is the 2p 
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Fig. 1.4: trans-polyacetylene, 
(HC=C€I-)nl the carbon atoms 
form a zigzag chain with an angle 
of 120' , through sp2 hybridiza- 
tion. All u bonds shown in the 
figure are in the plane, and in ad- 
dition, one T orbital per carbon 
atom exists p e r p e n d ~ c u l ~  to the 

'i' yL H 
I 

x 
\ C /"\ C /"\ C / 

H 
I 
H plane. 

I I 
H 

wavefunction whose direction of positive amplitude is the direction (Csl C,, Cz) .  
The 2p wavefunctions of Eq. (1 .3 )  correspond to (C,,C,,C,) = ( l , O , O )  and 
(C,) Cy,C,) = (-1,O,O),  respectively. 

where 5 is used by chemists to denote a triple bond between two carbon atoms. 
The acetylene molecule HCzCH is a linear molecule with each atom having its 
equilibrium position along a single axis and with each carbon atom exhibiting 
s p  hybridization. The hybridized Ispa) orbital of one of the carbon atoms in 
HCrCH forms a covalent bond with the ISPb) orbital of the other carbon atom, 
called a u bond. The 2p, and 2% wavefunctions of each carbon atom are per- 
pendicular to the u bond, and the 2p, and 2p, wavefunctions form relatively 
weak bonds called T bonds with those of the other carbon atom. Thus, one u 
bond and two T bonds yields the triple bond of HCzCH. 

A simple carbon-based material showing s p  hybridization is acetylene, HC=CH, 

1.2.2 sp2 Hybr2~z~ation: F o ~ y a c e ~ y ~ e ~ e ,  (HC=CH-)n 

In sp2 hybridization, the 2s orbital and two 2p orbitals, for example 2p, and 2 q ,  
are hybridized. An example of sp2 hybridization is polyacetylene, (HC=CH-)- 
as is shown in Fig.l.4, where carbon atoms form a zigzag chain with an angle 
of 120O. All u bonds shown in the figure are in a (xy) plane, and, in addition, 
a T orbital for each carbon atom exists perpendicular to the plane. Since 
the directions of the three u bonds of the central carbon atom in Fig.l.4 are 
(0 ,  - l , O ) ,  ( f i / 2 , 1 / 2 , 0 ) ,  and ( - f i / 2 ,  1 / 2 , 0 ) ,  the corresponding sp2 hybridized 
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orbitals Isp:) (i = a ,  b , c )  are made from 2s, 2p,, and 2py orbitals as follows: 

ISP3 = C112S) - G T  12py) 

We now determine the coefficients C1, C2, and Cs. F'rom the orthonormal re- 
quirements of the Ispi) and 12s), 12p,,,) orbitals, we obtain three equations for 
determining the coefficients, Ci (i = 1, . - + ,3 ) :  

c;+c;+c; = 1 

c,c2 - 2 J C Z j  = o (1.5) 

ClC3+ ;J1-.1.J1-.;. = 0, 

yielding the solution of Eq. (1.5) given by C1 = C2 = l / f i  and C, = - l / f i .  
The sp2 orbitals thus obtained have a large amplitude in the direction of the 
three nearest-neighbor atoms, and these three-directed orbitals are denoted by 
trigonal bonding. There are two kinds of carbon atoms in polyacetylene, as 
shown in Fig. 1.4, denoting different directions for the nearest-neighbor hydrogen 
atoms. For the upper carbon atoms in Fig. 1.4, the coefficients of the )2py) terms 
in Eq. (1.4) are positive, but are changed to  - 1 2 ~ ~ )  for the lower carbon atoms 
in the figure. 

1.2.3 sp3 Hybridization: Methane, (CH4) 

The carbon atom in methane, (CH4), provides a simple example of sp3 hy- 
bridization through its tetragonal bonding to four nearest neighbor hydrogen 
atoms which have the maximum spatial separation from each other. The four 
directions of tetrahedral bonds from the carbon atom can be selected as (l,l ,l),  
(-1, -1,  l ) ,  ( - 1 , 1 ,  -l), (1,  -1,l). In order to make elongated wavefunctions 
to  these direction, the 2s orbital and three 2 p  orbitals are mixed with each 
other, forming an sp3 hybridization. Using equations similar to  Eq. (1.4) but 
with the four unknown coefficients, Ci, (i = 1,  . . . ,4), and orthonormal atomic 
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wavefunctions, we obtain the sp3 hybridized orbitals in these four directions: 

In general for spn hybridization, n + 1 electrons belong to the carbon atom 
occupied in the hybridized u orbital and 4 - ( n  + 1) electrons are in ?r orbital. 
In the case of sp3 hybridization, the four valence electrons occupy 2s' and 2p3 
states as u bonding states. The excitation of 2s' and 2p3 in the solid phase from 
the 2sa2p2 atomic ground state requires an energy approximately equal to  the 
energy difference between the 2s and 2 p  (-4 eV) Levels. However the covaient 
bonding energy for u orbitals is larger (3 - 4 eV per bond) than the 2s-2p energy 
separation. 

It is important to note that the directions of the three wavefunctions in the 
sp3 hybridization are freely determined, while the remaining fourth direction is 
determined by orthonormal conditions imposed on the 2p orbitals. This fact 
gives rise to possible sp2 hybridization of a planar pentagonal (or heptagonal) 
carbon ring and sp2+q (0 < q < I) hybridization* which is found in fullerenes. 
A general sp2+q hybridization is expected to have a higher excitation energy than 
that of the symmetric sp2 hybridization discussed here because of the electron- 
electron repulsion which occurs in the hybridized orbital. 

1.2.4 Carbon Is Core Orbitals 

Carbon Is core orbitals do not generally affect the solid state properties of carbon 
materials, since the energy position of the 1s core levels is far from the Fermi 
energy compared with the valence levels. Because of the small overlap between 
the Is orbitals on adjacent atomic sites in the solid, the energy spectrum of the 
1s core levels in carbon materials is sharp and the core level energies lie close 
to  that of an isolated carbon atom. Using X-ray photoelectron spectroscopy 
(XPS), the energy of the Is core level is measured relative to the position of the 

*This notation denotes an admixture of sp2 and sp3 hybridization. 
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Fig. 1.5: X-ray photoelectron 
spectra (XPS) for the carbon 
1s-derived satellite structures for 
c60 films [25]. The sharp fea- 
ture 1 is the fundamental XPS 
line, while the downshifted fea- 
tures 2-10 refer t o  c60 excita- 
tions (see text). The XPS data 
are shown on two energy s-ales to  
emphasize features near EF (up- 
per spectrum) and features far- 
ther away in energy (lower spec- 
trum) "&]. 

vacuum level, and this energy difference is especially sensitive to  the transfer 
of electric charge between carbon atoms. Specifically, the 1s core level shifts in 
energy relative to the vacuum level by an amount depending on the interaction 
with nearest-neighbor atoms, and this effect is known as the chemical shift of 
XPS. 

Furthermore, XPS refers to  the photoelectron spectroscopy (PES) process 
when the excitation photon is in the x-ray range and the electron excitation is 
from a core level. XPS spectra have been obtained for the unoccupied orbitals 
for a variety of fullerenes. For example, Fig. 1.5 shows the XPS spectrum for 
c60 [25]. In this spectrum, we can see well-defined peaks which show an in- 
tense, narrow main line (peak #1 in Fig. 1.5) identified with the emission of a 
photo-excited electron from the carbon 1s state, which has a binding energy of 
285.0 eV and a very small linewidth of 0.65 eV at half-maximum intensity [25]. 
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Table 1.1: Isomers made of carbon 
Dimension 0-D 1-D 2- D 3-D 
isomer CEO nanotube graphite diamond 

fullerene carbyne fiber amorphous 
hybridization sp2 S P 2  ( S P )  SP2 S P 3  
density 1.72 1.2-2.0 2.26 3.515 

[g/cm31 2.68-3.13 N 2  2-3 
Bond Length 1.40(C=C) 1.44( C=C) 1.42(C=C) 1.54(C-C) 

1.46(C-C) 1.44(C=C) 
semiconductor metal or semimetal insulating electronic 

properties E, = 1.9eV semiconductor E, = 5.47eV 

tJ4l 

The sharpest side-band feature in the downshifted XPS spectrum (labeled 2) is 
identified with an on-site molecular excitation across the HOMO-LUMO gap at 
1.9 eV [ZS]. Features 3, 4 and 5 are the photoemission counterparts of electric 
dipole excitations seen in optical absorption, while features 6 and 10 represent 
in t ramolecul~  plasmon collective oscillations of the T and cr charge distribu- 
tions. Plasma excitations are also prominently featured in core level electron 
energy loss spectra (EELS). 

1.2.5 Isomers of Carbon 

The sp" hybridization discussed in the previous section is essential for determin- 
ing the dimensionality of not only carbon-based molecules, but also carbon-based 
solids. Carbon is the only element in the periodic table that has isomers from 
0 dimensions (OD) to 3 dimensions (3D), as is shown in Table 1.1.  Here we 
introduce-possible structures of carbon materials in the solid phase, which are 
closely related to  the sp" hybridization. 

In sp" hybridization, (n + 1) u bonds per carbon atom are formed, these cr 
bonds making a skeleton for the local structure of the n-dimensional structure. 
In sp  hybridization, two c bonds make only a one-dimensional chain structure, 
which is known as a 'carbyne'. A three-dimensional solid is formed by gather- 
ing these carbyne chains. In sp3 hybridization, four D bonds defining a regular 
tetrahedron are sufficient to form a three-dimensional structure known as the 
diamond structure. It is interesting that sp2 hybridization which forms a pla- 
nar structure in two-dimensiona1 graphite also forms a planar local structure in 
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Fig. 1.6: One version of the 
phase diagram of carbon sug- 
gested by -Bundy [26]. The di- 
amond (Di) and graphite (Gr) 
phases are emphasized in this fig- 
ure. Other phases shown in the 
diagram include hexagonal dia- 
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mond and a high temperature- 
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the diagram by du Pont, mete- 
orites and shock-quench, which 
has not been studied in much 
detail and may, in part, be re- 

bon, which has been studied at 
low pressures and high temper- 
atures, and an unexplored high 
pressure phase, which may be 
metallic, are also indicated on 
the figure. 
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the closed polyhedra (0-dimensional) of the fullerene family and in the cylinders 
(1-dimensional) called carbon nanotubes. Closely related to carbon nanotubes 
are carbon fibers which are macroscopic one-dimensional materials, because of 
their characteristic high length to  diameter ratio. A carbon fiber, however, con- 
sists of many graphitic planes and microscopically exhibits electronic properties 
that are predominantly two-dimensional, Amorphous carbon is a disordered, 
three-dimensional material in which sp2 and sp3 hybridization are both present, 
randomly. Amorphous graphite, which consists mainly of sp2 hybridization, is a 
graphite with random stacking of graphitic layer segments. Because of the weak 
interplanar interaction between two graphitic planes, these planes can move 
easily relative to each other, thereby forming a solid lubricant. In this sense, 
amorphous graphite can behave like a two-dimensional material. 

Under ambient conditions and in bulk form, the graphite phase with strong 
in-plane trigonal bonding is the stable phase, as indicated by the phase diagram 
of Fig. 1.6 [26-281. Under the application of high pressure and high temperature 
(both of which are somewhat reduced when catalyst particles like iron or nickel 
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are used), transformation to the diamond structure takes place. Once the pres- 
sure is released, diamond remains essentially stable under ambient conditions 
although, in principle, it will very slowly transform back to the thermodynam- 
ically stable form of solid carbon, which is graphite. When exposed to various 
perturbations, such as irradiation and heat, diamond will quickly transform back 
to  the equilibrium graphite phase. 

Hereafter we introduce the ‘one-dimensional’ isomers, carbynes and carbon 
fibers, which are related to nanotubes, as the subject of the following chapters. 

1.2.6 Carbynes 

Linear chains of carbon which have sp  bonding have been the subject of research 
for many years [29]. 

A polymeric form of carbon consisting of chains [. - * -C=C- . * - I t p  for la > 10 
has been reported in rapidly quenched carbons and is referred to as “carbynes.” 
This carbon structure is stable at high temperature and pressure as indicated 
in the phase diagram of Fig. 1.6 as shock-q~enched phases. Carbynes are silver- 
white in color and are found in meteoritic carbon deposits, where the carbynes 
are mixed with graphite particles. Synthetic carbynes have also been prepared 
by sublimation of pyrolytic graphite [30,31]. It has been reported that carbynes 
are formed during very rapid solidification of liquid carbon, near the surface of 
the solidified droplets formed upon solidification [32], Some researchers [31-351 
have reported evidence that these linearly bonded carbon phases are stable at 
temperatures in the range 2700 < T < 4500 K. 

Carbynes were first identified in sampfes found in the Ries crater in Bavaria 
[36] and were later synthesized by the dehydrogenation of acetylene I31,37]. 
The carbynes have been characterized by x-ray diffraction, scanning electron 
microscopy (TEM) , ion micro-mass analysis, and spectroscopic measurements 
which show some characteristic features that identify carbynes in general and 
specific carbyne polymorphs in particular. The crystal structure of carbynes 
has been studied by x-ray diffraction through identification of the Bragg peaks 
with those of synthetic carbynes produced from the sublimation of pyrolytic 
graphite [33,37]. In fact, two poIymorphs of carbynes (labeled Q and /3) have 
been identified, both being hexagonal and with lattice constants a, = 8.94 A, 
ca = 15.36 A; a@ = 8.24 A, cp = 7.68 A [31]. Application of pressure converts the 
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a phase into the ,f3 phase. The numbers of atoms per unit cell and the densities 
are, respectively, 144 and 2.68 g/cm3 for the a phase and 72 and 3.13 g/cm3 for 
the p phase [38]. These densities determined from x-ray data [31] are in rough 
agreement with prior estimates [39,40]. It is expected that other less prevalent 
carbyne polymorphs should also exist. In the solid form, these carbynes have a 
hardness intermediate between diamond and graphite. Because of the difficulty 
in isolating carbynes in general, and specific carbyne polymorphs in particular , 
little is known about their detailed physical properties. 

1.2.7 Vapor Grown Fibers 

Vapor-grown carbon fibers can be prepared over a wide range of diameters (from 
less than 1000 A to more than 100 prn) and these fibers have hollow cores [9]. 
In fact vapor-grown fibers with diameters less than lOOA were reported many 
years ago [41-431. The preparation of these fibers is based on the growth of a 
thin hollow tube of about 1000 A diameter from a transition metal catalytic 
particle (-100 di diameter) which has been super-saturated with carbon from a 
hydrocarbon gas present during fiber growth at 1050OC. The thickening of the 
vapor-grown carbon fiber occurs through an epitaxial growth process whereby 
the hydrocarbon gas is dehydrogenated and sticks to the surface of the growing 
fiber. Subsequent heat treatment to  w25OO0C results in carbon fibers with a 
tree ring concentric cylinder morphology [44]. Vapor-grown carbon fibers with 
micrometer diameters and lengths of -30 cm provide a close analogy t o  car- 
bon nanotubes with diameters of nanometer dimensions and similar length to 
diameter ratios (see Chapter 5). 

Carbon fibers represent an important class of graphite-related materials from 
both a scientific and commercial viewpoint. Despite the many precursors that  
can be used to synthesize carbon fibers, each having different cross-sectional 
morphologies [9,44], the preferred orientation of the graphene planes is parallel 
t o  the fiber axis for all types of carbon fibers, thereby accounting for the high 
mechanical strength and high modulus of carbon fibers [9]. As-prepared vapor- 
grown fibers have an “onion skin” or “tree ring” morphology [Fig. 1.7(a)], and 
after heat treatment to about 30OO0C, they form facets [Fig. 1,7(b)]. Of all car- 
bon fibers [9] , these faceted fibers are closest to crystalline graphite in both crys- 
tal  structure and properties. The commercial pitch and PAN fibers with other 
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a b 

Fig. 1.7: Sketch illustrating the morphology of vapor-grown car- 
bon fibers (VGCF): (a) as-deposited at llOO°C [9], (b) after heat 
treatment to 30OO0C [9]. 

morphologies (not shown), are exploited for their extremely high bulk modulus 
and high thermal conductivity, while the commercial PAN (polyacrylonitrile) 
fibers with circumferential texture are widely used for their high strength [9]. 
The high modulus of the mesophase pitch fibers is related to the high degree 
of c-axis orientation of adjacent graphene layers, while the high strength of the 
PAN fibers is related to defects in the structure, which inhibit the slippage of 
adjacent planes relative to  each other. Typical diameters for these individual 
commercial carbon fibers are - 10 pm, and since the fibers are produced in a 
continuous process, they can be considered to be infinite in length. These fibers 
are woven into bundles called tows and are then wound up as a continuous yarn 
on a spool. The remarkable high strength and modulus of carbon fibers are 
responsible for most of the commercial interest in these fibers [9,44]. 





CHAPTER 2. 
Tight Binding Calculation of Molecules and Solids 

In carbon materials except for diamond, the 7r electrons are va- 
lence electrons which are relevant for the transport and other solid 
state properties. A tight binding calculation for the 7r electrons is 
simple but provides important insights for understanding the elec- 
tronic structure of the 7~ energy levels or bands for graphite and 
graphite-related materials. 

2.1 Tight Binding Method for a Crystalline Solid 

In this section we explain the tight binding method for a crystalline solid. In the 
following sections, we show some examples of energy bands for carbon materials 
discussed in the Chapter 1. 

2.1.1 S e c d u r  ~ q ~ u ~ ~ o n  

Because of the translational symmetry of the unit cells in the direction of the 
lattice vectors, a'i, (i = 1, + ,  3), any wave function of the lattice, $, should 
satisfy Bloch's theorem 

where Tai is a translational operation along the lattice vector 4, and a is the 
wave vector[45,46]. There are many possible functional forms of 9 which satisfy 
Eq. (2.1). The most commonly used form for Q is a linear combination of 
plane waves. The reason why plane waves are commonly used is that: (1) the 
integration of the plane wave wavefunction is easy and can be done analytically, 
(2) the numerical accuracy only depends on the number of the plane waves 
used. However, the plane wave method also has limitations: (1) the scale of the 

17 
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computation is large, and (2) it is difficult to relate the plane wave wavefunction 
to the atomic orbitals in the solid. 

Another functional form which satisfies Eq. (2.1) is based on the j - th  atomic 
orbital in the unit cell (or atom). A tight binding, Bloch function @j(z,q is 
given by, 

Here R' is the position of the atom and pj denotes the atomic wavefunction in 
state j. The number of atomic wavefunctions in the unit cell is denoted by n,  

and we have n Bloch functions in the solid for a given z. To form @j(c,q in 
Eq. (2.2), the 'pj's in the N (- loz4) unit cells are weighted by the phase factor 
exp(iz 2) and are then summed over the lattice vectors of the whole crystal. 
The merits of using atomic orbitals in Bloch functions are as follows: (1) the 
number of basis functions, n,  can be small compared with the number of plane 
waves, and ( 2 )  we can easily derive the formulae for many physical properties 
using this method.* Hereafter we consider the tight binding functions of Eq. (2.2) 
to  represent the Block functions. 

It is clear that Eq. (2.2) satisfies Eq. (2.1) since 

where we use t,he periodic boundary condition for the M 
in each S;i direction, 

N-1/3 unit vectors 

consistent with the boundary condition imposed on the translation vector T M ~ ,  = 
1. From this boundary condition, the phase factor appearing in Eq. (2.2) satis- 
fies exp{ikMui} = 1, from which the wave number lC is related by the integer 

*The limitations of the tight binding method are that: (1)  there is no simple rule to improve 
the numerical accuracy and (2) atomic orbitals do not describe the interatomic region. 
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In three dimensions, the wavevector is defined for the z, y and z directions, 
as k,, Icy and l c z .  Thus M 3  = N wave vectors exist in the first Brillouin zone, 
where the ki can be considered as continuum variables. 

The eigenfunctions in the solid @j(z ,  3 ( j  = 1, * - .  , n), where n is the number 
of Bloch wavefunctions, are expressed by a h e a r  combination of Bloch functions 
@ji[Z, 3 as follows: 

n 

q z , q  = c Cjjl(rC'>@j,(lc', 3,  (2.6) 
j'=l 

where Cj j~ ($)  are coefficients t o  be determined. Since the functions Sj(Z,q 
should also satisfy Bloch's theorem, the summation in Eq. (2.6) is taken only 
for the Bfoch orbitals @j/(g, 

The j-th eigenvalue Ej(k) (j = 1, - * - , n)  as a function of 5 is given by 
with the same value of 2. 

-+ 

where H is the Hamiltonian of the solid. Substituting Eq. (2.6) into Eq. (2.7) 
and making a change of subscripts, we obtain the following equation, 

n n 

C CGCijt(@jl@j,) C Sjj,(i)CGCij, 
j,j}=l j,ji=l 

where the integrals over the Block orbitals, Rjj~(2) and Sjjt(i) are called transfer 
integral matrices and overlap integral matrices, respectively, which are defined 
by 

.-* 

Bjj/(lc) = { @ j p i I @ j / ) ,  Sjj,$) = ((ajlay) ( j , j ' =  l,'.*,?Z), (2.9) 

When we fix the values of the n x n matrices ' ? i j j t ( i )  and Sjji($) in Eq. (2.9) 
for a given value, the coefficient C$ is optimized 80 as to minimize &(Z). 
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It  is noted that the coefficient CTj is also a function of i, and therefore Czj is 
determined for each $. When we take a partial derivative for Ci;. while fixing 
the other Ciji, CGl, and Cij coefficients,+ we obtain zero for the local minimum 
condition as follows, 

N N 

(2.10) 
N 

When we multiply both sides of Eq. (2.10) by S j j i ( ~ ) C ~ C i j ~  and substitute 

the expression for E i ( i )  of Eq. (2.8) into the second term of Eq. (2.10), we obtain 
j,jl=l 

N 
+ 

N 
C Rjji(k)Ciji = Ei(Z) C Sjji(Z)Ciji. (2.11) 
j'=l j i = l  

Defining a column vector, 

ci = (c:)l 

G N  

Eq. (2.11) is expressed by 
xci = Ej( i )SCi .  

(2.12) 

(2.13) 

Transposing the right hand side of Eq. (2.13) to the left, we obtain ['H - 
Ei( i )S]Ci  = 0. If the inverse of the matrix ['Id - Ei(z )S]  exists, we multi- 
ply both sides by [X - Ei(i)S]- '  to obtain Ci = 0 (where 0 denotes the null 
vector), which means that no wavefunction is obtained. Thus the eigenfunc- 
tion is given only when the inverse matrix does not exist, consistent with the 
condition given by 

det[X - ES] = 0, (2.14) 

where Eq. (2.14) is called the secular equation, and is an equation of degree 
n,  whose solution gives all n eigenvalues of Ei( i) (i = 1, . . n)  for a given k. 

-+ 

'Since C,, is generally a complex variable with two degrees of freedom, a real and a complex 
part, both C,, and C:, can be varied independently. 



Using the expression for Ei(2) in Eqs. (2.7) and (2.11), the coefficients Ci as a 
function of $ are determined. In order to  obtain the energy dispersion relations 
(or energy bands) E{($)), we solve the secular equation Eq. (2.14), for a number 
of high symmetry i points. 

2.1.2 Procedure for obtaining the energy dispersion 

In the tight binding method, the one-electron energy eigenvalues E ; ( l )  are ob- 
tained by solving the secular equation Eq. (2.14). The eigenvalues Ei(g) are 
a periodic function in the reciprocal lattice, which can be described within the 
first Brillouin zone. In a two or three dimensional solid, it is difficult t o  show 
the energy dispersion relations over the whole range of k values, and thus we 
plot Ei($) along the high symmetry directions in the Brillouin zone. The actual 
procedure of the tight binding calculation is as follows: 

-# 

1. Specify the unit cell and the unit vectors, 4. Specify the coordinates of 
the atoms in the unit cell and select n atomic orbitals which are considered 
in the calculation. 

2. Specify the Bril~ouin zone and the reciprocal lattice vectors, &. Select the 
points along the high symmetry directions in the Brillouin zone, and 

high symmetry axes. 

3. For the selected $ points, calculate the transfer and the overlap matrix 
element, 3cij and Sij .* 

4. For the selected $ points, solve the secular equation, Eq. (2.14) and obtain 
the eigenvalues Ei(2) (i = 1,. . ' ,  n)  and the coefficients Cij($). 

Tight-binding calculations are not self-consistent calculations in which the 
occupation of an electron in an energy band would be determined self-consistently. 
That  is, for given electron occupation, the potential of the Hamiltonian is cal- 
culated, from which the updated electron occupation is determined using, for 
example, Mulliken's gross population analysis [47]. When the input and the 
output of occupation of the electron are equal to  each other within the desired 
accuracy, the eigenvalues are said to  have been obtained self-consistently. 

*When only the transfer matrix is calculated and the overlap matrix is taken as the unit matrix, 
then the Slater-Koster extrapolation scheme results. 
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In applying these calculational approaches to  real systems, the symmetry of 
the problem is considered in detail on the basis of a tight-binding approach and 
the transfer and the overlap matrix elements are often treated as parameters se- 
lected to  reproduce the band structure of the solid obtained either experimentally 
or from first principles calculations. Both extrapolation methods such as 5 
perturbation theory or interpolation methods using the Slater-Koster approach 
are commonly employed for carbon-related systems such as a 2D graphene sheet 
or 3D graphite [9].  

2.2 Electronic Structure of Polyacetylene 

A simple example of n-energy bands for a one-dimensional carbon chain is poly- 
acetylene (see Sect. 1.2.2). In Fig. 2.1 we show, within the box defined by the 
dotted lines, the unit cell for trans-polyacetylene (CH),which contains two in- 
equivalent carbon atoms, A and B, in the unit cell. As discussed in Sect. 1.2.2, 
there is one 7r-electron per carbon atom, thus giving rise to  two n-energy bands 
called bonding and anti-bonding n-bands in the first Brillouin zone. 

molecule are given by a'l = (a, 0,O) and b l  = ( a / 2 ~ , 0 , 0 ) ,  respectively. The Bril- 
louin zone is the line segment -a/n < b < a / a .  The Bloch orbitals consisting 
of A and B atoms are given by 

The lattice unit vector and the reciprocal lattice vector of this one-dimensional 
4 

(2.15) 

where the summation is taken over the atom site coordinate R, for the A or B 
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carbon atoms in the solid. 

tuting Eq. (2.15) into Eq. (2.9). When o = ,d = A, 
The (2  x 2) matrix Hamiltonian, X,p ,  (o,P = A , B )  is obtained by substi- 

+(terms equal to or more distant than R = R' & 2a) 

= €a,, + (terms equal to or more distant than R = R' f a). 

In Eq. (2.16) the maximum contribution to the matrix element RAA comes from 
R = R', and this gives the orbital energy of the 2p level, ~ 2 ~ . *  The next order 
contribution to  X A A  comes from terms in R = R ' f a ,  which will be neglected for 
simplicity. Similarly, 

Next let us consider the matrix element XAB(T) .  The largest contribution 
to X A B ( P )  arises when atoms A and B are nearest neighbors. Thus, in the 
summation over R', we only consider the cases R' = R f a/2 and neglect more 
distant terms to obtain 

also gives cZp for the same order of approximation. 

= 2t cos(lca/2) 

where the transfer integral 1 is the integral appearing in Eq. (2.17) and denoted 
byt. 

t =  ('PA(T-R)lXIPB(r-Rf a/2))* (2.18) 

It is stressed that t has a negative value. The matrix element X E A ( T )  is obtained 
from X A B ( Y )  through the Hermitian conjugation relation 3 - l ~ ~  = X;,, but since 
XAB is real, we obtain X B A  = FLAB. 

'Note that czP is not simply the atomic energy value for the free atom, because the Hamiltonian 
contains a crystal potential. 
tHere we have assumed that all the T bonding orbitals are equal (1.5A bonds). In the real 
(CH), compound, bond alternation occurs, in which the bond energy alternates between 1.7A 
and 1.3A bonds, and the two atomic integrations in Eq. (2.17) me not equal. Although the 
distortion of the lattice lowers the energy, the electronic energy always decreases more than 
the lattice energy in a one-dimensional material, and thus the lattice becomes deformed by a 
process called the Peierls instability. See details in Sect. 11.3.1 
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L J 

Fig. 2.2: Th: energy dispersion 
relation E*(L) for polyacetylene 
[(CH),], given by Eq. (2.21) with 
values for the parameters t = - 1 
and s = 0.2. Curves E+(L) and 
E-(k) are called bonding a and 
antibonding a* energy bands, re- 
spectively, and the plot is given 

I . , . , .  -2.0 
-1.0 -0.5 0.0 0.5 1.0 

ka/n in units of Itl. 

The overlap matrix Sij can be calculated by a similar method as used for 
Xij, except that the intra-atomic integral yields the energy for the crystal Hamil- 
tonian Xij, but the overlap matrix rather yields unity for the case of Saj, if 
we assume that the atomic wavefunction is normalized, SAA = SBB = 1 and 
SAB = SBA = 2scos(ba/2), where s is the overlap integral between the nearest 
A and B atoms, 

S = ( ‘PA(r  - R)l(oB(r - R k  a/2)). (2.19) 

The secular equation for the 2pz orbital of [(CH),] is given by 

6 2 p  - E 
2(t - sE) C O S ( L Q / ~ )  ~2~ - E 

= ( c a p  - E)’ - 4(t - s E ) ~  cos2(ka/2) 
= 0, 

2(t - sE)  CoS(ka/2) 

(2.20) 

yielding the eigenvalues of the energy dispersion relations of Eq. (2.20) given by 

E Z p  f 2t cos(Ica/2) a a 
E*(i)  = (-- < L < -) 

1 f 2s cos(ka/2) ’ Q Q 
(2.21) 

in which the + sign defines one branch and the - sign defines the other branch, 
as shown in Fig. 2.2, where we use values for the parameters, ~2~ = 0, t = -1, 
and s = 0.2. The levels E+ and E- are degenerate at La = &T. 

E+(k)  and E - ( k )  are called bonding a and antibonding a* energy bands, 
respectively. Since there are two a electrons per unit cell, each with a different 
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(b) 

, &$., K 
g$vq@ g@$@ .. ... .. . . . . , . , M .......... . ,.... "L ~ .... < ..... * 

Fig. 2.3: (a) The unit cell 
and (b) Brillouin zone of two- 
dimensional graphite are shown 
as the dotted rhombus and the 
shade_d hexagon, respectively. i34, 
and bi,  (i = l , 2 )  are unit vec- 
tors and reciprocal lattice vec- 
tors, respectively. Energy disper- 
sion relations are obtained along 
the perimeter of the dotted tri- 
angle connecting the high sym- 
metry points, r, I< and M .  

spin orientation, both electrons occupy the bonding ?r energy band, which makes 
the total energy lower than &zp.  

2.3 Two-Dimensional Graphite 

Graphite is a three-dimensional (3D) layered hexagonal lattice of carbon atoms. 
A single layer of graphite, forms a two-dimensional (2D) material, called 2D 
graphite or a graphene layer, Even in 3D graphite, the interaction between two 
adjacent layers is small compared with intra-layer interactions, since the layer- 
layer separation of 3.35A is much larger than nearest-neighbor distance between 
two carbon atoms, ac-c=1.428L. Thus the electronic structure of 2D graphite is 
a first approximation of that for 3D graphite. 

In Fig. 2.3 we show (a) the unit cell and (b) the Brillouin zone of two- 
dimensional graphite as a dotted rhombus and shaded hexagon, respectively, 
where 21 and Za, are unit vectors in real space, and b1 and bz are reciprocal 
lattice vectors. In the s,y coordinates shown in the Fig. 2.3, the real space 
unit vectors 21 and a'z of the hexagonal lattice are expressed as 

4 - 

(2.22) 

where Q = 1211 = 1221 = 1.42 x & = 2.46A is the lattice ~ ~ n s t a n t  of two- 
dimensional graphite. Correspondingly the unit vectors & and & of the recip- 



26 CHAPTER 2. TIGHT BINDING CALCULATION 

rocal lattice are given by: 

(2.23) 

corresponding to a lattice constant of 47rlfia in reciprocal space. The direction 
of the unit vectors & and of the reciprocal hexagonal lattice are rotated by 
90' from the unit vectors a'l and 2 2  of the hexagonal lattice in real space, as 
shown in Fig. 2.3. By selecting the first Brillouin zone as the shaded hexagon 
shown in Fig. 2.3(b), the highest symmetry is obtained for the Brillouin zone 
of 2D graphite. Here we define the three high symmetry points, r ,  K and M 
as the center, the corner, and the center of the edge, respectively. The energy 
dispersion relations are calculated for the triangle I'Mli' shown by the dotted 
lines in Fig. 2.3(b). 

As discussed in Sect. 2.3.2, three u bonds for 2D graphite hybridize in a 
sp2 configuration, while, and the other 2p, orbital, which is perpendicular to  
the graphene plane, makes 7r covalent bonds. In Sect. 2.3.1 we consider only x 
energy bands for 2D graphite, because we know that the x energy bands are 
covalent and are the most important for determining the solid state properties 
of graphite. 

2.9.1 

Two Bloch functions, constructed from atomic orbitals for the two inequivalent 
carbon atoms at A and B in Fig. 2.3, provide the basis functions for 2D graphite. 
When we consider only nearest-neighbor interactions, then there is only an in- 
tegration over a single atom in X A A  and X B B ,  as is shown in Eq. (2.16), and 
thus X A A  = X B B  = c a p .  For the off-diagonal matrix element X A B ,  we must 
consider the three nearest-neighbor B atoms relative to  an A atom, which are 
denoted by the vectors l?1,&, and I&. We then consider the contribution to  
Eq. (2.17) from 21, 22, and 

T Bands of Two-Dimensional Graphate 

as follows: 

(2.24) 
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where t is given by Eq. (2.18)* and f ( k )  is a function of the sum of the phase 
factors of esE’Aj (j = 1, + 1 , 3). Using the 2, y coordinates of Fig. 2.3(a), f(k) is 
given by: 

f(k) = eik=a/&f + 2e-iksa/2flcos I_ (2.25) 

Since f ( k )  is a complex function, and the H a ~ l t o n i a n  forms a Hermitian ma- 
trix, we write %!BA = %!>, in which * denotes the complex conjugate. Us- 
ing Eq. (2.25), the overlap integral matrix is given by SAA= SBB = 1, and 
SAB = s f ( k )  = SSA. Here s has the same definition as in Eq. (2.19), so that 
the explicit forms for %! and S can be written as: 

( k;a) * 

3c= (E2P ~ f ( ~ ) ) ,  S =  ( 1  5 ~ ( ~ ) )  (2.26) 

Solving the secular equation det(% - ES) = 0 and using ‘E and S as given in 
Eq. (2.26), the eigenvalues E(Z) are obtained as a function w($), k, and ky: 

tfW* E2p 5 f ( k ) *  1 

(2.27) 

where the + signs in the numerator and denominator go together giving the 
bonding x energy band, and likewise for the - signs, which give the anti-bonding 
x* band, while the function w [ c )  is given by: 

In Fig. 2.4, the energy dispersion relations of two-dimensiona~ graphite are 
shown throughout the Brillouin zone and the inset shows the energy dispersion 
relations along the high symmetry axes along the perimeter of the triangle shown 
in Fig. 2.3(b). Here we use the parameters ezp = 0, t = -3.033eVl and s = 0.129 
in order to reproduce the first principles calculation of the graphite energy bands 
[9,48]. The upper half of the energy dispersion curves describes the R*-energy 
anti-bonding band, and the Iower half is the r-energy bonding band. The upper 
R* band and the lower T band are degenerate at the K points through which 
*We often use the symbol 70 for the nearest neighbor transfer integral. +yo is defined by a 
positive value. 
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Fig. 2.4: The energy dispersion relations for 2D graphite are 
shown throughout the whole region of the Brillouin zone. The 
inset shows the energy dispersion along the high symmetry direc- 
tions of the triangle I 'MK shown in Fig. 2.3(b) (see text). 

the Fermi energy passes. Since there are two ?r electrons per unit cell, these two 
A electrons fully occupy the lower T band. Since a detailed calculation of the 
density of states shows that the density of states at the Fermi level is zero, two- 
dimensional graphite is a zero-gap semiconductor. The existence of a zero gap at 
the K points comes from the symmetry requirement that  the two carbon sites A 
and B in the hexagonal lattice are equivalent to each 0ther.t The existence of a 
zero gap at the A' points gives rise to quantum effects in the electronic structure 
of carbon nanotubes, as shown in Chapter 3. 

When the overlap integral s becomes zero, the A and ?r* bands become 
symmetrical around E = cap which can be understood from Eq. (2.27). The 
energy dispersion relations in the case of s = 0 (i.e., in the Slater-Koster scheme) 
are commonly lased as a simple approximation for the electronic structure of a 
graphene layer: 

tIf the A and B sites had different atoms such as B and N, the site energy ~2~ would be 
different for B and N ,  and therefore the calculated energy dispersion would show an energy 
gap between the n and T *  bands. 
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In this case, the energies have the values of f3t ,  f t  and 0, respectively, at the 
high symmetry points, r, M and I< in the Brillouin zone. Thus the band width 
gives I6t1, which is consistent with the three connected n bonds. The simple 
approximation given by Eq. (2.29) is used in Sect. 4.1.2 to obtain a simple 
approximation for the electronic dispersion relations for carbon nanotu.bes. 

2.3.2 

Finally let us consider the IT bands of two-dimensional graphite. There are three 
atomic orbitals of sp2 covalent bonding per carbon atom, 2s, 2px and 2py. We 
thus have six Bloch orbitals in the 2 atom unit cell, yielding six u bands. We will 
calculate these six u bands using a 6 x 6 Hamiltonian and overlap matrix, and 
we will then solve the secular equation* for each point. For the eigenvalues 
thus obtained, three of the six c bands are bonding u bands which appear below 
the Fermi energy, and the other three u bands are antibonding u* bands above 
the Fermi energy. 

The calculation of the Hamiltonian and overlap matrix is performed ana- 
lytically, using a small number of parameters. Hereafter we arrange the matrix 
elements in accordance with their atomic identity for the free atom; 2sA,  2p:, 
2 p t ,  2sB, 2pp,”, 2pf. Then the matrix elements coupling the same atoms (for 
example A and A )  can be expressed by a 3 x 3 small matrix which is a sub-block 
of the 6 x 6 matrix. Within the nearest neighbor site approximation given by 
Eq. (2.16), the small Hamiltonian and overlap matrices are diagonal matrices as 
follows. 

% A A = ( S s : 2 p :  0 0 E2p ) ,  s A A = ( i i : ) ,  0 0 1  

where ezp is defined by Eq. (2.16) and e2s is the orbital energy of the 2s levels. 
The matrix element for the Bloch orbitals between the A and B atoms can 

be obtained by taking the components of 2p, and 2py in the directions parallel 
or perpendicdar to the u bond. In Fig. 2.5, we show how to rotate the 2px 
atomic orbital and how to obtain the u and n components for the rightmost 

u Bands of Two-Dimensional Graphiie 

(2.30) 

‘Since the planar geometry of graphite satisfies the even symmetry of the Hamiltonian li and 
of 23, Zp, and 2p, upon mirror reflection about the zy plane, and the odd symmetry of 2pz, the 
0 and 7r energy bands can be solved separately, because matrix elements of different symmetry 
types do not couple in the Hamiltonian. 
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\&=+\  .y.s:. .,< ... # Fig. 2.5: The rotation of 2p,. 
The figure shows how to  project 
the u and T components along 
the indicated bond starting with 
the 2p, orbital. This method is 
valid only for p orbitals. 

2~ a 
2P x 

2 

Fig. 2 .6 :  The band param- 
eters for u bands. The four 
cases from (1) to  (4) correspond 
to matrix elements having non- 
vanishing values and the remain- 
ing four cases from (5) to  (8) cor- 
respond to vanishing matrix ele- 
ments. 

bond of this figure. In Fig. 2.5 the wavefunction of ]2p,)  is decomposed into its 
and T components as follows: 

This type of decomposition can be used to  describe a bond in any general direc- 
tion, which is discussed in Sect. 1 .2 .  This procedure is also useful for fullerenes 
and carbon nanotubes, when we consider the curvature of their surfaces. 

By rotating the 2p ,  and 2p, orbitals in the directions parallel and perpen- 
dicular to the desired bonds, the matrix elements appear in only 8 patterns it9 
shown in Fig. 2.6, where shaded and not-shaded regions denote positive and neg- 
ative amplitudes of the wavefunctions, respectively. The four cases from (1) to 
(4) in Fig. 2.6 correspond to  non-vanishing matrix elements and the remaining 
four cases from (5) to  (8) correspond to  matrix elements which vanish because 
of symmetry. The corresponding parameters for both the Hamiltonian and the 
overlap matrix elements are shown in Fig. 2 . 6 .  

and (2p$ 17-1(2pf), respectively, obtained by the methods described above. In 
the case of Fig. 2.7 (a), there is only one non-vanishing contribution, and this 

In Figs. 2.7(a) and (b) we show examples of the matrix elements of ( 2 s A I ' H [ 2 p f )  
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Fig. 2.7: Examples of the 
Hamiltonian matrix elements of 
r orbitals, (a) (2sA17iF1(2pf) and 
(b) ( 2 p t ( N ( 2 p f ) .  By rotating 
the 2p orbitals, we get the ma- 
trix elements in Eq. (2 .32)  and 

( 2 s J  I # I  2 p X J )  ( ~ P ~ A I # ~ Z P , J )  Eq. (2 .33) ,  respectively. 

comes from Fig. 2.6 ( 2 ) .  The other pertinent cases of Fig. 2.6 (5) or ( 6 )  give 
matrix elements that vanish by symmetry. Multiplying the phase factors for the 
three nearest neighbor B atoms with the matrix elements, we get the following 
result: 

( 2 s ~ l z 1 2 p : )  = x,, (-eiksa/fi + e-ik=a/2fiCOs Y ':) . (2 .32)  

Similarly, in the case of Fig. 2.7 (b), the non-zero matrix elements correspond 
to the cases of Fig. 2.6 ( 3 )  and (4), 

(2P,AlWP,B)  

= + ( X u  + ',lfn)e-ik=a/26eikva/2 - +(xu + 3tT),5-iksa/2fie-ikva/2 (2 .33)  

= q(7iu +xFl,)e- ikXa/2asin &$!* 

The resulting matrix element in Eq. (2.33) is a pure imaginary. However, the 
calculated results for the energy eigenvalues give real values. 

When all the matrix elements of the 6 x 6 Hamiltonian and overlap matrices 
are calculated in a similar way, the 6 x 6 Hamiltonian matrix is obtained as a 
function of t ,  and k, . For given points we then calculate the energy dispersion 
of the r bands from the secular equation of Eq. (2.14). The results thus obtained 
for the calculated u and ?r energy bands are shown in Fig. 2.8 .  Here we have 
used the parameters listed in Table 2.1 ,  yielding a fit of the functional form of 
the energy bands imposed by symmetry to the energy values obtained for the 
first principles band calculations at  the high symmetry points [48]. 
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Fig. 2.8: The energy dispersion 
relations for u and r bands of 
two-dimensional graphite. Here 
we used the parameters listed in 
Table 2.1. 

Table 2.1: Values for the coupling parameters for carbon atoms in the Hamilto- 
nian for T and cr bands in 2D graphite. 

31. value (eV) S value 
%a -6.769 S,, 0.212 
31.3, -5.580 Ssp 0.102 

'H, Z t -3.033 S ,  E s 0.129 
% -5.037 s, 0.146 

-8.868 
(")The value for ~2~ is given relative to setting czp = 0. 

In the absence of more detailed experimental or theoretical information, 
these parameters can be used as a first approximation in describing the matrix 
elements for most sp2 carbon materials for which the carbon-carbon distance 
is close to that of graphite, 1.42A. Further, if the parameters are only slightly 
changed, the formu~ation can be used to describe the sp3 diamond system and 
s p  carbyne materials. 

As is shown in Fig. 2.8, the 7r and the two u bands cross each other (i.e., have 
different symmetries), as do the T* and the two cr* bands. However, because 
of the different group theoretical symmetries between u and r bands, no band 
separation occurs at the crossing points. The relative positions of these crossings 
are known to be important for: (1) photo-transitions from u to ?r* bands and 
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from ?r to  c* bands, which satisfy the selection rule for electric dipole transitions, 
and (2) charge transfer from alkali metal ions to  graphene sheets in graphite 
intercalation compounds. 

Using the basic concepts of two-dimensional graphite presented in Chapter 2, 
we next discuss the structure and electronic properties of single-wall carbon 
nanotubes in Chapters 3 and 4, respectively. 





CHAPTER 3. 

Structure of a Single-Wal! Carbon Nanotube 

A single-wall carbon nanotube can be described as a graphene 
sheet rolled into a cylindrical shape so that the structure is one- 
dimensional with axial symmetry, and in general exhibiting a spiral 
conformation, called chirality. The chirality, as defined in this chap- 
ter, is given by a single vector called the chiral vector. To specify the 
structure of carbon nanotubes, we define several important vectors, 
which are derived from the chiral vector. 

3.1 Classification of carbon nanotubes 

A single-wall nanotube is defined by a cylindrical graphene sheet with a diameter 
of about 0.7 - 10.0 nm,* though most of the observed single-wall nanotubes 
have diameters <2 nm. If we neglect the two ends of a carbon nanotube and 
focus on the large aspect ratio of the cylinder (i.e., length/diameter which can 
be as large as 104-105), these nanotubes can be considered as one-dimensional 
nanostructures. 

An interesting and essential fact about the structure of a carbon nanotube 
is the orientation of the six-membered carbon ring (hereafter called a hexagon) 
in the honeycomb lattice relative to  the axis of the nanotube. Three examples of 
single-wall carbon nanotubes ( SWCN’s) are shown in Fig. 3.1. From this figure, 
i t  can be seen that the direction of the six-membered ring in the honeycomb 
lattice can be taken almost arbitrarily, without any distortion of the hexagons 
except for the distortion due to  the curvature of the carbon nanotube. This fact 
provides many possible structures for carbon nanotubes, even though the basic 

*Many carbon nanotubes that are observed experimentally are multi-wall structures which 
are discussed in Chapter 11. The synthesis of single-wall carbon nanotubes is discussed in 
Chapter 5. 

35 
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bon nanotubes: (a) armchair, 
(b) zigzag, and (c) chiral nan- 
otubes. From the figure i t  can be 
seen that the orientat~on of the 
six-membered ring in the honey- 
comb lattice relative to the axis 
of the nanotube can be taken d- 
most arbitrarily. 

shape of the carbon nanotube wall is a cylinder. 
In Fig. 3.1 we show the terminations of each of the three nanotubes. The 

terminations are often called caps or end caps and consist of a “hemisphere” of 
a fullerene. Each cap contains six pentagons and an appropriate number and 
placement of hexagons that are selected to fit perfectly to the long cylindrical 
section. In this chapter we focus on the periodic structure along the nanotube 
axis. 

The primary symmetry classification of a carbon nanotube is as either being 
achiral (symmorphic) or chiral (non-symmorphic). An achiral carbon nanotube 
is defined by a carbon nanotube whose mirror image has an identical structure 
to the original one. There are only two cases of achiral nanotubes; armchair 
and zigzag nanotubes, as are shown in Fig. 3.1 (a) and (b), respectively. The 
names of armchair and zigzag arise from the shape of the cross-sectional ring, 
as is shown at the edge of the nanotubes in Fig. 3.1 (a) and (b), respectively. 
Chiral nanotubes exhibit a spiral symmetry whose mirror image cannot be su- 
perposed on to the original one. We call this tube a chiral nanotube, since such 
structures are called axially chiral in the chemical nomenclature. Axial chirality 
is commonly discussed in connection with optical activity. We have thus a vari- 
ety of geometries in carbon nanotubes which can change diameter, chirality and 
cap structures. A classification of carbon nanotubes is given in Table 3.1 and is 
further discussed in Sect. 3.2 and Sect. 3.6. 
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Table 3.1: Classification of carbon nanotubes. 
Type 00) Ci) Shape of cross section Syml;netryc) 

zigzag O0 (n ,  0) trans-type - Dn CZI Ci 
chiral 0' < 101 < 30' (n ,  m) mixture of cis and trans cd 8 CNfd 

armchair 30' (n ,n )  cis-type - Dn 8 Ci 

a) The chiral angle 0 is defined by Eq. (3.4). 
b ,  The chiral vector is defined by Eq. (XI), where n,  m are integers n # m. 
') The group theory of carbon nanotubes is discussed in Sect. 3.6. 

3.2 Chiral Vector: C h  

The structure of a single-wall carbon nanotube is specified by the vector (OA in 
Fig. 3.2) which corresponds to  a section of the nanotube perpendicular to the 
nanotube axis (hereafter we call this section the equator of the nanotube). In 
Fig. 3.2, the unrolled honeycomb lattice of the nanotube is shown, in which O B  
is the direction of the nanotube axis, and the direction of O A  corresponds to 
the equator. By considering the crystallographically equivalent sites 0, A ,  B ,  
and B', and by rolling the honeycomb sheet so that points 0 and A coincide 
(and points B and B' coincide), a paper model of a carbon nanotube can be 
constructed.* The vectors 62 and 6% define the chiral vector C h  and the 
translational vector T of a carbon nanotube, respectively, as further explained 
below, The chiral vector Ch can be expressed by the real space unit vectors a1 
and a2 (see Fig. 3.2) of the hexagonal lattice defined in Eq. (2.22): 

-* 

-+ 

--+ 

Ch = no1 + ma2 (n ,  m),  (n ,  m are integers, 0 5 Iml I n). (3.1) 

The specific chiral vectors c h  shown in Fig. 3.1 are, respectively, (a) (5, 5), (b) 
(9,O) and (c) (10,5),  and the chiral vector shown in Fig. 3.2 is (4 ,2) .  As is shown 
in Table 3.1, an armchair nanotube corresponds to the case of n = m, that is 
C h  = (n ,  n) ,  and a zigzag nanotube corresponds to the case of m = 0, or c h  = 
(n ,  0). All other (n ,  m) chiral vectors correspond to chiral nanotubes. Because 
of the hexagonal symmetry of the honeycomb lattice, we need to consider only 
0 < Iml < n in c h  = (n ,m) for chiral nanotubes. 

*The authors recommend that the readers copy Fig. 3.2 and then construct a paper model of 
a carbon nanotube. This construction exercise is very useful for understanding the nanotube 
structure. 
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Fig. 3.2: The unrolled honeycomb lattice of a nanotube. When 
we connect sites 0 and A,  and B and B', a nanotube can be 
constructed. O A  and O B  define the chiral vector C h  and the 
translational vector T of the nanotube, respectively. The rectan- 
gle OAB'B defines the unit cell for the nanotube. The vector R 
denotes a symmetry vector (see Sect. 3.4). The figure corresponds 

-4 -+ 

to c h  = (4,2),  d = dR = 2, !!' = (4, -5), N = 28, R = (1, -1). 

The diameter of the carbon nanotube, d l ,  is given by L I T ,  in which L is the 
circumferential length of the carbon nanotube: 

dt = L I T ,  L = l c h l =  d== adn2 + m2 + nm. ( 3 4  

I t  is noted here that a1 and a2 are not orthogonal to each other and that the 
inner products between a1 and a2 yield: 

where the lattice constant a = 1.44A x f i  = 2.49A of the honeycomb lattice is 
given in Eq. (2.22).t For example, the diameter of the armchair nanotube (5,5), 
whose end cap is a hemisphere of the fullerene CSO, is dt = 6.8SA. 

tThe C-C bond length of graphite is l.42A. In the case of carbon nanotubes, the C-C bond 
length is known to be slightly larger than graphite: 1.44A. 
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The chiral angle 0 (see Fig. 3.2) is defined as the angle between the vectors 
Ch and a1 , with values of 0 in the range 0 5 101 5 30°, because of the hexagonal 
symmetry of the honeycomb lattice. The chiral angle 0 denotes the tilt angle of 
the hexagons with respect to the direction of the nanotube axis, and the angle 0 
specifies the spiral symmetry. The chiral angle 0 is defined by taking the inner 
product of C h  and a1 , to yield an expression for cos 6 :  

(3.4) 

thus relating 0 to  the integers (n ,  m) defined in Eq. (3.1). In particular, zigzag 
and armchair nanotubes correspond to 0 = 0’ and 0 = 30°, respectively. 

3.3 Translational Vector: T 

The translation vector T is defined to  be the unit vector of a 1D carbon nan- 
otube. The vector T is parallel to the nanotube axis and is normal to the chiral 
vector C h  in the unrolled honeycomb lattice in Fig. 3.2. The lattice vector T 
shown as O B  in Fig. 3.2 can be expressed in terms of the basis vectors a1 and 
a 2  as: 

-* 

T = t l a l  +tzaz (tI , t2),  (wheretl , t2 areintegers). (3.5) 

The translation vector T corresponds to the first lattice point of the 2D graphene 
sheet through which the vector O B  (normal to the chiral vector C h )  passes. 
From this fact, it is clear that t l  and t2 do not have a common divisor except for 
unity. Using C h  . T = 0 and Eqs. (3.1), (3.3), and (3.5), we obtain expressions 
for tl  and t2 given by: 

-+ 

2nz + n 2n+m tl = ~ , t2=-- 
d R  d R  

where d R  is the greatest common divisor (gcd)  of (2m + n)  and (273 + m). Also, 
by introducing d as the greatest common divisor of n and m, then d~ can be 
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related to  d by* 
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( 3 . 7 )  
d if n - m is not a multiple of 3d 
3d if n - rn is a multiple of 3 d .  d R =  { 

In the case of Fig. 3.2,  where c h  = (4,2), we have d = dR = 2 ,  T = (4,-5). 
The length of the translation vector, TI is given by: 

where the circumferential nanotube length L is given by Eq. ( 3 . 2 ) .  We note that 
the length T is greatly reduced when (n,m) have a common divisor or when 
( n  - m) is a multiple of 3d.  In fact, for the c h  = (5 ,5)  armchair nanotube, we 
have dR = 3d = 15, T = (1,-1) [Fig. 3,1(a)], while for the c h  = (9,O) zigzag 
nanotube we have dR = d = 9, and T = (1, -2) [Fig. 3.l(b)]. 

The unit cell of the 1D carbon nanotube is the rectangle OAB'B defined 
by the vectors c h  and T (see Fig. 3.2) ,  while the vectors a1 and a2 define the 
area of the unit cell of 2D graphite. When the area of the nanotube unit cell 
( c h  x TI (where the symbol x denotes the vector product operator) is divided 
by the area of a hexagon (la1 x az l ) ,  the number of hexagons per unit cell N is 
obtained as a function of n and m in Eq. ( 3 . 1 )  as:t 

I c h  x TI - 2(m2 + n2 + nm) 2~~ 
(3 .9)  -- N =  - 

la1 x a 2 1  - dR a2dR ' 

where L and dR are given by Eqs. ( 3 . 2 )  and ( 3 . 7 ) ,  respectively, and we note that  
each hexagon contains two carbon atoms. Thus there are 2 N  carbon atoms (or 
2pZ orbitals) in each unit cell of the carbon nanotube. 

'This relation is obtained by repeated use of the fact that when two integers, a and p (a > p),  
have a common divisor, y,  then y is also the common divisor of (a - p)  and p (Euclid's law). 
When we denote the greatest common divisor as y = gcd(a,P), we get 

d R  = gCd(2m + 12,27Z + m )  = gCd(2m + 12, 7Z - m) = gCd(3m, ?Z - m) = gCd(3d, 12 - m),  

which gives Eq. (3.7). 
tFor non-orthogonal unit vectors, the calculation using the vector product is easier than using 
the inner product, since the vector products of the unit vectors are: 

a1 x a1 = a 2  x a 2  = o and J u ~  x a 2 1  = 6 a 2 / 2  

where (a1 x a 2 1  corresponds to the area of the rhombus generated by a1 and a 2 .  The area 
of the rhombus is equal to that of the hexagon. 
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................................ Fig. 3.3: Space group sym- 
metry operation, R = ($1.) 
in which $ denotes the angle 
of rotation around the nanotube 
axis and T is the translation in 
the direction of T as specified 
by the symmetry vector R in 
Eq. (3.16). Note that N $  = 2~ 
and N r  = M T ,  which follow 
from Eqs. 3.16, 3.17, and 3.18. 

