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This is an introductory textbook for graduate students and researchers from various
fields of science who wish to learn about carbon nanotubes. The field is still at an early
stage, and progress continues at a rapid rate. This book focuses on the basic principles
behind the physical properties and gives the background necessary to understand the
recent developments. Some useful computational source codes which generate coordinates
for carbon nanotubes are also included in the appendix.
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Preface

A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter
of a carbon nanotube is of nanometer size and the length of the nanotube can
be more than luym. The nanotube diameter is much smaller in size than the
most advanced semiconductor devices obtained so far. Thus the availability of
carbon nanotubes may have a large impact on semiconductor physics because of
its very small size and the special electronic properties that are unique to carbon
nanotubes. Because of the large variety of possible helical geometries known as
chirality, carbon nanotubes provide a family of structures with different diam-
eters and chiralities. One of the most significant physical properties of carbon
nanotubes is their electronic structure which depends only on their geometry,
and is unique to solid state physics. Specifically, the electronic structure of a
single-wall carbon nanotube is either metallic or semiconducting, depending on
its diameter and chirality, and does not requiring any doping. Thus we can imag-
ine that the smallest possible semiconductor devices are likely to be based on
carbon nanotubes. Further, the energy gap of semiconducting carbon nanotubes
can be varied continuously from 1 eV to 0 eV, by varying the nanotube diame-
ter. Thus, in principle, it may be possible to specify the desired semiconducting
properties using only carbon atoms with a specified geometric structure.

The purpose of this book is to define the structure of carbon nanotubes
as clearly as possible, starting from basic physics and chemistry. Since the
uniqueness in the electronic structure comes directly from the uniqueness of the
electronic structure of graphite, this volume provides background information
about the structure and properties of graphite and related carbon materials.
From our definition of the structure of carbon nanotubes, we can explain the
electronic structure and phonon dispersion relations based on simple physical
models, which the reader can follow with a pen and paper. Thus the contents
of the book are rather theoretically oriented, and experimental results are used
primarily to provide evidence for the validity of the theory. This is actually the
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way that the field of carbon nanotubes developed. At an early stage, the theory
stimulated experiments in carbon nanotube physics, since obtaining sufficient
quantities of pure carbon nanotubes has been difficult in practice. The early
experiments were made through electron microscope observation. The direct
evidence provided by electron microscopy for the existence of carbon nanotubes
was sensational to many physicists and chemists, and because of this fascination,
the field of carbon nanotubes has grown explosively, with many active research
groups worldwide working independently or in collaborative research projects.

In this book, using basic ideas of the lattice, electronic and phonon struc-
tures, the physical properties are discussed in the terminology of carbon nan-
otubes, which are characterized by the chiral index (n,m). The chiral index
(n, m) consists of a set of integers which specify each carbon nanotube uniquely.
Since quantum effects are prominent in nanotube physics, the magnetic and
transport quantum effects are very significant. Although progress in the field is
still at an early stage, the book focuses on the basic principles behind the phys-
ical properties. Another unique property of a carbon nanotube is its stiffness,
corresponding to the upper limit of the best carbon fibers, which are commonly
used as a strong light-weight material. The special properties of carbon nan-
otubes are explained in the various chapters in this book.

Thus the physical properties of carbon nanotubes provide a new dimension
for solid state physics, based on the great variety of possible geometries that are
available for carbon nanotubes. In order to expand this field into the future,
many researchers in different fields of science should contribute to this field.
The authors hope that readers from any field of science can read this book
without any special background requirements. This book is not intended to be
a collection of all activities on carbon nanotubes worldwide because this field
is already so extensive, and is moving forward so rapidly at the present time.
When this book was started three years ago, the present status of the field could
not have been anticipated. Thus future progress is beyond our imagination. We
hope that through this book, we will find many new friends in this field. So
please enjoy the book and please communicate to the authors any comments
you might have about this book.

The authors would like to acknowledge many carbon nanotube researchers
who have contributed to the contents of the book. The authors also thank the
New Energy Development Organization (NEDO) of the Japanese Ministry for
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International Trade and Industry (MITI), Japan Society for the Promotion of

Science (JSPS), and their generous support for international collaboration which

made the writing of this book possible. The authors especially thank Ms. Junko

Yamamoto and Ms. Laura Doughty for their help in preparing the indexes and
figures of the book.

Finally the authors wish to say to readers: “Welcome to Carbon Nanotube

Physics.”

R. Saito, Tokyo

M.S. Dresselhaus, Cambridge, Massachusetts

G. Dresselhaus, Cambridge, Massachusetts
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CHAPTER 1.
Carbon Materials

Carbon materials are found in variety forms such as graphite, di-
amond, carbon fibers, fullerenes, and carbon nanotubes. The reason
why carbon assumes many structural forms is that a carbon atom
can form several distinct types of valence bonds, where the chemi-
cal bonds refer to the hybridization of orbitals by physicists. This
chapter introduces the history of carbon materials and describes the
atomic nature of carbon.

1.1 History

We provide here a brief review of the history of carbon fibers, which are the
macroscopic analog of carbon nanotubes. The early history of carbon fibers was
stimulated by needs for materials with special properties, both in the 19 cen-
tury and more recently after World War II. The first carbon fiber was prepared
by Thomas A. Edison to provide a filament for an early model of an electric
light bulb. Specially selected Japanese Kyoto bamboo filaments were used to
wind a spiral coil that was then pyrolyzed to produce a coiled carbon resistor,
which could be heated ohmically to provide a satisfactory filament for use in an
early model of an incandescent light bulb [1]. Following this initial pioneering
work by Edison, further research on carbon filaments proceeded more slowly,
since carbon filaments were soon replaced by a more sturdy tungsten filament in
the electric light bulb. Nevertheless research on carbon fibers and filaments pro-
ceeded steadily over a long time frame, through the work of Schiitzenberger and
Schiitzenberger (1890) [2], Pelabon [3], and others. Their efforts were mostly
directed toward the study of vapor grown carbon filaments, showing filament
growth from the thermal decomposition of hydrocarbons.

The second applications-driven stimulus to carbon fiber research came in
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the 1950’s from the needs of the space and aircraft industry for strong, stiff
light-weight fibers that could be used for building lightweight composite materi-
als with superior mechanical properties. This stimulation led to great advances
in the preparation of continuous carbon fibers based on polymer precursors,
including rayon, polyacrylonitrile (PAN) and later mesophase pitch. The late
1950’s and 1960’s was a period of intense activity at the Union Carbide Corpo-
ration, the Aerospace Corporation and many other laboratories worldwide. This
stimulation also led to the growth of a carbon whisker [4], which has become a
benchmark for the discussion of the mechanical and elastic properties of carbon
fibers. The growth of carbon whiskers was also inspired by the successful growth
of single crystal whisker filaments at that time for many metals such as iron,
non-metals such as Si, and oxides such as Al;OQ3, and by theoretical studies [5],
showing superior mechanical properties for whisker structures [6]. Parallel efforts
to develop new bulk synthetic carbon materials with properties approaching sin-
gle crystal graphite led to the development of highly oriented pyrolytic graphite
(HOPG) in 1962 by Ubbelohde and co-workers {7, 8], and HOPG has since been
used as one of the benchmarks for the characterization of carbon fibers.

While intense effort continued toward perfecting synthetic filamentary car-
bon materials, and great progress was indeed made in the early 60’s, it was
soon realized that long term effort would be needed to reduce fiber defects and
to enhance structures resistive to crack propagation. New research directions
were introduced because of the difficulty in improving the structure and mi-
crostructure of polymer-based carbon fibers for high strength and high modulus
applications, and in developing graphitizable carbons for ultra-high modulus
fibers. Because of the desire to synthesize more crystalline filamentous carbons
under more controlled conditions, synthesis of carbon fibers by a catalytic chem-
ical vapor deposition (CVD) process proceeded, laying the scientific basis for the
mechanism and thermodynamics for the vapor phase growth of carbon fibers in
the 1960’s and early 1970°s.[9] In parallel to these scientific studies, other research
studies focused on control of the process for the synthesis of vapor grown car-
bon fibers,[10)~[13] leading to current commercialization of vapor grown carbon
fibers in the 1990’s for various applications. Concurrently, polymer-based car-
bon fiber research has continued worldwide, mostly in industry, with emphasis on
greater control of processing steps to achieve carbon fibers with ever-increasing
modulus and strength, fibers with special characteristics, while decreasing costs
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Fig. 1.1:  High resolution
TEM micrograph showing car-
bon nanotubes with diameters
less than 10 nm [14-17].

of the commercial products.

As research on vapor grown carbon fibers on the micrometer scale proceeded,
the growth of very small diameter filaments, such as shown in Fig. 1.1, was
occasionally observed and reported [14, 15], but no detailed systematic studies
of such thin filaments were carried out. In studies of filamentous carbon fibers,
the growth of the initial hollow tube and the subsequent thickening process were
reported.[16,17] An example of a very thin vapor grown tubules (< 100 A) is
shown in the bright field TEM image of Fig. 1.1 [14-17].

Reports of such thin filaments inspired Kubo [18] to ask whether there was
a minimum dimension for such filaments. Early work [14,15] on vapor grown
carbon fibers, obtained by thickening filaments such as the fiber denoted by
VGCF (vapor grown carbon fiber) in Fig. 1.1, showed very sharp lattice fringe
images for the inner-most cylinders corresponding to a vapor grown carbon fiber
(diameter < 100 A). Whereas the outermost layers of the fiber have properties
associated with vapor grown carbon fibers, there may be a continuum of behavior
of the tree rings as a function of diameter, with the innermost tree rings perhaps
behaving like carbon nanotubes.

Direct stimulus to study carbon filaments of very small diameters more sys-
tematically [19] came from the discovery of fullerenes by Kroto and Smalley
[20]. In December 1990 at a carbon-carbon composites workshop, papers were
given on the status of fullerene research by Smalley [21], the discovery of a new
synthesis method for the efficient production of fullerenes by Huffman [22], and
a review of carbon fiber research by M.S. Dresselhaus [23]. Discussions at the
workshop stimulated Smalley to speculate about the existence of carbon nan-
otubes of dimensions comparable to Cgy. These conjectures were later followed
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Fig. 1.2: The observation by
TEM of multi-wall coaxial nan-
otubes with various inner and
outer diameters, d; and d,, and
numbers of cylindrical shells N:
reported by Iijima using TEM:
(a) N = 5. d,=67A, (b) N = 2,
d,=55A,and (c) N =7, d;=23A,
d,=65A [19].

up in August 1991 by an oral presentation at a fullerene workshop in Philadelphia
by Dresselhaus [24] on the symmetry proposed for carbon nanotubes capped at
either end by fullerene hemispheres, with suggestions on how zone folding could
be used to examine the electron and phonon dispersion relations of such struc~
tures. However, the real breakthrough on carbon nanotube research came with
Iijima’s report of experimental observation of carbon nanotubes using transmis-
sion electron microscopy (see Fig. 1.2) {19]. It was this work which bridged the
gap between experimental observation and the theoretical framework of carbon
nanotubes in relation to fullerenes and as theoretical examples of 1D systems,
Since the pioneering work of lijima [19], the study of carbon nanotubes has
progressed rapidly.

1.2 Hybridization in A Carbon Atom

Carbon-based materials, clusters, and molecules are unique in many ways. One
distinction relates to the many possible configurations of the electronic states of
a carbon atom, which is known as the hybridization of atomic orbitals. In this
section we introduce the hybridization in a carbon atom and consider the family
of carbon materials.

Carbon is the sixth element of the periodic table and is listed at the top
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of column IV. Each carbon atom has six electrons which occupy 1s?, 252, and
2p? atomic orbitals,* The 1s% orbital contains two strongly bound electrons,
and they are called core electrons. Four electrons occupy the 2s22p? orbitals,
and these more weakly bound electrons are called valence electrons. In the
crystalline phase the valence electrons give rise to 2s, 2p;, 2py, and 2p, orbitals
which are important in forming covalent bonds in carbon materials. Since the
energy difference between the upper 2p energy levels and the lower 25 level in
carbon is small compared with the binding energy of the chemical bonds,! the
electronic wave functions for these four electrons can readily mix with each other,
thereby changing the occupation of the 2s and three 2p atomic orbitals so as
to enhance the binding energy of the C atom with its neighboring atoms. This
mixing of 2s and 2p atomic orbitals is called hybridization, whereas the mixing
of a single 2s electron with n = 1,2, 3! 2p electrons is called sp™ hybridization
[9].

In carbon, three possible hybridizations occur: sp, sp? and sp3; other group
IV elements such as Si, Ge exhibit primarily sp® hybridization. Carbon differs
from Si and Ge insofar as carbon does not have inner atomic orbitals except
for the spherical 1s orbitals, and the absence of nearby inner orbitals facilitates
hybridizations involving only valence s and p orbitals for carbon. The lack of sp
and sp? hybridization in Si and Ge might be related to the absence of “organic
materials” made of Si¥ and Ge.

1.2.1 sp Hybridization: Acelylene, HC=CH

In sp hybridization, a linear combination of the 2s orbital and one of the 2p
orbitals of a carbon atom, for example 2p,, is formed. From the two-electron
orbitals of a carbon atom, two hybridized sp orbitals, denoted by |sp,) and |sps),
are expressed by the linear combination of |2s) and |2p,) wavefunctions of the

carbon atom,
!5pa> = C'xl28) + 02!2193:) (1 1)
lSp},) = 03'2.9) +C4]2pz) )

*The ground state of a free carbon atom is °P (§ = 1, I = 1) using the general notation for a
two-electron multiplet.

1In the free carbon atom, the excited state, 292p® which is denoted by 55 is 4.18 eV above the
ground state.

iBecause of the electron-hole duality, n = 4 and 5 are identical to n = 2 and 1, respectively.
§1t should be mentioned that the “organic chemistry” for Si is becoming an active field today.
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AT o Fig. 1.3: sp hybridization
7 g p hy -

%{% -+ - O 4’%”% The shading denotes the posi-
< tive amplitude of the wavefunc-
125>+ 2p> I P> tion. |2s) + |2p,) is elongated in

7 4 the positive direction of & (upper

%g/?/% + - %@ panel), while that of |2s) — |2p,)
“«z is elongated in the negative di-
25> - 2p> B P> rection of  (lower panel).

where C; are coefficients. Using the ortho-normality conditions (spe|sps) =
0, (spalsps) = 1, and (spy|sps) = 1, we obtain the relationship between the
coefficients C;:

C1C3 + C1Cy
C:+C?

L

0, 012 + 022
U (1.2)

1, Ct+C?

[

mn

The last equation is given by the fact that the sum of |2s) components in |sp,)
and |sp), is unity. The solution of (1.2) is C; = C; = C3 = 1/v/2 and Cy =

—1/\/5 so that
|spa) = '\}"2—(I25>+l2pz))

op) = 75 (120 o) ).

In Fig. 1.3 we show a schematic view of the directed valence of the [sp,)

(1.3)

(upper panel) and |sp,) (lower panel) orbitals. The shading denotes a positive
amplitude of the wavefunction. The wavefunction of |2s) + |2p,) is elongated in
the positive direction of z, while that of [2s) — [2p,) is elongated in the negative
direction of . Thus when nearest-neighbor atoms are in the direction of ¢ axis,
the overlap of |sp,) with the wavefunction at £ > 0 becomes large compared with
the original (2p,;) function, which gives rise to a higher binding energy. If we
select |2py) for |2p,), the wavefunction shows a directed valence in the direction
of y axis,

It is only when an asymmetric shape of the wavefunction (see Fig. 1.3) is
desired for forming a chemical bond that a mixing of 2p orbitals with 2s orbitals
occurs. The mixing of only 2p orbitals with each other gives rise to the rotation
of 2p orbitals, since the 2p,, 2p, and 2p, orbitals behave like a vector, (z,y, 2).
A wavefunction Cy|2p;)+Cy|2py)+C;|2p;), where CZ + CZ + C2 = 1, is the 2p
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H Fig. 1.4: trans-polyacetylene,
H Y (HC=CH-),, the carbon atoms
! l form a zigzag chain with an angle

of 120°, through sp? hybridiza-

\ /C \ /C\ / ¥ tion. All ¢ bonds shown in the
C C

C figure are in the plane, and in ad-
l l | dition, one 7 orbital per carbon
atom exists perpendicular to the

H H H plane.

wavefunction whose direction of positive amplitude is the direction (Cy, Cy, C3).
The 2p wavefunctions of Eq. (1.3) correspond to (C,,Cy,C,) = (1,0,0) and
(Cz, Cy, Cy) = (—1,0,0), respectively.

A simple carbon-based material showing sp hybridization is acetylene, HC=CH,
where = is used by chemisis to denote a triple bond between two carbon atoms.
The acetylene molecule HC=CH is a linear molecule with each atom having its
equilibrium position along a single axis and with each carbon atom exhibiting
sp hybridization. The hybridized |sp,) orbital of one of the carbon atoms in
HC=CH forms a covalent bond with the |sp;) orbital of the other carbon atom,
called a & bond. The 2p, and 2p, wavefunctions of each carbon atom are per-
pendicular to the o bond, and the 2p, and 2p, wavefunctions form relatively
weak bonds called 7 bonds with those of the other carbon atom. Thus, one ¢
bond and two 7 bonds yields the triple bond of HC=CH.

1.2.2 sp? Hybridization: Polyacetylene, (HC=CH-),

In sp? hybridization, the 2s orbital and two 2p orbitals, for example 2p, and 2p,,
are hybridized. An example of sp? hybridization is polyacetylene, (HC=CH-),
as is shown in Fig.1.4, where carbon atoms form a zigzag chain with an angle
of 120°. All o bonds shown in the figure are in a (xy) plane, and, in addition,
a w orbital for each carbon atom exists perpendicular to the plane.  Since
the directions of the three o bonds of the central carbon atom in Fig.1.4 are
(0,-1,0), (v/3/2,1/2,0), and (—/3/2,1/2,0), the corresponding sp® hybridized
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orbitals |sp?) (i = a,b,¢) are made from 2s, 2p,, and 2p, orbitals as follows:

|sp2) = C1]2s) — /1 - C7 |2py)

'SPE) = Ca|2s) + V 1- Cé? {?ﬂpx) + %1217,,)} (1.4)
lspZ) = Cs|2s) 4+ /1~ C3 {—-\é—:?;l?pz) + %Im)}-

We now determine the coefficients C;, C,, and C3. From the orthonormal re-
quirements of the |sp?) and |2s), |2p,,,) orbitals, we obtain three equations for
determining the coefficients, C; (i = 1,---,3):

C:yCi+CE =1

1

CiCy~5/1-C}\/1~C} = 0 (1.5)
1

CiCs+ 54/1- C}/1-C3 = 0,

yielding the solution of Eq. (1.5) given by C; = C; = 1//3 and C3 = —1//3.
The sp? orbitals thus obtained have a large amplitude in the direction of the
three nearest-neighbor atoms, and these three-directed orbitals are denoted by
trigonal bonding. There are two kinds of carbon atoms in polyacetylene, as
shown in Fig. 1.4, denoting different directions for the nearest-neighbor hydrogen
atoms. For the upper carbon atoms in Fig. 1.4, the coefficients of the [2p,) terms
in Eq. (1.4) are positive, but are changed to —|2p,) for the lower carbon atoms
in the figure.

1.2.8 sp® Hybridization: Methane, (CH,)

The carbon atom in methane, (CHy4), provides a simple example of sp® hy-
bridization through its tetragonal bonding to four nearest neighbor hydrogen
atoms which have the maximum spatial separation from each other. The four
directions of tetrahedral bonds from the carbon atom can be selected as (1,1,1),
(-1,-1,1), (-1,1,-1), (1,-1,1). In order to make elongated wavefunctions
to these direction, the 2s orbital and three 2p orbitals are mixed with each
other, forming an sp?® hybridization. Using equations similar to Eq. (1.4) but
with the four unknown coefficients, Cy, (i = 1,---,4), and orthonormal atomic
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wavefunctions, we obtain the sp® hybridized orbitals in these four directions:

it

lsp2) =  {126) + [2pa) + [28y) + 1222}
ls79) = 5 {126)  [262) = I2p4) + [2:)}
Js82) = 5 1126) = [2p2) + 128y) = [20:)}

[599) = 3 112) +[204) ~ [28y) = 126.)} .

(1.6)

In general for sp™ hybridization, n + 1 electrons belong to the carbon atom
occupied in the hybridized ¢ orbital and 4 — (n + 1) electrons are in 7 orbital.
In the case of sp® hybridization, the four valence electrons occupy 2s' and 2p®
states as ¢ bonding states. The excitation of 2s! and 2p® in the solid phase from
the 2s22p? atomic ground state requires an energy approximately equal to the
energy difference between the 2s and 2p (~4 eV) levels. However the covalent
bonding energy for o orbitals is larger (3 ~ 4 eV per bond) than the 25-2p energy
separation.

It is important to note that the directions of the three wavefunctions in the
sp® hybridization are freely determined, while the remaining fourth direction is
determined by orthonormal conditions imposed on the 2p orbitals. This fact
gives rise to possible sp? hybridization of a planar pentagonal (or heptagonal)
carbon ring and sp?*" (0 < 5 < 1) hybridization* which is found in fullerenes.
A general sp?>t" hybridization is expected to have a higher excitation energy than
that of the symmetric sp? hybridization discussed here because of the electron-
electron repulsion which occurs in the hybridized orbital.

1.2.4 Carbon 1s Core Orbitals

Carbon 1s core orbitals do not generally affect the solid state properties of carbon
materials, since the energy position of the 1s core levels is far from the Fermi
energy compared with the valence levels. Because of the small overlap between
the 1s orbitals on adjacent atomic sites in the solid, the energy spectrum of the
1s core levels in carbon materials is sharp and the core level energies lie close
to that of an isolated carbon atom. Using X-ray photoelectron spectroscopy
(XPS), the energy of the 1s core level is measured relative to the position of the

*This notation denotes an admixture of sp? and sp® hybridization.
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vacuum level, and this energy difference is especially sensitive to the transfer
of electric charge between carbon atoms. Specifically, the 1s core level shifts in
energy relative to the vacuum level by an amount depending on the interaction
with nearest-neighbor atoms, and this effect is known as the chemical shift of
XPS.

Furthermore, XPS refers to the photoelectron spectroscopy (PES) process
when the excitation photon is in the x-ray range and the electron excitation is
from a core level. XPS spectra have been obtained for the unoccupied orbitals
for a variety of fullerenes. For example, Fig. 1.5 shows the XPS spectrum for
Ceo [25). In this spectrum, we can see well-defined peaks which show an in-
tense, narrow main line (peak #1 in Fig. 1.5) identified with the emission of a
photo-excited electron from the carbon 1s state, which has a binding energy of
285.0 eV and a very small linewidth of 0.65 eV at half-maximum intensity [25].
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Table 1.1: Isomers made of carbon

Dimension 0-D i-D 2-D 3-D
1somer Cso nanotube graphite diamond
fullerene carbyne fiber amorphous

hybridization sp? sp? (sp) sp? sp®

density 1,72 1.2-2.0 2.26 3.515
lg/cm3] 2.68-3.13 ~ 2 2-3

Bond Length 1.40(C=C) 1.44(C=C) 1.42(C=C) 1.54(C-C)
[A] 1.46(C-C) 1.44(C=0C)

electronic semiconductor metal or semimetal  insulating

properties Fy =19V semiconductor E, = 5.47eV

The sharpest side-band feature in the downshifted XPS spectrum (labeled 2) is
identified with an on-site molecular excitation across the HOMO-LUMO gap at
1.9 eV [25]. Features 3, 4 and 5 are the photoemission counterparts of electric
dipole excitations seen in optical absorption, while features 6 and 10 represent
intramolecular plasmon collective oscillations of the 7 and o charge distribu-
tions. Plasma excitations are also prominently featured in core level electron
energy loss spectra (EELS).

1.2.5 Isomers of Carbon

The sp™ hybridization discussed in the previous section is essential for determin-
ing the dimensionality of not only carbon-based molecules, but also carbon-based
solids. Carbon is the only element in the periodic table that has isomers from
0 dimensions (0D) to 3 dimensions (3D), as is shown in Table 1.1. Here we
introduce possible structures of carbon materials in the solid phase, which are
closely related to the sp™ hybridization.

In sp” hybridization, (n + 1) ¢ bonds per carbon atom are formed, these o
bonds making a skeleton for the local structure of the n-dimensional structure.
In sp hybridization, two ¢ bonds make only a one-dimensional chain structure,
which is known as a ‘carbyne’. A three-dimensional solid is formed by gather-
ing these carbyne chains. In sp® hybridization, four ¢ bonds defining a regular
tetrahedron are sufficient to form a three-dimensional structure known as the
diamond structure. It is interesting that sp? hybridization which forms a pla-
nar structure in two-dimensional graphite also forms a planar local structure in
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the closed polyhedra (0-dimensional) of the fullerene family and in the cylinders
(1-dimensional) called carbon nanotubes. Closely related to carbon nanotubes
are carbon fibers which are macroscopic one-dimensional materials, because of
their characteristic high length to diameter ratio. A carbon fiber, however, con-
sists of many graphitic planes and microscopically exhibits electronic properties
that are predominantly two-dimensional. Amorphous carbon is a disordered,
three-dimensional material in which sp? and sp® hybridization are both present,
randomly. Amorphous graphite, which consists mainly of sp? hybridization, is a
graphite with random stacking of graphitic layer segments. Because of the weak
interplanar interaction between two graphitic planes, these planes can move
easily relative to each other, thereby forming a solid lubricant. In this sense,
amorphous graphite can behave like a two-dimensional material.

Under ambient conditions and in bulk form, the graphite phase with strong
in-plane trigonal bonding is the stable phase, as indicated by the phase diagram
of Fig. 1.6 [26-28]. Under the application of high pressure and high temperature
(both of which are somewhat reduced when catalyst particles like iron or nickel



1.2. HYBRIDIZATION IN A CARBON ATOM 13

are used), transformation to the diarnond structure takes place. Once the pres-
sure is released, diamond remains essentially stable under ambient conditions
although, in principle, it will very slowly transform back to the thermodynam-
ically stable form of solid carbon, which is graphite. When exposed to various
perturbations, such as irradiation and heat, diamond will quickly transform back
to the equilibrium graphite phase.

Hereafter we introduce the ‘one-dimensional’ isomers, carbynes and carbon
fibers, which are related to nanotubes, as the subject of the following chapters.

1.2.6 Carbynes

Linear chains of carbon which have sp bonding have been the subject of research
for many years [29].

A polymeric form of carbon consisting of chains [ - - ~C=C~- - ], for n > 10
has been reported in rapidly quenched carbons and is referred to as “carbynes.”
This carbon structure is stable at high temperature and pressure as indicated
in the phase diagram of Fig. 1.6 as shock-quenched phases. Carbynes are silver-
white in color and are found in meteoritic carbon deposits, where the carbynes
are mixed with graphite particles. Synthetic carbynes have also been prepared
by sublimation of pyrolytic graphite [30, 31]. It has been reported that carbynes
are formed during very rapid solidification of liquid carbon, near the surface of
the solidified droplets formed upon solidification [32]. Some researchers [31-35]
have reported evidence that these linearly bonded carbon phases are stable at
temperatures in the range 2700 < T < 4500 K.

Carbynes were first identified in samples found in the Ries crater in Bava,ma
[36] and were later synthesized by the dehydrogenation of acetylene [31,37].
The carbynes have been characterized by x-ray diffraction, scanning electron
microscopy {TEM), ion micro-mass analysis, and spectroscopic measurements
which show some characteristic features that identify carbynes in general and
specific carbyne polymorphs in particular. The crystal structure of carbynes
has been studied by x-ray diffraction through identification of the Bragg peaks
with those of synthetic carbynes produced from the sublimation of pyrolytic
graphite [33,37]. In fact, two polymorphs of carbynes (labeled o and ) have
been identified, both being hexagonal and with lattice constants a, = 8.94 &,
o = 15.36 A; ap = 8.24 A, cs = 7.68 A [31]. Application of pressure converts the



14 CHAPTER 1. CARBON MATERIALS

o phase into the § phase. The numbers of atoms per unit cell and the densities
are, respectively, 144 and 2.68 g/cm3 for the o phase and 72 and 3.13 g/cm?® for
the 2 phase [38]. These densities determined from x-ray data [31] are in rough
agreement with prior estimates [39,40]. It is expected that other less prevalent
carbyne polymorphs should also exist. In the solid form, these carbynes have a
hardness intermediate between diamond and graphite. Because of the difficulty
in isolating carbynes in general, and specific carbyne polymorphs in particular,
little is known about their detailed physical properties.

1.2.7 Vapor Grown Fibers

Vapor-grown carbon fibers can be prepared over a wide range of diameters (from
less than 1000 A to more than 100 um) and these fibers have hollow cores [9].
In fact vapor-grown fibers with diameters less than 100A were reported many
years ago [41-43]. The preparation of these fibers is based on the growth of a
thin hollow tube of about 1000 A diameter from a transition metal catalytic
particle (~100 A diameter) which has been super-saturated with carbon from a
hydrocarbon gas present during fiber growth at 1050°C. The thickening of the
vapor-grown carbon fiber occurs through an epitaxial growth process whereby
the hydrocarbon gas is dehydrogenated and sticks to the surface of the growing
fiber. Subsequent heat treatment to ~2500°C results in carbon fibers with a
tree ring concentric cylinder morphology [44]. Vapor-grown carbon fibers with
micrometer diameters and lengths of ~30 ¢cm provide a close analogy to car-
bon nanotubes with diameters of nanometer dimensions and similar length to
diameter ratios (see Chapter 5).

Carbon fibers represent an important class of graphite-related materials from
both a scientific and commercial viewpoint. Despite the many precursors that
can be used to synthesize carbon fibers, each having different cross-sectional
morphologies [9, 44], the preferred orientation of the graphene planes is parallel
to the fiber axis for all types of carbon fibers, thereby accounting for the high
mechanical strength and high modulus of carbon fibers [9]. As-prepared vapor-
grown fibers have an “onion skin” or “tree ring” morphology [Fig. 1.7(a)], and
after heat treatment to about 3000°C, they form facets [Fig. 1.7(b)]. Of all car-
bon fibers [9], these faceted fibers are closest to crystalline graphite in both crys-
tal structure and properties. The commercial pitch and PAN fibers with other
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Fig. 1.7: Sketch illustrating the morphology of vapor-grown car-
bon fibers (VGCF): (a) as-deposited at 1100°C [9], (b) after heat
treatment to 3000°C [9].

morphologies (not shown), are exploited for their extremely high bulk modulus
and high thermal conductivity, while the commercial PAN (polyacrylonitrile)
fibers with circumferential texture are widely used for their high strength [9].
The high modulus of the mesophase pitch fibers is related to the high degree
of c-axis orientation of adjacent graphene layers, while the high strength of the
PAN fibers is related to defects in the structure, which inhibit the slippage of
adjacent planes relative to each other. Typical diameters for these individual
commercial carbon fibers are ~ 10 um, and since the fibers are produced in a
continuous process, they can be considered to be infinite in length. These fibers
are woven into bundles called tows and are then wound up as a continuous yarn
on a spool. The remarkable high strength and modulus of carbon fibers are
responsible for most of the commercial interest in these fibers [9,44].






CHAPTER 2.
Tight Binding Calculation of Molecules and Solids

In carbon materials except for diamond, the 7 electrons are va-
lence electrons which are relevant for the transport and other solid
state properties. A tight binding calculation for the = electrons is
simple but provides important insights for understanding the elec-
tronic structure of the m energy levels or bands for graphite and
graphite-related materials.

2,1 Tight Binding Method for a Crystalline Solid

In this section we explain the tight binding method for a crystalline solid. In the
following sections, we show some examples of energy bands for carbon materials
discussed in the Chapter 1.

2.1.1 Secular Equation

Because of the translational symmetry of the unit cells in the direction of the
lattice vectors, @, (i = 1,---,3), any wave function of the lattice, ¥, should
satisfy Bloch’s theorem

T&.'q’ = eiE-&g\I,, (Z =1 'a3)1 (21)

where T3, is a translational operation along the lattice vector &@;, and k is the
wave vector[45,46]. There are many possible functional forms of ¥ which satisfy
Eq. (2.1). The most commonly used form for ¥ is a linear combination of
plane waves. The reason why plane waves are commonly used is that: (1) the
integration of the plane wave wavefunction is easy and can be done analytically,
(2) the numerical accuracy only depends on the number of the plane waves
used. However, the plane wave method also has limitations: (1) the scale of the

17
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computation is large, and (2) it is difficult to relate the plane wave wavefunction
to the atomic orbitals in the solid.

Another functional form which satisfies Eq. (2.1) is based on the j—th atomic
orbital in the unit cell (or atom). A tight binding, Bloch function Qj(E,r") is
given by,

N
- 1 BB . = .
Qj(kvﬂ:TN Eé et o, (F~R), (j=1,---,n). (2.2)

Here R is the position of the atom and ¢; denotes the atomic wavefunction in
state j. The number of atomic wavefunctions in the unit cell is denoted by =,
and we have n Bloch functions in the solid for a given k. To form <I>j(l;:,1'~') in
Eq. (2.2), the @;’s in the N (~ 10?*) unit cells are weighted by the phase factor
exp(ik - R) and are then summed over the lattice vectors R of the whole crystal.
The merits of using atomic orbitals in Bloch functions are as follows: (1) the
number of basis functions, n, can be small compared with the number of plane
waves, and (2) we can easily derive the formulae for many physical properties
using this method.* Hereafter we consider the tight binding functions of Eq. (2.2)
to represent the Block functions.
It is clear that Eq. (2.2) satisfies Eq. (2.1) since

N

- 1 " .
&;(K,7+d) = -A—,Zetk%j(ma—ﬁ)
R
N
.1 . ~ (2.3)
— ik (R-a = —
= ¢*f —N—Ze’k( do; (7 — (R - @)
. R-a
= eik-a‘(pj(klf')r

where we use the periodic boundary condition for the M = N=1/3 unit vectors
in each d; direction,

&;(F, 7+ Ma;) = ®;(k,7) (i=1,---,3), (2.4)

consistent with the boundary condition imposed on the translation vector Tz, =
1. From this boundary condition, the phase factor appearing in Eq. (2.2) satis-
fies exp{tkMa;} = 1, from which the wave number & is related by the integer

*The limitations of the tight binding method are that: (1) there is no simple rule to improve
the numerical accuracy and (2) atomic orbitals do not describe the interatomic region.
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D,
_ 2p7r

k= Mczz

p=0,1,--,M=1), (i=1,--.,3). (2.5)

In three dimensions, the wavevector k is defined for the z, y and z directions,
as kg, ky and k,. Thus M3 = N wave vectors exist in the first Brillouin zone,
where the k; can be considered as continuum variables.

The eigenfunctions in the solid ‘Ilj(ir., 7) (j = 1,---,n), where n is the number
of Bloch wavefunctions, are expressed by a linear combination of Bloch functions
Qj'(k_:’, 7) as follows:

n
Uik, 7 =Y Cjjr(k)®;(k, 7), (2-6)
i=
where Cjj:(k) are coefficients to be determined. Since the functions W;(F,7)
should also satisfy Bloch’s theorem, the summation in Eq. (2.6) is taken only
for the Bloch orbitals ®; (E 7"') with the same value of k.
The j—th eigenvalue E; (k) (G=1,---,n) as a function of k is given by

(U[m|9;) _ [ UMY dr
(O;19;) [ U3 dr

E;i(k) = 27

where H is the Hamiltonian of the solid. Substituting Eq. (2.6) into Eq. (2.7)
and making a change of subscripts, we obtain the following equation,

Z Cijr(®;H|®; ’> Z Hjje ("7)

Ei(R) = 2= 4= (2.8)
Z ‘I’“‘I’j'> Z Su ("7
v]'=1 ,]':

where the integrals over the Bloch orbitals, #; j:(g) and S;;+(k) are called transfer
integral matrices and overlap integral matrices, respectively, which are defined
by

Hyje (k) = (®;1H1®;0), 8jj0(F) = (®;|®;) (5,5 =1,---,n). (2.9)

When we fix the values of the n X n matrices H;; (k) and S;;:() in Eq. (2.9)
for a given k value, the coefficient C}; is optimized so as to minimize E,(E)
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It is noted that the c_?efﬁcient Cj; is also a function of k , and therefore Cj; is
determined for each k. When we take a partial derivative for Cj; while fixing
the other Cjj/, C,-*j,, and Cy; coefficients,’ we obtain zero for the local minimum
condition as follows,

N N
85i(R) > Hji(k)Cije > M (R)CHCije
; j'=1 ji'=1 >
e = N - 7 2 Sip(F)Cijr = 0.
! Z 8;; (B)C3;Cir - aYou 7=
PP Y 8 (k)C;Cyye
= iir=1

(2.10)

N
When we multiply both sides of Eq. (2.10) by Z Sjjr(E)C;j C;j and substitute
5hj'=1
the expression for E;(k) of Eq. (2.8) into the second term of Eq. (2.10), we obtain

N N
3 M (k)Cijr = Ei(k) Y ;0 (E)Cije. (2.11)

j'=1 jl=

Defining a column vector,

Ci
ci={ : |, (2.12)

Cin

Eq. (2.11) is expressed by .
HC; = E;(k)SC;. (2.13)

Transposing the right hand side of Eq. (2.13) to the left, we obtain [H —
E;(k)S]C; = 0. If the inverse of the matrix [H — F;(E)S] exists, we multi-
ply both sides by [H — Ei(l_c‘)'S]"1 to obtain C; = 0 (where 0 denotes the null
vector), which means that no wavefunction is obtained. Thus the eigenfunc-
tion is given only when the inverse matrix does not exist, consistent with the
condition given by

det[H — ES] =0, (2.14)

where Eq. (2.14) is called the secular equation, and is an equation of degree
n, whose solution gives all n eigenvalues of E;(k) (i = 1,---n) for a given k.

tSince C; j is generally a complex variable with two degrees of freedom, a real and a complex
part, both C;; and C;»’j can be varied independently.
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Using the expression for E;(k) in Eqgs. (2.7) and (2.11), the coefficients C; as a
function of k are determined. In order to obtain the energy dispersion relations
(or energy bands) E;(k), we solve the secular equation Eq. (2.14), for a number
of high symmetry k points.

2.1.2 Procedure for obtaining the energy dispersion

In the tight binding method, the one-electron energy eigenvalues E,(I?) are ob-
tained by solving the secular equation Eq. (2.14). The eigenvalues Ej(k) are
a periodic function in the reciprocal lattice, which can be described within the
first Brillouin zone. In a two or three dimensional solid, it is difficult to show
the energy dispersion relations over the whole range of k values, and thus we
plot E,(r’}') along the high symmetry directions in the Brillouin zone. The actual
procedure of the tight binding calculation is as follows:

1. Specify the unit cell and the unit vectors, @;. Specify the coordinates of
the atoms in the unit cell and select n atomic orbitals which are considered
in the calculation.

2. Specify the Brillouin zone and the reciprocal lattice vectors, I.)‘i. Select the
high symmetry directions in the Brillounin zone, and k points along the
high symmetry axes.

3. For the selected & points, calculate the transfer and the overlap matrix
element, H;; and &;;.*

4. For the selected k points, solve the secular equation, Eq. (2.14) and obtain
the eigenvalues Ej(k) (i = 1,---,n) and the coefficients Cy; (k).

Tight-binding calculations are not self-consistent calculations in which the
occupation of an electron in an energy band would be determined self-consistently.
That is, for given electron occupation, the potential of the Hamiltonian is cal-
culated, from which the updated electron occupation is determined using, for
example, Mulliken’s gross population analysis [47]. When the input and the
output of occupation of the electron are equal to each other within the desired
accuracy, the eigenvalues are said to have been obtained self-consistently.

*When only the transfer matrix is calculated and the overlap matrix is taken as the unit matrix,
then the Slater-Koster extrapolation scheme results.
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In applying these calculational approaches to real systems, the symmetry of
the problem is considered in detail on the basis of a tight-binding approach and
the transfer and the overlap matrix elements are often treated as parameters se-
lected to reproduce the band structure of the solid obtained either experimentally
or from first principles calculations. Both extrapolation methods such as k- 7
perturbation theory or interpolation methods using the Slater-Koster approach
are commonly employed for carbon-related systems such as a 2D graphene sheet
or 3D graphite [9].

2.2 Electronic Structure of Polyacetylene

A simple example of 7-energy bands for a one-dimensional carbon chain is poly-
acetylene (see Sect. 1.2.2). In Fig. 2.1 we show, within the box defined by the
dotted lines, the unit cell for trans-polyacetylene (CH),which contains two in-
equivalent carbon atoms, A and B, in the unit cell. As discussed in Sect. 1.2.2,
there is one w-electron per carbon atom, thus giving rise to two m-energy bands
called bonding and anti-bonding #-bands in the first Brillouin zone.

The lattice unit vector and the reciprocal lattice vector of this one-dimensional
molecule are given by @; = («,0,0) and by = (a/27,0,0), respectively. The Bril-
louin zone is the line segment —a/m < & < a/w. The Bloch orbitals consisting
of A and B atoms are given by

®;(r) = \—/l—ﬁ S o (v~ Ry), (@ = A,B) (2.15)
Ra

where the summation is taken over the atom site coordinate R, for the A or B
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carbon atoms in the solid.
The (2 x 2) matrix Hamiltonian, Hag, (o, 8 = A, B) is obtained by substi-
tuting Eq. (2.15) into Eq. (2.9). When a = 8= A,

Haalr) = 5 32 M o4 (r— R Mlpa(r - R))

R,R!
1 1 +ika /
== wtg = palr - R)[Hlpa(r — R))
N Rgzl N R:;;{:a (2.18)

+(terms equal to or more distant than R = R’ & 2a)

= €gp + (terms equal to or more distant than R = R’ = a).

In Eq. (2.16) the maximum contribution to the matrix element 44 comes from
R = R/, and this gives the orbital energy of the 2p level, €5p.* The next order
contribution to H 4 comes from terms in R = R'+a, which will be neglected for
simplicity. Similarly, Hpp also gives ez, for the same order of approximation.

Next let us consider the matrix element H 4p(r). The largest contribution
to Hap(r) arises when atoms A and B are nearest neighbors. Thus, in the
summation over R', we only consider the cases B’ = R % a/2 and neglect more
distant terms to obtain

Han(r) = = S {e* oalr - RIMlen(r - R - a/2)
R

+ e/ 2o 0(r — R)Mlps(r - R+a/2))}
= 2t cos(ka/2)

(2.17)

where the transfer integral ¢ is the integral appearing in Eq. (2.17) and denoted
byt.

t= (pa(r — R)Hlpn(r — R+ a/2). (2.18)
It is stressed that ¢ has a negative value. The matrix element H g a(r) is obtained
from H ap(r) through the Hermitian conjugation relation Hp4 = H% g, but since
Hap is real, we obtain Hga = Hap.

*Note that €2 is not simply the atomic energy value for the free atom, because the Hamiltonian
contains a crystal potential.

tHere we have assumed that all the = bonding orbitals are equal (1.54 bonds). In the real
(CH); compound, bond alternation occurs, in which the bond energy alternates between 1.74
and 1.3A bonds, and the two atomic integrations in Eq. {2.17) are not equal. Although the
distortion of the lattice lowers the energy, the electronic energy always decreases more than
the lattice energy in a one-dimensional material, and thus the lattice becomes deformed by a
process called the Peierls instability. See details in Sect. 11.3.1
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4.0 T T T

Fig. 2.2: The energy dispersion
relation E4 (k) for polyacetylene
[(CH);], given by Eq. (2.21) with
values for the parameters t = —1
and s = 0.2. Curves E, (k) and
E_(k) are called bonding 7 and
antibonding 7* energy bands, re-
‘0_1.0 Y RRRY: 0.5 10 spectively, and the plot is given
karn in units of |¢].

2 e

The overlap matrix &;; can be calculated by a similar method as used for
‘Hi;, except that the intra-atomic integral yields the energy for the crystal Hamil-
tonian 7;;, but the overlap matrix rather yields unity for the case of S, if
we assume that the atomic wavefunction is normalized, $44 = Sgp = 1 and
8ap = Spa = 2scos(ka/2), where s is the overlap integral between the nearest
A and B atoms,

s = (palr = B)los(r — R+ a/2)). (2.19)

The secular equation for the 2p, orbital of [(CH),] is given by

€p~ F 2(t — sE) cos(ka/2)
2(t — sE)cos(kaf2) €3 — E
(2.20)
= (egp — E)? — A(t — sE)? cos*(ka/2)
= 0,
yielding the eigenvalues of the energy dispersion relations of Eq. (2.20) given by

€3p *k 2t cos(ka/2)
1+ 2scos(ka/2)’

T

EL(F) = (-g <k<) (2.21)

in which the 4 sign defines one branch and the — sign defines the other branch,
as shown in Fig. 2.2, where we use values for the parameters, ez, = 0, t = —1,
and s = 0.2. The levels £, and E_ are degenerate at ka = *.

E4(k) and E_(k) are called bonding 7 and antibonding 7* energy bands,
respectively. Since there are two 7 electrons per unit cell, each with a different
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Fig. 2.3: (a) The unit cell
and (b) Brillouin zone of two-
dimensional graphite are shown
as the dotted rhombus and the
shaded hexagon, respectively. d;,
and &, (i = 1,2) are unit vec-
tors and reciprocal lattice vec-
tors, respectively. Energy disper-

A sion relations are obtained along
@ . : the perimeter of the dotted tri-
\ angle connecting the high sym-

metry points, I', K and M.

(a)

spin orientation, both electrons occupy the bonding 7 energy band, which makes
the total energy lower than ¢g,.

2.3 Two-Dimensional Graphite

Graphite is a three-dimensional (3D) layered hexagonal lattice of carbon atoms.
A single layer of graphite, forms a two-dimensional (2D) material, called 2D
graphite or a graphene layer. Even in 3D graphite, the interaction between two
adjacent layers is small compared with intra-layer interactions, since the layer-
layer separation of 3.35A is much larger than nearest-neighbor distance between
two carbon atoms, ac-c=1.42A. Thus the electronic structure of 2D graphite is
a first approximation of that for 3D graphite.

In Fig. 2.3 we show (a) the unit cell and (b) the Brillouin zone of two-
dimensional graphite as a dotted rhombus and shaded hexagon, respectively,
where @; and &, are unit vectors in real space, and 1-;1 and I-;z are reciprocal
lattice vectors. In the z,y coordinates shown in the Fig. 2.3, the real space
unit vectors @; and @, of the hexagonal lattice are expressed as

a =(—\/—§a,ﬁ), A =(ﬁa,-ﬁ), (2.22)

2 2 2 2

£

where a = |@] = |@y] = 142 x /3 = 2464 is the lattice constant of two-
dimensional graphite. Correspondingly the unit vectors by and i;g of the recip-
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rocal lattice are given by:

= 27 2w = 27 2

(5 w) B (T .
corresponding to a lattice constant of 47r/\/§a in reciprocal space. The direction
of the unit vectors by and by of the reciprocal hexagonal lattice are rotated by
90° from the unit vectors d@; and &, of the hexagonal lattice in real space, as
shown in Fig. 2.3. By selecting the first Brillouin zone as the shaded hexagon
shown in Fig. 2.3(b), the highest symmetry is obtained for the Brillouin zone
of 2D graphite. Here we define the three high symmetry points, I', K and M
as the center, the corner, and the center of the edge, respectively. The energy
dispersion relations are calculated for the triangle TM K shown by the dotted
lines in Fig. 2.3(b).

As discussed in Sect. 2.3.2, three ¢ bonds for 2D graphite hybridize in a
sp? configuration, while, and the other 2p, orbital, which is perpendicular to
the graphene plane, makes = covalent bonds. In Sect. 2.3.1 we consider only 7
energy bands for 2D graphite, because we know that the 7 energy bands are
covalent and are the most important for determining the solid state properties
of graphite.

2.3.1 7 Bands of Two-Dimensional Graphite

Two Bloch functions, constructed from atomic orbitals for the two inequivalent
carbon atoms at A and B in Fig. 2.3, provide the basis functions for 2D graphite.
When we consider only nearest-neighbor interactions, then there is only an in-
tegration over a single atom in Ha4 and Hpp, as is shown in Eq. (2.16), and
thus Has = HpB = €3p. For the off-diagonal matrix element H4p, we must
consider the three nearest-neighbor B atoms relative to an A atom, which are
denoted by the vectors }-?:1, ﬁz, and Fs. We then consider the contribution to
Eq. (2.17) from Ry, Ry, and Rj as follows:

HAB — t(eil‘:-ﬁl +eii£~ég +6i£-ﬁ3)

(2.24)

tf(k)
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where t is given by Eq. (2.18)* and f(k) is a function of the sum of the phase
factors of eiffi ( =1,--+,3). Using the z,y coordinates of Fig. 2.3(a), f(k) is
given by:

(k) = etbealVB 4 9e=ikaa/2V3 coq (’-51'23) . (2.25)
Since f(k) is a complex function, and the Hamiltonian forms a Hermitian ma-
trix, we write Hpsq = H}p in which * denotes the complex conjugate. Us-
ing Eq. (2.25), the overlap integral matrix is given by Sqa= Spp = 1, and
Sap = sf(k) = 85 4. Here s has the same definition as in Eq. (2.19), so that
the explicit forms for H and & can be written as:

ep (k) 1 sf(k)
H= , 8= . (2.26)
tF(k)* €ap sF(k)* 1

Solving the secular equation det(H — ES) = 0 and using H and S as given in
Eq. (2.26), the eigenvalues E(k) are obtained as a function w(i;:.), ke and ky:

o €ap T tw(k)

P = 2, (2.27)

where the 4 signs in the numerator and denominator go together giving the
bonding 7 energy band, and likewise for the — signs, which give the anti-bonding
7* band, while the function w(k) is given by:

- = \/§k3a kya kya
=4/ 2 = it et P A
w(k) =1/ |f(B)* = \/1 + 4 cos 3 co8 9 + 4 cos 7 (2.28)

In Fig. 2.4, the energy dispersion relations of two-dimensional graphite are

shown throughout the Brillouin zone and the inset shows the energy dispersion
relations along the high symmetry axes along the perimeter of the triangle shown
in Fig. 2.3(b). Here we use the parameters €3, = 0, ¢ = —3.033¢V, and s = 0.129
in order to reproduce the first principles calculation of the graphite energy bands
[9,48]. The upper half of the energy dispersion curves describes the n*-energy
anti-bonding band, and the lower half is the m-energy bonding band. The upper
#* band and the lower 7 band are degenerate at the K points through which

*We often use the symbol vy for the nearest neighbor transfer integral. <y is defined by a
positive value,
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Fig. 2.4: The energy dispersion relations for 2D graphite are
shown throughout the whole region of the Brillouin zone. The
inset shows the energy dispersion along the high symmetry direc-
tions of the triangle 'M K shown in Fig. 2.3(b) (sce text).

the Fermi energy passes. Since there are two 7 electrons per unit cell, these two
m electrons fully occupy the lower » band. Since a detailed calculation of the
density of states shows that the density of states at the Fermi level is zero, two-
dimensional graphite is a zero-gap semiconductor. The existence of a zero gap at
the K points comes from the symmetry requirement that the two carbon sites A
and B in the hexagonal lattice are equivalent to each other.! The existence of a
zero gap at the K points gives rise to quantum effects in the electronic structure
of carbon nanotubes, as shown in Chapter 3.

When the overlap integral s becomes zero, the = and #* bands become
symmetrical around E = €5, which can be understood from Eq. (2.27). The
energy dispersion relations in the case of s = 0 (i.e., in the Slater—Koster scheme)
are commonly used as a simple approximation for the electronic structure of a
graphene layer:

V3k,a kya o [ kya 12
Egap(ks, ky) = £t <1+ 4cos 5 cos 5 + 4 cos 5 .
(2.29)

If the A and B sites had different atoms such as B and N, the site energy ez, would be
different for B and N, and therefore the calculated energy dispersion would show an energy
gap between the 7 and 7* bands.
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In this case, the energies have the values of £3¢, &t and 0, respectively, at the
high symmetry points, I', M and K in the Brillouin zone. Thus the band width
gives |6t|, which is consistent with the three connected = bonds. The simple
approximation given by Eq. (2.29) is used in Sect. 4.1.2 to obtain a simple
approximation for the electronic dispersion relations for carbon nanotubes.

2.3.2 o Bands of Two-Dimensional Graphite

Finally let us consider the ¢ bands of two-dimensional graphite. There are three
atomic orbitals of sp? covalent bonding per carbon atom, 2s, 2p, and 2p,. We
thus have six Bloch orbitals in the 2 atom unit cell, yielding six o bands. We will
calculate these six o bands using a 6 x 6 Hamiltonian and overlap matrix, and
we will then solve the secular equation* for each k point. For the eigenvalues
thus obtained, three of the six ¢ bands are bonding ¢ bands which appear below
the Fermi energy, and the other three o bands are antibonding o* bands above
the Fermi energy.

The calculation of the Hamiltonian and overlap matrix is performed ana-
lytically, using a small number of parameters. Hereafter we arrange the matrix
elements in accordance with their atomic identity for the free atom: 2s4, 2p2,
2p;1, 258, 2pZ, 2p5. Then the matrix elements coupling the same atoms (for
example A and A) can be expressed by a 3 x 3 small matrix which is a sub-block
of the 6 x 6 matrix. Within the nearest neighbor site approximation given by
Eq. (2.16), the small Hamiltonian and overlap matrices are diagonal matrices as

follows,
€3 0 0 100
HAA = 0 €2p 0 ’ 'SAA = 010 s (2.30)
0 0 ey 001

where €3, is defined by Eq. (2.16) and €3, is the orbital energy of the 2s levels.

The matrix element for the Bloch orbitals between the A and B atoms can
be obtained by taking the components of 2p; and 2p, in the directions parallel
or perpendicular to the ¢ bond. In Fig. 2.5, we show how to rotate the 2p,
atomic orbital and how to obtain the ¢ and 7 components for the rightmost

*Since the planar geometry of graphite satisfies the even symmetry of the Hamiltonian H and
of 2s, 2p, and 2p, upon mirror reflection about the xy plane, and the odd symmetry of 2p,, the
o and 7 energy bands can be solved separately, because matrix elements of different symmetry
types do not couple in the Hamiltonian.
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1
N T2 é% Fig. 2.5: The rotation of 2p,.
P ()2 The figure shows how to project
A[g_ . the o and 7 components along
+5 the indicated bond starting with
P w._'. the 2p, orbital. This method is

valid only for p orbitals.

)
. Fig. 2.6: The band param-
e Hs (6) y & Y
% :{f@ eters for & bands. The four
sy ® & cases from (1) to (4) correspond
() to matrix elements having non-
. vanishing values and the remain-

S g .

@ @ € ing four cases from (5) to (8) cor-
Ha @ 63 respond to vanishing matrix ele-
O Sn O . ments.

bond of this figure. In Fig. 2.5 the wavefunction of |2p,) is decomposed into its
o and 7 components as follows:

™ .
|2p;) = cos §|2p,,) + sin §|2p,r). (2.31)

This type of decomposition can be used to describe a bond in any general direc-
tion, which is discussed in Sect. 1.2. This procedure is also useful for fullerenes
and carbon nanotubes, when we consider the curvature of their surfaces.

By rotating the 2p, and 2py orbitals in the directions parallel and perpen-
dicular to the desired bonds, the matrix elements appear in only 8 patterns as
shown in Fig. 2.6, where shaded and not-shaded regions denote positive and neg-
ative amplitudes of the wavefunctions, respectively. The four cases from (1) to
(4) in Fig. 2.6 correspond to non-vanishing matrix elements and the remaining
four cases from (5) to (8) correspond to matrix elements which vanish because
of symmetry. The corresponding parameters for both the Hamiltonian and the
overlap matrix elements are shown in Fig. 2.6.

