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For the English edition, the German text has been revised and extended with a number of new
sections. I have taken the suggestions of students into account, who have used the text as an
accompaniment to lecture courses and seminars. I wish to express my sincere thanks to them
and to all of the others who have discussed the book with me. I am grateful for indications
of typographical errors, which have been corrected. Furthermore, I once again wish to thank
Michael Nock and Stefan Bretzel for their diligent help with the manuscript.

The famous aphorism “If I have seen further it is by standing on ye sholders of Giants”1 is
due to Sir Isaac Newton. This statement holds for anyone who works in the field of quantum
theory today. We are only the dwarves, who owe so much to the giants. However, the question
remains as to how the dwarves get up onto the shoulders of the giants as quickly and easily as
possible. This book is intended to be of help precisely in this process.

Jürgen Audretsch

Konstanz, November 2006

1I. Newton in his letter to R. Hooke of February 5, 1675. Further details can be found in [Mer 65].
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Preface to the German Edition

This book is a

textbook in theoretical physics.

It is the result of lecture courses and seminars which I have given in recent years at the Uni-
versity of Konstanz, Germany, on the subjects of

quantum information theory and the
foundations of quantum mechanics.

Non-relativistic quantum mechanics has experienced a phase of turbulent development in
the past few years. Quantum computing, quantum teleportation, quantum cryptography, and
quantum information are typical buzzwords which reflect these developments, and they can
be found beyond the professional circle of physics in popular-science articles and in Sunday
supplements. The concept of entanglement is the central theoretical idea accompanying these
“new directions” in quantum mechanics, which are increasingly making their way into physics
curricula in schools. The theoretical fundamentals of these new developments are the subject
of this book.

For whom is the book intended? The readers targeted are in the main students, but in
addition, all those who are interested in quantum mechanics or perhaps simply fascinated by
the subject. This includes not only physicists and students of physics, but also students of
computer science, chemistry and other natural sciences, as well as engineers and teachers.
The book presumes a basic acquaintance with quantum mechanics: it does not start from zero.

To be sure, all the basics of mathematics and physics which are required for understanding
the later chapters are summarised in the initial Chapters 1 and 2; they are treated there from a
point of view which may be new to many readers. These chapters serve among other things as
a preparation for the fact that in quantum mechanics, the concepts of a state and the evolution
of a state, including measurements, are used in a different sense from that of classical physics.
The generalisations in the later chapters build on these fundamentals. The second chapter also
contains a toolbox for the philosophy of science, with which we can discuss the question of
the nature of the reality on which quantum mechanics is based.

Finally, the demands made upon the reader increase from chapter to chapter. The earlier
chapters form a basis for the later ones; the exercises at the end of each chapter can serve as
a guide for the reader as to whether he or she has sufficiently mastered the material in that
chapter. Sentences printed in italics summarise the results of preceding sections. Advanced
readers can rapidly scan through the text by watching for these italicised sentences.

Entangled Systems: New Directions in Quantum Physics. Jürgen Audretsch
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40684-5
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Goals This book is intended to help its readers to obtain an overview of the rapid develop-
ments in quantum information theory, to acquire informed opinions concerning these devel-
opments and to understand them with an acceptable investment of time and effort.

Limitations and complementary material The claim to mathematical precision in this
book is on the same level as in general textbooks on theoretical physics. Its content is limited
to theoretical aspects; a description of the corresponding experiments and technical applica-
tions would fill again as many chapters. Each chapter, however, contains a subchapter on
complementary topics and more detailed literature; here, references to experiments are in-
cluded.

These subchapters also contain references to theoretical review articles and books. With
their aid, the reader can obtain complementary information about the topics covered in this
book and can deepen his or her knowledge. Articles and books with review character were
given preference here over the original literature; i.e. the important articles in the sense of the
retrospective historical development were not listed consistently, but instead, literature was
cited which will be useful to the reader in obtaining a more advanced understanding of the
subjects treated.

Content Following the first two chapters, in Chapters 3 and 4, the physics of isolated quan-
tum systems is first developed further. Many examples and applications refer to qubits (2-
level-systems). This treatment is then extended through the use of the density operator in
Chapter 4. These are the most general states. Chapters 5 and 6 introduce the classical and the
quantum-mechanical concepts of entropy and information.

The fundamentals of the physics of composite quantum systems are described in Chapter
7. The fact that an entangled state can contain several subsystems has a number of surprising
consequences. An introduction to this topic is given in Chapter 8. Entanglement leads to
correlation of the subsystems. The non-locality of the states is accompanied by the possibility
of non-local measurements (Chap. 9).

The experimental observation of specific quantum correlations (EPR correlations) con-
firms the fundamental statement that there is no classical alternative to quantum mechanics
(Chap. 10). These EPR correlations can be used as the basis of a quantum cryptography
which is in principle completely secure against spying. Quantum teleportation is also based
on them (Chap. 12). For the quantum computer, entanglement is an essential tool. Exploita-
tion of quantum parallelism allows a large number of functional values to be computed in only
a few operations. The problem is then reading out the results (Chap. 12).

In Chapter 13, we turn to the generalised dynamics of open quantum systems and first
discuss generalised measurements, which contain projective measurements as a special case.
They play an increasingly important role –together with positive operator-value measures
(POVM)– in current publications. The general evolution of open quantum systems between
their preparation and their measurement is described with the use of quantum operators. Var-
ious quantum channels are discussed in Chap. 14. The generalisations of projective measure-
ments and unitary transformations lead to a new scenario of quantum physics.

Decoherence is the loss of the ability to exhibit interference, and is thus a problem for
quantum computers. Conversely, environmentally-induced decoherence plays an important
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role in answering the question of why classical objects exist (Chap. 15). It is tempting to apply
this approach to obtaining an understanding of quantum measurement processes as well. The
book closes with the supplemental proof of several theorems in Chap. 16.

Acknowledgments First of all, I wish to thank my wife for her patience. My cooperation
with Thomas Konrad, extending over many years, has contributed extensively to a deepened
understanding of this material. Our “Monday meetings” with Thomas Konrad, Michael Nock
and Artur Scherer have likewise provided many helpful suggestions, new ideas, and correc-
tions. In particular, our many mutual discussions have had a major influence in maintaining
our enthusiasm for the subject. Joseph Demuth accompanied the writing of the manuscript
with many helpful remarks and comments. Jan Nötzold and Marcus Kubitzki helped with the
preparation of the manuscript, and without the tireless assistance of Stefan Bretzel and in par-
ticular of Michael Nock, it would not have been finished in time to meet the deadline. I owe
thanks to all of them. Finally, I also wish to thank the Centre for Applied Photonics (CAP) of
the University of Konstanz for its support.

Jürgen Audretsch

Konstanz, January 2005



1 The Mathematical Framework

It is the goal of quantum theory – just as of every other physical theory – to predict the results
of experiments and to justify these predictions. To this end, it is necessary to describe the
state of the physical system at the beginning of an experiment. One must also be able to
formulate the evolution of the system under external influences and to predict the effect of its
interaction with the measurement apparatus. The mathematical framework which has proven
most expedient for the formulation of quantum mechanics is the theory of the Hilbert space
and probability theory. The fundamental connection between mathematical quantities and
physical reality is established by the following associations:

Quantum system ↔ Hilbert space.
Quantum state ↔ vector in (or, more generally: density operator

on) the Hilbert space.
Evolution of the quantum state ↔ linear operators, which act on the vectors, or

linear operators, which act on the operator
space (Liouville space).

Predictions ↔ probabilistic statements.

We will describe this basic scheme of the quantum theory in detail. In this chapter, we first
collect the required mathematical definitions and theorems. We shall not prove all of the
mathematical theorems; in particular, we assume that the reader has already had some contact
with quantum theory, so that our treatment here can be brief.

Since we will be concerned exclusively with d-level quantum systems (d = 2, 3, . . .), we
make use of a restriction which will greatly simplify our treatment:

General mathematical assumption: We consider only quantum systems which can
be described with the aid of a finite-dimensional Hilbert space Hd of dimension
d = 2, 3, . . ..

This restriction is justified, since the essential conceptual problems and the new ideas and
central methods can all be introduced by referring to a finite-dimensional Hilbert space. We
wish to avoid the addition of mathematical subtleties to the conceptual physical problems. For
the majority of physically-relevant cases which require a description in infinite-dimensional
Hilbert space, the results for finite-dimensional spaces can be directly applied.

As is usual in theoretical physics, we will make use of the Dirac notation. In this frame-
work, it is expedient to place the dyadic decomposition of operators at the centre of our treat-
ment. This is important for practical applications, since it permits a simple, direct reading-off
of the properties and effects of the operators.

Entangled Systems: New Directions in Quantum Physics. Jürgen Audretsch
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40684-5
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2 1 The Mathematical Framework

1.1 Hilbert Vector Space

1.1.1 The Scalar Product and the Dirac Notation

A d-dimensional Hilbert spaceHd is a linear complex vector space in which a scalar product
is defined. The vectors are denoted by |ϕ〉, |ψ〉, |u〉, |Φ〉, etc.; |null〉 is the null vector.

Addition and multiplication with a complex number, linear independence, the basis and
dimensionality of the Hilbert spaceHd are defined in an analogous way to the corresponding
concepts in real vector spaces.

A complex number is associated to a pair of vectors |ϕ〉 and |ψ〉 as their scalar product or
inner product, which we write in the form 〈ϕ|ψ〉. As the basis of this Dirac notation1, we have
introduced a ket space with the ket vectors |ϕ〉, |ψ〉, . . . and its dual vector space of the bra
vectors 〈χ|, 〈θ|, . . . (space of linear functionals). There is a declared correspondence between
the vectors of the ket space and of the bra space,

|ϕ〉 d.c.↔ 〈ϕ| , (1.1)

which is called the dual correspondence for vectors. We use the same central symbol as an
expression of the dual correspondence. Here, a ket vector |ϕ〉 = c1|ϕ1〉+ c2|ϕ2〉 is associated
via a one-to-one correspondence with a bra vector 〈ϕ| = c∗1〈ϕ1| + c∗2〈ϕ2| (∗ signifies the
complex conjugate). The ordering within the product 〈ϕ|ψ〉 is thus important. We have:

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗
〈ϕ|c1ψ1 + c2ψ2〉 = c1〈ϕ|ψ1〉+ c2〈ϕ|ψ2〉 , c1, c2 ∈ C (1.2)

〈ϕ|ϕ〉 ≥ 0 ∀ |ϕ〉 ∈ Hn , (〈ϕ|ϕ〉 = 0⇔ |ϕ〉 = |null〉) .

From this, it follows that

〈c1ϕ1 + c2ϕ2|ψ〉 = c∗1〈ϕ1|ψ〉+ c∗2〈ϕ2|ψ〉 . (1.3)

The scalar product is linear in its second argument and antilinear in its first argument. When
〈ϕ|ψ〉 = 0 holds, the vectors are termed orthogonal to each other.

The product induces a norm on the Hilbert space according to

‖ϕ‖ =: ‖|ϕ〉‖ :=
√
〈ϕ|ϕ〉 . (1.4)

It vanishes if and only if |ϕ〉 is the zero vector. We mention without proof Schwarz’s inequality

|〈ϕ|ψ〉| ≤ ‖ϕ‖ ‖ψ‖ (1.5)

and the triangle relations

‖ϕ‖ − ‖ψ‖ ≤ ‖ψ − ϕ‖ , ‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ . (1.6)

1Following Dirac, the scalar product is written as 〈ϕ|ψ〉 and called a “bracket”. Its components “bra” 〈ϕ| and
“ket” |ψ〉 denote independent vectors
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One can show by substitution that

〈ϕ|ψ〉 =
1
4

(
‖ϕ+ ψ‖2 − ‖ϕ− ψ‖2 + i ‖ϕ− iψ‖2 − i ‖ϕ+ iψ‖2

)
(1.7)

holds, as well as the parallelogram equation

‖ϕ+ ψ‖2 + ‖ϕ− ψ‖2 = 2 ‖ϕ‖2 + 2 ‖ψ‖2 . (1.8)

For a set of vectors {|ϕ1〉, |ϕ2〉, . . . , |ϕl〉} inHd, span(|ϕ1〉, . . . , |ϕl〉) denotes the set of all
possible linear combinations of these vectors. This set forms a subspace ofHd which is itself
a Hilbert space. We denote an orthonormal basis by ONB. For an ONB {|i〉, i = 1, . . . , d},
the decomposition

|ϕ〉 =
d∑

i=1

|i〉〈i|ϕ〉 (1.9)

applies, defining the components 〈i|ϕ〉 of the vector |ϕ〉with respect to the ONB. The set of all
vectors |ψ〉 which are orthogonal to all the vectors in a subspace Ĥ of H forms an additional
subspace of H, which is called the orthogonal complement Ĥ⊥. The direct sum of the two
subspaces is again the Hilbert space,H = Ĥ⊕Ĥ⊥ := {α|χ〉+β|ψ〉with |χ〉 ∈ Ĥ, |ψ〉 ∈ Ĥ⊥

and α, β ∈ C}.

1.1.2 Linear Operators on the Hilbert Space

Linear operators A,B, . . . map ket vectors in a linear way onto one another

A(α|ψ〉+ β|φ〉) = αA|ψ〉+ βA|φ〉 linearity(α, β ∈ C)
(A+B)|ψ〉 = A|ψ〉+B|ψ〉 sum

(AB)|ψ〉 = A(B|ψ〉) product (1.10)

A|ψa〉 = a|ψa〉 eigenvector |ψa〉 of A

eigenvalue a of A

1|ψ〉 = |ψ〉 identity operator, unit operator.

The domain of definition ofA need not be the entire Hilbert space, and its co-domain need not
be identical with its definition range. When necessary, we will make a remark on this point.
For the inverse operator A−1, we have AA−1 = A−1A = 1. We wish to extend the Dirac
notation further, and therefore adopt the convention that operators on the bra space (arrow to
the left) act from the right on bra vectors:

〈ϕ′| = 〈ϕ|←−B . (1.11)

The operators on the ket space (arrow to the right) act correspondingly from the left. For the
resulting vector, we write

|ψ′〉 =
−→
A |ψ〉 =: |Aψ〉 . (1.12)
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Via the dual correspondence (1.1), a ket vector |Aψ〉 corresponds to a bra vector 〈Aψ|:

|Aψ〉 d.c.↔ 〈Aψ| . (1.13)

We in addition introduce a dual correspondence for the operators. Referring to the Dirac
notation, the bra operator which corresponds to a ket operator

−→
A is likewise denoted by the

same central symbol A:

−→
A

d.c.↔ ←−A (1.14)

The correspondence is determined by the following condition on the scalar products (first
equation):

(〈ϕ|←−A )|ψ〉 = 〈ϕ|(−→A |ψ〉) =: 〈ϕ|A|ψ〉 . (1.15)

The second equation is an abbreviation, with the compactness which is characteristic of the
Dirac notation. Furthermore, we write A|ψ〉 for

−→
A |ψ〉 and 〈ψ|A for 〈ψ|←−A .

Adjoint operators The dual correspondence leads from |ψ〉 to 〈ψ|. By application of
−→
A to

|ψ〉, we obtain |Aψ〉, and the dual correspondence (1.13) defines 〈Aψ|. One can however also

obtain 〈Aψ| directly in bra space by applying an operator
←−
A † to 〈ψ|:

〈Aψ| =: 〈ψ|←−A † . (1.16)

The operator
←−
A † thus defined is called the adjoint operator to

←−
A . By

−→
A , both

←−
A as well as←−

A † are defined in the bra space. Finally, via the dual correspondence, the adjoint operator
−→
A †

in the ket space is:

−→
A † d.c.↔ ←−A † . (1.17)

In the Dirac notation, we can leave off the arrows as in Eq. (1.15) and thereby omit the
explicit reference to the two spaces. We evaluate Eq. (1.16) using Eq. (1.15):

〈Aψ|ϕ〉 = (〈ψ|←−A †)|ϕ〉 = 〈ψ|(−→A †|ϕ〉) = 〈ψ|A†ϕ〉 = 〈ψ|A†|ϕ〉 (1.18)

and summarise the result:

〈←−Aψ|ϕ〉 = 〈ψ|−→A †ϕ〉 = 〈ψ|A†|ϕ〉 . (1.19)

With 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗, it follows from Eq. (1.19) that

〈ψ|A†|ϕ〉 = 〈ϕ|Aψ〉∗ = 〈ϕ|A|ψ〉∗ . (1.20)

Repeated application of Eq. (1.20) yields

〈ϕ|A|ψ〉 = (〈ϕ|A|ψ〉∗)∗ = 〈ψ|A†|ϕ〉∗ = 〈ϕ|(A†)†|ψ〉 (1.21)
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for arbitrary vectors 〈ϕ| and 〈ψ|. Thus, we find

(A†)† = A (1.22)

and we obtain the corresponding relation to Eq. (1.19)

〈A†ψ|ϕ〉 = 〈ψ|Aϕ〉 = 〈ψ|A|ϕ〉 . (1.23)

In a similar manner, one can readily convince oneself of the validity of the following operator
relations:

(
A−1

)†
=

(
A†)−1

, (cA)† = c∗A† (1.24)

(A+B)† = A† + B† , (AB)† = B†A† . (1.25)

In addition to the definition (1.16), equations (1.22) and (1.23) are frequently used.

Dyadic decomposition We introduce the dyadic product (outer product) or the dyad |u〉〈v|
of two vectors |u〉 and |v〉. It is a linear operator

|ϕ〉 → |ψ〉 = (|u〉〈v|)|ϕ〉 = |u〉〈v|ϕ〉 , (1.26)

which produces a vector parallel to |u〉. The scalar product 〈v|ϕ〉 appears as a complex factor.
|u〉〈v| is in the first instance to be considered as an overall symbol which cannot be decom-
posed, denoting a linear operator with certain properties. These include:

(α|u〉〈v|)† = α∗|v〉〈u| . (1.27)

For operator products, we find

A|u〉〈v| = |Au〉〈v| , |u〉〈v|A = |u〉〈A†v| . (1.28)

As we have seen in Eq. (1.9), the identity operator can be represented in terms of a dyad
with the aid of an ONB {|i〉, i = 1, . . . , d} of the Hilbert space:

1 =
∑

i

|i〉〈i| . (1.29)

This is also referred to as the completeness relation or the dyadic decomposition of the identity
operator. From Eq. (1.29), it follows using Eq. (1.26) that every linear operator has a dyadic
decomposition (outer product representation)

A =
∑

i,j

|i〉〈i|A|j〉〈j| =
∑

i,j

〈i|A|j〉|i〉〈j| =
∑

i,j

Aij |i〉〈j| (1.30)

with the matrix elements Aij := 〈i|A|j〉. We can read off the equations (1.26) through (1.30)
as a suggestive mnemonic rule, that |u〉〈v| and the dyadic decomposition of A can be taken
formally to act in such a way, as if |u〉 and 〈v| were independent vectors and not parts of
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an overall symbol |u〉〈v|. This is one of the great advantages of the Dirac notation. For the
adjoint operator, we obtain

A† =
∑

i,j

A∗
ij |j〉〈i| . (1.31)

Via the supremum norm ‖A‖, one can associate to a linear operator A a positive number:

‖A‖ := sup
〈ϕ|ϕ〉=1

|〈ϕ|A|ϕ〉| . (1.32)

Trace The trace is a frequently-used complex-valued function of a linear operator:

tr[A] :=
∑

i

〈i|A|i〉 =
∑

i

Aii , {|i〉} ONB . (1.33)

The trace of an operator is independent of the choice of the basis. The proof of this statement
demonstrates the usefulness of the dyadic decomposition (1.29) of the identity operator. Let
{|li〉} and {|mj〉} be an arbitrary ONB; then using the mnemonic rule above, we find:

tr[A] =
∑

i

〈li|A|li〉 =
∑

i,j,k

〈li|mj〉〈mj |A|mk〉〈mk|li〉

=
∑

i,j,k

〈mk|li〉〈li|mj〉〈mj |A|mk〉 =
∑

j,k

〈mk|mj〉〈mj |A|mk〉 (1.34)

=
∑

j

〈mj |A|mj〉 .

In a similar manner, using Eq. (1.29) one can prove the following properties of the trace:

tr[AB] = tr[BA] cyclic permutations

tr[A+B] = tr[A] + tr[B] linearity

tr[αA] = α tr[A] linearity

tr[A|ψ〉〈ψ|] = 〈ψ|A|ψ〉 expectation value of A (1.35)

tr[|ϕ〉〈ψ|] = 〈ψ|ϕ〉 trace of a dyad

tr[A†] = (tr[A])∗ adjoint operator

The terms expectation value or mean value ofA used in quantum physics will later be justified
on the basis of physical arguments.

1.1.3 Normal Operators and Spectral Decompositions

Among the linear operators on Hd, those which are diagonalisable, also called the normal
operators, play a particularly important role in mathematics and physics. An operator N
is termed diagonalisable if there exists an ONB {|i〉} of Hd and a set of complex numbers
λi ∈ C such that

N |i〉 = λi|i〉 (1.36)
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holds. Here, λi = 0 is not excluded. An immediate result is that the matrix of N in the ONB
of the eigenvectors is diagonal

Nij = 〈i|N |j〉 = λiδij (1.37)

and therefore the operator N can be written in the form of a spectral decomposition

N =
∑

i

λi|i〉〈i| , λi ∈ C . (1.38)

This is also called the orthogonal decomposition. The ONB {|i〉} of Eq. (1.36) is also referred
to as the eigenbasis of N . Conversely, the diagonalisability condition (1.36) follows directly
from each of these relations. If there are g ≥ 2 linearly-independent eigenvectors |jl〉 belong-
ing to an eigenvalue λj of the eigenvalue problem (1.36), where l = 1. . . g, then λj is said to
be g-fold degenerate. Every linear combination of these eigenvectors

|ψ〉 =
g∑

l=1

cl|jl〉 (1.39)

is then likewise an eigenvector belonging to the eigenvalue λj . The eigenvectors span a
g-dimensional subspaceH(j) ofH. The projector

P =
g∑

l=1

|jl〉〈jl| , P † = P ; P 2 = P , (1.40)

projects into the subspace H(j). The projector Q = 1 − P projects into the orthogonal com-
plement of H(j), i.e. H⊥

(j). The subspaces belonging to different eigenvalues are orthogonal
to one another.

Diagonalisability is by no means a trivially-occurring property. Even in the two-
dimensional Hilbert space H2, there are frequently-used operators which are not diagonal-
isable. An example is

A = |0〉〈1| with 〈0|1〉 = 0 and 〈0|0〉 = 〈1|1〉 = 1 (1.41)

as can be shown with the help of the following theorem.
In order to recognise whether a given operator is a normal operator, the following cen-

tral theorem is very useful: A necessary and sufficient condition that an operator N can be
spectrally decomposed – that is, it is diagonalisable – is the vanishing of the commutator
([A,B]− := AB −BA) of N and N†:

[N,N†]− = 0 . (1.42)

The proof of this theorem can serve as an example of the application of the formalism
which we have thus far constructed. The fact that diagonalisability follows from Eq. (1.42) is
clear. The converse direction of the proof can be divided into two steps:
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1. Step: Each operator in Hd has at least one eigenvalue λ and one eigenvector |1〉, which
can be found with the aid of the secular equation:

N |1〉 = λ|1〉 , 〈1|N† = λ∗〈1| . (1.43)

It then follows that

〈1|N |1〉 = λ , 〈1|N†|1〉 = λ∗ (1.44)

and thus

N†|1〉 = λ∗|1〉+ |a〉 , 〈1|N = λ〈1|+ 〈a| (1.45)

with 〈1|a〉 = 0. Using the normality condition [N,N†]− = 0, we find after evaluation
with Eqs. (1.43) and (1.45)

0 = 〈1|[N,N†]−|1〉 = 〈a|a〉 . (1.46)

|a〉 is thus the null vector |null〉 and (1.45) can be written as follows:

N†|1〉 = λ∗|1〉 , 〈1|N = λ〈1| . (1.47)

We have thus determined the action of N and N† on |1〉.

2. Step: We complete |1〉 to obtain an ONB {|i〉} and introduce with the aid of the dual
notation for N :

N =
∑

ij

nij |i〉〈j|, nij := 〈i|N |j〉, n1i = ni1 = λδi1 (1.48)

the operator M

M := N − λ|1〉〈1| , M =
∑

i,j �=1

nij |i〉〈j| . (1.49)

M is the restriction of N to the orthogonal complement of |1〉.
Making use of Eqs. (1.43) and (1.47), we can show that M is also a normal operator,
([M,M†]− = 0). The same procedure can be applied to it in the subspace which is
orthogonal to |1〉. M also has an eigenvector, which we denote as |2〉. We now complete
|1〉 and |2〉 to an ONB and repeat the procedure. We continue in the same manner until the
entire Hilbert space is used up and |1〉 has been completed to a well-defined ONB. At the
same time, N has been spectrally decomposed with respect to this basis. This concludes
the proof. The fact that the operator A of Eq. (1.41) does not fulfill the condition (1.42)
can be readily verified.

The diagram in Fig. 1.1 demonstrates how the various properties of the operators in Hilbert
space correspond in an intuitively clear way to an increasing specialisation in the dyadic de-
composition. In the following section, we will go through this diagram step by step from
above to below.
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(bi-orthogonal decomposition)linear operator

L =
∑
i λi|li〉〈ri|with ONB {|li〉} and ONB {|ri〉}, λi ∈ C)

normal operator (diagonalisable, N =
∑
i λi|i〉〈i|, with ONB {|i〉} , λi ∈ C)

"real"

Hermitian operator (λi ∈ R)

positive operator (λi ≥ 0)

projector (λi ∈ {0, 1})

identity operator (λi = 1 , ∀i)

"phase"

unitary operator (λi = eiϕi , pure phase)

Figure 1.1: Hierarchy of operators. Characterisation of operators through their dyadic decomposition.
→ is in each case the direction of increasing specialisation. The eigenvalues are characterised in brack-
ets ( ). The bi-orthogonal decomposition of a linear operator is derived in Sect. 13.3.3.

Functions of operators An operator function f(N) is defined in terms of its expansion in
a power series. For a normal operator N in the dyadic decomposition, it can be expressed in a
simple way in terms of functions of the eigenvalues:

f(N) :=
∑

i

f(λi)|i〉〈i| ⇒ f(N)|i〉 = f(λi)|i〉 . (1.50)

f(N) has the same eigenvectors |i〉 asN . We give an example which is formulated as a matrix
representation with respect to the basis of the eigenvectors:

σz =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1| (1.51)

eϕσz = eϕ|0〉〈0|+ e−ϕ|1〉〈1| =
(
eϕ 0
0 e−ϕ

)
. (1.52)

1.1.4 Hermitian Operators

We follow the right-hand branch of the tree diagram in Fig. 1.1. A linear operator H onHd is
termed Hermitian or self-adjoint when it has the property H† = H . Hermitian operators are
special normal operators. They play an important role in quantum mechanics, owing to their
special properties: Hermitian operators have a spectral decomposition with an ONB {|i〉}

H =
∑

i

ri|i〉〈i| , ri ∈ R (1.53)
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and real eigenvalues ri. In case of degeneracy, the eigenvectors can be chosen to be or-
thonormal, so that {|i〉} forms an ONB. Eigenvectors belonging to different eigenvalues are
orthogonal. This is often called the spectral theorem. Hermitian operators are also referred to
as observables. The reason for this physical terminology will become clear later.

It follows immediately from Eq. (1.53) together with Eq. (1.35) that for an arbitrary vector
|ϕ〉, the expectation value 〈ϕ|H|ϕ〉 is real. It is an important characteristic of Hermitian
operators that the converse is also true: the expectation value 〈ϕ|A|ϕ〉 is real for all vectors if
and only if A is Hermitian.

For a proof of the converse, we assume that for an operator A the mean value 〈χ|A|χ〉 is
real for all vectors |χ〉. For two arbitrary vectors |ϕ〉 and |ψ〉 from H, the identity

4〈ϕ|A|ψ〉 = {(〈ϕ|+ 〈ψ|)A(|ϕ〉+ |ψ〉)− (〈ϕ| − 〈ψ|)A(|ϕ〉 − |ψ〉)}
+ i[(〈ϕ|+ i〈ψ|)A(|ϕ〉 − i|ψ〉)− (〈ϕ| − i〈ψ|)A(|ϕ〉+ i|ψ〉)] (1.54)

holds. If we exchange |ϕ〉 and |ψ〉 in this expression, then the part denoted by {. . . } remains
the same and the part [. . . ] changes its sign. Taking into account that all expectation values2

are real, it then follows that 〈ψ|Aϕ〉 = 〈ϕ|Aψ〉∗ = 〈Aψ|ϕ〉. The operatorA is thus Hermitian.
It is notable that Eq. (1.54) contains on the right only expectation values, and on the left only
a transition matrix element. When all the expectation values of an Hermitian operator are
known, then all the transition matrix elements are also known.

The expectation value 〈ϕ|A|ϕ〉 is also called the mean value. Since their eigenvalues and
mean values are real, Hermitian operators will play a special role in the theory of measure-
ments (cf. Chap. 2).

Commuting Hermitian operators For these, the theorem on simultaneous diagonalisabil-
ity holds (w/o.P.)3: Two Hermitian operators (observables) A and B commute ([A,B]− = 0)
if and only if they have a common ONB {|i〉} of eigenvectors.

If the eigenvalue a of an observableA is degenerate, then the eigenvectors form a subspace
which is at least two-dimensional. No associated eigenvector is therefore uniquely charac-
terised by specifying a. If we consider only those eigenvectors of A within the subspace
which are at the same time eigenvectors of an observable B which commutes with A and
has eigenvalues b (intersecting sets), then a common eigenvector could be uniquely specified
through this additional condition. We denote it by |a, b〉:

A|a, b〉 = a|a, b〉, B|a, b〉 = b|a, b〉 . (1.55)

If only a subspace is determined in this way, then we continue and require that an eigenvector
of A and B at the same time be an eigenvector of an observable C which commutes with A
and B: |a, b, c〉. This procedure must be repeated until all degeneracies have been lifted. A
set of observables which possesses exactly one common system of eigenvectors is called a
complete system of commuting observables. Specifying the eigenvalues of all the operators
determines a vector precisely. It is important that the procedure described in fact terminates.
This is guaranteed by the following result (w/o.P.): In every Hilbert space Hd, there exists
a finite(!) complete set of operators which commute pairwise (functions of operators are not
taken into consideration). For the proof, we refer to the literature (cf. Sect. 1.4).

2According to Section 1.1.1, 〈ϕ| + i〈ψ| is the dual bra vector of |ϕ〉 − i|ψ〉.
3w/o.P. means without proof
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1.1.5 Unitary Operators

We first follow the left-hand branch of the operator-hierarchy tree in Fig. 1.1 and thereafter
return to the right-hand branch. A linear operator U is called unitary when it has the property
U† = U−1. Unitary operators are special normal operators. They have a spectral decompo-
sition

U =
∑

i

eiϕi |i〉〈i| , ϕi ∈ R, (1.56)

with an ONB {|i〉}, whereby, due to the defining equation, the eigenvalues are pure “phase
factors”. As with Hermitian operators, the eigenvectors span the entire space. Eigenvec-
tors with different eigenvalues are orthogonal. Eigenvectors with degenerate eigenvalues can
be chosen to be orthogonal. As one can readily show, a linear operator is unitary precisely
when each of its matrix representations is unitary. It follows immediately from the spectral
decomposition that the operator function U(t) = eiHt, t ∈ R, is unitary if H is Hermitian.
Furthermore, in this case:

U(t = 0) = 1 (1.57)

U(t2)U(t1) = U(t2 + t1) . (1.58)

Unitary equivalence and conservation of the norm Under combined unitary transforma-
tions of vectors and operators according to

|ϕ′〉 = U |ϕ〉 A′ = UAU−1 , (1.59)

scalar products (in particular, the norm of a vector), eigenvalues and expectation values remain
unchanged. Conversely, a linear operator T , which conserves the norm on application to an
arbitrary vector inHd,

‖Tϕ‖ = ‖ϕ‖ , (1.60)

is a unitary operator: T † = T−1. For the proof, we apply Eq. (1.7) and rewrite it using
Eq. (1.60). For T , a unitarity relation holds:

〈Tϕ|Tψ〉 = 〈ϕ|ψ〉 . (1.61)

1.1.6 Positive Operators and Projection Operators

We wish to discuss some special cases of Hermitian operators (compare Fig. 1.1). A positive
operator is defined by the fact that for an arbitrary vector |ϕ〉, the following inequality:

〈ϕ|A|ϕ〉 ≥ 0 ∀ |ϕ〉 , (1.62)

holds, i.e. its expectation value is always real and non-negative. We can then write

A ≥ 0 . (1.63)
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Furthermore, we define an inequality for operators:

A ≥ B ⇔ (A−B) ≥ 0 . (1.64)

From the condition of positivity, it follows for the spectral decomposition that every positive
operator A is Hermitian, A† = A. It has the spectral decomposition

A =
∑

i

ai|i〉〈i|, ai ≥ 0 . (1.65)

with non-negative eigenvalues.
For an arbitrary linear operator A, A†A is a positive operator. On the other hand, for each

positive operator A there is a linear operator B such that A can be written in the form

A = B†B . (1.66)

B is determined only up to unitary transformations (B → UB). We can find B explicitly via
the spectral decomposition of A (1.65) and an ONB {|ϕi〉}

B =
∑

i

√
ai |ϕi〉〈i| . (1.67)

Substitution verifies (1.66).
A linear operator P is a projection operator (more precisely: an orthogonal projection

operator) when it meets the following conditions:

P 2 = P idempotent. (1.68)

P † = P Hermitian. (1.69)

It follows from these properties that

〈v|P |v〉 = 〈v|PP |v〉 = 〈v|P †P |v〉 = ‖P |v〉‖2 ≥ 0 . (1.70)

P is therefore a positive operator and fulfills

P =
∑

i

pi|i〉〈i| ; pi ≥ 0 (1.71)

with the ONB {|i〉}. Because it is idempotent, we furthermore have

P 2 =
∑

i

p2
i |i〉〈i| , P =

∑

i

pi|i〉〈i| , (1.72)

and thus p2
i = pi or pi ∈ {0, 1}. The projection operator P therefore assumes the form

P =
∑

j∈I
|j〉〈j|, I ↔ subset of the ONB . (1.73)

P projects onto the subspace spanned by {|j〉} with j ∈ I .

As a complement to Fig. 1.1, Fig. 1.2 shows retrospectively the “intersecting sets” of the
different types of operators.
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1.2 Liouville Operator Space

As we shall see in Chap. 2, in the special case of pure states, quantum-mechanical systems
can be described by normalised vectors |ψ〉 in a Hilbert space Hd. In the general case of
mixed quantum states, their description is accomplished using density operators (Chap. 4).
All possible dynamical changes of state can be described in terms of linear transformations
between density operators (Schrödinger representation). We will discuss this quite generally
in Chap. 14. In preparation for this discussion, it is expedient to introduce the Liouville space
L here. It is the space of the linear operators which act on the Hilbert space. We can restrict
ourselves to a brief presentation, since the procedure is essentially a repetition of Sect. 1.1.

1.2.1 Scalar Product

The Liouville space L is a linear complex vector space whose elements |A), |B), . . . are the
linear operators A,B, . . . which operate on a Hilbert space. One can readily verify that these
linear operators in fact fulfill the axioms of a linear vector space. Later, we will leave off the
brackets |) in order to simplify our notation.

In this new notation, the dyadic decomposition (1.30) of an operator A in terms of the
basis {|i〉} onHd has the form

|A) =
d∑

i,j=1

Aij ||i〉〈j|) . (1.74)

The d2 dyads |i〉〈j| inHd make up the d2 elements ||i〉〈j|) of a basis of L. For the dimensions
of the spaces, we therefore have

dimL = (dimHd)2 . (1.75)

linear

P = P † = P 2

〈ψ|A|ψ〉 ≥ 0 ∀|ψ〉 ∈ H

normal N†N = NN†

U† = U−1

1

Hermitian H† = H

projector

positive

unitary

Figure 1.2: “Intersecting sets” of operator types. Note that for λi ∈ {1,−1}, special Hermitian opera-
tors can also be unitary and vice versa.
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Of course, there are other basis sets besides the dyads in L. The Liouville space L has a scalar
product (A|B). Formally, it has the same properties as the scalar product in the Hilbert space
Hd (cf. Sect. 1.1.1). (A|B) is a complex number and obeys the relations:

(A|B) = (B|A)∗ , (A|c1B1 + c2B2) = c1(A|B1) + c2(A|B2) , (A|A) ≥ 0 . (1.76)

The operator basis Two operators A and B are called orthogonal if

(A|B) = 0 (1.77)

holds, without either of the operators being the null operator. The triangle inequality (1.6) and
an equation analogous to the parallelogram equation (1.8) also apply. Every operator |A) can
be decomposed in terms of an orthonormal operator basis {|Qs), s = 1, . . . , d2} of L

(Qs|Qt) = δst,

d2∑

s=1

|Qs)(Qs| = 1 : (1.78)

|A) =
d2∑

s=1

|Qs)(Qs|A) . (1.79)

The scalar product as trace Scalar products in L can be represented in various ways. We
will use the scalar product defined via the trace inHd:

(A|B) := tr[A†B] , (1.80)

since in this case the Pauli spin operators, which are important for the simplest quantum
systems, can be completed to form a basis (compare Sect. 3.1). The decomposition (1.79)
–leaving off the vector brackets– takes on the form

A =
d2∑

s=1

Qs tr[Q†
sA] . (1.81)

The basis of the Liouville space generated from the dyads |i〉〈j| with i, j = 1, . . . , d is or-
thonormal with respect to the trace-scalar product (1.80)

(
|i〉〈j|

∣
∣∣|i′〉〈j′|

)
= δii′δjj′ . (1.82)

1.2.2 Superoperators

As might be presumed, we can define linear operators in the Liouville space itself, which map
the elements of the space onto one another:

|A)→ S|A) =: |SA) =: S(A) =: SA . (1.83)

These operators, which we write using italic symbols, are called superoperators. From the
point of view of the Hilbert space Hd, they map linear operators in a linear manner onto one
another

A→ B = S(A) . (1.84)
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Examples We give two examples of superoperators: For the superoperator A
B → A(B) := ABA−1 , (1.85)

linearity follows from the linearity of A. One can readily verify that

A−1(B) = A−1BA (1.86)

holds. An important superoperator for the description of the dynamic evolution of mixed states
(compare Chap. 4) is the Liouville operator or Liouvillian, L

A→ L(A) :=
1
�

[H,A]− . (1.87)

In its application to physical problems, H in this expression is the Hamiltonian. The powers
of L are written

L2(A) =
1
�2

[
H, [H,A]−

]
− . (1.88)

The concepts of adjoint, Hermitian, unitary and positive superoperators can be directly taken
over from the corresponding definitions in Hilbert space.

1.3 The Elements of Probability Theory

As we have already emphasized, it is the central goal of quantum theory to make predictions
concerning the probability of occurrence of measured values. To this end, it will be assumed
that information about the state of the quantum object being measured is available. With this
goal in mind, it is expedient to review briefly the basic concepts of probability theory here.

Predictions are conclusions drawn from the past and applied to the future. In classical
physics, the reverse direction of conclusions plays a similarly important role. From the results
of measurements, conclusions about the state of the object before the measurement are drawn.
To what extent is this also possible for quantum systems? In the discussion of this question,
Bayes’ Theorem plays a very important role. We will sketch its proof after first presenting
some preliminary considerations concerning conditional probabilities.

1.3.1 The Probability of Random Events

When a stochastic experiment is repeated, the result cannot be predicted. It is a random event.
Such events could be for example the occurrence of an even or an odd number of dots when
throwing dice, or the occurrence of a number greater than 2. Let {Ai; i = 1, . . . , n} be the
number of such events. We introduce the following notation, in analogy to set theory:

Ai ∩ Aj ∩ Ak is the event which consists of the simultaneous occurrence of the events
Ai, Aj and Ak. In the case of dice, A1 could be e.g. the event “even number of dots” and A2

the event “number of dots > 4”; then A1 ∩A2 is the event “the six is thrown”. p(A1 ∩A2) is
the probability that both A1 and also A2 occur (joint probability). We can also write

p(A1, A2) := p(A1 ∩A2) . (1.89)
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A1∩A2 A2A1

A1∪A2

Figure 1.3: Set diagram for probabilities.

Ai ∪Aj ∪Ak is the event consisting of the occurrence of at least one of the events Ai, Aj
or Ak. For a number Z of dots, let 2 ≤ Z ≤ 4 be the event A1 and 3 ≤ Z ≤ 5 be the event
A2. Then A1 ∪A2 is the event 2 ≤ Z ≤ 5.

An impossible event is denoted by ∅ and a certain event by Ω. Two events Ai and Aj are
called exclusive events when Ai ∩Aj = ∅. They cannot occur simultaneously.

Axioms With each random event A we associate a real number p(A) with 0 ≤ p(A) ≤ 1,
which is called the probability of A, and which fulfills a series of axioms that we shall not list
here. An example is given by Kolmogorov’s axioms. We note only the additivity axiom: for
pairwise exclusive random events A1, A2, . . . , An (i.e. tr(Ai ∩Aj) = 0),

p(A1 ∪A2 ∪ . . . ∪An) = p(A1) + p(A2) + . . .+ p(An) (1.90)

holds. When the events A1 and A2 are not exclusive, we find

p(A1 ∪A2) = p(A1) + p(A2)− p(A1 ∩A2) . (1.91)

The set diagram in Fig. 1.3 gives an intuitive picture of this relation. For thrown dice, let
Z ≤ 2 be event A1 and Z ≥ 4 be event A2; then the probability that either A1 or A2 occurs is
p(A1 ∪A2) = 2

6 + 3
6 = 5

6 .

Frequency interpretation In order to make the axiom clear, we used the example of throw-
ing dice. In fact, this axiom, like all mathematical axioms, requires no physical interpretation.
p(A) is defined by the axioms themselves. When applied to physical events, probability is
usually interpreted as the relative frequency:

p(A) := lim
N→∞

N(A)
N

(1.92)

Here, N(A) is the absolute frequency of occurrence of the event A in a total number N of
attempts. This physical interpretation is not without problems. For a finite number N , it can
be taken as an estimate of p(A).
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1.3.2 Conditional Probability and Bayes’ Theorem

We extend the concept of probability. The conditional probability p(A|B) of an eventA is the
probability of occurrence of A under the condition that another event B, which itself has the
probability p(B), has already occurred. We define:

p(A|B) :=
p(A ∩B)
p(B)

. (1.93)

Resolution of this expression leads to the plausible equation for the probability p(A ∩ B) for
the occurrence of both A and B:

p(A ∩B) = p(A|B) · p(B) . (1.94)

As an example, we consider two urns. The urn U1 contains 3 white and 3 black balls; urn
U2 contains 2 white and 4 black balls. From each of the urns, balls are picked with the same
probability p(U1) = p(U2) = 1

2 . The probability of being picked is the same for every ball,
i.e. 1

12 . The probability of picking a ball both from U1 and also that the ball picked be white
is given by p(w ∩U1) = 3

12 = 1
4 . The conditional probability p(w|U1) of getting a white ball

when picking from urn U1 is given according to Eq. (1.93) by

p(w|U1) =
p(w ∩ U1)
p(U1)

=
2
4

=
1
2
. (1.95)

This follows intuitively directly from the description of the randomness of the situation. Anal-
ogously, one finds p(w|U2) = 1

3 .

Independence Two random events A and B are called independent events when the occur-
rence of the one event has no influence on the probability of occurrence of the other,

p(A|B) = p(A) . (1.96)

In this case, it follows with (1.93) that

p(A ∩B) = p(A)p(B) . (1.97)

From this, it must be distinguished whether the events A and B are exclusive (mutually con-
tradictory), A ∩B = ∅. In that case, we have p(A|B) = 0.

Total probability The certain event Ω can be represented as the sum of n pairwise exclusive
random events Ai, (Ai ∩Aj = ∅, ∀i �= j):

Ω = A1 ∪A2 ∪ . . . ∪An; Ai ∩Aj = ∅, ∀ i �= j . (1.98)

For an arbitrary random event B, we then find B = (A1 ∩B) ∪ (A2 ∩B) ∪ . . . ∪ (An ∩B).
From the additivity axiom (1.90) it follows that

p(B) =
n∑

i=1

p(B ∩Ai) , (1.99)
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and with Eq. (1.94) we obtain the addition theorem for probabilities or the total probability

p(B) =
n∑

i=1

p(B|Ai)p(Ai) . (1.100)

We will give an example in the next section.

Bayes’ theorem With p(A ∩B) = p(B ∩A), Eq. (1.94) for random events Ai leads to

p(A|B)p(B) = p(B|A)p(A) . (1.101)

Under the assumption of pairwise exclusivity and completeness (1.98), we obtain with
Eq. (1.100) the fundamental Bayes’ Theorem

p(Ai|B) =
p(B|Ai)p(Ai)∑n
j=1 p(B|Aj)p(Aj)

. (1.102)

The denominator guarantees the normalisation
∑

i p(Ai|B) = 1, which ensures that one of
the events Ai must occur.

Bayes’ theorem can be interpreted as follows: let the probabilities p(Ai) and the condi-
tional probabilities p(B|Ai) for B given Ai be known for a certain situation. Then equation
(1.102) permits the computation of the conditional probability p(Ai|B) for Ai given B. If
the event B occurs after event Ai, then p(Ai|B) answers the following question: if B oc-
curs, what was the probability that Ai had already occurred? This conclusion for Ai given B
applies in the reverse direction to that of p(B|Ai). This demonstrates the significance of the
theorem.

We give an example, again based on picking balls from urns. Let us presume the existence
of three urns of type I with 2 white and 6 black balls in each one, and of one urn of type II
with 1 white and 7 black balls. The probability of choosing any one of the urns from which
to pick a ball is the same. Result B means that a white ball is picked. The event A1 (or A2)
means that a ball is picked from an urn of type I (or of type II). Then we have the following
probabilities: p(A1) = 3

4 , p(A2) = 1
4 , p(B|A1) = 1

4 , p(B|A2) = 1
8 . The probability that

a white ball picked comes from an urn of type I is, according to Bayes’ theorem, given by
p(A1|B) = 6

7 = 0.86 and is thus greater than p(A1). A white ball comes from the urn of type
II with a probability p(A2|B) = 1

7 = 0.14, which is less than p(A2). The choice of the type
of urn is made with the a priori probabilities p(Ai). If a white ball was picked, one can make
an inference about which urn it originated from. For this inference there is in general only
a probability statement which is given by p(Ai|B). If the urn of type II contained no white
balls, the inference could be made with certainty (p(A1|B) = 1) that a white ball was picked
from an urn of type I.

The following explanation of Bayes’ theorem can also be helpful: we consider the special
case that all the p(Ai) are equal. The event B is to be predicted. The event Ak for which
the subsequent occurrence of B is most probable (i.e. p(B|Ak) = max) has also previously
occurred with maximum probability, p(Ak|B) = max.



1.4 Complementary Topics and Further Reading 19

Bayes’ assumption This is not to be confused with Bayes’ theorem. If there is no reason to
assume that an event Ai is particularly preferred by the situation, it can be reasonable to make
Bayes’ assumption that all the a priori probabilities are equal,

p(A1) = p(A2) = . . . = p(An) . (1.103)

This assumption is not the same as Bayes’ theorem. After the occurrence ofB, this assumption
is replaced by the probabilities p(Ai|B) from Eq. (1.102). The probabilities can be estimated
in this way.

1.3.3 Random Quantities

A random variable X is given by association of numbers x to the corresponding random
events. Throws of dice can be used as an illustrative example. A discrete random quantity X
is determined by the values x1, x2, . . . , xn and the probabilities p(x1), p(x2), . . . , p(xn) with
which the values occur (

∑n
i=1 pi = 1). The generalisation to an enumerable infinity of values

xi and to a continuous variable x is usually not problematic.
Important values for the characterisation of a random variable X are the expectation value

or the mean value

〈X〉 :=
∑

i

pixi (1.104)

and the dispersion or the mean square deviation

var(X) = (∆X)2 := 〈X2〉 − 〈X〉2 = 〈(X − 〈X〉)2〉 , (1.105)

which is also called the variance var(X). The standard deviation ∆X =
√

var(X) indicates
how widely the random variable is distributed around its mean value. In quantum mechanics,
∆X is also referred to as the uncertainty of X .

1.4 Complementary Topics and Further Reading

• Most textbooks of quantum mechanics contain a summary of the mathematical funda-
mentals. We mention in particular the following books: [Sak 85], [Ish 95], [Bal 98],
[Gri 02], [CDL 05].

• A detailed treatment of Hilbert space with reference to quantum mechanics can be found
in [Jor 69].

• The bra space as the vector space of all linear continuous functionals in a vector space V
(also called the dual space V ∗): [FK 98, Chaps. 2.8 and 4.2].

• A collection of references for Sect. 1.3: [Ish 95], [NC 00].
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1.5 Problems for Chapter 1

Prob. 1.1 [for Sect. 1.1]: Prove the relations (1.5), (1.6), (1.7), (1.8), (1.24), (1.25), (1.27),
(1.28), (1.30), (1.35), (1.50), (1.61).

Prob. 1.2 [for Sect. 1.1]: Prove that a linear operator which acts on a finite-dimensional
complex vector space has at least one eigenvector and one eigenvalue.

Prob. 1.3 [for Sect. 1.1]: Give several examples of a basis set ofH3.

Prob. 1.4 [for Sect. 1.1]: Let {|i〉, i = 1, . . . , d} be an ONB. Prove that Parseval’s identity

‖ϕ‖2 =
n∑

i=1

|〈ϕ|i〉|2 (1.106)

holds for all vectors |ϕ〉 ∈ H2.

Prob. 1.5 [for Sect. 1.1]: Show that the matrix which corresponds to the operator product
AB is equal to the product of the matrices of A and B.

Prob. 1.6 [for Sect. 1.1]: Show that every linear operator C can be written in the form

C = R+ iI (1.107)

with Hermitian operators R and I . Consider the analogy: linear operator↔ complex number;
Hermitian operator↔ real number.

Prob. 1.7 [for Sect. 1.1]: Show that the determinant of a unitary matrix is ±1.

Prob. 1.8 [for Sect. 1.1]: Show that for two unitary n × n matrices U1 and U2, the matrix(
U1 0
0 U2

)
is also unitary.

Prob. 1.9 [for Sect. 1.1]: Does the projection operator P = |u〉〈u| have an inverse?

Prob. 1.10 [for Sect. 1.1]:

a) The operator A is known to be diagonalisable. How can its spectral representation be
found?

b) Are the Pauli operators σx = |0〉〈1|+ |1〉〈0|, σy = −i|0〉〈1|+ i|1〉〈0|, and σz = |0〉〈0|−
|1〉〈1| diagonalisable? Find their spectral representation.

Prob. 1.11 [for Sect. 1.1]: Give an example of a normal operator which is neither Hermitian
nor unitary.
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Prob. 1.12 [for Sect. 1.2]: Confirm that the relation

tr[C(AB)] = tr[(A−1C)B] (1.108)

holds for the superoperator A defined in Eq. (1.85).

Prob. 1.13 [for Sect. 1.2]: Let H be a Hermitian operator which obeys the eigenvalue equa-
tion

H|ei〉 = Ei|ei〉 . (1.109)

Find the eigenvectors and the eigenvalues of the Liouville operator L from Eq. (1.87).

Prob. 1.14 [for Sect. 1.2]: Show that the Liouville operator from Eq. (1.87) has the matrix
representation

Lij,i′j′ =
1
�
(Hii′δj′j − δii′Hj′j) . (1.110)

Prob. 1.15 [for Sect. 1.2]: Prove the following relation by referring to the definition of the
Liouville operator L:

ecLA = e
c
�
HAe−

c
�
H . (1.111)

Prob. 1.16 [for Sect. 1.2]: Describe some situations which can be used to give an intuitive
understanding of conditional probability, of the total-probability theorem, or of Bayes’ theo-
rem.





2 Basic Concepts of Quantum Theory

2.1 First Version of the Postulates (pure states of isolated
quantum systems)

2.1.1 Introduction: the Scenario of Quantum Mechanics

If one wishes to apply quantum theory to less well-understood situations, which for exam-
ple occur in connection with composite systems, then it is expedient first to recall the basic
mathematical and physical structures of quantum theory. The present Chapter 2 does just that.

We make the general physical assumption that we investigate only those processes
which do not require a relativistic description and which can be formulated in a
finite-dimensional Hilbert space.

The two-slit experiment The characteristic features of quantum physics become clear when
they are compared with those of classical physics. To this end, we can consider two analogous
physical situations. In the one case, the situation can be described satisfactorily within the
framework of classical physics; in the other, a quantum-mechanical description is necessary.
The two-slit experiment is a concrete example which is often used in such a comparison; many
elements of quantum theory can be illustrated by it. We shall therefore treat this experiment in
some detail. The results are intended to prepare the reader for the introduction of the postulates
in Sect. 2.1.3 and for the concepts treated in Chap. 4. Entanglement will be discussed later in
terms of other experiments, which will thus extend the scenario of quantum theory.

We first describe the experimental situation of a double slit with slits denoted by 1 and 2.
In front of the slits, i. e. at the left in Fig. 2.1a, is an apparatus which shoots small balls and
which can be controlled by the toss of a coin. Depending on whether the coin shows “heads”
or “tails”, the apparatus shoots a ball towards slit 1 or slit 2. We assume a uniform scatter of
the paths of the balls within the opening of each slit. An observation screen is set up behind
the double slits, on which the impacts of the balls can be registered. We discuss the case that
only one of the two slits is open (the other is covered), and the case that both are open. For all
three cases (only 1 open, only 2 open, 1 and 2 open), we plot the relative frequency of impacts
on the screen as a function of position. The greater the number of shots, the more clearly can
we discern the relative frequency distributions. When only one slit is open, the distribution
appears like that shown in Fig. 2.1a. In the limiting case of a large number of shots, it reflects
the probability P (x) of impacts on the screen. If slit 1 is covered, we find the corresponding
distribution behind slit 2. It confirms our daily experience that when both slits are open, the
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Figure 2.1: A screen behind a single slit: the probability distribution P (x) on the screen for classical
objects (a) and for quantum objects (b).

impact probabilities for the individual slits, multiplied by a factor 1
2 , add to give the overall

probability. If necessary, the distribution curves can be normalised.
In the analogous quantum-mechanical experiment, the “ball shooter” is replaced by an

apparatus containing an atomic-beam source1. One can set up suitable apparatus and corre-
spondingly prepared screens (detectors), so that the following condition is met: if the screen
is set up without the slits, then impacts are registered with a random distribution over the
whole screen. If one then waits long enough, a homogeneous distribution of the impacts is
obtained. Since the impacts are individual events, separated in time, we will assume that an
individual quantum object (quantum system), which we have already called an atom, has left
the source and landed on the screen. We can make no statements about an atom between the
source and the screen. We now place a suitably-dimensioned double slit between the source
and the screen and close, for example, slit 2. Then, in the limit of a large number of events, we
observe the relative frequency distribution (and thus the probability distribution P (x)) shown
in Fig. 2.1b. Its maximum lies directly behind the opening of the slit. If slit 1 is closed, we find
the correspondingly shifted curve behind the open slit 2. However, if we use atoms and open
both slits, we observe the distribution of relative frequencies of impacts shown in Fig. 2.2,
whose maximum lies directly behind the bridge between the two slits. Again, the limiting
case for a large number of events is shown in the figure. As with the balls, on repeating the
experiment, the ordering of the positions of the individual impacts varies in a completely ran-
dom way (compare Fig. 2.3). Only in the limit of a large number of events do we always find
the same frequency distribution in a deterministic manner.

As the essential result, we conclude: for atoms, we obtain the probability distribution from
the double slit – in contrast to the case of balls – not by adding the probability distributions
from the individual slits; instead, an interference pattern has appeared, like that familiar from
optics, which cannot be explained by attributing paths to the individual atoms as we could

1The two-slit experiment has been successfully carried out with electrons, atoms, van der Waals clusters,
Fullerenes, and biomolecules (cf. Sects. 2.6 and 15.6).
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P (x)

x

1

2

Figure 2.2: A screen behind a double slit: the impact probability P (x) for quantum objects.

Figure 2.3: It is a completely random event which determines where an individual quantum object
strikes the screen. The fringe pattern from a large number of impacts is, in contrast, precisely determined.

for the balls. Owing to the startling analogy to optical diffraction, we can presume that the
mathematical computation of the probability distribution from the double slit will reflect the
phenomenon of interference by superposition in a similar way as in the optical situation.

Either-or versus neither-nor For later reference to terms which we shall often use, we
need to characterise the experiments with balls or with atoms somewhat more precisely. We
summarise the apparatus for shooting the balls, controlled by tossed coins, and the slits in
front of it under the term preparation procedure. What is prepared is the corresponding state
of the balls. If only slit 1 (or 2) is open, we will call the state S1 (or S2). For each state, the
probability distribution of impacts on the screen is well determined. On opening both slits,
we prepared a new state, which we will call Sm(1, 2). The associated probability distribution
is found by addition of the distributions from the classical states S1 and S2, which are each
multiplied with the relative probability 1

2 . Due to the random-number control of the shooting
apparatus by tossed coins, balls in state S1 or in state S2 are prepared with the same relative
probability 1

2 . By mixing the states S1 and S2 with this relative weight, we obtain the state
Sm(1, 2). We call states prepared in this way statistical mixtures or also blends. A single
ball is in either S1 or S2. Statistical mixtures are in this sense either-or states. The statistical
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mixture contains a statistical element owing to the coin tossing. The path of an individual ball
is, however, completely determined.

For atoms, we can prepare a quantum state Ŝ1 or Ŝ2 by closing one of the slits. With many
atoms in these states, we obtain again uniquely either the probability distribution of Fig. 2.1b
or the correspondingly-shifted distribution from the other slit. If we cover one of the slits with
a probability 1

2 , the quantum state Ŝm(1, 2) results. The associated probability distribution
is found as in classical physics by addition of the probability distributions from Ŝ1 and Ŝ2,
weighted by the factor 1

2 . Again, we have only mixed the states. This result in quantum
theory, as in classical physics, is termed a statistical mixture or a blend. Since always only
one of the slits was open, we can say in this case that the individual atoms must have passed
either through slit 1 or through slit 2. We have a quantum-mechanical either-or state. Thus
far, there is a perfect analogy to the states of the (classical) balls.

For atoms, however, there is an additional state, Ŝp(1, 2), which leads to a probabil-
ity distribution that cannot occur for the balls. It is prepared when both slits are opened
(cf. Fig. 2.2). It is important to note that its probability distribution cannot be prepared by
mixing. We call an unmixed state a pure state. Ŝp(1, 2) is an example. In contrast to balls
in the state Sm(1, 2), an individual atom behind the double slit is neither in the state Ŝ1 nor
in the state Ŝ2. The pure state Ŝp(1, 2) is a neither-nor state. We can therefore not say of
an atom that it passed through the one or the other slit. This classical concept, derived from
experience with classical objects like balls, fails for atoms. We mention also that the unmixed
states Ŝ1 and Ŝ2 are likewise pure states according to our definition.

Selective and non-selective measurements By means of measurements, we wish to deter-
mine for the mixed states Sm(1,2) and Ŝm(1, 2) of balls or of atoms, and for the pure state
Ŝp(1, 2) of the atoms, precisely which slit an individual ball or an individual atom has passed
through. The possible results of such measurements are thus “behind the first slit” and “be-
hind the second slit”. For the measurement, we use a light beam which can be scattered by the
balls or the atoms directly behind the slits. We observe that a light flash, corresponding to a
scattering event, is always seen behind only one of the two slits. We have thus carried out the
measurement as desired. Thereafter, the ball or the atom strikes the screen and is registered as
before. (In point of fact, the experimental setup is more complicated than we have described
here. References to literature on this topic can be found in Sect. 8.8.)

Which frequency distributions of the impacts on the screen do we observe, if we again
wait until a large number of events has occurred? The answer depends not only on the state
which we measure, but also on the method which we use for evaluating the data from the
measurements (see Table 2.1). A possible procedure consists of making a conditional mea-
surement and registering only those impacts which are associated for example with flashes of
scattered light behind slit 1. We call this a selective measurement (or a measurement with post
selection). Such a measurement consists of many events with subsequent selection depending
on the result of the slit determination. We observe from the resulting impact-frequency distri-
bution the following: the classical statistical mixture in the state Sm(1, 2) passes over to the
state S1. Analogously, the quantum-mechanical statistical mixture Ŝm(1, 2) passes over to the
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Classical Physics Quantum Physics

Selective
Measurement

Statistical
Mixture

→ into one of the
pure states con-
tained in the
mixture

Statistical
Mixture

→ into a pure state.
(∗)

Pure
State

→ into an (in gen-
eral different)
pure state

Non-selective
Measurement

Statistical
Mixture

→ into the same
statistical mix-
ture

Statistical
Mixture

→ into a possibly
different statisti-
cal mixture

Pure
State

→ into a statistical
mixture

Table 2.1: The effects of measurements in classical physics and in quantum physics. The arrows →
mean: “...” is transformed by the measurement into “...”. For a statistical mixture, we also use the term
blend. As we shall later see, (*) holds only when no degeneracy is present.

state Ŝ1. Both results are not surprising. We have simply separated the mixed states again by
selective measurement.

With atoms, we can in addition prepare the pure state Ŝp(1, 2). A selective measurement
belonging to flashes of scattered light from behind slit 1 transforms this state according to the
observed impact-frequency distribution into the state Ŝ1. In the case of the double slit exper-
iment, the selective measurement thus transforms a pure state into a different pure state. The
measurement acts on the states and changes them. We can also interpret a selective measure-
ment as a re-preparation of the states. In special cases, there is no change in the state: if the
pure state Ŝ1 is already present (slit 2 is closed), then flashes are observed only from behind
slit 1. Furthermore, the frequency distribution then observed from the atoms that produced
flashes demonstrates that the state Ŝ1 was not changed. In this case, the measurement just
verifies the state preparation.

An alternative procedure for data evaluation consists of not making a selective measure-
ment, i. e. we register the scattered light from the atoms or the balls, but collect all the impacts
on the screen into a single image, without taking into account where the scattered-light flashes
originate: we thus carry out a non-selective measurement. From the resulting probability
distribution, we can determine that for both balls and atoms, a statistical mixture is again
transformed into a statistical mixture. This is plausible; since we made no selection, the states
remain mixed. For atoms, we can in addition prepare the pure state Ŝp(1, 2), which has no cor-
responding state for the balls, When we measure non-selectively from this state, we obtain the
impact-frequency distribution belonging to the statistical mixture Ŝm(1, 2). We have mixed
the states Ŝ1 and Ŝ2 belonging to the two possible results of the slit determination. In quantum
physics, a non-selective measurement transforms a pure state into a statistical mixture.

Finally, we want to make a last remark concerning measurements with atoms. We already
described how the state Ŝ1 can remain unchanged by a measurement. A second measurement
immediately following the first is therefore performed again on the state Ŝ1, and we register
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m
preparation transformation measurement

Figure 2.4: The actions of experimental apparatus on a physical system.

again a flash behind slit 1. This is the reason why one can attribute to atoms which caused a
flash for example behind slit 1 the property “behind slit 1”. A measurement which repeats the
question “behind which slit?” leads for these atoms again to the same answer, “behind slit 1”.

The typical experimental situation We can intervene in other ways than by a measurement
between the double slits and the screen. If the balls or the atoms are electrically charged, we
can for example apply an electric field, which will distort the image of the impact probabilities.
The weaker this field, the less distortion. The electric field produces a change in the state of
the objects. This is only one example; there are other ways to intervene in the experiment. We
collect them all under the concept of the effects of transformation apparatus which transform
the state. The undisturbed free evolution of the state is included as a special case.

In summary, we can say that physics, including quantum physics, deals with three types
of macroscopic apparatus: preparation apparatus, transformation apparatus, and measurement
(or detection) apparatus. In an experimental setup in a laboratory, a particular sort of each
of these types of apparatus is used. The experiment can be decomposed into three inde-
pendent sequential phases: preparation, deterministic transformation, and non-deterministic
(probabilistic) measurement (see Fig. 2.4). The measurement can be evaluated selectively or
non-selectively. The corresponding state following the measurement is in general different
from that prior to the measurement.2

Of course, quantum mechanics can also be applied to the description of processes on
distant stars or in earlier stages of the universe. The concepts of preparation and measurement
must then be suitably modified.

The domain of application of quantum mechanics The goal of a physical theory is to
predict the results of a measurement which a measurement apparatus will yield when the
effects of the preparation and the transformation apparatus are known, and to justify these
predictions within the framework of the theory. We saw already in the example of the two-slit
experiment – in particular for the state Ŝp(1, 2), which we characterised as the result of an
“interference process” – that in certain cases there is no justification within the framework

2In the case of the two-slit experiment, we dealt only with the preparation and the measurement. The fact that the
result shown in Fig. 2.2 has the form of an interference pattern is not to be misunderstood in terms that the individual
quantum object takes on the form of a wave or behaves like a wave. In the Heisenberg representation of quantum
mechanics, there is no recognisable wave propagation even in the mathematical formulation. Similarly, the fact that a
quantum object produces a point on a screen does not imply that it behaves as a particle. The measurement apparatus
is simply constructed in such a way that it displays point impacts. If only one slit is open, the quantum object can
only have passed “along this path”. This again does not imply particle behaviour. The so-called quantum-mechanical
wave-particle problem (or wave-particle duality) is a pseudo-problem. The fact that one can, on the other hand,
reasonably speak of individual quantum objects is due to the possibility of carrying out preparation and measurement
processes which are resolved on the time axis and can be individually controlled.
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of classical physics. These experiments set a limit to the domain of application of classical
physics. Their justification lies outside this domain, in that of quantum physics. A quantum
effect is present when it is not possible to give a purely classical explanation of the behaviour
of the three types of macroscopic apparatus. Physics attempts to reach objective conclusions.
An unambiguous intersubjective communication requires information exchange via classical
media (cf. Sect. 6.4.2) and must be based on facts which can be described by the methods of
classical physics. This applies to the preparation apparatus, the transformation apparatus, and
to the measurement apparatus. They are all interfaces between the classical domain and the
quantum domain, and in this sense they are not purely classical instruments.

Quantum theory explains quantum effects. Whether and in what way it can also give
explanations for the effects of classical physics, i. e. whether classical physics can be derived
as a limiting case from quantum theory, is an open question. It is the subject of current
research, and we will return to this question in Chap. 15. The reverse conclusion is also
conceivable. The domain of application of quantum theory could be empty. Can quantum
effects perhaps be described by classical physics? We will take up this question again in
Chap. 10, where we deal with “hidden variables”.

2.1.2 Quantum States

In the following section, we will reduce the theoretical justification of the phenomena in the
quantum domain to a few basic assumptions. To this end, we generalise the experience which
we gained from the atomic-interference experiment. We shall not, however, attempt to achieve
the mathematical and conceptual precision of an axiomatic quantum theory. We refer the
reader to the literature for such an axiomatic treatment. Here, we begin with a more precise
rendering of the concept of the quantum state, of which we have already made use, and then
introduce the postulates which can explain the quantum phenomena that occur in the case of
pure states. In the later chapters of this book, we will reformulate these postulates in a more
and more general way. In the process, it will become clear that the basic structure which is
determined in the end by the scheme shown in Fig. 2.4 remains valid (cf. Fig. 14.4).

Quantum systems The apparatus in figure 2.4 act sequentially in the order from left to right.
The arrows indicate the transfer of the quantum system (quantum object) from one apparatus
to the next. The actions of the apparatus define the system. The term quantum system denotes
a system which has passed through a preparation process and on which measurements can be
performed. The justification of the results of the measurements must then fall in the domain of
quantum theory. In the system discussed above, an individual atom is such a quantum system.
The spin orientation of an atom or the polarisation of a photon can also be prepared and
detected. In the standard interpretation of quantum mechanics, which we employ in this book,
physical reality is attributed to individual quantum systems (cf. Footnote 2). Their existence
is postulated, just as we have already done, based on the individual impacts on the screen,
in the case of the atomic interferometer. The numerous experiments with single ions in Paul
traps and individual Rydberg atoms in microwave resonators render this postulate plausible.
We shall return to the problem of reality in Sect. 2.5. As we shall see, quantum systems
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can themselves be composed of subsystems. In this case, entangled states play a central role
(cf. Chap. 7).

Quantum states and measurements Measurements on quantum systems which were pre-
pared in an identical manner can lead to different results. For example, in our two-slit experi-
ment, the atoms can be detected at different positions on the screen (see Fig. 2.3). A particular
preparation determines only the probabilities of various measurement results. In order to de-
termine the probability distribution experimentally, measurements must be carried out on a
very large number of identically-prepared systems. The state of a quantum system is associ-
ated with a particular preparation procedure. The term quantum state refers to that particular
mathematical (!) object which permits us to calculate unambiguously the probabilities of the
results of all possible measurements on systems which have passed through the associated
preparation procedure. We thus do not expect that a quantum state introduced in this manner
has a counterpart in reality which is “carried” by an individual quantum system. There is in
general no property of a quantum system which corresponds to its state vector. If one wishes
for clarity to specify something corresponding to a “quantum state”, then it should be a prepa-
ration apparatus (or more precisely, a preparation procedure). Numerous misunderstandings
can be avoided by keeping this interpretation of the term “quantum state” in mind.

In contrast, in the case of classical objects, the mathematical expression for the state refers
to the particular object itself and thus has a direct correspondent in reality. The state “cold and
transparent” can be physically realised by an individual ice cube. The concept of “state” in
quantum physics is very different from that in classical physics, at least for pure states. As we
shall see in Chap. 4, in the case of statistical mixtures, there are to some extent similarities.

Different preparation procedures can lead to the same state. These procedures form in this
sense an equivalence class of state preparations. The mathematical description of the state
and the computation of the probabilities will be postulated in the following. By referring to
the equivalence classes, the individual structures of particular preparation and measurement
apparatus of the same type will be eliminated.

It is important in terms of this background to clarify a manner of speaking which has
become common and which we will also use for simplicity: one frequently says that a single
quantum system is to be found in a certain state, or has this state. This means that it has passed
through a preparation procedure belonging to a particular equivalence class of preparations.
Only in this sense can one attribute a certain state to an individual system. One also says that
a single quantum system is transformed from one particular state into another state as a result
of an external influence, e. g. due to a measurement. This means that the quantum system has
passed through a preparation process which includes the influence of the measurement. The
resulting state again makes a statement only about the probability distribution of the results of
many measurements on quantum systems which have been prepared in this manner.

We thus remain very reticent in terms of statements about single quantum systems in
this first step towards the formulation of the standard interpretation of quantum mechanics.
We will draw more extensive conclusions about the existence of properties such as energy,
position, etc. only after formulating the postulates.
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Isolated quantum systems As in the classical mechanics of a “free point mass”, the concept
of a free system is fundamental to the structuring of the quantum theory. This concept is an
idealisation, which in fact can be attained only approximately as a limiting case. It is based on
the idea that in certain situations, quantum systems can be so completely disconnected from
the rest of the world that all the possible processes in that rest leave the state of the system
unaffected. The system cannot be modified prior to the measurement.

Free quantum systems are not of interest for applications. We thus allow the state of the
system between the time of its preparation and the time of measurement to evolve in a dif-
ferent manner than a free state. As in classical mechanics, in quantum mechanics a cause
is attributed not to free-system behaviour itself, but only to deviations from free behaviour;
here, these are represented by the transformation apparatus. It describes external constant or
time-dependent influences during the evolution of the system between preparation and mea-
surement, as they are caused e. g. by classical electromagnetic or gravitational fields. We first
consider the special case that the external systems are not themselves affected. The quantum
system is thus supposed to be isolated with respect to reactions “to the outside world”. This
can be only approximately achieved in practice. Furthermore, the mediators of the external
influences from the transformation apparatus (for example the electric field) can be effectively
described by classical physics, i. e. they have no quantum-mechanical degrees of freedom of
their own. They are represented by operators which form parts of the Hamiltonian (compare
Eq. (2.10)). When these two approximations are fulfilled, one usually refers to the quantum
systems as isolated quantum systems (or closed systems). This term is not particularly well
chosen. Non-isolated systems are called open systems. We will discuss them after introducing
composite quantum systems in Chap. 7.

Of course, isolated systems are open to measurements. A reaction onto the measurement
apparatus then takes place. In contrast to the classical fields, the measurement apparatus has
also quantum-mechanical degrees of freedom. We will return to this point in Chap. 15.

Pure states The preparation apparatus can itself be composed of other preparation devices,
which act with well-determined frequencies and carry out different preparations of the quan-
tum systems. In this case also, the unambiguous prediction of the probabilities of all measure-
ment results is possible. The overall preparation apparatus prepares a state which in view of
the many contributing preparation procedures is called a statistical mixture (or blend). The
state Ŝm(1, 2) described in Sect. 2.1.1 is an example. We will investigate states prepared in
this particular way in detail later. They are special mixtures. The adjective “statistical” em-
phasizes this point. For the initial version of the postulates, we exclude mixtures. We restrict
ourselves to states which can not in any sense be produced by a mixing procedure or, with
respect to the associated probability statements, be simulated by a mixture. As in Sect. 2.1.1,
we refer to these states as pure states. Examples are the states Ŝ1, Ŝ2 and Ŝp(1, 2) described
in Sect. 2.1.1. Along with the isolation of the system, the purity of the states is the second
major idealisation which we initially require. As in classical mechanics, which is based upon
a postulate for free point masses (inertial systems), we will then advance step by step towards
a description of realistic physical situations.
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2.1.3 Postulates for Pure States of Isolated Quantum Systems

We now have all the concepts at our disposal which we require to formulate a first version of
the postulates. We will generalise all three postulates in later chapters.

Postulate 1 (pure state) An isolated quantum system which is in a pure state is described
by its state vector |ψ〉. This is a normalised vector in a Hilbert space Hd which is associated
with the quantum system.

We first simplify our basic experimental situation and pass directly to the measurements.
For this purpose, we suppose that the transformation apparatus has been removed from the
experiment or else we include it as a part of the preparation apparatus. The measuring device
will not at this point be treated in the most general way. Instead, we limit ourselves to projec-
tive measurements. These are also called von Neumann measurements. This is a fundamental
type of measurement which will repeatedly play a central role in our later generalisations.
This type of measurement is characterised by its action on the state vector.

Postulate 2 (projective measurements, non-deterministic dynamic evolution)

a) A projective measurement of a physical quantity (e. g. of the energy, angular momentum,
etc.) carried out on a quantum system is described by an Hermitian operator which can
be time dependent and acts on the vectors of Hd. We speak of a measurement of the
observable A and denote the operator with the same symbol A.

b) The possible measured values which can occur as a result of a measurement of the ob-
servable A are the eigenvalues an of the associated operator A. For simplicity, we as-
sume that its spectrum is discrete:

A|ui
n〉 = an|ui

n〉, i = 1, . . . , gn . (2.1)

The eigenvectors |ui
n〉 form an orthonormal basis or can, in the case of degeneracy, be

correspondingly chosen. The gn give the degree of degeneracy of the eigenvalues an.

c) When a selective measurement of the observables A of a system with a normalised state
vector |ψ〉 leads to the result an, then the non-normalised state vector |ψ̃′

n〉 immediately
following the measurement is given by the projection of |ψ〉

|ψ〉 → |ψ̃′
n〉 = Pn|ψ〉 (2.2)

with the projection operator

Pn :=
gn∑

i=1

|ui
n〉〈ui

n| , (2.3)

which projects onto the space of the eigenvectors corresponding to an. Through normal-
isation of |ψ̃′

n〉, the state vector |ψ′
n〉 after the measurement is obtained.
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d) We denote by N(an) the frequency with which a measured value an is obtained when
the measurement is carried out on N identically prepared systems in the state |ψ〉. The
relative frequencies N(an)

N for all these ensembles approach the probability p(an) as a
limiting value in the limit N →∞:

N(an)
N

N→∞−−−−→ p(an) . (2.4)

e) The probability p(an) of obtaining a particular measured value an at a certain time is
equal to the expectation value of the projection operator Pn computed with the state
|ψ〉 prior to the measurement. Equivalently, it is equal to the square of the norm of the
non-normalised state vector |ψ̃′

n〉 after the measurement:

p(an) = 〈ψ|Pn|ψ〉 = ‖ψ̃′
n‖2 . (2.5)

The last equation results from Eqs. (1.4) and (2.2). Since A is an Hermitian operator,∑
n Pn = 1 and therefore, as is to be expected of a total probability,

∑

n

p(an) = 〈ψ|ψ〉 = 1 . (2.6)

For the expectation value or mean value, we obtain using the dyadic decomposition of A:

∑

n

p(an)an = 〈ψ|A|ψ〉 . (2.7)

We return to the topic of quantum measurements in more detail in Chap. 13.
Finally, we describe the effect of the intervention of the transformation apparatus on iso-

lated systems:

Postulate 3 (deterministic dynamic evolution between preparation and measurement)

a) For isolated systems, the probability distribution p(an) evolves in a deterministic and re-
versible manner between the preparation and the measurement. Its time development be-
tween two times t0 and t1 is described by a unitary time-development operator U(t1, t0):

U†(t1, t0) = U−1(t1, t0) . (2.8)

This operator fulfills the conditions U(t0, t0) = 1 and

U(t2, t1)U(t1, t0) = U(t2, t0) (2.9)

for arbitrary times t0, t1, t2.

b) The dynamic equation for U(t, t0) is

i�
d
dt
U(t, t0) = H(t)U(t, t0) . (2.10)
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It is formulated with an Hermitian operator H (the Hamiltonian). � = 1, 0546 ×
10−34Joule · sec is Planck’s constant. It is postulated that H(t) is the observable which
belongs to the total energy of the system. It can be explicitly time dependent in a time-
dependent problem. No other time dependencies are contained in the operator H(t) in
Eq. (2.10).

c) The Schrödinger representation is one of the many possible formulations of this time
development. In this representation, the dynamic evolution of the state is given by the
state vector alone, according to

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 . (2.11)

Observables can be only explicitly time dependent. At each time t, there is a corre-
sponding probability distribution p(an, t) for the results of a measurement of A given by
Eq. (2.5). From Eqs. (2.10) and (2.11), the Schrödinger equation follows:

i�
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉 . (2.12)

Other representations, such as the Heisenberg and the interaction representations, can be found
by making use of unitary equivalence. This guarantees that all statements about measured
values and the probability of their occurrence are the same in all representations at each time.
In general, we shall make use of the Schrödinger representation.

Why a unitary time evolution? As a result of the unitarity of the time-development oper-
ator, the state vector |ψ〉 remains normalised and the overall probability of observing one of
the measured values is equal to one:

∑
n p(an, t) = 1. If one conversely requires the conser-

vation of the overall probability during the dynamic evolution with a (not necessarily unitary)
time-development operator T (t1, t0), then at the time t1, again,

∑

n

p(an, t1) = 〈T (t1, t0)ψ|T (t1, t0)ψ〉 = 1 (2.13)

must hold for all the states |ψ〉. As we have shown in Sect. 1.1.5, this conservation of the
norm implies the unitarity of T . One could reformulate Postulate 3 and place the physically
plausible requirement of conservation of the total probability in the foreground. Then the
deterministic evolution can be effected only by a unitary time-development operator.

Physical properties The postulates allow us to expand upon our previous interpretation. To
what extent can quantum systems be ascribed with certain physical properties, as is usual in
the standard interpretation? When the state is an eigenvector |un〉 with the eigenvalue an of
the observable operator A, then a measurement of A by a suitably-constructed measurement
device leads with certainty to the result an. If we repeat the measurement, it will with cer-
tainty always yield an. This is the characteristic property of projective measurements, due to
PnPn = Pn.

It is therefore reasonable to say that the system prepared in the state |un〉 possesses the
physical property A which has the value an. It is assumed to be real. If A is for example
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the energy operator, then the system has the energy an; the corresponding conclusion holds
for the angular momentum operator, etc. If for a general state |ψ〉 �= |un〉 the measured
value an is obtained from a measurement of A, it is in general not safe to say that the system
previously had the property an. Only through the interaction of the quantum system with the
measurement apparatus is the system transformed into the state |un〉 so that the measurement
apparatus always yields the value an on repeated measurement of A. The concept of property
and of measurement thus differ in essential ways from the like-named concepts in classical
physics. This will play a role in particular in Chap. 10. Later, in connection with generalised
measurements (Chaps. 13 and 14), we will go beyond the concept of an observable represented
by an Hermitian operator. In Sect. 2.4, we return to the interpretation of quantum theory as
summarised above.

2.1.4 Comments on the Postulates

- The dimension of the Hilbert space of a quantum system is physically characterised as
the maximum number of states which can reliably be distinguished from one another
in a single measurement. This becomes clear if one takes as observable an Hermitian
operator, none of whose eigenvalues is degenerate.

- Along with the dimensionality of the Hilbert space, there are additional characteristics of
quantum systems which are independent of the observer and are not subject to probabil-
ity statements. Among them are the classical variables mass, charge and the magnitude
of the spin of a quantum system. Although these quantities can be determined experi-
mentally, they appear in non-relativistic quantum mechanics only as parameters. They
are also called intrinsic properties.

- Time is a classical variable in quantum theory and not an observable. Clocks are a part
of the classical apparatus in Fig. 2.4. A measurement of time is a classical measure-
ment. The passage of time is registered in principle by the motions of free classical
point masses. Other procedures (e. g. atomic clocks) are in the end derived from such
processes.

- According to postulate 3, the probability statements p(an, t) evolve between preparation
and measurement in a deterministic and reversible manner. The corresponding quantum
events (the occurrence of measurement results) are in contrast not predictable in individ-
ual cases. Only their probability distribution p(an) is known at every given time. The
evolution during the measurement is non-deterministic and irreversible. The transition
from Eq. (2.2) is often called a state reduction. With the new state |ψ′

n〉, the probability
predictions are different. This however does not imply that a physical process takes place
in space and time which could reasonably be denoted as a collapse of the wavefunction.

- The deterministic process represents an observable change with time in the probability
distribution. In the Schrödinger representation, this is described by a time-dependent
state vector |ψ(t)〉. If the evolution described by a unitary operator were interrupted at
a time t and a measurement then carried out, then the probabilities for the measurement
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results could be computed with the mathematical ancillary quantity |ψ(t)〉 from postu-
late 2. In the Heisenberg representation, in contrast, the state vectors are independent of
time and the observable operators are time dependent. This again makes it clear that the
state vector does not represent a description of the system, such as is familiar from the
concept of ‘state’ in classical physics.

- The fact that the time-development operator U(t, t0) depends on the time as a continuous
variable should not mislead one into thinking that a quantum system evolves continuously
with time, e. g. in terms of its properties. The transition of an atom from the source to
the detector in the two-slit experiment is an overall process which is not further divisible.
Between preparation and measurement, there are no further events. This is a characteris-
tically discrete element of quantum mechanics. The time-development operator describes
the time-dependent changes in the probabilities of possible facts, but not the changes in
the facts themselves. In this connection, greatly simplified manners of speaking are of-
ten used, e. g. “an atom passes through the slit”. If conceptual problems or paradoxes
are generated by this language, one must return to a more precise formulation and its
operational significance.

- It is the mathematical coaction of the state vector and the observables (compare Eq. (2.5),
which is valid in all representations) that maps the interaction of the quantum system
with the measurement apparatus in the laboratory. In this process, not only does the
measurement device enter a new state, as in classical physics, but so does the quantum
system also. The system as a rule must be described by a new state vector after the
measurement (cf. Eq. (2.2)).

- It is permitted that the measurement destroys the quantum system. Then, part c) of
postulate 2 can be dispensed with.