5 C h  
2n 

3.4 Symmetry Vector: R 

We denote the carbon atom site vectors within the 1D nanotube unit cell by i 
times the vector R, that  is, iR, where i is an integer (i = 1 .  - - N ) .  When iR 
goes out of the unit cell, we shift it to lie within the unit cell through translation 
by an integral number of c h  or T vectors, using periodic boundary conditions. 
The vector R is used for generating the coordinates of carbon atoms in the 
nanotube. It is convenient to express the R vector in terms of its projections 
on the orthogonal vectors c h  and T of the nanotube unit cell, as shown in 
Fig. 3.3. The symmetry vector R is then defined as the site vector (shown by 
O R  in Fig. 3.2) having the smallest component in the direction of c h ,  and R is 
expressed in terms of a1 and a2 as: 

R = p a l  + qa2  ( p ,  q ) ,  ( p ,  q are integers) (3.10) 

where p and q do not have a common divisor except for unity.* The C h  compo- 
nent of R, or c h  . R, is proportional to the value of T x R given by:t 

T x R = ( t iq  - t z p )  (a1 x az), (3.11) 

*If p and q were to have a common divisor, rl then, R/r would have a smaller component in 
the direction of Ch than does R. 
tHereafter we frequently use the relation between the inner product and vector product of a 
vector R with the two orthogonal vectors ch and TI to obtain: 

--- C h . R  IRxTI ,  Or T * R  I C h X R I  
L - T  T - L ’  

where L and T are given by Eqs. (3.2) and (3.8), respectively. Here we assume that R lies 
between C h  and T, as in Fig. 3.3. 
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where ( t l q  - t z p )  on the right hand side of Eq. 3.11 is an integer. We select p 
and q of R to form the smallest site vector (i = l), such that 

t l q  - t 2 p  = 1,  (0 < mp- nq _< N ) .  (3.12) 

The solution of Eq. (3.12) for p and q is uniquely determined if t l  and t z  of 
Eq. (3.5) do not have a common divisor except for unity. The second condition 
in Eq. (3.12), 0 < mp - n q  < N ,  arises from the fact that R exists within the 
1D nanotube unit cell, so that 

R - T  JC, x RJ - mp- nq 
LT - N  1, O < F =  (3.13) 

using Eqs. (3.2), (3.8), and (3.9). Similarly, using Eqs. (3.6) and (3.9), we obtain 
another necessary condition arising from R being within the 1D unit cell: 

(3.14) 

and from Eq. (3.14), we get the condition, 

0 < t l q  - t a p  5 N .  (3.15) 

Since the first condition of Eq. (3.12) satisfies Eq. (3.14), it is not necessary to 
add this condition to the definition of R, as explained below. 

To determine all N site location vectors iR, (i = 1 . . N )  of the nanotube 
unit cell, we use the expression i ( t l q - t z p )  = i for each i, and note that the max- 
imum value of i ( t 1 q  - t z p )  becomes N .  Using the factt that the C h  component 
of N R  is always equal to IC,( = L ,  the vectors iR define N inequivalent sites in 
the nanotube unit cell, and will thus have different values for their projections 
along the direction of C h .  Therefore iR, (i = 1 + N ) ,  uniquely generates N 
different atom sites in the unit cell of the nan0tube.s 
This fact can be shown as follows: 

N R . C h  N J R  x TI 2L2 f i a 2  d R  - L,  
L T dRa2 2 f i L  

where w e  made use of Eqs. (3.8) and (3.9). 
§It is noted that the definition of R is different from that by Jishi et  al. [49]. The definition of 
R given here is independent of whether or not d = 1. Further, Eq. (3.12) can be generalized 
to 

t l q  - t z p  = 9, (1 5 Q 5 N )  
where the integers Q and N do not have a common divisor except for unity. If Q and N would 
have a common divisor, d g ,  then ( N / d  ) R  would become a site equivalent to 0. The largest 
possible value of Q corresponds to the defined by Jishi et al. [49]. Here we use the notation 
for the symmetry vector R defined in Eq. (3.12). 

----- - -- - 
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From a physical standpoint, the vector €2 consists of a rotation around the 
nanotube axis by an angle $ combined with a translation T in the direction of 
T ,  and reflects the basic space group symmetry operation of a chiral nanotube, 
denoted by R = ($17) and shown in Fig. 3.3. The physical significance of the 
vector R is that the projection of R on the chiral vector c h  gives the angle 
$I scaled by L / d t  [see Eq. (3.2)], while the projection of R on T gives the 
translation T of the basic symmetry operation of the 1D space group of the 
carbon nanotube. The integers ( p ,  q )  denote the coordinates reached when the 
symmetry operation ($1.) acts on an atom at (O,O),  i.e., ($1~)(0~0)  = ( p , q ) .  If 
( $ 1 ~ )  is a symmetry operation for the nanotube, then ( $ 1 ~ ) ~ ~   IT)^, # . .  ( $ 1 ~ ) ~  
are all distinct symmetry operations of an Abelian group denoted by CN, where 
( $ 1 ~ ) ~  = E is the identity operation. 

Taking the indicated vector products R X  c h  and R x T  and using Eqs. (3.2), 
(3.8), (3,9), and (3.12), we obtain the expressions for the length of T and the 
rotation angle $, as follows: 

(3.16) 

and using these definitions, the rotation angle $ becomes 2nfN,  where N is the 
number of hexagons in the 1D unit cell of the nanotube given by Eq. (3.9). 

Referring to  Fig. 3.3, the symmetry operator ( $ 1 ~ ) ~  brings the lattice point 
0 to an equivalent lattice point C as shown in Fig. 3.4, where 

and where 
M s m p - n q  (3.18) 

is an integer which denotes the number of T vectors that are necessary for reach- 
ing the distance from 0 to N R .  
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Fig. 3.4: The vector N R  = 
( $ 1 ~ ) ~  is shown on the cylindri- 
cal surface. After rotating by 27r 
around the tube, the vector N R  
reaches a lattice point C equiv- 
alent to  point 0, but separated 
from 0 by the vector MT. In 
the figure we show the case C h  = 
(4,2) where M = 6. 

Table 3.2: Values for characterization parametersa) for selected carbon nan- 
otubes labeled by the chiral vector c h  = (n ,  m). 

C h  d d~ dt (A) L / a  1' Tla N R M 
(4,2) 2 2 4.15 I/% (4,-5) 28 (l,-l) 6 
(5,5) 5 15 6.78 fi (l,-l) 1 10 ( 1 , O )  5 
(9,O) 9 9 7.05 9 (1,-2) fi 18 (l,-l) 9 
(6,5) 1 1 7.47 (16,-17) 182 (1,-1) 11 
(7,4) 1 3 7.55 a (5,-6) & 62 (1,-1) 11 
(873) 1 1 7.72 (14,-19) a 194 (3,-4) 41 
(10,lO) 10 30 13.56 (1,-1) 1 20 ( 1 , O )  10 

(n,n) n 3n &na/?r &in (1,-1) 1 2n (1,0) n 
( n , ~ )  n n na/?r n (1,-2) fi 2n (1,-1) n 

a) C h  = (n ,m) is given by Eq. (3.1). d is the greatest common divisor of n and m. d t  and 
L = I c h l  are the diameter and equatorial length of a carbon nanotube, respectively, which 
are given by Eq. (3.2). The translational vector, T = ( t l , t z ) ,  is given by Eq. (3.5) whose 
length T is given by Eq. (3.8) in units of a = 4 a c - C  given by Eq. (2.22). N is the number of 
hexagons in the 1D unit cell of the carbon nanotube, which is given by Eq. (3.9). R = ( p ,  q )  is 
the symmetry vector defined in Eq. (3.10). M = mp - nq indicates how many T translations 
are necessary for going from 0 to N R  in Fig. 3.4. 

In Table 3.2 we list the characteristic parameters of carbon nanotubes spec- 
ified by (n ,m) ,  including d, the greatest common divisor of n and m, and the 
related quantity dR which is given by Eq. (3.7). Also listed in Table 3.2 are the 
nanotube diameters dt in units of A, the lengths of the chiral vector L and of 
the translation repeat distance T of the 1D lattice (both in units of the lattice 
constant a = f i a c - c  for a 2D graphene sheet), the number N of hexagons per 
unit cell of the 1D nanotube, the translation vector T ,  the symmetry vector R 
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and the integer M .  The basic symmetry operation R = ($1.) can be obtained 
from Table 3.2, Eq. (3.16) and values for T = ( t l ,  t z )  and R = ( p ,  q) .  

To illustrate use of Table 3.2 we refer to the c h  = (4,2) nanotube shown in 
Fig. 3.2, which has T = (4, -5), R = (1 ,  -l),  N = 28,  d = dR = 2 ,  T = m u ,  
L = m a ,  r = 6T/28 and M = 6 translations of the vector T to reach the 
point C in Fig. 3.4. As a second example, we consider the case of the nanotube 
c h  = (7,4) which is a chiral nanotube for which n - m = 3 [49,50]. For this 
nanotube, there are no common divisors, so d = 1,  but since n - m = 3, we 
have dR = 3. Thus we obtain L = f l u ,  T = m a ,  N = 62, and M = 11 
translations of the vector T. For the armchair nanotube (5,5), which has half 
a C60 fullerene to  form its end caps, the highest common divisor is 5 ,  and since 
n - m = 0, we have dR = 3 x 5 = 15, yielding N = 10, 1c, = 2 ~ 1 1 0 ,  r = T/2, 
and M = 5. As a final example, we give the smallest observed zigzag nanotube 
(9,O) also having end caps consisting of c 6 0  hemispheres, and for this nanotube, 
we have d = dR = 9, N = 18, I) = 2x118, r = T / 2 ,  and M = 9. 

All parameters defined in this section are summarized in Table 3.3. The 
values of all the parameters listed here depend on the two integers, n and m, 
of the chiral vectors c h .  In Appendix we show programs which generate the 
parameters and the coordinates for given (n ,  m) values. 

3.5 Unit Cells and Brillouin Zones 

The unit cell for a carbon nanotube in real space is given by the rectangle 
generated by the chiral vector Ch and the translational vector T, as is shown 
in OAB’B in Fig. 3.2. Since there are 2N carbon atoms in this unit cell, we 
will have N pairs of bonding A and anti-bonding A* electronic energy bands. 
Similarly the phonon dispersion relations will consist of 6 N  branches resulting 
from a vector displacement of each carbon atom in the unit cell. 

Expressions for the reciprocal lattice vectors Kz along the nanotube axis and 
Kl in the circumferential direction* are obtained from the relation R, . Kj = 
2n&j, where R; and Kj are, respectively, the lattice vectors in real and reciprocal 

*Since nanotubes are one-dimensional materials, only K2 is a reciprocal lattice vector. K1 
gives discrete k values in the direction of c h .  
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Table 3.3: Parameters for Carbon Nanotubes.a) 
symbol name formula value 
a length of unit vector a = 4 3 a c - c  = 2.49 A, a C - c  = 1.44 A 

a1 ,a2 unit vectors 

bi,  b2 
c h  chiral vector C'h = nai + maz G (n,m),  (0 I Iml 5 n )  
L length of C h  

(y,--) & l  a ,  (TI-;) & I  a x , y  coordinate 

reciprocal lattice vec- (2 1) ?, ($,-I) 2" x,y coordinate 
tors a' 

L = l C h l =  aJn2 + m2 + nm 
dt  diameter dr = L/n  - ,  

?r 
0 I I4 I 6 A m  

2Jn2 + m2 + nm 
e chiral angle sin0 = 

272 + m f i m  case = , tane=- 
2dn3 + m2 + nm 

d 

2n + m 
gcd(n,m) 
gcd(2n +:,2m t n)b) 

if (n  - m) is multiple of 3d 
d 

d R  d R  = { 3 d  if (n  - m) is not multiple of 3 d  

2m+n 2n+m 
tl = - , t 2  = -- 

T translational vector T = tlai + t 2 a 2  ( t i ,  t 2 )  gcd(ti I t 2 )  I* )  

& T length of T T =  IT1 = - 
d R  d R  

Number of hexagons in = 2(n2 + m  dJ3 +nm) 
the nanotube unit cell. d R  

N 

R symmetry vector R = p a i  t q a 2  3 9 )  gcd(p, 4 )  = l b )  
t l q  - t z p  = 1, (0 < mp - nq S N )  

(mp - nq)T - MT pitch of R 7 =  7 -- 
N N 2% 

$ rotation angle of R 4J=y in radians 

M number of T in NR. NR=C,,+MT 
~~ ~~ ~~ ~~ ~ 

a )  In this table n, m, 11, t z  , p, q are integers and d, dR N and M are integer functions of these 
integers. 
*) gcd(n, m) denotes the greatest common divisor of the two integers n and m. 
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Fig. 3.5: The Brillouin zone of 
a carbon nanotube is represented 
by the line segment WW’ which 
is parallel to Kz. The vectors 
K1 and K2 are reciprocal lattice 
vectors corresponding to  c h  and 
T ,  respectively. The figure cor- 
responds to C h  = ( 4 , 2 ) ,  T = 
(4,-5), N = 28, K1 = (5bl + 
462)/28, K2 = (4bl - 2b2)/28. 

space. Then, using Eqs. ( 3 . 6 ) ,  (3.9), and the relations 

Ch.K1 = 2 ~ ,  T . K i = O ,  
C h  . K2 = 0, T K2 = 2 ~ ,  

we get expressions for K1 and K2: 

(3.19) 

1 1 
N K1 = T ( - t z b l  + tlba), K2 = - ( d l  - nbz), (3.20) 

where 61 and b2 are the reciprocal lattice vectors of two-dimensional graphite 
given by Eq. (2.23). In Fig. 3.5, we show the reciprocal lattice vectors, K1 
and K z ,  for a C h  = ( 4 , 2 )  chiral nanotube. The first Brillouin zone of this 
one-dimensional material is the line segment WW’. Since N K 1  = - t2b l+  tlb2 

corresponds to a reciprocal lattice vector of twedimensional graphite, two wave 
vectors which differ by N K 1  are equivalent. Since t l  and t 2  do not have a 
common divisor except for unity (see Sect. 3.3), none of the N - 1 vectors 
p K l  (where ,u = 1, . - , N - 1) are reciprocal lattice vectors of two-dimensional 
graphite. Thus the N wave vectors p K 1  ( p  = 0 ,  . . . , N-1) give rise to  N discrete 
Ic vectors, as indicated by the N = 28 parallel line segments in Fig. 3.5, which 
arise from the quantized wave vectors associated with the periodic boundary 
conditions on c h .  The length of all the parallel lines in Fig. 3.5 is 2 n / T  which is 
the length of the one-dimensional first Brillouin zone. For the N discrete values 
of the k vectors, N one-dimensional energy bands will appear (see Chapter 4 ) .  
Because of the translational symmetry of T ,  we have continuous wave vectors 
in the direction of K2 for a carbon nanotube of infinite length. However, for 
a nanotube of finite length L t ,  the spacing between wave vectors is 2 n l L t ;  this 
spacing between wave vectors has been observed experimentally [51].  
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Fig. 3.6: Symmetry of armchair 
(a,b) and zigzag (c,d) nanotubes 
with odd (a,c) and even (b,d) 
numbers of unit cells around 
the circumferential direction: (a) 
(5,5) armchair, (b) (6,6) arm- 
chair (c) (9,O) zigzag and (d) 
(10,O) zigzag nanotubes. Here we 
show the inversion centers i. Dot 
circles show carbon atoms in part 
of the neighboring unit cell. 

3.6 Group Theory of Carbon Nanotubes 

Here we discuss of the symmetry of carbon nanotubes which are classified in 
Sect. 3.1. The symmetry of the carbon nanotubes is used in the interpretation 
of the Raman spectra in Chapter lo.* Here we only consider the point group 
of the unit cell and we do not discuss the space group of the lattice. Since 
many of the the physical properties of solids depend on the dispersion relations 
near k = 0, the symmetry of the unit cell gives sufficient information for the 
interpretation of many physical properties. 

Hereafter we define the horizontal or vertical directions as those that are 
perpendicular or parallel to the nanotube axis, respectively. In the achiral nan- 
otubes, armchair (n,  n) and zigzag (n, 0) nanotubes (see Fig. 3.1 and Table 3.1) 
have (1) a vertical, n-fold rotational axis, C,, and (2) n horizontal, %fold axes, 
nCz. Each horizontal C2 axis intersects the center of a C-C bond or the cen- 
ter of a hexagon which are located at opposite sides of the nanotube from each 
other.+ Thus the achiral nanotubes belong to  the point group D,. The D, group 
has a different group structure, depending on whether n is even ( n  = 2j)  or odd 
(n = 2 j  + l),  as can be seen in the character tables, shown in Tables 3.4 and 
3.5,  respectively. The horizontal nC2 operations are either divided into the two 

‘The reader who is not familiar with group theory may skip this section, which is necessary, 
however, to understand the group theory for the Raman spectra observed in single-wall carbon 
nanotubes. 
tSince we now have ‘up’ and ‘down’ directions in a nanotube, the center of the hexagon has 
only 2-fold symmetry. 
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classes for groups with n = 2j ,  or are in a single class in the case of n = 2 j  + 1. 
In the case of n = 2 j ,  a Cz operation in one class bisects the angle between two 
adjacent C2 axes in the other class. 

Table 3.4: Character Table for Group D(zj) 

A2 1 1 1 1 ... 1 -1 -1 
B1 1 -1 1 1 . . I  1 1 -1 
B2 1 -1 1 1 ... 1 -1 1 
El 2 -2 2 cos q5j 2 ~ 0 ~ 2 4 5  ... 2cos(j-1)4,  0 0 
Ez 2 2 2 cos 245 2cos4q$ ... 2 c 0 s 2 ( j - l ) $ ~  0 0 

E3-i 2 (-1)3-'2 2cos( j  - 2cos2(j - ... 2cos(j - 1)24, o 0 

. .  
* .  . .  

O )  Where d3 = 2 ~ / ( 2 j ) .  

Table 3.5: Character table for point group D ( z j + l ) .  

R E 2C; a) 2 c $ ,  ... 2C$ (2j+i)C; 
A1 1 1 1 ... 1 1 
A2 1 1 1 ... 1 -1 
El 2 2cos4j 2cos24j ... 2cosj4j  0 
E2 2 2cos245j 2 ~ 0 ~ 4 4 ,  . . . 2cos2j4j 0 

E, 2 2cosjdj 2cos2j$j ... 2cosj2$j 0 

. .  * .  . .  

a )  Where 4j = Z?r/ (Zj  + 1). 

Further it is clear from Fig. 3.6 that for both zigzag and armchair nanotubes, 
there is an inversion center for both even and odd number n achiral nanotubes. 
In Fig. 3.6 (b) and (d) we show part of the nearest unit cell by dotted lines and 
circles. We can choose the unit cell so that the inversion operation transforms 
the carbon atoms in the unit cell to the other carbon atoms within the same 
unit cell.$ The total symmetry of an achiral nanotube is expressed by the direct 
product of the groups D, 8 Ci, where the group Ci consists of the identity and 
inversion operators, E and i. Group theory tells us that the direct product 

:In the case of the (6,6) armchair nanotube, the corresponding unit cell is such that half of 
the carbon atoms lie on the boundary of the unit cell. For the boundary atoms, we consider 
the half bails for operations. In this case, a symmetry operation from an upper-half ball to a 
lower-half ball for the same atom is different from the identity operation. 
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D,  8 Ci depends on whether n is an even or an odd number, as follows: 

(3.21) 

If n in D,  is even ( n  = 2 j ) ,  there is a class of ?r (CZm, = Cz) rotations along 
the principal C, axis. Since the product of the vertical CZm, rotation with the 
inversion operation gives a mirror operation on the ‘horizontal’ plane, which is 
perpendicular to the principal axis, 

D,h when n = 2 j  (even) 
Dn @ ci = { Dnd when n = 2 j  + 1 (odd) ’ 

m C,, x i = b h  (3.22) 

we have an element of uh in the direct product of Dn @ Ci, which corresponds 
to Dnh. The product of a horizontal C2 axis and the inversion center i gives 
a ‘vertical’ mirror plane nu,, which are the elements of Dnh. Here we take the 
horizontal Cz axes to  include the inversion center in the axes. 

If n in D,  is odd (n = 2 j  -+ l), there is no C2 rotation along the principal 
C, axis. Thus in the direct product of D(zj+l) @ Cj = D(Zj+l)d, there is no 
Uh,  operation but there is rather a ‘diagonal’ vertical mirror plane between two 
horizontal C2 axes. The vertical mirror planes are given by the product of a 
horizontal Cz rotation and the inversion center i. These symmetry issues are 
clarified in Fig. 3.6.  

It is very confusing in the case of odd n numbers ( n  = 2 j  + 1) that we can 
visually see the mirror symmetry on a horizontal plane, through the horizontal 
C - C bonds of the armchair tubes or through the centers of the vertical C - C 
bonds of the zigzag tubes. However, there is no Uh operation in the D(2j+l)d 
group. This might raise a question about whether there might be higher symme- 
try in achiral carbon nanotubes. The answer to this question is no, so far as we 
consider the symmetry of the unit cell, since the uh operation for ( n  = 2 j  + 1) 
is used only for the space group.§ 

Let us consider this question in the case of the armchair tube with n = 5 ,  
(5 ,5 ) .  When There is 20 atoms in the unit cell as shown in Fig. 3.6 (a). 

§The following is the reason why we need these statements in the text. All horizontal lines 
which intersect the nanotube axis and the center of C-C bond can be Cz axes, thus giving 
rise to 2n C2 axes in the unit cell for achiral (n,n) or (n,O) nanotubes. We will select only n 
CZ axes of the 2n C2 axes which can be elements of the point group. The other n Cz axes are 
operators for the space group of the lattice, because these other n Cz axes require a trmslation 
along the nanotube axis. 
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D5d E ZC5 ZC: 5ci i 2s;’ 2510 5 a d  

Azs  +1 + 1  + 1  -1 +1 +1 +1 -1  
A i ,  +1 + 1  +1 +1 +1 +1 +1 +1 

E l ,  +2 r - 1 -7  0 +Z r - 1 -r 0 

~2~ +2 -r r - 1 o +2 -7  7 - 1 o 
A i U  +1 +1 + 1  4-1 - 1  -1 -1 -1 
Azu +1 +1 + 1  -1 -1 -1  -1 +1 
ElU +2 r - 1  -7  0 -2  I-+ +r 0 
Ez,, +2 -r 7 - 1  0 - 2  +r  1--7 0 

we keep the chemical bonds between two carbon atoms rigid, we have only 20 
inequivalent operations that do not change the unit cell. Ten of the 20 operations 
are operations which change the A atom to an equivalent A atom, and the other 
10 are operations which change the A atom into a B atom. Here A and B atoms 
denote inequivalent carbon atoms of the hexagonal network as shown in Fig. 2.3. 
Furthermore, 5 of the 10 A-+A operations are given by proper C5 operations, 
and the other 5 require the inversion operation, which changes an A atom on one 
horizontal plane to an A atom on the other horizontal plane. When we consider 
the inversion center, as shown in Fig. 3.6 (a), the symmetry corresponds to  the 
D5d point group. In D 5 d  symmetry, we have 20 symmetry elements which are 
sufficient to  describe 20 possible operations for the 20 atoms in the unit cell. 

( h =  20) 

R,  
(2“ f Y ’ ) , z ’  

s ( z + i y , z -  i y )  
[ ( z + i y I 2 , ( z  - iy12] 

( r + i y , z  - i y )  

D5h E Zcs 2c:;! 5c; ah 255 2s; 5 0 ,  
t1 +1 + 1  + 1  +1 + 1  + 1  ’ i-1 2i +1 +1 +1 - 1  +1 +I $1 - 1  

E ;  +:, r - 1 -7  o +z -7 - 1 --7 o 
E: +2 - r  7 - 1  o +Z -7  7 - 1  o 

A” +1 +1 +1 -1 -1 -1 -1 + 1  
E! +2 r - 1  --7 o -2 1-r + r  o 
E; +2 - r  - 7 - 1  o - 2  +r 1-r o 

A;’ +1 +1 $1 +1 - 1  -1  -1  -1  

Let us show that D5h is not the proper point group symmetry of the ( 5 , 5 )  
armchair nanotube. D5h is given by direct product 0 5  x c h ,  where Ch is the 
point group which has only the symmetry elements E and c h .  In Tables 3.6 

( h  = 20) 

Rz 
z r + y 2 , z 2  

( z ,y ) ,  (zz2,yz2) 
( z 2 - y 2 , z y )  

z ,  z3,z (z2+y2)  
(~,,~~),(zz,yz) 
[zyz,z(z2 - y2)1 
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and 3.7, we show the character tables of D 5 d  and D 5 h l  both having the same 
structure, and thus both symmetries seem to be applicable. However, in the D 5 h  

point group there is no operation which changes an A atom in one horizontal 
plane to an A atom in the other plane. Thus D 5 h  is not sufficient for describing 
the 20 distinct operations in the unit cell. 

Achiral nanotubes are the only nanotube types that have the vertical (or 
horizontal) mirror operation. The chiral nanotube, which does not belong to  
either the armchair or zigzag nanotube categories, has no mirror plane. When 
n and m in a chiral vector (n,rn) have no common divisor except for unity, 
d = 1, the lattice belongs to a non-symmorphic translational group which only 
has pure spiral symmetry operations, that  are given by the symmetry vector R 
and repeated operations of R. As discussed in Sect. 3.4, we either go over all N 
A atoms or all N B atoms in the unit cell by operating with Ri (i = 1,. . - , N )  on 
a carbon atom. Thus the operations Ri (i = 1, - - +  , N )  form an Abelian group. 
An Abelian group is a group in which all symmetry operations commute with 
each other. 

Table 3.8: The character table for the Abelian group CN for chiral nanotubes 
C N  E c1 c2 ... ce ... CN-1 

B 1 -1 1 . * .  (-1)l . .. -1 
A 1 1 1 ... 1 ... 1 

€ N - l  

€ * ( N - - l )  } ... € 2  

€22 
,*22 

... €2 

€2 € 4  

€14 

{; :* €*Z €*f 

€2( N - 1 )  
€r2( N - 1 )  . .* ... 

When the common divisor of n and m, d in not unity, the nanotube is 
invariant under a pure rotation of c d  around the nanotube axis. In this case the 
symmetry group of such a chiral vector is the direct product of the two Abelian 
gr'oUPs1 

CN = c d  8 C N / d  (3 .23)  

where C, ( p  = N , d ,  and N / d )  denotes any one of the three Abelian groups in 
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Fig. 3.7: High resolution TEM mi- 
crograph of the top view of one bun- 
dle of single-wall nanotubes from the 
collarette of the cathode of a carbon 
arc apparatus (see Sect. 5.3). The 
nanotube bundle is bent in such a 
way that it is seen edge-on in the 
image plane, showing single-wall car- 
bon nanotubes in a triangular lat- 
tice, with a tube diameter of 1.4 nm 
and an average inter-tube distance of 
1.7 nm. Each bundle in the micro- 
graph consists of about 20 aligned 
single-wall nanotubes which are self- 
organized into a triangular lattice [52]. 

Eq. 3.23, each having p elements, E ,  C, C2, ...., 0'"' and CP = E.  In Table 3.8 
we show the character table for C, for chiral nanotubes. All characters in 
this table are Nth  roots of unity. The irreducible representations are either two- 
dimensional En representations, whose characters for each operation are complex 
conjugates of each other, or one-dimensional A or B irreducible representations. 

3.7 Experimental evidence for nanotube structure 

The existence of single-wall carbon nanotubes has been confirmed experimentally 
through high resolution transmission electron microscopy (TEM) (see Fig. 3.7) 
and scanning tunneling microscopy (STM) (see Fig. 3.8). These techniques are 
especially useful for the structural characterization of the nanotubes. Because 
of the sensitivity of the electronic, vibrational, and other physical properties of 
carbon nanotubes to their geometrical structure, as described by the integers 
($2 ,  m> or their characteristic parameters (d, ,  8), the structural characterization 
of carbon nanotubes on which physical measurements are made is very impor- 
tant. Structura~ chara~ter iza t i~n  me~uremen t s  of dt and 6 are d i ~ c u ~ t  to make 
because of the small physical size of the nanotubes, and the low atomic num- 
ber 2 of carbon which gives rise to low cross sections for x-rays and electrons, 
the two more commonly used conventional structural characterization probes. 
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Fig. 3.8: Atomic resolution STM topo- 
graphic image of a single-wall nanotube 
on an Au (111) substrate at  4.2 K. The 
dark spots indicate thc hexagons which 
are spaced by 2.46 ti 'L'hc lattice sites 
show that this nanotubc is not a zigzag 
nanotube, indicating that it could be ei- 
ther an armchair (chiral angle 30') or a 
general chiral nanot ubc. Image size is 
51 x 26 A' [54]. 

In addition, there is considerable difficulty associated with the manipulation of 
individual single-wall nanotubes. Some progress has been made in developing 
sensitive tools for the structural characterization of nanotubes, particularly us- 
ing the STM and TEM techniques, and progress has also been made with the 
manipulation of individual nanotubes 1531. 

The TEM micrograph of Fig. 3.7 shows the tendency for the single-wall nano- 
tubes to  grow in bundles containing 10-50 aligned nanotubes, held together by 
weak inter-tube interactions, The single-wall nanotubes shown in Fig. 3.7 were 
grown in an electric arc discharge apparatus using a 1 at% Y and 4.2 at% Ni cat- 
alyst contained in the anode, and the nanotubes were collected from a collarette 
located around the cathode electrode [52]. Since the bundles of nanotubes are 
frequently bent, so that some portions of the nanotubes are oriented parallel 
to  the electron beam, the tube ends can be imaged in a transmissio~ electron 
microscope, resulting in a cross-section-like view, showing individual single-wall 
nanotubes. The bundles typically are 5-20 nm in diameter and exhibit a triangu- 
lar lattice with an inter-tube distance of -1.7 nrn [52,55]. Thc periodic packing 
of these nanotubes is confirmed by electron diffraction patterns obtained from 
an assembly of such nanotube bundles. Similar arrays of nanotube bundles were 
first reported using the laser vaporization technique [55] .  

The very weak electron scattering from nm diameter carbon nanotubes 
(atomic number 2 = 6) and their high susceptibility to  damage by the 100- 
200 keV electron beam of the TEM instrument make it difficult to  carry out 
electron diffraction studies. By taking precautions to  use low electron beam 
currents, it has been possible to  obtain good TEM measurements of lattice 
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Electron beam Fig. 3.9: This sketch indicates 
how the interference pattern for 
the electron beam that is inci- 
dent radially on the planes with 
the H orientation is used to  de- 
termine the chiral angle 0 ,  which 
is the angle between the nan- 
otube axis and the nearest zigzag 
axis. The interference pattern, 
obtained when the lattice planes 
are in the orientation V with re- 
spect to  the electron beam and 
the nanotube shells, determines 
the inter-shell distances in the 
case of multi-wall carbon nan- 
otubes [19]. 

fringe images and electron diffraction patterns on single-wall nanotubes [56] and 
multi-wall nanotubes [57]. However, TEM experiments on single-wall (and even 
double wall) nanotubes remain an experimental challenge. Nevertheless, TEM 
evidence has been presented to show that the walls of single-wall nanotubes have 
the local structure of a graphene sheet [58]. 

Referring to  Fig. 3.9, we see, in principle, how the electron diffraction tech- 
niques can be used in the H geometry to measure the orientation (i.e., chiral 
angle of an individual nanotube) as is, for example, done with the LEED tech- 
nique in surface science, while the V geometry can be used to  determine the 
inter-tube spacing in the case of multi-wall nanotubes. Transmission electron 
microscopy has been widely used to characterize the many defect structures that 
have been observed in multi-wall nanotubes [57,59-621. Whereas nanotubes with 
diameters > 2 nm tend to  show many structural defects, very small diameter 
nanotubes tend t o  be more perfect, with fewer structural defects. 

The interpretation of TEM electron diffraction patterns on single-wall car- 
bon nanotubes should be greatly aided by the use of computer simulations which 
give the diffraction pattern expected for an (n ,m)  nanotube [63].  These com- 
puter simulations are based on an analysis carried out by Cochran, Crick and 
Vand in 1952 [64] in connection with their elucidation of the structure of the 
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Fig. 3.10: Left: Atomic struc- 
ture of the (17,3) carbon nan- 
otube projected on a plane nor- 
mal to the incident wave vector. 
Right: Corresponding electron- 
diffraction pattern in which the 
most intense features appear the 
darkest. The dimensions of the 
diffraction pattern scale linearly 
with sinB, where 28 is the scat- 
tering angle (see list of numbers) 
and 4 = 0 is at the center of the 

-9, - . . . . . . .  pattern. The vertical direction 
-a@ - . . . .  -. ... . . . . . .  is parallel to the nanotube axis 

IJO - ........ ........ 

-29- ..... . . .  

..... . . . . . . .  
. . . . .  

~ 3 1 .  

DNA molecule from X-ray diffraction experiments. By calculating the structure 
factor for all the atoms in the 1D unit cell of a general single-wall nanotube, the 
expected diffraction spots (and streaks) and their relative intensities are found 
1631, such as the diffraction pattern shown in Fig. 3.10 for a (17,3) singlewall 
carbon nanotube. At present, the experimentalist would have to compare the 
observed patterns to available simulations. At present, the computer simulation 
[63] is not yet able to carry out the inverse process of converting an observed 
diffraction pattern into a real space structure ( n ,  rn) for the atomic sites within 
the 1D unit cell. 

Rather detailed information on the site location and the periodic arrange- 
ment of the carbon atoms within the nanotube is found from atomic resolution 
STM micrographs, and such experiments can be done successfully on single-wall 
nanotubes, especially at low temperature. An example of an STM to~ographic 
pattern of a single-wall carbon nanotube ~1 nm in diameter is shown in Fig. 3.8, 
which was made at 4.2 K [54]. Combined STM measurements to monitor dl and 
4 and STS (scanning tunneling spectroscopy) to  give the 1D density of states 
provides a powerful technique for studying the electronic structure of carbon 
nanotubes [65]. Measurements of the cross-sectional STM profile shows direct 
evidence for the curved surface of the nanotube [66]. 

The tube diameter is continuously measured by the STM technique in terms 
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Fig. 3.11: XRD profile of SWNT 
material prepared by the laser 
vaporization method [55] .  Data- 
fitted background (curve a) com- 
pared with a model profile (curve 
b) that assumes a 2D triangu- 
lar lattice of uniformly charged 
cylinders, with a lattice con- 
stant of 16.95A, and a circle ra- 
dius 6.9A. Vertical tick marks on 
curve b are the calculated Bragg 
positions. Curve c show analysis 
of the form factor used to  obtain 
the lattice constant of the trian- 
gular lattice [55] .  

of the height difference between a substrate and the maximum height of the 
nanotube relative to  the substrate, while the chiral angle determination can be 
made from the site positions of the carbon atoms relative to the nanotube axis 
(see Fig. 3.8).  With the STM it is also been possible to measure the nearest 
neighbor carbon distance and to show that its value is essentially the same as 
that  for graphite (1.42A) [66]. 

I t  is expected that improvements in the techniques for characterizing and 
manipulating carbon nanotubes will be forthcoming and that these techniques 
will enhance our general capabilities for the characterization of carbon nan- 
otubes. It is further expected that carbon nanotubes will be widely used for 
the manipulation of nanostructures more generally because of their excellent 
mechanical properties (see Chapter 11). 

The possibility of forming arrays of single-wall carbon nanotubes, weakly 
interacting through a van der Waals interaction, has been treated theoretically 
[67,68]. These calculation considered the stabilization of a nanotube array of 
(6,6) nanotubes, and showed the most stable configuration to be that of a trian- 
gular lattice with the space group PG/mcc where the nearest-neighbor carbon 
atoms on adjacent nanotubes are oriented in the ABAB stacking arrangement 
of 3D graphite [67,68]. Recent experimental studies of the lattice structure 
of arrays of single-wall carbon nanot,ubes [55] using X-ray diffraction techniques 



58 CHAPTER 3. SINGLE-WALL CARBON NANOTUBE 

confirm that the 3D structure is that of a triangular lattice with alattice constant 
of 17A for nanotubes of 1.38f0 .02  nm diameters and an inter-tube separation 
of 0.315 nm (see Fig. 3.11). Variation in the mean nanotube diameter and the 
diameter distribution can be achieved by using different catalysts and growth 
conditions (see Chapter 5). Many of the early quantitative experiments relevant 
to  single-wall nanotubes have thus far been carried out on nanotube arrays that 
were prepared in the same way as the material yielding the diffraction pattern 
of Fig. 3.11. 



CHAPTER 4. 

Electronic Structure of Single-Wall Nanotubea 

Using the definition of the structure of carbon nanotubes dis- 
cussed in Chapter 3, the electronic structure of carbon nanotubes is 
derived by a simple tight-binding calculation for the n-electrons of 
carbon atoms. Of special interest is the prediction that the calculated 
electronic structure of a carbon nanotube can be either metallic or 
semiconducting, depending on its diameter and chirality. This one- 
dimensional metal is stable under the so-called Peierls instability. 
The energy gap for a semiconductor nanotube, which is inversely 
proportional to  its diameters, is directly observed by scanning tun- 
neling microscopy measurements. 

4.1 One-electron dispersion relations 

4.1.1 

The electronic structure of a single-wall nanotube can be obtained simply from 
that of two-dimensional graphite. By using periodic boundary conditions in the 
circumferential direction denoted by the chiral vector Ch, the wave vector associ- 
ated with the Ch direction becomes quantized, while the wave vector associated 
with the direction of the translational vector T (or along the nanotube axis) 
remains continuous for a nanotube of infinite length.* Thus the energy bands 
consist of a set of one-dimensional energy dispersion relations which are cross 
sections of those for two-dimensional graphite (see Fig. 2.4). 

When the energy dispersion relations of two-dimensional graphite, EgaD(k) 
[see Eqs. (2.27) and/or (2.29)] at line segments shifted from WW’ by pK1 (p = 

Zone-Folding of Energy Dispersion Relations 

*For real carbon nanotubes, since the length of a nanotube ( L c N )  is on the order of pm, discrete 
k vectors (Ak = 2 7 ~ / L c ~ )  can be expected. In low temperature transport experiments [51], 
this discreteness becomes important. See further details in Sect. 8.2. 

59 
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K‘ 

L k. 
Fig. 4.1: The condition for 
metallic energy bands: if the ra- 
tio of the length of the vector 
Y K  to that of K1 is an inte- 
ger, metallic energy bands are 
obtained. 

-- 

O , . . .  , N - 1) are folded so that the wave vectors parallel to  Kz coincide with 
WW’ as shown in Fig:3.5, N pairs of 1D energy dispersion relations E,(lc) are 
obtained, where N is given by Eq. (3.9). These 1D energy dispersion relations 
are given by 

corresponding to the energy dispersion relations of a single-wall carbon nan- 
otube. The N pairs of energy dispersion curves given by Eq. (4.1) correspond 
to  the cross sections of the two-dimensional energy dispersion surface shown in 
Fig. 2.4, where cuts are made on the lines of lcKz/lK21 + pK1. If for a par- 
ticular (n ,m)  nanotube, the cutting line passes through a K point of the 2D 
Brillouin zone (Fig. 2.3), where the ?r and ?r* energy bands of two-dimensional 
graphite are degenerate by symmetry, the one-dimensional energy bands have a 
zero energy gap. Further, as will be shown in Sect. 4.2, the density of states at 
the Fermi level has a finite value for these carbon nanotubes, and they therefore 
are metallic. If, however, the cutting line does not pass through a I( point, then 
the carbon nanotube is expected to show semiconducting behavior, with a finite 
energy gap between the valence and conduction bands. 

The condition for obtaining a metallic energy band is that the ratio of the 
length of the vector Y K  to that of K1 in Fig. 4.1 is an integerj Since the vector 

--t 

tThere are two inequivalent K and K’ points in the Brillouin zone of graphite as is shown in 
Fig. 4.1 and thus the metallic condition can also be obtained in terms of A”. However, the 
results in that case are identical to the case specified by Y K .  
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Fig. 4.2: The carbon nan- 
otubes ( n , m )  that are metal- 
lic and semiconducting, respec- 
tively, are denoted by open a.nd 
solid circles on the map of chiral 
vectors (n,  m). 

... 0 : metal 0 : semiconductor 

--+ 
YK is given by 

(4.2) 
-* 2 n + m  
yri= - K1 I 3 

the condition for metallic nanotubes is that (2n 4- rn) or equivalently (n  - m) 
is a multiple of 3.i  In particular, the armchair nanotubes denoted by (n,n) are 
always metallic, and the zigzag nanotubes (n,O) are only metallic when n is a 
multiple of 3. 

In Fig. 4.2, we show which carbon nanotubes are metallic and which are 
semiconducting, denoted by open and solid circles, respectively, From Fig. 4.2, 
it follows that approximately one third of the carbon nanotubes are metallic and 
the other two thirds are semicondu~ting. 

4.1.2 

To obtain explicit expressions for the dispersion relations, the simplest cases to 
consider are the nanotubes having the highest symmetry. Referring to Fig. 4.3, 
we see the unit cells and Brillouin zones for the highly symmetric (achiral) 
nanotubes, namely for (a) an armchair nanotube and (b) a zigzag nanotube. 

The appropriate periodic boundary conditions used to obtain the energy 
eigenvalues for the (a, n) armchair nanotube define the small number of allowed 
wave vectors km,g in the circumferential direction 

Energy Dispersion of Armchair and Zigzag Nanotubes 

n&t,,,a = 2xq, (g = I , .  . . , 2n ) .  (4.3) 

Substitution of the discrete allowed values for k,,, given by Eq. (4.3) into 

!Since 3% is a multiple of 3, the remainders of (2n + m)/3  and (n - m ) / 3  are identical. 



Fig. 4.3: Part  of the unit cell 
and extended Brillouin zone of 
(a) armchair and (b) zigzag car- 
bon nanotubes. ai and bi are 
unit vectors and reciprocal lat- 
tice vectors of two-dim~nsiona1 
graphite [see Eqs. (2.22) and 
(2.23) and Fig. 2.31, respectively. 
In the figure, the translationai 
vector T [Eq. (3.5)] and the eor- 
responding reciprocal lattice vec- 
tor Kz [Eq. (3.20)] of the nan- 
otube are shown. 

Eq. (2.29) yields the energy dispersion relations E:(L) for the armchair nan- 
otube, Ch = (n ,n )  [69], 

(-T < kU < T ) ,  ( 4  = 1,. . . ,272.) 

in which the superscript a refers to armchair and k is a one-dimensional vector in 
the direction of the vector K2 I= (bl - bz)/Z. This direction co~responds to  the 
I? to  K point vector in the two-dimensional Brillouin zone of graphite* (see the 
top of Fig. 4.3). The resulting calculated 1D dispersion relations E:(E) for the 
(5,5) armchair nanotube are shown in Fig. 4.4(a), where we see six dispersion 
relations for the conduction bandst and an equal number for the valence bands. 
In each case, two bands are non~egenerate labeled by “a” and the four labeled by 
“e” are doubly degenerate, leading to 10 levels in each case, consistent with the 
10 hexagons around the circumference of the (5,5) nanotube. For all armchair 
nanotubes, the energy bands show a farge degeneracy a t  the zone boundary, 
where ka = T ,  so that Eq. (2.29) becomes 

*Note that K z  vector is not a reciprocal lattice vector of 2D graphite. 
tThe Fermi energy corresponds to Eft  = 0. The upper half of Fig. 4.4 corresponds to the 
unoccupied conduction bands. 
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Fig. 4.4: One-dimensional energy dispersion relations for (a) 
armchair ( 5 , 5 ) ,  (b) zigzag (9,0), and (c) zigzag (l0,O) carbon 
nanotubes labeled by the irreducible representations of the point 
group Dnd or Dnh, depending on whether there are even or odd 
numbers of bands n at the I? point ( k  = 0). The a-bands are 
nondegenerate and the e-bands are doubly degenerate at a gen- 
eral k-point [70]. X points for armchair and zigzag nanotubes 
correspond to  k = f n / a  and k = f n / f i a ,  respectively. (See 
Eqs. (4.4) and (4.7).) 

for the 2D graphene sheet, independent of zone folding and independent of a.* 
Although there are four carbon atoms in the unit cell of Fig. 4.3(a) for the real 
space lattice, the two carbon atoms on the same sublattice of a graphene sheet 
are symmetrically equivalent, which causes a degeneracy of the energy bands 
at the boundary of the Brillouin zone. The valence and conduction bands in 
Fig. 4.4(a) for the armchair nano tub~  cross at a k point that is two thirds of the 
distance from k = 0 to the zone boundary at k = n/a .  The crossing takes place 
at the Fermi level and the energy bands are symmetric for flc values. 

Because of the degeneracy point between the valence and conduction bands 

tThe large degeneracy comes from the equi-energy lines of the energy bands of 2D graphite 
which connect the two nearest M points (See Fig. 2.4). When xz is perpendicular to the equi- 
energy line, a large degeneracy of Eq. (4.5) occurs. When Kz is parallel to the equi-energy 
line, we have dispersionless energy bands with an energy of ft. The latter case corresponds 
to zigzag nanotubes (n,O) with an even number of n. 



a t  the band crossing, the ( 5 , 5 )  armchair nanotube is thus a zero-gap semicon- 
ductor which will exhibit metallic conduction a t  finite temperatures, because 
only infinitesimal excitations are needed to excite carriers into the conduction 
band. 

Similar calculations, as given by Eqs. (2.29), (4.3), and (4.41, show that dl 
(n ,  n )  armchair nanotubes yield 4n energy subbands analogoiis to Eq. (4.4) with 
2n conduction and 2n valence bands, and of these 2n bands, two are nondegen- 
erate and ( n  - 1) are doubly degenerate. The symbols u and g in Fig. 4.4(a) 
indicate the even and odd behavior of these states regarding inversion symme- 
try, the f signs refer to the corresponding signs in Eq. (4.4) and the integers 
(1 ,2 , .  . .) are used to distinguish energy bands with the same symmetry from 
one another. All (n ,n )  armchair nanotubes have a band degeneracy between 
the highest valence band and the lowest conduction band at L = f2a/(3a), 
where the bands cross the Fermi level. Thus, all armchair nanotubes are ex- 
pected to exhibit metallic conduction, similar to the behavior of 2D graphene 
sheets [69,71-761. 

The energy bands for the Ch = (a ,  0) zigzag nanotube Eq(L) can be obtained 
likewise from Eq. (2.29) by writing the periodic boundary condition on L, as: 

nk,,,a = 2nq, ( q  = 1,. . . ,2n),  (4.6) 

to yield the 10 dispersion relations for the 4n states for the (n,O) zigzag nan- 
otube (denoted by the superscript z )  

The resulting calculated 1D dispersion relations Eg((1) for the (9,O) and (10,O) 
zigzag nanotubes are shown in Figs. 4.4(b) and (c), respectively. There is no 
energy gap for the (9,O) nanotube at  k = 0, whereas the (10,O) nanotube indeed 
shows an energy gap. Especially in the case of the (10,O) nanotube, there is a 
dispersionless energy band a t  E / t  = fl ,  which gives a singular density of states 
at that energy. Dispersionless energy bands occur at q /n  = 112 in Eq. (4.4), 
which gives E(n/a)  = ft. For a general (n,O) zigzag nanotube, when n is a 
multiple of 3, the energy gap at  k = 0 becomes zero; however, when n is not 



a multiple of 3, an energy gap opens at  k = 0, Further, when n is an even 
number, dispersionless energy bands appear, but not in the case when n is an 
odd number. As is pointed out in Sect. 3.6, different symmetries, Dnd and D n h ,  

occur for odd and even numbers of n, respectively, 

4.1.3 Dispersion of chiral ~ a ~ o ~ ~ b ~ s  

It should be noted that the L values for the band degeneracies for metallic nano- 
tubes are L = &2n/3T or Ic = 0 for armchair or zigzag nanotubes, respectively, 
and that these k-values are also the locations of the band gaps for the semicon- 
ducting zigzag nanotubes. The same k values also denote the positions of the 
energy gaps (incfuding zero energy gaps) for the general case of chiral tubes. In 
Figs. 4.5 and 4.6, we show dispersion relations for the (9,6) and (7,4) chiral 
nanotubes, respectively. Since 91 - m is a multiple of 3 in the both cases, these 
two chiral nanotubes are metallic. Further, the L values a t  the Fermi level band 
crossings are at k = 0 and f2n/3T for Figs. 4.5 and 4.6, respectively. Since 
the highest degeneracy of irreducible representations of the group of the wave 
vector at k = 0 is two, the crossing of the four energy bands at  k = 0 in the case 
of the (9,6) nanotube in Fig. 4 5  is an accidental degeneracy. 

A more detailed analysis of the E ( k )  relations for chiral nanotubes which 
is generally given by Eq. (4.1) shows that, the nanotubes can be classified into 
three general categories [77,78], depending on: (1) whether or not n - m is a 
multiple of 3, and (2) whether or not n-m is multiple of 3 4  whenever n- m is a 
multiple of 3. Here d is the highest common divisor of n and m in Ch = (n,  m). 
The three cases are summarized in Table 4.1. The cl~sification in this table can 
be understood in terms of the length rY shown in Fig. 4.1, which is given by 

where IK,l is along the nanotube axis, dR is given by Eq. (3.7) and m is one 
of the integers of the chiral vector, Ch = ( n , m ) .  Since the metallic condition 
Eq. (4.2) is satisfied in these cases, the point K in Fig. 4.1 is folded into the Y 
point. Further when m / d ~  is an integer, the Y point becomes the I' point since 
the K2 vector becomes a reciprocal lattice vector in this case. The situation of 
metal-1 in Table 4.1 corresponds to this case, since d~ = d, and d is the highest 
common divisor of n and m. In this case, the band degeneracy at the Fermi level 
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Table 4.1: Classification of solid state properties of nanotubes, C h  = (n, m) 
Properties gcd(n - rn, 3 ) ( a )  d g )  Degeneracy(") 
Semiconductor 1 d 0 (Energy gap oc l/dt). 
Metal- 1 3 d 4 at k = O . ( d )  
Metal-2 3 3d 2 at k = rt2n/3T. 

- 

( a )  gcd denotes the greatest common divisor. 
('1 dR is given by Eq. (3.7). 
(') Degeneracy at the Fermi energy. When the spin of the electron is included, 
the effect of spin-orbit interaction in carbon [79,80] must be considered for the 
case of orbitally degenerate bands. 

Since group theory allows only one and two-dimensional irreducible repre- 
sentations, the four-fold degeneracy is accidental. 

occurs at  k = 0 and involves a 4-fold accidental band degeneracy, as discussed 
above. When dR = 3d,  then m / d R  is not an integer, but rather m / d R  = vf 113, 
(v is an integer). This corresponds to  the case of metal-2 and the degeneracy 
occurs at k = f2n/3T. Since the inequivalent K and Ii" points are folded into 
different points in the Brillouin zone, the & signs occur in both cases for the 
dispersion relations near k = f2n/3T. Metallic zigzag nanotubes, denoted by 
( 3 q ,  0),  always fall into the category of metal-1. Armchair nanotubes (n, n) are 
in the category metal-2. 

4.2 Density of States, Energy gap 

For all metallic nanotubes, independent of their diameter and chirality, it follows 
that the density of states per unit length along the nanotube axis is a constant 
given by 

where u is the lattice constant of the graphene layer and It1 is the nearest- 
neighbor C-C tight binding overlap energy usually denoted by yo in the graphite 
literature [78].* 

~ 

*While the value of yo for 3D graphite is 3.13 eV, a value of It1 = 2.5 eV is obtained for this 
overlap energy in the 2D case when the asymmetry in the bonding and antibonding states is 
averaged out, and this 2D value has been found to yield good agreement with first principles 
calculations [Sl]. Experimentally the value It1 = 2.7 eV has been estimated by the Delft group 



4.2. DENSITY OF STATES, ENERGY GAP 

1 .o 

0.5 

0.0 

-0.5 

-1 .o 
1.0 -0.5 0.0 0.5 1.0 

kT/rc 

kT/n 

Fig. 4.5: Plot of the energy 
bands E ( k )  for the metallic 1D 
nanotube (n ,  rn) = (9, G )  for val- 
ues of the energy between -t 
and t ,  in dimensionless units 
E(k)/til.  The Fermi level is at 
E = 0. The largest common di- 
visor of (9,G) is d = 3,  and the 
value of dR is dR = 3. The gen- 
eral behavior of the four energy 
bands intersecting at k = 0 is 
typical of the case where dR = d 
(Metal 1) [77]. 

Fig. 4.6: Plot of the tight 
binding energy bands E( k) for 
the met,allic 1D chiral nanotube 
( n , m )  = (7,4) for values of the 
energy between -t and t in di- 
mensionle~ units E(k)/ltf. The 
values of d and d~ are d = 1 and 
d R  = 3, respectively. The gen- 
eral behavior of the two band de- 
generacies at Ic 2 f(2/3)(n/T) is 
typical of the case where dR = 3d 
(Metal 2)[77]. 

[SZ] in fitting STM density of states data. T h i s  S T M  value may be about the best experjment~ 
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Fig. 4.7: Electronic 1D den- 
sity of states per unit cell of a 
2D graphene sheet for two ( n ,  0) 
zigzag n a n ~ t u b ~ :  (a) the (9,O) 
nanotube which has metallic be- 
havior, (b) the (10,O) nanotube 
which has semiconducting be- 
havior. Also shown in the figure 
is the density of states for the 2D 
graphene sheet [76]. 

Of particular interest has been the energy dependence of the nanotube den- 
sity of states, as shown in Fig. 4.7 which compares the density of states for 
metallic (9,O) and semiconducting (l0,O) zigzag nanotubes. Of particular inter- 
est is the density of states near the Fermi level EF located at  E = 0. This density 
of states has a value of zero for semiconducting nanotubes, but is non-zero (and 
small) for metallic nanotubes. Of equal interest are the singularities in the 1D 
density of states corresponding to extrema in the E ( k )  relations. The compar- 
ison between the 1D density of states for the nanotubes and the 2D density of 
states for a graphene layer is included in the figure. We also show in Fig. 4.8 the 
1D density of states for a (10,lO) nanotube; these data have been extensively 
used for the analysis of various experimental data. 

Another important result, pertaining to semiconducting nanotubes. shows 

value we have €or Jtl 80 far, which is within 15% of the 3D value. 
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Fig. 4.8: Electronic den- 
sity of states (DOS) calculated 
in a tight binding model for 

armchair nanotubes. Wave- 
vector conserving optical transi- 
tions can occur between mirror 
image spikes, i.e., 2t l  --+ c1 and 
v2 ---t c2 as indicted for the case 
of the (8,8) nanotube. The en- 
ergies (in eV) for various optical 
transitions are indicated on the 
figure [83]. 

(V), (9191, (10,10) and (11111) 

that their energy gap depends upon the reciprocal nanotube diameter dr, 
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(4.10) 

~ndependent of the chiral angle of the semiconducting nanotube, where ac-c = 
a/& is the nearest-neighbor C-C distance on a graphene sheet. A plot of Es vs. 
l / d t  is shown in Fig. 4.9 for the graphite overlap integral taken as It1 = 3.13 eV. 
The results in Fig. 4.9 are important for testing the 1D model for the electronic 
structure of carbon nanotubes, because this result allows measurements to be 
made on individual semiconducting nanotubes, which are characte~ized only 
with regard to nanotube diameter without regard to their chiral angles. Using 
a value of It1 = 2.5 eV, as given by the local density functional calculation 
[Sl], Eq. (4.10) suggests that the band gap exceeds thermal energy at room 
temperature for nanotube diameters dt 5 140 A. Furthermore, since about one 
third of the cylinders of a multi-wall nanotube are conducting, certain electronic 
proper tie^, such as the electrical ~ o ~ d u c t i v ~ t y  of n a n o t u ~ e ~ ,  will be d o ~ i n a t e d  
by the contributions from the conducting constituents, and the non-conducting 
constituents will play almost no role. 

Density of states me~uremen t s  by scanning tunneling spectroscopy (STS) 
provide a powerful tool for probing the electronic structure of carbon nanotubes 
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Fig. 4.9: The energy gap Eg 
scaled by It[ for a semiconduct- 
ing, chiral carbon nanotube EW a 
function of 100 Ah;ldt, where dt 
is the nanotube diameter in 
and a value of It1 = 2.5 eV is 

[G5,82], Such measurements confirm that some nanotubes (about 113) are con- 
ducting, and some (about 213) are semiconducting (see Fig. 4.2). Me~urements  
on semiconducting nanotubes confirm that the band gap is proportional to  I/& 
(see Fig. 4.9) [G5,82]. Resonances in the density of states (see Fig. 4.7) have been 
observed on metallic and semiconducting nanotubes whose diameters and chiral 
angIes were determined by operating the instrument in the scanning tunneling 
microscopy (STM) mode 1821. The STS results confirm the theoretical model 
that the energy between the lowest-lying resonance in the conduction band and 
the highest-lying resonance in the valence band is smaller for semiconducting 
nanotubes and larger for metallic nanotubes, and that the density of states at 
the Fermi level is non-zero for metallic nanotubes, but zero for semiconducting 
nanotubes [82]. Thus the main 1D q u a n t u ~  features predicted theoreticalIy for 
carbon nanotubes have now been observed experimentally. 

0.6 

0.0' 

4.3 Effects of Peierls distortion and nanotube curvature 

1 t . b . i ' i . I .  

taken for the transfer integral. It 
' ' ' t , ' ' " t is noted that the relationship be- 

~ e t ~ l i c  1D energy bands are generally unstable under a Peierls distortion. How- 
ever, the Peierls energy gap obtained for the metallic nanotubes is found to be 
greatly suppressed by increasing the nanotube diameter, so that the Peierls gap 
quickly approaches the zero-energy gap of 2D graphite [G9,71]. Thus if we con- 
sider finite temperatures or fluctuation effects, it is believed that such a small 
Peierls gap can be neglected. Detailed discussion is presented in Sect.ll.3. 

As the nanotube diameter increases, more wave vectors become allowed for 
the circumferential direction, the nanotubes become more two-dimensional, and 
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as illustrated in Fig. 4.9, the semiconducting band gap decreases. From the figure 
we clearly see that the energy gap is inversely proportional to the diameter. The 
dependence of Eg on d t l  is obtained analytically from k: . p theory near the IC 
point [84]. 

The effect of curvature of the carbon nanotubes has been considered within 
the tight binding approximation [81], The inclusion of curvature effects compli- 
cates the calculation considerably, by introducing four tight binding parameters, 
with values given by VppT = -2.77 eV, V,,, = -4.76 eV, V J p a  = 4.33 eV, 
and V p P D  = 4.37 eV [85,86], instead of the single tight binding parameter 
Vppr = -2.5 eV, which has been used to  describe carbon nanotubes when their 
curvature is neglected. It should be mentioned that for both the armchair and 
zigzag nanotubes, the band crossings at  EF are between energy bands of different 
symmetry. (Even when na,notube curvature is considered the bands that cross 
will have different symmetries.) Thus no interaction or band splitting would be 
expected at EF. Some first principles calculations for the electronic structure 
have been carried out for carbon nanotubes [72,81,87-891, yielding results in 
substantial agreement with the simple tight binding results which are described 
in this section. 