In Figs. 2.7(a) and (b) we show examples of the matrix elements of (254 |H[2pZ)
and (2p2 [H|2pf), respectively, obtained by the methods described above. In
the case of Fig. 2.7 (a), there is only one non-vanishing contribution, and this
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Fig. 2.7: Examples of the
Hamiltonian matrix elements of
o orbitals, (a) (2s4|*|2p2) and
(b) (2p#|M|2pP). By rotating
the 2p orbitals, we get the ma-
trix elements in Eq. (2.32) and

(asal#) 2p.B) (op ¥ 2 ,B) Eq. (2.33), respectively.

comes from Fig. 2.6 (2). The other pertinent cases of Fig. 2.6 (5) or (6) give
matrix elements that vanish by symmetry. Multiplying the phase factors for the
three nearest neighbor B atoms with the matrix elements, we get the following
result:

(254 |H|2p8) = H,, (—eik’“/ﬁ + e~ ik=a/2V3 g -I—cg—a> . (2.32)

Similarly, in the case of Fig. 2.7 (b), the non-zero matrix elements correspond
to the cases of Fig. 2.6 (3) and (4),

(2p2|H|2p8)

3@(%0 +Hw)e—ikxa/2\/§ez’kya/2 - 34@(7{0 +H”)e—ik,a/2\/§e—z'k,a/2 (2.33)

(

Y3 (M, 4 Ha)emikeo/2VBgin Ey2

The resulting matrix element in Eq. (2.33) is a pure imaginary. However, the
calculated results for the energy eigenvalues give real values.

When all the matrix elements of the 6 x 6 Hamiltonian and overlap matrices
are calculated in a similar way, the 6 x 6 Hamiltonian matrix is obtained as a
function of k; and ky. For given k points we then calculate the energy dispersion
of the o bands from the secular equation of Eq. (2.14). The results thus obtained
for the calculated & and « energy bands are shown in Fig. 2.8. Here we have
used the parameters listed in Table 2.1, yielding a fit of the functional form of
the energy bands imposed by symmetry to the energy values obtained for the
first principles band calculations at the high symmetry points [48].
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Table 2.1: Values for the coupling parameters for carbon atoms in the Hamilto-
nian for # and o bands in 2D graphite.

H value (eV) & value
H,s —6.769 Sss 0.212
Hep —5.580  &,p 0.102
He -5.037 S, 0.146
H,=t —3.033 Sr=s 0120
€2,\%) —8.868

(0)The value for €y, is given relative to setting ez, = 0.

In the absence of more detailed experimental or theoretical information,
these parameters can be used as a first approximation in describing the matrix
elements for most sp® carbon materials for which the carbon-carbon distance
is close to that of graphite, 1.42A. Further, if the parameters are only slightly
changed, the formulation can be used to describe the sp® diamond system and
sp carbyne materials.

As is shown in Fig. 2.8, the 7 and the two o bands cross each other (i.e., have
different symmetries), as do the 7* and the two o* bands. However, because
of the different group theoretical symmetries between ¢ and 7 bands, no band
separation occurs at the crossing points. The relative positions of these crossings
are known to be important for: (1) photo-transitions from o to #* bands and



2.3. TWO-DIMENSIONAL GRAPHITE 33

from 7 to ¢* bands, which satisfy the selection rule for electric dipole transitions,
and (2) charge transfer from alkali metal ions to graphene sheets in graphite
intercalation compounds.

Using the basic concepts of two-dimensional graphite presented in Chapter 2,
we next discuss the structure and electronic properties of single-wall carbon
nanotubes in Chapters 3 and 4, respectively.






CHAPTER 3.
Structure of a Single-Wall Carbon Nanotube

A single-wall carbon nanotube can be described as a graphene
sheet rolled into a cylindrical shape so that the structure is one-
dimensional with axial symmetry, and in general exhibiting a spiral
conformation, called chirality. The chirality, as defined in this chap-
ter, is given by a single vector called the chiral vector. To specify the
structure of carbon nanotubes, we define several important vectors,
which are derived from the chiral vector.

3.1 Classification of carbon nanotubes

A single-wall nanotube is defined by a cylindrical graphene sheet with a diameter
of about 0.7 — 10.0 nm,* though most of the observed single-wall nanotubes
have diameters <2 nm. If we neglect the two ends of a carbon nanotube and
focus on the large aspect ratio of the cylinder (i.e., length/diameter which can
be as large as 10%-10%), these nanotubes can be considered as one-dimensional
nanostructures.

An interesting and essential fact about the structure of a carbon nanotube
is the orientation of the six-membered carbon ring (hereafter called a hexagon)
in the honeycomb lattice relative to the axis of the nanotube. Three examples of
single-wall carbon nanotubes ( SWCN’s) are shown in Fig. 3.1. From this figure,
it can be seen that the direction of the six-membered ring in the honeycomb
lattice can be taken almost arbitrarily, without any distortion of the hexagons
except for the distortion due to the curvature of the carbon nanotube. This fact
provides many possible structures for carbon nanotubes, even though the basic

*Many carbon nanotubes that are observed experimentally are multi-wall structures which
are discussed in Chapter 11. The synthesis of single-wall carbon nanotubes is discussed in
Chapter 5.

35
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Fig. 3.1: Classification of car-
bon nanotubes: (a) armchair,
(b) zigzag, and (c) chiral nan-
otubes. From the figure it can be
seen that the orientation of the
six-membered ring in the honey-
comb lattice relative to the axis
of the nanotube can be taken al-
most arbitrarily.

shape of the carbon nanotube wall is a cylinder.

In Fig. 3.1 we show the terminations of each of the three nanotubes. The
terminations are often called caps or end caps and consist of a “hemisphere” of
a fullerene. Each cap contains six pentagons and an appropriate number and
placement of hexagons that are selected to fit perfectly to the long cylindrical
section, In this chapter we focus on the periodic structure along the nanotube
axis.

The primary symmetry classification of a carbon nanotube is as either being
achiral (symmorphic) or chiral (non-symmorphic). An achiral carbon nanotube
is defined by a carbon nanotube whose mirror image has an identical structure
to the original one. There are only two cases of achiral nanotubes; armchair
and zigzag nanotubes, as are shown in Fig. 3.1 (a) and (b), respectively. The
names of armchair and zigzag arise from the shape of the cross-sectional ring,
as is shown at the edge of the nanotubes in Fig. 3.1 (a) and (b), respectively.
Chiral nanotubes exhibit a spiral symmetry whose mirror image cannot be su-
perposed on to the original one. We call this tube a chiral nanotube, since such
structures are called axially chiral in the chemical nomenclature. Axial chirality
is commonly discussed in connection with optical activity, We have thus a vari-
ety of geometries in carbon nanotubes which can change diameter, chirality and
cap structures. A classification of carbon nanotubes is given in Table 3.1 and is
further discussed in Sect. 3.2 and Sect. 3.6.
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Table 3.1: Classification of carbon nanotubes.

Type g2 Cz) Shape of cross section Symmetry®
armchair 30° (n,n) cis-type 7 ="\ D, ®C;
zigzag 0° (n,0)  trans-type NN D, ®C;

chiral ~ 0° <]0] <30° (n,m) mixture of cis and trans Cyq® Cnya
%) The chiral angle 8 is defined by Eq. (3.4).
%) The chiral vector is defined by Eq. (3.1), where n, m are integers n # m.
<) The group theory of carbon nanotubes is discussed in Sect. 3.6.

3.2 Chiral Vector: Cj,

The structure of a single-wall carbon nanotube is specified by the vector ((_)A in
Fig. 3.2) which corresponds to a section of the nanotube perpendicular to the
nanotube axis (hereafter we call this section the equator of the nanotube). In

Fig. 3.2, the unrolled honeycomb lattice of the nanotube is shown in which OB

is the direction of the nanotube axis, and the direction of OA corresponds to
the equator. By considering the crystallographically equivalent sites O, A, B,
and B’, and by rolling the honeycomb sheet so that points O and A coincide
(and points B and B’ coincide), a paper model of a carbon nanotube can be

constructed.” The vectors 571 and 53 define the chiral vector Cj and the
translational vector T' of a carbon nanotube, respectively, as further explained
below. The chiral vector C}, can be expressed by the real space unit vectors a,
and a, (see Fig. 3.2) of the hexagonal lattice defined in Eq. (2.22):

Ch =na; + ma; H(n,m), (n,m are integers, 0 < |m| < n). (3.1)

The specific chiral vectors C), shown in Fig. 3.1 are, respectively, (a) (5,5), (b)
(9,0) and (c) (10,5), and the chiral vector shown in Fig. 3.2 is (4, 2). As is shown
in Table 3.1, an armchair nanotube corresponds to the case of n = m, that is
C) = (n,n), and a zigzag nanotube corresponds to the case of m =0, or C), =
(n,0). All other (n,m) chiral vectors correspond to chiral nanotubes. Because
of the hexagonal symmetry of the honeycomb lattice, we need to consider only
0 < |m} < nin Cp = (n,m) for chiral nanotubes.

*The authors recommend that the readers copy Fig. 3.2 and then construct a paper model of
a carbon nanotube. This construction exercise is very useful for understanding the nanotube
structure.
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Fig. 3.2: The unrolled honeycomb lattice of a nanotube. When
we connect sites O and A, and B and B’, a nanotube can be

constructed. OA and OB define the chiral vector C;, and the
translational vector T of the nanotube, respectively. The rectan-
gle OAB'B defines the unit cell for the nanotube. The vector R
denotes a symmetry vector (see Sect. 3.4). The figure corresponds
to Cy =(4,2),d=dr=2,T=(4,-5), N =28, R=(1,~1).

The diameter of the carbon nanotube, dy, is given by L/7, in which L is the
circumferential length of the carbon nanotube:

dy =L/, L:lChlz\/Ch~Ch=a\/n2+m2+nm. 3.2)

It is noted here that @; and ag are not orthogonal to each other and that the
inner products between ay and ay yield:

a2

2
a-a; =ay-ay =a’, a1~a2=-2—, (3.3)

where the lattice constant a = 1.44A x+/3 = 2.49A of the honeycomb lattice is
given in Eq. (2.22).7 For example, the diameter of the armchair nanotube (5,5),
whose end cap is a hemisphere of the fullerene Cgp, is d; = 6.88A.

tThe C—C bond length of graphite is 1.42A. In the case of carbon nanotubes, the C—C bond
length is known to be slightly larger than graphite: 1.444.
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The chiral angle 8 (see Fig. 3.2) is defined as the angle between the vectors
C}, and ay, with values of 8 in the range 0 < |8| < 30°, because of the hexagonal
symmetry of the honeycomb lattice. The chiral angle # denotes the tilt angle of
the hexagons with respect to the direction of the nanotube axis, and the angle #
specifies the spiral symmetry. The chiral angle 8 is defined by taking the inner
product of C}, and a;, to yield an expression for cos 8:

Ch-a; _ 2n+m
|Chllail ~ 2v/nZ + m? + nm’

thus relating @ to the integers (n, m) defined in Eq. (3.1). In particular, zigzag

cosf = (3.4)

and armchair nanotubes correspond to § = 0° and 8 = 30°, respectively.

3.3 Translational Vector: T

The translation vector T is defined to be the umt vector of a 1D carbon nan-
otube. The vector T is parallel to the nanotube axis and is normal to the chiral
vector C}j, in the unrolled honeycomb lattice in Fig. 3.2. The lattice vector T
shown as OB in Fig. 3.2 can be expressed in terms of the basis vectors a; and
as as:

T =tia; +tpas = (t1,%2), (where iy, are integers). (3.5)

The translation vector T' corresponds to the first lattice point of the 2D graphene
sheet through which the vector OB (normal to the chiral vector C}) passes.
From this fact, it is clear that #; and t5 do not have a common divisor except for
unity. Using Cp - T = 0 and Egs. (3.1), {3.3), and (3.5), we obtain expressions
for t; and {3 given by:

_2m+n 2n+m

1 = P ity = — in (36)

where dp is the greatest common divisor (ged) of (2m + n) and (2n 4+ m). Also,
by introducing d as the greatest common divisor of n and m, then dg can be
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related to d by*

dp = { d if n — mis not a multiple of 3d

3d if n — m is a multiple of 3d. (37

In the case of Fig. 3.2, where Cj, = (4,2), we have d = dg = 2, T = (4,-5).
The length of the translation vector, T', is given by:

T = |T| = V3L/dg, (3.8)

where the circumferential nanotube length L is given by Eq. (3.2). We note that
the length T is greatly reduced when (n,m) have a common divisor or when
(n — m) is a multiple of 3d. In fact, for the C; = (5,5) armchair nanotube, we
have dp = 3d = 15, T' = (1,-1) [Fig. 3.1(a)], while for the C, = (9,0) zigzag
nanotube we have dg =d =9, and T = (1,~2) [Fig. 3.1(b)].

The unit cell of the 1D carbon nanotube is the rectangle OAB'B defined
by the vectors Cp, and T (see Fig. 3.2), while the vectors @) and a; define the
area of the unit cell of 2D graphite. When the area of the nanotube unit cell
[C x T'| (where the symbol x denotes the vector product operator) is divided
by the area of a hexagon (|a; x a3]), the number of hexagons per unit cell N is
obtained as a function of n and m in Eq. (3.1) as:!

N |Ch x T| _ 2(m®+n?+nm) 2L°
- Iﬂ,l X (12' - dR - azdR’

(3.9)

where L and dg are given by Eqs. (3.2) and (3.7), respectively, and we note that
each hexagon contains two carbon atoms. Thus there are 2N carbon atoms (or
2p, orbitals) in each unit cell of the carbon nanotube,

*This relation is obtained by repeated use of the fact that when two integers, o and g8 {o > ),
have a common divisor, -, then « is also the common divisor of (& ~ 8) and § (Euclid’s law).
When we denote the greatest common divisor as v = ged{«, ), we get

dr = ged(2m + n, 2n 4+ m) = ged(2m + n,n — m) = ged(3m,n — m) = ged(3d,n - m),

which gives Eq. (3.7).
tFor non-orthogonal unit vectors, the calculation using the vector product is easier than using
the inner product, since the vector products of the unit vectors are:

a; X@; =a; xA; =0 and |@; X @z| = V3a?/2

where |@1 X @2| corresponds to the area of the rhombus generated by @; and @;. The area
of the rhombus is equal to that of the hexagon.



3.4. SYMMETRY VECTOR: R 41

T ................................ : Flg 3.3: Space group sym-
A : metry operation, R = (¢¥|r)

in which 1 denotes the angle
Tt R (W | T) : of rotation around the nanotube

y axis and r is the translation in
: : the direction of T as specified
: : by the symmetry vector R in
: = Ch Eq. (3.16). Note that Ny = 2«
0 \|f=27t/N 21 and Nr = MT, which follow
from Egs. 3.16, 3.17, and 3.18.

3.4 Symmetry Vector: R

We denote the carbon atom site vectors within the 1D nanotube unit cell by
times the vector R, that is, iR, where i is an integer (i = 1-.-N). When iR
goes out of the unit cell, we shift it to lie within the unit cell through translation
by an integral number of C), or T vectors, using periodic boundary conditions.
The vector R is used for generating the coordinates of carbon atoms in the
nanotube. It is convenient to express the R vector in terms of its projections
on the orthogonal vectors Cp and T of the nanotube unit cell, as shown in
Fig. 3.3. The symmetry vector R is then defined as the site vector (shown by
OR in Fig. 3.2) having the smallest component in the direction of Cj, and R is
expressed in terms of @y and ay as:

R =pa; +qas =(p,q), (p,q are integers) (3.10)

where p and ¢ do not have a common divisor except for unity.* The C} compo-
nent of R, or C}, - R, is proportional to the value of T x R given by:!

T x R = (t19 —t2p) (a1 X a3), (3.11)

*Tf p and q were to have a common divisor, r, then, J2/r would have a smaller component in
the direction of C), than does R.

tHereafter we frequently use the relation between the inner product and vector product of a
vector R with the two orthogonal vectors C, and T, to obtain:

Ch-R_\RXT‘ T»R__‘Ch)(R‘
7 S e A

where L and T are given by Egs. (3.2) and (3.8), respectively. Here we assume that I lies
between C}, and T, as in Fig. 3.3.
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where (t1q — top) on the right hand side of Eq. 3.11 is an integer. We select p
and ¢ of R to form the smallest site vector (i = 1), such that

tig—tap=1, (0< mp~ng < N). (3.12)

The solution of Eq. (3.12) for p and ¢ is uniquely determined if ¢; and ¢5 of
Eq. (3.5) do not have a common divisor except for unity. The second condition
in Eq. (3.12), 0 < mp — ng < N, arises from the fact that R exists within the
1D nanotube unit cell, so that

< R-T |CyxR| _ mp-ngq

T2 LT N

using Eqgs. (3.2), (3.8), and (3.9). Similarly, using Eqs. (3.6) and (3.9), we obtain
another necessary condition arising from R being within the 1D unit cell:

< RCh _ IRXT' _th—tzp

0

<1, (3.13)

< .
0< =5 - <, (3.14)
and from Eq. (3.14), we get the condition,

0 <tig—tp < N. (3.15)

Since the first condition of Eq. (3.12) satisfies Eq. (3.14), it is not necessary to
add this condition to the definition of R, as explained below.

To determine all N site location vectors iR, (i = 1--- N) of the nanotube
unit cell, we use the expression i(t1¢—t2p) = i for each ¢, and note that the max-
imum value of i(t;q — t2p) becomes N. Using the fact! that the C}; component
of NR is always equal to |Ch| = L, the vectors iR define N inequivalent sites in
the nanotube unit cell, and will thus have different values for their projections
along the direction of C. Therefore iR, (i = 1-.- N), uniquely generates N
different atom sites in the unit cell of the nanotube.$

$ This fact can be shown as follows:

NR-C, _NIRxT| _ 2I? \/3a? dg - L
L - T T dpa® 2 BL
where we made use of Eqgs. (3.8) and (3.9).
81t is noted that the definition of R is different from that by Jishi et al. [49]. The definition of
R given here is independent of whether or not d = 1. Further, Eq. (3.12) can be generalized
to

tig—t2p=Q, 1<Q<LKN)
where the integers @ and N do not have a common divisor except for unity. If Q and N would
have a common divisor, dg, then (N/dg)R would become a site equivalent to O. The largest
possible value of @ corresponds to the J defined by Jishi et al. [49]. Here we use the notation
for the symmetry vector & defined in Eq. (3.12).
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From a physical standpoint, the vector R consists of a rotation around the
nanotube axis by an angle 1 combined with a translation 7 in the direction of
T, and reflects the basic space group symmetry operation of a chiral nanotube,
denoted by R = (¢|r) and shown in Fig. 3.3. The physical significance of the
vector R is that the projection of R on the chiral vector C} gives the angle
¥ scaled by L/d; [see Eq. (3.2)], while the projection of R on T gives the
translation T of the basic symmetry operation of the 1D space group of the
carbon nanotube. The integers (p,q) denote the coordinates reached when the
symmetry operation (¥|r) acts on an atom at (0,0), i.e., (¥|7)(0,0) = (p,q). If
(%|7) is a symmetry operation for the nanotube, then (|7)?, (¢|7)3,... (¥|7)V
are all distinct symmetry operations of an Abelian group denoted by Cy, where
(¥|7)N = F is the identity operation.

Taking the indicated vector products Rx Cp, and RxT and using Eqgs. (3.2),
(3.8), (3.9), and (3.12), we obtain the expressions for the length of r and the
rotation angle 1, as follows:

;= |[Rx Cy| _ (mp~— ng)ley x @z} _ (mp—nq)T
- L L N

(3.16)
_ ‘TX RIE _ dR(ilq——izp) \/5(22 _ _QE
T T L V3L 2 N’

Y

and using these definitions, the rotation angle ¢ becomes 27/N, where N is the
number of hexagons in the 1D unit cell of the nanotube given by Eq. (3.9).

Referring to Fig. 3.3, the symmetry operator (¢|7)" brings the lattice point
O to an equivalent lattice point C as shown in Fig. 3.4, where

NR=C,+MT, (3.17)

and where
M= mp—ng (3.18)

is an integer which denotes the number of T vectors that are necessary for reach-
ing the distance from O to NR.
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Fig. 3.4: The vector NR =
(¥|7)" is shown on the cylindri-
cal surface. After rotating by 27
around the tube, the vector NR
reaches a lattice point C equiv-
alent to point O, but separated
from O by the vector MT. In
the figure we show the case Cj, =
(4,2) where M = 6.

Table 3.2: Values for characterization parameters®) for selected carbon nan-
otubes labeled by the chiral vector Cj, = (n, m).

Ch d dR dt (A) L/a r T/a N R M
(4,2) 2 2 4.15 V28  (4,-5) V21 28 (1,-1) 6
(5,5) 5 15 6.78 V75 (1,-1) 1 10 (1,00 5
(9,0 9 7.05 9 (1,~2) vV3 18 (1,-1) 9
(6,5) 11 7.47 Vo1 (16,-17) 273 182 (1,-1) 11
(7,4) 1 7.55 Vo3 (5,-6) V31 62 (1,-1) 11
(8,3) 1 1 7.72 V97T (14,-19) V291 194 (3,-4) 41

(10,10) 10 30 1356 V300  (1,~1) 1 20 (1,0) 10
(n,n) n 3n  V3nafr 3n (1,-1) 1 2n (1,0) n
(r,0) n = na/m n (1,~2) V3 2n (1,-1) =n

) Cp = (n,m) is given by Eq. (3.1). d is the greatest common divisor of n and m. d; and
L = |C}} are the diameter and equatorial length of a carbon nanotube, respectively, which
are given by Eq. (3.2). The translational vector, T' = (¢1,12), is given by Eq. (3.5) whose
length 7 is given by Eq. (3.8) in units of a = v/3a¢_c given by Eq. (2.22). N is the number of
hexagons in the 1D unit cell of the carbon nanotube, which is given by Eq. (3.9). R = (p,q) is
the symmetry vector defined in Eq. (3.10). M = mp — ng indicates how many T’ translations
are necessary for going from O to N R in Fig. 3.4.

In Table 3.2 we list the characteristic parameters of carbon nanotubes spec-
ified by (n, m), including d, the greatest common divisor of n and m, and the
related quantity dg which is given by Eq. (3.7). Also listed in Table 3.2 are the
nanotube diameters d; in units of &, the lengths of the chiral vector L and of
the translation repeat distance T' of the 1D lattice (both in units of the lattice
constant @ = v/3ac—¢ for a 2D graphene sheet), the number N of hexagons per
unit cell of the 1D nanotube, the translation vector T', the symmetry vector R
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and the integer M. The basic symmetry operation R = (¢|r) can be obtained
from Table 3.2, Eq. (3.16) and values for T' = (#;,%5) and R = (p, q).

To illustrate use of Table 3.2 we refer to the C), = (4, 2) nanotube shown in
Fig. 3.2, which has T'= (4,-5), R=(1,~1), N =28, d=dgr = 2, T = 2la,
L= \/ﬁa, 7 = 6T /28 and M = 6 translations of the vector T to reach the
point C in Fig. 3.4. As a second example, we consider the case of the nanotube
Cp, = (7,4) which is a chiral nanotube for which n — m = 3 [49,50]. For this
nanotube, there are no common divisors, so d = 1, but since n — m = 3, we
have dgp = 3. Thus we obtain L = v/93a, T = +/31a, N = 62, and M = 11
translations of the vector T'. For the armchair nanotube (5,5), which has half
a Cgq fullerene to form its end caps, the highest common divisor is 5, and since
n—m = 0, we have dgp = 3 x 5 = 15, yielding N = 10, v = 2#/10, 7 = T /2,
and M = 5. As a final example, we give the smallest observed zigzag nanotube
(9,0) also having end caps consisting of Cgo hemispheres, and for this nanotube,
wehave d=dr =9, N=18, ¢ =2r/18, r=T/2,and M = 9.

All parameters defined in this section are summarized in Table 3.3. The
values of all the parameters listed here depend on the two integers, n and m,
of the chiral vectors C},. In Appendix we show programs which generate the
parameters and the coordinates for given (n,m) values.

3.5 Unit Cells and Brillouin Zones

The unit cell for a carbon nanotube in real space is given by the rectangle
generated by the chiral vector Cj, and the translational vector T, as is shown
in OAB’'B in Fig. 3.2. Since there are 2N carbon atoms in this unit cell, we
will have N pairs of bonding 7 and anti-bonding 7* electronic energy bands.
Similarly the phonon dispersion relations will consist of 6N branches resulting
from a vector displacement of each carbon atom in the unit cell.

Expressions for the reciprocal lattice vectors K5 along the nanotube axis and
K in the circumferential direction* are obtained from the relation R; - K; =
27é;;, where R; and K are, respectively, the lattice vectors in real and reciprocal

*Since nanotubes are one-dimensional materials, only K, is a reciprocal lattice vector. K}
gives discrete k values in the direction of Cj,.
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Table 3.3: Parameters for Carbon Nanotubes.®)
symbol name formula value
a length of unit vector a=V3ag_c=249A, ac_c=14424
31 3 1
a,,as unit vectors £, = | a, £, ~-=Ja z,y coordinate
2 2 2 2
reciprocal lattice vec- <_1__ ) 2n (_1_ _ ) 2r _
by, bz tors \/5,1 = \/5, 1 - 2, ¥ coordinate
“Ch chiral vector Chp=nay +maz = (n,m), (0<|m[<n)
L length of Cj, L =|Ch|=aVn? +m? ¥ nm
d; diameter de=L/m
6 chiral angle sinf = ——-ﬁn—— o<l <2
2VrRZ ¥ m2 +nm 6
2n4m 3m
cos ) = ——m———u——, an § =
2v/nZ + m% 4+ nm 2ntm
4 ged(n,m)” d i (n —m) is multiple of 3d
) _ if (n — m) is multiple o
dr ged(2n +m,2m +n) dR = { 3d if (n — m) is not multiple of 3d
T translational vector T=t1a; +t20; = (t1,12) ged(ty, tg) = 1%
2m4n 2n4+m
t = y 2 ==
dr dr
3
T length of T T=T|= Y3k
N Number of hexagons in N = 2(n? + 7"{1’?2 + nm)
the nanotube unit cell. dr
R symmetry vector R =pa, +qa2 = (p,q) ged(p,g) =19
tig—tep =1, (0<mp-ng<N)
—-ng)T
T pitch of R T:M:%Z
2
P rotation angle of % = —]% in radians
M number of T in NR. NR=Cy+MT

a) In this table n, m, t1, t2, p, ¢ are integers and d, dg N and M are integer functions of these

integers.

%) gcd(n, m) denotes the greatest common divisor of the two integers 7 and m.
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Fig. 3.5: The Brillouin zone of
a carbon nanotube is represented
by the line segment WW* which
is parallel to K3. The vectors
K and K5 are reciprocal lattice
vectors corresponding to C} and
T, respectively. The figure cor-
responds to Cp = (4,2), T' =
(4,'—5), N =28, K, = (5b1 +

space. Then, using Eqs. (3.6), (3.9), and the relations
Ch'K1=27r, T-K1=0,

Ch'KZZO, T‘K2:27l', (3'19)
we get expressions for Ky and Ky:
1 1
K1 = —A—/;(—tgbl +t1b2), K2 = ﬁ(mbl - ’an), (320)

where by and by are the reciprocal lattice vectors of two-dimensional graphite
given by Eq. (2.23). In Fig. 3.5, we show the reciprocal lattice vectors, K;
and Ko, for a C, = (4,2) chiral nanotube. The first Brillouin zone of this
one-dimensional material is the line segment WW’. Since NK; = —toby + {1
corresponds to a reciprocal lattice vector of two-dimensional graphite, two wave
vectors which differ by NK; are equivalent. Since ¢; and t, do not have a
common divisor except for unity (see Sect. 3.3), none of the N — 1 vectors
pK;y (where p = 1,--- N — 1) are reciprocal lattice vectors of two-dimensional
graphite. Thus the N wave vectors u K (= 0,---, N—1) giverise to N discrete
k vectors, as indicated by the N = 28 parallel line segments in Fig. 3.5, which
arise from the quantized wave vectors associated with the periodic boundary
conditions on C},. The length of all the parallel lines in Fig. 3.5 is 27 /T which is
the length of the one-dimensional first Brillouin zone. For the N discrete values
of the k vectors, N one-dimensional energy bands will appear (see Chapter 4).
Because of the translational symmetry of T', we have continuous wave vectors
in the direction of K3 for a carbon nanotube of infinite length. However, for
a nanotube of finite length L;, the spacing between wave vectors is 27/ L;; this
spacing between wave vectors has been observed experimentally [(51].
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Fig. 3.6: Symmetry of armchair
(a,b) and zigzag (c,d) nanotubes
with odd (a,c) and even (b,d)
numbers of unit cells around
the circumferential direction: (a)
(5,5) armchair, (b) (6,6) arm-
chair (¢) (9,0) zigzag and (d)
(10,0) zigzag nanotubes. Here we
show the inversion centers i. Dot
circles show carbon atoms in part
of the neighboring unit cell.

3.6 Group Theory of Carbon Nanotubes

Here we discuss of the symmetry of carbon nanotubes which are classified in
Sect. 3.1. The symmetry of the carbon nanotubes is used in the interpretation
of the Raman spectra in Chapter 10.* Here we only consider the point group
of the unit cell and we do not discuss the space group of the lattice. Since
many of the the physical properties of solids depend on the dispersion relations
near k = 0, the symmetry of the unit cell gives sufficient information for the
interpretation of many physical properties.

Hereafter we define the horizontal or vertical directions as those that are
perpendicular or parallel to the nanotube axis, respectively. In the achiral nan-
otubes, armchair (n,n) and zigzag (n,0) nanotubes (see Fig. 3.1 and Table 3.1)
have (1) a vertical, n-fold rotational axis, C,, and (2) n horizontal, 2-fold axes,
nCq. Each horizontal C, axis intersects the center of a C—C bond or the cen-
ter of a hexagon which are located at opposite sides of the nanotube from each
other.! Thus the achiral nanotubes belong to the point group D,,. The D,, group
has a different group structure, depending on whether 7 is even (n = 2j) or odd
(n = 2j + 1), as can be seen in the character tables, shown in Tables 3.4 and
3.5, respectively. The horizontal nCs operations are either divided into the two

*The reader who is not familiar with group theory may skip this section, which is necessary,
however, to understand the group theory for the Raman spectra observed in single-wall carbon
nanotubes.

tSince we now have ‘up’ and ‘down’ directions in a nanotube, the center of the hexagon has
only 2-fold symmetry.
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classes for groups with n = 23, or are in a single class in the case of n = 25 + 1.

In the case of n = 27, a C, operation in one class bisects the angle between two
adjacent Cy axes in the other class.

Table 3.4: Character Table for Group D3j)

R E 2C} @) 202, o208 JCL jo¥
Ay 1 1 1 1 1 1 1
Az 1 1 1 1 1 -1 -1
B 1 -1 1 1 1 1 -1
B, 1 -1 1 1 ves 1 -1 1
Ei 2 -2 2cos ¢ 2 cos 2¢; ... 2cos(3—-1)¢; O O
E: 2

2 2 cos 2¢4 2cos 4¢; <. 2c082(j~-1)¢; 0 O

Ej—1 2 (=1)97'2 2cos(j — 1)¢; 2cos2(j —1)¢; ... 2cos(j:~1)2¢j 0 0
@) Where ¢; = 2r/(25).

Table 3.5: Character table for point group Dyg;41).

R F 20;,]6 205, ... 20, (25 +1)C)
A 1 1 1 1 1
Az 1 1 1 1 -1
E, 2 2cos¢; 2cos2¢; ... 2cosjé; 0
E2 2 2cos2¢p; 2cosdg; ... 2cos2je; 0
E; 2 2cosj¢; 2cos2ip; ... 2cosj?¢; 0

@) Where ¢; = 27/(27 + 1).

Further it is clear from Fig. 3.6 that for both zigzag and armchair nanotubes,
there is an inversion center for both even and odd number n achiral nanotubes.
In Fig. 3.6 (b) and (d) we show part of the nearest unit cell by dotted lines and
circles. We can choose the unit cell so that the inversion operation transforms
the carbon atoms in the unit cell to the other carbon atoms within the same
unit cell.} The total symmetry of an achiral nanotube is expressed by the direct
product of the groups D, ® C;, where the group C; consists of the identity and
inversion operators, £ and i. Group theory tells us that the direct product

!In the case of the (6,6) armchair nanotube, the corresponding unit cell is such that half of
the carbon atoms lie on the boundary of the unit cell. For the boundary atoms, we consider
the half balls for operations. In this case, a symmetry operation from an upper-half ball to a
lower-half ball for the same atom is different from the identity operation.
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D, ® C; depends on whether n is an even or an odd number, as follows:

D, when n = 2j (even)

Dpg when n =25+ 1 (odd) ~ (3:21)

D,®C;= {

If nin D, is even (n = 2j), there is a class of 7 (CJ!, = C;) rotations along

the principal C), axis. Since the product of the vertical C§}, rotation with the

inversion operation gives a mirror operation on the ‘horizontal’ plane, which is
perpendicular to the principal axis,

CT xi=ay (3.22)

we have an element of ¢}, in the direct product of D, ® C;, which corresponds
to Dpp. The product of a horizontal Cy axis and the inversion center ¢ gives
a ‘vertical’ mirror plane ne, which are the elements of D,,;,. Here we take the
horizontal C, axes to include the inversion center in the axes.

If nin D, is odd (n = 2j + 1), there is no C; rotation along the principal
C, axis. Thus in the direct product of D(3;41) ® C; = D(g541)a, there is no
o), operation but there is rather a ‘diagonal’ vertical mirror plane between two
horizontal Cy axes. The vertical mirror planes are given by the product of a
horizontal Cj rotation and the inversion center 7. These symmetry issues are
clarified in Fig. 3.6.

It is very confusing in the case of odd n numbers (n = 2j + 1) that we can
visually see the mirror symmetry on a horizontal plane, through the horizontal
C - C bonds of the armchair tubes or through the centers of the vertical C — C
bonds of the zigzag tubes. However, there is no o operation in the D(g;41)a
group. This might raise a question about whether there might be higher symme-
try in achiral carbon nanotubes. The answer to this question is no, so far as we
consider the symmetry of the unit cell, since the o), operation for (n = 25 + 1)
is used only for the space group.}

Let us consider this question in the case of the armchair tube with n = 5,
(5,56). There is 20 atoms in the unit cell as shown in Fig. 3.6 (a). When

§The following is the reason why we need these statements in the text. All horizontal lines
which intersect the nanotube axis and the center of C—C bond can be C, axes, thus giving
rise to 2n C2 axes in the unit cell for achiral (n,n) or (n,0) nanotubes. We will select only n
C, axes of the 2n C; axes which can be elements of the point group. The other n C3 axes are
operators for the space group of the lattice, because these other n C2 axes require a translation
along the nanotube axis.
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we keep the chemical bonds between two carbon atoms rigid, we have only 20
inequivalent operations that do not change the unit cell. Ten of the 20 operations
are operations which change the A atom to an equivalent A atom, and the other
10 are operations which change the A atom into a B atom. Here A and B atoms
denote inequivalent carbon atoms of the hexagonal network as shown in Fig. 2.3.
Furthermore, 5 of the 10 A-»A operations are given by proper Cs operations,
and the other 5 require the inversion operation, which changes an A atom on one
horizontal plane to an A atom on the other horizontal plane. When we consider
the inversion center, as shown in Fig. 3.6 (a), the symmetry corresponds to the
Dgyq point group. In Dsg symmetry, we have 20 symmetry elements which are
sufficient to describe 20 possible operations for the 20 atoms in the unit cell.

Table 3.6: Character table for Dsg  (5m).

Dyq4 E 2Cs 2C¢  5C) i 2570 2519 5oa | (A= 20)

Ay | 41 +1 +1 +1 41 +1 +1 1 | (= 497, 2°

Azg | +1 +1 +1 -11 41 +1 +1 -1 *

Eqq +2 7-1 -7 0 +4+2 7-1 -7 0 { 2(x+iy,z—iy)
-2 V2

Fo, | +2 -7 7=1 0] +2 -7 r—1 0 | [(z 4 3y)°, (z — iy)*]

A1. | F1 F1 ¥1 F1 [ =1 ~1 oy R

A2y | +1 +1 +1 -1 -1 -1 -1 41| 2

Ei, +2 r-1 -7 0] ~2 1-7 +7 0| (z+4éy,x—iy)

Es, +2 -7 T-=1 01 -2 +7 l-71 0

Note: iCs = Sij and iC? = Syp. Also iCh = 04. a = 2x/5 = 72°, 7 =
(14+/5)/2 so that 7 = —2cos 2a = —2cos4n/5 and 7—1 = 2 cos & = 2 cos 27 /5.

Table 3.7: Character table for Dy;  (10m2).

Dgp | B 205 205 5Ch | op 255 25 5o, | (h=20)

Ay |+t +1 +1 41|+t +1 41t 41 | 2f 4yt

Al +1 +1 +1 -1 | +1 +1 +1 -1 R,

Ej +2 -1 -7 0] +2 -1 -7 0| (=,9), (x22,y5%)
EL +2 -r T-1 0| 42 -7 T -1 0 (xz-yz,a:y)

AT 1 ) FT  F1) -1 -1 g —

Ay |+l +1 +1 -1 ]| -1 -1 —1 41| 2, 2% (% +4?)
EY +2 7-1 -7 0| -2 1-7 +r 0 | (Re,Ry), (z2,y2)
ES +2 -7 7-1 0| -2 +7 1-7 0 | [oya, 2(z® - y?)]

Note that 7 = (1 + v/5)/2 so that 7 = —2cos2x = —2cos4n/5 and 1 — 1 =
2cosa = 2cos 2x /5.

Let us show that Dsj is not the proper point group symmetry of the (5,5)
armchair nanotube. Dsp is given by direct product Ds x Cp, where C} is the
point group which has only the symmetry elements E and ¢),. In Tables 3.6
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and 3.7, we show the character tables of D54 and Dsp, both having the same
structure, and thus both symmetries seem to be applicable. However, in the Ds),
point group there is no operation which changes an A atom in one horizontal
plane to an A atom in the other plane. Thus Ds), is not sufficient for describing
the 20 distinct operations in the unit cell.

Achiral nanotubes are the only nanotube types that have the vertical (or
horizontal) mirror operation. The chiral nanotube, which does not belong to
either the armchair or zigzag nanotube categories, has no mirror plane. When
n and m in a chiral vector (n,m) have no common divisor except for unity,
d = 1, the lattice belongs to a non-symmorphic translational group which only
has pure spiral symmetry operations, that are given by the symmetry vector R
and repeated operations of R. As discussed in Sect. 3.4, we either go over all N
A atoms or all N B atoms in the unit cell by operating with R (i = 1,---,N) on
a carbon atom. Thus the operations Rf (i = 1,-.-,N) form an Abelian group.
An Abelian group is a group in which all symmetry operations commute with
each other.

Table 3.8: The character table for the Abelian group Cp for chiral nanotubes

Cn E c? Cc* Cc* ci-i
A 1 1 1 e 1 .. 1
B 1 -1 1 ces (—])‘ . 1

1 € €2 e N1
Ey { 1 e* 2 ¥t Em(N-—-l)

1 2 et &2t AN~1)
E; { 1 e*2 e+t £*2t *2(N-1)

1 eF 25 -1 1) N-1(F-1)
EL;L-I { 1 ! e e I ¢ HN=1)(F -1)

@ The complex number ¢ is e27/N,

When the common divisor of n and m, d in not unity, the nanotube is
invariant under a pure rotation of Cy around the nanotube axis. In this case the
symmetry group of such a chiral vector is the direct product of the two Abelian
groups,

Cn =Cg®Cnya (3.23)

where Cp, (p = N,d, and N/d) denotes any one of the three Abelian groups in
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Fig. 3.7: High resolution TEM mi-
crograph of the top view of one bun-
dle of single-wall nanotubes from the
collarette of the cathode of a carbon
arc apparatus (see Sect. 5.3). The
nanotube bundle is bent in such a
way that it is seen edge-on in the
image plane, showing single-wall car-
bon nanotubes in a triangular lat-
tice, with a tube diameter of 1.4 nm
and an average inter-tube distance of
1.7 nm. Each bundle in the micro-
graph consists of about 20 aligned
single-wall nanotubes which are self-
organized into a triangular lattice [52].

Eq. 3.23, each having p elements, E,C,C?,....,C?~! and C? = E. In Table 3.8
we show the character table for Cy for chiral nanotubes. All characters in
this table are Nth roots of unity. The irreducible representations are either two-
dimensional E,, representations, whose characters for each operation are complex
conjugates of each other, or one-dimensional A or B irreducible representations.

3.7 Experimental evidence for nanotube structure

The existence of single-wall carbon nanotubes has been confirmed experimentally
through high resolution transmission electron microscopy (TEM) (see Fig. 3.7)
and scanning tunneling microscopy (STM) (see Fig. 3.8). These techniques are
especially useful for the structural characterization of the nanotubes. Because
of the sensitivity of the electronie, vibrational, and other physical properties of
carbon nanotubes to their geometrical structure, as described by the integers
(n,m) or their characteristic parameters (dy, 8), the structural characterization
of carbon nanotubes on which physical measurements are made is very impor-
tant. Structural characterization measurements of d; and 8 are difficult to make
because of the small physical size of the nanotubes, and the low atomic num-
ber Z of carbon which gives rise to low cross sections for x-rays and electrons,
the two more commonly used conventional structural characterization probes.
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Fig. 3.8: Atomic resolution STM topo-
graphic image of a single-wall nanotube
on an Au (111) substrate at 4.2 K. The
dark spots indicate the hexagons which
are spaced by 2.46 A. The lattice sites
show that this nanotube is not a zigzag
nanotube, indicating that it could be ei-
ther an armchair (chiral angle 30°) or a
general chiral nanotube. Image size is
51 x 26 A? [54].

In addition, there is considerable difficulty associated with the manipulation of
individual single-wall nanotubes. Some progress has been made in developing
sensitive tools for the structural characterization of nanotubes, particularly us-
ing the STM and TEM techniques, and progress has also been made with the
manipulation of individual nanotubes [53].

The TEM micrograph of Fig. 3.7 shows the tendency for the single-wall nano-
tubes to grow in bundles containing 10-50 aligned nanotubes, held together by
weak inter-tube interactions. The single-wall nanotubes shown in Fig. 3.7 were
grown in an electric arc discharge apparatus using a 1 at% Y and 4.2 at% Ni cat-
alyst contained in the anode, and the nanotubes were collected from a collarette
located around the cathode electrode [52]. Since the bundles of nanotubes are
frequently bent, so that some portions of the nanotubes are oriented parallel
to the electron beam, the tube ends can be imaged in a transmission electron
microscope, resulting in a cross-section-like view, showing individual single-wall
nanotubes. The bundles typically are 5-20 nm in diameter and exhibit a triangu-
lar lattice with an inter-tube distance of ~1.7 nm [52, 55]. The periodic packing
of these nanotubes is confirmed by electron diffraction patterns obtained from
an assembly of such nanotube bundles. Similar arrays of nanotube bundles were
first reported using the laser vaporization technique [55].

The very weak electron scattering from nm diameter carbon nanotubes
(atomic number Z = 6) and their high susceptibility to damage by the 100~
200 keV electron beam of the TEM instrument make it difficult to carry out
electron diffraction studies. By taking precautions to use low electron beam
currents, it has been possible to obtain good TEM measurements of lattice



3.7. EXPERIMENTAL EVIDENCE FOR NANOTUBE STRUCTURE 55

Electron beam Fig. 3.9: This sketch indicates
how the interference pattern for
the electron beam that is inci-
dent radially on the planes with
the H orientation is used to de-
termine the chiral angle ¢, which
is the angle between the nan-
otube axis and the nearest zigzag
axis. The interference pattern,
obtained when the lattice planes
are 1n the orientation V with re-
spect to the electron beam and
the nanotube shells, determines
the inter-shell distances in the
case of multi-wall carbon nan-
otubes [19].

fringe images and electron diffraction patterns on single-wall nanotubes [56] and
multi-wall nanotubes [57]. However, TEM experiments on single-wall (and even
double wall) nanotubes remain an experimental challenge. Nevertheless, TEM
evidence has been presented to show that the walls of single-wall nanotubes have
the local structure of a graphene sheet [58].

Referring to Fig. 3.9, we see, in principle, how the electron diffraction tech-
niques can be used in the H geometry to measure the orientation (i.e., chiral
angle of an individual nanotube) as is, for example, done with the LEED tech-
nique in surface science, while the V' geometry can be used to determine the
inter-tube spacing in the case of multi-wall nanotubes. Transmission electron
microscopy has been widely used to characterize the many defect structures that
have been observed in multi-wall nanotubes [57, 59-62]. Whereas nanotubes with
diameters > 2 nm tend to show many structural defects, very small diameter
nanotubes tend to be more perfect, with fewer structural defects.

The interpretation of TEM electron diffraction patterns on single-wall car-
bon nanotubes should be greatly aided by the use of computer simulations which
give the diffraction pattern expected for an (n,m) nanotube [63]. These com-
puter simulations are based on an analysis carried out by Cochran, Crick and
Vand in 1952 [64] in connection with their elucidation of the structure of the
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Fig. 3.10: Left: Atomic struc-
ture of the (17,3) carbon nan-
otube projected on a plane nor-
mal to the incident wave vector.
Right: Corresponding electron-
diffraction pattern in which the
most intense features appear the
darkest. The dimensions of the
diffraction pattern scale linearly
with sinf, where 28 is the scat-
tering angle (see list of numbers)
and 8 = 0 is at the center of the
- - pattern. The vertical direction
e T T is parallel to the nanotube axis
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DNA molecule from X-ray diffraction experiments. By calculating the structure
factor for all the atoms in the 1D unit cell of a general single-wall nanotube, the
expected diffraction spots (and streaks) and their relative intensities are found
[63], such as the diffraction pattern shown in Fig. 3.10 for a (17,3) single-wall
carbon nanotube. At present, the experimentalist would have to compare the
observed patterns to available simulations. At present, the computer simulation
[63] is not yet able to carry out the inverse process of converting an observed
diffraction pattern into a real space structure (n, m) for the atomic sites within
the 1D unit cell.

Rather detailed information on the site location and the periodic arrange-
ment of the carbon atoms within the nanotube is found from atomic resolution
STM micrographs, and such experiments can be done successfully on single-wall
nanotubes, especially at low temperature. An example of an STM topographic
pattern of a single-wall carbon nanotube ~1 nm in diameter is shown in Fig. 3.8,
which was made at 4.2 K [54]. Combined STM measurements to monitor d; and
# and STS (scanning tunneling spectroscopy) to give the 1D density of states
provides a powerful technique for studying the electronic structure of carbon
nanotubes [65]. Measurements of the cross-sectional STM profile shows direct
evidence for the curved surface of the nanotube [66].

The tube diameter is continuously measured by the STM technique in terms
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Fig. 3.11: XRD profile of SWNT

material prepared by the laser

vaporization method [55]. Data-
—r————— fitted background (curve a) com-
pared with a model profile (curve
b) that assumes a 2D triangu-
lar lattice of uniformly charged
cylinders, with a lattice con-
stant of 16.954, and a circle ra-
dius 6.94. Vertical tick marks on
curve b are the calculated Bragg
positions. Curve ¢ show analysis

oo ten

X-ray counts (arbitrary units)

_ L T e e of the form factor used to obtain
0.0 02 04 08 08 10 12 14 1678 20 the lattice constant of the trian-
QA gular lattice [55).

of the height difference between a substrate and the maximum height of the
nanotube relative to the substrate, while the chiral angle determination can be
made from the site positions of the carbon atoms relative to the nanotube axis
(see Fig. 3.8). With the STM it is also been possible to measure the nearest
neighbor carbon distance and to show that its value is essentially the same as
that for graphite (1.424) [66].

It is expected that improvements in the techniques for characterizing and
manipulating carbon nanotubes will be forthcoming and that these techniques
will enhance our general capabilities for the characterization of carbon nan-
otubes. It is further expected that carbon nanotubes will be widely used for
the manipulation of nanostructures more generally because of their excellent
mechanical properties (see Chapter 11).

The possibility of forming arrays of single-wall carbon nanotubes, weakly
interacting through a van der Waals interaction, has been treated theoretically
[67,68]. These calculation considered the stabilization of a nanotube array of
(6,6) nanotubes, and showed the most stable configuration to be that of a trian-
gular lattice with the space group P6/mec where the nearest-neighbor carbon
atoms on adjacent nanotubes are oriented in the ABAB stacking arrangement
of 3D graphite [67,68]. Recent experimental studies of the lattice structure
of arrays of single-wall carbon nanotubes [55) using X-ray diffraction techniques
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confirm that the 3D structure is that of a triangular lattice with a lattice constant
of 17A for nanotubes of 1.3840.02 nm diameters and an inter-tube separation
of 0.315 nm (see Fig. 3.11). Variation in the mean nanotube diameter and the
diameter distribution can be achieved by using different catalysts and growth
conditions (see Chapter 5). Many of the early quantitative experiments relevant
to single-wall nanotubes have thus far been carried out on nanotube arrays that

were prepared in the same way as the material yielding the diffraction pattern
of Fig. 3.11.



CHAPTER 4.
Electronic Structure of Single-Wall Nanotubes

Using the definition of the structure of carbon nanotubes dis-
cussed in Chapter 3, the electronic structure of carbon nanotubes is
derived by a simple tight-binding calculation for the #-electrons of
carbon atoms. Ofspecial interest is the prediction that the calculated
electronic structure of a carbon nanotube can be either metallic or
semiconducting, depending on its diameter and chirality. This one-
dimensional metal is stable under the so-called Peierls instability.
The energy gap for a semiconductor nanotube, which is inversely
proportional to its diameters, is directly observed by scanning tun-
neling microscopy measurements.

4.1 One-electron dispersion relations

4.1.1 Zone-Folding of Energy Dispersion Relations

The electronic structure of a single-wall nanotube can be obtained simply from
that of two-dimensional graphite. By using periodic boundary conditions in the
circumferential direction denoted by the chiral vector Cj,, the wave vector associ-
ated with the C; direction becomes quantized, while the wave vector associated
with the direction of the translational vector T (or along the nanotube axis)
remains continuous for a nanotube of infinite length.* Thus the energy bands
consist of a set of one-dimensional energy dispersion relations which are cross
sections of those for two-dimensional graphite (see Fig. 2.4).

When the energy dispersion relations of two-dimensional graphite, Fgop(k)
[see Eqgs. (2.27) and/or (2.29)] at line segments shifted from WW' by pK; (¢ =

*For real carbon nanotubes, since the length of a nanotube (Lcy ) is on the order of um, discrete
k vectors (Ak = 27/Lcn) can be expected. In low temperature transport experiments [51],
this discreteness becomes important. See further details in Sect. 8.2.

59
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Fig. 4.1: The condition for

M
metallic energy bands: if the ra-
” tio of the length of the vector
& - . .
I Y K to that of K; is an inte-
> ger, metallic energy bands are
obtained.

0,---,N — 1) are folded so that the wave vectors parallel to K2 coincide with
WW' as shown in Fig. 3.5, N pairs of 1D energy dispersion relations ¥,(k) are
obtained, where N is given by Eq. (3.9). These 1D energy dispersion relations
are given by

™

K
E”(k)ZEggp(k——z—+uK1>, (p=0,---,N~1, and — 7

T
<k< =) (41
K] 7 ()

corresponding to the energy dispersion relations of a single-wall carbon nan-
otube. The N pairs of energy dispersion curves given by Eq. (4.1) correspond
to the cross sections of the two-dimensional energy dispersion surface shown in
Fig. 2.4, where cuts are made on the lines of kK,/|K2o| + pK;. If for a par-
ticular (n,m) nanotube, the cutting line passes through a K point of the 2D
Brillouin zone (Fig. 2.3), where the # and 7* energy bands of two-dimensional
graphite are degenerate by symmetry, the one-dimensional energy bands have a
zero energy gap. Further, as will be shown in Sect. 4.2, the density of states at
the Fermi level has a finite value for these carbon nanotubes, and they therefore
are metallic. If, however, the cutting line does not pass through a K point, then
the carbon nanotube is expected to show semiconducting behavior, with a finite
energy gap between the valence and conduction bands.

The condition for obtaining a metallic energy band is that the ratio of the

length of the vector YK to that of K, in Fig. 4.1 is an integer.! Since the vector

tThere are two inequivalent K and K’ points in the Brillouin zone of graphite as is shown in
Fig. 4.1 and thus the metallic condition can also be obtained in terms of K'. However, the
results in that case are identical to the case specified by Y K.
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Fig. 4.2: The carbon nan-
otubes {n,m) that are metal-
lic and semiconducting, respec-
tively, are denoted by open and
solid circles on the map of chiral
vectors (n, m).

Yw'};' is given by

2n+m
3

the condition for metallic nanotubes is that (2n + m) or equivalently (n — m)

is a multiple of 3.} In particular, the armchair nanotubes denoted by (n,n) are

always metallic, and the zigzag nanotubes (n,0) are only metallic when n is a

YK=

K;, (4.2)

multiple of 3.

In Fig. 4.2, we show which carbon nanotubes are metallic and which are
semiconducting, denoted by open and solid circles, respectively. From Fig. 4.2,
it follows that approximately one third of the carbon nanotubes are metallic and
the other two thirds are semiconducting.

4.1.2 Energy Dispersion of Armchair and Zigzag Nanotubes

To obtain explicit expressions for the dispersion relations, the simplest cases to
consider are the nanotubes having the highest symmetry. Referring to Fig. 4.3,
we see the unit cells and Brillouin zones for the highly symmetric (achiral)
nanotubes, namely for (a) an armchair nanotube and (b) a zigzag nanotube.

The appropriate periodic boundary conditions used to obtain the energy
eigenvalues for the (n,n) armchair nanotube define the small number of allowed
wave vectors kg o in the circumferential direction

n3ky g0 =2rq, (g=1,...,2n). (4.3)

Substitution of the discrete allowed values for ks q given by Eq. (4.3) into

tSince 3n is a multiple of 3, the remainders of (2n + m)/3 and (n — m)/3 are identical.
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T . e.@ Fig. 4.3: Part of the unit cell
‘p Q and extended Brillouin zone of

le ‘ (a) armchair and (b) zigrag car-
% . @8 bon nanotubes. a; and b; are

unit vectors and reciprocal lat-
tice vectors of two-dimensional
graphite [see Egs. (2.22) and

{bj

a'g “ 9 (2.23) and Fig. 2.3], respectively.
In the figure, the translational
vector T [Eq. (3.5)] and the cor-

“g responding reciprocal lattice vec-

tor Ko [Eq. (3.20)] of the nan-
otube are shown.

Eq. (2.29) yields the energy dispersion relations Ef(k) for the armchair nan-
otube, C, = (n,n) [69],

g = st fize(Fen ()10 (5))7 g

(- <ka<m), {(g=1,...,2n)

in which the superscript a refers to armchair and % is a one-dimensional vector in
the direction of the vector K9 = {b; — by)/2. This direction corresponds to the
I' to K point vector in the two-dimensional Brillouin zone of graphite* (see the
top of Fig. 4.3). The resulting calculated 1D dispersion relations Eg(k) for the
(5,5) armchair nanotube are shown in Fig. 4.4(a), where we see six dispersion
relations for the conduction bandst and an equal number for the valence bands.
In each case, two bands are nondegenerate labeled by “a” and the four labeled by
“e” are doubly degenerate, leading to 10 levels in each case, consistent with the
10 hexagons around the circumference of the (5,5) nanotube. For all armchair
nanotubes, the energy bands show a large degeneracy at the zone boundary,

where ka = 7, so that Eq. (2.29) becomes

By p(ke g, 7/a) = £t (4.5)

*Note that K, vector is not a reciprocal lattice vector of 2D graphite.
! The Fermi energy corresponds to E/t = 0. The upper half of Fig. 4.4 corresponds to the
unoccupied conduction bands,
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@) (b}

Ekj
E(kyt

Fig. 4.4: One-dimensional energy dispersion relations for (a)
armchair (5,5), (b) zigzag (9,0), and (c) zigzag (10,0) carbon
nanotubes labeled by the irreducible representations of the point
group Dyq or Dyy, depending on whether there are even or odd
numbers of bands n at the I' point (¢ = 0). The a-bands are
nondegenerate and the e-bands are doubly degenerate at a gen-
eral k-point [70]. X points for armchair and zigzag nanotubes
correspond to k = *+7/a and k = *w/v/3a, respectively. (See
Egs. (4.4) and (4.7).)

for the 2D graphene sheet, independent of zone folding and independent of n.}
Although there are four carbon atoms in the unit cell of Fig. 4.3(a) for the real
space lattice, the two carbon atoms on the same sublattice of a graphene sheet
are symmetrically equivalent, which causes a degeneracy of the energy bands
at the boundary of the Brillouin zone. The valence and conduction bands in
Fig. 4.4(a) for the armchair nanotube cross at a k point that is two thirds of the
distance from k = 0 to the zone boundary at k = n/a. The crossing takes place
at the Fermi level and the energy bands are symmetric for -k values.

