


Springer Series in

optical sciences 80

founded by H.K.V. Lotsch

Editor-in-Chief: W. T. Rhodes, Atlanta

Editorial Board: T. Asakura, Sapporo
K.-H. Brenner, Mannheim
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Linköping University
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Preface

During the three years since the first edition of this book was published, the
study of photonic crystals has made steady progress. The propagation of elec-
tromagnetic waves in various types of photonic crystal has been investigated
thoroughly by many researchers so that the basis for practical applications
is now firmly established. On the other hand, the quantum-optical aspects
of photonic crystals remain less-well investigated although they may bring
about completely new quantum-electrodynamical effects, due to the anoma-
lous photon density of states realized in such crystals.

One of the most peculiar and impressive examples of such phenomena
is superfluorescence, which was first studied by Prof. Sajeev John and Prof.
Tran Quang. The temporal profile of superfluorescent pulses expected for
photonic crystals is completely different from that in free space or uniform
materials. Moreover, fractional relaxation of population inversion, which orig-
inates from the Rabi splitting of electronic excited states in the presence of
photonic bandgaps, was predicted.

In the second edition of this book, I have added a new chapter giving
a detailed description of this interesting phenomenon. By way of introduc-
tion, I explain the standard mean-field theory of superfluorescence in uniform
materials and the pseudo-spin density operator as an analytical tool. There-
after I follow the mean-field theory presented by the two above-mentioned
researchers. I also describe some numerical calculations on superfluorescence
assuming a quite realistic specimen, work originally performed by Professor
Joseph W. Haus and myself. I hope that the reader will enjoy this taste of
the emerging new quantum optics.

Tsukuba Kazuaki Sakoda
August 2004



Preface to the First Edition

The interaction between the radiation field and matter is the most fundamen-
tal source of dynamics in nature. It brings about the absorption and emission
of photons, elastic and inelastic light scattering, the radiative lifetime of elec-
tronic excited states, and so on. The huge amount of energy carried from the
sun by photons is the source of all activities of creatures on the earth. The
absorption of photons by chlorophylls and the successive electronic excita-
tion initiate a series of chemical reactions that are known as photosynthesis,
which support all life on the earth. Radiative energy is also the main source
of all meteorological phenomena.

The fundamentals of the radiation field and its interaction with matter
were clarified by classical electromagnetism and quantum electrodynamics.
These theories, we believe, explain all electromagnetic phenomena. They not
only provide a firm basis for contemporary physics but also generate a vast
range of technological applications. These include television, radar, optical
and microwave telecommunications, lasers, light-emitting diodes, solar cells,
etc.

Now, the interaction between the radiation field and matter is so funda-
mental that it may seem universal and invariant. But in fact it is controllable.
This discovery has been the great motivating force of intensive investigations
in optical physics during the last three decades. In this book, I will show how
it is controlled using photonic crystals, a remarkable invention realized by
the combination of optical physics and contemporary microfabrication tech-
niques. I will also show how the controlled radiation field alters the optical
properties of atoms and molecules embedded in the photonic crystals and
what kinds of new phenomena and new physics are expected to manifest
themselves.

This book was written to serve as a comprehensive textbook covering the
optical properties of photonic crystals. It deals not only with the proper-
ties of the radiation field inside the photonic crystals but also their peculiar
optical response to external fields. Only an elementary knowledge of electro-
magnetism, quantum mechanics, solid-state physics, and complex analysis is
required of the reader. Therefore, undergraduate students in physics, applied
physics, optics, electronics, and electrical engineering in the final year should
be able to read this book without difficulty. Since the main recent devel-
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opments, such as the enhancement of stimulated emission, second harmonic
generation, and quadrature-phase squeezing, are also treated in a detailed and
understandable manner, this book also provides important ideas for graduate
students and researchers in this field.

I would like to thank Professor Eiichi Hanamura and Professor Kuon
Inoue who gave me a wonderful introduction to this exciting field. I would
also like to thank Professor Kazuo Ohtaka and Professor Joseph W. Haus
who gave me many suggestions on important problems. I am grateful to
Professor Sajeev John for giving me the opportunity to visit his laboratory
in Toronto University in the summer of 1998. During that period, I learned
much about the quantum optics of photonic crystals. I am also grateful to
Dr. Kurt Busch who helped me to confirm that the group theory worked well
for the fcc structure. I acknowledge Professor Takao Koda for his continuous
encouragement since I was an undergraduate student of Tokyo University. I
deeply acknowledge Professor Toshimitsu Asakura and Dr. Claus Ascheron
for giving me the opportunity to write this book. I am grateful to many of my
graduate students for their efforts in numerical calculations. In particular, Ms.
Hitomi Shiroma-Hirata, Ms. Noriko Kawai, and Mr. Takunori Ito did many
of the calculations that are shown in this book. I am also grateful to Dr.
Tetsuyuki Ochiai who made the main contribution to the study of photonic
crystal slabs presented in Chapter 8.

Sapporo Kazuaki Sakoda
February 2001
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1. Introduction

As is well known, there is the following relation between the frequency ν, the
velocity c, and the wavelength λ0, of the radiation field in free space:

c = λ0ν. (1.1)

When we define the wave number k by,

k =
2π

λ0
, (1.2)

we obtain the relation between the angular frequency ω and k:

ω = ck. (1.3)

This equation is called the dispersion relation of the radiation field. If one
thinks of the radiation field in a uniform material with refractive index η,
one can obtain its dispersion relation by replacing c by v = c/η and λ0 by
λ = λ0/η in (1.2) and (1.3). The density of states of the radiation field in the
volume V of free space, D(ω), is proportional to ω2 (Fig. 1.1):

D(ω) =
ω2V

π2c3 . (1.4)

The density of states in the uniform material is obtained by replacing c by
v in this equation.1 The optical properties of atoms and molecules strongly
depend on D(ω). As an example, let us consider the spontaneous emission of
a photon from an electronic excited state of an atom or a molecule. Quantum
mechanics tells us that the rate of the spontaneous emission is proportional to
ωD(ω). Since the spontaneous emission is an origin of the energy dissipation
and the fluctuation of the radiation field, it suppresses the occurrence of
laser oscillations. This suppression is marked in the high frequency region
since D(ω) is proportional to ω2. This is one of the reasons why the laser
oscillation is difficult to realize at high frequencies.

Now, if we can design and modify D(ω), we can substantially change
the optical properties of atoms and molecules [1]. This is a key idea of con-
temporary optical physics, and it is possible. One method is to use optical
microcavities while another is to use photonic crystals. In this book, it will be
shown how the characteristics of the radiation field are modified in photonic
1 The derivation of (1.4) will be given in Sect. 5.2.



2 1. Introduction

Fig. 1.1. Schematic illustration of the density of states of the radiation field (a) in
free space and (b) in a photonic crystal. In the illustration for the photonic crystal,
a photonic bandgap and a localized defect mode with a delta-function like density
is included (see text)

A B a

1 D 2 D 3 D

Fig. 1.2. Schematic illustration of one-dimensional (1D), two-dimensional (2D),
and three-dimensional (3D) photonic crystals. a is the lattice constant

crystals and how the optical properties of atoms and molecules embedded in
them are altered.

Photonic crystals are regular arrays of materials with different rafractive
indices. Figure 1.2 shows the simplest case in which two materials denoted
by A and B are stacked alternately. The spatial period of the stack is called
the lattice constant, since it corresponds to the lattice constant of ordinary
crystals composed of a regular array of atoms. Actually, many basic ideas
are common to both crystals and they will be utilized to build fundamental
theories of the photonic crystals, as will be shown in the following chapters.
However, one big difference between them is the scale of the lattice con-
stant. In the case of ordinary crystals, the lattice constant is on the order of
angstroms. On the other hand, it is on the order of the wavelength of the
relevant electromagnetic waves for the photonic crystals. For example, it is
about 1 µm or less for visible light, and is about 1 cm for microwaves.
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Fig. 1.3. SEM image of a 3D photonic crystal composed of an fcc array of SiO2
spheres with a diameter of 300 nm. (After [2])

Fig. 1.4. SEM image of a 3D photonic crystal made of silicon. (After [3])

Photonic crystals are classified mainly into three categories, that is, one-
dimensional (1D), two-dimensional (2D), and three-dimensional (3D) crystals
according to the dimensionality of the stack (see Fig. 1.2). The photonic
crystals that work in the microwave and far-infrared regions are relatively
easy to fabricate. Those that work in the visible region, especially 3D ones
are difficult to fabricate because of their small lattice constants. However,
various technologies have been developed and applied to their fabrication in
the last ten years, and many good crystals with a lattice constant less than 1
µm are now available. For example, Fig. 1.3 shows an SEM (scanning electron
micrograph) image of an fcc (face-centered-cubic) lattice composed of silica
spheres [2]. The diameter of the spheres is 0.3 µm. On the other hand, Fig.
1.4 is an SEM image of a 3D structure made of Si [3].
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Fig. 1.5. (a) Schematic illustration of a photonic crystal slab and (b) the scanning
electron micrograph of an actual specimen fabricated on a Si substrate. (After [4])

If we design a 3D photonic crystal appropriately, there appears a fre-
quency range where no electromagnetic eigenmode exists. Frequency ranges
of this kind are called photonic bandgaps, since they correspond to bandgaps
of electronic eigenstates in ordinary crystals. Moreover, if we introduce a dis-
order into the regular dielectric structure of the photonic crystal, we may
obtain midgap modes whose eigenfunctions are strongly localized around the
disorder. These modes are called localized defect modes. The density of states
for a 3D photonic crystal with a photonic bandgap and a localized defect
mode is schematically illustrated in Fig. 1.1(b). If the emission frequency
of an atom or a molecule embedded in the photonic crystal lies just in the
photonic bandgap, the spontaneous emission of a photon from its electronic
excited state is completely forbidden, since there exists no photon in the
gap. On the other hand, if the emission frequency coincides with the eigen-
frequncy of the localized mode and the atom is located near the defect, the
spontaneous emission is accelerated.

Another class of photonic crystals known as photonic crystal slabs [4–13] is
illustrated in Fig. 1.5. Photonic crystals of this type are usually fabricated on
a substrate made of a semiconductor or an insulator. They have been investi-
gated energetically in recent years, because many sophisticated technologies
such as electron beam lithography and thin-layer formation developed in the
field of electronics and opto-electronics can be applied to their fabrication.
Monolayers made of polymer micro-spheres [14–16] may also be regarded as
photonic crystal slabs.

In order to gain an intuitive understanding of the photonic bands and
bandgaps, we examine 1D crystals in some detail. The 1D photonic crystals
are traditionally called dielectric multilayers and their optical properties are
well-known [17]. We take the x axis in the direction perpendicular to the
surface of the dielectric layers as shown in Fig. 1.6. We only deal with elec-
tromagnetic waves propagated in the x direction and polarized linearly here.
We take the y axis in the direction of the polarization. The electric field of the
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k

O

y

x

E

Fig. 1.6. Geometry of the calculation of the photonic band structure, or the dis-
persion relation, of a 1D photonic crystal

propagated wave is denoted by a complex function E(x, t) for convenience.
The actual electric field is, of course, a real quantity. It is given by the real
part of E(x, t).

Now, the wave equation for E(x, t) is given by

c2

ε(x)
∂2E

∂x2 =
∂2E

∂t2
, (1.5)

where ε(x) denotes the position-dependent relative dielectric constant of the
1D photonic crystal, which will be called the dielectric function hereafter.2

In (1.5), we assumed that the magnetic permeability of the photonic crystal
is equal to that in free space, since we do not treat magnetic materials in this
book. Because ε(x) is a periodic function of x,

ε(x + a) = ε(x), (1.6)

ε−1(x) is also periodic and can be expanded in a Fourier series:

ε−1(x) =
∞∑

m=−∞
κm exp

(
i
2πm

a
x

)
, (1.7)

where m is an integer and {κm} are the Fourier coefficients. Since we assume
that ε(x) is real in this chapter, κ−m = κ∗

m. It is well-known that Bloch’s
theorem holds for the electronic eigenstates in ordinary crystals because of
the spatial periodicity of the potential energy that an electron feels due to
the regular array of atomic nuclei [18]. The same theorem holds for electro-
magenetic waves in photonic crystals.3 Any eigenmode in the 1D crystal is
thus characterized by a wave number k and expressed as follows:

E(x, t) ≡ Ek(x, t) = uk(x) exp {i(kx − ωkt)} , (1.8)
2 The derivation of the wave equation from Maxwell’s equations will be described

in Chap. 2.
3 The proof will be given in Sect. 2.1.
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where ωk denotes the eigen-angular frequency and uk(x) is a periodic func-
tion:

uk(x + a) = uk(x). (1.9)

Hence, it can also be expanded in a Fourier series. As a result, (1.8) is modified
to

Ek(x, t) =
∞∑

m=−∞
Em exp

{
i
(

k +
2πm

a

)
x − iωkt

}
, (1.10)

where {Em} are the Fourier coefficients.
Now, we assume for simplicity that only components with m = 0 and ±1

are dominant in the expansion (1.7):

ε−1(x) ≈ κ0 + κ1 exp
(

i
2π

a
x

)
+ κ−1 exp

(
−i

2π

a
x

)
. (1.11)

When we substitute (1.10) and (1.11) into the wave equation (1.5), we obtain

κ1

{
k +

2(m − 1)π
a

}2

Em−1 + κ−1

{
k +

2(m + 1)π
a

}2

Em+1

≈
{

ω2
k

c2 − κ0

(
k +

2mπ

a

)2
}

Em. (1.12)

For m = 0,

E0 ≈ c2

ω2
k − κ0c2k2

{
κ1

(
k − 2π

a

)2

E−1 + κ−1

(
k +

2π

a

)2

E1

}
. (1.13)

For m = −1,

E−1 ≈ c2

ω2
k − κ0c2 (k − 2π/a)2

{
κ1

(
k − 4π

a

)2

E−2 + κ−1k
2E0

}
.(1.14)

Therefore, if k ≈ |k − 2π/a| (i.e., k ≈ π/a), and if ω2
k ≈ κ0c

2k2, E0 and E−1
are dominant in the expansion (1.10). In this case, we neglect all other terms
and obtain the following coupled equations:(

ω2
k − κ0c

2k2)E0 − κ1c
2
(

k − 2π

a

)2

E−1 = 0, (1.15)

−κ−1c
2k2E0 +

{
ω2

k − κ0c
2
(

k − 2π

a

)2
}

E−1 = 0. (1.16)

These linear equations have a nontrivial solution when the determinant of
coefficients vanishes:∣∣∣∣∣∣∣

ω2
k − κ0c

2k2, −κ1c
2
(
k − 2π

a

)2

−κ−1c
2k2, ω2

k − κ0c
2
(
k − 2π

a

)2

∣∣∣∣∣∣∣ = 0. (1.17)
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k

=   kv

O

ω

ω

Fig. 1.7. Dispersion relation for a 1D photonic crystal (solid lines). The boundary
of the first Brillouin zone is denoted by two vertical lines. The dispersion lines in
the uniform material are denoted by dashed lines. They are folded into the first
Brillouin zone taking into account the identity of the wave numbers which differ
from each other by a multiple of 2π/a. When two dispersion lines cross, they repel
each other and a photonic bandgap appears

If we introduce h = k − π/a, the solutions are given by

ω± ≈ πc

a

√
κ0 ± |κ1| ± ac

π|κ1|√κ0

(
κ2

0 − |κ1|2
4

)
h2, (1.18)

as far as |h| � π/a. So, there is no mode in the interval
πc

a

√
κ0 − |κ1| < ω <

πc

a

√
κ0 + |κ1|. (1.19)

This gap disappears when κ1 = 0. This result can be interpreted that the
modes with k ≈ π/a and k ≈ −π/a were mixed with each other in the
presence of the periodic modulation of the dielectric constant and this mixing
led to a frequency splitting.

In general, those wave vectors which differ from each other by a multiple
of 2π/a should be regarded as the same because of the presence of the periodic
spatial modulation of the dielectric constant. When the spatial modulation
is small, the dispersion relation in the photonic crystal is not so far from
ω = vk, but it should thus be expressed with the wave vector in the first
Brillouin zone, [−π/a, π/a].4 In addition, if two dispersion lines cross each
other, a frequency gap appears. All these things are schematically illustrated
in Fig. 1.7. There are an infinite number of frequency gaps in the spectrum.
However, we should note that this is true only as far as we deal with optical
4 This is the so-called reduced zone scheme.
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M

X''

k

kx

y

Γ

XΓ ∆

Σ

∆'

Fig. 1.8. Reciprocal lattice space of the 2D square photonic crystal with the lattice
constant a. The first Brillouin zone is surrounded by a dashed line

waves travelling in the x direction, and that there is no gap when we take
into consideration those modes travelling in other directions.

1D photonic crystals, or dielectric multilayers, have many important ap-
plications. For example, they are utilized as high-reflection mirrors and anti-
reflection coatings. However, most investigations related to the control of the
radiation field in recent years have been concentrated on 2D and 3D photonic
crystals, because they offer a rich variety of new physics of the radiation field,
as will be described in this book. One example is the photonic bandgaps that
may be realized in a certain class of 3D crystals. Another example is the
group-velocity anomaly that is realized in all 2D and 3D crystals. We con-
sider this point in some detail here.

Like the 1D crystals, the dispersion relation of a 2D crystal with a small
spatial variation of the dielectric constant can be well-represented by the
folding of the dispersion line of the uniform material, ω = vk, into the first
Brillouin zone. The fact that all wave vectors are not parallel to each other in
two dimensions, however, makes a large difference. As an example, Fig. 1.8
shows the reciprocal lattice space of a 2D square lattice. The lattice constant
is denoted by a as before. The first Brillouin zone is surrounded by a dashed
line in this figure. The elementary lattice vectors are

a1 = (a, 0) and a2 = (0, a), (1.20)

and the elementary reciprocal lattice vectors are

b1 =
(

2π

a
, 0
)

and b2 =
(

0,
2π

a

)
. (1.21)
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Those wave vectors that differ from each other by the sum of a multiple of
b1 and that of b2 should be regarded as the same. There are three highly
symmetric points in the first Brillouin zone, i.e., the Γ point, (0, 0), the X
point, (π/a, 0), and the M point, (π/a, π/a). Γ ′ and X ′ shown in Fig. 1.8 are
equivalent to Γ and X, respectively. The wave vectors between the Γ and
the X points are called the ∆ point. On the other hand, that between the Γ
and the M points is called the Σ point.

Now, the anomalous group velocity takes place when the original wave
vector in the uniform material is not parallel to either b1 or b2. We examine
this point for the wave vectors between Γ ′ and X ′, which are denoted by ∆′

in Fig. 1.8. Those wave vectors are

k′ =
(

kx,
2π

a

)
, 0 ≤ kx ≤ π

a
. (1.22)

The original dispersion relation is given by

ω = v|k′| = v

√
k2

x +
(

2π

a

)2

, (1.23)

and this should also be regarded as a good approximation to the rigourous
dispersion relation of the photonic crystal for the corresponding wave vectors
k in the first Brillouin zone:

k = (kx, 0). (1.24)

The dispersion relation for the square lattice with an infinitesimally small
modulation of the dielectric constant thus obtained is shown in Fig. 1.9. The
averaged refractive index is assumed to be 1.28 in this figure. The band that
we have just discussed is the third lowest one on the ∆ point. This band
has a very small slope compared with the rest. This is a consequence of the
fact that the original wave vector is not parallel to the elementary reciprocal
lattice vectors as was mentioned above.

The group velocity vg of the radiational eigenmode is given by the slope
of the dispersion curve:

vg =
∂ω

∂k
. (1.25)

Hence, the third lowest band has a small group velocity over its entire fre-
quency range. We refer to the small group velocity of this type as the group-
velocity anomaly. Because we can prove that the group velocity is equal to the
energy velocity in the photonic crystal,5 the small group velocity implies that
the interaction time between the radiational mode and the matter system is
long [19]. This leads to a large effective coupling between them, and various
optical processes are enhanced. I will show later the enhancement of stim-
ulated emission, sum-frequency generation (Chap. 5), and quadrature-phase

5 See Sect. 2.5.
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M Γ X∆Σ

Fig. 1.9. Dispersion relation for a 2D photonic crystal with an infinitesimally small
spatial variation of the dielectric constant. The abscissa represents the wave vector
in the first Brillouin zone of the 2D square lattice. The ordinate is the normalized
frequency where a and c stand for the lattice constant and the light velocity in free
space

squeezing (Chap. 10). Light absorption is also enhanced. As for nonlinear
optical processes such as sum-frequency generation, the phase-matching con-
dition, which is an important character to obtain a large output, is given by
the conservation of the crystalline momentum (see Sect. 5.4):

kf = ki + G, (1.26)

where ki (kf) denotes the initial (final) wave vector of the radiation field,
whereas G denotes a reciprocal lattice vector. As for the uniform material,

kf = ki. (1.27)

This equation may be regarded as a special case of (1.26) for which G = 0.
Because G is an arbitrary reciprocal lattice vector for the photonic crystals,
the phase-matching condition is relaxed compared with the uniform materi-
als. The group-velocity anomaly and the relaxed phase-matching condition
are very important aspects of nonlinear optical properties of the photonic
crystals.

This book is organized as follows. The eigenvalue problems for the radia-
tion field in the photonic crystals will be formulated in Chap. 2. An Hermitian
operator related to the electric field will be introduced, and the properties of
its eigenfunctions will be studied in detail. The retarded Green’s function of
this Hermitian operator will be derived for later use. In Chap. 3, group theory
will be formulated to analyze the symmetry of the eigenmodes, and will be
applied to some examples. The uncoupled modes, that is, those eigenmodes
which cannot be excited by external plane waves due to the mismatching
of the symmetry property, will be identified by group theory. In Chap. 4, a
numerical method to calculate the transmittance and the Bragg reflectance
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will be formulated and applied to some examples. The precise coincidence
between the calculated spectra and the band structure will be shown. In
Chap. 5, a general formula for the description of the optical response of the
photonic crystals will be derived based on the method of Green’s function.
Four examples of its application, i.e., dipole radiation, stimulated emission,
sum-frequency generation, and free induction decay will be presented. The
phase-matching condition and the additional selection rule for nonlinear opti-
cal processes peculiar to photonic crystals will be given there. An example of
the numerical analysis of the sum-frequency generation will also be presented.
In Chap. 6, an efficient numerical method to calculate the localized defect
modes will be derived based on the general formula to describe the dipole
radiation in the photonic crystals given in Chap. 5. An excellent agreement
between the calculated eigenfrequencies and the experimental observation
will be shown. In Chap. 7, I will present a general and accurate numerical
method to calculate the band structure with frequency-dependent dielectric
constants. This method will be applied to a photonic crystal with metallic
components. The presence of extremely flat bands related to surface plasmon
polaritons will be shown. In Chap. 8, the optical properties of photonic crys-
tal slabs will be examined. The low-threshould lasing due to the enhanced
stimulated emission caused by the group-velocity anomaly will be discussed in
Chap. 9. In addition to the analytical formula describing the onset of lasing,
the lasing threshould will be analyzed numerically. The radiation field will
be quantized in Chap. 10. Two quantum optical properties, i.e., quadrature-
phase squeezing due to optical parametric amplification and Lamb shift of
atoms in the photonic crystal will be examined. The enhancement of the for-
mer due to the anomalous group velocity and that of the latter due to the
anomalous density of states of the radiation field will be shown.



2. Eigenmodes of Photonic Crystals

As the first step of the analysis of the radiation field in a photonic crystal, we
will formulate the eigenvalue problem of the wave equation and give a general
numerical method to solve it. Based on the complete set of the eigenfunctions,
we will also derive the expression for the retarded Green’s function related
to the electric field. In addition to the three-dimensional (3D) case, we will
treat the two-dimensional (2D) crystals, for which the vectorial wave equation
reduces to two independent scalar equations and the relevant expressions are
simplified.

2.1 Wave Equations and Eigenvalue Problems

We begin with Maxwell’s equations. Because we are interested in the eigen-
modes of the radiation field, and the interaction between the field and matter
will be discussed in later chapters, we assume here that free charges and the
electric current are absent. In this case, Maxwell’s equations in the most
general form are given in MKS units as follows.

∇ · D(r, t) = 0, (2.1)

∇ · B(r, t) = 0, (2.2)

∇ × E(r, t) = − ∂

∂t
B(r, t), (2.3)

∇ × H(r, t) =
∂

∂t
D(r, t). (2.4)

The standard notations for the electric field (E), the magnetic field (H), the
electric displacement (D), and the magnetic induction (B) are used in these
equations.

In order to solve the wave equations derived from Maxwell’s equations, we
need so-called constitutive equations that relate D to E and B to H. Since
we do not deal with magnetic materials in this book, we assume that the
magnetic permeability of the photonic crystal is equal to that in free space,
µ0:

B(r, t) = µ0H(r, t). (2.5)
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As for the dielectric constant, we assume in this chapter that it is real,
isotropic, perfectly periodic with respect to the spatial coordinate r, and
does not depend on frequency. Those cases in which the dielectric constant is
complex, has a disorder, or depends on frequency, which are very interesting
and important, will be dealt with in Chaps. 5–9. Readers who are interested
in the treatment of anisotropic dielectric constants may consult [20]. We den
ote the dielectric constant of free space by ε0 and the relative dielectric con-
stant of the photonic crystal by ε(r). The electric displacement is thus given
by

D(r, t) = ε0ε(r)E(r, t). (2.6)

The periodicity of ε(r) implies

ε(r + ai) = ε(r) (i = 1, 2, 3), (2.7)

where {ai} are the elementary lattice vectors of the photonic crystal. Because
of this spatial periodicity, we can expand ε−1(r) in a Fourier series. For this,
we introduce the elementary reciprocal lattice vectors {bi; i = 1, 2, 3} and the
reciprocal lattice vectors {G}:

ai · bj = 2πδij , (2.8)

G = l1b1 + l2b2 + l3b3, (2.9)

where {li} are arbitrary integers and δij is Kronecker’s delta. ε−1(r) is ex-
pressed as

1
ε(r)

=
∑
G

κ(G) exp (iG · r) . (2.10)

Because we assumed that the dielectric function is real, κ(−G) = κ∗(G).
When we substitute (2.5) and (2.6) into (2.1)–(2.4), we obtain

∇ · {ε(r)E(r, t)} = 0, (2.11)

∇ · H(r, t) = 0, (2.12)

∇ × E(r, t) = −µ0
∂

∂t
H(r, t), (2.13)

∇ × H(r, t) = ε0ε(r)
∂

∂t
E(r, t). (2.14)

When we eliminate E(r, t) or H(r, t) in (2.13) and (2.14), we obtain the
following wave equations:

1
ε(r)

∇ × {∇ × E(r, t)} = − 1
c2

∂2

∂t2
E(r, t), (2.15)

∇ ×
{

1
ε(r)

∇ × H(r, t)
}

= − 1
c2

∂2

∂t2
H(r, t), (2.16)
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where c stands for the light velocity in free space:

c =
1√
ε0µ0

. (2.17)

Now we seek the solutions of (2.15) and (2.16) of the form

E(r, t) = E(r)e−iωt, (2.18)

H(r, t) = H(r)e−iωt, (2.19)

where ω is the eigen-angular frequency, and E(r) and H(r) are the eigen-
functions of the wave equations. These eigenfunctions should thus satisfy the
next eigenvalue equations.

LEE(r) ≡ 1
ε(r)

∇ × {∇ × E(r)} =
ω2

c2 E(r), (2.20)

LHH(r) ≡ ∇ ×
{

1
ε(r)

∇ × H(r)
}

=
ω2

c2 H(r), (2.21)

where the two differential operators LE and LH are defined by the first
equality in each of the above equations.

Because ε is a periodic function of the spatial coordinate r, we can apply
Bloch’s theorem to (2.20) and (2.21) as in the case of the electronic wave
equation in ordinary crystals with a periodic potential due to the regular
array of atoms.1 E(r) and H(r) are thus characterized by a wave vector k
in the first Brillouin zone and a band index n and expressed as

E(r) = Ekn(r) = ukn(r)eik·r, (2.22)

H(r) = Hkn(r) = vkn(r)eik·r, (2.23)

where ukn(r) and vkn(r) are periodic vectorial functions that satisfy the
following relations:

ukn(r + ai) = ukn(r), (2.24)

vkn(r + ai) = vkn(r), for i = 1, 2, 3. (2.25)

Because of the spatial periodicity of these functions, they can be expanded
in Fourier series like ε−1(r) in (2.10). This Fourier expansion leads to the
following form of the eigenfunctions.

Ekn(r) =
∑
G

Ekn(G) exp {i(k + G) · r} , (2.26)

Hkn(r) =
∑
G

Hkn(G) exp {i(k + G) · r} . (2.27)

1 The proof will be given at the end of this section.
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The expansion coefficients in reciprocal lattice space, i.e., Ekn(G) and
Hkn(G) are denoted by the same symbols as the original ones in real space.
Substituting (2.10), (2.26), and (2.27) into (2.20) and (2.21), we obtain the
following eigenvalue equations for the expansion coefficients {Ekn(G)} and
{Hkn(G)}:

−
∑
G′

κ (G − G′) (k + G′) × {(k + G′) × Ekn(G′)} =
ω2

kn

c2 Ekn(G),

(2.28)

−
∑
G′

κ (G − G′) (k + G) × {(k + G′) × Hkn(G′)} =
ω2

kn

c2 Hkn(G),

(2.29)

where ωkn denotes the eigen-angular frequency of Ekn(r) and Hkn(r). By
solving one of these two sets of equations numerically, we can obtain the
dispersion relation of the eigenmodes, or the photonic band structure [21, 22].

This numerical method, which is based on the Fourier expansion of the
electromagnetic field and the dielectric function, is called the plane-wave ex-
pansion method. In the actual numerical calculation of the photonic bands,
the summation in (2.28) or (2.29) is calculated up to a sufficiently large
number N of G′, and an eigenvalue problem for each k is solved, which is
equivalent to the diagonalization of the matrix defined by the left-hand side
of (2.28) or (2.29). The dimension of the matrix that should be diagonalized
is 3N for {Ekn(G) : G}. On the other hand, it is 2N for {Hkn(G) : G},
since Hkn(G) should be perpendicular to k + G according to (2.12) and
(2.27), and its degree of freedom is two. The CPU time that is necessary for
the diagnalization is usually proportional to the cube of its dimension. Hence,
the CPU time for the photonic band calculation by means of the plane-wave
expansion method is proportional to N3. This fact sometimes leads to a seri-
ous constraint of the accuracy of the calculation. In fact, the convergence of
the plane-wave expansion method is not good when the amplitude of the spa-
tial variation of the dielectric constant is large, and numerical error exceeds
5% in certain cases even though we take N greater than 3000. The numeri-
cal error also depends on the dimensionality of the crystal. The convergence
of the plane-wave expansion method has been discussed by several authors.
Readers who are interested in this problem should consult [23–26].

The poor convergence of the plane-wave expansion method has been im-
proved by several means. We may use spherical waves instead of plane waves
as a basis set if the photonic crystal is composed of dielectric spheres or cir-
cular cylinders. This method is called the spherical-wave expansion method
or the vector KKR (Koringa–Kohn–Rostker) method. Although it can treat
only spherical and cylindrical dielectric structures, the convergence of the
numerical calculation is usually much better than the plane-wave expansion
method. The reader may consult [27–30].
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We should note that Ekn(r) and Hkn(r) have, of course, the same eigen-
frequency, since they are related to each other by (2.13) and (2.14). There is
a difference in the number of the eigenvalues between Ekn(r) and Hkn(r)
since the dimension of the matrix that should be diagonalized is 3N for the
former and 2N for the latter. Actually N of 3N eigenvalues of Ekn(r) are
equal to zero. This point will be discussed again in Sect. 2.7 in connection
with the quasi-longitudinal modes of the radiation field.

Because Hkn(G) is perpendicular to k + G, it can be expressed by a
linear combination of two orthogonal normal vectors, eG1 and eG2:

Hkn(G) = hG1
kn eG1 + hG2

kn eG2. (2.30)

We assume without the loss of generality that{
eG1, eG2,

k + G

|k + G|
}

(2.31)

constitute a right-hand system. It is easy to derive the following equation
from (2.29).∑

G′

2∑
j=1

M ij
k (G,G′)hG′j

kn =
ω2

kn

c2 hGi
kn, (2.32)

where Mk(G,G′) is given by

Mk(G,G′) = |k + G||k + G′|κ(G − G′)

×
(

eG2 · eG′2, −eG2 · eG′1
−eG1 · eG′2, eG1 · eG′1

)
, (2.33)

which is an Hermitian matrix:

M ij
k (G,G′) = M ji∗

k (G′,G). (2.34)

The eigenvectors {hkn} are thus orthogonal to each other:∑
G

2∑
i=1

hGi∗
kn · hGi

kn′ = δnn′ . (2.35)

From this equation, we obtain∫
V

drH∗
kn(r) · Hkn′(r)

=
∫

V

dr
∑
G

∑
G′

H∗
kn(G) · Hkn′(G′)ei(G′−G)·r

= V
∑
G

H∗
kn(G) · Hkn′(G)

= V δnn′ , (2.36)

where V denotes the volume of the photonic crystal. On the other hand, if
k �= k′,
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V

drH∗
kn(r) · H∗

k′n′(r) =
∫

V

drv∗
kn(r) · vk′n′(r)ei(k′−k)·r. (2.37)

Because both k and k′ are wave vectors in the first Brillouin zone, k′ −
k cannot coincide with a reciprocal lattice vector. The periodicity of the
function v∗

kn(r) · vk′n′(r) thus leads to the above integral vanishing. Hence,
we finally obtain∫

V

drH∗
kn(r) · Hk′n′(r) = V δkk′δnn′ . (2.38)

This orthogonality is a direct consequence of the fact that the matrix Mk

defined by (2.33) is Hermitian. The latter is, on the other hand, a consequence
of the fact that LH defined by (2.25) is an Hermitian operator. As for LE , it
is not Hermitian, and so its eigenfunctions are not necessarily orthogonal to
each other. This point will be described in more detail in Sect. 2.7.

Proof of Bloch’s Theorem

Bloch’s theorem holds for the eigenmodes of the regular photonic crystals;
here we will prove (2.22). Equation (2.23) can be proved in a similar manner.
First, we express the eigenfunction of the electric field by a Fourier integral:

E(r) =
∫

dkA(k)eik·r. (2.39)

We write (2.20) in a slightly different way:

∇ × {∇ × E(r)} =
ω2

c2 ε(r)E(r). (2.40)

Then we expand the periodic dielectric function in a Fourier series:

ε(r) =
∑
G

ε(G)eiG·r. (2.41)

Here we used the same notation for the expansion coefficients as the origi-
nal dielectric function. When we substitute (2.39) and (2.41) into (2.40), we
obtain∫

dk k × {k × A(k)}eik·r +
ω2

c2

∑
G

∫
dkε(G)A(k − G)eik·r = 0.

(2.42)

Since this equation holds for all r, the integrand should vanish:

k × {k × A(k)} +
ω2

c2

∑
G

ε(G)A(k − G) = 0. (2.43)

This equation implies that only those Fourier components that are related
by the reciprocal lattice vectors constitute the eigenvalue problem, that is, a
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set of linear eigenvalue equations. Hence, only those Fourier components are
necessary to express the eigenfunction in (2.39):

Ek(r) =
∑
G

A(k − G)ei(k−G)·r. (2.44)

When we define uk(r) as

uk(r) =
∑
G

A(k − G)e−iG·r, (2.45)

it is periodic, i.e., it satisfies (2.24). Ek(r) is given by

Ek(r) = uk(r)eik·r. (2.46)

Since (2.43) generally has an infinite number of eigenvalues and eigenfunc-
tions, we distinguish them by a subscript n. Hence, we obtain (2.22).

2.2 Eigenvalue Problems in Two-Dimensional Crystals

For two-dimensional (2D) crystals, the eigenvalue equations are much simpli-
fied if the k vector is parallel to the 2D plane. We examine this case here. In
the 2D crystal, the dielectric structure is uniform in the z direction (see Fig.
1.2). The electromagnetic waves travel in the x-y plane and are also uniform
in the z direction. Hence, ε(r), E(r), and H(r) are independent of the z
coordinate in (2.13) and (2.14). In this case, these vectorial equations are
decoupled to two independent sets of equations. The first is

∂

∂y
Ez(r//, t) = −µ0

∂

∂t
Hx(r//, t), (2.47)

∂

∂x
Ez(r//, t) = µ0

∂

∂t
Hy(r//, t), (2.48)

∂

∂x
Hy(r//, t) − ∂

∂y
Hx(r//, t) = ε0ε(r//)

∂

∂t
Ez(r//, t), (2.49)

and the second is
∂

∂y
Hz(r//, t) = ε0ε(r//)

∂

∂t
Ex(r//, t), (2.50)

∂

∂x
Hz(r//, t) = −ε0ε(r//)

∂

∂t
Ey(r//, t), (2.51)

∂

∂x
Ey(r//, t) − ∂

∂y
Ex(r//, t) = −µ0

∂

∂t
Hz(r//, t). (2.52)

Here, r// denotes the 2D position vector (x, y). From the first set of these
equations, we obtain the following wave equation by eliminating Hx(r//, t)
and Hy(r//, t).
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1
ε(r//)

{
∂2

∂x2 +
∂2

∂y2

}
Ez(r//, t) =

1
c2

∂2

∂t2
Ez(r//, t). (2.53)

From the second set, we obtain the wave equation for Hz(r//, t):{
∂

∂x

1
ε(r//)

∂

∂x
+

∂

∂y

1
ε(r//)

∂

∂y

}
Hz(r//, t) =

1
c2

∂2

∂t2
Hz(r//, t). (2.54)

We seek, as before, the solutions of these equations of the form

Ez(r//, t) = Ez(r//)e−iωt, (2.55)

Hz(r//, t) = Hz(r//)e−iωt. (2.56)

The eigenvalue equations are thus given by

L(2)
E Ez(r//) ≡ − 1

ε(r//)

{
∂2

∂x2 +
∂2

∂y2

}
Ez(r//) =

ω2

c2 Ez(r//), (2.57)

L(2)
H Hz(r//) ≡ −

{
∂

∂x

1
ε(r//)

∂

∂x
+

∂

∂y

1
ε(r//)

∂

∂y

}
Hz(r//) =

ω2

c2 Hz(r//),

(2.58)

where the two differential operators L(2)
E and L(2)

H for the 2D case are defined
by the first equality in each of the above two equations. These two kinds of
eigenfunctions represent two independent polarizations; one is called the E
polarization for which the electric field is parallel to the z axis, and the other
is called the H polarization for which the magnetic field is parallel to the z
axis.

When we apply Bloch’s theorem as before, we can express Ez(r//) and
Hz(r//) as

Ez(r//) = Ez,k//n(r//) =
∑
G//

Ez,k//n(G//) exp{i(k// + G//) · r//}, (2.59)

Hz(r//) = Hz,k//n(r//) =
∑
G//

Hz,k//n(G//) exp{i(k// + G//) · r//}, (2.60)

where k// and G// are the wave vector and the reciprocal lattice vector in two
dimensions. Substituting (2.59) and (2.60) into (2.57) and (2.58), we obtain
the following eigenvalue equations for the expansion coefficients:

∑
G′

//

κ
(
G// − G′

//

) ∣∣∣k// + G′
//

∣∣∣2 Ez,k//n(G′
//) =

ω
(E)2
k//n

c2 Ez,k//n(G//), (2.61)
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G′

//

κ
(
G// − G′

//

) (
k// + G//

) ·
(
k// + G′

//

)
Hz,k//n(G′

//)

=
ω

(H)2
k//n

c2 Hz,k//n(G//), (2.62)

where ω
(E)
k//n and ω

(H)
k//n denote the eigen-angular frequencies of Ez,k//n(r//) and

Hz,k//n(r//), respectively. When we define a matrix Mk//
by

Mk//
(G//, G′

//) = κ(G// − G′
//)(k// + G//) · (k// + G′

//), (2.63)

it is Hermitian:

Mk//
(G//, G′

//) = M∗
k//

(G′
//, G//). (2.64)

The eigenvalue equation, (2.62), is thus expressed as

∑
G′

//

Mk//
(G//, G′

//)Hz,k//n(G′
//) =

ω
(H)2
k//n

c2 Hz,k//n(G//). (2.65)

As we derived the orthogonality of Hkn(r) in (2.38), we can prove that∫
V (2)

dr//H
∗
z,k//n(r//)Hz,k′

//
n′(r//) = V (2)δk//k′

//
δnn′ , (2.66)

where V (2) denotes the 2D volume of the photonic crystal. This orthogonality
relation is a consequence of the fact that L(2)

H is an Hermitian operator. On the
other hand, L(2)

E is not Hermitian, and so its eigenfunctions are not necessarily
orthogonal to each other. This point will also be described in more detail in
Sect. 2.7.

For the detailed numerical method, see [31] and [32]. Also, see [33] for the
off-plane dispersion of the 2D crystals.

2.3 Scaling Law and Time Reversal Symmetry

There are two useful properties of the photonic bands. One property is the
scaling law and the other is the time reversal symmetry of the wave equation.
The scaling law tells us that two photonic crystals which are similar to each
other essentially have the same photonic band structure, that is, the difference
between the two band structures is simply the scales of frequency and the
wave vector. On the other hand, the time reversal symmetry tells us that
any photonic band structure has inversion symmetry even though the crystal
structure does not have inversion symmetry. The proof of these properties is
given in the following.

First, the following scale transformation to (2.15) is performed:
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1
a
r = r′ and

c

a
t = t′. (2.67)

The new variables r′ and t′ are dimensionless. When we define a new dielectric
function εsc and a new vector field Esc by

εsc(r′) = ε(r), and (2.68)

Esc(r′, t′) = E(r, t), (2.69)

Esc satisfies the following wave equation.

1
εsc(r′)

∇′ × {∇′ × Esc(r′, t′)} = − ∂2

∂t′2
Esc(r′, t′), (2.70)

where ∇′ stands for the differentiation with respect to r′. Hence, if the struc-
tures of two photonic crystals are similar to each other and their difference is
simply the scale of the length, i.e., the lattice constant, then their wave equa-
tions are attributed to the same dimensionless wave equation by the scale
transformation.

Now, we denote the dimensionless wave vector and the dimensionless
eigen-angular frequency in the (r′, t′) space by k′ and ω′

k′n, respectively.
Because k and ω have the inverse dimensions of r and t, respectively, the
following transformations are necesary to return to real space:

k′ =
a

2π
k and ω′ =

a

2πc
ω, (2.71)

where we included the factor 1/2π according to the convention in this field.
Therefore, if we measure the wave vector in units of 2π/a and the angular
frequency in units of 2πc/a, all dispersion curves are the same for those
crystals which have similar dielectric functions. Thanks to this scaling law,
we can conduct simulation experiments for crystals with a lattice constant
of about 1 µm, for example, using specimens with a lattice constant of 1 cm.
Since the fabrication of specimens with smal lattice constants is usually a
difficult task, the scaling law is very usuful to accelerate experimental studies
and to confirm theoretical predictions.

As for the time reversal symmetry, we should note that the wave equation,
(2.15), is invariant when we change the sign of the time variable. When we
define a new variable t′ and a new vector field Etr by

t′ = −t and (2.72)

Etr(r, t′) = E(r,−t), (2.73)

Etr satisfies the same wave equation as E does:

1
ε(r)

∇ × {∇ × Etr(r, t′)} = − 1
c2

∂2

∂t′2
Etr(r, t′). (2.74)

The eigenfrequency and the eigenfunction are thus given by

ω = ωkn and (2.75)
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Etr(r, t′) = ukn(r) exp {i (k · r − ωknt′)} , (2.76)

where we included the time-dependent part. When we return to the original
(r, t) space, we have

E(r, t) = [u∗
kn(r) exp {i (−k · r − ωknt)}]∗ . (2.77)

The actual electric field is given by the real part of this equation. When we
compare this equation with (2.18) and (2.22), we obtain

ω−kn = ωkn and (2.78)

u−kn(r) = u∗
kn(r). (2.79)

Equation (2.78) implies that the dispersion relation has inversion symmetry.
This property is irrespective of whether the structure of the photonic crystal
has inversion symmetry.

2.4 Photonic Band Calculation

2.4.1 Fourier Expansion of Dielectric Functions

It is necessary to calculate the expansion coefficients {κ(G)} in (2.10) for the
band calculation by the plane-wave expansion method. The inverse Fourier
transform gives

κ(G) =
1
V0

∫
V0

dr
1

ε(r)
exp(−iG · r), (2.80)

where V0 denotes the volume of the unit cell of the photonic crystal. In gen-
eral, this integral should be evaluated numerically. However, if the shapes of
the dielectric components in the unit cell are simple enough, we can calculate
it analytically. In what follows, we treat two such cases. One is the three-
dimensional (3D) crystal whose unit cell contains one dielectric sphere, and
the other is the 2D crystal whose unit cell contains one circular dielectric rod.

Dielectric Sphere

We denote the radius and the dielectric constant of the sphere by ra and εa,
respectively, and the dielectric constant of the background material by εb.
1/ε(r) is thus given by

1
ε(r)

=
1
εb

+
(

1
εa

− 1
εb

)
S(r), (2.81)

where S(r) is defined such that

S(r) =
{

1 for |r| ≤ ra,
0 for |r| > ra.

(2.82)
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Substituting (2.81) and (2.82) into (2.80),

κ(G) =
1
εb

δG0 +
1
V0

(
1
εa

− 1
εb

)∫
V0

dr S(r) exp(−iG · r). (2.83)

In order to calculate the integral in (2.83), we use spherical coordinates
(r, θ, ϕ). We take the direction with θ = 0 as the direction of vector G.
For G �= 0, the integral is thus modified to∫

V0

dr S(r) exp(−iG · r)

= 2π

∫ ra

0
dr

∫ π

0
dθ r2 sin θ exp(−iGr cos θ)

=
4π

G3 (sin Gra − Gra cos Gra) , (2.84)

where G = |G|. For G = 0,∫
V0

dr S(r) exp(−iG · r) =
4πr3

a

3
. (2.85)

If we denote the volume fraction of the sphere by f , i.e., if we take

f =
4πr3

a

3V0
, (2.86)

we obtain

κ(0) =
f

εa
+

1 − f

εb
. (2.87)

For G �= 0, we obtain

κ(G) = 3f
(

1
εa

− 1
εb

){
sin Gra

(Gra)3
− cos Gra

(Gra)2

}
. (2.88)

Circular Dielectric Rod

Because the structure is uniform in the z direction for this case, the integral
in (2.80) is equal to zero if Gz �= 0. So, we restrict our discussion to 2D
vectors {G//}. If we denote the 2D unit cell by V

(2)
0 as before,

κ(G//) =
1

V
(2)
0

∫
V

(2)
0

dr//
1

ε(r//)
exp(−iG// · r//). (2.89)

If we denote the radius and the dielectric constant of the circular rod by ra
and εa, respectively, and the dielectric constant of the background material
by εb, 1/ε(r//) is given by

1
ε(r//)

=
1
εb

+
(

1
εa

− 1
εb

)
S(2)(r//), (2.90)
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where S(2)(r//) is defined such that

S(2)(r//) =
{

1 for
∣∣r//

∣∣ ≤ ra,
0 for

∣∣r//

∣∣ > ra.
(2.91)

Substituting (2.90) and (2.91) into (2.89),

κ(G//) =
1
εb

δG//0 +
1
V0

(
1
εa

− 1
εb

)∫
V

(2)
0

dr//S
(2)(r//) exp(−iG// · r//).

(2.92)

In order to calculate the integral in (2.92), we use polar coordinates (r, ϕ).
We take the direction with ϕ = 0 as the direction of vector G//. For G// �= 0,
the integral is modified to∫

V
(2)
0

dr//S(r//) exp(−iG// · r//)

=
∫ ra

0
dr

∫ 2π

0
dϕ r exp

{
iGr sin

(
ϕ − π

2

)}
=
∫ ra

0
dr

∫ 2π

0
dϕ r

∞∑
l=−∞

Jl(Gr) exp
{

il
(
ϕ − π

2

)}
= 2π

∫ ra

0
dr rJ0(Gr), (2.93)

where G = |G//| and Jl is the Bessel function of the lth order. When we
derived (2.93), we used the following relation:

exp(iw sin φ) =
∞∑

l=−∞
Jl(w) exp (ilφ). (2.94)

If we further use the following relation,

{wJ1(w)}′ = wJ0(w), (2.95)

we obtain∫
V

(2)
0

dr//S(r//) exp(−iG// · r//) =
2πra

G
J1(Gra). (2.96)

If we denote the volume fraction of the circular rod by f ,

f =
πr2

a

V
(2)
0

, (2.97)

we finally obtain for G// �= 0

κ(G//) = 2f
(

1
εa

− 1
εb

)
J1(Gra)

Gra
. (2.98)

For G// = 0,
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κ(0) =
f

εa
+

1 − f

εb
(2.99)

as before.

2.4.2 Some Examples

We consider two examples of the band diagrams calculated by the plane-wave
expansion method here. First, we examine the band structure of a simple
cubic lattice composed of dielectric spheres. We assume that one dielectric
sphere is located at each lattice point. The following values were used for the
numerical calculation: the dielectric constant of the spheres and the back-
ground are 13.0 and 1.0, and the ratio of the lattice constant to the radius of
the sphere is 1:0.3. Figure 2.1 shows the first Brillouin zone of the simple cu-
bic lattice. Highly symmetric points are denoted by the standard notations in
this figure. Figure 2.2 shows the photonic band structure obtained by solving
(2.32) with 1174 plane waves (N = 587). The ordinate is the normalized fre-
quency where a and c denote the lattice constant and the light velocity in free
space. The CPU time necessary for the whole calculat ion was about 23 min-
utes when we used a supercomputer with a vector processor. The numerical
error was estimated to be better than 5% for lower frequencies.

For this structure, there is no complete bandgap that extends throughout
the Brillouin zone. However, we can find several important properties peculiar
to the photonic crystal in Fig. 2.2. First, there are partial bandgaps for optical
waves travelling along the (1, 0, 0) direction, i.e., those waves which have wave
vectors on the ∆ point. The frequency ranges of the partial gaps are

2π/a

kx

ky

kz

Z

X

R

M

T

S

Γ

∆ Λ

.

..
.

.

. . .
.

Σ

Fig. 2.1. First Brillouin zone of the simple cubic lattice
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Fig. 2.2. Photonic band structure of a simple cubic lattice with a dielectric sphere
at each lattice point. The ordinate is the normalized frequency. The following values
were assumed for the numerical calculation: the dielectric constant of the spheres
and the background are 13.0 and 1.0, and the ratio of the lattice constant to the
radius of the sphere is 1:0.3

ωa

2πc
=

⎧⎨⎩
0.395–0.426,
0.512–0.594,
0.661–0.691.

(2.100)

The optical transmittance can be extremely low for those waves. There is
also a partial gap on the Σ point around ωa/2πc = 0.7. Secondly, there are
extraordinary flat bands, such as the third lowest band on the ∆ point and
the third and fifth lowest bands on the Σ point. Since the group velocity is
given by the slope of the dispersion curve, the group velocity of these bands is
extremely small. This property is commonly observed for 2D and 3D photonic
crystals as was mentione d in Chap. 1. Because various optical phenomena are
enhanced when the group velocity of the relevant radiational modes is small,
this property may be used for the development of efficient optical devices.
The enhancement effect will be described in detail in later chapters. Thirdly,
two or three modes sometimes have the same eigenfrequency on the highly
symmetric points such as the Γ and the R points. In addition, several bands
on the ∆ and the T points are doubly degenerate as a whole. This property is
closely related to the symmetry of the crystal structure and will be examined
in detail by using group theory in Chap. 3.

Next, we consider the band structure of a 2D crystal composed of a regu-
lar square array of circular dielectric cylinders. Figure 2.3 shows the structure
of the photonic crystal and the 2D first Brillouin zone of the square lattice.
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x

y

a

a εb
εa r

(a)

k

kx

y

Γ

M

X

π/a

π/a

−π/a

−π/a . .

.

(b)

a

.
.

Σ

∆

Fig. 2.3. (a) Intersection of the 2D square lattice composed of circular cylinders.
(b) First Brillouin zone of the square lattice

We restrict our discussion to the case for which the wave vectors of the eigen-
modes lie in the 2D x-y plane. As was explained in Sect. 2.2, the eigenmodes
are classified into two categories according to their polarization for this case,
that is, the E polarization for which the electric field is perpendicular to the
x-y plane and the H polarization for which the magnetic field is perpendicu-
lar to the x-y plane. We treat the E polarization here. The following values
were assumed for the numerical calculation: the dielectric constants of the
cylinders and the background are 9.0 and 1.0, and the ratio of the lattice
constant to the radius of the cylinder is 1:0.38. Figure 2.4 shows the photonic
band structure obtained by solving (2.61) with 441 plane waves. The nu-
merical error was estimated to be about 1%. The ordinate is the normalized
frequency as in Fig. 2.2. The left-hand side of this figure shows the photonic
band structure of the E polarization, whereas the right-hand side shows the
density of states of the radiational modes that was obtained by examining
the distribution of the eigenfrequencies for 16 000 different wave vectors in
the Brillouin zone.