Tight-binding calculations which consider 2s electrons 1731 and other local 
density approximation (LDA) calculations [87,90] show that the large curva- 
ture of small single-wall carbon nanotubes leads to a hybridization of u* and 7r* 
orbitals, resulting in a small energy gap (on the order of meV) for nanotubes 
with small diameters, except for armchair nanotubes.* The effect of this hy- 
bridization is large for nanotubes of diameter less than that of CSO but is not 
so great for nanotubes in the range (dt > 0.7 nm), the range that has been ob- 
served experimentally. The simple tight binding result for single-wall nanotubes 
which considers only x orbitals, that one third of the nanotubes are metallic 
and two thirds are semiconducting, has a symmetry basis which is discussed in 

*When we see unfolded energy bands of carbon nanotubes in the t w ~ ~ m e n s i o n ~  Brillouin 
zone of graphite, the degenerate point at the K point moves away from the A' point by 
taking account of the hybridi~tion effect. However, the degeneracy of the conduction and 
valence bands is not affected by the hybridization. This degeneracy comes from the symmetry 
that A and 3 atoms are equivalent to each other in the unit cell of graphite. Thus, since 
the hybridieation effect does not change the equivalence between the A and B atoms, this 
symmetry holds. In armchair nanotubes, since the shift of the k vector at the Fermi energy by 
the curvature effect is along the onedimensional Brillouin zone, we get a metallic condition 
for armchair nanotubes even when curvature effects are taken into account. 
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Sect. 4.1.1. There are several physical processes that tend to  modify these sim- 
ple considerations. A first principles LDA calculation [go] has determined that 
for very small-diameter nanotubes the curvature of the graphene sheet results 
in band shifts which move their band edges into the semiconducting energy gap, 
hence suggesting that all very small-diameter nanotubes should be metallic. A 
contrary conclusion could be reached if a Peierls distortion of the 1D conductor 
produced an energy gap at the Fermi level. 

LDA-based calculations have also been carried out for BN nanotubes, and 
the results suggest that BN nanotubes should be stable and should have a band 
gap of -5.5 eV, independent of diameter [90,91], and the band gap of crys- 
talline BN is of about the same magnitude throughout the Brillouin zone. Thus 
no quantum effects as are observed in carbon nanotubes are expected for B N  
nanotubes. However, a relatively large energy gap is expected, compared with 
carbon nanotubes, so that BN nanotubes on either the inside or outside of car- 
bon nanotubes can be used to provide insulation to carbon nanotubes. These 
calculations for the electronic structure of BN nanotubes stimulated experimen- 
tal  work, leading to  the successful synthesis of pure BN multi-wall nanotubes 
[92], with inner diameters of 1-3 nm and lengths up to 200 nm. The BN nan- 
otubes are produced in a carbon-free plasma discharge between a BN-packed 
tungsten rod and a cooled copper electrode. Electron energy loss spectroscopy 
studies on individual nanotubes confirmed the BN stoichiometry [92,93]. 



CHAPTER 5. 

Synthesis of Carbon Nanotubes 

This chapter describes synthesis methods for carbon nanotubes, 
with primary emphasis on single-wall nanotubes. Two relatively effi- 
cient methods to synthesize single-wall carbon nanotubes have been 
identified: laser vaporization and carbon arc synthesis, and both 
methods depend on the use of catalysts. Other techniques such as 
vapor growth are also reviewed. Also discussed in this chapter are 
the synthesis of multi-wall carbon nanotubes, the purification of car- 
bon nanotubes, the insertion of metals into the hollow core of carbon 
nanotubes, and the doping of carbon nanotubes with alkali metals. 

5.1 Single-Wall Nanotube Synthesis 

The first experimental identification in 1991 of carbon nanotubes was on multi- 
wall nanotubes[l9]. This report stimulated a large number of theoretical works 
on the structure and properties of the simpler and more fundamental single- 
wall carbon nanotubes, one atomic layer in thickness in the radial direction (see 
Fig. 3.1). The experimental discovery of single-wall carbon nanotubes in 1993[58, 
941 further stimulated work in the field, though, at first, only small quantities 
of single-wall nanotubes were available experimentally for systematic studies. 
These single-wall nanotubes were generally found along with very much larger 
concentrations of amorphous carbon, carbon nanoparticles and other carbon- 
based materials, and the single-wall constituents contained a distribution of 
diameters and chiral angles, as explained below. For these reasons most of the 
experimental studies continued to be done on multi-wall nanotubes. 

The recent discovery in 1996 of a much more efficient synthesis route, involv- 
ing laser vaporization of graphite [55] to  prepare arrays or “ropes” of ordered 
single-wall nanotubes, offered major new opportunities for quantitative experi- 
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mental studies of carbon nanotubes. By making the single-wall nanotubes avail- 
able to many research groups worldwide, progress was made for the first time 
in quantitative measurements of the physical properties of single-wall carbon 
nanotubes. 

The detailed mechanisms responsible for the growth of these nanotubes are 
not yet well understood. Therefore we can expect extensive research to  be 
carried out on the growth mechanism and on the development of new growth 
techniques that provide more controlled growth of nanotubes. Whereas multi- 
wall nanotubes require no catalyst for their growth, catalyst species are necessary 
for the growth of the single-wall nanotubes, and more than one catalytic species 
seem to be necessary to  grow ropes of single-wall nanotubes. 

Soon after the publication of the laser vaporization method for the ;synthe- 
sis of single-wall carbon nanotube ropes, another synthesis route was found for 
the synthesis of gram quantities of single-wall carbon nanotubes, using the car- 
bon arc method [52]. Because of the potential interest of carbon nanotubes for 
practical applications, there is also interest in developing continuous synthesis 
methods more appropriate for scale-up and low cost, and this may perhaps be 
accomplished by vapor growth methods discussed in Sect. 5.4. The remaining 
sections of the chapter briefly deal with the purification of nanotube samples 
(Sect. 5.51, nanotube opening, wetting, filling and alignment (Sect. 5.6), nan- 
otube doping (Sect. 5.7), temperature regimes for carbonization and graphitiza- 
tion (Sect. 5.8), and growth mechanics (Sect. 5.9). 

5.2 Laser Vaporization Synthesis Method 

An efficient route for the synthesis of bundles of single-wall carbon nanotubes 
with a narrow diameter distribution employs the laser vaporization of a graphite 
target. 

In the early reports of the laser synthesis technique [55], high yields with 
>70%-90% conversion of graphite to single-wall nanotubes were reported in 
the condensing vapor of the heated flow tube (operating at  12OOOC). A Co- 
Ni/graphite composite laser vaporization target was used, consisting of 1.2 atom 
'3% Co-Ni alloy with equal amounts of Co and Ni added to  the graphite (98.8 atom 
%) [55]. Two sequenced laser pulses were used to evaporate a target containing 
carbon mixed with a small amount of transition metal from the target (see 
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Fig. 5.1: Single-walled nanotubes produced in a quartz tube 
heated to 1200°C by the laser vaporization method, using a 
graphite target and a cooled collector for nanotubes [95]. 

Fig. 5.1). Flowing argon gas sweeps the entrained nanotubes from the high 
temperature zone to the water-cooled Cu collector downstream, just outside the 
furnace [55 961. 

The material thus produced appears in a scanning electron microscope (SEM) 
image as a mat of “ropes” 10-20 nm in diameter and up to 100 pm or more in 
length [see Fig. 5.2(a)]. Under transmission electron microscope (TEM) exam- 
ination [see Fig. 5.2(b)], each rope is found to consist primarily of a bundle of 
single-wall carbon nanotubes aligned along a common axis. X-ray diffraction 
(which views many ropes at once) and transmission electron microscopy experi- 
ments (which view a single rope) show I551 that the diameters of the single-wall 
nanotubes have a strongly peaked distribution at 1.38ir0.02 nm, very close to  
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Fig. 5.2: (a) Ropes of single- 
wall carbon nanotubes observed 
by scanning electron microscopy 
(SEM). The ropes are 10-20 nm 
thick and -100 pm long. (b) 
At higher magnification, the 
TEM image shows that each 
rope contains a bundle of single- 
wall nanotubes with diameters of 
-1.4 nm, arranged in a triangu- 
lar lattice (with lattice constant 
1.7 nm). Such an image is seen 
when the rope bends through the 
image plane of the microscope 
[55I * 

the diameter of an ideal (10,lO) nanotube which is defined in Eq. 3.2. A de- 
tailed transmission electron microscopy study of carbon nanotubes prepared by 
the laser vaporization method [55] has shown that the carbon nanotube chiral 
indices (n,rn) are mainly (10,lO) (-44%), (9,9) (-20%), and some (12,8) [97], 
while others, presumably using different growth conditions, have reported chiral 
angles in the range A0 = 7.3O [56,98]. Thus for nanotube diameters ranging 
from that for the (8,8) to (11 , l l )  armchair nanotubes, there are only 17 possible 
nanotubes [97]. The single-wall nanotubes are held together by weak van der 
Waals inter-nanotube bonds to form a two-dimensional triangular lattice with a 
lattice constant of 1.7 nm, and an inter-tube separation of 0.315 nm at closest 
approach within a rope [55]. By varying the growth temperature, the catalyst 
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composition and other growth parameters, the average nanotube diameter and 
diameter distribution can be varied [99]. It is found that the spread in nanotube 
diameters within a single rope is smaller than between ropes grown at the same 
time and under the same nominal growth conditions. 

5.3 Arc Method of Synthesizing Carbon Nanotubes 

The carbon arc provides a simple and traditional tool for generating the high 
temperatures needed for the vaporization of carbon atoms into a plasma (>3O0O0C) 
[loo-1021. This technique has been used for the synthesis of single-wall and 
multi-wall carbon nanotubes, and ropes of single-wall nanotubes [52]. 

Typical conditions for operating a carbon arc for the synthesis of carbon 
nanotubes include the use of carbon rod electrodes of 5-20 mm diameter sepa- 
rated by -1 mm with a voltage of 20-25 V across the electrodes and a dc electric 
current of 50-120 A flowing between the electrodes. The arc is typically oper- 
ated in -500 torr He with a flow rate of 5-15ml/s for cooling purposes. As the 
carbon nanotubes form, the length of the positive electrode (anode) decreases 
(see Fig. 5.3). 

Once the arc is in operation, a carbon deposit forms on the negative elec- 
trode. For the multi-wall carbon nanotube synthesis, no catalyst need be used 
and the nanotubes are found in bundles in the inner region of the cathode de- 
posit where the temperature is a maximum (2500-3000°C). The nanotube bun- 
dles are roughly aligned in the direction of the electric current flow (see Fig. 5.3) 
[ lo l l  1041. Surrounding the nanotubes is a hard grey shell consisting of nanopar- 
ticles, fullerenes and amorphous carbon [105-1071.' Adequate cooling of the 
growth chamber is necessary to maximize the nanotube yield in the arc growth 
process. The growth of carbon nanotubes appears to be unfavorable under the 
conditions that are optimized to  synthesize fullerene molecules. 

Catalysts used to  prepare isolated single-wall carbon nanotubes include tran- 
sition metals such as Co, Ni, Fe and rare earths such as Y and Gd, while mixed 
catalysts such as Fe/Ni, Co/Ni and Co/Pt have been used to synthesize ropes of 
single-wall nanotubes. Although the details of the diameter (and chirality) dis- 
tribution of the single-wall carbon nanotubes depend on the synthesis conditions, 

'During arc synthesis fullerenes are predominantly found in the soot produced by the arc and 
removed by the helium gas flow, while the nanotubes are contained in a deposit on the cathode. 
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Fig. 5.3: Cross-sectional view of a carbon arc generator that can 
be used to  synthesize carbon nanotubes [103]. 

temperature of the arc and the catalyst that is used, the average nanotube diam- 
eter is usually small (51.5 nm) and the diameter distribution is usually narrow, 
as illustrated in Fig. 5.4. It is interesting to  note that the minimum nanotube 
diameter that has been observed for single-wall carbon nanotubes is -0.7 nm, 
corresponding to the diameter of c60, the smallest fullerene to obey the isolated 
pentagon rule [108]. 

An efficient method for the synthesis of gram quantities of bundles of single- 
wall carbon nanotubes using the carbon arc technique has been achieved [52]. 
The greatest mass of single-wall carbon nanotubes is found in a collarette around 
the cathode, with ~ 2 0 %  of the consumed carbon being converted into single-wall 
carbon nanotubes in the collarette. 

Since the length of a carbon nanotube is typically on the order of 1 pm, and 
the growth rate of a 1 pm carbon nanotube is estimated to be less than 0.1 sec- 
ond, the time for the growth of a single circumferential carbon ring is 
second. This time scale is much shorter than the time needed for the direct obser- 
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Fig. 5.4: Diameter distribu- 
tion of isolated single-wall car- 
bon nanotubes prepared by the 

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 arc method using a Fe catalyst - 
[581. Nanolube diameters (nm) 

vation of the carbon arc electrodes by transmission electron microscopy (TEM) 
but is much longer than the phonon frequency 1015 Hz. Thus the growth of car- 
bon nanotubes occurs under stable conditions but over a limited range of He (or 
Ar) pressure, electric current and arc voltage. The iron or cobalt catalyst in the 
arc process forms both single-wall carbon nanotubes and nanometer-size carbide 
particles surrounded by graphene layers, as well as metal clusters encapsulated 
within graphene layers [58,94]. Thus purification is necessary to separate out a 
pure single-wall nanotube sample. 

When certain transition metals (Fe, Co, Ni, Pb, Mo, W, Cu, Au, ...), rare- 
earth metals (La-Nd, Gd-Tm, Lu), or their oxides are packed into a hole in the 
central region of the positive electrode, carbon nano-capsules are often obtained 
in the deposit on the negative electrode [109].t Carbon nano-capsules consist of 
multi-wall polyhedra of graphene sheets with interlayer separations of 0.34 nm 
inside which are contained metals (Fe, Co, Nil Cu and Au) or metal carbides 
M,C (M = transition metal such as LazC (La = rare earth metal). 

5.4 Vapor Growth and Other Synthesis Methods 

Fe, Co, and Ni particles are known to be catalysts for vapor grown carbon fiber 
synthesis [9,17,44], in which hydrocarbons (e.g., CH4, C6H6) and Hz gases are 
reacted in the presence of Fe, Co, or Ni particles in a reaction tube at  llOO°C. 

tIn the case of Fe, Go, and Ni, catalysts, single-wall nanotubes are observed at the surface of 
the deposit and nano-capsules are observed in other regions. 



80 CHAPTER 5. SYNTHESIS OF CARBON NANOTUBES 

Fig. 5.5: Carbon nanotubes ap- 
pear after breakage of the vapor- 
grown carbon fiber. (a) An SEM 
image of a broken vapor grown 
carbon fiber, cut in liquid ni- 
trogen and showing (white ar- 
row) a carbon nanotube emerg- 
ing from the center of the fiber. 
(b) HRTEM image showing the 
broken part of a very thin vapor 
grown carbon fiber. The nan- 
otube is clearly observed, indi- 
cating that thin vapor grown car- 
bon fibers grow from a nanotube 
core by thickening [59]. 

The innermost tubes of vapor grown carbon fibers are considered to be carbon 
nanotubes, as shown in Fig. 5.5. Growth of carbon nanotubes from the vapor 
phase has also been demonstrated [59]. 

5.4.1 Vapor Growth Method 

The synthesis of carbon nanotubes from the vapor phase utilizes equipment sim- 
ilar to that used for the preparation of vapor-grown carbon fibers [17,44], with 
the furnace temperature held at llOO°C and using Fe catalyst particles, but 
using a low benzene gas pressure [59,110]. A variety of other hydrocarbons, 
catalysts and catalyst supports have been used successfully by various groups 
worldwide to synthesize carbon nanotubes. One big advantage of the vapor 
growth approach is that carbon nanotubes can be made continuously and thus 
if the optimum conditions for growing pure carbon nanotubes could be found, 
this could be a very good way to synthesize large quantihes of carbon nan- 
otubes under relatively controlled conditions. Thus the vapor growth method 
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Fig. 5.6: Two kinds of vapor-grown carbon fibers (VGCF) ob- 
served in an as-grown sample: (a) a thick hollow fiber formed by 
a catalytic metal particle, (b) an exposed nanotube and a nan- 
otube that had been pyrolytically coated, thereby increasing the 
nanotube diameter. 

has some advantage for scale-up and commercial production. Many presently 
identified applications of carbon nanotubes can be met with vapor grown carbon 
nanotubes. 

Carbon nanotubes can grow at the same time as conventional vapor-grown 
carbon fibers, as is seen in Fig. 5.6. Most of these nanotubes are multi-wall, 
but some single-wall nanotubes can also be present. 

Vapor-grown carbon nanotubes have been studied by high-resolution TEM 
in both their as-grown form and after heat treatment. The as-grown nanotubes 
generally show poor crystallinity. The crystallinity, however, is much improved 
after heat treatment to 2500-3000°C in argon, as seen in high-resolution TEM 
studies [110]. Fracture of a thin vapor grown carbon fiber shows the presence of 
a nanotube at the fiber core, as shown in Fig. 5.5. 

Referring to the bamboo structure seen on the inside of vapor grown carbon 
nanotubes (see Fig. 5.7), Endo [110] argues that the capping of an inner layer 
terminates its growth, so that the exposed cap layer provides growth along the 
length and the epitaxial layers follow this growth while at the same time adding 
to the nanotube diameter. The frequently-observed bending of the growth axis 
of the nanotubes is related to the introduction of a heptagonal defect at  the 
bend location. 
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Fig. 5.7: (a) Transmission electron micrograph of a cone contain- 
ing only single conical shells. The nearly periodic structures of 
the conical shells appear inside the cone tips [see (a)], which are 
attributed to overshooting growth on the basis of the open tube 
growth model [107]. (b) Commonly observed nanotube structure 
for the cap region of vapor-grown carbon nanotubes heat treated 
at  28OOOC in Ar. Here a number of bamboo-like structures are 
observed in the core region near the cap [110]. 

5.4.2 Other Synthesis Methods 

Another method of nanotube synthesis relates to the use of carbon ion bom- 
bardment to make carbon whiskers [lll, 1121. Carbon whiskers are known as a 
graphite material with high crystallinity [4] whose diameter is -0.1-1 pm and 
several mm in length. In the ion bombardment growth method, carbon is va- 
porized in vacuum through ion or electron irradiation [113], and the resulting 
deposit containing carbon nanotubes, along with other structures is collected on 
a cold surface. Little is known about the optimization of the ion bombardment 
technique in relation to the preparation of nanotubes. 

The use of solar energy for the synthesis of single-wall carbon nanotubes has 
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Fig. 5.8: (a) Transmission electron micrograph of a web of single- 
shell nanotubes formed in the catalytic carbon arc method. (b) 
TEM picture of gas phase purified nanotubes [116]. 

been reported [114,115], using an experimental chamber where solar energy is 
focussed on the crucible to  achieve a temperature of 3000 K on a clear day. A 
mixture of Ni and Y catalysts is used in an argon atmosphere (pressure of -450 
mbar). Further research is needed to optimize and control the synthesis process, 
increase the yield of ropes of single-wall nanotubes, minimize the concentration 
of carbon nanoparticles and amorphous carbon produced, and to  characterize 
the carbon nanotubes that are produced. 

5.5 Purification 

In many of the synthesis methods that have been reported, carbon nanotubes 
are found along with other materials, such as amorphous carbon and carbon 
nanoparticles (see Fig. 5.8). Purification generally refers to the isolation of 
carbon nanotubes from other entities. The separation of nanotubes according 
to diameter (and chirality) is not considered under the topic of purification, and 
is not thought to be practical at  this time. 

Three basic methods have been used with limited success for the purification 
of the nanotubes: gas phase, liquid phase, and intercalation methods [116]. The 
classical chemical techniques for purification (such as filtering, chromatography, 
and centrifugation) have been tried, but not found to be effective in removing the 
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carbon nanoparticles, amorphous carbon and other unwanted species shown in 
Fig. 5.8 [116]. Heating preferentially decreases the amount of disordered carbon 
relative to carbon nanotubes. Heating could thus be useful for purification, 
except that it results in an increase in nanotube diameter due to  the accretion 
of epitaxial carbon layers from the carbon in the vapor phase resulting from 
heating. 

The gas phase method removes nanoparticles and amorphous carbon in the 
presence of nanotubes by an oxidation or oxygen-burning process [104,117,118]. 
Much slower layer-by-layer removal of the cylindrical layers of multi-wall nan- 
otubes occurs because of the greater stability of a perfect graphene layer to oxy- 
gen than disordered or amorphous carbon or material with pentagonal defects 
[117,118]. This method was in fact first used to synthesize a single-wall carbon 
nanotube. The oxidation reaction for carbon nanotubes is thermally activated 
with an energy barrier of 225 kJ/mol in air [118]. The gas phase purification 
process also tends to burn off many of the nanotubes. The carbon nanotubes 
obtained by gas phase purification are generally multi-wall nanotubes with di- 
ameters in the range 20-2OOw and 10 nm-lpm in length [104], since the smaller 
diameter tubes tend to be oxidized with the nanoparticles. 

Liquid phase removal of nanoparticles and other unwanted carbons has been 
carried out with some success using a potassium permanganate KMn04 treat- 
ment method which tends to  give higher yields than the gas phase method, 
but results in nanotubes of shorter length [116,119]. Finally, the intercalation 
of unpurified nanotube samples with CuC12-KCl results in intercalation of the 
nanoparticles and other carbon species, but not the nanotubes which have closed 
cage structures. Thus subsequent chemical removal of the intercalated species 
can be carried out [120]. 

A method for the purification of samples containing single-wall nanotube 
ropes in the presence of carbon nanoparticles, fullerenes and other contaminants 
has also been reported [83,121-1231. 

5.6 Nanotube Opening, Wetting, Filling and Alignment 

5.6.1 Nanotube Opening 

Experimental studies show that the cap of a nanotube is more reactive than 
the cylindrical part because of the presence of pentagons and hence the greater 
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curvature and reactivity of the caps. Thus in a vapor phase oxidation process, 
the cap region is burned off first, thereby providing one method for tube opening. 
The presence of the pentagons in the cap region also promote tube opening by 
various chemical reactions, such as with HNOs [116,124]. Tube opening can 
occur at quite low temperatures (-4OO0C), using, for example, a lead metal 
catalyst in air [125]. The material that is sucked up the nanotube, however, is 
an oxide of lead [104]. 

5.6.2 Nanotube Wetting 

A number of liquids have been found to wet the hollow core of carbon nanotubes 
and others do not show wetting behavior [126]. On the basis of classical theories 
for wetting, the hollow core of the nanotube will be wet by a fluid if 

where 0 is the contact angle of a liquid on a surface, ysv,  ysl and Tiv are, 
respectively, the solid-vapor, solid-liquid, and and liquid-vapor interfacial surface 
tensions. Wetting occurs when 0 > ~ / 2  or ysv > ysr. Examples of liquids which 
wet carbon nanotubes are HNO3, S, Cs, Rb, Se, water, various organic solvents 
and various oxides such as Pb  and BiaO:! [124,126]. 

5.6.3 Nanotube Filling 

Three methods have been used to fill the hollow core of carbon nanotubes: 
capillarity, pressure, and solvent carrier methods [126]. The capillarity method 
exploits removal of the cap (or the opening of the tube) followed by wetting, 
where the contact angle 0 exceeds n/2, as discussed in Sect. 5.6.2. In many 
cases only partial filling of a nanotube compartment has been achieved, though 
in some cases whole compartments have been filled [124], with some reports of 
long continuous nano-wires [127,128]. In this work sulfur was shown to  catalyze 
nanotube filling with many metal species. If a liquid does not wet the nanotube, 
then pressures exceeding 2y/r are needed for tube filling, where r is the inner 
radius of the nanotube. Another method that has been successful for introducing 
high surface tension materials such as Co, Ni ,  Fe is the use of a solution using 
H N 0 3  that performs both wetting and tube opening, and at  the same time 
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contains a solute which is to be deposited within the nanotube. Subsequent 
chemistry is used to remove the carrier solvent [129]. 

5.6.4 Alignment of Nanotubes 

For a variety of experiments and applications it is desirable to  align the carbon 
nanotubes parallel to each other. If a sample contains an assembly of randomly 
oriented nanotubes, alignment can be achieved by rubbing in one direction or 
by cutting a material such as paraffin which contains embedded nanotubes. 
Nevertheless, the most common source for the alignment of nanotubes is by a 
self-alignment growth process. Self-aligned bundles of multi-wall and single-wall 
carbon nanotubes are found on the copper collector in the laser vaporization 
method, on the cathode deposit, and in the collarette for the case of growth by 
the arc method. 

5.7 Nanotube Doping, Intercalation, and BN/C Composites 

The substitutional doping of carbon nanotubes with B and N dopants to  make 
the nanotubes p-type and n-type has been discussed [130]. Although some exper- 
imental work has been done on the substitutional doping of carbon nanotubes 
with B and N,  most of the experimental activity on the doping of nanotubes 
has been with the alkali metals [131,132], which do not act as substitutional 
dopants, but are predicted to lead to enhanced metallic conductivity [133]. Al- 
kali metals readily intercalate into graphite as sheets of alkali metal which are 
located between graphene sheets in the crystal lattice. These alkali metal lay- 
ers donate electrons to the graphite layers, thus greatly increasing the electrical 
conductivity, while at  the same time greatly expanding the sample size along the 
direction normal to the lattice planes. Because of the closed cylindrical struc- 
ture of carbon nanotubes, the relatively large alkali metal ions cannot find easy 
entry into perfect nanotubes, nor is there enough space for these ions between 
adjacent shells of a multi-wall nanotube. Therefore the alkali metal ions enter 
into the carbon nanotubes near structural defects. Once the ions penetrate the 
outer surface of the nanotube, their large size rips open the nanotube wall. This 
effect can be seen by microscopic probe studies on carbon nanotubes that have 
been attacked by alkali metals [131,132]. 
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For the intercalation of alkali metals and halogens into ropes of single wall 
carbon nanotubes, a two-zone furnace was utilized similar to that previously used 
for similar intercalations into crystalline graphite 11341, Typical temperatures 
that were used in the twezone furnace for the alkali metals were -120OC for 
the nanotubes were -160OC. The large uptake of the alkali metals Rb and K is 
consistent with a decoration of the carbon atoms on the nanotube surface by a 
(2 x 2) superlattice of alkali metal species, as well as uptake of alkali metal in 
the interstitial spaces between the nanotubes in the triangular lattice [135,136]. 
The A ,  vibrational mode at 1593 cm-' in the undoped nanotubes are down 
shifted by Rb and K intercalation, consistent with electrons donated by the 
alkali metals to  the nanotubes, while the Brz intercalation leads to an upshifted 
mode frequency, consistent with the transfer to electrons from the nanotubes to 
the halogen [135]. Transport measurements confirm that the intercalant uptake 
by the nanotube results in a dramatic increase in the electrical conductivity both 
for the case of Br:! and K [136]. 

A composite multi-wall nanotube 12 nm in diameter, with 3 carbon shells 
at the interior followed by 6 BN shells in the central region, and 5 carbon shells 
on the outside, has been synthesized by the arc discharge method using an HfBz 
electrode and a carbon electrode in a Nz atmosphere [137]. The structure and 
composition was obtained by a scanning EELS probe across the diameter of the 
nanotube. BN nanotubes have also been prepared by packing a tungsten rod 
with BN [87]. 

5.8 Temperature Regimes for Carbonization and Graphitization 

Because of the importance of temperature as a growth parameter for carbon 
nanotubes, we summarize in the following some of the important temperature 
regimes for carbon materials. In addition to the melting (-4450 K)  and va- 
porization (-4700 K) temperatures for carbon, two other temperatures are of 
importance: the carbonization temperature (-650-750OC) and the graphitiza- 
tion temperature (-2300 K).  The carbonization temperature is the temperature 
at which the volatile species are driven off from precursors for carbon materi- 
als, leaving behind the basic structural units on the order 1 nm in thickness, as 
shown in Fig. 5.9. The graphitization temperature (-23OO0C) is the tempera- 
ture at which interplanar site correlation is established and the ABAB stacking 
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Fig. 5.9: Various steps of the 
graphitization process as a func- 
tion of heat treatment tempera- 
ture THT [138]. 

arrangement of the 3D graphite structure is formed. The melting and vaporiza- 
tion temperatures for carbon are both extremal values for the condensed phases 
of matter, with only a small stability region for the liquid phase of carbon. 

Below the carbonization temperature, carbon cannot change its sp2 covalent 
bonding configuration. Thus if the solid state is formed by a rapid quenching 
process to  amorphous carbon, the state of amorphous carbon is metastable below 
the carbonization temperature. If the solid state is single crystal graphite, this 
phase is always the most stable state. 

Between the carbonization and graphitization temperatures, carbon can 
transform from an amorphous carbon to a stable graphite planar structure at 
ambient pressure by cutting and reconnecting sp2 covalent bonds. The car- 
bonization temperature is closely related to the desorption temperature of oxy- 
gen or hydrogen that is chemically bonded at  the edge of graphitic nanocrys- 
tals. Oxygen or hydrogen atoms are removed above about 7OOOC in the form 
of HzO, CO, CO:!, and CH, molecules by cutting carbon-carbon bonds. Chem- 
ical reactions also occur in the presence of 0 2 ,  H 2 0 ,  CO2 at temperatures in 
the 80O0C-12OO0C range where the oxidation process occurs. Dangling carbon 
bonds, which are related to C-H, C-0, and C-N, etc. bonds, are broken in the 
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carbonization process, and C-C bonds are reformed at somewhat higher tem- 
peratures. The purification temperature for carbon nanotubes corresponds to  
the temperature for CO and COz formation. 

The various steps leading to graphitization have been studied by heating 
amorphous carbons to various temperature THT (see Fig. 5.9) and then ob- 
serving the TEM micrographs [139,140]. For THT 5 800°C, the basic structural 
units, consisting of a short length (% 10k) of about three parallel layers, start to  
pile up and form distorted columnar structures, as impurity atoms are released, 
mostly in gaseous form. For 800 5 THT 5 1500°C, the columnar structures 
increase in length with a lesser degree of misorientation of the basic structural 
units as shown in Fig. 5.9. In this step, individual misoriented basic structural 
units become aligned and the crystallite size along the c-axis L,  increases grad- 
ually. For 1500 < THT < 1900°C, the columnar structure disappears as wavy 
ribbons or wrinkled layers are formed by hooking the adjacent columns together, 
and in this range of THT, both the in-plane and c-axis crystallite sizes La and 
L,  increase rapidly. By THT - 17OO0C, the wavy planar structure begins to  
disappear and a turbostratic planar stacking arrangement starts to  appear, with 
La values higher than 200 A at THT - 20OO0C. By 21OO0C, most of the in- 
plane structural defects have been eliminated so that a rapid increase in La can 
occur due to  the disappearance of tilt and twist boundaries. As the graphitic 
structure develops further with increasing THT, the interlayer distance decreases. 
At higher T'T, interlayer site correlation between layers starts to develop. Al- 
though the graphitization temperature is usually given as 23OO0C, much higher 
THT values (2800-3000°C) are generally used to obtain 3D graphite crystals by 
the heat treatment approach, 

5.9 Growth Mechanisms 

The growth mechanism for cylindrical fullerene nanotubes is especially interest- 
ing and has been hotly debated. One school of thought [141,142] assumes that 
the nanotubes are always capped and that the growth mechanism involves a Cz 
absorption process that is assisted by the pentagonal defects on the caps. The 
second school [107,108,143] assumes that the nanotubes are open during the 
growth process and that carbon atoms are added at  the open ends of the nan- 
otubes. Since the experimental conditions for forming carbon nanotubes vary 
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Fig. 5.10: Cz addition to  a cap of (6,5) nanotube. (a) Numbers 
from 1 to 6 indicate the position of the six pentagons on the 
hemispherical cap. If we add one Cz molecule, indicated by open 
circles between 2 and 3,  and if the new bonds denoted by dotted 
lines form, we get a new hexagon denoted in (b) by dark shading. 
(b) Through rotation by 7 2 O ,  it is seen that the shape of the cap 
is the same for (a) and (b).[144] 

significantly according to growth method, more than one mechanism may be 
operative in producing carbon nanotube growth. 

The first school of thought focuses on nanotube growth at relatively low 
temperatures (- llOO°C) and assumes that growth is nucleated at active sites 
of a vapor-grown carbon fiber of about 1000 A diameter. Although the parent 
vapor-grown carbon fiber is itself nucleated by a catalytic transition metal parti- 
cle [44] , the growth of the carbon nanotube is thought to be associated with the 
absorption of a Cz dimer near a pentagon in the cap of the nanotube. Referring 
to  the basic model for Cz absorption in Figs. 5.10 and 5.11, we see that sequen- 
tial addition of Cz dimers results in the addition of a row of hexagons to  the 
carbon nanotube. To apply the Cz absorption mechanism, it is usually necessary 
to use the Stone-Wales mechanism to bring the pentagons into their canonical 
positions, as necessary for the execution of each C2 absorption, in accordance 
with Fig. 5.10. In Fig. 5.10(a) we show a hemisphere cap of (6,5) nanotube 
which have six pentagons denoted by numbers from 1 to 6. When we introduce 
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C2 molecule between the pentagons 2 and 3, we get a new hexagon denoted by 
dark shading in Fig. 5.10(b). In Fig. 5.10(a) we consider new chemical bonds 
denoted by dotted lines. When we rotate Fig. 5.10(b) by 72', we see that the 
shape of the cap is the same for Fig. 5.10(a) and (b).[110,144] Repeating this 
process five times, we return to  Fig. 5.10(a) but with the addition of one more 
ring of carbon hexagons around the nanotube. 

For the growth of carbon nanotubes by the arc discharge method, it has 
been proposed that the nanotubes grow at their open ends[143,145]. If the 
nanotube has chirality (see Fig. 5-11), it is easily seen that the absorption of a 
single C2 dimer at the active dangling bond edge site will add one hexagon to the 
open end. Thus the sequential addition of C2 dimers will result in continuous 
growth of the chiral nanotube. If carbon atoms should be added out of sequence, 
then addition of a C2 dimer would result in the addition of a pentagon, which 
could lead to capping of the nanotube, while the addition of a C3 trimer out of 
sequence merely adds a hexagon. In the case of an armchair edge, here again 
a single C2 dimer will add a hexagon. Multiple additions of Cz dimers lead to 
multiple additions of hexagons to  the armchair edge. For the case of a zigzag 
edge, initiation of growth requires one trimer C3 (see Fig. 5.11), which then 
provides the necessary edge site to complete one row of growth for the nanotube 
through the addition of C2 dimers, except for the last hexagon in the row, which 
requires only a C1 monomer. If, however, a C2 dimer is initially bonded at  a 
zigzag edge, it will form a pentagon. Because of the curvature that is introduced 
by the pentagon, the open end of the nanotube will likely form a cap, and growth 
of the nanotube by the open end process will be terminated. 

A schematic diagram for the open tube growth method is shown in Fig. 5.12 
[107]. While the tubes grow along the length, they also grow in diameter by 
an epitaxial growth process, as shown in Fig. 5.12. The large aspect ratio of the 
nanotubes implies that growth along the tube axis is more likely than growth 
along the nanotube diameter. Referring to Fig. 5.7, Iijima argues that the inner 
tubes are capped first with the capping providing a method for relieving strain 
in the cap region. The introduction of pentagons leads to  positive curvature, 
while capping with heptagons lead to changes in nanotube size [see Fig. 5.7(b)] 
and orientation. The introduction of heptagon-pentagon pairs can produce a 
variety of nanotube shapes. 

At present the growth model for carbon nanotubes remains incomplete with 
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Fig. 5.11: Proposed growth mechanism of carbon nanotubes at 
an open end by the absorption of CZ (dimers) and C3 (trimers). 
Absorption of a C3 trimer at the open end of a zigzag carbon 
nanotube and subsequent Cz dimer absorption. 

regard to the role of temperature and helium gas. Since the vapor phase growth 
occurs at  only llOO°C, any dangling bonds that might participate in the open 
nanotube growth mechanism would be unstable, so that the closed tube approach 
would be favored. In this lower temperature regime, the growth of the nanotube 
core and the thickening process occur separately. In contrast, for the arc dis- 
charge synthesis method, the temperature where nanotube growth occurs has 
been estimated to be about 340OOC [146]. At these high temperatures, nanotube 
growth and the graphitization of the thickening deposits occur simultaneously, 
so that all the coaxial nanotubes grow at once at  these elevated temperatures 
[141], and the open nanotube growth may be favored. 

One interesting growth feature, reported by several groups [106,107,147], is 
the containment of a small-diameter carbon nanotube inside a larger-diameter 
nanotube, where the inner nanotube has no access to a carbon source. Such a 
feature seems to require growth by an open tube mechanism. 
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Fig. 5.12: Schematic diagram for open tube growth of nanotubes 
from a carbon supply. The figure shows the addition of carbon 
atoms to  the open ends, the capping of the longest open end, and 
the initiation of new nanotubes. (a) Some shells are terminated at 
the positions indicated by arrowheads as illustrated in the circle. 
(b) Terminated shells carry left-handed or right-handed kink sites, 
owing to  the helical tube structure. (c) Similar termination of the 
shells near the top of the tip, forming steps, one atom in height, 
as indicated by the arrowheads [107]. 





CHAPTER 6. 

Landau Energy Bands of Carbon Nanotubes 

Itinerant electrons in a magnetic field give rise to Landau quan- 
tization of the energy bands. In this chapter we show how to cal- 
culate the Landau energy bands of carbon nanotubes using the tight- 
binding method. Quantum confinement of electrons in one-dimensional 
carbon nanotubes and confinement through application of a magnetic 
field show interesting phenomena as a function of the chirality of the 
carbon nanotubes and of the direction and strength of the magnetic 
field. 

6.1 Free Electron in a Magnetic Field 

In a uniform static magnetic field,* B,  an electron with velocity v experiences a 
Lorentz force eu x B, which is perpendicular to both B and v. By solving the 
equations of motion, we obtain the so-called cyclotron motion of the electron in 
a magnetic field with a cyclotron frequency 

eB 
we = - 

m 

and a cyclotron radius of r ,  = v/w,. 
In quantum mechanics, the motion of an electron is described by the trans- 

formation p t o  p - eA in the Hamiltonian,t where A is the vector potential 
(V x A = B ) .  A gauge for A,  such as the Landau gauge, is used to relate A 

*We here simply call the magnetic field, B = p o H ,  where po is the permeability of free space 
and H is the magnetic field in free space. Strictly B should be called the density of magnetic 
flux on a unit surface. 
tWe use MKS (SI) units here. In CGS units, we simply replace e by e/c, so that the trans- 
formation of p - e A  becomes p - eA/c  in CGS units. This is, however, not the case for the 
Hall coefficient, R H ,  for which SI units give RH = -l/ne, but RH = -l/nec, in CGS units. 

95 
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explicitly to the magnetic field B = ( O , O ,  B ) ,  

A = (O,Bx,O). (6.2) 

The Hamiltonian for a free electron (V = 0 )  in the Landau gauge becomes 

Since the Hamiltonian does not depend on y and z ,  (6’H/ay = 0,  and a’H/dz = 
0), we can assume that the wavefunction, @(.(z,y,~), has the form 

qx, 9 ,  z )  = ei(hvY+k.Z) (D(xc) 7 (6.4) 

in which ~ ( x )  satisfies the harmonic oscillator Hamiltonian, 

and X = hlc,/eB. When we use the solution to Schrodinger’s equation for a 
one-dimensional harmonic oscillator Hamiltonian, the energy levels EN are given 

2 2  
by 

E ~ ( k z )  = huc(N + 5) + h k z ,  ( N = 0 , 1 , 2  ,... ). (6.6) 

Thus the two-dimensional ( x ,  y) motion of the free electron is quantized by the 
Landau index N ,  and the three-dimensional energy bands in zero magnetic field 
are divided into one-dimensional energy bands IabeIed by N as in Eq. (6.6). 
Further, the Hamiltonian and the operator X commute, so that the quantum 
number associated with X is a good quantum num.ber* describing the wavefunc- 
tion and its degeneracy. The corresponding wave function p(x) in Eq. (6.4) for 
the Nth magnetic energy subband and harmonic oscillator center X is, 

tFor a crystalline solid, the center of the harmonic motion, X = A k y / e B ,  is not a constant 
but is an operator which does not commute with the positmion y. Thus a general uncertainty 
relation applies to the two operators X and Y for the centers of the harmonic motion in a 
magnetic field, [ X ,  Y] = iA/eB,  and this commutator relation does not depend on the gauge. 



6.1. FREE ELECTRON IN A MAGNETIC FIELD 97 

where H N  is the Nth  Hermite polynomials defined here as 

and e is the Landau radius defined by 

The Landau radius represents the size of the wavefunction in a magnetic field and 
depends on the strength of the magnetic field. When B = lT, then e = 25.66 nm. 
The Landau radius is thus a quantum variable which is clearly different from 
the classical, cyclotron radius of rc = v/w,. 

Using a periodic boundary condition in the direction of y with period, L y a ,  
and a lattice constant a, the wave number ky is quantized as k ,  = 2 a M , / L y a ,  
(My = 0 , 1 , 2 , .  . f  , L ,  - 1 )  and thus X = hky/eB = 2 d 2 M Y / L y a  is quantized, 
too. We then have L , L , a 2 / 2 d 2  degenerate statesf in the area L,a x L,a. Thus 
when we consider a two-dimensional electron system, we have one degenerate 
state (Landau level) per area 2a12 for a given Landau index, N .  

When we consider Landau quantization of the a-energy bands, we should 
consider the periodicity of the unit cell due to the crystal potential. Thus, the 
ratio of 27rL2 to the area of the unit cell is an important factor for describing the 
energy bands in a magnetic field. The overall picture for the energy bands in 
a magnetic field can be obtained using the tight binding approximation, which 
we will discuss in the following section. Even in this case it is found that most 
energy bands show Landau quantization in a uniform magnetic field. However, 
in the case of carbon nanotubes, since the magnetic field that is applied to  the 
curved surface of a carbon nanotube is not uniform, and since the net magnetic 
flux penetrating the surface is always zero, a special situation occurs, in which 
the energy bands do not show explicit Landau levels, but they do instead have 
energy dispersion for all values of the magnetic field. The energy band width in 
this case shows new oscillations with a period that is scaled by the cross section 

§Different definitions of the Hermite polynomials may give rise to confusion. The H n ( t )  
used here has the explicit expressions for n = 0,1 ,2  given by Ho(E) = 1, Hi(() = 2<, and 
H z ( ( )  = 4t2 - 2.  
VOrthogonality between two harmonic oscillator wavefunctions comes from the orthogonality 
of the plane waves in the y direction. 
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of the unit cell of the nanotube, which in turn is specified by the symmetry of 
the nanotube (see Sect. 3.3). 

An interesting feature of the electronic structure of carbon nanotubes in 
a magnetic field is the dependence of the solid state properties on the chiral 
vector of the nanotube. As is discussed in Sect. 4.1, the electronic structure is 
especially unusual in the sense that carbon nanotubes can be either metallic or 
semiconducting, depending only on the symmetry of the tube, as specified by its 
chiral vector, C?h, in Fig. 3.2 [69,71,73,75,148,149]. The magnetic response of 
the electronic structure for such one-dimensional materials, which have a two- 
dimensional surface, is especially interesting, and is relevant to recent magneto- 
resistance [150] and magnetic susceptibility [151,152] experiments on carbon 
n an0 t u b es . 

6.2 Tight Binding Approximation in a Static Magnetic Field 

Here we explain a formalism for the tight binding approximation in a static 
magnetic field. A simple result of this formalism shows that in describing the 
magnetic field dependence of the wave function, we need only consider a phase 
factor, depending on the vector potential. This phase factor corresponds to  the 
continuous modulation of the periodic boundary condition for the wave function 
in a periodic system. Because of the breakdown of the Bloch condition in the 
wavefunction, the size of the unit cell changes as a function of magnetic field. 

Within the tight binding scheme, the Bloch functions in a static magnetic 
field can be expressed as 

(6.10) 

where R is a lattice vector and GR is the phase factor associated with the 
magnetic field and is expressed by [153] 

1 
GR = Ji A(()  . d( = J (T - R)  . A(R + X [ T  - R])dX,  (6.11) 

where it is noted that GR is a function of T and the integration in Eq. (6.11) is 
taken along the line from R to T as shown in Fig. 6.1. When the Hamiltonian 
3t for an electron in a crystal potential V ( T )  and in a magnetic field, 

0 

3-1 = - 1 ( p  - eA)2 + v, 
2m (6.12) 
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R 

r 

Fig. 6.1: The vector RR' 
shows the integration path of 
A(<) in calculating GR - GR, in 
Eq. (6.14). cPo(r) is the flux 
that penetrates the triangle de- 
fined by the three points, R, R' 
and r .  

operates on Q ( k ,  T ) ,  we obtain 

It is important to  note that in the last line of Eq. (6.13) the operator which 
acts on the wavefunction is the Hamiltonian in zero magnetic field. Thus the 
Hamiltonian matrix element in a magnetic field can be obtained through multi- 
plication of the Hamiltonian matrix element in zero field by a phase factor. In 
obtaining the last line of Eq. (6.13), we use the fact that: (1) the magnetic field is 
slowly changing with distance compared with the spatial change of P(T - R),  
and (2) P(T - R) is localized at T = R. Except for the phase factor, Eq. (6.13) 
is independent of the value of the magnetic field B and the functional form of 
A [153]. 

Using Eq. (6.13), we can calculate the matrix elements of 7-1 between two 
Bloch functions and solve the matrix Hamiltonian to obtain the eigenvalues. It 
is noted here that we will have a term in exp((ie/h)(GR - GR~))  in the matrix 
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elements, which is explicitly dependent on r as 

GR - GR' = IRR' A([)& + @O(T)i (6.14) 

where @ O ( T )  is the flux that penetrates the triangle defined by the three points, 
R, R' and T as shown in Fig. 6.1. For simplicity we neglect the phase fac- 
tor coming from @o(r) in the integrals over the atomic matrix element. This 
approximation is valid when the magnetic field changes slowly as a function 
of the lattice constant. This approximation is consistent with the assumptions 
that we made above [154]. Thus the integration on r of the Hamiltonian ma- 
trix element gives the zero field matrix element multiplied by the phase factor, 

exp[(ie/h)(GR - GRt)l. 

6.3 Two-Dimensional Cosine Band in a Magnetic Field 

A simple example of a twedimensional electron system is a square lattice, whose 
energy dispersion is known to be that of a two-dimensional cosine band.* In a 
two-dimensional cosine band with lattice constant u ,  a fractal behavior has been 
found theoretically in the energy band spectra in a magnetic field of magnitude 
B ,  depending on whether Bu2/q50 is a rational or irrational number, where 40 
is the flux quantumt defined by, 

(6.15) $ J ~  = - = 4.1356 x 1O-l5[T/m2] 

and a is the lattice constant of a graphene sheet [155]. All of the energy disper- 
sion relations are periodic functions of integer values of Bu2/q50. However, the 
magnetic field necessary to observe this fractal behavior explicitly is too large 
(- 105T) for presently available laboratory magnetic fields. In relatively weak 
fields ( w  102T), we only observe Landau levels, except for the Landau subbands 
near E = 0 in the case of a 2D cosine band, since the wave functions near E = 0 
are for extended orbits [156]. 

Let us start from the simple case of a two-dimensional square lattice in a 
magnetic field, B ,  which is perpendicular to the twedimensional surface. The 

h 
e 

'We hereafter neglect the effect of the magnetic field on the overlap integral matrix, S .  Thus 
the matrix S is always taken to be the unit matrix. 
tThe flux quantum in a superconductor is half of this definition, h / 2 e .  The difference between 
the two definitions comes from the different charge of a carrier compared to a Cooper pair. 
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vector potential A in the Landau gauge is given by 

A = (0, B z ) .  (6.16) 

Using a Bloch wave function in a magnetic field, the matrix element of the 
Hamiltonian in Eq. (6.12) between states k and k' is given by 

in which R and R' are taken as lattice vectors to nearest-neighbor sites. From 
Eq. (6.13), we can define 'HRR' as the following Hamiltonian matrix element in 
zero magnetic field, 

(6.18) 

The phase factor difference GR - GR' is calculated by using Eqs. (6.11) and 

GR - GR' = 1 (R' - R) * A(R - X[R' - R])dX. (6.19) 

In the inner product between R' - R and A, only the two cases of (R' - R) = 
(0, h a )  among the four nearest neighbor sites have non-zero values, because 
the vector potential A in Eq. (6.16) has only y components. Further, since 
the integration path in the case of (R' - R) = (0 ,ha)  is in the y direction, 
the vector potential A, which is only a function of x, has the same value of 
A(R - X[R' - R])  = (0, B z )  along the entire integration path from R to R', 
where x is the t component of R (or R'). Thus Eq. (6.19) gives 

1 
(6.16), 

1 
GR - GR' = 1 (ka)BxdA = f B a x .  (6.20) 

Using 
Eq. (6.17) over R', then x k k '  is given by 

%!kk' = t 

R - k' - R' = R .  (k - V )  + k' . ( R  - R') and the fact that we can sum 

1 ,iR.(lc-k') ( e i k . s  + e - i k , a  + e 2 u i B a x / + ~ - i k y a  + e-2ui B a x l  +o+i k,a  

R 
(6.21) 
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where t is the transfer integral, and R = ( x , y ) .  Here we consider periodic 
boundary conditions for the area of a square La x La in real space. Then the 
lattice vector R and the wave vector Ic are quantized as follows: 

R = (2, y) = (na,  m a ) ,  

where 1 5 n, m, p ,  q 5 L are integers. Then we can carry out the 
R of Eq. (6 .21)  as follows 

(6 .22)  

summation on 

and 
Bax Ba2 r -- - -n E Bn = - n ,  

4 0  4 0  S 

( 6 . 2 4 )  

(6 .25)  

in which B = Ba2/q50 is the magnetic field per the unit cell measured in units of 
flux quanta. Here we consider only the case where B is a rational number, i.e., 
B = r / s ,  (where r ,  s are integers whose largest common denominator is unity). 
From Eq. (6 .23) ,  we can see that k,  in a magnetic field is no longer a good 
quantum number and k, couples with other k i  separated by 

2n 2n r 
La a s 1  

Ak = -rL' = -- (6 .26)  

where L' = L / s .  Thus, the states with k,, k, + A k ,  k,  + 2 A k ,  . . interact with 
each other. Since s A k  corresponds to the reciprocal lattice vector of the two- 
dimensional square lattice, the number of k,  values which interact with each 
other becomes a finite number (6)  whenever B has a rational value. Thus to  
obtain the energy dispersion relations, we solve the s x s Hamiltonian matrix of 
Eq. (6 .23) ,  with B as a rational value. 

Since the wavevector k, is still a good quantum number even in the presence 
of magnetic field, we can solve the Hamiltonian matrix for given k, values to  
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obtain s energy bands. It is convenient to  express the k,  and k, values as 

2n 
kx = L a p ,  ( p =  1,. .. ,L’), 

2n 
k ,  = z q ,  ( q  = 1,. . . , L) .  

( 6 . 2 7 )  

Since we will solve the Hamiltonian matrix for given k , ,  too, we will have to 
diagonalize the s x s Hamiltonian matrix L x L’ times. It is important to 
note that  the calculated energy dispersion relations in a magnetic field are two- 
dimensional and are a function of both k ,  and Icy. Furthermore, we note that 
the Brillouin zone is folded s times in the direction of ks to k , / s .  It is useful to  
show the energy dispersion for different k,  values simultaneously as a function 
of k, .  An explicit form of the Hamiltonian matrix is given by, 

7f/= 

0 . . .  0 2t cos k ,  a te-ikua 

te”Ua 2t cos(k, + Ak)a te- ikya * . .  
0 teikua 

t e - i k a r a  

0 . . .  teikua 2t cos(k, + ( s  - 1)Ak)a 

, 

(6 .28)  
where a is the lattice constant of the 2D square lattice. 

In Fig. 6.2, the calculated Landau energy levels of the two-dimensional ( 2 D )  
cosine energy band are shown for a magnetic field value for which the ratio of the 
unit cell to  the area per quantum flux is 1 / 6 0 .  Along the horizontal axis, the k 
values in the k ,  direction are plotted using the Landau gauge given by Eq. ( 6 . 2 ) .  
In this case, since T = 1 and s = 60, the unit cell in the magnetic field becomes 
a rectangle in the x , y  coordinate system with area sa x a .  The corresponding 
Brillouin zone consequently becomes a rectangle in reciprocal space with area 
27r/a x 2n / sa .  Thus we consider the Landau energy levels for only the value 
k ,  = 0 and the energy dispersion is given as a function of k,.  The above 
discussion makes explicit use of the gauge of the vector potential. However, 
the calculated energy states should not depend on the gauge. In fact, we can 
see from Fig. 6.2  that most of the energy bands are dispersionless, as is also 
observed in the case of the Landau quantization of the 2D free electron gas. 
Near the E = 0 region, some oscillations in the energy bands can be seen, and 
these oscillations may reflect the delocalized nature of the wave functions. 



104 CHAPTER 6. LANDAU ENERGY BANDS OF CARBON NANOTUBES 

I 1 

4.0 

2.0 

2j 0.0 

-2.0 

p/q=1/60 

1 I 

I- - Fig. 6.2: Landau energy bands 
for a two-dimensional cosine 
band in a magnetic field perpen- 
dicular to  the two-dimensional 
plane. Here the ratio of the area 
of the unit cell to the area per 
quantum flux is 1/60. The en- 
ergy is normalized to the near- 
est neighbor overlap energy t and 
the horizontal axis plots R values 
in the direction of y in dimen- 
sionless units, using the Landau 

-4.0 - 
0.0 0.2 0.4 0.6 0.8 1.0 

kann gauge of Eq. (6.2). 

6.4 Landau Energy Bands of Graphite 

Next we consider the Landau energy bands for two-dimensional graphite, and we 
will use the formulation discussed in the previous section. The two differences 
from the previous section are that for the case of a 2D graphene sheet: (1) there 
are two atomic sites, A and B ,  in the unit cell as discussed in Sect. 2.3, and (2) 
the directions of the nearest neighbors is not always parallel to the 2 or y axes. 

The Hamiltonian matrix between A and B sites is given by, 
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where t is the transfer integral between nearest-neighbor sites in zero magnetic 
field, which is defined in Eq. (2.18). 

Using the same magnetic field derived from Eq. (6.16) and the nearest 
neighbor direction R - €2’ = Rj, (j = 1,2,3)  of Eg. (2.24), we can calculate 
AG GR - GRI as follows: 

AG=O 

a Bax Ba2 

(6.30) 
Expressing R in unit vectors of a1 and a2, and 1% in units of the reciprocal lattice 
vectors bl and b2, we have discrete values of R and k as follows: 

where m,n,p,q are integers between 1 and L ,  1 5 rn ,n ,p ,q  5 L .  Then we 
transform the phase factor in Eq. (6.29) to  i (k  R - k . R’) = i R + ( k -  k’) - ik’. 
(R’-R) ,  and the first term becomes i R e ( k - k ’ )  = Zni[n(p-p’)+m(q-q’)]/L, 
using Eq. (6.31). Further, the magnetic phase factor appearing in Eq. (6.29) can 
be expressed as: 

(6.32) 

where B is the number of magnetic flux quanta within a hexagon of the hon- 
eycomb lattice. Here we again assume, as in the previous section, that t3 is a 
rational number which can be expressed by the ratio of two integers, T ,  s which 
have no common divisor except for unity, B = T / S .  Finally, we obtain the 



following result for a matrix element of Eq. (6.29): 

(6.33) 

The matrix element ((a$~Xj(a$) is ca~culated in a similar way. We can then 
solve the 2s x 2s matrix Hamiltonian as a function of k, and k,. In Fig, 6.3 we 
show the Landau energy bands of two-dimensional graphite in a magnetic field 
perpendicular to the twGdimensiona1 plane. Here the ratio of the area of the 
unit cell to  the area per quantum flux unit is 1/60 and the energy is plotted 
in units of the nearest neighbor overlap energy t .  Along the horizontal axis, 
fcYa/4?r values are plotted using the Landau gauge of Eq. (6.2). Again we can 
see dispersionless energy bands, except that the Landau levels near E = 0 have 
some dispersion. Comparing Fig. 6.3 with Fig. 6.2, we see that the level spacing 
between two dispersionless energy bands at  k = 0 near E = 0 is not uniform 
in the case of two-dimensional graphite, in contrast to the uniform level spacing 
observed for the two-dimensional cosine bands. 