Because of the degeneracy point between the valence and conduction bands

{The large degeneracy comes from the equi-energy lines of the energy bands of 2D graphite
which connect the two nearest M points (See Fig. 2.4). When K; is perpendicular to the equi-
energy line, a large degeneracy of Eq. (4.5) occurs. When K, is parallel to the equi-energy
line, we have dispersionless energy bands with an energy of +¢. The latter case corresponds
to zigeag nanotubes (n,0) with an even number of n.
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at the band crossing, the (5,5) armchair nanotube is thus a zero-gap semicon-
ductor which will exhibit metallic conduction at finite temperatures, because
only infinitesimal excitations are needed to excite carriers into the conduction
band.

Similar calculations, as given by Eqgs. (2.29), (4.3), and (4.4), show that all
(n,n) armchair nanotubes yield 4n energy subbands analogous to Eq. (4.4) with
2n conduction and 2n valence bands, and of these 2n bands, two are nondegen-
erate and (n — 1) are doubly degenerate. The symbols u and g in Fig. 4.4(a)
indicate the even and odd behavior of these states regarding inversion symme-
try, the =+ signs refer to the corresponding signs in Eq. (4.4) and the integers
(1,2,...) are used to distinguish energy bands with the same symmetry from
one another. All (n,n) armchair nanotubes have a band degeneracy between
the highest valence band and the lowest conduction band at k = +27/(3a),
where the bands cross the Fermi level. Thus, all armchair nanotubes are ex-
pected to exhibit metallic conduction, similar to the behavior of 2D graphene
sheets [69, 71-76].

The energy bands for the C,, = (n, 0) zigzag nanotube E7 (k) can be obtained
likewise from Eq. (2.29) by writing the periodic boundary condition on k, as:

nky 0 =2mq, (¢=1,...,2n), (4.6)

to yield the 1D dispersion relations for the 4n states for the (n,0) zigzag nan-
otube (denoted by the superscript z)

V3ka qm qr 12
Eg(k) =+t {1 +4cos ( 5 ) cos (;—) + 4 cos? (—;)} , 1)

(—%<ka<%), (g=1,...,2n).

The resulting calculated 1D dispersion relations E7 (k) for the (9,0) and (10,0)
zigzag nanotubes are shown in Figs. 4.4(b) and (c), respectively. There is no
energy gap for the (9,0) nanotube at k& = 0, whereas the (10, 0) nanotube indeed

shows an energy gap. Especially in the case of the (10,0) nanotube, there is a
dispersionless energy band at E/t = +1, which gives a singular density of states
at that energy. Dispersionless energy bands occur at ¢/n = 1/2 in Eq. (4.4),
which gives E(r/a) = *t. For a general (n,0) zigzag nanotube, when n is a
multiple of 3, the energy gap at k¥ = 0 becomes zero; however, when n is not
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a multiple of 3, an energy gap opens at & = 0. Further, when n is an even
number, dispersionless energy bands appear, but not in the case when n is an
odd number. As is pointed out in Sect. 3.6, different symmetries, D, 4 and Dpp,
occur for odd and even numbers of n, respectively.

4.1.83 Dispersion of chiral nanotubes

It should be noted that the & values for the band degeneracies for metallic nano-
tubes are k = %27 /3T or k = 0 for armchair or zigzag nanotubes, respectively,
and that these k-values are also the locations of the band gaps for the semicon-
ducting zigzag nanotubes. The same k values also denote the positions of the
energy gaps (including zero energy gaps) for the general case of chiral tubes. In
Figs. 4.5 and 4.6, we show dispersion relations for the (9,6) and (7,4) chiral
nanotubes, respectively. Since n — m is a multiple of 3 in the both cases, these
two chiral nanotubes are metallic. Further, the k values at the Fermi level band
crossings are at k = 0 and 27 /37T for Figs. 4.5 and 4.6, respectively. Since
the highest degeneracy of irreducible representations of the group of the wave
vector at & = 0 is two, the crossing of the four energy bands at £ = 0 in the case
of the (9,6) nanotube in Fig. 4.5 is an accidental degeneracy.

A more detailed analysis of the E(k) relations for chiral nanotubes which
is generally given by Eq. (4.1) shows that the nanotubes can be classified into
three general categories [77,78], depending on: (1) whether or not n —m is a
multiple of 3, and (2) whether or not n—~m is multiple of 3d, whenevern—misa
multiple of 3. Here d is the highest common divisor of n and m in Cp, = (n, m).
The three cases are summarized in Table 4.1, The classification in this table can
be understood in terms of the length I'Y shown in Fig. 4.1, which is given by

Y = %‘Kﬁs (4.8)

where |K3| is along the nanotube axis, dp is given by Eq. (3.7) and m is one
of the integers of the chiral vector, C, = (n,m). Since the metallic condition
Eq. (4.2) is satisfied in these cases, the point K in Fig. 4.1 is folded into the Y
point. Further when m/dg is an integer, the Y point becomes the T' point since
the Ky vector becomes a reciprocal lattice vector in this case. The situation of
metal-1 in Table 4.1 corresponds to this case, since dg = d, and d is the highest
common divisor of n and m. In this case, the band degeneracy at the Fermi level
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Table 4.1: Classification of solid state properties of nanotubes, C;, = (n,m)

Properties ged(n — m,3)(@) dg) Degeneracy(®)
Semiconductor 1 d 0 (Energy gap oc 1/d;).
Metal-1 3 d 4at k=09

Metal-2 3 3d 2atk==42x/3T.

(9) ged denotes the greatest common divisor.

(®) dp is given by Eq. (3.7).

(¢) Degeneracy at the Fermi energy. When the spin of the electron is included,
the effect of spin-orbit interaction in carbon [79,80] must be considered for the
case of orbitally degenerate bands.

(4) Since group theory allows only one and two-dimensional irreducible repre-
sentations, the four-fold degeneracy is accidental.

occurs at £ = 0 and involves a 4-fold accidental band degeneracy, as discussed
above. When dg = 3d, then m/dp is not an integer, but rather m/dg = v+1/3,
(v is an integer). This corresponds to the case of metal-2 and the degeneracy
occurs at k = £27/37. Since the inequivalent K and K’ points are folded into
different points in the Brillouin zone, the 2 signs occur in both cases for the
dispersion relations near k = £27/37. Metallic zigzag nanotubes, denoted by
(3¢,0), always fall into the category of metal-1. Armchair nanotubes (n,n) are
in the category metal-2.

4.2 Density of States, Energy gap

For all metallic nanotubes, independent of their diameter and chirality, it follows
that the density of states per unit length along the nanotube axis is a constant

given by
8

V3ralt|
where @ is the lattice constant of the graphene layer and |t| is the nearest-

neighbor C-C tight binding overlap energy usually denoted by 7o in the graphite
literature [78].

N(Ep) = (4.9)

*While the value of vy for 3D graphite is 3.13 €V, a value of |t| = 2.5 eV is obtained for this
overlap energy in the 2D case when the asymmetry in the bonding and antibonding states is
averaged out, and this 2D value has been found to yield good agreement with first principles
calculations [81]. Experimentally the value |t| = 2.7 ¢V has been estimated by the Delft group
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Fig. 4.5: Plot of the energy
bands E(k) for the metallic 1D
nanotube (n, m) = (9,6) for val-
ues of the energy between —1
and ¢, in dimensionless units
E(k)/|t]. The Fermi level is at
E = 0. The largest common di-
visor of (9,6) is d = 3, and the
value of dp is dg = 3. The gen-
eral behavior of the four energy
bands intersecting at £ = 0 is
typical of the case where dg = d
(Metal 1) [77].

E(kyt

Fig. 4.6: Plot of the tight
binding energy bands E(k) for
the metallic 1D chiral nanotube
(n,m) = (7,4) for values of the
energy between —t and ¢ in di-
mensionless units E(k)/|¢]. The
values of d and dg are d = 1 and
dr = 3, respectively. The gen-
eral behavior of the two band de-
A NN generacies at k = £(2/3)(n/T) is
typical of the case where dg = 3d
(Metal 2)[77].
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[82] in fitting STM density of states data. This STM value may be about the best experimental
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Of particular interest has been the energy dependence of the nanotube den-
sity of states, as shown in Fig. 4.7 which compares the density of states for
metallic (9,0) and semiconducting (10,0) zigzag nanotubes. Of particular inter-
est is the density of states near the Fermi level EF located at £ = 0. This density
of states has a value of zero for semiconducting nanotubes, but is non-zero (and
small) for metallic nanotubes. Of equal interest are the singularities in the 1D
density of states corresponding to extrema in the E(k) relations. The compar-
ison between the 1D density of states for the nanotubes and the 2D density of
states for a graphene layer is included in the figure. We also show in Fig. 4.8 the
1D density of states for a (10,10} nanotube; these data have been extensively
used for the analysis of various experimental data.

Another important result, pertaining to semiconducting nanotubes. shows

value we have for |t| so far, which is within 15% of the 3D value.
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that their energy gap depends upon the reciprocal nanotube diameter dj,

tlac-c

Ey = A

(4.10)
independent of the chiral angle of the semiconducting nanotube, where ag_¢c =
a/+/3 is the nearest-neighbor C-C distance on a graphene sheet. A plot of E, vs.
1/d, is shown in Fig. 4.9 for the graphite overlap integral taken as || = 3.13 eV.
The results in Fig. 4.9 are important for testing the 1D model for the electronic
structure of carbon nanotubes, because this result allows measurements to be
made on individual semiconducting nanotubes, which are characterized only
with regard to nanotube diameter without regard to their chiral angles. Using
a value of Jt] = 2.5 €V, as given by the local density functional calculation
[81], Eq. (4.10) suggests that the band gap exceeds thermal energy at room
temperature for nanotube diameters d; < 140 A. Furthermore, since about one
third of the cylinders of a multi-wall nanotube are conducting, certain electronic
properties, such as the electrical conductivity of nanotubes, will be dominated
by the contributions from the conducting constituents, and the non-conducting
constituents will play almost no role.

Density of states measurements by scanning tunneling spectroscopy (STS)
provide a powerful tool for probing the electronic structure of carbon nanotubes
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(65, 82]. Such measurements confirm that some nanotubes (about 1/3) are con-
ducting, and some (about 2/3) are semiconducting (see Fig. 4.2). Measurements
on semiconducting nanotubes confirm that the band gap is proportional to 1/d,;
(see Fig. 4.9) [65,82]. Resonances in the density of states (see Fig. 4.7) have been
observed on metallic and semiconducting nanotubes whose diameters and chiral
angles were determined by operating the instrument in the scanning tunneling
microscopy (STM) mode [82]. The STS results confirm the theoretical model
that the energy between the lowest-lying resonance in the conduction band and
the highest-lying resonance in the valence band is smaller for semiconducting
nanotubes and larger for metallic nanotubes, and that the density of states at
the Fermi level is non-zero for metallic nanotubes, but zero for semiconducting
nanotubes [82]. Thus the main 1D quantum features predicted theoretically for
carbon nanotubes have now been observed experimentally.

4.3 Effects of Peierls distortion and nanotube curvature

Metallic 1D energy bands are generally unstable under a Peierls distortion. How-
ever, the Peierls energy gap obtained for the metallic nanotubes is found to be
greatly suppressed by increasing the nanotube diameter, so that the Peierls gap
quickly approaches the zero-energy gap of 2D graphite [69, 71]. Thus if we con-
sider finite temperatures or fluctuation effects, it is believed that such a small
Peierls gap can be neglected. Detailed discussion is presented in Sect.11.3.

As the nanotube diameter increases, more wave vectors become allowed for
the circumferential direction, the nanotubes become more two-~dimensional, and
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as illustrated in Fig, 4.9, the semiconducting band gap decreases. From the figure
we clearly see that the energy gap is inversely proportional to the diameter. The
dependence of E, on d;’! is obtained analytically from k - p theory near the K
point [84].

The effect of curvature of the carbon nanotubes has been considered within
the tight binding approximation [81]. The inclusion of curvature effects compli-
cates the calculation considerably, by introducing four tight binding parameters,
with values given by Vppr = —2.77 eV, V5o = —4.76 eV, V5, = 4.33 eV,
and V,,, = 4.37 eV [85,86], instead of the single tight binding parameter
Vopr
curvature is neglected. It should be mentioned that for both the armchair and
zigzag nanotubes, the band crossings at Er are between energy bands of different
symmetry. (Even when nanotube curvature is considered the bands that cross
will have different symmetries.) Thus no interaction or band splitting would be

= —2.5 eV, which has been used to describe carbon nanotubes when their

expected at Ep. Some first principles calculations for the electronic structure
have been carried out for carbon nanotubes [72,81,87-89], yielding results in
substantial agreement with the simple tight binding results which are described
in this section.

Tight-binding calculations which consider 2s electrons [73] and other local
density approximation (LDA) calculations [87,90] show that the large curva-
ture of small single-wall carbon nanotubes leads to a hybridization of ¢* and »*
orbitals, resulting in a small energy gap (on the order of meV) for nanotubes
with small diameters, except for armchair nanotubes.* The effect of this hy-
bridization is large for nanotubes of diameter less than that of Cgp but is not
so great for nanotubes in the range (dy > 0.7 nm), the range that has been ob-
served experimentally. The simple tight binding result for single-wall nanotubes
which considers only 7 orbitals, that one third of the nanotubes are metallic
and two thirds are semiconducting, has a symmetry basis which is discussed in

*When we see unfolded energy bands of carbon nanotubes in the two-dimensional Brillouin
zone of graphite, the degenerate point at the K point moves away from the K point by
taking account of the hybridization effect. However, the degeneracy of the conduction and
valence bands is not affected by the hybridization. This degeneracy comes from the symmetry
that A and B atoms are equivalent to each other in the unit cell of graphite. Thus, since
the hybridization effect does not change the equivalence between the 4 and B atoms, this
symmetry holds. In armchair nanotubes, since the shift of the k vector at the Fermi energy by
the curvature effect is along the one-dimensional Brillouin zone, we get a metallic condition
for armchair nanotubes even when curvature effects are taken into account.
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Sect. 4.1.1. There are several physical processes that tend to modify these sim-
ple considerations. A first principles LDA calculation [90] has determined that
for very small-diameter nanotubes the curvature of the graphene sheet results
in band shifts which move their band edges into the semiconducting energy gap,
hence suggesting that all very small-diameter nanotubes should be metallic. A
contrary conclusion could be reached if a Peierls distortion of the 1D conductor
produced an energy gap at the Fermi level.

LDA-based calculations have also been carried out for BN nanotubes, and
the results suggest that BN nanotubes should be stable and should have a band
gap of ~5.5 eV, independent of diameter [90,91], and the band gap of crys-
talline BN is of about the same magnitude throughout the Brillouin zone. Thus
no quantum effects as are observed in carbon nanotubes are expected for BN
nanotubes. However, a relatively large energy gap is expected, compared with
carbon nanotubes, so that BN nanotubes on either the inside or outside of car-
bon nanotubes can be used to provide insulation to carbon nanotubes. These
calculations for the electronic structure of BN nanotubes stimulated experimen-
tal work, leading to the successful synthesis of pure BN multi-wall nanotubes
[92], with inner diameters of 1-3 nm and lengths up to 200 nm. The BN nan-
otubes are produced in a carbon-free plasma discharge between a BN-packed
tungsten rod and a cooled copper electrode. Electron energy loss spectroscopy
studies on individual nanotubes confirmed the BN stoichiometry [92, 93].



CHAPTER 5.
Synthesis of Carbon Nanotubes

This chapter describes synthesis methods for carbon nanotubes,
with primary emphasis on single-wall nanotubes. Two relatively effi-
cient methods to synthesize single-wall carbon nanotubes have been
identified: laser vaporization and carbon arc synthesis, and both
methods depend on the use of catalysts. Other techniques such as
vapor growth are also reviewed. Also discussed in this chapter are
the synthesis of multi-wall carbon nanotubes, the purification of car-
bon nanotubes, the insertion of metals into the hollow core of carbon
nanotubes, and the doping of carbon nanotubes with alkali metals.

5.1 Single-Wall Nanotube Synthesis

The first experimental identification in 1991 of carbon nanotubes was on multi-
wall nanotubes[19]. This report stimulated a large number of theoretical works
on the structure and properties of the simpler and more fundamental single-
wall carbon nanotubes, one atomic layer in thickness in the radial direction (see
Fig. 3.1). The experimental discovery of single-wall carbon nanotubes in 1993(58,
94] further stimulated work in the field, though, at first, only small quantities
of single-wall nanotubes were available experimentally for systematic studies.
These single-wall nanotubes were generally found along with very much larger
concentrations of amorphous carbon, carbon nanoparticles and other carbon-
based materials, and the single-wall constituents contained a distribution of
diameters and chiral angles, as explained below. For these reasons most of the
experimental studies continued to be done on multi-wall nanotubes.

The recent discovery in 1996 of a much more efficient synthesis route, involv-
ing laser vaporization of graphite [55] to prepare arrays or “ropes” of ordered
single-wall nanotubes, offered major new opportunities for quantitative experi-

73
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mental studies of carbon nanotubes. By making the single-wall nanotubes avail-
able to many research groups worldwide, progress was made for the first time
in quantitative measurements of the physical properties of single-wall carbon
nanotubes.

The detailed mechanisms responsible for the growth of these nanotubes are
not yet well understood. Therefore we can expect extensive research to be
carried out on the growth mechanism and on the development of new growth
techniques that provide more controlled growth of nanotubes. Whereas multi-
wall nanotubes require no catalyst for their growth, catalyst species are necessary
for the growth of the single-wall nanotubes, and more than one catalytic species
seem to be necessary to grow ropes of single-wall nanotubes.

Soon after the publication of the laser vaporization method for the synthe-
sis of single-wall carbon nanotube ropes, another synthesis route was found for
the synthesis of gram quantities of single-wall carbon nanotubes, using the car-
bon arc method [52]. Because of the potential interest of carbon nanotubes for
practical applications, there is also interest in developing continuous synthesis
methods more appropriate for scale-up and low cost, and this may perhaps be
accomplished by vapor growth methods discussed in Sect. 5.4. The remaining
sections of the chapter briefly deal with the purification of nanoctube samples
(Sect. 5.5), nanotube opening, wetting, filling and alignment (Sect. 5.6), nan-
otube doping (Sect. 5.7), temperature regimes for carbonization and graphitiza-
tion (Sect. 5.8), and growth mechanics (Sect. 5.9).

5.2 Laser Vaporization Synthesis Method

An efficient route for the synthesis of bundles of single-wall carbon nanotubes
with a narrow diameter distribution employs the laser vaporization of a graphite
target.

In the early reports of the laser synthesis technique [55], high yields with
>70%—90% conversion of graphite to single-wall nanotubes were reported in
the condensing vapor of the heated flow tube (operating at 1200°C). A Co-
Ni/graphite composite laser vaporization target was used, consisting of 1.2 atom
% Co—Ni alloy with equal amounts of Co and Ni added to the graphite (98.8 atom
%) [65]. Two sequenced laser pulses were used to evaporate a target containing
carbon mixed with a small amount of transition metal from the target (see
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furnace at 1,200" Celsius

water-cooled
copper collector

argon gas

nanotube “felt” growing
along tip of collector

graphite farget

neodymium-yttrium-
aluminum-garnet laser

Fig. 5.1: Single-walled nanotubes produced in a quartz tube
heated to 1200°C by the laser vaporization method, using a
graphite target and a cooled collector for nanotubes [95].

Fig. 5.1). Flowing argon gas sweeps the entrained nanotubes from the high
temperature zone to the water-cooled Cu collector downstream, just outside the
furnace [55, 96].

The material thus produced appears in a scanning electron microscope (SEM)
image as a mat of “ropes” 10-20 nm in diameter and up to 100 um or more in
length [see Fig. 5.2(a)]. Under transmission electron microscope (TEM) exam-
ination [see Fig. 5.2(b)], each rope is found to consist primarily of a bundle of
single-wall carbon nanotubes aligned along a common axis. X-ray diffraction
(which views many ropes at once) and transmission electron microscopy experi-
ments (which view a single rope) show [55] that the diameters of the single-wall
nanotubes have a strongly peaked distribution at 1.38:40,02 nm, very close to
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Fig. 5.2: (a) Ropes of single-
wall carbon nanotubes observed
by scanning electron microscopy
(SEM). The ropes are 10-20 nm
thick and ~100 pgm long. (b)
At higher magnification, the
TEM image shows that each
rope contains a bundle of single-
wall nanotubes with diameters of
~1.4 nm, arranged in a triangu-
lar lattice (with lattice constant
1.7 nm). Such an image is seen
when the rope bends through the
image plane of the microscope
[55].

the diameter of an ideal (10,10) nanotube which is defined in Eq. 3.2. A de-
tailed transmission electron microscopy study of carbon nanotubes prepared by
the laser vaporization method [55] has shown that the carbon nanotube chiral
indices (n,m) are mainly (10,10) (~44%), (9,9) (~20%), and some (12,8) [97],
while others, presumably using different growth conditions, have reported chiral
angles in the range Af = 7.3° [56,98]. Thus for nanotube diameters ranging
from that for the (8,8) to (11,11) armchair nanotubes, there are only 17 possible
nanotubes [97]. The single-wall nanotubes are held together by weak van der
Waals inter-nanotube bonds to form a two-dimensional triangular lattice with a
lattice constant of 1.7 nm, and an inter-tube separation of 0.315 nm at closest
approach within a rope [55]. By varying the growth temperature, the catalyst
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composition and other growth parameters, the average nanotube diameter and
diameter distribution can be varied [99]. It is found that the spread in nanotube
diameters within a single rope is smaller than between ropes grown at the same
time and under the same nominal growth conditions.

5.3 Arc Method of Synthesizing Carbon Nanotubes

The carbon arc provides a simple and traditional tool for generating the high
temperatures needed for the vaporization of carbon atoms into a plasma (>3000° C)
[100-102]. This technique has been used for the synthesis of single-wall and
multi-wall carbon nanotubes, and ropes of single-wall nanotubes [52].

Typical conditions for operating a carbon arc for the synthesis of carbon
nanotubes include the use of carbon rod electrodes of 5-20 mm diameter sepa-
rated by ~1 mm with a voltage of 20-25 V across the electrodes and a dc electric
current of 50-120 A flowing between the electrodes. The arc is typically oper-
ated in ~500 torr He with a flow rate of 5-15ml/s for cooling purposes. As the
carbon nanotubes form, the length of the positive electrode (anode) decreases
(see Fig. 5.3).

Once the arc is in operation, a carbon deposit forms on the negative elec-
trode. For the multi-wall carbon nanotube synthesis, no catalyst need be used
and the nanotubes are found in bundles in the inner region of the cathode de-
posit where the temperature is a maximum (2500-3000°C). The nanotube bun-
dles are roughly aligned in the direction of the electric current flow (see Fig. 5.3)
[101,104]. Surrounding the nanotubes is a hard grey shell consisting of nanopar-
ticles, fullerenes and amorphous carbon [105-107].* Adequate cooling of the
growth chamber is necessary to maximize the nanotube yield in the arc growth
process. The growth of carbon nanotubes appears to be unfavorable under the
conditions that are optimized to synthesize fullerene molecules.

Catalysts used to prepare isolated single-wall carbon nanotubes inciude tran-
sition metals such as Co, Ni, Fe and rare earths such as Y and Gd, while mixed
catalysts such as Fe/Ni, Co/Ni and Co/Pt have been used to synthesize ropes of
single-wall nanotubes. Although the details of the diameter (and chirality) dis-
tribution of the single-wall carbon nanotubes depend on the synthesis conditions,

*During arc synthesis fullerenes are predominantly found in the soot produced by the arc and
removed by the helium gas flow, while the nanotubes are contained in a deposit on the cathode.
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Fig. 5.3: Cross-sectional view of a carbon arc generator that can
be used to synthesize carbon nanotubes [103].

temperature of the arc and the catalyst that is used, the average nanotube diam-
eter is usually small (<1.5 nm) and the diameter distribution is usually narrow,
as illustrated in Fig. 5.4. It is interesting to note that the minimum nanotube
diameter that has been observed for single-wall carbon nanotubes is ~0.7 nm,
corresponding to the diameter of Cgg, the smallest fullerene to obey the isolated
pentagon rule [108].

An efficient method for the synthesis of gram quantities of bundles of single-
wall carbon nanotubes using the carbon arc technique has been achieved [52].
The greatest mass of single-wall carbon nanotubes is found in a collarette around
the cathode, with ~20% of the consumed carbon being converted into single-wall
carbon nanotubes in the collarette.

Since the length of a carbon nanotube is typically on the order of 1 um, and
the growth rate of a 1 pm carbon nanotube is estimated to be less than 0.1 sec-
ond, the time for the growth of a single circumferential carbon ring is ~10~3
second. This time scale is much shorter than the time needed for the direct obser-
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vation of the carbon arc electrodes by transmission electron microscopy (TEM)
but is much longer than the phonon frequency 10'® Hz. Thus the growth of car-
bon nanotubes occurs under stable conditions but over a limited range of He (or
Ar) pressure, electric current and arc voltage. The iron or cobalt catalyst in the
arc process forms both single-wall carbon nanotubes and nanometer-size carbide
particles surrounded by graphene layers, as well as metal clusters encapsulated
within graphene layers [58, 94]. Thus purification Is necessary to separate out a
pure single-wall nanotube sample.

When certain transition metals (Fe, Co, Ni, Pb, Mo, W, Cu, Au, ...}, rare-
earth metals (La-Nd, Gd-Tm, Lu), or their oxides are packed into a hole in the
central region of the positive electrode, carbon nano-capsules are often obtained
in the deposit on the negative electrode [109].! Carbon nano-capsules consist of
multi-wall polyhedra of graphene sheets with interlayer separations of 0.34 nm
inside which are contained metals (Fe, Co, Ni, Cu and Au) or metal carbides
M;C (M = transition metal such as LayC (La = rare earth metal).

5.4 Vapor Growth and Other Synthesis Methods

Fe, Co, and Ni particles are known to be catalysts for vapor grown carbon fiber
synthesis [9, 17,44}, in which hydrocarbons (e.g., CH4, CsHg) and H, gases are
reacted in the presence of Fe, Co, or Ni particles in a reaction tube at 1100°C.

Hn the case of Fe, Co, and Ni, catalysts, single-wall nanotubes are observed at the surface of
the deposit and nano-capsules are observed in other regions.
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Fig. 5.5: Carbon nanotubes ap-
pear after breakage of the vapor-
grown carbon fiber. (a) An SEM
image of a broken vapor grown
carbon fiber, cut in liquid ni-
trogen and showing (white ar-
row) a carbon nanotube emerg-
ing from the center of the fiber.
(b) HRTEM image showing the
broken part of a very thin vapor
grown carbon fiber. The nan-
otube is clearly observed, indi-
cating that thin vapor grown car-
bon fibers grow from a nanotube
core by thickening [59].

The innermost tubes of vapor grown carbon fibers are considered to be carbon
nanotubes, as shown in Fig. 5.5. Growth of carbon nanotubes from the vapor
phase has also been demonstrated [59].

5.4.1 Vapor Growth Method

The synthesis of carbon nanotubes from the vapor phase utilizes equipment sim-
ilar to that used for the preparation of vapor-grown carbon fibers {17,44], with
the furnace temperature held at 1100°C and using Fe catalyst particles, but
using a low benzene gas pressure [59,110]. A variety of other hydrocarbons,
catalysts and catalyst supports have been used successfully by various groups
worldwide to synthesize carbon nanotubes. One big advantage of the vapor
growth approach is that carbon nanotubes can be made continuously and thus
if the optimum conditions for growing pure carbon nanotubes could be found,
this could be a very good way to synthesize large quantities of carbon nan-
otubes under relatively controlled conditions. Thus the vapor growth method
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Fig. 5.6: Two kinds of vapor-grown carbon fibers (VGCTF) ob-
served in an as-grown sample: (a) a thick hollow fiber formed by
a catalytic metal particle, (b) an exposed nanotube and a nan-
otube that had been pyrolytically coated, thereby increasing the
nanotube diameter.

has some advantage for scale-up and commercial production. Many presently
identified applications of carbon nanotubes can be met with vapor grown carbon
nanotubes.

Carbon nanotubes can grow at the same time as conventional vapor-grown
carbon fibers, as is seen in Fig. 5.6. Most of these nanotubes are multi-wall,
but some single-wall nanotubes can also be present.

Vapor-grown carbon nanoctubes have been studied by high-resolution TEM
in both their as-grown form and after heat treatment. The as-grown nanotubes
generally show poor crystallinity. The crystallinity, however, is much improved
after heat treatment to 2500-3000°C in argon, as seen in high-resclution TEM
studies [110]. Fracture of a thin vapor grown carbon fiber shows the presence of
a nanotube at the fiber core, as shown in Fig. 5.5.

Referring to the bamboo structure seen on the inside of vapor grown carbon
nanotubes (see Fig. 5.7), Endo [110] argues that the capping of an inner layer
terminates its growth, so that the exposed cap layer provides growth along the
length and the epitaxial layers follow this growth while at the same time adding
to the nanotube diameter. The frequently-observed bending of the growth axis
of the nanotubes is related to the introduction of a heptagonal defect at the
bend location.
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Fig. 5.7: (a) Transmission electron micrograph of a cone contain-
ing only single conical shells. The nearly periodic structures of
the conical shells appear inside the cone tips [see (a)], which are
attributed to overshooting growth on the basis of the open tube
growth model [107]. (b) Commonly observed nanotube structure
for the cap region of vapor-grown carbon nanotubes heat treated
at 2800°C in Ar. Here a number of bamboo-like structures are
observed in the core region near the cap [110].

5.4.2 Other Synthesis Methods

Another method of nanotube synthesis relates to the use of carbon ion bom-
bardment to make carbon whiskers [111,112]. Carbon whiskers are known as a
graphite material with high crystallinity [4] whose diameter is ~0.1-1 um and
several mm in length. In the ion bombardment growth method, carbon is va-
porized in vacuum through ion or electron irradiation [113], and the resulting
deposit containing carbon nanotubes, along with other structures is collected on
a cold surface. Little is known about the optimization of the ion bombardment
technique in relation to the preparation of nanotubes.

The use of solar energy for the synthesis of single-wall carbon nanotubes has



5.5. PURIFICATION 83

Fig. 5.8: (a) Transmission electron micrograph of a web of single-
shell nanotubes formed in the catalytic carbon arc method. (b)
TEM picture of gas phase purified nanotubes [116].

been reported [114, 115], using an experimental chamber where solar energy is
focussed on the crucible to achieve a temperature of 3000 K on a clear day. A
mixture of Ni and Y catalysts is used in an argon atmosphere (pressure of ~450
mbar). Further research is needed to optimize and control the synthesis process,
increase the yield of ropes of single-wall nanotubes, minimize the concentration
of carbon nanoparticles and amorphous carbon produced, and to characterize
the carbon nanotubes that are produced.

5.5 Purification

In many of the synthesis methods that have been reported, carbon nanotubes
are found along with other materials, such as amorphous carbon and carbon
nanoparticles (see Fig. 5.8).  Purification generally refers to the isolation of
carbon nanotubes from other entities. The separation of nanotubes according
to diameter (and chirality) is not considered under the topic of purification, and
is not thought to be practical at this time.

Three basic methods have been used with limited success for the purification
of the nanotubes: gas phase, liquid phase, and intercalation methods {116]. The
classical chemical techniques for purification (such as filtering, chromatography,
and centrifugation) have been tried, but not found to be effective in removing the
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carbon nanoparticles, amorphous carbon and other unwanted species shown in
Fig. 5.8 [116]. Heating preferentially decreases the amount of disordered carbon
relative to carbon nanotubes. Heating could thus be useful for purification,
except that it results in an increase in nanotube diameter due to the accretion
of epitaxial carbon layers from the carbon in the vapor phase resulting from
heating.

The gas phase method removes nanoparticles and amorphous carbon in the
presence of nanotubes by an oxidation or oxygen-burning process {104, 117,118].
Much slower layer-by-layer removal of the cylindrical layers of multi-wall nan-
otubes occurs because of the greater stability of a perfect graphene layer to oxy-
gen than disordered or amorphous carbon or material with pentagonal defects
[117,118]. This method was in fact first used to synthesize a single-wall carbon
nanotube. The oxidation reaction for carbon nanotubes is thermally activated
with an energy barrier of 225 kJ/mol in air [118]. The gas phase purification
process also tends to burn off many of the nanotubes. The carbon nanotubes
obtained by gas phase purification are generally multi-wall nanotubes with di-
ameters in the range 20~200A and 10 nm-1ym in length [104], since the smaller
diameter tubes tend to be oxidized with the nanoparticles.

Liquid phase removal of nanoparticles and other unwanted carbons has been
carried out with some success using a potassium permanganate KMnO, treat-
ment method which tends to give higher yields than the gas phase method,
but results in nanotubes of shorter length [116,119]. Finally, the intercalation
of unpurified nanotube samples with CuCl;-KCl results in intercalation of the
nanoparticles and other carbon species, but not the nanotubes which have closed
cage structures. Thus subsequent chemical removal of the intercalated species
can be carried out [120].

A method for the purification of samples containing single-wall nanotube
ropes in the presence of carbon nanoparticles, fullerenes and other contaminants
has also been reported [83,121-123].

5.6 Nanotube Opening, Wetting, Filling and Alignment

5.6.1 Nanotube Opening

Experimental studies show that the cap of a nanotube is more reactive than
the cylindrical part because of the presence of pentagons and hence the greater
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curvature and reactivity of the caps. Thus in a vapor phase oxidation process,
the cap region is burned off first, thereby providing one method for tube opening.
The presence of the pentagons in the cap region also promote tube opening by
various chemical reactions, such as with HNOjg [116,124]. Tube opening can
occur at quite low temperatures (~400°C), using, for example, a lead metal
catalyst in air [125]. The material that is sucked up the nanotube, however, is
an oxide of lead [104].

5.6.2 Nanotube Welling

A number of liquids have been found to wet the hollow core of carbon nanotubes
and others do not show wetting behavior [126]. On the basis of classical theories
for wetting, the hollow core of the nanotube will be wet by a fluid if

cos © = (73'0 - 731)/7!1} (51)

where © is the contact angle of a liquid on a surface, 7,4, ¥s2 and v, are,
respectively, the solid-vapor, solid-liquid, and and liquid-vapor interfacial surface
tensions. Wetting occurs when © > /2 or 75y > ¥,1. Examples of liquids which
wet carbon nanotubes are HNOg, S, Cs, Rb, Se, water, various organic solvents
and various oxides such as Pb and BiyO, [124,126].

5.6.3 Nanotube Filling

Three methods have been used to fill the hollow core of carbon nanotubes:
capillarity, pressure, and solvent carrier methods [126]. The capillarity method
exploits removal of the cap (or the opening of the tube) followed by wetting,
where the contact angle © exceeds #/2, as discussed in Sect. 5.6.2. In many
cases only partial filling of a nanotube compartment has been achieved, though
in some cases whole compartments have been filled [124], with some reports of
long continuous nano-wires {127, 128)]. In this work sulfur was shown to catalyze
nanotube filling with many metal species. If a liquid does not wet the nanotube,
then pressures exceeding 2v/r are needed for tube filling, where 7 is the inner
radius of the nanotube. Another method that has been successful for introducing
high surface tension materials such as Co, Ni, Fe is the use of a solution using
HNOj; that performs both wetting and tube opening, and at the same time
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contains a solute which is to be deposited within the nanotube. Subsequent
chemistry is used to remove the carrier solvent [129].

5.6.4 Alignment of Nanotubes

For a variety of experiments and applications it is desirable to align the carbon
nanotubes parallel to each other. If a sample contains an assembly of randomly
oriented nanotubes, alignment can be achieved by rubbing in one direction or
by cutting a material such as paraffin which contains embedded nanotubes.
Nevertheless, the most common source for the alignment of nanotubes is by a
self-alignment growth process. Self-aligned bundles of multi-wall and single-wall
carbon nanotubes are found on the copper collector in the laser vaporization
method, on the cathode deposit, and in the collarette for the case of growth by
the arc method.

5.7 Nanotube Doping, Intercalation, and BN/C Composites

The substitutional doping of carbon nanotubes with B and N dopants to make
the nanotubes p-type and n-type has been discussed [130]. Although some exper-
imental work has been done on the substitutional doping of carbon nanotubes
with B and N, most of the experimental activity on the doping of nanotubes
has been with the alkali metals [131,132], which do not act as substitutional
dopants, but are predicted to lead to enhanced metallic conductivity [133]. Al-
kali metals readily intercalate into graphite as sheets of alkali metal which are
located between graphene sheets in the crystal lattice. These alkali metal lay-
ers donate electrons to the graphite layers, thus greatly increasing the electrical
conductivity, while at the same time greatly expanding the sample size along the
direction normal to the lattice planes. Because of the closed cylindrical struc-
ture of carbon nanotubes, the relatively large alkali metal ions cannot find easy
entry into perfect nanotubes, nor is there enough space for these ions between
adjacent shells of a multi-wall nanotube. Therefore the alkali metal ions enter
into the carbon nanotubes near structural defects. Once the ions penetrate the
outer surface of the nanotube, their large size rips open the nanotube wall. This
effect can be seen by microscopic probe studies on carbon nanotubes that have
been attacked by alkali metals [131,132].
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For the intercalation of alkali metals and halogens into ropes of single wall
carbon nanotubes, a two-zone furnace was utilized similar to that previously used
for similar intercalations into crystalline graphite {134]. Typical temperatures
that were used in the two-zone furnace for the alkali metals were ~120°C for
the nanotubes were ~160°C. The large uptake of the alkali metals Rb and K is
consistent with a decoration of the carbon atoms on the nanotube surface by a
(2 x 2) superlattice of alkali metal species, as well as uptake of alkali metal in
the interstitial spaces between the nanotubes in the triangular lattice [135,136].
The Ay vibrational mode at 1593 cm~! in the undoped nanotubes are down
shifted by Rb and K intercalation, consistent with electrons donated by the
alkali metals to the nanotubes, while the Bry intercalation leads to an upshifted
mode frequency, consistent with the transfer to electrons from the nanotubes to
the halogen [135]. Transport measurements confirm that the intercalant uptake
by the nanotube results in a dramatic increase in the electrical conductivity both
for the case of Bry and K [136].

A composite multi-wall nanotube 12 nm in diameter, with 3 carbon shells
at the interior followed by 6 BN shells in the central region, and 5 carbon shells
on the outside, has been synthesized by the arc discharge method using an HfB,
electrode and a carbon electrode in a Ny atmosphere [137]. The structure and
composition was obtained by a scanning EELS probe across the diameter of the
nanotube. BN nanotubes have also been prepared by packing a tungsten rod
with BN [87].

5.8 Temperature Regimes for Carbonization and Graphitization

Because of the importance of temperature as a growth parameter for carbon
nanotubes, we summarize in the following some of the important temperature
regimes for carbon materials. In addition to the melting (~4450 K) and va-
porization (~4700 K) temperatures for carbon, two other temperatures are of
importance: the carbonization temperature (~650-750°C) and the graphitiza-
tion temperature (~2300 K). The carbonization temperature is the temperature
at which the volatile species are driven off from precursors for carbon materi-
als, leaving behind the basic structural units on the order 1 nm in thickness, as
shown in Fig. 5.9. The graphitization temperature (~2300°C) is the tempera-
ture at which interplanar site correlation is established and the ABAB stacking
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arrangement of the 3D graphite structure is formed. The melting and vaporiza-
tion temperatures for carbon are both extremal values for the condensed phases
of matter, with only a small stability region for the liquid phase of carbon.

Below the carbonization temperature, carbon cannot change its sp? covalent
bonding configuration. Thus if the solid state is formed by a rapid quenching
process to amorphous carbon, the state of amorphous carbon is metastable below
the carbonization temperature. If the solid state is single crystal graphite, this
phase is always the most stable state.

Between the carbonization and graphitization temperatures, carbon can
transform from an amorphous carbon to a stable graphite planar structure at
ambient pressure by cutting and reconnecting sp? covalent bonds. The car-
bonization temperature is closely related to the desorption temperature of oxy-
gen or hydrogen that is chemically bonded at the edge of graphitic nanocrys-
tals. Oxygen or hydrogen atoms are removed above about 700°C in the form
of H,0, CO, CO4, and CH, molecules by cutting carbon-carbon bonds. Chem-
ical reactions also occur in the presence of Oz, H,0, CO4 at temperatures in
the 800°C~-1200°C range where the oxidation process occurs. Dangling carbon
bonds, which are related to C-H, C-0, and C-N, etc. bonds, are broken in the
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carbonization process, and C-C bonds are reformed at somewhat higher tem-
peratures. The purification temperature for carbon nanotubes corresponds to
the temperature for CO and CO4 formation.

The various steps leading to graphitization have been studied by heating
amorphous carbons to various temperature Tyt (see Fig. 5.9) and then ob- .
serving the TEM micrographs [139, 140]. For Tyt < 800°C, the basic structural
units, consisting of a short length (= 10A) of about three parallel layers, start to
pile up and form distorted columnar structures, as impurity atoms are released,
mostly in gaseous form. For 800 < Tyr < 1500°C, the columnar structures
increase in length with a lesser degree of misorientation of the basic structural
units as shown in Fig. 5.9. In this step, individual misoriented basic structural
units become aligned and the crystallite size along the c-axis L. increases grad-
ually. For 1500 < Tyt < 1900°C, the columnar structure disappears as wavy
ribbons or wrinkled layers are formed by hooking the adjacent columns together,
and in this range of T, both the in-plane and c-axis crystallite sizes L, and
L. increase rapidly. By Tyt ~ 1700°C, the wavy planar structure begins to
disappear and a turbostratic planar stacking arrangement starts to appear, with
L, values higher than 200 A at Tyt ~ 2000°C. By 2100°C, most of the in-
plane structural defects have been eliminated so that a rapid increase in L, can
occur due to the disappearance of tilt and twist boundaries. As the graphitic
structure develops further with increasing Ty, the interlayer distance decreases.
At higher Ty, interlayer site correlation between layers starts to develop. Al-
though the graphitization temperature is usually given as 2300°C, much higher
Tyt values (2800-3000°C) are generally used to obtain 3D graphite crystals by
the heat treatment approach.

5.9 Growth Mechanisms

The growth mechanism for cylindrical fullerene nanotubes is especially interest-
ing and has been hotly debated. One school of thought [141, 142] assumes that
the nanotubes are always capped and that the growth mechanism involves a Cq
absorption process that is assisted by the pentagonal defects on the caps. The
second school [107,108,143] assumes that the nanotubes are open during the
growth process and that carbon atoms are added at the open ends of the nan-
otubes. Since the experimental conditions for forming carbon nanotubes vary
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Fig. 5.10: C, addition to a cap of (6,5) nanotube. (a) Numbers
from 1 to 6 indicate the position of the six pentagons on the
hemispherical cap. If we add one Cs molecule, indicated by open
circles between 2 and 3, and if the new bonds denoted by dotted
lines form, we get a new hexagon denoted in (b) by dark shading.
(b) Through rotation by 72°, it is seen that the shape of the cap
is the same for (a) and (b).[144]

significantly according to growth method, more than one mechanism may be
operative in producing carbon nanotube growth.

The first school of thought focuses on nanotube growth at relatively low
temperatures (~ 1100°C) and assumes that growth is nucleated at active sites
of a vapor-grown carbon fiber of about 1000 A diameter. Although the parent
vapor-grown carbon fiber is itself nucleated by a catalytic transition metal parti-
cle [44], the growth of the carbon nanotube is thought to be associated with the
absorption of a Cy dimer near a pentagon in the cap of the nanotube. Referring
to the basic model for C, absorption in Figs. 5.10 and 5.11, we see that sequen-
tial addition of Cy dimers results in the addition of a row of hexagons to the
carbon nanotube. To apply the Cs absorption mechanism, it is usually necessary
to use the Stone—Wales mechanism to bring the pentagons into their canonical
positions, as necessary for the execution of each C; absorption, in accordance
with Fig. 5.10. In Fig. 5.10(a) we show a hemisphere cap of (6,5) nanotube
which have six pentagons denoted by numbers from 1 to 6. When we introduce
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C, molecule between the pentagons 2 and 3, we get a new hexagon denoted by
dark shading in Fig. 5.10(b). In Fig. 5.10(a) we consider new chemical bonds
denoted by dotted lines. When we rotate Fig. 5.10(b) by 72°, we see that the
shape of the cap is the same for Fig. 5.10(a) and (b).[110, 144] Repeating this
process five times, we return to Fig. 5.10(a) but with the addition of one more
ring of carbon hexagons around the nanotube.

For the growth of carbon nanotubes by the arc discharge method, it has
béen proposed that the nanotubes grow at their open ends[143,145]. If the
nanotube has chirality (see Fig. 5.11), it is easily seen that the absorption of a
single Cy dimer at the active dangling bond edge site will add one hexagon to the
open end. Thus the sequential addition of C, dimers will result in continuous
growth of the chiral nanotube. If carbon atoms should be added out of sequence,
then addition of a Cs dimer would result in the addition of a pentagon, which
could lead to capping of the nanotube, while the addition of a Cg trimer out of
sequence merely adds a hexagon. In the case of an armchair edge, here again
a single Cy dimer will add a hexagon. Multiple additions of Cs dimers lead to
multiple additions of hexagons to the armchair edge. For the case of a zigzag
edge, Initiation of growth requires one trimer Cg (see Fig. 5.11), which then
provides the necessary edge site to complete one row of growth for the nanotube
through the addition of Cy dimers, except for the last hexagon in the row, which
requires only a C; monomer. If, however, a C, dimer is initially bonded at a
zigzag edge, it will form a pentagon. Because of the curvature that is introduced
by the pentagon, the open end of the nanotube will likely form a cap, and growth
of the nanotube by the open end process will be terminated.

A schematic diagram for the open tube growth method is shown in Fig. 5.12
[107). While the tubes grow along the length, they also grow in diameter by
an epitaxial growth process, as shown in Fig. 5.12. The large aspect ratio of the
nanotubes implies that growth along the tube axis is more likely than growth
along the nanotube diameter. Referring to Fig. 5.7, lijima argues that the inner
tubes are capped first with the capping providing a method for relieving strain
in the cap region. The introduction of pentagons leads to positive curvature,
while capping with heptagons lead to changes in nanotube size [see Fig. 5.7(b)]
and orientation. The introduction of heptagon-pentagon pairs can produce a
variety of nanotube shapes.

At present the growth model for carbon nanotubes remains incomplete with
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Fig. 5.11: Proposed growth mechanism of carbon nanotubes at
an open end by the absorption of C; (dimers) and Cz (trimers).
Absorption of a Cz trimer at the open end of a zigzag carbon
nanotube and subsequent C, dimer absorption.

regard to the role of temperature and helium gas. Since the vapor phase growth
occurs at only 1100°C, any dangling bonds that might participate in the open
nanotube growth mechanism would be unstable, so that the closed tube approach
would be favored. In this lower temperature regime, the growth of the nanotube
core and the thickening process occur separately. In contrast, for the arc dis-
charge synthesis method, the temperature where nanotube growth occurs has
been estimated to be about 3400°C [146]. At these high temperatures, nanotube
growth and the graphitization of the thickening deposits occur simultaneously,
so that all the coaxial nanotubes grow at once at these elevated temperatures
[141], and the open nanotube growth may be favored.

One interesting growth feature, reported by several groups [106, 107,147], is
the containment of a small-diameter carbon nanotube inside a larger-diameter
nanotube, where the inner nanotube has no access to a carbon source. Such a
feature seems to require growth by an open tube mechanism.
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Fig. 5.12: Schematic diagram for open tube growth of nanotubes
from a carbon supply. The figure shows the addition of carbon
atoms to the open ends, the capping of the longest open end, and
the initiation of new nanotubes. (a) Some shells are terminated at
the positions indicated by arrowheads as illustrated in the circle.
(b) Terminated shells carry left-handed or right-handed kink sites,
owing to the helical tube structure. (¢) Similar termination of the
shells near the top of the tip, forming steps, one atom in height,
as indicated by the arrowheads [107].
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CHAPTER 6.
Landau Energy Bands of Carbon Nanotubes

Itinerant electrons in a magnetic field give rise to Landau quan-
tization of the energy bands. In this chapter we show how to cal-
culate the Landau energy bands of carbon nanotubes using the tight-
binding method. Quantum confinement of electrons in one-dimensional
carbon nanotubes and confinement through application of a magnetic
field show interesting phenomena as a function of the chirality of the
carbon nanotubes and of the direction and strength of the magnetic
field.

6.1 Free Electron in a Magnetic Field

In a uniform static magnetic field,* B, an electron with velocity v experiences a
Lorentz force ev x B, which is perpendicular to both B and v. By solving the
equations of motion, we obtain the so-called cyclotron motion of the electron in
a magnetic field with a cyclotron frequency

eB
m

(6.1)

We =

and a cyclotron radius of r. = v/w,.

In quantum mechanics, the motion of an electron is described by the trans-
formation p to p — eA in the Hamiltonian,! where A is the vector potential
(Vx A= B). A gauge for A, such as the Landau gauge, is used to relate A

*We here simply call the magnetic field, B = puo H, where u is the permeability of free space
and H is the magnetic field in free space. Strictly B should be called the density of magnetic
flux on a unit surface.

tWe use MKS (SI) units here. In CGS units, we simply replace ¢ by e/c, so that the trans-
formation of P — eA becomes P — eA/c in CGS units. This is, however, not the case for the
Hall coefficient, Ry, for which SI units give Ry = —1/ne, but Ry = —1/nec, in CGS units.

95
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explicitly to the magnetic field B = (0,0, B),
A = (0, Bz,0). (6.2)

The Hamiltonian for a free electron (V = 0) in the Landau gauge becomes

2 2 2 2
H%{;, (<i - 2B2) +;_} (63)
Since the Hamiltonian does not depend on y and z, (8H/8y = 0, and IH/9z =
0), we can assume that the wavefunction, ®(z,y, z), has the form
O(z,y,2) = eCwth o), (6.4)
in which ¢(z) satisfies the harmonic oscillator Hamiltonian,

{—2%88—;+ m;dz(:c—X)Q}So(m): {E- h,:kz}so(x) (6.5)

m

and X = hk,/eB. When we use the solution to Schrodinger’s equation for a
one-dimensional harmonic oscillator Hamiltonian, the energy levels En are given
by

1, hk?
EN(kz) = hwc(N + ’2') + 2

5 (N=01,2,..). (6.6)

Thus the two-dimensional (z,y) motion of the free electron is quantized by the
Landau index N, and the three-dimensional energy bands in zero magnetic field
are divided into one-dimensional energy bands labeled by N as in Eq. (6.6).
Further, the Hamiltonian and the operator X commute, so that the quantum
number associated with X is a good quantum number? describing the wavefunc-
tion and its degeneracy. The corresponding wave function ¢(z) in Eq. (6.4) for
the Nth magnetic energy subband and harmonic oscillator center X is,

ex(z) = ﬁ;NN!é HN(x_KX) P [_%_75)_2] 87

{For a crystalline solid, the center of the harmonic motion, X = hky/eB, is not a constant
but is an operator which does not commute with the position y. Thus a general uncertainty
relation applies to the two operators X and Y for the centers of the harmonic motion in a
magnetic field, [X,Y] = ¢A/eB, and this commutator relation does not depend on the gauge.
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where Hy is the Nth Hermite polynomial’ defined here as

2 dN 2
Hn(€) = (1) Eﬁe_f (6.8)

and { is the Landau radius defined by

- yZ e

The Landau radius represents the size of the wavefunction in a magnetic field and
depends on the strength of the magnetic field. When B = 1T, then £ = 25.66 nm.
The Landau radius is thus a quantum variable which is clearly different from
the classical, cyclotron radius of 7, = v/w,.

Using a periodic boundary condition in the direction of y with period, Lya,
and a lattice constant a, the wave number ky is quantized as k, = 27 M, /Lya,
(My =0,1,2,---,L, — 1) and thus X = hky/eB = 2xt®M,/Lya is quantized,
too. We then have L,L,a%/2n¢? degenerate states¥ in the area L,a x Lya. Thus
when we consider a two-dimensional electron system, we have one degenerate
state (Landau level) per area 27¢? for a given Landau index, N.

When we consider Landau quantization of the 7-energy bands, we should
consider the periodicity of the unit cell due to the crystal potential. Thus, the
ratio of 27£2 to the area of the unit cell is an important factor for describing the
energy bands in a magnetic field. The overall picture for the energy bands in
a magnetic field can be obtained using the tight binding approximation, which
we will discuss in the following section. Even in this case it is found that most
energy bands show Landau quantization in a uniform magnetic field. However,
in the case of carbon nanotubes, since the magnetic field that is applied to the
curved surface of a carbon nanotube is not uniform, and since the net magnetic
flux penetrating the surface is always zero, a special situation occurs, in which
the energy bands do not show explicit Landau levels, but they do instead have
energy dispersion for all values of the magnetic field. The energy band width in
this case shows new oscillations with a period that is scaled by the cross section

§Different definitions of the Hermite polynomials may give rise to confusion. The Hy(£)
used here has the explicit expressions for n = 0,1,2 given by Hp(€) = 1, H1(€) = 2¢, and
Hy(¢) = 482 - 2.

lOrthogonality between two harmonic oscillator wavefunctions comes from the orthogonality
of the plane waves in the y direction.
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of the unit cell of the nanotube, which in turn is specified by the symmetry of
the nanotube (see Sect. 3.3).

An interesting feature of the electronic structure of carbon nanotubes in
a magnetic field is the dependence of the solid state properties on the chiral
vector of the nanotube. As is discussed in Sect. 4.1, the electronic structure is
especially unusual in the sense that carbon nanotubes can be either metallic or
semiconducting, depending only on the symmetry of the tube, as specified by its
chiral vector, Cy, in Fig. 3.2 [69,71,73,75, 148, 149]. The magnetic response of
the electronic structure for such one-dimensional materials, which have a two-
dimensional surface, is especially interesting, and is relevant to recent magneto-
resistance {150] and magnetic susceptibility [151,152] experiments on carbon
nanotubes.

6.2 Tight Binding Approximation in a Static Magnetic Field

Here we explain a formalism for the tight binding approximation in a static
magnetic field. A simple result of this formalism shows that in describing the
magnetic field dependence of the wave function, we need only consider a phase
factor, depending on the vector potential. This phase factor corresponds to the
continuous modulation of the periodic boundary condition for the wave function
in a periodic system. Because of the breakdown of the Bloch condition in the
wavefunction, the size of the unit cell changes as a function of magnetic field.