It is clearly seen that there are three bandgaps that extend throughout
the 2D Brillouin zone whose frequency ranges are

ωa

2πc
=

⎧⎨⎩
0.247–0.277,
0.415–0.466,
0.623–0.676.

(2.101)

These are, of course, not complete gaps since those eigenmodes of the H
polarization and those with off-plane wave vectors have eigenfrequencies in
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Fig. 2.4. Photonic band structure of a 2D square lattice composed of circular
cylinders. The ordinate is the normalized frequency as before. The following values
were assumed for the numerical calculation: the dielectric constants of the cylinders
and the background are 9.0 and 1.0, and the ratio of the lattice constant to the
radius of the cylinder is 1:0.38. (After [34])

the above gaps. Therefore, the complete inhibition of spontaneous emission of
photons from atoms embbeded in the photonic crystal, for example, cannot be
expected. However, it can be partially inhibited. The partial inhibition may be
effective when the transition dipole moment of the embedded atoms is aligned
perpendicular to the x-y plane. Situations of this kind may be realized with
artificial layered structures such as quantum wells made of semiconductors
[35].

As in Fig. 2.2, there are several extremely flat bands in Fig. 2.4. These
bands can be used to enhance various optical processes such as stimulated
emission, second harmonic generation, and quadrature-phase squeezing. For
all of these optical processes, the incident electromagnetic field is usually pre-
pared with a laser. Hence, the incident beam has a well-defined propagation
direction, and we can propagate it along the x-y plane very easily. There-
fore, the 2D band structures, such as Fig. 2.4, have not only mathematical
interest but also practical importance. Especially where the laser oscillation
is concerned, it takes place at such a frequency and in such a direction that
the optical gain due to the stimulated emission is a maximum and the optical
loss by transmission at the surface of the crystal is a minimum. It is well rec-
ognized that the transmission coefficients for thoses modes with small group
velocities are usually small. The lasing thus readily takes place for the flat
bands. This point will be examined in detail in Chap. 9.

As for the localized defect modes, the presence of the partial bandgaps
shown in Fig. 2.4 is enough for their existence. In fact, McCall et al. [36]
observed a defect mode in this 2D crystal by removing a single cylinder.
The defect modes usually have quite large quality factors and they can be
used as good resonators. Since the interaction between the radiational field
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and matter depends strongly on the field strength and the interaction time,
the large quality factor also enhannces the optical interactions. An efficient
numerical method to deal with the defect modes will be given in Chap. 6.

2.5 Phase Velocity, Group Velocity, and Energy Velocity
In the previous three sections, we learned how to calculate the dispersion re-
lations of the radiation modes in the photonic crystals. We can also calculate
their wave functions. In addition to the eigenfrequencies and eigenfunctions,
there are several parameters that characterize the radiational waves. One of
them is the wave velocity. In contrast to the case of particles for which the
velocity has a single meaning, waves have three different kinds of velocities,
i.e., the phase velocity, the group velocity, and the energy velocity. These ve-
locities are equal to each other in uniform materials with dielectric constants
which are real and independent of frequency.

The phase velocity is defined as the velocity of the propagation of an equi-
phase surface. This velocity has a definite meaning, for example, for plane
waves and spherical waves for which the equi-phase surface can be defined
without ambiguity. In the photonic crystal, however, the equi-phase surface
cannot be defined rigorously, since its eigenfunction is a superposition of
plane waves, as can be seen in (2.26) and (2.27). This means that the phase
velocity cannot be defined appropriately in the photonic crystal.

On the other hand, the group velocity, which is the velocity of the prop-
agation of a wave packet, can be defined as usual:

vg =
∂ω

∂k
. (2.102)

The energy velocity is defined as the velocity of the propagation of the electro-
magnetic energy. The propagation of the electromagnetic energy is described
by Poynting’s vector. The time-averaged Poynting’s vector Skn(r) is given
by

Skn(r) ≡ Re [Ekn(r)e−iωknt] × Re [Hkn(r)e−iωknt]

=
1
2
Re [Ekn(r) × H∗

kn(r)] . (2.103)

On the other hand, the time-averaged electromagnetic energy density Ukn(r)
is given by

Ukn(r) ≡ ε0ε(r)
2

{Re [Ekn(r)e−iωknt]}2 +
µ0

2
{Re [Hkn(r)e−iωknt]}2

=
1
4

{
ε0ε(r) |Ekn(r)|2 + µ0 |Hkn(r)|2

}
. (2.104)

Thus, the energy velocity ve is defined as

ve =
〈Skn(r)〉
〈Ukn(r)〉 , (2.105)

where 〈· · ·〉 means the spatial average.
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Now, the group velocity is equal to the energy velocity even though the
dielectric constant is modulated periodically. The proof, which we follow,
was given by Yeh [37]. If we substitute (2.18), (2.19), (2.22), and (2.23) into
Maxwell’s equations (2.13) and (2.14), we have

∇ × ukn(r) + ik × ukn(r) = iµ0ωknvkn(r), (2.106)

∇ × vkn(r) + ik × vkn(r) = −iε0ε(r)ωknukn(r). (2.107)

Suppose that k is changed by an infinitesimal amount δk. This results in
changes in ωkn, ukn, and vkn, which are denoted by δωkn, δukn, and δvkn.
From (2.106) and (2.107), we have

∇ × δukn + iδk × ukn + ik × δukn

= iµ0 (δωknvkn + ωknδvkn) , (2.108)

∇ × δvkn + iδk × vkn + ik × δvkn

= −iε0ε (δωknukn + ωknδukn) . (2.109)

If we calculate v∗
kn · (2.108) + ukn · (2.109)∗, we obtain

v∗
kn · (∇ × δukn) + ukn · (∇ × δv∗

kn) + 2iδk · (ukn × v∗
kn)

+ik · (δukn × v∗
kn + ukn × δv∗

kn)
= iωkn (µ0v

∗
kn · δvkn + ε0εukn · δu∗

kn)

+iδωkn

(
µ0 |vkn|2 + ε0ε |ukn|2

)
. (2.110)

If we calculate δu∗
kn · (2.107) and δvkn · (2.106)∗,

iε0εωknδu∗
kn · ukn = −δu∗

kn · (∇ × vkn) − ik · (vkn × δu∗
kn), (2.111)

iµ0ωknδvkn · v∗
kn = −δvkn · (∇ × u∗

kn) + ik · (u∗
kn × δvkn). (2.112)

Using (2.111) and (2.112), (2.110) is written as

v∗
kn · (∇ × δukn) + ukn · (∇ × δv∗

kn) + 2iδk · (ukn × v∗
kn)

+δu∗
kn · (∇ × vkn) + δvkn · (∇ × u∗

kn)
+ik · (δukn × v∗

kn − δv∗
kn × ukn + vkn × δu∗

kn − u∗
kn × δvkn)

= iδωkn

(
µ0 |vkn|2 + ε0ε |ukn|2

)
. (2.113)

The right-hand side of (2.113) is purely imaginary. Hence, we take the imag-
inary part of (2.113) by calculating (2.113) − (2.113)∗:

v∗
kn · (∇ × δukn) − δukn · (∇ × v∗

kn)
+ukn · (∇ × δv∗

kn) − δv∗
kn · (∇ × ukn)

+δu∗
kn · (∇ × vkn) − vkn · (∇ × δu∗

kn)
+δvkn · (∇ × u∗

kn) − u∗
kn · (∇ × δvkn)

+4iδk · Re[ukn × v∗
kn]

= 2iδωkn

(
µ0 |vkn|2 + ε0ε |ukn|2

)
. (2.114)
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If we define a periodic function F by

F = δukn × v∗
kn + δv∗

kn × ukn + vkn × δu∗
kn + u∗

kn × δvkn, (2.115)

(2.114) is modified to

∇ ·F +4iδk ·Re [ukn × v∗
kn] = 2iδωkn

(
µ0 |vkn|2 + ε0ε |ukn|2

)
,(2.116)

where we have used the following vector identity:

∇ · (A × B) = B · (∇ × A) − A · (∇ × B). (2.117)

If we perform an integration over a unit cell, we have

〈∇ · F 〉 + 4iδk · 〈Re [ukn × v∗
kn]〉

= 2iδωkn

〈
µ0 |vkn|2 + ε0ε |ukn|2

〉
. (2.118)

Because of the periodic nature of F ,

〈∇ · F 〉 =
1
V0

∫
V0

dr∇ · F =
1
V0

∫
S0

dSFn = 0. (2.119)

In this equation, V0 is the volume of the unit cell and S0 is its surface. Fn

denotes the outward normal component of F on S0. We used Gauss’s theorem
to derive the second equality in (2.119). Using the definition of ve, (2.105),
we finally have

δωkn = ve · δk. (2.120)

From the definition of the group velocity, (2.102), we have

ve = vg. (2.121)

2.6 Calculation of Group Velocity

As we learned in the last section, the group velocity of the radiation modes
has very important role in light propagation and optical response in the
photonic crystals. Hence, the calculation of the group velocity is an essencial
task for the understanding of their optical properties. Since the group velocity
is defined as the derivative of the angular frequency with respect to the wave
vector (see (2.102)), we may calculate it by numerical differentiation. That
is, we may actually evaluate the following limit:

vg = lim
∆k→0

ωk+∆k,n − ωk,n

∆k
. (2.122)

This numerical differentiation needs a limiting procedure for which we have
to know a series of eigenfrequencies as a function of the wave vector.

There is quite a convenient method to avoid this procedure and give an
accurate evaluation of the group velocity. We use the Hellmann–Feynman
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theorem for this purpose, with which the readers may be familiar as it re-
lates to quantum mechanical calculations. In the case of quantum mechanics,
the Hellmann–Feynman theorem is stated as follows. First, we assume an
Hermitian operator Ĥ that depends on an external variable α, and denote it
by Ĥα. We also assume that we know the orthonormal set composed of the
eigenfunctions of Ĥα, which we denote by {|αn〉 ; n = 1, 2, · · ·}:

Ĥα |αn〉 = λαn |αn〉 , (2.123)

〈αn|αn〉 = 1. (2.124)

In the above two equations, we used the standard notation of “bra” and “ket”
vectors. λαn is the eigenvalue of Ĥα for state |αn〉 and 〈· · · | · · ·〉 denotes
the inner product. Now, our problem is to calculate the derivative of λαn

with respect to α. Because the state vector (or the eigenfunction) |αn〉 is
normalized to unity (2.124), the following holds.

∂

∂α
λαn =

∂

∂α

〈
αn|Ĥα|αn

〉
=

∂ 〈αn|
∂α

Ĥα |αn〉 +

〈
αn

∣∣∣∣∣∂Ĥα

∂α

∣∣∣∣∣αn

〉
+ 〈αn| Ĥα

∂ |αn〉
∂α

= λαn
∂

∂α
〈αn|αn〉 +

〈
αn

∣∣∣∣∣∂Ĥα

∂α

∣∣∣∣∣αn

〉

=

〈
αn

∣∣∣∣∣∂Ĥα

∂α

∣∣∣∣∣αn

〉
. (2.125)

Once we know the analytical expression of ∂Ĥα/∂α, ∂λαn/∂α can readily be
obtained using this equation without the limiting procedure in (2.122).

Now, we will see how to use the Hellmann–Feynman theorem for the calcu-
lation of the group velocity. Here, we show the method for the E polarization.
The dispersion relation is obtained by solving the eigenvalue equation (2.61).
When we define a column vector Ak//n by

Ak//n(G//) =
∣∣k// + G//

∣∣Ez,k//n(G//), (2.126)

(2.61) is transformed to

Mk//
Ak//n =

ω
(E)2
kn

c2 Ak//n, (2.127)

where Mk//
is a k//-dependent matrix whose (G//,G

′
//) component is given by

the following equation:

Mk//
(G//,G

′
//) =

∣∣k// + G//

∣∣ ∣∣∣k// + G′
//

∣∣∣κ(G// − G′
//). (2.128)

The k//-dependent vector Ak//n gives the eigenfunction Ez,k//n(r//) as
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Ez,k//n(r//) = h
∑
G//

Ak//n(G//)∣∣k// + G//

∣∣ exp
{
i
(
k// + G//

) · r//

}
, (2.129)

and it is normalized to unity, i.e., |Ak//n| = 1. In (2.129), h is the normaliza-
tion constant.

Here, we assume that ε(r//) is real. Then, κ(−G//) = κ∗(G//) and Mk//

is an Hermitian matrix. Therefore, we can apply the Hellmann–Feynman
theorem to the present problem, and we obtain

At∗
k//n

∂Mk//

∂k//
Ak//n =

∂

∂k//

⎛⎝ω
(E)2
k//n

c2

⎞⎠ =
2ω

(E)
k//n

c2

∂ω
(E)
k//n

∂k//
, (2.130)

where t denotes the transposed matrix and

∂Mk//
(G//,G

′
//)

∂k//

=

⎧⎨⎩
∣∣∣k// + G′

//

∣∣∣∣∣k// + G//

∣∣ (k// + G//

)
+

∣∣k// + G//

∣∣∣∣∣k// + G′
//

∣∣∣
(
k// + G′

//

)⎫⎬⎭κ(G// − G′
//).

(2.131)

Therefore, the group velocity vg(ω, n) can be readily evaluated once the eigen-
vector Ak//n and the eigenvalue ω

(E)2
k//n /c2 are obtained by the band calculation

based on the plane-wave expansion method.

2.7 Complete Set of Eigenfunctions

When we derive the Green’s function related to the electric field and dis-
cuss the optical response of the photonic crystals, we need a complete set
of eigenfunctions concerned with the electric field. However, LE defined by
(2.20) is not an Hermitian operator, hence its eigenfunctions {Ekn(r)} are
not complete or orthogonal. Here, we define a differential operator that is
Hermitian and examine the properties of its eigenfunctions [38–40]. We in-
troduce a complex vectorial function Q(r, t) and a differential operator H:

Q(r, t) ≡
√

ε(r)E(r, t), (2.132)

HQ(r, t) ≡ 1√
ε(r)

∇ ×
{

∇ × 1√
ε(r)

Q(r, t)

}
. (2.133)

Then, (2.20) leads to(
1
c2

∂2

∂t2
+ H

)
Q(r, t) = 0. (2.134)
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We assume the periodic boundary condition for Q(r, t) as usual. We will
verify that H is an Hermitian operator. Then, its eigenfunctions form an
orthogonal complete set.

Now, the inner product of two complex vectorial functions Q1(r) and
Q2(r) is defined by

〈Q1,Q2〉 ≡
∫

V

drQ∗
1(r) · Q2(r), (2.135)

where V is the volume on which the periodic boundary condition is imposed.
As a vector identity, the next equation holds.

∇ · (A × B) ≡ (∇ × A) · B − A · (∇ × B). (2.136)

Using this identity, we obtain

〈HQ1,Q2〉 ≡
∫

V

dr

[
∇ ×

{
∇ × Q∗

1(r)√
ε(r)

}]
· Q2(r)√

ε(r)

=
∫

S

dS

[{
∇ × Q∗

1(r)√
ε(r)

}
× Q2(r)√

ε(r)

]
n

+
∫

V

dr

{
∇ × Q∗

1(r)√
ε(r)

}
·
{

∇ × Q2(r)√
ε(r)

}
, (2.137)

where S denotes the surface of V and the first integral on the right-hand side
is the surface integral of the normal component of the integrand. This surface
integral is equal to zero because of the periodic boundary condition. Then,
applying the identity (2.136) again, we obtain

〈HQ1,Q2〉 =
∫

S

dS

[
Q∗

1(r)√
ε(r)

×
{

∇ × Q2(r)√
ε(r)

}]
n

+
∫

V

dr
Q∗

1(r)√
ε(r)

·
[
∇ ×

{
∇ × Q2(r)√

ε(r)

}]
= 〈Q1,HQ2〉, (2.138)

where we have again used the fact that the surface integral is equal to zero.
This equation implies that H is an Hermitian operator.

Next, we can easily show that Q
(L)
kn (r), given by

Q
(L)
kn (r) = C

√
ε(r)

k + Gn

|k + Gn| exp {i(k + Gn) · r} , (2.139)

where Gn is a reciprocal lattice vector and C is a normalization constant,
satisfies

∇ ×
{

1√
ε(r)

Q
(L)
kn (r)

}
= 0. (2.140)
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Then, from the definition of H,

HQ
(L)
kn (r) = 0. (2.141)

This equation implies that Q
(L)
kn (r) is an eigenfunction of H and its eigen-

angular frequency is zero. There exists one such solution for each k and n.
In general,

∇ · {ε(r)E(L)
kn (r)} ≡ ∇ ·

{√
ε(r)Q(L)

kn (r)
}

�= 0. (2.142)

We call Q
(L)
kn (r) a quasi-longitudinal solution. Strictly speaking, the Q

(L)
kn (r)

defined by (2.139) are not orthogonal to each other, but their orthogonal-
ization can be readily accomplished by Schmidt’s method. That is, we can
take linear combinations of the Q

(L)
kn (r) to form an orthonormal set. We de-

note the orthogonalized quasi-longitudinal solutions by the same symbols.
Because the Q

(L)
kn (r) do not satisfy (2.11), they are unphysical solutions for

the present problem. However, they are important mathematically, since we
cannot obtain a complete set without them.

On the other hand, there exist quasi-transverse solutions that correspond
to the transverse plane waves in a uniform crystal. They satisfy the following
equation:

HQ
(T)
kn (r) =

ω
(T)2
kn

c2 Q
(T)
kn (r). (2.143)

The eigen-angular frequency ω
(T)
kn is generally non-zero. From (2.143) and

(2.133),

∇ ·
{√

ε(r)Q(T)
kn (r)

}
=

c2

ω
(T )2
kn

∇ ·
[
∇ ×

{
∇ × Q

(T)
kn (r)√
ε(r)

}]
≡ 0. (2.144)

Note that Q
(T)
kn or Q

(L)
kn are not purely transverse nor longitudinal because

of the spatial variation of ε(r). The terms “quasi-transverse” and “quasi-
longitudinal” are used here to emphasize that (2.144) and (2.140) reduce,
when ε(r) is a constant, to the usual relations concerned with transverse and
longitudinal waves, respectively.

Now, we normalize these eigenfunctions as follows:∫
V

drQ
(α)∗
kn (r) · Q

(β)
k′n′(r) = V δαβδkk′δnn′ , (2.145)

where α, β = T or L. Note that Q
(α)
kn (r) and E

(α)
kn (r) (≡ Q

(α)
kn (r)/

√
ε(r))

are dimensionless by this definition. The completeness of the eigenfunctions
leads to
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kn

Q
(T)
kn (r) ⊗ Q

(T )∗
kn (r′) +

∑
kn

Q
(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

= V I
↔

δ(r − r′), (2.146)

where ⊗ denotes a tensor whose elements are given by the product of the
elements of two vectors, i.e., (A ⊗ B)ij = AiBj , and I

↔
is the unit tensor.

δ(r) is Dirac’s delta function.
We make one remark on (2.146) here. Readers who are familiar with

non-relativistic quantum mechanics may wonder why the tensors introduced
in the above equation are necessary to express the completeness. In non-
relativistic quantum mechanics, the wave function that describes an electron
is a complex scalar function. We denote the eigenfunctions of a Hamiltonian
operator Ĥ by {φn; n = 1, 2, · · ·}. We normalize them as∫

V

drφ∗
n(r)φn′(r) = V δnn′ . (2.147)

The completeness is thus expressed as∑
n

φn(r)φ∗
n(r′) = V δ(r − r′). (2.148)

From this equation, we obtain for any complex function f(r)

f(r) =
1
V

∑
n

φn(r)
∫

V

drφ∗
n(r′)f(r′). (2.149)

This equation means that any complex function can be expanded with
{φn(r)}. This is what the completeness implies for a set of scalar functions.
As for a set of vectorial functions, they should also be able to expand any
vectors in 3D Euclidean space. As an example, consider the unit vectors e1,
e2, and e3 which are parallel to the x, y, and z axes, respectively. They are
a complete set in 3D Euclidean space, since any vector v can be expanded
with them:

v =
∑

n

en(en · v). (2.150)

We can write this equation in a slightly different manner. We define three
tensors, T

↔
1, T

↔
2, and T

↔
3 as

T
↔

1 ≡ e1 ⊗ e1 =

⎛⎝ 1 0 0
0 0 0
0 0 0

⎞⎠ , (2.151)

T
↔

2 ≡ e2 ⊗ e2 =

⎛⎝ 0 0 0
0 1 0
0 0 0

⎞⎠ , (2.152)
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T
↔

3 ≡ e3 ⊗ e3 =

⎛⎝ 0 0 0
0 0 0
0 0 1

⎞⎠ . (2.153)

Since
3∑

n=1

T
↔

n = I
↔

, (2.154)

(2.150) is rewritten as

v =
3∑

n=1

T
↔

nv =
3∑

n=1

en ⊗ env. (2.155)

From this equation, we can see that
3∑

n=1

en ⊗ en = I
↔

(2.156)

is the condition for the completeness in the 3D Euclidean space. As a conclu-
sion, (2.146) is the condition for the completeness both in functional space
and in Euclidean space.

As for the 2D crystal, we examine the case of the E polarization here.
The H polarization can be treated in a similar manner. First, we define a
function Qz(r//, t) and a differential operator H(2) such that

Qz(r//, t) =
√

ε(r//)Ez(r//), (2.157)

H(2) ≡ − 1√
ε(r//)

(
∂2

∂x2 +
∂2

∂y2

)
1√

ε(r//)
. (2.158)

Then (2.53) leads to(
1
c2

∂2

∂t2
+ H(2)

)
Qz(r//, t) = 0. (2.159)

We can verify as before that H(2) defined by (2.159) is an Hermitian operator.
Its eigenfunctions {Qz,k//n(r//)} thus form an orthogonal complete set. We
normalize these eigenfunctions as follows:∫

V (2)
dr//Q

∗
z,k//n(r//)Qz,k′

//
n′(r//) = V (2)δk//k′

//
δnn′ , (2.160)

where V (2) is the 2D volume on which the periodic boundary condition is
imposed. The completeness of the eigenfunctions leads to∑

k//n

Qz,k//n(r//)Q∗
z,k//n(r′

//) = V (2)δ(r// − r′
//) (2.161)

in this case, since {Qz,k//n(r//)} are scalar functions.
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2.8 Retarded Green’s Function

In later chapters, we will deal with various optical processes in photonic
crystals. For that purpose it is essential to calculate the electromagnetic field
radiated from oscillating polarization fields. This task can generally be per-
formed by means of a retarded Green’s (tensor) function G

↔
(r, r′, t) [38–40]

that satisfies the following two equations.

−
(

1
c2

∂2

∂t2
+ H

)
G
↔

(r, r′, t − t′) = I
↔

δ(r − r′)δ(t − t′), (2.162)

G
↔

(r, r′, t) = 0 for t < 0. (2.163)

Green’s function in frequency space G↔(r, r′, ω) is defined by the Fourier trans-
form of G

↔
(r, r′, t):

G
↔

(r, r′, t) ≡ 1
2π

∫ ∞

−∞
dωG↔(r, r′, ω)e−iωt. (2.164)

Then,(
ω2

c2 − H
)

G↔(r, r′, ω) = I
↔

δ(r − r′). (2.165)

Then, from (2.141), (2.143), and (2.146), we can obtain its explicit expression:

G↔(r, r′, ω) ≡
∫ ∞

−∞
dt G

↔
(r, r′, t)eiωt

=
c2

V

∑
kn

[
Q

(T)
kn (r) ⊗ Q

(T)∗
kn (r′)(

ω − ω
(T)
kn + iδ

)(
ω + ω

(T)
kn + iδ

)
+

Q
(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

(ω + iδ)2

]
. (2.166)

Here, δ is a positive infinitesimal that assures the causality, i.e., (2.163). For
t ≥ 0, the inverse transform of (2.166) gives

G
↔

(r, r′, t) =
c2

2πV

∑
kn

Q
(T)
kn (r) ⊗ Q

(T)∗
kn (r′)

2ω
(T)
kn

×
∫

C

(
1

ω − ω
(T)
kn + iδ

− 1

ω + ω
(T)
kn + iδ

)
e−iωtdω

+
c2

2πV

∑
kn

Q
(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

∫
C

e−iωt

(ω + iδ)2
dω

= −c2

V

∑
kn

{
sin ω

(T)
kn t

ω
(T)
kn

Q
(T)
kn (r) ⊗ Q

(T)∗
kn (r′)
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Re(ω)

Im(ω)

.. .
ω kn

(T)− ω kn
(T)

−iδ

Fig. 2.5. Contour of the integration in (2.167) for t ≥ 0. For t < 0, the contour
should enclose the upper half plane

+tQ
(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

}
, (2.167)

where the contour C is shown in Fig. 2.5. For t ≥ 0, we close the path of
integration in the lower half of the complex ω plane. For t < 0, we close it in
the upper half plane, and we obtain (2.163).

As for the E polarization in the 2D crystal, we define the retarded Green’s
function of (2.159) by

−
(

1
c2

∂2

∂t2
+ H(2)

)
G(2)(r//, r

′
//, t − t′) = δ(r// − r′

//)δ(t − t′), (2.168)

G(2)(r//, r
′
//, t) = 0 for t < 0. (2.169)

In this case, the Fourier transform of the Green’s function, G(2)(r//, r
′
//, ω), is

given by

G(2)(r//, r
′
//, ω) ≡

∫ ∞

−∞
dtG(2)(r//, r

′
//, t)e

iωt

=
c2

V (2)

∑
k//n

Qz,k//n(r//)Q∗
z,k//n(r′

//)(
ω − ω

(E)
k//n + iδ

)(
ω + ω

(E)
k//n + iδ

) . (2.170)

This satisfies the following equation:(
ω2

c2 − H(2)
)

G(2)(r//, r
′
//, ω) = δ(r// − r′

//). (2.171)

The inverse transform of (2.170) leads to
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G(2)(r//, r
′
//, t) = − c2

V (2)

∑
k//n

sin ω
(E)
k//nt

ω
(E)
k//n

Qz,k//n(r//)Q∗
z,k//n(r′

//) (2.172)

for t ≥ 0. These Green’s functions will be used in later chapters to analyze
the optical response and the defect modes in photonic crystals.



3. Symmetry of Eigenmodes

The symmetry of the eigenmodes of photonic crystals plays an important
role in their optical response. In this chapter, we will formulate the group
theory of the radiation field in the photonic crystals in order to classify the
spatial symmetry of their eigenfunctions. An efficient method for the sym-
metry assignment that excludes unphysical quasi-longitudinal modes, which
was discussed in the last chapter, will be presented. The existence of such
eigenmodes that cannot be excited by external plane waves because of the
mismatching of the symmetry will be shown. This method will be applied to
some examples.

3.1 Group Theory for Two-Dimensional Crystals

The symmetry of the eigenfunctions of the photonic crystals plays an impor-
tant role in their optical response. In fact, Robertson et al. [41, 42] showed
clear evidence of the presence of such eigenmodes in two-dimensional (2D)
photonic crystals that cannot be excited by an external plane wave due to
the mismatching of their spatial symmetry. We refer to these modes as un-
coupled modes. On the other hand, the symmetry of the eigenmodes leads
to an additional selection rule for nonlinear optical processes and absence
of diffraction loss in the photonic crystal (see Chaps. 5 and 8). The classi-
fication of the eigenmodes according to their spatial symmetry by means of
group theory is thus necessary and often very powerful to understand the op-
tical properties of the photonic crystals. In particular, when we compare the
transmission spectra observed experimentally with the calculated photonic
band structure, the knowledge of the uncoupled modes is indispensable.

Since it is easier to deal with scalar waves, we begin with the group theory
for 2D photonic crystals [43]. As was shown in Sect. 2.2, the vectorial wave
equations derived from Maxwell’s equations are reduced to two independent
scalar equations as long as the wave vector lies in the 2D x-y plane. These
two waves are called the E polarization for which the electric field is parallel
to the z axis and the H polarization for which the magnetic field is parallel
to the z axis, respectively. The eigenfunctions satisfy the following eigenvalue
equations:
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Fig. 3.1. Symmetry operations for the square array of dielectric cylinders

L(2)
E Ez(r//) =

ω2

c2 Ez(r//), (3.1)

L(2)
H Hz(r//) =

ω2

c2 Hz(r//), (3.2)

where operators L(2)
E and L(2)

H are defined by (2.57) and (2.58).
Now, all 2D photonic crystals have translational symmetry with respect

to the elementary lattice vectors, a1// and a2//:

ε(r + la1// + ma2//) = ε(r), (3.3)

where l and m are integers. In addition to this translational symmetry, the 2D
photonic crystal often has other spatial symmetries. As an example, consider
the square array of dielectric cylinders discussed in Sect. 2.2. We take the x
and y axes as in Fig. 3.1. It is apparent that the structure is invariant when
we change x to −x:

ε(−x, y) = ε(x, y). (3.4)

If we denote the symmetry operation that changes x to −x by σx, we say
that the structure is invariant under the mirror reflection σx. Equation (3.4)
may be rewritten as

[σxε](r//) ≡ ε(σ−1
x r//) = ε(r//). (3.5)

The convention of group theory is to use not σx but σ−1
x in the middle term

of this equation. The reason will become clear in the following. The structure
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Table 3.1. Products of the operations in the C4v point group. This table shows the
product R1R2 where R1 denotes an operation in the first column and R2 denotes
an operation in the first row

C4v E C4 C−1
4 C2

4 σx σy σ′
d σ′′

d

E E C4 C−1
4 C2

4 σx σy σ′
d σ′′

d

C4 C4 C2 E C−1
4 σ′′

d σ′
d σx σy

C−1
4 C−1

4 E C2 C4 σ′
d σ′′

d σy σx

C2
4 C2

4 C−1
4 C4 E σy σx σ′′

d σ′
d

σx σx σ′
d σ′′

d σy E C2 C4 C−1
4

σy σy σ′′
d σ′

d σx C2 E C−1
4 C4

σ′
d σ′

d σy σx σ′′
d C−1

4 C4 E C2

σ′′
d σ′′

d σx σy σ′
d C4 C−1

4 C2 E

is also invariant under the mirror reflection σy that changes y to −y. There
is another set of mirror reflections under which the structure is invariant.
They are σ′

d, which changes (x, y) to (y, x), and σ′′
d , which changes (x, y) to

(−y, −x). The structure is also invariant when it is rotated by 90, 180, or
270 degrees counterclockwise about the origin. These symmetry operations
are denoted by C4, C2(≡ C2

4 ), and C−1
4 (≡ C3

4 ). Cn generally means rotation
by 2π/n radian.

Together with the identity operation E that keeps the structure as it is,
all these symmetry operations constitute the C4v point group:

C4v = {E,C4, C
−1
4 , C2, σx, σy, σ′

d, σ
′′
d}. (3.6)

Namely, (1) any two subsequent symmetry operations in C4v are equivalent
to a single operation in it, (2) any three symmetry operations {R1, R2, R3}
have the property that R1(R2R3) = (R1R2)R3, and (3) the inverse of any
symmetry operation in C4v is also an operation in it. These conditions may
easily be confirmed. As for item (1), Table 3.1 shows the products of two
operations in C4v. If the following relation holds, we say that R1 is conjugate
with R2:

R1 = RR2R
−1 for some R ∈ C4v. (3.7)

(σx, σy), (σ′
d, σ

′′
d ), and (C4, C

−1
4 ) are conjugate with each other since we have

the following relations:

σy = C4σxC−1
4 , (3.8)

σ′′
d = C4σ

′
dC

−1
4 , (3.9)

C−1
4 = σxC4σ

−1
x . (3.10)

We may regard the two conjugate operations in each set to be substantially
the same since they may interchange with each other by changing the coor-
dinate system. For example, when the x axis is interchanged with the y axis,
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then σx becomes σy and σy becomes σx. σx and σy are sometimes denoted
by σv, and σ′

d and σ′′
d are denoted by σd.

Now, any rotation or mirror reflection in two dimensions can be repre-
sented by a 2 × 2 matrix. As for the C4v point group, we have

R
↔

E =
(

1 0
0 1

)
, R

↔
C2 =

( −1 0
0 −1

)
,

R
↔

C4 =
(

0 −1
1 0

)
, R

↔
C−1

4
=

(
0 1

−1 0

)
,

R
↔

σx
=

( −1 0
0 1

)
, R

↔
σy =

(
1 0
0 −1

)
,

R
↔

σ′
d

=
(

0 1
1 0

)
, R

↔
σ′′

d
=

(
0 −1

−1 0

)
.

(3.11)

We denote the matrix representation of a 2D symmetry operation R of an
arbitrary point group M by R

↔
in this section. Since R does not change the

length of vectors, R
↔

is an orthogonal matrix:

R
↔

R
↔

t = I
↔

, (3.12)

where R
↔

t is the transposed matrix of R
↔

, and I
↔

is the unit matrix. For an
arbitrary function f of r//, the action of R on f is defined by

[Rf ](r//) ≡ f(R
↔−1r//). (3.13)

The subsequent action of operations R1 and R2 is thus given by

[R1R2f ](r//) ≡ [R1[R2f ]](r//) = [R2f ](R
↔−1

1 r//)

= f(R
↔−1

2 R
↔−1

1 r//) = f((R
↔

1R
↔

2)−1r//). (3.14)

Hence, the order of R1 and R2 when they operate on f is consistent with
that of R

↔
1 and R

↔
2 when they operate on r//. This is a consequence of the

definition (3.13), where R
↔−1 is operated on r//.

In general, we assume that the 2D photonic crystal is invariant under any
symmetry operation R that belongs to the point group M:

[Rε](r//) ≡ ε(R−1r//) = ε(r//) (∀R ∈ M). (3.15)

Using this equation, we can prove that R commutes with L(2)
E and L(2)

H :

RL(2)
E R−1 = L(2)

E , (3.16)

RL(2)
H R−1 = L(2)

H . (3.17)

This implies that the conventional classification of the eigenmodes according
to the irreducible representations of the k-group Mk can be applicable to
the present problem.1

1 See [44] and [45] for details of the application of group theory to solid-state
physics.
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Proof of (3.16) and (3.17)

We denote R
↔

by

R
↔

=
(

R11, R12
R21, R22

)
. (3.18)

From (3.12), we have(
R2

11 + R2
12, R11R21 + R12R22

R21R11 + R22R12, R2
21 + R2

22

)
=
(

1, 0
0, 1

)
. (3.19)

For an arbitrary function f(r//),

R
∂

∂x
R−1f(r//) = R

∂

∂x
f(R

↔
r//)

= R

⎧⎨⎩R11
∂f

∂x

∣∣∣∣∣
R
↔

r//

+ R21
∂f

∂y

∣∣∣∣∣
R
↔

r//

⎫⎬⎭
= R11

∂f

∂x

∣∣∣∣∣
r//

+ R21
∂f

∂y

∣∣∣∣∣
r//

. (3.20)

Thus,

R
∂

∂x
R−1 = R11

∂

∂x
+ R21

∂

∂y
. (3.21)

Similarly, we have

R
∂

∂y
R−1 = R12

∂

∂x
+ R22

∂

∂y
. (3.22)

Hence,

RL(2)
E R−1 = −R

1
ε(r//)

R−1

{(
R

∂

∂x
R−1

)2

+
(

R
∂

∂y
R−1

)2
}

= − 1
ε(r//)

{(
R2

11 + R2
12
) ∂2

∂x2

+2 (R11R21 + R12R22)
∂2

∂x∂y
+
(
R2

21 + R2
22
) ∂2

∂y2

}
= L(2)

E . (3.23)

Here, we used (3.19). Equation (3.17) can be verified similarly.

Now, the k-group Mk is defined as the subgroup of M that keeps the
wave vector k invariant.2 Consider this point with the square lattice as an
2 Rigorously speaking, we should deal with the spatial group instead of the point

group to treat our problem in a mathematically correct manner. However, as long
as we treat symmorphic spatial groups, it makes no difference to the results.
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Fig. 3.2. First Brillouin zone of the 2D square lattice

example. Figure 3.2 shows its first Brillouin zone. The elementary lattice
vectors {a1//,a2//} and the elementary reciprocal lattice vectors {b1//, b2//}
are

a1// =
(

a
0

)
, a2// =

(
0
a

)
, (3.24)

b1// =
(

2π/a
0

)
, b2// =

(
0

2π/a

)
, (3.25)

where a is the lattice constant of the square photonic crystal. The Γ , X, and
M points in Fig. 3.2 denote (0, 0), (±π/a, 0), and (±π/a,±π/a), respectively.
These two X points and four M points are equivalent to each other, since
the difference between them is just a linear combination of the elementary
reciprocal lattice vectors. First, consider the Γ point. We can readily see that
all symmetry operations in the C4v point group keep the Γ point invariant.
Hence, by definition,

MΓ = C4v. (3.26)

In the case of the X point,

MX = {E,C2, σx, σy} ≡ C2v. (3.27)

Here, we should note that operations C2 and σx keep the X point invariant,
since

R
↔

C2

(
π/a
0

)
= R

↔
σx

(
π/a
0

)
=
( −π/a

0

)
≡
(

π/a
0

)
. (3.28)

As for the others,



3.1 Group Theory for Two-Dimensional Crystals 49

MM = C4v, (3.29)
M∆ = {E, σy} ≡ C1h, (3.30)
MΣ = {E, σd} ≡ C1h, (3.31)
MZ = {E, σx} ≡ C1h. (3.32)

Group theory tells us that any eigenfunction, Ez,kn(r//) or Hz,kn(r//),
is an irreducible representation of Mk. For example, the C4v point group
has four one-dimensional irreducible representations A1, A2, B1, B2 and one
two-dimensional irreducible representation E. Here,“one-dimensional” im-
plies that the eigenmode is not degenerate and “two-dimensional” implies
that the eigenmode is doubly degenerate. Each irreducible representation
has its own spatial symmetry which is expressed by its character, χ. Con-
sider this point with a B1 mode as an example. We denote the character of
the B1 representation by χB1 and assume that fB1(r//) is attributed to the
B1 representation. We refer to fB1(r//) as a basis of the B1 representation.
Group theory tells us that for any symmetry operation R of the C4v point
group,

RfB1(r//) = χB1(R)fB1(r//), (3.33)

and

χB1(R) =
{

1 for R = E, C2, σx, σy,
−1 for R = C4, C−1

4 , σ′
d, σ′′

d . (3.34)

For other one-dimensional irreducible representations, the same kind of equa-
tion holds. For the two-dimensional representation E, there are two eigen-
functions that have the same eigenfrequency. We denote them by f

(1)
E (r//)

and f
(2)
E (r//). We refer to them as a basis set of the E representation. In gen-

eral, the operation of R on these functions transforms them into the following
linear combinations.

Rf
(1)
E (r//) = A11f

(1)
E (r//) + A12f

(2)
E (r//), (3.35)

Rf
(2)
E (r//) = A21f

(1)
E (r//) + A22f

(2)
E (r//). (3.36)

Group theory tells us that

Tr(A) ≡ A11 + A22 = χE(R). (3.37)

The characters of these irreducible representations are listed in Table 3.2.
Generally speaking, the conjugate operations such as σx and σy, or, C4 and
C−1

4 have the same character. Hence, in Table 3.2, σx and σy are denoted
by σv, σ′

d and σ′′
d are denoted by σd, and C4 and C−1

4 are represented by
C4. The symbol “2” before C4, σv, and σd in the first row of this table
implies that there are two such elements that are conjugate with each other
and have the same character. As for the C2v and C1h point groups, the
irreducble representations and their characters are listed in Tables 3.3 and



50 3. Symmetry of Eigenmodes

Table 3.2. Character table for the C4v point group

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1

B2 1 −1 1 −1 1

E 2 0 −2 0 0

Table 3.3. The character table for the C2v point group

C2v E C2 σy σx

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 1 −1

B2 1 −1 −1 1

Table 3.4. Character table for the C1h point group

C1h E σ

A 1 1

B 1 −1

3.4, respectively. All irreducible representations are one-dimensional for these
two groups.

For the assignment of the irreducible representation to each mode, it is
very convenient to use so-called compatibility relations that tell us the mutual
relations between the irreducible representations for adjacent k vectors. We
examine this for the Γ and ∆ points as an example. As mentioned previously,
the Γ point has the C4v symmetry and the ∆ point has the C1h symmetry.
Since the Γ point can be regarded as a special case of the ∆ point, the irre-
ducible representations for the Γ point can also be regarded as those for the ∆
point. The σy(σv) mirror reflection for the former is identical to the σ mirror
reflection for the latter. When we compare the character tables of these two
point groups, we readily find that the A1 and B1 irreducible representations
of C4v have the same characters as the A irreducible representation of C1h

for symmetry operations E and σv(σ). Hence, we can conclude that the A1
and B1 modes on the Γ point should connect to the A mode on the ∆ point.
Similarly, the A2 and B2 modes on the former should connect to the B mode
on the latter. On the other hand, a so-called reduction procedure is necessary
to relate the doubly degenerate E mode on the Γ point to one-dimensional
irreducible representations on the ∆ point, since the E mode is a reducible
representation for the C1h point group. The rule for the reduction is simple.
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Table 3.5. Compatibility relations for the square lattice

Σ ∆

Γ : A1 A A

A2 B B

B1 B A

B2 A B

E A + B A + B

M : A1, B2 A -

A2, B1 B -

E A + B -

X : A1, B1 - A

A2, B2 - B

For example,

the number of the A representation on the ∆ point

=

∑
R∈C1h

χE(R)χA(R)

the number of elements in C1h
. (3.38)

Hence, it is calculated as below, and we obtain one A representation.

E σ

Γ : E 2 0

∆ : A 1 1

(2 × 1 + 0 × 1)/2 = 1 −→ 1 × A

Similarly, we see that the number of the B representation is also one. As a
result, we can conclude that the doubly degenerate E mode on the Γ point
connects to one A mode and one B mode on the ∆ point. Similar relations
can be obtained for the rest of the highly symmetric points. The results are
summarized in Table 3.5.

The assignment of the spatial symmetry to each mode can, of course,
be accomplished by examining its eigenfunctions by numerical calculation.
However, there is another simple but powerful method to do that [43]. This
method also provides the information in a very intuitive manner on how many
eigenmodes with a particular symmetry should appear in the band diagram.
The method is similar to that used for the assignment of the symmetry of
molecular orbitals composed of atomic orbitals. In order to show the detail
of this method, consider the extended zone scheme for the reciprocal lattice
space, which is shown in Fig. 3.3 for the square lattice.
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Fig. 3.3. Reciprocal lattice space of the 2D square lattice in the extended zone
scheme. Highly symmetric points Γ , X, and M are denoted by dots. The number
in each pair of parentheses is given in ascending order of the angular frequency of
the plane wave in free space. For example, the angular frequencies that correspond
to Γ (1), Γ (2), and Γ (3) are 0, 2πc/a, and 2

√
2πc/a, respectively. Note that, for

example, there are four equivalent Γ (2) and Γ (3) points that are connected to each
other with reciprocal lattice vectors

Highly symmetric points Γ , X, and M are denoted by dots, and they
are numbered in ascending order of the angular frequency of the correspond-
ing plane wave in free space. First, consider the Γ points, which have the
symmetry of C4v. We begin with Γ (2) that has the second lowest angular
frequency among the Γ points. There are four equivalent Γ (2) points that are
connected to each other with the reciprocal lattice vectors. They have the
same eigenfrequency when the spatial variation of the dielectric constant is
absent. When an infinitesimally small periodic perturbation is introduced to
the dielectric constant, these four plane waves are mixed and their particular
combinations will be the eigenmodes of the radiation field. This implies, in
the terminology of group theory, that those four plane waves are the reducible
four-dimensional representation of the radiation field. In order to determine
what kind of symmetries the eigenmodes can have, we need to perform the re-
duction procedure. For this purpose, it is enough to see how many Γ (2) points
will be invariant when the symmetry operations of the C4v point group are ap-
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Table 3.6. Characters of the lowest three representations at the Γ point of the
square lattice

C4v E 2C4 C2
4 2σv 2σd

Γ (1) NR 1 1 1 1 1

χ(1)(R) 1 1 1 1 1

χ(R) 1 1 1 1 1

Γ (2) NR 4 0 0 2 0

χ(1)(R) 1 - - 1 -

χ(R) 4 0 0 2 0

Γ (3) NR 4 0 0 0 2

χ(1)(R) 1 - - - 1

χ(R) 4 0 0 0 2

plied.3 Table 3.6 lists the number of the invariant Γ points, NR, the character
for one Γ point, χ(1)(R), and the character as a whole, χ(R) = NR ×χ(1)(R).
χ(1)(R) is the quantity that characterizes the overlapping of the initial and
the transformed atomic orbitals, or, for the present problem, the overlapping
of the initial and the transformed polarization vectors. This quantity plays an
important role when we make the symmetry assignment for the 3D crystals.
However, for the 2D crystals, it is always equal to unity as long as we treat
the electric field Ez for the E polarization and the magnetic field Hz for the
H polarization, since no 2D symmetry operation changes Ez or Hz.

The reduction procedure is similar to that used to obtain the compatibility
relations. For example, in the case of the B1 representation,

the number of the B1 representation on the Γ (2) point

=

∑
R∈C4v

χ(R)χB1(R)

the number of elements in C4v
. (3.39)

Hence, it is calculated as below, and we obtain one B1 representation.

E 2C4 C2
4 2σv 2σd

χ(R) 4 0 0 2 0

χB1(R) 1 − 1 1 1 − 1

{4 × 1 + 0 + 0 + 2 × 1 × 2 + 0}/8 = 1 −→ 1 × B1

3 For this case, the word “invariant” should be considered exactly. NR does not
include the number of the wave vectors that are transformed to their equivalent
points, but is the number of those wave vectors that R keeps at their original
positions.
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Table 3.7. Irreducible representations given by the superposition of electromag-
netic plane waves in free space whose wave vectors are regarded as those in the
reciprocal lattice space of the square lattice. The number in the square brackets
denotes the number of the equivalent k vectors

Symmetry Point Representative ωa/2πc in Irreducible

k vector free space representations

C4v Γ (1) π/a(0, 0) [1] 0 A1

Γ (2) π/a(2, 0) [4] 1 A1 + B1 + E

Γ (3) π/a(2, 2) [4]
√

2 A1 + B2 + E

Γ (4) π/a(4, 0) [4] 2 A1 + B1 + E

C4v M (1) π/a(1, 1) [4] 1/
√

2 A1 + B2 + E

M (2) π/a(3, 1) [8]
√

10/2 A1 + A2 + B1 + B2 + 2E

C2v X(1) π/a(1, 0) [2] 1/2 A1 + B1

X(2) π/a(1, 2) [4]
√

5/2 A1 + A2 + B1 + B2

X(3) π/a(3, 0) [2] 3/2 A1 + B1

X(4) π/a(3, 2) [4]
√

13/2 A1 + A2 + B1 + B2

We also obtain one A1 mode and one E mode. The irreducible representations
can be obtained for other Γ points in a similar manner. The results are
summarized in Table 3.7. The reduction procedure is the same for the M
points, because they also have the C4v symmetry. On the other hand, the X
points have C2v symmetry. Hence, their irreducible representations can be
obtained by consulting the character table of the C2v point group shown in
Table 3.3. The results for the M and X points are also listed in Table 3.7.

We have so far treated the case of the dielectric function with an infinites-
imally small periodic modulation. When the spatial variation of the dielectric
function becomes large, in such a manner that its symmetry is maintained,
then the angular frequency of the eigenmode will change, but the symmetry of
the eigenfunctions will remain unchanged. This is because the rigorous eigen-
function of the photonic crystal with a particular type of symmetry should be
formed as a linear combination of unperturbed wave functions with the same
symmetry. Otherwise, the rigorous eigenfunction would have no symmetry,
and this contradicts the general rule that any eigenfunction of a photonic
crystal should be attributed to one of its irreducible representations. There-
fore, the mode assignment of the actual photonic bands can be accomplished
by means of the comparison with those in free space. This task is easy, espe-
cially for the low frequency region where ωa/2πc ≤ 1, and examples will be
given in the following sections.
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3.2 Classification of Eigenmodes in the Square Lattice

Figure 3.4 shows the photonic band structure of the 2D crystal composed of
a square array of circular air cylinders made in a uniform dielectric material
with a dielectric constant of 2.1. The filling factor, or the volume fraction
of air cylinders, is 0.25. The dielectric constant of the air rod was taken
to be unity. 2D photonic crystals of this type were fabricated and studied
experimentally [46]. The dispersion curves were obtained by the plane-wave
expansion method described in Sect. 2.2. In order to obtain the symmetry
assignment shown in Fig. 3.4, it was sufficient to know the symmetry of a
few modes by examining their eigenfunctions by numerical calculation. The
rest of the assignment was conducted by consulting Tables 3.5 and 3.7. If we
compare the symmetries in the band diagram and those in Table 3.7, their
correspondence is apparent. For example, the lowest mode on the Γ point
with an eigenfrequency of zero comes from the Γ (1) point in Table 3.7. The
second to the fifth modes on the Γ point come from the Γ (2) point. Group
theory tells us that two of them are non-degenerate A1 and B1 modes and
one of them is doubly degenerate E mode, which is actually observed in Fig.
3.4. Similar correspondence is found for the sixth to the ninth modes on the
Γ point and for the rest of this figure. Hence, we may conclude that group
theory is quite powerful for the symmetry assignment for the photonic band
structure.

For the present problem, the contrast of the dielectric constant, 2.1:1.0,
is not very high, and thus the dispersion curves are not so far from those in
a uniform material with an averaged dielectric constant, which was shown in
Fig. 1.9. This is why the extremely good correspondence shown above was
obtained. However, even if the contrast of the dielectric constant is high, such
as 10:1, we usually also obtain a good correspondence for ωa/2πc ≤ 1.

There is a very interesting phenomenon related to the symmetry of the
eigenmodes that was first reported by Robertson et al. [41, 42]. This is con-
cerned with the B modes on the ∆ and the Σ points. These modes are
antisymmetric about the mirror plane spanned by the x and z axes (the
symmetry operation is σy) or by the vector (1, 1) and the z axis (the sym-
metry operation is σd). We examine the case of the E polarization first. We
assume that an external plane wave polarized in the z direction is incident
on the photonic crystal and propagated in the x direction. Hence, its electric
field has only the z component of the following form:

Ez = Ez0 exp{i(kx − ωt)}. (3.40)

Because this field does not depend on the y coordinate, it is symmetric under
the mirror reflection σy. On the other hand, the B modes on the ∆ point
are antisymmetric. Therefore, their effective coupling on the surface of the
photonic crystal is equal to zero, and the incident plane wave cannot excite
the B modes. Hence, we refer to those B modes as uncoupled modes or



56 3. Symmetry of Eigenmodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)

Fig. 3.4. Dispersion relation of the 2D square lattice composed of circular air-rods
formed in the dielectric material with a dielectric constant of 2.1 for (a) the E
polarization and (b) the H polarization. The filling factor is 0.25. (After [47])
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inactive modes. The same phenomenon takes place when the incident plane
wave is pointed to the (1, 1) direction or the Γ to M direction. It cannot
excite the B modes on the Σ point. Hence, the B modes on the Σ point are
also uncoupled modes. As for the incident plane waves polarized in the x-y
plane, the same arguments can be made by considering the H polarization.
For example, the incident plane wave that is propagated in the x direction
now has the z component of the magnetic field of the following form:

Hz = Hz0 exp{i(kx − ωt)}, (3.41)

which is symmetric under the mirror reflection σy. By a similar discussion to
that given above for the E polarization, we can conclude that all B modes
of the H polarization on the ∆ and the Σ points are uncoupled modes.

Robertson et al. [41, 42] found by experimental observation that these B
modes do not contribute to the light propagation. This was also confirmed by
numerical calculation of the transmission spectra [43, 48]. The same feature
was predicted by the vector KKR method for an fcc lattice [30]. The presence
of the uncoupled modes is peculiar to 2D and 3D photonic crystals. For 1D
crystals, all eigenmodes are symmetric when it is propagated in the direction
perpendicular to the dielectric layers. In Chap. 4, some examples of opaque
frequency regions in the transmission spectra due to the uncoupled modes
will be presented.

3.3 Classification of Eigenmodes
in the Hexagonal Lattice

Figure 3.5 is another example that shows the symmetry operations for the
hexagonal array of circular dielectric cylinders. The structure is invariant
when it is rotated by multiples of 60 degrees. Those rotations are denoted
by C6, C3(= C2

6 ), C2(= C3
6 ), C−1

3 (= C2
3 ), and C−1

6 (= C5
6 ). The structure is

also invariant when the σx or σy mirror reflection is operated. It is readily
seen that there are two other mirror reflections denoted by σ′

x and σ′′
x that

are equivalent to σx. These three mirror planes intersect each other at angles
of 60 degrees. σ′

y and σ′′
y are, on the other hand, equivalent to σy. Together

with the identity operation E, these symmetry operations constitute the C6v

point group:

C6v = {E,C6, C
−1
6 , C3, C

−1
3 , C2, σx, σ′

x, σ′′
x , σy, σ′

y, σ′′
y }. (3.42)

We can easily prove that the elements in the following sets of operations are
conjugate with each other:

(σx, σ′
x, σ′′

x), (σy, σ′
y, σ′′

y ), (C6, C−1
6 ), (C3, C−1

3 ). (3.43)

Hence, we may write

C6v = {E, 2C6, 2C3, C2, 3σx, 3σy}. (3.44)
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Fig. 3.5. Symmetry operations for the 2D hexagonal array of dielectric cylinders

Here, we represented C6 and C−1
6 by 2C6, and so on.