- It is assumed that not only every pure state can be represented by a state vector, but
also that every state vector represents a physically-possible pure state. The associated
preparation procedure can in principle be experimentally implemented.

- We introduced the pure state as a state which cannot be produced by mixing. This nega-
tive characterisation is useful to only a limited extent in practical applications. However,
in postulate 2.c, we described a procedure for distinguishing a pure state which can more
readily be operationalised and which we can fall back on: a pure state is found as the
result of a measurement when the measured values are not degenerate. In the case that
degeneracy is present, a complete set of pairwise-commuting observables must be mea-
sured. The set of associated measured values characterises the resulting state vector
unambiguously.

- The postulates presume that in the quantum domain there are two completely differ-
ent types of dynamical processes: the irreversible measurement process with the cor-
responding probability statements (postulate 2), and the reversible unitary state evolu-
tion between the preparation and the measurement (postulate 3). The desire for unifi-
cation suggests that we could extend the quantum system to include a purely quantum-
mechanically describable measurement device, thus obtaining a larger closed quantum
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system. One could then attempt to describe the common evolution in the sense of postu-
late 3. Postulate 2 would become superfluous. Later, we will discuss approaches of this
type (cf. Chap. 15).

If this research programme is to be successful and thus yields all of our results, then we
would have described here only a pragmatic approach in which one for brevity employs
classical concepts and two different dynamics as though they were fundamental. For this
reason, we can initially retain the conclusion that in postulates 2 and 3, two different
dynamics are introduced: the measurement dynamics and the transformation dynamics,
which we will refer to also as unitary dynamics.

- We will assume that for every Hermitian operator, a suitable measurement device can
be constructed. In fact, in most cases it is by no means a trivial task to design such an
experimental implementation.

- We have seen that the concepts
State
Measurement
Property

are notably different in classical physics and in quantum physics. Many apparent para-

doxes and conceptual difficulties arise from the use of the same terms, suggesting too
many similarities. For quantum-physical systems, one should rather speak of the quan-
tum state, quantum measurements, and quantum properties. If this is not always adhered
to for reasons of economy, the reader should mentally add the virtual prefix “quantum”
to the corresponding terms.

- And finally: in order to understand quantum theory, we need to free ourselves from
incorrect preconceptions. This includes, to be sure, the false conception of what is meant
by “understanding”.

2.2 Outlook

In formulating the postulates, we have made use of a number of physical constraints, which we
will relax step by step in the coming chapters, until we finally obtain a quite general structure
for the quantum theory.

• We have limited ourselves to pure states. The general quantum state is a mixture
(Chap. 4).

• Quantum systems can be composed of subsystems, which are then not in general isolated.
The quantum theory of such open systems has to be developed (Chaps. 7 and 8). In
composite systems, we will meet up with entangled states.

• Projective measurements are a special type of quantum measurements. In Chaps. 13, 14
and 16, we will introduce generalisations of this concept.
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• For open quantum systems, dynamic evolutions are possible which are no longer de-
scribable in terms of unitary time-development operators. We will formulate them using
superoperators (Chap. 14).

• What can be gained by attempting to reduce the measurement dynamics of postulate 2 to
the transformation dynamics of postulate 3? We discuss this point in Chapter 15, together
with the question of whether classical physics can be derived from quantum theory.

All of these conceptual developments not only deepen our understanding of non-
relativistic quantum mechanics, but also lead to new physical effects and form the basis for
quantum information theory and for quantum computing. We will provide additional outlooks
in Sections 7.3.1 and 8.2.

Further generalisations, which we however cannot discuss here, could also be made: we
could include observable operators with continuous eigenvalue spectra, such as position and
momentum. If the number of quantum systems is not fixed or well-determined, their de-
scription requires the introduction of a Fock space (many-body systems, field quantisation).
In both cases, additional new effects can be expected. On generalising to Hilbert spaces of
enumerable-infinite dimensionality, in contrast, our results up to now can be directly adopted
for those cases with physical relevance.

Before we carry out the generalisation steps which we have listed above, we want to
demonstrate in the following the power of projective measurements and, in Sections 2.4 and
2.5, to cast a view from a higher vantage point onto the structure of the theory as described up
to now.

2.3 Manipulation of the Evolution of the States by
Projective Measurements

Quantum-mechanical measurements intervene in the dynamic evolution of a quantum system
and change it. With projective measurements, this intervention is particularly strong. By
applying a sequence of projection measurements, we can “freeze” the evolution or impress an
arbitrary development onto the state; thus, by measurements, we can ‘drive’ the system.

2.3.1 The Quantum Zeno Effect

Short-time behaviour We consider the following situation: the state of the system at the
time t = 0 is an eigenvector |a〉 of an observable A: |ψ(t = 0)〉 = |a〉. A has a discrete
spectrum. The unitary development takes place under the influence of the time-independent
Hamiltonian H . We set � = 1.

|ψ(t)〉 = e−iHt|a〉 . (2.14)

After the time t, we measure the observable A. The probability of finding the system after
this measurement once again in the initial state |a〉 is

p(t) = |〈a|e−iHt|a〉|2 . (2.15)
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For short times, we obtain from this

p(t) = 1− (∆H)2t2 +O((∆H)4t4) (2.16)

with the energy uncertainty ∆H

(∆H)2 := 〈a|H2|a〉 − 〈a|H|a〉2 =: τ−2
z . (2.17)

The time τz is called the Zeno time. It is the longer, the more similar |a〉 is to an energy
eigenstate. In the limiting case ∆H = 0, we obtain p(t) = 1. For ∆H �= 0, p(t) depends on
the square of t at short times, t� τz .

The quantum Zeno effect 3 We now carry out a series of N measurements of the same ob-
servable A in equal time intervals over a total time T

τ :=
T

N
(2.18)

with τ � τz . The conditional probability p(N)(T ) of finding the initial state |a〉 following
each individual measurement in this series each time is, with Eq. (2.16),

p(N)(T ) = [p(τ )]N = [p(T/N)]N ≈
(

1− 1
τ2
z

(
T

N

)2
)N

. (2.19)

One could also dispense with the restrictive requirement that after each measurement the
state |a〉 should be present. In this case, the probability of finding the system in the state |a〉
after the measurement at time T is greater than p(N)(T ).

The more measurements which are carried out within the time interval [0, T ] for a fixed T ,
i. e. the shorter the time interval τ , the greater is the probability that the system remains in the
initial state |a〉. In the limit N → ∞ or τ → 0 of a continuous projective measurement, the
measurement dynamics completely dominate the unitary evolution and the system is “frozen”
into the initial state:

p(N)(T ) N→∞−−−−→ 1 . (2.20)

This is called the quantum Zeno effect. In contrast to Eq. (2.19), the limiting case in Eq. (2.20)
is in fact unphysical: the quantum-mechanical measurement process has a certain finite dura-
tion.

2.3.2 Driving a State Vector by a Sequence of Projection Measurements

We can not only to a good approximation prevent the evolution of a quantum state by repeated
projection measurements, but we can also control its time development. Let the Hilbert space
of the system be two-dimensional, with the ONB {|↑〉, |↓〉}. The initial state at time t = 0
is |↑〉. For an observable which has an eigenstate that is rotated relative to this initial state,

|α〉 = cosα|↑〉+ sinα|↓〉 , (2.21)

3Named after the arrow paradox due to Zeno of Elea (ca. 495-430 B.C.).
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the probability of finding the system after the measurement in the state |α〉 is given by

p(α) = cos2 α . (2.22)

We again carry out N measurements at time intervals τ = T
N in the overall time interval

[0, T ]. But in this case, we measure sequentially new observable operators, which have the
eigenstates |αn〉, with αn = nωτ and n = 1, 2, 3, . . .. We assume that there is no additional
unitary evolution. Then the conditional probability of finding the system in the state |αn〉,
when it was previously in the state |αn−1〉, is

p̃(n) = |〈αn|αn−1〉|2 = cos2 ωτ . (2.23)

The probability of finding the system after each of these measurements in the corresponding
eigenstate |α1〉, |α2〉, |α3〉 . . . is given by

p̃(N)(n) =
(

cosω
T

N

)2N
N large−−−−→ 1− ω2T 2

N2
N

N→∞−−−−→ 1 . (2.24)

In the limit N →∞ for a fixed t or for the time interval τ → 0, the state of the system always
agrees with the state |α〉 of Eq. (2.21) with α = ωt. The system has been forced to follow a
predetermined evolution of state by a sequence of adapted projective measurements. In this
case, also, the limit τ → 0 is unphysical in the strict sense, owing to the finite duration of the
measurement process.

2.4 The Structure of Physical Theories∗

Thus far, we have spoken only of the standard interpretation. Are there other interpretations?
What is meant by the interpretation of a physical theory? We will turn to these questions in
the next two sections. Both are not essential for understanding the remaining chapters and
can therefore be skipped over. On the other hand, questions connected with problems of in-
terpretation in natural philosophy4 and in the philosophy of science5 play a large role both
in fundamental discussions and in popular-science descriptions. In particular, the question,
“What does the quantum theory tell us about reality?” is apparently a source of great fascina-
tion for many physicists and non-physicists alike. This justifies some remarks, accompanied
by an asterisk, on how such questions are to be dealt with. These can be useful even for
the more “practically-oriented” readers, since they can help to avoid a certain confusion in
the discussion of quantum-theoretical problems and aid in understanding statements made by
quantum mechanics.

*The sections marked with an asterisk * can be skipped over in a first reading.
4Natural philosophy investigates the concepts that are necessary for understanding the statements which the nat-

ural sciences can make about nature. It is an ontology with reference to nature, i. e. a doctrine of existence. There are
many ontologies.

5The philosophy of science provides a logical analysis of scientific theories and compares theories with each other.
Among the topics treated are the logical structure of elucidations, modes of comparison of theories to experience in
the natural sciences, social influences on the formulation of theories, concepts of reality, limits of knowledge, physical
theories as guides for actions, reality as a construction, and many more.
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2.4.1 Structural Elements of a Physical Theory∗

Forerunner theories We close this Chapter 2 on the fundamental concepts of the quantum
theory with some structural considerations. Here, we want to consider in particular the con-
cept of reality to which the quantum theory refers. To this end, it is first helpful to clarify
just how physical theories are structured. We take a brief excursion into classical physics and
consider classical electrodynamics. Typical elementary experiments involve the measurement
of forces, heating of wires and similar effects. Measurements of forces, heat and other quanti-
ties refer to theories such as mechanics, thermodynamics etc., which were formulated before
electrodynamics and independently of it. They are forerunner theories. Along with wires and
masses, we include force fields, heat etc. within physical reality. These are the elements of
reality which were already introduced with reference to the forerunner theories. When we for-
mulate electrodynamics experimentally and theoretically, we presume that the apparatus and
measurement devices which are based on the forerunner theories are parts of physical reality.

Structural elements We can already read off several structural elements of a physical theory
from the example of electrodynamics. A physical theory is a mathematical-deductive scheme
which contains the following minimal components:

1. a mathematical component MC which consists of mathematical quantities, definitions,
equations, transformations, solution procedures etc.;

2. a part from nature, which is called the basic domain BD (we will explain this part more
precisely below), and which is assumed to exist; and

3. mapping principles, which are also called correspondence rules CR, which relate the
basic domain BD and parts of the mathematical component MC to each other.

Only when these mappings are added to the mathematical relations does a physical theory
come into being. Typically, the mathematical quantities are also characterised by dimensions.

Thus, for example in electrodynamics the letter F in the mathematical component is de-
noted by the word “force” and mapped onto the quantity which can be measured by a real
spring balance or determined from the motions of masses. The mappings onto the basic do-
main establish only mappings onto the domain of reality of the forerunner theories. The
forerunner theories are in this case mechanics and thermodynamics. For the description and
prediction of experimental results in electrodynamics, these mappings are completely suffi-
cient. The measurable quantities arise from the domain of reality of the forerunner theories.
Although there are quantities in the mathematical component of the theory such as the sym-
bol j which we refer to as the “electrical current density”, for an experimental statement,
however, it suffices that we can derive from the theory the fact that a wire is heated. We can
use this fact to measure currents. It is not necessary to presume for this purpose that there are
electrical currents “in reality” and that they somehow “flow” through wires. The word “cur-
rent” initially serves only to be able to communicate more rapidly about parts of the theory.

Interpretation An interpretation of a physical theory is the specification of mapping prin-
ciples by which some abstract computational quantities of the mathematical component MC
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are given a physical meaning in relating them to parts of physical reality.6 For some of the
mathematical symbols, physical referents are defined. In this sense, a physical theory is a
partially-interpreted formal system. It should be strictly distinguished if changes in or ex-
tensions of the mapping principles for the same MC are made, or on the other hand within
an alternative theory the MC is also modified and, for example, different field equations are
postulated.

The interpretation thus far described, which refers to the domain of reality of the forerun-
ner theories, we shall call the minimal interpretation. It contains the minimal inventory of
mapping principles which are required to attain a connection between the mathematical com-
ponent of the theory and the observational level. On the basis of minimal interpretations, one
can decide upon the empirical correctness of a physical theory. Further-reaching elements of
an interpretation can neither be experimentally confirmed nor rejected. Many consistent ex-
tensions of the minimal interpretation and thus many interpretations can be envisioned. They
are neither correct nor incorrect; it is the question of the explanatory power and comprehen-
sibility of a theory which can provide a motivation to go beyond the minimal interpretation.
Extended interpretations can provide valuable impulses for new research programmes. The
search for a theory of the quantum measurement process is an example. In some interpre-
tations, this search is superfluous (cf. Chap. 15). We should also point out that the concept
‘minimal interpretation’ is used in different senses in the literature.

2.4.2 Developed Reality∗

The example of electrodynamics already demonstrates that most physicists go beyond the
minimal interpretation. In the mathematical component of electrodynamics, along with terms
which have a correspondence in the values indicated by measuring devices, additional terms
such as the electric field E or the current density j occur, for which a correspondence in
reality is likewise assumed. The mapping principles which belong to these terms will be
called hypothetical correspondence rules, HCR. The domain onto which they map is called the
developed domain of reality, DDR (see Fig. 2.5). Usually, there is a consensus concerning the
addition of the hypothetical correspondence rules to the theory and the consequent extension
of the domain of physical reality beyond the basic domain. We shall call this consensus with
regard to quantum theory the standard interpretation. This term is also employed in differing
fashions in the literature.

As is usual in physics, we will not speak of a transition to a new theory when only different
hypothetical correspondence rules are chosen or they are dispensed with entirely, while the
mathematical component MC and the basic domain BD remain unchanged. Different HCR
lead to differing interpretations. The theory in whose MC the Maxwell equations occupy the
central position is usually denoted –independently of whether or not reality is attributed to
the electric field– as the ‘Maxwell theory’. Which statements about reality are made by the
physicist is left to the individual. A theory different from the Maxwell theory would only then
be present if e. g. the Maxwell equations were changed or completely replaced.

6An interpretation is sometimes incorrectly denoted as the “philosophy” employed. Interpretations are however
indispensable parts of the physical theories themselves.

*The sections marked with an asterisk * can be skipped over in a first reading.
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BD

MC DDR
HCR

CR

Figure 2.5: The correspondence principles relate the mathematical component MC of a physical theory
to the basic domain BD of physical reality. Hypothetical correspondence rules HCR link the MC to
a developed domain of reality DDR. The basic domain BD is the domain of reality of the forerunner
theories. The dashed arrow indicates the direction in which the associated mathematical component is
joined on.

It should have become clear that the determination of a developed domain of reality con-
tains an element of arbitrariness and convention and that at least in part, reality becomes
dependent on the theory. For yet another reason, the physical world comes into being with the
aid of theory: alternative theories, which justify the same experiences (experimental results)
in a different manner (i. e. with a different mathematical component MC), can in this sense
correspond to different realities. Examples of this are on the one hand a theory of gravita-
tion in terms of special relativity in a flat space-time, which uses the concept of a gravitational
field, and on the other, the General Theory of Relativity in which the gravitational field is com-
pletely eliminated and space-time is curved. The standard interpretation in each case gives a
different answer to the question of the existence of a gravitational field.

Electrodynamics furthermore shows that even within the standard interpretation, by no
means is a correspondence in reality claimed for all mathematical quantities. For example,
no reality is usually attributed to the gauge-dependent vector potential at a certain location in
space. Vector potentials are considered to be only computational aids. In the Coulomb gauge,
the vector potential changes instantaneously. There is however no real propagation process
with a velocity greater than that of light connected with this.

2.5 Interpretations of Quantum Theory and Physical
Reality∗

2.5.1 The Minimal Interpretation∗

How does quantum theory fit into the scheme described in the previous section? The minimal
interpretation of quantum mechanics ascribes reality only to the preparations, transformations

*The sections marked with an asterisk * can be skipped over in a first reading.
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and measurement devices. Only their reality exists and beyond them, there are no hypothetical
correspondence rules HCR or developed domains of reality DDR. The mapping CR is per-
formed within the classically describable reality domain (e. g. in terms of indicator readings
of the measurement devices). The empirical knowledge within quantum mechanics can be
formulated using the elements of classical physics. All other elements of the mathematical
component MC of the quantum theory are only computational aids. This attitude can be
accurately characterised by the intentionally exaggerated formulation of Niels Bohr: “There
is no quantum world.”7. Electrons, atoms, etc. do not exist. This attitude is characterised in
the theory of science as instrumentalistic and pragmatic. The advantage of limiting oneself to
the minimal interpretation lies in the avoidance of apparent paradoxes. This is obtained at the
price that no visualisation and hardly any physical intuition are stimulated.

In this interpretation, the single goal of quantum theory is to make precise predictions
of possible results of measurements and to compute the probabilities of their occurrence.
Further statements are superfluous and are not made8. Objectivity is guaranteed. After
completion of the measurement, an observer can only read off the result but can no longer
influence it. It is a part of the classical world. The empirical results thus obtained (e. g. via in-
dications from measurement devices) can be described in the framework of classical physics
as the associated forerunner theory. They can however not be explained or theoretically
justified in terms of classical physics. For this purpose, one requires the mathematical
component MC of quantum mechanics and some few correspondence rules. There are no
unified statements in the literature concerning what precisely is contained in the Copenhagen
Interpretation of the quantum theory. The minimal interpretation however certainly reflects
the characteristic features of that interpretation.

2.5.2 The Standard Interpretation∗

The standard interpretation of the quantum theory, which is generally accepted by physicists,
goes somewhat further. It has been realised that individual quantum systems have properties
which can be distinguished from the preparation of the states and their measurement; they thus
do not describe relations between the system and the preparation or measurement apparatus.
These physical properties include the electric charge, the baryon number, the mass and the
magnitude of the spin of an elementary particle. They are referred to as classical observables9.
Since they refer in part to the forerunner theories of quantum mechanics, it is reasonable to
ascribe an objective reality to these properties and thus at the same time to the associated
quantum system. Quantum systems then have real media in a developed reality, which can

7“There is no quantum world. There is only an abstract quantum-physical description. It is wrong to think
that the task of physics is to find out how nature is. Physics concerns itself with what we can say about Nature.”
After [Pet 63, p. 12].

8Once again Niels Bohr: “In our description of nature, the purpose is not to disclose the real essence of the
phenomena, but only to track down, so far as it is possible, relations between the manifold aspects of our experience.”
[Boh 85]

9The states of quantum systems which differ in these properties cannot be superposed. Linear combinations of
such states are not physically relevant (super selection rules).
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be called quantum objects. One can speak of individual quantum objects such as atoms,
electrons, etc. and the following concept is associated with them in the standard interpretation:

The macroscopic effects of the measurement apparatus are described classically, e. g. in the
form of the indicator deflections of the apparatus. These effects appear in this interpretation
so to speak only on the “surface”. They however can be attributed to the effects of quantum
systems or quantum objects which are present in reality “beneath the surface”. There is a
quantum world. To be sure, we cannot perceive it with our senses; through them, we remain
in the classical world. We act on the quantum world via the interfaces of the preparation and
transformation apparatus, and register the reactions from that world once again in our classical
world. The postulates in their formulation in Sect. 2.1.2 already reflect the correspondence
rules of the standard interpretation .

Again, we do not claim that all the terms in the mathematical component MC correspond
to elements of reality. For the quantum state vector (or the density operator) which is deter-
mined by a preparation procedure, there is no correspondence to reality in the form of a phys-
ical object or physical properties. The correspondence can at most lie within the preparation
process itself (cf. Sect. 2.1.2). The state vector, as a mathematical symbol, allows the com-
putation of the probability distributions in coaction with the measurement operators. In this
sense, it is similar to the vector potential in electrodynamics. What evolves deterministically
under the influence of a transformation apparatus are the predictable probability distributions
of measurable results. The time-development operator U(t, t0) represents this evolution.

Even if this is not always explicitly mentioned in the following chapters, it will be use-
ful for understanding the material to make clear to oneself whether a statement refers to the
complete standard interpretation or is restricted to a more limited interpretation.

Further interpretations The many-worlds interpretation of the quantum theory is an ex-
ample of an alternative interpretation which arrives at different statements on reality although
retaining the mathematical component. We will deal briefly with it in Sect. 15.5. In the sub-
jectivistic interpretation of the quantum theory, the state vector is interpreted as a statement
about knowledge. Persons who have different knowledge then employ different state vectors.
State vectors describe “beliefs” or “gambling commitments” [Fuc 03]. In this approach, evi-
dently the measurement problem no longer appears. The modification of the state vector via
the measurement is only an update of the knowledge of the observer through reading off the
results of the measurement. With regard to the dynamic evolution between preparation and
measurement, however, we must then ask the question as to why the knowledge of a person
in the Schrödinger representation should change according to the time-dependent Schrödinger
equation. Since knowledge and information are closely connected, this approach suggests that
it would be reasonable to press on with the design of a programme to base the foundations of
quantum theory solely on the concepts of information theory (see for example also [Fuc 03]
or [Bub 05a]). The extreme position according to which reality comes into being by asking
‘yes-no’ questions and registering the answers “bit by bit” is taken in [Whe 90].

We will treat further interpretations and modifications of the quantum theory in Sects. 2.6,
10.8, 15.5, and 15.6.
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2.6 Complementary Topics and Further Reading

• An elementary introduction to the physics of the entangled quantum world: [Aud 06]
(book), [Aud 06a] (two articles).

• The two-slit experiment with atoms: [CM 91]. Review article on atom interferometry
and atomic optics: [Ber 97]. Diffraction experiments with neutrons: [RW 00].

• Quantum objects exhibit mass-dependent interference effects in a gravitational field.
They play a role in the axiomatic justification of the Riemannian structure of space-
time [AL 91].

• The question of what happens to a quantum system between preparation and measure-
ment is also the subject of considerations on delayed choice: [Whe 78], [Aul 00,
Chap. 26].

• In this book, we consider only inertial systems. Whether or not quantum objects are
present is a statement which depends on the state of acceleration of the observer (see
Sect. 15.6)

• The Zeno effect: [NPN 97, p. 172], [Hom 97, Chap. 6].

• References to experiments on the Zeno effect: [IHB 90]; literature on the discussion of
this experiment and suggestions for additional experiments are to be found in [NPN 97,
p. 177].

• The philosophy of science and natural philosophy: [Sch 64], [Bal 70], [Mit 96], [Mai 96],
[Hom 97], [Bub 97], [Mut 98], [Lal 01], [Esf 02].

• Forerunner theories, theoretical terms and correspondence rules: [Lud 83], [Lud 85],
[Sch 90], [Sch 96a].

• Interpretations of the quantum theory: [Lud 55], [Pri 81], [Lud 89], [Lud 90], [Omn 94],
[Lud 96], [FP 00]. Review article: [Lal 01].

• There are also other approaches to an axiomatic quantum theory which differ notably
from that described here: the algebraic approach (for a review, see [Pri 81]) and the
quantum-logical approach (a description can be found in [Mit 78]).

• We limit our considerations to quantum states in finite-dimensional Hilbert spaces.
Among them, the states in two-dimensional spaces (qubits) play a particularly impor-
tant role, since most investigations and applications of entanglement were initially car-
ried out or implemented for these simplest states. At the same time, qubits represent
the simplest generalisation of classical bits in view of quantum-information applications.
For experimental implementations, e. g. with quantum-optical systems, states in infinite-
dimensional Hilbert spaces however play an increasingly strong role. An overview of
the theory and applications of entanglement with continuous variables can be found
in [vLo 02] and [BvL 05].
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• The goal of obtaining in an axiomatic manner the mathematical structure of the quantum
theory (Hilbert-space formalism) from the macroscopic behaviour of preparation appa-
ratus and measurement apparatus is pursued in [Lud 83] and [Lud 85].





3 The Simplest Quantum Systems: Qubits

All quantum systems which have no more than two linearly-independent states can be de-
scribed by vectors in a two-dimensional Hilbert space H2. They are the simplest non-trivial
quantum systems. Quantum states in H2 are called qubits, with a view to their later applica-
tions in quantum information theory. They have the form

|ψ〉 = c0|0〉+ c1|1〉 , |c0|2 + |c1|2 = 1 , (3.1)

with the ONB {|0〉, |1〉}, which is also referred to as the computational basis or standard
basis. Observables have at most two measurable values. The qubit systems are often also
abbreviated simply as qubits.

Important physical implementations of qubit systems are:

• 2-level atoms (also atoms with more levels, when only two levels play a role in a partic-
ular process), and ions with two energy levels;

• Polarisation of spin- 1
2 particles;

• Polarisation of single photons (horizontal↔ vertical or left-hand circular↔ right-hand
circular);

• Ray paths in a two-path interferometer containing exactly one photon;

• Quantum dots;

• Modes of the electromagnetic field in a cavity resonator.

There are other qubit systems. The two-slit experiment and the Stern-Gerlach experiment can
be similarly described in a simplified manner.

In Sect. 1.2.1, we met up with the operator basis of the transition operators. For calcula-
tions withinH2, the operator basis consisting of the unit operator 1 and the σ operators (Pauli
operators) is an important computational tool. Pauli operators are usually introduced in con-
nection with the spin as an intrinsic angular momentum. Since, however, they have in general
no physical significance with respect to an angular momentum when applied to other qubit
systems, we can initially ignore this aspect. We introduce the Pauli operators in Sect. 3.1 and
describe an often-used intuitive representation of quantum states inH2 and their dynamics by
making use of the Bloch sphere in Sect. 3.2.

Qubit systems are the carriers of one unit of quantum information. The processing of quan-
tum information, like that of classical information, is described by elementary operations, the
so-called logic circuits or gates. Quantum gates are unitary transformations or measurements
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Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40684-5
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on H2. We describe unitary gates which act only on a single qubit in Sect. 3.4. Implementa-
tions of qubit systems and quantum gates are introduced in Sects. 3.5 through 3.7.

3.1 Pauli Operators

The operator basis We introduce three Hermitian operators onH2, the σk with k = 1, 2, 3
or k = x, y, z:

σ†
k = σk , (3.2)

for which we require

σ2
k = 1 . (3.3)

Since we want to assume that σk �= 1 and that the eigenvalues are real, it follows from this
and their Hermiticity that every operator σk has the eigenvalues (+1) and (−1). At the same
time, it can be seen from the spectral decomposition that the σk are also unitary:

σ†
k = σ−1

k (3.4)

and traceless:

tr[σk] = 0 . (3.5)

Figure 1.2 makes it clear how special the σ operators are. Figure 1.2 also shows that one could
place the requirements of Hermiticity, unitarity and σ �= 1 in the foreground. The eigenvalues
+1 and −1 as well as Eqs. (3.3) and (3.5) would then be the consequences.

We wish to expand the σk into an operator basis through a requirement which relates them
to one another (see Sect. 1.2.1). We can do this if in addition to Eqs. (3.2) and (3.3) we also
ensure that the condition

tr[σiσj ] = 2δij (3.6)

is fulfilled, by requiring of the anti-commutator ([A,B]+ := AB +BA) that

[σi, σj ]+ = 2δij1 . (3.7)

The operators { 1√
2
1, 1√

2
σk} then form an orthonormal operator basis in Liouville space with

respect to the scalar product (1.80). Every linear operator A can be represented in the form

A =
1
2

tr[A]1 +
1
2

3∑

k=1

tr[Aσk]σk . (3.8)
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Angular-momentum operators The second important property of the σk is obtained
through the following condition on the commutator ([A,B]− := AB − BA), which com-
plements Eq. (3.7):

[σi, σj ]− = 2i
3∑

k=1

εijkσk . (3.9)

εijk is a tensor which is totally antisymmetric in all indices, with ε123 = 1. With this condi-
tion, the σk become formally proportional to angular-momentum operators and can describe
observables of the 2-level system spin. In summary, we write for Eqs. (3.7) and (3.9)

σiσj = δij1 + i

3∑

k=1

εijkσk . (3.10)

The Hermitian operators σk which obey Eq. (3.10) are called the Pauli operators or σ-
operators. The equations show that the indices enter in a completely equivalent manner. This
can be useful in some computations.

As a basis for an index-free formulation, we introduce the vector Pauli operator σ :=
σxex + σyey + σzez . The vectors ex, ey and ez are the Cartesian basis vectors of R3.
Making use of Eq. (3.10), we can derive

(σa)(σb) = (ab)1 + iσ(a× b) (3.11)

for arbitrary vectors a,b ∈ R3. This equation reduces to

(σe)(σe) = 1 (3.12)

for arbitrary normalised vectors e. We thus obtain with the aid of the spectral decomposition
for the expansion of the exponential function (cf. Eq. (1.50)):

exp(iθeσ) = 1 + iθeσ − 1
2
θ2 (eσ)2

︸ ︷︷ ︸
=1

+
i

3!
θ3eσ ± . . . , (3.13)

and, after collecting terms, the frequently-used relation

exp(iθeσ) = (cos θ)1 + i(sin θ)eσ . (3.14)

The matrix representation If we take the ONB of the eigenvectors |0〉 and |1〉 of σz , with
the eigenvalues (+1) or (−1), respectively,

σz|0〉 = +|0〉 (3.15)

σz|1〉 = −|1〉
as the computational basis, then the matrix representation of σz is

σz =
(

1 0
0 −1

)
. (3.16)
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Making use of Eqs. (3.2) and (3.10), the matrix representations of σx and σy can be cal-
culated individually in the computational basis. Here, we just give the result. We denote these
Pauli matrices likewise by the same symbol as the operators and give directly their dyadic
decompositions:

σx =
(

0 1
1 0

)
= |0〉〈1|+ |1〉〈0|

σy =
(

0 −i
i 0

)
= −i(|0〉〈1| − |1〉〈0|) (3.17)

σz =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1| .

It is useful to note the action of the σ operators on the vectors of the computational basis:

σx|0〉 = |1〉 σx exchanges (bit flip)

σx|1〉 = |0〉

σy|0〉 = i|1〉 σy exchanges and introduces the phase ±i (3.18)

σy|1〉 = −i|0〉

σz|0〉 = +|0〉 σz introduces the phase ±1 (phase flip).

σz|1〉 = −|1〉.

With these relations, we can finally verify the orthonormal eigenstates of σx and σy di-
rectly as

σx|0x〉 = |0x〉 σx|1x〉 = −|1x〉
|0x〉 =

1√
2
(|0〉+ |1〉) |1x〉 =

1√
2
(|0〉 − |1〉) (3.19)

and

σy|0y〉 = |0y〉 σy|1y〉 = −|1y〉
|0y〉 =

1√
2
(|0〉+ i|1〉) |1y〉 =

1√
2
(|0〉 − i|1〉) (3.20)

in the computational basis.

3.2 Visualisation of Qubits on the Bloch Sphere

We first carry out some preparatory mathematical considerations based on the decomposition
in the operator basis, to which we shall refer frequently in later sections. An operator ρ with
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the properties ρ† = ρ and tr[ρ] = 1 can be written in the following form with the aid of
Eq. (3.8):

ρ =
1
2
(1 + rσ) (3.21)

with a real vector r

r := tr[ρσ] . (3.22)

Using Eqs. (3.5) and (3.10), we obtain

tr[ρ2] =
1
4

tr[1 + 2rσ +
∑

i,j

rirjσiσj ]

=
1
2
(1 + |r|2) . (3.23)

As a special case, we consider the operator ρ := |ψ〉〈ψ| which is constructed with an
arbitrary normalised vector |ψ〉 ∈ H2. For this operator, the conditions ρ2 = ρ and tr[ρ2] =
tr[ρ] = 1 are valid, and it follows with (3.23) that |r| = 1. Inserting ρ into (3.22), we obtain
as an interpretation of r the expectation value

r = 〈ψ|σ|ψ〉 . (3.24)

With 〈ψ|rσ|ψ〉 = rr = 1, we find the additional result

rσ|ψ〉 = |ψ〉 . (3.25)

Here, we have used the fact that rσ|ψ〉 is a normalised vector as a consequence of Eq. (3.12).
We have thus found two results: For an arbitrary normalised state vector |ψ〉 ∈ H2, the
expectation value of the vector Pauli operator σ is a real vector r ∈ R3 with the magnitude
1. At the same time, |ψ〉 is an eigenvector of the operator rσ, with the eigenvalue (+1).

The Bloch sphere Via the expectation value of σ, each qubit |ψ〉 is, according to Eq. (3.24),
uniquely associated with a vector r in R3; it is called the Bloch vector. Its endpoint lies on
the surface of a unit sphere, the Bloch sphere (compare Fig. 3.1). We call this endpoint the
Bloch point. With the aid of r, we can visualise the state vectors |ψ〉 as well as the effects of
the measurement dynamics and the unitary dynamics on |ψ〉 three-dimensionally in a simple
way. Therein lies the importance of the Bloch vectors.

rσ is Hermitian. r is normalised and Eq. (3.12) correspondingly applies. We can therefore
adopt the arguments from the beginning of this chapter: the eigenvalues of the operators rσ
are (+1) and (−1). The eigenvector with the eigenvalue (+1) is |ψ〉, with the Bloch vector r
from Eq. (3.24). The second eigenvector of rσ is perpendicular to |ψ〉 (〈χ|ψ〉 = 0) and obeys

rσ|χ〉 = −|χ〉 . (3.26)

Multiplication by 〈χ| leads using |〈χ|σ|χ〉| = +1 (magnitude of the Bloch vector of |χ〉) to

〈χ|σ|χ〉 = −r . (3.27)
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|1y〉

|1z〉

|0z〉

|0x〉

|χ〉

ez

|0y〉ey

−r

ex

r

|ψ〉

|1x〉

Figure 3.1: The Bloch sphere with the Bloch vectors associated to the eigenstates of the Pauli operators.
The Bloch vectors r and −r, corresponding to two arbitrary orthonormal qubits |ψ〉 and |χ〉, are mirror-
symmetric with respect to the coordinate origin.

The Bloch vector with the eigenvalue (−1) is formed by reflection of r through the centre of
the sphere (cf. Fig. 3.1).

In general, two orthogonal qubits correspond to two Bloch vectors which are related to one
another by a reflection through the coordinate origin. The associated operator is found directly
via the Bloch vector r to be rσ. In particular, we find that the Bloch vectors corresponding
to the eigenstates of the three Pauli operators for the eigenvalues (+1) agree with the basis
vectors ex, ey, and ez . For the eigenvalues (−1), the Bloch vectors point in the respective
opposite directions. This is shown in Fig. 3.1. We still want to parametrise the Bloch points
by making use of polar coordinates. An arbitrary qubit |ψ〉 (see Eq. (3.1)) can, by using two
parameters θ and ϕ, always be represented in the form

|ψ〉 = e−i
ϕ
2 cos

(
θ

2

)
|0〉+ ei

ϕ
2 sin

(
θ

2

)
|1〉 (3.28)

= e−i
ϕ
2

{
cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉

}

(0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π). With Eqs. (3.17) and (3.24), we can then readily compute the
Bloch vector associated with |ψ〉

r = (sin θ cosϕ, sin θ sinϕ, cos θ) . (3.29)

In the visualisation on the Bloch sphere (Fig. 3.2), the parameters θ and ϕ of Eq. (3.28) thus
take on the role of polar coordinates of the Bloch point . It is typical that in connection with
the associated state vector |ψ〉, half polar angles appear.

This has as a result that on the one hand, for a given qubit |ψ〉, the Bloch vector r is well
determined, but that on the other, a Bloch vector is associated with two different qubits. If
we for example rotate the Bloch vector around the z-axis into the y–z plane (ϕ = π

2 ), then it
returns after a 2π rotation (θ = 0 → θ = π → θ = 0) to its initial position. Equation (3.28)



3.3 Visualisation of the Measurement Dynamics and the Unitary Dynamics 55

x
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ϕ

Figure 3.2: Polar coordinates allow us to visualise the angles θ and ϕ of Eq. 3.28.

shows that the associated state vector changes its sign in this process, |ψ〉 → −|ψ〉. Only after
a full 4π rotation of the Bloch vector does the state vector again return to its initial position,
|ψ〉 → +|ψ〉.

It is useful to note the components of the operator rσ in the computational basis:

rσ =
(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
. (3.30)

We denote the eigenvectors of rσ by |0r〉 and |1r〉. The eigenvector |0r〉 = |ψ〉 was already
defined in Eq. (3.28). We note also the eigenvector |1r〉 = |χ〉 belonging to the eigenvalue−1:

|0r〉 = |ψ〉 =
(
e−iϕ/2 cos (θ/2)
eiϕ/2 sin (θ/2)

)
; |1r〉 = |χ〉 =

(−e−iϕ/2 sin (θ/2)
eiϕ/2 cos (θ/2)

)
. (3.31)

3.3 Visualisation of the Measurement Dynamics and the
Unitary Dynamics

Projective measurements In the postulates, we introduced two types of dynamics, the mea-
surement dynamics and the unitary dynamics. The measurement dynamics of projective mea-
surements can be quite simply visualised. An observable operator in the two-dimensional
Hilbert space H2 of the qubits has two orthogonal eigenvectors, |0〉 and |1〉. We can always
interpret them as eigenvectors of σz . On the Bloch sphere, we fix for this the direction of ez
in the direction of the Bloch vector of |0〉. A measurement of this observable then causes a
quantum transition from an initial state |ψ〉 into the final state |0〉 or |1〉, depending on the
result of the measurement (see Fig. 3.3).

If we write |ψ〉 in the form

|ψ〉 = c0|0〉+ c1|1〉 , (3.32)

then the corresponding probabilities are |c0|2 and |c1|2. The projection rz of the Bloch vector
r onto the z axis, using Eq. (3.29), is

rz = cos θ = cos2 θ

2
− sin2 θ

2
= |c0|2 − |c1|2 . (3.33)



56 3 The Simplest Quantum Systems: Qubits

|ψ〉

|0z〉

|1z〉

Figure 3.3: In a projective measurement of an observable operator with the eigenvectors |0z〉 and |1z〉,
the state vector |ψ〉 makes a jump into |0z〉 or |1z〉, depending on the result of the measurement. The
corresponding Bloch points on the surface of the Bloch sphere are shown.

Since |c0|2 + |c1|2 = 1, it follows for the probability |c0|2 that

|c0|2 =
rz + 1

2
. (3.34)

Unitary transformations We want to complete this section by showing a visualisation of
the unitary dynamics, which transform an initial state |ψ〉 with a unitary operator U according
to

|ψ′〉 = U |ψ〉 (3.35)

into the final state |ψ′〉. To this end, we start from some mathematical properties of unitary
transformations and their matrix representations in H2.

Both the rows and the columns of a unitary matrix are pairwise orthonormal with respect
to one another (

∑
j U

∗
ijUkj = δik). The evaluation of the corresponding relations, which we

shall not elaborate here, shows that for a unitary matrix U in H2, four real parameters κ, λ, µ
and ν exist, so that U can be written as a matrix of the form

U = eiκ
(
e−iλ/2 cos (µ/2)e−iν/2 −e−iλ/2 sin (µ/2)eiν/2

eiλ/2 sin (µ/2)e−iν/2 eiλ/2 cos (µ/2)eiν/2

)
(3.36)

or as an operator product

U = exp(iκ) exp
(
− i

2
λσz

)
exp

(
− i

2
µσy

)
exp

(
− i

2
νσz

)
. (3.37)

Only the Pauli operators σy and σz occur in these expressions. It is helpful to introduce the
unitary operator Û :

Û := e−iκU , (3.38)
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which is the same as U except for the global phase factor eiκ. From Eq. (3.36), we can directly
read off the following properties of the matrix representation of Û :

Û00 = Û∗
11

Û10 = −Û∗
01 (3.39)

Û00Û11 − Û01Û10 = 1 .

We decompose Û in terms of the operator basis { 1√
2
1, 1√

2
σk} according to Eq. (3.8)

Û = v01− ivσ . (3.40)

where v0 and v are determined by taking the trace:

v0 =
1
2

tr[Û ] , v =
i

2
tr[Ûσ] . (3.41)

Making use of the relations (3.39), one can readily show that v0 and v are real. The unitarity
relation Û†Û = 1 is, with Eq. (3.11), equivalent to the condition

v2
0 + vv = 1 . (3.42)

It confirms again that a unitary 2×2 matrix is determined by a global phase and three real
parameters.

Since the condition (3.42) is fulfilled, Eq. (3.40) has the structure of Eq. (3.14). For later
use, we introduce the angle φ and the unit vector e according to

v0 := cos
φ

2
, v =

(
sin

φ

2

)
e . (3.43)

For a given Û , the quantities φ and e are determined by Eq. (3.41). With Eq. (3.14), Eq. (3.40)
takes on the form

Û = exp
(
−iφ

2
eσ

)
. (3.44)

Every unitary transformation in H2 can be written uniquely in the form (3.44) up to a phase
eiκ.

Finally, we want to explain the effects of U on the Bloch sphere. The phase factor eiκ has
no effect on the Bloch vector. Due to the symmetry of the representation, we can fix ez in the
direction of e without loss of generality. The operator Û then – with Eq. (3.44) – takes on the
form

Û = e−i
φ
2 |0〉〈0|+ e+iφ

2 |1〉〈1| (3.45)

(compare Eq. (1.52)). Making use of Eq. (3.28), we can directly read off that Û |ψ〉 is obtained
from |ψ〉 by the substitution ϕ → ϕ + φ. A simple interpretation of the effect of U on the
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Bloch sphere follows: When the state |ψ〉 is represented by the Bloch vector r, then the Bloch
vector r′ associated with the state vector |ψ′〉 which has undergone a unitary transformation

|ψ′〉 = Re(φ)|ψ〉, Re(φ) = exp
(
−iφ

2
eσ

)
(3.46)

is generated by a rotation of r by an angle φ on a cone around the axis e (cf. Fig. (3.4)).
The quantities e and φ are determined by Eqs. (3.41) and (3.43). The unitary transformation
exp(−iφ2σz) (or exp(−iφ2σx) or exp(−iφ2σy)) corresponds to a rotation of the Bloch vector
around the z axis (or the x axis or the y axis, respectively) by the angle φ.

e

U

U

U

Figure 3.4: The effect of the unitary transformation U on the end points of the Bloch vectors of pure
states. The vector e is given by Eqs. (3.41) and (3.43).

Example: Rabi oscillations We wish to describe a physical situation in which the Bloch
vector undergoes periodic motion. A single photon within a cavity oscillator interacts with a
single 2-level atom whose energy levels are denoted by |0〉 and |1〉. For simplicity, we consider
the case of resonance; i.e. the energy difference between the two levels is equal to the photon
energy. Then the photon will be periodically absorbed and emitted. The probability |c0|2
of finding the atom in its excited state |0〉 oscillates in time. The corresponding frequency
is called the Rabi frequency ΩR. Its value is a measure of the strength of the interactions
between the atom and the quantised radiation field. A quantum-electrodynamics calculation
shows that the resulting influence on the state vector of the atom can be described by the
unitary transformation

U(t, t0) = exp
[
−i(t− t0)ΩR

2
σx

]
. (3.47)

As we have seen, this has the result that the Bloch vector r rotates with the frequency
ΩR on a cone around the x axis (compare Fig. 3.5). In the limiting case of a completely
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open cone, it rotates in the y–z plane. The probability |c0|2 is found from the projection
rz(t) = rz(t− 2π

ΩR
) of r onto the z axis, giving

|c0|2 =
rz(t) + 1

2
. (3.48)

The maximum value of the projection rz(t) can attain its largest possible magnitude of 1 only
when r rotates within the y–z plane. For this, it is sufficient that r be directed e. g. parallel
to ez or −ez by an initial projection measurement. These correspond to the states |0〉 or
|1〉. In the other limiting case, the atom is prepared in one of the eigenstates |0x〉 or |1x〉
of σx (cf. Fig. 3.1). Then the Bloch vector lies along ex or −ex and remains unchanged
under the influence of the interactions. The reason for this is to be found in the quantum-
mechanical computation: The Hamiltonian of the composite system, which is composed of
the sum of the Hamiltonians for the free photon, the free atom, and for the interactions, has
two eigenstates. When the composite system is in one of these eigenstates, it remains in that
state. The corresponding atomic states are found to be |0x〉 and |1x〉.

r

ez

ex

Figure 3.5: Rabi oscillations of the Bloch vector r.

3.4 Quantum Gates for Single Qubit Systems

We wish to summarise the mathematically and physically especially relevant unitary transfor-
mations inH2. In the previous section, we saw that the transformations exp(iφσk) cause rota-
tions of the Bloch vector around the coordinate axes ek. The essential point is that according
to Eq. (3.37), every arbitrary unitary transformation can be obtained by repeated applications
of these particular transformations.

NOT and
√

NOT gates In quantum information theory, certain unitary operators play par-
ticular roles, and these are also denoted as quantum gates. Among them are the three Pauli
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operators σk, whose effects we have already described. The Pauli operator σx is also termed
a NOT gate (cf. Tab. 3.1). It exchanges |0〉 and |1〉

NOT := |0〉〈1|+ |1〉〈0| =
(

0 1
1 0

)
, (NOT )(NOT )† = 1 . (3.49)

For the
√

NOT gate (or square-root-of-not gate), we find

√
NOT :=

1√
2

(
1 i
i 1

)
,
√
NOT

√
NOT = iNOT . (3.50)

The phase gate

φ(α) =
(

1 0
0 eiα

)
= |0〉〈0|+ eiα|1〉〈1| , (3.51)

causes a phase shift of the |1〉 component of a vector (phase shifter). φ(α) can also be written
in the form

φ(α) = ei
α
2 e−i

α
2 σz . (3.52)

It therefore is identical to one of the rotations mentioned above, up to a global phase factor.

The Hadamard gate We furthermore introduce the unitary and Hermitian Hadamard
gate H:

H :=
1√
2

(
1 1
1 −1

)
=

1√
2
(σx + σz) , H† = H = H−1 , H2 = 1 , (3.53)

which can be written as a sum of Pauli operators. H is identical to its inverse and converts the
vectors of the computational basis into the eigenvectors of σx (compare Eq. (3.19)):

H|0〉 =
1√
2
(|0〉+ |1〉) (3.54)

H|1〉 =
1√
2
(|0〉 − |1〉) .

We also note the relations

HσxH = σz , HσyH = −σy , HσzH = σx , (3.55)

which can be obtained e. g. by applying the relation (3.7).

The question arises as to which is the axis of rotation e and through which angle of rota-
tion θ the Bloch vector is turned when the Hadamard gate acts upon a state. We employ the
results of Sect. 3.3. With the phase factor e−iκ = −i, we obtain from H a unitary operator Û
(cf. Eq. (3.39)) which has the action

Û |0〉 =
−i√

2
(|0〉+ |1〉) , Û |1〉 =

−i√
2
(|0〉 − |1〉) . (3.56)
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Table 3.1: Frequently-used gates for one qubit.

Gate
Operator
symbol

Operator Matrix

σx operator X σx |0〉〈1|+ |1〉〈0|
(

0 1
1 0

)

σy operator Y σy −i(|0〉〈1| − |1〉〈0|)
(

0 −i
i 0

)

σz operator Z σz |0〉〈0| − |1〉〈1|
(

1 0
0 −1

)

NOT NOT, σx |0〉〈1|+ |1〉〈0|
(

0 1
1 0

)

√
NOT √

NOT
√

NOT ei
π
4 σx 1√

2

(
1 i
i 1

)

x rotation X(φ) Rx(φ) e−i
φ
2 σx

(
cos φ2 −i sin φ

2

−i sin φ
2 cos φ2

)

y rotation Y(φ) Ry(φ) e−i
φ
2 σy

(
cos φ2 − sin φ

2

sin φ
2 cos φ2

)

z rotation Z(φ) Rz(φ) e−i
φ
2 σz

(
e−i

φ
2 0

0 ei
φ
2

)

Phase φ(α) φ(α) |0〉〈0|+ eiα|1〉〈1|
(

1 0
0 eiα

)

Hadamard H H
1√
2
(σx + σz)

= e−i
π
4 σyσz

1√
2

(
1 1
1 −1

)

We can make use of Eq. (3.17) to readily evaluate Eq. (3.41) and obtain the following result:
the Hadamard gate causes a rotation through the angle

θ = 180◦ (3.57)

around the axis

e =
1√
2
(ex + ez) . (3.58)

Additional gates are listed in Tab. (3.1).
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3.5 Spin-1
2

A particularly important implementation of a qubit system is the spin of quantum number 1
2 .

It is an internal degree of freedom of elementary particles, such as electrons, and is described
by means of a two-dimensional Hilbert spaceH2 (spin space). The associated observable is

S =
�

2
σ . (3.59)

Its components, according to Eq. (3.9), obey the commutation relations for angular momenta,

[Si, Sj ]− = i�εijkSk . (3.60)

A magnetic moment is associated with the spin, with the observable

M = γS . (3.61)

The gyromagnetic ratio γ for electrons has the value e
mc . In a magnetic field B, the interaction

between the magnetic field and the magnetic moment leads to a Hamiltonian

H = −γBS . (3.62)

We orient ez in the direction of B and introduce ω := −γB with B = |B|. Then the
Hamiltonian takes on the form H = �ω

2 σz with the eigenvalues ±�ω
2 and the eigenstates |0z〉

and |1z〉. For a spin- 1
2 system, the observable σz can, depending on the physical situation,

be interpreted up to a factor as a component of the magnetic moment or as the energy of the
system in the magnetic field (2-level system).

3.6 Photon Polarisations

In the case of linear polarisation, the monochromatic electromagnetic wave fields have the
form

EH ∼ eH exp i(kr − ωt); EV ∼ eV exp i(kr − ωt); (3.63)

with the propagation vector k (see Fig. 3.6). The indices H and V refer to horizontal and
vertical polarisations or oscillation planes. Another basis is given by

eH′ = e+45◦ =
1√
2
(eH + eV ); eV ′ = e−45◦ =

1√
2
(eH − eV ) . (3.64)

It corresponds to a rotation of the plane of oscillation by an angle of 45◦ around the k axis.
The right-hand and left-hand circularly polarised waves are given by

E(R,L) ∼ e(R,L) exp i(kr − ωt) (3.65)

with

e(R) =
1√
2
(eH + ieV ); e(L) =

1√
2
(eH − ieV ) . (3.66)
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The state vectors of the quantum system photon corresponding to these polarisations are vec-
tors in a Hilbert spaceH2 and are thus qubits. The correspondence is given by:

eH ↔ |H〉 = |0〉, eV ↔ |V 〉 = |1〉 (3.67)

eH′ ↔ |H ′〉 = |+ 45◦〉 = 1√
2
(|H〉+ |V 〉) = |0x〉

eV ′ ↔ |V ′〉 = | − 45◦〉 =
1√
2
(|H〉 − |V 〉) = |1x〉 (3.68)

eR ↔ |R〉 =
1√
2
(|H〉+ i|V 〉) = |0y〉

eL ↔ |L〉 =
1√
2
(|H〉 − i|V 〉) = |1y〉 (3.69)

The connection with the eigenvectors of the Pauli operators has been indicated for the three
types of polarisation.

eV

eH

ek

Figure 3.6: Polarisation vectors and the propagation vector (wavevector k) for linearly-polarised pho-
tons.

3.7 Single Photons in a Beam Splitter and in an
Interferometer

We wish to introduce another qubit system which is especially significant for quantum-optical
experiments relating to quantum information theory. It consists of a single photon on which
a transformation apparatus in the sense of Sect. 1.2 acts; it is constructed from a series of in-
dividual beam splitters, phase shifters, and mirrors. Simple examples of such a photonic net-
work for quantum information processing are beam splitters and interferometers themselves
(cf. Figs. 3.7 and 3.8).

The photon is the quantum of an electromagnetic radiation field with well-determined
mode functions. In our case, these are plane waves which are characterised by a wavevector.
The optical setup which we consider is assumed to be so simple that only two photonic modes
or paths, the 0 path and the 1 path, can be traced through it1. If the photon is registered before,

1If, for simplicity’s sake, we speak of paths, then this should not be understood to imply that the photon “flies
along this path” (compare Sect. 2.1.4). The transformation apparatus can also be used for classical light; the paths
then correspond to classical light rays. This defines the paths. The illustrations are to be understood in this sense.
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within, or after the apparatus, it is found on only one of the paths. Therefore, we can describe
the photon in this situation as a qubit, whereby the states |0〉 or |1〉 refer to the two possible
paths. The normalised photon state is of the form

|ψ〉 = c0|0〉+ c1|1〉 (3.70)

with |c0|2 + |c1|2 = 1 . If we place a detector in the 0 path (0 detector), then it registers
a signal with the probability |c0|2. A corresponding expression holds for the 1 path. The
optical apparatus used have two entry paths and two exit paths, and their effects are described
by a series of unitary transformations of the state vector |ψ〉. They modify the probability of
registering the photon on a particular path, leaving the overall probability conserved.

Phase shifters have already been described. Lossless mirrors have at most the effect of a
phase shift. Beam splitters will be described in the next section, and then we will assemble
the optical components into an interferometer.

3.7.1 Beam Splitters

Beam splitters in general We consider a lossless beam splitter with two input and two
output radiation modes, as shown schematically in Fig. 3.7. The input photon state |ψ〉 as well
as the output photon state |ψ′〉 have the form of Eq. (3.70). The assignment of the paths is
carried out in accord with Fig. 3.7.

0 0

11

Figure 3.7: Convention for the paths of a beam splitter.

The fact that the beam splitter is lossless guarantees the conservation of the probability.
When the input state is |ψ〉, then the output state |ψ′〉 is also a normalised vector and the
effect of the beam splitter can thus be represented by a unitary transformation U (compare
Sect. 1.1.5)

|ψ′〉 = U |ψ〉 . (3.71)

We write U in the matrix form (3.36) and introduce new notations for the amplitudes and
phases. ρ, τ and δ are real.

U = eiκ
(
ρeiδr −τe−iδt

τeiδt ρe−iδr

)
. (3.72)

The action of U can be described simply when the input photon state is a vector of the
computational basis:

|0〉 → U00|0〉+ U10|1〉, |1〉 → U01|0〉+ U11|1〉 . (3.73)
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For the input state |0〉, the beam splitter causes a phase shift of κ+ δr in reflection, and a mul-
tiplication by the real reflection factor ρ. The transmission is determined in a corresponding
way by the phase shift κ+ δt and the transmission factor τ . Analogous expressions hold for
the state |1〉. The action on superpositions follows immediately.

With Eq. (3.72), we obtain as a result of conservation of probability and thus of unitarity:

ρ2 + τ2 = 1 . (3.74)

We now introduce the phase difference δ0 between the reflected and the transmitted states for
the case of the input state |0〉, and δ1 for the input state |1〉. Eq. (3.72) leads to

δ0 = δr − δt ; δ1 = −δr + δt ± π . (3.75)

We thus find as a further result of unitarity the relation

δ0 + δ1 = ±π (3.76)

which is obeyed by every beam splitter.

Special beam splitters Two types of dielectric beam splitters are often used in practice.
These are firstly a beam splitter which causes a phase shift of π2 on reflection in any direction
and no phase shift on transmission:

U1 =
(
iρ τ
τ iρ

)
. (3.77)

It corresponds to the values δr = 0, δt = −π2 and κ = π
2 . This beam splitter is not sym-

metrical in time, since U−1
1 �= U1. The spatially-symmetrical version of this beam splitter, in

which the reflectivity and the transmissivity are the same, is given by ρ = τ = 1√
2

and has the
effects

U1|0〉 =
1√
2
(i|0〉+ |1〉), (3.78)

U1|1〉 =
1√
2
(|0〉+ i|1〉). (3.79)

For both input modes, a photon will be detected with the same probability 1
2 in one of the

output modes (50 : 50 beam splitter). We rewrite Eq. (3.77) with ρ = cos θ and τ = sin θ,
and obtain the unitary transformation in the form

U1 = (cos θ)1− i(sin θ)σx = exp(−iθσx) . (3.80)

A global phase factor i was left off in this expression.
The other often-used type of beam splitter causes a phase jump of π on reflection from

one of its sides:

U2 =
(
ρ τ
τ −ρ

)
. (3.81)

It corresponds to the choice δr = π
2 , δt = π

2 and κ = −π2 , and is symmetrical in time due to
U−1 = U . It is, however, not spatially symmetrical, i. e. it acts differently on input photons in
the modes |0〉 and |1〉. In the special case that ρ = τ = 1√

2
, we have an optical implementation

of a Hadamard gate H of Eq. (3.53), whose action is described by Eq. (3.54).
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A universal quantum gate for qubits We write ρ = cosφ and τ = sinφ, and compose
σzU2. Explicit computation of the corresponding matrices then yields with Eq. (3.14)

exp(iφσy) = σzU2 . (3.82)

Since σz can be implemented with phase shifters, and Eq. (3.37) contains (along with phase
shifts exp(− i

2λσz) and exp(− i
2νσz)) only one operator of the form exp(iµσy), it follows

that every unitary transformation (3.71) can be implemented by a beam splitter as described
by U2 in Eq. (3.81) (Hadamard gate) along with phase shifters.

3.7.2 Interferometer

A Mach-Zehnder interferometer is constructed by inserting a phase shifter between two
Hadamard beam splitters, e. g. in the 1 path, whereby the |1〉 component of the photon state is
multiplied by a phase factor (compare Fig. 3.8). We take a phase factor of the form exp(−iα).
The beam deflections by two identical ideally-reflecting mirrors have no influence on the rel-
ative phases. With the phase gate φ(α) of Eq. (3.51), we can represent the interferometer
symbolically by the diagram in Fig. 3.9. A set of instructions for the application of gates in a
particular sequence is called a circuit. The interferometer is an example of a simple quantum
circuit.

00 0 0

1 11 1
−α

Figure 3.8: A Mach-Zehnder interferometer with phase shifter.

H Hφ(−α)

Figure 3.9: Symbolic diagram of the Mach-Zehnder interferometer.

When a photon in the state |0〉 and thus in the 0 mode enters the interferometer, it experi-
ences in sequence the transformations

|0〉 → 1√
2
(|0〉+ |1〉)→ 1√

2
(|0〉+ e−iα|1〉)→ 1

2
[
(1 + e−iα)|0〉+ (1− e−iα)|1〉] .

(3.83)
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The probability that thereafter a detector will register the photon in the state |0〉 (i. e. that a
detector at the 0 output responds) is given by

p0 =
1
2
(1 + cosα) . (3.84)

Depending on the phase shift α, a periodically oscillating interference pattern results.

The interference pattern If the state |0〉 is input into the interferometer, the first Hadamard
beam splitter has from Eq. (3.83) the sole function of preparing a single state vector which is
symmetric in both modes. The probability that a detector in the 0 path or the 1 path behind
the beam splitter emits a signal is then in each case 1

2 . Equation (3.83) shows that the effect
of the second beam splitter is to add the complex amplitudes of the |0〉 and |1〉 components
of the state vector to give the complex amplitude of the output |0〉 vector, and thus to produce
interference. The interference pattern can be registered as a function of α by a detector in the
0 path on the output side of the interferometer.

00

1 1−α

Figure 3.10: A beam splitter with a phase shifter.

The action of the second beam splitter in producing interference can be described in an-
other manner, which we shall use later for other purposes. If instead of the state |0〉 a super-
position of |0〉 and |1〉 is input into the interferometer, then behind the first beam splitter, there
is a general state which we shall call |χ〉. The state |χ〉 which is input into the phase shifter
and the beam splitter of the setup in Fig. 3.10 is converted by the actions of φ(−α) and H ,
according to

|χout〉 = H(|0〉〈0|+ e−iα|1〉〈1|)|χ〉 , (3.85)

into the output state |χout〉. The probability that the photon will be found in the state |0〉 is

p0(α) = |〈0|χout〉|2 . (3.86)

We insert |χout〉 and let the operators act on |0〉; then it follows that

p0(α) = |〈α|χ〉|2 (3.87)

with

|α〉 := (|0〉〈0|+ eiα|1〉〈1|)H|0〉 =
1√
2
(|0〉+ eiα|1〉) . (3.88)



68 3 The Simplest Quantum Systems: Qubits

The measured value p(α) can be written directly as the mean value of the projection operator
P|α〉 := |α〉〈α| in the state |χ〉 after the first beam splitter:

p0(α) = 〈χ|P|α〉|χ〉 . (3.89)

If we choose |α〉 itself to be the state |χ〉, then owing to p0(α) = 1, only the detector on
the output 0 path registers a count. Equation (3.89) can therefore be interpreted as follows:
the probability that the 0 detector will respond is equal to the probability that the input state
|χ〉 is identical to the state |α〉 which yields with certainty a signal in the 0 detector.

For the input state

|χ〉 = cos
θ

2
|0〉+ ei

φ
2 sin

θ

2
|1〉 (3.90)

which is characterised by the parameters θ and φ, Eq. (3.87) can be readily evaluated, with the
result

p0(α) =
1
2

[
1 + sin θ cos

(
α− φ

2

)]
. (3.91)

On variation ofα by a corresponding setting of the phase shifter, a periodic interference pattern
p0(α) results, with a fringe contrast of

ν :=
pmax − pmin

pmax + pmin
= sin θ . (3.92)

By analysis of the interference pattern, the phase shift ϕ and the fringe contrast sin θ can be
determined. We have thus found an interferometric procedure for the determination of the
state |χ〉.

3.8 Locating a Bomb Without Exploding It by Using a Null
Measurement∗

We want to imagine a procedure which allows us in principle (at least in a certain fraction of
cases) to locate extremely sensitive bombs without exploding them. Locating bombs is only
a particularly spectacular example of a general application. The procedure is based on null
measurements, which have other applications too, e.g. in single-photon optics.

Null measurements A null measurement (or negative-result measurement) is a projection
measurement with a peculiarity: there exists a result for which the measuring device experi-
ences no change, i.e. in which the indicator remains in its initial position 0. This is the null
result. We consider a qubit. Let us assume that the null result corresponds to the state |0〉 of
the quantum object. The null measurement NM is then described by:

NM: (Result 0, P0 = |0〉〈0|)↔ measurement device unchanged

(Result 1, P1 = |1〉〈1|)↔ change in the indicator position .

*The sections marked with an asterisk * can be skipped over in a first reading.
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The following example shows that the NM scheme must often be extended in the case of
realistic detectors. We consider two polarisation states, |0〉 and |1〉, of a photon. A 2-level atom
can be excited only by a photon with the polarisation |1〉. If it is initially in its ground state, it
can absorb a |1〉 photon and thereby remove it from the radiation field. A |0〉 photon will not be
absorbed and continues on its way through the apparatus. The atom in this case remains in its
ground state. The ground state (excited state) of the atom then yields an unchanged (changed)
indicator reading in the measurement apparatus. We shall denote such a null measurement
with an additional absorption in the state |1〉 as NMA|1〉.

M
U1U1

|1〉1√
2
(i|0〉 + |1〉)|0〉

Figure 3.11: The unitary transformations U1 of Eqs. (3.78) and (3.79) are applied to the state |0〉 of a
qubit. M is a measurement in the computational basis {|0〉, |1〉}

A null measurement is detected We consider an input photon in the state |0〉 on which the
unitary transformation U1 described by Eqs. (3.78) and (3.79) acts two times (see Fig. 3.11).
In a subsequent measurementM with the projection operators |0〉〈0| or |1〉〈1|, the polarisation
|1〉 is always registered – and never the polarisation |0〉.

If we insert the null measurement NMA|1〉 between the two unitary transformations (com-
pare Fig. 3.12), then with equal probabilities either the photon will be absorbed or it continues
on in the state |0〉. The second case is the null result. The measurement device remains
unchanged. In this case, the photon is in the state 1√

2
(i|0〉+ |1〉) after the second transforma-

tion U1. With the null measurement inserted, it is thus possible that in the measurement M ,
the polarisation |0〉 will be registered. Relative to the input photon, the probability for this
case is 1

4 .

M
U1

|0〉 |0〉
U1

1√
2
(i|0〉 + |1〉)

NMA|1〉

1√
2
(i|0〉 + |1〉)

Figure 3.12: A null measurement NMA|1〉 with absorption in the state |1〉 of the qubit is inserted
between the two unitary transformations U1 of Fig. 3.11, which in half the cases (as shown in the figure)
leads to the state |0〉.

This has a consequence of which we shall make further use. We assume that only these
two cases are possible, that either the device for the measurement NMA|1〉 is inserted, or not.
Then in a measurement M on a single photon, it can be concluded with certainty from a
registration of the polarisation |0〉, that 1.) the NMA|1〉 device was inserted (Fig. 3.12) and
2.) that the NMA|1〉 device remains unchanged in its initial state. In the case of an initial state
|0〉, this type of unambiguous conclusion is possible in one-fourth of all measurements.

“Detection without destruction” This leads to a surprising effect when |0〉 and |1〉 are
not polarisation states, but rather as in Sect. 3.7 they refer to the spatially separated paths in
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an interferometer which is constructed from mirrors and beam splitters of the type U1 (phase
shifts of π2 on reflection.) A bomb in the optical path 1 (cf. Fig. 3.13), which is so sensitive that
it will certainly explode on interacting with only a single photon, is equivalent to an NMA|1〉
device for the null measurement with absorption. The immediate analogy to the situation of
polarised photons described above demonstrates this.

We make use of this null measurement to locate bombs. To this end, we place the inter-
ferometer in such a way that the optical path 1 leads through a region in which we presume
that a bomb may be present. If the detector D0 registers a signal, then we can conclude with
certainty, without having triggered the bomb, that there is in fact a bomb in this region. This
applies in one-fourth of the measurements. In half of all the measurements, this procedure
results in the triggering of the bomb which is present. In the remaining one-fourth of the
measurements, the detector D1 responds. Then we can reach no conclusion.

The fact that in individual cases a signal from a detector (here the detector D0) allows
the certain conclusion that a bomb exists without its being triggered is a quantum effect. It is
based on the use of a single photon, on the superposition by the beam splitter, and on the fact
that the presence of the bomb in one of the optical paths gives rise to a null measurement2.
There is a result in which the measurement device remains unaffected. At the same time, the
object (photon) is not destroyed, but rather is transferred to a new state. It can thereby pass on
the information that a measurement has taken place.

00 0 0

1 11

U1U1

Mi

D1

D0

Mi

Figure 3.13: The quantum circuit of Fig. 3.12 is implemented in terms of an interferometer with a bomb
in optical path 1. Both the U1 are 50:50 beam splitters with a phase shift of π

2
on reflection. The two

identical mirrors are denoted by Mi. D0 and D1 are detectors of single photons.

2The bomb would be triggered by a single photon. If the photon is registered in detector D0, it cannot have
collided with the bomb. Are we thus dealing with an interaction-free measurement? Those who have already read
Chap. 15 will know that the measurement begins with the entanglement (see Eq. (15.24)), which in the case of the
null measurement takes on the form

(c0|0〉 + c1|1〉)|iM 〉 NM−−−→ c0|0〉|iM 〉 + c1|1〉|1M 〉 . (3.93)

Here, |iM 〉 is the state of the measurement device, which remains unchanged during the measurement (null result).
The entanglement of Eq. (3.93) requires an interaction between the quantum system and the measurement device.
The subsequent decoherence is an interaction between the measurement device and its environment. In the example
with the bomb as measurement device, we presumed that these interactions do not cause the bomb to explode. The
quantum-mechanical treatment of a null measurement shows that it is not interaction free. Nevertheless, the null
result corresponding to an unaffected detector can occur with a probability of |c0|2.
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3.9 Complementary Topics and Further Reading

• Systems with spins greater than 1
2 are investigated in detail in [Zei 81], [PSM 87],

[CST 89], [MW 95] with respect to their role as subsystems in composite quantum sys-
tems.

• Interactions between light and a 2-level atom: [MW 95].

• Review articles on quantum gates: [Bra 02].

• Generalised lossless beam splitters: [CST 89], [MW 95].

• The bomb search was suggested in [EV 93]. An overview of the literature on the the-
ory and on experiments can be found in [Vai 03]. There, the justification of the term
“interaction-free measurement” is discussed.

• By making use of the quantum Zeno effect, the efficiency of the bomb search can be
increased [KWM 99].

• Employing states which contain more than one photon allows one to carry out more
complex null measurements and to make practical use of them [KSN 06].

• A technical application of “interaction-free” measurements could be “interaction-free”
imaging, in which only a small number of photons need interact with the object being
imaged [WMN 98]. The amount of radiation damage can thus be reduced.

3.10 Problems for Chapter 3

Prob. 3.1 [for Sects. 3.1 and 3.3]: Derive equations (3.11), (3.17), (3.36), (3.37), (3.42),
(3.55), and (3.56).

Prob. 3.2 [for Sect. 3.1]: Determine the components of the operator σiσj in the operator
basis of the σ operators.

Prob. 3.3 [for Sect. 3.4]: Compute the representations of the operators in Tab. 3.1, so far
as this was not already done in the text.

Prob. 3.4 [for Sect. 3.4]: Implement for a single photon a
√

NOT gate using a beam splitter.
Construct a NOT gate from two beam splitters.

Prob. 3.5 [for Sect. 3.7.2]: In the 0 path of a Mach-Zehnder interferometer, a phase shifter
with the effect eiα has been inserted, and in the 1 path is another with the effect e−iα. Show
that the resulting transformation has the form

U =
(

cosα i sinα
i sinα cosα

)
. (3.94)



72 3 The Simplest Quantum Systems: Qubits

By insertion of additional phase shifters in the input and output modes, an arbitrary unitary
transformation can be implemented.

Begin with the beam splitter described by the transformation U2 in Eq. (3.81) and show
that by insertion of phase shifters, the beam splitter giving the transformation U1 in Eq. (3.77)
can be constructed.



4 Mixed States and the Density Operator

We have already met up with mixed states in the introductory Sect. 2.1.1, but there, we re-
stricted our formulation of the postulates to pure states. These pure states were described by
vectors in the Hilbert space. We will now first introduce a different representation of the pure
states, which will then lead us directly to an approach for the description of statistical mix-
tures (blends) and general mixtures by using density operators. Density operators describe the
general quantum state. The postulates from Sect. 2.1.2 will be generalised in the following.

4.1 Density Operators for a Given Ensemble (Statistical
Mixture)

4.1.1 Pure States

To a pure state, which we have up to now described by the normalised state vector |ψ〉, we can
also unambiguously assign the operator

ρ := |ψ〉〈ψ| . (4.1)

It is called the density operator of a pure state or often also the density matrix. The following
properties of the density operator can be read off directly:

(i) ρ is positive: 〈ϕ|ρ|ϕ〉 ≥ 0 , ∀ |ϕ〉 ∈ Hd (and thus Hermitian, ρ† = ρ)

(ii) tr[ρ] = 1

(iii) ρ2 = ρ.

Property (ii) is a result of the normalisation of |ψ〉. Conversely, the three properties together
guarantee that the spectral decomposition of ρ has the form (4.1), and thus that ρ uniquely
determines the vector |ψ〉 up to a phase. Making use of the spectral decomposition, one can
also show that when (i) and (ii) hold for an operator ρ, then property (iii) is equivalent to

(iii∗) tr[ρ2] = 1 . (4.2)

A selective measurement of the observablesAwith the result an and the associated projec-
tion operator Pn from Eq. (2.3) converts ρ, according to Eq. (2.2), into the density operator ρ′n

ρ→ ρ′n =
1

p(an)
PnρPn . (4.3)

Entangled Systems: New Directions in Quantum Physics. Jürgen Audretsch
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Here, corresponding to Eq. (2.5),

p(an) = tr[Pnρ] (4.4)

is the probability of obtaining the value an in the measurement. It can be useful to write
the resulting density operator in its non-normalised form ρ̃′n := |ψ̃′

n〉〈ψ̃′
n|, with |ψ̃′

n〉 from
Eq. (2.2). In this form, the trace is not necessarily equal to one. As with the state vector, we
characterise this by a tilde:

ρ̃′n = PnρPn . (4.5)

The probability p(an) is then equal to the trace of the non-normalised resulting density oper-
ator after the selective measurement:

p(an) = tr[ρ̃′n] . (4.6)

We obtain the expectation value 〈A〉 of the observable A by inserting the identity operator
generated by the ONB {|ui〉},

〈A〉 =
d∑

j,k=1

〈ψ|uj〉〈uj |A|uk〉〈uk|ψ〉

=
∑

j,k

〈uk|ρ|uj〉〈uj |A|uk〉

=
∑

k

〈uk|ρA|uk〉 (4.7)

= tr[ρA] .

We still have the task of rewriting the unitary dynamics in the Schrödinger representation
for ρ. With Eq. (2.10), we find

ρ(t) = U(t, t0)ρ(t0)U−1(t, t0) , (4.8)

and we obtain the von Neumann equation:

i�ρ̇(t) = i�U̇ρ(t0)U−1 + i�Uρ(t0)U̇−1

= HUρ(t0)U−1 − Uρ(t0)U−1H

= [H, ρ(t)] . (4.9)

With the Liouville operator L as in Eq. (1.87), it can also be written in the form

i�ρ̇ = L(ρ) . (4.10)

To summarise, we have seen that the physics of quantum systems in pure states, which
can be described by the mathematical object “state vector |ψ〉”, can be equally well specified
by the density operator ρ as in Eq. (4.1). In this sense, one can say with the same operational
significance as for |ψ〉: the system is in the state ρ. In contrast to the vector formulation, we
can however apply the state formulation in terms of the density operator directly to a more
general class of quantum states, the statistical mixtures. We shall describe this in detail in the
following section.
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...

|ψn〉
pn

ρ

|ψ1〉
p1

{|ψi〉, pi}

Figure 4.1: The statistical mixture (blend) with ensemble {|ψi〉, pi} results if only one of the preparation
apparatus for the states |ψi〉 acts at any given time, with the corresponding probability pi.

4.1.2 The Physics of Statistical Mixtures (Blends)

Preparation We consider the following experimental situation: for isolated quantum sys-
tems of the same type, an arbitrary but finite number of different preparation procedures are
available, which are enumerated by the index i (i = 1, . . . , N ), and which convert it cor-
respondingly into the pure states |ψi〉. These states need be neither orthogonal nor linearly
independent. N can be greater than the dimension d. We proceed to a new type of preparation
procedure which consists in applying for each quantum system one of the original procedures
with a particular classical probability pi, where

N∑

i=1

pi = 1 . (4.11)

Therefore, for the preparation of the single quantum system under consideration, precisely
one of the preparation apparatus is switched on in a random manner (compare Fig. 4.1). The
corresponding state |ψi〉 is then in fact realised for the respective system. In this process,
it is guaranteed that the i th apparatus acts with the probability pi. One says that through
“mixing” of the pure states, the ensemble {|ψi〉, pi} is generated. We have already encountered
an example of this in Sect. 2.1.1. With knowledge of the states |ψi〉 and of the preparation
probabilities pi, a definite prediction of the probability of occurrence of measured results is
again possible. According to the concept which we are using, this generalised preparation
procedure thus defines a quantum state. It is called a statistical mixture or blend and can
be a pure state as a special case. By the use of the term “statistical”, we emphasize that an
ensemble has been prepared. In the literature, one can also find the term proper mixture. In
Chap. 7, we shall meet up with another type of mixture.

The density operator of statistical mixtures We show that the equations for the physical
expressions of Sect. 4.1.1 can be applied to statistical mixtures when they are described by the
density operator

ρ :=
N∑

i=1

pi|ψi〉〈ψi| =
N∑

i=1

piρi (4.12)

with ρi := |ψi〉〈ψi|. To this end, we reduce statements about the mixture to statements about
the ensemble states ρi.
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In a measurement of the observable A, the value an will be obtained with the probability

p(an) =
∑

i

p(an|i)pi . (4.13)

Here, p(an|i) is the conditional probability that the value an will be obtained when the state
ρi is present. With (4.4), we find

p(an|i) = tr[Pnρi] . (4.14)

This leads with Eq. (4.12) and the rules for computation of the trace to

p(an) = tr[Pnρ] . (4.15)

Equation (4.4) can thus be applied to the case of mixtures. Equation (4.7) can also be applied
to the case of statistical mixtures with the argument that expectation values for the individual
states contribute with the probabilities pi to the expectation value for the mixture:

〈A〉 =
∑

i

pitr[Aρi] = tr[Aρ] . (4.16)

As shown by Eqs. (4.13) and (4.16), in the computation of the probabilities and expectation
values, products of classical and quantum-mechanical probabilities occur.

Selective and non-selective measurements We still need to derive the equations for the
two forms of dynamic behaviour. We begin with the measurement dynamics. For each of the
individual states ρi of the ensemble we obtain for the result of a selective measurement giving
the value an the non-normalised state

ρi → ρ̃′i,n = PnρiPn (4.17)

(compare Eq. (4.5)). We explicitly allow degeneracy of the measured values. For the density
operator ρ of Eq. (4.12), it follows from Eq. (4.17) that

ρ→ ρ̃′n =
∑

i

piρ̃
′
i,n = PnρPn . (4.18)

This agrees with the relation (4.5). With Eq. (4.15), we find for the normalised density operator
following the selective measurement, in agreement with Eq. (4.3),

ρ→ ρ′n =
1

p(an)
PnρPn , tr[ρ′n] = 1 . (4.19)

A derivation of this equation starting from the determining quantity, i.e. from the measure-
ment result an, can also be carried out by applying Bayes’ theorem1 (see Sect. 1.3.2). The

1Assume that a measurement of the observable A leads to the result an. If the state ρi was present before the
measurement, then after the measurement, the normalised state

ρ′i,n =
1

p(an|i)
PnρiPn (4.20)
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probability p(an) of observing the measured value an can, according to Eqs. (4.15) and (4.18)
and in agreement with Eq. (4.6), also be written in the form

p(an) = tr[ρ̃′n] . (4.23)

Finally, we mention also the special case that no degeneracy is present for the measured
value an. Then we have Pn = |an〉〈an| with the eigenvector |an〉 belonging to the eigenvalue
an. Accordingly, Eq. (4.19) becomes

ρ→ ρ′n = |an〉〈an| . (4.24)

When the result of a measurement is not degenerate, the corresponding selective measurement
on a statistical mixture prepares a pure state.. This is plausible, since in this case each of the
state vectors |ψi〉 of the ensemble is converted by the measurement process to |an〉.

In a non-selective measurement of the observable A, one often repeats the measurement
on quantum systems in the same state without sorting out those states ρ′n which belong to a
particular result an as in a selective measurement. The resulting state ρ′ in this case is again
a statistical mixture which is composed additively of the states ρ′n that are produced by the
measurement with the probabilities p(an):

ρ
n.s.−−→ ρ′n.s. =

∑

n

p(an)
PnρPn
tr[ρPn]

=
∑

n

PnρPn, tr[ρ′n.s.] = 1 . (4.25)

We made use of Eq. (4.15) in deriving this result.

Unitary dynamics We now turn to the unitary dynamics. Under their influence, the classical
probabilities pi of the preparation procedure do not change. Equation (4.8) can thus be directly
applied to statistical mixtures

ρ(t) = U(t, t0)ρ(t0)U−1(t, t0) (4.26)

and we find the von Neumann equation (4.9) or (4.10).

(cf. Eqs. (4.14) and (4.23)) is found. What is the probability p(i|)an) that ρi was present before the measurement,
if an resulted from the measurement? According to Bayes’ theorem, which was treated in more detail in Sect. 1.3.2,
we find (by rearranging with the help of Eq. (4.13))

p(i|an) =
p(an|i)piP
j p(an|j)pj

=
p(an|i)pi

p(an)
, (4.21)

where
P

i p(i|an) = 1. The quantity p(i|an) is thus in general not the same as pi. Overall, it follows that the
measurement resulting in an belongs to the transition

ρ → ρ′n =
X

i

p(i|an)ρ′i,n . (4.22)

Substitution of ρ′i,n leads directly to equation (4.19).
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Where do statistical mixtures occur? The preparation procedure described at the begin-
ning of this chapter may appear somewhat artificial. However, as we have seen, for isolated
quantum systems, statistical mixtures indeed occur in a very natural manner. All non-selective
measurements on pure states and on statistical mixtures lead to statistical mixtures and not to
pure states.

Even selective measurements on statistical mixtures in general lead to statistical mixtures
when the resulting measured value is a degenerate eigenvalue of the observable operators.
Degeneracy can lead to mixing. With ρ from Eq. (4.12), we find for ρ′n in Eq. (4.19)

ρ′n =
1

p(an)

∑

i

piPn|ψi〉〈ψi|Pn . (4.27)

Projection operators Pn for degenerate eigenvalues project onto subspaces (cf. Eq. (2.3)),
therefore the Pn|ψi〉 are in general not all the same. The resulting density operator is a sum of
density operators for pure states and can thus not itself be the density operator of a pure state.
We discuss this point below in more detail in connection with convex combinations. In the
presence of degeneracy, the mixture is not completely unmixed by a selective measurement.

Finally, we mention another measurement situation which leads to statistical mixtures. As-
sume the measured values obtained by a measurement apparatus to be non-degenerate. How-
ever, there is an inaccuracy in the indication of the apparatus, so that all the values within the
interval [an, am>n] are indicated by the apparatus as a single result an. A selective measure-
ment yielding the apparent value an then does not prepare a pure state, but rather a statistical
mixture.

We have up to now considered only isolated systems. In Sect. 7.3, we shall see that the
subsystems of entangled systems can likewise be described by density operators. This leads to
an important extension of the concept of a “mixture” to include non-statistical mixtures which
do not correspond to any well-determined ensemble of individually prepared states.

4.1.3 Definition and Properties of the Generalised Density Operator

Definition We now must determine which of the properties (i) to (iii(∗)) that were derived
for pure states in Sect. 4.1.1 also hold for the density operator of a statistical mixture. Making
use of Eqs. (4.11) and (4.12), we confirm (i) and (ii) immediately. For the discussion of (iii),
we consider the spectral decomposition of ρ,

ρ =
d∑

j=1

λj |j〉〈j| . (4.28)

{|j〉} is an ONB and as a result of (i) and (ii), we have λj = λ∗j , λj ≥ 0 and
∑
j λj = 1. We

thus obtain

0 ≤ λj ≤ 1 (4.29)

and thereby

tr[ρ2] =
∑

j

λ2
j ≤ 1 . (4.30)
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The equals sign in Eq. (4.30) unambiguously characterises the occurrence of a pure state. The
inequality holds only for a true mixture (never for a pure state).

We discard the experimental implementations considered up to now and call an operator
quite generally a density operator if it fulfills the conditions

(i) ρ is positive (and thus Hermitian, ρ† = ρ)

(ii) tr[ρ] = 1 .

The inequality (4.30) is a consequence of this.

Degree of mixtureness From Eq. (4.30), we find for the smallest value of tr[ρ2] the quo-
tient 1

d , where d is the dimension of the Hilbert space. The value λj = 1
d is adopted and

belongs to

ρ =
1
d
1 . (4.31)

This completely structureless density operator is called the maximally mixed density operator.