Within the tight binding scheme, the Bloch functions in a static magnetic
field can be expressed as

Bk, 7) = \/—% > exp(ik - R + i%GR)go(r - R), (6.10)
R

where R is a lattice vector and Gg is the phase factor associated with the
magnetic field and is expressed by [153]

GR:/I:A(E)-dfz/O (r—R)-A(R+\r—RDd\,  (6.11)

where it is noted that Gp is a function of » and the integration in Eq. (6.11) is
taken along the line from R to + as shown in Fig. 6.1. When the Hamiltonian
‘H for an electron in a crystal potential V(r) and in a magnetic field,

LAy
H= Fy (p—eAd) +V, (6.12)
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Fig. 6.1: The vector RR'
shows the integration path of
A(£) in calculating Gg — Gy in
Eq. (6.14). ®o(7) is the flux
that penetrates the triangle de-
fined by the three points, R, R’
and 7.

operates on ¥(k,r), we obtain
HE(k,r)
1 . 1 2 .€
7 2}; exp(ik - R) [5—7-; (p—eA)" + V] exp(zﬁGR)w(r - R)

Il

TI-N_ Zexp(ik R+ i%G’R) [2im (p—e(A - VGR)) + V} o(r - R)
R

1 ; . ?
= il Zexp(zkz R+ z%GR) [2—er + V] o(r - R).
R

(6.13)
It is important to note that in the last line of Eq. (6.13) the operator which
acts on the wavefunction is the Hamiltonian in zero magnetic field. Thus the
Hamiltonian matrix element in a magnetic field can be obtained through multi-
plication of the Hamiltonian matrix element in zero field by a phase factor. In
obtaining the last line of Eq. (6.13), we use the fact that: (1) the magnetic field is
slowly changing with distance r compared with the spatial change of ¢(r — R),
and (2) ¢(r — R) is localized at » = R. Except for the phase factor, Eq. (6.13)
is independent of the value of the magnetic field B and the functional form of
A [153].
Using Eq. (6.13), we can calculate the matrix elements of H between two
Bloch functions and solve the matrix Hamiltonian to obtain the eigenvalues. It
is noted here that we will have a term in exp((ie/h)(Gr — GR:)) in the matrix
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elements, which is explicitly dependent on r as

Gr — Grs = /R A(E)dE + Bo(), (6.14)

where ®p(r) is the flux that penetrates the triangle defined by the three points,
R, R’ and r as shown in Fig. 6.1. For simplicity we neglect the phase fac-
tor coming from ®(r) in the integrals over the atomic matrix element. This
approximation is valid when the magnetic field changes slowly as a function
of the lattice constant. This approximation is consistent with the assumptions
that we made above [154]. Thus the integration on » of the Hamiltonian ma-
trix element gives the zero field matrix element multiplied by the phase factor,

exp{(ie/h)(Gr — Gr)]-
6.3 Two-Dimensional Cosine Band in a Magnetic Field

A simple example of a two-dimensional electron system is a square lattice, whose
energy dispersion is known to be that of a two-dimensional cosine band.* In a
two-dimensional cosine band with lattice constant a, a fractal behavior has been
found theoretically in the energy band spectra in a magnetic field of magnitude
B, depending on whether Ba?/¢, is a rational or irrational number, where ¢
is the flux quantum! defined by,

¢o = g = 4.1356 x 107 '5[T/m?] (6.15)

and a is the lattice constant of a graphene sheet [155]. All of the energy disper-
sion relations are periodic functions of integer values of Ba?/¢o. However, the
magnetic field necessary to observe this fractal behavior explicitly is too large
(~ 10°T) for presently available laboratory magnetic fields. In relatively weak
fields (~ 102T), we only observe Landau levels, except for the Landau subbands
near F = 0 in the case of a 2D cosine band, since the wave functions near £ = 0
are for extended orbits [156).

Let us start from the simple case of a two-dimensional square lattice in a
magnetic field, B, which is perpendicular to the two-dimensional surface. The

*We hereafter neglect the effect of the magnetic field on the overlap integral matrix, S. Thus
the matrix S is always taken to be the unit matrix.

tThe flux quantum in a superconductor is half of this definition, h/2e. The difference between
the two definitions comes from the different charge of a cairier compared to a Cooper pair.
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vector potential A in the Landau gauge is given by
A = (0, Be). (6.16)

Using a Bloch wave function in a magnetic field, the matrix element of the
Hamiltonian in Eq. (6.12) between states k and k' is given by

1 ; "Ry (s
Hipp: = (Op|H|Pp:) = N Z e~ilb B-K"R )_(w/h)(GR_GR')HRR/ (6.17)
R,R/

in which R and R’ are taken as lattice vectors to nearest-neighbor sites. From
Eq. (6.13), we can define H g as the following Hamiltonian matrix element in
zero magnetic field,

HRR = <¢(T—R)\f—;+V‘so(r—R’)>« (6.18)

The phase factor difference Gg —~ Gg: is calculated by using Eqgs. (6.11) and
(6.16),

Gr — G = /OI(R' — R). A(R - AR - R))d\. (6.19)

In the inner product between R’ — R and A, only the two cases of (R’ — R) =
(0,+a) among the four nearest neighbor sites have non-zero values, because
the vector potential A in Eq. (6.16) has only y components. Further, since
the integration path in the case of (R’ — R) = (0,=%a) is in the y direction,
the vector potential A, which is only a function of «, has the same value of
A(R - A[R' — R]) = (0, Bz) along the entire integration path from R to R/,
where z is the  component of R (or R’). Thus Eq. (6.19) gives

1
Gp— G = / (£a)BzdA = £Baz. (6.20)
0

Usingk-R—k'-R' =R-(k—F')+k'-(R— R’) and the fact that we can sum
Eq. (6.17) over R', then Hyy is given by

Hppr = tz G R(k—k') (eik’”’ 4 e~iksa y o2miBaz/do—ikya | e—21riBa:v/¢o+ik,,a>
R

(6.21)
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where ¢ is the transfer integral, and R = (z,y). Here we consider periodic
boundary conditions for the area of a square La x La in real space. Then the
lattice vector R and the wave vector k are quantized as follows:

2r  2n
R = (z,y) = (na,ma), k= (—L-Ep, EQ) (6.22)

where 1 < n,m,p,q < L are integers. Then we can carry out the summation on
R of Eq. (6.21) as follows

Hpgr = t {57 4 =2} §pp
. y ’ ! 1 : ! !
4 {e_tk”a Zez-m(p—p +rL'yn/L + gikya Z ezm(P—P —rL )n/L}akyk;
- n

t et TR0} b+t {8y g ak + €0k ko ak POk

(6.23)
where we have used
R~k — oril(p—pn+(qg—q)m 6.24
p—p (9—¢
and B Ba?
az a r
= —n=Bn=-n, 6.25
bo bo s (6-25)

in which B = Ba?/¢, is the magnetic field per the unit cell measured in units of
flux quanta. Here we consider only the case where B is a rational number, i.e.,
B = r/s, (where r, s are integers whose largest common denominator is unity).
From Eq. (6.23), we can see that k; in a magnetic field is no longer a good
quantum number and k; couples with other k!, separated by
27 2rr
=7l = —-
La’ a s’
where L' = L/s. Thus, the states with k., ks + Ak, k; + 2Ak, - - - interact with
each other. Since sAk corresponds to the reciprocal lattice vector of the two-

Ak (6.26)

dimensional square lattice, the number of k; values which interact with each
other becomes a finite number (s) whenever B has a rational value. Thus to
obtain the energy dispersion relations, we solve the s x s Hamiltonian matrix of
Eq. (6.23), with B as a rational value.

Since the wavevector ky is still a good quantum number even in the presence
of magnetic field, we can solve the Hamiltonian matrix for given ky values to
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obtain s energy bands. It is convenient to express the k, and k, values as

kw: i—ﬂ.p9 (p:])_,,,L’)’
2; (6.27)
v = T (¢=1,...,L)

Since we will solve the Hamiltonian matrix for given k;, too, we will have to
diagonalize the s x s Hamiltonian matrix L x L’ times. It is important to
note that the calculated energy dispersion relations in a magnetic field are two-
dimensional and are a function of both k; and k,. Furthermore, we note that
the Brillouin zone is folded s times in the direction of k, to k,/s. It is useful to
show the energy dispersion for different &, values simultaneously as a function
of ky. An explicit form of the Hamiltonian matrix is given by,

2t cos kya tetkya 0 . 0
tet®va 2t cos(ky + Ak)a te~tkye
H = 0 teikya i . K . y

: . . te—ikya
0 o tettv 2t cos(ky + (s — 1)Ak)a
(6.28)
where a is the lattice constant of the 2D square lattice.

In Fig. 6.2, the calculated Landau energy levels of the two-dimensional (2D)
cosine energy band are shown for a magnetic field value for which the ratio of the
unit cell to the area per quantum flux is 1/60. Along the horizontal axis, the &
values in the ky direction are plotted using the Landau gauge given by Eq. (6.2).
In this case, since r = 1 and s = 60, the unit cell in the magnetic field becomes
a rectangle in the z,y coordinate system with area sa x a. The corresponding
Brillouin zone consequently becomes a rectangle in reciprocal space with area
2n/a x 2w/sa. Thus we consider the Landau energy levels for only the value
ky = 0 and the energy dispersion is given as a function of k;. The above
discussion makes explicit use of the gauge of the vector potential. However,
the calculated energy states should not depend on the gauge. In fact, we can
see from Fig. 6.2 that most of the energy bands are dispersionless, as is also
observed in the case of the Landau quantization of the 2D free electron gas.
Near the £ = 0 region, some oscillations in the energy bands can be seen, and
these oscillations may reflect the delocalized nature of the wave functions.
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plg=1/60
4-0 A T v 1 T A T v

2.0

0.0

/3

Fig. 6.2: Landau energy bands
for a two-dimensional cosine
band in a magnetic field perpen-
dicular to the two-dimensional
plane. Here the ratio of the area
of the unit cell to the area per
guantum flux is 1/60. The en-
ergy is normalized to the near-
est neighbor overlap energy t and
the horizontal axis plots k values
in the direction of y in dimen-

4.0 L . . \ .
00 02 04 06 08 1.0 sionless units, using the Landau

ka/2m gauge of Eq. (6.2).
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6.4 Landau Energy Bands of Graphite

Next we consider the Landau energy bands for two-dimensional graphite, and we

will use the formulation discussed in the previous section. The two differences

from the previous section are that for the case of a 2D graphene sheet: (1) there

are two atomic sites, A and B, in the unit cell as discussed in Sect. 2.3, and (2)

the directions of the nearest neighbors is not always parallel to the z or y axes.
The Hamiltonian matrix between A and B sites is given by,

(@B [H|2p) = % 3 gi(k- Rk R')+(ie/R)(Gr—-Gx/) (6.29)
RR
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where ¢ is the transfer integral between nearest-neighbor sites in zero magnetic
field, which is defined in Eq. (2.18).

Using the same magnetic field derived from Eq. {6.16) and the nearest
neighbor direction R~ R' = R;, (j = 1,2,3) of Eq. (2.24), we can calculate
AG = Gr — G as follows:

a
Ry={-——=,01: AG =10
' (ﬁ ) 1 \ e Bu?
a a a alr a
R, . AG = -VBlz- dh = —— —
( 2\/' 2> /(2) (x 2\/5) 2 83 )
Aa Baz Ba
Ry= |- AG = _— L DO
8 2\/:? / ( ) +

23 2 8/3
(6.30)
Expressing R in unit vectors of @1 and a2, and k in units of the reciprocal lattice
vectors by and bs, we have discrete values of R and k as follows:
\/3— m)
1

R-E(ac,y):mal—{-na,,.—_(-—2 5

where m, n,p,q are integers between 1 and L, 1 < m,n,p,g < L. Then we
transform the phase factor in Eq. (6.29) toi(k- R—k - R') =iR-(k—k')—ik’-
(R'— R), and the first term becomes iR (k— k') = 2ni[n(p—p')+m(¢—¢)]/L,
using Eq. (6.31). Further, the magnetic phase factor appearing in Eq. (6.29) can
be expressed as:

ie Bazx B /3a ]

5 = —2m1 <¢0 1 ) m = —27iBm, (6.32)
where B is the number of magnetic flux quanta within a hexagon of the hon-
eycomb lattice. Here we again assume, as in the previous section, that B is a
rational number which can be expressed by the ratio of two integers, r,s which
have no common divisor except for unity, B = r/s. Finally, we obtain the
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following result for a matrix element of Eq. (6.29):

(2R Hiey)

ll

L 3 eeitn(p=pyomla=a'))/ L {eik;a/ﬁ
N

n,m
+€ik',a;’2\/§e—-§k;a{2e—21r£mr[se—~27rir/63
+eik;a/2\/§eik;a12e2ximr/sezm?rjss}

21,7
— tfspp’ {6qqle—zkwa/\/§
~2mir /63 ik, a/2V/3 ~ikya/2

(6.33)

+6g,9'4Lire
+6q q,__L}rezwirfﬁ‘seik'ma/Z\/ﬁ'eik;am} ]

The matrix element (®g, [#{®F) is calculated in a similar way. We can then
solve the 25 X 25 matrix Hamiltonian as a function of k; and k. In Fig. 6.3 we
show the Landau energy bands of two-dimensional graphite in a magnetic field
perpendicular to the two-dimensional plane. Here the ratio of the area of the
unit cell to the area per quantum flux unit is 1/60 and the energy is plotted
in units of the nearest neighbor overlap energy {. Along the horizontal axis,
kya/4w values are plotted using the Landau gauge of Eq. (6.2). Again we can
see dispersionless energy bands, except that the Landau levels near F = 0 have
some dispersion. Comparing Fig. 6.3 with Fig. 6.2, we see that the level spacing
between two dispersionless energy bands at ¥ = 0 near E = 0 is not uniform
in the case of two-dimensional graphite, in contrast to the uniform level spacing
observed for the two-dimensional cosine bands.

These results are identical with the original Landau level calculation of two-
dimensional graphite by McClure [9, 157] using k- p perturbation theory near the
Fermi energy F = 0. When we use the approximation of linear energy dispersion
near F = 0, the density of states is proportional to E and thus the Landau
quantization occurs at £, = £Cy/n, where C is a constant and n = 0,1,2. ...
In this case it is interesting that we always have the n = 0 Landau level at ¥ =0,
with a density of states that increases with increasing magnetic field, causing
an increase of the free energy. This is why we calculate a large diamagnetism
for graphite, in agreement with experiment. The n = 0 Landau level at £ = 0
arises from a wavefunction consisting of contributions from both the bonding #
and antibonding 7* bands. The equivalence between the A and B sites in the
unit cell, which is discussed in Sect. 2.3 in connection with the energy dispersion
relations of two-dimensional graphite, results in a band degeneracy at £ = 0, so
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Fig. 6.3: Landau energy bands
for two-dimensional graphite in
a magnetic field perpendicular to
the two-dimensional plane. Here
the ratio of the area of the unit
cell to the area per magnetic
quantum flux is 1/60. The ver-
tical axis expresses the energy
in units of the nearest neighbor
overlap energy and the horizon-
tal axis plots the k values in the y
direction using the Landau gauge
of Eq. (6.2).

that the m and 7* bands are not split, even in the presence of interband coupling,.

In a real system, the deviation from the linear k dispersion is important

for understanding the level spacing between the Landau energy bands. For

example, the density of states diverges logarithmically at E/t = %1 giving rise

to a high density of energy bands. If we have dense energy bands folding into

the first Brillouin zone in a weak magnetic field, we can expect the energy
dispersion to become flat and the predicted /n level spacing to be clearly seen.
Figure 6.3, however, corresponds to a very large magnetic field, for which there
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is a quantum flux unit per 60 hexagons or B ~ 103T. In this case the number of
Bloch wavefunctions that are coupled to each other (s = 60) is not large enough
to make completely flat bands. Such a situation will occur for the case of a
carbon nanotube for which the number of Bloch wavefunctions is limited not
by the magnetic field, but rather by the periodic boundary conditions along the

chiral vector.

6.5 Magnetic Energy Bands of Carbon Nanotubes for B || z: Aharonov-
Bohm Effect

Using the method discussed in Sect. 6.3, we now consider the electronic structure
of carbon nanotubes in a uniform external magnetic field. There are two high
symmetry cases for the direction of the magnetic field: one with the magnetic
field parallel to the nanotube axis (B || z) and the other with the magnetic field
perpendicular to the nanotube axis, (B L z). Hereafter the nanotube axis is
taken along the z-axis. In this section we consider the case of B || 2.

When the magnetic field is parallel to the nanotube axis, electrons moving
within the nanotube surface will feel a force perpendicular to the surface. As far
as we consider only the transfer integral between two atoms within the nanotube
surface, the electronic structure would appear to be unaffected by the magnetic
field. This, however, is not correct. The wavefunction will change its phase factor
and thus its momentum, &, will shift depending on the magnetic flux penetrating
the cross section of the carbon nanotube. This phenomenon is generally known
as the Aharonov-Bohm effect, discussed often in the case of cylindrical geometry.
Since the carbon nanotube can be a metal or a semiconductor, depending on
whether there is an allowed wavevector k in the circumferential direction that
has the value of the K, point in the two-dimensional Brillouin zone (see Fig. 3.5),
this Aharonov—Bohm effect will modify the energy gap of a carbon nanotube as
a function of magnetic field [84].

Here we use the two-dimensional Cartesian coordinates (x,y) in the direc-
tions of C), and T in the honeycomb lattice of Fig. 3.2 [158,159], respectively.*

*When we roll the honeycomb lattice into a cylinder, the two-dimensional coordinate z = r¢
(where 7, are cylindrical coordinates) becomes a curvilinear coordinate in three dimensions.
We now take special care on making a rotation of the vector potential. However, as far as we
use two-dimensional coordinates (x,y) on a cylindrical surface in three-dimensional space by
adding a coordinate in the radial direction, r, instead of using cylindrical coordinates, (r,¢, z),
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The vector potential A for By in this coordinate system is given by,

A= (%o) (6.34)

where ¢ is the magnetic flux penetrating the cross section of a carbon nanotube,
and L = |Cy|.! The magnetic phase factor Gg of Eq. (6.11) is given by

1
GR=/(7'—-R)- 2,0 df:(:c—-X)f, (6.35)
0 L L
so that the phase factor difference, AGrgr' = Gg — G g+ becomes
X -X
AGrp =1 T é. (6.36)
Thus if we shift &k, by ¢/(L¢o), that is
by — iy + = (6.37)
Lo

in the magnetic Hamiltonian, the phase factor of the Bloch matrix element of
Eq. (6.17) becomes,

(kx + f‘%) X - (k; + %} X' = (ko X — KXY = (X = x')f‘:i); (6.38)
The second term of Eq. (6.38) cancels with the term iG g g /#o of Eq. (6.36) upon
substitution into Eq. (6.17). Using this fact, we can obtain the energy bands of
a carbon nanotube in a magnetic field, B || z, by shifting the one-dimensional
energy bands in the direction of k, (or K in Fig. 3.5) in the two-dimensional
reciprocal lattice of two-dimensional graphite.

Since the presence of an energy gap in a carbon nanotube is determined by
whether or not the one-dimensional energy bands cross or do not cross at the K’

no complicated situations occur due to curvilinear coordinates. In fact, the coefficients often
used in vector analysis becomes unity; hy = hg = hg = 1,
tAn integration of the vector potential A in Eq. (6.34) on a circumferential loop, c, satisfies

¢=fA-dr=/VxA-dS=/B-dS,
¢ s S

which is consistent with the fact that the magnetic flux, ¢, penetrates the cross section S in
accordance with Stokes’ theorem.
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or K’ points at the corners of the 2D Brillouin zone, a semiconducting carbon
nanotube can become metallic in a parallel magnetic field at certain values of
the phase shift, and conversely a metallic nanotube can become semiconducting
in a parallel magnetic field. The energy gap thus oscillates like a triangular
chopped wave as shown in Fig. 6.4 [160], where the energy gap is plotted in
units of 4w[t|/3L (= 4w|y|/3L in the figure) at the K and K’ points of the
Brillouin zone as a function of magnetic field in units of ¢¢ for metallic (v = 0)
and semiconducting (v = =+1) nanotubes. Here v is the residue of (n — m)
divided by 3. The energy gap is found to oscillate with a period of ¢y. In the
semiconducting nanotubes, the oscillations of the energy gap at the K and K’
points have different phases with respect to each other, while the oscillations
have the same phase in metallic nanotubes. This can be explained by a shift in
the & vector in the direction of K.

This phenomenon corresponds to the Aharonov-Bohm (AB) effect for a
carbon nanotube. The significance of the AB effect in a carbon nanotube is
that the semiconducting or metallic nature of the nanotube can be altered only
by applying a magnetic field parallel to the nanotube axis. This is because the
distinction between a semiconducting and a metallic carbon nanotube arises from
a quantum effect in which discrete wave numbers in the circumferential direction
distinguish between metallic and semiconducting properties. It is noted that the
one-dimensional energy dispersion relations for carbon nanotubes at the top of
the valence band and the bottom of the conduction band follow a linear k relation
only when the carbon nanotube is metallic. When the carbon nanotube has a
semiconducting energy gap, the energy dispersion is quadratic at the top of the
valence band and at the bottom of the conduction band. Thus the effective mass
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of an electron contributing to the transport properties of a carbon nanotube is
a function of magnetic field.

The period of the oscillatory behavior associated with the AB effect is ¢p for
the cross section of a given carbon nanotube. Thus the AB effect is expected to
have periodicity involving a lower magnetic field for larger diameter nanotubes.
In fact, the magnetic field corresponding to ¢ is 1400 T for a circumference of
60 A, but only ~8 T for a circumference of 800 A.

6.6 Magnetic Energy Bands of Carbon Nanotubes for B 1 z: Quantum-
Oscillations

Next we consider the magnetic energy bands for a magnetic field perpendicular
to the nanotube axis: B 1 z. The two-dimensional vector potential A for the
nanotube surface is then given by

A= (0, —Lé-gsin ELE:B) , (6.39)

where L is the length of the chiral vector, Cp, (L = |Cy|), and the coordi-
nates z and y are taken along the circumferential and nanotube axis directions,
respectively, in analogy to those defined in Eq. (6.34) (see Fig. 3.2).

Since all the magnetic flux which comes in at one side of a nanotube goes
out from the other side, the net magnetic flux penetrating the nanotube surface
is always zero. Thus when we consider the phase factor due to the magnetic
field, the phase factor will always be zero (a rational number) for the original
unit cell of the carbon nanotube in zero magnetic field. For a chiral vector,
Cj = nay + maz = (n,m), (n,m: integers; a1, ay: unit vectors), the unit cell
of the nanotube is a rectangle specified by Cj and a translational vector T as
shown in Fig. 3.2,

0<z<L; L=avn?+m?+nm
3L 6.40
0<y< T, T:|T|=—-\/;, (6.40)
dr
where a is the lattice constant of the honeycomb lattice (a = v/3ac-c), and the
integer dp is the highest common divisor of (2n + m,2m + n) [see Eq. (3.7)].
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Using the vector potential Eq. (6.39), AG defined by Eq. (6.19) is given by
AG = Gp - Gpi
1
= / oy 28 o QT”(X +AAX)
0

— 8l
) 27
L AY 2r 27
_ -é-;r- Bﬁ [COS TX — COS8 -E-(X + AX)] (AX # 0)
L . 2w
-é;r_ BAY sin TX (AX = 0),

(6.41)
where R = (X,Y) and AR = R' — R = (AX,AY). Since a carbon atom at an
A (or B) site will have three nearest neighbors, we have three possible values of
(AX,AY). Since all carbon atoms belong to either A sites or B sites, the values
of (AX,AY) are the same for A sites or B sites. Further, the z coordinate of
R, is X given by the definition of the symmetry vector defined in Eq. (3.12),

27rX__21£ _2m
LT IN T

Since AG depends only on X, we can immediately carry out the summation on

r, (r=1,...,N). (6.42)

Y in Eq. (6.29), and thus the wavevector kg in the y direction remains a quantum
number of translation even in the presence of a magnetic field, (—7 < &k, T < 7).
This reflects the invariance of the unit cell with respect to the magnetic field.
The wavevectors k. in the @ direction mix with each other in the presence of a
magnetic field in accordance with Eq. (6.39). The total number of wavevectors
in the = direction is N where

B=2Tp (=0 N-1) (6.43)
and N is the number of hexagons in the nanotube unit cell given by Eq. (3.9).
Since we have two inequivalent carbon sites, A and B, in the graphene unit cell,
we must solve a 2N x 2N matrix to find the energy eigenvalues for a given &,
wave vector. In Fig. 6.5 we show the calculated energy dispersion relations
in a transverse magnetic field for a C;, = (10,0) zigzag carbon nanotube as a
function of the dimensionless wave vector n = k,T'/27 for several values of the
dimensionless inverse magnetic length L/27¢: (a) 0.0, (b) 1.0 (¢) 2.0 (d) 3.0
for the magnetic field B perpendicular to nanotube axis. In Fig. 6.5 we see
that the energy dispersion relations for the sub-bands of the 1D carbon nan-
otubes become less dispersive with increasing magnetic field. Because of the
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Fig. 6.5 Energy dispersion re-
lations of a C) = (10,0) zigzag
carbon nanotube as a function
of the dimensionless wave vec-
tor n = kyT'/27 for several val-
ues of the dimensionless inverse
magnetic length L/2x¢: (a) 0.0,

(b) 1.0 (c¢) 2.0 (d) 3.0, where
{ = \/h/eB. The magnetic field

B is perpendicular to the nano-
tube axis, and the energy is plot-
ted in units of |¢], the magnitude
of the transfer integral.

Fig. 6.6: The energy at ky = 0
as a function of the dimensionless
magnetic field (L/27w¢)?/dgr for
a zigzag nanotube (a) (n,m) =
(20,0), and two armchair nan-
otubes of different diameters:
(n,m) = (20,20) (b), and (9,9)
(c).

finite number (20) of wave vectors k; along the circumference of the carbon
nanotube (n,m) = (10,0), a large magnetic field (3.86 x 10* T) is required to
reach L/27¢ = 3.0. When the diameter (or L) increases, the magnetic field re-
quired to form Landau subbands becomes smaller, and the calculated dispersion

relations approach those of k- 7 perturbation theory near the I' point.

In Fig. 6.6 the energy at k, = 0 as a function of the dimensionless magnetic
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field, (L/27¢)?/dg, is shown for a zigzag nanotube (n, m) = (20, 0) [Fig. 6.6(a)],
and for two armchair nanotubes of different diameters (n, m) = (20,20) [Fig. 6.6(b)]
and (9,9) [Fig. 6.6(c)]. The mixing of Bloch orbitals with different &k, values os-
cillates periodically as a function of magnetic field, which can be scaled by the
dimensionless magnetic field.

The energy dispersion near the Fermi energy is especially important. In
Fig. 6.7 the density of states at the Fermi energy is plotted for a Cy = (9,0)
zigzag nanotube as a function of the dimensionless magnetic field v? = (L/27£)2.
Figure 6.7 shows that when the magnetic field increases, a metallic Fermi surface
appears and disappears in an irregular manner. This phenomena can be identi-
fied with the Aharonov-Bohm effect, in analogy to the case of By discussed in
Sect. 6.5. The irregular oscillation in Fig. 6.7 might be related to the oscillation
of the electronic conductance of a'multi-layer carbon nanotube as a function of
magnetic field at low temperature.



CHAPTER 7.
Connecting Carbon Nanotubes

Connecting two single-wall carbon nanotubes is an interesting
problem, since a semiconductor-metal junction is realized by con-
necting a semiconductor and a metal carbon nanotube. In this chap-
ter we first show how to connect two carbon nanotubes and then we

calculate the electrical conductance of such a junction.

7.1 Net Diagrams of a Junction

There are many illustrations such as Fig. 7.1 in the literature showing the junc-
tion between two carbon nanotubes with different diameters using high resolu-
tion transmission microscopy [107]. In this figure the larger diameter multi-wall
carbon nanotube AB is joined to a smaller diameter multi-wall nanotube CD
through a junction section BC' containing a single pentagon B and a single
heptagon C. In this chapter the general framework for joining two single-wall
nanotubes of different diameters and chiralities is presented in Sect.7.1, Sect.7.2
and Sect.7.3, while in Sect.7.4 the transport properties of such nanotube junc-
tions are discussed. Coiled carbon nanotubes are reviewed in Sect.7.5.

As discussed in Fig. 3.2, a net diagram of a carbon nanotube, as it relates
to rolling up a graphene honeycomb sheet of width L equal to the magnitude
of the chiral vector, provides a useful description for considering the three di-
mensional structure of a single carbon nanotube. In this section we use a net
diagram to describe a junction which connects two carbon nanotubes of different
geometries [i.e., described by different chiral vectors (n,m)]. In Sect.7.2 we show
that two arbitrary nanotubes can be joined in a unique way by introducing a
single pentagon and heptagon pair, and by demonstrating the resulting junction
explicitly.

In Fig. 7.2, we show examples of (a) (12,0)-(9,0) and (b) (12,0)-(8,0) zigzag

115
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(a)

Fig. 7.1: (a) A high resolution TEM image of the junction between
two multi-wall carbon nanotubes. (b) A schematic representation
of (a). (c) A schematic illustration of the transition region be-
tween nanotubes of different diameters, showing a pentagon and
heptagon at B and C, respectively [107].

nanotube junctions, in which the carbon atoms of the pentagon and the heptagon
rings are indicated by filled circles. All the other polygons in the nanotube
junction region are hexagons. All carbon atoms in the junction have three
o sp? covalent bonds, and there are no sp® covalent bonds in the junction.*
Thus we can say that the pentagon and heptagon defects are topological point
defects, associated with the joining of the two nanotubes. The positive curvature
of the pentagonal ring, as is generally seen in fullerenes, makes the diameter
of the carbon nanotube decrease in going from left to right in Fig. 7.2, and
the negative curvature of the heptagonal ring prevents further decrease in the
nanotube diameter. Thus, when the difference between the diameters of the

*Here we neglect the small sp? component in the ¢ bonds due to the curvature of the tube
and the junction.
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(a)

(b)

Fig. 7.2: (a) (12,0)—(9,0) and (b) (12,0)~(8,0) zigzag nanotubes
are shown in which the carbon atoms of the pentagon and the
heptagon are indicated by filled circles. For each nanotube, eight
circumferential zigzag chains are shown.

two carbon nanotubes becomes large, the distance between the pentagon and
heptagon also becomes large.

In Fig. 7.3 we show a net diagram of two carbon nanotubes which are given
by the rectangles TABU and RCDS. The smaller tube TABU and the larger
tube RCDS, are uniquely determined by the chiral vectors, AB and CD re-
spectively. Here a pentagon exists at the site C (or D) and a heptagon exists at
A (or B).! Since the solid angles of a pentagon and a heptagon in the fullerene
are 2r —7 /3 and 27+ 7 /3, respectively, the sum of the angles on the net diagram
around the pentagon and the heptagon, indicated by shaded hexagous, should
correspond to these angles. This fact gives the angle relations:

LACR+ (BDS = 53’-’ and /CAT+ (DBU = -731 (7.1)

The three-dimensional structure is obtained by connecting AT to BU, AC to
BD, and CR to DS through cylindrical surfaces. When we roll up the net

diagram to make a tube, the chiral vectors AB and CD correspond to the

tThis situation can be easily understood when the reader copies Fig. 7.3 and makes a junction
by cutting and connecting the edges.



118 CHAPTER 7. CONNECTING CARBON NANOTUBES

Fig. 7.3: (a) Net Diagram for the joint between two nanotubes.
The chiral vectors for the two nanotubes are shown by AB and

CD. The three-dimensional structure is obtained by connecting
AT to BU, AC to BD, and CR to DS through cylindrical sur-
faces. At the shaded hexagons in the figure, a pentagon exists
at the site C' (or D) and a heptagon exists at A (or B). The

—_

Jjoint region is uniquely expressed by a vector, C A, which is given
by Eq. (7.5). (b) The cone of OALB and (c) its projection are
shown for understanding that the line AM B is a line of minimum
length for going around the surface of the cone. The relation
OM 1 AM B satisfies both (b) and (c).

c_iLcumferential directions of the @_lges While_. the translational vectors ;1T and
CR which are perpendicular to AB and CD, respectively, correspond to the
directions of the nanotube axes in three dimensions.
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7.2 The Rule for Connecting Two Nanotubes

JFrom Eq. (7.1) and using the fact that we connect AC to BD in Fig. 7.3, we
get
LACD+ (BDC = ?.7;1 and AC = BD. (7.2)

Then BDis given by (1) rotating AC around C by m/3 and then (2) translating

by CD. The conditions in Eq. (7.2) give the rule for connecting two nanotubes
as discussed below.

First we will give a formula for rotating a vector ¥, = ndy +may = (n, m)
by m/3 on a honeycomb lattice. Denoting a /3 rotation by R, we get

Rdy = dy — dy, Riy=dy. (7.3)
Thus R, , is given by
Rﬁn,m = n(d’l — 62) + m31 = Un-{-m,—-n‘ (74)

This formula of Eq. (7.4) for R%, ., will be used frequently in the following
discussion. —_— . - .
Hereafter we denote CD, AB, and CA as CD= Cs = (ns, ms), AB= Cr =

(n7,m7),* and CA= 7 = (41, j), respectively, where ng, ms, n7, mz, j1, and jo
are integers. Then the condition for j; and js for given Cy and C; vectors is,

DC 4+ CA+ AB= —Cs+7+Cr=Rj=DB. (1.5)
Using Eq. (7.4), we obtain the components of the joint vector i
(J1,J2) = (ns + ms — ny — my,n7 — ng). (7.8)

Thus the joint vector, f, is uniquely determined, once the two chiral vectors, Cs
and C7 are given. Figure 7.3 is drawn for Cs = (5,5), and Cr = (1,3), which
gives j = (6,—4), and Rj = (2, —6).

*Here 5 and 7 in Cy and C7 mean that the chiral vectors Cs and C7 exist on the pentagon
and heptagon sides of the junction, respectively.
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7.3 Shape of a Junction

The polygon, AC DB, in the net diagram of Fig. 7.3(a) denotes the joint which
connects the two nanotubes. The shape of the joint determines the shape and
axis of the cone as shown in Figs. 7.3(b) and (¢). ACDB is part of a cone
whose vertex is denoted by O in Fig. 7.3(a), while the cone and its projection,
respectively, are shown in Figs. 7.3(b) and (c). For the cone, OALB, the line
AMB is a line of minimum length for going around the surface of the cone, in
which OM 1 AM B satisfies both Figs. 7.3(b) and (c). We assume here that
the lines AM B and CHD in Fig. 7.3(a) correspond to the minimum lines of
the cone surface. This idea is valid, too, for the two tubes, TABU and RCDS,
where the lines AMB and CHD are minimum in length for going around the
nanotube surface. Thus this assumption regarding minimum length lines seems
to be reasonable. It should be mentioned here that the path AM B is an ellipse
on the cone surface in three dimensions [see Fig. 7.3(b)], while the path AM B is
a circle on the nanotube surface. Thus we always expect some distortion arising
from the elliptical shape of the cone section relative to the circle shape of the
nanotube surface. However, this fact does not affect the angle on the tube or
cone surface, since the distortion is perpendicular to the surface.

Within this assumption, the vertex of the cone, O, is defined as the crossing
of the two lines OM and OH such that OM and OH are perpendicular bisectors
of AB and CD, respectively. Since OA = OB, OC = OD, and AC = BD, the
two triangles, AOAC = AOBD, are identical to each other. Thus ZACO =
LBDO, which gives LZACD + /BDC = /OCD + /0DC = =/3. Thus we
conclude that AOCD is a regular triangle. Similarly, since ZAOC = £BOD,
we have /JAOB = /COD = x/3. Thus AOAB is a regular triangle, too. The

position of O is given by rotating CD or AB by 7/3 ,

CO=R CD= (ns + ms, —ns),

CO=RCL (7.7)
AO=R AB= (n7 + my, —n7).

We can easily check from Egs. (7.6) and (7.7) that CO ~ A0= j
When we define the angle of the vertex of the cone in three dimensions as
20, as is shown in Fig. 7.3(b), 0 is given by

. 1
 =sin~! ke 9.594°. (7.8)
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The angle 6 is the angle between the axis of the tube and the axis of the cone in
three dimensions. If the points O, B, and D in Fig. 7.3(a) lie on a line, the angle
between the two axes of the tubes becomes zero, but when the pentagon and
the heptagon are on opposite sides of the cone surface, then the angle between
the two axes of the tubes becomes 26 = 19.19°.

When the pentagon and heptagon are neither along the same line nor on
opposite sides of the cones, the two nanotube axes do not intersect with each
other. In this case, we can define a dihedral angle, ¢, between two planes as
shown in Fig. 7.4. The two planes are defined by (1) the cone axis OF and an
axis of the tube at the pentagon side FE, and (2) the cone axis OF and an axis
of the tube at the heptagon side GK. The dihedral angle, ¢, is defined by the
rotation angle around the cone axis between AOFD and AOFN, as shown in
Figs. 7.4(a) and (b).

The dihedral angle ¢ is relevant to the angle ZBOD = ® shown in the
projection map of Fig. 7.3(a) as follows,*

<p=27r><;(§—3=6® (7.9)

where @ is given by
Cs|* +C7[* = |5
2Cs - Cy

Using Eq. (7.6), we can write the angles, ® and ¢, as a function of ng, ms, ny

cos® =

(7.10)

and my.

The dihedral angle is useful for understanding the three-dimensional struc-
ture of the two nanotube axes and the single cone axis joining the two carbon
nanotubes. The thick line FEFGK provides a wire frame model for represent-
ing the axes for the nanotubes and the cone. The definition of the dihedral
angle provides a good analogy to chemistry, since the dihedral angle of a three-
dimensional molecule is defined by three chemical bonds.

When the dihedral angle ¢ is 7, the positions of the pentagon and the
heptagon (D and B in Fig. 7.4, respectively) are opposite each other. In this case
the bending angle of the nanotube axes in the net diagram, which corresponds

*To obtain Eq. (7.9), we use the following facts [see Fig. 7.4(b)): DN=0D .® = FN . ¢ and
OD:FN =2r:7/3.
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Fig. 7.4: (a) The dihedral angle, ZNFD = ¢ is defined between
the two planes AOFD and AOFN. Here the axis of the cone,
OF, is on both planes. FE and GK are the axes of the two
nanotubes. It is noted that points O, F', D and E are in a plane
and that G, F, K and N are in another single plane. The thick
line EFGK corresponds to a wire frame model for reproducing the
axes for the nanotubes and the cone. D and B are the positions
of the pentagon and the heptagon, respectively, in the joint region
(see Fig. 7.3). The light shaded circle is the bottom surface of the
cone and two dark shaded ellipses are the cross sections between
the cone and each nanotube. The crossing points of the cone
axis with the nanotube axes, F' and G, are not located on these
ellipses. The bond angles, /GFE and ZFGK, sum to 7 — 6. (b)
Another view of the dihedral angle, ¢, shown on the cone. Here
DH 1. OH and OM 1 MB. Points P and @ are both centers of
ellipses.

to @ in Eq. (7.9), becomes 7/6 (or 30°), which corresponds to the case discussed
by Dunlap [161,162].

The points P and Q are both centers of the dark shaded ellipses in Fig. 7.4(b),
and both P and @ are on the nanotube axes. The ellipses are defined by rolling
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up AMB and CHD in Fig. 7.3 so that DH 1L OH and OM L MB in Figs. 7.3
and 7.4. It is clearly seen from Fig. 7.4(b) that P and @ are not crossing points
of the nanotube axes with the cone axis, FG. Thus the nanotube axis length
on the pentagon side becomes shorter by PF in the wire frame model and the
nanotube axis length on the heptagon side becomes longer by GQ, where PF
and GQ are given by

PF = |Cs|sin8, GQ = |Cy|sin?0. (7.11)
The length of the cone axis F'G is given by
FG = OF — 0G = (|Cs| - |Cr]) cosb, (7.12)

using the fact that OG L GB.

Finally we discuss the shape of the dark shaded ellipses shown in Fig. 7.4(b).
The bond angles, £GFE and LFGK, sum to 7 — 8, and the two dark shaded
ellipses have the same eccentricity but have different sizes. When we denote the
longer and the shorter axes of the ellipses as a and b, the ratio of b to a is given
as a function of 6. After some calculation, b/a is given by

1/2
b (1 + —3— sin? @ — 2—3‘/—5 tan a) ~ 0.918 (7.13)
a

where we make use of Bq. (7.8). Thus the cross section of the circle at the end of
the nanotube is distorted by 1—0.918 = 0.082 = 8.2% distortion at the junction.
Using all the formulae given here, the skeleton of the wire frame in three dimen-
sions is well defined by only the four integers of the two chiral vectors, ng, ms,
ny and my. It is important to point out that there is no ambiguity in the struc-
ture of the junction if we specify the two chiral vectors of the nanotubes. Thus
the geometrically optimized structure or electronic structure of the connected
nanotubes is uniquely described by the chiral vectors of the two nanotubes. In
the next section, we consider some specific cases and their electronic structure.

7.4 Tunneling Conductance of a Junction

To discuss the electronic structure and the tunneling conductance of a junc-
tion connecting two carbon nanotubes, we consider a system that includes the
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(ns, ms) nanotube, the (ny,m7) nanotube, and the junction region between
them. Since we consider carbon nanotubes of finite length, all electronic states
are given by discrete electronic levels, and Gaussian broadening is used for cal-
culating the density of states and for calculating the conductance.

The structure of the junctions that we use for illustrative purposes is the
junction between two zigzag nanotubes [69]. A zigzag nanotube defined by
{n,0), where n is an integer, has one of the smallest unit cells among carbon
nanotubes, and the electronic structure of a zigzag nanotube is either metallic or
semiconducting, depending on whether or not n is a multiple of 3, respectively,
as discussed in Fig. 4.2. An armchair nanotube, (n,n), also has a small unit cell,
but all armchair nanotubes are known to be metallic. Thus zigzag nanotubes are
suitable for considering a metal-semiconductor junction and armchair nanotubes
are not. In Fig. 7.2 we show the top view of the junction of two zig-zag nanotubes
for the cases: (a) (12,0)-(9,0) and (b) (12,0)—(8,0) zigzag nanotubes, which are
used here as examples of a metal-metal junction and a metal-semiconductor
junction, respectively. Carbon atoms for the pentagon and heptagon rings are
indicated in Fig. 7.2 by filled circles. The corresponding junction vectors, (J1, j2),
are given by (3, —3) and (4, —4), respectively, and the dihedral angle ¢ is always
zero for zigrag-zigzag carbon nanotube junctions. The three-dimensional lattice
structure is represented by formulae given in Sect.7.3. In the calculation, the
lengths of the carbon nanotubes at both ends are taken as 16 unit cells, though
only 8 unit cells are shown in Fig. 7.2. Here the unit vector of each zigzag
nanotube is dy if @; is selected in the circumferential direction, and the unit
cells of each carbon nanotube start from the carbon atoms of the pentagon or
the heptagon that is connected to each nanotube. The total numbers of carbon
atoms in the calculations are thus 735 and 720 for the (12,0)-(9,0) and (12,0)-
(8,0) zigzag nanotubes, respectively.

The electronic structure is calculated by a simple tight-binding method in
which only the nearest-neighbor transfer energy, ¢, for = orbitals is considered,
and the small hybridization due to the curvature of the nanotube or junction is
neglected. All the calculated energies are in units of ¢, whose magnitude is known
to be between 2.5 eV and 3.13 eV [69]. At the ends of the carbon nanotube,
the dangling covalent 7 bonds give rise to edge states, with eigenvalues £ = 0
and eigenfunctions localized in a region about 6a (a = |@;|) from the nanotube
end. Since only the amplitude of the wavefunction in the junction is included
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in the conductance calculation, the effect of these edge states is automatically
excluded.

The calculated results show that the eigenfunctions of the energy levels
consist of contributions from: (1) the delocalized wavefunction for the whole
system, {2} the delocalized wavefunctions for each of the carbon nanotubes, and
(3) edge states localized at the both ends. Since translational symmetry is broken
at the junction, the Bloch wavefunctions of each carbon nanotube are scattered
by the pentagon, the heptagon and the junction region of the nanotubes. If the
energies of the wavefunctions in the two carbon nanotubes are equal to each
other, a delocalized wavefunction for the whole system is formed, Otherwise, a
delocalized wavefunction is formed only in each nanotube region. This situation
is easily explained by the fact that the plane wave of an electron is reflected
or transmitted at a positive square potential, which gives rise to a tunneling
probability as a function of electron energy. There are, however, no localized
states in the junction region, because the junction does not correspond to an
attractive potential,

In Fig. 7.5, the density of states for the junction of the (a) (12,0)—(9,0) and
(b) (12,0)-(8,0) =zigzag nanotubes is plotted per carbon atom per energy ¢, as
a function of energy in units of |¢|. The energies of all eigenstates are within
|E/t] < 3, which is consistent with three carbon bonds associated with each
carbon atom. Here again all £ = 0 states (see Fig. 7.5) correspond to edge
states whose wavefunctions are localized not in the junction region but rather
at both ends of the nanotubes. Thus these states do not contribute to the
conductance, though their energy is at the Fermi energy F = 0. The density of
states of these connected two-nanotube systems can be understood primarily as
the sum of the density of states of the two constituent carbon nanotubes. We can
see in the plot of the density of states (Fig. 7.5) that not only the two-dimensional
van Hove singularities of graphite at £/t = %1 but also many one-dimensional
1/VE singularities due to the one-dimensional energy bands are quantized in
the circumferential direction {69]. Even when we remove the contribution of the
localized states to the density of states, the resulting density of states is finite
near the Fermi energy E/t = 0 which indicates that one-dimensional metallic
energy bands exist for both the (12,0} and (9,0) nanotubes.

In the case of the metal-semiconductor (12,0)-(8,0) zigzag nanotubes, the
density of states near the Fermi energy is smaller than that of the (12,0)—(9,0)
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Fig. 7.5: The density of states
of junctions for (a) (12,0)-(9,0)
and (b) (12,0)-(8,0) zigzag nano-
tubes plotted in units per sin-
gle carbon atom per energy {,
where the structures are shown
in Fig. 74. All E = 0 states
correspond to edge states whose
0 M. ) AP wavefunctions are localized not
-3.0 -20 -1.0 0.0 1.0 2.0 3.0 in the junction region but rather
£n at either end of the nanotubes.

system because of the absence of a finite density of states for the (8,0) carbon
nanotube near the Fermi energy. It might be difficult to see the differences
between Fig. 7.5(a) and (b). However when we look carefully at the almost
constant density of states region around E = 0, Fig. 7.5(a) shows a larger value
of the density of states than Fig. 7.5(b), and also the energy width for the
constant region is the larger in the case of Fig. 7.5(a). These differences can
be explained as follows. By calculating the energy levels of a (8,0) nanotube
with the same length, we get an energy gap of E,/|t| = 0.62. Because of the
Gaussian broadening that is used, AE/[¢] = 0.033, the energy gap is reduced to
E,/it] = 0.55. In this case the wavefunctions are only delocalized in the (12,0)
nanotube region near the Fermi energy, and not in the (8,0) nanotube.

Using the eigenfunctions for the electrons in the nanotube junction struc-
tures shown in Fig. 7.4, the conductance can be determined by calculating the
current density. When a voltage V is applied to this system, the tunneling
electric current, I, is given by [163]

I = 27reh/dE{f(E)—f(E+eV)}
X Z Gi:i(E)J,ijjjr(E-}-eV)Jiijl.

ii'jj!

(7.14)
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Here ¢ is the imaginary part of the resolvent given by

Gini(E) =Y Ch,Cinb(E — Ey), (7.15)
##

where £, and Cj, are the p-th eigenvalue and i-th component of the p-th eigen-
function, respectively, which are obtained by solving the tight-binding Hamil-
tonian for the junction structure, such as shown in Fig. 7.4. Returning to
Eq. (7.14), J;; is the current operator for atomic orbitals at sites i and j given
by

Ty = .2% [ as(eive; v 0 (7.16)
where {; is i-th atomic orbital, and the integration is taken at the same surface
Sy as was used for calculating the current density. By converting Eq. (7.18) from
a surface integral to a volume integral [163], we see that J;; is non-vanishing
only for ¢+ and j at nearest neighbor sites, and in regions where the voltage
changes significantly between sites  and j. Here we assume that it is only in
the junction region that we expect a voltage drop. Since this nanotube junction
system is so small, we consider the carbon network to be in the mesoscopic
regime, in which electrons are not scattered in the periodic region but only in the
junction region. Tunneling current appears when the energy of the wavefunction
to the left of the junction coincides with the energy plus ¢V of that to the
right. This formulation may be valid even for delocalized wavefunctions over the
whole region. When the voltage matches the tunneling coundition for connecting
delocalized wavefunctions over the whole region, the wavefunction that is then
obtained should be approximated by a delocalized wavefunction at V = 0.

In Fig. 7.6, we show the calculated conductance I/V for the carbon nano-
tube junctions of Fig. 7.4 (a) (12,0)-(9,0) and (b) (12,0)-(8,0) zigzag carbon
nanotubes. The plots in Fig. 7.6 are made as a function of applied voltage
-0.5 < V/t < 0.5, for two different Gaussian broadening values, AE/t = 0.33
(solid line) and AE/t = 0.50 (dotted line}, used above for calculating Giy ete.
In the case of (a) for metallic-metallic nanotube junctions, the conductance in-
creases with increasing applied voltage. The oscillations in the conductance show
resonances in the tunneling probability between the two nanotubes, and these
oscillations are closely related to the universal conductance fuctuations [164] re-
cently reported in carbon nanotubes [165]. The increase of the conductance with
increasing V comes from the fact that (1) the resonance tunneling probability is
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Fig. 7.8: Calculated con-
ductance I/V for (a) (12,0)-
(9,0) and (b) (12,0)~(8,0) zigzag
carbon nanotube junction (see
Fig. 74 for their structures),
as a function of voltage V in
units of |t|, using two differ-
ent Gaussian broadening values,
AE/t] = 0.33 (solid line) and
AE/|t] = 0.50 (dotted line).
The estimated energy gap for the
(8,0) semiconductor nanotube is
0.55}¢].

proportional to V, if the density of states is constant near the Fermi energy, and
that (2) the current operator, J;; is proportional to V. Again it is noted that
there is no contribution to the conductance from the edge states, which can be
automatically excluded because their wavefunctions have no amplitude in the
junction region.

On the other hand, in the case of Fig. 7.6(b) for a metal-semiconductor
nanotube junction, there is no conductance in the energy gap region for the
semiconducting (8,0) nanotube though there is a finite density of states near
the Fermi level. The results clearly show that a delocalized wavefunction is
present near the Fermi level only in the metallic (12,0) nanotube region. Thus
it is concluded that a semiconductor-metal junction is well established even in
a nano-scale, mesoscopic structure.

When the length of the nanofube increases, there are more states near the
Fermi level. Thus the amplitude of the oscillations will deerease relative to the
absolute value of the tunneling conductance and the average level spacings will
decrease as energy bands are formed. The calculated results with larger energy
broadening AFE (dotted line in Fig. 7.6) are closer to this case compared to the
plot for smaller AE. However, if there is a structural defect in the nanotube,
weak localization will make it possible to have a finite level spacing near the
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junction region which gives rise to conductance fluctuations. This might be
a possible reason for the observation of universal conductance fluctuations in
carbon nanotube systems in which the region of the voltage drop corresponds to
a disordered region [164].

In the above discussion we have assumed a voltage drop in the junction.
The reason for this assumption is that we obtain three kinds of wavefunctions in
the above calculation and that two of the three are localized in the constituent
nanotubes. However, if there is no voltage drop at the junction nor over the
nanotubes, we can treat the conductivity by the linear-response theory known
as Landauer’s formula [166,167] (see Sect. 8.1.1). Especially when we consider
a metal-metal junction system connecting two semi-infinite metallic nanotubes,
the energy subbands at the Fermi energy can be well defined over the junction
and thus this assumption may be applied.

In Landauer’s formula, the conductance G is given by

2
_ £ 2
G= = m§n [tmn]” (7.17)

where t,,, is the transmission coefficient between the incident channel n on the
left side and the outgoing channel m in the right side. As for the channels, we
consider only energy subbands which cross the Fermi energy. We have shown
in the Chapter 4 that there are two metallic channels whose wave vector corre-
sponds to the K and K’ points of the two-dimensional Brillouin zone. Thus, we
have four contributions of channels {m,n} = {K,K}, {K,K'}, {K',K}, and
{K',K'} [168,169]. The transmission probability ¢m, is calculated by the re-
cursive Green’s function technique [170] in which the S matrix is calculated by
a tight-binding calculation [169] or by a k - p method in a magnetic field [168].
An interesting result is a scaling law for the radii of the constituent nanotubes,
R,/ Ry, expressed by a dimensionless scaling function f,

_ 62 R2

When Ry/R; >> 2, numerical calculations show that f(Ry/R;) o« (Rz/R;)>
[169]. This result clearly gives the power dependence of the amplitude of the
wavefunctions in the junction region.

The conductance of a junction in a magnetic field is an important tool for
monitoring the phase change of the scattered wavefunction at the junction. The
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Fig. 7.7: Optimized toroidal structures: (a) torus Cgeg and (b)
torus Cygo: Pentagons and heptagons are shaded. The diameters
of the central toroidal hole are the same for (a) and (b), 7.84,
which is close to the diameter of the Cgg molecule [171].

mixing of the wavefunctions between the K and K’ wave vectors occurs at a pair
of pentagonal and heptagonal defects, which are known as inter-valley scattering
centers. We also have intra-valley scattering centers where the wavefunction is
scattered by defects without experiencing any change of wave vector. Numerical
calculations show that the ratio of the intra- and inter-valley scatfering processes
can be modified by a magnetic field [168]. These phenomena can be applied to
enhance the capabilities of nano-scale magnetic devices.

7.5 Coiled Carbon Nanotubes

In this section, we show much more complicated cage structures which have
many pentagon-heptagon pairs. These complicated cage structures were first
discussed in detail mainly by Thara and his coworkers [171]. One possible shape
for a nanotube is a toroidal (or donut) shape, and the other shape is a helically
coiled shape, as shown in Figs. 7.7 and 7.8, respectively.

Several observations of semi-toroidal structures are described in the litera-
ture for single-wall nanotubes [54], and for multi-wall nanotubes, including both
arc discharge grown nanotubes [107] and carbon nanotubes prepared from py-
rolytic carbon and heat treated to 2800°C [59]. Figure 7.9(b) shows a typical
toroidal structure, which can be readily understood using the schematic diagram
in Fig. 7.9(a) in terms of a sock turned inside out.
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Fig. 7.8: Helically coiled nanotubes: in both cases, one pitch
contains a torus Caeg. () coil length = 12.94 and (b) coil length
= 13.23A. The tiling pattern of heptagons in the inner ridge line
is changed upon changing the coil length, though the pattern of
pentagons in the outer ridge is fixed.

Fig. 7.9: {a) Hlustration of a semi-toroidal termination of a nan-
otube which is caused by six pairs of pentagonal and heptagonal
rings in a hexagon network. (b) A TEM micrograph of a semi-
toroidal termination of a nanotube which consists of six graphene
shells [107].

Helically-coiled carbon nanotubes which are obtained by using a cobalt cat-
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Fig. 7.10: A high resolution TEM image of a helix-shaped struc-
ture with a radius of about 18 nm, and a pitch of about 30 nm.
This multi-wall coiled carbon nanotube contains about 10 wall
layers [173].

alyst on a silica surface, have also been observed by high resolution TEM with
inner and outer diameters in the range 3-7 nm and 15-20 nm, respectively, and
up to 30 pum in length, as shown in Fig. 7.10. This helical structure is well known
in carbon fiber growth patterns [172], in which two growth points can occur at
a single nanotube cap, and these two growth points provide the mechanism
for twist growth which characterizes helical carbon nanotubes. The multi-wall
twisted helical carbon nanotube obtained in Fig. 7.10 for the catalytic pyrol-
ysis of acetylene might be considered to follow the same basic crystal growth
mechanism.

Another category of torus that has been observed experimentally is formed
from a long single-wall nanotube by joining the two ends in a seamless way and
thus has a very large outer diameter compared to the tube diameter. This self-
assembled torus has been called a “crop circle” [174]. It is estimated from TEM
observations that 0.01-1% of certain nanotube samples are crop circle tori.