Figure 3.6 shows the first Brillouin zone of the hexagonal lattice. The
elementary lattice vectors {a1//,a2//} and the elementary reciprocal lattice
vectors {b1//, b2//} are

a1// =

⎛⎝ a

0

⎞⎠ , a2// =

⎛⎝ a/2√
3a/2

⎞⎠ , (3.45)

k

k
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y

M

M

Γ
Σ .

.

.

.

.

.

..
K

K

K

T

Fig. 3.6. First Brillouin zone of the 2D hexagonal lattice
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b1// =

⎛⎝ 2π/a

−2π/
√

3a

⎞⎠ , b2// =

⎛⎝ 0

4π/
√

3a

⎞⎠ , (3.46)

where a is the lattice constant. There are three highly symmetric points: The
Γ point, (0, 0), the K point, (4π/3a, 0), and the M point, (π/a,−π/

√
3a).

Those points between the Γ and the K points are denoted by T , and those
between the Γ and the M points are denoted by Σ. Examining the symmetry
of these points, it is apparent that

MΓ = C6v. (3.47)

As for the K point,

MK = {E, 2C3, 3σy} = C3v, (3.48)

since we have

C3

⎛⎝ 4π/3a

0

⎞⎠ =

⎛⎝ −2π/3a

2π/
√

3a

⎞⎠ =

⎛⎝ 4π/3a

0

⎞⎠+ b1//

≡
⎛⎝ 4π/3a

0

⎞⎠ , etc. (3.49)

On the other hand, for the M point,

MM = {E,C2, σ
′′
y , σ′′

x} = C2v, (3.50)

since we have

C2

⎛⎝ π/a

−π/
√

3a

⎞⎠ =

⎛⎝ −π/a

π/
√

3a

⎞⎠ =

⎛⎝ π/a

−π/
√

3a

⎞⎠− b1//

≡
⎛⎝ π/a

0

⎞⎠ , etc. (3.51)

Table 3.8. Character table for the C6v point group

C6v E 2C6 2C3 C2 3σy 3σx

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 1 −1

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0

E2 2 −1 −1 2 0 0
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Table 3.9. Character table for the C3v point group

C3v E 2C3 3σv

A1 1 1 1

A2 1 1 −1

E 2 −1 0

Table 3.10. Compatibility relations in the hexagonal lattice

T Σ

Γ : A1 A A

A2 B B

B1 A B

B2 B A

E1, E2 A + B A + B

K: A1 A -

A2 B -

E A + B -

M : A1, B1 - A

A2, B2 - B

Table 3.11. Irreducible representations for the electromagnetic waves in free space,
whose wave vectors are reduced in the first Brillouin zone of the hexagonal lattice

Symmetry Point Representative ωa/2πc in Irreducible

k vector free space representations

C6v Γ (1) 2π/a(0, 0) 0 A1

Γ (2) 2π/a(1, −1/
√

3) 2/
√

3 A1 + B2 + E1 + E2

Γ (3) 2π/a(2, 0) 2 A1 + B1 + E1 + E2

C3v K(1) 2π/a(2/3, 0) 2/3 A1 + E

K(2) 2π/a(2/3, 2/
√

3) 4/3 A1 + E

K(3) 2π/a(5/3, −1/
√

3) 2
√

7/3 A1 + A2 + 2E

C2v M (1) π/a(1, −1/
√

3) 1/
√

3 A1 + B1

M (2) π/a(1,
√

3) 1 A1 + B2

M (3) π/a(3, 1/
√

3)
√

7/3 A1 + A2 + B1 + B2

As for the others,

MΣ = {E, σ′′
x} = C1h, (3.52)

MT = {E, σy} = C1h. (3.53)
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Fig. 3.7. Photonic band structure of the 2D hexagonal lattice for (a) the E polar-
ization and (b) the H polarization

The character tables for the C6v and the C3v point groups are shown in Tables
3.8 and 3.9. The compatibility relations can be obtained as before. The result
is summarized in Table 3.10.

As we did for the square lattice, we can obtain the irreducible represen-
tations that are expected to appear in the band diagram of the hexagonal
lattice by examining the set of plane waves in free space with the same unper-
turbed eigenfrequencies. The reduction procedure to obtain the irreducible
representations is completely similar to that used for the square lattice. The
results are shown in Table 3.11. The assignment of the symmetry to each
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mode is easily performed by consulting Tables 3.10 and 3.11 if we know the
symmetry of a few modes by solving the eigenvalue problem by numerical
calculation. Figure 3.7 shows an example of the band diagram and the sym-
metry assignment that was obtained for the hexagonal lattice composed of
circular air-cylinders formed in a uniform dielectric material with a dielectric
constant of 2.72. The filling factor is 0.65. Photonic crystals of this type were
fabricated and studied in [49].

3.4 Group Theory for Three-Dimensional Crystals

Now, we proceed to the case of 3D photonic crystals [50, 51]. The eigen-
functions of the electric field E(r) and the magnetic field H(r) satisfy the
following eigenvalue equations:

LEE(r) ≡ 1
ε(r)

∇ × {∇ × E(r)} =
ω2

c2 E(r), (3.54)

LHH(r) ≡ ∇ ×
{

1
ε(r)

∇ × H(r)
}

=
ω2

c2 H(r). (3.55)

We denote a symmetry operation that belongs to the point group M of the
crystal by R as before. R acts on any scalar function f(r) such that

Rf(r) ≡ f(R
↔−1r), (3.56)

where R
↔

is now the 3 × 3 matrix representation of the operator R. Because
R is a rotation, inversion, or their product, R

↔
is an orthogonal matrix:

R
↔

R
↔

t = I
↔

, (3.57)

where t denotes the transposed matrix and I
↔

is the 3 × 3 unit matrix. This
implies that

R
↔

t = R
↔−1. (3.58)

We note that

detR
↔

= ±1, (3.59)

since from (3.57) and

detR
↔

= detR
↔

t, (3.60)

we have

(detR
↔

)2 = det (R
↔

R
↔

t) = 1. (3.61)

When R acts on a vector field, it changes both the position vector and the
field vector:

RF (r) ≡ R
↔

F (R
↔−1r). (3.62)
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ε(r) is invariant when it is operated by R:

Rε(r) ≡ ε(R
↔−1r) = ε(r) for ∀R ∈ M, (3.63)

Then, we can verify by direct calculation that R commutes with LE and LH :

RLER−1 = LE , (3.64)

RLHR−1 = LH . (3.65)

Therefore, the usual classification of the eigenmodes according to the irre-
ducible representations of the k-group Mk can be applied to Ekn(r) and
Hkn(r).

Proof of (3.64) and (3.65)

We denote R
↔

by

R
↔

=

⎛⎜⎜⎝
R11, R12, R13

R21, R22, R23

R31, R32, R33

⎞⎟⎟⎠ . (3.66)

For an arbitrary vector field F (r),

R(∇×)R−1F (r)

= R(∇×)R
↔−1F (R

↔
r)

= R
↔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(R22R33 − R23R32)(∂yF3 − ∂zF2)

+(R13R32 − R12R33)(∂zF1 − ∂xF3)

+(R12R23 − R13R22)(∂xF2 − ∂yF1)

(R23R31 − R21R33)(∂yF3 − ∂zF2)

+(R11R33 − R13R31)(∂zF1 − ∂xF3)

+(R13R21 − R11R23)(∂xF2 − ∂yF1)

(R21R32 − R22R31)(∂yF3 − ∂zF2)

+(R12R31 − R11R32)(∂zF1 − ∂xF3)

+(R11R22 − R12R21)(∂xF2 − ∂yF1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.67)

where ∂yF3 denotes ∂F3/∂y, etc. When we denote the determinant of the
(i, j)th cofactor of R

↔
by ∆ij , and define a matrix A

↔
by

A
↔

= R
↔

⎛⎜⎜⎝
∆11, ∆21, ∆31

∆12, ∆22, ∆32

∆13, ∆23, ∆33

⎞⎟⎟⎠ , (3.68)
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(3.67) can be rewritten as

R(∇×)R−1F (r) = A
↔∇ × F (r). (3.69)

It is a fundamental theorem of linear algebra that

Aij =
3∑

l=1

Ril∆jl = (detR
↔

)δij . (3.70)

We thus have

R(∇×)R−1F (r) = (detR
↔

)∇ × F (r). (3.71)

Since this equation holds for arbitrary vector fields, we obtain

R(∇×)R−1 = (detR
↔

)∇ × . (3.72)

Finally, we obtain

RLER−1 = R
1

ε(r)
R−1 {R(∇×)R−1}2

= LE . (3.73)

Here, we used (3.61). Equation (3.65) can be proved in a similar manner.

We denote the characters of the irreducible representations of the electric
and the magnetic fields by χ(E)(R, kn) and χ(H)(R, kn), respectively:

REkn(r) = χ(E)(R, kn)Ekn(r), (3.74)
RHkn(r) = χ(H)(R, kn)Hkn(r). (3.75)

From one of Maxwell’s equations, the following relation holds:

∇ × Ekn(r) = iωknµ0Hkn(r). (3.76)

Thus, we have,

R(∇×)R−1REkn(r) = iωknµ0RHkn(r). (3.77)

Substituting (3.72), (3.74), and (3.75), we obtain

(det R
↔

)χ(E)(R, kn)∇ × Ekn(r) = iωknµ0χ
(H)(R, kn)Hkn(r). (3.78)

Comparing (3.76) and (3.78), we obtain

χ(H)(R, kn) = (det R
↔

)χ(E)(R, kn), (3.79)

where

det R
↔

=

⎧⎨⎩ +1 (proper transformation),

−1 (improper transformation).
(3.80)
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This difference between χ(E) and χ(H) originates from the fact that the elec-
tric field is a true vector whereas the magnetic field is an axial vector. Equa-
tion (3.79) implies that the irreducible representation for the magnetic field
is generally different from that for the electric field. On the other hand, the
character for the electric displacement Dkn(r) is the same as that for the
electric field because the following relation holds:

(RDkn)(r) = (Rε)(r)(REkn)(r)
= χ(E)(R, kn)Dkn(r). (3.81)

Therefore, Dkn(r) and Ekn(r) are attributed to the same irreducible rep-
resentation. Because Dkn(r) and Hkn(r) are purely transverse waves even
with the spatial variation of the dielectric function, we can constitute their
eigenfunctions with transverse plane waves alone. We can use this fact to
obtain the irreducible representations of the eigenfunctions.

3.5 Classification of Eigenmodes
in the Simple Cubic Lattice

We consider the details of the reduction procedure for the transverse vector
fields with a simple cubic lattice composed of dielectric spheres as an example.
Figure 3.8 shows its symmetry operations. First, the structure is invariant
under the rotations about the x, y, and z axes by 90, 180, and 270 degrees.
These rotations are denoted by C4, C2, and C−1

4 as before. C4 and C−1
4

are conjugate with each other. We should also note that the C4 rotation
about the x axis is conjugate with that about the y and the z axes. Hence,
these three C4 and three C−1

4 rotations have the same characters and may
be denoted by 6C4. Similarly, three C2 rotations are conjugate with each
other and denoted by 3C2. There are two other sets of rotation axes that
are denoted by C ′

2 and C3. Six C ′
2 operations are conjugate with each other.

As for the C3 rotation, eight operations are conjugate. The structure is also
invariant under the spatial inversion I. The rest of the symmetry operations
are given by the product of I and the operations described above: 6IC4, 3IC2,
6IC ′

2, and 8IC3. Among these, IC2 and IC ′
2 are usually denoted by σh and

σd, respectively. They are mirror reflections about the horizontal plane and
the diagonal plane. Together with the identity operation E, these symmetry
operations constitute the Oh point group:

Oh = {E, 6C4, 3C2, 3C ′
2, 8C3, I, 6IC4, 3σh, 6σd, 8IC3}. (3.82)

The character table of the Oh point group is shown in Table 3.12.
The first Brillouin zone of the simple cubic lattice is depicted in Fig. 2.1.

We examine the symmetry of its highly symmetric points. It is apparent that
the Γ point has the Oh symmetry:

MΓ = Oh. (3.83)
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Fig. 3.8. Symmetry operations for the Oh point group

Table 3.12. Character table for the Oh point group

Oh E 6C4 3C2 6C′
2 8C3 I 6IC4 3σh 6σd 8IC3

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 −1 1 −1 1 1 −1 1 −1 1

Eg 2 0 2 0 −1 2 0 2 0 −1

T1g 3 1 −1 −1 0 3 1 −1 −1 0

T2g 3 −1 −1 1 0 3 −1 −1 1 0

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 2 0 −1 −2 0 −2 0 1

T1u 3 1 −1 −1 0 −3 −1 1 1 0

T2u 3 −1 −1 1 0 −3 1 1 −1 0

The symmetries of other points are

MR = Oh, (3.84)
MX = {E, 2C4, C2, 2C ′

2, 2C ′′
2 , I, 2IC4, σh, 2σv, 2σd} = D4h, (3.85)

MM = D4h, (3.86)
M∆ = {E, 2C4, C2, 2σv, 2σd} = C4v, (3.87)
MT = C4v, (3.88)
MΛ = {E, 2C3, 3σd} = C3v, (3.89)
MΣ = {E,C ′

2, σh, σd} = C2v, (3.90)
MZ = {E,C2, 2σh} = C2v, (3.91)
MS = {E,C ′

2, σh, σd} = C2v. (3.92)

The symmetry operations for these points are illustrated in Fig. 3.9. The
character table for the D4h point group is given in Table 3.13. The character
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Fig. 3.9. Symmetry operations for the highly symmetric points in the first Brillouin
zone of the simple cubic lattice

tables for the C4v, C3v, and C2v point groups are given in Tables 3.2, 3.9,
and 3.3, respectively. Our next task is to obtain the compatibility relations.
The procedure is exactly the same as that for the 2D crystals described in
the previous sections. The final results are summarized in Tables 3.14 and
3.15.

In Sects. 3.1–3.3, we obtained the possible combinations of irreducible
representations that appear in the band diagrams of the 2D crystals by per-
forming the reduction procedure for the reducible representations composed
of plane waves. We would like to do the same thing for the electromagnetic
eigenmodes in the 3D crystals. However, there is an apparent difference be-
tween the present and the previous problems. That is, we now have to deal
with vector fields instead of scalar fields. Hence, we should first examine how
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Table 3.13. Character table for the D4h point group

D4h E 2C4 C2 2C′
2 2C′′

2 I 2IC4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 −1 −1 1 1 1 −1 −1

B1g 1 −1 1 1 −1 1 −1 1 1 −1

B2g 1 −1 1 −1 1 1 −1 1 −1 1

Eg 2 0 −2 0 0 2 0 −2 0 0

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0

we can constitute the reducible representations with related plane waves and
how we can reduce them to obtain the irreducible representations.

We begin with the case of the magnetic field. Because we assumed
throughout this book that the magnetic permeability is constant, the mag-
netic field is purely transverse. Hence, its eigenfunction can be expressed as
a linear combination of transverse plane waves. For the infinitesimally small
spatial modulation of the dielectric constant, the eigenfunction is a particular
combination of the plane waves with the same eigenfrequency in free space
that satisfies Bloch’s theorem. In other words, the eigenfunction is composed
of the plane waves with equivalent k vectors in the extended Brillouin zone.
We have to take into account the presence of two independent polarizations
for each k vector. We can thus constitute the reducible representation of the
eigenfunction of the magnetic field. Our final task is to reduce it to obtain
the irreducible representations. The reduction procedure for the 3D crystals
is slightly different from that for the 2D crystals because of the presence of
the two polarizations.

We examine the reduction procedure with the X(1) point as an example.
It has the D4h symmetry as was shown before. There are two equivalent
X(1) points in the first Brillouin zone whose coordinates are π/a(0, 0, 1) and
π/a(0, 0,−1). First, we have to count the number of exactly invariant X(1)

points, NR, when operation R in D4h is applied. This is listed in Table 3.16.
It can readily be seen that non-zero NR appears for the rotations about the
z axis and the mirror reflections whose mirror plane contains the z axis. In
other words, the wave vector should be on the rotation axis or on the mirror
plane for NR to be non-zero.

The next task is to find the character for one X(1) point, χ(1)(R). In
general, we denote the plane waves with the two independent polarization
vectors by f1(r) and f2(r):
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Table 3.14. Compatibility relations for the simple cubic lattice

∆ Σ Λ

Γ : A1g A1 A1 A1

A2g B1 B1 A2

Eg A1 + B1 A1 + B1 E

T1g A2 + E A2 + B1 + B2 A2 + E

T2g B2 + E A1 + A2 + B2 A1 + E

A1u A2 A2 A2

A2u B2 B2 A1

Eu A2 + B2 A2 + B2 E

T1u A1 + E A1 + B1 + B2 A1 + E

T2u B1 + E A1 + A2 + B1 A2 + E

∆ Z S

X : A1g A1 A1 A1

A2g A2 B2 B2

B1g B1 A1 B2

B2g B2 B2 A1

Eg E A2 + B1 A2 + B1

A1u A2 A2 A2

A2u A1 B1 B1

B1u B2 A2 B1

B2u B1 B1 A2

Eu E A1 + B2 A1 + B2

e 2

e1

e'1

e 2
e'2

k

θ

θ

(a)

k

e'1

(b)

e1

Fig. 3.10. Variation of the polarization vectors by (a) rotation and (b) mirror
reflection
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Table 3.15. Compatibility relations for the simple cubic lattice (continued from
Table 3.14)

Σ Z T

M : A1g A1 A1 A1

A2g B1 B1 A2

B1g B1 A1 B1

B2g A1 B1 B2

Eg A2 + B2 A2 + B2 E

A1u A2 A2 A2

A2u B2 B2 A1

B1u B2 A2 B2

B2u A2 B2 B1

Eu A1 + B1 A1 + B1 E

Λ S T

R : A1g A1 A1 A1

A2g A2 B2 B1

Eg E A1 + B2 A1 + B1

T1g A2 + E A2 + B1 + B2 A2 + E

T2g A1 + E A1 + A2 + B1 B2 + E

A1u A2 A2 A2

A2u A1 B1 B2

Eu E A2 + B1 A2 + B2

T1u A1 + E A1 + B1 + B2 A1 + E

T2u A2 + E A1 + A2 + B2 B1 + E

Table 3.16. Characters of the lowest two representations at the X point of the
simple cubic lattice. (After [51])

D4h E 2C4 C2
4 2C′

2 2C′′
2 I 2IC4 σh 2σv 2σd

X(1) NR 2 2 2 0 0 0 0 0 2 2

χ(1)(R) 2 0 −2 − − − − − 0 0

χ(R) 4 0 −4 0 0 0 0 0 0 0

X(2) NR 8 0 0 0 0 0 0 0 4 0

χ(1)(R) 2 − − − − − − − 0 −
χ(R) 16 0 0 0 0 0 0 0 0 0
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Table 3.17. Character for the rotation and the mirror reflection

R C6 C4 C3 C2 σ

χ(1)(R) 1 0 −1 −2 0

f1(r) = e1eik·r, (3.93)
f2(r) = e2eik·r. (3.94)

Here, we do not restrict our argument to the X(1) point. The following dis-
cussion is common to all wave vectors. When the rotation about the axis
that contains the wave vector k is operated, according to the definition of
the operation (3.62), these vector functions are transformed as follows (see
Fig. 3.10(a)):

Rθ

⎛⎝ f1(r)

f2(r)

⎞⎠ =

⎛⎝ cos θ, − sin θ

sin θ, cos θ

⎞⎠⎛⎝ f1(r)

f2(r)

⎞⎠ . (3.95)

Note that k ·r is invariant even when the rotation is operated. By definition,
χ(1)(R) is given by the trace of the 2 × 2 matrix in the right-hand side of
(3.95), i.e.,

χ(1)(Rθ) = 2 cos θ. (3.96)

As for the mirror reflection σ, whose mirror plane contains the k vector, the
two plane waves are transformed such that (see Fig. 3.10(b))

σ

⎛⎝ f1(r)

f2(r)

⎞⎠ =

⎛⎝ −1, 0

0, 1

⎞⎠⎛⎝ f1(r)

f2(r)

⎞⎠ . (3.97)

Note that k · r is also invariant when the mirror reflection is operated. We
thus obtain

χ(1)(σ) = 0. (3.98)

The results are summarized in Table 3.17. The character for the two
equivalent X(1) points as a whole, χ(R), is then given by

χ(R) = NR × χ(1)(R), (3.99)

and it is listed in Table 3.16. The character of the reducible representa-
tion composed of the plane waves corresponding to the eight equivalent X(2)

points with the second lowest unperturbed angular frequency, whose repre-
sentative wave vector is given by π/a(0, 2, 1), can be obtained by following
the same procedure. The results are also summarized in Table 3.16. Our final
task is the reduction of the reducible representation to find the irreducible
representations contained in it. This can be accomplished by consulting the
character table of D4h (Table 3.13). In the case of the Eg representation, for
example,
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the number of the Eg representation on the X(1) point

=

∑
R∈D4h

χ(R)χEg
(R)

the number of elements in D4h
. (3.100)

By this calculation, we find that we have one Eg and one Eu irreducible
representations for the X(1) point. We can obtain the irreducible represen-
taions for other symmetric points in a similar manner. The final results are
summarized in Table 3.18.

From the relation given in (3.79), we can obtain the irreducible represen-
tations for the electric field. In order to distinguish the representations for
the magnetic field and the electric field, we denote the former by superscript
(H) and the latter by superscript (E). So, for example, we have E

(H)
g and

E
(H)
u representations for the X(1) point. Now, the character for the electric

field accompanied by the magnetic field of the Eg representation is given by

χ(E)(R) = (det R
↔

)χ(H)
Eg

(R). (3.101)

When we compare χ(E)(R) given by this equation with the characters for
the D4h point group listed in Table 3.13, we can readily find that χ(E)(R)
agrees with the character for the Eu representation. Similarly, we obtain the
Eg representation for the electric field accompanied with the magnetic field
of the Eu representation:

X(1) : E(H)
g ⇐⇒ E(E)

u , (3.102)

E(H)
u ⇐⇒ E(E)

g . (3.103)

We see that the same sets of irreducible representations appear for both mag-
netic and electric fields. This is not a coincidence, but a necessity. In order to
prove this general property it is enough to think of the procedure to obtain
the irreducible representations for the electric displacement that is transverse
even with the spatial modulation of the dielectric constant like the magnetic
field. We can readily understand that the procedure is exactly the same as
for the magnetic field. We thus obtain the same set of irreducible represen-
tations for Dkn(r), and hence, for Ekn(r) as for Hkn(r). Therefore, the
superscripts (E) and (H) are dropped in Table 3.18 because the irreducible
representations as a whole are common to both fields. Γ (1) should be dealt
with separately because its wave vector is equal to zero and there is no dis-
tinction between the transverse and longitudinal plane waves. Actually, these
are constant polarizations to all 3D directions with zero eigenfrequency, and
we have to treat them equally. Then, the degree of freedom, i.e., the number
of independent polarizations is three for this particular case. When we fol-
low the argument given above for this case in a similar manner, we see that
χ(Rθ) = 2 cos θ + 1, χ(σ) = 1, etc., which leads to the T1u representation.

As an example, Fig. 3.11 shows the symmetry assignment of the magnetic
field of the simple cubic lattice whose band structure was shown in Fig.
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Fig. 3.11. Photonic band structure and the irreducible representations for the
magnetic field of the eigenmodes of the simple cubic lattice with a dielectric sphere
at each lattice point. The ordinate is the normalized frequncy. The following values
were assumed for the numerical calculation; the dielectric constants of the spheres
and the background are 13.0 and 1.0, and the ratio of the lattice constant a and the
radius of the sphere is 1:0.3. All one-dimensional eigenmodes at the ∆ point, i.e.,
A1, A2, B1, and B2 modes, and A1 and A2 modes at the Σ point are uncoupled
modes. (After [51])

2.2. For the actual procedure of the symmetry assignment, we had to know
the irreducible representations of only several eigenmodes by studying their
wave functions numerically, and then the compatibility relations (Table 3.14)
that connect the irreducible representations for adjacent wave vectors with
each other and Table 3.18 were utilized in order to accomplish the rest of
the assignments. The irreducible representations of the electric field can be
derived using (3.79).

Now, we examine the uncoupled modes on the ∆ and Σ points. For the ∆
point, its symmetry is C4v, and each of its one-dimensional representations
has a particular value of the character for the two σv mirror reflections; σy on
the x-z plane and σx on the y-z plane. This implies that the eigenmodes on
the ∆ point should be symmetric or antisymmetric for both σx and σy. On
the other hand, the magnetic field of a plane wave that is linearly polarized
to the x or y direction must be symmetric for one mirror reflection and anti-
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symmetric for the other. Therefore, there is a symmetry mismatch between
those one-dimensional eigenmodes and the incident plane wave. Then, we can
identify them as uncoupled modes. As for the Σ point, its symmetry is C2v,
which has the following two mirror reflections; σz on the x-y plane and σxy

on the plane spanned by the z axis and the (1, 1, 0) vector. Among the four
one-dimensional representations, A1 is symmetric and A2 is antisymmetric
for both mirror reflections. Hence, they are uncoupled modes. On the other
hand, B1 and B2 modes are symmetric for one mirror reflection and anti-
symmetric for the other. Then they have the same symmetry as the linearly
polarized plane wave, and they can be excited by the incident plane wave,
although they are coupled to only one polarization. Then, for example, we
expect total reflection for both polarizations at ωa/2πc ≈ 0.6 when the inci-
dent plane wave is pointed to the Γ -M direction, i.e., the (1, 1, 0) direction in
spite of the non-zero density of states. Since the frequency range where only
the A2 mode exists is quite large, it will not be difficult to confirm this total
reflection experimentally. In addition, the assumed specimen is transparent
for one polarization and opaque for the other polarization at ωa/2πc ≈ 0.47,
0.53, and 0.66. This feature is also an important consequence of the symmetry
of the lattice and its eigenfunctions.

3.6 Classification of Eigenmodes in the fcc Lattice

Photonic crystals with the face-centered-cubic (fcc) structure have attracted
great interest, since specimens of good quality with a small lattice constant,
e.g., less than 1 µm, can be obtained. The representative specimens are ar-
tificial opal crystals composed of the fcc lattice of dielectric spheres made of
silicon dioxide [2, 52–54]. Fcc-like structures are also realized by Yablonovite
[55, 56]. In this section, we will examine the symmetry properties of the fcc
photonic crystals, and present the compatibility relations and the irreducible
representations of the electromagnetic field that are expected to appear in
the photonic band diagrams from the group-theoretical argument.

The first Brillouin zone of the fcc lattice is shown in Fig. 3.12. The el-
ementary lattice vectors {a1,a2,a3} and the elementary reciprocal lattice
vectors {b1, b2, b3} of the fcc lattice are given by

a1 =
a

2

⎛⎜⎜⎝
0

1

1

⎞⎟⎟⎠ , a2 =
a

2

⎛⎜⎜⎝
1

0

1

⎞⎟⎟⎠ , a3 =
a

2

⎛⎜⎜⎝
1

1

0

⎞⎟⎟⎠ , (3.104)

b1 =
2π

a

⎛⎜⎜⎝
−1

1

1

⎞⎟⎟⎠ , b2 =
2π

a

⎛⎜⎜⎝
1

−1

1

⎞⎟⎟⎠ , b3 =
2π

a

⎛⎜⎜⎝
1

1

−1

⎞⎟⎟⎠ . (3.105)
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Fig. 3.12. First Brillouin zone of the fcc lattice

Table 3.19. Character table for the D3d point group

D3d E 2C3 3C′
2 I 2IC3 3σv

A1g 1 1 1 1 1 1

A2g 1 1 −1 1 1 −1

Eg 2 −1 0 2 −1 0

A1u 1 1 1 −1 −1 −1

A2u 1 1 −1 −1 −1 1

Eu 2 −1 0 −2 1 0

It can be easily found that the symmetries of the highly symmetric points
are as follows.

MΓ = Oh, (3.106)
ML = D3d, (3.107)
MW = D2d, (3.108)
M∆ = C4v, (3.109)
MΛ = C3v, (3.110)
MΣ = MZ = MS = MU = MK = C2v. (3.111)

The character tables of the Oh, C4v, C3v, C2v point groups were already
presented. The characters for the D3d and D2d point groups are shown in
Tables 3.19 and 3.20. The compatibility relations can be obtained in a similar
manner as was done for the simple cubic lattice. The results are listed in
Tables 3.21 and 3.22.
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Table 3.20. Character table for the D2d point group

D2d E 2IC4 C2 2C′
2 2σd

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1

B2 1 −1 1 −1 1

E 2 0 −2 0 0

Table 3.21. Compatibility relations for the fcc lattice

Γ ∆ Σ Λ ΓU ΓW

A1g A1 A1 A1 A A

A2g B1 B2 A2 B A

Eg A1 + B1 A1 + B2 E A + B 2A

T1g A2 + E A2 + B1 + B2 A2 + E A + 2B A + 2B

T2g B2 + E A1 + A2 + B1 A1 + E 2A + B A + 2B

A1u A2 A2 A2 B B

A2u B2 B1 A1 A B

Eu A2 + B2 A2 + B1 E A + B 2B

T1u A1 + E A1 + B1 + B2 A1 + E 2A + B 2A + B

T2u B1 + E A1 + A2 + B2 A2 + E A + 2B 2A + B

X ∆ Z S

A1g A1 A1 A1

A2g A2 B2 B2

B1g B1 A1 B2

B2g B2 B2 A1

Eg E A2 + B1 A2 + B1

A1u A2 A2 A2

A2u A1 B1 B1

B1u B2 A2 B1

B2u B1 B1 A2

Eu E A1 + B2 A1 + B2
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Table 3.22. Compatibility relations for the fcc lattice (continued from Table 3.21)

L Λ Q UL KL

A1g A1 A A A

A2g A2 B B B

Eg E A + B A + B A + B

A1u A2 A B B

A2u A1 B A A

Eu E A + B A + B A + B

W Z Q ΓW WU

A1 A1 A A A

A2 A2 B B B

B1 A2 A B B

B2 A1 B A A

E B1 + B2 A + B A + B A + B

U S ΓU UW UL

A1 A1 A A A

A2 A2 B B B

B1 B1 A B A

B2 B2 B A B

K Σ KL KW

A1 A1 A A

A2 A2 B B

B1 B1 A B

B2 B2 B A

The irreducible representations of the electromagnetic eigenmodes that
are expected to appear in the photonic band diagram from the group-
theoretical argument can be obtained by simply following the same procedure
as we did for the simple cubic lattice. The only difference is the choice of the
wave vectors with which we make the basis plane waves. The results are listed
in Table 3.23.
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4. Transmission Spectra

The transmission spectra of photonic crystals reflect their band structure di-
rectly. They are often used for the experimental characterization of real spec-
imens. In this chapter, we will formulate the plane-wave expansion method
for the numerical calculation of the transmittance and the Bragg reflectivity
of 2D crystals. It will be demonstrated that the bandgaps and the uncoupled
modes lead to opaque frequency ranges. It will also be shown that the small
group velocity peculiar to the 2D and 3D crystals, that is, the group-velocity
anomaly, is equivalent to a large effective refractive index. The refraction law
on the surface of photonic crystals will be given.

4.1 Light Transmission and Bragg Reflection

Several methods are known for the numerical calculation of the transmission
spectra of photonic crystals such as the spherical-wave expansion method
[27, 30, 57, 58], the transfer matrix method [59], and the finite-difference
time-domain (FDTD) method [60]. Although the spherical-wave expansion
method is only applicable to those crystals composed of dielectric spheres
and cylinders, its convergence property is quite good. The transfer matrix
method can be applied to any periodic structures and many excellent calcu-
lations have been performed. The FDTD method may be the most general
one, which is based on the numerical time-integration of Maxwell’s equation.
Although it is time-consuming (i.e., the computational time is long) and needs
a large memory capacity, fairly accurate calculation is possible thanks to the
tremendous development of computing facilities.

On the other hand, the plane-wave expansion method [48, 61] is based on
the Fourier expansion of the internal field and the dielectric function, and is
applicable to any 2D photonic crystal as long as the wave vector of the inci-
dent plane wave lies in the 2D x-y plane. Although its convergence becomes
poor and it is not practical when the contrast of the dielectric constant is,
say, larger than 4:1, it is very intuitive and has an advantage that the Bragg
reflectivity can be obtained at the same time. Complex dielectric constants
can be dealt with as well as real dielectric constants. The low-threshold lasing
due to the group-velocity anomaly in 2D photonic crystals was demonstrated
by this method [62]. An example of the configulation for the calculation is
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Fig. 4.1. Configuration for the calculation of the transmission and the Bragg re-
flection spectra (top view). See text for detail. (After [61])

shown in Fig. 4.1. The external plane wave in region 1 is incident on the
left (front) surface of the specimen located in region 2, which consists of N
layers of circular rods with a radius ra and the background dielectric. The
dielectric constant of the rods and the background are denoted by εa and
εb, respectively. The lattice constant is denoted by a1 in the x direction and
a2 in the y direction, and the distance between the surface and the first
layer of the rods is denoted by d. When we deal with a square lattice, we
assume the same value for a1 and a2. The dielectric constants of regions
1 and 3 are ε1 and ε3, respectively. The total thickness of the specimen is
L = (N − 1)a2 + 2(R + d).

Since photonic crystals may be regarded as periodic gratings, the elec-
tromagnetic field in region 1 is the superposition of the incident plane wave
and the reflected Bragg waves, whereas that in region 3 is composed of the
transmitted Bragg waves. Here, we regard the specular reflection and the
straight transmission as the reflected and the transmitted Bragg waves of
the zeroth order. The 2D wave vector of the incident plane wave is denoted
by ki// = (k1 sin θ, k1 cos θ) = (kx, k1y), where θ is the angle of incidence.
k1 =

√
ε1ω/c, where ω is the angular frequency of the incident field. The

wave vectors of the reflected and the transmitted Bragg waves of order n,
k

(n)
r// and k

(n)
t// , are given by

k(n)
r,x = k

(n)
t,x = k(n)

x = kx + Gn, (4.1)

Gn = 2πn/a1 (n = 0,±1,±2, · · ·), (4.2)
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k(n)
r,y =

⎧⎨⎩−
√

k2
1 − (k(n)

x )2 if k1 ≥ |k(n)
x |,

−i
√

(k(n)
x )2 − k2

1 otherwise,
(4.3)

k
(n)
t,y =

⎧⎨⎩
√

k2
3 − (k(n)

x )2 if k3 ≥ |k(n)
x |,

i
√

(k(n)
x )2 − k2

3 otherwise.
(4.4)

Here, k3 =
√

ε3ω/c. Because of the spatial periodicity along the x axis, the
reflected and the transmitted Bragg waves receive a momentum along the x
axis which is a multiple of 2π/a1 in (4.3) and (4.4).

As was explained in Sect. 2.2, the vector wave equations derived from
Maxwell’s equations can be reduced to two independent scalar equations
when the wave vector lies in the x-y plane, or in other words, when the fields
are independent of the z coordinate. These two modes are called the E po-
larization, for which the electric field is parallel to the z axis, and the H
polarization, for which the magnetic field is parallel to the z axis, respec-
tively. Because of the continuity condition for the tangential component of
the electric or the magnetic field at each boundary, the fields in regions 1 and
3 are also characterized by these polarizations. In the next two sections, the
details of the plane-wave expansion method will be explained. Those readers
who are not interested in the details of the calculation may skip them and
proceed to Sect. 4.4.

4.2 Field Equations

4.2.1 E Polarization

First, we consider the E polarization. The electric field in region 2 (E2z)
satisfies (2.57):

KEE2z(r//) ≡
{

1
ε(r//)

(
∂2

∂x2 +
∂2

∂y2

)
+

ω2

c2

}
E2z(r//) = 0. (4.5)

The differencial operator KE is defined by the first equality in the above
equation. The electric fields in region 1 (E1z) and region 3 (E3z) are given
by

E1z(r//) = E0 exp (iki// · r//) +
∞∑

n=−∞
R(E)

n exp (ik(n)
r// · r//), (4.6)

E3z(r//) =
∞∑

n=−∞
T (E)

n exp
{
ik(n)

t// · (r// − L//)
}
, (4.7)

where E0, R
(E)
n , and T

(E)
n are the amplitudes of the electric field of the in-

cident wave, the reflected Bragg waves, and the transmitted Bragg waves,
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respectively. L// = (0, L). Now, we introduce a boundary-value function
fE(x, y) :

fE(x, y)

≡ 1
L

∞∑
n=−∞

{
yT (E)

n + (L − y)
(
δn0E0 + R(E)

n

)}
exp
(
ik(n)

x x
)
, (4.8)

where δnm is Kronecker’s δ. Then, fE is equal to E1z or E3z on each surface
of the specimen:

fE(x, 0) = E1z(x, 0) and fE(x, L) = E3z(x, L). (4.9)

Next, we define ψE by

ψE(x, y) ≡ E2z(x, y) − fE(x, y). (4.10)

Then, from (4.5), (4.9), and (4.10), we obtain

KEψE = −KEfE , (4.11)

ψE(x, 0) = ψE(x, L) = 0. (4.12)

By means of this mathematical trick, we have converted the boundary con-
ditions for E2z into the field equation of ψE [63]. Then, we can relate the
internal field in region 2 to E0 at the first stage of the calculation, thereby
we can exclude the free oscillation and obtain the solution of the forced os-
cillation with the incident plane wave as the excitation source. The choice of
fE is arbitrary as long as (4.9) is satisfied.

Now, we expand ψE(x, y) and 1/ε(x, y) in Fourier series:

ψE(x, y) =
∞∑

n=−∞

∞∑
m=1

A(E)
nm exp(ik(n)

x x) sin
mπ

L
y, (4.13)

1
ε(x, y)

=
∞∑

n=−∞

∞∑
m=−∞

κnm exp
{

i
(
Gnx +

mπ

L
y
)}

. (4.14)

Note that only sine functions appear in (4.13), since ψE(x, 0) = 0. Substi-
tuting (4.8), (4.13), and (4.14) into (4.11) and comparing the coefficients of
the independent Fourier components, we obtain the following equation after
a simple but lengthy calculation.

ω2

c2 A(E)
nm +

∞∑
n′=−∞

∞∑
m′=1

{
(k(n′)

x )2 +
(

m′π
L

)2
}

×(κn−n′,m+m′ − κn−n′,|m−m′|)A
(E)
n′m′

= −2ω2

πc2

(−1)m−1T
(E)
n + R

(E)
n + δn0E0

m

+
2
π

∞∑
n′=−∞

(
k(n′)

x

)2 ∞∑
m′=1

(κn−n′,|m−m′| − κn−n′,m+m′)
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× (−1)m′−1T
(E)
n′ + R

(E)
n′ + δn′0E0

m′ . (4.15)

When we derived (4.15), the following two relations were used.

y =
2L

π

∞∑
m=1

(−1)m−1

m
sin

mπ

L
y, (4.16)

1 =
2
π

∞∑
m=1

1 − (−1)m

m
sin

mπ

L
y. (4.17)

The remaining boundary conditions are the continuity of the x component
of the magnetic field and the y component of the magnetic induction. The
latter proves to be equivalent to the continuity of the z component of the
electric field and does not yield an independent equation. Then, the former
condition at both boundaries leads to

π
∞∑

m=1

mA(E)
nm =

(
iLk(n)

r,y + 1
)

R(E)
n − T (E)

n + δn0E0 (iLk1,y + 1) , (4.18)

π

∞∑
m=1

m(−1)mA(E)
nm = R(E)

n +
(
iLk

(n)
t,y − 1

)
T (E)

n + δn0E0. (4.19)

Equations (4.15), (4.18), and (4.19) determine the unknown coefficients, A
(E)
nm ,

R
(E)
n and T

(E)
n . In the actual numerical calculation, we restrict the number

of terms that appear in the Fourier expansions as we did for the photonic
band calculation in Chap. 2, and solve the linear equations.

4.2.2 H Polarization

The H polarization can be treated in a similar manner. The magnetic fields
in region 1 (H1z) and in rigion 3 (H3z) are given as follows.

H1z(r//) = H0 exp (iki// · r//) +
∑

n

R(H)
n exp (ik(n)

r// · r//), (4.20)

H3z(r//) =
∑

n

T (H)
n exp

{
ik(n)

t// · (r// − L//)
}

, (4.21)

where H0, R
(H)
n , and T

(H)
n are the amplitudes of the magnetic field of the

incident wave, the reflected Bragg waves, and the transmitted Bragg waves,
respectively. The magnetic field in region 2 satisfies (2.58):

KHH2z(r//) ≡
{

∂

∂x

1
ε(r//)

∂

∂x
+

∂

∂y

1
ε(r//)

∂

∂y
+

ω2

c2

}
H2z(r//)

= 0, (4.22)
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where the differential operator KH is defined by the first equality in the above
equation. Now, we introduce another boundary-value function fH(x, y):

fH(x, y)

≡ 1
L

∞∑
n=−∞

{
yT (H)

n + (L − y)(δn0H0 + R(H)
n )

}
exp (ik(n)

x x). (4.23)

Then we have

fH(x, 0) = H1z(x, 0) and fH(x, L) = H3z(x, L). (4.24)

Next, we define ψH(x, y) by

ψH(x, y) ≡ H2z(x, y) − fH(x, y). (4.25)

We thus obtain from (4.22), (4.24), and (4.25)

KHψH = −KHfH , (4.26)

ψH(x, 0) = ψH(x, L) = 0. (4.27)

Now, we expand ψH(x, y) in Fourier series as before:

ψH(x, y) =
∞∑

n=−∞

∞∑
m=1

A(H)
nm exp(ik(n)

x x) sin
mπ

L
y. (4.28)

Substituting (4.23), (4.28), and (4.14) into (4.26), we obtain

ω2

c2 A(H)
nm −

∞∑
n′=−∞

∞∑
m′=1

[(
mm′π2

L2 + k(n)
x k(n′)

x

)
κn−n′,|m−m′|

+
(

mm′π2

L2 − k(n)
x k(n′)

x

)
κn−n′,m+m′

]
A

(H)
n′m′

= −2ω2

πc2

(−1)m−1T
(H)
n + R

(H)
n + δn0H0

m

+
2πm

L2

∞∑
n′=−∞

(T (H)
n′ − R

(H)
n′ − δn′0H0)κn−n′,m

+
2k

(n)
x

π

∞∑
n′=−∞

∞∑
m′=1

k(n′)
x (κn−n′,|m−m′| − κn−n′,m+m′)

× (−1)m′−1T
(H)
n′ + R

(H)
n′ + δn′0H0

m′ . (4.29)

The remaining boundary condition is the continuity of the x component of
the electric field, whereas the continuity of the y component of the electric
displacement is equivalent to that of the z component of the magnetic field.
The former boundary condition at y = 0 and y = L leads to
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πε1

∞∑
m=1

mA(H)
nm

=
(
iε2Lk(n)

r,y + ε1

)
R(H)

n − ε1T
(H)
n + δn0H0 (iε2Lk1,y + ε1) , (4.30)

πε3

∞∑
m=1

m(−1)mA(H)
nm

= ε3R
(H)
n +

(
iε2Lk

(n)
t,y − ε3

)
T (H)

n + δn0ε3H0. (4.31)

Equations (4.29), (4.30), and (4.31) determine the unknown coefficients,
A

(H)
nm , R

(H)
n , and T

(H)
n .

4.3 Fourier Transform of the Dielectric Function

4.3.1 Square Lattice

The next task is to calculate the Fourier coefficients of the dielectric function,
κnm. First, we calculate them for the configuration shown in Fig. 4.1. In order
to do this, we extend ε−1(x, y) symmetrically to the region of negative y
(−L ≤ y ≤ 0). This extension, of course, does not make changes in ε−1(x, y)
in the positive y region (0 ≤ y ≤ L). Whether we extend it symmetrically or
antisymmetrically to the negative y region is not critical. It is thus expressed
as

1
ε(x, y)

=
1
εb

+
(

1
εa

− 1
εb

) 2∑
j=1

∞∑
l=−∞

N−1∑
l′=0

S(r// − uj//(l, l′)), (4.32)

where uj//(l, l′) is given by

u1//(l, l′) = (a1l, a2l
′ + ra + d), (4.33)

u2//(l, l′) = (a1l, −a2l
′ − ra − d), (4.34)

and

S(r//) =

⎧⎨⎩ 1 (|r//| ≤ ra),

0 (|r//| > ra).
(4.35)

Then,

κnm =
1

2a1L

∫ a1

0
dx

∫ L

−L

dy
1

ε(x, y)
exp
{

−i
(
Gnx +

mπ

L
y
)}

=
1
εb

δn0δm0 +
1

2a1L

(
1
εa

− 1
εb

) 2∑
j=1

∞∑
l=−∞

N−1∑
l′=0
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×
∫ a1

0
dx

∫ L

−L

dy S(r// − uj//(l, l′)) exp (−iGnm// · r//)

=
1
εb

δn0δm0 +
1

2a1L

(
1
εa

− 1
εb

) 2∑
j=1

N−1∑
l′=0

exp
{−iGnm//·uj//(0, l′)

}
×
∫ ∞

−∞
dx

∫ ∞

−∞
dy S(r//) exp (−iGnm// · r//), (4.36)

where Gnm// = (Gn, mπ/L). The Fourier transform of S(r//) is given by∫ ∞

−∞
dx

∫ ∞

−∞
dy S(r//) exp (−iGnm// · r//) =

2πra

Gnm
J1(Gnmra), (4.37)

where J1 is the Bessel function of the first order and

Gnm = |Gnm//| =

√
G2

n +
(mπ

L

)2
. (4.38)

We used (2.96) when we derived (4.37). Next, we calculate the summation
over j and l′ in (4.36). We define Sj (j = 1, 2) by

Sj =
N−1∑
l′=0

exp
{−iGnm//·uj//(0, l′)

}
. (4.39)

We can show easily that

S1 =

⎧⎨⎩ exp{−imπ(ra + d)/L}1−exp(−imNa2π/L)
1−exp(−ima2π/L) (m �= 0),

N (m = 0),
(4.40)

S2 = S∗
1 . (4.41)

Finally, we obtain

κnm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f
εa

+
1−f
εb

(n = 0, m = 0)

2f
( 1

εa
− 1

εb

) J1(Gnmra)
Gnmra

(n �= 0, m = 0)
2f
N

( 1
εa

− 1
εb

)
cos mπ

2

× sin[a2mNπ/(2L)]
sin[a2mπ/(2L)]

J1(Gnmra)
Gnmra

(m �= 0)

(4.42)

where f is the filling factor given by

f =
Nπr2

a

a1L
. (4.43)

When the thickness L and the distance d are commensurate with the lattice
constant a2, i.e., if

ra + d =
a2

2
, and thus, L = Na2, (4.44)
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Fig. 4.2. Top view of the geometry of the 2D crystal for the numerical calculation
of the transmission and the Bragg reflection spectra by means of the plane-wave
expansion method

the Fourier coefficeints are simplified. For this case, κnm are given by

κnm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f
εa

+
1−f
εb

(n = 0, m = 0)

2f
( 1

εa
− 1

εb

) J1(Gnmra)
Gnmra

(n �= 0, m = 0)

2f
( 1

εa
− 1

εb

)
(−1)j J1(Gnmra)

Gnmra
(m = 2jN)

0 (otherwise)

(4.45)

where j denotes a positive integer.

4.3.2 Hexagonal Lattice

When we calculate the transmittance of the hexagonal lattice or that of the
square lattice in the Γ to M direction, we have to deal with a structure such
as that shown in Fig. 4.2. For this structure, we assume that each surface
crosses the center of the rods. Let us calculate the Fourier coefficients of the
dielectric function of this structure. ε−1 is now given by

1
ε(x, y)

=
1
εb

+
(

1
εa

− 1
εb

) ∞∑
l=−∞

[
N∑

l′=−N

S(r// − v1//(l, l′))

+
N−1∑

l′=−N

S(r// − v2//(l, l′))

]
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=
∞∑

n=−∞

∞∑
m=−∞

κnm exp
[
i
(
Gnx +

mπ

L
y
)]

, (4.46)

where

v1//(l, l′) = (a1l, a2l
′), (4.47)

v2//(l, l′) = (a1(l + 1/2), −a2(l′ + 1/2)). (4.48)

Note that we extended ε−1 to the negative y region symmetrically as before.
Then the Fourier coefficient κnm is given by

κnm

=
1

2a1L

∫ a1

0
dx

∫ L

−L

dy
1

ε(x, y)
exp
{

−i
(
Gnx +

mπ

L
y
)}

=
1
εb

δn0δm0 +
1

2a1L

(
1
εa

− 1
εb

) ∞∑
l=−∞

×
[

N∑
l′=−N

∫ a1

0
dx

∫ L

−L

dy S(r// − v1//(l, l′)) exp (−iGnm// · r//)

+
N−1∑

l′=−N

∫ a1

0
dx

∫ L

−L

dy S(r// − v2//(l, l′)) exp (−iGnm// · r//)

]

=
1
εb

δn0δm0 +
1

2a1L

(
1
εa

− 1
εb

) 2∑
j=1

N−1∑
l′=−N

exp
{−iGnm//·vj//(0, l′)

}
×
∫ ∞

−∞
dx

∫ ∞

−∞
dy S(r//) exp (−iGnm// · r//)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f
εa

+
1−f
εb

(n = 0, m = 0)

f
( 1

εa
− 1

εb

){
1 + (−1)n+j

} J1(Gnmra)
Gnmra

(m = jN , and n �= 0 or j �= 0)

0 (otherwise)

(4.49)

where j is an integer. In (4.49),

f =
2πr2

a

a1a2
(4.50)

is the filling factor for the present structure, and Gnm is given by

Gnm =

√(
2nπ

a

)2

+
(mπ

L

)2
. (4.51)
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4.4 Some Examples

4.4.1 Square Lattice

An example of the transmission spectrum is presented in Fig. 4.3. This spec-
trum was calculated for the 2D square lattice whose photonic band struc-
ture was given in Fig. 3.4. We assumed that a1 = a2 = a and the thick-
ness L is commensurate with the lattice constant, i.e., (4.44) is satisfied.
Hence, we used κnm in (4.45). The following parameters were used for the
numerical calculation: εa = 1.0 (air), εb = 2.1 (methylpenthene polymer),
f = πr2

a/a2 = 0.25, and N = 16. The spectrum was calculated for the
E polarization with 2700 Fourier components for the expansion in (4.13)
(−7 ≤ n ≤ 7, 1 ≤ m ≤ 180).

Since the wave vector of the incident plane wave is parallel to the Γ -
X direction in our configuration (see Fig. 3.2), we concentrate on the band
structure on the ∆ point in Fig. 3.4(a). There are two bandgaps, one between
the first and the second A modes, and the other between the second and the
third A modes. The normalized frequency ranges of these bandgaps are listed
in Table 4.1. On the other hand, there is a frequency range where only a B
mode exists between the fourth and the fifth A modes. As was mentioned in
Sect. 3.2, the B (uncoupled) mode is not excited by the incident plane wave
because of the symmetry mismatch, and hence we expect that the transmit-
tance at this frequency range should be low. This frequency range is also
listed in Table 4.1. Corresponding to both bandgaps, two opaque frequency
ranges are clearly observed in Fig. 4.3. The spectral ranges where the calcu-
lated transmittance is less than 0.1 are compared with those of the bandgaps
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Fig. 4.3. Transmission spectrum for the E polarization in the Γ -X direction cal-
culated for the square lattice composed of 16 layers of circular rods. The following
parameters in Fig. 4.1 were used; εa = 1.0 (air), εb = 2.1 (methylpenthene poly-
mer), f = πr2

a/a2 = 0.25, ε1 = ε3 = 1.0 (air), and θ = 0 (normal incidence). The
abscissa is the normalized frequency. The corresponding band diagram is shown in
Fig. 3.4. (After [47])
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Table 4.1. Comparison of the bandgaps and the uncoupled (B) modes with the
frequency ranges where the calculated transmittance is less than 0.1. The frequency
is in units of 2πc/a. (After [47])

Polarization Bandgap Uncoupled mode Opaque range

E 0.353–0.387 0.360–0.388

0.702–0.728 0.708–0.731

0.927–0.962 0.927–0.961

H 0.354–0.401 0.356–0.404

0.728–0.742 0.728–0.743

0.923–0.943 0.923–0.948

in Table 4.1. The maximum deviation between them is 2%, and therefore
we can conclude that their correspondence is good. As for the uncoupled
mode around ωa/2πc = 0.94, the calculated transmission spectrum is not
very simple, and it has a plateau at ωa/2πc = 0.933. However, this plateau
disappears when the number of lattice layers is increased to 32. Therefore,
this plateau originates from the finite nature of the sample dimension. Then
the total width of the opaque range corresponds quite well to the region with
one uncoupled mode.