As described above, statistical mixtures are produced operationally in experiments by the
“mixing” of states. One can introduce the parameter

Ξ := 1− tr[ρ2] (4.32)

to describe the degree of mixtureness which varies between that of a pure state, Ξ = 0, and
that of maximal mixtureness, Ξ = 1− 1

d :

0 ≤ Ξ ≤ 1− 1
d
. (4.33)

Convex combinations We make note of a simple consequence of the definition of the den-
sity operator. When ρl with l = 1, . . . , k are density operators and rl are positive numbers
with

∑
l rl = 1, then the convex sum

ρ =
k∑

l=1

rlρl (4.34)

is again a density operator.
We show that the density operator ρ of a pure state is characterised not only by tr[ρ2] = 1,

but also in another way. In contrast to all other density operators, the density operator of a
pure state cannot be decomposed into a convex sum. To prove this statement, we attempt to
decompose the density operator

ρ = |ψ〉〈ψ| (4.35)

according to

ρ = λρ1 + (1− λ)ρ2, 0 < λ < 1 , ρ1 �= ρ2 . (4.36)
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For a vector |χ〉 orthogonal to |ψ〉, we obtain

〈χ|ρ|χ〉 = 0 = λ〈χ|ρ1|χ〉+ (1− λ)〈χ|ρ2|χ〉 . (4.37)

Since λ and 1 − λ are positive and the operators ρ1 and ρ2 are positive operators, it follows
that

〈χ|ρ1|χ〉 = 〈χ|ρ2|χ〉 = 0 . (4.38)

We complete |ψ〉 to an ONB by including additional vectors. For these vectors, Eq. (4.38)
applies in each case. We take the matrix elements of ρ1 and ρ2 in this basis and make use of
tr[ρ1] = tr[ρ2] = 1. Then we find as the only non-vanishing matrix elements

〈ψ|ρ1|ψ〉 = 〈ψ|ρ2|ψ〉 = 1 . (4.39)

From this, we have

ρ = ρ1 = ρ2 . (4.40)

The decomposition (4.36) is thus not possible. Mixing of pure states (or of mixtures) can
never lead to another pure state. This characterises pure states both mathematically as well as
in principle also operationally. We made use of this property in the definition of a pure state
when we formulated the postulates in Sect. 2.1.2.

4.1.4 Incoherent Superpositions of Pure States

During a unitary dynamic evolution, as a consequence of Eq. (4.26), we have conservation of
the positivity and of the trace of ρ:

tr[ρ(t)] = tr[ρ(t0)] (4.41)

as well as of the trace of ρ2

tr[ρ2(t)] = tr[ρ2(t0)] . (4.42)

Therefore, by unitary dynamics, neither can a pure state be transformed into a mixture, nor
vice versa.

On the other hand, as a result of a selective measurement with a non-degenerate measured
value, a true mixture can indeed be transformed into a pure state, as we have seen in Eq. (4.24).
Is the reverse process, which we call decoherence, possible as a result of a measurement,
i.e. the second form of dynamics described by the postulates? We consider this question more
thoroughly in connection with the theory of measurements in Chap. 15. Here, we initially
wish to demonstrate why it makes sense to use the terms coherence and incoherence.

We can read off from Eq. (4.16) that when we take an expectation value 〈A〉, the averag-
ing occurs over the expectation values tr[Aρi] and not, as in a superposition, over the states
themselves. In the case of a statistical mixture, we are dealing in this sense with an incoher-
ent superposition of pure states. The states involved do not interfere with each other. Their
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relative phase cannot be experimentally determined. We can immediately understand this in
light of the preparation procedure given in Sect. 4.1.2. This statement can be visualised op-
erationally in an interference experiment. The situation of the two-slit experiment provides a
further example (see Sect. 2.1).

In Sect. 3.7.2, we saw how by using a beam splitter, the 0 component and the 1 component
of a photon state |ψin〉 = cos θ2 |0〉 + ei

φ
2 sin θ

2 |1〉 can be coherently superposed. The phase
shifter in Fig. 3.10 produced an interference pattern which depends on the phase α. In the
special cases |ψin〉 = |0〉 and |ψin〉 = |1〉, no interference pattern with fringe contrast is
obtained. For an input mixture ρin, according to Eq. (3.86), the probability that the 0 detector
registers a signal as a function of the phase shift α is given by

p(α) = tr[P|α〉ρin] , (4.43)

where P|α〉 = |α〉〈α| from Eq. (3.88). For ρin = |0〉〈0| and ρin = |1〉〈1|, the result is
p(α) = 1

2 , i.e. there is no interference pattern.
If we do not superpose the states |0〉 and |1〉 as in the case of |ψin〉, but instead mix them:

ρin = λ0|0〉〈0|+ λ1|1〉〈1| (4.44)

(λ0,1 ≥ 0, λ0 +λ1 = 1), then we obtain for the signal probability once again a value which is
independent of α,

p0(α) =
1
2
(λ0 + λ1) =

1
2
. (4.45)

The statistical mixture ρin is an incoherent superposition for which in the interferometer with
the paths |0〉 and |1〉, no interference pattern depending on α occurs. This is plausible if one
imagines that for a statistical mixture, objects in the states |0〉 and |1〉 enter one after another.

Remarkably, we find the same result even for statistical mixtures with an ensemble
{|ψi〉, pi} which is not the same as the ensemble {|0〉, |1〉, λ0, λ1}:

ρ =
∑

i

pi|ψi〉〈ψi|, (4.46)

provided that the associated density operator ρ is mathematically identical with the density
operator ρin. With Eq. (4.43), it follows again that p(α) = 1

2 . In these cases also, the inter-
ference pattern generated from all the measured points exhibits no fringe contrast, although
possibly the ensemble states |ψi〉 individually might very well lead to interference with fringe
contrast. As shown by Eqs. (4.43) and (4.46), the resulting interference pattern p(α) is pro-
duced by additive – and thus incoherent – superposition, p(α) =

∑
i pi(α), of the individual

interference patterns of the states |ψi〉

pi(α) = pitr[P|α〉|ψi〉〈ψi|] (4.47)

weighted by the ensemble probabilities pi. We shall return to this point in connection with the
quantum eraser in Sect. 8.7.
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4.2 The Generalised Quantum State

We recall the definition of the state of a quantum system as given in Section 2.1.2. The state
is that mathematical object which permits us to compute the probabilities of the results of all
possible measurements on the system. It is associated with a preparation procedure.

The measurement postulate Density operators, i.e. all positive (and thus Hermitian) op-
erators ρ, which fulfill the condition tr[ρ] = 1, are clearly such mathematical objects, if one
postulates that the probabilities are given by Eq. (4.15). The measurement process transforms
the states into the states ρ′n of Eq. (4.19) or ρ′n.s. of Eq. (4.25). This generalises postulate 2 from
Sect. 2.1.2. It can be shown that aside from the density operators, there are no other mathe-
matical objects which fulfill the requirements of a quantum state. According to this important
Gleason’s theorem (see Sect. 4.5), we have already arrived at the most general description of
quantum systems.

Up to now, we have considered only statistical mixtures (i. e. blends) as quantum states. In
Chap. 7, we will deal with other realisations of states based on the reduced density operators
for the subsystems of composite systems. They differ from statistical mixtures in terms of
their preparation. The postulate which generalises postulate 1 of Sect. 2.1 can then in general
terms be stated as: quantum states are represented by density operators. They are called
mixtures. Statistical mixtures are a special physical case which is distinguished by a particular
preparation procedure.

4.3 Different Ensemble Decompositions of a Density
Operator and the Ignorance Interpretation

We begin with a very simple observation. Let the decomposition of two qubit states |a〉 and
|b〉 (which describe e. g. spin- 1

2 states) in the computational basis be

|a〉 =

√
2
3
|0〉+

√
1
3
|1〉

|b〉 =

√
2
3
|0〉 −

√
1
3
|1〉 . (4.48)

Then the density operator ρ, which belongs to the ensemble of the states |a〉 and |b〉 with the
probabilities pa = pb = 1

2 , can be written in a simple form:

ρ =
1
2
|a〉〈a|+ 1

2
|b〉〈b| = 2

3
|0〉〈0|+ 1

3
|1〉〈1| . (4.49)

It is thus at the same time the density operator for the ensemble with the states |0〉 and |1〉
(e. g. spin polarisations in the z direction) and the probabilities p0 = 2

3 and p1 = 1
3 .

We give a second physical example. In a particular experimental procedure, horizontally-
and vertically-polarised photons are produced with equal probabilities. The associated ensem-
ble {|H〉, |V 〉, pH = pV = 1

2} is described by the density operator

ρ =
1
2
1 . (4.50)
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In a completely different setup, right-hand circular- and left-hand circular-polarised photons
are produced in equal numbers. The ensemble {|R〉, |L〉, pR = pL = 1

2} has the same density
operator ρ. The photons are therefore in the same state. There is no experiment which can be
carried out on the photons to distinguish by which of the two experimental procedures they
were prepared. Knowledge of the density operator ρ does not allow us in this case to conclude
unambiguously which ensemble is present. We shall prove that this holds for every density
operator and shall show at the same time how the different ensembles arise from one another.
In the following, we presume that the density operator does not describe a pure state.

Ensemble decompositions We consider the density operator

ρ =
∑

a

pa|ψa〉〈ψa| =
∑

a

|ψ̃a〉〈ψ̃a|, |ψ̃a〉 :=
√
pa|ψa〉, (4.51)

which we formulate with non-normalised vectors, denoted by a tilde. Again, the vectors |ψa〉
need not be orthogonal nor linearly independent. The fact that a density operator ρ can be
considered to be the density operator of the ensembles {|ψa〉, pa} and can therefore be written
as in Eq. (4.51) is called an ensemble decomposition of ρ. We shall assume that there is a
further ensemble decomposition of ρ:

ρ =
∑

i

|ϕ̃i〉〈ϕ̃i| . (4.52)

Furthermore, we always have the spectral decomposition of ρ,

ρ =
d∑

n=1

λn|n〉〈n| =
d∑

n=1

|ñ〉〈ñ| , (4.53)

with the ONB {|n〉}, which likewise represents an ensemble decomposition of ρ. The ranges
of the indices of the types a, b, . . . and i, j, . . . as well as n,m, . . . need not be the same.

We limit ourselves to eigenvalues λn �= 0 and limit the range of n,m, . . . correspondingly.
Then the associated |n〉 do not necessarily form a basis of the whole Hilbert space H. We
assume that they span the subspace H′. For |χ〉 from the orthogonal complement of H′, we
then find:

0 = 〈χ|ρ|χ〉 =
∑

a

〈χ|ψ̃a〉〈ψ̃a|χ〉 =
∑

a

|〈χ|ψ̃a〉|2 (4.54)

and therefore

〈χ|ψ̃a〉 = 0 (4.55)

for all |χ〉 and all indices a. The corresponding conclusion holds for the vectors |ϕ̃i〉. Then all
the |ψ̃a〉 and all the |ϕ̃i〉 lie in the subspace H′ and we can expand them in terms of the basis
{|n〉} ofH′:

|ψ̃a〉 =
∑

n

can|ñ〉, |ϕ̃i〉 =
∑

n

din|ñ〉 . (4.56)
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Inserting into Eq. (4.51) and taking Eq. (4.53) into account leads to

ρ =
∑

a,n,m

canc
∗
am|ñ〉〈m̃| =

∑

n

|ñ〉〈ñ| (4.57)

and hence to
∑

a

canc
∗
am = δnm ,

∑

i

dind
∗
im = δnm . (4.58)

The relations that follow from Eq. (4.52) are also shown in (4.58). When the ranges of the
indices are the same, the Eqs. (4.58) imply that the matrices can and din are unitary.

With Eqs. (4.56) and (4.58), we find
∑

a

c∗am|ψ̃a〉 =
∑

a,n

c∗amcan|ñ〉 = |m̃〉 . (4.59)

Since Eq. (4.59) holds for every basis vector ofH′, the number of vectors |ψa〉 and |ϕi〉 cannot
be less than the dimension ofH′. Finally, we insert Eq. (4.59) into Eq. (4.56) and obtain

|ϕ̃i〉 =
∑

n,a

dinc
∗
an|ψ̃a〉 . (4.60)

A corresponding decomposition can be obtained by applying Eq. (4.58) for |ψ̃a〉.
We have shown that: For two ensemble decompositions {|ψ̃a〉} and {|ϕ̃i〉} of a density

operator, the vectors of the one decomposition can be written as a linear combination of
the vectors of the other decomposition according to Eq. (4.60), whereby Eq. (4.58) is obeyed.
Conversely, one can readily show that vectors |ϕ̃i〉 and |ψ̃a〉, which are related as in Eq. (4.60),
each represent an ensemble decomposition of the same density operator when their matrices
fulfill the conditions (4.58). Evidently there are arbitrarily many such matrices and therefore
arbitrarily many ensemble decompositions of a density operator.

The example of Eq. (4.49) and the proof have made it clear that the ambiguity of the
ensemble decomposition has an underlying cause which is typical of quantum mechanics: a
state vector can be written in infinitely many different ways as linear combinations of other
state vectors. There is no analogy for classical states.

The ignorance interpretation We have seen that a density operator permits mathematically
different ensemble decompositions. This should not lead to confusion in connection with the
question as to what is really present in the physical world. When quantum systems are pre-
pared in the state ρ as a statistical mixture (or a blend) with the ensemble {|ψi〉, pi} according
to the procedure given in Section 4.1.2, then one can go beyond the minimal interpretation –
and claim that they are indeed really and objectively each in one of the states |ψi〉. However,
subjectively we may not know in which one, i. e. we are ignorant. In principle, however, this
can be known, for example if the possibility exists of determining precisely which individual
preparation apparatus was active (see Fig. 4.1). One then says that the state ρ allows an ig-
norance interpretation. Of course, one could also prefer a minimal interpretation of quantum
theory, in which the question posed above is never asked in the first place.
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4.4 Density Operators of Qubits

The density operator ρ inH2 can be decomposed as in Sect. 3.1 in terms of the Pauli operator
basis

ρ =
1
2
(1 + rσ) . (4.61)

Here, r is the Bloch vector

r = tr[ρσ] = 〈σ〉, r ∈ R . (4.62)

Using

tr[ρ2] =
1
2
(1 + |r|2) (4.63)

as obtained from Eq. (3.23), it follows from

1
2
≤ tr[ρ2] ≤ 1 (4.64)

that the Bloch vector obeys the inequality

|r|2 ≤ 1 . (4.65)

The degree of mixtureness is determined directly from the magnitude of the Bloch vector:

Ξ =
1
2
(1− |r|2) . (4.66)

For a true mixture, the Bloch vector r lies within the Bloch sphere. The completely mixed
state 1

21 is represented by the centre of the sphere, r = 0.

Determination of states The relation ρ ↔ r as in Eqs. (4.61) and (4.62) is, in contrast
to the relation |ψ〉 ↔ r, completely unambiguous, since phase factors are not represented
by ρ. We can determine the state ρ by measurement of the expectation values 〈σ〉 of the three
different observables σ. In the case of the spin, this takes the form of a measurement of the
mean values of the spin components in three independent directions. For a pure state, owing
to the normalisation of r, two directions suffice.

To conclude, we give the matrix elements as functions of the components of the Bloch
vector:

ρ(r) =
1
2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
(4.67)

with

r3 = ρ00 − ρ11

r2 = i(ρ01 − ρ10) (4.68)

r1 = ρ01 + ρ10 .
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4.5 Complementary Topics and Further Reading

• Gleason’s theorem: We initially described quantum states in terms of state vectors and
thereafter by density operators. Are there other mathematical objects which permit un-
ambiguous predictions of measurement probabilities? Gleason’s theorem [Gle 57] states
that

〈A〉 = tr[Aρ] (4.69)

is the most general formula for the expectation value which is compatible with the prob-
ability structure of the quantum theory, if the dimension of the Hilbert space is greater
than 2. The description of states by means of positive operators with trace 1 is the most
general quantum-mechanical formulation. This is still true when measurements are de-
scribed in terms of a POVM (cf. Sect. 13.4). Literature: [Per 93, pp. 190f], [BGL 95,
p. 124f], [Aul 00, pp. 199f]. In [Bus 99], this theorem is proved also for the dimension 2.

• Complementary literature on density operators: [Fan 57].

• On the terminology “proper mixture”: [d’Es 95] and [d’Es 99].

4.6 Problems for Chapter 4

Prob. 4.1 [for Sects. 4.1 and 4.4]: The state of a quantum system is given by the density
matrix

ρ =
(
a 0
0 b

)

with a, b ∈ R, a ≥ 0, b ≥ 0 and a+ b = 1.

a) What is the probability of obtaining the value +1 or −1 in a measurement of σx?

b) Calculate directly, without referring to a), the expectation value for a measurement of σx.

c) Compute the corresponding quantities for σy in place of σx.

d) Find the Bloch vector and explain the results for the expectation values.

Prob. 4.2 [for Sect. 4.3]: Give several different ensemble decompositions of the density
matrix

ρ =
1
2

(
1 0
0 1

)

for a spin system.
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Prob. 4.3 [for Sect. 4.4]: Show that a density operator can be simply written as a function
of the magnitude of the Bloch vector by making use of the eigenbasis:

ρ↔
(

1− |r|2 0
0 1 + |r|2

)

(Hint: determine the eigenvalues of ρ(r).)

Prob. 4.4 [for Sect. 4.4]: The observables A, B and C have the representations

A =
(

3 0
0 −1

)
, B =

(
1 1
1 −1

)
, C =

(
0 −2i
2i 0

)
(4.70)

in the computational basis. Measurements on the state with the density operator ρ lead to the
expectation values

〈A〉 = 2 , 〈B〉 =
1
2
, 〈C〉 = 0 . (4.71)

Find the density operator ρ.





5 Shannon’s Entropy and Classical Information

Entropy is a concept which was developed in the framework of thermodynamics. In classical
statistical mechanics and in quantum statistics, it is used for the description of statistical
mixtures. The entropy is in this case a measure of the disorder and of the missing information
about a state. Beginning from this interpretation, the entropy developed into a key concept
in classical information theory (Shannon’s entropy) and quantum information theory (von
Neumann’s entropy).

Quantum information theory describes the transfer and processing of information using
quantum systems as carriers of information. Here, von Neumann’s entropy plays a multiple
role:

(i) It permits statements about the classical information content coded on quantum-
mechanical devices.

(ii) It quantifies which quantum-mechanical resources are at a minimum required in order to
store a given amount of information.

(iii) Finally, it carries out a task which has no classical analogue: using the von Neumann
entropy, the degree of entanglement of composite systems can be quantified.

In addition to these three tasks, there are other applications in connection with the theory of
measurement, with perturbed quantum channels etc.

We start with the first point above, which follows immediately from our previous consid-
erations of statical mixtures, and initially introduce as a preparation for the rest of this chapter
the classical entropy of Shannon. Then, in the following chapter, we investigate information
transport through quantum channels in order to give the quantum entropy an operational
meaning. The significance of the concept of entropy for the description of entangled quantum
systems will be sketched in the chapter after the next.

5.1 Definition and Properties

Formulation of the problem In this introductory section, we wish to explain the concept of
Shannon’s entropy using the example of a written text (e. g. a newspaper), which is intended
to convey information. The text consists of a series of n letters from an alphabet.
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Figure 5.1: A signal source with the signal ensemble {xi, pi} generates a character string.

Texts in a natural language are objects which are much too complex for our purposes.
They consist for example of English words, i. e. not all possible combinations of letters are
allowed. Furthermore, series of letters are not independent of each other, for example in an
English text a ‘q’ is nearly always followed by ‘u’ but never by ‘x’. We shall ignore these
correlations between letters and consider only texts which are produced by a signal source
without memory, and which meet one condition: a letter xi is presumed to occur with the
probability pi, where

∑N
i=1 pi = 1. N is the number of different letters, which depends on

the language. In an English text, for example, the letter ‘z’ occurs less frequently than ‘y’, in
contrast to German where the reverse is true. Such a stochastic memoryless signal source is
characterised only by the signal ensemble {xi, pi} with i = 1, . . . , N . It represents a set of
distinguishable alternatives xi together with their probabilities pi. The signal ensemble is also
denoted as a random variable X .

As an operational implementation, one can imagine that N printing machines, each of
which can print one letter xi, are all working in parallel as one signal source. Using these
printers, Alice, as sender, can now print out a text. This message consists of a character string
or a sequence of n letters. The number of possible messages is then given byNn. The printers
are however set up in such a way that they fulfill a constraint. We consider a large number
of such sequences as they are printed out by the source. The relative frequency with which
the letter xi is printed will be given by pi. In the special case that p1 = 1, there is e. g. only
a single sequence: x1x1x1 . . . x1 . . .. But even when p1 �= 1, this sequence can occur1. All
the machines together form a large printing device which represents the signal source in our
imagined setup (see Fig. 5.1).

The particular text which is printed out by Alice is passed on to the recipient, Bob, letter
for letter without errors using a carrier describable by classical physics (e. g. printed paper).
Bob does not know which letters he will receive next, but he is supposed to know which
printing device is used by Alice. Bob thus has an important advance information: he knows
the signal ensemble {xi, pi} and thus in particular the probabilities pi. This is his a priori
knowledge. We seek a measure of Bob’s remaining a priori uncertainty given this knowledge.
This measure can at the same time serve as a measure for the information which would remove

1With this model of printing machines, we have detached ourselves to a large extent from the “language”, since
e.g. yy . . . y will likewise be printed by a source whose pi correspond to the frequencies of occurrence of letters in
the English language, but this will to be sure happen only very rarely.
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this uncertainty. As we shall see, the entropy represents such a measure of the information.
This will already become clear in the following heuristic introduction of the entropy. A more
precise quantification and operationalisation will then be discussed in the following Sect. 5.2.

Shannon’s entropy 2 Alice prints out a sequence of n letters. There areNn such sequences. If
n is a large number, then it is probable that many of these sequences already reflect the relative
frequencies pi within themselves, that is the letter xi turns up with the frequency ni = npi
somewhere within the long sequence. Sequences of the form xixi . . . xi are not excluded but
are improbable when the pi are small. When n is large, Bob may therefore assume that he will
receive one of the sequences which contain the letters xi with the frequencies ni. We will call
such sequences typical sequences in Sect. 5.2.1. How many different sequences of this type
are there? There are n! ways to arrange n characters. Permutations of the same letters among
each other does not produce a new text. For a character xi, ni! permutations are possible. We
therefore have

Zn =
n!

n1!n2! . . . nN !
(5.1)

sequences with
∑N
i=1 ni = n.

In order to arrive at probabilities pi, we consider the limiting case of an infinitely long
text, (n→∞, ni →∞). Then, pi = ni

n and with Stirling’s formula log(n!) = n log n− n+
O(log n) for the logarithm of the number Zn, we obtain

logZn → n log n− n−
N∑

i=1

(ni log ni − ni)

= −n
N∑

i=1

pi log pi . (5.2)

(Here, we used 0 log 0 = 0.)
If we divide the logarithm of the number Zn of possibilities by n, i.e. relate it to the

individual characters as an average value, we obtain Shannon’s entropy or the classical entropy
H(p̃) of the probability distribution p̃↔ {pi, i = 1, . . . , N}, which is defined as follows:

H(p̃) := lim
n→∞

1
n

logZn = −
N∑

i=1

pi log pi ≥ 0 . (5.3)

The logarithm is always computed to the base 2, since later, we wish to refer to bits. The
notation H(X) is often used instead ofH(p̃). The number Zn of possible texts with a number
n of characters is then found in the limiting case to be

Zn = 2nH(ep) . (5.4)

Since many (few) possibilities reflect a large (small) measure of a priori uncertainty for
Bob, H(p̃) from Eq. (5.3) is a measure of the mean a priori uncertainty of a character which is

2 [Sha 48], [Sha 49]
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received by Bob. Then H is at the same time the average information which Bob receives per
transmitted character. The associated overall information permits him to identify the sequence
received from among the possible alternative sequences. H is dimensionless. The value of
H gives the amount of information in units of bits. We will restate this more precisely in
Sect. 5.3. The entropy H(p̃) thus characterises both the signal source and also the message.

H(p̃) is a function of the probability distribution pi of the signal ensemble. Whether
the signal consists of letters or of other symbols is irrelevant. The xi can be any sort of
alternatives which occur with the associated probabilities pi. In contrast to signal transmission
with quantum systems, we have assumed that the symbols (e. g. letters) are classical symbols.
They can be uniquely distinguished from one another and are not changed in the process of
reading out. If xi is received by Bob, then he in fact reads xi. Here, it plays no role with
what sort of classical carrier (paper, tone frequencies, etc.) the information is transmitted.
This independence on the physical properties of the classically-describable carrier shows that
Shannon’s entropy is a concept which is added on to classical physics rather than following
from it.

Properties We first wish to prove some mathematical properties of the entropy. The maxi-
mum value of H(p̃) is logN , where N is the number of symbols in the signal ensemble. It is
attained for the uniform distribution p1 = p2 = . . . = pn = N−1. To prove this conjecture,
we write the constraint

∑
i pi = 1 in the form pN = 1 −∑N−1

i=1 pi and consider the other
pi �=N as independent variables. The derivative of

H(p̃) = −
N−1∑

i=1

pi log pi − pN log pN (5.5)

is then zero due to

∂H/∂pl = − log pl + log pN (5.6)

for pl = pN = 1
N . This leads to

Hmax(p̃) = H(pi = N−1) = logN . (5.7)

There is no additional extremum, for example at the boundary. We also note the minimum
value of H(p̃):

Hmin(p̃) = 0 ⇔ pl = 1, pi �=l = 0 . (5.8)

It is obtained when the signal ensemble contains only a single symbol.
All together, we thus have

0 ≤ H ≤ logN (5.9)

and for binary coding (N = 2):

0 ≤ H ≤ 1 . (5.10)

H(p̃) is in this case (p1 = p, p2 = 1− p) a function of p with 0 ≤ p ≤ 1,

H(p) = −p log p− (1− p) log(1− p) (5.11)

which is shown in Fig. 5.2. A classical system with two states has a maximum information
capacity of H(p = 1

2 ) = 1 bit.
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Figure 5.2: Shannon’s entropy H(p) for binary coding with the probabilities p1 = p and p2 = 1 − p.

5.2 Shannon’s Theorem

5.2.1 Typical Sequences

We now wish to show that the entropy H(p̃) represents a reasonable measure of the informa-
tion content per character in the case that a long text (n → ∞) is produced by a source with
the signal ensemble {xi, pi}. How can one understand information operationally in a more
precise way? Let us assume that Alice has a text, which we shall call the output text, and
she wants to transmit it to Bob. Alice doesn’t use the signal ensemble itself, but instead the
simplest non-trivial alphabet. It consists of two characters (e. g. of the binary digits 0 and 1),
which are assumed to occur with equal probabilities. The new text is then a bit sequence (or
binary string). The transmission to Bob is again assumed to be free of errors. Each time that
one of these symbols is received by Bob, we say that he has received the quantity of infor-
mation 1 bit. The answer to the yes-no question, “Has the number 0 appeared?” contains the
information 1 bit. We determine the information content of the output text by counting how
many bits Alice must transmit in the most economical way, in order that Bob can determine
which was the output text out of a set of texts of length n. Since we are considering very long
texts, it suffices to determine the mean number of bits required per character of the output
alphabet. We will show that it is equal to Shannon’s entropy H(p̃). The information in the
output text is then nH(p̃) bits. To analyse Alice’s procedure, we start from the law of large
numbers.

Limiting-case theorem We consider a stochastic, memoryless source, which produces not
letters, but rather real numbers yi , i = 1 . . .N with the probabilities pi. The signal ensemble
is thus {yi, ψi}. A sequence of n of these numbers might be e. g.

y4y1y17y4 . . . y1 . (5.12)
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We enumerate the numbers in order. The real number at position l is termed wl, with
l = 1, . . . , n. In (5.12), for example, w2 = y1. The sequence in (5.12) can then be writ-
ten in the enumerated form

w1w2w3 . . . wn . (5.13)

We want to consider very long sequences. Then the law of large numbers applies. It states
that the arithmetic average of the numbers in the sequence approaches the expectation value
computed with the probabilities pi:

lim
n→∞

1
n

n∑

l=1

wl =
N∑

i=1

piyi =: 〈y〉 . (5.14)

The limiting case can be formulated somewhat more precisely: for given arbitrary small values
ε > 0 and δ > 0, and assuming finite variance of the yi, there is a large sequence length n
such that the probability of generating a sequence with

∣
∣ 1
n

∑
l wl − 〈y〉

∣
∣ < δ is greater than

1− ε.

Typical sequences After these preliminary considerations, we return to our letters or sym-
bols xi in the signal ensemble {xi, pi}. A particular sequence of length n is e. g.

x4x1x17x4 . . . x1 . (5.15)

The total probability P (x4 . . . x1) for the occurrence of this sequence is the product

P (x4 . . . x1) = p4 · p1 · p17 · p4 . . . p1 . (5.16)

We take the negative logarithm and divide by n:

− 1
n

logP (x4, x1, . . . , x1) =
1
n
{− log p4 − log p1 . . .− log p1} . (5.17)

This sum has the structure of an average value. The summands in brackets form a sequence
of real numbers. It corresponds to the sequence (5.12) with y4 = − log p4, etc. Referring to
Eq. (5.13), we can write: w1 = − log p4, . . . , wn = − log p1. The probability of occurrence
of − log pi on the right-hand side of Eq. (5.17) is equal to that for the occurrence of xi in the
sequence (5.15), and therefore equal to pi. With Eq. (5.14), we can again write the arithmetic
average as an expectation value. Equation (5.17) together with the definition (5.3) then leads
to:

lim
n→∞

{
− 1
n

logP
}

= −
N∑

i=1

pi log pi =: H(p̃) . (5.18)

Again, we will make this result more precise by introducing infinitesimal values ε and δ.
Higher powers of ε and δ will be neglected. The probability that a sequence occurs with
P (. . .) which leads to a value of − 1

n logP within the interval

H − δ < − 1
n

logP < H + δ , (5.19)
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is greater than 1 − ε. Therefore, a sequence will be generated with near certainty whose total
probability P from Eq. (5.16) fulfills the condition (5.19). Or, formulated as above: For a
given ε and δ there is a sequence length n such that (5.19) is fulfilled with the probability
1− ε. With increasingly smaller ε and δ values, n becomes greater and greater. We rearrange
Eq. (5.19):

2−n(H+δ) ≤ P ≤ 2−n(H−δ) . (5.20)

Equation (5.20) states that with near certainty (at least with a probability 1 − ε), sequences
occur whose total probabilities P computed as in Eq. (5.16) are all equal to 2−nH . These
sequences are called typical sequences. For sufficiently large n, the set of sequences of
length n can be decomposed into two disjoint subsets: the typical sequences which occur with
identical probabilities, and the remainder consisting of atypical sequences.

How large is the numberZ(n, ε, δ) of such typical sequences? The sum of the probabilities
of all the typical sequences must lie between 1− ε and 1:

1− ε ≤ Z(n, ε, δ)P ≤ 1 . (5.21)

We divide by P and take into account the fact that P itself lies in the interval defined in
Eq. (5.20). Then it follows for the number of typical sequences:

(1− ε)2n(H−δ) ≤ Z(n, ε, δ) ≤ 2n(H+δ) . (5.22)

This specifies Eq. (5.4) more precisely.

5.2.2 Classical Data Compression

Coding of long blocks and data compression The inequalities (5.20) and (5.22) have an
immediate practical application. With an increasing number n of symbols in the message,
atypical sequences almost never occur. The numberZ(n, ε, δ) of typical sequences approaches
2nH :

Z(n, ε, δ) n�1−−−→ 2nH . (5.23)

Furthermore, all the typical sequences occur with the same probability P = 2−nH (uniform
distribution). We enumerate the 2nH different typical sequences by natural numbers in the
binary system. We thus code entire sequences (block coding) and no longer consider individual
signals. We then require numbers with nH digits (assuming H �= 0).

On the other hand, the number of possible sequences overall is Nn = 2n logN . If
we enumerate them with binary numbers, we require numbers with n logN digits. For
the characterisation of a particular typical sequence of length n by block coding (when
H �= Hmax = logN ), a binary text of the shorter length nH (compare Eq. (5.9)) suffices.
A still more compact coding with fewer bits is indeed not possible, since all the typical se-
quences are already equally probable. We would gain nothing by recoding. The binary text
is now transmitted to the receiver. Since the block coding is known to the receiver, he can
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uniquely reconstruct the particular typical sequence. Through the limitation to typical se-
quences – and only such occur as messages when n is large – combined with binary enumera-
tion of the typical sequences, we have accomplished a data compression. Further compression
is not possible. Referring to an analogous statement about quantum systems as data carriers,
we note also: Shannon’s entropy gives the number of classical binary information carriers per
symbol which is at a minimum necessary to transmit the information contained in a message.
Classical binary information carriers can be e. g. slips of paper on which either a 0 or a 1 is
printed; or tones which are transmitted with only one of two possible frequencies, etc.

Shannon’s theorem We formulate the result (5.22) once again in a different way and con-
sider the error probability in the process. The right-hand inequality of (5.22) states that we
can map each typical sequence uniquely in a string of n(H + δ) binary digits. The remaining
less-probable atypical sequences are mapped by Alice “erroneously” all onto a single binary
string (e. g. 000. . . 00). Then it is possible with this procedure that two different original mes-
sages are coded by the same binary string and an error can occur on decoding. We write the
error probability in the form 1 − F . F is called the fidelity of the coding-decoding scheme.
Shannon’s noiseless coding theorem3 summarises the previous considerations in the following
form: When n(H + δ) bits are available for the coding of messages of the (large) length n.
then the messages can be coded with an error probability 1 − F < ε in the corresponding
binary strings (for given ε and δ, there is an n for which this statement holds). If only H − δ
bits are available, then the error probability is greater than 1− ε.

5.3 Classical Information

We now return to the problem which we formulated at the beginning of Sect. 5.1. Alice
has at hand a text whose content she knows, with n characters, obtained from a memoryless
source with the signal ensemble {xi, pi}. The corresponding entropy is H(p̃). Alice has
previously agreed with Bob, who knows the signal ensemble, how the typical sequences will
be enumerated digitally with strings of length nH(p̃). As we showed in Sect. 5.2.2, Bob
must then ask Alice nH(p̃) yes-no questions in order to ascertain what is the number of the
output text and thus which of the texts is the output text itself. This immediately yields an
operational interpretation of the entropy: Shannon’s entropy H(p̃) is the average number of
required yes-no questions per character (symbol) of the output text. The smaller the value
of Shannon’s entropy H(p̃), the fewer questions Bob needs to ask. It is therefore reasonable
to call H(p̃) the information content per character of the output text. If the signal ensemble
{xi, pi} with i = 1, . . . , N has e. g. only one single character (N = 1), then Bob already
knows the text. He need ask no questions at all. This corresponds to H(p̃) = 0 (cf. Eq. (5.7)).
As shown by Eq. (5.8), Bob must ask the most questions per character – namely logN – when
the probabilities pi are uniformly distributed: p1 = p2 = . . . = pN = N−1.

3 [Sha 48], [Sha 49]
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5.4 Classical Relative Entropy

Gibbs’ inequality It will be useful for many proofs to introduce as a tool the classical
relative entropy H(p̃‖q̃) of {pi} relative to {qi} for two probability distributions {pi} and
{qi} of the same alphabet {xi}, and to employ its properties:

H(p̃‖q̃) :=
N∑

i=1

pi log
pi
qi

= −H(p̃)−
N∑

i=1

pi log qi . (5.24)

Making use of the fundamental inequality relating the logarithms for all positive x

log x ln 2 = lnx ≤ x− 1 , (5.25)

we can derive an inequality for H(p̃‖q̃):

H(p̃‖q̃) = −
N∑

i=1

pi log
qi
pi

≥ 1
ln 2

N∑

i=1

pi(1− qi
pi

)

=
1

ln 2

N∑

i=1

(pi − qi) = 0 . (5.26)

This relation is called Gibbs’ inequality. The relative entropy H(p̃‖q̃) is not negative. It is
equal to zero if and only if pi = qi holds for all i (identical distributions).

Concavity The fact that Shannon’s entropy is a concave function is a direct consequence of
Gibbs’ inequality. If p̃1 and p̃2 are two probability distributions with probabilities {p1i} and
{p2i}, then for the distribution p̃ = λp̃1 + (1− λ)p̃2 with the probabilities {pi = λp1i + (1−
λ)p2i} and 0 < λ < 1, we have

H(λp̃1 + (1− λ)p̃2) ≥ λH(p̃1) + (1− λ)H(p̃2) . (5.27)

The equals sign holds when the distributions p̃1 and p̃2 are identical. This means that if one
averages over two probability distributions, then the entropy increases. The proof follows
from Gibbs’ inequality (5.26) by writing out the terms using Eq. (5.24):

0 ≤ λH(p̃1||p̃) + (1− λ)H(p̃2||p̃) = H(p̃)− λH(p̃1)− (1− λ)H(p̃2) . (5.28)

5.5 Mutual Information as a Measure of the Correlation
between Two Messages

In Chapter 7, we shall see that in measurements on a subsystem of a bipartite quantum-
mechanical system, the results of the measurements occur with particular probabilities. Fur-
thermore, one finds correlations between the results when pairs of measurements are carried
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out separably on the two subsystems. Both statements depend on the composite state of the
composite system and characterise this state. We wish to prepare for the quantum-mechanical
concepts with which the corresponding details can be quantitatively described, by first intro-
ducing the analogous classical concepts.

We assume that two signal sources with signal ensemblesX ↔ {xi, pi} and Y ↔ {yj , pj}
are available, whose symbols or signals are not produced independently of one another. That
is, there are correlations. We seek a measure of the correlation of messages from the two signal
ensembles. For simplicity, we write for the ensembles X ↔ {x, p(x)} and Y ↔ {y, p(y)},
as well as

∑
i =

∑
x, etc. We then have e. g. H(p̃(x)) = H(X).

p(y|x) is the conditional probability of the occurrence of y when x has already occurred.
As we discussed in Sect. 1.3, we then have

p(y|x)p(x) = p(y, x) = p(x, y) . (5.29)

p(x, y) is here the probability thatX and Y occur together (the joint probability). The average
uncertainty of the occurrence of a pair for known signal ensembles {(x, y), p(x, y)} is also
called the joint entropy H(X,Y ). According to Eq. (5.3), it takes the form

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y) = H(Y,X) . (5.30)

H(X, Y )

H(X) H(Y )

H(Y |X)I(X :Y )H(X|Y )

Figure 5.3: A set-theoretical visualisation of the different types of entropy.

5.5.1 Mutual Information

We introduce the quantity mutual information as

I(X :Y ) := H(X) +H(Y )−H(X,Y ) = I(Y :X) (5.31)

with the entropies H(X) := −∑
x p(x) log p(x) and H(Y ) for the individual ensembles

(cf. Fig. 5.3). If we solve Eq. (5.31) for H(X,Y ),

H(X,Y ) = H(X) +H(Y )− I(X :Y ) , (5.32)



5.5 Mutual Information as a Measure of the Correlation between Two Messages 99

we can see that I(X : Y ) is a measure of how much less the uncertainty of the pairs is than
the sum of the uncertainties of the two individual ensembles. This is a reasonable measure of
the correlation of the two ensembles.

We give an example. Alice has only blue and green socks. She always wears two socks
of the same colour. Bob knows this and he also knows that Alice wears green socks with the
probability p(g) = 1

4 and blue socks with the probability p(b) = 3
4 . The ensemble X ↔ L

and Y ↔ R refer to the left and to the right socks. Then we have p(g, g) = 1
4 , p(b, b) = 3

4 ,
p(g, b) = 0, p(b, g) = 0 and thus

H(L,R) = H(L) = H(R) = −0, 25 log(0, 25)− 0, 75 log(0, 75) = 0, 81 . (5.33)

Before Bob looks e. g. at the left sock, his uncertainty about the colour of the right sock is equal
toH(R). If, however, he looks at the left sock, then this uncertainty vanishes completely. Bob
then has obtained the information

I(L :R) = H(L) +H(R)−H(L,R) = H(R) . (5.34)

Precisely this is reflected in the relation (5.31) together with Eq. (5.33). I(L :R) is maximal,
namely I(L : R) = 1, for p(g) = p(b) = 1

2 . The mutual information depends, like every
information, on the previous knowledge. When we take it to be a measure of the correlation
of the two signal ensembles, this point should be kept in mind.

5.5.2 Conditional Entropy

It is instructive to clarify the interpretation of I(X : Y ) once more in another way. We can
interpret the entropy H(X) = −∑

x p(x) log p(x) also as follows: − log p(x) is the uncer-
tainty in the occurrence of the signal x. Weighting with the probability p(x) of occurrence and
summing over all x leads to H(X) as the average uncertainty per signal. With the probability
p(x, y) that both x and also y occur, and the uncertainty − log p(x|y) for the occurrence of x
when y has already occurred, we find analogously

H(X|Y ) := −
∑

x,y

p(x, y) log p(x|y) ≥ 0 . (5.35)

This quantity is, in contrast to H(X,Y ) from Eq. (5.30), based on the conditional probability
p(x|y). H(X|Y ) is called the conditional entropy. H(X|Y ) describes just how uncertain we
still are (on average) concerning the value of x, when we already know the result y. We are
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thus dealing with a remaining uncertainty4. We rewrite H(X,Y ) with the aid of Eq. (5.29):

H(X,Y ) = −
∑

x,y

p(x, y) log p(x|y)p(y)

= −
∑

x,y

p(x, y) log p(y)−
∑

x,y

p(x, y) log p(x|y) (5.38)

= −
∑

y

p(y) log p(y) +H(X|Y ) .

With this, we find

H(X|Y ) = H(X,Y )−H(Y ) and H(Y ) ≤ H(X,Y ) . (5.39)

The uncertainty for pairs, H(X,Y ), is reduced to a remaining uncertainty H(X|Y ) when the
information H(Y ) about the y signal is at hand. Analogous relations hold when the x signal
has already been received. In our example of the socks, the remaining uncertainty is zero. A
visualisation of the different entropy concepts is given in Fig. 5.3.

Equations (5.31) and (5.39) lead to

H(X|Y ) = H(X)− I(X :Y ) . (5.40)

The uncertainty about x when y has occurred is reduced, compared to the a priori uncertainty
about the occurrence of x, when correlations between the ensembles X and Y are present.
One can also interpret I(X :Y ) as the average information which one obtains about the value
of X when the value of Y becomes known, and vice versa (I(X : Y ) = I(Y :X)). In this
sense too, the mutual information I(X :Y ) is found to be a measure of the correlation of the
ensembles. We shall return to the mutual information in Chap. 9 in connection with entangled
quantum systems.

Subadditivity Finally, we mention without proof that by making use of the convexity of the
logarithm function, the inequality

H(X) ≥ H(X|Y ) ≥ 0 (5.41)

can be proven. Then it follows with Eq. (5.40) that the mutual information cannot be negative:

I(X :Y ) ≥ 0 . (5.42)

4The conditional entropy H(X|Y ) can also be introduced in a somewhat different manner. The average remaining
entropy of the variables X, when the particular signal y has been received, is found from the conditional probability
p(x|y):

H(X|y) = −
X

x

p(x|y) log p(x|y) . (5.36)

Averaging over y leads with (5.29) to the conditional entropy H(X|Y )

H(X|Y ) = −
X

y

p(y)
X

x

p(x|y) log p(x|y) = −
X

x,y

p(x, y) log p(x|y) . (5.37)
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Information about Y cannot reduce out knowledge of X and vice versa. Equality is found
precisely whenX and Y are independent. Equation (5.31) leads as an immediate consequence
to the subadditivity of the entropy (compare Fig. 5.3):

H(X,Y ) ≤ H(X) +H(Y ) . (5.43)

5.6 Complementary Topics and Further Reading

See also Sect. 6.6.

• Review articles: [Weh 78], [Ste 98], [Ved 02].

5.7 Problems for Chapter 5

Prob. 5.1 [for 5.2]: List the possible messages of length n = 4 composed of the binary
digits 0 and 1 (i. e. N = 2). Demonstrate how the number of typical sequences changes when
p0 approaches 1 and p1 approaches 0. How does the probability of the typical sequences
change? What happens on increasing the length n?

Prob. 5.2 [for 5.5.2]: Prove the subadditivity (5.43) using Gibbs’ inequality (5.26).

Prob. 5.3 [for 5.5.2]: Prove the inequalities

H(X) ≥ H(X|Y ) ≥ 0 . (5.44)

Prob. 5.4 [for 5.5.2]: Show that the mutual information I(X :Y ) is zero if and only if X
and Y are independent, i. e. when p(x, y) = p(x)p(y).





6 The von Neumann Entropy and
Quantum Information

6.1 The Quantum Channel and Quantum Entropy

The quantum channel We consider the following physical situation (cf. Tab. 6.1):
A classical signal source generates the letters of a character string, one after the other. As

we have seen, this signal source can be described by an ensemble {xi, pi} with i = 1, . . . , N .
The message is to be transmitted via a quantum channel. In this process, identical quantum
objects (e. g. atoms of the same type with spin 1

2 , or photons) take on the role of carriers of the
quantum-mechanical signal alphabet. For each character xi, a preparation apparatus with the
index i generates a quantum system in the signal state |ψi〉 and transmits it (compare Fig 4.1
with Fig. 5.1). The relationship between the character xi and the state |ψi〉 is unambiguous.
The entire setup is called the quantum signal source. By means of the preparation procedure,
the classical information is thus coded in terms of pure quantum states. This first interface
produces a statistical mixture of signal states with the density operator

ρ =
N∑

i=1

pi|ψi〉〈ψi| (6.1)

in a Hilbert space Hd of dimension d. The density operator ρ (also called the state ρ) again
refers to a preparation procedure. The associated ensemble is the quantum signal ensemble
{|ψi〉, pi}. It is important that we not require in general that the normalised state vectors |ψi〉
be orthogonal. Furthermore, the dimension d need not be the same asN ; N can be e. g. larger.
The transmitting quantum channel should be free of disturbances and isolated from outside
influences. The quantum signal ensemble thus –for simplicity– remains unchanged within the
channel.

At a second interface, the attempt is made to read out the information which was originally
input into the signal source, via projective measurements. For this purpose, a detector observ-
ableD is measured. The orthonormal eigenstates {|dm〉, m = 1, . . . , d} of the observablesD

D|dm〉 = dm|dm〉 (6.2)

form an ONB of Hd. The associated eigenvalues dm are assumed not to be degenerate. Then
the correspondence between the measured values dm and the states |dm〉 after the measure-
ment procedure is unambiguous. The probability of occurrence of a measured value dm in
a measurement on ρ is denoted by p(dm). Transmission of a signal via a quantum channel
reflects the underlying scheme of quantum theory: at the beginning stands the preparation of a
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Table 6.1: Classical information is coded as quantum information. A measurement again yields the
classical information.
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state and at the end, a measurement. The input consists of a sequence of classical signals with
the Shannon entropy H(p̃), and the output is a sequence of measured values with the Shannon
entropy H(p̃(d)).

To complete the description, we make note of the spectral decomposition of the density
operator ρ:

ρ =
d∑

m=1

λm|m〉〈m| , 〈m|m′〉 = δmm′ (6.3)

with the eigenvectors |m〉 and the eigenvalues λm. The {|m〉, m = 1, . . . , d} form an ONB
ofHd, which is also called the eigenbasis of ρ.

The von Neumann entropy We first consider a special situation, in which the classical
information which is input can again be read out without losses. The quantum system is to
this end chosen so that the dimension d of Hd is the same as the number N of characters in
the classical signal ensemble. At the first interface, by a suitable choice of the preparation
procedure, corresponding to the character xi, an eigenstate |di〉 of some detector observable
D is generated (i. e. |ψi〉 = |di〉)

ρ =
N∑

i

pi|di〉〈di| =
N∑

i

λi|i〉〈i| . (6.4)

In this case, we thus have pi = λi and |di〉 = |i〉. The quantum signal source becomes a
quasi-classical source due to the distinguishability of the signal states. Subsequently, at the
second interface, the observableD is measured. The occurrence of the value di gives a unique
indication of the original input of the signal character xi, owing to their distinguishability. All
of the probability distributions involved are the same: p(di) = pi = λi. Correspondingly, we
obtain for Shannon’s entropy of the signal ensembles and of the ensemble of the measured
values the value H(p̃) = H(p̃(d)).

The unique relation between the ensembles {xi, pi}, {|ψi〉, pi}, and {di, p(di)} in this
particular quasi-classical situation and the corresponding agreement of the three probability
distributions suggest that we associate to the statistical mixture with the density operator ρ of
Eq. (6.4) a quantum entropy S(λ̃) which has the same value as Shannon’s entropy (S(λ̃) =
H(p̃)):

S(λ̃) = −
d∑

i=1

λi log λi ≥ 0 . (6.5)

Using the spectral decomposition of ρ in Eq. (6.3), S(λ̃) can be written as a function of the
density operator ρ:

S(ρ) := S(λ̃) = −tr[ρ log ρ] ≥ 0 . (6.6)

This quantum entropy S(ρ) is also called the von Neumann entropy1 of the mixture with the
density operator ρ. The unit of this entropy is a quantum bit or a qubit. We shall give the
reason for this notation in the next chapter.

1 [vNe 68]
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Since S(ρ) is unambiguously determined when ρ is fixed, we can generalise from the spe-
cial information-transmission procedure described above and associate formally a von Neu-
mann entropy S(ρ) as in Eq. (6.6) to every density operator ρ and thus to every quantum
state, even in physical situations in which there is no signal transmission or processing. S(ρ)
characterises a density operator ρ independently of how the corresponding state was prepared
physically. ρ can also be a reduced density operator, which describes the state of a subsystem
of a multipartite system. A state ρ with a spectral decomposition (6.3) cannot be distinguished
from a statistical mixture of the states of the eigenbasis with the ensemble {|m〉, λm}. The
state ρ can thus be completely simulated in this way. With this statistical mixture, if it is
generated as a signal source, the classical information H(λ̃) = S(ρ) will on the average be
transmitted per signal state. If one wishes to gain a descriptive understanding of the von Neu-
mann entropy by association with the familiar Shannon entropy, then it is necessary to follow
this circuitous route via the signal ensemble of the equivalent statistical mixture. In the next
section, we shall see that an alternative visualisation is also possible.

Measurement of the von Neumann entropy For this purpose, it suffices to determine ρ and
its eigenvalues. This is especially simple when the eigenstates {|m〉} of ρ are already known.
Measurements in the eigenbasis of ρ are particularly favourable. They lead to the probabilities

p(dm) = λm , (6.7)

with which the von Neumann entropy of ρ can be found:

S(ρ) = −
d∑

m=1

p(dm) log p(dm) = H(p̃(d)) . (6.8)

6.2 Qubits as the Unit of Quantum Information

The term quantum information is intended to refer to information which is represented by
the state of a quantum system and which can be transmitted using the quantum system as
carrier. In this case, the transmitter is a preparation apparatus and the receiver is a measure-
ment device. These are the interfaces for the transitions classical→ quantum-mechanical or
quantum-mechanical → classical information. Only classical information is a type of infor-
mation which we can read out directly.

It is our goal, in analogy to our procedure in Sect. 5.2, to transmit a sequence of quantum
states |ψ1〉, . . . , |ψn〉 from a given signal ensemble using as few quantum systems as possible.
It can be shown [Sch 95] that such a sequence can be compressed without reference to classical
information in a unitary manner, so that it can be regenerated with asymptotically perfect
fidelity by the receiver using a further unitary transformation. For this purpose, qubit systems
are employed as quantum-mechanical carrier systems. For optimal compression, the average
number of qubit systems required per signal state is given by the von Neumann entropy of the
signal ensemble described by the density operator, {|ψi〉, pi}. The von Neumann entropy thus
obtains an operational interpretation, which no longer relies on the classical Shannon entropy.
This theorem is the quantum-mechanical analogue of Shannon’s theorem from Sect. 5.2.2. It
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was derived by Schumacher in its most precise form using quantum data compression and is
also called Schumacher’s quantum noiseless coding theorem. We can not prove it at this point,
since in the proof, the sequence of quantum states is taken to be a product state of a large
composite system. Such quantum systems will be introduced in the next chapter. Concerning
the proof, which is not very simple,2 we refer to the literature (see Sect. 6.6). The unit of
the quantum entropy S(ρ) is termed the qubit. A quantum system with two levels (e. g. |0〉
and |1〉) which permits the coding of just one qubit of information is also itself called a qubit
(qubit system would be preferable).

We now wish to compare the classical transmission of quantum information with the
quantum-mechanical transmission. Let the signal ensemble consist of the states

|ψ0〉 = |0〉 , |ψ1〉 = |0x〉 (6.9)

which occur with the probabilities

p1 = p2 =
1
2
. (6.10)

In a classical transmission of the information, owing to H(p1, p2) = 1 bit, no data compres-
sion is possible. For a sequence of n quantum states, after recoding we require n classical
carriers of 1 bit.

It is more efficient not to recode to classical carriers. The von Neumann entropy is found
from the density operator:

ρ = p0|ψ0〉〈ψ0|+ p1|ψ1〉〈ψ1| =



3
4

1
4

1
4

1
4



 . (6.11)

The matrix is defined in terms of the computational basis. The eigenvalues can be determined
(λ0 = cos2 π

8 = 0, 853, λ1 = sin2 π
8 = 0, 146) and lead with Eq. (6.5) to S(ρ) = 0, 601

qubits. For the transmission of a sequence of states of the signal ensemble, we therefore
require only 0, 601 qubit systems per state. This shows that a quantum compression with
quantum coding in terms of qubit systems is a useful tool for the transmission of quantum
information. The qubit is an appropriate unit of quantum information. We should also empha-
size that the compression procedure of Schumacher is universal. In order to carry it out, one
need not know the state which is to be transmitted.

2The proof is similar to that of Shannon in Sect. 5.2, which is based on the idea of typical sequences. If we restrict
ourselves to qubit systems, then the signal states |ψi〉 are states in H2 that need not be orthogonal. We combine
the n systems of a long sequence into a composite system with a state vector in the 2n-dimensional product space.
Then the following can be shown (see Sect. 6.6): When the signal ensemble {|ψi〉, pi} has a von Neumann entropy
S(ρ) > 1, then the probability (which increases with n) is large that the state vector lies within a typical subspace
of the product space, depending on the ensemble. Its dimension is 2nS(ρ). Therefore, product states with nS(ρ)
qubit states are sufficient for the representation of such state vectors. Correspondingly, only nS(ρ) qubit systems as
carriers are required for the transmission. From their composite state, the original sequence can be reconstructed via
a unitary transformation. The error in this process decreases with increasing n.
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6.3 Properties

Referring to Eq. (6.8), in analogy to Shannon’s entropy, we can show directly that:

(i) A pure state ρ = |ψ〉〈ψ| has the minimal value of the entropy, S(ρ) = 0.

(ii) For a density operator with d non-vanishing eigenvalues, one finds

0 ≤ S(ρ) ≤ log d . (6.12)

The equals sign holds when all non-vanishing eigenvalues are the same. The completely
mixed state ρ = 1

d1 in a Hilbert space of dimension d has the maximum von Neumann
entropy, S(ρ) = log d.

(iii) As a result of the concavity of Shannon’s entropy, we find for the von Neumann entropy
for pj > 0 with

∑
j pj = 1 the concavity relation

S(p1ρ1 + . . .+ prρr) ≥ p1S(ρ1) + . . .+ prS(ρr) . (6.13)

For the proof, one makes use of the spectral decomposition of ρj .
∑
j pjρj is the state

of a quantum system which is found in the unknown state ρj with the probability pj . The
result (6.13) is plausible. Several ensembles have been combined, or the associated ensemble
decompositions have been mixed. Our lack of knowledge about this mixture is greater than
our average lack of knowledge about the states ρj . The information about which mixture a
state of the ensemble decomposition has come from has been lost. The entropy is greater
because we know less about the preparation. It follows in particular from (i) that

S(ρ) > 0 , (6.14)

if ρ is not a pure state.

Unitary dynamics It holds for a unitary transformation of the density operator that

S(UρU†) = S(ρ) , (6.15)

since S depends only on the eigenvalues of ρ. The entropy is thus – independently of which
representation one chooses for the unitary dynamic evolution – always independent of time:

dS
dt

= 0 . (6.16)

Our information about a state does not change during the unitary dynamic evolution. The
corresponding conclusion does not hold for the measurement dynamics.
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Quantum-mechanical relative entropy and Klein’s inequality This will serve us primar-
ily as a mathematical computational aid. We consider two density operators ρ and σ, and
introduce the quantum-mechanical relative entropy S(ρ‖σ) of ρ relative to σ:

S(ρ ‖ σ) := tr[ρ log ρ]− tr[ρ log σ] . (6.17)

As in the analogous classical case, we wish to derive an estimate. The orthogonal decomposi-
tions of ρ and σ are assumed to be given by

ρ =
d∑

m=1

λm|φm〉〈φm| , σ =
d∑

m=1

κm|ξm〉〈ξm| . (6.18)

It then follows that:

S(ρ‖σ) =
∑

m

λm log λm −
∑

m

〈φm|ρ log σ|φm〉 . (6.19)

With 〈φm|ρ = λm〈φm|, we can rewrite the second term to give

〈φm| log σ|φm〉 = 〈φm|(
∑

m′
log κm′ |ξm′〉〈ξm′ |)|φm〉 =

∑

m′
Pmm′ log κm′ . (6.20)

Here, we have introduced

Pmm′ := 〈φm|ξm′〉〈ξm′ |φm〉 (6.21)

with the properties Pmm′ ≥ 0,
∑
m Pmm′ = 1 and

∑
m′ Pmm′ = 1. We again rewrite

Eq. (6.19):

S(ρ‖σ) =
∑

m

λm(logλm −
∑

m′
Pmm′ log κm′) . (6.22)

The logarithm is a concave function, therefore
∑
m′ Pmm′ log κm′ ≤ logµm with µm :=∑

m′ Pmm′κm′ . Using Eq. (6.22), this inequality can be transferred:

S(ρ‖σ) ≥
∑

m

λm log
λm
µm

. (6.23)

The right-hand side is formally the same as a classical relative entropy. This leads to Klein’s
inequality:

S(ρ‖σ) ≥ 0 . (6.24)

The quantum-mechanical relative entropy is non-negative. It is zero if and only if ρ = σ
(identical states). Like its classical counterpart, we shall use this theorem primarily as a
computational aid.
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6.4 The Interfaces of Preparation and Measurement

In Section 6.1, our preparation procedure was ideally matched, as was our readout. Departures
from this ideal matching lead to loss of information. What is the cause of this and how can we
express it quantitatively?

In the transport and processing of quantum-mechanically coded information, three typical
features of quantum theory are particularly important, which are lacking in classical physics:
first of all the situation that non-orthogonal pure states cannot be perfectly distinguished by
a measurement. Even orthogonal states can only then be distinguished when they are eigen-
states of the observable operator. Secondly, a quantum-mechanical measurement in general
modifies the state. A third point is the ambiguity of the ensemble decomposition of a density
operator. This has the converse result that there are many classical ensembles with different
Shannon entropies which lead to the same density operator after coding at the first interface,
and then can no longer be distinguished by means of a measurement. The von Neumann en-
tropy of the state ρ is determined by its orthogonal decomposition, which codes only precisely
one of the classical ensembles. It is helpful to recall (cf. Sect. 5.1) that the entropy has two
aspects. It characterises the remaining a priori uncertainty, and it is a measure of the quantity
of information which will remove this uncertainty. We want to discuss the consequences of
this in more detail and begin with the measurement process, that is the second interface of
Tab. 6.1.

6.4.1 The Entropy of Projective Measurements

The states in the quantum channel are described by the density operator ρ with the von Neu-
mann entropy S(ρ). A non-selective measurement of the decoding observables D leads to a
probability distribution {p(dm)} of the measured values dm. One can conceive of the mea-
surement as a classical stochastic source with the signal ensemble {dm, p(dm)}. The signal
ensemble has the Shannon entropy H(p̃(dm)). Here, {p(dm)} is at the same time the proba-
bility distribution of the states {|dm〉}, into which the system is transformed by a non-selective
measurement. As the result, a density operator ρ′ with the orthogonal decomposition

ρ′ =
d∑

m=1

p(dm)|dm〉〈dm| =
d∑

m=1

PmρPm (6.25)

is obtained. For the projection operators, we have P 2
l = Pl, PlPm = δl,mPl, and

∑
l Pl = 1.

Shannon’s entropy H(q̃) of the measured values and the von Neumann entropy S(ρ′) of the
mixture of the quantum states after the measurement are the same:

S(ρ′) = H(p̃(d)) . (6.26)

Klein’s inequality permits us to compare the quantum entropies S(ρ) and S(ρ′) before and
after a non-selective measurement. We start with

0 ≤ S(ρ‖ρ′) = −S(ρ)− tr[ρ log ρ′] (6.27)

and consider the second term more carefully:

tr[ρ log ρ′] = tr[(
∑

l

Pl)ρ log ρ′] = tr[
∑

l

Plρ log(ρ′)Pl] . (6.28)
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We have made use of the properties of the projection operators and permuted the terms within
the trace. Equation (6.25) shows that Plρ′ = PlρPl = ρ′Pl holds. Therefore, Pl also com-
mutes with the operator function log ρ′ and we find

tr[ρ log ρ′] = tr[
∑

m

PmρPm log ρ′]

= tr[ρ′ log ρ′] = −S(ρ′) . (6.29)

Thus after inserting into Eq. (6.27) and making use of Eq. (6.26), we obtain the overall result:

S(ρ′) ≥ S(ρ) . (6.30)

We compare two quantum entropies. In a non-selective projective measurement, the von Neu-
mann entropy of the state ρ′ after the measurement is the same as the von Neumann entropy
of the state ρ before the measurement if and only if the measurement takes place in the eigen-
basis of ρ; otherwise, it is greater. A non-selective measurement therefore transforms the
system in general into a new signal ensemble with a greater entropy and in this manner it
destroys information. The a priori uncertainty has increased as a result of the non-selective
measurement.

This can be demonstrated with a very simple example. The pure state

|ψ〉 =
1√
2
(|0〉+ |1〉) (6.31)

has a vanishing entropy. Non-selective measurement in the eigenbasis leads to the totally-
mixed state

ρ =
1
2
1 (6.32)

with maximum entropy, S(ρ) = 1.

6.4.2 The Entropy of Preparation

In quantum coding, the classical signal source with the ensemble {xi, pi} is coded into the
quantum ensemble {|ψi〉, pi}, described by the density operator ρ of Eq. (6.1) (cf. Tab. 6.1).
Due to the ambiguity of the ensemble decomposition of ρ, various classical ensembles with
many different values of entropy H lead to quantum ensembles with the same density opera-
tor ρ and thus to the same von Neumann entropy S(ρ). The maximum value of the quantum
entropy is given via Eq. (6.12) by the dimension of the Hilbert space of the quantum system
into whose states the coding takes place. The maximum value of the preparation entropy
H(p̃) is given by the number N of characters in the classical alphabet xi. It is the same as
the number of state vectors |ψi〉, which can be larger than the number of basis vectors of Hd,
since the |ψi〉 need not be orthogonal. We thus expect a relation of the form

H(p̃) ≥ S(ρ) . (6.33)

This can indeed be verified in a long proof (see [Weh 78, p. 238] or [CD 94, p. 527]). In
Eq. (6.33), equality is found if and only if the states |ψi〉 are mutually orthogonal. If the signal
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states are not orthogonal, they cannot be distinguished. There is no decoding observable with
which the full information content of the coded classical message could be read out again. ρ
transmits less information than was contained in the original classical signal. Even with an
optimally-matched final measurement, the information can no longer be completely recalled.

6.5 Quantum Information

We summarise:
In classical information theory, it is not important just how the carrier of the information is
physically implemented. Printed characters can for example be converted in an error-free
manner into the phonemes of spoken characters, and vice versa. As we have seen, quantum
information can in general not be converted into classical information and back without losses.
The cause of this lies among other things in the non-classical structure of the measurement
process. Quantum information is therefore generally a very different sort of information from
classical information, just as a quantum state is a different sort of state from that of a classical
system.

Quantum information is stored in quantum states. Its carriers are quantum systems. Its
transmission is accomplished by the propagation of the carriers between the preparation appa-
ratus and the measurement apparatus. The processing of quantum information consists of the
manipulation of quantum states. Unitary transformations and measurements are examples of
this. The two types of information are associated with two different units of information: bits
and qubits. Quantum information theory applies uniformly to all the different qubit systems
(spins, photon polarisation states, etc.).

As we shall show in detail in the following chapters, the storage and processing of quan-
tum information differs in essential ways from those of classical information: (i) the states of
a qubit are not limited to 0 and 1. They are described by the entire Bloch sphere. (ii) The state
of a quantum system which is a composite of several qubit systems can be entangled. (iii)
Classically, there are only jumps between 0 and 1. Unitary transformations and other opera-
tions are however much more general and comprehensive. (iv) However, in a measurement,
the quantum-mechanical final state cannot be simply read out like the classical state.

6.6 Complementary Topics and Further Reading

See also Sect. 5.6.

• Review articles: [Weh 78], [CD 94], [CF 96], [Ste 98], [Joz 98], [Ved 02].

• On the concept of “quantum information”: [Wer 01], [Wer 06].

• On Schumacher’s theorem and quantum data compression: [JS 94], [Ben 95], [Sch 95],
[Joz 98], [Ved 02].
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6.7 Problems for Chapter 6

Prob. 6.1 [for 6.1]: Determine the entropy of a state ρ in H2 as a function of the Bloch
vector, with reference to a result from Chap. 3.

Prob. 6.2 [for 6.2]: Find the Bloch vector r corresponding to the density operator ρ of
Eq. (6.11). The eigenvectors of ρ and rσ are the same (why?). Read off the representation
of the eigenvectors in the computational basis with reference to Sect. 3.2 for rσ, and find the
eigenvalues λ0 and λ1. Compute S(ρ).





7 Composite Systems

We turn now to composite systems, and begin by providing the necessary mathematical tools.
We then generalise the postulates and discuss the special case of measurements on subsystems
in detail. The consequences of entanglement will become clear in this discussion. We will
demonstrate a conjuring trick which cannot be explained by classical physics. The unitary
dynamics can once again be formulated with the aid of Liouville operators. The action of
simple quantum gates on multiple qubit systems will be introduced.

7.1 Subsystems

We are accustomed from classical physics to the fact that composite systems (or compound
systems) can be decomposed into their subsystems and that conversely, individual systems
can be combined to give overall composite systems. The classical total system is completely
describable in terms of the states of its subsystems and their mutual dynamic interactions. The
solar system with the sun, the planets and the gravitational field is an example. In quantum
physics, however, it is found that composite systems can have in addition completely different
and surprisingly unified properties. These come to light when the composite quantum systems
are in entangled states In such cases, it is indeed true in a certain sense that “the whole is
more than the sum of its parts”. We will present the details in a similar fashion as in Sect. 1.2
and begin with a discussion of preparation and measurements.

But first: what are composite systems? There are particular quantum systems which
exhibit an internal structure. One can distinguish in them two or more subsystems which
can be accessed separately. With this we mean that subsystems can be experimentally
identified on which individually (and in this sense locally) interventions can be carried out.
The corresponding operations are referred to as local operations These can be for example
preparations or measurements.

We list some bipartite systems consisting of two subsystems. One can prepare quantum
systems for which, in a measurement at two different locations, a photon can be registered at
each location. There are analogous systems involving electrons. There are systems in which at
one location a photon and at another an atom are detected. Subsystems are in general termed
local, but they need not in fact be spatially separated. A composite system can be composed
of e. g. an orbit (an external degree of freedom) and the polarisation (an internal degree of

Entangled Systems: New Directions in Quantum Physics. Jürgen Audretsch
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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freedom) of a single quantum object. Of course two separate systems, which are completely
independent of one another, can also be considered formally as a total system.

It is essential not to assume e. g. for a 2-photon system that the photons involved are them-
selves distinguishable (which they are not, as is well-known). The locations at which for
example the photon polarisation is measured are distinguishable. We know that in measure-
ments on this system, always exactly two photons are prepared together and therefore the
overall system is a bipartite system. The corresponding subsystems SA and SB are in this
case associated with the locations of the detectors, A and B (a photon at the location A or
a photon at the location B). In general, apparatus which carry out operations are classical
objects and thus have an individual identity. In contrast, owing to the indistinguishability of
the photons, the question of which photon was detected in a particular measurement, e.g. by
the detector at the location A, makes no sense. We will return to this point in Sect. 7.9.

Alice and Bob In order to make it especially clear that measurements or manipulations are
carried out on different subsystems SA and SB of the composite system SAB , one often in-
troduces the experimentalists Alice and Bob, who carry out local operations on the subsystem
SA or SB (often, but not necessarily, at different locations). By referring to Alice and Bob,
we emphasize once more that many quantum-mechanical statements are to be understood op-
erationally (i. e. as instructions for carrying out an action); e.g. of the type: “If Alice does this
to subsystem SA, then Bob will measure that on subsystem SB”.

Existence We will once again assume, in agreement with the standard interpretation from
Sect. 1.2, that such subsystems are not just abstract auxiliary constructions like the quantum
systems in the minimal interpretation, but rather that they exist in reality. With this, we do not
mean to imply that a state can be ascribed to an individual subsystem which is independent
of the state of the other subsystem. In entangled systems, precisely this independence does
not exist. This is the cause of many startling quantum-physical effects. It is furthermore
not meant by our assumption of existence in reality that similar elementary particles of the
same type, such as two photons, have individual identities and are therefore distinguishable.
The assumption that the photons exist cannot lead us to such conclusions. The possibility of
separate manipulations, and not the individuality of quantum objects, defines the subsystem
(compare Sect. 7.9).

7.2 The Product Hilbert Space

We first wish to supply the mathematical formalism which we need to formulate the physics
of composite systems. We require for this purpose the product Hilbert space.

7.2.1 Vectors

The tensor product HAB of two Hilbert spaces HA and HB , whose dimensions need not be
the same,

HAB = HA ⊗HB (7.1)
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is itself a Hilbert space. We call HA and HB the factor spaces. For each pair of vectors
|ϕA〉 ∈ HA and |χB〉 ∈ HB , there is a product vector in HAB , which can be written in
different ways

|ϕA〉 ⊗ |χB〉 =: |ϕA〉|χB〉 =: |ϕA, χB〉 =: |ϕ, χ〉 . (7.2)

It is linear in each argument with respect to multiplication by complex numbers.
With λ, µ ∈ C

|ϕA〉 ⊗ (λ|χB1 〉+ µ|χB2 〉) = λ|ϕA〉 ⊗ |χB1 〉+ µ|ϕA〉 ⊗ |χB2 〉 , (7.3)

and

(λ|ϕA1 〉+ µ|ϕA2 〉)⊗ |χB〉 = λ|ϕA1 〉 ⊗ |χB〉+ µ|ϕA2 〉 ⊗ |χB〉 . (7.4)

Entangled vectors If {|nA〉} is a basis ofHA and {|iB〉} is a basis ofHB , then

{|nA〉 ⊗ |iB〉} (7.5)

is a basis of HAB . For the dimension of HAB , we have dimHAB = (dimHA)·(dimHB).
Every vector |ψAB〉 inHAB can be expanded in terms of the basis

|ψAB〉 =
∑

n,i

αni|nA, iB〉 . (7.6)

All the definitions and statements can be directly applied to the product of a finite number of
Hilbert spacesHAB...M = HA ⊗HB ⊗ · · · ⊗ HM . We introduce also the abbreviations:

H⊗n := H⊗H⊗ · · ·H, |φ〉⊗n := |φ〉|φ〉 · · · |φ〉 . (7.7)

Vectors in HAB which are not product vectors are called entangled. They can be written
only as a superposition of product vectors. We will represent entangled pure states with such
vectors; they will play an important role in the following sections. The superposition is an
important reason for this. It can usually not be read directly off the decomposition in terms of
the basis (7.6) whether or not a vector |ψAB〉 is entangled. Later, we will develop a criterion
(Sect. 8.3.1) and also extend the concept of entanglement to density operators (Sect. 8.1.1).

The scalar product The bra vector of the product vector |ϕA〉 ⊗ |χB〉 has the form

(|ϕA〉 ⊗ |χB〉)† = 〈ϕA| ⊗ 〈χB| =: 〈ϕA|〈χB| =: 〈ϕA, χB| =: 〈ϕ, χ| . (7.8)

It follows from this for the dual corresponding vector of |ψAB〉 as in Eq. (7.6)

〈ψAB| =
∑

n,i

α∗
ni〈nA, iB | . (7.9)

The scalar product is formed in a “space by space” manner:

〈ϕA, χB|ξA, ζB〉 = 〈ϕA|ξA〉〈χB|ζB〉 . (7.10)

A basis {|nA, iB〉} ofHAB is orthonormal if

〈nA, iB|n′A, i′B〉 = δnn′δii′ (7.11)

holds, i. e. when {|nA〉} and {|iB〉} are an ONB.



118 7 Composite Systems

The Bell basis As can readily be verified, the following four vectors make up a particular
ONB in the spaceHAB = HA2 ⊗HB2 of 2-qubit vectors:

|ΦAB± 〉 :=
1√
2
(|0A, 0B〉 ± |1A, 1B〉) , |ΨAB

± 〉 :=
1√
2
(|0A, 1B〉 ± |1A, 0B〉) . (7.12)

This basis plays a special role in many investigations. We shall show later that these
frequently-used Bell states are maximally entangled. With reference to an implementation
in terms of spin polarisation states, |ΨAB

− 〉 is often called a singlet state.

7.2.2 Operators

Product operators Let CA be a linear operator on the space HA and DB a linear operator
onHB . The tensor product

CA ⊗DB =: CADB (7.13)

refers to a product operator, which acts “space by space”,

[CA ⊗DB ]|ϕA, χB〉 = |CAϕA, DBχB〉 . (7.14)

The product operator is a linear operator onHAB

[CA ⊗DB ]
∑

n,i

αni|nA, iB〉 =
∑

n,i

αni|CAnA, DBiB〉 . (7.15)

The dyadic operator |ψAB〉〈θAB| formed from the product vectors |ψAB〉 = |ϕA, χB〉
and |θAB〉 = |ξA, ζB〉 is likewise a product operator

|ψAB〉〈θAB| = |ϕA, χB〉〈ξA, ζB| = (|ϕA〉〈ξA|)⊗ (|χB〉〈ζB|) . (7.16)

The round brackets can also be left off. The identity operator on HAB can be dyadically
expanded in terms of an ONB:

1AB =
∑

n,i

|nA, iB〉〈nA, iB | = 1A ⊗ 1B . (7.17)

With the identity operator of a factor space, product operators can be constructed which
are particularly important for the physical applications. The extended operators (subsystem
operators) which are indicated by a symbol with a hat

ĈA := ĈAB := CA ⊗ 1B; D̂B := D̂AB := 1A ⊗DB (7.18)

are defined withinHAB = HA⊗HB , but they act only in the individual factor Hilbert spaces
in a nontrivial way. They are also called local operators. ĈAB and D̂AB commute within
HAB and they obey the relations

ĈABD̂AB = D̂ABĈAB = CA ⊗DB . (7.19)
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Generalised operators Referring to the dyadic decomposition (7.17) of 1AB , we can write
the generalised operator ZAB onHAB in the form

ZAB = 1ABZAB1AB =
∑

n,m

∑

i,j

〈nA, iB|ZAB|mA, jB〉(|nA〉〈mA|⊗|iB〉〈jB|) . (7.20)

It is determined by its matrix elements in the orthonormal basis (7.5).

The trace and partial trace The trace is also defined in the usual way in terms of an or-
thonormal basis ofHAB

tr[ZAB] := trAB [ZAB] :=
∑

n,i

〈nA, iB|ZAB |nA, iB〉 . (7.21)

For product operators, it follows from this that

trAB[CA ⊗DB] =
∑

n,i

CAnnD
B
ii = trA[CA] trB [CB] (7.22)

with the matrix elements CAnn and DB
ii . The trace is constituted “space by space”.

The computation of the partial trace over one of the factor spaces, for example the space
HA, is particularly important for physical results. It is defined by

trA[ZAB ] :=
∑

n

〈nA|ZAB |nA〉 . (7.23)

We can read off from Eq. (7.20) that an operator on HB is generated in the process. For
product operators, it follows that

trA[CA ⊗DB] = trA[CA]DB . (7.24)

The overall trace is found to be a series of partial traces

trAB[ZAB] = trB [trA[ZAB ]] = trA[trB[ZAB ]] . (7.25)

Here, the order in which the partial traces are taken is irrelevant.

The operator basis This concept also, which we have already encountered in Sect. 1.2, can
be directly applied to the product spaceHAB . If {QAα , α = 1, . . . , (dimHA)2} represents an
operator basis of HA and {RBκ , κ = 1, . . . , (dimHB)2} an operator basis of HB , then the
product operators

TABακ := QAα ⊗ RBκ (7.26)

form an orthonormal basis of the product spaceHAB , owing to

trAB[TAB†
ακ TABβλ ] = δαβδκλ . (7.27)
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Every operator ZAB , which acts withinHAB , can be expanded in terms of this basis:

ZAB =
∑

α,κ

TABακ trAB[TAB†
ακ ZAB] . (7.28)

There are operators onHAB which cannot be written as products of two operators in the form
CA ⊗DB (cf. Sect. 7.8). But all the operators on HAB can be written as the sum of product
operators.

The product Liouville space We apply the concepts from Sect. 1.2 and form the product
Liouville space

LAB = LA ⊗ LB . (7.29)

Its elements are the operators

CAB =
∑

α,β

cαβQ
A
α ⊗RBβ (7.30)

on HAB . The Liouville operator is defined through a generalisation of Eq. (1.87) with the
Hamiltonian HAB onHAB:

LABZAB := LAB(ZAB) :=
1
�
[HAB , ZAB]− . (7.31)

7.3 The Fundamentals of the Physics of Composite
Quantum Systems

7.3.1 Postulates for Composite Systems and Outlook

We consider a composite quantum system, which itself is assumed to be isolated. There-
fore, we can take over all the postulates from Chaps. 2 and 4 directly. In particular, the state
of the composite system is described by a density operator in a Hilbert space. The oper-
ational interpretation of the concept “state” of a quantum system as “the system has been
generated by a particular preparation procedure” holds here as well. The composite system
SAB... is supposed to consist of subsystems SA, SB, . . .. Since we wish to consider subsys-
tems which are themselves quantum systems, it suggests itself that we associate each of them
with a particular Hilbert space HA,HB, . . . Then the only open question is what structure
has the Hilbert space of the composite system, i.e. how is it composed from the HA,HB, . . ..
Here, there are in principle many mathematical possibilities. One is for example the direct
sum HAB... = HA ⊕ HB ⊕ . . .. However, one in fact postulates the tensor product as de-
scribed in Sect. 7.2.1, in order to obtain agreement with experiments. This specification has
far-reaching consequences for all physical statements about composite quantum systems. We
shall be interested in precisely these statements in the following sections.



7.3 The Fundamentals of the Physics of Composite Quantum Systems 121

The postulate The states of an isolated composite system SAB... which is composed of the
subsystems SA, SB, . . . are described by density operators ρAB... in the product Hilbert space

HAB... = HA ⊗HB ⊗ . . . (7.32)

The postulates for isolated systems from Sect. 2.1 and Sect. 4.2 can be applied to the overall
system SAB.... If a system is not isolated, it can be made into an isolated system by including
the “rest of the world”. It then becomes itself a subsystem.

Outlook We can immediately read off a series of special properties of composite systems
from this postulate. The mathematical product structure (7.32) defines an organisation scheme.
We demonstrate it using the example of a bipartite system SAB .

(i) States: a pure state can be a product state |ψAB〉 = |φA〉 ⊗ |χB〉 or an entangled state
|ψAB〉 �= |φA〉⊗ |χB〉 (compare Sect. 7.2.1). The unusual properties of entangled states,
in particular the appearance of non-classical correlations and their applications, will be
discussed in the rest of this chapter and in all the remaining chapters in detail. We con-
sider correlated density operators ρAB �= ρA ⊗ ρB in Sect. 8.1.

(ii) Observables: there is a special case of the extended observable operators, such as
ĈAB = CA ⊗ 1B , which is generated from an observable operator which acts on
only one of the product spaces. These describe local measurements which are car-
ried out on only one of the subsystems (e. g. a measurement of the observable CA on
the subsystem SA). There are however more general Hermitian operators on HAB
(e.g. ZAB = CA ⊗ DB + EA ⊗ FB), which cannot be expressed as extended oper-
ators. They also correspond to projective measurements of physical observables ZAB .
These latter observables are called non-local observables or collective observables. The
corresponding measurements are non-local measurements, which in general cannot be
carried out directly as local measurements on SA and SB . This holds also for the
special case of the observables which correspond mathematically to operator products
(e. g. ZAB = CA ⊗DB), but cannot be implemented physically as local measurements
of the extended observables (CA⊗1B and 1A⊗DB). Non-local measurements are im-
portant in connection with quantum correlations and non-local information storage. We
will therefore discuss them only in Sect. 9.2.

(iii) Unitary evolution: the unitary evolutions also need not have the structure UAB =
UA ⊗ UB . There can be for example an interaction between the systems SA and SB .
We discuss this in Sect. 7.6. Non-local unitary evolution can act to entangle and to dis-
entangle states. In order for a composite system to be in an entangled state, dynamic
interactions between the subsystems must not exist at the same time.

(iv) The postulate (7.32) provides the required possibility of separate interventions and there-
fore the resolution of the composite system into subsystems. Not only local observable
operators, but rather all local operators which act on a subsystem commute with all the
local operators which act on some other subsystem (cf. Eq. (7.19)). This does not de-
pend on the order in which the corresponding actions occur. Thus, in measurements on
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subsystems, the correlations between the measured values obtained become an impor-
tant quantity. They are characterised by the joint probabilities for the occurrence of the
measured values.

7.3.2 The State of a Subsystem, the Reduced Density Operator, and
General Mixtures

Via the postulate, the details of the projective measurement of an observable of the composite
systems are determined. This measurement on the composite system is described by an Her-
mitian operator onHAB.... The measurement of an observable on a subsystem, e. g. on SA, is
included as a special case. It is associated with an observable operator CA which acts onHA.
This local measurement corresponds inHAB... to a local observable

ĈAB...E = CA ⊗ 1B ⊗ . . .⊗ 1E . (7.33)

In this chapter, we shall restrict ourselves to composite systems which are composed of two
subsystems. The extension to a greater number of subsystems is straightforward.

Probability statements According to the postulate, the rules for the measurement dynamics
apply also to the states ρAB of the composite system SAB . We investigate the resulting con-
sequences for local measurements. To this end, it is expedient to associate to each subsystem
a reduced density operator by taking the partial trace over the other subsystem

ρA := trB
[
ρAB

]
, ρB := trA

[
ρAB

]
. (7.34)

Since ρAB is a density operator, ρA and ρB likewise fulfill the conditions for being density
operators. The eigenvalue equation of the observable CA,

CA|c(r)An 〉 = cn|c(r)An 〉, r = 1, . . . , gn (7.35)

leads to the ONB {|c(r)An 〉} of HA and the eigenvalues {cn} with the degeneracies gn. The
probability of obtaining the measured value cn from a measurement of C on the system SA is
then given by the local projection operator

P̂An = PAn ⊗ 1B, PAn :=
gn∑

r=1

|c(r)An 〉〈c(r)An | (7.36)

through the mean value

p(cn) = trAB [P̂An ρ
AB] = trA[trB{P̂An ρAB}] = trA[PAn ρ

A] . (7.37)

In a similar manner, for the expectation value of the observables C, we obtain

〈ĈA〉 = trAB[ρABĈA] = trA[ρACA] . (7.38)

To summarise, we can conclude that: all probability statements about local measurements on a
subsystem SA are obtained by associating the reduced density operator ρA from Eq. (7.34) to
the system SA and applying the rules postulated for the density operators of isolated systems.
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The state of a subsystem Since all probability statements for measurements on SA are
unambiguously determined by the reduced density operator ρA, it is tempting to say that the
subsystem SA is in the state ρA. Thus, in Chap. 2, we introduced the concept of a state. The
composite system SAB passes through a preparation procedure which leads to the state ρAB .
Together with it, the state ρA = trB

[
ρAB

]
is prepared.