These results are identica~ with the original Landau level ca~culation of two- 
dimensional graphite by McClure [9,157] using k.p perturbation theory near the 
Fermi energy E = 0. When we use the approximation of linear energy dispersion 
near E = 0,  the density of states is proportional to  E and thus the Landau 
quantization occurs a t  En = &Cfi, where C is a constant and n = 0,1,2,. .. 
In this case i t  is interesting that we always have the n = 0 Landau level at  E = 0 ,  

with a density of states that increases with increasing magnetic field, causing 
an increase of the free energy. This is why we calculate a large diamagnetism 
for graphite, in agreement with experiment. The n = 0 Landau level at E = 0 
arises from a wavefunction consisting of contributions from both the bonding 7~ 

and antibonding T* bands. The equivalence between the A and B sites in the 
unit cell, which is discussed in Sect. 2.3 in connection with the energy dispersion 
relations of two-dimensiona~ graphite, results in a band degeneracy at E = 0, so 
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Fig. 6.3:  Landau energy bands 
for two-dimensional graphite in 
a magnetic field perpendicular to  
the two-dimensiona1 plane. Here 
the ratio of the area of the unit 
cell to the area per magnetic 
quantum flux is 1/60. The ver- 
tical axis expresses the energy 
in units of the nearest neighbor 
overlap energy and the horizon- 
tal axis plots the k values in the y 
direction using the Landau gauge 
of Eq. (6.2). 

that the 7r and 7r* bands are not split, even in the presence of interband coupling. 
In a real system, the deviation from the linear k dispersion is important 

for understanding the level spacing between the Landau energy bands. For 
example, the density of states diverges ~ogarithmically at E/ t  = fl giving rise 
to a high density of energy bands. If we have dense energy bands folding into 
the first Brillouin zone in a weak magnetic field, we can expect the energy 
dispersion to  become flat and the predicted fi level spacing to be clearly seen. 
Figure 6.3, however, corresponds to a very large magnetic field, for which there 
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is a quantum flux unit per 60 hexagons or B - 103T. In this case the number of 
Bloch wavefunctions that are coupled to each other (s = 60) is not large enough 
to make completely fiat bands. Such a situation will occur for the case of a 
carbon nanotube for which the number of Bloch wavefunctions is limited not 
by the magnetic field, but rather by the periodic boundary conditions along the 
chiral vector. 

6.5 Magnetic Energy Bands of Carbon Nanotubes for B 11 z :  Aharonov- 
Bohm Effect 

Using the method discussed in Sect. 6 . 3 ,  we now consider the electronic stmcture 
of carbon nanotubes in a uniform external magnetic field. There are two high 
symmetry cases for the direction of the magnetic field: one with the magnetic 
field parallel to the nanotube axis ( B  11 z )  and the other with the magnetic field 
perpendicular to the nanotube axis, ( B  I z ) .  Hereafter the nanotube axis is 
taken along the z-axis. In this section we consider the case of B 1 1  z .  

When the magnetic field is parallel to  the nanotube axis, electrons moving 
within the nanotube surface will feel a force perpendicular to  the surface. As far 
as we consider only the transfer integral between two atoms within the nanotube 
surface, the electronic structure would appear to be unaffected by the magnetic 
field. This, however, is not correct. The wavefunction will change its phase factor 
and thus its momentum, k, will shift depending on the magnetic flux penetrating 
the cross section of the carbon nanotube. This phenomenon is generally known 
as the Aharonov-Bohm effect, discussed often in the case of cylindrical geometry. 
Since the carbon nanotube can be a metal or a semiconductor, depending on 
whether there is an allowed wavevector k in the circumferential direction that 
has the value of the K.  point in the two-dimensional Brillouin zone (see Fig. 3.5), 
this Aharonov-Bohm effect will modify the energy gap of a carbon nanotube as 
a function of magnetic field [84]. 

Here we use the two-dimensional Cartesian coordinates (x,y) in thc direc- 
tions of C h  and T in the honeycomb lattice of Fig. 3.2 [158,159], respectively.* 

*When we roll the honeycomb lattice into a cylinder, the two-dimensional coordinate z = rcp 
(where v, 9 are cylindrical coordinates) becomes a curvilinear coordinate in three dimensions. 
We now take special care on making a rotation of the vector potential. However, as far as we 
use two-dimensional coordinates (5, y) on a cylindrical surface in three-dimensional space by 
adding a coordinate in the radial direction, T ,  instead of using cylindrical coordinates, ( T ,  cp, z ) ,  
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The vector potential A for BII in this coordinate system is given by, 

A =  ($ ,O) (6.34) 

where # is the magnetic flux penetrating the cross section of a carbon nanotube, 
and L = ( C h 1 . t  The magnetic phase factor GR of Eq. (6.11) is given by 

(6.35) 

so that the phase factor difference, AGRRI = G R  - GRI becomes 

.x - X‘ 
L 

A G R ~ ~  = 2- 4. (6.36) 

Thus if we shift k, by 4 / (L40) ,  that is 

(6.37) 

in the magnetic Hamiltonian, the phase factor of the Bloch matrix element of 
Eq. (6.17) becomes, 

(6, + &) X - (k; + $) X’ = (k ,X  - k i X ’ )  - ( X  -XI ) -  4 (6.38) 
L40 

The second term of Eq. (6.38) cancels with the term ~ G R R I / # O  of Eq. (6.36) upon 
substitution into Eq. (6.17). Using this fact, we can obtain the energy bands of 
a carbon nanotube in a magnetic field, B ( 1  z ,  by shifting the one-dimensional 
energy bands in the direction of k, (or K1 in Fig. 3.5) in the two-dimensional 
reciprocal lattice of two-dimensional graphite. 

Since the presence of an energy gap in a carbon nanotube is determined by 
whether or not the one-dimensional energy bands cross or do not cross at the I( 

no complicated situations occw due to curvilinear coordinates. In fact, the coefficients often 
used in vector analysis becomes unity; hl = hz = h3 = 1. 
tAn integration of the vector potential A in Eq. (6.34) on a circumferential loop, c,  satisfies 

4 = A .  dr = x A .  dS = B d s ,  

which is consistent with the fact that the magnetic flux, 4, penetrates the cross section S in 
accordance with Stokes’ theorem. 

s, 
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15 Fig. 6.4: The energy gap in units 
of 4nly1/3L (y Itl) at the IC 
and IC' points of the Brillouin 
zone are plotted as a function 
of magnetic field in units of $0 

for metallic (v = 0) and semi- 
conducting (v = fl) nanotubes 

o'oO.O 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 [160]. Here v is the residue of 
( n  - m) divided by 3. Magnetic Flux (units 01 +J 

or Ii' points at the corners of the 2D Brillouin zone, a semiconducting carbon 
nanotube can become metallic in a parallel magnetic field at  certain values of 
the phase shift, and conversely a metallic nanotube can become semiconducting 
in a parallel magnetic field. The energy gap thus oscillates like a triangular 
chopped wave as shown in Fig. 6.4 [160], where the energy gap is plotted in 
units of 4nlt1/3L (E 4aly1/3L in the figure) at the Ii and IC' points of the 
Brillouin zone as a function of magnetic field in units of 40 for metallic (v = 0) 
and semiconducting (v = f l )  nanotubes. Here v is the residue of ( n  - m) 
divided by 3. The energy gap is found to  oscillate with a period of 40 .  In the 
semiconducting nanotubes, the oscillations of the energy gap at the K and IC' 
points have different phases with respect to each other, while the oscillations 
have the same phase in metallic nanotubes. This can be explained by a shift in 
the k vector in the direction of K1. 

This phenomenon corresponds to the Aharonov-Bohm (AB) effect for a 
carbon nanotube. The significance of the AB effect in a carbon nanotube is 
that  the semiconducting or metallic nature of the nanotube can be altered only 
by applying a magnetic field parallel to the nanotube axis. This is because the 
distinction between a semiconducting and a metallic carbon nanotube arises from 
a quantum effect in which discrete wave numbers in the circumferential direction 
distinguish between metallic and semiconducting properties. It is noted that the 
one-dimensional energy dispersion relations for carbon nanotubes at the top of 
the valence band and the bottom of the conduction band follow a linear t relation 
only when the carbon nanotube is metallic. When the carbon nanotube has a 
semiconducting energy gap, the energy dispersion is quadratic at the top of the 
valence band and at  the bottom of the conduction band. Thus the effective mass 
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of an electron contributing to  the transport properties of a carbon nanotube is 
a function of magnetic field. 

The period of the oscillatory behavior associated with the AB effect is 40 for 
the cross section of a given carbon nanotube. Thus the AB effect is expected to 
have periodicity involving a lower magnetic field for larger diameter nanotubes. 
In fact, the magnetic field corresponding to $0 is 1400 T for a circumference of 
60 A, but only -8 T for a circumference of 800 A. 

6.6 Magnetic Energy Bands of Carbon Nanotubes for B I z : Quantum- 
Oscillations 

Next we consider the magnetic energy bands for a magnetic field perpendicular 
to  the nanotube axis: B I z .  The two-dimensional vector potential A for the 
nanotube surface is then given by 

A =  0,-sin-x , ( i :  ;) (6.39) 

where L is the length of the chiral vector, Ch, ( L  = IChI), and the coordi- 
nates 2 and y are taken along the circumferential and nanotube axis directions, 
respectively, in analogy to those defined in Eq. (6.34) (see Fig. 3 . 2 ) .  

Since all the  magnetic flux which comes in at  one side of a nanotube goes 
out from the other side, the net magnetic flux penetrating the nanotube surface 
is always zero. Thus when we consider the phase factor due to  the magnetic 
field, the phase factor will always be zero (a rational number) for the original 
unit cell of the carbon nanotube in zero magnetic field. For a chiral vector, 
Ch = nu1 + mu2 = (n ,m) ,  (n ,  rn: integers; ul, u2: unit vectors), the unit cell 
of the nanotube is a rectangle specified by Ch and a translational vector T as 
shown in Fig. 3 . 2 ,  

O < x < L ;  L = adnz + m2 + nm 
(6.40) 

where u is the lattice constant of the honeycomb lattice ( u  = f i a c - c ) ,  and the 
integer dR is the highest common divisor of ( 2 n  + m, 2m + n)  [see Eq. (3.7)]. 
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Using the vector potential Eq. (6.39), A G  defined by Eq. (6.19) is given by 

A G  = G R - G R ~  
LB 2n = 1 d X A Y z  sin r_(X + AAX) 

1 

= { [:I2 B E  [cos:X - cos-(X 2x + AX)] ( A X  # 0) 
L 

2n 
L 

BAY sin -X ( A X  = 0), 

(6.41) 
where R = (XI Y) and A R  = R' - R = (AX, AY). Since a carbon atom at an 
A (or B )  site will have three nearest neighbors, we have three possible values of 
( A X ,  AY). Since all carbon atoms belong to either A sites or B sites, the values 
of ( A X , A Y )  are the same for A sites or B sites. Further, the z coordinate of 
R, is X given by the definition of the symmetry vector defined in Eq. (3.12), 

2n 2n L 2n -X = - - r  = -r,  L L N  N 
( r =  1, ..., N ) .  (6.42) 

Since AG depends only on X I  we can immediately carry out the summation on 
Y in Eq. (6.29), and thus the wavevector ky in the y direction remains a quantum 
number of translation even in the presence of a magnetic field, (-n < kyT 5 n). 
This reflects the invariance of the unit cell with respect to the magnetic field. 
The wavevectors k, in the 2 direction mix with each other in the presence of a 
magnetic field in accordance with Eq. (6.39). The total number of wavevectors 
in the x direction is N where 

(6.43) 

and N is the number of hexagons in the nanotube unit cell given by Eq. (3.9). 
Since we have two inequivalent carbon sites, A and B ,  in the graphene unit cell, 
we must solve a 2N x 2N matrix to find the energy eigenvalues for a given 6, 
wave vector. In Fig. 6.5 we show the calculated energy dispersion relations 
in a transverse magnetic field for a C h  = (10,O) zigzag carbon nanotube as a 
function of the dimensionless wave vector Q = kYT/2n for several values of the 
dimensionless inverse magnetic length L/2nl: (a) 0.0, (b) 1.0 (c) 2.0 (d) 3.0 
for the magnetic field B perpendicular to nanotube axis. In Fig. 6.5 we see 
that the energy dispersion relations for the sub-bands of the 1D carbon nan- 
otubes become less dispersive with increasing magnetic field. Because of the 

2n 
L ,  Icp, = - p  ( p =  0 , .  . * , N  - 1) 
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lations of a Ch = ( I O , O )  zigzag 
carbon nanotube as a function 
of the dimensionless wave vec- 
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ues of the dimensionless inverse 
magnetic length L/27rE: (a) 0.0, 
(b) 2.0 (d) 3.0, where 
!= h/eB. The magnetic field 
B is perpendicular to the nano- 
tube axis, and the energy is plot- 
ted in units of It(, the magnitude 
of the transfer integral. 

Fig. 6.6: The energy at  ky = 0 
as a function of the dimensionless 
magnetic field ( L / 2 n t ) ’ / d ~  for 
a zigzag nanotube (a) (n ,m)  = 
(20,0), and two armchair nan- 
otubes of different diameters: 
(n ,m)  = (20,20) (b), and (9,9) 
, \  

finite number (20) of wave vectors I c ,  along the circumference of the carbon 
nanotube (n ,m)  = (lo,()), a large magnetic field (3.86 x lo4 T) is required to  
reach L/27rE = 3.0. When the diameter (or L )  increases, the magnetic field re- 
quired to form Landau subbands becomes smaller, and the calculated dispersion 
relations approach those of 2 .  $perturbation theory near the r point. 

In Fig. 6.6 the energy at L, = 0 as a function of the dimensionless magnetic 
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Fig. 6.7: Density of states per 
carbon atom at the Fermi energy 
for a Ch = (9,o) zigzag nanotube 
as a function of the dimensionless .O 

( L  /2nl)' magnetic field ( L / ~ A . ! ) ~ .  

field, ( L / 2 ~ l ) ~ / d ~ ,  is shown for a zigzag nanotube (n ,  m) = (20,O) [Fig. 6.6(a)], 
and for two armchair nanotubes of different diameters (n ,  m) = (20,20) [Fig. 6.6(b)] 
and (9,9) [Fig. 6.6(c)]. The mixing of Bloch orbitals with different k, values 0s- 
cillates periodically as a function of magnetic field, which can be scaled by the 
dimensionless magnetic field. 

The energy dispersion near the Fermi energy is especially important. In 
Fig. 6.7 the density of states at  the Fermi energy is plotted for a c h  = (9,O) 
zigzag nanotube as a function of the dimensionless magnetic field v2 = ( L / 2 ~ t ) ~ .  
Figure 6.7 shows that when the magnetic field increases, a metallic Fermi surface 
appears and disappears in an irregular manner. This phenomena can be identi- 
fied with the Aharonov-Bohm effect, in analogy to the case of BII discussed in 
Sect. 6.5. The irregular oscillation in Fig. 6.7 might be related to  the oscillation 
of the electronic conductance of a'multi-layer carbon nanotube as a function of 
magnetic field a t  low temperature. 



CHAPTER 7. 

Connecting Carbon Nanotubes 

Connecting two single-wall carbon nanotubes is an interesting 
problem, since a semiconductor-metal junction is realized by con- 
necting a semiconductor and a metal carbon nanotube. In this chap- 
ter we first show how to connect two carbon nanotubes and then we 
calculate the electrical conductance of such a junction. 

7.1 Net Diagrams of a Junction 

There are many illustrations such as Fig. 7.1 in the literature showing the junc- 
tion between two carbon nanotubes with different diameters using high resolu- 
tion transmission microscopy [107]. In this figure the larger diameter multi-wall 
carbon nanotube AB is joined to  a smaller diameter multi-wall nanotube C D  
through a junction section BC containing a single pentagon B and a single 
heptagon C. In this chapter the general framework for joining two single-wall 
nanotubes of different diameters and chiralities is presented in Sect.7.1, Sect.7.2 
and Sect.7.3, while in Sect.7.4 the transport properties of such nanotube junc- 
tions are discussed. Coiled carbon nanotubes are reviewed in Sect.7.5. 

As discussed in Fig. 3.2, a net diagram of a carbon nanotube, as it relates 
to rolling up a graphene honeycomb sheet of width L equal to the magnitude 
of the chiral vector, provides a useful description for considering the three di- 
mensional structure of a single carbon nanotube. In this section we use a net 
diagram to describe a junction which connects two carbon nanotubes of different 
geometries [i.e., described by different chiral vectors (n ,  m)]. In Sect.7.2 we show 
that two arbitrary nanotubes can be joined in a unique way by introducing a 
single pentagon and heptagon pair, and by demonstrating the resulting junction 
explicitly. 

In Fig. 7.2, we show examples of (a) (12,O)-(9,O) and (b) (12,O)-(8,O) zigzag 
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Fig. 7.1: (a) A high resolution TEM image of the junction between 
two multi-wall carbon nanotubes. (b) A schematic representation 
of (a). (c) A schematic illustration of the transition region be- 
tween nanotubes of different diameters, showing a pentagon and 
heptagon at B and C ,  respectively [107]. 

nanotube junctions, in which the carbon atoms of the pentagon and the heptagon 
rings are indicated by filled circles. All the other polygons in the nanotube 
junction region are hexagons. All carbon atoms in the junction have three 
u sp2 covalent bonds, and there are no sp3 covalent bonds in the junction.* 
Thus we can say that the pentagon and heptagon defects are topological point 
defects, associated with the joining of the two nanotubes. The positive curvature 
of the pent(agona1 ring, as is generally seen in fullerenes, makes the diameter 
of the carbon nanotube decrease in going from left to right in Fig. 7.2, and 
the negative curvature of the heptagonal ring prevents further decrease in the 
nanotube diameter. Thus, when the difference between the diameters of the 

'Here we neglect the small s p 3  component in the (r bonds due to the curvature of the tube 
and the junction. 
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7.2: (a) (12,O)-(9,O) and (b) (12,O)-(8,O) zigzag nanotubes 
are shown in which the carbon atoms of the pentagon and the 
heptagon are indicated by filled circles. For each nanotube, eight 
circumferential zigzag chains are shown. 

two carbon nanotubes becomes large, the distance between the pentagon and 
heptagon also becomes large. 

In Fig. 7.3 we show a net diagram of two carbon nanotubes which are given 
by the rectangles TABU and RCDS. The smaller tube TABU and the larger 
tube RCDS, are uniquely determined by the chiral vectors, AB and CD, re- 
spectively. Here a pentagon exists at the site C (or D) and a heptagon exists at 
A (or B).t Since the solid angles of a pentagon and a heptagon in the fullerene 
are 2 7 r - ~ / 3  and 27r+n/3, respectively, the sum of the angles on the net diagram 
around the pentagon and the heptagon, indicated by shaded hexagons, should 
correspond to  these angles. This fact gives the angle relations: 

-+ --+ 

(7.1) 
57r 77r 
3 ’  3 

LACR+ LBDS= - and LCAT+ LDBU = -. 

The three-dimensional structure is obtained by connecting AT t o  BU, AC to  
BD, and CR t o  DS through cylindrical surfaces. When we roll up the net 
diagram to make a tube, the chiral vectors AB and C D  correspond to  the 

--+ -+ 

tThis situation can be easily understood when the reader copies Fig. 7.3 and makes a junction 
by cutting and connecting the edges. 
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L 

Fig. 7.3: (a) Net Diagram for the joint between two nanotubes. 

The chiral vectors for the two nanotubes are shown by AB and 
CD. The three-dimensional structure is obtained by connecting 
AT to BU, AC to BD, and CR to  DS through cylindrical sur- 
faces. At the shaded hexagons in the figure, a pentagon exists 
at  the site C (or D) and a heptagon exists at A (or B). The 

joint region is uniquely expressed by a vector, CA, which is given 
by Eq. (7.5) .  (b) The cone of OALB and (c) its projection are 
shown for understanding that the line A M B  is a line of minimum 
length for going around the surface of the cone. The relation 
O M  I A M B  satisfies both (b) and (c). 

-+ 

-+ 

-+ 

-+ 
circumferential directions of the tubes while the translational vectors AT and 
CR which are perpendicular to AB and CD, respectively, correspond to the 
directions of the nanotube axes in three dimensions. 

-+ -+ --* 
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7.2 The Rule for Connecting Two Nanotubes 

LFrom Eq. (7.1) and using the fact that  we connect AC to  BD in Fig. 7.3 ,  we 
ret  " 

( 7 4  
27r 

LACD + LBDC = - and AC= BD. 
3 

--+ -+ 
Then BD is given by (1) rotating AC around C by n/3  and then (2) translating 
by CD. The conditions in Eq. (7.2) give the rule for connecting two nanotubes 
as discussed below. 

(n ,  m) 

-* 

First we will give a formula for rotating a vector Zn,, = na'l+ m?lz 
by 7r/3 on a honeycomb lattice. Denoting a n/3 rotation by R,  we get 

Thus RCn,, is given by 

This formula of Eq. (7.4) for Rv',,, will be used frequently in the following 
discussion. 

Hereafter we denote CD, AB ,  and C A  as CD= C5 = (125, ms), AB= C7 = 
-- + -* --t -+ -+ -. 

-- - 
(127,m7),* and CA= j = ( j l , j 2 ) ,  respectively, where 125, m5, 727, m7, j1, and j ,  
are integers. Then the condition for j1 and j z  for given 6 5  and 6 7  vectors is, 

Using Eq. (7.4), we obtain the components of the joint vector 3 

-. 
Thus the joint vector, j ,  is uniquely determined, once the two chiral vectors, 6 5  

and 67 are given. Figure 7.3 is drawn for 25 = (5 ,5) ,  and 67 = (1 ,3) ,  which 
gives j = (6, -4), and Rj = (2 ,  -6). 

'Here 5 and 7 in c5 and c, mean that the chiral vectors C5 and C7 exist on the pentagon 
and heptagon sides of the junction, respectively. 

-4 - 
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7.3 Shape of a Junction 

The polygon, ACDB, in the net diagram of Fig. 7.3(a) denotes the joint which 
connects t<he two nanotubes. The shape of the joint determines the shape and 
axis of the cone as shown in Figs. 7.3(b) and (c). ACDB is part of a cone 
whose vertex is denoted by 0 in Fig. 7.3(a), while the cone and its projection, 
respectively, are shown in Figs. 7.3(b) and (c). For the cone, OALB, the line 
A M B  is a line of minimum length for going around the surface of the cone, in 
which OM I A M B  satisfies both Figs. 7.3(b) and (c). We assume here that 
the lines A M B  and CHD in Fig. 7.3(a) correspond to  the minimum lines of 
the cone surface. This idea is valid, too, for the two tubes, TABU and RCDS, 
where the lines AMB and CHD are minimum in length for going around the 
nanotube surface. Thus this assumption regarding minimum length lines seems 
to be reasonable. It should be mentioned here that the path A M B  is an ellipse 
on the cone surface in three dimensions [see Fig. 7.3(b)], while the path A M B  is 
a circle on the nanotube surface. Thus we always expect some distortion arising 
from the elliptical shape of the cone section relative to the circle shape of the 
nanotube surface. However, this fact does not affect the angle on the tube or 
cone surface, since the distortion is perpendicular to the surface. 

Within this assumption, the vertex of the cone, 0, is defined as the crossing 
of the two lines O M  and OH such that OM and OH are perpendicular bisectors 
of A B  and CD,  respectively. Since OA = OB,  OC = OD, and AC = BD,  the 
two triangles, AOAC E AOBD, are identical to each other. Thus LAC0 = 
LBDO, which gives LACD + LBDC = LOCD + LODC = ~ 1 3 .  Thus we 
conclude that AOCD is a regular triangle. Similarly, since LAOC = LBOD, 
we have LAOB = LCOD = a/3. Thus AOAB is a regular triangle, too. The 
position of 0 is given by rotating CD or AB by ~ / 3  , 

-+ -+ 

-+ -+ 

(7.7) 
CO= R CD= (n5 + m5, -n5), 

AO= R AB= (727 + m7, -727). -+ -+ 

-+ -+ 
We can easily check from Eqs. (7.6) and (7.7) that CO - AO= I .  

When we define the angle of the vertex of the cone in three dimensions as 
20, as is shown in Fig. 7.3(b), 0 is given by 

1 0 = sin-' - 6 2: 9.594'. (7.8) 
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The angle 8 is the angle between the axis of the tube and the axis of the cone in 
three dimensions. If the points 0, B ,  and D in Fig. 7.3(a) lie on a line, the angle 
between the two axes of the tubes becomes zero, but when the pentagon and 
the heptagon are on opposite sides of the cone surface, then the angle between 
the two axes of the tubes becomes 28 = 19.19O. 

When the pentagon and heptagon are neither along the same line nor on 
opposite sides of the cones, the two nanotube axes do not intersect with each 
other. In this case, we can define a dihedral angle, cp, between two planes as 
shown in Fig. 7.4. The two planes are defined by (1) the cone axis OF and an 
axis of the tube at  the pentagon side F E ,  and (2) the cone axis OF and an axis 
of the tube at the heptagon side GI<. The dihedral angle, (o, is defined by the 
rotation angle around the cone axis between AOFD and A O F N ,  as shown in 
Figs. 7.4(a) and (b). 

The dihedral angle (o is relevant to  the angle LBOD = @ shown in the 
projection map of Fig. 7.3(a) as follows,* 

(7.10) 

Using Eq. (7.6), we can write the angles, @ and cp,  as a function of n5, m5, n7 

and m7. 

The dihedral angle is useful for understanding the three-dimensional struc- 
ture of the two nanotube axes and the single cone axis joining the two carbon 
nanotubes. The thick line EFGII' provides a wire frame model for represent- 
ing the axes for the nanotubes and the cone. The definition of the dihedral 
angle provides a good analogy to  chemistry, since the dihedral angle of a three- 
dimensional molecule is defined by three chemical bonds. 

When the dihedral angle (o is n, the positions of the pentagon and the 
heptagon (D and B in Fig. 7.4, respectively) are opposite each other. In this case 
the bending angle of the nanotube axes in the net diagram, which corresponds 

*To obtain Eq. (7.9), we use the following facts [see Fig. 7.4(b)]: D N =  O D  * Q, = FN * (o and 
OD : FN = 27r : r / 3 .  
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Fig. 7.4: (a) The dihedral angle, L N F D  = cp  is defined between 
the two planes A O F D  and A O F N .  Here the axis of the cone, 
O F ,  is on both planes. F E  and GI{ are the axes of the two 
nanotubes. It is noted that points 0, F ,  D and E are in a plane 
and that G ,  F ,  Ii' and N are in another single plane. The thick 
line E F G K  corresponds to a wire frame model for reproducing the 
axes for the nanotubes and the cone. D and B are the positions 
of the pentagon and the heptagon, respectively, in the joint region 
(see Fig. 7.3). The light shaded circle is the bottom surface of the 
cone and two dark shaded ellipses are the cross sections between 
the cone and each nanotube. The crossing points of the cone 
axis with the nanotube axes, F and G ,  are not located on these 
ellipses. The bond angles, LGFE and L F G K ,  sum to T - 8. (b) 
Another view of the dihedral angle, c p ,  shown on the cone. Here 
DH I OH and O M  I M B .  Points P and Q are both centers of 
ellipses. 

to Q in Eq. (7.9), becomes n/6 (or 30°), which corresponds to  the case discussed 
by Dunlap [161,162]. 

The points P and Q are both centersof the darkshaded ellipses in Fig. 7.4(b), 
and both P and Q are on the nanotube axes. The ellipses are defined by rolling 
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up A M B  and C H D  in Fig. 7.3 so that DH I OH and O M  I M B  in Figs. 7.3 
and 7.4. It is clearly seen from Fig. 7.4(b) that P and Q are not crossing points 
of the nanotube axes with the cone axis, FG. Thus the nanotube axis length 
on the pentagon side becomes shorter by P F  in the wire frame model and the 
nanotube axis length on the heptagon side becomes longer by GQ, where P F  
and GQ are given by 

PF = 1~3~1 sin2 8, GQ = 1271 sin2 B. (7.11) 

The length of the cone axis FG is given by 

FG = OF - OG = (1651 - I ~ ~ ~ ) C O S @ ,  (7.12) 

using the fact that OG I GB. 
Finally we discuss the shape of the dark shaded ellipses shown in Fig. 7.4(b). 

The bond angles, LGFE and LFGII', sum to T - 0, and the two dark shaded 
ellipses have the same eccentricity but have different sizes. When we denote the 
longer and the shorter axes of the ellipses as a and b ,  the ratio of b t o  a is given 
as a function of 8. After some calculation, b/a is given by 

(7.13) 

where we make use of Eq. (7.8). Thus the cross section of the circle at the end of 
the nanotube is distorted by 1-0.918 = 0.082 = 8.2% distortion at  the junction. 
Using all the formulae given here, the skeleton of the wire frame in three dimen- 
sions is well defined by only the four integers of the two chiral vectors, 125, m5, 

127 and my. It is important to point out that there is no ambiguity in the struc- 
ture of the junction if we specify the two chiral vectors of the nanotubes. Thus 
the geometrically optimized structure or electronic structure of the connected 
nanotubes is uniquely described by the chiral vectors of the two nanotubes. In 
the next section, we consider some specific cases and their electronic structure. 

7.4 ~ n n e l i n ~  Conductance of a Junction 

To discuss the electronic structure and the tunneling conductance of a junc- 
tion connecting two carbon nanotubes, we consider a system that incIudes the 
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(n5, m5) nanotube, the (n7, rn7) nanotube, and the junction region between 
them. Since we consider carbon nanotubes of finite length, all electronic states 
are given by discrete electronic levels, and Gaussian broadening is used for cal- 
culating the density of states and for calculating the conductance. 

The structure of the junctions that we use for illustrative purposes is the 
junction between two zigzag nanotubes [69]. A zigzag nanotube defined by 
(n,O), where is an integer, has one of the smallest unit cells among carbon 
nanotubes, and the electronic structure of a zigzag nanotube is either metallic or 
semiconducting, depending on whether or not n is a multiple of 3, respectively, 
as discussed in Fig. 4.2. An armchair nanotube, (n, n), also has a small unit cell, 
but all armchair nanotubes are known to be metallic. Thus zigzag nanotubes are 
suitable for considering a metal-semiconductor junction and armchair nanotubes 
are not. In Fig. 7.2 we show the top view of the junction of two zig-zag nanotubes 
for the cases: (a) (12,O)-(9,O) and (b) (12,O)-(8,O) zigzag nanotubes, which are 
used here as examples of a metal-metal junction and a meta1-se~conductor 
junction, respectively. Carbon atoms for the p ~ ~ t a g o n  and heptagon rings are 
indicated in Fig. 7.2 by filled circles. The corresponding junction vectors, ( j l ,  j z ) ,  
are given by (3, -3) and (4, -41, respectively, and the dihedral angle p is always 
zero for zigzag-zigzag carbon nanotube junctions. The three-dimensional lattice 
structure is represented by formulae given in Sect.7.3. In the calculation, the 
lengths of the carbon nanotubes at both ends are taken as 16 unit cells, though 
only 8 unit cells are shown in Fig. 7.2. Here the unit vector of each zigzag 
nanotube is 22 if 21 is selected in the circumferential direction, and the unit 
cells of each carbon nanotube start from the carbon atoms of the pentagon or 
the heptagon that is connected to each nanotube. The total numbers of carbon 
atoms in the calculations are thus 735 and 720 for the (12,0)-(9,0) and (12,O)- 
(8,O) zigzag nanotubes, respectively. 

The electronic structure is calculated by a simple tight-binding method in 
which only the nearest-neighbor transfer energy, 1, for ?r orbitals is considered, 
and the small hybridization due to  the curvature of the nanotube or junction is 
neglected. All the calculated energies are in units o f t ,  whose magnitude is known 
to be between 2.5 eV and 3.13 eV [69]. At the ends of the carbon nanotube, 
the dangling covalent x bonds give rise to  edge states, with eigenvalues E = 0 
and eigenfunctions localized in a region about 6u (u = Iii~l) from the nanotube 
end. Since only the amplitude of the wavefunction in the junction is included 
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in the conductance calculation, the effect of these edge states is automatically 
excluded. 

The ca~culated results show that the eigenfunc~ions of the energy levels 
consist of contributions from: (1) the delocalized wavefunction for the whole 
system, (2) the delocalized wavefunctions for each of the carbon nanotubes, and 
(3) edge states localized at the both ends. Since translational symmetry is broken 
at the junction, the Bloch wavefunctions of each carbon nanotube are scattered 
by the pentagon, the heptagon and the junction region of the nanotubes. If the 
energies of the wavefunctions in the two carbon nanotubes are equal to each 
other, a delocalized wavefunction for the whole system is formed. Otherwise, a 
delocalized wavefunction is formed only in each nanotube region. This situation 
is easily explained by the fact that the plane wave of an electron is reflected 
or transmitted at a positive square potential, which gives rise to  a tu~nel ing 
probability ils a function of electron energy. There are, however, no localized 
states in the junction region, because the junction does not correspond to an 
attractive potential. 

In Fig. 7.5, the density of states for the junction of the (a) (12,O)-(9,O) and 
(b) (12,0~-(8,0) zigzag nanotubes is plotted per carbon atom per energy 1,  as 
a function of energy in units of JtJ. The energies of all eigenstates are within 
IE/tl 5 3, which is consistent with three carbon bonds associated with each 
carbon atom. Were again all E = 0 states (see Fig. 7.5) correspond to edge 
states whose wavefunctions are localized not in the junction region but rather 
at both ends of the nanotubes. Thus these states do not contribute to the 
conductance, though their energy is at the Fermi energy E = 0. The density of 
states of these connected two-nanotube systems can be understood primarily as 
the sum of the density of states of the two const~tuent carbon nanotubes. We can 
see in the plot of the density of states (Fig. 7.5) that not only the two-dimensional 
van Hove singularities of graphite a t  E/t = f l  but also many one -~ imens ion~~  
1 / f i  singularities due to the one-dimensional energy bands are quantized in 
the circumferential direction [69]. Even when we remove the contribution of the 
localized states to the density of states, the resulting density of states is finite 
near the Fermi energy E / t  = 0 which indicates that one-dimensional metallic 
energy bands exist for both the (12,O) and (9,O) nanotubes. 

In the case of the metal-semiconductor (12,O)-(8,O) zigzag nanotubes, the 
density of states near the Fermi energy is smaller than that of the (12,O)-(9,O) 
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Fig. 7.5: The density of states 
of junctions for (a) (12,O)-(9,O) 
and (b) (12,O)-(8,O) zigzag nano- 
tubes plotted in units per sin- 
gle carbon atom per energy t ,  
where the structures are shown 
in Fig. 7.4. All E = 0 states 
correspond to  edge states whose 
wavefunctions are localized not 
in the junction region but rather 
at  either end of the nanotubes. 

system because of the absence of a finite density of states for the (8,O) carbon 
nanotube near the Fermi energy. It might be difficult to see the differences 
between Fig. 7.5(a) and (b), However when we look carefully at the almost 
constant, density of states region around E = 0, Fig. 7+5(a) shows a larger value 
of the densit,y of states than Fig. 7.5(b), and also the energy width for the 
constant region is the larger in the case of Fig. 7.5(a). These differences can 
be explained as  follows. By calculating the energy levels of a (8,O) nanotube 
with the same length, we get an energy gap of Es/ltl = 0.62. Because of the 
Gaussian broadening that is used, AE/1%1 = 0.033, the energy gap is reduced to 
E9/1t1 = 0.55. In this case the wavefunctions are only delocalized in the (l2,O) 
nanotube region near the Fermi energy, and not in the (8,O) nanotube. 

Using the eigenfunctions for the electrons in the nanotube junction struc- 
tures shown in Fig. 7.4, the conductance can be determined by c a ~ c u l a t i n ~  the 
current density. When a voltage V is applied to this system, the tunneling 
elect,ric current, I ,  is given by 21631 



Here G is the imagin~ry past of the resolvent given by 

Gi/i(E) = C ~ ~ ~ ~ ~ ~ ( ~  - E,>, (7.15) 

where E, and Ci, are the p-th eigenvatue and i-th component of the p-th eigen- 
function, respectively, which are obtained by solving the t~ght-b~nding Hamil- 
tonian for the junction structure, such as shown in Fig. 7.4. ftetmning to 
Eq. (T.141, Jij is the current operator for atomic orbitafs a t  sites a’ arid j given 
bv 

P 

where (pi is i-th atomic orbital, and the integrati~n is taken at  the same surface 
So as was used for calcu~ating the current density. By conver~~~ng Eq, (7.16) from 
a surface integral t*o a, volltine integral [IG3], we see that J,g is t~on-van~~h~ng  
only for 7’ and j at  nearest neighbor sites, and in regions where the voltage 
changes sig~ificant~y between sites i atid j .  Rere we ~ S S B I I ~ F  that  it is only in 
the junction region that we export a voltage drop. Since this nanotube juiiction 
system is so small, we consider the carbon network to be in the mesoseopic 
regime, in which electrons are iiot, scattered in the periodic region but8 only in the 
junction region. Turineling current, appears when the energy of the wa~efunction 
to the Ieft of the junction coincides with the energy plus e l f  of that t,o the 
right, This f o ~ ~ n u ~ a ~ , i o I i  may be valid even for delocatized w a v ~ f ~ ~ ~ c ~ i o ~ s  over the 
whole region. When the voltage matches the ~ u ~ ~ e ~ j n g  coiidition for ~ o n n ~ ~ t i n ~  
delocaliwd ~ ~ ~ v e f u ~ i c ~ i o ~ s  over the whole region, the ~ a v e f ~ n c t ~ o n  that is then 
obtained should be a ~ ~ r # ~ i r n a t ~ ~  by a delocalized w a v e ~ ~ n c t ~ o n  at F/ T: 0,  

In Fig. 7.6, we show the calculated conductance I / V  for the carbon nano- 
tube junctions of Fig, 7.4 (a) (12,0)-(9~0~ and (b) (12,0)-~$,0) zigzag carbon 
nanotubes. The plots in Fig, 7.6 are made as a function of applied voltage 
-0.5 < V/t < 0 3 ,  for two different Gaussian broadening values, AE/t  = 0.33 
(solid line) and AE/t = 0.50 (dotted line), used above far c a ~ c ~ ~ l a t ~ n ~  Gij~ etc. 
in the case of fa )  for ~ e t a l ~ i c - m e t a ~ ~ i ~  nariotube junctions, the conductance in- 
creases with increasing appiied voltage. The oscilfations in the con~uctance show 
resonances in the t u n ~ e i i ~ ~  probability between the two nanotubes, and these 
osciliations are closely related to the universal conduc~ance ~ ~ c t u a t i ~ n s  1164 re- 
cently reported in carbon nanotubes [165]. The increase of the conductance with 
~ n c r e ~ i n ~  V comes from the fact that (1) the resonance t ~ n ~ e l i ~ g  p r o b a b ~ ~ ~ t ~  is 
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Fig. 7.6: Calculated con- 
ductance I /V for (a) (12,O)- 
(9,O) and (b) (12,0~-{8,~) zigzag 
carbon nanotube junctjon (see 
Fig. 7.4 for their structures), 
as a function of voltage V in 
units of ltl, using two differ- 
ent Gaussian broadening vdues, 
AE/)tl  = 0.33 (solid line) and 
AE/ltl = 0.50 (dotted line), 
The estimated energy gap for the 
(8,O) s e ~ i c o ~ d u c t o r  nanotube is 

V/# 0.55ft 1. 

proportional to V, if the density of states is constant near the Fermi energy, and 
that (2) the current operator, Jq is proportional to V .  Again it is noted that 
there is no contribution to the conductance from the edge states, which can be 
automatically excluded because their wavefunctions have no amplitude in the 
junction region. 

On the other hand, in the case of Fig. 7.6(b) for a meta1-se~conductor 
nanotube junction, there is no conductance in the energy gap region for the 
semiconducting (8,O) nanotube though there is a finite density of states near 
the Fermi level. The results clearly show that a delocalized wavefunction is 
present near the Ferermi level only in the metallic (12,O) nanotube region. Thus 
it is concluded that a semiconductor-metal junction is well established even in 
a nano-scale, mesoscopic structure. 

When the length of the nanotube increases, there are more states near tke 
Fermi level. Thus the amplitude of the oscillations will decrease relative to the 
absolute value of the tunneling conductance and the average level spacings will 
decrease as energy bands are formed. The ~alculated resu~ts with larger energy 
b r o a d e n i ~ ~  AE {dotted line in Fig. 7.6) are closer to this case compared to the 
plot for smaller AE.  However, if there is a structural defect in the nanotube, 
weak ~oc~~ iza t ion  will make it possible to have a finite level spacing near the 
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junction region which gives rise to  conductance fluctuations. This might be 
a possible reason for the observation of universal conductance fluctuations in 
carbon nanotube systems in which the region of the voltage drop corresponds t o  
a disordered region [164]. 

In the above discussion we have assumed a voltage drop in the junction. 
The reason for this assumption is that we obtain three kinds of wavefunctions in 
the above calculation and that two of the three are localized in the constituent 
nanotubes. However, if there is no voltage drop at  the junction nor over the 
nanotubes, we can treat the conductivity by the linear-response theory known 
as Landauer's formula [166,167] (see Sect. 8.1.1). Especially when we consider 
a metal-metal junction system connecting two semi-infinite metallic nanotubes, 
the energy subbands a t  the Fermi energy can be well defined over the junction 
and thus this assumption may be applied. 

In Landauer's formula, the conductance G is given by 

(7.17) 

where t,, is the transmission coefficient between the incident channel n on the 
left side and the outgoing channel m in the right side. As for the channels, we 
consider only energy subbands which cross the Fermi energy. We have shown 
in the Chapter 4 that there are two metallic channels whose wave vector corre- 
sponds to  the It' and It'' points of the two-dimensional Brillouin zone. Thus, we 
have four contributions of channels {m,  n}  = { K ,  I<} ,  {It', K'} ,  {K ' ,  I{}, and 
{It", I('} [168,169]. The transmission probability tm, is calculated by the re- 
cursive Green's function technique [170] in which the S matrix is calculated by 
a tight-binding calculation [169] or by a Ic . p method in a magnetic field [168]. 
An interesting result 
R2/R1, expressed by 

When R2IR1 >> 2, 

is a scaling law for the radii of the constituent nanotubes, 
a dimensionless scaling function f , 

e2 
= zf ($). (7.18) 

numerical calculations show that f(R2/R1) oc ( R ~ / R I ) ~  
[169]. This result clearly gives the power dependence of the amplitude of the 
wavefunctions in the junction region. 

The conductance of a junction in a magnetic field is an important tool for 
monitoring the phase change of the scattered wavefunction at  the junction. The 
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c360 c240 

Fig. 7.7: Optimized toroidal structures: (a) torus C360 and (b) 
torus C240: Pentagons and heptagons are shaded. The diameters 
of the central toroidal hole are the same for (a) and (b), 7.8A, 
which is close to the diameter of the c60 molecule [171]. 

mixing of the wavefunctions between the I' and I-'  wave vectors occurs at  a pair 
of pentagonal and heptagonal defech, which are known as inter-valley scattering 
centers. We also have intra-valley scattering centers where the wavefunction is 
scattered by defects without experiencing any change of wave vector. Numerical 
cal~ulations show that the ratio of the intra- and inter-valley scattering processes 
can be modified by a magnetic field [168]. These phenomena can be applied to  
enhance the capabilities of nano-scale magnetic devices. 

7.5 Coiled Carbon Nanotubes 

In this section, we show much more complicated cage structures which have 
many pentagon-heptagon pairs. These complicated cage structures were first 
discussed in detail mainly by Ihara and his coworkers [171]. One possible shape 
for a nanotube is a toroidal (or donut) shape, and the other shape is a helically 
coiled shape, as shown in Figs. 7.7 and 7.8, respectively. 

Several observations of semi-toroidal structures are described in the litera- 
ture for single-wall nanotubes [54], and for multi-wall nanotubes, including both 
arc discharge grown nanotubes [107] and carbon nanotubes prepared from py- 
rolytic carbon and heat treated to  28OO0C [59]. Figure 7.9(b) shows a typical 
toroidal structure, which can be readily understood using the schematic diagram 
in Fig. 7.9(a) in terms of a sock turned inside out. 
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Fig, 7.8: Heli~ally coiled nanotubes: in both eases, one pitch 
contains a torus C ~ C ~ O .  (a) coil length = 12.9A and (b) coil length 
= 13.23k. The tiling pattern of heptagons in the inner ridge line 
is changed upon changing the coil length, though the pattern of 
pentagons in the outer ridge is fixed. 

Fig. 7.9: (a) I l lus t~a~ion  of a semi-toroidal termination of a nan- 
otube which is caused by six pairs of pentagonal and heptagonal 
rings in it hexagon network. (b) A TEM micrograph of a semi- 
toroidal termination of a nanotube which consists of' s i x  graphene 
shells [lo?]. 

Helically-coiled carbon nanotubes which are obtained by using a cobalt cat- 
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Fig. 7.10: A high resolution TEM image of a helix-shaped struc- 
ture with a radius of about 18 nm, and a pitch of about 30 nm. 
This multi-wall coiled carbon nanotube contains about 10 wall 
layers [173]. 

alyst on a silica surface, have also been observed by high resolution TEM with 
inner and outer diameters in the range 3-7 nm and 15-20 nm, respectively, and 
up to 30 pm in length, as shown in Fig. 7.10. This helical structure is well known 
in carbon fiber growth patterns [172], in which two growth points can occur at 
a single nanotube cap, and these two growth points provide the mechanism 
for twist, growth which characterizes helical carbon nanotubes. The multi-wall 
twisted helical carbon nanotube obtained in Fig. 7.10 for the catalytic pyrol- 
ysis of acetylene might be considered to foflow the same basic crystal growth 
mechanism. 

Another category of torus that has been observed experimentally is formed 
from a long single-wall nanotube by joining the two ends in a seamless way and 
thus has a very large outer diameter compared to the tube diameter. This self- 
assembled torus has been called a “crop circle” [174]. It is estimated from TEM 
observations that O , O l - l %  of certain nanotube samples are crop circle tori. 

Experimental observations of toroidal structures [173] have also inspired 
theoretica.1 investigation of such structures [81], The number of pentagons and 
heptagons, fs and f 7 ,  in the toroidal structures is given by the Euler theorem 
for polyhedra as 

f5 - f7 = 12(1 - 9) (7.19) 

in which the genus g is the number of topological holes. Since a torus (or a 
donut) has a single hole at, the center, (that is g = l ) ,  the number of pentagons 
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Fig. 7.11: A superlattice structure consisting of the periodic join- 
ing of the two armchair sections; (8,8)-(5,5) [175]. 

and heptagons are equal; f5 = f7. An infinite length of carbon nanotube can be 
considered as a torus with an infinite toroidal radius, and thus f5 = f7 here also. 
When f5 = f7 = 0, we get a single-wall carbon nanotube defined by a single 
chiral vector. When the structure is periodic and f5 = f7 = n (for n = 1 ,2 ,3 , .  . .) 
per the unit cell, we generally get helical coiled carbon nanotubes, which can be 
specified by n + 1 sets of chiral vectors. Thus a general coiled-shape nanotube 
can be considered to connect many joints, each with a pentagon-heptagon pair. 

If the helical coiled carbon nanotube does not have any helical pitch, and if 
some joint conditions concerning the twisting of the nanotube are satisfied at the 
ends, a toroidal carbon nanotube is formed, as in Fig. 7.10. Further, when the 
dihedral angle defined in Eq. (7.9) becomes zero, a one-dimensional superlattice 
is obtained, as shown in Fig. 7.11. 

When we consider the caps at  the both ends of a nanotube, we can no longer 
image a loop, so that g becomes zero, giving fs - f7 = 12. When we do not 
consider any heptagons a t  the caps, the number of pentagons f5 becomes twelve 
for the two caps. This case corresponds to  all fullerenes, in which case we have 
twelve pentagons per fullerene. 

In the case of a toroidal shape structure, pentagons and heptagons appear 
in both the outside and inside of the main ring of the torus. Thus the angle 
'p defined by Fig. 7.4 is about T ,  and the angle 28 defined by Eq. (7.8) is close 
to  20'. If a torus consists of such a joint with a bend angle of 2O0, eighteen 
pentagon-heptagon pairs are necessary to  make 360'. On the other hand, if the 



hole of the torus is missing at  the center, then twelve pentagons are sufficient 
to  form a fullerene. Since a solid angle of 7r/6 is missing at a pentagon defect, 
we can imagine a cone shape around a pentagon. The apex angle of the cone 
made by a pentagon is 2arcsin(5/6) = 113O,* That means that if adjacent 
pentagons are close to  one another or are arranged in three dimensions, the 
effective curvature becomes large compared with an isolated pentagon-heptagon 
pair. In fact, the most geometrically optimized calculation shows that from ten 
to  fourteen pentagons are necessary for constructing the outer side of a torus. 

The actual number of pentagon-heptagon pairs in the optimized structure 
calculated by Ihara et al., using a Stillinger-Weber model potential [171], is 
fourteen for (2240 and twelve for (2360 as shown in Fig. 7.7, which is consist~nt 
with the above discussion. Ihara e t  al. have also calculated the cohesive energy 
per carbon atom of (Cn)m by changing the order m of the rotational symmetry 
for a given unit of C,. The optimized m depends on the shape of the torus 
and the value of n, and the optimized cohesive energy lies between that  of c 6 0  

(-7.29 eV) and that of graphite (-7.44 eV)[171]. 
Helically-co~~ed carbon nanotubes such as in Fig. 7.10 should be defined by 

two chiral vectors and the length of the pitch per unit of the two nanotubes. The 
inner and outer radii, tubular radius, as well as the pitch and twist values of the 
helical structure may be obtained from the chiral vectors, which are obtained 
numerically by an optimization of the calculated structure. 

The electronic structure of coiled carbon nanotubes was discussed by Akagi 
et al. 11761. Their calcu~ated results for the 7r orbitals within the tight binding 
approximation show that helical nanotubes can be either (1) a metal, (2) a semi- 
conductor, or ( 3 )  a semi-metal, depending on the position of the pentagon and 
the heptagon, after folding the energy bands of the constituent carbon nanotube 
shells in accordance with the superstructure of the coiled carbon nanotubes. 
The semi-metallic electronic structure, with overlapping valence and conduction 
bands, comes from the fact that a coiled carbon nanotube consists of at least two 
different constituent carbon nanotube shells. Thus the lowest conduction bands 
and the highest valence bands do not always come from the same constituent 
shells. As a result, a small charge transfer occurs between these two bands, giv- 
ing rise to semi-metallic behavior. Since each carbon atom has three CT bonds, 

*The corresponding angle for corannulene is 130.9' and that for a regular truncated icosahedron 
is 117.4'. 
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the number of carbon atoms and thus the number of x electrons in the unit cell 
is always an even number.+ Therefore, the crossing of two energy bands at the 
Fermi level is sufficient for semi-metallic behavior, which however never occurs 
for a single-wall carbon nanotube without a pentagon or heptagon, because the 
T electrons show electron-hole symmetry around the Fermi energy.$ 

tThis fact clearly follows from Euler’s theorem. If we denote the number of carbon atoms and 
Q bonds by Nc and Nu, respectively, then 3Nc = 2Nu holds if there are no dangling bonds. 
The equation 3Nc = ZN,, implies that Nc is an even number. 
$The symmetry breaking between electrons and holes in tight binding results from the inclusion 
of the overlap matrix elements S,, in the matrix Hamiltonian. If these matrix elements are 
neglected, the band widths of the condu_ction and valence bands are identical, which means 
there is electron-hole symmetry. In the k * p’ approximation, the electron-hole symmetry also 
holds. 





CHAPTER 8. 

Transport Properties of Carbon Nanotubes 

At low temperature a single-wall carbon nanotiibe is a quantum 
wire in which the electrons in the wire move without being scattered 
by scattering centers. We review the difference between classical 
and quantum transport very briefly in Section 8.1. Then some re- 
sults on transport experiments in carbon nanotubes are summarized 
in Section 8.2. Conductance Buctuations as a function of the mag- 
netic field, known as universal conductance fluctuations, are found in 
carbon nanotubes, and are discussed both experimentally and theo- 
retically. 

8.1 Quantum transport in a one-dimensional wire 

In considering an electric current in a square wire with a width (and a depth), 
W ,  and a length L ,  the resistance R[Q] is given by Ohm's law, 

r 
L 

R = p -  w2 ' 
where p [am] is the resistivity. The inverse of R in Eq. (8.1) is the conductance 
G[U] which is related to  the conductivity d z l/p[Urn-'] by 

w2 
L 

G = (T-* 

In a macroscopic conductor, the resistivity p and the conductivity CT are physical 
properties which do not generally depend on either the length of the wire L or 
the applied voltage to  the sample but only on the material. However, when the 
size of the wire becomes small compared with the characteristic lengths for the 
motion of electrons, then p and (T will both depend on the length L through 
quantum effects. In the q~iantum regime, the electrons act like waves that show 

137 
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interference effects, depending on the boundary conditions and the impurities 
and defects that are present in the nanotube. 

In mesoscopic systems* we consider three kinds of characteristic lengths: (1) 
the momentum relaxation length (or simply, mean free path) L,, (2) the Fermi 
wavelength XF and (3) the phase-relaxation length L,  [177]. The mean free path 
L,  is the average length that an electron travels before i t  is scattered by a scat- 
tering center. The Fermi wavelength XF = 2?r /kF  is the de Broglie wavelength 
(Xg z h/rnv) for electrons at the Fermi energy. The phase-relaxation length 
L,  is the length over which an electron retains its coherence as a wave. This 
infers that the phase of the electron is well defined along the propagating path 
of the wave. Thus the electron waves can interfere not only with other electron 
waves, but also with themselves within the coherence or phase relaxation length 
L,. If the scattering of an electron is elastic,+ a phase shift of the wavefunction 
can be expected after the elastic scattering event, and thus the wave remains 
coherent. Thus elastic scattering does not contribute to L ,  but only to  L,. If 
the scattered wave loses energy by either exciting core electrons, spins associated 
with magnetic impurities or phonons, such inelastic scattering events contribute 
both to  L,  and L,. It is useful to  note that the effect of spin excitation can be 
suppressed by applying a magnetic field. 

Electron-electron scattering between two valence electrons does not con- 
tribute to L,  but only to L,. After two electrons are scattered by their mutual 
Coulomb potential that is dynamic, the phase information of the wavefunction 
as a function of the position r is lost. Thus the electron-electron interaction 
decreases L,. However, when we consider N electrons on the Fermi sphere, 
where electrons occupy states from the bottom of the valence band to  the Fermi 
energy in accordance with the Pauli exclusion principle, electron-electron inter- 
action between any two of the N electrons does not change the electronic state 
under interchange of the two electrons with each other.$ In this sense there 

*A mesoscopic system is a solid of small enough size, so that the interference of electron 
wavefunctions can be observed. A typical size of a mesoscopic system is around 1 - 100 nm 
which is larger than the microscopic or atomic size of around 1 - lOA and smaller than the 
macroscopic size which is more than lpm. 
tIn an elastic scattering process an electron does not change its energy as a result of the 
scattering event. The scattering by a static potential is known to be elastic. Here 'static' 
means that the potential has no freedom to promote the electron to an excited state. 
tStrictly speaking, the ground state of the N electrons is no longer the Fermi sphere in the 
presence of electron-electron interactions. When we take into account electron-electron in- 
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is no change in the Fermi sphere before and after electron-electron scattering. 
Here we do not consider the excitation of the two electrons out from the Fermi 
sphere, since such an excitation process requires energy which could be sup- 
plied by phonons. In accordance with the Pauli exclusion principle, we cannot 
distinguish any two electrons in the A'-electron state, and therefore we cannot 
say that the electron state is changed upon electron-electron scattering. In this 
sense we conclude that electron-electron scattering in the valence band does not 
contribute to L m .  

In transport experiments, only electrons near the Fermi energy contribute, 
so that the lengths Lm and L,  are scaled by the Fermi velocity VF as 

where 1, and t ,  are called the momentum relaxation time and the phase re- 
laxation time, respectively. These times are compared with the transit time t t  

during which an electron transverses the sample length L .  However, t m  and 
t ,  do not imply the time of a single scattering event by the relevant scattering 
mechanism, but rather correspond to an average time for the many collisions 
which result in significant changes of momentum and phase, respectively. Here 
a significant change means, for example, that the sum of the changes in momen- 
tum and phase over the times t ,  and t, reach hlc~ and x ,  respectively. 

In Table 8.1 we show the parameters which are used in the present chap- 
ter. In Table 8.1 we do not define yet M ,  L,, LT,  D, Ro and Go which will 
be introduced later in this chapter. The table will be useful for finding the pa- 
rameters in this chapter. The relationship between these characteristic lengths 
determines the three transport regimes: ballistic, diffusive, and classic trans- 
port. Ballistic transport consists of single electron conduction with no phase 
and momentum relaxation. In a ballistic conductor, the wavefunction of an 
electron is determined over the sample by solution of Schrodinger's equation. 
On the other hand, in diffusive motion, many elastic scattering events occur. 
However, the phase relaxation length is much longer than the mean free path in 
diffusive motion, which brings about the Iocalization of the wavefunction. Clas- 
sical conductance is the conductance which satisfies the Ohm's law. In classical 
teractions, the excited states of the N eiectrons are added to the variational function of N 
electrons which is expressed by a s u m  of the linear combination of the Slater d e t e r ~ t s ,  
and is known as the configuration interaction. 
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Table 8.1: Parameters in transport phenomena 

Symbol Name Definition 
M Number of Channels [States] A channel is the electronic states 

Sample length 

Fermi wavelength’) 

~ o m e n t u m  relaxation length*) 

phase relaxation length’) 

localization length 

Thermal diffusion length 
transit time 

momentum relaxation time”) 
phase relaxation time“) 
diffnsion constants 
quantized resistance 

which propagate an electron in a 
coherent way.(See Eq. (8.4)) 
Length of sample in the direction 
of the current. 
Wavelength of an electron at  the 
Fermi energy 2 a / k ~  
Length over which an electron 
changes most of its original mo- 
mentum. 
Length over which an electron 
changes most of its original 
phase. 
Length over which an electron 
wavefunction is extended. L,  = 
ML, (See Eq. (8.18)). 
L$ = & (See Eq. (8.28)) 
Time for an electron to go a dis- 
tance L.  
tna = L m b F  
1, = .&/vF 
I) = L$/tv  (see Eq. (8.28)) 
Ro = = 12.9064kn (see Eq. (8.6)) -- 

GO quantized conductance Go = = 77.4809 x lo-% (see Eq. (8.7)) 
Here V F  is the Fei-mi velocity and kp is the Fermi wave vector. 