Next, we examine the interference patterns. Their structures are simple
for the lowest three A modes. We can estimate the effective refractive index
neff for these modes from the interval ∆ω of the local maxima. This is,

neff =
a

2L

(
∆ωa

2πc

)−1

. (4.52)

Similarly, it may be estimated from the dispersion curves using the relation
dω/dk = c/neff . The results are listed in Table 4.2. The values obtained by
these two methods coincide with each other quite well. Therefore we can con-
clude that the interference patterns observed in the calculated transmission
spectrum originate from the band structure and the third lowest A mode
that shows the group-velocity anomaly has a large effective refractive index.
On the other hand, the interference pattern above ωa/2πc = 0.8 is quite
complicated. In particular, there are aperiodic and singular structures in the
frequency ranges at ωa/2πc = 0.890 ∼ 0.927 and 0.962 ∼ 1.0, where two
eigenmodes of type A with mutually different wave vectors are excited at the
same time.

Now, we examine the transmission spectrum for the H polarization (Fig.
4.4). As in the case of the E polarization, the two bandgaps and the uncou-
pled (B) mode between the fourth and the fifth A modes correspond to the
respective opaque frequency ranges quite well (see Table 4.1), although the
bottom of the spectral dip around ωa/2πc = 0.93 in Fig. 4.4 is not very flat.
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Table 4.2. Effective refractive index estimated from the interference pattern (ni
eff)

and the dispersion relation (nd
eff). (After [47])

Polarization Band ni
eff nd

eff

E 1st 1.34 1.36

2nd 1.39 1.43

3rd 6.81 7.13

H 1st 1.34 1.35

2nd 1.38 1.38

3rd - 5.60

However, it becomes wide and flat when the number of lattice layers is in-
creased to 32. Hence, the origin of the incomplete dip is the finite thickness
of the assumed specimen. On the other hand, the effective refractive index
for the lowest three A modes was estimated as before, and listed in Table 4.2
except ni

eff for the third band, for which an aperiodic and singular interfer-
ence pattern is observed. The correspondence between ni

eff and nd
eff for the

first and the second bands is again quite good, and hence, we can conclude
that the interference patterns observed for the H polarization also originate
from the band structure. For the third A mode, the dispersion curve is convex
downward near the Γ point, and most of its frequency range overlaps that of
the fourth A mode, which means that there are two eigenmodes for a single
ω for the most part of the third A branch. This feature is also found for the
fourth and fifth A modes, and we find a complicated interference pattern at
the corresponding frequency range, i.e., ωa/2πc = 0.742 ∼ 1.0.
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Fig. 4.4. Transmission spectrum for the H polarization in the Γ -X direction cal-
culated for the 2D square lattice composed of 16 layers of circular air cylinders
formed in a dielectric material. The same parameters as for Fig. 4.3 were used for
numerical calculation. (After [47])
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Then, our numerical calculation for both E and H polarizations has shown
that the singular interference appears when the incident light excites two
eigenmodes, and otherwise the interference pattern is quite normal and the
effective refractive index estimated from it corresponds quite well to the pho-
tonic band structure.

4.4.2 Hexagonal Lattice

Figure 4.5 is another example of the transmission spectra that were calculated
for the hexagonal lattice whose band diagrams and the symmetry of the
eigenmodes are presented in Fig. 3.7. The spectra was calculated for the
incident wave propagated in the Γ -X direction (see Fig. 3.6). The following
parameters in Fig. 4.2 were used for the numerical calculation; εa = 1.0 (air),
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Fig. 4.5. Transmittance (right-hand side) and the dispersion relation (left-hand
side) of a hexagonal lattice for (a) the E polarization and (b) the H polarization in
the Γ -X direction. The ordinate is the normalized frequency. On the left-hand side
of these figures, solid lines represent symmetric modes and dashed lines represent
antisymmetric modes. The latter cannot be excited by the incident plane wave
because of the mismatching of their spatial symmetry, and so they do not contribute
to the light transmission. Opaque frequency regions are clearly observed in the
transmission spectrum where no symmetric mode exists. (After [49])
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εb = 2.72 (PbO glass), a1 = a, a2 =
√

3a, f = 2πr2
a/

√
3a2 = 0.65, N = 16,

ε1 = ε3 = 1.0 (air), and θ = 0 (normal incidence).
Now, we examine the calculated transmittance together with the disper-

sion relation in the Γ -X direction, which are shown in Fig. 4.5(a) (the E
polarization) and Fig. 4.5(b) (the H polarization). The right-hand side of
these figures shows the transmittance, while the left-hand side shows the
dispersion relation, where solid lines and dashed lines denote the A and B
modes, respectively. The antisymmetric B modes cannot be excited by the
incident plane wave because of the mismatching of their spatial symmetry,
and so they do not contribute to the light transmission as we mentioned
previously. Opaque frequency regions are clearly observed in the transmis-
sion spectra for both polarizations where no symmetric A mode exists. This
implies that 16 lattice layers are enough to reproduce the intrinsic optical
properties of the specimen.

4.5 Refraction Law for Photonic Crystals

In this section, we examine how an incoming plane wave is refracted at the
surface of the photonic crystal. Before we treat the case of the photonic
crystal, we consider the refraction at the interface of two uniform materials
with isotropic refractive indices, η1 and η2. We assume that a plane wave
with an angular frequency ω is incident on the interface at an angle θ1 (see
Fig. 4.6(a)). We denote the wavelength of the incident wave in vacuum by
λ0. Then its wavelength in the materials λi is given by

λi =
λ0

ηi
. (4.53)

Snell’s law tells us that the angles of reflection θ′
1 and refraction θ2 are given

by,

θ′
1 = θ1, (4.54)

η1 sin θ1 = η2 sin θ2. (4.55)

These relations are derived from the fact that the equi-phase planes, which
are drawn with fine lines in Fig. 4.6, of the relevant waves should have the
same spacing along the interface.

Let us see this phenomenon from a slightly different point of view. Be-
cause the system that we are dealing with has translational symmetry in the
direction parallel to the interface, the wave vector in that direction should be
conserved when the refraction and the reflection take place. We denote the
wave vectors of the incident, reflected, and refracted plane waves by k1, k′

1,
and k2, respectively. Their amplitudes are given by

|k1| = |k′
1| =

η1ω

c
, (4.56)
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λ 1

2λ

θ 1

θ 2

θ’1
k1

2k

θ 1

θ 2

θ’1

(a) (b)

k = 
c

η2 ω

Fig. 4.6. Schematic illustration of the refraction at the surface of the uniform
material.

|k2| =
η2ω

c
. (4.57)

The conservation of their parallel components leads to
η1ω

c
sin θ1 =

η1ω

c
sin θ′

1 =
η2ω

c
sin θ2. (4.58)

Thus, the same relations as (4.53) and (4.54) are obtained. The direction
in which the radiational energy of the plane wave flows coincides with the
direction of its wave vector. Let us examine this point somewhat rigorously.
As we showed in Sect. 2.5, the energy velocity is equal to the group velocity
in the photonic crystals. This is also true for the uniform materials, since
we can regard the latter as a special case of the former without the spatial
modification of the dielectric constant. For the present problem, the group
velocity, and thus the energy velocity of the incident and refracted waves, v1
and v2 are given by

vi =
∂ω

∂ki
=

c

ηi
k̂i, (4.59)

where k̂i denotes the unit vector parallel to ki. Hence, the direction of the
energy flow coincides with the direction of the wave vector. Moreover, its
direction is perpendicular to the equi-energy surface that is given by

ω = const., (4.60)

which is denoted by a hemicircle in Fig. 4.6(b). With these facts in mind, let
us proceed to the case of the photonic crystal.
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Fig. 4.7. Schematic illustration of refraction at the surface of the photonic crystal.

We assume that a plane wave with an angular frequency ω and a wave
vector k1 is incident on the surface of the photonic crystal at an angle θ1 (Fig.
4.7(a)). The parallel component of the wave vector should be conserved, with
allowance for the difference of a multiple of 2π/a, as before. However, the equi-
energy surface of the photonic crystal is not at all a spherical surface, and this
leads to a marked difference. The wave vector of the refracted wave has its
end point on the equi-energy surface given by the band structure, ω = ω(k2),
which is drawn with a solid curve in Fig. 4.7. This condition determines the
wave vector of the refracted wave. Then, the propagation direction, that is the
direction of the energy flow, which is denoted by an arrow, is perpendicular
to the equi-energy surface and parallel to the group velocity of the refracted
wave. Sometimes a very curious phenomenon occurs because of the complex
dependence of ω on k2. For example, θ2 in Fig. 4.7(b) is larger than that
in Fig. 4.7(a), although θ1 is smaller! Extraordinary angular dependence as
well as frequency dependence in the refraction phenomena of the photonic
crystals were observed and analyzed by Kosaka et al. [64, 65].
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In this chapter, we will derive a general formula for the optical response of
photonic crystals by means of the Green’s function given in Sect. 2.8. Then,
it will be applied to four typical optical processes, i.e., dipole radiation, stim-
ulated emission, sum-frequency generation, and free induction decay. This
method can be readily extended to other kinds of nonlinear and coherent
optical processes.

5.1 Solutions of Inhomogeneous Equations

We start from the following Maxwell equations:

∇ · {ε0ε(r)E(r, t) + P ex(r, t)} = 0, (5.1)

∇ · H(r, t) = 0, (5.2)

∇ × E(r, t) = −µ0
∂

∂t
H(r, t), (5.3)

∇ × H(r, t) =
∂

∂t
{ε0ε(r)E(r, t) + P ex(r, t)} . (5.4)

The difference between this set of equations and (2.11)–(2.14) is the presence
of P ex(r, t), which is an extrinsic polarization field that is not described by
the dielectric function ε(r). The nonlinear polarization of the photonic crystal
and the dipole moments of impurity atoms induced by external fields are
examples of such a polarization field. The magnetic permeability is assumed
to be equal to that in free space as before. When we eliminate the magnetic
field H(r, t) in (5.3) and (5.4), we obtain the inhomogeneous wave equation
for Q(r, t) defined by (2.132):

−
(

1
c2

∂2

∂t2
+ H

)
Q(r, t) =

1
c2ε0

√
ε(r)

∂2

∂t2
P ex(r, t), (5.5)

where the differential operator H is defined by (2.133).
We can obtain the solution of (5.5) as the convolution integral of Green’s

function given in (2.167) and the inhomogeneous term:
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Q(r, t) =
∫

V

dr′
∫ ∞

−∞
dt′G

↔
(r, r′, t − t′)

1
c2ε0

√
ε(r′)

∂2

∂t′2
P ex(r′, t′), (5.6)

where V is the volume of the photonic crystal. It can be easily shown by
using (2.162) that Q(r, t) given by this equation satisfies (5.5). Substituting
(2.167) into (5.6), we obtain

Q(r, t)

= − 1
ε0V

∑
kn

∫
V

dr′
∫ t

−∞
dt′
{

sin ω
(T)
kn (t − t′)

ω
(T)
kn

Q
(T)
kn (r) ⊗ Q

(T)∗
kn (r′)

+(t − t′)Q(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

}
1√
ε(r′)

∂2

∂t′2
P ex(r′, t′). (5.7)

In this equation, we assume that the extrinsic polarization P ex(r, t) was
introduced adiabatically, i.e., P ex(r,−∞) = 0. When we carry out the t′-
integral by parts, we obtain

Q(r, t)

= − 1
ε0V

∑
kn

∫
V

dr′
∫ t

−∞
dt′
{

cos ω
(T)
kn (t − t′) Q

(T)
kn (r) ⊗ Q

(T)∗
kn (r′)

+Q
(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

}
1√
ε(r′)

∂

∂t′
P ex(r′, t′). (5.8)

When we carry out the partial integration again, we have

Q(r, t) = − 1
ε0V

∑
kn

∫
V

dr′
{

Q
(T)
kn (r) ⊗ Q

(T)∗
kn (r′)

+Q
(L)
kn (r) ⊗ Q

(L)∗
kn (r′)

}
1√
ε(r′)

P ex(r′, t)

+
1

ε0V

∑
kn

∫
V

dr′
∫ t

−∞
dt′
{

ω
(T)
kn sin ω

(T)
kn (t − t′)

×Q
(T)
kn (r) ⊗ Q

(T)∗
kn (r′)

}
1√
ε(r′)

P ex(r′, t′)

= −P ex(r, t)
ε0
√

ε(r)
+

1
ε0V

∑
kn

Q
(T)
kn (r)

∫
V

dr′
∫ t

−∞
dt′

×Q
(T)∗
kn (r′) · P ex(r′, t′)√

ε(r′)
ω

(T)
kn sin ω

(T)
kn (t − t′), (5.9)

where we used (2.146). Finally, we obtain
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E(r, t) +
P ex(r, t)
ε0ε(r)

=
1

ε0V

∑
kn

E
(T)
kn (r)

∫
dr′
∫ t

−∞
dt′E(T)∗

kn (r′) · P ex(r′, t′)

×ω
(T)
kn sin ω

(T)
kn (t − t′). (5.10)

Here, we should note that (a) the role of the quasi-longitudinal modes that
appear in the explicit expression of Green’s function (2.167) is only to re-
construct the extrinsic polarization field and they do not contribute to the
propagating radiation field, i.e., to the right-hand side of (5.10), and that (b)
(5.1) holds, as it should, because of (2.144).

In the case of the E polarization in the 2D crystal, the wave equation
with the extrinsic polarization Pz,ex is given by

−
(

1
c2

∂2

∂t2
+ H(2)

)
Qz(r//, t) =

1
c2ε0

√
ε(r//)

∂2

∂t2
Pz,ex(r//, t), (5.11)

where Qz and H(2) are defined by (2.157) and (2.158). The solution of (5.11)
is given by the convolution integral of Green’s function G(2) in (2.172) and
the inhomogeneous term:

Qz(r//, t)

=
∫

V (2)
dr′

//

∫ ∞

−∞
dt′G(2)(r//, r

′
//, t − t′)

1

c2ε0

√
ε(r′

//)

∂2

∂t2
Pz,ex(r′

//, t
′)

= − 1
ε0V (2)

∑
k//n

Qz,k//n(r//)
∫

V (2)
dr′

//

∫ t

−∞
dt′

×
sin ω

(E)
k//n(t − t′)

ω
(E)
k//n

1√
ε(r′)

∂2

∂t2
Pz,ex(r′

//, t
′). (5.12)

When we perform the partial integration twice, we have

Qz(r//, t)

= −Pz,ex(r//, t)
ε0
√

ε(r//)
+

1
ε0V (2)

∑
k//n

Qz,k//n(r//)
∫

V (2)
dr′

//

∫ t

−∞
dt′

×
Q∗

z,k//n(r′
//)Pz,ex(r′

//, t
′)√

ε(r′
//)

ω
(E)
k//n sin ω

(E)
k//n(t − t′), (5.13)

where we have used the completeness of the eigenfunctions, (2.161). Finally,
we obtain
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Ez(r//, t) +
Pz,ex(r//, t)

ε0ε(r//)

=
1

ε0V (2)

∑
k//n

Ez,k//n(r//)
∫

V (2)
dr′

//

∫ t

−∞
dt′E∗

z,k//n(r′
//)Pz,ex(r′

//, t
′)

×ω
(E)
k//n sin ω

(E)
k//n(t − t′). (5.14)

5.2 Dipole Radiation

In this section, we will deal with the radiation from an oscillating dipole
moment. Suppose that there is a dipole moment oscillating at the frequency
ω located at position r0 in the photonic crystal, and let P d(r, t) be the
external polarization of this problem:

P d(r, t) = d δ(r − r0)e(−iω+δ)t. (5.15)

Here, d is the magnitude of the dipole moment and δ is a positive infinites-
imal. The function eδt was introduced to assure the adiabatic switching of
the extrinsic polarization. Equation (5.15) represents the positive frequency
part of the dipole moment and the actual real field is given by the sum of
P d(r, t) and its complex conjugate. By substituting P d(r, t) for P ex(r, t) in
(5.10), we obtain

Ed(r, t) +
P d(r, t)
ε0ε(r)

=
e−iωt

2ε0V

∑
kn

ω
(T)
kn E

(T)
kn (r)

{
E

(T)∗
kn (r0) · d

}

×
(

1

ω + ω
(T)
kn + iδ

− 1

ω − ω
(T)
kn + iδ

)
. (5.16)

The radiation of the electromagnetic energy is described by Poynting’s vector
S that is given by the vector product of the E and H fields. Here, we should
note that the actual real fields are given by the sum of E and E∗, and that
of H and H∗, respectively. Hence,

S(r, t) = {E(r, t) + E∗(r, t)} × {H(r, t) + H∗(r, t)} . (5.17)

The time-averaged Poynting vector S(r, t) is thus given by

S(r, t) = {Ed(r, t) + E∗
d(r, t)} × {Hd(r, t) + H∗

d(r, t)}
=
{
Ed(r, t) × H∗

d(r, t) + E∗
d(r, t) × Hd(r, t)

}
, (5.18)

where the magnetic field Hd(r, t) is given by

Hd(r, t) =
1

iωµ0
∇ × Ed(r, t). (5.19)
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Note that both Ed and Hd are proportional to e−iωt, and thus, S(r, t) in
(5.18) does not depend on time. From (5.4) and (5.19), we have

∇ · S(r, t) =
[
H∗

d(r, t) · {∇ × Ed(r, t)
}− Ed(r, t) · {∇ × H∗

d(r, t)
}

+Hd(r, t) · {∇ × E∗
d(r, t)

}− E∗
d(r, t) · {∇ × Hd(r, t)

}]
= iω

{
E∗

d(r, t) · P d(r, t) − Ed(r, t) · P ∗
d(r, t)

}
. (5.20)

When we substitute (5.16) into (5.20) and use the following relation,

1
ω − ω0 ± iδ

=
P

ω − ω0
∓ πiδ(ω − ω0), (5.21)

where P denotes Cauchy’s principal value, we obtain

∇ · S(r, t) =
πω2

ε0V
δ(r − r0)

∑
kn

∣∣∣d · E
(T)∗
kn (r0)

∣∣∣2 δ
(
ω − ω

(T)
kn

)
. (5.22)

When we denote a small volume which includes r0 by V1 and its surface by
S1, the radiational energy U emitted per unit time by the oscillating dipole is
given by the surface integral of the normal component of Poynting’s vector,
Sn, which can be transformed into a volume integral by means of Gauss’s
theorem:

U =
∫

S1

dS Sn(r, t) =
∫

V1

dr ∇ · S(r, t)

=
πω2

ε0V

∑
kn

∣∣∣d · E
(T)∗
kn (r0)

∣∣∣2 δ
(
ω − ω

(T)
kn

)
. (5.23)

Because of the spatial variation of E
(T)
kn (r), the radiated power generally

dependes on the position of the oscillationg dipole moment.
We make an estimation of U by considering the density of states of the

radiational eigenmodes of the photonic crystal, which we denote by D(ω).
The number of eigenmodes whose eigenfrequency is in the interval [ω, ω+dω]

is given by D(ω)dω. When we denote the averaged value of
∣∣∣d · E

(T)∗
kn (r0)

∣∣∣2
by an overline and convert the sum over k and n into an integral over the
eigen-angular frequency, we obtain

U � πω2

ε0V

∣∣d · E(T)∗(r0)
∣∣2 ∫ ∞

0
dω′D(ω′)δ(ω − ω′)

=
πω2

ε0V

∣∣d · E(T)∗(r0)
∣∣2D(ω). (5.24)

The energy radiated by the oscillating dipole is thus approximately propor-
tional to the density of states. If D(ω) is equal to zero in a certain frequency
range, no dipole radiation takes place. The discussion given above is based
on classical electromagnetic theory. We can also derive the same result by
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quantum mechanics, and we can conclude that no spontaneous emission of
photons takes place when D(ω) = 0.

In free space, the dispersion relation is

ω = ck. (5.25)

Hence, the number of eigenmodes in the volume V with eigenfrequencies less
than ω0, N(ω0), is given by

N(ω0) = 2 ×
∑

ck<ω0

1 = 2 × V

(2π)3

∫
k<ω0/c

dk

=
ω3

0V

3π2c3 . (5.26)

We took into account that there are two polarizations for each k vector. D(ω)
is thus given by

D(ω) =
∂N(ω)

∂ω
=

ω2V

π2c3 . (5.27)

In free space, the eigenmodes of the radiational field are plane waves:

E
(T)
k (r) = E0eik·r. (5.28)

The magnitude of E0 is determined by the normalization condition, (2.145).
For the present case, it is

|E0|2 = 1. (5.29)

Because the angle between d and E0 distributes with equal probability,∣∣d · E(T)∗(r0)
∣∣2 =

1
3
|d|2 |E0|2 =

|d|2
3

. (5.30)

Hence, we obtain

U =
|d|2ω4

3πε0c3 . (5.31)

The probability P to emit a photon with energy h̄ω in unit time is thus
obtained as

P =
|d|2ω3

3πε0h̄c3 ∝ ωD(ω), (5.32)

where d should be regarded as the transition dipole moment. This formula
agrees with that mentioned in Chap. 1.

Now, we consider the case where there is a dissipation caused by a small
non-zero imaginary part of the dielectric constant. In this case, all eigenmodes
have a finite lifetime. This can be taken into account by replacing δ by a finite
positive number γ

(T)
kn in the denominators in (2.166), and hence, in (5.16),

since this replacement leads to

G
↔

(r, r′, t) → 0 (t → ∞), (5.33)
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which is equivalent to saying that all eigenmodes vanish after a long period.
In this case, we have

Ed � −P d(r, t)
ε0ε(r)

− e−iωt

2ε0V

∑
kn

ω
(T)
kn E

(T)
kn (r)

{
E

(T)∗
kn (r0) · d

}
ω − ω

(T)
kn + iγ(T)

kn

, (5.34)

U � ω

ε0V

∑
kn

ω
(T)
kn γ

(T)
kn

∣∣∣E(T)∗
kn (r0) · d

∣∣∣2(
ω − ω

(T)
kn

)2
+ γ

(T)2
kn

. (5.35)

In (5.34), we neglected the contribution from non-resonant terms. These for-
mulae will be used to investigate the localized defect modes in Chap. 6 and
the photonic band structure with frequency-dependent dielectric constants
in Chap. 7.

5.3 Stimulated Emission

Next, we consider stimulated emission.1 Assume that impurity atoms with a
population inversion are distributed in the photonic crystal. We denote their
number density by �(r) and their polarizability by α. When an eigenmode
E

(T)
kn is propagated in the crystal, it induces an extrinsic polarization field

given by

P
(1)
st (r, t) = α�(r)E(T)

kn (r) exp{(−iω + δ)t}. (5.36)

ω will be set equal to ω
(T)
kn at the end of the calculation in order to avoid

an unphysical divergence. We assume that α�(r) is sufficiently smaller than
ε0ε(r) to justify the following perturbative calculation. The positive infinites-
imal, δ, was introduced to assure adiabatic switching of the source term as
before. The imaginary part of α is negative for atoms with population in-
version, and it leads to light amplification, as will be shown below. If it is
positive, it leads to light absorption. We assume the same spatial periodic-
ity for �(r) as ε(r). We also assume for simplicity that the lattice is simple
cubic with a lattice constant a. Hence, V = NxNyNza

3, where Nx, Ny, Nz

are positive integers that denote the number of unit cells in each direction
included in the crystal volume. In order to calculate the light amplification
factor in a unit length, we further assume that �(r) is non-zero only in the
region 0 ≤ z ≤ anz ≡ l, where nz is a positive integer (Fig. 5.1).

When we substitute P
(1)
st for P ex in (5.10), the propagating part of the

induced electric field, E(1), is obtained:
1 The same problem can be treated by photonic band calculation assuming an

optical gain. See [66] and [67].



106 5. Optical Response of Photonic Crystals

z

y

x

Ekn
(T)

αρ(r)

Fig. 5.1. Geometry for the analysis of stimulated emission. The lattice is assumed
to be simple cubic with a lattice constant a. The crystal volume is a3NxNyNz.
Impurity atoms with population inversion are distributed with the number density
�(r) in the spatial region 0 ≤ z ≤ anz ≡ l

E(1)(r, t)

=
αe(−iω+δ)t

2ε0V

∑
k′n′

ω
(T)
k′n′E

(T)
k′n′(r)

∫
V

dr′�(r′)E(T)∗
k′n′ (r′) · E

(T)
kn (r′)

×
(

1

ω + ω
(T)
k′n′ + iδ

− 1

ω − ω
(T)
k′n′ + iδ

)
. (5.37)

When we use (2.22) and (2.24), we have∫
V

dr′�(r′)E(T)∗
k′n′ (r′) · E

(T)
kn (r′)

=
Nx−1∑
j1=0

Ny−1∑
j2=0

nz−1∑
j3=0

∫
V0

dr′�(r′)u(T)∗
k′n′ (r′) · u

(T)
kn (r′)

× exp{i(k − k′) · (r′ + aj)}, (5.38)

where j = (j1, j2, j3) and V0 is the volume of the unit cell. Because of the
periodic boundary condition for E

(T)
kn and E

(T)
k′n′ , akxNx, akyNy, ak′

xNx, and
ak′

yNy are all multiples of 2π. Hence, the summations over j1 and j2 in (5.38)
are equal to zero unless kx = k′

x and ky = k′
y. We thus have

Nx−1∑
j1=0

Ny−1∑
j2=0

nz−1∑
j3=0

exp{ia(k − k′) · j}

= NxNyδkxk′
x
δkyk′

y

1 − exp(ianz∆kz)
1 − exp(ia∆kz)
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= NxNyδkxk′
x
δkyk′

y
exp{ia(nz − 1)∆kz/2} sin(anz∆kz/2)

sin(a∆kz/2)
, (5.39)

where

∆kz = kz − k′
z. (5.40)

If nz is sufficiently large, the factor given by the ratio of the two sine functions
in (5.39) is sharply peaked at ∆kz = 0 with the maximum value of nz. If we
take into consideration that the dominant contribution in (5.37) is given by
those eigenmodes which have eigenfrequencies near to ω, we can conclude
that the main contribution comes from modes with k′

z � kz and n′ = n in
the summation in (5.37) unless an accidental degeneracy of eigenfrequencies
takes place.

We define the effective number density of the impurity atoms with respect
to E

(T)
kn by

F1(kn) ≡ 1
V0

∫
V0

dr�(r)
∣∣∣E(T)

kn (r)
∣∣∣2 . (5.41)

We thus obtain

E(1)(r, t) � αω
(T)
kn NxNyV0F1(kn)

2ε0V
E

(T)
kn (r)e(−iω+δ)t

×
∑
k′

z

(
1

ω + ω
(T)
k′n + iδ

− 1

ω − ω
(T)
k′n + iδ

)

× exp{ia(nz − 1)∆kz/2} sin(anz∆kz/2)
sin(a∆kz/2)

. (5.42)

In this equation, k′
x = kx and k′

y = ky. Now, we denote the group velocity of

E
(T)
kn in the z direction by

vg(kn) =
∂ω

(T)
kn

∂kz
. (5.43)

We convert the summation over k′
z in (5.42) into integration and change the

variable from k′
z to ω

(T)
k′n:

E(1)(r, t) � −αω
(T)
kn NxNynzV0F1(kn)

2ε0V
E

(T)
kn (r)e(−iω+δ)t

×aNz

2π

∫
dω

(T)
k′n

vg(k′n)

{
P

ω − ω
(T)
k′n

− πiδ
(
ω − ω

(T)
k′n

)}
, (5.44)

where we neglected the non-resonant term, took ∆kz = 0 in the integrand,
and used (5.21). Because the frequency range of the nth mode and the fre-
quency dependence of its group velocity are unknown, we have to make a
reasonable approximation for the integral in (5.44). We make an approxima-
tion that is exact for uniform materials, i.e., when the spatial modulation of
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the dielectric constant is absent. As will be shown later, this approximation
is given by twice the imaginary part of the integral. We thus obtain

E(1)(r, t) � βknl E
(T)
kn (r) exp{(−iω + δ)t}, (5.45)

where βkn is defined as

βkn =
iαω

(T)
kn F1(kn)

2ε0vg(kn)
. (5.46)

The induced electric field E(1)(r, t) then makes another polarization field:

P
(2)
st (r, t) = α�(r)E(1)(r, t). (5.47)

The induced field of the second order, E(2)(r, t), can be calculated in the
same way:

E(2)(r, t) � 1
2
β2

knl2E
(T)
kn (r) exp{(−iω + δ)t}, (5.48)

where a factor 1/2 was introduced by taking into account that E(1) increases
linearly with the optical path length. In general, a factor 1/j! should be
introduced for the jth order term. The total field that contains the induced
fields to the infinite order and the original field is thus given by

E(r, t) =
∞∑

j=0

1
j!

βj
knljE

(T)
kn (r) exp

(
−iω(T)

kn t
)

= E
(T)
kn (r) exp

(
βknl − iω(T)

kn t
)

. (5.49)

Hence, the real part of βkn,

Re [βkn] = − Im[α]ω(T)
kn F1(kn)

2ε0vg(kn)
, (5.50)

is the amplitude amplification factor in the unit length. Hence, there is an
enhancement effect when the group velocity of the eigenmode is small. In
particular, the group-velocity anomaly that is peculiar to 2D and 3D crystals
leads to a fairly large enhancement of stimulated emission. The enhancement
originates from the long interaction time between the radiation field and
the matter system due to the small group velocity [19]. The enhancement
of stimulated emission sometimes leads to a large reduction of the lasing
threshold. This point will be discussed in detail in Chap. 9.

β for Uniform Materials

For uniform materials, β can be evaluated rigorously. We will show here that
the exact value coincides with the expression given by (5.46). We assume
that the relative dielectric constant ε and the number density of the impurity
atoms � do not depend on r. The polarization field due to the impurity atoms
can be included in the new dielectric constant, εst:
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ε0εst = ε0ε + α�. (5.51)

We assume that the second term on the right-hand side is considerably smaller
than the first term. The wave vector of a plane wave with angular frequency
ω is thus given by

k =
√

εstω

c
�
(√

ε +
α�

2ε0
√

ε

)
ω

c
. (5.52)

The group velocity is

vg =
∂ω

∂k
� c√

ε
. (5.53)

β is thus given by

β =
iα�ω

2ε0
√

εc
=

iα�ω

2ε0εvg
. (5.54)

On the other hand, the eigenmode in the uniform material is a plane wave:

E
(T)
k (r) = E0eik·r. (5.55)

Since the normalization condition is

ε|E0|2 = 1, (5.56)

F1 is given by

F1(k) = �|E0|2 =
�

ε
. (5.57)

From (5.46), we have

β =
iαω

2ε0vg
× �

ε
, (5.58)

which agrees with (5.54).

5.4 Sum-Frequency Generation

5.4.1 Three-Dimensional Case

In this section, we will deal with sum-frequency generation as a typical ex-
ample of nonlinear optical phenomena. We assume that the photonic crystal
is composed of materials with second-order nonlinearity. Then, we introduce
a position-dependent second-order susceptibility tensor χ↔(2)(r) that has the
same spatial periodicity as ε(r). We assume for simplicity, as in the previ-
ous section, that the lattice is simple cubic. In order to clarify the phase-
matching condition, we further assume that χ↔(2)(r) is non-zero only in the
region 0 ≤ z ≤ anz, where nz is a positive integer. We will examine the
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generation of the sum-frequency component when two eigenmodes, E
(T)
k1n1

(r)

and E
(T)
k2n2

(r), are propagated in the crystal.
The nonlinear polarization P NL(r, t) induced by the two electric fields

acts as the external polarization P ex in (5.10), which is given by the next
equation for the present problem:

P NL(r, t) =
1
2
A2χ↔(2)(r) : E

(T)
k1n1

(r)E(T)
k2n2

(r)

× exp
{(

−iω(T)
k1n1

− iω(T)
k2n2

+ δ
)

t
}

. (5.59)

In this equation A denotes the amplitude of the two eigenmodes, where we
assume that the two modes have the same amplitude for simplicity, and the
symbol “:” denotes the product of χ↔(2)(r) with E

(T)
k1n1

(r) and E
(T)
k2n2

(r) as
a tensor. Note that we wrote the positive frequency part of the polarization
field. The actual real field is given by the sum of the above field and its
complex conjugate. The same holds for the electric field derived below.

Substituting P NL(r, t) for P ex(r, t) in (5.10), we obtain the sum-frequency
component of the electric field. The propagating part of the induced field,
ENL(r, t), can be calculated like (5.37). When we define the effective nonlin-
ear susceptibility with respect to the relevant fields, F2, by

F2(kn, k1n1,k2n2)

=
1
V0

∫
V0

drE
(T)∗
kn (r) · χ↔(2)(r) : E

(T)
k1n1

(r)E(T)
k2n2

(r), (5.60)

ENL(r, t) is given by

ENL(r, t)

=
A2V0 exp

{(
−iω(T)

k1n1
− iω(T)

k2n2
+ δ
)

t
}

4ε0V

∑
kn

ω
(T)
kn E

(T)
kn (r)

×
Nx−1∑
j1=0

Ny−1∑
j2=0

nz−1∑
j3=0

exp {ia (k1 + k2 − k) · j} F2(kn, k1n1,k2n2)

×
(

1

ω
(T)
k1n1

+ ω
(T)
k2n2

+ ω
(T)
kn + iδ

− 1

ω
(T)
k1n1

+ ω
(T)
k2n2

− ω
(T)
kn + iδ

)
. (5.61)

The summation over j can be calculated like (5.39):

Nx−1∑
j1=0

Ny−1∑
j2=0

nz−1∑
j3=0

exp
{
ia
(
k1 + k2 − k

) · j
}

= NxNyδkx,k1x+k2xδky,k1y+k2y

× exp{ia(nz − 1)∆kz/2} sin(anz∆kz/2)
sin(a∆kz/2)

, (5.62)
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where

∆kz = k1z + k2z − kz. (5.63)

δ is Kronecker’s delta with allowance for the Umklapp process, that is,

δkk′ =

⎧⎨⎩ 1 (k′ = k + 2πj/a, where j is an integer),

0 (otherwise).
(5.64)

The function
sin(anz∆kz/2)
sin(a∆kz/2)

(5.65)

has a sharp peak at

∆kz =
2πj

a
, (5.66)

if nz is sufficiently large. As a result, the summation in (5.62) has a large
value only when

k = k1 + k2 + G, (5.67)

where G is a reciprocal lattice vector. We say that the phase-matching con-
dition is satisfied when crystalline momentum is conserved. In a uniform
material, the phase-matching condition is equivalent to the conservation of
momentum, i.e., it is given by

k = k1 + k2. (5.68)

This is a special case of (5.67) for which G = 0. In photonic crystals, G is
arbitrary, and therefore, the phase-matching condition is relaxed considerably
compared with uniform materials. Generally speaking, the phase-matching is
much easier for the former than the latter.

For the summation over k and n in (5.61), we make the same approxima-
tion as we did for (5.42). We thus set(

1

ω
(T)
k1n1

+ ω
(T)
k2n2

+ ω
(T)
kn + iδ

− 1

ω
(T)
k1n1

+ ω
(T)
k2n2

− ω
(T)
kn + iδ

)
→ 2πiδ

(
ω

(T)
k1n1

+ ω
(T)
k2n2

− ω
(T)
kn

)
. (5.69)

We assume for simplicity that there is only one eigenmode, E
(T)
kn

, for which

kx = k1x + k2x +
2πp

a
(p : integer), (5.70)

ky = k1y + k2y +
2πq

a
(q : integer), (5.71)

kz ≈ k1z + k2z +
2πj

a
, (5.72)
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ω
(T)
kn

= ωk1n1 + ωk2n2 . (5.73)

When we convert the summation over kz in (5.61) to the integration and
change the variable from kz to ωkn, we obtain

ENL(r, t) �
iaA2ω

(T)
kn

F2(kn, k1n1,k2n2)

4ε0vg(kn)

×E
(T)
kn

exp
(
−iω(T)

kn
t
)

× exp
{
ia(nz − 1)∆kz/2

} sin anz∆kz/2
sin a∆kz/2

, (5.74)

where

∆kz = k1z + k2z − kz, (5.75)

and vg(kn) is the group velocity in the z direction. If there is more than one
mode, ENL is given by the sum of the contribution from them. The intensity
of the electric field of the sum frequency is given by

|ENL(r, t)|2 �
a2A4ω

(T)2
kn

∣∣F2(kn, k1n1,k2n2)
∣∣2

16ε2
0v

2
g(kn)

×
∣∣∣E(T)

kn

∣∣∣2 sin2 anz∆kz/2
sin2 a∆kz/2

. (5.76)

Here, we should note that (1) the field intensity (the Poynting vector) is pro-
portional to v−2

g (v−1
g ), and thus we can expect its enhancement at the pho-

tonic band edges where vg tends to zero and for the group-velocity anomaly,
(2) the phase-matching condition is, as we mentioned before, satisfied when
∆kz = 0 , i.e., when the crystalline momentum is conserved, and (3) the
effective nonlinear susceptibility F2(kn, k1n1,k2n2) may vanish for partic-
ular combinations of k1n1 and k2n2 in highly symmetric photonic crystals
because of the symmetry of the relevant wave functions, and this leads to an
additional selection rule besides that due to the crystallographic symmetry of
the host crystal. We should also note that these three features are common
to other nonlinear optical processes in the photonic crystals for which the
phase-matching condition is imposed by the momentum conservation law.

5.4.2 Two-Dimensional Case

In this section, we derive the expression for sum-frequency generation in the
2D square lattice. Some numerical results will be presented in the next sec-
tion. We assume that the crystal is composed of materials with second-order
nonlinearity as before. We introduce the position-dependent second-order sus-
ceptibility χ(2)(r//) that has the same spatial periodicity as ε(r//). We also
assume that the wave vectors of two incident waves, which are eigenmodes of
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the 2D photonic crystal, lie in the x-y plane. Among the two polarizations,
we will deal with the E polarization in this section. As for the H polarization,
the full vector treatment given in the previous section is appropriate, since
it has two components of the electric field.

The z component of the nonlinear polarization Pz,NL is given by

Pz,NL(r//, t) =
1
2
A2χ(2)(r//)Ez,k1//n1(r//)Ez,k2//n2(r//)

× exp
{(

−iω(E)
k1//n1

− iω(E)
k2//n2

+ δ
)

t
}

. (5.77)

Generally speaking, χ(2) is a tensor of rank 3, and the x and y components
of the polarization field, Px,NL and Py,NL, may be non-zero. However, we
assume that they are equal to zero for simplicity. This situation can be real-
ized if we use, for example, a nonlinear crystal of 3m-C3v symmetry such as
LiNbO3 with its crystalline c axis parallel to the z axis. Then, the E polariza-
tion corresponds to the extraordinary wave in this uniaxial crystal. We will
omit the suffix z hereafter. In order to clarify the phase-matching condition,
we further assume that χ(2)(r//) is non-zero only in the region 0 ≤ y ≤ any,
where ny is a positive integer.

The effective nonlinear susceptibility for the 2D crystal, F
(2)
2 is defined

by

F
(2)
2 (k//n, k1//n1,k2//n2)

=
1

V
(2)
0

∫
V

(2)
0

dr//χ
(2)(r//)E∗

k//n(r//)Ek1//n1(r//)Ek2//n2(r//), (5.78)

where V
(2)
0 denotes the volume of the 2D unit cell. Following the same proce-

dure as we did for the 3D case, we obtain the propagating part of the induced
electric field, ENL(r//, t):

ENL(r//, t) �
iaA2ω

(E)
k//n

F
(2)
2 (k//n, k1//n1k2//n2)

4ε0vg(k//n)

×Ek//n(r) exp
(

−iω(E)
k//n

t

)
× exp

{
ia(ny − 1)∆ky/2

} sin
(
any∆ky/2

)
sin
(
a∆ky/2

) , (5.79)

where

kx = k1x + k2x +
2πj

a
(j : integer), (5.80)

ω
(E)
k//n

= ω
(E)
k1//n1

+ ω
(E)
k2//n2

, (5.81)

∆ky = k1y + k2y − ky, (5.82)
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and vg(k//n) is the group velocity in the y direction. We assumed for sim-
plicity that there is only one eigenmode that satisfied (5.80) and (5.81). The
intensity of the induced nonlinear electric field is thus given by

|ENL(r//, t)|2 �
a2A4ω

(E)2
k//n

∣∣∣Ek//n(r//)
∣∣∣2

16ε2
0v

2
g(k//n)

× sin2(any∆ky/2)
sin2(a∆ky/2)

|F (2)
2 (k//n, k1//n1,k2//n2)|2. (5.83)

ENL for Uniform Materials

We will examine the result of the approximation given in (5.79) for the case of
a uniform material. We take ε(r//) and χ(2)(r//) to be independent of r//. We
further assume that k1// = k2// for simplicity. We take the y axis to be parallel
to k1//, i.e., k1// = (0, k1) (k1 > 0). This plane wave will be referred to as the
fundamental wave. On the other hand, the sum-frequency component will be
referred to as the second harmonic, since it has twice as large a frequency as
the fundamental wave. We denote the angular frequency of the fundamental
wave by ω. Note that the wave vector of the second harmonics, k// is also
parallel to the y axis because of the conservation of the x component of the
crystalline momentum.

Since the eigenfunctions are plane wave in the uniform material, we have

Ez,k1//
(r//) =

1√
εω

eik1y, (5.84)

Ez,k//
(r//) =

1√
ε2ω

eiky, (5.85)

vg(2ω) =
c√
ε2ω

, (5.86)

where εω and ε2ω are the dielectric constants at ω and 2ω, respectively, and
vg(2ω) is the group velocity of the second harmonics. In (5.84) and (5.85), we
took the extended zone scheme, and the suffix to distinguish the band was
omitted. Because the Umklapp process is absent in the uniform material,
(5.78) leads to

F
(2)
2 (k//,k1//,k1//) =

χ(2)

V
(2)
0 εω

√
ε2ω

∫
V

(2)
0

dr// exp{i(2k1 − k)y}

=
χ(2)[exp{i(2k1 − k)a} − 1]

iaεω
√

ε2ω(2k1 − k)
. (5.87)

Substituting these equations into (5.79), we obtain

E2ω(r//, t) � iωχ(2)A2l

2cε0εω
√

ε2ω
ei(ky−2ωt)eil∆k/2 sin(l∆k/2)

l∆k/2
, (5.88)
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where

∆k = 2k1 − k and l = any. (5.89)

On the other hand, from the first equality in (5.12), we have

E2ω(r//, t)

= − 4ω2

c2ε0ε2ω

∫
V (2)

dr′
∫ ∞

−∞
dt′G(2)(r, r′, t − t′)Pz,ex(r′, t′)

= −2ω2χ(2)A2

c2ε0εωε2ω

∫
0≤y′≤l

dr′
∫ ∞

−∞
dt′G(2)(r, r′, t − t′)e2i(k1y′−ωt′). (5.90)

When we use (2.170), we obtain∫ ∞

−∞
dt′G(2)(r, r′, t − t′)e−2iωt′

= e−2iωt

∫ ∞

−∞
dt′G(2)(r, r′, t′)e2iωt′

=
c2

V (2) e−2iωt
∑
k//

exp(ik// · r//) exp(−ik// · r′
//)

(2ω − ωk//
+ iδ)(2ω + ωk//

+ iδ)
. (5.91)

For the summation over k// in this equation, kx must be equal to zero because
of the conservation of the x component of the momentum, which originates
from the spatial integral in (5.90). Since ωk//

≈ 2ω contribute dominantly to
(5.91), we set,

ωk//
= ωk =

⎧⎨⎩ ck/
√

ε2ω (k > 0),

−ck/
√

ε2ω (k < 0).
(5.92)

Since ∫
0≤y′≤l

dr′ei(2k1−k)y′
= aNx

exp{i(2k1 − k)l} − 1
i(2k1 − k)

, (5.93)

we have

E2ω(r//, t) = −2ω2χ(2)aNxA2e−2iωt

ε0εωε2ωV (2)

∑
k

eiky

(2ω − ωk + iδ)(2ω + ωk + iδ)

×exp{i(2k1 − k)l} − 1
i(2k1 − k)

. (5.94)

When we transform the summation into the integration over k and change
the variable from k to Ω = ωk, we have

Eω(r//, t)

= −ω2χ(2)a2A2NxNye−2iωt

icε0εω
√

ε2ωπV (2)
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×
{∫ ∞

0
dΩ

eik(+)y

(2ω − Ω + iδ)(2ω + Ω + iδ)
ei(2k1−k(+))l − 1

2k1 − k(+)

−
∫ 0

∞
dΩ

eik(−)y

(2ω − Ω + iδ)(2ω + Ω + iδ)
ei(2k1−k(−))l − 1

2k1 − k(−)

}
, (5.95)

where

k(±) = ±
√

ε2ωΩ

c
, (5.96)

and we have taken into consideration that there are two branches with pos-
itive and negative k as shown in (5.92). We change the sign of the variable
Ω in the second integral and modify the path of integration to enclose the
upper half of the complex Ω plane for y > l. Using the residue theorem, we
thus obtain

E2ω(r//, t) =
ω2χ(2)A2

e−2iωt

icε0εω
√

ε2ωπ
× 2πi

eiky

4ω

eil∆k − 1
∆k

, (5.97)

which agrees with (5.88). For the case of general photonic crystals, the rig-
orous evaluation is not possible since the path of the integration is not the
whole real axis and the analyticity of the eigenfunctions is unknown.

5.5 SHG in the Square Lattice

In this section, we will apply our method to second harmonic generation
(SHG) in a square lattice of circular air-rods formed in a LiNbO3 crystal.
The geometry is shown in Fig. 5.2, which is the top view of the square lattice
composed of identical cylinders with radius ra. The dielectric constants of
the cylinder and the background are denoted by ε1 and ε2, respectively.
We assume that the crystalline c axis of this uniaxial crystal of the 3m-C3v

symmetry is aligned along the z axis. Then, the incident fundamental waves
of the E polarization yield only the z component of the nonlinear polarization
field, and therefore, the method given in the previous section is applicable
to the present problem. Similar situations can be realized for crystals of the
4-C4, 4mm-C4v, 3-C3, 6-C6, and 6mm-C6v symmetries as well.

Figure 5.3 shows the photonic band structure of the square lattice, where
we assume that ra/a = 0.3, ε1 = 1.0, and ε2 = 4.9912, which is the dielec-
tric constant of LiNbO3 at 532 nm. The calculation was performed by the
plane-wave expansion method. The number of the basis plane waves was 289
and the accuracy was estimated as better than 1%. The symmetries of the
eigenfunctions are also shown in Fig. 5.3.

Now, we assume for simplicity that k1// = (kx, ky) and k2// = (−kx, ky)
(ky > 0). Then, the phase-matching condition is satisfied when

kx = 0 and ky = 2ky − 2jπ

a
(j = 0, 1). (5.98)
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Fig. 5.2. Geometry for sum-frequency generation in a two-dimensional crystal.
This figure is the top view of a square lattice with a lattice constant a composed
of identical cylinders with a radius R. The dielectric constants of the cylinder and
the background are denoted by ε1 and ε2, respectively. The position-dependent
second-order susceptibility χ(2)(r//) is assumed to be non-zero at 0 ≤ y ≤ any in
this example. Two incident eigenmodes of E polarization with wave vectors k1//

and k2//, and angular frequencies ω
(E)
k1//n1

and ω
(E)
k2//n2

generate the sum-frequency
component. (After [68])

Here, we consider two examples. In case 1, two incident waves in the lowest
branch induce the second harmonic in the second lowest branch on the ∆
point; ωa/2πc � 0.14 for the fundamental wave and j = 0. In case 2, the
second harmonic in the fourth branch on the ∆ point with negative ky is
induced by similar incident waves; ωa/2πc � 0.25 and j = 1. For both cases,
the effective nonlinear susceptibility F

(2)
2 (k//n, k1//1,k2//1) (n = 2 or 4) is

non-zero. On the other hand, the third branch does not contribute to SHG
since F

(2)
2 (k//3,k1//1,k2//1) = 0. This is because the wave function of the

third branch on the ∆ point is antisymmetric under the mirror reflection
on the y-z plane, whereas the induced nonlinear polarization for the second
harmonic is symmetric. As is seen in this example, F

(2)
2 (k//n, k1//n1,k2//n2)

vanishes for particular combinations of the initial and the final states in highly
symmetric crystals, and this gives a new type of selection rules that are not
relevant to the crystallographic symmetry of the host crystal.

Figure 5.4 shows the group velocity of the second and the fourth branches
on the ∆ point together with their dispersion curves. The former was calcu-
lated by means of the Hellmann–Feynman theorem. (The detail was described
in Sect. 2.5.) As is clear from this figure, the group velocity of both bands
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tends to zero at the Γ and X points. In addition, the group velocity of the
fourth band is small over the whole branch due to the group-velocity anomaly.

Now, we take the angular frequency of the fundamental wave ω such
that ωa/2πc = 0.138 for case 1 and ωa/2πc = 0.253 for case 2. Then |vg|/c
at 2ω is 0.114 and 0.0740, respectively. The corresponding data points are
denoted by solid circles in Fig. 5.4, where we have to note that ky < 0 for
case 2. Figure 5.5 shows two contours of the lowest branch for both cases
where the dielectric constant of the host crystal ε2 is assumed to be 4.6483,
which is that of LiNbO3 at 1064 nm. In order to use this value consistently
with the assumed angular frequency of the fundamental waves, the lattice
constant should be about 0.15 µm for case 1 and 0.27 µm for case 2. From the
dispersion relations of the second and the fourth bands, the phase-matching
condition is fulfilled when aky/2π = 0.245 for case 1 and aky/2π = 0.413 for
case 2, respectively. Note that the phase-matching is impossible for the E
polarization in a uniform LiNbO3 crystal because the dielectric constant at
2ω is larger than that at ω.

The average intensity of the electric field of the second harmonic,
|ENL(r//, t)|2, is given by

|ENL(r//, t)|2 =
π2A4

ε2
0

(
ωa

2πc

)2(
c

vg

)2

|Ek//n(r//)|2

×|F (2)
2 (k//n, k1//1,k2//1)|2 sin2(any∆ky/2)

sin2(a∆ky/2)
, (5.99)

where
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Fig. 5.3. Dispersion relation of the square lattice of circular air-rods formed in a
LiNbO3 crystal. The ordinate is the normalized angular frequency. The following
values were assumed: ra/a = 0.3, ε1 = 1.0, and ε2 = 4.9912, which is the dielectric
constant of LiNbO3 at 532 nm. The symmetries of the eigenfunctions are also shown.
(After [68])
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Fig. 5.4. Group velocity of (a) second branch and (b) fourth branch on the ∆
point. Curves (c) and (d) are their dispersion relations. The same parameters as
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Fig. 5.5. Contours of the lowest branch for (a) case 1: ωa/2πc = 0.138 and (b)
case 2: ωa/2πc = 0.253. The same parameters as for Fig. 5.3 were assumed except
that ε2 = 4.6483, which is the dielectric constant of LiNbO3 at 1064 nm. The data
points for which the phase-matching condition for SHG is fulfilled are denoted by
solid circles. (After [68])
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Fig. 5.6. Angular dependence of the average intensity of the electric field of the
second harmonic (solid circles) and the effective nonlinear susceptibility (open cir-
cles) for (a) case 1 and (b) case 2. ny is assumed to be 100, and therefore, the
sample thickness any is 15 µm or 27 µm, respectively. The abscissa is the angle of
incidence of the fundamental waves. (After [68])
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∆ky = 2ky − ky. (5.100)

The results of the numerical calculation are shown in Fig. 5.6, where ny was
assumed to be 100 and χ(2) of LiNbO3 was taken as 1.94×10−7 (esu) [69]. The
abscissa is the angle of incidence of the fundamental waves, and the angular
dependence of |F (2)

2 (k//n, k1//1,k2//1)| is also shown. In this figure, we find
the sharp peaks of |ENL(r//, t)|2 at the phase-matched angles, which are 20.9◦

for case 1 (Fig. 5.6(a)) and 33.1◦ for case 2 (Fig. 5.6(b)). We also observe the
fairly weak angular variation of the effective nonlinear susceptibility around
the peak. The sharpness of the peak depends on ny. For a very small ny, the
peak becomes broad and the angular variation of |F (2)

2 | may somewhat affect
the peak position. On the other hand, the height of the peak is proportional
to n2

y. Therefore, the peak height increases quadratically with the sample
thickness any. It was assumed to be about 15 µm (case 1) and 27 µm (case
2).

5.6 Free Induction Decay

In this section, we will treat free induction decay (FID) as an example of the
coherent optical processes in the photonic crystal. We assume that impurity
atoms with two electronic levels, which will be denoted by e (excited state)
and g (ground state), are distributed in the crystal with the number density
n(r). We assume that both ground and excited states are non-degenerate, and
hence their wave functions are real. Their transition dipole moment denoted
by µ is also real. We introduce their position- and time-dependent density
matrix �̂(r, t) and examine its temporal evolution when an external electric
field, Eex(r, t), is applied.

The Hamiltonian for one impurity atom, Ĥ, is given by

Ĥ = Ĥ0 − µ̂ · Eex(r, t), (5.101)

where Ĥ0 is the unperturbed Hamiltonian and µ̂ is the dipole operator of
the impurity atom. The equation of motion of the density matrix is

ih̄
∂�̂

∂t
= [Ĥ0 − µ̂ · Eex, �̂]. (5.102)

Hence,

∂�ee

∂t
=

1
ih̄
(
�eg − �∗

eg
)
µ · Eex − �ee

T1
, (5.103)

∂�eg

∂t
= −iΩ�eg +

1
ih̄

(2�ee − 1) µ · Eex − �eg

T2
, (5.104)

where we introduced the longitudinal and transverse relaxation time, T1 and
T2, to take into consideration the population and phase relaxation processes.
In these equations, Ω is the transition frequency,
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Ω =
Ee − Eg

h̄
, (5.105)

where Ee (Eg) is the energy of the excited (ground) state, and we used the
following relations.