General mixtures If the composite system SAB is in the product state |αAk , βBk 〉, then the
subsystem SA is in the pure state |αAk 〉. If the state of SAB is, in particular, a statistical mixture
(blend or proper mixture) of such product states (cf. Chap. 4),

ρAB =
∑

s

ps|αAs , βBs 〉〈αAs , βBs | =
∑

s

ps|αAs 〉〈αAs |⊗|βBs 〉〈βBs |,
∑

s

ps = 1 , (7.39)

then SA or SB are likewise statistical mixtures

ρA = trB [ρAB] =
∑

s

ps|αAs 〉〈αAs | , ρB =
∑

s

ps|βBs 〉〈βBs | (7.40)

of the states |αAk 〉 or |βBS 〉. They were produced by the preparation procedure and are present
as real states. An ignorance interpretation (compare Sect. 4.3) is possible. Equation (7.40) is
obtained from (7.24) and the dyadic decomposition of 1A or 1B .

In general, the state of a quantum systems SAB will not be a statistical mixture as in
Eq. (7.39). The state of the subsystem SA is then also not a statistical mixture. An ignorance
interpretation is not possible. Nevertheless, the state is described by a reduced density oper-
ator ρA. We therefore employ the concept mixture to this state ρA of SA also, although – as
already mentioned in Sect. 4.2 – no “mixing” has occurred; and we simply leave off the ad-
jective “statistical” for clarity. In this case, one also speaks of the state as an improper mixture
in contrast to a proper mixture. “Mixture” is thus the umbrella term.

To make this clear, we can consider for example a system SAB which is in a Bell state. In
this case, the states of the subsystems are maximally mixed as a result of the entanglement

ρA = trB [ΦAB± ] =
1
2
1A , ρA = trB[ΨAB

± ] =
1
2
1A . (7.41)

A corresponding relation holds for SB . However, SAB was prepared in a pure state.
In quantum systems, the states of subsystems can be mixtures which – with respect to their

preparation – are not statistical mixtures and therefore do not permit an ignorance interpreta-
tion. For their density operators, there are formally arbitrarily many ensemble decompositions.
There are therefore arbitrarily many statistical mixtures of an isolated individual system, with
which they can be indistinguishably simulated with respect to all probability statements for
local measurements. By means of local measurements, one cannot determine whether a den-
sity operator ρA belongs to an individual system SA or is rather a reduced density operator
of a subsystem SA which is part of a larger system. This again justifies the application of the
term “mixture” to all reduced density operators. We mention finally that mixtures in classical
physics are always statistical mixtures. We shall return to the connection with entanglement
later in Sect. 8.1.
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7.4 Manipulations on a Subsystem

7.4.1 Relative States and Local Unitary Transformations

Relative states Making use of the ONB {|cAn 〉} and {|dBi 〉} ofHA orHB , we can write the
pure state |ψAB〉 of the composite system SAB as a decomposition

|ψAB〉 =
∑

n,i

αni|cAn , dBi 〉 (7.42)

in terms of the basis vectors. It proves expedient to split up the double sum in the form

|ψAB〉 =
∑

n

|cAn , w̃Bn 〉 (7.43)

with

|w̃Bn 〉 :=
∑

i

αni|dBi 〉; |wBn 〉 =
|w̃Bn 〉√〈w̃Bn |w̃Bn 〉

. (7.44)

The vector |wBn 〉 describes the relative state belonging to |cAn 〉. Non-normalised states are
again denoted by a tilde. The relative vectors |wBn 〉 in general do not make up an orthonormal
system. Their number need not be the same as the dimension of the Hilbert state HB . |ψAB〉
can, in analogy to Eq. (7.43), also be decomposed in terms of the relative states |ṽAi 〉 belonging
to the |dBi 〉:

|ψAB〉 =
∑

i

|ṽAi , dBi 〉 . (7.45)

Local unitary manipulations We now allow a unitary dynamics to act upon the subsys-
tem SA

ÛAB = UA ⊗ 1 . (7.46)

It produces the transition

|ψAB〉 → |ψ′AB〉 =
∑

n

|UAcAn 〉|w̃Bn 〉 . (7.47)

Here, in general the state of SA is changed, and in particular that of SAB . The vectors |UAcAn 〉
again represent an ONB ofHA; thus, for the state of SB we have the unchanged result

ρB → ρ′B = ρB =
∑

n

|w̃Bn 〉〈w̃Bn | . (7.48)

We take as an example of this a transition between two vectors of the Bell basis
(cf. Eq. (7.12)) to which we shall return later:

(σA1 ⊗ 1B)|ΨAB
+ 〉 = |ΦAB+ 〉 . (7.49)
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In this special case, not only the reduced density operator of SB remains unchanged, but also
that of SA: ρ′A = ρ′B = ρA = ρB = 1

21.
A dynamic manipulation which effects a unitary transformation of the subsystem SA has

no influence on the state of the other subsystem SB (and vice versa). Even when an entangled
state is present, Bob can by no means determine via measurements on his subsystem SB

whether Alice has carried out a unitary manipulation on her subsystem. One can readily
convince oneself that this statement is still true if the state of SAB is a mixture.

7.4.2 Selective Local Measurements

The resulting state of the composite systems We again consider a quantum system SAB

which is composed of the (sub) systems SA and SB . We wish to measure the observable C
on the subsystem SA and the observable D on the subsystem SB (local measurements). The
associated observable operators ĈA = CA ⊗ 1B and D̂B = 1A ⊗DB commute

[ĈA, D̂B]− = 0 . (7.50)

We note also the corresponding eigenvalue equations

CA|cAn 〉 = cn|cAn 〉, DB|dBi 〉 = di|dBi 〉 . (7.51)

The vectors |cAn 〉 and |dBi 〉 make up an ONB of HA or HB . The possible measured values cn
and di resulting from the local measurements are assumed for simplicity not to be degenerate.

We first carry out measurements only on the subsystem SA and apply the postulate from
Sect. 7.3.1. A measurement of the observable C on the subsystem SA, in which a selection
among the results cn of the measurements is made, transforms the state ρAB of the composite
system SAB into the (non-normalised) state ρ̃′AB

ρAB → ρ̃′ABn = P̂An ρ
ABP̂An . (7.52)

The projection operator P̂An is defined in Eq. (7.36). One can read off from Eq. (7.37) that the
trace of the resulting non-normalised density operator ρ̃′ABn again gives directly the probability
p(n) that a measurement will lead to the value cn (cf. Eq. (4.23))

p(cn) = tr[ρ̃′ABn ] . (7.53)

If the composite system SAB was previously in the pure state |ψAB〉 of Eq. (7.42), then
the selective measurement causes the transition

|ψAB〉 → |ψ̃′AB
n 〉 = P̂An |ψAB〉 = |cAn 〉 ⊗

∑

i

αni|dBi 〉 = |cAn 〉 ⊗ |w̃Bn 〉 . (7.54)

The subsystem SB transforms into the relative state |wBn 〉 of Eq. (7.44). For an entangled state
|ψAB〉, a non-degenerate selective measurement on a subsystem breaks the entanglement.

Furthermore, we find as a special case of Eq. (7.53): the probability of obtaining the
measured value cn is, from Eq. (7.37), given by the square of the norm of the non-normalised
relative state vector |w̃Bn 〉:

p(cn) = 〈ψAB| (|cAn 〉〈cAn | ⊗ 1B
) |ψAB〉 = 〈w̃Bn |w̃Bn 〉 = ||w̃Bn ||2 . (7.55)



126 7 Composite Systems

p(cn) can also be written as a function of the expansion coefficients αni of Eq. 7.42:

p(cn) =
∑

i

|αni|2 . (7.56)

The resulting state of the subsystem The reduced density operator ρA of the subsystem
SA is transformed into ρ̃′An by a selective measurement:

ρA → ρ̃′An = trB[ρ̃′ABn ] = trB[P̂An ρ
ABP̂An ] . (7.57)

Insertion of P̂An and normalisation leads with Eqs. (7.36) and (7.37) to

ρA → ρ′n
A =

PAn ρ
APAn

trA[PAn ρA]
=
PAn ρ

APAn
p(cn)

. (7.58)

If the initial state is the pure state |ψAB〉, then we obtain

ρ′An = |cAn 〉〈cAn | . (7.59)

SA is in the state |cAn 〉 after the measurement. This also follows directly from Eq. (7.54).

Operational description It is helpful to make it clear on an operational level just how
a selective measurement of Eq. (7.54) is carried out in practice and how the state |ψ′AB〉
(cf. Eq. (7.54)) is produced. As we have seen in Sect. 2.1.2, state vectors are associated with
preparation procedures. How is the corresponding preparation procedure for |ψ′AB〉 carried
out? Many individual bipartite systems have passed through the preparation device for |ψAB〉.
The single system SAB can for example consist of a photon moving to the left and one moving
to the right in the state |ψAB〉. Alice measures (on the subsystem SA, left photon) the observ-
able C without annihilating the system. Those complete bipartite systems (photon pairs) from
which Alice has obtained the measured value cn are sorted out. Only they are used for further
manipulations. This is the significance of Eq. (7.54). All the remaining bipartite systems are
eliminated and no longer take part in future experiments.

To ensure that in fact complete bipartite systems (photon pairs) are sorted out, Bob must
also act and eliminate his subsystem (right photon) when Alice has eliminated hers. In the
example of the photons, he cannot simply let them all continue on their way. In order that
he allow the correct ones to continue, Alice must give him the information for each photon
pair as to whether she has sorted out her photon or not. Those photon pairs which then finally
are allowed to continue are all in the state |ψ′AB〉 = |cAn , wBn 〉. The overall procedure, which
also includes an exchange of information, then prepares the subsystem SB (photon at Bob’s
location) in the state |wBn 〉. Bob can also number his photons, store them and later, following
Alice’s instructions, he can sort them. A selective local measurement is a preparation proce-
dure for the overall system, which is based on a selective measurement on a subsystem and on
classical communication. It requires a selection process for both subsystems.
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7.4.3 A Non-Selective Local Measurement

The resulting state of the composite system Following a measurement of the observable
C on the system SA, in which no selection according to the measured values is carried out
(cf. Fig. 7.1), for the composite system SAB , the state ρ̃′ABn.s. is present:

ρAB
n.s.−−→ ρ′ABn.s. =

∑

n

p(cn)
ρ̃′ABn

tr[ρ̃′ABn ]
=
∑

n

ρ̃′ABn . (7.60)

This follows immediately from equations (7.52) and (7.53). For the pure initial state |ψAB〉,
we obtain, corresponding to Eq. (7.54)1:

|ψAB〉 n.s.−−→ ρ′ABn.s. =
∑

n

|cAn , w̃Bn 〉〈cAn , w̃Bn | =
∑

n

|cAn 〉〈cAn | ⊗ |w̃Bn 〉〈w̃Bn | . (7.61)

The superposition of Eq. (7.42) has been decomposed into the mixture of Eq. (7.61).

SA

t

n.s.
ci

SB

ρ′Bn.s.

no selection

composite system: |ψAB〉

composite system: ρ′AB
n.s.

Figure 7.1: A non-selective measurement on the subsystem SA.

The resulting states of the subsystems The state of the subsystem SA after the non-
selective measurement is given by the reduced density operator. With Eqs. (7.60) and (7.52),
we obtain

ρA
n.s.−−→ ρ′An.s. = trB[ρ′ABn.s. ] = trB [

∑

n

P̂An ρ
ABP̂An ] . (7.62)

Carrying out the trace with P̂An = PAn ⊗ 1B leads to

ρA
n.s.−−→ ρ′An.s. =

∑

n

PAn ρ
APAn . (7.63)

As we saw in Sect. 7.3.2, the state of a subsystem is represented by the corresponding
reduced density operator. Probability statements are obtained by following the rules for den-
sity operators in Chap. 4. The comparison of Eq. (7.58) with Eq. (4.19) and Eq. (7.63) with

1We shall see in Sect. 8.1 that the resulting state is not entangled.
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(4.25) shows that: for the transitions between the reduced density operators as produced by
selective or non-selective local measurements on a subsystem, the rules for density operators
from Chap. 4 can be applied.

What can we say about the other subsystem SB? All the measurements on Bob’s subsys-
tem SB in the case of non-selective measurements by Alice on SA can be described by the
reduced density operator

ρ′Bn.s. = trA[ρ′ABn.s.] . (7.64)

We reformulate it with the aid of Eqs. (7.60) and (7.52) and find by using
∑
n P̂

A
n = 1AB the

result:

ρ′Bn.s = trA[
∑

n

ρ̃′ABn ] = trA[
∑

n

P̂An ρ
AB] = trA[(

∑

n

P̂An )ρAB] = trAρ
AB = ρB .

(7.65)

The density operator ρ′Bn.s of the subsystem SB after the non-selective measurement on SA is
the same as the density operator ρB before the measurement.

This is a remarkable result. Let us consider the situation in which the system SA is at
Alice’s location and the system SB at Bob’s (spatially separated) location. In a preparation
procedure, bipartite systems are often produced in the state ρAB . It can be entangled. It is
then left open to Alice as to whether she carries our measurements of some observable C on
her system or not. Bob cannot determine in any manner by measurements on his subsystem
SB whether or not Alice has carried out measurements. The analogous statement for unitary
manipulations on the system SA has already been derived in Sect. 7.4.1.

7.5 Separate Manipulations on both Subsystems

7.5.1 Pairs of Selective Measurements

First, Alice carries out a measurement and obtains the result cn with the probability p(cn) =
〈w̃Bn |w̃Bn 〉. The system is transformed after the selection described above into the composite
state |cAn , wBn 〉 (compare Fig. 7.2). If Bob makes a measurement following this selection, he
obtains the value di with the conditional probability

p(di|cn) =
|αni|2
p(cn)

. (7.66)

This can be read off from Eqs. (7.44) and (7.55). The composite system is then transformed
into the product state |cAn , dBi 〉 after another selection for which Bob informs Alice of the result
he has obtained. If, in reverse, first Bob and then – after selection according to the measured
value di – Alice makes a measurement, we obtain analogously (see Fig. 7.2) after the second
selection the same final state for the pair of measured values (cn, di). For the probabilities,
we then have

p(cn|di) =
|αni|2
p(di)

. (7.67)
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to outcome

selection
according

to outcome

selection
according

t

SBSA SBSA

cn di

di cn

|cAn 〉|cAn 〉 |dB
i 〉

|cAn 〉 |wB
n 〉 |vA

i 〉 |dB
i 〉

|dB
i 〉

composite system: |ψAB〉

Figure 7.2: A selective measurement on the subsystems SA and SB . Left: the measurement is first
carried out on SA and then on SB ; right in the reverse order. A selection is carried out in each case
according to the measured values di and cn. The probability of obtaining the pair of measured values
(cn, di) and the corresponding final state |cAn , dB

i 〉 is the same in both cases.

The joint probability p(cn, di) with which the pair of measured values (cn, di) is obtained
from selective local measurements is independent of the order in which they are carried out.
One finds

p(cn, di) = p(cn|di)p(di) = p(di|cn)p(cn) = |αni|2 = 〈ψAB|PABni |ψAB〉 (7.68)

with the projection operator

PABni := |cAn , dBi 〉〈cAn , dBi | . (7.69)

The final state is PABni |ψAB〉 = |cAn , dBi 〉. Since the observables ĈA and D̂B of the local
measurements commute, this could have been expected. We add that all of the statements
made above for the pure initial state |ψAB〉 can be applied in the well-known manner when
the initial state is a mixture with the density operator ρAB .

Instead of selecting after each local measurement, Alice and Bob can also find the state
|cn, di〉 after a large number of measurements by referring to the result (cn, di). In this case,
also, an exchange of information in both directions is necessary. It is a part of the preparation
procedure for the state |cAn , dBi 〉. In many cases, one is interested in the probabilities p(cn, di)
with which the pairs of measured values (cn, di) occur. To find them, Alice and Bob meet after
carrying out measurements on many systems and determine the relative frequency of the com-
binations of measured values. These correlations of locally-obtained results are determined
by the preparation procedure of the initial state (7.42).
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Mean values The dyadic decomposition of the operators CA ⊗DB has the form (compare
Eq. (7.51))

CA⊗DB =
∑

n,i

cndi|cAn , dBi 〉〈cAn , dBi | . (7.70)

For its mean value in the state ρAB , we have
∑

n,i

trAB
[
PABni ρ

AB
]
cndi = trAB

[
(CA⊗DB) ρAB

]
. (7.71)

The trace on the left side is the probability that in local measurements of ĈA and D̂B on
the subsystems SA and SB , the pair of measured values (cn, di) will be obtained. The mean
value of the products of correlated local measured values is the same as the mean value of
the product operator. We will make use of this fact, especially in Sects. 9.2.2 and 10.1, in
connection with non-local measurements.

7.5.2 Non-Local Effects: “Spooky Action at a Distance”?

For an improved understanding, it is helpful to confront the results of the preceding sections
with a popular catchword. We consider the following situation: we carry out local measure-
ments of the same observable C on a system in the state

|ψAB〉 =
1√
2
(|cA1 , cB1 〉+ |cA2 , cB2 〉) (7.72)

(conventions as in Sect. 7.4.2). The possible results are c1 or c2. The probabilities of occur-
rence of the pairs of measured values are

p(c1, c1) = p(c2, c2) =
1
2

(7.73)

p(c1, c2) = p(c2, c1) = 0 . (7.74)

The measurements on SA yield, for example, the value c1. Then one often says, in an abbre-
viated and sometimes misleading manner of speech, that the measurement has transformed
the composite system SAB into the state |cA1 , cB2 〉 and thereby the subsystem SB into the state
|cB1 〉. This holds independently of the spatial separation between the system SA at Alice’s lo-
cation and SB at Bob’s. In popular-scientific descriptions, this is often referred to as “spooky
action at a distance”2. Is the situation of quantum physics correctly characterised by this term?

We have seen the the preparation of quantum objects in a state |cA1 , cB1 〉 requires a selection
by Alice, a communication at most at the velocity of light between Alice and Bob, and a
selection by Bob. This is most certainly not a case of instantaneous action at a distance.

2A. Einstein wrote concerning the quantum theory: “Ich kann aber deshalb nicht ernsthaft daran glauben, weil die
Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne
spukhafte Fernwirkung”. (A. Einstein in a letter to M. Born dated 3.3.1947 [EB 69]). Born’s translation: “I cannot
seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality in
time and space, free from spooky actions at a distance”. We shall return to what Einstein understood to be “reality”
in Chap. 10.
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Perhaps the catchword is not meant to refer to states, and thereby to preparation proce-
dures, but rather to measured values. If Alice obtains the value c1, then Bob, according to
Eq. (7.74), will with certainty find the value c1. This is also the case when the two measure-
ments are carried out simultaneously. For a system prepared in the state (7.72), measurements
of the observable C on SA and SB yield completely correlated results. However, the occur-
rence of the two results is not causally related. We are familiar with a similar situation in the
case of classical systems: as a preparation procedure, either a red or a blue ball is placed into
each of two boxes. If the preparation procedure is known, then after opening one of the boxes,
it can be predicted with certainty what the result of a simultaneous observation of the ball in
the other box will be. It is not necessary that the colour of the one ball be somehow connected
with the colour of the other via some interaction which propagates with more than the velocity
of light. Correlations are already determined by the preparation procedure.

By the comparison to the two-ball experiment, we wished to emphasize that in this situa-
tion, the correlations are decisive. Not all statements about composite quantum systems can
be simulated by classical systems such as e.g. coloured balls. We will discuss this in detail in
Chap. 10. The section after the next contains a first demonstration of this.

How Alice prepares Bob’s subsystem in a state of her choice For every given ONB
{|s〉, |t〉}, the state |ΦAB+ 〉 = 1√

2
(|0A, 1B〉 − |1A, 2B〉) can always be written in the form

|ΦAB+ 〉 =
1√
2
(|sA, tB〉 − |tA, sB〉) . (7.75)

Alice wants to transform the subsystem SB at Bob’s location into the state |sB〉. To do so,
she makes a measurement on her system SA in the ONB {|sA〉|tA〉} and informs Bob if her
measurement yields the result associated with |tA〉. Then Bob can select accordingly among
his subsystems. The result is a preparation procedure which leads Bob to quantum objects in
the state |sB〉. For this purpose, no quantum objects need be transmitted between Alice and
Bob. The entangled state serves as a tool (similar procedures are described in Sect. 11.2 and
in connection with quantum teleportation in Sect. 11.3).

7.6 The Unitary Dynamics of Composite Systems

We consider unitary transformations of the composite system. The von Neumann equation
(4.9) or (4.10) can be applied to composite systems according to the postulates

i�
dρAB

dt
= [HAB, ρAB(t)]− i

dρAB

dt
= LABρAB(t) . (7.76)

with the Liouville operator LAB ∈ LA ⊗ LB . We employ the Schrödinger representation. If
an interaction described by the Hamiltonian HAB

int �= 0 is present between the subsystems SA

and SB , then the individual subsystems are open quantum systems. The overall Hamiltonian
then has the form

HAB = HA ⊗ 1B + 1A ⊗HB +HAB
int . (7.77)
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The associated Liouville operator is found to be

LAB = LA + LB + LABint (7.78)

and it follows for the von Neumann equation:

i
dρAB

dt
= (LA + LB + LABint )ρAB(t) . (7.79)

This leads to a differential equation for the reduced density operator ρA

i
dρA

dt
= LAρA(t) + trB [LABint ρ

AB(t)] . (7.80)

To determine ρA(t), the complete equation (7.79) must be integrated. There are various ap-
proximation methods to accomplish this. In Sect. 13.1 and Chap. 14, we will encounter an
in-out approach to the dynamics of open systems, which is not based upon the differential
time dependence of ρA(t) described by Eq. (7.80). Instead, it relates the final state ρA(tout) to
the initial state ρA(tin) by means of a superoperator.

7.7 A First Application of Entanglement: a Conjuring
Trick

In the coming chapters, we will demonstrate repeatedly that entanglement is a central tool on
which the effects of quantum information theory are based. Entanglement and the quantum
correlations which arise from it can however also be a tool for the study of the fundamentals of
quantum theory. We wish to demonstrate this in answering the following underlying question:
can effects of quantum theory be explained by means of classical physics – possibly in the
framework of theories which have yet to be formulated? This will give us directly an example
of an application for the formalism introduced in the preceding sections. In a wider context,
we will come back to this question in Chap. 10.

7.7.1 The Conjuring Trick

A magician amazes his audience with the following trick: the audience sees the magician give
something to his two assistants Alice and Bob. Alice and Bob then each go into separate
rooms which are perfectly insulated against any exchange of information. In each room is an
audience. In each, a coin is tossed and, depending on the result of the toss, a question is asked
of Alice or Bob. If the result is “heads”, then the question concerns the favourite colour; it can
be answered with either “red” or “green”. If the tossed coin gives “tails”, then the audience is
to ask the question, “What is your favourite vegetable”, and the answer can be either “carrots”
or “peas”. The question and answer are written down; one round is then finished. Alice, Bob
and the magician meet again, enter the question-and-answer pair in a list with the audience as
witnesses, and repeat the whole procedure again from the beginning. A large number of such
rounds is completed. At the end, the combined audience analyses the question-and-answer
pairs, looking for correlations.
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There are four pairs of questions which can be divided into three cases: both are asked for
a colour, one for a colour and the other for a vegetable, or both are asked for vegetables. In
each performance, the following correlations are found:

Alice Bob

1st Case colour? colour?
green! green!

To the pair of questions (colour?, colour?), the pair of answers (green!, green!)
is given with a non-vanishing frequency.

2nd Case colour? vegetable?
green! peas!

vegetable? colour?
peas! green!

When one answers this combination of questions with “green!”, then the other
always gives the appropriate answer “peas”.

3rd Case vegetable? vegetable?

To this combination of questions, one of the two assistants with certainty gives
the answer “carrots!”.

This is what the audience records.

7.7.2 Classical Correlations can give no Explanation

The audience sees that pairs of answers are given with a certain regularity. How did the
magician arrange this? What was his trick? The audience presumes that Alice and Bob were
given slips of paper on which a colour and a vegetable were written. They then read off the
answers to the questions correspondingly. The magician had prepared pairs of paper slips with
different abundances, so that precisely the correlations between the answers as listed above
would be observed.

Assuming this were the case, then to produce the first case in the table, the magician
must have given out slips which both had the colour “green” written on them. In order that
the pairs of questions (colour?, vegetable?) and (vegetable?, colour?) would always be
answered correctly, the vegetable on both of these slips would have to be “peas” (second
case). However, this would contradict the requirement that in the case of the third possible
combination of questions (vegetable?, vegetable?) at least one of the assistants would answer
with “carrots”. The method with slips of paper thus does not yield the results observed. We
want to demonstrate that the magician nevertheless need not possess paranormal abilities in
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|r〉 ↔ red

|g〉 ↔ green

|P 〉 ↔ peas

|C〉 ↔ carrots

Figure 7.3: Bases in which the measurements are carried out for the conjuring trick. When pairs of
photons are used, these are the analyser devices.

order to cause the observed correlations of the answers. It suffices for him to have some
knowledge of entangled states.

7.7.3 The Trick

The magician’s trick consists of the fact that he does not use correlated classical systems such
as pairs of paper slips, but instead he makes use of entangled quantum systems. He gave to
Alice and Bob each a subsystem of a bipartite systems, which was prepared to be in the state

|χAB〉 = N(|rA, rB〉 − a2|PA, PB〉) (7.81)

with a ∈ R and a �= 0, a �= 1. N is a normalisation factor and {|r〉, |g〉} and {|C〉, |P 〉} are
orthonormal bases ofH2, which are rotated relative to one another (see Fig. 7.3).

|r〉 = a|P 〉+ b|C〉 (7.82)

|g〉 = b|P 〉 − a|C〉 (7.83)

with b ∈ R and a2 + b2 = 1. Resolution leads to

|P 〉 = a|r〉+ b|g〉 (7.84)

|C〉 = b|r〉 − a|g〉 . (7.85)

If Alice or Bob is asked for the colour, he or she carries our a measurement on the subsys-
tem in the {|P 〉, |C〉} basis and interprets the result with respect to the state to which the mea-
surement leads, according to the rule |P 〉 ↔ “peas!” and |C〉 ↔ “carrots!”. Correspondingly,
when the question is for the vegetable, the measurement is carried out in the rotated {|r〉, |g〉}
basis and the answer is given according to the rule |r〉 ↔ “red!” and |g〉 ↔ “green!”. We can
read off from the state |χAB〉 the probabilities with which particular pairs of answers will be
given.

To find the probabilities, we insert |P 〉 from Eq. (7.84) in various places into Eq. (7.81):

|χAB〉 = N(|rA, rB〉 − a2(a|rA〉+ b|gA〉)(a|rB〉+ b|gB〉)) (7.86)

|χAB〉 = N(|rA, rB〉 − a2(a|rA〉+ b|gA〉)|PB〉) (7.87)

|χAB〉 = N(|rA, rB〉 − a2|PA〉(a|rB〉+ b|gB〉)) . (7.88)
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|r〉 from Eq. (7.82) inserted into |χAB〉 leads to:

|χAB〉 = N [(a|PA〉+ b|CA〉)(a|PB〉+ b|CB〉)− a2|PA, PB〉]
= N(b2|CA, CB〉+ ab(|CA, PB〉+ |PA, CB〉)) . (7.89)

From Eqs. (7.86)–(7.89), we find the probabilities for the possible pairs of measurement re-
sults and thus for the pairs of answers (compare Eq. (7.68)). From Eq. (7.86), for the pair of
questions in the first case, the observed result is found:

p(gA, gB) = Na4b4 �= 0 . (7.90)

Eqs. (7.87) and (7.88) lead to

p(gA, CB) = 0, p(CA, gB) = 0 . (7.91)

Therefore, when the pair of questions (colour?, vegetable?) is asked, and Alice answers with
“green!”, then Bob always answers with “peas!” and vice versa. This reproduces the second
case. Finally, we verify the third case with Eq. (7.89):

p(PA, PB) = 0 . (7.92)

Entanglement is the tool with which quantum magicians can carry out the tricks which classi-
cal magicians cannot master.

Consequences The experimental implementations of the basic idea of the conjuring trick
are not so simple as we described in Sect. 7.7.1. The results however agree well with the
quantum theoretical predictions (compare Sect. 10.8).

The conjuring trick can be carried out in principle, but not with the means and methods of
classical physics. Systems for which the results of measurements (Alice’s and Bob’s answers)
are already predetermined before the measurement (Einstein’s reality) on the corresponding
subsystems (Einstein’s locality), such as is the case for the slips of paper, cannot be the cause
of the observed correlations. This shows that local-realistic theories and the quantum theory
can lead to differing predictions. In our example: “the conjuring trick cannot be carried out”
or “the conjuring trick can be carried out”; but only the predictions of quantum theory can
be experimentally verified. Thus, local-realistic alternative theories to the quantum theory
are refuted. We will describe additional experiments in Chap. 10 and then give more precise
definitions for the concepts of Einstein reality and Einstein locality.

7.8 Quantum Gates for Multiple Qubit Systems

7.8.1 Entanglement via a CNOT Gate

The processing of quantum information is often explained schematically without reference
to an experimental implementation with the aid of quantum circuits. The essential devices
which are needed are: quantum wires; these are special quantum channels through which
quantum systems can propagate without being modified; and quantum gates, which effect
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|x⊕ y〉

|x〉control qubit |x〉

target qubit |y〉

Figure 7.4: A CNOT gate.

unitary transformations of quantum systems. The systems are multi-qubits from the spaces
H2 ⊗ H2 ⊗ H2 . . . ⊗ H2. Measurements permit reading out of the information. Owing to
the unitarity of their operations, quantum gates represent reversible processes. Measurements
are, in contrast, irreversible. Quantum computers are a network of quantum gates. We have
already encountered quantum gates for quantum systems inH2 in Sect. 3.4. We now move on
to product spaces. In Chap. 12, we will assemble quantum circuits into quantum computers.

Entanglement via a CNOT gate A simple quantum gate which transforms a qubit product
state into an entangled state is the CNOT gate or controlled NOT gate, also called an XOR
gate. Its action on the computational basis ofHA2 ⊗HB2 is defined by

|x, y〉 → |x, y ⊕ x〉 (7.93)

with x, y, . . . ∈ {0, 1}. This determines the action on an arbitrary vector fromHA2 ⊗HB2 . The
symbol ⊕ denotes addition modulo 2, i. e. 1⊕ 1 = 0. In detail, this means that:

|0A, 0B〉 CNOT−→ |0A, 0B〉 (7.94)

|0A, 1B〉 CNOT−→ |0A, 1B〉 (7.95)

|1A, 0B〉 CNOT−→ |1A, 1B〉 (7.96)

|1A, 1B〉 CNOT−→ |1A, 0B〉 . (7.97)

From this, it follows that

(CNOT) · (CNOT) = 1 . (7.98)

Applying the matrix representation in the computational basis,

CNOT↔






1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




 , (7.99)

one can readily verify the unitarity property:

(CNOT)† = (CNOT)−1 . (7.100)

The qubits of the system A or B are called control qubits or target qubits (see Fig. 7.4).
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H

H

=

H

H

Figure 7.5: Two equivalent networks.

A simple example shows that the CNOT gate transforms superpositions of control qubits
into entanglements of control and target qubits:

(
α|0A〉 ± β|1A〉) |0B〉 CNOT−→ α|0A, 0B〉 ± β|1A, 1B〉 , (7.101)
(
α|0A〉 ± β|1A〉) |1B〉 CNOT−→ α|0A, 1B〉 ± β|1A, 0B〉 . (7.102)

For α = β = 1√
2

, in this manner four Bell states are formed. The reduced density operator

of the target qubit is in this case ρB = 1
21

B (and correspondingly for the control qubit).
Measurement in an arbitrary ONB ofHB2 yields the two measured values and states in perfect
randomness with the probabilities 1

2 .

U

control qubit |x〉

target qubit |y〉

Figure 7.6: A controlled U gate.

A CNOT gate and four Hadamard gates can be combined to give the inverse of a CNOT
gate (see Fig. 7.5). The CNOT gate is a special case of a controlled U gate (see Fig. 7.6).
It leaves |0, 0〉 and |0, 1〉 unchanged. |1, y〉 with y = 0, 1 goes over to |1〉 ⊗ U |y〉. CNOT
corresponds to U = σx.

7.8.2 Toffoli, SWAP, and Deutsch Gates

The Toffoli gate in Fig. 7.7 is also called a CCNOT gate (controlled-controlled NOT) or
doubly-controlled NOT gate. In this case, the NOT gate acts on the target qubit if and only if
both control qubits are in the state |1〉. The action of CCNOT is

|x, y, z〉 → |x, y, z ⊕ xy〉 . (7.103)

The SWAP gate exchanges qubit states

SWAP|xA, yB〉 = |yA, xB〉 . (7.104)

Analogously, one can construct a doubly-controlled U gate (see Fig. 7.8). It can be imple-
mented with three CNOT gates (cf. Fig. 7.9):

|x, y〉 → |x, x⊕ y〉 → |y, x⊕ y〉 → |y, x〉 . (7.105)
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|x〉

|y〉

|z ⊕ x y〉

control qubit |x〉

control qubit |y〉

target qubit |z〉

Figure 7.7: A Toffoli gate.

U|z〉

|x〉

|y〉

Figure 7.8: A doubly-controlled U gate.

|x〉

|y〉

|y〉

|x〉
Figure 7.9: Exchange of two qubits (a SWAP gate).

Universal quantum gates are a series of quantum gates with which one can carry out every
unitary transformation on H2 ⊗ H2 ⊗ . . . ⊗ H2. It can be shown that e. g. the Deutsch gate
suffices for this purpose ( [Deu 89]). In the case of this gate, the unitary transformation U in
Fig. 7.8 has the form

U = −i exp
(
i
θ

2
σx

)
. (7.106)

There are other universal gates (compare Sect. 7.10). We shall return at length to this topic in
Sect. 12.9.

7.9 Systems of Identical Particles∗

In connection with systems whose subsystems contain elementary particles of the same type –
we consider as an example two spin-1

2 particles – the following questions are frequently asked:

*The sections marked with an asterisk * can be skipped over in a first reading.
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The particles are Fermions and their composite states must be antisymmetric with respect to
exchange of the states of the individual particles. Therefore, they must take a form similar
to the Bell vectors |Φ−〉 or |Ψ−〉. Why can we not construct e.g. a teleportation procedure
based on this always-present “natural” entanglement? And conversely, how can we implement
teleportation with Fermions in a symmetrically-entangled state |Φ+〉?

Identical particles Identical particles have the same values of all their intrinsic properties
such as mass, charge, spin etc. Electrons for example can be distinguished from positrons
but not from each other. They cannot be marked and therefore have no individuality. An
identification is not possible.

To describe systems of identical particles, one can begin with enumerated distinguish-
able particles and then remove their distinguishability. We restrict our considerations to
2-particle systems. The generalisation to more particles is straightforward. The state vec-
tors of two distinguishable particles with the numbers (1) and (2) lie in the product space
H(1)(2) = H(1)⊗H(2). According to the postulates, the states of identical particles are either
completely symmetric in their particle numbers (Bosons, with integral spins), or completely
antisymmetric (Fermions, with half-integral spins). Their state vectors lie correspondingly in
subspaces of H(1)(2), which we denote by H(1)(2)

+ and H(1)(2)
− . These subspaces are them-

selves not product spaces. If {|u(1)〉} and {|v(2)〉} are ONB of H(1) or H(2), respectively,

then the bases of e.g. H(1)(2)
− are given by |n, i〉− := 1√

2
(|n(1), i(2)〉 − |i(1), n(2)〉) with

1 ≤ n ≤ dimH(1) and 1 ≤ i ≤ dimH(2). Without any interactions at all, the symmetry pos-
tulate leads to states which are formally entangled in terms of their non-observable particle
numbers.

Even with the aid of observables, no identification of the particles is allowed. Observables
must therefore be invariant under permutations of the particle numbers. The postulates for
projection measurements apply. They are formulated with respect to the spaces H(1)(2)

+ or

H(1)(2)
− . A consequence of this is that measurements or unitary dynamical evolutions cannot

produce transitions between Bosons and Fermions.

Particles in two different regions of space We clarify the essential points using the exam-
ple of two spin-1

2 particles with external degrees of freedom. H(1) and H(2) are thus already
assumed to be product spaces for the external degrees of freedom (vectors |α〉 and |β〉) and
for the spins (vectors |0〉 and |1〉). A possible state is then e.g.

|Λ(1)(2)〉 =
1√
2

(
|α, 0〉(1) ⊗ |β, 1〉(2) − |β, 1〉(1) ⊗ |α, 0〉(2)

)
. (7.107)

In order to make the connection to the preceding sections, we discuss a situation in which
〈α|β〉 = 0 holds. The states |α〉 and |β〉 are orthogonal. This is the case e.g. when the
particles have differing directions of their momenta or when the wavefunctions 〈�r|α〉 and 〈�r|β〉
are nonzero only in a restricted spatial region Gα or Gβ , where Gα and Gβ do not overlap
(Gα ∩Gβ = ∅). Then, one can register a Fermion only in Gα or in Gβ , but not outside them.
However, statements about the particle numbers (1) or (2) are not possible. Gα or Gβ can be
e.g. different locations at which Alice A or Bob B have set up their measurement apparatus
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which can carry out measurements in spin space. If Alice’s apparatus registers a signal, this at
the same time represents a measurement in configuration space, i.e. Gα is registered. For the
description of this situation, we can introduce an abbreviated form which reflects the fact that
in the case Gα ∩ Gβ = ∅, the state |α〉 (i.e. the location Gα, Alice) is always correlated with
|0〉 and the state |β〉 (i.e. the location Gβ , Bob) is always correlated with |1〉:

|Λ(1)(2)〉 ↔ |ΛAB〉 = |0A, 1B〉 . (7.108)

With respect to all the measurements which can be carried out by Alice and Bob, the product
state |ΛAB〉 is equivalent to the state |Λ(1)(2)〉. If Alice measures the observable σz , she always
finds the spin state |0〉. This is the content of Eq. (7.107).

If Alice measures the observable σx, the result of the measurement can yield e.g. the
eigenvalue |1x〉 and the 2-Fermion system is transformed after selection into the state

|ΛAB〉 → |Λ′AB〉 = |1Ax , 1B〉 . (7.109)

|Λ′AB〉 can again be written in the complete form |Λ′(1)(2)〉. To this end, we replace |0〉 on the
right-hand side of Eq. (7.107) by |1x〉. The probability of this result is |〈Λ(1)(2)|Λ′(1)(2)〉|2 =
|〈ΛAB |Λ′AB〉|2. As a result of the orthonormalisation 〈α|β〉 = 0, the vector |ΛAB〉 in
Eq. (7.108) is a product vector in HAB .

Utilisable and non-utilisable entanglement The state introduced above, |n, i〉−, is a su-
perposition, from which measurable interference effects can result in particular physical sit-
uations. The fact that the particles cannot be distinguished has physical consequences. The
energy spectrum of the helium atom is an example of this. In the following sections, how-
ever, we shall discuss other physical questions. The entanglement for example in the state
1√
2
(|0(1), 1(2)〉− |1(1), 0(2)〉) is related to the indistinguishable particle numbers. They do not

denote subsystems. Since this formal entanglement cannot be used, it cannot serve as a tool
for quantum-mechanical information processing. It is not utilisable for this purpose.

Only the entanglement with the states |α〉 and |β〉 with 〈α|β〉 = 0, as in the state |Λ(1)(2)〉
of Eq. (7.107), opens up the possibility of intercession via |α〉 and |β〉. As we have already
seen, then |Λ(1)(2)〉 becomes equivalent to a non-entangled product state |ΛAB〉. If we now
form e.g. by superposition with an additional state

|Ω(1)(2)〉 =
1√
2

(
|α, 1〉(1) ⊗ |β, 0〉2 − |β, 0〉(1) ⊗ |α, 1〉(2)

)
↔ |ΩAB〉 = |1A, 0B〉

(7.110)

the state vector

|Ψ(1)(2)
+ 〉 :=

1√
2

(
|Λ(1)(2)〉+ |Ω(1)(2)〉

)
, (7.111)

then we can read off from the abbreviated notation

|Ψ(1)(2)
+ 〉 ↔ |ΨAB

+ 〉 =
1√
2

(|0A, 1B〉+ |1A, 0B〉) (7.112)
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that the Bell state |ΨAB
+ 〉 has been formed. In spite of the addition in Eq. (7.112), it has the

symmetry properties required for the description of two identical Fermions. At the same time,
a utilisable entanglement has come about by the superposition described by Eq. (7.111).

If the condition 〈α|β〉 = 0 is not fulfilled in a physical situation, it can be expected that
additional effects will occur in the course of the information processing, which are due to the
indistinguishability of the particles. One can also switch on and off the coupling 〈α|β〉 �= 0 in
the form of a time-dependent exchange coupling and thereby produce an entanglement only at
certain times. We mention also that the symmetry or antisymmetry property is automatically
taken into account within the framework of the second quantisation.

7.10 Complementary Topics and Further Reading

• For “proper mixtures” and “improper mixtures”: [d’Es 95], [d’Es 99].

• Local measurements and the requirements of the theory of relativity: [PT 04].

• The idea that the whole is more than the sum of its parts is referred to in philosophy as
holism. There is a whole series of philosophical analyses in which the attempt is made
to give this idea a precise meaning in many different fields from sociology to physics,
and to investigate its consequences. For the natural-philosophical question as to whether
there is a holism in physics, quite new aspects have resulted from the study of entangled
states in composite systems (see [Pri 81, Sects. 3.7, 5.6, 6.3]). Two differing analyses of
this question are introduced in [Esf 04] and [See 04] (cf. [Esf 06]). There, more detailed
literature is also cited. See also [Hea 99].

• For the conjuring trick: [Har 93], [Har 98].

• Experiments on the conjuring trick: [Har 92], [TBM 95], [DMB 97], [BBD 97].

• An overview of quantum gates for qubits: [DiV 98], [Bra 02].

• In utilising coupled quantum dots or neutral atoms in microtraps as tools for quantum
information processing, effects occur which are based upon the indistinguishability of
particles. For details and further literature, see: [ESB 02].
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7.11 Problems for Chapter 7

Prob. 7.1 [for 7.3.2]: Show that ρA and ρB in Eq. (7.34) have the properties required of a
density operator.

Prob. 7.2 [for 7.4 and 7.5]: Confirm the results of Sects. 7.4 and 7.5 for the case that the
initial state was not a pure state |ψAB〉, but rather a mixture, ρAB .

Prob. 7.3 [for 7.5.2]: Prove Eq. (7.75).

Prob. 7.4 [for 7.8]: Show in each case the equivalence of the networks asserted in Figs. 7.5
and 7.10.

=

H

HH

H

Figure 7.10: Two equivalent networks.

Prob. 7.5 [for 7.8:] Show that the network in Fig. 7.11 converts pairs of Bell states into
pairs of Bell states.

Figure 7.11: Mapping of Bell states onto Bell states.

Prob. 7.6 [for 7.8]: Show that one can construct a quantum adder from a Toffoli gate and
a CNOT gate.

|x〉
|y〉
|0〉

|x〉
|x⊕ y〉
|x y〉

Figure 7.12: A quantum adder. The first two bits are added modulo 2. The circuitry is reversible.



8 Entanglement

In this chapter, we want to establish operationally the concept of quantum correlations and
distinguish them from classical correlations, which can also be present in composite quantum
systems. We also will establish the connection between quantum correlations and entangle-
ment. For pure states, the presence of entanglement can be determined by using the Schmidt
decomposition. A measure of the entanglement will be introduced, and an example of the
creation of entangled states will be given. For applications, it is important that quantum states
cannot be copied. The fact that states can be marked through their entanglement with other
states leads to the quantum eraser and to the question of “delayed choice”.

8.1 Correlations and Entanglement

A composite spin system with two subsystems can be e.g. in the product states |0A, 0B〉 or
|1A, 1B〉, or also in their superpositions α|0A, 0B〉+β|1A, 1B〉. The superposition α �= 0, β �=
0 is an example of an entangled state. Entangled states play a fundamental role in quantum
information processing. They are the central tool with which non-classical effects can be
produced.

Composite systems in entangled states are correlated. If, for the state given above, the
observable σz is measured on each of the subsystems, then one finds as the combination of
measured values either (−1,−1) or (+1,+1). In comparison to correlated classical systems,
the correlations have in this case a different structure. That can be seen if one includes mea-
surements of other observables besides σz . We shall discuss this point in detail in Chap. 10.
In the following sections, we will explain the relevant concepts more specifically, and we start
directly with mixtures.

8.1.1 Classically-Correlated Quantum States and LOCC

Correlated quantum states We begin with the fundamental distinction between correlated
and non-correlated quantum states (see Fig. 8.1). We consider again a composite system SAB

with the subsystems SA and SB . As shown by the considerations in Chap. 7, in a product state
ρAB = ρA ⊗ ρB , the subsystems are in every respect completely independent of each other.
They are not correlated. Conversely, we shall call states ρAB of composite systems which are
not product states

ρAB �= ρA ⊗ ρB , (8.1)
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correlated. Note that the use of the same core symbol ρ is not intended to imply that the states
of SA and SB are the same.

This mathematical characterisation is equivalent to an operational statement about
measured values which in principle can be verified by measurements on subsystems
(cf. Sect. 7.5.1): a state ρAB is correlated if and only if there are observables CA and DB

for which the expectation value of CA ⊗ DB is not given by the product of the expectation
values of the reduced density operators (compare problem 8.1 in Sect. 8.9):

tr[(CA ⊗DB)ρAB] �= trA[CAρA] · trB[DBρB] . (8.2)

This agrees with the intuitive interpretation.

Classically-correlated quantum states Quantum systems can be in states which lead to
correlations in the measured values which are similar to the correlations observed for classical
systems. We want to first give a more detailed description of these classically-correlated
quantum states. In a second step, we characterise the states whose correlations lead to the
non-classical effects which are important for our topic. We however will not start in this case
with the measured values, but rather with the preparation procedure.

The composite system SAB is supposed to be prepared by Alice or Bob starting from
product states by means of local operations (LO) on the subsystems SA and SB . Among such
operations are unitary dynamic actions, measurements, and all other local manipulations1.
Furthermore, Alice and Bob can exchange information via classical communication (CC)
such as by telephone etc., in order to coordinate their local operations. We abbreviate “local
operations and classical communication” as LOCC.

In this preparation of the composite system by means of LOCC, Alice prepares the system
SA in the state ρAr and informs Bob of this via classical communication channels; he, for his
part, prepares his system SB in the state ρBr which is in general different from that prepared
by Alice. This sequence of actions is repeated many times for different states in a random
fashion, keeping track of relative frequencies pr. The composite state thus prepared, ρAB , is
then by construction a convex combination or a statistical mixture (blend) of product states

ρAB =
m∑

r=1

prρ
A
r ⊗ ρBr , pr > 0 ,

∑

r

pr = 1 . (8.3)

Such a procedure could be carried out in a similar manner with classical states. Com-
parison with Eq. (8.1) shows that the resulting state ρAB is correlated, if the sum cannot be
reduced to a single term. Since the correlations are produced by LOCC in a purely classical
manner with the probabilities pr, one terms a quantum state ρAB , which can be written as a
genuine mixture (m �= 1) of product states, a classically-correlated state. We also note that
after the introduction of ensemble decompositions for all the ρAr and ρBr , the density operator
can also be written in the form

ρAB =
∑

j

πj |aAj 〉〈aAj | ⊗ |bBj 〉〈bBj | , (8.4)

with 0 < πj ≤ 1 and
∑

j πj = 1. The states involved need not be orthogonal.

1These can also be generalised measurements, for which additional ancillary systems are used (cf. Chap. 13).
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As in the transition between mixtures, we again disengage ourselves from the particular
preparation procedure. A quantum state ρAB is termed classically correlated even if it was not
produced by the preparation procedure described above. It suffices that it can be simulated
in every respect by a state prepared in this manner, i.e. that its statistical properties can be
reproduced by a LOCC mechanism. Mathematically, this means that ρAB can be written in
the form (8.4).

The term “classically” correlated with respect to quantum states should not give rise to
misconceptions. The analogy to correlated classical states is not perfect. We again consider
the example of a set of many pairs of boxes which both contain either red or blue balls with
the probabilities p1 or p2, respectively (p1 + p2 = 1). When the boxes are opened, one can
observe a correlation of the colours, which is analogous to the correlation in the measurement
of the spin components in the z-direction in a classically-correlated quantum state

ρAB = p1|0A, 0B〉〈0A, 0B |+ p2|1A, 1B〉〈1A, 1B|
= p1|0A〉〈0A| ⊗ |0B〉〈0B|+ p2|1A〉〈1A| ⊗ |1B〉〈1B| . (8.5)

The states |0〉 and |1〉 correspond to the two colours. If one carries out a measurement in the
computational basis on the subsystem SA, then it leads with the probability p1 to the state
|0A〉, and SB is found after the selective measurement in the state |0B〉 which is correlated
with |0A〉.

However, one can also carry out the measurement in a basis which is “rotated” with respect
to the basis {|0〉, |1〉}. There is no analogy for the coloured balls. A measurement on the
system in the state ρAB of Eq. (8.5) with p1 = p2 = 1

2 in the basis {|0Ax 〉, |1Ax 〉}, which leads
to the final state |0Ax 〉 for SA, gives rise for the composite state to

ρAB → ρAB
′
= |0Ax 〉〈0Ax | ⊗

1
2
1B . (8.6)

The state of SB is a maximally mixed state and in this sense it is completely undetermined.
The results of the measurements of σx on both subsystems are uncorrelated.

8.1.2 Separability and Entanglement

It has proved to be helpful to introduce the following concepts (see Fig. 8.1): A state ρAB of
a composite systems SAB is called separable when it can be written in the form (8.3) of a
convex combination of product states. A separable state is thus classically correlated or even
non-correlated (m = 1). A pure or mixed quantum state which is not separable is called
entangled. An entangled quantum state thus contains non-classical correlations, which are
also called quantum correlations or EPR correlations2.

This is the reason for their considerable physical significance. The preparation procedure
LOCC leads to separable states. Entangled states can not be produced from product states via

2The acronym EPR is an abbreviation for the names of A. Einstein, B. Podolsky and N. Rosen. They were the
authors of an important paper [EPR 35] which triggered the considerations that we describe in particular in Chap. 10.
The term EPR has in the meantime become to a large extent independent of this original article and is used to denote
for example the correlations which can be observed in entangled systems, and the corresponding experiments. EPR
is thus today a part of the systematic terminology and not an historical reference.
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correlations (EPR correlations)

ρAB =
∑m �=1

r=1 prρ
A
r ⊗ ρBr ρAB �=∑m �=1

r=1 prρ
A
r ⊗ ρBr

uncorrelated
↔ product state ρAB = ρA ⊗ ρB

correlated
↔ not a product state ρAB �= ρA ⊗ ρB

only classically correlated
↔ proper mixture of

product states (pr �= 0)

impossible for a pure state

not classically correlated
↔ not a mixture of

product states

separable not separable

↔ not entangled ↔ entangled
↔ can be created by LOCC

↔ contains no

↔ cannot be created by LOCC

↔ contains quantumquantum correlations
(EPR correlations)

Figure 8.1: Distinction of cases for the characterisation of the states of bipartite systems. The converging
arrows lead to the umbrella term. Diverging arrows point to special cases. The double arrow indicates
an equivalence. A pure overall state is either not correlated or it is entangled.

LOCC. This characterisation can also be considered to be an equivalent definition of entangle-
ment. The fact that non-local effects can be obtained via LOCC for already entangled states
(e. g. enhancement of the entanglement) will be discussed in Sect. 13.3.6.

It is an important property of quantum physics as compared to classical physics that not
all correlations are necessarily classical. This can be seen immediately from the example of
the pure states in HA ⊗ HB . We learned in Sect. 4.1.3 that the density operator for a pure
state |ψAB〉 cannot be decomposed in terms of a convex sum. Thus, it cannot be classically
correlated as in Eq. (8.3). A pure state is either not correlated (then it is a product state), or
it is EPR-correlated and thus entangled. It then contains a type of correlations which does
not occur in classical systems. We will clarify this point again from a different viewpoint in
Sect. 9.2.4.
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8.1.3 The Separability Problem

Since quantum correlations play a significant role as tools, it is an important goal to develop
criteria with which we can read off whether and to what extent a given state is entangled. For
pure states of bipartite systems, this is simple. The state |ψAB〉 is separable if and only if it
has the form |ψAB〉 = |φA〉 ⊗ |χB〉, i.e. if each of its two reduced density operators is a pure
state. In Sect. 8.3, we will encounter a further criterion for pure states in terms of the Schmidt
decomposition, which at the same time leads to a measure of the entanglement. Making use
of the quantum entropy of the subsystems, we introduce in Sect. 8.3.3 the measure of the
entanglement of pure states of bipartite systems which is at present generally accepted.

Realistic states, as are used for experiments, are nearly always mixed. They contain per-
turbing “admixtures” to the pure states which would in fact be needed. Furthermore, quantum
systems cannot be perfectly decoupled from their environment. Therefore, additional subsys-
tems take part in the composite system. Thus, a very complex situation arises, which can be
only approximately described in the way we do in the following chapters. In addition, it is not
very simple to arrive at an intuitive physical understanding of the entanglement of mixtures.
We will elucidate this with an example. The Bell states of Eq. (7.12) are entangled pure states.
Using the formal criterion given above, this can be seen directly from the reduced density op-
erators, which are given by 1

21. By mixing the entangled states |ΦAB+ 〉 and |ΦAB− 〉 with equal
probabilities, 1

2 , we obtain the state

ρAB =
1
2
(|ΦAB+ 〉〈ΦAB+ |+ |ΦAB− 〉〈ΦAB− |) . (8.7)

If we insert the definitions of the Bell states, we find

ρAB =
1
2
(|0A, 0B〉〈0A, 0B|+ |1A, 1B〉〈1A, 1B|)

=
1
2
(|0A〉〈0A| ⊗ |0B〉〈0B|+ |1A〉〈1A| ⊗ |1B〉〈1B|) . (8.8)

The state ρAB is of the type (8.3) and therefore purely classically correlated. It is not en-
tangled. It is possible to prepare it alternatively by LOCC alone. In the original preparation
procedure of ρAB according to Eq. (8.7), either the state |ΦAB+ 〉 or the state |ΦAB− 〉 is produced.
It is plausible that simply because of the random alternation of the different entangled states,
their entanglement cannot for example be used to carry out the conjuring trick from Sect. 7.7.
Presumably, no longer are there sufficient quantum correlations remaining after such a mixing
process. We have shown that in fact, none at all remain.

The density operator of a given mixture has infinitely many ensemble decompositions.
If for a bipartite system at least one of these has the form (8.3), then the state is separable;
otherwise, it is entangled. For systems with many subsystems and Hilbert spaces of large
dimensions, separability must make a statement about all the ensemble decompositions. This
has not been satisfactorily formulated up to now. The relevant research programme is called
the separability problem: is a state of a composite quantum system given by a generalised
density operator separable or not, and how can one determine this experimentally?

In simple cases, however, it is possible to give a measure of the degree of correlation of
two systems. We will describe the degree of correlation of pure states in Chap. 9 with the
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help of von Neumann’s mutual entropy (or information). This is a wide field in which the
entropy plays an important role. We discuss the PPT criterion in Sect. 8.4, and indicators of
entanglement in Sect. 10.6. In Section 11.7, we encounter the concurrence as a measure of the
entanglement of two qubit systems.

8.2 Outlook

In Sect. 2.2, we gave an overview which on the main referred to the two types of dynamics
in quantum physics: the deterministic dynamics between preparation and measurement, and
the non-deterministic dynamics of the measurement process. In the chapters that followed, we
encountered the von Neumann entropy and the concept of entanglement for mixtures. A setup
for the production of entanglement was described, and – with the conjuring trick – an example
was given of its application. In the coming chapters, we want to complement the overviews
in Sects. 2.2 and 7.3.1 by treating entanglement as a focal-point subject. This leads us to the
following topics:

(i) Understanding entanglement

– The marking of states

– Entropy, types of correlations, non-local measurements

– Exchange of entanglement

– Decoherence

(ii) Producing entanglement

– Cascade photons

(iii) Using entanglement

– Refuting local-realistic theories

– Quantum cryptography

– Dense coding

– Quantum teleportation

– Quantum computers

– Implementation of quantum operations and generalised measurements

(iv) Detecting, quantifying, and concentrating entanglement

– Separability criteria (e.g. the PPT criterion)

– Indicators of entanglement for experimental detection

– Concurrence as a measure of entanglement

– Distilling entanglement

We begin with a discussion of the situation in the case of pure states.
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8.3 Entangled Pure States

8.3.1 The Schmidt Decomposition

For a discussion of the entanglement of pure states |ψAB〉 of bipartite systems, it has proved
especially helpful to make use of the Schmidt decomposition. It is also called the bi-orthogonal
or polar decomposition (bi-orthogonal or polar expansion) of the vector |ψAB〉. It states the
following:

Let |ψAB〉 be a normalised pure state of the composite system SAB in the product Hilbert
space HAB = HA ⊗ HB with dimHA = a and dimHB = b. With ρAB = |ψAB〉〈ψAB|,
the operators ρA = trB[ρAB] and ρB = trA[ρAB] are the reduced density operators of the
subsystems SA and SB . Then we have the following results:

(i) The vector |ψAB〉 can be written in the form of a Schmidt decomposition3

|ψAB〉 =
k∑

n=1

√
pn|uAn , wBn 〉 with pn > 0 (8.9)

with k ≤ min(a, b), where {|uAn 〉} and {|wBn 〉} are the orthonormalised eigenvectors of
ρA inHA (or ρB inHB) with suitably chosen phases. For pairwise differing eigenvalues
pn (i.e. no degeneracy), the vectors |uAn 〉 and |wBn 〉 are uniquely determined up to a
phase. It follows from this that:

(ii) ρA and ρB have the same positive eigenvalues p1,...,pk (for g-fold degeneracy, the cor-
responding eigenvalue is to be repeated g times).

The number k is called the Schmidt rank of |ψAB〉.

To prove (i), we expand |ψAB〉 in the ONB {|nA〉, 1 ≤ n ≤ a} ofHA and {|iB〉, 1 ≤ i ≤
b} ofHB with a ≤ b

|ψAB〉 =
a,b∑

n,i=1

ani|nA, iB〉 (8.10)

and again introduce the relative states

|w̃Bn 〉 :=
b∑

i=1

ani|iB〉 (8.11)

leading to

|ψAB〉 =
a∑

n=1

|nA, w̃Bn 〉 . (8.12)

3E. Schmidt, Math. Ann. 63, 433-476 (1907).
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The relative states |w̃Bn 〉 are in general neither orthogonal nor normalised. We show how the
orthogonality claimed for Eq. (8.9) can be obtained.

To do this, we choose as the ONB {|nA〉} in Eq. (8.10) the particular orthonormal eigen-
vectors {|uAn 〉} of ρA and expand ρA

ρA =
a∑

n=1

pn|uAn 〉〈uAn | with pn ≥ 0 ,
a∑

n=1

pn = 1 . (8.13)

Let pn > 0 for 1 ≤ n ≤ k and pn = 0 for k + 1 ≤ n ≤ a. The eigenvalues pn can be
degenerate. The vector |uAn 〉 is determined only up to a phase for non-degenerate eigenvalues.
On the other hand, with the relative states associated with |uAn 〉, {|w̃Bn 〉}, which we shall use
from now on, we find

ρA = trB [|ψAB〉〈ψAB|] = trB




a∑

l,n

|uAl , w̃Bl 〉〈uAn , w̃Bn |


 =

= trB [
a∑

l,n=1

|uAl 〉〈uAn | ⊗ |w̃Bl 〉〈w̃Bn |] =

=
a∑

l,n=1

|uAl 〉〈uAn |trB[|w̃Bl 〉〈w̃Bn |] =

=
a∑

l,n=1

〈w̃Bn |w̃Bl 〉|uAl 〉〈uAn | , (8.14)

where in the last step (compare Eq. (1.35) with A = 1)

trB[|w̃Bl 〉〈w̃Bn |] =
b∑

i=1

〈iB|w̃Bl 〉〈w̃Bn |iB〉 (8.15)

=
b∑

i=1

〈w̃Bn |iB〉〈iB|w̃Bl 〉 = 〈w̃Bn |w̃Bl 〉 (8.16)

was inserted. Comparison of (8.13) with (8.14) leads to the orthogonality of the relative states:

〈w̃Bn |w̃Bl 〉 = pnδnl . (8.17)

For n ≥ k+1, the |w̃Bn 〉 are null vectors. If one furthermore takes into account the fact that we
have chosen {|uAn 〉} as ONB instead of {|nA〉}, we find as a result of Eq. (8.12) with (8.17)
the proposition (i). Claim (ii) is a direct result.

From Eq. (8.9), the reduced density operator of SA is found:

ρA =
k∑

i=1

pn|uAn 〉〈uAn | . (8.18)

The pn are called Schmidt coefficients. We add that also the reduced density operator ρB has
the same pn as eigenvalues

ρB =
k∑

n=1

pn|wBn 〉〈wBn | . (8.19)
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This has the immediate consequence that every function of a density operator which depends
only on its eigenvalues has the same value for both reduced density operators. The degree of
mixtureness from Sect. 4.1.3 and the von Neumann entropy, which we introduced in Chap. 6,
are examples of this. They are the same for both subsystems.

A Schmidt decomposition always refers to a particular pure state of a composite system.
Different states have differing Schmidt decompositions. In general, the Schmidt decomposi-
tion cannot be extended to systems with more than two subsystems. For mixtures, there is no
analogue of the Schmidt decomposition.

8.3.2 The Schmidt Number and Entanglement

We will give some examples for the usefulness of the Schmidt decomposition. {|uAn 〉} or
{|wBn 〉} with n = 1, ...., k are called the Schmidt bases ofHA orHB . In them, the two reduced
density operators are diagonal. The Schmidt decomposition is a superposition of separable
states. All the information about the entanglement of |ψAB〉 is contained in the Schmidt
coefficients. The Schmidt number k is the number of non-vanishing Schmidt coefficients.
|ψAB〉 is a product state and therefore not entangled, if and only if the Schmidt number is
equal to one. ρA and ρB are then said to have the rank one. This is equivalent to tr[(ρA)2] =
tr[(ρB)2] = 1. Whether a pure state |ψAB〉 is entangled or not can thus be directly read off
the reduced density operator of a subsystem. The Schmidt number can serve as a measure of
the entanglement of pure states. This is the reason for its significance. Furthermore, we can
read off directly: if one of the reduced density operators describes a pure state, then so does
the other. When the overall system SAB is in a pure state |ψAB〉, it is thus impossible that one
of the subsystems be in a pure state and the other in a genuine mixture. We will generalise
this statement further.

Similarly, we find that: when a qubit system is entangled with a system with m linearly-
independent states, then the Schmidt decomposition contains only two terms. For calculations,
it is often expedient to introduce the Schmidt basis. In general, the statement holds: If a
subsystem has the dimension d, then it cannot be entangled with more than d orthogonal
states of another system.

If ρA and thus also ρB have as their only degenerate eigenvalue at most zero, then the
Schmidt decomposition is uniquely determined by ρA and ρB . One can find the corresponding
eigenstates of ρA and ρB and form the product of the states belonging to the same eigen-
value as in Eq. (8.9). For dimHA ≤ dimHB , the spectrum of ρB consists of the Schmidt
coefficients and (dimHB − dimHA) vanishing eigenvalues.

We give an example of degeneracy. The Bell state

|ΨAB
− 〉 =

1√
2
(|0A, 1B〉 − |1A, 0B〉) (8.20)

is, like all other Bell states, entangled. The associated bases of HA and HB are
e.g. {|0A〉, |1A〉} and {|1B〉,−|0B〉}. The state |ΨAB

− 〉 exhibits spherical symmetry, since
one can readily verify that

|ΨAB
− 〉 =

1√
2
(|0Ar , 1Br 〉 − |1Ar , 0Br 〉) (8.21)
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holds, where |0r〉 and |1r〉 are the eigenvectors of rσ with an arbitrary Bloch vector r
(cf. Eq. (3.31)). This demonstrates that in this case, the Schmidt decomposition is not unique.
If several pn in Eq. (8.9) are the same, the corresponding vectors |uAn , wBn 〉 can be replaced
by linear combinations. This corresponds to the fact that for |ΨAB

− 〉, the eigenvectors of the
reduced density operators

ρA = ρB =
1
2
1 (8.22)

are not determined.

Purification by a transition to a product space In Sect. 9.1.2, we will make use of the
following ancillary theorem: For each system with a density operator ρA on HA, there exists
a pure state |φAB〉 inHA ⊗HB such that ρA is the associated reduced density operator:

ρA = trB [|φAB〉〈φAB|] . (8.23)

For the proof, we consider the ONB {|uAn 〉} in which ρA is diagonal:

ρA =
a∑

n=1

pn|uAn 〉〈uAn | . (8.24)

According to the Schmidt decomposition, then

|φAB〉 =
a∑

n=1

√
pn|uAn , wBn 〉 (8.25)

with any ONB {|wBn 〉} is a possible purification. Other purifications can be obtained from it
by unitary transformations of this basis. This makes it once again clear that there is no unique
inverse to taking the partial trace. There are infinitely many composite systems SAB which
have the same state of SA.

8.3.3 The Entropy of the Subsystems as a Measure of Entanglement

Pure states of a bipartite system SAB are either in a product state; then the subsystems are not
correlated, or they are entangled, and then they are EPR-correlated (see Sect. 8.1). Correla-
tions can in this case be only non-classical. We denote the entropy of the composite system by
S(AB) and the entropies of the subsystems, obtained through the reduced density operators
ρA = trB[ρAB] and ρB = trA[ρAB], by S(A) and S(B). Since we consider only pure states,
we always have the maximum information about the composite state:

S(AB) = 0 . (8.26)

In a product state, the maximum information about the state of the subsystems is also
present:

S(A) = S(B) = 0 . (8.27)
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In contrast, for example the density operators of the Bell states are completely without struc-
ture

ρA = ρB =
1
2
1 . (8.28)

The subsystems in this case are maximally mixed and maximally undetermined:

S(A) = S(B) = 1 . (8.29)

The entropy (indeterminacy of the state) of the subsystems is a measure of the missing
information – compared with the pure state of the composite system. If one considers only
the subsystems, one loses all the more information about the composite state, the more infor-
mation is contained in the correlations between the substates. The greater the entropy of the
subsystems, the more strongly is the pure state of the composite system correlated and thus
entangled. We therefore take for a pure state |ψAB〉 of the composite system the value E(ψ)
of the entropy of the subsystems

0 ≤ E(ψ) := S(A) = S(B) ≤ 1 (8.30)

as a measure of the entanglement of the state. E(ψ) is also called the entropy of entanglement.
With Eqs. (6.4), (6.5), and (8.13), we obtain for the entanglement

E(ψ) = −
k∑

n=1

pn ln pn (8.31)

with the Schmidt coefficients pn. This quantitative measure of the entanglement holds only
for pure qubit states. For mixed states, there is a series of suggested measures of the entan-
glement, which are the same as E(ψ) for the special case of pure states of bipartite systems
(see Sect. 8.8). For systems which are composed of two qubits, we give a measure of the
entanglement for mixtures in Sect. 11.7.

The entropy of entanglement depends only on the Schmidt coefficients. It is independent
of the basis and does not change under local unitary transformations. For |ψAB′〉 = UA ⊗
UB |ψAB〉, we have E(ψ′) = E(ψ). States in Hd ⊗ Hd, for which E(ψ) = log d with
d = dimH applies, are called maximally entangled. Bell states are an example.

8.3.4 Subsystems in Pure States are not Entangled∗

We prove a theorem for mixtures which we have already mentioned above for pure states
of SAB: If for a bipartite system SAB which is in a mixed state ρAB , the reduced density
operator ρA of a subsystem SA is that of a pure state, then ρAB is separable. Since we are
seeking a statement about mixtures, we cannot have recourse to the Schmidt decomposition.

We first discuss the case that ρA is a mixture. ρA is a positive operator. It can be decom-
posed into its orthonormal eigenstates, which we complete to obtain an ONB |uAn 〉

ρA =
∑

n

rn|uAn 〉〈uAn | ,
∑

n

rn = 1 , rn ≥ 0 . (8.32)

*The sections marked with an asterisk * can be skipped over in a first reading.
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Correspondingly, for ρAB

ρAB =
∑

q

sq|ψABq 〉〈ψABq | ,
∑

q

sq = 1 , sq > 0 . (8.33)

It is expedient for calculations to write the eigenvectors |ψABq 〉 making use of the relative

states |w̃(q)B
n 〉 to |uAn 〉 (see Sect. 7.4.1). For clarity, we dispense with the indices A and B and

with the tilde so far as possible. We obtain

|ψABq 〉 = |ψq〉 =
∑

n

|un, w(q)
n 〉 (8.34)

and thus

ρAB =
∑

q,n,m

sq|un , w(q)
n 〉〈um, w(q)

m |

=
∑

n,m

|un〉〈um| ⊗
∑

q

sq|w(q)
n 〉〈w(q)

m | . (8.35)

This is in general not a separable state. For the reduced density operator ρA of the subsystem
SA, it follows that

ρA = trB[ρAB] =
∑

n,m

|un〉〈um|
∑

q

sq〈w(q)
m |w(q)

n 〉 . (8.36)

To take the trace with the ONB {|vi〉} ofHB , we made use of the relation
∑

i

∑

q

sq〈vi|w(q)
n 〉〈w(q)

m |vi〉 =
∑

q

sq〈w(q)
m |w(q)

n 〉 . (8.37)

With Eqs. (8.32) and (8.36), we find the matrix elements of ρA to be

〈uk|ρA|ul〉 = rkδkl =
∑

q

sq〈w(q)
l |w(q)

k 〉 . (8.38)

If, in particular, rk = 0, then we have
∑

q

sq||w(q)
k || = 0 (8.39)

and, with sq > 0,

||w(q)
k || = 0 , |w(q)

k 〉 = 0 (8.40)

for all q.
With this result, we return to the original problem. ρA is supposed to be a pure state.

Without limitations, we set

ρA = |u1〉〈u1| . (8.41)
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Then, rn�=1 = 0 and thus |w(q)
n�=1〉 = 0 . Inserting into Eq. (8.35) gives

ρAB = |u1〉〈u1| ⊗
∑

q

sq|w(q)
1 〉〈w(q)

1 | . (8.42)

The density operator ρAB is thus separable. This yields a remarkable physical result: If a
system is in a pure state, it cannot be entangled with another system. There are no correlations
between this system and any other arbitrary system.

The postulates from Sect. 2.1 refer to pure states. The systems described by these pos-
tulates are therefore necessarily also isolated with respect to EPR correlations. We note an
additional result: a measurement on a subsystem with a non-degenerate measured value trans-
forms the state of this subsystem into a pure state. Therefore, this projective measurement
breaks up the entanglement with other subsystems, independently of whether the composite
system was previously in a mixed or in a pure state. Once again, a projective measurement is
seen to be a strong intervention.

8.4 The PPT Criterion for the Entanglement of Mixtures ∗

Partial transposition We wish to give a criterion for the entanglement of mixtures. To this
end, we introduce the transposition T inH. Referring to the computational basis {|n〉} ofH,
it is defined as the mapping which transforms ρ =

∑
n,m ρnm|n〉〈m| into

T (ρ) = (ρ)T :=
∑

n,m

ρnm|m〉〈n|, ρTn,m = ρm,n . (8.43)

For a self-adjoint matrix, the eigenvalues are the same as those of the transposed matrix. ρ
is a positive operator. Therefore, ρT is also a positive operator. Transposition is a linear and
positive mapping.

Referring to the matrix representation with the ONB {|nA〉} and {|µB〉} of HA or HB ,
the partial transposition inHA, (TA⊗1B)ρAB =: (ρAB)TA is given by the mapping of ρAB:

ρAB ↔ ρmµ,nν = 〈mA, µB|ρAB|nA, νB〉 (8.44)

onto

(ρAB)TA ↔ ρTA
mµ,nν = ρnµ,mν . (8.45)

For the partial transposition inHB , we have correspondingly

〈mA, µB|(ρAB)TB |nA, νB〉 = 〈mA, νB|ρAB|nA, µB〉 . (8.46)

The partial transpositions are positive on all separable density operators (cf. (8.4)), since for
example

TA ⊗ 1B(ρA ⊗ σB) = (ρA)TA ⊗ σB . (8.47)

*The sections marked with an asterisk * can be skipped over in a first reading.
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It is important that for Hilbert spaces of low dimension, the converse also holds. This is the
content of a theorem which we shall not prove ( [HHH 96], [HHH 01]). It specifies the PPT
criterion or positive partial transpose criterion for entanglement: A state ρAB inHA2 ⊗HA2 or
HA2 ⊗ HA3 is separable if and only if (ρAB)TA is positive ((ρAB)TA ≥ 0). This criterion is
also called the Peres-Horodecki criterion. It is of fundamental significance. Its use in practice,
however, is hindered by the fact that one must first determine the state ρAB .

An example We give an example for the application of the PPT criterion. We consider the
Bell state |ΦAB+ 〉, which is “impurified” by an admixture of the non-entangled maximally-
mixed state 1

41

ρAB = p|ΦAB+ 〉〈ΦAB+ |+ (1− p)1
4
1AB, 0 ≤ p ≤ 1 . (8.48)

We enumerate the computational basis ofHA2 ⊗HB2 by

|0A, 0B〉 ↔ 1 ,
|0A, 1B〉 ↔ 2 ,
|1A, 0B〉 ↔ 3 (8.49)

|1A, 1B〉 ↔ 4 . ;

then we find for the matrix representation

ρAB ↔ 1
2







p+ 1
2 (1− p) 0 0 p
0 1

2 (1− p) 0 0
0 0 1

2 (1− p) 0
p 0 0 p+ 1

2 (1− p)





 . (8.50)

For simplicity, we carry out the transposition TB inHB2 . We can read off from Eq. (8.46) that it
has the same effect on the matrix elements as the permutation (1→ 2, 2→ 1, 3→ 4, 4→ 3)
of the indices. One thus obtains the partially transposed matrix by transposing each of the four
submatrices

ρAB ↔
(( ) ( )
( ) ( )

)
. (8.51)

In this manner, one can readily verify that in this case the resulting matrix has the eigenvalues

λ1,2,3 =
1
4
(1 + p) ≥ 0, λ4 =

1
4
(1− 3p) . (8.52)

The PPT criterion states that ρAB of Eq. (8.48) is entangled if and only if p > 1
3 . If we take

ρAB to be a statistical mixture, then the probability for the occurrence of the entangled Bell
state must be greater than 1

3 for ρAB to be entangled. The completely mixed state 1
41

AB (it
corresponds to p = 0) is not entangled.
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The general criterion The PPT criterion is a special case of a general criterion which ap-
plies to Hilbert spacesHd of arbitrary finite dimensions. We give this general criterion without
proof ( [HHH 96], [HHH 01]) and thereby anticipate the concepts and physical interpretations
in Sect. 14.1, which we do not wish to reproduce here. We consider positive mappings Λ,
which map operators onHBd onto operators onHBd . ρAB is a density operator onHAd ⊗HBd .
It is separable if and only if

(1⊗ Λ)(ρAB) ≥ 0 (8.53)

for all positive, but not completely positive mappings Λ. According to the PPT criterion, it
is not necessary to test all the Λ’s in low dimensions. The evaluation of all transpositions
suffices.

This more general criterion is also a purely mathematical one, which cannot be directly
implemented as a verification procedure for separability. In [HE 02], a direct experimental
verification of entanglement is described, which requires no a priori knowledge about a quan-
tum state.

8.5 The Production of Entangled States

Entanglement as the normal case The production of entangled states from the theoretical
point of view is quite simple. Let a composite system, which is composed of two subsystems,
be in a product state

|ψAB〉 = |φA〉 ⊗ |χB〉 (8.54)

at the time t0. If the system experiences a dynamic evolution for t > t0 with a unitary operator
UAB , which is not a product operator,

UAB �= UA ⊗ UB , (8.55)

– this is the normal case – then it will evolve into an entangled state. In this sense, entangle-
ment is the “normal state”. In practice, the production of well-determined entangled states
(such as the Bell states) or given types of quantum objects (such as photons) requires an ex-
perimental effort. Entanglement is frequently broken by perturbations which arise from the
environment as a participating third system. We will discuss an example of this in Sect. 14.4.3.

Cascade photons At present, there are a number of experimental methods for producing en-
tangled states in the laboratory. We will discuss one of these as an example. For the detection
of correlations, the polarisations of pairs of photons are particularly suitable, since photons
can propagate without major perturbations over typical laboratory distances and even much
further. We describe a source of entanglement which is operational in the optical range. More
details can be found in the references of Sect. 8.8.

An atom decays via two sequential transitions in a cascade from an excited state via an
intermediate state to its ground state. Such a cascade can be observed e.g. using calcium atoms
(see Fig. 8.2). The two photons which are emitted have the wavelengths λA = 551, 3 nm and
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λB = 422, 7 nm. They are in general not emitted in opposite directions. In the experiment,
however, one chooses pairs in which e.g. the photon with the wavelength λA is emitted in the
positive z-direction and the photon of wavelength λB in the negative direction. Since in the
J = 0 → J = 1 → J = 0 transition, the total angular momentum J remains unchanged,
these photons must be circularly polarised and have equal but opposite angular momenta. It
follows furthermore from the details of the atomic decay that the composite state of the two
photons has even parity. These two conditions must be obeyed by the state which describes
the two-photon system.

As we have seen in Sect. 3.6, the right-hand and left-hand circular polarised states with
a fixed propagation vector k form a basis in the Hilbert space H2 of polarisations. For the
photon pair, |RA, RB〉, |RA, LB〉, |LA, RB〉, |LA, LB〉 is thus a basis of the product space
HA ⊗ HB; A and B denote here the positive and the negative z-directions, respectively, in
which the two photons are emitted. The wavevector k is in the one case proportional to ez
and in the other to −ez . Due to the vanishing total angular momentum, the two-photon state
can only be a linear combination of |RA, RB〉 and |LA, LB〉 (compare Fig. 8.3)

|φAB〉 = α|RA, RB〉+ β|LA, LB〉 . (8.56)

The physics of the atomic transitions dictates an additional condition: the two-photon state
must have even parity. This means that when the coordinate system is changed from right-
handed to left-handed, the state remains invariant. This is clearly possible only for a particular
choice of α and β:

|ΦAB+ 〉 =
1√
2

(|RA, RB〉+ |LA, LB〉) . (8.57)

The two-photon state is thus a Bell state, due to the symmetries of the production process,
which it must reflect.

The entanglement becomes plausible if one considers the fact that the intermediate state
with J = 1 is degenerate. The ground state can therefore be arrived at via two different inter-
mediate states (cf. Fig. 8.2). Both “paths” are possible. In analogy to the “paths” in a two-slit
experiment, the resulting states interfere with each other. Thereby on the one “path” two right-
hand circularly-polarised photons are emitted, and on the other, two photons with left-hand
circular polarisation. This correlation leads, together with the superposition, to entanglement.

J = 0

J = 1

J = 0

λA = 551nm

λB = 423nm

J = 1

J = 0

J = 0

LA

LB

RA

RB

Figure 8.2: Transition scheme of cascade photons.
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z

|RA〉
AB

λB λA

Figure 8.3: Polarisations of the cascade photons

The Bell state |ΦAB+ 〉 of Eq. (8.57) reflects precisely the situation of the photon pairs which
results from their production process.

For later reference, we compute the linear polarisations in the x-direction and the y-
direction. To do this, we can make use of Eqs. (3.65) and (3.66); however, we must keep
in mind the convention in Fig. 8.3 for the direction of propagation. We find

|RA〉 =
1√
2
(|xA〉+ i|yA〉)

|LA〉 =
1√
2
(|xA〉 − i|yA〉) (8.58)

|RB〉 =
1√
2
(|xB〉 − i|yB〉)

|LB〉 =
1√
2
(|xB〉+ i|yB〉)

and thus for the entangled state

|ΦAB+ 〉 =
1√
2
(|xA, xB〉+ |yA, yB〉) . (8.59)

In our computation, the position of the x-axis and of the y-axis was not fixed. Equation (8.59)
holds for arbitrary orientations. The state |ΦAB+ 〉 is rotationally symmetric with respect to the
z-axis. We shall return to this two-photon state in Chap. 10.

8.6 The No-Cloning Theorem Prevents Transfer of
Information Faster than the Velocity of Light

We have seen that a measurement on subsystem A instantaneously transforms subsystem B
into a well-defined state. The word “instantaneous” is seductive. Let us imagine that an en-
tangled pure state has been produced whose subsystem SA is at Alice’s location and whose
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other subsystem SB at Bob’s location, very far away. Alice attempts to transmit one bit of in-
formation to Bob by measuring one of two non-commuting observables on her subsystem SA.
If Bob succeeds in reading out this information on his subsystem SB , then it would have
been transmitted at a velocity greater than that of light and this would contradict the theory of
relativity.

We describe in detail the procedure suggested. Alice and Bob each have access to a photon
from a polarisation-entangled pair which is in e.g. the Bell state

|Ψ−〉 =
1√
2
(|H,V 〉 − |V,H〉) =

1√
2
(| − 45◦, 45◦〉+ |45◦,−45◦〉) . (8.60)

Alice carries out her measurement either in the {|H〉, |V 〉} basis or in the basis which is
rotated by 45◦ with the vectors |+45◦〉 = (|H〉+ |V 〉)/√2 and |− 45◦〉 = (|H〉− |V 〉)/√2.
These two basis systems are known to Bob. The choice of the one or the other basis by Alice
is the information which is to be transmitted.

If Alice places her photon via a measurement in a particular state (e. g. |−45◦〉), the photon
at Bob’s location enters the state which is perpendicular (in this example |+45◦〉). This means
more precisely that an analyser with this orientation will register a count with certainty. If Bob
could measure the polarisation of his photon, then he could read Alice’s message. However,
for his measurement, Bob can only choose one of the two bases randomly, and he has only one
photon on which to carry out the measurement. If Bob’s photon as in our example is in the state
|+45◦〉 and he measures in the basis {|HB〉, |V B〉}, then either his detector for H-polarisation
or his detector for V-polarisation can register a count. The results of measurements on pairs of
photons which were prepared in the state |ψ−〉 are correlated this way. A single measurement
therefore does not suffice for a certain determination of the (+45◦)-polarisation. Bob can thus
not read out the information. If he however had a machine which could produce many copies
of his photon, then he could measure average values. With them, he could determine the state
and the transmission of information would be possible (compare Sect. 4.4). This raises the
question as to whether quantum systems can be cloned.

The no-cloning theorem We want to prove that there is no machine which can copy arbi-
trary unknown pure quantum states. We first describe a different situation, in which copying
would be possible. We show that there is a suitable copier for orthogonal states |0〉 and |1〉.
This is the corresponding CNOT gate from Sect. 7.8.1. If the control qubit has the form
|ψA〉 = α|0〉 + β|1〉 and |0B〉 is chosen as target qubit, then the action of the CNOT gate in
the basis {|0〉, |1〉} consists of the entanglement

|ψA, 0B〉 → |φAB〉 = α|0, 0〉+ β|1, 1〉 . (8.61)

The two orthogonal states of the control qubit, |0〉 or |1〉 (i. e. β = 0 or α = 0), are thus copied
by the gate which is adapted to this basis. Except however for these two limiting cases α = 0
and β = 0, which is the trivial case, the superposition |ψA〉 will not be copied in this manner,
since copying would have to lead to the product state |ψA〉|ψB〉.