*) We simply call L,  the mean free path (see further discussion in the text). 
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Table 8.2: Dependence of characteristic lengths on scattering mechanism 

Length Scattering mechanism 
magnetic electron- 

elastic') impurityb) Phonons electronc) 
Ni Ns, B T Nc, w 

Lrn Dec. Dec. Dec. No 
L,  No Dec. Dec. Dec . 

No: no effect, Dec.: Decreases 
a) Elastic means no freedom for carrier excitation by the scattering potential. 
*) The freedom for excitation of a spin can be suppressed by applying a magnetic 
field. 
'1 Only electron-electron interaction in the valence band is considered. 

conductance, both momentum and phase refaxation occur frequently and thus 
an electron can be considered as a particle. These conductance regimes will be 
introduced in the following subsections. 

In Table 8.2 we list the relationship between the characteristic lengths and 
the scattering mechanisms. In the table we list, too, how a givenscattering mech- 
anism changes the characteristic lengths. In elastic and magnetic scattering, the 
concentration of ionic and magnetic impurities, Ni and N ,  are parmeters  which 
can vary from sample and sample, The magnetic scattering can be suppressed 
by a magnetic field. The excitation of phonons is suppressed at low temperature 
but  the relaxation of an electron by emitting a phonon is determined by the 
e~ectron-phonon interaction. The electron-electron interaction is determined by 
the carrier concentration N ,  and the band width W of the valence band. The en- 
ergy band width W can be chanted by pressure and by some special geometry of 
the crystal such as the presence of superlattices. The frequency Of all scattering 
processes can be changed (not independently) by changing the Fermi velocity, 
which is implemented by applying a gate voltage to  the semiconductor-metal 
junction. Thus we can prepare materials for transport experiments by making 
the desired relationship between these parameters and the various scattering 
mechanisms. 

In the following subsections we review the characteristics of various transport 
regimes: ballistic transport (Sect. 8.1,1), classical transport (Sect. 8.1.2), local- 
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L -  Fig. 8.1: A ballistic conductor 
with length L is connected t o  two 

e-- 

P1 ................................... electrodes 1 and 2 whose chemi- ................................... ................................... cal potentials are 1.11 and p 2 ,  re- 
spectively. M is the number of 
channels for electrons with wave 

P2 

1 
vectors k > 0 to  propagating 
from 1 to 2. 2 

ization phenomena (Sect, 8.1.3), universal conductance fluctuations (Sect. 8.1.4), 
and negative magnetoresistance (Sect. 8.1.5)) all of which pertain to  transpork 
in carbon nanotubes under appropriate conditions. 

8.1.2 

For baIIistic transport we consider an ideal case where we have no electron scat- 
tering on a wire of length L connected to  two electrodes, 1 and 2 (see Fig. 8.1). 
Since the two electrodes have a large electron capacity, the electron chemical 
potentials for electrodes 1 and 2 are constants denoted by p1 and p 2 ,  (PI > pz) ,  
respectively. If there are no reflections of electrons at  the electrodes, only those 
electrons having wave vectors k > 0 (in going from the left to  the right in 
Fig. 8.1) and having energies in the range p2 < E < p i  contribute to  the net 
current. Electrons going to  electrode 2 are assumed to have an initial energy 
E at the point contact of electrode 1. In this case a voltage drop occurs at the 
contacts with the electrodes. The pseudo-Fermi energies* for the wire should be 
p1 and p z  for the k > 0 and k < 0 electrons, respectively. 

Because of the quantization of electronic states in the direction perpendic- 
ular to  the current, there are several energy subbands Ej(k) which have the 
same k value. Thus the total current 1 is given by the sum of the microscopic 
currents for the k > 0 states of all the subbands Ej(k) which have an energy 
p2 < E j ( k )  < 1-11. Hereafter the subbands which have k states in the energy 
range pz < E < 1-11 are called channels. The number of channels is a function of 
energy E, which is denoted by M(E)[states]. An electron which has a velocity 

*The pseudo-Fermi energies are defined here by the highest occupied energy for k > 0 and 
k < 0 electrons. If there i s  a thermal equilibrium state, there is a single Fermi energy for 
electrons. However, since there is no scattering between k > 0 and k < 0 electrons, we can 
treat k > 0 and k < 0 electrons as independent electrons. 

A ~ ~ ~ l z ~ t i c  c o ~ ~ ~ c ~ o r  (L << A,, L p )  



v = ~ - ' ( a ~ / a k ~  > 0 in an unoccupied state for 1-13 < E < p1 contributes to 
the microscopic current I.= e / t l ,  in which t l  is the carrier transit time t ,  = L / u  
(See Table. 8.1). Then the total current I is given by 

where the sum on k is converted to  the integral with a spin degeneracy of 2 and 
the inverse of the level spacing L/21r. 2e/h in Eq, (8.4) is the quantized current 
per subband per unit energy [A/J]. f ( E -  pi )  (i = 1,2) is the Fermi distribution 
function with the Ferrni energy denoted by pi.  When we assume that the total 
number of conduction channels M ( E )  is constant M over p2 < E < P I ,  we 
obtain the last line of Eq. (8.4). It is i m ~ o r t a n t  to  note that M ( E )  is not a 
density of states. In fact the dimension of M ( E )  and M is not [states/J], but is 
rather [states]. If t,he width of a wire W is very small (less than 1 nm), M = 1 
even for p1- p2 = 1 eV. On the other hand, if the width of a wire is on the order 
of 1 pm, and the Fermi energy is about 1 eV, M becomes very large (- lo6) 
for p1 - p2 = 1 eV, It should be noted that we have many k states even when 
M = 1, All the k states are integrated in Eq. (8.4). Thus we should not count 
the number of k states in the direction parallel to the current to M .  

Since V = ( p i  - pz)/e is the voltage between the electrodes, the resistance 
of the ballistic conductor is given by 

where R, is called the contact resistance and h/2e2 is 
RO , 

Ro=:-- 12.9Ot54kQ2, 
2e2 - 

(8.5) 

the quantized resistance 

The inverse of Eq. (8.5) gives the contact conductance G, which is related to 
the quantized conductance Go by 

2e2 
h G, = GoM, Go =: - = 77,4809 x lO-'U. 
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Thus in a wire with no scattering the conductance is proportional t o  M .  The 
quantized resistance and conductance can be observed in clean semiconductors 
at very low temperature on samples which have a small M [178]. 

When we consider the range of values of M for a metal nanotube of finite 
length L,  we expect to  find two energy bands ( M  = 2) for k > 0 (see Figs. 4.4, 
4.5 and 4.6). Thus in the ballistic limit, the conductance of metallic nanotubes 
is 2Go.f179] When the length of a nanotube L is finite, we expect to find discrete 
k values spaced by 27rlL. Even if the h states are discrete but still numerous, 
the relation v = bEj(k)/dK in Eq. (8.4) is applicable as a first approximation. 

When we consider static scattering, that is, scattering by a potential in 
one dimension, the wavefunction is solved by a one-dimensional Schrodinger 
equation. Since the phase and amplitude of the wavefunction at  electrode 2 
can be obtained from those at electrode 1, a similar discussion for the contact 
conduc~ance can be applied. The conductance G and the resistance R are thus 
given by 

where 7 is the transmission probability for a channel to go from electrode 1 to 
electrode 2, which is given by the sum of transmission probability from ith to j t h  
channel, ltaj 1” Here we assume again that 7 is constant near the Fermi energy. 
Equation (8.8) is known as the Landauer formula. The Landauer formula applies 
only if the wavefunction can spread over the whole sample. 

The resistance of a mesoscopic wire R,,, for a single channel is given in terms 
of the transmission probability 7 as 

since the reflected wavefunction, which is proportional to R = 1 - 7, causes a 
voltage drop in the wire. 

8.1.2 

In a macroscopic metal, phase recombination processes are expected. Thus we 
cannot solve the Schrodinger equation over the entire sample since the electron 
wavefun~tion cannot be described by a single phase. When we neglect the effect 
of interference during a scattering event, the total transfer probability is given by 

Cdnssic ~ ~ a ~ s ~ o ~ ,  L,  << L, << L 
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summing over each transmission probability and of each reflection 7 2 d  = 1-x, 
(i = 1 , .  . . N). When we consider multiple reflections between i = 1 and i = 2, 
the overall transmission probability 7 1 2  between electrodes 1 and 2, is given by 

We can rewrite Eq. (8.10) by using 

(8.10) 

(8.11) 

Using the formula for the resistance given by Eq. (8.91, and Eq. (8.11) we see 
that the resistance of the wires is additive, R12 = R1 + R2. We then appIy this 
result to the N scatterers and we get 

(8.12) 

where N is the number of scattering events and 7 is an average transmission 
probability for an individual scattering event over a mean free path L,n. Thus 
the total resistance is given by a series connection of microscopic resistances [see 
Eq. (8.9)lfor every momentum relaxation length L,. This is nothing but Ohm's 
law [see Eq. (8.1)] in which the macroscopic resistance is proportiona~ to L. 

8.1.3 

When we consider the phase shift at each scattering event, the wavefunctions 
which are reflected many times between 1 and 2 are added along with their phases 
and the sum is then squared to obtain the transmission probability. When we 
consider the transmission coefficient t l 2  for a wavefunction between electrodes 1 
and 2, then t 1 2  is given by an equation similar to Eq. (8.10), 

Localization, [Lm << L,  << L )  

(8.13) 

where t l ,  t 2 ,  7'1 and 1'2 is the transmission and reflection amplitudes of a wave- 
function, called the S-matrix. The phase shift 0 corresponds to a round trip 



between electrodes 1 and 2. From Eq. (8.13) we obtain the probability for the 
transfer of an electron from electrode 1 to electrode 2 

where = l . ta12,  and Ri = i ~ i 1 ~ .  It might seem that Eq. (8.14) should be 
compared to the case of the incoherent limit given by Eq. (8.10). However the two 
equations (8.14) and (8.10) are not analytically connected to each other, since the 
assumptions for the two equations are different as follows. In the incoherent limit 
of Eq. (8.10), we consider that the reflected wave is incoherent to the original 
wave. Thus we add the probability of multiple reflections in Eq. (8.10). On 
the other hand, in the coherent case, we consider many reflections of a coherent 
wave in Eq. (8.13) where we add the amplitude of multiple reflections. Thus the 
calculated T12’s in Eqs.(8.14) and [8.10) are generally independent. 

The resistance Rlz is obtained by taking an average over 8 such that (cos 8)  = 
0, to obtain 

where R1 and R2 are given by Eq. (8.9). In Eq. (8.15), Rlz is not additive 
(that is R12 # R1 + Rz.) and thus Ohm’s law is not expected to be valid. 
The non-additive term in Eq. (8.15) that involves 2R& causes an e x ~ o n e n t ~ ~ ~  
divergence for R as a function of L,  when R(L) is defined by a step of Lc - L,. 
Then Eq. (8.15) gives the ~ifferential equation,* 

(8.16) 
dR R(L + L,) - R(L) - Ro + 2R - =  - 
dL Lc Lc - 

The solution of Eq. (8.16) is 

( L  3 Go). (8.17) 

Thus the resistance becomes very large in the limit of large L so that the material 
becomes an insulator. This means that the wavefunction near the Fermi energy 
becomes localized so that the transmission probability from one electrode to the 

‘Here we assume the foliowing: R I ~  = R(L + Am), R1 = R(L), and R2 = R(AL)  = R(Lm) - 
Ro . 



8.1, Q U A ~ ~ U ~  TRANSPORT IN A O N ~ - ~ ~ ~ ~ ~ S ~ O ~ A ~  WIRE 147 

Table 8.3: Transport regimes of a conductor 
Regime Relationship Coherence length 
Classical L,  < L ,  << L N L ,  
Localized L,  << L ,  < L many L,’s 

weak L ,  < L ,  L,  
strong L,  > L ,  L C  

Ballistic Am > L, > L L 

other is almost zero. This is known as the localization phenomen0n.t Localiza- 
tion can occur even when M is large. In the case of large M ,  we can redefine 
the localization length L,  by[l80] 

L,  = MA,. (8.18) 

When L,  is much larger than L,, then the strong localization effect of Eq. (8.17) 
occurs. In the strongly localized regime, the conductance arises from the thermal 
hopping from one localized site to another. On the other hand, when L ,  is larger 
than L,, then L in Eq. (8.17) should be terminated at L = L,. In this case, 
the conductor is said to be in the weakly localized regime. For both strong and 
weak localization, the phase relaxation length L,  is required to be much larger 
than the mean free path L,. 

The localization becomes strong for large L,, for small M ,  and for small 
L,  which makes L,  smaller. Most low-dimensional metals, such as thin metallic 
wires or carbon fibers with high THT, are known to be in the weakly localized 
regime and heavily-doped semiconductors and intercalated graphite with a large 
fluorine uptake are known to be in the strongly localized regime [181,182]. 

In Table 8.3 we summarize the cunditions pertinent to the various trans- 
port regimes by listing the pertinent relations between the characteristic lengths 
and the coherence length of an electron. The coherence length of an electron 
infers the existence of an upper limit for the length over which we can solve the 
Schrodinger equation for an electron with a single phase. When the coherence 

tThere are two kinds of localization. The localization described by Eq. (8.17) is the effect of 
a random potential on the one-electron wavefunction and this is called Anderson localization. 
When the electron-electron repulsion is large compared with the average level spacing, the 
electron cannot move, just like cars on a highway not being able to move above a critical 
density. This second type of localization is called Mott localization, 



length or inelastic scattering length (- 15,) is smaller than the elastic scattering 
length (Lm), classical transport occurs, in which the resistance is an additive 
property. When the coherence length contains many elastic scattering lengths 
( L ,  << Lv) ,  quantum interference occurs within the lengths of L,  or L ,  for the 
weak or strong localizat~on regimes, respectively. When the sample is large and 
thick, the interference effect can be observed as a microscopic scattering process, 
but its contribution to the resistance becomes small compared with the classical 
resistance. On the other hand, if the coherence length is close to the sample 
size, the conductance is described by a wavefunction that is defined over the 
entire sample. Furthermore, in a ballistic conductor, the conductance is given 
by the Landauer formula [Eq. (8.811 in which the number of propagating states 
and their probability for transmission determines the conductance. 

In the weak localization regime ( L ,  << L,  < L ,  ), we can observe two inter- 
esting quantum interference effects: universal conductance fluctuations (UCF) 
and negative magnetoresistance (NM),  as discussed in Sect. 8.1.4 and Sect. 8.1.5, 
respectively, 

8.2.4 Universal Con dsctance F~uctsutio~~ 

When the phase delocalization length L ,  is close to  the sample size L ,  inter- 
ference effects associated with the wavefunction become important [164,183]. 
If we prepare many samples of the same size, the conductance will fluctuate 
from sample to sample because of differences in the inhomogeneous distribution 
of scattering centers. Let us consider M paths of conducting current for each 
sample. For the each path, we have many scattering centers and thus many 
scattering processes because of the multiple scattering events for the many cen- 
ters. When M = 1, the conductance fluctuation, d m  is 2e2 /h .  since the 
transmission probability may be distributed homogeneously from 0 to  1. Here 
the (6G2) is defined by 

(SG') = (G2> - (G>2, (8.19) 

where ( X )  denotes the ensemble average of X for the sample. An ensemble 
average means an average for many samples with different impurity distributions. 

Here we show that the fluctuations do not depend on M unless L ,  - L." 

*If M paths were independent, the fluctuation m / ( G )  for M paths would be proportional 
to ry 1/m. The fact that the fluctuation does not depend on M is an interference effect which 
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M=4 .- 
1-11 

..........,...... 

1-12 

1 AP (P4) 2 

Fig. 8.2: A scattering process 
of the reflected wavefunction for 
the path entering 1 and exit- 
ing 4 in electrode 1 (A,(1 --$ 

4)).  Here we consider 4 chan- 
nels (M=4). Within the phase 
coherence length L,, the ampli- 
tude of the scattering wavefunc- 
tion is given by Eq. (8.23). 

We start from the Landauer formula Eq. (8.8) for the conductance normalized 
by 2 e 2 / h ,  

9--- - M T = M - M 7 Z ,  (8.20) 

where 7, R denote the average on M possible paths of 7 ( r n  -+ n)  and R(rn -+ 

n) ,  (1 5 n 5 M )  for given rn, where rn and n denote specific channels. In Fig. 8.2 
we show a scattering process of R( l  -+ 4). There are many scattering processes 
in R(l  + 4) as shown below. When we have M channels, the conductance 
is generally proportional to  M as shown in Eq. (8.20). Since ( 9 )  = M ( T )  = 
M - M ( R )  and (g2) = M2(?') = M 2  - 2 M 2 ( z )  + (E)2 ,  the conductance 
fluctuations can be derived from either the fluctuation of (s") or of (S?), 

2e2/h 
- -  

(Sg2) = M2(6T2)  = M 2 ( 6 X 2 ) .  (8.21) 

Here we consider the fluctuations of the reflectivity, which are known to be 
relevant for the following discussion. The reflected wave function \k(n -+ m), for 
the path entering n and exiting to  rn in electrode 1 (see Fig. 8.2), is given by 
the summation of the wavefunction Ap(m + n)  for the pth multiple scattering 
processes, 

Q(n -+ rn) = C A , ( r n  -+ n) ,  (8.22) 

where a scattering process of the reflected wave, AP(m -+ n)  can be expressed, 
for example, by 

P 

Ap(m - n)  = t (m  -+ ml)  e x ~ { i k n ~ L r n l } d r n ~  -+ W )  e x ~ { i h n ~ L r n ~ }  (8.23) 
. ' . t (m.,  -+ n)exp{it,L,}. 

can be seen universally. Note that the fluctuations become small for samples large compared 
with L,. 
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When we assume that the overall phase of Ap(m 4 n) is random in @(n 4 m), 
the ensemble average of the reflection probability R(m + T I )  is given by 

(R(m -t n)) = lQ(n -+ m>I2 = lAPl2 + ApA:t) =( 1Ap12), 
P f P ’  P 

(8.24) 
where we use the fact that the ensemble average of the sum of ApAil for p jt+ p’ 
gives zero because of the assumption of a random phase. In order to discuss the 
fluctuations we define the following quantity 

( p  

(R(pn 3 n)’} = C {ApAp/Ap//Ap/i i }  
P,P’ !PI’ ,P“‘ 

P,P’ ,P” IP”’ 

= C ( I A , I ~ ~ A , , ~ I ~  [ ~ p , p ~ ~ t j p t , p l l ~  + ~ p , p l ~ + , p l l ]  (8.25) 

= 2 { R ( ~ ~ T I ) } Z  

Thus the fluctuations of the reflectivity are given by 

(6R(m TI) ’ )  (R(m + n)’) - (R(m -+ = (R(m -+ TI ) ) ’ .  (8.28) 

Since (R(m -+ n))  - l/Mt we get from Eq. (8.21), 

(Sg2) N 1. (8.27) 

Thus the fluctuations in g are on the order of the quantum of conductance 
2e2/h which does not depend on M {or on a particular choice of material). 
We cannot avoid this fluctuation from sample to sample with the same impurity 
concentration. This fluctuation can be seen by changing the length of the sample 
provided that the sample size is smaller than the phase relaxation length ( L  c 
L,) .  The effective distribution of impurities can be changed by applying a 
magnetic field since the phase of each process [see Eq. (8.23)] is changed by the 
vector potential eA. 

When the phase delocalization length L, becomes smaller than L ,  the fluctu- 
ations can be smoothed out. When we consider N = L / L ,  quantum fluctuatin~ 
conductors in series, the fluctuation of the conductance become l/N3i2 N L-3/2 
smaller than for a single conductor. This power dependence can be seen by 
changing L. 

tThe probability of choosing channel n from M channels i s  on the order of 1/M. Here we 
assume that R and 7 are in order of 1, Note that the conductance G is N MGo. 
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When we fix the sample length L ,  the energy h/ t ,  can be considered as an 
energy width for phase-coherent motion. This means that within a lifetime t , ,  
an electron can vary its energy by h/ t ,  from the uncertainty relation. At high 
temperatures such that EBT is larger than h/t, and L,  is larger than L ,  then 
N = kBT/(h/tlp) independent channels are open incoherently. When we define 
the thermal diffusion length LT for a given diffusion constant D ,  the Einstein 
relation savs that 

(8.28) 

(8.29) 

Thus the universal conductance fluctuations show a temperature dependence 
given by 

tL 
constant T < -  

(8.30) t,kB m= { Go ( 2 ) l J 2 T - 1 / 2  T >  - h 
t l p h  

8.1.5 Negative Magnetoresistance 

An another interesting phenomena observed in the weak localization regime is 
negative magnetoresistance, which refers to a decrease in the resistance with 
increasing magnetic field. Here we show the basic idea behind the negative 
magnetoresistance. 

Consider the special case for A, [see Eq. (8.23)] in which the starting and 
ending sites are identical, that is R(m + m). Consider a process A, : m -+ 

ml -+ ml + . . .  + mp + m, and the time-reversed processes A: : m + 
m q . .  + -+ m2 --f ml -+ m, so that the overall phases are identical. Thus when 
we consider the reflection probability of Eq. (8.24) for R(m -+ m), we expect a 
coherence between A, and A:, 

2 
R(m --f m) = ((A1 + A2 + . * .) + (AT + AT + * .)I / A  + Aa12 = 41AI2. 

(8.31) 
If there is no phase correlation between A and Aa, R(m ---$ m) would give 
21AI2. Actually there is no time reversal symmetry in R(m -+ n)  for n # m, 
since R(m ---t n) and R(n -+ m) are different paths from each other, so that the 
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reflection probability becomes 21A1’. The coherence associated with Eq. (8.31) 
i s  known as enhanced backward scattering, and can be applied to radar systems 
for searching a cloud which can be treated as a random material. 

When a magnetic field is applied, the phases of A and A” become different 
from one another. The phase difference is proportional to the magnetic flux 
penetrating through a loop made from a set of Ap and A?. However, since the 
lengths of the loops are different for different Ap’s, thus we can no longer expect 
any enhanced backward scattering, thus decreasing the reflection probability, 
This is an explanation of the origin of negative magnetoresistance under weak 
localization conditions. 

8.2 Transport experiments on carbon nanotubes 

In this section we discuss quantum transport in carbon nanotubes. Whereas 
Sect. 8.1, considers quantum transport in general, we start this section with 
a few comments about quantum transport in carbon nanotubes generally and 
then proceed to discuss specific experiments. Since the Fermi surface of a 1D 
nanotube consists of the two points f k p ,  scattering processes involve taking an 
electron from +CF to - I F  or visa versa. For an armchair nanotube this wouId 
involve a phonon of 47r/3T where T is the Iength of the 1D translation vector, 
whereas for zigzag nanotubes, phonon with wave vectors 2n/T are effective. 
Transverse acoustic (out-of-plane) phonons are most effective in this scattering 
process through the electron-phonon interaction [78]. 

Transport, measurements of nanotubes show different aspects depending on 
the sample type, such as a single-wall nanotube (SWNT), a single rope (SWNT 
bundle), a single multi-wall nanotube (MWNT) and a single MWNT bundle. 
The most difficult experimental problem for the transport experiments on car- 
bon nanotubes is the attachment of electrodes to the extremely thin nanotubes, 
and this is discussed in Sect. 8.2.1. In the initial transport experiments on an 
individual carbon nanotube [184], rather large diameter (-20 nm) multi-wall 
nanotubes were used. Subsequently, single wall nanotubes became more avail- 
able and the focus of research on the transport properties of carbon nanotubes 
shifted emphasis to the single-wall nanotubes, since single-wall nanotubes repre- 
sent a model system for studies of q ~ a n t u m  transport, 51s discussed in Sect. 8.2.2, 
where transport properties for an isolated single-wall nanotube are presented. 
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This is followed by a report in Sect. 8.2.3 on transport in a single rope of single- 
wall carbon nanotubes where inter-tube interactions play a role. Phenomena 
associated with weak localization and universal conductance phenomena are ob- 
served in multi-wall nanotubes and are discussed in Sect. 8.2.4. 

8 .21  Attaching Conlacis 

We summarize here some of the techniques that have been used for attaching 
contacts t o  carbon nanotubes for carrying out transport experiments [185], One 
method for attaching contacts t,o an nano tub~  is to  place a liquid drop, contain- 
ing suspended nanotubes, on a substrate on which electrodes were previously 
deposited. For those nanotubes which connect two electrodes, transport me* 
surements can be carried out [150,151]. In another version of this method, a 
single contact is made with this technique and a scanning tunneling probe is 
used to  make the second contact as this probe moves along the wire, continu- 
ously measuring the resista.nce as a function of nanotube length [186]. A third 
method involves the use of sophisticated semiconductor Si technology to attach 4 
tungsten leads by a focused ion beam deposition technique, as seen in Fig. 8.3 for 
four contacts attached to  a multi-wall nanotube in the 5-10 nm diameter range 
on an oxidized silicon surface [185]. The 80 nm wide tungsten wire contacts are 
deposited by focused-ion-beam induced deposition using a W(CO)6 carrier gas, 
The nanotube is visualized by the focused-ion-beam with a low beam current 
(4 PA) for imaging the nanotube. The deposition of the contacts is performed 
under computer control without any visualization. The distance between the 
probing leads on the sample is in the 0.3-1.0 pm range. The four Leads are con- 
nected to  a gold pad and the currents a.nd voltages are observed by a four-point 
contact measurement. The advantages of this method is that 4 contacts can be 
placed reliable on the single nanotube. The effect of strain introduced by lead 
attachment process is not understood. 

Another approach for making electrical contact, that utilizes so of the tech- 
niques mentioned above, is seen in Fig. 8.4 where the carbon nanotube is placed 
on top of a Si/SiOz substrate on which two P t  electrodes had previously been de- 
posited. This method has the advantage of perturbing the nanotube only weakly, 
but has the disadvantage of a high contact resistance and of not providing four 
contacts 
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Fig. 8.3: An individual multi- 
wall carbon nanotube connected 
to four 80 nm wide tung- 
sten wires by focused-,ion-beam- 
induced deposition [185]. 

Fig. 8.4: AFM tapping-mode 
image of a carbon nanotube on 
top of a Si/SiOz substrate with 
two 15 nm-thick and 140 nm 
wide Pt electrodes. A schematic 
circuit diagram is presented at 
the top of this figure and is rel- 
evant to  the transport experi- 
ments shown in Fig. 8.5 [51]. 

8.2.2 APL I ~ ~ z ~ % ~ ~ a ~  Siszgle- Wall ~ a ~ ~ t ~ ~ e  

We now discuss experimental results from the first transport experiment on an 
individual isolated single-wall carbon nanotube [51]. In this experiment a single 
wail nanotube (the very thin wire in Fig. 8.4) is placed on top of a Si/SiOz 
substrate with two 15 nm-thick and 140 nm wide P t  electrodes as shown in 
Fig. 8.4 [51] and the bias voltage vbiw is measured between the two electrodes. 
A gate voltage Vgate, applied to the third electrode in the upper-left hand corner 
of Fig. 8.4 is used to change the electrostatic potential seen by the nanotube. 
The bias voltage v b i a  changes the chemical potentials of the two electrodes, p1 

and pz (see Fig. 8.1), while the gate voltage Vgate changes the position of the 
energy levels of nanotube relative to the chemical potentials, p1 and pz,  Because 
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Fig. 8.5: a. Current-voltage 
curves of a carbon nanotube at 
a gate voltage of 88.2 mV (curve 
A), 104.1 mV (curve B) and 
120.0 mV (curve C). In the inset, 
more I - vbim curves are shown 
with V,, ranging from 50mV 
(bottom curve) to 136 mV (top 
curve). b. Current versus gate 
voltage at vbim = 30pV.  The two 
traces were performed under the 
same conditions and represent a 
bistability (see text) [51]. 

of the finite length of the nanotube ( L  =3 pm), the one-dimensional energy band 
is split into energy levels whose spacing AE = h v ~ / 2 L  is estimated to  be AE N 

0.6 meV, where we use an estimate for the Fermi velocity of VF = 8.1 x 105 m/s. 
The t w ~ p o i n t  resistance at room-temperature of such a single wall nanotube is 
N 1 Ma. The estimated contact resistance, obtained from a similar nanotube on 
which a four-point contact geometry was used, is 300kSZ at room temperature 
and 1MS2 at 4 K. 

In Fig. 8.5a, we show the I - vbia curves at a gate voltage of 88.2 mV (curve 
A), 104.1 mV (curve B) and 120.0 mV (curve C )  at 5 mK. The plateaus of non- 
zero current clearly show ballistic transport when a conducting channef is in the 
range of vbim = ( p l  - p Z ) / e .  The position of the steps in the I - vbim curves is 
changed by increasing the gate voltage, However, we must consider not only the 
level shift effect but also the Coulomb charging effect of the nanotube, whereby, 
the nanotube is considered as a capacitor with a capacitance C. At very low 
temperature, such that the thermal energy k g T  is smaller than the charging 
energy E, of an electron k g T  < E, = e 2  /2C, the current Aow can be blocked 
by this energy shift when the charge from the current flow itself shifts the levels 
out of the bias window between p 1  and p 2 .  Thus, current Row in Fig. 8.5b 
appears only when him > E,. Since the energy of the levels in a nanotube 
can be modified by Vgate, the step positions shown in the inset of Fig. 8.5a are 
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Fig. 8.6: Conductance G = I/vbi, vs AVgate at  the bias volt- 
age vbim for three different temperatures with the bias win- 
dow vbias = 1OpV. The solid lines represent fits to the function 
G 0: ~osh-~(eAV, ,~ , /a2k~T) .  Left inset shows a model for ex- 
plaining the temperature dependence of G. Right inset shows the 
current vs gate voltage for vbim = 0.4,0.8,1.2 and 1.6 m v ,  show- 
ing the contribution from the lower-lying levels within the bias 
window [51]. 

smoothly changed by changing Vgate. 
When the bias window denoted by vbjm is very narrow (30pV) ,  the current 

flow appears like a delta function of Vgate, only when the energy levels are in the 
bias window between p1 and p2, as shown in Fig. 8.5b. Some double &functions 
are also observed in the two traces in Fig. 8.5b, which are taken under the 
same experimental conditions. This bistability may be explained as the result of 
switching offset charges that shift the energy levels of the 1D carbon nanotube. 

Figure 8.6 shows the temperature dependence of the spectra of a sharp peak 
that is observed in Fig. 8.5b, as a function of the gate voltage shift AV,,,, from 
the peak conductance point, with the minimum bias window vbim = 1OpV. A 
decrease in intensity and a broadening of the conductance peak with increasing 
temperature shows the relaxation of the phase and amplitude of the resonance 
tunneling by phonon scattering events. Solid lines in Fig. 8.6 are fitted to the 
function G 0: ~osh-~(eAv~,~ , /2akBT) ,  where the factor a = 16 obtained from 
Fig. 8.6 is the ratio of AVgate to the shift of the energy levels. This ratio corre- 
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sponds t o  the ratio of the capacitance of the gate to that of the nanotube. The 
temperatures in Fig. 8.6 (110, 390, and 830 mK) are the fitted temperatures for 
the plotted curves, while the measured temperatures are 5 ,  240, and 600 mK, re- 
spectively. The discrepancy between the fitted and the observed temperatures is 
due to  the finite bias voltage (10pV = 116 K) and the residual noise in the mea- 
surement system. Although the absolute value of conductance is ff0.03(2e2/~), 
the quantum conductance 2e2fh could be obtained at a smaller bias voltage. If 
the conductance is observed with a smaller bias voltage and a larger ct. value, 
the conductance of Fig. 8.6 wiil show saturation at 2 e 2 / h ,  thus providing clear 
evidence for quantum c o n d u c t ~ c e .  

When the gate voltage increases (see the right inset of Fig. 8.6}, step struc- 
tures are observed. For curves at  high gate voltages (about 140mV) plateaus 
can be seen for different values of Vim. The plateaus correspond to the entry of 
a state at the Fermi level (denoted by the solid line in the left inset of Fig. 8.6) 
into the bias window. When we further decrease Vgater the next plateau appears 
and is attributed to  conduction processes associated with the lower level below 
A E  - 0.4 meV (see the left inset of Fig. 8.61, which is consistent with the es- 
timated level spacing of AE - 0.6 meV for a L =3pm nanotube. A value of 
a = 1 2  is estimated for the data in Fig. 8.6 from the ratio of AV,,, to AE. This 
value of a = 1 2  is in satisfactory agreement with the previous value of ~ ~ 1 6  in 
the first approximation. The further decrease of Vgate brings the system back to 
a no current situation, since the state at the Fermi level is now located outside 
of the bias window, These results are consistent with the fact that the curves in 
Fig. 8.6 with a larger bias window vbim show a signal within a larger range of 

The experiments, described in Figs. 8.4, 8.5 and 8.6, dearly show ballistic 
transport effects associated with the discrete levels imposed by the finite length 
of the one-dimensional nanotube conductor. The observed phenomena can be 
understood by steps in the quantum conductance, and charging effects amociated 
with the micro capacitances of the nanotube and the gate. 

The resistance measurements for various nanotube samples show that there 
are metallic and semiconducting nanotubes, which was first predicted theoreti- 
cally, as discussed in Sect. 4.1. The resistivity is about 10-4-10-3 Qcm for the 
metallic nanotubes, while the room temperature resistivity is about 10' Qcm 
in semiconducting nanotubes. The semiconducting nanotubes exhibit a slope 

Vgate * 
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Fig. 8.7: I - V characteristics of a single 12-nm-diameter rope 
made up about 60 1.4nm-diameter nanotubes at different temper- 
atures for the rope segment between contacts between 2 and 3 
(Left inset). In the right inset shows schematic energy levels near 
Fermi energy which are quantized because of the finite length of 
tube. [l87] 

in a plot of logR versus 1/T, thereby indicating an energy gap in the range 
0.1-0.3 eV, which is consistent with the theoretical values of the energy gap 
for the corresponding nanotube diameters. On the other hand, for the metallic 
nanotubes, large variations from sample to sample are observed in the absolute 
values of the resistance and in its temperature dependence from 4 K to 300 K. 
This variation has been attributed to  the presence of many defects in ~ u l t i - w a l ~  
carbon nanotubes. Since the nanotube sample shows a slight positive magne- 
toresistance, the sample may contain a large number of defects, which seriously 
affect the measured conductance. 

8.2.3 An I n d ~ v ~ d u a l  Rope of Single- Wall ~ ~ n o ~ ~ b e ~  

Next we show transport results from a single 12-nm-diameter rope containing 
about 60 SWNTs of 1.4 nm-diameter [187]. In Fig. 8.7, the current-voltage 
characteristics are shown for the rope segment between contacts between 2 and 
3 (Left inset). At room temperature, the I - V characteristics gives Ohmic 
behavior, while the conductance is suppressed near V = 0 for T < 10K. A similar 
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Fig. 8.8: Resistance R(T) of a 
bundle of muiti-wall nanotubes 
as a function of temperature at 
the indicated magnetic field val- 
ues. The temperature-dependent 
resistance R(T) shows three 
kinds of temperature regimes 
(see text [150]. 

gap is obtained by other single ropes with different diameters and lengths [187]. 
From Fig. 8.7, we see that the resistivity decreases with increasing temperature, 
and this is not typical metallic behavior. 

In another experiment on a single rope, about a €O% increase of the resis- 
tivity was reported from 50 K to 280 K [l88], while a decrease in the resistivity 
with increasing T was found bejow 50 K. A negative ~~~~~ with a dependence of 
pfT) - was even found in the higher temperature region when a single 
rope has a disordered nanotube alignment. The reasons for these temperature- 
dependent trends are not explained. It is believed that the transport between 
single-wall nanotubes in a rope makes an essential contribution to the current 
at low temperatures. 

8.2.4 

One of the early transport experiments on multi-wall nanotube bundles with 
50 nm diameter showed a negative magnetoresistance. In Fig. 8.8 we show the 
resistance of a bundle of multi-wall nanotubes as a function of temperature at 
several values of the magnetic field (4 T, 7 T, I1 T, and 14 T) 21501. LFrorn 

Magneto-  Transport in Mu&& Wal l  Nanotubes 
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the figure we can see three kinds of temperature regimes denoted I, 11, and 
111. In the higher temperature regime I, the resistance continuously increases 
with decreasing temperature. These phenomena were accounted for using a 
simple two-band semimetal model [189] for the electron and hole concentrations 
n and p as a function of temperature T, and a value of 3.7 meV for the band 
overlap, which is much smaller than A == 40 meV in 3D graphite [190]. Since the 
interlayer interaction in the multi-wall nanotube is incommensurate, as discussed 
in Section 11.4, the band overlap can be expected to  be much smaller, which 
is consistent with the smaller value of A in the small diameter nanotubes. In 
the temperature regime 11, the resistance is almost independent of temperature 
and has a value of loe2 to $2-cm, thereby suggesting a conducting nature 
of carbon nanotube bundles. In the temperature regime 111, a peak in the 
resistance is observed whose origin may relate to  possible ordered states induced 
by lowering the symmetry. By lowering the temperature, the resistance quickly 
decreases. 

In the low temperature regime below 77 K, a relatively small negative mag- 
netoresistance AR/R = [R(H)-R(O)]/R(O) < 0.1 is observed with I? normal to  
the tube axis. There are at least two possible reasons for the observed negative 
magnetoresistance. One explanation is the effect of weak localization, as dis- 
cussed in the previous section. However, weak locatization effects are expected 
to  occur at much lower temperatures. The other possible reason is associated 
with Landau level formation at the Fermi level. As shown in Chapter 6, the 
n = 0th Landau level in two dimension~l graphite always appears at the Fermi 
energy, and the density of states increases with increasing magnetic fieid, re- 
flecting the degeneracy of the Landau orbits. This enhancement of the density 
of states at the Fermi Level contributee to an increase in the current path and 
thus is expected to give rise to a negative magnetoresistance. Thus the nega- 
tive magnetoresi~tance above 4 K may be associated with a Landau-level effect 
(called the Bright model 11911). 

In the very low temperature region below 1 K ,  the negative magnetore- 
sistance shows relatively large values of AR/R as shown in Fig. 8.9 [150]. In 
the figure, the magnetoresistance shows the same magnetic field dependence at 
2.3 K and 1.13 K.  However below 1 K,  the magnetoresistance becomes quite 
large (up to AR/R = 0.3), which is a typical value for the magnetoresistance in 
the weakly-localized regime [192], The phase delocalization length L ,  increases 
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Fig. 8.9: Magnetoresistance 
AR/R as a function of mag- 
netic field at low temperatures 
below 1 K.  The data are taken on 
the same multi-wall carbon nan- 
otube as in Fig. 8.8 [150]. 

Fig. 8.10: Magnetic field de- 
pendence of the magnetoresis- 
tance of a 20 nm multi-wall car- 
bon nanotube at the indicated 
temperatures. The fluctuations 
in resistance that are observed 
at  the same values of magnetic 
field at  different temperatures 
are known as universal conduc- 
tance fluctuations [184]. 

with decreasing temperature so that the loop of phase difference discussed in 
the previous section becomes large even for small magnetic fields. Thus a nega- 
tive magnetoresistance effect is observed in carbon nanotubes at lower magnetic 
fields than is usually found in graphite. At the lowest temperature of 0.3 K in 
Fig. 8.9 a saturation of AR/R is observed at large magnetic fields. These data 
show a complete quenching of the enhanced backscattering. It is interesting that 
the negative magnetoresistance phenomena occur below that temperature. 

In Fig. 8.10 the magnetoresistance for a 20 nm multi-wall nanotube at very 
low temperature is presented as a function of the magnetic field. Clearly the 
magnetoresistance is seen to fluctuate randomly by varying the magnetic field. 
However the peaks in the magnetoresistance for different temperatures appear 
at the same value of the magnetic field. Thus the fluctuations in the magnetore- 
sistance are not associated with noise but rather are due to a quantum inter- 
ference effect known as universal conductance fluctuations, which is discussed 
in Sect. 8.1.4. By applying an external magnetic field, the carrier scattering 
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processes are changed, thus having the same effect on the magnetoresistance 
as is observed in Fig 8.10. The effect of variation of the magnetic field is the 
same as the fluctuations in the conductance that would be observed from sam- 
ple to  sample. The amplitudes of the two indicated fluctuations in Fig 8.10 
are constant in magnitude below -0.4 K ,  AG = O.lGo, where Go = 2 e 2 / h  is 
the quantum conductance [see Eq. (8.7)], showing that the multi-waI~ carbon 
nanotube consists of N - 5 serial quantum wires of length L,. The amplitude 
of the fluctuation is constant below 0.4 K and decreases as T1I2 above 0.4 K, 
consistent with Eq. (8.301, from which we can estimate t ,  = 2 x sec. 



CHAPTER 9. 

Phonon Modes of Carbon Nanotubes 

The phonon dispersion relations of carbon nanotubes can be un- 
derstood by zone fold~ng the phonon dispersion curves for a single 
2D graphene sheet. In Sec. 9.1 and See, 9.2, we first explain how to 
calculate phonon dispersion relations in two-dimensional graphite. 
Then we discuss phonon dispersion relations for carbon nanotubes 
in See. 9.3. The r one-folding technique is the same as that used 
in treating the electronic structure of carbon nanotubes, which is 
discussed in Sec. 4.1.1. We also consider the three-dimensional dy- 
namical matrix, taking the curvature of the nanotubes into account, 
and obtain results for the phonon dispersion relations. 

9.1 Dynamical matrix for phonon dispersion relations 

We start with an approach for calculating the phonon dispersion relations within 
a force constant model, in which inter-atomic forces are represented by spring 
constants. Although the model is simple, we can reproduce the experimental 
results as closely as possible by increasing the number of the force constants. 

In general, the equation of motion for the displacement of the ith coordinate, 
ui = (21,  yi, zi) for N atoms in the unit cell is given by 

Miiii = I W ( u j  - U i ) ,  (i = 1,. . . , N ) ,  (9.1) 
j 

where Mi is the mass of the ith atom and Id”) represents the 3 x 3 force 
constant tensor* between the ith and the jth atoms. The sum over j in Eq. (9.l), 

*A second rank tensor is defined by a 3 x 3 matrix whose elements ( K z s ,  KzY, . . ., K z z )  can be 
transformed as U-lh’U, where U is a unitary matrix which transforms the x ,  y, t coordinates 
into another orthogonal r’, y’, z’ coordinate system. 
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is normally taken over only a few neighbor distances relative to  the ith site, 
which for a 2D graphene sheet has been carried out up to  4th nearest-neighbor 
interactions [193]. In a periodic system we can perform a Fourier transform of 
the displacement of the ith atom with the wave number, Ic’, to obtain the normal 
mode displacements ui’ 

where the sum is taken over all ( N n )  the wave vectors k’ in the first Brillouin 
zone+ and Ri denotes the original position of the ith atom. When we assume the 
same eigenfrequencies w for all ui, that is ui = - w 2 u j ,  then Eq. (9.1) becomes 

C I < ( i j )  C e-ik’.Rju(i) 
k’ (9.3) 

j k’ 

Upon multiplying both sides of Eq. (9.3) by e i k . R ; ,  taking a summation on Ri, 
and using the following orthogonality condition in the continuum k spacel$ 

we get 

(9.5) 
where f is a 3 x 3 unit matrix and ARij = R; - Rj is the relative coordinate 
of the ith atom with respect to the jth atom. The vibration of the ith atom is 
coupled to  that of the jth atom through the Ii(ij) force constant tensor. 

We note that j in Eq. (9.1) can be a site in the neighboring unit cell when 
the ieh atom is near the unit cell boundary. Here we show that all j in Eq. (9.5) 
can be shifted to a site in the original unit cell. When the j and j ‘  sites are 
equivalent to each other (i.e., Rj and Rj, differ by a lattice vector), then by 

tlv, is the number of unit cells in the solid and thus Nfi - 
*6k,k/  is a delta function which vanishes unless k = k’,  in which case 6k& has the vdue of 
1mNty. 
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considering Rj - Rjl ,  we can show that u f )  = ugi' using the definition of z l f )  

in Eq. (9.2). Thus Eq. (9.5) contains the variables u:) within the original unit 
cell. The contributions of I d @ ' )  in which the j ' sites are equivalent to  the j sites, 
are added to I<(ij) with a phase factor eik'ARiJ1.  Thus we obtain simultaneous 

for a given Iz vector, in which the superscript t denotes the transpose of a row 
vector into a column vector, and vice versa. Then Eq. (9.5) can be formally 
written as follows by defining a 3N x 3N dynamical matrix 'D(k) 

equations in Eq. (9.5) for 3~ unknown variables U k  t (u t ) ,  u f ) ,  - , "k (W 1, 

I ) ( k ) u k  = 0. (9.6) 

To obtain the eigenvalues w 2 ( k )  for P(L)  and non-trivial eigenvectors u k  # 0 ,  

we solve the secular equation detD(k) = 0 for a given k: vector. It is convenient 
to  divide the dynamical matrix D ( k )  into small 3 x 3 matrices ID(ij)(&), ( i , j  = 
1,. +.  , N), where we denote D ( k )  by {D(ij)(k)} , and from Eq. (9.5) it follows 
that D('j)(k)  is expressed as 

where the sum over j" is taken for all neighbor sites from the ith atom with 
K(dj") # 0, and the sum over j' is taken for the equivalent sites to the jth atom. 
The first two terms5 of Eq. (9.7) have non-vanishing values only when i = j, 
and the last term appears only when the jth atom is coupled to the ith atom 
through If(") # 0. 

In a periodic system, the dynamical matrix elements are given by the product 
of the force constant tensor IC(' j )  and the phase difference factor e ik 'ARi j .  This 
situation is similar to the case of the tight binding calculation for the electronic 
structure where the matrix element is given by the product of the atomic matrix 
element and the phase difference factor (see Sec. 2.1). 

9.2 Phonon dispersion relations for two-dimensiona~ graphite 

§This corresponds to the diagonal block of the dynamical matrix. The last term in Eq, 9.7 
is in the off-diagonal (ij) block of the dynamical matrix. When the ikh atom has equivalent 
neighbor atoms in the adjacent unit cells, the last term can appear in the diagonal block of 
the dynamical matrix. 
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Fig. 9.1: Neighbor atoms of a graphitic plane up to  4th nearest 
neighbors for (a) an A atom and (b) a B atom at the center de- 
noted by solid circles. From the lst to the 4th neighbor atoms, we 
plot open circles (lst neighbor), solid squares (2nd), open squares 
(3rd), and open hexagons (4"), respectively. Circles connecting 
the same neighbor atoms are for guides to  the eye. 

The phonon dispersion relations for a single graphite plane (or a two-dimension3 
graphene sheet) are calculated by following the procedure used in Sec. 4.1.1 for 
the electronic energy bands for the t~ and ?r electrons of graphite.* 

In two-dimensional graphite, since there are two carbon atoms, A and B ,  in 
the unit cell, (see Fig. 2.3), we must consider six coordinates u k  (or 6 degrees of 
freedom) in Eq. (9.6). The secular equation to  be solved is thus a 6 x 6 dynamical 
matrix V, The  dynamic^ matrix V for two-dimensiona~ graphite is written in 
terms of the 3 x 3 matrices DAA, DAB,  DBA,  and DEB for the A and E atoms 
within the unit cell, and the coupling between them 

When we consider an A atom, the three nearest-neighbor atoms (see Figs. 9.1 
and 9.2) are 3 1 ,  B2, and B3 whose contributions to  21 are contained in DAB , 
*From a symmetry s t~dpoint ,  only the electronic bands related to the carbon p electrons have 
a direct correspondence to the phonon dispersion curves. 
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Fig. 9.2: Force constants be- 
tween the A and B1 atoms on 
a graphene sheet. Here #,,, 
$ti, and $to represent forces for 
the nearest-neighbor atoms in 
the radial (bond-stretc~ing), in- 