�ge = �∗
eg, (5.106)

µeg = µge = µ. (5.107)

We assumed µee = µgg = 0 for simplicity.
The polarization due to the impurity atoms, which is denoted by P FID,

is proportional to the trace of the dipole operator times the density matrix:

P FID(r, t) = n(r)Tr[µ̂�̂(r, t)]
= n(r)µ

{
�eg(r, t) + �∗

eg(r, t)
}

. (5.108)

We assume that the system was driven by an eigenmode of the photonic
crystal for t ≤ 0:

Eex(r, t) = AE
(T)
kn (r) exp

(
−iω(T)

kn t
)

. (5.109)

A is the amplitude of the excitation field.
Under the assumption of weak excitation and rotating wave approxima-

tion, we obtain

�eg(r, 0) � A

2
(
T−1

2 − i∆ω
)µ · E

(T)
kn (r). (5.110)

For t > 0, the external field is switched off, and hence,

∂

∂t
�eg(r, t) = −iΩ�eg(r, t) − �eg(r, t)

T2
. (5.111)

Then, we obtain

�eg(r, t)

= exp
{

−
(

iΩ +
1
T2

)
t

}
�eg(r, 0)

� Aµ · E
(T)
kn (r)

2
(
T−1

2 − i∆ω
) exp

{
−
(

iΩ +
1
T2

)
t

}
, (5.112)

where ∆ω = ω
(T)
kn − Ω. Therefore, from (5.108)

P FID(r, t) =
Anµ

{
µ · E

(T)
kn (r)

}
2
(
T−1

2 − i∆ω
) exp

{
−
(

iΩ +
1
T2

)
t

}
+c.c. (5.113)

Substituting (5.113) for P ex(r, t) in (5.10), we obtain the electric field for
FID, EFID(r, t), which oscillates with the atomic angular frequency Ω :
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EFID(r, t) +
4πP FID(r, t)

ε(r)

� Anπω
(T)
kn E

(T)
kn (r)

iV
(
T−1

2 − i∆ω
)2 〈∣∣∣µ · E

(T)
kn (r′)

∣∣∣2〉
× exp

{
−
(

iΩ +
1
T2

)
t

}
, (5.114)

where〈∣∣∣µ · E
(T)
kn (r′)

∣∣∣2〉 =
1
V

∫
V

dr′
∣∣∣µ · E

(T)
kn (r′)

∣∣∣2 . (5.115)

Other kinds of coherent optical processes such as four-wave mixing can be
treated in a similar manner.



6. Defect Modes in Photonic Crystals

As mentioned in Chap. 1, one of the most important properties of photonic
crystals is the emergence of localized defect modes in the gap frequency region
when a disorder is introduced to their periodic dielectric structure. In this
chapter, we will present a numerical method to calculate the eigenfrequency
and the eigenfunction of the defect mode that is based on the numerical
simulation of the excitation process of the defect mode by a virtual oscillating
dipole moment located near the dielectric defect. After we derive a general
expression for the frequency dependence of the excited electromagnetic field
and describe how to calculate it by the FDTD (finite-difference time-domain)
method, we will apply our method to three examples, and show excellent
agreement with experiments.

6.1 General Properties

First, the presence of a photonic bandgap is essential for the localized modes
to appear. In order to see this point, let us assume that the defect mode (de-
noted by d) and a Bloch wave (denoted by kn) have the same eigenfrequency:

ωd = ωkn. (6.1)

We denote the eigenfunction of the Bloch wave by Ekn(r) as before and
that of the defect mode by Ed(r). Because of the presence of the structural
disorder, the Bloch wave is no longer an eigenmode of the photonic crystal.
It is mixed with the defect mode to form two genuine eigenstates:

E1(r) = p1Ed(r) + q1Ekn(r), (6.2)
E2(r) = p2Ed(r) + q2Ekn(r). (6.3)

Since Ekn(r) is an extended state, neither E1(r) nor E2(r) is a localized
mode. This fact contradicts the initial assumption. Thus, the eigenfrequency
of the defect mode should be in the photonic bandgap.

The experimental evidence that the defect mode is spatially localized
was given by McCall et al. [36]. They investigated a two-dimensional (2D)
square array of circular dielectric cylinders with a disorder in the microwave
region. As Fig. 6.1 shows, one cylinder located at the origin was removed
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Fig. 6.1. Top view of the 2D square array of circular dielectric cylinders that was
investigated by McCall et al. [36]. εa, εb, and εd denote the dielectric constants of
the circular cylinders, the background, and the defect cylinder, respectively. a and
ra stand for the lattice constant and the radius of the cylinders. Their experimental
values were as follows: a = 1.27 cm, ra = 0.48 cm, εa = 9.0, and εb = 1.0. (After
[34])

and this part acted as the defect. They observed quite a sharp peak in
the transmission spectrum in the gap frequency region (Fig. 6.2), whose fre-
quency was identified as that of a localized defect mode. The spatial distri-
bution of the electric field at the peak frequency showed a strong localization
(Fig. 6.3).

The eigenfrequencies and the eigenfunctions of the defect modes can be
calculated by several methods. In early studies, the plane-wave expansion
with the supercell method was frequently used. In this method, the structure
shown in Fig. 6.1 is regarded as a unit cell, which is referred to as the supercell,
and the band calculation by the plane-wave expansion method is performed
for this unit cell structure. Then, a band with a very small width appears
in the gap frequency region if a localized defect mode is present. Exactly
speaking, this is an impurity-band calculation, since we assume a periodic
array of the defect structure. Because the wave functions localized at adjacent
defects hardly overlap each other when the supercell is sufficiently large, the
bandwidth of the impurity band is usually quite small. Hence, we can obtain
the eigenfrequency of the defect mode almost without ambiguity. However, we
need a very large number of plane waves to perform an accurate calculation
when the supercell is large. Generally speaking, the CPU (central processing
unit) time necessary for a computer to diagonalize the matrix like the one
that appears on the left-hand side of (2.32) is proportional to the cube of
its dimension, and hence, to the cube of the number of the plane waves
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Fig. 6.2. Transmission spectra of the 9 × 18 array of cylinders. The incident wave
comes along (a) the [1,0], (b) the [2,1], and (c) the [1,1] direction of the regular
crystal without the defect. In (d), the orientation of the incident wave is the same
as in (a), but a single cylinder located at the center of the array is removed. Note
the sharp extra peak in the gap located at 11.2 GHz signifying a localized defect
mode. Each vertical division is 5 dB. (After [36])

used for the expansion. This fact sometimes imposes a serious constraint on
the accuracy of the numerical results especially for three-dimensional (3D)
crystals.

Later, it was found that the real-space methods are generally more effi-
cient than the plane-wave expansion. In the following, one such mehod will
be described in detail. This is based on the numerical simulation of the radia-
tion process of a virtual oscillating dipole moment embedded in the photonic
crystal [34, 70–72]. The numerical simulation is performed by the FDTD
(finite-difference time-domain) method. Advantages of this method are that
(1) the CPU time is comparatively small, (2) the algorithm is suitable for
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Fig. 6.3. Energy distribution of a localized defect mode observed for the square
array of circular dielectric rods with one rod removed. (After [36])

vector and parallel computing, and hence, the CPU time can be reduced by
a considerable amount by using a vector processor or a parallel machine, (3)
the spatial symmetry of the eigenmodes is rigorously taken into account, and
(4) the frequency dependence and the imaginary part of the dielectric con-
stant can naturally be dealt with if necessary. We consider these points in
detail with some examples.

6.2 Principle of Calculation

In this section, we will first derive a general formula describing the radia-
tion from an oscillating dipole moment located near a disorder introduced
to the regular structure of the photonic crystal. We will then proceed to the
description of the FDTD calcualtion.

Maxwell’s equations for the present problem are given by

∇ · {ε0ε(r)E(r, t) + P d(r, t)} = 0, (6.4)

∇ · H(r, t) = 0, (6.5)

∇ × E(r, t) = −µ0
∂

∂t
H(r, t), (6.6)

∇ × H(r, t) =
∂

∂t
{ε0ε(r)E(r, t) + P d(r, t)} , (6.7)

where P d(r, t) is the polarization field of the oscillating dipole and its explicit
form is given by (5.15). The difference between this set of equations and (5.1)–
(5.4) is that ε(r) now has the disorder introduced by the dielectric defect.
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In Sect. 5.2, we derived the expression for the dipole radiation in the
regular photonic crystal using Green’s function. The same method can be
applied to the present problem, if we take into account the presence of the
defect mode in addition to the extended Bloch states. We assume that the
angular frequency of the oscillating dipole ω is close to ωd and that the latter
is isolated in a photonic bandgap. Then we can neglect the contribution from
all other extended eigenmodes, and (5.34) gives the electric field of the present
problem:

E(r, t) � − ωd {E∗
d(r0) · d}Ed(r) exp(−iωt)
2ε0V (ω − ωd + iγ)

, (6.8)

where we have introduced the decay rate of the defect mode γ. Ed(r) is
normalized such that∫

V

ε(r)|Ed(r)|2dr = V. (6.9)

By calculating Poynting’s vector, we obtain the expression for the electro-
magnetic energy emitted by the dipole in a unit time, U :

U � ωωdγ|d · E∗
d(r0)|2

ε0V {(ω − ωd)2 + γ2} . (6.10)

The derivation of (6.8) and (6.10) is similar to that of (5.34) and (5.35).
Equation (6.10) implies that we can obtain ωd as the resonance frequency if
we can evaluate the frequency dependence of U . Moreover, (6.8) shows that
the excited field is proportional to the eigenfunction. We will perform this
task by solving the wave equation derived from the above Maxwell equations
numerically. The numerical method is called the finite-difference time-domain
(FDTD) method.

We will deal with the E polarization, since McCall et al. investigated
this case experimentally. (The H polarization can be dealt with in a similar
manner; see Sect. 7.3) Then the wave equation for the z component (parallel
to the rod axis) of the electric field, Ez(r//, t), is given by

ε(r//)
c2

∂2Ez

∂t2
− ∂2Ez

∂x2 − ∂2Ez

∂y2 =
dω2

c2 δ(x − x0)δ(y − y0) exp(−iωt),(6.11)

where (x0, y0) denotes the 2D position of the dipole moment, and d is the
amplitude of the oscillating dipole. We discretize this differential equation to
obtain a difference equation, and solve the latter numerically with the initial
condition Ez = ∂Ez/∂t = 0 at t = 0. The derivatives of the second order in
(6.11) are approximated as follows:

∂2Ez(r//, t)
∂x2 � Ez(x + ∆x, y, t) − 2Ez(x, y, t) + Ez(x − ∆x, y, t)

(∆x)2
,(6.12)

∂2Ez(r//, t)
∂y2 � Ez(x, y + ∆y, t) − 2Ez(x, y, t) + Ez(x, y − ∆y, t)

(∆y)2
,(6.13)
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Fig. 6.4. Spatio-temporal mesh for the FDTD calculation

∂2Ez(r//, t)
∂t2

� Ez(x, y, t + ∆t) − 2Ez(x, y, t) + Ez(x, y, t − ∆t)
(∆t)2

, (6.14)

where ∆x, ∆y, and ∆t are the differences between adjacent mesh points (see
Fig. 6.4). Substituting (6.12)–(6.14) into (6.11), we obtain

Ez(xl, ym, tn+1)
≈ 2Ez(xl, ym, tn) − Ez(xl, ym, tn−1)

+
c2(∆t)2{Ez(xl+1, ym, tn) − 2Ez(xl, ym, tn) + Ez(xl−1, ym, tn)}

ε(xl, ym)(∆x)2

+
c2(∆t)2{Ez(xl, ym+1, tn) − 2Ez(xl, ym, tn) + Ez(xl, ym−1, tn)}

ε(xl, ym)(∆y)2

+
dω2(∆t)2δll0δmm0 exp(−iωtn)

ε(xl, ym)∆x∆y
. (6.15)

Here, xl denotes the lth mesh point in the x direction, and so on. In the last
term on the right-hand side of (6.15), two delta functions were replaced by
Kronecker deltas, where (l0, m0) denotes the position of the dipole. Note that∫

dx

∫
dy −→ ∆x∆y

∑
lm

. (6.16)

Therefore, the replacement of δ(x−x0)δ(y−y0) by δll0δmm0/∆x∆y gives the
correct value. Since the right-hand side of (6.15) is all written with values
at time t = tn and tn−1, the temporal evolution of the electric field can be
calculated iteratively. This allows the computer to do the vector processing
and the parallel computing, which results in a tremendous acceleration of the
calculation.

In the following three sections, we will treat lossless crystals with real ε(r).
Then, the shape of the resonance curve in the steady state, (6.10), should
be modified from a Lorentzian to a delta function. However, our numerical
method assumes an abrupt excitation of the defect modes and deals with
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transient but nearly steady states. The shape of the resonance curve for this
case is also well represented by (6.10).

6.3 Point Defects in a Square Lattice

In this section, we will treat the experiments reported by McCall et al. [36].
The geometry for the numerical calculation is shown in Fig. 6.1. This is the
top view of a 2D square lattice composed of circular dielectric rods. One of
them is replaced by one with a different dielectric constant, which we call the
defect rod hereafter. In Fig. 6.1, εa, εb, and εd, denote the dielectric constants
of the circular rods, the background, and the defect rod, respectively. a and
ra represent the lattice constant and the radius of the rods. Note that we
assumed the same radius for the defect rod as for the rest of the lattice. For
the numerical calculation, the following values were assumed according to the
experimental condition of McCall et al.; εa = 9.0, εb = 1.0, a = 1.27 cm, and
ra = 0.48 cm. εd was varied from 1.0 to 20.0.

12×12 unit cells, which we call the supercell hereafter, were taken into ac-
count in our numerical calculation, and the periodic boundary condition was
imposed on its boundary. Because the numerically obtained wave functions
of the defect modes, which will be shown below, are well localized and have a
very small amplitude on the boundary, the supercell of this size was sufficient
for our purpose. In the actual calculation, we can assume a certain symmetry
for each localized mode since it is an irreducible representation of the C4v

point group to which the assumed square lattice of the circular rods belongs.
Therefore, we can impose a respective boundary condition on one eighth of
the supercell for the one-dimensional representation, i.e., the A1, A2, B1, or
B2 mode, and on one-quarter of the supercell for the two-dimensional repre-
sentation, i.e., the E mode. Then, it was sufficient to treat the above small
area for the numerical calculation and the computational task was reduced.
In our calculation, every unit cell was divided into 40 × 40 parts, and one
period of the oscillation was divided into 640 steps in order to discretize the
wave equation. The further decrease of the size of the spatial and temporal
meshes did not give an apparent change in the eigenfrequencies of the defect
modes.

The photonic band structure of the regular lattice was previously pre-
sented in Fig. 2.4, which showed the presence of three bandgaps. Since the
experiment by McCall et al. was concerned with a totally symmetric A1 mode
in the second gap for the case of εd = 1.0, we examine this mode first. Figure
6.5 shows the calculated electromagnetic energy radiated by the oscillating
dipole moment located at the center of the defect rod. �, ◦, �, and • denote
the accumulated electromagnetic energy after 10, 20, 35, and 50 cycles of
the oscillation, respectively. In this figure, we observe a clear resonance at
ωa/2πc = 0.466, or ω/2π = 11.0 GHz, which is quite close to the experimen-
tal observation, i.e., ω/2π = 11.2 GHz.
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Fig. 6.5. Electromagnetic energy radiated by an oscillating dipole moment located
at the center of the defect rod as a function of the oscillation frequency. �, ◦, �, and
• denote the accumulated electromagnetic energy after 10, 20, 35, and 50 cycles of
the oscillation, respectively. The abscissa represents the normalized frequency. The
same parameters as for Fig. 6.1 were used. εd, was assumed here to be 1.0 according
to the experimental condition of McCall et al. [36]. A resonance at ωa/2πc = 0.466
(or ω/2π = 11.2 GHz) is clearly observed. (After [34])
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defect rod along the nearest-neighbor direction normalized by the lattice constant.
This electric field can be regarded as that of the localized eigenmode created by
the defect rod. (After [34])
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given in order of εd when there are more than one mode of the same symmetry in
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Figure 6.6 shows the distribution of the electric field at the resonance,
i.e., at ωa/2πc = 0.466 after 100 cycles of the oscillation. The abscissa is
the distance from the center of the defect rod along the nearest-neighbor
direction, i.e., the (1, 0) direction, normalized by the lattice constant. As
was shown in (6.8), we can regard this distribution as the eigenfunction of
the defect mode. We find in this figure that the defect mode is localized
at the defect rod as we expected and the amplitude of the electric field on
the boundary of the supercell, i.e., at x = 6a is negligible. Hence, we may
consider that the interference between the neighboring supercells or, in other
words, the impurity-band effect, is small for our calculation. In addition, we
confirmed that we obtain the same distribution of the electric field apart from
its magnitude even when the oscillating dipole is located at (a, 0) instead of
(0, 0). This implies that the induced electromagnetic field belongs to a single
eigenmode. The CPU time that was necessary to obtain this figure with a
super computer was about 12 s. The CPU time can be further reduced by the
optimization of the parameters used when we discretize the wave equation.
We can also apply this method to the same kind of problems for 3D lattices,
as was shown by Painter et al. [73] and Hwang et al. [74].

Next, Fig. 6.7 shows the εd dependence of the eigenfrequencies of the
localized modes for all symmetries. In this figure, horizontal lines represent
the boundaries of the photonic bandgaps and the numbers in parentheses
are given in order of εd when there are more than one modes of the same
symmetry in the same gap. In addition to the A1 mode [the A1(1) mode in the
second gap] that was investigated by McCall et al., we observe that localized
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Fig. 6.8. Distribution of the electric fields of the (a) A1(1), (b) (c) E, (d) B2, (e)
B1, and (f) A1(2) modes in the second gap. The maximum of each electric field is
normalized to unity. For all defect modes, the eigenfunctions show their peculiar
symmetry and are localized around the defect rod located at the origin. For the
doubly degenerate E mode, one eigenfunction is a replica of the other given by a
90-degree rotation. (After [34])
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eigenstates of all possible symmetries appear when we change εd from 1.0 to
20.0. The eigenfrequency of each mode generally decreases with increasing
εd, because the defect mode “feels” a large dielectric constant on average
when εd is large, and this leads to a simple scaling of the eigenfrequency as
ωd ∝ 1/

√
ε that can be found from the left-hand side of (6.11).

Figure 6.8 shows the 2D distribution of the electric fields of the defect
modes in the second gap. The maximum of each electric field is normalized
to unity in this figure. For all defect modes, the eigenfunctions show their
peculiar symmetry and are localized around the defect rod located at the
origin. For the doubly degenerate E mode, one eigenfunction is a replica of the
other given by a 90-degree rotation. Similarly, Fig. 6.9 shows the distribution
of the electric fields of the defect modes in the first gap. We can also calculate
those in the third gap quite easily, though we do not show them here. Note
that the spatial variation of the electric fields is slower for modes in the first
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Fig. 6.9. Distribution of the electric fields of the (a) A1 and (b) (c) E modes in
the first gap. The maximum of each electric field is normalized to unity again. Note
that the spatial variation of the electric fields is slower for modes in the first gap
than for those in the second gap. (After [34])
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gap than for those in the second gap, which is a natural consequence of the
relative magnitudes of their eigenfrequencies. Also, note that because of the
mismatching of the spatial symmetry, we can excite neither A2 nor B2 mode
by an incident plane wave pointed in the (1, 0) direction, and neither A2 nor
B1 mode by that pointed in the (1, 1) direction.

We would like to conclude this section by making two remarks. First, we
have treated a point defect, i.e., one defect rod in an otherwise regular lattice,
for numerical calculation. We can treat localized modes on line defects, and
calculate their dispersion relations as well in the framework of the present
method by simply changing the dielectric structure and the boundary con-
dition of the supercell, as will be shown in Sect. 6.5. The band structures of
regular crystals can also be calculated. Secondly, we can also treat frequency-
dependent dielectric constants, which is usually difficult for those methods
which solve eigenvalue problems to obtain the eigenstates. This point will be
described in detail in Chap. 7.

6.4 Point Defects in a Hexagonal Lattice

Smith et al. [75] investigated the defect modes in a 2D hexagonal lattice,
and we examine their case here [71]. The geometry for the present numerical
calculation is shown in Fig. 6.10. This is the top view of a supercell in a 2D

y
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ra

rd

L / 2-L / 2

Fig. 6.10. Top view of a supercell of the 2D hexagonal array of circular rods that
was assumed for the numerical calculation. εa, and εb denote the dielectric constants
of the circular rods and the background, respectively. a is the lattice constant. ra
and rd represent the radii of the regular and defect rods, respectively. L denotes
the distance between the defect rods in two adjacent supercells. (After [71])
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hexagonal lattice composed of circular dielectric rods. One of the rods in the
supercell is replaced by one with a different radius, which we call the defect
rod. In Fig. 6.10, εa and εb denote the dielectric constants of the circular rods
and the background, respectively, a is the lattice constant, ra and rd represent
the radii of the regular and defect rods, and L is the distance between the
centers of the defect rods in adjacent supercells. Note that we assumed the
same dielectric constant for the defect rod as for the regular rods this time.

In the actual calculation, we could utilize the spatial symmetry of the
eigenmodes to reduce the amount of the computational task as we did in
the last section. Because the assumed crystal has C6v spatial symmetry, each
localized eigenmode is attributed to one of its irreducible representations,
i.e., four one-dimensional representations (A1, A2, B1, and B2) and two two-
dimensional representations (E1 and E2). Then, for the one-dimensional rep-
resentations, it was sufficient to deal with only one twelfth of the supercell.
As for the two-dimensional representations, one quarter of the supercell was
sufficient.

Since the experiment by Smith et al. was concerned with a totally sym-
metric A1 mode for the case of rd = 0, we examine this mode first. Figure
6.11 shows the electromagnetic energy radiated by an oscillating dipole mo-
ment located at the origin as a function of the oscillation frequency. �, ◦,
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Fig. 6.11. Electromagnetic energy radiated by an oscillating dipole moment located
at the center of the supercell as a function of the oscillation frequency. �, ◦, �, and
• denote the accumulated electromagnetic energy after 10, 20, 35, and 50 cycles
of the oscillation, respectively. The abscissa represents the normalized frequency,
where ω, a, and c stand for the angular frequency, the lattice constant, and the light
velocity in vacuum, respectively. The following parameters were used according to
the experimental condition of Smith et al. [75]: a = 1.27 cm, ra = 0.48 cm, εa = 9.0,
εb = 1.0, and rd = 0 cm (see Fig. 6.10). A supercell with L = 16a was assumed.
A resonance at ωa/2πc = 0.468 (or ω/2π = 11.1 GHz) is clearly observed. (After
[71])
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�, and • denote the accumulated electromagnetic energy after 10, 20, 35,
and 50 cycles of the oscillation, respectively. The following parameters were
used according to the experimental condition of Smith et al.: a = 1.27 cm,
ra = 0.48 cm, εa = 9.0, εb = 1.0, and rd = 0 cm. The supercell with L = 16a
was considered here. A resonance at ωa/2πc = 0.468 (or ω/2π = 11.1 GHz)
is clearly observed in Fig. 6.11, which is quite close to the experimental ob-
servation, i.e., ω/2π = 11.23 GHz. The deviation is only 1.2%. We should
also note that a resonance curve after a larger number of the oscillation cy-
cles is sharper. This is because the system approaches a pure state that is
described by Ed(r) after an initial transient response caused by the abrupt
introduction of the oscillating dipole moment at t = 0. Figure 6.12 shows the
distribution of the electric field radiated by the oscillating dipole moment
after 100 cycles of the oscillation at ωa/2πc = 0.468. The same parameters
as for Fig. 6.11 were used. The maximum of the electric field is normalized
to unity in this figure.

Next, we examine the problem discussed by Feng and Arakawa [76]. They
assumed that ra/a = 0.2, εa = 13.0, and εb = 1.0 in Fig. 6.10. They also
assumed a supercell with L = 3a. Figure 6.13 shows the photonic band
structure and the state density of the regular hexagonal lattice of the circular
rods for the E polarization. This figure shows the presence of a large bandgap
from ωa/2πc = 0.26 to 0.45.
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Fig. 6.12. Distribution of the electric field radiated by the oscillating dipole mo-
ment after 100 cycles of the oscillation at ωa/2πc = 0.468. The same parameters as
for Fig. 6.11 were used. The maximum of the electric field is normalized to unity.
This electric field can be regarded as that of the localized eigenmode created by the
defect. It is really localized at the origin and shows the A1 symmetry of the C6v

point group. (After [71])
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Fig. 6.13. Photonic band structure and the state density of the regular hexagonal
lattice of the circular rods for the E polarization. The ordinate is the normalized
eigenfrequency. According to the previous calculation by Feng and Arakawa [76],
the following values were assumed: ra/a = 0.2 cm, εa = 13.0, and εb = 1.0. (After
[71])
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Fig. 6.14. Eigenfrequency of the localized defect modes as a function of the radius
of the defect rod, rd. The ordinate is the normalized frequency and horizontal lines
represent the boundaries of the photonic bandgap. The symmetries of the localized
modes are also shown, where the number in parentheses is given in order of rd when
there are more than one mode of the same symmetry. (After [71])
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Fig. 6.15. Distribution of the electric fields of the (a) A1(1), (b) E1, (c) E2, (d)
A1(2), and (e) B2 modes. The maximum of each electric field is normalized to
unity. For all defect modes, the eigenfunctions show their peculiar symmetries and
are localized around the defect rod located at the origin. (After [71])
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Fig. 6.16. L dependence of the eigenfrequencies, which were calculated with the
same parameters as for Fig. 6.14 and with rd/a = 0.1 for the A1(1) mode and
rd/a = 0.3 for the E1 mode. The results of Feng and Arakawa [76] are denoted by
+ for the A1(1) mode and by × for the E1 mode. (After [71])

Feng and Arakawa [76] showed by the plane-wave expansion method with
2269 basis plane waves that several defect modes appear when the radius
of the defect rod, rd, is varied from rd = 0 to 0.5; and we consider this
point here. Figure 6.14 shows the eigenfrequency of the defect modes as a
function of rd, where a supercell with L = 16a was used for our numeri-
cal calculation. The ordinate is the normalized frequency and the horizontal
lines represent the boundaries of the photonic bandgap. The symmetries of
the defect modes are also shown, where the number in parentheses is given in
order of rd when there are more than one mode of the same symmetry. The
eigenfunctions are presented in Fig. 6.15. The maximum of the electric field is
normalized to unity as before. For all defect modes, the eigenfunctions show
their peculiar symmetries and are localized around the defect rod located at
the origin. For the doubly degenerate E1 and E2 modes, only one eigenfunc-
tion is shown. When we compared our results with those by the plane-wave
expansion method, it was found that the overall feature is common to both
calculations except that they differ quantitatively from each other by 2–4%.

Now, we examine the reason for the quantitative disagreement between
the two calculations. The L dependence of the eigenfrequencies is presented in
Fig. 6.16, where • and ◦ represent the results of our calculation for the A1(1)
and E1 modes, and + and × represent those by the plane-wave expansion
method. Strictly speaking, the latter depend on the wave vector in the first
Brillouin zone because it was an impurity-band calculation, but the widths of
the obtained impurity bands were not very wide and we plot the centers of the
impurity bands as representative points in Fig. 6.16. This figure shows that
(1) the eigenfrequencies converge fairly rapidly and they scarcely change when
L/a is more than 6, (2) but for L/a less than 6, there is a considerable change,
and (3) the results by the plane-wave expansion method are consistent with
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our results for small L. Thus, we should note that the small supercell brings
about not only the width but also the shift of the impurity bands. Therefore,
if we are interested in isolated and well localized defect modes, we should
assume a somewhat large supercell.

6.5 Line Defects in a Square Lattice

In this section, we will deal with the structure shown in Fig. 6.17, where
the spacing between the adjacent layers around the x axis is different from
the rest. This part, which we refer to as the line defect, brings about the
eigenmodes localized in the y direction. Since the structure has translational
symmetry in the x direction, those localized eigenmodes satisfy the following
Bloch condition:

Ez(x + a, y, t) = eikaEz(x, y, t). (6.17)

That is, each of them is characterized by a wave number k in the x direction.
They thus form a 1D impurity band.
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Fig. 6.17. Top view of the 2D square array of circular rods that was assumed for
the numerical calculation (see text for details.) (After [70])
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Fig. 6.18. Photonic band structure of the regular square lattice of the circular
rods for E polarization. The ordinate is the normalized frequency. According to
the experimental condition of Lin et al. [77], the following values were assumed:
a = 1.27 mm, ra = 0.255 mm, εa = 10.0. (After [70])

It is essential for our method described in the previous sections that the
eigenfrequency of the relevant localized mode is isolated since it is obtained
from the resonance structure in the spectrum of the dipole radiation. If it
is close to other eigenmodes, we cannot distinguish it from them. Therefore,
our method does not seem, at first glance, to be applicable to the problem
of the impurity band, for which the spectrum of the localized eigenmodes
forms a continuum. However, this is not true. The area surrounded by a
broken line in Fig. 6.17 is the supercell on which the numerical calculation
was carried out. The number of rods included in the supercell was more than
6. We imposed a boundary condition on Ez(x, y, t) given by (6.17). Then,
we could extract the contribution to the radiated electromagnetic field from
the particular eigenmodes with the designated wave vector. In what follows,
we will show that this simple procedure works quite well and that excellent
agreement with the experimental result is obtained.

Now, Fig. 6.18 shows the photonic band structure of the regular (i.e.,
2b = a) square lattice. According to the experimental condition of Lin et
al. [77] the following values were assumed: a = 1.27 mm, ra = 0.255 mm,
εa = 10.0. Figure 6.18 shows the presence of three bandgaps. We will deal
with the lowest one below.

As will be shown below, the localized mode at the Γ point (k = 0) of
the 1D impurity band found by Lin et al. was a B2 mode of the C2v point
group. First we examine this case, for which b = 1.5a. Figure 6.19 shows
the frequency dependence of the electromagnetic energy radiated by the os-
cillating dipole moment located 0.2 mm from the origin in the y direction.
�, ◦, �, and • denote the accumulated electromagnetic energy after 10, 20,
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Fig. 6.19. Electromagnetic energy radiated by the dipole moment as a function
of the oscillation frequency. �, ◦, �, and • denote the accumulated electromagnetic
energy after 10, 20, 35, and 50 cycles of the oscillation, respectively. The same
parameters as for Fig. 6.18 were used. b and k were assumed to be 1.5a and 0.
The inset shows the dispersion relation of the 1D impurity band. Its abscissa is the
normalized wave vector in the x direction. (After [70])

35, and 50 cycles of the oscillation, respectively. In this figure, we observe a
clear resonance at ωa/2πc = 0.3602, or ω/2π = 85.03 GHz, which is quite
close to the experimental observation, that is, ω/2π = 85.5 GHz. The dis-
crepancy between them is less than 0.6%. On the other hand, the inset of Fig.
6.19 shows the calculated dispersion relation of the 1D impurity band where
the abscissa represents the normalized wave vector in the x direction. In the
experiments carried out by Lin et al., transmission spectra of the specimen
were measured with microwaves at normal incidence, i.e., in the y direction.
Therefore, they observed the localized mode at the Γ point. If the angle of
incidence is tilted, then this dispersion curve can be observed.

Next, Fig. 6.20 shows the b dependence of the eigenfrequencies of the
localized modes at the Γ point where open and solid circles represent the
A1 and B2 modes, respectively. Modes of other symmetries, i.e., A2 and B1
symmetries, were not found in this parameter range. In this figure, horizontal
lines represent the edges of the first and second bands at the X point in the
2D Brillouin zone (see Fig. 6.18), between which the localized modes with
k = 0 can exist. The number in parentheses in Fig. 6.20 is a band index in
order to distinguish branches with the same symmetry. Figures 6.21 and 6.22
show the 2D distribution of the electric fields of the localized modes of the
A1 and B2 symmetries, respectively. The maximum of each electric field is
normalized to unity in these figures. Note that the number of nodes of the
eigenfunctions along the y axis increases with increasing band index. Also
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Fig. 6.20. Eigenfrequencies at the Γ point of the 1D impurity bands as a function
of the width b of the defect structure. The ordinate is the normalized frequency,
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the same symmetry. (After [70])
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(right). The maximum of each electric field is normalized to unity. (After [70])
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note that the A1 (B2) modes are symmetric (antisymmetric) about the x
axis.

6.6 Dielectric Loss and Quality Factor

The high quality factor of the localized defect modes originates from the fact
that the amplitude of their wave functions decreases exponentially with the
distance from the center of the defect structure, and therefore, the coupling
strength between the defect modes and the radiation field outside the crystal
can be extremely small. The characteristic length of the exponential decrease
is of the order of the relevant wavelength, and therefore we can expect quite
large quality factors even with thin samples. In fact, the large quality factor of
Lin et al. mentioned above was observed for a 2D crystal with a thickness less
than seven times the wavelength. Actually, the quality factor was not limited
by coupling to the external radiation field but by the lifetime of the defect
mode brought about by the small dielectric loss in the components. Then,
evaluation of the dielectric loss is necessary and important for the design and
the practical use of the localized defect modes. In this section, we examine
the quality factors of the defect modes described in the last section.

In what follows, we will use the notation of Lin et al. to distinguish the
structure of the specimen: an m-(l)-n photonic crystal has l rows of empty
lattice sandwiched by m and n layers of the dielectric rods. Then b/a =
(l +1)/2. The structure shown in Fig. 6.17 is, for example, denoted by 4-(2)-
4, since it has four layers of the dielectric rods in both sides and it was drawn
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for b = 1.5a. In the actual numerical calculation, we assumed that m = n for
simplicity and n was varied from 1 to 9.

We evaluated the lifetime of the defect modes due to the dielectric loss,
τ , by analyzing the temporal attenuation of their electromagnetic energy nu-
merically. We now briefly describe the method. In previous sections, we cal-
culated the eigenfrequencies and eigenfunctions of the localized defect modes
by means of the numerical simulation of their excitation process by a vir-
tual oscillating dipole moment embedded in the photonic crystals. A similar
method can be utilized for the present purpose. Namely, we excited the de-
fect mode by a point dipole oscillating at its eigenfrequency for 200 cycles,
and analyzed the temporal attenuation of the accumulated electromagnetic
energy after switching off the oscillation in the presence of the imaginary part
of the dielectric constant. We can thus obtain the decay rate, and hence the
lifetime. The spectral width due to the dielectric loss (FWHM), Γd, is given
by Γd = τ−1.

First, we examine the spectral widths of the defect modes when the dielec-
tric loss is absent. Figure 6.23 shows the transmission spectra of the n-(2)-n
structures calculated by the layer-doubling method based on the cylindrical-
wave expansion [72]. As a typical example, the transmission spectrum for
the 3-(2)-3 structure in a wide frequency range is presented in Fig. 6.23(a).
The abscissa is the normalized frequency, where ω and c denote the angu-
lar frequency of the incident microwave and the light velocity in vacuum,
respectively. An extremely sharp transmission peak due to the defect mode
is observed at ωa/2πc � 0.36 in the opaque range between ωa/2πc � 0.26
and 0.44 that is brought about by the photonic bandgap. The spectral width
of the defect mode decreases rapidly with increasing n as is shown in Figs.
6.23(b) and 6.23(c). The normalized eigenfrequency of the B2 (1) mode of
the 5-(2)-5 structure was calculated in the last section to be 0.3602 by means
of the numerical simulation of the dipole radiation. The difference between
the two calculations is as small as 0.17%. The agreement between the two
independent calculations provides clear evidence for the accuracy of our nu-
merical methods.

The n-dependence of the spectral width (FWHM) of the defect modes is
presented in Fig. 6.24. In this figure, • represents the value obtained from the
calculated transmission spectrum for ε′′ = 0, and � denotes the experimental
result of Lin et al. In their experiment, n was not necessarily equal to m.
Here, the averaged value, i.e., (n + m)/2 is plotted as n. On the other hand,
◦ represents the spectral width for ε′′ = 0.001, which will be discussed later.
It is obvious that a much smaller spectral width, and hence, a much larger
quality factor, Q = ωd/(spectral width), can be attained for large n if the
dielectric loss is absent, and the spectral widths observed by Lin et al. were
limited by the dielectric loss. A quality factor larger than 107 is expected for
n = 9 if ε′′ = 0.
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Fig. 6.23. Calculated transmission spectra of the n-(2)-n structures: (a) the spec-
trum of the 3-(2)-3 structure in a wide frequency range, (b)(c) the spectra of the
n-(2)-n structures in the vicinity of the transmission peak due to the localized de-
fect mode with the B2 spatial symmetry. According to the experimental condition
of Lin et al. [77], the following values were assumed for the numerical calculation:
a = 1.27 mm, ra = 0.255 mm, εa = 10.0, and b = 1.5a. The sharp transmission
peaks due to the defect mode are observed at ωa/2πc � 0.36 in the opaque range
between ωa/2πc � 0.26 and 0.44 that is brought about by a photonic bandgap.
Note the rapid decrease of the width of the transmission peak with increasing n.
(After [72])
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Fig. 6.24. Spectral width (FWHM) of the transmission peak due to the localized
defect mode at the Γ point of the 1D impurity band with the B2 spatial symmetry
of the n-(2)-n structure. � represents the experimental results of Lin et al. [77],
whereas • and ◦ represent the calculated values of the present work for ε′′ = 0 and
ε′′ = 0.001, respectively. Because the structure used in the experiment of Lin et
al. was not necessarily symmetric about the x axis in Fig. 6.17, the experimental
result was plotted for the averaged n. (After [72])

Now, we examine the spectral width Γd brought about by the dielectric
loss. In Fig. 6.25, the temporal attenuation of the electromagnetic energy U
after switching off the oscillating dipole moment is shown for the B2 mode
of the 5-(2)-5 structure as an example. In this figure, the abscissa is the
normalized time and U0 is the accumulated energy just after 200 cycles of
the oscillation of the dipole at the eigenfrequency of the defect mode. •, ◦,
�, and � represent the temporal attenuation for ε′′ = 0.001, 0.01, 0.03, and
0.1, respectively. Each curve shows an exponential attenuation, and we can
obtain the lifetime of the localized modes from its slope.

We should note that Γd is proportional to ε′′. This can be easily under-
stood, since the dielectric loss in a unit time, Uloss, is proportional to ε′′. It
is given by

Uloss =
ωdε0ε

′′

2

∫
Ω

|Ed(r, t)|2dV, (6.18)

where ωd and Ed stand for the eigen-angular frequency and the electric field
of the localized defect mode, and Ω denotes the volume that the dielectric
rods occupy. Because
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Fig. 6.25. Temporal attenuation of the accumulated electromagnetic energy U of
the localized defect mode with the B2 spatial symmetry with the 5-(2)-5 structure
that is caused by the dielectric loss, where U0 denotes the accumulated energy
immediately after 200 cycles of the oscillation of the dipole. The abscissa is the
normalized time. •, ◦, �, and � represent the calculated results for ε′′ = 0.001,
0.01, 0.03, and 0.1, respectively. (After [72])

Γ−1
d = τ =

U0

Uloss
, (6.19)

we can conclude that Γd is proportional to ε′′.
Returning to Fig. 6.24, ◦ represents the spectral width of each defect mode

for ε′′ = 0.001, which was obtained as a sum of the spectral width for ε′′ = 0
and Γd. It is evident that the spectral width is limited by the dielectric loss
for n ≥ 6, and the upper limit of the quality factor is 4.9 × 104. It is clear
that a larger ε′′ leads to a smaller quality factor. Here we assumed ε′′ of 0.001
according to Lin et al. The discrepancy between the theoretical results and
the experimental observation in Fig. 6.24 may be attributed to the energy
leakage along the direction of the line defect, i.e., along the x axis in Fig.
6.17, as was pointed out by Lin et al. as an additional loss mechanism, the
amount of which depends on experimental configuration. Note that we dealt
with systems infinite in the x direction in the theoretical analysis, whereas
the actual specimens were finite.



7. Band Calculation
with Frequency-Dependent
Dielectric Constants

The numerical simulation of the dipole radiation that was utilized for the
localized defect modes in Chap. 6 will be extended to the band calculation
with frequency-dependent dielectric constants [78–80]. Two-dimensional pho-
tonic crystals with metallic components will be analized by this method. The
dispersion relation, the field distribution, and the lifetime of the radiation
modes will be examined. The nature of surface plasmon polaritons will be
clarified.

7.1 Principle of Calculation

The dielectric constants of photonic crystals were assumed to be independent
of frequency so far. When we deal with transparent materials whose optical
transition frequencies are far from those of the relevant radiation field, this
assumption is reasonable. However, when we deal with materials whose reso-
nant polarization plays an important role in their optical response, we cannot
neglect the frequency depnedence of their dielectric constants.

We begin with the following set of Maxwell’s equations.

∇ × E(r, t) = −µ0
∂

∂t
H(r, t), (7.1)

∇ × H(r, t) =
∂

∂t
{D0(r, t) + P d(r, t)}. (7.2)

In (7.2), P d(r, t) represents the virtual oscillating dipole moment as before
and D0(r, t) denotes the electric displacement due to the regular dielectric
structure of the photonic crystal. If the dielectric constant does not depend
on frequency, the latter is given by the dielectric constant times the electric
field. However, if the dielectric constant depends on frequency, a more general
treatment is necessary. We assume that the matter system responds linearly
to the electric field. Then, a somewhat general form of the displacement field
is given by

D0(r, t) =
∫ ∞

−∞
dt′Φ(r, t − t′)E(r, t′). (7.3)
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Φ(r, t) is referred to as the response function. In this equation, the displace-
ment is given by the convolution of the response function and the electric
field. Hence, the former depends not only on the electric field at the same in-
stance but also on those at different times. This is the origin of the frequency
dependence of the dielectric constant. Because of the causality principle,

Φ(r, t) = 0 (t < 0). (7.4)

If E(r, t) is monochromatic, i.e., if it has the following form,

E(r, t) = Eω(r)e−iωt, (7.5)

we have

D0(r, t) =
∫ ∞

−∞
dt′Φ(r, t − t′)Eω(r)e−iωt′

= Eω(r)e−iωt

∫ ∞

−∞
dt′Φ(r, t′)eiωt′

. (7.6)

When we define ε(r, ω) by

ε(r, ω) =
1
ε0

∫ ∞

−∞
dt′Φ(r, t′)eiωt′

, (7.7)

and denote D0(r, t) by

D0(r, t) = Dω(r)e−iωt, (7.8)

we obtain

Dω(r) = ε0ε(r, ω)Eω(r). (7.9)

Therefore, ε(r, ω) is the dielectric function in our previous terminology. How-
ever, it may now depend on frequency. Hence, (7.3) gives an extension of
our previous treatment of frequency-independent dielectric constants to the
frequency-dependent case.

The inverse Fourier transform of (7.7) gives

Φ(r, t) =
ε0

2π

∫ ∞

−∞
dωε(r, ω)e−iωt. (7.10)

For t < 0, the path for the integration can be modified to enclose the upper
half of the complex ω plane. So, if ε(r, ω) has a pole in that region, the
integral has a finite value due to the residue theorem, which contradicts the
causality. Thus, ε(r, ω) cannot have a pole in the upper half of the complex
ω plane.

We now show some examples of such dielectric functions. We shall forget
the r dependence for a while. For metallic materials, it is known that their
dielectric constant is well represented by that of the Drude type in a certain
frequency range:

ε(ω) = ε∞

{
1 − ω2

pτ

ω(ωτ + i)

}
, (7.11)
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where ωp is the plasma frequency, τ is the relaxation time, and ε∞ is the
relative dielectric constant at sufficiently high frequencies. Then (7.10) leads
to

Φ(r, t) =
ε0ε∞
2π

∫ ∞

−∞
dω

{
1 + iω2

p

(
1

ω + iδ
− 1

ω + i/τ

)}
e−iωt

= ε0ε∞
{

δ(t) + ω2
pτ
(
1 − e−t/τ

)}
θ(t), (7.12)

where δ is a positive infinitesimal and θ(t) is the unit step function, i.e.,

θ(t) =

⎧⎨⎩1 (t ≥ 0)

0 (t < 0).
(7.13)

Another example is the dielectric constant appropriate to semiconductors:

ε(ω) = ε∞
ω2

L − ω2

ω2
T − ω2 − iωγ

, (7.14)

where ωT (ωL) is the transverse (longitudinal) exciton frequency, and γ is
the relaxation rate. The same formula may be used to describe the optical
phonons in polar crystals. For this case, we have

Φ(t)

= ε0ε∞

[
δ(t) +

{(
ω2

L − ω2
T +

γ2

4

)
sin ωTt

ωT
− γ cos ωTt

}
θ(t)
]

. (7.15)

Now, we apply our method to a photonic crystal composed of metallic
components whose dielectric constant is well represented by that of the Drude
type. We locate the oscillating dipole outside the metal. From (7.3) and (7.12),
the displacement in the metallic region is given by

D0(r, t) = ε0ε∞

{
E(r, t) + ω2

pτ

∫ t

−∞
dt′
(
1 − e−(t−t′)/τ

)
E(r, t′)

}
.

(7.16)

We thus have

∂2

∂t2
D0(r, t) = ε0ε∞

[
∂2

∂t2
E(r, t) + ω2

p

{
E(r, t)

−1
τ

∫ t

−∞
dt′e−(t−t′)/τE(r, t′)

}]
. (7.17)

Hence, the wave equation for this region is

∇ × {∇ × E(r, t)} = −ε∞
c2

[
∂2

∂t2
E(r, t) + ω2

pE(r, t)

−ω2
p

τ

∫ ∞

0
dt′ exp

(
− t′

τ

)
E(r, t − t′)

]
. (7.18)
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On the other hand, we assume that ε(r, ω) = 1 (air) outside the metallic
region. Then for this region,

∇ × {∇ × E(r, t)} = − 1
c2

[
∂2

∂t2
E(r, t) − ω2µδ(r − r0)e−iωt

]
. (7.19)

We discretize (7.18) and (7.19) to obtain the difference equations and solve
them numerically with an initial condition E = ∂E/∂t = 0 and a boundary
condition

E(r + a, t) = exp(ik · a)E(r, t), (7.20)

where k is a wave vector in the first Brillouin zone and a is the elementary
lattice vector. The latter condition extracts the contribution to the radiated
electromagnetic field from particular eigenmodes with the specified wave vec-
tor. Therefore, we can calculate the resonance frequency as a function of k,
i.e., we can obtain the dispersion relation.

7.2 Modified Plane Waves in Metallic Crystals

In this section, we will give an example of a numerical calculation. We will
deal with a 2D photonic crystal composed of a square array of metallic cylin-
ders for the E polarization. The H polarization will be treated in the next
section. The following parameters were assumed: ra/a = 0.472 (crystal 1) or
0.0564 (crystal 2), where ra and a denote the radius of the cylinders and the
lattice constant, respectively; ε∞ = 1.0; and ωpa/2πc = 1.0. Because of the
boundary condition, (7.20), it is sufficient to deal with only one unit cell, and
therefore, the CPU time necessary for the numerical calculation is small.

The numerical calculation was done for the wave vectors in the (1, 0) and
(1, 1) directions in the first Brillouin zone of the 2D square lattice. In the
actual calculation, τ−1 was set equal to 0.01 × ωp. The unit cell was divided
into 40 × 40 parts, and one period of the oscillation was divided into 160
steps. Further decrease of the size of the spatial and temporal meshes did not
result in an apparent change in the resonance frequencies. The lifetime of the
eigenmodes was evaluated by observing the temporal decrease in the accumu-
lated electromagnetic energy after 200 cycles of the oscillation of the dipole
moment. The total electromagnetic energy after switching off the oscillation
showed an exponential decrease and we could obtain the lifetime easily.

As an example, Fig. 7.1 shows the electromagnetic energy radiated by the
oscillating dipole moment as a function of the oscillation frequency for k = 0.
The abscissa represents the normalized frequency. �, ◦, �, and • denote the
accumulated electromagnetic energy after 10, 20, 50, and 100 cycles of the
oscillation, respectively. A resonance at ωa/2πc = 0.745 is clearly observed
in this figure. The dispersion relation for crystal 1 thus obtained is presented
in Fig. 7.2 where the symmetry of each eigenmode is also shown. In this
figure, the number in parentheses is given in order of ascending frequency
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Fig. 7.1. Electromagnetic energy radiated by an oscillating dipole moment located
at r0/a = (0.3, 0) as a function of the oscillation frequency for k = 0 for crystal 1.
�, ◦, �, and • denote the accumulated electromagnetic energy after 10, 20, 50, and
100 cycles of the oscillation, respectively. The abscissa represents the normalized
frequency. The following parameters were used: ra/a = 0.472, ε∞ = 1.0, ωpa/2πc =
1.0, and τ−1 = 0.01×ωp. A resonance at ωa/2πc = 0.745 is clearly observed. (After
[78])

when there are more than one mode of the same symmetry in the analyzed
spectral region. The symmetry of each band shown in Fig. 7.2 is consistent
with the prediction of the group theory in Table 3.7 that was obtained by the
comparison with the irreducible representations of the radiation field in free
space. This implies that the radiational eigenmodes for the E polarization in
this frequency range are essentially modified plane waves.

We should note that there is no eigenmode for ωa/2πc < 0.745. We can
show that this cut-off frequency is consistent with the long-wavelength ap-
proximation of the Maxwell equations as follows. From (2.47)–(2.49), we have
for the E polarization

∂Ez

∂y
= −µ0

∂Hx

∂t
, (7.21)

∂Ez

∂x
= µ0

∂Hy

∂t
, (7.22)

∂Hy

∂x
− ∂Hx

∂y
= ε0ε

∂Ez

∂t
. (7.23)

If the wavelength is long and the wave vector is small, the eigenmode is not
affected by the detail of the spatial variation of the dielectric function. Hence,
we may replace the dielectric function by its spatial average over the unit cell.
For this case, the spatial variation of the eigenfunctions in the unit cell is also
small. Hence, we may approximate the rigorous eigenfunctions by
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Fig. 7.2. Dispersion relation of the 2D square photonic crystal composed of metallic
cylinders (crystal 1) for the E polarization calculated by means of the numerical
simulation of the dipole radiation. The ordinate is the normalized frequency where
ω, a, and c stand for the angular frequency of the radiation field, the lattice constant
of the crystal, and the light velocity in free space. The following parameters were
used for numerical calculation: ra/a = 0.472 (f = 0.7), where ra denotes the radius
of the metallic cylinders; ε∞ = 1.0, ωpa/2πc = 1.0, and γ = 0.01 × ωp in (7.11).
The dispersion relation was drawn for highly symmetric points in the first Brillouin
zone of the 2D crystal: Γ (0, 0), X(π/a, 0), and M(π/a, π/a). The spatial symmetry
of each eigenmode is also shown in this figure, where the number in parentheses is
given in order of ascending frequency when there are more than one mode of the
same symmetry in the analyzed frequency region. (After [79])

Ez(r//, t) = uz(r//) exp
{
i
(
k// · r// − ωt

)}
� uz exp

{
i
(
k// · r// − ωt

)}
, (7.24)

etc., where the overline denotes the spatial average on the unit cell. When
we take this spatial averege in (7.21)–(7.23), we obtain

kyuz � µ0ωvx, (7.25)

kxuz � −µ0ωvy, (7.26)

kxvy − kyvx � −ε0εωuz. (7.27)

We should note that we could do the following replacement,

εEz � εEz, (7.28)

since Ez is a continuous function of r// due to the continuity condition of
the tangential component of the electric field on the surface of the metallic
cylinder, whereas ε is discontinuous. When both functions were discontinuous,
the replacement could not be justified.
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From (7.25)–(7.27), we have

ω2

c2 =
k2

ε
, (7.29)

where the spatial average of the dielectric function, ε, is now given by

ε = 1 + (ε∞ − 1)f − fε∞ω2
p

ω2 . (7.30)

In this equation, f is the filling factor of the metallic cylinders: f = 0.7 for
crystal 1 and f = 0.01 for crystal 2. From (7.29) and (7.30), we obtain

ω =

√
c2k2 + fε∞ω2

p

1 + (ε∞ − 1)f
. (7.31)

Substituting the assumed parameters for crystal 1 into this equation, the
cut-off frequency is obtained as 0.84. This value is not very close to the
numerical result, but (7.31) tells us that there should be the cut-off and the
lowest frequency is realized at the Γ point where k = 0.

The distribution of the electric fields of the eigenmodes at the Γ point
is presented in Fig. 7.3. The maximum of each electric field is normalized to
unity. It is very clear that each eigenmode shows its peculiar symmetry. In
particular, Fig. 7.3(c) is a replica of Fig. 7.3(d) given by a 90◦ rotation, which
implies that they are degenerate and attributed to the E representation.
Figure 7.4 shows the field distribution of the eigenmodes at the X point.
They are consistent with the symmetry assignments given in Fig. 7.2. Figure
7.5 shows the lifetime of the five lowest eigenmodes. This depends strongly
on the amount of the field distribution in the metallic region.