We now turn to the general case. A quantum system SA is in the state |ψA〉. This state
is supposed to be copied, in other words a second quantum system SB , which is originally in
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the state |iB〉, is supposed to be transformed into the state |ψB〉4. Here, the initial state |iC〉 of
the copier system SC , which completes the composite system, can itself be transformed into a
new state |f(ψ)C〉 in a manner which depends upon |ψB〉. The overall procedure is supposed
to be universal, as with an office copying machine; i.e. a copy of an arbitrary state of SA is
supposed to be made using the same unitary transformation U of the composite system.
|ϕA〉 is a second state which is to be copied. Then the requirement is:

|ψA〉|iB〉|iC〉 U−→ |ψA〉|ψB〉|f(ψ)C〉 (8.62)

|ϕA〉|iB〉|iC〉 U−→ |ϕA〉|ϕB〉|f(ϕ)C〉 . (8.63)

The unitary transformation maintains the inner product

〈ψA|ϕA〉 = 〈ψA|ϕA〉〈ψB|ϕB〉〈f(ψ)C |f(ϕ)C〉 . (8.64)

If |ψA〉 and |ϕA〉 are not orthogonal, (〈ψA|ϕA〉 �= 0), it follows that

1 = 〈ψB|ϕB〉〈f(ψ)C |f(ϕ)C〉 . (8.65)

We consider the absolute values. Since all the states are normalised, with |〈ψB|ϕB〉|≤1 and
|〈f(ψ)C |f(ϕ)C〉| ≤ 1, then

|〈ψB |ϕB〉| = 1 i. e. |ψA〉 = |ϕA〉 (8.66)

is a necessary condition for fulfilling (8.65). Therefore, the machine could not copy a second
state |ϕA〉 which is not orthogonal to |ψA〉. There is no universal copier for pure quantum
states (no-cloning theorem).

Thus, the attempt described above to construct a contradiction between the theory of rel-
ativity and quantum theory must fail. The conflict-free coexistence of the two theories is
remarkable, since the requirements of relativity were not taken into account in the formulation
of quantum mechanics in its nonrelativistic form, which we are using.

8.7 Marking States by Entanglement∗

8.7.1 Which-Way Marking∗

Two-path interferometer We remind the reader of the Mach-Zehnder interferometer
treated in Sect. 3.7.2 (see Fig. (3.8)), which is traversed by a single quantum object. Be-
hind the first beam splitter, we have the state ρ. The quantum system in this state encounters
a second beam splitter with a phase shifter (cf. Fig. 3.10). A detector at the 0 output can then
register an interference pattern as a function of the set phase shift α. More precisely, the sig-
nal probability p(α) will be a function of α. According to Eq. (3.89), for an arbitrary incident
state ρ, it is found to be

pρ(α) = tr[ρ|α〉〈α|] (8.67)

4We speak for simplicity (see Sect. 2.1.2) again in an abbreviated manner of transforming states into other states.
More precisely, the copier functions in such a manner that it carries out – controlled by SA – the same preparation
procedure for SB that SA had originally passed through.

*The sections marked with an asterisk * can be skipped over in a first reading.
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with

|α〉 = 1√
2
(|0〉+ eiα|1〉) . (8.68)

For the case that the state behind the first beam splitter is a pure state |χ〉, then the signal
probability and the fringe contrast of the interference pattern are those given in Sect. 3.7.2.
We discuss different states ρ.

In the interpretation of the mixture

ρ =
1
2
(|0〉〈0|+ |1〉〈1|) =

1
2
1 (8.69)

as a statistical mixture, the quantum object would be incident on the phase shifter and the
second beam splitter either in the state |0〉 or in |1〉, each with the relative probability 1/2. In
all these cases there is no α dependence of p and thus no interference:

p|0〉(α) = p|1〉(α) =
1
2
, p|0〉(α) + p|1〉(α) = pρ(α) = 1 . (8.70)

The fringe contrast ν (cf. Sect. 3.7.2) is

ν|0〉 = ν|1〉 = νρ = 0 . (8.71)

If the pure state |χ〉 is a superposition of |0〉 and |1〉, then it can in general not be associated
with a particular mode (a particular path). Correspondingly, interference then occurs. The
general qubit vector |χ(Θ, ϕ)〉 and the vector perpendicular to it, |χ⊥(Θ, ϕ)〉, have the form
(compare Eq. (3.90)):

|χ(Θ, ϕ)〉 = cos
Θ
2
|0〉+ ei

ϕ
2 sin

Θ
2
|1〉 (8.72)

|χ⊥(Θ, ϕ)〉 = − sin
Θ
2
|0〉+ ei

ϕ
2 cos

Θ
2
|1〉 (8.73)

= |χ(π + Θ, ϕ)〉 .
They make up an ONB. With p(α) from Eq. (3.89), we find for the signal probability of the
detector as a function of the phase shift α

p|χ〉(α) =
1
2
[1 + sin Θ cos(α− ϕ

2
)] (8.74)

p|χ⊥〉(α) =
1
2
[1− sin Θ cos(α− ϕ

2
)] . (8.75)

For the fringe contrast, we obtain

ν|χ〉 = ν|χ⊥〉 = sin Θ . (8.76)

If the pure state behind the first beam splitter is not |0〉 or |1〉 (θ �= 0, π), then on variation of
α, an interference pattern results with a fringe contrast which depends on Θ. The interference
patterns of |χ〉 and |χ⊥〉 are shown for ϕ = π in Fig. (8.4).
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One can see that on addition of the probabilities, the dependence on the phase shift α just
cancels. The interference pattern vanishes:

p|χ〉(α) + p|χ⊥〉(α) = pρ(α) = 1 . (8.77)

This is the situation which occurs for the equally-weighted statistical mixture

ρ =
1
2
(|χ〉〈χ|+ |χ⊥〉〈χ⊥|) =

1
2
1 (8.78)

of the basis states |χ〉 and |χ⊥〉. The mixture effects an addition of the interference patterns
which are shifted relative to each other. Interference fringes are no longer visible.

α2π

1/2

α2π

1/2

α2π

1/2

1

p|χ〉(α)

1

p|χ⊥〉(α)

1

p|χ〉(α) + p|χ⊥〉(α) = pρ(α)

Figure 8.4: The interference patterns for the state |χ〉 and the state perpendicular to it, |χ⊥〉.

Entanglement with marker states We consider the example of single atoms in a Mach-
Zehnder atom interferometer. The results however are generally valid. The atom, in the qubit
state of Eq. (8.72),

|χA〉 = c0|0A〉+ c1|1A〉 (8.79)

after the first beam splitter is supposed to interact with an additional qubit system SM in the
interferometer before it reaches the second beam splitter, in such a way that the entangled state

|φAM 〉 = c0|0A, 0M 〉+ c1|1A, 1M 〉 (8.80)

of the composite system SAM is formed. The atomic states |0A〉 and |1A〉 are “marked” by the
associated marker states |0M 〉 or |1M 〉, which are likewise eigenstates of σz . SM is called the
marker system. In the present case, we are dealing with which-way markers, corresponding to
the definitions of the states |0A〉 and |1A〉. Markers can be e.g. the internal degrees of freedom
of an atom or other quantum objects.

The interaction between SA and SM , which gives rise to the marking, must effect the
following transition:

(
c0|0A〉+ c1|1A〉

) |iM 〉 → c0|0A, 0M 〉+ c1|1A, 1M 〉 . (8.81)

If one leaves questions of the physical implementation out of consideration, it is simple to
specify a unitary transformation which has this effect:

UAB = |0A〉〈0A| ⊗ |0M 〉〈0M |+ |1A〉〈1A| ⊗ |1M 〉〈1M | . (8.82)
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We choose as initial state for the marker system |iM 〉 = 1√
2
(0M 〉 + |1M 〉). UAB is clearly a

non-local transformation. In the special case that the atom enters along the path 0 (i. e. is in
the state |0A〉), the marker is brought into the “position” |0M 〉 and correspondingly, into the
position |1M 〉 for path 1. Only when the atom is initially in a superposition does an entangled
state result.

Loss of interference capability What physical results are produced by the which-way
marking of Eq. (8.80)? We carry out measurements on the marker qubit in the compu-
tational basis {|0M 〉, |1M 〉}, or, expressed differently, we measure the marker observable
|0M 〉〈0M |−|1M 〉〈1M |. When the measurement result is +1, corresponding to |0M 〉, the atom
continues along the path 0; for −1, along the path 1. Measurement of the marker observables
thus breaks up the interference and determines the path of the atom.

Remarkably, it is not even necessary for loss of the interference capability that a measure-
ment be carried out on the marker system. After the entangled state |φAM 〉 of Eq. (8.80) with
the reduced density operator

ρA = trM [|φAM 〉〈φAM |] = |c0|2|0A〉〈0A|+ |c1|2|1A〉〈1A| (8.83)

has been formed by marking, the state ρA of the atomic system is the same in terms of all
probability statements as a statistical mixture of the states |0A〉 and |1A〉. Accordingly, the
interference vanishes. When one marks interfering states, the interference capability is lost
even if no measurements are carried out on the markers. The production of correlations in the
system SAB destroys the local coherence in the system SA.

The information which was contained before the marking in the pure state |χA〉 of the
atom and which determined the interference pattern is no longer stored in the atomic state and
cannot be read out by making a measurement on the atom. Indeed, it has however not been
lost through the unitary entanglement dynamics. It was deposited as mutual information in
the correlations with the marker system. We now want to see how one can call it up again by
measuring the correlations, and can use them to make suitable selections.

8.7.2 Quantum Erasure∗

We consider for simplicity the special case c1 = c2 = 1√
2

(i. e. a Bell state).

|ΦAM+ 〉 =
1√
2

(|0A, 0M 〉+ |1A, 1M 〉) (8.84)

ρA =
1
2
1A . (8.85)

The influence of the marking destroys the interference. If the original interference pattern can
be reconstructed by a clever procedure, one speaks of quantum erasure. The considerations
in the previous chapter on the basis states |χ(Θ, ϕ)〉 and |χ⊥(Θ, ϕ)〉 with Θ �= 0, π give an
indication of how we can extract information from the mixture ρA at hand. In our case, ρA

*The sections marked with an asterisk * can be skipped over in a first reading.
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is not a statistical mixture (blend), but rather the reduced density operator of a subsystem. It
cannot however be distinguished by measurements from a statistical mixture of the states |χA〉
and |χA⊥〉. If it were possible after the marking to firstly transform the atoms into the states
|χA〉 or |χA⊥〉 and secondly to separate the atoms in the state |χA〉 from those in the state |χA⊥〉
by selection, then the corresponding atomic ensembles would lead to the interference patterns
in Fig. 8.4. Since the composite system ρAM is in a pure state |ΦAM+ 〉, we can indeed carry
out both these tasks by suitable measurements on the marker system SM .

In order to give rise to quantum erasure in the present case, we proceed as follows: it can
be readily shown that the entangled state |ΦAM+ 〉 of Eq. (8.84) can be written with rotated
marker states

|ΛM (Θ, ϕ)〉 = cos
Θ
2
|0M 〉+ e−i

ϕ
2 sin

Θ
2
|1M 〉 (8.86)

|ΛM⊥ (Θ, ϕ)〉 = − sin
Θ
2
|0M 〉+ e−i

ϕ
2 cos

Θ
2
|1M 〉 (8.87)

in a form which is completely analogous to Eq. (8.84)

|ΦAM+ 〉 = 1√
2
(|χA,ΛM 〉+ |χA⊥,ΛM⊥ 〉) . (8.88)

Thus, for the unmodified composite state |ΦAM+ 〉, the interference-capable states |χA〉 and
|χA⊥〉 instead of the states |0A〉 and |1A〉 are entangled with the new marker states. A mea-
surement on the marker system in the rotated basis {|ΛM 〉, |ΛM⊥ 〉}, with measured values +1
or −1, then transforms the atomic state into |χA〉 if the measured value +1 is registered, or
into |χA⊥〉 for the measured value −1. In a non-selective measurement, the resulting reduced
density operator ρA of Eq. (8.78) however still does not yield an interference pattern.

The decisive second step thus consists of a selection after the measurement, i.e. of an un-
mixing of the mixture. This reverses the addition in Eq. (8.77) and in Fig. 8.4. If we now
consider only the contributions to the interference pattern of those atoms which were prepared
by the measurement with the measured value +1, then we obtain the interference pattern
of Fig. 8.4 for p|χ〉(α) from Eq. (8.74). Correspondingly, after selection for the measured
value −1, the interference curve p|χ⊥〉(α) from Eq. (8.75) is obtained. A selective measure-
ment on the marker system SM in a suitably rotated marker basis reproduces the interference
pattern for the atomic systems SA. The fringe contrast ν = 1 is attained for Θ = π

2 . For
ϕ = 0, the marker states are the eigenstates of σx. Measurement in rotated bases with subse-
quent selection is a frequently-used method (see e.g. Sects. 10.1 and 15.2.2).

8.7.3 Delayed Choice of the Marker Observables∗

A thought experiment Without claiming that it can be readily implemented, we wish to
imagine the following experimental setup in a thought experiment: an atom is within an atomic
interferometer of the Mach-Zehnder type. In the state |0A〉, it emits a photon with vertical
polarisation |0M 〉; in the state |1A〉, the photon is emitted with horizontal polarisation |1M 〉.
The photon serves as a marker system SM . Its two polarisation states are the marker states.
The state of the composite system is again supposed to be |ΦAM+ 〉.

*The sections marked with an asterisk * can be skipped over in a first reading.
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We have seen already in Sect. 7.5 that for the correlations between the measured results,
it is unimportant in which order the measurements on the subsystems are carried out. That
is true here, also; we thus need not carry out the measurements on the marker system first.
One obtains the same results by registering the detector signals from all the atoms which ar-
rive and enumerating the results. The associated photons are likewise numbered in the same
fashion in this thought experiment and initially stored separately without measurement. Only
in a later phase of the experiment are the photons then individually measured with the rotated
marker observables (rotated analyser directions |ΛM 〉 and |ΛM⊥ 〉) and the results labelled with
the photon numbers. If the measured results on the atoms and the photons are finally cor-
related in terms of their numbers, then one obtains from the measurements on the atoms –
following the selection described above – the interference pattern in Fig. 8.4. The results of
the measurements on the atoms alone contain no information. Only the selected data, i.e. the
subensemble, yields the interference effect.

After the atoms have passed through the interferometer and have already been detected,
one can however by a choice of the marker observables determine whether an interference
pattern will by obtained from the atom measurements after selection,

(|ΛM 〉, |ΛM⊥ 〉
)
; or no

interference pattern results,
(|0M 〉, |1M 〉). This could be understood to imply that one can

still choose between the alternatives (i) atoms arrive “via only one of the paths” (“particle
behaviour” and thus no interference pattern) and (ii) atoms arrive in the sense of a superpo-
sition “via both paths” (“wave behaviour” and thus an interference pattern), even after the
measurements have been carried out on all the atoms. This delayed choice appears to imply
an influence on the behaviour of the system (as “wave” or “particle”) in the past. What is false
in this interpretation?

The assumption is false that for an atom, between preparation and measurement, one can
speak of an event “on one path” or of a “wave” (compare Sect. 2.1.4). The system of atoms
SA is in a completely mixed state before the measurement. The alternatives (i) and (ii) in
the form (i) “no interference pattern” and (ii) “interference pattern” are not already realised
at the time of the measurements on the atoms or even before, but rather only after carrying
out the rotated measurement on the photons and the selection of the measurement results on
the atoms. The selection however has no effect on the past. Before the selection, there was
nothing present which could be associated with the alternatives (i) or (ii) for the atoms. There
is thus no “delayed-choice” paradox in the case of delayed choice of the marker observables
(see also Sect. 11.5).

8.8 Complementary Topics and Further Reading

• Production of entanglement: [Aul 00], [BEZ 00], [NC 00], [BZ 02], [DM 02], [Hei 02],
[SS 04].

• The concept of classically-correlated quantum states: [Wer 89].

• Separability criteria for systems with two or more subsystems, measures of entanglement
for mixtures: [Wer 89], [LBC 00], [HHH 01], [Ter 02], [Bru 02], [Cir 02], [DHR 02],
[Key 02].
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• Discussion of the PPT criterion in a wider context: [HHH 01], [Cir 02].

• The no-cloning theorem. The classic article: [WZ 82]. Review article: [SIG 05]

• The no-cloning theorem states that there are no procedures with which cloning can be car-
ried out with certainty. Correspondingly, the proof refers to unitary and thus to determin-
istic evolution. If one allows additional selective measurements, then cloning becomes
possible. However, copies are produced with only a certain probability (probabilistic
cloning): [DG 98].

• Quantum erasure: [Eng 99], [ESW 99].

• Which-way experiments, marking in experiments: [DNR 98], [Eng 99], [ESW 99],
[DR 00], [Rem 06].

• The “delayed choice” discussion and experiments: [Whe 78], [HWZ 87], [HKW 95],
[Aul 00, Chap. 26].

8.9 Problems for Chapter 8

Prob. 8.1 [for 8.1.1]: Prove the assertion from Sect. 8.1.1 following Eq. (8.1) about the
characterisation of correlated states.

Prob. 8.2 [for 8.1.2]: Prove that the separability condition (8.3) is equivalent to the require-
ment

ρAB =
∑

l

ql|φAl 〉〈φAl | ⊗ |χBl 〉〈χBl | (8.89)

with 0 ≤ ql ≤ 1 and
∑
l ql = 1. Comparison with the generalised operator ZAB from

Eq. (7.20) shows that the requirement (8.89) indeed implies a restriction.

Prob. 8.3 [for 8.3]: Show that for the state

|φABC〉 =
1√
2
|0A〉(|0B, 0C〉+ |1B , 1C〉) , (8.90)

there is no Schmidt decomposition

|φABC〉 =
∑

n

√
pn|uAn 〉|vBn 〉|wCn 〉 (8.91)

with orthonormal Schmidt bases {|uAn 〉}, {|vBn 〉}, {|wCn 〉}.

Prob. 8.4 [for 8.4]: Verify Eq. (8.58).
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Prob. 8.5 [for 8.7]: How would the considerations about quantum erasure be modified if
one started with the state (8.80) instead of the state (8.84)?

Prob. 8.6 [for 8.7]: Prove Eq. (8.88). Does a form invariance of this type also hold for the
other Bell states?



9 Correlations and Non-Local Measurements

Quantum information can be stored in the correlations between subsystems. We wish to make
this assertion more precise. We base our discussion on the considerations of Chap. 6 on
quantum entropy. This concept leads us again to a renewed understanding of entanglement
which complements the results obtained in Chap. 7. In composite systems, above and beyond
the measurements on subsystems, non-local measurements are also possible, which allow us
among other things to read out information which is stored non-locally.

9.1 Entropies and the Correlations of Composite Quantum
Systems

9.1.1 Mutual Information as a Measure of Correlations

Additivity and subadditivity We begin by deriving a useful relation. Making use of the
decomposition of two density operators ρA and ρB in the ONB ofHA andHB ,

ρA =
∑

n

an|nA〉〈nA|, (9.1)

ρB =
∑

j

bj |jB〉〈jB| .

we obtain for the logarithm of the product state (cf. Eq. (1.49))

log
(
ρA ⊗ ρB

)
=

∑

n,j

log(anbj)|nA, jB〉〈nA, jB|

= (log ρA)1B + 1A(log ρB) . (9.2)

If ρA and ρB are the reduced density operators of a density operator ρAB , then with Eqs. (9.2)
and (7.38) we find

trAB[ρAB log(ρA ⊗ ρB)] = trAB[ρAB(log ρAB)1B ]− trAB[ρAB1A(log ρB)]
= trA[ρA log ρA]− trB[ρB log ρB] . (9.3)

With the definition of the joint entropy for composite systems,

S(AB) := S(A,B) := S(ρAB) := −trAB[ρAB log ρAB] , (9.4)

the additivity of the entropy of the subsystems

S(ρA ⊗ ρB) = S(ρA) + S(ρB) (9.5)
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follows for a product state ρAB = ρA ⊗ ρB . If ρAB is not a product state, we can derive
only an estimate, instead of Eq. (9.5). We use Klein’s inequality (6.24) as a starting point,
and apply it to the product space HA ⊗ HB . In Eq. (6.17), we replace ρ by ρAB and σ by
σAB = ρA ⊗ ρB with the reduced density operators ρA and ρB of ρAB . We then find by
applying Eq. (9.3):

S(ρAB) ≤ −trAB[ρAB log(ρA ⊗ ρB)] = S(ρA) + S(ρB) . (9.6)

We write the result in the form

S(AB) ≤ S(A) + S(B) . (9.7)

This property is termed the subadditivity of the entropy of composite quantum systems. The
equals sign holds if and only if the subsystems SA and SB are independent of each other:
ρAB = ρA ⊗ ρB . The analogous equation for classical systems is Eq. (5.43) (see Fig. 5.3).
If the subsystems are not independent of each other, and the composite state ρAB is thus not
separable, then the system as a whole contains more information than can be read out of all
the subsystems together. We will elucidate this with an example.

Mutual information of the subsystems In the classical as in the quantum-mechanical case,
the additional information lies in the correlations between the systems. In order to describe this
quantitatively for composite quantum systems, we introduce the mutual information S(A :B)
as a measure of the degree of correlation of the subsystems, in analogy to Eq. (5.31):

S(A :B) := S(A) + S(B)− S(AB) ≥ 0 . (9.8)

S(A : B) indicates for a state ρAB just how much the uncertainty of the composite sys-
tem, expressed by its entropy SAB , is less than that of the subsystems, SA and SB together
(cf. Eq. (9.7)). Or, differently formulated: S(A :B) is a measure of how much more informa-
tion is stored in the composite system than in the subsystems. S(A :B) can at the same time
characterise the distance of the state ρAB from the non-entangled state ρA ⊗ ρB .

9.1.2 The Triangle Inequality

Let the system SAB be in a state ρAB . We have seen in Sect. 8.3.2 that this state can always
be purified. This means that one can always add a system SC to SAB and then find a pure
state in the enlarged composite system SABC , such that the reduced density operator of the
subsystem SAB is just ρAB .

We apply the inequality for subadditivity:

S(C) + S(A) ≥ S(AC) . (9.9)

Since the system SABC is in a pure state, the reduced density operators are the same on
decomposition into two subsystems. We have already demonstrated this in connection with
the Schmidt decomposition.

S(AC) = S(B), S(C) = S(AB) . (9.10)
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Inserting into Eq. (9.9) leads to

S(AB) ≥ S(B)− S(A) . (9.11)

The systems SA and SB enter the relation symmetrically. Thus,

S(AB) ≥ S(A)− S(B) (9.12)

also holds, and therefore

S(AB) ≥ |S(A)− S(B)| . (9.13)

This is the triangle inequality, which is sometimes also called the Araki-Lieb inequality.
We have shown in Eq. (5.39) that for Shannon’s entropy of classical systems, the relation

H(A,B) ≥
{
H(A)
H(B)

}
(9.14)

is always fulfilled. The indeterminacy of the composite system exceeds that of every individ-
ual system. This cannot hold for quantum systems. The Bell states, for which we showed that
S(AB) = 0 and S(A) = S(B) = 1, are a straightforward counterexample.

9.1.3 Entangled vs. Classically-Correlated Quantum Systems

We want to compare the entropy of the subsystems SA and SB , which is supposed to be equal
to one in all cases (S(A) = S(B) = 1), with the entropy of the composite system by using
the example of a bipartite system SAB in three different states. The subsystems are taken for
simplicity to be qubits. Our goal is to relate correlations and entanglement to the entropy, and
in particular to the mutual information S(A : B), making use of Eq. (9.8). The situation is
indicated graphically in Fig. 9.1.

Example I: independent subsystems In the first state, the subsystems are completely inde-
pendent of one another, i.e. ρAB is a product state. We choose

ρAB =
1
4
1AB =

(
1
2
1A

)
⊗

(
1
2
1B

)
= ρA ⊗ ρB . (9.15)

There are no correlations between the subsystems. The quantum entropies are found immedi-
ately to be

S(AB) = log 4 = 2, (9.16)

S(A) = S(B) = log 2 = 1 (9.17)

S(A : B) = 0 . (9.18)

For later comparison, we also note ρAB in the computational basis ofHA ⊗HB :

ρAB =
1
4
(|0A, 0B〉〈0A, 0B|+ |0A, 1B〉〈0A, 1B|

+|1A, 0B〉〈1A, 0B|+ |1A, 1B〉〈1A, 1B |) . (9.19)
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S(AB) = 2

Example I

S(A) = 1 S(B) = 1

completely independent

S(A) = 1 S(A : B)

S(AB) = 1

Example II

classically correlated

S(B) = 1
= 1

S(A) = 1 S(A : B)

S(AB) = 0

Example III

S(B) = 1
= 2

entangled

Figure 9.1: The mutual information S(A : B) for the same entropy of the subsystems.

Example II: classically-correlated subsystems We want to establish correlations without
creating entanglement. We can do this for example with the separable mixture

ρAB =
1
2
(|0A〉〈0A| ⊗ |0B〉〈0B|+ |1A〉〈1A| ⊗ |1B〉〈1B|) (9.20)

=
1
2
(|0A, 0B〉〈0A, 0B|+ |1A, 1B〉〈1A, 1B|) (9.21)

of pure product states. ρAB contains fewer terms in comparison to the ρAB of Eq. (9.19). In
the computational basis ofHA ⊗HB , the density operator ρAB has the matrix representation

ρAB = diag

(
1
2
, 0, 0,

1
2

)
. (9.22)
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Only diagonal terms occur. The entropy is then found to be

S(AB) = −2
[
1
2

log
1
2

]
= 1 . (9.23)

The reduced density operators of the subsystems are the same as those in the other examples:

ρA =
1
2
1A , ρB =

1
2
1B . (9.24)

From this we obtain again

S(A) = S(B) = 1 (9.25)

but in this case a non-vanishing mutual information,

S(A : B) = 1 . (9.26)

It can be seen immediately from Eq. (9.21) that the results of measurements in the compu-
tational basis on the two subsystems are correlated: if the measurement on SA yields the
measured value belonging to |0〉, then the measurement on SB also gives this measured value;
the corresponding results hold for |1〉. The subsystems are termed classically correlated, since
they were prepared by LOCC and since the measurements on one subsystem does not modify
the well-defined (correlated) pure state of the other subsystem. This means in other words that
the state of SAB is a separable mixture.

Example III: entangled subsystems Here, we take as a simple example the Bell state

|ΦAB
+ 〉 =

1√
2
(|0A, 0B〉+ |1A, 1B〉) . (9.27)

Since it is a pure state, we have

S(AB) = 0 . (9.28)

As in the two previous examples, we find

ρA =
1
2
1A, ρB =

1
2
1B (9.29)

and thus

S(A) = S(B) = 1 . (9.30)

For a Bell state, the mutual information takes on the largest possible value

S(A : B) = 2 . (9.31)
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Comparison of the three examples The fact that in the case of entanglement, the results
of measurements on the subsystems are correlated, has already been discussed. In connection
with Bell’s inequality, we will show explicitly in Chap. 10 that the correlations in examples II
and III are quantitatively different. Here, we want to describe this difference by making use
of the entropy.

In all three cases, owing to S(A) = S(B) = 1, we have the same indeterminacy of the
states of the subsystems. The indeterminacy S(AB) of the state of the overall system is, in
contrast, different in each case (cf. Fig. 9.1). The mutual information S(A : B) specifies, due
to

S(AB) = S(A) + S(B)− S(A : B) , (9.32)

the extent to which the actual entropy of the composite system is smaller than the total entropy
of the independent subsystems (separable composite state). Less entropy means less indeter-
minacy of the state. In all three examples, the states of the subsystems are maximally undeter-
mined. Nevertheless, in example III, the entangled composite state is maximally determined.
The information which had been lacking for this is localised completely in the correlations
and can be visualised through S(A : B). In example II, the correlations are not sufficient to
completely determine the state of SAB as a pure state. Correspondingly, the overall system
is in a mixed state. S(A : B) is in this case smaller. As we have seen, the mutual quantum
entropy S(A : B) refers not only to entanglement, but also reflects the classical correlations.
The goal of reading out the information which is stored in the correlations leads to non-local
measurements.

9.2 Non-Local Measurements

9.2.1 The Bell Basis

We first take note of some properties of the Bell states

|ΦAB
± 〉 =

1√
2
(|0A, 0B〉 ± |1A, 1B〉) (9.33)

|ΨAB
± 〉 =

1√
2
(|0A, 1B〉 ± |1A, 0B〉) . (9.34)

They form an orthonormal basis (Bell basis) of the product space HA
2 ⊗ HB

2 and are maxi-
mally entangled. The reduced density operators are maximally mixed, ρA = ρB = 1

21. By
intervention on only one subsystem (i.e. locally without classical communication), one can by
using the σ operators in a unitary fashion transform a Bell state into any other Bell state. We
give an example:

σA
1 : |ΨAB

+ 〉 →
1√
2
(|1A, 1B〉+ |0A, 0B〉) = |ΦAB

+ 〉 (9.35)

σA
2 : |ΨAB

+ 〉 →
−i√

2
(|0A, 0B〉 − |1A, 1B〉) = −i|ΦAB

− 〉 (9.36)

σA
3 : |ΨAB

+ 〉 →
1√
2
(|0A, 1B〉 − |1A, 0B〉) = |ΨAB

− 〉 . (9.37)
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Frequently in computations, products of Pauli operators occur, whose matrix elements are
to be evaluated in the Bell basis (e.g. 〈ΦAB

+ |σA
1 σ

B
3 |ΦAB

+ 〉). In such cases, it is expedient to
relate the actions of the Pauli operators in HB

2 to those in HA
2 ; then all of the relations for

the Pauli operators derived in Sect. 3.1 (e. g. Eq. (3.11)) can be directly applied. We give an
example to which we shall also return later:

σA
1 : |ΦAB

+ 〉 −→ |ΨAB
+ 〉 , σB

1 : |ΦAB
+ 〉 −→ |ΨAB

+ 〉 (9.38)

σA
2 : |ΦAB

+ 〉 −→ −i|ΨAB
− 〉 , σB

2 : |ΦAB
+ 〉 −→ i|ΨAB

− 〉 (9.39)

σA
3 : |ΦAB

+ 〉 −→ |ΦAB
− 〉 , σB

3 : |ΦAB
+ 〉 −→ |ΦAB

− 〉 . (9.40)

The action of σB
3 on |ΦAB

+ 〉 can be replaced by the action of σA
3 , etc. There are corresponding

relations for all the vectors of the Bell basis. One can for example confirm in this way that

〈ΦAB
+ |σA

1 σ
B
3 |ΦAB

+ 〉 = 〈ΦAB
+ |σA

1 σ
A
3 |ΦAB

+ 〉
∼ 〈ΦAB

+ |σA
2 |ΦAB

+ 〉 ∼ 〈ΦAB
+ |ΨAB

− 〉 = 0 (9.41)

holds.
We note an additional mathematical property of the Bell states. They are eigenvectors of

products of the σ operators:

σA
1 σ

B
1 |ΦAB

± 〉 = ±|ΦAB
± 〉 (9.42)

σA
1 σ

B
1 |ΨAB

± 〉 = ±|ΨAB
± 〉 (9.43)

σA
2 σ

B
2 |ΦAB

± 〉 = ∓|ΦAB
± 〉 (9.44)

σA
2 σ

B
2 |ΨAB

± 〉 = ±|ΨAB
± 〉 (9.45)

σA
3 σ

B
3 |ΦAB

± 〉 = +|ΦAB
± 〉 (9.46)

σA
3 σ

B
3 |ΨAB

± 〉 = −|ΨAB
± 〉 . (9.47)

9.2.2 Local and Non-Local Measurements

As we have seen in Sect. 7.3.1, non-locality can occur in three ways:

(i) States obtained from a non-local preparation procedure can be non-separable.

(ii) There are non-local unitary transformations.

(iii) We saw in Chap. 7 that measurements on composite systems can be described by Her-
mitian operators in the product space HA ⊗HB ⊗HC ⊗ . . .. Their eigenvalues are the
possible measured values. By selective measurements, the corresponding properties can
be prepared. There are measurements whose measured values and the resulting states
cannot be obtained by carrying out measurements separately on each individual subsys-
tem. Instead, one requires an apparatus which carries out measurements on two or more
subsystems together. These measurements, to which we turn now, are called non-local
measurements (they are also termed global or joint or collective measurements). They
measure the values of non-local observables.
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We again consider a bipartite system SAB . An Hermitian observable GAB on HA ⊗HB

is in general non-local. For clarity, we will limit ourselves initially to the special case that
GAB is a product operator CA ⊗DB on HA

2 ⊗HB
2 . It describes the non-local measurement

of the collective physical quantity CADB (to be read as a single symbol). As an illustration,
we consider the observable σA

3 σ
B
3 of a bipartite system. As Eqs. (9.46) and (9.47) show, the

associated measured values +1 and −1 are degenerate. The result of the measurement which
yields the value +1 is that the state is projected onto the subspace spanned by |ΦAB

+ 〉 and
|ΦAB

− 〉. All the Bell states remain unchanged after measurement of the observables σA
3 σ

B
3 .

The degeneracy makes itself known in the fact that along with |ΦAB
± 〉 and |ΨAB

± 〉, the vectors
of the computational basis ofHA

2 ⊗HB
2 ,

σA
3 σ

B
3 |0, 0〉 = |0, 0〉,

σA
3 σ

B
3 |0, 1〉 = −|0, 1〉,

σA
3 σ

B
3 |1, 1〉 = |1, 1〉

σA
3 σ

B
3 |1, 0〉 = −|1, 0〉 (9.48)

are likewise eigenstates with the eigenvalues +1 or −1.
The difference between the global measurement σA

3 σ
B
3 and two local measurements of

σ3 (i.e. a measurement of σA
3 ⊗ 1B and 1A ⊗ σB

3 ) becomes clear if one considers the states
into which the system is transformed by these measurements. If Bob measures the observ-
able σB

3 (the spin in z-direction) in a local fashion on the subsystem B of a 2-qubit system
in the state |ΦAB

+ 〉 and the measurement yields the result −1, then the system will be left in
the state |1A, 1B〉. The initial state |ΦAB

+ 〉 is no longer present. The entanglement is bro-
ken by the measurement. A subsequent measurement of σA

3 by Alice on the subsystem SA

yields the result −1, and leaves the state |1A, 1B〉 unchanged as the final state. In contrast,
a global measurement of σA

3 σ
B
3 leads to the final state |ΦAB

+ 〉. This example demonstrates
that mathematically, the action of the operator σA

3 σ
B
3 = (σA

3 ⊗ 1B)(1A ⊗ σB
3 ) comes about

through separate actions of the operators σA
3 and σB

3 in HA
2 or in HB

2 . Physically, however,
the measurement of the collective observable σA

3 σ
B
3 is in general not equivalent to two local

spin measurements σA
3 ⊗ 1B und 1A ⊗ σB

3 by Alice or Bob.1 This is verified by the different
final states obtained in the two cases.

This result is not limited to product vectors. In general, it holds that observables require a
non-local measurement when there are entangled eigenstates of the observable operator, since
local measurements would destroy this entanglement. This leaves us with a problem, since we
are primarily able to carry out local measurements. They are much more readily implemented
experimentally. How can we reduce global measurements to a local measuring procedure?
We discuss two approaches.

Mean values are locally measurable We first introduce a notation. The index LL (local-
local) indicates e.g. in (CA ⊗DB)LL that the measurements are to be carried out locally by
measurement of the commuting observables CA ⊗ 1B and 1A ⊗DB . The resulting value is
the product of the locally-obtained measurement results. In Sect. 7.5.1, we showed that for

1In the second case, projective measurements are carried out e.g. sequentially on SA and SB . The resulting state
and the product of the measured values can be interpreted as the result of a single generalised measurement. We
discuss generalised measurements in Chaps. 13 and 16. In this connection, an interesting direct comparison with
global measurements is also possible.
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the mean values (expectation values), the relation

trAB[(CA ⊗DB)ρAB] = trAB[(CA ⊗DB)LLρ
AB] (9.49)

holds. Mean values of product operators can be determined through local measurements on
the subsystems.

We illustrate this using the example of non-local observables for 2-qubit systems. We
have seen in Sect. 3.1 that the operators {σ0 := 1√

2
1, 1√

2
σi; i = 1, 2, 3} form an orthonormal

operator basis in the Liouville space L of the operators onH2. Correspondingly, the operators
{ 1

2σ
A
k ⊗ σB

l ; k, l = 0, . . . , 3} are an orthonormal basis in the product Liouville space LAB =
LA⊗LB of the operators onHA

2 ⊗HB
2 . Each operator onHA

2 ⊗HB
2 can thus be decomposed

in the form

GAB =
3∑

k,l=0

qklσ
A
k ⊗ σB

l . (9.50)

Therefore, with Eq. (9.49) for the mean value of the observable GAB , a decomposition into
local measurements

trAB[GABρAB] =
3∑

k,l=0

qkltrAB[(σA
k ⊗ σB

l )LLρ
AB] , qkl ∈ R . (9.51)

is obtained. Mean values can be obtained for every observable of a 2-qubit system by means
of local measurements of the observables σk, k = 0, . . . , 3 (i.e. in principle by simple local
polarisation measurements) on the subsystems. For this purpose, the mean values of the prod-
ucts of the measured values (i.e. trAB[(σA

i ⊗ σB
i )LLρ

AB]) are evaluated using the qkl as in
Eq. (9.51). A corresponding conclusion holds for the probabilities of the measured results of
non-local measurements, which can be written as mean values of the associated projection
operators. These statements are not limited toHA

2 ⊗HB
2 . We shall return to the discussion of

non-local observables in connection with entanglement witnesses in Sect. 10.6.

9.2.3 Non-local Measurements by Means of Local Measurements on an
Ancillary System

This method is mainly of theoretical interest. We discuss as the simplest example once again
the observable σA

3 σ
B
3 . An arbitrary state |χAB〉 from HAB can be expanded in terms of the

computational basis ofHA
2 ⊗HB

2 :

|χAB〉 = c1|0A, 0B〉+ c2|1A, 1B〉+ c3|1A, 0B〉+ c4|0A, 1B〉 (9.52)

(
∑

i |ci|2 = 1). A selective measurement of σA
3 σ

B
3 (compare (9.48)) transforms the state

|χAB〉 – depending on the result, +1 or −1, of the measurement – with the probabilities
p(+1) or p(−1) into the state |χ′AB

+ 〉 or |χ′AB
− 〉, respectively:

+1 : |χ̃′AB
+ 〉 = c1|0A, 0B〉+ c2|1A, 1B〉

p(+1) = |c1|2 + |c2|2 (9.53)

−1 : |χ̃′AB
− 〉 = c3|1A, 0B〉+ c4|0A, 1B〉

p(−1) = |c3|2 + |c4|2 . (9.54)
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The non-normalised vector |χ̃′AB
+ 〉 is the projection of |χAB〉 onto the subspace spanned by

|0A, 0B〉 and |1A, 1B〉 in HAB with the degenerate eigenvalue +1 of σA
3 σ

B
3 . A correspond-

ing statement holds for |χ̃′AB
− 〉. The probabilities are given by the magnitudes of the non-

normalised vectors.

|χ′AB〉

|0C〉

|χAB〉

Figure 9.2: After it passes through the quantum circuit, a projective measurement on the ancillary
system SC yields a non-local measurement of σA

3 σ
B
3 on the system SAB .

This result can also be obtained in the following way by means of a local measurement
on an enlarged entangled system. In our special case we implement it by adding an ancillary
system HC

2 to the system SAB . The composite system SABC passes through the quantum
circuit shown in Fig. 9.2. It transforms the initial state |χAB〉|0C〉 by a unitary non-local
transformation into the state

U |χAB〉|0C〉 = c1|0A, 0B, 0C〉+ c2|1A, 1B, 0C〉+ c3|1A, 0B, 1C〉+ c4|0A, 1B , 1C〉 .
(9.55)

A subsequent local projective measurement of σC
3 on the ancillary system SC yields the mea-

sured values +1 and −1 with the probabilities p(+1) and p(−1) from Eqs. (9.53) and (9.54).
The corresponding final states of SAB are |χ′

+
AB〉 or |χ′

−
AB〉. A dynamic implementation

of the quantum circuit presupposes that the subsystems SA and SB are spatially not too far
removed from each other.

We have, with the help of an entangling unitary transformation U on HA
2 ⊗ HB

2 ⊗ HC
2

and projective measurement on the ancillary system SC , effected a non-local measurement on
the system SAB . The results of the measurement and the probabilities with which they occur
can be read off directly from the results of the projective measurements on SC . This example
of a non-local measurement in HAB reflects a quite general structure for the implementation
of generalised quantum measurements. We will illustrate such generalised measurements in
more detail in Chap. 13.

With the measurements of the observables σA
3 σ

B
3 as described, we cannot however distin-

guish between two states with the same eigenvalue, +1 or−1. To do this, one measurement is
not sufficient. We describe in the following section how a non-local measurement in the Bell
basis can be reduced to two local measurements.
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9.2.4 Non-locally Stored Information and Bell Measurements

We refer to Sect. 9.2.1. The measured values +1 and −1 of the observables σ3, which belong
to the eigenstates |0〉 and |1〉, will be abbreviated by + or − (compare Eq. (3.15)). In the
computational basis of HA

2 ⊗HB
2 , two bits can be stored in the form of the four possibilities

(+,+), (+,−), (−,+), (−,−) and read out again by means of two local measurements with
σA

3 ⊗ 1B or 1A ⊗ σB
3 . The associated projection operators are:

P++ := |0A, 0B〉〈0A, 0B|, P+− := |0A, 1B〉〈0A, 1B| (9.56)

P−+ := |1A, 0B〉〈1A, 0B|, P−− := |1A, 1B〉〈1A, 1B | . (9.57)

The information is stored locally. In the Bell basis of HA
2 ⊗ HB

2 , two bits can likewise be
stored. We denote them as the parity bit Φ or Ψ (i.e. parallel or antiparallel “spins”) and as
the phase bit (of sign + or −). As we have already seen, this information is stored as mutual
information in the correlations, and it is therefore non-locally stored.

If we measure the observables σA
3 ⊗ 1B and 1A ⊗ σB

3 locally on a system in the Bell
state |ΦAB

± 〉 and take the product of the results, we find +1. For |ΨAB
± 〉, this procedure cor-

respondingly yields −1. We have thus determined the parity bit locally. Thereafter, however,
the initial state is no longer available, but instead a state of the computational basis. We can
thus read out only one bit locally. The corresponding conclusion holes for a local measure-
ment of the phase bit by means of σA

1 ⊗ 1B and 1A ⊗ σB
1 . Through local measurements, the

complete information stored in Bell states cannot be read out. We require a non-degenerate
projection measurement which projects onto the states of the Bell basis rather than onto the
computational basis. The two basis systems can be transformed into one another by means of
a unitary transformation in the spaceHA

2 ⊗HB
2 . We can make use of this fact.

A

B

H

Figure 9.3: A quantum circuit for the production of Bell states.

We note the effect of a Hadamard transformation followed by a CNOT transformation on
the computational basis. The quantum circuit for this purpose is shown in Fig. 9.3.

|0A, 0B〉 H−→ 1√
2
(|0A〉+ |1A〉)|0B〉

CNOT−−−→ 1√
2
(|0A, 0B〉+ |1A, 1B〉 = |ΦAB

+ 〉 (9.58)

|0A, 1B〉 H−→ 1√
2
(|0A〉+ |1A〉)|1B〉 CNOT−−−→ |ΨAB

+ 〉 (9.59)
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|1A, 0B〉 H−→ 1√
2
(|0A〉 − |1A〉)|0B〉 CNOT−−−→ |ΦAB

− 〉 (9.60)

|1A, 1B〉 H−→ 1√
2
(|0A〉 − |1A〉)|1B〉 CNOT−−−→ |ΨAB

− 〉 . (9.61)

Owing to

H = H†, H2 = 1 (9.62)

CNOT = (CNOT)†, (CNOT)2 = 1 , (9.63)

for the overall unitary transformation applied, we have

UAB := (CNOT) ·H, (UAB)−1 = H · (CNOT) . (9.64)

If we allow Bell states to pass through the quantum circuit in the reverse direction, then they
are converted by the effect of (UAB)−1 once again into the corresponding states of the com-
putational basis. The projectors of the two basis systems are related by

|φAB
+ 〉〈φAB

+ | = UABPAB
++ (UAB)−1 (9.65)

|ψAB
+ 〉〈ψAB

+ | = UABPAB
+− (UAB)−1 (9.66)

|φAB
− 〉〈φAB

− | = UABPAB
−+ (UAB)−1 (9.67)

|ψAB
− 〉〈ψAB

− | = UABPAB
−− (UAB)−1 . (9.68)

A Bell measurement on a state |χAB〉 consists of first subjecting the state to a unitary
and non-local transformation with (UAB)−1 = H · (CNOT) and then carrying out a local
measurement on the resulting state in the computational basis. Then one obtains for example
the resulting pair of measured values (+,+) with the probability

p++ = 〈χAB|ΦAB
+ 〉〈ΦAB

+ |χAB〉 . (9.69)

It belongs to the projection operator |ΦAB
+ 〉〈ΦAB

+ |. Correspondingly, with the probability
p+− = 〈χAB|ΨAB

+ 〉〈ΨAB
+ |χAB〉, the pair (+,−) is obtained, etc. Here, p++ +p+− +p−+ +

p−− = 1 holds. In the special case |χAB〉 = |ΦAB
+ 〉, we find p++ = 1. Corresponding

results apply to the other Bell states. If one codes 2-bit information in Bell states, then this
information can be read out unambiguously via a Bell measurement with the correspondences
(+,+)↔ |ΦAB

+ 〉, (+,−)↔ |ΨAB
+ 〉, (−,+)↔ |ΦAB

− 〉, and (−,−)↔ |ΨAB
− 〉.

In order to guarantee that the Bell measurement leads to a Bell state, the state obtained
from the selective local measurements in the computational basis must be sent in reverse
through the quantum circuit (application ofUAB). For e.g. the pair of measured values (+,+),
this then prepares the corresponding Bell state |ΦAB

+ 〉.
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9.3 Complementary Topics and Further Reading

• Quantum non-locality without entanglement: in [BDF 99], orthogonal non-entangled
states of 2-part and 3-part systems are given, which cannot be reliably distinguished
by local measurements and classical communication. It is shown that this is however
possible by means of non-local measurements. See also [WSH 00] and [WH 02] for
discussions of this problem. Holism in quantum mechanics thus expresses itself not only
in the entanglement of states.

• Much of what we can readily write down in theory is difficult to implement in practice.
It is not possible to carry out a perfect Bell measurement with linear optical elements
(no-go theorem): [LCS 99]. Two Bell states can be distinguished in this way, the other
two cannot: [BEZ 00], Chap. 3.5.

9.4 Problems for Chapter 9

Prob. 9.1 [for 9.2.2]: Carry out a number of local measurements of σA
3 ⊗1B and 1A⊗σB

3 on
|χAB〉 from Eq. (9.52) one after another. Determine the resulting states and the probabilities
for the different pairs of measured values. Take products of the measured values and the
corresponding probabilities. Compare with the results of (9.53) and (9.54), as well as with the
statement about the expectation values from Sect. 7.5.1.





10 There is no (Local-Realistic) Alternative to
Quantum Theory

In the previous chapter, we saw that for entangled states, in contrast to the states of classical
systems, information is stored non-locally. In the following sections, we describe an approach
which allows us to demonstrate in a direct manner that entanglement has no counterpart in
classical physics. We wish to show that entanglement is one of the central non-classical
structural elements of quantum theory. To this end, we describe as examples two experiments
whose results cannot be explained classically.

What sort of experiments will these be? We recall the conjuring trick in Sect. 7.7. We
have an immediate experimental access to composite systems via local measurements on the
subsystems. If we compare the pairs of measured results, we find typical differences between
systems in entangled pure states on the one hand, and non-entangled as well as classical sys-
tems on the other. This can serve as a further theoretical characterisation of entanglement. Of
greater importance in this connection, however, is the demarcation of quantum mechanics and
classical physics. When classical composite systems and entangled quantum systems differ in
their correlations and experiments verify the existence of quantum correlations, then we are
dealing with a phenomenon which cannot be classically substantiated. We would thus have
demonstrated that quantum mechanics cannot be reduced to classical physics. This is our
goal. In order to carry out this programme, we will describe typical correlation experiments
and analyse them both quantum-mechanically and classically. We must however first answer
the question, “What does classical mean?” and derive experimentally verifiable consequences.
We start by sketching a special experimental setup for photons and computing the correlations
which result from the quantum-theoretical calculation. In the next step, we ask whether a
classical model can exist which explains these correlations.

10.1 EPR Experiments and Their Quantum-mechanical
Explanation

Photons We describe an experiment with the cascade photons which we have already en-
countered in Sect. 8.5. A source emits photon pairs with different frequencies νA and νB in
opposite directions. They propagate along the z-axis towards the observers at the locations A
and B (cf. Fig. 10.1). The distances of the observers from the source may be very great, and
they need not be the same. The pairs of photons have entangled polarisation states. They are
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|yA〉
A

|yB〉

νB νA

B

|xB〉 |xA〉
β α

z

y

x

Figure 10.1: A polarisation measurement on pairs of photons. The dashed lines indicate the x- and the
y-axes. The solid lines are the rotated axes.

β

xA

xB

α α1
β1

α2

β2

(a) (b)

x x

Figure 10.2: The orientations of the analysers.

in the rotationally-symmetric Bell state

|ΦAB+ 〉 =
1√
2

(|x, x〉+ |y, y〉) . (10.1)

|x〉 and |y〉 are states of linear polarisation in the x- and the y-directions, respectively.
The observers detect the linear polarisations of the two photons (compare Fig. 10.2a). To

this end, at A, an analyser with the orientation (xA, yA) is set up. It is rotated by an angle
α around the z-axis with respect to the orientation defined by the x- and y-axes. Behind the
analyser, there are two detectors which register counts when the polarisation |xA〉 or |yA〉
is found, respectively. The polarisation |xA〉 is attributed to the measured value +1 and the
polarisation |yA〉 to the value −1. The measurement at B of the second photon is carried
out in the same manner. In particular, we want to allow the B analyser to be rotated by an
angle β �= α relative to the orientation defined by the coordinate axes. The corresponding
polarisation directions are |xB〉 and |yB〉. We again associate them with the measured values
+1 or −1, respectively. The observable operators for the local measurements of the photons
at A and B are thus

EA(α) = |xA〉〈xA| − |yA〉〈yA| (10.2)

EB(β) = |xB〉〈xB| − |yB〉〈yB| . (10.3)

We consider initially measurements only on photons at A or on photons at B. The reduced
density operators of the Bell state |ΦAB+ 〉 are each maximally mixed. The probability of finding
the result +1 or −1 at A is therefore – independently of the rotation angles α and β – in each
case 1

2 . The same is true of the measurement on the second photon at B.
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In the next step, we investigate correlations and determine the probabilities for the occur-
rence of pairs of measured values. We denote by P+− the probability that the xA polarisation
is observed at A and the yB polarisation at B. This corresponds to the local measured values
+1 and −1 and to a product of measured values equal to −1. The probabilities for the re-
maining combinations are denoted correspondingly. For the vectorial polarisation states, we
find

|xA〉 = cosα|x〉+ sinα|y〉 (10.4)

|yA〉 = − sinα|x〉+ cosα|y〉 . (10.5)

Analogous relations hold for |xB〉 and |yB〉 with the rotation angle β. We thus find for the
probability P++

P++ = 〈ΦAB+ |xA, xB〉〈xA, xB|ΦAB+ 〉 =
1
2

cos2(β − α) (10.6)

and correspondingly for the other probabilities:

P−− = P++ =
1
2

cos2(β − α) (10.7)

P+− = P−+ =
1
2

sin2(β − α) . (10.8)

The fact that only the difference between the rotation angles α and β plays a role is due to the
rotational symmetry of the initial state |ΦAB+ 〉.

The correlation coefficient The measurements at the locations A and B always yield the
results 0 or 1. In a later step, we will attempt to give a classical explanation for the results.
For comparison, we require a characteristic quantity which can be calculated for both cases.
We employ the degree of correlation of the pairs of measured values. It can be characterised
solely with reference to the observed experimental results, i.e. independently of the theoretical
rationale employed. We take the product of the local measured values at A and B. In the case
of complete correlation, we would always obtain +1. If for a measured value of e.g. +1 at
A we now and then obtain not +1 at B, but rather −1 (and therefore a product of −1), then
the degree of correlation is smaller. This is reflected in the value of the correlation coefficient
εAB , which is defined as the mean value of the product of the local measured values at A
and B.

EPR correlations of entangled photons We first compute the correlation coefficient εAB

for the entangled photons. In the special case of parallel orientations of the polarisers (α = β),
we find a complete correlation of the results: if the |xA〉 polarisation is found at A, then with
certainty the |xB〉 polarisation will likewise be observed at B (P+− = 0). The same holds
for the y polarisations (P−+ = 0). The two polarisation directions occur at A and B in a
completely random fashion with the probabilities 1

2 in each case. We now turn to the general
case:

As we saw in Sect. 7.5.1, the expectation value of the product of the local measured values
at A and B can be computed as the mean value of the product operator EA ⊗ EB:

εAB(α, β) := 〈ΦAB+ |EA(α)⊗ EB(β)|ΦAB+ 〉 . (10.9)
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Explicit evaluation using Eqs. (10.2) and (10.3) leads to the probabilities of Eqs. (10.7) and
(10.8) (compare Eq. (10.6)).

εAB(α, β) = P++ + P−− − P+− − P−+ . (10.10)

Equation (10.10) can also be read out directly. It contains the products of the measured values
+1 and −1, multiplied by the probabilities for their occurrence. Equation (10.10) is evaluated
with Eqs. (10.7) and (10.8) and yields the result

εAB(α, β) = cos 2(β − α) . (10.11)

In the special case of parallel orientation of the analysers (α = β), the resulting perfect
correlation gives εAB(α, β) = 1.

Objects with spin-1
2

For polarisation measurements on two objects with spin- 1
2 , we can

proceed in an analogous manner. For a given e3 direction, the Bell state

|ΦAB+ 〉 =
1√
2
(|0A, 0B〉+ |1A, 1B〉) (10.12)

is prepared by a source. |0〉 and |1〉 are the eigenstates of σ3. At A and B, polarisations are
measured along the directions a and b. In order to simplify the computations, we assume that
a and b are perpendicular to e2

a = (sinα, 0, cosα), b = (sinβ, 0, cosβ) . (10.13)

The corresponding observables are

EA(α) = σAa , EB(β) = σBb . (10.14)

We can determine the correlation coefficient εAB of Eq. (10.9) in a simple way by referring
to some auxiliary relations which have already been derived. We first apply Eqs. (9.38) and
(9.40) and take into account the relation a2 = b2 = 0. We then make use of Eq. (3.11), apply
a× b ∼ e2 as well as Eq. (9.39), and use the orthonormalisation of the Bell vectors. We then
find successively for the correlation coefficient εAB:

εAB(α, β) = 〈ΦAB+ |(σAa)(σBb)|ΦAB+ 〉 = 〈ΦAB+ |(σAa)(σAb)|ΦAB+ 〉 (10.15)

= 〈ΦAB+ |(ab)1A|ΦAB+ 〉+ i〈ΦAB+ |σA(a× b)|ΦAB+ 〉
= ab = cosα cosβ + sinα sinβ = cos(β − α) .

Compared to εAB for photons, in the case of spinors, the angles are typically half as large.

10.2 Correlated Gloves

We have seen that for a parallel orientation of the analysers at A and B, complete correlation
is observed. If the x polarisation is found for a photon at the location A, then with certainty
the photon registered at location B will also exhibit the parallel x polarisation and vice versa.
The same is true of the y polarisation. It is not important whether the measurement is first
carried out at A or at B. Furthermore, the distance between A and B can be arbitrarily great
(assuming disturbance-free transmission of the photons). Is this a result which holds only for
quantum objects?
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The pair of gloves We first take up again the discussion of Section 7.5.2 from a different
point of view. We take a pair of gloves to consist as usual of a left-hand and a right-hand glove.
Each of the gloves is placed into a box. One box is brought to the location A and the other to
B. The observers at A and B know that the boxes contain a pair of gloves. If, on opening the
box at A, the observer there finds a right-hand glove (or a left-hand glove), then he or she can
immediately state with certainty that at B a left-hand (or a right-hand) glove, respectively, has
been or will be found. The observer at B can make the corresponding statement, if he or she
has opened the box. Correlation at a distance is an everyday experience.

Of course, the type of glove was already determined in reality even before the boxes at A
and B were opened. The gloves are classically correlated. Discovery of the type of glove at A
had no influence either on the glove at A nor on the one at B (and correspondingly for opening
of the box at B). The physical reality at the location of an observer is not changed by a distant
experiment carried out by a partner. For gloves, there are only local occurrences. Although
complete information about the other glove is obtained on opening one box, no transfer of
information took place. The complete correlation is due simply to the fact that the 2-glove
system was prepared initially as a pair of gloves. It is in the state “pair of gloves”.

We have described a situation of classical physics in the case of the gloves, which – insofar
as concerns the results of measurements – corresponds exactly to the situation of the pair
of photons for parallel orientations of the analysers. The central question is therefore: can
perhaps the 2-photon experiment also be described within a purely classical theory, i.e. without
reference to quantum mechanics? The example of the gloves suggests already how we should
search for differences between classical and quantum systems. For photons, one need not
carry out the measurements at A and at B with the same analyser setup. The analysers can
be rotated relative to one another, as we described in the previous section. With gloves, one
can always ask only the same question at A and at B, “Left-hand or right-hand glove?”. A
question about the glove states 1√

2
(|left〉± |right〉) is not possible. Such superpositions do not

exist for classical systems (cf. Schrödinger’s cat in Sect. 15.2.2). There is no way to carry out a
“rotated” measurement. Certainly, pairs of gloves are too simple a model for photons. We will
have to investigate much more complex classical models. In order to find a generally-valid
answer to our question, we first want to examine in the example of the gloves which principles
hold for a classical theory.

10.3 Local Realism

We refer conceptually to the article by A. Einstein, B. Podolsky und N. Rosen [EPR 35], and
characterise classical physics by the two principles of local realism which we can observe
from the pair of gloves:

Physical reality1 Properties (e. g. energy) of physical systems are those physical quantities
whose value can be predicted with certainty before carrying out the corresponding measure-
ment (e. g. a measurement of the energy). These properties are in reality already determined

1Elements of reality: “If without in any way disturbing a system, we can predict with certainty the value of a
physical quantity, then there exists an element of physical reality corresponding to this physical quantity. This means
that this physical quantity has a value independent of whether we measure it or not.” [EPR 35]
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before the measurement. The system “has them”. They are elements of physical reality. Their
values are independent of whether they are measured or not. We call this reality concept of
classical physics Einstein reality.

Locality2 Physical reality can be described in a local manner. This means that every system
has its properties, independently of which interventions are carried out on other, spatially
separated systems. There is no action at a distance. This concept of locality is called Einstein
locality.

Hidden variables We assume – as did the authors of the EPR article also – that the experi-
mental statements of the quantum theory are correct. If one furthermore assumes that Einstein
reality and Einstein locality are appropriate descriptions of all physical systems, then all pos-
sible properties of each system are always present. The quantum theory affirms a different
conclusion only because it is not structured finely enough to capture all of reality. If this as-
sumption is justified, then quantum theory is not incorrect, but it is incomplete3. There are
elements of reality which are not reflected in this theory (compare Sect. 2.2). They do not
appear in it and are therefore hidden variables for the quantum theory.

As a classical theory we want to consider a theory which – in contrast to the quantum
theory – fulfills the two requirements of local realism. This is true of theories which are usually
termed classical, such as relativistic mechanics, electrodynamics, etc. We will attempt within
this framework to introduce explicitly the previously hidden variables in order to construct
a local-realistic and thus classical alternative theory to the quantum theory, which can give
an account of all the experimentally-observed phenomena in the quantum regime. Briefly,
we want to test the assertion: There is only classical physics. We pursue this programme
and attempt to describe photons and spin-1/2 objects so to speak in the same way as we can
describe pairs of gloves. We shall see that this is doomed to failure.

10.4 Hidden Variables, Bell Inequalities and
Contradictions of Experiments

Stochastic local-realistic theory A proponent of local realism considers the experiment
described in Sect. 10.1 and asserts that he can also derive the results. We want to test his
assertion. A set of hidden variables summarised by the symbol λ represents the “elements of
reality” which occur in connection with the polarisation of a now classically-described object.
λ is a real variable with a certain range of values. The properties of a particular object are
characterised by a certain set of variables λ. We formulate a stochastic local-realistic theory.
Particles with values of the variables λ are produced by a source with the probability density
ρ(λ), for which∫

ρ(λ)dλ = 1, ρ(λ) ≥ 0 (10.16)

holds.
2Locality: “The real factual situation of system A is independent of what is done with system B, which is spatially

separated from the former.” [EPR 35].
3Completeness: “In a complete theory there is an element corresponding to each element of reality”. [EPR 35]
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For a classical object characterised by λ at A and for the angle of rotation δ1 of the anal-
yser at A, it is predetermined whether the direction of polarisation xA or yA will be observed
(i.e. the corresponding detector will register a count). We attribute as in Sect. 10.2 a value +1
or−1 to the result of a measurement. Then there exists correspondingly an unambiguous func-
tion SλA(δ1) of λ and δ1 with the values +1 or −1. Analogously, there is a possibly different
function SλB(δ2), which for a given λ and a given rotation δ2 at B determines unambiguously
the measured value +1 or −1 there.

SλA(δ1) =
{

+1
−1

}
, SλB(δ2) =

{
+1
−1

}
. (10.17)

The classical correlation coefficient is then

εcl(δ1, δ2) =
∫
ρ(λ)SλA(δ1)SλB(δ2)dλ . (10.18)

The fact that it is written as a product of the two functions SλA(δ1) and SλB(δ2) expresses
locality. Through the formulation in terms of hidden variables λ, a local-realistic theory for
the correlation coefficients has been created.

The Bell inequality In a first step, we adapt this up to now very generally formulated theory
to the measured results of quantum mechanics which it must reproduce. In the special case of
parallel orientation of the analysers, the well-confirmed complete correlation of the results

εcl(δ, δ) =
∫
ρ(λ)SλA(δ)SλB(δ)dλ = 1 (10.19)

must be valid. With Eqs. (10.16), (10.17), and (10.18), it follows that

SλA(δ) = SλB(δ) =: Sλ(δ) . (10.20)

The two observables have the same functional dependence on the hidden variables λ and on
the angle δ.

We next go to a more general situation and consider three orientations, δ1, δ2 and δ3.
Measurements are carried out with the following orientations of the analysers at A and B:
(δ1, δ2), (δ2, δ3) and (δ1, δ3). It is found to be expedient to write the following expression and
to rearrange it using Eq. (10.17):

Sλ(δ1)Sλ(δ2)− Sλ(δ1)Sλ(δ3) = Sλ(δ1)Sλ(δ2)︸ ︷︷ ︸
=±1

[1− Sλ(δ2)Sλ(δ3)]︸ ︷︷ ︸
≥0

. (10.21)

Integration leads with this expression and with Eqs. (10.16) and (10.17) to

| ∫ ρ(λ){Sλ(δ1)Sλ(δ2)− Sλ(δ1)Sλ(δ3)}dλ| (10.22)

= | ∫ ρ(λ)Sλ(δ1)Sλ(δ2)[1− Sλ(δ2)Sλ(δ3)]dλ|
≤ ∫ ρ(λ)| [1− Sλ(δ2)Sλ(δ3)]︸ ︷︷ ︸

≥0

|dλ = 1− ∫ ρ(λ)Sλ(δ2)Sλ(δ3)dλ .

Equation (10.22) implies for the classical correlation functions

|εcl(δ1, δ2)− εcl(δ1, δ3)| ≤ 1− εcl(δ2, δ3) . (10.23)

This is the Bell inequality ( [Bel 64]).
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Conflict with quantum theory What is the result predicted by quantum theory? We in-
vestigate spin-1/2 particles in the state |ΦAB+ 〉 and choose the following orientations for the
analysers: δ1 = 60◦, δ2 = 120◦, δ3 = 180◦. Then we obtain for the correlation coefficients

εAB(δ1, δ2) =
1
2
, εAB(δ1, δ3) = −1

2
εAB(δ2, δ3) =

1
2
. (10.24)

This expression cannot fulfill Eq. (10.23). Inserting it leads to

1 ≤ 1
2
, (10.25)

i. e. The Bell inequality is not obeyed. Quantum theory and local-realistic theories lead to
contradictory results. For photons, one chooses an angle of 30◦ instead of 60◦ and likewise is
led to a violation of the Bell inequality.

The CHSH inequality We discuss an additional combination of rotation angles. Reference
to an experimental result, such as we built into Eq. (10.20), is not necessary here. At A, the
measurements are carried out with the orientations α1 and α2, and at B with β1 and β2. We
consider the following combination of the corresponding functions S and take note of the
different values which can result owing to SλA,B = ±1:

{SλA(α2) [SλB(β1) + SλB(β2)]︸ ︷︷ ︸
+SλA(α1) [SλB(β1)− SλB(β2)]︸ ︷︷ ︸

} =: {. . .}

±2 ← → 0
0 ← → ±2 (10.26)

We thus have

|{. . .}| = 2 (10.27)

and therefore, with Eq. (10.16),
∣
∣
∣∣

∫
ρ(λ){. . .}dλ

∣
∣
∣∣ ≤

∫
ρ(λ)|{. . .}|dλ = 2

∫
ρ(λ)dλ = 2 . (10.28)

For the classical correlation coefficients εcl of the measurements with the various angles, this
means that:

Scl := |εcl(α2, β1) + εcl(α2, β2) + εcl(α1, β1)− εcl(α1, β2)| ≤ 2 . (10.29)

This is the CHSH inequality, named for J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt
[CHS 69].

All the inequalities for the correlation coefficients in stochastic theories with hidden pa-
rameters (stochastic local-realistic theories) are usually combined under the name Bell in-
equalities. They are inequalities obtained from classical physics. Their significance for quan-
tum mechanics becomes clear only when one compares predictions based on the Bell inequal-
ities (as in Eq. (10.25)) with those of quantum theory, and both with the actual experimental
results.
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The clash with quantum theory For the corresponding measurements on correlated pho-
tons in the entangled state |ΦAB+ 〉, one chooses angles which differ by 22, 5◦ (see Fig. 10.2b):
α1 = 22, 5◦, β1 = 45◦, α2 = 67, 5◦, and β2 = 90◦. This leads with Eq. (10.11) to:

εAB(α1, β1) = εAB(α2, β1) = εAB(α2, β2) = cos
π

4
=

1√
2

(10.30)

εAB(α1, β2) = cos
3π
4

= − 1√
2
. (10.31)

(For spin- 1
2 particles, the angles chosen are twice as large.) The quantum-mechanical compu-

tation of the correlation coefficients as in Eq. (10.29) yields for the entangled state

Se.s. = 2
√

2 . (10.32)

Comparison with the CHSH inequality leads to the conclusion: Quantum mechanics violates
the CHSH inequality.

Experimentum crucis4 We have described two experimental setups for which the quantum
theory on the one hand and theories with hidden variables on the other lead to contradictory
predictions. In such a situation, experimental results can allow a choice to be made. The
experiments verify the predictions of quantum mechanics (compare Sect. 10.8). All local-
realistic alternative theories to quantum mechanics are thus refuted. This is a result with far-
reaching consequences. The underlying reason is to be found in the fact that the EPR correla-
tions cannot be simulated in the entangled Bell state by introducing hidden local-realistically
interpreted variables. They are genuine quantum correlations. For a non-local alternative
theory to the quantum theory, see Sect. 10.8.

10.5 Separable Mixtures Obey the Bell Inequality

Separable mixtures such as those as we introduced in Sect. 8.1 can be simulated by mixtures
which have been locally prepared via LOCC. As quantum mixtures, they do not obey the
reality condition. Nevertheless, they are referred to as classically-correlated mixtures. We
want to show that this is justified, since they obey the CHSH inequality. We consider to this
end separable mixtures of bipartite states

ρAB =
∑

i

piρ
A
i ⊗ ρBi , 0 < pi ≤ 1,

∑

i

pi = 1 (10.33)

and again compute the quantum-mechanical correlation coefficients (compare Eq. (10.9))

εAB(α, β) = trAB[ρABEA(α)⊗ EB(β)]

=
∑

i

piAi(α)Bi(β) (10.34)

4An experiment which permits one theory among several to be verified and the others to be refuted is called an
experimentum crucis (experiment of the cross). This term is due to Bacon (1561-1626). The addendum ‘cross’ is
intended to recall a fork in the road (or a crossroads), which in Bacon’s time was often marked by a cross.



192 10 There is no (Local-Realistic) Alternative to Quantum Theory

with

Ai(α) := trA[ρAi E
A(α)], Bi(β) := trB[ρBi E

B(β)] . (10.35)

The magnitudes of the expectation values of operators with eigenvalues equal to ±1 cannot
exceed 1; therefore, we have:

|Ai(α)| ≤ 1, |Bi(β)| ≤ 1 . (10.36)

The evaluation of the correlation coefficient leads to

Ss.m. =
∣
∣εAB(α2, β1) + εAB(α2, β2) + εAB(α1, β1)− εAB(α1, β2)

∣
∣ (10.37)

=

∣
∣
∣∣
∣

∑

i

pi{Ai(α2)Bi(β1) +Ai(α2)Bi(β2) +Ai(α1)Bi(β1)−Ai(α1)Bi(β2)}
∣
∣
∣∣
∣

≤
∑

i

pi{|Ai(α2)Bi(β1) +Ai(α2)Bi(β2)|+ |Ai(α1)Bi(β1)−Ai(α1)Bi(β2)|} .

As a result of the separability, only products occur here. We estimate the value of the expres-
sion in curved brackets {. . .} in the same way as in Eq. (10.36):

{. . .} ≤ |Bi(β1) +Bi(β2)|+ |Bi(β1)−Bi(β2)| ≤ 2 (10.38)

and obtain with Eq. (10.33) for the separable mixture

Ss.m. ≤ 2 . (10.39)

Comparison with the CHSH inequality (10.29) shows that for bipartite systems, every sep-
arable mixture of quantum states (and thus also every pure product state) obeys the CHSH
inequality. Entanglement is therefore a necessary condition for the violation of the Bell in-
equality. It is, however, not a sufficient condition (see Sect. 10.8).

10.6 Entanglement Witnesses∗

We carried out the computations in the previous section in analogy to those in the sections
preceding it. In order to formulate the result once more in a different way, we introduce
vectors a1 and a2 (or b1, b2) to denote the directions α1 and α2 (or β1, β2). Making use of
the Bell-CHSH observable

BAB := σAa2 ⊗ σB(b1 + b2) + σAa1 ⊗ σB(b1 − b2) , (10.40)

we can then summarise equations (10.37) through (10.39) in the form

|trAB[ρABBAB ]| ≤ 2 . (10.41)

Here, we have made use of Eqs. (10.34) and (10.14). All separable mixtures obey Eq. (10.41).

*The sections marked with an asterisk * can be skipped over in a first reading.
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We reformulate this result: the mean value of the observable ŴAB := 21AB + BAB

formed with the help of BAB fulfills for all separable mixtures ρABsep the relation

trAB[ρABsepŴ
AB] ≥ 0 . (10.42)

For the entangled state |ΦAB+ 〉, Eq. (10.32) means that

trAB[|ΦAB+ 〉〈ΦAB+ |ŴAB] < 0 . (10.43)

Therefore, if one carries out the Bell inequality experiments on a system in the state ρAB and
the results show that the inequality (10.42) is not obeyed, then the state is entangled.

This observation can be generalised. It suggests that we establish a universal concept. An
entanglement witness is an observable WAB which reveals the presence of entanglement in
mixtures ρAB ∈ HAm ⊗HBn . WAB fulfills the conditions

trAB[ρABWAB]

{
≥ 0 for all non-entangled ρAB

< 0 for at least one ρAB .
(10.44)

It is not excluded that the first inequality is obeyed also by one or more entangled states. Thus,
the result of the measurement of WAB on a system in the state ρAB enables us to draw the
following conclusions:

trAB[ρABWAB]






< 0 ⇒ ρAB is entangled

≥ 0 ⇒ no conclusion about the entanglement

of ρAB is possible.

(10.45)

The special observable introduced above, ŴAB on HA1 ⊗HB2 , is an example of an entangle-
ment witness.

If one finds an entanglement witness WAB for a state ρAB , such that Eq. (10.45) is ful-
filled, then the state is entangled. But does an entanglement witness exist for every entangled
state? This is guaranteed by the following theorem, which we cite without proof [HHH 96]: A
state ρAB is entangled if and only if there is a Hermitian operator WAB , for which all sepa-
rable states obey the inequality trAB[ρABsepWAB] ≥ 0 and for which ρAB fulfills the relations
trAB[ρABWAB] < 0. No limitations onHA2 ⊗HB2 were made in this theorem.

The theorem can have practical utility in finding out whether a state is entangled or not, as
shown by the special case ŴAB discussed initially. In Sect. 10.8, we give a further example
which is based on a Bell measurement. An entanglement witness is a non-local observable.
At first glance, it would therefore appear difficult to establish entanglement in this way ex-
perimentally. In fact, this is not the case, since the statements made by Eq. (10.45) are based
on mean values. As we saw in Sect. 9.2.2, they can be determined merely by local projection
measurements on the subsystems. In practice, one tests with the aid of entanglement witnesses
whether a preparation procedure has in fact produced a particular entangled state. The entan-
glement witness is constructed specifically for this state. The observable ŴAB in Eq. (10.43)
is an example of this. The introduction of entanglement witnesses does not, however, solve
the separability problem, since we do not know all the possible entanglement witnesses.
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10.7 3-Particle Entanglement and Quantum Locality

10.7.1 The GHZ State

D. M. Greenberger, M. A. Horne and A. Zeilinger (GHZ) have shown in a non-statistical man-
ner, which is independent of the Bell approach, that the quantum theory and local realism are
not mutually compatible ( [GHZ 89], [GHZ 90]). We give their arguments here with reference
to the spins of three quantum objects which are located at three different places, A, B, and C.
They are mutually entangled. Their composite state is inHA2 ⊗HB2 ⊗HC2 and is supposed to
be given by

|ψABC〉 =
1√
2
(|0A, 0B , 0C〉+ |1A, 1B, 1C〉) . (10.46)

|0〉 and |1〉 are again the eigenvectors of σz with the eigenvalues +1 and−1. The state (10.46)
of the tripartite system is called the GHZ state. It is symmetric with respect to exchange of
the tags A,B and C.

10.7.2 Local Realism and Quantum Theory at Odds

We first determine again the result of local quantum-mechanical spin measurements on the
three subsystems. For this, different polarisation directions are chosen. For example, in the
yyxmeasurement, the observables σAy , σ

B
y and σCx are each measured locally on a single com-

posite system. The order in which the measurements are performed is unimportant. To find
the result of the measurements, it is expedient to introduce the eigenvectors of each observable
as a basis in the spacesHA2 ,HB2 andHC2 and to expand the state vector |ψABC〉 in this basis.
Then, after an intermediate calculation, we find

|ψABC〉 =
1
2
(|0Ay , 1By , 0Cx 〉+ |1Ay , 0By , 0Cx 〉+ |0Ay , 0By , 1Cx 〉+ |1Ay , 1By , 1Cx 〉) . (10.47)

The measured values are denoted by sx and sy . They are always +1 (eigenvector |0〉) or
−1 (eigenvector |1〉). As can be read off from Eq. (10.47), the possible combinations of the
correlated measured values for each individual tripartite system obey the relation

sAy s
B
y s

C
x = −1 . (10.48)

The symmetry under exchange of the tags A,B and C leads to

sAx s
B
y s

C
y = −1, sAy s

B
x s

C
y = −1 . (10.49)

These are the results of quantum theory, which are confirmed by experiments.
The situation is again the same as in the previous sections. An exponent of local real-

ism observes the results of the measurements and claims that he can explain them completely
within the framework of his approach. Is he right? We need to verify whether the experi-
mental results by themselves could not also be accounted for by a classical model. To this
end, we consider a classical overall system which is composed of three subsystems SA, SB
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and SC . We can carry out x and y measurements on all three systems. They are completely
characterised by the requirements which result from the experiments: the possible measured
values sA,B,Cx,y are always +1 or −1 and the conditions (10.48) and (10.49) must be fulfilled
for the products. The following property of the system can then be read off: the result of the
x measurement on one of the subsystems can be predicted with certainty when the results of
the y measurements on the other two subsystems are known. In order to determine e.g. the
result sAx of the x measurement on SA, one need only carry out a y measurement on SB

and SC . Analogously, the result of a y measurement can be predicted if one carries out an x
measurement or a y measurement on the other two subsystems.

Since we wish to interpret this observation from the point of view of a local realistic theory,
there is a consequence: the outputs of all the x and y measurements are predetermined in our
classical model, e.g. via hidden variables. For a single tripartite system, the individual values
sA,B,Cx are already fixed before the measurement. The values sA,B,Cx,y are therefore the same
in the different Eqs. (10.48) and (10.49). We multiply the left sides of the three equations and
obtain with sAy s

A
y = sBy s

B
y = sCy s

C
y = 1

sAx s
B
x s

C
x
cl= −1 . (10.50)

In every local realistic theory, this is the prediction for an xxx measurement.
We still have to compute the corresponding prediction of quantum theory. For a measure-

ment of the observables σAx , σ
B
x and σCx , we decompose |ψABC〉 in terms of the eigenvectors

of σx

|ψABC〉 =
1
2
(|0x, 0x, 0x〉+ |0x, 1x, 1x〉+ |1x, 0x, 1x〉+ |1x, 1x, 0x〉) (10.51)

and find

sAx s
B
x s

C
x
GHZ= +1 . (10.52)

Thus, there is a clear-cut contradiction between the predictions of local-realistic theories and
of quantum theory. If experiments confirm the quantum-mechanical equation (10.52) – which
is indeed the case (see Sect. 10.8) – then local realism is refuted.

Why can one not derive a relation (10.52) in a similar manner in quantum mechanics from
Eqs. (10.48) and (10.49)? Equation (10.47) shows that the quantum-mechanical measured
results are correlated. When local measurements on a GHZ system yield e. g. sBy = +1 and
sCx = −1, then one finds sAy = +1. For sBy = +1 and sCx = +1, one finds with an identically-
prepared system sAy = −1, etc. The result sAy is in general not predetermined for a tripartite
system in the GHZ state. This may differ from the relations (10.48) and (10.49), which refer
to different measurements. The same holds for sBy and sCy .

We have shown the following: Three objects are prepared in such a way that in the
framework of quantum theory, the resulting state is the GHZ state (10.46). If the quantum-
mechanical predictions for the local polarisation measurements as described above prove
correct, then every local-realistic theory for these systems is refuted. Quantum theory can
therefore not be replaced by such theories.

We have seen in Sect. 3.6 that the two linear polarisations and the circular polarisation can
be formulated analogously to the spin in H2. For photonic GHZ states, the contradiction can
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be demonstrated in a similar manner. For photons, the experimental results in fact confirm the
quantum-mechanical predictions and thus refute the local-realistic approach. A summary of
the experiments can be found e. g. in [PZ 02].

Finally, we point out some differences from the Bell arguments. The CHSH inequality
makes statements about classical expectation values and is a direct result of local realism.
It makes a statement about classical physics without referring to the quantum theory. The
GHZ argument, in contrast, is based (like the conjuring trick in Sect. 7.7) on the failure of
the attempt to simulate quantum-mechanical results (10.48) and (10.49) with a local-realistic
method. The contradiction with quantum theory is not probabilistic, but rather direct. In both
cases, experiments verify the quantum theory.

10.8 Complementary Topics and Further Reading

• The classics: [EPR 35], [Bel 64], [CHS 69], [Boh 51], [GHZ 89], [GHZ 90].

• Review articles: [HS 91], [Per 93, Chap. 6], [Hom 97, Chap. 4], [AS 99], [Aul 00, Chap.
IX], [WW 01].

• On Einstein’s criticism of quantum theory: [Hom 97, Chap.8].

• An introduction to the debates between N. Bohr and A. Einstein on the basis of quantum
theory: [Hel 06]. The correspondence between A. Einstein and M. Born is also worth
reading: [EB 69].

• There are entangled states that do not violate any of the known inequalities which are of
the type of the Bell inequalities: [WW 00]. This is interesting in view of the entanglement
witnesses ŴAB discussed in Sect. 10.6.

• Books with review articles on the Bell inequalities and relevant experiments: [BZ 02],
[Asp 02].

• An experiment on the violation of the Bell inequality using two ions is described in
[RKM 01]. There, one also finds numerous literature references to experiments with
photons.

• Objections against the experimental demonstrations of the violation of the Bell inequality
have been raised on the grounds that they contain loopholes which would permit local-
realistic interpretations. The history of this problem is given in [Asp 99].

• Discussions of entanglement witnesses in a wider context: [LBC 00], [HHH 01], [Ter 02],
[Cir 02].

• The Bohm theory, which is also called the de Broglie-Bohm theory or Bohmian mechan-
ics, is an alternative theory to conventional quantum mechanics (cf. [Boh 83]). It is thus
not just another interpretation, but rather a theory which is different from quantum the-
ory. It is based on the introduction of non-local hidden variables and can reproduce all the
results of nonrelativistic quantum mechanics, in particular also the violation of the Bell
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inequality. The wavefunction is a physically real object (comparable to for example the
gravitational field). It guides the particles along their orbits. All its laws are completely
deterministic. The differential equation for the guide waves is the Schrödinger equation.
Attempts at a relativistic and quantum-field generalisation of the Bohm theory have met
with serious problems. The fact that nearly all physicists prefer standard quantum theory
to the Bohm theory, in spite of its agreement with experimental results, is due to “meta-
theoretical” arguments in the evaluation of the theories (see Sect.2.4), and especially also
to pragmatic arguments (poorly-developed and clumsy formalism). In [Pas 05], a brief
description of the Bohm theory and of the objections raised against it are given, together
with a rather complete literature list.

10.9 Problems for Chapter 10

Prob. 10.1 [for 10.1]: Give an alternate (direct) proof of Eq. (10.15).

Prob. 10.2 [for 10.4]: Prove Eq. (10.20).

Prob. 10.3 [for 10.4]: Measurements are carried out on linearly-polarised photons in the
state |ϕA〉 with an analyser A oriented in the directions xA and yA. Formulate a model for
this situation with hidden variables, i. e. give expressions for λ, ρ(λ) and SλA which reproduce
the measured results.

Prob. 10.4 [for 10.7]: Design a quantum circuit which transforms the state |0A, 0B, . . . , 0J〉
inHA2 ⊗HB2 ⊗ . . .⊗HJ2 into the GHZ state

|GHZ〉 =
1√
2
(|0A, 0B, . . . , 0J 〉+ |1A, 1B, . . . , 1J〉) .

Prob. 10.5 [for 10.6]: Show that for mixtures ρAB in HA2 ⊗ HB2 , the operator WAB =
1AB − 2|ΦAB+ 〉〈ΦAB+ | is an entanglement witness.





11 Working with Entanglement

Entanglement forms the basis for new effects and their technical applications. We discuss
some examples. In the second part of this section, we will manipulate entanglement. The
resource “entanglement” cannot be implemented at its maximum strength in practice. It is
therefore important to have access to a method of amplifying entanglement. In order to control
this method qualitatively, we require measures of entanglement.