Experimental observations of toroidal structures [173] have also inspired
theoretical investigation of such structures [81]. The number of pentagons and
heptagons, fs and f7, in the toroidal structures is given by the Euler theorem
for polyhedra as

fs—fr=12(1-g) (7.19)

in which the genus ¢ is the number of topological holes. Since a torus (or a
donut) has a single hole at the center, (that is g = 1}, the number of pentagons
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Fig. 7.11: A superlattice structure consisting of the periodic join-
ing of the two armchair sections; (8,8)—(5,5) [175].

and heptagons are equal; fs = f7. An infinite length of carbon nanotube can be
considered as a torus with an infinite toroidal radius, and thus f5 = f7 here also.
When fs = fr = 0, we get a single-wall carbon nanotube defined by a single
chiral vector. When the structure is periodicand fs = fr = n (forn = 1,2,3,...)
per the unit cell, we generally get helical coiled carbon nanotubes, which can be
specified by n -+ 1 sets of chiral vectors. Thus a general coiled-shape nanotube
can be considered to connect many joints, each with a pentagon-heptagon pair.

If the helical coiled carbon nanotube does not have any helical pitch, and if
some joint conditions concerning the twisting of the nanotube are satisfied at the
ends, a toroidal carbon nanotube is formed, as in Fig. 7.10. Further, when the
dihedral angle defined in Eq. (7.9) becomes zero, a one-dimensional superlattice
is obtained, as shown in Fig. 7.11.

When we consider the caps at the both ends of a nanotube, we can no longer
image a loop, so that g becomes zero, giving fs — fr = 12. When we do not
consider any heptagons at the caps, the number of pentagons fs becomes twelve
for the two caps. This case corresponds to all fullerenes, in which case we have
twelve pentagons per fullerene.

In the case of a toroidal shape structure, pentagons and heptagons appear
in both the outside and inside of the main ring of the torus. Thus the angle
¢ defined by Fig. 7.4 is about m, and the angle 26 defined by Eq. (7.8) is close
to 20°. If a torus consists of such a joint with a bend angle of 20°, eighteen
pentagon-heptagon pairs are necessary to make 360°, On the other hand, if the
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hole of the torus is missing at the center, then twelve pentagons are sufficient
to form a fullerene. Since a solid angle of 7/6 is missing at a pentagon defect,
we can imagine a cone shape around a pentagon. The apex angle of the cone
made by a pentagon is 2arcsin(5/6) = 113°.* That means that if adjacent
pentagons are close to one another or are arranged in three dimensions, the
effective curvature becomes large compared with an isolated pentagon-heptagon
pair. In fact, the most geometrically optimized calculation shows that from ten
to fourteen pentagons are necessary for constructing the outer side of a torus.

The actual number of pentagon-heptagon pairs in the optimized structure
calculated by Thara et al., using a Stillinger—Weber model potential {171], is
fourteen for Cayo and twelve for Cggp as shown in Fig. 7.7, which is consistent
with the above discussion. Thara et al. have also calculated the cohesive energy
per carbon atom of (C,), by changing the order m of the rotational symmetry
for a given unit of C,. The optimized m depends on the shape of the torus
and the value of n, and the optimized cohesive energy lies between that of Cgg
(—7.29 eV) and that of graphite (—7.44 eV)[171].

Helically-coiled carbon nanotubes such as in Fig. 7.10 should be defined by
two chiral vectors and the length of the pitch per unit of the two nanotubes. The
inner and outer radii, tubular radius, as well as the pitch and twist values of the
helical structure may be obtained from the chiral vectors, which are obtained
numerically by an optimization of the calculated structure.

The electronic structure of coiled carbon nanotubes was discussed by Akagi
et al. [176]. Their calculated results for the 7 orbitals within the tight binding
approximation show that helical nanotubes can be either (1) a metal, (2) a semi-
conductor, or (3) a semi-metal, depending on the position of the pentagon and
the heptagon, after folding the energy bands of the constituent carbon nanotube
shells in accordance with the superstructure of the coilled carbon nanotubes.
The semi-metallic electronic structure, with overlapping valence and conduction
bands, comes from the fact that a coiled carbon nanotube consists of at least two
different constituent carbon nanotube shells. Thus the lowest conduction bands
and the highest valence bands do not always come from the same constituent
shells. As a result, a small charge transfer occurs between these two bands, giv-
ing rise to semi-metallic behavior. Since each carbon atom has three ¢ bonds,

*The corresponding angle for corannulene is 130.9° and that for a regular truncated icosahedron
is 117.4°.
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the number of carbon atoms and thus the number of 7 electrons in the unit cell
is always an even number.! Therefore, the crossing of two energy bands at the
Fermi level is sufficient for semi-metallic behavior, which however never occurs
for a single-wall carbon nanotube without a pentagon or heptagon, because the
7 electrons show electron-hole symmetry around the Fermi energy.}

This fact clearly follows from Euler’s theorem. If we denote the number of carbon atoms and
o bonds by N; and Ng, respectively, then 3N, = 2N, holds if there are no dangling bonds.
The equation 3N, = 2N, implies that N, is an even number,

$The symmetry breaking between electrons and holes in tight binding results from the inclusion
of the overlap matrix elements S4p in the matrix Hamiltonian. If these matrix elements are
neglected, the band widths of the conduction and valence bands are identical, which means
there is electron-hole symmetry. In the & 7 approximation, the electron-hole symmetry also
holds.






CHAPTER 8.
Transport Properties of Carbon Nanotubes

At low temperature a single-wall carbon nanotube is a quantum
wire in which the electrons in the wire move without being scattered
by scattering centers. We review the difference between classical
and quantum transport very briefly in Section 8.1. Then some re-
sults on transport experiments in carbon nanotubes are summarized
in Section 8.2. Conductance fluctuations as a function of the mag-
netic field, known as universal conductance fluctuations, are found in
carbon nanotubes, and are discussed both experimentally and theo-
retically.

8.1 Quantum transport in a one-dimensional wire

In considering an electric current in a square wire with a width (and a depth),
W, and a length L, the resistance R[Q)] is given by Ohm’s law,

L
R= P"W';g, (8.1)

where p [Q2m] is the resistivity. The inverse of R in Eq. (8.1) is the conductance
G[U] which is related to the conductivity & = 1/p[Um~?] by

w?e

7
In a macroscopic conductor, the resistivity p and the conductivity o are physical
properties which do not generally depend on either the length of the wire L or
the applied voltage to the sample but only on the material. However, when the
size of the wire becomes small compared with the characteristic lengths for the
motion of electrons, then p and o will both depend on the length L through
quantum effects. In the quantum regime, the electrons act like waves that show

G=c¢

(8.2)

137
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interference effects, depending on the boundary conditions and the impurities
and defects that are present in the nanotube.

In mesoscopic systems™ we consider three kinds of characteristic lengths: (1)
the momentum relaxation length (or simply, mean free path) L,,, (2) the Fermi
wavelength Ar and (3) the phase-relaxation length L, [177]. The mean free path
Ly, 1s the average length that an electron travels before it is scattered by a scat-
tering center. The Fermi wavelength Ar = 27 /kp is the de Broglie wavelength
(AB = h/mwv) for electrons at the Fermi energy. The phase-relaxation length
L, is the length over which an electron retains its coherence as a wave. This
infers that the phase of the electron is well defined along the propagating path
of the wave. Thus the electron waves can interfere not only with other electron
waves, but also with themselves within the coherence or phase relaxation length
L. If the scattering of an electron is elastic,’ a phase shift of the wavefunction
can be expected after the elastic scattering event, and thus the wave remains
coherent. Thus elastic scattering does not contribute to L, but only to Ly, If
the scattered wave loses energy by either exciting core electrons, spins associated
with magnetic impurities or phonons, such inelastic scattering events contribute
both to L, and Ly,. It is useful to note that the effect of spin excitation can be
suppressed by applying a magnetic field.

Electron-electron scattering between two valence electrons does not con-
tribute to L, but only to L,. After two electrons are scattered by their mutual
Conlomb potential that is dynamic, the phase information of the wavefunction
as a function of the position r is lost. Thus the electron-electron interaction
decreases L,. However, when we consider N electrons on the Fermi sphere,
where electrons occupy states from the bottom of the valence band to the Fermi
energy in accordance with the Pauli exclusion principle, electron-electron inter-
action between any two of the N electrons does not change the electronic state
under interchange of the two electrons with each other.! In this sense there

*A mesoscopic system is a solid of small enough size, so that the interference of electron
wavefunctions can be observed. A typical size of a mesoscopic system is around 1 — 100 nm
which is larger than the microscopic or atomic size of around 1 — 104 and smaller than the
macroscopic size which is more than 1um.

tIn an elastic scattering process an electron does not change its energy as a result of the
scattering event. The scattering by a static potential is known to be elastic. Here ‘static’
means that the potential has no freedom to promote the electron to an excited state.
tStrictly speaking, the ground state of the N electrons is no longer the Fermi sphere in the
presence of electron-electron interactions. When we take into account electron-electron in-
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is no change in the Fermi sphere before and after electron-electron scattering.
Here we do not consider the excitation of the two electrons out from the Fermi
sphere, since such an excitation process requires energy which could be sup-
plied by phonons. In accordance with the Pauli exclusion principle, we cannot
distinguish any two electrons in the N-electron state, and therefore we cannot
say that the electron state is changed upon electron-electron scattering. In this
sense we conclude that electron-electron scattering in the valence band does not
contribute to Ly,.

In transport experiments, only electrons near the Fermi energy contribute,
so that the lengths L,, and L, are scaled by the Fermi velocity vf as

Lm = vpty, and Ly = wvpty,, (8.3)

where {5, and t, are called the momentum relaxation time and the phase re-
laxation time, respectively, These times are compared with the transit time ¢,
during which an electron transverses the sample length L. However, t,, and
t, do not imply the time of a single scattering event by the relevant scattering
mechanism, but rather correspond to an average time for the many collisions
which result in significant changes of momentum and phase, respectively. Here
a significant change means, for example, that the sum of the changes in momen-
tum and phase over the times t,, and t, reach hkp and 7, respectively.

In Table 8.1 we show the parameters which are used in the present chap-
ter. In Table 8.1 we do not define yet M, L., Ly, D, Ry and Gy which will
be introduced later in this chapter. The table will be useful for finding the pa-
rameters in this chapter. The relationship between these characteristic lengths
determines the three transport regimes: ballistic, diffusive, and classic trans-
port. Ballistic transport consists of single electron conduction with no phase
and momentum relaxation. In a ballistic conductor, the wavefunction of an
electron is determined over the sample by solution of Schrédinger’s equation.
On the other hand, in diffusive motion, many elastic scattering events occur.
However, the phase relaxation length is much longer than the mean free path in
diffusive motion, which brings about the localization of the wavefunction. Clas-
sical conductance is the conductance which satisfies the Ohm’s law. In classical

teractions, the excited states of the N electrons are added to the variational function of N
electrons which is expressed by a sum of the linear combination of the Slater determinants,
and is known as the configuration interaction,



140 CHAPTER 8. TRANSPORT PROPERTIES
Table 8.1: Parameters in transport phenomena

Symbol Name Definition

M Number of Channels [States] A channel is the electronic states
which propagate an electron in a
coherent way.{See Eq. (8.4))

L Sample length Length of sample in the direction
of the current.

Lp Fermi wavelength“) Wavelength of an electron at the
Fermi energy 2 /ky

Ly momentum relaxation length®? Length over which an electron
changes most of its original mo-
mentum,

L, phase relaxation length® Length over which an electron
changes most of its original
phase.

L, localization length Length over which an electron
wavefunction is extended. L, =
MLy, (See Eq. (8.18)).

Ly Thermal diffusion length L3 = g%% {See Eq. (8.28))

1y transit time Time for an electron to go a dis-
tance L.

o momentum relaxation time® tm = Loy fUp

ty phase relaxation time?) ty = Lofvr

D diffusion constants D = L% /t, (see Eq. (8.28))

Ry quantized resistance Ro = B3 = 12.9064kS2 (see Eq. (8.6))

Go quantized conductance Gy = 2£ = 77.4809 x 10753 (see Eq. (8.7))

) Here vp is the Fermi velocity and kp is the Fermi wave vector.
%) We simply call L, the mean free path (see further discussion in the text).
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Table 8.2: Dependence of characteristic lengths on scattering mechanism

Length Scattering mechanism
magnetic electron-
elastic® impurity?) Phonons electron®
N; N,, B T N, W
L, Dec. Dec. Dec. No
L, No Dec. Dec. Dec.
No: no effect, Dec.: Decreases

%) Elastic means no freedom for carrier excitation by the scattering potential.
%) The freedom for excitation of a spin can be suppressed by applying a magnetic
field.

©) Only electron-electron interaction in the valence band is considered.

conductance, both momentum and phase relaxation occur frequently and thus
an electron can be considered as a particle. These conductance regimes will be
introduced in the following subsections.

In Table 8.2 we list the relationship between the characteristic lengths and
the scattering mechanisms. In the table we list, too, how a given scattering mech-
anism changes the characteristic lengths. In elastic and magnetic scattering, the
concentration of ionic and magnetic impurities, N; and N, are parameters which
can vary from sample and sample. The magnetic scattering can be suppressed
by a magnetic field. The excitation of phonons is suppressed at low temperature
but the relaxation of an electron by emitting a phonon is determined by the
electron-phonon interaction. The electron-electron interaction is determined by
the carrier concentration N, and the band width W of the valence band. The en-
ergy band width W can be changed by pressure and by some special geometry of
the crystal such as the presence of superlattices. The frequency of all scattering
processes can be changed (not independently) by changing the Fermi velocity,
which is implemented by applying a gate voltage to the semiconductor-metal
junction. Thus we can prepare materials for transport experiments by making
the desired relationship between these parameters and the various scattering
mechanisms.

In the following subsections we review the characteristics of various transport
regimes: ballistic transport (Sect. 8.1.1), classical transport (Sect. 8.1.2), local-



142 CHAPTER 8. TRANSPORT PROPERTIES

Fig. 8.1: A ballistic conductor
with length L is connected to two
electrodes 1 and 2 whose chemi-
cal potentials are py and ya, re-
spectively. M is the number of
channels for electrons with wave
vectors £ > 0 to propagating
1 2 from 1 to 2.

ization phenomena (Sect. 8.1.3), universal conductance fluctuations (Sect. 8.1.4),
and negative magnetoresistance (Sect. 8.1.5), all of which pertain to transport
in carbon nanotubes under appropriate conditions.

8.1.1 A ballistic conductor (L « Ly, Ly)

For ballistic transport we consider an ideal case where we have no electron scat-
tering on a wire of length L connected to two electrodes, 1 and 2 (see Fig. 8.1).
Since the two electrodes have a large electron capacity, the electron chemical
potentials for electrodes 1 and 2 are constants denoted by p; and ga, (u1 > p2),
respectively. If there are no reflections of electrons at the electrodes, only those
electrons having wave vectors k£ > 0 (in going from the left to the right in
Fig. 8.1) and having energies in the range ps < E < py contribute to the net
current. Electrons going to electrode 2 are assumed to have an initial energy
E at the point contact of elecirode 1. In this case a voltage drop occurs at the
contacts with the electrodes. The pseudo-Fermi energies* for the wire should be
(1 and o for the k£ > 0 and k < 0 electrons, respectively.

Because of the quantization of electronic states in the direction perpendic-
ular to the current, there are several energy subbands E;(k) which have the
same k value. Thus the total current I is given by the sum of the microscopic
currents for the k > 0 states of all the subbands E;(k) which have an energy
p2 < Ej(k) < pi. Hereafter the subbands which have % states in the energy
range py < E < py are called channels. The number of channels is a function of
energy F, which is denoted by M(E)[states]. An electron which has a velocity

*The pseudo-Fermi energies are defined here by the highest occupied energy for & > 0 and
k < 0 electrons. If there is a thermal equilibrium state, there is a single Fermi energy for
electrons. However, since there is no scattering between k& > 0 and k < 0 electrons, we can
treat £ > 0 and k < O electrons as independent electrons.
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v = h™Y(8E/8k) > 0 in an unoccupied state for py < E < py contributes to
the microsecopic current I.= e/t;, in which t; is the carrier transit time ¢, = L/v
(See Table. 8.1). Then the total current I is given by

= Z%Z/ Q;aﬁgék) [£(B; = m) — F(B; ~ pa)) dk

-z / [F(E — 1) — F(E ~ )] M(E)E (8.4)

(#1 — p2)
TM e

where the sum on & is converted to the integral with a spin degeneracy of 2 and
the inverse of the level spacing L/2n. 2e/h in Eq. (8.4) is the quantized current
per subband per unit energy [A/J]. f(E — ;) (i = 1,2) is the Fermi distribution
function with the Fermi energy denoted by ;. When we assume that the total
number of conduction channels M(FE) is constant M over pp < E < py, we
obtain the last line of Eq. (8.4). It is important to note that M(FE) is not a
density of states. In fact the dimension of M (E) and M is not [states/J], but is
rather [states]. If the width of a wire W is very small (less than 1 nm), M =1
even for gy — p2 = 1 eV. On the other hand, if the width of a wire is on the order
of 1 pym, and the Fermi energy is about 1 eV, M becomes very large (~ 10%)
for py — p2 = 1 eV. It should be noted that we have many % states even when
M = 1. All the k states are integrated in Eq. (8.4). Thus we should not count
the number of & states in the direction parallel to the current to M.

Since V = (u1 — p2)/e is the voltage between the electrodes, the resistance
of the ballistic conductor is given by

Rc«_(ﬁl pa2)/e ...__.1_ (8.5)

where R, is called the contact resistance and h/2e? is the quantized resistance

RO:

h
Ro = 55 = 12.9064k0. (8.6)

The inverse of Eq. (8.5) gives the contact conductance G, which is related to
the quantized conductance Gy by
2¢?

Gc = GQM, Gp = T = 77.4809 x 10“ . (87)



144 CHAPTER 8 TRANSPORT PROPERTIES

Thus in a wire with no scattering the conductance is proportional to M. The
quantized resistance and conductance can be observed in clean semiconductors
at very low temperature on samples which have a small M [178].

When we consider the range of values of M for a metal nanotube of finite
length L, we expect to find two energy bands (M = 2) for k > 0 (see Figs. 4.4,
4.5 and 4.6). Thus in the ballistic limit, the conductance of metallic nanotubes
is 2Gp.[179] When the length of a nanotube L is finite, we expect to find discrete
k values spaced by 27/L. Even if the k states are discrete but still numerous,
the relation v = 8EF;(k)/d%k in Eq. (8.4) is applicable as a first approximation.

When we consider static scattering, that is, scattering by a potential in
one dimension, the wavefunction is solved by a one-dimensional Schrodinger
equation, Since the phase and amplitude of the wavefunction at electrode 2
can be obtained from those at electrode 1, a similar discussion for the contact
conductance can be applied. The conductance G and the resistance R are thus

given by
2¢? h 1
G = —— = '—“ H = ’ 3 ‘
M'T E |t ]| R 52 T (8.8)

where 7 is the transmission probabxhty for a channel to go from electrode 1 to
electrode 2, which is given by the sum of transmission probability from ith to jth
channel, [t;; 12. Here we assume again that 7 is constant near the Fermi energy.
Equation (8.8) is known as the Landauer formula. The Landauer formula applies
only if the wavefunction can spread over the whole sample.

The resistance of a mesoscopic wire R,, for a single channel is given in terms
of the transmission probability 7 as

1-7
o~ = fog,

since the reflected wavefunction, which is proportional to R = 1 — 7, causes a

Ry=R-R,=R (8.9)

voltage drop in the wire.

8.1.2 Classic transport, L, € Ly, € L

In a macroscopic metal, phase recombination processes are expected. Thus we
cannot solve the Schrédinger equation over the entire sample since the electron
wavefunction cannot be described by a single phase. When we neglect the effect
of interference during a scattering event, the total transfer probability is given by
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summing over each transmission 7; probability and of each reflection R; = 1-T;,
(i =1,...N). When we consider multiple reflections between ¢ = 1 and i = 2,
the overall transmission probability 715 between electrodes 1 and 2, is given by

Tz = THL (1 + RiRa+ RIRE + )
_ % (8.10)
T 1-RyRy

We can rewrite Eq. (8.10) by using

1-712___1-7‘1_%_1—72'

8.11
T, ~ T T 7% (8.11)

Using the formula for the resistance given by Eq. (8.9), and Eq. (8.11) we see
that the resistance of the wires is additive, By2 = Ry + Ro. We then apply this
result to the N scatterers and we get

N
R- R, =R, Z 1—%’2 ~ NROL%I (8.12)
where N is the number of scattering events and 7 is an average transmission
probability for an individual scattering event over a mean free path L,,. Thus
the total resistance is given by a series connection of microscopic resistances [see
Eq. (8.9)]for every momentum relaxation length L,,. This is nothing but Ohm’s
law [see Eq. (8.1)] in which the macroscopic resistance is proportional to L.

8.1.3 Localization, (L, < L, < L)

When we consider the phase shift at each scattering event, the wavefunctions
which are reflected many times between 1 and 2 are added along with their phases
and the sum is then squared to obtain the transmission probability. When we
consider the transmission coefficient 14 for a wavefunction between electrodes 1
and 2, then t;5 is given by an equation similar to Eq. (8.10),

t1g = —ti—r {(8.13)

where ¢y, ?9, 1 and »q is the transmission and reflection amplitudes of a wave-
function, called the S-matrix. The phase shift 8 corresponds to a round trip
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between electrodes 1 and 2. From Eq. (8.13) we obtain the probability for the
transfer of an electron from electrode 1 to electrode 2

TT,
1-2/RiRacosl+ R Ro ’

where 7; = [t;|?, and R; = |r;}?. It might seem that Eq. (8.14) should be
compared to the case of the incoherent limit given by Eq. (8.10). However the two
equations (8.14) and (8.10) are not analytically connected to each other, since the

TS5 =jtnf = (8.14)

assumptions for the two equations are different as follows. In the incoherent limit
of Eq. (8.10), we consider that the reflected wave is incoherent to the original
wave. Thus we add the probability of multiple reflections in Eq. (8.10). On
the other hand, in the coherent case, we consider many reflections of a coherent
wave in Eq. (8.13) where we add the amplitude of multiple reflections. Thus the
calculated T15’s in Eqs.(8.14) and (8.10) are generally independent,.

The resistance Ry3 is obtained by taking an average over ¢ such that {cos ) =
0, to obtain

= R1 + Rz -+ 2R1R2/R0, (8.15)

e c —
Ris :Rg<—1-———§> _ R01+’R1'R2 LT

75 LT

where R; and R, are given by Eq. (8.9). In Eq. (8.15), R;2 is not additive
(that is Ryy # Ry + Ry.) and thus Ohm’s law is not expected to be valid.
The non-additive term in Eq. (8.15) that involves 2Ry Ry causes an exponential
divergence for R as a function of L, when R(L) is defined by a step of Lo ~ L.
Then Eq. (8.15) gives the differential equation,*

dR _R(L+L,)—R(L) _Ry+2R

Vi I I (8.16)
The solution of Eq. (8.16) is
R(L) = %ﬂ {ezﬁ/ﬁc - 1} — 00, (L 00). (8.17)

Thus the resistance becomes very large in the imit of large L so that the material
becomes an insulator. This means that the wavefunction near the Fermi energy
becomes localized so that the transmission probability from one electrode to the

*Here we assume the following: Ri2 = R(L + Lm), B; = R{L), and Ry = R(AL) = R(Lm) ~
Rg.



8.1. QUANTUM TRANSFPORT IN A ONE-DIMENSIONAL WIRE 147

Table 8.3: Transport regimes of a conductor
Regime Relationship Coherence length
Classical L, <L, <L ~Lp
Localized Ly < L, <L many Lp’s

weak L, < L L,

strong L,>1L, L,

Ballistic Lp>L,>L L

other is almost zero. This is known as the localization phenomenon.! Localiza-
tion can occur even when M is large. In the case of large M, we can redefine
the localization length L. by[180]

Le= MLy, (8.18)

When L, is much larger than L., then the strong localization effect of Eq. (8.17)
occurs. In the strongly localized regime, the conductance arises from the thermal
hopping from one localized site to another. On the other hand, when L. is larger
than Ly, then L in Eq. (8.17) should be terminated at L = L,. In this case,
the conductor is said to be in the weakly localized regime. For both strong and
weak localization, the phase relaxation length L, is required to be much larger
than the mean free path L,,.

The localization becomes strong for large L, for small M, and for small
L,, which makes L, smaller. Most low-dimensional metals, such as thin mefallic
wires or carbon fibers with high Txr, are known to be in the weakly localized
regime and heavily-doped semiconductors and intercalated graphite with a large
fluorine uptake are known to be in the strongly localized regime [181, 182].

In Table 8.3 we summarize the conditions pertinent o the various trans-
port regimes by listing the pertinent relations between the characteristic lengths
and the coherence length of an electron. The coherence length of an electron
infers the existence of an upper limit for the length over which we can solve the
Schrodinger equation for an electron with a single phase. When the coherence

tThere are two kinds of localization. The localization described by Eq. (8.17) is the effect of
a random potential on the one-electron wavefunction and this is called Anderson localization.
When the electron-electron repulsion is large compared with the average level spacing, the
electron cannot move, just ke cars on a highway not being able to move above a critical
density. This second type of localization is called Mott localization.
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length or inelastic scattering length (~ L) is smaller than the elastic scattering
length (L,,), classical transport occurs, in which the resistance is an additive
property. When the coherence length contains many elastic scattering lengths
(Lm < Ly), quantum interference occurs within the lengths of Ly, or L. for the
weak or strong localization regimes, respectively. When the sample is large and
thick, the interference effect can be observed as a microscopic scattering process,
but its contribution to the resistance becomes small compared with the classical
resistance. On the other hand, if the coherence length is close to the sample
size, the conductance is described by a wavefunction that is defined over the
entire sample. Furthermore, in a ballistic conductor, the conductance is given
by the Landauer formula [Eq. (8.8)] in which the number of propagating states
and their probability for transmission determines the conductance.

In the weak localization regime ( Ly, < L, < L. ), we can observe two inter-
esting quantum interference effects: universal conductance fluctuations (UCF)
and negative magnetoresistance (NM), as discussed in Sect. 8.1.4 and Sect. 8.1.5,
respectively,

8.1.4 Universal Conductance Fluctuations

When the phase delocalization length L, is close to the sample size L, inter-
ference effects associated with the wavefunction become important [164,183].
If we prepare many samples of the same size, the conductance will fluctuate
from sample to sample because of differences in the inhomogenecus distribution
of scattering centers. Let us consider M paths of conducting current for each
sample. For the each path, we have many scattering centers and thus many
scattering processes because of the multiple scattering events for the many cen-
ters. When M = 1, the conductance fluctuation, \/-('6—_627 is 2e2/h since the
transmission probability may be distributed homogeneously from 0 to 1. Here
the (6G?) is defined by

(6G%) = (G*) - (G)?, (8.19)

where (X) denotes the ensemble average of X for the sample. An ensemble
average means an average for many samples with different impurity distributions.
Here we show that the fluctuations do not depend on M unless L, ~ L.

*If M paths were independent, the fluctuation 1/ {6G?}/{G) for M paths would be proportional
to~ 1/vV M. The fact that the fluctuation does not depend on M is an interference effect which
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Fig. 8.2: A scattering process
of the reflected wavefunction for
the path entering 1 and exit-
ing 4 in electrode 1 (4,(1 —
4)). Here we consider 4 chan-
nels (M=4). Within the phase
coherence length L, the ampli-
tude of the scattering wavefunc-
tion is given by Eq. (8.23).

1 Ap (1=4) )

We start from the Landauer formula Eq. (8.8) for the conductance normalized

by 2e2/h,
G

9= 2e2/h
where 7, R denote the average on M possible paths of 7(m — n) and R(m —

= MT = M - MR, (8.20)

n), (1 £ n < M) for given m, where m and n denote specific channels. In Fig. 8.2
we show a scattering process of R(1 — 4). There are many scattering processes
in R(1 — 4) as shown below. When we have M channels, the conductance
is generally proportional to M as shown in Eq. (8.20). Since (9) = M(T) =
M — M(R) and (9%) = MX(T?) = M? - 2M*(R) + (R)?, the conductance
fluctuations can be derived from either the fluctuation of (6'7_2—2) or of (6?2),

(69%) = M2(6T?) = M2(SR"). (8.21)

Here we consider the fluctuations of the reflectivity, which are known to be
relevant for the following discussion. The reflected wave function ¥(n — m), for
the path entering n and exiting to m in electrode 1 (see Fig. 8.2), is given by
the summation of the wavefunction Ap(m — n) for the pth multiple scattering
processes,

U(n —m)=Y_ Ap(m —n), (8.22)
p

where a scattering process of the reflected wave, A,(m — n) can be expressed,
for example, by

Ap(m — n) = t(m — my)exp{ikmiLm1}r(m1 — my) exp{ikmaLma} (8.23)
- t(myg — n)exp{ik,Ln}. '

can be seen universally. Note that the fluctuations become small for samples large compared
with L.
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When we assume that the overall phase of A,(m — n) is random in ¥(n — m),
the ensemble average of the reflection probability R(m — n) is given by

(R(m =) = 00— ) =( Dl + 3 ) =( S b,
4 pEp p
(8.24)
where we use the fact that the ensemble average of the sum of 4, A}, for p # P

gives zero because of the assumption of a random phase. In order to discuss the
fluctuations we define the following quantity

Z (Ap A:O‘Ap” A?”‘)
pppp

Z (1A 1?1 Apt 1 [8p 1 Opt prr + Bp,pr 81 ] (8.25)
p.p' i p
2{R(m — n))?

(R(m — n)?)

I

1t

Thus the fluctuations of the reflectivity are given by
(§R(m — n)?) = (R(m — n)?) — (R(m — a))* = (R(m — n))®.  (8.26)
Since (R(m — n)) ~ 1/M* we get from Eq. (8.21),
(89%) ~ 1. (8.27)

Thus the fluctuations in g are on the order of the quantum of conductance
2e%/h which does not depend on M (or on a particular choice of material).
We cannot avoid this fluctuation from sample to sample with the same impurity
concentration. This fluctuation can be seen by changing the length of the sample
provided that the sample size is smaller than the phase relaxation length (L <
Ly). The effective distribution of impurities can be changed by applying a
magnetic field since the phase of each process [see Eq. (8.23)] is changed by the
vector potential e A.

When the phase delocalization length L, becomes smaller than L, the fluctu-
ations can be smoothed out. When we consider N = L/L, quantum fluctuating
conductors in series, the fluctuation of the conductance become 1/N3/2 ~ [~3/2
smaller than for a single conductor. This power dependence can be seen by
changing L.

1The probability of choosing channel n from M channels is on the order of 1/M. Here we
assume that R and 7 are in order of 1, Note that the conductance G is ~ MGp.
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When we fix the sample length L, the energy h/t, can be considered as an
energy width for phase-coherent motion. This means that within a lifetime #,,,
an electron can vary its energy by h/t, from the uncertainty relation. At high
temperatures such that kT is larger than A/t, and L, is larger than L, then
N = kgT/(h/t,) independent channels are open incoherently. When we define
the thermal diffusion length Ly for a given diffusion constant D, the Einstein
relation says that

Dh
2 _ 2 _
LT = '];'B—T and Ltp = Dt(p (8‘28)
so that )
kgT L
N=-—""—=[Z]) . 8.
h/tlp <LT> ( 29)

Thus the universal conductance fluctuations show a temperature dependence
given by

h
constant T<

tokp
AV (6g2) = h/i 1/2 wh (8.30)
Go (—V’) T_1/2 T>
kB tzpkB

8.1.5 Negative Magneloresistance

An another interesting phenomena observed in the weak localization regime is
negative magnetoresistance, which refers to a decrease in the resistance with
increasing magnetic field. Here we show the basic idea behind the negative
magnetoresistance.

Consider the special case for A, [see Eq. (8.23)] in which the starting and
ending sites are identical, that is R(m — m). Consider a process A, : m —
my — my — --- — my — m, and the time-reversed processes Az,z tm o—
my -+ = mgy — my — m, so that the overall phases are identical. Thus when
we consider the reflection probability of Eq. (8.24) for R(m — m), we expect a
coherence between A, and A%,

R(m—m) = |(A1+ A+ )+ (AR + AF +- ) = |4+ AR = 4)4P.
(8.31)
If there is no phase correlation between A and AR, R(m — m) would give
2|A]%. Actually there is no time reversal symmetry in R(m — n) for n # m,
since R(m — n) and R(n — m) are different paths from each other, so that the
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reflection probability becomes 2|A|2. The coherence associated with Eq. (8.31)
is known as enhanced backward scattering, and can be applied to radar systems
for searching a cloud which can be treated as a random material.

When a magnetic field is applied, the phases of A and A® become different
from one another. The phase difference is proportional to the magnetic flux
penetrating through a loop made from a set of 4, and AZ}. However, since the
lengths of the loops are different for different A,’s, thus we can no longer expect
any enhanced backward scattering, thus decreasing the reflection probability.
This is an explanation of the origin of negative magnetoresistance under weak
localization conditions.

8.2 Transport experiments on carbon nanotubes

In this section we discuss quantum transport in carbon nanotubes. Whereas
Sect. 8.1, considers quantum transport in general, we start this section with
a few comments about quantum transport in carbon nanotubes generally and
then proceed to discuss specific experiments. Since the Fermi surface of a 1D
nanotube consists of the two points +kp, scattering processes involve taking an
electron from +kp to —kp or visa versa. For an armchair nanotube this would
involve a phonon of 47 /3T where T is the length of the 1D translation vector,
whereas for zigzag nanotubes, phonon with wave vectors 27 /T are effective.
Transverse acoustic (out-of-plane) phonons are most effective in this scattering
process through the electron-phonon interaction [78].

Transport measurements of nanotubes show different aspects depending on
the sample type, such as a single-wall nanotube (SWNT), a single rope (SWNT
bundle), a single multi-wall nanotube (MWNT) and a single MWNT bundle.
The most difficult experimental problem for the transport experiments on car-
bon nanotubes is the attachment of electrodes to the extremely thin nanotubes,
and this is discussed in Sect. 8.2.1. In the initial transport experiments on an
individual carbon nanotube [184], rather large diameter (~20 nm) multi-wall
nanotubes were used. Subsequently, single wall nanotubes became more avail-
able and the focus of research on the transport properties of carbon nanotubes
shifted emphasis to the single-wall nanotubes, since single-wall nanotubes repre-
sent a model system for studies of quantum transport, as discussed in Sect. 8.2.2,
where transport properties for an isolated single-wall nanotube are presented.
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This is followed by a report in Sect. 8.2.3 on transport in a single rope of single-
wall carbon nanotubes where inter-tube interactions play a role. Phenomena
associated with weak localization and universal conductance phenomena are ob-
served in multi-wall nanotubes and are discussed in Sect. 8.2.4.

8.2.1 Allaching Conlacts

We summarize here some of the techniques that have been used for attaching
contacts to carbon nanotubes for carrying out transport experiments [185]. One
method for attaching contacts to an nanctube is to place a liquid drop, contain-
ing suspended nanotubes, on a substrate on which electrodes were previously
deposited. For those nanotubes which connect two electrodes, transport mea-~
surements can be carried out [150,151]. In another version of this method, a
single contact is made with this technique and a scanning tunneling probe is
used to make the second contact as this probe moves along the wire, continu-
ously measuring the resistance as a function of nanotube length [186]. A third
method involves the use of sophisticated semiconductor Si technology to attach 4
tungsten leads by a focused ion beam deposition technique, as seen in Fig. 8.3 for
four contacts attached to a multi-wall nanotube in the 5—10 nm diameter range
on an oxidized silicon surface [185]. The 80 nm wide tungsten wire contacts are
deposited by focused-ion-beam induced deposition using a W(CO)g carrier gas,
The nanotube is visualized by the focused-ion-beam with a low beam current
(4 pA) for imaging the nanotube. The deposition of the contacts is performed
under computer control without any visualization. The distance between the
probing leads on the sample is in the 0.3-1.0 ym range. The four leads are con-
nected to a gold pad and the currents and voltages are observed by a four-point
contact measurement. The advantages of this method is that 4 contacts can be
placed reliable on the single nanotube. The effect of strain introduced by lead
attachment process is not understood.

Another approach for making electrical contact, that utilizes so of the tech-
niques mentioned above, is seen in Fig. 8.4 where the carbon nanotube is placed
on top of a $i/Si0; substrate on which two Pt electrodes had previously been de-
posited. This method has the advantage of perturbing the nanotube only weakly,
but has the disadvantage of a high contact resistance and of not providing four
contacts
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Fig. 8.3: An individual multi-
wall carbon nanotube connected
to four 80 nm wide tung-
sten wires by focused-ion-beam-
induced deposition [185].

Fig. 8.4: AFM tapping-mode
image of a carbon nanotube on
top of a $i/Si0; substrate with
two 15 nm-thick and 140 nm
wide Pt electrodes. A schematic
circuit diagram is presented at
the top of this figure and is rel-
evant to the transport experi-
ments shown in Fig. 8.5 [51].

8.2.2 An Individual Single- Wall Nanotube

We now discuss experimental results from the first transport experiment on an
individual isolated single-wall carbon nanotube [51]. In this experiment a single
wall nanotube (the very thin wire in Fig. 8.4} is placed on top of a S5i/5i0,
substrate with two 15 nm-thick and 140 nm wide Pt electrodes as shown in
Fig. 8.4 [51] and the bias voltage Viias is measured between the two electrodes.
A gate voltage Viaee, applied to the third electrode in the upper-left hand corner
of Fig. 8.4 is used to change the electrostatic potential seen by the nanotube.
The bias voltage Vias changes the chemical potentials of the two electrodes, py
and po (see Fig. 8.1), while the gate voltage Viate changes the position of the
energy levels of nanotube relative to the chemical potentials, 41 and pg. Because
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Fig. 85: a. Current-voltage
curves of a carbon nanotube at
a gate voltage of 88.2 mV (curve
A), 104.1 mV (curve B) and
120.0 mV (curve C). In the inset,

08 /’ more ] — W, curves are shown
" ) S - - with Vgate ranging from 50mV

b Bl voltsge (mV) (bottom curve) to 136 mV (top
- curve). b. Current versus gate
2ol : l l 1 l voltage at Vi = 304V, The two
E . I 1 N “ traces were performed under the

same conditions and represent a
bistability (see text) {51].

o
Gate voltage (mV)

of the finite length of the nanotube (L =3 um), the one-dimensional energy band
is split into energy levels whose spacing AE = hvp /2L is estimated to be AE ~
0.6 meV, where we use an estimate for the Fermi velocity of vp = 8.1 x 105 m/s.
The two-point resistance at room-temperature of such a single wall nanotube is
~ 1 M. The estimated contact resistance, obtained from a similar nanotube on
which a four-peint contact geometry was used, is 300k} at room temperature
and 1MQ at 4 K.

In Fig. 8.5a, we show the I —Wyj,s curves at a gate voltage of 88.2 mV {curve
A), 104.1 mV (curve B) and 120.0 mV (curve C) at 5 mK. The plateaus of non-
gero current clearly show ballistic transport when a conducting channel is in the
range of Vhias = (11 — p12)/e. The position of the steps in the I ~ Wyus curves is
changed by increasing the gate voltage. However, we must consider not only the
level shift effect but also the Coulomb charging effect of the nanotube, whereby,
the nanotube is considered as a capacitor with a capacitance C. At very low
termperature, such that the thermal energy kg7 is smaller than the charging
energy E. of an electron kg7 < E, = e2/2C, the current flow can be blocked
by this energy shift when the charge from the current flow itself shifts the levels
out of the bias window between p; and ps. Thus, current flow in Fig. 8.5b
appears only when Was > FE,. Since the energy of the levels in a nanctube
can be modified by Vgate, the step positions shown in the inset of Fig. 8.5a are
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Fig. 8.6: Conductance G = I/Vyjas Vs AVgare at the bias volt-
age Viias for three different temperatures with the bias win-
dow Vipias = 104V, The solid lines represent fits to the function
G x cosh"2(eAV@;me Ja2kpT). Left inset shows a model for ex-
plaining the temperature dependence of G. Right inset shows the
current vs gate voltage for W5 = 0.4,0.8,1.2 and 1.6 mV, show-
ing the contribution from the lower-lying levels within the bias
window [51].

smoothly changed by changing Vgate.

When the bias window denoted by Vi,as is very narrow (30uV), the current
flow appears like a delta function of Vgate, only when the energy levels are in the
bias window between y; and po, as shown in Fig. 8.5b. Some double é-functions
are also observed in the two traces in Fig. 8.5b, which are taken under the
same experimental conditions. This bistability may be explained as the result of
switching offset charges that shift the energy levels of the 1D carbon nanotube.

Figure 8.6 shows the temperature dependence of the spectra of a sharp peak
that is observed in Fig. 8.5b, as a function of the gate voltage shift AVy,. from
the peak conductance point, with the minimum bias window Vi.s = 10uV. A
decrease in intensity and a broadening of the conductance peak with increasing
temperature shows the relaxation of the phase and amplitude of the resonance
tunneling by phonon scattering events. Solid lines in Fig. 8.6 are fitted to the
function G cosh"z(eAnge /20kpT), where the factor & = 16 obtained from
Fig. 8.6 is the ratio of AVgae to the shift of the energy levels. This ratio corre-
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sponds to the ratio of the capacitance of the gate to that of the nanotube. The
temperatures in Fig. 8.6 (110, 390, and 830 mK) are the fitted temperatures for
the plotted curves, while the measured temperatures are 5, 240, and 600 mK, re-
spectively. The discrepancy between the fitted and the observed temperatures is
due to the finite bias voltage (10uV = 116 K) and the residual noise in the mea-
surement system. Although the absolute value of conductance is ~0.03(2¢2/h),
the quantum conductance 2e?/h could be obtained at a smaller bias voltage. If
the conductance is observed with a smaller bias voltage and a larger o value,
the conductance of Fig. 8.6 will show saturation at 2e?/h, thus providing clear
evidence for quantum conductance.

When the gate voltage increases (see the right inset of Fig. 8.6), step struc-
tures are observed. For curves at high gate voltages (about 140mV) plateaus
can be seen for different values of Wias. The plateaus correspond to the entry of
a state at the Fermi level (denoted by the solid line in the left inset of Fig. 8.6)
into the bias window. When we further decrease Ve, the next plateau appears
and is attributed to conduction processes associated with the lower level below
AE ~ 0.4 meV (see the left inset of Fig. 8.6), which is consistent with the es-
timated level spacing of AF ~ 0.6 meV for a I =3um nanotube. A value of
a=12 is estimated for the data in Fig. 8.6 from the ratio of AVgye to AE. This
value of =12 is in satisfactory agreement with the previous value of =16 in
the first approximation. The further decrease of Vae brings the system back to
a no current situation, since the state at the Fermi level is now located outside
of the bias window. These results are consistent with the fact that the curves in
Fig. 8.6 with a larger bias window Wjas show a signal within a larger range of
Vgate-

The experiments, described in Figs. 8.4, 8.5 and 8.6, clearly show ballistic
transport effects associated with the discrete levels imposed by the finite length
of the one-dimensional nanotube conductor. The observed phenomena can be
understood by steps in the quantum conductance, and charging effects associated
with the micro capacitances of the nanotube and the gate.

The resistance measurements for various nanotube samples show that there
are metallic and semiconducting nanotubes, which was first predicted theoreti-
cally, as discussed in Sect. 4.1. The resistivity is about 10~*-10~3 Qcm for the
metallic nanotubes, while the room temperature resistivity is about 10! Qcm
in semiconducting nanotubes. The semiconducting nanotubes exhibit a slope
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Fig. 8.7: I — V characteristics of a single 12-nm-diameter rope
made up about 60 1.4nm-diameter nanotubes at different temper-
atures for the rope segment between contacts between 2 and 3
(Left inset). In the right inset shows schematic energy levels near
Fermi energy which are quantized because of the finite length of
tube. [187]

in a plot of logR versus 1/7", thereby indicating an energy gap in the range
0.1-0.3 eV, which is consistent with the theoretical values of the energy gap
for the corresponding nanotube diameters. On the other hand, for the metallic
nanotubes, large variations from sample to sample are observed in the absolute
values of the resistance and in its temperature dependence from 4 K to 300 K.
This variation has been attributed to the presence of many defects in multi-wall
carbon nanotubes. Since the nanotube sample shows a slight positive magne-
toresistance, the sample may contain a large number of defects, which seriously
affect the measured conductance.

8.2.3 An Individual Rope of Single-Wall Nanotubes

Next we show transport results from a single 12-nm-diameter rope containing
about 60 SWNTs of 1.4 nm-diameter [187]. In Fig. 8.7, the current-voltage
characteristics are shown for the rope segment between contacts between 2 and
3 (Left inset). At room temperature, the [ — V characteristics gives Ohmic
behavior, while the conductance is suppressed near V = 0for T < 10K. A similar
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gap is obtained by other single ropes with different diameters and lengths [187].
From Fig. 8.7, we see that the resistivity decreases with increasing temperature,
and this is not typical metallic behavior.

In another experiment on a single rope, about a 10% increase of the resis-
tivity was reported from 50 K to 280 K [188], while a decrease in the resistivity
with increasing T’ was found below 50 K. A negative dp/dT with a dependence of
p(T) ~ T~93%7 was even found in the higher temperature region when a single
rope has a disordered nanotube alignment. The reasons for these temperature-
dependent trends are not explained. It is believed that the transport between
single-wall nanotubes in a rope makes an essential contribution to the current
at low temperatures.

8.2.4 Magneto-Transport in Mulli-Wall Nanotubes

One of the early transport experiments on multi-wall nanotube bundles with
50 nm diameter showed a negative magnetoresistance. In Fig, 8.8 we show the
resistance of a bundle of multi-wall nanotubes as a function of temperature at
several values of the magnetic field (4 T, 7 T, 11 T, and 14 T) [150]. ;From



160 CHAPTER 8. TRANSPORT PROPERTIES

the figure we can see three kinds of temperature regimes denoted I, II, and
I1I. In the higher temperature regime I, the resistance continuously increases
with decreasing temperature. These phenomena were accounted for using a
simple two-band semimetal model [189] for the electron and hole concentrations
n and p as a function of temperature 7", and a value of 3.7 meV for the band
overlap, which is much smaller than A = 40 meV in 3D graphite [190]. Since the
interlayer interaction in the multi-wall nanotube is incommensurate, as discussed
in Section 11.4, the band overlap can be expected to be much smaller, which
is consistent with the smaller value of A in the small diameter nanotubes. In
the temperature regime I, the resistance is almost independent of temperature
and has a value of 1072 to 1073 Q-cm, thereby suggesting a conducting nature
of carbon nanotube bundles. In the temperature regime III, a peak in the
resistance is observed whose origin may relate to possible ordered states induced
by lowering the symmetry. By lowering the temperature, the resistance quickly
decreases.

In the low temperature regime below 77 K, a relatively small negative mag-
netoresistance AR/R = [R(H)— R(0)]/R(0) < 0.1 is observed with A normal to
the tube axis. There are at least two possible reasons for the observed negative
magnetoresistance. One explanation is the effect of weak localization, as dis-
cussed in the previous section. However, weak localization effects are expected
to occur at much lower temperatures. The other possible reason is associated
with Landau level formation at the Fermi level. As shown in Chapter 6, the
n = Oth Landau level in two dimensional graphite always appears at the Fermi
energy, and the density of states increases with increasing magnetic field, re-
flecting the degeneracy of the Landau orbits. This enhancement of the density
of states at the Fermi Level contributes to an increase in the current path and
thus is expected to give rise to a negative magnetoresistance. Thus the nega-
tive magnetoresistance above 4 K may be associated with a Landau-level effect
(called the Bright model [191]).

In the very low temperature region below 1 K, the negative magnetore-
sistance shows relatively large values of AR/R as shown in Fig. 8.9 [150]. In
the figure, the magnetoresistance shows the same magnetic field dependence at
2.3 K and 1.13 K. However below 1 K, the magnetoresistance becomes quite
large (up to AR/R = 0.3), which is a typical value for the magnetoresistance in
the weakly-localized regime [192]. The phase delocalization length L, increases
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Fig. 8.9: Magnetoresistance
AR/R as a function of mag-
netic field at low temperatures
below 1 K. The data are taken on
the same multi-wall carbon nan-
otube as in Fig. 8.8 [150].

\/\,\’\,\_\\\::\\: Fig. 8.10: Magnetic field de-
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LR are known as universal conduc-
Magnetic Field (T) tance fluctuations [184].

with decreasing temperature so that the loop of phase difference discussed in
the previous section becomes large even for small magnetic fields. Thus a nega-
tive magnetoresistance effect is observed in carbon nanotubes at lower magnetic
fields than is usually found in graphite. At the lowest temperature of 0.3 K in
Fig. 8.9 a saturation of AR/R is observed at large magnetic fields. These data
show a complete quenching of the enhanced backscattering. It is interesting that
the negative magnetoresistance phenomena occur below that temperature.

In Fig. 8.10 the magnetoresistance for a 20 nm multi-wall nanotube at very
low temperature is presented as a function of the magnetic field. Clearly the
magnetoresistance is seen to fluctuate randomly by varying the magnetic field.
However the peaks in the magnetoresistance for different temperatures appear
at the same value of the magnetic field. Thus the fluctuations in the magnetore-
sistance are not associated with noise but rather are due to a quantum inter-
ference effect known as universal conductance fluctuations, which is discussed
in Sect. 8.1.4. By applying an external magnetic field, the carrier scattering
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processes are changed, thus having the same effect on the magnetoresistance
as is observed in Fig 8.10. The effect of variation of the magnetic field is the
same as the fluctuations in the conductance that would be observed from sam-
ple to sample. The amplitudes of the two indicated fluctuations in Fig 8.10
are constant in magnitude below ~0.4 K, AG = 0.1Gy, where Gy = 2¢%/h is
the quantum conductance [see Eq. (8.7)], showing that the multi-wall carbon
nanotube consists of N ~ 5 serial quantum wires of length L,. The amplitude
of the fluctuation is constant below 0.4 K and decreases as T%/2 above 0.4 K,
consistent with Eq. (8.30), from which we can estimate ¢, = 2 x 10~ gec



CHAPTER 9.
Phonon Modes of Carbon Nanotubes

The phonon dispersion relations of carbon nanotubes can be un-
derstood by zone folding the phonon dispersion curves for a single
2D graphene sheet. In Sec. 9.1 and Sec. 9.2, we first explain how to
calculate phonon dispersion relations in two-dimensional graphite.
Then we discuss phonon dispersion relations for carbon nanotubes
in Sec. 9.3. The zone-folding technique is the same as that used
in treating the electronic structure of carbon nanotubes, which is
discussed in Sec. 4.1.1. We also consider the three-dimensional dy-
namical matrix, taking the curvature of the nanotubes into account,
and obtain results for the phonon dispersion relations.

9.1 Dynamical matrix for phonon dispersion relations

We start with an approach for calculating the phonon dispersion relations within
a force constant model, in which inter-atomic forces are represented by spring
constants. Although the model is simple, we can reproduce the experimental
results as closely as possible by increasing the number of the force constants.

In general, the equation of motion for the displacement of the i*? coordinate,
u; = (x4, yi,2) for N atoms in the unit cell is given by

Myt = Y K0 (u; —wi),  (i=1,...,N), (9.1)
j

th

where M; is the mass of the i*" atom and KG9 represents the 3 x 3 force

constant tensor* between the i*? and the j* atoms. The sum over j in Eq. (9.1),

*A second rank tensor is defined by a 3 X 3 matrix whose elements {Kzz, Kzy, ..., Kzz) can be
transformed as U—1KU, where U is a unitary matrix which transforms the z,y, z coordinates
into another orthogonal 2/, 7', 2’ coordinate system.

163
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is normally taken over only a few neighbor distances relative to the ith

site,
which for a 2D graphene sheet has been carried out up to 4th nearest-neighbor
interactions [193]. In a periodic system we can perform a Fourier transform of
the displacement of the i*! atom with the wave number, k/, to obtain the normal
mode displacements ug)

1 —i(k' Ri—wt),, (i) (z) itk Ri—wt)
- 2 i /, E u;, (9.2
IV . ¢ “k o ¢ o (92)

where the sum is taken over all (Nq) the wave vectors k' in the first Brillouin
zone' and R; denotes the original position of the i® atom. When we assume the

same eigenfrequencies w for all u;, that is #; = —w?u;, then Eq. (9.1) becomes
B D S O M M A
J ke

Upon multiplying both sides of Eq. (9.3) by etk Ri taking a summation on R;,
and using the following orthogonality condition in the continuum k space,}

Zei(’cmk')'ﬂi = Nabg g (9.4)
R,

we get

S OK — M (k) | ufy) — ST Kk aRsyD =0, (i=1,...,N),
J J
(9.5)

where [ is a 3 x 3 unit matrix and AR;; = R; — Rj is the relative coordinate
of the i*" atom with respect to the j*® atom. The vibration of the i*® atom is
coupled to that of the j*h atom through the K() force constant tensor.

We note that j in Eq. (9.1) can be a site in the neighboring unit cell when
the i*" atom is near the unit cell boundary. Here we show that all j in Eq. (9.5)
can be shifted to a site in the original unit cell. When the j and j’ sites are
equivalent to each other (ie., R; and Rj differ by a lattice vector), then by

1 Ng, is the number of unit cells in the solid and thus N ~ 1023,
t5k,k’ is a delta function which vanishes unless k = k', in which case 8Je )+ has the value of

unity.
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considering R; — R/, we can show that ug) = ug’) using the definition of ug)
in Eq. (9.2). Thus Eq. (9.5) contains the variables ug ) within the original unit
cell, The contributions of K@") in which the j sites are equivalent to the j sites,
are added to K'4) with a phase factor e* 881 Thug we obtain simultaneous
equations in Eq. (9.5) for 3N unknown variables ug = ‘(ug),ug), . ~-,u§cN)),
for a given k vector, in which the superscript t denotes the transpose of a row
vector into a column vector, and vice versa. Then Eq. (9.5) can be formally
written as follows by defining a 3N x 3N dynamical matrix D(k)

D(k)uy = 0. (9.6)

To obtain the eigenvalues w?(k) for D(k) and non-trivial eigenvectors ug # o,
we solve the secular equation detD(k) = 0 for a given k vector. It is convenient
to divide the dynamical matrix D(k) into small 3 x 3 matrices PUD(k), (i,j =
1,---,N), where we denote D(k) by {DU9)(k)}, and from Eq. (9.5) it follows
that D) (k) is expressed as
DD (k) = (\2 K" My (k)1 | 8i = Y K¢tk R (9.7)
3" I
where the sum over j” is taken for all neighbor sites from the i*® atom with
K" # 0, and the sum over j' is taken for the equivalent sites to the j** atom.
The first two terms! of Eq. (9.7) have non-vanishing values only when i = j,
and the last term appears only when the j*! atom is coupled to the i*" atom
through K(9) # 0.
In a periodic system, the dynamical matrix elements are given by the product
of the force constant tensor X (¥) and the phase difference factor e?*"4Rii . Thig
situation is similar to the case of the tight binding calculation for the electronic

structure where the matrix element is given by the product of the atomic matrix
element and the phase difference factor (see Sec. 2.1).

9.2 Phonon dispersion relations for two-dimensional graphite

§This corresponds to the diagonal block of the dynamical matrix. The last term in Eq. 9.7
is in the off-diagonal (ij) block of the dynamical matrix. When the i*? atom has equivalent
neighbor atoms in the adjacent unit cells, the last term can appear in the diagonal block of
the dynamical matrix.
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Fig. 9.1: Neighbor atoms of a graphitic plane up to 4th nearest
neighbors for (a) an A atom and (b) a B atom at the center de-
noted by solid circles. From the 1% to the 4°" neighbor atoms, we
plot open circles (1%* neighbor), solid squares (2"?), open squares
(3"%), and open hexagons (4'"), respectively. Circles connecting
the same neighbor atoms are for guides to the eye.