82 plane and out-of-plane tangen- 
tial (bond-bending) directions, 

respectively. nearest neighbors B 2  equivalent and B3 are to 
BI, whose force constant tensors 
are obtained by appropriately ro- 

~~~~ .... ...*.. 
. o r  

.... 2 
,... ,..' 

__I' 

X 63 A B1 tating the tensor €or A and B1. 

while the six next-nearest-neighbor atoms denoted by solid squares in Fig. 9.l(a) 
are all A atoms, with contributions to D that are contained in DAA and so on. 
In Fig. 9.1 (a> and (b), we show neighbor atoms up to 4th nearest neighbors for 
the A and B atoms, respectively. It is important to note that the A and B sites 
do not always appear alternately for the nth neighbors. In fact the third and 
the fourth neighbor atoms belong to equivalent atoms. 

The remaining problem is how to construct the force constant tensor Id i j ) .  
Here we show a simple way to obtain K('j).t First we consider the force constant 
between an A atom and a nearest-neighbor B1 atom on the 2 axis as shown in 
Fig. 9.2 [see also Fig. 2.3 (a)]. The force constant tensor is given by 

(9.9) 

where $!"I, #$I, and $$:' represent the force constant parameters in the radial 
(bond-stretching), in-plane and out-of-plane tangential (bond-bend in^) direc- 

tSince the determinant of the dynamical matrix is a scalar variable, the determinant should be 
invariant under any operation of the point group for the unit cell. Thus the proper combina~io~ 
of terms in the product of the force constant tensor h'('j) and the phase difference factor 
e 'k 'aRdj  is determined by group theory, which gives block-diagonalization in accordance with 
the irreducible representations of the symmetry group of periodic structures. Further details 
are given in the references: G. Dresselhaus and M. S. Dresselhaus, Int. J. Quantum Chem., 
Vol LI s, 333 (1968) for silicon and germanium, and L. G. Johnson and G. Dresselhaus, Phys. 
Rev. B7, 2275 (1973) for graphite. 



168 C ~ A P T ~ R  9. P ~ O ~ O ~  ~ O ~ E S  OF CARBON ~ A ~ O T ~ ~ E S  

tions of the nth nearest neighbors, respectively. Here the graphene plane is the 
xy plane, the radial direction (z in the case of Fig. 9.2) corresponds to the 
direction of the (7 bonds (dotted lines), and the two tangential directions (y 
and z )  are taken to be perpendicular to the radial direction. Since graphite is 
an anisotropic material, we introduce two parameters to describe the in-plane 
(y) and out-of-plane ( z )  tangential modes, and the corresponding phase factor, 
e i k ’ A R i j I  becomes exp(-ik,a/fi) for the B1 atom at (a/&, 0,O). 

The force constant matrices for the two other nearest-neighbor atoms, B2 
and I33 are obtained by rotating the matrix in Eq. (9.9) according to the rules 
for a second-rank tensor: 

&A,Bm) = u - I I { ( A , B ~ ) u  m mi ( m  = 2,3) (9.10) 

where the unitary matrix U, is here defined by a rotation matrix around the z 
axis in Fig. 9.2, taking the B1 atom into the Brn atom,% 

(9 , l l )  
~ 0 ~ 8 ,  sin6, 0 

Urn = -sin%, COS%, 0 
( 0  0 1  

l i  O 0 461:) 

To make the method explicit, we show next the force constant matrix for the 
B2 atom at [--a/(26), a/2,0], and Vz is evaluated assuming 6 2  = 2 ~ / 3 ,  

(fA1) + 34:;’ &(& - (PF) 
I{ (A*B2)  = - &((Pi;) - (6;”)) 3 4 y  + #;;I ) , (9.12) 4 

and the corresponding phase factor is given by exp[-ik, a/(2&) + ik,a/2]. 
In the case of the phonon dispersion relations calculation for 2D graphite, 

the interaction between two nearest-neighbor atoms is not sufficient to reproduce 
the experimental results, and we generally need to consider contributions from 
long-distance forces, such as from the nth neighbor atoms, ( n  = 1 , 2 , 3 , 4 . .  .).§ To 

$The formulation should be in terms of the rotation of the axes connecting an atom A to its 
various equivalent neighbors. However, for easy understanding, we present in Eq. (9.10) the 
rotation of atoms. The matrix for the rotation of the axes is the transpose matrix of the matrix 
for the rotation of atoms. 
§When we consider the force constant matrix of the nrh neighbor atoms, these atoms are not 
always located on the 5 (or y) axis. In that case it does not seem that we can build an initial 
force constant matrix as given by Eq. (9.9). This happens at 4th neighbor atoms in graphite. 
However, if we consider a virtual atom on the 5 axis, and if we then rotate the matrix, we can 
get the force constant matrix without any difficulty. 
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(4) 

Fig. 9.3: In order to describe the 
twisted motion of four atoms, it 
is necessary to consider up to at 
least fourth-nearest-neighbor in- 
teractions. The numbers shown 
in the figure denote the nth 
nearest-neighbor atoms from the 
leftmost oth atom. 

describe the twisted motion of four atoms, in which the outer two atoms vibrate 
around the bond of the two inner atoms as shown in Fig. 9.3, contributions up to 
a t  least the fourth nearest-neighbor interactions are necessary [194]. Values for 
the force constants [193] (see Table 9.1) are obtained by fitting the 2D phonon 
dispersion relations over the Brillouin zone as determined experimentally, as for 
example from i n e l ~ t i c  neutron scatter in^ or electron energy loss spectroscopy 
measurements along the I’ M direction [194,195]. 

Table 9.1: Force constant parameters for 2D graphite in units of 104dyn/cm 
11931, Here the subscripts T, t i ,  and to  refer to radial, transverse in-plane and 
transverse out-of-plane, respectively. See Figs. 9.1 and 9.2. 

Radial Tangential 
4;’) = 36.50 sf;’ = 24.50 $1;) = 9.82 

4$3) = 3.00 4::) = -5.25 4::’ = 0.15 

#,. (2) = 8.80 4;;) II: -3.23 #$) = -0.40 

4,. (4) = -1.92 &’ = 2.29 #it) = -0.58 

In Fig. 9,4(a) the phonon ~ispersion curves of a t w ~ ~ i m e n s i o n a ~  graphene 
sheet, denoted by solid lines, are shown using the set of force constants in Ta- 
ble 9.1. In Fig. 9.4(b) the corresponding density of states is plotted per C 
atom per cm-l, where the energy is in units of crn-l. The calculated phonon 
dispersion curves of Fig. 9.4(a) reproduce the  experiment^ points o b t ~ n e d  by 
electron energy loss spectroscopy very well [194,195]. Thus the inclusion of 
fourth-neighbor interactions is sufficient for reproducing the phonon dispersion 
relations of 2D graphite. 

The three phonon dispersion curves (or branches), which originate from the 
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Fig. 9.4: (a) The phonon dispersion curves, plotted along high 
symmetry directions, for a 2D graphene sheet, using the set of 
force constants in Table 9.1 [193]. (b) The corresponding density 
of states vs phonon energy for phonon modes in units of states/lC- 
atom/cm-l x 

I' point of the Brillouin zone [see Fig. 9.4(a)], correspond to  acoustic modes: 
an out-of-plane mode, an in-plane tangential (bond-bending) mode and an in- 
plane radial (bond-stretching) mode, listed in order of increasing energy, re- 
spectively. The remaining three branches correspond to  optical modes: one 
out-of-p~ane mode and two i n - p ~ a n ~  modes. It is noted that the out-of-p~a~e 
 transverse) acoustic branch shows a h2 energy dispersion relation around the 
I' point, while the other two in-plane acoustic branches show a linear k depen- 
dence, as is normally seen for acoustic modes. One reason why we get a k2 
dependence for the out-of-plane mode is simply because this branch corresponds 
to a two-dimensional phonon mode and because graphite has three-fold rota- 
tional symmetry. It is clear in Eq. (9.10) that all rotations U are within the z ,y  
plane in the case of two-dimensional graphite. Thus the force constant matrix 
can be decomposed into a 2 x 2 matrix of z, y components and a 1 x 1 matrix of 
z components. The 1 x 1 force constant tensor I<!:') for the nth neighbor atoms 
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does not depend on the coordinate, and w(L)  thus becomes an even function of 
X: which is obtained from the sum of the differential phase factors eik'ARij given 
by Eq. (9.5).fi If we consider only the three nearest-neighbor atoms, the sum 
of the differential phase factors is nothing but f ( k )  obtained in Eq. (2.25) when 
discussing the electronic structure. The energy dispersion relation thus obtained 
[see Eq. (2.28)] is an even function of k around the I' point. The optical out- 
of-plane transverse branch (- 865 cm-l at the r point) shows a C2 dependence 
for the same reason. Thus there is neither a phase velocity nor a group velocity 
for the z component of the vibrations at the J? point, and the phonon density 
of states shows a step function which is known as a two-dimensional van-Hove 
singularity [see Fig. 9.4(b)]. 

9.3 Phonon dispersion relations for nanotubes 

9.3.1 Zone j u ~ ~ 2 ~ g  ~ e ~ ~ o ~  

As a first approximation, the phonon dispersion relations for a single-wall carbon 
nanotube are determined by folding the phonon dispersion curves of a two- 

dimensional graphene layer, which wi~s discussed in f 9.2. The method of folding 
the phonon dispersion curves for a given chiral vector c h  (n ,  rn) is the same as 
that for electrons, ils discussed in f 41.1, except that the zone-folding is applied 
to the 2D phonon dispersion relations. Since there are 2 N  carbon atoms in the 
unit cell of a carbon nanotube, where N = 2(n2 + m2 + nm)/dR and d s  are 
defined in Eqs. (3.9) and (3.7), respectively (see also Table. 3.3), 6 N  phonon 

%n general, the phase factor eik'AR*j goes into its complex conjugate if we change k: to 
-k. Thus when w e  change k: to -k, the dynamical matrix for the z components in a two- 
dimensional system becomes its complex conjugate. It is clear that Ill*[ = 101 for the Her- 
mitian matrix D, and thus the eigenvalues are even functions of k: around k: == 0 (the r 

might appear 
poi% in w( ). For example, for a one-dimensional spring constant model with the force constant,, 
K, we get w ( k )  = 2 m l s i n k a l  0: Jk l ,  (k - 0). The absence of a linear k term in the 
phonun dispersion relations along the z axis of graphite comes from the three-fold rotational 
axis, C3 along the z direction. Because of this symmetry, the w(k I ,  Icy) should have threefold 
rotational symmetry around the C, axis. However, no linear combination of k, and ky, such 
as ak, + bk, (with constant values for a, b), can be invariant under a 2a/3 rotation around the 
k, axis. The simpiest invariant form is a constant, and the quadratic form of k$ + kg is also 
invariant. This is why we get a k2 dependence for w ( k )  for the out-of-plane branch. When 
the force constant matrix depends on the atom locations, such as for the in-plane modes, this 
invariant condition applies to the product of the force constant matrix and the phase difference 
factor, which generally has a linear k term in w(k) .  

Even though w(k) is an even function of k, a term proportional to 
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dispersion relations for the x ,  g, and z v~brations for each atom are foIded into 
the one-dimensional Brillouin zone of a carbon nanotube along the K2 direction 
(Eq. (3.20) ). The phonon dispersion relations of a carbon nanotube also depend 
on the chirality (n,  M) and diameter of the carbon nanotube, d t ,  since the phonon 
wave vector in the circumferential direction becomes discrete for every K1 vector 
[see Eqs. (3.20) and (4.1)], in accordance with the periodic boundary conditions 
of the chiral vector. 

The corresponding one-dimensional phonon energy dispersion relation wyg (k) 
for the nanotubes is given by, 

where wrD (lc) denotes the two-dimensiona~ energy dispersion relations for a 
graphene sheet, k is a one-dimensional wave vector, and T is the ma~n i tude  
of the one-dimensional translation vector T given in Eq. (3.8). 

The idea of zone folding is applicable for almost all the phonon modes of 
a carbon nanotube. However, it has been pointed out [193] that zone-folding 
alone does not always give the correct dispersion relation for a carbon nanotube, 
especially in the low frequency region, and some additional physical concepts 
must be introduced. For example, the out-of-plane tangential acoustic (TA) 
modes of a graphene sheet shown in Fig. 9.5(a) on the left do not give zero 
energy at the r point when rolled into a nanotube as shown on the right. Here, 
at k = 0, all the carbon atoms of the nanotube move radially in an out-of-plane 
radial acoustic vibration, which corresponds to  a breathing mode with non-zero 
frequency f1931 as shown in Fig. 9.5(a) on the right. In the breathing mode, 
only the in-plane force constants, 4, and dti* in the ~ i ~ c u ~ f e r e n t i a l  djrection of 
the tube are related t o  the vibration, and this results in a finite frequency at the 
I? point. 

On the other hand, when we consider the vibrations of a carbon nanotube in 
the context of three-dimensional space, we generally expect three acoustic modes 
which correspond to vibrational motions in the 2, y, L directions. However, the 
two directions which are perpendicular to  the nanotube axis do not correspond 

‘Since there is no vibration in the direction of the nanotube axis in the breathing mode, the 
bond angle of the hexagon network is modified. Thus the force constant &i is necessary to 
describe the breathing mode. 
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Fig. 9.5: (a) The out-of-plane tangential acoustic modes at Ic = 0 
(left) in a single layer of graphite give rise to a radial breathing 
mode in the carbon nanotube with non-zero frequency (right). 
(b) An acoustic mode of a carbon nanotube whose vibration is 
perpendicular to the nanotube axis (right) corresponds to a linear 
comb~nation of both in-plane and out-of-plane graphite-derived 
modes (left). These modes do not couple in the case of a single 
graphite layer, but do couple for the nanotube because of the 
curvature that is introduced by rolling up the sheet. 

to any tw5dimens~onal gr~phi te  phonon modes. In a graphene sheet, the in- 
plane and out-of-plane modes are decoupled from each other. However, when 
the graphene strip is rolled up into a nanotube, the graphite-derived in-plane 
and out-of-plane modes do couple to each other, as shown on the left-hand side 
of Fig. 9.5(b), to form the acoustic mode of the nanotube shown on the right. 

9.3.2 

In order to  avoid these difficulties, we solve the three-dimensional carbon nano- 
tube dynamical matrix problem directly using the force constant parameters 

Force constant tensor of a carbon nanotube 



174 CHAPTER 9. PHONON MODES OF CARBON NANOTUBES 

listed in Table 9.1. Since we have 2N carbon atoms, the dynamic matrix to 
be solved becomes a 6 N  x 6 N  matrix. Here we denote the 2N atoms as Ai 
and B j  ( i , j  = 1 ,  + + .  , N ) ,  where the N Ai (or N B j )  atoms are geometrically 
equivalent to each other, as discussed in 3.4. In fact, the position of each Ap 
(or Bp) atom can be obtained by operation of the symmetry vector R defined 
in Eq.(3.10) p - 1 times on A1 (or B l ) :  

RP- 1 RP- 1 

A1 - Ap, and B1 - Bp, ( p =  l , . . . , N )  . (9.14) 

When we divide the big 6N x 6N dynamical matrix into the 3 x 3 small matrices 
V(AiBj)  for a pair of Ai and B j  atoms, we then consider (2N)' = 4 N 2  small 
matrices, ; D ( A i A j ) ,  ; D ( A i B j ) ,  ;D(BiAj), and V(BiBj),  ( i , j  = 1 , .  . . , N ) .  WheIl a pair 
(ApBq), (or (ApAq), (BpAq), (BpBq)) are within the 4th neighbor distance, 
we will consider V(ApBq). The corresponding force constant tensor I d A p B q )  is 
calculated using 

where U is a unitary matrix for rotation by an angle I = 2 r / N  around the 
nanotube axis. Then UP-' is defined in Eq. (3.16) as 

(9.16) 1 ( 0  0 1 

cos(p - 1 ) I  sin(p - 1 ) I  0 
UP-' = -sin(p- 1 ) I  cos(p- 1 ) I  o , 

where the z axis is taken for the nanotube axis. When ( q  - p + 1) is negative or 
zero in Eq. (9.15), we use ( N  + q - p + 1) for ( q  - p + 1). Thus we can generate 
all force constant tensors from the non-zero tensor related to A1 or B1. 

When we consider I d A l B p )  or IdBIBJ') ,  the effect of the curvature has 
been taken into account. For example, let us consider the case of 
(see Fig. 9.6). When we put atom A1 on the z axis, is obtained by: 
(a) rotating the tensor of Eq. (9.9) by (7r/6) - 0 around the z axis, then (b) 
rotating the tensor by an angle (p/2 around the z axis, and finally (c) rotating 
by I around the z axis. Here the angles 0, 'p and I are, respectively, the chiral 
angle 0 defined in Eq. (3.4), the angle (o between A1 and B1 around the z axis, 
and the angle 9 between A1 and Ap around the z axis defined by 2(p  - l ) n / N  
in Eq. (3.4), as shown in Fig. 9.6 (a), (b) and (c), respectively. 
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Fig. 9.6: The geometry of the A1 atom and its nearest neighbor 
atoms, B1, Bi, B j .  The force constant tensor is obtained 
by (a) rotating the tensor of Eq. (9.9) by (n/6) - 8 around the z 
axis and by (b) rotating the force constant tensor by an angle rgf2 
around the z axis. Here B is the chiral angle defined in Eq. (3.4), 
and the angle yo is defined in this figure by the angle between A1 
and €31 in the xy plane around the z axis. The upper open circle 
in (a) represents the projection of B1 on the yz plane and the 
lower open circle represents its location after rotation by n/6 - B 
on a 2D graphene plane. For II(APBq),  we further rotate in (c) 
the force constant tensor by 9 around the z axis (see Eq. (9.16)). 

Using the force constant tensor thus obtained and multiplying by exp ikAzij, 
where Azij is the component of Al&j along the z or nanotube axis, the dynam- 
ical matrix for a Ic vector is obtained. The phonon energy dispersion relation 
is determined by solving the dynamical matrix for many k points in the one- 
dimensional Brillouin zone. 

The results thus obtained for w(lc) for a (l0,lO) armchair carbon nanotube 
are given in Fig. 9.7(a), where T denotes the ~ a g n i t u d e  of the unit vector along 
the tube axis (see Eq. (3.5)). For the 2N = 40 carbon atoms per circumferential 
strip for the (10,lO) nanotube, we have 120 vibrational degrees of freedom, but 
because of mode degeneracies there are only 66 distinct phonon branches, of 
which 12 modes are non-degenerate and 54 are doubly degenerate. The number 
of distinct phonon branches can be obtained by point group theory for atoms 
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Fig. 9.7: (a) The calculated phonon dispersion relations of an 
armchair carbon nanotube with c h  = (10,lO). The number of 
degrees of freedom is 120 and the number of distinct phonon 
branches is 66. (b) Phonon density of states of (10,lO) nanotubes. 

in the unit cell. In the case of the (10,lO) armchair nanotube, Dloh  is the 
point symmetry group, and the direct product of the reducible representation 
for the atomic sites* with the representations for 2 ,  y,  z is decomposed into the 
irreducible representations for the phonon modes. 

In Fig. 9.7(b) we show the phonon density of states for the (10,lO) nanotube 
in units of states per C atom per cm-l. When we integrate the phonon density 
of states with respect to  the energy, we get 3 states/C-atom as the total number 
of states. Since we use the same units for the phonon density of states for 2D 
graphite [see Fig. 9.4(b)], we can directly compare the phonon density of states 
for the (10,lO) nanotube and for 2D graphite. The phonon density of states 
for the (10,lO) nanotube is close to that for 2D graphite [see Fig. 9.4(b)] since 
the phonon dispersion relations are, in principle, given by the zone-folding of 

*The character of the atomic sites for an operation 0 of the point group is defined by the 
number of atoms which do not change their position when the operation 0 is carried out. 
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Fig. 9.8: Phonon dispersion rela- 
tions of the (10,lO) armchair car- 
bon nanotube near the I' point. 
The three lines near w = 0 which 
intersect at k = 0 correspond 
to the acoustic modes of a car- 
bon nanotube. There are four 
acoustic modes in this cylindrical 
solid, including the lower energy 
2, y transverse acoustic modes 
(TA, doubly degenerate), the z 
longitudinal acoustic mode (LA), 
and the twisting mode (TW). 
The TW mode is related to the 
rotation of a nanotube along its 
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k T / a  axis. 

those for 2D graphite. The difference in the phonon densities of states appear in 
the small peaks due to the one-dimensional van Hove singularities. It is noted 
that we integrated the phonon states within an accuracy of 10 cm-l. Another 
difference between the (10,lO) nanotube and graphite relates to the phonon 
density of states a t  w = 0 cm-'. Since there is k 2  dependence in the out-of- 
plane TA mode for 2D graphite, we get a finite density of states at w = 0 cm-l, 
which is known as the two-dimensional van Hove singu~arity at the band edge. 
However, since all acoustic modes of the (10,lO) nanotube have a k dependence as 
shown below, we have no phonon density states at w = 0 as shown in Fig. 9.7(b). 

Let us focus our attention on the acoustic modes of the (10,lO) carbon 
nanotube. In Fig. 9.8, the phonon dispersion curves around the J? point are 
shown on an expanded scale for the (10,lO) carbon nanotube. The lowest energy 
modes are the transverse acoustic (TA) modes, which are doubly degenerate, and 
have 2 and y vibrations perpendicular to the nanotube ( z )  axis (see Fig. 9.5(b) 
right). The highest energy mode is the longitudinal acoustic (LA) mode in 
the direction of the nanotube axis. Since the djsplacements of all the acoustic 
modes are three dimensional, the frequencies of the phonon dispersion relations 
are proportional to k for all three phonon branches, as is commonly observed in 
the solid state. The corresponding phonon density of states is proportional to 
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the energy while the phonon density of states of 2D graphite is constant because 
of the k2 dispersion relation for the out-of-plane TA graphite mode. The sound 
velocities of the TA and LA phonons for a (l0,lO) armchair carbon nanotube are 
estimated as 9.43 km/s and 20.35 km/s, respectively.? These results cannot be 
obtained by the zone-folding method discussed in the previous subsection, since 
the sound velocity for the zone-folded out-of-plane TA mode is zero because of 
the k2 dependence as discussed above. 

In addition, there is a fourth acoustic mode for the carbon nanotube, which 
is related to  a rotation around the nanotube axis at  k = 0. When we consider 
a single carbon nanotube as an infinite one-dimensional material, a rotation 
around the nanotube axis is possible [83,196]. Since the driving force for this 
wave motion is a twisting motion of the nanotube, we call this mode a twisting 
mode (TW). The sound velocity of the T W  mode is 15.00 km/s, which is the 
same as the calculated value of the in-plane TA mode for 2D graphite. The 
reason why the T W  modes have the same velocity as the TA graphite mode 
is that the displacements associated with the T W  mode are in the cylindrical 
plane and are perpendicular to the tubular axis. 

It is noted that the sound velocities that we have calculated for 2D graphite 
are similar to  those observed in 3D graphite [9], for which vgiD = 12.3 km/s and 
vgjD = 21.0 km/s. The difference of the sound velocity is due to  the existence 
or absence of the interlayer interaction between graphene layers for 3D graphite 
and a 2D graphene sheet, respectively. 

9.9.9 

The three-dimensional phonon dispersion relations of a carbon nanotube can 
be obtained by the methods discussed in the previous subsection. However it 
should be mentioned that the force constant parameters of Table 9.1 are not well 
defined on the curved surface of the nanotube by merely considering the planar 
graphene force constants. 

Force constant corrections due to curvature of 1D nanotubes 

tThe Young modulus, Y can be estimated by the LA velocity, 'u = fi, in which p is 
the density of carbon atoms. When we assume the triangular lattice of the nanotubes ( so  
called rope) with the lattice constants of a =16.95A and c =1.44x&A, the density p becomes 
1.28 x lo3 kg/m3 from which the Young modulus gives Y = 532 GPa. This value is smaller 
than other calculated Y values. This small Y value arises from the small mass density of the 
rope. Details will be discussed in Chapter 11 on elastic constants. 
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For example, in Fig. 9.9, we show the effect of the rotational motion of 
the twisting mode with k = 0 on the cross section of the carbon nanotube in 
which all vectors of the motion should be parallel to  the cylindricaI surface and 
perpendicular to the nanotube axis. It is a physical requirement that we have 
a rotational mode with w = 0 at  k = 0 in this system. However, the calculated 
result for the (10,lO) carbon nanotube gives a finite value of w = 4 cm-' at 
k = 0 for the twisting mode when we use the method of the previous subsection 
with the force constant parameters of Table 9.1. The other three acoustic modes 
correctly give w = 0 cm-I a t  k = 0. When we denote a nearest-neighbor bond as 
the dotted line in Fig. 9.9, the two vectors u and Gu are not in the plane which 
is defined by the dotted line and tube axis. Thus, for this kind of rotational 
motion, the force associated with the tangential out-of-plane force constant, 4to 

artificially introduces a force on the motion, which gives a non-zero value of 
w at k = 0. Actually when we examine the eigenvectors of the motion, we 
can find a small radial component of the motion which is perpendicular to the 
cylindrical surface and is due to the effect of curvature on the force constant 
parameters. The ratio of the components of the motion in the radial direction 
to the cylindrical direction is on the order of The curvature effect will also 
apply to  all of the other modes by an amount up to ~ 1 0  cm-' even for the (5 ,5)  
armchair nanotube. Thus as a first approximation, this effect can be neglected 
compared with general nanotube phonon frequencies which are on the order of 
lo3 cm-l. 

In order to treat the curvature effect correctly with the given force constant 
parameters of two-dimensional graphite, we could consider the dynamical ma- 
trix on a curved coordinate reflecting the cylindrical surface, which would mix 
the force constant parameters with each other depending on the curvature and 
the bond length. This pheno~enon can be treated by elasticity theory for a 
thin film, However this treatment requires a different method from that used 
for a lattice of springs. When we consider a curved chemical bond, we find that 
the force constant parameters in Table 9.1 cannot be applicable to the curved 
coordinates. Actually the calculated results using the force constant parameters 
in Table 9.1 give less accurate values than the approach of the previous subsec- 
tion. Sometimes the calculated results even give imaginary (i.e., negative w 2 )  
frequencies for the acoustic phonon modes. Thus we do not use the elasticity 
theory approach to the curved coordinates of carbon nanotubes. 
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Fig. 9.9: The dependence of the 
twisting mode at k = 0 of a car- 
bon nanotube on its cross sec- 
tion is shown. When we con- 
sider the interaction between the 
two atoms along the dotted line, 
the rotational motion appears 
to have a tangential out-of-plane 
motion in the plane defined by 
the dotted line and the nanotube 
axis. 

x Y 

Fig. 9.10: (a) Correction of the force constant #do,  which is given 
by Eq. (9.17) and (b) correction of the force constants of 4,. and 
&, which are given by Eqs. (9.18) and (9.19). Figure (a) illus- 
trates the section of a plane perpendicular to the nanotube axis, 
and (b) illustrates a plane corresponding to an unrolled graphite 
sheet. 

To avoid the difficulty of the curved coordinates, we have proposed the 
following approximation in which the force constants are scaled depending on 
their bond lengths. When we consider the tangential out-of-plane mode for the 
ith site on the cylindrical surface as shown in Fig. 9.10 (a)z the motion is in the 
direction perpendicular to the cylindrical surface. On the other hand, when we 
denote the bond ij by the thick line, whose subtended angle around the tube 
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axis is p as shown in Fig. 9.10(a), the tangential out-of-plane direction for that 
bond is defined to be perpendicular to that bond. The difference between the 
two directions is the angle 912 which depends on the bond length. When the 
bond length is large, the correction for the force constant becomes large, but not 
so large as the origina~ force const~nt .  Here we scale the force constant #to by 

do = 4 t o  + d t o  (1 - cos (;)) (9.17) 

as an empirical correction for the force constant. A justification for the cor- 
rection of Eq. (9.17) is as follows. When we calculate the motion using the 
tangential out-of-plane dto force constant for a given bond, the Component of 
the force constant in the direction perpendicular to  the cylindrical surface be- 
comes 4 ~ o c o s ( ~ / Z ) .  In order to obtain the same amplitude of the motion in 
this direction as is obtained in the case of two-dimensional graphite, we add 
#bo(l - cos(cp/2)) to #to.* The correction of Eq. (9.17) becomes relatively large 
with increasing bond length or increasing p, which reIates to the corresponding 
bond length becoming shorter than that in a two-dimensional graphite plane. 
Thus this bond ~ength dependent correction is used to  describe the v~brations 
perpendicular to the cylindrical surface. 

Similarly, the force constants of 4Sp., #ti are corrected by the following for- 
mulae, respectively, 

and 

4; = #r + 4,- cos (5 - Q) (1 - cos ( ~ ) ) ,  (9.18) 

(9.19) 

where n/6-4 is the angle of the bond from the horizontal zy plane [see Figs. 9.10 
(b) and 9.6 (a)]. Since we consider only the horizontal component of the force 
by a rotation of 9/2 around the z axis, we conclude that 4, cos(n/6 - 0) and 

Using the scaled force constants, we calculate an improved version of the 
phonon dispersion relations for a (10,10) armchair carbon nanotube. In this 
case, the frequency of the twisting mode becomes very small (Iwl < cm-l) 

*We could also consider other corrections of the force constant, such as r#~t,/cos(cp/2). For 
small cp, this correction gives the same effect. as that of Eq. (9.17). However, this correction 
diverges at 'p = R, and thus we do not adopt it. 

sin(a/6 - 4) are the components to be corrected. 
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at k = 0. As for the other modes, the corrections are generally small (less than 
5 cm-l). The only mode where the correction is significant is the E2, mode 
which gives a large softening after this correction from 22 cm-' to 17 cm-l. It 
is interesting to note that the lowest phonon mode with non-zero energy at k = 0 
is an Ezg mode in which the cross section of the carbon nanotube is vibrating 
with the symmetries corresponding to xy and x 2  - y2. The calculated frequency 
of the E2, mode for the (10,lO) carbon nanotube is 17 cm-l. Since this mode is 
a Raman-active mode and its frequency is sensitive to the radius of the carbon 
nanotube, the above arguments show the importance of investigating this mode 
experimentally. The observation of the Raman-active modes, are discussed in 
the following chapter. 

Another important mode for experimental study is the Raman-active low 
frequency breathing mode (Al, symmetry) shown in Fig. 9.5(a). The frequency 
of the breathing mode appears at 165 cm-' for the (10,lO) armchair nanotube. 
This mode frequency quickly decreases to 0 cm-' with increasing radius. 



CHAPTER 10. 

Raman Spectra of Carbon Nanotubes 

The Raman-active and infrared-a.ctive phonon modes of carbon 
nanotubes are described on the basis of group theoretical arguments 
in Sect. 10.1, A review is given in Sect. 10.2 of Raman scattering 
experiments on purified s i n g ~ ~ w a l i  nanotubes and arrays of carbon 
nanotubes, called ropes. To analyze the unique Raman spectra that 
are observed, results €rom bond polarization theory are presented in 
Sect. 10.3. The dependence of the Raman mode frequencies on the 
nanotube diameter is discussed in Sect. 10.4 and the dependence of 
the Raman mode ~ntensities on nanotube orientatioii is discussed in 
Sect. 10.5. 

10.2 Raman or infrared active modes of carbon nanotubes 

Among the 6 N  calculated phonon dispersion relations for carbon nanotubes 
whose unit cell contains 2N carbon atoms, only a few modes are Raman or 
infrared (IR) active, as specified by the symmetry of the phonon modes. Since 
only k vectors very close to k = 0 are coupled to the incident light because of the 
energy-momentum conservation requirements for the photons and phonons, we 
need only consider the symmetry of the nanotube zone-center vibrations at the 
I? point (k = 0). Point group theory of the unit cell, as discussed in Sect. 3.6, 
predicts the number of Raman-active modes and IR-active modes. 

As discussed in Chapter 9, there are four acoustic modes including the rota- 
tion around the nanotube axis ( R z )  at the I' point. Thus 6N-4 optical phonons 
are considered in this section. The Raman and infra-red(IR,)-active modes corre- 
spond to modes whose irreducible representations transform as a quadratic form 
(z2 + y2, z2 ,  x2 -y2 ,  zy, yz and z.) for the Raman-active modes, or as a vector 
form (8, y, and z )  for the infrared-active modes. The relationship between an 

183 
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Table 10.1: Basis Functions for Point Groups Dnd and Numbers of Raman 
and IR Active modes. 

Basis functions D, CNfn Achiral C h i d  
9 21 2j 2j+1 (2j,2j) others (n,m) 

(." + Y 2 7 W  A1 AI A 4 3 4 

( x z ,  Y 2 l R  

zIR,  R, Az Az A (0) (1) (4) 

("7y)IR } El El EI 4(7) 6(5) 5(5) 
(RX,R,) 

( x 2  - Y2r .YP E2 E2 E2 8 6 6 
Total 6 N - 4  16(7) 16(6) 1 5 0  

Numbers without and with parentheses denote the numbers of Raman and IR active modes, 
respectively. 
The superscripts and I R ,  respectively, denote Raman-active and infrared-active modes. 

irreducible representation and its basis function is given in the character tables. 
In Table 10.1 are listed the basis functions for the irreducible representations 
of the carbon nanotubes and the number of Raman-active modes for each ir- 
reducible representation. Each type of nanotube is classified by its symmetry. 
When we consider the nanotube axis to be in the t direction, the Raman modes 
whose vibrational amplitudes transform as t2  or z2 + y2 are invariant under any 
operation of the group, and therefore have A1 or A symmetry in the Dn or C, 
groups, respectively (see Section 3.6). The other Raman-active modes belong to 
the El and E2 symmetry types, as shown in Table 10.1. In the case of the IR- 
active modes, the basis functions 2 and y are partners of a two-fold degenerate 
mode with El ( E )  symmetry, and t transforms according to A2 ( A )  symme- 
try. If we know the irreducible representation of the calculated eigenfunctions of 
the phonon modes, we can directly assign the symmetries of the Raman-active 
modes and IR-active modes among the 6 N  - 4 phonon modes. An eigenfiinction 
can be identified with an irreducible representation by applying a projection 
operator for the irreducible representation of the group to the phonon normal 
modes [197]. If the projected eigenfunction is not zero, the eigenfunction belongs 
to  the corresponding irreducible representation. 

The numbers of the Raman-active and IR-active modes for the solid can be 
predicted by group theory once the lattice structure and its symmetry are speci- 
fied. The number of optically-active modes is calculated by the decomposition of 
the reducible representation of the vibration, Pib, which is given by the direct 
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product of the two representations of the group as foilows 

(10.1) 

where I'a.s. and rz,y,t are, respectively, the representations of the atomic sites 
for the equivalence transformation, and the irreducible representations which 
belong to  the vector components 2, y, z. The characters for I'a.s. are given by 
the number of atoms in the unit cell that remain invariant under an operation 
of the group. The representations which correspond to x$ y, z ,  are listed in Ta- 
ble 10.1 for the groups of nanotubes which are discussed in Section 3.6. When we 
decompose rvib into the irreducible representations of the group, using the or- 
t ~ o g o ~ i ~ ~ t y  relations between the characters of the irreducible re~res~ntat jons,  
the number of times an irreducible representation is contained in rvib is the 
number of phonon modes which belong to that irreducible representation. Since 
we know which irreducible representations correspond to the Raman-active and 
IR-active modes, we can easily find the number of Raman and IR modes. If the 
t r a n ~ l a t i o ~ a l  (Elu:  z,y, A2,: z) and r~ ta . t i o~a1  (Az,: R,) motion be~ong to the 
symmetry types of the Raman (Alg, Elg,  a,) and IR (Az, ,  El,) modes, we 
subtract the number of those modes from the optically active modes in com- 
piling Table l O . l . *  The point group symmetries of armchair C h  = (n ,n)  and 
zigzag Ch = (n,O) nanotubes are either Dnd or Dnh, respectively, depending 
on whether n =odd or n =even, and the symmet~y of chiral nanotubes is the 
non-symmorphic kbelian group CN, which is discussed in Sect. 3.6. From the 
character Tables 3.4, 3.5 and 3.8, we get the decomposition of rvib as follows 

for armchair nanotubes (even n = 2 j  with Dnh symmetry)t 
11981: 

r$y = 4Aig + 2A1, + 4 4 ~ ~  + 242a + 2B1g 
$431, + 2B2, + 4BzU + 4E1, + 8E1, + 8E2$ (10.2) 

+4Ezu + ***+4E( j , l )g  +8E(j- l )u 

*The symmetries are for achiral nanotubes. For chiral nanotubes, the symbols are as follows: 
transiational fE +- A ) ,  rotational (A) ,  Raman (A, E l ,  E2) and IR (A,  E l )  modes. 
tIn Eq. (10.2) we assume that j is even. If j is odd [such as for (n ,m)  = (6,6)], the 4 and 8 
are interchanged in the last two terms in Eq. (10.2). 
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(10.3) 

For armchair and zigzag nanotubes (odd n = 2 j  + 1 with D,d symmetry): 

r v i b  
z j + l  = 3Alg -I- 3A1, 3Azg 3A2, 

+6E1g + 6E1, + 6E2g + 6Ezu (10.4) 

+ * ' '  + 6Ejg + 6Eju 

For chiral nanotubes: 

We list in Table 10.1 the numbers of Raman and IR active modes for achiral 
and chiral nanotubes in which the numbers without and with parentheses, re- 
spectively, refer t o  the numbers of Raman and IR-active modes. Among achiral 
nanotubes, only armchair nanotubes with even number indexes (2j, 2j)  have a 
different numbers of Raman and IR modes from others such as armchair nan- 
otubes with odd number indexes (2 j  + 1 , 2 j  + 1) and zigzag nanotubes (n,O). 
From Table 10.1 we see that the numbers of Raman and infrared-active modes 
for a carbon nanotube do not depend much on the nanotube diameter and chi- 
rality, though the total number of phonon modes 6 N  - 4 is very different for 
different chiralities. Group theory selection rules indicate that there are 15 or 16 
Raman-active modes and 6 to 9 IR-active modes for a single-wall carbon nan- 
otube. The difference between Dzj and Dzj+l for armchair nanotubes comes 
from the different numbers of El and Ez modes in the decomposition of rvib in 
Eqs. (10.2) and (10.4). 

Since the basis functions of achiralnanotubes consist of even ( 9 )  and odd (u)t 

functions, because of the existence of an inversion center, Raman and IR active 

t The g and u come from the traditional notation of the German words 'gerade' and 'ungerade', 
respectively. 



modes can be found for several different irreducible representat~ons. However 
for chiral nanotubes, modes with A and El symmetry are both Raman and IR- 
active, because of the lack of an inversion center. A phonon mode can be Raman 
and IR active simultaneously in the lower symmetry chiral nanotubes. However, 
in these cases the intense Raman modes are generally weak IR modes and vice 
versa. 

Even though group theory may indicate that a particular mode is Raman- 
active, this mode may nevertheless have a small Raman cross section. In fact, we 
have only six or seven intense Raman-active modes for any nanotube chirality, as 
shown in Sect. 10.3. Since similar eigenfunctions give similar Raman intensities 
for any kind of nanotube, the Raman spectra also have similar shapes, as shown 
by the calculations in Sect. 10.4. 

10.2 Raman experiments on single-wall nanotubes 

This section mainly describes Raman experiments on single-wall carbon nan- 
otubes [52,83,99,199]. Most of the Raman studies on single-wall carbon nan- 
otubes were made on nanotubes synthesized by the laser vaporization method 
[55] with transition metal catalysts, though similar results were obtained on 
single-wall nanotubes synthesized by the carbon arc method 1521. In both of 
these synthesis methods, the single-wall carbon nanotubes grow in a triangular 
lattice to  form a bundle or ‘rope’ containing 10-50 nanotubes (see Sect. 5.2) 
[55,200]. Under some synthesis conditions, the (10,lO) armchair nanotube is the 
dominant species in the rope. However, in general, the Raman samples have a 
narrow distribution of diameters and chiralities, which depend sensitively on the 
catalysts that are used in the synthesis and the growth conditions, especially the 
growth temperature. For example, when 1.2 weight % of Ni/Co catalyst is used 
in the sample synthesis at a temperature of 1150OC in 500 torr Ar, the diameter 
range is 1.0-1.4 nm, while thinner nanotubes with diameters of 0.8-1.0 nm are 
obtained in the case of a 2.4% Rh/Pd catalyst with growth at llOO°C [99]. Even 
when the same catalysts are used, a higher growth temperature gives a larger 
diameter. This situation may be explained by the probability for generating a 
pentagon. When the temperature is lowered, the probability of closing a car- 
bon pentagonal ring increases, and thus the caps that are generated tend to be 
smaller. At a higher temperature, however, atomic vibrations prevent the for- 
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Fig. 10.1: Raman spectra (top) of the rope of single wall carbon 
nanotubes taken with 514.5 nm excitation at N 2W/cm2. The 
features in the spectrum denoted by the symbol "*" are assigned 
to second-order Raman scattering. The four bottom panels are the 
calculated Raman spectra for armchair (n ,n)  nanotubes, n = 8 
to  11. The arrows in the panels indicate the positions of the 
remaining weak, Raman-active modes [83]. 

mation of relatively unstable pentagonal rings, compared with hexagonal rings, 
so the lower growth temperatures favor the growth of smaller diameter tubes. 

Among the 15 or 16 Raman-allowed zone-center modes, the experiments 
show a few intense lines and several weaker lines, as illustrated in Fig. 10.1 [83]. 
The top panel of Fig. 10.1 shows Raman spectra for the single-wall nanotube 
rope using a laser excitation wavelength of 514.5 nm, and the lower panels show 
the calculated intensities for armchair nanotubes (n, n) ,  n = 8 to 11, respectively. 
Between 1550 and 1600 cm-', two strong features are observed at 1567 cm-' 
and 1593 cm-', which correspond to the graphite E2$ optic mode a t  1582 cm-' 
which has been extensively studied in HOPG (highly oriented pyrolytic graphite) 
[9,201]. The strong lines between 1550 and 1600 cm-' may be assigned to  the 



Fig. 10.2: Plot of the observed Raman frequencies for several 
different single-wall carbon nanotube samples, prepared with dif- 
ferent catalysts under different growth conditions yielding differ- 
ent mean nanotube radii P :  (a) Fe/Ni (. = 0.55 nm), (b) Co 
( P  = 0.65 nm), and (c) La (r = 1.0 nm). The dashed lines are 
theoretical LO and TO energy dispersion curves for graphite along 
I'-M as a function of q and q /2  for n = 1 and n = 2 (first har- 
monic vibrat~on), respectively. Solid dots and the symbol 'T' cor- 
respond to the observed frequencies of the peaks and shoulders in 
the Raman spectra, respectively [202]. 

Elg,  Ezg and Al, modes in carbon nanotubes with different diameters. Rao 
et al. [83] assigned the two strong modes of 1567 cm-' and 1593 cm-l to the 
E2, (8,8), and Elg or Al ,  (9,9) tubes, respectively. The Raman frequencies in 
this high frequency region do not vary much with carbon nanotube diameter, as 
shown in the lower panels of Fig. 10.1. 

The Raman frequencies in the range 1550-1600 cm-l can be understood by 
zone-folding of the graphite phonon dispersion relations [202]. In Fig. 10.2, the 
observed Raman spectral frequencies are shown for three single-wall nanotube 
samples prepared with different catalysts and under different growth conditions 
yielding nanotubes with different mean diameters (radii) and different distribu- 
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tions of diameters (radii). Specifically the catalysts and resulting average radii 
are: (a) Fe/Ni (T  = 0.55 nm), (b) Co ( T  = 0.65 nm), and (c) La (T = 1.0 nm). 
The dashed lines are theoretical LO and TO energy dispersion curves in graphite 
along I?-M as a function of wavevector q and q/2 in units of lo9 cm-' for n = 1 
and n = 2 (first harmonic vibration), respectively. In armchair nanotuhes, the 
r -M direction corresponds to  the wave vector along the equator of the nan- 
otubes. Thus LO (n = l) ,  TO (n = l ) ,  and TO ( n  = 2) correspond to  the Al,, 
El, and Ez, Raman modes, which will be explained in the theoretical analysis 
in Sect. 10.4. Figure 10.2 shows a clear relationship between 1 / ~  and q on the 
zone-folded phonon energy dispersion curves. 

It is important to note that the Raman intensity for graphite in the 1300- 
1600 cm-' region is sensitive to  sample quality. Generally the intensity of 
the Ezg modes of graphitic materials is sharp and strong when the sample is 
highly crystalline and defect free, while disordered graphites and carbons show 
a broad feature around 1350 cm-' [9,201,203,204]. The 1347 cm-' signal seen 
in Fig. 10.1 may come from a symmetry-lowering effect, due to  defects or nan- 
otube caps, bending of the nanotube, and the presence of carbon nanoparticles 
and amorphous carbon. 

At 186 cm-l, a strong Al, breathing mode is found in Fig. lO.l(a) [see 
Fig. 9.5(a) on the right]. Because of the strong dependence of the frequency of 
the Al,  breathing mode on nanotube diameter (see Sect. 10.3), the frequency of 
the A1, breathing mode can be used as a marker for assigning the approximate 
diameter of the carbon nanotube. The radial breathing A1, mode can also 
be clearly seen in fullerenes.* In the low frequency region, the calcvlations 
predict nanotube-specific El, and E2, modes around 116 cm-' and 377 cm-l, 
respectively, for (10,lO) nanotubes, but their intensities are expected to  be lower 
than that for the Al, mode. However, these El, and Ez, modes are important 
since they also show a diameter dependence of their mode frequencies, as shown 
in the lower panels of Fig. 10.1. In the very low frequency region below 30 cm-', 
a strong low frequency Raman-active Ezg mode is expected. However, it is 
difficult to  observe Raman lines in the very low frequency region, where the 
background Rayleigh scattering is very strong. 

Even for a given sample, the Raman spectra may change if we change the fre- 
quency of the excitation laser. When the excitation energy is close to an energy 

'For example, the A1, of (360 has a frequency of 497.5 cm-l [198]. 
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Fig. 10.3: Room tempera- 
ture Raman spectra for purified 
single-wall carbon nanotubes ex- 
cited at five different laser fre- 
quencies, showing the resonant 
enhancement of the Raman in- 
tensity associated with the van- 
Hove singularities in the nan- 
otube density of states [83]. Each 
trace is labeled by the wave- 
length and power level of the 
laser light. 

of high “optical” absorption, the Raman intensity is enhanced, and this effect is 
known as the resonant Raman effect. Under resonant conditions, more light can 
be absorbed, thereby enhancing the Raman signal through the electron-phonon 
coupling process. In Fig. 10.3 are shown Raman spectra obtained with different 
laser excitation frequencies. When the laser frequency increases, the Raman 
modes that are preferentially enhanced shift to higher frequencies, since the res- 
onance effect is most pronounced when the joint density of states of the carbon 1~ 
band is large, and the laser frequency matches a peak in the optical absorption. 
As discussed in the 5 4.2, the density of states of the 1~ band becomes singular 
by folding the two-dimensional energy bands of the graphene layer into the one- 
dimensional bands of the carbon nanotube, and these singularities are known 
as van-Hove singularities. For every one-dimensional band edge, as in a carbon 
nanotube, a I/@ singularity is expected for the energy dependence of the one- 
dimensional density of states (see Fig. 4.7). The 1/fi singularities for the 1D 
density of states results in a much stronger resonant Raman effect than would be 
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observed for a 2D graphene sheet or for 3D crystalline graphite. Clearly the en- 
ergy separation of these singularities in the 1D density of states increases as the 
number of energy bands decreases. When we consider only armchair nanotubes 
(n ,  n ) ,  the energy separation between the van-Hove singularities becomes large 
with decreasing n. The Raman resonance condition thus selects the particular 
carbon nanotube (n ,  m) which has a singularity in its electronic density of states 
at the laser frequency. The observed phonon frequency of the low frequency A1, 
mode provides the value of the nanotube diameter that is in resonance electroni- 
cally, since the phonon frequencies for the low frequency normal modes increases 
with decreasing n. Thus the resonance effect is a quantum effect that can be 
understood in terms of both the electronic and phonon dispersion relations of 
the nanotubes. Since nominal single-wall carbon nanotube samples consist of 
nanotubes with different diameters and chiralities, the resonant Raman effect 
may be seen in different nanotubes for different laser excitation frequencies. 

10.3 Bond Polarizability Theory of Raman Intensity for Carbon Nan- 
otubes 

In this section we discuss the non-resonant bond polarization theory for calculat- 
ing the Raman intensity, which is also useful for the interpretation of the Raman 
spectra. The Raman intensity for h/ atoms in the unit cell is calculated by the 
empirical bond polarizability model [205,206]; 

Here W L  and ws are the incident and scattered light frequencies, r] and r]' are the 
corresponding unit vectors for the polarization of the light, respectively. w j  is the 
frequency of the f-th normal phonon mode, while ( n ( w f ) )  = l/(exp(hwf/hBT)- 
1) is the phonon occupation number at temperature T. The a and ,B subscripts 
in Eq. (10.6) denote Cartesian components of the vector or tensor, x , g , . z ,  and 
Pap, j  is the derivative of the electronic polarization tensor for the f-th normal 
mode, which is given by [205], 

(10.7) 
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where Pap is the electronic polarization, and the derivative is performed with 
respect to  the yth Cartesian displacement, u,(l), for the t t h  atom. The term 
x,(tlf) is the y component of the unit vectors of the f t h  normal modes of the 
t t h  atom. Both translational and rotational acoustic modes are included in f 
for simplicity. However, the acoustic modes do not contribute to  the Raman 
in tensity. 

The term Pap in Eq. (10.7) is approximated by a sum over the bond polar- 
ization contributions as follows 

1 [ c { a l p )  + W B ) }  6,@ 

+ {9l(B) - Q ( B ) )  ( 
(10.8) 

3 
Pap = - 

l , B  
RU(eJ  B)Rp(e8 B, - $6Qd)] 

R(t ,B)2  
where B denotes a bond which is connected to the Gth atom in the unit cell, and 
R(t,  Bf is the corresponding vector from the 4-th atom to the neighbor atom l' 
specified by B.  The quantities R,(L, B )  and R(4, B )  are the a component and the 
length of R(&, B) ,  respectively, and aql(B) and a ~ ( 3 )  are the static molecular 
polarizabilities for the bond B in the directions parallel and perpendicular t o  
the bond, respectively, Here we assumed that q ( B )  and a l ( B )  are functions 
of only the length R(L, B).  

When we denote the bond vector without the displacements of the two atoms 
of the bond as Ro(4, B ) ,  then R(t, B )  can be defined by 

R(4, B )  = &(&, B )  + ..(.el) - a(e), (10.9) 

while the derivative on u, in Eq. (10.7) is expressed by the derivative on R(t, B )  
as follows: 

&(jJ? (10.10) 
a d d R ( t ,  B )  = - 

€3 dR(t, B )  R(&, B> 

Here the summation is taken over the bonds connected to the 1-th atom and we 
use the following relations: 

and 

(10.11) 
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da dR,(l,B) 
When we calculate Pap,j in Eq. (10.7), we have terms -, 7 and du, du, 

aR("B) in - After some calculation and making use of Eqs. (10.10)' 
8% au, (el . 

(10.11) and (10:12), we obtain an explicit form for Pap,!, 

(10.13) 
where all(B) and a y ( B )  are the radial derivatives of q ( B )  and a l ( B ) ,  that is 

respectively. The values of al~(B) ,  ~ I ( B ) ,  all(B) and aL(B) are given empir- 
ically as a function of the bond length between two carbon atoms or between 
carbon-hydrogen atoms, and these values are listed for carbon nanotubes in Ta- 
ble 10.2. In order to obtain values for the parameters for carbon nanotubes, 
we start by interpolating between the values for the polarizability parameters 
for single (1.46A) and double (1.40di) carbon bonds in c 6 0  and related materi- 
als [205,207]. Then we fit the values so as to  reproduce the Raman signal for 
randomly oriented nanotubes. Although the calculated values are within a rea- 
sonable range for carbon materials, the values for the polarizability parameters 
listed in Table 10.2 do not converge well for carbon materials, because of the 
different results that have been reported by various groups. 



Table 10.2: Bond lengths and Raman polarizability parameters for single-wall 
carbon nanotubes and for various carbon-related molecules. 

Molecule Bond Lengths (YI~ + 2 a ~  ( ~ 1 1  - Q L  (Y' + 20'1 Q' -a;  
[A1 1 ~ 3 3  [k31 cf21 d 2 1  

CH4") C - K (1.09) 1.944 
C ~ H G ~ )  c - c (1.50) 2.016 1.28 3.13 2.31 
CZH4&) C = C (1.32) 4.890 1.65 6.50 2.60 
c 6 0 b )  c - c (1.46) 1.28 2.30 f 0.01 2.30 f 0.30 

C = C (1.40) 0.32 It 0.09 7.55 f 0.40 2.60 If: 0.36 
Ceoa) C - C (1.46) 1.28 f 0.20 1.28 f 0.30 1.35 f 0.20 

C = C (1.40) 0.00 f 0.20 5.40 f 0.70 4.50 f 0.50 
SWCNC) C = C (1.42) 0.07 5.96 5.47 
SWCNd) C = C (1.42) 0.04 4.7 4 .O 

~ ~ ~ 

'1 S. Guha et al. [205]. 
D. W. Snoke and M. Cardona [207]. 
E. Richter et al. (unpublished data which is used in their work[83]). 
R. Saito et al. [208]. 

I t  is known, however, that the polarizability parameters of carbon are similar 
for a variety of carbon materials. Furthermore, the relative intensities for the 
Raman modes are not so sensitive to small changes in the values of the bond 
polarization parameters except for the lowest E29 mode. The lowest Ez9 mode 
is found to be most sensitive to the parameter a11 - a ~ .  Thus the fitted values 
are used for calculating appro xi mat^ Raman intensities. The Raman intensity is 
calculated using the eigenvectors for the vibrational modes, obtained by solving 
the dynamical matrix, and the polarization parameters are obtained using bond 
polarization theory [205]. 

10.4 Raman Spectra of Nanotubes with Random Orientations 

The Raman intensities for the various Raman-active modes in carbon nanotubes 
are Calculated at a phonon temperature of 300 K which appears in the formula of 
Eq. (10.6) for the Bose distribution function for phonons. The eigenfunctions for 
the various vibrational modes are calcufated numerically at the I' point (k = 0). 
Here we consider two possible geometries for the polarization of the light: the VV 
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and VH configurations. In the VV configuration, the incident and the scattered 
po~arizations are parallel to each other, while they are perpend~cu~ar to  each 
other in the VH direction. Generally the cross section for Raman scettering 
is a function of the scattered angle of the light. However, the formulae for the 
bond polarization theory consider only Smattered waves [205], and thus the 
calculated results cannot distin~uish between forward and backward scattering 
of the light. 

In Fig. 10.4, we show the calculated Raman intensities for the (10,lO) arm- 
chair, (17,O) zigzag and (11,s) chiral nanotubes, whose radii are, respectively, 
6,7S& 6.66A, and 6.47A and are close to one another. The Raman intensity is 
averaged over the sample orientation of the nanotube axis relative to the Poynt- 
ing vector of the light, in which the average is calculated by summing over many 
(w 50) directions, weighted by the solid angle for that direction. Thus Fig. 10.4 
is the calculated result for r~domIy-oriented nanotubes. We divide the discus- 
sion into the following three frequency regions: the lower (w _< 500 cm-'), higher 
(w 2 1500 cm-l), and middle (500 cm-I 5 w 5 1500 cm-l) frequency ranges. 
Then we discuss the phonon density of states for the Raman-active modes which 
depend strongly on the chirality. 

Since we consider randomly-oriented nanotubes in this section, we do not 
need to  mention the direction of the polarization vector for the V V  and VW 
configurations. On the other hand, we need the directions of V and H for cal- 
culating the Raman intensity of a nanotube. We present the sample orientation 
dependence of the Raman spectra of a (10,lO) nanotube in the next section, in 
which we rotate the nanotube axis by fixing the polarization vectors. 

rU.4.1 Lower ~ r ~ ~ ~ e n c ~  R ~ ~ ~ n  Spectra 

Here we discuss the Raman intensity for the lower frequency modes below 
500 cm-l. The Raman intensity is normalized for each nanotube to a max- 
imum intensity (A l ,  in the V V  configuration) of unity. When we compare 
the VV with the V H  polariz~tions (see Fig. 10.4), the Raman intensity shows 
anisotropy. Most importantly, the Al ,  mode at  165 em-' is suppressed in the 
VH configuration, while the lower frequency El, and E2, modes are not sup- 
pressed as much. This anisotropy is due to the low dimensionality of carbon 
nanotubes. The degenerate vibrations of the E modes, whose eigenfunctions 
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Fig. 10.4: The polarization dependence of the Raman scattering 
intensityfor (a) (10,lO) armchair, (b) (17,O) zigzag, and (c) (11,8) 
ehiral nanotubes and the tube radius are given on the right. The 
left column is for the VV scattering configuration and the right 
column is for the VH configuration. 

are orthogonal to each other, are relevant to V N  signals. From the figure we 
see that the relative intensities for the same mode between the VV and VII 
polarizations are different but are on the same order for all the E modes. 

When we compare the lower frequencies of these Raman modes for nan- 