11.1 Quantum Cryptography

11.1.1 The Vernam Coding

Alice would like to send a coded message to Bob, which is to be kept perfectly secret. No one
besides Bob should be able to decode it. In the method suggested by Vernam in 1926 [Ver 26],
a source text, which is supposed to be available in digital form as a series of (0,1) bits of length
n, is coded using a key. This produces the cryptogram. The key itself consists of a random
(0,1) series which likewise has the length n. For coding, the numbers from the source text and
the key are added modulo 2 term by term. We give an example:

Source text 01101100
Key 10000110
Cryptogram 11101010

The cryptogram is then sent to Bob, who is presumed to be already in possession of the
key. The decoding process consists of Bob’s adding the key to the coded message, modulo 2.
Due to x+ 0 + 0 = x+ 0 = x and x+ 1 + 1 = x+ 0 = x, the source text is again obtained:

Cryptogram 11101010
Key 10000110
Source text 01101100

Since the key contains a random sequence, the coded text becomes completely independent
of the source text. It can be transmitted openly by Alice to Bob. For an eavesdropper who
does not have the key, the cryptogram contains no usable information. The decisive point is
that the key be known only to Alice and Bob, that it is indeed a genuinely random sequence
of the same length as the source text, and in particular, that it be used only once (one-time pad
system). Under these conditions, the Vernam code cannot be broken [Sha 49].

The problem with this procedure is that Bob and Alice must exchange a new key for every
message they want to send, and that in this process, it must be guaranteed that the key cannot
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fall into the hands of an eavesdropper. We want to show that it is possible to accomplish such a
key transmission using quantum systems. There are a whole series of quantum-cryptographic
methods (compare Sect. 11.8). Here, we treat only two types of methods. One of these makes
use of the special properties of the quantum-mechanical measurement process, and the other
employs the non-local EPR correlations. The series of instructions for carrying out a particular
cryptographic scheme is called a protocol.

11.1.2 The B92 Protocol

The B92 protocol, named for the work of C. H. Bennett [Ben 92] from the year 1992, makes
use of two non-orthogonal quantum states for the transmission of the key and utilises the
following typical properties of individual quantum systems: (i) There is no measurement pro-
cedure which can distinguish between the two states. (ii) The states cannot be cloned by a
quantum copier. (iii) A measurement in general modifies a quantum state.

The process of key transmission We want to use photons to implement the B92 protocol.
Alice has two filters which can linearly polarise the photons vertically in the state |V 〉, or at an
angle of −45◦ to the vertical, i. e. in the state |V ′〉 (see Sect. 3.6). The relation |〈V |V ′〉|2 = 1

2
holds. Alice uses a long random binary series, e. g. 1, 0, 0, 1, 1, 0, . . ., and every time a 0
occurs, she generates a photon of polarisation |V 〉, while for each 1, she chooses the polarisa-
tion |V ′〉. The photons propagate without disturbance to Bob’s location.

Bob has a measuring apparatus in the form of a detector behind a polarisation filter. He
can choose one of two orientations for the analyser filter: a horizontal polarisation |H〉,
corresponding to the projection operator P1 = 1 − |V 〉〈V | = |H〉〈H|, and a polarisa-
tion rotated by −45◦ with respect to the horizontal, corresponding to the projection operator
P0 = 1 − |V ′〉〈V ′| = |H ′〉〈H ′|. Bob also has a long binary sequence at his disposal, which
is independent of the sequence used by Alice, e. g. 0, 0, 1, 0, 1, 0, . . .. The numbers 0 and 1
must occur with equal frequencies in both sequences. The i th number of Bob’s sequence
determines the type of measurement that he will make on the i th photon prepared by Alice.
If the number 0 occurs in Bob’s sequence, he places the analyser direction along |H ′〉 (corre-
sponding to P0), and in the case of a 1, he places it along |H〉 (corresponding to P1). In each
case, he notes whether or not his detector registers a count.

Owing to the orthogonality of the vectors, we have P0|V ′〉 = 0 and P1|V 〉 = 0. When
Alice and Bob find different numbers in their respective sequences, Bob’s detector thus does
not register a count. If Alice and Bob find the same numbers, then the detector registers a
count with the probability 1

2 due to 〈V |P0|V 〉 = 〈V ′|P1|V ′〉 = 1
2 , thus in 50% of the cases.

An example is shown in Table 11.1. “yes/no” means that in this arrangement the results ‘yes’
or ‘no’ are each possible with a probability 1

2 . The case which is in fact observed is underlined.
In the next step, Bob informs Alice via a public channel which photons produced a count

in his detector. He does not inform her of the corresponding analyser position. In the example
shown in the table, these are the photons numbered 2 and 6. Then Alice and Bob have the
same sequence of numbers, 0, 0, . . ., which is known only to the two of them and which they
can use as a key. As desired, it is a random sequence of the numbers 0 and 1, but it consists
on the average of only 25% of the numbers from the original sequences.
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Table 11.1: B92 Protocol for Quantum Cryptography.

Photon number 1 2 3 4 5 6
Alice’s sequence 1 0 0 1 1 0
Polarisation generated |V ′〉 |V 〉 |V 〉 |V ′〉 |V ′〉 |V 〉
Bob’s sequence 0 0 1 0 1 0
Analyser position |H ′〉 |H ′〉 |H〉 |H ′〉 |H〉 |H ′〉
Detector count no yes/no no no yes/no yes/no

Defence against eavesdropping We want to discuss briefly the question of security in this
process of generating a common key. Let us assume that a third person named Eve1 attempts
by eavesdropping, i. e. by intercepting the photons and making her own polarisation measure-
ments, to obtain the key; she then has the problems listed above under (i) – (iii). She cannot
determine the polarisation state of a single photon in one measurement with certainty. She
cannot copy the state onto many photons, let one of them continue on, and then carry out mea-
surements on the copies. Finally, she will modify the state of each photon by her measurement
before it is sent on to Bob. This is the circumstance which makes it possible for Alice and
Bob to determine whether a spy was at work. The changes in the state of the photons will
cause Bob now and again to register a count in his analyser-detector system, even though the
same numbers were not found at his location and at Alice’s. Both Alice and Bob can become
aware of this by exchanging a randomly-chosen portion of their key publicly and comparing.
If eavesdropping is found to have occurred, then the entire key is rejected and the process
of generating a key is begun again. A test for eavesdropping can additionally be made by
verifying whether 25% of the photons contribute to the key.

Improving security In fact, the transmission of the quantum objects from Alice to Bob
is susceptible to disturbances, even when no one is eavesdropping. The quantum channel
is generally noisy. In order to generate a key in practice, Alice and Bob have to tolerate a
certain degree of errors, without knowing whether they are not after all due to the influence of
Eve. This situation occurs in all the quantum-mechanical cryptography methods. In the final
step of the corresponding protocol, classical algorithms are therefore employed in order to
correct the errors. In an error correction protocol, an attempt is made to obtain a shorter key.
This is accompanied by a procedure which reduces Eve’s information to a minimum (private
amplification algorithm). Review articles on this topic are listed in Sect. 11.8.

Other 1-qubit protocols The B92 protocol, which is based on two non-orthogonal states, is
susceptible to POVM measurements. These non-projective measurements will be introduced
in Chap. 13. It has therefore become standard practice to use four states, as in the BB84
protocol. Another approach is the following: the symmetry of the Bloch sphere makes it
attractive to employ the eigenstates of σx, σy and σz . The corresponding 6-state protocol
allows a simplified security analysis (see Sect. 11.8).

1For “eavesdropper”
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11.1.3 EPR Protocols

Quantum cryptography using Bell’s theorem The experiment described in Sect. 10.4
with pairs of photons for testing the CHSH inequality can also be used for transmitting keys.
The protocol contains the following steps, which are carried out either publicly or else in
secret by Alice (at A) or by Bob (at B).

Public At A and at B in secret

At A and B, the four measurement
orientations are predetermined: α1 =
22, 5◦, β1 = 45◦, α2 = 67, 5◦, β2 = 90◦

(as in Sect. 10.4, see Fig. 10.1)

The source generates pairs of entangled
photons in the Bell state |ΦAB+ 〉. At A and
B, independently of each other in com-
pletely random sequences, the analysers
are oriented in each of the 4 directions. At
A, as described in Sect. 10.1, the polari-
sation states |xA〉 (measured value +1) or
|yA〉 (measured value −1) are measured,
and correspondingly at B, |xB〉 (measured
value +1) or |yB〉 (measured value −1).

The information as to which polarisation
directions were chosen at A and at B
for the individual pairs of photons is ex-
changed publicly.

At A and B, the measurement results are
sorted according to whether the same or
different analyser directions were used.

Those measurement results from different
orientations are exchanged publicly, to-
gether with the numbers of the pairs of
photons. Thereby, each partner can verify
whether the quantum-mechanical value
for the correlations from Eq. (10.32),
Se.s. = 2

√
2, was obtained. If not, the

transmission series is abandoned, since it
has been tapped. If the value Se.s. is ob-
tained,

Then the results for the same orientations,
which were not exchanged, are perfectly
correlated (compare Sect. 10.1). They rep-
resent a completely random sequence of
the numbers 0 and 1, which can be used
by Alice and Bob as a key.
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For key generation with spin-1
2 particles, orientations with twice the angles are chosen.

The individual subsystems at Alice’s and Bob’s locations are in the maximally-mixed
states ρA = ρB = 1

21. No information at all can be read out of them. As we have already
seen in Chap. 9, the information is contained only in the correlations. If an eavesdropper
carries out a measurement, e. g. on the objects being transmitted to Alice, then he transforms
this subsystem into a pure state. We showed in Sect. 8.3.4 that this breaks the entanglement
and produces a separable state. According to Sect. 10.5, separable states obey the CHSH
inequality, i. e. the relation |S| ≤ 2 holds. The explicit calculation leads in fact to |S| ≤ √2
(see Problem 11.3). This value differs strongly from the quantum-mechanical result, Se.s. =
2
√

2.

The BBM92 protocol 2 There is a very simple protocol which is based on EPR correlations
and requires no reference to a Bell inequality. We again use pairs of photons in the rotationally-
symmetric Bell state |ΦAB+ 〉, which we can write in terms of the linear polarisations |H〉, |V 〉
and |H ′〉, |V ′〉 from Sect. 3.6

|ΦAB+ 〉 =
1√
2
(|HA, HB〉+ |V A, V B〉) =

1√
2
(|H ′A, H ′B〉+ |V ′A, V ′B〉) . (11.1)

Alice and Bob make their measurements independently of one another, selecting in a com-
pletely random manner either the polarisations |H〉 and |V 〉 or the polarisations |H ′〉 and
|V ′〉, which are rotated by −45◦ relative to these.

After a series of measurements on pairs of photons, Alice and Bob exchange information
about the polarisation directions they have chosen for the individual pairs. The results belong-
ing to different directions, and those in which a photon was lost, are eliminated. The remaining
measurement results must be perfectly correlated, presuming that no eavesdropping has oc-
curred. In order to test this, Alice and Bob again compare a sufficiently large subset of these
measurements via a public channel. In the case that their comparison is positive, the sequence
of the remaining results, which is the same for both, can be used as the key for coding.

11.1.4 The Scheme of Quantum Cryptography

The basic idea consists of permitting Bob and Alice to obtain the same key by making use
of quantum systems as carriers. The message itself is transmitted via a publicly accessible
channel after being coded. The protocol must be designed in such a way that Alice and Bob
can each determine whether eavesdropping took place during transmission of the key. To this
end, they make use of the fact that a quantum measurement by an eavesdropper would change
the state of the quantum objects being transmitted, if it was not precisely an eigenstate of the
observables being measured.

If the preparations of Alice and the results of the corresponding measurements by Bob
agree with the theoretical prediction, no spying measurements have occurred and no informa-
tion has been obtained by an eavesdropper. Alice and Bob exchange a portion of their results
publicly and verify the agreement. If there is disagreement, the key transmission is rejected

2Named for the article [BBM 92].
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and the protocol is repeated from the beginning. Otherwise, Alice and Bob have obtained a
secret key which furthermore represents a perfectly random distribution, since it is based on
quantum processes.

11.2 One Qubit Transmits Two Bits (Dense Coding)

In Chap. 6, we have seen that one can code a single bit in a qubit and can read it out again. Is
it possible to transmit more classical information with a single qubit? We wish to show that
dense quantum coding makes it possible to transmit two bits via one qubit. The trick here is
that before the transmission, an entangled 2-qubit system was already established at Alice’s
and Bob’s locations. For example, Alice has sent a qubit system (e. g. one photon from a pair)
to Bob and kept its entangled partner. The state of the composite system can be e. g. |ΦAB+ 〉.
Bob thus obtains no information in this process. Furthermore, Alice and Bob have previously
agreed on how they will associate two bits with the four Bell states |ΦAB+ 〉, |ΦAB− 〉, |ΨAB

+ 〉,
and |ΨAB

− 〉.
In Sect. 9.2.1, we pointed out that, using the σ operators, one can transform a Bell state

locally in a unitary fashion into any other Bell state. Alice is supposed to carry out the trans-
formations 1A (trivial), σA1 , iσA2 , and σA3 on her qubit. In order to transmit the two bits of
information, she thus transforms the entangled state |ΦAB+ 〉 into the corresponding Bell state
and sends her qubit system to Bob. Bob can thus make use of both subsystems and determine
by means of a Bell measurement which Bell state is present. By the transmission of one qubit,
two bits have been transferred to him.

Dense coding is however hard to implement. If the entangled pure state used is not maxi-
mally entangled, the amount of information transmitted decreases and approaches in the lim-
iting case one bit. An important property of the procedure is its security with respect to
eavesdropping. In the most unfavourable case, one bit can be read off the qubit system which
Alice sends to Bob. Dense coding demonstrates once again the significance of entanglement
as a resource for information transmission.

11.3 Quantum Teleportation

Alice is in possession of a classical object which is however unknown to her, e. g. an oddly-
shaped iron ball which is locked up in a box. Bob would like to have a similar object. To meet
his wish, Alice has to open the box and carry out optical measurements on the ball. She then
transmits the information to Bob via a classical channel and he can manufacture a ball in the
same state from a block of iron. If this is meant to succeed not only approximately, but rather
precisely, then in principle infinitely many bits of information will have to be transmitted.

In the analogous quantum-mechanical situation, one can proceed in a similar manner. To
determine the unknown state of a quantum object requires in principle an infinite number of
measurements. If Alice knows the quantum state, she must still transmit infinitely many bits
to Bob. This can already be seen in the example of qubit systems. Let us suppose that the
qubit system which Alice has is in an eigenstate of σr. In order to describe the vector r, one
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requires a binary number with infinitely many digits. Only when he has complete knowledge
of r can Bob repeat the preparation procedure exactly.

The problem to be solved is the same in both cases. Alice and Bob are supposed to install
cooperatively a preparation procedure which carries out the following task: Alice has an object
in a state which is unknown to Alice and to Bob. The procedure allows the preparation of an
object at Bob’s location which is in precisely the same state. For the procedures described so
far, this requires the transmission of a large number of bits over a classical channel. This is
unavoidable in the case of the classical state. For the transmission of the quantum state, one
can however proceed in a much more subtle manner. Keeping in mind dense coding, it makes
sense to again make use of an information transmission assisted by entanglement. In fact, the
following protocol of quantum teleportation leads to the desired result (cf. Fig. 11.1):

Alice and Bob again share the Bell state |ΦAB+ 〉. The subsystems are the quantum systems
SA and SB , which are at Alice’s and Bob’s locations, respectively. Alice has an additional
quantum system SC in a pure state

|ϕC〉 = a|0C〉+ b|1C〉 (11.2)

with |a|2 + |b|2 = 1, which is unknown to Alice. This state |ϕ〉, not the quantum system SC

itself, is to be teleported to Bob. That means that we are seeking a procedure by means of
which Bob’s subsystem SB can be prepared in the pure state |ϕB〉. SB is then necessarily no
longer entangled with any other system (cf. Sect. 8.3.4).

All together, there is a tripartite system. We carry our some algebraic manipulations on its
state in HC2 ⊗ HA2 ⊗ HB2 . For these, we make use of the definition of the Bell states and of
the properties of the Pauli operators, and in an intermediate step, we introduce a Bell basis in
HC2 ⊗HA2 .

|ϕC〉|ΦAB+ 〉 =
1√
2

(
a|0C〉+ b|1C〉) (|0A〉|0B〉+ |1A〉|1B〉)

=
1√
2

(
a|0C〉|0A〉|0B〉+ a|0C〉|1A〉|1B〉

+ b|1C〉|0A〉|0B〉+ b|1C〉|1A〉|1B〉)

=
1
2

{
a
(|ΦCA+ 〉+ |ΦCA− 〉

)|0B〉+ a
(|ΨCA

+ 〉+ |ΨCA
− 〉

)|1B〉

+ b
(|ΨCA

+ 〉 − |ΨCA
− 〉)|0B〉+ b(|ΦCA+ 〉 − |ΦCA− 〉

)|1B〉
}

(11.3)

=
1
2

{
|ΦCA+ 〉

(
a|0B〉+ b|1B〉)+ |ΨCA

+ 〉
(
a|1B〉+ b|0B〉)

+ |ΨCA
− 〉

(
a|1B〉 − b|0B〉)+ |ΦCA− 〉

(
a|0B〉 − b|1B〉)

}

=
1
2

{
|ΦCA+ 〉|ϕB〉+ |ΨCA

+ 〉σB1 |ϕB〉+

+|ΨCA
− 〉(−iσB2 )|ϕB〉+ |ΦCA− 〉σB3 |ϕB〉

}
.

So far, we have only expanded mathematically in terms of a Bell basis in the space
HC2 ⊗HA2 which is accessible to Alice. This led via transformations with the Pauli operators
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to the state |ϕB〉 in HB2 . Bob must still compensate this transformation by his interventions.
To this end, Alice first takes action: she carries out a Bell measurement on the subsystems SC

and SA, for example like that which we described in Sect. 9.2.4. There are four possible results
of this measurement, which correspond to the states |ΦCA+ 〉 to |ΦCA− 〉. Alice informs Bob of
the result of her measurement. The associated two bits of classical information –more bits are
not required – are transmitted by Alice e. g. by telephone to Bob. He applies the corresponding
unitary transformation 1B, σB1 , iσ

B
2 or σB3 to his subsystem. Owing to σBk σ

B
k = 1B , in this

manner the state |ϕB〉 is always obtained. We have thus described a procedure which prepares
the system SB in the state |ϕB〉 and the teleportation has thus succeeded. The procedure is
loss-free, since no quantum systems had to be eliminated.

classical
information

entangled

state

Alice

SB

SC |ΦAB+ 〉

|ϕB〉

SA

measurement

|ϕC〉
EPR
source

Bell

unitary
trans-
formation

Bob

Figure 11.1: Quantum teleportation.

After the transmission of the state, none of the systems SC and SA are in the state |ϕ〉.
This reflects the prohibition of copying. The initial entanglement of SA and SB was trans-
ferred to SC and SA. Each of the results of Alice’s Bell measurement occurs with the same
probability, 1

4 . Neither Alice nor Bob can obtain any information about the teleported state
|ϕ〉 from this measurement. If the state |ϕ〉 is initially unknown, it turns up again as an un-
known state |ϕ〉 in the system SB . The special theory of relativity is not violated, since only
classical information transmission was employed. The state of the subsystems SC and SA at
Alice’s location following the transmission is the completely mixed state 1

41
AB . Although

only 2 bits were transmitted, the state |ϕ〉 was exactly teleported. This however presumes
that the maximally-entangled state |ΦAB+ 〉 was initially present. In a practical implementation,
this condition is only approximately met. We discuss in Sect. 11.6 how one can increase the
degree of entanglement by means of entanglement distillation.
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II

|ΦAD+ 〉

SA SD

I

|ΨAB
− 〉 |ΨCD

− 〉

|ΦBC+ 〉

SCSB

Bell measurement

Figure 11.2: Entanglement swapping from the systems SAB and SCD to the systems SAD and SBC .

11.4 Entanglement Swapping

We described the production of entangled pairs of qubits in Sect. 8.5. In fact, it is not necessary
for the entanglement of two qubits that the state be generated in a single composite process
by means of unitary dynamics. Using entanglement swapping, two quantum systems can be
placed in an entangled composite state at separate locations without any mutual interactions
whatsoever. We discuss an example.

Two EPR sources I and II each produce at the same time a bipartite system SAB and SCD

in the Bell states |ΨAB
− 〉 and |ΨCD

− 〉, respectively (see Fig. 11.2). All together, we thus have
the product state

|ΨAB
− 〉|ΨCD

− 〉 =
1
2
(|0A, 1B〉 − |1A, 0B〉) (|0C , 1D〉 − |1C , 0D〉) (11.4)

inHA2 ⊗HB2 ⊗HC2 ⊗HD2 . We introduce Bell bases in the spacesHA2 ⊗HD2 andHB2 ⊗HC2 .
Then we can rewrite the state as the result of an intermediate computation:

|ΨAB
− 〉|ΨCD

− 〉 = 1
2
(|ΨAD

+ 〉|ΨBC
+ 〉 − |ΨAD

− 〉|ΨBC
− 〉 − |ΦAD+ 〉|ΦBC+ 〉+ |ΦAD− 〉|ΦBC− 〉

)
.

(11.5)

One can immediately see that a Bell measurement on the subsystems SB and SC transforms
the previously non-entangled subsystems SA and SD into a Bell state. Projection, e. g. onto
|ΦBC+ 〉, yields |ΦAD+ 〉. The Bell states of the now entangled subsystems SAD and SBC are,
following the measurement, each the same. In this process, we are not dealing with the tele-
portation of states, but rather with the transfer of entanglement. The Bell measurement plays
a similar role here as in teleportation.

It is helpful to make it once more operationally clear just how the subsystem SAD is
transformed into the Bell state. EPR source I is supposed to be at Alice’s location and source II
at Bob’s location. The Bell measurement is carried out by Eve. The sources I and II repeatedly
and synchronously prepare pairs of spin- 1

2 particles. Alice and Bob each keep one particle and
send the second one to Eve. Eve carries out a Bell measurement on each pair which is sent
to her. If the output of the measurement result shows that the state |ΦBC+ 〉 is present, Eve
informs Alice and Bob. Only in this case do Alice and Bob send on their particles as shown
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in Fig. 11.2. All the other particles are sorted out or annihilated. The remaining pairs are then
in the entangled state |ΦAD+ 〉. All these actions together represent a preparation procedure
for the state |ΦAD+ 〉. The essential elements of the preparation procedure are the non-local
Bell measurement by Eve and the selection by Alice and Bob on the basis of the classical
information which they obtain from Eve.

11.5 Spooky Action into the Past?∗

We consider the following modification of the above scenario, which apparently leads to a fur-
ther quantum-mechanical paradox: Alice and Bob each generate in I and in II simultaneously
two entangled spin-1

2 particles in the states |ΨAB
− 〉 or |ΨCD

− 〉. They repeat this procedure many
times and enumerate their pairs. The particle pairs SB and SC are sent to Alice. Alice gives
these pairs the same number. The four particles are in the composite state |ΨAB

− 〉 ⊗ |ΨCD
− 〉.

The two pairs of particles SAB and SCD are completely independent of each other. In contrast
to the sequence described in the preceding section, in this case Alice first makes a measure-
ment on her particles SA of the spin polarisation σa in the a direction and Bob measures the
spin polarisation σd in the d direction on his particles SD. Later, as in the EPR experiments
described in Chap. 10, the mean value of the products of the measured values will be com-
puted. Therefore, Alice and Bob take note of the numbers of the particles and their associated
measured values. The particles SA and SD are not used further. In a second step, Eve then
carries out a Bell measurement on her pairs of particles and notes the numbers of the pairs
for which the measurement yields the state |ΦBC+ 〉. After many repetitions of this process,
she informs Alice and Bob of these numbers, and they sort out the measured values which
were associated with these numbers in their measurements. They then compute the expecta-
tion value of the products of the measurement results. In Sect. 10.1, we called this value the
correlation coefficient ε (compare Eq. (10.15)).

Formally, we obtain εAD as the expectation value of a product of observables by extending
Eq. (10.15) by the projection operator |ΦBC+ 〉〈ΦBC+ | which describes selective measurements:

εAD = 〈ΨAB
− ,ΨCD

− |σAa⊗ σDd⊗ |ΦBC+ 〉〈ΦBC+ ||ΨAB
− ,ΨCD

− 〉 . (11.6)

With Eq. (11.5), we obtain in analogy to Eq. (10.15)

εAD = 〈ΦAD+ |σAa⊗ σDd|ΦAD+ 〉 . (11.7)

As we saw in Sect. 10.4, the measured results violate the CHSH inequality if one chooses for
a and d the directions of the x and y axes and the axes rotated by 45◦ relative to them inde-
pendently of each other and with the same frequencies (compare Eqs. (10.30) and (10.31)).

We summarise the results: measurements on pairs of independent particles SA and SD

(produced separately in I and II), which were carried out before the measurements of Eve, led
to results which violate the Bell inequality. We attributed violations of the Bell inequality in
Chap. 10 to the presence of quantum correlations and hence to entanglement. Was the state of

*The sections marked with an asterisk * can be skipped over in a first reading.



11.6 Entanglement Distillation 209

the systems SA and SD entangled before the measurements by Eve? For the reduced density
operator, we find with Eq. (11.5), taking the trace over the Bell basis of SBC

ρAD = tr[|ΨAB
− ,ΨCD

− 〉〈ΨAB
− ,ΨCD

− |]
=

1
4
1AD . (11.8)

As could be expected, this state is not entangled. Did Eve somehow produce entanglement
retroactively? It would seem that in addition to a “spooky action at a distance” (cf. Sect. 7.5.2),
there is also – caused by Eve – a “spooky action into the past” or a “delayed entanglement”.

This is of course not the case. Three different measurements, whose sequencing is not
important, were carried out. The measurements on SA and SD lead to a set of measured
values. From this set, mean values were computed, and these are considered in the Bell
inequality. It is found (cf. Eq. (11.8)) that the Bell inequality is not violated. Only if one
selects the measurements based on the results of the Bell measurements carried out by Eve,
and hence chooses a particular subensemble of pairs of measured values, do then the mean
values computed from this subensemble lead to a violation of the Bell inequality. Selection
is however not an action into the past. Since the Bell measurements on SB and SC play
an important role in the scenario described above, there can be no locally-realistic model for
the composite procedure. It is thus plausible that the possibility exists of violating the Bell
inequality by means of a clever choice of the measured data.

11.6 Entanglement Distillation

Maximally-entangled pure states are the central tool in the processes of quantum information
theory. We have already seen this in the cases of data compression, dense coding, and quan-
tum teleportation. In a realistic experimental implementation, maximally-entangled states are
not in fact prepared. Instead, mixtures are obtained. In practice, an additional point must be
considered. Even if the preparation procedure were ideal, additional noiseless channels would
be required in order to conserve the maximal entanglement during transmission of the sub-
systems to Alice and Bob. Technically available channels are however noisy, and give rise to
mixed entangled states. These states are not maximally entangled and require manipulation.
Procedures for obtaining purer states are called purification. The increase in the degree of
entanglement is referred to as entanglement distillation. In general, both effects are obtained
at the same time.

Typically, distillation is carried out as follows: Alice and Bob receive for example the
corresponding subsystems of a non-optimally entangled composite system via noisy channels.
This is repeated with a number of pairs. Alice and Bob then apply a distillation protocol to
the subsystems, which consists of local operations and classical communication (LOCC). The
local operations can be unilateral and act on only one subsystem, or in particular they can be
bilateral and affect two subsystems which belong to different entangled pairs (compare the
example in Fig. 11.3). In this process, usually some of the entangled pairs are sacrificed in
order to enhance the entanglement of the remaining pairs. The selection accompanying this
process requires a classical communication between Alice and Bob. The procedure is finally
repeated with the remaining pairs, which already have a higher degree of entanglement. In the
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Alice Bob
entangled control pairρAB(c)

entangled target pair ρAB(t)

classical communication

Figure 11.3: Quantum circuit for entanglement distillation. The subsystems of the control pair move
off to the left and to the right (arrows). The same holds for the target pair. Following the selection, the
output control pair is more strongly entangled.

following, we will discuss an example in which the typical steps of the procedure will become
clear. Owing to the particular initial state chosen, this example is not very relevant in practice,
but it has the advantage that all the computational steps can be readily followed.

Distillation using CNOT operations The effect of the noisy channel is supposed to consist
of a mixture of the initially present, maximally-entangled Bell state |ΦAB+ 〉 with the Bell state
|ΨAB

+ 〉. We leave off the index + and write |ΦAB〉 or |ΨAB〉. The distillation is based on two
pairs of qubits which we denote by indices (c) and (t) and refer to as the control pair and the
target pair. Their states are the mixtures

ρAB(c) = F |ΦAB(c) 〉〈ΦAB(c) |+ (1− F )|ΨAB
(c) 〉〈ΨAB

(c) | (11.9)

ρAB(t) = F |ΦAB(t) 〉〈ΦAB(t) |+ (1− F )|ΨAB
(t) 〉〈ΨAB

(t) | . (11.10)

F is the fidelity

F = 〈ΦAB|ρAB |ΦAB〉 . (11.11)

It indicates how similar the state ρAB is to the maximally-entangled state |ΦAB〉〈ΦAB| with
F = 1; the goal of the procedure is to approach this latter state as closely as possible.
We choose F as a measure of the degree of entanglement and justify this more precisely
in Sect. 11.7.

For the distillation, Alice and Bob carry out a CNOT-Transformation on the qubit pair
at their disposal (compare Fig. 11.3). The effect of this transformation can be described as
follows: we can imagine that the mixture ρAB was prepared in such a way that the state |ΦAB〉
occurs with the probability F and the state |ΨAB〉 with the probability (1 − F ). The mixed
state ρAB(c) ⊗ ρAB(t) of all four qubits is a density operator on H4 and contains in its ensemble

decomposition the state |ΦAB(c) 〉|ΦAB(t) 〉 with the probability F 2, and the state |ΨAB
(c) 〉|ΨAB

(t) 〉
with the probability (1− F )2, etc.
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We list the states of the ensemble decomposition of ρAB(c) ⊗ ρAB(t) together with their prob-
abilities to the left of the arrows:

F 2 : |ΦAB(c) 〉|ΦAB(t) 〉 CNOT−→
CNOT

|ΦAB(c) 〉|ΦAB(t) 〉 (11.12)

(1− F )2 : |ΨAB
(c) 〉|ΨAB

(t) 〉 CNOT−→
CNOT

|ΨAB
(c) 〉|ΦAB(t) 〉 (11.13)

F (1− F ) : |ΦAB(c) 〉|ΨAB
(t) 〉 CNOT−→

CNOT
|ΦAB(c) 〉|ΨAB

(t) 〉 (11.14)

F (1− F ) : |ΨAB
(c) 〉|ΦAB(t) 〉 CNOT−→

CNOT
|ΨAB

(c) 〉|ΨAB
(t) 〉 . (11.15)

Alice and Bob each use a CNOT gate. The action
CNOT−→
CNOT

of these two bilateral CNOT gates is

shown on the right-hand side.
To clarify the structure of the associated computations, we prove the rearrangement

(11.15). To do so, we apply the rules for the CNOT gate from Chap. 7 to the states at Al-
ice’s and Bob’s locations:

2|ΨAB
(c) 〉|ΦAB(t) 〉 =

(
|0A(c), 1B(c)〉+ |1A(c), 0B(c)〉

)(
|0A(t), 0B(t)〉+ |1A(t), 1B(t)〉

)

CNOT−→
CNOT

|0A(c), 1B(c)〉
(
|0A(t), 1B(t)〉+ |1A(t), 0B(t)〉

)

+|1A(c), 0B(c)〉
(
|1A(t), 0B(t)〉+ |0A(t), 1B(t)〉

)

= 2|ΨAB
(c) 〉|ΨAB

(t) 〉 . (11.16)

We return to the equations (11.12)-(11.15). In the last step, Alice and Bob each carry out
a measurement on the target pairs in the computational basis {|0〉, |1〉} (see Fig. 11.3). Using
classical communication, they inform each other of the results. If their measured values agree,
the components (11.12) or (11.13) of the ensemble decomposition are at hand. The control
qubit is then transferred to the state |ΦAB(c) 〉 with a probability F 2, or to the state |ΨAB

(c) 〉 with

the probability (1− F )2. The corresponding control qubits are recycled by Alice and Bob. If
the results of the measurement do not agree, they eliminate the control qubit. The resulting
density operator after normalisation takes the form

ρ′AB(c) = F ′|ΦAB(c) 〉〈ΦAB(c) |+ (1− F ′)|ΨAB
(c) 〉〈ΨAB

(c) | (11.17)

with

F ′ =
F 2

F 2 + (1− F )2
. (11.18)

If the initial state already had an entanglement degree of F > 1
2 , then it is found that F ′ > F .

The degree of entanglement has been increased, as intended.
Alice and Bob can then apply the distillation protocol to two pairs in the state state ρ′AB(c) , in

order to obtain a still higher degree of entanglement. If they repeat the distillation many times
in this way, they can approach the maximally-entangled state |ΨAB

+ 〉 arbitrarily closely. The
price for this increasing entanglement is the need to use more and more pairs and to discard
many pairs. In Sect. 13.3.6, we will describe another procedure for entanglement distillation.
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11.7 A Measure of Entanglement for Mixtures:
Entanglement of Formation and Concurrence∗

In the previous section, we took the parameter F to be a measure of the entanglement of the
mixed state ρAB(c) of Eq. (11.9). We wish to justify that choice in the following. For this,
we give a general measure of the entanglement of qubit systems, which is also applicable to
density operators. We start from the degree of entanglement for pure states. To keep this
section short, we dispense with presenting longer but simple computations in detail and refer
to the literature for the central lemma.

Pure states We consider systems SAB with two subsystems SA and SB . Within this entire
section, we assume that the subsystems are qubits. For pure states |ψAB〉, we encountered the
entropy of the subsystems SA or SB as a measure E(ψAB) of entanglement in Sect. 8.3.3:

E(ψAB) = S(A) = −tr[ρA log ρA] (11.19)

= S(B) = −tr[ρB log ρB ] . (11.20)

Here, ρA and ρB are the reduced density operators of the subsystems SA and SB .
We expand the state |ψAB〉 in terms of the computational basis

|ψAB〉 = a|0A, 0B〉+ b|0A, 1B〉+ c|1A, 0B〉+ d|1A, 1B〉 (11.21)

and evaluate Eq. (11.19). A lengthy intermediate computation, which we shall not reproduce
here, leads to

E(ψAB) = h

(
1 +

√
1− C(ψAB)2

2

)

. (11.22)

Here, we have introduced the binary entropy function

h(x) := −[x log2 x+ (1− x) log2(1− x)] (11.23)

and the abbreviation

C(ψAB) := 2|ad− bc| , C ≤ 1 . (11.24)

C(ψAB) is called the concurrence of the state |ψAB〉. The entanglement E is a monotonic
function of C. Both have a range of values from 0 to 1 and are identical at the endpoints of this
range. The concurrence can therefore likewise be considered to be a measure of entanglement.
A state with E = C = 0 is separable. When E = C = 1, the state is maximally entangled.

As a preparation for the generalisation to mixtures, we note that the concurrence can also
be written in the form

C(ψAB) = |〈ψAB|ψ̄AB〉| . (11.25)

*The sections marked with an asterisk * can be skipped over in a first reading.
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|ψ̄AB〉 is obtained here from |ψAB〉, by first taking the complex conjugate prefactors in the
computational basis, that is in Eq. (11.21), (a→ a∗, b→ b∗, etc.). The result will be denoted
by |ψAB〉∗. Then the operator σAy ⊗ σBy is applied to this state:

|ψ̄AB〉 := σAy ⊗ σBy |ψAB〉∗ . (11.26)

σy exchanges the states of the computational basis and inserts the relative phase ±i. Equa-
tion (11.26) leads with Eq. (11.25) to Eq. (11.24).

We also write the concurrence of a pure state as a function of the associated density oper-
ator ρAB = |ψAB〉〈ψAB|:

C(ψAB)2 = |〈ψAB|ψ̄AB〉|2 = 〈ψAB|ψ̄AB〉〈ψ̄AB|ψAB〉
= tr[|ψAB〉〈ψAB| ¯ψAB〉〈ψ̄AB|]
= tr[ρAB ρ̄AB] =
= tr[RAB] . (11.27)

The operator

RAB := ρAB ρ̄AB (11.28)

is obtained from

ρ̄AB = |ψ̄AB〉〈ψ̄AB| = (σAy ⊗ σBy
)
ρ∗AB

(
σAy ⊗ σBy

)
. (11.29)

ρ∗AB is generated by writing ρAB as a matrix in terms of the computational basis and trans-
forming to the complex conjugate matrix elements.

Mixtures With this representation, an initially purely formal generalisation of the con-
currence to mixtures ρAB , which do not describe pure states, suggests itself. We adopt
Eqs. (11.27) through (11.29) and compute

E(ρAB) = h

(
1 +

√
1− C(ρAB)2

2

)

. (11.30)

To evaluate C(ρAB) for density operators, we employ a lemma of Wooters [Woo 98],
according to which the concurrence can be written explicitly in the form

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4} . (11.31)

The λ1, λ2, λ3 and λ4 are here the square roots of the eigenvalues of the matrix RAB =
ρAB ρ̄AB . They are non-negative real numbers and λ1 is the largest eigenvalue. The λi are at

the same time the eigenvalues of the matrix
√√

ρAB ρ̄AB
√
ρAB .
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Entanglement of formation The question arises as to whether the quantity E(ρAB) is only
a mathematical generalisation or also represents a physically reasonable measure of the entan-
glement for mixtures. Every density operator ρAB can be represented as the density operator
of an ensemble of pure states |ψl〉:

ρAB =
∑

l

pl|ψABl 〉〈ψABl | . (11.32)

The mean entanglement of the state ρAB is found as the mean value of the entanglement
E(ψABl ) of the pure states in the form

∑
l plE(ψl). The entanglement of formation of ρAB

is defined as the minimum value of the mean entanglement if one considers all the possible
ensemble decompositions of ρAB:

Ef (ρAB) = min
∑

l

plE(ψABl ) . (11.33)

If one thus prepares the state ρAB as a statistical mixture, then at least the entanglement
Ef (ρAB) must be produced on the average.

The connection to the preceding considerations is finally established by means of the the-
orem of Wooters [Woo 98]: For a system of two qubits which is in the state ρAB , the entan-
glement of formation Ef (ρAB) as a function of the concurrence C(ρAB) is given by

Ef (ρAB) = E(ρAB) (11.34)

with E(ρAB) from Eq. (11.30). Therefore, E(ρAB) can be interpreted operationally as a
physically reasonable measure of the entanglement for mixed states as well.

The magic basis We give yet another alternative procedure for computing the concurrence
C(ρAB). Instead of making use of the computational basis as in the above considerations,
it may be expedient to begin with the magic basis. It consists of Bell states with particular
phases:

|eAB1 〉 := |ΦAB+ 〉 , |eAB2 〉 := i|ΦAB− 〉 ,
|eAB3 〉 := i|ΨAB

+ 〉 , |eAB4 〉 := |ΨAB
− 〉, . (11.35)

We first expand the pure state |ψAB〉 in terms of this basis

|ψAB〉 =
∑

i

αi|eABi 〉 (11.36)

(
∑

i |αi|2 = 1) and take the complex conjugate state

|ψAB〉∗ :=
∑

i

α∗
i |eABi 〉 . (11.37)

One can readily confirm that this result agrees with the vector |ψ̄AB〉 from Eq. (11.26)

|ψAB〉∗ = |ψ̄AB〉 . (11.38)
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For the concurrence of the pure state |ψAB〉, we obtain with Eq. (11.25) the simple expression

C(ψAB) =

∣∣
∣
∣∣

∑

i

α2
i

∣∣
∣
∣∣
. (11.39)

Note that the complex numbers αi, and not their magnitudes, are squared. A pure state is
for example maximally entangled (C = 1, E = 1) just when the αi all have the same phase
(αi = eiϕ|αi|).

With equation (11.38), the results of Eq. (11.27) and (11.28) can be applied to density
operators

C2(ρAB) = tr[RAB ] (11.40)

RAB = ρABρAB∗ . (11.41)

Here, ρAB∗ for the pure state |ψAB〉 is

ρAB∗ = |ψAB〉∗∗〈ψAB| =
∑

i,j

|eABi 〉〈eABj |ψAB〉〈ψAB|eABi 〉〈eABj | (11.42)

and analogously, for the mixture ρAB , we have

ρAB∗ =
∑

i,j

|eABi 〉〈eABj |ρAB |eABi 〉〈eABj | . (11.43)

We made use of Eq. (11.37) for the rearrangement. In order to obtain ρAB∗ , one can write
ρAB in terms of the magic basis as a matrix and take the complex conjugates of the matrix
elements.

The direct computation of the concurrence C(ρAB) can be carried out with the aid of
Eq. (11.31) by again making use of the lemmas. The λi are the eigenvalues of RAB(ρ). We
can however now evaluateRAB in the form of Eq. (11.41). This is especially favourable when
ρAB is given in the Bell basis. If it is given in the computational basis, it is conversely more
simple to make use of the analogous equation (11.28).

An example In terms of the magic basis, the concurrence C(F ) for the state ρAB of
Eq. (11.9) from the previous section is particularly simple to compute. With

ρAB = ρAB∗ =
√
RAB =






F 0
0

1− F
0 0




 , (11.44)

we obtain by evaluation with the aid of Eq. (11.31) for the dependence of the concurrence
on F

0 ≤ F ≤ 1
2

: C(F ) = 1− 2F (11.45)

1
2
≤ F ≤ 1 : C(F ) = 2F − 1 . (11.46)

For F ≥ 1
2 , the concurrence increases linearly with F . We thus justifiably employed F in the

previous section as a measure of the entanglement.
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11.8 Complementary Topics and Further Reading

• An introductory overview of entanglement as a tool: [Wer 06].

• Quantum cryptography; the classics: [Eke 91], [BBM 92].

• In-depth literature on defending against eavesdropping: [HN 99], [Gru 99], [GRT 02],
[Lom 02a].

• Protocols with more than two states: [BB 84], [GRT 02], [Lom 02a].

• The B92 protocol: [HAD 95], [Gru 99], [Lom 02a].

• Experimental quantum cryptography: [HAD 95], [Zbi 98], [HN 99], [BD 00], [EGH 00],
[GM 02], [GRT 02].

• BBM92: [BBM 92], [GM 02, p. 369].

• Dense coding; the classic: [BW 92]. Experiments: [BHL 02], [BEZ 00, p. 62], [BD 00].

• Teleportation; the classic: [BBC 93].

• Teleportation of higher-dimensional states and mixtures [Wer 01, p. 53], [Key 02, p. 474],
[vLo 02, 1232].

• Experiments on teleportation: [BD 00], [BEZ 00], [BHL 02], [GM 02, p. 363].

• Entanglement swapping: [ZZH 93], [BVK 98].

• Entanglement distillation: [BBP 96], [BVS 96]

• In [BeB 96], it is shown how by applying entanglement distillation to an arbitrary mixture
ρAB , a mixture ρ′AB with F ′ = 〈ΨAB

− |ρ′AB|ΨAB
− 〉 > F can be prepared with the

fidelity F = 〈ΨAB
− |ρAB|ΨAB

− 〉 > 1
2 . By means of iteration, the resulting state can be

made to approach the Bell state |ΨAB
− 〉 arbitrarily closely.

• On entanglement of formation and concurrence: see [HW 97] and [Woo 98] as well as
the review article [Woo 01].

• Concurrence as a measure of entanglement for systems with more than two parts and
states in higher-dimensional Hilbert spaces: [MCK 05].
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11.9 Problems for Chapter 11

Prob. 11.1 Counterfeit-proof banknotes.
Assume that it is technically possible to store photons on a banknote in individual cells over
a long period of time. How can one use this to print banknotes which are secure against
counterfeiting?

Prob. 11.2 [for 11.3]: What modifications of the considerations in Sect. 11.3 would be
required if the state |ΨAB

− 〉 = 1√
2

(|0, 1〉 − |1, 0〉) were used instead of |ΦAB+ 〉?

Prob. 11.3 [for 11.1]: Assume that the eavesdropper carries out a polarisation measurement
on each of the two photons (spin-1

2 particles) and then lets the photons pass on to Alice or Bob.
The eavesdropper thus prepares pairs of photons with a probability p(θA, θB) with photons in
the states |θA〉 and |θB〉. The two polarisation directions are described by the angles θA and
θB . Determine the correlation coefficients explicitly and show that |S| ≤ √2 holds. Alice
and Bob would therefore be able to detect this eavesdropping.

Prob. 11.4 [for 11.3]: In which state is the system SB before Alice carries out her mea-
surements? If Alice performs Bell measurements on SC and SA but does not inform Bob of
this, in which state is the system SB?

Prob. 11.5 [for 11.7]: Prove Eq. (11.25) and the assertion C ≤ 1 from Eq. (11.24).

Prob. 11.6 [for 11.7]: Give a visualisation of ρA and ρ̄A = σAy ρ
∗AσAy making use of the

Bloch sphere.

Prob. 11.7 [for 11.7]: Give the equation for ρ∗AB which is analogous to Eq. (11.43).

Prob. 11.8 [for 11.7]: A mixture of Bell states

ρAB = λ1|ΦAB+ 〉〈ΦAB+ |+λ2|ΦAB− 〉〈ΦAB− |+λ3|ΨAB
+ 〉〈ΨAB

+ |+λ4|ΨAB
− 〉〈ΨAB

− | (11.47)

with 0 ≤ λ1 ≤ 1,
∑
i λi = 1 is called a Bell diagonal state. Show that ρ is entangled if and

only if maxλj > 1
2 .





12 The Quantum Computer

In this chapter, we wish to demonstrate how computations can be carried out using quantum
systems and how such computations differ from those performed in a classical computer. It
should become clear which types of problems can be treated more effectively using a quan-
tum computer. This superiority can be traced back to the typical non-classical structures of
quantum mechanics such as superposition and entanglement.

12.1 Registers and Networks

Registers A sequence of n qubit systems represents a quantum register of length n. Each
qubit acts as a digit in the register. The state of the register is described by a vector |ψin〉 in
the Hilbert spaceH⊗n

2 = H2 ⊗H2 ⊗ · · · ⊗ H2 with n factor spacesH2. We will work in all
the Hilbert spaces using the computational basis {|0〉, |1〉}. In the registers, the information is
stored in binary form. The natural number a is associated with the register state

|a〉 = |an−1〉|an−2〉 . . . |a0〉 , ai ∈ {0, 1} (12.1)

inH⊗n
2 . As with a classical computer, we employ the binary representation of a,

a = an−12n−1 + an−22n−2 + · · ·+ a020 ↔ (an−1, an−2, . . . , a0) . (12.2)

There are d := 2n states of this type. They form the orthonormal computational basis ofH⊗n
2 .

The natural numbers a = 0 to a = d − 1 enumerate the basis states. With a ∈ {0, 1}n, one
denotes the fact that the state |a〉 is an element of the computational basis for a register of
length n. For example, 6 ∈ {0, 1}3 and the associated state has the form |6〉 = |1, 1, 0〉.

It is an important property of a quantum register that it can store several numbers at the
same time in orthogonal and thus by suitable measurements distinguishable states. An exam-
ple is provided by

1√
2

(|0, 1, 1〉+ |1, 1, 1〉) =
1√
2

(|3〉+ |7〉) . (12.3)

The general state of a register of length n is a linear combination of the basis states

|ψ〉 =
d−1∑

a=0

ca|a〉 ,
d−1∑

a=0

|ca|2 = 1 . (12.4)
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The number d of basis states which can be stored simultaneously increases exponentially with
the length n of the register. For n = 270, the number is already greater than the estimated
number of atoms in the universe. This enormous storage and processing capacity is one of the
strengths of the quantum computer.

This strength can however be nullified by the peculiarities of quantum measurements if
they are carried out ineptly. It must be taken into account that measurements in the computa-
tional basis on the output state |ψout〉, which are performed sequentially or simultaneously on
the register digits, always lead to one of the associated basis states. They allow only a single
number a to be read out. In the case of a measurement on the state (12.3), that is the number
3 or 7. Such measurements in the computational basis are called bit by bit measurements A
subsequent measurement on the resulting state yields no further information.

U2

U3 U4

t

U1

|ψout〉|ψin〉 |a〉

Figure 12.1: The schematic of a simple quantum network with a bit by bit measurement.

Networks The manipulations of the register states by the quantum computer are carried out
using unitary transformations on H⊗n

2 . A quantum gate carries out a well-defined unitary
transformation, which often is analogous to a logic gate in a classical computer. A quantum
network or a quantum circuit consists of a number of quantum gates which act on the state in
a temporally ordered fashion, either sequentially or simultaneously (compare Fig. 12.1). The
gates are connected to one another via quantum wires, which are associated with one of the
subspacesH2 ofH⊗n

2 and hence with one of the quantum systems. Ideal wires do not modify
the state. Real wires are usually sources of errors. We have already encountered such gates
and networks in Chaps. 3 and 7.

A quantum computer is a quantum network which carries out a quantum computation by
transforming an input state |ψin〉 in a unitary fashion into an output state |ψout〉. Measurements
are performed as a rule projectively and bit by bit upon one or all of the qubits (register digits)
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of the input state. In the most general case, the unitary evolution can also be interrupted by
measurements in one or several factor spacesH2.

For the experimental implementation of quantum networks, it is important that well-
defined unitary transformations can be induced separately in a controlled manner on individual
factor spaces or on products of factor spaces. These unitary transformations of the subsystem
by the quantum gates take place via an external manipulation of the qubit systems or by inter-
actions with neighbouring qubits. Their implementation is one of the major challenges to the
construction of quantum computers.

12.2 Functional Computation

For the calculation of a Boolean function f : {0, 1}n → {0, 1}m using a quantum computer, a
first register of length n is required, into which the input state |x〉 is read in, as well as a second
register of length m in which the output state of the functional value f(x) is stored. Both
registers have finite lengths. The computation is therefore carried out according to the rules
of modular arithmetic. These describe calculations with remainders. The symbol a mod N
denotes the remainder which occurs in the division of the natural number a by the natural
number N 1. Therefore, a = qN + r with q ∈ N and r = a mod N holds. Equations which
contain mod N on their right-hand sides describe the equality of the remainders (e. g. 1 =
9 = 25 mod 8). For our calculations with remainders, we will in the main require addition.
Here, we have

(a+ b) mod N = ((a mod N) + (b mod N)) mod N. (12.5)

One often leaves off the specification mod N in the case of addition and writes simply

(a+ b) mod N =: a⊕ b . (12.6)

Two registers Quantum computers are based upon unitary and hence reversible state evolu-
tions. Functions f , which do not allow a one-to-one mapping (for which therefore f(x1) =
f(x2) for arguments x1 �= x2 holds), cannot be directly calculated by means of unitary op-
erations (cf. Fig. 12.2). This problem is solved by carrying the argument x in a first register
in unchanged form. Thus, it is necessary to have two registers, a first register (x register) of
length n and a second register (y register) of length m. The unitary transformation for the
determination of f(x) then acts upon a state |x, y〉 ofH⊗n

2 ⊗H⊗m
2 in the following manner:

|x, y〉 Uf−−→ |x, (y + f(x)) mod 2m〉 = |x, y ⊕ f(x)〉 . (12.7)

Figure. 12.3 shows this schematically. Uf is a controlled operation, since what happens to
the content of the second registers depends on the content of the first. The CNOT gate which
we described in Sect. 7.8 is a special case with m = n = 1 and f(x) = x. We make use of
the same graphic representation as in that section. In the general case, Uf as in Eq. (12.7) is
obtained from the circuit shown in Fig. 12.4.

1Integers Z: {. . . ,−2,−1, 0, +1, +2, . . .}. Natural numbers N: {0, 1, 2, . . .}. They are also called positive
integers or non-negative integers.
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f(x)

x
1 2 3 4 5 6

1

2

3

4

5

Figure 12.2: A non-uniquely reversible function.

Uf

|x〉 |x〉

|y〉 |y ⊕ f(x)〉

first register

second register

Figure 12.3: Calculation of a function as a unitary transformation. Here, its action on the vectors of the
computational basis |x〉 ∈ H⊗n

2 and |y〉 ∈ H⊗m
2 is shown.

We give an example to illustrate Eq. (12.7). The quantum registers are assumed to have the
lengths n = 2 and m = 3. The Boolean function f is then of the form f : {0, 1}2 → {0, 1}3.
We consider in particular the computation of the function f(x) = x2

|x, 0〉 Uf−−→ |x, x2 mod 23〉 . (12.8)

The unitary transformation Uf must then perform the following actions:

|0, 0〉|0, 0, 0〉 → |0, 0〉|0, 0, 0〉
|0, 1〉|0, 0, 0〉 → |0, 1〉|0, 0, 1〉
|1, 0〉|0, 0, 0〉 → |1, 0〉|1, 0, 0〉
|1, 1〉|0, 0, 0〉 → |1, 1〉|0, 0, 1〉 . (12.9)

Here, we have used 9 mod 23 = 1 and have written out the vectors from H⊗2
2 and H⊗3

2 as
product vectors.

It remains to answer the question as to whether such unitary transformationsUf can always
be implemented by using gates. It can be shown that for every Boolean function f : {0, 1}n →
{0, 1}m, the quantum network which carries out the transformation Uf and thus permits the
computation of every function f by the quantum computer can be constructed solely of Toffoli
gates. This also guarantees the unitarity of Uf . The Toffoli gate is in this sense a universal
reversible gate. For the proof of this statement, we refer to the literature (see Sect. 8.8).



12.2 Functional Computation 223

f

|x〉

|y〉 |y ⊕ f(x)〉

|x〉

Figure 12.4: Computation of functions as a controlled operation. An alternative representation of the
circuit in Fig. 12.3

Unitarity We wish to examine the simple special case n = m = 1 of Eq. (12.7) and to
show that for every function f : {0, 1} → {0, 1}, the transformation Uf which carries out the
addition is a unitary transformation on H2 ⊗ H2. It can thus be implemented by means of a
combination of simple quantum gates. We find

UfUf |x, y〉 = Uf |x, y ⊕ f(x)〉 = |x, y ⊕ f(x)⊕ f(x)〉 = |x, y〉 , (12.10)

and thus UfUf = 1.
It still remains to show that U†

f = Uf holds. There are four functions fi:

f1(0) = 0 , f1(1) = 0
f2(0) = 1 , f2(1) = 1
f3(0) = 0 , f3(1) = 1
f4(0) = 1 , f4(1) = 0 .

(12.11)

We investigate them with reference to the matrix Uf obtained with the computational basis.
For f1, we have Uf |x, y〉 = Uf |x, y ⊕ 0〉 = |x, y〉 and hence Uf = 1 = U†

f . For f2, the
equations Uf |0, 0〉 = |0, 1〉, Uf |0, 1〉 = |0, 0〉, Uf |1, 0〉 = |1, 1〉 and Uf |1, 1〉 = |1, 0〉 apply.
To find the matrix representation of Uf , we can read off from them using Eq. (8.49)

Uf =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





 = U†

f . (12.12)

The unitarity of Uf for f3 and f4 can be demonstrated in an analogous manner.

Kick back We append an observation which will prove to be useful in the following sec-
tions: we consider a function f : {0, 1}n → {0, 1}, i. e. the case m = 1, and generate the
superposition 1√

2
(|0〉 − |1〉) with |0〉, |1〉 ∈ H2 as the initial state in the register. The effect of

Uf then consists of

|x〉 1√
2

(|0〉 − |1〉) Uf−−→ |x〉 1√
2

(|f(x)〉 − |1⊕ f(x)〉)

= |x〉(−1)f(x) 1√
2

(|0〉 − |1〉) . (12.13)
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Here, we have made use of the fact that f(x) can be only 0 or 1. Basis vectors |x〉 which give
f(x) = 1 are multiplied by −1. The argument x thus controls a sign flip. A relative phase
with respect to a superposition in the first register can be generated (see Fig. 12.5):

(c1|x1〉+c2|x2〉) 1√
2
(|0〉−|1〉) Uf−−→ [(−1)f(x1)c1|x1〉+(−1)f(x2)|x2〉] 1√

2
(|0〉−|1〉) .

(12.14)

Although the computation of the function and the addition take place in the second register,
the state in the second register remains unchanged, 1√

2
(|0〉 − |1〉), and sign reversals occur

only in the first register, depending on f(x). This process, which we will use repeatedly, is
called a kick back.

12.3 Quantum Parallelism

By parallel application of Hadamard gates on the “binary expressed” register state |0, 0, . . . , 0〉
of the first register of length n (d := 2n),

H⊗n|0, 0, . . . , 0〉 =
1√
2

(|0〉+ |1〉) 1√
2

(|0〉+ |1〉) . . . 1√
2

(|0〉+ |1〉)

=
1√
d

d−1∑

x=0

|x〉 =: |Ω〉 , (12.15)

a uniformly-weighted superposition of the d vectors of the computational basis of H⊗n
2 is

formed. We can consider the state |Ω〉 to be the “superposition” of the numbers 0 ≤ x ≤
d− 1, x ∈ N. If we add on the second register of length m in the state |0〉 ∈ H⊗m

2 and allow
the unitary transformation to act upon |ψ〉 = |Ω〉|0〉, it is transformed into the state

|ψ′〉 = Uf

(
1√
d

d−1∑

x=0

|x, 0〉
)

=
1√
d

d−1∑

x=0

Uf (|x, 0〉)

=
1√
d

d−1∑

x=0

|x, f(x) mod m〉 . (12.16)

As a result of the linearity of Uf and the superposition (12.15) in the state |Ω〉 in the first
register, the value of f(x) is simultaneously computed for d = 2n arguments by a single pass
through the network. This parallel processing of information is termed quantum parallelism.
d increases exponentially with the register length n. Apart from trivial cases, the resulting
state |ψ′〉 is entangled.

If we measure the first n qubits in the state |ψ′〉 of Eq. (12.16) (i. e. the x register) with
respect to the standard basis, we obtain one of the states |x〉 with a uniform probability 1

d .
If, for example, |x0〉 results from the measurement, the composite state is transformed into
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|x0, f(x0)〉. A measurement on the second register yields the function value f(x0). In sub-
sequent measurements, no statements about f(x) for other x values can be made. In terms of
such a calculation of f(x) argument by argument, the quantum computer is less efficient than
a classical computer, since for the latter, the value x0 can be set as desired. In the quantum
computer, on the other hand, the measured value x0 is a random event. The superiority of the
quantum computer asserts itself for other kinds of problems.

Quantum algorithms The superiority of quantum algorithms as compared to classical al-
gorithms is based in the first instance on the use of superpositions and entanglement for quite
specific problems. In the main, the following two techniques are employed:

(i) Searching for global properties of a function f(x), such as its period. For this purpose,
in contrast to the classical computer, one does not first compute functional values and
then compare them, but rather investigates directly the correlations between the states
of the output register. We will encounter this in the case of the Deutsch problem, the
Deutsch-Jozsa problem, and in the Shor algorithm.

(ii) Amplitude amplification, usually in an iterative manner. Here, the superposition is trans-
formed in such a way that the state with the result being sought obtains a particularly
large amplitude and will thus be measured with a high probability. As an example of
this, we treat the Grover algorithm.

12.4 Two Simple Quantum Algorithms

12.4.1 The Deutsch Problem

We discuss the situation in which a function f : {0, 1} → {0, 1} is given in a black box or via
an oracle. The black box can compute the function’s value f(x) for any input argument x. As
with an oracle, one can pose a query and obtain an answer in each case. The problem consists
of determining particular properties of f(x) with a minimum number of queries. We compare
a classical black box with a quantum-mechanical black box, in which f(x) is implemented as
a quantum algorithm. The black box carries out the transformation Ug with a well-determined
function f(x) which is however unknown to us.

There are four functions f(x), which are listed in Eq. (12.11): The functions f1(x) and
f2(x) are termed constant. The functions f3(x) and f4(x) are called balanced, since they
yield an equal number of values 0 and 1. Both are global properties of the functions. It is to be
determined whether the function f(x) in the black box is constant or balanced. To do this, in
the classical case, the computation must be carried out with the values x = 0 and x = 1. Thus,
the oracle must be queried two times. In the quantum computer, we make use of the Deutsch
algorithm ( [Deu 85]), and do not ask, “Which functional value?”, but rather directly “Which
function type?”. We employ the kick back of Eq. (12.14) and use the state 1√

2
(|0〉+ |1〉) in

the x register. This can be done by inputting the value |0〉 there and carrying out a Hadamard
transformation (compare Fig. 12.5). After applying Uf as in Eq. (12.14), the composite state

1
2

(|0〉+ |1〉) (|0〉 − |1〉) Uf−−→ 1
2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉

]
(|0〉 − |1〉) (12.17)
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1√
2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉]|0〉 H

f 1√
2
(|0〉 − |1〉)1√

2
(|0〉 − |1〉)

Figure 12.5: Generating a kick back in the first register.

|0〉 H H

f 1√
2
(|0〉 − |1〉)1√

2
(|0〉 − |1〉)

Figure 12.6: A quantum circuit for the Deutsch algorithm.

is present. The second register is not considered. If f(x) is constant, the first register contains
the state

1√
2

(|0〉+ |1〉)⇔ f constant . (12.18)

In the balanced case, the state

1√
2

(|0〉 − |1〉)⇔ f balanced (12.19)

is present. For the measurement, we carry out a second Hadamard transformation H as in
Fig. 12.6, which leads to

|0〉 ⇔ f constant or |1〉 ⇔ f balanced . (12.20)

A single measurement in the computational basis then yields with certainty the answer being
sought.

12.4.2 The Deutsch-Jozsa Problem

We increase the length of the first register and consider functions f : {0, 1}n → {0, 1}, which
are defined for d = 2n values of x. f(x) is taken to be either constant or balanced. Balanced
means that half of all the functional values are zero and the other half are one. The problem is
once again to find out which type of function is contained in the black box.

The quantum algorithm of Deutsch and Jozsa ( [DJ 92]) is generated by extending the
Deutsch algorithm. We follow the circuit shown in Fig. 12.7. The Hadamard gates H⊗n have
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|ψ1〉

1√
2
(|0〉 − |1〉)

H⊗nH⊗n

1√
2
(|0〉 − |1〉)

|0, 0, . . . , 0〉

f

|ψ2〉 |ψ3〉

Figure 12.7: A quantum circuit for the Deutsch-Jozsa algorithm.

the effect described in Eq. (12.15) on the states of the first register.

|0, 0, . . . , 0〉 1√
2

(|0〉 − |1〉) H⊗n⊗1−−−−−→ |ψ1〉 =
1√
d

d−1∑

x=0

|x〉 1√
2

(|0〉 − |1〉) . (12.21)

After the simultaneous function computation with kick back, this yields – in analogy to
Eq. (12.14) –

|ψ1〉 Uf−−→ |ψ2〉 =
1√
d

d−1∑

x=0

(−1)f(x)|x〉 1√
2

(|0〉 − |1〉) . (12.22)

We add a further transformation of the first register with Hadamard gates. The effect of
H⊗n will not be calculated in detail at this point. The following considerations are sufficient

for our purposes: the effect of an individual Hadamard gate is |0〉 H−→ 1√
2
(|0〉 + |1〉) or

|1〉 H−→ 1√
2
(|0〉−|1〉). The state |x〉 of the x register is written in “binary form” as in Eq. (12.2).

With H⊗n, we obtain

|x〉 H⊗n−−−→ 1
d

(|0〉|0〉 . . . |0〉+ |R(x)〉) , |R(x)〉 �= |0〉|0〉 . . . |0〉 . (12.23)

As the state of both registers, we thus find by evaluating Eq. (12.22)

|ψ2〉 H⊗n⊗1−−−−−→ |ψ3〉

=
1
d

(
d−1∑

x=0

(−1)f(x) [|0〉|0〉 . . . |0〉+ |R(x)〉]
)

1√
2

(|0〉 − |1〉) . (12.24)

Finally, we perform a measurement on the first register in the computational basis. The
probability of obtaining the measurement result (0, 0, . . . , 0) is

p(0, 0, . . . , 0) =
1
d2

∣
∣∣
∣
∣

d−1∑

x=0

(−1)f(x)

∣
∣∣
∣
∣

2

. (12.25)
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It follows from this that

p(0, 0, . . . , 0) = 1 ⇔ f constant

p(0, 0, . . . , 0) = 0 ⇔ f balanced . (12.26)

We have carried out only one measurement on the first register. If the result 0, 0, . . . , 0 is
found, f is constant. If any other measurement result occurs, f cannot be constant, i. e. f
must be balanced.

For arbitrary register lengths n, it is thus sufficient in a quantum network to make only
one query of the oracle. In a classical network, one would have to call up in sequence all the
values of f(x) for the N possible values of x. As soon as one obtains different results for two
different x values, the function cannot be constant and is therefore balanced. In order to know
with certainty that f(x) is constant, the same result must be obtained in more than half of all
cases, that is in at least 2n−1 + 1 cases. The number of queries necessary in the classical case
thus increases exponentially with n.

12.5 Grover’s Search Algorithm

The phone book problem The phone book problem involves finding the correct name in a
telephone book for a given telephone number (e. g. 7581) out of all together d names.

x Name Telephone number
1 Jeeves 4892
2 Jones 1739
. . . . . . . . .
l Smith 7581
. . . . . . . . .

The distribution of the telephone numbers is supposed to be random. The phone book is
stored in the oracle. For the classical algorithm, the query is, “Does Jeeves have the number
7581?”. The oracle answers in this case with “No”. The names are queried in this manner one
after another until “Smith” has been located. The use of the quantum parallelism in Grover’s
algorithm [Gro 96] again makes it possible to pose all the queries at once, so to speak. The
readout is performed in this case by making use of amplitude amplification (see Sect. 12.3).

The telephone number 7581 corresponds to a function f(x), x = 0, 1, . . . , d− 1 with the
values

f(x) = 0 for x �= l , f(x) = 1 for x = l . (12.27)

The quantum oracle allows the computation of f : {0, 1}n → {0, 1} with d = 2n states |x〉
in the first register. The second register again consists of only one qubit. We let the state
1√
2
(|0〉 − |1〉) be input to the second register and make use of the kick back as in Sect. 12.2.

The state 1√
2
(|0〉 − |1〉) is the output. In the following, we list only the transformations in the

first register. Then the effects of the quantum-mechanical function computation are described
as in Eq. (12.13) by the unitary operator Ul.

|x〉 Ul−→ (−1)f(x)|x〉 (12.28)
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Ul flips the state |l〉 in −|l〉 and leaves all the other states unchanged. One can therefore write
this operator also in the form

Ul = 1− 2|l〉〈l| . (12.29)

The oracle is complemented by the action of further unitary operators. The unitary opera-
tor

UR := 2|Ω〉〈Ω| − 1 (12.30)

produces a “reflection” of |Ω〉 of Eq. (12.15). It maintains the uniform superposition |Ω〉 as in
Eq. (12.15) and flips the sign of every vector orthogonal to |Ω〉. Using Eq. (12.15), UR can be
written with Hadamard transformations in the form

UR = H⊗n(2|0〉〈0| − 1)H⊗n (12.31)

with |0〉 = |0, 0, . . . , 0〉. The middle operator of the three produces a “reflection” of |0〉. It
can be implemented using an n-bit Toffoli gate, which in turn can be constructed from 3-bit
Toffoli gates. UR can thus be implemented in terms of simple gates. More details are given in
Problem 12.3.

We wish to explain the action of “reflection” of a state

|φ〉 =
∑

x

ax|x〉, ax ∈ R . (12.32)

The projection of |φ〉 onto |Ω〉 leads to

〈Ω|φ〉 =
1√
d

∑

x

ax =
√
d ā (12.33)

with the mean value of the amplitudes

ā :=
1
d

∑

x

ax . (12.34)

This leads via the application of UR to |φ〉 with Eqs. (12.30) and (12.32) to the result

UR|φ〉 = (2|Ω〉〈Ω|−1)|φ〉 = 2

(
∑

x

|x〉
)

ā −
∑

x

ax|x〉 =
∑

x

(2ā−ax)|x〉 . (12.35)

The amplitudes ax of |φ〉 are transformed according to ax → 2ā− ax. This corresponds to a
reflection of ax at the mean value ā.

The sequence of the algorithm thus consists of the following: in a first iteration step, URUl
acts upon |Ω〉

|φ1〉 = URUl|Ω〉 . (12.36)

In Fig. 12.8, the real amplitudes ax are plotted against x. For |Ω〉, they all have the value
1√
d

. Application of Ul flips al into −al and leaves the remaining amplitudes unchanged.
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ā
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Figure 12.8: Amplitude amplification with Grover’s algorithm (to be read from above).

The mean value ā is shifted downwards in this process. The following transformation UR
reflects the values ax about the new mean value and produces an amplification of the amplitude
al in the state |Ω1〉. This is the result of the first cycle. Then URUl is once more applied
to |φ1〉. The cycle is repeated several times. Finally, the x register is measured out bit by
bit. Then the probability is greatest of finding the state |l〉 and hence the result l in dual
notation. Grover’s algorithm describes a situation in which the quantum computer yields
the desired result not with certainty but only with a high probability. However, as a result of
quantum parallelism, it is considerably faster than the repeated querying of a classical oracle,.
A unitary transformation is a rotation in a complex space. Repeated applications can rotate
a state increasingly near to a desired state. It can however also happen that the rotation goes
beyond the desired state and on further repetition moves further and further away from it. It
is therefore important to know for the application of Grover’s algorithm when the iteration
process must be discontinued (see Sect. 12.9).

A systematic classical search of the data bank requires a number of queries of the order
of 2n. This number increases exponentially with increasing n. In order to find the correct
entry by means of Grover’s algorithm with a high probability,

√
2n queries suffice (compare

Sect. 12.9).

12.6 Shor’s Factorisation Algorithm

Modern communication in the military and non-military area is based to an increasing ex-
tent on secure cryptography for the public transmission of keys and signatures. Up to the
present time, the most important coding methods are based on the assumption that there is no
effective factorisation of large numbers into prime numbers. The quantum algorithm of Shor
( [Sho 94] and [Sho 97]) permits a very rapid factorisation in comparison to classical methods.
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If it were technically possible to implement an effective quantum processor for this algorithm,
this would have a serious effect on the security of secret data transmission and storage. This
is one of the main reasons for the rapidly growing interest in quantum algorithms and in the
construction of quantum computers. We want to introduce the quantum-mechanical factori-
sation algorithm here. It consists of a classical algorithm which contains stochastic elements
(random elements), and the actual quantum algorithm for finding the period of a function. We
begin with the classical part.

12.6.1 Reduction of Factorisation to the Search for a Period

The greatest common devisor as an ancillary quantity The fundamental theorem of arith-
metic states that for every natural number N > 1, there is a unique prime factorisation

N = pn1
1 pn2

2 . . . pnk

k (12.37)

with various distinct prime numbers p1, . . . , pn and non-negative natural numbers n1, . . . , nk.
Our goal is to find a fast algorithm for prime factorisation. We make use of the fact that there
are already efficient methods for determining the greatest common divisor gcd(a, b) of two
natural numbers a and b (cf. Sect. 12.9). The gcd(a, b) is the largest integer which is a divisor
of both a and b.

12 : divisor 1, 2, 3, 4, 6, 12 .
18 : divisor 1, 2, 3, 6, 9, 18 .
⇒ gcd(12, 18) = 6 . (12.38)

Let N ∈ N be odd and not a prime number. For the prime factorisation of N , we search
for a non-trivial divisor of N and apply the procedure successively to the factors of N thus
obtained. For this purpose it suffices to find a natural number b �= 1 which has at least one
divisor in common with N ; then we have with gcd(b,N ) in particular also found a divisor of
N . Such a situation occurs when there are natural numbers c > N and d > N which are not
divisible by N , so that the equation

cd

N
= m (12.39)

is obeyed for a natural number m. Then it must be possible to cancel all the factors of the
prime factorisation of N by some or all the factors of c and d. There thus exist a gcd(c,N )
and a gcd(d,N ). We compute both with the gcd algorithm and hence find factors of N at the
same time.

The role of period determination How are we to find a relation of the type (12.39) for a
given N? We first engage in some preliminary considerations. Let a be a natural number with
2 ≤ a ≤ N − 1. We assume that

gcd(a,N) = 1 (12.40)

is obeyed – otherwise a divisor of N would already be known – and consider the function

f(x) := ax mod N . (12.41)
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It can be shown (cf. Sect. 12.9) that this function f(x) has a period r. This means that r is the
smallest natural number for which

f(x+ r) = f(x) mod N (12.42)

holds. The period r depends on a. From

ax+r = axar = ax mod N , (12.43)

it follows that

ar = 1 mod N . (12.44)

We give a simple example and compute in a modular fashion

(x, f(x) = 2x mod 3) : (1, 2), (2, 1), (3, 2), (4, 1), . . . (12.45)

The period is r = 2 and we have

ar = 22 = 1 mod 3 . (12.46)

Let us assume that for a given a, the period r has already been found by a suitable proce-
dure. And let us furthermore assume that the following two conditions are fulfilled:

r is even and (12.47)

a
r
2 + 1 �= 0 mod N . (12.48)

Then owing to the condition (12.47), we can rearrange Eq. (12.44)

ar − 1 = (a
r
2 + 1)(a

r
2 − 1) = 0 mod N . (12.49)

The left-hand side of Eq. (12.49) must be a multiple of N . There is thus a natural number
m > 0 such that we can write

(a
r
2 + 1)(a

r
2 − 1)

N
= m . (12.50)

From the requirement (12.48), it follows that a
r
2 + 1 is not a multiple of N . Since r is the

smallest number with the property (12.42), it must furthermore hold that

a
r
2 − 1 �= 0 mod N , (12.51)

since otherwise due to Eq. (12.44), r2 would already be the period. Then a
r
2 − 1 is also not

a multiple of N . On the other hand, Eq. (12.50) means that we can cancel all the factors of

N on the left-hand side by factors in the numerator. This cancellation must occur in (a
r
2 + 1)

and in (a
r
2 −1), since otherwise one of these terms would be a multiple ofN , in contradiction
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to Eqs. (12.48) and (12.51). Both terms thus have common divisors with N . Among these is
the largest, with

gcd(a
r
2 + 1, N) �=

(
N
1

)
, gcd(a

r
2 − 1, N) �=

(
N
1

)
. (12.52)

This statement of existence is our result. If we finally apply the algorithm for finding the gcd,
we have obtained one or two factors of N .

We will thus be successful if we can, for a given N , find an a such that the two conditions
(12.47) and (12.48) are fulfilled. The associated search is carried out by inputting random
values for a and applying the algorithm until a value of a is found which fulfills the conditions.
We are thus dealing with a randomised algorithm The factors of N obtained in this way are
treated by the same procedure until finally the decomposition into prime factors is complete.

Flow diagram The scheme described above for the factorisation algorithm for the number
N is shown as a flow diagram in Fig. 12.9. Only the search for the period, shown within a
double frame, employs a quantum algorithm.

An example for N=15 We wish to factorise the number N = 15. The natural number a
must therefore lie within the interval 2 ≤ a ≤ 14. Since Eq. (12.40) must be obeyed, only the
following choices for a are possible:

a ∈ {2, 4, 7, 8, 11, 13, 14} . (12.53)

We choose randomly a = 11 and search for the period r of f(x) as in Eq. (12.41).

x = 0 : 110 = 1 mod 15
x = 1 : 111 = 11 mod 15
x = 2 : 112 = 121 = 8 · 15 + 1 = 1 mod 15
x = 3 : 113 = 1331 = 88 · 15 + 11 = 11 mod 15 . (12.54)

We find the period r = 2 and obtain with Eq. (12.52)

gcd(11 + 1, 15) = 3, gcd(11− 1, 15) = 5 . (12.55)

The numbers 3 and 5 are divisors of 15. The prime-number factorisation of 15 is thus 15 =
3 · 5. We were lucky with the choice a = 11.

If the random choice of a had instead been a = 14, we would obtain:

x = 0 : 140 = 1 mod 15
x = 1 : 141 = 14 mod 15
x = 2 : 142 = 196 = 13 · 15 + 1 = 1 mod 15
x = 3 : 143 = 2744 = 182 · 15 + 14 = 14 mod 15 . (12.56)

The period is again r = 2 and therefore even. We take

gcd(14 + 1, 15) = 15, gcd(14− 1, 15) = 1 . (12.57)

This, however, violates the condition (12.52). In Fig. 12.9 (flow diagram), the flow cycle leads
back to the beginning. A new value for a must be chosen.
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z1 = 1

a factor

YES

z2 = max {gcd(a
r
2 + 1, N), gcd(a

r
2 − 1, N)}

z2 �= 1, N

choose randomly

a ∈ {2, . . . , N − 1}

z1 = gcd(a, N)

compute

NO

find the period r

of the function ax mod N

NO

NO

YES

YES

r is
even?

z1 or z2 is

Figure 12.9: A flow diagram of the factorisation algorithm for the number N . Only the part within the
double frame is carried out using the quantum computer.

12.6.2 The Quantum Algorithm for Determining the Period

Our remaining task is to determine the period of the function f(x) = ax mod N . We again
use two registers of lengths n and m. In the first register, the d = 2n basis vectors |x〉 ofH⊗n

2

as well as every superposition |φ〉 ∈ H⊗n
2 can be input. In the second register, f(x) mod N

is stored. The length m must be chosen in such a way that the dimension is 2m ≥ N . States
in this register are denoted as |χ〉 ∈ H⊗m

2 . The composite state |ψ〉 ∈ H⊗n
2 ⊗H⊗m

2 of all the
registers is in general entangled.

1st step: initialisation In the beginning, both registers are in the respective basis states |0〉
(see Fig. 12.10). As starting point for the utilisation of quantum parallelism, in a first step
the state |ψ〉 is brought in the well-known manner into the uniform superposition of the basis
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states ofH⊗n
2

|ψ1〉 = |Ω〉|0〉 =
1√
d

d−1∑

x=0

|x〉|0〉 . (12.58)

Example: N=15
1st register: n = 3 qubits for the numbers 0 to 7. Thus, d = 8.
2nd register: m = 4 qubits for the numbers 0 to N = 15.

|ψ1〉 =
1√
8

(|0〉+ |1〉+ . . . |7〉) |0〉 . (12.59)

|ψ1〉 |ψ2〉 |ψ3〉

H⊗n UDFT

f = ax (mod N)

|0〉 ∈ H⊗n
2

|0〉 ∈ H⊗n
2

Figure 12.10: The quantum circuit for determining the period.

2nd step: computation of f(x) in the second register The result of the unitary transfor-
mation Uf of Eq. (12.41) for the computation of f(x) is the entangled state

|ψ2〉 =
1√
d

d−1∑

x=0

|x〉|axmod N〉 . (12.60)

Example N = 15 and a = 11:
The random choice of a is supposed to have led to 11. Then for |ψ2〉, we find

|ψ2〉 =
1√
8
(|0〉|1〉+ |1〉|11〉+ |2〉|1〉+ |3〉|11〉

+ · · ·+ |7〉|11〉) (12.61)

|ψ2〉 =
1√
8
{(|0〉+ |2〉+ |4〉+ |6〉) |1〉

+ (|1〉+ |3〉+ |5〉+ |7〉) |11〉} . (12.62)
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The period we are seeking can be read off the sequence of x values for which the result-
ing functionals repeat. Eq. (12.62) is ordered according to the function values in the second
register. The period (here r = 2) is stored in the different states of the first register, which
are obtained in the summary (12.62). On expanding these states in terms of basis states, the
lowest numbers which occur can exhibit shifts of l ∈ N relative to 0, which are also called
offsets. In Eq. (12.62), we have for the numbers of the basis vectors (0, 2, 4, 6) and (1, 3, 5, 7).
The corresponding offset is l = 0 or l = 1.

We can rearrange the right-hand side of Eq. (12.60) and sort as in Eq. (12.62) according
to the offset l:

|ψ2〉 ∼
∑

l

|φ2(l)〉|al mod N〉 (12.63)

with

|φ2(l)〉 =
[
d

r

]− 1
2

[ d
r ]−1∑

j=0

|l + jr〉 . (12.64)

[dr ] is here the largest natural number which is smaller than or equal to d
r . In the example,

[dr ] = 4.
Equations (12.62) and (12.64) show that the period r is already stored in the states of the

first register after the 2nd step. We carry out a measurement on the second register and select
according to the results of the measurement. We then perform a measurement on the first
register. From the corresponding results, the period can be read off. In our example, after the
selection of l = 0 (i. e. the measured result 1 in the second register) a state is present which
leads to the results 0, 2, 4, 6 in the first register. The period r = 2 is clear. An analogous
result is obtained for l = 1 (i. e. the measured result 11 in the second register). This procedure
however becomes more and more laborious with increasing N , since then more and more
different measured values are found in the measurement on the second register. They must
all occur frequently in order that many systems are present after the selection of a measured
value and the measurements on the first register hence permit a conclusion to be drawn with
respect to the period r. We therefore make use of a different procedure. It is based on the fact
that via a unitary transformation, all the offsets can be uniformly set to 0. It then suffices to
carry out measurements only on the first register in order to be able to determine the period.

3rd step: quantum Fourier transformation The procedure consists of making use of a
Fourier transform of the first register (see Fig. 12.10) to convert the offset l into a phase
factor which is irrelevant for the quantum-mechanical measurement. The unitary operator for
quantum Fourier transforms acts as follows:

UQFT |x〉 =
1√
d

d−1∑

z=0

exp
(
2πi

xz

d

)
|z〉 , z ∈ N . (12.65)

We apply UQFT to the state |φ2(l)〉 from Eq. (12.64) and discuss first the special case

d

r
∈ N . (12.66)
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Then we have

|φ2(l)〉 =
√
r

d

d
r −1∑

j=0

|l + jr〉 (12.67)

with

UQFT |φ2(l)〉 =
d−1∑

z=0

f̃(z)|z〉 (12.68)

and

f̃(z) =
√
r

d

d
r−1∑

j=0

exp
(

2πi
(l + jr)z

d

)

=
√
r

d






d
r−1∑

j=0

exp
(
2πij

rz

d

)



 exp

(
2πi

lz

d

)
. (12.69)

We investigate the factor [. . . ] further. It represents a geometric series.

[. . . ] =
exp

(
2πi rzd · dr

)− 1
exp

(
2πi rzd

)− 1
=

exp(2πiz)− 1
exp(2πi rdz)− 1

. (12.70)

The series has the value 1 when the natural number z is a multiple of the natural number d
r ,

and otherwise it is zero. f̃(z) is non-vanising only at the points z = k dr with k ∈ N.
The new interval of values for z is transferred to the states |z〉. This leads to

UQFT |φ2(l)〉 = 1√
r

r−1∑

k=0

exp
(

2πi
lk

r

)
|kd
r
〉 . (12.71)

The offset l is now located within the phase. The period r is in the enumeration of the states
(k dr ∈ N). The composite state is, up to a normalisation factor, given by

|ψ3(l)〉 ∼
∑

l

UQFT |φ2(l)〉 ⊗ |al mod N〉 . (12.72)

4th step: measurements on the first register We measure on the first register (compare
Fig. 12.10) in the computational basis and repeat the whole procedure several times. Accord-
ing to Eq. (12.71), only the results xk = k dr with k = 0 . . . , r − 1 occur with non-vanishing
constant probabilities (see Fig. 12.11a). From this, we can read off d

r . Since d is known, the
period r is determined and the procedure terminates.
Example N = 15 and a = 11:
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Figure 12.11: The probability distribution of the measured results x in the first register for the Shor
algorithm.

We have d = 8.
The summands in Eq. (12.62) have the offsets l = 0 and l = 1. The unitary transformation
UQFT leads to

|ψ3〉 =
1√
4

{|0〉(|1〉+ |11〉) + |4〉(|1〉+ eiπ|11〉)} . (12.73)

With the probability 1
2 , the result 0 will be measured on the first register. This yields no

information. If the value 4 belonging to k = 1 is measured, it follows from 4 = d
r with d = 8

that the period is r = 2. This completes the determination of the period.