The phonon dispersion relations for a single graphite plane (or a two-dimension:
graphene sheet) are calculated by following the procedure used in Sec. 4.1.1 for
the electronic energy bands for the ¢ and 7 electrons of graphite.*

In two-dimensional graphite, since there are two carbon atoms, A and B, in
the unit cell, (see Fig. 2.3), we must consider six coordinates uy, (or 6 degrees of
freedom) in Eq. (9.6). The secular equation to be solved is thus a 6 x 6 dynamical
matrix P. The dynamical matrix D for two-dimensional graphite is written in
terms of the 3 x 3 matrices D44, DAB DBA and DBP for the A and B atoms
within the unit cell, and the coupling between them

DAA pAB
D= (DBA DBB) ' (9.8)

When we consider an 4 atom, the three nearest-neighbor atoms (see Figs. 9.1
and 9.2) are B1, B2, and B3 whose contributions to D are contained in D48 |

*From a symmetry standpoint, only the electronic bands related to the carbon p electrons have
a direct correspondence to the phonon dispersion curves.
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Fig. 9.2: Force constants be-
tween the A and Bl atoms on
a graphene sheet.  Here ¢,
¢, and ¢y, represent forces for
the nearest-neighbor atoms in
the radial (bond-stretching), in-
plane and out-of-plane tangen-
tial (bond-bending) directions,
respectively. B2 and B3 are
nearest neighbors equivalent to
B1, whose force constant tensors
are obtained by appropriately ro-

X
B3 A B1 tating the tensor for A and B1l.

while the six next-nearest-neighbor atoms denoted by solid squares in Fig. 9.1(a}
are all A atoms, with contributions to D that are contained in D44 and so on.
In Fig. 9.1 (a) and (b), we show neighbor atoms up to 4'® nearest neighbors for
the A and B atoms, respectively. It is important to note that the A and B sites
do not always appear alternately for the n'® neighbors. In fact the third and
the fourth neighbor atoms belong to equivalent atoms.

The remaining problem is how to construct the force constant tensor K04,
Here we show a simple way to obtain K7t First we consider the force constant
between an A atom and a nearest-neighbor B1 atom on the z axis as shown in
Fig. 9.2 [see also Fig. 2.3 (a)]. The force constant tensor is given by

Vo o
K4BD = o ¢Do |, (9.9)
o 0 ¢

where ¢£n), ¢§?), and qsﬁj}) represent the force constant parameters in the radial
(bond-stretching), in-plane and out-of-plane tangential (bond-bending) direc-

tSince the determinant of the dynamical matrix is a scalar variable, the determinant should be
invariant under any operation of the point group for the unit cell. Thus the proper combination
of terms in the product of the force constant tensor K1) and the phase difference factor
ELTN N determined by group theory, which gives block-diagonalization in accordance with
the irreducible representations of the symmetry group of periodic structures. Further details
are given in the references: G. Dresselhaus and M. S. Dresselhaus, Int. J. Quantum Chem.,
Vol I1 s, 333 (1968) for silicon and germanium, and L. G. Johnson and G. Dresselhaus, Phys.
Rev. B7, 2275 (1973) for graphite.
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tions of the nth nearest neighbors, respectively. Here the graphene plane is the
zy plane, the radial direction (z in the case of Fig. 9.2) corresponds to the
direction of the o bonds (dotted lines), and the two tangential directions (y
and z} are taken to be perpendicular to the radial direction. Since graphite is
an anisotropic material, we introduce two parameters to describe the in-plane
(y) and out-of-plane (z) tangential modes, and the corresponding phase factor,
etk 8B hecomes exp(—ikya/v/3) for the Bl atom at (a/v/3,0,0).

The force constant matrices for the two other nearest-neighbor atoms, B2
and B3 are obtained by rotating the matrix in Eq. (9.9) according to the rules
for a second-rank tensor:

EABm) - gt gABDy (m=2,3) (9.10)

where the unitary matrix U, is here defined by a rotation matrix around the z
axis in Fig. 9.2, taking the B1 atom into the Bm atom,}

cos by, sinf,, 0

U,=1 —sinf,, cosf, 0 ]. (9.11)
0 0 1

To make the method explicit, we show next the force constant matrix for the
B2 atom at [—a/(2V/3),a/2,0], and U; is evaluated assuming 63 = 27/3,

#0439 VAR - ) o
V36D -6y 3p0 4 ¢ o |, (9.12)
0 0 gi)

I{(A982) =

i | e

and the corresponding phase factor is given by exp{~ik, a/(2v/3) + ikya/2].

In the case of the phonon dispersion relations calculation for 2D graphite,
the interaction between two nearest-neighbor atoms is not sufficient to reproduce
the experimental results, and we generally need to consider contributions from
long-distance forces, such as from the n" neighbor atoms, (n = 1,2,3,4...).} To

{The formulation should be in terms of the rotation of the axes connecting an atom A to its
various equivalent neighbors. However, for easy understanding, we present in Eq. (9.10) the
rotation of atoms. The matrix for the rotation of the azes is the transpose matrix of the matrix
for the rotation of atoms.

§When we consider the force constant matrix of the n? neighbor atoms, these atoms are not
always located on the z (or y) axis. In that case it does not seem that we can build an initial
force constant matrix as given by Eq. (9.9). This happens at 4th neighbor atoms in graphite.
However, if we consider a virtual atom on the x axis, and if we then rotate the matrix, we can
get the force constant matrix without any difficulty.
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Fig. 9.3: In order to describe the
twisted motion of four atoms, it
is necessary to consider up to at
least fourth-nearest-neighbor in-
teractions, The numbers shown
in the figure denote the n*h
nearest-neighbor atoms from the
leftmost 0*" atom.

€) @) @

describe the twisted motion of four atoms, in which the outer two atoms vibrate
around the bond of the two inner atoms as shown in Fig. 9.3, contributions up to
at least the fourth nearest-neighbor interactions are necessary [194]. Values for
the force constants [193] (see Table 9.1) are obtained by fitting the 2D phonon
dispersion relations over the Brillouin zone as determined experimentally, as for
example from inelastic neutron scattering or electron energy loss spectroscopy
measurements along the I' M direction [194, 195].

Table 9.1: Force constant parameters for 2D graphite in units of 10*dyn/cm
[193]. Here the subscripts r, ti, and to refer to radial, transverse in-plane and
transverse out-of-plane, respectively. See Figs. 9.1 and 9.2.

Radial Tangential
ST = 3650 $U= 2450 40—  9.82
P = 880 ¢P= -323 ¢P= _040
6= 300 ¢P= -5 4= 015
oM = 192 V= 220 ¢PD= _o058

In Fig. 9.4(a) the phonon dispersion curves of a two-dimensional graphene
sheet, denoted by solid lines, are shown using the set of force constants in Ta-
ble 9.1. In Fig. 9.4(b) the corresponding density of states is plotted per C
~1 The calculated phonon
dispersion curves of Fig. 9.4(a) reproduce the experimental points obtained by
electron energy loss spectroscopy very well [194,195]. Thus the inclusion of
fourth-neighbor interactions is sufficient for reproducing the phonon dispersion

atom per cm™!, where the energy is in units of cm

relations of 2D graphite.
The three phonon dispersion curves (or branches), which originate from the
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Fig. 9.4: (a) The phonon dispersion curves, plotted along high
symmetry directions, for a 2D graphene sheet, using the set of
force constants in Table 9.1 [193]. (b) The corresponding density
of states vs phonon energy for phonon modes in units of states/1C-
atom/cm™! x 10~2.

I point of the Brillouin zone [see Fig. 9.4(a)], correspond to acoustic modes:
an out-of-plane mode, an in-plane tangential (bond-bending) mode and an in-
plane radial (bond-stretching) mode, listed in order of increasing energy, re-
spectively. The remaining three branches correspond to optical modes: one
out-of-plane mode and two in-plane modes. It is noted that the out-of-plane
(transverse) acoustic branch shows a k2 energy dispersion relation around the
T’ point, while the other two in-plane acoustic branches show a linear & depen-
dence, as is normally seen for acoustic modes. One reason why we get a k2
dependence for the out-of-plane mode is simply because this branch corresponds
to a two-dimensional phonon mode and because graphite has three-fold rota-
tional symmetry. It is clear in Eq. (9.10) that all rotations U are within the =,y
plane in the case of two-dimensional graphite. Thus the force constant matrix
can be decomposed into a 2 x 2 matrix of z, y components and a 1 x 1 matrix of
z components. The 1 x 1 force constant tensor K §? ) for the ntP neighbor atoms
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does not depend on the coordinate, and w(k) thus becomes an even function of
k& which is obtained from the sum of the differential phase factors '8R5 given
by Eq. (9.5). If we consider only the three nearest-neighbor atoms, the sum
of the differential phase factors is nothing but f(k) obtained in Eq. (2.25) when
discussing the electronic structure, The energy dispersion relation thus obtained
[see Eq. (2.28)] is an even function of k around the I point. The optical out-
of-plane transverse branch (~ 865 cm™! at the T point) shows a k? dependence
for the same reason. Thus there is neither a phase velocity nor a group velocity
for the.z component of the vibrations at the I’ point, and the phonon density
of states shows a step function which is known as a two-dimensional van-Hove

singularity [see Fig. 9.4(b)].

9.3 Phonon dispersion relations for nanotubes

9.3.1 Zone folding method

As a first approximation, the phonon dispersion relations for a single-wall carbon
nanotube are determined by folding the phonon dispersion curves of a two-
dimensional graphene layer, which was discussed in § 9.2. The method of folding
the phonon dispersion curves for a given chiral vector C, = (n,m) is the same as
that for electrons, as discussed in § 4.1.1, except that the zone-folding is applied
to the 2D phonon dispersion relations. Since there are 2N carbon atoms in the
unit cell of a carbon nanotube, where N = 2(n? + m? + nm)/dg and dg are
defined in Eqs. (3.9) and (3.7), respectively (see also Table. 3.3), 6N phonon

%In general, the phase factor eik'ARii goes into its complex conjugate if we change K to
~k. Thus when we change k& to —k, the dynamical matrix for the z components in a two-
dimensional system becomes its complex conjugate. It is clear that {D*| = {D| for the Her-
mitian matrix D, and thus the eigenvalues are even functions of k around k = 0 (the T
point). Even though w{k) is an even function of k, a term proportional to [k} might appear
in w(k). For example, for a one-dimensional spring constant model with the force constant,
K, we get w(k) = 2+/K/M|sinka} o< k|, (k ~ 0). The absence of a linear k term in the
phonon dispersion relations along the z axis of graphite comes from the three-fold rotational
axis, C3 along the z direction. Because of this symmetry, the w(kz, ky)} should have three-fold
rotational symmetry around the C3 axis. However, no linear combination of k» and ky, such
a8 aky +bky (with constant values for g, b), can be invariant under a 27 /3 rotation around the
k. axis. The simplest invariant form is a constant, and the quadratic form of k2 + kg is also
invariant. This is why we get a k? dependence for w(k) for the out-of-plane branch. When
the force constant matrix depends on the atom locations, such as for the in-plane modes, this
invariant condition applies to the product of the force constant matrix and the phase difference
factor, which generally has a linear &k term in w{k}.



172 CHAPTER 9. PHONON MODES OF CARBON NANOTUBES

dispersion relations for the z,y, and z vibrations for each atom are folded into
the one-dimensional Brillouin zone of a carbon nanotube along the K, direction
(Eq. (3.20) ). The phonon dispersion relations of a carbon nanotube also depend
on the chirality (n, m) and diameter of the carbon nanotube, d;, since the phonon
wave vector in the circumferential direction becomes discrete for every K7 vector
[see Egs. (3.20) and (4.1)}, in accordance with the periodic boundary conditions
of the chiral vector.
The corresponding one-dimensional phonon energy dispersion relation wi}}' (k)

for the nanotubes is given by,

m:ly...’G,

m K> ™ T
“115‘("’)2“1%(’“@**#1@)) (n._.o,...}N_l’and *T<k5— :

T
(9.13)
where wl}(k) denotes the two-dimensional energy dispersion relations for a
graphene sheet, & is a one-dimensional wave vector, and T is the magnitude
of the one-dimensional translation vector T given in Eq. (3.8).

The idea of zone folding is applicable for almost all the phonon modes of
a carbon nanotube. However, it has been pointed out [193] that zone-folding
alone does not always give the correct dispersion relation for a carbon nanotube,
especially in the low frequency region, and some additional physical concepts
must be introduced. For example, the out-of-plane tangential acoustic (TA)
modes of a graphene sheet shown in Fig. 9.5(a) on the left do not give zero
energy at the I' point when rolled into a nanotube as shown on the right. Here,
at k = 0, all the carbon atoms of the nanotube move radially in an out-of-plane
radial acoustic vibration, which corresponds to a breathing mode with non-zero
frequency [193] as shown in Fig. 9.5(a) on the right. In the breathing mode,
only the in-plane force constants, ¢, and ¢, in the circumferential direction of
the tube are related to the vibration, and this results in a finite frequency at the
T point.

On the other hand, when we consider the vibrations of a carbon nanotube in
the context of three-dimensional space, we generally expect three acoustic modes
which correspond to vibrational motions in the z,y, 2z directions. However, the
two directions which are perpendicular to the nanotube axis do not correspond

*Since there is no vibration in the direction of the nanotube axis in the breathing mode, the
bond angle of the hexagon network is modified. Thus the force constant ¢¢; is necessary to
describe the breathing mode.
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Fig. 9.5: (a) The out-of-plane tangential acoustic modes at k = 0
(left) in a single layer of graphite give rise to a radial breathing
mode in the carbon nanotube with non-zero frequency (right).
(b) An acoustic mode of a carbon nanotube whose vibration is
perpendicular to the nanotube axis (right) corresponds to a linear
combination of both in-plane and out-of-plane graphite-derived
modes (left). These modes do not couple in the case of a single
graphite layer, but do couple for the nanotube because of the
curvature that is introduced by rolling up the sheet.

to any two-dimensional graphite phonon modes. In a graphene sheet, the in-
plane and out-of-plane modes are decoupled from each other. However, when
the graphene strip is rolled up into a nanotube, the graphite-derived in-plane
and out-of-plane modes do couple to each other, as shown on the left-hand side
of Fig. 9.5(b), to form the acoustic mode of the nanotube shown on the right.

9.8.2 Force constani tensor of a carbon nanolube

In order to avoid these difficulties, we solve the three-dimensional carbon nano-
tube dynamical matrix problem directly using the force constant parameters
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listed in Table 9.1. Since we have 2N carbon atoms, the dynamic matrix to
be solved becomes a 6 N x 6 N matrix. Here we denote the 2N atoms as Ai
and Bj (i,j = 1,---,N), where the N A¢ (or N Bj) atoms are geometrically
equivalent to each other, as discussed in § 3.4. In fact, the position of each Ap
(or Bp) atom can be obtained by operation of the symmetry vector R defined
in Eq.(3.10) p — 1 times on Al (or B1):

A 4p and B1®ES By, (p=1,--,N). (9.14)

When we divide the big 6 N x 6 N dynamical matrix into the 3 x 3 small matrices
D(4iBJ) for a pair of Ai and Bj atoms, we then consider (2N)? = 4N? small
matrices, D(4i47) D(AIB]) D(BiAj) and DBIBI) (; j=1,...,N). When a pair
(ApBq), (or (ApAq), (BpAg), (BpBg)) are within the 4th neighbor distance,
we will consider D4PB9) . The corresponding force constant tensor K(4PB9) is
calculated using

K(4pB9) = (7-1)p-1 g (A1Be-p+1)p-1 (9.15)

where U is a unitary matrix for rotation by an angle ¥ = 27 /N around the
nanotube axis. Then UP~! is defined in Eq. (3.16) as

cos(p — 1)¥ sin(p —1)¥ 0
UP~l = | —sin(p—1)¥ cos(p—1)¥ 0 |, (9.16)
0 0 1

where the z axis is taken for the nanotube axis. When (¢ — p+ 1) is negative or
zero in Eq. (9.15), we use (N + ¢ —p+ 1) for (—p+ 1). Thus we can generate
all force constant tensors from the non-zero tensor related to Al or B1.

When we consider K(41Bp) or K(B1Bp) the effect of the curvature has
been taken into account. For example, let us consider the case of K(A1B1)
(see Fig. 9.6). When we put atom Al on the z axis, K(41B1) 4 obtained by:
(a) rotating the tensor of Eq. (9.9) by (7/6) — 8 around the z axis, then (b)
rotating the tensor by an angle ¢/2 around the z axis, and finally (c) rotating
by ¥ around the z axis. Here the angles 6, ¢ and ¥ are, respectively, the chiral
angle 6 defined in Eq. (3.4), the angle ¢ between Al and B1 around the z axis,
and the angle ¥ between Al and Ap around the 2z axis defined by 2(p — 1)x/N
in Eq. (3.4), as shown in Fig. 9.6 (a), (b) and (c¢), respectively.
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Fig. 9.6: The geometry of the A1 atom and its nearest neighbor
atoms, B1, Bi, Bj. The force constant tensor K{(4181) ig obtained
by (a) rotating the tensor of Eq. (9.9) by (x/6) — 6 around the x
axis and by (b) rotating the force constant tensor by an angle /2
around the z axis. Here § is the chiral angle defined in Eq. (3.4),
and the angle ¢ is defined in this figure by the angle between Al
and B1 in the zy plane around the z axis. The upper open circle
in (a) represents the projection of Bl on the yz plane and the
lower open circle represents its location after rotation by 7/6 — ¢
on a 2D graphene plane. For K(4759) we further rotate in (c)
the force constant tensor by ¥ around the z axis (see Eq. (9.16)).

Using the force constant tensor thus obtained and multiplying by exp tkAz;;,
where Az;; is the component of AR;; along the z or nanotube axis, the dynam-
ical matrix for a k vector is obtained. The phonon energy dispersion relation
is determined by solving the dynamical matrix for many % points in the one-
dimensional Brillouin zone.

The results thus obtained for w(k) for a (10,10) armchair carbon nanotube
are given in Fig. 9.7(a), where T denotes the roagnitude of the unit vector along
the tube axis (see Eq. (3.5)). For the 2N = 40 carbon atoms per circumferential
strip for the (10,10) nanotube, we have 120 vibrational degrees of freedom, but
because of mode degeneracies there are only 66 distinct phonon branches, of
which 12 modes are non-degenerate and 54 are doubly degenerate. The number
of distinct phonon branches can be obtained by point group theory for atoms
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Fig. 9.7: (a) The calculated phonon dispersion relations of an
armchair carbon nanotube with Cj = (10,10). The number of
degrees of freedom is 120 and the number of distinct phonon
branches is 66. (b) Phonon density of states of (10,10) nanotubes.

in the unit cell. In the case of the (10,10) armchair nanotube, Djqp is the
point symmetry group, and the direct product of the reducible representation
for the atomic sites* with the representations for @,y, z is decomposed into the
irreducible representations for the phonon modes.

In Fig. 9.7(b) we show the phonon density of states for the (10,10) nanotube
in units of states per C atom per cm~!. When we integrate the phonon density
of states with respect to the energy, we get 3 states/C-atom as the total number
of states. Since we use the same units for the phonon density of states for 2D
graphite [see Fig. 9.4(b)], we can directly compare the phonon density of states
for the (10,10) nanotube and for 2D graphite. The phonon density of states
for the (10,10) nanotube is close to that for 2D graphite [see Fig. 9.4(b)] since
the phonon dispersion relations are, in principle, given by the zone-folding of

*The character of the atomic sites for an operation O of the point group is defined by the
number of atoms which do not change their position when the operation O is carried out.
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Fig. 9.8: Phonon dispersion rela-

tions of the (10,10) armchair car-
200 bon nanotube near the I' point.
The three lines near w = 0 which
intersect at ¥ = 0 correspond
to the acoustic modes of a car-
bon nanotube. There are four
acoustic modes in this cylindrical
solid, including the lower energy
x,y transverse acoustic modes
(TA, doubly degenerate), the z
longitudinal acoustic mode (LA),
and the ¢ twisting mode (TW).
4 The TW mode is related to the

0.0 0.2 0.4 rotation of a nanotube along its
KT/ axis.
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those for 2D graphite. The difference in the phonon densities of states appear in
the small peaks due to the one-dimensional van Hove singularities. It is noted
that we integrated the phonon states within an accuracy of 10 cm™!. Another
difference between the (10,10) nanotube and graphite relates to the phonon

density of states at w = 0 cm™!.

Since there is k2 dependence in the out-of-
plane TA mode for 2D graphite, we get a finite density of states at w = 0 cm™1,
which is known as the two-dimensional van Hove singularity at the band edge.
However, since all acoustic modes of the (10,10) nanotube have a k dependence as
shown below, we have no phonon density states at w = 0 as shown in Fig. 9.7(b).

Let us focus our attention on the acoustic modes of the (10,10) carbon
nanotube, In Fig. 9.8, the phonon dispersion curves around the T' point are
shown on an expanded scale for the (10,10} carbon nanotube. The lowest energy
modes are the transverse acoustic (TA) modes, which are doubly degenerate, and
have z and y vibrations perpendicular to the nanotube (z) axis (see Fig. 9.5(b)
right). The highest energy mode is the longitudinal acoustic (LA) mode in
the direction of the nanotube axis. Since the displacements of all the acoustic
modes are three dimensional, the frequencies of the phonon dispersion relations
are proportional to & for all three phonon branches, as is commonly observed in
the solid state. The corresponding phonon density of states is proportional to
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the energy while the phonon density of states of 2D graphite is constant because
of the k2 dispersion relation for the out-of-plane TA graphite mode. The sound
velocities of the TA and LA phonons for a (10,10) armchair carbon nanotube are
estimated as 9.43 km/s and 20.35 km/s, respectively.! These results cannot be
obtained by the zone-folding method discussed in the previous subsection, since
the sound velocity for the zone-folded out-of-plane TA mode is zero because of
the k2 dependence as discussed above.

In addition, there is a fourth acoustic mode for the carbon nanotube, which
is related to a rotation around the nanotube axis at k = 0. When we consider
a single carbon nanotube as an infinite one-dimensional material, a rotation
around the nanotube axis is possible [83,196]. Since the driving force for this
wave motion is a twisting motion of the nanotube, we call this mode a twisting
mode (TW). The sound velocity of the TW mode is 15.00 km/s, which is the
same as the calculated value of the in-plane TA mode for 2D graphite. The
reason why the TW modes have the same velocity as the TA graphite mode
is that the displacements associated with the TW mode are in the cylindrical
plane and are perpendicular to the tubular axis.

1t is noted that the sound velocities that we have calculated for 2D graphite
are similar to those observed in 3D graphite [9], for which v§3P = 12.3 km/s and
v¥3D = 21.0 km/s. The difference of the sound velocity is due to the existence
or absence of the interlayer interaction between graphene layers for 3D graphite
and a 2D graphene sheet, respectively.

9.3.8 Force constant corrections due to curvalure of 1D nanotubes

The three-dimensional phonon dispersion relations of a carbon nanotube can
be obtained by the methods discussed in the previous subsection. However it
should be mentioned that the force constant parameters of Table 9.1 are not well
defined on the curved surface of the nanotube by merely considering the planar
graphene force constants.

tThe Young modulus, Y can be estimated by the LA velocity, v = 1/Y/p, in which p is
the density of carbon atoms. When we assume the triangular lattice of the nanotubes (so
called rope) with the lattice constants of a =16.954 and ¢ =1.44x/3A, the density p becomes
1.28 x 10% kg/m? from which the Young modulus gives Y = 532 GPa. This value is smaller
than other calculated Y values. This small ¥ value arises from the small mass density of the
rope. Details will be discussed in Chapter 11 on elastic constants.
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For example, in Fig. 9.9, we show the effect of the rotational motion of
the twisting mode with & = 0 on the cross section of the carbon nanotube in
which all vectors of the motion should be parallel to the cylindrical surface and
perpendicular to the nanotube axis. It is a physical requirement that we have
a rotational mode with w = 0 at & = 0 in this system. However, the calculated

boat

result for the (10,10) carbon nanotube gives a finite value of w = 4 cm™
k = 0 for the twisting mode when we use the method of the previous subsection
with the force constant parameters of Table 9.1. The other three acoustic modes
correctly give w = 0 cm™?! at k = 0. When we denote a nearest-neighbor bond as
the dotted line in Fig. 9.9, the two vectors # and Gu are not in the plane which
is defined by the dotted line and tube axis. Thus, for this kind of rotational
motion, the force associated with the tangential out-of-plane force constant, ¢,
artificially introduces a force on the motion, which gives a non-zero value of
w at k = 0. Actually when we examine the eigenvectors of the motion, we
can find a small radial component of the motion which is perpendicular to the
cylindrical surface and is due to the effect of curvature on the force constant
parameters. The ratio of the components of the motion in the radial direction
to the cylindrical direction is on the order of 1073, The curvature effect will also
apply to all of the other modes by an amount up to ~10 cm™* even for the (5,5)
armchair nanotube. Thus as a first approximation, this effect can be neglected
compared with general nanotube phonon frequencies which are on the order of
103 em™1.

In order to treat the curvature effect correctly with the given force constant
parameters of two-dimensional graphite, we could consider the dynamical ma-
trix on a curved coordinate reflecting the eylindrical surface, which would mix
the force constant parameters with each other depending on the curvature and
the bond length. This phenomenon can be treated by elasticity theory for a
thin film, However this treatment requires a different method from that used
for a lattice of springs. When we consider a curved chemical bond, we find that
the force constant parameters in Table 9.1 cannot be applicable to the curved
coordinates. Actually the calculated results using the force constant parameters
in Table 9.1 give less accurate values than the approach of the previous subsec-
tion. Sometimes the calculated results even give imaginary (i.e., negative w?)
frequencies for the acoustic phonon modes. Thus we do not use the elasticity
theory approach to the curved coordinates of carbon nanotubes.
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Fig. 9.9: The dependence of the
twisting mode at k£ = 0 of a car-
bon nanotube on its cross sec-
tion is shown. When we con-
sider the interaction between the
two atoms along the dotted line,
the rotational motion appears
to have a tangential out-of-plane
motion in the plane defined by
the dotted line and the nanotube
axis,

e ¥¢io
o

Fig. 9.10: (a) Correction of the force constant ¢;,, which is given
by Eq. (9.17) and (b) correction of the force constants of ¢, and
#4;, which are given by Eqs. (9.18) and (9.19). Figure (a) illus-
trates the section of a plane perpendicular to the nanotube axis,
and (b) illustrates a plane corresponding to an unrolled graphite
sheet.

To avoid the difficulty of the curved coordinates, we have proposed the
following approximation in which the force constants are scaled depending on
their bond lengths. When we consider the tangential out-of-plane mode for the
i*h site on the cylindrical surface as shown in Fig. 9.10 (a), the motion is in the
direction perpendicular to the cylindrical surface. On the other hand, when we
denote the bond #j by the thick line, whose subtended angle around the tube
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axis is ¢ as shown in Fig. 9.10(a), the tangential out-of-plane direction for that
bond is defined to be perpendicular to that bond. The difference between the
two directions is the angle /2 which depends on the bond length. When the
bond length is large, the correction for the force constant becomes large, but not
so large as the original force constant. Here we scale the force constant ¢4, by

Bro = bto + b10 (1 - cos (%)) (9.17)

as an empirical correction for the force constant. A justification for the cor-
rection of Eq. (9.17) is as follows. When we calculate the motion using the
tangential out-of-plane ¢, force constant for a given bond, the component of
the force constant in the direction perpendicular to the cylindrical surface be-
comes ¢, cos{/2). In order to obtain the same amplitude of the motion in
this direction as is obtained in the case of two-dimensional graphite, we add
¢10(1 — cos(p/2)) to ¢4, The correction of Eq. (9.17) becomes relatively large
with increasing bond length or increasing @, which relates to the corresponding
bond length becoming shorter than that in a two-dimensional graphite plane.
Thus this bond length dependent correction is used to describe the vibrations
perpendicular to the cylindrical surface.

Similarly, the force constants of ¢,, ¢;; are corrected by the following for-
mulae, respectively,

&) = ¢p + ¢y cos (% - 9) (1 — coS (%)) , (9-18)
and
&4 = ¢1i + duisin (-g- - 9) (1 ~ cos (-;e)) , (9.19)

where 7 /6—8 is the angle of the bond from the horizontal zy plane [see Figs. 9.10
(b) and 9.6 (a)]. Since we consider only the horizontal component of the force
by a rotation of ¢/2 around the z axis, we conclude that ¢, cos(n/6 — 8) and
¢sisin(r/6 — @) are the components to be corrected.

Using the scaled force constants, we calculate an improved version of the
phonon dispersion relations for a (10,10) armchair carbon nanotube. In this
case, the frequency of the twisting mode becomes very small (jw] < 10713 cm~1)

*We could also consider other corrections of the force constant, such as ¢of cos(¢/2). For
small ¢, this correction gives the same effect as that of Eq. (9.17). However, this correction
diverges at ¢ = m, and thus we do not adopt it.
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at k = 0. As for the other modes, the corrections are generally small (less than
5 cm™!). The only mode where the correction is significant is the E,, mode
which gives a large softening after this correction from 22 ¢cm™! to 17 em™!. It
is interesting to note that the lowest phonon mode with non-zero energy at k = 0
is an E; mode in which the cross section of the carbon nanotube is vibrating
with the symmetries corresponding to zy and z? — 2. The calculated frequency
of the E3, mode for the (10,10) carbon nanotube is 17 cm™!. Since this mode is
a Raman-active mode and its frequency is sensitive to the radius of the carbon
nanotube, the above arguments show the importance of investigating this mode
experimentally. The observation of the Raman-active modes, are discussed in
the following chapter.

Another important mode for experimental study is the Raman-active low
frequency breathing mode (A1, symmetry) shown in Fig. 9.5(a). The frequency
of the breathing mode appears at 165 cm™! for the (10,10) armchair nanotube.
This mode frequency quickly decreases to 0 cm™! with increasing radius.



CHAPTER 10.
Raman Spectra of Carbon Nanotubes

The Raman-active and infrared-active phonon modes of carbon
nanotubes are described on the basis of group theoretical arguments
in Sect. 10.1. A review is given in Sect. 10.2 of Raman scattering
experiments on purified single-wall nanotubes and arrays of carbon
nanotubes, called ropes. To analyze the unique Raman spectra that
are observed, results from bond polarization theory are presented in
Sect. 10.3. The dependence of the Raman mode frequencies on the
nanotube diameter is discussed in Sect. 10.4 and the dependence of
the Raman mode intensities on nanotube orientation is discussed in
Sect. 10.5.

10.1 Raman or infrared active modes of carbon nanotubes

Among the 6N calculated phonon dispersion relations for carbon nanotubes
whose unit cell contains 2NV carbon atoms, only a few modes are Raman or
infrared (IR) active, as specified by the symmetry of the phonon modes. Since
only k vectors very close to k = 0 are coupled to the incident light because of the
energy-momentum conservation requirements for the photons and phonons, we
need only consider the symmetry of the nanotube zone-center vibrations at the
[ point (k = 0). Point group theory of the unit cell, as discussed in Sect. 3.6,
predicts the number of Raman-active modes and IR-active modes.

As discussed in Chapter 9, there are four acoustic modes including the rota-
tion around the nanotube axis (R,) at the I point. Thus 6NV —4 optical phonons
are considered in this section. The Raman and infra-red(IR }-active modes corre-
spond to modes whose irreducible representations transform as a quadratic form
(22 4+ y?, 2%, 2? —y?, 2y, y2 and zz) for the Raman-active modes, or as a vector
form (2, y, and z) for the infrared-active modes. The relationship between an
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Table 10.1: Basis Functions for Point Groups D, 4 and Numbers of Raman
and IR Active modes.

Basis functions D, Cnya Achiral Chiral
g u 27 27+1 (27,25) others (n,m)
NG Ay Ay A 4 3 4
2R RIzR Az Ag A (0) (1) (4)
(02, y2)* (2:9) } Ee B B 47 65) 505
(Raz, Ry)
(a® = ¥, ay)? B ) E, 8 6 6
Total 6N — 4 16(7) IG(GY 15(9)

Numbers without and with parentheses denote the numbers of Raman and IR active modes,
respectively.
The superscripts ®* and '®, respectively, denote Raman-active and infrared-active modes.

irreducible representation and its basis function is given in the character tables.
In Table 10.1 are listed the basis functions for the irreducible representations
of the carbon nanotubes and the number of Raman-active modes for each ir-
reducible representation. Each type of nanotube is classified by its symmetry.
When we consider the nanotube axis to be in the z direction, the Raman modes

% or %+ y? are invariant under any

whose vibrational amplitudes transform as z
operation of the group, and therefore have A; or A symmetry in the D, or Cy
groups, respectively (see Section 3.6). The other Raman-active modes belong to
the Ey and E3 symmetry types, as shown in Table 10.1. In the case of the IR-
active modes, the basis functions & and y are partners of a two-fold degenerate
mode with E, (E) symmetry, and z transforms according to As (A) symme-
try. If we know the irreducible representation of the calculated eigenfunctions of
the phonon modes, we can directly assign the symmetries of the Raman-active
modes and IR-active modes among the 6V —4 phonon modes. An eigenfunction
can be identified with an irreducible representation by applying a projection
operator for the irreducible representation of the group to the phonon normal
modes [197]. If the projected eigenfunction is not zero, the eigenfunction belongs
to the corresponding irreducible representation.

The numbers of the Raman-active and TR-active modes for the solid can be
predicted by group theory once the lattice structure and its symmetry are speci-
fied. The number of optically-active modes is calculated by the decomposition of
the reducible representation of the vibration, 'V’ which is given by the direct
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product of the two representations of the group as follows
I‘Vib = I‘a.s‘ ® F:c,y,z (10-1)

where I'y 5. and T'y y ; are, respectively, the representations of the atomic sites
for the equivalence transformation, and the irreducible representations which
belong to the vector components &, y, z. The characters for ' are given by
the number of atoms in the unit cell that remain invariant under an operation
of the group. The representations which correspond to z, y, z, are listed in Ta-
ble 10.1 for the groups of nanotubes which are discussed in Section 3.6. When we
decompose I'V'® into the irreducible representations of the group, using the or-
thogonality relations between the characters of the irreducible representations,
the number of times an irreducible representation is contained in I'Vi® is the
number of phonon modes which belong to that irreducible representation. Since
we know which irreducible representations correspond to the Raman-active and
IR-active modes, we can easily find the number of Raman and TR modes. If the
translational (E1,: ®,y, Agu: z) and rotational (Ag,: R,) motion belong to the
symmetry types of the Raman (Ayy, Eyy, E2,) and IR (Azy, Eyu) modes, we
subtract the number of those modes from the optically active modes in com-
piling Table 10.1.* The point group symmetries of armchair C, = (n,n) and
zigzag C) = (n,0) nanotubes are either D, 4 or D,;, respectively, depending
on whether n =odd or n =even, and the symmetry of chiral nanotubes is the
non-symmorphic Abelian group Cpu, which Is discussed in Sect. 3.6. From the
character Tables 3.4, 3.5 and 3.8, we get the decomposition of IV as follows
[198]):

for armchair nanotubes (even n = 2j with D, symmetry)!

TP = 4dyg + 241, + 442, + 2454 + 2By,
+4B1u + 2Bgy + 4By + 4Fy g + 8Ey, + 8Fy, (10.2)

+4EBqu + -+ 4B 1)y + 8E(j-1)u

*The symmetries are for achiral nanotubes, For chiral nanotubes, the symbols are as follows:
translational {E + A}, rotational {A), Raman (A, E1, E;) and IR {4, E;) modes.

tIn Eq. (10.2) we assume that j is even. If j is odd [such as for (n,m} = (6,6)], the 4 and 8
are interchanged in the last two terms in Eq. (10.2).
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for zigzag nanotubes (even n = 2j with D, symmetry):
F‘é}b = 3A15+ 3A10 + 3435 + 3434

+3Bi1y + 3By + 3By, + 3Bay
(10.3)
+6Elg + 6-Elu, + 6E2_q + 6E2u

+ o+ 6EG 1)y +6E(-1yu-
For armchair and zigzag nanotubes (odd n = 2f + 1 with D, 4 symmetry):
I“g'ijlll = 3A1; +3A1, + 343, + 343,
+6E1y + 6E)y + 6Egy + 6Egy (10.4)
4 +6Ej, + 6E,.

For chiral nanotubes:
TP = 6A+6B +6E +6Ey+ -+ 6En/a_1. (10.5)

We list in Table 10.1 the numbers of Raman and IR active modes for achiral
and chiral nanotubes in which the numbers without and with parentheses, re-
spectively, refer to the numbers of Raman and IR-active modes. Among achiral
nanotubes, only armchair nanotubes with even number indexes (27,2j) have a
different numbers of Raman and IR modes from others such as armchair nan-
otubes with odd number indexes (2j + 1,2j + 1) and zigzag nanotubes (n,0).
From Table 10.1 we see that the numbers of Raman and infrared-active modes
for a carbon nanotube do not depend much on the nanotube diameter and chi-
rality, though the total number of phonon modes 6 N — 4 is very different for
different chiralities. Group theory selection rules indicate that there are 15 or 16
Raman-active modes and 6 to 9 IR-active modes for a single-wall carbon nan-
otube. The difference between Dy; and Djj4 for armchair nanotubes comes
from the different numbers of E; and E3 modes in the decomposition of ['ViP in
Egs. (10.2) and (10.4).

Since the basis functions of achiral nanotubes consist of even (g) and odd (u)}
functions, because of the existence of an inversion center, Raman and IR active

tThe g and u come from the traditional notation of the German words ‘gerade’ and ‘ungerade’,
respectively.
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modes can be found for several different irreducible representations. However
for chiral nanotubes, modes with A and E; symmetry are both Raman and IR-
active, because of the lack of an inversion center. A phonon mode can be Raman
and IR active simultaneously in the lower symmetry chiral nanotubes. However,
in these cases the intense Raman modes are generally weak IR modes and vice
versa,

Even though group theory may indicate that a particular mode is Raman-
active, this mode may nevertheless have a small Raman cross section. In fact, we
have only six or seven intense Raman-active modes for any nanotube chirality, as
shown in Sect. 10.3. Since similar eigenfunctions give stmilar Raman intensities
for any kind of nanotube, the Raman spectra also have similar shapes, as shown
by the calculations in Sect. 10.4.

10.2 Raman experiments on single-wall nanotubes

This section mainly describes Raman experiments on single-wall carbon nan-
otubes [52,83,99,199]. Most of the Raman studies on single-wall carbon nan-
otubes were made on nanotubes synthesized by the laser vaporization method
[55] with transition metal catalysts, though similar results were obtained on
single-wall nanotubes synthesized by the carbon arc method [52]. In both of
these synthesis methods, the single-wall carbon nanotubes grow in a triangular
lattice to form a bundle or ‘rope’ containing 10-50 nanotubes (see Sect. 5.2)
[55,200]. Under some synthesis conditions, the (10,10) armchair nanotube is the
dominant species in the rope. However, in general, the Raman samples have a
narrow distribution of diameters and chiralities, which depend sensitively on the
catalysts that are used in the synthesis and the growth conditions, especially the
growth temperature. For example, when 1.2 weight % of Ni/Co catalyst is used
in the sample synthesis at a temperature of 1150°C in 500 torr Ar, the diameter
range is 1.0—1.4 nm, while thinner nanotubes with diameters of 0.8—1.0 nm are
obtained in the case of a 2.4% Rh/Pd catalyst with growth at 1100°C [99]. Even
when the same catalysts are used, a higher growth temperature gives a larger
diameter. This situation may be explained by the probability for generating a
pentagon. When the temperature is lowered, the probability of closing a car-
bon pentagonal ring increases, and thus the caps that are generated tend to be
smaller. At a higher temperature, however, atomic vibrations prevent the for-
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Fig. 10.1: Raman spectra (top) of the rope of single wall carbon
nanotubes taken with 514.5 nm excitation at ~ 2W/cm?. The
features in the spectrum denoted by the symbol “*” are assigned
to second-order Raman scattering. The four bottom panels are the
calculated Raman spectra for armchair (n,n) nanotubes, n = 8
to 11. The arrows in the panels indicate the positions of the
remaining weak, Raman-active modes [83).

mation of relatively unstable pentagonal rings, compared with hexagonal rings,
so the lower growth temperatures favor the growth of smaller diameter tubes.
Among the 15 or 16 Raman-allowed zone-center modes, the experiments
show a few intense lines and several weaker lines, as illustrated in Fig. 10.1 [83].
The top panel of Fig. 10.1 shows Raman spectra for the single-wall nanotube
rope using a laser excitation wavelength of 514.5 nm, and the lower panels show
the calculated intensities for armchair nanotubes (n,n), n = 8 to 11, respectively.
Between 1550 and 1600 cm™!, two strong features are observed at 1567 cm™!
and 1593 cm™!, which correspond to the graphite E,y optic mode at 1582 cm™?
which has been extensively studied in HOPG (highly oriented pyrolytic graphite)
[9,201]. The strong lines between 1550 and 1600 cm~! may be assigned to the
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Fig. 10.2: Plot of the observed Raman frequencies for several
different single-wall carbon nanotube samples, prepared with dif-
ferent catalysts under different growth conditions yielding differ-
ent mean nanotube radii r: (a) Fe/Ni (r = 0.55 nm), (b) Co
(r = 0.65 nm), and (c) La (r = 1.0 nm). The dashed lines are
theoretical O and TO energy dispersion curves for graphite along
I'—M as a function of ¢ and ¢/2 for n = 1 and n = 2 (first har-
maonic vibration), respectively. Solid dots and the symbol ‘T’ cor-
respond to the observed frequencies of the peaks and shoulders in
the Raman spectra, respectively [202].

Eig, F3; and A;, modes in carbon nanotubes with different diameters. Rao
et al. [83] assigned the two strong modes of 1567 cm~! and 1593 cm~! to the
E,, (8,8), and Ey, or Ajy (9,9) tubes, respectively. The Raman frequencies in
this high frequency region do not vary much with carbon nanotube diameter, as
shown in the lower panels of Fig. 10.1.

The Raman frequencies in the range 15650—1600 cm™! can be understood by
zone-folding of the graphite phonon dispersion relations [202]. In Fig. 10.2, the
observed Raman spectral frequencies are shown for three single-wall nanotube
samples prepared with different catalysts and under different growth conditions
yielding nanotubes with different mean diameters (radii) and different distribu-
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tions of diameters (radii). Specifically the catalysts and resulting average radii
are: (a) Fe/Ni (r = 0.55 nm), (b) Co (r = 0.65 nm), and (c) La (r = 1.0 nm).
The dashed lines are theoretical LO and TO energy dispersion curves in graphite
along I'—M as a function of wavevector ¢ and ¢/2 in units of 10° cm™! for n = 1
and n = 2 (first harmonic vibration), respectively. In armchair nanotutees, the
T'—M direction corresponds to the wave vector along the equator of the nan-
otubes. Thus LO (n = 1), TO (n = 1), and TO (n = 2) correspond to the A,
E,, and E2; Raman modes, which will be explained in the theoretical analysis
in Sect. 10.4. Figure 10.2 shows a clear relationship between 1/» and ¢ on the
zone-folded phonon energy dispersion curves.

It is important to note that the Raman intensity for graphite in the 1300-
1600 e¢m™?! region is sensitive to sample quality. Generally the intensity of
the E3, modes of graphitic materials is sharp and strong when the sample is
highly crystalline and defect free, while disordered graphites and carbons show
a broad feature around 1350 cm™! [9,201,203,204]. The 1347 cm™! signal seen
in Fig. 10.1 may come from a symmetry-lowering effect, due to defects or nan-
otube caps, bending of the nanotube, and the presence of carbon nanoparticles
and amorphous carbon.

At 186 cm™!, a strong A;, breathing mode is found in Fig. 10.1(a) [see
Fig. 9.5(a) on the right]. Because of the strong dependence of the frequency of
the A, breathing mode on nanotube diameter (see Sect. 10.3), the frequency of
the A;, breathing mode can be used as a marker for assigning the approximate
diameter of the carbon nanotube. The radial breathing A;; mode can also
be clearly seen in fullerenes.* In the low frequency region, the calcvlations
predict nanotube-specific E14 and Eg, modes around 116 cm~! and 377 ecm™!,
respectively, for (10,10) nanotubes, but their intensities are expected to be lower
than that for the A;; mode. However, these E1, and Ey; modes are important
since they also show a diameter dependence of their mode frequencies, as shown
in the lower panels of Fig. 10.1. In the very low frequency region below 30 cm™?,
a strong low frequency Raman-active Ey; mode is expected. However, it is
difficult to observe Raman lines in the very low frequency region, where the
background Rayleigh scattering is very strong.

Even for a given sample, the Raman spectra may change if we change the fre-
quency of the excitation laser. When the excitation energy is close to an energy

*For example, the A1y of Cgo has a frequency of 497.5 cm™?! [198].
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Fig. 10.3: Room tempera~
ture Raman spectra for purified
single-wall carbon nanotubes ex-
cited at five different laser fre-
quencies, showing the resonant
enhancement of the Raman in-
tensity associated with the van-
Hove singularities in the nan-
otube density of states [83]. Each
trace is labeled by the wave-
length and power level of the
Frequency (cm!) laser light.

Raman intensity (arbitrary units}

of high “optical” absorption, the Raman intensity is enhanced, and this effect is
known as the resonant Raman effect. Under resonant conditions, more light can
be absorbed, thereby enhancing the Raman signal through the electron-phonon
coupling process. In Fig. 10.3 are shown Raman spectra obtained with different
lager excitation frequencies. When the laser frequency increases, the Raman
modes that are preferentially enhanced shift to higher frequencies, since the res-
onance effect is most pronounced when the joint density of states of the carbon 7
band is large, and the laser frequency matches a peak in the optical absorption.
As discussed in the § 4.2, the density of states of the 7 band becomes singular
by folding the two-dimensional energy bands of the graphene layer into the one-
dimensional bands of the carbon nanotube, and these singularities are known
as van-Hove singularities. For every one-dimensional band edge, as in a carbon
nanotube, a 1/ VvE singularity is expected for the energy dependence of the one-
dimensional density of states (see Fig. 4.7). The 1/VE singularities for the 1D
density of states results in a much stronger resonant Raman effect than would be
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observed for a 2D graphene sheet or for 3D crystalline graphite. Clearly the en-
ergy separation of these singularities in the 1D density of states increases as the
number of energy bands decreases. When we consider only armchair nanotubes
(n,n), the energy separation between the van-Hove singularities becomes large
with decreasing n. The Raman resonance condition thus selects the particular
carbon nanotube (n,m) which has a singularity in its electronic density of states
at the laser frequency. The observed phonon frequency of the low frequency A4,
mode provides the value of the nanotube diameter that is in resonance electroni-
cally, since the phonon frequencies for the low frequency normal modes increases
with decreasing n. Thus the resonance effect is a quantum effect that can be
understood in terms of both the electronic and phonon dispersion relations of
the nanotubes. Since nominal single-wall carbon nanotube samples consist of
nanotubes with different diameters and chiralities, the resonant Raman effect
may be seen in different nanotubes for different laser excitation frequencies.

10.3 Bond Polarizability Theory of Raman Intensity for Carbon Nan-
otubes

In this section we discuss the non-resonant bond polarization theory for calculat-
ing the Raman intensity, which is also useful for the interpretation of the Raman
spectra. The Raman intensity for A atoms in the unit cell is calculated by the
empirical bond polarizability model [205, 206];
3N 2
Ly (w) “wngZﬁ(ﬂL)_)_i_l Z’I}Ia’quap)f 8w — wy). (10.6)
=Y ap
Here wr and wg are the incident and scattered light frequencies, n and 7’ are the
corresponding unit vectors for the polarization of the light, respectively. wy is the
frequency of the f-th normal phonon mode, while (n(w;)) = 1/(exp(hw;/kpT)—
1) is the phonon occupation number at temperature 7'. The o and 3 subscripts
in Eq. (10.6) denote Cartesian components of the vector or tensor, z,y, 2, and
P,p,s is the derivative of the electronic polarization tensor for the f-th normal
mode, which is given by [205],

_ 0Pqyp _ _ _
Paﬁ,f—g[au’y(e)]ox’)’(elf)i (7"'mvy;zag—la"'y'/v’af—ly-"a&/\/‘)
(10.7)
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where P,g is the electronic polarization, and the derivative is performed with
respect to the yth Cartesian displacement, u,(£), for the £th atom. The term
x~+(¢|f) is the ¥ component of the unit vectors of the fth normal modes of the
f{th atom. Both translational and rotational acoustic modes are included in f
for simplicity. However, the acoustic modes do not contribute to the Raman
intensity.

The term Pop in Eq. (10.7) is approximated by a sum over the bond polar-
ization contributions as follows

Py = 3[ Z{QII(B)+2a,L(B)}6aﬂ

2 T 3
' Ra(t, B)Rs(t,B) 1
+ {QQI(B)“‘Q.{.(B)} ( R(f,B)Q - §60’ﬁ s
where B denotes a bond which is connected to the £-th atom in the unit cell, and
R(¢, B) is the corresponding vector from the ¢-th atom to the neighbor atom £
specified by B. The quantities Ro (£, B) and R(£, B) are the a component and the
length of R(¢, B), respectively, and ay(B) and ay(B) are the static molecular
polarizabilities for the bond B in the directions parallel and perpendicular to

(10.8)

the bond, respectively. Here we assumed that oy(B) and o, (B) are functions
of only the length R(¢, B).

When we denote the bond vector without the displacements of the two atoms
of the bond as Ry(4, B), then R(¢, B) can be defined by

R(¢,B) = Ro(¢, B) + u(¢') — u(), (10.9)
while the derivative on u, in Eq. (10.7) is expressed by the derivative on R({, B)
as follows:
a d OR({,B) _ 8 Ry({,B)
Fu,(0) ; TR B) du(l) § RCEH REB) . 1010

Here the summation is taken over the bonds connected to the ¢-th atom and we
use the following relations:
dR,({,B)
Gl = —bary, (10.11)
and
OR(¢, B) _ E OR(¢, B) OR,(¢, B) L dR(L, B) _ _R,,(f, B)
duy(8) ~ 4<3R.(£,B) du,(8) ~— OR,({,B) R({,B)’

(10.12)
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When we calculate P,s 7 in Eq. (10.7), we have terms — da , 9R.(¢, B)
8u,y duy

OR(¢,B) . OPap
Bu, Quq (£)°
(10.11) and (10.12), we obtain an explicit form for P,g ¢,

, and

After some calculation and making use of Eqgs. (10.10),

Pasy = =% [ Rolt,B) - YIS an<B>+2aa<B>> g

Ro(4, B) 3
(o4 - 1) (Rl BMn D) Z5us) }
4 (an(B) - aL(B)) {ROa(e BYxs(4|f) — Rog (¢, B)xo(£\f)
Ro(¢, B) Ry(¢, B)
_ Ro(¢, B) - Y(Uf)  2Roa(t, B)Rop(t, B)} ]
Ro(¢, B) Ro(¢, B)? ’
(10.13)
where oj(B) and o, (B) are the radial derivatives of a(B) and a(B), that is
of(B) = }'f%(“z(,%’ and o (B)= %, (10.14)

respectively. The values of o (B), a (B), o (B) and o, (B) are given empir-
ically as a function of the bond length between two carbon atoms or between
carbon-hydrogen atoms, and these values are listed for carbon nanotubes in Ta-
ble 10.2. In order to obtain values for the parameters for carbon nanotubes,
we start by interpolating between the values for the polarizability parameters
for single (1.46A) and double (1.40A) carbon bonds in Cgp and related materi-
als [205,207]). Then we fit the values so as to reproduce the Raman signal for
randomly oriented nanotubes. Although the calculated values are within a rea-
sonable range for carbon materials, the values for the polarizability parameters
listed in Table 10.2 do not converge well for carbon materials, because of the
different results that have been reported by various groups.
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Table 10.2: Bond lengths and Raman polarizability parameters for single-wall
carbon nanotubes and for various carbon-related molecules. .

Molecule Bond Lengths o +2a; oj—-oay a" + 20/, ({;}12— o)

(A] [A%] [A%] (A%] ]
CH,® C—H (1.09) 1944
CyHg®  C—C(150) 2.016 1.28 3.13 2.31
C,Hs® C=C(1.32) 4.890 1.65 6.50 2.60
Ceo® C — C (1.46) 1.28 2.30+£0.01  2.3040.30
C = C (1.40) 0.32:£0.09 755+040 2.60£0.36
Ceo® C — C (1.46) 1284020 1.284£0.30 1354020
C = C (1.40) 0.00£020 540£0.70 4.50£0.50
SWCN®)  C=C (1.42) 0.07 5.96 5.47
SWCNY  C=C (142) 0.04 4.7 4.0

) S. Guha et al. [205).

%) D. W. Snoke and M. Cardona [207].

¢) E. Richter et al. (unpublished data which is used in their work[83]).
9 R. Saito et al. [208].

1t is known, however, that the polarizability parameters of carbon are similar
for a variety of carbon materials. Furthermore, the relative intensities for the
Raman modes are not so sensitive to small changes in the values of the bond
polarization parameters except for the lowest Ey, mode. The lowest Fy, mode
is found to be most sensitive to the parameter oy — vy . Thus the fitted values
are used for calculating approximate Raman intensities. The Raman intensity is
calculated using the eigenvectors for the vibrational modes, obtained by solving
the dynamical matrix, and the polarization parameters are obtained using bond
polarization theory [205].

10.4 Raman Spectra of Nanotubes with Random Orientations

The Raman intensities for the various Raman-active modes in carbon nanotubes
are calculated at a phonon temperature of 300 K which appears in the formula of
Eq. (10.6) for the Bose distribution function for phonons. The eigenfunctions for
the various vibrational modes are calculated numerically at the I point (k = 0).
Here we consider two possible geometries for the polarization of the light: the V'V
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and V H configurations. In the V'V configuration, the incident and the scattered
polarizations are parallel to each other, while they are perpendicular to each
other in the V H direction. Generally the cross section for Raman scettering
is a function of the scattered angle of the light. However, the formulae for the
bond polarization theory consider only S-scattered waves [205], and thus the
calculated results cannot distinguish between forward and backward scattering
of the light.

In Fig. 10.4, we show the calculated Raman intensities for the (10,10) arm-
chair, {17,0) zigzag and (11,8) chiral nanotubes, whose radii are, respectively,
6.784A, 6.66A, and 6.47A and are close to one another. The Raman intensity is
averaged over the sample orientation of the nanotube axis relative to the Poynt-
ing vector of the light, in which the average is calculated by summing over many
(~ 50) directions, weighted by the solid angle for that direction. Thus Fig. 10.4
is the calculated result for randomly-oriented nanotubes. We divide the discus-
sion into the following three frequency regions: the lower (w < 500 cm™!), higher
(w > 1500 cm~1), and middle (500 cm™! < w < 1500 em™!) frequency ranges.
Then we discuss the phonon density of states for the Raman-active modes which
depend strongly on the chirality.

Since we consider randomly-oriented nanotubes in this section, we do not
need to mention the direction of the polarzation vector for the VV and VH
configurations. On the other hand, we need the directions of V' and H for cal-
culating the Raman intensity of a nanotube. We present the sample orientation
dependence of the Raman spectra of a (10,10) nanotube in the next section, in
which we rotate the nanotube axis by fixing the polarization vectors.