The dispersion relation and the lifetime of the lowest band for crystal 2
with a filling factor of 0.01 are shown in Figs. 7.6 and 7.7. In this case, the
filling factor is very small and the correspondence with the symmetry assign-
ment for free space is quite good. In the long-wavelength approximation, the
cut-off frequency is given by ωa/2πc = 0.1, which is very close to the numer-
ical result, 0.097. Figure 7.7 shows a very interesting behavior of the lifetime
of the lowest band. It varies by more than three orders of magnitude with k.
This feature originates, of course, from the variation of the field distribution.
For example, the B2 mode on the M point is antisymmetric about the x and
y axes. Its amplitude is thus equal to zero on these axes. Because the electric
field is continuous and the radius of the metallic cylinders is small for crystal
2, the electric field is small everywhere in the metal. This is why the dielectric
loss is small and the lifetime is long for the B2 mode. On the other hand,
the A1 mode on the Γ point is totally symmetric and it may have a large
amplitude in the metallic region. This is why its lifetime is much shorter than
that of the B2 mode.
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Fig. 7.3. Distribution of the electric fields of the (a) A1(1), (b) A1(2), (c) (d) E,
and (e) B1 modes at the Γ point that has the C4v symmetry. The maximum of
each electric field is normalized to unity. For all eigenmodes, the eigenfunctions show
their peculiar symmetries. For the doubly degenerate E mode, one eigenfunction is
a replica of the other given by a 90◦ rotation. (After [78])
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maximum of each electric field is normalized to unity as before. (After [78])
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Fig. 7.5. Lifetime of the lowest five eigenmodes of crystal 1. The same parame-
ters as for Fig. 7.1 were used for numerical calculation. The ordinate denotes the
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Fig. 7.7. Lifetime of the lowest eigenmode of crystal 2. The same parameters as for
Fig. 7.6 were used for numerical calculation. The ordinate denotes the normalized
lifetime in a logarithmic scale. (After [79])

We assumed certain analytical forms for the frequency-dependent dielec-
tric constants, such as (7.11) and (7.14). Since the exact analytical forms
for actual materials are not known, the present method may seem not to be
applicable to actual photonic crystals. However, it is applicable in fact. This
is a very important and practical feature of the present method. The key
idea is that the use of the response function given in (7.10) is necessary to
describe the non-steady state of the radiation field after the abrupt introduc-
tion of the oscillating dipole at t = 0 and that the radiation field after a long
period that can be regarded as being in a steady state is well described by
the dielectric constant at the oscillation frequency alone. This implies that
the choice of the analytical form of the dielectric constant is not important
when we calculate the radiation field at a given frequency with a given di-
electric constant. Therefore, we can calculate the dipole radiation spectrum
using dielectirc constants obtained by experimental observation. The reader
my consult [79] for details.

7.3 Surface Plasmon Polaritons

In this section, we will treat the H polarization in the same metallic system
as we did in the last section. In this case, a qualitatively different feature
appears. That is the excitation of surface plasmons. Before we discuss the
surface plasmons in photonic crystals, we will derive their fundamental prop-
erties in uniform metals.
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7.3.1 Plasmon Polaritons on Flat Surface

First, we consider radiational eigenmodes in a uniform bulk metal with a
dielectric constant of the Drude type:

εm(ω) = ε∞

(
1 − ω2

p

ω2

)
. (7.32)

We omit its imaginary part for simplicity. Since the bulk metal has transla-
tional symmetry, its eigenmodes are plane waves and should have the follow-
ing form:

E(r, t) = E0ei(k·r−ωt). (7.33)

On the other hand, from one of the Maxwell equations, (2.1), we have

∇ · D ≡ ∇ · {ε∞εm(ω)E} = 0. (7.34)

From these equations we obtain

εm(ω)k · E0 = 0. (7.35)

Hence, there are two cases:

(A) k · E0 = 0, (7.36)
(B) εm(ω) = 0. (7.37)

For ω > ωp, the dielectric constant is positive, and we have only case (A). The
eigenmodes are thus transverse waves, i.e., their electric field is perpendicular
to their wave vector. Using the vector identity

∇ × (∇×) = ∇∇ · −∇2, (7.38)

we obtain the following relation from (2.15) and (7.33):

ω2 =
c2k2

εm(ω)
, (7.39)

where k = |k|. When we substitute (7.32) into (7.39), we obtain

ω =

√
ω2

p +
c2k2

ε∞
. (7.40)

For ω < ωp, we have the same relation as (7.39). However, εm(ω) is negative in
this frequency range, and (7.39) does not have any real solution. For ω = ωp,
case (B) holds. It is easy to verify that the electric field has only a longitudinal
component, i.e., E0//k, in this case. The eigen-angular frequency is thus equal
to ωp irrespective of k. These results are illustrated by curves (a) and (b) in
Fig. 7.8.

If we consider a flat interface between a metal and a dielectric material,
surface waves localized on the interface appear. These waves are referred to
as surface plasmon polaritons. Polariton generally means a coupled wave of
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Fig. 7.8. Dispersion relation of (a) transverse plane waves in a bulk metal, (b)
longitudinal plasmons in a bulk metal, and (c) surface plasmon polaritons on a flat
interface between a metal and a dielectric material. The abscissa represents c|k|/ωp
for the former two and ckx/ωp for the latter. We assumed ε∞ = εb = 1

the radiation field and a resonant polarization in the matter system. Their
dispersion relation is obtained as follows. We take the x and z axes as shown
in Fig. 7.9, and the y axis in the direction perpendicular to them. We also
assume without the loss of generality that the surface wave propagates in the
x direction. We denote its wave vector by kx. Since we can easily show that
the electric field of the surface wave does not have a y component, we assume
it to have the following form:

E(r, t) =

⎛⎜⎜⎝
Ejx

0

Ejz

⎞⎟⎟⎠× exp {i (kxx + kjzz − ωt)} , (7.41)

where j = 1 for the metallic region and 2 for the dielectric region. Substituting
this expression into the wave equation, we obtain

ω2 =
c2

εj

(
k2

x + k2
jz

)
, (7.42)

where εj denotes the dielectric constant in region j:

ε1 = εm(ω), (7.43)
ε2 = εb (const.). (7.44)
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Fig. 7.9. Illustration of a flat interface between a metal and a dielectric material

From ∇ · D = 0, we have

kxE1x + k1zE1z = 0, (7.45)
kxE2x + k2zE2z = 0. (7.46)

The boundary conditions are given by the continuity of Ex and εEz:

E1x = E2x, (7.47)
εm(ω)E1z = εbE2z. (7.48)

The following determinant should vanish so that these four equations, (7.45)–
(7.48), may have a non-trivial solution:∣∣∣∣∣∣∣∣∣∣∣

kx, k1z, 0, 0

0, 0, kx, k2z

1, 0, −1, 0

0, εm(ω), 0, −εb

∣∣∣∣∣∣∣∣∣∣∣
= 0. (7.49)

This equation reduces to

εm(ω)
εb

=
k1z

k2z
. (7.50)

We can obtain the dispersion relation of the surface plasmon polariton by
solving (7.50) combined with (7.42). We examine some limiting cases here.
(1) ckx, ω � ωp

We can easily show that the dispersion curve in this range is linear:

ω =
ckx√

εb
. (7.51)

(2) ω ∼ ωp, kx → ∞
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In this case, the eigen-angular frequency converges to

ω =
√

ε∞
ε∞ + εb

ωp. (7.52)

(3) ε∞ = εb = 1
The dispersion relation is given by

ω =

√√√√2c2k2
x + ω2

p −
√

4c4k4
x + ω4

p

2
(7.53)

The dispersion relation of the surface plasmon polariton in case (3) is shown
by curve (c) in Fig. 7.8. It approaches ωp/

√
2 with increasing kx. The eigen-

modes are localized around the interface, since the k1z and k2z are purely
imaginary.

7.3.2 Plasmon Resonance on a Metallic Cylinder

As we did in Sect. 7.2, we assume a two-dimensional square array of metal-
lic cylinders. As will be shown in the following sections, the electromagnetic
field of the eigenmodes of surface plasmon polaritons are considerably local-
ized around the surface of the metallic cylinders and the overlap of the field
between adjacent cylinders is small. This situation resembles the electronic
bands composed of well localized atomic orbitals. For the latter case, the
tight-binding approximation based on the linear combination of atomic or-
bitals (LCAO) describes the actual bands well. We thus examine the atomic
orbitals for the present problem, i.e., the electromagnetic resonant states that
originate from the excitation of surface plasmons on a single metallic cylinder
that appear for ω < ωp.

For this purpose, we assume a plane wave incident on a single cylinder with
the magnetic field parallel to the cylinder (z) axis, and study the amplitude of
the scattered wave. First we express the magnetic field of the incident plane
wave with partial waves using polar coordinates, (r, θ). We take the direction
of θ = 0 as the direction of the wave vector k of the incident plane wave. We
thus have

H0ei(k·r−ωt)

= H0ei(kr cos θ−ωt)

= H0e−iωt
∞∑

l=−∞
Jl(kr) exp

{
il
(
θ +

π

2

)}

= H0e−iωt

[
J0(kr) + 2

∞∑
l=1

ilJl(kr) cos lθ

]
, (7.54)
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where H0 is the amplitude of the incident wave, k = |k|, and Jl is the Bessel
function of the lth order. We used (2.94) to derive (7.54). The eigenvalue
equation in the polar coordinate system that describes the magnetic field Hz

is given by

1
ε

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
Hz = −ω2

c2 Hz, (7.55)

where ε denotes the position-dependent dielectric constant.
As usual, we express Hz by a product of two functions R(r) and Θ(θ).

We then obtain a pair of equations for R and Θ:

∂2Θ

∂θ2 = −ελΘ, (7.56)(
∂2

∂r2 +
1
r

∂

∂r
+

εω2

c2 − ελ

r2

)
R = 0, (7.57)

where λ is the parameter for decoupling. Because Θ(θ) should be a single-
valued function,

√
ελ is an integer, which we denote by n. The solutions of

(7.56) are thus given by

Θ(θ) ∝ einθ, e−inθ. (7.58)

For r > ra, we define a new variable s by

s = kr. (7.59)

Then (7.57) is modified to(
∂2

∂s2 +
1
s

∂

∂s
+ 1 − n2

s2

)
R = 0. (7.60)

This is the Bessel equation and its solution is given by the Bessel and Neu-
mann functions, both of which are analytic for r > ra:

R(r) ∝ Jn(kr), Nn(kr). (7.61)

On the other hand, for r < ra, the dielectric constant εm(ω) is negative for
ω < ωp. In this case, we have to take

s = κr, (7.62)

where

κ =
√

−εm(ω)
ω

c
. (7.63)

We thus obtain for r < ra[
∂2

∂s2 +
1
s

∂

∂s
−
(

1 +
n2

s2

)]
R = 0. (7.64)
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This is the modified Bessel equation and its solution is given by the modified
Bessel function of the first kind,

R(r) ∝ In(κr), (7.65)

since the modified Bessel function of the second kind is not analytic at r = 0.
When we take into account that the geometry is symmetric with respect to
θ, the total field is given by

Hz =
∞∑

n=0

AnIn(κr) cos nθ (r < ra), (7.66)

Hz =
∞∑

n=0

[BnJn(kr) + CnNn(kr)] cos nθ (r > ra), (7.67)

where An, Bn, and Cn are constants that should be determined by the bound-
ary conditions.

The independent boundary conditions at r = ra are the continuity of Hz

and ε−1∂Hz/∂r. The latter is equivalent to the continuity of the tangential
component of the electric field. From these conditions, we obtain

An

Bn
=

kεm[N ′
n(kR)Jn(kR) − Nn(kR)J ′

n(kR)]
kεmN ′

n(kR)In(κR) − κεbNn(kR)I ′
n(κR)

, (7.68)

Cn

Bn
= − kεmJ ′

n(kR)In(κR) − κεbJn(kR)I ′
n(κR)

kεmN ′
n(kR)In(κR) − κεbNn(kR)I ′

n(κR)
. (7.69)

Finally, by comparing (7.54) and (7.67), we obtain

B0 = H0 and Bn = 2inH0. (7.70)

When we calculate An/Bn and Cn/Bn as functions of ω, we observe sharp
resonances, which imply the excitation of surface plasmons by the incident
plane wave. As an example, Fig. 7.10 shows the ω dependence of An/Bn for
n = 1–5, for which we assumed ε∞ = εb = 1. A sharp resonance peak is
observed for each curve. No resonance is observed with n = 0 for this case.
The resonance frequencies are listed in Table 7.1. The resonance frequency
converges to ωp/

√
2 with increasing n irrespective of the ratio ra : a as is

shown in Fig. 7.11. This value is the same as that of the surface plasmon
on a flat interface between a metal and a dielectric. These resonant states
have finite radiative lifetime and they are not eigenmodes of the system.
However, when the metallic cylinders are arrayed in the photonic crystal, the
resonant states can be propagated from one cylinder to another to become
a Bloch eigenstate yielding an infinite lifetime. Because the resonant states
are localized at each cylinder, they may be regarded as atomic orbitals in
the theory of LCAO. This feature can be used to classify and predict the
symmetry of eigenmodes that originate from the surface plasmons.
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Fig. 7.10. ω dependence of An/Bn for small n. The following parameters were
assumed: ε∞ = 1.0, ωpa/2πc = 1.0, ra = 0.3a, and εb = 1.0 (air). A sharp resonance
that originates from the excitation of the surface plasmon is observed in each curve.
(After [80])

Table 7.1. Comparison between the resonance frequencies in the spectra of An/Bn

and the eigenfrequencies on the Γ point in the unit of 2πc/a. The same parameters
as Fig. 7.10 were used for the numerical calculation. (After [80])

n Resonance frequency Eigenfrequency

1 0.8194 0.7183

2 0.6149 0.5963, 0.6712

3 0.6627 0.6431

4 0.6849 0.6876, 0.7037

5 0.6937 -
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n

Fig. 7.11. n dependence of the resonance frequency. (After [80])
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7.3.3 Symmetry of Plasmon Polaritons

In Sect. 7.2, we examined the photonic bands of two-dimensional metallic
lattices for the E polarization. For that case, each dispersion curve in the
photonic crystal had its replica in free space. This feature was demonstrated
by the comparison of the symmetry of the eigenmodes between the photonic
crystal and free space. For the H polarization, the situation is different. Here
we also have the modes that originate from the surface plasmons and which
do not have replicas in free space. We can classify the symmetry of these
eigenmodes by examining the symmetry of the resonant states found in the
last section.

First, we examine the ∆ point in the two-dimensional Brillouin zone, i.e.,
k = (k, 0) where 0 < k < π/a. The k group is given by Ci = {E, σy} where E
is the identity operation and σy is the mirror reflection about the x axis. The
eigenfunction at the ∆ point is thus either symmetric or antisymmetric about
the x axis. On the other hand, the angular (θ) dependence of the resonant
state, whose radial variation is described by In(κr) for r < ra, and Jn(kr)
and Nn(kr) for r > ra, is given by e±inθ for each n ≥ 1, where we measure θ
counterclockwise from the x axis. The symmetric and antisymmetric combi-
nations of these two functions, i.e., cosnθ and sinnθ, possess the appropriate
symmetry that the exact eigenfunctions should have. We can thus conclude
that the resonant states characterized by index n ≥ 1 give one symmetric
and one antisymmetric mode for the ∆ point.

Next, we examine the Γ point, which has the symmetry of the C4v point
group. The spatial variation of the resonant states is illustrated schematically
in Fig. 7.12. When we compare them with the symmetry of the irreducible
representations of C4v, which are shown in Fig. 7.13, the symmetry of the
former is easily assigned. The results are also shown in Fig. 7.12. Similar
assignments can be made for the X point, which has the symmetry of the

cos nθ

sin nθ

n = 0 n = 1 n = 2 n = 3 n = 4

+
+

++

++

+
+

+

++

+
+ +

++

+
+

++

+
+

+
++

+

++

+
+

+
+

+
+

+
+

+

+

++

++

++

-
-

- -

- -

- -

--
--

--
-
-

--

--

--
- -

--

-- --

--

- --- --- -

A

E

E

E

E

B1 A1

B2 A2

1

Fig. 7.12. Angular variation of the magnetic field and the symmetry assignment
of the resonant states according to the irreducible representations of the C4v point
group. (After [80])
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Fig. 7.13. Symmetry of irreducible representations of the C4v point group. (After
[80])

C2v point group. All the results are summarized in Table 7.2. Symmetry
assignments are presented for n = 1–4 in this table. Those for n′ > 4 can be
obtained from the simple relation that the same irreducible representations
appear if

n′ = n + 4j, (7.71)

where j is an integer.

Table 7.2. Symmetry of the eigenmodes expected from the LCAO approximation
and group theory. (After [80])

n Γ (C4v) ∆(Ci) X(C2v)

1 E A + B B1 + B2

2 B1 + B2 A + B A1 + A2

3 E A + B B1 + B2

4 A1 + A2 A + B A1 + A2

7.3.4 Plasmon Bands in a Square Lattice

The numerical evaluation of the electromagnetic field radiated by an oscil-
lating dipole moment is similar to that for the E polarization. However, in
order to obtain a good convergence and accuracy, we have to deal with both
the electric and magnetic fields in the discretized Maxwell equations. The
reason for this difference between the E polarization and the H polarization
is the presence of the spatial differentiation of the discontinuous dielectric
function in (2.58), which is absent in (2.57). We thus perform the following
replacement in the Maxwell equations.
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∂Hz(x, y, t)
∂x

� Hz(x + ∆x/2, y, t) − Hz(x − ∆x/2, y, t)
∆x

, (7.72)

∂Hz(x, y, t)
∂y

� Hz(x, y + ∆y/2, t) − Hz(x, y − ∆y/2, t)
∆y

, (7.73)

∂Hz(x, y, t)
∂t

� Hz(x, y, t + ∆t/2) − Hz(x, y, t − ∆t/2)
∆t

, (7.74)

etc. For the general technique used in numerical calculations by the FDTD
method, the reader may consult the text book [60].

Now, Figs. 7.14 and 7.15 shows the calculated band diagram for the square
lattice composed of the metallic cylinders. ra/a was assumed to be 0.3. This
figure shows two distinct features: (A) There is no cut-off frequency, i.e., the
dispersion curve increases linearly with increasing wave number from ω = 0;
(B) There are extremely flat bands around ω = ωp/

√
2.
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Fig. 7.14. Dispersion relation from the Γ point to the X point for the radiational
eigenmodes in the two-dimensional square lattice composed of metallic cylinders
calculated for the H polarization. Symmetric and antisymmetric modes are denoted
by solid and dashed lines, respectively. The following parameters were assumed:
ra/a = 0.3, ωpa/2πc = 1.0, γ = 0.01ωp, ε∞ = εb = 1.0. (After [80])
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Fig. 7.15. Dispersion relation from the Γ point to the X point. Spectral range
ωa/2πc = 0.55–0.75 in Fig. 7.14 is magnified. (After [80])

We first examine item (A). For the H polarization, we have

∂Hz

∂y
= ε0ε

∂Ex

∂t
, (7.75)

∂Hz

∂x
= −ε0ε

∂Ey

∂t
, (7.76)

∂Ey

∂x
− ∂Ex

∂y
= −µ0

∂Hz

∂t
. (7.77)

Like the E polarization, we have the following relation in the long-wavelength
approximation.

Hz(r//, t) = vz(r//) exp
{
i
(
k// · r// − ωt

)}
� vz exp

{
i
(
k// · r// − ωt

)}
, (7.78)

etc., where the bar denotes the spatial average over the unit cell as before.
When we take the spatial average in (7.75)–(7.77), we have to note that both
ε and Ex (Ey) are generally discontinuous on the surface of the metallic
cylinder. Hence, we cannot approximate εEx by εEx. Instead, we have the
following equations.
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ky

(
1
ε

)
vz � −ε0ωux, (7.79)

kx

(
1
ε

)
vz � ε0ωuy, (7.80)

kxuy − kyux � µ0ωvz, (7.81)

since Hz is continuous. From these equations, we obtain

ω2

c2 =
(

1
ε

)
k2. (7.82)

For the dielectric constant of the Drude type, we have(
1
ε

)
= 1 +

(
1

ε∞
− 1
)

f +
fω2

p

ε∞(ω2 − ω2
p)

. (7.83)

From (7.82) and (7.83), we obtain for k � ωp/c

ω �
√

1 − fck, (7.84)

which agrees well with the dispersion relation given in Fig. 7.14.
Proceeding to item (B), the flat bands around ωp/

√
2 have no counterparts

in free space. They are characteristic of the metallic photonic crystals. Based
on the discussion given in Sects. 7.3.1–7.3.3, we may summarize their nature
as follows. When an external electric field is applied to the metallic cylinder
in the direction perpendicular to its cylinder axis, the positive charges in
it move in the direction of the external electric field whereas the negative
charges move in the opposite direction. The separation of the positive and
negative charges may be regarded as the motion of the solid state plasma,
whose characteristic frequency is the plasma frequency ωp. As a result, the
induced polarization screens the applied electric field. Thus, the electric field
cannot penetrate deeply into the metal as long as the frequency of the applied
field is less than ωp. When we consider the eigenmodes of the system, we
have to take into account both the genuine electromagnetic field and the
polarization field due to the solid state plasma. Their coupled oscillation is
called the surface plasmon polariton. When the interface of the metallic region
and air is an infinite flat plane, we can show that the dispersion curve of the
surface plasmon polariton converges from the low frequency side to ωp/

√
2

when the magnitude of the wave vector increases. As for the case of one
metallic cylinder, we have no genuine eigenmodes. However, we have a series
of resonant states characterized by an index n that describes their rotation
or their angular momentum. Strictly speaking, n is the order of the Bessel
and the modified Bessel functions that describe the radial variation of the
resonant state out of or in the metallic cylinder. Their resonance frequencies
also approach ωp/

√
2 when n tends to infinity. When the individual cylinders

gather to form the regular array, the resonant states can be propagated from
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Fig. 7.16. Distribution of the magnetic field for (a) the B2(1) mode at the Γ point,
which has an extremely small bandwidth, and (b) the A1(3) mode at the Γ point.
The magnetic field, and hence the electric field of the former, is also localized at the
surface of the metallic cylinder. These two features are characteristic to the surface
plasmon polaritons

one cylinder to another, and thus form the Bloch states, which are eigenmodes
of the system and have infinite lifetime if we neglect the imaginary part of
the metallic dielectric constant.

The electromagnetic field accompanied by the surface plasmon polariton
is localized at the surface of the cylinder, which is inherent in the plasma
oscillation. For example, Fig. 7.16(a) shows the magnetic field of the B2(1)
mode at the Γ point that has the flat dispersion and is regarded as the
surface plasmon polariton with n = 2. Its magnetic field is really localized at
the surface of the metallic cylinder, which is apparent when we compare it
with that of the A1(3) mode (Fig. 7.16(b)), which is an ordinary band and
has a counterpart band in free space. Because of their localized nature, the
overlapping of the electromagnetic field of the resonant states on adjacent
cylinders is small, which results in the small bandwidth of the polariton
bands. Most of the polariton bands are characterized by a single n and the
hybridization between resonant states with different n is relatively small. As
a result, the eigenfrequencies of the surface plasmon polaritons are fairly close
to the corresponding resonance frequencies, as shown in Table 7.1.

It is expected that the number of polariton bands is infinite, since there
are an infinite number of resonant states characterized by n. However, the
separation of the eigenfrequencies becomes small when n tends to infinity, and
we cannot distinguish them in the spectrum of the dipole radiation. Hence,
we plotted only the first nine polariton bands in Figs. 7.14 and 7.15. In the
actual metallic system, its exact dielectric constant is not of the Drude type.
For example, we have to take into account the spatial dispersion, i.e., the k
dependence of the dielectric constant when k, and hence n, is large. So in
practice, the dispersion curves with small n are relevant to the real system,
and we have to go beyond the present treatment if we want to discuss other
features.



8. Photonic Crystal Slabs

The radiational eigenmodes in photonic crystal slabs are classified into guided
and leaky modes. The former are genuine eigenmodes with infinite lifetimes,
while the latter are quasi-eigenmodes with finite lifetimes. We will show that
the dispersion curves of photonic crystal slabs are well represented by the
folding of those in uniform dielectric slabs into the two-dimensional Brillouin
zone. This feature enables us to predict the symmetries of the eigenmodes
by group theory. The optical transmission due to the leaky modes in the
direction parallel to the slab surface is mainly governed by their diffraction
loss, which is a particular feature of photonic crystal slabs. We will show that
the diffraction loss is suppressed by symmetry mismatching between internal
eigenmodes and the external radiation field [81].

8.1 Eigenmodes of Uniform Slabs

Before we treat photonic crystal slabs, we examine the radiational eigenmodes
in uniform dielectric slabs. We assume a geometry shown in Fig. 8.1, where εb
and d denote the dielectric constant and the thickness of the slab. We assume
that the structure is infinite in the x and y directions and surrounded by air
in the z direction. We take the x-y plane in the middle of the slab. Then the
structure has mirror symmetry about the x-y plane, σ̂z.1

y

x

z

O

d

σz

Dielectric slab, εb

Fig. 8.1. Illustration of a uniform dielectric slab

1 We denote symmetry operations by hats to distinguish them from their eigen-
values in this chapter.
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Guided radiational modes that are confined in a uniform slab are classified
into four categories according to the symmetry for the mirror reflection σ̂z

and to their polarizations. Those modes whose electric fields lie in the x-
y plane are referred to as transverse electric (TE) modes, whereas those
modes whose magnetic fields lie in the x-y plane are referred to as transverse
magnetic (TM) modes. Each mode is also characterized by the wave number
k// in the x-y plane.

Now, we derive their dispersion relation. We begin with the symmetric TE
mode. We assume without the loss of generality that the mode propagates
in the x direction. Hence, we have the following form for the electric field in
the slab:

E1 =

⎛⎜⎜⎝
0

E1y

0

⎞⎟⎟⎠ exp
{
i
(
k//x − ωt

)}
cos (kzz) . (8.1)

The z component of the wave vector in the slab, kz, is related to k// and ω
by

ω2 =
c2

εb

(
k2

// + k2
z

)
, (8.2)

which is derived from the wave equation. From ∇ × E = −∂B/∂t, the mag-
netic field is given by

H1 =
E1y

iωµ0

⎛⎜⎜⎝
kz sin kzz

0

ik// cos kzz

⎞⎟⎟⎠ exp
{
i
(
k//x − ωt

)}
. (8.3)

The electric field for z > d/2 is expressed as

E2 =

⎛⎜⎜⎝
0

E2y

0

⎞⎟⎟⎠ exp
(
ik//x − κz − iωt

)
, (8.4)

where κ is related to k// and ω by

ω2 = c2
(
k2

// − κ2
)

, κ > 0. (8.5)

Since we are dealing with guided modes, we assumed an exponential decrease
for the electric field in the air region in (8.4). The magnetic field for z > d/2
is given by

H2 =
E2y

iωµ0

⎛⎜⎜⎝
κ

0

ik//

⎞⎟⎟⎠ exp
(
ik//x − κz − iωt

)
. (8.6)
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Fig. 8.2. Dispersion curves of the lowest four guided modes in a uniform slab
with refractive index 2.86, which is the spatially averaged refractive index of the
structure shown in Fig. 8.3. The ordinate is the normalized frequency, where d
denotes the thickness of the dielectric slab. The abscissa denotes the normalized
in-plane wave number. Solid lines represent the dispersion relations of modes with
σz = 1 whose in-plane components of the electric field are symmetric about the x-y
plane, whereas broken lines represent those of modes with σz = −1 whose in-plane
electric fields are antisymmetric. The dash-dotted line is referred to as the light line
and shows the dispersion relation in free space. (After [81])

From the continuity of the tangential components of the electric and magnetic
fields at z = d/2, we have

E1y cos
(

kzz

2

)
= E2y exp

(
−κz

2

)
, (8.7)

kzE1y sin
(

kzz

2

)
= κE2y exp

(
−κz

2

)
. (8.8)

As for the continuity of the normal component of the magnetic induction,
it does not give an independent boundary condition for this problem. The
determinant of coefficients should vanish so that these two equations, (8.7)
and (8.8), may have a non-trivial solution:2

κ cos
(

kzd

2

)
− kz sin

(
kzd

2

)
= 0 (TE, σz = 1). (8.9)

The solution of this equation gives the dispersion relation for the symmetric
TE modes. The dispersion curve consists of an infinite number of branches.
The lowest one is shown in Fig. 8.2.

For the eigenmodes to be localized on the slab, κ must be real and positive.
Thus, the limiting case is given by κ = 0. For this case, from (8.5) we have
2 σz represents the eigenvalue of σ̂z.
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ω = ck//. (8.10)

This relation is plotted with a dash-dotted line in Fig. 8.2 and is referred to
as a light line. Substituting κ = 0 into (8.9), we obtain

sin
(

kzd

2

)
= 0. (8.11)

From this equation and (8.2), we obtain

ω =
2jπc

d
√

εb − 1
, (j = 0, 1, 2 · · ·). (8.12)

Hence, the dispersion curves of the symmetric TE modes intersect the light
line at frequencies given above.

Now, we proceed to antisymmetric TE modes. For this case, the electric
field in the slab is given by

E1 =

⎛⎜⎜⎝
0

E1y

0

⎞⎟⎟⎠ exp
{
i
(
k//x − ωt

)}
sin (kzz) , (8.13)

while the magnetic field in the slab is given by

H1 =
E1y

iωµ0

⎛⎜⎜⎝
−kz cos kzz

0

ik// sin kzz

⎞⎟⎟⎠ exp
{
i
(
k//x − ωt

)}
. (8.14)

The electric and magnetic fields for z > d/2 are given by (8.4) and (8.6) as
before. From the boundary conditions at z = d/2, we obtain the following
equation, which gives the dispersion relation for the antisymmetric TE modes:

κ sin
(

kzd

2

)
+ kz cos

(
kzd

2

)
= 0 (TE, σz = −1). (8.15)

Now, we examine where the dispersion curves intersect the light line. Substi-
tuting κ = 0 into (8.15), we obtain

ω =
(2j + 1)πc

d
√

ε − 1
, (j = 0, 1, 2 · · ·). (8.16)

In particular, the lowest dispersion curve for the antisymmetric TE modes,
which is shown in Fig. 8.2, starts from a non-zero value of ω. That is, it has
an infrared cut-off.

The dispersion relations of TM modes can be obtained similarly by ex-
changing the roles of the electric and magnetic fields:

εκ cos
(

kzd

2

)
− kz sin

(
kzd

2

)
= 0 (TM, σz = −1), (8.17)

εκ sin
(

kzd

2

)
+ kz cos

(
kzd

2

)
= 0 (TM, σz = 1). (8.18)
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Their lowest branches are also shown in Fig. 8.2.
If the eigenfrequency lies below the light line, the spatial decay constant,

κ, is real, and thus, the eigenmode is confined in the slab. In other words, it
is a guided mode. If the eigenfrequency lies above the light line, κ is purely
imaginary, and the radiation field escapes from the slab. In this case, the
radiational mode is not a real eigenmode, but is a resonant state with a
complex ω. Only the guided modes are plotted in Fig. 8.2.

One of the important features of the radiational bands in a uniform slab is
that only the lowest two bands start from ω = 0, whereas higher bands have
infrared cut-off frequencies. Therefore, when we deal with a low frequency
region as we will do in the following sections, it is sufficient to take the lowest
two bands into account. In particular, this treatment is justified for photonic
crystal slabs with small thickness, for which the cut-off frequencies are high.
As we will see in the next section, the dispersion relation of modes with
σz = 1 can actually be well approximated for ωa/2πc ≤ 0.5 by the folding of
the lowest dispersion curve into the two-dimensional Brillouin zone, provided
that we take into consideration the mixing and the frequency splitting where
more than one band with the same symmetry crosses each other. We should
also note that the mixing of the TE and TM modes with the same σz takes
place in the photonic crystal slabs.

8.2 Symmetry of Eigenmodes

Figure 8.3 shows the two-dimensional photonic crystal slab that we deal with
in the rest of this chapter. We assume that it consists of the regular hexagonal
array of cylindrical holes fabricated in a dielectric slab with refractive index
3.4 (GaAs). The right-hand side of the figure shows the top view of the
configuration of several cylindrical holes. The lattice constant, the radius of

y

x

z

O

Air hole

Dielectric slab

d

σz

x

y

2r

a

σy

σx

Fig. 8.3. Left: Schematic illustration of a two-dimensional photonic crystal slab.
Right: Top view of the configuration of several air holes, where a and r denote
the lattice constant and the radius of the air holes, respectively. For numerical
calculation, the following parameters were assumed: The refractive index of the
dielectric slab = 3.4, d = 0.5a, and r = 0.25a. (After [81])
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the cylindrical holes, and the thickness of the slab are denoted by a, r, and
d, respectively. We assume that the structure is periodic and infinite in the x
and y directions, and surrounded by air in the z direction. Photonic crystal
slabs of this kind are referred to as the air-bridge type. We take the x-y plane
in the middle of the slab as before.

The structure has D6h symmetry, which is a direct product of the C6v

and C1h point groups:

D6h = C6v × C1h. (8.19)

C1h consists of the identity operation Ê and the mirror reflection by the x-y
plane, σ̂z. Thus any eigenmode of the radiation field should be symmetric
(σz = 1) or antisymmetric (σz = −1) about the x-y plane. In order to avoid
unnecessary complexity, let us restrict our discussion to the symmetric modes
in what follows. The antisymmetric modes can be treated in a similar manner.

We first examine what kind of radiational eigenmodes are expected to
appear by the group-theoretical argument. The key idea is the reduction of
the reducible representations given by the linear combination of unperturbed
eigenfunctions. For the case of two-dimensional photonic crystals with infinite
thickness and general three-dimensional photonic crystals, plane waves in
free space were used as the unperturbed eigennfunctions in Chap. 3. The
group-theoretical prediction was satisfactory in the low frequency range. As
for photonic crystals composed of metallic cylinders, the plasmon resonance
states were used for this purpose in Chap. 7. For the present problem, the
guided modes in a uniform slab with a spatially averaged dielectric constant
can be used as the unperturbed eigenfunctions.

Table 8.1. Irreducible representations for the electric field of the guided modes
in the uniform slab, whose wave vector, k//, is reduced in the two-dimensional first
Brillouin zone of the hexagonal lattice that is shown in Fig. 3.6. The irreducible
representations were calculated for the lowest TE mode with σz = 1 and the lowest
TM mode with σz = −1. (After [81])

Symmetry Point TE, σz = 1 TM, σz = −1

C6v Γ1 A2 + B1 + E1 + E2 A1 + B2 + E1 + E2

Γ2 A2 + B2 + E1 + E2 A1 + B1 + E1 + E2

C3v K0 A2 + E A1 + E

K1 A2 + E A1 + E

K2 A1 + A2 + 2E A1 + A2 + 2E

C2v M0 A2 + B1 A1 + B2

M1 A2 + B2 A1 + B1

M2 A1 + A2 + B1 + B2 A1 + A2 + B1 + B2
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Table 8.1 summarizes the results of the symmetry assignment by the
folding of the dispersion curves of the lowest TE and TM modes into the first
Brillouin zone. The irreducible representations of the electric field obtained
by the reduction procedure are listed for three highly symmetric points, that
is, the Γ , K, and M points. (For notations of the wave vectors, see Fig. 3.6
and Table 3.11.)

8.3 Photonic Band Structure and Transmission Spectra

The photonic band structure and the transmission spectra for ten lattice
layers calculated by the FDTD method are shown in Fig. 8.4 for the Γ -K
direction and Fig. 8.5 for the Γ -M direction. The latter was calculated with
the lowest TE mode of a uniform slab with refractive index 3.4 as an incident
wave.3 Since the Σ point is invariant under the mirror reflection σ̂x that is

0.1
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0.3

0.4

0.5

Γ K

0.0 0.5 1.0

Transmittance

T

Fig. 8.4. Photonic band structure (left-hand side) and optical transmittance (right-
hand side) in the Γ -K direction. The ordinate is the normalized frequency, where
a denotes the lattice constant. For numerical calculation, those parameters that
are listed in the caption of Fig. 8.3 were used. In the band diagram, solid circles
represent the odd (B) modes with σy = −1, whereas open circles represent the
even (A) modes with σy = 1. The irreducible representations of the k-groups for
the electric field are also shown for the Γ and K points. The transmittance was
calculated for ten lattice layers with the lowest TE mode in the uniform slab with
refractive index 3.4 as an incident wave. Thus, the incident wave has the symmetry
of σz = 1 and σy = −1. The even (A) modes do not contribute to the optical
transmission, since they do not couple to the incident wave because of the symmetry
mismatching. (After [81])

3 The reader may consult [81] for the details of the numerical calculation.
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Fig. 8.5. Photonic band structure (left-hand side) and optical transmittance (right-
hand side) in the Γ -M direction. The same parameters as in Fig. 8.4 were assumed
for numerical calculation. In the band diagram, solid circles represent the odd (B)
modes with σx = −1, whereas open circles represent the even (A) modes with
σx = 1. The irreducible representations of the k-groups for the electric field are
also shown for the Γ and M points. The even (A) modes do not contribute to the
optical transmission because of the symmetry mismatching. (After [81])

illustrated in Fig. 8.3, its eigenmodes are classified into even (σx = 1) and
odd (σx = −1) modes. The former are also referred to as A modes, whereas
the latter are referred to as B modes. The same holds for the T point when we
take into consideration the symmetry for the mirror reflection σ̂y instead of
σ̂x. In the band diagrams, solid and open circles represent the odd (B) and
even (A) modes, respectively. The light line is represented by dash-dotted
lines. The symmetries of the eigenmodes on the Γ , K, and M points ob-
tained by the numerical calculation are consistent with the group-theoretical
prediction that is given in Table 8.1. They are also consistent, as they should
be, with the compatibility relation listed in Table 3.10. Such modes that do
not match the group-theoretical prediction based on the folding of the lowest
TE mode appear at ωa/2πc ≥ 0.57.

It is known that modes with σz = 1 tend to have a photonic bandgap
below the light line. We actually observe a bandgap at ωa/2πc = 0.26–0.31.
However, taking into account the leaky A band that exists just above the
light line in the same frequency region, this is not a true gap. This leaky
band is of TM origin, and the corresponding unperturbed band with com-
plex eigenfrequencies is obtained by the extrapolation of the dispersion curve
shown in Fig. 8.2 beyond the infrared cut-off.

Now, we proceed to the transmission spectra. The lowest TE mode of
the uniform slab, which was assumed for the incident wave, is odd about
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the σ̂x or σ̂y mirror reflection. Thus the even modes in the photonic crystal
do not contribute to the optical transmission, since they do not couple to
the incident wave because of the symmetry mismatching. This feature is
clearly observed at ωa/2πc = 0.26–0.32 and 0.48–0.50 for the Γ -K direction,
and ωa/2πc = 0.24–0.30 for the Γ -M direction. In these frequency ranges,
there is no odd mode and the transmittance is extremely small. The lowest
transmittance is less than 10−3. On the other hand, the transmittance is
also small even when there is an odd mode if it is leaky, i.e., if it is located
above the light line. This is because the incident wave is diffracted into the
air region, and the electromagnetic energy transmitted in the Γ -K or Γ -M
direction becomes small. This feature is marked when the lifetime and/or the
group velocity of the eigenmodes are small. The low transmittance of this kind
is observed at ωa/2πc = 0.38–0.41 for the Γ -K direction and ωa/2πc = 0.40–
0.45 for the Γ − M direction. On the other hand, the transmittance is high
when their lifetime is long. The high transmittance of this kind is observed
around ωa/2πc = 0.45 for the Γ -K direction and around ωa/2πc = 0.48 for
the Γ -M direction.

Let us conclude this section with the following. As was mentioned above,
the transmittance may be low in two cases: (1) when there is no symmetry-
matched mode and (2) when the lifetime of the eigenmode is short. It may
also be low in the high-frequency region (3) when Bragg diffraction takes
place in the x-y plane. These facts imply that the frequency regions with
low transmittance do not necessarily correspond to photonic bandgaps. So,
we must be careful when we compare the transmission spectra obtained by
experimental observation and the band diagrams.

8.4 Quality Factor

As we saw in the last section, lifetime is an important quantity that char-
acterizes the basic optical properties of leaky modes. It can be evaluated by
examining their temporal decay as we did in the previous chapters. When we
excite the leaky mode by a dipole moment oscillating at its eigenfrequency
and observe its decay after switching off the oscillation, the accumulated
electromagnetic energy U(t) decreases with time as

U(t) = U(t0) exp
[
−ω(t − t0)

Q

]
, (8.20)

where t0 stands for the switch-off time and Q is the quality factor of the leaky
mode. In Fig. 8.6, the calculated Q−1 is plotted for the relevant bands. Solid
and open circles represent the odd (B) and even (A) modes, respectively.
Q−1 is equal to zero, or in other words, the lifetime is infinite near the K and
M points, since the dispersion curves are located below the light line in these
regions. A remarkable feature of this figure is that Q−1 is extremely small
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Fig. 8.6. Inverse of the quality factor (Q−1) of several bands. Solid and open circles
represent the odd (B) and even (A) modes, respectively. (After [81])

at the Γ point, where the modes shown in Fig. 8.6 have the B1, A2, and E2
symmetries. As we shall see, this phenomenon originates from the symmetry
mismatching with the diffracted radiational field in free space. Namely, the
coupling between the internal eigenmodes and the external radiation field is
forbidden by symmetry, and the lifetime, and thus Q, are infinite.

We examine the diffraction process of a mode with wave vector k//. Be-
cause of the conservation of the momentum in the x-y plane, the wave vector
of a diffracted wave, k, is generally given by

k = k// + G// + kzez, (8.21)

where G// and ez are a reciprocal lattice vector of the two-dimensional hexag-
onal structure and the unit vector in the z direction, respectively. kz is de-
termined by the dispersion relation in free space and given by

kz =

√
ω2

c2 − |k// + G//|2. (8.22)

It is easy to show that when ωa/2πc is less than 2/
√

3, G// should be equal
to zero for kz to be real for the Γ point, i.e., for k// = 0. Hence, the diffracted
waves are characterized by just one wave vector k0 given by

k0 =
ω

c
ez. (8.23)

We shall refer to these waves as the diffracted waves of the zeroth order.
They have two polarization components as shown in Fig. 8.7, where ex and
ey are the unit vectors in the x and y directions. These two waves, of course,
have the same frequency. They are a degenerate pair of a two-dimensional
irreducible representation of the C6v point group. We can examine how they
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ey
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k0

Fig. 8.7. Schematic illustration of the diffracted plane waves of the zeroth order
for the Γ point. k0 denotes their wave vector. ex and ey denote their two inde-
pendent polarizations. These two plane waves form the basis of the E1 irreducible
representation of the C6v point group. See text for details. (After [81])

are transformed by symmetry operations of the C6v point group. For example,
Their transformation by σ̂x and σ̂y is

σ̂x

⎛⎝ ex

ey

⎞⎠ =

⎛⎝ −ex

ey

⎞⎠ , (8.24)

σ̂y

⎛⎝ ex

ey

⎞⎠ =

⎛⎝ ex

−ey

⎞⎠ . (8.25)

By comparing their character with the character table for the C6v point
group, we can verify that they are a basis set of the E1 irreducible represen-
tation. Because of the mismatching of the spatial symmetry, they can only
couple to the E1 modes in the hexagonal photonic crystal. This is the reason
why the B1, A2, and E2 modes at the Γ point shown in Fig. 8.6 do not couple
to the radiation field in the air region and have the infinite quality factor.
When the wave vector is near the Γ point, the coupling and Q−1 are still
small although they are not exactly equal to zero.

The absence of diffraction by symmetry mismatching was first reported
for a square lattice by Paddon and Young [82]. They found that only the
E mode at the Γ point was diffracted and had a finite lifetime. We can
show, by a similar argument to the one used for the hexagonal lattice, that
the possible diffracted waves in the low-frequency region (ωa/2πc < 1) have
the E symmetry for the Γ point in the square lattice. Therefore, only the
E modes in the photonic crystal slab couple to the external radiation field.
The coupling for all other modes is forbidden by symmetry and they have
infinite lifetimes. The absence of the coupling discussed here originates from
the structural symmetry in the two-dimensional plane. Thus, it can also be
observed in those specimens without mirror symmetry about the x-y plane.
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Another remarkable feature of Fig. 8.6 is the presence of leaky bands
with a very large quality factor. They are the third lowest odd band in the
Γ -K direction and the fourth lowest odd band in the Γ -M direction. The
quality factor of the former is greater than 3000 everywhere between the
Γ and K points. The large quality factors of these two bands result in the
high transmittance around ωa/2πc = 0.45 in the Γ -K direction and around
ωa/2πc = 0.48 in the Γ -M direction.

Finally, we give a qualitative estimation of the transmittance. The flow
of the radiational energy is described by the group velocity vg. When we
denote the propagation length by L, the time necessary for the propagation
is equal to L/vg. The damping factor of the leaky mode is thus given by
exp(−Lω/Qvg), to which the transmittance is proportional. As an example,
let us examine the third lowest odd band in the Γ -K direction. Its group
velocity is about c/20 at the middle of the band. If we assume that L = 10a,
Q = 3000, and ωa/2πc = 0.45, its damping factor is as large as 0.83. This is
the origin of the high transmittance at this frequency. The third lowest odd
mode may travel more than 50a in its lifetime. Within this length, the leaky
mode may be regarded as a guided mode.



9. Low-Threshold Lasing
Due to Group-Velocity Anomaly

The enhancement of stimulated emission due to the small group velocity is
evaluated by examining the light amplification spectra for a two-dimensional
(2D) crystal. An analytical expression for the lasing threshold is derived and
compared with numerical results that show a large reduction of the threshold
due to the group-velocity anomaly.

9.1 Enhanced Stimulated Emission

In Chap. 5, we showed that various optical processes in photonic crystals
are enhanced by the small group velocity of the eigenmodes. Particularly,
we derived the expression for the amplitude amplification factor in a pho-
tonic crystal with impurity atoms that have population inversion. As (5.50)
shows, the amplitude amplification factor in the unit length is proportional
to v−1

g . Hence, we can expect a large enhancement of stimulated emission at
the photonic band edges where vg is equal to zero. Also we can expect the
enhancement for those eigenmodes with the group-velocity anomaly in the
2D and 3D crystals. In this chapter, we will show that the group-velocity
anomaly is more efficient than the small group velocity at the band edges for
crystals with relatively small number of lattice layers. For this purpose, we
will examine the light amplification spectra of a 2D crystal in this section
and its lasing threshold in the next section.

In Chap. 4, we derived the plane-wave expansion method to calculate
the transmission and reflection spectra of 2D photonic crystals and applied
it to the square and hexagonal lattices. For those calculations, we assumed
real dielectric constants. When impurity atoms with population inversion are
distributed in the crystal, the imaginary part of the dielectric constant is no
longer equal to zero, and has a negative value, as described in Sect. 5.3. The
plane-wave expansion method can be used for this case without any change.
Thus, we shall obtain the transmission spectra for the case that the light
amplification due to the stimulated emission is present, which we will refer
to as the light amplification spectra.

We now examine the light amplification in the 2D square crystal whose
band structure was shown in Fig. 3.4(a). In Sect. 4.4.1, we examined its
transmission spectrum in the Γ -X direction in the absence of the imaginary
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part of the dielectric constant (Fig. 4.3). We found that the third (and fourth)
lowest band on the ∆ point has the group-velocity anomaly and its effective
refractive index estimated from the interference patterns in the spectrum was
large and consistent with the small group velocity of the band.

Because we are interested in the influence of the photonic band structure
on the stimulated emission and the nature of the impurity atoms is irrelevant
to the following discussion, we assume that the polarizability of the impurity
atoms is independent of ω. In addition, we assume for simplicity that the
impurity atoms are uniformly distributed in the dielectric material.

We now proceed to the quantitative evaluation of the enhancement of
stimulated emission. In the following calculation, the dielectric constant of
the host material was assumed to be 2.1 − 0.01i. Figure 9.1 shows the sum
of the transmittance and the reflectance for an incident wave with the E po-
larization propagated in the Γ -X direction where each solid line with filled
circles denotes that of the 2D crystal and each dashed line denotes that of
a uniform plate of the same thickness with a spatially averaged dielectric
constant. The latter was calculated for comparison. The calculation was per-
formed for crystals with (a) 16, (b) 8, (c) 4, and (d) 2 lattice layers. Note that
the sum can be greater than unity because of the stimulated emission that
takes place in the crystals and the uniform plates. We first examine Fig. 9.1(a)
in detail. The solid line clearly shows a large enhancement of the stimulated
emission at ωa/2πc = 0.788, which exactly coincides with the upper edge of
the third lowest A mode where vg = 0. It also shows a peak at ωa/2πc = 0.701
and periodic peaks at ωa/2πc = 0.733 to 0.784. The former exactly coincides
with the upper edge of the second lowest A mode whereas the latter coin-
cides with the frequency range of the third lowest A mode. Therefore, it is
evident that the enhancement of the stimulated emission originates from the
low group velocity of the eigenmodes. The enhancement factor, which was
calculated as the ratio of the stimulated emission in the photonic crystal and
that in the uniform plate was as large as 45 at ωa/2πc = 0.788.

When the number of lattice layers is decreased, the spectrum changes
considerably. In particular, the peaks at the band edges become small. In
Fig. 9.1(c), the peaks that were observed at the upper edges of the second
and the third lowest A modes in Fig. 9.1(a) are absent. However, two peaks
in the frequency range of the third lowest A mode, where the group veloc-
ity is quite small, can be clearly observed. The enhancement factor is large,
i.e., 130 at ωa/2πc = 0.755 and 68 at ωa/2πc = 0.776 even for such a thin
geometry. Because the assumed geometry is far from an infinite crystal, it is
quite reasonable that the overall correspondence between Fig. 9.1(c) and the
photonic band structure in Fig. 3.4 is obscure. In particular, the enhance-
ment just at the band edges where vg = 0 may be difficult to attain with a
thin geometry, since the wave vector parallel to the propagation direction is
not well defined and the correspondence with the band structure is not as-
sured. However, when the frequency range with a small group velocity is wide
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Fig. 9.1. Sum of the transmittance and the reflectance for the E polarization as
a function of the normalized frequency calculated for a crystal with (a) 16, (b) 8,
(c) 4, and (d) 2 layers of air-rods formed in the dielectric material with a dielectric
constant of 2.1−0.01i (solid line with filled circles) and a uniform plate of the same
thickness with a spatially averaged dielectric constant (dashed line). The negative
imaginary part of the dielectric constant stands for the inverted population of the
impurity atoms. The incident light was assumed to be propagated in the Γ -X
direction. Note that the sum can be greater than unity because of the stimulated
emission. (After [83])

enough, as was realized in the third lowest A mode of the present example,
the thin geometry has traces of the perfect photonic band structure and we
can still expect a large enhancement of the light amplification. A small en-
hancement is observed even for two layers, as shown in Fig. 9.1(d). Because
we do not need a large contrast of the dielectric constant and a very thin
crystal is enough to observe the enhancement, the experimental confirmation
of this effect may not be difficult.

We now examine the case of the H polarization whose band diagram and
transmission spectrum were shown in Figs. 3.4(b) and 4.4, respectively. Figure
9.2 compares them in the frequency range ωa/2πc = 0.6–0.8. As mentioned
previously, the group-velocity anomaly is observed for the third lowest A
mode and the lowest B mode in the Γ -X direction as the E polarization.
The bandgap at ωa/2πc = 0.728 to 0.742 corresponds very well to a spectral
range with low transmittance. The period of interference patterns below 0.720
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Fig. 9.2. Comparison between the dispersion relation (left-hand side) and the
transmission spectrum (right-hand side) for the H polarization in the Γ -X direction.
The same parameters as Fig. 3.4 were assumed for numerical calculation. The dashed
line in the left-hand side represents a B mode. (After [83])

also corresponds very well to the effective refractive index evaluated from the
group velocity of the second lowest A mode (see Table 4.2). The third lowest A
mode is convex downward near the Γ point, and most of its frequency range
overlaps that of the fourth A mode. This implies that the incident plane
wave excites two eigenmodes simultaneously for the most part of the third A
branch. This is the origin of quite singular interference patterns observed in
that frequency range.

The sum of the transmittance and the reflectance for the H polarization
is presented in Fig. 9.3. The same parameters as Fig. 9.1 were used for the
numerical calculation. In Fig. 9.3(a), which was calculated for a crystal with
16 lattice layers, the enhancement of stimulated emission can be clearly ob-
served near the upper band edge of the second A mode, ωa/2πc = 0.728,
and just at the lower band edge of the third A mode, ωa/2πc = 0.742. When
the number of lattice layers is decreased to four, the peak near the upper
band edge of the second A mode disappears completely. However, the peak
in the frequency range of the third A mode can be clearly observed even
for a crystal with only two lattice layers. In the case of the H polarization
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Fig. 9.3. Sum of the transmittance and the reflectance for H polarization as a
function of the normalized frequency calculated for a crystal with (a) 16, (b) 8, (c)
4, and (d) 2 layers of air-rods formed in the dielectric material with a dielectric
constant of 2.1−0.01i (solid line with filled circles) and a uniform plate of the same
thickness with a spatially averaged dielectric constant (dashed line). The incident
light was assumed to be propagated in the Γ -X direction. (After [83])

for this example, the main peak of the light amplification spectrum happens
to coincide with the lower band edge of the relevant mode where vg = 0.
Therefore, it may be difficult to judge whether the enhancement is caused by
the vanishing group velocity at the band edge or the group-velocity anomaly.
However, judging from the disappearance of the enhancement at the upper
band edge of the second A mode with decreasing lattice layers, we may con-
clude that the group-velocity anomaly surely contributes to the enhancement
of stimulated emission predicted for the 2D crystal with the small contrast
of the dielectric constant and the very small number of lattice layers.