We add that with only one measurement with the measured value x′, there is a certain
probability that a k′ is found that has no common divisor with r, (gcd(k′, r) = 1)

x′

d
=
k′

r
. (12.74)

Then one cancels in the quotient x′/d until an irreducible fraction is obtained (there are fast
algorithms to accomplish this) and reads off r. With a certain probability, a single measure-
ment thus suffices for the determination of the period. If the measurement does not lead to a
k with the property described above, then the procedure must be repeated. It can be shown
that the computer time required for this procedure is less than that for classical methods of
determining the period.

The general case If r is not a divisor of d and hence the special case (12.66) is not at
hand, we nevertheless expect that the probability distribution is concentrated around values
of x which are “nearly” a multiple of d

r (cf. Fig. 12.11b). This can in fact be proved. A
suitable evaluation procedure can be given (see Sect. 12.9). The time required to carry out the
quantum Fourier transform in a d-dimensional space is of the order of (log d)2. The classical
fast Fourier transform requires of the order of d log d. It is thus inferior (compare Sect. 12.9).
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12.7 Quantum Error Correction Using Non-local
Measurements

As in classical computers, real quantum computers are subject to errors. We shall see in de-
tail in Chap. 15 how the interactions with the environment lead to decoherence. The pure
states on which the computations are based are transformed into mixtures. A different distur-
bance occurs because the quantum gates of which the computer is constructed do not perform
perfectly and possibly carry out perturbed unitary transformations. Especially drastic distur-
bances occur when states in register positions switch (e. g. |0〉 → |1〉) or change in phase
(e. g. |0〉 → −|0〉). Both in the computer as well as during data transfer in channels, quan-
tum information must be protected against losses by detection of errors (diagnosis) and their
correction (therapy).

The usual procedures for error correction of classically-processed information cannot be
transferred to quantum computing, since they are based on the copying of states and on local
measurements. There are however no universal copiers for quantum states, and local mea-
surements destroy entanglement. Quantum procedures for error correction are required. We
describe some of them.

The quantum error-correcting codes (QECC) are an example of the use of entanglement
and of non-local measurements (cf. Sect. 9.2) as ancillary procedures. The fundamental idea
consists of storing information in a redundant manner. Entangled states are formed. In the
simplest case, single errors occur locally, i. e. in subsystems and individual registers. Then
these errors can be detected by non-local measurements and the locally-hidden information
can again be restored. We will demonstrate this with some examples.

12.7.1 Bit Flip Errors

A bit-flip error |0〉 → |1〉, |1〉 → |0〉 occurs locally at a single register position. The state
remains a pure state. One can protect against this type of error by redundantly coding a single
qubit by means of three qubits in the following way:

|0〉 → |0̄〉 := |0, 0, 0〉 |1〉 → |1̄〉 := |1, 1, 1〉 . (12.75)

Thus, the state |ϕ〉 is converted into the entangled state |φ〉

|ϕ〉 := c0|0〉+ c1|1〉 → |φ〉 := c0|0, 0, 0〉+ c1|1, 1, 1〉 . (12.76)

The corresponding quantum circuit can be constructed using two CNOT gates as in Fig. 12.12.

We will no longer denote the product Hilbert spaces by capital lettersA,B etc. , but instead
we number them serially: H(1) ⊗ H(2) ⊗ . . .. The states |0̄〉 and |1̄〉 are both eigenstates of
σ

(1)
z σ

(2)
z and σ(2)

z σ
(3)
z with the eigenvalue +1. The corresponding non-local measurements in

the computational basis yield the measured value +1 (see Sect. 9.2).
A bit flip in a register leads for example to the entangled state

|φ′〉 := c0|1, 0, 0〉+ c1|0, 1, 1〉 . (12.77)
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|φ〉

|0〉

|0〉

|ϕ〉

Figure 12.12: Generating a redundant coding.

A non-local measurement of the observable σ(1)
z σ

(2)
z now yields the value −1, while that

of the observable σ(2)
z σ

(3)
z yields +1. This permits the unambiguous conclusion that a bit

flip has occurred in the first register. It is important that in the non-local measurement, the
state |φ′〉 was not modified. Hence, a unitary transformation σ(1)

x ⊗ 1(2) ⊗ 1(3), which pro-
duces a bit flip in the state of the first register, leads back to the primary state |φ〉. The

pairs of values which are obtained from the measurement of σ(1)
z σ

(2)
z and σ

(2)
z σ

(3)
z are:

(+1,+1), (−1,+1), (−1,−1), (+1,−1). They correspond in order to: no flip, a flip in the
first, in the second, or in the third register digit. The bit flip is reversed by another bit flip at
the same position.

Unitary transformations can be close to the identity operation. We consider the example
(|ε| � 1)

|φ〉 → |φ′′〉 = c′0 (|0, 0, 0〉+ ε|1, 0, 0〉)
+c′1 (|1, 1, 1〉+ ε|0, 1, 1〉) . (12.78)

By measurement of σ(1)
z σ

(2)
z and σ(2)

z σ
(3)
z , the result (+1,+1) will be obtained with the prob-

ability 1 − 2|ε|2 and |φ′′〉 is projected back onto the state |φ〉. The result (−1,+1) occurs
with the probability 2|ε|2 and the measurement leads to |φ′〉. The result of the measurement
indicates the final state and allows correction of the error where necessary.

12.7.2 Phase Flip Errors

A qubit is coded with 9 qubits, which are combined into clusters of 3 qubits:

|0〉 → |0̄〉 = 1
23/2

(|0, 0, 0〉+ |1, 1, 1〉) (|0, 0, 0〉+ |1, 1, 1〉) (|0, 0, 0〉+ |1, 1, 1〉)

|1〉 → |1̄〉 = 1
23/2

(|0, 0, 0〉 − |1, 1, 1〉) (|0, 0, 0〉 − |1, 1, 1〉) (|0, 0, 0〉 − |1, 1, 1〉) .
(12.79)

Every cluster has a redundant bit coding. A single bit flip can be detected as in Sect. 12.7.1
and eliminated. A phase flip error which gives rise to a sign change in one of the 9 register
positions can be determined in the following way: one measures the two non-local 6-qubit
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observables

σ
(1)
x σ

(2)
x σ

(3)
x σ

(4)
x σ

(5)
x σ

(6)
x

σ
(4)
x σ

(5)
x σ

(6)
x σ

(7)
x σ

(8)
x σ

(9)
x (12.80)

which are formed from the bit flip operator σx. The states |0̄〉 and |1̄〉 are eigenstates with the
eigenvalue +1.

If a phase flip occurs in one of the registers, then the value resulting from a measurement
of σxσxσx for this cluster changes by a factor of−1. By measuring the operators (12.80), one
can determine as for the bit flip error in which cluster the phase flip has occurred. The error
correction then consists of carrying out a σz transformation within this cluster at some register
position. This restores the initial state.

Errors at all the register positions We consider the possibility that an error can occur
at all the register positions, but require that the resulting state be obtainable by a unitary
transformation U = 1 +O(ε) with ε� 1. It has the quite general structure

U = 1 + iεxσx + iεyσy + iεzσz . (12.81)

The individual terms cause bit flips, phase flips, or both together. We consider the cod-
ing (12.79). The diagnosis for phase flips and bit flips is again carried out and this will al-
ready make it highly probable that the state is projected back onto the unperturbed original
state. With a smaller probability |ε|2, a bit flip or a phase flip will have occurred in a register.
This error will be recognised and corrected in the known manner. In the case of errors at two
or more positions, this is however not possible. This situation, however, occurs only with a
probability of |ε|4 or less.

12.8 The Components of the Quantum Computer∗

We limit ourselves in this section to giving only the relevant results. For proofs, we refer to
the literature.

Universal gates Quantum gates carry out unitary transformations. They are wired together
into circuits via quantum wires (undisturbed propagation). A finite number of quantum gates
is called a universal quantum gate when every unitary transformation can be performed with
it on every arbitrary qubit register. Unitary transformations merge into a continuum. Uni-
versality thus requires that every unitary transformation can be approximated with arbitrary
precision. Universal gates are the components from which a quantum computer can be fabri-
cated. They permit any quantum algorithm to be computed. Attempts to construct them are
being made using ion traps, cavity QED, quantum dots, and trapped atoms (see [EMY 02],
also for additional literature).

*The sections marked with an asterisk * can be skipped over in a first reading.
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The following results are important in this connection:

• Every unitary operator on a multidimensional space can be described exactly as a product
of gates which act upon only two qubits (2-qubit gates ( [DiV 95]). To implement such
gates, the interaction between only two physical systems suffices.

• The CNOT gate, together with simple single-qubit gates such as phase gates and rota-
tions, form a universal set of gates ( [BBC 95]).

√
SWAP gates The

√
SWAP gate, complemented by single-qubit gates, is likewise universal

and plays a similarly important role in the attempts to experimentally implement quantum
computers as does the CNOT gate (see [LD 98] and [EMY 02]). The unitary

√
SWAP gate is

defined by its action on the computational basis:

|0A, 0B〉
√

SWAP−−−−→ |0A, 0B〉 (12.82)

|0A, 1B〉
√

SWAP−−−−→ 1 + i

2
|0A, 1B〉+ 1− i

2
|1A, 0B〉 (12.83)

|1A, 0B〉
√

SWAP−−−−→ 1− i
2
|0A, 1B〉+ 1 + i

2
|1A, 0B〉 (12.84)

|1A, 1B〉
√

SWAP−−−−→ |1A, 1B〉 . (12.85)

This corresponds to the matrix representation

√
SWAP↔






1 0 0 0
0 1+i

2
1−i
2 0

0 1−i
2

1+i
2 0

1 0 0 1




 (12.86)

in the computational basis. The relation
√

SWAP
√

SWAP = SWAP (cf. Sect. 7.8.2) justifies
the name. The CNOT operator can be reduced to the

√
SWAP operator by making use of

simple single-qubit operators. Along with the Hadamard gate from Eq. (3.53), we need the
operator

σ̂ := e−i
π
4 1e−i

π
2 σz ↔

(
1 0
0 −i

)
(12.87)

(the matrix representation is found up to an unimportant phase factor). With σ̂, we obtain

ÛAB := (σA)−1σB
√

SWAP(σA)2
√

SWAP

↔







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





 . (12.88)

The Hadamard gate then leads to CNOT

CNOT = HAÛABHA (12.89)

as in Eq. (7.98). This demonstrates the universality of the
√

SWAP gate.
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12.9 Complementary Topics and Further Reading

• Review articles on quantum computing: [Ben 95], [Bar 96], [PVK 96], [Bar 98],
[CEM 98], [DE 98], [Pre 98, Chap. 6], [Ste 98], [VP 98], [Bra 99a], [Joz 00], [NC 00, Part
II], [RP 00], [EHI 01], [CB 02], [GM 02], [Lom 02a], [Wer 06].

• Quantum computing; the classics: [Deu 85], [Sho 94].

• Books about quantum computing: [BDM 98], [WC 98], [Bra 99], [Bro 99], [Gru 99],
[Pit 00], [CP 01], [Hir 01], [DM 02], [KSV 02], [LB 02], [Lom 02], [SS 04], [BCS 04].

• Books with review articles on the theory of quantum computers: [LSP 98], [Bra 99],
[CB 02], [GM 02], [Hei 02], [Lom 02].

• Books with overviews of the attempts to implement quantum computers experimentally:
[SS 04].

• Books or review articles on the experimental implementation of quantum computers:
[Pel 98], [Gru 99, Chap. 7.6], [BEZ 00], [CLK 00], [DiV 00], [NC 00, Part II], [DM 02],
[SS 04].

• Books with review articles on the experimental implementation of quantum computers:
[LSP 98], [Bra 99], [BEZ 00], [DM 02], [Hei 02].

• An introduction to the implementation of quantum information processing with ions in
traps ( [Bla 06]) and with photons ( [Wei 06]).

• The number of queries required with Grover’s algorithm: [BBH 98], [Pre 98, Chap. 6],
[EHI 01].

• Description of other search algorithms: [Gru 99, Chap. 3].

• Review article on the Shor algorithm: [EJ 96]. For details of the calculation see [NC 00].

• The Euclidian algorithm for the determination of the greatest common divisor: [NC 00,
Appendix 4].

• When the condition (12.40) is fulfilled, the function f(x) of Eq. (12.42) has a period. A
proof using the theorem of Euler and Fermat: [HW 79].

• The quantum Fourier transform if Eq. (12.66) is not obeyed: [EJ 96], [Pre 98,
Chap. 6.9.1].

• Computing times for classical and quantum-mechanical Fourier transforms: [Pre 98,
Chap. 6].

• The Toffoli gate is a universal reversible gate. Every unitary transformation can be carried
out by a combination of Toffoli gates: [Pre 98, Chap. 6], [Gru 99, Chaps. 1.7.1 and
3.1], [Hir 01, Chap. 2.3.2].
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• Knowledge about computational complexity makes possible the estimation of limits and
advantages of quantum computers: [Mer 02].

• Error correcting quantum codes : [Pre 98, Chap. 7], [Pre 98 a], [Gru 99, Chap. 7],
[Pre 99].

• Decoherence via coupling to the environment destroys the unitary evolution in quantum
computers and is therefore an important source of errors: [Bar 96], [PSE 96].

• Decoherence-free subspaces and systems are considered to be one of the most promising
solutions to the decoherence problem in quantum computing: [LW 03].

• One can implement a Deutsch gate with nearly every 2-qubit gate ( [Bar 95]). Hence
these 2-qubit gates are universal.

• We have described quantum computation as a unitary evolution followed by measure-
ments with which classical information is read out. A different form of dynamics is
measurement dynamics. There are procedures for quantum computation in which the in-
dividual computational steps consist of measurements. These measurement-based mod-
els have no classical analogue. For a review, see: [Joz 05].

12.10 Problems for Chapter 12

Prob. 12.1 [for 12.2]: Given: a unitary mapping Uy : H2 → H2 which maps every state
|ψ〉 onto (−1)y|ψ〉 for a given, fixed y. Construct a quantum algorithm for finding y. Use two
Hadamard gates and a controlled Uy gate.

Prob. 12.2 [for 12.4.1]: The parity par(f) of a function f : {1, 2} → {−1,+1} is defined
by par(f) := f(1)f(2). Construct a quantum algorithm which permits the computation of
par(f) by means of a single query of the oracle (i. e. by using the black box for the function f
only once).

Prob. 12.3 [for 12.4.2]:

(i) Show that the effect of the Hadamard transformation of n qubitsH(n) = H⊗H⊗· · ·⊗H
on |x〉 has the form

|x〉 H(n)−−−→ 1√
d

d−1∑

y=0

(−1)(x·y)|y〉 . (12.90)

An equally-weighted superposition of the basis vectors of H(2)
2 with signs +1 and −1

results. Here, (x · y) is the “vectorial inner product” of the register states

(x · y) = xn−1yn−1 + xn−2yn−2 + . . .+ x0y0 . (12.91)

(ii) Write |ψ3〉 from Eq. (12.24) in complete form.
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NOT NOT

NOT NOT

NOT NOTZ

Figure 12.13: A quantum circuit for the “reflection” on |0〉.

=

H HZ

Figure 12.14: Reduction of the controlled Z gate to an n-bit Toffoli gate.

(iii) A black box computes the function fa : {0, 1}n → {0, 1} defined by

fa(x) = (a · x) . (12.92)

Find a quantum algorithm which is able to distinguish the 2n functions fa by means
of a single computation of fa and a measurement of the x register (Bernstein-Vazirani
problem). Start with the expression for |ψ′′〉 obtained in part (ii) of this problem.

Prob. 12.4 [for 12.5]: For which value ofN in Grover’s algorithm is the state being sought,
|l〉, already determined with certainty after one pass?

Prob. 12.5 [for 12.5]:
a) Show that the operator 2|0〉〈0| − 1, which causes a reflection on |0〉 ∈ H⊗n

2 , can be
implemented up to a global minus sign by a quantum circuit which is based on a multiply-
controlled Z gate (see Tab. 3.1 and Fig. 12.13).
b) The controlled Z gate can itself be constructed with an n-bit Toffoli gate (see Fig. 7.6) and
Hadamard gates.





13 Generalised Measurements, POVM

We first give an example of the general dynamics of open systems and then go on to gen-
eralised measurements. In the next chapter, we will generalise the description of unitary
evolution.

In quantum theory, not only projective measurements and unitary evolution are possible.
Generalised measurements describe more complicated situations for measurements and open
up new possibilities. Using as an example the non-optimal Stern-Gerlach experiment, we
introduce such measurements, as well as the POVM measurements.

13.1 The Function of a Generalised Dynamics of Open
Quantum Systems

13.1.1 Problems

Up to now, we have considered the extension of a quantum system SA by a second system SB

to form a bipartite system SAB . Interactions and entanglement between the two subsystems
are permitted. This makes SA into an open system. The composite system SAB is however
assumed once again to be a closed system. Like all closed systems, it can pass through a
unitary dynamic evolution (unitary dynamics) and one can carry out projective measurements
on it (measurement dynamics). The rules for both forms of dynamics were formulated in
terms of the postulates in a previous chapter (cf. Sect. 7.3.1). In the coming chapters, we shall
introduce a different point of view and place the openness of the system SA at its centre. The
dynamic evolution between preparation and measurement (compare Fig. 2.4) was termed the
transformation dynamics in Chap. 2.

The following problems are to be dealt with in terms of a generalisation of unitary dynam-
ics:

(i) Which form is assumed by the transformation dynamics of SA in the particular situation
that SA is a subsystem of a closed system SAB which itself is passing through a unitary
evolution?

(ii) What structure does the most general physical transformation dynamics of an open sys-
tem SA have? This question is to be answered as far as possible without explicit reference
to a second system (i. e. to SB).

(iii) Can this – no longer necessarily unitary – generalised dynamics of SA always be under-
stood as the result of the unitary dynamics of a composite system SAB which has been
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extended to include an ancilla SB? If this is possible, we would at the same time have
discovered a procedure for the experimental implementation of the generalised dynamics
of SA.

Thus far, we have generalised the unitary dynamics. Analogously, one can generalise the
projective measurement dynamics. We start again with the entangled composite system SAB .

(i) A projective measurement on the second system SB transforms a system SA with which
it is entangled into corresponding new states with associated probabilities.

(ii) If we disregard the possible existence of a second system SB and consider only SA, what
is the most general physical structure of a measurement on a system SA?

(iii) Can this – not necessarily projective – general measurement on SA always be considered
to be the result of a projective measurement on a system SB which is entangled with
SA? A suitable entanglement with an ancilla SB would then provide the basis for the
implementation of a general measurement on SA.

We will first use a simple example to read off which answers can be expected to the above
two questions (i). We then turn to generalised measurements and the POV measures. In
Chap. 14, we consider quantum operations as generalisations of the unitary dynamics and
supplement this in Chap. 16 with proofs which were left off in earlier chapters.

13.1.2 A Simple Example

Generalised transformation dynamics In order to become familiar with the structures
which we can expect, we first discuss a mathematically simple example from which one can
already read off the general structure of the generalised dynamics and generalised measure-
ments1. We begin with the unitary dynamics of a composite system SAB which is composed
of the subsystems SA and SB . We assume the initial state inHA2 ⊗HB2 to be the product state

ρAB = ρA ⊗ |0B〉〈0B| . (13.1)

It is transformed by the unitary transformation

UAB =
1√
2

(
σAx ⊗ 1B + σAy ⊗ σBx

)
(13.2)

into the entangled composite state

ρ′AB = UABρABUAB† (13.3)

=
1
2

{
σAx ρ

AσAx ⊗ |0B〉〈0B|+ σAy ρ
AσAy ⊗ |1B〉〈1B|

+σAx ρ
AσAy ⊗ |0B〉〈1B|+ σAy ρ

AσAx ⊗ |1B〉〈0B|
}
.

The open system SA is here transformed into the state

ρA → ρ′A = trB[ρ′AB ] =
1
2

{
σAx ρ

AσAx + σAy ρ
AσAy

}
. (13.4)

1It could be helpful while reading this chapter to occasionally consult Table 14.1.
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The unitary, entangled evolution of the composite system thus causes an evolution of the
subsystem SA which is non-unitary but which conserves the trace; it can be written using a su-
peroperator EA in the form of an operator-sum decomposition or operator-sum representation

ρ′A = E(ρA) =
2∑

i=1

KA
i ρ

AKA†
i . (13.5)

Here,

KA
1 :=

1√
2
σAx , KA

2 :=
1√
2
σAy . (13.6)

The KA
i are called Kraus operators, operation elements or decomposition operators. They

obey the completeness relation

2∑

i=1

KA†
i KA

i = 1 . (13.7)

In anticipation of the proof which will be given later, we make the following statement:
The dynamics of the open system SA, in general non-unitary, can be described by a superoper-
ator E , which acts only on the state ρA of SA. For E , there is an operator-sum representation.

One can imagine the evolution (13.4) of the initial system SA also to have been produced
in a non-unitary fashion whereby the unitary operators σAx or σAy are applied to SA with
the probabilities 1

2 . This would be a very different process physically from that described by
UAB in Eq. (13.2). This non-unitary evolution of SA can hence be implemented as the unitary
evolution of the extended system SAB . Both produce the same effect on SA. Is this type of
analogy always possible? We shall show that it is. Furthermore, we will show that for a given
evolution ρA → ρ′A, the operator-sum decomposition itself is also not uniquely determined.
Many influences on SA can lead to the same final state. We shall return to the evolution of
open systems between their preparation and their measurement in the following chapter. First,
we turn to generalised measurements.

Generalised measurements We continue with a particular projective measurement on the
second subsystem SB . For this measurement, we choose the projectors belonging to the
computational basis ofHB2

PB+ = |0B〉〈0B|, PB− = |1B〉〈1B| . (13.8)

The probabilities of occurrence of the results + and − are

p± = trB
[
PB± ρ

′BPB±
]
. (13.9)

ρ′B = trA
[
ρ′AB

]
is here the reduced density operator of the ancilla system SB after the

unitary evolution with UAB . Following a corresponding communication, a selection is carried
out at A according to the results + or − obtained at B. We can then interpret p± also with a
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view to the subsystem SA. The p± are at the same time the probabilities that the system SA

is to be found in one of the states

ρ′A → µ̃′A
± = trB

[
PB± ρ

′ABPB±
]

=
1
2
σAx,yρ

AσAx,y (13.10)

following the measurement. We have made use of Eq. (13.3) in this derivation. The tilde again
denotes the fact that the state is not normalised. The normalisation factor would be 2. The
overall evolution of SA is thus ρA → ρ′A → µA±.

The states µ̃A± of the subsystem SA after the measurement on SB were not obtained by
projection of the initial state ρA. How are the superoperators on HA2 which transfer the ini-
tial state ρA to these two states constructed? To answer this question, we write out the first
equation of (13.10) for the measurement result + using Eqs. (13.1) and (13.3):

µ̃′A
+ = trB

[
(1A ⊗ |0B〉〈0B|)UAB(ρA ⊗ |0B〉〈0B|)UAB(1A ⊗ |0B〉〈0B|)]

= trB
[〈0B|UAB|0B〉ρA〈0B|UAB |0B〉 ⊗ |0B〉〈0B|] . (13.11)

We then introduce

MA
+ := 〈0B|UAB |0B〉 = 1√

2
σAx , MA†

+ MA
+ =

1
2
1A (13.12)

and find

µ̃′A
+ = MA

+ρ
AMA†

+ . (13.13)

Correspondingly, for the result −, we find

µ̃′A
− = MA

−ρ
AMA†

− (13.14)

with

MA
− := 〈1B|UAB |0B〉 = 1√

2
σAy , MA†

− MA
− =

1
2
1 . (13.15)

The measurement operators MA
+,− onHA2 obey the completeness relation

MA†
+ MA

+ +MA†
− MA

− = 1 . (13.16)

With a similar rearrangement of Eq. (13.9), one can readily confirm that also the mea-
surement probabilities p± can be written with the help of the measurement operators in the
form

p+ = trA
[
MA

+ρ
AMA†

+

]
= trA[µ̃′A

+] (13.17)

(trB and trA commute). We find a corresponding result for p−. The relation p+ + p− = 1
holds.

We have initially entangled the systems SA and SB by means of a unitary evolution. A
subsequent projective measurement on the second subsystem SB leads with the probabilities
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p+ or p− to the measured results + or−. After a selection which depends on the measurement
result obtained, the initial system SA is transformed into one of two well-determined states
(13.10). We can interpret this non-projective intervention into SA as a generalised selective
measurement on SA. The measurement results + or − belong to it, with the probabilities p+

or p−, respectively, and the non-normalised final states µ̃
′A
+ or µ̃

′A
− . We shall return to this

topic in more detail in Sect. 13.3. The results of this measurement on SA can be formulated
completely using the measurement operators MA

± , which act only on the state ρA of SA prior
to the measurement.

This particular example shows that generalised measurements allow the description of
situations which differ clearly from the traditional agenda of quantum measurements, which
is oriented around projective measurements. With Eqs. (13.17) and (13.10), we indeed find

p+ = p− =
1
2
. (13.18)

In our example, the probabilities of the two measurement results thus do not depend on the
state ρA on which the measurement is performed. For physically-relevant generalised mea-
surements, this is however not the case. After having described for the purpose of clarity what
is to a certain extent an “extreme case” of a generalised measurement, we shall in the fol-
lowing section discuss a physical example in which the description in terms of a generalised
measurement follows in a natural way. The general structure will then be treated in Sect. 13.3.

13.2 The Non-optimal Stern-Gerlach Experiment and
Generalised Measurements

13.2.1 The Experimental Setup

The experimental setup In the Stern-Gerlach experiment (S-G experiment), spin- 1
2 objects

are produced in a source and after leaving the source in the y direction, they pass through
an inhomogeneous magnetic field B. The magnetic field vector lies approximately in the z
direction (see Fig. 13.1), and its magnitude is a function of z. The magnetic moments of the
objects give rise to an interaction with the magnetic field which in turn causes a polarisation-
dependent force to act on the objects. It leads to a deflection of the objects in the state |↑〉
(= |0z〉) in the positive z direction and of the objects in the state |↓〉 (= |1z〉) in the negative
z direction. For our considerations, this rather idealised description suffices. Details of the
calculation of the paths of the objects through the apparatus can be found in textbooks on
quantum theory. The deflected objects impact on a detector screen in the x − z plane and
produce visible spots there.

The optimal Stern-Gerlach experiment In the optimal S-G experiment, the Schrödinger
function ψ+(r), which describes the behaviour of the polarisation |↑〉 as a function of position,
is localised in a narrow region around the upper path in Fig. 13.1 and the impact points lie only
in the upper half-plane (z > 0) of the detector screen. Objects with spin |↓〉 have their state
functions ψ−(r) localised around the lower path in Fig. 13.1) in configuration space and thus
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x

z

|↓〉|ϕ〉 = c↑|↑〉 + c↓|↓〉

oven

|↑〉
B

magnetic field

screen

Figure 13.1: The Stern-Gerlach experiment (drawing after [BGL 95]).

impact only in the lower half-plane (z < 0) of the screen. The probability distributions for
these two cases are shown in Fig. 13.2a. In the optimal S-G experiment, they do not overlap.

−

+

z

z = 0

(a)

“
c↑|↑〉 + c↓|↓〉

”
|i〉

z

+

−

c↑|↑〉|+〉
z = 0

c↓|↓〉|−〉

(b)

Figure 13.2: The optimal Stern-Gerlach experiment: impact probabilities (a) and the analogous exper-
iment (b). The detectors + and − produce signals for impacts in the upper or in the lower half-plane,
respectively.

Simplified description We will consider every impact in the range z > 0 uniformly as a
measurement result +1 and for z > 0 as the result −1. The objects are described in terms of
states in a product Hilbert space. It is composed of the spin space HS2 of the internal degree
of freedom, and the space of the outer orbital degrees of freedom. In an ideal S-G experiment,
the spin polarisations are measured in the z direction and hence the measured observable is σz .

In order to make the computations more clear, we simplify the description and introduce
in place of the orbital space a space HB2 with the ONB {|+〉, |−〉}. The observable O =
|+〉〈+| − |−〉〈−| with the measurement outcomes +1 and −1 represents an analogy to the
impacts in the half-planes z > 0 and z < 0 of the detector screen. We implement it by a
signal from a projectively-acting (+) detector and a (−) detector as shown in Fig. 13.2b. The
complex deflection process in the S-G experiment has then been reduced to two “orbits” in
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our analogous experiment. In contrast to the detector screen, our detectors carry out non-
destructive measurements. It is thus reasonable to speak of the state of the object after the
measurement. We will in the following hence not calculate the S-G experiment; it serves only
as the motivation for our assumptions relating to a simpler experiment which exhibits certain
analogies to the S-G experiment.

The non-optimal Stern-Gerlach experiment In the non-optimally implemented S-G ex-
periment, the Schrödinger functions ψ±(r) are not strictly localised within the half-planes.
The function ψ+(r) does not vanish in the range z < 0 (cf. Figs. 13.3a and 13.3b). The result
of this is that for objects with spin |↑〉, there is a certain probability that the (−) detector will
produce a signal, and for those with spin |↓〉, the (+) detector can respond. The presence of a
signal from one detector can thus no longer be taken to be a definite indication of the presence
of a particular spin polarisation. In the following, we discuss in detail the various resulting
physical situations, which up to now we have described only qualitatively.

−

z = 0

+

z

|↓〉

|↑〉

−

z = 0

+

z

(b)

|↑〉

|↓〉

(a)

Figure 13.3: The non-optimal Stern-Gerlach experiment. A signal from one of the detectors does not
allow us to reach a unique conclusion about the spin polarisation.

13.2.2 An Example of a Generalised Measurement

Before passing through the inhomogeneous magnetic field, the system is in the spin state

|ϕ〉 = c↑|↑〉+ c↓|↓〉, |c↑|2 + |c↓|2 = 1 (13.19)

and the orbital state |i〉. The composite state in HS2 ⊗HB2 is the incoming product state

|χ〉 = |ϕ〉|i〉 . (13.20)

The interaction correlates the states |↑〉 and |+〉 as well as the states |↓〉 and |−〉 with each
other. This leads to entanglement. In the optimal experiment, |χ〉 is transformed into the
entangled state unitarily:

|χ〉 → |χ′〉 = c↑|↑〉|+〉+ c↓|↓〉|−〉 . (13.21)
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In a projective measurement in the computational basis, the (+) detector responds with the
probability p+ and the spin system is transferred to the state |↑〉. The corresponding situation
holds for the (−) detector.

“ + ”: |ϕ〉 → |↑〉, p+ = |c↑|2 ; “− ”: |ϕ〉 → |↓〉, p− = |c↓|2 . (13.22)

In the optimal analogue experiment, the projective measurement in the orbital space HB2
effected by the detectors leads to an indirect projective measurement of the observable σz in
the spin space. This is shown schematically in Fig. 13.2b.

In a real S-G experiment, in contrast, the two probability distributions no longer lie sym-
metrically around z = 0, but instead are asymmetrically shifted and each protrudes beyond
z = 0 (see Fig. 13.3). The initial state with the spin state |↑〉 is transferred in the analogue
experiment via the interaction to

|↑〉|i〉 → |↑〉(
√

1− p0 |+〉+√p0 |−〉) (13.23)

with 0 ≤ p0 ≤ 1. The corresponding transfer applies to |↓〉:
|↓〉|i〉 → |↓〉(√p1 |+〉+

√
1− p1 |−〉) (13.24)

with 0 ≤ p1 ≤ 1. p0 is the probability that the (−) detector responds. In the optimal case,
the result is p0 = 0 and p1 = 0. The parameters p0 and p1 correspond to the shifts of the
probability distributions. The normalisation of the state vectors determines the form of the
prefactors in Eqs. (13.23) and (13.24).

With equations (13.23) and (13.24), it is at the same time clear how the general incoming
state |χ〉 = |ϕ〉|i〉 becomes entangled with |ϕ〉 from Eq. (13.19) due to the interaction:

|χ〉 → |χ′〉 = {
√

1− p0 c↑|↑〉+√p1 c↓|↓〉}|+〉
+{√p0 c↑|↑〉+

√
1− p1 c↓|↓〉}|−〉 . (13.25)

A measurement again consists of a signal from the (+) detector or the (−) detector. We
introduce the measurement operators

M+ :=
√

1− p0 |↑〉〈↑|+√p1 |↓〉〈↓|
M− :=

√
p0 |↑〉〈↑|+

√
1− p1 |↓〉〈↓| . (13.26)

They obey the completeness relation

M†
+M+ +M†

−M− = 1 . (13.27)

As a generalisation of Eq. (13.22), we then find (compare Fig. 13.4a)

“ + ”: |ϕ〉 → |ϕ+〉 = {
√

1− p0 c↑|↑〉+√p1 c↓|↓〉} · 1
Norm

= M+|ϕ〉 · 1
Norm

, (13.28)

p+ = (1− p0)|c↑|2 + p1|c↓|2 = 〈ϕ|M+|ϕ〉 , (13.29)

“− ”: |ϕ〉 → |ϕ−〉 = {√p0 c↑|↑〉+
√

1− p1 c↓|↓〉} · 1
Norm

,

= M−|ϕ〉 · 1
Norm

(13.30)

p− = p0|c↑|2 + (1− p1)|c↓|2 = 〈ϕ|M−|ϕ〉 . (13.31)
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The analogue non-optimal experiment represents a generalised measurement. The analogy
with Eqs. (13.12)–(13.17) is apparent.

−

|ϕ+〉|+〉

(a)

|ϕ〉|i〉

+

(b)

|ϕ−〉|−〉

U+

U−
−

+

Figure 13.4: (a) A schematic representation of the analogous non-optimal experiment. (b) Extension
via unitary influences to a non-minimal measurement.

13.2.3 Unsharp Measurements

In the case of the non-optimal experiment, the projective measurement in the orbital spaceHB2
no longer leads to a projection in spin space. The probabilities p+ and p− no longer permit
the determination of |c↑|2 and |c↓|2. A generalised measurement is in this sense an unsharp
measurement of the spin polarisation. There are two limiting cases:

(i) p0 = p1 = 0: the state |χ′〉 exhibits the greatest possible degree of entanglement for
a given spin state |ϕ〉. The measurement is a sharp (or exact) measurement, since the
measurement results lead directly to |c↑|2 and |c↓|2. The apparatus is perfectly adjusted.
The gain in information about the initial state is in this case maximal. The initial state,
on the other hand, is most strongly modified by the measurement.

(ii) p0 = p1 = 1
2 : the state |χ′〉 is not entangled at all, (|χ′〉 = 1√

2
|ϕ〉 ⊗ {|+〉 + |−〉}).

The measurement is completely unsharp (or inexact). Owing to p+ = p− = 1
2 , the

measurements permit no conclusions concerning |c↑|2 or |c↓|2 to be drawn. The appa-
ratus is completely useless for the determination of these quantities. There is no gain in
information. On the other hand, the initial state is not modified by the measurement. We
note also that this choice of parameters corresponds to the situation in which in Fig. 13.3
the two curves lie on top of each other and are symmetric with respect to z = 0.

When the values of the parameters p0 and p1 lie in the neighbourhood of 1
2 , the modification

of the spin state is weak. Correspondingly, the gain in information from the measurement is
small. The measurement is unsharp. Such measurements are useful if one wishes to follow
the time evolution of a state by means of a series of measurements, without perturbing it
noticeably (compare Sect. 13.5).

We return once again to the system SA and the ancilla system SB as in Sect. 13.1.2. The
non-optimal experiment in Sect. 13.2.2 is an example of how the choice of SB (here the orbital
system) and different adjustments of the unitarily-produced entanglement with SA (here with
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the spin system) can produce a continuous spectrum of types of generalised measurements
of SA. For this purpose, a projective measurement is performed on SB . Is it possible in this
way to carry out an arbitrary given non-projective measurement on every system SA? We
shall return to this question in Sects. 13.3.5, 13.4 and in Sect. 16.3.

13.3 Generalised Measurements

13.3.1 What is a Quantum Measurement?

In Chap. 2, the unitary dynamics (transformation dynamics) and the measurement dynamics
were introduced. Both types of evolutions are due to interventions into the individual quantum
systems. In the preceding chapters 13.1 and 13.2, we have seen that there can be non-unitary
deterministic evolutions between two measurements and that it is possible to perform non-
projective measurements. We wish to describe this more general situation precisely and we
will start with the measurements. What kind of interventions are quantum measurements?
We first describe them in words. Here, we weaken the requirements that are demanded of
projective measurements. A mathematical formulation of the measurement postulates will be
given in the following section.

An individual quantum measurement is an intervention of a special type into a quantum
system, which is carried out by an apparatus (measuring device). This can produce an effect on
the measuring device, but need not do so (see null measurement). The effect can be determined
by reading out a real number (measurement outcome). At the end of the measurement, the
measurement outcome is fixed. The possible measurement outcomes occur as the result of an
intervention at random.

In addition, a measurement intervention fulfills the following requirement: If it is speci-
fied (for example as a protocol) and the quantum systems result from a preparation procedure
which yields a particular state, then the probabilities for the occurrence of the various mea-
surement outcomes are also determined. Since a quantum measurement thus defined is much
more general than the projective measurements discussed so far, it is termed a general mea-
surement.

How does this greater generality make itself apparent? An immediate repetition of the
same measurement (i. e. of the same intervention) on the same quantum system need not lead
to the same measurement outcome. In general, therefore, neither does the measurement de-
termine the value of a property (e. g. the energy) which the quantum system had before the
measurement, nor does the system obtain a property (e. g. a particular value of the energy) as
a result of the measurement. The projective measurement is a special case. We made this clear
using the example of the Stern-Gerlach experiment. In contrast to a projective measurement,
with a general measurement one thus cannot – always excepting special cases – speak of the
measurement of a particular physical quantity such as the energy, the spin polarisation etc.

In a further intervention following the first intervention, a selection according to particular
measurement results can be carried out. It is required of a measurement intervention that
the quantum systems thus selected be in a well-determined state. They have passed through
a preparation procedure which is associated with the particular measurement result. Both
interventions taken together are referred to as a general selective measurement. Since it is not
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determined in advance for an individual quantum system which measurement outcome will
be observed, i. e. in which state it will be prepared, one refers with a view to the individual
system to a non-deterministic state evolution. .

If no selection in terms of measurement outcomes is carried out, the interventions consti-
tute a general non-selective measurement. Then, just as in the case of projective measurements
without selection, a well-determined, usually mixed state is prepared. It depends only on the
state previous to the measurement and on the type of the measurement (measuring device)
itself. This case thus represents an intervention with a deterministic state evolution.

In quantum mechanics, the term “measurement” can be just as easily misunderstood as
the term “state”, since they both awaken associations with the meanings of these concepts
in classical physics. For quantum systems, there are in general no properties which are pre-
determined before a measurement and whose values can be obtained from the measurement.
Measurement means only to carry out a particular intervention, from which, in contrast to
other interventions, information in the form of a value indicated by the measuring device can
be read off, but which relates primarily to the outgoing state (the selective measurement pre-
pares the state). We will discuss examples of how one can make use of this information to
reach conclusions also about the state before the measurement. For many problems, general
measurements are superior to projective measurements. We give examples of this, also. In
this chapter, we first consider only the mathematically simplest generalisation of projective
measurements, namely generalised measurements, and then discuss general measurements
in Sect. 14.3. In the literature, often no distinction is made between general measurements
and generalised measurements. We proceed step by step; for this purpose, the distinction is
helpful.

13.3.2 Generalised Measurement Postulates

A generalised selective measurement is described by a set {Mm} of linear measurement op-
erators. For every measurement outcome m which occurs, one and only one measurement
operator Mm is declared. For simplicity, we again assume that the values of the measurement
outcomes are discrete. The measurement intervention transforms the state |ψ〉 of the quantum
system into the state

|ψ〉 → |ψ′
m〉 =

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
. (13.32)

This transformation and the associated measurement outcome m occur with the probability

p(m) = 〈ψ|M†
mMm|ψ〉 . (13.33)

Since M†
mMm is a positive operator, the condition p(m) ≥ 0 is fulfilled. In order to con-

serve the probability interpretation (
∑
m p(m) = 1), we must additionally require that the

measurement operators obey the completeness relation
∑

m

M†
mMm = 1 . (13.34)

(Compare the example in Sect. 13.1.2).
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The generalisation to density operators as states is obtained with the same justification as
in Chap. 4:

ρ→ ρ̃′m = MmρM
†
m (13.35)

p(m) = tr[M†
mMmρ] = tr[ρ̃′m] , ρ′m =

1
p(m)

ρ̃′m . (13.36)

In the case of a non-selective measurement, we have

ρ
n.s−→ ρ′n.s. =

∑

m

MmρM
†
m . (13.37)

We require of the operators Mm only linearity, aside from the condition (13.34). This
guarantees that the relations from Chap. 4 for mixtures and in particular the physically imme-
diately plausible Eq. (4.13) apply here, also. The operators Mm need not be Hermitian. They
are in general also not projection operators

MmMm′ 
= δm,m′Mm . (13.38)

In particular, the number of measurement operators can be greater than the dimension of the
Hilbert space. The Mm are thus orthogonal projectors only in the special case of projective
measurements (Mm = Pm). It can be read off from Eqs. (13.32) and (13.38) that on repeating
a measurement, the probability distribution of the measurement outcomes changes. In gen-
eral, there is no connection to observable operators. The measurement of a property is not
associated with a set {Mm}. In Sect. 14.3, we shall see that the generalised measurements
described here (each measurement outcome corresponds to only one measurement operator)
are not yet the most general type of measurements.

13.3.3 The Polar Decomposition of a Linear Operator

We first carry out some preliminary mathematical deliberations of which we will then make
use in the interpretation of generalised measurements.

The bi-orthogonal expansion of a unitary operator Let U be a unitary operator and {|vi〉}
an ONB of the Hilbert space. Then the unitary transformation

|wi〉 = U |vi〉 (13.39)

again gives rise to an ONB {|wi〉}. For a given ONB {|vi〉}, any unitary operator U can be
cast in the form

U =
∑

i

|wi〉〈vi| (13.40)

with the ONB {|wi〉} of Eq. 13.39.
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The polar decomposition and bi-orthogonal expansion of a linear operator Let L be a
linear operator. Then L†L, LL†,

√
L†L and

√
LL† are positive operators. We begin with the

spectral decomposition

L†L =
∑

i

λi|ri〉〈ri|, λi ≥ 0 . (13.41)

{|ri〉} is an ONB. The action of L leads to the vectors

|mi〉 := L|ri〉 , (13.42)

for which

〈mi|mi〉 = 〈ri|L†L|ri〉 = λi (13.43)

holds. For the index values i for which λi 
= 0, we can normalise the vectors |mi〉:

|li〉 :=
1√
λi
|mi〉 . (13.44)

These |li〉 are orthonormal

〈li|lj〉 =
1√

λi
√
λj
〈ri|L†L|rj〉 = δi,j . (13.45)

We extend the set of these vectors |li〉 to obtain an ONB.
Making use of the ONB {|ri〉} and {|li〉}, we introduce the unitary operator

U :=
∑

i

|li〉〈ri| . (13.46)

For U , we find with Eq. (13.41)

U
√
L†L =

∑

i

√
λi|li〉〈ri| . (13.47)

On the other hand, it follows from Eqs. (13.42) and (13.44) that

L|ri〉 =
√
λi|li〉 . (13.48)

Since the actions of U
√
L†L and L on the basis {|ri〉} agree, we have

L = U
√
L†L . (13.49)

U is uniquely determined by L, if λi 
= 0 for all i. The relation (13.49) is called the left-
polar decomposition of the linear operator L. This recalls the analogy with the decomposition
c = eiφ|c| of a complex number c into a magnitude and a phase.

We rewrite Eq. (13.49) again making use of Eqs. (13.41) and (13.46)

L =
∑

i

√
λi|li〉〈ri|, λi ≥ 0 . (13.50)
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For every linear operator L, there is a bi-orthogonal decomposition (13.50) in terms of two
ONBs, {|li〉} and {|ri〉}, whose construction is given above. We add without proof the right-
polar decomposition

L =
√
LL†U . (13.51)

Note the different order of the operators under the radical sign. L†L and LL† have the same
eigenvalues λi (compare Eq. (13.41))

LL† =
∑

i

λi|li〉〈li| . (13.52)

13.3.4 Minimal Measurements and POVM

The measurement operators Mm of a generalised measurement can always be subjected to a
polar decomposition

Mm = Um
√
Em (13.53)

with

Em := M†
mMm . (13.54)

The Em, as a result of Eq. (13.34), obey the condition

∑

m

Em = 1 . (13.55)

The positive operators Em form a POVM (positive operator valued measure). They are called
effect operators or POVM elements. We shall return to POVM measurements in Sect. 13.3.5.
The non-decomposed measurement operator Mm causes as in (13.35) a transformation into
the new state which belongs to the measurement outcome m. The same final state is obtained
if one first transforms the initial state with the positive measurement operator

√
Em and then

carries out the unitary evolutionUm. The probability p(m) from Eq. (13.36) for the occurrence
of the measurement outcome m is a function only of Em:

p(m) = tr[ρEm] . (13.56)

The unitary evolution has no influence on the information obtained from p(m). We can
therefore imagine a generalised measurement with the measurement outcome m to be for-
mally decomposed into a measurement dynamics represented by

√
Em, which is correlated

with the probability p(m), and a unitary dynamics Um, which has no influence on p(m), but
does contribute to determining the outgoing state ρ′m. For a given POVM, there are arbitrarily
many operators Um which lead to the same probability distribution p(m). Generalised mea-
surements with Um = 1, thus in which the additional unitary influence on the state is absent,
are called minimal measurements. Projective measurements are minimal.
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Minimal measurements on qubits We want to assume that only two measurement results,
+ and −, are possible. Owing to the condition (13.55), we then have

E+ = 1− E− (13.57)

and the POVM operators commute

[E+, E−] = 0 . (13.58)

Since the operators are positive, they are also Hermitian and there is an orthonormal basis
{|0〉, |1〉} with respect to which both are diagonal:

E+ = a|0〉〈0|+ p1|1〉〈1| , (13.59)

E− = p0|0〉〈0|+ b|1〉〈1| . (13.60)

The condition (13.57) is fulfilled by a = 1 − p0 and b = 1 − p1. The positiveness of the
operators requires that 0 ≤ p0 ≤ 1 and 0 ≤ p1 ≤ 1. The measurement operators for the
associated minimal measurement are then found quite generally in the form

M+ =
√
E+ =

√
1− p0|0〉〈0|+√p1|1〉〈1| , (13.61)

M− =
√
E− =

√
p0|0〉〈0|+

√
1− p1|1〉〈1| . (13.62)

As shown by Eqs. (13.28) and (13.30), the experiment described in Sect. 13.2 is based on these
measurement operators. It represents a minimal measurement. A non-minimal measurement
would be obtained if there were, as in Fig. 13.4b, an additional unitary dynamics following
each detector.

13.3.5 Implementation of a Generalised Measurement by Unitary
Transformation and Projection

In Sect. 13.1.2, we saw how one can effect a generalised measurement by extending the sys-
tem SA to include an ancilla system SB , performing an entangling unitary transformation on
HA ⊗HB , and carrying out a projective measurement on the system SB . We wish to show
now that every generalised measurement can be implemented in this way.

We extend the system SA by the ancilla system SB . The dimension of HA is arbitrary.
The dimension of HB is supposed to be equal to the number of measurement operators. In
HB , we choose an ONB {|mB〉} and an arbitrary but fixed state |0B〉. We define the linear
operator ÛAB on a subspace ofHA ⊗HB by

ÛAB |φA, 0B〉 =
∑

m

MA
m|φA〉 ⊗ |mB〉 (13.63)

for arbitrary |φA〉 from HA. The measurement operators MA
m and the basis {|mB〉} deter-

mine ÛAB . For any two vectors |φA1 , 0B〉 and |φA2 , 0B〉 in this subspace, the operator ÛAB
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conserves the inner product:

〈φA1 , 0B|ÛAB†ÛAB |φA2 , 0B〉 =
∑

m,m′
〈φA1 |MA†

m′M
A
m|φA2 〉〈m′B|mB〉

=
∑

m

〈φA1 |MA†
m MA

m|φA2 〉

= 〈φA1 |φA2 〉 = 〈φA1 , 0B|φA2 , 0B〉 . (13.64)

We therefore can apply a mathematical theorem which states that in this case, a unitary ex-
tension UAB of ÛAB to the whole space HA ⊗HB exists (cf. Sect. 13.5). This is important
because one can then assume that UAB represents a physically-realisable dynamic evolution
of the composite system SAB , which can be described by a suitable Hamiltonian onHA⊗HB .
The effect of the unitary operator UAB on the vectors of the subspace reduces to that of ÛAB .

If, following the unitary evolution with UAB , one performs a projective measurement in
HB using the projection operators

PBm := 1A ⊗ |mB〉〈mB| , (13.65)

the composite system (after communication and selection) is transferred to the state

PBmU
AB|φA, 0B〉 · 1

Norm
=

MA
m|φA〉|mB〉

√
〈φA|MA†

m MA
m|φA〉

. (13.66)

The corresponding probability is

p(m) = 〈φA, 0B|UAB†PBmU
AB|φA, 0B〉 = 〈φA|MA†

m MA
m|φA〉 . (13.67)

In the last step, we made use of PBm = PB†
m PBm and of Eq. (13.66). With this, we have shown

that every generalised measurement can be physically implemented by extending the system
SA by an ancilla system SB . By means of a suitable unitary transformation of the composite
system SAB , SAB is transformed into an entangled state. Projection measurements on the
ancilla system SB finally lead to the generalised measurement on SA. The operators involved
are given in Eqs. (13.63) and (13.65).

13.3.6 Entanglement Distillation by means of Generalised
Measurements∗

We discuss a further example of the practical significance of generalised measurements. Let
us assume the existence of a preparation procedure for the state

ρAB = F |ΨAB
− 〉〈ΨAB

− |+ (1− F )|1A, 1B〉〈1A, 1B | , (13.68)

which we can consider to be a state |ΨAB
− 〉 which contains the impurity |1A, 1B〉. A source

emits the maximally-entangled state |ΨAB
− 〉 with the probability F , where 0 < F < 1, and the

non-entangled state |1A, 1B〉 with the probability (1− F ). Using the concurrence introduced

*The sections marked with an asterisk * can be skipped over in a first reading.
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in Sect. 11.7, one can show that F is a measure of the entanglement. F at the same time
reflects the agreement (fidelity) of ρ with the Bell state |ΨAB

− 〉
F = 〈ΨAB

− |ρAB(F )|ΨAB
− 〉 . (13.69)

We wish to show that local generalised measurements on the two subsystems following
a suitable selection based on classical communication lead to an entanglement distillation.
To do so, we use the special case (p0 = p1 =: p with 0 < p < 1) of the general minimal
measurement of Eqs. (13.61) and (13.62) with the measurement operators

M− =
√
p|0〉〈0|+

√
1− p|1〉〈1| (13.70)

M+ =
√

1− p|0〉〈0|+√p|1〉〈1| . (13.71)

If the local measurements on the two subsystems lead to the measurement result “−”, we keep
the system; otherwise, we reject it. A simple computation with the aid of

MB
−M

A
− |ΨAB

− 〉 =
√
p(1− p)|ΨAB

− 〉 (13.72)

MB
−M

A
− |1A, 1B〉 = (1− p)|1A, 1B〉 (13.73)

shows that after selection, a state of the form (13.68) is present, with fidelity

F ′ =
Fp

Fp+ (1− F )(1− p) (13.74)

instead of F . The probability p−− for obtaining the measurement result “−” for both subsys-
tems is found to be

p−− = (1− p2)
[
Fp+ (1− F )(1− p2)

]
. (13.75)

We can read off from Eq. (13.74) that the distillation becomes more and more effective
because (F ′ ↗ 1) for p ↗ 1. p = 1 is a projective measurement. Why then do we use
a generalised measurement? The answer is found in the fact that p ↗ 1 implies that the
probability p−− ↘ 0. In the limiting case of p = 1, the measurement would have to be
carried out on infinitely many systems in order to find even one completely entangled system
after the measurement. In practice, therefore, a compromise is necessary. The entanglement
must be sufficiently strong for the purpose at hand, and the distilled states should still occur
with a sufficiently high probability.

We have shown that by using generalised measurements on the subsystems with suitable
values of p and with classical communication (i. e. by means of LOCC, see Sect. 8.1), the
non-local state property of entanglement can be amplified. This is not possible using local
projective measurements and classical communication. When the initial entanglement van-
ishes, no entanglement can be generated by means of LOCC.

13.4 POVM Measurements

13.4.1 Measurement Probabilities and Positive Operators

We discuss measurements from a point of view which is still further reduced in comparison to
the above sections. After a measurement intervention, only the measurement outcomesm and



264 13 Generalised Measurements, POVM

their probabilities of occurrence p(m) are supposed to be known. This is clearly the minimum
information which an intervention on a quantum system must deliver in order to be able to
speak of a measurement at all. Since the measurement intervention is assumed to have a linear
effect on the state, there are linear operators Em associated with the respective measurement
outcomes, with which the probabilities p(m) can be written in the form

p(m) = 〈ψ|Em|ψ〉 (13.76)

p(m) = tr[ρEm] . (13.77)

Due to p(m) ≥ 0, the Em must be positive operators which as a result of
∑

m p(m) = 1 also
must fulfill the condition

∑

m

Em = 1 . (13.78)

The operators Em are the elements of a decomposition of the unit operator into positive oper-
ators. The operators Em are called POVM elements or effect operators.

The description of a measurement by a POVM is not restricted to the generalised measure-
ment interventions described in Sect. 13.3.2. The POVM scheme is valid also in more general
measurement situations, which we will discuss in Sect. 14.3. For many problems, it suffices
to reach conclusions about the probability distribution p(m). One then refers to a POVM mea-
surement. In the special case of the generalised measurements described in Sect. 13.3.2, we
have

Em = M†
mMm . (13.79)

For the physical implementation of a given POVM, it suffices to construct the measure-
ment operator Mm =

√
Em as in Sect. 13.3.5. The projection operators Pm of a projective

measurement are the special case of a POVM. They are called the projection valued measure,
PVM. In contrast to the PVM, however, the number of POVM elements can be greater than
the dimension of the space of states.

13.4.2 A Composite Measurement as an Example of a POVM
Measurement

We consider an experimental setup (cf. Fig. 13.5) in which a classical random switch steers the
incoming spin-1

2 objects in the state |ψ〉 to different measurement devices for the observables
σx, σy , and σz with the probabilities wx, wy , and wz (wx+wy+wz = 1). The three detectors
each indicate as measurement results the values +1 or−1. They carry out projective measure-
ments. The associated projection operators are Pi(+) = |0i〉〈0i| and Pi(−) = |1i〉〈1i|, with
i = x, y, z. All together, there are six possible results, (i,±). The corresponding measurement
probabilities are

p(i,±) = wi〈ψ|Pi(±)|ψ〉 = 〈ψ|Ei(±)|ψ〉 (13.80)

with the six POVM operators

Ei(±) = wiPi(±) (13.81)
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Figure 13.5: A composite measurement.

which obey the completeness relation
∑

i

Ei(+) +
∑

i

Ei(−) =
∑

i

wi1 = 1 . (13.82)

Due to the random switches which precede the measurements, the projector character is lost.
We mention also that the setup represents an informationally complete measurement. The
statistics reproduced by the measurement probabilities p(i,±) permit a unique determination
of the initial state even for mixtures (see Problem 13.5). We treat informationally complete
measurements in Sect. 13.4.5.

We extend the setup to permit an encompassing measurement by no longer distinguishing
between the three detectors. Only the measurement outcome +1 or−1 is registered, indepen-
dently of which detector produced it. Then we find for the remaining two probabilities

p(±) =
∑

i

p(i,±) = 〈ψ|E(±)|ψ〉 (13.83)

with the operators

E(±) =
∑

iwiPi(±) , E(+) +E(−) = 1 . (13.84)

We have again performed a POVM measurement.

13.4.3 Can One Distinguish Between Two States with Certainty by a
Single POVM Measurement?

Preliminary mathematical considerations An operator E is assumed to be positive. Then
it has a spectral representation

E =
∑

i

λi|i〉〈i| ; λi ∈ R , 0 ≤ λi ≤ 1 (13.85)

with an ONB |i〉. The action of E upon an arbitrary normalised vector |φ〉 is

E|φ〉 =
∑

i

λi〈i|φ〉|i〉 =
∑

i

λici|i〉 (13.86)
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with

ci := 〈i|φ〉 ,
∑

i

|ci|2 = 1 . (13.87)

With this, we find

〈φ|E|φ〉 =
∑

i

λi|ci|2 . (13.88)

A particular state |φ〉 is taken to have the property

〈φ|E|φ〉 =
∑

i

λi|ci|2 = 1 . (13.89)

The non-vanishing ci have indices i from a set I . For these indices, it follows from
Eqs. (13.89) and 0 ≤ λi ≤ 1 that

λi∈I = 1 . (13.90)

Insertion into Eq. (13.86) leads to the result

〈φ|E|φ〉 = 1 ⇐⇒ E|φ〉 = |φ〉 . (13.91)

The direction⇐ is trivial. In a similar way, one can show that

〈φ|E|φ〉 = 0 ⇐⇒ E|φ〉 = 0 . (13.92)

The impossibility of determining a state by a single POVM measurement We assume
that we can decide by means of a single measurement whether an individual quantum object
is in a state |χ〉. Then there must be a measurement with POVM operators Em in which a
particular measurement outcome m̂ occurs with certainty when the state |χ〉 is present, and
with certainty does not occur when any other state |Θ〉 
= |χ〉 from the Hilbert space is present:

pχ(m̂) = 〈χ|Em̂|χ〉 = 1 (13.93)

pΘ(m̂) = 〈Θ|Em̂|Θ〉 = 0 . (13.94)

We thus have with Eqs. (13.91) and (13.92):

Em̂|χ〉 = |χ〉 , Em̂|Θ〉 = 0 . (13.95)

With this, we obtain

〈χ|Θ〉 = 〈χ|Em̂|Θ〉 = 0 . (13.96)

This means that all the other vectors |Θ〉 of the Hilbert space must be perpendicular to |χ〉.
This is however impossible. It is therefore not possible to determine by means of a single
POVM measurement the state of a quantum object before the measurement. Furthermore, this
result shows that there is no POVM measurement that would allow us to distinguish between
two non-orthogonal states. This important statement, which is the basis of many heuristic
considerations, holds not only for projection measurements, but indeed for arbitrary measure-
ments.
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13.4.4 The Advantage of a POVM Measurement for Determining States

For a somewhat modified purpose, in contrast, the application of POVM measurements is
more favourable than that of projective measurements. We suppose that we (or a spy) know
that a quantum system – is need not be a qubit – has been prepared with equal probabilities in
either a state |1〉 or in a state which is not orthogonal to it, |2〉. After a single measurement, we
want either not to be able to make any statement at all (“don´t know”), or else to know with
certainty: “in |1〉” or “in |2〉”. There must therefore be at least three possible measurement
outcomes. The POVM operators are E1, E2, and E3. We construct them in such a way that
they have the following property: if the state |1〉 is present, the measurement outcome 2 will
never occur (i. e. 〈1|E2|1〉 = 0); but the outcomes 1 and 3 can be found. If the state |2〉 is
present, the outcome 1 never occurs (i. e. 〈2|E1|2〉 = 0), but the results 2 and 3 are possible.
We can thus draw the following conclusions from a single measurement: if the outcome 1
is obtained, then the state |1〉 was present. If the result was 2, then |2〉 was present. No
conclusion can be drawn for the outcome 3. This means in terms of POVM operators that

E1 = a1(1− |2〉〈2|) , (13.97)

E2 = a2(1− |1〉〈1|) (13.98)

and

E3 = 1− E1 − E2 . (13.99)

It is clearly reasonable to optimise the measurement. To this end, the parameters a1 and
a2 must be chosen in such a way that the probabilities p which allow a certain conclusion are
maximised. Certain conclusions can be drawn only in the cases of the measurement outcomes
1 and 2. The probabilities that these outcomes occur are by construction

p =
1
2
〈1|E1|1〉+ 1

2
〈2|E2|2〉 (13.100)

=
1
2
(a1 + a2)

(
1− |〈1|2〉|2) (13.101)

In [Bus 97], it is shown that taking account of the positivity of E3, through which the param-
eters a1 and a2 are connected, p assumes its maximum value

pmax = 1− |〈1|2〉| (13.102)

when the parameters are chosen to be

a1 = a2 =
1

1− |〈1|2〉| . (13.103)

Equation (13.103) shows that the probability of being able to make certain statements as the
result of a measurement becomes smaller and smaller, the more similar the states |1〉 and |2〉
become. Resolving the states by means of a POVM measurement then becomes more and
more difficult. For orthogonal states 〈1|2〉 = 0, pmax = 1.
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13.4.5 An Informationally-Complete POVM∗

A POVM is termed informationally complete if for an arbitrary state, a knowledge of the
probabilities of all the possible measurement outcomes suffices to determine the state. Thus,
only a single measurement device (only one POVM) is used. What conditions must be fulfilled
by an informationally-complete POVM for the determination of qubit states?

We saw in Sect. 3.1 that the Pauli operators can be completed to an operator basis on H2

by 1. Every POVM element can be written in the form

Em = am1 + bmnmσ . (13.104)

nm is here a unit vector in R3 and am and bm are supposed to be non-negative real numbers,
so that Em and 1−Em are positive operators. The completeness relation (13.78) leads to the
conditions

∑

m

am = 1 , (13.105)

∑

m

bmnm = 0 . (13.106)

As we have shown in Sect. 4.4, every density operator ρ onH2 can be written in the form

ρ =
1
2
(1 + rσ) (13.107)

with the Bloch vector r. The probabilities for the measurement outcomes of the POVM mea-
surement are thus

p(m) = tr[ρEm] = am + bmnmr . (13.108)

One can see from this that for the determination of r, the non-vanishing vectors bmnm must
span R3. It then follows together with the linear dependence (13.106) that there must be at
least four vectors nm (m = 1, 2, 3, 4), and that on the other hand, four vectors which fulfill
Eq. (13.106) are sufficient.

We give an example which fulfills Eqs. (13.105) and (13.106): am = bm = 1
4 and

n1 = (0, 0, 1), (13.109)

n2 =

(
2
√

2
3
, 0,−1

3

)

, (13.110)

n3 =

(

−
√

2
3
,

√
2
3
,−1

3

)

, (13.111)

n4 =

(

−
√

2
3
,−

√
2
3
,−1

3

)

. (13.112)

Insertion into Eq. (13.104) leads to the informationally-complete POVM for qubit states.

*The sections marked with an asterisk * can be skipped over in a first reading.
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As we have seen in Sect. 4.4, a measurement of the expectation values of the three different
observables σx, σy , and σz allows the determination of the Bloch vector r and therefore of the
state ρ. Here, we have shown that the qubit state ρ can also be identified by measurement of
the probabilities p(m) of a single POVM measurement (with only one measurement device)
with four possible measurement outcomes m.

13.4.6 Estimating the State Before the Measurement

In classical physics, the state before the measurement is determined by carrying out a measure-
ment. In a single quantum measurement, in contrast, when there is no degeneracy, a measured
result m allows only the determination of the state after the measurement. We will show that
on the basis of Bayes’ assumption, one can at least make an educated guess as to which state
was present before the measurement. The measurement is assumed to be described by the
POVM {Em}.

We first return to Bayes’ theorem as in Eq. (1.102), and make Bayes’ assumption (1.103),
that all the initial probabilities p(Ai) are the same. In order to make Bayes’ theorem clear, we
consider the case when the conditional probability p(B|Ai) that B occurs is especially high
for a particular event Aj : p(B|Aj) � p(B|Ai �=j). Let us assume that the result B occurs
in fact. Then in this case, Aj was present before with an especially high probability because
p(B|Ai �=j) is small. We have: p(Aj |B)� p(Ai �=j |B). In other words, the event Aj which is
followed by B with a particularly high probability is also that which must have been present
previously, with the highest probability p(Aj|B), if B in fact occurs. This is the plausible
assertion of Bayes’ theorem.

We apply this assertion to the quantum-mechanical measurement situation. An individual
quantum system is prepared in a pure state. A simple measurement on this system with a
measuring device described by a POVM yields the resultm. According to Bayes’ assumption,
the state |χpre〉 which was present before the measurement with the highest probability is
characterised by the fact that p(m) is highest for it2.

The POVM elements are positive operators with the spectral decomposition

Em =
∑

i

a
(m)
i |r(m)

i 〉〈r(m)
i | . (13.113)

The eigenvectors are presumed not to be degenerate. For p(m), we obtain

p(m) = 〈ψ|Em|ψ〉 =
∑

i

a
(m)
i |〈ψ|r(m)

i 〉|2 (13.114)

with |〈ψ|r(m)
i 〉| ≤ 1 and

∑
i |〈ψ|r(m)

i 〉|2 = 1. We can hence estimate p(m):

p(m) ≤ a(m)
max (13.115)

with a(m)
max = max{ami }. The maximum value of p(m) is assumed in Eq. (13.114) for the

eigenvector |χpre〉 = |r(m)
max 〉 of Em belonging to a(m)

max . If no further information is at hand,

2A mathematically exact formulation would have to take into account the fact that the possible states form a
continuum (cf. Sect. 13.5).



270 13 Generalised Measurements, POVM

the best guess for the state before a measurement which yields the result m is the eigenvector
|r(m)

max 〉 with the largest eigenvalue a(m)
max of the POVM element Em. In a projective measure-

ment (Pm = |r(m)〉〈r(m)|), the outgoing state |r(m)〉 is thus the best guess for the incoming
state.

13.5 Complementary Topics and Further Reading

• See Sect. 14.5 for literature on the dynamics of open systems.

• A detailed treatment of the Stern-Gerlach experiment: [BGL 95, Chap. VII].

• The usefulness of unsharp measurements can be seen if one tries to follow the time evo-
lution |ψ(t)〉 of a state through measurements: [AKS 02], [AKK 04].

• Books on the fundamentals of the theory of quantum operations and of non-projective
measurements: [Kra 83], [BGL 95] (see also [HK 69] and [HK 70]).

• The theorem of Neumark describes the implementation of a quantum measurement by a
projective measurement on the composite system consisting of the original system and
its environment: [Per 90].

• Detailed treatments of quantum measurements and POVM: [BGL 95], [Fle 00], [Kon 03].

• The impossibility of determining individual quantum states as well as optimally distin-
guishing between states: [Bus 97] (and further literature references therein).

• Complementary literature on informationally-complete measurements: [BGL 95],
[Aul 00].

• A justification of the results in Sect. 13.4.6 which is not based on Bayes’ theorem and
Bayes’ assumption can be found in [ADK 03].

• A collection of essays on quantum state estimation: [PR 04].

13.6 Problems for Chapter 13

Prob. 13.1 [for 13.1]: Confirm Eq. (13.17).

Prob. 13.2 [for 13.2]: For the real Stern-Gerlach experiment in the special case p0 = p1,
determine (using the entropy) the entanglement of the state |χ′〉 of Eq. (13.25) and the gain in
information due to the measurement.

Prob. 13.3 [for 13.2]: Design a circuit to produce |χ′〉 of Eq. (13.25) in the special case
that p0 = p1 making use of the CNOT gate. Which states have to be input?
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Prob. 13.4 [for 13.3]: Show that carrying out two measurements in sequence is once again
a measurement. Give the corresponding measurement operators.

Prob. 13.5 [for 13.3]: Generalise a result from Sect. 7.7 by proving the following: a non-
selective generalised measurement on the subsystem SA of the bipartite system SAB does not
change the state of SB .

Prob. 13.6 [for 13.3.3]: Prove the right polar decomposition.

Prob. 13.7 [for 13.3.3]: Show, starting from the bi-orthogonal decomposition (13.50) of
the linear operator L, that L can always be written in the form

L = V DW . (13.116)

V and W are here unitary operators. D is a positive operator with the eigenvalues λi. Hint:
rewrite the decomposition by introducing an ONB {|ai〉}.

Prob. 13.8 [for 13.3.5]: The vectors {|nA, 0A〉} which are generated by an ONB {|nA〉}
of HA are an ONB of a subspace of HA ⊗HB . Let ÛAB be a linear operator defined on the
subspace which maps onto HA ⊗ HB and conserves inner product. Then an extension UAB

of ÛAB exists, which acts on the whole space as a unitary operator and agrees with ÛAB

on the subspace. It could be helpful to employ the dyadic representation and the results of
Sect. 13.3.3.

Prob. 13.9 [for 13.3.6]: Determine the concurrence of the state ρAB in Eq. (13.68).

Prob. 13.10 [for 13.4]: Show that every measurement in which the measurement operators
Mm and the POVM elements Em agree is a projective measurement.

Prob. 13.11 [for 13.4.2]: Show that the composite measurement of Sect. 13.4.2 is informa-
tionally complete.

Prob. 13.12 [for 13.4.3]: Prove the assertion (13.92).

Prob. 13.13 [for 13.4.3]: Prove the results (13.102) and (13.103).

Prob. 13.14 [for 13.4.6]: A measuring device described by the measurement operators
{Mm} carries out a measurement on a quantum object which is in a pure state. The mea-
surement outcome is m. Further information is not available. Estimate the state after the
measurement. Take into account that the state before the measurement uniquely determines
the state after the measurement. Consider also the special case of a minimal measurement.





14 The General Evolution of an Open Quantum
System and Special Quantum Channels

Even when the composite system evolves unitarily, the subsystems in general do not follow
a unitary evolution. Quantum operations provide a useful approach to the in-out formulation
of the dynamic evolution of open systems. We make this clear using the example of quantum
channels. The changes of state due to measurements are also in the most general case them-
selves quantum operations. From this unifying point of view, the scenario and the rules of
quantum theory can be formulated anew.

14.1 Quantum Operations and their Operator-Sum
Decompositions

14.1.1 Quantum Operations

Dynamic evolution as a quantum operation In connection with quantum channels, tele-
portation, cryptography, quantum computers and quantum measurements, time evolutions of
quantum states occur which are more general than unitary evolutions combined with projec-
tive measurements (cf. Chap. 2). In Chapter 13, we encountered examples of general changes
of state which can occur when the system is coupled to its environment. In the following,
we wish to describe general evolutions of open subsystems without making any assumptions
about other systems with which the system under consideration is entangled or with which it
interacts dynamically.

In considering an evolution, we always think in terms of a specific external intervention
and describe its effects on a given density operator. The intervention can for example consist
of the passage of quantum objects through a well-defined noisy channel, or carrying out a
particular unsharp measurement on them. We thus consider both deterministic as well as non-
deterministic evolutions. What is the mathematical structure of the description of the general
state evolution of open systems?

The time evolution is described in the Schrödinger representation by a specific mapping of
the initial state ρ (with tr[ρ] = 1) onto a final state ρ̃′. Both are formulated as density operators
in Liouville space (in-out scheme):

ρ→ ρ̃′ = E(ρ) . (14.1)

The tilde again indicates that also non-normalised states (of trace �= 1) are allowed.
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For statistical mixtures (see Sect. 4.1) ρ = p1ρ1 + p2ρ2, we require for physical reasons
that the action of E on ρ leads to a statistical mixture of the final states E(ρi) with equal
probabilities pi:

E(ρ) = p1E(ρ1) + p2E(ρ2) . (14.2)

This establishes the linearity of the mapping. The mapping E(ρ) must therefore be a superop-
erator which according to the definition in Sect. 1.2 is linear. A positive superoperator maps
positive operators onto positive operators. Since density operators are positive operators, E(ρ)
must be a positive superoperator.

We shall however not require that E conserve the trace of the density operator. Otherwise,
we would have already eliminated the projections which occur in the framework of the projec-
tive measurement of an observable. If one writes the generalised measurement from Sect. 13.3
as the action of a superoperator, then it takes the form

ρ→ ρ̃′ = E(ρ) = MmρM
†
m (14.3)

and, with tr[ρ] = 1, we have tr[ρ̃] < 1 (see Sect. 13.3.2 and in particular Eq. (13.33)). We
hence require only that the trace of the density operator not increase:

tr[E(ρ)] ≤ 1 when tr[ρ] = 1 . (14.4)

Finally, as a third requirement, we demand complete positivity of E . The mapping of
Eq. (14.1) must not only conserve the positivity of the density operator, but in addition the
following must hold: If an arbitrary additional system SB with the Hilbert spaceHB is added
to the system SA under consideration, and the superoperator EA of the evolution of SA is
trivially extended in the form EA ⊗ 1B to give an evolution operator of the composite system
SAB , then EA⊗1B is supposed to again be a positive superoperator onHA⊗HB . Physically,
this means that if only SA passes through a dynamic evolution, then it must be guaranteed that
in the process, the state ρAB of a composite system SAB again (possibly after normalisation)
becomes a density operator ρ′AB . This must be required for reasons of consistency, since it
cannot be excluded that the system SA under consideration is open and hence is a subsystem
of a larger system SAB . In this case, via the effect of EA on SA, the composite system SAB

could be influenced. Simple examples of this can be found in Eqs. (9.38)-(9.40).
We summarise (see Tab. 14.1): The general evolution of a quantum system, which in

the Schrödinger representation transforms initial states ρ into final states ρ̃′, is a quantum
operation E . A quantum operation is a mapping which is described by a superoperator E
which is

(i) linear,

(ii) does not enlarge the trace,

(iii) and is a completely positive mapping

ρ→ ρ̃′ = E(ρ) . (14.5)

The final state ρ′ is obtained, if necessary, by normalisation

ρ′ =
E(ρ)

tr[E(ρ)] . (14.6)
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We shall assume of the initial state that tr[ρ] = 1, so that condition (ii) means that tr[E(ρ)] ≤ 1.
Not all positive mappings are completely positive. This requirement is a genuine limita-

tion. In Sect. 8.6, we have seen that the transposition TA is a positive mapping. The partial
transposition TA ⊗ 1B on HA

2 ⊗ HB
2 or HA

2 ⊗ HB
3 is however a positive mapping only on

separable states.

14.1.2 The Operator-Sum Decomposition of Quantum Operations

Kraus’ theorem We formulate here a theorem concerning quantum operations that we will
prove in Sect. 16.1 (compare Tab. 14.1). It is the theorem of the operator-sum decomposition:
a mapping ρ→ ρ̃′ = E(ρ) is a quantum operation if and only if it has a decomposition (or a
representation)

E(ρ) =
∑

i

KiρK
†
i (14.7)

with linear operators Ki which fulfill the condition

∑

i

K†
iKi ≤ 1 (14.8)

and map the input Hilbert space onto the output Hilbert space. Their dimensions need not be
the same. For

∑

i

K†
iKi = 1 (14.9)

the operation conserves the trace, otherwise it does not. The decomposition (14.7) is not
unique. This theorem is also called Kraus’ theorem (or representation theorem). The opera-
tors Ki are termed Kraus operators or operation elements, but also decomposition operators.
We encountered examples of an operator-sum decomposition in Sects. 13.1.2 and 13.2. In-
equalities for operators (such as for example in Eq. (14.8)) were explained in Sect. (1.1.6).
E(ρ) is called a complete quantum operation if the equals sign in Eq. (14.8) holds; otherwise
E(ρ) is an incomplete quantum operation.

The unitary evolution of the composite system We consider the simple case that a com-
posite system SAB in the non-correlated initial state ρAB = ρA ⊗ |iB〉〈iB| experiences a
unitary evolution with UAB . The result is in general an entangled state ρ′AB . At the same
time, a mapping ρA → ρ̃′A of the reduced density operator is induced on the subsystem SA.
The Kraus operators for this operation can be read off as follows: ρAB is transformed into

ρ′AB = UAB |iB〉ρA〈iB|UAB† . (14.10)

For the state of SA, this means

ρ′A = trB[ρ′AB] =
∑

n

〈eB
n |UAB|iB〉ρA〈iB|UAB†|eB

n 〉 . (14.11)
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{|eB
n 〉} is here an ONB of HB . ρ′AB depends on the initial state |iB〉. The CNOT gate is an

example. From the unitarity of UAB , for

KA
n := 〈eB

n |UAB |iB〉 (14.12)

with KA†
n = 〈iB|(UAB)−1|eB

n 〉, the completeness relation

∑

n

KA†
n KA

n = 1 (14.13)

follows, and hence the conservation of the trace. The deterministic evolution of the subsystem
SA which is induced by UAB

ρA → ρ′A = E(ρA) =
∑

n

KnρK
†
n (14.14)

is a trace-conserving quantum operation with the Kraus operators (14.12). It follows imme-
diately that for a given UAB , the operator-sum decomposition is not unique, since {eB

n } can
be freely chosen. We will show in Sect. 16.2 that the following converse also holds: For every
trace-conserving quantum operation EA on SA, by extension to a system SAB and choice
of an initial state in SB , a unitary transformation UAB on HAB can be found, which ef-
fects the operation EA for the subsystem SA. All trace-conserving quantum operations can in
this way be reduced to unitary transformations. Unitary transformations are the fundamental
trace-conserving transformations.

14.1.3 Simple Quantum Operations

A projection Pm, such as occurs for example in a selective measurement, is a quantum opera-
tion K = Pm with K†K < 1. It does not conserve the trace. A unitary transformation U is a
trace-conserving operation with K = U . If one causes unitary transformations Ui to act upon
a system with the probabilities pi, owing to

∑
i pi = 1, a quantum operation (probabilistic

unitary evolution) is again obtained,

E(ρ) =
∑

i

piUiρU
†
i . (14.15)

Taking the partial trace is also a quantum operation. To see this, we write the operator
KAB

i , which maps fromHA ⊗HB ontoHA, in the following manner (cf. Eq. (7.43)):

KAB
i |ψAB〉 = KAB

i




∑

j

αj |aA
j 〉|eB

j 〉


 = αi|aA
i 〉 . (14.16)

{|eB
j 〉} is an ONB of HB and |aA

j 〉 is normalised. By its action on the basis vectors of HA ⊗
HB , one can confirm that

∑

i

KAB†
i KAB

i = 1AB . (14.17)
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Then

E(ρAB) =
∑

i

KAB
i ρABKAB†

i (14.18)

is a quantum operation. We decompose ρAB dually in terms of the ONB {|lAn 〉|eB
i 〉} ofHAB ,

where {|lAn 〉} is an ONB ofHA. The action of KAB
i is then given by

E(ρAB) =
∑

j

〈eB
j |ρAB |eB

j 〉 . (14.19)

according to Eq. (14.16).

14.1.4 The Ambiguity of the Operator-Sum Decomposition

We allow the following two sets of quantum operations to act on a qubit:

Ei(ρ) :=
1
2
ρ+

1
2
σiρσi , i = x, y, z (14.20)

Êi(ρ) := 〈0i|ρ|0i〉|0i〉〈0i|+ 〈1i|ρ|1i〉 |1i〉〈1i| . (14.21)

With |0i〉〈0i| = (1 + σi)/2 and |1i〉〈1i| = (1 − σi)/2, we find after a brief rearrangement
agreement for the same index

Êi(ρ) = Ei(ρ) . (14.22)

We choose a fixed value of i. The action of the two quantum operations is the same, although
the physical interpretations of Eqs. (14.20) and (14.21), and the corresponding possible opera-
tional implementations are completely different: in Eq. (14.20), either the unitary transforma-
tions 1 (i. e. no change) or σi act upon ρ, each with the probability 1

2 . Equation (14.21) corre-
sponds to a non-selective measurement in the computational basis {|0i〉, |1i〉}. The Bloch vec-
tor r of ρ′ therefore lies parallel to the i axis. This can be readily confirmed with Eq. (14.21)
and the relations of Chap. 3. What happens to the Bloch vector when all three Pauli operators
σx, σy , and σz , instead of only one Pauli operator σi as in Ei(ρ), act with equal probabilities?
We shall return to this question in Sect. 14.4.1.

14.2 The Master Equation

The Lindblad master equation The superoperator E of a quantum operation connects the
initial state with the final state of the dynamic evolution of an open system via an in-out
scheme. For practical evaluations, it is useful to be able to follow the time evolution of the
density operator by means of a differential equation. Such differential equations are called
master equations. We will derive a particularly simple type of master equation.

We limit our considerations to particular physical situations in which, in the Schrödinger
representation, the state ρ(t+ dt) depends only on the infinitesimally earlier state ρ(t) and on
an additive term which is linear in dt,

ρ(t+ dt) = ρ(t) +O(dt) . (14.23)
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The associated quantum operation has a Kraus representation

ρ(t+ dt) = E(ρ(t)) =
∑

i

Ki(dt)ρ(t)K
†
i (dt) . (14.24)

The Kraus operators can, like E , themselves depend on the time t. We make use of the am-
biguity of the operator-sum decomposition. From the requirement (14.23), it follows with
Eq. (14.24) that one of the Kraus operators (e. g. K1) can be chosen in the form 1 + O(dt).
The linear operator O(dt) can be expanded as in Sect. 1.5 in terms of Hermitian operators

K1 = 1 + (R− i

�
H)dt , R† = R , H† = H . (14.25)

The remaining Kraus operators must be proportional to
√

dt for our choice

Ki = Li

√
dt , i > 1 . (14.26)

The operators Li are called Lindblad operators and are in general neither unitary nor Hermit-
ian. Equation (14.9) leads to the relationship

1 = 1 + (2R+
∑

i>1

L†
iLi)dt+O(dt2) (14.27)

and thus to

R = −1
2

∑

i>1

L†
iLi +O(dt2) . (14.28)

Insertion into Eq. (14.24) yields

ρ(t+ dt) = {1 + (R− i

�
H)dt}ρ(dt){1 + (R+

i

�
H)dt}+

∑

i>1

Liρ(t)L
†
i dt

= ρ(t)− { i
�
[H, ρ(t)]− +

∑

i>1

(Liρ(t)L
†
i −

1
2
[ρ(t), L†

iLi]+)}dt

+O(dt2) (14.29)

with [A,B]− := AB −BA, [A,B]+ := AB +BA. In the limit dt→ 0, we obtain from this
the Lindblad master equation in the Schrödinger representation

dρ(t)
dt

= − i
�
[H, ρ(t)]− +

∑

i>1

(
Liρ(t)L

†
i −

1
2
[ρ(t), L†

iLi]+

)
. (14.30)

The right-hand side of this equation is a superoperator which acts upon ρ. We can write

i�ρ̇ = L(ρ) (14.31)

in analogy to Eq. (4.10). L is called the Lindbladian.



14.3 Completely General Selective Measurements and POVM 279

The Markovian approximation The first term in Eq. (14.30) corresponds to a unitary evo-
lution as we know it from the von Neumann equation (4.9). We can consider ρ to be the
reduced density operator of the open subsystem SA within a closed system SAB (ρ = ρA).
Then the remaining terms describe the influence of the second subsystem SB on SA via the
Lindblad operators Li. In a closed system SA (Li = 0), H would be the Hamiltonian. In the
general case, H is not the Hamiltonian of the closed system.

The condition (14.23) is in general only approximately fulfilled. It characterises the Mar-
kovian approximation, which is applicable in many cases. Whether this approximation is
justified for a particular system SA can be decided only with the help of the microscopic
description of SAB and of the interactions between SA and SB . We can read off from equa-
tion (14.23) that the evolution of the system SA depends only on the state ρ(t) which is present
at the time t and not on earlier states ρ(t′ < t). The system has in this sense “forgotten” its
history. Although the system SA is open, its past history does not for example affect it via the
second subsystem SB (i. e. the environment of SA). In more general situations, events in the
past t′ < t do influence ρA(t) in this manner.