18.4.1 Lower Freguency Raman Specira

Here we discuss the Raman intensity for the lower frequency modes below
500 ecm™!. The Raman intensity is normalized for each nanotube to a max-
imum intensity (A, in the VV configuration) of unity. When we compare
the VV with the V H polarizations (see Fig. 10.4), the Raman intensity shows
anisotropy. Most importantly, the A;y mode at 165 ecm~! is suppressed in the
VH configuration, while the lower frequency E;, and Ej, modes are not sup-
pressed as much. This anisotropy is due to the low dimensionality of carbon
nanotubes. The degenerate vibrations of the £ modes, whose eigenfunctions
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Fig. 10.4: The polarization dependence of the Raman scattering
intensity for (a) (10,10) armchair, (b) (17,0) zigzag, and (c) (11,8)
chiral nanotubes and the tube radius are given on the right. The
left column is for the V'V scattering configuration and the right
column is for the VH configuration.

are orthogonal to each other, are relevant to VH signals. From the figure we

see that the relative intensities for the same mode between the VV and VH

polarizations are different but are on the same order for all the E modes.
When we compare the lower frequencies of these Raman modes for nan-
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otubes, the frequency shifts systematically with increasing diameter. In Fig. 10.5
we give the calculated mode frequencies for the lower frequency Raman-active
modes on a log-log plot as a function of the carbon nanotube radius r for (n, m)
in the range (8 < » €10, 0 < m < n). Figure 10.5 clearly shows straight line
dependences for all four Raman modes, thus indicating a power dependence of
w(r) on r. No chirality dependence is found for the mode frequencies for these
modes, which is consistent with the fact that the energy gap of a semiconduct-
ing nanotube and the strain energy depend only on the nanotube radius and
not on the chiral angle @ [81,209]. From the slopes of w(r) for this range of
r, we conclude that, except for the lowest Ey;, mode, the frequencies are in-
versely proportional to » making only a small deviation from the predictions of
Fig. 10.5. This dependence is closely related to the circumferential length of the
nanotube. As for the lowest Es, mode, the frequency wg,(r) has a dependence
of p~1:95%0.03  which is approximately quadratic and may reflect the effect of
curvature on the nanotube. The fitted power law for the A1, mode that is valid
in the region 38 < r < 7A

7(10,10)

) 1.001710.0007
r

u(r) = w(lO,lO) ( y (1015)

should be useful to experimentalists in interpreting their spectra. Here w(10,10)
and r(10,10) are, respectively, the frequency and radius of the (10,10} armchair
nanotube, with values of w(19,10)=165 em~! and r(m)m)=6.7851§, respectively.

It is the noted that the Ey, and 4;, modes exist in a similar frequency region.
However, since the intensity of the E';; modes is not as strong as that for the A;,
mode, the experimental Raman spectra between 100 to 300 cm™! are dominated
by the A;, mode as shown in Figs. 10.1 and 10.3. As for the higher frequency
Raman modes, we do not sec a strong dependence on 7, since the frequencies of
the higher frequency optical modes are more sensitively determined by the local
movements of the atoms.

10.4.2 Higher Frequency Raman Modes

It is interesting that the higher frequency A;, mode at 1587 cm™! does not
show a suppression between the VV and VH geometries, which is relevant to
the Raman active E3; mode of graphite. In the next section we will see that the
Ay, modes depend on the orientation of the nanotube axis. This fact shows that
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a V H signal can be expected when the vibration of the A;; mode is different
from the polarization vector.

In the nanotube, the lattice can be split into two sublattices consisting A
and B atoms. In the higher frequency A;, mode, the A and B atom moves in
opposite directions (out-of-phase) in the unit cell, while in the lower frequency
Ay, mode the A and B atoms move in the same way (in-phase). In Fig. 10.6
we show the normal mode displacements for seven Raman modes for a (10,10)
nanotube which have a relatively large intensity. It is clear from Fig. 10.6 (e)
to {g), that the modes are out-of-phase between nearest neighbor carbon atoms,
while the modes of Fig. 10.6 (a) to (d) show in-phase motion. The out-of-phase
motions observed in Fig. 10.6 (¢) to (g) are similar to the motion of the Raman-
active Ez, mode of graphite at 1582 cm™!, which corresponds to C=C bond
stretching motions for one of the three nearest neighbor bonds in the unit cell.
Thus this motion is an out-of-phase motion. It is reasonable that the out-of-
phase motions of the higher frequency Raman modes of a nanotube have a large
Raman intensity, because of the relation of these modes to the Fy; mode of
graphite.

The motions shown in Fig. 10.6 are independent of the chirality. When
we see the motion of the higher or the lower Raman-active modes of a nan-
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Fig. 10.6: The calculated Raman mode atomic displacements, fre-
quencies, and symmetries for those (10,10) nanotube modes which
show strong Raman intensity. The symmetry and the frequencies
for these modes are almost independent of the chirality of the nan-
otube, We show the displacements for only one of the two modes
in the doubly degenerate E;, and E3; modes.

otube, we can consider an envelope function for the amplitude of the vibration,
multiplying it by the above-mentioned out-of-phase or in-phase motions, respec-
tively. We can say that the envelope function should satisfy the symmetry for
the Raman-active modes among the many phonon modes. For example, the
envelope functions for the Ay4, Fy, and Fy; modes are functions with zero, two,
and four nodes around the tube z-axis, respectively [see Fig. 10.6 (f), (e), and
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(g) for out-of-phase motion, and (c), (b), and (a) for in-phase motion]. Thus
the envelope functions with a given symmetry are similar to one another for
nanotubes with any (n, m) values. This is the reason why we get similar Raman
spectra for different chirality nanotubes. We can say within the discussion of
the envelope function that we see a homogeneous elastic cylinder.

When we investigate the vibration of the higher frequency Ay, mode at
1587 cm™1, the vibration corresponds to the folded vibration of one of the higher
I3, modes of graphite. Thus, in the cylindrical geometry, we may get a result
that is not so polarization sensitive. On the other hand, in Cgo, since all 60 atoms
are equivalent, no carbon atom can move in an out-of-phase direction around
the Cy axes for either of the two A;; modes, so that both modes show similar
polarization behavior to each other [198]. However, the directions of the out-of-
phase motions of the A;, modes are different for armchair and zigzag nanotubes.
In fact the C=C bond-stretching motions can be seen in the horizontally and the
vertically vibrating C=C bonds for armchair and zigzag nanotube, respectively.
Thus the curvature of the nanotube affects the frequency of these mode. When
we focus our attention on armchair nanotubes, the higher Raman frequencies
depend on the radius of the nanotube 1/r via the wave vector ¢ around the
equatorial direction [202), which is understood by the zone-folding method and
is discussed in Sect. 10.2.

Although these higher frequency modes are difficult to distinguished from
one another because of their similar frequencies, it will be possible to identify the
different modes experimentally, once purified aligned samples become available,
as shown in discussing the angular dependence of the Raman intensities, which
is reviewed in Sect. 10.5.

10.4.3 Medium Frequency Raman Modes

It could be very interesting to discuss the Raman frequency in the intermediate
frequency region where the frequency may be the most chirality dependent [210].
The calculated results, however, show almost no intensity for the intermediate
Raman modes around 1200-1500 cm™!. The Raman experiments on single-wall
nanotubes show weak features which have been assigned to armchair modes [83].
From the calculation we cannot explain why these low intensity peaks appears.
The peaks might come from a lowering of the symmetry of the nanotube. In
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fact, broad Raman peaks around the 1347 cm™!?

are observed experimentally
[83, 135]. These peaks are known to be associated with symmetry-lowering effects
in disordered graphite [211] and carbon fibers [212] for which a broad peak is
observed around 1350 cm™!. The relative intensity of the broad peak around
1350 cm™? to the strong E,, mode at 1582 cm™! is sensitive to the lowering of
the crystal symmetry of graphite [211,213], the amount of disorder in carbon
fibers [212] and in graphite nano-clusters [214]. The amount of disorder in these
systems can be controlled by the heat treatment temperature Tz or by ion
implantation [215]. The non-zone-center phonon mode at 1365 cm™! has a flat
energy dispersion around the M point in the Brillouin zone of graphite, which
implies a high phonon density of states * [216]. Moreover, in small aromatic
molecules, the frequency and the normal mode displacements are modified by
the finite size effect, so that these M point phonon modes becomes Raman active
[217] and have a large intensity [214,218). Thus some symmetry-lowering effects
such as the effect of the end caps, bending of the nanotube and the other possible
defects are likely to turn on the Raman intensity for this M-point mode. Note
that if the nanotube is deformed to a 2 x 2 structure for any reason, the M point
phonon can be folded to the I' point and the folded modes becomes Raman-
active 4, modes. However, since a Peierls instability is unlikely, as is discnssed
in Sect. 11.3, this situation may occur only in the case of intercalated nanotubes
[135].

When we calculate the Raman intensity for a nanotube with open ends,
the intermediate frequency Raman modes have a small intensity relative to the
strong peaks in the higher and the lower frequency regions. The observed Raman
signal in Fig. 10.1 in the intermediate frequency region can be relevant to the
finite length of a nanotube.

As shown in Fig. 10.4, the chirality dependence of the Raman spectra is not
clearly observed except for the frequency. However when we consider the abso-
lute Raman intensity, it is important to consider also the effect of the phonon
density of states. The three nanotubes in Fig. 10.4 have almost the same diame-
ters. However the number of carbon atoms per 1D unit cell is very different. For
example, the (10,10} and (17,0) nanotubes have 40 and 68 carbon atoms in their
1D unit cells, respectively. However, the (11,8) nanotube has 364 carbon atoms
in its unit cell. Because of the large number of states for the (11,8) nanotube, it

*See Fig. 9.4 for 2D graphite. In this case we can see a flat band appearing below 1300 cm —1
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should be difficult to observe the singularities in the electronic density of states
in a (11,8) nanotube within the resolution of the STM because the singularities
oceur s0 close to one another. Thus the resonant Raman effect for chiral nan-
otubes should also be relatively difficuli to observe compared with the case of
achiral nanotubes. It would be interesting to be able to assign the chirality of a
nanotube from the Raman spectra by using many laser excitation frequencies.

10.5 Sample Orientation Dependence

In Sect. 10.4.2, we see that the high frequency Raman modes originate from the
out-of-phase Fy; mode of graphite. As a result, the frequencies of the Raman
modes in the high frequency region are close to one another. However since the
symmetry of these modes are different, these mode can be separated from one
another by exploiting special experimental geometry conditions.

In Fig. 10.7, we show the intensities of the various Raman-active modes for
the (10,10) armchair nanotube as a function of sample orientation. Here we
fix the polarization vectors to lie along the z and = axes, respectively for the
V and H polarizations. Then we consider the effect of rotating the nanotube
axis from the z axis. In this geometry, three rotations of the nanotube axis
are possible for the VV and the VH configurations, and these three rotations
are denoted by 8;, (i = 1,2,3) as shown in Fig. 10.7. Here 6;, and 8, are the
angles of the nanotube axis from the z axis to the  and y axes, respectively,
while #3 is the angle of the nanotube axis around the z axis from the z to the
¥ axis. Since we put the horizontal polarization vector along the ¢ axis, ¢, and
#; are different from each other for the VH configuration. Even for the VV
configuration, the rotations by #; and 84 are not equivalent to each other in
the case of the (10,10) armchair nanotube, since the (10,10) armchair nanotube
has a ten-fold symmetry axis (Cyp) which is not compatible with the Cartesian
axes. Here we define the z,y, z axes so that we put a carbon atom along the 2
axis when 83 = 0°. In Fig. 10.7, we show the relative Raman intensities for the
(10,10} armchair nanotube for the VV and V H configurations for the various
Raman modes of a (10,10) carbon nanotube as a function of 8;, (i = 1,2, 3).

In Fig. 10.7 we see that the Raman intensity for the A;, mode at 1587 em~1L
as a function of #; has a maximum at #; = 0, which corresponds to #; = f3 = 0,
for the V'V configuration, while the £y, mode at 1585 em~! has a maximum
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Fig. 10.7: The polarization dependence of the Raman intensities
as a function of the orientation of the nanotube axis for a (10,10)
armchair nanotube. #y, and #, are angles of the nanotube axis
from the z axis toward the x and y axes, respectively. 3 is the
corresponding angle around the z axis from the  to the y axes.
The left and right hand figures correspond to the VV and VH
polarizations, where V and H correspond to the light polarization
in the direction of the z and # axes, respectively.

at §; = 45°. When t increases to 45°, the relationship between the intensities
of the A;, mode at 1587 cm™' and of the Ey; mode at 1591 cm™! becomes
reversed for the V'V configuration relative to the VH configuration. Thus, we
can distinguish these two close-lying modes from each other experimentally if
we have an axially aligned sample. There is also an E,; mode at 1591 cm™!
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which can be distinguished from the A;, and E;; modes, since the Ey; mode
has a maximum intensity at 8; = 90°. As for the other Raman-active modes, we
can also distinguish them by their frequencies. In Fig. 10.7, the two Es; modes
at 368 and 1591 cm™! have almost the same intensity in the V'V configuration.
Thus we can see only a single line in the V'V configuration of the figure. However
in the #5 dependence of the V H configuration, we can see the difference between
these Eqy modes.

Even the modes belonging to the same irreducible representation do not
always have the same angular dependence with regard to the polarization of
the light. For example, the intensity of the 4, mode at 165 ecm™! has a dif-

ferent angular dependence from that of the 4;, mode at 1587 cm™?

, as shown
in Fig. 10.7. Further, it is clear from the figure that the angular dependence
with respect to 6 and 8, is different for the V H geometry since the horizontal
polarization is taken in the x direction.

The symmetry analysis may be difficult even if we can get an aligned nan-
otube sample for which the direction of the carbon atoms is ordered, since the
10-fold symmetry of the (10,10) nanotube does not satisfy the symmetry of the
triangular nanotube lattice. Thus an averaged angular dependence for #; and 62
in the V'V geometry is expected for a general aligned sample. Even in this case,
since the A;, mode at 1587 em™! is independent of 83, the signal for this mode
will be clearly seen. The (9,9) armchair nanotube is of special interest, since it is
one of a few examples where the n-fold symmetry of the nanotube matches the
triangular lattice; therefore, for (9,9) nanotubes in a triangular lattice, detailed
angle-dependent selection rules can be expected.

In summary, the Raman intensity of armchair, zigzag, and chiral nanotubes
is discussed in Sects. 104 and 10.5 as a function of their polarization geometry
and sample orientation. No significant dependence on chiral angle is found for
the Raman spectra. The Raman intensity is explained by the envelope function
of the amplitude of the vibration, and this envelope function is sensitive only
to the homogeneous elastic cylinder. However, we expect to see a large chiral
dependence of the phonon density of states which is reflected in the absolute in-
tensity. The sample orientation dependence of the Raman intensity shows that
not only the symmetry buf also the direction of the displacements give rise to
their own angular dependence, and this angular dependence can be used for dis-
tinguishing between the symmetry assignments for the higher frequency Raman
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modes. Such a symmetry analysis will also be useful for identifying the chirality
of carbon nanotubes.



CHAPTER 11.
Elastic Properties of Carbon Nanotubes

Since the C=C bond in graphite is the strongest bond in na-
ture, a carbon nanotube is widely regarded as the ultimate fiber
with regard to its strength in the direction of the nanotube axis.
Furthermore, single wall nanotubes are rather flexible in the direc-
tion normal to the nanotube surface. The static elastic properties of
carbon nanotubes are discussed in Sect. 11.2. The unusual aspects of
the Peierls instability, associated with the distortion which makes an
energy gap at the Fermi energy, in carbon nanotubes are discussed in
Sect. 11.3. Multi-wall carbon nanotubes have unique properties that
do not appear in single wall nanotubes, and these are summariged in
Sect. 11.4.

11.1 Overview of Elastic Properties of Carbon Nanotubes

In graphite and in carbon nanotubes, three kinds of forces between carbon atoms
produce their characteristic elastic properties. The fundamental atomic forces
consist of strong o-bonding and 7-bonding forces between intralayer C=C bonds
and weak interlayer interactions. Although the three forces differ from one-
another regarding their orders of magnitude, all three forces are essential for
describing the elastic properties of carbon nanotubes, as shown in the following
three sections, respectively. In each section we give an overview of the relation-
ship between the properties and the force.

By rolling a graphene sheet to form a single wall carbon nanotube (SWCN),
the total energy of the nanotube is increased by the strain energy associated with
the curvature of the nanotube. The strain energy thus increases with decreasing
nanotube diameter, so that a nanotube with a small diameter may be less stable
than a nanotube with a larger diameter. In graphitic materials, sp? covalent

207
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bonds mainly form the ¢ skeleton of the honeycomb lattice. Thus the strength
in the direction of the nanotube axis may be considered as an elastic thin film
for which classic elastic theories can be applied [219], as shown in Sect. 11.2. On
the other hand, we expect a rather soft surface in SWCNs for a force applied
perpendicular to the surface of a carbon nanotube, and this feature of SWCNs
can also be explained by considering a tangential force on the o-bond skeleton.
Single wall carbon nanotubes have no interlayer interactions, since a hollow
vacuurmn core exists inside each nanotube. In fact, a perpendicular deformation
is not always stable and the cross section of carbon nanotubes is easily flattening
by applying a force normal to the nanotube axis [220] and a large bending of
single wall nanotubes is observed without breaking the & skeleton [221]. Using
elastic continuum theory to describe the elastic properties of nanotubes, we
discuss In Sect. 11.2 the rigidity of carbon nanotubes and the weak chirality
effects expected for their elastic properties.

Single-wall carbon nanoctubes are believed to possess many of the desirable
mechanical properties of carbon fibers, but, in addition, single-wall carbon nan-
otubes have a number of other desirable nanotube properties with regard to their
flexibility, their ability to withstand cross-sectional and twisting distortions, their
extensibility, and their ability to withstand compression without fracture. Just
as for the carbon fibers that are produced commercially for aerospace applica-
tions, carbon nanotubes show excellent strength characteristics under extension,
and molecular dynamics simulations [222] indicate that an increase in length
(elongation) of several percent without fracture might be possible [95,219]. In
addition to these amazing predictions for their tensile properties, single-wall
nanotubes show remarkable flexibility, and can be bent around small circles or
about sharp bends without breaking [110]. Whereas carbon fibers fracture easily
under compression, carbon nanotubes form kink-like ridges under compression,
and these ridges can relax elastically when the stress is released. Computer
simulations [222] further indicate that when the compressional or shear stress is
released, the original circular cross-section of the nanotube can, in many cases,
be restored [219]. It should be possible to utilize these excellent mechanical prop-
erties for applications directly, or in conjunction with their use for manipulating
other nanostructures [53].

Although the 7 electron contribution to the elastic energy is relatively small
compared with that from the o electrons, the 7 contribution is nevertheless
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important for obtaining the lattice distortion known as the Pejerls distortion
(see Sect. 11.3.2). Although one third of the possible carbon nanotubes that
can be formed are one-dimensional metals, and it is well known that the Pejerls
instability is favored in low dimensional systems [223], the associated lattice
distortion can be negligible in the case of carbon nanotubes because of the
following physical situation. The Peierls instability is known to cause a metal-
insulator transition, by opening an energy gap at the Fermi energy to benefit
from the electronic energy gain which is introduced by the distortion of the
lattice into a doubled unit cell. The values of the distortion are determined by
minimizing the total energy as a function of the distortion, in which the energy
gain associated with the electron-lattice interaction of the n electrons is balanced
by the energy loss of the potential energy of the lattice. Starting from a general
theory of the Peierls instability, we focus our attention on the reason why the
Peierls distortion is suppressed in carbon nanotubes in Sect. 11.3.

Muiti-wall carbon nanotubes have many interesting properties that are not
observed or explained by the physics of single-wall nanotubes. In multi-wall nan-
otubes, the relatively weak interaction between two adjacent layers determines
their relative stacking structure, which denotes the positions of the atom sites
on the outer layer, relative to those on the inner layer of the nanotube. The
lattice structure of the inner and the outer layers are generally incommensurate
with each other, which describes the turbostratic structure of multi-wall carbon
nanotubes. This turbostratic structure affects shear stress between the nanotube
shells. However, in some cases, the interlayer stacking can become correlated,
and experimental evidence has been found for faceting in some multi-layer nan-
otubes [224,225].

Because of the weak and incommensurate electronic interaction between the
two layers, the electronic structure between two adjacent carbon layers is consid-
ered in terms of a sum of the electronic structures of the constituent nanotubes,
Furthermore, in discussing multi-layer nanotubes we require that in the limit of
large nanctube diameter, all the nanotube properties should correspond to those
of graphite. These topics are briefly summarized in Sect. 11.4.
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11.2 Strain Energy of Carbon Nanotubes

When we consider a single-wall carbon nanotube as an elastic sheet, the strain

energy E; is inversely proportional to the diameter of carbon nanotube, d;: [12],
T ETd}

T = Gdt )

where FE is the elastic modulus of the sheet, T" is the length of the carbon

nanotube per 1D unit cell in the direction of the nanotube axis [see Eq. (3.5)],

(11.1)

and d; is the thickness of the thin film, which can be considered as the interplanar
distance between two turbostratic graphene layers (3.44A). Since the number of
carbon atoms per unit cell N = 2L7T/+/3a? [see Eq. (3.9)] is also proportional to
d; (i.e., L = 2nd,), the strain energy per carbon atom is inversely proportional
to the square of the nanotube diameter:

El = M (11 2)

N~ 24d? '
This simple argument for a dependence of E, /N on d; ? is confirmed by a more
detailed first principles calculation of the strain energies of many carbon nan-
otubes with different diameters and chiralities [209], as shown in Fig. 11.1. The
solid curve in the figure depicts the (1/d;)? dependence of E, given in Eq. (11.1),
showing that we can understand the functional dependence of the strain energy
of a carbon nanotube from the simple arguments given above for an elastic thin
film. The small deviations of the strain energy as a function of nanotube di-
ameter (or radius) suggests that the dependence of E,/N on chirality, is very
weak, and this weak dependence may be due to: (1) chirality-dependent direc-
tions of the three equivalent o bonds with respect to the nanotube axis, and (2)
chirality-dependent contributions of the # bonds, depending on whether there is
an energy gap or not in the dispersion relations.

Although the total energy depends on the nanotube chirality and thus should
be related to the stability of the carbon nanotube, the abundance of a given
diameter carbon nanotube should not depend on the chirality. This is because
the abundance of nanotubes is determined by the initial formation of the end
cap of the carbon nanotube. In fact, experimental results for the diameter
distribution of single wall carbon nanotubes do not show the same diameter
distribution for different catalysts (57]. Since the diameter and chirality cannot
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Nanotube radius (nm) in Eq. (11.1).

be changed in a single-wall nanotube unless a defect exists, this result might
show that the diameter and chirality that are obtained in the growth process
depend mainly on the shape of the caps generated by the catalytic particle. The
lower limit of the diameter of a single wall carbon nanotube seems to be the
diameter of Cgo. In fact there is no report of observation of a nanotube with a
diameter smaller than that of Cgp.

When a force acts perpendicular to the nanotube axis, the nanotube bends,
as described by the Young’s modulus Y [220]. When we consider a cantilever
beam of length £, the deflection d of the beam with a force f at its free end is
given by [219] .

e
where I is the areal moment of inertia of the cross-section of the nanotube
about its axis, [ = n(r? — r#)/4, in which r, and r; are the outer and inner
radii of an elastic cylinder, respectively [220]. As a first approximation® we use
Y = Cy; where the elastic modulus Cy; for a carbon fiber for Y, €1 = 1060 GPa
[9,219,226]. Overney et al. calculated the beam rigidity of a carbon nanotube
in the same geometry, using the Keating potential whose parameters are given
by the local density functional calculation [227]. Their calculated result shows
that the beam rigidity is 200 times greater than a Pr bar of the same size. The

*The Young’s modulus ¥ is given by (5};1]¥ where S;; denotes the compliance tensor. Since
C12 = 220 GPa is not negligible in a carbon fiber, we expect Y for a carbon fiber (~ 800 GPa}
to be somewhat smaller than C; for graphite. However, since we expect Cyz in a nanotube
to be reduced relative to graphite, we may use the C11 values for graphite to obtain a value
for Y for carbon nanotubes,
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calculated Young’s modulus for a carbon nanotube is about 1500 GPa. There
are many calculations for the Young’s modulus whose value varies from 500 to
1500 GPa, depending on the potential model and on the estimation for the cross
section. When we consider a single wall nanotube, we may use Eq. (11.3) and
we can consider the wall thickness to be 3.44A, which is the interlayer separation
between turbostratically stacked graphene layers [9).

When the diameter of single wall nanotube increases, the nanotube is un-
stable in the direction perpendicular to the surface. The TEM observations
show evidence for nanotubes collapsing into a flattened or bent nanotube with-
out breaking the nanotube structure. TEM photos of a collapsed nanotube
look similar to the bending of a rubber nanotube [228]. On a nanometer (nm)
scale, the nanotube seems to be rather soft in the direction perpendicular to the
nanotube axis.

The experimental observation of the Young’s modulus of a single nanotube is
difficult because of its small diameter. A novel method for measuring the Young’s
modulus of individual nanotubes has been developed, whereby the amplitude of
a thermal vibration of the nanotube is observed as a function of temperature
[229]. At a high temperature 7" where a classical Boltzmann distribution of
probabilities, P x exp(—FE/kpT), can be used, the average of the vibrational
energy, (W,,), for a vibrational mode, n, becomes kgT, or (W, )=kpT, where kg
is Boltzmann’s constant. Since the averaged value of W, is proportional to the
square of the amplitude u2, we can write

1
(W) = genlud) = ko, (1L.4)
where ¢, is a spring constant. The spring constant is estimated by directly
observing the amplitude of the thermal vibration as a function of temperature
within the standard deviation

1
2
o2 = kpT En( - (11.5)

given by statistical physics. The relationship between c,, and the Young’s mod-
ulus Y is given by use of elasticity theory for continuum media

TBpY (rg — 1)

617 (11.6)

Cp =
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where the values 3, are solutions to the equation, cos @, coshf, +1 = 0. In
their experiments the authors used a clamped hollow cylindrical cantilever of
length L [229]. The leading numerical values for 8,,(n = 0,1,2,3,...) are
1.8751, 4.6941, 7.8548 and 10.9955 and for larger 3, values, 8, can be found
by the approximation 8, ~ (n + 1/2)x. By fitting a, b, and L to Eq. (11.6) for
various nanotubes, the estimated results for YV are found to be in the range of
~1000 GPa, comparable to Cy; for graphite.

11.3 The Peierls Instability of Nanotubes

11.3.1 Bond Allernaiion

Next we discuss the effect of 7 electrons on the elastic properties. When electrons
occupy about half of the valence energy band of one-dimension materials, the
energy bands are unstable to a distortion of the lattice into a doubled unit cell.
For the doubled unit cell in real space, the corresponding unit cell in reciprocal
space is reduced by a factor of 2. Therefore, the energy dispersion relations
are folded in half and an energy gap is opened at the Fermi energy at the
zone boundary of the folded Brillouin zone. This effect is known as the Peierls
instability. For partially filled bands, such a distortion leads to a lowering of
the energy of the system as the lower energy bands become occupied and the
higher-lying energy bands remain empty. An example of the Peierls instability is
the bond alternation or the Kekulé structure of neutral carbon nanotubes [230],
which has been discussed [230-233] in terms of the Su-Schrieffer-Heeger (SSH)
model, developed initially for polyacetylene (CH), [234], and subsequently for
Cgo and its ions [231-233].

In the SSH model, a tight-binding Hamiltonian describing bond-alternation
is solved in a large unit cell in which the transfer integral between the nth and
mth atoms, {,m, is defined by

tam = 10, + {2y — Tm), (11.7)

and ¢,y becomes a function of the distortions of atoms from their original posi-
tions, z,, and 2. In Eq. (11.7), 2., is the transfer integral without bond alter-
nation (—2.5 ~ ~3.2 eV) and o denotes the electron-phonon coupling constant
(~ 5.0 eV/A). When the two atoms are close to each other, the absolute value
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of the transfer integral” becomes large. In the case of polyacetylene (CH),, the
bond alternation problem can be solved by using a doubled unit cell with a dis-
tortion z, = (—1)"xz, leading to two transfer integrals ¢, and t3, (t; = to — 2y
and {3 = tg + 2ag, with ‘tll < ltz').

When we neglect the overlap integral, s = 0 in Eq. (2.20) for simplicity,
Hap of Eq. (2.17) becomes

Hap =162 4 tyem /2, (11.8)

and the secular equation is given by

€2p — F tleika/Z + t26~ika/2
t1e—ika/2 t e+ika/2 €on — E
1 . + 22 . 2p (11.9)
= (€zp — E)* — (t{ + t5 + 2t1t5 cos ka)
The solution of Eq. (11.9) yields the dispersion relations
E4 (k) =€ & \/tf+t§+2t1t2 cos ka, (—% <k< -;E), (11.10)
which are plotted in Fig. 11.2 for the values of t; = —1.1 and ¢, = —0.9.

Comparing Figs. 11.2 and 2.2, we see that an energy gap of 2jt; —t5) = 8azp = 0.4
is opened at k = xw/a because of the bond alternation. The electronic energy
of those electrons which are in the occupied valence energy band (£; band in
Fig. 11.2), decreases by opening the energy gap. On the other hand, the elastic
energy increases by

Ey = 4Kz} (11.11)

where K is a spring constant, and thus the optimized value of zg is given by
minimizing the total energy. Putting t; = ¢y — 2azg and t3 = tg + 2axg into
Eq. (11.10), the energy difference of the electronic energy is given by

m/a
a
Ba(@0) = 2 [ b {BLB)]symy — BB larma}. (11.12)
Thus the total energy Fior = Eel + Egp has a minimum, 8F: /8¢ = 0 when

T/a
8Kzg = %/ dk—a—\/A + B coska, (11.13)

—-n/a 3:”0

*It is noted that ¢, < 0 and « > 0 in Eq. (11.7).
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where A and B denote A = 2% + 80223 and B = 22 — 8a2z2, respectively. The
integration of Eq. (11.13) is given analytically by

R ORI (11.14)

where K(z), and £(z) are, respectively,! the complete elliptical integrals of the
first and the second kind defined by,

wi2 /2
IC(z):] -—-—ié-‘-*-—w-, and 8(2):/ doV'1—2%sin®6.  (11.15)
0 /1-—2%sin%¢ 0

In Eq. (11.14) z is a function of zo which is given by

2B axg\?
2 T —— T —— __.__0
24 = 1T B 1 4( & ) . (11.16)

To solve Eq. (11.14), we use the mathematical formula cos 20 = 1 — 2sin? 4, and
obtain a solution for zo over a reasonable range of o > 0.

tWhen |2} < 1 we can expand K{z) and £(z) around k = 0 to obtain:

)C(z)=32’.{1+ (%>222+ (.;.:_2.)2?*‘“'}’
=5 {o- ()" ()5 4}

respectively.
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In Fig. 11.3 we plot the normalized energy gap, Egap = 8azo/lto], as a
function of the normalized electron-phonon interaction ¢ = 4a?/(7lto|K). In
the inset of Fig. 11.3 we plot — log(Egap) as a function of 1/z, clearly showing
a linear dependence of —In(Eg,,) on 1/2 which is numerically fitted by

Egap = 9.12¢ 1015/ (11.17)

The functional form of the energy gap is similar to that for the superconducting
energy gap according to BCS theory.

Because of this lowering of the total energy, bond alternation is always
found in a one-dimensional metal. The corresponding lattice deformation is
called the Peierls distortion. In a molecule which has degenerate and partially-
occupied levels associated with the high symmetry of the molecular geometry, the
degenerate states become unstable under a lattice distortion, which lowers the
symmetry and splits the degenerate levels so as to open an energy gap between
the filled and unoccupied states. This effect which is similar to the Peierls
instability is called the Jahn-Teller effect in quantum chemistry. The Peierls
instability is thus a kind of Jahn-Teller effect which occurs in the solid state.}
In higher dimensions, this instability does not always occur, simply because
the energy gain in a small region around the Fermi energy is not always larger
than the energy loss associated with the elastic energy.? In a carbon nanotube,

{The Peierls instability is sometimes called a band Jahn-Teller effect.
§There are no pure one or two dimensional solids in three dimensional space. The Peierls
instability occurs when the shape of the Fermi surface is close to that of a one-dimensional
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(@) (b)

Fig. 11.4: Possible bond alternation for a honeycomb lattice. (a)
a Kekulé type in-plane bond alternation,(b) a quinoid type in-
plane bond alternation, and (c) an out-of-plane bond alternation.
In the case of in-plane bond alternations, thick and thin lines,
respectively, denote shrunk and elongated bonds, while solid and
open circles in the out-of-plane bond alternation denote deforma-
tions in the 42z and —z directions, respectively.

although the geometry is one-dimensional, the electronic strueture becomes close
to that of graphite as the diameter increases. Thus a dimensional crossover
associated with bond alternation occurs at 0 K, as described in Sect. 11.3.2.

11.3.2  Peierls Distortion of graphile and carbon nanolubes

In chapter 2 we show that two-dimensional graphite has no energy gap between
the bonding and antibonding 7 bands because there are two equivalent carbon
atormns in the unit cell which give rise to a symmetry-imposed degeneracy at the
Brillouin zone corner. If the two atoms were not equivalent to each other, an
energy gap would appear, thereby lowering the electronic energy. Whether this
symmetry-lowering distortion does occur or not depends on the strength of the
electron-phonon coupling constant, which we will discuss in this section.

In the honeycomb lattice we can consider three kinds of lattice deformations
as shown in Fig. 11.4; (a) a Kekulé type of in-plane bond alternation, (b) a
quinoid type in-plane bond alternation, and (c) an out-of-plane bond alternation.
In Fig. 11.4(a) and (b), thick and thin lines, respectively, denote shrunk and

surface, or when two Fermi surfaces are parallel to each other over large areas in the Brillouin
zone (the nesting condition).
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elongated bonds. In the case of an out-of-plane deformation, the A and B
sites in the unit cell deform in the +2 and —z directions, respectively. After
deformation, the unit cell becomes twice as large as the original unit cell in the
case of in-plane deformations, while the unit cell for out-of-plane deformations
does not change. Thus for simplicity we consider the case of an out-of-plane
deformation,

Even if we deform the lattice by an out-of-plane deformation, all C—C bonds
are still equivalent to each other, and thus there is no relative difference in the
transfer energy between the A and B sites. When the site energies have different
values for the A and B sites, the two sites are not equivalent. For example the
A and B sites are inequivalent in three-dimensional graphite, in which the A
sites have carbon atoms above and below the atom but the B sites do not.* In a
single layer of graphite, there is no relative difference in the site energy between
the A and B sites. However, in the case of a single layer carbon nanotube, there
is a difference between the inner and outer directions.

If we assume that the site energy for the A and B carbon atoms is shifted
by £azg/2 in which « is the electron-phonon coupling constant per distortion
2p, the energy dispersion of the distorted = bands of graphite is given by solving
the perturbation Hamiltonian,

(s 741] tf(k)
M= , (11.18)
tf(k)* —azo

where ¢t and f(k) are defined by Eq. (2.24) and Eq. (2.25), respectively. Here
we neglect the effect of the overlap matrix S and we put €3, = 0 in Eq. (2.26)

for simplicity. When the distortion is included, the calculated energy dispersion
E(k) becomes

_ azg\ 2 \/gkxa kya 9 kya
E(k) = :tt\/(T) +1+ 4 eos 227 cos ~L2 4 4 cos? L (11.19)
This relation implies an energy gap of 2azp at the K point. The value of z,

is obtained by minimizing the total energy which is given by the sum of the

*In the SSH Hamiltonian they consider only the change of the transfer energy by the lattice
deformation. Here we consider only the change of the site energy by the lattice deformation.
Generally, the electron-lattice interaction affects both the transfer integral and site energies.
See, for example, R. Saito and H. Kamimura, J. Phys. Soc. Japan 52, (1983) 407.
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electronic energy and potential energy of the lattice. No distortion from the
honeycomb lattice is observed in crystalline graphite because the density of states
at the Fermi level is zero in the case of two-dimensional graphite. This situation
is explained below as the limit of a carbon nanotube,

Let us consider the Peierls instability of a carbon nanotube. Here we consider
only out-of-plane distortions for the case of a zigzag carbon nanotube, (n,0), for
simplicity. Since the size of the unit cell does not change in the case of an out-
of-plane distortion, the electronic structure of a distorted (n, 0) zigzag nanotube
is obtained by zone-folding as discussed in Eq. (4.7). The 4n energy dispersion
relations of the distorted (n,0) zigzag nanotube, EY (k), are expressed as

Ef (k) =+t J (E'%]—Y +134cos (\/3;&7«1) cos (gg-) + 4 cos? (_9.';:_{))

(—-%<ka<%), (g=1,...,m).
(11.20)

Taking account of the potential energy of the lattice as K22/2 per unit cell of
graphite, in which K is a spring constant, we obtain the following gap equation
for the (n,0) zigzag nanotube

Kt _ Z 2B,
T2 2m VA, +B A, + By

in which X(z) is the complete elliptical integral of the first kind defined in
Eq. (11.14), and 4, and B, are given by

(11.21)

Ay = (%z—ﬂ-)g 41+ 4 cos? (%) and B, = ]4005 (%)t , (11.22)

respectively, and Eq. (11.21) is obtained by use of the mathematical formula,

wf2 2
/ de{ L1 }._., J -
—r/2 Va+bcos#  Ja-—bcosh o a-+bcosd

4 2b
= e O ], a>b>0)
va+b ( a+ 5‘) ( )
(11.23)
which directly follows from the definition of K in the footnote of the previous

subsection.
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In Fig. 11.5, we plot the energy gap Ega, = 20:20/[to|, which is normalized by
[tol, for metallic zigzag nanotubes (n,0), as a function of ¢ which is the electron-
phonon interaction o? normalized by Klto| so that z = o?/(Klto]) (to < 0).
The plot in Fig. 11.5 is made for special values of n that are multiples of 3,
namely n =3, 6, 12, and 999 (~ oo, corresponding to 2D graphite) denoted by
solid, dotted, dashed, and bold solid lines, respectively. From the figure, we see
that the dependence of the energy gap of the nanotube on the electron-phonon
coupling constants is very close to that for the 2D case, and that an energy gap
appears due to the finite values of the interaction. Actually in the case of zigzag
nanotubes, the energy gap has non-zero values for small values of 2z, although
these values can be exponentially small, as seen in Eq. (11.17). The difference
between the application of Eq. (11.17) to polyacetylene and carbon nanotubes
is that the factor appearing in the exponent of Eq. (11.17) depends on n for
(n, 0) zigzag nanotubes as «x exp(—nAd/z) (A is constant) [71]. Thus for large n
a larger interaction z is necessary for opening an energy gap. The reason why
we get the present results is that the electron energy gain comes only from two
of the 4n energy bands which cross the Fermi energy, while the elastic energy
loss comes from all of the 2n carbon atoms in the unit cell {71].

In the limit of n — o0, we obtain the two-dimensional case in which a
non-zero value of z; appears only when o?/K|ty| > 1.01. Since there is no
experimental distortion in 2D graphite, the normalized interaction.of o?/K [to|
satisfies o®/ K |to] < 1.01.

As for the other types of distortions of carbon nanotubes shown in Fig. 11.4,
Harigaya et al.[233] and Viet et al.[235] independently calculated the energy gap
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as a function of the chiral vector or the intensity of the electron-phonon interac-
tion, using the SSH model for two-dimensional graphite. The calculated result
shows a similar functional dependence of the energy gap on the electron-phonon
interaction. A magnetic-induced distortion can however occur in a nanotube
since the density of states at the Fermi energy is enhanced by the presence of a
magnetic field by forming the £ = 0 Landau level, as discussed in detail by Ajiki
and Ando {160].

The electron-electron repulsion interaction, which is considered to be large in
conjugate polymers, is also expected to be important in carbon nanotubes, since
they are also low-dimensional materials. On-site (Upn;pn; ) and off-site electron
interactions (Usjn;,n;, ) are taken into account in the SSH Hamiltonian, in which
the two-body effect is calculated mostly within the Hartree-Fock approximation,
while keeping self-consistency between the charge and the lattice distortion {233].
Within the reasonable range of U ~ [t5], the lattice distortion is determined by
the electron-phonon interaction (a). For larger U, a spin-Peierls interaction may
occur in which the interaction between the two spins is now a function of the
deformation of the lattice: (J ~ —~[t|2/U = Jo + ag(%n — Zn41)).!

In conclusion, though metallic 1D energy bands are generally unstable under
a Peierls distortion, the Peierls energy gap obtained for metallic nanotubes is
found to be greatly suppressed by increasing the nanotube diameter. Thus
the Peierls gap quickly approaches the zero-energy gap of 2D graphite [69,71].
Thus if we consider finite temperatures or fluctuation effects, it is believed that
such a small Peierls gap (< 1072 eV) cannot be observed experimentally. The
coexistence of metallic and semiconducting carbon nanotubes, depending on the
chirality of the carbon nanotube, is independent of the lattice deformation.

11.4 Properties of Multi-Wall Nanotubes

In this section, we list several interesting features that can be seen only in multi-
wall nanotubes. Although multi-layer nanotubes have not been characterized in
detail for their physical properties, because of the difficulty of making measure-
ments on the individual shells of the nanotube and of sample preparation of

{There is an kinetic exchange interaction J ~ —}t]2/U which favors the antiferro-magnetic
interaction. Since the transfer energy t in the SSH Hamiltonian is a function of (¢n — 2541),
[see Eq. (11.7)], J depends on the deformation, This effect is known as the spin-Pesierls
distortion.
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a well-defined and structurally characterized multi-wall nanotube, the co-axial
nanotubes provide an interesting geometry, as shown below.

When we consider two coaxial nanotubes which share the same nanotube
axis, the chiral vectors of the inner and outer nanotubes can be determined
separately, which give the radii of the constituent nanotubes and the interlayer
spacing between them. However, the structures of the two nanotubes will not
be commensurate to each other in almost all concentric nanotubes, since their
ratio of lengths in the circumferential direction is scaled by the ratic of the two
diameters, but is not scaled in the direction of the nanotube axis. Further for
(n, m) nanotubes, the length of the chiral vector C;, = L is proportional to an
irrational number L = av/n? + m? + nm. The only commensurate cases are the
cases of the achiral co-axial nanotubes, since the translation vectors, T', are the
same for two armchair nanotubes (n3,n;) and (ng, na) (where T' = a) or for two
zigzag nanotubes (n1,0), (nz,0) (where T = v/3a). Thus the lattice constant
along the 2z axis has a 1 to 1 commensurate ratio. As for the circumferential
direction, cyclic boundary conditions always imply a commensurate relation. In
achiral nanotubes, the commensurate ratio is expressed by ni/na. It is clear
that an armchair nanotube and a zigzag nanotube cannot be commensurate in
the direction of the 7 axis, since the ratioof T'is 1/ v/3. In the case where the two
are general chiral nanotubes, since the length of T' = \/3L/dg is an irrational
number in units of a [see Eq. (3.8)], the ratio of the 7" vectors for the two
nanotubes will be an irrational number. In the case of incommensurate co-axial
nanotubes, no periodicity appears along the z axis. This means that when we
put carbon atoms on the ¢ axis, both for the inner and outer nanotubes, we will
not see any two atoms in a line parallel to the # axis. When we slide the inner
nanotube along the z axis relative to the outer nanotube, the elastic potential
is, however, a periodic function, with a period that is the larger value of the T
vectors for the constituent nanotubes, When the number of carbon atoms in
the unit cell of the constituent nanotubes becomes large, the potential becomes
flat, since the average of the inter-atomic potentials at different distances does
not depend much on 2. In this sense, the shear modes between two graphite
-1 in graphite, should be much reduced in
the multi-wall nanotube. One nanotube may move smoothly with respect to the
other in the attractive force between the two walls.

layers, which is observed at 42 c¢m

Since we have two degenerate shear modes in the z and y directions in
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the graphitic plane, we can expect another shear mode in the nanotube which
corresponds to the rotation around the z axis. Since there are two chiral vectors
in a horizontal plane perpendicular to the nanotube axis, the rotation around
the z axis has a periodicity of 27 /d,, where d, is the common divisor of the four
integers, ny, m1, ng, and my for the (n;, m;) and (ng, m2) nanotubes. Thus, we
expect the motion to be smoother, the smaller is the value of d.. The normal
mode for the shear displacement of the two constituents of a two-walled nanotube
is a mixture of a translation and a rotation around the z axis. The direction of
the normal mode displacements will be determined by the two chiral vectors. In
all cases, we expect a downward shift for the shear stress between the adjacent
walls of a multi-wall nanotube, relative to the shear mode in graphite.

Chandrabhas et al. [236], however, have reported an upshift of the two shear
modes to 49 em™! and 58 em™?! from the Es,, graphite shear mode at 42 em™?.
The authors attributed the upshift to defects in the nanotube axis. Except for
a few nanotubes with open ends, most nanotubes have end caps which prevent
the sliding motion. In that case a vibrational mode can be expected to result
from the sliding motion. If we could have an ideal coaxial multi-wall nanotube
with open ends, it would be interesting to study the nano-forces associated
with sliding the inner nanotube with respect to the outer nanotube, like the
microscopic motion of a muscle.

The electronic structure of a multi-wall nanotube has been calculated for
a commensurate double-wall carbon nanotube by a tight binding calculation
[76]. In this calculation, the value used for the largest interlayer interaction in
graphite associated with the overlap of the wave functions of the two 7 elec-
trons was ;3 = 0.35 eV for the two A carbon atoms with a separation (0,0, ¢).
In the tight-binding calculation, the interlayer interaction between two carbon
atoms on two different nanotube shells with a separation r is assumed to be
71 exp(—Ar), where A = 1/a is an empirical damping factor. The calculated
results for the commensurate (5,5)-(10,10) and {9,0)-(18,0) nanotubes show an
anti-crosging” of two energy dispersion curves with the same symmetry of wave
functions belonging to the two different nanotubes. As for the wave functions
with different symmetries, the energy dispersion relations can cross each other,
since the wave functions remain orthogonal to each other even in the presence

* Anti-crossing means that two energy dispersion curves repel each other at the crossing point.
Anti-crossing occurs as a result of the interaction between the two energy bands.
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of the interlayer interaction. Although we take account of the interlayer interac-
tion, the calculated result [76] shows that the electronic properties of a two-shell
coaxial nanotube look like the sum of the electronic structure of the two inde-
pendent panotubes except for the anti-crossing phenomenon. Even when this
anti-crossing appears near the Fermi energy, we do not see the onset of an en-
ergy gap at the Fermi energy for metal-metal and metal-semiconductor coaxial
nanotubes. Thus the calculated results show that the constituent nanotubes of
a coaxial nanotube remain either metallic or semiconducting, depending on the
chirality of the constituent nanotube. From this result, we can expect that it
will be possible to fabricate coaxial conducting wires or capacitors shielded by
semiconducting nanotubes which are suggested in the literature [141, 237]. Since
the energy gap of a BN nanotube is the same as that for the bulk BN semicon-
ductor, a large energy gap of about 5 eV is expected for BN nanotubes. Thus
when we cover a carbon nanotube by a BN nanotube, the nanotube complex
will be more interesting than carbon-carbon coaxial nanotubes for device appli-
cations, since high insulation by the BN nanotube can be expected. The arc
method of synthesis using a carbon rod with the materials for the BN nanotube
included in the central portion of the carbon anode yields a coaxial multi-wall
nanotube in which a several-wall BN nanotube is surrounded by a several-wall
carbon nanotube on both the outside and the inside {137]. This observation
suggests further possibilities for a variety of other nanotube complexes.

If the electronic structure of a multi-wall nanotube can be understood in
terms of the electronic structure of the constituent single-wall nanotubes, it
becomes easy to understand the topological STM and the transport STS experi-
ments in which only the outermost nanotube contributes to the STM image and
STS conductance measurements, respectively. In the STM experiment on single
crystal graphite, a triangular lattice is observed because of the ABAB stacking
of the graphite layers. In graphite, the electrons and holes near the Fermi energy
mainly corresponds to B atom wavefunctions, which do not have a neighboring
atom directly above or below them on the adjacent graphite layers. Thus when
a small voltage is applied, the STM can only see the electrons and the holes at
the B sites which form a triangular lattice. In a multi-wall nanotube and even
in a single-wall carbon nanotube, a triangular pattern is observed in the STM
image, which clearly shows that the A and B atoms are not equivalent o each
other [54] in the nanotube plane, although the reason for this is still not clear.
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A more sophisticated calculation was done for multi-layer nanotubes within
the local density approximation to establish the optimum interlayer distance
between an inner (5,5) armchair nanotube and an outer armchair (10, 10) nan-
otube. The result of this calculation yielded a 3.39 A interlayer separation
[196,238], with an energy stabilization of 48 meV/carbon atom. The fact that
the interlayer separation is somewhat less than the 3.44 A separation expected
for turbostratic graphite may be explained by the interlayer correlation between
the carbon atom sites both along the nanotube axis and the circumferential di-
rections. A similar calculation for double-layered hyper-fullerenes has also been
carried out, yielding an interlayer spacing of 3.524 A between the two shells of
Ceo@Caqq, with an energy stabilization of 14 meV /atom [147]. In addition, for
two coaxial armchair nanotubes, estimates for the translational and rotational
energy barriers of 0.23 meV/atom and 0.52 meV/atom, respectively, were ob-
tained, suggesting significant translational and rotational interlayer mobility for
individual shells of ideal nanotubes at room temperature, Detailed band cal-
culations for various interplanar geometries for a two-layered coaxial armchair
nanotube [196, 238] confirm the tight-binding results [76] mentioned above.

In the limit of large diameter, we can expect multi-wall carbon nanotubes
to have the properties of graphite. In the multi-layer structure, the cross section
of the hollow core becomes relatively small with increasing numbers of carbon
layers, and thus the multi-wall structure would be advantageous for obtaining
high strength per unit area in the nanotube axis direction. However, when the
diameter increases to more than 10-20 nm, the multi-wall nanotube starts to
exhibit a hexagonal pillar shape, similar to the oceurrence of faceting in carbon
fibers [9]. In the faceting, the curvature of the nanotubes becomes concentrated
at the corners of the pillars as the interlayer correlation becomes established
over a large area with a structure that is close to that of graphite. The faceting
may occur in order to gain the cohesive energy of graphite through the ABAB
stacking. By faceting the layers, the greatest part of the individual layers more
quickly approach that of graphite than through the cylindrical growth of multi-
wall nanotubes. It is important to note that the faceting is not generally found
in pyrolytically generated, multi-layer carbon nanotubes [59], which is related
to the growth of multi-wall nanotubes in the radial direction by an accretion
method.






Appendix: Programs for a (n,m) carbon nanotube

In this Appendix, we show first a simple program for generat-
ing parameters of an (n,m) carbon nanotube, which is discussed in
Chapter 3. The atomic coordinates for an (n,m) carbon nanotube
are generated in the unit cell of the nanotube by the second program.
The third program gives more coordinates for several unit cells. The
source codes are written in Fortran 77. Any reader can use these
codes by citing the book.

A-1 Parameters for an (n, m) carbon nanotube

The first program A-1 generates the characteristic vectors such as Cp, T, R and
other related parameters, See details of the definitions given in Tables 3.2 and
3.3.

We show below an example of the input-output on a workstation. When
you input n,m values for an (n,m) carbon nanotube using a standard input
method, which generally means a keyboard, we obtain output for the parame-
ters in a standard output format.

Example: Input and output of the program A-1

tube¥ al.out
Enter n,m for C_h

10,10 <== input

¢_.h = ( 10, 10) ==> Chiral vector (n,m)
d= 10 ==> d is gecd(n,m)

d_ R= 30 =z=> d_R is gcd(2n+m,2m+n)

L/a = square root of 300 ==> Length of C_h

227
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d.t = 13.569554A r.t= 6.78478AA ==> diameter and radius
T=( 1, -1) ==> Translation vector (t_1,t_2)
T/a= 1 ==> Length of T
N= 20 ==> Number of hexagon in the unit cell
R=( 1, 0) ==> Symmetry vector
M= 10 ==> number of T in N R

Here the diameter and the radius are in A unit. The lengths of C, and T are
shown in units of a. Since these values are a square root of an integer in units
of a, the output is shown above for convenience.

A-2 Coordinates for a {(n,m) carbon nanotube

The program A-2 generates (@;,¥,2) ({ = 1,...,2N) coordinates in the unit
cell for an (n,m) carbon nanotube. When n, m values are input in the same way
as in the example for the A-1 program, the program generates two files:

Output files for A-2: (No Input file)

tube.xyz : 2N and coordinates (z;,y;,2) E=1,...,2N)
en.xyz2 : work file which will be used in the program A-3.

The file tube.xyz includes the atomic coordinates of carbon atoms in the unit
cell for the (n, m) nanotube. The other file en.xyz2 is a work file which will be
used in the program A-3. The file tube.xyz has a format for the xmol program*
which can display the structure in its xyz format and can convert the results to
many formats consistent with other software. The first line of tube.xyz is the
number of carbon atoms in the unit cell. After a blank line in the second line,
the atomic symbol C and (z;, ¥, 2) coordinate in A units are listed from the
third line for the number of carbon atoms. The file input-output is specified
by the OPEN statement of Fortran codes. The z axis is taken to be along the
nanotube axis. The C—C bond distance is taken as 1.42A. If you want to change

*xmol is a graphic software package with a Copyright by Research Equipment Inc. and dba
Minnesota Supercomputer Center Inc.
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this value, the parameter in the program should be changed.

A-3 Coordinates for several unit cells

The program A-3 reads the en.xyz2 which is generated by the A-2 program.
When you enter the number of unit cells N, from the keyboard, the program
A-3 outputs a file tubel.xyz. Thus, before we run the A-3 program, we need to
run the A-2 program. The file tubel.xyz has the same format as tube.xyz but
the number of carbon atoms becomes N, x 2N.

Input and Output files for A-3:

en.xyz2 : (Input) the work file made by the program A-2.
tubel.xyz : (Output) the coordinates (z;, 45, 2;) (i =1,...,2N x Ny)

If you want a large numbers of carbon atoms (more than 5000), the param-
eters in the program should be changed.

A-4 Source Codes

Here we list the source cords. Anybody that uses these source codes or their
modified versions is required to cite the book.