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otubes, the frequency shifts systematically with increasing diameter. In Fig. 10.5 
we give the calculated mode frequencies for the lower frequency Raman-active 
modes on a log-log plot as a function of the carbon nanotube radius r for (n, m) 
in the range (8 5 n 5 10, 0 5 m 5 n). Figure 10.5 clearly shows straight line 
dependences for all four Raman modes, thus indicating a power dependence of 
u ( r )  on r. No chirality dependence is found for the mode frequencies for these 
modes, which is consistent with the fact that the energy gap of a semiconduct- 
ing nanotube and the strain energy depend only on the nanotube radius and 
not on the chiral angle B [81,209]. From the slopes of ~ ( r )  for this range of 
r ,  we conclude that, except for the lowest E2, mode, the frequencies are in- 
versely proportional to r making only a small deviation from the predictions of 
Fig. 10.5. This dependence is closely related to the circumferential length of the 
nanotube. As for the lowest E2, mode, the frequency wzS(r )  has a dependence 
of r-1~95f0~03, which is approximately quadratic and may reflect the effect of 
curvature on the nanotube. The fitted power law for the Al ,  mode that is valid 
in the region 3hi 5 r 5 7A 

y(lo, 1.0017f0.0007 
4.) = q l 0 , S o )  [+ 1 ( 10.15) 

should be useful to experimentalists in interpreting their spectra. Here w(10,10) 

and ~(10,10) are, respectively, the frequency and radius of the (10,lO) armchair 
nanotube, with vaiues of w (  10,10)= 165 cm- and r~10 , l~ )  =6.?85& respectively. 

It is the noted that the El, and A1, modes exist in a similar frequency region. 
However, since the intensity of the El, modes is not as strong as that for the Al, 
mode, the experimental Raman spectra between 100 to 300 cm-l are dominated 
by the Al ,  mode as shown in Figs. 10.1 and 10.3. As for the higher frequency 
Raman modes, we do not see a strong dependence on P ,  since the frequencies of 
the higher frequency optical modes are more sensitively determined by the local 
movements of the atoms. 

10.4.2 Higher Frequency Raman Modes 

It is interesting that the higher frequency A1, mode at  1587 cm-' does not 
show a suppression between the V V  and V H  geometries, which is relevant t o  
the Raman active E2, mode of graphite. In the next section we will see that the 
A1, modes depend on the orientation of the nanotube axis. This fact shows that 
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Fig, 10.5: Log-log plot of the 
lower Raman mode frequencies - -  1 10 as a function of carbon nanotube 
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a V H  signal can be expected when the vibration of the A1, mode is different 
from the polarization vector. 

In the nanotube, the lattice can be split into two sublattices consisting A 
and B atoms. In the higher frequency Al ,  mode, the A and B atom moves in 
opposite directions (out-of-phase) in the unit cell, while in the lower frequency 
A l ,  mode the A and B atoms move in the same way (in-phase). In Fig. 10.6 
we show the normal mode disp~acements for seven Raman modes for a ( l O , l O }  
nanotube which have a relatively large intensity. It is clear from Fig. 10.6 (e) 
to ( g ) ,  that the modes are out-of-phase between nearest neighbor carbon atoms, 
while the modes of Fig. 10.6 (a) to (d) show in-phase motion. The out-of-phase 
motions observed in Fig. 10.6 (e) to (g) are similar to the motion of the Raman- 
active E2, mode of graphite a t  1582 C M - ~ ,  which corresponds to  C=C bond 
stretching motions for one of the three nearest neighbor bonds in the unit cell. 
Thus this motion is an out-of-phase motion. It is reasonable that the out-of- 
phase motions of the higher frequency Raman modes of a nanotube have a large 
Raman intensity, because of the relation of these modes to the Eag mode of 
graphite. 

The motions shown in Fig. 10.6 are independent of the chirality. When 
we see the motion of the higher or the lower Raman-active modes of a nan- 
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Fig. 10.6: The calculated Raman mode atomic displacements, fre- 
quencies, and symmetries for those (l0,lO) nanotube modes which 
show strong Raman intensity. The symmetry and the frequencies 
for these modes are almost independent of the chirality of the nan- 
otube. We show the displacements for only one of the two modes 
in the doubly degenerate El, and Ez, modes. 

otube, we can consider an envelope function for the amplitude of the vibration, 
multiplying it by the above-mentioned out-of-phase or in-phase motions, respec- 
tively. We can say that the envelope function should satisfy the symmetry for 
the Raman-active modes among the many phonon modes. For example, the 
envelope functions for the Al, ,  El9 and E2, modes are functions with zero, two, 
and four nodes around the tube z-axis, respectively [see Fig. 10.6 (f), ( e ) ,  and 
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fg) for out-of-phase motion, and (c), (b), and (a) for in-phase motion]. Thus 
the envelope functions with a given symmetry are similar to one another for 
nanot~ubes with any (n, rn) values. This is the reason why we get similar Raman 
spectra for different chirality nanotubes. We can say within the discussion of 
the envelope function that we see a homogeneous elastic cylinder. 

When we investigate the vibration of the higher frequency A l ,  mode at  
1587 cm-l, the vibration corresponds to the folded vibration of one of the higher 
Ez9 modes of graphite. Thus, in the cyli~drical geometry, we may get a result 
that is not so polarization sensitive. On the other hand, in C60t since all 60 atoms 
are equivalent, no carbon atom can move in an out-of-phase direction around 
the Cs axes for either of the two Al ,  modes, so that both modes show similar 
polarization behavior to each other [198]. However, the directions of the out-of- 
phase motions of the A1, modes are different for armchair and zigzag nanotubes. 
In fact the C=C bond-stretching motions can be seen in the horizontally and the 
vertically vibrating C=C bonds for armchair and zigzag nanotube, respectively. 
Thus the curvature of the nanotube affects the frequency of these mode. When 
we focus our attention on armchair nanotubes, the higher Raman frequencies 
depend on the radius of the nanotube l/r via the wave vector q around the 
equatorial direction 12021, which is understood by the zone-folding method and 
is discussed in Sect. 10.2. 

Although these higher frequency modes are difficult to distinguished from 
one another because of their similar frequencies, it will be possible to identify the 
different modes experimentally, once purified aligned samples become available, 
as shown in discussing the angular dependence of the Raman int~nsities, which 
is reviewed in Sect. 10.5. 

lo.4.9 Medium Frequency Raman Modes 

It could be very interesting to discuss the Raman frequency in the intermediate 
frequency region where the frequency may be the most chirality dependent [210], 
The calculated results, however, show almost no intensity for the ~ n t e r m e d ~ a t ~  
Raman modes around 1200-1~00 em-'. The Raman experiments on single-wall 
nanotubes show weak features which have been assigned to armchair modes {83]. 
From the calculation we cannot explain why these low intensity peaks appears. 
The peaks might come from a lowering of the symmetry of the nanotube. In 
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fact, broad Raman peaks around the 1347 cm'l are observed experimentally 
[83,135]. These peaks are known to be associated with symmetry-lowering effects 
in disordered graphite [211] and carbon fibers [212] for which a broad peak is 
observed around 1350 cm-l, The relative intensity of the broad peak around 
1350 cm-l to the strong EQ mode at 1582 cm-l is sensitive to the lowering of 
the crystal symmetry of graphite [211,213], the amount of disorder in carbon 
fibers [212] and in graphite nano-clusters [214]. The amount of disorder in these 
systems can be controlled by the heat treatment temperature THT or by ion 
implantation 12151. The non-zone-center phonon mode at  1365 cm-' has a flat 
energy dispersion around the M point in the Brillouin zone of graphite, which 
implies a high phonon density of states * f216]. Moreover, in small aromatic 
molecules, the frequency and the normal mode displacements are modified by 
the finite size effect, so that these M point phonon modes becomes Raman active 
[217] and have a large intensity [214,218]. Thus some symmetry-lowering effects 
such as the effect of the end caps, bending of the nanotube and the other possible 
defects are likely to turn on the Raman intensity for this M-point mode. Note 
that if the nanotube is deformed to a 2 x 2 structure for any reason, the M point 
phonon can be folded to the I' point and the folded modes becomes Raman- 
active A,  modes. However, since a Peierls instability is unlikely, as is discussed 
in Sect. 11.3, this situation may occur only in the case of intercalated nanotubes 
[135]. 

When we caIcuIate the Raman intensity for a nanotube with open ends, 
the intermediate frequency Raman modes have a small intensity relative to  the 
strong peaks in the higher and the lower frequency regions. The observed Raman 
signal in Fig. 10.1 in the intermediate frequency region can be relevant to the 
finite length of a nanotube. 

As shown in Fig. 10.4, the chirality dependence of the Raman spectra is not 
clearly observed except for the frequency. However when we consider the abso- 
Iute Raman intensity, it is impor t~nt  to consider also the effect of the phonon 
density of states. The three nanotubes in Fig. 10.4 have almost the same diame- 
ters. However the number of carbon atoms per 1D unit cell is very different. For 
example, the (10,lO) and (17,O) nanotubes have 40 and 68 carbon atoms in their 
1D unit cells, respectively. However, the (11,8) nanotube has 364 carbon atoms 
in its unit cell. Because of the large number of states for the (11,s) nanotube, it 

*See Fig. 9.4 for 2D graphite. In this case we can see a flat band appearing below 1300 cm -1 



should be difficult to observe the singularities in the electronic density of states 
in a (11,8) nanotube within the reso~ution of the STM because the singu~arities 
occur so close to  one another. Thus the resonant Raman effect for chiral nan- 
otubes should also be re~at ive~y d i ~ c u ~ t  t o  observe compared with the case of 
achiral nanotubes. It would be interesting to be able to assign the chirality of a 
nanotube from the Raman spectra by using many laser excitation frequencies. 

10.5 Sample Orientation Dependence 

In Sect. 10.4.2, we see that the high frequency Raman modes originate from the 
o u t - o f ~ p h ~ e  Ezs mode of graphite. As a result, the frequencies of the Raman 
modes in the high frequency region are close to one another, However since the 
symmetry of these modes are d i ~ e ~ e n t ,  these mode can be separated from one 
another by exploiting special experimental geometry conditions. 

In Fig. 10.7, we show the intensities of the various Raman-active modes for 
the (10,lO) armchair nanotube as a function of sample orientation. Here we 
fix the polarization vectors to lie along the z and x axes, respectively for the 
V and H polarizations. Then we consider the effect of rotating the nanotube 
axis from the z axis. In this geometry, three rotations of the nanotube axis 
are possible for the VV and the V H  ~onfiguratjons, and these three rotations 
are denoted by Bi, ( i  = 1 , 2 , 3 )  as shown in Fig. 10.7, Here 81, and 82 are the 
angles of the nanotube axis from the z axis to the x and y axes, respectively, 
while 83 is the angle of the nanotube axis around the z axis from the x to the 
y axis. Since we put the horizontal polarization vector along the x axis, 81 and 
42 are different from each other for the V H  configuration. Even for the VV 
configuration, the rotations by 81 and 42 are not equivalent to each other in 
the case of the (10,lO) armchair nanotube, since the (10,lO) armchair nanotube 
has a ten-fold symmetry axis (C~O) which is not compatible with the Cartesian 
axes. Here we define the x, y, z axes so that we put a carbon atom along the 2 
axis when 83 = 0'. In Fig. 10.7, we show the relative Raman intensities for the 
(10,lO) armchair nanotube for the VV and VH configurations for the various 
Raman modes of a (10,lO) carbon nanotube as a function of &, (i = 1,2 ,3) .  

In Fig. 10.7 we see that the Raman intensity for the Al, mode a t  1587 cm-l 
as a function of 81 has a m a x i ~ u m  at 81 = 0, which corresponds to 82 = 83 = 0, 
for the V V  configuration, while the El, mode at 1.585 cm-l has a maximum 
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Fig. 10.7: The polarization dependence of the Raman intensities 
as a function of the orientation of the nanotube axis for a (10,lO) 
armchair nanotube. 61, and 62 are angles of the nanotube axis 
from the z axis toward the z and y axes, respectively. 93 is the 
corresponding angle around the z axis from the z to  the y axes. 
The left and right hand figures correspond to  the VV and V H  
polarizations, where V and H correspond to the light polarization 
in the direction of the z and z axes, respectively. 

at el = 45'. When 81 increases to  45O, the relationship between the intensities 
of the A1, mode at  1587 cm-' and of the E2, mode at 1591 cm-l becomes 
reversed for the VV configuration relative to the V H  configuration. Thus, we 
can distinguish these two close-lying modes from each other experimentally if 
we have an axially aligned sample. There is also an E2g mode at 1591 cm-' 
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which can be distinguished from the Al, and El, modes, since the E2, mode 
has a m ~ i m u m  intensity at 81 = 90'. As for the other Raman-active modes, we 
can also distinguish them by their frequencies. In Fig. 10.7, the two Ez, modes 
at 368 and 1591 cm'l have almost the same intensity in the VV configuration. 
Thus we can see only a single line in the VV configuration of the figure. However 
in the 82 dependence of the V H  configuration, we can see the difference between 
these EzS modes. 

Even the modes belonging to the same irreducible representation do not 
always have the same angular dependence with regard to the polarization of 
the light. For example, the intensity of the Al, mode at 165 cm-l has a dif- 
ferent angular dependence from that of the A l ,  mode at  1587 cm-', as shown 
in Fig. 10.7. Further, it is clear from the figure that the angular dependence 
with respect to  81 and 62 is different for the V H  geometry since the horizontal 
polarization is taken in the x direction, 

The symmetry analysis may be difficult even if we can get an aligned nan- 
otube sample for which the direction of the carbon atoms is ordered, since the 
10-fold symmetry of the (10,lO) nanotube does not satisfy the symmetry of the 
t r ian~ular  nanotube lattice. Thus an averaged angular dependence for 01 and 02 

in the VV geometry is expected for a general aligned sample. Even in this case, 
since the Al, mode at  1587 cm-' is independent of 03, the signal for this mode 
will be clearly seen. The (9,9) armchair nanotube is of special interest, since it is 
one of a few examples where the n-fold symmetry of the nanotube matches the 
t r i angu~a~  lattice; therefore, for (9,9) nanotub~s in a trjanguiar lattice, detailed 
angle-dependent selection rules can be expected. 

In summary, the Raman intensity of armchair, zigzag, and chiral nanotubes 
is discussed in Sects. 10.4 and 10.5 as a function of their polarization geometry 
and sample orientation. N o  significant dependence on chiral angle is found for 
the Raman spectra. The Raman intensity is explained by the envelope function 
of the amplitude of the vibration, and this envelope function is sensitive only 
to the homogeneous elastic cylinder. However, we expect to see a large c h i d  
dependence of the phonon density of states which is reflected in the absolute in- 
tensity. The sample orientation dependence of the Raman intensity shows that 
not only the symmetry but also the direction of the displacements give rise to 
their own angular dependence, and this angular dependence can be used for dis- 
tinguishing between the symmetry assignments for the higher frequency Raman 
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modes. Such a symmetry analysis will also be useful for identifying the chirality 
of carbon nanotubes. 



CHAPTER 11. 

Elastic Properties of Carbon Nanotubes 

Since the C=C bond in graphite is the strongest bond in na- 
ture, a carbon nanotube is widely regarded as the ultimate fiber 
with regard to its strength in the direction of the nanotube axis. 
Furthermore, single wall nanotubes are rather flexible in the direc- 
tion normal t o  the nanotube surface. The static elastic properties of 
carbon nanotubes are discussed in Sect. 11.2. The unusual aspects of 
the Peieris instabilit~} associated with the distortion which makes an 
energy gap at  the Fermi energy, in carbon nanotubes are discussed in 
Sect. 11.3. Multi-wall carbon nanotubes have unique properties that 
do not appear in single wall nanotubes, and these are summarized in 
Sect. 11.4. 

11.1 Overview of Elastic Properties of Carbon Nanotubes 

In graphite and in carbon nanotubes, three kinds of forces between carbon atoms 
produce their characteristic elastic properties. The fundamental atomic forces 
consist of strong c.r-bonding and n-bonding forces between intralayer C=C bonds 
and weak interlayer interactions. Although the three forces differ from one- 
another regarding their orders of magnitude, all three forces are essential for 
describing the elastic properties of carbon nanotubes, as shown in the following 
three sections, respectively. En each section we give an overview of the relation- 
ship between the properties and the force. 

By rolling a graphene sheet to form a single wall carbon nanotube (SWCN), 
the total energy of the nanotube is increased by the strain energy associated with 
the curvature of the nanotube. The strain energy thus increases with decreasing 
nanotube diameter, so that a nanotube with a small diameter may be less stable 
than a nanotube with a larger diameter. In graphitic materials, sp2 covalent 

207 



208 CHAPTER 11. ELASTIC PROPERTIES OF CARBON NANOTUBES 

bonds mainly form the D skeleton of the honeycomb lattice. Thus the strength 
in the direction of the nanotube axis may be considered as an elastic thin film 
for which classic elastic theories can be applied [219], as shown in Sect. 11.2. On 
the other hand, we expect a rather soft surface in SWCNs for a force applied 
perpendicular to the surface of a carbon nanotube, and this feature of SWCNs 
can also be explained by consider in^ a tangential force on the a-bond skeleton. 
Single wall carbon nanotubes have no interlayer interactions, since a hollow 
vacuum core exists inside each nanotube. In fact, a perpendicular deformation 
is not always stable and the cross section of carbon nanotubes is easily flattening 
by applying a force normal to the nanotube axis [220] and a large bending of 
single wall nanotubes is observed without breaking the skeleton [221]. Using 
elastic continuum theory to describe the elastic properties of nanotubes, we 
discuss in Sect. 11.2 the rigidity of carbon nanotubes and the weak chirality 
effects expected for their elastic properties. 

Single-wall carbon nanotubes are believed to possess many of the desirable 
mechanical properties of carbon fibers, but, in addition, single-wall carbon nan- 
otubes have a number of other desirable nanotube properties with regard to their 
flexibility, their ability to withstand cross-sectional and twisting distortions, their 
extensibility, and their ability to withstand compression without fracture. Just 
as for the carbon fibers that are produced commercially for aerospace applica- 
tions, carbon nanotubes show excellent strength characteristics under extension, 
and molecular dynamics simulations [222] indicate that an increase in length 
(elongation) of several percent without fracture might be possible [95,219]. In 
addition to these amazing predictions for their tensile properties, single-wall 
nanotubes show remarkable flexibility, and can be bent around small circles or 
about sharp bends without breaking [ l l O ] .  Whereas carbon fibers fracture easily 
under compression, carbon nanotubes form kink-like ridges under compression, 
and these ridges can relax elastically when the stress is released. Computer 
simu~ations 12221 further indicate that when the c o m p r ~ ~ i o n a l  or shear stress is 
released, the original circular cross-section of the nanotube can, in many cases, 
be restored [219]. It should be possible to utilize these excellent mechanical prop- 
erties for applicat~ons directly, or in conjunction with their use for manipu~ating 
other nanostructures [53]. 

Although the 7~ electron contribution to  the elastic energy is relatively small 
compared with that from the c electrons, the 7~ contribution is nevertheless 
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important for obtaining the lattice distortion known as the Peierls distortion 
(see Sect. 11.3.2). Although one third of the possible carbon nanotubes that 
can be formed are one-dimensional metals, and it is well known that the Peierls 
instability is favored in low dimensional systems 12231, the associated lattice 
distortion can be negligible in the case of carbon nanotubes because of the 
following physical situation. The Peierls instability is known to cause a metal- 
insulator transition, by opening an energy gap at the Fermi energy to benefit 
from the eIectronic energy gain which is introduced by the distortion of the 
lattice into a doubled unit cell. The values of the distortion are determined by 
minimizing the total energy as a function of the distortion, in which the energy 
gain associated with the electron-lattice interaction of the T electrons is balanced 
by the energy loss of the potential energy of the Iattice. Starting from a general 
theory of the Peierls instability, we focus our attention on the reason why the 
Peierls distortion is suppressed in carbon nanotubes in Sect. 11.3. 

Multi-wall carbon nanotubes have many interesting properties that are not 
observed or explained by the physics of single-wall nanotubes. In multi-wall nan- 
otubes, the relatively weak interaction between two adjacent layers determines 
their relative stacking structure, which denotes the positions of the atom sites 
on the outer layer, relative to  those on the inner layer of the nanotube. The 
lattice structure of the inner and the outer layers are generally incommensurate 
with each other, which describes the turbostratic structure of multi-wall carbon 
nanotubes. This turbostratic structure affects shear stress between the nanotube 
shells. However, in some cases, the interlayer stacking can become correlated, 
and experimental evidence has been found for faceting in some multi-layer nan- 
otubes [224,225]. 

Because of the weak and incommensurate electronic interaction between the 
two layers, the electronic structure between two adjacent carbon layers is consid- 
ered in terms of a sum of the electronic structures of the constituent nanotubes. 
Furthermore, in discussing multi-layer nanotubes we require that in the limit of 
large nanotube diamet,er, all the nanotube properties should correspond to those 
of graphite. These topics are briefly summarized in Sect. 11.4. 
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11.2 Strain Energy of Carbon Nanotubes 

When we consider a single-wall carbon nanotube as an elastic sheet, the strain 
energy E, is inversely proportional to the diameter of carbon nanotube, dt: [12], 

(11.1) 

where E is the elastic modulus of the sheet, T is the length of the carbon 
nanotube per 1D unit cell in the direction of the nanotube axis [see Eq. (3.5)], 
and d f  is the thickness of the thin film, which can be considered as the interplanar 
distance between two turbostratic graphene layers (3.446;). Since the number of 
carbon atoms per unit cell N = 2LT/&a2 [see Eq. (3.9)] is also proportional to  
dt (i.e,, L = 2sdt) ,  the strain energy per carbon atom is inversely proportional 
to  the square of the nanotube diameter: 

(11.2) 

This simple argument for a dependence of E,/N on d t 2  is confirmed by a more 
detailed first principles calculation of the strain energies of many carbon nan- 
otubes with different diameters and chiralities [209], as shown in Fig. 11.1. The 
solid curve in the figure depicts the (l/dt)' dependence of E,  given in Eq. (11.1), 
showing that we can understand the functional dependence of the strain energy 
of a carbon nanotube from the simple arguments given above for an elastic thin 
film. The small deviations of the strain energy as a function of nanotube di- 
ameter (or radius) suggests that the dependence of E,/N on chirality, is very 
weak, and this weak dependence may be due to: (1) chirality-dependent direc- 
tions of the three equivalent u bonds with respect to the nanotube axis, and (2) 
chirality-dependent contributions of the K bonds, depending on whether there is 
an energy gap or not in the dispersion relations. 

Although the total energy depends on the nanotube chirality and thus should 
be related to the stability of the carbon nanotube, the abundance of a given 
diameter carbon nanotube should not depend on the chirality. This is because 
the abundance of nanotubes is determined by the initial formation of the end 
cap of the carbon nanotube. In fact, experimental results for the diameter 
distribution of single wall carbon nanotubes do not show the same diameter 
distribution for different catalysts [57]. Since the diameter and chirality cannot 
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Fig. 11.1: Strain energy per 
carbon atom E, as a function 
of nanotube radius ri = d t / 2  
[Sl]. The solid curve depicts the 
( l / d t ) 2  dependence of E, given 
in Eq. (11.1).  

be changed in a single-wall nanotube unless a defect exists, this result might 
show that the diameter and chirality that are obtained in the growth process 
depend mainly on the shape of the caps generated by the catalytic particle. The 
lower limit of the diameter of a single wall carbon nanotube seems to be the 
diameter of CG0. In fact there is no report of observation of a nanotube with a 
diameter smaller than that of (360. 

When a force acts pe~pendicular to the nanotube axis, the nanotube bends, 
as described by the Young's modulus Y [220]. When we consider a cantilever 
beam of length 4, the deflection d of the beam with a force f at its free end is 
given by [219] 

d = -  ff3 
3Y I (11.3) 

where I is the areal moment of inertia of the cross-section of the nanotube 
about its axis, I = Z(Y: - r i ) / 4 ,  in which r, and r; are the outer and inner 
radii of an elastic cylinder, respectively [220]. As a first approximation* we use 
Y = where the elastic modulus Cl1 for a carbon fiber for Y ,  C11= 1060 GPa 
[9,219,226]. Overney et al. calculated the beam rigidity of a carbon nanotube 
in the same geometry, using the Keating potential whose parameters are given 
by the local density functional calculation [227]. Their calculated result shows 
that the beam rigidity is 200 times greater than a Pr bar of the same size. The 

'The Young's modulus Y is given by (S);' I where Si, denotes the compliance tensor. Since 
C ~ Z  = 220 GPa is not negligible in a carbon fiber, we expect Y for a carbon fiber (N 800 GPa) 
to be somewhat smaller than 4 1  for graphite. However, since we expect Clz in a nanotube 
to be reduced relative to graphite, we may use the Cli values for graphite to obtain a value 
for Y for carbon nanotubes. 
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calculated Young’s modulus for a carbon nanotube is about 1500 GPa. There 
are many calculations for the Young’s modulus whose value varies from 500 to 
1500 GPa,  depending on the potential model and on the estimation for the cross 
section. When we consider a single wall nanotube, we may use Eq. (11.3) and 
we can consider the wall thickness to be 3.44A, which is the interlayer separation 
between turbostratically stacked graphene layers [9]. 

When the diameter of single wall nanotube increases, the nanotube is un- 
stable in the direction perpendicular to the surface. The TEM observations 
show evidence for nanotubes collapsing into a flattened or bent nanotube with- 
out breaking the nanotube structure. TEM photos of a collapsed nanotube 
look similar to the bending of a rubber nanotube [228]. On a nanometer (nm) 
scale, the nanotube seems to be rather soft in the direction perpendicular to  the 
nanotube axis. 

The experimental observation of the Young’s modulus of a single nanotube is 
difficult because of its small diameter. A novel method for measuring the Young’s 
modulus of individual nanotubes has been developed, whereby the amplitude of 
a thermal vibration of the nanotube is observed as a function of temperature 
[229]. At a high temperature T where a classical Boltzmann distribution of 
probabilities, P c( exp(-E/kBT), can be used, the average of the vibrational 
energy, (W,), for a vibrational mode, n,  becomes k B T ,  or (W,)=kBT, where ]cg 

is Boltzmann’s constant. Since the averaged value of W, is proportional to  the 
square of the amplitude ti:, we can write 

(11.4) 

where c, is a spring constant. The spring constant is estimated by directly 
observing the amplitude of the thermal vibration as a function of temperature 
within the standard deviation 

1 
u2 = k B T C -  

n cn 

given by statistical physics. The relationship between c, 
ulus Y is given by use of elasticity theory for continuum 

(11.5) 

and the Young’s mod- 
media 

(11.6) 
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where the values /3, are solutions to the equation, cosp, coshp, + 1 = 0. In 
their experiments the authors used a clamped hollow cylindrical cantilever of 
length L 12293. The leading numerical values for Bra, (n  = 0,1,2,3,. . .) are 
1.8751, 4.6941, 7.8548 and 10.9955 and for larger Pn values, f i n  can be found 
by the approximation fin - (a + 1 1 2 ) ~ .  By fitting a, b, and L to Eq. (11.6) for 
various nanotubes, the estimated results for Y are found to be in the range of 
-1000 GPa,  comparable to CIl for graphite. 

11.3 The Peierls Instability of Nanotubes 

11.3.1 Bond Alternation 

Next we discuss the effect o f t  electrons on the elastic properties. When electrons 
occupy about half of the valence energy band of #ne -d i~ens i~n  materials, the 
energy bands are unstable to a distortion of the lattice into a doubled unit cell. 
For the doubled unit cell in real space, the corresponding unit cell in reciprocal 
space is reduced by a factor of 2. Therefore, the energy dispersion relations 
are folded in half and an energy gap is opened at the Fermi energy at  the 
zone boundary of the foided Brillouin zone. This effect is known as the Peierls 
instability. For partially filled bands, such a distortion leads to a lowering of 
the energy of the system a,s the lower energy bands become occupied and the 
higher-lying energy bands remain empty. An example of the Peierls instability is 
the bond alternation or the Kekul6 structure of neutral carbon nanotubes [230], 
which has been discussed 1230-2331 in terms of the Su-Schrieffer-Heeger (SSH) 
model, developed initially for polyacetylene (CH), /234], and subsequently for 
CSO and its ions [231-2331. 

In the SSH model, a tight-binding Hamiltonian describing bond-alternat~on 
is solved in a large unit cell in which the transfer integral between the nth and 
mth atoms, f,,, is defined by 

and t,, becomes a function of the distortions of atoms from their originai posi- 
tions, x, and 2,. In Eq. (11.7>, t:, is the transfer integral without bond alter- 
nation (-2.5 - -3.2 eV) and a denotes the electron-phonon coupling constant 
(w 5.0 eVfA). When the two atoms are close to each other, the absolute value 
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of the transfer integral' becomes large. In the case of polyacetylene (CH),, the 
bond alternation problem can be solved by using a doubled unit cell with a dis- 
tortion zn = ( - l )nz~  leading to two transfer integrals tl  and t2, (tl = to - 2 a q  
and tz = t o  + 2az0,  with It11 < 1t21). 

When we neglect the overlap integral, s = 0 in Eq. (2.20) for simplicity, 
N A B  of Eq. (2.17) becomes 

+ t2e-ika/2 (11.8) ikal2 N A B  = t le  

and the secular equation is given by 

f2p - E 
tle-ika/2 + tZe+ika/2 

tleika/2 + tae-ika/2 
f2p - E 1 (11.9) 

= ( fgp - E)2 - (tf -t t; + 2tlt2 cos ka) 
= 0. 

The solution of Eq. (11.9) yields the dispersion relations 

( 1 1.10) 
'IT 'IT Ef(z) = czP f Jtt + t i  + 2tlt2 coska, (-a < k < -), a 

which are plotted in Fig. 11.2 for the values of tl  = -1.1 and t2 = -0.9. 
Comparing Figs. 11.2 and 2.2, wesee that an energy gap of 2)tl-tzI = 8azo = 0.4 
is opened at k = f a / a  because of the bond alternation. The electronic energy 
of those electrons which are in the occupied valence energy band (E+ band in 
Fig. 11.2), decreases by opening the energy gap. On the other hand, the elastic 
energy increases by 

ESP = 4Kzi (1 1.1 1) 

where I< is a spring constant, and thus the optimized value of 20 is given by 
minimizing the total energy. Putting tl  = to - 2azo and t2 = to + 2az0 into 
Eq. (ll.lO), the energy difference of the electronic energy is given by 

.12) 

Thus the total energy EM = Eel + ESP has a minimum, dEtot/dzo = 0 when 

8Kzo = - a /"'a d k d d  A + B cos La, (11.13) 
'IT -n/a 8x0 

*It is noted that tOnm < 0 and a > 0 in Eq. (11.7). 
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Fig. 11.2: The energy disper- 
sion relation I3k.i) for bond- 
alternating polyacetylene given 
by Eq. (11.10) using values for 
the parameters ~2~ = 0, t l  = 
-1.1 and t 2  = -0.9. The energy 
gap at k = f a / a  arising from the 
bond alternation has a value of 

-1.0 -0.5 0.0 0.5 1.0 2 ] t l  - t 2 l  = 8 ~ ~ x 0  = 0.4 in these 

rr;l 0.0 - 

k d z  units. 

where A and B denote A = 2t$ f 8a2x$ and B = 2t$ - 8a2x:,  respectively. The 
integration of Eq. (11.13) is given analytically by 

( 1 1.14) 

where K ( z ) ,  and & ( z )  are, respective1yJ the complete elliptical integrals of the 
first and the second kind defined by, 

* P  
and & ( a )  = Jld d B u .  (11.15) 

K ( 2 )  = LTf2 HB 

v c - z z - T  
In Eq. (11.14) z is a function of xo which is given by 

2 

z 2 = - -  2B -1-4(?)  * 

A f B  
(11.16) 

To solve Eq. (11.14), we use the mathematical formula cos 28 = 1 - 2sin2 6, and 
obtain a solution for 20 over a reasonable range of a > 0. 

t When 1.1 < 1 we can expand K(z )  and E ( z )  around le = 0 to obtain: 

and 

respectively. 

K(.) = 2 { 1 + ($2 + (E)’.t + ...} , 
qz,=2{l-(;)22+(2.4) 1.3 2 2 4  :+..*}, 

2 
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‘I I/x / 1 
/ 1 I 

Fig. 11.3: The normalized en- 
ergy gap of polyacetylene, which 
is the solution of Eq. (11.14), 
Egap 3 8azo/ltol, is plotted 
as a function of the normalized 
electron-phonon interaction z 
4 a 2 / ( ~ l t o l K ) .  The inset shows a 
linear dependence of - log( Egap) 

- .  

X as a function of 1/x. 

In Fig. 11.3 we plot the normalized energy gap, Egap 3 8azo/ltol, as a 
function of the normalized electron-phonon interaction z z 4a2/(rlto IK). In 
the inset of Fig. 11.3 we plot - log(EgaP) as a function of l /z ,  clearly showing 
a linear dependence of - ln(Egap) on l /z  which is numerically fitted by 

(11.17) 

The functional form of the energy gap is similar to that for the superconducting 
energy gap according to BCS theory. 

Because of this lowering of the total energy, bond alternation is always 
found in a one-dimensional metal. The corresponding lattice deformation is 
called the Peierls distortion. In a molecule which has degenerate and partially- 
occupied levels associated with the high symmetry of the molecular geometry, the 
degenerate states become unstable under a lattice distortion, which lowers the 
symmetry and splits the degenerate levels so as to open an energy gap between 
the filled and unoccupied states. This effect which is similar to  the Peierls 
instability is called the Jahn-Teller effect in quantum chemistry. The Peierls 
instability is thus a kind of Jahn-Teller effect which occurs in the solid state.$ 
In higher dimensions, this instability does not always occur, simply because 
the energy gain in a small region around the Fermi energy is not always larger 
than the energy loss associated with the elastic energy.§ In a carbon nanotube, 

$The Peierls instability is sometimes called a band Jahn-Teller effect. 
§There are no pure one or two dimensional solids in three dimensional space. The Peierls 
instability occurs when the shape of the Fermi surface is close to that of a one-dimensional 
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Fig. 11.4: Possible bond alternation for a honeycomb lattice. (a) 
a Kekul6 type in-plane bond alternation,(b) a quinoid type in- 
plane bond alternation, and (c) an out-of-plane bond alternation. 
In the case of in-plane bond alternations, thick and thin lines, 
respectively, denote shrunk and elongated bonds, while solid and 
open circles in the out-of-plane bond alternation denote deforma- 
tions in the +z and -z  directions, respectively. 

although the geometry is one-dimensional, the electronic structure becomes close 
to that of graphite as the diameter increases. Thus a dimensional crossover 
associated with bond alternation occurs at  0 K ,  as described in Sect. 11.3.2. 

$1.3.2 

In chapter 2 we show that two-dimensional graphite has no energy gap between 
the bonding and antibonding T bands because there are two equivalent carbon 
atoms in the unit cell which give rise to a symmetry-imposed degeneracy at  the 
Brillouin zone corner. If the two atoms were not equivalent to each other, an 
energy gap would appear, thereby lowering the electronic energy. Whether this 
symmetry-lowering distortion does occur or not depends on the strength of the 
electron-phonon coupling constant, which we will discuss in this section. 

In the honeycomb lattice we can consider three kinds of lattice deformations 
as shown in Fig. 11.4; (a) a Kekul6 type of in-plane bond a~ternation, (b) a 
quinoid type in-plane bond alternation, and (c) an out-of-plane bond a~ternation. 
In Fig. 11.4(a) and (b), thick and thin lines, respectively, denote shrunk and 

PeierEs Distortion of graphite and carbon nunotubes 

surface, ur when two Fermi surfaces are parallel to each other over large areas in the Brillouin 
zone (the nesting condition). 
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elongated bonds. In the case of an out-of-plane deformation, the A and B 
sites in the unit cell deform in the +t and -2 directions, respectively. After 
deformation] the unit cell becomes twice as large as the original unit cell in the 
case of in-plane deformations, while the unit cell for out-of-plane deformations 
does not change. Thus for simplicity we consider the case of an out-of-plane 
deformation. 

Even if we deform the lattice by an out-of-plane deformation, all C-C bonds 
are still equivalent to  each other, and thus there is no relative difference in the 
transfer energy between the A and B sites. When the site energies have different 
values for the A and B sites, the two sites are not equivalent. For example the 
A and B sites are inequivalent in three-dimensional graphite, in which the A 
sites have carbon atoms above and below the atom but the B sites do not.* In a 
single layer of graphite, there is no relative difference in the site energy between 
the A and B sites. However, in the case of a single layer carbon nanotube, there 
is a difference between the inner and outer directions. 

If we assume that the site energy for the A and B carbon atoms is shifted 
by &aro/2 in which a is the electron-phonon coupling constant per distortion 
t o ,  the energy dispersion of the distorted T bands of graphite is given by solving 
the perturbation Hamiltonian , 

3-1= ( a t 0  tf(k)) , (11.18) 

where t and f(k) are defined by Eq. (2.24) and Eq. (2.25), respectively. Here 
we neglect the effect of the overlap matrix S and we put czP = 0 in Eq. (2.26) 
for simplicity. When the distortion is included, the calculated energy dispersion 
E ( k )  becomes 

t f ( k ) *  -at0 

This relation implies an energy gap of 2azo at the K point. The value of t o  
is obtained by minimizing the total energy which is given by the sum of the 

~ 

*In the SSH Hamiltonian they consider only the change of the transfer energy by the lattice 
deformation. Here we consider only the change of the site energy by the lattice deformation. 
Generally, the electron-lattice interaction affects both the transfer integral and site energies. 
See, for example, R. Saito and H.  Kamimura, J. Phys. SOC. Japan 52, (1983) 407. 



electronic energy and potential energy of the lattice. No distortion from the 
honeycomb lattice is observed in crystalline graphite because the density of states 
at the Fermi level is zero in the case of two-dimensional graphite. This situation 
is explained below as the limit of a carbon nanotube. 

Let us consider the Peierls instability of a carbon nanotube, Here we consider 
only out-of-plane distortions for the case of a zigzag carbon nanotube, (n, 0), for 
~ i m p ~ ~ i t y .  Since the size of the unit cell does not change in the case of an out- 
of-plane ~ i s~or t ion ,  the electronic structure of a distorted (n, 0) zigzag nanotube 
is obtained by zo~e-folding as discussed in Eq. (4.7). The 4% energy dispersion 
relations of the distorted (n,O) zigzag nanotube, E&(k),  are expressed as 

Taking account of the potential energy of the lattice as K $ f 2  per unit cell of 
graphite, in which IC is a spring constant, we obtain the following gap equation 
for the (n,  0) zigzag nanotube 

in which X(z) is the complete   lipt tical integral of the first kind defined in 
Eq. (11.14), and A, and B4 are given by 

2 
A , =  (y) + 1 + 4 c o s 2 ( ~ )  and 8 , = / 4 c o s ( ~ ) / ,  (11.22) 

respectively, and Eq. (11.21) is obtained by use of the mathematical formula, 

(11.23) 
which directly follows from the definition of K in the footnote of the previous 
subsection. 
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Fig. 11.5: The normalized en- 
ergy gap Egap = a2zo/ltol for 
metallic zigzag nanotubes, (n ,  0), 
is plotted as a function of the 
normalized electron-phonon in- 
teraction 2 E a2/(Iilltl) (t < 0 )  
for special valuesof n = 3, 6 ,  12, 
and 999(w m, which is essen- 
tially 2D graphite) denoted by 

0.0 0.5 I .o 1.5 solid, dotted, dashed, and bold 

0.8 - 

0.6 - 

X solid lines, respectively. 

In Fig. 11.5, we plot the energy gap Egap 2 a z 0 / ( t 0 I ,  which is normalized by 
l t o l ,  for metallic zigzag nanotubes (la, O ) ,  as a function of x which is the electron- 
phonon interaction a2 normalized by IiltoI so that 2 = aZ/ ( I i l t~ l )  ( t o  < 0). 
The plot in Fig. 11.5 is made for special values of n that are multiples of 3, 
namely n = 3, 6, 12, and 999 (- 00, corresponding to 2D graphite) denoted by 
solid, dotted, dashed, and bold solid lines, respectively. From the figure, we see 
that the dependence of the energy gap of the nanotube on the electron-phonon 
coupling constants is very close to that for the 2D case, and that an energy gap 
appears due to the finite values of the interaction, Actually in the case of zigzag 
nanotubes, the energy gap has non-zero values for small values of 2, although 
these values can be exponentially small, its seen in Eq. (11.17). The difference 
between the application of Eq. (11.17) to polyacetylene and carbon nanotubes 
is that the factor appearing in the exponent of Eq. (11.17) depends on n for 
(la, 0) zigzag nanotubes as 0: exp(-nA/z) (A is constant) [711. Thus for large R 

a larger interaction x is necessary for opening an energy gap. The reason why 
we get the present results is that the electron energy gain comes only from two 
of the 4n energy bands which cross the Fermi energy, while the elastic energy 
loss comes from all of the 27a carbon atoms in the unit cell [71]. 

--+ 00, we obtain the two-dimensional case in which a 
non-zero value of zo appears only when cx2/Kjtoi > 1.01. Since there is no 
experimental distortion in 2D graphite, the normalized interaction of a 2 / I C J t ~ l  
satisfies a2/K1tOl < 1.01. 

As for the other types of d~stor t~ons of carbon n ~ o t u b e s  shown in Fig. 11.4, 
Harigaya et a1.(233] and Viet et a1.[235] independently calculated the energy gap 

In the limit of 
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as a function of the chiral vector or the intensity of the electron-phonon interac- 
tion, using the SSH model for two-dimensional graphite. The calculated result 
shows a similar functional dependence of the energy gap on the electron-phonon 
interaction. A magnetic-induced distortion can however occur in a nanotube 
since the density of states at the Fermi energy is enhanced by the presence of a 
magnetic field by forming the l =  0 Landau level, as discussed in detail by Ajiki 
and Ando [lSO]. 

The electron-electron repulsion interaction, which is considered to be large in 
conjugate polymers, is also expected to be important in carbon nanotubes, since 
they are aIso P ow-dimens~ona~ materials. On-site ~ ~ ~ ~ ~ ~ n ~ ~ )  and off-site electron 
interactions (Uijlai,nj,,) are taken into account in the SSH Hamiltonian, in which 
the two-body effect is calculated mostly within the Hartree-Fock approximation, 
while keeping self-consistency between the charge and the lattice distortion [233]. 
Within the reasonable range of U N Itol ,  the lattice distortion is determined by 
the electron-phonon interaction (a). For larger U ,  a spin-Peierls interaction may 
occur in which the interaction between the two spins is now a function of the 
deformation of the lattice: ( J  N -]itI2/V = JO + a3(zn - zn+l)).t 

In conclusion, though metallic 1D energy bands are generally unstable under 
a Peierls  distortion^ the Peierls energy gap obtained for metallic nanotubes is 
found to  be greatly suppressed by increasing the nanotube diameter. Thus 
the Peierls gap quickly approaches the zero-energy gap of 2D graphite [69,71]. 
Thus if we. consider finite temperatures or fluctuation effects, it is believed that 
such a small Peierls gap (< eV) cannot be observed experimentally. The 
coexistence of metallic and semiconducting carbon nanotubes, depending on the 
chirality of the carbon nanotube, is independent of the lattice deformation. 

11.4 Properties of ~ u l t i - ~ a ~ l  Nanotubes 

In this section, we list several interesting features that can be seen only in multi- 
wa.11 nanotubes. Although multi-layer nanotubes have not been characterized in 
detail for their physical properties, because of the difficulty of making measure- 
ments on the individual shells of the nanotube and of sample preparation of 

tThere is an kinetic exchange interaction J N -it12/U which favors the ~tiferr~magnetic 
interaction. Since the transfer energy t in the SSH Hamiltonian is a function of (sn - 3 c n + l ) ,  

[see Eq. {11.7)], J depends on the deformation, This effect is known as the spin-Paerls 
distortion. 
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a well-defined and structurally characterized multi-wall nanotube, the co-axial 
nanotubes provide an interesting geometry, as shown below. 

When we consider two coaxial n~notubes which share the same n ~ o t u b e  
axis, the chiral vectors of the inner and outer nanotubes can be determined 
separately, which give the radii of the constituent nanotubes and the interlayer 
spacing between them, However, the structures of the two nanotubes will not 
be commensurate to each other in almost all concentric nanotubes, since their 
ratio of lengths in the circumferential direction is scaled by the ratio of the two 
diameters, but is not scaled in the direction of the nanotube axis. Further for 
(n, m) nanotubes, the length of the chiral vector ch = L is proportional t o  an 
irrational number L = adnz + m2 + nm. The only commensurate cases are the 
cases of the achiral co-axial nanotubes, since the translation vectors, T ,  are the 
same for two armchair nanotubes (721, nl) and (n2, n2) (where T = a)  or for two 
zigeag nanotubes (nl,O), (n2,O) (where T = d u ) .  Thus the lattice constant 
along the z axis has a 1 to 1 commensurate ratio. As for the circumferential 
direction, cyclic boundary conditions always imply a commensurate relation. In 
achiral nanotubes, the commensurate ratio is expressed by n1/n2. It is clear 
that an armchair nanotube and a zigzag nanotube cannot be commensurate in 
the direction of the z axis, since the ratio of T is l/&. In the case where the two 
are general chiral nanotubes, since the length of T = f i L / d ~  is an irrational 
number in units of a [see Eq. (3.8)], the ratio of the T vectors for the two 
nanotubes will be an irrational number. In the case of ~ncommensurate co-axial 
nanotubes, no periodicity appears along the z axis. This means that when we 
put carbon atoms on the x axis, both for the inner and outer nanotubes, we will 
not see any two atoms in a line parallel to the 2 axis. When we slide the inner 
nanotube along the z axis relative to the outer nanotube, the elastic potential 
is, however, a periodic function, with a period that is the larger value of the T 
vectors for the constituent nanotubes. When the number of carbon atoms in 
the unit cell of the constituent nanotubes becomes large, the potential becomes 
flat, since the average of the inter-atomic potentials a t  different distances does 
not depend much on +. In this sense, the shear modes between two graphite 
layers, which is observed at 42 cm-' in graphite, should be much reduced in 
the multi-wall nanotube. One nanotube may move smoothly with respect to  the 
other in the attractive force between the two walk. 

Since we have two degenerate shear modes in the x and y directions in 
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the graphitic plane, we can expect another shear mode in the nanotube which 
corresponds to the rotation around the z axis. Since there are two chiral vectors 
in a horizontal plane perpendicular to the nanotube axis, the rotation around 
the z axis has a periodicity of Znld,, where d, is the common divisor of the four 
integers, nl ,  ml ,  712, and m2 for the (nl ,  rnl) and (n2,rnz) nanotubes. Thus, we 
expect the motion to be smoother, the smaller is the value of d,. The normal 
mode for the shear displacement of the two constituents of a two-walled nanotube 
is a mixture of a translation and a rotation around the P axis. The direction of 
the normal mode d i s p ~ a ~ e m e ~ t s  will be d ~ t e r ~ i n e d  by the two chiral vectors. In 
all cases, we expect a downward shift for the shear stress between the adjacent 
walls of a multi-wail nanotube, relative to the shear mode in graphite. 

Chandrabhas et ai. [236], however, have reported an upshift of the two shear 
modes to  49 cm-l and 58 em" from the Ezs, graphite shear mode at  42 cm-l. 
The authors attributed the upshift to defects in the nanotube axis. Except for 
a few nanotubes with open ends, most nanotubes have end caps which prevent 
the sliding motion. In that case a v~brat~onal  mode can be expected to result 
from the sliding motion. If we could have an ideal coaxial multi-wall nanotube 
with open ends, it would be interesting to study the nano-forces associated 
with sliding the inner nanotube with respect to  the outer nanotube, like the 
micro~copic motion of a muscle. 

The electronic structure of a multi-wall nanotube has been calculated for 
a commensurate double-wall carbon nanotube by a tight binding calculation 
1761. In this calculation, the value used for the largest interlayer iiiteraction in 
graphite associated with the overlap of the wave functions of the two ?r elec- 
trons was y1 = 0.35 eV for the two A carbon atoms with a separation (O,O,c). 
In the tight-binding calculation, the interlayer interaction between two carbon 
atoms on two different nanotube shells with a separation r is assumed to be 
71 expf-AT), where A = l /a is an empirical damping factor. The calculated 
results for the commensurate (5,5)-(10,lO) and (9,0)-(18,0) nanotubes show an 
anti-crossing* of two energy dispersion curves with the same symmetry of wave 
functions belonging to the two different nanotubes. As for the wave functions 
with different symmetries, the energy dispersion relations can cross each other, 
since the wave functions remain orthogonal to each other even in the presence 

'Anti-crossing means that two energy dispersion curves repei each other at the crossing point. 
Anti-crossing occurs as a result of the interaction between the two energy bands. 
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of the interlayer interaction. Although we take account of the interlayer interac- 
tion, the calculated result [76] shows that the electronic properties of a two-shell 
coaxial nanotube look like the sum of the electronic structure of the two inde- 
pendent nanotubes except for the anti-crossing phenomenon. Even when this 
anti-crossing appears near the Fermi energy, we do not see the onset of an en- 
ergy gap at the Fermi energy for metai-metal and meta~-semicon~uctor coaxial 
nanotubes. Thus the calculated results show that the constituent nanotubes of 
a coaxial nanotube remain either metallic or semiconducting, depending on the 
chirality of the constituent nanotube. From this result, we can expect that  it 
will be possible to  fabricate coaxial conducting wires or capacitors shielded by 
semiconducting nanotubes which are suggested in the literature [141,237]. Since 
the energy gap of a BN nanotube is the same as that for the bulk BN semicon- 
ductor, a large energy gap of about 5 eV is expected for BN nanotubes. Thus 
when we cover a carbon nanotube by a BN nanotube, the nanotube complex 
will be more interesting than carbon-carbon coaxial nanotubes for device appli- 
cations, since high insulation by the EN nanotube can be expected. The arc 
method of synthesis using a carbon rod with the materials for the BN nanotube 
included in the central portion of the carbon anode yields a coaxial multi-wall 
nanotube in which a several-wall BN nanotube is surrounded by a several-wall 
carbon nanotube on both the outside and the inside [137]. This observation 
suggests further possibilities for a variety of other nanotube complexes. 

If the electronic structure of a mu~ti-wall nanotube can be understood in 
terms of the electronic structure of the constituent single-wall nanotubes, i t  
becomes easy to  understand the topological STM and the transport STS experi- 
ments in which only the outermost nanotube contributes to  the STM image and 
STS conductance measurements, respectively. In the STM experiment on single 
crystal graphite, a triangular lattice is observed because of the ABAB stacking 
of the graphite layers. In graphite, the electrons and holes near the Fermi energy 
mainly corresponds to B atom wavefunctions, which do not have a neighboring 
atom directly above or below them on the adjacent graphite layers. Thus when 
a small voltage is applied, the STM can only see the electrons and the holes at 
the B sites which form a triangular lattice. in  a multi-wall nanotube and even 
in a single-wall carbon nanotube, a triangular pattern is observed in the STM 
image, which clearly shows that the A and B atoms are not equivalent to  each 
other [54] in the nanotube plane, although the reason for this is still not clear. 
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A more sophisticated calculation was done for ~ u l t i - l a y ~ r  n ~ o t u b e s  wi th~n 
the local density approximation to  establish the optimum interlayer distance 
between an inner (5,5) armchair nanotube and an outer armchair (10,lO) nan- 
otube. The result of this cahla t ion  yielded a 3.39 A interlayer separation 
[196,238], with an energy s tabi~i~at ion of 48 mev~carbon atom. The fact that 
the interlayer separation is somewhat less than the 3.44 A separation expected 
for turbostratic graphite may be explained by the interlayer correlation between 
the carbon atom sites both along the nanotube axis and the circumferential di- 
rections. A similar calculation for dou~le-layered hyper-full~renes has also been 
carried out, yielding an interlayer spacing of 3.524 A between the two shells of 
C60@C240, with an energy stabilization of 14 meV/atom [147]. In addition, for 
two coaxial armchair nanotubes, estimates €or the translationa~ and rotationa~ 
energy barriers of 0.23 meV/atom and 0.52 meV/atom, respectively, were ob- 
tained, suggesting significant translational and rotational interlayer mobility for 
individual shells of ideal nanotubes at  room temperature. Detailed band cal- 
culations for various interpfanar geometries for a t~o- ayer red coaxial armchair 
nanotube 1196,2381 confirm the tight-binding results [76] mentioned above. 

In the limit of large diameter, we can expect multi-wall carbon nanotubes 
to have the properties of graphite. In the multi-layer structure, the cross section 
of the hollow core becomes relatively small with increasing numbers of carbon 
layers, and thus the multi-wall structure would be advantageous for obtaining 
high strength per unit area in the nanotube axis direction. However, when the 
diameter increases to more than 10-20 nm, the multi-wa~~ nanotube starts t o  
exhibit a hexagonal pillar shape, similar to the occurrence of faceting in carbon 
fibers 191. In the faceting, the curvature of the nanotubes becomes concentrated 
a t  the corners of the pillars as the interlayer correlation becomes established 
over a large area with a structure that is close to that of graphite. The faceting 
may occur in order to gain the cohesive energy of graphite through the ABAB 
stacking. By faceting the layers, the greatest part of the individual layers more 
quickly approach that of graphite than through the cylindrical growth of multi- 
wall nanotubes. It  is important to note that the faceting is not generafly found 
in pyrolytically generated, multi-layer carbon nanotubes [59] , which is related 
to  the growth of multi-wall nanotubes in the radial direction by an accretion 
method. 





Appendix: Programs for a (n,m) carbon nanotube 

In this Appendix, we show first a simple program for generat- 
ing parameters of an (n, m) carbon nanotube, which is discussed in 
Chapter 3. The atomic coordinates for an (n ,  m) carbon nanotube 
are generated in the unit cell of the nanotube by the second program. 
The third program gives more coordinates for several unit celIs. The 
source codes are written in Fortran 77. Any reader can use these 
codes by citing the book. 

A-1 Parameters for an (n, m) carbon nanotube 

The first program A-1 generates the characteristic vectors such as Ch, T, R and 
other related parameters. See details of the definitions given in Tables 3.2 and 
3.3. 

We show below an example of the input-output on a workstation. When 
you input n, m values for an (n ,  m) carbon nanotube using a standard input 
method, which generally means a keyboard, we obtain output for the parame- 
ters in a standard output format. 