14.3 Completely General Selective Measurements and
POVM

Measurement operations instead of measurement operators Measurements are interven-
tions with non-deterministic state evolutions. We have seen in Sect. 13.3 that generalised se-
lective measurements are given by a set {Mm} of measurement operators. Each dynamical
process belonging to an individual measurement outcome m is a quantum operation in itself
(compare Tab. 14.1)

ρ→ ρ̃′ =Mm(ρ) = MmρM
†
m (14.32)

with only one Kraus operator Mm. Equation (13.35) shows that

p(m) = tr[Mm(ρ)] < 1 (14.33)

is the probability that the operationMm is in fact carried out. In generalised measurements,
the operation belonging to a measurement result m thus decreases the trace. For the Kraus
operator, we have:

M†
mMm < 1 . (14.34)

These considerations concerning generalised selective measurements already indicate that
there can be a still more general type of measurements in which the operator-sum decomposi-
tion of the measurement operationsMm contains more than one summand. In a generalisation
of Eqs. (14.32) and (14.33), we find for completely general selective measurements the state
ρ̃

′
m after the measurement as the result of a quantum operation with a superoperatorMm:

ρ→ ρ̃′m =Mm(ρ) =
∑

i

Mm,i ρ M
†
m,i . (14.35)
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The range of the index i can depend upon the measurement result m. The probability of
occurrence of the measurement results is again

p(m) = tr[Mm(ρ)] < 1 . (14.36)

The quantum operationMm does not conserve the trace. As a result of p(m) < 1, it is not
complete

∑

i

M†
m,iMm,i < 1 . (14.37)

From
∑

m p(m) = 1, we find as a condition on the Kraus operators

∑

m,i

M†
m,iMm,i = 1 . (14.38)

We show in Section 16.3 that every completely general measurement can be implemented
as follows: The system SA on which the measurement is to be performed is complemented by
an ancilla system SB . A suitable unitary transformation UAB entangles the two systems. A
projective measurement on the ancilla system SB performs (after communication and selec-
tion) a measurement operationMm on the system SA. The probability for the occurrence of
Mm is p(m).

Non-selective general measurements If no selection according to the measurement result
is carried out, the normalised state

ρ
n.s.−−→ ρ′n.s. =

∑

m

p(m)ρ′m (14.39)

is obtained. The associated quantum operation is found with Eqs. (14.35) and (14.36):

ρ′n.s. = E(ρ) =
∑

m

tr[Mm(ρ)]
Mm(ρ)

tr[Mm(ρ)]

=
∑

m

Mm(ρ) =
∑

m,i

Mm,iρM
†
m,i . (14.40)

The Kraus operatorsMm,i fulfill the condition (14.38) for conservation of the trace in the case
of a non-selective measurement.

POVM It is found that the POVM measurement introduced in Sect. 13.4 has a priori the de-
gree of generality which we have attained for measurements only by introducing the quantum
operations in Eqs. (14.35) and (14.36). Every completely general measurement is associated
with a POVM {Em} in terms of the positive operators

Em :=
∑

i

M†
m,iMm,i (14.41)
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which with Eq. (14.38) obey the completeness relation

∑

m

Em = 1 (14.42)

(cf. Fig. 14.1). The measurement probability is found with (14.36) in the form

p(m) = tr[Emρ] . (14.43)

14.4 Quantum Channels

We can often consider the action of a quantum operation to be the result of passing through
a quantum channel. We consider two trace-conserving quantum operations. A third example
will be discussed in Sect. (15.1)
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Figure 14.1: The effect of a depolarising channel on the Bloch sphere.

14.4.1 The Depolarising Channel

In order to answer the question posed at the end of Sect. 14.1.4, we introduce as an extension
of Eq. (14.20) in addition to K0 =

√
1− p 1 the three Kraus operators

Ki =
√
p

3
σi , i = 1, 2, 3 , (14.44)

where 0 ≤ p ≤ 1. The Kraus operators which characterise the channel are thus determined.
E(ρ) is then

E(ρ) = (1− p)ρ+
p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3) . (14.45)
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We want to describe the action of E on the Bloch vector r of ρ

ρ =
1
2

(1 + rσ) . (14.46)

To this end, we choose the coordinate axes in such a way that r = r3e3 and obtain

ρ =
1
2
(1 + r3σ3) . (14.47)

With σ3σ3σ3 = σ3, σ1σ3σ1 = −σ3 and σ2σ3σ2 = −σ3, we can again write E(ρ) in the form
of (14.47):

E(ρ) =
1
2

(1 + r′3σ3) , r′3 =
(

1− 4
3
p

)
r3, |r′3| < 1 . (14.48)

The spin polarisation r = tr[ρσ] is reduced. This is termed depolarisation. In a centrally-
symmetrical manner, all the Bloch vectors are multiplied uniformly by a factor

(
1− 4

3p
)

(see
Fig. 14.1). In particular, pure states are thus transformed into mixtures.
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Figure 14.2: The effect of the amplitude damping channel on the Bloch sphere.

14.4.2 Quantum Jumps and Amplitude Damping Channels

We consider a 2-level atom SA which is passing through an initially empty cavity SB . If the
atom is in an excited state |1A〉, it can emit a photon into the cavity with probability p. Then
the atom is transferred to its ground state |0A〉. The cavity makes the corresponding transition
from its initial state |iB〉 = |0B〉 into the state |1B〉.

We compute the Kraus operators for this channel in the matrix representation using
Eq. (14.12). Here, we make use of the fact that |〈νA, λB|UAB|µA, κB〉|2 gives the proba-
bility for the transition |µA, κB〉 → |νA, λB〉. In this physical situation, we find
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|〈0A, 1B|UAB |1A, 0B〉|2 = p

|〈1A, 0B|UAB |1A, 0B〉|2 = 1− p (14.49)

|〈0A, 0B|UAB |0A, 0B〉|2 = 1 .

All the other matrix elements vanish. This leads to the two Kraus operators

KA
0 = 〈0B|UAB|0B〉 =

(
1 0
0
√

1− p
)

KA
1 = 〈1B|UAB|0B〉 =

(
0
√
p

0 0

)
. (14.50)

They obey

KA†
0 KA

0 +KA†
1 KA

1 = 1A . (14.51)

The superoperator describes the effect on an arbitrary incoming atomic state ρA:

E(ρA) = KA
0 ρ

AKA†
0 +KA

1 ρ
AKA†

1

=
(

ρ00 + pρA
11

√
1− p ρA

01√
1− p ρA

10 (1− p)ρA
11

)
. (14.52)

The probability of finding the atom in its ground state increases. All the other matrix
elements of ρA decrease. A mixture evolves in the direction of the pure state |0A〉〈0A|. For the
effects on the surface of the Bloch sphere, see Fig. 14.2. The channel described by Eq. (14.52)
is called the amplitude damping channel.

14.4.3 An Entanglement-Breaking Channel ∗

We have already emphasized several times that the entanglement of a state can be reduced
when its subsystems propagate through noisy channels to Alice and Bob. We want to demon-
strate this explicitly with a simple example. A source generates the maximally-entangled Bell
state |ΨAB

− 〉. The subsystem SB of the composite system SAB is sent through a depolarising
channel (cf. Fig. 14.3). The quantum operation which maps the incoming composite state
ρAB = |ΨAB

− 〉〈ΨAB
− | onto the outgoing state ρ′AB can be described by the Kraus operators

KAB
0 =

√
(1− p)1A ⊗ 1B KAB

i =
√
p

3
1A ⊗ σB

i , i = 1, 2, 3 (14.53)

(compare Eq. (14.44)). The operators 1A⊗σB
i transform Bell states into other Bell states (see

Eqs. (9.38) - (9.40)). A simple auxiliary calculation yields

ρ′AB =
3− 4p

3
|ΨAB

− 〉〈ΨAB
− |+

p

3
1AB . (14.54)

The depolarising channel generates a mixture of the original state and the completely-mixed
state 1AB . The corresponding situation is found if the outgoing state is another Bell state.

*The sections marked with an asterisk * can be skipped over in a first reading.
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ρAB = |ΨAB
− 〉〈ΨAB

− |

SA

SB d.ch.

ρ′AB = WAB(F )

Figure 14.3: The subsystem SB passes through a depolarising channel (d.ch.). This transforms the
composite system SAB into a Werner state W AB(F ). When the effects of the channel are sufficiently
strong, the entanglement of the initial state is broken.

The Werner state To describe the resulting state, we introduce the notation F := 1− p and
rearrange:

ρ′AB = F |ΨAB
− 〉〈ΨAB

− |+
1− F

3
(1AB − |ΨAB

− 〉〈ΨAB
− |) =: WAB(F ) . (14.55)

The depolarisation of the subsystem SB has led to a state which is called a Werner state. It
is usually denoted by WAB(F ). ρ′AB is Bell diagonal. F = 〈ΨAB

− |ρ′AB|ΨAB
− 〉 gives the

degree of agreement of the Werner state with the initial state. It can be readily shown (see
Problem 11.8) that the Werner state is entangled if and only if F > 1

2 holds. For Kraus op-
erators with p ≥ 1

2 , we find F ≤ 1
2 . The effect of the channel is so strong (cf. Eq. (14.53))

that the entanglement is broken (“entanglement-breaking channel”). For F > 1
2 , i. e. when

there is still a remnant of entanglement in ρ′AB , there are protocols for entanglement distilla-
tion which return the Werner states once again arbitrarily close to the initial state |ΨAB

− 〉 (see
Sect. 11.8).

14.5 The Scenario and the Rules of Quantum Theory
Revisited

m

ρ Mm(ρ′)
preparation transformation measurement

ρ′ = E(ρ) selective

tically prepared systems.

Non-deterministic evolution.
Measurement outcome m.
m occurs with probability p(m).

Deterministic evolution

The single system is
prepared in a state which
is obtained by the action
of the respective quantum
operationMm on ρ′.

Preparation of a single

Large number of iden-
system in the state ρ. In-out transformation.

The quantum operation E
modifies the state of
the system.

Figure 14.4: The scenario of quantum theory in the Schrödinger representation, with the three types of
effects upon a quantum system. Without selection with respect to the measured result, a non-selective
measurement is performed.
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Scenario In the introduction to Sect. 2.1.1, we described the scenario of quantum mechan-
ics. We return here to this topic retrospectively. The quantum system is presumed to be open,
i. e. it can be entangled with other quantum systems or it can interact with them. Every ex-
periment in quantum physics, just like every experiment in classical physics, consists of the
following sequence: a physical system is affected serially by three types of actions which are
caused by three types of apparatus (compare Fig. 14.4):

1. A preparation apparatus prepares the system, which can be a subsystem, in a certain
state.

2. A transformation apparatus acts on the system and changes its state in a determinis-
tic fashion (e. g. through the influence of an external potential, interaction with another
system, mutual interactions of subsystems). Several transformations can be “passed
through” in sequence. In particular, there may not be any transformation apparatus
present at all. The effect on the system has the result that when measurements are per-
formed on it (compare point 3), the probabilities for the occurrence of particular mea-
surement results are changed in a deterministic manner. In this sense, a new preparation
of the system occurs. This can be formulated in the Schrödinger representation or in
other representations.

3. Finally, in the measuring device a non-deterministic effect occurs, which makes it pos-
sible for the measurement outcome to be read out of the measuring device in the form
of a real number. For a given state, the probabilities of the measurement outcomes are
fixed (probabilistic, irreversible evolution). It is possible that the system is not destroyed
by the measurement and that a selection can be carried out in terms of the measurement
outcomes. Then the measurement device acts upon the incoming state of the system like
an apparatus which prepares different states, depending on the measurement outcome.

Rules To simplify the description, we have interpretively assumed that individual physical
systems exist. In many cases, the attempt to explain the experimental results in terms of
classical physics fails, while the use of (non-relativistic) quantum theory is successful. Then,
in the Schrödinger representation, the following rules are applied, which one can also consider
to be an extended version of the postulates in Sect. 2.1.4 (see Tab. 14.1):

• To each preparation procedure, a state is associated. The state is that mathematical object
which permits the probability of occurrence of the various measurement outcomes to be
predicted for all types of measurements which can be carried out on the correspondingly
prepared quantum system. Probability is here usually interpreted as the limiting value of
the relative frequency of occurrence. States are density operators ρ on a Hilbert space.

• Transformation is a quantum operation. It is described in the Schrödinger representation
by a linear, completely positive superoperator E on the Liouville space of the operators

ρ→ ρ̃′ = E(ρ) (14.56)

(quantum operation), which conserves the trace. With E , an equivalent master equation
for ρ(t) can be formulated.
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Table 14.1: Interventions which lead to a deterministic or a non-deterministic (probabilistic) state evo-
lution. The trace of operators with a tilde is not equal to one.
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• In a selective measurement, the quantum state ρ, depending on the measurement outcome
m, is prepared in the state

ρ→ ρ̃′m =Mm(ρ) . (14.57)

Normalisation leads to the new density operator ρ′m, where tr[ρ′m] = 1. The measure-
ment interventions corresponding to the different measurement outcomes are represented
by quantum operationsMm which reduce the trace. The set {Mm} is specific to the par-
ticular measuring device. The probability of occurrence of the measurement outcome m
is (with the convention tr[ρ] = 1)

p(m) = tr[ρ̃′m] < 1 ,
∑

m

p(m) = 1 . (14.58)

• A non-selective measurement is a transformation.

• We note an implication: the measurement operations can be subjected to an operator-sum
decomposition

Mm =
∑

i

Mm,iρM
†
m,i . (14.59)

We use the Kraus operator Mm,i to construct the effect operators

Em :=
∑

i

M†
m,iMm,i . (14.60)

With them, the measurement probabilities p(m) can be written in the form

p(m) = tr[Emρ] . (14.61)

As an expression of
∑

m p(m) = 1, we have

∑

m

Em = 1 . (14.62)

The positive operators Em form a POVM.

• From an abbreviated approach, which aims only at knowledge of the probability distri-
bution p(m), one can characterise a measurement directly without reference to the Kraus
operators by giving the POVM {Em} (POVM measurement). Equations (14.61) and
(14.62) are valid. Different measurements can lead to the same POVM.

• We have assumed that classically-describable systems and two different dynamics are
fundamental to the scenario. This represents no limitation of generality. We do not assert
that a different description from that with two distinct types of physical systems (classical
and quantum-mechanical) and two distinct dynamics is impossible. In the next chapter,
we shall discuss the question as to what extent the introduction of classical concepts on a
fundamental level becomes superfluous owing to entanglement and decoherence, so that
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the measurement dynamics can be reduced completely to the transformation dynamics.
In the case that this research programme is successful and yields all of our results, the
rules for the measurement dynamics used above would then acquire the character of
a phenomenological description. This represents a pragmatic approach in which one
deals for brevity with classical concepts and with two different dynamics as if they were
fundamental.

14.6 Complementary Topics and Further Reading

• Quantum operations and operator-sum decompositions: [HK 69], [HK 70], [Lud 83],
[Kra 83], [BGL 95], [Sch 96b].

• Description of the dynamics of open systems using master equations, and the Markovian
approximation: [Dav 76], [MW 98], [Car 99], [BP 02].

• An axiomatic approach to quantum theory which starts from the scenario described in
Sect. 14.5 can be found in [Har 01a], [Har 01b].

• Refer also to the literature references for Chap. 13.

14.7 Problems for Chapter 14

Prob. 14.1 [for 14.1.2]: Show that every quantum operation E which acts on the density
operator of a qubit can be written in the form

E(ρ) =
3∑

i,j=0

aijσiρσj , σ0 := 1 , (14.63)

where aij = a∗ij .

Prob. 14.2 [for 14.1.4]: Show by an explicit computation that the Bloch vector of ρ′ from
Eq. (14.22) lies parallel to the i axis.

Prob. 14.3 [for 14.4]: Calculate the effect of an amplitude damping channel on the density
operator

ρ =
1
2
(1 + rσ) . (14.64)

How is the Bloch vector r modified?



15 Decoherence and Approaches to the Descrip-
tion of the Quantum Measurement Process

Decoherence is a parasitic effect for applications, but it is an important approach for the un-
derstanding of the quantum measurement process. The decoherence caused by scattering
gives an indication that environmentally-induced decoherence could play a central role in the
measurement process. The formation of the classical world and the classical behaviour of
Schrödinger’s cat are further examples of the importance of decoherence. The question as to
whether the quantum measurement problem has already been solved today will be treated at
the end of this chapter.

15.1 Channels which Produce Decoherence

15.1.1 The Phase Damping Channel

Scattering as a simple example We consider a qubit system SA on which a quantum sys-
tem SB is scattered. We will greatly simplify the scattering process for our description (see
Fig. 15.1). To this end, we assume that there exist two orthonormal states |0A〉 and |1A〉 of
the system SA, which are not modified by the scattering (stable states). The system SB ar-
rives in the state |iB〉. On scattering by the state |0A〉 (or |1A〉), the scattered system SB is
transformed asymptotically into the state |0B〉 (or |1B〉). The three states of SB are supposed
to form an ONB inHB3 . In addition, we want to allow the possibility that with the probability
1 − p, the system SB is not scattered at all and therefore remains in the state |iB〉. One can
consider |0A〉 and |1A〉 to be for example two energy levels, and |iB〉, |0B〉, and |1B〉 to be
three momentum states (“orbits”).

The scattering is a unitary process of the composite system SAB . The operator which
carries the states in the incoming region over to those in the outgoing region has the properties

ÛAB |0A, iB〉 =
√

1− p |0A, iB〉+√p |0A, 0B〉 (15.1)

ÛAB |1A, iB〉 =
√

1− p |1A, iB〉+√p |1A, 1B〉 . (15.2)

We thus know its effect on parts of the ONB ofHA2 ⊗HB3 and we can extend this operator to
obtain a unitary operator onHA2 ⊗HB3 .

UAB =
(√

1− p |0A, iB〉+√p |0A, 0B〉
)
〈0A, iB|

+
(√

1− p |1A, iB〉+√p |1A, 1B〉
)
〈1A, iB|+ rest . (15.3)

Further dual combinations with 〈0A, iB| or 〈1A, iB | do not occur in the rest.
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Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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|0B〉

|1B〉

|iB〉

|1A〉
|0A〉

Figure 15.1: Scattering on a 2-level system.

The Kraus operators which belong to the quantum operation that acts on the subsystem
SA can be read off directly according to Eq. (14.12):

KA
i = 〈iB|UAB |iB〉 =

√
1− p1A =

√
1− p

(
1 0
0 1

)
(15.4)

KA
0 = 〈0B|UAB |iB〉 =

√
p |0A〉〈0A| = √p

(
1 0
0 0

)
(15.5)

KA
1 = 〈1B|UAB |iB〉 =

√
p |1A〉〈1A| = √p

(
0 0
0 1

)
. (15.6)

The condition

KA†
i KA

i +KA†
0 KA

0 +KA†
1 KA

1 = 1 (15.7)

for Kraus operators is fulfilled. The quantum operation which describes the modification of
the system SA if it were in the state ρ before the scattering is given by

ρA → ρ′A = E(ρA) = KA
i ρ

AKA
i +KA

0 ρ
AKA

0 +KA
1 ρ

AKA
1 . (15.8)

In the computational basis, it takes the form

ρ′A = E(ρA) =
(

ρA00 (1− p)ρA01
(1− p)ρA10 ρA11

)
. (15.9)

If scattering occurs with certainty (p = 1), the non-diagonal elements of the density matrix of
SA vanish in the computational basis. For 0 ≤ p < 1, the non-diagonal elements decrease by
the factor (1 − p) with each additional individual quantum system SB which is scattered on
SA. Scattering causes decoherence.

The phase damping channel In the limiting case of p = 1 (perfect scattering), the scatter-
ing process produces a marking with orthogonal marker states |0B〉and |1B〉. A pure state is
transformed as in Eq. (15.3) into an entangled state

(
c0|0A〉+ c1|1A〉

) |iB〉 → c0|0A, 0B〉+ c1|1A, 1B〉 . (15.10)
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The pure state of the subsystem SA becomes a mixture. The phase relation between the
summands of the pure state, and thus the coherence, i. e. the capability of interference, are lost
for SA. This is decoherence via marking, which we have already described in Sect. 8.7. The
system SA passes through a quantum channel for 0 ≤ p ≤ 1 during the scattering, which is
called the phase damping channel. The effect of this channel on arbitrary mixtures can be most
simply demonstrated on the Bloch sphere. One can show that the Bloch vectors along the z
axis remain unchanged. All the other points move for p �= 1 in many scattering cases towards
the z axis, whereby the rotational symmetry around the z axis remains (compare Fig. 15.2).
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Figure 15.2: Effects of the phase damping channel on the Bloch sphere.

15.1.2 Scattering and Decoherence

Characteristic properties We want to emphasize some properties of the scattering process
described above which we shall encounter again to some extent in more general situations in
which decoherence plays a role.

a) First of all, we must keep in mind that the fundamental process which the composite system
passes through is a unitary evolution UAB that is based upon the particular dynamics of
the interaction. A pure state of SAB is transformed into a pure state of SAB . Information
is not lost in this process.

b) As a result of this unitarity, the scattering process is reversible. If SA was initially in a
pure state, then by means of a suitable “reflection” (a reversal of the motion and dynamics)
of the scattering products, the pure state can again be produced and the decoherence of
SA can be completely reversed. As we have already seen in Sect. 9.1, we have transferred
information by the transition (15.10) into the correlations, whence it can in principle again
be recalled. This requires a non-local process, which in the case of scattering can not be
realised in practice. This last point is important.
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c) It is essential that through the interaction, a basis (|0A〉, |1A〉) of stable states is defined in
HA2 , which cannot be changed by the dynamic influence (cf. Eq. (15.9))

E(|0A〉〈0A|) = |0A〉〈0A| , E(|1A〉〈1A|) = |1A〉〈1A| . (15.11)

d) These eigenstates of σz mark the position of the z axis onto which the Bloch sphere shrinks
(see Fig. 15.2). Compared with the characterisation of the decoherence via the vanishing
of the non-diagonal elements of the density operator, this is a basis-independent character-
isation.

e) Due to c), one can already speculate that we have described elastic scattering. If the states
|0A〉 and |1〉 belong to energy levels EA0 and E1, then with the Hamiltonian

HA = EA0 |0A〉〈0A|+ E1|1A〉〈1A| (15.12)

it can readily be shown that the expectation value Ē of the energy remains unchanged

ĒA = tr[ρAHA] = tr[ρ′AHA] = Ē′A . (15.13)

There is no dissipation.

f) If the scattering is not perfect (p �= 1), the multiple repetitions with new incoming particles
will lead to a stepwise increasing decoherence, which drives the Bloch vectors towards a
position orthogonal to the z axis.

g) In the limiting case, the density operator

ρAlim = |c0|2|0A〉〈0A|+ |c1|2|1A〉〈1A| (15.14)

results. It is formally the same as the density operator of the statistical mixture in which the
system is found in the level state |0〉 or in |1〉with the probability |c0|2 or |c1|2, respectively.
However, an ignorance interpretation is not possible.

h) The overall process is a preparation procedure for ρAlim.

15.1.3 The Phase Flip Channel

We have already seen that there are many operator-sum decompositions for a given quantum
operation. Physically, this means that for the same initial state, different dynamic processes
can lead to the same final state. We can obtain the quantum operation E(ρ) as in Sect. 15.1.1,
and thus decoherence, also through a phase flip channel, which likewise destroys ordered
phase relations. In this channel, a dynamic acts with the probability w on the initial state ρ
and causes a unitary transformation σz – and thus a phase flip. The quantum operation hence
has the two Kraus operators

K+ =
√
w σz ,K− =

√
1− w 1 (15.15)

with

K†
+K+ +K†

−K− = 1 . (15.16)
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The operation is given by

ρ→ ρ′ = w

(
ρ00 −ρ01

−ρ10 +ρ11

)
+ (1− w)

(
ρ00 ρ01

ρ10 ρ11

)

=
(

ρ00 (1− 2w)ρ01

(1− 2w)ρ10 ρ11

)
(15.17)

in the eigenbasis of σz . For w = 1
2 , total decoherence results. A channel with a random phase

flip has an effect which is equivalent in its action to that of a phase damping channel.

15.2 Environment-Induced Decoherence

15.2.1 The Formation of the Classical World

The programme In Sect. 2.1.1, we described the action of a two-slit experiment on the one
hand for balls (i. e. for classical objects) and on the other hand for atoms (i. e. for quantum
objects) and emphasized the differences in the experimental results. The theoretical expla-
nation was given in the one case within the framework of classical physics and in the other
within the quantum theory in the version which was summarised again in Sect. 14.5. The two-
slit experiments raise the following question: what is observed on going from electrons and
atoms through viruses and molecules towards larger and larger objects (see Sect. 15.6), finally
ending up with tennis balls? Can quantum mechanics, as we have described it, be applied un-
changed to explain the observations in the different size ranges? Then classical physics would
finally be derivable from quantum mechanics without any additional theories. Or is there a
completely new physics which appears at some intermediate size range and requires a new
theory?

The question of how classical physics arises from the quantum theory (the quantum-to-
classical transition) will certainly not be answered in a completely satisfactory way in the near
future. It is, however, reasonable to discuss approaches to the solution of parts of the problem.
In this way, we can gain a feeling for what quantum mechanics in the form that we have
described can account for and what not. While in Chap. 10 we attempted unsuccessfully to
understand quantum physics on the basis of classical physics by introducing hidden variables,
we now reverse the direction of the argument and attempt to understand classical physics
starting from quantum mechanics.

The problem It is a typical property of all classical-mechanical objects that they are never
observed in the form of a superposition of two states. A classical object is for example always
either at the location 1 or at the location 2, but never in a superposition of these two differ-
ent spatial states. In terms of the two-slit experiment, this means that in experiments with
classical objects, no interference can occur. The superposition which is possible for quan-
tum objects, and thus the coherence of their states, is not allowed of classical objects. If we
therefore attempt to describe classical objects by applying quantum mechanics to them, the
problem arises as to how we can justify the decoherence of classical states without leaving
the framework of quantum theory. We will try to derive the typically classical property that
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the states of classical objects are not describable in terms of superpositions as an emergent
property. The phase damping channel shows that entanglement with the environment in the
form of scattering can play a role.

An example We imagine a ball or some other macroscopic body SA. Its position states,
described quantum mechanically, are denoted by |0A〉 and |1A〉. These can refer, for example,
to the states behind the individual slits of a double-slit apparatus. In quantum-mechanical
terms, the state

|ϕA〉 = c0|0A〉+ c1|1A〉 (15.18)

is possible; it would lead to an interference pattern. We have to take into account the fact
that the ball is an open system. It interacts constantly with its environment, e. g. by scattering
photons. Even in the dark, the cosmic background radiation remains. |0A〉 and |1A〉, as
classical states, are unchanged by this scattering (stable states). We thus have a situation
which is analogous to the scattering discussed in Sect. 15.1. If the ball is in the state |0A〉,
the photon numbered 1 will be scattered into the state |0E1 〉; correspondingly for |1A〉, the
scattering leads to |1E1 〉. As we have seen in Sect. 15.1, the state of the ball is described by the
reduced density operator

ρA =




|c0|2 c0c

∗
1〈1E1 |0E1 〉

c∗0c1〈0E1 |1E1 〉 |c1|2



 . (15.19)

In comparison to Eq. (15.9), we have taken p = 0, but have not required that the scattering
states be orthogonal.

Not only one photon, but constantly a great number of photons are scattered. Correspond-
ingly, the environment must be described by a product spaceHE = HE1 ⊗HE2 ⊗. . . containing
many factor spaces. The numbers enumerate the two-dimensional factor spaces. Each factor
space corresponds to a degree of freedom. The environment has many degrees of freedom.
The entangled state |ψ′AE〉 of the composite system SAE after the scattering is

|ψ′AE〉 = c1|0A〉|0E1 , 0E2 . . . .〉+ c2|1A〉|1E1 , 1E2 , . . .〉 . (15.20)

The state of the ball is given by the reduced density operator

ρ′A =




|c0|2 c0c

∗
1〈1E1 |0E1 〉〈1E2 |0E2 〉 . . .

c∗0c1〈0E1 |1E1 〉〈0E2 |1E2 〉 . . . |c1|2 .



 (15.21)

The balls at different locations scatter photons in different ways; otherwise, we would not
be able to distinguish them optically. The states |0Ej 〉 and |1Ej 〉, where j = 1, 2, 3, . . ., are
therefore all very different, and |〈0Ej |1Ej 〉| � 1 holds. Since a large number of photons
are scattered, a large number of these very small inner products occur in the non-diagonal
elements of ρA

′
in Eq. (15.21). Due to the entanglement with the scattered photons, the
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state of the ball is transformed into a mixture which is no longer capable of exhibiting an
interference pattern

ρ′A → |c0|2|0A〉〈0A|+ |c1|2|1A〉〈1A| . (15.22)

This density operator is only formally the same as that of a statistical mixture (blend) in which
the ball is to be found either in the state |0A〉 with the probability |c0|2 or in the state |1A〉
with the probability |c1|2. All statistical statements about subsequent measurements are the
same. An ignorance interpretation (cf. Sect. 4.3) is nevertheless not possible.

The superposition (15.20) continues to exist. It can, however, not be observed in the
system SA. Owing to the entanglement of SA with its environment, the originally-present
superposition has become non-local. The ball appears to be localised. It is remarkable that this
is caused precisely by the fact that the state of the overall system is non-local. The dynamic
process is based on a unitary transformation (compare Eq. (15.3)). It is hence reversible
in principle (recoherence). If, however, one considers the many scattered photons, then it
becomes clear that in practice, the process is irreversible. We shall return to the significance
of these statements in connection with the problem of quantum measurements in Sect. 15.3.

What we have shown here for balls holds correspondingly for all systems SA which (i)
are subject to an entangling interaction with an environmental system SE . This interaction is
supposed (ii) to leave certain states of SA unchanged (stable states) and (iii) to entangle each of
them with many states of SE which are very different (nearly orthogonal). The environment-
induced decoherence which then occurs becomes stronger when the environmental system
has more degrees of freedom. It transforms the state of SA into a mixture of the stable states.
These are the classical states, since every superposition of these states – in the case that it
ever appears at all – would decay very rapidly due to decoherence, as we have seen above.
The environmental system SE can also consist of the internal degrees of freedom of a body.
Internal degrees of freedom which are not explicitly taken into account in the description of
the system SA play the same role as an external environment. It is not necessary that the
system SE have macroscopic dimensions. It need only have a very large number of degrees
of freedom.

The superposition of macroscopic quantum states We have seen that the decoherence ap-
proach can explain why superpositions of macroscopic states are so extraordinarily fragile.
This does not however mean that they could not be realised in subtle experimental arrange-
ments. A whole series of experiments demonstrate this. Here, we can only briefly list the
corresponding topics: matter-wave interferometry with large molecules, Bose-Einstein con-
densates, quantum tunneling in SQUIDs, superconductors, photons in microwave cavities.
Literature references can be found in Sect. 15.6. In these experiments, the role of environment-
induced decoherence has also been studied. All the experiments can be explained by quantum
mechanics without making any changes or additions to the theory. The macroscopic states
(e. g. the 109 pairs of electrons in SQUIDs) were described as quantum states.
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15.2.2 Schrödinger’s Cat

The experiment Erwin Schrödinger [Sch 35] described the following thought experiment
(cf. Fig. 15.3): a cat is closed in an opaque box together with a decaying radioactive source.
Within one hour, a single radioactive decay may occur with the probability 1

2 . The decay
causes a vial containing cyanide to be smashed and the cat to be killed. If one limits oneself
to a description of the observations that an experimentalist would make in carrying out this
experiment, there is no problem whatsoever: the trial is repeated a number of times with many
cats and boxes. Each time, after one hour, the box is opened, or it is verified whether the cat
is alive or dead. One finds that it is dead in half the trials and alive in the other half.

Figure 15.3: Upon opening the box, one finds Schrödinger’s cat either alive or dead, with the probabili-
ties 1/2. (From: Audretsch/Mainzer (eds.): Wieviele Leben hat Schrödingers Katze? c©Elsevier GmbH,
Spektrum Akademischer Verlag, Heidelberg, 1990.)

Awakening dead cats to life If quantum mechanics is applied to the cat and a quantum state
|alive〉 or |dead〉 is ascribed to it, there is at first also no problem. Before the measurement,
i. e. before anyone opens the box and checks on its condition, the cat is represented by a
superposition of the states “|alive〉” and “|dead〉” with a marking (see Fig. 15.4)

|ψ〉 =
1√
2
(|alive〉|not decayed〉+ eiφ|dead〉|decayed〉) . (15.23)

Such a superposition might seem unfamiliar in connection with cats. In any case, the experi-
ment treated above, in which in the end a property “alive” or “dead” of the cat is measured, is
described quite correctly.

There are, to be sure, plausible arguments based on experience as to why the state |ψ〉 of
Eq. (15.23) cannot be realised as a stable state. It is essential that the state |ψ〉 of the cat and the
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Figure 15.4: Is a superposition of the quantum states with a living and a dead cat present before opening
the box? (From: Audretsch/Mainzer (eds.): Wieviele Leben hat Schrödingers Katze? c©Elsevier GmbH,
Spektrum Akademischer Verlag, Heidelberg, 1990.)

radioactive source be in the form of a superposition. Despite the marking, superpositions can
lead to interference, as we have seen for example in Sect. 8.7 in connection with which-path
marking and quantum erasing. It is thus in principle not excluded that there could be another
measurement outcome besides “alive” or “dead” (a “rotated basis”), in which an interference
between a living and a dead cat would be observed. Such an interference has in any case never
been seen, neither for macroscopic balls nor for cats.

Still worse; if as a result of the quantum-mechanical description of cats such states as
|ϕ〉 = 1√

2
(|alive〉 + |dead〉) were also to exist, then the following possibility would arise:

one begins with an ensemble of cats in the state |dead〉 and carries out a projection measure-
ment with the observable |ϕ〉〈ϕ| − |ϕ⊥〉〈ϕ⊥|, where |ϕ⊥〉 = 1√

2
(|alive〉 − |dead〉). This

observable would then possibly also exist. Through a subsequent measurement of the observ-
able |alive〉〈alive| − |dead〉〈dead|, in 50% of the cases the cats will be transferred to the state
|alive〉. One could hence awaken dead cats to life.

In states involving cats, the implementation of a superposition is therefore not possible.
We have already seen in Sect. 15.2.1 that environment-induced decoherence (the system is in
fact open) will prevent this. It transforms the superposition of Eq. (15.23) into a mixture of
the stable states |alive〉|not decayed〉 and |dead〉|decayed〉. Whether this already solves all
the problems which occur in connection with the development of classical properties will be
discussed in the next section.

15.3 The Quantum Measurement Process∗

15.3.1 The Research Programme∗

From its beginnings, quantum mechanics was constructed according to a dualistic dynami-
cal scheme which we have likewise used in all the preceding sections: there are on the one

*The sections marked with an asterisk * can be skipped over in a first reading.



298 15 Decoherence and Approaches to the Description of the Quantum Measurement Process

hand the quantum operations that describe the behaviour of the system between preparation
and measurement, and on the other the quantum operations of the measurement itself. In the
simplest case, these are unitary transformations or projections, respectively. Many physicists
consider it dissatisfying to postulate two different dynamics. This has given rise to a research
programme which aims at reducing the measurement dynamics, which was up to now intro-
duced as a postulate, as far as possible or perhaps even completely to the unitary dynamics of
the interaction between the system and the measurement apparatus. In this programme, the
following requirements must be fulfilled:

(i) For various observables such as energy, spin, etc., there are different measuring devices
with different interventions on the system. It must emerge from the dynamic evolution
which observable is measured by a particular device.

(ii) The pointer of the measuring device must not move as a function of time after the mea-
surement.

(iii) Pointers are classical systems. They must never be described as superpositions of differ-
ent indicated values.

(iv) The computation must reflect the fact that in a single measurement, one and only one
measurement outcome out of all the many possible ones is in fact indicated. This state-
ment is also contained in the measurement postulates. However, no deterministic justifi-
cation is required for precisely which value is indicated.

15.3.2 Pre-Measurement∗

For simplicity, we treat the system SA on which the measurement is to be performed as a qubit
system with a quantum-mechanically described measuring device SM , whose Hilbert space
HM likewise is of dimension two. The unitary measurement interaction onHA⊗HM , which
belongs to a measurement with the eigenstates |0A〉 and |1A〉 of SA, is supposed to produce a
marking (see Sect. 8.7). When |0A〉 (or |1A〉) is present, the measuring device is transferred
into the state |0M 〉 (or |1M 〉). For the general state |ϕA〉 = c0|0A〉+c1|1A〉 of SA, this implies
the following entanglement with the states of the measuring device:

|φAM 〉 = |ϕA〉|iM 〉 =
(
c0|0A〉+ c1|1A〉

) |iM 〉 (15.24)

→ |φ′AM 〉 = c0|0A〉|0M 〉+ c1|1A〉|1M 〉
(compare the Stern-Gerlach experiment described in Sect. 13.2.2). |iM 〉 is an initial state of
SM . This dynamic evolution is often termed a pre-measurement.

The decomposition of the resulting state |φ′AM 〉 in terms of a basis of HA ⊗ HM is not
unique. For c0 = c1 = 1√

2
, the resulting state is a Bell state |ΦAM+ 〉 = 1√

2
(|0A〉|0M 〉 +

|1A〉|1M 〉). We can also write it in the form

|φ′AM 〉 = |ΦAM+ 〉 =
1√
2

(|0Ax 〉|0Mx 〉+ |1Ax 〉|1Mx 〉
)
. (15.25)

If |φ′AM 〉 is supposed to be the state for which the measuring device has measured the ob-
servable

ZA = z0|0A〉〈0A|+ z1|1A〉〈1A| , (15.26)
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then one can just as well consider the apparatus to be a device for measuring the observable
XA = x0|0Ax 〉〈0Ax | + x1|1Ax 〉〈1Ax |. It is thus not yet determined which observable will in the
end be measured in the unitary evolution (15.24). Or, from another point of view: if |0M 〉
and |1M 〉 are the classical indicator states, then it is not excluded that the result of the pre-
measurement is a marking with the superpositions of classical pointer states. Requirement (i)
has not yet been fulfilled. With a view to Sect. 15.2.1, the assumption suggests itself that this
problem can be solved by taking the environment into account.

The other requirements are also not fulfilled by the pre-measurement. We can demonstrate
this using the example of requirement (ii). Unitary evolutions are reversible. On the other
hand, the measurement process is irreversible. We will investigate this with the example of
the simple unitary evolution U = e−iHt where the Hamiltonian is

HAM = g σAz ⊗ σMy (15.27)

onHA ⊗HM . Let the initial state be the product state

|φAM (t = 0)〉 = (c0|0A〉+ c1|1A〉
) |0Mx 〉 (15.28)

with |c0|2 + |c1|2 = 1. An auxiliary calculation which we shall not reproduce here (cf. Prob-
lem 15.1) leads to

|φAM (t)〉 = c0|0A〉
{
sin
(π

4
+ gt

)
|0M 〉+ cos

(π
4

+ gt
)
|1M 〉

}

+ c1|1A〉
{
sin
(π

4
− gt

)
|0M 〉+ cos

(π
4
− gt

)
|1M 〉

}
. (15.29)

We obtain a time-dependent entanglement which leads at the time t = π
4g to the desired state

|Φ′AM 〉 of Eq. (15.24). At the time t = 2π
g , however, the non-entangled initial state |ΦAM (t =

0)〉 is again obtained. The pre-measurement hence does not lead to a stable marking of the
composite system.

15.3.3 Entanglement with the Environment Fixes the Observable∗

A first step towards a solution of these problems consists of extending the systems SA and
SM to include the environment SE , which in a first step is assumed to consist of a single
qubit system. The state of the composite system SAME lies within HA ⊗ HM ⊗ HE . We
couple the measuring device SM to the environment SE via a dynamic with the Hamiltonian
HME , which acts only on HM ⊗ HE and thus leaves the state of SA obtained from the
pre-measurement unchanged

1A ⊗HME = g 1A ⊗ σMz ⊗ σEz . (15.30)

The states |0E〉 and |1E〉 form an ONB ofHE .
The initial state at the time t = 0 following the pre-measurement is, with |φ′AM 〉 from

Eq. (15.24),

|ψ(t = 0)〉 = {c0|0A〉|0M 〉+ c1|1A〉|1M 〉
} (
α|0E〉+ β|1E〉) . (15.31)
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The unitary evolution caused subsequently by 1A ⊗ HME leads to a time-dependent entan-
glement with the environment (compare Problem 15.2):

|ψ(t)〉 = c0|0A〉|0M 〉|ωE0 (t)〉+ c1|1A〉|1M 〉|ωE1 (t)〉 (15.32)

where

|ωE0 (t)〉 = α exp(−igt)|0E〉+ β exp(igt)|1E〉 = |ωE1 (−t)〉 . (15.33)

Is it still undetermined which states are occupied by the system SA and the measuring
device SM? The rearrangement of Eq. (15.24) into Eq. (15.25) for c0 = c1 = 1√

2
is possible

only when the summands contain no differing factors. The states |ωE0 〉 and |ωE1 〉 in Eq. (15.32)
are such differing “factors”. The entanglement with the environment, consisting of only a
single qubit, has already produced the effect that only a correlation between the eigenstates
of σAz and σMz , but no longer between those of σAx and σMx , exists1. The apparatus with the
measurement dynamicsHME is therefore associated with the observableZA. Requirement (i)
is fulfilled. However, only a unitary transformation has been carried out. The states are still
periodically entangled and disentangled. At the time t = 2π

g , the state |ψ(t = 0)〉 is again
obtained.

15.3.4 Entanglement with Many Degrees of Freedom of the
Environment∗

Collapse and revival Realistic environments have a large number of degrees of freedom.
We are thus dealing with a composite system in a Hilbert space H = HA ⊗ HM ⊗ HE(1) ⊗
. . . ⊗HE(N), where N is a very large number. We discuss the simple case that all the Hilbert
spaces are two-dimensional, and proceed again as in the previous section.

Before the interaction between the measuring device and the environment is switched on,
the state

|ψ(t = 0)〉 =
{
c0|0A〉|0M 〉+ c1|1A〉|1M 〉

}⊗
{

N∏

k=1

(
αk|0E(k)〉+ βk|1E(k)〉

)}

(15.34)

with |αk|2 + |βk|2 = 1 is present. The interaction is supposed to be given by the simple
Hamiltonian

1A ⊗HME =
N∑

k=1

1A ⊗HME
k (15.35)

1Making use of the following theorem, the proof can be made more precise [Bub 97, Chap. 5.5]: A representation
of a state |ψ〉 ∈ H⊗H′ ⊗H′′ as a tri-orthogonal decomposition

|ψ〉 =
X

i

ci|ui〉|vi〉|wi〉

with basis vectors {|ui〉} ∈ H, {|vi〉} ∈ H′ and {|wi〉} ∈ H′′ does not always exist. But if it exists, it is unique.
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with

1A ⊗HME
k := gk1

A ⊗ σMz ⊗ σEz(k) ⊗
∏

j �=k
1E(j) . (15.36)

The state |ψ(t)〉 of the composite system at the time t is obtained via the unitary transformation
belonging to 1A ⊗HME . After some computation (see Problem 15.2), for which we use the
result (15.32), we find

|ψ(t)〉 = c0|0A〉|0M 〉|ΩE0 (t)〉+ c1|1A〉|1M 〉|ΩE1 (t)〉 (15.37)

where

|ΩE0 (t)〉 :=
N∏

k=1

(αk exp(−igkt)|0E(k)〉+ βk exp(igkt)|1E(k)〉) =: |ΩE1 (−t)〉 . (15.38)

The environment states are normalised: 〈ΩE0 (t)|ΩE0 (t)〉 = 1, 〈ΩE1 (t)|ΩE1 (t)〉 = 1. But in
general, they are not orthogonal at all times,

r(t) := 〈ΩE0 (t)|ΩE1 (t)〉 . (15.39)

For the description of the effects of the measurement on the system SA due to the measur-
ing device SM , we must employ the reduced density operator of the system SAM , taking the
trace over the degrees of freedom of the environment:

ρAM = trE [|ψ(t)〉〈ψ(t)|] = |c0|2|0A〉〈0A| ⊗ |0M 〉〈0M | (15.40)

+ |c1|2|1A〉〈1A| ⊗ |1M 〉〈1M |
+ r(t)c0c∗1|0A〉〈1A| ⊗ |0M 〉〈1M |
+ r∗(t)c∗0c1|1A〉〈0A| ⊗ |1M 〉〈0M | .

One readily finds (compare Problem 15.2) the explicit time dependence of r(t):

r(t) =
N∏

k=1

{cos 2gkt+ i(|αk|2 − |βk|2) sin 2gkt} . (15.41)

By construction, r(t = 0) = 1 and |r(t)|2 ≤ 1.
The behaviour of r(t) for long times is important in view of the requirement (ii). As is

shown by Eq. (15.41), r(t) is composed of periodic functions with many different frequencies
2gk. As is known from statistical mechanics, from quantum optics and from other areas of
theoretical physics, such functions exhibit collapse and revival. Beginning at t = 0 with
r = 1, |r(t)| initially decreases and approaches the value zero, but after a long time it can
again increase, again fall to zero, and so on. |r(t)| can return arbitrarily closely2 to |r(t)| = 1.
With increasing N , this recoherence is however shifted to later and later times (see Fig. 15.5).

2Revival or recurrence can be interpreted more precisely: let H be a finite-dimensional Hilbert space and U
a unitary operator. Then for every ε > 0, there is a natural number q such that sup{‖Uq − 1|ϕ〉‖ : |ϕ〉 ∈
H, ‖ϕ‖ = 1} < ε.
If the application of U is repeated often enough, one will return arbitrarily closely to the initial state [SSS 04].
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t
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N = 15

r(t) revival

Figure 15.5: Collapse and revival (for a particular choice of parameters).

r(t) rapidly attains a value which is proportional to 2−N (cf. Sect. 15.6). As shown by
Eq. (15.40), this corresponds to a rapid decoherence process in the bases {|0A〉, |1A〉} and
{|0M 〉, |1M 〉}. SAM goes from a pure state to a mixture ρAM . In particular, the marker states
|0M 〉 and |1M 〉 can no longer interfere with each other. They have become classical states
which are called pointer states. Hence, requirement (iii) is also fulfilled.

The decoherence process induced by the environment SE has marked out the basis of the
pointer states in the reduced density operator ρAM . The result for the subsystem SAM is the
reduced density operator

ρAM = |c0|2|0A, 0M 〉〈0A, 0M |+ |c1|2|1A, 1M 〉〈1A, 1M | . (15.42)

A statistical mixture of the states |0A, 0M 〉 and |1A, 1M 〉 fromHA⊗HM with the probabilities
p0 = |c0|2 and p1 = |c1|2 is likewise described by the density operator ρAM . Such a statistical
mixture corresponds according to the measurement postulate precisely to the result of a non-
selective measurement of the observables ZA. Are then all the requirements from Sect. 15.3.1
now fulfilled?

Which pointer states? With this restricted point of view which refers only to SAM and
does not consider the environment SE , the argumentation is however still incomplete, since
we have once again acquired a problem with requirement (i). Thus ρAM is the reduced density
operator of an entangled subsystem and therefore not the result of a preparation process which
leads to a statistical mixture. An ignorance interpretation (see Sect. 4.3) is not possible. The
composite system is in a pure state. The density operator ρAM has arbitrarily many ensemble
decompositions, for example also

ρAM = pu|uA, uM 〉〈uA, uM |+ pv|vA, vM 〉〈vA, vM | . (15.43)

Has therefore possibly a quite different observable UA = u|uA〉〈uA| + v|vA〉〈vA| with the
pointer states |uM 〉 and |vM 〉 been measured?

We must not leave out the environment. Interactions with the environment are constantly
present. If, as above, they take the form

HME = ZM ⊗HE (15.44)

with an Hermitian operator HE , then HME commutes with the pointer observable ZM :

[HME , ZM ]− = 0 . (15.45)
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The states |0M 〉 and |1M 〉, and thereby also the correlations with the states |0A〉 and |1A〉,
remain unchanged under the influence of the environment. The stability of these correlations
distinguishes the pointer basis {|0M 〉, |1M 〉} from other bases.

The diagonalisation of ρAB by environment-induced decoherence and the stability of the
correlations between SA and SM under the continuing influence of the environment leads to
fixing of the time-invariant classical pointer states. ZA, as a measured observable, is like-
wise fixed. Thus, the requirements (i) through (iii) of a dynamically-founded theory of the
measurement process for non-selective (!) measurements are essentially fulfilled for this very
simple model through coupling to the environment. The entanglement with the environment
SE is, however, not destroyed, as is shown by the possibility of “recurrence” in the far distant
future. ρAM does not describe a statistical mixture. An ignorance interpretation (see Sect. 4.3)
is not possible. The decision as to whether this should be regarded as a serious defect of the
model is left to the reader.

15.4 Has the Problem of Measurements been Solved?∗

An additional serious defect is in any case present. A measurement leads to a measurement
outcome. This is its most important characteristic. The requirement (iv) in Sect. 15.3.1 is not
fulfilled. Environment-induced decoherence cannot explain why in every individual experi-
ment, always only one of the many possible indicator results of a measuring device is actually
obtained. It has not been shown that such an event occurs. This is, however, precisely the most
elementary experience of an experimenter who carries out measurements. It is a part of the
measurement postulates. Decoherence is necessary but not sufficient for the explanation of
the measurement process. The measurement problem is thus (in the standard interpretation)
unsolved.

The gap in our chain of explanation refers typically to an individual process and thus as
a consequence to selective measurements in general, since they are based upon individual
measurements. With the state ρAM of the reduced density operator in the previous section, we
obtained a mixture. If we interpret this as the result of a non-selective measurement and hence
as a statistical mixture, we have already assumed in advance, in an inacceptable manner, that
requirement (iv) could be fulfilled.

It seems to be the case that one cannot justify dynamically the requirement (iv) within
the framework of the existing quantum theory including the standard interpretation. If this is
true, we have two possibilities. We can change the quantum theory by for example postulating
other dynamic equations (see Sect. 15.6). The second possibility consists of leaving the theory
unchanged in its present mathematical formulation but of finding a different interpretation for
it. We shall give a brief example of this.

15.5 The Many-Worlds Interpretation∗

The many-worlds interpretation, which is also called the Everett interpretation, includes the
observer as a system within the composite system [Eve 57]. He corresponds formally to the

*The sections marked with an asterisk * can be skipped over in a first reading.



304 15 Decoherence and Approaches to the Description of the Quantum Measurement Process

system SM as in Sect. 15.3.2. In the following, we will understand SM in this sense. As in the
pre-measurement, the state of SAM evolves, if SA is a qubit, into the state (15.25). The states
|0M 〉 and |1M 〉 in this connection are memory states of the observer. This already describes the
measurement process. The state |φAM 〉 is not transformed subsequently into one of the states
(e. g. |0A〉|0M 〉), but rather both branches |0A〉|0M 〉 and |1A〉|1M 〉 are separately realised.
Their realisation manifests itself however in this interpretation in different real worlds which
do not interact with one another. Since the states |0M 〉 and |1M 〉 are supposed to be memory
states, an observer with a well-determined memory, for example |1M 〉, can recall only the
measurement outcome belonging to |1A〉 and he correspondingly finds the system SA also
in the state |1A〉 and not in the state |0A〉. Predictions about what will be observed in a
subsequent experiment are probability statements. In this subsequent experiment as well,
again everything which is potentially possible will be realised. The world splits again and
again with each measurement. Reversing the quote from Niels Bohr in Sect. 2.5.1, one could
say in summary: “There is no classical world”.

It is the essence of an interpretation that it cannot be empirically refuted. This also holds
for the many-worlds interpretation, which we have sketched here only superficially. Further-
more, everyone is free to choose that interpretation which he or she holds to be the most suit-
able for sound (metaphysical) reasons. We analysed this point in Sect. 2.5. The many-worlds
interpretation is bizarre, but it has, in addition to many uncertainties (compare Sect. 15.6)
and details which are not yet treated in a satisfactory fashion, also some advantages: require-
ment (iv) for the theory of the measurement process is fulfilled. Furthermore, the observer is
included within the system. “Everything” is described. There is only a single closed system
with a state vector which evolves in a strictly deterministic manner and which represents the
entire cosmological universe. This could possibly facilitate our understanding of the quantum
physics of the extremely early stages of the universe. On the other hand, we can identify var-
ious problems. For example: as in the pre-measurement of Sect. 15.3.2, one must ask why
the splitting-up into different worlds does not take place according to Eq. (15.25). Will the
observer SM recall a measurement of the observable ZA or that of the observable XA? It
appears reasonable that we once again consider decoherence due to the environment for the
solution of this problem (which is problem (i) from Sect. 15.3.1).

In the next and final chapter, we shall return to “hard” theoretical material and present
some proofs which were thus far missing.

15.6 Complementary Topics and Further Reading

• Review articles on decoherence: [Joo 96], [Zeh 96], [Bub 97, Chap. 5.4], [Zeh 00],
[Joo 06], [PZ 02], [Leg 02], [Zur 02], [Zur 03], [Sch 04].

• Many aspects of the topic of decoherence are treated in the anthology [GJK 96].

• A comparison of decoherence rates and relaxation rates as well as time scales for deco-
herence: [Joo 96], [PZ 02].

• The time dependence for the vanishing of decoherence between spatially-separated com-
ponents of a wavefunction (localisation rates): [Joo 96].
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• A series of very readable essays on Schrödinger’s cat, on the relationship between mi-
crophysics and macrophysics, and on the formation of the classical world can be found
in [AM 96].

• We have studied only a very simplified model of environment-induced decoherence. One
should be cautious in generalising the results: [PZ 02].

• Interferometry with macromolecules and decoherence: [ANZ 02], [HUH 03].

• The superposition of macroscopic systems in a SQUID: [FPC 00], [VdW 00].

• Experiments on entanglement, decoherence, and cat-states in cavity resonators:
[HRB 02], [RBH 01].

• Experiments on the superposition of macroscopic quantum states; review articles:
[Leg 02], [Sch 05].

• Classic articles on the role of decoherence in the measurement process: [Zeh 70],
[Zur 81], [Zur 82].

• Review articles and books on the theory of the quantum measurement process: [Zur 82],
[Zur 91], [BLM 91], [Bub 97, Chap. 8], [Mit 98], [Aul 00, Chap. IV ], [PZ 02], [Leg 02].

• The critical letters which were published in answer to the article [Zur 91] are also worth
reading: Physics Today 44 (4), 13-15 and 81-90, April 1993.

• The vacuum of Minkowski space from the point of view of an accelerated observer has
the structure of an entangled state of quantum systems which are at different locations
within the flat space-time. Measurements with accelerated 2-level detectors can yield
unexpected non-local effects: [AM 94a], [AM 94b]. Review article: [PT 04].

• Review articles and books on the many-world interpretation: [DG 73], [Deu 96], [Bar 00],
[Vai 01].

• Brief accounts of the many-world interpretation: [Pri 81, Chap. 3.6], [d’Es 95, Chap. 12],
[Bub 97, Chap. 8.2], [Hom 97, Chap. 2] [Mit 98, Chap. 3.2], [Aul 00, Chap. 15], [Lal 01].

• Quantum theory has been related to consciousness by numerous authors in many dif-
ferent ways. As early as 1939, the hypothesis was proposed that the activity of the ob-
server’s consciousness might be responsible for the fact that in the measurement process,
a transition takes place into a particular outgoing state (the London-Bauer interpretation
[LB 39]). The standard theory of quantum mechanics including the postulates for the

measurement process is not modified in this approach. The boundary between the mea-
suring device and the system on which the measurement is performed is shifted into the
brain of the observer. This representation is thus not a modification of quantum theory,
but rather another interpretation. For a detailed treatment, see [Shi 63].

• The attempts to understand human consciousness itself on the basis of quantum theory
have a different intention. An example as well as references to more detailed literature
can be found in [Sta 93].
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• Collapse theories have as their goal the description of the dynamic evolution between
measurements and within the measurements themselves by means of a single dynamic
equation. To this end, the Schrödinger equation is modified by including stochastic and
nonlinear terms. The standard model in this case contains phenomenological parameters
( [GRW 86]). Review articles on the description of the measurement process with mod-
ified Schrödinger and von Neumann equations (state reduction as a dynamic process):
see [Sta 96], [Lal 01].

• If one wants to describe the early state of the whole universe as a quantum state, then
the concept of reducing coherence due to an interaction with the environment fails, since
the universe by definition has no environment. An attempt to solve this problem is rep-
resented by the theory of consistent histories. It resembles the “sum over histories”
formulation of quantum theory given by Feynman. The question as to which histories are
consistent is investigated. Various probabilities are attributed to different histories. An
introduction can be found in [Gri 02].

• In this book, we have described the further development of quantum theory in recent
years. The concepts of quantum information theory played an important role. This makes
it interesting to try to formulate the fundamentals of quantum theory with reference to
the manipulation of information. In [CBH 03] and [Bub 05a], an information-theoretical
approach is described. It is based on three no-go postulates. One of these is e. g. the no-
signaling requirement: no local measurements on a system should have an instantaneous
influence on the state (reduced density matrix) of another system.

15.7 Problems for Chapter 15

Prob. 15.1 [for 15.1]: Calculate the effect of the phase damping channel on the density
operator

ρ =
1
2
(1 + rσ) . (15.46)

How does the Bloch vector r change?

Prob. 15.2 [for 15.3]: Derive Eqs. (15.29), (15.32), and (15.37). Begin by computing the
dyadic decomposition of the operators exp(σAz ⊗ σMy ) and exp(σAz ⊗ σMz ) in suitable bases
ofHA ⊗HM .

Prob. 15.3 [for 15.3]: Derive Eq. (15.40).
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We want to append the proof of Kraus’ theorem from Sect. 14.1.2. In addition, the implemen-
tation of quantum operations asserted in that section will be demonstrated here. Based upon
this, the implementation of a general quantum measurement can be described. All these pro-
cedures are based on entanglement with an ancilla system. We thus pursue the investigations
from Sections 7.7 and 7.8 further here.

16.1 The Operator-Sum Decomposition∗

Relative states and index states We consider the bipartite system SAB with the Hilbert
space HA ⊗ HB and take for simplicity dimHA = dimHB = d. In HA and HB , we
introduce the ONB {|aA

n 〉} and {|eB
n 〉} and construct with them a maximally-entangled, non-

normalised state:

|ψ̃AB〉 =
d∑

n=1

|aA
n , e

B
n 〉 (16.1)

for which

|aA
n 〉 = 〈eB

n |ψ̃AB〉 (16.2)

holds. We can consider |eB
n 〉 to be a marker state for |aA

n 〉.
This idea can be generalised. We can obtain an arbitrary state |φA〉

|φA〉 =
∑

n

cn|aA
n 〉 (16.3)

ofHA by projection inHB . To do so, we generate inHB the index state belonging to |φA〉

|φ∗B〉 :=
∑

n

c∗n|eB
n 〉 . (16.4)

We then find with Eq. (16.1)

|φA〉 = 〈φ∗B|ψ̃AB〉 (16.5)

*The chapters marked with an asterisk * can be skipped over in a first reading.
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and likewise

|φ∗B〉 = 〈φA|ψ̃AB〉 . (16.6)

|φA〉 is called the relative state. Via the maximally-entangled ancilla state |ψ̃AB〉, which
depends only on the two ONBs, a simple relation is obtained between an arbitrary state
|φA〉 ∈ HA and its index state |φ∗B〉 inHB . |ψ̃AB〉 establishes an unambiguous mapping

|φA〉 ↔ |φ∗B〉 , (16.7)

which is conjugate linear. We have

|φA〉 = a1|φA
1 〉+ a2|φA

2 〉, |φ∗B〉 = a∗1|φ∗B
1 〉+ a∗2|φ∗B

2 〉 . (16.8)

The proof is carried out by expansion in terms of the basis vectors.

Proof of Kraus’ theorem We want to prove the following statement, which was already
asserted in Sect. 14.1.2: A mapping ρ → ρ̃′ = E(ρ) is a quantum operation if and only if an
operator-sum decomposition

E(ρ) =
∑

i

KiρK
†
i (16.9)

with linear operators Ki exists, which fulfill the condition

∑

i

K†
iKi ≤ 1 (16.10)

and which map the incoming Hilbert space onto the outgoing Hilbert space. The condi-
tion (16.10) is equivalent to the statement that the trace does not increase:

tr[E(ρ)] ≤ 1 (16.11)

(tr[ρ] = 1). ρ̃′ is again a density operator.
For the proof in the one direction, we construct the superoperator E according to Eq. (16.9)

with the linear operators Ki. We show that EA⊗1B transforms an arbitrary positive operator
πAB fromHA ⊗HB into a positive operator. Let |ψAB〉 be an arbitrary vector inHA ⊗HB .
We choose an index i and form

|φAB
i 〉 := (KA†

i ⊗ 1B)|ψAB〉 . (16.12)

Then KA
i ⊗ 1B is a positive operator on HA ⊗HB owing to

〈ψAB|(KA
i ⊗ 1B)πAB(KA†

i ⊗ 1B)|ψAB〉 = 〈φAB
i |πAB|φAB

i 〉 ≥ 0 . (16.13)

This holds also for the sum over i. The superoperator EA given in the form of Eq. (16.9) is
not only positive, but also completely positive.
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For the proof in the converse direction, we begin with the maximally-entangled state
|ψ̃AB〉〈ψ̃AB| of Eq. (16.1). Since EA is by assumption a quantum operation, the application
of EA ⊗ 1B

(EA ⊗ 1B)|ψ̃AB〉〈ψ̃AB| =: CAB (16.14)

yields a positive operator CAB .
In the second step of the proof, we write out CAB with Eq. (16.1) and making use of the

linearity of EA

CAB =
(EA ⊗ 1B

)
(
∑

n

|aA
n , e

B
n 〉
)(

∑

n′
〈aA

n′ , eB
n′ |
)

=
∑

n,n′
EA
(|aA

n 〉〈aA
n′ |)⊗ (|eB

n 〉〈eB
n′ |) .

(16.15)

We take with Eqs. (16.3) and (16.4) the expectation value with the index state |φ∗B〉:

〈φ∗B|CAB|φ∗B〉 =
∑

n,n′
cnc

∗
n′EA(|aA

n 〉〈aA
n′ |) = EA(|φA〉〈φA|) . (16.16)

Here, we have again made use of the linearity of EA. Equation (16.16) demonstrates that the
complete information about the action of the superoperators EA on the basis of the Liouville
space LA is contained in the operator CAB .

In the third step, we choose an ensemble decomposition of CAB ,

CAB =
∑

i

|c̃AB
i 〉〈c̃AB

i | (16.17)

and rearrange the left-hand side of Eq. (16.16)

EA(|φA〉〈φA|) =
∑

i

〈φ∗B|c̃AB
i 〉〈c̃AB

i |φ∗B〉 . (16.18)

We introduce the operators KA
i defined by their action on |φA〉:

KA
i |φA〉 := 〈φ∗B|c̃AB

i 〉 (16.19)

and obtain from Eq. (16.18)

EA(|φA〉〈φA|) =
∑

i

KA
i |φA〉〈φA|KA†

i . (16.20)

Due to the linearity of EA, it then holds for all density operators ρA onHA that:

EA(ρA) =
∑

i

KA
i ρ

AKA†
i (16.21)
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since the mapping |φA〉 ↔ |φ∗B〉 is conjugate linear. With Eq. (16.19), the operators KA
i are

also linear operators. Furthermore, since the quantum operation EA(ρA) of Eq. (16.21) does
not conserve the trace for all ρA, we obtain the condition (16.10). This proves the theorem on
operator-sum decomposition in both directions.

The choice of the two orthonormal bases {|aA
n 〉} and {|eB

n 〉}, like the ensemble decom-
position (16.17), was arbitrary. This once more demonstrates that the operation elements KA

i

for a given superoperator EA are not uniquely determined.

16.2 The Unitary Implementation of Quantum Operations∗

Trace-conserving quantum operations A trace-conserving quantum operation EA on the
system SA

tr[EA(ρA)] = tr[ρA] = 1 (16.22)

is also called a complete quantum operation. The associated decomposition operators obey
the completeness relation

∑

i

KA†
i KA

i = 1 . (16.23)

For a unitary implementation of the quantum operation, we again extend the system SA by
adding an ancilla system SB . The dimension of HB is assumed to agree with the number of
decomposition operators.

In HB , we choose a basis {|iB〉}. Let SB be initially in the state |0B〉 and the composite
system in the product state |ψA〉|0B〉. This notation is different from that used in Sect. 14.1.2.
Using the KA

i , we define an operator ÛAB through its action on states |ψA〉|0B〉:

ÛAB|ψA〉|0B〉 :=
∑

i

KA
i |ψA〉|iB〉 . (16.24)

For arbitrary states |ψA〉 and |φA〉, we then have with the completeness relation (16.23)

〈ψA|〈0B|ÛAB†ÛAB|φA〉|0B〉 =
∑

i

〈ψA, 0B|KA†
i KA

i |φA, 0B〉

= 〈ψA, 0B |φA, 0B〉 .
(16.25)

ÛAB conserves the inner products on states of the form |ψA, 0B〉. With the corollary obtained
in Sect. 13.3.5, we can then extend ÛAB to a unitary operator UAB which acts on the whole
ofHA ⊗HB . We assume that such operators have a physical implementation.

*The sections marked with an asterisk * can be skipped over in a first reading.
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We make use of Eq. (16.24). The subsystem SA is transformed into the state

trB[UAB(|ψA〉〈ψA| ⊗ |0B〉〈0B|)UAB†]

= trB [
∑

i,i′
KA

i |ψA〉〈ψA|KA†
i′ ⊗ |iB〉〈i′B|]

=
∑

i

KA
i |ψA〉〈ψA|KA†

i

= EA(|ψA〉〈ψA|)

(16.26)

through the unitary transformation UAB of the composite system, into which it is also trans-
formed by the quantum operation EA. Every trace-conserving quantum operation on HA

therefore has a unitary implementation onHA ⊗HB in the form

EA(ρA) = trB[UAB(ρA ⊗ |0B〉〈0B|)UAB†] . (16.27)

For every trace-conserving quantum operation EA of a system SA, a composite system SAB

with the Hilbert space HA ⊗ HB , an initial state |0B〉 of SB , and a unitary transformation
UAB onHAB can be found such that the subsystem SA undergoes the evolution EA. UAB is
the extension of the operator ÛAB defined in Eq. (16.24).

Quantum operations which do not conserve the trace In the case of incomplete quantum
operations (

∑
iK

A†
i KA

i < 1), we complete the set of operators KA
i by adding an operator

K∗ such that a complete set
∑

i

KA†
i KA

i +KA†
∗ KA

∗ = 1 (16.28)

is obtained. The space HB is replaced by the space HB′
whose dimension is larger by one.

An operator UAB′
is constructed as above. Following the evolution with UAB′

, a projection
is carried out using the projector PB on HB . We thus replace UAB in the above calculation
by PBUAB′

. Then in the equation which is analogous to Eq. (16.24), precisely the operator
KA

∗ vanishes. It also no longer occurs in the operator-sum representation (16.26).

16.3 Implementation of a Completely General Selective
Measurement by Unitary Transformation and
Projection∗

We want to physically implement most general selective measurements. In these interventions,
the state ρA is transformed on the occurrence of the measurement result m into the state ρ̃′Am ,
which is given by a quantum operation with superoperatorsMA

m

ρA → ρ̃′Am =MA
m(ρA) . (16.29)

*The sections marked with an asterisk * can be skipped over in a first reading.
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The generalised measurement discussed in Sect. 13.3 is the special case MA
m(ρ) =

MA
mρ

AM†
m.

The measurement outcome m is assumed to occur with a probability

p(m) = trA[ρ̃′Am ] = trA[MA
m(ρ)] . (16.30)

Thus for arbitrary ρA,

trA[
∑

m

MA
m(ρA)] =

∑

m

p(m) = 1 . (16.31)

The superoperatorsMA
m have an operator-sum decomposition

MA
m(ρ) =

∑

i

MA
m,iρ

AMA†
m,i . (16.32)

The range of values of i can depend on m. As a result of Eq. (16.31), the ensemble must obey
the completeness relation

∑

m,i

MA†
m,iM

A
m,i = 1 . (16.33)

We will make use of this formal analogy with Eq. (16.23).
A physical implementation can in principle also be found for this quite general measure-

ment on the system A. To this end, we again introduce an ancilla system SB . The dimension
of the associated Hilbert spaceHB is taken to be equal to the number of all the Kraus operators
employed, MA

m,i. InHB , we choose an ONB {|m, iB〉}. Then we can follow the procedure of
Sect. 16.2 step by step. Let the initial state of the composite system be |ψA, 0B〉. An operator
ÛAB with the action

ÛAB|ψA, 0B〉 :=
∑

m,i

MA
m,i|ψA〉|m, iB〉 (16.34)

is defined. It can be extended by again using Eq. (16.33) to a unitary operator UAB on the
entire spaceHA ⊗HB .

We introduce orthogonal projection operators PB
m on the ancilla system SB belonging to

the measurement outcome m:

PB
m :=

∑

i

|m, iB〉〈m, iB| ,
∑

m

PB
m = 1B . (16.35)

A unitary overall transformation with subsequent projection PB
m on the ancilla system SB

yields

PB
mU

AB |ψA〉|0B〉 =

(
∑

i′
|m, i′B〉〈m, i′B|

)


∑

n,i

MA
n,i|ψA〉|n, iB〉





=
∑

i

MA
m,i|ψA〉|m, iB〉 .

(16.36)
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To determine the reduced density operator of the outgoing system SA, we proceed as in
Eq. (16.26) and obtain with Eq. (16.32) the desired relation (16.29)

ρ̃′Am =
∑

i

MA
m,i|ψA〉〈ψA|MA†

m,i =MA
m(|ψA〉〈ψA|) . (16.37)

The probability p(m) with which the measurement result m occurs in the projective measure-
ment on SB is given by the reduced density operator ρB of the ancilla system SA after the
unitary evolution. By taking the partial trace trA in Eq. (16.36), we first obtain ρB after an
intermediate computation which we do not show here, and from it, p(m):

p(m) = trB[PB
mρ

BPB
m ] . (16.38)

One can then read off the explicit expressions which we will not write out here, and with the
aid of Eq. (16.37), obtain the final relation required (compare Eq. (16.30))

p(m) = trA[MA
m(|ψA〉〈ψA|)] . (16.39)

Because of the linearity of the superoperators, the calculation can be applied to density oper-
ators.

We obtained the following result: a completely general selective measurement on the sys-
tem SA, yielding the measurement outcome m and the change of stateMm(ρ), can be imple-
mented as a unitary evolution UAB of the composite system SAB (extended to include SB),
with a subsequent projective measurement on SB by the projector PB

m . The probability that
the measurement outcome m is found in the projective measurement on SB agrees with the
probability p(m) that the measurement operationMA

m acts on the state of SA. UAB and PB
m

are here given by Eqs. (16.34) and (16.35). This represents a reduction to projective measure-
ments, which cannot be physically further reduced. For details of the operational procedure
of selection, we refer to Sect. 7.4.2.

16.4 Complementary Topics and Further Reading∗

• On the proofs: [Kra 83], [Sch 96b]. See also the literature references in Sect. 14.5.

• Unitary evolutions are reversible. Under which conditions are quantum operations re-
versible? Compare [NCS 98].

16.5 Problems for Chapter 16

Prob. 16.1 [for 16.1]: Prove Eq. (16.8).

Prob. 16.2 [for 16.3]: Complete the intermediate calculation which leads to Eq. (16.38)
and to Eq. (16.39).

*The sections marked with an asterisk * can be skipped over in a first reading.
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classical state 295
classically correlated 173
classically correlated quantum state 144
CNOT gate 136, 239
CNOT transformation 179
code, quantum error-correcting 239
coding, binary 92
collapse and revival 301
collapse theory 306
collapse, of the wavefunction 35
communication, classical 144
complement, orthogonal 3
complete positivity 274
complete quantum operation 310
complete system of commuting observables

10
completeness relation 5
component 3

mathematical 41
composite quantum system 120
compound system see composite system
computational basis 49
computational complexity 244
concurrence 212
conditional entropy 99
conditional probability 17
conjugate linear 308
consciousness 305
conservation of the norm 11
consistent histories 306
continuous-variable entanglement 46
control pair 210
control qubit 136
controlled NOT gate see CNOT gate
controlled-controlled NOT 137
convex sum 79
Copenhagen interpretation 44
copy 201
correlation 99, 100

degree of 170
correlation at a distance 187
correlation coefficient 185
correspondence rules 41

hypothetical 42
correspondence, dual 2
cryptogram 199

data compression 96
de Broglie-Bohm theory see Bohm theory

decoherence 80, 239, 244, 290–292
environment-induced 293, 295, 297

decomposition
bi-orthogonal 9, 149, 260
dyadic 5

of the identity operator 5
left-polar 259
orthogonal 7
polar 149
right-polar 260
spectral 7
tri-orthogonal 300

decomposition of the identity see dyadic de-
composition of the identity opera-
tor

decomposition operator 249, 275
degeneracy 36
degenerate 7
degree of degeneracy 32
degree of mixtureness 79, 85
delayed choice 46, 165, 166
delayed entanglement 209
density matrix 73
density operator 73, 75, 79

maximally mixed 79
reduced 82, 122, 122

depolarisation 282
determination of states 85
Deutsch gate 138
Deutsch problem 225
Deutsch-Jozsa problem 225
developed domain of reality 42
deviation, mean square 19
dimension, of Hilbert space 35
Dirac notation 2
dispersion 19
distillation protocol 209
divisor, greatest common 231
domain of reality 41
dual correspondence 2
dyad 5
dyadic decomposition 5
dynamics

unitary 33, 55, 56, 80, 108, 131, 247,
256

eavesdropping 201
effect operator 260, see POVM element
eigenbasis 7, 105
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eigenvalue 3
eigenvector 3
Einstein

locality 135, 188
reality 135, 188

either-or states 25
elements of physical reality 188
emergent property 294
ensemble 75
ensemble decomposition 83, 110
entangled 117, 224, 248
entangled quantum state 145
entanglement 116, 143, 152, 171, 253
entanglement distillation 209
entanglement of formation 214
entanglement swapping 207
entanglement witness 193
entropy

classical 91
conditional 99
of entanglement 153
operational interpretation of 96
relative 97
Shannon’s 89
theoretical relative 109
von Neumann 89

environment-induced decoherence 295
EPR 145
EPR correlations 145, 185
error 96
error correction protocol 201
estimating a state 269
Euclidian algorithm 243
Eve 201
events

exclusive 16
independent 17
random 15

Everett interpretation 303
exchange coupling 141
expectation value 6
experimentum crucis 191
extended operator 118

factor space 117
fidelity 96, 210
forerunner theories 41
form, non-normalised 74
free system 31

frequency, relative 16
fringe contrast 68
function, Boolean 221

general assumption 23
general measurement 256
general non-selective measurement 257
general selective measurement 279
generalised selective measurement 251, 257
GHZ state 194
Gleason’s theorem 82, 86
greatest common divisor see divisor, greatest

common
Grover algorithm 225

Hadamard
beam splitters 66
gate 60, 226
transformation 179

Hamiltonian 34
Hermitian operators 9
Hilbert space, finite-dimensional 1

idempotent 12
identical particles see particles, identical
identity operator 3
ignorance interpretation 84, 302
implementation of the Hadamard gate

optical 65
improper mixture 123
in-out approach 132, 273
incoherent superposition 80
incomplete 188
index state 307
indistinguishability 116
individual identity 116
inequality

Gibbs’ 97
Schwarz 2
triangle 171

inequality, Bell 189
inference 18
information content 96
information transmission

assisted by entanglement 205
information, mutual 98, 170, 174
informationally complete 268
informationally complete measurement 265
inner product 2
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integer 221
interference 67
interference pattern 24, 67, 81
interpretation 41

London-Bauer 305
intervention 256, 273
intrinsic properties 35
inverse operator 3
ion trap 241

joint entropy 169
joint probability 15, 98

ket space 2
ket vector 2
key 199, 200
kick back 224
Klein’s inequality 109
Kraus operator 249, 275, 290

law of large numbers 94
left-polar decomposition 259
Lindblad master equation 278
Lindblad operator 278
Lindblad superoperator 278
Lindbladian 278
linear operator 3
Liouville

space 13
Liouville operator 15, 74, 131
Liouvillian 15
LO see local operation
local 115, 187, 188
local measurement 122, 125
local observable 122
local operation 115, 144
LOCC 144
loophole 196
lossless beamsplitter 64

Mach-Zehnder interferometer 66, 161
magic basis 214
manner of speaking 30
many-worlds interpretation 45, 303
mapping principles 41
marker

observable 164
state 163, 307
system 163

marking 290
Markovian approximation 279
master equation 277
matrix elements 5
maximally entangled state 153
mean square deviation 19
mean value 6, 10, 19
measure of entanglement 152
measured values, correlated 130
measurement 105

general 256
selective 256

general selective 279
generalised 178, 262

selective 251, 257
informationally complete 265
local 121, 122, 125, 128, 175
minimal 260, 261
most general selective 311
non-local 175, 239, 240
non-selective 77, 110, 303
projective see projective measurements
selective 26, 76, 303
sharp 255
unsharp 255

measurement dynamics 55, 247, 256
measurement operator 250, 257
measurement outcome 257, 285
measurement-based model 244
measuring device 285
memory state 304
message 90
microtraps 141
minimal interpretation 42, 43, 84
minimal measurement 260
mixture 82, 123

separable 172
statistical 25, 26, 31, 75

model
measurement-based 244

modular arithmetic, see modular arithmetic
most general selective measurements 311
mutual information 98

natural philosophy 40
negative-result measurement 68
neither-nor state 26
no-cloning theorem 161
non-local measurement 175
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non-local observable 175
non-selective measurement 27
norm 2
normal operator 6
NOT gate 60
null measurement 68
number

natural 221

observable 10, 32
Bell-CHSH 192
classical 44
collective 121
non-local 121, 175

ONB 3
ontology 40
open quantum system 131
open system see open quantum system
operation element 249, 275
operation, local 115, 144
operational 93, 116
operator

σ see Pauli operator
diagonalisable 6
extended 118
function 9
Hermitian 13
inverse 3
linear 3
local 122
normal 6
unitary 11

operator basis 50
orthonormal 14

operator-sum decomposition 249, 275
operator-sum representation 249
oracle 225
orthogonal 2, 14
orthogonal complement 3
outer product see dyadic product
outer product representation see dyadic de-

composition
output text 93

parallelogram equation 3
parity bit 179
partial trace 119
partial transposition 155
particles

identical 139
Pauli

matrices 52
operator 49, 51, 175

Peres-Horodecki criterion see PPT criterion
phase bit 179
phase damping channel 291
phase flip 52
phase flip channel 292
phase flip error 240
phase gate 60
phase shifter 60, 81
philosophy of science 40
photon 200, 204
photon polarisation 62
physical properties 34
pointer 298
pointer observable 302
pointer state 302
polar expansion 149
positive integer 221
positive operator 11
positive operator valued measure, see POVM
positive partial transpose criterion see PPT

criterion
positivity, complete 274
postulates 32, 82, 121, 302
POVM 260

element 260, 264
measurement 264, 266, 267, 280

PPT criterion 156
pre-measurement 298
preparation

of a state 105
preparation apparatus 285
preparation entropy 111
preparation procedure 25, 30, 36
prime factorisation 231
private amplification protocol 201
probabilistic cloning 167
probability 16, 33, 122

classical 75
conditional 76, 98

product
dyadic 5
Hilbert space 116
inner 2
operator 118
vector 117
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projection operator 12
local 122

projection valued measure 264
projective measurements 32, 38, 55
projector 7
proper mixture 123
property

emergent 294
intrinsic 139

protocol 200
pure state 31
purification 152, 209
PVM 264

quantisation, second 141
quantum algorithm 225
quantum channel 103, 281
quantum circuit 135, 179, 220
quantum code, error correcting 244
quantum coding, dense 204
quantum computation 220
quantum computers 136, 220
quantum correlations 145
quantum data compression 107
quantum dense coding 204
quantum dots 141, 241
quantum effects 29
quantum entropy 105
quantum erasure 164
quantum error-correcting code 239
quantum Fourier transform 236
quantum gates 49, 59, 135, 220

universal 66, 138, 241
quantum information 106, 112
quantum information theory 89
quantum jumps 282
quantum measurement process 42
quantum network 220
quantum objects 45
quantum operation 274, 275, 290, 311

complete 275, 310
incomplete 275

quantum parallelism 224
quantum range 29
quantum register 219
quantum signal ensemble 103
quantum signal source 103
quantum state 26, 30, 82

classically-correlated 144

entangled 145
quantum state estimation 270
quantum system 29

composite 120
isolated 31
open 131

quantum teleportation 205
quantum theory 29
quantum wires 135, 220
quantum Zeno effect 39, 71
quantum-to-classical transition 293
qubit 49, 105, 106

system 49, 62
query 225

Rabi
frequency 58
oscillations 58

random variable 19, 90
randomised algorithm 233
re-preparation 27
realism, local 187, 188
reality 29, 40, 44, 187

physical 42
recoherence 295, 301
reduced density operator 122
reflection factor 65
remainder 221
right-polar decomposition 260

scalar product 2, 14, 117
scenario of quantum mechanics 23, 285
Schmidt

bases 151
coefficients 150
decomposition 149
number 151

Schrödinger
representation 34, 131, 274

Schrödinger’s cat 296
Schumacher’s quantum noiseless coding theo-

rem 107
second quantisation 141
secret 202
selective measurement 76
self-adjoint 9
separability problem 147
separable 175
separable state 145



Subject Index 337

sequence 90
typical 91

Shannon’s entropy 89, 91, 96, 105, 110
Shannon’s noiseless coding theorem see

Shannon’s theorem
Shannon’s theorem 96
signal ensemble 90
signal source 90

stochastic memoryless 90
signal state 103
simulation 123
single-qubit gate 242
singlet state 118
source text 199
spectral theorem 10
spin 51, 62
spin- 1

2
particles 62, 203

spooky action into the past 209
standard basis 49
standard deviation 19
standard interpretation 29, 42, 44, 45, 303
state 25, 74, 123, 224

classical 25, 295
correlated 144
entangled 115
maximally entangled 153
pure 26, 31, 73, 79, 80, 155
relative 124, 308
separable 145
Werner 284

state evolution
deterministic 257
non-deterministic 257

state reduction 35
state vector 32, 36
statistical mixture 25, 75, 302
Stern-Gerlach experiment 251

ideal 254
non-optimal 253

subadditivity 101, 170
subjectivistic interpretation 45
subspaces

decoherence-free 244
subsystem 115, 120
subsystem operator 118
sum, convex 79
super selection rules 44
superoperators 14, 279
superposition 117

supremum norm 6
SWAP gate 137
system

closed 31
composite 82, 115
open 31, 247

target pair 210
target qubit 136
tensor product 116, 120
theorem

of the operator-sum decomposition 275
theory

classical 188
physical 41
stochastic, local-realistic 188

time 35
time development operator 33
Toffoli gate 137
total probability 18
trace 6, 119
transfer of entanglement 207
transformation apparatus 28, 285
transmission factor 65
transposition 155
trapped atoms 241
tri-orthogonal decomposition 300
triangle inequality 2, 171
two-slit experiment 23
typical subspace 107

U gate, controlled 137
uncertainty 19, 91

remaining 100
unilateral 209
unitary 11
unitary equivalence 11
universal quantum gates 138, 241
unsharp measurement 255

values
of a measurement 32

variables, classical 35
variables, hidden 188
variance 19
von Neumann

entropy 89, 111
equation 74, 131
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Werner state 284
which-way marker 163

XOR gate see CNOT gate

Zeno

effect 39

time 39
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