A-1 Parameters for a (n, m) nanotube

Parameters for a (n,m) nanotube
Made by 10/16/956 R. Saito
Reference: ‘‘Physical Properties of Carbon Nanotubes’*’

Imperial College Press,
by R. Saito, G. Dresselhaus, and M.S. Dresselhaus

oconoooanon

dimension nnp{100),nnq(100)

(2]

itest=1
itest1=0

write(*,%) ’Enter n,m for C_h’
read(*,*) n,m
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nd=igcm(n,m)

if(mod({n-m),3%nd).eq.0) then

ndr=3%nd

else

ndr=nd

endif

if(itest.eq.1) write(»,10) n,m
10  format(’® C_h = (*,i3,’,7,i3,) ")

if(itest.eq.1) write(*,20) nd
20 format(® d= ’,id)

if(itest.eq.1) write(*,21) ndr
21 format(’ d_R = ?,i3)

c
a=sqrt(3.0)%1.421
eps=1.0e-5

c L
12=n*n+mkmtnsm

1£(12.1e.0) stop '12.le.0’
1=int (sqrt (float (12))+eps)
if((12-1#%2).eq.0) then
if(itest.eq.1) write(»,30) 1
30 format(’ L/a = ’, i4)
else
if(itest.eq.1) write(*,31) 12
31 format(’® L/a = square xroot of’, i6)
endif
dt=a*sqrt (£float(12))/3.1415926525
ri=dt*0.5
if(itest.eq.1) write(*,32) dt,rt
32 format(’ d_t = ’, £10.5, *\AA r_t =',£10.5, *\AA?)

nr=(2#m+n}/ndr
ns=~{2%n+m)} /ndr
if(itest.eq.1) write(*,42) nr,ns
42 format(® T = (*,i3,7,7,i3,%)”)
nt2=3#12/ndr/ndr
nt=int (sqrt(float{nt2))+eps)
if({nt2-nt**2).eq.0) then
if(itest.eq.1) write(*,40) nt
40 format(’ T/a =, id)
else
if(itest.eq.1) write(*,41) nt2
41 format{’ T/a = square root of’, i6)
endif
c N
nn=2%12/ndr
if(itest.eq.1) write(*,50) nn
50 format(’ N =, i4)
c R
ichk=0
if{nr.eq.0) then
n6o=1
else
n6d=nr
endif

itest2=0
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do 60 np=-abs(n60),abs(n6é0)
do 61 nq=-abs(ns),abs(ns)
j2 = nr*nq - ns*np
i£(j2.eq.1) then
j1 = m *np - ning
if(itest2.eq.1) write(*,67) n,m,nr,ns,np,nq,ji,j2
67 iormat(’n,m,nx,ns,np,nq,jl,'2=’,614,2i6§
if( j1.gt.0 .and. j1.lt.nn 3 then
ichk=ichk+1
nnp (ichk)=np
nnq (ichk)=nq
endif
endif
61 continue
60 continue

if(ichk.eq.0) then

write(*,*) ’n,m,nr,ns=’,n,m,nr,ns
stop ’ mot found p,q strange!!’
endif

itest3=1

if(ichk.ge.2) then

if(itest3.eq.1) then

write(*,*) ’n,m,nr,ns=’,n,m,nr,ns

write(*,*) ’ichk=’,ichk, ’ndr=’, ndr

write(*,66) (nnp(i),mnq(i), (m*nnp(i)-n*nnq(i)),nn,i=1,ichk)
stop ’ more than 1 pair of p,q strange!!’

endif

if(nr.ne.0 .and. ns.ne.0) then

if(itestl.eq.1) then

do 77 i=1,ichk

if ((m*nnp (i)-n#nnq(i)).1t.nn) goto 777
77 continue

endif

write(*,%) ’n,m,nr,ns=’,n,m,nr,ns

write(#*,%) ’ichk=’,ichk, ’ndr=’, ndr

write(*,66) (nnp(i),nnq(i), (m*nnp(i)-n#nnq(i)),nn,i=1,ichk)
66 format(’ (’,i2,’,’,i2,’) mp-nq = ’, i3, ’ N=’, i3)

stop ’ more than 1 pair of p,q strange!!’

endif

endif
777 continue

if(itest.eq.1) write(*,62) nnp(1),anq(1)
62 format(’ R = (’,i3,’,’,i3,’§’)
c M = mp-nq
mmm=msnnp (1) -n*nnq {1)
write(*,69) mmm
69 format(® M =’,i3)
stop
end
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C
C
c

calculate the highest common divisor

integer function igem(ii,jj)
i=abs (ii)
j=abs(jj)
if(j.gt.i) then
iw=]
j=i
1=iw
endif
if(j.eq.0) then
igem=i
return
endif

10 continue
ir=mod(i, j)
if(ir.eq.0) then
igem=j
return
else
i=j
j=ir
endif
goto 10
end

A-2 Atomic Coordinates for a (n, m) nanotube in the unit cell

c
[+
[

(el s s B e N s I I e I B s I ¢

000

Atomic Coordinates in the unit cell of a (n,m) nanotube

Made by 10/31/95 by T. Takeya and R. Saito

Reference: ‘‘Physical Properties of Carbon Nanotubes’’
Imperial College Press,
by R. Saito, G. Dresselhaus, and M.S. Dresselhaus

Input: n,m (from keyboard)

Output: tube.xyz (coordinates. See detail in the above book.)

en.xyz2 (a work file for the program A-3)
implicit real*8(a~h,o-z)
acc: C-C bond distance.

parameter (acc = 1,42d0)
parameter (nk=1300)
dimension x(nk),y(nk),z(nk)

write(*,*)’ Enter n,m for C_h=(n,m)’
read(*,*) n,m

call genlii(n,m,np,nq,ndr)
write(*,%)’ R = (°, np, ’,’, nq , *)’
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c a: the length of the unit vector
c pi = 3.1415692... sq3 = 1.732....
c
s8q3=sqrt (3.0d0)
pi=4.0d0%atan(1.0d0)
a=sqrt (3.0d0) ¥acc
c
c r; IRl , c;iC.hl , t3ITI
<
r=a*sqrt (dfloat (np*np+nq#sng+np*nq))
c=axsqrt (dfloat {n*n+mém+nkm))
t=sqrt(3.0d0)*c/dfloat (ndr)
write(%, %) *t=’,t, dfloat(n*n+memtnsm)
c write(*,190)c/2.040/pi
¢ 190 format{’ radius =’,£f10.4)
<
c nn: the number of hexagon in the unit cell N
c

nn=2% (ne2+me*24+m*n) /ndr

c
c write(#,%)* N =’ nn*2
c
c rs: radius of the tube
c
if(2*nn.gt.nk) stop ’parameter nk is too small’
d
re=c/(2.0d0%pi)
c
c ql: the chiral angle for C_h
< q2: the ’chiral’ angle for R
c q3: the angle between C_h and R
c
gl=atan{(sq3*dfloat (m))/dfloat(2#n+n})
q2=atan((sq3*dfloat(ngq))/dfloat (2#np+nq))
q3=ql-q2
c
c g4: a period of an angle for the A atom
c q5: the difference of the angle between the A and B atoms
c
q4=2,0d0*pi/dfloat (nn)
ab=acckcos{(pi/6.040)~q1) /c#2,0d0%pi
c
c hi:
c h2: Delta z between the A and B atoms
c

hi=abs (1) /abs (sin{q3))
h2=acc*sin{{pi/6.0d0)-q1)

write(s,%) ’ql: =’,q1%180.040/pi
write(#x,*) ’q2: =’,q2%180.0d0/pi
write(x,») ’q4: =’,q4#180.0d40/pi
write(*,%) ’q5: =’,q5%180.0d0/pi
Calculate 2*nn atoms in the unit cell.

The A atom

aonoaaanano
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ii=0
do 100 i=0,mn-1
x1=0
yi=0
z1=0
k=int (dfloat(i)*abs(r)/h1)
x1=rs*cos(dfloat (i)*q4)
yl=rs*sin(dfloat (i) *q4)
z1=dfloat ({(dfloat (i)+*abs(r)-dfloat (k)%h1))+sin(q3)
kk2=abs(int(z1/t))+1

c
¢ Check the A atom is in the unit cell 0 < z1 < ¢
c
if(z1.gt.t~0.02)then
z1=zi-t*dfloat (kk2)
endif
if(z1.1t.-0.02) then
zi=z1+t*dfloat (kk2)
endif
ii=ii+l
x(ii)=x1
y(ii)=y1
z(ii)=z1
c
c The B atoms
c
z3=(dfloat (i) *abs(r)-dfloat (k)*h1)*sin(q3)-h2
ii=ij+1
c
¢ Check the B atom is in the unit cell 0 < z3 < t
c
if((z3.ge.-0.02) .and. (z3.1e.t-0.02)) then
c yes
x2 =rs#*cos(dfloat (i)*q4+q5)
y2 =rs*sin(dfloat (i)*q4+q5)
z2 =dfloat (dfloat (i)*abs(r)~dfloat (k)*hi)*sin(q3)-h2
x(ii)=x2
y(ii)=y2
z(ii)=z2
else
c no
x2 =rs*cos(dfloat (i)*qd+qb)
y2 =rs*sin(dfloat (i)*q4+qg5)
z2 =dfloat (dfloat (i)*abs(r)-dfloat (k+1)*h1)*sin(q3)~h2
kk=abs (int (z2/t))+1
if(z2.gt.t~0.01)then
z2=z2-t*dfloat (kk)
endif
1£(z2.1t.-0.01) then
z2=z2+t*dfloat (kk)
endif
x(ii)=x2
y(ii)=y2
z(ii)=2z2
endif
100 continue
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¢ Out put to the file tube.xyz
c

open(60,file=’tube.xyz’)

write(60,*)2%nn

write(60,*)’ !

do i=1,nn*2
write(60,117)x(1),y(i),2z(1)
end do

117 format (°C’,3£10.5)

close(60)

¢ Out put to the file en.xyz2

open(60,file=’en.xyz2’)
write(60,*)2*nn
write(60,118)t,acc
118 format (2£25.5)
do i=1,nn*2
write(60,116)i,x(i),y(i),z(i)
end do
ii6 format (1i5,3£25.20)
clese(60)
stop
end

c
¢ This subroutine calculates np,nq and ndr from n,m
c

subroutine genii(n,m,np,nq,ndr)
dimension nnp(100),nnq(100)

nd=igcm(n,m)

if (mod ((n-m),3*nd) .eq.0) then
ndr=3#*nd

else

ndr=nd

endif

12=nin+m*m+nxm

i£(12.1e.0) stop ’12.le.0’

1=int (sqrt(dfloat(12))+eps)
dt=a*sqrt (dfloat (12))/3.1415926525

nr={(2%m+n) /ndxr
ns=-(2%n+m) /ndr
nt2=3%12/ndr/ndr

nt=int (aqrt (dfloat (nt2) ) +eps)

nn=2%12/ndr

ichk=0
if(nr.eq.0) then
né0=1
else
n60=nr
endif

itest2=1
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do 60 np=-abs(n60),abs(n60)
do 61 nq=-abs(ns),abs(ns)
j2 = nr*nq - ns*np
if(j2.eq.1) then
j1 = m *np - n*n
if( j1.gt.0 .and. ji.1t.nn ) then
ichk=ichk+1
nnp (ichk)=np
nnq (ichk)=ngq
endif
endif

61 continue

60 continue

c
if(ichk.eq.0) then
stop ’ not found p,q strange!!’
endif
c
itest3=1
C
if(ichk.ge.2) then
if(itest3.eq.1) then
stop ’ more than 1 pair of p,q strange!!’
endif
if(nr.ne.0 .and. ns.ne.0) then
c

if(itestl.eq.1) then

do 77 i=1,ichk

if ((m#nnp(i)-n*nnq(i)).1lt.nn) goto 777
77 continue

endif

endif
endif
777 continue

if(itest.eq.1) then
np=nnp (1)
ng=nnq(1)
endif
2 continue
return
1 continue
stop
end
c
c calculate the highest common divisor
c
integer function igem(ii,jj)
i=abs (ii)
j=abs(jj)
if(j.gt.i) then
iw=]
J=1
i=iw
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endif
if(j.eq.0) then
igem=i
return
endif

10 continue
ir=mod (i, j)
if(ir.eq.0) then
igem=j
return
else
i=j
j=ir
endif
goto 10
end

A-3 Atomic Coordinates for several unit cells of a (n, m) nanotube

Atomic Coordinates for several unit cells of a (n,m) nanotube
Made by 10/31/95 by T. Takeya and R. Saito

Reference: ‘‘Physical Properties of Carbon Nanotubes’’
Imperial College Press,
by R. Saito, G. Dresselhaus, and M.S. Dresselhaus

Input : n (from keyboard, the number of the unit cell.)
: en.xyz2 (a work file made by the program A-2)
Output: tubel.xyz (atomic coordinates)

o000 0n0n

implicit real*8(a-h,o-z)

parameter (nk=5000, aa=1.42)
dimension x(nk),y(nk),z(nk)
dimension iic(nk),ic(nk,3),iz(nk,3)

write(*,*) ’enter the number of the unit cell N_u =’
read(*,*)n
open(61,FILE="en.xyz2’)
read(61,*)nn
read(61,%)t
do 10 i=1,nn
read(61,+)j,x(i),y(i),z(i)
10 continue
close(61,status="keep’)

write(*,*) ’Number of total atoms = ’, n*nn
if(n#nn.gt.nk) stop ’change parameter nk to a larger value’

ii=nn

do 20 i=1,nn
do 21 jj=0,n-1
iid=ii+i+jj*ii
z(iii)=z(ig+dfloat(jj+1)*t
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x(iii)=x(i)
y(iii)=y (i)
21 continue
20 continue
c
open(60,FILE=’tubel.xyz")
write(60,%*)n*nn
write(60,%)’
do 100 i=1,n*nn
write(60,700)x(i),y(i),z(1)

100 continue
700 format(’C’,3£10.5)
close(60)
c
stop

end




DY =

'Oﬁmrhw

=

10.
11.

12.
13.
14.

15.
16.
17.

18

References

T. A. Edison, US Patent 470,925 (1892). (issued March 15, 1892).

P. Schiitzenberger and L. Schiitzenberger, Compt. Rend 111, 774
(1890).

C. H. Pelabon, Compt. Rend. 137, 706 (1905).

R. Bacon, J. Appl. Phys. 31, 283-290 (1960).

C. Herring and J. K. Galt, Phys. Rev. 85, 1060 (1952).

A. P. Levitt, in Whisker Technology, (Wiley-Interscience, New York,
1970).

A. W. Moore, A. R. Ubbelohde, and D. A. Young, Brit. J. Appl. Phys.
13, 393 (1962).

. L. C. F. Blackman and A. R. Ubbelohde, Proc. Roy. Soc. A266, 20

(1962).

M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, 1. L. Spain, and
H. A. Goldberg, Graphite Fibers and Filaments (Springer-Verlag, Berlin,
1988), Vol. 5 of Springer Series in Materials Science.

T. Koyama, Carbon 10, 757 (1972).

M. Endo, T. Koyama, and Y. Hishiyama, Jap. J. Appl. Phys. 15,
2073-2076 (1976).

G. G. Tibbetts, Appl. Phys. Lett. 42, 666 (1983).

G. G. Tibbetts, J. Crystal Growth 66, 632 (1984).

M. Endo. Mecanisme de croissance en phase vapeur de fibres de carbone
(The growth mechanism of vapor-grown carbon fibers). PhD thesis, Uni-
versity of Orleans, Orleans, France, 1975. (in French).

M. Endo. PhD thesis, Nagoya University, Japan, 1978. (in Japanese).
A. Oberlin, M. Endo, and T. Koyama, Carbon 14, 133 (1976).

A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth 32, 335-349
(1976).

R. Kubo, 1977. (private communication to M. Endo).

239



240

19
20

21
22
23
24

25.

26.

217.

28.

29.

30.
31.
32.
33.
34.
35,

36.
37.

38.

39

REFERENCES

S. Iijima, Nature (London) 354, 56 (1991).

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,
Nature {London) 318, 162-163 (1985).

R. E. Smalley, DoD Workshop in Washington, DC (December 1990).
D. R. Huffman, DoD Workshop in Washington, DC (December 1990).
M. S. Dresselhaus, DoD Workshop in Washington, DC (December 1990).
M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, University of
Pennsylvania Workshop (August 1991).

J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H.
Kroll, N. Troullier, R. E. Haufler, and R. E. Smalley, Phys. Rev. Lett.
66, 1741-1744 (1991).

F. P. Bundy. In Solid State Physics under Pressure: Recent Advance
with Anvil Devices, edited by S. Minomura, page 1, D. Reidel, Dordrecht,
1985.

F. P. Bundy, J. Geophys. Res. 85, 6930 (1980).

F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao,
and A. F. Goncharov, Carbon 34, 141-153 {1996).

R. J. Lagow, J. J. Kampa, H. C. Wei, S. L. Battle, J. W. Genge, D. A.
Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw, and E. Munson,
Science 267, 362-367 (1995).

V. 1. Kasatochkin, A. M. Sladkov, Y. P. Kudryavtsev, N. M. Popov, and
V. V. Korshak, Dokl. Chem. 177, 1031 (1967).

V. L. Kasatochkin, V. V. Korshak, Y. P. Kudryavtsev, A. M. Sladkov,
and 1. E. Sterenberg, Carbon 11, 70 (1973).

A. G. Whittaker and P. L. Kintner, Carbon 23, 255 (1985).

A. G. Whittaker and P. L. Kintner, Science 165, 589 (1969).

A. G. Whittaker, Science 200, 763 (1978).

A. G. Whittaker, E. J. Watts, R. S. Lewis, and E. Anders, Science 209,
1512 (1980).

A. El Gorsey and G. Donnary, Science 363 (1968).

V. I. Kasatochkin, M. E. Kasakov, V. A. Savransky, A. P. Nabatnikov,
and N. P. Radimov, Dokl. Akad. Nauk, USSR 201, 1104 (1971).

R. B. Heimann, J. Kleiman, and N. M. Slansky, Nature (London) 3086,
164 (1983).

A. G. Whittaker and G. M. Wolten, Science 178, 54 (1972).



REFERENCES 241

40.

41.

42.

43.
44,
45.
46.

47.

48.
49.

50.

51.

52.

53.

54.

A. G. Whittaker, G. Donnay, and K. Lonsdale, Carnegie Institution
Year Book 69, 311 (1971).

J. S. Speck, M. Endo, and M. S. Dresselhaus, J. Crystal Growth 94, 834
(1989).

J. S. Speck, M. S. Dresselhaus, and M. Endo. In Extended Abstracts of
the Symposium on Graphite Intercalation Compounds at the Materials
Research Society Meeting, Boston, edited by M. Endo, M. S, Dressel-
haus, and G. Dresselhaus, page 169, Materials Research Society Press,
Pittsburgh, PA, 1988.

J. S. Speck, J. Appl. Phys. 67, 495 (1990).

M. Endo, CHEMTECH 18, 568 (1988). September issue.

C. Kittel, in Introduction to Solid State Physics, 6th ed., (John Wiley
and Sons, New York, NY, 1986).

N. W. Ashcroft and N. D. Mermin, in Solid State Physics, (Holt, Rine-
hart and Winston, New York, NY, 1976).

R.S. Mulliken, in Life of a Scientist, (Springer-Verlag, New York, Berlin,
1989).

G. S. Painter and D. E. Ellis, Phys. Rev. B 1, 4747 (1970).

R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus,
Phys. Rev. B 51, 11176 (1995).

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883-891
(1995).

S.J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs,
and C. Dekker, Nature (London) 386, 474 (1997).

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la
Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature
(London) 388, 756 (1997).

M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr,
S Washburn, and R. Superfine, Nature (London) 385 (1997).

C. Dekker, S. J. Tans, M. H. Devoret, L. J. Geerlings, R. J. A.
Groeneveld, L. C. Venema, J. W. G. Wildder, A. R. M. Verschueren,
A. Bezryadin, A. Thess, H. Dai, and R. A. Smalley. In Proc. of the
Int. Winter School on Electronic Properties of Novel Materials: Molec-
wlar Nanostructures, edited by H. Kuzmany, J. Fink, M. Mehring, and
S. Roth, Springer-Verlag, New York, 1997. Kirchberg, Austria.



242

55

56

57.

58.
59.

60.

61.

62.

63.
64.
65.
66.
67.

68.

69.

70.

REFERENCES

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu,
Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria,
D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483-487
(1996).

J. M. Cowley, P. Nikolaev, A. Thess, and R. E. Smalley, Chem. Phys.
Lett. 265, 379-384 (1997).

C. H. Kiang, W. A. Goddard III, R. Beyers, and D. S. Bethune, Carbon
33, 903 (1995).

S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).

M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. Kroto, and
A. Sarkar, Carbon 33, 873 (1995).

P. M. Ajayan. In Carbon Nanotubes: Preparation and Properties, edited
by T. Ebbesen, page 111, CRC Press, Inc., Boca Raton, Florida, USA,
1997. Chapter 1II.

P. M. Ajayan. In Fullerenes and Nanotubes, edited by Pierre Delhaés
and P. M. Ajayan, page this volume, Gordon and Breach, Paris, France,
1998. Series: World of Carbon, volume 2.

S. Iijima. In Fullerenes and Nanotubes, edited by Pierre Delhaés and
P. M. Ajayan, Gordon and Breach, Paris, France, 1998. Series: World
of Carbon, volume 2.

Ph. Lambin and A. A. Lucas, Phys. Rev. B 56, 3571 (1997).

W. Cochran, F. H. C. Crick, and V. Vand, Acta Cryst. 5, 581 (1952).
C. H. Olk and J. P. Heremans, J. Mater. Res. 9, 259-262 (1994).

K. Sattler, Carbon 33, 915 (1995).

J. C. Charlier, X. Gonze, and J. P. Michenaud, Europhys. Lett. 28,
403-408 (1994).

J. C. Charlier. In Fullerenes and Nanotubes, edited by Pierre Delhaés
and P. M. Ajayan, Gordon and Breach, Paris, France, 1998, Series:
World of Carbon, volume 2.

Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 46, 1804-1811 (1992).

M. S. Dresselhaus, G. Dresselhaus, R. Saito, and P. C. Eklund, in Cgg-
Related Balls and Fibers, chapter 18, pages 387-417, edited by J. L.
Birman, C. Sébenne, and R. F. Wallis (Elsevier Science Publishers, B.V.
1992, New York, 1992). Balkanski Festschrift.



REFERENCES 243

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.
82.

83.

84.

85.

86.

87

J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68,
631-634 (1992).

J. W. Mintmire, D. H. Robertson, and C. T. White, J. Phys. Chem.
Solids 54, 1835 (1993).

T. Hamada, M. Furuyama, T. Tomioka, and M. Endo, J. Mater. Res.
7,1178-1188 (1992). ibid., 2612-2620.

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. In FElecirical,
Optical and Magnetic Properties of Organic Solid State Materials, MRS
Symposia Proceedings, Boston, edited by L. Y. Chiang, A. F. Garito, and
D.J. Sandman, page 333, Materials Research Society Press, Pittsburgh,
PA, 1992.

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys.
Lett. 60, 2204-2206 (1992).

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73,
494 (1993).

M. S. Dresselhaus, R. A. Jishi, G. Dresselhaus, D. Inomata, K. Nakao,
and Riichiro Saito, Molecular Materials 4, 27-40 (1994).

R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, and G. Dressel-
haus, J. Phys. Soc. Jpn. 63, 2252-2260 (1994).

G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. 140A, 401 (1965).
G. Dresselhaus, M. S. Dresselhaus, and J. G. Mavroides, Carbon 4, 433
(1966).

J. W. Mintmire and C. T. White, Carbon 33, 893 (1995).

J. W. G. Wildéer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and
C. Dekker, Nature (London) 391, 59-62 (1998).

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W.
Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley,
G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187-191 (1997).
H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 2470-2480 (1993).
Erratum: ibid page 4267.

M. L. Elert, C. T. White, and J. W. Mintmire, Mol. Cryst. Liq. Cryst.
Sci. Technol., Sect. A 125, 329 (1985).

C. T. White, D. H. Roberston, and J. W. Mintmire, (1995). unpub-
lished.

X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev.



244

88.

89.

90.

o1.

92.

93.

94.

95.
96.

97.
98.
99.

100.
101.

102.

103.
104.
105.
106.

REFERENCES

Lett. 72, 1878 (1994).

J. C. Charlier, X. Gonze, and J. P. Michenaud, Europhys. Lett. 29,
43-48 (1995).

J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32, 289-299
(1994).

S. G. Louie. In Progress in Fullerene Research: International Winter
School on FElectronic Properties of Novel Materials, edited by H. Kuz-
many, J. Fink, M. Mehring, and S. Roth, page 303, 1994. Kirchberg
Winter School, World Scientific Publishing Co., Ltd., Singapore.

X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Phys. Rev. B 51,
6868 (1995).

N. G. Chopra, J. Luyken, K. Cherry, V. H. Crespi, M. L. Coher,, S. G.
Louie, and A. Zettl, Science 269, 966 (1995).

Z. Weng-Sieh, K. Cherrey, N. G. Chopra, X. Blase, Y. Miyamoto, A. Ru-
bio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B
51, 11229 (1995).

D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy,
J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).

B. 1. Yakobson and R. E. Smalley, American Scientist 85, 324 (1997).
M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, Chem. Phys.
Lett. 278, 102 (1997).

P. C. Eklund et al., unpublished (1997). UK Workshop.

J. M. Cowley and F. A. Sundell, Ultramicroscopy 68, 1 (1997).

H. Kataura, A. Kimura, Y. Maniwa, S. Suzuki, H. Shiromaru, T. Wak-
abayashi, S. lijima, and Y. Achiba, unpublished (1997). in press.

T. W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992).
T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tani-
gaki, Chem. Phys. Lett. 209, 83-90 (1993).

S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, and R.. Loufty, Carbon 31,
685-689 (1993).

Y. Saito and M. Inagaki, Jpn. J. Appl. Phys. 32, L954 (1993).

T. W. Ebbesen, Annu. Rev. Mater. Sci. 24, 235-264 (1994).

P. M. Ajayan and S. Iijima, Nature (London) 358, 23 (1992).

V. P. Dravid, X. Lin, Y. Wang, X. K. Wang, A. Yee, J. B. Ketterson,
and R. P. H. Chang, Science 259, 1601 (1993).



REFERENCES

107
108
109

110.

111

112.

113.

114.
115.

116.

117.

118.

119.
120.

121.
122.

123.

245

. S. Lijima, Mater. Sci. Eng. B19, 172 (1993).

. R. E. Smalley, Accounts Chem. Res. 25, 98 (1992).

. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Chem.
Phys. Lett. 204, 277 (1993).

M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W.
Kroto, J. Phys. Chem. Solids 54, 1841~1848 (1993).

J. J. Cuomo and J. M. E. Harper, IBM Tech. Disclosure Bulletin 20,
775 (1977).

J. A. Floro, S. M. Rossnagel, and R. S. Robinson, J. Vac. Sci. Technol.
A1, 1398 (1983).

Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, JETP
Lett. (Pis’'ma Zh. Eksp. Teor.) 56, 26 (1992).

A. Loiseau, (1998). private communication.

D. Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard, and
A. Loiseau, Carbon page xx (1997).

T. W. Ebbesen. In Carbon Nanoilubes: Preparation and Properties,
edited by T. Ebbesen, page 139, CRC Press, Inc., Boca Raton, Florida,
USA, 1997, Chapter IV,

S. C. Tsang, P. J. F. Harris, and M. L. H. Green, Nature (London) 362,
520 (1993).

P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and
H. Hiura, Nature (London) 362, 522 (1993).

H. Hiura, T. W. Ebbesen, and K. Tanigaki, Adv. Mater. 7, 275 (1995).
F. Ikazaki, S. Oshima, K. Uchida, Y. Kuriki, H. Hayakawa, M. Yumura,
K. Takahashi, and K. Tojima, Carbon 32, 1539 (1994).

S. Bandow, (1997). private communication.

The mass spectra of the CS, extract show evidence for Cgp and Cop in the
normal ratio Cgp:Crp7:1 and much higher concentrations of unknown
molecular species or carbon clusters with masses in the range 107 <
M < 361 amu.

For characterization by electron microscopy, the various samples were
dispersed ultrasonically in ethanol and a drop of this solution was placed
onto the carbon micro-grid. High resolution scanning electron mi-
croscopy (HRSEM) and transmission electron microscopy (TEM) mea-
surements were carried out at 5 kV (Hitachi $-900) and 120 kV (Philips



246

124,

125,

126.

127.

128.
129.

130.
131

132.
133.

134.

135,

136.

137.

138.
139.

140.

141.

142.

REFERENCES

EM400), respectively. The low acceleration voltage was selected for
HRSEM because it enhances the image contrast.

E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Science 265,
1850 (1994).

P. M. Ajayan and S. Iijima, Nature (London) 361, 333 (1993).

T. W. Ebbesen. In Carbon Nanoiubes: Preparation and Properties,
edited by T. Ebbesen, page 225, CRC Press, Inc., Boca Raton, Florida,
USA, 1997. Chapter VIIL.

C. Guerret-Piécourt, Y. Le Bouar, A. Loiseau, and H, Pascard, Nature
(London) 372, 159 (1994).

A. Loiseau and H. Pascard, Chem. Phys. Lett. 256, 246 (1996).

S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature
(London) 372, 159 (1994).

J. Y. Yi and J. Bernhole, J. Chem. Phys. 96, 8634 (1992).

0. Zhou, R. M. Fleming, D. W. Murphy, C. H. Chen, R. C. Haddon,
A. P. Ramirez, and S. H. Glarum, Science 263, 1744 (1994).

H. Hiura and T. W. Ebbesen, (1997). Unpublished.

E. G. Gal’pern, I. V. Stankevich, A. L. Chistykov, and L. A. Chernoza-
tonskii, Chem. Phys. Lett. 214, 345 (1993).

M. S. Dresselhaus and G. Dresselhaus, Advances in Phys. 30, 139-326
(1981).

A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley,
Nature (London) 388, 257 (1997).

R. S. Lee, H, J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, Nature
(London) 388, 255 (1997).

K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and
F. Willaime, Science 278, 653 (1997).

J. Goma and A. Oberlin, Thin Solid Films 65, 221 (1980).

M. Guigon, A. Oberlin, and G. Desarmot, Fibre Sci. and Technol. 20,
55 (1984).

M. Guigon, A. Oberlin, and G. Desarmot, Fibre Sci. and Technol. 20,
177 (1984).

Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Materials Science and Engineering B19, 185-191 (1993).

M. Endo and H. W. Kroto, J. Phys. Chem. 96, 6941 (1992).



REFERENCES 247

143.
144.

145.
146,
147.
148,

149,

150.

151.

152,

153.
154,

155.
156.
157.
158.

159.

160.
161.
162.
163.
164.

165.

S. Iijima, T. Ichihashi, and Y. Ando, Nature (London) 356, 776 (1992).
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett.
195, 537 (1992).

R. E. Smalley, Mater. Sci. Eng. B19, 1-7 (1993).

S. Lijima. private communication.

Y. Yosida, Fullerene Sci. Tech. 1, 55 {1993).

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234
(1992).

K. Tanaka, M. Okada, K. Okahara, and T. Yamabe, Chem. Phys. Lett.
191, 469 (1992).

L. Langer, L. Stockman, J. P. Heremans, V. Bayot, C. H. Olk,
C. Van Haesendonck, Y. Bruynseraede, and J. P. Issi, J. Mat, Res.
9, 927 (1994).

J. Heremans, C. H. Olk, and D. T. Morelli, Phys. Rev. B 49, 15122
(1994).

X. K. Wang, R. P. H. Chang, A. Patashinski, and J. B. Ketterson, J.
Mater. Res. 9, 1578 (1994).

J. M. Luttinger, Phys. Rev. 84, 814-817 {1951).

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 50,
14698 (1994).

D. R. Hofstadter, Phys. Rev. B 14, 2239-2249 (1976).

F. A. Butler and E. Brown, Phys. Rev. 166, 630 (1968).

J. W. McClure, Phys. Rev. 104, 666 (1956).

H. S. M. Coxeter, in Introduction to Geometry, 2nd ed., (John Wiley
and Sons, New York, NY, 1969).

M. Yoshida and E. Osawa, Bulletin Chem. Soc. Jpn. 68, 2073 (1995).
ibid. p. 2083.

H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 65, 505 (1996).

B. I. Dunlap, Phys. Rev. B 49, 5643 (1994).

B. I. Dunlap, Phys. Rev. B 50, 8143 (1994).

M. Tsukada and N. Shima, J. Phys. Soc. Jpn. 56, 2875 (1987).

P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039
(1987).

L. Langer, V. Bayot, J. P. Issi, L. Stockman, C. Van Haesendonck,
Y. Bruynseraede, J. P. Heremans, and C. H, Olk, Extended Abstracts



248

166.
167.
168.
169.
170,
171.
172.

173.

174.

175.
176.

177,

178.
179.

180.
181.

182.

183.
184.

1R5.

REFERENCES

of the Carbon Conference page 348 (1995).

R. Landauer, IBM Journal of Research and Development 1, 223 (1957).
R. Landauer, Phil. Mag. 21, 863 (1970).

T. Nakanishi and T. Ando, J. Phys. Soc. Japan 66 (1997). in press.
R. Tamura and M. Tsukada, Phys. Rev. B 55, 4991 (1997). scaling law
of nanotube conductance.

T. Ando, Phys. Rev. B 44, 8017 (1991).

S. Ihara and S. Itoh, Carbon 33, 931 (1995).

S. Motojima, M. Kawaguchi, K. Nozaki, and H. Iwanaga, Carbon 29,
379 (1991).

V. Ivanov, J. B. Nagy, Ph. Lambin, A. A. Lucas, X. B. Zhang, X. F.
Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Lun-
duyt, Chem. Phys. Lett. 223, 329 (1994).

J. Liu, H. Dai, J. H. Hefner, D. T. Colbert, R. E. Smalley, S. J. Tans,
and C. Dekker, Nature (London) 385, 780 (1997).

Needed et al., (1992).

K. Akagi, R. Tamura, M. Tsukada, S. Itoh, and S. Ihara, Phys. Rev.
Lett. 74, 2307 (1995).

S. Datta, Transport in mesoscopic systems (Cambridge University Press,
Cambridge, UK, 1995).

B. J. Wees et al., Phys. Rev. Lett. 60, 848 (1988).

L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen,
Phys. Rev. Lett. 76, 971-974 (1996).

D. Thouless, Phys. Rev. Lett. 39, 1167 (1977).

H. Kamimura and H. Aoki, in The Physics of Interacting Electrons in
Disordered Systems, (Clarendon Press, Oxford, 1989).

M. S. Dressclhaus, M. Endo, and J. P. Issi. In Fluorine-Carbon
and Fluoride-Carbon Materials: Chemistry, Physics and Applications,
edited by T. Nakajima, pages 95-186, Marcel Dekker, Inc, New York,
1994, Chapter IV,

P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk,
L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev,
Lett. 76, 479-482 (1996).

T. W. Ebbesen, H. Hiura, M. E. Bisher, M. M. J. Treacy, J. L. Shreeve-



REFERENCES 249

186.

187.

188.
189.

190.

191.

192,

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

Keyer, and R. C. Haushalter, Advanced Materials 8, 155 (1996).

T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature {London)
391, 62-64 (1998).

M. Bockrath, D, H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl,
A. Thess, and R. E. Smalley, Science 275, 1922-1924 (1997).

C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

C. A. Klein. In Chemisiry and Physics of Carbon, edited by P. L.
Walker, Jr., page 217. Marcel Dekker, Inc., New York, 1966, Vol. 2.
C. A. Klein, J. Appl. Phys. 33, 3388 (1962).

A. A. Bright and L. S. Singer, Carbon 17, 59 (1979).

V. Bayot, L. Piraux, J. P. Michenaud, and J. P. Issi, Phys. Rev. B 40,
3514 (1989).

R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus,
Chem. Phys. Lett, 209, 77-82 (1993).

T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Phys. Rev.
B 42, 11469 (1990).

C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, and Y. Sumiyoshi, Solid
State Commun. 65, 1601 (1988).

J. C. Charlier. Carbon Nanotubes and Fullerenes. PhD thesis, Catholic
University of Louvain, Belgium, 1994. Department of Physics.

M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill,
New York, N. Y., 1964).

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of
Fullerenes and Carbon Nanotubes (Academic Press, New York, NY,
1996).

J. M. Holden, Ping Zhou, Xiang-Xin Bi, P. C. Eklund, Shunji Bandow,
R. A. Jishi, K. Das Chowdhury, G. Dresselhaus, and M. S. Dresselhaus,
Chem. Phys. Lett. 220, 186 (1994).

T. Guo, C.-M. Jin, and R. E. Smalley, Chem. Phys. Lett. 243, 49-54
(1995).

M. S. Dresselhaus and G. Dresselhaus, Light Scattering in Solids III 51,
3 (1982). edited by M. Cardona and G. Giintherodt, Springer-Verlag
Berlin, Topics in Applied Physics.

A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, Phys. Rev.
Lett. 78, 4434 (1997). Raman experiment in carbon nanotubes.



250

203

204.
205.

206.

207.

208.

209.

210.

211

212.

213.
214.

215.

216.

217.

218.

219.

220.
221.

222.

REFERENCES

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J. Raman Spect.
27, 351-371 (1995).

D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

S. Guha, J. Menéndez, J. B. Page, and G. B. Adams, Phys. Rev. B 53,
13106 (1996).

G. W. Chantry, in The Raman Effect, vol. 1 ed., (Dekker, New York,
NY, 1971).

D. W. Snoke, M. Cardona, S. Sanguinetti, and G. Benedek, Phys. Rev.
B 53, 12641 (1996).

R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B (1998).

D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev. B
45, 12592 (1992).

P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon 33, 959 (1995).
F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).

T. C. Chieu, M. S. Dresselhaus, and M. Endo, Phys. Rev. B 26, 5867
(1982).

P. Lespade, R. Al-Jishi, and M. S. Dresselhaus, Carbon 20, 427 (1982).
M. J. Matthews, X. X. Bi, M. S. Dresselhaus, M. Endo, and T. Taka-
hashi, Appl. Phys. Lett. 68, 1078-1080 (1996).

M. S. Dresselhaus and R. Kalish, lon Implantation in Diamond,
Graphile and Related Materials (Springer-Verlag; Springer Series in Ma-
terials Science, Berlin, 1992). Volume 22.

R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4514 (1982).

K. Yoshizawa, K. Okahara, T. Sato, K. Tanaka, and T. Yamabie, Carbon
32, 1517 (1994).

S. Krichene, J. P. Buisson, and S. Lefrant, Synth. Metals 17, 589-594
(1986).

B. 1. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76,
2511 (1996).

R. S. Ruoff and D. C. Lorents, Carbon 33, 925 (1995).

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, and R. Saito, Physics
World 10(12) (December 1997).

J. Bernhole. Quantum molecular dynamics simulations of microtube
bending (unpublished).



REFERENCES 251

223.

224.

225,
226.
227.
228.

229,
230,
231.
232.
2338.
234.

235.
236.

237.

238.

R. E. Peierls, in Quantum Theory of Solids, (Oxford Univeristy Press,
London, 1955).

X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx,
M. Op de Beeck, and J. Van Landuyt, J. Cryst. Growth 130, 368~
382 (1993).

M. Liu and J. M. Cowley, Ultramicroscopy 53, 333 (1994).

B. T. Kelly, in Physics of Graphite, (Applied Science (London), 1981).
G, Overney, W. Zhong, and D. Tomadnek, Z. Phys. D 27, 93 (1993).

J. Bernhole, J. Y. Yi, Q. M. Zhang, C. J. Brabec, E. B. Anderson,
B. N. Davidson, and S. A Kajihara, Zeitschrift fiir Physik D: Atoms,
Molecules and Clusters 26, 74 (1993).

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London)
381, 678 (1996).

K. Harigaya and M. Fujita, Phys. Rev. B 47, 16563 (1993).

B. Friedman, Phys. Rev. B 45, 1454 (1992).

K. Harigaya, Phys. Rev. B 45, 13676 (1992).

K. Harigaya, Synthetic Metals 56, 3202-3207 (1993).

W. P. Su, 1. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698
(1979). see also Phys. Rev. B 22, 2099 (1980).

N. A. Viet, H. Ajiki, and T. Ando, J. Phys. Soc. Jpn. 63, 3036 (1994).
N. Chandrabhas, A. K, Scod, D. Sundararaman, S. Raju, V. S. Raghu-
nathan, G. V. N. Rao, V. §, Satry, T. S. Radhakrishnan, Y. Hariharan,
A. Bharathi, and C. S. Sundar, PRAMANA-Journal of Phys. 42, 375~
385 (1994).

M. S. Dresselhaus, G. Dresselhaus, and Riichiro Saito, Materials Science
and Engineering B19, 122-128 (1993).

J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70, 1858-1861
(1993).






1s Core Orbitals.................... 9
QGG v v s e s taonnoensoenstouenenanne 25
c-axis crystallite sizes L............ 89
O V23 1311 « S 184
Dapgroup.....oooooviiiiiiiiin 184
Dy, pointgroup............oill 48
75 - 39
N 38
Ezg opticmode..............o 188
Kopolnt..oooovviieniiiiiiinain.. 60
k - p perturbation theory.......... 106
k% dependence.................... 170
L e 38
M-point mode.................... 202
N o e 40
S-matrix ..o 145
sp hybridization .................... 5
sp? hybridization ................... 7
ap® hybridization ................... 8
sp”™ hybridization................... 5
4 PP 89
V H configurations................ 196
VV configuration................. 196
DY 185
= bands of 2D graphite
Hjjr oo 26
Sttt 27
energy dispersion relations . ... 27
mhands...........ciiiiii, 26
wbond . ........oooiiiiiine 7
B 41
o bands of 2D graphite............ 29
Hijooiiniiiiiiiniiie, 29

Index

253

Sij e e 29
obond...............ooii il 7
@1 (2 ottt ttaserenenns 38
by bo e 47
KiK., 47
B 41
/A 39
7 S 37
2D graphite

acoustic modes .............. 170

Brillouin zone................. 25

force constant parameters....169

graphite...................... 25

Landaulevel................. 106

optical modes................ 170

phonon dispersion relations .. 166

reciprocal lattice unit vectors . 25

unit cell ..ol 25

unit vectors.........ooiiiann, 25

A
ABeffect........oiviiiiiiian 110
ABAB stacking.................... 87
abundance of nanotubes.......... 210
acetylene....................oelnl 7
additive property ................. 148
Aharonov-Bohm effect............ 108
amorphous carbon ................. 12
amorphous graphite................ 12
Anderson localization............. 147
angle of rotation around the

nanotube axis ¢ ......... 41



254

antibonding 7* bands.............. 24
arc method...................co0i 7
areal moment of inertia........... 211
armchair nanotube................. 36
atomic sites ...............0nlan, 185
axisof cone.............. .o 121
B

ballistic transport ................ 139
bamboo structure.................. 81
band Jahn-Teller effect ........... 216
bending angle .................... 121
bending ...l 81
benzene gas ............ ..ol 80
bias window...................... 157
bistability ................... ool 156
Bloch’s theorem ................... 17
BN nanotube..................... 224
bond alternation.................. 213
bond polarization theory.......... 192
bond-bending................ .. 167
bond-stretching................... 167
bonding 7 bands................... 24
breathing Ajg mode.......... 172,190
Bright model ..................... 160
broad Raman peaks around

the 1347 ecm™ .......... 202
bulk modulus................... ... 15

C

C, absorption process.............. 89
cantilever beam................... 211
CAPPING. .ottt it i e 81
carbide................. il 79
carbon arc synthesis............... 73
carbon fiber with high Tyr ....... 147
carbon fibers.................... 14,15

carbon nanotube

INDEX
beam rigidity ................ 211
Brillouin Zone ................ 45
circumferential length......... 38
CUIVAtUTE. ..ot vnianns 70
density of states .............. 66
diameter...................... 38
dynamical matrix............ 173
electromic structure in a
magnetic field........... 108
electronic structure........... 59
ENEIZY GAP ..o vvvvvvvonrroarens 66
growthrate................... 78
oxidation .......covvvineniians 84
parameters ................... 46
Peierls instability ............ 219
phonon dispersion relations .. 171
quantum transport .......... 152
reciprocal lattice vectors ...... 45
resistivity......oooiiiiin., 157
solid state properties.......... 66
strain energy ................ 210
structure ............oiiiiln 35
the number of hexagons N ....40
unit cell .......... .o il 45
carbon whisker................... 2,82
carbonization temperature......... 87
carbyne........... ... ... il 13
catalytic chemical vapor deposition. .2
CGSunits.......oovvvvevnivnnene., 95
L) N 22
channels............oovieiiinnenn. 142
chemical potentials............... 142
chiralangle §...................... 39
chiral nanotube.................... 36
chiral vector Ch ..o, 37
chirality ...l 35
classic elastic theories............. 208
classical conductance ............. 139
classical transport ................ 144

classification..............oviuns, 35



INDEX

coaxial nanotubes ................
cobalt catalyst....................
coherence.........coovvvveiininnnn,
coiled carbon nanotubes..........
electronic structure..........
commensurate................ ...
commensurate double-wall
carbon nanotube........
complete elliptical integrals.......
conductance G[U].................
conductance regimes..............
conductance......................
conductivity.......ovevvviiniiin,.
core electrons.....................
coreorbitals ......................
Coulomb charging effect ..........
crystallite size along the

CVD .o
cyclotron frequency we............
cyclotron radius r¢...oivvvnnin..,

D

de Broglie wavelength A .........
desorption temperature
hydrogen....................
OXYEEIM. oot venvineveninriannes
diamagnetism for graphite........
diamond.............. ... ol
diffusion constant D ..............
diffusive motion ..................
dihedral angle.....................
dimensionless inverse magnetic
length L/2we...........
disorder in carbon fibers..........
distorted columnar structures.....
dynamical matrix D(E)...........

255
E
eccentricity ............ i, 123
edgestates ................oou. L, 126
EELS ..o 11
effective mass..................... 110
Einstein relation.................. 151
elastic modulus Ciy............... 210
elastic scattering.................. 138
elastic thin film................... 210
electron energy loss spectra........ 11
electron-electron interaction ...... 221
electron-electron scattering ....... 138
electron-phonon coupling
constant................ 213
electronic polarization tensor ...., 192
electronic properties of a two-shell
coaxial nanotube........ 224
encapsulated metal cluster......... 79
energy dispersion
armchair and zigzag
nanotubes............... 61
energy stabilization............... 225
enhanced backward scattering .... 152
ensemble average................. 150
envelope function................. 200
equation of motion ............... 163
Euler theorem.................... 132
F
faceting ...........ooiiiiiiiinn., 225
Fermi sphere ..................... 138
Fermi wavelength Ap ............. 138
finite size effect................... 202
flux quantum..................... 100
focused-ion-beam-induced
deposition.............. 154
force constant model.............. 163

correction of force constant .. 178



256
force constant tensor.......... 163,167
Fourier transform................. 164
free electron in a magnetic field .... 95

G
Gaussian broadening.............. 124
BEMUS. .o v vt ittt nenenrnnns 132
gerade. ..o it 186
graphitization temperature......... 87
growth mechanism................. 89

H
heat treatment temperature Tyr..202
helical pitch...................... 133
helically coiled nanotube. ......... 131
helix-shaped structure............ 132
heptagonal defect.............. 81,116
high strength per unit area....... 225
highly oriented pyrolytic graphite ... 2
hollow cylindrical cantilever....... 213
HOPG. ..o ivii i 2
hybridization ................ovvnt 5

I
Ljima....oovviiiiiiiiiiiii e 4
in zero magnetic field............. 111
in-phase motion .................. 199
in-plane bond alternation......... 217
in-plane crystallite sizes Lq ........ 89
incommensurate co-axial

nanotubes.............. 222
infrared-active modes............. 183
interband coupling................ 107
intercalated graphite
with fluorine............ 147

interlayer interaction ............. 207

inversion center................... 186

irreducible representation......... 184
J, K
Jahn-Teller effect ................. 216
joint density of states............. 191
junction........oiuiiinian, 115,123
shape of a junction .......... 120
Keating potential................. 211
Kekulé structure.................. 213
L
Landau energy bands
two-dimensional graphite ..., 104
carbon nanotube............. 111
Landau gauge ............co.ovnne 95
Landau radius.............coovuee 97
Landau degeneracy ................ 97
Landauer formula................. 144
laser vaporization method.......... 74
layer-by-layer removal.............. 84
length of cone axis................ 123
linear k dispersion................ 107
local density approximation........ 71
localization length L.............. 147
localization phenomenon.......... 147
longitudinal acoustic mode........ 177
Lorentz force ...................... 95
M
magnetic-induced distortion....... 221
McClure..........oovveviiinnnen. 106
mean free path Ly ............... 138
mesophase pitch fibers............. 15
mesoscopic systems........... 127,138
metal-metal coaxial nanotubes.,...224
metal-metal junction ............. 124



INDEX

metal-semiconductor coaxial

nanotubes.............. 224
metal-semiconductor junction..... 124
methane...................vii 8
MKS (SI) units.........ooovvvnnn, 95
molecular polarizabilities ......... 193

momentum relaxation length L., ..138
momentum relaxation time ¢, ....139

Mott localization ................. 147
multi-wall nanotubes ........, 209,221
N
nanotube junctions............... 116
negative curvature................ 116
negative magnetoresistance ....... 151
Landau level formation .. 160,151
Ni/Co catalyst ................... 187
non-symmorphic translational
BIOUP « v vrvneiinineoans 52
non-zone-center phonon mode. . ... 202
normal mode ..................... 192
normalized electron-phonon
interaction.............. 216
O
openends........coiiiiiiiiin... 89
out-of-phase motion .............. 199
out-of-plane deformation
dotfill 218
overlap integral matrix............. 19
oxXidation ...o.vvviiiiin i 84
P
PAN (polyacrylonitrile)............ 15
PAN fibers..............covinan, 14,2

parameters of 2D graphite
tight binding method ......... 32

Pauli exclusion principle.......... 138
Peierls distortion .............. 216,70
Peierls instability ................. 213
pentagon.........ooiiiiiiiniin.., 187
PES . 10
phase-coherent motion............ 151
phase diagram of carbon........ 12,13
phase relaxation time ¢, .......... 139
phase-relaxation length Ly........ 138
phonon density of states...... 171,202
phonon mode..................... 163
phonon occupation number....... 192
photoelectron spectroscopy......... 10
wbond......................L 7,207
pitch fiber..............coiii i, 14
polarizability parameters ......... 194
polarization .................. ... 192

polyacetylene (CH), (see alse
trans-polyacetylene) 7,22,213

normalized energy gap....... 215
polyacrylonmitrile .................... 2
power law for the A1, mode ...... 198
projection operator............... 184

Q
quantized conductance Go ........ 143
quantized current................. 143
quantized resistance Ro........... 143
quantum confinement.............. 95
R
radial ........... .l 167
Raman experiment ............... 187
Raman mode of carbon nanotube

atomic displacements . ....... 200

higher frequency modes...... 198

lower frequency modes....... 196

medium frequency modes . ... 201



258

Raman polarizability parameters..195
Raman spectra

angular dependence.......... 205

polarization dependence ..... 197
Raman-active modes.............. 183
random phase .................... 150
rare-earth metals .................. 79
Rayleigh scattering............... 190
regular triangle................... 120
resistance.............. ... ... 137
resistance of a mesoscopic wire R,, 144
resistivity .. .....o.ooiiiiiiiien . 137
resolvent ............ ... il 127
resonance tunneling............... 156
resonant Raman effect............ 191
Rh/Pd catalyst................... 187
o) o1 187
rotation angle ¥ ................... 43

rotation around the z axis.... 203,223

S

sample length L.................. 139
sample orientation dependence....203
scaled force constant.............. 181
second-rank tensor................ 168
secular equation ............... 165,20
selection rules .......... e 186
semi-metal ............ .. ... 134
semi-toroidal structure............ 130
shear modes between two

graphite layers.......... 222
ag-bonding................ ..l 207
sliding motion.................... 223
sound velocity...............oun 178
sp? hybridization ................... 7
sp® hybridization ................... 8

space group symmetry operation

STMimage......coovvvvvinienn.n.. 224
strain energy per carbon atom.... 210
strongly localized regime.......... 147
STS experiments ................. 224
Su-Schrieffer-Heeger (SSH) model 213
sublattices........................ 199
superlattice.................... ... 133
symmetry assignment............. 205
symmetry vector R................ 41
symmetry-lowering effects......... 202
T
(10,10) armchair nanotube........ 187
thermal diffusion length Lp....... 151
thermal vibration................. 212
Thomas A. Edison.................. 1
tight binding approximation in a
static magnetic field...... 98
tight binding method .............. 17
Hyprooniie i 19
S it 19
tilt and twist boundaries........... 89
time-reversed processes A;a ....... 151
toroidal carbon nanotube......... 133
torus Cgg0 v iin e 130
BOWS. oo e e 15
trans-polyacetylene
w-bands ............... Ll 22
HJJI ......................... 23
S]Jl .......................... 24
Bloch orbitals................. 22
Brillouin zone................. 22
energy dispersion relations .... 24
reciprocal lattice vector....... 22
unit vector.................... 22
transfer integral matrix............ 19
transit time ¢, .................... 139
transition metals................... 79
translation r............ ... ... ... 43



INDEX

translation in the direction of T' 7. 41

translational vector T'............. 37
transmission probability.......... 144
transport experiments ,........... 159
transverse acoustic mode ......... 177
tube opening ............ooei.nn. 85
tubule axis length ................ 123
tunneling conductance............ 123
turbostratic graphite............... 89
twisted helical carbon nanotube...132
twisting motion............... 169,178
two-band semimetal model........ 160
two-dimensional cosine band in

a magnetic field......... 100

two-dimensional graphite (see 2D-grphite)

two-dimensional van Hove

singularities............. 125

two-point resistance .............. 155
U, Vv

ungerade .. ..ooiini i 186

unitary matrix.................... 168

universal conductance
fluctuations (UCF)127,148,161

valence electrons.................... 5
van-Hove singularities ............ 191
vapor grown carbon fiber...... 2,14,79
vapor growth method.............. 80
vaporization temperature....... 77,88
vector potential.................... 95
voltage drop.................. 127,144
w
wavy ribbons...........0co0e e 89
weakly localized regime........... 147
wire frame model ................. 123

wrinkled layers .................... 89

259
X,Y,Z

XPS. . e 9

Young’s modulus Y............... 211

zero-gap semiconductor............ 64

zigzag nanotube .................., 36
zone folding

phonon mode............ 163,172

zone-center vibrations ............ 183
zone-folding

Energy dispersion............. 59






	Book Jacket Cover 
	Book Cover
	Physical Properties of Carbon Nanotubes
	Preface
	Contents
	CHAPTER 1 Carbon Materials
	History
	Hybridization in A Carbon Atom

	CHAPTER 2 Tight Binding Calculation of Molecules and Solids
	Tight Binding Method for a Crystalline Solid
	Electronic Structure of Polyacetylene
	Two-Dimensional Graphite

	CHAPTER 3 Structure of a Single-Wall Carbon Nanotube
	Classification of carbon nanotubes
	Chiral Vector
	Translational Vector
	Symmetry Vector
	Unit Cells and Brillouin Zones
	Group Theory of Carbon Nanotubes
	Experimental evidence for nanotube structure

	CHAPTER 4 Electronic Structure of Single-Wall Nanotubes
	One-electron dispersion relations
	Density of States, Energy gap
	Effects of Peierls distortion and nanotube curvature

	CHAPTER 5 Synthesis of Carbon Nanotubes
	Single-Wall Nanotube Synthesis
	Laser Vaporization Synthesis Method
	Arc Method of Synthesizing Carbon Nanotubes
	Vapor Growth and Other Synthesis Methods
	Purification
	Nanotube Opening, Wetting, Filling and Alignment
	Nanotube Doping, Intercalation, and BN/C Composites
	Temperature Regimes for Carbonization and Graphitizaton
	Growth Mechanisms

	CHAPTER 6 Landau Energy Bands of Carbon Nanotubes
	Free Electron in a Magnetic Field
	Tight Binding Approximation in a Static Magnetic Field
	Two-Dimensional Cosine Band in a Magnetic Field
	Landau Energy Bands of Graphite
	Magnetic Energy Bands of Carbon Nanotubes for B || z: Aharonov-Bohm Effect
	Magnetic Energy Bands of Carbon Nanotubes for B z: Quantum-Oscillations

	CHAPTER 7 Connecting Carbon Nanotubes
	Net Diagrams of a Junction
	The Rule for Connecting Two Nanotubes
	Shape of a Junction
	Tunneling Conductance of a Junction
	Coiled Carbon Nanotubes

	CHAPTER 8 Transport Properties of Carbon Nanotubes
	Quantum transport in a one-dimensional wire
	Transport experiments on carbon nanotubes

	CHAPTER 9 Phonon Modes of Carbon Nanotubes
	Dynamical matrix for phonon dispersion relations
	Phonon dispersion relations for two-dimensional graphite
	Phonon dispersion relations for nanotubes

	CHAPTER 10 Raman Spectra of Carbon Nanotubes
	Raman or infrared active modes of carbon nanotubes
	Raman experiments on single-wall nanotubes
	Bond Polarizability Theory of Raman Intensity for Carbon Nanotubes
	Raman Spectra of Nanotubes with Random Orientations
	Sample Orientation Dependence

	CHAPTER 11 Elastic Properties of Carbon Nanotubes
	Overview of Elastic Properties of Carbon Nanotubes
	Strain Energy of Carbon Nanotubes
	The Peierls Instability of Nanotubes
	Properties of Multi-Wall Nanotubes

	Appendix
	A-1 Parameters for an (n, m) carbon nanotube
	A-2 Coordinates for a (n,m) carbon nanotube
	A-3 Coordinates for several unit cells
	A-4 Source Codes

	References
	Index