Example: Input and output of the program A-1 

tube% al .out  
Enter n,m for  C-h 
10,lO <== input 
C-h = ( 10, 10) ==> Chiral vector (n,m) 

d,R = 30 ==> d,R is  gcd(Zn~m,2m~n) 
L/a = square r o o t  of 300 ==> Length o f  C-h 

d = 10 ==> d i s  gcd(n,m) 

227 
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d,t = 13.56955AA r-t = 6.78478AA ==> diameter and radius 
T = ( 1, -1) ==> Translation vector (t_I,t,2) 

T/a = I ==> Length of T 
N = 20 ==> Number of hexagon in the unit cell 
R = ( 1, 0) ==> Symmetry vector 
M = 10 ==> number of T in N R 

Here the diameter and the radius are in A unit. The lengths of Ch and T are 
shown in units of a .  Since these values are a square root of an integer in units 
of a, the output is shown above for convenience. 

A-2 Coordinates for a (n,m) carbon nanotube 

The program A-2 generates (xi, yi, zi) (i = 1,.  . . , 2N) coordinates in the unit 
cell for an (n ,  m) carbon nanotube. When n,  m values are input in the same way 
as in the example for the A-1 program, the program generates two files: 

Output files for A-2: (No Input file) 

tube.xyz : 2N and coordinates (xi, yi, zi) ( i  = 1 , .  . . , 2N) 
en.xyz2 : work file which will be used in the program A-3. 

The file tube.xyz includes the atomic coordinates of carbon atoms in the unit 
cell for the (n ,  m) nanotube. The other file en.xyz2 is a work file which will be 
used in the program A-3. The file tube.xyz has a format for the xmol program* 
which can display the structure in its xyz format and can convert the results to  
many formats consistent with other software. The first line of tube.xyz is the 
number of carbon atoms in the unit cell. After a blank line in the second line, 
the atomic symbol C and ( q , y i , z i )  coordinate in A units are listed from the 
third line for the number of carbon atoms. The file input-output is specified 
by the OPEN statement of Fortran codes. The z axis is taken to  be along the 
nanotube axis. The C-C bond distance is taken as 1.42A. If you want to  change 

*xmol is a graphic software package with a Copyright by Research Equipment Inc. and dba 
Minnesota Supercomputer Center Inc. 
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this value, the parameter in the program shouid be changed. 

A-3 Coordinates for several unit cells 

The program A-3 reads the en.xyz2 which is generated by the A-2 program. 
When you enter the number of unit cells Nu from the keyboard, the program 
A-3 outputs a fiIe tubel.xya. Thus, before we run the A-3 program, we need to 
run the A-2 program. The file tubel.xyz has the same format as tube.xyz but 
the number of carbon atoms becomes Nu x 2N. 

Input and Output files for A-3: 

en.xyz2 : (Input) the work file made by the program A-2, 
tubel.xyz : (Output) the coordinates (ti, ~ 6 ,  zi) (i = 1,. . . , 2 N  x Nu) 

If you want a large numbers of carbon atoms (more than 5000), the param- 
eters in the program should be changed. 

A-4 Source Codes 

Here we list the source cords. Anybody that uses these source codes or their 
m o ~ i ~ e d  versions is required to cite the book. 

Parameters for a (n,m) nanotube 

Rade by 10/16/96 R. Saito 

Reference: “Physical Pxoperties of Carbon NanotubesSJ 
Imperial College Press, 
by R. Saito, G .  Dresselhaus, and M.S. Dresselhaus 

dimension nnp I 100) , nnq < $00) 

itest=l 
i t e s t  l=O 

write(*,*) ’Enter n,m for C-h’ 
read(*,*) n,m 

A-€ Parameters for a (n, m) nanotube 

C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
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10 

20 

21 
C 

C L  

30 

31 

32 
C T  

42 

40 

41 

c N  

50 
c R  

C 

APPENDIX: PROGRAMS FOR A (qm) CARBON NANOTU3E 

nd=igcm(n,m) 
if(mod((n-m).3*nd).eu.O) then 
ndr=3*nd 
else 
ndr=nd 
endif 
if (itest. eq. 1) write(*, 10) n , m  
format(’ C-h = <’,i3,),’,13,’)’) 
if(itest.eq.1) wite(*,20) nd 
format(’ d = ’,i3) 
if (itest .eq. i) write(*,21) ndr 
format(’ d-R = ’,i3) 

a=sqrt(3.0)*1.421 
eps=l.Oe-5 

l2=n*n+m*m+n*m 
if (12.le.0) stop ’12.1e.0’ 
l=int (sqrt (float (12))*eps) 
if((12-1**2).eq.O) then 
if(ite9t.e i) write(*,30) 1 
formato L7: = I, i4) 
else 
if(ite9t.e .I> write(*,3i) 12 
format ( J a  = square root o f ’ ,  i6) 
endif 
dt=a*sqrt (f loat (12) )/3.1415926525 
rt=dt*O. 5 
if(itest.eq.1) nrite(*,32) dt,rt 
format(’ d-t = ’, f10.5, ’\AA r-t ~’~f10.5, ’ \AA’) 

nra (2*m+n) /ndr 
nsa-(2*n+m)/ndr 
if(itest. eq. 1) mite(; ,422 m a s  
format(’ T = fl.13, , ,13,’)’) 
nt2=3*12/ndr/ndr 
nt=int (sqrt (f loat (nt2f>+eps) 
if ((nt2-nt**2) . eq. 0) then 
if(ite9t.e 1) write(*,40) nt 
format(’ T7; = >, i3) 
else 
if(itest.e 1) write(*,41) nt2 
format ( ’ T7; = square root of), i6) 
endif 

nn=2* 12/ndr 
if(itest.eq.il write(*,tiO) nn 
format(’ N = ’, i4) 
ichk=O 
if (nr.eq.0) then 

n60=1 
else 
n60-llr 

endif 

itest2=0 
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C 

67 

61 
60 
C 

C 

C 

C 

77 

C 

66 

777 
C 

62 

do 60 np=-abs(n60) ,abs(nbO) 
do 61 nq-abs(ns) ,abs(ns) 
52 7 nr*nq - ns*np 
if (32. eq. 1) then 
jl = m *np - n*nq 
if(itest2.eq. 1) arite(*,67) n,m,nr,ns,n ,nq, jl, j2 
format ( ’n,m,nr ,118 ,np,nq,jl, -’ ,6i4,2i6P 
if( jl.gt.0 .and. j1.lt.nn j2ihen 
ichk=ichk+l 
nnp(ichk)=np 
nnq(ichk)=nq 
endif 
endif 
continue 
continue 

if(ichk.eq.0) then 
write(*,*) ’n,m,nr,ns=’,n,m,nr,ns 
stop ’ not found p,q strange!!’ 
endif 

itest3=l 

if (ichk. ge .2) then 
if (itest3.eq. 1) then 
write(*,*) ’n,m,y,?s=’,n:m,nrps 
write(*,*) ’ichkm ,ichk, ndr= , ndr 
write(*,66) (nnp(i) ,nnq(i), (m*nnp(i)-n*nnq(i)) ,nn,i=l,ichk) 
stop ’ more than 1 pair of p,q strange!!’ 
endif 

if(nr.ne.0 .and. ns.ne.0) then 

if(itestl.eq.1) then 
do 77 i=l,ichk 
if((m*nnp(i)-n*nnq(i)).lt.nn) goto 777 
continue 
endif 

write (* , *> ’n,m ,nr,ns= ’ ,n :m ,nr ,ns 
write(*,*) ’ichk=’,ichk, ndr=’, ndr 
write(*,66) <nnv(:) ,Mq(i),(m*Mp(i)-n*nnq(i)) ,nn,i=l,iChk) 
format(’ (’,12, , ,i2!’) 
stop 
endif 
endif 
continue 

mp-nq = ’, i3, ’ N=’, i3) 
more than 1 palr of p,q strange!!’ 
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C 

C 
c calculate  the highest common divisor  

integer function igcm(i i . j j )  
i=abs ( i i )  
j=abs (j j ) 
i f  ( j  . g t  . i) then 
fw= j 
J -1 
i = i w  
endif 
i f  (j . eq. 0) then 
igcm=i 
r e tu rn  
endif 

ir=mod(i, j >  
i f  (ir . eq. 0) then 
igcm= j 
r e tu rn  
e l s e  

J =lr 
endif 

end 

10 continue 

1‘4 

got0 10 

A-2 Atomic Coordinates for a (n, rn) nanotube in the unit cell 

c Atomic Coordinates i n  the uni t  c e l l  of a (n,m) nanotube 

c Made by 10/31/95 by T. Takeya and R .  Saito 

c Reference: “Physical Properties of Carbon Nanotubes” 

C by R. Sai to ,  G. Dresselhaus, and M.S. Dresselhaus 

c Input: n,m (from keyboard) 
c Output: tube.xyz (coordinates. See d e t a i l  i n  the above book.) 
C en.xyz2 (a  work f i l e  f o r  the program A-3) 

C 

C 

C 

C Imperial College Press, 

C 

C 
implicit  real*8 (a-h,o-z) 

C 
c acc: C-C bond distance.  
C 

parameter (acc = 1.42d0) 
parameter (nk=1300) 
dimension x(nk) ,y(nk) ,z(nk) 

write(*,*)’ Enter n.m f o r  C-h=(n,m)’ 
read(*,*) n,m 

c a l l  genll(n,m,np,nq,ndr) 

C 

C 

C write(*,*)’ R = (’, np, ’,’, nq , ’1’ 
C 
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C a: the  length of the  uni t  vector 
c p i  = 3.141592. .. sq3 = 1.732... .  
C 

sq3=sqrt(3.OdO) 
pi=4,OdO*atan ( 1. OdO) 
azsqrt  (3. OdO) *acc 

c r ; I R I  , c;lC,hl , t ; l T I  
C 

C 
r=a*sqrt (df loat  (np*np+nq*nq+np*nq) ) 
c=a*sqrt(dfloat(n*n+m*m+n*m)~ 
t=sqr t  (3 .OdO) *c/dfloat (ndr) 
write (* , *) t= I , t , df loa t  (n*n+m*m+n*~) 

C write (*, 190)~/2.OdO/pi 
c I90 format(' radius =',f10.4) 
C 
C 
C 

C 
c 
C 
C 
C 

C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

nn: t h e  number of hexagon i n  the unit  c e l l  M 

nnt2*(n**2*m**2+m*n)/ndr 

write(*,*) ' N =',nn*2 

rs: radius  of the  tube 

if(2*nn.gt.nk) stop 'parameter nk is too small' 

rs=c/(2.OdO*pi) 

q l :  the  c h i r a l  angle f o r  C-h 
42: the ' ch i ra l '  angle f o r  R 
93: the  angle between C-h and R 

ql=atan( (sq3*df l o a t  (m) /df loat  (2*n+m) ) 
q2=atan( (sq3*df loat (nq) /df loat  (2*np+nq) 1 
q3=ql-q2 

94: a period of an angle f 5 r  the A atom 
q5: the  difference of the angle between the A and B atoms 

q4=2.OdO*pi/dfloat (nn) 
q6~acc*cos((pi/6.OdO)-ql)/c*2~OdO*pi 

hi : 
h2: Delta z between the A and B atoms 

hlsabs ( t  ) /abs (sin(q3) ) 
hZ=acc*sin( (pi/6.OdO)-ql) 

write(*,*) 'ql: =',ql*l80.0dO/pi 
write (* , *) 'q2 : =' , q2*180.OdO/pi 
write(*, *) 'q4: =' ,q4*i80.OdO/pi 
write (* , *) 'q5 : 3' ,q5*180.OdO/pi 

Calculate 2*nn atoms i n  the unit  c e l l .  

The A atom 
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ii=O 
do 100 i=O,nn-1 

xi-0 

zl=O 

xl=rs*cos(dfloat (i)*q4) 
yl=rs*sin(dfloat (i)*q4) 
zl=df loat ((df loat (i)*abs (r)  -dfloat (k) *hl)) *sin(q3) 
kk2=abs(int (zl/t))+l 

yl=O 

k=int (df loat ( i) *abs (r ) /hl 

C 
c Check the A atom is in the unit cell 0 < zl < t 
C 

if(z1.gt.t-0.02)then 
zl=zl-t*dfloat (kk2) 
endif 

if(zl.lt.-0.02) then 
zl=zl+t*dfloat (kk2) 
endif 

x (ii) =xi 
y(ii)=yl 
z(ii)=zl 

C The B atoms 

ii=ii+i 

C 

C 
zd=(dfloat (i)*abs(r)-dfloat (k)*hl)*sin(q3)-h2 
ii=ii+l 

C 

C 
c Check the B atom is in the unit cell 0 < 23 < t 

if((z3.ge.-O.02).and.(z3.le.t-O.O2))then 
c yes 

x2 =rs*cos (df loat (i) *q4+q5) 
y2 =rs*sin(dfloat(i)*q4+ 5) 
22 =df loat (df loat (i) *abs?r) -df loat (k) *hl )*sin(q3)-h2 
x(ii)=x2 
y(ii)=y2 
z (ii)=22 

x2 =rs*cos (df loat (i) *q4+q5) 
y2 =rs*sin(dfloat(i)*q4+ 5) 
22 =dfloat (dfloat (i)*abs?r)-dfloat(k+l)*hl)*sin(q3)-h2 
kk=abs(int(z2/t))+l 

z2=z2-t*dfloat (kk) 
endif 

z2=z2+t*df loat (kk) 
endif 
x(ii)=x2 
y(ii)=y2 
z (ii)=z2 
endif 

100 continue 

else 
c no 

if(z2.gt.t-0.0l)then 

if(z2.lt.-0.01) then 

C 
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c Out put to the file tube.xyz 
C 

open(60, f ile= ’ tube. xyz ’1 
write (60, *) 2*nn 
write (60, *) ’ ’ 
do i=l,nn*2 

write(60, ii7)x(i) ,y(i) ,z(i> 
end do 
format ( ’C’ ,3f 10.5) 
close(6O) 

117 

C 

C 
c Out put to the file en.xyz2 

open(60,file=’en,xyz2’) 
write(60,*)2*~ 
write(60,ii8)t,acc 

do i=i,nn*2 
write(60,116)i,x(i) ,y(i) ,z(i) 
end do 

116 f ornat (ii5,3f 25.20) 
close(60) 

I18 format (2f 25.6) 

stop 
end 

C 
c This subroutine calculates np,nq and ndr from n,m 
C 

C 

C L  

c T  

c N  

c R  

C 

subroutine genll(n,m,np,nq,ndr) 
dimension nnp(iO0) ,nnq(iOO) 

nd=igcm(n,m) 
if (mod((n-m) ,3*nd) .eq.O) then 
ndr=3*nd 
else 
ndr=nd 
endif 

12=n*n+m*m+n*m 
if (12.le.O) stop ’12.le.0’ 
l=int (sqrt (df loat (12) )+eps) 
dt=a*sqrt (df loat (12)) /3.1415926525 

nr- (2*m+n) /ndr 
ns=- (2*n+m) /ndr 
nt2=3*12/ndr/ndr 
nt=int (sqrt (df loat (nt2) )+eps) 

nn=2*12/ndr 

ichk=O 
if (nr.eq.0) then 

n60=i 
else 
n 6 0 m  

endif 

itest2-1 
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do 60 np=-abs (n6O) , abs (1160) 
do 61 nq=-abs(ns) ,abs(ns) 
j2 = nr*nq - ns*np 
if(j2.eq.l) then 
Jl = m *np - n*nq 
if( jl.gt.0 .and. j1.lt.nn ) then 
ichk=ichk+l 
nnp(ichk)slp 
nnq(ichk)slq 
endif 
endif 

61 continue 
60 continue 

C 
if (ichk.eq.0) then 
stop ’ not found p,q strange!!’ 
endif 

itest3-1 

if(ichk.ge.2) then 
if (itest3.eq. 1) then 
stop ’ more than 1 pair of p,q strange!!’ 
endif 

C 

C 

if(nr.ne.0 .and. ns.ne.O) then 

if (itestl.eq.1) then 
do 77 i=l,ichk 
if ((m*nnp(i)-n*nnq(i)) .lt.nn) goto 777 

endif 

endif 
endif 

C 

77 continue 

C 

777 continue 
C 

if (itest . eq. 1) then 

endif 

return 

np=nnp ( 1) 
nq=nnq ( 1) 

2 continue 

1 continue 

end 
stop 

C 

C 
c calculate the highest common divisor 

integer function igcm(ii, j j) 
i=abs (ii) 
j=abs ( j j) 
if(j.gt.i) then 
lu= j 
J -1 
i=iw 
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endif 
i f  ( j  . eq. 0) then 
igcm=i 
r e tu rn  
endif 

ir=mod(i, j )  
i f  ( ir .eq.0) then 
igcm= j 
r e tu rn  
e l s e  

endif 

end 

10 continue 

:=J 
J‘lr 

got0 10 

A-3 Atomic Coordinates for several unit cells of a (n, rn) nanotube 

c Atomic Coordinates f o r  several  unit  c e l l s  of a (n,m) nanotube 

c Made by 10/31/95 by T. Takeya and R .  Saito 

c Reference: “Physical Properties of Carbon Nanotubes” 

C by R. Saito,  G. Dresselhaus, and M.S. Dresselhaus 

c Input : n 
C : en.xyz2 (a work f i l e  made by the program A-2) 
c Output: tubel.xyz (atomic coordinates) 

C 

C 

C Imperial College Press,  

C 
(from keyboard, the number of the uni t  c e l l . )  

C 

C 

10 

C 

C 

implici t  real*8(a-h, 0-2) 
parameter (nk=5000, aa=1.42) 
dimension x(nk), (nk) ,z(nk) 
dimension iic(nkT.ic(nk.3) ,iZ(nk,3) 

write(*,*) ’enter the number of the unit  c e l l  N-u =’ 
read(*,*)n 
open(Gl,FILE=’en.~yz2’) 
read(dl,*)nn 
read(6l ,*) t  
do 10 i= l ,nn  

continue 
close(6l .  statusi’keep ’1 

write(*,*) ’Number of t o t a l  atoms = ’, n*nn 
if(n*nn.gt.nk) stop ’change parameter nk t o  a larger  value’ 

i i=nn 
do 20 i= l ,nn  

read(61,*)j , x ( i )  , y ( i )  , z ( i )  

do 21 jj=O,n-1 
iii=ii+i+j ’*ii 
z ( i i i ) = z  (i j+df loat  ( j  j + l )  *t 
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x (iii) =x (i) 
y (iii) =y (i) 

21 continue 
20 c ont inue 

C 
open(GO,FILE=’tubel .xyz’) 
arite(60,*)n*nn 
write (60, *) ’ ’ 

do 100 i=l,n*nn 

100 continue 
700 format (’Cl, 3f 10.5) 

close(60) 

nrite(60,7OO)x(i) , y (i) , z (i) 

C 
stop 
end 



References 

1. T. A. Edison, US Patent 470,925 (1892). (issued March 15, 1892). 
2. P. Schutzenberger and L. Schutzenberger, Compt. 

3. C. H. Pelabon, Compt. Rend. 137, 706 (1905). 
4 .  R. Bacon, J .  Appl. Phys. 31, 283-290 (1960). 
5. C. Herring and J .  K. Galt, Phys. Rev. 85, 1060 (1952). 
6. A. P. Levitt, in Whisker Technology, (Wiley-Interscience, New York, 

1970). 
7.  A. W. Moore, A. R. Ubbelohde, and D. A. Young, Brit. J .  Appl. Phys. 

13, 393 (1962). 
8. L. C. F. Blackman and A. R. Ubbelohde, Proc. Roy. SOC. A266, 20 

(1962). 
9. M. S. Dresselhaus, G. Dresselhaus, K.  Sugihara, I. L. Spain, and 

H .  A. Goldberg, Graphile Fibers and Filaments (Springer-Verlag, Berlin, 
1988), Vol. 5 of Springer Series in Materials Science. 

Rend 111, 774 
(1890). 

10. T. Koyama, Carbon 10, 757 (1972). 
11. M. Endo, T. Koyama, and Y. Hishiyama, Jap. J .  Appl. Phys. 15, 

12. G .  G. Tibbetts, Appl. Phys. Lett. 42, 666 (1983). 
13. G. G. Tibbetts, J. Crystal Growth 66, 632 (1984). 
14. M. Endo. Mecanisme de  croissance en phase vapeur de  fibres d e  carbone 

(The growth mechanism of vapor-grown carbon fibers). PhD thesis, Uni- 
versity of Orleans, Orleans, France, 1975. (in French). 

2073-2076 (1976). 

15. M. Endo. PhD thesis, Nagoya University, Japan, 1978. (in Japanese). 
16. A. Oberlin, M. Endo, and T. Koyama, Carbon 14, 133 (1976). 
17. A. Oberlin, M. Endo, and T. Koyama, J .  Cryst. Growth 32, 335-349 

18. R. Kubo, 1977. (private communication to M. Endo). 
(1976). 

239 



240 REFERENCES 

19. S. Iijima, Nature (London) 354, 56 (1991). 
20. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, 

Nature (London) 318, 162-163 (1985). 
21. R. E, Smalley, DoD Workshop in W ~ h ~ n g t o n ,  DC (December 1990). 
22. D. R. Huffman, DoD Workshop in Washington, DC (December 1990). 
23. M. S. Dresselhaus, DoD Workshop in Washington, DC (December 1990). 
24. M, S. Dresselhaus, G .  ~resseIhaus,  and P. C .  ~ k l u n d ,  University of 

Pennsylvania Workshop (August 1991). 
25. J .  H.  Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. 

KrolI, N. Troullier, R. E. Haufler, and R, E. Smalley, Phys. Rev. Lett. 

26. F. P. Bundy. In Solid State Physics under Pressure: Recent Advance 
with Anvil Devices, edited by S. Minomura, page 1, D. Reidei, Dordrecht, 
1985. 

66, 1741-1744 (1991). 

27. F. P. Bundy, J .  Geophys. Res. 85, 6930 (1980). 
28. F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J .  Hemley, H .  K. Mao, 

and A. F. Goncharov, Carbon 34, 141-153 (1996). 
29. R. J .  Lagow, J .  J. Kampa, H. C. Wei, S. L. Battle, J .  W. Genge, D. A. 

Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, and E. Munson, 
Science 267, 362-367 (1995). 

30. V. I. Kasatochkin, A. M. Sladkov, Y. P. Kudryavtsev, N.  M. Popov, and 
V. V. Korshak, Dokl. Chem. 177, 1031 (1967). 

31. V, I. Kasatochkin, V. V. Korshak, Y. P. Kudryavtsev, A. M. Sladkov, 
and I. E. Sterenberg, Carbon 11, 70 (1973). 

32. A. G. Whittaker and P. L. Kintner, Carbon 23, 255 (1985). 
33. A. G. Whittaker and P. L. Kintner, Science 165, 589 (1969). 
34. A. G. Whittaker, Science 200, 763 (1978). 
35, A. G. Whittaker, E. J .  Watts, R. S. Lewis, and E. Anders, Science 209, 

36. A, El Gorsey and G .  Donnary, Science 363 (1968). 
37. V. I. Kasatochkin, M. E. Kasakov, V. A. Savransky, A. P. Nabatnikov, 

38, R. B. Heimann, J. Kleirnan, and N. M. Slansky, Nature (London) 306, 

39. A. G. Whittaker and G. M. Wolten, Science 178, 54 (1972). 

1512 (1980). 

and N.  P. Radimov, Dokl. Akad. Nauk, USSR 201, 1104 (1971). 

164 (1983). 



REFERENCES 241 

40, A. G. Whittaker, G.  Donnay, and K. Lonsdale, Carnegie Institution 
Year Book 69, 311 (1971). 

41. J .  S. Speck, M. Endo, and M. S. Dresselhaus, J .  Crystal Growth 94, 834 
(1989). 

42. J .  S. Speck, M. S. Dresselhaus, and M. Endo. In Extended Abstracts of 
the Symposium on Graphite Intercalation Compounds a t  the Materials 
Research Society Meeting, Boston, edited by M. Endo, M. S. Dressel- 
haus, and G. Dresselhaus, page 169, Materials Research Society Press, 
Pittsburgh, PA, 1988. 

43. J .  S. Speck, J. Appl. Phys. 67, 495 (1990). 
44. M. Endo, CHEMTECH 18, 568 (1988). September issue. 
45. C. Kittel, in Introduction to Solid State Physics, 6th ed., (John Wiley 

46. N. W. Ashcroft and N. D. Mermin, in Solid State Physics, (Holt, Rine- 

47. R. S. Mulliken, in Life of a Scientist, (Springer-Verlag, New York, Berlin, 

48. G. S. Painter and D. E. Ellis, Phys. Rev. B 1, 4747 (1970). 
49. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, 

Phys. Rev. B 51, 11176 (1995). 
50. M .  S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883-891 

(1995). 
51. S. J .  Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, 

and C. Dekker, Nature (London) 386, 474 (1997). 
52. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la 

Chapelle, S. Lefrant, P. Deniard, R. Lee, and J .  E. Fischer, Nature 
(London) 388, 756 (1997). 

53. M. R. Falvo, G. J .  Clary, R. M. Taylor 11, V. Chi, F. P. Brooks J r ,  
S Washburn, and R. Superfine, Nature (London) 385 (1997). 

54. C. Dekker, S. J .  Tans, M.  H. Devoret, L. J .  Geerlings, R. J .  A. 
Groeneveld, L. C. Venema, J .  W. G. Wildoer, A. R. M. Verschueren, 
A. Bezryadin, A. Thess, H. Dai, and R. A. Smalley. In Proc. of the 
Int. Winter School on Electronic Properties of Novel Materials: Molec- 
ular Nanostructures, edited by H. Kuzmany, J. Fink, M. Mehring, and 
S. Roth, Springer-Verlag, New York, 1997. Kirchberg, Austria. 

and Sons, New York, NY, 1986). 

hart and Winston, New York, NY, 1976). 

1989). 



242 REFERENCES 

55. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J .  Robert, C. Xu, 
Y.  H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, 
D. Tomrinek, J .  E. Fischer, and R. E. Smalley, Science 273, 483-487 
(1996). 

56. J .  M. Cowley, P. Nikolaev, A. Thess, and R. E. Smalley, Chem. Phys. 
Lett. 265, 379-384 (1997). 

57. C. H. Kiang, W. A. Goddard 111, R. Beyers, and D. S.  Bethune, Carbon 
33, 903 (1995). 

58. S.  Iijima and T. Ichihashi, Nature (London) 363, 603 (1993). 
59. M. Endo, K .  Takeuchi, K.  Kobori, K. Takahashi, H. Kroto, and 

A. Sarkar, Carbon 33, 873 (1995). 
60. P. M. Ajayan. In Carbon Nanotubes: Preparation and Properties, edited 

by T. Ebbesen, page 111, CRC Press, Inc., Boca Raton, Florida, USA, 
1997. Chapter 111. 

61. P. M. Ajayan. In Fullerenes and Nanotubes, edited by Pierre Delhaks 
and P. M. Ajayan, page this volume, Gordon and Breach, Paris, France, 
1998. Series: World of Carbon, volume 2. 

62. S.  Iijima. In Fullerenes and Nanotubes, edited by Pierre Delhaks and 
P. M. Ajayan, Gordon and Breach, Paris, France, 1998. Series: World 
of Carbon, volume 2. 

63. Ph. Lambin and A.  A. Lucas, Phys. Rev. B 56, 3571 (1997). 
64. W. Cochran, F. H. C. Crick, and V. Vand, Acta Cryst. 5, 581 (1952). 
65. C. H. Olk and J .  P. Heremans, J .  Mater. Res. 9, 259-262 (1994). 
66. K. Sattler, Carbon 33, 915 (1995). 
67. J .  C. Charlier, X. Gonze, and J .  P. Michenaud, Europhys. Lett. 28, 

68. J .  C. Charlier. In Fullerenes and Nanotubes, edited by Pierre Delhaks 
and P. M. Ajayan, Gordon and Breach, Paris, France, 1998. Series: 
World of Carbon, volume 2. 

69. Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M. S. Dresselhaus, 
Phys. Rev. B 46, 1804-1811 (1992). 

70. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and P. C. Eklund, in C ~ O -  
Related Balls and Fibers, chapter 18, pages 387-417, edited by J. L. 
Birman, C. S&benne, and R. F. Wallis (Elsevier Science Publishers, B.V. 
1992, New York, 1992). Balkanski Festschrift. 

403-408 (1994). 



REFERENCES 243 

71. J. W. Mintmire, B.  I. Dunlap, and C. T. White, Phys. Rev. Lett, 68, 

72. J .  W.  Mintmire, D. H. Robertson, and C. T. White, J .  Phys. Chem. 
Solids 54, 1835 (1993). 

73. T. Hamada, M. Furuyama, T. Tomioka, and M. Endo, J. Mater. Res. 
7, 1178-1188 (1992). ibid., 2612-2620. 

74. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. In Electrical, 
Optical and Magnetic Properties of Organic Solid State Materials, MRS 
Symposia Proceedings, Boston, edited by L. Y. Chiang, A. F. Garito, and 
D. J .  Sandman, page 333, Materials Research Society Press, Pittsburgh, 
PA, 1992. 

75. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. 
Lett. 60, 2204-2206 (1992). 

76. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 
494 (1993). 

77. M. S. Dresselhaus, R. A. Jishi, G. Dresselhaus, D. Inomata, K. Nakao, 
and Riichiro Saito, Molecular Materials 4, 27-40 (1994). 

78. R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, and G. Dressel- 
haus, J .  Phys. SOC. Jpn. 63, 2252-2260 (1994). 

79. G .  Dresselhaus and M. S. Dresselhaus, Phys. Rev. 140A, 401 (1965). 
80. G .  Dresselhaus, M. S. Dresselhaus, and J .  G. Mavroides, Carbon 4, 433 

81. J .  W. Mintmire and C .  T. White, Carbon 33, 893 (1995). 
82. J. W. G .  Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and 

C. Dekker, Nature (London) 391, 59-62 (1998). 
83. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. 

Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, 
G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187-191 (1997). 

84. H.  Ajiki and T .  Ando, J .  Phys. SOC. Jpn. 62, 2470-2480 (1993). 
Erratum: ibid page 4267. 

85. M. L. Elert, C. T .  White, and J .  W. Mintmire, Mol. Cryst. Liq. Cryst. 
Sci. Technol., Sect. A 125, 329 (1985). 

86. C. T. White, D. H.  Roberston, and J .  W. Mintmire, (1995). unpub- 
lished. 

87. X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. 

631-634 (1992). 

(1966). 



244 REFERENCES 

Lett. 72, 1878 (1994). 
88. J .  C. Charlier, X. Gonze, and J .  P. Michenaud, Europhys. Lett. 29, 

89. J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32, 289-299 
(1994). 

90. S. G. Louie. In Progress in Fullerene Research: International Winter 
School on Electronic Properiies of Novel Materials, edited by H .  Kuz- 
many, J. Fink, M. Mehring, and S. Roth, page 303, 1994. Kirchberg 
Winter School, World Scientific Publishing Co., Ltd., Singapore. 

91. X. Blase, A. Rubio, S. G .  Louie, and M. L. Cohen, Phys. Rev. B 51, 
6868 (1995). 

92. N. G. Chopra, J .  Luyken, K. Cherry, V. H. Crespi, M. L. Coheri, S. G. 
Louie, and A. Zettl, Science 269, 966 (1995). 

93. Z. Weng-Sieh, K. Cherrey, N. G. Chopra, X.  Blase, Y. Miyamoto, A. Ru- 
bio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B 
51, 11229 (1995). 

94. D. S. Bethune, C. H. Kiang, M. S. de Vries, G .  Gorman, R. Savoy, 
J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993). 

95. B. I .  Yakobson and R. E. Smalley, American Scientist 85, 324 (1997). 
96. M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, Chem. Phys. 

97. P. C. Eklund et al., unpublished (1997). UK Workshop. 
98. J .  M. Cowley and F. A. Sundell, Ultramicroscopy 68, 1 (1997). 
99. H. Kataura, A. Kimura, Y. Maniwa, S.  Suzuki, H .  Shiromaru, T. Wak- 

43-48 (1995). 

Lett. 278, 102 (1997). 

abayashi, S. Iijima, and Y. Achiba, unpublished (1997). in press. 
100. T. W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992). 
101. T. W. Ebbesen, H. Hiura, J .  Fujita, Y. Ochiai, S. Matsui, and K. Tani- 

102. S. Seraphin, D. Zhou, J .  Jiao, J .  C. Withers, and R. Loufty, Carbon 31, 

103. Y. Saito and M. Inagaki, Jpn. J .  Appl. Phys. 32, L954 (1993). 
104. T. W. Ebbesen, Annu. Rev. Mater. Sci. 24, 235-264 (1994). 
105. P. M. Ajayan and S. Iijima, Nature (London) 358, 23 (1992). 
106. V .  P. Dravid, X. Lin, Y. Wang, X. K. Wang, A. Yee, J .  B. Ketterson, 

gaki, Chem. Phys. Lett. 209, 83-90 (1993). 

685-689 (1993). 

and R. P. H. Chang, Science 259, 1601 (1993). 



245 

107. S .  Iijima, Mater. Sci. Eng. B19, 172 (1993). 
108. R. E. Smalley, Accounts Chem. Res. 25, 98 (1992). 
109. Y. Saito, T. Yoshikawa, M. Inagaki, M, Tomita, and T. Hayashi, Chem. 

110. M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. 

111. J .  J .  Cuomo and J .  M. E. Harper, IBM Tech. Disclosure Bulletin 20, 

112. J .  A. Floro, S. M. Rossnagel, and R. S. Robinson, J .  Vac. Sci. Technol. 

113. Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, JETP 

114. A. Loiseau, (1998). private communication. 
115. D. Laplaee, P. Bernier, W. K. Maser, G. Flamant, T. Guillard, and 

A. Loiseau, Carbon page xx (1997). 
116. T. W. Ebbesen. In Carbon Nanotubes: Preparation and Properiaes, 

edited by T. Ebbesen, page 139, CRC Press, Inc., Boca Raton, Florida, 
USA, 1997. Chapter IV. 

117. S. C. Tsang, P. J. F, Harris, and M. L. H,  Green, Nature (London) 362, 
520 (1993). 

118. P. M. Ajayan, T. W, Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and 
H. Hiura, Nature (London) 362, 522 (1993). 

119. H. Hiura, T. W. Ebbesen, and K. Tanigaki, Adv. Mater. 7, 275 (1995). 
120. F. Ikazaki, S. Oshima, K. Uchida, Y. Kuriki, H. Hayakawa, M. Yumura, 

121. S. Bandow, (1997). private communjcation. 
122. The mass spectra of the CS2 extract show evidence for Coo and CTo in the 

normal ratio C ~ O : C ~ ~ N ~ :  1 and much higher concentrations of unknown 
molecular species or carbon clusters with masses in the range 107 < 
M -€ 361 arnu. 

123. For characterization by electron microscopy, the various samples were 
dispersed ultrasonically in ethanol and a drop of this solution was placed 
onto the carbon micro-grid. High resolution scanning electron mi- 
croscopy (HRSEM) and transmission electron microscopy (TEM) mea- 
surements were carried out at 5 kV (Nitachi S-900) and 120 kV (Philips 

Phys. Lett. 204, 277 (1993). 

Kroto, J. Phys. Chem. Solids 54, 1841-1848 (1993). 

775 (1977). 

A l ,  1398 (1983). 

Lett. (Pis’ma Zh. Eksp. Teor.) 56, 26 (1992). 

K. Takahashi, and K. Tojima, Carbon 32, 1539 (1994). 



246 REFERENCES 

EM400), respectively. The low acceleration voltage was selected for 
HRSEM because it enhances the image contrast. 

124. E. Dujardin, T. W. Ebbesen, TI. Hiura, and K. Tanigaki, Science 265, 
1850 (1994). 

125. P. M. Ajayan and S. Iijima, Nature (London) 361, 333 (1993). 
126. T. W. Ebbesen. In Carbon Nanotubes: Preparation and Properties, 

edited by T. Ebbesen, page 225, CRC Press, Inc., Boca Raton, Florida, 
USA, 1997. Chapter VII. 

127. C. Guerret-PiCcourt, Y. Le Bouar, A. Loiseau, and H .  Pascard, Nature 
(London) 372, 159 (1994). 

128. A. Loiseau and H. Pascard, Chem. Phys. Lett. 256, 246 (1996). 
129. S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature 

130. J .  Y. Yi and J. B ~ r n ~ o ~ c ,  J. Chem. Phys. 96, 8634 (1992). 
131. 0. Zhou, R. M .  Fleming, D. W. Murphy, C. H .  Chen, R. C. Haddon, 

132. H.  Hiura and T. W. Ebbesen, (1997). Unpublished. 
133. E. G. Gal’pern, I .  V .  Stankevich, A. L.  Chistykov, and L. A. Chernoza- 

134. M .  S. Dresselhaus and G.  Dresselhaus, Advances in Phys. 30, 139-326 

135. A. M .  Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smatley, 

136. R. S. Lee, H .  J .  Kim, J. E. Fischer, A. Thess, and R. E, Smalley, Nature 

137. K .  Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and 

138. J. Goma and A. Oberlin, Thin Solid Films 65, 221 (1980). 
139. M. Guigon, A. Oberlin, and G. Desarmot, Fibre Sci. and Technol. 20, 

55 (1984). 
140. M. Guigon, A. Oberlin, and G. Desarmot, Fibre Sci. and Technol. 20, 

177 (1984). 
141. Riichiro Saito, ~ i t s u t a k a  Fujita, G. ~ r e s s e ~ ~ a u s ,  and M. S .  Dress~I~aus ,  

Materials Science and ~ngineering B19, 185-191 (1993). 
142. M. Endo and H .  W. Kroto, J. Phys. Chem. 96, 6941 (1992). 

(London) 372, 159 (1994). 

A. P. Ramirez, and S.  H. Glarurn, Science 263, 1744 (1994). 

tonskii, Chem. Phys. Lett. 214, 345 (1993). 

(1 981). 

Nature (London) 388, 257 (1997). 

(London) 388, 255 (1997). 

F .  Willaime, Science 278, 653 (1997). 



REFERENCES 247 

143. S. Iijima, T. Ichihashi, and Y. Ando, Nature (London) 358, 776 (1992). 
144. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 

145. R. E. Smalley, Mater. Sci. Eng. B19, 1-7 (1993). 
146. S. Iijima. private communication. 
147. Y. Yosida, Fullerene Sci. Tech. 1, 55 (1993). 
148. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 

(1992). 
149. K. Tanaka, M. Okada, K.  Okahara, and T. Yarnabe, Chem. Phys. Lett. 

191,469 (1992). 
150, L. Langer, L. Stockman, J .  P. Heremans, V. Bayot, C.  H. Olk, 

C. Van Haesendonck, Y. Bruynseraede, and J .  P. Issi, J .  Mat. Res. 
9, 927 (1994). 

151. J. Heremans, C. H. Olk, and D. T. Morelli, Phys. Rev. B 49, 15122 
(1994). 

152, X. K. Wang, R. P. H. Chang, A. Patashinski, and J. B. Ketterson, J .  
Mater. Res. 9, 1578 (1994). 

153. J. M. Luttinger, Phys. Rev. 84, 814-817 (1951). 
154. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 50, 

155. D. R. Hofstadter, Phys. Rev. B 14, 2239-2249 (1976). 
156. F. A. Butler and E. Brown, Phys. Rev. 166, 630 (1968). 
157. J .  W. McClure, Phys. Rev. 104, 666 (1956). 
158. H. S. M. Coxeter, in ~ ~ ~ r o ~ ~ c ~ z o ~  to G e o ~ e ~ r ~ ,  2nd ed., (John Wihy 

259. M. Yoshida and E. Osawa, Bulfetin Chem. SOC. Jpn. 68, 2073 (1995). 

160. H. Ajiki and T. Ando, J .  Phys. Soc. Jpn. 65, 505 (1996). 
161. B. I. Dunlap, Phys. Rev. B 49, 5643 (1994). 
162. B. I. Dunlap, Phys. Rev. B 50, 8143 (1994). 
163. M. Tsukada and N. Shima, J. Phys. SOC. Jpn, 56, 2875 (1987). 
164. P. A. Lee, A. D. Stone, and H.  Fukuyama, Phys. Rev. B 35, 1039 

(1987). 
165. L. Langer, V. Bayot, J .  P. Issi, L. Stockman, C. Van Haesendonck, 

Y. Bruynseraede, 3. P. Heremans, and C. H. Oik, Extended Abstracts 

195, 537 (1992). 

14698 (1994). 

and Sons, New York, NY, 1969). 

ibid. p. 2083. 



248 REFERENCES 

of the Carbon Conference page 348 (1995). 
166. R. Landauer, IBM Journal of Research and Development 1,223 (1957). 
167. R. Landauer, Phil. Mag, 21, 863 (1970). 
168. T. Nakanishi and T. Ando, J .  Phys. SOC. Japan 66 (1997). in press. 
169. R. Tamura and M. Tsukada, Phys. Rev. B 55,4991 (1997). scaling law 

170, T. Ando, Phys. Rev. B 44, 8017 (1991). 
171. S. Ihara and S. Itoh, Carbon 33, 931 (1995). 
172. S. Motojima, M. Kawaguchi, I(. Nozaki, and H .  Iwanaga, Carton 29, 

173. V. Ivanov, J .  B. Nagy, Ph. Lambin, A. A. Lucas, X. B. Zhang, X. F. 
Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and 5 .  Van Lun- 
duyt, Chem. Phys. Lett. 223, 329 (1994). 

174. J. Liu, H. Dai, J .  H. Hefner, D. 2'. Colbert, R, E. Smalley, S. J. Tans, 
and C. Dekker, Nature (London) 385,780 (1997). 

175. Needed et al., (1992). 
176. K. Akagi, R. Tamura, M. Tsukada, S. Itoh, and S .  Ihara, Phys. Rev. 

Lett. 74, 2307 (1995). 
177. S. Datta, Transport in mesoscopic systems (Cambridge University Press, 

Cambridge, UK, 1995). 
178. B.  J. Wees et al., Phys. Rev. Lett. 60, 848 (1988). 
179. L. Chico, V. H.  Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, 

180. D. Thouless, Phys. Rev. Lett. 39, 1167 (1977). 
181. N. Kamimura and H. Aoki, in The Physics of Interacting Electrons in 

~ ~ s o r d ~ ~ d  S ~ s ~ e ~ ~ ,  (CIarendon Press, Oxford, 1989). 
182. M. S. Dresselhaus, M. Endo, and J .  P. Issi. In Fluorine-Carbon 

and Fiuoride-Carbon Materials: Chemistry, Physics and Applications, 
edited by T. Nakajima, pages 95-186, Marcel Dekker, Inc, New York, 
1994. Chapter IV. 

of nanotube conductance. 

379 (1991). 

Phys. Rev. Lett. 76, 971-974 (1996). 

183. P. A, Lee and T, V. Ramakrishnan, Rev, Mod. Phys. 57, 287 (1985). 
184. L. Langer, V. Bayot, E. Grivei, 3. P. Issi, J. P. Heremans, C .  H, Olk, 

L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. 
Lett. 76, 479-482 (1996). 

1%.  T. W, Ebbesen, H. Hiura, M. E. Bisher, M. M. J. Treacy, J. L. Shreeve- 



Keyer, and R. C,  Haushalter, Advanced Materials 8, 155 (1996). 
186. T. W. Odom, J ,  L. Huang, P. Kim, and C. M .  Lieber, Nature (London) 

187. M, Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, 

188. C. L, Kane and E. J .  Mele, Phys. Rev. Lett. 78, 1932 (1997). 
189. C. A. Klein. 

190. C. A. Klein, J .  Appl. Phys. 33, 3388 (1962). 
191. A. A.  Bright and L. S. Singer, Carbon 17, 59 (1979). 
192. V. Bayot, L. Piraux, J. P. Michenaud, and J .  P. Issi, Phys. Rev. B 40, 

3514 (1989). 
193. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, 

Chem. Phys. Lett. 209, 77-82 (1993). 
194. T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Phys. Rev. 

B 42, 11469 (1990). 
195. C. Oshirna, T, Aizawa, R. Souda, Y. Ishizawa, and Y. Sumiyoshi, Solid 

State Cornmun. 65, 1601 (1988). 
196. J. C. Charlier. Carbon Nanolfibes and Fullerenes. PhD thesis, Catholic 

University of Louvain, Belgium, 1994. Department of Physics. 
197. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, 

New York, N, Y., 1964). 
198. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of 

Fullerenes and Carbon Nanotubes (Academic Press, New York, NY, 
1996). 

199. J .  M .  Holden, Ping Zhou, Xiang-Xin Bi, P. C. Eklund, Shunji Bandow, 
R. A. Jishi, K. Das Chowdhury~ G. ~ r ~ s s e l h a u s ,  and M. S. Dresselhaus, 
Chem. Phys. Lett. 220, 186 (1994). 

200. T. Guo, C.-M. Jin, and R. E. Smalley, Chem. Phys. Lett. 243, 49-54 
(1995). 

201. M, S. Dresselhaus and G. Dresselhaus, Light Scattering in Solids I11 51, 
3 (1982). edited by M. Cardona and G. Guntherodt, Springer-Verlag 
Berlin, Topics in Applied Physics. 

202. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, Phys. Rev. 
Lett. 78, 4434 (1997). Raman experiment in carbon nanotubes. 

391, 62-64 (1998). 

A. Thess, and R. E. Smalley, Science 275, 1922-1924 (1997). 

In C h e ~ % s ~ ~  and Physics of Carbon, edited by P. L. 
Walker, Jr., page 217. Marcel Dekker, Inc., New York, 1966. Vol. 2. 



250 REFERENCES 

203. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J .  Raman Spect. 

204. D. S. Knight and W. B. White, J .  Mater. Res. 4, 385 (1989). 
205. S. Guha, J .  MenCndez, J .  B. Page, and G. B. Adams, Phys. Rev. B 53, 

206. G. W. Chantry, in The Raman Eflect, vol. 1 ed., (Dekker, New York, 

207. D. W. Snoke, M. Cardona, S. Sanguinetti, and G. Benedek, Phys. Rev. 

208. R. Saito, T. Takeya, T .  Kimura, G. Dresselhaus, and M. S. Dresselhaus, 

209. D. H. Robertson, D. W. Brenner, and J .  W. Mintmire, Phys. Rev. B 

210. P. C. Eklund, J .  M. Holden, and R. A. Jishi, Carbon 33, 959 (1995). 
211. F. Tuinstra and J .  L. Koenig, J .  Chem. Phys. 53, 1126 (1970). 
212. T. C. Chieu, M. S. Dresselhaus, and M. Endo, Phys. Rev. B 26, 5867 

213. P. Lespade, R. Al-Jishi, and M. S. Dresselhaus, Carbon 20, 427 (1982). 
214. M. J .  Matthews, X. X. Bi, M. S. Dresselhaus, M. Endo, and T. Taka- 

hashi, Appl. Phys. Lett. 68,  1078-1080 (1996). 
215. M. S. Dresselhaus and R. Kalish, Ion Implantation in Diamond, 

Graphite and Related Materials (Springer-Verlag; Springer Series in Ma- 
terials Science, Berlin, 1992). Volume 22. 

27, 351-371 (1995). 

13106 (1996). 

NY, 1971). 

B 53, 12641 (1996). 

Phys. Rev. B (1998). 

45, 12592 (1992). 

(1982). 

216. R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982). 
217. K. Yoshizawa, K. Okahara, T. Sato, K. Tanaka, and T .  Yamabie, Carbon 

218. S. Krichene, J .  P. Buisson, and S. Lefrant, Synth. Metals 17, 589-594 

219. B. I. Yakobson, C. J .  Brabec, and J .  Bernholc, Phys. Rev. Lett. 76, 

220. R. S. Ruoff and D. C. Lorents, Carbon 33, 925 (1995). 
221. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, and R. Saito, Physics 

222. J .  Bernholc. Quantum molecular dynamics simulations of microtube 

32, 1517 (1994). 

(1986). 

2511 (1996). 

World lO(12) (December 1997). 

bending (unpublished). 



REFERENCES 251 

223. R. E. Peierls, in ~ ~ f f n t ~ ~  Theory of Solzds, (Oxford Univeristy Press, 
London, 1955). 

224. X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, 
M. Op de Beeck, and J. Van Landuyt, J. Cryst. Growth 130, 368- 
382 (1993). 

225, M. Liu and J .  M. Cowley, Ultramicroscopy 53, 333 (1994). 
226. B. T. Kelly, in Physics of Graphite, (Applied Science (London), 1981). 
227. G .  Overney, W. Zhong, and D. TomAnek, Z. Phys. D 27, 93 (1993). 
228. J. Bernholc, J .  Y, Yi, Q.  M. Zhang, C. J .  Brabec, E. B. Anderson, 

B. N. Davidson, and S. A Kajihara, Zeitschrift fur Physik D: Atoms, 
Molecules and Clusters 26, 74 (1993). 

229. M. M. J .  Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 
381, 678 (1996). 

230. K. Harigaya and M. F’ujita, Phys. Rev. B 47, 16563 (1993). 
231. B. Friedman, Phys. Rev. B 45, 1454 (1992). 
232. K .  Harigaya, Phys. Rev. B 45, 13676 (1992). 
233. K. Harigaya, Synthetic Metals 56, 3202-3207 (1993). 
234. W, P. Su, J .  R. Schrieffer, and A. J .  Heeger, Phys. Rev. Lett. 42, 1698 

(1979). see also Phys. Rev. B 22, 2099 (1980). 
235. N. A. Viet, H. Ajiki, and T. Ando, J .  Phys. SOC. Jpn. 63, 3036 (1994). 
236, N.  Chandrabhas, A. K. Sood, D. Sundararaman, S. Raju, V. S. Raghu- 

nathan, G. V. N. Rao, V. S, Satry, T. S .  Rad~akrishnan, Y. Hariharan, 
A. Bharathi, and C. S, Sundar, PRAMANA-Journal of Phys. 42, 375- 
385 (1994). 

237. M. S. Dresselhaus, G. Dresselhaus, and Riichiro Saito, Materials Science 
and Engineering B19, 122-128 (1993). 

238. J .  C. Charlier and J .  P. Michenaud, Phys. Rev. Lett. 70, 1858-1861 
(1993). 





Index 

1s Core Orbitals .................... 9 
ac-c .............................. 25 
c-axis crystallite sizes L,  ........... 89 
CN group ........................ 184 
D, group ......................... 184 
D, point group .................... 48 
d R  ................................. 39 
dt  ................................. 38 
E2, optic mode . . . . . . . . . . . . . . . . . . .  188 
K point ........................... 60 
k . p perturbation theory .......... 106 
k2 dependence .................... 170 
L .................................. 38 
M-point mode .................... 202 
N ................................. 40 
S-matrix ......................... 145 
sp hybridization .................... 5 
sp2 hybridization . . . . . . . . . . . . . . . . . . .  7 
sp3 hybridization ................... 8 
sp" hybridization ................... 5 
THT ............................... 89 
VH configurations ................ 196 
VV configuration ................. 196 

185 
T bands of 2D graphite 

r v i b  .............................. 

H j j i  .......................... 26 
Sj jr  ........................... 27 
energy dispersion relations .... 27 

T bands ........................... 26 
T bond ............................. 7 
11, .................................. 41 
u bands of 2D graphite ............ 29 

H.j ........................... 29 

Sij ........................... 29 
u bond ............................. 7 
al a2 ............................. 38 
bl b2 .............................. 47 
KI  Kz ............................ 47 
R ................................. 41 
T ................................. 39 
Ch ................................ 37 
2D graphite 

acoustic modes .............. 170 
Brillouin zone ................. 25 
force constant parameters .... 169 
graphite ...................... 25 
Landau level ................. 106 
optical modes ................ 170 
phonon dispersion relations . . 166 
reciprocal lattice unit vectors . 25 
unit cell ...................... 25 
unit vectors ................... 25 

A 

AB effect ......................... 110 
ABAB stacking., .................. 87 
abundance of nanotubes .......... 210 
acetylene ........................... 7 
additive property ................. 148 
Aharonov-Bohm effect ............ 108 
amorphous carbon ................. 12 
amorphous graphite ................ 12 
Anderson localization ............. 147 
angle of rotation around the 

nanotube axis 11, ......... 41 

253 



254 

antibonding r* bands . . . . . . . . . . . . . .  24 
arc method ........................ 77 
areal moment of inertia. .......... 211 
armchair nanotube . . . . . . . . . . . . . . . . .  36 
atomic s i tes . .  .................... 185 
axis of cone ....................... 121 

ballistic transport ................ 139 
bamboo structure . . . . . . . . . . . . . . . . . .  81 
band Jahn-Teller effect ........... 216 
bending angle .................... 121 
bending ........................... 81 
benzene gas ....................... 80 
bias window ...................... 157 
bistability ........................ 156 
Bloch's theorem ................... 17 
BN nanotube ..................... 224 
bond alternation .................. 213 
bond polarization theory .......... 192 
bond-bending ..................... 167 
bond-stretching ................... 167 
bonding x bands ................... 24 
breathing A1, mode .......... 172, 190 
Bright model ..................... 160 
broad Raman peaks around 

the 1347 cm-' .......... 202 
bulk modulus ...................... 15 

C 

Cz absorption process . . . . . . . . . . . . . .  89 
cantilever beam ................... 211 
capping ............................ 81 
carbide ............................ 79 
carbon arc synthesis ............... 73 
carbon fiber with high THT . . . . . . .  147 
carbon fibers ................... .14, 15 
carbon nanotube 

beam rigidity ................ 211 
Brillouin Zone ................ 45 
circumferential length ......... 38 
curvature., . . . . . . . . . . . . . . . . . . .  70 
density of states .............. 66 
diameter ...................... 38 
dynamical matrix ............ 173 
electronic structure in a 

magnetic field ........... 108 
electronic structure ........... 59 
energy gap .................... 66 
growth rate ................... 78 
oxidation., ................... 84 
parameters ................... 46 
Peierls instability . . . . . . . . . . . .  219 
phonon dispersion relations .. 171 
quantum transport . . . . . . . . . .  152 
reciprocal lattice vectors . . . . . .  45 
resistivity .................... 157 
solid state properties .......... 66 
strain energy ................ 210 
structure ..................... 35 
the number of hexagons N .... 40 
unit cell ...................... 45 

carbon whisker .................. .2, 82 
carbonization temperature ......... 87 
carbyne ............................ 13 
catalytic chemical vapor deposition . . 2 
CGS units ......................... 95 
CH, ............................... 22 
channels .......................... 142 
chemical potentials ............... 142 
chiral angle B ...................... 39 
chiral nanotube .................... 36 
chiral vector C h  . . . . . . . . . . . . . . . . . . .  37 
chirality ........................... 35 
classic elastic theories . . . . . . . . . . . . .  208 
classical conductance ............. 139 
classical transport ................ 144 
classification ....................... 35 



INDEX 255 

coaxial nanotubes . . . . . . . . . . . . . . . .  222 
cobalt catalyst .................... 132 
coherence ......................... 138 
coiled carbon nanotubes . . . . . . . . . .  130 

electronic structure .......... 134 
commensurate .................... 222 
commensurate double-wall 

carbon nanotube ........ 223 
complete elliptical integrals ....... 215 
conductance G[O] . . . . . . . . . . . . . . . . .  137 
conductance regimes . . . . . . . . . . . . . .  141 
conductance ...................... 127 
conductivity ...................... 137 
core electrons ....................... 5 
core orbitals ........................ 9 
Coulomb charging effect . . . . . . . . . .  155 
crystallite size along the 

c-axis L, . . . . . . . . . . . . . . . . .  89 
current operator .................. 127 
CVD ............................... 2 
cyclotron frequency wc . . . . . . . . . . . . .  95 
cyclotron radius T ,  ................ -95 

de Broglie wavelength XB ......... 138 
desorption temperature 

hydrogen ..................... 88 
oxygen ........................ 88 

diamagnetism for graphite ........ 106 
diamond ........................... 11 
diffusion constant D . . . . . . . . . . . . . .  151 
diffusive motion . . . . . . . . . . . . . . . . . .  139 
dihedral angle .................... 121 
dimensionless inverse magnetic 

length L/2irC ........... 112 
disorder in carbon fibers .......... 202 
distorted columnar structures . . . . . .  89 
dynamical matrix D ( k )  ........... 165 

eccentricity ....................... 123 
edge states ....................... 126 
EELS ............................. 11 
effective mass ..................... 110 
Einstein relation .................. 151 
elastic modulus Cxl ............... 210 
elastic scattering .................. 138 
elastic thin film. .................. 210 
electron energy loss spectra ........ 11 
electron-electron interaction ...... 221 
electron-electron scattering ....... 138 
electron-phonon coupling 

constant ................ 213 
electronic polarization tensor ..... 192 
electronic properties of a two-shell 

coaxial nanotube ........ 224 
encapsulated metal cluster ......... 79 
energy dispersion 

armchair and zigzag 
nanotubes ............... 61 

energy stabilization ............... 225 

ensemble average ................. 150 
envelope function ................. 200 
equation of motion ............... 163 
Euler theorem., .................. 132 

enhanced backward scattering .... 152 

F 

faceting .......................... 225 
Fermi sphere ..................... 138 
Fermi wavelength XF ............. 138 
finite size effect . . . . . . . . . . . . . . . . . . .  202 
flux quantum ..................... 100 
focused-ion- beam-induced 

deposition .............. 154 
force constant model .............. 163 

correction of force constant . . 178 



256 

force constant tensor ......... .163. 167 
Fourier transform . . . . . . . . . . . . . . . . .  164 
free electron in a magnetic field . . . .  95 

G 

Gaussian broadening .............. 124 
genus ............................. 132 
gerade ............................ 186 
graphitization temperature . . . . . . . . .  87 
growth mechanism . . . . . . . . . . . . . . . . .  89 

irreducible representation ......... 184 

J. K 

Jahn-Teller effect . . . . . . . . . . . . . . . . .  216 
joint density of states ............. 191 
junction ...................... 115, 123 

shape of a junction .......... 120 
Keating potential . . . . . . . . . . . . . . . . .  211 
Kekule structure .................. 213 

L 
H 

heat treatment temperature THT . . 202 
helical pitch ...................... 133 
helically coiled nanotube .......... 131 
helix-shaped structure . . . . . . . . . . . .  132 
heptagonal defect ............. .81. 116 
high strength per unit area ....... 225 
highly oriented pyrolytic graphite ... 2 
hollow cylindrical cantilever . . . . . . .  213 
HOPG .............................. 2 
hybridization ....................... 5 

... Iijima ............................... 4 
in zero magnetic field ............. 111 
in-phase motion .................. 199 
in-plane bond alternation ......... 217 
in-plane crystallite sizes La ........ 89 
incommensurate co-axial 

nanotubes . . . . . . . . . . . . . .  222 
infrared-active modes. . . . . . . . . . . . .  183 
interband coupling . . . . . . . . . . . . . . . .  107 
intercalated graphite 

with fluorine ............ 147 
interlayer interaction . . . . . . . . . . . . .  207 
inversion center ................... 186 

Landau energy bands 
two-dimensional graphite . . . .  104 
carbon nanotube . . . . . . . . . . . . .  111 

Landau gauge ..................... 95 
Landau radius ..................... 97 
Landau degeneracy ................ 97 
Landauer formula . . . . . . . . . . . . . . . . .  144 
laser vaporization method .......... 74 
layer-by-layer removal . . . . . . . . . . . . . .  84 
length of cone axis ................ 123 
linear k dispersion ................ 107 
local density approximation ........ 71 
localization length L ,  ............. 147 
localization phenomenon .......... 147 
longitudinal acoustic mode ........ 177 
Lorentz force ...................... 95 

magnetic-induced distortion ....... 221 
McClure .......................... 106 
mean free path L ,  ............... 138 
mesophase pitch fibers ............. 15 
mesoscopic systems . . . . . . . . . . .  127, 138 
metal-metal coaxial nanotubes .... 224 
metal-metal junction ............. 124 



INDEX 257 

metal-semiconductor coaxial 
nanotubes .............. 224 

metal-semiconductor junction . . . . .  124 
methane ............................ 8 
MKS (SI) units ................... -95  
molecular polarizabilities . . . . . . . . .  193 
momentum relaxation length L ,  . . 138 
momentum relaxation time t ,  . . . .  139 
Mott localization . . . . . . . . . . . . . . . . .  147 
multi-wall nanotubes . . . . . . . . .  209. 221 

N 

nanotube junctions ............... 116 
negative curvature . . . . . . . . . . . . . . . .  116 
negative magnetoresistance . . . . . . .  15 1 

Landau level formation . . 160. 151 
Ni/Co catalyst . . . . . . . . . . . . . . . . . . .  187 
non-symmorphic translational 

group .................... 52 
non-zone-center phonon mode . . . . .  202 
normal mode ..................... 192 
normalized electron-phonon 

interaction . . . . . . . . . . . . . .  216 

Pauli exclusion principle .......... 138 
Peierls distortion . . . . . . . . . . . . . .  216. 70 
Peierls instability ................. 213 
pentagon ......................... 187 
PES ............................... 10 
phase-coherent motion ............ 151 
phase diagram of carbon ....... .12. 13 
phase relaxation time t ,  . . . . . . . . . .  139 
phase-relaxation length L ,  . . . . . . . .  138 
phonon density of states ...... 171. 202 
phonon mode ..................... 163 
phonon occupation number . . . . . . .  192 
photoelectron spectroscopy ......... 10 
a bond ......................... 7, 207 
pitch fiber ......................... 14 
polarizability parameters . . . . . . . . .  194 
polarization ..................... 192 
polyacetylene (CH), (see alse 

trans-polyacetylene) 7.22. 2 13 
normalized energy gap . . . . . . .  215 

polyacrylonitrile .................... 2 
power law for the A1, mode ...... 198 
projection operator ............... 184 

Q 
0 

open ends ......................... 89 
out-of-phase motion .............. 199 
out-of-plane deformation 

dotfill 218 
overlap integral matrix . . . . . .  
oxidation ................... 

PAN (polyacrylonitrile) ..... 
PAN fibers . . . . . . . . . . . . . . . . .  
parameters of 2D graphite 

tight binding method . . 

. .. 

. . . .  19 
. . . .  84 

.... 15 
. .14. 2 

. . . .  32 

quantized conductance Go ........ 143 
quantized current ................. 143 
quantized resistance Ro . . . . . . . . . . .  143 
quantum confinement .............. 95 

R 

radial ............................ 167 
Raman experiment . . . . . . . . . . . . . . .  187 
Raman mode of carbon nanotube 

atomic displacements ........ 200 
higher frequency modes ...... 198 
lower frequency modes ....... 196 
medium frequency modes .... 201 



Raman polarizability parameters . . 195 
Raman spectra 

angular dependence .......... 205 
polarization dependence . . . . .  197 

Raman-active modes . . . . . . . . . . . . . .  183 
random phase .................... 150 
rare-earth metals . . . . . . . . . . . . . . . . . .  79 
Rayleigh scattering . . . . . . . . . . . . . . .  190 
regular triangle . . . . . . . . . . . . . . . . . . .  120 
resistance., ....................... 137 
resistance of a mesoscopic wire R, 144 
resistivity., ...................... 137 
resolvent ......................... 127 
resonance tunneling ............... 156 
resonant Raman effect . . . . . . . . . . . .  191 
Rh/Pd catalyst ................... 187 
rope .............................. 187 
rotation angle I I ,  . . . . . . . . . . . . . . . . . . .  43 
rotation around the z axis .... 203, 223 

sample length L .................. 139 
sample orientation dependence . . . .  203 
scaled force constant . . . . . . . . . . . . . .  181 
second-rank tensor ................ 168 
secular equation . . . . . . . . . . . . . . .  165, 20 
selection rules .................... 186 
semi-metal ....................... 134 
semi-toroidal structure. . . . . . . . . . . .  130 
shear modes between two 

graphite layers .......... 222 
a-bonding ........................ 207 
sliding motion., .................. 223 
sound velocity .................... 178 
sp2 hybridization ................... 7 
sp3 hybridization . . . . . . . . . . . . . . . . . . .  8 
space group symmetry operation 

R = ( $ 1 ~ )  ................ 43 
spin-Peierls interaction . . . . . . . . . . .  221 

STM image ....................... 224 
strain energy per carbon atom .... 210 
strongly localized regime .......... 147 
STS experiments ................. 224 
Su-Schrieffer-Heeger (SSH) model 213 
sublattices ........................ 199 
superlattice ....................... 133 
symmetry assignment . . . . . . . . . . . . .  205 
symmetry vector R ................ 41 
symmetry-lowering effects . . . . . . . . .  202 

T 

(10. 10) armchair nanotube . . . . . . . .  187 
thermal diffusion length L T . ,  . . . . .  151 
thermal vibration ................. 212 
Thomas A . Edison .................. 1 
tight binding approximation in a 

static magnetic field ...... 98 
tight binding method .............. 17 

njjl .......................... 19 
Sjj! .......................... -19  

tilt and twist boundaries ........... 89 
time-reversed processes A: ....... 151 
toroidal carbon nanotube ......... 133 
torus c 3 6 0  ........................ 130 
tows ............................... 15 
trans-polyacetylene 

ir-bands ...................... 22 
' F I J J I  ......................... 23 
S J J I  .......................... 24 
Bloch orbitals ................. 22 
Brillouin zone ................. 22 
energy dispersion relations .... 24 
reciprocal lattice vector. ...... 22 
unit vector .................... 22 

transfer integral matrix ............ 19 
transit time t t  .................... 139 
transition metals ................... 79 
translation r ....................... 43 



INDEX 259 

translation in the direction of T r . 41 
translational vector T . . . . . . . . . . . . .  37 
transmission probability .......... 144 
transport experiments . . . . . . . . . . . .  159 
transverse acoust>ic mode . . . . . . . . .  177 
tube opening ...................... 85 
tubule axis length . . . . . . . . . . . . . . . .  123 
tunneling conductance ............ 123 
turbostratic graphite., . . . . . . . . . . . . .  89 
twisted helical carbon nanotube ... 132 
twisting motion . . . . . . . . . . . . . .  .169, 178 
two-band semimetal model . . . . . . . .  160 
two-dimensional cosine band in 

a magnetic field . . . . . . . . .  100 
two-dimensional graphite (see 2D-grphite) 
two-dimensional van Hove 

singularities ............. 125 
two-point resistance . . . . . . . . . . . . . .  155 

ungerade ......................... 186 
unitary matrix .................... 168 
universal conductance 

fluctuations (UCF)127.148. 161 
valence electrons .................... 5 
van-Hove singularities . . . . . . . . . . . .  191 
vapor grown carbon fiber . . . . .  .2,14. 79 
vapor growth method . . . . . . . . . . . . . .  80 
vaporization temperature . . . . . . .  77. 88 
vector potential ................... -95  
voltage drop.  . . . . . . . . . . . . . . . .  .127. 144 

w 

X.Y. z 
XPS ................................ 9 
Young’s modulus Y . . . . . . . . . . . . . . .  211 
zero-gap semiconductor . . . . . . . . . . . .  64 
zigzag nanotube . . . . . . . . . . . . . . . . . . .  36 
zone folding 

phonon mode ........... .163,  172 
zone-center vibrations ............ 183 
zone-folding 

Energy dispersion ............. 59 

wavy ribbons ...................... 89 
weakly localized regime . . . . . . . . . . .  147 
wire frame model . . . . . . . . . . . . . . . . .  123 
wrinkled layers .................... 89 




	Book Jacket Cover 
	Book Cover
	Physical Properties of Carbon Nanotubes
	Preface
	Contents
	CHAPTER 1 Carbon Materials
	History
	Hybridization in A Carbon Atom

	CHAPTER 2 Tight Binding Calculation of Molecules and Solids
	Tight Binding Method for a Crystalline Solid
	Electronic Structure of Polyacetylene
	Two-Dimensional Graphite

	CHAPTER 3 Structure of a Single-Wall Carbon Nanotube
	Classification of carbon nanotubes
	Chiral Vector
	Translational Vector
	Symmetry Vector
	Unit Cells and Brillouin Zones
	Group Theory of Carbon Nanotubes
	Experimental evidence for nanotube structure

	CHAPTER 4 Electronic Structure of Single-Wall Nanotubes
	One-electron dispersion relations
	Density of States, Energy gap
	Effects of Peierls distortion and nanotube curvature

	CHAPTER 5 Synthesis of Carbon Nanotubes
	Single-Wall Nanotube Synthesis
	Laser Vaporization Synthesis Method
	Arc Method of Synthesizing Carbon Nanotubes
	Vapor Growth and Other Synthesis Methods
	Purification
	Nanotube Opening, Wetting, Filling and Alignment
	Nanotube Doping, Intercalation, and BN/C Composites
	Temperature Regimes for Carbonization and Graphitizaton
	Growth Mechanisms

	CHAPTER 6 Landau Energy Bands of Carbon Nanotubes
	Free Electron in a Magnetic Field
	Tight Binding Approximation in a Static Magnetic Field
	Two-Dimensional Cosine Band in a Magnetic Field
	Landau Energy Bands of Graphite
	Magnetic Energy Bands of Carbon Nanotubes for B || z: Aharonov-Bohm Effect
	Magnetic Energy Bands of Carbon Nanotubes for B z: Quantum-Oscillations

	CHAPTER 7 Connecting Carbon Nanotubes
	Net Diagrams of a Junction
	The Rule for Connecting Two Nanotubes
	Shape of a Junction
	Tunneling Conductance of a Junction
	Coiled Carbon Nanotubes

	CHAPTER 8 Transport Properties of Carbon Nanotubes
	Quantum transport in a one-dimensional wire
	Transport experiments on carbon nanotubes

	CHAPTER 9 Phonon Modes of Carbon Nanotubes
	Dynamical matrix for phonon dispersion relations
	Phonon dispersion relations for two-dimensional graphite
	Phonon dispersion relations for nanotubes

	CHAPTER 10 Raman Spectra of Carbon Nanotubes
	Raman or infrared active modes of carbon nanotubes
	Raman experiments on single-wall nanotubes
	Bond Polarizability Theory of Raman Intensity for Carbon Nanotubes
	Raman Spectra of Nanotubes with Random Orientations
	Sample Orientation Dependence

	CHAPTER 11 Elastic Properties of Carbon Nanotubes
	Overview of Elastic Properties of Carbon Nanotubes
	Strain Energy of Carbon Nanotubes
	The Peierls Instability of Nanotubes
	Properties of Multi-Wall Nanotubes

	Appendix
	A-1 Parameters for an (n, m) carbon nanotube
	A-2 Coordinates for a (n,m) carbon nanotube
	A-3 Coordinates for several unit cells
	A-4 Source Codes

	References
	Index