9.2 Lasing Threshold

In this section, an analytical expression of the lasing threshold for arbitrary
photonic crystals that shows its reduction due to the small group velocities
will be derived. The lasing threshold will also be evaluated numerically by
examining the divergence of the transmission and reflection coefficients. A
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large reduction of lasing threshold caused by the group-velocity anomaly will
be shown.

9.2.1 Analytical Expression

Before we present the numerical results, we treat the problem analytically.
In order to estimate the lasing threshold, we assume a photonic crystal with
a thickness L and take a simple model. That is, we assume that the wave
function inside the specimen is the same as that of an infinite crystal. Al-
though this is a rough assumption and the field distribution near the surface
of the specimen may be considerably different from that in the infinite sys-
tem, this assumption leads to a qualitatively correct estimation, as will be
shown below. When we denote the amplitude reflection coefficient of the rel-
evant eigenmode at each surface by Rkn, the lasing threshold is given by the
balance between the loss at both surfaces and the optical gain in the path of
2L:

R2
kn exp {2 (βkn + ik) L} = 1, (9.1)

where k = |k|. In this equation, we took into consideration the phase shift of
2kL, which is consistent with Bloch’s theorem. On the other hand, we have
neglected additional loss mechanisms such as spontaneous emission and light
scattering by imperfections.

As was shown in Sect. 4.4.1, the interference patterns observed in the
transmission spectra of the photonic crystals can be described quite well by
an effective refractive index defined by ηeff = c/vg. Here we assume that the
reflection coefficient can also be approximated by that of a uniform material
with a refractive index ηeff :

R ≈ ηeff − 1
ηeff + 1

. (9.2)

This equation is an empirical one and does not have a logical basis, but the
combination of these two equations will show a semi-quantitative agreement
with the numerical results. Substituting (9.2) into (9.1), we obtain

(βkn + ik)L ≈ log
(

1 + vg/c

1 − vg/c

)
+ mπi, (9.3)

where m is an integer. The explicit expression of βkn is given in (5.46).
For a rough estimation of the lasing threshold, we first neglect the (k, n)
dependence of F1 which is defined by (5.41). Since the eigenfunction E

(T)
kn is

normalized as
1
V0

∫
V0

drε′(r)
∣∣∣E(T)

kn (r)
∣∣∣2 = 1, (9.4)

we replace
∣∣∣E(T)

kn (r)
∣∣∣2 by ε′−1 in (5.41), where the overline denotes the spatial

average:
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ε′ =
1
V0

∫
V0

drε′(r). (9.5)

In (9.4) and (9.5), ε′ denotes the real part of the dielectric function:

ε(r) = ε′(r) + iε′′(r). (9.6)

Thus, we have

F1 ≈ 1
V0

∫
V0

dr
�(r)
ε′ =

f�

ε′ , (9.7)

where f denotes the filling factor of the dielectric material in which the
impurity atoms with population inversion are doped. The real part of (9.3)
gives

α′′
th ≈ −2ε0ε

′vg

fLω�
log
(

1 + vg/c

1 − vg/c

)
, (9.8)

where α′′
th is the imaginary part of the polarizability of the impurity atoms

at the lasing threshold. Since we have the relation that

ε0ε
′′(r) = α′′�(r), (9.9)

(9.8) can be rewritten as

ε′′
th ≈ −2ε′vg

fLω
log
(

1 + vg/c

1 − vg/c

)
, (9.10)

where ε′′
th is the imaginary part of the dielectric constant at the lasing thresh-

old. If vg � c, we have

ε′′
th ≈ − 4ε′v2

g

cfLω
. (9.11)

The threshold is thus proportional to v2
g , and hence, its large reduction is ex-

pected when vg is small. Here, we should note that the reduction of the lasing
threshold is brought about by both the enhancement of stimulated emission
and the increase of the amplitude reflection coefficient. The imaginary part of
(9.3) determines the longitudinal modes, i.e., the wavelength of lasing, which
we will not discuss in detail.

9.2.2 Numerical Estimation

We now proceed to the method for the quantitative evaluation of the lasing
threshold. Since it is a process of light emission without input signals, which is
analogous to the oscillation of electric circuits, the onset of lasing is equivalent
to the divergence of the transmittance and/or the reflectance of the assumed
specimen [84]. We calculated the transmittance and the reflectance of the
assumed specimen as functions of the frequency and the imaginary part of
the dielectric constant, and attributed their divergence to the laser oscillation
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Fig. 9.4. Sum of the transmittance and the reflectance for the E polarization in
a logarithmic scale for (a) the third, (b) the second, and (c) the first symmetric
bands of the 2D photonic crystal as a function of the normalized frequency, ωa/2πc,
and the imaginary part of the dielectric constant, ε′′. The same parameters as Fig.
9.1 were used for numerical calculation and the incident light was propagated in
the Γ -X direction. We assumed that the front and the rear surfaces of the crystal
were perpendicular to the propagation direction and that the distance between each
surface and the center of the first air cylinder was half a lattice constant. Note that
the sum is divergent for certain combinations of ωa/2πc and ε′′. (After [62])

[62]. Because this analysis neglects the energy loss caused by spontaneous
emission, it only describes the threshold semi-quantitatively. However, it is
sufficient, as will be shown below, to clarify the role of the group-velocity
anomaly. The number of lattice layers was eight and the incident light was
propagated in the Γ -X direction.

Figure 9.4(a) shows an example of the divergence mentioned above, where
the sum of the transmittance and the reflectance for the third symmetric
band is presented on a logarithmic scale as a function of the normalized
frequency and the imaginary part of the dielectric constant. The real part
of the dielectric constant was assumed to be 2.1, as before. The numerical
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Fig. 9.5. Dispersion relation for the E polarization (left-hand side) and the thresh-
old of laser oscillation (right-hand side) of a 2D photonic crystal composed of a
regular square array of circular air cylinders formed in a dielectric material with
a dielectric constant of 2.1. The ordinate is the normalized frequency where ω, a,
and c denote the angular frequency of the radiation field, the lattice constant of
the 2D crystal, and the light velocity in vacuum, respectively. The radius of the air
cylinders was assumed to be 0.28 times the lattice constant. The number of lattice
layers was assumed to be eight. The dispersion relation was presented from Γ to
X points in the 2D Brillouin zone. The solid lines represent the dispersion relation
for symmetric modes that can be excited by an incident plane wave, whereas the
dashed line represents that of an antisymmetric (uncoupled) mode that does not
contribute to the light propagation. The threshold of laser oscillation is given by the
imaginary part of the dielectric constant of the host material. Note that the third
lowest symmetric mode has a small group velocity over its entire spectral range
(group-velocity anomaly) and the lasing threshold for this mode is smaller than
that for the lowest and the second lowest modes by about two orders of magnitude.
Also note the decrease of the threshold at the upper band edges of the latter. (After
[62])

calculation was performed for 100 × 40 sets of (ω, ε′′). The maximum of the
calculated values was about 105 in Fig. 9.4(a). We obtained a larger maximum
when we examined the region around the peak with a finer mesh of ω and
ε′′. Therefore, we could judge that the transmittance and/or reflectance were
divergent, and hence, the threshold of laser oscillation was attained. We found
six other divergent points in the frequency range of the third symmetric band.
These points correspond to the longitudinal modes with different m in (9.3).
Figures 9.4(b) and 9.4(c) show other examples of the divergence found in the
frequency ranges of the first and the second bands, respectively. Seven other
divergent points were found for each band.

Figure 9.5 compares the dispersion relation for the E polarization (left-
hand side) and the threshold of laser oscillation (right-hand side) thus ob-
tained. As can be clearly seen, the laser oscillation in the frequency range of
the third lowest band takes place with −ε′′

th smaller by two orders of magni-
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tude than that necessary for the first and the second bands. Because −ε′′
th is

proportional to the pumping rate to create the inverted population, we can
conclude that the group-velocity anomaly brings about the reduction of the
threshold by two orders of magnitude for the present example. We should also
note that the threshold is somewhat small at the upper edges of the first and
the second bands compared with that in the middle of both bands. This de-
crease is caused by the small group velocity at the band edges, which should
be equal to zero for a system with infinite thickness. However, for a system
with finite thickness, the group-velocity anomaly is much more efficient for
the reduction of the lasing threshold even though the relevant group velocity
is not exactly equal to zero.

The high threshold at ωa/2πc = 0.789 at the upper edge of the third
symmetric band is an exception. The incident light excites the third and
the fourth symmetric bands simultaneously at this frequency, since the lower
edge of the latter is ωa/2πc = 0.784. Because the average group velocity
of the fourth symmetric band is comparable with that of the second band,
a lasing threshold of the same order is expected. Therefore, the lasing at
ωa/2πc = 0.789 should be attributed to the fourth symmetric band. On the
other hand, a low-threshold lasing with ε′′

th = −2.5 × 10−3, which should
be attributed to the third symmetric band, is observed at ωa/2πc = 0.788
just below the lasing frequency for the fourth symmetric band mentioned
above. As this example shows, lasing with different origins can coexist in the
frequency ranges where more than one band overlaps each other.

Now we compare the numerical results with the analytical estimation
based on (9.10). Because the slope of the dispersion curves varies consider-
ably in the vicinity of the band edges, the estimation of the group veloc-
ity, and hence, that of the lasing threshold is difficult in those frequency
ranges. Therefore, we compare the numerical and the analytical results in
the middle of the frequency range of each band. The effective refractive in-
dices at ωa/2πc = 0.191 (1st band), 0.558 (2nd band), and 0.757 (3rd band),
which are obtained from the slope of each band, are 1.35, 1.4, and 7.0. Then,
the lasing threshold predicted by (9.10) are ε′′

th = −2.9, −8.9 × 10−1, and
−2.1 × 10−2, respectively. These values coincide with the numerical results
if we make allowance for an error of a factor of three that may be caused
by the rough assumption introduced in the last section. We should note that
the fact that the lasing threshold is smaller by two orders of magnitude for
the third symmetric band than for the first and the second bands is well
reproduced by the analytical estimation, which implies that the reduction
of the lasing threshold is really brought about by both the enhancement of
stimulated emission and the increase of the amplitude reflection coefficient
caused by the small group velocity.

We now examine the case of the H polarization. Figure 9.6 compares the
dispersion relation (left-hand side) and the lasing threshold (right-hand side),
where the overall features are common with Fig. 9.5. We should note that
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Fig. 9.6. Dispersion relation for H polarization (left-hand side) and the threshold of
laser oscillation (right-hand side) of the 2D photonic crystal. The same parameters
as Fig. 9.5 were used for numerical calculation. (After [62])

the third lowest symmetric band shows the group-velocity anomaly like the
E polarization. The effective refractive indices at ωa/2πc = 0.190 (1st band)
and 0.565 (2nd band) are 1.34 and 1.37. Then, the lasing thresholds predicted
by (9.10) are ε′′

th = −2.9 and −9.3 × 10−1, which agree with the numerical
results qualitatively as the E polarization. On the other hand, the slope of the
third band varies considerably with the wave vector and most of its frequency
range overlaps that of the fourth symmetric band. Therefore, the comparison
with the analytical estimation is not easy for this band. However, it is clearly
observed that the lasing thresholds with various magnitude coexist in this
frequency range. By analogy with the numerical results for the E polarization,
we may regard two longitudinal modes with ε′′

th ≈ −1.7 × 10−1 at ωa/2πc =
0.763 and 0.797 as originating from the fourth symmetric band, whereas the
other four longitudinal modes with |ε′′

th| ≤ 1.3 × 10−2 can be attributed to
the third symmetric band. In addition, we should note that the longitudinal
mode at ωa/2πc = 0.774 with an extremely small threshold of ε′′

th ≈ −3.0 ×
10−4 does not necessarily correspond to a singular point of the dispersion
curves. In Fig. 9.2, quite sharp and irregular patterns were found in the
transmission spectrum in this frequency range, which were attributed to the
interference between the two relevant bands. Judging from the extraordinary
sharpness of the interference patterns, we may conclude that standing waves
with extremely high quality factors were realized as a consequence of the
interference. Therefore, the amplitude reflection coefficient R for this mode
must be particularly high, and we may attribute the longitudinal mode at
ωa/2πc = 0.774 to this effect.



10. Quantum Optics in Photonic Crystals

The radiation field in photonic crystals is quantized and the Hamiltonian
that describes the interaction with the matter system is derived. The theory
is applied to quadrature-phase squeezing due to optical parametric amplifi-
cation and the anomalous Lamb shift due to the peculiar density of states at
the photonic band edge.

10.1 Quantization of the Electromagnetic Field

We quantize the free radiation field in the photonic crystal without real charge
and current. The radiation field can generally be described by the vector and
scalar potentials, A and φ:

B = ∇ × A, (10.1)

E = −∇φ − ∂A

∂t
. (10.2)

The radiation field is invariant under the gauge transformation. That is, even
when we change (φ, A) in the following manner with an arbitrary function
ξ(r, t),

A → A + ∇ξ, (10.3)

φ → φ − ∂ξ

∂t
, (10.4)

B and E remain as they were. Since the real charge is absent, we have

∇ · (εE) = −∇ · (ε∇φ) − ∂

∂t
∇ · (εA) = 0, (10.5)

where ε is the position-dependent dielectric constant of the photonic crystal.
For this case, we can eliminate the scalar potential by the gauge transforma-
tion. In order to show this, we assume that we have (φ1,A1) for the first step
and φ1 �= 0. When we choose ξ such that

∂ξ

∂t
= φ1, (10.6)
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the new scalar potential is equal to zero. From (10.5), the new vector potential
should satisfy

∇ · (εA) = 0, (10.7)

Taking this gauge condition, we have

B(r, t) = ∇ × A(r, t), (10.8)

E(r, t) = − ∂

∂t
A(r, t). (10.9)

The last equation implies that the eigenmode of the vector potential is pro-
portional to that of the electric field, Ekn.

We can thus expand the vector potential with Ekn:

A(r, t) =
1√
V

∑
kn

{
qkn(t)E(T)

kn (r) + q∗
kn(t)E(T)∗

kn (r)
}

, (10.10)

where V is the volume of the photonic crystal and qkn(t) is proportional to
exp(−iω(T)

kn t). In this equation, only quasi-transverse modes appear since the
quasi-longitudinal modes do not satisfy (10.7). We will omit the superscript
(T) hereafter. The electric and magnetic fields are thus expressed as

E(r, t) =
i√
V

∑
kn

ωkn {qkn(t)Ekn(r) − q∗
kn(t)E∗

kn(r)} , (10.11)

B(r, t) =
1√
V

∑
kn

{qkn(t)∇ × Ekn(r) + q∗
kn(t)∇ × E∗

kn(r)} . (10.12)

Because qkn (q∗
kn) describes the temporal evolution of a harmonic oscillation,

we may replace qkn (q∗
kn) by an annihilation operator âkn (a creation operator

â+
kn) of photons in order to quantize the radiation field:

qkn(t) →
√

h̄

2ε0ωkn
âkn(t) and q∗

kn(t) →
√

h̄

2ε0ωkn
â+

kn(t), (10.13)

where the coefficients are determined so that the total electromagnetic en-
ergy is reduced to the quantum mechanical Hamiltonian appropriate to an
assembly of harmonic oscillators:

Ĥ =
∑
kn

h̄ωkn

{
â+

kn(t)âkn(t) +
1
2

}
, (10.14)

where âkn and â+
kn satisfy the usual commutation relation for a boson:[

âkn(t), â+
kn(t)

]
= 1. (10.15)

Actually, the total energy U of the radiation field is given by

U =
∫

V

dr

{
ε0ε(r)|E(r, t)|2

2
+

|B(r, t)|2
2µ0

}
. (10.16)
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When we substitute (10.11) and use the orthonormality of the eigenfunctions,
(2.145), we obtain∫

V

dr
ε0ε(r)|E(r, t)|2

2
= ε0

∑
kn

ω2
kn (qknq∗

kn + q∗
knqkn) . (10.17)

On the other hand,∫
V

dr
|B(r, t)|2

2µ0
=
∑
kn

(qknq∗
kn + q∗

knqkn)
µ0

×
∫

V

dr {∇ × E∗
kn(r)} · {∇ × Ekn(r)} . (10.18)

When we follow the same procedure as we derived (2.138) and use (2.20), we
obtain∫

V

dr
|B(r, t)|2

2µ0
=
∑
kn

|qkn|2
µ0

∫
V

dr
ω2

kn

c2 ε(r)|Ekn|2

= ε0

∑
kn

ω2
kn (qknq∗

kn + q∗
knqkn) . (10.19)

We thus have

U = 2ε0

∑
kn

ω2
kn (qknq∗

kn + q∗
knqkn) . (10.20)

When we compare this equation with (10.14), we obtain the coefficients in
(10.13). Finally, we have the following expression for the electric field opera-
tor:

Ê(r, t) =
∑
kn

i
√

h̄ωkn

2ε0V

{
âkn(t)Ekn(r) − â+

kn(t)E∗
kn(r)

}
. (10.21)

10.2 Quadrature-Phase Squeezing

We consider the quadrature-phase squeezing by means of the degenerate op-
tical parametric amplification [85]. We assume that a pump wave denoted by
Ep(r, t) and a signal wave denoted by Es(r, t), both of which are eigenmodes
of the radiation field, are propagated in the photonic crystal (see Fig. 10.1).
We assume that the pump wave can be treated classically because its ampli-
tude is so large that its quantum-mechanical fluctuation can be neglected:

Ep(r, t) = Ai
{
Ep(r)e−2iωst+iθ − E∗

p(r)e2iωst−iθ} , (10.22)

where A and θ stand for the amplitude and the phase, respectively. We as-
sumed that the angular frequency of the pump wave is twice as large as that
of the signal wave, ωs. On the other hand, we deal with the electric field of
the signal wave as an operator:
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Optical parametric amplification

E  exp (-iω  t)s s

E  exp (-iω  t)p p

Squeezed state

Coherent state

ω  = 2 ωp s

Fig. 10.1. Quadrature-phase squeezing due to degenerate optical parametric am-
plification

Ês(r, t) = i
√

h̄ωs

2ε0V

{
âs(0)Es(r)e−iωst − â+

s (0)E∗
s (r)eiωst

}
, (10.23)

where we write the time dependence explicitly. We further assume that the
signal wave was initially in a coherent state, |α〉. Light in the coherent state is
provided by a laser that oscillates far beyond the lasing threshold.1 It satisfies
the following eigenvalue equation.

âs(0) |α〉 = α |α〉 , (10.24)

where α is generally a complex number.
When we denote the second order nonlinear susceptibility of the photonic

crystal by χ↔(2)(r), the nonlinear polarization induced by these waves is given
by

P̂
(0)

(r, t) = χ↔(2)(r) :
{

Ep(r, t) + Ês(r, t)
}2

≈ 2χ↔(2)(r) : Ep(r, t)Ês(r, t)

≈ 2A

√
h̄ωs

2ε0V
χ↔(2)(r) :

{
Ep(r)E∗

s (r)â+
s (0)e−iωst+iθ

−E∗
p(r)Es(r)âs(0)eiωst−iθ}, (10.25)

where “:” denotes a product as a tensor. In (10.25), only terms relevant to

the parametric amplification were taken. The electric field Ê
(1)
ind induced by

P̂
(0)

can be calculated according to (5.10). When we substitute (10.25) into
(5.10) and follow the same procedure as we derived (5.45), we obtain

Ê
(1)
ind(r, t)

1 See, for example, [86]
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= il
√

h̄ωs

2ε0V

{
βâ+

s (0)Es(r)e−iωst+iθ − β∗âs(0)E∗
s (r)eiωst−iθ} , (10.26)

where

β =
ωsAF

ε0vg
, (10.27)

and

F =
1
V

∫
V

drE∗
s (r) · χ↔(2)(r) : Ep(r)E∗

s (r). (10.28)

In (10.27), vg denotes the group velocity of the signal wave and l is the
length of the path that the signal wave traveled. When we derived (10.26),
we assumed for simplicity that the phase-matching condition for the signal
and the pump waves was satisfied. Here, we should note that the factor β
becomes large if vg is small. This is because the interaction time between the
signal wave and the photonic crystal is long. Since an extremely small group
velocity is easily realized in the photonic crystals as mentioned previously,
we can expect a large enhancement.

Now, Ê
(1)
ind yields another nonlinear polarization, P (1),

P̂
(1)

(r, t) = χ↔(2)(r) :
{

Ep(r, t) + Ê
(1)
ind(r, t)

}2

≈ 2Al

√
h̄ωs

2ε0V
χ↔(2)(r) :

{
β∗âs(0)Ep(r)E∗

s (r)e−iωst

+βâ+
s (0)E∗

p(r)Es(r)eiωst
}
, (10.29)

which then induces yet another electric field Ê
(2)
ind. We can calculate this using

(5.10) again:

Ê
(2)
ind(r, t)

=
i|β|2l2

2!

√
h̄ωs

2ε0V

{
âs(0)Es(r)e−iωst − â+

s (0)E∗
s (r)eiωst

}
. (10.30)

We can carry out this perturbative calculation to the infinite order and the
result is given as follows:

Ê(r, t) = Ês(r, t) + Ê
(1)
ind(r, t) + Ê

(2)
ind(r, t) + · · ·

= i
√

h̄ωs

2ε0V

{
b̂Es(r)e−iωst − b̂+E∗

s (r)eiωst
}

, (10.31)

where the new operators b̂ and b̂+ are defined by

b̂ =
{

1 +
|β|2l2

2!
+

|β|4l4
4!

+ · · ·
}

âs(0)

+ei(θ+φ)
{

|β|l +
|β|3l3

3!
+ · · ·

}
â+
s (0)
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= cosh |β|l · âs(0) + ei(θ+φ) sinh |β|l · â+
s (0), (10.32)

and

b̂+ = cosh |β|l · â+
s (0) + e−i(θ+φ) sinh |β|l · âs(0), (10.33)

where we denoted β by

β = |β|eiφ. (10.34)

Equations (10.32) and (10.33) describe a Bogoliubov transformation and we
can verify easily that [̂b, b̂+] = 1.

Two quadrature-phase components of the signal wave are given by the real
and imaginary parts of Ês(r)e−iωst. We introduce the following two functions:

E1(r, t) = − 1
2i
{
Es(r)e−iωst − E∗

s (r)eiωst
}

, (10.35)

E2(r, t) =
1
2
{
Es(r)e−iωst + E∗

s (r)eiωst
}

. (10.36)

Then,

Ê(r, t) =
√

2h̄ωs

ε0V
{q̂E1(r, t) + p̂E2(r, t)} , (10.37)

where

q̂ =
1
2

(
b̂ + b̂+

)
and p̂ =

i
2

(
b̂ − b̂+

)
. (10.38)

The commutation and uncertainty relations for q̂ and p̂ are given by

[q̂, p̂] = − i
2

and ∆q∆p ≥ 1
4
. (10.39)

Now we assume that the incident signal wave is in a coherent state |α〉:
âs|α〉 = α|α〉. (10.40)

We can then easily verify that ∆q and ∆p for this state are given by

(∆q)2 =
1
4

{
cosh2 |β|l + sinh2 |β|l

+2 cos
(
θ + φ − π

2

)
cosh |β|l sinh |β|l

}
(10.41)

and

(∆p)2 =
1
4

{
cosh2 |β|l + sinh2 |β|l

−2 cos
(
θ + φ − π

2

)
cosh |β|l sinh |β|l

}
, (10.42)

irrespective of α. When θ + φ = π/2,

∆q =
1
2
e|β|l, ∆p =

1
2
e−|β|l, (10.43)
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and when θ + φ = −π/2,

∆q =
1
2
e−|β|l, ∆p =

1
2
e|β|l. (10.44)

Therefore, the uncertainty of one quadrature-phase component is diminished
at the sacrifice of the other component, i.e., the quadrature-phase squeezing
is attained. We should note that the squeezed states in photonic crystals are
minimum uncertainty states as usual, i.e., ∆q∆p = 1/4 [86]. We should also
note that there is an enhancement of the quadrature-phase squeezing due to
the small group velocity of the electromagnetic eigenmode, as (10.27) shows.

We would like to make three remarks before concluding this section. First,
extension of the present calculation to the case without phase-matching is
straightforward, since we can do that following the procedure given in Sect.
5.4 that treated sum-frequency generation with and without phase-matching.
Second, the perturbation theory presented here is, of course, not limited to
the quadrature-phase squeezing, but can be applied to other quantum optical
processes in the photonic crystals. Third, the enhancement due to the small
group velocity is not limited to the quadrature-phase squeezing either, since
it is brought about by the long interaction time between the radiation field
and the matter system, which is common to all optical processes.

10.3 Interaction Hamiltonian

Next, we derive the quantized interaction Hamiltonian Ĥ ′ of the radiation
field and an electron. It is given by the difference between the Hamiltonian
for the electron in the presence of the radiation field and in its absence. When
we denote the electric charge and the mass of the electron by e and me, Ĥ ′

is thus given by

Ĥ ′ =

(
p̂ − eÂ

)2

2me
− p̂2

2me
≈ − e

2me

(
p̂ · Â + Â · p̂

)
, (10.45)

where p̂ is the momentum operator of the electron and the term proportional
to Â

2
was omitted since it is not relevant to the following discussion. If we

note that operator p̂ and operator Â do not commute and the following
equation holds,

p̂ · Â =
h̄

i
∇ · Â + Â · p̂, (10.46)

(10.45) is modified to

Ĥ ′ = − e

me
Â · p̂ − ieh̄

2me
Â · (∇ log ε) , (10.47)

where we used (10.7). The second term on the right-hand side of (10.47),
which is peculiar to the problems of photonic crystals, appears because we



206 10. Quantum Optics in Photonic Crystals

adopted the gauge condition (10.7). This term may be important when the
electron is located close to the interface between two different components
of the photonic crystal. However, in that case, the radiation field and the
dielectric constant should be treated microscopically instead of the present
macroscopic treatment. Hence, the problem goes beyond the scope of this
book. On the other hand, this term is equal to zero when the electron is
located in the uniform part of the photonic crystal where the spatial variation
of the dielectric function, ∇ε, vanishes. We assume this case for simplicity
hereafter. The final form of the interaction Hamiltonian is thus given by

Ĥ ′ = − e

me

∑
kn

√
h̄

2ε0V ωkn

{
âknEkn(re) + â+

knE∗
kn(re)

} · p̂, (10.48)

where re denotes the position of the electron. Here, we took Schrödinger
representation and dropped the time dependence of âkn and â+

kn.

10.4 Lamb Shift

As is well-known, the charge and the mass of the electron change their val-
ues because of the interaction with the radiation field. This is termed charge
and mass renormalization. What we actually observe are the renormalized
quantities. For an electron bound to an atom, a small difference in the renor-
malized mass may appear according to the character of the bound state. In
fact, as Lamb and Retherford [87] reported for the first time, there is an
energy difference of about 1.05 GHz between the 2s and 2p states of hydro-
gen atoms. Later, more accurate mesurements were performed [88, 89]. This
energy difference is called the Lamb shift.

As for the Lamb shift of hydrogen atoms in free space, a non-relativistic
calculation was given by Bethe [90] for the first time, and a good agree-
ment with the experimental observation was shown. Later, more rigorous
relativistic calculations [91–94] were performed, and it was found that the
value obtained with the non-relativistic calculation by Bethe gives the main
part of the Lamb shift. Hence, in the following, we will calculate the energy
shift of the bound electrons in hydrogen-like atoms to the second order of
the interaction Hamiltonian after Bethe. That is, we will calculate the self
energy of the electron for the Feynman diagram shown in Fig. 10.2, where
we subtract the self energy calculated for a free electron. By this procedure,
we can cancel the infinite mass renormalization that is present for the latter.

When we calculate the energy shift of the ith eigenstate of a bound elec-
tron to the second order of the interaction, we obtain,

E
(2)
i =

∑
j

∑
kn

〈
i
∣∣∣Ĥ ′
∣∣∣ j,kn

〉〈
j,kn

∣∣∣Ĥ ′
∣∣∣ i〉

Ei − Ej − h̄ωkn
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i j i

k

Fig. 10.2. Feynman diagram for the self energy of an electron to the second order
of the interaction Hamiltonian

=
e2

2ε0m2
eV

∑
j

∑
kn

|Ekn(re) · 〈i |p̂| j〉|2
ωkn (ωi − ωj − ωkn)

, (10.49)

where j denotes the jth eigenstate of the bound electron and Ej = h̄ωj

is its eigenenergy. |j,kn〉 represents the state with the electron in the jth
eigenstate and a photon in the kn state. On the other hand, the energy shift
of a free electron with momentum pe is given by

E
(2)
free =

∑
G

∑
kn

∣∣∣〈pe

∣∣∣Ĥ ′
∣∣∣pe − h̄k − h̄G,kn

〉∣∣∣2
p2
e/2m −

{
(pe − h̄k − h̄G)2 /2m + h̄ωkn

} , (10.50)

where G is the reciprocal lattice vector of the photonic crystal and

|pe − h̄k − h̄G,kn〉 (10.51)

represents the state with an electron with momentum pe − h̄k − h̄G and a
photon in the kn state. Here, we should note that Ĥ ′ generally has non-zero
matrix elements between states |pe〉 and |pe − h̄k − h̄G,kn〉 with G �= 0
because of the periodic spatial variation of the dielectric constant, although
the matrix elements are small for large G. Hence, as a rough estimation, we
take only one term with G = 0 in the summation over G.

We will assume later that the momentum of the free electron is equal
to that of the bound electron in the ith state to subtract the self energy of
the free electron. In (10.50), photons with h̄ωkn ≤ p2

e/2m make the main
contribution. For this case, h̄k can be neglected compared with pe for light
atoms, since we have

h̄ωkn ≈ h̄ck (10.52)

and
h̄k

pe
≤ pe

2mec
� 1. (10.53)

We thus have

E
(2)
free ≈ − e2

2ε0m2
eV

∑
kn

|Ekn(re) · p̂|2
ω2

kn

, (10.54)

where the overline represents the expectation value with a relevant eigenstate.
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Now, we will evaluate the Lamb shift for a hydrogen-like atom with an
atomic number Z that has only one electron. What is most interesting to
us is the case where the transition frequency between the 1s and 2s (or 2p)
states lies in a photonic bandgap near the upper edge. For that case, the
main contribution from the sum over k and n in (10.49) comes from those
eigenfrequencies that are close to the band edge. Hence, we will first calculate
the density of states around the upper edge of the bandgap. For simplicity,
we assume that the upper edge is located on the Γ point of the first Brillouin
zone. We further assume that the effective mass of the radiation field, mc, is
isotropic. Then we have

h̄ ω = h̄ωc +
h̄2k2

2mc
. (10.55)

It is easy to show that the density of states of the radiation field is thus given
by

D(ω) =
V

π2

√
m3

c (ω − ωc)
2h̄3 (ω ≥ ωc). (10.56)

We approximate the product of Ekn(re) and p̂ by the product of their
absolute values times 1/3 and represent Ekn by the eigenfunction at the
band edge, Ec. When we subtract the self energy of the free electron given
by (10.54) from that of the bound electron given by (10.49), we obtain the
genuine energy shift, ∆E

(2)
i :

∆E
(2)
i

≈ e2 |Ec(re)|2
6ε0m2

eV

⎧⎨⎩∑
j

∑
kn

|pij |2
ωkn (ωi − ωj − ωkn)

+
∑
kn

(p̂2)ii

ω2
kn

⎫⎬⎭
=

e2 |Ec(re)|2
6ε0m2

eV

∑
j

∑
kn

(ωi − ωj) |pij |2
ω2

kn (ωi − ωj − ωkn)
. (10.57)

where

pij = 〈i |p̂| j〉 and (p̂2)ii =
〈
i
∣∣∣p̂2
∣∣∣ i〉 . (10.58)

When we calculate the Lamb shift for the 2s (2p) state (i.e., for i = 2),
the main contribution on the right-hand side of (10.57) is made by the term
with j = 1. Hence, we will calculate the summation over k and n for this
term first. We set

ω21 = ω2 − ω1, and (10.59)

Ω = ωc − ω21. (10.60)

When we transform the summation to an integral over ω, the latter can be
calculated analytically:
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kn

1
ω2

kn (ω2 − ω1 − ωkn)
=
∫ ∞

ωc

D(ω)dω

ω2 (ω21 − ω)

= − V

2π

√
m3

c

2h̄3ωc

1(√
ωc +

√
Ω
)2 . (10.61)

For j > 1, the integral gives values of the same order. Hence, we use the same
expression for j > 1 to obtain a rough estimation of the Lamb shift. We thus
have

∆E
(2)
2 = − e2

12πε0m2
e

√
m3

c

2h̄3ωc

|Ec(re)|2(√
ωc +

√
Ω
)2

×
∑

j

(ω2 − ωj) . |p2j |2 . (10.62)

We denote the Hamiltonian of the electron system by Ĥa.

Ĥa =
p̂2

2me
+ φ(r), (10.63)

where φ is the Coulomb potential due to the atomic nucleus. In general, we
have ∑

j

(ωi − ωj) |pij |2 =
1
h̄

∑
j

(
Ĥap̂ − p̂Ĥa

)
ij

· pji

=
1
h̄

{(φp̂ − p̂φ) · p̂}ii

= − h̄

2

∫
dr |ψi(r)|2 ∇2φ(r)

= −Ze2h̄ |ψi(0)|2
2ε0

, (10.64)

where ψi is the eigenfunction of the ith state. When we derived (10.64), we
used the following relation:

∇2φ(r) = − Ze2

4πε0
∇2 1

r
=

Ze2

ε0
δ(r). (10.65)

Finally, we obtain

∆E
(2)
2 =

Ze4

24πε2
0m

2
e

√
m3

c

2h̄ωc

|Ec(re)|2 |ψ2(0)|2(√
ωc +

√
Ω
)2 . (10.66)

Generally, we have

ψns(0) =
Z3

πn3a3
B

, and (10.67)
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ψnp(0) = 0, (10.68)

where aB is the Bohr radius and n is the principal quantum number. There-
fore, the Lamb shift between the 2s and 2p states is given by

∆E
(2)
2s−2p =

e4Z4

192π2ε2
0a

3
Bm2

e

√
m3

c

2h̄ωc

|Ec(re)|2(√
ωc +

√
Ω
)2 . (10.69)

Now, we estimate the Lamb shift of hydrogen (Z = 1) for a standard pho-
tonic crystal. We assume for simplicity that the band edge and the transition
frequency coincide:

ωc = ω21 = 1.53 × 1016 s−1. (10.70)

We also assume a simple cubic crystal with lattice constant a for simplicity.
The gap frequency is on the order of ωa/2πc = 0.25. Thus we have

a ≈ 3.08 × 10−8 m. (10.71)

On the other hand, we may assume various values for mc, since the dispersion
relation in photonic crystals is diverse. Here, we assume that the dispersion
curve starts from ωca/2πc = 0.25 on the Γ point and approaches the light
line in free space on the X point. We thus have

mc ≈ π2h̄

2ωca2 = 3.59 × 10−35 kg. (10.72)

When we further assume that |Ec(re)| ≈ 1, we obtain

∆E
(2)
2s−2p =

1
6
α5mec

2 = 0.43 GHz, (10.73)

where α = e2/4πε0h̄c is the fine-structure constant.
The anomalous density of states at the band edge mainly contributes to

this Lamb shift. D(ω) assumed for this calculation, however, underestimates
the density of states at high frequencies, since it should be approximately
proportional to ω2 whereas D(ω) is proportional to

√
ω. Although the ac-

curate calculation should be performed by assuming a more realistic density
of states, we may roughly expect that the actual Lamb shift is given by the
sum of the anomalous part (0.43 GHz) and the normal part (1.05 GHz). This
implies that the Lamb shift can be larger in photonic crystals than in free
space by about 40 %. This difference is large enough to detect by an exper-
iment, although a photonic crystal with an extremely small lattice contant,
i.e., a ≈ 30 nm is necessary.



11. Superfluorescence

The next quantum optical process we examine is superfluorescence, which is
a cooperative spontaneous emission of photons by a macroscopic number of
atoms. Since all electrons oscillate in phase for superfluorescence, the elec-
tronic polarization field is a macroscopic quantity, which results in intense
and rapid emission of light pulses. To analyze this genuine quantum me-
chanical process, we introduce psuedo-spin density operators that describe
the electronic polarization and population inversion. Analytical as well as
numerical calculations will clelarly demonstrate the qualitative difference in
superfluorescence between photonic crystals and uniform materials.

11.1 Brief Description of Superfluorescence

The first requirement for observing superfluorescence is to prepair a macro-
scopic number of atoms in perfect population inversion [121]. For example,
consider a four-level system shown in Fig. 11.1. We assume that an electron
in the ground state g′ is excited to the e′ state by absorbing a photon and suc-
cessively relaxed to the e state through a non-radiative process. We further
assume that the energy difference between the g and g′ states is sufficiently
larger than the thermal energy, and thus, the population of the g level in the
steady state is nearly equal to zero. If the non-radiative relaxation from the
e′ state to the e state is sufficiently faster than the radiative transition from
the e state to the g state, then perfect population inversion is realized be-
tween the e and g states just after the non-radiative relaxation. That is, the
probability to find an electron in the e state is 100 % and the probability to
find an electron in the g state is 0 %. In the following discussion, we assume
that perfect population inversion is realized by some means between the e
and g states at t = 0, and forget the presence of the g′ and e′ states.

Thus we need to consider only two electronic levels. These states may be
described schematically by two spin states, up and down, in the magnetic
field as shown in Fig. 11.2(a). We denote the number of atoms in our system
by Na. At t = 0, all atoms are in the excited state e. Or we say every spin
is in the up state. Then the total spin S is Na times as large as each spin
and is pointed upward. As light emission takes place, the direction of vector
S changes and eventually S is pointed completely downward since all spins
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Fig. 11.1. Perfect population inversion realized in a four-level system
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Fig. 11.2. (a) Definition of psuedou-spin and (b) motion of total spin

are in the down state, that is, all electrons are in the g state at the final
stage as shown in Fig. 11.2(b). If we can neglect the phase relaxation of
the electronic wave function, which is the second requirement for observing
apparent superfluorescence, we can prove that the magnitude of S is invariant
during the light emission process.

Since we can verify that the electronic polarization is proportional to the
horizontal component of vector S, it takes a maximum value at the middle
point of the emission process, i.e., when S is horizontal. At this moment, the
electronic polarization is Na times as large as the polarization of each electron.
So, the emission intensity is proportional to N2

a because it is proportional
to the square of the polarization. This makes a marked contrast to ordinary
spontaneous emission in which each atom emits a photon randomly, and thus,
the emission intensity is proportional to Na. Because Na is a macroscopic
number, the peak intensity of superfluorescence is much larger than ordinary
spontaneous emission, and consequently the pulse width is much narrower.
These properties of superfluorescence and how they are modified in photonic
crystals will be examined in the rest of this chapter.
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11.2 Two-Level Atoms

Let us begin with the quantum mechanical description of two-level atoms
interacting with the electromagnetic field. In Chap. 10 the interaction Hamil-
tonian Ĥ ′ was described by the vector potential Â and the electron momen-
tum p̂ as shown in (10.47) and (10.48). Alternatively we may express Ĥ ′ as
a product of the electric field Ê and the dipole moment of the electron er:

Ĥ ′ = −er · Ê(r), (11.1)

since the right-hand side of this equation gives the electromagnetic energy of
the dipole moment when the electromagnetic field is a classical quantity.1

In (11.1), only the electric field is second quantized. For the following dis-
cussion, the second quantization of the electronic field is desirable because it
simplifies the calculation. To obtain the expression of the electronic Hamilto-
nian by the second quantization, we need to take an expectation value with
respepct to the electronic field operator ψ(r). For simplicity, we assume that
the electronic system consists of just two energy levels denoted by g and e as
we discussed in the previous section. We introduce the creation (ĉ+

g , ĉ+
e ) and

annihilation operators (ĉg, ĉe) of these states. Because electrons are Fermions,
these operators satisfy the anti-commutation relations:{

ĉg, ĉ
+
g
}

=
{
ĉe, ĉ

+
e
}

= 1, (11.2)

{ĉg, ĉe} =
{
ĉ+
g , ĉ+

e
}

= 0, (11.3){
ĉg, ĉ

+
e
}

=
{
ĉe, ĉ

+
g
}

= 0, (11.4)

where{
Ô1, Ô2

}
= Ô1Ô2 + Ô2Ô1. (11.5)

We denote the eigenfunctions of the g and e states by ϕg(r) and ϕe(r). Then
the electronic field operator is

ψ̂(r) = ĉgϕg(r) + ĉeϕe(r). (11.6)

The second-quantized form of the dipole operator is thus given by∫
drψ̂+(r)erψ̂(r) = dggĉ

+
g ĉg + dgeĉ

+
g ĉe + degĉ

+
e ĉg + deeĉ

+
e ĉe, (11.7)

where dij (i, j = g or e) denotes

dij =
∫

drϕ∗
i (r)erϕj(r). (11.8)

Because dgg (dee) is the static dipole moment of the g (e) state and is not
relevant to the following discussion, we omit it.2 On the other hand, dge and
1 Strictly speaking, there is a difference between (10.48) and (11.1). This point

will be treated in Sect. 11.4.1
2 If the elelctronic system has the inversion symmetry, the eigenfunctions of the g

and e states have definite parities. Since er has an odd parity, dgg = dee = 0 in
this case.
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deg are called transition dipole moments. In general, when an electronic state
is not degenerate, we can take its eigenfunction real. In this chapter, we shall
treat two-level atoms without degeneracy. Then dge = deg, and we denote
them by d. Finally, the second-quantized form of the interaction Hamiltonian,
which we denote by the same symbol Ĥ ′, is given by3

Ĥ ′ = −d · Ê(r, t)
(
ĉ+
g ĉe + ĉ+

e ĉg
)
. (11.9)

If there are Na identical atoms, (11.9) should be changed to

Ĥ ′ = −
Na∑
i=1

d · Ê(ri, t)
(
ĉ+
giĉei + ĉ+

eiĉgi

)
, (11.10)

where ri is the position of the ith atom, etc. In this equation, we assumed
for simplicity that every atom has the same transition dipole moment.

On the other hand, the second-quantized form of the unperturbed Hamil-
tonian Ĥa that describes the atomic system is given by

Ĥa = h̄ωgĉ
+
g ĉg + h̄ωeĉ

+
e ĉe, (11.11)

where h̄ωg and h̄ωe are eigenenergies of the g and e states, respectively. When
we derived (11.11), we used the fact that Ĥa is diagonal with respect to ϕg
and ϕe. If there are Na identical atoms, the second-quantized form of the
unperturbed Hamiltonian is

Ĥa =
Na∑
i=1

(
h̄ωgĉ

+
giĉgi + h̄ωeĉ

+
eiĉei

)
. (11.12)

The next task we should do is to get a theoretical tool to deal with
cooperative optical processes. For this purpose, we introduce the following
three field operators (pseudo-spin density operators). When we denote a small
volume surrounding position r by ∆V (r), they are defined as

Ĵ3(r, t)∆V (r) =
1
2

∑
ri∈∆V (r)

(
ĉ+
eiĉei − ĉ+

giĉgi

)
, (11.13)

Ĵ12(r, t)∆V =
∑

ri∈∆V (r)

ĉ+
giĉei, (11.14)

Ĵ21(r, t)∆V =
∑

ri∈∆V (r)

ĉ+
eiĉgi. (11.15)

Euclidian spatial components are given by Ĵx = Re(Ĵ21), Ĵy = Im(Ĵ21), and
Ĵz = Ĵ3. We assume that ∆V (r)’s do not overlap with each other and occupy
the whole space, then the interaction Hamiltonian is expressed as

3 The spatial variation of Ê was neglected when we calculated the expectation
value of Ĥ ′ with respect to ψ̂(r). This is justified if the spatial variation of Ê is
small in the range of the electronic wave function, ϕg and ϕe. This simplification
is called the dipole approximation.
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Ĥ ′ = −
∑

all ∆V

∑
ri∈∆V

d · Ê(ri, t)
(
ĉ+
giĉei + ĉ+

eiĉgi

)
= −

∑
all ∆V

d · Ê(r, t)
{

Ĵ12(r, t) + Ĵ21(r, t)
}

∆V (r). (11.16)

When we take the limit ∆V (r) −→ 0 and rewrite the summation over ∆V
as an integral, we have

Ĥ ′ = −
∫

V

drd · Ê(r, t)
{

Ĵ12(r, t) + Ĵ21(r, t)
}

, (11.17)

where V is the volume of the photonic crystal. On the other hand, since an
electron is in the g or e state of each atom, we have

ĉ+
eiĉei + ĉ+

giĉgi = 1. (11.18)

In this case, Ĥa can be modified to

Ĥa =
h̄Ω

2

Na∑
i=1

(
ĉ+
eiĉei − ĉ+

giĉgi

)
= h̄Ω

∫
V

dr Ĵ3(r, t), (11.19)

where

Ω = ωe − ωg (11.20)

is the transition frequency. In (11.19), we took (ωe + ωg)/2 as the origin of
energy. Now let us derive the commutation relations of Ĵ12, Ĵ21, and Ĵ3. We
treat the following two cases separately.

Case (A): r �= r′

We denote the small volume that contains r by ∆V and one that contains
r′ by ∆V ′. We assume that ∆V and ∆V ′ are sufficiently small and they do
not overlap with each other. Let us first calculate the commutation relation
of Ĵ12 and Ĵ21. From (11.14) and (11.15), we have[

Ĵ12(r, t)∆V, Ĵ21(r′, t)∆V ′
]

=
∑

ri∈∆V

∑
rj∈∆V ′

[
ĉ+
giĉei, ĉ

+
ej ĉgj

]
. (11.21)

Anti-commutation relations (11.3) and (11.4) for different electronic levels
hold for the creation and annihilation operators on the right-hand side of
(11.21), since i �= j. We thus have[

ĉ+
giĉei, ĉ

+
ej ĉgj

] ≡ ĉ+
giĉeiĉ

+
ej ĉgj − ĉ+

ej ĉgj ĉ
+
giĉei

= ĉ+
gi

(−ĉ+
ej ĉei

)
ĉgj − ĉ+

ej

(−ĉ+
giĉgj

)
ĉei

= − (−ĉ+
ej ĉ

+
gi

)
(−ĉgj ĉei) + ĉ+

ej ĉ
+
giĉgj ĉei

= 0. (11.22)

So, the right-hand side of (11.21) is equal to zero. We thus obtain
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Ĵ12(r, t), Ĵ21(r′, t)

]
= 0. (11.23)

By a similar calculation, we obtain[
Ĵ12(r, t), Ĵ3(r′, t)

]
= 0, (11.24)[

Ĵ21(r, t), Ĵ3(r′, t)
]

= 0. (11.25)

Case (B): r = r′

In this case, we have to evaluate such a commutator as follows:[
Ĵ12(r, t)∆V, Ĵ21(r, t)∆V

]
=
∑

ri∈∆V

∑
rj∈∆V

[
ĉ+
giĉei, ĉ

+
ej ĉgj

]
(11.26)

Since we have[
ĉ+
giĉei, ĉ

+
ej ĉgj

]
= 0 (i �= j), (11.27)

(11.26) reduces to[
Ĵ12(r, t)∆V, Ĵ21(r, t)∆V

]
=
∑

ri∈∆V

[
ĉ+
giĉei, ĉ

+
eiĉgi

]
. (11.28)

When we note that the anti-commutation relation (11.2) holds for the same
electronic state, we obtain[

ĉ+
giĉei, ĉ

+
eiĉgi

]
= ĉ+

gi

(−ĉ+
eiĉei + 1

)
ĉgi − ĉ+

ei

(−ĉ+
giĉgi + 1

)
ĉei

= ĉ+
giĉgi − ĉ+

eiĉei. (11.29)

From the definition of Ĵ3, i.e., (11.13), we obtain[
Ĵ12(r, t)∆V, Ĵ21(r, t)∆V

]
= −2Ĵ3(r, t)∆V. (11.30)

Now, let us examin the following integral over the whole volume of the pho-
tonic crystal.∫

V

dr′
[
Ĵ12(r, t), Ĵ21(r′, t)

]
= lim

∆V →0
∆V

[
Ĵ12(r, t), Ĵ21(r, t)

]
. (11.31)

In this equation, we used the fact that the integrand is equal to zero when
r �= r′. From (11.30), the right-hand side of (11.31) is equal to

−2Ĵ3(r, t) (11.32)

irrespective of the magnitude of ∆V . This implies that the integrand of
(11.31) is proportional to the delta function δ(r − r′), and is given by[

Ĵ12(r, t), Ĵ21(r′, t)
]

= −2Ĵ3(r, t)δ(r − r′). (11.33)

By a similar calculation, we can prove that
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Ĵ12(r, t), Ĵ3(r′, t)

]
= Ĵ12(r, t)δ(r − r′), (11.34)[

Ĵ21(r, t), Ĵ3(r′, t)
]

= −Ĵ21(r, t)δ(r − r′). (11.35)

Next, let us derive the equations of motion for the pseudo-spin density
operators. For this purpose, let us first calculate the commutators with Ĥa.[

Ĵ12(r, t), Ĥa

]
= h̄Ω

∫
V

dr′
[
Ĵ12(r, t), Ĵ3(r′, t)

]
= h̄Ω

∫
V

dr′Ĵ12(r, t)δ(r − r′)

= h̄ΩĴ12(r, t), (11.36)[
Ĵ3(r, t), Ĥa

]
= h̄Ω

∫
V

dr′
[
Ĵ3(r, t), Ĵ3(r′, t)

]
= 0. (11.37)

The commutators with Ĥ ′ can be evaluated similarly.[
Ĵ12(r, t), Ĥ ′

]
= −

∫
V

dr′d · Ê(r′, t)
[
Ĵ12(r, t), Ĵ21(r′, t)

]
= 2
∫

V

dr′d · Ê(r′, t)Ĵ3(r, t)δ(r − r′)

= 2d · Ê(r, t)Ĵ3(r, t), (11.38)[
Ĵ3(r, t), Ĥ ′

]
= −

∫
V

dr′d · Ê(r′, t)
[
Ĵ3(r, t), Ĵ12(r′, t) + Ĵ21(r′, t)

]
=
∫

V

dr′d · Ê(r′, t)
{

Ĵ12(r, t) − Ĵ21(r, t)
}

δ(r − r′)

= d · Ê(r, t)
{

Ĵ12(r, t) − Ĵ21(r, t)
}

. (11.39)

The equations of motion of the psuedo-spin density operators can thus be
derived from the Heisenberg equations:

ih̄
∂Ĵ12

∂t
=
[
Ĵ12, Ĥa + Ĥ ′

]
= h̄ΩĴ12 + 2d · ÊĴ3, (11.40)

ih̄
∂Ĵ3

∂t
=
[
Ĵ3, Ĥa + Ĥ ′

]
= d · Ê

(
Ĵ12 − Ĵ21

)
(11.41)

11.3 Superfluorescence in Uniform Materials

Superfluorescence is a cooperative light emission induced by a large number
of atoms with their electronic polarizations in phase. Except its initial stage,
the electric field and the electronic polarization field of superfluorescence have
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large values proportional to the number of atoms, Na. Thus their quantum
mechanical fluctuations are small, and we can understand the main features
of superfluorescence by using the mean (expectation) values of the field oper-
ators. So, let us replace all operators in (11.40) and (11.41) with their mean
values. We denote the mean values by symbols without “̂”. Then we have

ih̄
∂J12

∂t
= h̄ΩJ12 + 2d · EJ3, (11.42)

ih̄
∂J3

∂t
= d · E(J12 − J21). (11.43)

Phenomenological relaxation terms for J12 and J3 may be added to these
equations. The relaxation of J12 that is caused by elastic phonon scattering,
etc., is called phase relaxation or transverse relaxation, whereas that of J3,
caused by non-radiative electronic transition etc., is called energy relaxation
or longitudinal relaxation. When superfluorescence takes place much faster
than these relaxation processes their influence is small and can be neglected.
We will deal with this case in the following.

The atomic polarization field P is given by the electronic dipole moment
of each atom times the number of atoms in a unit volume. When we denote
the small volume that contains position r by ∆V (r) as before then,

P̂ (r, t)∆V (r) = d
∑

ri∈∆V (r)

(
ĉ+
giĉei + ĉ+

eiĉgi

)
= d

(
Ĵ12(r, t) + Ĵ21(r, t)

)
∆V (r). (11.44)

We also replace field operators by their mean values in this equation and
obtain

P = d(J12 + J21). (11.45)

On the other hand, if we replace the electric field operator with its mean value,
we obtain the classical electric field that satisfies the Maxwell equations. Such
an electric field should satisfy an inhomogeneous wave equation with the
polarization field P given in (11.45) as a source term. For simplicity, let us
assume that all atoms are located in vacuum and that ε(r) = 1 everywhere.
Then from (5.3) and (5.4), we have

1
c2

∂2E

∂t2
+ ∇ × {∇ × E} = − 1

ε0c2

∂2P

∂t2
. (11.46)

If we solve these equations with adequate initial conditions, we can obtain
solutions that describe superfluorescence.

We denote the wave number of superfluorescent light by k and take the x
axis as the direction of its propagation. We also denote the electric field and
the polarization field in the direction of the polarization of the superfluorecent
light by E and P . When we express E and P by
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E(x, t) = E0(x, t)ei(kx−Ωt) + E∗
0 (x, t)e−i(kx−Ωt), (11.47)

P (x, t) = P0(x, t)ei(kx−Ωt) + P ∗
0 (x, t)e−i(kx−Ωt), (11.48)

the envelope functions, E0 and P0, that describe the shape of the superfluores-
cent light pulse are slowly varying compared with the exponential functions.
(11.42) shows that J12 essentially has a time dependence like e−iΩt. So, by
comparing (11.45) with (11.48), we can identify J12 and J21 as

dJ12 = P0ei(kx−Ωt), (11.49)
dJ21 = P ∗

0 e−i(kx−Ωt), (11.50)

where d is the component of d in the direction of polarization of superfluo-
rescence. When we substitute (11.49) and (11.47) into (11.42), we obtain

∂P0

∂t
= −2id2

h̄
E0J3 − 2id2

h̄
E∗

0J3e−2i(kx−Ωt). (11.51)

The second term on the right-hand side gives a component that oscillates
rapidly in time and space. Because it is not resonant with the electronic
transition frequency Ω, it does not contribute to the electric field or the
polarization field much. We thus neglect this term4 and obtain

∂P0

∂t
= −2id2

h̄
E0J3. (11.52)

Next we substitute (11.47), (11.49), and (11.50) into (11.43) and neglect
rapidly oscillating terms again. Thus we have

∂J3

∂t
=

i
h̄

(E0P
∗
0 − E∗

0P0) . (11.53)

From (11.46), we obtain the wave equation satisfied by the electric and po-
larization fields:

1
c2

∂2E

∂t2
− ∂2E

∂x2 = − 1
ε0c2

∂2P

∂t2
(11.54)

When we substitute (11.47) and (11.48) into this equation and use the relation
Ω = ck,

1
c2

(
∂2E0

∂t2
− 2iΩ

∂E0

∂t

)
−
(

∂2E0

∂x2 + 2ik
∂E0

∂x

)
= − 1

ε0c2

(
∂2P0

∂t2
− 2iΩ

∂P0

∂t
− Ω2P0

)
(11.55)

is derived. The envelope functions, E0 and P0, are expected to vary slowly in
time and space compared with Ω and k. So, we may safely assume
4 This is called the rotating-wave approximation.
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∂t2

∣∣∣∣ � ∣∣∣∣2iΩ
∂E0

∂t

∣∣∣∣ , (11.56)∣∣∣∣∂2E0

∂x2

∣∣∣∣ � ∣∣∣∣2ik
∂E0

∂x

∣∣∣∣ , (11.57)∣∣∣∣∂2P0

∂t2

∣∣∣∣ � ∣∣∣∣2iΩ
∂P0

∂t

∣∣∣∣� ∣∣Ω2P0
∣∣ . (11.58)

When we neglect all small terms, we finally obtain

∂E0

∂t
+ c

∂E0

∂x
=

ick
2ε0

P0. (11.59)

Now, let us examine the quantity J2 defined by the next equation:5

J2 =
1
d2 |P0|2 + J2

3 . (11.60)

When we differenciate J2 with respect to time, we have

∂

∂t
J2 =

1
d2

(
∂P0

∂t
P ∗

0 + P0
∂P ∗

0

∂t

)
+ 2J3

∂J3

∂t
. (11.61)

Substituting (11.52), its complex conjugate, and (11.53) into this equation,
we can prove that

∂

∂t
J2 = 0. (11.62)

So, J2 is a constant of motion. Let us denote the number of two-level atoms in
a unit volume by na and assume that perfect population inversion is realized
at t = 0, i.e., all two-level atoms are in their e states. Then, from (11.13), we
have

J3(x, 0) =
na

2
. (11.63)

We further assume that superfluorescence does not yet take place at t = 0 so
that the electric and polarization fields are equal to zero:

E0(x, 0) = 0, (11.64)
P0(x, 0) = 0. (11.65)

Since J2 is a constant of motion, we have

1
d2 |P0(x, t)|2 + J2

3 (x, t) = J2
3 (x, 0) =

(na

2

)2
. (11.66)

Now we introduce a function θ(x, t) that satisfies

J3 = −na

2
cos θ. (11.67)

5 The vector J = (Jx, Jy, Jz) may be regarded as S in Sect. 11.1.
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Because (11.63) holds, we take

θ(x, 0) = π. (11.68)

We shall seek a real solution for P0 in the following. To satisfy (11.66), we
write it as

P0 =
dna

2
sin θ. (11.69)

Substituting these equations into (11.52), we obtain

E0 = − ih̄
2d

∂θ

∂t
. (11.70)

When we denote the dimension of the volume where two-level atoms are
located by L, the electromagnetic waves escape out of it in a period around
L/c. We thus define the damping rate of the electromagnetic field γ by

γ =
c

L
, (11.71)

and put it into (11.59) in a phenomenological manner:

∂E0

∂t
+ c

∂E0

∂x
+ γE0 =

ick
2ε0

P0. (11.72)

Substituting (11.69) and (11.70) into this equation we obtain

− 2ε0h̄

d2naΩ

(
∂2

∂t2
+ c

∂

∂x

∂

∂t
+ γ

∂

∂t

)
θ = sin θ. (11.73)

Now we define τ and ξ by

τ =
2ε0γh̄

d2naΩ
, (11.74)

and

ξ = cτ, (11.75)

respectively. Then τ has a dimension of time whereas ξ has a dimension
of length. Thus we introduce dimensionless position coordinate x′ and time
coordinate t′ as follows.

x = x′ξ, t = t′τ. (11.76)

Then (11.73) is transformed to

∂θ

∂t′
+ sin θ = − 1

γτ

{
∂2

∂(t′)2
+

∂

∂x′
∂

∂t′

}
θ. (11.77)

Here, 1/γτ is given by

1
γτ

=
d2naΩ

2ε0γ2h̄
=

d2L2naΩ

2c2ε0h̄
. (11.78)

When we define the cooperation length Lc as
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Lc =

√
2c2ε0h̄

d2naΩ
, (11.79)

we have

1
γτ

=
(

L

Lc

)2

. (11.80)

So, if L � Lc, we have 1/γτ � 1 and the terms on the right-hand side of
(11.77) can be neglected. We thus obtain

∂θ

∂t′
+ sin θ = 0. (11.81)

As can be understood by this equation, θ is a function of t′ alone and does
not depend on x′ in the above approximation. When we rewrite (11.81) with
the original coordinates, we have

dθ

dt
+

1
τ

sin θ = 0. (11.82)

If θ is exactly equal to π at t = 0, we have from (11.82)

dθ

dt

∣∣∣∣
t=0

= 0. (11.83)

So, θ does not vary at all and remains at a constant value (= π) at t > 0.
This implies that perfect population inversion is a metastable state [122, 123].
But in fact, θ takes a value slightly different from π because of the quantum
mechanical fluctuation of the electromagnetic and polarization fields. We shall
denote this value by θ0:

θ(0) = θ0. (11.84)

Now let us solve (11.82). Because

sin θ = 2 sin
θ

2
cos

θ

2
= 2 tan

θ

2
cos2

θ

2
, (11.85)

we have
dt

τ
= − dθ

2 tan
θ

2
cos2

θ

2

= d
(

log
∣∣∣∣tan

θ

2

∣∣∣∣) . (11.86)

Integration of this equation from 0 to t gives

t

τ
= −

(
log
∣∣∣∣tan

θ

2

∣∣∣∣− log
∣∣∣∣tan

θ0

2

∣∣∣∣)

= − log

∣∣∣∣∣∣∣
tan

θ

2

tan
θ0

2

∣∣∣∣∣∣∣ . (11.87)

When we define the delay time td as
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tan
θ0

2
= exp

(
td
τ

)
(11.88)

and note that θ < π, we obtain

tan
θ

2
= exp

(
− t − td

τ

)
. (11.89)

This equation can also be expressed as

sin θ = sech
(

t − td
τ

)
. (11.90)

The electromagnetic energy that flows out of the system in a unit time, I(t),
is proportional to γ|E0|2. We denote the coefficient by A0. Using (11.70),
(11.82), and (11.90), we finally obtain

I(t) =
A0d

2n2
aΩ

2

16ε2
0γ

sech2
(

t − td
τ

)
. (11.91)

So,

Peak intensity ∝ n2
a, (11.92)

Pulse width = τ ∝ n−1
a . (11.93)

As can be seen from (11.88),

Delay time = td ∝ τ ∝ n−1
a . (11.94)

Thus the pulse shape of superfluorescence depends on na, the number density
of two-level atoms, as shown in Fig. 11.3.

In
te

ns
ity

Time

Fig. 11.3. Atomic density dependence of the pulse shape of superfluorescence
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11.4 Superfluorescence in Photonic Crystals

11.4.1 Small Distribution Volume Limit

In this and the next sections, we examine superfluorescence in photonic crys-
tals. First we examine the case that the distribution of two-level atoms is
confined in a volume much smaller than the lattice constant of the photonic
crystal. This case, i.e., the small distribution volume limit was studied by
John and Quang [124]. We follow their argument in this section.

The total Hamiltonian of the system, Ĥ, is given by the sum of Ĥa, Ĥ ′,
and the Hamiltonian of the radiation field Ĥr:

Ĥ = Ĥa + Ĥr + Ĥ ′, (11.95)

Ĥr =
∑
kn

h̄ωknâ+
knâkn, (11.96)

where the zero point energy,

1
2

∑
kn

h̄ωkn, (11.97)

was omitted since it does not affect the following calculation. As for the
interaction Hamiltonian Ĥ ′, we derive it again from (10.48) using the dipole
approximation. For one electron, Ĥa is given by (10.63):

Ĥa =
p̂2

2me
+ φ(r), (11.98)

where φ(r) is the Coulomb potential due to the atomic nucleus. We have

[r, Ĥa] =
1

2me

[
r, p̂2

]
=

1
2me

(p̂ [r, p̂] + [r, p̂] p̂)

=
ih̄
me

p̂, (11.99)

since p̂ = −ih̄∇. Thus we have from (10.48)

Ĥ ′ = − e

ih̄

∑
kn

√
h̄

2ε0ωknV

{
âkn(t)Ekn(r) + â+

kn(t)E∗
kn(r)

}
·
[
r, Ĥa

]
. (11.100)

To obtain the second-quantized form of the interaction Hamiltonian, we take
the expectation value of (11.100) with respect to (11.6). Because the spatial
variation of the electromagnetic field is small in the range of the electronic
wave functions, we may take the former in the center of the atomic position
r0 as a representative value (the dipole approximation). Thus we obtain



11.4 Superfluorescence in Photonic Crystals 225

Ĥ ′ =
ie
h̄

∑
kn

√
h̄

2ε0ωknV

{
âkn(t)Ekn(r0) + â+

kn(t)E∗
kn(r0)

}
·
∫

dr ψ̂+(r)
[
r, Ĥa

]
ψ̂(r). (11.101)

Substituting (11.6) into the integral, we have∫
dr ψ̂+(r)

[
r, Ĥa

]
ψ̂(r)

=
∑

i

∑
j

ĉ+
i ĉj

∫
dr ϕ∗

i (r)
[
r, Ĥa

]
ϕj(r)

=
∑

i

∑
j

h̄(ωj − ωi) ĉ+
i ĉj

∫
dr ϕ∗

i (r) r ϕj(r), (11.102)

where i, j = g or e. In this equation, we used the fact that ϕg and ϕe are
eigenfunctions of Ĥa:

Ĥaϕg = h̄ωgϕg, (11.103)

Ĥaϕe = h̄ωeϕe. (11.104)

Using the definition of the transition dipole moment, (11.8), we obtain∫
dr ψ̂+(r)

[
r, Ĥa

]
ψ̂(r) =

h̄Ω

e
d (ĉ+

g ĉe − ĉ+
e ĉg), (11.105)

where Ω = ωe − ωg. Finally we have

Ĥ ′ = −
∑
kn

i

√
h̄Ω2

2ε0ωknV
d

·{ĉ+
e ĉgâknEkn(r0) − ĉ+

g ĉeâ
+
knE∗

kn(r0)
}

, (11.106)

where we neglected non-resonant terms (the rotating-wave approximation).
For an assembly of Na atoms, we follow the same procedure as in Sect. 11.2
to obtain

Ĥ ′ = −
∑
kn

i

√
h̄Ω2

2ε0ωknV
d ·
∫

V

dr
{

Ekn(r)âkn(t)Ĵ21(r, t)

−E∗
kn(r)â+

kn(t)Ĵ12(r, t)
}

. (11.107)

The main difference between (11.17) and this equation is that the coefficient
before Ekn(r) in the expression of the electric field operator

√
h̄ωkn/2ε0V

is replaced by
√

h̄Ω2/2ε0ωknV . This difference is related to the choice of
the gauge of the electromagnetic field, but does not influence the following
discussion. The reader may consult [125] for details.
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Temporal variation of the annihilation operator âkn, for example, is given
by the Heisenberg equation:

dâkn

dt
=

1
ih̄

[
âkn, Ĥ

]
=

1
ih̄

[
âkn, Ĥr + Ĥ ′

]
= −iωknâkn(t) + gkn

∫
V

dr d · E∗
kn(r)Ĵ12(r, t), (11.108)

where

gkn =

√
Ω2

2ε0h̄ωknV
. (11.109)

Similarly we have

∂Ĵ12

∂t
= −iΩĴ12(r, t) + 2

∑
kn

gknd · Ekn(r)âkn(t)Ĵ3(r, t), (11.110)

∂Ĵ3

∂t
= −

∑
kn

gkn

{
d · Ekn(r)âkn(t)Ĵ21(r, t)

+d · E∗
kn(r)â+

kn(t)Ĵ12(r, t)
}

. (11.111)

First let us solve (11.108) for âkn(t). To do this, we define f̂kn(t) as

âkn(t) = f̂kn(t)e−iωknt. (11.112)

Then f̂kn satisfies

df̂kn

dt
= gkn

∫
V

dr d · E∗
kn(r)eiωkntĴ12(r, t). (11.113)

Integrating this equation from 0 to t, we obtain

f̂kn(t) = f̂kn(0)+gkn

∫
V

dr′
∫ t

0
dt′ d ·E∗

kn(r′)eiωknt′
Ĵ12(r′, t′).(11.114)

So, we have

âkn(t) = âkn(0) + gkne−iωknt

∫
V

dr′
∫ t

0
dt′

×d · E∗
kn(r′)eiωknt′

Ĵ12(r′, t′). (11.115)

Substituting this equation into (11.110), we obtain

∂Ĵ12

∂t
= −iΩĴ12(r, t) + 2

∑
kn

gknd · Ekn(r)

×
[
âkn(0) + gkne−iωknt

∫
V

dr′
∫ t

0
dt′

× d · E∗
kn(r′)eiωknt′

Ĵ12(r′, t′)
]
Ĵ3(r, t). (11.116)
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Now we assume that the distribution volume of two-level atoms is much
smaller than the lattice constant and the wavelength of relevant electromag-
netic waves. We denote the volume by Va and its center by ra. Then we can
regard the electric field and the pseudo-spin density operators as constant in
Va. For Ĵ12 and Ĵ3,

Ĵ12(r, t) =

⎧⎨⎩ Ĵ12(t) (r ∈ Va)

0 (r /∈ Va)
, (11.117)

and

Ĵ3(r, t) =

⎧⎨⎩ Ĵ3(t) (r ∈ Va)

0 (r /∈ Va)
. (11.118)

We also assume as in the previous section that the electromagnetic field and
the polarization field are equal to zero except for quantum fluctuations at
t = 0. We take the mean value of (11.116) to obtain

dJ12

dt
= −iΩJ12(t) + 2Va

∑
kn

g2
kn |d · Ekn(ra)|2 e−iωknt

×
∫ t

0
dt′eiωknt′

J3(t)J12(t′). (11.119)

To discuss the temporal profile of superfluorescent light pulses, we introduce
an envelope function J

(0)
12 as we did in (11.49):

J12 = J
(0)
12 e−iΩt. (11.120)

Substituting this equation into (11.119), we obtain

dJ
(0)
12

dt
= 2Va

∑
kn

g2
kn |d · Ekn(ra)|2 e−i(ωkn−Ω)t

×
∫ t

0
dt′ei(ωkn−Ω)t′

J3(t)J
(0)
12 (t′). (11.121)

So, if we define G(t − t′) as

G(t − t′) = 2Va

∑
kn

g2
kn |d · Ekn(ra)|2 e−i(ωkn−Ω)(t−t′), (11.122)

(11.121) can simply be written

dJ
(0)
12

dt
=
∫ t

0
dt′G(t − t′)J3(t)J

(0)
12 (t′). (11.123)

Similarly we can derive

dJ3

dt
= −2

∫ t

0
G(t − t′)J (0)

21 (t)J (0)
12 (t′) + c.c., (11.124)
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where

J
(0)
21 (t) = J

(0)∗
12 (t) = J21(t)e−iΩt. (11.125)

The next task we should do is to evaluate G(t−t′). For this purpose, John
and Quang [124] examined two cases. The first one is an isotropic dispersion
relation with a photonic bandgap:

ωk

c
= sgn(k − k0)

√
(k − k0)2 + k2

1 +
√

k2
0 + k2

1, (11.126)

where k = |k|,

sgn(k − k0) =

⎧⎨⎩+1 (k > k0),

−1 (k < k0),
(11.127)

and k0 and k1 are parameters that characterize the dielectric function of the
photonic crystal. There is a bandgap at k = k0 whose width is

∆ω = 2ck1. (11.128)

Because the dispersion relation is isotropic in the k space, the bandgap at k0
is also isotropic. Several limiting cases of the isotropic dispersion relation are
given by

ωk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(k − k0 +

√
k2
0 + k2

1) (k � k0),

ωe + A(k − k0)2 (k � k0 and k > k0),
ck0k√
k2
0 + k2

1

(k → 0),
(11.129)

where the band edge frequency ωe is

ωe = c

(√
k2
0 + k2

1 + k1

)
(11.130)

and A is

A =
c

2k1
. (11.131)

If the eigenfunction Ekn is not very far from a plane wave, we may assume
that |Ekn(ra)| = 1.6 For this case, we may assume

|d · Ekn(ra)|2 =
d2

3
(11.132)

because the photonic band structure is isotropic, and hence, the distribu-
tion of the polarization of the eigenmodes can be regarded isotropic also.
Following the discussion by John and Quang, we examine the case that the
optical transition frequency of two-level atoms coincides with the band edge
6 Even if this assumption does not hold, we have qualitatively the same results

with a small quantitative difference.
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frequency, which is most interesting because the singular photon density of
states brings about peculiar consequences:

Ω = ωe. (11.133)

Since the dispersion relation and the photon density of states around Ω are
important, John and Quang calculated G(t − t′) with the effective mass ex-
pression of the dispersion relation assuming that it is valid for all frequencies:

ωk = ωe + A(k − k0)2. (11.134)

When we convert the summation to an integral in (11.122), we obtain

G(t − t′) =
2Vad

2

3
V

(2π)3

∫
dk g2

ke−iA(k−k0)2(t−t′), (11.135)

where

g2
k =

Ω2

2ε0h̄ωkV
. (11.136)

Since the integrand is isotropic with respect to k, the integral is transformed
to

G(t − t′) =
Ω2d2Va

6π2ε0h̄

∫ ∞

k0

dk
k2

ωk
e−iA(k−k0)2(t−t′). (11.137)

For sufficiently large t, the integrand is a rapidly oscillating function of k.
So, the main contribution to the integral comes from the stationary point,
that is, k = k0. Thus we can take k2/ωk in the integrand as k2

0/ωk0 . When
we convert the variable from k to

ξ =
√

A(t − t′)(k − k0), (11.138)

we have

G(t − t′) =
Ωd2k2

0Va

6π2ε0h̄
√

A(t − t′)

∫ ∞

0
dξe−iξ2

. (11.139)

The Fresnel integral is given by∫ ∞

0
dξe−iξ2

=
√

π

2
e−iπ/4, (11.140)

k0 and A−1 = 2k1 are on the order of ωe/c = Ω. So, we finally obtain

G(t − t′) � Ω7/2d2Vae−iπ/4

6πε0h̄c3
√

π(t − t′)
. (11.141)

When we define β as

β3/2 =
Ω7/2d2

6πε0h̄c3 , (11.142)

it has the dimension of time−1. G(t − t′) is rewritten as
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G(t − t′) =
β3/2Vae−iπ/4√

π(t − t′)
. (11.143)

Here we introduce two dimensionless functions:

x(t) =
J

(0)
12 Va

Na
, (11.144)

y(t) =
J3Va

Na
. (11.145)

Substituting (11.143)–(11.145) into (11.123) and (11.124), we obtain

dx

dt
= β3/2e−iπ/4Nay(t)

∫ t

0
dt′

x(t′)√
π(t − t′)

, (11.146)

dy

dt
= −2β3/2e−iπ/4Nax

∗(t)
∫ t

0
dt′

y(t′)√
π(t − t′)

+ c.c. (11.147)

When we further introduce a dimensionless time variable T as

T = βN2/3
a t, (11.148)

and define

X(T ) = x(t), (11.149)
Y (T ) = y(t), (11.150)

then we have dimensionless equations of motion:

dX

dT
= e−iπ/4Y (T )

∫ T

0
dT ′ X(T ′)√

π(T − T ′)
, (11.151)

dY

dT
= −2e−iπ/4X∗(T )

∫ T

0
dT ′ Y (T ′)√

π(T − T ′)
+ c.c. (11.152)

So, from (11.148), the time t scales to N
−2/3
a . Thus the pulse width and the

delay time of superfluorescence are proportional to N
−2/3
a for the isotropic

bandgap with ωe = Ω. Because the total emission is proportional to Na, the
peak intensity should be proportional to N

5/3
a . These results are compared

with the case of uniform materials in Table 11.1.
Next let us examine an anisotropic bandgap in the effective mass approx-

imation. For this case, the dispersion relation is given by

ωk = ωe + A|k − k0|2. (11.153)

Note that the bandgap is located at a certain point k0 in the k space instead
of all directions as for the isotropic bandgap. We assume that the electronic
transition frequency Ω coincides with the band edge frequency ωe as before.
When we convert the summation to an integral in (11.122), we obtain

G(t − t′) = 2Va
V

(2π)3

∫
dk g2

k|d · Ek(ra)|2e−iA|k−k0|2(t−t′), (11.154)
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Table 11.1. Exponents of atom number dependence for superfluorescence light
pulse

Free space 3D anisotropic PBG 3D isotropic PBG

ω = ck ω = Ω + A|k − k0|2 ω = Ω + A(k − k0)2

Pulse width ∝ 1
Na

∝ 1
N2

a
∝ 1

N2/3
a

Delay time ∝ 1
Na

∝ 1
N2

a
∝ 1

N2/3
a

Peak power ∝ N2
a ∝ N3

a ∝ N
5/3
a

For |d · Ek(ra)| we approximate it by d.7 We take the spherical coordinates
with k0 as the origin. Because the dispersion relation is isotropic around k0,
we can perform the spherical integration to obtain

G(t − t′) =
Ω2d2Va

2π2ε0h̄

∫ ∞

0
dr

r2e−iA(t−t′)r2

ωe + Ar2 . (11.155)

When we convert the variable from r to

ξ =
√

A(t − t′)r, (11.156)

we have

G(t − t′) =
Ω2d2Va

2π2ε0h̄A3/2
√

t − t′

∫ ∞

0
dξ

ξ2e−iξ2

ξ2 + ωe(t − t′)
. (11.157)

When we further change the variable with

z = eiπ/4ξ, (11.158)

we have

G(t − t′) = − Ω2d2Vae−iπ/4

2π2ε0h̄A3/2
√

t − t′
lim

R→∞

∫
III

dz
z2e−z2

z2 + iωe(t − t′)
, (11.159)

where the path of integral {III} in the complex z plane is depicted in Fig. 11.4.
Because two poles of the integrand, which are denoted by dots in Fig. 11.4,
are not located in the area surrounded by the path {I+II+III}, the integrand
is regular in that area. Thus we have

−
∫

III
=
∫

I
+
∫

II
. (11.160)

Now we show that

lim
R→∞

∫
II

= 0. (11.161)

To prove this, let us change the variable with θ:
7 This approximation does not result in a qualitative difference, but just gives a

quantitative difference.
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Re(z)

Im(z)

.

.

RO I

II
III

Fig. 11.4. Path of integral

z = R eiθ, 0 ≤ θ ≤ π

4
. (11.162)

Then we have∣∣∣∣∫
II

∣∣∣∣ ≤ ∫ π/4

0
dθ

∣∣∣∣∣iReiθ R2e2iθ exp
(−R2e2iθ

)
R2e2iθ + iωe(t − t′)

∣∣∣∣∣
=

R3

2

∫ π/2

0
dφ

exp
(−R2 sin φ

)
|ωe(t − t′) + R2e−iφ| , (11.163)

where we have introduced a new variable φ:

φ =
π

2
− 2θ. (11.164)

Because for 0 ≤ φ ≤ π/2

sin φ ≥ 2
π

φ, (11.165)

and ∣∣ωe(t − t′) + R2e−iφ
∣∣ ≥ R2, (11.166)

we obtain∣∣∣∣∫
II

∣∣∣∣ ≤ R3

2

∫ π/2

0
dφ

e−2R2φ/π

R2 =
π

4R

(
1 − e−R2

)
→ 0 (R → ∞). (11.167)

Thus we have

− lim
R→∞

∫
III

= lim
R→∞

∫
I
=
∫ ∞

0
dz

z2e−z2

z2 + iωe(t − t′)
. (11.168)

We perform the integration by parts to obtain
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− lim
R→∞

∫
III

= −1
2

[
z

z2 + iωe(t − t′)
e−z2

]∞

0

+
1
2

∫ ∞

0
dz

d

dz

{
z

z2 + iωe(t − t′)

}
e−z2

=
1
2

∫ ∞

0
dz

−z2 + iωe(t − t′)
{z2 + iωe(t − t′)}2 e−z2

� 1
2iωe(t − t′)

∫ ∞

0
dz e−z2

=
√

π

4iωe(t − t′)
. (11.169)

To justify this approximation, ωe(t − t′) � 1. Finally we obtain

G(t − t′) � −β
1/2
3 Vaeiπ/4

(t − t′)3/2 for ωe(t − t′) � 1, (11.170)

where β
1/2
3 is defined as

β
1/2
3 =

Ωd2

8h̄ε0π3/2A3/2 . (11.171)

β3 has the dimension of time−1. If we define a new dimensionless time variable
T as

T = β3N
2
a t, (11.172)

then the equations of motion for x(t) and y(t) defined by (11.144) and
(11.145) are tranformed to dimensionless equations as before. This fact shows
that the time t scales to N−2

a for the anisotropic bandgap described by the
dispersion relation given in (11.153). Because the total emission must be
proportional to Na, the peak intensity is proportional to N3

a . These results
are summarized in Table 11.1. These peculiar characteristics of superfluores-
cence in photonic crystals8 are brought about by the singular photon density
of states at the edge of photonic bandgaps.

John and Quang also found by solving (11.144) and (11.145) numerically
that either the population inversion or the macroscopic polarization does not
disapppear completely even in the steady state after the emission of super-
fluorescent light pulses. Their numerical results are shown in Fig. 11.5 for the
isotropic bandgap and in Fig. 11.6 for the aniostropic bandgap. This gives
a marked contrast to the superfluorescence in free space in which both pop-
ulation inversion and macroscopic polarization disappear completely in the
steady state after the superfluorescence. John and Quang referred to these
novel phenomena as localization of super-radiance. These phenomena can be
interpreted as a consequence of the Rabi splitting of the electronic level due
to the strong coupling between the electronic system and the radiation field
8 Cooperative spontaneous emission of photons may take place without perfect

population inversion if there is a macroscopic polarization at t = 0 .This case is
called super-radiance. The theoretical treatment given here is applicable to this
case as well.
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Fig. 11.5. Population inversion 2J3/na (solid curve) and the amplitude of the
polarization J12/na (dashed line) in an isotropic photonic bandgap as a function of
the scaled time. (After [124])

Fig. 11.6. Population inversion 2J3/na (solid curve) and the amplitude of the
polarization J12/na (dashed line) in an anisotropic photonic bandgap as a function
of the scaled time. (After [124])

by the singular photon density of states at the edge frequency of photonic
bandgaps (Fig. 11.7). Because of the presence of the photonic bandgap, one
Rabi component cannot emit photons because its transition frequency is lo-
cated in the bandgap. Electrons in such a level cannot be relaxed to the
ground state if there is no other relaxation mechanism.

As we studied in previous chapters, anisotropic bandgaps, if any, are real-
ized in actual photonic crystals. So, it may seem that fractional exponents of
atom number dependence of the temporal profile of superfluorescent pulses
predicted for isotropic bandgaps are artifacts. But as we see in the next sec-
tion, the fractional exponents may be observed in very standard experiments
of superfluorescence, in which atoms are excited by a collimated laser beam.



11.4 Superfluorescence in Photonic Crystals 235

Photon DOS

ω

ωe

Rabi splitting

Ω

Fig. 11.7. Schematic illustration of the Rabi splitting of transition frequency at
the upper edge of a photonic bandgap

11.4.2 Propagation Effect

Next we will treat the nealy uniform distribution of two-level atoms in pho-
tonic crystals. We follow the discussion given by Sakoda and Haus [126]. In
usual experiments of superfluorescence, atoms are excited by an incident laser
beam. When a three-dimensional photonic crystal is irradiated by such a laser
beam to create perfect population inversion of embedded atoms as shown in
Fig. 11.8, the super-radiant field undergoes essentially one-dimensional mod-
ulation of the dielectric constant in the direction of the propagation of the
incident laser beam. Emitted optical waves propagated out of this direction
mainly contributes to individual spontaneous emission with a much longer
time scale, since the optical path of such waves includes a small number of
excited atoms and efficient cooperative emission does not take place. The spa-
tial modulation of the dielectric constant in the transverse direction brings
about shifts of dispersion curves and changes in their effective mass, but we
can expect that it does not alter essential features of superfluorescence in pho-
tonic crystals. So, in the following, we shall treat a purely one-dimensional
system.

We neglect longitudinal and transverse relaxation of the excited electronic
state as before assuming that the time scale of superfluorescence is shorter
than the relaxation time constants. Equations of motion for J12 and J3 in
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Fig. 11.8. Collimated laser beam that irradiates a photonic crystal

photonic crystals are given by (11.42) and (11.43) as in uniform materials,
whereas Maxwell’s wave equation reads

1
c2

∂2E

∂t2
+

1
ε(r)

∇ × (∇ × E) = − 1
ε0ε(r)c2

∂2P

∂t2
. (11.173)

Here ε(r) is the dielectric function of the photonic crystal. The polarization
field P due to two-level atoms is related to the pseudo-spin density as

P (r, t) = d {J12(r, t) + J21(r, t)} (11.174)

as before. When two-level atoms are excited by a collimated laser beam, the
excited atoms interact coherently with radiation modes propagated in the
same direction as the excitation beam. Thus, the system is essentially one-
dimensional. We take the x axis in the propagation direction and consider
the case that d is pointed in the y direction. In the following, we shall deal
with the y components of the electric and polarization fields and denote them
by E and P . Then they satisfy the next wave equation:

1
c2

∂2E

∂t2
− 1

ε(x)
∂2E

∂x2 = − 1
ε0ε(x)c2

ε2P

∂t2
. (11.175)

For simplicity, we assume that the spatial variation of the dielectric constant
is small and only take the zeroth and the first Fourier components:

1
ε(x)

= κ0 + κ1 exp
(

2π

a
xi
)

+ κ−1 exp
(

−2π

a
xi
)

, (11.176)

where a is the lattice constant. In this case, the slowly-varying-envelope ap-
proximation used in Sect. 11.3 is a good approximation, since the deviation of
the electric and polarization fields from plane waves is small. Thus we denote
the electric field and the polarization field by9

9 For this case, we take ωc instead of Ω as the frequency of basis plane waves. As
we see in the following, this choice simplifies the relevant equations. However,
we should note that the slowly-varying-envelope approximation is then justified
only when Ω is sufficiently close to ωc.
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E(x, t) = Ef(x, t) exp
[
i
(π

a
x − ωct

)]
+Eb(x, t) exp

[
i
(
−π

a
x − ωct

)]
+ c.c., (11.177)

P (x, t) = Pf(x, t) exp
[
i
(π

a
x − ωct

)]
+Pb(x, t) exp

[
i
(
−π

a
x − ωct

)]
+ c.c., (11.178)

where ωc stands for the center frequency of the lowest photonic bandgap,
which is given by

ωc =
√

κ0πc

a
. (11.179)

Note that we have to take both right-going or forward (denoted by f) and
left-going or backward (denoted by b) waves in these equations, since they are
mixed with each other by the presence of the first Fourier components of the
dielectric constant. When we substitute (11.177) and (11.178) into (11.175),
neglect all small derivatives of the envelope functions according to∣∣∣∣∂2Ef

∂t2

∣∣∣∣ � ∣∣∣∣2iωc
∂Ef

∂t

∣∣∣∣ , (11.180)∣∣∣∣∂2Ef

∂x2
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a

)2
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∣∣∣∣ � ∣∣∣∣2iωc
∂Pf

∂t

∣∣∣∣� ∣∣ω2
cPf
∣∣ (11.182)

and similar relations for Eb and Pb, and compare each spatial Fourier com-
ponent on both sides of the equations, we obtain

∂Ef

∂x
+

1
v

∂Ef

∂t
= igPf − iκEb, (11.183)

∂Eb

∂x
− 1

v

∂Eb

∂t
= −igPb + iκEf . (11.184)

From (11.42) and (11.43), we have

∂Pf

∂t
= −iδPf − 2id2

h̄
EfJ3, (11.185)

∂Pb

∂t
= −iδPb − 2id2

h̄
EbJ3, (11.186)

∂J3

∂t
=

i
h̄

(EfP
∗
f + EbP ∗

b − E∗
f Pf − E∗

bPb) . (11.187)

In (11.183)-(11.187),

v = c
√

κ0 : average light velocity, (11.188)

g−1 =
2aε0

πκ0
: average dielectric constant, (11.189)

δ = Ω − ωc : transition frequency, (11.190)
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Fig. 11.9. Schematic illustration of one-dimensional photon density of states and
energy levels of two-level atoms

κ =
πκ1

2aκ0
: dielectric modulation. (11.191)

We neglected such terms that oscillate rapidly in space and time, which do
not contribute to the light emission resonantly.

We can solve (11.183)-(11.187) numerically to obtain the temporal profile
of emitted light pulses and the decay of the population inversion. When the
transition frequency δ is sufficiently larger than the bandgap parameter ∆ωg
(see Fig. 11.9), which is given by

∆ωg � |κ1|πc

2a
√

κ0
, (11.192)

normal exponents of atom number dependence, just like free space, are found
because the frequency dependence of the photon density of states around
the optical transition frequency is modest for this case. But for ∆ωg ≈ δ,
the photon density of states around the optical transition frequency is sin-
gular, which results in the incomplete decay of population inversion and the
fractional exponents of atom number dependence that were discussed in the
previous section.

Figure 11.10 shows an example of temporal decay of population inversion
for several different bandgap parameters. The ordinate denotes normalized
time where T = 2π/ωc. When the optical transition frequency is sufficiently
inside the bandgap (∆ωg = 1.3δ), population inversion does not decay at
all, since there is no radiation eigenmode close to the transition frequency
and the atoms are not able to emit photons. In the opposite case (∆ωg =
0.67δ), population inversion decays nearly completely. For intermediate cases,
incomplete decay is clearly demonstrated. In this calculation, we assumed
that the photonic crystal was composed of 100 one-dimensional unit cells and
two-level atoms were distributed uniformly in the central 10 unit cells. It was
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Fig. 11.10. Temporal profile of population inversion for several bandgap parame-
ters ∆ωg. δ was chosen to be 0.05 × ωc. (After [126])

necessary to assume a very small deviation from perfect population inversion
at t = 0 to observe superfluorescence, since perfect population inversion in the
mean field approximation is a metastable state as we discussed in Sect. 11.3.
The atom number dependence of the temporal profile of emitted pulses for
∆ωg = δ is shown in Fig. 11.11, which clelarly demonstrates the fractional
exponents given in Table 11.1:

Peak intensity ∝ N5/3
a , (11.193)

Delay time ∝ N−2/3
a , (11.194)

Pulse width ∝ N−2/3
a . (11.195)

As we examined in the previous section, this Na dependence is what we ex-
pect for an isotropic bandgap. The isotropic bandgap for three-dimensional
photonic crystals is actually an artifact. However, when the problem of super-
fluorescence can be regarded as one-dimensional like this example for which
the specimen is assumed to be irradiated by a collimated laser beam in order
to realize perfect population inversion, the phase space, that is, the region
of wave vectors available for the superfluorescence emission, is restricted by
the experimental configuration. Thus a situation very similar to the isotropic
bandgap for three-dimensional photonic crystals is realized.

As for the spectrum of emitted light pulse, a fairly large spectral shift is
found when the bandgap parameter ∆ωg approaches the optical transition
frequency δ. We can calculate the spectrum by the Fourier transform of the
temporal variation of the electric field. An example of such calculation is
shown in Fig. 11.12 for which the original optical transition frequency is
assumed to be 0.05×ωc. The position of the upper edge of the bandgap ∆ωg
is denoted by arrows. This spectral shift is interpreted as a result of the Rabi
splitting caused by the interaction between the electronic states and photons
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with a singular density of states. Another Rabi component is located in the
photonic bandgap and localized around atoms since it cannot be propagated
in the photonic crystal.

Another feature of Fig. 11.12 is the emergence of side peaks when the
band edge frequency is close to the original optical transition frequency. This
is caused by the oscillatory behavior of the emission amplitude due to reab-
sorption and re-emission of photons by the photonic crystal, which is called
ringing. It is known that the ringing is appreciable when the dimension of
the distribution volume of two-level atoms is comparable to or greater than
the cooperation length Lc defined in (11.79) [122, 123, 127]. For this case, we
may not neglect terms on the right-hand side of (11.77). So, the pulse shape
is different from a simple function given in 11.91. In the present case, the in-
crease of κ1 that brings about the increase of the band edge frequency makes
the reflection of electromagnetic waves in the photonic crystal stronger. So,
the super-radiant field stays in the crystal and interacts with the two-level
atoms for a longer period. This is equivalent to a larger dimension of the
distribution volume, which results in the ringing behavior.
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The history of photonic crystals is not very long. In 1979, Ohtaka [27, 28]
formulated the vector-spherical-wave expansion method, or the vector KKR
(Koringa–Kohn–Rostker) method, to calculate the dispersion relation and
the transmittance for the regular array of dielectric spheres. To the author’s
knowledge, this is the first self-consistent treatment of electromagnetic eigen-
modes in 3D dielectric systems with large periodic modulation of the dielec-
tric constant. A remarkable step was made by Yablonovitch in 1987 [95] who
pointed out the possibility of the realization of photonic bandgaps, localized
defect modes, and their applications to various optoelectronic devices. His
idea stimulated many researchers, and energetic research activities including
his own studies were initiated. The process to realize the photonic bandgaps is
described in [96]. In the same year, John [97] discussed the strong localization
of electromagnetic waves in disordered photonic crystals. He also predicted
many interesting quantum optical phenomena that can be realized in pho-
tonic crystals such as the bound state of photons [98] and non-exponential
decay of spontaneous emission [99]. The summary of early studies can be
found in [100, 101]. Also see [102] and special issues of JOSA [103] and J.
Mod. Phys. [104].

Since 1987, many researchers have been engaged in the realization of
photonic bandgaps, localized defect modes, and other optical properties pe-
culiar to the photonic crystals. Theoretical studies were indeed useful and
indispensable for this purpose. Since the problem of the radiation field is es-
sentially a one-body problem, that is, no photon–photon interaction needs
to be taken into account,1 many accurate numerical calculations could be
performed thanks to the development of computing facilities. For example,
the FDTD method is now widely used to predict the optical properties of
very complicated structures such as 2D crystals of the slab type with line
and/or point defects. These calculations were really useful for the design of
the crystal structures. However, the essence of the expected phenomena, or
we may say, the physics of the photonic crystals is not clarified by numerical
1 In the case of nonlinear optical processes such as sum-frequency generation,

they are usually described by the nonlinear susceptibility tensors, which may
be regarded as the effective photon–photon interaction brought about by the
nonlinear response of the material system. However, this nonlinear coupling is
usually small and can be taken into acount in a perturbative manner.
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calculation alone. The analytical description and estimation often give us a
firm and perspective viewpoint. The symmetry property of the eigenmodes
is a good example. The group theory for photonic crystals, that is, the group
theory for the vector field with two degrees of freedom, which is indispensable
to describe the symmetry property, was formulated by Tanabe and Ohtaka
[50] and by this author [43, 51] independently. It was very interesting and
exciting to find that the calculated band structures agreed perfectly with
the prediction of the group theory. As for the experimental studies, only a
few examples have been mentioned in this book. Many researchers in various
fields, such as physics, electronics, optics, thin film fabrication, lithography,
and chemistry, have been collaborating to make new crystals and measure
their properties. As a result, 3D crystals with submicro-meter lattice con-
stants are now available. The number of scientific papers has been increasing
rapidly and many researchers in private companies are also interested in this
field. Some technological applications of the photonic crystals are being un-
dertaken.

In this book, the fundamental properties of photonic crystals have been
described from the theoretical point of view. First, we derived the eigenvalue
problem for the electromagnetic field and studied the property of their eigen-
functions. In particular, we introduced an Hermitian operator related to the
electric field, and derived the explicit expression for the retarded Green’s
function. Then, we could obtain the general formula for the optical response
of the photonic crystal by means of this Green’s function. We applied this
method to four typical examples, i.e., (1) dipole radiation, (2) stimulated
emission, (3) sum-frequency generation, and (4) free induction decay. The
first example was then extended to crystals with the dielectric defect, which
enabled us to formulate the numerical method to calculate the eigenfunctions
and the eigenfrequencies of the localized defect modes. This method was ap-
plied to 2D crystals with structural defects, and excellent agreement with
experimental observation was shown. It was also extended to the band cal-
culation with frequency-dependent dielectric constants. The second example
showed the enhancement effect due to the small group velocity. In particular,
the group-velocity anomaly peculiar to the 2D and 3D crystals led to the
large reduction of the lasing threshold. In the third example, we derived the
additional selection rule and the phase-matching condition peculiar to the
photonic crystals in addition to the enhancement of the induced nonlinear
electric field due to the small group velocity. The theoretical treatment given
there can readily be extended to other nonlinear optical processes. The last
example shows that we can deal with any coherent optical processes in the
photonic crystal by means of the method of Green’s function

The plane-wave expansion method to calculate the transmission and re-
flection spectra given in this book was really useful in the early stage of the
investigation. The opaque frequency ranges due to uncoupled modes were
shown by this method [48] and the vector KKR method [30]. The enhanced
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stimulated emission and the low-threshold lasing in 2D crystals were also
shown by the plane-wave expansion method [62, 83]. However, as was men-
tioned previously, the convergence is poor when the spatial modulation of
the dielectric constant is large, and the plane-wave expansion method is im-
practical when the contrast of the dielectric constant is, say, larger than four.
For that case, more efficient method, such as the transfer matrix method, the
vector KKR method, and the FDTD method might be used.

In the last chapter, we quantized the radiation field in the photonic crys-
tal, and the Hamiltonian that describes the interaction between the radiation
field and the electron system was derived. Because of the gauge condition that
we used, which I believe is the most convenient to deal with the spatial modu-
lation of the dielectric constant, the interaction Hamiltonian includes a term
that is absent in free space. Although we did not treat the case where it is
important, that term may bring about important and peculiar effects. We
examined two quantum optical phenomena, i.e., quadrature-phase squeezing
and anomalous Lamb shift. We showed that the method of Green’s function
can be applied to the former problem and the enhancement effect due to the
small group velocity is also present for this case. The latter problem was first
discussed by John [98]. The same problem was treated in this book for the
case of the density of states described by an isotropic effective mass.

Such items were chosen and described that are really fundamental and
indispensable to understand and analyze the optical properties of the pho-
tonic crystals. However, there are still many items that are not mentioned in
this book. They include solitary waves in the gap frequency region [105, 106],
various optical waveguides made of defect structures [107–109], the Smith–
Purcell effect for 2D and 3D photonic crystals [110], the idea of sonic crystals,
i.e., sound waves in periodic structures [111–113], exciton polaritons in 1D
photonic crystal slabs [114], lasing in regular photonic crystal slabs [115-
117], the analysis of phase shift in transmission measurements [118], linear
and nonlinear optical properties of quasi-periodic systems [119, 120], etc. The
theoretical methods given in this book are applicable to these problems as
well. The reader may consult original papers.

Photonic crystals, the remarkable invention realized by the combination
of the optical physics and the contemporary microfabrication techniques, can
indeed control the radiation field and alter the optical properties of embedded
atoms and molecules. Thanks to the efforts that people in this field have made
in the last ten years, we now have specimens of good quality with submicro-
meter lattice constants that function in the visible and near infrared frequency
ranges where various optical processes are caused by the interaction between
the radiation field and matter. We may say that we have come to the stage
where we can test the predicted peciliar characteristics of photonic crystals
using real specimens and also realize their technological applications.
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106. S. John, N. Aközbek: Phys. Rev. Lett. 71, 1168 (1993)
107. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos:

Phys. Rev. Lett. 77, 3787 (1996)
108. T. Baba, N. Fukaya, J. Yonekura: Electron. Lett. 27, 654 (1999)
109. S. Noda, A. Chutinan, M. Imada: Nature 407, 608 (2000)
110. K. Ohtaka, S. Yamaguti: Opt. Spectrosc. 91, 477 (2001)
111. J. V. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-

Dehesa, F. Meseguer, J. Llinares, F. Galvez: Phys. Rev. Lett. 80, 5325 (1998)
112. D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Martinez-Sala, J. V. Sanchez-

Perez, F. Meseguer, J. Llinares: Phys. Rev. E 60, R6316 (1999)
113. K. Imamura, Y. Tanaka, S. Mizuno, S. Tamura: J. Phys. Condens. Matter 12,

9843 (2000)
114. T. Fujita, Y. Sato, T. Kuitani, T. Ishihara: Phys. Rev. B 57, 12428 (1998)
115. P. L. Gourley, M. E. Warren, G. R. Hadley, G. A. Vawter, T. M. Brennan, B.

E. Hammons: Appl. Phys. Lett. 58, 890 (1991)
116. P. L. Gourley, M. E. Warren, G. A. Vawter, T. M. Brennan, B. E. Hammons:

Appl. Phys. Lett. 60, 2714 (1992)
117. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki: Appl.

Phys. Lett. 75, 316 (1999)
118. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K.

Mizuno, S. Yano, Y. Segawa: Phys. Rev. B 61, 5267 (2000)
119. C. Sibilia, F. Tropea, M. Bertolotti: J. Mod. Opt. 45, 2255 (1998)
120. R. Shimada, T. Koda, T. Ueta, K. Ohtaka: J. Phys. Soc. Jpn. 67, 3414 (1998)
121. R. H. Dicke: Phys. Rev. 93, 99 (1954)
122. R. Bonifacio, P. Schwendimann, F. Haake: Phys. Rev. A 4, 302 (1971)
123. R. Bonifacio, L. A. Lugiato: Phys. Rev. A 11, 1507 (1975)
124. S. John, T. Quang: Phys. Rev. Lett. 74, 3419 (1995)
125. M. O. Scully, M. S. Zubairy: Quantum Optics (Cambridge University Press,

Cambridge, 1997), Chap. 5
126. K. Sakoda, J. W. Haus: Phys. Rev. A 68, 053809 (2003)
127. F. T. Arecchi, E. Courtens: Phys. Rev. A 2, 1730 (1970)



Index

adiabatic switching 102
amplification factor 108
angular frequency 1
annihilation operator 200
approximation
– dipole 214, 224
– effective mass 230
– long-wavelength 155, 172
– rotating-wave 122, 219, 225
– slowly-varying-envelope 236

band index 15
Bessel function 25
Bloch’s theorem 5, 18
Bogoliubov transformation 204
Bohr radius 210
boundary-value function 84
Bragg wave 82
Brillouin zone 7
– of fcc lattice 75
– of hexagonal lattice 58
– of simple cubic lattice 26
– of square lattice 27

causality 39, 152
character 49
coherent state 202
commutation relation 200, 215
– anti- 213
compatibility relation 50
completeness 36
conjugate 45
constitutive equations 13
cooperation length 221
creation operator 200
crystalline momentum 10, 111
cut-off frequency 155, 178

defect
– line 142
– point 131
defect mode 4, 125

delay time 222
density matrix 121
density of states 1, 28, 103
dielectric
– constant 5, 14
– function 5
– loss 146
– multilayers 4
dipole radiation 102
dispersion relation 1, 16
– of uniform slab 176

effective mass 208, 229
eigen-angular frequency 6, 15
eigenfunction 15
eigenvalue equation 15
electric
– displacement 13
– field 13
elementary lattice vector 14, 44
– of fcc lattice 75
– of hexagonal lattice 58
– of square lattice 8, 48
elementary reciprocal lattice vector

14
– of fcc lattice 75
– of hexagonal lattice 58
– of square lattice 8, 48
energy density 30
equi-energy surface 96
exciton 153
expansion
– cylindrical-wave 147
– plane-wave 16, 81
– spherical-wave 16, 81
extended zone 51, 114

FDTD method 81, 127
Feynman diagram 206
filling factor 55
fine-structure constant 210
free induction decay 121
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Fresnel integral 229
fundamental wave 114

gauge
– condition 200
– transformation 199
Gauss’s theorem 103
Green’s function 39, 99
group-velocity anomaly 8, 188
guided mode 175

Heisenberg equation 226
Hellmann–Feynman theorem 33

impurity band 142
inhomogeneous wave equation 99
inner product 35
inversion symmetry 21

Lamb shift 206
lasing 187
– threshold 192
lattice
– constant 2
– fcc 75
– hexagonal 57
– simple cubic 26
– square 27
leaky mode 175, 183
light amplification 105, 187
light line 177
LiNbO3 116

magnetic
– field 13
– induction 13
– permeability 5, 13
Maxwell’s equations 13
momentum operator 205

nonlinear susceptibility
– effective 110, 113, 121
– second-order 109
nonlinearity 109
number density 105
– effective 107

optical phonon 153
orthogonality 18, 21

parametric amplification 201
periodic boundary condition 35
phase matching 10, 111, 121
photonic

– band structure 16
– bandgap 4
– crystal slab 4, 179
plasma frequency 153
point group
– C1h 48
– C2v 48
– C3v 59
– C4v 45
– C6v 57
– D2d 76
– D3d 76
– D4h 66
– D6h 180
– Oh 65
polar coordinates 25
polariton 162
polarization
– E 20
– H 20
– extrinsic 99
population inversion 105, 211
Poynting’s vector 30, 102
principal quantum number 210
pseudo-spin 214

quadrature-phase squeezing 10, 201
quality factor 146, 147, 183
quasi-longitudinal mode 36
quasi-transverse mode 36, 200

Rabi splitting 233, 239
reciprocal lattice 8
– vector 10, 14
reduced zone 7
reduction 50, 52
refraction law 95
refractive index 1
– effective 92, 192
relative dielectric constant 14
relaxation
– energy 218
– longitudinal 218
– phase 121, 212, 218
– population 121
– transverse 218
relaxation rate
– of exciton 153
relaxation time
– longitudinal 121
– of plasma 153
– transverse 121
renormalization 206
representation
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– basis of 49
– irreducible 49, 71
– matrix 46, 62
– one-dimensional 49
– reducible 50, 52, 71
– Schrödinger 206
– two-dimensional 49
response function 152

scalar potential 199
scaling law 21
Schmidt’s method 36
second harmonic 114
second quantization 213
selection rule 117
– additional 43, 112
self energy 206
Snell’s law 95
solid state plasma 173
spectral width 147
spherical coordinates 24
spontaneous emission 1, 4
squeezed state 205
stimulated emission 9, 105, 187
sum-frequency generation 9, 109
supercell 126, 143
superfluorescence 211
surface plasmon 161, 167

– polariton 162, 173
surface waves 162
symmetry operation 44

time reversal symmetry 21
transfer matrix method 81
transition dipole moment 214
transition frequency 215
translational symmetry 44
transverse electric mode 176
transverse magnetic mode 176

Umklapp 111
uncoupled mode 43, 55, 74

vector KKR 16
vector potential 199
velocity
– energy 9, 30
– group 9, 30
– light 15
– phase 30

wave equation 14, 19
wave number 1, 5
wave vector 15

Yablonovite 75
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